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Preface

Norwegen ist ein großes Land, das Volk ist ungestüm und es ist
nicht gut, es mit einem unzureichenden Heer anzugreifen.

Snorri Sturloson, Heimskringla (about 1230)
cited after D.M. Wilson (Ed.):

Die Geschichte der Nordischen Völker,
Orbis-Verlag, München, 2003

The present book consists of contributions, which have been presented and discussed in detail
in the course of the research workshops Nucleation Theory and Applications organized jointly
by scientists from the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute
for Nuclear Research in Dubna, Russia, and the Department of Physics of the University of
Rostock, Germany, involving colleagues from Russia, Belorussia, Ukraine, Kazakhstan, Es-
tonia, Bulgaria, Czech Republic, Brazil, United States, and Germany. These workshops have
been conducted yearly for about one month in Dubna, Russia, starting in 1997. The intention
of these workshops was and is to unite research activities aimed at a proper understanding
of both fundamental problems and a variety of applications of the theory of first-order and
second-order phase transitions, in particular, and of the typical features of processes of self-
organization of matter, in general. The meetings in Dubna have been supplemented hereby by
mutual research visits of the participants in the course of the year in order to continue and
extend the work performed during the workshops.

By such a combination of the common attempts, the search for solutions to the highly
complex problems occurring in this field could be stimulated in a very effective way, and a
number of problems could be solved which would otherwise have remained unsolved. The
results of these efforts have been published in a variety of journal articles, which will be partly
cited in the contributions in the present book. Some of the results have already been reflected
in detail in the preceding monograph, J. Schmelzer, G. Röpke, R. Mahnke (Eds.): Aggregation
Phenomena in Complex Systems, published in 1999 also by Wiley-VCH. It is also planned
to continue the series of research workshops in the coming years. Relevant information will
be given at the homepage http://thsun1.jinr.ru of the Bogoliubov Laboratory of Theoretical
Physics of the Joint Institute for Nuclear Research and can also be requested via electronic
mail from the editor of the present book (juern-w.schmelzer@physik.uni-rostock.de).

These workshops could be carried out for such prolonged times only through contin-
ued support from a variety of organizations. We would like to mention here in particular,
the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) (via
Research projects, the TRANSFORM and Heisenberg-Landau programs), the Deutsche For-
schungsgemeinschaft (DFG) (via Research projects, travel and conference grants), the Deu-
tscher Akademischer Austauschdienst (DAAD), the Russian Foundation for Basic Research
(RFBR), the UNESCO, the BASF-AG Ludwigshafen, the SOROS-Foundation, the State of
São Paulo Research Foundation (FAPESP), and the host institution, the Bogoliubov Labora-
tory of Theoretical Physics of the Joint Institute for Nuclear Research in Dubna. To all the
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above-mentioned organizations and to those not mentioned explicitly, we would like to ex-
press our sincere thanks. We would also like to express our gratitude to all the colleagues who
helped us in the organization of the workshops.

It also gives us particular pleasure to thank the coworkers of the Vitreous Materials Lab-
oratory (LAMAV) of the Federal University of São Carlos (UFSCar), Brazil, and, especially,
the Head of the Department, Professor Edgar D. Zanotto, for their cordial hospitality and the
excellent working conditions during the course of the stay of the editor of the present mono-
graph at their laboratory allowing to bring this book to completion.

Rostock, Germany – Dubna, Russia – São Carlos, Brazil
August 2004 Jürn W. P. Schmelzer
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1 Introductory Remarks

Jürn W.P. Schmelzer

If God will send me readers, then, may be,
it will be interesting for them . . .

Alexander S. Pushkin
cited after: B.S. Cantor: Talks on Minerals

(Astrel, Moscow, 1997) (in Russian)

Clustering processes in first-order phase transformations play an important role in a huge
variety of processes in nature, and in scientific and technological applications. An adequate
theoretical description of such processes is therefore of considerable interest. One of the tools
allowing the theoretical description of such processes is the nucleation theory. The theoreti-
cal approach predominantly employed so far in the interpretation of experimental results of
nucleation-growth processes is based on the classical nucleation theory, its extensions and
modifications. It is supplemented by density functional computations, statistical mechanical
model analyses, and computer modeling of model systems allowing us to gain additional in-
sights into the respective processes and to specify the possible limitations of the classical
approaches.

Although the basic concepts of the classical approach to the description of nucleation
processes were developed about 80 years ago, a number of problems remain, however, unset-
tled till now which are partly of fundamental character. Several of these problems are analyzed
in the present book. One of these analyzes is directed to the method of determination of the
coefficients of emission in nucleation theory avoiding the concept of constraint equilibrium
distributions (Chap. 3). A second such topic is the proper determination of the work of critical
cluster formation for the different processes under investigation. It is discussed in detail in
Chaps. 4 (in application to crystallization) and 5 (in application to boiling of binary liquid–
gas solutions). A third topic, a relatively recent development of the nucleation theory with a
wide spectrum of possible applications, consists in the theoretical description of nucleation
and growth processes in solid solutions with sharp concentration gradients (Chap. 10).

The majority of theoretical approaches to the description of nucleation and growth pro-
cesses rely, as far as thermodynamic aspects are involved, on Gibbs’ classical thermodynamic
theory of interfacial phenomena. In recent years it has been shown that, by generalizing Gibbs’
thermodynamic approach, a number of problems of the classical theory can be resolved. In par-
ticular, as is shown in Chap. 11, the generalized Gibbs’ approach leads to predictions for the
properties of the critical clusters and the work of critical cluster formation, which are equiva-
lent to the results of van der Waals’ square gradient and more sophisticated density functional
approaches. Some additional new insights, which have been obtained recently employing the
generalized Gibbs’ approach, are sketched in Chap. 12.

The nucleation theory has the unique advantage that its basic principles are equally well
applicable to quite a variety of different systems. As a reflection of this general applicabil-
ity, the spectrum of analyses, presented in the monograph, includes condensation and boil-
ing, crystallization and melting, self-organization of ferroelectric domains and nanofilms, for-

Nucleation Theory and Applications. edited by J. W. P. Schmelzer

Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA
ISBN: 3-527-40469-4



2 1 Introductory Remarks

mation of micellar solutions, formation and growth of diamonds from vitreous carbon. The
analysis of different types of phase equilibria and different applications of the nucleation the-
ory starts with a comparison of similarities and differences of solid–liquid and liquid–vapor
phase transitions (Chap. 2). It is followed by an extended review of the state of knowledge in
the field of nucleation and crystallization kinetics in silicate glasses (Chap. 4) as a particular
example of the phase transition liquid–solid. An overview of the kinetics of boiling of binary
liquid–gas solutions is given in Chap. 5. In Chap. 6, it is shown that nucleation concepts can
be applied successfully to the description of the polarization reversal phenomenon in ferro-
electric materials allowing the treatment of different modes of domain evolution from a single
universal point of view. Of similar current direct technological significance are the analyses of
formation and growth processes of nanofilms on surfaces reviewed in Chap. 7. Chapter 8 deals
with an overview on traditional and novel methods of diamond synthesis, while Chap. 9 em-
ploys nucleation theory methods to the description of micellization processes. Some summary
of the results and outlook on possible future developments is given in Chap. 12.

All of the chapters included in the present book are written by internationally outstanding
scientists in their respective fields. It is of particular pleasure to have among the authors the
Corresponding Member of the Ukrainian Academy of Sciences, Vitali V. Slezov (Slyozov),
one of the authors of the well-known L(ifshitz)S(lezov)W(agner)-theory of coarsening, the
description of the late stages of first-order phase transitions being till now one of the corner
stones of the theory of first-order phase transformation processes, the Member of the Russian
Academy of Sciences, Vladimir P. Skripov, well known for his enormous work devoted, in
particular, to the kinetics of boiling processes and reflected in part in his book Metastable
Liquids, published also by Wiley in 1974 [3], the member of the Russian Academy of Sci-
ences, Anatoli I. Rusanov, well known for his monographs devoted to the thermodynamics of
heterogeneous systems which has served as a comprehensive introduction to theses topics for
decades, and the Member of the Bulgarian Academy of Sciences, Ivan S. Gutzow, who con-
tinued with his colleagues and coworkers the traditions of the Bulgarian school of nucleation
theory originated by Ivan Stranski and Rostislav A. Kaischew.

As already mentioned in the preface, the contributions, included in the present book, have
been presented and discussed in detail at the Research Workshops Nucleation Theory and
Applications in Dubna, Russia, in the course of the years 1997–2003. Of course, neither all
the contributions presented nor all of the results obtained in the common research can be
reflected in one book. Some other highly interesting topics are contained in the specialized
workshop proceedings [1] and in the publications [2–15] of the participants of the meetings
and the authors of the present book we refer to for a more detailed outline of some of the
topics discussed here and related aspects.
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2 Solid–Liquid and Liquid–Vapor Phase Transitions:
Similarities and Differences

Vladimir P. Skripov and Mars Z. Faizullin

Every theory, whether in the physical or biological or social
sciences, distorts reality in that it oversimplifies. But if it is a

good theory, what is omitted is outweighted by the beam of light
and understanding thrown over diverse facts.

Paul A. Samuelson

A comparison has been made between the behavior of the thermodynamic properties of simple
substances along the curves of solid–liquid and liquid–vapor phase equilibrium. Hereby the
attention is concentrated on the internal pressure pi, the isothermal elasticity −(∂p/∂v)T , the
surface energy of the interfacial boundary σ , and the viscosity of the liquid, η. The mentioned
curves have been extended beyond the triple point into the region of coexistence of metastable
phases. Both phase transitions considered approach here the boundaries of stability of the
liquid, but in opposite directions from the triple point with respect to variations of temperature
and pressure. Among other consequences, the difference in the thermodynamic behavior of
one-component systems for both types of phase transformations, as established in the analysis,
gives support to the theoretical idea of the absence of a critical point for the solid–liquid phase
equilibrium curve.

2.1 Introduction

From a thermodynamic point of view, liquid–vapor (LV) and solid–liquid (SL) first-order
phase transitions have much in common. In both cases, the equilibrium of coexisting phases
is determined via equality of the chemical potentials, µ, of the coexisting phases. For a solid–
liquid equilibrium, we have for example

µS(T, p) = µL(T, p) . (2.1)

The differential form of this equality leads to the Clausius–Clapeyron equation

d p

dTSL
= �sSL

�vSL
, (2.2)

where �sSL = sL − sS, �vSL = vL − vS are entropy and volume changes during melting,
respectively.

But there are also significant qualitative distinctions between the behavior of the liquid–
vapor and solid–liquid equilibrium coexistence curves. One of them consists in the fact that
the phase coexistence curve for liquid–vapor equilibrium p = pLV(T ) has a lower limit at
pressure p = 0, whereas the solid–liquid coexistence curve may be extended into the region
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of negative pressures, where both coexistent phases are metastable. This extension has, at
T → 0, no universal low pressure limiting value, p∗. Differences in the behavior of liquid–
vapor and solid–liquid coexistence curves are also observed for high values of temperature,
T , and pressure, p.

A fundamental fact, concerning the properties of liquid–vapor phase equilibria, has been
established long ago by Andrews [1]: There exists an upper end point for the equilibrium
coexistence of both fluid phases – the critical point. It is characterized by the well-defined
values of the parameters Tc, pc, and vc, denoted as critical temperature, pressure, and volume.
With increasing temperature and pressure (both having initially values lower than Tc and pc)
the properties of the different coexisting phases move closer and become indistinguishable at
the critical point itself. This feature of the coexistence curve allows for the possibility of per-
forming a continuous (without change of homogeneity of the substance) liquid–vapor phase
transition by choosing a path around the critical point. In such a continuous transition, the
trajectory in the space of thermodynamic variables intersects neither the line of phase equilib-
rium (binodal) nor the region of unstable states, where the elasticity −(∂p/∂v)T is negative.
The main difference between the solid–liquid from the liquid–vapor transition consists in the
absence of a critical point. This result can be considered as a well-established fact as well [2].
New physical information is permanently accumulated supporting the point of view as out-
lined above and so far no indications are found requiring for its revision.

The above-mentioned difference of solid–liquid and liquid–vapor phase transitions leads
to a number of thermodynamic consequences, which manifest themselves in the thermody-
namic behavior of the different systems and, consequently, in the theoretical dependences de-
scribing them. One of such generalizations of experimental data for phase coexistence is the
Simon equation for the description of the melting line in temperature–pressure variables [3].
It reads

1 + p

p∗
=

(
T

T0

)c

. (2.3)

Here p∗ = −p(T → 0) > 0 is an individual parameter which may vary in dependence of
the substance considered. Generally it stands for the limiting (for T → 0) value of pressure
(taken with the opposite sign) on the extension of the melting line, T0 is the temperature at
which the melting line intersects the isobar p = 0 and c is another individual parameter of the
system under consideration.

From the paper of 1929 by Simon and Glatzel [3] one can see that, in processing exper-
imental data, the authors had to discard any possible analogy in the interpretation of exper-
imental results on liquid–solid equilibria as compared with liquid–vapor equilibrium, where
the relationship between pressure and temperature is close to a semi-logarithmic one. The
power-type dependence, as given by Eq. (2.3), proved to give a satisfactory description. It can
further be simplified and generalized by the introduction of a shifted pressure scale, p+, via

p+ = p + p∗. (2.4)

The introduction of the pressure p+ allows a transformation of Eq. (2.3) into the canonical
form

p+
1

p+
2

=
(

T1

T2

)c

, (2.5)
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not containing any more the individual parameter p∗. It emphasizes the automorphism of the
melting lines and the meaning of the individual exponent c as the parameter of thermodynamic
similarity of different groups of substances.

Since c is a constant, we can derive the following estimate for its possible values. First,
we rewrite Eq. (2.3) in the differential form as

d p

dT
= p∗

c

T

(
T

T0

)c−1

. (2.6)

Further, from the third law of thermodynamics, we have the condition (dp/dT ) → 0 at T →
0. Consequently, in order to get finite values of c in the whole range of temperatures (including
T → 0), Eq. (2.6) yields the inequality c > 1.

Equation (2.3) has not got any additional theoretical substantiation so far similar, e.g.,
to the van der Waals equation of state for liquid–vapor phase equilibria. Its advantage (and
justification) is that it reproduces satisfactorily the relationship between temperature and pres-
sure [4] along the line of phase equilibrium. Another difference to van der Waals’ and similar
equations of state is that it does not contain the densities of coexisting phases. In his note [5],
Simon discussed briefly the relation between Eq. (2.3) and the van der Waals equation, but
this direction of research was not developed further by him.

We emphasize that the absence of the critical point of solid–liquid equilibrium makes
the solid–liquid different from the liquid–vapor phase transition in the sense that there is no
continuous equation of state f (T, p, v) = 0 of the type of the van der Waals equation, which
would include the description of three states of aggregation. In particular, at T < Tc in the
(v, p) plane there is no common isotherm for solid and fluid states (see Fig. 2.1). It is well
known that not only the van der Waals equation, but also other existing more sophisticated
continuous equations of state do not allow for a combined description of the T , p, and v
properties of a fluid and a crystal.

Figure 2.1 represents the following common peculiarity of fluid states. At T < Tc, there
are two branches of the spinodal. These two curves are determined by the equation(

∂p

∂v

)
T

= 0 . (2.7)

They merge at the critical point. One of the branches refers to a superheated (stretched) liquid,
the other – to a supercooled (supercompressed) gas, but there is no spinodal for supercom-
pressed (supercooled) liquid states [6,7], i.e., no other extremum exists on the extension BA of
each isotherm for high pressures. The point F in Fig. 2.1 specifies the location of the spinodal
(for the given value of temperature) of the stretched (superheated) crystal.

If in the (T, p) plane we construct a family of isochores for the liquid and the vapor phases
extending them up to the spinodal, we can reveal an exciting feature: each of the branches of
the spinodal curve turns out to be the envelope of the corresponding group of isochores [8].
Formally it means that, at any arbitrary point of the spinodal, the condition(

d p

dT

)
Sp

=
(

∂p

∂T

)
v

(2.8)
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Figure 2.1: Crystalline (EF) and fluid (ABCD) branches of the isotherm in the range Ttr<T<Tc,
where Ttr is the temperature of the triple point, Tc the critical point and F, B, and C are the
spinodal points on the plane T = const for solid, liquid, and vapor. The dashed lines (SL) and
(LV) correspond to equilibrium phase transitions

is fulfilled. In Fig. 2.2, the results of such a construction are shown for argon [9] employing
experimental (T , p, v) data and the extrapolation of the isochores beyond the binodal curve
AC.

Employing the van der Waals or similar equations of state for liquid–vapor phase equi-
libria, the binodal curve can be determined via the Maxwell rule. This method of deter-
mination of the points along the binodal curve is not applicable for solid–liquid phase co-
existence. In searching for alternative methods of determination of the binodal curves for
liquid–solid phase equilibria, one has to guarantee agreement of Eq. (2.3) with the condition
µS(T, p) = µL(T, p), and therefore with the Clausius–Clapeyron equation (2.2).

The aim of the present contribution consists in the analysis of the behavior of some basic
thermodynamic quantities reflecting the specific character of phase transitions on the solid–
liquid and liquid–vapor phase equilibrium lines extended beyond the triple point. Hereby ex-
perimental (T, p, v) data are employed for liquids in the stable state and their extrapolation
along chosen isolines into the region of metastability. We have restricted ourselves here to
the consideration of normally melting substances, for which the relations d p/dTSL > 0 and
�vSL > 0 hold.
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Figure 2.2: Phase diagram of fluid states of argon: AC is the binodal curve, EC is the spinodal of
the liquid, DC is the vapor spinodal, (1–5) are a set of liquid phase isochores, (6) is the critical
isochore (vc = 1.867 × 10−3m3/kg), (7–9) are isochores of the vapor

2.2 Behavior of the Internal Pressure

The internal pressure, pi, of an isotropic phase is determined by the derivative of the internal
energy, u, with respect to the volume, i.e.,

pi =
(

∂u

∂v

)
T

. (2.9)

In a thermodynamic equilibrium state, the internal (pi) and the external (p) pressures are
related by the following equation

pi = T

(
∂p

∂T

)
v

− p = pt − p , (2.10)

where

pt = T

(
∂p

∂T

)
v

(2.11)

is called the thermal or total pressure. The behavior of the internal pressure during changes of
the state of the system reflects the variations in the relationship between the forces of attraction
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(pi > 0) and repulsion (pi < 0) with position averaging over all particles. The values of the
pressures pt and pi in the different states of the system under consideration can be calculated
by Eqs. (2.10) and (2.11), if the thermal equation of state of the substance is known.

With Eq. (2.2) and the relation

T �s = �h = �u + p�v , (2.12)

where h is the enthalpy, we can introduce another quantity p̂. This quantity has the dimension
of pressure as well and is another important characteristic of the phase transition. For the
liquid–vapor phase transition, we have then

p̂LV ≡
(

�u

�v

)
LV

= T
dp

dTLV
− p . (2.13)

The respective notations for the solid–liquid phase transition may be introduced in a sim-
ilar way. Equations (2.10) and (2.13) are close to each other in form. However, the spe-
cific volumes, v, of the liquid along the liquid–vapor and solid–liquid coexistence curves
change differently with increasing temperature: In the first case dvL/dTLV > 0 holds, whereas
dvL/dTSL < 0. There is also a difference in the relative slope of the phase transition line on
the (T, p) plane and the family of isochores at the points of attachment of isochores to this
line: For the solid–liquid line we have

dp

dTSL
>

(
∂p

∂T

)
v

, (2.14)

whereas

dp

dTLV
<

(
∂p

∂T

)
v

. (2.15)

These results mean that, if we take into account Eqs. (2.10) and (2.13), the quantity p̂SL is
larger and p̂LV is smaller than the corresponding internal pressures pi in the liquid at the lines
of phase equilibrium. Including into consideration the low-temperature range of metastable
states of the coexisting phases we note that the relations p̂LV, pi,LV → 0 at T → 0 hold
for liquid–vapor equilibrium, whereas in the same limit p̂SL, pi,SL → p∗. This result follows
from Eqs. (2.10), (2.13), and (2.3). At any arbitrary point of the melting line, we have

p̂SL = cp∗ + (c − 1)p . (2.16)

The lines pi,LV(T ) and pi,SL(T ), pertaining to the liquid, intersect at the triple point.
Figure 2.3 shows the behavior of the quantities pSL and pLV as well as pi and p̂ for the

liquid phase along the lines of the liquid–solid and liquid–vapor equilibrium for argon (a)
and sodium (b). To construct the pi(T ) and p̂(T ) curves the (T, p, v) data were used from
Ref. [10] for argon and Refs. [11, 12] for sodium. Melting lines have been extended into the
region p < 0 by Eq. (2.3).

From the constructions in Fig. 2.3 it can be seen that the values of p̂SL and pi,SL diverge
rapidly with increasing temperature and pressure. This property is connected with the absence
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Figure 2.3: Behavior of the internal pressure, pi, in the liquid and of the quantity, p̂, given by
Eq. (2.13), on the lines of solid–liquid (pSL(T )) and liquid–vapor (pLV(T )) phase equilibrium
for argon (a) and sodium (b), C is the critical point. The dashed sections of the curves show the
extension beyond the triple point into the region of metastable states

of an end point for solid–liquid equilibrium of critical-point type. The existence of a critical
point for liquid–vapor equilibrium leads above the triple point to an approach of the pi,LV and
p̂LV lines with increasing temperature and their convergence at the critical point. For solid–
liquid equilibrium the values of p̂ and pi coincide only at T → 0.

On the whole line of liquid–vapor equilibrium the internal pressure is positive, pi >
p̂LV > 0, whereas on the melting line the internal pressure passes, with increasing tempera-
ture, through zero and becomes negative. Note that, according to the van der Waals equation of
state, we have pi = a/v2, i.e., everywhere pi > 0 holds. This result indicates the inadequacy
of the van der Waals equation at high densities of the fluids. In addition, the above consider-
ations also give support to the well-known point of view that a liquid–solid phase transition
is not connected with the predominance of attractive forces in the molecular system as is the
case in the phenomenon of gas condensation.

2.3 The Boundaries of Stability of a Liquid

The coexistence of two phases presupposes stability of each of them with respect to local
perturbations of density or entropy. The condition of mechanical stability

−
(

∂p

∂v

)
T

> 0 (2.17)

has to be fulfilled for each of the phases on the liquid–vapor and solid–liquid coexistence
curves including the metastable sections of these lines. Thus, Eq. (2.7) corresponds to the
boundary of stability – the spinodal.

It is interesting to reveal the tendency in the relative position of the low-temperature
sections of the melting line and the liquid spinodal. For these purposes, a (T, p) diagram



2.3 The Boundaries of Stability of a Liquid 11

Figure 2.4: Melting line (AB) of argon with a metastable extension (AE) into the region of
negative pressures; (AC) is the line of liquid–vapor phase equilibrium; (CKD) is the spinodal of
a stretched liquid; A is the triple point

of the state of argon is shown in Fig. 2.4. The extension AE of the melting line BA be-
yond the triple point corresponds to the Simon equation (2.3) with the following parameters:
p∗ = 211.4 MPa, c = 1.593, and T0 = 83.8 K. The liquid spinodal CK has been constructed
employing experimental (T, p, v) data [13] in the region of stable and metastable states of
liquid argon. The extension KD of the spinodal is less reliable.

From Fig. 2.4, a qualitative conclusion can be derived concerning the approach of the
melting line and the liquid spinodal to each other with increasing tensile stress applied to the
coexisting liquid and crystal. The crystalline phase also decreases its stability. This result can
be reconfirmed by the pressure dependence of the elasticity −(∂p/∂v)T on the melting line
of argon as shown in Fig. 2.5. A similar behavior of the elasticity is also observed for sodium
(see also Fig. 2.5). It can be seen from the figures that the boundaries of stability of the liquid
and crystalline phases −(∂p/∂v)T = 0 are reached in the vicinity of the initial point ( p+ = 0,
T = 0) of the melting line. In Fig. 2.5, use is made of a shifted pressure scale p+ = p + p∗.
For the preparation of the figures, data from Refs. [11,14] were employed in order to construct
the liquid and crystalline branches of the elasticity curves for argon and sodium.

The general character of the tendency mentioned above is confirmed for different sub-
stances by comparison of the values of the limiting pressure −p∗ = p(0) on the melting line,
and the limiting pressure psp(0) on the liquid spinodal for T → 0. To retain uniformity in
the approach to the evaluation of psp(0) for substances of different nature, the present au-
thors [15, 16] turned to the van der Waals equation, according to which psp(0) = −27 pc.
This result reveals the same order of magnitude and the correlated character of the quantities
p∗ and 27 pc in the series of such substances as inert and two-atomic gases, organic liquids,
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Figure 2.5: Behavior of the elasticity of liquid (1) and solid (2) argon (left) and sodium (right)
along the melting line

metals [4, 16]. The quantities p∗ and 27 pc themselves change in this series by two decimal
orders going over from neon, argon to copper and nickel.

Thus, one can establish the following pattern of behavior for coexisting solid and liquid
with respect to their stability. At p > 0, both phases increase their stability with increasing
temperature as evidenced by the increase in elasticity −(∂p/∂v)T . Here no manifestation of
any spinodal peculiarity is observed, which would be noticeable in the case of existence of
a critical point of the solid–liquid type in analogy to the liquid–vapor phase equilibrium. If
the melting line is extended into the region of stretched states of both phases, then, as seen
from Figs. 2.4 and 2.5, the stability of a coexisting solid and liquid decreases approaching
the boundary as given by Eq. (2.7). The region of this coexistence is restricted by the low-
temperature limit. For the line of liquid–vapor equilibrium the upper limit is the critical point.

The difference in the degree of stability of solid–liquid and liquid–vapor phase equilibria
is demonstrated for argon in Fig. 2.6. Here one can see the variation with temperature of
the elasticity of the liquid phase, which is in equilibrium with vapor (LV line) and solid (SL
line), C is the critical point. The zero line for (∂p/∂v)T refers to the spinodal. The discrepancy
between the spinodal and the extended SL line at T = 0 may reflect the approximate character
of the description of these lines in the low-temperature limit.

The construction in Fig. 2.6 shows that the spinodal seems to connect the limiting states on
the liquid–vapor and solid–liquid lines. Both of the mentioned states are located at the bound-
ary of stability of the coexisting phases. With respect to stability, there is a certain analogy
between the critical point of a liquid–vapor equilibrium and the metastable limit T = 0 of
the solid–liquid equilibrium.

2.4 The Surface Energy of the Interfacial Boundary

The behavior of the surface tension, σLV(T ), for liquid–vapor equilibria in pure substances
has been studied thoroughly. Available experimental methods allow us to determine the val-
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Figure 2.6: Elasticity of liquid argon along the lines of solid–liquid (SL) and liquid–vapor (LV)
equilibrium, the Sp line is the liquid spinodal, and C is the critical point. The intersection of the
SL and LV lines corresponds to the triple point

ues of σLV with high precision. As one of the results, it turns out that the surface tension
monotonically decreases, as the temperature increases, and tends to zero at the critical point.
The approach to zero can be described by the power law [17]

σLV ∼
(

1 − T

Tc

)µ

, (2.18)

where Tc is the critical temperature of the substance considered and the parameter µ ≈ 1.25.
Molecular-kinetic approaches to the description of the surface properties of liquids imply

the existence of a correlation between surface tension, σLV, and specific heat of vaporization
of a substance, �hLV. An analysis of the experimental data led to the formulation of several
empirical equations interrelating these properties [17, 18]. The application of the thermody-
namic similarity methodology for describing the surface tension of normal (nonassociated)
liquids resulted in the discovery of a one-parametric relation for σ in reduced variables of the
form [19]

σ ∗
LV = σ ∗

LV(�h∗
LV, A) (2.19)

with

σ ∗
LV = σLVk

− 1
3

B T
− 1

3
c p

− 2
3

c , �h∗
LV = �hLV

RT
. (2.20)
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Figure 2.7: Relationship between the dimensionless quantities σ̃LV and �h̃LV/̃vL for normal
liquids. The numbers refer to different substances as specified in Table 2.1

Here A is the thermodynamic similarity parameter characterizing individual properties of the
molecules of the particular substance considered, pc is the pressure at the critical point, kB is
the Boltzmann constant, and R is the universal gas constant.

An analysis of the relation between σLV and the enthalpy of vaporization (referred to a
unit volume of the liquid phase), �hLV/vL, allowed us to discover new simple relationships
containing no individual parameters for the description of normal liquids in the context of
thermodynamic similarity. Here vL is the specific volume of the liquid in equilibrium with the
vapor.

Let us introduce dimensionless values for σLV and �hLV by choosing as scales the corre-
sponding quantities at the temperature T̃ = T/Tc = 0.6

σ̃LV = σLV

σLV(T̃ = 0.6)
,

�h̃LV

ṽL
=

(
�hLV

vL

) /(
�hLV

vL

)
T̃ =0.6

. (2.21)

Figure 2.7 shows the relation between the quantities σ̃LV and �h̃LV/̃vL for a large group of
nonassociated liquids in the temperature range from the triple to the critical point. Tables 2.1
and 2.2 give the scale values for the calculation of these dimensionless variables. A sepa-
rate column presents references to the literature from which the experimental data for �hLV
and vL, and also the critical parameters Tc and pc have been taken.
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Table 2.1: Main quantities determining the thermodynamic similarity of vapor–liquid equilibria
for nonassociated liquids

No. Substance Tc pc σT̃ =0.6 σ ∗̃
T =0.6

K MPa mJ/m2

1 Argon 150.7 4.86 11.75 [17] 3.192
2 Krypton 209.4 5.49 14.28 [17] 3.221
3 Xenon 289.7 5.83 16.87 [21] 3.281
4 Nitrogen 126.3 3.40 9.20 [22] 3.381
5 Oxygen 154.7 5.09 12.50 [17] 3.281
6 Carbon monoxide 132.9 3.50 9.95 [17] 3.532
7 Diborane 289.9 4.00 14.37 [25] 3.589
8 Methane 190.6 4.60 12.36 [17] 3.243
9 Ethane 305.4 4.88 16.31 [17] 3.508
10 Propane 369.8 4.26 16.66 [17] 3.681
11 Butane 425.2 3.80 16.90 [17] 3.846
12 Isobutane 408.1 3.65 16.40 [17] 3.864
13 Pentane 469.6 3.37 17.30 [25] 4.130
14 Isopentane 461.0 3.33 16.83 [25] 4.027
15 Hexane 507.9 3.03 17.26 [25] 4.365
16 Heptane 540.2 2.74 17.32 [25] 4.529
17 Octane 569.4 2.49 17.05 [25] 4.667
18 Nonane 595.2 2.28 17.01 [25] 4.842
19 Decane 619.2 2.10 16.89 [25] 5.035
20 Cyclopentane 511.9 4.51 20.64 [25] 3.908
21 Cyclohexane 553.1 4.03 20.83 [25] 4.036
22 Benzene 562.6 4.92 23.09 [25] 4.036
23 Toluone 594.0 4.05 21.61 [25] 4.178
24 Monofluorotrichloromethane 471.2 4.41 19.65 [28] 3.908
25 Hexafluorobenzene 516.8 3.26 19.98 [29] 4.699

As is evident from Fig. 2.7, points for different substances fall well onto a common curve
in a wide range of values of the variables. The point (0, 0) in the plot corresponds to the critical
point of the respective substances.

The data in Fig. 2.7 may be expressed by the following simple relation

σ̃LV =
(

�h̃LV

ṽL

)m

. (2.22)

The average value of the exponent m for different substances is equal to m = 2.15. The corre-
lation equation (2.22) gives an adequate description of the experimental data at temperatures
T̃ from 0.6 to 1 and makes it possible to evaluate the surface tension of liquids using known
data of �hLV and vL. This discovered relation is an example of the law of corresponding
states containing no substance dependent parameters and may be regarded as a zeroth-order
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Table 2.2: Main quantities determining the thermodynamic similarity of vapor–liquid equilibria
for nonassociated liquids (continuation)

No. Substance
(

�hLV
vL

)
T̃ =0.6

(
�hLV
vL pc

)
T̃ =0.6

References

103 kJ/m3

1 Argon 217.7 44.59 [20]
2 Krypton 248.7 45.30 [20]
3 Xenon 269.3 46.19 [20]
4 Nitrogen 165.5 48.69 [23]
5 Oxygen 235.3 46.24 [24]
6 Carbon monoxide 174.4 49.77 [25]
7 Diborane 230.3 57.54 [25]
8 Methane 211.1 45.90 [26]
9 Ethane 265.5 54.41 [27]
10 Propane 257.8 60.51 [27]
11 Butane 245.9 64.70 [27]
12 Isobutane 232.0 63.56 [27]
13 Pentane 242.8 72.05 [25]
14 Isopentane 229.8 67.92 [25]
15 Hexane 234.7 74.13 [25]
16 Heptane 228.7 83.37 [25]
17 Octane 225.5 90.57 [25]
18 Nonane 222.1 96.61 [25]
19 Decane 214.8 102.3 [25]
20 Cyclopentane 294.5 64.42 [25]
21 Cyclohexane 276.1 67.92 [25]
22 Benzene 335.8 68.53 [25]
23 Toluone 308.1 74.99 [25]
24 Monofluorotrichloromethane 283.6 64.27 [25]
25 Hexafluorobenzene 288.6 88.51 [29]

approximation in describing the thermodynamic similarity of substances of different nature in
reduced variables as determined by Eq. (2.21).

The use of the critical parameters of the substances in constructing reduced variables re-
vealed the existence of a relation between the dimensionless quantities σ ∗

LV and �hLV/vL pc.
This dependence is shown in Fig. 2.8 in logarithmic coordinates for a temperature T̃ = 0.6.
Tables 2.1 and 2.2 give the numerical values of the dimensionless variable. According to
Fig. 2.8, the dependence between log(σ ∗

LV)T̃ =0.6 and log(�hLV/vL pc)T̃ =0.6 is close to a lin-
ear one.

It has been found that the dependence remains linear and its slope does not change at other
temperatures T̃ up to the critical point (T̃ = 1). This means that for approximation of data
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Figure 2.8: Correlation between the quantities log σ ∗̃
T =0.6

and log(�hLV/vL pc)T̃ =0.6 for nor-
mal liquids. The different substances are specified in the same way as done in Fig. 2.7

one may use the function

σ ∗
LV = N

(
�hLV

vL pc

)n

, (2.23)

where the exponent n is of the order n ∼= 0.55. The factor N is a function of temperature, and
N(T̃ ) → 0 holds for T̃ → 1.

At a given temperature the dimensionless complex

N = σ ∗
LV

(
vL pc

�hLV

)n

= σ ∗
LV

[(
pc

Tc

)
vL

T̃�sLV

]n

(2.24)

characterizes the similarity of substances with respect to the liquid–vapor phase transition. It
follows from Eq. (2.24) that the behavior of the surface energy of a liquid–vapor interface is
determined to a large extent by the ratio of the entropy difference between liquid and vapor
and the specific volume of the liquid phase.

Table 2.3 gives the values of the quantity N(T̃ ) as calculated from experimental data for
several temperatures T̃ . The calculations were done by employing the method of least squares.
The variation of N along the vapor pressure curve can be described by the relation

T̃ − 1 = a N + bN2 (2.25)

with values of the coefficients equal to a = −0.870 and b = −0.357.
Similar to Eq. (2.22), Eq. (2.23) does not contain substance-dependent parameters and

may be used for calculating the surface tension values using the vaporization enthalpy and the
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Table 2.3: Variation of the factor N(T̃ ) in Eq. (2.23) along the vapor pressure curve

T̃ 0.5 0.6 0.7 0.8 0.9 0.95 1
N(T̃ ) 0.481 0.395 0.308 0.211 0.111 0.057 0

saturated liquid density data at the phase equilibrium point. A comparison with experimental
data shows a high accuracy of the correlations derived here.

In contrast to the liquid–vapor equilibrium there is no simple and reliable method for mea-
suring the solid–liquid surface tension, σSL, along the pSL = f (T ) melting curve at different
temperatures [30]. Theoretical (computational) surface tension estimates for the crystal–melt
interface are very approximate. This conclusion is supported, for example, by the results of
σSL calculations for metals reported by various authors and summarized in Ref. [31]. There
are no data on the temperature dependence of σSL. The absence of a singular point of the
critical point type for crystal–liquid phase equilibria makes predictions of σSL(T ) uncertain.

For normally melting substances (�vSL > 0) the volume jump decreases as the tem-
perature increases, but, in contrast to the liquid–vapor equilibrium, the densities of both phases,
ρL = 1/vL and ρS = 1/vS, increase. In addition, the increase in temperature is accompanied
by an increase in elasticity (∂p/∂ρ)T ; that is, an increase in the thermodynamic stability of
the coexisting crystalline and liquid phases. The approach to the liquid–vapor critical point not
only decreases the difference of phase densities but also destabilizes the phases with respect to
small homophase perturbations, whereas crystal–liquid equilibria show a similar tendency in
the low temperature limit T → 0 along the metastable melting curve continuation below the
triple point [4]. These considerations led us to expect a more complex behavior of the surface
tension of simple substances along the melting curve as compared with its behavior along the
boiling curve, pLV = f (T ). In Refs. [32,33], the surface energy of the crystal–liquid interface
was estimated from experiments on spontaneous crystallization of supercooled liquid drops
employing the classical theory of homogeneous nucleation [34,35]. For stationary conditions,
the theory predicts the following dependence of the rate of nucleation, J (in s−1 cm−3), on
critical crystalline nucleus formation W∗

J = N1 B exp

(
− W∗

kBT

)
, (2.26)

where N1 is the number of molecules in a unit volume of the liquid, B is a kinetic factor, and
kB is the Boltzmann constant. For low-viscosity melts, B changes insignificantly as the degree
of supercooling �T = T0 − T increases. In the order of magnitude, we have N1 ≈ 1022 cm−3

and B ≈ 1010–1011 s−1. The thermodynamic factor containing the Gibbs number, Gi , in the
exponent

Gi = W∗
kBT

(2.27)

plays then the determining role in the kinetics of nucleation [36].
The homogeneous nucleation theory was developed in a thermodynamic approximation.

A supercooled liquid and a crystalline nucleus are treated as volume phases, and interface
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effects are introduced via the surface tension. For a spherical nucleus of radius, r , in unstable
equilibrium with the surrounding ambient phase we have

W∗ = 4π

3
r2σSL = 16π

3

σ 3
SLv2

S

(�µ)2 = 16π

3

σ 3
SLv2

S

(�sSL)2(�T )2 . (2.28)

Equation (2.28) is obtained with an accuracy to first-order terms in the expansion of the chem-
ical potential µ(T, p) in powers of temperature, T , and pressure, p [36]. The right-hand side
of Eq. (2.28) allows us to express Eq. (2.27) as

Gi = 16π

3

σ 3
SLv2

S

kBT (�sSL)2 (�T )2
. (2.29)

Small changes in supercooling, �T , have a strong effect on the nucleation rate, J . An increase
in supercooling by 10 K, increases J by nine orders of magnitude for mercury and four orders
of magnitude for tin at �T = 52 and 122 K, respectively, for J ≈ 105 s−1 cm−3 [36].

A comparison of experiments on spontaneous crystallization with the homogeneous nu-
cleation theory makes it possible to estimate the surface tension, which is the only significant
adjustment parameter in Eqs. (2.26) and (2.28). This approach was applied in Ref. [32] to
organic liquids and in Ref. [33] to metals. The most serious difficulty was premature crys-
tallization on impurity particles, which decreased σSL and resulted in a strong temperature
dependence of surface tension. “Pure” conditions are easier to attain in small samples. For
this reason, submillimeter drops were used in the experiments.

The condition Gi = 62 employed in Ref. [32] corresponds to J ≈ 106 s−1 cm−3. A more
detailed study of the homogeneous nucleation of metals, water, and several organic liquids
was performed in a series of measurements reviewed in the monograph [36]. All these exper-
iments were, however, performed at atmospheric and lower pressures and gave σSL-values at
a single melting curve point close to p = 0. The scaling pressure value for the solid–liquid
equilibrium p∗ in Eq. (2.3) is equal to several GPa for metals. Experimental studies of the
kinetics of spontaneous crystallization at such pressures are a long way to go in a future.

It is possible to evaluate the surface tension of a solid–liquid interface for different sub-
stances in a large range along the melting line with information on homogeneous nucleation
only in the vicinity of p = 0. For this purpose, we shall return to considerations on thermo-
dynamic similarity basing the analysis on the available data on the kinetics of spontaneous
crystallization.

The melting line of tin, approximated by the Simon equation, is shown in Fig. 2.9 with
T0 = 505 K, p∗ = 5.70 GPa, and c = 3.4 [37]. This line contains its metastable continuation
to negative pressures and low temperatures (T/T0) < 1. The supercoolings �T = T0 −
T , used in the experiments on the kinetics of homogeneous nucleation [36], are labeled by
squares. The group of points on the right was detected in experiments with submillimeter drops
in a neutral medium [38], and the group of points on the left corresponds to crystallization of
tin in island films (submicron drops) [39, 40].

Data processing reveals two circumstances [36]: (i) The J (T ) dependence is satisfac-
torily described by the homogeneous nucleation theory with a constant σSL-value (for tin,
σSL ≈ 60 mJ/m2), and (ii) the dome-shaped J (T ) dependence is linearized in the log J vs.
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Figure 2.9: Melting curve of tin with a metastable continuation to negative pressures. Points
a1–an correspond to homogeneous nucleation experiments on supercooled drops and island
films

[T (�T )2]−1 coordinates at T > Tmax, where Tmax is the temperature of the maximum of the
dome (see Fig. 2.10). This result implies the constancy of the complex

Z = σ 3
SLv2

S

kB(�sSL)2
, (2.30)

which determines the slope of the dependence of log J on [T (�T )2]−1, if it is assumed that
ln J = const− Gi ; that is, if variations in ln(N1 B) are ignored as compared with variations in
Gi .

At p = const, the (a1, a2, . . . , an) experimental data are referred to one point (a0) of
the melting curve (see Fig. 2.9). The specific volume, vS, and the entropy of melting, �sSL,
are taken for this point. It follows that if Z remains constant under increasing supercooling at
fixed vS- and �sSL-values, then σSL is also constant.

The condition Z = const can be interpreted more broadly if the ai points are referred to
different points, bi , of the melting curves as shown in Fig. 2.9. Here the points ai , bi corre-
spond to the same temperatures. Each bi -point is characterized by �sSL- and vS-values of its
own. Generally, the condition Z = const gives then different σSL-values for the points b1,
b2, . . . . The linearization, mentioned above, means that the σSL-, �sSL-, and vS-values are
correlated by the condition Z = const, where Z has the form as given by Eq. (2.30).
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Figure 2.10: Temperature dependence of the nucleation rate in supercooled liquid tin: (1) ex-
periments with island films d = 4–100 nm in diameter and (2) experiments with drops
(d = 20–400 µm); the solid line corresponds to computations by homogeneous nucleation the-
ory

The Z -complex can be brought into a dimensionless form Nc = Z/T 3
0 by dividing it

by T 3
0 . Here T0 is the temperature on the melting curves of different substances at the corre-

sponding points for p = 0

Nc = σ 3
SLv2

S

kBT 3
0 (�sSL)2

. (2.31)

It was found that the (Nc)1/3-values for different substances differ insignificantly from each
other (see Table 2.4). The use of the complexes as defined via Eqs. (2.30) and (2.31) for
determination of σSL at the solid–liquid interface implies the use of phenomenological ther-
modynamic similarity concepts. Surface tension is assumed to be an explicit function only of
temperature. The value of pressure corresponds to this temperature along the melting curve or
its metastable continuation into the p < 0 region.

Our next step in the analysis consists in the assumption that the condition, Nc = const,
holds not only close to p = 0 but also over a wide range of the melting curve of the different
substances. In order to calculate the σSL(T ) dependence, we have to know then the entropy or
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Table 2.4: Values of thermodynamic parameters characterizing solid–liquid equilibria for dif-
ferent substances at atmospheric pressure; Nc is a dimensionless complex determined via
Eq. (2.31)

Substance T0 vS �hSL (σSL)T0 (Nc)
1
3

K 10−3 m3/kg kJ/kg mJ/m2

Lithium 453.8 1.902 428.6 30 0.44
Sodium 370.8 1.019 115.2 20 0.50
Copper 1 356 0.119 203.1 200 0.54
Silver 1 235 0.102 104.7 143 0.55
Indium 429.8 0.139 28.4 31 0.49
Tin 505.0 0.139 60.7 60 0.54
Mercury 234.3 0.070 11.5 23 0.51
Lead 600.0 0.091 22.6 40 0.50
Argon 83.8 0.608 29.8 7 0.5
Tetrachloromethane 250.6 0.570 16.4 6.7 0.47
Benzene 278.6 0.990 128.2 21.7 0.54
Gallium 302.9 0.175 80.3 40 0.41
Antimony 903.7 0.152 163.9 101 0.41
Bismuth 544.5 0.103 52.6 69 0.55
Water 273.2 1.090 334.4 28.7 0.41

enthalpy jump, �sSL or �hSL = T�sSL, and the specific volume of the crystalline phase, vS,
at different points of the melting curve, pSL = f (T ).

Table 2.4 contains the values that determine Nc for several simple substances at the corre-
sponding melting curve points at zero (atmospheric) pressure. The values of T0, vS, and �hSL
were taken from Ref. [41] for lithium and sodium and from Ref. [42] for the other substances.
For (σSL)T0 , the data from the monograph [36] were used for all substances except sodium
and lithium [31] and argon. For argon, the value of (σSL)T0 was obtained from the condition
(Nc)1/3 = 0.5. Such choice corresponds to the mean value of the dimensionless complex for
normally melting substances.

The calculated σSL(T ) dependences are shown in Fig. 2.11 for mercury and argon and for
tin, lead, and sodium. The values of �sSL and vS were taken from the literature for pSL > 0
and obtained from approximations correlated with the Simon equation for pSL < 0 [4]. The
σSL-values in the temperature region of experimental studies of nucleation kinetics [36] are
marked by squares. Circles correspond to the values calculated from the condition Nc = const
and the experimental �hSL- and vS-values. Continuous curves were obtained by extrapolat-
ing the �hSL- and vS-values. For mercury and tin, the temperature T0 is marked by an arrow.
For the other substances in Fig. 2.11, T0 corresponds to the leftmost points (circles). The
σSL-values, marked by squares, correspond to negative pressures, because spontaneous crys-
tallization was observed [36] at a finite supercooling of the liquid (T < T0), and the projection
of the figurative point at this temperature falls onto the melting curve section, where p < 0.
This result does not contradict the conditions of the nucleation kinetics experiments, in which
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Figure 2.11: Temperature dependences of the surface tension of argon and mercury (left) and
tin, lead, and sodium (right) along the melting lines

measurements of σSL were performed at fixed �hSL- and vS-values corresponding to T0. The
width of the temperature range of σSL variations in Fig. 2.11 depends on the availability of the
data of �hSL and vS at high pressures. For argon, mercury, tin, lead, and sodium, the extreme
right points correspond to 1.77 [14], 2.00 [43], 2.60 [44], 5.00 [45,46], and 2.20 GPa [47], re-
spectively. The method, employed by us for estimating σSL(T ) along the melting curve, leads
to values of the surface tension which decrease as temperature increases at p > 0. At the same
time, the dependences contain a maximum, and σSL(T ) tends to decrease as the temperature
becomes lower in the region of negative pressures.

More reliable determinations of surface tension were obtained from homogeneous nucle-
ation experiments for the liquid–vapor phase transitions as compared to the case of spon-
taneous crystallization considered above. Spontaneous boiling was studied systematically at
different pressures and in a wide range of nucleation rates [8,48]. Independent determinations
of σLV by the capillary rise method substantiated the validity of surface tension estimates ob-
tained by utilizing the homogeneous nucleation theory. It was simultaneously shown that the
curvature corrections to the surface tension of the interfacial boundary for bubbles containing
102–103 molecules did not exceed 2–5% of the σLV-values for a planar interface.

Surface tension depends on the temperature of measurement. This fact is an important cir-
cumstance, because an unstable-equilibrium (critical) bubble is characterized by three pressure
values at a given temperature, pL < pV < pLV (pL is the pressure in the liquid, pV is the
pressure in the bubble, and pLV is the saturation pressure at a planar interface, pLV = g(T )).
We also follow the σ = σ(T ) rule in estimating the surface tension at the solid–liquid in-
terface. At this interface, the inequalities pSL(T ) < pL(T ) < pS(T ) hold, where pS is the
pressure in the crystalline nucleus. The pSL, pL, and pS pressures are essentially different, but
the pL − pSL and pS − pL differences can be considered to be small as compared with the
scaling pressure, p∗.

The limitations of the approach, employed in estimating σSL(T ) in this work, are con-
nected with the narrowness of the experimentally studied spontaneous crystallization inter-
vals. All data on the kinetics of nucleation virtually refer to one pressure ( p = 0 + δp). We
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are therefore unable to check whether property (ii) (linearization, see above) holds at other
pressures as well. The condition Nc = const, employed here for a large part of the melting
curve, is therefore an assumption that has to be substantiated further. Physics and mechanics,
however, exhibit many examples when the introduction of dimensionless complexes of essen-
tially interrelated variables helps to determine the functional dependence between them. In
this work, the Nc-complex, as defined via Eq. (2.31), plays a similar role.

The dependence of σSL(T ) on temperature along the melting curve, as obtained in this
work, has a maximum determined by the behavior of the ratio (�sSL/vS)2/3. Most impor-
tantly, a decrease in the �sSL-entropy jump at T/T0 � 1 follows from the Nernst theorem.
Equation (2.3) satisfies, for c > 1, the condition dp/dTSL → 0 for T → 0, which implies that
the �sSL-entropy jump vanishes when T tends to zero at a finite �vSL-value. According to
Eq. (2.3), �sSL begins to decrease noticeable at T > TD, where TD is the Debye temperature.
At high temperatures (T > T0), the derivative (dσSL/dT ) is negative because of an increase
in the amplitude of atomic oscillations. This effect results in a swelling of the interface and a
decrease in σSL.

2.5 Viscosity of a Liquid along the Curves of Equilibrium
with Crystalline and Vapor Phases

The coefficient of dynamic viscosity, η (hereinafter termed viscosity), is defined via the linear
relationship between the shear rate, ε̇, of a liquid and the tangential component of the force
acting between the liquid layers at shear stress. In the cases, when η is independent of ε̇ =
dux/dy, where ux is the component of velocity in the direction of shear stress, a fluid is called
a Newtonian liquid. The quantity η characterizes the intensity of a momentum flux in the
normal direction to the plane of slip. The energy dissipated per unit volume and unit time due
to viscosity is defined by the product ηε̇2. The quantity η−1 is referred to as fluidity.

Depending on the nature of the substance, on temperature T and pressure p, the range of
viscosity variation is extremely wide, for example, from η = 10−3 Pa · s (water under normal
conditions) to 1012 Pa · s in the range where fluids undergo the process of vitrification. The
wide variation in the possible values of η suggest that the Newtonian liquid approximation
presupposes a corresponding space-time scale of experiment or transition to a more complex
description of the medium as a viscoelastic body. The relaxation time, τ , of shear stresses is
defined (in the order of magnitude) by the ratio of viscosity coefficient to the “instantaneous”
shear modulus, G, in Hooke’s law via

τ = η

G
. (2.32)

Presently, there does not exist a consistent molecular theory of viscosity and simple empirical
dependences are commonly employed to describe the behavior of viscosity of liquids ranging
from a high-fluid to the vitrified state. Of particular interest are supercooled liquid states (at
T < TSL). This interest is connected with the problem of homogeneous nucleation [36] and
with the conditions of preparing solid-amorphous samples, including metallic glasses. The
main difficulty consists in choosing the dependence of viscosity on the thermodynamic para-
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Figure 2.12: Behavior of the viscosity of liquids along the melting line (η0 and T0 denote
the viscosity and temperature, respectively, at the melting point under atmospheric pressure):
(1) benzene [53], (2) carbon dioxide [54], (3) argon [55], and (4) carbon tetrachloride [56]

meters of the liquid and internal consistency of the T , p, v, and η-data when using “far-away”
extrapolations into the region of metastable states.

We shall consider the behavior of the viscosity of a melt along the line of solid–liquid
phase equilibrium, both for high pressure and for states of coexisting phases (p < 0) on
the metastable continuation of the melting line beyond the triple point. For normally melting
substances, d p/dTSL is positive. Increasing temperature and pressure leads to an opposite
change in viscosity, and the resulting effect depends on the steepness of the melting line.

A preliminary treatment [49–52] has demonstrated that, in moving along the melting line,
the liquid becomes more viscous with increase in temperature. For several substances, the
behavior of η in the initial segment of the melting line is shown in Fig. 2.12. The persistence
of this tendency may lead to the vitrification of the melt in the high-temperature segment of
the continued melting line rather than in its low-temperature segment. By definition, the value
of the viscosity equal to η(Tg, p) = 1012 Pa · s corresponds to the vitrification temperature Tg.
We shall study the experimental data for the viscosity of different liquids and extrapolation of
the values of η along isobars into the region of supercooled states. For the specification of the
melting line we shall use the Simon approximation (2.3).

Two approaches are popularly employed for describing the viscosity. In accordance with
Frenkel [57], the viscosity of a liquid is related to the activation energy, E , of a local molecular
regrouping via

η = A exp

(
E

kBT

)
, (2.33)
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where A is a weak function of temperature and pressure as compared to the exponential term.
The activation energy increases as the temperature decreases and the pressure rises. On ap-
proaching the glass-transition region, under atmospheric pressure, the parameter E increases
by an order of magnitude as compared to its value for low-viscosity states [36].

Another approach was developed by Batchinskii [58]. The essence of this approach is
expressed as “The viscosity of a liquid is defined by its specific volume vL.” The formula

η = C

vL − ω
(2.34)

was suggested by him. In this relation, C and ω are individual constants of the respective
liquids. Although the subsequent test revealed the inadequacy of Eq. (2.34) for a wide range of
viscosities, its heuristic significance is retained. Frenkel examined the possibility of matching
formulas like Eqs. (2.33) and (2.34) from the viewpoint of the hole theory of liquids [57].

In our analysis, we used initially the following two equations for the decription of the
dependence of viscosity on the thermodynamic state parameters, i.e.,

η = A exp

(
B

T − T1

)
, (2.35)

and

η = a exp

(
b

vL − v1

)
. (2.36)

Equation (2.35) is commonly known as the Vogel–Fulcher–Tammann formula [59, 60] and
Eq. (2.36) as the Doolittle formula [61]. Both relations may be treated as modifications of
Eqs. (2.33) and (2.34).

The introduction of the parameter values T1 and v1 a priori into the description defines zero
fluidity by the conditions T = T1 or vL = v1; however, the quantities T1 and v1 depend on
pressure. Furthermore, the parameters A and b are taken to be functions of pressure, while B
and a are taken to be individual constants. In this approximation, we treated the experimental
data on the viscosity of liquids along isobars using the glass transition temperature of each
substance under atmospheric pressure. At low temperatures, we discovered a mismatch of
the data on viscosity calculated by using Eq. (2.36) and via the p, vL, and T properties of
the liquids, extrapolated to the region of high supercoolings. Thus, further on Eq. (2.35) was
assumed as the basic one.

The quantities A(p) and T1(p) in Eq. (2.35) were described with the aid of the following
approximations

A = α

(
p

β
+ 1

)m

(2.37)

and

T1 = γ
( p

δ
+ 1

)n
, (2.38)

where α, β, γ , δ, m, and n are constants.
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Table 2.5: The values of the parameters in Eqs. (2.35), (2.37), and (2.38) used for the calculation
of viscosity

Substance B α β m γ δ n

K 10−4 Pa · s MPa K MPa

Benzene 469 0.430 182 1.068 120 403 0.677
Dodecane 394 0.860 203 1.314 150 697 0.675
Octadecane 529 0.772 243 1.828 167 1254 1.0
Argon 202 0.145 80 1.201 16 75 0.377
Carbon dioxide 724 0.045 340 2.064 36 – –
Carbon tetrachloride 992 0.202 191 1.768 35 – –

Figure 2.13: Change in the viscosity of benzene (left) and dodecane (right) along the melt-
ing line η(TSL) and along the isobars p = 0.1 and 300 MPa (curves (1) and (2)). The points
correspond to experimental data. The solid lines indicate the results of calculation by Eq. (2.35)

For the analysis, we have chosen substances for which experimental data on viscosity
are available in a wide range of pressures for several isotherms. The data for the following
liquids were analyzed: argon [55], carbon tetrachloride [56], benzene [53], dodecane [62],
octadecane [62], and carbon dioxide [54]. The range of pressure variation given in [62] was
360 MPa for dodecane; for other substances the pressure variation range was 200 to 300 MPa.

Table 2.5 gives the values of the parameters of Eqs. (2.35), (2.37), and (2.38), which were
employed in the calculation. For carbon dioxide and carbon tetrachloride, we did not succeed
in finding the dependence of temperature T1 on pressure. Therefore, the values of δ and n
entering Eq. (2.38) are not included into the table for these substances, and we assume T1 =
const.

Figure 2.13 shows, in a semilogarithmic scale, the variation of viscosity with temperature
for benzene on two isobars and on the melting line. In accordance with our estimates, the glass
transition of benzene on the melting line takes place at a temperature of 830 K and pressure
of 6.5 GPa. The behavior of the viscosity of dodecane is similar.
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Although the viscosity on the melting line increases with temperature, one still cannot be
sure that the melt would undergo glass transition on the melting line. In this case the mutual
arrangement on the (T , p) plane of the glass transition line η(T, p) = 1012 Pa · s and of
the melting line for different substances, as well as the possibility of their intersection, are of
importance.

As an additional verification of the degree of consistency of the data for η, calculated by
Eqs. (2.35) and (2.36), we consider the conditions of explosive crystallization [36] during the
heating of amorphous layers of a number of organic substances. Under atmospheric pressure,
the temperature of explosive crystallization, T∗, is higher than that of the glass transition by
approximately 15 K with a viscosity ranging from 107 to 108 Pa · s corresponding to T∗ [36].
For the substances, given in Table 2.5, the calculation by Eq. (2.35) results in T∗−Tg � 6−8 K.

With an increase in temperature, an increase in the viscosity of a liquid along the melt-
ing line is connected with a decrease in the specific volume, vL, of the liquid. This result is
expressed by the local condition [4, 15]

MlL = βT

αp

dp

dTSL
=

dp

dTSL(
∂p

∂T

)
v

> 1 , (2.39)

where βT = −(1/vL)(∂vL/∂p)T is the isothermal compressibility coefficient and αp =
(1/vL)(∂vL/∂T )p is the coefficient of thermal expansion of the liquid phase. The inequality
(2.39) holds for normally melting substances for which the melting line has a slope d p/dTSL
steeper than that of the isochore of a liquid at the point of intersection with the melting line.

Table 2.6 gives the values of the characteristic number MlL of a liquid calculated for sev-
eral substances in the vicinity of the melting temperatures at atmospheric pressure employing
data for the quantities αp , βT , and d p/dTSL taken from the literature. For most substances,
the values of αp and βT were computed utilizing p, v, and T data close to the triple point
(references to literary sources are given in the table) or taken from a reference book [63]. To
determine βT for liquid lithium, rubidium, and caesium, use was made of an extrapolation to
the corresponding melting temperatures of data for the compressibility determined employing
the results of measurements of the velocity of sound in melts. The third column lists the refer-
ences from which data for the derivative d p/dTSL were taken. If we assume that the condition
MlL > 1 holds along the whole melting curve, including its low-temperature extension (at
T < T0) into the region of stretched (metastable) states of the coexisting phases, it will make
liquid vitrification on such an extension unlikely.

The behavior of the parameter MlL on the melting line of argon, shown in Fig. 2.14, may
serve as an illustration. The values of MlL were calculated employing experimental data for
αp , βT , and d p/dTSL taken from the paper [76]. The dashed line in the figure shows the
extension of the temperature dependence of the number MlL into the region of negative pres-
sures. As shown in the figure, for argon the complex MlL does not change practically along
the melting line.
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Table 2.6: Values of the parameter MlL for the liquid along the melting line in the vicinity of
the triple point of some substances

Substance MlL Reference

Hydrogen 3.0 [64] [65]
Neon 2.4 [20] [65]
Argon 1.9 [20] [65]
Krypton 2.1 [20] [65]
Xenon 2.0 [20] [65]
Oxygen 4.3 [66] [65]
Nitrogen 2.6 [67] [65]
Carbon dioxide 2.9 [68] [69]
Ammonia 4.0 [70] [37]
Benzene 2.5 [53] [71]
Lithium 15.0 [72] [65]
Sodium 8.2 [11] [65]
Potassium 8.8 [73] [65]
Rubidium 6.9 [74] [65]
Caesium 8.2 [75] [65]
Mercury 4.1 [43] [65]

Figure 2.14: Behavior of the complex MlL on the melting line for argon

A different pattern is observed for a liquid–vapor phase transition. The value of the di-
mensionless complex (βT /αp)(d p/dTLV) for the liquid phase on the saturation line is less
than one in the range from the triple point to the critical point. For example, in the order of
magnitude, in the vicinity of the triple point the value of this complex is ∼10−3 for argon and
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∼10−11 for sodium. The fulfillment of the inequality

d p

dTLV(
∂p

∂T

)
v

< 1 (2.40)

along the liquid–vapor phase transition line (see Fig. 2.2) implies that the viscosity of the
liquid phase along the saturation curve decreases with increasing temperature.

It is possible to obtain another local criterion which yields dη/dTSL > 0, i.e.,

d p

dTSL(
∂p

∂T

)
η

> 1 . (2.41)

This criterion correlates, in variables T and p, the slope of the melting line and that of the line
of constant viscosity. In fact, assuming that viscosity is a single-valued function of temperature
and pressure, we have the following relation for the derivatives:(

∂η

∂T

)
p

(
∂T

∂p

)
η

(
∂p

∂η

)
T

= −1 . (2.42)

Note that the inequality (∂p/∂T )η > 0 follows from Eq. (2.42) when one takes into account
the relations (∂η/∂T )p < 0 and (∂η/∂p)T > 0 as known from the experiment.

We write the derivative dη/dTSL, defining the sign of change in the viscosity along the
melting line, as

dη

dTSL
=

(
∂η

∂T

)
p

+
(

∂η

∂p

)
T

d p

dTSL
. (2.43)

At d p/dTSL > 0, the terms on the right-hand side of the equation have opposite signs. For the
sake of definitiveness, it is appropriate to express the derivative (∂η/∂p)T in Eq. (2.43) via
Eq. (2.42). We obtain then

dη

dTSL
=

(
∂η

∂T

)
p


1 −

d p

dTSL(
∂p

∂T

)
η


 . (2.44)

Hence, in view of Eq. (2.41), it follows that dη/dTSL > 0.
Figure 2.15 shows, plotted for dodecane with the experimental data given in [62] at pres-

sures up to 400 MPa, the melting line TSL(p), the isoviscous curves and the isochore having
the common point of attachment to the melting line with the curve η(T, p) = 3 mPa·s, as well
as the calculated dependence of the vitrification temperature on pressure Tg(p). The qualitative
behavior of the viscosity of the liquid along the melting line is indicative both of the increase
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Figure 2.15: The melting line of dodecane TSL(p), the lines of constant viscosity (1–3) ((1):
1, (2): 3, (3): 5 mPa · s), and the glass transition line η(T, p) = 1012 Pa · s. The dashed lines
represent the continuation into the region of negative pressures. The dashed–dotted curve is the
isochore of the liquid corresponding to vL = 1.3 cm3/g

in η with an increase of temperature and of the conservation of low values of η on the meta-
stable continuation of the melting line into the region of low temperatures, i.e., at (T/T0) < 1.
This result follows from the monotonicity of the isoviscous curves η(T, p) = const and from
the condition that these curves do not intersect (see Fig. 2.15).

Table 2.7 gives, for each of the treated substances, the melting point T0, the viscosity of the
liquid at T0 and atmospheric pressure, and the glass transition temperature Tg,at at this pressure.
Moreover, the values of the viscosity of the melt, calculated for temperatures T/T0 = 0.8 and
1.5, are given, and the pressure pSL,g on the melting line is estimated, at which the melt
vitrifies.

For one and the same substance, the data of different authors on Tg,at may differ strongly.
So for carbon tetrachloride, we took the data for Tg,at = 61 K from [77], where the vitrifica-
tion point was estimated from the results of experiments on the crystallization of amorphous
layers. Angell et al. [78] gave a different value of Tg,at = 129 K, obtained by extrapolating the
vitrification temperatures of carbon tetrachloride–ethyl benzene solutions to zero concentra-
tion of the second component. At Tg,at = 61 K, the ratio Tg,at/T0 is 0.25, which is much lower
than the analogous ratio for organic substances with a more complex molecular configuration.
For dichloroethane, we haveTg,at/T0 = 0.40 [36]; for thiophene, 0.39 [36]; and for benzene,
0.47 [78]. The values of Tg,at for argon and carbon dioxide, given in Table 2.7, were obtained
by assuming that Tg,at/T0 = 0.25. For dodecane and octadecane, this ratio was assumed to
be 0.6.
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Table 2.7: The viscosity of liquids at different points of the melting line, the glass transition temperature
Tg,at under atmospheric pressure, and the temperature TSL,g and pressure pSL,g of the glass transition of
the liquid along the melting line

Substance T0 p∗ Tg,at η(T = 0.8T0) η(T = T0) η(T = 1.5T0) TSL,g pSL,g

MPa K MPa · s MPa · s MPa · s K GPa

Carbon tetrachloride 250.6 292 61 1.8 2.0 2.7 – –
Benzene 278.6 360 131 0.1 0.82 3.2 830 6.5
Dodecane 263.7 355 160 0.6 2.8 14 650 5.3
Octadecane 301.0 345 181 1.3 4.0 55 570 2.7
Carbon dioxide 216.6 400 54 0.2 0.25 0.6
Argon 83.8 211 21 0.1 0.28 0.5

From the constructed isoviscous curves (Fig. 2.15), one can expect their nonlinearity in
the region of negative pressures; it is only in this case that their intersection is impossible. At
high pressures of the order p � p∗, the lines of constant viscosity in the (T , p) coordinates
are close to straight lines. This property was experimentally proven for the glass transition line
as well [79].

In analyzing the question of the glass transition of a liquid on the melting line, we take
the parameter p∗ in the Simon equation (2.3) to be the scaling value of pressure. The value of
p∗ is a characteristic of the internal pressure in the condensed phase [3, 4] of each substance
at T/T0 ≤ 1. We assume the liquid to vitrify on the melting line if the vitrification line
η(T, p) = 1012 Pa·s intersects in its continuation the melting line TSL = f (p) at a pressure of
p/p∗ < 20. Otherwise, the question remains open, because the procedure employed becomes
rather unreliable. Out of the substances listed in Table 2.7, argon, carbon dioxide, and carbon
tetrachloride are covered under this case.

2.6 Conclusions

The comparison of the two types of phase transitions, as performed in the present investi-
gation, is based on the thermodynamic consideration not only of stable but also of metasta-
ble states of each of the phases. This procedure requires some explanations. Diamond may
serve here as a well-known example for illustration. Under ordinary conditions diamond is the
metastable phase of solid carbon. There are no doubts as to the applicability of the methods
of equilibrium thermodynamics for describing the properties of diamond. This possibility is
allowed by the fact that the characteristic times of an experiment on diamonds, texp, is always
much shorter than the mean time of expectation of diamond transformation 〈τ 〉 into the stable
phase (graphite). Not only for diamonds, but also for any similar example the conditions

{ti } < texp < 〈τ 〉 (2.45)

have to be fulfilled (where ti is the characteristic time of relaxation of a system under investi-
gation by the i th state parameter (temperature, pressure, etc.)) if one would like to speak about
the so-called well-defined or pure metastable states [8, 9].
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Two phases, metastable with respect to a third one, may coexist if their chemical potentials
are equal. For water in a quasistatic experiment it has been shown to be possible to extend the
melting line [80] to a negative pressure of −24 MPa. The metastable state is destroyed by nu-
cleation and the growth of nuclei of a more stable phase at a given temperature and pressure.
In a system free of initiating impurities, nucleation takes place owing to thermal fluctuations.
This case (homogeneous nucleation) has been studied in detail theoretically beginning with
the papers [34, 81] and experimentally [8, 9, 36]. The main contribution to the value of 〈τ 〉 in
Eq. (2.45) can be made by the time of expectation of the first nucleus. The observed kinetics of
formation of crystalline nuclei in supercooled pure liquids [33, 36] corresponds to theoretical
predictions and supports confidence in the reality of the melting line extension far beyond the
triple point of a substance. It should be mentioned, however, that the evaluations of the be-
havior of the quantities pi,SL, p̂SL, and the melting line pSL itself at very high tensile stresses,
which are presented in this contribution, have been made asymptotically going beyond the
limits achieved in experiment. This extension made it possible not only to supplement the in-
dications of a considerable difference in solid–liquid and liquid–vapor phase transitions, but
also to advance the hypothesis about the position of the phase stability boundary with respect
to the lines of these two phase transitions. Both phase transitions approach the stability bound-
ary (Eq. (2.7)), but in opposite directions from the triple point in temperature and pressure. For
normally melting substances the mechanical stability of coexisting solid and liquid increases
with increasing T and p. One can say that, when moving along the line of solid–liquid phase
equilibrium, a system passes a wide range of degrees of stability, the low-temperature limiting
temperature range of the melting line corresponding to the lower limit of stability.

Another remark should be made concerning Eq. (2.3). It is in agreement with the ex-
perimental data for {T, p}SL in a wide, but finite range of p > 0. The quantities p∗ and c,
considered here, make it possible to construct an unambiguous extension of the melting line
to T = 0 and p = −p∗. The agreement of this extension with the main part is determined by
the length of the main (observed) part in temperature and pressure.

In accordance with the problem to be solved, we established above the similarities and
differences between solid–liquid and liquid–gas phase transitions in the vicinity of the equi-
librium lines of these states of aggregation. Common is the condition of equilibrium (2.1) at
a flat boundary of coexistent phases and the Clausius–Clapeyron equation (2.2), which relates
the slope d p/dT of the equilibrium line with the jumps of the volume and the entropy of a
substance at the intersection of this line. But even in the behavior of the temperature depen-
dence of �v and �s one can observe a considerable difference. The derivatives d(�vLV)/dT
and d(�sLV)/dT at the liquid–vapor phase transition are negative everywhere, and the val-
ues �vLV and �sLV vanish at the critical point. On the line of normal melting (�vSL > 0)
the derivative d(�vSL)/dT < 0, and the derivative d(�sSL)/dT changes sign and becomes
positive at low temperatures in the metastable part of the melting line. Distinct from the liquid–
vapor transition, the specific volumes of both coexistent phases – solid and liquid – decrease
with increasing temperature.

In the (T , p) plane the lines of liquid–vapor and solid–liquid phase transitions are lo-
cated differently with respect to the family of isochores v = f (T, p) = const. The melting
line moves more steeply than the isochores at the place of their intersection with this line,
d p/dTSL > (∂p/∂T )v . Such a behavior is connected with an increase of the viscosity, η, of
the liquid along the melting line with increasing temperature.



34 2 Solid–Liquid and Liquid–Vapor Phase Transitions

The liquid retains a high fluidity, (1/η), in the low-temperature (metastable) segment of
the melting line, which is due to a uniform extension of coexisting phases. As the temperature
rises, the viscosity of the melt monotonically increases, and the liquid phase may vitrify in
the vicinity of some point on the melting line {T , p}SL,g. This observed behavior of viscosity
is of both cognitive and practical importance (for example, in metallurgy and geophysics).
In Ref. [52], the extrapolation of the melting line of iron to p � 300 GPa led to the con-
clusion about the vitreous state of the Earth’s core. For the liquid–vapor phase transition one
can observe the reverse: the liquid isochores move more steeply than the equilibrium curve,
d p/dTLV < (∂p/∂T )v (see Fig. 2.2), and the liquid viscosity decreases when moving along
the binodal from the triple point to the critical point.

Coexisting phases behave quite differently with respect to stability at liquid–vapor and
solid–liquid phase equilibria. In the first case, the stability of the liquid and the vapor de-
creases with increasing temperature. Both phases loose stability on reaching the critical point,
where (∂p/∂v)T = 0 holds. The reverse tendency of increase of stability of both liquid and
crystal, on varying the state along the melting line toward high temperatures, indicates the
absence of a critical point for the melting line. This conclusion can be derived from the behav-
ior of the elasticity −(∂p/∂v)T or inverse compressibility β−1

T = −v(∂p/∂v)T (cf. Fig. 2.5).
At the same time, on analyzing the stability one can reveal a certain analogy of liquid–vapor
and solid–liquid phase transitions if one takes into account the metastable part of the melt-
ing lines (p < 0). The coexisting crystal and liquid approach, via stretching and decreasing
temperature, the boundary of phase stability (cf. Fig. 2.5).

The point {T = 0, p = −p∗}, where p∗ > 0 is the pressure pole, each substance having
a pole of its own, serves as the peculiar point of a melting line of the normal type. The second
characteristic point {T = T0, p = 0} is the corresponding point for different substances.
The use of these two points and the introduction of the shifted pressure scale p+ = p + p∗
make it possible to go over to dimensionless variables p̃, T̃ , and ṽ , similar as the application
of another particular point (the critical point) in a liquid–vapor phase transition leads to the
possibility of presenting various relations pertaining to this phase transition in a reduced form.
Thus, instead of looking for a high-temperature peculiar point of the critical type, one can turn
to low-temperature asymptotics. This approach was favored by the appearance of the Simon
equation (2.3) [3] and the concepts of metastability on which this paper is based.

The position of the critical point (Tc, pc, vc) is determined experimentally with a suffi-
ciently high accuracy. The same statement holds with respect to the behavior of thermophysi-
cal properties as one approaches the critical point. For the vicinity of the peculiar point of the
melting line (T = 0, p = −p∗ < 0) one has to rely on an extrapolation of both this line itself
and the properties of the liquid and the solids. For instance, one cannot be sure of the position
of the intersection point of the melting line and the spinodals of the liquid and the crystal. If
the liquid spinodal “cuts” the melting line at T > 0, −p < p∗, then a further coexistence
of the phases is impossible. A crystal can retain internal stability in this case. But the above-
mentioned approach of coexisting phases to the spinodal state at T → 0 exists irrespective of
more subtle details in the behavior of the metastable liquid and crystal close to T = 0.

Molecular concepts, advanced for an understanding of the mechanism of phase transitions
accompanied by changes of the states of aggregation, rely on taking into account attractive
and repulsive forces in the presence of the thermal motion of the ensemble of particles. The
phenomenon of condensation may be explained in a simple model and qualitatively described
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by continuous equations of state (of the van der Waals equation type). A change to an or-
dered regular structure is accompanied by the “switching-on” of more subtle mechanisms
(anisotropy of the molecular field, allowance for multiple interactions, collective vibrational
modes). The equation of state for a crystal p = f (v, T ) forms a separate branch with respect
to the gas–liquid branch. Isolated likewise are phases that originate owing to polymorphism:
There cannot exist any continuous transition in between them [35].
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3 A New Method of Determination of the Coefficients
of Emission in Nucleation Theory

Vitali V. Slezov, Jürn W. P. Schmelzer, and Alexander S. Abyzov

Nobody knows what entropy really is and when you use
the word “entropy” in an argument, you will win every time.

John von Neumann

A new method of determination of the emission coefficients of single particles from clusters
of arbitrary sizes – being an essential ingredient of the kinetic equations describing nucleation
and growth processes – is developed. This method does not require the application of the
so-called equilibrium or constraint equilibrium distributions and the principle of detailed bal-
ancing to nonequilibrium states. It is applicable generally to any kind of phase transformation
processes (condensation of gases, segregation processes in solid and liquid solutions, bubble
formation in liquids, pore formation in solids, crystallization in melts, etc.) both for one-
component and multicomponent systems. As it turns out from the analysis, the final equations
obtained are quite similar to those employed traditionally in the classical nucleation theory,
where these relations are utilized without a sufficient theoretical foundation. The approach
developed here gives thus a theoretical foundation of some basic assumptions of the classical
approach in the description of nucleation-growth processes. Based on the method outlined,
the kinetic equations describing nucleation-growth processes are formulated and some further
consequences are discussed. It is shown, in particular, that, under quite general conditions, the
set of kinetic equations describing nucleation-growth processes in multicomponent systems
can be reduced to relations for the description of these processes in one-component systems.
However, the thermodynamic and kinetic parameters in the resulting set of kinetic equations
depend on the kinetic and thermodynamic parameters of all of the components involved in the
process. The respective expressions are derived and outlined in the contribution as well.

3.1 Introduction

Phase transformations play an important role in a variety of processes ranging from nucle-
ation and growth in the atmosphere [1, 2], nucleation and growth in expanding gases [3, 4],
bubble formation in liquids [5, 6] and phase formation in solids [7–10] to phase transitions in
nuclear matter [11–14] and in the early universe [15]. Despite a number of the modern devel-
opments [16–20], the theoretical interpretation of the experimental results on phase transfor-
mations is carried out till now, by methods which are widely based on the classical nucleation
theory, its modifications and extensions (see, e.g., Refs. [5,21–23]). According to the classical
picture, the phase transformation proceeds via the formation of clusters representing precur-
sors of the newly evolving phase. Hereby it is assumed in a sufficiently accurate approximation
that the growth or dissolution of the clusters proceeds via incorporation or emission of single
atoms or molecules.

Nucleation Theory and Applications. edited by J. W. P. Schmelzer

Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA
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Figure 3.1: Work of cluster formation (or change in the Gibbs free energy, �G) in dependence
on cluster size (R is the radius of the cluster) as it is assumed commonly in the classical nucle-
ation theory. Nucleation is the process of formation of supercritical clusters with sizes R > Rc

capable of a further deterministic growth. In the calculations it is assumed in accordance with
the classical approach that bulk and surface properties of the clusters are widely same as the
respective properties in the newly evolving macroscopic phase. The work of cluster formation
can be expressed then via Eq. (3.16)

In order to develop a kinetic description of nucleation-growth processes in the framework
of the classical approach, one has to know, consequently, the values of the coefficients of
aggregation and emission of single particles for clusters of arbitrary sizes. Moreover, one has
to develop appropriate expressions for the so-called work of formation of clusters of arbitrary
sizes, i.e., one has to determine the change of the characteristic thermodynamic potential if a
cluster is formed in the system. A particular example for the dependence of the work of cluster
formation on cluster size, as it is assumed commonly in the classical nucleation theory, is
shown in Fig. 3.1. However, although the classical theory was formulated in its basic premises
in the 1930s, till now a number of problems both of fundamental character and with respect to
possible applications are not solved finally. The present analysis is directed to the solution of
some of such problems.

One of the most debated points in the nucleation theory is the method of determination of
the emission coefficients. These coefficients are specified commonly by deriving the so-called
equilibrium or constraint equilibrium distributions with respect to cluster sizes and applying
the principle of detailed balancing to thermodynamic nonequilibrium states (cf. Refs. [24,25]
and references cited therein). Such an approach is, however, highly questionable [12, 13, 26].
In application to thermodynamic nonequilibrium states such distributions are artificial con-
structs; they are not realized in nature. Moreover, the principle of detailed balancing holds
for equilibrium but not for nonequilibrium states. Thus, various attempts have been made to
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overcome such difficulties. The most straightforward solution to the problem of determina-
tion of the emission coefficients would consist, of course, in the application of microscopic
statistical-mechanical approaches (cf., e.g., Refs. [27, 28]). Due to the enormous problems in
applying this method to real systems it is, however, till now more an interesting possibility
rather than a practical tool (cf. also Ref. [24]).

Macroscopic approaches, like the traditional method discussed above, have the advantage
that specific properties of the system under consideration enter the description only via the
specific expressions for the characteristic thermodynamic functions. These or other thermo-
dynamic characteristics applied can be determined more easily. Thus, it is of use to develop
further the macroscopic methods for the determination of the emission coefficients retaining
the advantages but avoiding questionable arguments. One of such approaches was developed
by Katz et al. (cf., e.g., Refs. [29–33]) both in application to vapor condensation as well as to
nucleation and growth in condensed media. In this approach, the coefficients of emission of
single particles are determined first for the state of a saturated system. In a next step, by apply-
ing appropriate expressions for the cluster size distributions evolving in saturated systems and
certain additional assumptions (e.g., independence of the emission coefficients on the state of
the ambient phase [29–31]) the emission coefficients for the supersaturated systems are de-
termined. In another development, which goes back to Becker and Döring [34], the emission
rates are determined by applying the Gibbs–Thomson (or Kelvin’s) equation (cf. Refs. [24,32]
and [33]).

The problem described was discussed some years ago in detail by Wu [35]. He came to
similar conclusions and mentioned: “The constrained equilibrium hypothesis (CEH) formu-
lated as an extrapolation of fluctuation thermodynamics is . . . not valid. A different justifica-
tion is required . . . Since CEH is central to nucleation theory, it is not likely to go away until
something better comes along . . . ” It is one of the aims of the present chapter to show that
these mentioned approaches may be generalized arriving, indeed, at some justification of the
methods commonly employed. We show that a mesoscopic statistical–mechanical method of
determination of the coefficients of emission can be developed without relying on such ques-
tionable concepts like constraint equilibrium distributions and the application of the principle
of detailed balancing to nonequilibrium states. This method does not involve the assumption
that the emission rates are independent of the state of the ambient phase. It is applicable quite
generally to a variety of phase transformation processes in gases as well as in condensed
matter both for one-component and multicomponent systems. It allows a straightforward gen-
eralization to nonisothermal phase formation processes as well.

The chapter is organized as follows. After a brief introduction of the basic kinetic equa-
tions (Sect. 3.2), the newly developed method of determination of the emission coefficients
is outlined. It is shown that the method is applicable both to one-component (Sect. 3.3) and
multicomponent (Sect. 3.4) systems. As an example, here the derivation of the respective de-
pendences is given in detail for the case that external pressure, p, and temperature, T , are kept
constant. It is shown further that the method can also be applied with minor modifications
if phase formation at any other boundary conditions is considered (Sect. 3.5). The resulting
relations for the determination of the emission coefficients are independent of the constraints
applied. Employing these results, the basic sets of kinetic equations describing nucleation-
growth processes both in one- and multicomponent systems are completed, the initial condi-
tions for their solution are specified (Sect. 3.6) and some further consequences are discussed
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(Sect. 3.7). For the first time, this approach was outlined in [36, 37] and elaborated in more
detail in [38]. The present contribution contains both a comprehensive outline of the basic
ideas and results of the approach developed and an analysis of some further developments.

3.2 Basic Kinetic Equations

We first discuss here the processes of formation of a new phase in an ambient phase with a
high thermal conductivity. In this case heat sources, connected with transitions of the basic
elementary units of the system (atoms, molecules, aggregates of a given stoichiometric com-
position, etc.) from one phase to another, practically do not change the temperature T of the
part of the system, where the aggregate of the new phase evolves. Therefore, with a sufficiently
high accuracy, the nucleation-growth process may be considered as isothermal. Moreover, in
addition, constancy of the pressure p is supposed. To be precise, the discussion focuses on
the application to condensation processes in gases (in an inert carrier gas). However, the basic
assumptions are applicable quite generally. Thus, the results are equally valid for a variety of
different phase formation processes as discussed above, e.g., for segregation in solid or liquid
solutions, crystallization of melts or bubble formation in liquids.

As generally assumed in nucleation theory, the condensation or evaporation of the clusters
(or droplets) occurs by aggregation or emission of single particles, only. Therefore, the kinetic
equation will be of the standard form [36–39], i.e.,

∂ f (n, t)

∂ t
= w

(+)
n−1,n f (n − 1, t) − w

(−)
n,n−1 f (n, t)

+ w
(−)
n+1,n f (n + 1, t) − w

(+)
n,n+1 f (n, t) .

(3.1)

Here f (n, t) is the distribution function of clusters of the new phase, containing n single
particles; w

(+)
n−1,n and w

(+)
n,n+1 are the average number of events that per unit time one particle

is absorbed and the number of particles in a cluster is increased from (n − 1) to n and n
to (n + 1), respectively; w

(−)
n,n−1 and w

(−)
n+1,n are the average number of events for a cluster to

release one particle per unit time and to be transferred to the states with (n−1) and n particles,
respectively.

By introducing fluxes Jn , we may rewrite Eq. (3.1) in the form of an ordinary continuity
equation in cluster size space as

∂ f

∂ t
= Jn−1 − Jn , (3.2)

where the fluxes Jn are determined by

Jn−1 = w
(+)
n−1,n f (n − 1, t) − w

(−)
n,n−1 f (n, t) , (3.3)

Jn = w
(+)
n,n+1 f (n, t) − w

(−)
n+1,n f (n + 1, t) . (3.4)

Once we have derived the kinetic equations in the general form, we have, now, to determine
the kinetic coefficients.



3.3 Ratio of the Coefficients of Absorption and Emission of Particles 43

3.3 Ratio of the Coefficients
of Absorption and Emission of Particles

The condensation or absorption coefficients w
(+)
n−1,n and w

(+)
n,n+1 are determined by the kinetic

mechanism the droplets (or, in general, clusters of the new phase) grow, they are, in general,
well-known. As will be shown later, they can be determined directly from the macroscopic
growth rates. To complete the determination of the kinetic coefficients it is necessary, conse-
quently, to have at one’s disposal methods for the determination of the emission coefficients,
w(−). For such purposes, let us note that the particles of the new phase may be divided into
two groups: for the particles with number of atoms less than the critical cluster size, n < nc,
the ambient phase is undersaturated. Here nc is the critical cluster size in nucleation. In a
macroscopic deterministic description, such clusters shrink and disappear. In other words, the
concentration of single particles in the ambient phase, capable of being incorporated into the
clusters of the newly evolving phase, is too small to retain a dynamic equilibrium (cf. Fig. 3.1).

For drops with supercritical sizes, n > nc, the ambient phase is supersaturated and, in a
deterministic description, the clusters of the new phase grow. In this case, the concentration
of single particles has such values that the average number of aggregation processes per unit
time interval exceeds the respective value for emission from a given cluster of the new phase.
Particles with critical sizes, n = nc, are in (unstable) thermodynamic equilibrium with the
ambient phase of the given composition (here the vapor phase). Hence, for critical clusters the
average number of aggregation and emission processes coincide.

The methods of determination of the coefficients w(−) differ in our approach depending
on the range of cluster sizes considered, i.e., which class of clusters is considered. However,
before we go over to the explanation of our method, the traditional approach is briefly revisited
and discussed. In addition, some general thermodynamic relationships are derived which will
be employed in the subsequent analysis.

3.3.1 Traditional Approach

In thermodynamic equilibrium states, a time-independent statistical cluster size distribution is
established in the course of time. This distribution is described by Eq. (3.1) with (∂ f/∂ t) =
0. Thus, in order to find the equilibrium cluster size distributions we have to find the time-
independent solutions of the set of equations (3.1).

In the search for these solutions, we may follow a different path as well. The equilibrium
distribution of clusters, f (eq)(n), may be determined by the general methods of statistical
physics [40]

f (eq) (n) = A exp

(
− Rrev (n)

kBT

)
. (3.5)

Here kB is the Boltzmann constant and T the absolute temperature. Rrev(n) is the work of for-
mation of a cluster of size n performed in a reversible process [40]. For processes proceeding
at constant values of pressure and temperature (as it is assumed here), it equals the change in
Gibbs free energy, �G [40]. This quantity can be expressed, generally, as

�G (n) = Gd(n) − nµv(p, T ) . (3.6)
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Here Gd(n) is the contribution of the cluster (drop) of size n to the value of the thermodynamic
potential of the whole system, µv(p, T ) is the chemical potential per particle in the ambient
bulk (vapor) phase and n is the number of atoms in the cluster. In other words, �G (n) is the
difference in the thermodynamic potentials of the system consisting of a cluster in the vapor
compared with the homogenous initial state.

In Eq. (3.6) the particular expression for Gd(n) remains unspecified, so this relation is
valid quite generally. If, for example, the capillarity approximation and certain additional as-
sumptions are employed [23, 41] for the determination of �G(n), Eq. (3.6) gets the form

�G (n) = n
[
µd(p, T ) − µv(p, T )

] + 4πσ

(
3

4π
ωd

)2/3

n2/3 . (3.7)

Here µd(p, T ) is the chemical potential of one single particle in the bulk liquid phase at
pressure p and temperature T , ωd is the volume per atom in the newly evolving phase, and σ
is the surface tension at the (planar) interface between ambient phase (vapor) and the newly
evolving phase. For the particular case as expressed by Eq. (3.7) we have, consequently,

Gd (n) = nµd(p, T ) + 4πσ

(
3

4π
ωd

)2/3

n2/3 . (3.8)

Note, however, that the further derivation is independent of any particular choice of the ex-
pression for Gd(n).

Substituting the expression for the work of cluster formation, as given by Eq. (3.6), into the
relation describing heterophase fluctuations (Eq. (3.5)) into the time-independent form of the
kinetic equations (Eq. (3.1)) we get (by applying the principle of detailed balancing Jn = 0,
n > 1)

w
(+)
n,n+1

w
(−)
n+1,n

= f (eq) (n + 1)

f (eq) (n)
(3.9)

or

w
(+)
n,n+1

w
(−)
n+1,n

= exp

(
− [�G(n + 1) − �G(n)]

kBT

)
. (3.10)

It is evident that the knowledge of the specific form of the preexponential coefficient A in
Eq. (3.5) is, in general, not required. It has to be supposed only that its dependence on the size
and the composition of the cluster is weak as compared with the exponential term in Eq. (3.5).

With the general relation (3.6) we may write further

− [�G(n + 1) − �G(n)] = µv(p, T ) − ∂Gd(n)

∂n

∣∣∣∣
n=n+1

= µv − µd(n + 1) . (3.11)

Here µd(n) is the chemical potential per atom of the drop of size n including surface energy
and other possible size effects. It is defined by

µd(n) = ∂Gd(n)

∂n
. (3.12)
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For the special choice of Gd(n), as expressed by Eq. (3.8), we have, in particular,

µd(n) = ∂Gd(n)

∂n
= µd(p, T ) + 8πσ

3

(
3

4π
ωd

)2/3

n−1/3 . (3.13)

Generally, with Eq. (3.11) we may also write

w
(+)
n,n+1

w
(−)
n+1,n

= exp

(
µv − µd (n + 1)

kBT

)
. (3.14)

In this way, it has been shown that in thermodynamic equilibrium states the relation between
the coefficients of emission and absorption is given either by Eqs. (3.9), (3.10), or (3.14).

In application to thermodynamic equilibrium states, the function f (eq)(n) has a real phys-
ical meaning. It represents the equilibrium distribution of heterophase fluctuations. Moreover,
in equilibrium the principle of detailed balancing holds. Therefore, for the states considered
so far the method of derivation of the emission coefficients is fully satisfactory. However, even
in this region of applicability some uncertainty remains connected with the properties of the
preexponential factor A in Eq. (3.5).

However, considering thermodynamically unstable, nonequilibrium states, where nucle-
ation-growth processes may occur, the situation becomes quite different. Distributions of the
type as given by Eq. (3.5) can be derived in a correct way only for equilibrium but not for non-
equilibrium states. This remark refers both to the classical thermodynamic and the statistical–
thermodynamic approaches. Frenkel [22] derived his well-known distribution based on the
assumption of a minimum of the Gibbs free energy (cf. also the more detailed discussion
given below). However, this condition is applicable only to equilibrium states. Fisher [42] ob-
tained similar slightly modified expressions by applying the methods of equilibrium statistical
physics. Thus, the extrapolation of these results to thermodynamic nonequilibrium states is,
again, not correct. Generally, the application of methods of equilibrium statistical mechanics
for a description of fluctuation processes [40] is valid in thermodynamic equilibrium states,
only.

For the determination of the emission rates of single particles from the clusters and the
steady-state nucleation rate, in general, a somewhat artificial model is commonly utilized in-
troduced originally by Szilard (see Fig. 3.2). It is assumed that, once a cluster reaches an upper
limiting size, g � nc, it is instantaneously removed from the system. Moreover, according to
Szilard’s model, simultaneously to the removal of a g-sized cluster, g single particles are added
to the system. In this way, the total number of particles is kept constant. Starting with a state
consisting of single particles only, after some time interval (denoted commonly as time-lag in
nucleation) a time-independent steady-state cluster size distribution is established in the sys-
tem. Assuming that (i) clusters of different sizes can be considered as different components
in a multicomponent perfect solution (or a mixture of perfect gases for vapor condensation),
(ii) the number of particles aggregated in the clusters is small as compared with the total num-
ber of solute particles, (iii) conservation of the total number of solute particles is fulfilled,
(iv) the change of the cluster size is possible by emission or aggreation of monomers, only,
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1

2

Figure 3.2: Schematic representation of Szilard’s model used in the classical nucleation theory.
Clusters (or droplets) with numbers of monomers g � nc are instantaneously removed from
the chamber via a membrane (2) impermeable for clusters of smaller sizes. Simultaneously to
the removal of such a cluster, g monomers are added to the chamber (1). In this way, a constant
supersaturation is sustained in the system and a steady state with a constant nucleation rate may
be established in the course of time

Frenkel [22] obtained an expression for the stationary cluster size distribution function f (e)(n)
as

f (e)(n) = f (1) exp

{
−�G(n)

kBT

}
, (3.15)

quite similar to Eq. (3.5). Indeed, for the thermodynamic boundary conditions chosen, the
work of cluster formation is given by �G(n). Here f (1) is the concentration (number per unit
volume) of single particles which will be also denoted as c.

The distribution equation (3.15) is commonly denoted as equilibrium or constraint equilib-
rium distribution with respect to cluster sizes [1,2,24,25,35]. Note, however, that this notation
is misleading. The time-independent state in the model system, it was derived for, is not an
equilibrium but a nonequilibrium steady state. Therefore, the procedure applied to the deriva-
tion of Eq. (3.15) lacks any thermodynamic foundation. Moreover, one has to take into account
that the distribution refers to Szilard’s artificial model system which is not realized in nature
(except for artificial conditions or by assuming some kind of “Szilard’s demon” in analogy to
Maxwell’s demon (cf. e.g. [29–33])). Therefore, the identification of the so-called equilibrium
distribution with respect to cluster sizes with real distributions evolving in nucleation-growth
processes in thermodynamically unstable systems is, in general, incorrect. Even in interpreting
such expressions in terms of Szilard’s model (cf., e.g., Refs. [12, 13]), the resulting distribu-
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Figure 3.3: Equilibrium cluster size distribution f (e)(n)/ f (1) of the classical nucleation the-
ory in relative coordinates (n/nc) for thermodynamically unstable initial states (according to
Eq. (3.17)). (�G(c)/kBT ) was chosen equal to one for convenience. Fisher’s statistical droplet
model [42] leads to a widely equivalent dependence except in the immediate vicinity of the
critical point

tions refer not to equilibrium but to stationary nonequilibrium steady states. For such states,
the principle of detailed balancing also does not hold, in general.

For thermodynamically unstable initial states, �G may be written, employing certain ap-
proximations, as (e.g. [23])

�G

�G(c)
= 3

(
n

nc

)2/3

− 2

(
n

nc

)
. (3.16)

The so-called equilibrium distribution function f (e)(n) (cf. Eq. (3.15)) gets in this case the
form (

f (e)(n)

f (1)

)
= exp

{
−�G(c)

kBT

[
3

(
n

nc

)2/3

− 2

(
n

nc

)]}
. (3.17)

It is qualitatively presented in Fig. 3.3. The function has a minimum for n = nc and diverges
for larges values of (n/nc).

