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1. Introduction.

The Feynman path integral is known to be a powerful tool in different domains of
physics. At the same time, the mathematical theory underlying lots of (often formal)
physical calculations is far from being complete. Various known approaches to the rig-
orous construction of the Feynmann path integral representation to the solution of the
Schrödinger equation

∂ψ

∂t
= (

i

2m
∆− iV (x))ψ (1.1)

(and its generalisations that include magnetic fields) can be roughly divided into two
classes. In the approaches of the first class that we shall not discuss here in detail the
Feynman integral is not supposed to be a genuine integral, but is specified as as some
generalised functional on an appropriate space of functions, which can be defined, for
example, as the limit of certain discrete approximations (see e.g. [ET], [Tr] and more
recent papers [Ich1], [Ich2], [Lo]), by means of analytical continuation (see e.g. [JL],
[HM] and references therein), by extensions of Parceval’s identity and by related axiomatic
definitions (see [ABB], [AKS], [K3], [CW], [SS] and references therein) or by means of the
white noise analysis (see [HKPS]), see also [Za] for the discussion of path integral applied to
the Dirac equation. These approaches still cover only a very restrictive class of potentials,
for example, singular potentials were considered only by white noise analysis approach but
only in one-dimensional case (see e.g. [AKK] and references therein).

In the approaches of the second class, one tries to define the infinite-dimensional Feyn-
mann integral as a genuine integral over a bona fide σ-additive measure on an appropriate
space of trajectories. The first attempt made in [GY] to construct such a measure was
erronious and led to understanding that there is no direct generalisation of Wiener measure
that can give an analog of Feynman-Kac formula for the case of Schrödinger operators. A
correct construction of the Feynman integral in terms of the Wiener measure was proposed
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in [Do] and was based on the idea of the rotation of the classical trajectories in complex
domains. Namely, changing the variables x to y =

√
ix in equation (1.1) leads to the

equation
∂ψ

∂t
= (− 1

2m
∆− iV (−

√
iy))ψ, (1.2)

which is of diffusion type (with possibly comlex source) and can be treated by means of
the Feynman-Kac formula and the Wiener measure. Clearly this works only under very
restrictive analytic assumptions on V (see e.g. [H1], [H2], [AKS2]). However, if one is
interested only in semiclassical approximation to the solutions of the Schrödinger equation
one can obtain along these lines an approximate path integral representation for even
non-analytic potentials that yields all terms of semiclassical expansion (see [BAC]).

Another approach to the construction of the genuine path integral initiated in [MCh],
[M] defines it as an expectation with respect to a certain compound Poisson process, or
as an integral over a measure concentrated on piecewise constant paths, see e.g. [Com],
[HM], [K2], [PQ], and references therein. Though this method was succesfully applied to
different models (see e.g. [GK] for many particle problems, [Se] for simple quantum field
models, [CheQ] for computational aspects and tunneling problems, [Gav] and [KY] for
Dirac equations), the restriction on interaction forces were always very strong, for example,
for a usual Schrödinger equation, this approach was used only in the case of potentials
which are Fourier transforms of finite measures. However in [K3],[K4] following this trend,
a construction was given that covered already essentially more general potentials. To
achieve this, one uses a coordinate representation for the Schrödinger equation (and not
the momentum representation as in [MCh]) and also uses an appropriate regularisation
of the Schrödinger equation. As the simplest reasonable regularisation one can take the
same one as is used to define standard finite-dimensional (but not absolutely convergent)
integrals. A relevant finite-dimensional example is given by the integral

(U0f)(x) = (2πti)−d/2

∫

Rd

exp{−|x− ξ|
2

2ti
}f(ξ) dξ (1.3)

defining the free propagator eit∆/2f . This integral may be not well defined for a general
f ∈ L2(Rd). One of the way to define this integral is based on the observation that
according to the spectral theorem eit∆/2f = limε→0+ e

it(1−iε)∆/2f in L2(Rd) for all t > 0
(i.e. one can approximate real times t by complex times t(1− iε)). Hence, for an arbitrary
f ∈ L2(Rd), one can define the integral in (1.3) as

(U0f)(x) = lim
ε→0+

(2πt(i+ ε))−d/2

∫

Rd

exp{− |x− ξ|
2

2t(i+ ε)
}f(ξ) dξ (1.4)

(notice that for any ε > 0 and f ∈ L2(Rd), the integral in (1.4) is well defined). We shall
use the same approach for Feynman’s integral. Namely, if the operator H = −∆/2+V (x)
is self-adjoint and bounded from below, by the spectral theorem

exp{−itH} = lim
ε→0

exp{−(i+ ε)tH} (1.5)
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strongly for all positive t. In other words, solutions to equation (1.1) (with m = 1 for
brevity) can be approximated by the solutions to the regularised equation