Based on the methods of equilibrium statistical physics, Fisher [42] developed an alterna-
tive derivation of dependences quite similar to Eq. (3.15). Fisher did not employ the second
of mentioned Frenkel’s assumptions. As a consequence, the expression for the preexponential
factor remains undefined in his approach. Fisher introduced, in addition, a term (kBT τ ln n)
into the expression for the work of cluster formation resulting thus in

�G(n) = −n�µ + α2n2/3 + kBT τ ln n . (3.18)

The actual value of τ depends on specific properties of the substance considered. It can vary,
according to Fisher’s approach, in the range 2.0 < τ < 2.5 [42, 43].
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In the vicinity of the liquid–gas critical point the differences between the liquid and the
gas vanish, the relations �µ → 0, α2 → 0 hold and Fisher’s model yields

�G(n)|T →Tc = kBT τ ln n , f (e)
F (n)

∣∣∣
T →Tc

∝ n−τ . (3.19)

The occurrence of such dependences in the vicinity of the liquid–gas or percolation criti-
cal points was reconfirmed by alternative approaches [44–48] giving in this way support to
Fisher’s proposal. Moreover, for thermodynamic equilibrium states Fisher’s model is equiv-
alent, again, to the Boltzmann type heterophase fluctuations with a somewhat modified ex-
pression for the work of cluster formation as compared with the classical result. However, in
thermodynamically unstable states (i.e., below Tc) beyond (i.e., at a sufficiently large distance
from) the critical point, with respect to Fisher’s model the same conclusions have to be drawn
as done in the analysis of the so-called equilibrium distribution of the classical nucleation
theory. Fisher’s model is inappropriate to describe real cluster size distributions evolving in
thermodynamically unstable initial states beyond the liquid–gas critical point.

This conclusion follows from the method applied in the derivation which is based on the
equilibrium statistical physics. Moreover, on physical grounds it is also evident. For thermo-
dynamically unstable states beyond the critical point, Fisher’s model results, again, in qualita-
tively similar dependences as shown in Fig. 3.3. However, the only (time-independent) equi-
librium distribution evolving in the course of time consists of one large cluster (the newly
evolving bulk phase in the ambient phase) surrounded eventually by a distribution of small
clusters (monomers, dimers, etc.).

The same conclusions can be drawn with respect to any other similar expressions result-
ing from different approaches in the determination of the work of cluster formation, �G
(cf. [1, 2]). Such distributions may be of use in order to determine the emission coefficients
from the expressions for the coefficients of aggregation by applying the principle of detailed
balancing to an artificial model state (with all the problems involved in such a procedure
(cf. [36–49])). However, the application of these expressions to the description of real clus-
ter size distributions formed in nucleation-growth processes is, in general, incorrect. To some
extent, the results can be considered, however, as a reasonable approximation also for thermo-
dynamic nonequilibrium states, but here only for clusters of subcritical sizes n < nc. Since
the system is undersaturated for these aggregates, they are in similar conditions as heterophase
fluctuations in thermodynamic equilibrium states. This statement means that the relations be-
tween the coefficients of absorption w

(+)
n,n−1 and emission w

(−)
n,n+1 for these aggregates may be

the same as in the case of heterophase fluctuations in equilibrium states.
This idea gets additional support by a comparison between the distribution given with

Eq. (3.5) and the steady-state cluster size distribution (cf. e.g. [23, 50, 51]). The latter distri-
bution is the asymptotic solution of the set of kinetic equations provided the concentration
of single particles is kept constant by some appropriate mechanism (cf., e.g., Ref. [39]). In
the range of cluster sizes n < nc, both distributions coincide with an accuracy to a factor in
the range 0.5–1. However, the degree to which such an extrapolation leads to correct results
remains unclear. The situation gets even more complex for new phase aggregates with n > nc,
because in this case we have a fully developed nonequilibrium situation. A reference to het-
erophase fluctuations is impossible for such clusters and another approach has to be employed
for the determination of the emission coefficients w(−).
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3.3.2 A New Method of Determination of the Coefficients of Emission

General Remarks: Real and Virtual States of the Ambient Phase

After the discussion of the limitations of the traditionally employed approach, we go over,
now, to the description of a new general method of solution of the problem of the determina-
tion of the emission coefficients. This method (i) avoids the application of the so-called equi-
librium distributions of classical nucleation theory to nonequilibrium states (i.e., to the states
of interest in nucleation-growth processes), and (ii) does not employ the principle of detailed
balancing, which is valid for thermodynamic equilibrium but not for nonequilibrium states.
As mentioned already in the introduction, it is our aim to develop a macroscopic method of
determination of the emission coefficients retaining its advantages but avoiding the application
of not well-founded or even incorrect (for the considered nonequilibrium states) concepts.

One of the basic assumptions, central to our method, is that we assume that the clusters
of the newly evolving and the ambient phases are both in states of internal thermodynamic
equilibrium. Such an assumption resembles the concept of a local equilibrium widely em-
ployed in the thermodynamics of irreversible processes [52]. It is the basis for an approppriate
description of the thermodynamics of heterogeneous systems [53], in general, and a thermody-
namic (macroscopically based) analysis of cluster formation processes [54, 55], in particular.
Moreover, it gives also the foundation to speak about well-defined values of the kinetic coef-
ficients. This way, this first assumption is not a serious restriction but the precondition of any
mesoscopic approach to the analysis of cluster formation and growth processes. It makes the
problem well-defined. Remember, however, that the system as a whole is in a nonequilibrium
state. The clusters are, in general, not in equilibrium with the surrounding ambient phase.

As a second ingredient in the analysis, we employ the concept of virtual and real states of
the ambient phase. (cf. Fig. 3.4) A virtual state is an idealized model state. It is constructed in
the following way: provided we have a cluster of a given size. The question is what the state of
the ambient phase should be in order to attain a thermodynamic equilibrium between the clus-
ter considered and the ambient phase. Such virtual or possible states of the ambient phase will
differ, in general, from the real state of the system. Moreover, for clusters of different sizes, the
possible virtual states of the ambient phase are different. The coefficients of emission will be
determined in our approach by considering the differences between real and virtual states of
the system. Hereby it plays no role, as in many other applications of thermodynamics, whether
the different virtual states may be realized in practice or not. One only has to take care that the
models employed do not contradict in their consequences the basic laws of thermodynamics,
in particular, or physics, in general. This property is fulfilled by our model.

This concept is a generalization of the application of Kelvin’s equation in the determi-
nation of the coefficients of emission for vapor condensation [23]. In this method, the same
question is asked, i.e., what the (virtual) state of the gas phase should be that a drop of given
size is in equilibrium with the vapor. From such considerations, then conclusions are derived
concerning the values of the coefficients of evaporation for drops of a given size (aggregation
and emission rates have to coincide for the virtual state of the vapor). While from the basic
idea our approach resembles the mentioned one, it is much more general and applicable to
condensation in nonideal one- and multicomponent gas systems as well as to phase formation
processes in condensed media both for isothermal and nonisothermal conditions.
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a) b)

Figure 3.4: Illustration of the model of virtual states (see text). (a) Supercritical clusters: Parti-
cles marked with a dot are made immobile in order to retain a dynamic equilibrium. (b) Subcrit-
ical clusters: A number of additional particles (specified by dotted circles) are added in order to
retain a dynamic equilibrium

The Alternative Approach: Clusters of Supercritical Sizes

Going over, now, to a more detailed outline of our method of determination of the emission
coefficients, we start with the region of supercritical cluster sizes. (cf. Fig. 3.4a) In order to
proceed with our task we consider, as mentioned, in addition to the real also a virtual state
of the ambient (vapor) phase. This virtual state of the ambient phase is defined in such a way
that the chemical potential of the condensing particles is equal to the chemical potential of the
building units in the considered aggregate of the new phase. The virtual state of the ambient
phase depends thus on the size of the cluster (drop) considered. For clusters of different sizes,
different virtual states of the ambient phase have to be introduced. Since we are considering,
in application to vapor condensation, drops with sizes n > nc, the chemical potential per
particle µ in the real vapor is larger than in the assumed virtual states (µ > µ̃). Here and
subsequently, the parameters of the virtual state are specified by a tilde. Therefore, in order to
attain a dynamic equilibrium, a certain part of the gas particles has to be fixed in its spatial
positions. Consequently, the real and virtual vapor (or, generally, the different real and virtual
states of the ambient phase) differ in the number of single particles fixed in the latter ones.

For the determination of the ratio between the coefficients of aggregation and emission
and the specification of the virtual state of the ambient phase, we consider a reference system
connected with the chosen cluster. The immobile particles are fixed in their spatial positions
with respect to the chosen cluster (drop). Such a choice of the reference system also allows us
to apply the method to systems like droplets in gases, where the motion of the clusters affects
the aggregation rates.

It is required only in subsequent considerations that the state of the ambient phase in
the vicinity of the chosen cluster is at any time in a local thermodynamic equilibrium. This
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condition implies that the characteristic time scales of changes of the state of the system
(including the motion of the cluster) have to be large as compared to the respective times of
aggregation or emission of single particles. The assumption of a local equilibrium is inherent
in most methods of determination of the coefficients of aggregation. Therefore, we stay here
inside the range of commonly accepted quite reasonable approximations. For large drops and
most applications of the nucleation theory in condensed matter physics, the clusters practically
do not move. In these cases, the reference system coincides with the usual laboratory system.

If we describe vapor as a perfect gas, then the virtual vapor state coincides with a state of
the gas at a density of mobile particles corresponding to the equilibrium concentration of the
vapor for a droplet of the given size. In dense vapors, one has to take into account also the
interaction of the gas particles. In both cases, the fixed part of the gas particles in the virtual
states creates the environment for the mobile particles, identical to the environment in the
real vapor state. It follows that the condensing particles (in both actually existing and virtual
vapor states) have the same energetic barriers for condensation. More generally, the kinetic
conditions for aggregation are the same in both the real and virtual states.

By definition of the virtual vapor state, the gas must contain such a number of mobile
ambient phase particles that their chemical potential, taking into account the interaction also
with the fixed gas atoms, is equal to the chemical potential of a particle in a drop (or cluster)
of size n, i.e., µ̃ = µd(n) holds. At such conditions, the virtual gas (or ambient) phase is
in a dynamic equilibrium with a chosen drop (cluster) of the liquid (newly evolving) phase,
i.e., the relation w

(−)
n,n−1 = w̃

(+)
n−1,n is fulfilled. Note that this relation is a consequence of

the definition of the virtual states. It is thus quite different from Eq. (3.9) where rates of
aggregation and emission of clusters of different sizes in thermodynamic equilibrium states
are compared. Moreover, the virtual vapor state is characterized by equal probabilities per
unit time for one selected mobile atom to be added to the liquid drop as compared to a particle
at the same state (position and velocity) in the real vapor at the same overall concentration.
This property is due to the fact that the environment of the mobile atoms, by definition, is the
same as the one in the real vapor phase, or, in other words, in both virtual and real vapors,
the kinetic conditions for condensation are the same for the mobile atoms. It follows that the
probabilities w

(+)
n−1,n of aggregation in the real and w̃

(+)
n−1,n in the virtual vapor have the same

kinetic preexponential factors. They differ only by the probabilities pr and p̃r of occurrence of
favorable configurations for the realization of these processes with respect to a given mobile
particle.

As already mentioned, with sufficiently high precision we may assume that both real and
virtual states of the ambient phase (vapor) are in an internal thermodynamic equilibrium.
Hence, applying the conditions w

(−)
n,n−1 = w̃

(+)
n−1,n and the above-given considerations, we

get

w
(+)
n−1,n

w
(−)
n,n−1

= w
(+)
n−1,n

w̃
(+)
n−1,n

= pr

p̃r
. (3.20)

Here pr and p̃r are the probabilities of occurrence of a favorable configuration for incorpo-
ration of one mobile particle to a drop from the real and virtual vapors at a given average
(thermodynamic) energy of these subsystems (cluster or drop surrounded by a sufficiently
large part of the ambient phase). Since in the virtual state of the ambient phase some part of
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the atoms is fixed in their positions, the probabilities of occurrence of favorable configurations
obey the condition p̃r < pr .

Further on, we employ a basic relationship of statistical thermodynamics [40], i.e.,

S = kB ln W . (3.21)

Here S is the entropy of a given macrostate of a system and W the number of microstates
(or thermodynamic probability) referring to the respective macrostate. In application to the
considered problem we may write

pr

p̃r
= exp

[(
�S − �S̃

)
kB

]
. (3.22)

Here �S̃ and �S are the entropies per mobile particle in the virtual and real vapor (real or
virtual states of the ambient phase) for each of the subsystems considered. The macrostates
refer here to those configurations which allow the incorporation of a single mobile particle to
the cluster.

As mentioned, both the virtual and the real states of the ambient phase may be considered
to be in an internal thermodynamic equilibrium at the respective concentrations of their mobile
particles. Moreover, the temperature of both systems is the same. The latter condition implies
that the difference of the entropies �S − �S̃ is equal to the change of the entropy �Sn ,
resulting from the transfer of one mobile particle from the virtual to the real state of the
ambient phase. Moreover, the number of configurations allowing the incorporation of a mobile
particle to a given cluster is larger in the real state of the ambient phase than in the virtual one.
Therefore, in the range of cluster sizes n > nc the relation

�S − �S̃ = �Sn > 0 (3.23)

holds. In addition, one can always add to �S and �S̃ the entropies S0 and S̃0, respectively,
of the rest of the subsystems (we consider, now and hereinafter, only the respective parts of
the ambient phase in the real and the virtual states). These contributions do not change in
the course of the transfer of a mobile particle between both states. �Sn may also be treated,
therefore, as the total change of entropy in such a transfer resulting from the respective changes
�S and �S̃ in both subsystems.

At given values of the external thermodynamic parameters, the change in entropy of a
thermodynamic subsystem may be connected with the work Rrev. Rrev is the work one has to
perform in a reversible process to create the same changes of the state of the subsystem (the
same change of entropy). Generally, we may write (cf., e.g., Ref. [40])

�S =
(

�S

�U

)
Rrev = 1

T
Rrev . (3.24)

Here the thermodynamic relation

∂S

∂U
= 1

T
(3.25)
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has been employed, in addition, U in Eqs. (3.24) and (3.25) is the internal energy of the
considered subsystem.

For a subsystem at fixed values of the external pressure, p, and temperature, T , the work
performed in a reversible process equals the change of the Gibbs free energy �g in the re-
spective process. Taking into account, moreover, that the temperatures are same both in the
real and the virtual states of the ambient phase, we obtain from Eqs. (3.24) and (3.23)

�Sn = 1

T
Rrev = �g

T
. (3.26)

Here �g is the total change in Gibbs free energy in the transfer of the considered particle from
the virtual to the real state.

For one-component systems, we may write immediately

�g = µv − µ̃ . (3.27)

Taking into account the relation µ̃ = µd(n), we have

�Sn = µv − µd(n)

T
. (3.28)

Here, as earlier, µv is the chemical potential of a particle in the real state of the ambient phase,
and µd(n) is its value in a cluster of size n (including interfacial and other possible finite size
effects).

Combining Eqs. (3.20), (3.22), (3.23), (3.26), (3.27), and (3.28), we get the result for the
ratio of absorption and emission coefficients as

w
(+)
n−1,n

w
(−)
n,n−1

= exp

(
�Sn

kB

)
= exp

(
µv − µd (n)

kBT

)
. (3.29)

It follows that the relation between the coefficients of aggregation and emission for supercriti-
cal clusters is same as obtained earlier by applying the traditional method for thermodynamic
equilibrium states (cf. Eq. (3.14)), i.e.,

w
(+)
n,n+1

w
(−)
n+1,n

= exp

(
µv − µd (n + 1)

kBT

)
. (3.30)

However, in the present derivation, no reference was made to the so-called equilibrium distri-
butions and the principle of detailed balancing (nonapplicable in nonequilibrium states).

Moreover, taking into account the generally valid thermodynamic relationships (3.11), we
may also write

w
(+)
n,n+1

w
(−)
n+1,n

= exp

(
− [�G(n + 1) − �G(n)]

kBT

)
. (3.31)
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This relation is identical to Eq. (3.10). By introducing an auxiliary function f (∗)(n) as

f (∗) = exp

(
−�G(n)

kBT

)
, (3.32)

we may express the relation between the considered coefficients in another equivalent form as
the ratio of the functions f (∗)(n + 1) and f (∗)(n), again, i.e., (cf. Eq. (3.9)),

w
(+)
n,n+1

w
(−)
n+1,n

= f (∗)(n + 1)

f (∗)(n)
. (3.33)

Note that here these functions do not have any physical meaning, however. They have to be
considered as auxiliary mathematical quantities.

The Alternative Approach: Clusters of Subcritical Sizes

In the first case considered, a certain part of the particles in the ambient phase was fixed
in its positions. The kinetic conditions for aggregation for the remaining mobile particles
remain thus same as in the real state of the ambient phase. For clusters of subcritical sizes the
concentration of aggregating particles in the ambient phase is too small to reach a dynamic
equilibrium. Thus, in order to construct the virtual state of the ambient phase we have to add,
now, mobile particles. (cf. Fig. 3.4b) The total concentration of mobile particles is defined,
again, by the condition µ̃ = µd(n). However, to retain, again, the requirement that the kinetic
conditions for aggregation have to be same for any arbitrary particle, the newly added particles
do not interact among themselves and with the particles present in the real state of the ambient
phase. All further derivations then can be carried out step by step in the same way as explained
in detail for the range of cluster sizes n > nc. Therefore, Eqs. (3.30), (3.31), and (3.33) hold
equally well for clusters of subcritical sizes.

Summarizing this part, we may conclude that we have developed a method of determi-
nation of the coefficients of emission in terms of a macroscopic approach to the description
of cluster properties in nucleation-growth processes. The basic result (3.30) can be brought
into coincidence with expressions like Eqs. (3.31) and (3.33) used widely in the nucleation
theory but so far without any satisfactory theoretical foundation. The development of a theo-
retical foundation of this widely employed approach is one of the basic results of the present
analysis. Further, we will analyze some applications, derive generalizations, and find out the
consequences of this result.

3.3.3 Applications

Once the kinetic coefficients w(−) have been determined, they may be substituted into the
kinetic equations (3.1). Finally, for the solution of particular problems, the coefficients w(+)

have to be specified. Instead of applying the set of kinetic equations (3.1)–(3.4), we may also
go over to a continous description in the form of a Fokker–Planck equation. It provides a
sufficiently accurate description of the initial stages of the condensation process. During the
initial stage, for 1 ≤ n ≤ nc, the second derivative of the distribution function

(
∂2 f/∂n2

)
is
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important, because it determines the rise of the nucleus from the size n < nc to a size n > nc.
The higher order derivatives are smaller than the second-order ones, if nc � 1. It means that
the basic spectrum of the nuclei is also found then in the range n � 1. The spectrum of droplet
sizes in the range n ∼ 1 may also be well-described by this differential equation. This is due
to the fact that the character of the solution provides qualitatively correct results, even if we
apply the differential equation. Having introduced f (∗)(n) = exp(−�G(n)/kBT ) we get

Jn−1 = w
(+)
n−1,n f (∗) (n − 1)

[
f (n − 1, t)

f (∗) (n − 1)
− f (n, t)

f (∗) (n)

]

= Jn − ∂

∂n

{
w

(+)
n,n+1 f (∗) (n)

[
f (n, t)

f (∗) (n)
− f (n − 1, t)

f (∗) (n − 1)

]}

= Jn + ∂

∂n

{
w

(+)
n,n+1

[
1

kBT

∂�G (n)

∂n
f (n, t) + ∂ f (n, t)

∂n

]}
.

(3.34)

Therefore, the difference equation (3.2) acquires the form

∂ f (n, t)

∂ t
= ∂

∂n

{
w

(+)
n,n+1

[
1

kBT

∂�G (n)

∂n
f (n, t) + ∂ f (n, t)

∂n

]}
. (3.35)

A comparison with the ordinary continuity equation shows that the deterministic growth rate
may be expressed as

dn

dt
= −w

(+)
n,n+1

{
1

kBT

(
∂�G (n)

∂n

)}
. (3.36)

This equation allows us to determine the coefficients of aggregation w(+) if the macroscopic
growth rates dn/dt of the clusters are known.

3.4 Generalization to Multicomponent Systems

Assume that both the ambient and the newly evolving phases are composed of k different
components. The distribution function with respect to cluster sizes is then a function of all
numbers n j of particles of the different components j ( j = 1, 2, . . . , k) in the cluster, i.e.,
f = f (n1, n2, . . . , nk, t) holds. Instead of the kinetic equation (3.2), we have now

∂ f (n1, n2, . . . , t)

∂ t
= −

k∑
j=1

[J (n j , t) − J (n j − 1, t)] (3.37)

with

J (n j , t) = w
(+)
n j ,n j +1 f (n1, n2, . . . , n j . . . , nk , t)

− w
(−)
n j +1,n j

f (n1, n2, . . . , n j + 1, . . . , nk, t) .
(3.38)

As a next step, again, the coefficients of emission have to be specified. This procedure can and
will be carried out in the same way as done so far for one-component systems.
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3.4.1 Traditional Approach

For thermodynamic equilibrium states in multicomponent systems, the cluster size distribution
may be approximated by the expression for heterophase fluctuations as (cf., again, Ref. [40])

f (eq) (n1, n2, . . . , nk) = A exp

(
−�G (n1, n2, . . . , nk)

kBT

)
. (3.39)

Here �G(n1, n2, . . . , nk) is the work of formation of a cluster consisting of the respective
number of particles of the different components. Assuming that the preexponential factor A
depends only weakly on the composition and size of the clusters, we obtain similarly to the
one-component case

w
(+)
n j ;n j +1

w
(−)
n j +1;n j

= exp

{
− [�G(n j + 1) − �G(n j )]

kBT

}
. (3.40)

Here all values of the number of particles of the different components in the cluster, except
for the component j are fixed.

As a next step, we introduce the difference of the Gibbs free energy �G, when, at constant
values of the external pressure, p, and temperature, T , a cluster of a given composition is
formed. We have

�G(n1, n2, . . . , nk) = Gd(n1, n2, . . . , nk) −
k∑

j=1

n jµ jv . (3.41)

Gd(n1, n2, . . . , nk) is the contribution of the cluster to the thermodynamic potential including
interfacial and other possible correction terms. With Eq. (3.41), we get for example

− [
�G(n1, n2, . . . , n j + 1, . . . , nk) − �G(n1, n2, . . . , n j , . . . , nk)

]
= µ jv − µ j d(n1, n2, . . . , n j + 1, . . . , nk) . (3.42)

Indeed, we may write

�G(n j + 1) − �G(n j ) = Gd(n j + 1) −
∑

i

niµiv − µ jv −
[

Gd(n j ) −
∑

i

niµiv

]

= Gd(n j + 1) − Gd(n j ) − µ jv

=
(

∂Gd(n j + 1)

∂n j

)
− µ jv = µ j d(n j + 1) − µ jv .

(3.43)

The dependences (3.42) allow us to reformulate Eq. (3.40) as

w
(+)
n j ,n j +1

w
(−)
n j +1,n j

= exp

{
[µ jv − µ j d(n1, n2, . . . , n j + 1, . . . , nk)]

kBT

}
. (3.44)

Again, for systems in thermodynamic equilibrium states this approach is quite satisfac-
tory provided the additional assumption (weak dependence of the prefactor A on cluster size)
is fulfilled. The method cannot be applied, as discussed in detail earlier, to thermodynamic
nonequilibrium states.
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3.4.2 Alternative Approach

The alternative method of determination of the relation between the kinetic coefficients in ap-
plication to thermodynamically unstable initial states relies, again, on the consideration of the
probabilities of formation of favorable configurations for a single particle to be incorporated
into the cluster (both in the real and virtual states). The derivations as outlined above can also
be applied without any qualitative modification to multicomponent systems. Consequently, as
will be shown, qualitatively the same results are obtained as derived in Sect. 3.3 for phase
formation processes in one-component systems. In particular, similarly to Eq. (3.29) we arrive
at

w
(+)
n j −1,n j

w
(−)
n j ,n j −1

= exp

(
�Sn

kB

)
= exp

(
�g

kBT

)
. (3.45)

Remember that �g is the total change in Gibbs free energy of both subsystems (real and
virtual ones) if a mobile particle is transferred from the virtual to the real state. Taking into
account this meaning of �g, we have

�g = gfinal − ginitial , (3.46)

�g = g̃(n j − 1) − g(n j + 1) − [
g̃(n j ) + g(n j )

]
(3.47)

or

�g = − ∂ g̃

∂n j
+ ∂g

∂n j
= µ jv − µ̃ j . (3.48)

Here g or g̃ are the Gibbs free energies of the ambient phase in the two considered states, and
n j is the number of particles of the component j in the subsystems. Moreover, the well-known
relations

µ j = ∂g

∂n j
, µ̃ j = ∂ g̃

∂n j
(3.49)

are employed. With µ̃ j = µ j d (consequence of the definition of the virtual states), we obtain
immediately

w
(+)
n j ,n j +1

w
(−)
n j +1,n j

= exp

{
[µ jv − µ j d(n1, n2, . . . , n j + 1, . . . , nk)]

kBT

}
(3.50)

and as a result

w
(+)
n j ,n j +1

w
(−)
n j +1,n j

= exp

{
− [�G(n j + 1) − �G(n j )]

kBT

}
. (3.51)

In Eq. (3.50), µ jv is the chemical potential of a particle of the j th component in the ambient
vapor phase, while µ j d(n1, n2, . . . , n j + 1, . . . , nk) is its value in a cluster of the specified
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composition. As in the one-component case, the value of µ j d accounts for surface and other
possible finite size effects. In Eq. (3.51), the values of ni , i �= j are kept constant, again.

By the introduction of an auxiliary function f (∗)(n1, n2, . . . , nk) via

f (∗)(n1, n2, . . . , nk) = exp

{
−�G(n1, n2, . . . , nk)

kBT

}
, (3.52)

Eqs. (3.40) and (3.51) may be written, generally, in the form

w
(+)
n j ;n j +1

w
(−)
n j +1;n j

= f (∗)(n j + 1)

f (∗)(n j )
. (3.53)

Here f (∗) is an auxiliary mathematical function without any physical meaning, again. Thus,
the method of derivation of the rates of emission of single particles from clusters of the newly
evolving phase can be extended to multicomponent systems.

3.4.3 Applications

Once the coefficients w(−) are specified, they can be substituted into the kinetic equations.
Moreover, one can go over, again, to a continous description in the form of a Fokker–Planck
equation. By the same method as demonstrated in Sect. 3, we obtain

∂ f

∂ t
=

∑
j

∂

∂n j

{
w

(+)
n j ,n j +1

[
1

kBT

∂�G(n1, n2, . . . , nk)

∂n j
f (n1, n2, . . . , nk , t)

+ ∂ f (n1, n2, . . . , nk , t)

∂n j

]}
(3.54)

or, equivalently,

∂ f (n1, n2, . . . , nk, t)

∂ t
= −

∑
j

∂ J (n j , t)

∂n j
, (3.55)

J (n j , t) = −
{
w

(+)
n j ,n j +1

[
1

kBT

∂�G(n1, n2, . . . , nk)

∂n j
f (n1, n2, . . . , nk, t)

+ ∂ f (n1, n2, . . . , nk, t)

∂n j

]}
. (3.56)

An inspection of Eqs. (3.55) and (3.56) leads to the conclusion that the macroscopic (deter-
ministic) growth rates are given by

v j = dn j

dt
= −w

(+)
n j ,n j +1

[
1

kBT

∂�G(n1, n2, . . . , nk)

∂n j

]
, (3.57)
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while the diffusion coefficients D{n}
j in the space of independent variables {n j } are determined

by

D{n}
j = w(+)

n j ,n j+1
. (3.58)

Note that the theory of Langer [16] results in similar dependences for the description of the
evolution of the characteristic parameters of a system undergoing a first-order phase transfor-
mation. Differences between his and the theoretical approach employed here occur only in the
way the macroscopic parameters of the system are introduced, and the way the critical cluster
size in nucleation and the steady-state nucleation rate are determined.

3.5 Generalization to Arbitrary Boundary Conditions

Summarizing the results obtained so far we come to the following conclusions: It follows from
the analysis outlined that the basic relationships between the coefficients of aggregation and
emission are given by Eqs. (3.30) (for the one-component case) and (3.50) (for a multicompo-
nent system). By applying thermodynamic identities, these relations can be transformed into
Eqs. (3.31) and (3.51). In these expressions, the ratio of the kinetic coefficients is expressed
via the differences of the thermodynamic potentials. Further, one may introduce auxiliary
functions f (∗) (Eqs. (3.32) and (3.52)) in order to express the ratio of the kinetic coefficients
as the ratio of these auxiliary functions (Eqs. (3.33) and (3.53)). The latter results are simi-
lar in the form to the respective dependences obtained by the traditional approach. However,
in our method no reference is made to the so-called equilibrium distributions and the princi-
ple of detailed balancing is not applied to nonequilibrium states. As an additional advantage,
the problem of determination of the coefficient A in the expressions for the distributions of
heterophase fluctuations does not occur so far at all.

In order to extend the range of applicability of the method, we have to show that similar
results can also be obtained for other boundary conditions such as constancy of pressure and
temperature. In order to proceed in this direction we start with the basic intermediate result of
our approach, i.e., with Eq. (3.26) or

�Sn = 1

T
Rrev . (3.59)

Assume, now, that instead of external pressure and temperature another set of thermodynamic
parameters are fixed. Then the work Rrev one has to perform in a reversible process to create
the same change in entropy �Sn is given not by �g but by �φ. Here φ is the appropriate
thermodynamic potential for the selected (arbitrary) boundary conditions. Instead of Eq. (3.26)
we obtain then

�Sn = 1

T
�φ . (3.60)

Now, proceeding in the same way as in the derivation of Eq. (3.26), we get (cf. Eqs. (3.46)–
(3.49))

�Sn = 1

T

[
µ jv − µ j d

]
. (3.61)
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Here it was taken into account, again, that the relation

µ j = ∂φ

∂n j
(3.62)

holds, provided the other appropriate variables except n j are kept constant. As a result, we
obtain Eqs. (3.30) or (3.50), again.

Similar to Eq. (3.41), we may express the change in the characteristic thermodynamic
function in cluster formation as

�	(n1, n2, . . . , nk) = 	d(n1, n2, . . . , nk) −
k∑

j=1

n jµ jv . (3.63)

Proceeding in the same way as earlier, we arrive at

− [
�	(n1, n2, . . . , n j + 1, . . . , nk) − �	(n1, n2, . . . , n j , . . . , nk)

]
= µ jv − µ j d(n1, n2, . . . , n j + 1, . . . , nk) (3.64)

with similar consequences.
Finally, in the derivation of the basic equations for determination of the emission coef-

ficients it was not utilized that the temperature in the cluster has to be the same as in the
surrounding ambient phase. Therefore, the method is equally well applicable to phase forma-
tion under nonisothermal conditions. In this case, the values of the chemical potential have to
be taken at the respective temperatures of the clusters and the ambient phase. In addition, the
basic kinetic equations have to be supplemented by relations describing the heat flow between
the clusters and the ambient phase (cf., e.g., Ref. [38]).

In this way, a regular method of formulation of the kinetic equations for the description
of nucleation-growth processes is developed. The method does not depend on the boundary
conditions applied, and it can be employed both for isothermal and nonisothermal nucleation.
Moreover, since the derivation of the relation between the kinetic coefficients does not rely
on any specific feature of vapor condensation but only on very general thermodynamic argu-
ments, it is equally well applicable generally to the description of first-order phase formation
processes proceeding via nucleation and growth.

3.6 Initial Conditions
for the Cluster Size Distribution Function

The method of determination of the kinetic coefficients, developed here, can be employed
without any reference to the so-called constraint equilibrium distributions. Such distributions
may, nevertheless, enter the description but in a reduced much less significant way via the
determination of the initial conditions for the solutions of the kinetic equations describing
nucleation and growth. Indeed, it can be assumed in a variety of applications that the initial
cluster size distribution after the quench into the unstable state corresponds to some extent to
the spectrum of heterophase fluctuations existing in the initial equilibrium system before the
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quench took place. Alternatively, one may suppose that for small cluster sizes the distribution
is more or less well-expressed by the respective expressions for heterophase fluctuations even
in thermodynamically unstable states.

For the determination of the initial conditions, following such an argumentation, only the
value of the preexponential factor A in the expressions for heterophase fluctuations [40]

f (n1, n2, . . . , nk) = A exp

(
−�G(n1, n2, . . . , nk)

kBT

)
(3.65)

has to be known or, in other words, the limit of the respective distributions for very small clus-
ter sizes n j → 0. Once the initial cluster size distribution is determined the further evolution
is governed by the kinetic equations themselves. It is also only the value of A, i.e., the limit
of the distribution for small sizes of the clusters of the newly evolving phase, which has to be
known in order to derive expressions for the steady-state nucleation rate and the steady-state
cluster size distribution (cf., e.g., Ref. [39]). From such a point of view, limiting consistency
has to be considered as a fundamental property, i.e., the cluster size distributions at small clus-
ter sizes have to be expressed accurately, while the shape of the expressions, like those given
by Eq. (3.65), for large cluster sizes is of no relevance for nucleation (cf. also [35]).

Moreover, since relations of the type as given by Eq. (3.65) do not reflect real equilib-
rium distributions which may evolve in thermodynamically unstable states, they are applied
exclusively in order to determine possible initial states for real cluster size distributions in the
considered nonequilibrium states. The fulfilment of the mass action law has not to be consid-
ered, in our opinion, as a necessary fundamental condition for the validity of the respective
distribution any more (see, in contrast, Refs. [24,25]). The coefficients A may or may not obey
such property, in part, depending on whether these distributions are determined mainly by the
initial equilibrium state before the quench took place or by the way the system is transferred
into the considered nonequilibrium state. From such a point of view, the fulfilment of the mass
action law is not an appropriate starting point for a possible redetermination of the value of
the parameter A and the formulation of different specific versions of the nucleation theory.

In order to have a guide for the determination of possible initial conditions for the cluster
size distributions, let us summarize, finally, some attempts in the determination of the para-
meter A for different special cases (cf. also [35]).

(i) For one-component systems, following Frenkel [22], the parameter A may be determined
from the limiting condition as (cf. Eq. (3.5))

A = c . (3.66)

Here c is the volume concentration of single particles in the ambient phase.

(ii) For clusters of arbitrary composition, following Reiss [56], the relation

A = c =
k∑

j=1

c j (3.67)

could be taken as a first approximation. Here, c j is the volume concentration of the dif-
ferent components in the ambient phase, able to enter the new phase. Equation (3.67)
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can be derived, similar to Eq. (3.66), based on the basic ideas of the fluctuation theory,
as representing the number of particles able to act as centers of condensation. The prob-
ability that, indeed, a cluster of some definite but arbitrary composition is formed at a
given nucleation site, is determined then by the exponential term.

(iii) An extended discussion of the different attempts for a proper determination of this
coefficient for one-component and binary systems was given by Wilemski and Wys-
louzil [24, 25]. They proposed (in application to binary systems) the relation

A = c
k∏

j=1

(x jβ)x jα (3.68)

as a better approximation. This expression fulfils the limiting conditions for one-compo-
nent clusters and, in addition, the mass action law. In Eq. (3.68), x jβ is the molar fraction
of the different components in the ambient phase, while x jα is the molar fraction of the
different components in the cluster considered. It is determined as

x jα = n j∑k
i=1 ni

. (3.69)

(iv) For clusters of a given stoichiometric composition (cf. also Refs. [36,37]) the total num-
ber of nucleation sites is equal to the number of particles in the system able to enter the
new phase. We have for that number

c =
k∑

j=1

c j . (3.70)

A heterophase fluctuation with a given composition can be formed in the ambient phase
if a favorable configuration of particles of the different components is developed. Con-
sidering the motion of the different particles as independent, the probability of such an
event is equal to the product of the molar fractions xiβ of the different components i
in the ambient phase each of them taken to the power xiα . As a result, we obtain the
following expression for A (cf. Refs. [36, 37])

A = c
k∏

j=1

x
x jα
jβ . (3.71)

Most of the above-mentioned considerations concerning the initial state of the cluster size
distribution function can be carried out equally well without any reference to expressions like
Eq. (3.65). Therefore, even for the determination of the initial conditions the reference to
distributions like that given by Eq. (3.65) may be completely avoided.
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3.7 Description of Cluster Ensemble Evolution
Along a Given Trajectory

3.7.1 Motivation

The set of kinetic equations as outlined above allows us to determine the evolution of the
cluster size distribution function for phase formation in multicomponent systems in a complete
way. However, with an increase in the number of components in the system, the computation
times increase dramatically. Due to this reason, a comprehensive description of the whole
course of nucleation-growth processes based on the numerical solution of the sets of kinetic
equations is possible presently for one-component and binary systems only (cf. e.g. [57]).

In a number of cases, the problems can be reduced significantly. Indeed, following the
classical approach to nucleation-growth processes, one can distinguish the case that the clus-
ters of the newly evolving phase have widely the same composition and structure as the newly
evolving macroscopic phase. In these cases, which are illustrated in Fig. 3.1, the task to be
solved is reduced to a one-dimensional problem. The clusters consist here of units with a
given well-defined composition, {xiα}. This problem has been analyzed in detail for the first
time in [36, 37]. However, in general, the composition and state of the clusters will change
with cluster size and variations of the state of the ambient phase. By this reason, the classical
assumption that the state of the clusters is independent of their sizes can be considered, in
general, as a crude approximation only.

Quite recently, a new general approach to the description of nucleation-growth processes
has been developed [58–60] (cf. also Chapters 11 and 12). This approach allows one a theo-
retically founded determination of the path of evolution of the clusters in the space of cluster
parameters or, in other words, a description of the changes in the state parameters of the
clusters with their sizes. The respective situation is illustrated in Fig. 3.5. The details of this
approach are outlined in the papers cited and in the chapters mentioned. Here it is only of
importance that in this very general case a reduction of the description from the determination
of the distribution function, f (n1, n2, . . . , nk , t), to a description in terms of a distribution
function f (n, t) is possible as well. The respective transformations are described below.
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Figure 3.5: Illustration of the evolution of the cluster in the space of cluster parameters for
segregation processes in regular solutions (for the details see [58–60])
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3.7.2 Effective Diffusion Coefficients

The variation of the number of particles of the i -th component in the cluster is determined via
(cf. Eq. (3.57))

dni

dt
= −4π R2 ji = −w

(+)
ni ,ni +1

[
1

kBT

∂�G(n1, n2, . . . , nk)

∂ni

]
. (3.72)

Moreover, the relations

ni = nnbxiα , Vα = nωα , ωα =
k∑

i=1

nbxiαωiα (3.73)

hold. Here, ωiα is the volume per particle of the i th component in the cluster, n is the total
number of structural units of the newly evolving phase in the cluster of volume, Vα , or radius,
R, and nb is the number of particles in a structural unit of the newly evolving macrophase in
equilibrium with the ambient phase, and ωα is the volume of a structural unit of the newly
evolving phase in a cluster of radius, R, or volume, Vα. For the case that the clusters can
be considered as multiples of a basic unit of the newly evolving phase, nb can be identified
with the number of particles in such a unit. If the clusters change their composition with
cluster sizes, nb loses its definite physical meaning and will be determined such as to allow
an expression of the basic kinetic equations in the most simple form. In any of the considered
cases, it is a constant parameter.

Further, based on Eq. (3.73) (we take the derivative of the identity ni = nnbxiα with
respect to time) and taking into account that the composition of the clusters depends uniquely
on the cluster radius, R, or on the particle number, n, in the cluster we may write

dn

dt
= −4π R2

(
ji

νiα

)
, νiα = nb

(
xiα + n

dxiα

dn

)
. (3.74)

Since the left-hand side of the first of Eq. (3.74) does not depend on the particular component
considered, the right-hand side must have the same value for each of the components. This
way, we get

ji
νiα

= jk
νkα

for i = 1, 2, . . . , k − 1 . (3.75)

As it is evident from the derivation, we assume here that the different components may move,
in principle, independently. Nevertheless, the motion is coupled by the requirement that the
composition of the clusters is a well-defined function of its size.

Equation (3.74) allows us to express the change in the number of ambient phase units, n,
via the fluxes of any of the components in the system. Now, as the next step, the terms
(∂�G/∂ni) in Eq. (3.72) will be replaced by the change of the characteristic thermodynamic
potential G(n + 1) − G(n), if the cluster size is increased from n to (n + 1). Instead of G(n)
and G(n + 1), we will use here the differences �G(n) = G(n) − Ghom between the respec-
tive heterogeneous and homogeneous initial states. This procedure will be performed here
for the case where pressure and temperature are kept constant. As can be checked easily, the
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derivation can be repeated in a similar form for any other boundary conditions with identical
results.

The change of the thermodynamic potential in such a process can be written as

G(n + 1) − G(n) = d�G(n)

dn
�n =

k∑
i=1

(
∂�G(n1, n2, . . . , nk)

∂ni

)
�ni . (3.76)

Here, the values of �ni cannot be chosen arbitrarily, but are uniquely determined via �n as

�ni = νiα�n . (3.77)

With the condition �n = 1 and Eq. (3.77), we arrive at

d�G(n)

dn
=

k∑
i=1

(
∂�G(n1, n2, . . .), nk

∂ni

)
νiα . (3.78)

Finally, Eq. (3.72) yields

4π R2

w
(+)
ni ,ni +1

ji = 1

kBT

∂�G(n1, n2, . . . , nk)

∂ni
. (3.79)

Multiplying both sides of Eq. (3.79) with νiα and taking the sum over all components, we get
from Eqs. (3.74), (3.75), and (3.78)

4π R2
(

ji
νiα

) k∑
i=1

ν2
iα

w
(+)
ni ,ni +1

= 1

kBT

d�G(n)

dn
(3.80)

and

dn

dt
= − 1

∑k
i=1

(
ν2

iα

w
(+)
ni ,ni+1

) 1

kBT

d�G(n)

dn
. (3.81)

A comparison with Eq. (3.36) shows that the growth rates for the clusters can be written,
again, in one-dimensional form as

dn

dt
= −w

(+)
n,n+1

{
1

kBT

(
d�G (n)

dn

)}
(3.82)

with

w
(+)
n,n+1 = 1

∑k
i=1

(
ν2

iα

w
(+)
ni ,ni +1

) . (3.83)
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Similarly, we can also express the change in the volume of a cluster of the new phase consisting
of n ambient phase units. The change in the volume of a cluster of the new phase can be written
generally as

dVα

dt
= −4π R2

k∑
i=1

ωiα ji . (3.84)

From Eq. (3.72), we get

dVα

dt
=

k∑
i=1

ωiα
dni

dt
. (3.85)

Equation (3.73) yields further

dni

dt
= νiα

dn

dt
(3.86)

resulting in

dVα

dt
= dn

dt

{
k∑

i=1

ωiανiα

}
. (3.87)

Following Refs. [36, 37], one can now obtain expressions for the rates of growth of the
aggregates of the new phase or the kinetic coefficients, w(+)

ni ,ni +1, for the different mechanisms

of cluster growth of interest. Taking into account that D∗
i /a2

β is the frequency with which a

particle of the i th component hits the interface of a cluster of radius R and 4π R2aβc(s)
iβ is the

number of particles of the considered component capable of reaching the interface in one step
of motion, we obtain

w
(+)
ni ,ni+1 = D∗

i

a2
β

(
4π R2c(s)

iβ

)
. (3.88)

Here D∗
i are the partial diffusion coefficients of the different components in the ambient so-

lution near the interface while aβ is a characteristic length scale of the ambient phase defined
via

ωβ =
k∑

i=1

ωiβ xiβ , aβ =
(

3ωβ

4π

)1/3

. (3.89)

The parameters ωiβ describe the characteristic volumes of the different components in the
ambient phase. They are connected with the respective size parameters, aiβ , via

ωiβ = 4π

3
a3

iβ . (3.90)
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Assuming steady-state conditions, the volume concentration of particles of the i th compo-
nent near the interface, c(s)

iβ , can be determined by the balance of diffusional fluxes and fluxes
from the ambient phase to the cluster. We get after some algebraic calculations

c(s)
iβ = ciβ


 1

1 +
[(

D∗
i

Di

) (
R

aβ

)]

 . (3.91)

Here ciβ is the average volume concentration of the respective component in the ambient
phase. Di are the partial diffusion coefficients of the respective components in the bulk. The
diffusion coefficients D∗

i and Di are connected by the relations D∗
i = Diαi , where αi obeys

the inequality αi ≤ 1. With Eq. (3.73) and aα = (3ωα/4π)1/3 or R = aαn1/3, respectively,
we can express the coefficients w

(+)
ni ,ni+1 in the form (see also [13])

w
(+)
ni ,ni +1 = 4π D∗

i ciβaαn1/3




(
aα
aβ

)
n1/3

1 +
[(

D∗
i

Di

) (
aα
aβ

)
n1/3

]

 . (3.92)

Finally, the volume concentration of the i th component in the ambient phase, ciβ , can be
expressed as

ciβ = niβ

V
= cβxiβ , cβ = nβ

V
, xiβ = niβ

nβ
, nβ =

k∑
j=1

n jβ . (3.93)

In the general form, the expression for w
(+)
n,n+1 is given then via

w
(+)
n,n+1 = 4πcβa2

αn2/3

aβ




k∑
i=1

ν2
iα

[
1 +

(
D∗

i
Di

) (
aα
aβ

)
n1/3

]
D∗

i xiβ




−1

. (3.94)

Equation (3.94) represents the most general expression for the determination of the quantity
w

(+)
n,n+1. It is a rather nontrivial function of the kinetic and thermodynamic parameters of the

different components in the multicomponent solution considered.
As already mentioned, in the case of formation of a new phase with a given stoichiometric

composition, the value of the total number of particles, nb, in a basic unit of the new phase is
well-defined. For the more general case considered here the composition of the cluster changes
with cluster size, such well-defined units does not exist. By this reason, we will set nb equal
to one (cf. Eq. (3.73)). With this definition, n gets the meaning of the total number of particles
in a cluster. We have then

w
(+)
n,n+1 = 4πcβa2

αn2/3

aβ

k∑
i=1




ν̃2
iα

[
1 +

(
D∗

i
Di

) (
aα
aβ

)
n1/3

]
D∗

i xiβ




(3.95)
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with (cf. Eq. (3.74))

ν̃iα =
(

xiα + n
dxiα

dn

)
(3.96)

or, equivalently,

w
(+)
n,n+1 = 4π Deffcβa2

αn2/3

aβ
, (3.97)

1

Deff
=

k∑
i=1




ν̃2
iα

[
1 +

(
D∗

i
Di

) (
aα
aβ

)
n1/3

]
D∗

i xiβ


 . (3.98)

For the case of kinetic limited growth (if the condition 1 � (D∗
i /Di )n1/3 is fulfilled for any

of the components), we have

w
(+)
n,n+1 = 4π D∗

effcβa2
αn2/3

aβ
,

1

D∗
eff

=
k∑

i=1

ν̃2
iα

xiβαi Di
. (3.99)

For diffusion limited growth of the clusters (if the condition 1 � (D∗
i /Di )n1/3 is fulfilled for

any of the components), we get similarly

w
(+)
n,n+1 = 4πcβaα D∗∗

effn
1/3 ,

1

D∗∗
eff

=
k∑

i=1

ν̃2
iα

xiβ Di
. (3.100)

With ωβ = V/nβ = 1/cβ , we can always make the replacement 4πcβ = 3/a3
β in above

equations.

3.7.3 Evolution of the Cluster Size Distribution Functions

According to the theoretical developments discussed, we may write down the following ex-
pressions for the determination of the evolution of the cluster size distribution with time:

∂ f (n, t)

∂ t
= w

(+)
n−1,n

{
f (n − 1, t) − f (n, t) exp

[
�G(n) − �G(n − 1)

kBT

]}

+ w
(+)
n,n+1

{
− f (n, t) + f (n + 1, t) exp

[
�G(n + 1) − �G(n)

kBT

]}
. (3.101)

For the distribution function f (n = 1, t) at n = 1, we employ the relation

f (n = 1, t) = cβ

k∏
j=1

x
x jα
jβ , cβ = 3

4πa3
β

. (3.102)
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Figure 3.6: Illustration of the cluster evolution if the newly developed approach to nucleation-
growth processes is utilized as outlined in detail in Refs. [58–60] (cf. also Chapters 11 and 12)

Here cβ is the total volume concentration of the particles of the different components in the
ambient phase, x jβ the molar fraction of the different components in the ambient phase, and
x jα the composition of the cluster phase in the limit R → 0 (or n → 1).

The effective values of the coefficients of aggregation, w
(+)
n,n+1, are given by Eqs. (3.97)

and (3.98). Assuming, in addition, Di = D∗
i , we get

w
(+)
n,n+1 = 4π D∗∗cβa2

α

aβ


 n2/3

1 +
(

aα
aβ

)
n1/3


 . (3.103)

This expression is reduced to previously discussed cases under the well-defined limiting con-
ditions.

According to the analysis of segregation processes in regular solutions illustrated partly in
Fig. 3.5 (cf. [58–60]), initially the preferred cluster composition is equal to the composition
of the ambient phase. In such cases, however, the cluster cannot be distinguished from the
ambient phase. Thus, the real cluster evolution starts only when the parameters start to deviate
from the respective values they have in the ambient phase. As evident from the figure, such
processes start at cluster sizes near the critical one. In the further evolution the composition
of the cluster changes then dramatically until values near to the respective macroscopic para-
meters are reached. This situation is illustrated in Fig. 3.6. It deviates dramatically from the
classical picture of nucleation and cluster growth shown in Fig. 3.1.
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3.8 Conclusions

In the discussion of our results we would like to stress two points. First, we would like to un-
derline once more that a regular method has been developed allowing to determine the emis-
sion coefficients once the coefficients of aggregation are known. The basic equation (3.44) can
be applied widely independent of the application and the boundary conditions considered. The
method allows to eliminate such artificial constructs like constraint equilibrium distributions
from the theory as well as the incorrect application of the principle of detailed balancing to
nonequilibrium states.

Second, as an intermediate step in our analysis, we introduced an idealized model, as we
called it, virtual states. According to the definition, virtual states are those states for which
a dynamic equilibrium between cluster and ambient phase is established. This is the only
property employed in addition to the widely accepted assumption of existence of a local equi-
librium in the ambient phase in the vicinity of the clusters of the new phase. In this respect
our approach is similar but more general as compared with the application of Kelvin’s (or
the Gibbs–Thomson) equation. In applying Kelvin’s equation the same question is posed as
in our analysis, i.e., what should be the state of the system be to attain dynamic equilibrium
for a cluster of a given size. Starting with our basic equation (3.30) (e.g., in application to
one-component systems)

w
(+)
n,n+1

w
(−)
n+1,n

= exp

(
µv − µd (n + 1)

kBT

)
, (3.104)

applying the perfect gas law

µv(p, T ) = µ(∗) + kBT ln

(
p

p(∗)

)
, (3.105)

and the equilibrium conditions for a drop of a given size in the gas

µd(n + 1) = µv[pv (n + 1), T ] = µ(∗) + kBT ln

[
pv(n + 1)

p(∗)

]
, (3.106)

we arrive at

w
(−)
n+1,n = w

(+)
n,n+1(p)

[
pv (n + 1)

p

]
= w

(+)
n,n+1[pv(n + 1)] . (3.107)

Here p(∗) is the pressure in some refence state and pv (n + 1) is the pressure in the vapor if a
drop of size (n + 1) exists in dynamic equilibrium in the vapor phase. Similarly, condensation
in multicomponent perfect gases or segregation in multicomponent perfect solutions may be
discussed. Here approaches based on Kelvin’s equation and on our method lead to equivalent
results. The latter one is, however, more straightforward and also applicable directly to phase
formation in nonideal vapors, nonideal solutions and beyond.

Finally, having developed a theoretical foundation of the expressions for the coefficients
of emission in terms of a mesoscopic approach to nucleation-growth processes by general
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thermodynamic methods, we have not even touched the problem of determination of the ap-
propriate expressions for the chemical potential of a particle in a cluster of given size or, in
other words, the work of formation of a cluster of given size. Such a step in the analysis is
required to apply the theory to particular problems. Here a detailed thermodynamic analysis
for each specific kind of phase transformation is further necessary. In the present contribution,
we cannot and will not make the analysis more explicite but refer to the overviews given in
Refs. [58–60] and in Chapters 11 and 12.
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4 Nucleation and Crystallization Kinetics in Silicate Glasses:
Theory and Experiment

Vladimir M. Fokin, Nikolay S. Yuritsyn, and Edgar D. Zanotto

All truths are easy to understand once they are discovered;
the point is to discover them.

Galileo Galilei

Experimental data on internal homogeneous crystal nucleation in silicate glasses obtained in
the last four decades are analyzed in detail in the framework of the classical nucleation the-
ory (CNT). Despite the fact that reasonable qualitative interpretations of the temperature and
time dependences of nucleation rates are given by CNT, it meets with serious problems in
their quantitative description. Different reasons for this failure are tested and discussed. The
main conclusion is that, in contrast to Gibbs’ description of heterogeneous systems, the ther-
modynamic properties of critical nuclei which, to a large extent, govern nucleation kinetics,
generally differ from those of the corresponding macrophase. A number of evidences based
on the analysis of both crystal nucleation and growth data are given for a decreased ther-
modynamic driving force for crystallization and critical nuclei/liquid interfacial energy, as
compared with the respective properties of the macro-phase. Special attention is devoted to
the widespread and practically important type of heterogeneous nucleation – nucleation on
glass surfaces. A comparative analysis of available data on surface and bulk nucleation rate
data is performed.

4.1 Introduction

Glasses can be defined as noncrystalline solids that, in the course of their preparation, undergo
a process commonly denoted as glass transition. One of the most important (but not the only)
ways of vitrification consists in supercooling a liquid suppressing crystallization. When a liq-
uid is cooled down with sufficiently high rates, crystallization may occur to a very limited
degree or be completely absent down to temperatures corresponding to very high viscosities
in the range η ≥ 1013–1012 Pa · s ∼= η(Tg), where Tg is defined as the glass transition temper-
ature. Below this temperature, the viscosity is so high that large-scale atomic rearrangements
in the system are no longer possible within the time-scale of the experiment, and the structure
freezes-in, i.e., the structural rearrangements required to retain the liquid in the appropriate
metastable equilibrium state cannot follow any more the changes of temperature. This process
of freezing-in of the structure of an undercooled liquid is commonly denoted as glass transition
and, as a result, the system is transformed into a glass. Typical glass-forming liquids, such as
silicate melts, are commonly characterized by: (i) relatively high viscosities (η > 100 Pa · s)
at the melting point (or liquidus), and (ii) a steep increase of the viscosity with decreasing
temperature. These properties favor the process of transformation of a liquid into a glass. The
above mechanism discussed leads to the conclusion that the glass structure is very similar to
that of the parent (undercooled) liquid at temperatures near Tg.
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Glass is thermodynamically unstable with respect to the undercooled metastable liquid.
This way, processes of relaxation of the glass structure may occur aimed to reach a metastable
liquid state for the given temperature and then, eventually, the crystalline state. Nevertheless,
glasses can exist at room temperatures for extremely long periods of time because any struc-
tural rearrangements, including those required for crystal nucleation and growth, are inhibited
by its high viscosity. However, when a glass is heated for sufficiently large time intervals to
temperatures within or above the glass transition range, devitrification readily starts, as a rule,
from the surface and sometimes via bulk nucleation.

Nucleation in glass-forming melts, or the process of formation of the precursors of the
crystalline phases, may occur by different mechanisms. Commonly one distinguishes homo-
geneous and heterogeneous nucleation. Homogeneous nucleation is a stochastic process oc-
curring with the same probability in any given volume (or surface) element. Alternatively,
nucleation occurring on preferable nucleation sites, such as preexisting interfaces, solid im-
purities, previously nucleated phases, and surface defects is denoted as heterogeneous nucle-
ation. Depending on the position where nucleation takes places, volume (bulk) and surface
crystallization can be distinguished.

Glass-forming melts are highly interesting objects for model studies of nucleation phe-
nomena. The high viscosities of glass-forming melts result in relatively low (measurable) rates
of crystallization. This property sometimes permits detailed studies of nucleation kinetics.
In addition, the rapid increase of viscosity with decreasing temperature makes it possible to
“freeze-in” different states of the crystallization process by quenching previously heat-treated
specimens to room temperature. Hence, as it was figuratively said in Ref. [1], “glasses did
and may serve as the ‘Drosophila’ of nucleation theory in order to test different approaches.”
Moreover, silicate glass is one of the oldest materials produced by mankind, having its ori-
gin as early as 4000 years BC in ancient Mesopotamia [2], but they retain their technological
importance up to the present date.

As is evident from the above discussion, crystallization and glass formation are competi-
tive processes. This way, in order to avoid uncontrolled crystallization of glassy articles one
needs to know the main factors governing nucleation and crystal growth. On the other hand,
controlled nucleation and crystallization of glasses underlay the production of glass–ceramics
invented in the mid 50s [3]. Glass–ceramics are widely used today in both domestic and high-
technology applications. By both reasons, the investigation of glass crystallization kinetics is
of great interest from both practical and theoretical points of view. Since, in many respects,
the nucleation stage determines the pathways of overall crystallization, in this chapter we will
focus our main attention on nucleation with particular emphasis on the analysis of relevant
experimental results obtained with silicate glasses.

The present chapter is organized as follows: In Sect. 4.2 the basic equations of the classi-
cal nucleation theory (CNT) are given, which are employed then for nucleation data analysis.
Section 4.3 presents the main methods which may be employed to experimentally determine
nucleation rates. Section 4.4 is devoted to the experimental findings concerning transient and
steady-state crystal nucleation in glasses. In particular, evidence for a strong correlation be-
tween nucleation rates and reduced glass transition temperature is given. An analysis of prob-
lems arising in the application of CNT to experimentally observed nucleation rate data is
performed in Sect. 4.5. Section 4.6 deals with one of the forms of heterogeneous nucleation,
nucleation on glass surfaces, which is especially important for practical applications. In this
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section, the relatively few measurements of surface nucleation rates are presented, and the
origin of preferential surface nucleation is discussed. The chapter is completed by some con-
cluding remarks.

4.2 Basic Assumptions and Equations
of Classical Nucleation Theory (CNT)

4.2.1 Historical Notes

In its original form, the CNT is based on the thermodynamic description of heterogeneous
systems as developed by Gibbs [4]. Following Gibbs [4], the real inhomogeneous system is
replaced by a model system consisting of two homogeneous phases divided by a mathematical
surface of zero thickness. The properties of the respective macroscopic phases coexisting in
equilibrium are chosen as reference states for the description of the two different homogeneous
phases. The free energy of the system – consisting of a cluster of the newly evolving phase in
the ambient phase – is expressed then as the sum of the bulk contributions of the nucleus and
the ambient phase. These bulk terms are supplemented by interfacial contributions, the main
one is given by the product of the interfacial area and specific surface energy.

Applying the theory to cluster formation, these surface terms result initially in an increase
of the characteristic thermodynamic potential and the existence of a critical cluster size. Only
clusters with sizes larger than the critical size are capable to grow up in a deterministic way to
macroscopic sizes. The change of the characteristic thermodynamic potential resulting from
the formation of a cluster of critical size is commonly denoted as work of critical cluster for-
mation. This quantity reflects basically the thermodynamic or energetic aspects of nucleation.

In addition to the thermodynamic aspects of nucleation, the dynamics of cluster formation
and growth has to be incorporated appropriately into the theory. Here different approaches
are employed in dependence on the particular application analyzed. The application of CNT
to condensed systems – which is of particular importance in the present analysis – originates
from the work of Kaischew and Stranski [5]. These authors employed the approach, developed
by Volmer and Weber [6] for vapor condensation, to crystal formation in condensed systems.
Further, advances in CNT are connected with the work of Becker and Döring [7], Volmer [8],
Frenkel [9], Turnbull and Fischer [10], Reiss [11], and others. Photographs of some of these
pioneers of the nucleation theory are shown in Fig. 4.1.

According to CNT, the description of homogeneous and heterogeneous nucleation can be
performed basically by the same methods. We will first present the results for homogeneous
nucleation and discuss afterward the modifications required to account for the effect of impu-
rities, etc. that lead to heterogeneous nucleation.

4.2.2 Homogeneous Nucleation

Homogeneous nucleation supposes the same probability of critical nucleus formation in any
given volume or surface element of the system under study. According to CNT (see, e.g.,
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Figure 4.1: From left top to right bottom: J.W. Gibbs, G. Tammann, M. Volmer, R. Kaischew,
J. Frenkel, and D. Turnbull

Ref. [12]), the steady-state homogeneous volume nucleation rate can be written as

Ist = I0 exp

[
− W∗ + �GD

kBT

]
, I0 = 2N1

kBT

h

(
a2σcm

kBT

)1/2

. (4.1)

It determines the number of supercritical clusters formed per unit time in a unit volume of
the system. The preexponential term I0 in Eq. (4.1) depends weakly only on temperature (if
compared to the exponential function) and varies between 1041 and 1043 m−3 s−1 for different
condensed systems [14]. In Eq. (4.1), kB and h are the Boltzmann and Planck constants, re-
spectively; N1 ∼ 1/a3 is the number of structural (formula) units, with a mean size a, per unit
volume of melt; σcm is the specific free energy of the critical nucleus–melt interface; �GD
is the activation free energy for transfer of a “structural unit” from the melt to a nucleus (ki-
netic barrier). Alternatively, for glass-forming liquids, the kinetic factors affecting the process
of crystallite formation have been expressed, in most practical applications of the theory, via
the Newtonian viscosity, i.e., �GD is replaced by the activation free energy for viscous flow,
�Gη. In addition, W∗ is the thermodynamic barrier of nucleation, i.e., the increase in the free
energy of a system due to the formation of a nucleus with critical size, r∗.
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The critical nucleus size can be determined from the condition

∂W

∂r
= 0 , W = c1r2σcm − c2r3�GV , (4.2)

where �GV = Gl − Gc is the difference between the free energies of liquid and crystal per
unit volume of the crystal (i.e., the thermodynamic driving force for crystallization) and c1
and c2 are the shape factors. In the case of a spherical nucleus, one gets

r∗ = 2σcm

�GV
(4.3)

and

W∗ = 16π

3

σ 3
cm

�G2
V

. (4.4)

The thermodynamic driving force for crystallization is given by

�GVVm = �Hm

Tm
(Tm − T ) +

Tm∫
T

�Cp dT ′ − T

Tm∫
T

�Cp

T ′ dT ′ , (4.5)

where Vm is the molar volume, �Hm and Tm are the molar heat of melting and the melting
temperature of the crystal, respectively, and �Cp = C l

p − Cc
p is the difference between the

molar heat capacities of liquid and crystal at constant pressure. The experimental values of
�GV are normally bounded by the approximations usually assigned to Turnbull (Eq. (4.6))
and Hoffman (Eq. (4.7)) that assume �Cp = 0 and �Cp = constant, respectively [13]

�GV(T ) = �HV

(
1 − T

Tm

)
, (4.6)

�GV(T ) = �HV

(
1 − T

Tm

)
T

Tm
, (4.7)

where �HV is the melting enthalpy per unit volume of the crystal. One should note, however,
that Eq. (4.6) was first employed already by J.J. Thomson and M. Volmer (cf. Ref. [8])

Equation (4.1) describes the so-called steady-state nucleation. Such nucleation regime can
be realized if a stationary size distribution of the newly evolving subcritical (r < r∗) and
critical (r = r∗) nuclei is established in the system. The cooling rates typically used for glass
formation from the melt, and the rates of heating a glass up to a given temperature T under
investigation, are commonly too high to maintain a steady-state distribution of nuclei in the
system. Hence, some time period is needed for reconstruction of the initial nuclei distribution
toward the time independent distribution corresponding to the temperature T . During this
period the nucleation rate varies and approaches a steady-state value given by Eq. (4.1).

The time required to establish steady-state nucleation in the system is commonly denoted
as the time-lag in nucleation, τ . It characterizes the duration for the onset of the steady-state
distribution, and hence the evolution of the nucleation rate, I (t), to a steady-state value, Ist. In
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cases when the initial concentration of critical and subcritical nuclei may be neglected, τ and
I (t) can be expressed by Eqs. (4.8) and (4.9), respectively [15, 16],

τ = 16h

π

σcm

�G2
Va4

exp

(
�GD

kBT

)
, (4.8)

I (t) = Ist

[
1 + 2

∞∑
m=1

(−1)m exp

(
−m2t

τ

)]
. (4.9)

Integration of Eq. (4.9) results in the following expression for the time-dependence of the
number of supercritical nuclei per unit volume of the system, NV,

NV(t)

Istτ
=

[
t

τ
− π2

6
− 2

∞∑
m=1

(−1)m

m2
exp

(
−m2 t

τ

)]
. (4.10)

For large times, this expression can be approximately written as

NV(t) = Ist

(
t − π2

6
τ

)
for t → ∞ . (4.11)

For the experimental estimation of τ , it is convenient to use the induction period, tind, defined
via Eq. (4.12), as

τ = 6

π2 tind . (4.12)

This induction time, tind, is easily determined as the point of intersection of the asymptote
(Eq. (4.11)) with the time axis.

4.2.3 Heterogeneous Nucleation

The existence of foreign solid particles, phase boundaries, etc., may favor nucleation. This
effect is mainly due to the diminished thermodynamic barrier, as compared to that of homoge-
neous nucleation, owing to a decrease of the effective surface energy contributions to the work
of critical cluster formation. This effect is the main distinguishing feature of heterogeneous
nucleation. For example, the thermodynamic barrier for nucleation for condensation on planar
interfaces is given by [12]

W∗
het = W∗� , � = 1

2 − 3
4 cos θ + 1

4 cos3 θ . (4.13)

Depending on the value of the wetting angle, θ , the values of the parameter � may vary from
zero to unity. Generally, for heterogeneous nucleation we can write W∗

het = W∗�. The values
of � depend hereby on the mechanism of nucleation catalysis.

In order to adapt the expression for the steady-state nucleation rate, Eq. (4.1), to the de-
scription of heterogeneous nucleation, the number of “structural” units per unit volume, N1,
which appears in the preexponential term of Eq. (4.1), must be replaced by the number, NS,
of “structural units” in contact with the catalyzing surface per unit volume. Hence, in the
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case of heterogeneous nucleation, the following equation can be written for the steady-state
nucleation rate

I het
st

∼= NS kBT

h
exp

[
− W∗� + �GD

kBT

]
. (4.14)

4.3 Experimental Methods to Estimate Nucleation Rates

4.3.1 General Problems

Since, at the high undercoolings corresponding to the range of measurable (homogeneous)
volume nucleation rates in glass-forming liquids, the critical nuclei are undetectable by the
common experimental techniques, they have first to be developed up to a visible size to allow
one to determine (e.g., using a microscope) their number density, N , as a function of time and
then to estimate the nucleation rate as I = d N/ dt . In order to perform such task, different
methods have been developed.

4.3.2 Double-Stage (“Development”) Method

If the overlapping of nucleation and growth rate curves is weak (i.e., the crystal growth rates
are very low at temperatures corresponding to high nucleation rates), the observation of the
nucleated crystals and the estimation of the crystal number density is a quite difficult task.
For these cases, about 100 years ago, Gustav Tammann (who was studying crystallization of
organic liquids) proposed the following procedure, which is now known as the Tammann or
“development” method [17]. Following this method, crystals nucleated at a low temperature,
Tn , are grown up to microscopic sizes at a higher temperature, Td > Tn . The development
temperature Td has to meet the following conditions for nucleation (I ) and growth (U ) rates:
I (Tn) � I (Td) and U(Td) � U(Tn). After a lapse of 70 years, Ito et al. [18] and Filipovich
and Kalinina [19] independently applied Tammann’s method to study the crystal nucleation
kinetics in lithium disilicate glasses. Since then, this method has been widely employed for
the glass crystallization studies.

In employing Tammann’s method one usually assumes that the “development” process
includes only the growth of crystals that were nucleated at low temperature. However, since
the critical nucleus size, r∗, increases with increasing temperature (due to the decrease in the
thermodynamic driving force, see Eq. (4.3)), the crystals which do not achieve the size r∗(Td)
during the heat treatment at Tn , i.e., crystals with sizes between r∗(Tn) and r∗(Td), have a high
probability of dissolving at Td. Thus, Td must be carefully chosen in such a way that there is
no significant dissolution of subcritical nuclei at Td. This is the case when most of them have
reached the corresponding critical or supercritical sizes by growing at the temperature Tn . It
will be shown in Sect. 4.4 that this effect results in a shift of the N(t) curves along the time-
axis, but does not affect its shape and, hence, does not change the value of the steady-state
nucleation rate.
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4.3.3 Single-Stage Methods

The Traditional Method

In cases of considerable overlaps of the I (T ) and U(T ) curves, the number density of crys-
tals can be measured directly after single-stage heat treatments at Tn . Then, the obtained
N(Tn , t) curve will be shifted (with regard to the true one) to higher times by a period of
time t0 = (rres − r∗(Tn))/U(Tn) ∼= rres/U(Tn) that is needed to grow the crystals up to
the microscope resolution, ε = 2rres [20]. Finally, one must correct the number densities to
account for stereological errors. This procedure will be described in Sect. 4.3.4.

Köster’s Method

Continuous nucleation and growth can result in a broad distribution of crystal sizes, i.e., the
first nucleated crystal has the largest size and so on. If the crystal growth rate is known, one
can calculate the “birth dates” of crystals belonging to different size groups and then plot
an N(t) curve. This method works also in the case of heterogeneous nucleation with a fi-
nite number of active centers, when the latter are depleted in a relative short time, and fur-
ther advancement of crystallization occurs only via crystal growth. This method, proposed by
Köster [21] for metallic glasses, has been successfully employed to study surface nucleation
rates in silicate glasses (see Sect. 4.6).

4.3.4 Stereological Corrections

The use of reflected light microscopy can lead to large errors in the determination of the
number of crystals per unit volume due to the use of stereological methods, since one has to
calculate volume properties (size distributions, numbers, etc.) based on statistical evaluations
performed on cross-sections through the specimens. So a significant fraction of the cutted
crystals (in the cross sections) can be smaller than the resolution limit of the microscope used,
which may lead to a underestimation of the numbers and, consequently, in the determined
values of nucleation rates. In Ref. [22] equations were derived for the fractional underestima-
tion, f , of the number of spherical particles per unit volume and of the nucleation rates, as
obtained from the stereological techniques for reflected light microscopy or SEM, for typical
cases of crystal nucleation in glasses. The following two cases bound the common experi-
mental situations: (i) a monodisperse system of spherical particles that can result, e.g., from
instantaneous heterogeneous nucleation; (ii) a uniform size distribution of spherical particles
from the critical size to DM , where DM is the largest diameter. Such distribution is typical
for simultaneous homogeneous nucleation and growth in a singlestage heat treatment. The
equations for these cases are as follows:

Case (i) monodisperse systems:

f = 2

π
arcsin(σ1) , (4.15)

Case (ii) uniform size distribution from the critical size to DM :

f = 1 −
{

2

π
[cos θ1[1 − ln(1 + sin θ1)] + θ1 + σ1 ln σ1 − σ1]

}
. (4.16)



82 4 Nucleation and Crystallization Kinetics in Silicate Glasses

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f

 /D
M

Figure 4.2: Fractional underestimations in the number of spherical particles versus the ratio
between the resolution limit and the largest diameter. Solid and dashed curves refer to cases (i)
and (ii), respectively

In the above equation, the notation θ1 = arccos σ1, σ1 = ε/DM is employed and ε is the
resolution limit of the microscope used. Comparison with experimental nucleation data for
two silicate glasses demonstrated that these equations predict well the observed underestima-
tions of nucleation rates. Figure 4.2 shows the fractional underestimations in the number of
spherical particles versus the ratio between the resolution limit and the largest diameter.

To minimize these errors employing reflected light optical microscopy methods, one should
use high magnification objective lenses or SEM. Alternatively, transmission methods could
be used because they lead to much smaller errors than reflection techniques. Similar under-
estimates occur when one tries to determine volume fractions of the crystallized phase by
microscopy methods. In Ref. [23] equations were derived to estimate systematic errors in
experimental determinations of the volume fractions of the transformed part of the system
by microscopy methods. For reactions that occur by continuous nucleation and growth, the
experimental values of volume fractions of transformed substance may be subjected to signif-
icant errors when the largest grain size of the distribution is close to the microscope resolution
limit. For transformations occurring from a fixed number of nuclei, the systematic errors are
smaller than those observed in the continuous nucleation case, but can still be significant when
reflected light microscopy methods are used. Transmission methods are more time consuming
but lead to much smaller errors than reflection techniques.

4.3.5 Overall Crystallization Kinetics and Nucleation Rates

Crystal nucleation followed by subsequent growth results in overall crystallization. This pro-
cess can be described by determining the volume fraction of the transformed phase, α(t). The
formal theory of overall-crystallization kinetics under isothermal conditions was developed in
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the late 30s by Kolmogorov [24], Johnson and Mehl [25], and Avrami [26], and is well known
today as JMAK theory. According to this theory the volume fraction of the new phase is given
by

α(t) = 1 − exp


−g

t∫
0

I (t ′)


 t∫

t ′
U(t ′′) dt ′′




3

dt ′


 , (4.17)

where g is a shape factor, which is equal to 4π/3 for spherical crystals. If the nucleation (I ) and
growth (U ) rates are constant throughout the transformation (e.g., steady-state homogeneous
nucleation), Eq. (4.17) can be rewritten as

α(t) = 1 − exp

[
− gIU3t4

4

]
. (4.18)

When the number of growing crystals, N0, does not change with time (as it is typical for fast
heterogeneous nucleation on a finite number of active sites), Eq. (4.17) transforms to

α(t) = 1 − exp
[
−gN0U3t3

]
. (4.19)

Avrami proposed that generally the following relation should be used

α(t) = 1 − exp(−K tn) . (4.20)

In typical applications, Eq. (4.20) is used in the form

ln(− ln(1 − α)) = ln K + n ln t . (4.21)

The values of K and n can be estimated then by fitting the experimental data concerning
the α(t) dependence to Eq. (4.21). Thus the coefficient K includes I and U , or N0 and U .
Therefore, the Avrami coefficient, n, depends on both nucleation and growth mechanisms,
and can by written as

n = k + 3m . (4.22)

Here k and m are taken from the formulas N ∼ tk and r ∼ tm describing the variation of
crystal number (N) and crystal size (r ) with time.

The knowledge of the Avrami coefficient, n, is helpful in order to understand the mecha-
nism of phase transformation at a given temperature. When it is possible to measure indepen-
dently the crystal growth rate, one can then calculate the nucleation rate from the coefficient
K . This method is not as precise as direct measurements, but can give an information about
nucleation in advanced stages of crystallization, when the application of other methods is
confronted with difficulties (see Sect. 4.5).

For the simplest cases of constant nucleation rate (or constant number of crystals)
and linear growth, Eqs. (4.18) and (4.19) were tested by using Ist, U , and N0 data in-
dependently measured by optical microscopy in glasses of stoichiometric compositions
2Na2O · CaO · 3SiO2 [27] and Na2O · 2CaO · 3SiO2 [28]. A reasonable agreement was ob-
tained between the values of gIU3 (or gN0U3), calculated from fitting the α(t) data to the
JMAK equation, and directly measured values. Recently, the JMAK equation was also suc-
cessfully employed, together with measured crystal growth rates, to estimate extremely high
nucleation rates in a stoichiometric glass of fresnoite composition [29].
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Figure 4.3: Typical curves of the number density of nucleated crystals versus time of nucleation
obtained by the “development” method [30, 31]

4.4 Interpretation of Experimental Results
by Classical Nucleation Theory

4.4.1 Nonsteady State (Transient) Nucleation

Estimation of the Time-Lag in Nucleation

Typical N(Tn , Td, t) curves obtained with the “development” method are shown in Fig. 4.3.
As already mentioned, only crystals that achieve the critical size, r∗(Td), during heat treatment
at Tn can grow at the development temperature Td. The other nuclei have a high probability to
dissolve at Td. The total number of supercritical crystals, N , nucleated at a temperature, Tn , in
a time, t , is given by

N (Tn, r∗(Tn), t) =
t∫

0

I (Tn, t ′) dt ′ . (4.23)

The number of crystals nucleated at the same conditions, but having a size larger than the
critical size, r∗(Td), and which are, consequently, capable to grow at Td, is given by

N (Tn, r∗(Td), t) =
t−t0∫
0

I (Tn, t ′) dt ′ , (4.24)
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Figure 4.4: (a) Number density of Li2O · 2SiO2 crystals developed at Td = 530 °C (1, 5),
560 °C (2), 594 °C (3) and 626 °C (4) as a function of nucleation time at Tn = 453 °C [32]. (b)
Induction time versus development temperature

where t0 is the period of time that the critical nucleus with a size r∗(Tn) needs to reach the
size r∗(Td). This time interval is determined via

t0(Tn, Td) =
r∗(Td)∫

r∗(Tn)

dr

U(T n, r)
. (4.25)

Equations (4.23) and (4.24) yield

N (Tn, r∗(Tn), t) = N (Tn, r∗(Td), t + t0) . (4.26)

Hence, the N(Tn , r∗(Tn), t) plots are similar to the N(Tn , r∗(Td), t) plots with the only differ-
ence that the latter is shifted along the time-axis by a time t0. Thus, the development method
can provide the correct value of the steady-state nucleation rate, but overestimates the induc-
tion time for nucleation by t0.

The period during which the heat treatment at the nucleation temperature Tn does not
influence crystallization at Td can be identified with t0 (given by Eq. (4.25)). This time is
indicated by an arrow in Fig. 4.3a. According to Eq. (4.25), the higher the growth rates U at
the temperature of nucleation Tn , and the closer is Td to Tn(r∗(Tn) is correspondingly closer to
r∗(Td)), the lower is t0. Hence, for a strong overlap of the nucleation and growth rate curves,
the value of t0 is not very high and can often be neglected. This result has been observed for
the 2Na2O · CaO · 3SiO2 glass, it is shown in Fig. 4.3b.

On the other hand, when the overlap of the nucleation and growth rate curves is weak,
as observed for lithium disilicate glass, one has to correct (reduce) the measured value of
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Figure 4.5: (a) N/(Istτ) versus reduced time for glasses Li2O · 2SiO2 (1) and (2) and
2Na2O · CaO · 3SiO2 (3) and (4) [30] for T = 430 (1), 465 (2), 465 (3) and 470 °C (4). Curve (5)
was calculated from Eq. (4.10). (b) Reduced nucleation rate versus reduced time calculated from
Eq. (4.9)

tind(Tn, Td) by a time t0(Tn, Td) (see Fig. 4.3(a)). The value of tind(Tn) can be roughly es-
timated via an extrapolation of the tind(Tn, Td)-values for the N(Tn , Td, t) curves, obtained
at different Td, to tind corresponding to Td = Tn . Figure 4.4(a) presents, as examples, such
N(Tn , Td, t) curves for lithium disilicate glass. The values of tind, taken from these curves,
versus development temperature are plotted in Fig. 4.4(b). When Td approaches Tn = 453 °C,
tind is about 1.9 h (the average value of the linear and quadratic polynomial extrapolations).
Hence, one can approximately estimate t0 as t0 = tind(Tn, Td)− tind(Tn), e.g., for Td = 530 °C
the time interval t0 is about 0.9 h. A value close to the given one was also obtained by extrap-
olating the initial section of the N(t) curve (1) (see also curve (5)) to N = 0. Thus, according
to Eq. (4.12), one can assume that Eq. (4.27) holds, i.e.,

τ (Tn) = 6

π2 (tind(Tn, Td) − t0(Tn, Td)) . (4.27)

Kinetic N(t)-curves, such as those presented by Fig. 4.3, can be plotted in dimensionless co-
ordinates (N(T, t − t0)/Ist(T )τ (T ) versus (t − t0)/τ (T )). These coordinates allow one to
combine data for different glasses and different temperatures in the same plot, as shown in
Fig. 4.5(a). Experimental points are quite close to the theoretical master curve calculated with
Eq. (4.10). This kinetic curve corresponds to increasing nucleation rates toward the steady-
state value, Ist. The evolution of the nucleation rate calculated by Eq. (4.9) is shown in
Fig. 4.5(b).
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Figure 4.6: Temperature dependence of the time-lag for nucleation. Circles refer to experimental
data for Li2O · 2SiO2 glass [34]. The solid line was calculated by Eq. (4.8)

4.4.2 Temperature Dependence of the Time-Lag in Nucleation

According to Eq. (4.8), when the degree of undercooling increases, the time-lag τ has to pass
through a minimum. This behavior is due to an interplay between the decrease of 1/�G2

V and
the increase of the exponential term. This minimum is located at low undercoolings. Since,
in the case of glass-forming silicate melts, detectable internal homogeneous nucleation rates
are observed only at very high undercoolings, �T/Tm ≥ 0.4 [33], only an increase of the
time-lag is usually observed with diminishing temperature.

Figure 4.6 illustrates this trend for lithium disilicate glass. The circles refer to the ex-
perimental data. The solid line is determined according to Eq. (4.8) with σcm = 0.2 J m−2

assuming that the activation free energy �GD is close to that for viscous flow,�Gη. For very
high undercoolings, typically needed to observe homogeneous nucleation, the validity of this
assumption has been a subject of controversial discussion. However, this supposition is com-
monly assumed to be valid for relatively low undercoolings (T > 1.2 Tg) (see, e.g., [35]).

4.4.3 Transient Nucleation at Preexisting Nucleus Size Distributions

In Sects. 4.2 and 4.4, we discussed nonsteady state nucleation assuming the absence of an
appreciable number of preexisting nuclei. This assumption is quite reasonable for interpreting
such time-lag phenomena for glasses obtained via fast quenching of the melt. In contrast,
preliminary annealing of a glass at some temperature T1 for a sufficiently long time t ≥ τ (T1)
results in the formation of a cluster distribution that may act as an initial distribution at the
temperature T2. Then this distribution evolves toward a steady-state distribution corresponding
to the temperature T2, complicating the time dependence of the nucleation rate. For example,
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Figure 4.7: (a) Number density of Li2O ·2SiO2 crystals obtained via the “development” method
(Td = 626 °C) versus time of nucleation at Tn = 465 °C. Curve (1) refers to quenched glass.
Curves (2) and (3) refer to glasses subjected to preliminary treatment at T = 430 °C for 65 h (2)
and 89 h (3) [36]. (b) Nucleation rate versus time. Solid and dashed lines correspond to curves
(1) and (3) from Fig. 4.7(a), respectively
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Figure 4.8: Number density of Li2O · 2SiO2 crystals obtained via the “development” method
(Td = 626 °C) versus time of nucleation at Tn = 485 °C. Curve (1) quenched glass, curves
(2)–(5) glass subjected to preliminary treatment at T = 473 (2), 451 (3), 440 (4), and 430 °C
(5) for the following times: t = 0.75 (2), 4.5 (3), 18 (4), and 65 h (5) [36]

in the case of lithium disilicate glass annealed at T1, the transient nucleation rate at T2 > T1
passes through a well-expressed maximum before reaching the steady-state value.
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Figure 4.7 shows the respective N(t) curves at T2 = 465 °C for a fast quenched parent
glass (1) and for glasses that had been preliminarily annealed at T1 = 430 °C (2) and (3).
All curves were obtained by the “development” method, with Td = 626 °C. Curves (2) and
(3) demonstrate, as compared with curve (1), a strong increase in the number of crystals, and
only for times higher than about 120 min the nucleation rate achieves the steady-state value,
corresponding to the temperature T2. The evolution of the nucleation rate corresponding to
curve (3) is shown in Fig. 4.7(b). Such unusual behavior of the nucleation kinetics is caused
mostly by the nuclei formed at T1 – with sizes between r∗(T2) and r∗(Td) – and partly by
subcritical nuclei – with sizes less than r∗(T2). Since the number of nuclei with sizes r ≥ r∗(T )
increases with decreasing temperature, down to T = Tm/3, the effect of the preliminary
heat treatment becomes stronger when T1 is diminished (see Fig. 4.8). The data presented in
Fig. 4.8 are well described by simulations performed in the framework of the kinetic model
of the classical theory of nucleation [37, 38]. Thus, the nucleation kinetics is governed by the
evolution of the nucleus distribution.

4.4.4 Steady-State Nucleation

Temperature Dependence of Steady-State Nucleation Rates

Some examples of steady-state nucleation rates, Ist, measured from the slope of the linear part
of the N(t) plots, such as those shown in Fig. 4.3, are presented in Fig. 4.9 as a function of
reduced temperature. The values of Ist(T ) pass through a maximum at a temperature Tmax. The
magnitudes of Ist(Tmax) = Imax vary from 5×1013 to 3×102 m−3 s−1 and cover practically all
available measurements of nucleation rates in silicate glasses of stoichiometric composition
up to the present time.

The reason for the existence of the nucleation rate maximum follows from a simple analy-
sis of Eq. (4.1). Since the preexponential term, I0, depends only weakly on temperature, the
temperature dependence of the nucleation rate is determined mainly by the thermodynamic
and kinetic barriers for nucleation. A temperature decrease produces two effects: a decrease
of the thermodynamic barrier, due to an increase in the thermodynamic driving force for crys-
tallization, leading to a higher nucleation rate, and an increase of the kinetic barrier leading
to a lower nucleation rate (the kinetic barrier is, as mentioned earlier, often replaced by the
activation free energy for viscous flow). As a result of these two opposite tendencies, one finds
a maximum of the steady-state nucleation rate at a temperature Tmax, which is well-below Tm.
Equation (4.4) for the thermodynamic barrier can be rewritten as

W∗
kBT

= C1
1

Tr (1 − Tr )
2 , C1 ≡ 16π

3

α3
ST �Hm

RTm
, Tr ≡ T

Tm
, (4.28)

using the Turnbull approximation for the thermodynamic driving force, Eq. (4.6), and the
following semi-empirical equation proposed by Scapski and Turnbull for the specific surface
energy of the nucleus/melt interface [41]

σcm = αST
�Hm

V 2/3
m N1/3

A

, (4.29)
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Figure 4.9: Steady-state nucleation rate versus reduced temperature for some stoichiometric
glasses: (1): 3MgO · Al2O3 · 3SiO2 [39], (2): Li2O · 2SiO2 [30], (3): Na2O · 2CaO · 3SiO2 [40],
(4): 2Na2O · 1CaO · 3SiO2 [31]

where �Hm is the melting enthalpy per mole, Vm is the molar volume, NA is Avagadro’s
number, and αST is an empirical dimensionless coefficient. Assuming that �GD is of the
same order of magnitude as the activation free energy of viscous flow, �Gη, one can write the
kinetic barrier also as

�GD

kBT
= C2

Tr − T0r
, C2 ≡ 2.30B

Tm

∼= 30(Tgr − T0r) , T0r = T0

Tm
, Tgr = Tg

Tm
, (4.30)

where T0 and B are empirical coefficients of the Vogel–Fulcher–Tammann (VFT) equation
and Tg is the glass transition temperature. The application of the VFT-relation implies the
assumption of a temperature-dependent activation free energy �Gη. In the definition of C2
we took into account the fact that �Gη/(kBT ) ∼= 30 at T = Tg.

Figure 4.10 shows Ist(Tr ) curves calculated with Eqs. (4.1), (4.28), and (4.30) and reason-
able values of the preexponential term and values of the parameters C1 and C2, as indicated
in the figure caption. One can see that the decrease in the kinetic barrier, caused by a decrease
in C2 at fixed values of C1, results in a shift of the nucleation rate maximum to lower tem-
peratures (cf. curves (1)–(4)). The reduced temperature Tr ≡ T/Tm = 1/3 is a lower limit to
T max

r ≡ Tmax/Tm obtained when the kinetic barrier tends to zero (cf. curve (5)). This shift is
accompanied by a strong increase in the magnitude of I (Tmax) ≡ Imax. When the thermody-
namic barrier is diminished at fixed values of C2, by decreasing the parameter C1 (which is
proportional to αST and the reduced melting enthalpy �H r

m = �Hm/RTm), the value of Imax
also increases (curves (1), (6)–(8)), but the value of Tmax shifts to higher temperatures.
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Figure 4.10: Temperature dependence of the homogeneous nucleation rate. The curves are cal-
culated with Eqs. (4.1), (4.28), and (4.30) with a preexponential term I0 = 1042 m−3 s−1

and the following values of the parameters characterizing the temperature independent parts of
the thermodynamic (C1) and kinetic (C2) barriers: C1 = 6.5 (1)–(5), 5.8 (6), 5.1 (7), 4.5 (8);
C2 = 6 (1), (6), (7), (8), 4.8 (2), 3.9 (3), 2.8 (4), 0 (5)

The effect of the variation of the kinetic barrier on the nucleation rate can be qualitatively
illustrated for lithium disilicate [42] and sodium calcium metasilicate [43] glasses with dif-
ferent contents of H2O (few percent of water result in a significant decrease of viscosity) as
shown in Fig. 4.11. A decrease in the thermodynamic barrier can be also caused by a decrease
in the crystal/melt interfacial energy as in the case of heterogeneous nucleation. As a result,
as will be shown in Sect. 4.6, the temperature Tmax for heterogeneous nucleation is displaced
to higher values as compared with homogeneous nucleation.

4.4.5 Correlation between Nucleation Rate
and Glass Transition Temperature

The methods discussed in Sect. 4.3 to measure nucleation kinetics are both difficult and time
consuming. Also, owing to several restrictions they cannot always be employed. Hence, the
knowledge of any correlation between nucleation rate and easily measurable properties of
glasses is highly desirable. As one example, well before the development of nucleation theory
for condensed systems, Tammann called attention to the following tendency: the higher the
melt viscosity at the melting temperature, the lower its crystallizability [44].

Almost 80 years after Tammann, James [45] and Zanotto [46], based on numerous ex-
perimental nucleation rate data for several silicate glasses, concluded that glasses having a
reduced glass transition temperature, Tgr ≡ Tg/Tm, higher than ∼ 0.58–0.60, display only
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Figure 4.11: Temperature dependences of steady-state nucleation rates in Li2O · 2SiO2 [42]
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Figure 4.12: Maximum nucleation rates as a function of reduced glass transition temperature
for 55 silicate glasses. The lines are calculated from CNT with C1 = 4.5 (1) and 6.5 (2). Solid
lines refer to C2 = 4.5 and Tor = Tgr − C2/30; dashed lines to Tor = 0.4 [48]
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surface (mostly heterogeneous) crystallization; while glasses showing volume (homogeneous)
nucleation have values Tgr < 0.58–0.60. However, since at temperatures T < Tm the nucle-
ation rate is always positive, the absence of volume nucleation for glasses having Tgr > 0.60
merely indicates undetectable nucleation on laboratory time/size scales. Hence, an increase
in the nucleation rate with decreasing Tgr could be expected. Indeed, a drastic increase of the
magnitude of Imax with decreasing Tgr was demonstrated recently by Deubener [47].

Figure 4.12 presents a plot of the Imax(Tgr) dependence, which has been extended in
Ref. [48] and in the present work. Using data for 55 glasses of stoichiometric and nonstoi-
chiometric compositions belonging to eight silicate systems, in a relatively narrow range of
Tgr (ranging from 0.47 to 0.58) the nucleation rates drops by about 17 orders of magnitude!
When Tgr increases, the kinetic inhibition of nucleation proceeds at higher temperatures and,
thus, at higher values of the thermodynamic barrier (at lower values of the thermodynamic
driving force). As a consequence, nucleation becomes practically undetectable at Tgr > 0.58.
This result confirms the findings of James [45] and Zanotto [46]. The lines in Fig. 4.12 are
calculated from CNT (Eqs. (4.1), (4.28), and (4.30)) with reasonable values of the parameters
C1 and C2 indicated in the figure. Remember that C1 and C2 characterize the temperature
independent parts of the thermodynamic and kinetic barriers for nucleation, respectively.

Since Eq. (4.30) contains two independent parameters C2 and Tor, the viscosity and, cor-
respondingly, Tgr was varied in two different ways, by keeping either C2 (solid lines) or Tor
(dashed lines) fixed. In the most interesting temperature range (0.5 < Tr < 0.6) these dif-
ferent ways of varying Tgr lead to similar results. The lines bound the experimental points
and reflect the correct trend. However, the experimentally observed trend must be analyzed
within some limits, since a substantial variation of the thermodynamic barrier can result in a
considerable variation of Imax for glasses having similar values of Tgr. For instance, fresnoite
(2BaO · TiO2 · 2SiO2) and wollastonite (CaO · SiO2) glasses have Tgr about 0.57, while the
values of the parameter αST are 0.4 and 0.6, respectively. The latter fact leads to a strong
difference in the values of the thermodynamic barriers and correspondingly to a strong differ-
ence in Imax. Also nucleation of metastable phases, such as BaO·2SiO2, is possible as shown
in Ref. [49].

Computations of Ist(T ) temperature dependences similar to those published in Ref. [48]
and presented here were performed by Turnbull in the 60s (see, e.g., Ref. [50]). However,
at that time, with the exception of the measurements of Tammann [51] and Mikhnevich,
Browko [52] for organic liquids, nucleation rate data were not available for wide tempera-
ture ranges including Tmax. In order to verify the existence of the correlation between Imax
and Tgr, as proposed here, an abundance of experimental points should be available. This is
now the case (cf. Fig. 4.12).
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4.5 Nucleation Rate Data and CNT:
Some Serious Problems

4.5.1 Different Approaches to the Interpretation
of Experimental Data by CNT

As shown in the previous sections, in its original form CNT provides a good qualitative de-
scription of nucleation rate data. However, serious problems arise when one tries to employ it
for a quantitative interpretation of experimental data. Using the Stokes–Einstein equation to
connect the kinetic barrier of nucleation with the glass viscosity one can rewrite Eq. (4.1) for
the steady-state nucleation rate as

Ist = Kη
1

η
exp

(
− W∗

kBT

)
, Kη = I0

h

4l3 , (4.31)

where the size parameter l has a value of the order of the Si–O bond length. The application of
the Stokes–Einstein equation in Eq. (4.31) can be avoided if one estimates the kinetic barrier
from the time-lag in nucleation. In this case, Eq. (4.1) takes the following form:

Ist = Kτ
1

�G2tind
exp

(
− W∗

kBT

)
, Kτ = I0

8hσcm

3a4 . (4.32)

In the analysis of experiments on crystallization in glass-forming systems, it is commonly
accepted – in accordance with CNT and Gibbs’ classical description of heterogeneous systems
– to use the properties of the newly evolving macrophase as reference states for the descrip-
tion of the bulk properties of the critical nucleus. Additionally, one has to properly specify the
values of the specific interfacial energy. Since measurements of the specific interfacial energy
of the crystals in their own melt, σcm, are confronted with serious difficulties, one usually em-
ploys the easily measurable thermodynamic driving force for crystallization of the macrophase
for the determination of the work of critical cluster formation. Thus, σcm is commonly taken
as a fit parameter and is treated, to a first approximation, as a size-independent (capillarity ap-
proximation) and temperature-independent quantity. The respective values of σcm are denoted
in Tables 4.1 and 4.2 as σ ∗

cm. These approximations allow one to estimate both the magnitude
of the preexponential term, I0, in Eq. (4.1) and the value of the crystal-melt surface energy,
σcm, from a fit of the experimental data (Ist, η, or tind).