∂ψ

∂t
=

1

2
(i+ ε)∆ψ − (i+ ε)V (x)ψ, (1.6)

i.e. to the Schrödinger equation in complex time. In section 3 we shall define a measure
on a path space (actually a measure on the Cameron-Martin space of paths having square
integrable derivatives) such that for any ε > 0 and for rather general class of potentials V ,
the solution exp{it(1 − iε)(∆/2 − V (x))}u0 to the Cauchy problem of equation (1.6) can
be expressed as the Lebesgue (or even the Riemann) integral of some functional Fε with
respect to this measure, which would give a rigorous definition (analogous to (1.4)) of an
improper Riemann integral corresponding to the case ε = 0, i.e. to equation (1.1). There-
fore, unlike the usual method of analytical continuation often used for defining Feynman’s
integral, where rigorous integral is defined only for purely imaginary Planck’s constant h
and for real h the integral is defined as the analytical continuation by rotating h through
the right angle, in our approach the (positive σ-finite) measure is rigorously defined and
is the same for all complex h with a non-negative real part, and only on the boundary
Imh = 0 the corresponding integral usually becomes an improper Riemann’s integral.

Surely, the idea to use equation (1.6) as an appropriate regularisation for defining
Feynman’s integral is not new and goes back at least to the paper [GY]. However, this was
not carried out there, because, as we already noted, there exist no direct generalisations of
the Wiener measure that could be used to define Feynman’s integral for equation (1.6) for
any real ε. As it turns out, one can carry out this regularization using measures of Poisson
type.

A more physically motivated regularisation to (1.1) (but also technically more difficult
to work with) can be obtained from the theory of continuous quantum measurement (see
[K3], [K4] for the corresponding results).

In the original papers of Feynman the path integral was defined (heuristically) in
such a way that the solutions to the Schrödinger equation were expressed as the integrals
of the function exp{iS}, where S is the classical action along the paths. It seems that
rigorously the corresponding measure was not constructed even for the case of the heat
equation with sources (notice that in the famous Feynman-Kac formula that gives rigorous
path integral representation for the solutions to the heat equation a part of the action
is actually ”hidden” inside the Wiener measure). As shown in [K3], the construction
described below can be modified in a way to yield a representation of this kind.

As is also shown in [K3], there is a natural Fock space repersentation of infinite
dimensional path integerals of Poisson-type considered above that allows to rewrite them
in terms of the integrals over a usual Wiener measure.

It is worth noting also that in one-dimensional case, one obtains the path integral
representation of Poisson type for very general Schrödinger equation without any regular-
isation (see [K3], [K4]).

The paper is organised as follows. In the next section we describe a general approach
to the construction of measures on the space of all paths that give in a unified way both
Wiener measure and Poisson type measures from [Mch]. In section 3 we give new results
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on path integral repersentations for general (even singular) Schrödinger equations with
magnetic fields using the regularisation by introducing complex times.

Sectons 2 and 3 are written in a way that they can be read almost independently.

2. Infinitely divisible complex distributions

and complex Markov processes

We present here (following essentially [K2]) a general construction of the complex-
valued measures (that can be considered as an appropriately generalised complex-valued
version of Nelson’s constrution of the Wierner measure) on the path space that can be
used for the path integral representation of various evolutionary equations, where the path
integral representation can be obtained without any regularisation.

Let B(Ω) denote the class of all Borel sets of a topological space (i.e. it is the σ-
algebra of sets generated by all open sets). If Ω is locally compact we denote (as usual)
by C0(Ω) the space of all continuous complex-valued functions on Ω vanishing at infinity.
Equipped with the uniform norm ‖f‖ = supx |f(x)| this space is known to be a Banach
space. It is also well known (Riesz-Markov theorem) that if Ω is a locally compact space,
then the set M(Ω) of all finite complex regular Borel measures on Ω equipped with the
norm ‖µ‖ = sup |

∫

Ω
f(x)µ(dx)|, where sup is taken over all functions f ∈ C0(Ω) with

‖f(x)‖ ≤ 1, is a Banach space, which coincides with the set of all continuous linear
functionals on C0(Ω). Any complex σ-additive measure µ on Rd has a representation of
form

µ(dy) = f(y)M(dy) (2.1)

with a positive measure M and a bounded complex-valued function f Moreover, the mea-
sure M in (2.1) is uniquely defined under additional assumption that |f(y)| = 1 for all
y. If this condition holds, the positive measure M is called the total variation mea-
sure of the complex measure µ and is denoted by |µ|. In general, if (2.1) holds, then
‖µ‖ =

∫

|f(y)|M(dy).
We say that a map ν from Rd×B(Rd) into C is a complex transition kernel, if for every

x, the map A 7→ ν(x,A) is a (finite complex) measure on Rd, and for every A ∈ B(Rd),
the map x 7→ ν(x,A) is B-measurable. A (time homogeneous) complex transition function
(abbreviated CTF) on Rd is a family νt, t ≥ 0, of complex transition kernels such that
ν0(x, dy) = δ(y − x) for all x, where δx(y) = δ(y − x) is the Dirac measure in x, and such
that for every non-negative s, t, the Chapman-Kolmogorov equation

∫

νs(x, dy)νt(y,A) = νs+t(x,A)

is satisfied. (We consider only time homogeneous CTF for simplicity, the generalisation to
non-homogeneous case is straightforward).