Indeed, according to Eqs. (4.31), (4.32), and (4.4) the plots of the dependences ln(Istη)
and ln(Isttind�G2

V) versus 1/(T�G2
V) should yield straight lines. Their intercepts and slopes

can be employed to evaluate I0 and σ cm, respectively. However, these approximations lead to
the following problems:

(i) The application of both Eqs. (4.31) [45,53] and (4.32) [54] leads to drastic discrepancies
between the experimental, I exp

0 , and theoretical, I theo
0 , values of the preexponential fac-

tor I0. This discrepancy was first observed for crystal nucleation in undercooled Ga [55]
and Hg [56]. In order to illustrate this conclusion, in Table 4.1 the (I exp

0 /I theo
0 )-ratio and

the surface energy values for some stoichiometric silicate glasses calculated from the
plots ln(Isttind�G2

V) versus 1/T�G2
V are presented for temperatures above the glass
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Table 4.1: Ratio of experimental and theoretical preexponential and surface energy values cal-
culated by CNT for different glasses [33]. The specific interfacial energy is given in J m−2

Glass �Cp = 0 �Cp = f (T )

log

(
I exp
0

I theo
0

)
σ ∗

cm log

(
I exp
0

I theo
0

)
σ ∗

cm

Li2O·2SiO2 15 0.19 19 0.20
Na2O·2CaO·3SiO2 18 0.17 72 0.19
2Na2O·CaO·3SiO2 27 0.15 139 0.17

transition temperature. To trace these plots, both the Turnbull approximation (4.6) and
the experimental values for the thermodynamic driving force (4.5) for crystallization of
the macro-phases were used. The discrepancy between theory and experiment is strongly
affected by the choice of �GV. The experimental values of �GV are close to Turnbull’s
approximation in the case of Li2O · 2SiO2 glass and to Hoffman’s approximation in the
case of 2Na2O ·1CaO ·3SiO2 glass. It is easy to show that the ratio (I exp

0 /I theo
0 ) increases

as one passes from Turnbull’s to Hoffman’s approximation. These equations bound the
experimental values of �GV [13]. However, independent of particular choice of expres-
sion for the thermodynamic driving force, i.e., with any reasonable approximation or
with reasonable experimental values of �GV, the mentioned discrepancy remains quite
large.

(ii) The values of the surface energy σcm, calculated as described above, are lower than the
melt–vapor surface energy, σmv, which can be measured directly [57, 58], by a factor
of about 0.5–0.6. These values must be corrected since σ cm refers to nuclei of critical
size r∗, while σmv refers to planar melt/vapor interfaces. In the case of lithium disilicate
glass, for instance, corrections made with the Tolman equation (4.33) increase this factor
to 0.8 [59]. Such high values of σcm, as compared with σmv, seem to strongly overesti-
mate its real magnitude. Indeed, according to Stefan’s rule [60], one would expect that
the ratio σcm/σmv is of the same order of magnitude as σcm/σmv ∼= �Hcm/�Hmv 	 1.
Here �Hcm ≡ �Hm and �Hmv are the melting enthalpy of the crystalline phase and
the enthalpy of evaporation, respectively.

In the following sections, possible reasons for the failure of CNT regarding its application
to the quantitative description of nucleation experiments will be analyzed.

4.5.2 Temperature and Size-Dependence
of the Nucleus/Liquid Specific Surface Energy

The discrepancy between experimental and theoretical values of I0 can be removed if one
calculates σcm from nucleation data (Ist and tind or η) employing the theoretical expression
for I0. This procedure does not change significantly the values of σ cm, but leads to a slight
increase of σ cm with increasing temperature [61] (dσ/dT ∼ (0.06 − 0.16) × 10−3 J/m2K)
regardless of the method of estimating the kinetic barrier. However, most (but not all) authors
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express the opinion that, from a thermodynamic point of view, a decrease of σcm, measured for
planar interfaces (σ∞), with increasing temperature should be generally expected [50,62–64].

The latter contradiction between experimental results and theoretical expectations can be
partly removed by taking into account a possible curvature (or nucleus size) dependence of the
surface tension. Recall that the specific surface energy, estimated from nucleation rate data,
refers to nuclei of critical size. Curvature corrections can be expected to lead to a reduction
in the effective value of the surface energy. When the critical nucleus size increases with
increasing temperature, the effect of curvature corrections decreases (see Eq. (4.33)), leading
to higher effective values of the surface energy.

To decouple these size and temperature effects, to a first approximation Tolman’s equation
(that was originally derived for a liquid drop being in equilibrium with its vapor) can be used.
The Tolman equation reads

σ(r∗) = σ∞(
1 + 2δ

r∗

) , (4.33)

where δ, the Tolman parameter, is a measure of the (unknown) width of the interfacial region
between the coexisting phases. Employing this relation, the work of formation of a spherical
critical nucleus may be written as

W∗ = 16π

3

σ 3∞(
1 + 2δ

r∗

)3
�G2

V

, (4.34)

where

r∗ = 2σ∞
�GV

− 2δ (4.35)

holds.
Figure 4.13 shows the average values of (dσ∞/dT ) at T ≥ Tg versus the Tolman parame-

ter. The fits of σ∞ to experimental nucleation data for Li2O·2SiO2 glass were performed for
different values of δ. For this purpose Eq. (4.32) was employed. As δ increases, (dσ∞/dT )
progressively decreases becoming negative for δ > 2.4 × 10−10 m. Thus, reasonable values
of the Tolman parameter may be chosen such that σ∞ decreases with increasing temperature
in line with the theoretical predictions given in Refs. [62, 63]. However, the values of surface
energy remain too high as compared with the respective melt-vapor values.

4.5.3 Estimation of Crystal/Liquid Surface Energies
via Dissolution of Subcritical Nuclei

Essentially all existing methods to determine the nucleus–melt surface energy are based on
nucleation experiments involving certain additional assumptions. However, in order to test the
classical nucleation theory or to make predictions in their framework, independent estimates
of the specific surface energy are required. Such an independent method of estimating σcm of
clusters of near-critical sizes has been developed recently [59]. The results are summarized
below.



4.5 Nucleation Rate Data and CNT: Some Serious Problems 97

0.0 1.0x10
-10

2.0x10
-10

3.0x10
-10

4.0x10
-10

-1.0x10
-4

0.0

1.0x10
-4

2.0x10
-4

8

d
  
/d

T
, 
J
/m

2

K

, m

Figure 4.13: (dσ∞/ dT ) versus the Tolman parameter for Li2O ·2SiO2 crystals in a glass of the
same composition. The kinetic barrier for nucleation was estimated from the nucleation time-lag

Table 4.2: Liquid–crystal surface energies (in J m−2) calculated from nucleation and growth
data [59]

Glass σcm σ ∗
cm σ ∗∗

cm K σ r
cm

Li2O·2SiO2 1.4 0.20 0.152–0.156 0.19–0.23 0.050–0.060
450 °C < T < 485 °C

Na2O·2CaO·3SiO2 1.5 0.18 0.099–0.110 0.13 0.026
580 °C < T < 685 °C

The method is based on the dissolution phenomenon (discussed in Sects. 4.3 and 4.4) of
subcritical nuclei with an increase in temperature. As already shown, the N(Tn , r∗(Tn), t) plot
coincides widely with the N(Tn , r∗(Td), t) plot with the only difference that the latter is shifted
along the time-axis by a time t0 (Eq. (4.25)). Then, the kinetic curves N(Tn , t) obtained with
different development temperatures Td1 and Td2 > Td1 should be shifted with respect to each
other by a time �t0 = t02 − t01. Figure 4.4 presents an example of such kinetic curves. The
following equation was derived in Ref. [32] to estimate this shift:

�t0 =
∫ r∗(Td2)

r∗(Td1)

dr

U(Tn, r)

= 1

U(Tn,∞)

[
r∗(Td2) − r∗(Td1) + r∗(Tn) ln

(
r∗(Td2) − r∗(Tn)

r∗(Td1) − r∗(Tn)

)]
.

(4.36)

In the derivation of Eq. (4.36) a size-dependent crystal growth velocity [65] was utilized of
the form

U(T, r) = U(T,∞)

[
1 − r∗(T )

r

]
. (4.37)
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Employing Eq. (4.3) for the critical nucleus size and assuming that σ cm depends only slightly
on temperature, Eq. (4.36) can be rewritten as

σcm = 1

2

�t0 U(Tn,∞)


1

�G(Td2)
− 1

�G(Td1)
+ 1

�G(Tn)
ln




1

�G(Td2)
− 1

�G(Tn)
1

�G(Td1)
− 1

�G(Tn)







. (4.38)

Hence, it is possible to calculate the average value of σcm in the temperature range Tn–Td2
from experimental values of �t0, U(Tn,∞), and �GV. Note that in doing so neither nucle-
ation rate nor time-lag data are required. The values of σcm, calculated by this method for
Li2O · 2SiO2 and Na2O · 2CaO · 3SiO2 glasses, are presented in Table 4.2. Also, here the val-
ues are estimated with the assumption of a size- and temperature-independent specific surface
energy, σ ∗

cm (see also Table 4.1) and σ ∗∗
cm employing the theoretical values of I0. The values of

σcm calculated via Eq. (4.38) strongly exceed the corresponding values calculated from a fit
of nucleation rate data to CNT (σ ∗

cm, σ ∗∗
cm). Such high values of σcm have to lead – according

to CNT – to vanishing nucleation rates. However, nucleation processes do occur.
In order to find out the origin of this discrepancy it should be realized that the methods

discussed above do not provide the surface energy directly, but only its combination with the
thermodynamic driving force. In particular, σcm is calculated from the measured values of �t0
and U(Tn,∞) via (see Eq. (4.38))

�t0 = 2σcm f

(
1

�GV

)
U (4.39)

and σ ∗∗
cm (as well as σ ∗

cm) from the thermodynamic barrier for nucleation

W∗ ∝ (σ ∗∗
cm)3

�G2
V

. (4.40)

One should recall that, in line with Gibbs’s thermodynamic description of heterogeneous sys-
tems, the thermodynamic driving force for the crystallization of macro-crystals was applied
to critical and near-critical nuclei to estimate their surface energy. However, the bulk prop-
erties of near-critical crystallites may deviate significantly from the properties of the newly
evolving macroscopic phase. In order to arrive at the correct values of the work of critical
cluster formation in nucleation, the value of the surface tension has to be chosen appropriately
to obtain the correct results. However, in such approach, the surface energy plays the role (in
the above-presented methods) of a fit parameter. Hence, the discrepancy discussed above may
result from the difference between the values of �GV employed and the correct driving force
of cluster growth, which is determined by the real physical state of the critical and near-critical
clusters.

It follows as a consequence that, from a general theoretical point of view, both surface
energy and the thermodynamic driving force have to be considered as unknown quantities.
Let us then introduce a coefficient K (r) that connects the (supposed) real thermodynamic
driving force, �GV, with the respective value for the macrophase, �G∞, as

�GV = K (r)�G∞ . (4.41)
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The coefficient K (r) reflects the fact that the thermodynamic driving force for critical nuclei
may differ from that of the corresponding macrophase. If one denotes by σ r

cm the true value
of the surface energy estimated with account of Eq. (4.41) and takes into consideration that
U ∼ �GV, the following equations connecting σ r

cm with σcm and σ ∗∗
cm are obtained from

Eqs. (4.39) and (4.40):

σ r
cm = K (r)2σcm , σ r

cm = K (r)2/3σ ∗∗
cm . (4.42)

Equations (4.42) yield immediately

K =
(

σ ∗∗
cm

σcm

)2/3

. (4.43)

Thus, both methods provide the same value of crystal/melt surface energy if the reduced ther-
modynamic driving force, �GV = K (r)�G∞, is employed in the description.

The values of K presented in Table 4.2 show a considerable reduction in the thermody-
namic driving force for nucleation and growth of critical and near-critical nuclei as compared
with that for macrocrystal growth (K < 1). The following reasons could lead to a reduc-
tion in thermodynamic driving force: (a) It is reasonable to assume that near-critical nuclei
are less ordered than the material in the corresponding bulk phase. It is possible to show that
in this case �GV < �G∞ holds [59]. (b) According to the model of ideal associated so-
lutions [66, 67], a glass-forming melt can be considered as a solution of oxide components
and salt-like products. Then, critical cluster formation should be represented as a segregation
process in a multicomponent solution. As shown in Ref. [68], in this case the driving force
may be smaller than that for the macroscopic phase. (c) The deviation of the critical nuclei
composition from that of the evolving macrophase (e.g., owing to the formation of metasta-
ble phases or solid solutions) also leads to a reduction in the thermodynamic driving force as
compared to that for the stable macrophase. This effect, i.e., the deviation of the critical nuclei
composition from that of both the evolving macrophase and the parent stoichiometric glass,
was recently observed experimentally. The results are presented in the following section.

It should be emphasized that the value of σ r
cm (see Table 4.2) is smaller than that of σ ∗

cm
and σ ∗∗

cm. This way, the decrease of the thermodynamic driving force results in values of the
interfacial energy that are significantly more reasonable (taking Stefan’s rule into account).

4.5.4 Compositional Changes of the Crystal Nuclei
in the Course of Their Formation and Growth

Within certain limits, an addition, removal or replacement of different components can contin-
uously change the composition of a given crystallographic system. Hence, generally speaking,
compositional variations of critical nuclei of a new phase and, consequently, variations of its
properties as compared with those of the corresponding macrophase could be expected. In-
deed such deviations were observed in both stoichiometric Na2O · 2CaO · 3SiO2 glass and
glasses belonging to the solid solution (s/s) region between Na2O · 2CaO · 3SiO2 (N1C2S3)
and Na2O · CaO · 2SiO2 (N1C1S2) [72]. It was shown that the formation of stoichiometric
crystals occurs via nucleation of s/s nuclei enriched in sodium as compared with both the
parent glass and the evolving macrocrystals. During crystallization, the composition of s/s
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Figure 4.14: Composition of the glassy matrix, measured by EDS (points), and of crystals cal-
culated from the parent glass composition, N1C2S3, (dotted lines (1) and (2) – Na and Ca,
respectively) versus volume fraction crystallized at T = 650 °C. Solid lines fit the experimental
data. Dashed lines (3) (Si) and (4) (O) correspond to the parent glass composition [72]

continuously approaches the stoichiometric one. Figures 4.14 and 4.15 show the evolution of
crystal and glassy matrix compositions and the corresponding change of the lattice parame-
ter, respectively. An extrapolation of the change of crystal composition to zero time (or zero
volume fraction, α = 0, of the crystallized phase) gives a strong indication that the critical
clusters are also enriched in sodium.

The exhaustion of sodium in the glassy matrix during crystallization leads to an inhibition
of nucleation and crystal growth. According to an analysis of overall crystallization kinetics
using crystal growth data, the nucleation process is terminated if about 20% of the volume
is crystallized. Figures 4.16(a) and (b) present the volume fraction of crystals and the size
of the largest crystals as a function of the heat treatment time at T = 650 °C for a glass of
stoichiometric composition N1C2S3. Nucleation takes place up to t ∼ 150 min(ln(t) = 5):
n ∼= 4, m ∼= 1, k = n − m ∼= 1 (n = 1 + 3m) (see Eq. (4.22)). This conclusion is confirmed
by N(t) plots obtained by the “development” method (see Fig. 4.16(c)). But at ln(t) > 5, the
crystallization kinetics proceeds only by crystal growth with n ∼= 1, m ∼= 0.33, k ∼= 0 (n=3m).

Diffusion fields around growing crystals, depleted in sodium, can be visualized by a sec-
ond heat treatment at a temperature corresponding to reasonable values of nucleation and
growth rates. A comparison of the sample subjected to single-stage (cf. Fig. 4.17(a)) and
double-stage (cf. Fig. 4.17(b)) heat treatments reveals that preexisting crystals (formed in first
heat treatment) diminish the number of crystals nucleated in the subsequent treatment. In
Ref. [40] it was shown that the nucleation rate decreases with decreasing sodium content in
the glass. Hence, it becomes apparent that the areas observed around the large crystals are
diffusion fields. A similar transformation path was observed for glasses of compositions be-
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Figure 4.16: Volume fraction of crystals (a), size of largest crystals (b), and number of crys-
tals (c) as a function of heat treatment time at T = 650 °C for stoichiometric glass N1C2S3 [72]

tween N1C2S3 and N1C1S2, with the only difference that fully crystallized glasses are s/s
with compositions of the parent glasses.

According to the results presented in Fig. 4.18, the difference between the composition
of the critical nuclei and the parent glass diminishes as the latter approaches the boundary
of s/s formation. The deviation of the nuclei composition from the stoichiometric one (glass
N1C2S3) or the initial glass compositions (glasses from s/s region) diminishes the thermo-
dynamic driving force for crystallization, �GV, and increases the thermodynamic barrier for
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Figure 4.17: SEM micrographs of N1C2S3-glass subjected to single (a) and double (b) stage
heat treatments: (a) T = 590 °C, t = 1560 min; (b) T1 = 720 °C, t1 = 20 min and T = 590 °C,
t = 1560 min. The bars have a length of (a) 20 and (b) 10 µm
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Figure 4.18: Sodium oxide content in the critical nuclei versus composition of the parent glass.
The solid line represents the case when the compositions of the critical nuclei and the parent
glasses are the same. The upper dotted line shows the sodium oxide content in N1C1S2 crystals

nucleation. Moreover, this deviation also leads to an increase in the kinetic barrier. Never-
theless, nucleation of crystals with shifted compositions (as compared with that of the parent
glasses) takes place as well. Hence, the decrease in �GV must be compensated by a decrease
in surface energy in Eq. (4.4). However, the determination of the variation in surface energy
with composition is not a trivial problem and needs further study.

The above interpretation of the shifts in the composition of the critical nuclei is consis-
tent with Ostwald’s rule of stages, generalized in Ref. [68] to nucleation as “Those classes
of critical clusters determine the process of the transformation, which correspond to a mini-
mum work of critical cluster formation (as compared with all other possible alternative struc-
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tures and compositions, which may be formed at the given thermodynamic constraints).” This
concept was employed then to develop a new approach to the determination of the work of
critical cluster formation based on a generalization of Gibbs’ classical approach (cf. Chap-
ters 11 and 12). Recently, this theory was further extended [69–71] to allow one to describe
both nucleation and growth processes taking into account changes in the state parameters of
the clusters depending on supersaturation and cluster size. Hereby, a criterion was advanced
allowing one to determine the changes in the bulk properties of the cluster phase in the course
of its growth. The theory has been developed, in detail, so far in application to segregation
in regular solutions, condensation and boiling processes. In the future, this theory will be ex-
tended to allow application to the description of crystallization processes. Thus, in a correct
theoretical treatment not only deviations of the composition of the critical nuclei from the
values of the respective macrocopic phases have and can be accounted for then, but also the
variations in the composition of the sub- and supercritical crystals.

Since the formation of s/s is a common phenomenon in silicate systems, it is important
to keep in mind that the composition of the critical nuclei and, correspondingly, their thermo-
dynamic properties may differ considerably from those of the final macroscopic phase. We
expect that, by taking into account such effects, the deviations between experimental results
and theoretical predictions concerning nucleation rates and growth processes in these systems
will considerably diminish.

4.5.5 On the Possible Role of Metastable Phases in Nucleation

As mentioned in Sect. 4.5.3, the precipitation of metastable phases in the early stages of nucle-
ation may be one of the reasons for the deviation of the critical nuclei composition from that
of the evolving (stable) macrophase. Employing the Scapski–Turnbull equation Eq. (4.29) to
estimate the crystal/liquid interfacial energy in the thermodynamic barrier for nucleation, one
can show that the latter is proportional to the melting enthalpy. Hence, higher nucleation rates
of metastable phases than those of the stable phase could be expected due to a lower melting
enthalpy and correspondingly a lower thermodynamic barrier. Once crystallites of the meta-
stable phase are formed, they may favor the evolution of crystallites of the stable phase. Thus,
metastable phase crystals can catalyze, in principle, nucleation processes of the stable phase.
Some authors suggested that such a crystallization path occurs in Li2O · 2SiO2 (LS2) glass,
which has been used for many years as a model system to study homogeneous nucleation.
Indirect evidence favoring this assumption was obtained in Ref. [73], based on a comparative
analysis of the nucleation time-lag (obtained by the “development” method) and the induction
time for crystal growth. According to these results, the latter considerably exceeds the former.

This interesting observation may result, however, not from processes of formation of meta-
stable phases but from possible differences in the compositions of the near-critical nuclei
and macrocrystals (to which experimental measurements of the crystal growth rates refer). In
Ref. [74] it was shown that, at a relatively high temperature (500 °C > Tmax = 455 °C), the ef-
fect reported in Ref. [73] is not observed if one applies single-stage treatments to measure the
nucleation rate. However, the problem posed in Ref. [73] remains open for low temperatures,
close to the glass transition interval.

Reference [73] and the papers cited therein stimulated an intensive search for metastable
phase formation in LS2-glass [74–77], mainly by transmission electron microscopy (TEM)
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and X-ray diffraction (XRD) methods. In addition to stable lithium disilicate and metastable
metasilicate crystals, other, so far unknown, phases were found. However, the observations of
different authors were often in contradiction with each other. As it turned out, in general, the
probability of observing such new phases increases with a decrease in time and temperature
of heat treatment [78]. Due to low nucleation rates and correspondingly low crystal number
densities, the statistics of TEM measurements are quite poor. Moreover, the electron beam
can degrade the crystals under study in a short time. As an example, however, the results of
Ref. [79] show that at T = 454 °C (close to the nucleation rate maximum), only Li2O · 2SiO2
(LS2) and Li2O · SiO2 (LS) crystals were detected in the early stages of crystallization (less
that 1% crystallized fraction), but LS crystals were not detected in the most advanced stages
(5–10% crystallized fraction).

It should be emphasized that, according to the data collected in a time interval 0–100 h
at 454 °C, the LS crystal sizes practically do not change, while the LS2 crystals significantly
grow. This result agrees with calculations according to which the thermodynamic driving force
for LS crystallization in lithium disilicate glass is lower than that for LS2 crystals [80], be-
cause a higher thermodynamic driving force results in higher growth rates. Since there was
no evidence of heterogeneous nucleation of lithium disilicate on lithium metasilicate crystals,
it was concluded that LS nucleates concurrently with the stable phase LS2 and disappears
with time. Lithium disilicate has a wide range of solid solution (s/s) formation [81]; hence,
one can suppose that the critical nuclei are also (s/s). This assumption does not contradict
the results presented above, but allows one to consider changes in composition of the evolv-
ing nuclei with size, such as those demonstrated in Sect. 4.5.4 for soda–lime–silica glasses.
Thus, in some cases, it is possible that the assumed role of metastable phases in nucleation
could simply be a continuous variation of nuclei composition and properties during the phase
transformation. However, there also exists another factor which is not normally taken into
consideration, but may be of considerable influence, this is the effect of elastic stress on nu-
cleation in glass-forming melts. The possible influence of elastic stress on phase formation
will be analyzed in the next section.

4.5.6 Effect of Elastic Stresses on the Thermodynamic Barrier
for Nucleation

As follows from Sect. 4.5, the thermodynamic barrier for nucleation, W∗, can be calculated
in the framework of CNT by a fit of experimental Ist and tind data employing Eq. (4.32). For
such computations, apart from the validity of CNT, no additional assumptions are needed.
In addition, one has to make some choice concerning the value of the surface energy in the
preexponential term. However, the choice of the surface energy affects the final result only
weakly.

According to Eq. (4.4), the work of critical cluster formation W∗ monotonically decreases
with decreasing temperature. Nevertheless, the value of W∗(T/Tm), calculated from nucle-
ation data for lithium disilicate glass shows, at temperatures close to Tg, an anomalous increase
with decreasing temperature (cf. Fig. 4.19).

A similar behavior of W∗ was observed also in different other systems, e.g., for wollas-
tonite glass [82]. The above-mentioned deviations of the W∗(T ) dependence from the expected
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Figure 4.19: Thermodynamic barrier for nucleation in Li2O2SiO2 glass (1) estimated from a
fit of experimental Ist and tind temperature dependences to Eq. (4.32), and (2) calculated with
Eq. (4.4) [87]

(according to CNT) one may be caused by elastic stresses. Since, in most cases of interest,
the crystal densities differ from those of the corresponding glasses, glass crystallization is
accompanied by volume changes. Such changes may result in stress development which, in
turn, diminishes the thermodynamic driving force for phase transformation by a term con-
nected with the elastic strain energy. This energy can partly or even fully [14] suppress the
nucleation-growth process. This effect may be the origin not only of the anomalous behavior
of the work of critical cluster formation W∗(T ), but also of a number of well-known additional
experimental facts, e.g., the preference of surface to volume nucleation [12], or the existence
of a correlation according to which glasses having densities much lower than those of the
corresponding crystals usually reveal only surface crystallization [83].

A theory of nucleation in viscoelastic bodies has been recently developed [84, 85] that
takes into account both stress development and relaxation in phase formation in glass-forming
melts. It was concluded that the effect of elastic stresses on nucleation can be remarkable if
the time of stress development (estimated as the time-lag for nucleation) is smaller than the
characteristic time of stress relaxation governed by viscous flow. Such a situation is possible at
temperatures lower than the so-called decoupling temperature Td ∼ 1.2 Tg, when the Stokes–
Einstein equation may no longer be valid, i.e., when the nucleation kinetics is not governed
by viscous flow. A detailed analysis, performed for lithium disilicate glass, shows that elastic
stresses may decrease the steady-state nucleation rate by up to two orders of magnitude [86].
In this analysis, the work of critical cluster formation in the absence of elastic stresses was
determined following the classical nucleation theory.

Recently an attempt was made directly to estimate the elastic stress energy using the devi-
ation of the W∗(T ) curves from the theoretical one [87] for the same glass (lithium disilicate).
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Figure 4.20: Temperature dependence of the steady-state nucleation rate in lithium disilicate
glass [87]. (1) Ist calculated with Eq. (4.32) for the case when elastic stresses do not play any
role; (2) experimental values of Ist. The dashed line is placed to guide the eyes

The obtained values of the elastic strain energy were comparable in magnitude with those
calculated using the elastic constants of glass and crystals. It should be noted that in the ex-
trapolation of the W∗(T ) dependence from relatively high temperatures, at which the elastic
stress effect can be neglected, to low temperatures, where the minimum of experimental W∗-
values is observed, both the thermodynamic driving force and the crystal/melt surface energy
were considered as fit parameters to be determined. Thus, this analysis was performed here
without the application of the basic assumptions of CNT. The fitting procedure produced, in
accordance with the conclusions made in Sect. 4.5.2, values of the effective surface energy
that decrease with decreasing temperature. Moreover, the value of the thermodynamic driving
force turned out to be considerably less as compared to that for the respective macroscopic
phase.

In Fig. 4.20 experimental data for steady-state nucleation rates versus temperature are
shown together with the theoretical ones calculated by neglecting elastic stresses and employ-
ing values for the driving force and surface tension obtained via the above-discussed fitting
procedure. At low temperatures, the calculated Ist-values considerably exceed the experimen-
tal data giving an indirect evidence of the essential role of elastic stresses in nucleation.
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4.6 Crystal Nucleation on Glass Surfaces

4.6.1 Introductory Remarks

As already mentioned, surface crystallization is much more widespread than homogeneous
volume crystallization. As shown in Ref. [12], about 90% of the silicate glasses have a value
of the reduced glass transition temperature Tgr > 0.60 and, hence, only reveal surface crystal-
lization on laboratory time scales (see Sect. 4.4). This particular form of glass crystallization
is of great practical importance [33, 88–92].

In Ref. [93], the hypothesis was developed that the effect of elastic stresses, discussed in
Sect. 4.5, may be a possible cause for the preferential surface crystallization. According to the
results of Ref. [94], close to or at interfaces the decrease in the thermodynamic driving force
for crystallization due to elastic stresses may be less effective than for the case of nucleus
formation in the bulk of the material. By this reason, a reduction in the thermodynamic barrier
for surface nucleation can be expected as compared with homogeneous nucleation in the bulk
of the glass.

Surfaces can be generated and modified in a number of different ways, moreover, glass
surfaces are exposed to various, often hard to control, factors. This variety in the possible
states and properties of glass surfaces is the main reason why attempts to study the kinetics
of surface crystallization, especially the nucleation stage, are faced with serious difficulties.
Therefore, analyses dealing with crystal nucleation on glass surfaces are mainly of qualitative
character or supply us merely with a limited amount of data about the number density of crys-
tals evolving on the different kinds of glass surfaces. A comprehensive analysis of different
kinds of defects on various types of glass surfaces in connection with crystal nucleation can be
found in Ref. [92]. Here we focus on a few papers that present data on the nucleation kinetics
on glass surfaces.

Theoretically it is possible to imagine the existence of homogeneous nucleation on flaw-
less glass surfaces [95]. This statement means that nucleation can be supposed to have the
same probability to occur on any given surface site. However, so far there does not exist any
reliable information that such kind of surface nucleation really occurs. Most authors believe
and experiments give strong evidence that surface nucleation is a particular process of hetero-
geneous nucleation occurring on surface defects, such as scratches, tips, microcracks, com-
positional inhomogeneities, solid particles, etc. The number of such nucleation sites restricts
the total number of crystals that may form. Fast nucleation and fast exhaustion of such active
sites are the main reasons why only a constant number density of crystals, N , is (typically)
observed experimentally in most glasses and most types of heat treatment.

Existing experience shows that it is indeed quite difficult to study, in detail, the surface
nucleation kinetics. The values of N determined experimentally can strongly depend on the
type of the surface and can vary by many orders of magnitude for difference samples even of
the same material but prepared differently, e.g., for a fractured glass surface and a surface of a
powdered glass (cf. Refs. [92,96,97]). Strnad and Douglas [98] were among the first to report
nucleation rates on glass surfaces. The presented nucleation rates for three soda-lime-silica
glasses increase with decreasing temperature (Fig. 4.21). Unfortunately neither the method
used nor the primary kinetic N(t) curves are given in their paper Ref. [98]. In addition, any
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Figure 4.21: Temperature dependences of the nucleation rate of Na2O · 2CaO · 3SiO2 crystals
in the volume (IV) and at the surface (Is) for glasses of compositions xNa2O · xCaO · (1 −
2x)SiO2 [98]. The numbers near the curves show the content of SiO2 in mol%

information about the type of surface is absent. All these facts complicate the analysis of the
data reported by them.

In 1986, employing the “development” method, Kalinina et al. [99] obtained kinetic N(t)
curves for polished surfaces of cordierite glass, which not only show an increase in the crystal
number density, but also provided evidence for nonsteady state surface nucleation.

Nucleation of cristobalite crystals at the atmospheric side of float glass was studied in
detail by Deubener et al. [100] by the single-stage treatment method. They have shown that at
relatively low temperatures (665–730 °C) the induction period is followed by a linear increase
in the crystal number density, while at high temperatures (850–900 °C) such period is absent,
and the N(t) curves show saturation. The nucleation rates calculated from the slope of the
linear parts of the N(t) curves are presented in Fig. 4.22. The authors interpreted nucleation as
being heterogeneous on surface sites associated with impurity particles, but did not comment
on the difference in the temperature dependences of nucleation rates at low (1) and high (2)
temperatures.

4.6.2 Crystal Nucleation on Cordierite Glass Surfaces

Considerable progress in understanding surface nucleation was achieved by a cooperative
program (1990 to 2000) of the Technical Committee 7 of the International Commission on
Glass [101]. Cordierite glass (2MgO · 2Al2O3 · 5SiO2) was chosen as a model system owing
to its high chemical durability, polymorphic course of crystallization, and absence of volume
nucleation. Two easily distinguishable crystal morphologies were observed on glass surfaces
polished by cerium oxide after heat treatments at 800–910 °C (see Fig. 4.23) [99, 102, 103].
One of these morphologies refers to the well-known metastable high-quartz solid solution
crystals (“µ-cordierite”), while the other refers to the so-called X-phase (the latter one has so
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Figure 4.22: Temperature dependence of the surface nucleation rate of cristobalite crystals at
the atmospheric side of float glass ((1) and (2) – see text) [100]

far not been identified due to the insufficient volume fraction crystallized and as a result only
very poor X-ray diffraction spectra are obtained). These two types of crystals exhibit quite
different nucleation and growth kinetics, the first will be discussed in the following analysis.

It will be shown that nucleation occurs on some (yet unknown) surface defects that act
as active centers for heterogeneous nucleation. To diminish scattering in the crystal number
density (caused by difficulties in reproducing the surface quality), the following precautions
were undertaken in Ref. [102]: (i) 5–6-mm-wide, 40–70-mm-long, 1-mm-thick glass plates
with polished sides were prepared. Then, notches were made across one side. For each heat-
treatment time at a given temperature, a sample was broken off from the same plate at the
cross-cut notches.

Thus, similar qualities of polished surfaces could be expected, at least, for a given temper-
ature. (ii) All heat treatments were performed in a vertical silica–glass tube closed by a lid,
which was set in an electric furnace. A sample was placed directly into a small silica–glass
crucible in such a way as to avoid any contact of the polished glass sides with its wall. These
precautions were undertaken against possible contaminations during heat treatment.

4.6.3 Nucleation Kinetics Measured by the “Development” Method

Figure 4.24 shows typical plots of number densities, Nµ and NX , for µ-cordierite and X-phase
crystals, respectively, versus time of nucleation obtained by the “development” method [102].
The number of µ-cordierite crystals, Nµ, does not vary within the limits of experimental
scatter, while the values of NX clearly increase with increasing nucleation time, revealing a
saturation, N X

S , at times larger than about 1000 h. The saturation of the NX (t) curves indicates
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Figure 4.23: Photographs of the X-phase and µ-cordierite crystals on a polished cordierite glass
heat treated at T = 825 (a,b) and 850 °C (c) for 72 (a), 43 (b), and 94 h (c). The development
time is (a,b) 1 and (c) 2.5 h at Td = 933 °C. (d) Characteristic shapes of the two phases. Data
are taken from Ref. [102]

heterogeneous nucleation governed by exhaustion of nucleation sites. The sigmoidal shape
of the NX (t) curves results from nonsteady state nucleation [104]. The absence of an initial
period of increase in the number of µ-cordierite crystals (as observed for the X-phase crystals)
is caused by the combination of a small number of nucleation sites and their high activity,
which leads to a saturation Nµ = Nµ

S before the development temperature is reached. The
considerable difference between N X

S and Nµ
S (N X

S /Nµ
S

∼= 50) indicates that the formation of
the X-phase and µ-cordierite are induced by different kinds of nucleation sites.

Similar findings were observed for devitrite, diopside, and tridymite crystals on as-re-
ceived surfaces of float glass [89], which demonstrate quite different levels of saturation, NS.
These findings resemble different kinds of surface defects of float glass that are responsible
for nucleation at low and high temperatures (presented in Fig. 4.22). The strong differences
in the temperature dependences of the saturation levels, NS, for the X-phase and µ-cordierite
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Figure 4.24: Crystal number density of the X-phase (1) and µ-cordierite (2) crystals on a pol-
ished surface of a cordierite glass versus time of treatment at T = 800 °C (Td = 933 °C for
0.5–1.5 h). Data are taken from Ref. [102]

(Fig. 4.25) support the conclusion about the different nature of the nucleation sites. The dras-
tic drop of N X

S with increasing temperature allows one to conclude that some of the potential
nucleation sites for the X-phase existing on the parent glass surface can disappear during heat
treatment, thus causing no nucleation.

Kinetic NX (t) curves, similar to those shown in Fig. 4.24, were obtained for the temper-
ature range 800–910 °C [102]. Since different polished plates were used for different tem-
peratures, some scattering in the N X

S numbers for a given temperature was observed. As will
be shown below, N X

S is proportional to the number, N0, of nucleation sites on the parent sur-
face. Hence the curves NX (t, T ) can be normalized by N X

Sr (T ), which was obtained for one
polished plate used as a surface quality reference

NX,r (t, T ) = NX (t, T )
N X

Sr (T )

N X
S (T )

. (4.44)

Normalized curves NX,r (t) were used to determine the maximum nucleation rates, I X
max, as

the highest value of the derivative (dNX,r /dt)max (see Table 4.3). The results are plotted as
a function of temperature in Fig. 4.26. Table 4.3 includes also N X

Sr (T ), the induction period,
tind, and some parameters of nucleation sites that will be introduced later. The values of tind
were determined from the intercept of the time-axis with the line having a slope equal to
I X
max that crosses the NX,r (t)-curve at a moment of time corresponding to (d NX,r/dt)max (see

Fig. 4.24). The temperature dependence of I X
max(T ) reveals a maximum at Tmax = 890 °C,

which is about 70 °C higher than the glass transition temperature, Tg = 820 °C.
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Figure 4.25: Crystal number density saturation level plotted against the temperature of nucle-
ation for the X-phase (1) and µ-cordierite (2) on a polished surface of cordierite glass. Data are
taken from [102]

Table 4.3: Parameters of the NXr (t ,T ) curves and nucleation rates [103]

T tind N X
Sr × 10−3 I X

max (αX + βD)×104 αX × 104

°C h mm−2 mm−2 · min−1 min−1 min−1

800 310 114.8 3.2 0.28 0.054
825 41 66.1 23.2 3.51 0.550
850 17 31.6 33.0 10.40 0.954
870 6.5 14.5 54.9 37.90 2.410
890 4.0 6.0 59.3 98.30 6.270
900 2.2 4.0 57.1 143.00 3.780
910 1.5 2.2 32.5 145.00 1.200

4.6.4 Nucleation on Active Sites of Variable Number

In general, the number of potential nucleation sites can vary during heat-treatment for reasons
that are not connected with nucleation itself. In Refs. [105, 106] a formal theoretical scheme
for the nucleation kinetics was developed for the cases of increasing and decreasing number
density of active sites. The latter version corresponds to the case of X-phase nucleation. A brief
theoretical description of nucleation kinetics allowing to account for a deactivation of active
sites is presented below [103]. As will be shown, such mechanism is an alternative realistic
possibility in surface nucleation.
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Figure 4.26: Effective nucleation rate I X
max and probability of crystal nucleation on active sites

per unit time, αX , for X-phase crystals on polished surfaces of cordierite glass versus tempera-
ture [102]

The number of crystals, N(t, T ), randomly nucleating at an unit area of the surface in
time t , and the number of randomly deactivated active sites per unit area, ND(t, T ), can be
described by a system of differential equations of the form

d N = (N0 − N − ND)α dt , (4.45)

d ND = (N0 − N − ND)βD dt , (4.46)

where N0 is the initial number density of active sites, (N0 − N − ND) is the number density of
active sites at time t , α is the probability of crystal nucleation on any active site per unit time,
and βD is the probability of active site deactivation per unit time. In the general case, α and
βD are functions of time t . Combining Eqs. (4.45) and (4.46), we get

d(N + ND) = (N0 − N − ND)(α + βD) dt , (4.47)

N + ND = N0


1 − exp


−

t∫
0

(α + βD) dt ′




 . (4.48)

A substitution of Eq. (4.48) into Eqs. (4.45) and (4.46) yields

N(t, T ) = N0

t∫
0

α exp


−

t ′∫
0

(α + βD) dt ′′


 dt ′ , (4.49)

ND(t, T ) = N0

t∫
0

βD exp


−

t ′∫
0

(α + βD) dt ′′


 dt ′ . (4.50)
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As can be seen from Eq. (4.49), N is proportional to N0. Hence the normalization procedure
via Eq. (4.44) is correct.

Let us consider in more detail one of the simplest cases. Suppose that α = 0 holds for
0 ≤ t < tind, α is constant (different from zero) for t ≥ tind, and β is constant for t ≥ 0. Then
from Eq. (4.49) (see [103]) we get

N(t) = 0 for t < tind ,

N(t) = N ′
0

α

α + βD
{1 − exp [−(α + βD)(t − tind)]} for t > tind ,

N ′
0 = N0 exp(−βDtind) .

(4.51)

For t → ∞, Eq. (4.51) yields

N(t → ∞) = N ′
0

α

α + βD
. (4.52)

Obviously, N(∞) can be identified with the level of saturation NS.
The surface nucleation rate I (t, T ) is equal, by definition, to the derivative d N/dt . Then

we have from Eq. (4.51)

I = N ′
0α exp [−(α + βD)(t − tind)] . (4.53)

The nucleation rate has its maximum Imax at t = tind

Imax = N ′
0α . (4.54)

Dividing Eq. (4.54) by Eq. (4.52) yields

Imax(T )

N(∞)
≡ Imax(T )

NS(T )
= α + βD . (4.55)

Employing the Imax and NS-values for the X-phase, we find via Eq. (4.55) the values of
αX + βD (see Table 4.3). According to the experimental data given in Table 4.3 the term
exp[−(αX + βD)tind] varies insignificantly with temperature. Hence, the value of N ′

0 (see
Eq. (4.52)) also depends only weakly on temperature. On the other hand, N X

S is a strong
function of temperature (Fig. 4.25). Such result can be found only then if α/(α + βD) in
Eq. (4.52) is a strong function of temperature. It means that the relations

βD � α , α + βD ∼= βD (4.56)

have to be fulfilled. Thus, one can suppose that a considerable fraction of the active sites loose
their activity causing no nucleation.

Accounting for Eqs. (4.55) and (4.56), the parameter βD can be approximately estimated
as

βD ∼= I X
max

N X
S

. (4.57)
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Figure 4.27: Number density of X-phase crystals versus time of nucleation at T = 825 °C.
Points are normalized with Eq. (4.44). The dashed line was calculated by Eq. (4.51) [102, 103]

The values of βD, calculated in this way, are presented in Table 4.3.
The quantity α can be evaluated, combining Eqs. (4.54) and (4.51), as

α = Imax

N ′
0 exp(−βDtind)

. (4.58)

In order to apply Eq. (4.58), one has to know the value of N ′
0. Obviously, NS cannot be greater

than the initial number density of active sites N0 and N ′
0. The maximum value for N X

S , that is
equal to 1.15×105 mm−2, was obtained for a temperature T = 800 °C (see Table 4.3). Let us
suppose a value of N ′

0 equal to N ′
0 = 106 mm−2. The values of αX , calculated from Eq. (4.58)

with N ′
0 = 106 mm−2, are shown in Table 4.3. The maximum of αX is located in the same

temperature range as for the I X
max(T ) curve (see Fig. 4.26, Table 4.3).

Using the value of αX + βD, tind and I X
max and Eqs. (4.51) and (4.54), one can plot the

NX,r (t) curves. An example of such calculation is presented in Fig. 4.27 together with the
experimental values of NXr . The agreement between calculated and experimental data could
be improved taking into account that αX and βD can be time-dependent functions.

4.6.5 Analysis of Nucleation Kinetics by Köster’s Method

As shown earlier the “development” method cannot be employed to measure nucleation rates
of µ-cordierite crystals due to the high activity, α, and the small number density, N0, of active
sites. Nevertheless, crystal size distributions from single-stage heat treatments give evidence
that nucleation takes place in the temperature range 850–1010 °C (see e.g. Fig. 4.28(a)) [107,
108]. Hence, Köster’s method can be used. According to this method, the average “birth-date”
for crystals belonging to a given size group with a mean size D can be written as

tD = tT − D

2U(T )
, (4.59)
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Figure 4.28: (a) Size distribution of µ-cordierite crystals on the surface of cordierite glass pol-
ished by cerium oxide after heat treatment at T = 850 °C for 168 h [108]. (b) Minimum diameter
of the largest µ-cordierite crystals versus time of treatment at T = 850 °C [108]

where tT is heat treatment time at temperature T and U is the crystal growth rate. Knowing
tD and the number of crystals of a given size group one can plot the complete kinetic curve,
N(t).

The crystal growth rate of µ-cordierite was calculated from the dependences of the largest
crystal sizes on heat treatment time like that presented in Fig. 4.28(b). No crystals were ob-
served during a time �t0, which decreased with increasing temperature. �t0 may be imagined
as a sum of the induction time tn , due to nucleation kinetics, and of the time tg, during which
the growth rate is strongly affected by crystal size. Therefore, two limiting cases can be con-
sidered, �t0 = tn and �t0 = tg. The first case corresponds to Eq. (4.59). In the second case,
Eq. (4.59) has to be transformed to

tD = tT − �t0 − D

2U(T )
. (4.60)

Thus, two kinetic curves N(t) can be obtained from one crystal size distribution. The true one
can be expected to be located between them (Fig. 4.29).

The sigmoidal shape and the strong saturation of the kinetic curves N(t) are typical of
nonsteady state heterogeneous nucleation that is restricted by the number of active sites [12].
Unlikely nucleation of the X-phase, the level of saturation, Nµ

S , does not vary with tempera-
ture. Hence it is equal to the number density of active sites, N0, on the parent glass surface.
Such kinetics can be described by the following equation derived in [109]

N(t)

N0
= 1 − exp

{
−αstt

[
exp

(
−τ

t

)
+

(τ

t

)
Ei

(
−τ

t

)]}
, (4.61)

where αst is the stationary value of the crystal nucleation probability α(t) = αst exp(−τ/t)
on a single active site per unit time, τ is the time-lag of nucleation and Ei is the exponential
integral function.

The values of αµ,st and τ , calculated by fitting N(t)/N0 measurements to Eq. (4.61),
are plotted in Fig. 4.30 as functions of temperature together with the crystal growth rate, U .
The probability of nucleation on single active sites increases with increasing temperature, at
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Figure 4.29: Kinetic N(t) curves of µ-cordierite crystal nucleation on surfaces of cordierite
glass polished by cerium oxide and heat treated at T = 850 °C. Points (1) and (2) are calcu-
lated from the crystal size distribution using Eqs. (4.59) and (4.60), respectively. The level of
saturation, Ns, is equal to 100 mm−2. The lines are plotted by utilizing Eq. (4.61) with the fit
parameters τ and αµ,st (data are taken from [108])
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Figure 4.30: Temperature dependences of the stationary probability, αµ,st, of µ-cordierite nu-
cleation on single active sites per unit time: (1) time-lag of nucleation, τ , on single active sites,
(2) crystal growth rate, U , (3) αµ,st and τ refer to kinetic curves plotted with Eq. (4.61) (data
are taken from Ref. [108])

least, up to 1010 °C, along with the crystal growth rate. It should be noted that, by the time
the N(t) curve saturates, the coefficient αµ does not reach its stationary value αµ,st and the
inequalities 0.1 < αµ(ts)/αµ,st < 0.7 hold in the temperature range 850–1008 °C.
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Figure 4.31: (a) Size distributions of µ-cordierite crystals on diamond polished surfaces of
cordierite glass (containing 8.14 wt% TiO2) after treatment at 850 °C for 20, 30 and 40 min.
(b) Calculated time dependence N(t) for these treatments ((1) 40, (2) 30, (3) 20 min) [110]

4.6.6 Comparison of Surface and Volume Nucleation

As far as we know, internal and surface nucleation rates in the same glass have been mea-
sured simultaneously only for a cordierite glass containing 8.1 wt% TiO2 (which serves as
a nucleation catalyst) [110]. Nucleation rates of µ-cordierite crystals at diamond-polished
surfaces were estimated by Köster’s method from size distributions such as those presented in
Fig. 4.31. The internal nucleation rates of the same crystal phase were measured by the “devel-
opment” method. The temperature dependences of both surface (apparent rate Is = dN/ dt)
and steady-state bulk nucleation rates, IV , are shown in Fig. 4.32. These plots demonstrate
clearly that the maximum surface nucleation rate occurs at a temperature considerably higher
than that of the maximum volume nucleation rate.



4.6 Crystal Nucleation on Glass Surfaces 119

740 760 780 800 820 840 860 880 900

10
7

10
8

10
9

10
10

10
.
10

7

5
.
10

7

2
.
10

7

I s
 ,
 m

 -2
 s

 -1

- 2

 - 1

I v
 ,
 m

 -3

 s
 -1

T, 
o

C

Figure 4.32: Steady-state bulk nucleation rate, IV (1), and apparent surface nucleation rate, IS
(2), versus temperature in a cordierite glass with 8.14 wt% TiO2 (data are taken from Ref. [110])

Table 4.4: Values of �T = Tmax − Tg for different glasses and types of surfaces (here (∗) refers
to cristobalite-crystal nucleation at two different types of active sites on the atmosphere side of
float glass.)

Glass Surface Crystal �T = Tmax − Tg Ref.

Cordierite Mechanically X-Phase 70 [103]
polished with
cerium oxide µ-cordierite > 190 [108]

Fractured µ-cordierite > 235 [114]

Cordierite with Mechanically
8.1 wt % TiO2 diamond-polished µ-cordierite > 110 [110]

Float Fire-polished Cristobalite 130∗ [100]
Cristobalite > 300∗ [100]

As we have shown in Sect. 4.4 (see Fig. 4.10, curves (1), (6)–(8)), a decrease in the ther-
modynamic barrier results in an increase of both Tmax and I (Tmax). Hence the difference in
the temperature dependences of Is and IV can be interpreted as the result of a decrease in the
thermodynamic barrier for nucleation (decrease of � in Eq. (4.13)), when one passes from vol-
ume heterogeneous nucleation to surface heterogeneous nucleation. The maximum of volume
homogeneous nucleation is found, as a rule, in the vicinity of the glass transition tempera-
ture [33, 95]. According to Table 4.4, for the case of heterogeneous surface nucleation the
values of Tmax considerably exceed the glass transition temperature. This fact agrees with the
theoretical analysis performed in Sect. 4.4 according to which Tmax increases with decreasing
thermodynamic barrier for nucleation.
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Figure 4.33: Dependences of the number of Li2O · 2SiO2 crystals on nucleation time at T =
480 °C for 23.4 Li2O · 76.6 SiO2 (mol%) glass free from additives (1) and with 0.03 wt% Ag
exposed to X-ray radiation (2) (data are taken from Ref. [111])

Heterogeneous bulk nucleation can occur independently and simultaneously with homo-
geneous nucleation [111]. Figure 4.33 illustrates such case. Curves (1) and (2) represent the
number density of Li2O · 2SiO2 crystals versus time of nucleation in lithium disilicate glass
free from additives and with 0.03 wt% Ag, respectively. Curve (1) refers to homogeneous
nucleation while curve (2) corresponds to nucleation on Ag-crystals. The rate of heteroge-
neous nucleation substantially exceeds that of homogeneous nucleation as long as there free
Ag-crystals exist at which lithium disilicate crystals nucleate (t < 200 min). After exhaustion
of Ag (t > 200 min), only homogeneous nucleation takes place.

4.7 Concluding Remarks

It follows from the present review that the main problem regarding the application of the
classical nucleation theory (CNT) to a quantitative description of nucleation kinetics in glass-
forming liquids consists in the adequate description of the properties of critical nuclei. Direct
experimental methods usually employed to study micron-size or larger crystals cannot be used
for nuclei of critical sizes, which are only a few nanometers in size in the temperature range
of interest. Therefore, one typically follows Gibbs’ description of heterogeneous systems and
assigns the thermodynamic properties (particularly the thermodynamic driving force for crys-
tallization) of proper macrophases to the critical nuclei, thus assuming that critical nuclei
and evolving stable macrophase can be characterized by widely similar bulk state parameters.
However, since the thermodynamic barrier for nucleation includes together with the thermo-
dynamic driving force the nucleus-melt surface energy, a maximum thermodynamic driving
force (corresponding to the stable phase) is not a necessary condition to attain the lowest value
of the thermodynamic barrier and, correspondingly, the highest value of the nucleation rate.
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Moreover, the thermodynamic properties of critical nuclei can be affected by elastic stresses
arising from differences between the densities of the nucleus and the melt. Hence, one can
suppose that in some cases the deviation of the composition of the nuclei from those of the
stable phase may be accompanied by the approach of the nuclei density to that of the melt.
In such cases, the effect of elastic stresses is reduced and, correspondingly, a decrease in the
thermodynamic barrier for formation of such nuclei (as compared with the respective value
for the stable phase) could be expected. Thus, elastic stress effects can considerable compli-
cate the thermodynamic aspects of nucleation and extend the variety of possible structures and
compositions of the critical nuclei.

Since, with rare exceptions, direct measurements of the characteristic properties of crit-
ical nuclei are inaccessible, it is difficult or impossible to attribute the measured nucleation
rates to definite crystal phases. It seems that such situation will not change in the near future.
Nevertheless, there are indirect evidences (partly presented in this review) for the existence
of considerable differences between the properties of near-critical nuclei and those of the re-
spective stable macroscopic phases. Glasses of stoichiometric compositions have been used as
model systems in a variety of studies of crystal nucleation. Such choice was made in the hope
that it should be possible to treat such systems similarly to one-component ones. However, it
became clear now that a stoichiometric glass composition does not guarantee that the nuclei
have the same stoichiometric composition as well. Moreover, the assumption that stoichiomet-
ric liquids consist only of stoichiometric species is a very rough one. Therefore, systematic
investigations of nucleation rates versus glass compositions are of great interest for under-
standing the true nature of the nucleation processes. The great value of such analyses will be
reinforced if simultaneously the crystal growth rates are measured. In this way, additional in-
formations can be accumulated allowing to specify the mechanisms of nucleation and growth
for the systems under study.

On the other hand, the further development of the classical theory of nucleation and growth
– aimed to describe not only critical nuclei formation but also its subsequent growth including
the possible evolution of its composition – may allow a more adequate description of the phase
transformation kinetics, in general. Different theories and modifications of the CNT do indeed
exist (see e.g. [112,113]). However the description of the critical nuclei properties remains the
main problem of the application of any nucleation theory regardless of the approaches used to
estimate the thermodynamic barrier for nucleation.

Acknowledgements

The authors would like to express their gratitude to the State of Sao Paulo Research Foundation
FAPESP (Grants 03/12617-0; 2003/03575-2; 99/00871-2), CNPq, and Pronex (Brazil) for
financial support.



122 4 Nucleation and Crystallization Kinetics in Silicate Glasses

References

[1] J.W.P. Schmelzer, Introductory Remarks, In: J.W.P. Schmelzer, G. Röpke, and V.B.
Priezzhev, Nucleation Theory and Applications (Joint Institute for Nuclear Research
Publishers, Dubna, 1999).

[2] J.M.F. Navarro, El Vidrio (CSIC, Spain, 1991).
[3] W. Höland and G. Beall, Glass-Ceramic Technology (American Ceramic Society,

Washington, DC, 2002).
[4] J.W. Gibbs, The collected works, Thermodynamics (Longmans Green, New York,

1928), Vol. 1.
[5] R. Kaischew and I.N. Stranski, Z. Phys. Chem. B 26, 317 (1934).
[6] M. Volmer and A. Weber, Z. Phys. Chem. B 119, 277 (1926).
[7] R. Becker and W. Döring, Ann. Phys. B 24, 712 (1935).
[8] M. Volmer, Kinetik der Phasenbildung (Steinkopff, Dresden, 1939).
[9] J. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946).

[10] D. Turnbull and J.C. Fisher, J. Chem. Phys. 17, 71 (1949).
[11] H. Reiss, J. Chem. Phys. 18, 840 (1950).
[12] I. Gutzow and J. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology,

and Crystallization (Springer, Berlin, 1995).
[13] K.F. Kelton, Solid State Phys. 45, 75 (1991).
[14] J.W. Christian, Transformations in Metals and Alloys. Part I (Pergamon, Oxford, 1981).
[15] F.C. Collins, Z. Electrochem. B 59, 404 (1955).
[16] D. Kashchiev, Surf. Sci., 14 209 (1969).
[17] G. Tammann, Z. Phys. Chem. B 25, 441 (1898).
[18] M. Ito, T. Sakaino, and T. Moriya, Bull. Tokyo Inst. Technol. 88, 127 (1968).
[19] V.N. Filipovich and A.M. Kalinina, Izv. Akad. Nauk SSR, Neorg. Mater. 4, 1532 (1968)

(in Russian).
[20] I. Gutzow, Contemp. Phys. 21, 121, 243 (1980).
[21] U. Köster, Mater. Sci. Eng. 97, 183 (1988).
[22] E.D. Zanotto and P.F. James, J. Non-Cryst. Solids 124, 86 (1990).
[23] E.D. Zanotto, J. Mater. Res. 13, 2045 (1998).
[24] A.N. Kolmogorov, Izv. Akad. Nauk. SSR 3, 355 (1937).
[25] W.A. Johnson and R.F. Mehl, Trans. AIME. 135, 416 (1939).
[26] M. Avrami, J. Chem. Phys. 7, 1103 (1939).
[27] V.N. Filipovich, A.M. Kalinina, V.M. Fokin, E.K. Shischkina, and D.D. Dmitriev, Fiz.

Khim. Stekla 9, 58 (1983).
[28] E.D. Zanotto and A.C. Galhardi, J. Non-Cryst. Solids 103, 73 (1982).
[29] A.A. Cabral, V.M. Fokin, and E.D. Zanotto, J. Non-Cryst. Solids 330, 174 (2003).
[30] V.M. Fokin, A.M. Kalinina, and V.N. Filipovich, J. Cryst. Growth 52, 115 (1980).
[31] A.M. Kalinina, V.M. Fokin, and V.N. Filipovich, J. Non-Cryst. Solids 38/39, 723

(1980).
[32] A.M. Kalinina, V.M. Fokin, and V.N. Filipovich, Fiz. Khim. Stekla 2, 298 (1976).



References 123

[33] E.D. Zanotto and V.M. Fokin, Philos. Trans. R. Soc. Lond. A 361, 591 (2002).
[34] V.M. Fokin, A.M. Kalinina, and V.N. Filipovich, Fiz. Khim. Stekla 3, 122 (1977).
[35] S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).
[36] V.M. Fokin, A.M. Kalinina, and V.N. Filipovich, Fiz. Khim. Stekla 3, 129 (1977).
[37] Z. Kozisek, Cryst. Res. Technol. 23, 1315 (1988).
[38] K.F. Kelton and A.L. Greer, Phys. Rev. B 38, 10089 (1988).
[39] J. Deubener, in Proceedings of the XIXth International Congress on Glass (Extended

Abstracts, Society Glass Technology, Edinburgh, 2001), Vol. 2, p. 66.
[40] O.V. Potapov, V.M. Fokin, V.L. Ugolkov, L.Y. Suslova, and V.N. Filipovich, Glass Phys.

Chem. 26, 39 (2000).
[41] D. Turnbull, J. Chem. Phys. 18, 769 (1950).
[42] A.M. Kalinina, V.N. Filipovich, V.M. Fokin, and G.A. Sycheva, in Proceedings of the

XIVth International Congress on Glass (New Delhi, 1986), Vol. 1, p. 366.
[43] O.V. Potapov, V.M. Fokin, and V.N. Filipovich, J. Non-Cryst. Solids 247, 74 (1999).
[44] G. Tammann, Z. Elektrochemie 10, 532 (1904).
[45] P.F. James, Volume nucleation in silicate glasses, in Glasses and Glass-Ceramics,

edited by M.H. Lewis, (Chapman and Hall, London, 1989).
[46] E.D. Zanotto, J. Non-Cryst. Solids 89, 361 (1987).
[47] J. Deubener, J. Non-Cryst. Solids 274, 195 (2000).
[48] V.M. Fokin, E.D. Zanotto, and J.W.P. Schmelzer, J. Non-Cryst. Solids 321, 52 (2003).
[49] M.H. Lewis, J. Metacalf-Johanson, and P.S. Bell, J. Am. Ceram. Soc. 62, 278 (1979).
[50] D. Turnbull, Thermodynamics and kinetics of formation of the glassy state and ini-

tial devitrification, in Physics of Non-Crystalline Solids (North-Holland, Amsterdam,
1964).

[51] G. Tammann, Der Glaszustand (Leopold Voss Verlag, Leipzig, 1933).
[52] G.L. Mikhnevich and J.F. Browko, Phys. Sowjetunion 13, 113 (1938).
[53] P.F. James, Nucleation in glass-forming systems, in Advances in Ceramics, edited by

J.H. Simmons, D.R. Uhlmann, and G.H. Beall (Am. Ceram. Soc., Columbus, 1982).
[54] M.C. Weinberg and E.D. Zanotto, J. Non-Cryst. Solids 108, 99 (1989).
[55] Y. Miyazawa and G.M. Pound, J. Cryst. Growth. 23, 45 (1974).
[56] D. Turnbull, J. Chem. Phys. 20, 411 (1952).
[57] L. Shartsis and S. Spinner, J. Res. Natl. Bur. Stand. 46, 385 (1951).
[58] A.A. Appen, K.A. Schishov, and S.S. Kaylova, Silicattechnik 4, 104 (1953).
[59] V.M. Fokin, E.D. Zanotto, and J.W.P. Schmelzer, J. Non-Cryst. Solids 278, 24 (2000).
[60] J. Stefan, Ann. Phys. 29, 655 (1886).
[61] V.M. Fokin and E.D. Zanotto, J. Non-Cryst. Solids 265, 105 (2000).
[62] I. Gutzow, D. Kashchiev, and I. Avramov, J. Non-Cryst. Solids 73, 477 (1985).
[63] A.I. Rusanov, Phasengleichgewichte und Grenzflächenerscheinungen (Akademie-

Verlag, Berlin, 1978).
[64] V.P. Skripov and M.Z. Faizullin, Solid–Liquid and Liquid–Vapor Phase Transitions:

Similarities and Differences, In: J.W.P. Schmelzer (Ed.) Nucleation Theory and Appli-
cations (Wiley-VCH, Berlin, 2005), pp. 4–38.



124 4 Nucleation and Crystallization Kinetics in Silicate Glasses

[65] V.N. Filipovich and T.A. Jukovskaiy, Fiz. Khim. Stekla 14, 300 (1988).
[66] B.A. Shakmatkin and N.M. Vedisheva, J. Non-Cryst. Solids 171, 1 (1994).
[67] B.A. Shakmatkin, N.M. Vedisheva, M.M. Shultz, and A.C. Wright, J. Non-Cryst. Solids

177, 249 (1994).
[68] J.W.P. Schmelzer, J. Schmelzer, Jr., and I.S. Gutzow, J. Chem. Phys. 112, 3820 (2000).
[69] J.W.P. Schmelzer, Phys. Chem. Glasses 45 (2), 116 (2004).
[70] J.W.P. Schmelzer, A.R. Gokhman, and V.M. Fokin, J. Colloid Interface Sci. 272, 109

(2004).
[71] J.W.P. Schmelzer, A.S. Abyzov, and J. Möller, J. Chem. Phys. 121, 6900 (2004).
[72] V.M. Fokin, O.V. Potapov, E.D. Zanotto, F.M. Spiandorello, V.L. Ugolkov, and

B.Z. Pevzner, J. Non-Cryst. Solids 331, 240 (2003).
[73] J. Deubener, R. Brückner, and M. Strernizke, J. Non-Cryst. Solids 163, 1 (1993).
[74] E.D. Zanotto, and M.L.G. Leite, J. Non-Cryst. Solids 202, 145 (1996).
[75] P.C. Soares Jr., Initial Stages of Crystallization in Lithium Disilicate Glass Revisited.

M.D. thesis, Universidade Federal de São Carlos, Brazil, 1997.
[76] Y. Iqbal, W.E. Lee, D. Holland, and P.F. James, J. Non-Cryst. Solids 224, 1 (1998).
[77] L.I. Burger, P. Lucas, M.C. Weinberg, P.C. Soares Jr., and E.D. Zanotto, J. Non-Cryst.

Solids 274, 188 (2000).
[78] J. Deubener, Homogene Volumenkeimbildung in Silicatschmelzen: Theorie und Exper-

iment (Habilitationsschrift, Berlin, 2001).
[79] P.C. Soares Jr., E.D. Zanotto, V.M. Fokin, and H.J. Jain, J. Non-Cryst. Solids 331, 217

(2003).
[80] B.A. Shakhmatkin and N.M. Vedishcheva, personal communication (2001).
[81] I. Hasdemir, R. Brückner, and J. Deubener, Phys. Chem. Glasses 39, 253 (1998).
[82] L. Granasy, T. Pusztai, and P.F. James, J. Chem. Phys. 117, 6157 (2002).
[83] E.D. Zanotto and E.J. Müller, J. Non-Cryst. Solids 130, 220 (1991).
[84] J.W.P. Schmelzer, R. Müller, J. Möller, and I.S. Gutzow, Phys. Chem. Glasses 43C, 291

(2002).
[85] J.W.P. Schmelzer, R. Müller, J. Möller, and I.S. Gutzow, J. Non-Cryst. Solids 315, 144

(2003).
[86] J.W.P. Schmelzer, O.V. Potapov, V.M. Fokin, R. Müller, and S. Reinsch, J. Non-Cryst.

Solids 333, 150 (2004).
[87] V.M. Fokin, E.D. Zanotto, J.W.P. Schmelzer, and O.V. Potapov, J. Non-Cryst. Solids,

in press.
[88] G. Partridge, Glass Technol. 28, 9 (1987).
[89] E.D. Zanotto, J. Non-Cryst. Solids 129, 183 (1991).
[90] E.D. Zanotto, Ceram. Trans. 30, 65 (1993).
[91] V.N. Filipovich, A.M. Kalinina, V.M. Fokin, N.S. Yuritsyn, and G.A. Sycheva, Glass

Phys. Chem. 25, 246 (1999).
[92] R. Müller, E.D. Zanotto, and V.M. Fokin, J. Non-Cryst. Solids 274, 208 (2000).
[93] J. Schmelzer, R. Pascova, J. Möller, and I. Gutzow, J. Non-Cryst. Solids 162, 26 (1993).



References 125

[94] J. Schmelzer, J. Möller, R. Pascova, I. Gutzow, R. Müller, and W. Pannhorst, J. Non-
Cryst. Solids 183, 215 (1995).

[95] V.N. Filipovich, V.M. Fokin, N.S. Yuritsyn, and A.M. Kalinina, Thermochimica Acta
280/281, 205 (1996).

[96] R. Müller, J. Non-Cryst. Solids 219, 110 (1997).
[97] S. Reinsch and R. Müller, Nucleation at silicate glass surfaces, in Analysis of the Com-

position and Structure of Glass and Glass Ceramics, edited by H. Bach and D. Krause
(Springer, Berlin, 1999), p. 379.

[98] Z. Strnad and R.W. Douglas, Phys. Chem. Glasses 14, 33 (1973).
[99] A.M. Kalinina, N.S. Yuritsyn, V.M. Fokin, and V.N. Filipovich, Crystal Nucleation

and Growth on the Surface of Glass of the Composition 2MgO · 2Al2O3 · 5SiO2. in:
VIII. Vses. Soveshch. po Stekloobraznomu Sostoyaniyu (VIIIth All-Union Conf. on
the Vitreous State), Leningrad, Nauka, 1986, p. 235 (in Russian).

[100] J. Deubener, R. Brückner, and H. Hessenkemper, Glastech. Ber. B 65, 256 (1992).
[101] Surface Nucleation. (Collection of selected papers published by the members of TC 7

during their 10 years long attempt to understand the nature of the active sites in surface
nucleation). Published by the Intern. Commission on Glass, 2000.

[102] N.S. Yuritsyn, V.M. Fokin, A.M. Kalinina, and V.N. Filipovich, Glass Phys. Chem. 20,
116 (1994).

[103] N.S Yuritsyn, V.M. Fokin, A.M. Kalinina, and V.N. Filipovich, Glass Phys. Chem. 20,
125 (1994).

[104] I. Gutzow and S. Toschev, The kinetics of nucleation and the formation of glass-ceramic
materials, in Advances in Nucleation and Crystallization in Glasses (American Ceramic
Society, Columbus, 1971), p. 10.

[105] A. Milchev, Electrochim. Acta 30, 125 (1985).
[106] A. Milchev, Electrochim. Acta 31, 977 (1986).
[107] V.M. Fokin, N.S. Yuritsin, A.M. Kalinina, V.N. Filipovich, and D.N. Filippova, The

Temperature Dependence of the µ-cordierite Crystals Nucleation Rate on the Polished
Surface of Cordierite Glass, in Proceedings of the 5th International Otto Schott Collo-
quium. Glastech. Ber. Glass Sci. Technol. 67C, 392 (1994).

[108] V.M. Fokin, N.S. Yuritsyn, V.N. Filipovich, and A.M. Kalinina, J. Non-Cryst. Solids
219, 37 (1997).

[109] S. Toschev and I. Gutzow, Krist. Tech. B7, 43 (1972).
[110] V.M. Fokin and E.D. Zanotto, J. Non-Cryst. Solids 246, 115 (1999).
[111] V.N. Filipovich, G.A. Sycheva, and A.M. Kalinina, Fiz. Khim. Stekla 11, 123 (1985)

(in Russian).
[112] D.W. Oxtoby, Acc. Chem. Res. 31, 91 (1998).
[113] L. Granasy and P.F. James, J. Chem. Phys. 113, 9810 (2000).
[114] R. Müller, S. Reinsch, and W. Pannhorst, Glastech. Ber. Glass Sci. Technol. 69, 12

(1996).



5 Boiling-Up Kinetics of Solutions of Cryogenic Liquids

Vladimir G. Baidakov

Seeking no profits whatsever, Inspired solely in his flight,
Chopin transforms – alone as ever – The probable into the right

Boris Pasternak

A kinetic theory of the process of boiling-up of superheated binary solutions is developed.
In the framework of the Kramers–Zeldovich method, describing nucleation as a process of
Brownian motion of the nucleus in the field of thermodynamic forces, an equation for the
steady-state nucleation rate is derived. In the analysis of this kinetic problem, the whole spec-
trum of possible factors is included, which may limit the growth of the nucleus: the volatility
of the solution, viscosity and inertia effects in the motion of the liquid, diffusion, and ther-
mal conduction effects at the phase boundaries. For the determination of the work of critical
cluster formation, the van der Waals theory of capillarity is utilized. This theory allows an
account of the dependence of the properties of critical clusters on cluster size. The results of
experiments on nucleation (the determination of the mean lifetimes of the solutions and the
steady-state nucleation rates) in metastable solutions with full (Ar–Kr) and partial (He–O2)
solubility are given in dependence on temperature, pressure, and composition of the solutions.
The results of the experiments are compared with the theoretical predictions. It is shown that
a good agreement between experimental and theoretical results is reached when the curvature
corrections to the surface tension, calculated via the van der Waals approach, are taken into
account.

5.1 Introduction

A first-order phase transition presupposes the existence of metastable states. It proceeds fre-
quently via the formation and subsequent growth of critical nuclei of a new phase. In pure
systems, in the absence of external factors initiating a phase transition, nuclei form via spon-
taneous fluctuations (homogeneous nucleation). The emergence of a new-phase fragment in
a homogeneous metastable system is connected with the formation of a phase boundary and
accompanied by an increase in the excess free energy ��. The competition of the surface and
volume terms, entering the expression for the free energy with opposite signs, results in the ex-
istence of a finite maximum �� = W∗. The fragments corresponding to the maximum of ��
are called critical nuclei, and the quantity W∗ is the work of their formation. At each moment
of time, the overwhelming majority of fragments has precritical sizes R < R∗. Their existence
is unfavorable from a thermodynamic point of view and they dissolve as a rule. However, due
to fluctuations some of the fragments may grow up to sizes exceeding the critical one and then
their further growth is thermodynamically irreversible.

The discussed concepts form the basis of the classical nucleation theory formulated among
others by Volmer [1], Döring [2], Zeldovich [3], and Frenkel [4]. For one-component systems,
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the theory defines the nucleation rate J , i.e., the number of viable fragments of a new phase
forming per unit volume in a unit time, as

J = ρB exp

(
− W∗

kBT

)
. (5.1)

Here ρ is the number of molecules per unit volume of the metastable phase, B is a kinetic
coefficient which determines the rate of the transition of fragments through the critical size,
kB is the Boltzmann constant, and T is the absolute temperature.

In the papers by Volmer [1], Zeldovich [3], and Frenkel [4], the kinetic theory of nucle-
ation was formulated and applied to one-component systems. Equation (5.1) was employed
for the first time by Flood [5], Neumann and Döring [6] in a more general context with the
aim to interpret experimental data on the condensation of supersaturated vapors in a binary
system. These authors [5, 6] took the coefficient B equal to its value for pure components in
the solution.

In contrast to one-component systems, in order to characterize new-phase fragments in a
binary system, it is necessary to introduce into the description at least two parameters: the
radius of a new-phase fragment, R, and its composition, c′′, or the number of molecules of
the first, n′′

1, and the second, n′′
2, components in the fragment. Binary gas nucleation, as the

process of fluctuational overcoming the activation barrier in terms of the variables n′′
1 and n′′

2,
was first considered in detail by Reiss [7], Nesis and Frenkel [8]. In Ref. [7] it was assumed
that the direction of the two-dimensional vector of the flow of nuclei in phase space in the
vicinity of the activation-barrier passes the saddle point and is determined only by the local
relief of the surface ��(n′′

1, n′′
2). The later papers by Stauffer [9], Shi and Seinfeld [10], and

Melikhov et al. [11] took into account the dependence of the direction of the fastest descent
from the saddle point on all the physical parameters of the problem.

All the mentioned approaches postulate the existence of a Boltzmann distribution for sub-
critical fragments. The possibility of an abnormal binary nucleation regime, when the equi-
librium of subcritical fragments is violated, and the flow of nuclei by-passes the saddle point,
was discussed, for example, in [10, 12, 13]. This nucleation regime is observed if the rate of
change of the number of one of the components of the solution in the nucleus is much smaller
than that of the other. Thus, nucleation in a binary system may proceed not necessarily via the
saddle point of the free energy.

While losing stability for finite disturbances connected with the formation of a new phase,
a metastable system retains a stabilizing reaction to infinitesimal continuous changes in the
state parameters. As soon as the relation(

∂�µ

∂c

)
p,T

= 0 (5.2)

is fulfilled, the system becomes unstable with respect to such infinitesimal changes. This
way, Eq. (5.2) determines the boundary where the homogeneous phase becomes essentially
unstable. The respective curve is denoted as the (diffusion) spinodal of the solution. Here
�µ = µ1 − µ2 is the chemical potential difference.

A superheated liquid is a particular case of a metastable state and a most convenient object
for verification of the homogeneous nucleation theory [14]. Of special interest are investiga-
tions of nucleation in liquefied inert gases. The good wettability of solid materials by liquefied
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gases, the low content of dissolved gases and solid particles in them makes it possible to re-
alize the homogeneous nucleation mechanism at comparatively low rates of intrusion into
the metastable region. Being phenomenological, the homogeneous nucleation theory does not
supply rigorous expressions for the parameters B and W∗ in Eq. (5.1). The simplicity of the
molecular structure of liquefied inert gases makes it possible to determine these quantities by
using the methods of statistical mechanics.

Fewer papers [15, 16] are devoted to the study of the boiling-up of superheated liquid
solutions with complete solubility of the components as compared with investigations of con-
densation in mixtures of supersaturated vapors [17,18]. Both for the analysis of the boiling-up
of binary solutions and condensation of binary vapors a variety of experiments have been per-
formed on sufficiently complex molecular systems and in a comparatively narrow range of
nucleation rates. The first papers investigating nucleation in superheated solutions are pub-
lished by Baidakov et al. [19, 20].

A supersaturated solution of a gas in a liquid is an example of a two-component metastable
system, in which nonequilibrium is caused by the excess of the concentration of a dissolved
component over its value in the saturated state. The removal of supersaturation takes place as
a result of separation of the gas phase in the form of numerous bubbles (“the effect of cham-
pagne”). This phenomenon manifests itself in the Caisson’s disease, it is used as a means for
degassing liquids, foaming of polymeric materials and in other technological processes. If at
a given temperature and pressure of a supersaturated solution a pure solvent (liquid) and a
dissolved substance (gas) are in the stable state, the solvent in the solution is characterized
by low volatility, and the dissolved gas by low solubility. New-phase nuclei in such solutions
practically fully consist of molecules of the dissolved substance. The theory of boiling-up of
such supersaturated nonvolatile liquids was developed by Deryagin and Prokhorov [21] and
Kuni et al. [22]. The first experimental investigations of nucleation in nonvolatile liquid so-
lutions were made by Hemmingsen [23], Finkelstein and Tamir [24] and Bowers et al. [25].
Supersaturation was created by an abrupt release of pressure on the liquid (water), which
was saturated with a gas at pressures equal to several hundreds of atmospheres. The con-
centration of a dissolved gas, c′, was determined in this case by the value of the saturation
pressure, ps, and the depth of penetration into the metastable region – by the pressure differ-
ence pn(c′, T ) = ps − pn, where pn(c′, T ) is the pressure where an intensive gas emission is
observed.

An approach to the investigation of nucleation in gas-supersaturated water solutions, dif-
ferent from that used in Ref. [23], was suggested by Rubin and Noyes [26]. In a solution,
kept in a vessel of a fixed volume at controlled values of temperature and pressure, supersat-
uration was initiated by a chemical reaction. If the rate of gas production during a chemical
reaction in a solvent exceeds considerably the rate of its removal through a free interface, con-
siderable supersaturations can be achieved in the volume of a liquid solvent. A decay of the
metastable state was accompanied by an abrupt (explosive) gas release. The concentration of
the dissolved gas in the supersaturated solution was determined by the data for the volumes
of the solution, gas and liquid phases in a measuring cell and the pressure increase in the sys-
tem during the initiation of gas release, e.g., by stirring the solution. In this case, the value of
supersaturation is characterized by the value of �c′

n(p, T ) = c′
n − cs. According to the data

given in Ref. [26], the concentration, c′
n , of nitrogen dissolved in water before the formation
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of bubbles was approximately 20–40 times larger than its equilibrium concentration, cs, at
atmospheric pressure.

A comparison of experimental data, obtained by two different methods of creating su-
persaturation in a liquid solution, with the predictions of homogeneous nucleation theory
has shown that the degrees of metastability obtained by experiment are considerably lower
than their theoretical values. Thus, in the system oxygen – water the limiting values of con-
centration c′

n , calculated from the homogeneous nucleation theory, at atmospheric pressure
and a nucleation rate J = 107 s−1 m−3 have been proven to be 15 times larger than those
achieved by experiment [27]. In this system at the limiting values of supersaturation regis-
tered in experiment, the critical bubble is characterized by a radius R∗ = 15 nm, and the
pressure p′′∗ = 9.5 MPa. The Gibbs number G∗ = W∗/kBT , i.e., the ratio between the work
of formation of a critical nucleus and the energy of thermal motion of molecules kBT , is about
� 1.56 × 104 in this case [28]. Overcoming such a high potential barrier via homogeneous
nucleation of the gas phase in characteristic times of an experiment is an unlikely event. In the
case of spontaneous boiling-up of superheated pure liquids, the value of G∗ is about � 72 [29].

To remove such contradictions between theory and experiment, a number of authors have
suggested models of nucleation in gas-supersaturated solutions different from that of the clas-
sical thermodynamic model [28,30]. It has been postulated, for example, that the formation of
gas bubbles in the solution proceeds in two stages. In the first stage, according to Kwak and
Panton [30], the molecules of a dissolved gas form a cluster, which has no distinct interface
and, consequently, no surface energy. In the paper by Bowers et al. [28], the spatial region
of increased gas concentration in the solution is called a “blob.” The small difference of gas
concentrations in a “blob” and the surrounding liquid ensures, in the author’s opinion [28], a
small surface contribution to its excess free energy. The latter proves to be much lower than
in a bubble of the same size. Both the “clusters” of Kwak and Panton [30] and the “blobs” of
Bowers et al. [28], after achieving a certain size exceeding the size of a critical nucleus, are
transformed into a supercritical gas bubble. The models, described in Refs. [28, 30], make it
possible, for limiting supersaturations observed by experiment [23,26], to decrease the height
of the nucleation barrier to ∼ 102kBT .

A peculiar situation for bubble formation in a liquid solution is observed at temperatures
close to the critical point of the solvent. Here a two-component system may prove to be “dou-
bly” metastable. At a given temperature, T , and concentration of the dissolved component, c′,
a solution under a pressure p lower than the saturation pressure ps is supersaturated and char-
acterized by the degree of metastability �p(T, c′) = ps − p, a pure solvent is superheated by
the value of �T (p) = T − Ts(c′ = 0), where Ts(c′ = 0) is the saturation temperature of a
pure solvent at a given pressure. In the vicinity of the critical point one can no longer neglect
the volatility of the solvent, viscous and inertial forces and heat exchange at the interface be-
gin to play an important role in the bubble-growth dynamics. The theory of boiling-up of such
solutions has been developed by Baidakov [31].

Experimental investigations of limiting superheats �T (p, c′) = Tn − Ts for solutions of
carbon dioxide and nitrogen in organic liquids were conducted by Mori et al. [32] and Forest
and Ward [33]. In their papers, they used the method of emerging droplets. At nucleation rates
J = 1024–1026 s−1 m−3, liquid solutions of high-temperature liquids were investigated by the
method of pulse heating of a wire probe [34]. Gas-filling of a liquid resulted in a shift of the
spontaneous boiling-up boundary toward lower temperatures. The authors of the papers [32–
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34] state satisfactory agreement between homogeneous nucleation theory and experiment, at
least, with respect to the value of the limiting superheat of the solutions.

The present paper is devoted to the development of a kinetic theory of boiling-up of binary
solutions taking into account all the main factors determining the growth of a vapor bubble
(Sect. 5.2). The final result of the theory consists in an expression for the steady-state ho-
mogeneous nucleation rate. The main quantity, determining the nucleation rate, is the work
of formation of a critical nucleus, W∗. To find W∗, the van der Waals capillarity theory is
utilized. This theory allows to determine, in addition, the distribution of the densities of the
different components in a critical bubble and the dependence of the bubble surface tension on
its characteristic size (Sect. 5.3).

To investigate by experiment the kinetics of spontaneous boiling-up of binary solutions
(Sect. 5.4), a method of measuring the lifetime of a metastable liquid is used, which is approx-
imately an order of magnitude more accurate in determining the temperature of the degree of
superheating of the solution than the methods employed in papers [32–34]. By experiment,
temperature, baric and concentration dependences of the nucleation rate are determined. The
objects of investigation are solutions with complete solubility of the components and gas-
supersaturated solutions. Gas-supersaturated solutions of cryogenic liquids belong to the class
of weak solutions. At pressures of 5 MPa, the solubility of helium in oxygen does not ex-
ceed 2–3 mol% [35]. Considerable differences between the parameters of the potential of the
intermolecular interaction of a solvent and a dissolved substance result in a well-expressed
nonideality of a two-component system with helium behaving as a surface-active substance
decreasing the excess free energy of the liquid–vapor interface [36]. Solutions of argon dis-
solved in krypton have been chosen as a system with complete solubility (Sect. 5.3). The
simplicity of the molecular structure of these solutions makes it possible to employ the van
der Waals capillarity theory for taking into account both the adsorption and size effects in
nucleation.

The results of the experimental and theoretical investigations are compared in Sect. 5.5 of
the present contribution. A summary of the results and discussion (Sect. 5.6) completes the
chapter.

5.2 Nucleation Kinetics

5.2.1 Introduction

The problem of the boiling-up of multicomponent solutions is a multiparameter problem of
the kinetics of phase transitions. Already in the case of a binary liquid mixture, the state of a
new-phase nucleus is given at least by three variables, for example, volume v, pressure p′′ and
concentration c′′ [29]. The number of significant variables is reduced to two if the new phase
is incompressible, or if one of the solution components is nonvolatile. The approximation of
incompressibility of the new phase may be valid in describing condensation of supersaturated
gas mixtures far from the critical point [7,10,11], the assumption of nonvolatility – during the
boiling-up of liquid solutions [21]. The multiparameter version of the nucleation theory is de-
veloped as an extended version of the classical Kramers–Zeldovich approach [3] to systems,
where the state of the nucleus is determined by several variables. It has been repeatedly dis-
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cussed in the literature [37–39]. The main difficulty in applying this approach to the boiling-up
of superheated binary solutions is connected with the fact that the dynamics of evolution of the
nucleus in binary solutions is governed by the hydrodynamic equations of motion of a viscous
liquid in combination with the diffusion equation.

The kinetic nucleation theory treats the growth of a nucleus as a diffusion process in the
space of its significant variables in the field of appropriate thermodynamic forces. As the main
thermodynamic parameters of a vapor bubble in a binary liquid mixture it is convenient to
choose its volume v and the partial pressures of the components p′′

1 and p′′
2 . The growth of a

vapor bubble in a superheated liquid is accompanied by irreversible losses in energy connected
with the inertial motion of the liquid, viscosity, and thermal conductivity. The inertial forces
produce an additional pressure at the bubble surface, and the work performed by vapor against
this pressure is spent in transferring the kinetic energy to the liquid. Therefore, when taking
into account inertia effects one should include into the significant variables of a new-phase
nucleus the rate of change of the volume dv/dt = v̇ of the vapor bubble. The effect of viscosity
manifests itself through the force of viscous friction acting on the bubble surface. As the
friction force is proportional to the rate of change of the bubble radius (volume), its account
does not require the introduction of an additional nucleus variable, besides those that have
already been considered. The expansion (compression) of a bubble results in the evaporation of
the liquid (vapor condensation), and as a consequence the temperature on its interface becomes
lower (higher) than the temperature of the liquid. Thus, in the vicinity of the bubble surface a
temperature gradient develops, and its evolution will be largely determined by the process of
heat supply (removal) to the bubble from the surrounding liquid. Since this process concerns
the values of all the chosen variables of the problem under consideration, we shall take it into
account through corrections to the values of the variables v, p′′

1 , p′′
2 , and v̇ .

The development in time t of the distribution of nuclei of a newly evolving phase n(q, t)
will obey in this case the Kramers–Zeldovich four-dimensional continuity equation for the
density of the fluxes of nuclei j

∂n

∂ t
= − ∂

∂q
j , j = −neD

∂

∂q
n

ne
. (5.3)

Here D is the tensor of generalized diffusion in the space of variables q ∈ {v, p′′
1 , p′′

2 , v̇}; ne(q)
is the equilibrium distribution function of boiling-up nuclei connected with some well-defined
potential function �(q) by the relation

ne(q) ∼ exp

[
−�(q)

kBT

]
. (5.4)

The problem of determination of the nucleation rate, the main kinetic characteristic of the
nucleation process, is reduced in this case to the determination of the shape of this potential
in the space of nucleus variables, in the computation of the coefficient of the generalized
diffusion of the nucleus in this space and the solution of the kinetic equation governing the
nucleation process.

The analysis as carried out below includes the following simplifications. The flux of nuclei
via the saddle or the ridge of the potential barrier �(q), separating in the space of variables
v, p′′

1, p′′
2 , v̇ the region of heterophase states from two-phase ones, is assumed to be indepen-

dent of time, i.e., the nucleation process is assumed to proceed under steady-state conditions.
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The analysis is restricted to systems with weak metastability, when the height of the nucleation
barrier obeys the inequality �∗ � kBT . This condition makes it possible to use a macroscopic
approximation for the description of the critical nuclei, treating them as spherical vapor bub-
bles. It is assumed further that the liquid solutions are viscous and incompressible, and that
the vapor mixture in a bubble can be treated as a mixture of perfect gases.

5.2.2 Analysis of the Potential Surface in the Space of Nucleus Variables

The phase space of a nucleus in a binary system is given by the thermodynamic variables
v, p′′

1 , p′′
2 and a dynamic variable, the rate of change of the bubble volume, v̇ . In the space

of these variables, the potential surface �(v, p′′
1 , p′′

2 , v̇), separating the region of heterophase
fluctuations from the two-phase region, is determined by the expression

�(v, p′′
1 , p′′

2 , v̇) = ��(v, p′′
1 , p′′

2)

kBT
+ Mv

2kBT
v̇ . (5.5)

Here ��(v, p′′
1 , p′′

2 ) is the thermodynamic potential difference corresponding to the mini-
mum work of formation of a bubble of volume v with partial pressures of the components
p′′

1 , p′′
2 , and a temperature T . The second term in Eq. (5.5) is the kinetic energy of a grow-

ing bubble with an “effective” mass Mv in variables p′′
1 , p′′

2 , v, and v̇ . The potential surface
�(v, p′′

1 , p′′
2 , v̇) has the form of Eq. (5.5) only for t � τrel (τrel is Maxwell’s relaxation time),

i.e., with the establishment of an equilibrium growth-rate distribution of the bubbles.
In a binary system, the thermodynamic work of formation of a vapor bubble of volume v

with N ′′
1 molecules of the first component and N ′′

2 molecules of the second component is equal
to the increase in the Gibbs potential and determined via the relation [40]

�� = (
p′ − p′′

1 − p′′
2

)
v + σ A + (

µ′′
1 − µ′

1

)
N ′′

1 + (
µ′′

2 − µ′
2

)
N ′′

2 . (5.6)

Here p′ is the pressure in a liquid solution, σ is the surface tension, A is the area of the
bubble surface, and µi are the chemical potentials of the different components of the mixture
(i = 1, 2). It is assumed that the state of the phase surrounding the bubble does not change in
the process of its growth.

The function ��(v, p′′
1 , p′′

2 ) has in the metastable region an extremum characterized by
the parameters v∗, p′′

1∗, and p′′
2∗. Going over to dimensionless variables x , y, and z and the

reduced rate of growth of the bubbles, ẋ , via

x = v − v∗
v∗

, y = p′′
1 − p′′

1∗
p′′

1∗
, z = p′′

2 − p′′
2∗

p′′
2∗

, ẋ = v̇

v∗
, (5.7)

the dimensionless potential surface �(x, y, z, ẋ) in the space of the variables x , y, and z, ẋ
can be written as

�(x, y, z, ẋ) = ��(x, y, z)

kBT
+ Mẋ

2kBT
ẋ2 = G + Mẋ

2kBT
ẋ2 . (5.8)
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Using Eqs. (5.6) and (5.8) and the assumption of ideality of the gas mixture in a bubble we
have

�(x, y, z, ẋ) = p′′v∗(x + 1)

kBT
− p′′

1∗v∗(x + 1)(y + 1)

kBT
− p′′

2∗v∗(x + 1)(z + 1)

kBT

+ p′′
1∗v∗(x + 1)(y + 1) ln(y + 1)

kBT
+ p′′

2∗v∗(x + 1)(z + 1) ln(z + 1)

kBT

+ 32/3(4π)1/3σv
2/3∗ (x + 1)2/3

kBT
+ Mẋ

2kBT
ẋ2 .

(5.9)

After expansion of �(x, y, z, ẋ) in the vicinity of the extremum into a series in terms of
powers x , y, z, ẋ up to second order terms, we obtain

�(x, y, z, ẋ) = G∗
(

1 − 1

3
x2 + 1

b1
y2 + 1

b2
z2

)
+ Mẋ

2kBT
ẋ2 , (5.10)

where G∗ = ��∗/kBT is the Gibbs number, bi = 2σ/R∗ p′′
i∗ is a dimensionless parameter

characterizing the degree of superheating of the solution, R∗ is the radius of the critical bubble,
and Mẋ = Mv v

2∗.
According to Eq. (5.10), in the vicinity of the extremum point, the function �(x, y, z, ẋ)

shows a quadratic dependence on the relevant variables without any mixed terms. The coeffi-
cients at the squares of the variables x , y, z, v determine the curvature of the potential surface.
The difference in the sign of one of the radii of curvature (Rx = −(3/2)G−1∗ ) from the three
others (Ry = (b1/2)G−1∗ , Rz = (b2/2)G−1∗ , Rẋ = kBT /Mẋ ) implies that the �(x, y, z, ẋ)
surface is a hyperbolic paraboloid in the vicinity of the origin of the system of coordinates,
and the extremum is a saddle point. In the variables x , y, z, ẋ the relations y = 0, z = 0,
ẋ = 0 determine the ridge line of the activation barrier. The minus sign of the variable x in
Eq. (5.10) shows that this variable is unstable, while the variables y, z, ẋ are stable.

By separating “stable” and “unstable” variables in the thermodynamic potential, Eq. (5.8),
the equilibrium distribution function of nuclei in x , y, z, ẋ is obtained in the form

ne(x, y, z, ẋ)nex neynezneẋ = Cx exp

(
−G∗ + 1

3
G∗x2

)

× Cy exp

(
− 1

b1
G∗y2

)
Cz exp

(
− 1

b2
G∗z2

)
Cẋ exp

(
− Mẋ

2kBT
ẋ2

)
, (5.11)

where Cx , Cy, Cz , and Cẋ are the normalization constants. The function nex , which describes
the distribution of bubbles along the path of evolution, is similar to the equilibrium distribution
function in a one-dimensional problem of nucleation. Kagan [41], in considering the boiling-
up of a pure liquid, assumes that the normalization constant is proportional to the number of
particles in a unit volume of the metastable phase. Then in a binary system Cx = ρ′ = ρ′

1 +ρ′
2

holds, where ρ′
1 and ρ′

2 are the number densities of the solvent and the substance dissolved in
the liquid phase, respectively. According to Ref. [42], Cx = v∗ρ′2 holds.
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The functions ney and nez determine the equilibrium distributions of bubbles in terms of
partial pressures (“stable variables”) and are normalized as

+∞∫
−∞

ney dy = 1,

+∞∫
−∞

nez dz = 1 . (5.12)

The value of Cẋ = [Mẋ/(2πkBT )]1/2 follows from

+∞∫
−∞

neẋ d ẋ = 1 . (5.13)

5.2.3 The Diffusion Tensor of Nuclei

The determination of the tensor of generalized diffusion is reduced to the specification of the
forces that act on a nucleus and the rates of change of its parameters under the action of these
forces. In the respective computations, we assume that the interaction of a bubble with a liquid
is the result of a hydrodynamic interaction caused by the pressure of the liquid, the Laplace
force, the viscous and the inertial forces; the emission–absorption interaction, connected with
the exchange of molecules of the components of the solution between the bubble and the
liquid, and the diffusion interaction caused by the presence of a depletion zone around the
bubble owing to the finite rate of supply of one of the components of the solution to it.

The bubble radius at each moment of time is determined by a relation which follows from
the Navier–Stokes equation if the latter is integrated with respect to r from R to ∞. For an
incompressible Newtonian liquid in the absence of mass forces, when the speed of motion of
the bubble surface, R, coincides with the speed of motion of molecules of the solvent and the
dissolved substance adjoined to this surface, we have

ρl RR̈ + 3

2
ρl Ṙ

2 = p′′ − p′ − 2σ

R
− 4η

Ṙ

R
, (5.14)

where ρl is the mass density of a liquid, η is its viscosity. By neglecting, in the vicinity of the
saddle point, the term containing Ṙ2 as a small term of second order as compared with the
term proportional to Ṙ, we obtain

ρl RR̈ = p′′ − p′ − 2σ

R
− 4η

Ṙ

R
. (5.15)

Equation (5.15) determines the hydrodynamic interaction of a bubble with the liquid.
Let us go over in Eq. (5.15) to dimensionless variables defined via Eq. (5.5). Then for the

acceleration of the nucleus “drift” we have

ẍ = bp′′∗
ρl R2∗

x + 3bp′′∗
ρl R2∗

1

b1
y + 3bp′′∗

ρl R2∗
1

b2
z − 4η

ρl R2∗
ẋ . (5.16)
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The effective mass Mẋ of a bubble will be found by bringing Eq. (5.16) to the form of the
equation of motion for a particle of mass Mẋ under the action of external forces Fx , Fy , Fz in
a medium with a friction proportional to the velocity

ẍ = Fx

Mx
+ Fy

My
+ Fz

Mz
− γ ẋ . (5.17)

Projections of the forces acting parallel to the axes x , y, z, ẋ are determined by the following
expressions:

Fx = −∂�

∂x
= 2

3
G∗x , Fy = −∂�

∂y
= − 2

b1
G∗y ,

Fz = −∂�

∂z
= − 2

b2
G∗z , Fẋ = −∂�

∂ ẋ
= Mẋ

kBT
.