A CTF is said to be (spatially) homogeneous, if νt(x,A) depends on x,A only through
the difference A − x. If a CTF is homogeneous it is natural to denote νt(0, A) by νt(A))
and to write the Chapman-Kolmogorov equation in the form

∫

νt(dy)νs(A− y) = νt+s(A).
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A CTF will be called regular, if there exists a positive constant K such that for all x
and t > 0, the norm ‖νt(x, .)‖ of the measure A 7→ νt(x,A) does not exceed exp{Kt}.

CTFs appear naturally in the theory of evolutionary equations: if Tt is a strongly
continuous semigroup of bounded linear operators in C0(Rd), then there exists a time-
homogeneous CTF ν such that

Ttf(x) =

∫

νt(x, dy)f(y). (2.2)

In fact, the existence of a measure νt(x, .) such that (2.2) is satisfied follows from the Riesz-
Markov theorem, and the semigroup identity TsTt = Ts+t is equivalent to the Chapman-
Kolmogorov equation. Since

∫

νt(x, dy)f(y) is continuous for all f ∈ C0(Rd), it follows by
the monotone convergence theorem (and the fact that each complex measure is a linear
combination of four positive measures) that νt(x,A) is a Borel function of x.

We say that the semigroup Tt is regular, if the corresponding CTF is regular. Clearly,
this is equivalent to the assumption that ‖Tt‖ ≤ eKt for all t > 0 and some constant K.

Now we construct a measure on the path space corresponding to each regular CTF,
introducing first some (rather standard) notations. Let Ṙd denote the one point compact-
ification of the Euclidean space Rd (i.e. Ṙd = Rd ∪ {∞} and is homeomorphic to the

sphere Sd). Let Ṙ[s,t]d denote the infinite product of [s, t] copies of Ṙd, i.e. it is the set of

all functions from [s, t] to Ṙd, the path space. As usual, we equip this set with the product
topology, in which it is a compact space (Tikhonov’s theorem). Let Cylk[s,t] denote the set

of functions on Ṙ[s,t]d having the form

φft0,t1,...tk+1
(y(.)) = f(y(t0), ..., y(tk+1))

for some bounded complex Borel function f on (Ṙd)k+2 and some points tj , j = 0, ..., k+1,
such that s = t0 < t1 < t2 < ... < tk < tk+1 = t. The union Cyl[s,t] = ∪k∈NCyl

k
[s,t] is

called the set of cylindrical functions (or functionals) on Ṙ[s,t]d . It follows from the Stone-
Weierstrasse theorem that the linear span of all continuous cylindrical functions is dense

in the space C(Ṙ[s,t]d ) of all complex continuous functions on Ṙ[s,t]d . Any CTF ν defines a
family of linear functionals νxs,t, x ∈ Rd, on Cyl[s,t] by the formula

νxs,t(φ
f
t0...tk+1

)

=

∫

f(x, y1, ..., yk+1)νt1−t0(x, dy1)νt2−t1(y1, dy2)...νtk+1−tk
(yk, dyk+1). (2.3)

Due to the Chapman-Kolmogorov equation, this definition is correct, i.e. if one considers
an element from Cylk[s,t] as an element from Cylk+1[s,t] (any function of l variables y1, ..., yl
can be considered as a function of l + 1 variables y1, ..., yl+1, which does not depend on
yl+1), then the two corresponding formulae (2.3) will be consistent.

Proposition 2.1. If the semigroup Tt in C0(Rd) is regular and ν is its corresponding
CTF, then the functional (2.3) is bounded. Hence, it can be extended by continuity to a
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unique bounded linear functional νx on C(Ṙ[s,t]d ), and consequently there exists a (regular)

complex Borel measure Ds,t
x on the path space Ṙ[s,t]d such that

νxs,t(F ) =

∫

F (y(.))Ds,t
x (dy(.)) (2.4)

for all F ∈ C(Ṙ[s,t]d ). In particular,

(Ttf)(x) =

∫

f(y(t))Ds,t
x (dy(.)).

Proof. It is a direct consequence of the Riesz-Markov theorem, because the regularity
of CTF implies that the norm of the functional νxs,t does not exceed exp{K(t− s)}.

Formula (2.3) defines the family of finite complex distributions on the path space ,
which gives rise to a finite complex measure on this path space (under the regularity as-
sumptions). Therefore, this family of measures can be called a complex Markov process.
Unlike the case of the standard Markov processes, the generator, say A, of the correspond-
ing semigroup Tt and the corresponding bilinear ”Dirichlet form” (Av, v) are complex.

The following simple fact can be used in proving the regularity of a semigroup.

Proposition 2.2. Let B and A be linear operators in C0(Rd) such that A is bounded
and B is the generator of a strongly continuous regular semigroup Tt. Then A+B is also
the generator of a regular semigroup, which we denote by T̃t.

Proof. Follows directly from the fact that T̃t can be presented as the convergent (in
the sense of the norm) series of standard perturbation theory

T̃t = Tt +

∫ t

0

Tt−sATs ds+

∫ t

0

ds

∫ s

0

dτTt−sATs−τATτ + ... (2.5)

Of major importance for our purposes are the spatially homogeneous CTFs. Let
us discuss them in greater detail, in particular, their connection with infinitely divisible
characteristic functions.

Let F(Rd) denote the Banach space of Fourier transforms of elements ofM(Rd), i.e.
the space of (automatically continuous) functions on Rd of form

V (x) = Vµ(x) =

∫

Rd

eipx µ(dp) (2.6)

for some µ ∈ M(Rd), with the induced norm ‖Vµ‖ = ‖µ‖. Since M(Rd) is a Banach
algebra with convolution as the multiplication, it follows that F(Rd) is also a Banach
algebra with respect to the standard (pointwise) multiplication. We say that an element
f ∈ F(Rd) is infinitely divisible if there exists a family (ft, t ≥ 0,) of elements of F(Rd)
such that f0 = 1, f1 = f , and ft+s = ftfs for all positive s, t. Clearly if f is infinitely
divisible, then it has no zeros and a continuous function g = log f is well defined (and
is unique up to an imaginary shift). Moreover, the family ft has the form ft = exp{tg}
and is defined uniquely up to a multiplier of the form e2πikt, k ∈ N . Let us say that a
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continuous function g on Rd is a complex characteristic exponent (abbreviated CCE), if eg

is an infinitely divisible element of F(Rd), or equivalently, if etg belongs to F(Rd) for all
t > 0.

Remark. The problem of the characterisation of the whole class of infinitely divisible
functions (or of the corresponding complex CCEs) seems to be quite nontrivial. When
dealing with this problem, it is reasonable to describe first some natural subclasses. For
example, it is easy to show that if f1 ∈ F(R) is infinite divisible and such that the measures
corresponding to all functions ft, t > 0, are concentrated on the half line R+ (complex
generalisation of subordinators) and have densities from L2(R+), then f1 belongs to the
Hardy space H2 of analytic functions on the upper half plane, which have no Blaschke
product in its canonical decomposition.

It follows from the definitions that the set of spatially homogeneous CTFs νt(dx) is in
one-to-one correspondence with CCE g, in such a way that for any positive t the function
etg is the Fourier transform of the transition measure νt(dx).

Proposition 2.3. If V is a CCE, then the solution to the Cauchy problem

∂u

∂t
= V (

1

i

∂

∂y
)u (2.7)

defines a strongly continuous and spatially homogeneous semigroup Tt of bounded linear
operators in C0(Rd) (i.e. (Ttu0)(y) is the solution to equation (2.7) with the initial function
u0). Conversely, each such semigroup is the solution to the Cauchy problem of an equation
of type (2.7) with some CCE g.

Proof. This is straightforward. Since (2.7) is a pseudo-differential equation, it follows
that the Fourier transform ũ(t, x) of the function u(t, y) satisfies the ordinary differential
equation

∂ũ

∂t
(t, x) = V (x)ũ(t, x),

whose solution is ũ0(x) exp{tV (x)}. Since etV is the Fourier transform of the complex
transition measure νt(dy), it follows that the solution to the Cauchy problem of equation
(2.7) is given by the formula (Ttu0)(y) =

∫

u0(z)νt(dz − y), which is as required.
We say that a CCE is regular, if equation (2.7) defines a regular semigroup.
It would be very interesting to describe explicitly all regular CCE. We only give here

two classes of examples. First of all, if a CCE is given by the Lévy- Khintchine formula
(i.e. it defines a transition function consisting of probability measures), then this CCE is
regular, because all CTF consisting of probability measures are regular. Another class is
given by the following result.