(5.18)

From Eqs. (5.16)–(5.18) it follows that

Mẋ = Mx = My = Mz = Ml R2∗
3

, γ = 4η

ρl R2∗
, (5.19)

where Ml = 4
3π R3∗ρl is the mass of the liquid in the volume of a critical nucleus.

We introduce further a dimensionless parameter

ϕ = 3bp′′∗ Ml

64η2 R∗
, (5.20)

characterizing the inertial nature of a liquid and rewrite Eq. (5.16) in the form

ẍ = 3b2 p′′∗2

16η2

1

ϕ

[
1

3
x + 1

b1
y + 1

b2
z − 4η

3bp′′∗
ẋ

]
. (5.21)

For the potential barrier in the vicinity of the saddle point, we have, according to Eqs. (5.10),
(5.19), and (5.20), the following result:

�(x, y, z, ẋ) = G∗
(

1 − 1

3
x2 + 1

b1
y2 + 1

b2
z2 + 16η2

3b2 p′′∗2
ϕ ẋ2

)
. (5.22)

The rates of change of the number of molecules for each of the components in a bubble as a
result of molecular exchange are

Ṅ ′′
i,m = πβivt i R2

kBT

(
p′′

Ri − p′′
i

)
, (5.23)

where vt i = (8kBT/πmi )
1/2 represents the mean energetic velocities of molecular motion of

the components of the mixture, βi is the condensation coefficient, mi is the mass of a molecule,
and p′′

Ri is the equilibrium partial pressure in a bubble of a given radius of curvature.
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Let us assume that a bubble grows at a rate defined by the diffusion of the different com-
ponents through the liquid to the bubble surface. The concentration field around the bubble is
determined by solving the diffusion equation

∂c′

∂ t
= Dg

1

r

∂2

∂r2
rc′(r) , (5.24)

where Dg is the diffusion coefficient. The characteristic time of diffusion in the vicinity of
the bubble is R2/Dg . The time of bubble growth is proportional to R/Ṙ. In the vicinity of
the saddle point the rate Ṙ is small and RṘ � Dg . This difference makes it possible to omit
in Eq. (5.24) the derivative of concentration with respect to time. Then in the vicinity of the
saddle point of the potential barrier, Eq. (5.24), determining the concentration profile around
a nucleus of radius R, is reduced to

Dg
1

r

∂2

∂r2
rc′(r) = 0 . (5.25)

The solution of this equation with the boundary conditions

c′(∞) = c′∞, c′(R) = c′
R (5.26)

is

c′(r) = c′∞ + (c′
R − c′∞)

R

r
. (5.27)

Hence the diffusion flux into the direction of the nucleus is

Ṅ ′′
i,g = −4π R2 Dg

dρi

dr
= −4π R2 Dgρ′(c′

R − c′∞) . (5.28)

The total rate of change of the number of molecules of each of the components in a bubble
due to molecular exchange and diffusional supply of substance is given by

Ṅ ′′
i =

[(
Ṅ ′′

i,m

)−1 +
(

Ṅ ′′
i,g

)−1
]−1

. (5.29)

In order to take into account changes in temperature at the boundary of a growing bubble,
Eqs. (5.15) and (5.29) should be supplemented by the heat conduction equation. In the sta-
tionary regime, the temperature field around a bubble is determined by the solution of the
equation

∂2

∂r2
T ′(r) = 0 (5.30)

with the boundary conditions

T ′(∞) = T ′∞ ,

(
∂T ′

∂r

)
r=R

= Ṅ ′′l
4πλR2 , (5.31)
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where λ is the thermal conductivity factor, Ṅ ′′ = Ṅ ′′
1 + Ṅ ′′

2 is the rate of change of the number
of molecules in a bubble, and l is the latent heat of evaporation. In a binary mixture

l = l1(1 − c′′) + l2c′′ − L (5.32)

holds, where l1, l2 are the latent heats of evaporation of the components of the solutions, and
L is the heat of mixing.

From Eqs. (5.30) and (5.31), we have for the temperature of the liquid at the bubble bound-
ary

T ′
R = T ′∞ − l

4πλ

Ṅ ′′

R
. (5.33)

A small change in temperature around a growing bubble will affect considerably only the value
of the equilibrium pressure of the components of the vapor in the bubble p′′

Ri . By expanding
p′′

Ri into a series in the vicinity of T ′ = T ′∞ and restricting ourselves to the first terms of the
expansion, we obtain

p′′
Ri(T ′) = p′′

i∗(T ′∞) +
(

∂p′′
i

∂T

)
(T ′

R − T ′∞) . (5.34)

Substitution of Eq. (5.33) into Eq. (5.34) yields

p′′
Ri(T ′) = p′′

i∗(T ′∞) − l dT i

4πλ

Ṅ ′′

R∗
, (5.35)

where dT i = (∂p′′
i /∂T ). Thus, an account of the thermal effects on bubble growth will be

reflected only on the molecular and the diffusional interaction of a bubble with the liquid
surrounding it. From Eqs. (5.23) and (5.35) we have

Ṅ ′′
i,m = πβivt i R2

kBT

(
p′′

i∗ − p′′
i − l dT i

4πλ

Ṅ ′′

R∗

)
. (5.36)

For weak solutions, Eq. (5.28) may be written as

Ṅ ′′
i,g = 4π Rρ′Dg H (p′′

Ri − p′′
i ) , (5.37)

where H is the Henry constant. After substitution of Eq. (5.35) into Eq. (5.37) we have

Ṅ ′′
i,g = 4π Rρ′Dg H

(
p′′

i∗ − p′′
i − l dT i

4πλ

Ṅ ′′

R∗

)
. (5.38)

Let us go over now in Eq. (5.38) to dimensionless variables (cf. Eq. (5.5)). By expanding the
right-hand side of the expressions in the vicinity of the saddle point as power series in y, z,
ẋ and restricting ourselves, due to the smallness of the rates Ṅ ′′

1 and Ṅ ′′
2 to linear terms, we

arrive at

ẏ = 1 + δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1

3bp′′∗
4η

y + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1

3bp′′∗
4η

z − ẋ , (5.39)
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ż = δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1
y + 1 + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1

3bp′′∗
4η

z − ẋ, (5.40)

where

ωi = p′′
i∗ R∗

βivt iη
, νi = 2Dg Hρ′ηkT

σ R∗
, δ′

i = lβivt i R∗dT i

4λkBT
, δi = νi biωi

1 + νi biωi
δ′

i . (5.41)

The components of the tensor of generalized diffusion in the space of x , y, z, ẋ can be found
from the system of equations

Dx x Fx + Dxy Fy + Dxz Fz + Dx ẋ Fv = ẋ ,
Dyx Fx + Dyy Fy + Dyz Fz + Dyẋ Fv = ẏ ,
Dzx Fx + Dzy Fy + Dzz Fz + Dzẋ Fv = ż ,
Dẋ x Fx + Dẋ y Fy + Dẋz Fz + Dẋ ẋ Fv = ẍ .

(5.42)

By writing Eq. (5.42), taking into account Eqs. (5.20), (5.22), (5.39), (5.40) and the fact that
ẋ = v/v∗, after setting equal the terms on the left- and right-hand sides at x , y, z, ẋ , we have

Dx x = Dxy = Dxz = Dyx = Dzx = 0 ,

Dx ẋ = −Dẋx = Dyẋ = −Dẋ y = Dzẋ = −Dẋz = 3b2 p′′2∗
32η2ϕG∗

,

Dzy = Dyz = δ2

1 + δ1 + δ2

ν1b1

ν1b1ω1 + 1

3bp′′∗
8ηG∗

,

Dyy = 1 + δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1

3bp′′∗
8ηG∗

,

Dzz = 1 + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1

3bp′′∗
8ηG∗

, Dẋ ẋ = 3b3 p′′3∗
128η3G2∗ϕ

.

(5.43)

The tensor obtained is symmetrical, which is in agreement with the general principles of the
linear thermodynamics of irreversible processes.

5.2.4 The Nucleation Rate

The presence of nonzero cross-terms in the tensor of generalized diffusion equation (5.43)
implies that the variables of a nucleus q are not separated in the kinetic equation (5.3). As
shown in [37–39], such a separation of variables without the loss of diagonality of the matrix
of the second-order derivatives for the potential surface � can be achieved by transition to a
system of coordinates {x ′, y ′, z′, ẋ ′}, which is the system of the main axes of the tensor D� .
In the new system of coordinates, the diagonal components (D�)′ ≡ diag{χ0, χ1, χ2, χ3} of
the tensor are determined as the roots of the characteristic equation

det(D� − χI) = 0 , (5.44)

where I is a unit tensor. Owing to the presence of one negative term in the matrix � , among
the eigenvalues of χ one value χ0 is negative and the other three χ1, χ2 and χ3 possess a
positive real part.
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After going over in Eq. (5.3) to new variables and integrating the obtained equation with
respect to y ′, z′, ẋ ′, we have a one-dimensional kinetic equation with respect to the variable χ ′,
whose stationary solution under the boundary conditions

nsx ′

nex ′
→

{
1 x ′ → −∞
0 x ′ → +∞ (5.45)

may be presented in the form [37]

J ≡ j ′
x ′ = |χ0|

(
1

2π |�x ′x ′ |
)1/2

nex ′ |x ′=0 . (5.46)

In Ref. [38], one can find evidence for the fact that the form of Eq. (5.46) is invariant with
respect to the choice of the unstable variable x ′. By returning to the initial variable x (the
dimensionless volume of a bubble) and going over to dimensional quantities we obtain

J = Cv |χ0|
(

4

3
πG∗

)1/2

exp(−G∗) = Cv |χ0| R2∗
v∗

(
kBT

σ

)1/2

exp(−G∗) . (5.47)

Equation (5.47) is the final result of the steady-state multiparameter nucleation theory.
The specific character of the metastable system is mainly taken here into account by the

decrement of increase of the unstable variable χ0. A substitution of Eqs. (5.10) and (5.43)
into Eq. (5.44) yields a fourth-order equation for the determination of χ0. We have (withχ̃ =
χ(4η/3bp′′∗))

χ̃4 − χ̃3
[

1 + δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1
+ 1 + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1
+ 1

3ϕ

]

+ χ̃2
[
(1 + δ1)(1 + δ2)

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1
+ 1 + δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1

1

3ϕ

+ 1 + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1

1

3ϕ
− δ1δ2

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

+
(

1

3b1
+ 1

3b2
− 1

9

)
1

ϕ

]
− χ̃

[
(1 + δ1)(1 + δ2)

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

1

3ϕ

+ 1 + δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1

1

3b2ϕ
+ 1 + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1

1

3b1ϕ

− δ1δ2

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

1

3ϕ
− 1 + δ2

1 + δ1 + δ2

ν1

ν1b1ω1 + 1

1

9ϕ

− 1 + δ1

1 + δ1 + δ2

ν2

ν2b2ω2 + 1

1

9ϕ
− δ1δ2

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

1

3ϕ

+ δ1

1 + δ1 + δ2

1

b1

ν2

ν2b2ω2 + 1

1

3ϕ
+ δ2

1 + δ1 + δ2

1

b2

ν1

ν1b1ω1 + 1

1

3ϕ

]
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− (1 + δ1)(1 + δ2)

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

1

9ϕ

+ δ1δ2

(1 + δ1 + δ2)2

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

1

9ϕ
= 0 . (5.48)

5.2.5 Discussion of the Results

We will examine, now, some limiting regimes of nucleation in a binary solution. If the char-
acteristic time of heat supply to a bubble is much shorter than all other time scales of the
problem, the temperature of the solution is constant up to the bubble surface. In this case
δ1 � 1, δ2 � 1, and Eq. (5.48) is reduced to

χ̃4 − χ̃3
[

ν1

ν1b1ω1 + 1
+ ν2

ν2b2ω2 + 1
+ 1

3ϕ

]
+ χ̃2

[
ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

+ ν1

ν1b1ω1 + 1

1

3ϕ
+ ν2

ν2b2ω2 + 1

1

3ϕ
+

(
1

3b1
+ 1

3b2
− 1

9

)
1

ϕ

]
− χ̃

[
ν1

ν1b1ω1 + 1

× ν2

ν2b2ω2 + 1

1

3ϕ
+ ν1

ν1b1ω1 + 1

1

3b2ϕ
+ ν2

ν2b2ω2 + 1

1

3b1ϕ
− ν1

ν1b1ω1 + 1

1

9ϕ

− ν2

ν2b2ω2 + 1

1

9ϕ

]
− ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

1

9ϕ
= 0 . (5.49)

Equation (5.49) describes the dynamics of isothermal growth for a vapor bubble of near-
critical size in a superheated binary solution for any arbitrary dependence among viscosity,
inertia effects, rate of evaporation of molecules of a solvent and a dissolved substance into a
bubble, and the diffusional supply of a substance to a growing nucleus.

At a high viscosity of the solution and high supersaturations, inertia effects of the liquid
may be neglected. The number of significant variables is reduced in this case to three. The
condition of neglect of inertia effects can be written as

ϕ � 1 . (5.50)

Equations (5.48) and (5.49) reduce in this situation to cubic equations. In the isothermal case
we get from Eqs. (5.49) and (5.50) the result

χ̃3 − χ̃2
[

3 − b

3b
+ ν1

ν1b1ω1 + 1
+ ν2

ν2b2ω2 + 1

]

+ χ̃
1

b1b2

[
ν1b1

ν1b1ω1 + 1

ν2b2

ν2b2ω2 + 1
+ 3 − b1

3

ν2b2

ν2b2ω2 + 1

+3 − b2

3

ν1b1

ν1b1ω1 + 1

]
+ 1

3

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1
= 0 . (5.51)

Substitution of the negative root of Eq. (5.51) into Eq. (5.47) gives an expression for the nu-
cleation rate in a viscous volatile solution, in which the diffusional supply of the components
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of the mixture to a growing bubble is of great importance. If the diffusional mechanism is
characteristic only for one (the first) of the components of the solution (ν2 � 1), Eq. (5.51)
yields

χ̃3 − χ̃2
[

3 − b

b
+ ν1

ν1b1ω1 + 1
+ 1

b2ω2

]
+ χ̃

1

b1b2

[
ν1b1

ν1b1ω1 + 1

1

ω2
+ 3 − b1

3ω2

+3 − b2

3

ν1b1

ν1b1ω1 + 1

]
+ 1

3b2ω2

ν1

ν1b1ω1 + 1
= 0 . (5.52)

In such a form the equation for the description of the bubble nucleation kinetics in supersat-
urated liquid solutions is given in Ref. [43]. Baidakov [31, 44] was the first to examine the
boiling-up kinetics of binary liquid solutions accounting for both the molecular and the dif-
fusional mechanism of transport of matter to the growing bubble at arbitrary values of the
viscosity of the solution and volatility of both dissolved substance and solvent.

In Refs. [31, 44], Eq. (5.52) has a somewhat different form. This difference is connected
with the fact that in these papers the diffusional flux to a bubble was not taken into account
independently of the molecular exchange, but as a certain additional term to the molecular ex-
change. Numerical calculations show that the results of these two approaches agree within the
errors of the thermophysical parameters entering the equations. As distinct from Eq. (5.52), to
which the diagonal tensor of generalized diffusion corresponds, in Refs. [31,44] the diffusion
tensor is nondiagonal.

The diffusional flux to a bubble may be neglected if the characteristic time of diffusion is
much shorter than the other time scales connected with the pressure changes in the bubble. In
this case, the concentration in the solution is uniform up to the bubble surface, νi → ∞, and
Eq. (5.51) is transformed to

χ̃3 − χ̃2
(

3 − b

3b
+ 1

b1ω1
+ 1

b2ω2

)
+ χ̃

1

b1b2

(
3 − b2

3ω1
+ 3 − b1

3ω2
+ 1

ω1ω2

)

+ 1

3b1b2ω1ω2
= 0 . (5.53)

Substitution of the negative root of Eq. (5.53) into Eq. (5.47) gives an expression for the
nucleation rate in a viscous and volatile solution with a sufficiently high diffusion coefficient
which ensures the absence of a depletion zone around the bubble.

With p′′
1∗ → 0, β1 → 0, c′ �= 0 and p′′

2∗ → 0, β2 → 0, c′ → 0, Eqs. (5.51) and (5.47)
describe the boiling-up of a solution with a nonvolatile component and a pure volatile liquid,
respectively. In this case, the number of essential variables of the bubble reduces to two: the
volume and the gas pressure in the bubble (nonvolatile solvent), the volume and the vapor
pressure in the bubble (one-component liquid). The cubic equation (5.51) reduces then to a
quadratic one: if the solvent is nonvolatile, we have

χ̃2 − χ̃

(
3 − b2

3b2
+ ν2

ν2b2ω2 + 1

)
− ν2

ν2b2ω2 + 1
= 0 , (5.54)

if the system is one-component, one gets

χ̃2 − χ̃

(
3 − b1

3b1
+ 1

b1ω1

)
− 1

3b1ω1
= 0 . (5.55)
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With appropriately chosen definitions of the parameters, Eq. (5.55) coincides with Eq. (29)
from Ref. [42], and Eq. (5.54) at Dg → ∞ transforms to Eq. (39) from Ref. [21].

The limiting case ω1 → ∞, ω2 → ∞ is realized if η → 0 and it is responsible for
the boiling-up of a nonviscous volatile solution. At a low viscosity, liquid inertia effects may
prove to be essential. The range of superheatings, where the effect of the viscosity is small,
and at the same time the liquid inertia effects does not affect the process yet, is determined by
the following inequalities:

ϕ � 1 �
{

ω1 ,

ω2 .
(5.56)

Here at

3 − b

3
+ bν1 + bν2 < 0 (5.57)

it follows from Eq. (5.51) that

χ0 = 3

4

p′′∗
η

(
3 − b

3
+ bν1 + bν2

)
. (5.58)

If the supply of a substance to a growing bubble proceeds much faster than it is expanded by
the pressure variation in the nucleus, and this occurs when

Dg � 3R2∗ p′′∗ρ′′(β1vt1 dT 1 + β2vt2 dT 2)

4 p′′∗ρ′|2σ − 3 p′′∗ R∗| (5.59)

holds, then the last terms in Eq. (5.58) may be neglected and we obtain

χ0 = 1

4

p′′∗
η

(3 − b) . (5.60)

Equations (5.47) and (5.60) describe the boiling-up of a weakly viscous solution with volatile
components at tensile stresses exceeding 2 p′′∗ . At a finite value of p′′

2∗, the parameters η and σ
in Eq. (5.60) refer to a solution each of the components of which is volatile. If

3 − b

3
+ bν1 + bν2 > 0 , (5.61)

the cubic equation (5.51) reduces to a quadratic one

χ̃2
(

3 − b

3b
+ ν1 + ν2

)
− χ̃

1

b1b2

[
3 − b1

3

ν2b2

ν2b2ω2 + 1
+ 3 − b2

3

ν1b1

ν1b1ω1 + 1

+ ν1b1

ν1b1ω1 + 1

ν2b2

ν2b2ω2 + 1

]
− 1

3

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1
= 0 . (5.62)

For the negative root of Eq. (5.62), we are interested in, we have
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χ0 = 3bp′′∗
8η

(
3 − b

3b
+ ν1 + ν2

)−1 {
1

b1b2

(
3 − b1

3

ν2b2

ν2b2ω2 + 1

+3 − b2

3

ν1b1
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−
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1
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1b2

2
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3 − b1

3

ν2b2

ν2b2ω2 + 1

+3 − b2

3

ν1b1

ν1b1ω1 + 1
+ ν1b1

ν1b1ω1 + 1

ν2b2

ν2b2ω2 + 1

)2

+4

3

ν1

ν1b1ω1 + 1

ν2

ν2b2ω2 + 1

(
3 − b

3b
+ ν1 + ν2

)]1/2
}

. (5.63)

Equations (5.47) and (5.63) describe the nucleation rate in a superheated nonviscous solution
with volatile components at positive as well as small negative pressures and diffusional gas
supply to a bubble. If diffusion processes may be neglected, then

χ0 = 3bp′′∗
8η

(
3 − b

3b

)−1
{

1

b1b2

(
3 − b2

3ω1
+ 3 − b1

3ω2

)
−

[
1

b2
1b2

2

(
3 − b2

3ω1
+ 3 − b1

3ω2

)2

+ 4

3b1b2ω1ω2

(
3 − b

3b

)]1/2
}

. (5.64)

At p′′
2∗ → 0, 1 � ω2 � b2ω2, we consider the boiling-up of a nonviscous liquid solution

with one volatile component. In this case, from Eq. (5.64) we have for the decrement χ0 the
result

χ0 = β1vt1σ

2 p′′
1∗R2∗

(
b1

3
− 1

)−1

. (5.65)

Here the parameters β1, vt1, p′′
1∗ characterize the volatile component, and σ, R∗ the solution as

a whole. By substituting Eq. (5.65) into Eq. (5.47), we obtain an expression for the nucleation
rate, which coincides in its form with Eq. (39) from Ref. [42] and differs from Eq. (36) from
Ref. [41]. The latter, with neglect of the temperature effects at the bubble surface, differs from
the obtained expression by the factor ρ′/ρ′′ connected with a different choice of the constant
of normalization of the equilibrium distribution function in Refs. [41, 42].

At p′′
1∗ → 0, p′′

2∗ → 0, a bubble is characterized by only one variable, its volume, and the
problem becomes an one-parametric one. From Eq. (5.51) we obtain then

χ0 = − σ

2ηR∗
. (5.66)

Substituting Eq. (5.66) into Eq. (5.47) gives for the nucleation rate an expression which co-
incides with Eqs. (36) and (51) of Refs. [21, 42], and also, accurate up to the normalization
constant, with Eq. (34) in Ref. [41]. The difference is due to the fact that, if the parameters η
and σ in Eq. (5.66) characterize a mixture of two nonvolatile liquids, in Eqs. (34) and (36) of
Refs. [41, 42] these are properties of a pure liquid. At high negative pressures, when b � 3,
Eq. (5.65) is converted into Eq. (5.66).
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It should be mentioned that Eq. (5.47) is valid after completion of a certain incubation
time τl , after which nuclei, irrespective of their initial distribution, appear at a regular rate J .
The time τl may be defined as the time of diffusional transition of nuclei of a new phase over
the critical region with respect to the unstable variable x [29], i.e.

τl = τx ∼= Rx

Ṙx

∼= 1

|χ0| . (5.67)

Such an approach is in agreement with other evaluations of the nonsteady-state time [14] and
a nonsteady-state solution [38] of the nucleation problem for the multiparameter case.

5.3 Nucleation Thermodynamics

5.3.1 The Gibbs Method

We examine, now, the process of homogeneous formation of a new phase at conditions of
constant pressure and temperature. A vapor bubble is in equilibrium with a superheated binary
solution if the following conditions are fulfilled

p∗′′ = p′ + 2σ

R∗
, (5.68)

µ′′
i (p∗′′, c∗′′) = µ′

i (p′, c′), i = 1, 2 . (5.69)

Substituting Eqs. (5.68) and (5.69) into Eq. (5.6) gives an extremum value for the change of
the thermodynamic potential ��, corresponding to the work of formation of a vapor bubble
which is in equilibrium with the medium [45]

��∗ = W∗ = 1
3σ A∗ = 4

3π R2∗σ . (5.70)

At a given temperature T , pressure p′, and concentration c′, Eqs. (5.68) and (5.69) determine
unambiguously the pressure p′′∗, the size R∗ and the composition c′′∗ of an equilibrium nu-
cleus, which we will denote in the subsequent discussion as a critical one. The calculation,
by Eqs. (5.68) and (5.70), of p′′∗, R∗, c′′∗, and W∗ requires knowledge of the equation of state
for a binary solution and of the nucleus surface tension as a function of its size, temperature
and concentration. In order to obtain approximative expressions, making it possible to cal-
culate p′′∗ , c′′∗, R∗ by a limited amount of data, we will express the composition c′′∗ and the
pressure p′′∗ inside a critical bubble in terms of their values at a flat interface, c′

s, ps and the
parameters of the initial phase, c′ and p′.

The chemical (or diffusion) equilibrium at a flat interface is determined by the following
conditions:

µ′′
i (ps, c′′

s ) = µ′
i (ps, c′

s) . (5.71)

By subtracting Eq. (5.71) from Eq. (5.69), we obtain

µ′′
i (p′′, c′′) − µ′′

i (ps, c′′
s ) = µ′

i (p′, c′) − µ′
i (ps, c′

s) . (5.72)
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This relation may be rewritten as

p′′∫
ps

dµ′′
i (p′′, c′′) =

p′∫
ps

dµ′
i (p′, c′) . (5.73)

Considering the vapor mixture in a bubble to be an ideal gas, and the liquid to be incompress-
ible, after integrating Eq. (5.73) we have [46]

c′′
i∗ = c′′

si
ps

p′′∗
exp

(
− ps − p′

ps

v ′
i

v ′′

)
, (5.74)

where vi is the ideal partial volume of the i th component, v ′′ is the specific volume of the gas
mixture in equilibrium with the solution. From Eq. (5.74) the total pressure in a critical bubble
is obtained as

p′′∗ = p′′∗c′′∗ + p′′∗(1 − c′′∗) = ps

[
c′′

s exp

(
− ps − p′

ps

v ′
1

v ′′

)

+(1 − c′′
s ) exp

(
− ps − p′

ps

v ′
2

v ′′

)]
. (5.75)

Substituting Eq. (5.75) into Eq. (5.74) gives

c′′∗ = c′′
s

{
c′′

s + (1 − c′′
s ) exp

[
(ps − p′)

ps

(v ′
1 − v ′

2)

v ′′

]}−1

. (5.76)

When the supersaturations are not too high, the exponents of the exponential functions in
Eqs. (5.75) and (5.76) are small. By expanding the exponential function into a series and
limiting ourselves to the first terms, we obtain for equilibrium values of p′′∗ and c′′∗ the estimates

c′′∗ = c′′
s

[
1 + (1 − c′′

s )
(ps − p′)

ps

(v ′
1 − v ′

2)

v ′′

]−1

, (5.77)

p′′∗ = ps

[
1 − ps − p′

ps

v ′
2

v ′′ − c′′
s
(ps − p′)

ps

(v ′
1 − v ′

2)

v ′′

]
. (5.78)

Using the conditions of mechanical equilibrium for a critical bubble Eq. (5.68), we have

R∗ = 2σ

(ps − p′)
[

1 − v ′
2

v ′′ − c′′
s
(v ′

1 − v ′
2)

v ′′

] . (5.79)

Substitution of Eq. (5.79) into Eq. (5.70) gives

W∗ = 16π

3




σ 3

(ps − p′)2

[
1 − v ′

2

v ′′ − c′′
s
(v ′

1 − v2)

v ′′

]2




. (5.80)
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Equations (5.77)–(5.80) make it possible to calculate all the main parameters of a new-phase
nucleus in a superheated binary solution by employing data on the phase equilibrium. The
last expression is similar to the formula for the work of formation of a critical bubble in a
one-component system [14] and goes over into it at c′′

s = 0.
At some distance from the critical point of the solvent, and at superheatings that are not

too high, solutions of cryogenic liquids may be regarded as weak solutions. In this case, the
parameters of a critical nucleus may be expressed in terms of the phase-equilibrium parameters
of a pure solvent [47]. For the chemical potentials of a solvent and a dissolved substance in
the phase surrounding the bubble, we have [48]

µ′
1 = µ01(p′) − kBT c′ , (5.81)

µ′
2 = µ2(p′, c′

s) + kBT ln

(
c′

c′
s

)
, (5.82)

where the subscript 0 refers to a pure component. Since c′ � 1, the concentration c′, defined
as the mole fraction of a dissolved substance, may be taken, in a first approximation, equal
to the ratio of the number of molecules of a gas component in the solution to the number of
molecules of a solvent. In an ideal gas approximation for the chemical potentials of vapor and
gas in a bubble one can write [49]

µ′′
1 = µ01(p0s) + kBT ln

p′′∗
p0s

+ kBT ln(1 − c′′∗) , (5.83)

µ′′
2 = µ2(p′, c′′

s ) + kBT ln
p′′∗
p′ + kBT ln

c′′∗
c′′

s
. (5.84)

Assuming the liquid solvent to be incompressible, we may present Eq. (5.81) as follows

µ′
1 = µ01(p0s) + v ′

01(p′ − p0s) − kBT c′ , (5.85)

where v ′
01 is the specific volume of a pure solvent. From Eqs. (5.83), (5.85), and the condition

of chemical equilibrium equation (5.69), we have

p′′
1∗ = p′′∗(1 − c′′∗) = p0s exp

[
v ′

01

kBT
(p′ − p0s) − c′

]
. (5.86)

At some sufficient distance from the critical point of the solvent, the exponent of the exponen-
tial function in Eq. (5.86) is much less than one. By expanding the exponential function into a
series we obtain

p′′
1∗ = p0s

(
1 − v ′

01

v ′′
01

p0s − p′

p0s
− c′

)
. (5.87)

Similarly from Eqs. (5.82), (5.84), and (5.69) for the partial gas pressure in a critical bubble,
we find

p′′
2∗ = p′′∗c′′∗ = p′c′ c′′

s

c′
s

. (5.88)
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For the total pressure in a critical bubble we have

p′′∗ = (p0s − p′)
(

1 − v ′
01

v ′′
01

)
+ p′

[
1 − c′

(
1 − c′′

s

c′
s

)]
. (5.89)

Substitution of Eq. (5.89) into Eq. (5.68) gives a formula for determining the radius of a critical
bubble, and substitution of Eqs. (5.89) and (5.68) into Eq. (5.70) yields the expression for the
work of formation of a critical bubble in a liquid solution.

As it has been mentioned already, Eqs. (5.77), (5.78), and (5.89) have been applied here
in the region of weak metastability. In approaching the spinodal curve, the assumptions of
incompressibility of the liquid phase and the ideal character of a vapor–gas mixture in a bub-
ble, used in the derivation, are violated. Another problem of Eqs. (5.68), (5.79), and (5.80) is
connected with the absence of information on the size dependence of the surface tension σ .
Usually, in calculating the properties of nuclei of a new phase, a macroscopic approxima-
tion is utilized, i.e., the nucleus surface tension is considered to be equal to its value at a flat
interface. This gap can be removed utilizing the van der Waals method of description of het-
erogeneous systems, which we are going to discuss in application to the problem considered
in the subsequent section.

5.3.2 The van der Waals Method

Another approach that may be used in describing the properties of new-phase nuclei is based
on the van der Waals capillarity theory [50]. This method does not require the introduction of
the notion of a dividing surface. Cahn and Hilliard were the first to apply it to the problem of
nucleation [51].

The change in the grand thermodynamic potential due to the formation of a spherical
inhomogeneity in a binary solution is given in van der Waals’ approach by

��{ρ1, ρ2} = 4π

∞∫
0


�ω +

2∑
i, j=1

κi j
dρi

dr

dρ j

dr


 r2 dr (5.90)

with

�ω = p′ − p +
2∑

i=1

[µi (ρ1, ρ2) − µ′
i ]ρi = f (ρ1, ρ2) − f ′ −

2∑
i=1

(ρi − ρ′
i )µ

′
i . (5.91)

Here f is the density of the free energy of a homogeneous system, κi j is the matrix of the
influence coefficients. One prime, as before, refers to the initial value of a parameter in the
liquid phase, a parameter without primes shows the current local value. From the conditions
of stability of a two-phase two-component system it follows that the inequalities

κ11κ22 − κ2
12 > 0 , κ11 > 0 , κ22 > 0 (5.92)

have to be fulfilled. If we take, for the cross coefficient κ12, the relations [52]

κ12 = (κ11κ22)
1/2 , (5.93)
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the first of the inequalities (5.92) transforms to an equality, which corresponds to an indifferent
equilibrium of the system with respect to density gradients opposite in sign and determines
the limiting value of the coefficient κ12. With Eq. (5.93), Eq. (5.91) gets the simpler form

�{ρ1, ρ2} = 4π

∞∫
0

[
�ω + κ22

(
dρβ

dr

)2
]

r2 dr . (5.94)

Here ρβ = (κ11/κ22)
1/2ρ1 + ρ2.

The distributions of the densities, ρi (i = β, 1, 2), in a critical bubble can be found from
the solution of the Euler system of equations for the functional equation (5.94), which includes
one differential equation

d2ρβ

dr2 + 2

r

dρβ

dr
= µ2 − µ′

2

2κ22
(5.95)

with the boundary conditions ρβ → ρ′
β at r → ∞, dρβ/ dr → 0 at r → 0 and r → ∞ and

one algebraic equation

µ1 − µ′
1 = (κ11/κ22)

1/2(µ2 − µ′
2) . (5.96)

In this case, the work of formation of a critical bubble is given by

W∗ = min max ��{ρ1, ρ2} . (5.97)

Equation (5.97) gives an alternative to Eq. (5.70) for calculating W∗ and together with
Eqs. (5.68)–(5.70) makes it possible to determine the dependence σ(R∗). The solution to
this problem presupposes a knowledge of the equation of state for a binary solution and the
influence coefficients κi j . The coefficients κi j are functions of temperature and have a weak
dependence on density [52,53]. Neglecting the dependence of κi j on ρi , the value of κ22 for a
pure solvent may be determined by data on the surface tension at a flat interface via

σ∞ = 2κ
1/2
22

p′′
s∫

p′
s

(�ω)1/2 dρ . (5.98)

The distribution of density ρβ in a transition layer is found in this case by solving the equation

κ22

(
dρβ

dz

)2

= �ω (5.99)

with the known boundary conditions.

5.3.3 On the Size Dependence of the Surface Tension
of New-Phase Nuclei

According to Gibbs’ method of dividing surfaces [45], the formation of a nucleus of ra-
dius R in a metastable system results in a change of the thermodynamic potential given by



5.3 Nucleation Thermodynamics 149

Eq. (5.6). For bubbles, which are in equilibrium with the phase surrounding them (R = R∗),
from Eqs. (5.6) and (5.70) we have

W∗ = 4π R2∗σ + (p′ − p′′)
4π R3∗

3
. (5.100)

In further derivations, we will omit the subscript ∗ in the specification of the parameters of the
critical nucleus in all cases, when such omission is possible without causing confusion.

By solving the system of equations (5.94), (5.97), and (5.100) with respect to the surface
tension, we obtain

σ =
R∫

0

(p′′ − p)
r2

R2 dr +
∞∫

R

(p′ − p)
r2

R2 dr

+
∞∫

0

[
ρβ(µ1 − µ′

1) + κ11

(
dρβ

dr

)2
]

r2

R2 dr . (5.101)

Equations (5.101), (5.95), and (5.96) determine (in the approximation of Eq. (5.93)) the value
of the surface tension for a binary solution at a curved interface.

At small curvatures of the separating surface, the surface tension σ may be presented as a
series in terms of 1/R, in which the first term in the expansion is the surface tension at a flat
interface. Restricting ourselves to terms squared in curvature, we have

σ = σ∞ + σ1

R
+ σ2

R2 . (5.102)

Going over to a new variable z = r − R and expanding the quantities in Eqs. (5.95), (5.96),
and (5.101) into the Taylor series, we obtain [54]

σ0 = 2κ22

+∞∫
−∞

(
dρ0,0

dz

)2

dz , σ1 =
2∑

i=1

µ′
i,1�ρi,∞δi,∞ , (5.103)

σ2 = I1 + 2I2 + I3 − I4 + σ∞z2∗ + 1

2

2∑
i=1

µ′
i,2�ρi,∞δi,∞ , (5.104)

where �ρi,∞ = ρ′
i,∞ − ρ′′

i,∞ is the difference of the densities of the components at a flat
interface, δi,∞ = zi,e − z∗ is the distance between the equimolecular dividing surfaces and the
tension surface in a flat interfacial layer,

z∗ = 2κ22

σ∞

+∞∫
−∞

(
dρ0,0

dz

)2

z dz , zi,e = 1

�ρi,∞

+∞∫
−∞

dρi,0

dz
z dz , (5.105)

I1 = 2κ22

+∞∫
−∞

(
dρ0,0

dz

)2

(z − z∗)2 dz , I2 =
2∑

i=1

µ′
i,1

2

+∞∫
−∞

dρi,0

dz
(z − z∗)2 dz , (5.106)
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I3 =
2∑

i=1

µ′
i,1

2

+∞∫
−∞

dρi,1

dz
(z − z∗)2 dz , I4 = 2κ22

+∞∫
−∞

dρ0,0

dz
ρ0,1 dz . (5.107)

Equations (5.103)–(5.107) express the parameters of Eq. (5.102) only in terms of the char-
acteristics of a flat interface. This method of calculating the functions ρi,1(z) is described in
detail in Ref. [54].

The values of the coefficients of decomposition for the chemical potentials µ′
i,1 and µ′

i,2
depend on the way how metastability is generated. At constant temperature, the penetration
of a binary solution into a metastable region may be realized in different ways. The particular
way of penetration is determined by a trajectory in the space of two independent variables,
whose role can be played by the densities ρ1 and ρ2, chemical potentials µ1 and µ2, etc. We
shall examine two ways of penetration: along the line determined by the condition

c′ = ρ′
2

(ρ′
1 + ρ′

2)
= const (5.108)

(c-penetration) and along the line

(µ′
1 − µ′

1,0) = (κ11/κ22)
1/2(µ′

2 − µ′
2,0) (5.109)

(β-penetration). The first of the mentioned ways is the traditional one for experimental inves-
tigations of nucleation in creating phase metastability in a binary system [29, 43]. The second
possibility is interesting as it allows to establish some isomorphism in the behavior of the
surface tension of nuclei in a binary and a one-component system.

In fulfilling the condition of Eq. (5.108) we obtain

ρ′
2,1 = ρ′

1,1c′/(1 − c′) , ρ′
2,2 = ρ′

1,2c′/(1 − c′) . (5.110)

Then for the decomposition coefficients of the chemical potential we can write [54]

µ′
1,1 = µ′

2,1ζ , µ′
1,2 = µ′

2,2ζ + ρ
′2
1 ξ , µ′

2,1 = −2σ0

�ρ1,0ζ + �ρ2,0
, (5.111)

µ′
2,2 =

ρ
′2
1 �ρ1,0ξ +

∑2

i=1
�ρi,1µ

′
i,1 + 4

∑2

i=1
�ρi,0µ

′
i,1δi,0

�ρ1,0ζ + �ρ2,0
, (5.112)

ζ =
(

∂µ1,0

∂ρ

)
c=c′

/ (
∂µ2,0

∂ρ

)
c=c′

, (5.113)

ξ =
(

∂2µ1,0

∂ρ2

)
c=c′

−
(

∂2µ2,0

∂ρ2

)
c=c′

ζ , ρ = ρ1 + ρ2 , ρ1 = ρ1,1 + ρ2,1 . (5.114)

At β-penetration, we have

µ′
1,1 =

(
κ11

κ22

)1/2

µ′
2,1 , µ′

1,2 =
(

κ11

κ22

)1/2

µ′
2,1 . (5.115)
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As a result of isomorphism, the coefficients in Eq. (5.102), and also the quantities determining
them, prove to be similar to the respective parameters for a one-component system [55]

σ1 = −2σ∞δ0,0 , σ2 = I1 +2I2 + I3 − I4 +σ∞
�ρ0,1

�ρ0,0
δ0,0 +3σ0δ

2
0,0 +σ0z2

0,e , (5.116)

where

�ρ0,0µ
′
1,1 = −2σ∞ , �ρ0,0µ

′
1,2 = −�ρ0,1µ

′
1,1 −4µ′

1,1�ρ0,0z0,e −4σ∞z∗ , (5.117)

I2 = µ′
1,1

2

+∞∫
−∞

(
dρ0,0

dz

)
z2 dz , I3 = µ′

1,1

2

+∞∫
−∞

(
dρ0,1

dz

)
z dz . (5.118)

In the Gibbs method of dividing surfaces, the differential equation determining the size de-
pendence of the surface tension takes the form [52]

1

σ

dσ

d(1/R)
= − 2ψ

1 + 2ψ/R
, (5.119)

where

ψ =
(

�1
dµ′

1

d(1/R)
+ �2

dµ′
2

d(1/R)

)/ (
�ρ1

dµ′
1

d(1/R)
+ �ρ2

dµ′
2

d(1/R)

)
. (5.120)

Here �i is the absolute adsorption of the i th component. At a small curvature of the dividing
surface, the function ψ(R) may be represented as follows:

ψ = ψ∞ + ψ1

R
, (5.121)

where ψ1 is a parameter depending on temperature and concentration. Substitution of (5.121)
into (5.119) gives (5.102), where

σ1 = −2ψ∞ , σ2 = 4ψ2∞ − ψ1 . (5.122)

If ψ∞ < 0 and ψ1 � 4ψ2∞, then Eq. (5.109) gives a nonmonotonic dependence of σ(R) in R
with a maximum

σmax

σ∞
= 1 + ψ2∞

ψ1
, Rmax = ψ1

(−ψ∞)
. (5.123)

In pure substances, the maximum manifests itself only in liquid droplets [56]. In a binary sys-
tem, the presence or the absence of a maximum on the dependence σ(R) at T = const will
depend on the method of creating metastability, that is on the trajectory of motion in space of
unfixed variables. Thus, if in the process of penetration of a liquid into the region of metastable
states a constant concentration is maintained, then for the solution of equimolecular compo-
sition a maximum is observed in the dependence σ(R) of vapor bubbles [52]. On the line



152 5 Boiling-Up Kinetics of Solutions of Cryogenic Liquids

c′ = const, vapor bubbles and liquid droplets are characterized by two different parameters ψ .
For the β-line, this is the parameter

ψ = ψβ = �ρ

ρ′′
ρ − ρ′

ρ

, (5.124)

where �ρ = �1 + (κ11/κ22)
1/2�2 is the absolute adsorption determined by the density ρβ .

As distinct from the parameter ψ∞ on the line c′ = const, the parameter ψ∞ on the β-line
does not change its sign in passing from pure substances to mixtures, and the character of the
dependence σ(R) in a binary solution on the β-line is similar to the dependence σ(R) in a
one-component system in the whole range of state variables from the binodal to the spinodal.

5.4 Experiment

5.4.1 Superheat of Liquid Mixtures

The equilibrium state of a liquid mixture is characterized by three parameters: temperature,
pressure, and composition. Penetration of a mixture into the metastable region may be realized
by changing any one of these parameters while retaining the values of the other two. Figure 5.1

0 1

�
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�

�

p

ps

p

c'                         c's

Figure 5.1: (p, c) projection of the phase diagram of a binary mixture
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shows the (p, c) diagram of liquid (upper curve) – vapor (lower curve) phase equilibrium for
a binary mixture at a constant temperature T = Ts. It is assumed that the components in both
phases are mixed in arbitrary proportions. If at constant temperature, Ts, and concentration
in the liquid phase, c′

s, the pressure in the mixture is increased to the value p′, the solution
will be transferred into a supercompressed state, and the formation of the vapor phase will be
impossible. As a result of a rapid pressure decrease, a liquid mixture may be transferred to
the point B , where it has the same composition, c′

s, temperature, Ts, but pressure p < ps. An
equilibrium isotherm, corresponding to a certain temperature T , goes through this point. The
liquid state at the point B is superheated as the actual temperature Ts of the mixture is higher
than the equilibrium value for this composition c′

s and pressure p. The state at the point B may
also be regarded as supersaturated in the sense that the actual concentration c′

s is higher than
the equilibrium concentration c′ for the temperature Ts and pressure p (point C).

5.4.2 Apparatus and Methods of Measurements

The nucleation rate in superheated liquid argon–krypton solutions was determined by the life-
time measuring method [14, 29, 57, 58]. The solution under investigation was filled into a
glass tube (3) and into metallic bellows (7) (Fig. 5.2). In the experiment, a part of the liq-
uid solution with the volume V � 70 mm3, thermostated (±0.002 K) in a copper block (1)
was superheated. The temperature in the block was measured with a platinum resistance ther-
mometer (2). The error in determining the temperature of the solution under investigation
taking into account the inhomogeneity of the temperature field in the block was ±0.02 K.
The pressure was created with compressed helium and transferred to the solution through bel-
lows (7). The bellows chamber and low-temperature valve (6) were thermostated (±0.05 K)
in block (8) at a temperature close to the normal boiling point of the solution. The measuring
device was placed into vacuum jacket (4) fixed in a Dewar vessel (5). Cooling was realized
with liquid nitrogen.

An experiment began with the preparation of the gas mixture of the required concentra-
tion. The purity of the initial components was 99.993% and 99.997% (Kr). The mixture was
condensed into the measuring device. Differences in the temperatures of blocks (1) and (8)
resulted in the evolution of a concentration gradient throughout the height of the measuring
device. To define the solution concentration in a superheated volume before the beginning and
after completion of an experiment, the saturation pressure of the solution was measured. For
this purpose, at temperature T of the experiment (the temperature in block (1)), the pressure
in the solution was decreased below the saturation pressure. The liquid solution in the upper
part of tube (3) was transferred then into a gaseous state. Then the pressure was gradually
increased and with the help of a system of detection of changes in the volume of the solution
under investigation the pressure was recorded at the moment of the transition of the solution
from a gaseous into a liquid state (the saturation pressure ps(T )). The system for detection of
changes in the volume consists of the rod (9) attached to the bellows (7) and ending with a core
(10) made of a ferromagnetic material. The displacement of the core results in a change in the
inductive reactance of the coil (11) connected in the bridge circuit. The error in determining
the saturation pressure was ±0.01 MPa. In calculating the concentration, use was made of the
data on phase equilibrium. The error in determining the concentration is ±0.5%.
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Figure 5.2: Schema of experimental apparatus

After preparing a solution of the required concentration c′, the initial pressure p1 >
ps(T, c′) was created in the measuring system. The penetration into the metastable region
was realized by an abrupt pressure decrease below the saturation pressure. To reduce both the
effect of cooling a liquid solution and the hydraulic oscillations in the measuring system, the
liquid was brought to a metastable state in two stages. First the pressure was decreased to the
value p2, which is 0.3–0.5 MPa less than the saturation pressure ps(T, c′). The probability
of boiling-up of a solution at pressure p2 is sufficiently small. The solution was kept at this
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pressure p2 for approximately 20 s, after which its final release to the value p′ was realized.
The error of maintenance of the pressure p′ was ±0.005 MPa. At the moment of the final
pressure release a chronometer was started. It recorded the time τ of the stay of the solution
in the given metastable state before its boiling-up (the lifetime of a superheated solution). The
moment of boiling-up was recorded by a water hammer in the measuring system. After the
boiling-up of a solution, the initial pressure p1 was created in the bellows chamber and the
measurement process was repeated. Up to N = 100 values of τ were measured at every given
p′ and c′, and the mean lifetime τ̄ = ∑

i τi/N was determined. In processing the results of
the experiments, corrections for cooling of the liquid in the process of pressure release were
made and the delay time τ0, caused by the inertia effects of the pressure-release system, was
subtracted from the measured value of τ̄ . For our setup, τ0 is equal to 0.5 s.

The time τ measured in the experiment was determined by the time τn of waiting for a
viable nucleus in the system and the time of its growth τg (τ = τn + τg). In the investigated
range of state parameters, we have τg � 10−3 s. The characteristic times τ in our experiments
were larger than 0.1 s. The relationship τ � τg makes it possible to assume τ � τn and to
determine the nucleation rate J from the equation

J = 1

(τ̄V )
. (5.125)

The temperature, corresponding to a fixed nucleation rate value, was denoted as the tempera-
ture of attainable superheating Tn . The error in the determination of Tn is equal to ±0.2 K.

5.4.3 Statistical Laws of Nucleation

The classical homogeneous nucleation theory treats the evolution of aggregates of a new phase
as a continuous Markovian process described by a Fokker–Planck equation. As for the emer-
gence of a spontaneous nucleus in the metastable phase, it is a random event of discrete type
and represents a discontinuous Markovian process. The probability P(R, R0, τ ) that the size
of an aggregate of a new phase at the moment τ will be equal to R, if at τ = 0 it was equal to
R0, in the region R0 < R < R∗ obeys a one-dimensional Fokker–Planck equation [59]

∂ P

∂τ
= ∂2 P

∂ R2
− ∂ P

∂ R
. (5.126)

A solution of this equation can be represented in the form

P(R, R0, τ ) =
∑

i

aiwi (τ )Pi (R) , (5.127)

where the coefficients ai are determined by the initial distribution P(0, R0, 0) and Pi (R) is an
eigenfunction of the equation

d

d R

(
Pi − d Pi

d R

)
= εi Pi (5.128)

with the eigenvalue εi . For the function wi (τ ) we have

dwi

dτ
= −εiwi . (5.129)
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In the region of weak metastability, where the probability of emergence of a critical nucleus
is small, the equilibrium distribution of fragments in size is established rapidly. This state-
ment means that in equation (5.127) the term with i = 0 is dominant and for all i > 0 the
eigenvalues obey the inequality εi > ε0. Then from Eqs. (5.127)–(5.129), we obtain

P(R, R0, τ ) � exp(−ε0τ )P0(R) . (5.130)

We are interested in the probability of formation of a critical nucleus (boiling-up of the liquid
solution) in the time interval τ, τ + �τ . This probability is found by the multiplication of two
other probabilities: the probability w0(τ ) and the probability 1 − w0(�τ) of emergence of
a critical nucleus during the succeeding small time interval �τ . As a first approximation for
w0(τ ) we have

w0(τ ) = exp(−ε0τ )

R∫
0

P0(R) d R � exp(−ε0τ ) . (5.131)

Expanding Eq. (5.131) into a series and restricting ourselves to the first term of the expansion,
we get 1 − w0(�τ) = ε0�τ . Thus, for the average number of events of boiling-up of the
liquid solution in the interval τ, τ + �τ in a series of N experiments one can write

n = Nε0�τ exp(−ε0τ ) . (5.132)

Equation (5.132) describes a Poissonian process. According to Eq. (5.132) the mean wait-
ing time for a critical nucleus is τ̄ = ε−1

0 . The dispersion of the random quantity τ in this
case coincides with its average value, i.e., στ = τ̄ . In experiments with solutions, as well as
with pure liquids [14, 29], in the whole range of p′, T, c′-values investigated, one observes
commonly similar values of the quantities τ̄ and στ verifying the Poissonian character of the
process. The Poisson character of the boiling-up of a superheated solution is also reconfirmed
by the histograms of experiments (Fig. 5.3), which are in good agreement with the distribution
equation (5.132).

5.4.4 Results

The System Argon–Krypton

The dependence of the mean lifetime of superheated liquid Ar–Kr solutions on temperature
and concentration has been investigated in experiments at two pressures p′ = 1.0 and 1.6 MPa.
The range of investigated values of the mean lifetime changes from 0.1 to 1000 s, which
corresponds to a variation in nucleation rate from 104 to 108 m−3 s−1.

Figure 5.4 shows in a semi-logarithmic scale the temperature dependences of the mean
lifetimes for several values of concentration [57]. The vertical size of the bars in the figure
corresponds to the statistical error of determination of τ̄ .

The character of the temperature dependence of τ̄ in the solution is similar to the respec-
tive dependence for pure liquids [19, 60]. On all the lines of constant concentration, after a
certain value of the temperature (the boundary of spontaneous boiling) is reached, one can
observe sections of an abrupt decrease in τ̄ . We associate these sections of the curves with
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Figure 5.3: Histogram of experimental data. The parameter values are c′ = 0.428;
p′ = 1.6 MPa; T = 154.47 K; N = 40, τ̄ = 0.52 s. The smooth curve has been calculated from
Eq. (5.132)
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Figure 5.4: Temperature dependences of the mean lifetime of argon–krypton solutions at p′ =
1.0 MPa for different concentrations: (1) c′ = 0; (2) 0.109; (3) 0.428; (4) 0.708; (5) 0.938; (6) 1.
Dashed lines represent calculations using Eqs. (5.47), (5.70), and σ = σ∞; dotted lines employ
Eqs. (5.47) and (5.97)
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homogeneous nucleation. Here with an increase of temperature by 0.1 K the value of log τ̄
decreases by 0.6–1.2.

The bend of the experimental curves at τ̄ � 8–10 s is caused by heterogeneous nucle-
ation and ionizing radiation nucleation. The authors of Ref. [61] connect the bend in the de-
pendence τ̄ (T ) with only one factor, the influence of ionizing radiation. The source of such
radiation in experiments are cosmic rays and the natural radiation background. Heat peaks,
which appear during the slowing-down of secondary electrons (δ-electrons) in superheated
liquids, are the centers of its boiling-up. A convincing argument in favor of the ionization
hypothesis to explain the bends of experimental curves is the result of experiments of mea-
suring the lifetime of a superheated liquid in the field of γ -radiation (for argon the results
of such experiments are presented in Ref. [19]). The increase of intensity of ionizing radi-
ation results in a shift of the gently sloping sections of the curves into a region of smaller
values of τ̄ without violating the character of the dependence τ̄ (T ). The effect of initiation
in the series of condensed inert gases correlates with the radiation-stability and scintillation
properties of a substance, which increases with increasing atomic number of the respective
element [62].

The greatest resistance to ionizing radiation, which is determined by well-expressed scin-
tillation properties, is exhibited by liquid xenon. As a result, a part of the energy of ionizing
radiation is not transformed into thermal energy, but fluoresces. The bend in experimental
curves for xenon manifests itself at a value of the nucleation rate Jm = (τ̄ v)−1 = 2.2 ×
104 m−3 s−1 [21]. The bend of the experimental curves in the case of krypton is found at
a rate Jm � 1.5 × 106 m−3 s−1, and in argon at Jm � (2 − 3) × 106 m−3 s−1. The in-
crease of the krypton concentration in argon results in a monotonic decrease in Jm (Fig. 5.5).
As distinct from krypton, where at all pressures one can observe a linear dependence of lg J
on T , in argon at low pressures ( p′ < 0.3 MPa, see [19]) a section of approximately con-
stant radiation sensitivity is revealed, which is adjacent to the boundary of liquid spontaneous
boiling-up. The presence of such a section may be connected with the fact that the work of
formation of a critical nucleus is here much smaller than the average energy of a thermal
spike, and the probability of boiling-up on every thermal spike is close to unity [63]. The
details of the process of transformation of the ionizing radiation into thermal energy and the
detailed mechanism, the work of nucleation is affected, are not finally established to allow
to calculate the probability of nucleation initiation by radiation in dependence on the molec-
ular characteristics of a substance. In addition, at present one cannot be absolutely sure that
the action of ionizing particles is the only reason for bends of experimental curves at large
times of waiting for boiling-up. The similarity of the temperature and pressure dependences
of τ̄ obtained in natural conditions and in the presence of a γ -source is merely a possible
indication of the close link between these phenomena. As shown in Ref. [64], the value of
Jm changes in passing from glassy to metallic measuring cells. The character of the depen-
dence τ̄ (T ) at J < Jm is affected by easily activated boiling centers [29, 65], and ultrasonic
fields [66].
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Figure 5.5: Nucleation rate in superheated argon–krypton solutions at p′ = 1.6 MPa for the
following concentrations: (1) c′ = 0; (2) 0.109; (3) 0.382; (4) 0.428; (5) 0.708; (6) 0.938; (7) 1.
Dashed and dotted lines are determined in the same way as explained in the caption to Fig. 5.4

The System Helium–Oxygen

In the temperature range where oxygen forms a liquid phase, the He–O2 system is a gas-
supersaturated solution. Experiments on nucleation in helium–oxygen solutions have been
performed at two values of pressure p′ = 1.171 and 1.667 MPa and several values of he-
lium concentration in the solution. The purity of the substances under investigation is 99.99%
(He) and 99.92% (O2). Under fixed external conditions (T , p′, c′ = const) the appearance of
the first viable nucleus in a metastable liquid is a stochastic event of the Poisson type. This
statement has been confirmed by experiments on one-component liquids [14]. In these exper-
iments, the time of “hold-up” of a liquid under pressure was ≈ 3 min, and it was sufficient
for complete decompression of the vapor phase and the relaxation of thermal inhomogeneities
in the measuring system. In experiments on gas-supersaturated liquids it has been discovered
that at times of “hold-up” of ≈ 3 min one can often observe boiling-up with expectation times
that are “anomalously” small for the given values of T , p′, and c′. “Anomalously” small val-
ues of τ may appear and disappear in the course of experiments, or may be retained during
the whole period of measurements. Such behavior of a gas-supersaturated system is similar
to that of a one-component system, when in the latter there are easily activated nucleation
centers [29,64]. The law of distribution of “anomalously” low times of boiling-up expectation
is also close to the Poisson one (Fig. 5.6, smooth curves). With an increase in the “hold-up”
time between measurements up to 30–40 min (i.e., by an order of magnitude) premature liquid
boiling-ups did not manifest themselves. In the course of treatment of the experimental data
“anomalously” low values of τ were excluded from consideration.

Figures 5.7 and 5.8 show in a semi-logarithmic scale the results of determination of the
mean lifetime and the nucleation rate in helium–oxygen solutions at two values of pres-



160 5 Boiling-Up Kinetics of Solutions of Cryogenic Liquids

0 5 10

5

10

15

n

τ (sec)

Figure 5.6: Distribution of the number of boiling-up events n that fall within the interval τ ,
τ + �τ : c′ = 0.14 mol%; p′ = 1.171 MPa; T = 166.66 K; N = 31. Solid lines: τ̄ = 2.66 s at
a “holding” time of 40 min, dashed lines: τ̄ = 1.34 s at a “holding” time of 3 min

sure [67]. As in the case of one-component liquids, on the curves τ̄ (T ) and J (T ) one can
distinguish two sections with different characters of the temperature dependences τ̄ and J . At
low degrees of superheating experimental isobars have characteristic gently sloping sections,
which with increasing temperature go over to sections with an abrupt change in the time of
expectation of boiling-up of the solutions. The first section is connected with initiated, and
the second with spontaneous nucleation. Dissolution of 0.1 mol% of helium in liquid oxygen
decreases the limiting superheat �T = Tn − Ts by approximately 10%. In this case, in the
region of initiated nucleation the mean lifetime of a solution decreases by three or four times.
It is important that most noticeably gas saturation manifests itself here at very low helium
concentrations.

In the parts of an abrupt decrease in τ (increase of J ) the value of the derivative dln J/dT
does not depend within the experimental error on concentration. At a pressure of 1.171 MPa
it is about 18, at p′ = 1.667 MPa it is equal to 21. This value corresponds to an increase in the
nucleation rate by approximately 8 or 9 orders of magnitude with an increase in temperature
of 1 K.
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Figure 5.7: Temperature dependence of the mean lifetime of a metastable mixture at a pressure
p′ = 1.171 MPa and the following concentrations: (1) c′ = 0 mol%, (2) 0.08, (3) 0.14, and
(4) 0.20. Dashed lines shows results of the calculations for a one-component system by homo-
geneous nucleation theory with σ = σ∞; Dotted lines show calculations by the homogeneous
nucleation theory with σ = σ(R∗)
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Figure 5.8: Temperature dependence of the nucleation rate at a pressure p′ = 1.667 MPa and
the following concentrations: (1) c′ = 0 mol%, (2) 0.08, (3) 0.14, and (4) 0.20. For the way of
determination of the dashed and the dotted lines see caption to Fig. 5.7
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5.5 Comparison between Theory and Experiment

5.5.1 Equation of State and Boundaries
of Thermodynamic Stability of Solutions

For describing the properties of new-phase nuclei and the determination of the boundary of
stability for homogeneous solutions with respect to constantly changing state variables (the
spinodal curve), it is necessary to have an equation of state which describes both stable and
metastable states. Such an equation of state for argon–krypton and helium–oxygen systems has
been obtained in the framework of a one-liquid solution model on the basis of experimental
data on thermodynamic properties of pure components and phase equilibria in solutions. In
order to arrive at these basic equations, equations of state for argon [68] and oxygen [69] were
used which are of the same form both for the liquid and the vapor phase. These equations
have, in the region of liquid–gas phase transition, isotherms of the van der Waals type and
satisfy the Maxwell rule. The general form of the equation of state for the solution is given by

p

ρRT
= 1 + η

∑
i, j

bi j
ρ̃i

T̃ j
. (5.133)

Here ρ̃ = ρ/ρc, T̃ = T/Tc holds, ρc and Tc are the density and the temperature at the critical
point, respectively. Both parameters, as well as the individual parameter η, are functions of
concentration. The coefficients bi j are determined by experimental data on the thermodynamic
parameters of the less volatile component of the solution (argon, oxygen) and are given in the
papers [68, 69].

The three individual parameters of Eq. (5.133) (Tc, ρc = 1/vc, η) have been approximated
by the expressions

Tc(c) = Tc,1c2 + 2αT Tc,12c(1 − c) + Tc,2(1 − c)2 , (5.134)

vc(c) = vc,1c2 + 2αvvc,12c(1 − c) + vc,2(1 − c)2 , (5.135)

η(x) = η1c2 + 2αηη12c(1 − c) + (1 − c)2 , (5.136)

where the cross terms Tc,12, vc,12, and η12 satisfy the combination rules

Tc,12 = δT (Tc,1Tc,2)
1/2 , (5.137)

vc,12 = δv

(
v

1/3
c,1 + v

1/3
c,2

)3

8
, (5.138)

η12 = (1 + η1)

2
. (5.139)

Tc,i and ρc,i are the density and the temperature, respectively, at the critical point of any of the
pure components.

In developing an equation of state for an argon–krypton solution, we started from the fact
that for these substances the law of corresponding states is fulfilled with an error close to
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the experimental one [70]. It means that, in reduced coordinates, the (p, ρ, T ) properties of
argon and krypton may be described by one equation of state of the form of Eq. (5.133) with
coefficients bi j determined, for example, by the properties of argon, η = 1. The coefficients
δT = 1.0012 and δv = 1.017 have been found by minimizing the mean-square deviations of
experimental data concerning the pressure of saturated vapors [71] and the density of the liquid
phase [72] for Ar–Kr solutions calculated from Eqs. (5.133)–(5.135), (5.137), and (5.138).
Since the region of stable existence of the oxygen liquid phase is located considerably above
the helium critical temperature, helium may be regarded here as a gas close to a perfect one.
This circumstance makes it possible to use for describing helium the equation of state for
oxygen having introduced into the latter the correction factor η. In pure oxygen η = 1, at
η = 0.431 the equation of state, Eq. (5.133), with coefficients bi j of oxygen describes in an
optimum way the (p, ρ, T ) properties of helium in the range of reduced densities 0 < ρ̃ < 1
and temperatures 0.6 < T̃ < 1.

The free parameters αT , αv and αη of the equation of state may be determined by the pres-
sure of saturated vapor and the composition of the liquid and the vapor phase of the solution.
However, the available data [73] on ps, c′ and c′′ have been proven to be insufficient for a
reliable representation of the phase diagram in the range of temperatures adjoining the critical
point of the solvent. In the absence of information about the (p, ρ, T , c) properties of a helium–
oxygen system, we used, as additional information, data about the surface tension [36]. The
incorporation of the information about the properties of a liquid–vapor interface into the con-
siderations made it possible not only to increase the reliability of the description of the (p, ρ,
T , c) properties of the solution by the equation of state, Eq. (5.133), but also to determine the
influence parameter of pure helium, κ11. Calculations were made using Eqs. (5.133)–(5.139)
and (5.98)–(5.99). The solvent influence parameter was determined from Eq. (5.98) by data
on the surface tension of pure oxygen [74]. The results of such calculations may be presented
in the following form

κ22ρ
8/3
c,2

pc,2
= 0.5552 + 12.6638ε − 187.164ε2 + 1468.46ε3

− 6583.0ε4 + 16993ε5 − 23465ε6 + 13500ε7 , (5.140)

where ε = 1 − T/Tc,2 holds. The temperature dependences of the free parameters in
Eqs. (5.134)–(5.136), and also the coefficient κ11 have been approximated by the following
expressions

αT = 3, αv = 2.88 − 16.8ε + 54.0ε2 − 50.0ε3 ,

αη = −0.238 + 14.95ε − 61.1ε2 + 103.0ε3 − 61.0ε4 ,

κ11ρ
8/3
c,2

pc,2
= 7.93 − 176.5ε + 1530ε2 − 6248ε3 + 12100ε4 − 8900ε5 .

(5.141)

The coefficient κ12 was found according to Eq. (5.93).
The phase diagram of a helium–oxygen system, calculated by the equation of state equa-

tion (5.133), is shown in Fig. 5.9. The lines of phase equilibrium separate the regions of stable
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Figure 5.9: (p, T )-projection of the phase diagram of He–O2 mixtures. Solid lines show the
curves of phase equilibrium, dashed lines the diffusion spinodals. (1) c′ = 0 mol%; (2) 0.5;
(3) 1; (4) 2; (5) 3. CC ′ is the critical line

and metastable phases on the thermodynamic surface of the homogeneous states. The meta-
stable phase of a two-component system retains the restoring reaction to infinitesimal changes
in state variables up to the diffusive spinodal determined by the condition

(
∂�µ

∂c

)
p,T

= 0 , (5.142)

where �µ = µ1 − µ2. In a one-component system, the stability of the metastable phase is
disturbed, if

(
∂p

∂ρ

)
T

= 0 (5.143)

holds. In pure oxygen at a temperature T = 140 K a stretch of the liquid by �psp(T ) = ps −
psp = 2.65 MPa corresponds to the spinodal. Dissolution in oxygen of 1 mol% helium results
in a rise of the limiting value of the tensile stress up to �psp(T, c) = ps − psp � 3.17 MPa.
Thus, with increasing concentration of a dissolved gas, the width of the metastable region
increases. It should be mentioned that at high gas concentrations (c′ > 3 mol%) penetration
into the metastable region at a fixed external pressure is already connected with decreasing
rather than increasing temperature (see Fig. 5.9).
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5.5.2 Surface Tension and other Properties of Vapor-Phase Nuclei

For describing the properties of new-phase nuclei in the framework of the van der Waals
capillarity theory Eq. (5.90), in addition to the equation of state for a homogeneous solution,
it is necessary to know the matrix of the influence coefficients κi j . By using the combination
rule

κi j = δκ(κiiκ j j )
1/2 (5.144)

and the formula for the surface tension at a flat interface

σ∞ = 2

+∞∫
−∞

∑
i, j

κi j

(
dρi

dz

) (
dρ j

dz

)
dz , (5.145)

we have determined the values of κ11(T ) and κ22(T ) for argon and krypton by the data on the
surface tension taken from Refs. [75,76], and also the coefficient δk by the results of measuring
σ∞ for argon–krypton solutions [77]. Numerical calculations have resulted in δk ∼= 1, which,
according to Eqs. (5.92) and (5.93), corresponds to the state of an indifferent equilibrium
(det κi j = 0). Thus, the properties of the nuclei in an argon–krypton system can be described
with good accuracy by Eqs. (5.94)–(5.96).

The results of the numerical solution of the system of Eqs. (5.94)–(5.96) for states close to
the boundary of spontaneous boiling-up of a liquid and the spinodal are presented in Fig. 5.10.
At small supersaturations, one can distinguish in a nucleus a homogeneous core and a tran-
sition layer, the thickness of which is small as compared with the bubble size. With further
penetration into a metastable region the homogeneity core becomes smaller, and the func-
tions ρ1(r) and ρ2(r) get a bell-like shape. A shift in the distribution of ρ1(r) with respect
to ρ2(r) results in an excess adsorption of the first component on the surface layer of a nu-
cleus. By solving the system of Eqs. (5.68)–(5.70) and (5.97) with respect to σ and R, one
can determine the dependence of the surface tension on the radius of curvature of the surface
of tension. The results of such a calculation at a fixed temperature and several values of the
concentration in the solution are given in Fig. 5.10. In contrast to a one-component system,
where σ is a monotonically increasing function of R [53, 56], for a solution with c′ � 0.5 the
dependence σ(R) has a characteristic maximum [57]. The value of σmax exceeds that of σ∞
only by (0.5–0.7)%, which is close to the error of experimental determinations of σ∞.

The results of the numerical calculations of the dependence σ(R) may be described in a
wide range of nucleus radii by Eq. (5.102), where the parameters σ1 and σ2 are determined by
Eq. (5.122). Bubbles, responsible for the spontaneous boiling-up of a liquid up to nucleation
rates J = 1015 s−1 m−3, fall within the area of applicability of Eq. (5.102). The results of
the calculation of the properties of such bubbles in an argon–krypton system are given in
Table 5.1.

Distributions of the densities of the components in a critical bubble of a helium–oxygen
solution are presented in Fig. 5.11. Distinct from solutions with complete solubility of the
components, the density of the first (gas) component in a bubble is higher than in the solvent.
The presence of a weak maximum in the density profile on the side of the gas phase indicates
an excess adsorption of the first component on the surface layer of the critical nucleus. The
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Figure 5.10: The dependence of the reduced surface tension of critical bubbles on curvature of
the interface for boiling in an argon–krypton solution at T = 145 K for the following concen-
trations of krypton: (1) c′ = 0; (2) 0.1; (3) 0.3; (4) 0.5; (5) 0.7; (6) 1

Table 5.1: Characteristic parameters of critical bubbles in an argon–krypton solution at a pres-
sure of 1.0 MPa

Parameter c′

0 0.5 1.0

T (K) 134 155 186
ps (MPa) 2.440 2.906 2.738
W∗/kBT , Eq. (5.70) 78.0 82.9 71.1
W∗/kBT , Eq. (5.97) 64.1 76.7 57.9
lgJ , Eqs. (5.47), (5.70) 5.5 4.1 8.3
lgJ , Eqs. (5.47), (5.97) 11.5 6.8 14.0
σ∞ (mN/m) 2.402 3.065 2.952
δ∞ (nm) 0.035 −0.023 0.036
δ1,∞ (nm) 0.035 −0.210 –
δ2,∞ (nm) – 0.182 0.036
σ(R∗) (mN/m) 2.249 2.987 2.758
R∗ (nm) 3.55 3.62 3.59
n′′∗ 319 330 265
n′′

2∗ 0 75 265
δ (nm) 0.207 0.095 0.219
δ1 (nm) 0.207 −0.067 –
δ2 (nm) – 0.329 0.219
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Figure 5.11: Density distributions of the components of the solution in a critical bubble at the
following values of the parameters: T = 140 K, c′ = 0.1 mol%, p′ = 1.0 MPa. Here R∗
is the radius of the surface of tension and Re,i are the equimolecular dividing surfaces for the
respective components

Tolman parameters of the components of a binary solution (δi = Re,i − R∗, i = 1, 2) behave
similar to the Tolman parameter δ of pure substances, i.e., they increase monotonically with
increasing curvature (in the region of weak metastability, the dependence δi (1/R∗) is linear).
At small radii of the bubble, the Tolman parameters diverge proportionally to R−1/3∗ . As dis-
tinct from σ1 and σ2, the value of δ1(2) = δ1 − δ2 = Re,1 − Re,2 shows a weak dependence on
both the curvature of the separating surface and on concentration.

Figure 5.12 shows the surface tension of critical bubbles of He–O2 solutions as a function
of the curvature of the surface of tension at constant temperature for several compositions of
the ambient phase. Small additions of helium in liquid oxygen do not change the character
of the size dependence of the surface tension, evenly shifting the whole dependence toward
smaller values of δ. The account of the dependence δ(R∗) in the work of formation of a critical
nucleus leads to a decrease in the height of the activation barrier from G∗ = W∗/kBT = 85
to 70 and facilitates the boiling-up of a gas-supersaturated solution.

The characteristic parameters of critical bubbles corresponding to the Gibbs number G∗ =
70 are given in Table 5.2. It follows from the data given in the table that, at T = 138 K
and p′ = 1.171 MPa, the radius of a critical bubble R∗ in superheated pure oxygen equals
3.732 nm, and the number of molecules in it equals n′′∗ ∼= 457. Dissolution in oxygen of
0.2 mol% helium decreases the size of a critical bubble to R∗ = 3.615 nm. This decrease is
balanced by increasing σ(R∗)-values from 2.288 to 2.422 mN m−1. The helium concentration
in a bubble is, in this case, equal to c′′∗ ∼= 6 mol%, the number of molecules n′′∗ ∼= 428 and the
bubble is practically free of atoms of helium (n′′

1∗ ∼= 31). Before the formation of a bubble, its
volume was occupied by n′

2
∼= 3575 oxygen molecules and n′

1
∼= 9 helium atoms. The supply
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Figure 5.12: Surface tension of the critical bubbles in the He–O2 solution along the line c′ =
const (c′ is the concentration of helium) at T = 140 K: (1) c′ = 0 mol%, (2) 0.1, (3) 0.2

to a growing bubble of ∼= 22 atoms of a dissolved gas does not require evidently a diffusion
process and may be performed by molecular exchange. Thus, the process of nucleation in a
gas-supersaturated solution at temperatures close to the temperature of the attainable super-
heating of the solvent differs only slightly from the process of nucleation in a superheated
pure liquid. The decrease in the temperature of superheating of a liquid, observed as a gas
component is dissolved in it, is first of all connected with a shift of the line of equilibrium
coexistence of the liquid and vapor phases and, to a less degree, with the change in the value
of the surface tension. All these properties make a gas-supersaturated solution in the vicinity
of the solvent critical point different from a gas-supersaturated liquid at low temperatures.

5.5.3 Classical Nucleation Theory and Experiment

In this section, experimental data on the boiling-up kinetics of argon–krypton and helium–
oxygen solutions are analyzed in the framework of the homogeneous nucleation theory em-
ploying the expression for the steady-state nucleation rate. An evaluation of the time τl of
establishing a stationary flux of critical nuclei in solutions is given in the paper [47]. In the
region of state variables, where the experiments have been conducted, the time τl does not
exceed 10−8 s, which justifies the neglect of nonsteady state effects.

In the expression for steady-state nucleation rate, the exponential term is dominant. The
value of the kinetic factor B depends only slightly on temperature, pressure and concentra-
tion. A very strong dependence of the nucleation rate on the exponent in the exponential term
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Table 5.2: Characteristic parameters of critical bubbles of pure oxygen and helium–oxygen
mixtures at pressure p′ = 1.171 MPa and the Gibbs number G∗ = 70

Parameter c′ (mol%)

0 0.1 0.2

T (K) 138.149 137.650 137.150
ps (MPa) 2.567 2.665 2.754
B , 108 s−1 1.969 0.855 0.556
log J , Eqs. (5.47) (5.70) 6.09 5.72 5.60
σ∞ (mN/m) 2.44 2.51 2.58
δ1,∞ (nm) – 0.301 0.297
δ2,∞ (nm) 0.036 3 0.036 7 0.037 1
R∗ (nm) 3.732 3.673 3.615
σ(R∗) (mN/m) 2.288 2.354 2.422
n′′∗ 457 442 428
n′′

1∗ – 16 31
δ1 (nm) – 0.463 0.458
δ2 (nm) 0.215 0.213 0.210
c′′∗ (mol%) 0 3.03 6.02
n′

1 0 5 9
n′

2 3 894 3 731 3 575

makes differences in evaluations of the factor B insignificant. Thus, an uncertainty in the value
of B of 1–2 orders of magnitude results in an uncertainty in the temperature of the attainable
superheat of the liquid equal to 0.1–0.2 K. This uncertainty does not exceed the error of deter-
mination of this value by experiment. Another fundamental issue, connected with the use of
Eq. (5.11), is the value of the normalization constant for the equilibrium function of the vol-
ume distribution of nuclei Cv. Usually it is assumed that a nucleus can form on any molecule
of the system, so Cv = ρ′ = ρ′

1 + ρ′
2 holds, where ρ′

1 and ρ′
2 are the number densities of a

solvent and a dissolved substance in the liquid phase. Another approach to the determination
of Cv is proposed by Deryagin [42]. According to [42], Cv = v∗ρ′2 holds. A change from
the normalization constant Cv = ρ′ to Cv = v∗ρ′2 decreases the temperature of attainable
superheating for helium–oxygen solutions by approximately 0.2–0.3 K. In comparing theory
and experiment, we use Cv = ρ′ as the normalization constant for the distribution function.

In Table 5.3 and Fig. 5.13, experimental data on the temperature of attainable superheat
for Ar–Kr solutions are compared with the results of their calculation by the homogeneous
nucleation theory in a macroscopic approximation and with incorporation of the dependence
σ = σ(R∗). In the macroscopic approximation, the discrepancies in theory and experiment in
Tn do not exceed 0.6 K. They have the largest values for pure substances and the lowest ones
for solutions of equimolecular composition. Taking into account the dependence σ(R∗) in the
work of formation of a critical bubble improves the agreement between theory and experiment
for pure substances and weak solutions. The nonmonotonic character of the dependence σ(R∗)
in a solution in the vicinity of equimolar composition leads to the convergence of the values
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Table 5.3: The attainable temperature of superheating in Ar–Kr solutions for J = 107 m−3 s−1

c′ Ts ps Tn (K)

K MPa Experiment Theorya Theoryb

p′ = 1.0MPa
0.0 116.55 2.431 133.9 134.12 133.65
0.109 118.60 2.559 138.1 138.29 137.88
0.428 125.86 2.887 151.8 151.81 151.50
0.708 136.38 2.973 166.5 166.73 166.30
0.938 152.72 2.784 181.1 181.42 180.81
1.0 159.13 2.673 185.3 185.84 185.17

p′ = 1.6 MPa
0.0 125.18 2.698 136.2 136.41 136.05
0.109 127.63 2.823 140.5 140.63 140.33
0.382 134.76 3.098 152.1 152.19 151.97
0.428 136.21 3.151 154.4 154.37 154.14
0.708 148.09 3.224 169.2 169.42 169.10
0.938 164.71 3.034 183.8 184.21 183.72
1.0 170.70 2.934 188.1 188.63 188.10

a Calculations with σ = σ∞, data from Ref. [76]
b Calculations with σ = σ(R∗), data from this work

of σ for critical bubbles and σ∞. This property manifests itself in decreasing disagreement
between experiment and the theoretical values of the temperature of attainable superheat cal-
culated in a macroscopic approximation.

Temperature dependences of the nucleation rate are also close to theoretical predictions
(Fig. 5.5). A shift in the temperature of 1 K results in a change of J by 6–12 orders of
magnitude. The derivative dln J/dT increases with increasing pressure. The theory gives a
qualitatively correct representation of the concentration dependence of the temperature of
attainable superheat observed by experiment (Fig. 5.13). At a pressure p′ = 1.0 MPa and
concentration c′ = 0.5, the attainable superheating, achieved in experiment, was given by
�T = Tn − Ts = 27.2 K. At the same conditions, the superheating �Tsp = 36.2 K corre-
sponds to the diffusional spinodal. The spinodal has been calculated from Eq. (5.133) accord-
ing to its definition Eq. (5.142).

Table 5.4 provides data on the temperature of attainable superheating for helium-oxygen
solutions corresponding to a nucleation rate J = 107 s−1 m−3. The results of the experiments
are compared with calculations of Tn by the homogeneous nucleation theory in a macroscopic
approximation (σ = σ∞) taking into account the dependence of the bubble surface tension
on the curvature of its separating surface σ = σ(R∗). The kinetic factor B was determined
from Eqs. (5.47) and (5.48). In addition, Table 5.4 shows the values of the saturation temper-
ature Ts at a given pressure p and the values of pressure ps corresponding to the experimental
temperature of attainable superheating Tn . In Figs. 5.7 and 5.8, one can see the temperature
dependences of τ̄ and J , calculated by Eq. (5.12), taking into account the dependence σ(R∗),
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Figure 5.13: Temperature of attainable superheating of an argon–krypton solution at
p′ = 1.6 MPa. Circles are experimental data. Tn has been calculated using Eqs. (5.47), (5.70)
and σ = σ∞, J = 107 m−3 s−1. Tsp specifies the spinodal curve, Ts the binodal curve of the
liquid

and also the results of calculation of the functions τ̄ (T ) and J (T ) for pure oxygen in a macro-
scopic approximation. The data from Table 5.4 and Figs. 5.7 and 5.8 show good agreement
between experiment and the classical homogeneous nucleation theory, when the latter takes
into account the size dependence of the properties of critical nuclei. The disagreement be-
tween theoretical and experimental values of the temperature of attainable superheating does
not exceed the limits of experimental error and the accuracy of determining the thermophysi-
cal parameters in Eqs. (5.47) and (5.48). The experimental data do not reveal any peculiarities
in nucleation kinetics in the vicinity of c′ = 0 and c′ = 1, where the fluxes of nuclei can
develop by-passing the saddle point. This result confirms the assumption of the equilibrium
character of composition in a critical bubble used in the theory of binary nucleation.

Figure 5.14 shows the line of attainable superheating and the spinodal in a He–O2 system
at two investigated pressure values. The dissolution of helium in oxygen decreases both the
temperature of superheating and the temperature of loss of stability of the system to infinitely
small perturbations of concentration. At a helium concentration in oxygen of 0.3 mol%, the
temperature of spontaneous boiling-up of the solution is approximately 1.2–1.5 K lower than
that of oxygen. At a concentration of 0.1 mol% and a pressure of 1.171 MPa the superheating is
�T ∼= 20 K, and the loss of stability of the homogeneous solution takes place at �Tsp ∼= 25 K.
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Table 5.4: Temperature of attainable superheating of helium–oxygen mixtures for nucleation
rates J = 107 s−1 m−3

c′ Ts ps Tn (K)

mol% K MPa Experiment Theorya Theoryb

p′ = 1.171 MPa
0 122.40 2.570 138.17 138.73 138.22
0.08 118.96 2.640 137.79 138.38 137.85
0.14 114.55 2.686 137.43 138.11 137.56
0.20 – 2.732 137.06 137.85 137.27

p′ = 1.667 MPa
0 129.05 2.786 140.00 140.53 140.13
0.08 127.12 2.860 139.72 140.18 139.76
0.14 125.34 2.910 139.46 139.91 139.47
0.20 123.04 2.963 139.23 139.64 139.19

a σ = σ∞, σ∞ taken from Ref. [16]
b σ = σ(R∗), results of this work
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Figure 5.14: Temperature of attainable superheating (1, 2; J = 107 s−1 m−3) and spinodal (1′,
2′) at pressures p′ = 1.171 (1, 1′) and 1.667 MPa (2, 2′). The dashed line shows the results of the
calculation by the homogeneous nucleation theory in a macroscopic approximation σ = σ∞, the
dotted line accounts for the dependence σ(R∗). The width and length of the rectangles illustrate
the errors in the determination of temperature and concentration
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5.6 Conclusions

The general picture of nucleation in liquid mixtures remains the same as in a pure liquid. The
time, required for a bubble of radius R to form in a pure liquid, is connected with the time of
heat dissipation and by the order of magnitude equal to [46]

τh ≈ R2

4aT
, (5.146)

where aT is the thermal diffusivity. Thermodynamic parameters of solutions of simple liquids
have the same order of magnitudes as thermodynamic parameters of pure liquids. Therefore,
the time of formation of a bubble in a mixture, calculated by Eq. (5.146), is close to the time of
formation of a bubble in a pure liquid. Assuming R ≈ R∗ = 5 nm and aT = 5×10−8 m2 s−1,
we obtain τn ≈ 10−10 s.

The composition of the equilibrium vapor differs from that of a liquid mixture by a large
content of an easily volatile component. Therefore, during the formation of a vapor bubble
with a vapor composition equilibrium for the liquid composition a certain additional quantity
of an easily volatile component should be supplied to the bubble boundary from the bulk of
the liquid. The characteristic time of diffusion to the surface of a spherical bubble of radius R
is equal to

τD ≈ R2

4Dg
. (5.147)

The diffusion coefficient in a simple mixture is of the order ∼ 5 × 10−10 m2 s−1. Thus, the
characteristic time of diffusion proves to be two orders of magnitude larger than the time of
formation of a bubble, and the equilibrium conditions for a rapidly formed bubble will differ
from those examined in Sect. 5.3 for a bubble staying in a liquid for an infinitely long time.

Under rapid evaporation, the vapor composition in a bubble will be close to the initial com-
position of the liquid. The liquid layer, directly adjacent to the bubble surface, is depleted by
an easily volatile component to the composition equilibrium for the composition of the vapor.
As the change in the liquid composition at the boundary proceeds very slowly, the bubble is in
the state of temporary equilibrium with the liquid at the surface having the composition c < c′
and the temperature T . The equilibrium radius of such a bubble is determined by Eq. (5.79),
in which the equilibrium pressure p′

s for the temperature T and the liquid equilibrium compo-
sition c′ far from the bubble should be replaced by the equilibrium pressure p′′

s for the same
temperature T and the vapor composition c′′ = c′. Since p′′

s < p′
s, the vapor bubble radius,

determined from the pressure p′′
s , exceeds the radius given by Eq. (5.79).

The experiments conducted and the results of their analysis in the framework of the clas-
sical homogeneous nucleation theory demonstrate good agreement between theory and ex-
periment. At temperatures close to the temperature of the critical point of the solvent, the
homogeneous nucleation theory gives not only a qualitatively, but also a quantitatively correct
representation of the temperature of attainable superheat for liquid mixtures, and, what is even
more significant, gives a correct representation of the temperature and pressure dependences
of the nucleation rate. The disagreement between theory and experiment does not exceed the
experimental error in the temperature of superheat if the theory takes into account the size
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dependence of surface tension for a critical bubble. Such agreement is an indirect evidence
of the correctness of the assumption of an equilibrium composition of a vapor–gas mixture
in a critical nucleus used in the theory. As is shown in Sect. 5.5, close to the temperature of
spontaneous boiling-up of a pure solvent (T > 0.9Tc) a critical bubble of a gas-supersaturated
solution contains a number of molecules of a dissolved substance about an order of magnitude
less than that of a solvent. If we assume that an easily volatile component, to be dissolved,
is distributed uniformly in a solvent, then, in the process of nucleation, the solvent molecules
predominantly leave the volume where a critical bubble forms. To obtain an equilibrium com-
position of a dissolved component in a bubble, diffusion may not be required as the inflow of
the lacking number of gas molecules may take place at the expense of the thermal motion of
molecules.

The situation in a gas-supersaturated solution changes cardinally if nucleation proceeds at
temperatures much lower than the solvent critical temperature. Thus in a helium–oxygen so-
lution at a temperature of 100 K, a pressure of 1.171 MPa, when the helium concentration c′
equals 3 mol% and the solution is supersaturated (the Gibbs number equals G∗ ∼= 80), the
radius of a critical nucleus will be ∼= 1.7 nm, the number of helium molecules in a bubble
n′′

1∗ ∼= 176, and the number of oxygen molecules n′′
2∗ ∼= 3. Before the formation of a nu-

cleus in the volume of critical size, about ∼= 12 helium atoms were contained in it. To provide
an equilibrium concentration in a bubble, helium atoms should diffuse via distances approx-
imately 2.5 times greater than the bubble radius. The characteristic times of diffusion in this
case are τD ∼= 2 × 10−8 s, which is comparable with the time of establishment of a stationary
size distribution of the nuclei.

In constructing a theory of boiling-up for binary solutions, it was assumed that in the
process of formation of a critical nucleus there was always enough time for the establishment
of thermal, mechanical and diffusion equilibria, and the trajectory of the fluctuative motion
of a bubble in the space of its significant variables passes through the saddle point of the
potential barrier. This assumption is justified if the stable variables of a nucleus relax to their
equilibrium values more rapidly than the unstable variable. When this condition is violated,
then, as has been shown by Trinkaus [12], the trajectory of the nuclei flow may by-pass the
saddle point of the free energy surface. The nucleation regime with by-passing the saddle point
may be considered in the framework of the multidimensional nucleation theory presented in
Sect. 5.2. However, such a consideration is limited in its applicability to small deviations from
equilibrium owing to the fact that the Kramers–Zeldovich method is valid only in the critical
region of the potential barrier, i.e., in the interval W∗ ± kBT .

At low temperatures one may observe a stronger size dependence of the surface tension
of critical bubbles [78]. The character of the dependence σ(R∗) may differ not only quanti-
tatively, but even qualitatively from that revealed at elevated temperatures. At temperatures
T = 0.6Tc the radius of a critical bubble is 2–2.5 times smaller than at T = 0.9Tc. This
fact implies a stronger sensitivity of supersaturated solutions at low temperatures to inhomo-
geneities and accidental inclusions in a system and on the walls of the vessel surrounding
it.

An increase in the number of regions, where a viable bubble is easily activated, hinders
the realization in experiment of the homogeneous nucleation mechanism. However, even with
existing boiling centers and free liquid surfaces, the temperature of intensive fluctuation nu-
cleation in a supersaturated solution can be achieved in nonstatic processes with a rapid in-
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troduction of heat into the system or an abrupt removal of the external pressure [14, 63].
For this purpose, it is necessary that the rate of penetration into a metastable region should
satisfy a certain criterion, which would ensure superheating of the liquid under an intensive
heat flow into existing centers of evaporation. At low temperatures the conditions of realiza-
tion of such a shock liquid boiling-up regime prove to be more rigid than at temperatures
close to the critical point. Practically all experiments on the investigation of nucleation in gas-
supersaturated solutions at low temperatures were made with quasi-static methods [23–28]
with a sufficiently slow transfer of the system into a metastable state. As in the case of cavita-
tion [29], the achievement of conditions of homogeneous nucleation requires here, evidently,
the use of nonstatic (pulse) methods.

Acknowledgements

The author is grateful to G.Sh. Boltachev and A.M. Kaverin, who participated in obtaining
some of the results presented here, and also to E.V. Urakova for translating the paper into
English. The work was performed with financial support of the Russian Foundation of Fun-
damental Investigations (project 01-02-04014) and of the Deutsche Forschungsgemeinschaft
(DFG, Grant 436 RUS 113/605/0-1).

References

[1] M. Volmer, Kinetik der Phasenbildung (Edwards Brothers, Inc., Ann Arbor, 1945).
[2] W. Döring, Z. Phys. Chem. 36, 376 (1937).
[3] Ya.B. Zeldovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942).
[4] Ya.I. Frenkel, Kinetic Theory of Liquids (Oxford University Press, Oxford, 1946).
[5] H. Flood, Z. Phys. Chem. A 170, 286 (1934).
[6] K. Neumann and W. Döring, Z. Phys. Chem. 186, 203 (1940).
[7] H. Reiss, J. Chem. Phys. 18, 840 (1950).
[8] Ye.I. Nesis and Ya.I. Frenkel, Zh. Tekh. Fiz. 22, 1500 (1952).
[9] D. Stauffer, J. Aerosol Sci. 7, 319 (1976).

[10] G. Shi and J.H. Seinfeld, J. Chem. Phys. 93, 9033 (1990).
[11] A.A. Melikhov, V.B. Kurasov, Yu.Sh. Djikaev, and F.M. Kuni, Zh. Tekh. Fiz. 61, 27

(1991).
[12] H. Trinkaus, Phys. Rev. 12, 7372 (1983).
[13] V.Y. Zitserman and L.M. Berezhkovski, Zh. Fiz. Khim. 64, 1975 (1990).
[14] V.P. Skripov, Metastable Liquids (Wiley, New York, 1974).
[15] M. Blander, D. Hengstenberg, and J.L. Katz, J. Phys. Chem. 75, 3613 (1971).
[16] C.T. Avedisian, J. Phys. Chem. Ref. Data. 14, 695 (1985).
[17] H. Reiss, D.I. Margolese, and J. Schelling, J. Colloid Interface Sci. 56, 511 (1976).
[18] B.E. Wyslouzil, J.H. Seinfeld, R.C. Glagan, and K. Okuyama, J. Chem. Phys. 94, 6827

(1991).
[19] V.G. Baidakov, V.P. Skripov, and A.M. Kaverin, Zh. Eksp. Teor. Fiz. 38, 557 (1974).



176 5 Boiling-Up Kinetics of Solutions of Cryogenic Liquids

[20] V.P. Skripov, V.G. Baidakov, and A.M. Kaverin, Physica A 95, 169 (1979).
[21] B.V. Deryagin and A.V. Prokhorov, Kolloidn. Zh. 44, 847 (1982).
[22] F.M. Kuni, V.M. Ochenko, L.N. Ganiuk, and L.G. Grechko, Kolloidn. Zh. 55, 28 (1993).
[23] E.A. Hemmingsen, Science 167, 1493 (1970); Gerth, W.A., Hemmingsen, E.A.,

Z. Naturforsch. A 31, 1711 (1976).
[24] Y. Finkelstein and A. Tamir, AIChE J. 31, 1409 (1985).
[25] P.G. Bowers, C. Hofstetter, H.L. Ngo, and R.T. Toomey, J. Colloid Interface Sci. 215,

441 (1999).
[26] M.B. Rubin and R.M. Noyes, J. Phys. Chem. 91, 4193 (1987).
[27] P.G. Bowers, C. Hofstetter, C.R. Letter, and R.T. Toomey, J. Phys. Chem. 99, 9632

(1995).
[28] P.G. Bowers, K. Bar-Eli, and R.M. Noyes, J. Chem. Soc., Faraday Trans. 92, 2843

(1996).
[29] V.G. Baidakov, Superheat of Cryogenic Liquids (Ural Branch of Russian Academy of

Sciences Publishers, Ekaterinburg, 1995).
[30] H. Kwak and R.L. Panton, J. Chem. Phys. 78, 5795 (1983).
[31] V.G. Baidakov, J. Chem. Phys. 110, 3955 (1999).
[32] Y. Mori, K. Hijikata, and T. Nagatani, Int. J. Heat Mass Transf. 19, 1153 (1976).
[33] T.W. Forest and C.A. Ward, J. Chem. Phys. 69, 2221 (1978).
[34] P.A. Pavlov and P.V. Skripov, Teplofiz. Vys. Temp. 23, 70 (1985).
[35] R.N. Herring and P.L. Barrick, Int. Adv. Cryogenic Eng. 10, 151 (1965).
[36] V.G. Baidakov and I.I. Sulla, Int. J. Thermophys. 16, 909 (1995).
[37] J.S. Langer, Ann. Phys. 41, 108 (1967).
[38] F.M. Kuni, A.A. Melikhov, T.Yu. Novozhilova, and I.A. Terent’ev, Teor. Mat. Fiz. 83,

274 (1990).
[39] E.A. Brener, V.I. Marchenko, and S.V. Meshkov, Zh. Eksp. Teor. Fiz. 85, 2107 (1983).
[40] A.I. Rusanov, Phase Equilibria and Surface Phenomena (Leningrad, Khimiya, 1967).
[41] Yu. Kagan, Zh. Fiz. Khim. 34, 92 (1960).
[42] B.V. Deryagin, A.V. Prokhorov, and N.N. Tunitskii, Zh. Eksp. Teor. Fiz. 73, 1831 (1977).
[43] V.G. Baidakov, A.M. Kaverin, and G.Sh. Boltachev, J. Phys. Chem. 106, 167 (2002).
[44] V.G. Baidakov, High Temp. 37, 565 (1999).
[45] J.W. Gibbs, Collected Works (Yale University Press, New Haven, CT, 1948).
[46] Yu.A. Aleksandrov, G.S. Voronov, V.M. Gorbunkov, N.B. Delone, and Yu.I. Nechaev,

Puzyr’kovye kamery (Gosatomizdat, Moskva, 1963).
[47] V.G. Baidakov, Kinetika zarodysheobrazovanija v peregretyh rastvorah gaza v zhidkosti,

in Metastabilnye Sostojanija i Fazovye Perekhody, (Ural Branch of Russian Academy of
Sciences, Ekaterinburg, 1998), pp. 12–38.