Proposition 2.4. Let V ∈ F(Rd), i.e. it is given by (2.6) with µ ∈ M(Rd). Then
V is a regular CCE. Moreover, if the positive measure M in the representation (2.1) for µ
has no atom at the origin, i.e. M({0}) = 0, then the corresponding measure D0,t

x on the
path space from Proposition 2.1 is concentrated on the set of piecewise-constant paths in

Ṙ[0,t]d with a finite number of jumps. In other words, D0,tx is the measure of a jump-process.
Proof. Let W =WM be defined as

W (x) =

∫

Rd

eipxM(dp). (2.8)
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The function exp{tV } is the Fourier transform of the measure δ0+ tµ+ t2

2 µ ?µ+ ... which
can be denoted by exp?(tµ) (it is equal to the sum of the standard exponential series,
but with the convolution of measures instead of the standard multiplication). Clearly
‖ exp?(tµ)‖ ≤ ‖ exp?(tf̄M)‖, where we denoted by f̄ the supremum of the function f ,
and both these series are convergent series in the Banach algebra M(Rd). Therefore
‖eV t‖ ≤ ‖eWt‖ ≤ exp{tf̄‖µ‖}, and consequently V is a regular CCE. Moreover, the
same estimate shows that the measure on the path space corresponding to the CCE V
is absolutely continuous with respect to the measure on the path space corresponding
to the CCE W . But the latter coincides up to a positive constant multiplier with the
probability measure of the compound Poisson process with the Lévy measure M defined
by the equation

∂u

∂t
= (W (

1

i

∂

∂y
)− λM )u, (2.9)

where λM =M(Rd), or equivalently

∂u

∂t
=

∫

(u(y + ξ)− u(y))M(dξ). (2.10)

It remains to note that as is well known the measures of compound Poisson processes are
concentrated on piecewise-constant paths.

Therefore, we have two different classes (essentially different, because they obviously
are not disjoint) of regular CCE: those given by the Lévy-Khintchine formula, and those
given by Proposition 2.4. It is easy to prove that one can combine these regular CCEs,
more precisely that the class of regular CCE is a convex cone, see [K2].

Let us apply the simple results obtained sofar to the case of the pseudo-differential
equation of the Schrödinger type

∂ũ

∂t
= −G(−∆)αũ+ (A,

∂

∂x
)ũ+ V (x)ũ, (2.11)

where G is a complex constant with a non-negative real part, α is any positive constant,
A is a real-valued vector (if ReG > 0, then A can be also complex- valued), and V is a
complex-valued function of form (2.6). The standard Schrödinger equation corresponds
to the case α = 1, G = i, A = 0 and V being purely imaginary. We consider a more
general equation to include the Schrödinger equation, the heat equation with drifts and
sources, and also their stable (when α ∈ (0, 1)) and complex generalisations in one formula.
This general consideration also shows directly how the functional integral corresponding to
the Schrödinger equation can be obtained by the analytic continuation from the functional
integral corresponding to the heat equation, which gives a connection with other approaches
to the path integration. The equation on the inverse Fourier transform

u(y) = (2π)−d

∫

Rd

e−iyxũ(x) dx

of ũ (or equation (2.11) in momentum representation) clearly has the form

∂u

∂t
= −G(y2)αu+ i(A, y)u+ V (

1

i

∂

∂y
)u. (2.12)

8



One easily sees that already in the trivial case V = 0, A = 0, α = 1, equation (2.11) defines
a regular semigroup only in the case of real positive G, i.e. only in the case of the heat
equation. It turns out however that for equation (2.12) the situation is completely different.
The following simple result (obtained from Proposition 2.3 and the Trotter formula, see
[K2] for details) generalises the corresponding result from [M7], [MC2] on the standard
Schrödinger equation to equation (2.11).

Proposition 2.5. The solution to the Cauchy problem of equation (2.12) can be
written in the form of a complex Feynman-Kac formula

u(t, y) =

∫

exp{−
∫ t

0

[G(q(τ)2)α − (A, q(τ))] dτ}u0(q(t))D0,ty (dq(.)), (2.13)

where Dy is the measure of the jump process corresponding to equation (2.7).

As another example, let us consider the case of complex anharmonic oscillator. i.e.
the equation

∂ψ̃

∂t
=

1

2

(

G∆− x2 − iV (x)
)

ψ̃, (2.14)

where V = Vµ is an element of F(Rd). The Fourier transform of this equation has the
form

∂ψ

∂t
=

1

2

(

∆−Gp2 − iV (
1

i

∂

∂p
)

)

ψ. (2.16)

Proposition 2.6. If ReG ≥ 0, the Cauchy problem of equation (2.15) defines a
regular semigroup of operators in C0(Rd), and thus can be presented as the path integral
from Proposition 2.1.

Proof. If V = 0, the Green function for equation (2.16) can be calculated explicitly,
and from this formula one easily deduces that in case V = 0 the semigroup defined by
equation (2.16) is regular. For general V the statement follows from Proposition 2.2.