[48] L.D. Landau and E.M. Lifshitz, Statisticheskaja Fizika (Nauka, Moskva, 1976).
[49] I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, New

York, Toronto, 1954).
[50] J.D. van der Waals and Ph. Kohnstamm, Lehrbuch der Thermodynamik (Maas and Van

Suchtelen, Leipzig, 1908).



References 177

[51] J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).
[52] V.G. Baidakov and G.Sh. Boltachev, Zh. Fiz. Khim. 71, 1965 (1997).
[53] V.G. Baidakov, Mezhfaznaya Granitsa Prostykh Klassicheskikh i Kvantovykh Zhydkostei

(Nauka, Ekaterinburg, 1994).
[54] G.Sh. Boltachev and V.G. Baidakov, Kolloidn. Zh. 62, 1 (2000).
[55] V.G. Baidakov and G.Sh. Boltachev, Phys. Rev. E. 59, 469 (1999).
[56] V.G. Baidakov and G.Sh. Boltachev, Zh. Fiz. Khim. 69, 515 (1995).
[57] V.G. Baidakov, A.M. Kaverin, and G.Sh. Boltachev, J. Chem. Phys. 106, 5648 (1997).
[58] V.G. Baidakov and A.M. Kaverin, High Temp. 38, 852 (2000).
[59] A.T. Bharucha-Reid, Elements of the Theory of Markov Processes and Their Applica-

tions (McGraw-Hill, New York, Toronto, London, 1960).
[60] A.M. Kaverin, V.G. Baidakov, and V.P. Skripov, Inzh.-Fiz. Zh. 38, 680 (1980).
[61] N.N. Danilov, E.N. Sinitsyn, and V.P. Skripov, Kinetika vskipanija peregretyh binarnykh

rastvorov, in Teplofizika Metastabilnykh Sistem (Ural Division of Academy of Sciences
of the USSR, Sverdlovsk, 1977), pp. 28–42.

[62] M.N. Medvedev, Stsintillyatsionnye Detektory (Atomizdat, Moskva, 1977).
[63] V.P. Skripov, E.N. Sinitsyn, P.A. Pavlov, G.V. Ermakov, G.N. Muratov, N.V. Bulanov, and

V.G. Baidakov, Thermophysical Properties of Liquids in the Metastable (Superheated)
State (Gordon and Breach, New York, 1988).

[64] A.M. Kaverin, V.G. Baidakov, V.P. Skripov, and A.N. Kat’yanov, Zh. Tekhn. Fiz. 55,
1220 (1985).

[65] V.G. Baidakov and A.M. Kaverin, Teplofiz. Vys. Temp. 28, 90 (1990).
[66] V.G. Baidakov, A.M. Kaverin, and V.P. Skripov, Akust. Zh. 27, 697 (1981).
[67] V.G. Baidakov, A.M. Kaverin, and G.Sh. Boltachev, J. Phys. Chem. B 106, 167 (2002).
[68] A.A. Vasserman and A.Ya. Kreyzerova, Teplofiz. Vys. Temp. 16, 1185 (1978).
[69] V.V. Sychev, A.A. Vasserman, A.D. Koslov, G.A. Spiridonov, and V.A. Tsimarnii, Ther-

modynamical Properties of Oxygen (Izdat. Standartov, Moskva, 1981).
[70] V.G. Baidakov, Sov. Tech. Rev. B. Therm. Phys. 5, 1 (1994).
[71] J.A. Schouten, A. Deerenberg, and N.J. Trappeniers, Physica A 81, 151 (1975).
[72] S.F. Barreiros, J.C.G. Calado, P. Clancy, M.N. da Ponte, and W.B. Streett, J. Phys. Chem.

86, 1722 (1982).
[73] R.N. Herring and P.L. Barrick, Int. Adv. Cryogenic Eng. 10, 151 (1965).
[74] V.G. Baidakov, K.V. Hvostov, and G.N. Muratov, Zh. Fiz. Khim. 56, 814 (1982).
[75] V.G. Baidakov and V.P. Skripov, Kolloidn. Zh. 44, 409 (1982).
[76] V.G. Baidakov, Ukr. Fiz. Zh. 27, 1332 (1982).
[77] C.D. Holcomb and J.A. Zollweg, J. Phys. Chem. 97, 4797 (1993).
[78] V.G. Baidakov and G.Sh. Boltachev, Zh. Fiz. Khim. 75, 33 (2001).



6 Correlated Nucleation and Self-Organized Kinetics
of Ferroelectric Domains

Vladimir Ya. Shur

If we were in equilibrium we would not only be dead –
we would be homogeneous!

Sidney Nagel

In the present chapter, we present a review of the most interesting aspects of the kinetics of
nonequilibrium domain structure evolution in ferroelectrics and discuss the problem in the
framework of a unified approach. The basic idea is to consider the domain structure evolution
during polarization reversal as an example of a phase transformation in a first-order phase
transition. Thus it can be described in terms of the elementary nucleation processes. Within
such approach all different forms of the domain kinetics can be explained as the result of el-
ementary processes associated with the formation of nuclei with the preferred orientation of
spontaneous polarization. The nucleation rate is determined by the local value of the electric
field. It has been proposed that all existing static domain patterns in any ferroelectric, being
metastable and far from equilibrium, are formed in the course of the discussed domain kinetics
scenario and are fastened by the bulk screening processes. Original scenarios of domain struc-
ture evolution were revealed experimentally and discussed accounting for the decisive role
of the retardation of the screening process. The domain evolution during decay of the highly
nonequilibrium states represents a self-organizing process, in which the screening of polariza-
tion reversal plays the role of the feedback mechanism. It has been shown both experimentally
and by computer simulation that the correlation length of quasi-periodic self-assembled nan-
odomain structures is determined by the thickness of the intrinsic or artificial surface dielectric
layer. The discussed results of these fundamental investigations are of great interest as a phys-
ical basis for a modern field of technology denoted as “domain engineering.”

6.1 Introduction

The polarization reversal phenomenon, being an attribute of ferroelectric materials, was at
the center of attention of scientists for years. Nevertheless, the recent direct systematic study
of the domain structure evolution using in situ observation with high time and spatial reso-
lution reveals unexpected scenarios of domain evolution through formation of quasi-regular
nanoscale domain structures [1]. Moreover, the accumulated experimental data on the domain
images obtained in different ferroelectric materials demonstrate an essential dependence on
the experimental conditions and are waiting for a systematic explanation based on a universal
approach.

It is evident that the understanding of the domain kinetics is very important for various sig-
nificant applications of ferroelectric materials on the basis of polarization reversal, such as, for
example, the widely used modern ferroelectric thin film memory devices. Moreover, the artifi-
cial creating of tailored periodic domain structures with proper geometry and sizes denoted as
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“domain engineering” is rapidly developing nowadays as a new branch of ferroelectric science
and technology. Fabrication of the precisely governed regular domain patterns with periods of
about several microns is a key problem on the way of improvement of the characteristics of
electrooptical and nonlinear optical devices [2]. Engineerable (periodically poled) nonlinear
optical materials are widely used for the development of various tunable coherent light sources
based on quasi-phase matching [3–7].

In this publication, we discuss the role of the correlated nucleation occurring during elec-
tric field induced domain growth in ferroelectrics. We show that even the simplest variant of
the domain kinetics representing itself as the motion of the domain wall can be a very com-
plicated self-assembled process. Along with a detailed discussion of the classical approach
we demonstrate several unusual domain wall motion scenarios including the “discrete switch-
ing” through formation and self-terminated propagation of self-assembled nanoscale domain
structures. In this case the propagation of the boundary of the enlarging complicated domain
ensemble replaces the usual domain wall motion. We proposed and clearly demonstrated that
the discrete switching was caused by the retardation of the bulk screening of the depolariza-
tion field. In the framework of such approach the interchange of the domain wall (boundary)
propagation scenarios induced by the experimental conditions is a result of the competition
between screening and switching processes.

We present a systematic explanation of the experimental investigations of the domain ki-
netics in a wide range of domain growth velocities in various uniaxial ferroelectrics with
optically distinguished domains, such as lead germanate (Pb5Ge3O11) (PGO), lithium tanta-
late (LiTaO3) (LT), and lithium niobate (LiNbO3) (LN). We investigate, in detail, the domain
evolution using in situ optical observation of the instantaneous domain patterns under appli-
cation of an electric field. “Slow”, “fast”, and “superfast” domain boundary motion regimes
have been revealed and investigated in details. It is claimed that the main parameter for the
proposed classification is the ratio, R, of the switching rate (1/ts) to the bulk screening rate
(1/τscr), where ts is the switching time and τscr is the screening time constant. The crucial
role of the intrinsic or artificial dielectric surface layer is clearly exhibited as well. Computer
simulation has been used for the verification of the proposed models.

According to the classical theoretical approach, the static domain structure configuration
of a ferroelectric corresponds to an equilibrium domain state, which is obtained by minimiz-
ing the total free energy of the sample including the depolarization energy induced by bound
charges in the finite sample and the domain wall energy [8]. This approach coincides with the
one usually used in ferromagnetism. Two limiting types of equilibrium domain states have
been predicted by this approach depending on either neglecting the screening processes or
taking them into account. The first so-called ferromagnetic case exactly coincides with the
experimentally observed behavior of ferromagnetic domains and predicts the periodical lam-
inar or maze domain structure with neutral domain walls. The domain period corresponding
to the minimum of the free energy is determined unambiguously by the values of spontaneous
polarization, dielectric permittivity, density of the domain wall energy, and sample thickness.
In such a case the equilibrium domain structure must be necessarily periodic with an average
value of the spontaneous polarization over the sample equal to zero. Moreover, for a proper
material the period has to be strictly governed by the temperature and the sample sizes [8, 9].
The situation qualitatively changes if one considers the compensation of the depolarization
field by screening processes, which is the fundamental property defining the distinction in the
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kind of domain behavior in ferroelectrics and ferromagnets. The complete screening of the
depolarization field favors the single-domain equilibrium state without any domain walls, in
other words the equilibrium state is characterized by the absence of any domain structure.

It is well-known that the both limiting predictions of the classical approach contradict
the domain structure configurations observed in real ferroelectrics. The great variety of the
domain patterns formed are metastable but nevertheless persist for a very long time (about
months and years). Thus these structures are stable enough to be considered as static ones
from experimental and applied points of view. In the following, we present experimental ev-
idence and theoretical considerations which reveal the kinetic nature of the observed domain
configurations. In other words, the real domain configurations are determined by the domain
kinetics prehistory. We demonstrate the crucial role of the bulk screening processes in the sta-
bilization of the metastable domain structures [10–12]. This approach allows one to choose
the proper experimental conditions for fastening almost any domain patterns evolution.

6.2 Domain Structure Evolution
during Polarization Reversal

Most of the classical experimental investigations of the domain dynamics during polarization
reversal (switching) have been made on BaTiO3 by in situ optical methods [13–16]. Later the
systematical study of the domain structure evolution has been carried out in several uniax-
ial ferroelectric single PGO-crystals [17, 18], molybdate gadolinium Gd2(MoO4)3 [19–21],
LN [22, 23], and LT [24, 25] with optically distinguished domains, which can be considered
as model systems. The commonly observed scenario of domain evolution is as follows. Af-
ter application of the external electric field oriented in the direction opposite to the existing
orientation of the spontaneous polarization of the single-domain sample, new domains ap-
pear, mainly at the surface, and then grow through the sample thickness. After having grown
through the sample they begin to expand sideways. The formation of new domains continues
to take place while the first ones progress in their sideways expansion. Later they begin to
merge/coalesce until the entire unswitched region is completely overrun by them [9]. Based
on usually obtained experimental data it is common to separate the whole process of domain
evolution during polarization reversal for complete switching from the single domain state
to another one with opposite direction of the spontaneous polarization into four main stages
(Fig. 6.1).

The first stage, “nucleation of new domains” (Fig. 6.1(a)), is the most mysterious process.
A wide gap (several orders of magnitude) between the value of the threshold field, measured
experimentally and predicted theoretically, still exists [26]. There are several approaches to a
qualitative explanation of this contradiction. It can be attributed to the lack of perfection ex-
isting in any real crystal, which is confirmed by the experimentally observed nucleation sites
defined by natural or artificial surface and bulk defects. The special properties of the surface
layer in any ferroelectric capacitor representing the intrinsic dielectric gap (see Sect. 6.3) pro-
voke the incomplete compensation of the depolarization field near the surface, thus facilitating
nucleation in the vicinity of the electrodes [27]. Finally, it is a matter of discussion whether
the initial domain state could be completely single-domain or it contains a large quantity of
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Figure 6.1: The main stages of the polarization reversal in ferroelectrics

nanoscale irremovable residual domains [12]. In the latter case the nucleation stage repre-
sents a transition of the invisible residual nanodomains into visible ones as a result of the
field induced domain growth. The second stage, denoted as “forward growth,” represents an
expansion of the formed “nuclei” in polar direction through the sample (Fig. 6.1(b)). It is
clear that all domains at this stage possess charged domain walls. This is the reason why this
process is an unbeloved child for theoreticians. The additional energy produced by such un-
usual walls is enormously high because the fast external screening mechanisms are unable
to compensate effectively the depolarization field produced by the bound charges existing at
the boundary of encountered domains in the bulk. Formation of needle-like domains with
high aspect ratio is the way to reduce this energy. For example, in LN at room temperature
the ratio of the longitudinal to transversal domain sizes reaches 100 (see Section 6.9) [28].
Moreover, the strong interaction between the individual growing domains due to long-range
electrostatic fields plays an essential role thus determining the kinetic properties of the do-
main ensemble and the final configuration of the formed static structure. This effect is brightly
demonstrated during formation and expansion of the quasi-regular cogged “charged domain
wall” occupying the large area in the bulk of LN-crystals under switching using continuous
metal electrodes [29]. The third stage, “sideways domain growth,” is achieved through the
domain wall motion in the direction transversal to the polar one (Fig. 6.1(c)). It is the exper-
imentally best studied stage because the regions in the vicinity of the domain walls in many
ferroelectrics demonstrate the remarkable optical contrast which allows to apply the direct in
situ methods of domain observation with high time resolution. It must be pointed out that usu-
ally an essential anisotropy of the sideways domain wall motion is observed. It results in the
formation of the regular shaped polygon individual domains with sides strictly oriented along
the preferred crystallographic directions. Nevertheless, the wall orientation is determined by
competition between the generation of the steps at the wall and their subsequent growth along
the wall. The most impressive experimental evidence of this competition is the possibility to
vary the wall orientation and corresponding domain shape by varying the strength of external
field and experimental conditions (see Section 6.6) [30–32]. The fourth stage, “coalescence
of residual domains,” is observed at the completion of the switching process (Fig. 6.1(d)). At
this stage the sideways wall motion decelerates due to the essential electrostatic and mechan-
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ical interactions between approaching walls. Thus the walls halt and after some definite rest
time the residual region between the walls disappears very rapidly. This process is one of the
well-known mechanisms which causes the jump-like switching behavior and is displayed as a
noise component of the switching current, the so-called Barkhausen noise [8, 33, 34].

Recent research has shown that the alternative scenario of domain structure evolution
through “discrete switching” can be realized as well [1, 35–37]. In this case the usual domain
growth mechanism, through wall motion as a whole, is essentially suppressed. The domain
kinetics during switching is achieved through development of a quasiregular structure consist-
ing of isolated needle-like submicron- or nanoscale domains. The superfast expansion of the
“switched area” covered by this domain ensemble is due to self-maintained generation of the
domain chains/arrays in the vicinity of its boundary.

6.3 General Considerations

The possibility to change the direction of the spontaneous polarization under the action of an
electric field is the main feature, which singles out the ferroelectrics among other materials.
It is quite natural that the investigation of the polarization reversal is always in fashion. The
amount of experimental data obtained for various ferroelectrics is enormous. Complete and
direct information about the domain kinetics is received through a real-time recording of the
sequence of the momentary domain configurations. It has been shown that the actual evolu-
tion of the domain structure is a multivariable irreproducible process not only for different
ferroelectrics but even for different samples of the same material. These features hinder the
understanding of the common laws governing the dynamics of the ferroelectric domains.

In this publication, we will consider all these complicated phenomena from a unified point
of view. According to this approach, the domains with different orientations of the spontaneous
polarization coexisting in the same sample are not one but different phases, while the domain
walls represent the phase boundaries. It must be stressed that, in contrast to the ferromagnetic
domain wall, the width of ferroelectric ones is about one unit cell size. This experimental fact
is an indication in favor of consideration of the domain kinetics as a discrete process. Thus,
the domain structure evolution during switching is an example of a first-order phase trans-
formation. It is well-known that such transformation is achieved through nucleation. All the
above-mentioned stages of the domain kinetics can be attributed to the elementary processes
of evolution of thermally activated nuclei with a preferred orientation of the spontaneous po-
larization. It is worth to mention that the nucleation probability is defined by the activation
energy. It is clear that during the switching process it is always spatially heterogeneous, as it
is determined by the local value of the electric field originating from different sources.

The nucleation process The domain kinetics, similarly to any first-order phase transforma-
tion, is achieved through competitive formation of nuclei of three different dimensionalities
(Fig. 6.2). Each nucleus represents the minimum domain with preferential orientation of the
spontaneous polarization determined by the direction of the local electric field. The appear-
ance of new domains is due to the formation of (3D)-nuclei. The domain growth by motion
of the domain walls is a result of (1D)- and (2D)-nucleation at the already existing walls.
The nucleation probability in a multidomain state is essentially inhomogeneous due to the
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Figure 6.2: Nucleation processes of various dimensionalities

Figure 6.3: Classical scheme of the domain wall motion [39]

spatial variation of the local electric field. Moreover, the imperfections of the real material
and the finite size of the samples influence the position of the nucleation sites. It is shown
experimentally that nucleation starts at the sample surface and in the vicinity of defects.

Shape of the nuclei The triangular shape of the nuclei shown in Fig. 6.3 is due to the re-
markable role of the surface depolarization energy. The same effect leads to the formation of
the new domains elongated in polar direction, which are usually observed at the first and sec-
ond stages of the polarization reversal. It has been shown by Miller and Weinreich [38] that
the triangular shape of 2D-nuclei forming at the wall essentially diminishes its electrostatic
energy arising as a result of a jump-like change of the sign of the spontaneous polarization at
the “tail to tail” or “head to head” wall. Thus, such nuclei shape facilitates the formation of the
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charged domain walls in the bulk, which always appear during the switching [39]. It is nec-
essary to stress that this approach does not take into account the role of any screening effect.
The nucleation probability is determined by the value of the electric field averaged over the
volume of the order of the nucleus sizes (“local field”). This field plays the role of the driving
force of all nucleation processes during polarization reversal in ferroelectrics [12].

Local value of electric field During switching, the internal electric field is essentially spa-
tially inhomogeneous. The local field value Eloc in a ferroelectric capacitor is determined by
the sum of (1) the external field produced by the potential difference between the electrodes,
(2) the depolarization field produced by bound charges developing as a result of the spatial in-
homogeneity of the spontaneous polarization, (3) the external screening field originating from
the redistribution of the charges at the electrodes, and (4) the bulk screening field governed by
bulk screening processes.

The external field strongly depends on the shape of the electrode and demonstrates the sin-
gularities in the surface layer at the electrode edges due to the fringe effect. This is the reason
why the switching process starts through formation of the first nuclei at the electrode boundary.
It is clear that due to this fact the real value of the local field corresponding to the beginning
of the switching process in single-domain states can be essentially higher than the averaged
value of the applied field calculated as the potential difference divided by sample thickness.
The fringe effect leading to the field concentration is most pronounced in the vicinity of the
ends and corners of the stripe electrodes.

The depolarization field is produced by bound charges existing at the polar surfaces of the
sample and at the charged walls of the domains encountering in the bulk (“head to head” or
“tail to tail”). The surface charge density for the ferroelectric plate cut perpendicular to the
polar axis is equal to spontaneous polarization. For typical ferroelectrics the depolarization
field strength in a single-domain plate can reach the value of 108 V m−1. This enormous field
is essentially reduced for narrow strip domains and especially for the needle-like ones. This is
the reason why the triangular and needle-like nuclei shapes are the most favorable ones. The
averaged value of the depolarization field sufficiently decreases in multidomain states, when
it is determined by the shape and average size of domains. It has been shown that the depo-
larization field in the vicinity of the domain walls is strongly spatially inhomogeneous [40].
This field decreases the nucleation probability at the wall, which leads to hampering of the
switching by the external electric field. Such approach is usually employed for the explana-
tion of the kinetics of ferromagnetic domains, but the screening of the electric field in ferro-
electrics changes essentially the role of the depolarization field during domain kinetics. For
slow switching, when the screening of the depolarization field is almost total, one can obtain
a complete switching in a comparatively low electric field. Whereas for fast switching rates,
when the screening retards, the commonly used value of the applied external field leads only
to a small shift of the existing domain walls. After the external field is switched off the re-
covering of the initial domain state (“spontaneous backswitching”) is observed for incomplete
screening. It is common to divide all the screening processes into two groups: external and
bulk screening.
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Figure 6.4: Scheme of the real ferroelectric with the intrinsic dielectric surface layer

External screening in a ferroelectric capacitor (a ferroelectric platelet with polar facets
completely coated by electrodes) is a result of external current and it depends upon the charac-
teristic time of the external circuit τex determined by the product of resistance and capacity of
the circuit. This time constant usually ranges from a few nanoseconds to microseconds. The
external screening effectively compensates the depolarization field thus allowing the long-
distance-shift of the domain wall and drastically diminishes the value of the field, which is
necessary for the complete switching. It must be understood that the experimentally observed
switching time, ts, is limited by the value of τex. This dependence is due to the fact that com-
plete switching at comparatively low fields can be obtained only if the depolarization field
is sufficiently compensated. Nevertheless, the fast external screening never compensates the
depolarization field completely due to existence of the intrinsic dielectric surface layer (“di-
electric gap” or “dead layer”), in which spontaneous polarization is absent (Fig. 6.4) [12, 41].
This is the reason why the role of the comparatively slow bulk screening processes must be
accounted for as well.

Bulk screening by bulk processes is the only way to compensate the residual depolarization
field existing in the bulk of the ferroelectric capacitor after completion of the external screen-
ing. Three different groups of bulk screening mechanisms are considered usually: (1) redistri-
bution of the bulk charges [12,41], (2) reorientation of the defect dipoles [42], and (3) injection
of carriers from the electrode through the dielectric gap [43]. All considered bulk screening
mechanisms are very slow as compared to the external ones with time constants τb ranging
from milliseconds up to days and even months. While the residual depolarization field is sev-
eral orders of magnitude less than the depolarization one, nevertheless it is of the order of the
experimentally observed threshold fields. This is why bulk screening, which becomes apparent
in various memory effects, plays an essential role in the evolution of the domain structure.

The systematic investigation of the polarization reversal in various ferroelectric single
crystals reveals a great variety of domain kinetics scenarios. The main problem in their clas-
sification is that it is absolutely impossible to attribute a given scenario to a definite range of
applied fields and switching rates. The critical values of the fields and rates corresponding to
a replacement of one domain kinetics scenario by another one differ drastically for different
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materials and experimental conditions. We have proposed and confirmed both experimentally
and by computer simulation that the ratio R between switching rate (1/ts) and bulk screening
rate (1/τscr) can be used as the crucial parameter determining the selection of the particu-
lar scenario of the domain kinetics including the exotic ones. Our approach to field induced
domain kinetics is based on the consistent account of the key role of the bulk screening ef-
fects [10, 11]. It is well known that the polarization reversal from the single domain state is
achieved by nucleation of the new domains and their subsequent growth [9,12]. Both processes
are governed by elementary nucleation (1) at the domain wall for domain growth and (2) far
from the wall for formation of new domains. The electric field being the driving force of all
nucleation processes is spatially inhomogeneous and time dependent.

The local value of the electric field at the given point and at the given moment of time
Eloc(r, t) is the sum of the external field Eex(r), the depolarization field Edep(r, t) produced
by bound charges, and two types of screening fields caused by (1) the charge redistribution
at the electrodes – the external screening field Escr(r, t) – and (2) bulk processes – the bulk
screening field Eb(r, t) [10–12] – , i.e.,

Eloc(r, t) = Eex(r) + Edep(r, t) + Escr(r, t) + Eb(r, t) . (6.1)

For a ferroelectric capacitor of thickness d the bulk residual depolarization field Erd remains
in the area freshly switched from one single-domain state to another one even after complete
external screening due to existence of the intrinsic surface dielectric layer of thickness L [12,
41]. We have

Erd = Edep − Escr = 2L

d

PS

εLε0
, (6.2)

where PS is the spontaneous polarization and εL is the dielectric permittivity of the surface
dielectric gap. Due to this the application of the short field pulse, for which the bulk screen-
ing of the new state lags behind, is absolutely ineffective for creation of a modified domain
pattern. The cooperative action of the residual depolarization field and the bulk screening
field, remaining after the external field is switched off, leads to the spontaneous backswitch-
ing process. This effect could be observed in the areas, where the local value of Eloc(r, t)
exceeds the threshold field for the switching process Eth, i.e.,

Eloc(r, t) = −[Edep(r, t) − Escr(r, t) + Eb(r, t)] = [Erd(r, t) + Eb(r, t)] > Eth . (6.3)

The initial domain state can be even completely reconstructed for ineffective screening of the
modified depolarization field produced by domain pattern formed at the end of the electric
field pulse. The conservation of the new domain configuration can be realized only when the
duration of the external field pulse is long enough for effective bulk screening. Thus, it is clear
that for an appropriate duration of application of the field it is possible to conserve almost any
domain pattern.

We consider three ranges for R, distinguished between the different values of the bulk
screening effectiveness: (1) R � 1 – “complete screening,” (2) R > 1 – “incomplete screen-
ing,” and (3) R � 1 – “ineffective screening.” The following sections are devoted to a detailed
discussion of the special features of domain kinetics in all the three switching regimes defined
by the value of R.
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6.4 Materials and Experimental Conditions

Three different ferroelectric crystals: lead germanate Pb5Ge3O11 (PGO), lithium niobate
(LiNbO3), and lithium tantalate (LiTaO3) have been chosen by us for the main investigations
of the domain kinetics. All these crystals are uniaxial thus possessing a comparatively simple
domain structure with 180° domain walls only. Moreover, the domain shape in all of them is
very similar due to C3 symmetry in the ferroelectric phase. Finally, in all crystals the domains
are optically distinguishable, this is why the most effective optical methods can be used for in
situ observation of the field induced domain kinetics.

PGO can be considered as a model crystal. The 180° domains are easily observed with high
optical contrast in a polarized microscope due to the different sign of the optical activity in
the domains with opposite sign of the spontaneous polarization. The low value of the coercive
field (about 3–5 kV/cm) favors PGO as one of the ferroelectric materials with a thoroughly
investigated static and dynamic domain structure [18]. LN and LT are the favorite objects of
the domain engineering. At the same time the coercive fields in the most popular congruent
compositions of LN and LT are enormously high (about 210 kV/cm in both). For many years
both materials were classified as “frozen ferroelectrics” as long as the attainment of the nec-
essary threshold field value was coupled with great experimental difficulty. The tasks of the
domain engineering forced a recent solution of the experimental problems [4] and stimulate
the experimental study of the domain switching in LN and LT under application of the exter-
nal electric fields. Moreover, the trend to create tailored periodical domain structures leads to
a necessity of studying the domain kinetics in LN and LT under the action of the inhomoge-
neous electric field produced by lithographically prepared electrode patterns. The direct study
of the domain kinetics becomes easier due to the pronounced electro-optical effects existing in
both crystals. Easy optical visualization of the domain structure is due to an essential change
of the refractive index in the vicinity of the domain walls induced by the above discussed
incompletely compensated depolarization field.

Recently a new LN and LT family of crystals, which are closer to stoichiometric compo-
sition, have become available for research [44–47]. It has been shown that stoichiometric LN
and LT demonstrate essentially lower values of the coercive field and a very different domain
behavior as compared with congruent ones [45, 46]. LN and LT single crystals of congruent
composition, such as PGO crystals of high optical quality, were grown from the melt by the
Czochralski method. The double-crucible modification of the Czochralski method and top-
seeded solution growth method were used for growth of stoichiometric LN and LT [45–47].
Switching experiments were held in optical-grade single-domain wafers cut perpendicular to
the polar axis. The typical thickness for PGO samples ranges from 0.15 to 2 mm, for CLN and
CLT – from 0.2 to 0.5 mm, and for SLN and CLT – from 1 to 2 mm. The polar surfaces of all
investigated plate-like samples were carefully polished.

An electric field has been applied to PGO-samples using ITO-electrodes, which com-
pletely cover the polar surfaces. Visualization of the domain structure evolution was performed
by polarizing optical microscope in transmitted light. The reproducible domain kinetics dur-
ing periodical poling allows us to use the stroboscopic lighting for observation of the series of
instantaneous domain patterns with high time resolution of about 10 ns while using the dye
pulse laser pumped by nitrogen laser [35, 36]. Comparison of the switching currents recorded
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Figure 6.5: Experimental setup used for periodical poling. (1) wafer, (2) liquid electrolyte,
(3) insulating layer, (4) periodic electrodes, (5) (O)-rings

during switching with pulse illumination and in the dark allows us to reveal that the used light
intensity does not influence the polarization reversal process.

For the in situ investigation of the domain kinetics in a uniform electric field in LN and LT,
we prepared 1-mm-diameter circular transparent electrodes of two types: (1) liquid electrolyte
(water solution of LiCl) in a special fixture and (2) In2O3:Sn (ITO) films deposited by the
magnetron sputtering. We carried out direct observations of the domain evolution using a po-
larizing microscope with simultaneous TV-recording and subsequent processing of the image
series.

LN and LT-wafers, used for the periodical poling, were lithographically patterned with
periodic stripe NiCr electrodes deposited on the Z+-surface only and oriented along one of
the Y -directions. The patterned surface was covered by a photoresist layer about one mi-
cron thick. A high voltage pulse producing an electric field greater than the coercive one
(Ec = 210 kV/cm) was applied to the structure through the fixture containing a saturated wa-
ter solution of LiCl (Fig. 6.5). For the observation of the domain patterns after partial poling
both Z -surfaces were etched by pure hydrofluoric acid (HF) for 5 to 20 min at room tem-
perature. The obtained surface relief was visualized by optical microscopy, scanning electron
microscopy (SEM), and various modes of atomic force microscopy (AFM).

The motion of the domain walls has been also studied in improper ferroelectric–ferroelas-
tic gadolinium molybdate (Gd2(MoO4)3) (GMO), which allows us to realize easily the sim-
plest model scenario of the field induced switching by motion of the single plane domain
wall. The used GMO-single crystals were grown by the Czochralski technique [48]. Rec-
tangular GMO-plates were cut perpendicular to the polar axis. All faces of the plates were
carefully polished. Sample thickness has been chosen equal to 0.39 mm for optimal optical
domain contrast. Polar surfaces were covered by transparent ITO-electrodes. A single planar
domain wall oriented parallel to a shorter side of the sample was formed by mechanical stress.
The special shape of electrodes limits the domain wall shift, thus allowing to prevent the wall
disappearance during cyclic switching [49].

6.5 Slow Classical Domain Growth

Slow domain growth is obtained for complete bulk screening (R � 1). In this case the
switching process in PGO, SLT, CLN, and SLN is achieved through the sideways motion of
the strictly oriented walls of a few domains (Fig. 6.6). The predominant switching mecha-
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Figure 6.6: In situ optical visualization of the domain kinetics during switching by rectangular
field pulse in CLN. Time intervals from the field switch-on are: (a) 1.5 s, (b) 2.3 s, and (c) 3.3 s.
The arrow indicates the domain wall print. 1-mm-diameter liquid electrodes. Eex = 220 kV/cm

nism is 2D-step nucleation at the existing walls with subsequent step growth along the wall
by 1D-nucleation. The domain walls orientation parallel to the crystal facets remained during
the whole switching process. In situ observation of the domain kinetics in congruent LN al-
lowed us to study in detail the domain structure evolution during switching (Fig. 6.6). It has
been shown that the switching process always starts with nucleation at the electrode edges
and at the artificially produced surface defects in the center of the electrode area [28, 50, 51].
Isolated domains grow conserving the strict orientation of the domain walls along the Y -
directions (Fig. 6.6). The domain wall motion usually proceeds via the propagation of op-
tically distinguished microscale domain steps (bunches of the elementary nanoscale steps)
along the wall (Fig. 6.7). The preferential wall orientation is clearly demonstrated from the
beginning to the end of the switching process recovered after each act of domain merging
(Fig. 6.6(b)) [28, 50, 51]. Irregular wall propagation due to merging of the growing individ-
ual domains formed at the artificial defect in the middle of the switched area is observed
(Fig. 6.8(b)). It is seen that any local deviation from the allowed crystallographic directions
disappears rapidly (Fig. 6.8(c)). It must be pointed out that each domain merging with forma-
tion of a concave shape domain leads to rapid transformation to the ordinary convex shape
(Fig. 6.8(c)). The domain merging leads to an effective generation of an enormously large
number of steps at the place of merging. The simultaneous rapid propagation of these steps
along the existing walls drastically accelerates the domain growth [28,50,51]. The abnormally
fast domain growth process (“domain gulping”) obtained after merging of two large domains
(Fig. 6.8) allows to visualize clearly the memory effect caused by retardation of the bulk
screening. “Domain wall prints” remain for some time at the places, where the walls stay for
a comparatively long time before jumping to a new position (Fig. 6.6(b)) and 6.8(b) and (c).

A similar behavior has been obtained by Gopalan and Mitchell during wall motion in
CLT [24]. Such effect can be easily explained by retardation of the bulk screening process and
represents a clear confirmation of the electrooptical nature of the observed domain contrast.
The anomaly of the bulk distribution of the electric field near the staying domain wall evolves
while the bulk screening process changes slowly in accordance with the new spatial distribu-
tion of the depolarization field after the wall shift. It is clear that the variation of the refractive
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(a) (b) (c)

Figure 6.7: In situ optical visualization of the layer-by-layer domain growth by step propagation
along the wall during poling from an initial single-domain state in CLN. Time intervals from
field switch-on: (a) 1.20 s, (b) 1.28 s, and (c) 1.36 s. Liquid electrodes. Eex = 220 kV/cm

(a) (b) (c)

Figure 6.8: In situ optical visualization of “domain gulping” during reversal poling to initial
state in uniform field in CLN. Arrows indicate the domain wall prints. Time interval between
the subsequent frames 0.04 s. Liquid electrodes. Eex = 153 kV/cm

(a) (b)

Figure 6.9: Time dependence of the planar domain wall shift from the initial position under
application of rectangular electric field pulses. Deceleration effect for shifting wall and its spon-
taneous return to the initial position after field switch off in (a) PGO and (b) GMO

index induced by this field anomaly leads to the obtained domain wall print, which erases as
a result of bulk screening. The erasing rate is defined by the bulk screening time constant.

It has been shown experimentally (Fig. 6.9) that the motion of the planar domain wall
slows down during shifting from the initial state [40, 52]. This effect can be attributed to a
reduction of the switching field Eloc at the moving wall by a residual depolarization field pro-
duced by bound charges in the freshly switched area behind it. Such deceleration is amplified
by additional action of the bulk screening field still remaining in this area and coinciding in
sign with the depolarization one [10–12]. The wall motion terminates if the effect is strong
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Figure 6.10: Scheme of the spatial distribution of the electric fields and charges for wall shift
from the initial state with accomplished bulk screening. (a) Wall in the initial state and (b) wall
shifted from the initial state

enough and the value of Eloc is lower than the threshold field value. In this case the growth of
the individual domains by the classical mechanism is terminated.

Let us consider in detail the deceleration effect in the ferroelectric capacitor for the sim-
plest experimental situation: The switching by a shift of the single plane neutral domain wall
from the state with the accomplished bulk screening process. In the initial state the residual
depolarization field is completely compensated by the bulk screening one. Let the bulk screen-
ing be so slow that the spatial distribution of the bulk screening field remains fixed during field
induced wall shift. As a result, the field distribution becomes asymmetric relatively to the wall
shifted on the distance �x from the initial state (Fig. 6.10). Moreover, the bulk screening field
is of the same direction as the residual depolarization field in the whole region passed by the
wall. It is easy to show [40, 52] that the value of the decelerating field at the wall, averaged
over the sample thickness, �Eloc can be approximated by a field produced by a stripe capaci-
tor with the width equal to the wall shift �x and the surface charge determined by the doubled
bulk screening charge density 2σb. The dependence of �Eloc on the wall shift is given by the
following expression:

�Eloc(�x) = 2σb
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The wall motion velocity diminishes with the shift as the decelerating field at the wall in-
creases with �x . For low enough local fields the wall can even stop at the proper distance
�xmax from the initial state, as it has been discussed above. Moreover, after the external field
switch-off the sum of the residual depolarization field and the remaining bulk screening field



192 6 Correlated Nucleation and Self-Organized Kinetics of Ferroelectric Domains

Figure 6.11: Field dependence of the wall shift for step-by-step increasing of the external field
amplitude in GMO. Experimental points are fitted by Eq. (6.4)

return the domain wall to the initial state (the so-called “complete backswitching” effect). This
effect is very pronounced for the sideways domain wall motion during the switching from the
multidomain state. A complete spontaneous backswitching is usually experimentally observed
in this case for the motion of the single plane domain wall in PGO and GMO (Fig. 6.9). The
experimentally obtained field dependence of the wall shift measured during step-by-step in-
creasing of the external field amplitude is fairly well described by Eq. (6.4) (Fig. 6.11). A
similar decelerating effect must be taken into account also for any moving domain wall due
to retardation of the external screening. In this case the trail of the uncompensated depolariza-
tion field follows the moving wall, decreasing the switching field and slowing down the wall
motion [12]. The effective width of this trail is of the order of the product of the domain wall
velocity and the time constant of the external circuit τex.

6.6 Growth of Isolated Domains

It has been shown experimentally for PGO, LN, and LT that the regular shapes of isolated
domains growing in a uniform electric field essentially depend on the switching field, although
it is commonly accepted that the domain shapes are strictly defined by the crystallographic
symmetry [30–32, 54]. Let us consider the main types of shapes of isolated domains formed
as a result of switching in different experimental conditions.

A hexagonal shape is formed for switching under complete screening (R < 1), as it was dis-
cussed in the previous section. This situation is the most pronounced in any LN (Fig. 6.12(a))
and SLT (Fig. 6.12(b)), where the domains are perfect hexagons with sides strictly oriented
along the Y -directions and with 120° angles. In PGO, the hexagons are distinctly rounded
(Fig. 6.12(c)). For incomplete screening (R > 1) the residual depolarization field suppresses
the slow regular domain growth. Step propagation along the walls is decelerated, thus lead-
ing to an essential deviation from the hexagonal shape. In LN the domain shapes essentially
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(a) (b) (c)

Figure 6.12: Domains of hexagonal shape in (a) CLN, (b) SLT, and (c) PGO. (a) Optical ob-
servation in reflected light, domains revealed by etching, (b) phase contrast microscopy, and (c)
polarized microscopy, without etching

(a) (b) (c)

Figure 6.13: Exotic nonequiangular hexagon domains arising under switching in CLN covered
by an artificial dielectric layer. (a) and (b) are convex hexagons, and (c) hexagon with concave
angles (“Mercedes star”) and regular triangle. Optical observation. Domains revealed by etching.
(a) Sample was switched by two pulses and the Z−-surface was etched after each pulse

(a) (b) (c)

Figure 6.14: Triangular shaped domains in (a) CLN, (b) CLT, and (c) PGO. (a) and (b) op-
tical observation in reflected light, domains revealed by etching. (c) Polarized microscopy in
transmitted light, without etching

deviate from equiangular hexagons and can be produced during very fast switching or in the
sample covered by an artificial dielectric surface layer (Fig. 6.13(a)). It must be pointed out
that for optical visualization such shape of the small domains can be misinterpreted as rounded
triangles (Fig. 6.13(b)).
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(a) (b)

Figure 6.15: Scheme of domain growth: (a) hexagons, and (b) triangles

Triangular shape The formation of triangular-shape individual domains with the sides strict-
ly oriented along the X-directions was observed in CLN, CLT, and PGO (Fig. 6.14). In
CLT, the regular triangular domains were always obtained for switching at room tempera-
ture at any switching conditions (Fig. 6.14(b)), whereas creation of the triangular domains
in CLN and PGO requires special switching conditions. In CLN, the triangular domains ap-
pear only for switching with an artificial dielectric layer or as a result of fast spontaneous
backswitching (Fig. 6.14(a)). In PGO, we have produced the rounded triangles for switching
by series of short pulses of the high electric field in the samples with fine mechanical treat-
ment (Fig. 6.14(c)) [18, 31]. The observed quantitative difference between domain shapes in
CLT (triangles) and SLT or any LN (hexagons) for switching in ordinary conditions can be
attributed to the large difference of the screening time. It has been shown by direct measure-
ments that the screening process in CLT is essentially slower (τscr ∼ 1 s) as compared with LN
and SLT (τscr ∼ 50–100 ms). The evolution from hexagons to triangles in the same material
is a clear proof that the domain shape is governed not only by crystal symmetry, but also by
the specific kinetics of domain growth for different values of R.

We have investigated and verified by computer simulation the kinetic nature of domain
shape selection. The model is based on several experimentally revealed features of domain
growth. First, it has been found by in situ experimental observation using the polarizing optical
microscopy that the generation of new steps (2D-nucleation) is obtained at three vertices of the
regular hexagonal isolated domain, which corresponds to the Y −-crystallographic directions
(see schemes of domain growth in Fig. 6.15). Second, the arising steps grow along the existing
domain walls along the Y −-directions as a result of 1D-nucleation. It is clear that the observed
wall orientation would be determined by the step concentration. A similar effect is observed
for vicinal faces during crystal growth. For very low step concentration caused by much faster
step growth as compared with the step generation the classical hexagons have to be observed
(Fig. 6.12).

The above discussed retardation of bulk screening leads to the existence of a trail of un-
compensated field, which follows the moving step. The deceleration of the step growth in-
duced by the trail field leads to an increase of the step concentration along the wall. This
effect leads to a change of the wall orientation and allows to create the nonequiangular poly-
gons with sides oriented in arbitrary directions (Fig. 6.16).



6.7 Loss of Domain Wall Shape Stability 195

(a) (b) (c) (d)

Figure 6.16: Isolated domain shapes obtained by computer simulation of the domain growth.
The ratio between probabilities of step generation by 2D-nucleation and step growth by 1D-
nucleation increases from (a) to (d)

We have simulated the growth of the isolated domain for various probabilities of step
generation by 2D-nucleation at all three vertices and step growth by 1D-nucleation at the end
of the step (Fig. 6.15). The best confirmation of the validity of our approach is the prediction
of polygons with concave angles (Fig. 6.16(d)), which have been experimentally observed
later during switching in CLN covered by an artificial dielectric layer. It must be pointed out
that in the same experimental conditions both perfect triangular-shaped domains and unusual
domain shapes similar to a “Mercedes star” are observed (Fig. 6.13(c)).

6.7 Loss of Domain Wall Shape Stability

6.7.1 Basic Mechanisms

When the classical step-by-step wall motion is completely suppressed due to the ineffective
screening of the depolarization field (R > 1), the alternative mechanism of ongoing switching
can be realized caused by any perturbation of the planar wall shape. This mechanism leads to
a loss of the domain wall shape stability and to the formation of the self-assembled domain
structure with submicron fingers (Fig. 6.17). The fluctuation of the domain wall shape is in-
duced by a local electric field inhomogeneity, which can be produced (1) by the maximum
of the external field due to electrode shape irregularity or (2) by the bulk defects decreasing
the local value of the threshold field. In any case the fluctuation of the domain wall shape
evolves leading to the formation of a ledge at the domain wall (the so-called “finger”) oriented
along the proper crystallographic direction (Fig. 6.18(a)). The peculiarities of the local field
spatial distribution, which are discussed in connection with the correlated nucleation effect
(see Section 6.9), result in the generation of the neighboring fingers. This effect is observed as
a propagation of the finger structure along the wall (Fig. 6.18(b)). Finally, the structure with a
correlated distance between fingers forms along the whole wall (Fig. 6.18(c)).

The subsequent growth of the front of the finger structure is caused by the field maxi-
mum existing at the tips of the fingers. The origin of this peculiarity is the same as discussed
in Section 6.9. This field maximum increases the probability of 2D-nucleation at the tips of
the fingers and the front of the finger structure propagates parallel to the wall (Fig. 6.18(d)).
During periodical domain poling this mechanism provides the abnormally large shift of the
domain wall from the electrode edge, in other words abnormally strong “domain broaden-
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Figure 6.17: Instabilities of the domain wall shape leading to self-maintained formation of
submicron fingers. Switching in CLN in the area covered by an artificial dielectric layer

(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Loss of the wall shape stability through the formation of the finger structure during
switching in CLN in the area covered by an artificial dielectric layer. Different stages of the
structure evolution. Optical observation of domains revealed by etching

ing,” which is extremely undesirable, because it leads to domain merging, thus destroying the
periodicity of the domain pattern (see Sect.6.10) [3, 54, 55].

6.7.2 Dendrite Structures

The back switched poling allows to create domain structures consisting of stripelike units cov-
ering large areas of about several square millimeters during the poling in uniform electric field
produced by continuous electrodes. The geometry of the arising domain ensemble differs es-
sentially from above discussed finger structure. This structure demonstrates irregularity while
comparing the orientation of the neighboring structure units.

The observed structures resemble in its appearance dendrites. The orientation of each ar-
ray as a whole along the crystallographic directions is lost while the local symmetry is still
preserved (Fig. 6.19). This effect can be attributed to a loss of long-range order, because this
kinetic process develops under highly nonequilibrium conditions induced by the super-strong
backswitching fields.
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Figure 6.19: Dendrite domain structures formed during backswitching under an artificial di-
electric layer in MgO:LN. Optical observation of the domains revealed by etching

Figure 6.20: Dendrite domain structure evolving into a hexagonal shape. The structure is formed
under an artificial dielectric layer in MgO:LN. Optical observation of the domains revealed by
etching

Enlarging of the dendrite structure during switching leads in some cases to the propagation
of a strictly oriented front (Fig. 6.20). For growth from the center it corresponds to the for-
mation of the hexagonal shape structure filled by irregularly-shaped dendrite domains. During
the spontaneous backswitching after fast removal of the external field the dendrite structure
starts to grow from the boundaries of the hexagonal domains, which were formed during the
slow switching in the same place by the classical mechanism of domain growth (Fig. 6.21). It
is noted that the fingers choose the growth direction along one of the three equivalent crystal-
lographic directions. It is clear that the dendrite structure consists of the nonthrough domains
with charged domain walls.
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(a) (b)

Figure 6.21: Backswitching after external field switch-off in CLN: Illustration of the quanti-
tative difference between switching by classical wall motion leading to the formation of the
hexagonal domain and spontaneous backswitching through formation of fingers. Domains re-
vealed by etching and visualized by SFM (a) topographic mode and (b) piezoresponse imaging
mode

6.8 Fast Domain Growth

Fast domain growth prevails for incomplete screening (R > 1), as far as the residual depo-
larization field suppresses the classical mechanism of the domain wall motion through gener-
ation and growth of the individual nanoscale steps. Although the step generation probability
becomes negligible, the applied field is strong enough for the step growth. It is clear that do-
main merging can be considered as an alternative mechanism of step generation. Thus, the
switching can be realized for multidomain initial states with high concentration of small iso-
lated domains. In such a case the simultaneous appearance and subsequent growth of a large
quantity of steps organized in micro-scale bunches is obtained after each act of the domain
merging. The switching rate and completeness for “step generation by merging only” mecha-
nism of domain wall motion is determined by only one parameter – the concentration of the
individual domains in the initial state. The process can provide the complete switching if the
initial domain concentration exceeds the critical value and only partial switching is observed
for lower concentrations. It is clear that for high enough domain concentration the domain
walls move much faster than for the classical wall motion mechanism. The discussed switch-
ing scenario prevails for the first switching from the single-domain state in CLT (Fig. 6.22).
The switching process in CLT [32, 56] starts with an immediate formation of a great number
of submicron-diameter domains with a density achieving 1000 mm−2 (Fig. 6.22(a)).

Two domain growth mechanisms were clearly distinguished by an analysis of the series
of instantaneous domain configuration images: (1) very slow classical growth of isolated do-
mains (wall velocity vs ) and (2) anisotropic wall motion after domain merging (Figs. 6.22
and 6.23). The fast wall motion velocity v f 1 in Y +-directions is a result of step generation
by merging of the moving wall with small isolated domains and step growth along the wall.
Super-mobile “zig-zag” domain walls with high step concentration form after merging of the
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Figure 6.22: In situ optical visualization of the domain kinetics during switching by a rectan-
gular field pulse in CLT. Time intervals from the field switch-on are: (a) 0.3 s, (b) 0.9 s, and (c)
1.5 s. 1-mm-diameter liquid electrodes. Eex = 190 kV/cm

Figure 6.23: Fast wall motion in Y +-directions and formation of super-mobile “zig-zag” domain
walls moving in Y −-directions in CLT. In situ optical visualization of the domain kinetics in a
rectangular field pulse. Time interval from field switch-on: (a) 0.7 s, (b) 0.8 s, (c) 0.9 s, and
(d) 1.0 s. Eex = 190 kV/cm. (e) Simulated stages of the domain kinetics

large domains leading to the fastest wall motion in Y −-directions (v f 2). The averaged wall
motion velocities extracted from the experimental data by statistical image processing are es-
sentially different: vs ∼ 1 µ/s, v f 1 ∼ 20–60 µm/s, and v f 2 ∼ 130 µm/s (Eex = 190 kV/cm).
It is shown that a high enough concentration of individual domains leads to an acceleration
of the domain growth by more than two orders of magnitude. The computer simulation of the
domain kinetics defined only by the step generation by merging confirms the proposed mech-
anism (Fig. 6.23(e)). It has been revealed by simulation of the domain growth at a triangular
lattice and finite sizes of the switched area that the critical value of the domain concentration
in the initial state necessary for complete switching is about 0.02.
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Figure 6.24: Domain arrays oriented along the Y-axis. Switching under uniform electrode in
CLN. Optical observation of the domains revealed by etching

(a) (b)

Figure 6.25: SEM images of (a) nanodomain arrays and (b) a quasi-periodic stripe nanodomain
structure. Domain patterns form as a result of backswitching near the edge of the stripe electrode
under an artificial dielectric layer in CLN. Domains revealed by etching

6.9 Superfast Domain Growth

Incomplete screening of the depolarization field hinders the classical domain growth. For
single-domain initial states and uniform spatial distribution of the switching field along the
wall both the above discussed alternative mechanisms of domain wall motion are impossi-
ble. Nevertheless, the switching process can take place even when the screening becomes
absolutely ineffective (R � 1), demonstrating several qualitatively new scenarios of domain
structure evolution and various exotic discrete mechanisms of domain growth.

It has been shown experimentally that several types of self-organized structures develop,
such as long domain arrays strictly oriented along the crystallographic directions (Fig. 6.24)
and nanoscale domain arrays (Fig. 6.25), form and expand during “superfast switching” in
PGO [35, 36], LN, and LT crystals with an artificial dielectric surface layer and during the
spontaneous backswitching after abrupt removing of the external switching field [1, 7, 57].
The special features of the obtained variety of quasi-regular domain patterns can be explained
when taking into account the correlated nucleation effect and the key role of the intrinsic or
artificial surface dielectric layer.
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Figure 6.26: (a) Simulated local field distribution near the stripe non-through domain at different
depth from the dielectric surface layer. (b) Local field maximum Emax and (c) distance from the
wall to the position of field maximum �xmax versus the depth h. The distance from the wall and
the depth are divided by the thickness of the surface dielectric layer L

6.9.1 Correlated Nucleation

We consider all types of obtained self-assembled structures as various manifestations of the
correlated nucleation effect in the vicinity of the moving domain wall or the propagating
boundary of the enlarging complicated domain structure. This effect has its origin in the in-
fluence of the trail of the uncompensated depolarization field behind the domain wall on the
nucleation probability. It has been shown by computer simulation that the spatial distribution
of the local electric field in the vicinity of the domain wall with the trail demonstrates a pro-
nounced maximum in the ferroelectric media at the boundary with the surface dielectric gap
at some distance from the wall (Fig. 6.26). This distance is nearly equal to the thickness of the
above discussed dielectric gap (surface dielectric layer) L.

While the field maximum diminishes with the depth, nevertheless this field singularity
drastically changes the scenario of the domain kinetics. It is clear that the existence of the trail
on one hand suppresses nucleation at the wall, thus terminating the classical wall motion. On
the other hand it induces the field maximum, which essentially increases the 3D-nucleation
probability at a definite distance in front of the moving wall. This effect leads to an appearance
of new isolated domains along the wall. Any arising isolated domain cannot spread out due
to the same effect of the uncompensated depolarization field. The arising domains repel each
other by this long-range field. The decrease of the local electric field in the vicinity of each
isolated domain initiates the formation of new domains at some distance from each other. As a
result, the quasi-regular domain chain aligns along the wall. It consists of needle-like domains
with micro- or nanoscale transversal sizes and charged walls (Figs. 6.27 and 6.28).

It has been shown by simulation that the new field maximum appears at approximately
the same distance from the formed domain chain thus initiating formation of the second one.
The process can be reproduced infinitely. Thus, self-maintained enlarging of the quasi-regular
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Figure 6.27: Formation of micro-scale domains in the vicinity of the moving domain wall in
PGO during “superfast switching”. Observation by polarized microscopy

Figure 6.28: Nucleation in the vicinity of the moving wall in CLN. (a) Z+-view and (b) Y-view

domain structure is observed. It has been shown experimentally that the fast growing self-
assembled structures can cover areas of about square millimeters.

There are two ways to intensify the role of the correlated nucleation process. One of them
has been discussed above and is realized by increasing the ratio R, by amplification of the
switching field or by hindering the screening processes. The alternative possibility is the de-
position of an artificial surface dielectric layer, thus increasing the residual depolarization
field. The period of the quasi-regular structure increases accordingly in this case. It has been
revealed experimentally that the velocity of such process exceeds by orders of magnitude
the usual wall motion velocity. Due to this the process can be named as “superfast domain
growth.”

6.9.2 Switching with Artificial Surface Dielectric Layer

The crucial role of the dielectric surface layer has been brightly displayed during formation
of the structure consisting of isolated domains with given density in a ferroelectric capacitor
with artificial dielectric gaps of given thickness (Fig. 6.29). It is noted that this discrete corre-
lated structure appears under the application of a uniform electric field. We have switched a
2-mm-thick SLT sample covered by an artificial dielectric layer (2-µm-thick photoresist) using
liquid electrodes. The switching process starts as the formation of a hexagon domain around



6.9 Superfast Domain Growth 203

(a) (b)

(c) (d)

Figure 6.29: Self-assembled domain structures formed around the pinholes in the dielectric
layer in 2-mm-thick SLT with Z+-surface covered by 2-µm-thick photoresist. (a), (b), and (c)
optically visualized domains revealed by etching. (d) Distribution function of the distances be-
tween the neighboring domains

the pin-hole in the dielectric layer. The subsequent growth is achieved through the propagation
of the quasi-regular ensemble of micro-scale isolated domains. The spreading of this structure
follows the same mechanisms as the continuous growth of the isolated domain. In the case
of discrete switching the boundary of the area covered by isolated switched domains plays
the role of the domain wall. One can observe the formation of the steps and their propagation
along the boundary of the structure, which plays the role of the domain wall (Figs. 6.29(a)
and (b)). The shape of the switched area is the same regular polygon as in the case of growth
of isolated domains (see Section 6.6). The boundaries are oriented in strict crystallographic
directions. Even for the more complicated switching process starting from two pin-holes sep-
arated by a short distance the growth of the quasi-regular structure is very similar to that for
usual domains (Fig. 6.29(b)). The merging of the individual growing ensembles leads to an
immediate formation of a structure with a shape of convex polygons. The average distance
between the nuclei obtained by statistical analysis of the experimental data (Fig. 6.29(c)) is
very close to the thickness of the artificial dielectric gap (Fig. 6.29(d)). It opens a possibility to
evaluate the effective depth of the intrinsic dielectric gap for any material and any experimen-
tal condition by measuring the average period of the quasi-regular structure appearing during
“superfast” switching.
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Figure 6.30: SFM image of nanodomain arrays in LN oriented along the Y-directions (at 60° to
the electrode edges) with the fragment of the electrode. Z+-view. Domains revealed by etching

6.9.3 Nanoscale Domain Arrays

Correlated nucleation plays the most important role during backswitching in CLN after an
abrupt removal of the external field. This effect can be easily explained when the record-
breaking value of spontaneous polarization in CLN, leading to an abnormally high value of
the bulk screening field, is taken into account. After external field is switched off the local field
changes the sign for incomplete screening (see Eq. 6.3) leading to a spontaneous backward
switching. The backswitching process is very fast in CLN as it occurs under the action of
extremely high fields.

It is easy to show experimentally that the backward motion of the domain wall is achieved
in this case through propagation of the boundary of the ensemble of isolated nanoscale do-
mains (Fig. 6.30). It is important to point out that under these experimental conditions the
forward and backward wall motions differ qualitatively. The forward motion occurs, when the
applied field slightly exceeds the abnormally high bulk screening field. Thus, even when the
applied field value exceeds the coercive value (Ec = 210 kV/cm), the switching field is com-
paratively low. In this case the classical low field wall motion scenario is realized. Contrary,
the backward motion is governed by the abnormally high bulk screening field itself. It is clear
that such cyclic switching process is absolutely irreproducible.

Recently, we have discovered the effect of self-maintained spontaneous decay of the stri-
pe domain structure in CLN through arising and growth of the oriented nanoscale domain
arrays [1, 7, 37, 54, 57]. The domain patterns, revealed by etching and visualized by SFM
(Fig. 6.30) and SEM (Fig. 6.31), demonstrate the array-assisted reversal motion of the exist-
ing domain walls through propagation of the highly organized quasi-periodical structure of
domain arrays strictly oriented along the crystallographic directions (Fig. 6.31). Each quasi-
regular array is comprised of nanodomains with a diameter 30–100 nm and an average linear
density exceeding 104 mm−1. Such domain evolution scenario was observed during switching
using periodical stripe electrodes oriented along the Y -direction deposited on the Z+-surface.
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Figure 6.31: Nanodomain arrays oriented along (a) Y −-directions and (b) X-directions evolv-
ing during backswitched periodical poling of CLN. Domain patterns revealed by etching and
visualized by SEM. Black rectangles – electrode position

It has been shown that, for a sufficient domain spreading out of the electrodes, short switching
pulse duration �tsp ∼ 5 ms and a small field-diminishing amplitude �E ∼ 2 kV/mm, the
backswitched domain evolution represents self-maintained self-organized growth of oriented
nanoscale domain arrays.

Two variants of array orientation are obtained. In the usual case, all nanodomain arrays are
strictly oriented along the Y −-direction at 60° to the electrode edges (Fig. 6.31(a)). A similar
oriented nucleation has been observed during polarization reversal in strong homogeneous
fields (Fig. 6.24). In some cases the domain arrays are strictly oriented along the X−- or X+-
directions (Fig. 6.31(b)), and individual nanodomains have a triangular shape. There are four
equal X-directions oriented at 30° to the electrode edges. So, domain patterns consisting of
regular 30° array fragments with different array orientations are obtained along one domain
wall (Fig. 6.31(b)). The array patterns, which are growing along the X-directions at 90° to the
electrodes, differ as the fast growth of nanodomains along electrodes leads to the formation
of a periodic set of nanoscale stripe domains (Fig. 6.32(a)) with a period of about 100 nm
(Fig. 6.32(b)).

All effects observed during backswitching can be explained by the nonuniform distribution
of the local backswitching field near the electrode edges and domain walls due to spatially
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(a)

(b)

Figure 6.32: Formation of a quasi-periodic nanoscale stripe domain structure in the vicinity of
the electrode during backswitching in CLN. (a) Optical visualization of the domains revealed
by etching. (b) Distribution function of the distances between the neighboring stripe domains

nonuniform screening of the external and depolarization fields. Our estimations reveal the field
maximum at a distance of about the thickness of the insulating layer from the domain wall or
nanodomain array. An array aggregate existing at a given moment generates the new maximum
of the backswitching field at a fixed distance in front of its boundary and triggers the formation
of the new array. The developing correlated nucleation leads to the self-maintained generation
of the parallel arrays. The array-assisted propagation of the correlated domain structure is
similar to the formation of the “wide domain boundary” discovered in PGO during switching
in “super-strong” fields [35, 36].

6.10 Domain Engineering

Domain engineering – a new branch of science and technology directed to the creation
of periodic and quasi-periodic domain structures with desired parameters in commercially
available ferroelectrics – is rapidly developing nowadays. Domain engineering in ferroelectric
crystals such as LN and LT has revolutionized their use in nonlinear optical applications [2,5].
It has been shown that LN and LT with periodical 1D [5, 58] and 2D [59] domain structures
open up a wide range of possibilities for bulk and waveguide nonlinear optical interactions.
During ten years after the first electrical poling of bulk LN samples [4], research on periodi-
cally poled LN and LT is in the center of interest around the world resulting in the production
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Figure 6.33: Backswitched poling voltage waveform. (I) switching stage in “high field”,
(II) backswitching stage in “low field”, (III) stabilization stage in “stabilization field”

of photonic devices. Breaking the micron-period barrier for periodical domain patterning in
LN and LT is highly desirable for several new electrooptical applications such as tunable
cavity mirrors, which need a periodicity of about 350 nm. The most efficient exploitation of
engineered submicron domain gratings in LN and LT for photonic devices is related with the
waveguide fabrication.

For advanced electrooptical and acoustical applications the submicron domain patterns are
of great importance, but nevertheless the micron limit has not been experimentally overcome
yet. Two different branches of domain engineering have been developed recently: (1) prede-
termined domain patterning and (2) domain patterning by self-organization. In the first case,
the periodicity of the domain patterns is determined by the spatial distribution of the external
electric field usually produced by the lithographic electrode structure. In the second case, the
formation of quasi-regular domain patterns is the result of self-maintained evolution of the
domain structure. In this section, we demonstrate recent achievements in application of both
approaches to LN and LT single crystals based on the above discussed scenarios of the domain
kinetics.

The understanding of field induced domain kinetics in LN and LT allowed us to propose
recently an original poling method for creation of short-pitch periodical domain structures, the
so-called backswitched poling [1, 7, 60]. Let us consider the main advantages of this method.
Periodic domain structures were obtained in standard optical-grade single-domain 0.5-mm-
thick CLN wafers of congruent composition cut perpendicular to the polar axis. The wafers
were photolithographically patterned with a periodic stripe metal-electrode structure (NiCr)
deposited on a Z+-surface and oriented along the Y-axis. The patterned surface was covered
by a thin (about 1-µm-thick) insulating layer (photoresist) (Fig. 6.5). A high voltage pulse
producing an electric field greater than the coercive field (Ec = 210 kV/cm) was applied to
the structure through a fixture containing liquid electrolyte (LiCl–water solution).

The commonly used electric field poling technology, based on the application of a high
voltage pulse through lithographically defined electrodes, cannot be straightforwardly applied
to the fabrication of submicron gratings. Thus, for nanoscale domain engineering such alterna-
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Figure 6.34: Main stages of the domain evolution during backswitched poling: (a) nucleation,
(b) domain broadening, (c) backswitching after external field switch-off. White arrows show the
directions of the domain wall motion

tive technique as “self-organized domain patterning,” due to self-maintained evolution of do-
main structure, is under consideration [1,57]. The waveform for backswitched poling consists
of three levels of external field: “high field,” “low field,” and “stabilization field” (Fig. 6.33).
Such waveform allows one to control the different stages of domain evolution during poling.
Moreover, we exploit the unique abilities of the backswitching process. It must be pointed out
that this process is always considered as an undesirable one, because it destroys the tailored
structure.

During backswitched poling, several distinguishable stages of domain evolution can be
revealed (Fig. 6.34). The process starts with nucleation (formation of new domains) at the
Z+-polar surface along the electrode edges. The position of the nuclei arrays is due to field
singularities caused by the fringe effect (Fig. 6.34(a)). The real value of the local field along
the electrode edge alters profoundly with small deviations of its shape, thus introducing field
fluctuations. During the second stage, the formed domains grow and propagate through the
wafer. As a result of merging, laminar domains with planar walls are formed. The main prob-
lem of the periodical poling is an essential domain broadening out of the electroded area,
which is always observed (Fig. 6.34(b)). This effect leads to an essential difference between
the lithographically defined electrode patterns and the produced periodical domain structure.
For short periods domain broadening results in domain merging, thus limiting the production
of the short-pitch domain patterns. During broadening, the domain wall moves in the regions
with the artificial surface dielectric layer, thus the above-discussed exotic scenarios of domain
wall motion can be realized (see Sections 6.7 and 6.9). The formation of the domain fingers
and arrays leads to abnormally high domain broadening, which is extremely undesirable for
periodical poling.

After rapid decreasing of the poling field, the backswitching starts through shrinkage of
the laminar domains by the backward wall motion and nucleation of the domains with the
initial orientation of spontaneous polarization along the electrode edges (Fig. 6.34(c)). As it
was discussed above, the backswitching occurs under the action of an abnormally high field.
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Figure 6.35: Backswitched domain frequency multiplication in CLN. (a) and (b) “frequency
doubling,” (c) and (d) “frequency tripling,” (e) “erasing,” (f) “splitting.” (a) and (c) Z+-view, and
(b), (d), (e), and (f) Y-cross-sections. Optical visualization of the domains revealed by etching

This is the reason why various regular self-assembled nanodomain structures can be produced
by backswitched poling by presetting the voltage waveform parameters. The types of domain
patterns also depend on the value of the domain wall shift out of the electrodes. The switching
from the single-domain state takes place at the “high field” and the backswitching occurs at
the “low field.” The crucial parameters for backswitching kinetics are the duration of the “high
field” stage �tsp and the field-diminishing amplitude �E (Fig. 6.33). The application of this
improved poling method to LN and LT single crystals demonstrates the spatial frequency mul-
tiplication of the domain patterns as compared to the spatial frequency of the electrodes and
self-maintained formation of the oriented domain arrays consisting of individual nanoscale do-
mains with diameters down to 30 nm and average linear density exceeding 104 mm−1 [1, 57].

Domain frequency multiplication For a small domain-wall shift out of the electrodes a
multiplication of the domain pattern spatial frequency as compared to the spatial frequency
of the electrode pattern was obtained. The mechanism of this process is based on nucleation
along the electrode edges during backswitching, when the wall motion is suppressed. For “fre-
quency tripling” (Fig. 6.35(c)), the subsequent growth and merging of the nucleated domains
lead to the formation of a couple of strictly oriented submicron-width domain stripes under
each electrode. Their depth is about 20–50 µm (Fig. 6.35(d)). It is clear that this structure
can be produced only by using wide enough electrodes. For narrow electrodes these stripes
immediately merge and “frequency doubling” can be obtained (Fig. 6.35(a)). The depth of
the backswitched domain stripes is in this case about 50–100 µm (Fig. 6.35(b)). The back-
switched domain cross sections reveal two distinct variants of domain evolution during fre-
quency multiplication: “erasing” and “splitting.” During “erasing” the backswitched domains
are formed in the earlier switched area without any disturbance of the external shape of the
switched laminar domains (Fig. 6.35(e)). During “splitting” the backswitched domain cuts the
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Figure 6.36: SEM patterns demonstrating the stages of formation of periodic stripe domains
along the electrode edges in CLN. Electrodes covered the area between the black rectangles.
Electrodes are oriented along the Y -direction. Domains revealed by etching. Z+-view

switched one conserving its volume and varying the shape (Fig. 6.35(f)). The most compli-
cated process of frequency multiplication (the so-called “pentaplication”) is demonstrated for
sufficient domain spreading out of the stripe electrodes during switching. For a long switch-
ing pulse �tsp ∼ 15 ms and large field-diminishing amplitude �E ∼ 20 kV/mm (Fig. 6.33)
the backswitching starts as usual with the formation of a couple of nanodomain arrays under
the electrode edges (Fig. 6.36(a)). Then the arrays turn into a pair of stripe domains through
growth and merging of the individual domains (Fig. 6.36(b)).

The above discussed effect of correlated nucleation results in the fact that after complete
merging the secondary couple of arrays appears in the nonelectroded area parallel to the ini-
tial ones (Fig. 6.36(c)). This self-maintained process leads to the formation of periodic stripe
domains oriented along the electrodes (Fig. 6.36(d)). The experimentally observed distance
between secondary and initial stripes is close to the thickness of the insulating layer in accor-
dance with our theoretical considerations.

6.11 Conclusions

In the present chapter, we have discussed the nonequilibrium domain structure kinetics in fer-
roelectrics. For the description of the various experimental data we used a simple and clear
approach based on the nucleation mechanism of the polarization reversal. The specific features
of ferroelectrics consist in the fact that the nucleation rate is determined by the local electric
field. This field is time-dependent due to an essential retardation of the screening subsystems
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redistribution. As a result, the kinetics of the ferroelectric domain structure depends on the
ratio of the switching rate and the rate constants of the screening processes. These parameters
depend on many factors: value of spontaneous polarization, bulk and surface layer conductiv-
ity, dielectric permittivity, and time constant of external circuit. The variation of these factors
makes it possible to control the ferroelectric domain structure and its behavior in the elec-
tric field. Original scenarios of domain structure evolution were revealed experimentally and
discussed within a unified approach accounting for the decisive role of the retardation of the
screening process. The evolution of the domain structure in ferroelectrics during decay of the
highly nonequilibrium state represents a selforganizing process, in which the screening of de-
polarization field plays the role of feedback. It has been shown both experimentally and by
computer simulation that the correlation length of quasi-periodic self-assembled nanodomain
structures is determined by the thickness of the intrinsic or artificial surface dielectric layer
(dielectric gap). It has been proposed that all the existing static domain patterns in any fer-
roelectric being metastable and far from equilibrium are formed in the course of the given
domain kinetic scenario and are fastened by the bulk screening processes. The results of the
fundamental investigations discussed here are of great interest as a physical basis for a modern
field of technology denoted as “domain engineering.” We have proposed and realized several
new techniques, which allows one to produce the short-pitch regular domain patterns with
record periods and nanoscale quasi-regular domain structures in lithium niobate and lithium
tantalate single crystals. The crystals possessing such regular structures demonstrate new non-
linear optical properties required for modern coherent light frequency conversion devices.
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7 Nucleation and Growth Kinetics of Nanofilms

Sergey A. Kukushkin and Andrey V. Osipov

It follows that it cannot be our task to find an absolutely correct
theory, but rather a picture that is as simple as possible while

representing the phenomenon as well as possible.

Ludwig Boltzmann

The present chapter gives an outline of basic results concerning the theoretical description of
processes of formation and growth of nanofilms in one- and multicomponent cases. Hereby
the attention is directed to the analysis of both nucleation and further evolution of nanoparti-
cle ensembles on substrates in metastable and unstable regions of the thermodynamic phase
space. Models for nanofilm growth from vapor and liquid solutions are analyzed. They in-
clude the description of nanoisland size distributions, coalescence, orientation, morphological
stability, etc. Processes of formation and further development of different instabilities, the for-
mation of nonlinear density waves and oriented growth of nanoislands are studied as well.
Condensation kinetics of nanofilms in dependence on possible chemical reactions of the com-
ponents is analyzed. The technique of calculation of phase coexistence diagrams is outlined.
The influence of various factors affecting nucleation of nanoparticles – such as wetting effects,
electromagnetic radiation, and acidity of the medium – is studied.

7.1 Introduction

Electronic devices based on nanostructures are widely used in many fields of human activ-
ity. At present, a great interest is found directed to an application of nanostructures, especially
double heterostructures, in semiconductor physics, optics, and microelectronics [1–5]. Nanos-
tructures can be prepared by a variety of different methods [1–10]. Here, we examine in detail
processes of formation of nanoparticles on the surface of solid substrates. Particles of sizes,
which are not larger than 100 nm, are considered hereby as nanoparticles. As for crystals of
such sizes, they do not contain, in general, dislocations or some other linear defects. Films
composed of such particles have a well-developed surface. This feature leads to the formation
of unique properties of the nanosystems, which are not observed in ordinary materials.

On the surface of solid substrates, nanoparticles can be prepared by deposition from liq-
uid or solid phases [1–7]. In addition, they can be obtained by using the sol–gel technology
or electrodeposition [9, 10]. Processes of nanocrystal formation represent typical first-order
phase transitions. While the nanocrystals formed on the surface of substrates are not elas-
tically stressed, processes of their formation by nucleation can be described by means of the
classical nucleation theory. In the case, where nanocrystals are elastically stressed and they are
formed on crystal substrates, the main approaches and methods of description of their nucle-
ation remain unchanged; however, the mechanism of formation and growth of nanoparticles
is of another physical nature. Therefore, we start with the analysis of nucleation of unstressed
nanostructures and then, in the next section, we present new approaches to the description and
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examination of growth of coherent nanostructures under stress. In the literature, it is common
to denote the new phase nuclei as islands, whereas the island ensembles are denoted as island
films. Here and further, we will follow the above notations.

During the growth of films containing islands of nanosizes, experimentators and engineers
are forced to control a large number of parameters, specifying the material and structure of
the substrate, such as the temperature of the substrate, composition of vapor, and intensity of
its inflow. To obtain the island sizes and composition needed, the values of the parameters are
selected, as a rule, empirically. In this case, it is necessary to establish a time parameter at
which the growth process has to be terminated in order that the size of the islands does not
reach values above the nanosize limits.

It is already clear now that the further development of nanostructure technology will not be
possible without a theoretical analysis of the complicated physical and chemical phenomena
that take place in the nucleation process [9–16]. The study of these phenomena began in the
mid of the 1950s. Principal attention was paid first to new phase nucleation on solid surfaces.
Initially, the majority of theoretical analyses of new phase nucleation were carried out in the
framework of the classical nucleation theory [17–20], disregarding the variation of supersat-
uration during condensation and, even more, disregarding a possible change of the growth
mechanisms of the different individual islands. Hence, the comparison of experimental results
on new phase nucleation on surfaces with the classical nucleation theory revealed a substantial
deviation between them. This result led the researchers to the erroneous conclusion that it is
impossible to employ the concepts of the classical theory of phase transitions to the analy-
sis of surface processes and the necessity of rejecting classical methods. In particular, it was
assumed that such quantity, as the specific interphase energy, cannot be used at all in the de-
scription of the early stages of thin-film nucleation. This is the reason why, in the early 1960s,
the so-called discrete models appeared that described the new phase nucleation employing the
methods of equilibrium statistical mechanics [18].

It should be noted that these theories could not describe the nucleation of strongly meta-
stable and unstable systems similar to the rejected classical model since these first approaches
ignored the most important effect, namely, the increase of long-wavelength density fluctua-
tions in the spinodal region [17,21]. To establish a correspondence between theory and exper-
iment, it was actually sufficient to allow for the variation of the supersaturation in time and
the related possibility of changing of the growth mechanisms of individual islands [6, 7, 22].
Furthermore, most of the models were constructed for single-component films only, while a
wide variety of experiments were carried out with multicomponent systems. Simultaneously, a
number of fundamental studies on the kinetics of first-order phase transitions were conducted
in the same period. It has been shown, that the kinetics of first-order phase transitions is a com-
plicated multistage process accompanied by various nonlinear phenomena [6, 13, 14, 22–26].
Such stages typically include nucleation, the separate growth of new phase nuclei, coales-
cence, and the late stage, i.e., Ostwald ripening (OR), where the growth of the larger islands
proceeds at the expense of dissolution of the smaller ones.

The above-mentioned processes have widely different time scales. The most rapid stage is
nucleation, then the system goes over into a stage of growth, and so on. This time hierarchy
means that the fast processes have time to “keep up” with the slow ones [23]. The solution
of the equations for fast processes provides, in fact, the initial conditions for the equations of
slower processes. It turned out that the solution, obtained in the framework of the classical
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theory, was valid at the nucleation stage only. At later stages, it is necessary to take into
account the equations of conservation of matter in a system and to solve the corresponding
nonlinear problems.

The extension of these ideas and methods to nucleation processes of islands, as well as the
development of a consistent field-theoretical approach [27] providing an unified standpoint for
the description of condensation under any arbitrarily high supersaturations, offered quite a new
view on the problems of the formation of nanofilms. The supersaturation levels were found,
for which it was appropriate to employ the classical nucleation theory for the description of
the nucleation of islands, and also the levels, for which it was necessary to use the field-
theoretical approach [54]. These developments made it possible to apply a unified approach
to the description of condensation of multicomponent nanofilms, irrespective of the type of
the initial phase (vapor, gas, liquid, etc.) and condensation conditions. It was shown that the
surface leads to an appreciable diversity in the phase transformation kinetics, although the
basic stages stay unchanged.

7.2 Thermodynamics of Adsorbed Layers

An important specific feature of new phase nucleation on substrate surfaces, as compared
to homogeneous nucleation in the bulk, is the presence of various defects on the substrate.
Defects are typically divided into point and linear ones; the latter include steps, surface dislo-
cations, and scratches. No rigorous theory of heterogeneous new phase nucleation on a surface
has been developed so far. The existing theories of new phase nucleation on solid surfaces pro-
ceed either from the classical nucleation theory [11], modified for the two-dimensional case
and allowing for the possible role of defects in nucleation, or from the atomistic model [18].

The surfaces of solids can be both crystalline [28] and amorphous [29]. Modern con-
cepts [28] distinguish between atomically “smooth” and atomically “rough” surfaces. The
former usually include singular and vicinal facets, while the latter include nonsingular ones.
Singular surfaces are characterized by a local minimum in the surface tension σ and a discon-
tinuity in the angular derivative ∂σ/∂θ (here θ is the angle in polar plot [28]). Such peculiar
features of σ and ∂σ/∂θ behavior are typical for all directions described by rational Miller
indices, the minima being sharpest and deepest in the directions normal to the close-packed
planes (with minimum values of the Miller indices).

Vicinal planes have a small deviation from the alignment of close-packed facets [28]. To
describe the atomic structure of vicinal facets, the TLK (terrace, ledge, kink) model [28] is
most frequently used, which allows one to obtain the binding energy of atoms that are in
different positions. In terms of the TLK model, one can calculate both the number of ledges
and the spacing between them and can also determine the concentration of atoms in each
position, i.e., in atomically smooth regions of the surface, on a step, in a ledge, etc. [28]. Thus,
even ideal crystal surfaces having a slight deviation from a close-packed orientation are step-
like; at T > 0, the steps are covered with ledges; the surfaces of real crystals are rough, contain
surface vacancies, surface dislocations, inter-grain boundaries, and other defects [13, 28]. All
these defects essentially affect the parameters of the condensation process and may serve as
orienting centers for nucleation of nanoislands.
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Crystal surfaces of substrates for nanostructures can be exposed to thermal or chemical
treatment [13, 14, 30–32]. As a result of such a modification, crystal surfaces change their
properties. The orientation and the number of free chemical bonds change in the process of
the respective modification. Surface tension changes as well. So, the treatment of substrate
surfaces allows for a control of nucleation of nanoislands.

Processes of adsorption, desorption, and diffusion of atoms on the surface of a substrate
have been rather well investigated [28,33]. Adsorption is typically thought of as the first stage
of film condensation [20]. In condensation from a single-component vapor, monomolecular
and dissociative adsorptions are most frequently distinguished that, for small substrate occu-
pation numbers, lead to a uniform formation of adatoms over the entire nonoccupied substrate
surface with a constant rate, J , given by

J = Cg P

(2π MkBTv)1/2
, (7.1)

where P is the vapor pressure, Tv is the vapor temperature, M is the mass of one deposited
molecule, kB is the Boltzmann constant, and Cg is a geometric shape factor. The adsorbed
atoms can either desorb back into vapor or diffuse to one of the neighboring sites.

In the single-component case, the rate of desorption is described by the following equation:

dn1

dt
= −n1

τr
, τr = 1

ν
exp

(
Ea

kBT

)
, (7.2)

where n1 is the surface adatom density, t is the time, dn1/dt is the desorption rate, τr is the
characteristic time of monomolecular desorption (re-evaporation time), Ea is the desorption
activation energy, and ν is the frequency of tangential oscillations of an atom on the substrate
surface [28]. After establishing equilibrium between the surface and the surrounding initial
phase, a two-dimensional “gas” of adatoms with surface density n1 is formed on the surface
of solids [13, 14]. In the case of monomolecular desorption, this process proceeds approxi-
mately within a time τr. The process of associative desorption is analyzed in Ref. [34]. A large
number of papers are devoted to the study of the thermodynamic and kinetic characteristics
of such an adsorbed “gas” [35, 36]. The most interesting and important for us properties are
thermodynamic stability, instability and metastability of those systems, because these char-
acteristics are directly connected with the possibility of phase transformations in adsorbed
layers.

An expression for the state of an adsorbed gas on a substrate surface was derived in
Ref. [27]. The equation is of the form

P

kBTc
= T

Tc
ln

(
1

1 − n

)
− 2n2 , (7.3)

where n is the density of atoms adsorbed on the surface and Tc is the critical temperature. For
T < Tc, P < Pc = (ln 2 − 1/2)kBTc, the P(V ) isotherms exhibit a characteristic van der
Waals loop testifying to a first-order phase transition of the gas–liquid type (the pressure here
has the dimensions of energy since the volume is given as V = 1/n in dimensionless units). In
real systems, such a transition occurs only in the interval Tt < T < Tc between the triple and
the critical points. The given model (similar to other models of this type) describes only phase
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Figure 7.1: Phase equilibrium (binodal) curve (1) and spinodal curve (2). The values of n1e,
n1s , n2s , and n2e are shown for a value of the reduced temperature equal to T/Tc = 0.7

transitions of the gas–liquid type (amorphous state), i.e., amorphous film condensation and
the first stage of crystalline film condensation, which proceeds via the vapor–liquid–crystal
mechanism. Despite the simplifications made, this continuum’s model satisfactorily describes
many principal features of the behavior of the adatom system.

The phase equilibrium and spinodal curves can be obtained from Eq. (7.3). Such curves
are plotted in Fig. 7.1. Here n1e and n2e are the equilibrium densities of the adsorbed gas and
amorphous phase, respectively; n1s and n2s are the concentrations corresponding to the spin-
odal range. The region of metastable states, n1e < n < n1s , corresponds to a supersaturated
vapor ξ = (n/n1e) − 1, and the region n2s < n < n2e to a superheated liquid. It is pre-
cisely in the range n1e < n < n1s that the film condensation proceeds via nucleation, and for
n = n1s the critical nucleus consists of only one particle. The quantity ξmax = (n1s/n1e) − 1
implies maximum possible supersaturation. For supersaturations exceeding ξmax, the adatom
population becomes unstable and spinodal decomposition determines its evolution [17,21,27].

7.3 Growth Modes of Nanofilms

The thin-film growth regimes are typically divided into layer-by-layer, island, and intermediate
(Stranski–Krastanov) modes of growth [20]. Similarly the same regimes are realized during
the growth of nanofilms. The layer-by-layer or the Frank–van der Merwe regime is realized in
the case when the deposited atoms are bound by the substrate more strongly than with each
other. Monoatomic layers in this regime are occupied in turn, i.e., two-dimensional nuclei
(one monolayer thick) of a subsequent layer are formed on the upper part of the nuclei of the
preceding layer after the latter is occupied. The equilibrium form of the nuclei is found by the
Wulff theorem [28]. The theoretical description of the layer-by-layer growth is customarily
given in the framework of the Kashchiev model [11] or its modifications [37, 38].
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The island or the Volmer–Weber regime is realized in the opposite case, i.e., for the atoms
of a deposited substance bound with each other more strongly than with the substrate. Island
growth can only be realized under the condition [39]

σs < σd + σs–d − const × kBT ln(ξ + 1) , (7.4)

where σs is the free energy of a unit substrate surface, σd is the free energy of a unit adsorbate
surface, and σs–d is the free energy of a unit substrate-adsorbate interface. Otherwise, the layer-
by-layer regime holds. In the island regime, small nuclei are formed straight on the substrate
surface and then grow transforming into large islands of the condensed phase [39]. Thereupon,
these islands merge to form a continuous film after the channels between them are filled [39].
In the intermediate, or the Stranski–Krastanov regime, the first to be realized is a layer-by-
layer growth and then, after one or two layers are occupied, island growth begins. There may
be several reasons for the change of the growth mechanisms [39]. The principal cause is that
the lattice parameter cannot remain unchanged upon occupation of an intermediate layer. Its
variation entails a strong increase of the adsorbate–intermediate layer interface energy, which
fulfills the island regime criterion Eq. (7.4).

A large number of examples illustrating all three thin-film growth conditions and experi-
mental methods of their investigation are presented in Ref. [20]. It was shown in Ref. [40] that
under certain conditions the faceting of cap-shaped clusters at the (OR) stage may lead to a
replacement of the island mechanism by the layer-by-layer one. In this regime, condition (7.4)
holds first and then a change in the condensate symmetry causes its violation. Thus, the kind
of substrate and the type of its surface determine the film growth regime.

At present, investigators pay peculiar attention to the growth of films via the Stranski–
Krastanov mechanism [1, 2, 41, 42]. First of all, this fact is connected with requirements of
optoelectronics in semiconductor structures based on quantum dots. During the growth of
quantum dots, an elastic energy arises along the substrate–wetting layer interface that turns
out to be of great importance. The elastic energy is responsible for a substantial difference
in the kinetics of nanostructure nucleation. Nevertheless, the basic equations describing the
nucleation processes of nanoparticles coherently conjugated with a substrate and, accordingly,
the methods for their solution are, from a mathematical point of view, in most cases similar
to the equations describing the growth of unstrained structures. Therefore, we start to analyze
the nucleation of nanoislands without taking into account the elastic energy, i.e., the islands
forming and growing by the Volmer–Weber mechanism, and afterwards in Section 7.9, we
investigate the growth of coherent nanoparticles.

7.4 Nucleation of Relaxed Nanoislands on a Substrate

The most widely employed approximation in the description of nucleation is the so-called
capillary model [11, 12, 18] first formulated by Volmer and Weber, Becker and Döring, and
Zel’dovich. According to this model, positive free-energy fluctuations that lead to overcoming
the activation barrier are necessary for the condensation of a new phase from a supersaturated
vapor in the metastable state (i.e., over the region n1e < n1 < n1s) [27]. The presence of such a
barrier is associated with the fact that the free energy of nucleation from a supersaturated vapor
has a maximum at a certain critical size. Nuclei on a substrate may have various shapes [28] but
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theoretically they are most frequently assumed to look like a disk or a hemisphere according to
the film growth mechanism, because many films grow by the vapor–liquid–crystal mechanism.

The free energy F (expressed in units kBT ) of formation of disc-shaped clusters on an
ideal substrate can be written in the form [7]

F(i) = 2
√

ai − i ln(ξ + 1) − ln

(
n0

n1

)
, a =

(
σeff

kBT

)2 πw

h
. (7.5)

Here i is the number of particles in a nucleus, σeff is the effective interphase energy per unit
length of the disk boundary, h is the disc height, w is the volume occupied by one particle in
the nucleus, n0 is the number of adsorption sites on the substrate surface; n0 ∼ 1/B2, where
B is the substrate lattice constant. The first term in Eq. (7.5) is the free energy term connected
with surface tension effects, the second one is the chemical potential difference between the
new and the old phases, and the third is a statistical correction term due to the distribution
of n1 atoms over n0 lattice sites [15, 17]. The maximum of the free energy (see Eq. (7.5)) is
found at

ic = a

ln2(ξ + 1)
, (7.6)

and equal to

F(ic) = a

ln(ξ + 1)
− ln

(
n0

n1

)
. (7.7)

The nucleus has to overcome just such a potential barrier of height H (ξ) = F(ic) owing
to heterophase fluctuations in order that it might grow further regularly. According to the
capillary model, an elementary act changing the nucleus size is either an attachment to it or, in
contrast, a loss of one molecule (processes of merging of nuclei are ignored). For sufficiently
large nuclei containing i � 1 particles, this change is small, and, therefore, the evolution of
large nuclei can be described by the Fokker–Planck equation [6, 7]

∂g

∂ t
= −∂ I

∂i
, I = −W (i)

[
∂g

∂i
+ g

dF(i)

di

]
, (7.8)

where g(i, t) is the distribution function of nuclei with respect to the number of particles i
they contain, I is the nucleation rate (it vanishes for an equilibrium distribution g = const ×
exp(−F(i))) and W (i) is the diffusion coefficient in cluster size space, which is equal to the
number of molecules incorporated into the nucleus from the ensemble of adatoms per unit
time. The stationary solution gs(i) of Eq. (7.8) has the form [7]

gs(i) = I exp[−F(i)]

∞∫
i

exp(F(i ′))
W (i ′)

di ′ (7.9)

(the standard boundary condition: gs exp(F(i)) → 0 as i → ∞ was taken into account here).
The probability of fluctuations, described by the second-order derivative of g with respect

to i increases rapidly with decreasing size. Hence, the distribution of subcritical nuclei may
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be regarded as supplemented so rapidly owing to the fluctuations that their number remains
in equilibrium in spite of the permanent outflow of the flux I . Consequently, the boundary
condition to Eq. (7.8) takes the form gs(i) → n1 exp[−F(i)] as i → 0 and therefore from
Eq. (7.9) we find

I = n1


 ∞∫

0

W−1(i ′) exp(F(i ′)) di ′



−1

. (7.10)

The integrand in Eq. (7.10) has a sharp maximum at the position i = ic, which allows us
to calculate the integral, using the Laplace method, as

I = n1

√−F ′′(ic)

2π
W (ic) exp[−F(ic)] . (7.11)

The square root in Eq. (7.11) is sometimes called the nonequilibrium Zel’dovich factor.
Let us now estimate the quantity W (ic), which is the frequency at which adatoms are

attached to a critical nucleus. To this end, we shall use the lattice model. Let Rc be the radius
of the critical nucleus linear boundary, l0 the length of diffusive jumps of adatoms, ν the
desorption frequency, and Ed the activation energy of surface diffusion. Then we have

W (ic) = 2π Rcn1�0

(νd

4

)
exp

(
− Ed

kBT

)
= 2π Rcn1

Da

�0
, (7.12)

where Da = (�2
0ν/4) exp(−Ed/kBT ) is the diffusion coefficient of adatoms. From this, for

disk-shaped nuclei we arrive at [7]

I (ξ) = C1n1en0 Da(ξ + 1) ln1/2(ξ + 1) exp

[
− a

ln(ξ + 1)

]
. (7.13)

Similarly, for nuclei with the shape of a hemisphere we have

I (ξ) = C2n1en0 Da(ξ + 1) ln(ξ + 1) exp

[
− b

ln2(ξ + 1)

]
. (7.14)

Here the notations

C1 =
√

2w

h�2
0

, C2 = 2 sin θ

b1/2

[√
3

2π
�3

0 (1 − cos θ)2 (2 + cos θ)

ω

]−1/3

,

b = 4π

3

(
σ

kBT

)3

ω3(2 + cos θ)(1 − cos θ)2

(7.15)

are employed. In addition, σ is the interphase energy per unit area, and θ is the contact angle.
The time ts of establishment of a stationary nucleation rate has been repeatedly evaluated

by various authors with similar in the order of magnitude values [43–45]. The mean value is

ts = 1

−F ′′(ic)W (ic)
. (7.16)
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In thin-film condensation, this time interval is usually very short and of the order (10−4 −
10−8 s) both for disk- and cap-shaped nuclei, and therefore, in practice it is sufficient to calcu-
late the stationary flow of nuclei, I , only. Methods accounting for nonstationary effects (neces-
sary for the description of very fast processes), were proposed, for example, in Refs. [43–45].

We now analyze nucleation processes of multicomponent nanofilms. Multicomponent sys-
tems may be divided into two groups. One of them includes systems with islands that can be
considered as solid solutions, and the other involves systems with islands consisting of stoi-
chiometric compounds. We first discuss nucleation of multicomponent stoichiometric islands
and then examine nucleation processes in islands of solid solutions. According to Ref. [7],
islands of stoichiometric compounds can be formed in the following ways: (i) The rate of the
chemical reaction is much higher than the rate at which a new phase forms. In this case, mole-
cules of the chemical compound are formed first, and then nucleation of the islands takes place.
(ii) The nucleation rate of the islands is much higher than the rate of formation of a chemical
compound on the substrate. In this case, islands of a mixture of chemical elements are formed
due to heterogeneous fluctuations, and the chemical reactions take place afterwards in the
islands producing a stoichiometric compound. (iii) The rates of chemical reactions and forma-
tion of islands are of comparable magnitude; the rate of the chemical reaction is nonlinear and
the reaction product behaves as a catalyst of the reaction. In this case, self-induced oscillations
in the number of new phase nuclei and their self-organization are possible. (iv) Growth of the
islands proceeds as a result of chemical reactions at their surface [16].

According to the results obtained in [46], the stationary flow of multicomponent stoichio-
metric disk-shaped islands of height h nucleating on the substrate surface is given by

I ′
s(ξ) = α′

s(ξ + 1) ln1/2(ξ + 1) exp

[
− as

ln(ξ + 1)

]
. (7.17)

The flow of cap-shaped nuclei can be expressed by

I ′′
s (ξ) = α′′

s (ξ + 1) ln(ξ + 1) exp

[
− bs

ln2(ξ + 1)

]
. (7.18)

In Eqs. (7.17) and (7.18), the notation

α′
s = A1sn2

0 D0
s , α′′

s = A2sn2
0 D0

s , A1s =
(

ωs
m

h

)1/2

A2s = 2 sin θ

(bs)1/2

[√
3

2π
(1 − cos θ)2 (2 + cos θ)

ωs
m

]−1/3

,

bs = 4π

3

(
σ

kBT

)3

(ωs
m)3(2 + cos θ)(1 − cos θ)2 ,

as =
(

σst

kBT

)2 πωs
m

h
, ωs

m =
ns∑

i=1

νiωi ns
1e = n0

ns∏
i=1

ρ
νi
i0

(7.19)

are employed. Here ωs
m is the volume of a molecule of the chemical compound; ωi is the

volume of an atom of the i th component of the chemical compound; νi is the stoichiometric
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coefficient of the i th component; ns
1e is the equilibrium density of molecules of the chemical

compound on the substrate; D0
s , given by

D0
s =


 ns∑

i=1

p2
i li

Daiρi0




−1

, pi = νi∑ns

i=1 νi
, (7.20)

is the generalized diffusion coefficient; ρi0 is the equilibrium concentration; pi are the reduced
stoichiometric coefficients; Dai is the diffusion coefficient of the i th component; li is the
length of diffusive jumps of an i th adatom. The supersaturation ξ is given, in the case of phase
formation in multicomponent systems, by

ξ =
∏ns

i=1 ρ̄
νi
i − K s∞

K s∞
, K s∞ =

ns∏
i=1

ρ
νi
i0 , (7.21)

where K s∞ is the equilibrium constant of the chemical reaction yielding the chemical com-
pound of composition s, and ρ̄i is the concentration on the surface of the i th component of
the multicomponent system. It follows from Eqs. (7.17) and (7.18) that the formal expres-
sion for the nucleation rates in multicomponent stoichiometric systems is similar to that of
single-component ones. However, the kinetic coefficients in the equations depend on the ki-
netic coefficients for each of the components.