The statement of the Proposition can be generalised easily to the following situation,
which includes all Schrödinger equations, namely to the case of the equation

∂φ

∂t
= i(A−B)φ,

where A is selfadjoint operator, for which therefore exists (according to spectral the-
ory) a unitary transformation U such that UAU−1 is the multiplication operator in some
L2(X, dµ), where X is locally compact, and B is such that UBU−1 is a bounded operator
in C0(X).

Since any complex measure has a density with respect to its total variation measure,
it is easy to rewrite the integral in (2.13) as an integral over a positive measure. In the next
section such a positive measure is constructed directly in a much more general situaton.

3. Singular Schrödinger equations with magnetic fields.
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To include the case of singular Schrödinger equations, we shall consider here a formal
Schrödinger operator with a magnetic field, namely the operator

H =

(

−i ∂
∂x

+A(x)

)2

+ V (x), (3.1)

where ∂
∂x = ( ∂

∂x1
, ... ∂

∂xn
) is the gradient operator in Rd, under the following conditions

(possible generalisations of these conditions are discussed in [K1]):
C1) the magnetic vector-potential A = (A1, ..., Ad) is a bounded measurableRd-valued

function on Rd,

C2) the potential V and the divergence divA =
∑d

j=1
∂Aj

∂xj of A (defined in the sense
of distributions) are both Borel measures,

C3) if d > 1 there exist α > d− 2 and C > 0 such that for all x ∈ Rd and r ∈ (0, 1]

|divA|(Br(x)) ≤ Crα, |V |(Br(x)) ≤ Crα, (3.2)

where |V |, |div A| denote the total variations of the (possibly non-positive) measures V
and div A respectively, and Br(x) denotes the ball in Rd of the radius r centered at x; if
d = 1, then the same holds for α = 0.

The most popular examples of such Schrödinger operators are given by systems with δ-
interaction, i.e. with potentials supported by points or smooth submanifolds (see [AGHH],
[Kosh] and references therein), because such potentials appear in different physical models.
However other generalised potentials are studied as well. In [BM], the generalised Kato
class of potentials (which consists of Radon measures with certain conditions) was intro-
duced and local heat kernel estimates were obtained for the corresponding Schrödinger
semigroups (without magnetic fields) using a generalisation of the probabilistic technique
developed in [Si]. In [Br], one can find several results on the spectral analysis of singular
Schrödinger equations and an extensive review of different approaches to the analysis of
singular Schrödinger equations, which include non-standard analysis, the theory of Dirich-
let forms, the theory of quadratic form and others. Useful methods for studying operators
(3.1) with vanishing A are developed in [AFHKL], and [St]. These methods are applied
even in cases when the corresponding bilinear form is not closable. In particular, the
Schrödinger operators on Riemannian manifolds (with a bounded below Ricci curvature)
with potentials being almost general measures is given in [St]. The measures in [St] have
neither to be regular nor to be σ-finite, the only requirement is that they do not charge
polar sets. Usually, quite essential simplifications occur when applying general tecniques
to one-dimensional situations.

In [DS], the study of the Schrödinger equations with potentials supported by a smooth
surface in the presence of magnetic fields was initiated. However, no general results seem to
be obtained up to now on Schrödinger equation with a magnetic field and with a potential
V being a distribution. The case of magnetic fields and potentials from the Kato class
(not distributions) were considered in [BHL], where the self-adjointness was proved by
probabilistic technique of [Si]. Concerning heat kernel estimates for these operators we
refer to [LT], [LM] and references therein.
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We shall formulate now a result from [K1] on self-adjointness and asymptotics for
the heat kernel of operator (1.1) under conditions C1)-C3). In order to give meaning to
operator (3.1) we construct the corresponding semigroup e−tH . Moreover, for our purposes,
it will be useful to consider the following more general formal Cauchy problem

∂u

∂t
= −DHu, u|t=0 = u0, (3.3)

where the (generalised) diffusion coefficient D is an arbitrary complex number such that
ε = ReD ≥ 0, |D| > 0. In the interaction representation, equation (3.3) takes the form

u(t) = e−Dt∆/2u0 −D
∫ t

0

e−D(t−s)∆/2(W − 2i(A,∇))u(s) ds, (3.4)

where
W (x) = V (x) + |A(x)|2 − i divA(x). (3.5)

More precisely, W is the measure, which is the sum of the measure V − i divA and the
measure having the density |A|2 with respect to Lebesgue measure. The letter W in (3.4)
stands for the operator of multiplication by W .

Equation (3.4) can be solved by iterations. In the case of the Green functionGD(t, x, y)
(or fundamental solution) of equation (3.4), i.e. its solution with the Dirac initial condition
u0(x) = δ(x− y), the iteration procedure leads to the following representation:

GD(t, x, y) =
∞
∑

k=0

IDk (t, x, y) (3.6)

with ID0 (t, x, y) = GD
free(t, x, y) and with other IDk , k > 1, being defined inductively by the

formula

IDk (t, x, y) = −D
∫ t

0

∫

Rd

IDk−1(t−s, x, ξ)(W (dξ)+2i
(A, ξ − y)

Ds
dξ)GD

free(s, ξ−y) ds, (3.7)

where GD
free is the Green function of the ”free” equation (1.1) (i.e. with V = 0):

GD
free(t, x− y) = (2πtD)−d/2 exp{− (x− y)2

2Dt
}.

The following theorem is proved in [K1].

Theorem 3.1. (i) If ε = ReD > 0, then all terms of series (3.6) are well defined
as absolutely convergent integrals, the series itself is absolutely convergent and its sum
GD(t, x, y) is continuous in x, y ∈ Rd, t > 0 (and D) and satisfies the following estimate

|GD(t, x, y)| ≤ KG
|D|2/ε
free (t, x, y)} exp{B|x− y|} (3.8)

uniformly for t ≤ t0 with any fixed t0, where B,K are constants.
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(ii) The integral operators

(UD(t)u0)(t, x) =

∫

uDG(t, x, y)u0(y) dy (3.9)

defining the solutions to equation (3.4) for t ∈ [0, t0] form a uniformly bounded family of
operators L2(R

d) 7→ L2(R
d).

(iii) If D is real, i.e. D = ε > 0, then there exists a constant ω > 0 such that the
Green function Gε has the asymptotic representation

Gε(t, x, y) = Gε
free(t, x, y)(1 +O(tω) +O(|x− y|)) (3.10)

for small t and x − y. In case of vanishing A, the multiplier exp{B|x − y|} in (3.8) can
be omitted, and the term O(|x− y|) in (3.10) can be dropped. In this case, formula (3.10)
gives global (uniform for all x, y) small time asymptotics for Gε.

(iv) One can give rigorous meaning to formal expression (3.1) as a bounded below self-
adjoint operator in such a way that the family (3.9) of operators UD(t) (giving solutions
to equation (3.4), which is formally equivalent to the evolutionary equation (3.3) with
the formal generator DH) coincides with the semigroup exp{−tDH} defined by means of
the functional calculus. Hence for the integral kernel of the operators exp{−tDH} the
estimates (3.8) and (3.10) hold.

To construct a path integral representation for the solution UD(t)u0 of equation (1.1),
we shall construct a measure on a path space that is supported on the set of continuous
piecewise linear paths. Denote this set by CPL. Let CPLx,y(0, t) denote the class of paths
q : [0, t] 7→ Rd from CPL joining x and y in time t, i.e. such that q(0) = x, q(t) = y.
By CPLx,y

n (0, t) we denote its subclass consisting of all paths from CPLx,y(0, t) that have
exactly n jumps of their derivative. Clearly, each CPLx,y

n (0, t) is parametrised by the
simplex

Simn
t = {s1, ..., sn : 0 < s1 < s2 < ... < sn ≤ t}

of the times of jumps s1, ..., sn of the derivatives of a path and by n positions q(sj),
j = 1, ..., n, of this path at these points. In other words, an arbitrary path in CPLx,y

n (0, t)
has the form

q(s) = qs1...sn
η1...ηn

(s) = ηj + (s− sj)
ηj+1 − ηj
sj+1 − sj

, s ∈ [sj , sj+1] (3.11)

(where it is assumed that s0 = 0, sn+1 = t, η0 = x, ηn+1 = y). Obviously,

CPLx,y(0, t) = ∪∞n=0CPLx,y
n (0, t).

To any Rd+1-valued Borel measure M = (µ, ν) = (µ, ν1, ..., νd) on Rd there corre-
sponds a (σ-finite) complex measure MCPL on CPLx,y(0, t), which is defined as the sum
of the measures MCPL

n on the finite-dimensional spaces CPLx,y
n (0, t) such that MCPL

0 is
just the unit measure on the one-point set CPLx,y

0 (0, t) and each MCPL
n , n > 0, is defined

in the following way: if Φ is a functional on CPLx,y(0, t), then
∫

CPLx,y
n (0,t)

Φ(q(.))MCPL
n (dq(.)) =

∫

Simn
t

ds1...dsn
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×
∫

Rd

...

∫

Rd

(

µ+ 2i
(η2 − η1, ν)
s2 − s1

)

(dη1)...

(

µ+ 2i
(y − ηn, ν)
t− sn

)

(dηn)Φ(q(.)). (3.12)

Now, let M = (W,D−1Adx).