In the case of nucleation of multicomponent films of solid solutions, the free energy of a
nucleus depends on the number of particles of each component. Its calculation is a separate
fairly complicated problem [47]. Let us consider here a nucleus of the new phase to be a mix-
ture of different components. The mixture is assumed to be a regular solid solution. Further,
let us denote by m the number of vapor phase components, and i1, i2, . . . , im are the number
of particles of each component in a nucleus. Then, the free energy F of formation of a nucleus,
expressed in thermal units kBT , is equal to [47]

F(i1, . . . , im) = σ(i1, . . . , im)S −
m∑

j=1

i j ln

(
n j

n je(i1, . . . , im)

)

− ln


n0

/ m∑
j=1

n j


 , (7.22)

Here σ is the specific interphase energy, S is the area of the nucleus phase boundary, n j is
the surface concentration of the component j , n je is the vapor concentration of the compo-
nent j , which is in equilibrium with the nucleus of this particular composition, and n0 is the
concentration of the lattice sites on which atoms are adsorbed. The composition of the nucleus
is determined by the set of molar concentrations {νk} of each component

νk = ik∑m
j=1 i j

,

m∑
j=1

ν j = 1 . (7.23)
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The dependence of σ and n je on νk for a regular solid solution with a given heat of mixing
of components can be calculated within the thermodynamic theory of solutions [7, 47]. In
particular, if a nucleus can be considered as an ideal solution, then we get

σ =
m∑

j=1

σ jν j , n je = n0
j eν j , (7.24)

where σ j and n0
j e are the interphase energies and densities of a saturated vapor of pure com-

ponents. By employing these dependences and solving the system of equations (∂ F/∂i j = 0),
one obtains the number of particles of each component i j c in the critical nucleus. In the next
step, one can readily calculate the height of the activation barrier H = F(i1c, . . . , imc). The
equation H −1(n1, . . . , nm) = 0 specifies the surface that separates the regions of concentra-
tions with and without nucleation. In the simplest case of an ideal solution with equal values
of σ j , this equation gets the form [47]

m∑
j=1

(
n j

n0
j e

)
= 1 . (7.25)

Along with nuclei containing all m components, nuclei involving a smaller number of com-
ponents can be formed on the substrate as well. Therefore, the whole range of concentration
variation is divided into different phase regions by 2m −1 interfaces of the types H −1(n j ) = 0,
H −1(n j , nk) = 0, etc. In particular, for m = 2, three dividing lines H −1(n1) = 0 (n1 = n0

1e),
H −1(n2) = 0 (n2 = n0

2e), and H −1(n1, n2) = 0 specify five regions in the thermodynamic
phase space, which are shown in Fig. 7.2. In region (a) no new phase formation is observed,
in region (b) only two-component islands nucleate, in region (c) two-component islands and
those of the atoms of the second component can develop, in region (d) two-component islands
and those of the atoms of the first component may evolve, and in region (e) two-component is-
lands and islands of the atoms of each component (the nucleation rate for islands of a mixture
is, as a rule, much higher than that for the single-component islands).

In the newly formed islands of a new phase a reaction begins among the components or (if
the components cannot make up a chemical compound) an eutectic decay. Alternatively, the
formation of a solid solution may take place. The behavior of the system is determined by the
type of the corresponding phase diagram for a solid mixture. In particular, for a binary system
there exist five main types of phase diagrams for a solid mixture [7, 47]. All possible cases of
condensation are accordingly divided into 25 groups. All of them are considered in detail in
Ref. [47]. Systems with three or more components are analyzed similarly. But here a signifi-
cantly larger number of different types of behavior are found. The analysis of the behavior of
an ensemble of adsorbed particles shows that all the forms of multicomponent film conden-
sation make up a set of processes, each proceeding at a certain stage. Below we summarize
those processes that play the key role: (i) Chemical reaction in an adsorbed multicomponent
gas with a simultaneous nucleation of the final product of the reaction; (ii) formation of nu-
clei representing a mixture of components; (iii) chemical reaction in such nuclei; (iv) growth
of islands of a new phase from a supersaturated adsorbed vapor; (v) separation of an eutec-
tic mixture; (vi) evaporation of nuclei. The methods of description of processes (i)–(vi) are
presented in Ref. [7].
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Figure 7.2: Phase diagram of a binary system

In the case of nucleation of islands from a solid solution, the Fokker–Planck equation
becomes multidimensional, and accordingly the boundary condition at the zero point becomes
more complicated. The method of its solution is based on the simultaneous diagonalization of
both the equation and the boundary condition by a linear change of variables [23]. Then, it
turns out that the nucleation rate I can be estimated as

I = n0

(
m∑

k=1

dk

)
exp(−H0) , H0 = H + ln

(
n0∑m

k=1 n1k

)
, (7.26)

where dk are the diffusion coefficients for each of the m components in the dimension space
for i = ic and H0 is the nucleation barrier height without the entropy correction.

It has been assumed here that nucleation takes place on an ideal substrate, namely, in a
homogeneous way. However, various substrate defects often initiate nucleation by reducing
the activation barrier, H . In particular, the work of heterogeneous nucleation at the step of a
substrate was determined by Hirth and Pound more than 40 years ago. They showed that steps
may substantially increase the nucleation rate [18]. This result is confirmed by numerous ex-
perimental data [18–20]. The activation barrier of nucleation on a step can be so small (∼ kBT )
that a nucleus consisting of two particles will already be supercritical, i.e. F(2) < F(1) (or
n1 > n1s). In this case, as has already been mentioned, a new phase will be formed not through
conventional nucleation, but through a spinodal decomposition process, namely, by an amplifi-
cation of the different modes of density fluctuations of substance concentration [17,21]. At the
same time, the size distribution of new phase islands on the step and their spatial distribution
will already be different.

Numerous modifications of the classical capillary model of nucleation on a substrate exist.
Several corrections to the height of the activation barrier are introduced, namely, the correction
due to internal degrees of freedom of a cluster [18], the correction due to free energy variation
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on separation of a group of i molecules from a large ensemble [11], the correction due to
cluster boundary smearing, corrections due to cluster faceting [28], nonisothermal effects [48],
and so on. These corrections are, as a rule, relatively small and, moreover, have different signs.
The most significant one is obviously the correction due to the influence of the nucleus surface
curvature on the interphase energy [49]. It leads to a 102 ± 106-fold increase in the nucleation
rate. We recall that the capillary model, described above, is only applicable for ic � 1, because
it is only in this case that the attachment and detachment of particles to and from critical nuclei
can be described by the continuous Fokker–Planck equation (7.8). An alternative to this model
for ic < 10 is the atomistic Walton model [18] exploiting the methods of equilibrium statistical
mechanics. It allows I to be expressed in terms of ic, but does not give the dependence of ic

on ξ . Moreover, it is invalid for ic = 1 and ic = 2, when the increase of long-wave density
fluctuations is of importance.

7.5 Formation and Growth
of Space-Separated Nanoislands

7.5.1 Growth Mechanisms

After the formation of nuclei of a new phase on the substrate surface they start growing and
interacting with atoms of the old phase out of which they were formed. The latter mentioned
phase may be a single- or multicomponent vapor, a single- or multicomponent liquid solution,
and an amorphous phase or a solid solution. Accordingly, the island growth mechanisms may
vary substantially as well. In any case, the diffusion flux of atoms of the old phase toward the
surface of the nuclei is responsible for their growth from vapor. Both the removal of the latent
heat of the phase transformation and the diffusion of atoms of the old phase are responsible
for the island growth from liquid solutions and from an amorphous ambient phase. If the film
growth is due to decomposition of a supersaturated solid solution, the islands will grow via
a diffusion flux of atoms of the old phase. In the case, when the film growth proceeds in the
course of another type of phase transformation, for instance, a film decay caused by elastic
strains [41, 50, 51] occurring at the film–substrate interface, the islands grow owing to the
diffusion flux of atoms induced by elastic strains.

The surface introduces an appreciable diversity into the nucleus-growth mechanisms as
compared to the growth in the bulk of solids. According to contemporary concepts [52], the
following basic ways of atomic migration and energy transfer, in particular, heat transfer over
the surface, are distinguished: (i) three-dimensional or volume diffusion of atoms and three-
dimensional heat removal; (ii) two-dimensional atomic diffusion over the substrate surface and
two-dimensional heat removal; (iii) one-dimensional atomic diffusion along substrate steps,
surface dislocations, and other linear defects. Islands may also grow due to an immediate
arrival of atoms from a vapor onto their surface. The ultimate goal of the study of island
growth mechanisms is the determination of the islands growth rate as a function of their radius
and the degree of supersaturation. For this purpose, the corresponding heat and mass transfer
equations have to be formulated and solved [13]. Such problems have been widely examined
for three-dimensional systems [53], in particular, for crystal growth from single-component
and binary melts. The structure of the diffusion fields in the bulk of a vapor phase, on a
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substrate surface, and with linear defects has been investigated in detail and the expressions
for the island growth rate vR were found in Refs. [13,53]. Islands usually grow simultaneously
through several atomic diffusion mechanisms. The main mechanisms of nanoisland growth are
shown in Fig. 7.3.

It is convenient to consider each mechanism of island growth separately. According to
Refs. [13, 53], the expression for the new phase island growth rate vR can be written in the
following general form for each of the mass transfer mechanisms:

vR = −M2−d ′
w

JD R�(θ)

R3−d ′ . (7.27)

Here w is the volume per atom in the islands of a new phase; d ′ is the dimension of the
space in which the diffusion fluxes propagate: d ′ = 3 for mass transfer in the bulk of a
phase, d ′ = 2 for mass transfer over the surface, and d ′ = 1 for one-dimensional atomic
diffusion along substrate steps or other linear defects (in this formula the difference 2 − d ′
is assumed to take only nonnegative values); JD R is the diffusion flux of atoms onto the
island surface, which is found from the corresponding diffusion equations, and �(θ) is a
function taking into account the island geometry. For cap-like islands we have �(θ) = 2(2 −
3 cos θ+cos3 θ)−1(1−cos θ)) when the diffusion of atoms proceeds in the bulk of a gas phase,
�(θ) = 2 sin θ/(2 − 3 cos θ + cos3 θ) for the diffusion of atoms over the substrate surface,
and �(θ) = [2π(2 − 3 cos θ + cos3 θ)]−1 for the one-dimensional atomic diffusion. Finally,
M is the number of linear defects that are crossed by an island during its growth.

To find the atomic diffusion flux of atoms JD R to a nucleus, one has to solve the corre-
sponding diffusion equations. The form of these equations, their boundary conditions, and the
methods of their solution can be found in Refs. [7, 13]. The general expression for the new
phase island growth rate has the form

vR = K p

R p−1

(
R

Rc
− 1

)
. (7.28)

Here K p is a constant determined by the values of the parameters that characterize the material
of the island and the kinetic parameters of its growth (values of K p for different special cases
can be found in Ref. [13]), and the number p may have the values 2, 3, 4 depending on the
mass transfer mechanism. For our further purposes, it is convenient to express the number p
in terms of the island dimension d (being equal to 2 or 3) and the growth index m, which may
have the values 1, 3/2, 2, and 3 depending on the island shape and the type of the limiting
stage: p = d/m + 1.

At the initial stages of phase transformation in the stage of independent growth, the is-
land radius R is much larger than Rc, and therefore the number one in the right-hand side of
Eq. (7.28) is commonly ignored being negligibly small as compared with R/Rc. Furthermore,
it is convenient to write this equation not in terms of the growth rate referred to the radius but
via the change of the number of atoms in the nucleus. Then, Eq. (7.28) can be rewritten in the
form [7]

di

dt
= m

ξ

t0
i

m−1
m , (7.29)
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Figure 7.3: Schematic sketch of the fundamental mechanisms of nanoisland growth: (a) growth
of edged and nonedged islands, when the limiting stage is surface diffusion of adatoms; (b) the
limiting process is diffusion of atoms in the vapor phase (evaporation–condensation), (c) growth
of nonedged islands, when the process is controlled by the entry of atoms from the vapor phase,
but heat removal occurs over all their surfaces; (d) the same, but with heat removal through the
substrate only; (e) growth of islands through linear diffusion along the steps of the substrate:
(1) substrate; (2) nonedged island; (3) edged island, to the surface of which atoms join only in
specific places; (4) the island at a substrate step; (5)–(8) the atom in the vapor phase, on the
substrate surface, on an island surface, and at a substrate step, respectively; (9) heat flow angle

where ξ is the supersaturation, and t0 is a constant having the dimension of time and de-
notes the characteristic time of the island growth. This parameter can be expressed via the
constant K p and the constants relating supersaturation to the critical radius.
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It has been shown theoretically and experimentally that the new phase island growth is
determined by two principal processes, namely, substance transfer to the island, i.e., diffusion
properties, and the passage of atoms through the old–new phase interface, i.e., the boundary
kinetics. After passing through the interface, an atom joins the island surface. The island
surface, similarly as the surface of any crystal, can be atomically rough, atomically smooth, or
vicinal. The ways in which the atoms join the island surface are different and depend on the
type of the surface. So, interfaces, rough at the atomic level, grow by the normal mechanism
of growth. Atomically smooth surfaces grow by two-dimensional nucleation on their facets.
Vicinal surfaces grow either through the motion of already existing steps or utilizing screw
dislocations appearing on their surfaces. Island growth by two-dimensional nucleation, as well
as the evolution of an ensemble of such islands, is described in Ref. [54]. The next stage
represents the process of incorporation of adatoms into a new phase island. The growth rate
equation (7.28), namely the constant K p and the index p, is significantly influenced by the
condition determining which of the processes is limiting the growth. The particular form of
the constant K p for each type of mass transfer mechanism can be found in Ref. [13].

In the course of formation of multicomponent nanofilms, atoms arrive at the substrate sur-
face and may initiate islands of various chemical compounds. Many of the islands of these
compounds represent an intermediate phase in the course of growth of other phases. Islands of
a chemical compound will further be referred to as phase s. As in single-component systems,
the growth of multicomponent islands is due to the same mass transfer mechanisms. How-
ever, there is one important difference in that the chemical components, of which an island
of phase s is formed, may diffuse toward it in different ways. One of the components may
arrive at the island surface through surface diffusion, and another one through gas diffusion.
In this situation one usually has to find the component limiting the rate and by this component
determine the main flow of the substance toward the island.

The growth rate of a multicomponent island of an arbitrary phase s will be described as
before by Eq. (7.27). However, in this equation, the product of the atomic flux JD R and the
volume w has to be replaced by the sum of the products of the atomic fluxes from each compo-
nent by their volume wi , i.e.,

∑ns

i=1 ws
i J s

i R , where the subscript i stands for the corresponding
components. Since the islands have a given stoichiometric composition, it follows that, on
their surfaces, the stoichiometry condition J s

i Rr/ν
s
i = J s

i ′ Rr/ν
s
i ′ holds. This condition allows

us to express the quantity
∑ns

i=1 ws
i J s

i R in terms of the product of the flux of one of the compo-
nents i by the volume ws

m of a molecule of the chemical compound of phase s, i.e., J s
i Rws

m/ps
i ,

where ws
m = ∑ns

i=1 ps
i w

s
i is the volume per molecule of phase s and ps

i = νs
i /

∑ns

i=1 νs
i . Thus,

to calculate the growth rate of a multicomponent island, it is sufficient to find the flux J s
i R of

only one arbitrarily chosen component.
In Refs. [13, 55], all possible mechanisms of substance transport in multicomponent sys-

tems were investigated and analytical expressions for any type of fluxes J s
i R were found. Their

substitution into an equation for the growth rate of the type of Eq. (7.27) leads to an equation
of motion for an island of phase s, which has the form of Eq. (7.28), where the constant K p

is replaced by a generalized constant containing kinetic and some other coefficients of each
component entering the phase s. Hereby the critical radius Rc in Eq. (7.28) is replaced by the
critical radius Rs

c for a given phase. The exact calculation of the growth rate of solid solution
islands is much more sophisticated than that for stoichiometric compounds. If the diffusion
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Figure 7.4: Phase diagrams of binary systems: (a) a system with an eutectic point; (b) a system
with an infinite solubility of the components in the solid phase; ρs and ρl are the equilibrium
concentrations in the solid and liquid phases, respectively; T0 is the equilibrium temperature,
T (0) and ρ(0) are respectively the temperature and the composition at the onset of island growth

processes inside the islands are slowed down as compared to the same processes outside the
islands, the island composition along their radii will be inhomogeneous. Only when the diffu-
sion rate inside the islands appreciably exceeds the rate of variation of their radii, the island
composition may be thought of as homogeneous. To determine the island growth rate, it is
necessary to know in what proportion the components are incorporated into an island. This
question can only be answered after the mixing entropy of the components is calculated [56].

The solution of this problem can be approached differently. One may use here the phase
diagram relating the composition of the old and new phases. Solid solution islands are formed
as a rule from the vapor phase and melts. Any phase diagrams of substances in which there are
no chemical interactions, can be represented in the form of one or the other modification of the
two simplest phase diagrams, namely, the diagram describing melting and crystallization of
substances insoluble in each other when in solid state (in Fig. 7.4(a) the diagram with an eu-
tectic point) and the diagram describing melting–crystallization (evaporation–condensation)
of substances that form a continuous solid-solution series (Fig. 7.4(b)) [57]. Islands produced
from systems of the first type are single-component substances of composition A or B, re-
spectively. At an eutectic point (see Fig. 7.4(b)), islands of both A and B compositions appear
simultaneously. In Ref. [57] it is shown that whenever the volume diffusion in the island ma-
trix is fast enough, the expression for the growth rate remains similar to Eq. (7.27), but the flux
JD R already consists of the difference of atomic fluxes of components A and B. The average
composition of islands changes during their growth by a definite law.

The examination of island growth from single-component melts has shown that the princi-
pal mechanisms of island growth are as follows: three-dimensional heat removal into the melt,
three-dimensional heat removal into the substrate, and two-dimensional heat removal from the
nucleus along the substrate. The limiting stages in this process are the thermal conductivity
and the mechanism of atomic incorporation into an island, which depends on the crystalline
structure of its surface. The general expression for the island growth rate for each heat transfer
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mechanism takes the form

vR = w
JT R�(θ)

q R3−d ′ , (7.30)

where q is the latent heat of phase transition per atom. Concrete expressions for the heat
fluxes and the island growth rates can be found in Refs. [13, 58]. Thus, the mechanism of
island growth defines its growth rate vR which enters the basic equations of film condensa-
tion kinetics and hence ultimately determines the structure and composition of the growing
nanofilm. In more detail, this connection will be analyzed below.

7.5.2 Domain Structure of Nanofilms

In the case of multicomponent systems, more than one phase can be in equilibrium with the
original vapor phase. In such cases, some domain structure may arise. For example, in the case
of a two-component system with an eutectic point the gas phase may be in equilibrium with
two crystalline phases with different compositions. Nucleation processes from the gas phase
lead then to a new crystalline phase with some complicated domain structure. In other words,
the new phase consists of two equilibrium phases of different compositions. The nucleation
process for such systems was described in Ref. [59]. For a description, we introduce the local
density of the system, ρ, and the local composition x defined as

ρ = N1 + N2

V
, x = N1 − N2

N1 + N2
, (7.31)

where V is the volume of the system, N1 is the number of atoms of the first type, and N2 is
the number of atoms of the second type. The free energy of such a system with an eutectic
point was calculated in Ref. [59]. Employing this result, we can describe the evolution of this
system.

For example, in the simplest symmetric case, when the eutectic composition xe is equal to
zero, nucleation and growth of the new phase (characterized by domain structure) is described
by the following system of equations:

∂ρ

∂ t
= ρ − (

µρ − µρe
) + ε , µρ = µ1 + µ2 , (7.32)

∂x

∂ t
= x − �v × ∇x − (µx − µxe) , µx = 1

ρ
[µ1 − µ2 − x (µ1 + µ2)] . (7.33)

Here, �v is the rate of the “composition flux”

�v = 2

ρ
∇ρ . (7.34)

In above equations, µρ is the chemical potential “in density,” and µx is the chemical potential
“in composition.” Here µρe, µxe are the equilibrium values of the chemical potentials, corre-
spondingly. Figure 7.5 shows the dependence of µx − µxe on composition in the symmetric
case.
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Figure 7.5: The dependence of the “effective” chemical potential µx − µxe (cf. Eq. (7.33)) on
composition in the eutectic point: (1) is the vapor phase, and (2) is the crystalline phase

Figure 7.6: Domain structure for a two-component eutectic symmetrical system obtained from
Eq. (7.33)

It is evident that for the original gas phase x = 0 is the only solution. Therefore, the gas
phase cannot possess a domain structure. But for the crystalline phase, the solution x = 0 is
absolutely unstable. The hydrodynamic force �v∇x results in a heterogeneous decomposition
of this phase into two phases with different compositions xcr and −xcr. The final domain
structure of the new phase is shown in Fig. 7.6 [59].
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7.5.3 Morphological Stability of Nanoisland Shapes

The main problem in the analysis of the morphological stability is to find out whether a given
particular form of a vapor-, solution-, or melt-grown island is stable under small perturbations.
The analysis of stability is carried out by the following scheme: one assumes the shape of an
island or a crystal to be slightly distorted, and then finds out whether this distortion increases
or disappears with time. The necessity of examining stability stems from the fact that crystals
often grow in the form of dendrites. Dendrites, or tree-like crystals, consist of a central trunk
and primary, secondary, etc. branches. They are often observed in nature and in laboratory
conditions in melt crystallization. A quantitative analysis of the stability of the shape of the
growing crystal was first carried out in the classical paper by Mullins and Sekerka [60]. Nu-
merous experiments on film growth show that the form of nuclei on the surface changes as
they grow. They either become edged or, in contrast, unstable or dendrite-like [61]. This fact
significantly influences both nucleation and structure of nanofilms.

The growth of islands on the surface from vapor medium differs noticeably from the melt
growth of three-dimensional crystals. This difference is first of all associated with the fact that
deposited atoms are permanently supplied to the substrate surface and, having a finite lifetime,
leave the surface by evaporation. This mechanism introduces essential changes and has thus
a crucial effect on the physics of the process. The morphological stability of nanoparticles,
growing on the surface of solid substrates, is examined in Ref. [61]. The stability of the shape
for a flat disk-shaped island of a height H and a radius R is analyzed there. It is assumed
that the island grows due to diffusion of adatoms. A change in the island shape is induced by
two factors. On one hand, a ledge on the island surface appears to be in the region of higher
concentration gradients of adatoms and must, therefore, increase in size. On the other hand,
a ledge increases the curvature and thus increases the saturation vapor density at this point,
which in turn slows down the growth rate of the ledge as compared to the neighboring points
of the nucleus boundary.

The analysis of the corresponding diffusion equation [61] has shown that the shape of
nanoislands becomes unstable in the case, when the island radius R0 is located within the
range R1(ν) < R0 < R2(ν), where R1(ν) = Rc for Rc/

√
Daτr 	 1, Rc is the critical radius

of a nanoparticle, and R2(ν) = [
(ν2 − 1)/2

]√
Daτr, ν are integers corresponding to the order

of modes arising in the course of an island shape change. Note that the conditions that have to
be fulfilled for an evolution of an instability of the islands are substantially different from the
conditions leading to the formation of dendrites in the course of crystal growth from melts.
The shape of the islands is more stable with respect to minor fluctuations as compared to the
corresponding shape of three-dimensional crystals.

7.5.4 Structure of the Nanoisland–Vapor Interface

As it was noted before, the physical properties of nanoislands differ significantly from the
properties of the respective bulk materials. The reason for this difference consists in the influ-
ence of the surface of the particles on their properties. The problem of the development of a
rigorous model for the determination of the structure of the interphase between a nanoisland
and the surrounding vapor and the influence of surface active substances on the structure have
been attracting attention of researchers for a long time (see, for example, [12–14, 62–64]).
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Figure 7.7: Temperature dependence of the surface tension at a planar interface for the van der
Waals gas (solid line) and the 2D-lattice gas (dashed line). Experimental data are taken from
[64]: � for CH4; + for Ne; × for Ar; ∗ for Kr

A rigorous perturbation theory of the evolution of a small-sized cluster was developed
in the framework of the density functional method in Ref. [64]. In this analysis, for the first
time, the size dependence of the surface tension for a cluster on a substrate is defined and the
structure of the nanocluster–vapor phase interface is determined analytically. In the case of
bubbles (gas nuclei in a liquid), the correction to the surface tension σ(R) with respect to the
curvature is shown to be of the form

σ(R) = σ0
R + (d − 1)δ

R
+ O

(
1

R2

)
, (7.35)

where R is the nanocluster radius, d is the space dimension (d = 3 for a drop and d = 2
for a disk-shaped island in the growth of nanofilms), σ0 is the surface tension of a solid ma-
terial, which is calculated by an approach as outlined in Ref. [64]. The Tolman parameter δ
determines here the magnitude of the correction to the surface tension due to the curvature.
The value of δ is strictly estimated within the framework of perturbation theory [64]. The
O

(
1/R2

)
term denotes higher corrections within the framework of perturbation theory.

The temperature dependence of the surface tension, as calculated in Ref. [64] for the three-
dimensional van der Waals gas and the two-dimensional lattice gas, is displayed in Fig. 7.7.
This figure also shows experimental values of the surface tension for four gases, namely,
methane, neon, argon, and krypton [64]. As is clearly seen, the theoretical results obtained
above for the surface tension of the van der Waals gases are in excellent agreement with
experimental data. Figure 7.8 shows the temperature dependence of the Tolman parameter for
the van der Waals gas. It can be shown easily that in the temperature range 0.5 < T/Tc < 1,
where Tc is the critical temperature, the Tolman parameter is of the order of δ ∼ 0.1 3

√
ρc/m ∼

0.5 × 10−10 m. This value is sufficiently large to allow a pronounced effect on nucleation.
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Figure 7.8: Temperature dependence of the Tolman parameter for the three-dimensional van der
Waals gas

7.5.5 The Surface Migration of Islands

Numerous experimental studies demonstrate that, at the initial stages of crystal nanofilm con-
densation on foreign crystalline substrates, the nuclei of a new phase can rather rapidly move
over the substrate surface [64–66]. This process serves as an important link in nanofilm struc-
ture formation. Such migrations proceed under the action of various external forces: collisions
with fast particles of the flow, temperature gradients, electric and magnetic fields, the interac-
tion with moving steps, etc.

As far as the mechanism of island migration is concerned, only two basic models describ-
ing the island transfer have been used up to now [67]. The first case is when particle diffusion
proceeds only across the island surface, and particles attached to the boundary surface remain
immobile about it. Second, an island is assumed to slide over the substrate surface. Many spe-
cific mechanisms of the morphological change of the island and of the sliding process have
been proposed, but all of them yield relatively low values for the migration velocity and the
diffusion coefficient as compared to those actually observed in some cases [18]. In the models
of the first type this result is associated with the low values of the coefficients of selfdiffu-
sion of adatoms that cannot provide sufficiently fast island migration. In models of the second
type this is caused by the high values of the sliding friction forces between the island and the
substrate (i.e., the high activation energy of slide) particularly during epitaxial growth.

We have recently proposed [67] an essentially different model of transfer of growing is-
lands oriented over a foreign substrate. As is well known, under certain conditions mismatch
dislocations are generated on the island-substrate interface. If the Burgers vector is located in
the slip plane, the motion of the island can be provided by the motion of these dislocations
(solitons) [67]. Such mechanism looks preferable as compared to the usual sliding because
during the motion of the dislocations at every moment of time almost all atoms of the island
remain immobile with respect to the substrate, and it is only a very small group of atoms
that move. The passage of a dislocation (compression or rarefaction waves) from one end of
an island to the other is equivalent to island displacement by one lattice constant of the sub-



7.6 Kinetics of Nanofilm Condensation 237

strate [67]. If the dislocation (soliton) velocity is much smaller than the velocity of sound in
the material of the film, then the energy losses during its motion are very small, i.e., in such
displacement of an island there is almost no friction against the substrate.

The estimate of the “effective” mass of an island migrating over a substrate owing to
soliton motion takes the form [67]

Meff = 4cM ln
1

ε − εc
, (7.36)

where M is the island mass, c is the ratio of forces acting on an atom from the side of other
atoms of the island to those from the side of the substrate, ε is the parameter of lattice mis-
match between the film and the substrate, and εc is the critical lattice mismatch parameter
corresponding to the onset of generating mismatch dislocations.

7.6 Kinetics of Nanofilm Condensation

The description of the kinetics of new phase nucleation and the coverage of a condensation
surface by the nuclei is one of the most important problems of the theory of first-order surface
phase transitions. A large number of papers of both classical and nonclassical character have
been devoted to this issue (see, for example, reviews [6,11,13,18–20,68]). The corner stone of
any such theory is the correct account of the nonlinear feedback between supersaturation and
the size distribution function of new-phase islands. Indeed, growing islands absorb adatoms
and thus diminish the supersaturation that is responsible for the nucleation rate and the growth
rate of the islands, i.e., ultimately for the distribution function [55].

Earlier theoretical approaches, such as the Zinsmeister model, the Kikuchi model, the
Binder model, and the Walton–Rhodin model, were discussed in our review [7]. The kinetic
theory [22] yields analytical expressions for all of the basic characteristics of film condensa-
tion at the initial stage using especially developed methods for an approximate account of the
nonlinear feedback mentioned above. The continuum’s model [27] represents thin-film con-
densation as an order-parameter field relaxation, the surface adatom density being the order
parameter in this case. This approach is apparently the most general because it allows a de-
scription of film deposition both in terms of nucleation and spinodal decomposition, and for
low supersaturations it becomes a standard kinetic model. Furthermore, there is an opinion
that it is precisely this approach that will allow us to describe the appearance of the crystalline
order during film growth from a vapor or melt.

7.6.1 Perturbation Theory

The variety of approaches to the description of thin-film growth are largely due to the impos-
sibility of an exact analytical solution of the main system of equations of film formation in
the ripening stage, i.e., the system consisting of the equation of conservation of matter on the
substrate and the kinetic equation for the size distribution function of nuclei (this system is
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derived using the division of the whole size axis into three portions: subcritical, critical, and
supercritical [27]). The set of equations is of the form [27, 69]

ξ0

ξ(t)
− 1 = (k + 1)τr

n1et0

∞∫
0

ρk g(ρ, t) dρ , (7.37)

∂g

∂ t
+ ξ(t)

t0

∂g

∂ρ
= 0 , (7.38)

g(0, t) = I (ξ(t))t0
ξ(t)

, g(ρ, 0) = 0 . (7.39)

Equation (7.37) describes the law of conservation of matter on the substrate, Eq. (7.38) is the
kinetic equation describing the evolution of the size distribution function for nanoparticles, and
Eq. (7.39) includes the initial and boundary conditions, where t0 is the characteristic cluster
growth time involved in the law of growth of stable islands (Eq. (7.29)), g(ρ, t) is the size
distribution function of stable clusters ρ (ρ = i1/(k+1)), I (ξ) is the nucleation rate, ξ0 is the
initial value of supersaturation, and k = m + 1.

Practically, all the above-mentioned model approaches employ approximate methods for
the solution of this system of equations, which are based on the existence of some small pa-
rameter of the theory. From a physical point of view, the “principal” small parameter is the
inverse number of particles in a critical nucleus (at the moment of the highest supersatura-
tion). It is just this parameter that is found in the denominator of the nucleation rate exponent.
Expanding all the quantities in power series of this small parameter directly, one obtains a
series that diverges for sufficiently large times, i.e., it is a not uniformly valid series. In order
to provide convergence of the series, it is necessary to use a rigorous perturbation theory [69].
It should be noted that the presence of a small parameter does not always allow one to repre-
sent the solution of the mathematical problem in the form of convergent series, i.e., it is not
always possible to provide a uniform validity of the series in some particular renormalization
procedure [70]. Therefore, it should be especially emphasized that the system of equations
governing the kinetics of first-order phase transitions in general and of thin-film condensation
in particular admits an analytical solution in the form of a power series with respect to the
small parameter. The uniform convergence of this series is provided by the time renormaliza-
tion procedure that was proposed in Ref. [69].

In the capillary nucleation model, the nucleation rate I (ξ), entering Eq. (7.39), has the
form (see Eqs. (7.14) and (7.16))

I (ξ) = P(ξ)e−H(ξ) , (7.40)

where H is the height of the nucleation barrier and P is the preexponential factor depending on
supersaturation. The most important parameter � of the phenomenological theory is connected
with the function H as follows [27, 69]:

� = − ξ0
d H

dξ

∣∣∣∣
ξ=ξ0

. (7.41)

For films growing from vapor with high values of ξ0, we have � ∼ ic � 1, where ic is the
number of particles in a critical nucleus at ξ = ξ0. Consequently, the quantity ε = 1/� is the
small parameter of the given problem.
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As a result of the analysis performed in Ref. [69], it has been proven that all unknown
functions may be expressed here in terms of the function ϕk(x) determined by the equation

dϕk

dx
= exp(−xkϕk) , ϕk(0) = 0 . (7.42)

The dependence of these functions ϕk on x is plotted in Fig. 7.9. We present here only the net
result of the first approximation in powers of ε [69] determined via

ξ(t) = ξ0

1 +
(

1
�

)
T k(t) ϕk(T (t))

, (7.43)

I (t) = I (ξ0)
exp

[−T k(t)ϕk(T (t))
]

1 +
(

1
�

)
T k(t)ϕk(T (t))

, (7.44)

N(t) = I (ξ0)tkϕk(T (t)) , (7.45)

g(ρ, t) =



I (ξ0)t0
ξ0

exp

[
−

(
T (t) − t0ρ

tkξ0

)k
ϕk

(
T (t) − t0ρ

tkξ0

)]
for ρ ≤ ξ0

tk
t0

T (t) ,

0 for ρ > ξ0
tk
t0

T (t) .

(7.46)

T = t

tk
− 1

�

T∫
0

xkϕk(x) dx , tk = t0
ξ0

[
n1e ξ0

(k + 1)� I (ξ0)τ

]1/(k+1)

. (7.47)

The time dependences of the nucleation rate and the size distribution function of new phase
islands are illustrated in Figs. 7.10 and 7.11.
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The perturbation theory technique, developed in Ref. [69], turned out to be rather effective.
The application of the approach allows us to describe the kinetics of phase transitions proceed-
ing in various systems. Thus, for instance, in Ref. [71] processes of nucleation of nanofilms
from solutions or melts are described. Phase transitions in ferroelectrics are investigated in
Ref. [71]. The shortcomings of the small parameter technique consist in the impossibility of
describing a phase transition for arbitrary τr, �, and t0, which can only be done numerically
by solving the equations of condensation kinetics.
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7.6.2 Nanofilm Condensation at High Supersaturation

If the external source of deposited particles has a large power such that a one-particle nucleus
is energetically more advantageous than a two-particle nucleus, i.e., F(2) > F(1), then in the
ensemble of adatoms spinodal decomposition starts [17,21]. In this case, any thermodynamic
fluctuations increase in time, the long-wave fluctuations increasing faster.

A theory of spinodal decomposition in a system of adatoms was formulated in Ref. [27].
If the external source of deposited particles has such a power that in a metastable system it
creates a supersaturation ξ close to ξmax, which corresponds to approximately ic = 2 − 4,
then the character of the nucleation process radically changes. Firstly, the correlation radius
in the system may exceed the average cluster size (for ic = 1 the correlation radius is equal to
infinity). Secondly, the distribution of subcritical nuclei may differ from the equilibrium dis-
tribution, and, thirdly, for small ic the structure of critical nuclei and, therefore, the character
of the interphase energy significantly change. Hence, strongly metastable systems should be
considered separately. It is appropriate to describe them in the framework of the continuum’s
theory [27], which represents a phase transition as a relaxation of the order parameter field.
The nucleation rate in this case depends on the supersaturation as

I (ξ) = I (ξmax) exp
[
−const(ξmax − ξ)2

]
. (7.48)

Thus, there exist three ways of relaxation of a supersaturated adatom population. The first is
realized in weakly metastable systems where the supersaturation ξ is much lower than ξmax =
(n1s/n1e) − 1. In this case, the critical nucleus is so large (ic � 1) that its fluctuations lead
to a change of the coordinate of its boundary, only, although it has a considerable thickness.
The structure of the nucleus itself will remain unchanged. In this case, it is convenient to
apply the capillary model, in particular, Eq. (7.14). The second way of relaxation takes place
for ξ ≤ ξmax. Here the critical nucleus contains only a few particles and is so small that its
fluctuations affect not only the boundary, but the whole nucleus. In other words, the internal
structure of the critical nucleus itself changes during fluctuations. And, finally, the third way
of relaxation is the process via spinodal decomposition. It is realized for ξ ≥ ξmax. In this case
the system is unstable, ic = 1, and thermal fluctuations generally destroy the structure of the
critical nuclei and lead to an increase of periodic fluctuations of substance concentration. This
periodicity is a consequence of the fact that near a growing new phase island no other islands
are produced, and the whole ensemble of islands is strongly interacting [27].

7.7 Coarsening of Nanofilms

The late stage of nanofilm growth is characterized by the property that the new phase islands,
generated earlier, begin to interact. There exist three main types of cluster interactions. The
first is cluster merging due to their migration over the surface (the migration mechanisms were
briefly discussed in Section 7.5). The second is cluster merging due to their lateral growth.
The third is the growth of larger clusters at the expense of the evaporation of smaller ones
(Ostwald ripening). The latter type of interaction is realized through generalized diffusion or
temperature fields.
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As a rule, cluster coalescence, according to the first two types, proceeds in a rather fast
way. When merging, the islands are increased in their size. This process can transfer the size
of the islands outside the range of nanodimensions. However, the investigation of this problem
is outside the scope of this paper, and we do not discuss it here in detail. Readers interested in
this phenomenon are referred to the original paper [72] or the reviews Refs. [6, 7], where the
problem is discussed more thoroughly. We only note that in preparation of nanostructures, it
is necessary to avoid this process of coalescence.

The Ostwald ripening (OR) is a slow process. When changing such parameters as the
substrate temperature, and the feed rate of the components of the substrate, one can effectively
control the size and composition of nanoparticles. We shall discuss this process in more detail
below.

7.7.1 The Ostwald Ripening Stage

The OR stage is the late stage of the phase transition. It starts only when the sources of evap-
orated adatoms are sufficiently weak and the supersaturation ξ on the substrate tends to zero.
No new islands are formed in this situation. The estimate of the starting point of this stage can
be found in Refs. [7, 13].

The physical meaning of OR is as follows. At a late stage of evolution of an ensemble
of islands they begin to interact in a peculiar manner. This interaction is realized through
a generalized self-consistent diffusion field. On a substrate, this field can be established by
adatoms with a concentration ρ̄a , vapor atoms with a density ρ̄r or, if the substrate surface
contains linear defects, by adatoms (ρ̄l ) adsorbed at the steps. This field depends on the size
distribution function, f (R, t), of islands and is in equilibrium with islands of critical size Rc.
Islands of size R < Rc are dissolved in the diffusion field because near them the equilibrium
concentration ρR of atoms exceeds the mean field concentration: ρR > ρ̄a , ρR > ρ̄l , or
ρR > ρ̄l . Islands of size R > Rc grow because for them ρR < ρ̄a , ρR < ρ̄l . The critical size
Rc itself continues to increase because the islands absorb the substance from the substrate thus
lowering the supersaturation. For this interaction and, therefore, the OR stage to take place, it
is necessary that the two-dimensional island density satisfies the inequalities[

π(R̄ + λi )
2
]−1

< Ns < (π R̄2)−1 , (7.49)

where Ns is the two-dimensional island density, R̄ is the mean island radius, λi = λs for
mass transfer over the substrate surface, and λi = λl for mass transfer along the steps, λs

and λl being the mean free path along the substrate surface and along the steps, respectively.
Otherwise, if Ns ≥ (π R2)−1, the islands will “collide” and for Ns ≤ [π(R + λi )]−1 the
adatoms on the substrate will evaporate and will not participate in the OR process provided
that λi = λs . When λi = λl , the adatoms can leave the step and will not participate in ripening
of the ensemble of islands located at the step.

OR of an ensemble of islands in thin films was first investigated by Chakraverty [73].
He examined the evolution of an ensemble of single-component islands with the shape of
a spherical segment and located on solid substrates in the regime of complete condensation
and also in the presence of atoms sputtered onto the substrate. Chakraverty [73] believed that
mass transfer between islands is realized only through a surface diffusion of adatoms and
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that the island growth rate can be controlled by both surface diffusion (heterodiffusion) of
adatoms and the rate of consumption and emission of atoms by the islands, i.e. by boundary
kinetics. He assumed that emission and absorption (building-in) of atoms are realized not by
the island contour, but by its whole surface. Such an assumption corresponds to the fact that
self-diffusion flows along a free island surface must exceed the heterodiffusion flows on the
substrate surface. This statement should have been additionally founded.

The above-mentioned problem was solved more exactly by Geguzin and Kaganovski [74].
They studied the evolution of an ensemble of islands growing by the following mechanisms:
surface diffusion of atoms, gas diffusion of atoms, evaporation-condensation of atoms, one-
dimensional atomic diffusion along steps, and surface dislocations on a substrate with al-
lowance for a possible island growth control by boundary kinetics. Later, the OR stage of an
ensemble of single-component islands with allowance for all possible growth mechanisms and
in the presence of atoms sputtered on the substrate was investigated by various authors (see
reviews [7, 13]). The authors of these papers found the laws of variation of the critical radius,
its height (if the islands had the shape of a flat disk), the island density in time, and island
size distribution in a zeroth approximation. The analysis has shown that these characteristics
depend substantially on the island growth mechanism and the intensity of atomic supply onto
the substrate. According to Refs. [7–13], if a flux of atoms coming onto a substrate has a
power-law asymptotics: g(t) → ng0tn−1, where n ≥ 0 and g0 is a constant, then there exist
only two types of sources, namely, weak with n < (d/p) and strong ones with (d/p) ≤ n.

The main ideas of the OR analysis of such systems have been developed in the pioneering
paper by Lifshitz and Slezov [75]. These authors showed that any disperse systems containing
new-phase nuclei and old-phase atoms possesses a whole number of common properties in-
herent only in disperse systems and appearing in the course of their evolutionary growth. From
a thermodynamic point of view, this common property of disperse systems is their deviation
from equilibrium state simultaneously in many parameters.

One of the main signs showing that a disperse system resides in a nonequilibrium state
is the presence of a fairly extended phase interface associated with an excess free energy. At
higher temperatures, when an appropriate diffusion mechanism becomes valid, some process-
es proceed in disperse systems that lead to a relaxation of the excess energy. These processes
must be accompanied by a diffusive mass transfer that is responsible for the emergence of
OR. This process was named after the German scientist W. Ostwald who, at the beginning
of the last century, examined this phenomenon experimentally during precipitation ripening.
The basic system of equations describing this process has been presented in numerous works
generalized in reviews and monographs [7, 13].

The basis for the analysis of the OR process is the Fokker–Planck equation (7.8) in which
the term with the second-order derivative of the distribution function is omitted. When de-
scribing the nonisothermal ripening below, we propose a more general system of equations, a
particular case of which is the one given. The general OR theory at nonisothermal conditions
was constructed in Refs. [76, 77]. The OR processes in multicomponent systems are richer
and more diverse than similar processes in single-component systems. In multicomponent
systems, substance redistribution is a consequence not only of the Gibbs–Thomson effect but
also of the chemically nonequilibrium state. Islands of a chemical substance (phase s) may
be stable from the point of view of the Gibbs–Thomson effect but unstable from the point of
view of the thermodynamics of chemical reactions.
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At the OR stage in multicomponent systems, when the component concentration is ρ j (0)
	 1 (here ρ j (0) is the concentration of the component j by the onset of OR), new islands are
not formed and all the islands of the ensemble interact with each other through their general-
ized diffusion field. Islands of phase s with a radius R smaller than the critical radius Rs

c are
dissolved in the diffusion field, while islands with a radius exceeding the critical one grow.
In a multi-phase system, not only islands of the same phase but also those of different phases
will interact, and of all the stable phases only those for which the solution is supersaturated
will be stable.

For moderate concentrations of the components, when the law of mass action can be ap-
plied to the proceeding chemical reactions, this law can be written in the form

∑
j

νs
j µ

s
j = ln

{∏
s j (ρ j (0))

νs
j

K s∞

}
≥ 0 . (7.50)

Here K s∞ is the equilibrium constant of the sth chemical reaction, s j is the number of the
phase containing the j th component, µs

j is the chemical potential of the j th component. If
the islands generated in the system do not contain common components, Eq. (7.50) is neces-
sary and sufficient since they will grow independently. Providing the islands contain common
components, during their growth substance redistribution among the islands is possible and,
although the solution was at first supersaturated in separate components, it may further appear
to be unsaturated. In this case Eq. (7.50) is only necessary for a selection of islands capable of
further competitive growth.

In multicomponent systems, in the course of OR heat may be released in chemical reac-
tions, which affects the reaction constants. The thermal fields induced due to the heat release
in chemical reactions affect the size distribution of islands in a nonlinear manner. The equilib-
rium concentration of the dissolved substance is not constant, but increases with temperature.
The supersaturation will then tend to zero faster than in the isothermal case; however, the
substance concentration gradient decreases in the process, which leads in turn to a decrease
of the island growth rate. The amount of heat released in the course of the phase transforma-
tion therewith decreases (if the system is conservative), which brings about stabilization of the
equilibrium concentration, i.e., the diffusion and thermal fields become self-consistent. Thus,
the increase of the temperature of the system may lead to a decay of some phases.

The complete system of equations governing the evolution of an ensemble of multicom-
ponent and multiphase islands at the OR stage is given by

∂ f s(R, t)

∂ t
+ ∂

∂ R

(
f s(R, t) vs

R

) = 0 , (7.51)

χ s
∑
s j

∞∫
0

f s(R, t)R3−d h3−d J s
D R d R = n1|gD j |tn1−1 , (7.52)

ns∏
j=1

(
ρs

j R

)νs
j = K s

R(TR) ,
J s

jr

νs
j

=
J s

j ′R
νs

j ′
, (7.53)
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k∑
s=1

χ sqs

∞∫
0

f s(R, t)Rd−1h3−d J s
T ,R d R = n2|gT |tn2−1 , (7.54)

qs
ns∑

j=1

νs
j J s

j R = J s
T R , K s

R = ϕ(T s
R) . (7.55)

Here f s(R, t) is the size distribution function of islands of phase s, J s
j R is the flux of atoms of

the j th component onto an island of phase s, J s
T R is the heat flux released during the growth of

phase s, ρ j is the mean concentration of the j th component on the substrate (or in a vapor), χ s

is a coefficient depending on the island shape, qs is the chemical reaction heat released during
the growth of islands of phase s per molecule of phase s, |gD j | and |gT | are the intensities
of the fluxes of the j th component and heat, respectively, and, finally, n1 and n2 are damping
exponents.

A method for the solution of this type of system was developed in Ref. [78]. This method
allows the reduction of the system of Eqs. (7.51)–(7.55) to the respective dependences for a
single-component system. Then, this set of equations can be solved by the Lifshitz and Slezov
approach [75]. However, not long ago, a rigorous asymptotic theory of OR was developed in
Ref. [79]. According to the rigorous results obtained there, the asymptotic laws of variation
of the critical radius, the height and the density of islands coincide with those of Ref. [79],
whereas the asymptotic size distribution function differs from the functions obtained in the
zeroth approximation. In accordance with the results obtained in Ref. [79], derived from the
asymptotic solution of the set of equations (7.51)–(7.55) for sources with n < (d/p), we get

R̄(t) = const Rs
c(t) , Rs

c(t) = const (As
pd t)1/p , (7.56)

h(t) = const (As
pd t)1/p , N(t) = const tn−d/p , (7.57)

f (R, t) = N(t)

Rc(t)
Pp

(
R

Rc(t)

)
, (7.58)

Pp(u) = u p

u p+1 − (p + 1)u + p
exp


d − n(p + 1)

2

u p∫
u

x p dx

x p+1 − (p + 1)x + p


 . (7.59)

Here Pp(u) is the distribution function, normalized to unity, so that
∫∞

0 Pp(u) du = 1, and

v p(u) = p p(p − 1)−(p−1)(u − 1) − u p

p u p−1 . (7.60)

Here u = (p − 1)R/pRc and u p are constants in Eqs. (7.57)–(7.60) determined from the
normalization condition

∫
Pp du = 1, N(t) is the density of the islands of phase s, As

pd is the
kinetic coefficient of phase s depending on mass- or heat-transfer coefficients and on other
constants of the deposited material.

The values of these constants are given in Ref. [13] for all the cases of heat and mass
transfer that can be realized in the course of evolution of an ensemble of islands. As an exam-
ple, here we present only the value for the case where the principal mechanism is the surface
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diffusion of adatoms and the heat is transferred over the substrate surface. In this case, one
gets

As
pd = 27Dosσ sn0 KsblT s

0 (ws
0)

2ψ1(θ)

32
[

Dos
s n0(q

s)2 ln
(

H
Rs

1

)
+ KsbλeffkB(T s

0 )2
] , (7.61)

where

Dos =

 ns∑

j=1

(p j )
2 ln(λ j /Rs

1)

Dajρ
s
j∞




−1

(7.62)

is a generalized surface diffusion coefficient for λs j � Rs
1; Daj is the coefficient of Brownian

motion of adatoms of the j th component, ψ1(θ) = 2(2−3 cos θ +cos3 θ)−1, with θ being the
contact angle, and the other designations were presented above. In the case of atomic sources
with d/p ≤ n < d/(p − 1), for both cap-shaped and disk-shaped islands the critical radius is
also specified by Eq. (7.56) and the distribution function can be calculated within the kinetic
nucleation model (see Eq. (7.46)). The solution also showed [78] that at the OR stage

Na,n

K∑
s=1

qs |gs
D| = |gT | (7.63)

and n1 = n2 hold, i.e., the powers of sources (sinks) of all the phases and heat are related
to one another and vary in time by one and the same law. Otherwise, the ripening process
is impaired. The equations, allowing the determination of regions in the concentration and
temperature space that demonstrate the coexistence of phases, were obtained in Ref. [77].
In Section 7.8, an example of the construction of the phase diagram, i.e., the coexistence of
phases for the system of GaN nanoislands, is considered.

Thus, in multicomponent systems the conditions of quasi-thermodynamic equilibrium are
favorable to the distribution of the substance of components in a most advantageous way over
phases and to the establishment of the regions of phase coexistence, while the action of the
surface tension leads to an universal size distribution of islands of the existing phases. Note
that such a distribution is only possible for low-component concentrations, when the law of
mass action can be applied to the chemical reactions proceeding in the system.

7.7.2 Evolution of the Composition of Nanofilms

It is a well-known fact that the properties of films are mainly determined by their composi-
tion. It is precisely the composition that determines the majority of electrophysical, optical,
strength, and other properties. To gain an insight into the evolution of film composition, such
as to be able to control this composition during film growth, is one of the most important
problems of thin-film physics. It was shown in Ref. [80] that at the OR stage, the radius of
solid solution islands and their composition are in a one-to-one correspondence. Later, a rig-
orous theory describing the evolution of phase composition of ensembles of such islands at
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the OR stage was formulated in Ref. [80]. In particular, the composition distribution function
of islands ϕ(1/χR, t) in the presence of substance sources with 0 ≤ n < (d/p) has the form

ϕ

(
1

χR
, t

)
= N(t)(t)Pp (u) . (7.64)

The average film composition changes according to the law

χ̄(t) = 2σwρL0(1 + γ )

kBT (A0
pt)−1/p

. (7.65)

Here σ is the specific interphase energy of the island–vapor boundary; ρL0 is the equilibrium
concentration of one of the components, for example, A (Fig. 7.4(b)) in the liquidus line, i.e.,
in the liquid or vapor phase; γ is the slope of the straight line joining the liquidus and solidus
lines (Fig. 7.4(b)).

7.8 Nucleation and Growth of GaN Nanofilms

Processes of nucleation of GaN nanoislands prepared by the molecular beam epitaxy (MBE)
and metallorganic chemical vapor deposition (MOCVD) methods are intensively investigated
because of their importance in numerous applications in optics, optoelectronics, and micro-
electronics. The GaN is a stoichiometric compound; therefore, the analysis of nucleation
processes is performed [81, 82] in the framework of the theory of island growth of stoichio-
metric compounds (see Eqs. (7.17)–(7.19)). The analysis shows that at the temperature of the
substrate (sapphire covered with a layer of AlN), T = 480◦C, the probability of nucleation of
liquid Ga islands is higher than that of nucleation of islands of GaN compounds. GaN particles
are formed after nucleation of islands of liquid Ga as a result of chemical reactions between
gallium and nitrogen. At 750 °C > T ≥ 600 °C, only GaN is nucleated. The physical origin
for such behavior is the following.

Diffusion coefficients, lengths of diffusion jumps, and equilibrium concentrations of Ga
and N, determining the generalized coefficient of diffusion, are highly dependent on the sub-
strate temperature. At low temperature, Ga atoms make a main contribution to diffusion mo-
bility; therefore, the probability of nucleation of liquid GaN islands (at T = 480 °C gallium is
present in a liquid phase) determined by Eq. (7.14) is higher than that of nucleation for islands
of GaN compound estimated by Eq. (7.18). At higher temperatures, the mobility of N atoms,
the equilibrium concentration of Ga, and the rate of chemical reaction between gallium and
nitrogen are increased. It leads to the result that the probability of nucleation for islands of the
GaN compound becomes higher as compared to that of Ga.

Mechanisms of growth of islands of GaN in the temperature range T > 480 °C and tem-
perature conditions for a change in nanoisland growth mechanisms are described in the papers
cited above. Dependences of the nucleation rate and size distribution functions of nanoislands,
estimated via Eqs. (7.18) and Eqs. (7.41)–(7.45) for the substrate temperature T = 650 °C,
are given in Figs. 7.12 and 7.13. The OR of an ensemble of GaN nanoislands is examined
in Ref. [81]. The analysis proved that at the substrate temperature T > 650 °C, the process
of OR of the ensembles is fairly subjected to the laws described by Eqs. (7.56)–(7.59) with a
parameter p = 3. In Ref. [81] the kinetic phase diagram is plotted as well.
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Figure 7.12: Time dependence of the nucleation rate I (t) of GaN on the substrate surface at a
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Figure 7.13: Time dependence of the size distribution function, f (R, t), where R is the radius
of islands of GaN nuclei on the substrate surface at the nucleation stage at a temperature T =
650 °C

The set of equations describing the phase diagram for GaN is of the form

Q0Ga = ρ0Ga + MGa + MGaN , Q0N = ρ0N + MGaN , ρ0Ga = kGa ,(
1 − 1

Q0N
MGaN

)(
1 − 1

Q0Ga
MGaN − 1

Q0Ga
MGa

)
= K s∞

Q0N Q0Ga
, (7.66)

where Q0N and Q0Ga are the relative initial amounts of nitrogen and gallium on the substrate
and in the new phase nuclei at the beginning of the ripening stage; MGa and MGaN are the
total masses of the nuclei of liquid Ga and GaN at the end of the ripening stage; K s∞ is
the constant of GaN dissociation on the substrate surface; ρ0Ga and ρ0N are the equilibrium
concentrations of Ga and N on the substrate; kGa is a quantity equivalent to the chemical
reaction constant for single-component substances. The GaN phase diagram calculated by
equations from Eq. (7.66) for three different temperatures is given in Fig. 7.14.
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7.9 Nucleation of Coherent Nanoislands

At present, the Stranski–Krastanov growth of coherent semiconductor islands, which do not
contain lattice mismatch defects, is actively used for obtaining ordered structures with nano-
dimensional quantum dots (QDs) [1–4]. The great interest in such structures is due to the
prospects of their practical implementation in optoelectronics in application to the localization
of charge carriers in the vicinity of QDs [3]. In order to control the physical properties of QDs
during the island growth, it is necessary to determine the driving force of nucleation. We note
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that two principal mechanisms of nanofilm growth exist. According to the first mechanism, the
growth of nanoislands is due to a high density of adsorbed atoms on the wetting layer surface.
The islands grow in such cases as a rule by the Volmer–Weber mechanism. In the case when
there is a close interaction between a substrate and the film material, the islands ought to grow
due to the Stranski–Krastanov mechanism. Thus, in this case, the free energy of an island
decreases due to the difference in chemical potentials of the atoms in the two-dimensional
adsorbate gas and in the island itself, whereas in the second case, the free energy decreases
due to the difference between chemical potentials of the atoms in the wetting layer and in the
island. Here, the chemical potential is determined by the difference between the elastic energy
and the wetting energy. The island growth by the first mechanism occurs on the wetting layer
of constant thickness. In the second case, the thickness of the wetting layer should decrease
during nucleation. The reason is that some of the atoms of the wetting layer transfer to islands
primarily to decrease the elastic energy [51].

A theory of growth of coherent nanoislands via the Stranski–Krastanov mechanism is out-
lined in Refs. [42, 51]. There, calculations and estimations are made taking the growth of
Ge on (100) and (111) Si surfaces as an example. Experimental investigations to verify the
extended theory are described in Ref. [42]. The Ge films were deposited by chemical vapor
deposition in a vacuum chamber equipped with a spectroscopy ellipsometer and a mass spec-
trometer. Digermane Ge2H6, which was diluted with pure He, was used as the precursor in the
pressure range from 4 mbar. A picture of coherent Ge islands on a (100) surface of Si is given
in Fig. 7.15. The following mechanism of the formation of coherent islands, which is based
on the experimental data on the growth of Ge on Si(100) [41,42], was considered in Ref. [51].
Initially, the layer-by-layer growth of the Ge film on the Si substrate takes place, since the Si
surface energy is noticeably higher than the Ge surface energy, and wetting is favorable. How-
ever, Ge and Si have different lattice parameters, and the elastic energy increases with film
growth (the elastic energy per atom is constant). The wetting energy per atom continuously
decreases, since the Ge atoms are removed farther and farther apart from the substrate. At
the moment when the elastic energy per atom is equal to the wetting energy per atom for the
upper atoms of the wetting layer, the layer itself is in equilibrium. However, the wetting layer
continues to grow and becomes metastable, allowing the elastic energy to relax. One of the
possible ways of relaxation is nuclei formation on the wetting layer surface, since the higher
clusters have a higher elastic energy compared to the lower clusters. This process starts when
the nucleation barrier becomes low enough. Due to this fact, the nuclei formed start to grow
and reduce the elastic energy of the film, and the wetting layer becomes thinner thus supplying
the growing islands with atoms. After some time, the nucleation process will be completed,
since a decrease in the wetting layer thickness will lead to a heightening of the nucleation
barrier.

As a result of the studies, the expression for the free energy is derived. The free energy of
the formation of the coherent island from the wetting layer is represented by three terms

F = Fsurf − (Felas − Fatt) . (7.67)

Here, Fsurf is the increase in the surface energy due to the formation of an additional surface
of film material, Felas is the decrease in the free energy due to the elastic energy relaxation
within the island, and Fatt is the increase in the free energy due to weakening of the attraction
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Figure 7.15: SFM picture of Ge coherent islands on Si (100) at T = 500 °C and the average
deposition rate of 2 monolayers per minute
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total Ge amount in the islands measured in monolayer units versus the deposition time for Si
(100)
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(wetting) of the island atoms to the substrate. It is evident that the free energy as given by
Eq. (7.67) is the only driving force of this nucleation process. Each of the three quantities in
Eq. (7.67) depends not only on the number of atoms in the island but also on its shape. This
property is the distinction of this model from the theory of nucleation of incoherent islands.
To calculate Fsurf, Felas and Fatt, the simplest island configuration is used. Specifically,
we assume that a cuboid-shaped island with a square base L and height H is located on the
wetting strained layer with a height h. For such an island configuration with two parameters
L and H , all results are obtained in an analytical form. Calculations given in Ref. [82] show
that the free energy Eq. (7.67) can be expressed in this case as follows

F(i, β, ξ)

kBT
= ai2/3β1/3 + b

i

β
− cξ i . (7.68)

Here kB is the Boltzmann constant, and T is the temperature,

a = 4σ f (h0l2
0)

2/3

kBT
, b = �

6π

h0

l0
, � = λε2

0h0l2
0

kBT
. (7.69)

Here � is the elastic-to-thermal energy ratio, c = �γ and γ = ln(�∞/λε2
0h0) is the constant

characterizing the wetting-to-elastic force ratio (the lattice mismatch between the film and a
substrate), h0 is the height of the monolayer film, l0 is the average interatomic distance in the
same layer, df is the lattice parameter for the film, ds is the lattice parameter for the substrate,
λ is the elastic modulus, �∞ = σs − σf − σs–f, where latter σ -parameters are the surface
tensions of the substrate, film, and interface between them.

The expression derived for the free energy of a coherent nanoisland allows one to describe
the whole process of nucleation of the islands. Thus, the equations for nucleation rate, elastic
energy relaxation rate, time–density relations for the islands and evolution laws of the thick-
ness of a wetting layer in dependence on time were obtained. Theoretical and experimental
dependences for the wetting layer thickness and the total Ge amount in the islands measured
in monolayer units in dependence on the deposition time are given in Fig. 7.16. A model of
self-limiting growth of coherent islands is developed in Ref. [8]. It is shown there that in the
case when there is a barrier for addition of atoms on the boundary of an island and the bar-
rier is dependent on the island size, the process of secondary nucleation is probable there.
Accordingly, the size distribution function of nuclei becomes bimodal. This kind of behavior
is substantially different from the size distribution function of incoherent nanoislands, which
has only one maximum in all cases. Dependencies of the nucleation rate and size distribution
functions of coherent Ge islands on (100) surfaces of Si with the barrier for addition of atoms
on the island boundary can be found in Ref. [8].

7.10 Conclusions

In the present chapter, we have presented the basic results of the modern theoretical concepts
describing both nucleation and the further evolution of nanoparticles on surfaces. Our presen-
tation was based on the general theory of first-order phase transitions. This theory provides
the general approaches allowing one to formulate an unified standpoint in the investigation
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of processes proceeding on the substrate surface and in the surrounding volume in the course
of nanofilm deposition from gaseous, liquid, amorphous, and solid phases. Employing such
generalized approach, we could investigate the influence of various factors on processes of
nucleation of nanoparticles. In this chapter, we considered, in particular, the effects of the
free energy, arising between substrates and nanoparticles, of the composition of the environ-
ment, temperature, electromagnetic radiation, and acidity of a medium on the processes of
nanoparticle nucleation. It was shown that the application of the field-theoretical approach
to the investigation of nucleation of nanoparticles allows us to calculate the structure of the
interface and the dependence of the surface tension on the size of the nanoparticles.

In this chapter, from time to time a comparison of theoretical and experimental results has
been given for illustration purposes. A detailed analysis of the huge amount of experimental
studies of these phenomena is out of scope of this chapter. A huge amount of literature exists,
where experimental devices and techniques for preparation of nanostructures are described.
For details, the readers are referred to the respective literature.
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8 Diamonds by Transport Reactions with Vitreous Carbon
and from the Plasma Torch: New and Old Methods
of Metastable Diamond Synthesis and Growth

Ivan Gutzow, Snejana Todorova, Lyubomir Kostadinov, Emil Stoyanov, Victoria Guencheva,
Günther Völksch, Helga Dunken, and Christian Rüssel

Everything is vague to a degree you do not realize
till you have tried to make it precise.

Bertrand Russell

The aim of the present chapter is to summarize existing and newly developed theoretical
ideas on the physical and chemical nature of the processes of nucleation and growth of di-
amond at metastable conditions. At these conditions the thermodynamically stable modifi-
cation of carbon–graphite should be expected to form, but as it turns out, diamond can also
be obtained and even exclusively formed. Using the classical capillary theory of nucleation,
Ostwald’s rule of stages is accommodated in a first theoretical approach to explain diamond
nucleation, accounting for the peculiarities of diamond structure and growth. In a second the-
oretical scenario, the possibilities are analyzed that in some cases (e.g., on a substrate, heav-
ily bombarded by incoming vapor phase molecules) the 2D pressure in the condensate may
be so high that nucleation takes place in a pseudo-metastable manner: at pressures, corre-
sponding to the range of thermodynamic stability of diamonds. A third new possibility for
diamond formation is also considered connected with the size dependence of stability of liq-
uid carbon droplets of graphite and of diamond for nanosized clusters. Thus the possibility
of another theoretical model of evolution (vapor → liquid carbon → diamond) is analyzed
as well. Accounting for the phase diagram of carbon, this possibility seems mostly reserved
to processes of binodal or spinodal nucleation at extreme vapor pressures and temperatures,
e.g., in interstellar space. Particular attention is given also on the effect of known or even hy-
pothetical carbonaceous compounds in diamond growth and nucleation, on the influence of
atomic hydrogen on carbon incorporation into diamond lattices, and on the design of optimal
C(hemical)V(apor)D(eposition)-gaseous transport reaction schemes for diamond growth and
nucleation. Results are given on two different experimental realizations of diamond synthesis,
including nucleation and growth. A comparison with own experimental results and existing
experimental evidence demonstrates both the possible applications and the limits of physical
and chemical approaches explaining essential features in metastable diamond synthesis.

8.1 Introduction

In the present chapter, an effort is made to describe the possibilities and present first results
obtained by the application of two new and several more or less known, even classical, variants
of metastable diamond synthesis. According to one of these methods, as a precursor carbon
source, guaranteeing a constant thermodynamic driving force of the process, vitreous carbon
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and other carbon materials with frozen-in disorder or dispersity and thus with an increased
thermodynamic potential, may be employed. In this way, diamond seeds can be grown at
constant temperature in a closed volume of simple reaction vessels. The first experimentally
obtained results indicate that this method may, when compared with other techniques of di-
amond synthesis and growth at metastable conditions, promise several technological advan-
tages. More important advantage, according to the opinion of the present authors, is, however,
that this method seems to give an example of the possibilities, a release of kinetically frozen-in
disorder and configurational energy, accumulated in solids with an increased thermodynamic
potential, can offer. According to the second method of metastable diamond synthesis, re-
sults of which are also summarized in the framework of the present investigation, diamond
microcrystals are directly formed and then grown up in conditions of a new variant of plasma-
assisted chemical vapor deposition (CVD) methods. The particularly significant point in this
second approach is that diamond is thus not only grown, but also nucleated at metastable con-
ditions, at which graphite is the thermodynamically stable crystalline modification of carbon.
Of significance is the possibility of uniting both above-mentioned methods of metastable dia-
mond synthesis by first forming a glass-like carbon microdroplet in the plasma torch and then
a diamond microcrystal. After that the diamond microcrystal can be grown up by a process of
isothermal glass → crystal plasma sustained vacuum distillation.

In the first group of our experiments, the kinetic barrier, arresting the disordered solid
in a state of increased thermodynamic potential and reactivity, is reduced or removed, thus
enabling the reaction carbon glass → diamond to take place. This reduction is most con-
veniently performed with gaseous transport reactions in a closed reaction volume at normal
(or even reduced) pressure and at temperatures in the vicinity of 1300 K. Other possibili-
ties, which have also been tested by us, are to facilitate this reaction in appropriate solvents
of carbon (in silicate melts or in molten alloys). This second way of experimental realization
brought, however, no distinct results so far. Thermodynamic calculations and kinetic estimates
show, nevertheless, that this second possibility could also result in a realization of the above
given reaction path. It corresponds, in some respect, both to diamond synthesis on geological
scales (e.g., in olivine-type silicate melts, leading to South Africa’s kimberlite diamond de-
posits) or to the direct high-pressure synthesis of technical diamond in Ni alloys at diamond
stable conditions. Latter possibility was in fact realized experimentally years ago [1]. From a
thermodynamic point of view at normal pressure the above reaction is a change from the state
of nonequilibrium (the carbon glass) to a metastable phase (the diamond). This is the case
since graphite and not diamond is the allotropic form of carbon, stable at normal pressure and
temperatures we employ.

The larger part of the experimental results and some of the theoretical considerations, on
which this chapter is based, have been reported by the present authors and their colleagues in
several preceding publications, which are listed below. Here things are theoretically reconsid-
ered, and new problems, possibilities, and solutions for a further development are outlined and
discussed, taking into account newly obtained theoretical and experimental findings. These re-
considerations and developments, although based mostly on results procured by a large group
of authors working both in Sofia and in Jena, were done primarily by the first three authors of
the present chapter. These authors thus took the responsibility not only for the way of outlin-
ing most of the new developments reported here, but also for any possible miscalculations and
misunderstandings that may eventually arise.
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8.2 Some History

In the present-day artificial diamond synthesis, two main possibilities are employed. The first
one is diamond formation and growth at high pressures and temperatures in the region of the
carbon phase diagram, where diamond is the stable phase. The second method is metastable
diamond synthesis and growth at relatively low temperatures and normal (or even reduced)
pressure in the range of the phase diagram, where graphite is the stable modification. The
realization of this second path of diamond synthesis can be interpreted as being based on
the predictions of Ostwald’s rule of stages and its kinetic interpretation in the framework
of the classical nucleation theory. Here this possibility is discussed in several variants tak-
ing into consideration the thermodynamic peculiarities of the graphite to diamond transition.
Presently, the technical applications of metastable diamond synthesis are mostly realized in
different variants of CVD processes, taking place either at constant temperature or in temper-
ature gradients and usually in the C/H2/H∗ system [2, 3].

Efforts to synthesize artificially diamonds have a long and exciting history. First attempts
in this direction were reported as early as 1870 and an account of the various techniques em-
ployed may be traced in the older chemistry textbooks [4] and in the subsequent reference
literature (see [5] and especially [6]). Besides several of these efforts, which can be termed
as obvious failures or even as falsifications, usually the experiments of the famous French
chemist Henri Moissan (who first obtained elemental fluorine) have to be mentioned. In his
investigations, Moissan subjected the highly dispersed graphite (or carbon in metallic solu-
tions) in several ingenious ways (see [6, 7]) to short pulses of relatively high pressures and
to temperature rises (up to 1500–1800 K) and received in fact hard, translucent microcrystals.
These crystals were, however, identified later on as metal carbides. Considering the thermo-
dynamic data on different carbon modifications and the mentioned phase diagram of carbon
available now, it is evident that Moissan could not succeed at these conditions in the direct
synthesis of diamond, i.e., in the graphite → diamond transition in the field of stability of
diamond. Both temperatures and pressures he had at his disposal were too low. In fact, nei-
ther of the early experiments on diamond synthesis claims, performed before 1955, has been
successfully repeated.

In 1955, in the laboratories of the General Electric Company (Schenectady, NY) the first
direct diamond synthesis was performed at pressures of 70 000 bar and temperatures 2000 K.
At nearly the same time, similar successful experiments were made in Sweden [5, 7, 8], and
then in the Soviet Union, in South Africa, and later on in the laboratories of every industrial-
ized nation. Thus, all over the world the direct synthesis of diamond was introduced in tech-
nological scales [9, 10]. This development was based, on one hand, on the thermodynamic
predictions of several authors (Simon [11], Leipounskii [12], Berman and Simon [13]). They
determined the equilibrium P(T ) curve, separating the range of stable existence of diamond
and graphite in the phase diagram of carbon (the famous Simon–Leipounskii line). On the
other hand, it was based on the results of the experiments of P. W. Bridgman, who conducted
prolonged studies on the changes in various materials subjected to high pressures. These ex-
periments gave the clue for the development of the means of producing high-pressure, high-
temperature equipment (e.g., the Belt apparatus, see the literature summarized in Refs. [9,
10]). Usually in this way in a volume of several cubic centimeters diamond microcrystals (for
technical uses mostly) are produced in experimental times of minutes.
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However, in recent developments [14, 15], which became possible with the construction
of new high-temperature–high-pressure synthesizing equipment, even single-crystal diamonds
up to one or two carats have been synthesized, using the direct, “stable” way of synthesis, via
appropriate metallic solutions and durations of growth up to 24 h (1 metric carat = 200 mg).
As a particularly interesting development in this line, experiments on the “explosive” synthe-
sis of diamonds have to be mentioned, performed beginning from the 1960s [16]. In these
experiments (resembling some features of Moissan’s ingenious investigations), in steel cam-
eras by the ignition of appropriate explosives combined pressure and temperature shock waves
are produced (reaching up to 300 000 bar) with millisecond duration. By this method, popu-
lations of micro- or nano-diamonds are formed (see [16, 17]). Explosive synthesis is thus also
a variant of diamond formation at “stable” conditions. The story of the realization of the first
metastable diamond synthesis may be followed in more detail in several review articles [2, 3,
18, 19].

According to the first classical variants of this method, diamond seeds (usually fine ground
diamond powders) are brought into contact with supersaturated carbonaceous gases (methane
CH4 [2, 3], alcohol–water solutions [20, 21]) or with gaseous mixtures, in which the Bouduard
reaction (CO2 + C ⇔ 2CO) can take place at normal pressures and at 1000–1300 K. The
results of the last 50 years have shown that in most cases of metastable gaseous diamond
synthesis, a very high energy of the growth sustaining vapor mixtures is required (plasma-
assisted growth or hot filaments, at 3000 K) guaranteeing the dissociation of hydrogen and
thus the presence of atomar hydrogen H∗ (or oxygen O∗). Consequently, the first essential
factor in metastable diamond growth experiments seems to be the nature and activity of the
precursor carbon gas. The second significant factor, the kinetic factor to be accounted for, is
determined by the mechanism of incorporation of ambient phase molecules into the growing
diamond face. This process depends mainly on the chemical transport reaction employed.
Because of the enormous strength of the C–C bonding, the direct incorporation of vapor phase
C atoms at the desired relatively low temperatures (1000–1400 K) into the diamond lattice is
very improbable.

Detailed investigations of the system C/H2/H∗ show that most probably at plasma condi-
tions hydrogen atoms (H∗) are adsorbed on the diamond surface, occupying active growth sites
C#. As the next step, the incorporation of new carbon atoms into the diamond lattice is realized
via the reaction [22, 23] C(H∗) + H∗ → C∗ + H2 ↑, thus forming “dangling bond” diamond
lattice sites and molecular hydrogen [24]. At temperatures about 1400 K this process proceeds
much easier than the direct incorporation of C atoms into the diamond face. It is claimed that
the incorporation of carbon atoms into the diamond lattice at relatively low temperatures (be-
low 500 K, see [25, 26]) can be additionally enhanced in H/CH4 gaseous mixtures by the
presence of halogen atoms. Via the reaction H2 + Cl∗ → H∗ + HCl, they catalyze the for-
mation of atomic hydrogen at the diamond face at lower temperatures. Metastable growth
only via the halogen reaction CI4 ⇔ C + I4 has also been reported [27]. Of great signif-
icance for the following discussion is also that in some plasma-assisted CVD condensation
techniques not only diamond growth but also diamond nucleation was achieved at metastable
(or, at least, at seemingly metastable) conditions [3, 20, 21, 28]. Here both hydrogen plasma-
assisted CVD processes, taking place at relatively cold anodes at high condensation rates, and
evaporation–condensation methods (eventually via intermediate formation of carbon clusters
at 3000–4000 K) from pure carbon vapors have to be mentioned. These and similar nucleation
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experiments, also performed by the present authors, are discussed in detail in Sect. 8.4.4. Of
particular interest for the present discussion are also the results when the reaction carbon glass
→ diamond or other possible changes of the type active carbon materials → diamond are
used to grow diamond by employing the appropriate gas transport reactions [29, 30]. The re-
sults thus obtained with the so-called vitreous carbon are described in both its thermodynamic
premises and kinetic limitations in several of the subsequent sections.

Glasses and defect solid states of matter are, from a thermodynamic point of view, non-
equilibrium frozen-in systems. In such systems not only a structure with increased disorder,
but also a state with increased thermodynamic potential is arrested [31]. This feature deter-
mines higher vapor pressure and solubility and increased reactivity of vitreous and vitreous-
like solids [32, 33]. In any glass, the possibility is thus accumulated to be the source of an in-
creased thermodynamic driving force (i.e., of increased supersaturation) in processes of both
phase segregation and crystallization. This possibility can be realized, as mentioned above,
provided the kinetic restrictions, arresting the increased disorder and the higher thermody-
namic potential of glasses, are reduced or even removed. This can be achieved by the dis-
solution of the vitreous solid in an appropriate solvent [32]. There is a well-known classical
experiment in this respect: The dissolution of SiO2 as two forms, once as a glass and then as
a quartz, in hydrofluoric acid gives in the calorimeter a considerable enthalpy difference. In
Refs. [31, 33], results are summarized for several glass-forming systems, where, taking into
account the difference in solubility of the glass and of the crystal, the respective Gibbs po-
tential difference between the glass and the crystal, �G, is calculated and compared with the
results of the corresponding calorimetric measurements.

The use of glass as a source of constant supersaturation in crystallization processes was
proposed for the first time by Nacken [34] for isothermal growth of quartz crystals from alka-
line aqueous solutions of quartz glass at temperatures higher than the critical temperature, Tc,
of water. These experiments failed, because (as becomes evident, now [29, 31]) the super-
saturation in Nacken’s experiments was too high: So instead of the expected growth of the
introduced quartz seed crystals, new quartz microcrystals were formed. At lower supersatura-
tions, as they were realized in experiments performed by Grantscharova and Gutzow [33, 35]
with a simple model glass and its crystal (phenolphthaleine, growing from aqueous solution),
smooth growth of the introduced seed crystals was in fact experimentally observed. These
experiments and results on solution growth of selenium single crystals, sustained by vitreous
selenium [36], gave the impetus for our experiments with diamond and vitreous carbon.

Before going into the details we would like, however, to return to one of the classical ex-
periments on diamond synthesis performed at the end of the 19th century. This experiment,
sometimes believed to be the only example of successful diamond synthesis in the 19th cen-
tury, displays features of both diamond nucleation and growth at conditions where diamond
is metastable. It was reported in 1880 in a paper submitted to the Royal Society in London
by the Scottish chemist James Ballantyne Hannay [37]. In this paper, Hannay claims that he
has synthesized small diamond crystals by heating in sealed massive wrought-iron tubes for
15 h at “red heat” (i.e., probably at ∼ 1100 K), a mixture of “paraffin oil” (i.e., of naphta),
“bone oil” (i.e., the pyrrole and pyridine containing product of the dry distillation of animal
bones: of organic constituents, rich in organically bond nitrogen), and alkali metals (usually
lithium). Lithium in elemental form produces with the paraffins nascent hydrogen (i.e., H∗)
and elemental carbon. As a necessary ingredient to this mixture, “lamp sooth” (i.e., finely dis-



8.2 Some History 261

persed, almost amorphous carbon in a very reaction-active form) was also always added. Thus,
according to the present-day considerations (see [5, 7]) in Hannay’s reaction tubes a very ac-
tive reaction mixture of active hydrogen and carbon existed at the mentioned temperature at
approximately 1000 bar. At these conditions the transport reaction HCN + H2 → NH3 + C
could have taken place (as argued in [5]) leading to diamond growth. Hannay mentions in
fact about the typical deadly smell of hydrocyanic acid when he opened his reaction vessels.
Eleven of the crystals he synthesized were officially deposited by him with the curator of
the British Museum, London. Many years later (1935), a well-known crystallographer, Dame
Kathlean Lonsdale [7], gave an X-ray proof (not known at Hannay’s times) that 10 of the 11
deposited crystals are in fact diamonds, and (and this is essential!) that their optical lumines-
cence does not correspond to any of natural diamonds, known at this time. So, has in fact
Hannay succeeded in diamond synthesis? Is it really possible to obtain diamonds at his con-
ditions? Despite several attempts neither of his experiments could be successfully repeated.
Moreover, in later times it was claimed [7] that very rare natural diamonds exist having a lu-
minescence similar to Hannay’s diamond samples. Could he had possessed in 1880 such rare
natural diamonds? These are serious, still unanswered questions and this is why there have
been also opinions expressed in the literature that Hannay may have been an imposter, or that
he has been the victim of some strange (wanted or unwanted) perfectly done falsification.

In our present analysis, we make an effort to use the existing experimental and theoretical
results and our own experience in explaining essential features in several types of diamond
synthesis, occurring in nature at geological and at cosmic conditions. Can our experience also
be of help in solving the mystery with Hannay’s diamonds? In Sect. 8.3.5, considerations
are given, supporting the possibility that in Hannay’s iron tubes diamond growth and even
diamond nucleation may have in fact taken place.

This analysis as well as the whole discussion of the experimental and technical possibilities
of any method of metastable diamond synthesis requires first the construction of the complete
phase diagram of carbon for its equilibrium vapor, liquid, and crystalline phases. Moreover, the
introduction of the properties of thermodynamically nonstable, active carbon materials (such
as the mentioned vitreous carbons, carbon blacks and sooth, even of fullerenes, etc.) into these
diagrams is necessary. A first attempt toward the construction of the thermodynamic phase di-
agram of carbon, outlining the possibilities of phase transformations and growth, was made
in two of our previous contributions [30, 38]. In the following two sections 8.3.1 and 8.3.2,
they are introduced together with an enlarged classical phase diagram of carbon. These dia-
grams, we hope, not only outline possible ways of metastable synthesis from the vapor phase,
by using different CVD procedures or reactions, but also indicate unexpected possibilities of
diamond synthesis in nature and especially of cosmic diamond synthesis. The synthesis of cos-
mic diamond, as it seems, may explain both processes taking place in catastrophic supernovae
explosions in the universe and in the quiet of industrial laboratories, where thin diamond films
and diamond gems are synthesized.
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8.3 Basic Theoretical and Empirical Considerations

8.3.1 The Phase Diagram of Carbon and Diamond
and Graphite Formation

In Fig. 8.1, the phase diagram of elementary carbon is given as constructed by Bundy (see [5]).
It not only illustrates the possible areas of stability of graphite, diamond, and liquid carbon,
but also shows a schematical prolongation to the carbon vapor phase. At very high pressures,
the possible existences of a third still hypothetical phase (“metallic” carbon) is indicated in
analogy with the extrapolated phase diagrams of Si, Ge, and Sn [39]. By solid lines, the exper-
imentally and thermodynamically more or less confirmed course of the coexistence curves is
drawn between the corresponding equilibrium phases of carbon. By dashed lines, the extrap-
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Figure 8.1: The phase diagram of carbon in p vs. T coordinates according to Bundy (see Ref. [5]
and the literature cited there). The thermodynamic stability fields of graphite, diamond, and liq-
uid carbon are separated by solid lines, prolonged into the metastable regions as dashed lines.
Also with a dashed line, the Simon–Leipounskii line (Eq. (8.1)) is indicated in its extrapolation
for temperatures above 1700 K (where no thermodynamic data for diamond are available). Ad-
ditionally introduced as a solid line is the vapor/liquid equilibrium course (more clearly seen
in Fig. 8.2). With TMDL, TDgL, and Ttr, the three triple points (metallic carbon/diamond/liquid,
diamond/graphite/liquid, and graphite/liquid/vapor) are specified. Metallic carbon is introduced
as a hypothetical possibility in line with similar metallic phases for Pb, Sn, Si, and Ge. With (1)
and (2) the hypothetical areas of diamond-like and graphite-like liquid carbon are indicated
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Figure 8.2: The phase diagram of carbon in logarithmic representation according to Bundy
et al. (see [5]). The different triple points as in Fig. 8.1 are indicated. With Tc the critical point
of carbon is denoted estimated in Eq. (8.2)

olated coexistence lines of the same phases in the respective metastable regions are shown:
They illustrate schematically possible changes.

Of greatest significance for the direct synthesis of diamond is the already mentioned
Simon–Leipounskii–Berman line separating diamond from graphite. It can be approximated
by a straight line

p = A0 + B0T , (8.1)

Its knowledge enabled the first technical “direct” synthesis of diamond. The carbon vapor–
liquid coexistence line in Fig. 8.1 is introduced in the form as proposed by Wentorf (see again
[5]). This line is of great significance in analyzing the condensation processes in the metastable
synthesis of diamond to be discussed below. The vapor–liquid–graphite fields in the vicinity
of the triple point Ttr of graphite–liquid–vapor become more evident in Bundy’s logarithmic
representation (Fig. 8.2), also used by Wentorf [5]. For the melting point of graphite usually
Tm = 4000 K is given as an estimate.

From Figs. 8.1 and 8.2, the possible three triple points in the discussed phase diagram
are evident as well: metallic carbon–diamond–melt TMDL; diamond–graphite–melt TDgL; and
the already mentioned vapor coexistence temperature Ttr. In Figs. 8.1 and 8.2, we have also
introduced the critical point Tc of carbon. It is estimated in older literature (see [5]) from
less convincing vapor pressure data in log p vs. T constructions in the limits from Tc ∼=
7000 K to Tc ∼= 8000 K at pc ∼= 1500 bar. More recent estimates, made in the framework of
Lennard–Jones model theories of liquid carbon [40], give also Tc ∼= 7000 K. In Table 8.1, we
have summarized the temperatures and pressures corresponding to the mentioned coexistence
points. We introduce the following estimates as the values of the critical parameters Tc, Vc,
and pc of carbon: We employ the empirical rule Eq. (8.2) as a simplest estimate of the critical
temperature, Tc, of carbon [41]:

Tc = 5
2 Tm (8.2)
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Figure 8.3: The pV diagram of vapor–liquid phase coexistence in terms of the van der Waals
equation of state. The binodal and spinodal curves are both terminating at the critical point Tc

resulting in Tc ∼= 104 K. Utilizing, as a first approximation, the van der Waals equation of
state and taking the constants a∗, b∗ from this equation, the critical pressure pc and volume
Vc are given by

pc = a∗
27b2∗

, Vc = 3b∗ , Tc = 8a∗
27b2∗R

,
pcVc

RTc
= 0.375 . (8.3)

The critical volume of carbonaceous compounds is usually calculated via the respective para-
chor value, �, which for carbon is given as � = 9. Thus, with the empirical rule [42]

Vc ∼= (0.4� + 11)1.25 (8.4)

the value Vc ∼= 15 cm3/ mol is obtained. With Eqs. (8.3) it follows

pc ∼= 21Tc

Vc − 8
(8.5)

and with Eq. (8.2) and the mentioned value of Tm (as given in Table 8.1) we obtain values
well above older estimates pc ∼= 3.5 × 104 bar. From vapor pressure measurements usually
the boiling point, Tb, of liquid carbon (at p = 1 atm) is estimated, in earlier literature, to be
3800 K (i.e., well below its melting point, Tm).

Summarizing the foregoing evidence it has also to be mentioned that according to the
above calculations, C1 was considered as the only possible form of carbon vapor. Other forms
of aggregation (e.g., C2, C3, . . . , Cn [43]) with different degrees of molecular polymerization
were disregarded. Below the critical temperature, Tc, condensation of liquid carbon should
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be possible and (considering what is known from the van der Waals equation of state for any
substance) a population of liquid droplets can be formed either via nucleation and growth
(between binodal and spinodal) or via a spinodal decomposition process (below the spinodal,
see Fig. 8.3). As typical for spinodal decomposition (since the value of the surface energy
vapor/liquid, σ , tends to zero), the form and size of spinodal droplets are not determined
by interface effects (requiring spherical clusters at the initial stages with Gibbs–Thomson
dimensions).

In Figs. 8.1 and 8.2, the two main crystalline polymorphs of carbon (graphite and dia-
mond), the hypothetical metallic carbon field, and the liquid carbon area are shown. In addi-
tion, in the literature [39] also the possible existence of two liquid polymorphic carbon modi-
fications is discussed (in analogy with the case of liquid silicon) as a special case of polyamor-
phism [44]: a graphite-like and a diamond-like liquid ((1) and (2) in Fig. 8.2). The possible
existence of the still hypothetical glassy carbon should also be taken into account. It could be
obtained by the vitrification of any of the two above-mentioned liquid carbon polyamorphs (1)
and (2). Thus two different glasses with diamond-like and graphite-like structure could also be
expected. It is even possible that such glass-like forms with graphite- or diamond-like structure
have already been obtained as thin extra-hard carbon films formed under various conditions of
vacuum condensation. The possible formation of such glass-like carbon structures in processes
of plasma condensation we have previously discussed in Ref. [30]. A thorough discussion of
these and similar condensates and other amorphous solid forms of carbon requires the knowl-
edge of the thermodynamics of carbon modifications, which will be established in Sect. 8.3.2.
Here we only have to mention that the so-called vitreous carbons, synthesized as the result
of high-temperature pyrolysis of carbon-rich resins, are in their thermodynamic properties far
from the expected properties of the above anticipated diamond- and graphite-like glasses.

In the phase diagrams shown in Figs. 8.1 and 8.2, new carbon modifications (fullerenes,
carbon tubes, and carbin), the synthesis of which is based on particular structural principles,
are not introduced. They are characterized by very interesting particular and striking struc-
tural principles, but too little is known at present about the thermodynamics of these carbon
polyamorphs. Their possible significance as precursor materials in diamond synthesis has al-
ready been examined [45], however, with little promising results.

8.3.2 The Thermodynamic Phase Diagram of Carbon

The temperature dependence of the thermodynamic functions of the two crystalline modifica-
tions of carbon, graphite, and diamond can be found in the reference literature [46] and are
represented in their essential part, as the Gibbs potential course G (T ), in Fig. 8.4 (at a pressure
25 kbar). In addition, the G (T ) function of carbon vapors is given (treated as a single atomic
gas [46]). These G (T ) functions are constructed employing both the corresponding specific
heat measurements, Cp (T ), the heats of transformation, �Htr, diamond/graphite, the heat of
melting, �Hm, of carbon (�Hm is determined usually as an extrapolation of the known values
for Sn, Ge, Si (see [46, 47] and Fig. 8.5) and vapor pressure measurements (for �Hevap [43,
46]). The heat of transition diamond/graphite �Hd/gr (at T = 293 K) is calculated from direct
caloric measurements (as heats of combustion in the calorimetric bomb [47]). In Table 8.1,
the most reliable respective caloric data for carbon employed in the present study are given.
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Figure 8.4: The thermodynamic properties of the different forms of carbon in terms of Gibbs’
thermodynamic potential. The left figure shows the temperature course of the thermodynamic
potential Ggr (T ) of graphite (1), Gd (T ) of diamond (2), of the undercooled carbon melt (3),
and of the hypothetical glass (4), formed from the undercooled melt at an imaginary glass tran-
sition temperature Tg = (1/3) Tm, where Tm is the melting temperature of graphite. The right
figure shows the temperature dependence (5) of the thermodynamic potential Gv (T ) of carbon
C1 vapors. Note that the values of the differences �Gv/gr (T ) = Gv (T ) − Ggr (T ) and of
�Gv/d (T ) = Gv (T ) − Gd (T ) are nearly equal in this representation
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their melting temperature, Tm: (a) heat of sublimation �Hsubl; (b) enthalpy of melting �Hm.
Note the way �Hm for carbon is estimated

In Fig. 8.4, the G (T ) course of liquid carbon is shown as well (again calculated at p =
25 kbar). It has been first constructed in our paper [38] taking into account the following
considerations [48]: (i) According to the second law of thermodynamics (and the resulting
stability conditions following from it for the metastable and the stable phases) the inequality

�Cp (T ) = Cp (T )carbonmelt − Cp (T )graphite > 0 (8.6)
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Table 8.1: Characteristic transition temperatures ([5, 46] and the newest reference data) and
thermodynamic properties of carbon in its basic equilibrium [5, 38, 46] and vitreous [38, 54]
modifications. The exceptionally high values of Tm, Tb, Ttr, etc. of carbon determine a scatter
of temperatures of about ±500 K in reference literature and differences up to 25–30% in the
caloric data reported. We use here only the latest and seemingly most reliable data

Temperatures in phase diagram Temperature, T At pressure, p
K kbar

Melting point, Tm (graphite) 4300 25
Boiling point, Tb 4500 10−3

Triple point, Ttr 4700 10−1

Critical point, Tc 8000 35
Triple point, TDgL 4200 120
Triple point, TMDL 1800 640

Melting enthalpy of graphite, �Hgr/l 100 kJ/mol
(at 25 kbar)

Melting entropy, �Sgr/l, of graphite 24 J/(mol · K)
(at 25 kbar)

Sublimation enthalpy, �Hsubl, of graphite 700 kJ/mol
(at 10−3 kbar)

Enthalpy difference, �Hgr/d, graphite/diamond 1.8 kJ/mol
(at 293 K and 10−3 kbar)

Hypoth. carbon-glass transition temperature, Tg 1700 K
(at 25 kbar) [38]

Hypoth. carbon glass: frozen-in enthalpy,�Hg [38] 40 kJ/mol
Hypoth. carbon glass: frozen-in entropy, �Sg[38] 3.5 J/(mol · K)
Real vitreous carbon: frozen-in enthalpy [38, 54] 5.4 kJ/mol
Real vitreous carbon: frozen-in entropy [38, 54] ∼= 0
Real vitreous carbon: enthalpy (according to [55]) 3 kJ/mol
Real vitreous carbon: entropy (according to [55]) 0.77 J/mol · K

has to be fulfilled and with

d�S

dT
= �Cp(T )

T
,

d�H

dT
= �Cp(T ) , �G(T ) = �H (T ) − T �S(T ) (8.7)

we get

d�G(T )

dT
= −�S(T ) < 0 . (8.8)

(ii) The third law of thermodynamics implies, moreover, that for any (stable or metastable)
thermodynamic phase we have to write for temperatures, approaching zero, the relations

�Cp (T )
∣∣
T →0 = 0 , �Sp (T )

∣∣
T →0 = 0 , (8.9)
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d�G(T )

dT

∣∣∣∣
T →0

= d�H (T )

dT

∣∣∣∣
T →0

= 0 , �G(T ) |T →0 = �H (T ) |T →0 . (8.10)

In the above well-known thermodynamic relations the �-sign refers both to the melt/graphite
and to the diamond/graphite difference. (iii) The thermodynamic conditions for first-order
phase transitions (here at the melting point, Tm, of graphite) are [31]

�G(T )|T =Tm = 0 , �S(T )|T =Tm = �Sm > 0 , (8.11)

�H (T )|T =Tm = �Hm > 0 . (8.12)

(iv) In order to specify the particular temperature course of the thermodynamic potential dif-
ference in the vicinity of the melting point, Tm, of graphite, we expand �G(T ) as a truncated
Taylor series at T → Tm. With Eqs. (8.7) and (8.8), we obtain

�G(T ) ∼= �SmTm(1 − x)
[
1 − a0 (1 − x)/2

]
. (8.13)

Here x denotes the reduced temperature, x = T/Tm, and the so-called thermodynamic struc-
tural parameter, a0 = (�Cp (Tm))/�Sm, is introduced, which we discussed for the first time in
Ref. [49] (see also [31]). It determines the “fragility” of the temperature course of the thermo-
dynamic functions of the undercooled melts. For this parameter, values ranging from a0 = 1
(metallic behavior) to a0 = 2 (complex polymer melts) have been predicted and found [31,
49]. Knowing the good electric conductivity of carbon melts (as determined by experiments
performed in the electric arc at pressures p > 10 kbar), where, according to the phase dia-
gram, only the existence of liquid carbon is possible (see Fig. 8.1), a0 = 1 has to be assumed
for liquid carbon [38]. With this value of a0, Eq. (8.13) gives for the melt/graphite potential
difference (i.e., for the thermodynamic driving force of graphite melt crystallization)

�G(T ) ∼= �SmTm

(
1 − x2

)
/2 . (8.14)

This result was used in constructing the �G(T ) course of undercooled carbon melts as is
given in Figs. 8.4–8.6. The thermodynamic potential difference, �G (T, p), between graphite
and diamond is determined by the relation

�GT (T, p) = �G p=0 (T ) +
p∫

p0

�VT d p (8.15)

and can be approximately expressed, as first found by Simon [11] in 1926, as

�Gp (T ) ∼= 60 + 1.0 T . (8.16)

This dependence is given in Fig. 8.4 above the G(T ) course of graphite and separately shown
in Fig. 8.6 in �G vs. T coordinates as a straight line. To this �Gp(T ) line, in the (p, T ) phase
diagram the already introduced coexistence line corresponds (also first determined by Simon
[11]) given with Eq. (8.1). It divides the area of stable diamond existence from the graphite
stability field. Simon calculated the constants in Eq. (8.1) as A0 = 1500 and B0 = 22, when p
is expressed in bar. Leipounskii [12, 50] found A0 = 7000 and B0 = 27. In the present-day
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Figure 8.6: Left: Thermodynamic potential of the same forms of carbon as in Fig. 8.4 in terms
of the differences of the thermodynamic potential G(T ) vs. Ggr(T ), given now as the ordinate
line (1). Thus, curves (3) and (2) indicate here the potential difference melt/graphite and dia-
mond/graphite. With curves (6) and (7) the thermodynamic potential differences of two vitreous
carbon materials are introduced, one we synthesized from furfuryl resins, and a commercial
product, respectively. Here, as in Fig. 8.4, both G(T ) and �G(T ) refer to bulk materials. Note
the considerable values of �Gv/gr(T ) and �Gv/d(T ) and of �G(T )gr/melt when compared
with the difference �Gd/gr(T ) = Gd(T ) − Ggr(T ) given with curve (2). Right: Gibbs’ po-
tential differences as in the left part: Here curves (6′) and (7′) refer to vitreous carbon glasses
brought to nanosize dimensions. The potential difference �G (T ) for nanosized diamond vs.
bulk graphite is introduced with curve (8). Note the change of the interception point of the two
curves: Simon’s �G(T ) line (curve (2) for bulk material) and the curves for nanosized materials
(curves (6′), (7′) and (8)). The straight line (4) has the same meaning as in Fig. 8.4

reference literature [46], for the first constant in Eq. (8.16) the value 453 cal/mol is used and
for the second constant a value very close to the first finding by Simon (0.80 cal/(grad mol))
is employed.

In Figs. 8.4 and 8.6, besides the thermodynamic properties of the two main thermody-
namic solid phases of carbon (its allotropic crystalline modifications diamond and graphite),
also the thermodynamic potential course of the still hypothetical carbon glass and (in Fig. 8.5)
of several representatives of the so-called vitreous carbon materials are introduced. The way
of determination (or, at least, estimation) of the thermodynamic properties of these vitreous
carbon materials is discussed in Ref. [38] and in the next section. Unfortunately, there are
no thermodynamic data known to the present authors on such carbon modifications as the
already mentioned fullerenes [51, 52] or of carbonaceous structures, such as hydrogen- or
fluorine–graphite adducts, graphitic acids, etc. discussed in Refs. [5, 53]. Such aducts may
be of significance in processes of graphite–diamond transitions and thus in metastable dia-
mond synthesis. In Fig. 8.6, for the discussed carbon materials also the �G(T ) course for
fine-dispersed samples is drawn.
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8.3.3 The Thermodynamic Properties of Glassy Carbon Materials

The only previous analysis of the thermodynamic functions of so-called vitreous carbon ma-
terials, known to us, may be found in a paper by Vereshchagin [54]. It is based on Cp(T )
measurements of several vitreous carbon materials. His �G(T ) construction is unfortunately
performed without taking into account the most substantial thermodynamic characteristics
of a frozen-in system: the increased zero-point entropy, �Sg, of glasses. The significance of
zero-point entropies in characterizing and defining glassy systems is discussed in detail in
Ref. [31]. The first proof of the expected increased zero-point entropy of vitreous carbons was
given in a paper by Mahadevan and Weisweiler [55] based on solubility measurements of vit-
reous carbon materials in molten nickel. A similar proof, with several vitrified carbonaceous
resins, was also given years ago by Das and Hucke [56] based on direct determinations of the
EMF of galvanic cells, in which carbon oxidation was performed in a graphite/vitreous carbon
arrangement.

In our paper [38], we established the G(T ) course of several so-called vitreous carbon ma-
terials (either synthesized in our laboratory or commercial samples) taking into account both
our own measurements and literature data: (i) from caloric measurements (enthalpy difference
determinations in the bomb calorimeter, giving �Hg, see Table 8.1); (ii) solubility determina-
tions (giving additionally the frozen-in entropy, �Sg). In this way, the temperature dependence
of the Gibbs potential difference between vitreous carbon and graphite was established as

�Gg(T ) = �Hg − T �Sg (8.17)

for several commercial glasses and for our own vitreous carbon samples (synthesized from
furfuryl-alcohol resins at 1500 °C). The results from solubility measurements for typical cases
of carbon materials are shown in Figs. 8.7 and 8.8 [38, 55, 57].

The general phenomenological theory of the glass transition defines glasses in such a way
[31] that (i) the frozen-in system, the glass, displays increased �G(T ) values. This property
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Figure 8.7: Solubility of graphite and the so-called vitreous carbon material in pure Ni melts
according to data reported by Weisweiler and Mahadevan [55]
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should be manifested in increased vapor pressures and solubilities of glasses and, as seen from
Fig. 8.7, is typically fulfilled with vitreous carbons. (ii) �Hg and �Sg have positive constant
values, as is also demonstrated for vitreous carbon in Ref. [38] and Figs. 8.7 and 8.8. (iii)
The �Gg(T ) course of a glass has to be (in a first approximation) a tangent to the �G(T )
course of the corresponding metastable melt (in our case: to undercooled liquid carbon). This
requirement, established by Gutzow [32, 33] and by Gupta and Moynihan [58], is, however,
not fulfilled for any of the so-called vitreous carbon glasses, analyzed up to the now in their
thermodynamic behavior (Figs. 8.6). This property implies [38] that none of the so-called
vitreous carbons analyzed corresponds in its structure and thermodynamic properties to the
hypothetical carbon melt as it is depicted in Figs. 8.4 and 8.6 with a straight line. There is no
wonder in this finding. In fact, all so-called vitreous carbon materials are the product not of
liquid carbon quenching but of high-temperature pyrolysis of carbonaceous resins. In these
amorphous carbon materials the structure is thus frozen-in and the properties of the precursor
organic materials are reflected. From the results of Das and Hucke [56] it is seen that both �Hg
and �Sg in vitreous carbon materials (i.e., the disorder and energy, frozen-in in them) depend
strongly on the chemical properties of the precursor resin used and the thermal prehistory of
the amorphous materials obtained.

From Fig. 8.8 and especially from our previous discussion in Ref. [38] it is obvious that
in general the vitreous carbons analyzed are relatively highly ordered frozen-in systems (with
(�Sg/�Sm) ≈ 0.1 and, for some samples, with �Sg approaching even zero). For typical sili-
cate and metallic alloy glasses for the same ratio the estimate (�Sg/�Sm) ≈ 1/3 is found [31]
indicating a much higher degree of frozen-in disorder. These thermodynamic results are con-
firmed by structural investigations. They show that “vitreous carbon” materials have in general
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Figure 8.8: Summary of solubility for graphite and amorphous vitreous carbon materials in
Ni–Cu alloys as compiled in Ref. [38]. (�): solubility of graphite (data by Strong [57]); (�):
solubility of graphite (own results [38]); (�): solubility of graphite (Weisweiler and Mahade-
van [55]); (•): solubility of vitreous carbon materials [38]; (�): solubility for vitreous carbon
materials [55]
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a typical graphite-like sp2-bonded structure with a high percentage of graphite-like crystallites
with a mean size approaching 8–10 nm. The direct crystallization of such vitreous carbon ma-
terials, at high temperatures and at normal pressures, leads, as shown in Fig. 8.8 from the
results obtained in our laboratory, only to graphite [59]. Results, reported in the literature [1,
54], show moreover that even under extremal pressures and high temperatures (corresponding
to the stability field of diamond), such vitreous carbon materials give in experiments on the
direct synthesis of diamond relatively poor results. It seems that these vitreous materials have
to be first crystallized into graphite, which forms then diamond crystals [54].

Similar amorphous, glass-like but hydrogen-rich carbonaceous structures are also obtained
in employing various techniques of carbon vapor deposition [60, 61]. It is claimed that in these
cases amorphous, frozen-in structures are obtained, corresponding more or less to diamond-
like glassy carbon with dominantly sp3-bonding (i -diamond or a-diamond). However, no ther-
modynamic data are reported for these glass-like structures, usually obtained as ultrahard thin
solid carbon films at the conditions of hydrogen plasma-assisted H∗-condensation. There are
also indications that interstellar cosmic dust may be to a high percentage constituted of simi-
lar H-enriched (up to 5–6% H) condensates [53]. To what extent these amorphous structures
can be treated as a case of vitreous-like carbon polyamorphism is not clear at present. Also
of interest for the experiments reported below is the possible formation of intercolation H-
graphite aduct structures in thin graphitic films, subjected to activated atomic hydrogen (H∗)
influence in both the vacuum chamber and at cosmic conditions [53]. Such structures may
have an increased frozen-in thermodynamic potential and could also be eventually responsi-
ble for the observed graphite–diamond transitions in vacuum CVD deposits. No enthalpy or
�G(T ) measurements are known, however, also for these structures, which may have close
resemblance with other already mentioned better studied intercalation structures of graphite.

In assuming a metal-like thermodynamic behavior of the still hypothetical graphite-like
melt it could be expected that a real carbon glass could be formed from it (e.g., at ultrahigh
splat-cooling rates under increased pressures). Such a glass should have a Tg-value of approx-
imately Tg = Tm/2 (as corresponding to metallic glasses) or even Tg = Tm/3, where Tm
denotes again the mentioned melting point of graphite. Thus, with

(
�Sg/�Sm

) = 1/3, as
discussed in Ref. [38], such a “true” but still hypothetical carbon–glass should have a �G(T )
course as indicated in Figs. 8.4 and 8.6. Some of the glasses, we have synthesized as small
droplets in our vacuum apparatus, may in fact correspond to the above outlined structures (see
Fig. 8.4 and the discussion in Ref. [30]).

8.3.4 Activated Carbon Materials:
Size Effects and Mechanochemical Pretreatment

The simplest way of increasing the activity of solid materials is their disintegration. Applying
the well-known Gibbs–Thomson formula

�G∗
r = 2σ Vm

r
, (8.18)

giving the increase of the thermodynamic potential, �G∗, of a solid cluster of radius, r , with
an interface energy, σ , as compared to the surrounding phase, a vertical shift of the �G(T )
curves to higher potential values is to be expected (see Fig. 8.6). Introducing r = 10 nm
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Table 8.2: Density (ρ), specific energy (σ ), and thermodynamic driving force (�µ) determining
the processes of vapor condensation and melt segregation of diamond and graphite. The σ -
values, calculated by Eq. (8.19), are specified by the superscript (∗). For comparison, data by
Novikov et al. [50] (#) and by Deryaguin [27] (•) are included as well

Vapor phase condensation Melt segregation

Diamond Graphite Diamond Graphite

ρ (g/cm3) 3.51 2.26 3.51 2.26
σ (J/m2) 19(∗) 14(∗) 1.3(∗) 1(∗)

10–18(#) 2.4–4.7(•) 1.2–3.4 (•)

�µ (J/mol) 714 800 716 700 36 300 42 600(
σgr/σd

)3 (
V gr

m /V d
m

)2
1.00 1.1(

�µgr/�µd
)2 1.00 1.4

and applying reasonable values for σ and for the molar volume Vm (see Table 8.2) for the
corresponding carbon phases, we constructed the �G(T ) curves as given in Fig. 8.6. Thus the
interception points of the �G(T ) curve for vitreous carbon with the �G(T ) curve for diamond
appear at considerably higher temperatures. Curve (8) in Fig. 8.6 gives the thermodynamic
potential of nanodispersed diamond dust.

The values of σ corresponding to different diamond crystal faces and found in literature
are based on calculations of the surface and volume energy constituents of the diamond lattice.
A simple, but reliable approximation to determine σ for any interface (crystal/vapor, crystal/
melt, crystal/solution, etc.) is the Stefan–Scapski–Turnbull rule [31], according to which

σ = γ0
�H0(T )

N1/3
A V 2/3

m

(8.19)

holds. Here �H0 indicates the enthalpy difference at the respective interface. Thus, �H0
is the heat of sublimation of diamond or graphite, when σ is calculated with respect to the
vapor phase. �H0 is determined by the enthalpy of melting, �Hm, of graphite, when the
graphite/molten carbon interface is considered. In Eq. (8.19), NA is Avogadro’s number and
Vm indicates the molar volume of the corresponding solid (see Table 8.2). The value of the
dimensionless factor, γ0, changes from face to face (and from interface to interface [31]) but,
according to Turnbull’s experimental finding [31], γ0 = 0.4–0.6 gives sufficiently correct
results for low-indexed faces or when a mean σ -value, corresponding to the whole crystal, is
considered. In the present analysis, we have adopted the compromise value, γ0 = 0.5.

In phase transitions in one-component systems, the thermodynamic potential difference,
�G, determines directly the thermodynamic driving force, �µ, of the phase transition. Intro-
ducing the equilibrium vapor pressures pr and p∞ of small droplets and at planar surfaces,
the relative supersaturation, χ , determined by Eq. (8.18), is given as

χs = p∞ − pr

p∞
≈ �µ∗

RT
≡ �Gr (T )

RT
. (8.20)
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Figure 8.9: Crystallization of vitreous carbon (synthesized in our laboratory from furfuryl–
alcohol resins) at different temperatures, indicated at the respective curves (according to the
results summarized in Refs. [38, 59]). Time of thermal treatment to each curve is 1 h at the
indicated temperature. The X-ray peaks, indicated with an arrow, correspond to graphite

According to Eqs. (8.19) and (8.20), the increase of the relative supersaturation, when the
precursor graphite phase is dispersed into clusters containing n building units, is determined
by Eq. (8.18) as

χs ≈ 2γ0
λsubl

RT

1

n1/3
, (8.21)

when r ≈ n1/3d0 is assumed. According to Fig. 8.9, λsubl is given both for graphite and
diamond by λsubl ∼= 25RTm (see [38]). It follows that in diamond synthesis (e.g., at temper-
atures T ≈ Tm/2) a relative supersaturation χs ≈ 102γ0/n1/3 can be additionally produced
by disintegration of the precursor carbon materials. In considering the effect of disintegration
procedures (e.g., of various forms of milling) it has also to be taken into account that additional
increases in the thermodynamic potential have to be accounted for stemming from the incor-
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poration of defects and strains into the solids subjected to mechano-chemical pretreatment. It
is usually assumed that the mechano-chemical treatment causes, besides disintegration of the
sample and an increase of its surface, also bulk strains due to the defects created. Suppose
the defects introduced by the treatment have changed the molar volume of the samples by
(�V/Vm), e.g., by inclusion of ν point defects (holes) per mole, so that �V = νV0 holds.
The additional elastic energy, thus accumulated in the sample by the introduced voids, can
be estimated to be (if the corresponding configurational entropy increase is assumed to be
�Sc ∼= 0) equal to

χE = �G

RT
= E

3 (1 − µ)

�V 2

Vm

1

RT
. (8.22)

Here E is the Young’s modulus of elasticity of the sample (in our case the carbonaceous
material) and µ the respective Poisson ratio (µ ≈ 0.3). With the formula of Born and Lande,
connecting the modulus of elasticity with the heat of sublimation of the respective solid as

E ≈ M N

9Vm
�Hsubl , (8.23)

it becomes evident (with Mie’s coefficients M = N = 1) that the relative change of �GE is
given by

χE ≈ �Hsubl

20RT

(
�V

Vm

)2

. (8.24)

With the mentioned estimate for �Hsubl it follows (again for T ≈ Tm/2) that measurable
χ-changes are to be expected only for solids subjected to various forms of mechano-chemical
pretreatment, guaranteeing at least a volume increase of �V/Vm = 0.01. Our experience
has shown that mechano-chemical pretreatment of diamond and even of vitreous carbon by
means of milling in standard milling apparatus may be sometimes quite dangerous. Even with
customary super-hard wolfram-carbide milling equipment a considerable amount of undesired
contamination is introduced in this way up to several % W as witnessed by microprobe X-
ray measurements. Nevertheless, Eqs. (8.21) and (8.24) indicate a promising way of diamond
growth via the route finely dispersed diamond → bulk diamond, if contamination by milling
can be avoided.

8.3.5 Phase Transitions in Carbon Clusters, Diamond,
and Graphite Crystallization in Small Droplets

Let us first consider the fate of a small droplet of molten carbon, formed from a carbon vapor
phase in a process of either binodal or spinodal condensation. The van der Waals (p, V , T )
diagram for the case of carbon vapor–liquid transition is schematically shown in Fig. 8.3
in p vs. V coordinates. A similar construction can be also anticipated in the case when the
precursor carbon or carbonaceus phase is enriched with a second (e.g., hydrogen) or even with
a third and fourth constituent (e.g., CH4 and H2). The thermodynamics and kinetics of similar
processes of new phase formation is considered in Sect. 8.3.5 for the 2D case. Suppose first
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that in the binodal region small liquid nuclei, resembling liquid droplets, have been formed
in a nanoscale dimension range. Considering the phase diagram of carbon (Figs. 8.1 and 8.2),
it becomes evident that liquid carbon phase formation is only possible at increased pressures
(>103 bar). Because of the well-known pressure increase, �p, in liquid droplets, as predicted
by Laplace’s equation [62]

�p = 2σ

r
, (8.25)

the pressure in droplets of radius r is increased to the value pr , so that �p = pr − p∞. Here
p∞ indicates the equilibrium pressure for phase coexistence at a planar liquid–gas interface
(i.e., at r → ∞). Employing the Stefan formula (8.19), above dependence can also be written
as

�p = �Hev

C0V 2/3
m r

. (8.26)

In this relation, �Hev is the heat of evaporation of molten carbon. Its value can be estimated
from the known value of the heat of sublimation, �Hsubl, and the melting enthalpy, �Hm, of
graphite as �Hev = �Hsubl − �Hm (see Table 8.1). When �Hev is expressed in J/mol, Vm
in cm3/mol, r in cm, and �p in bar, the constant C0 in the above equation has the value C0 =
2.2 × 107 cm/mol2/3. Thus, it turns out that a liquid carbon droplet of dimension r = 1 nm is
subjected to an additional Laplace pressure �p = 105 bar (assuming Vm = 0.95 cm3/mol).
At 5 nm, the Laplace pressure in a liquid carbon droplet will be 5 × 104 bar, rapidly falling to
only �p = 102 bar and �p = 10 bar, when diamond droplets of respectively 1 µm or 10 µm
are considered.

The above estimates show that the crystallization of initially formed nanometric carbon
droplets should correspond (at a temperature below 4000 K) to conditions leading to the di-
rect formation of diamond. In contrast, these estimates also show that micron-sized carbon
droplets should crystallize under the same conditions to graphite. Thus, in processes leading
to the formation of a population of nanosized carbon clusters of radius r , their subsequent
crystallization to diamond becomes a necessity, provided their temperature is below the cor-
responding melting temperature, Tm(r). In this context it has to be recalled that according to
one of the well-known forms of the Gibbs–Thomson equation given initially by Hanssen (see
[31, 63, 64]), the melting point of any small crystal is a function of its size, e.g., of its mean
radius r . The proper handling of this problem requires the analysis of the equilibrium of a
crystalline and a liquid cluster of equal masses, embedded in the same vapor volume. In the
case of carbon also the mentioned stability areas of the liquid have to be accounted for. Ac-
cording to these calculations [31, 64], the melting point of a small crystalline cluster of radius,
r , is given by

(
Tm(r)

Tm∞

)
= 1 − 2σcvVmc

λm

1

r

[
1 − σfV

σcv

(
Vf

Vc

)2/3
]

. (8.27)

It is seen that Tm(r) also depends on the ratio of the molar volumes of solid (c) and liq-
uid (f) clusters. In a similar way, the transition temperature Tg/d (r) of graphite–diamond
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(as any transition temperature between small, differently structured clusters) should also be
size-dependent. The size dependence of the graphite–diamond transition temperature of small
graphite clusters was calculated by Fedoseev [65] in 1983. He derived this dependence in a
similar way as Eq. (8.27). It reads

TTR ∼= 2σgrVmd

rgr B0

[
1 − σgr

σd

(
Vmgr

Vmd

)2/3
]

− A0 . (8.28)

Here B0 and A0 are the constants from the Simon–Leipounskii–Berman line (Eq. (8.2)).
The melting point depression of small crystals, given with Eq. (8.27), has been subjected

to several experimental verifications, mostly by determining the melting points Tm (r) of dif-
ferently sized clusters in vacuum deposited metals. Equation (8.27) also gives an elegant way
of determining the corresponding interfacial energy σ between melt and crystal. The applica-
bility of Fedoseev’s formula (8.28) to graphite–diamond transition thermodynamics has been
confirmed in brilliant experiments performed by Fedoseev et al. [66] and other authors [67]. In
these experiments, a strain of micro- to nanosized sooth or graphite particles, sedimenting in
vacuum or in air under normal pressure, is subjected to short-time heating by a high-intensity
laser beam. In the laser-treated sediment, a high percentage of nanosized diamond crystal-
lites is found as proven by direct electron microscopy, electron-spot diffraction, and X-ray
analysis. In the precursor nanosized carbon samples, used in these experiments, only graphite
and amorphous carbon were found. The melting point depression experiments in thin metal-
lic condensates and the above-discussed size-dependent graphite–diamond transition give the
most direct proofs of small cluster thermodynamics, known to the present authors. The effects
connected with the Fedoseev relation, Eq. (8.28), explain several aspects of unexpected di-
amond formation at metastable conditions. In particular, it may be possible that in Hannay’s
19th-century experiments (mentioned in Sect. 8.2), a population of nanosized graphite clusters
(coming from the sooth initially introduced, or formed as nascent carbon upon the Li-paraffin
reaction) had a chance to be subsequently transformed into diamond at the elevated tempera-
tures employed. The relatively high pressure, existing in Hannay’s reaction tubes, guaranteed
an even better fulfillment of the premises of Fedoseev’s formula, as in the above-mentioned
laser-beam experiments.

With Stefan’s formula, Eq. (8.19), Eqs. (8.27) and (8.28) can be written in analogy with
Eq. (8.21) in the form

Tm(r) ∼= Tm(∞)

[
1 − 2γ 0

n1/3

]
, TT R ∼= Tx (∞)

[
1 + 2γ0

n1/3

λsubl/gr

A0

]
, (8.29)

when, again, r ∼= (Vm/NA)1/3 is assumed and simple connections, such as λsubl/gr = λevap/gr
+λm/gr and Tx = −A0∗/B0∗ , are introduced via Eq. (8.1). The relative supersaturation, χd,
guaranteed, e.g., in a vapor gas transition reaction by a population of graphite clusters (con-
taining n carbon atoms) to a growing diamond cluster can be calculated by a combination of
Simon’s equation, Eq. (8.16), with the respective Gibbs–Thomson dependence, written in the
form of Eq. (8.29) as

χd = �G (r/d)

RT
=

[
λsubl/gr

A∗
2γ0

n1/3 −
(

1 + B0∗
A0∗

)]
1

RT
. (8.30)
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Here A0∗ and B0∗ are again the constants appearing in Eq. (8.16). The above relation indicates
that a population of graphite clusters, placed around a diamond crystal, could guarantee dia-
mond growth, i.e., χ > 0 (e.g., χ = 0.04, see Sect. 8.3.8) only at nanosizes. Values χ > 1,
or even χ 
 2–3, as necessary for any nucleation process and for diamond nucleation, in
particular, cannot be realized in this way. However, additional effects, e.g., H-occlusion into
the graphite clusters, could additionally increase their chemical potential and eventually even
guarantee values of relative supersaturation, χ > 1, against diamond. This possibility is dis-
cussed by several authors from the American School of Metastable Diamond Growth [2, 69,
70] (see also [68]). However, at present there are no calorimetric data that give a sufficiently
sound confirmation of such effects. As a most elaborate suggestion in this sense the paper
of Badziag et al. [70] can be mentioned, in which computer modeling of H end-stabilized
graphite-structured clusters indicates that at a H/C ratio of 0.2–0.3, nanosized hexagonal
carbon clusters could be more stable than equally sized carbon clusters with diamond-like
structure. It has, however, also to be mentioned that in Ref. [70] and similar publications,
Thomson–Gibbs effects are, strangely enough, completely disregarded.

The possibility of graphite–diamond transitions of small clusters, as verified by Fedoseev’s
experiments [65, 66], is also a demonstration of a newly formulated nucleus growth model
scenario (Schmelzer et al. [71]). According to this model, growing subcritical clusters change
their structure in dependence on cluster size in order to achieve minimal values of the Gibbs
free energy differences to the initial ground state. A first illustration of this model was given
by Milev and Gutzow [72] in terms of an enlarged treatment of the Stranski–Totomanov ki-
netic analysis of Ostwald’s rule of stages. The direct graphite–diamond transfer in nanosized
graphite clusters, or the liquid–diamond transition scenario, possible by considering the in-
creased pressures in liquid clusters and the structural changes, connected with considerable
volume alteration in carbon materials, gives another example of the way, how Ostwald’s rule
can be fulfilled.

In considering such models and the derivations, based on the thermodynamics of very
small clusters constituted of only several building units, n, it has to be recalled that any quan-
titative description of the properties of clusters at n → 1 can be based only on more or less
doubtful extrapolations. This is well known since Gibbs’ times, and this famous author was
also the first to propose corrections, guaranteeing, at least, a qualitatively correct description of
the thermodynamic properties of small and even of very small clusters. Beginning with Gibbs,
these corrections are at present introduced frequently via the Tolman formula [31], which is
one of the possible approximative forms of Gibbs’ original relation [73] for size corrections
to the value of the specific surface energy, σ . The value of σ , appearing in all the above-cited
dependences (the Laplace formula, the Thomson–Gibbs dependences, Eqs. (8.20), (8.27)–
(8.30)), determines the whole thermodynamics of nucleation and especially the work, W (n),
necessary to form a n-sized cluster. Thus, σ is also the focus of most difficulties involved in
all definitions, calculations, and experimental verifications of the present-day nucleation the-
ory. For extremely small clusters atomistic approaches and computer simulations performed
at n → 1 give a guarantee that existing ways of classical thermodynamic extrapolations lead
to acceptable results. A thorough and general discussion of these problems was given by Mu-
taftschiev [62] (see also [31]). Its results are schematically illustrated in Fig. 8.10. In this
sense all the above derivations, when applied to n < 10, have to be considered only as esti-
mates. However, in graphite/diamond transitions, as far as nanosized clusters with n > 100
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Figure 8.10: The excess free energy of a cluster in dependence on the number, n, of its building
units (after Mutaftschiev [62], see also [31]). The course obtained by applying the capillary
approximation is indicated by the straight line. The more realistic course, after introduction of
the size-dependent corrections of the surface tension of modern nucleation theory (see [31]),
shifts the �G (r)-Thomson–Gibbs line to lower values correlating with atomistic calculations

(for r ≈ 1 nm) to n > 1000 (for r ≈ 5 nm) are accounted for, even a semiquantitative
applicability of the derivations made is guaranteed to a large extent.

8.3.6 Ostwald’s Rule of Stages and Metastable Nucleation of Diamond

Let us first consider the general physical aspects of metastable diamond formation in the
framework of the classical theory of nucleation, as it is derived and discussed in its present-
day formulations in the literature [31, 62]. The formation of metastable phases is usually ex-
plained in the framework of this theory in terms of Ostwald’s rule of stages. In its present-day
kinetic interpretation (as was given by Stranski and Totomanov [74] and as it is summarized
by Volmer [75] and by Gutzow and Schmelzer [31]) Ostwald’s rule can be formulated in the
sense that those phases will be dominantly formed that have the highest rate of nucleation at
the given conditions. Thus the prevalent formation of one of two possible modifications (a sta-
ble and a metastable one) from a common initial (metastable or unstable) phase is determined
by the value, YI , of the ratio of steady-state nucleation rates, I , of these two modifications. In
our case, Id refers to diamond and Igr to graphite formation, respectively, so that

YI = ln

(
Id

Igr

)
. (8.31)

The formation of diamond will occur preferentially when in the above inequality YI > 0
holds. Let us suppose, moreover, that the initial phase is either supersaturated carbon vapor
or a liquid solution of carbon, e.g., in a molten metallic alloy system. Taking into account
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the usually employed expression of the steady-state nucleation rate (see [62, 76, 77] and the
respective formalism, developed by Gutzow and Schmelzer [31]), we have

I = constZ Z ′ exp

[(
−�W

kBT

)
	

]
, (8.32)

and can write the above condition for predominant formation of the metastable diamond phase
generally in the form

YI = ln




const1 Zd Z ′
d exp

[(
−�Wd

kBT

)
	d

]

const2 ZgrZ ′
gr exp

[(
−�Wgr

kBT

)
	gr

]

 > 0 . (8.33)

In the above equations, Z is the impingement rate of ambient phase carbon structural units to
the growing new phase clusters with either graphite-like (Zgr) or diamond-like (Zd) structure
and Z ′ is a factor, connected with both steric and reconstructional hindrances in the way of
incorporation of ambient phase molecules into the new phase nucleus [31, 38]. The factors
Zd, Zgr in diamond nucleation experiments are also determined by the actual concentration
of sp3 (diamond-like) and sp2 (graphite-like) structural units in the vapor or liquid phases. In
Eqs. (8.32) and (8.33), 	 is the activity of the existing substrates, if heterogeneous nucleation
takes place (0 < 	 < 1 [31, 62]). �W in Eq. (8.32) is the thermodynamically determined
barrier of nucleation (the work of critical cluster formation), given by [31, 62, 77]

�W =
(

16π

3

σ 3V 2
m

�µ2

)
	 . (8.34)

Here σ is the already mentioned interfacial energy of the ambient phase/new phase boundary,
Vm is the molar volume of the newly formed phase (either diamond or graphite), and �µ is the
driving force of the nucleation process under consideration (graphite or diamond formation).
In the particular case of growth from the vapor phase (v) of diamond (d) and of graphite (gr),
we have �µd = Gv − Gd and �µgr = Gv − Ggr, where G denotes the corresponding
Gibbs free energy values. With the factor Z ′ we introduce (for diamond or graphite cluster
formation from the same gaseous or liquid ambient phase) the activation energies Ud, Ugr via
Z ′ ≈ exp (−U/kBT ) for possible surface reactions when sp3 or sp2 units are incorporated
into the new phase cluster. In general, the factors Z and Z ’ (usually neglected in consider-
ing simpler nucleation processes), can in fact essentially govern nucleation and subsequent
growth. In most of the classical cases of nucleation Zd Z ′

d = ZgrZ ′
gr can be expected. How-

ever, in the case of metastable diamond synthesis in dependence on the presence or absence
of sp3 or sp2 carbon structural units in the initial vapor phase both cases Zd Z ′

d 
 ZgrZ ′
gr and

Zd Z ′
d � ZgrZ ′

gr are possible. The values of both Z i and Z ′
i can be regulated by extremely

high temperatures, by radiation, by the degree of ionization, and thus by the concentration
of atomic hydrogen in the vapor phase in CVD processes. In molten metals, the presence of
distinct “activators” (e.g., of Ni) can, in terms of the above concepts, essentially determine Z ′

d
by lowering Ud.

Let us first discuss the particular case when the preexponential factors Z and Z ′ in
Eq. (8.32) can be considered as nearly equal for the processes of formation of both carbon
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modifications (i.e., when Zd Z ′
d = Zgr Z ′

gr). Substituting the above given expression for �W
into Eqs. (8.31) and (8.36), we obtain

(
	gr

	d

) (
σgr

σd

)3 (
V gr

m

V d
m

)2

>

(
�µgr

�µd

)2

> 1 . (8.35)

This inequality is the general kinetic condition (previously discussed in detail and in several
applications in Refs. [77, 78]) to be fulfilled for the predominant formation of a metastable
phase (in our case, of diamond). It is determined only by the respective thermodynamic barri-
ers of nucleation �Wd and �Wgr.

As is evident from Fig. 8.4, the thermodynamic driving forces of the process of carbon
vapor condensation (i.e., the differences (Gv − Gd) and (Gv − Ggr)) are so close for diamond
and for graphite that even at elevated temperatures �µd ≈ �µgr can be assumed. In the case
of melt crystallization (e.g., crystallization from the hypothetical carbon melt we discussed
earlier), this assumption cannot be used as also evident from Fig. 8.4. The respective values
of �µd and �µgr for both carbon vapor condensation and melt segregation of diamond and
of graphite are given in Table 8.2. In this table, the σ -values for both diamond and graphite
are also given. The above considerations can be applied, strictly speaking, only to the case
of normal pressures, since the formation of liquid condensates (or precipitates) is, according
to the phase diagram of carbon, excluded at p < 10 kbar. At higher pressures, however,
also the formation of liquid carbon droplets should be incorporated in the above calculation.
Consequently, equations analogous to the foregoing ones have also to be written for p >
10 kbar for the nucleation rate Il of the third phase from the vapor, for nucleation of liquid
carbon droplets. As far as for liquids as a rule σl < σcryst holds and taking into account the
possible values of evaporation and sublimation heats of carbon (see Fig. 8.9 and Table 8.1),
also σl < σd, σgr and (as for any other liquid [31, 77]) Z l Z ′

l ≈ 1 has to be fulfilled. Thus, the
formation of liquid droplets has to be the predominant nucleation process at sufficiently large
pressures (if binodal formation of droplets from the vapor is anticipated). In analyzing Il, Igr,
and Id, moreover, also the influence of pressure on the nucleation rate has to be considered:
The values of Igr and Id will also be changed in accordance with the fulfillment of Ostwald’s
rule of stages at pressure-dependent nucleation. This problem is discussed in detail in Ref. [79]
with the following result: Under pressure, in general, the phase with higher volume change is
formed. In an additional complication, the possible crystallization of carbon droplets into both
diamond and graphite micro- (or nano-) crystals has to be accounted for as a size-dependent
possibility.

In the next section, in considering two-dimensional (2D) nucleation kinetics of condens-
ing carbon vapor these possibilities are discussed in more detail. Two-dimensional nucleation
and growth proceed under very particular conditions: at increased two-dimensional pressure,
corresponding to more than p = 10 kbar. Considering the data in Table 8.2 and Eq. (8.35),
it follows that in the process of carbon vapor condensation, direct nucleation of diamond
can be expected if Zd Z ′

d = Zgr Z ′
gr holds. In melt crystallization (e.g., using as a precursor

the hypothetical carbon melt) or in carbon segregation from metallic alloys or silicate melts,
the chances for diamond nucleation at metastable conditions are considerably lower (see Ta-
ble 8.2). The presence of diamond seed crystals is also of significance in enabling metasta-
ble diamond formation (cf. Eq. (8.35)). Introducing into the precursor system diamond seeds
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(	d = 0), the left-side term of Eq. (8.35) tends to infinity and the inequality is always ful-
filled. For any other (non-diamond, but diamond-like) crystalline seeds, positive growth could
be expected if 	gr/	d > 1.3 (see also [31, 78]). However, considering the structure of both
diamond and graphite crystal faces it is to be expected, in general, that Zd Z ′

d � Zgr Z ′
gr. This

condition can be reversely fulfilled only in cases when in the precursor vapors a sufficient
concentration of sp3-structured carbon is present.

Very significant is also the influence of the composition of the gaseous precursor phase
on the value of Zd Z ′

d. Thus, in CH4/H carbon mixtures the presence of atomic hydrogen
increases the incorporation rates of sp3-carbon units into the H∗-activated diamond structure
(see [22, 24, 25, 30]), thus increasing the factor Z ′

d. The presence of sp3-carbon atoms in the
vapor phase (as they are present in methane) raises additionally the factor Z ′

d. Considering the
case when Zd Z ′

d > Zgr Z ′
gr, from Eq. (8.33) we obtain

(
	gr
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σgr

σd

)3 (
V gr
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V d
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>
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kBT

�Wd	d

)]}
. (8.36)

For detectable nucleation to be observed, �W/kBT ∼= 20–30 should hold, i.e., the term[
1 +

[
ln

(
Zgr Z ′

gr/Zd Z ′
d

)
(kBT/�Wd	d)

]]
can be of significance only for differences in Z i Z ′

i

of the order of ln
(

Zd Z ′
d/ZgrZ ′

gr

)
> 5. Thus existing results on the metastable growth of di-

amond from carbon vapors or carbon-containing gaseous mixtures can be explained, at least,
qualitatively in the framework of the above enlarged formulation of Ostwald’s rule of stages.
In carbonaceous vapor phases, besides possible influences of activated species (atomic hy-
drogen), the principal factor, guaranteeing the fulfillment of Ostwald’s rule in homogeneous
vapor condensation is connected with the high (and thus nearly equal) values of the respective
thermodynamic driving forces, �µd and �µgr (see Fig. 8.4), provided the above condition
for Zd and Zgr is fulfilled. The same approach also indicates that in the case of liquid solu-
tions and melts the fulfillment of inequality Eq. (8.35) is less probable because of considerable
difference in �µ-values as can also be seen in Fig. 8.4.

Thus, Ostwald’s rule of stages indicates that in processes of condensation (both from the
vapor phase or with the more convenient vapor transport reaction scenario), either the di-
rect formation and growth of diamond clusters or their secondary nucleation and growth in
initially formed liquid-like clusters is possible even at conditions where graphite is stable.
The first process mentioned is stimulated according to Eqs. (8.33) and (8.35) by substrates
having a resemblance to diamond (i.e., with 	d < 0.3, e.g., of elemental Si, of carbides,
formed on the substrate surface, etc.). Condensation on a foreign substrate also gives addi-
tional advantages in diamond condensation as discussed in Sect. 8.3.6. They are connected
with the specific features of processes of two-dimensional condensation. Here we would like
only to mention that there are indications (see Deryaguin and Fedoseev [80]) that Ostwald’s
rule also essentially determines the formation of diamond at conditions where diamond is
stable: in the processes of “direct” diamond synthesis at extreme pressures. According to a
hypothetical scenario, proposed by these authors [80], at high pressures initially liquid carbon
droplets segregate from the Ni alloys (most probably according to Eq. (8.35)). These liquid
carbon droplets are metastable at these conditions. They crystallize in the second stage of the
process to the also metastable graphite nanocrystals, which, according to the thermodynamics
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indicated with Fedoseev’s formula (8.28), are transformed in the third step of the process to
diamond. In Ref. [80], several experimental indications are given, confirming this particularly
interesting scenario of a two-fold metastable stage phase formation.

8.3.7 Two-Dimensional Condensation of Carbon Vapors
and of Carbonaceous Compounds and Metastable Diamond
Nucleation

For the first time, Semenov [81, 82] mentioned the possibility that heterogeneous nucleation
of vapors can take place via a two-dimensional process of condensation, which can be, at
least, qualitatively described in terms of a two-dimensional van der Waals equation. This idea
was exploited by Palatnik and Papirov [82] in analyzing the condensation of metallic vapors
on solid substrates. Let us try to apply Semenov’s proposal to the particular case of diamond
nucleation from the gaseous phase. First we recall that as a consequence of the dynamic char-
acter of vapor adsorption processes on a solid substrate, there is a critical temperature (the
Knudsen temperature, TKn) above which practically no vapor condensation takes place. This
temperature, as is defined by Frenkel [83, 84] (see also [82, 85]), depends on the mean stay-
time τad(T ) of adsorbed molecules on the substrate. Suppose a flux, q0 ∼ p, of molecules
is reaching the substrate and the vapor pressure p can be attributed to the gas volume, which
is in contact with the substrate. In such a case, the Knudsen temperature is determined via
the corresponding vapor pressure and the adhesion energy between adsorbed molecules and
substrate, Uad, as

TKn = Uad

2.3R

[
log

(
g0

p

)]−1

. (8.37)

Here g0 (determined by the reciprocal of the oscillations of the two-dimensional condensate
molecules) has values g0 ∼= 10−12 s−1. Only for temperatures T < TKn, a surface coverage,
Nd, is possible (see Fig. 8.11 [84]). Taking into account typical values of g0, it follows from
Eq. (8.37) that for a full surface coverage (i.e., for � = 1) we have to expect TKn ≈ γ0Tm/10.

In considering condensation processes of vapors in contact with their own crystal (e.g., in
condensation processes of carbon vapors on a graphite single crystal face), U0ad ≈ (λsubl/2)
is expected. On a foreign substrate, Uad can be either larger or smaller than U0ad. The corre-
sponding inequality determines the ratio lateral vs. adsorption forces and thus the character
of the processes taking place in the adsorbate. It is also essential to note that TKn is critically
(although on the logarithmic scale) determined by the flux, q0, of incoming molecules, which
especially in the kinetics of plasma-supported condensation processes can determine p-values
(corresponding to a static regime of condensation) many times higher than the equilibrium
pressure, peq(T ). Let us now follow the processes on a substrate embedded in a gaseous
phase (e.g., constituted of carbon vapors) and let the temperature on the substrate be T < TKn.
The flux, q0, of condensing molecules (in dynamic conditions, or the vapor pressure p, in
“static” condensation experiments) determines a relative adsorption coverage, �, of the sub-
strate and the thermodynamic and kinetic behavior of the condensate is determined by a two-
dimensional equation of state. In general, the two-dimensional coverage of the substrate with
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Figure 8.11: The definition of the Knudsen temperature, TKn, according to Frenkel [84]: It is the
temperature at which the relative coverage, �, tends to zero values, indicated by the inflection
point of the �(T ) curve

adsorbed molecules is � = αq0, where α is a constant. In a first approximation, following
Semenov’s proposal, a van der Waals equation of state(

F + a2

W 2

)
(W − b2) = RT (8.38)

can be employed in such cases of adsorption in analogy with the well-known van der Waals
equation, describing the behavior of a gas of volume V at pressure p and temperature T .
More specific are adsorption isotherms, also based on a mean-field approximation, such as the
Frumkin–Fowler equation (see the literature cited in Ref. [86]).

In the above equation, F and W indicate the two-dimensional pressure and the surface
area occupied by the two-dimensional gas under consideration, respectively, and a2 and b2 are
the two-dimensional analogs of the usual van der Waals constants. They determine in the same
way as the “tree-dimensional” constants a∗, b∗, introduced with Eq. (8.3), a critical point for
the two-dimensional adsorbed gas, where T = TC2 , F = FC2 , W = WC2 . Employing the
relations b2 = 3b∗/4d0 and a2 = 3a∗/8d0, which exist between a2, b2 and a∗, b∗ according
to simple theoretical considerations [85] (d0 indicates the mean diameter of the molecules
forming the two-dimensional adsorbed gas), a comparison with Eqs. (8.3) gives

TC2 ≡ 8a2

27Rb2
= 1

2
TC3 (8.39)

Similar estimates for the ratio TC3/TC2 are also obtained with other theoretical models of
two-dimensional equations of state (see [62, 85]).

Summarizing existing theoretical results, it turns out that (i) the whole F(T ) vs. W (T )
two-dimensional phase diagram is shifted to considerably lower temperatures when compared
with the corresponding “normal three-dimensional” phase diagram. The experimental verifica-
tion of this seemingly unexpected result, following from Semenov’s idea for two-dimensional
condensation mechanisms on substrates, was confirmed by Palatnik and Papirov [82] for sev-
eral metal condensates (in the instructive p vs. T and F vs. T representation). (ii) The critical
pressure of the two-dimensional adsorbed gas becomes thus equal to Fc = (2 pC3/3d0) when
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referred to one molecule of area d2
0 . (iii) The critical area, occupied at the critical temperature,

becomes Wc = (VC3/4d0).
As a general consequence it follows that a two-dimensional nucleation process, e.g., in the

binodal area according to the two-dimensional van der Waals like phase diagram, takes place
at considerably lower temperatures (with Tm2 and Tb2 shifted to approximately TC3/2, Tb).
The relative areas of occupation or, more significantly, the relative coverages are thus 0.33�0
at TC2 and 0.45�0 for the formation of a two-dimensional condensate. However, there is also
an additional point to be mentioned in connection with possible diamond formation at seem-
ingly metastable conditions of diamond. If adsorbed carbon atoms (eventually in solution with
hydrogen, carbonaceous compounds such as CH4 from the volume of the reaction vessel) are
brought by a high flux, q0, to the substrate (e.g., the anode in plasma-assisted CVD processes),
the condensation of carbon droplets could take easily place (at p > 10 kbar, transformed from
two-dimensional to three-dimensional pressure). Thus, a population of nanosized liquid (or
liquid-like) carbon clusters is assumed to exist on the substrate, permitting its enhanced crys-
tallization to diamond according to the mechanism discussed in Sect. 8.3.5. It turns out that
condensation and subsequent nucleation in the two-dimensional population of adsorbed car-
bon films could give an easier way of diamond formation than in the bulk of a supersaturated
gaseous volume at a homogeneous condensation process. A first indication of this possibility
can be found in Ref. [87].

A number of experiments with a single- or multiple-phase transition in two-dimensional
layers on both liquid and solid substrates are described in the literature [62, 85, 86]. As a rule,
two-dimensional condensation begins at relative coverage values � = 0.2, and at 0.47 only
a two-dimensional condensate is present [85]. It has to be kept in mind that even very low
two-dimensional pressures (as measured in two-dimensional thin layers) correspond in their
physical effect to enormous pressures and pressure changes in the three-dimensional gaseous
volume. In general, a two-dimensional pressure F (in dyn/cm) is equivalent to 51F3/2 bar
[85] and thus a two-dimensional pressure of only 50 dyn/cm, measured, e.g., with the Lang-
muir balance (for a two-dimensional layer on a liquid) corresponds to approximately 1800 bar
[85]. Thus phase changes are induced and take place in two dimensions in adsorbed thin layers
with greater ease and at lower temperatures than in the three-dimensional case. Remarkable
examples in this sense are experimental and theoretical findings summarized by Mutaftschiev
in Ref. [62] (see also [86]) on the condensation kinetics and two-dimensional layers of no-
ble gases formed on graphite substrates. For this example, the formation of two-dimensional
gaseous, liquid-like, and several crystalline phases was experimentally verified. These tran-
sitions take place for the Kr/graphite system at Kr-vapor pressures over the condensate of
p ∼ 10−2 bar, corresponding to pressures in the two-dimensional adsorbed layer, equivalent
to about 9 × 102 bar. In this sense, a carbon-vapor flux q0, reaching a Mo or W substrate and
guaranteeing its condensation at � > 0.2, can also be equivalent to the effect of pressures as
obtained in the Belt chamber by direct synthesis of diamond at “normal” three-dimensional
conditions.

In considering these and similar processes of two-dimensional phase transitions, it also
has to be kept in mind that the nature of the two-dimensional condensates, their character (lo-
calized or freely moving, one-dimensional layers or multilayered, etc.), and the very existence
of a layer (see Eq. (8.37), determining the Knudsen temperature) depend on the ratio of the
adsorption energy, Uad, to the binding energy, U0, of the ad-molecules on a given substrate.



286 8 Diamonds from Vitreous Carbon and from the Plasma Torch

Thus, by changing substrates (i.e., U0) and substrate temperatures, the flux q0 of molecules,
reaching the substrate, and the dependences, describing the processes of two-dimensional con-
densation and phase transitions, are also changed (described, for example, not in terms of a
purely two-dimensional van der Waals equation but with another mean field approximation,
e.g., the Frumkin–Fowler adsorption isotherm [86]). These problems are elucidated in detail
in the present-day literature (see [62, 86]) including also the case of two-dimensional con-
densation and two-dimensional mixing of two and more components, which could also be of
significance in considering nucleation of carbonaceous gas mixtures, hydrogen, and their re-
actions in two-dimensional space. The respective temperatures are only a half of TC2 of carbon
(∼ 1000 K) and at pressures, guaranteed (at the conditions of plasma-assisted processes) to be
of the order of 5 × 104 bar [87].

The detailed analysis of two-dimensional condensation of carbon vapors and of carbona-
ceous compounds could give, according to existing theoretical evidence, a new and relatively
simple explanation to the circumstance that nucleation of diamond under seemingly metasta-
ble conditions has been as yet observed only on solid substrates (Mo, W, etc.). The foregoing
discussion shows that in the condensed two-dimensional state diamond formation could prob-
ably take place at “stable” conditions, the vapor pressure over the condensate being a poor
indication of the real conditions, existing in the condensate.

Another way of introducing a similar idea of quasi-metastable nucleation into heteroge-
neous diamond nucleation in plasma-assisted methods at seemingly metastable conditions is
to calculate the intrinsic pressure in the thin carbon film formed on the substrate [87] treating
the film like a solid, in which new building units are introduced by the flux of condensing
molecules. Using a model proposed by Windischmann [88], in Ref. [87] the pressure at which
thin carbon films, formed under high-energy sustained condensation, are exposed is estimated
to be well over 50 kbar. No direct experiment is known, however, at present, which would
allow us to distinguish between real and imaginary metastable conditions in carbon conden-
sation processes on a solid substrate.

8.3.8 Crystal Growth Mechanisms
and the Morphology of Diamond Crystals

Present-day concepts on the mechanisms of crystal growth are summarized in several classical
or recently published monographs (see, for example, [31, 62, 75, 89]). They are based on
three different models of the interface structures between crystal and ambient phase and thus
on three possible attachment modes: growth via two-dimensional nucleation (for a perfect,
dislocation-free face); continuous (or normal) growth (for atomically rough crystalline faces)
and the dislocation mediated crystal growth mechanism, proposed by Frank [31, 89]. The
general dependence, determining crystal growth, can be written as

g = Z�(T )

[
1 − exp

(
−�µ (T, p)

RT

)]
, (8.40)

where Z is the impingement rate of ambient phase molecules, �µ (T, p) is the thermody-
namic driving force of crystallization (and thus

[
�µ (T, p) /RT

]
is the corresponding relative

supersaturation), and the factor � (T ) depends on the considered mode of crystal growth [31].
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Figure 8.12: Screw dislocations, Archimedean growth spirals, and determination of relative
supersaturation from the spiral width (see [31]): (a) Several consecutive stages (A, B, C) of
formation of a growth spiral on a crystal face; (b) cross section of the growth spiral: illustration
of the determination of the relative number, α0, of growth sites from the width, δ, of the spiral
and mean size, d0, of crystal building units
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Figure 8.13: The main ranges of relative supersaturation values,�µ/RT , at which continuous,
screw-dislocational, and two-dimensional nucleation mediated crystal growth are operable (see
[31, 89] and Sunagawa [90])
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In melt crystallization, Z is inversely proportional to the bulk viscosity of the melt. In
vapor phase crystallization, Z is directly proportional either to the vapor pressure in “static”
experimentation or to the flux of crystallizing species (in dynamic experiments, e.g., in CVD
or plasma-type diamond growth). In considering growth of diamond, the already introduced
dimensionless coefficients Z ′ (see Sect. 8.3.6) may (and, as proven by many authors) deci-
sively determine the real value of the impingement rates, Z . The expression in the square
brackets of Eq. (8.40) gives at

[
�µ (T, p) /RT

] 
 1 values practically approaching unity,
while at the normally prevailing lower relative supersaturations of growth, we can write[

1 − exp

(
−�µ (T, p)

RT

)]
∼= �µ (T, p)

RT
. (8.41)

In the continuous growth mechanism, the factor � (T ) in Eq. (8.40) is given directly by the
relative number, α0, of growth sites (�(T ) ∼= α0). In typical cases of normal growth, α0 ∼=
10−2–10−1. In the case of surface nucleation mediated growth, we have

� (T ) ≈ exp

[
−�G2c (T, p)

RT

]
. (8.42)

Here �G2c (T, p) is the thermodynamic work, which is necessary to form a two-dimensional
nucleus on the growing face. For the growth via the screw dislocation mechanism, the theory
gives

� (T ) ≈ �µ (T, p)

4πσ R
. (8.43)

The latter relation follows from one of the basic assumptions of dislocational mediated crystal
growth: The relative number of growth sites, when this mechanism is operable, is given by
α (T ) = d0/δs, where

δs = 4πσ Vm

�µ
(8.44)

is the mean width of the growth spirals (see Fig. 8.12) at the given supersaturation. Thus
Eq. (8.44) gives a convenient and simple method of estimating �µ (T, p) from the growth
morphology. Equation (8.40) indicates that, in general, for continuous modes of growth a
linear dependence of g on �µ (T, p) is to be expected (g ≈ α0 Z�µ/RT ), while for two-
dimensional or dislocational growth the corresponding dependences are either parabolic (g ≈
αZ�µ2/RT ) or exponential with respect to �µ (T, p). In introducing appropriate constants
it turns out that continuous growth is operable from lowest relative supersaturations, spiral
growth guarantees measurable growth even with several % values of χ (typically for χ ∼= 1–
5%), and two-dimensional nucleation-mediated growth kinetics can be expected only after
a χ-lag higher than 20%. The predominant operation of the various growth mechanisms is
illustrated in Fig. 8.13 in a representation due to Sunagawa [90].

The theory of crystal growth specifies distinct dependences of equilibrium and growth
forms and morphologies of crystals in dependence of supersaturation. In general, a simplifica-
tion of growth forms (and of dominant faces) is to be expected at increasing relative supersatu-
ration. The experimentally verified change of diamond crystal morphology at different growth
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Figure 8.14: Crystal habits of diamond crystals (upper) and way of twining of diamond crystals
(lower) synthesized at different temperatures and pressures in the stability field of diamond in
the carbon phase diagram (“direct” technical synthesis) according to Kostov and Kostov [91]

conditions both in “direct” (at increased pressure p in the field of stability of diamond) and
in metastable growth is given in Figs. 8.14 and 8.15. These results, due to Sunagawa [90] and
Kostov and Kostov [91], give a possibility of reconstructing growth conditions of diamond
from morphology and general appearance. This possibility is of exceptional significance, es-
pecially in cases with geological and cosmic diamond samples. We have to add to the above
schema that if diamond microcrystals are formed from liquid carbon, a liquid droplet type
appearance should be expected. These considerations are used in the experimental part of
the present analysis. It is also to be mentioned here that twin-crystal formation is dependent
on supersaturation (see, e.g., [91, 92]). The change of twinning in diamond formation with
temperature and pressure is empirically illustrated in Fig. 8.14.

8.3.9 Thermodynamic and Kinetic Conditions of Formation
of Crystalline and Glassy Carbon Condensates

In Sects. 8.3.6 and 8.3.7, two possible mechanisms for the formation of diamond condensates
at metastable conditions have been discussed in terms of Ostwald’s rule of stages, or at quasi-
metastable conditions prevailing in a two-dimensional carbon adsorption layer. According to
both mechanisms, the formation of graphite-like or diamond-type amorphous condensates has
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Figure 8.15: Growth morphology of diamond crystals for growth at different substrate temper-
atures (given on the abscissa) at otherwise equal CVD conditions of metastable synthesis (after
Spitzyn [18]). The growth rates, g, in the 〈100〉 and 〈111〉 directions are measured. A continuous
change from mainly cubic into mainly octahedric crystal habit is observed with rising substrate
temperatures

also to be considered. As shown in section 8.4.3, such condensates were in fact experimentally
observed. Let us now transform the final mathematical formulation of Ostwald’s rule of stages,
Eq. (8.35), into a form that can be easily brought into a graphical representation. For this
purpose, we introduce the notation (cf. Eq. (8.35))

(
	gr

	d

) (
σgr

σd

)3 (
V gr

m

V d
m

)2

= F0 . (8.45)

Then we have to take into account that in vapor condensation processes

�µgr = �µd + �µgr/d (8.46)

holds (see Figs. 8.4 and 8.6). Here �µgr and �µd denote the driving force for the vapor/
graphite and for the vapor/diamond condensation, and �µgr/d is the thermodynamic driving
force for the diamond/graphite transition. The value of �µgr/d is given by Simon’s expres-
sion (8.16), i.e., �µd/gr ≡ �Gp (T ). For the case when condensation takes place at the con-
ditions of a real or imaginary static vacuum deposition experiment between graphite as an
evaporator (sustained at T = Tevap) and a substrate (held at T = Tsubstr) we have to write (see
[33, 93])

�µgr (Tsubstr) = RTsubstr ln

(
p

(
Tevap

)
p (T substr)

)
. (8.47)
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Thus, the condensation process takes place in such a way that graphite is evaporated at Tevap
and the carbon vapors are condensed at a temperature Tsubstr < Tevap. For any of these tem-
peratures, we arrive with

ln p ∼= −�H gr
subl

RT
+ const (8.48)

at another expression of Eq. (8.47), i.e.,

�µgr (T ) = �H gr
subl

Tevap

(
Tevap − Tsubstr

)
. (8.49)

In this way, with Eqs. (8.16), (8.45), (8.46), and (8.49) the condition for dominant diamond
nucleation, Eq. (8.35), is transformed into

Y = 1 − A0

F0�Hsubl

(
1 − B0Tm

A0
X

)
, (8.50)

where we have used the notation Y = (
Tevap/Tm

)
and X = (Tsubstr/Tm), indicating in both

cases with Tm the melting point of carbon. Thus, in Y vs. X coordinates, we obtain a straight
line

Y = 1 − D0 + D1 X . (8.51)

Here D0 = A0/ (F0�Hsubl) and D1 = (B0Tm/A0) are determined by the ratio of Simon’s
coefficients A0 to �Hsubl and by the kinetic parameters of the condensation process, given by
F0 (see Eq. (8.45)).

In a similar way and again in Y vs. X coordinates, we have constructed in previous in-
vestigations [31, 64, 93] the thermodynamic and kinetic conditions for the formation of liquid
or crystalline condensates on a substrate at T < Tm, where the crystal is the thermodynami-
cally stable state. In this second case, however, in beginning our calculation in the same way as
above with Eq. (8.35), we arrive, with the obvious condition �µv/cryst (T ) = �µv/liquid (T )+
�µliq/cryst (T ), at the more complicated expression

1

Y
= 1

X
− 1

(1 − F0)
(1 − X) . (8.52)

This is so because we have to introduce here (with a0 = 2) the thermodynamic force of
crystallization with the expression

�µliq/cryst ∼= �Hm

[
1 − T

Tm

]
T

T m
, (8.53)

where �Hm = �SmTm indicates the respective enthalpy of melting. A similar expression,
Eq. (8.14), was introduced in Sect. 8.3.2. The value of F0 in Eq. (8.52) is again given with
Eq. (8.45); however, in this second case the indices to σ , 	, and Vm have to be accordingly
changed from (gr) and (d) (for graphite to diamond) to (cryst) and (liq) in the liquid/crystal
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Figure 8.16: The thermodynamic and kinetic boundaries for the formation of metastable and
stable condensates and for the glass formation in Y vs. X coordinates in terms of the kinetic
formulation of Ostwald’s rule of stages: Left: Conditions for the formation of liquid (shaded
area) and crystalline condensates (double shaded area) [31, 64, 93], according to Eq. (8.52), for a
given F2-value (at 	liq ≈ 	cryst). Right: Conditions for the formation of diamond (shaded area)
and graphite (double shaded area), according to Eq. (8.50), for typical F0-values as explained
in the text (with X = (Tsubstr/Tm), Y = (Tevap/Tm)). Note that diamond formation is only
possible at relatively high temperatures, Tsubstr, and with a high evaporation temperature

case. The thermodynamic condition for the formation of a condensate on the substrate at our
imaginary static condensation experiment is given by Y ≥ X , i.e., by Tevap ≥ Tsubstr.

The thermodynamically stable crystalline condensate, discussed in the second case, is
dominantly formed, according to Eqs. (8.53) and Y ≥ X , in between the straight line and
the curve on the left part of Fig. 8.16. For each F0-value, a corresponding curve can be drawn.
At lower values of F0, the curve reaches higher values and the greater is the double shaded
area in this figure, which shows the formation of the stable crystalline condensate. Above this
curve, the formation of the metastable liquid condensate becomes possible and is dominantly
observed. Experimental evidence in this respect [31, 94] is available (at T < Tm) for several
cases of formation of liquid and crystalline condensates of various substances.

A similar result follows from Eq. (8.56) for the particular case of the possible formation
of diamond condensates at conditions (i.e., normal pressure p) where graphite is stable. The
particular form of Simon’s equation changes the Y vs. X diagram as shown on the right part
of Fig. 8.16. Here again the formation of metastable diamond condensates is to be expected
only for conditions corresponding to the area above the straight lines that have to be drawn
with various F0-values. The formation of graphite condensates should be possible in the dou-
ble shaded area between this curve and the corresponding straight line. In Fig. 8.16, only one
of the possible lines corresponding to Eq. (8.5) is given, referring (at 	d = 	gr = 1) to the
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already mentioned values of σ and Vm for both crystalline modifications of carbon, to the
constants A0, B0 in Eq. (8.19) and to the high value of �Vsubl for graphite. The expected area
of possible diamond formation for Tevap < Tm of graphite is relatively small and corresponds
to low X-values, where the formation of crystalline condensates is scarcely possible. At these
low substrate temperatures, because of the restricted surface mobility, the formation of amor-
phous glass-like condensates should be expected. Only for conditions where Y is equal to or
even higher than 1 (i.e., for temperatures Tevap > 3000–4000 K) and for relatively high sub-
strate temperatures Tsubstr diamond formation is expected. At these conditions, however, the
vapor→ two-dimensional liquid → diamond mechanism, already discussed in Sect. 8.3.5,
could be more efficient.

At low X-values (e.g., X < 1/2), the formation of glass-like amorphous condensates
becomes a necessity. This process takes place at vitrification conditions when the time of
molecular relaxation, τR, of a system becomes larger than the characteristic time of change of
external parameters (e.g., temperature variation in cooling processes). In application to vac-
uum deposition experiments, this condition implies that a vitreous condensate will be formed
when the inequality

τR(condensate) ≥ τ(vapor deposition) (8.54)

holds. Equation (8.54) is fulfilled when the time of molecular rearrangements of the surface
layer of the amorphous condensate becomes equal to or larger than the average time for vapor
deposition, τ(vd), at which a monolayer covers the surface of the condensate, thus burying-in
its initial disorder. Defining τ(vd) through the vapor deposition rate, Zv (expressed in numbers
of monolayers per unit time), as τ(vapor deposition) = 1/Zv, and assuming that τR(condensate) may
be expressed via a simple Frenkel-type temperature dependence, τ ∝ exp (U0/RT ), with a
constant activation energy U0, it follows that the critical temperature for vitrification, Tc, of a
liquid condensate will be [31, 64, 94]

1

Tc
≥ R

U0

[
ln

(
1

τ0

)
− ln (Zv)

]
. (8.55)

The analogy of the above given expressions with the derivation and the physical meaning
of the Bartenev–Ritland equation is obvious. The Bartener–Ritland equation determining the
temperature of vitrification Tg of a bulk melt sample, cooled down to room temperature with
a rate ω0 = (dT/dt), is usually written as (1/Tg) = [const − log(ω0)](R/U0) [31]. Defining
Zv in Eq. (8.55) through the (Tsubl/Tevap) ratio, a dependence is obtained in terms of a Y vs.
X diagram schematically shown in Fig. 8.16 with a wavy line (at X ∼= 1/3). In the same way,
on the left part of Fig. 8.16 the Tg-value is indicated corresponding to X = 2/3 as observed
for bulk vitrification of typical glass-forming substances.

From the foregoing analysis it is evident that the set of requirements determining the pos-
sibility of formation of vitreous condensates consists of (i) the thermodynamic condition for
the possibility of formation of condensed phases, Y ≥ X , (ii) the kinetic conditions providing
the possibility of the initial formation of a liquid condensate, Eq. (8.52), and (iii) the con-
ditions guaranteeing vitrification (i.e., sufficiently low temperatures and/or sufficiently high
condensation rates, ω0), Eqs. (8.54) and (8.55).

In a qualitative way, conditions for the formation of solid amorphous thin films had been
already formulated years ago by Hirth and Pound [95] and by Chopra [96]. The mentioned
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authors argued that vitreous amorphous films are obtained when the temperature of the sub-
strate is so low that the deposited atoms become immobile. Here we derived Eqs. (8.51) and
(8.52) and constructed Fig. 8.16 for a thought experiment in which from an evaporator at a
relative temperature Y a vapor pressure p(Tevap) is sustained, guaranteeing (for carbon only at
T > Tm) a deposition rate Z , sufficiently high to form a thin carbon layer.

Only in real experimental conditions several experiments, discussed in Sect. 8.3.3, have
been performed up to now, roughly corresponding to these conditions. In most cases, a suf-
ficient impingement rate Z in CVD methods and in similar techniques of carbon thin film
deposition, diamond nucleation, and diamond growth, a flux of molecules is produced in com-
plicated chemically reacting vapor systems, which are far above those that can be reached in
a one-component carbon system via direct evaporation. Nevertheless, some of the results out-
lined here as principally possible may be of significance even in systems where chemical
reaction equilibrium and stability constants determine the processes taking place on the sub-
strate.

8.3.10 Thermodynamics and Kinetics of Gaseous Transport Reactions
with Activated Carbon Materials

The metastable growth of diamond becomes possible at relatively low temperatures (1000–
1200 K) only via chemical transport reactions: At these conditions the vapor pressure of any
form of carbon is too low to guarantee material transport. Let us first consider the well-
known thermodynamics of gaseous reactions with the participation of a solid reagent E,
α∗E + β∗

i Ai ⇔ γ ∗C. In our case, E denotes a given form of solid carbon and Ai and C
are the corresponding gaseous reactants and reaction products. The equilibrium constant of
the above reaction,

K = [C]γ

�
i

[Ai ]βi
, (8.56)

is determined (at p = const) by the respective Gibbs thermodynamic potential change �G as

ln Kp = −�GR

RT
, �GR (T ) = γ ∗Gc (T ) −

∑
i

β∗
i GAi (T ) − α∗GE (T ) . (8.57)

In the above equation the thermodynamic potential of the solid reagent, GE (T ), has to be
referred to the corresponding polymorphic modification of the substance, E (in our case: dia-
mond, graphite, or vitreous carbon), taking part in the reaction. It was shown by Gutzow [31,
32] (see also [33, 35]) that for temperatures sufficiently below the glass transition (i.e., for
T < Tg) the vapor pressure, pgl, of a vitrified solid can be written as

ln

(
pgl

pcryst

)
= �Gg (T )

RT
= �Hg

RT
− �Sg

R
, (8.58)

where �Gg(T ) = Ggl(T )−Gcryst (T ) (see Eq. (8.19)). Thus, the vapor pressure (or respective
solubilities Cgl and Ccryst) of the different polymorphic forms of carbon can be calculated us-
ing Eq. (8.58). The respective �Gg-values, following from Figs. 8.7 and 8.8 and in particular,
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Figure 8.17: Left: Volume parts of hydrogen and CH4 over graphite at different temperatures for
the reaction C+2H2 ⇔ CH4 with Kp-values calculated according to Eq. (8.57) (thermodynamic
data from Ref. [46]). Right: Comparison of the concentration of CH4 over different forms of
carbon: (1) vitreous carbon, (2) diamond, and (3) graphite, for the reaction C + 2H2 ⇔ CH4
according to Eq. (8.59)

the solubilities of different carbon materials indicated there have been calculated and found in
satisfactory corroboration with direct calorimetric measurements.

With the connection given above it also follows [33] that the chemical constant of a het-
erogeneous reaction with the participation of vitrified solids at T < Tg (e.g., vitreous carbon)
can be expressed as

K pgl = K pcryst exp

[
γ ∗�Gg

RT

]
= K pcryst

(
pgl

pcryst

)γ ∗

. (8.59)

Here we refer Gcryst to the crystalline modification, stable at the considered conditions (to
graphite, according to Figs. 8.4 and 8.6). By exploiting Eqs. (8.20)–(8.22), the additional
�Gx -values, introduced by foregoing mechano-chemical treatment, can be taken into account
in calculating the respective Kp-values. Thus, the whole thermodynamics of possible gaseous
transport reactions can be calculated in advance for any of the carbon materials whose G(T )-
values are given in Figs. 8.4–8.6. This result will be illustrated for one of the most significant
gaseous transport reactions in the metastable growth of diamond, namely C + 2H2 ⇔ CH4.
The corresponding chemical reaction constant is given with

K p1(T ) = [CH4]

[H2]2
(8.60)

and K p1(T )cryst (for graphite) can be directly calculated using the data for the G(T ) curve for
graphite (see [46] and Fig. 8.4). With Eq. (8.60) and the obvious condition [H2] + [CH4] = 1,
the equilibrium concentration [H2] in a closed reaction vessel over graphite is given as

[H2] =
[(

1 + 4K p1

)1/2 − 1
] 1

2K p1

(8.61)
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Figure 8.18: Temperature dependence of the chemical constant Kp for (left) halogen/graphite
reactions and for oxidation of carbon and (right) for several chalcogen/graphite reactions and
for Boudouard’s reaction

for graphite, vitreous carbon, diamond, etc., when the corresponding �G-values (see Fig-
ures 8.4–8.6) are introduced into Eq. (8.60) to calculate the respective Kp-values.

In Fig. 8.17, the results of such calculations are given. The thermodynamic properties of
various modifications affect considerably the equilibrium concentrations of the reaction com-
ponents (here of H2 and CH4 over glass, graphite, and diamond). These differences which are
usually ignored indicate a natural source of thermodynamic driving force as is illustrated more
distinctly on the right part of Fig. 8.17 for various temperatures. The kinetics of incorporation
of C-building units into the diamond lattice, as mentioned in Sect. 8.3.5, is determined by the
presence of an optimal concentration of free H-atoms (designated here by the symbol H∗).
Using the chemical constant K p2 of the corresponding reaction (H2 ⇔ 2H), i.e.,

K p2 =
[
H∗]

[H2]

2

(8.62)

and employing again the condition
[
H∗] + [H2] = 1, we get

[
H∗] =

[(
1 + K −1

p2

)1/2 − 1

]
K p2

2
. (8.63)

In Figs. 8.18 and 8.19, the temperature dependence of the reaction constants for several
simple reactions are given, which are promising as vapor transport reactions for the transition
carbon glass → diamond in closed silica reaction vessels. A simple requirement, well known
from single-crystal growth techniques [93], is that transport reactions can be optimally used
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Figure 8.19: The chemical constant, Kp, for the atomization reactions of hydrogen and of sev-
eral halogen and chalcogene elements (thermodynamic data as in Figs. 8.17 and 8.18 are taken
from Ref. [46])

at log Kp ≈ 1, where a sufficient concentration of both reactants and reaction products is
present. The respective possibilities are obvious from the above mentioned figures, taking into
account that in order to guarantee sufficient incorporation rates of carbon into the growing
diamond crystal usually temperatures of 1200–1600 K are necessary. These figures also give
indications for growth in the presence of either atomic hydrogen or other elements in atomic
form (e.g., iodine). These figures, and many others calculated for about 50 additional reactions,
indicate possible experimental realizations summarized in the experimental part (Sect. 8.4) of
the present investigation. In constructing the respective figures, the �G (T ) tables of Ref. [46]
were used.

Experimental evidence and simple kinetic considerations also show that not only hydrogen
but also halogens and chalcogens in atomic form could be essential in gaseous transport me-
diated metastable growth of diamond. Figure 8.19 and Eqs. (8.62) and (8.63) show that, while
for a measurable H-concentration to be obtained in a closed reaction chamber, a temperature
of at least 3000 K is necessary (thus the application of hot filament techniques or plasma-
assisted growth is required), the formation of I atoms is easily obtainable even at 1000 K. This
property explains the good results obtained with the 2I2 + C → CI4 reactions [27] as will be
shown in Sect. 8.4.5.



298 8 Diamonds from Vitreous Carbon and from the Plasma Torch

8.4 Experimental Part

8.4.1 Introductory Remarks

In this second part of the present chapter, experimental results on the nucleation and growth
of diamond and on graphite–diamond transitions, taking place at metastable or, at least, seem-
ingly metastable conditions, are summarized, some of them from our experience, others from
the literature. To the opinion of the authors, these results confirm or illustrate most of the
derivations and expectations, presented in the foregoing theoretical part. Explicitely men-
tioned and even discussed in some length are preferentially those experimental findings that in
our opinion are indicative from a theoretical point of view. Several outstanding papers giving
serious contributions to the solution of problems in technical applications had to be omitted.
The reader more or less experienced in the metastable diamond synthesis literature will also
miss a thorough discussion of several articles, which brought in the first information on the
possibility of metastable synthesis: These results are analyzed in details in the review articles
[2, 3, 10, 18, 19, 26, 27, 97]. It is also understandable that predominant significance is given
to the results obtained by the present authors during several years of tedious experimentation.
Only a small part of these experiments is published at present (see [20, 21, 29, 30, 38]).

Usually in the classical literature on metastable diamond synthesis of the last 20 years it is
claimed that this process is possible in gaseous phase transport reactions only in the presence
of atomic hydrogen. We begin the present discussion with several confirmed cases of diamond
formation and growth at quite different, also metastable conditions, contradicting this claim.
First several doubtful, even unsuccessful experiments, are reported. One of them, performed
by Hannay [37], was described in some detail in Sect. 8.2. Below more recent results are
discussed, demonstrating metastable formation of diamond from vapor phases, as a purely
physical process in the absence of reagents such as atomic hydrogen: These are processes of
metastable diamond formation in a one-component carbon system. Then a short outline of the
results is given on transport chemical reactions in the vapor phase.

8.4.2 Metastable Diamond Growth from Solutions and Melts

In the earlier review literature [19], several attempts are described to grow diamonds at normal
pressures either from Mg-silicate melts (carbon has a relatively high solubility in Mg-silicate
melts) or in lead or copper (or Ni–Cu) melts. It is claimed that by applying temperature gradi-
ents to the mentioned metallic alloy systems (the diamond seed being placed at a lower temper-
ature, graphite, at the higher), diamond growth was observed [19]. No further confirmation of
these results is known to the authors. We tried to repeat partly, also without success, these ex-
periments in order to realize in this way the glass/diamond reaction. The simple experimental
assembly employed is evident from Fig. 8.20. In both cases, as the source of supersaturation at
constant temperature (∼ 1670 K) either crucibles or little combustion boat-like sample holders
of vitreous carbon were used. The experiments were performed under argon and the diamond
seed crystals were placed in molybdenium cages. In the arrangement given on the right part of
Fig. 8.20, the solubility of vitreous carbon and of graphite (with graphite crucibles) was mea-
sured in a Ni/Cu alloy, as given in Fig. 8.8 (see also [38]). No distinct growth of the diamond
seed crystals was registered either in the Mg/Fe-silicate melt with olivine-like composition
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Figure 8.20: Left: Experimental assembly, employed to analyze the possibility of diamond
growth in olivine silicate melts: (1) diamond seed crystal; (2) vitreous carbon boat; (3) Mg,
Fe-olivine melt; (4) Mo grid, encapsulating the seed crystals; (5) refractory oven tube at 1670
K; (6) electric oven; (7) inlet and outlet of inert Ar gas. Right: Experimental assembly, used to
measure the solubility of carbon modifications and diamond growth in Cu30Ni70 alloys: (1) di-
amond seed crystals in Mo grid; (2) vitreous carbon crucible; (3) Ni/Cu alloy melt; (4) Mo grid,
encapsulating the seed crystals; (5) vitreous carbon cover lid; (6) graphite crucible and cover lid

(resembling to some extent geologically significant silicate melts, leading to the kimberlite
deposits) or in the Ni/Cu alloys after exposure times of more than 6 h. An interesting arrange-
ment for solution growth was more recently reported in [98]. Diamond single crystals grow
(or recrystallize after an initial dissolution) in KOH melts at 1100 K in the presence of Ni
(claimed to exert catalyzing effects in these processes). The essential point, to be mentioned
in this section, is that in coincidence with the predictions in Sect. 8.3.5 and the analysis of
Eq. (8.35), no nucleation of diamond from solution or melt was observed.

8.4.3 Metastable Nucleation and Growth of Diamond
from Carbon Vapors

Up to now it seems that only in a relatively recent experiment performed by Pavlichenko et
al. [99], direct nucleation of diamond from carbon vapors was confirmed. Carbon vapors were
produced in vacuum in a Voltaic arc between two graphite electrodes (at ∼ 4000 K) and con-
densation took place in the dense carbon vapor phase thus formed most probably also at very
high temperatures. The thus nucleated diamonds, grown at the mentioned extreme tempera-
tures in the Voltaic arc to micron size, sedimented onto a metallic substrate. To some extent
this remarkable experiment corroborates with the conditions, following according to Fig. 8.16
and the predictions of Ostwald’s rule of stages for the metastable nucleation of diamond. On
the other hand, up to now (in coincidence with Fig. 8.16) any form of physical vapor deposi-
tion in its various forms (sputtering of graphite targets or laser abolition of graphite etc. and
subsequent condensation at relatively low temperatures Tsubstr < Tm carbon/3) resulted only in
amorphous graphite or diamond-like (i -diamond, a-diamond [60, 61]) amorphous layers. This
result is again in coincidence with our theoretical expectation summarized in Fig. 8.16.
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The nanosized diamonds, formed in interstellar space and found in hondride meteorites,
may, as a “letter from supernovae explosions” [100], show with their droplet-like appearance
clearly a liquid-carbon stage of development as discussed in Sect. 8.3.5. Thus, these nano-
sized diamond findings have to be categorized as resulting from the secondary crystallization
of initially formed carbon droplets. This process implies also pressures of more than 10 bar
at the first droplet carbonization stage of their formation when the phase diagram of carbon
(Figs. 8.1 and 8.2) is recalled. Here we also have to categorize the already discussed transition
of small graphite clusters (see Sect. 8.3.5) and the remarkable experiment performed by Fe-
doseev et al. [66, 67], giving another example of metastable diamond formation in the absence
of catalyzing gases such as elementary hydrogen. The experiments mentioned in this section
are of less technical significance but demonstrate the physical side of diamond nucleation
and growth, concealed by complicated chemical processes in other methods of metastable
diamond formation.

8.4.4 Diamond Nucleation and Growth with Transport Reactions
in the Plasma Torch

In the first realization of metastable growth of diamond from the vapor phase, transport reac-
tions of the type as discussed in Sect. 8.3.10 were used. A constant flow of a supersaturated gas
mixture CH4/H2 was sustained in different experimental arrangements over a population of
microsized diamond. After the discovery that atomic hydrogen strongly catalyzes the process,
hot filaments, UV radiation and plasma torches were introduced into the reaction volume in
hundreds of various arrangements, partly described in several review articles. Thus, out of the
pioneering efforts of Eversole [2, 19], Deryaguin, Fedoseev, Ptizyn [9, 18, 27], Angus [2, 22,
23] and many others, real industrial realizations of metastable growth was achieved, leading
to thin films, layers and optical windows of diamond, grown out of assemblies of initial seeds
[10, 14, 15]. In recent developments, relatively soft, even pliant substrates (e.g., copper) were
seeded by a multitude of diamond crystallization centers by a process of ablation with dia-
mond nanopowders, preceding the condensation treatment. Thus, according to Sect. 8.3.6, the
condensation process took place on a substrate with an activity 	d = 0 and, according to
Eq. (8.35), it resulted in continuous diamond growth. Such processes of technical growth of
diamond layers are also described in detail in the existing technical and review literature on
this subject [14, 15, 28, 98].

Beginning in the 1990s, it was observed that when, in the initial stages of condensation
of the plasma-assisted C/H/O process, a more or less prolonged pulse of increased plasma in-
tensity was applied, on the substrate (acting as an anode in the plasma torch) micro-diamonds
were nucleated [20, 21, 28, 98]. We used this plasma-initiated diamond nucleation process in
a new version described elsewhere [20, 21]. The gaseous mixture was formed in the greater
volume of a commercial vacuum deposition apparatus, filled with a gaseous mixture produced
by the joint introduction of H2, H2O, and CH3OH (the latter two components as an alcoholic
solution [20, 21]). One of the modifications of the apparatus used is seen in Fig. 8.21 (left),
in the variant used to grow diamonds from glassy carbon. Thus, our vapor reaction vessel
contained (in the plasma torch region) a combination of H2, O2, H, O, C, and carbonaceous
reactants in a combination governed (as far as equilibrium can be assumed in the plasma torch)
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Figure 8.21: Left: Vacuum apparatus (schematically), used to nucleate and grow diamond mi-
crocrystals via a H/O/C plasma-supported CVD process, developed by Kostadinov et al. [20,
21]: (1, 2) growing diamond crystals, initially nucleated in an impulse with increased plasma
intensity; (3) Mo substrate; (4) vacuum chamber bell; (5) graphite cathode; (6) support and
electric connection to Mo anode; (7) optical pyrometer; (8, 9) inlet system for gaseous reaction
mixture. Right: Quartz ampoule for the gaseous transport realization of the vitreous carbon
⇔ diamond transition: (1) seed diamonds; (2) microsized vitreous carbon; (3) catalysator;
(4) transport gas–filled ampoule; (5) sealed ampoule inlet

by the corresponding reaction constants in accordance with the qualitative schema, given in
Sect. 8.3.10. Plasma temperatures at similar conditions of experimentation are estimated to be
in the range 4000–6000K [28]. The temperatures on the substrate were usually in the vicin-
ity of 1600 K, as was proven by optical pyrometer measurements. It was also observed that
the molybdenum substrates used were transformed at the conditions of the experiment into
Mo-carbides (according to our X-ray data into Mo2C).

It was not possible to decide at the present stage of our investigation that what is the domi-
nant mechanism of this diamond nucleation process. One possibility is that Mo2C (which how-
ever is hexagonal) acts as a diamond nucleant (with 	d ≈ 0, cf. Eq. (8.35)). Other possibilities
are that the increased flux of C- and H-atoms and atoms from the plasma torch forms on the
Mo–C substrate a two-dimensional layer of increased pressure, which according to mentioned
estimates can reach, in plasma-assisted condensation, values corresponding to 50–60 kbar [87,
88]. Thus, also a quasi-metastable synthesis (at actually increased pressure, corresponding to
those in a Belt chamber and to mechanisms discussed in Sect. 8.3.7) cannot be excluded. Pos-
sible chemical reactions, increasing the activity of the substrate, also have to be anticipated;
the formation of an initial population of graphite clusters (or graphite–H–clatrate clusters) and
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Figure 8.22: Two diamond microcrystals synthesized in the CVD-plasma apparatus shown in
Fig. 8.21: (left) single microcrystal; (right) twin microcrystal. The size bar applies to both pic-
tures
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Figure 8.23: Growth spirals on diamond microcrystals of the type shown in Fig. 8.22. This
picture was used to determine the effective supersaturation according to Eq. (8.44)

their transformation to graphite can also be a promising way of proposing mechanisms of this
process (see Sect. 8.3.2).

After the initial impulse resulting in nuclei formation, the plasma torch was reduced to
lower intensity (by reducing the current applied) and growth of the diamonds to dimensions of
approximately 1–2 mm could be achieved. In Fig. 8.22, two of these diamonds are represented.
The nature of these and similar microcrystals as pure diamond was verified by X-ray, micro-
Raman shift spectroscopy and X-ray microprobe analysis (employed as both EDX and WDX).
In its morphology, the diamond thus grown corresponded mostly to a combination of 111
and 100 faces (in a similar way as in Spitzyn’s CVD-growth diamond seed crystals [18]).
Usually twining, corresponding to medium supersaturations (see [91, 92]), was observed. In
Fig. 8.23, the typical appearance of one of the faces of such a diamond, nucleated and then
grown at the above-described conditions, is also given. The stepwise growth, typical for the
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dislocational mechanism (cf. Sect. 8.3.8) and clearly to be seen on this picture, was observed
as a rule on both the 100 and 111 faces. With Eq. (8.44) it was found that these steps, having in
general a width of 1.5–2.0 µm and a height of 0.2 µm, were grown at a relative supersaturation
((�µ/RT ) ≈ 3–4). In this calculation, the σ and ρ values, listed in Table 8.2, were used.
This result corresponds well to the dislocational mechanism assumed and to Fig. 8.13. There
is no possibility, however, of determining directly the supersaturation, acting in the process
of diamond nucleation in our case. In general, at homogeneous nucleation (�µ/RT ) = 2–4
could be expected as verified for other processes of nucleation (see [31, 62, 76]).

8.4.5 Diamond Growth via Vitreous Carbon
Using Chemical Transport Reactions

In a series of experiments, we succeeded to realize the expected vitreous carbon → diamond
transformation using several gas transport reactions [29, 30]. We performed the first experi-
ments of this series in sealed quartz ampoules with the construction given in Fig. 8.21 (right).
In the experiment the seed crystals (natural or synthetic diamonds, 0.01–0.1 mm in size, some-
times in the form of larger polished brilliants), preliminarily weighted on a sensitive microbal-
ance, were placed on the left-hand side of the quartz ampoule. On the right-hand side of the
ampoule the precursor carbon material was placed, usually in the form of fine-grained pow-
der (size of grains: usually between 10 and 100 µm). Besides the already mentioned vitreous
carbons, some other materials with different degrees of crystallinity, structure, and dispersity
were tested as carbon precursor: different blends of soot, medical carbons, and commercial
nanodispersed diamond powders. In any of these materials, owing to the amorphous or de-
fect structure and micro- or nanosize dimensions, an increased thermodynamic potential is
frozen in (see Sects. 8.3.3 and 8.3.4). The good results obtained with diamond powders may
be of principal technical interest, as they demonstrate the possibility of exploiting for diamond
growth directly the �Gx difference, determined only by size effects via the Thomson–Gibbs
dependence (Eq. (8.23)). With these nanosized diamond precursor samples the kinetic prob-
lems connected with the sp2 →sp3 transformation are to a great extent reduced and smooth
diamond growth was easily achieved.

For the realization of the transformation graphite → diamond in the wider limits pre-
cursor carbon material → diamond in the closed volume of the quartz ampoules several
gas-transport reactions were tested. Besides the conventional CH4/H2/H system (in which H-
atom formation was catalyzed by a heated Pd foil) several other transport reactions were used
with greater success, such as C+2I2 → CI4, C+2Br2 → CBr4, C+S → CS2, etc., as already
discussed in Sect. 8.3.10. The desired gaseous phase was formed by introducing the necessary
reagents in solid form (e.g., sulfur, iodine, CBr4, paraffin, etc.) in small quartz tubes, which
cracked upon heating in the initially evacuated quartz ampoules shown in Fig. 8.21 (right). We
obtained good results with both sulfur and iodine as transport agents (see [29, 30]). In further
developments reaction vessels either of Monel-metal or of vitreous carbon were constructed
and used instead of the quartz ampoules.

Another possibility of demonstrating the vitreous carbon → diamond transformation
consists in using the mentioned vacuum plasma method and apparatus with the construction
given in Fig. 8.21 (left). In these experiments, we described in Ref. [30], on the Mo anode
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Figure 8.24: X-ray patterns of an assembly of small technical synthetic precursor diamonds
(50 µm) used in the experiments before treatment (left) and of the same precursor diamonds
after ampoule growth (right). Note that the growth has changed the absolute value of different
crystal faces

of the CVD vacuum apparatus at zero supersaturations plasma-synthesized glass-like carbon
samples and a diamond single crystal were placed, both having dimensions of approximately
1 mm. In the closed volume of the vacuum chamber, the plasma was triggered (at 1000 V)
at a temperature of the substrate 1400 K. In this surrounding, the carbon glassy sample was
isothermally transformed into diamond single crystals. The isothermal ampoule growth exper-
iments with vitreous carbons and with the other mentioned precursor carbon materials were
performed in the range of 1000–1400 K at approximately 1 bar and with a duration from 12
to 150 h. As a result, diamond growth rates of ∼ 0.5 µm/h were achieved, leading (at optimal
supersaturations γ = (�G/RT ) ≈ 0.01) to the smooth growth of the introduced diamond
seed crystals. In the direct plasma-assisted CVD growth, described in Sect. 8.4.4, considerably
higher growth rates (up to 100 µm/h) were observed. At higher supersaturations (again deter-
mined via Fig. 8.6) besides continuous growth the secondary formation of typical diamond
growth pyramids or even of diamond single crystallites was observed on the diamond seeds,
thus indicating also the possibility of nucleation processes. As far as we know, the above
results are the first proof of the vitreous carbon → diamond synthesis at metastable con-
ditions. At further increased supersaturations, the dominant formation of graphite structures
even on the diamond seed crystals followed. At lower temperatures (below 1000 K), usually
amorphous carbon glass-like condensates were observed (see [30]).

In order to prove diamond growth as a result of the experiments, reported here and in
Sect. 8.4.4, several auxiliary methods and techniques were used. The growth of the individual
seed crystals was followed by exact weight measurements (with an accuracy of ±2 × 10−6 g),
by X-ray and electron RHE diffraction (confirming the crystalline nature of the condensate)
and by UV-induced luminescent microscopy investigations. With the last method, the over-
growth of luminescenting natural diamonds with the nonluminescent condensate was fol-
lowed. Figure 8.24 gives the X-ray patterns of an assembly of small technical synthetic precur-
sor diamonds (50 µm mean size) used in the experiments before growth treatment (left part).
On the right part of Fig. 8.24, X-ray patterns are shown of the same diamond sample after
the described ampoule growth: again the diamond structure is demonstrated, with a somewhat
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Figure 8.25: Typical Raman spectra of various carbon condensates investigated: (a) diamond
obtained in our CVD experiments; (b) diamond ampoule overgrowth on a natural diamond seed
crystal. Note the additional luminescent Raman background characteristics of natural diamonds;
(c) graphite condensation (right-hand peak) and amorphous material (left-hand peak); (d) vitre-
ous carbon condensate (amorphous microspheres obtained in the CVD apparatus)

changed morphology due to the oriented growth process. Micro-Raman spectrography was
used as the most efficient method of analysis and diamond proof (see Fig. 8.25).

Detailed EDX and WDX microanalyses were performed with the X-ray microprobe to ver-
ify the chemical composition of the condensates. For the case of the CI4/I2/I and CH4/H2/H
systems only traces of iodine (below 0.01%) were found. However, with sulfur as a carrier
gas considerable amount (up to 1–2%) of sulfur was introduced into the growing epitaxial di-
amond films. As mentioned in Sect. 8.3.4, when microdispersed diamond precursor materials,
milled in a W-carbide milling apparatus, were employed, also unwanted W-contaminations
were introduced with the transport reactions.

8.4.6 Morphology and Growth Mechanisms of Technical
and of Natural Diamonds

In our CVD plasma-assisted growth experiments well-formed microcrystals, which are the
known combinations of 〈100〉 and 〈111〉 faces, were found as also observed by other authors
[18, 90]. On them the mentioned relatively thick growth spirals prevailed (see Fig. 8.23). Such
growth spirals are also observed on technical diamonds, directly synthesized in the stability
field of diamond [101].
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Figure 8.26: Typical habit of natural diamond microcrystals from South African kimberlite
mining [102, 103]. No dissolution remnants are observed

Figure 8.27: Presolar nano-diamonds from interstellar space: high resolution TEM picture from
thin slide of carbon material from houndride meteorite (from the Allende and Murchison mete-
orites in Mexico). Note the typical droplet-like appearance of the two nanosized crystals, formed
(according to Xe-isotope dating) 9 × 109 years ago in space [100, 104]

Geological diamonds can also display well-formed faces (Fig. 8.26), but in most cases their
appearance is damaged by complicated tectonic processes. These crystals have undergone
dissolution and complicated processes of change in their rise from the depths of the earth to
its surface (see [102, 103]). Quite different from all these crystalline habits is the appearance of
cosmic diamonds found in presolar meteorites (Fig. 8.27) [100, 104–106]. They, it seems, have
brought from interstellar space to earth the proof that they have been initially formed as liquid
carbon droplets, may be, in the vicinity of supernovae explosions. It is interesting to explore
whether the mechanism outlined in Sect. 8.3.5 could be applied to their formation [107].

8.4.7 Formation of Amorphous and Glassy Carbon Condensates
at Metastable Conditions

The so-called vitreous carbon materials are synthesized under Ar-atmosphere or in a vacuum
furnace by the controlled high-temperature pyrolysis carbon resins. In Sects. 8.3.2 and 8.3.3,
we described the properties of both commercial vitreous carbon materials and samples we
prepared by the pyrolysis of furfuryl-alcohol resins under Ar at ∼ 1750 K. Upon condensa-
tion processes in the described plasma-sustained condensation, the formation of amorphous
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glass-like structures with the corresponding typical Raman-shift spectrum (Fig. 8.25(d)) was
observed at lower substrate temperatures. In our ampoule growth experiments, the formation
of amorphous carbon condensates was also found then as a typical process in the form of
drop-like structures (with sizes up to 0.1–1 µm).

No distinct connection could be established with these X-ray and Raman-amorphous car-
bon droplets and isometrical cubic-octahedral isometric diamond crystals also formed in our
ampoule experiments. However, these several observations are, nevertheless, worth to be men-
tioned in connection with the possibilities opened by Eqs. (8.27) and (8.30) and with results
[38] and predictions [108] on the thermodynamic nature of the so-called vitreous carbon.

8.5 Conclusions

In the preceding sections, we have tried to apply to the process of metastable nucleation and
growth of diamonds some of the basic models and results of the present-day nucleation the-
ory. We used it in its classical, capillary formulation, enlarging it with the results obtained
in contemporary two-dimensional condensation models. A general formulation of Ostwald’s
rule of stages also gives, as shown in the corresponding section, more or less distinct results
and opens some new perspectives of possible methods of diamond synthesis.

The processes of diamond nucleation are very complicated, intermixed with chemical and
structural problems. Nevertheless, we think that the comparison of existing experimental find-
ings with theory shows some clues, which may be used to open the door for a real quantitative
treatment of the process of metastable diamond synthesis. Up to now theoretical thinking in
diamond synthesis was concerned only or mostly with the chemical side of the problem. Time
has come to understand that this is a primarily physical process. We hope that the present com-
pilation of theoretical models and experimental facts may be of use for further developments.

In our present contribution of greater significance are not so much the technical problems
of metastable diamond synthesis, but the possibilities a combination of theory and experiments
in metastable diamond nucleation can supply to help in resolving really great problems con-
nected with geological processes or with interstellar physics and the formation of both cosmic
diamond and graphite. Thus terrestrial experiments and theoretical models give several inter-
esting indications on processes connected with the development even of cosmic structures.

We opened our analysis with one of the difficult problems in the history of artificial dia-
mond production: with Hannay’s experiments. The models we developed show that this unfor-
tunate inventor (who ended his life in dispair [7]) was, may be, on the right track: His results,
if they are not a case of falsification, can, at least, be qualitatively explained.

Up to now the theory of metastable diamond synthesis was concerned practically only with
the problems of growth. Growth and growth morphology of diamond can be qualitatively and
even quantitatively interpreted in the framework of the modern theory of phase transitions. The
application of the theory gives the possibility of determining the conditions at which diamond
was formed, as attempted also here. Let us hope that a thorough theoretical development
could also indicate in the theory of metastable nucleation the direction in which the present-
day experimental and technological processes have to change in order to produce technical
diamonds and diamond coatings in an easier way.
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9 Nucleation in Micellization Processes

Alexander K. Shchekin, Fedor M. Kuni, Alexander P. Grinin, and Anatoly I. Rusanov

As for our intensive use of calculus . . . ,
we believe it is unnecessary in the present age

to make any apology . . .
For any presentation of this subject

which is to be both concise and comprehensive,
calculus is indispensible . . .