Theorem 3.2. For any D with ε = ReD > 0, the Green function GD of equation
(3.3) has the following path integral representation:

GD(t, x, y) =

∫

CPLx,y(0,t)

ΦD(q(.)) exp{−
∫ t

0

q̇2(s) ds/2D}MCPL(dq(.)), (3.13)

with q(s) given by (3.11) and

ΦD(q(.)) = Dn
n+1
∏

j=1

(2π(sj − sj−1)D)−d/2. (3.14)

For any u0 ∈ L2(Rd) the solution u(t, s) of the Cauchy problem (2.1) with D = i has the
form

u(t, x) = lim
ε→0+

∫

CPLx,y(0,t)

∫

Rd

u0(y)Φi+ε(q(.)) exp{−
∫ t

0

q̇2(s) ds/2(i+ ε)}MCPL(dq(.))dy,

(3.15)
where the limit is understood in L2-sense.

Due to the definition of MCPL, the integral (3.13), if it exists, is the convergent sum
of finite-dimensional integrals, which are all absolutely convergent. But one sees directly
that these integrals are exactly the same as the integrals Ik(t, x, y) from (3.6). This implies
the validity of (3.13), because due to Theore 3.1, series (3.6), (3.7) is absolutely convergent
and all its terms are absolutely convergent integrals. Formula (3.15) follows immediately
from (3.13) and (1.5).

As shown in [K3], in case A = 0 and d = 1, formula (3.13) still holds for D = i (i.e.
for vanishing ε), so that in this case the Green function of the Schrödinger equation itself
exists and is represented by a convergent path integral (without any regularisation). This is
one of the performances of the fact mentioned in the introduction that in one-dimensional
situation essential simplifications usually occur. In general, the question of existence of a
pointwise limit for GD asD → i is very subtle and is not considered here. It is reasonable to
suggest (as a conjecture) that it exists if the fundamental solution (or the Green function)
Gi of the Schrödinger semigroup exists as a continuous function. This latter question is
quite non-trivial and only recently some results were obtained that include rather general
potentials, see e.g. [Ya] for the case of smooth magnetic fields.

In case A = 0, integral (3.13) has a simple probabilistic interpretation in terms of an
expectation with respect to a compound Poisson process. The following statement is a
direct consequence of Theorem 3.2 and the standard properties of Poisson processes.

Theorem 3.3 Suppose the vector potential A vanishes and V satisfies assumption C3).
Suppose additionally that V has no atom at the origin and is a finite positive measure so
that λV = V (Rd) > 0. Let the paths of CPL are parametrised by (3.11). Let Et denote
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the expectation with respect to the process of jumps ηj which are identically independently
distributed according to the probability measure V/λV , and which occur at times sj from
[0, t] distributed according to Poisson process of intensity λV . Then the integral (3.13) can
be written in the form

GD(t, x, y) = etλV Et

(

ΦD(q(.)) exp{−
∫ t

0

q̇2(s) ds/2D}
)

. (3.16)

Similar representation surely holds for formula (3.15).
Let us note also that the restriction on V being finite (used in Theorem 3.3) is not

essential, because clearly an arbitrary V has a density with respect to a certain finite
(positive) measure Ṽ . Hence, one can include this density in the integrand and work with
the Poisson process defined by the Lévy measure Ṽ .
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d’intégration fonctionnelle de Menski. C.R.Acad. Sci.Paris, Sér. 1, 323 (1996), 661-664.

[AKK] N. Asai, I. Kubo, H-H Kuo. Feynman Integrals Associated with Albeverio-
Hoegh-Krohn and Laplace Transform Potentials. In: Stochastics in Finite and Infinite
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[Gav] B. Gaveau. Representation formulas of the Cauchy problem for hyperbolic
systems generalising Dirac system. J. Func. Anal. 58 (1984), 310-319.

[GK] B. Gaveau, M. Kac. A probabilistic formula for the quantum N -body problem
and the nonlinear Schrödinger equation in operator algebra. Journ. Funct. Anal. 66

(1986), 308-322.

[GY] I.M. Gelfand, A.M. Yaglom. Integration in functional spaces and applications in
quantum physics. Uspehki Mat. Nauk 11:1 (1956), 77-114. Engl. transl. J. Math. Phys.
1:1 (1960), 48-69.

[H1] Z. Haba. Stochastic interpretation of Feynman path integral. J. Math. Phys.
35:2 (1994), 6344-6359.

[H2] Z. Haba. Feynman integral in regularised nonrelativistic quantum electrodynam-
ics. J. Math. Phys. 39:4 (1998), 1766-1787.

[HKPS] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit. White noise, An infinite
dimensional calculus. Kluwer Acad. Publishers, 1993.

[HM] Y.Z. Hu, P.A. Meyer. Chaos de Wiener et intégrale de Feynman. In: Séminaire
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