Gilbert Newton Lewis, Merle Randall (1923)

Even though the micelles themselves are not nuclei of a new phase, premicellar molecular
aggregates evolve in the course of micellization processes and play the role of critical nuclei
(germs) for micelles. This means that nucleation does occur in micellization and the methods
of nucleation theory can be, in fact, successfully applied to micellization kinetics. The present
review gives an overview of the kinetics and thermodynamics of formation of spherical mi-
celles on the basis of the modern kinetic theory of nucleation. We start with thermodynamic
aspects, formulate the kinetic equation of micellization on its basis, consider the characteristic
times of aggregation and relaxation processes in surfactant solutions with spherical micelles,
and then return back to the thermodynamic modeling of micelles themselves (for the case of
nonionic spherical micelles). This approach allows us to find the relaxation times and other
kinetic characteristics of micellar solutions in an explicit form.

9.1 Introduction

Nucleation (formation of a new phase within a metastable ambient phase) and micellization
(formation of micelles in surfactant solutions) have the common feature to proceed through
spontaneous aggregation of molecules or ions. Nevertheless, their kinetic theories have been
developed in different pathways. The kinetic theory of nucleation, founded by Volmer, Becker,
Döring, Frenkel, and Zeldovich, is based on the phase approach going back to Gibbs’ ther-
modynamics and considering self-forming molecular aggregates as nuclei of a new stable
phase [1, 2].

The phase terminology, used in the theory of micellization, has got initially a differ-
ent meaning. First, the population of micelles as a whole was considered as a macroscopic
“pseudo-phase” participating in a first-order phase transition [3]. Second, the entire micellar
solution was considered as a macroscopic phase resulting from a second-order phase transi-
tion [4]. Third, a single micelle was considered as a specific microscopic phase not having
a macroscopic analog [5]. The first two approaches do not have a sound basis [5], although,
they can be used for some approximate estimations. The third concept is rigorous and related
to the fact that a micelle has a complicated structure resembling a convolute surfactant mono-
layer [6–12], and cannot be viewed as a nucleus of a real phase. The final state of a surfactant
solution at micellization is the state of aggregative equilibrium of micelles and monomers,
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i.e., the equilibrium state of a disperse system. Increasing the brutto-concentration of a sur-
factant in a solution above the critical micelle concentration (until other polymorphic forms
of micelles become favorable) mostly gives only rise to the equilibrium number of spherical
micelles.

Even though micelles are not nuclei of a new phase, premicellar molecular aggregates
arise in the course of the micellization process and play the role of critical nuclei (or germs)
for micelles themselves. As an indication of this mechanism, one can consider a maximum in
the work of formation of such molecular aggregates (aggregation work) that corresponds to
a minimum in the curve of the equilibrium distribution of the aggregates in size [5, 13–19].
This maximum precedes the minimum of the work, along the aggregate size axis, associated
with micelles. This peculiarity has the consequence that nucleation does occur in micelliza-
tion, and that the methods of nucleation theory can be in fact successfully applied in micelliza-
tion kinetics. At the same time, the application of the theory of nucleation to the micellization
process, which has features strikingly different from common phase transitions, is of interest
for the theory of nucleation itself.

Till recent times, the development of the kinetic theory of micellization was retarded by
the fact that, in contrast to the situation with micelles, there is a lack of experimental data on
critical premicellar nuclei of micelles. According to the nucleation theory [20, 21], the main
parameters of the maximum of the aggregation work are its height and half-width. These pa-
rameters enter the equations for the transition rates and specific times and thus allow one to
calculate all kinetic characteristics. Even if direct experimental data are not available, these
parameters can be found, relying on the analytic properties of the aggregation work, with the
aid of data on the aggregation work in other regions of the size of the aggregates [22]. Partic-
ularly, in the micellization process, the values of these two parameters have to be consistent
with the parameters describing the minimum of the aggregation work that corresponds to the
micelles. Therefore, existing experimental data on the equilibrium average micelle size and
the dispersion of micelle sizes give an essential additional information about the whole be-
havior of the aggregation work, including the region of premicellar sizes. This information is
needed for solving direct and reverse problems of the micellization kinetics.

The review presents the kinetic and thermodynamic theory of formation of spherical mi-
celles based on the modern kinetic theory of nucleation [18, 19, 22–29]. Just as the theory of
nucleation is based, to a significant extent, on thermodynamics, so the kinetic theory of micel-
lization requires data on equilibrium and nonequilibrium states given by the thermodynamics
of micellization. This necessity explains the organization of the present review where kinetics
and thermodynamics are analyzed hand-in-hand: We will start with the analysis of problems
of the thermodynamics of aggregation, formulate the kinetic equation of micellization on this
ground, consider the characteristic times of aggregation and relaxation processes in surfactant
solutions with spherical micelles, and then return back to the thermodynamic modeling of mi-
celles themselves (for the case of nonionic spherical micelles). This approach allows us to find
the relaxation times and other kinetic characteristics of micellar solutions in an explicit form.
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9.2 General Aspects of Micellization:
the Law of Mass Action and the Work of Aggregation

Let us consider a solution of a single nonionic surfactant capable of forming molecular ag-
gregates. In this case, the role of the solvent is played by a liquid (for example, water) that
is passive with respect to aggregation. The solution is assumed to be ideal (infinitely dilute).
Considering aggregates to be compact and their temperature equal to that of the solution, the
aggregation number, n (the number of monomers in an aggregate), is assumed to be a charac-
teristic parameter of the internal state of the aggregate. The choice of such a discrete charac-
teristic parameter is convenient because it is also applicable to the description of the smallest
aggregates beginning from the value n = 1 for single surfactant molecules. Let us further de-
note the chemical potential and concentration (i.e., the number of aggregates per unit volume)
of aggregates containing n monomers by µn and cn , respectively. Employing such notation, µ1
and c1 represent the chemical potential and concentration of single monomers, respectively.
In the considered case of nonionic surfactants, all monomers are identical.

In the analysis of the aggregation processes, it is convenient to introduce the chemical
potential, µn , of a molecular aggregate in the solution by the relation [18, 23]

µn = G0
n + kBT ln(�3

ncn fn) , (9.1)

where G0
n is the Gibbs energy of a single aggregate (consisting of n surfactant molecules)

with fixed center of mass in a pure medium (in the absence of other aggregates), kB is the
Boltzmann constant, T is the absolute temperature of the solution, �n = h (2πmnkBT )−1/2

is the average de Broglie wavelength of a molecular aggregate (h is the Planck constant, mn is
the mass of the molecular aggregate), and fn is the activity coefficient of the aggregate. �−3

n
is the partition function for the translational motion of the aggregates, and kBT ln �3

n is its
contribution to the free energy. Similarly, kBT ln fn is the contribution from the interaction of
all aggregates with each other.

We may rewrite Eq. (9.1) as

µn = Gn + kBT ln

(
cn

cst

)
, (9.2)

where Gn is the chemical potential (the Gibbs energy) of the molecular aggregate correspond-
ing to a certain arbitrarily chosen standard concentration cst. In the thermodynamics of solu-
tions, cst is usually assumed to be unity (in the corresponding units of measurement) so that
only concentration (in fact, a dimensionless number which numerically equals concentration)
is retained in the logarithm in Eq. (9.2). Equation (9.2) is valid both in the absence or presence
of any interactions between aggregates in the standard state. However, since we assume to
consider an ideal system, we suggest that the standard state, corresponding to the concentra-
tion cst, is also an ideal one. In other words, we assume that, both in Eqs. (9.1) and (9.2), the
relation fn = 1 holds.

We are considering here the situation of fluctuational formation of aggregates consisting
of n = 2, 3, . . . particles in a solution containing originally single-surfactant monomers only.



9.2 General Aspects of Micellization: The Law of Mass Action 315

For this reason, it is convenient to select a standard concentration cst as cst = c1. In this case,
Eq. (9.2) is reduced to

µn = Gn + kBT ln

(
cn

c1

)
. (9.3)

The convenience of such definition cst = c1 follows from the following considerations: In
a solution where monomers are already present with the concentration c1, the Gibbs energy of
a monomer G1 should coincide with the monomer chemical potential µ1, i.e., the relation

G1 = µ1 (9.4)

should be valid. This identity is ensured in fact by Eq. (9.3). Addressing the practically most
important case, we consider an aggregating system at constant temperature and pressure and,
correspondingly, we shall use the Gibbs energy as the thermodynamic potential (its increase
equals the minimal work done on a system to create the same change of its state). If the mole-
cular aggregate is formed at the selected standard concentration, c1 (both for monomers and
aggregates formed), the standard work of molecular aggregate formation (or in short aggrega-
tion work), expressed in thermal energy units kBT , is given by the formula [23]

Wn = (Gn − nµ1)

kBT
. (9.5)

The term nµ1 in Eq. (9.5), which represents the Gibbs energy of the ensemble of n noninter-
acting monomers, enters this relation because aggregation takes place in a solution originally
containing single monomers only. In this case, the work Wn is independent of the concentra-
tions cn of aggregates with particle numbers n ≥ 2. However, it depends on the monomer
concentration c1. At the same time, the relation

W1 = 0 , (9.6)

which follows from Eqs. (9.4) and (9.5), seems to be natural as well. Indeed, monomers are
already present in a solution, and, hence, no work is required for their formation.

The Gibbs energy per unit volume of a solution, G, can be written as G = ∑
n≥1 µncn . At

constant temperature and pressure in the solution, we have

dG =
∑
n≥1

µn dcn . (9.7)

Since the solution is considered as a closed system with respect to particle exchange, the total
surfactant concentration, c, in the solution is constant and determined as

c = c1 +
∑
n≥2

ncn . (9.8)

Equation (9.8) yields

dc1 = −
∑
n≥2

n dcn . (9.9)
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Substituting Eq. (9.9) into the right-hand side of Eq. (9.7) results in

dG =
∑
n≥2

(µn − nµ1) dcn . (9.10)

It follows that the condition dG = 0 of aggregation equilibrium in a solution (with constant
total concentration c and at constant temperature and pressure) can be written as

µ(e)
n = nµ1 , (9.11)

where the superscript (e) specifies aggregation equilibrium. With Eqs. (9.3) and (9.5), one can
write

µn − nµ1 = kBT

[
Wn + ln

(
cn

c1

)]
. (9.12)

Equations (9.11) and (9.12) yield for the equilibrium aggregate concentration c(e)
n

c(e)
n = c1 exp (−Wn) . (9.13)

Equation (9.13) corresponds to the Boltzmann fluctuation principle.
Let us introduce the affinity An via

An ≡ − (µn − nµ1) , n = 1, 2, . . . . (9.14)

Equations (9.14) and (9.11) show that, at aggregation equilibrium, the relation

A(e)
n = 0 , n = 1, 2, . . . , (9.15)

holds. With Eq. (9.12), we can express the affinity (defined via Eq. (9.14)) as

An = −kBT

[
Wn + ln

(
cn

c1

)]
. (9.16)

According to Eq. (9.16), the lower the work Wn and the cn/c1 ratio, the larger the affinity An .
With Eq. (9.14), Eq. (9.10) can be rewritten as

dG = −
∑
n≥2

An dcn . (9.17)

Taking into account that the chemical potentials µn and µ1 depend (for the considered ideal
solutions) on the concentrations cn and c1 via the terms kBT ln cn and kBT ln c1, the condition
of aggregation equilibrium, Eq. (9.11), is transformed into the law of mass action

c(e)
n = Kncn

1 . (9.18)

Here the coefficient Kn does not depend neither on the concentration c1 nor on the concen-
trations cn with n ≥ 2, but depends on the aggregation number n. According to Eqs. (9.13)
and (9.18), we have

Wn = − ln Kn − (n − 1) ln c1 . (9.19)
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The term −(n − 1) ln c1 in Eq. (9.19) explicitly determines the dependence of the work Wn on
monomer concentration c1 (the work Wn is independent of the concentrations cn with n ≥ 2).
Since the work Wn is, by its meaning, not affected by the condition whether the aggregate
concentration is in equilibrium or not, Eq. (9.19) is valid at arbitrary aggregate concentrations
in an ideal solution. The parameter − ln Kn is known as the work of micellization, W M

n , for the
case when the standard concentration is expressed by the molarity (1 mol/l). While comparing
this work with Wn (then the concentration c1 should also be expressed in moles), we can see
from Eq. (9.19) a significant difference between W M

n and Wn : If, in an ideal system, the former
work is independent of monomer concentration, the latter, in contrast, is dependent on this
concentration. This dependence is especially pronounced for micelles with large aggregation
numbers.

9.3 General Kinetic Equation of Molecular Aggregation:
Irreversible Behavior in Micellar Solutions

According to the basic assumptions of the classical kinetic theory of nucleation [1, 2], the
number of molecules in an aggregate varies only as a result of absorption or emission of
monomers by the aggregate. This way the kinetics is determined by the sequences

{n} + {1} � {n + 1} , n = 1, 2, . . . , (9.20)

of direct and reverse transitions of the aggregates occurring during this process. Aggregates
containing n monomers are denoted here by {n} (n = 1, 2, . . .).

The most important quantity in the classical kinetic theory is the flux of aggregates in the
space of cluster sizes according to the mechanism as illustrated in Eq. (9.20), i.e., occurring
due to direct and reverse transitions of the aggregates. Denoting this flux by Jn , we have

Jn = j+
n cn − j−

n+1cn+1 , n = 1, 2, . . . , (9.21)

where j+
n is the number of monomers absorbed by the aggregate {n} from the solution per unit

time, and j−
n+1 is the number of monomers emitted from the aggregate {n + 1} to the solution

per unit time. Evidently, the inequalities j+
n > 0 and j−

n+1 > 0 hold. The importance of the
flux of aggregates Jn in aggregate size space is that, according to the equation

∂cn

∂ t
= Jn−1 − Jn , n = 2, 3, . . . , (9.22)

it determines the variation of aggregate concentration cn with n ≥ 2 in time t .
Let us find the relationship between the rates of emission, j−

n+1, and absorption, j+
n , of

monomers by the molecular aggregate. At aggregation equilibrium, i.e., under the condition
expressed in Eq. (9.11), a detailed balance of direct and reverse transitions of aggregates on
each sequence (9.20) should be established, i.e., the relationship

J (e)
n = 0 , n = 1, 2, . . . , (9.23)

should be fulfilled. Here, J (e)
n is given by Eq. (9.21), where cn has to be replaced by cn =

c(e)
n . Taking into account that at the suggested high density of matter in the aggregates, the
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rates j−
n+1 are independent of whether the solution is at aggregation equilibrium at a given

concentration c1 or not, we obtain from Eqs. (9.21) and (9.23)

j−
n+1 = j+

n

(
c(e)

n

c(e)
n+1

)
, n = 1, 2, . . . . (9.24)

Substituting Eq. (9.13) into Eq. (9.24), we arrive at

j−
n+1 = j+

n exp (Wn+1 − Wn) , n = 1, 2, . . . . (9.25)

Then, substituting Eqs. (9.25) into (9.21), we obtain

Jn = j+
n

[
cn − cn+1 exp (Wn+1 − Wn)

]
, n = 1, 2, . . . . (9.26)

Finally, substituting Eq. (9.26) into Eq. (9.22) leads to the general kinetic equation of forma-
tion of molecular aggregates. It is also called the Becker–Döring step-by-step equation. Using
Eq. (9.16), let us represent Eq. (9.26) in the following form:

Jn = j+
n cn

{
1 − exp

[
− (An+1 − An)

kBT

]}
, n = 1, 2, . . . . (9.27)

In the case of aggregation equilibrium, when Eq. (9.15) is valid, Eq. (9.27) confirms the rela-
tion of detailed balance, Eq. (9.23).

Applying the kinetic theory to the description of a nonequilibrium process in a disperse
system, it seems natural to generally refer to the problem of the occurrence of aggregation
or disaggregation to a single link in the sequence (9.20) of direct and reverse transitions per-
formed by the aggregates, and, moreover, to refer to this problem to each current moment
of process development. Evidently, the occurrence of aggregation or disaggregation on this
particular link of the transition sequence depends on whether the inequality Jn > 0 or the
inequality Jn < 0 holds at each moment. In view of the inequality j+

n > 0, Eq. (9.27) allows
us to state that

Jn > 0 (aggregation) if An+1 > 0

for n = 1, 2, . . . . (9.28)

Jn < 0 (dissolution) if An+1 < 0

Rewriting Eq. (9.16) as

An+1 − An = −kBT

[
Wn+1 − Wn + ln

(
cn+1

cn

)]
, n = 1, 2, . . . , (9.29)

we can see that the sign of the difference An+1 − An (important in the conditions given by
Eqs. (9.28) for the occurrence of aggregation or disaggregation) depends not only on the value
of Wn+1 − Wn , i.e., on the energetic factor, but also on the value ln

(
cn+1

/
cn
)
, i.e., on the

fluctuation-probability factor. The conditions, as given by Eqs. (9.28) and (9.29), are valid for
the whole course of the evolution of the disperse system from arbitrary initial states.

In particular, if only monomers are present in the systems at the initial moment, then, at
least at the consecutive moments, the inequalities c1 � c2 � c3 � c4 . . . are fulfilled with
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increasing strength. At the same time (cf. Eq. (9.29)), the inequalities 0 < A2 − A1 < A3 −
A2 < A4 − A3 . . . hold. This result is valid despite a possible increase in the work Wn with
an increase in n beginning with n = 1 where, according to Eq. (9.6), the work Wn is equal
to zero. Then, as is seen from Eq. (9.28), at the consecutive moments close to the initial one,
aggregation occurs at all levels n of the nonequilibrium process in a disperse system. The
aggregation is caused by the probability-fluctuation factor, which can be counteracted (and
even noticeably) by the energetic factor.

Let us demonstrate that irrespective of the initial state of a solution the kinetic theory
shows a monotonic decrease in the Gibbs energy of a solution with time (total concentration,
temperature, and pressure are assumed to be constant, again). Rewriting Eq. (9.17) as

∂G

∂ t
= −

∑
n≥2

An
∂cn

∂ t
(9.30)

and using Eq. (9.22), we obtain (after changing the summation index and taking into account
A1 = 0)

∂G

∂ t
= −

∑
n≥1

(An+1 − An) Jn . (9.31)

According to Eq. (9.28), the sign of the flux Jn coincides with that of the difference An+1− An

at all n ≥ 1. Then it follows from Eq. (9.31) that

∂G

∂ t
≤ 0 . (9.32)

The equality sign in Eq. (9.32) holds only when Jn = 0, and, correspondingly, An+1 − An = 0
at all n ≥ 1, i.e., when (in agreement with Eqs. (9.23) and (9.27)) the aggregation equilibrium
of the solution is established. Thus, irrespective of the initial state of a solution, the kinetic
theory indeed shows (according to Eq. (9.32)) a monotonic decrease in the Gibbs energy of
a solution with time up to the moment when the Gibbs energy reaches its minimum value at
the final state of the aggregation equilibrium of the solution. Since at the assumed conditions
of constant total concentration, constant temperature and pressure, a monotonic decrease in
the Gibbs energy implies, according to thermodynamic principles, the irreversible tendency of
evolution of the system to the state of thermodynamic equilibrium, inequality (9.32) obtained
is the kinetic substantiation of the irreversible tendency of a solution to its aggregation equi-
librium. As is well known, the statement of the irreversible tendency of a system to thermody-
namic equilibrium is one of the most important postulates of thermodynamics. In particular,
the derivation of the conditions of thermodynamic stability of a system under thermodynamic
equilibrium is based on this postulate. The substantiation of the thermodynamic postulate of
the irreversible tendency of a system to thermodynamic equilibrium may be done only by
the kinetic theory, for example, by kinetic Boltzmann equation, the Fokker–Planck equations,
and the equations of Markovian processes. In our treatment of disperse systems, Eqs. (9.22)
and (9.26) constitute precisely such an equation.

In the outline of the results in the present section, we followed widely Ref. [23]. Other
aspects of applying the Becker–Döring step-by-step equation to micellization processes as
well as the analysis of the general properties of this equation can be found in Refs. [30–33].
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9.4 Thermodynamic Characteristics of Micellization
Kinetics in the Near-Critical and Micellar Regions
of Aggregate Sizes

According to Eq. (9.19) the aggregation work Wn depends on the monomer concentration c1
via the term − (n − 1) ln c1. The behavior of the work Wn as a function of n at the variable
concentration c1 is shown in Fig. 9.1. Curve 1 corresponds to the case when the surfactant
concentration has values below the critical micelle concentration (CMC), i.e., the concentra-
tion at which the micelles accumulate the noticeable part of the surfactants in the solution.
Curve 2 corresponds to the case when the surfactant concentration is near to the CMC, but
from below. Curve 3 corresponds to the practically important case when the surfactant con-
centration exceeds the CMC, but is lower than the concentration that gives rise to the micelle
nonspherical polymorphic transformations in surfactant solutions [5, 9, 12, 34]. It is this curve
that will be used in our further analysis.

The positions of the maximum and minimum of the work Wn along the n-axis, i.e., the
aggregation numbers of critical and stable molecular aggregates, are denoted by nc and ns,
respectively. The values of the barrier height and the well depth of the work, Wn , are denoted
by Wc ≡ Wn |n=nc and Ws ≡ Wn |n=ns , respectively. The potential barrier gives rise to the
activation barrier of micellization. The half-widths of the potential barrier and potential well
of the aggregation work are denoted by �nc and �ns. They are determined by

�nc =
[

2

/∣∣∣∂2Wn

/
∂n2

∣∣∣
n=nc

]1/2

, �ns =
[

2

/∣∣∣∂2Wn

/
∂n2

∣∣∣
n=ns

]1/2

. (9.33)

The physical meaning of the half-widths �nc and �ns, introduced in Eq. (9.33), will be dis-
cussed below. Figure 9.1 takes into account Eq. (9.6), which implies that the formation of

Wn

Wc

Ws

0
1 n0 ns n

�nc �ns

1
2

3

nc

�nc �ns

Figure 9.1: Behavior of the work, Wn , of formation of a surfactant molecular aggregate as
a function of the aggregation number, n, at a variation of concentration, c1, of surfactant
monomers (see text)
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surfactant monomers, present initially in a micellar solution, does not require any work. For
definiteness, curve 3 in Fig. 9.1 refers to the case when Ws > 0 (when the concentration c1 is
not too high).

The quantities nc, ns, Wc, Ws, �nc, and �ns (as well as the work Wn itself) depend
on the monomer concentration, c1. They represent the thermodynamic characteristics of the
micellization kinetics. Furthermore, we assume the conditions

�nc � 1 ,
�nc

nc
� 1 ,

�nc

(ns − nc)
� 1 , (9.34)

�ns � 1 ,
�ns

(ns − nc)
� 1 (9.35)

to be fulfilled. The first conditions in Eqs. (9.34) and (9.35) allow us to consider the aggrega-
tion number n as a continuous variable in the regions of potential barrier and potential well
of the work Wn . The remaining conditions in Eqs. (9.34) and (9.35) imply that the potential
barrier and potential well of the work Wn are fully exhibited. As is qualitatively shown in
Fig. 9.1, they are separated from the initial point n = 1 at the n-axis and from each other. This
property can also be expressed by the inequalities

exp(Wc) � 1 , exp(Wc) � exp(Ws) , (9.36)

which result from the conditions given in Eqs. (9.34) and (9.35).
Equations (9.34) and (9.35) are fulfilled when the total surfactant concentration sufficiently

exceeds the CMC (at this, possibly, the second condition in Eq. (9.34) is valid at its breaking
point). In particular, the conditions in Eq. (9.34) and (9.35) imply that the aggregation numbers
nc and ns are much larger than unity. Equations (9.34) and (9.35) make it possible (employing
Eqs. (9.33)) to derive the following quadratic approximations for the work Wn in the regions
of its potential barrier and well:

Wn = Wc −
(

n − nc

�nc

)2

for nc − �nc � n � nc + �nc , (9.37)

Wn = Ws +
(

n − ns

�ns

)2

for ns − �ns � n � ns + �ns . (9.38)

According to Eq. (9.37), the work Wn decreases by a thermal unit when the variable n deviates
from nc by �nc. In accordance with Eq. (9.38), the work Wn increases by a thermal unit when
the variable n deviates from ns by �ns. These facts clarify the physical meaning of �nc and
�ns.

The conditions expressed in Eqs. (9.34)–(9.36) allow us to employ a macroscopic descrip-
tion of the micellization kinetics. They generalize the conditions for a macroscopic descrip-
tion revealed previously [20] in the kinetic theory of nucleation. The regions in aggregate size
space n � nc − �nc, nc − �nc � n � nc + �nc and n � nc + �nc are called precritical,
near-critical, and supercritical regions, respectively. Micelles are accumulated mainly in the
region ns − �ns � n � ns + �ns. This region is called the micellar region. It is located
within the supercritical region. The quantities ns and �ns are the average aggregation number
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of micelles and the variance of the aggregation number of micelles around this average value,
respectively. As for the regions of potential barrier and potential well of the work Wn , we
imply that these regions are the near-critical and micellar regions, respectively.

Molecular aggregates gather mostly in the regions of their sizes, where the work of ag-
gregate formation is minimal. These regions are located to the left- and right-hand sides of
the potential barrier of the work, i.e., they are the precritical and supercritical regions. We
are not concerned about the part of the supercritical region where n > ns + �ns, because
the concentrations of molecular aggregates in this region are rather low. The large amount of
molecular aggregates in the precritical and supercritical regions may be assumed to be varied
in their relative proportions so slowly that the aggregate concentrations in each of these sep-
arate regions are maintained as quasiequilibrium concentrations irrespective of a permanent
decrease or increase in the number of aggregates by their fluxes over the potential barrier of
the aggregation work. However, the mutual quasiequilibrium between molecular aggregates in
the precritical and supercritical regions is absent due to these fluxes. Mutual quasiequilibrium
is only reached as soon as the final equilibrium of a micellar solution is established when the
quasiequilibrium concentrations of molecular aggregates in the precritical and supercritical
regions as well as the concentrations of molecular aggregates within the entire range of their
sizes come to complete equilibrium.

Denoting the quasiequilibrium concentration of molecular aggregates with the aggregation
number n by c(e)

n (similar to the equilibrium concentration), we have in the precritical and
supercritical regions

cn = c(e)
n for n � nc − �nc , cn = c(e)

n for n � nc + �nc . (9.39)

In accordance with Boltzmann’s fluctuation principle, similar to Eq. (9.13), we can write

c(e)
n = const × exp (−Wn) . (9.40)

Thus we have in the precritical and supercritical regions

c(e)
n = c1 exp (−Wn) for n � nc − �nc , (9.41)

c(e)
n = cs exp [− (Wn − Ws)] for n � nc + �nc , (9.42)

where cs ≡ cn|n=ns is the concentration of molecular aggregates at the point of minimal work
of their formation. The fact that the preexponential factor in Eq. (9.41) is equal to c1 results
from c1 ≡ cn|n=1 and the equality Wn |n=1 = 0. The fact that the preexponential factor in
Eq. (9.42) is equal to cs results from the definition of the concentration cs and the evident
equality (Wn − Ws)|n=ns = 0.

Because micelles are accumulated in the micellar region, their total concentration cM is

cM =
ns+�ns∫

ns−�ns

cn dn . (9.43)

Employing Eq. (9.42) and the quadratic approximation (9.38) and replacing, with a high de-
gree of precision, the integration limits by −∞ and ∞, we get from Eq. (9.43)

cM = π1/2cs�ns . (9.44)
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Using Eq. (9.44), we may rewrite Eq. (9.42) as [19]

c(e)
n =

(
cM

π1/2�ns

)
exp [− (Wn − Ws)] for n � nc + �nc . (9.45)

9.5 Kinetic Equation of Aggregation in the Near-Critical
and Micellar Regions of Aggregate Sizes

Employing the first conditions in Eqs. (9.34) and (9.35), the aggregation number n may be
considered as a continuous variable in the near-critical and micellar regions of the sizes of
molecular aggregates. Thus in these regions, Eq. (9.22) may be written as a continuity equation

∂cn(t)

∂ t
= −∂ Jn(t)

∂n
. (9.46)

Taking into account Eqs. (9.37), (9.38), and Wn+1 − Wn = ∂Wn/∂n, we obtain

Wn+1 − Wn = −2
(n − nc)

(�nc)2
for nc − �nc � n � nc + �nc , (9.47)

Wn+1 − Wn = 2
(n − ns)

(�ns)2
for ns − �ns � n � ns + �ns . (9.48)

Because of the first conditions in Eqs. (9.34) and (9.35), the absolute values of the terms on
the right-hand sides of Eqs. (9.47) and (9.48) are much smaller than unity in the near-critical
and micellar regions of aggregate sizes. Then, with a high degree of accuracy, we have from
Eqs. (9.47) and (9.48) in these regions

exp (Wn+1 − Wn) = 1 − 2
(n − nc)

(�nc)2 for nc − �nc � n � nc + �nc , (9.49)

exp (Wn+1 − Wn) = 1 + 2
(n − ns)

(�ns)2
for ns − �ns � n � ns + �ns . (9.50)

Using the approximation cn+1 = cn + ∂cn
/
∂n and Eqs. (9.49)–(9.50), and ignoring the prod-

ucts of the small quantities ∂cn
/
∂n, 2 (n − nc)

/
(�nc)

2, and 2 (n − ns)
/
(�ns)

2, we obtain
from Eq. (9.26)

Jn(t) = j+
c

[
2
(n − nc)

(�nc)
2 − ∂

∂n

]
cn(t) for nc − �nc � n � nc + �nc , (9.51)

Jn(t) = − j+
s

[
2
(n − ns)

(�ns)
2

+ ∂

∂n

]
cn(t) for ns − �ns � n � ns + �ns , (9.52)

where j+
c ≡ j+

n

∣∣
n=nc

and j+
s ≡ j+

n

∣∣
n=ns

are the rates of monomer absorption by critical
and stable aggregates, respectively. Equations (9.51), (9.52), and (9.46) result in the differen-
tial kinetic equation describing the formation of molecular aggregates in the near-critical and
micellar regions of their sizes.
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Let us also briefly sketch another way of deriving Eqs. (9.51) and (9.52). The variation of
the aggregation number n with respect to time, ṅ, is given by

ṅ = j+
n − j−

n . (9.53)

Assuming n to be a continuous variable, Eq. (9.25) yields approximately

j−
n = j+

n exp

(
∂Wn

∂n

)
. (9.54)

As already mentioned, the derivative ∂Wn/∂n is small in the near-critical and micellar regions
of aggregate sizes. Then, from Eqs. (9.53) and (9.54) we have in these regions with a high
degree of accuracy

ṅ = − j+
n

∂Wn

∂n
. (9.55)

One can also write the flux of molecular aggregates, Jn (t), as

Jn(t) =
(

ṅ + β
∂

∂n

)
cn(t) . (9.56)

The term containing ṅ describes the regular evolution of a single molecular aggregate. The
term including the differential operator ∂

/
∂n describes the fluctuation evolution of the en-

semble of molecular aggregates. This fluctuational contribution on the evolution is superim-
posed on the regular one and broadens the regular evolution. Further, we substitute Eq. (9.55)
into Eq. (9.56) in the near-critical and micellar regions. Then, determining the unknown coeffi-
cient β from the condition of vanishing of the flux of molecular aggregates at their equilibrium
concentrations given by Eq. (9.40), we obtain

Jn(t) = − j+
n

(
∂Wn

∂n
+ ∂

∂n

)
cn (t) . (9.57)

Expressing the derivative ∂Wn
/
∂n in Eq. (9.57) in the near-critical and micellar regions by

means of Eqs. (9.37) and (9.38), we arrive at the previously obtained Eqs. (9.51) and (9.52)
again.

9.6 Direct and Reverse Fluxes of Molecular Aggregates
over the Activation Barrier of Micellization

As already mentioned above, in contrast to nucleation at micellization we observe, in addition
to the direct flux of molecular aggregates overcoming (by fluctuation) the activation barrier
of micellization from the side of the precritical region, the reverse flux of molecular aggre-
gates overcoming (by fluctuation) the activation barrier of micellization from the side of the
supercritical region. Let us denote the direct and reverse fluxes of molecular aggregates in the
region of the potential barrier of the work of their formation, i.e., in the near-critical region, by
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J ′
n(t) and J ′′

n (t), respectively. Similarly, the concentrations of molecular aggregates participat-
ing in these fluxes in the near-critical region are c′

n(t) and c′′
n(t). We have in this case for the

total flux Jn(t) of molecular aggregates and their total concentrations cn(t) in the near-critical
region nc − �nc � n � nc + �nc

Jn(t) = J ′
n(t) + J ′′

n (t) , (9.58)

cn(t) = c′
n(t) + c′′

n(t) . (9.59)

The approach employed in the previous sections to derive the kinetic equation of micellization
can be applied separately for the molecular aggregates transferred (by fluctuations) from the
precritical to supercritical regions and for molecular aggregates transferred (by fluctuations)
from the supercritical to precritical regions. Therefore, similar to Eqs. (9.46) and (9.51), we
have in the near-critical region nc − �nc � n � nc + �nc

∂c′
n(t)

∂ t
= −∂ J ′

n(t)

∂n
, J ′

n(t) = j+
c

[
2
(n − nc)

(�nc)
2

− ∂

∂n

]
c′

n(t) (9.60)

as well as

∂c′′
n(t)

∂ t
= −∂ J ′′

n (t)

∂n
, J ′′

n (t) = j+
c

[
2
(n − nc)

(�nc)
2

− ∂

∂n

]
c′′

n(t) . (9.61)

Let us formulate the boundary conditions to Eqs. (9.60)–(9.61). Based on the ideas of the
kinetic theory of nucleation [21] and taking into account the boundary conditions (9.39), we
conclude that the boundary conditions to Eqs. (9.60) for the concentrations c′

n(t) in the near-
critical region are [19]

c′
n(t)

c(e)
n

∼=
{

1 for n 	 nc − �nc ,
0 for n 	 nc + �nc ,

(9.62)

and the boundary conditions to Eqs. (9.61) for the concentrations c′′
n(t) in the near-critical

region are [19]

c′′
n(t)

c(e)
n

∼=
{

0 for n 	 nc − �nc ,
1 for n 	 nc + �nc .

(9.63)

The quasiequilibrium concentrations c(e)
n in the boundary conditions (9.62) and (9.63) are

determined by Eqs. (9.41) (at n 	 nc − �nc) and (9.45) (at n 	 nc + �nc). According to
Eqs. (9.59), (9.62), and (9.63), the boundary conditions to Eqs. (9.46) and (9.51) for the total
concentrations cn(t) of molecular aggregates in the near-critical region are

cn(t)

c(e)
n

∼= 1 for n 	 nc ∓ �nc , (9.64)

where the quasiequilibrium concentrations c(e)
n are given by Eqs. (9.41) (at n 	 nc − �nc)

and (9.45) (at n 	 nc + �nc).
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At the quasiequilibrium concentrations of molecular aggregates in the precritical and su-
percritical regions, the concentrations cn of molecular aggregates in the near-critical region
will be quasistationary ones. The prefix “quasi” to the words “equilibrium”, “steady”, and
“stationary” specifies the absence of a significant time dependence of the concentrations cn

within the time intervals, during which the concentrations c1 and cM do not vary noticeably
in the course of the slow tendency of evolution of the micellar solution to its final state of
complete equilibrium. Let us study the quasisteady state of molecular aggregates in the near-
critical region. The concentrations c′

n(t), c′′
n(t), and cn(t) of the aggregates are independent of

time t in this state, whereas the aggregate fluxes J ′
n(t), J ′′

n (t), and Jn(t) are also independent
of the aggregation number n (cf. Eqs. (9.60), (9.61), and (9.46)). We denote the concentra-
tions c′

n(t), c′′
n(t), and cn(t) in a quasisteady state by c′(s)

n , c′′(s)
n , and c(s)

n , and the fluxes J ′
n(t),

J ′′
n (t), and Jn(t) in this state by J ′, J ′′, and J , respectively (for simplicity of the notations, the

quasisteady state of the fluxes is specified by the omission of the argument n and t). Then, in
the near-critical region, nc − �nc � n � nc + �nc, we have

c′
n(t) = c′(s)

n , c′′
n(t) = c′′(s)

n , cn(t) = c(s)
n (9.65)

as well as

J ′
n(t) = J ′, J ′′

n (t) = J ′′, Jn(t) = J . (9.66)

The right-hand sides of the continuity equations (9.60) and (9.61) are equal to zero in the
quasisteady state of molecular aggregates. We employ further Eqs. (9.60) and (9.61) for the
fluxes of molecular aggregates and the boundary conditions (9.62) and (9.63) (with Eqs. (9.41)
and (9.45)). Then, performing the integration, we obtain in the near-critical region nc −�nc �
n � nc + �nc [19]

c′(s)
n = c1 exp (−Wc)

π1/2�nc
exp

[(
n − nc

�nc

)2
] ∞∫

n

exp

[
−
(

n′ − nc

�nc

)2
]

dn′ , (9.67)

J ′ = c1 j+
c exp (−Wc)

/
π1/2�nc , (9.68)

c′′(s)
n = cM exp [− (Wc − Ws)]

π�nc�ns
exp

[(
n − nc

�nc

)2
]

(9.69)

×
n∫

−∞
exp

[
−
(

n′ − nc

�nc

)2
]

dn′ ,

J ′′ = −cM j+
c exp [− (Wc − Ws)]

/
π�nc�ns . (9.70)

For the total concentrations of molecular aggregates and their total flux in the quasisteady state
in the near-critical region, we have according to Eqs. (9.59) and (9.58)

c(s)
n = c′(s)

n + c′′(s)
n , J = J ′ + J ′′ . (9.71)
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Direct J ′ and reverse J ′′ fluxes, given by Eqs. (9.68) and (9.70), are, naturally, positive and
negative, respectively. In accordance with Eq. (9.68), higher values of c1, j+

c , and lower values
of Wc and �nc result in larger values of the direct flux J ′. According to Eq. (9.70), the higher
the cM , j+

c and the lower the Wc − Ws, �nc, and �ns, the larger the absolute value of the
reverse flux J ′′.

9.7 Times of Establishment
of Quasiequilibrium Concentrations

9.7.1 Pre- and Supercritical Sizes

Let us consider the initial stages of micellization. At these stages, the quasiequilibrium con-
centrations of surfactant molecular aggregates in the precritical and supercritical regions of
their sizes, as well as the quasisteady concentrations of molecular surfactant aggregates in the
near-critical region of their sizes, are established. We will analyze here how this process of
establishment of the quasiequilibrium concentrations proceeds with time in the precritical and
supercritical regions.

Let us first consider the establishment of the quasiequilibrium state in the micellar region
ns − �ns � n � ns + �ns. This range of sizes is a part of the supercritical region. The vari-
ations in the concentrations cn of the molecular aggregates with the time t are governed then
by the continuity equation (9.46) with fluxes Jn(t) determined by Eq. (9.52). The boundary
conditions to the kinetic equation can be written in the form

cn(t) 	 0 for n 	 ns ∓ �ns . (9.72)

The approximate equality (9.72) should be interpreted as if the concentrations of molecular
aggregates at the boundaries n 	 ns ∓ �ns of the micellar region are negligible as compared
to the concentration at n = ns. For the description of the quasiequilibrium aggregate concen-
trations, which are established with time in the micellar region, we have Eq. (9.45) at our dis-
posal. Taking into account the approximation for Wn , as given by Eq. (9.38), we can see from
Eq. (9.45) that the quasiequilibrium concentrations rather rapidly decrease as n approaches
the boundaries n 	 ns ∓ �ns of the micellar region. Thus, the boundary conditions (9.72) are
fulfilled.

Let us go over in the micellar region from the variable n to the variable

u ≡ (n − ns)

�ns
for − 1 � u � 1 . (9.73)

Assuming that

c (u, t) ≡ cn(t) , c(e) (u) ≡ c(e)
n for − 1 � u � 1 , (9.74)

with Eqs. (9.46) and (9.52) we arrive at the kinetic equation

∂c (u, t)

∂ t
= j+

s

(�ns)
2

∂

∂u

(
2u + ∂

∂u

)
c (u, t) for − 1 � u � 1 . (9.75)
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In this case, the boundary conditions (9.72) can be rewritten as

c (u, t) ≈ 0 for u ≈ ∓1 . (9.76)

According to Eqs. (9.45), (9.73), and (9.74), we also have

c(e)(u) = const × exp(−u2) for − 1 � u � 1 . (9.77)

In order to solve Eq. (9.75), we first recall some properties of the Hermitian polynomials Hi(ξ)
(i = 0, 1, . . .): H0(ξ) = 1, H1(ξ) = 2ξ , H2(ξ) = 4ξ2 − 2, . . . . They satisfy the recurrent
relations

∂

∂ξ
Hi (ξ) = 2i Hi−1 (ξ) ,

(
2ξ − ∂

∂ξ

)
Hi (ξ) = Hi+1 (ξ) , (9.78)

and the orthogonality and normalization relations

π−1/2
∞∫

−∞
exp

(
−ξ2

)
Hi (ξ) Hi ′(ξ) dξ = i !2iδii ′ for i, i ′ = 0, 1, . . . , (9.79)

where δii ′ is the Kronecker symbol and 0! ≡ 1.
With Eq. (9.78), we obtain

∂

∂ξ

(
2ξ + ∂

∂ξ

)
exp

(
−ξ2

)
Hi(ξ) = −2i exp

(
−ξ2

)
Hi(ξ) (9.80)

for i = 0, 1, . . .. According to Eq. (9.77), the quasiequilibrium concentrations c(e) (u) satisfy
the kinetic equation (9.75) and the relevant boundary conditions (9.76). It follows that the
general solution of Eq. (9.75) with the boundary conditions (9.76) has (in the range −1 �
u � 1) the form

c (u, t) = c(e) (u) +
∞∑

i=1

ki exp
[
−2i j+

s t
/

(�ns)
2
]

exp
(
−u2

)
Hi (u) . (9.81)

The coefficients ki are independent of u and t . They can be expressed with Eq. (9.79) via
the initial concentrations c (u, t)|t=0 in the micellar region. The quasiequilibrium concentra-
tions c(e) (u) can be included into Eq. (9.81) in the sum over i , adding the term with i = 0 to
the sum. This result indicates that the obtained solution (9.81) is indeed the general solution:
It represents an expansion in the complete system of functions. Equation (9.81) describes the
establishment of the quasiequilibrium concentrations of molecular aggregates in the micellar
region. Its analysis shows that the quantities t(i)

s can be determined as

t(i)s = (�ns)
2

2i j+
s

for i = 1, 2, . . . . (9.82)

The quantities represent the spectrum of times required to establish these particular concen-
trations. For the largest of these times and, hence, the characteristic time, ts , we have

ts = (�ns)
2

2 j+
s

. (9.83)
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According to Eq. (9.83), the larger the �ns and the smaller the j+
s , the larger is the time ts .

Now let us find out how the quasiequilibrium concentrations of molecular aggregates are
established with time in the precritical region n � nc −�nc. We conclude that, since the same
precritical region also exists in the case of nucleation, the quasiequilibrium concentrations of
molecular aggregates will be established in the precritical region in the same manner as in
the course of nucleation. As was shown in [35,36], it occurs due to the tendency of molecular
aggregates with the initial aggregation number equal to unity to overcome (by fluctuations) the
potential barrier of the work of their formation. Then, according to Refs. [24, 35, 36], we can
estimate the characteristic time, t ′, required to establish the quasiequilibrium concentrations
of molecular aggregates in the precritical region n � nc − �nc as

t ′ ≈ nc
�nc

j+
c

. (9.84)

According to Eq. (9.84), the larger the nc and �nc and the lower the j+
c , the larger the time t ′.

Finally, it remains to be shown how the quasiequilibrium concentrations of molecular ag-
gregates are established with time in the range nc + �nc � n � ns − �ns of the supercritical
region, which is located at the n-axis between the near-critical and micellar regions. Evidently,
it occurs due to the tendency of molecular aggregates, which were originally located in the mi-
cellar region, to overcome (by fluctuations) the potential barrier of the work of their formation
in the backward direction. Hence, there is a complete analogy between the establishment of
the quasiequilibrium concentrations of molecular aggregates in the nc +�nc � n � ns −�ns
and n � nc − �nc regions. The only difference is that the role of nc is now played by the
difference ns − nc. Taking these facts into account, we estimate, by analogy with Eq. (9.84),
the characteristic time, t ′′, required for establishment of quasiequilibrium concentrations of
molecular aggregates in the range nc + �nc � n � ns − �ns as [24]

t ′′ ≈ (ns − nc)
�nc

j+
c

. (9.85)

According to Eq. (9.85), the larger the ns and �nc and the smaller the nc and j+
c , the larger

the time t ′′.

9.7.2 Near-Critical Sizes

The assumption of quasisteady concentrations of molecular aggregates in the near-critical re-
gion of their sizes is important in the kinetic theory of micellization. Let us consider how
the quasisteady state is established with time. The variation in concentrations cn of mole-
cular aggregates with time in the near-critical region is still determined by the continuity
equation (9.46) where, however, the flux Jn(t) of molecular aggregates is determined now
by Eq. (9.51). According to Eqs. (9.64) and (9.40), the boundary conditions to the kinetic
equations (9.46) and (9.51) can be rewritten in the near-critical region as

cn(t) = c(e)
n = const × exp [− (Wn − Wc)] for n ≈ nc ∓ �nc , (9.86)
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where the factor const may be different on the left- and right-hand sides from the near-critical
region. Let us analyze the behavior in the near-critical region from the variable n to the vari-
able v via

v ≡ (n − nc)

�nc
, −1 � v � 1 . (9.87)

Assuming

c (v, t) ≡ cn(t) , c(e) (v) ≡ c(e)
n for − 1 � v � 1 , (9.88)

we obtain from Eqs. (9.46) and (9.51) the following kinetic equation:

∂c (v, t)

∂ t
= j+

c

(�nc)
2

∂

∂v

(
2v − ∂

∂v

)
c (v, t) for − 1 � v � 1 . (9.89)

Then, substituting Eq. (9.87) into Eq. (9.86), we arrive at the boundary conditions

c (v, t)

c(e) (v)
≈ 1 for v ≈ ∓1 . (9.90)

Employing Eq. (9.37) in Eq. (9.86) and using Eq. (9.87), we get

c(e) (v) = const × exp(v2) for − 1 � v � 1 . (9.91)

For the determination of the solution of Eq. (9.89) with the boundary condition (9.90), we
cannot directly use the results obtained in the previous section. Equation (9.89) and the con-
ditions (9.90) differ from Eqs. (9.75) and (9.76). The quasisteady concentrations of molecular
aggregates, c(s) (v), which are established with time in the near-critical region satisfy the ki-
netic equation (9.89) with the boundary conditions (9.90). From Eq. (9.78), we get further

∂

∂ξ

(
2ξ − ∂

∂ξ

)
Hi (ξ) = 2 (i + 1) Hi (ξ) , i = 0, 1, . . . . (9.92)

Then, taking into account that, according to Eq. (9.91), the quasisteady concentrations c(e) (v)
increase with |v| quite rapidly, we can represent the general solution of Eq. (9.89) with the
boundary conditions (9.90) as

c(v, t) = c(s)(v)+
∞∑

i=0

pi exp

[−2 (i + 1) j+
c t

(�nc)
2

]
Hi (v) for −1 � v � 1 . (9.93)

The coefficients pi are independent of v and t . They can be expressed, employing Eq. (9.79),
via the initial concentrations c (v, t)|t=0 of aggregates in the near-critical region. The solution
obtained is indeed the general solution: It represents the expansion of the difference c (v, t) −
c(s) (v) in the complete function system of the Hermitian polynomials Hi(v)(i = 0, 1, . . .).
Note that the rapid increase in the quasiequilibrium concentrations c(e) (v) with |v| allows us
to neglect the contribution from the polynomial sum over i in Eq. (9.93) at the boundaries of
the near-critical region, and, hence, provides the fulfillment of the boundary conditions (9.90).
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Equation (9.93) describes the establishment of the quasisteady concentrations of molecular
aggregates in the near-critical region. As is seen from Eq. (9.93), the quantities t(i)c ,

t(i)c = (�nc)
2

2 (i + 1) j+
c

for i = 0, 1, . . . , (9.94)

represent the spectrum of times required to establish these concentrations. For the largest of
these times and, hence, the characteristic time, tc, we have [24]

tc = (�nc)
2

2 j+
c

. (9.95)

According to Eq. (9.95), the larger the �nc and the smaller the j+
c , the larger the time tc.

9.8 Time of Fast Relaxation in Surfactant Solutions

Let us now elucidate the interrelation between the time ts and the time of fast relaxation of
micellar solutions. It is possible to clarify in this way the concept of the fast relaxation of a mi-
cellar solution introduced first in Refs. [13–16] and then widely used in the literature [37–40]
as the concept corresponding to the process of local rearrangement of micelles without chang-
ing their numbers in the micellar region. Besides, we will investigate the validity of the as-
sumption of constancy of the monomer concentration at local rearrangement of the micelle
size distribution in the micellar region. The assumption was important for the derivation of the
results obtained in the two preceding sections.

We mark the values corresponding to the end of fast relaxation of micellar solutions with
superscript zero. We introduce further with

ξn =
(

cn − c(0)
n

)
c(0)

n

(9.96)

a measure of the relative deviation of the current concentrations cn of aggregates from the con-
centrations c(0)

n at the end of the fast relaxation process. Assuming further that fast relaxation
is realized only via the emission and absorption of monomers in the micellar region, we take
into account in Eq. (9.96) exclusively the aggregates in the micellar region and the monomers
at n = 1. For a description of the aggregates in the micellar region, we use, together with the
aggregation number n, the variable

w ≡
(

n − n(0)
s

)
�n(0)

s

(9.97)

varying within the range −1 � w � 1. Apparently, the variable w is similar to the vari-
able u defined by Eq. (9.73). Taking into account Eqs. (9.45), (9.38), and (9.97), the micelle
concentrations c(0)

n , reached after completion of fast relaxation, can be written as

c(0)
n =

(
c(0)

M

π1/2�n(0)
s

)
exp

(
−w2

)
for − 1 � w � 1 . (9.98)
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We have already considered the solution of the kinetic equation of aggregation in the micellar
region in Section 9.7. There the kinetic equation (9.75) was formulated under the assumption
of constancy of the monomer concentration in a surfactant solution. With sufficiently large
micelle concentrations in the micellar region, the local rearrangement of the micelle distrib-
ution in sizes may be followed by considerable changes in the monomer concentration. Thus
we cannot set a priori the monomer concentration as constant in the consideration of fast re-
laxation. Therefore we need to refine the form of the kinetic equation of aggregation in the
micellar region. With Eq. (9.96), we have

cn(t) = c(0)
n (1 + ξn(t)) for n ≥ 1 , j+

n (t) = j+(0)
n (1 + ξ1(t)) , (9.99)

where j+(0)
n = j+

n

(
c(0)

1

)
. As follows from Eq. (9.21), the relations of detailed balance after

completion of fast relaxation can be written in the micellar region as

j+(0)
n c(0)

n = j−
n+1c(0)

n+1 . (9.100)

According to the definition (9.21) and taking into account Eqs. (9.99)–(9.100), the flux Jn of
aggregates can be expressed as

Jn = j+(0)
n c(0)

n (ξn − ξn+1) + j+(0)
n c(0)

n ξ1 + j+(0)
n c(0)

n ξ1ξn . (9.101)

Approaching the state of completion of fast relaxation, we have ξn � 1. This inequality allows
us to neglect the last term on the right-hand side of Eq. (9.101) and to rewrite Eq. (9.101) at
n � 1 as

Jn 	 − j+(0)
n c(0)

n
∂ξn

∂n
+ j+(0)

n c(0)
n ξ1 . (9.102)

With Eqs. (9.46), (9.96), and (9.102) the desired kinetic equation of fast relaxation can be
written as

c(0)
n

∂ξn(t)

∂ t
	 ∂

∂n

(
j+(0)
n c(0)

n
∂ξn(t)

∂n

)
− ξ1(t)

∂

∂n

(
j+(0)
n c(0)

n

)
. (9.103)

As we did before, for a description of the evolution within the micellar region we can set
j+(0)
n 	 j+(0)

s on the right-hand side of Eq. (9.103). One important peculiarity of Eq. (9.103)
is the presence of the last term on the right-hand side. The kinetic equation becomes inho-
mogeneous due to this term. Equation (9.103) transforms at ξ1(t) = 0 into the homogeneous
equation (9.75).

In addition to Eq. (9.103), we have to use Eq. (9.8) of mass balance of the surfactant per
volume unit of the solution. Substituting the first expression in Eqs. (9.99) into the right-hand
side of Eq. (9.8) and recognizing that the total surfactant concentration c remains the same
after the completion of the fast relaxation process, we find

c(0)
1 ζ1(t) = −

∞∑
n=2

nc(0)
n ζn(t) . (9.104)
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We will search for a solution of Eqs. (9.103) and (9.104) on the basis of the expansion

ξn(t) =
∞∑

i=0

qi (t)Hi(w) for − 1 � w � 1 (9.105)

in the full system of the Hermitian polynomials Hi(w), where qi (t) are w-independent coef-
ficients of expansion, which are the desired functions of the time t . Substituting Eq. (9.105)
into Eq. (9.104) and assuming that the main contribution to the sum on the right-hand side of
Eq. (9.104) is given by the micellar region, passing from summation over n to integration over
w with Eq. (9.97), taking into account Eq. (9.98) and the orthogonality relations (9.79), we
obtain

c(0)
1 ζ1(t) = −c(0)

M �n(0)
s q1(t) − c(0)

M n(0)
s q0 . (9.106)

Substituting further Eqs. (9.105) and (9.106) into Eq. (9.103) and using again Eqs. (9.97)
and (9.98), computing the scalar products of both sides of Eq. (9.103) with the Hermitian
polynomials Hk, k = 0, 1, 2, . . ., and taking into account Eq. (9.79), we get (∂q0(t)/∂ t) = 0,
i.e., q0 = const, and

∂q1(t)

∂ t
= 2 j+(0)

s(
�n(0)

s

)2
q1(t) − j+(0)

s
c(0)

M

c(0)
1

(
q1(t) + n(0)

s

�n(0)
s

q0

)
, (9.107)

∂qk(t)

∂ t
= − 2 j+(0)

s k(
�n(0)

s

)2
qk(t) for k = 2, 3, . . . . (9.108)

We assume here further that

q0(t) = 0 (9.109)

holds. Condition (9.109) is required to guarantee that the final concentrations c(0)
n are indeed

achieved at the end of fast relaxation of the micellar solution. Equations (9.107)–(9.109) yield

q1(t) = q1(0) exp

(
− t

t1

)
, qk(t) = qk(0) exp

(
− kt

t(0)
s

)
(9.110)

for k = 2, 3, . . .. Here, q1(0), q2(0), . . . are the values of the coefficients q1(t), q2(t), . . . at
the initial (for fast relaxation) time t = 0. The times t1 and ts (0) are defined by

t1 = 1

j+(0)
s


 2(

�n(0)
s

)2
+ c(0)

M

c(0)
1




−1

, t(0)
s =

(
�n0

s

)2
2 j+(0)

s

. (9.111)

Note that the time ts (0) is an analog of the characteristic time ts given by Eq. (9.83). According
to Eqs. (9.106) and (9.110), the relation

ξ1(t) = −c(0)
M �n(0)

s

c(0)
1

q1(0)e−t/t1 (9.112)
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holds as well provided that Eq. (9.109) is fulfilled.
Equations (9.43), (9.97), (9.98), (9.99), (9.105), (9.109), and (9.79) result in

cM (t) = c(0)
M , (9.113)

i.e., the total number of micelles is constant during the fast relaxation process in a micellar
solution. According to Eqs. (9.111), we have further

t1 < t(0)
s , and t1 = t(0)

s for
c(0)

M

c(0)
1

� 2(
�n(0)

s

)2
. (9.114)

For the micelles, we get from Eqs. (9.99), (9.105), (9.109)–(9.110), and (9.114) that

cn(t)|t�ts (0) = c(0)
n (9.115)

holds. For monomers, Eqs. (9.112) and (9.99) lead to

c1(t)|t�t1 = c(0)
1 . (9.116)

Equations (9.115) and (9.116) indicate that the time-independent aggregate concentrations c(0)
n

in the micellar region and the monomer concentration c(0)
1 are actually established with time. If

the contributions from the higher terms of the expansion (9.105) with i = 2, 3, . . . are ignored,
then the condition of applicability t � ts (0) of Eq. (9.115) can be substituted by a weaker (as
compared to Eq. (9.114)) condition t � t1. Then, it is evident that the time t1 defined by the
first expression in Eq. (9.111) is the time of fast relaxation of a micellar solution.

Fast relaxation of a micellar solution, as described in Refs. [13–16], is directly observable
in experiment [37–39, 41–44] and has been found in numerical modeling [45, 46]. This relax-
ation can be caused by the instantaneous external disturbance (for example, by temperature or
pressure jumps) of the equilibrium micellar solution at the initial moment t = 0. The external
disturbance of the solution was not considered in the previous sections, where the evolution
of the solution was due exclusively to internal processes beginning with the time when only
monomers were present in a solution.

According to Eqs. (9.112) and (9.99), the monomer concentration c1(t) varies in the period
of fast relaxation of the solution; it increases at q1(0) > 0 and, on the contrary, decreases
at q1(0) < 0. The greater the initial solution disturbance, the greater the variation of the
concentration c1(t).

In contrast, according to Eq. (9.113), the total micelle concentration cM (t) does not vary in
the course of fast relaxation of a micellar solution. However, the micelle concentration varies
at the slower (final) stage of micellization as well as at the stage preceding its establishment.
This variation is caused by the existence of direct J ′(J ′ > 0) and reverse J ′′(J ′′ < 0) fluxes of
molecular aggregates over the potential barrier of the aggregation work and will be considered
in the next section.

9.9 Time of Slow Relaxation in Surfactant Solutions

Direct J ′ and reverse J ′′ fluxes of molecular aggregates over the potential barrier of the ag-
gregation work (J ′ + J ′′, J ′′ < 0) result in the fluctuational transfer of the total number of
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molecular aggregates from the precritical to the micellar regions in a unit volume of a micellar
solution per unit time. As a result, we have

∂cM

∂ t
= J ′ + J ′′ . (9.117)

In the case (which is of interest for practice and the forthcoming analysis), where the sur-
factant concentration exceeds the critical micellization concentration (CMC), the strong in-
equalities (9.35) are valid. According to the second inequality in Eq. (9.35), the scattering,
�ns, of the micellar aggregation numbers with respect to their average value, ns, is quite
small. Therefore, the number of surfactant monomers absorbed by micelles in a unit volume
of a micellar solution is equal to nscM with a high degree of accuracy. Then, because of the
condition exp(Wc) � 1 and the resultant steep slope of the potential barrier of the aggregation
work (at not too large values of nc), the inequality

∑nc+�nc
n=2 ncn � c1 is fulfilled. As a result,

we have (cf. Eq. (9.8)) the equation of a bimodal approximation for the total concentration of
the surfactant in the solution, i.e.,

c1 + nscM = c . (9.118)

According to Eq. (9.44) the term nscM is of significance in Eq. (9.118) if exp(Ws) does not
exceed ns�ns too much. The stronger the inequality exp(Wc) � exp(Ws), the more noticeable
is the role of the term nscM .

In the considered case of a closed micellar solution, the total concentration c has a preset
value exceeding the CMC. Let us investigate the time evolution of such a solution, assuming
that in the initial moment when the surfactant is added to the solvent and mixed throughout
its volume, almost the whole amount of dissolved surfactant is present in the system in the
form of monomers only. Hence, at the initial moment, the conditions c1 = c, cM = 0, and
J ′′ = 0 (only the direct flux J ′ exists) hold. The concentration c1 decreases with time (at
a given total concentration c), while the micelle concentration cM becomes different from
zero and gradually increases. Correspondingly, the reverse flux, J ′′, of molecular aggregates
develops, which progressively starts to compete with their direct flux, J ′. At fairly long times,
the reverse flux, J ′′, begins to fully compensate the direct flux, J ′. In this case, the closed
micellar solution comes to equilibrium.

With Eq. (9.118) and Eqs. (9.68) and (9.70) for the fluxes J ′ and J ′′ at the known depen-
dence of the aggregation work Wn on n and, hence, at the known dependences of nc, ns, �nc,
�ns, Wc, Ws, and j+

c on the concentration c1, the relaxation equation (9.117) can be reduced
to a nonlinear first-order differential equation with separable variables. The solution of this
equation with respect to the monomer concentration c1(t) can be written in a general form
in quadratures over the entire time interval. However, the dependence of Wn on n is known
only in some particular cases for specific models of micelles. Therefore, it is of interest to
analytically solve the problem of the relaxation of the micellar solution at the final stage of
micellization near the state of the complete equilibrium of a solution as well as the problem of
the determination of the time of establishment of this final stage, using only the most represen-
tative general characteristics of the aggregation work, Wn , instead of the whole dependence
of Wn on n. Denoting the values characterizing the equilibrium state of the closed micellar
solution by the upper tilde, we have

J̃ ′ + J̃ ′′ = 0 . (9.119)
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Substituting Eqs. (9.68) and (9.70) into Eq. (9.119), we obtain

c̃M = π1/2c̃1�̃ns exp
(−W̃s

)
. (9.120)

As follows from Eq. (9.120), (9.41), and (9.45) with respect to the concentrations cn of molec-
ular aggregates in the precritical and supercritical regions of their sizes, the complete equilib-
rium between all molecular aggregates of a micellar solution is established at the final stage.
According to Eqs. (9.120) and (9.45), this state is characterized by the following concentra-
tions of molecular aggregates:

c̃(e)
n = c̃1 exp

(−W̃n
)
. (9.121)

Taking into account Eq. (9.120), Eq. (9.118) yields

c̃1 + π1/2c̃1ñs�̃ns exp
(−W̃s

) = c . (9.122)

At a given total concentration c and the known dependences of ñs, �̃ns, and W̃s on the
monomer concentration c̃1, Eq. (9.122) gives an equation for the determination of the equi-
librium concentration, c̃1. Once the equilibrium concentration c̃1 of surfactant monomers is
found, the equilibrium concentration c̃M can be determined using the relation

c̃M = (c − c̃1)

ñs
, (9.123)

which follows from Eq. (9.118). If the equilibrium concentration c̃1 of surfactant monomers is
known from the experiment, the total concentration c and the equilibrium concentration c̃M are
determined by Eqs. (9.122) and (9.123). If the equilibrium micelle concentration c̃M is known
experimentally, the equilibrium concentration c̃1 can be calculated by solving Eq. (9.120) with
respect to c̃1, and the total concentration c can be determined using Eq. (9.123). Hence, for the
nonequilibrium micellar solution, two out of three characteristic concentrations, c1, cM , and
c, are independent parameters (cf. Eq. (9.118)), while for the equilibrium solution, only one
concentration will be an independent parameter (due to Eq. (9.119)). It follows from Eq. (9.19)
that

∂Wn

∂c1
= − (n − 1)

c1
(9.124)

holds. Taking into account the definition Ws ≡ Wn |n=ns of the minimum Ws of the aggregation
work Wn , we have

∂Ws

∂c1
= ∂Wn

∂c1

∣∣∣∣
n=ns

+ ∂Wn

∂n

∣∣∣∣
n=ns

∂ns

∂c1
. (9.125)

The work Wn is minimal at n = ns. Taking into account the necessary extremum condition(
∂Wn

/
∂n
)∣∣

n=ns
= 0, Eqs. (9.125) and (9.124) yield

∂Ws

∂c1
= − (ns − 1)

c1
< 0 . (9.126)
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Similar considerations result in

∂Wc

∂c1
= − (nc − 1)

c1
< 0 . (9.127)

According to Eq. (9.35), the inequality ns � 1 is valid. In this case, the dependence of the
second term on the left-hand side of Eq. (9.122) on c̃1 is very strong (cf. Eq. (9.126)). As
a result, we can make the following conclusion. As the total concentration c exceeds the CMC,
the monomer concentration c̃1 also begins to exceed gradually (albeit rather slowly) the CMC,
but still remains near the CMC. According to Eq. (9.126), the value on the left-hand side of
Eq. (9.122) monotonically increases with the concentration c̃1. This result indicates that the
solution of Eq. (9.122) with respect to the concentration c̃1 at a given concentration c is unique.
According to Eq. (9.126), the solution of Eq. (9.120) with respect to the concentration c̃1 at
a given concentration c̃M will also be unique.

The search of the solution of the system of equations (9.117) and (9.118), describing slow
relaxation in a micellar solution after the initial addition of surfactant to the solvent and mixing
throughout the entire volume, we begin with the times when the concentrations c1 and cM are
already close to their values c̃1 and c̃M at the equilibrium state of a solution and the reverse
flux J ′′ almost completely compensates the direct flux J ′. These times correspond to the final
stage of micellization. The smallness of the deviations of the solution characteristics from
their equilibrium values at the final stage allow us to linearize Eqs. (9.117) and (9.118) at this
stage and hereby to significantly simplify the problem. Let us denote the deviations of the
parameters from their values at the equilibrium state of a micellar solution by δ. Then, we
have

c1 = c̃1 + δc1 , cM = c̃M + δcM . (9.128)

Linearizing Eqs. (9.117) and (9.118) with Eqs. (9.128), and taking into account Eqs. (9.68),
(9.70), and (9.119) and the constancy of the total concentration c in the closed solution, we
obtain

∂δcM

∂ t
= J̃ ′

[
(1 + γ + η)

δc1

c̃1
− δcM

c̃M

]
, (1 + λ) δc1 + ñsδcM = 0 . (9.129)

Here γ , η, and λ are the dimensionless parameters defined by

γ ≡ −c̃1

(
∂Ws

∂c1

)∣∣∣∣
c1=c̃1

, η ≡ c̃1

(
∂ ln �ns

∂c1

)∣∣∣∣
c1=c̃1

, λ ≡ c̃M

(
∂ns

∂c1

)∣∣∣∣
c1=c̃1

.(9.130)

These parameters characterize the influence of the monomer concentration c1 in the vicinity of
its equilibrium value c̃1 on the values Ws, �ns, and ns. A similar effect of the concentration c1
on the values j+

c , Wc, and �nc in Eqs. (9.68) and (9.70) does not appear in Eq. (9.129) because
the dependences on j+

c , Wc, and �nc in Eqs. (9.68) and (9.70) are identical. Equations (9.130)
and (9.126) yield

γ = ñs − 1 . (9.131)

The flux J̃ ′ in Eq. (9.129) can be written according to Eq. (9.68) as

J̃ ′ = c̃1 j̃+
c exp

(−W̃c
)/

π1/2�̃nc . (9.132)
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According to Eq. (9.119), the reverse flux J̃ ′′ differs from J̃ ′ only in sign. The solution of the
system of equations (9.129) results in

δc1 = −ñs
δcM

(1 + λ)
, δcM = const · exp

(
− t

tr

)
, (9.133)

where the time tr is defined by [25]

1

tr
= J̃ ′

[
ñs (1 + γ + η)

c̃1 (1 + λ)
+ 1

c̃M

]
. (9.134)

Let us now perform an estimate of the role of the parameters η and λ in Eq. (9.134). Equa-
tions (9.130) and (9.131) result in

η

1 + γ
= c̃1

ñs

(
∂ ln �ns

∂c1

)∣∣∣∣
c1=c̃1

. (9.135)

The value of �ns varies quite slowly with the variation of c1. According to the first inequality
in Eq. (9.35), ln �ns varies with the concentration c1 even considerably slowlier than �ns.
Further, taking into account the inequalities (9.35), the inequality ns � 1 is valid. Then it
follows from Eq. (9.135) that the inequality

∣∣η /(1 + γ )| � 1 holds. According to this in-
equality, the parameter η in Eq. (9.134) can be ignored. Likewise, in view of the weak depen-
dence of the average micelle aggregation number ns on the concentration c1, it follows from
Eq. (9.130) that the inequality |λ| � 1 holds. It follows that the parameter λ in Eq. (9.134)
can also be ignored. Omitting the parameters η and λ in Eq. (9.134), taking into account
Eqs. (9.131) and (9.132), we have

tr = π1/2c̃M�̃nc exp
(
W̃c
)

c̃1 j̃+
c

(
1 + ñ2

s c̃M

c̃1

)−1

. (9.136)

According to Eq. (9.136), the time tr is positive. Thus, Eqs. (9.133) describe the irreversible
tendency of the closed micellar solution to equilibrium. The same expressions indicate that
the time tr, given by Eq. (9.136), is the relaxation time of a solution at the final stage of
micellization. According to Eq. (9.136), the relaxation time of the micellar solution does not
depend on its volume.

As is seen from Eq. (9.118), the quantity ñsc̃M
/

c̃1 is the ratio of the amount of substance
accumulated by the micelles at the final state of solution equilibrium to that part of the sub-
stance, which remains in the form of monomers. In terms of the degree of micellization [5] α,

α ≡ ñsc̃M

c
, (9.137)

this ratio is equal to α/(1 − α). In a typical case, the critical degree of micellization (corre-
sponding to the CMC) has a value of the order of 0.1. Thus, at ñs � 1, the strong inequality

ñ2
s c̃M

c̃1
� 1 (9.138)
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holds. Since ñs � 1, this case is surely realized when ñsc̃M
/

c̃1 > 1, i.e., when micelles in the
final state of solution equilibrium accumulate noticeable or even the main part of the whole
amount of a surfactant is contained in them. With Eq. (9.138), we obtain from Eq. (9.136) that

tr =
(
π1/2�̃nc/̃n2

s j̃+
c

)
exp

(
W̃c
)

for ñ2
s c̃M /̃c1 � 1 . (9.139)

Let us establish the relation between the time tr and the micelle concentration in the final
equilibrium state of the solution at a slow variation of the monomer concentration, when ñs,
ñc, �̃ns, and �̃nc remain practically constant. We consider two micellar solutions with al-
most identical monomer concentrations at the final equilibrium states. Specifying the values

for these solutions by the superscripts (1) and (2), we then have
(̃

c(1)
1 /̃c(2)

1

)
≈ 1, and with

Eqs. (9.126) and (9.127), we also have

exp
(

W̃ (1)
s

)/
exp

(
W̃ (2)

s

)
=
(̃

c(2)
1

/
c̃(1)

1

)ñs−1
, (9.140)

exp
(

W̃ (1)
c

)/
exp

(
W̃ (2)

c

)
=
(̃

c(2)
1

/
c̃(1)

1

)ñc−1
. (9.141)

Equations (9.120) and (9.140) yield

c̃(1)
M

/
c̃(2)

M =
(̃

c(1)
1

/
c̃(2)

1

)ñs
. (9.142)

Since ñs � 1, Eq. (9.142) demonstrates that, at almost identical monomer concentrations
in the equilibrium solutions, the micelle concentrations can be quite different. According to
Eqs. (9.141) and (9.142), we have

exp
(

W̃ (1)
c

)/
exp

(
W̃ (2)

c

)
=
(̃

c(2)
M

/
c̃(1)

M

)(̃nc−1)/̃ns
. (9.143)

Taking into account Eqs. (9.142) and (9.143) and the fact that the rate j̃+
c of monomer absorp-

tion by the critical molecular aggregate is proportional to the monomer concentration in the
solution, with Eq. (9.139) we have

t(1)
r

/
t(2)
r =

(̃
c(2)

M

/
c̃(1)

M

)ñc/̃ns
for ñ2

s c̃(1)
M

/
c̃(1)

1 � 1 , ñ2
s c̃(2)

M

/
c̃(2)

1 � 1.

(9.144)

According to Eq. (9.144), the relaxation time tr of a solution to a final equilibrium state de-
creases with an increase in micelle concentration c̃M inversely proportional to c̃ñc/̃ns

M . The
higher the micelle concentration at the final state of solution equilibrium, the higher the total
surfactant concentration of this solution. Then we find from Eq. (9.144) that at a rather large
degree of micellization at the final state of solution equilibrium, the relaxation time of a so-
lution decreases with an increase in the total surfactant concentration of this solution. This
conclusion of the theory is supported by experimental data reported in Refs. [37, 41] and by
data of numerical modeling [45, 46].

Analyzing the time tr of slow relaxation, we followed widely Ref. [25]. The concept and
a first derivation of this time was introduced by Aniansson and Wall [13].
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9.10 Time of Approach of the Final Micellization Stage

Let us now analyze the solution of the system of kinetic equations of aggregation in a micellar
solution at the times preceding the final stage of micellization. Assuming the condition ns =
ñs, which will be justified somewhat later, we can rewrite Eqs. (9.118) and (9.117) at a given
total concentration c of the solution as

c1 + ñscM = c ,
∂c1

∂ t
= −ñs

(
J ′ + J ′′) . (9.145)

To obtain Eq. (9.129), we used the linearization of exp(Ws) with respect to the deviation δc1.
Expanding exp(Ws) in a Taylor series in powers of δc1 and taking Eq. (9.126) into account,
we see that this linearization is valid at

δc1

c̃1
<

1

ñs
. (9.146)

Equation (9.146) specifies the region on the c1-axis, where the final stage of micellization
occurs. Although this region is quite narrow at ñs � 1, the relative variation of the exponent
exp(Ws) can be rather significant as evident from Eq. (9.126).

Assuming the condition �ns = �̃ns, which will be substantiated somewhat later, Equa-
tions (9.68), (9.70), and Eq. (9.119) yield

J ′ = J̃ ′
(

c1 j+
c �̃nc

c̃1 j̃+
c �nc

)
exp

(−Wc + W̃c
)

,

(9.147)

J ′′ = − J̃ ′
(

cM j+
c �̃nc

c̃M j̃+
c �nc

)
exp

(
Ws − W̃s − Wc + W̃c

)
.

Equations (9.147) result in

J ′′

J ′ =
(

cM

c̃M

)(
c̃1

c1

)
exp

(
Ws − W̃s

)
. (9.148)

At the assumed equality ns = ñs, Eq. (9.126) gives

exp
(
Ws − W̃s

) =
(

c̃1

c1

)ñs−1

. (9.149)

Employing Eq. (9.149) and the evident inequality cM ≤ c̃M , we obtain from Eqs. (9.148)
and (9.128)∣∣J ′′∣∣

J ′ ≤ exp

[
−ñs ln

(
1 + δc1

c̃1

)]
. (9.150)

According to Eq. (9.150), the inequality∣∣J ′′∣∣/J ′ � 1 (9.151)



9.10 Time of Approach of the Final Micellization Stage 341

will be actually valid at

δc1/̃c1 > 1/̃ns. (9.152)

Taking into account Eq. (9.152), we can transform the second equality in Eqs. (9.145) into

∂c1

∂ t
= −ñs J ′ for

δc1

c̃1
>

1

ñs
. (9.153)

Let us emphasize the different relative role of the reverse flux J ′′ compared with the direct
flux J ′ when passing from the concentration range c1 admitted by Eq. (9.152) to the concen-
tration range c1 admitted by Eq. (9.146). In the concentration range c1 admitted by Eq. (9.152),
the reverse flux J ′′ does not play any significant role (cf. Eq. (9.151)). However, the reverse
flux J ′′ is already quite noticeable in the concentration range c1 admitted by Eq. (9.146) and
even determines the condition (9.146) due to the term exp(Ws) in Eq. (9.70).

We assume the conditions �nc = �̃nc and nc = ñc which will be substantiated below.
Then, from Eqs. (9.68) and (9.127), we have

J ′ = J̃ ′
(

c1 j+
c

c̃1 j̃+
c

)
exp

(−Wc + W̃c
)

, exp
(
Wc − W̃c

) =
(

c̃1

c1

)ñc−1

. (9.154)

The number of monomers j+
c absorbed by the critical molecular aggregate from a solution per

unit time is proportional to the monomer concentration c1 in the solution. Taking this fact into
account, we arrive with Eq. (9.154) at

J ′ = J̃ ′
(

c1

c̃1

)ñc+1

. (9.155)

Substituting Eq. (9.155) into Eq. (9.153) yields

∂c1

∂ t
= −ñs J̃ ′

(
c1

c̃1

)ñc+1

for
δc1

ñs
>

1

ñs
. (9.156)

In order to fit the region specified by Eq. (9.152), the monomer concentration
(
1 + 1

/
ñs
)

c̃1
corresponding, according to Eqs. (9.128) and (9.146), to the onset of the final stage of micel-
lization, has to be lower than the monomer concentration c1 = c corresponding to the onset
of the whole process of micellization. Thus, we should have(

1 + 1

ñs

)
c̃1

c
< 1 . (9.157)

Otherwise, the condition (9.146) should be valid within the entire concentration range c ≥
c1 ≥ c̃1 of the micellization process. Then, the final stage would occur from the very beginning
of this process, and the relaxation time tr at this stage would determine the total time of the
establishment of the equilibrium in a micellar solution.

We assume hereafter that inequality (9.157) is fulfilled. It is possible only at ñ2
s c̃M

/
c̃1 > 1,

as is shown by(
1 + 1

/
ñs
)

c̃1

c
= ñs + 1

ñs + ñ2
s c̃M

/̃
c1

, (9.158)
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resulting from Eq. (9.145). Integrating Eq. (9.156) over c1 from the value c1 = (
1 + 1

/
ñs
)

c̃1
to c1 = c and taking into account Eq. (9.132), we obtain [25]

t0 = π1/2�̃nc exp
(
W̃c
)

ñsñc j̃+
c
(
1 + 1

/
ñs
)̃nc


1 −

[(
1 + 1

/
ñs
)

c̃1

c

]ñc

 (9.159)

for (
1 + 1

ñs

)
c̃1

c
< 1 . (9.160)

The time t0 is the desired time of approach of the final stage of micellization. The accumulation
of surfactants in micelles occurs just during the time t0 (accumulation at the final stage is
negligible).

Let us establish the interrelation between the time t0 and the micelle concentration c̃M at
the final state of the solution equilibrium by a small variation in the equilibrium monomer con-
centration at which ñs, ñc, �̃ns, and �̃nc remain practically constant. Ignoring in Eq. (9.159)
the small (at ñc � 1) value

[(
1 + 1

/
ñs
)

c̃1
/

c
]ñc (cf. Eq. (9.157)), taking into account

Eqs. (9.142) and (9.143) and the fact that j̃+
c is proportional to the concentration c̃1, we have

t(1)
0

/
t(2)
0 =

(̃
c(2)

M

/
c̃(1)

M

)ñc/̃ns
(9.161)

for (
1 + 1

/
ñs
)

c̃(1)
1

/
c(1) < 1 ,

(
1 + 1

/
ñs
)

c̃(2)
1

/
c(2) < 1. (9.162)

Similar to the behavior of the time tr, as described by Eq. (9.144), the time t0 decreases with
an increase in the micelle concentration c̃M in inverse proportion to c̃ñc/̃ns

M .
Equation (9.156) and ñc � 1 lead to the conclusion that the rate of decrease in concen-

tration c1 with time is relatively high in the region where c1 exceeds (at least negligibly) c̃1,
i.e., in the region where

(
c1
/

c̃1
)̃nc � 1. Consequently, this region does not contribute much

in the integration of Eq. (9.156). All discussed above justifies the equalities ns = ñs, nc = ñc,
�ns = �̃ns, and �nc = �̃nc advanced above. In view of Eq. (9.154), this result also justifies
the suggested practical independence of exp(Wc) on time.

9.11 The Hierarchy of Micellization Times

Let us consider the hierarchy of the characteristic times of micellization. The existence of
such hierarchy proves that the quasiequilibrium concentrations of molecular aggregates in the
precritical and supercritical regions of their sizes and the quasisteady concentration of molec-
ular aggregates in the near-critical region of their sizes are actually established. The hierarchy
also sets estimates of the relative values of the times of the formation and decomposition of
micelles and is a clear indication of the complex multistage process of approaching the final
state of equilibrium in a micellar solution.
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The average time between two successive acts of emission of a surfactant monomer by
a micelle is an important parameter in micellization. We denote this time by τ1. As follows
from Eqs. (9.25) and (9.50) at the condition (cf. Eq. (9.35)) of the applicability of the macro-
scopic description of the micellization kinetics, the approximate equality

j−
n = j+

s for ns − �ns � n � ns + �ns (9.163)

is fulfilled in the micellar region with a high degree of accuracy. Thus the average time be-
tween two successive acts of emission of a surfactant monomer by the micelle containing ns
molecules is determined by the time

τ1 = 1
/

j+
s . (9.164)

It is evident that, simultaneously, τ1 is the average time of emission of any of ns surfactant
monomers, contained in a micelle, from a micelle. Because the probability of the emission
of some of these monomers from a micelle is larger by ns times than that of the isolated
(labeled) surfactant monomer, the quantity nsτ1 determines the average time for an emission
of the labeled surfactant monomer from a micelle, i.e., the average value of the resident time
of a surfactant monomer in a micelle.

The average micelle lifetime is also an important parameter of micellization. We found
in Section 9.6 the direct flux J ′ and the reverse flux J ′′ of molecular aggregates overcoming
by fluctuations the potential barrier of the aggregation work. The existence of the reverse
flux J ′′ results in the fluctuational transfer of −J ′′ molecular aggregates from the micellar to
the precritical region in a unit volume of the micellar solution per unit time (the outflow of
molecular aggregates from the micellar region to the region n > ns + �ns is not observed at
the total surfactant concentrations below the second CMC due to a rather rapid increase in the
aggregation work with an increase in n in this region). The fluctuational transfer of molecular
aggregates from the micellar to the precritical region results in a “decay” of micelles. This
decay proceeds by a multistage mechanism of exchange of surfactant monomers between the
molecular aggregates and the micellar solution. During the time τM , determined by

τM = cM
/∣∣J ′′∣∣ , (9.165)

the micellar region would be left by all micelles due to their fluctuational transfer to the pre-
critical region. Hence, it is the time τM that represents the average value of the lifetime of
a micelle. Using Eq. (9.70) for the flux J ′′, we rewrite Eq. (9.165) as

τM = π�nc�ns exp(Wc − Ws)
/

j+
c . (9.166)

According to Eq. (9.166), the time τM is independent of the volume of the micellar solution.
Let us collect the data on the characteristic kinetic times obtained in this and the previous

sections. We are interested in the times ts and t ′ required to establish the quasisteady con-
centrations of molecular aggregates in the micellar and precritical regions, respectively; the
time t ′′ required to establish the quasisteady concentrations of molecular aggregates in the part
of the supercritical region located to the left of the micellar region on the n-axis; the time tc
needed to establish the quasisteady concentrations of molecular aggregates in the near-critical
region; the time t1 of fast relaxation; the time t0 of approaching the final stage of micellization
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and the time tr of relaxation of the micellar solution at the final stage of micellization; the
average monomer lifetime τ1 in a micelle and the average lifetime of a micelle τM . While the
times ts , t ′, t ′′, and tc describe the evolution of the ensemble of molecular aggregates within
the characteristic ranges of aggregation numbers and the times t1, t0 and tr are related to the
relaxation behavior of the whole micellar solution (micelles and monomers), the times τ1 and
τM characterize a single micelle. According to Eqs. (9.84), (9.85), and (9.95), we have

t ′

tc
≈ 2nc

�nc
,

t ′′

tc
≈ 2(ns − nc)

�nc
. (9.167)

Taking into account Eqs. (9.34) and employing the estimate ns − nc � nc (which allows for
the equality of the orders of magnitudes for ns − nc and nc), we obtain from Eq. (9.167) the
inequalities

t ′′

tc
� t ′

tc
� 1 . (9.168)

According to Eqs. (9.83) and (9.95), we have

tc
ts

=
(

�nc

�ns

)2 ( j+
s

j+
c

)
. (9.169)

Analytical models for the aggregation work Wn in surfactant solutions do not result in large
differences between the values of �nc and �ns. Assuming that a large difference in the values
of j+

c and j+
s is also improbable, we can see from Eq. (9.169) that

tc
/

ts ∼ 1 . (9.170)

According to Eqs. (9.83) and (9.164), we have

ts
/
τ1 = (�ns)

2
/

2 . (9.171)

Substituting the first condition from Eq. (9.35) into Eq. (9.171) yields

ts
/
τ1 � 1 . (9.172)

Comparing Eq. (9.159) for the time t0 with Eq. (9.136) for the time tr and taking into account
Eq. (9.158), we obtain

t0
tr

= ñs

ñc
(
1 + 1

/
ñs
)̃nc


1 −

(
ñs + 1

ñs + ñ2
s c̃M

/̃
c1

)ñc

 for

ñ2
s c̃M

c̃1
� 1 . (9.173)

Let us discuss the results for the realistic estimates ñs ∼ 102 and ñc ∼ 30. At ñ2
s c̃M

/̃
c1 = 3,

when Eq. (9.138) is fulfilled at the breaking point, we have from Eq. (9.173) the result
t0/tr 	 1.5. When the ratio ñ2

s c̃M
/

c̃1 becomes larger than 3, and correspondingly, the inequal-
ity Eq. (9.138) becomes stronger, the ratio t0/tr slightly increases but still remains smaller than
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2.5. Hence, it is clear that the time tr is an estimate not only of the duration of the very final
stage of micellization, but also of the total time t0 + tr of the establishment of equilibrium in
a micellar solution as well [26].

Hereafter, we will use the estimates for all kinetic times as applied to the final stage of
micellization (taken at values of parameters corresponding to the final equilibrium). According
to Eqs. (9.139) and (9.85), we have

tr
t ′′

≈ π1/2 exp
(
W̃c
)/[

(̃ns − ñc) ñ2
s

]
for

ñ2
s c̃M

c̃1
� 1 . (9.174)

Taking into account that the first inequality in Eq. (9.36) is extremely strong due to its expo-
nential character, we derive from Eq. (9.174) the strong inequality

tr
t ′′

� 1 for
ñ2

s c̃M

c̃1
� 1 . (9.175)

According to Eqs. (9.139) and (9.166) accounting for Eq. (9.120), we have τM
/

tr = ñ2
s c̃M

/
c̃1

and thus

τM
/

tr � 1 for
ñ2

s c̃M

c̃1
� 1 . (9.176)

Equations (9.83) and (9.111) then yield

t1 � ts for
ñ2

s c̃M

c̃1
� 1 . (9.177)

As a whole, the set of Eqs. (9.168), (9.170), (9.172), (9.173), (9.175), (9.176), and (9.177)
discloses the following hierarchy of the times of micellization kinetics [26]:

τM � t0 ∼ tr � t ′′ � t ′ � tc ∼ ts � t1 � τ1 for
ñ2

s c̃M

c̃1
� 1 . (9.178)

The last six relations in the hierarchical sequence (9.178) are not related with the limitation as
expressed in Eq. (9.138).

According to Eq. (9.178), the times ts , t ′, t ′′, tc, and t1 are much shorter than the time tr.
This result proves that the quasisteady concentrations of molecular aggregates in the precrit-
ical and supercritical regions and the quasisteady concentrations of molecular aggregates in
the near-critical region are actually established. Being the consequence of the proportional-
ity between the time tr and exp

(
W̃c
)
, the statement of the smallness of the times ts , t ′, t ′′,

tc (compared with time tr) is valid in the general case, i.e., it is not related to the limitation
as given via Eq. (9.138). The time τM ranks first and the time τ1 is the smallest among the
characteristic times of the micellization kinetics in the hierarchical sequence (9.178). This re-
sult demonstrates that the micelles are stable molecular formations, which are quite capable
of renewing the composition of constituting molecules.

The hierarchy of kinetic times established here has recently been confirmed by the nu-
merical solutions of the set of kinetic equations of micellization reported by Grinin and
Grebenkov [46]. Some modern results on the experimental investigation of kinetic times in
micellization are available in Refs. [41–44]. Results of molecular dynamics simulations can
be found in Ref. [47].
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9.12 Chemical Potential of a Surfactant Monomer
in a Micelle and the Aggregation Work
in the Droplet Model of Spherical Micelles

Aggregates of surfactant molecules in micellar solutions, including the relatively stable mi-
celles, are limited by the number of constituent molecules and have such a structure that they
cannot be considered as small parts of a new macroscopic phase. This fact complicates the
study of the thermodynamics of molecular aggregates as compared with the theory of nucle-
ation and forces one to find a model representation of their structure and the contributions to
the work of their formation or the chemical potential of the aggregates [6,7,48–50]. One of the
widely recognized models of surfactant molecular aggregates is the droplet model of an aggre-
gate with a liquid-like core formed by the hydrophobic fragments of surfactant molecules. This
model was proposed by Tanford [6] and developed later in Refs. [5, 7–11, 17, 27, 28, 51–56].
For definiteness, we shall deal here with a typical case of an aqueous solution of molecules
of nonionic or zwitterionic surfactants having dipole hydrophilic parts and hydrophobic frag-
ments in the form of linear hydrocarbon radicals. Let us denote by nC the number of carbon
atoms in a hydrocarbon chain of a surfactant molecule. The end methyl group has the charac-
teristic volume v0, while the volume of the methylene group is v. According to the published
data [6], we have v0 ≈ 54.3 Å3 and v ≈ 26.9 Å3 at an absolute temperature T = 298 K.
Hereafter, we assume that the equality v0/v 	 2 holds.

It is accepted in the droplet model of a spherical molecular aggregate that the total num-
ber nnC of hydrocarbon segments of all n surfactant molecules constituting the molecular
aggregate are located inside a spherical surface in a compact manner (with no voids). Then,
considering volume balance, we have for the radius r of the aggregate surface

r =
(

3vC

4π

)1/3

n1/3 , (9.179)

where the approximate equality

vC = v0 + v (nC − 1) ≈ v (nC + 1) (9.180)

is taken into account in view of v0/v 	 2. At nC � 1, Eq. (9.179) remains valid also in
the case of a slight deviation of hydrocarbon chains from their complete insertion inside the
sphere of radius r .

The inner contents of a sphere of radius r , occupied completely by the hydrocarbon groups
of all surfactant molecules in a molecular aggregate, can be considered as a “hydrocarbon
core.” Let us emphasize that the hydrocarbon core does not include protruding hydrophilic
parts of surfactant molecules. According to Eq. (9.179), as the aggregation number n increases,
the radius r also increases. Since the hydrophilic parts of surfactant molecules in an aggregate
are located outside the sphere of radius r and the droplet model does not suggest the existence
of cavities inside the molecular aggregate, the hydrocarbon chains of surfactant molecules
in the aggregate become less convolute with an increase in n. Denoting the length of the
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completely unfolded hydrocarbon chain of the surfactant molecule by lC , for which according
to [6] we have lC = (1.5 + 1.265nC) Å, we obtain the following packing condition:

r ≤ lC . (9.181)

Rewriting lC as lC = l1 (nC + 1), where l1 ≡ 1.265 Å is the average length of the hydrocarbon
group, using Eq. (9.179), and taking into account the aforementioned equality v ≈ 26.9 Å3,
we present Eq. (9.181) in the form of the constraint

n < 0.3 (nC + 1)2 , (9.182)

which is imposed from above on the aggregation number n in the droplet model of surfactant
spherical molecular aggregates. The stronger the inequality nC � 1, the weaker the con-
straint (9.182). At a sufficiently large value of nC , the constraint (9.182) is quite comparable
with the constraint n � 1, which is required for the applicability of the asymptotic (with
respect to n) thermodynamic and kinetic theories of micellization.

We denote by µ̄1n and µ̄1 the dimensionless chemical potential of surfactant molecules
in the aggregate and, correspondingly, the dimensionless chemical potential of surfactant
monomers in the micellar solution. Both chemical potentials are expressed in thermal energy
units kBT . The following general thermodynamic relationship [57]

∂Wn

∂n
= µ̄1n − µ̄1 (9.183)

is valid at thermal and mechanical equilibrium between the molecular aggregate and solution.
From Eqs. (9.6) and Eq. (9.183), we immediately obtain

Wn =
n∫

1

(µ̄1n − µ̄1) dn . (9.184)

We also use the standard expression for the dimensionless chemical potential of a molecule in
an arbitrary medium

µ̄ = µ̄0 + w + ln
(

cv�
3
)

, (9.185)

where µ̄0 is the dimensionless chemical potential of a molecule with a fixed center of mass
in vacuum, w is the work of transfer of a molecule from a fixed position in vacuum to a fixed
position in a medium with concentration cv (the number of molecules per unit volume), and �
is the de Broglie mean wavelength of a molecule. Equation (9.185) is applicable to both µ̄1n

and µ̄1, with identical µ̄0 and � in both expressions. The term v1 p, where p is the pressure
and v1 is the partial molar volume of a substance in a given phase, is usually separated in the
expressions for the chemical potential of a substance in the condensed state. Therefore, for the
chemical potential of a surfactant in a solution (let it be the β-phase) with concentration c1,
we can write

µ̄1 = µ̄0 + w1 + v1 pβ

kBT
+ ln

(
c1�

3
)

, (9.186)
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where the work of transfer w1 is referred to as zero-value pressure. In view of the low com-
pressibility of condensed media, the partial molar volume of a substance can be considered as
constant and coinciding with the molecular volume. The dependence of µ̄1 on c1 is given by
the ln(c1�

3) term for the dilute solution. Thus, according to Eq. (9.186), w1 is independent
of c1.

The situation is more complicated when one is dealing with the chemical potential of
a surfactant molecule in a molecular aggregate. Let us consider the inner part of a molecular
aggregate, the hydrophobic core, as the α-phase. We set a dividing surface between the α- and
β-phases and use the concepts of interfacial thermodynamics. In particular, if both phases are
considered to be mechanically uniform up to the dividing surface, we should ascribe a certain
surface tension γ to the latter. The position of a surfactant molecule in the molecular aggregate
is such that the dividing surface splits it into two parts with volumes vα and vβ ,

v1 = vα + vβ . (9.187)

Moreover, these parts turned out to be at different pressures ( pα and pβ ). In addition, the
molecule intersects the dividing surface (producing cross section a) and appeared under the
action of surface tension γ . Therefore, we arrive at the expression,

µ̄1n = µ̄0 + w1n +
(
vα pα + vβ pβ − γ a

)
kBT

+ ln
(

c1n�
3
)

(9.188)

for the chemical potential µ̄1n of a surfactant molecule in an aggregate. Here c1n is the con-
centration of surfactant monomers in the molecular aggregate, the work w1n of the molecular
transfer to the aggregate is referred to as zero-valued pressure, and the term −γ a is substanti-
ated in the thermodynamics of interfacial phenomena [57]. In view of Eq. (9.187), Eq. (9.186)
can be rewritten as

µ̄1 = µ̄0 + w1 +
(
vα pβ + vβ pβ

)
kBT

+ ln
(

c1�
3
)

. (9.189)

The pressures in the α- and β-phases are interrelated by the condition of mechanical equilib-
rium (Laplace’s equation)

pα − pβ = 2γ

r ′ , (9.190)

where r ′ is the radius of the dividing surface. From Eqs. (9.188)–(9.190), we have

µ̄1n − µ̄1 = w1n − w1 + 2γ vα

r ′kBT
− γ a

kBT
+ ln

(
c1n

c1

)
. (9.191)

Substitution of Eq. (9.191) into Eq. (9.184) yields

Wn =
n∫

1

(w1n − w1) dn +
n∫

1

2γ vα

r ′kBT
dn −

n∫
1

γ a

kBT
dn +

n∫
1

ln

(
c1n

c1

)
dn . (9.192)
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A difficulty arises in the direct calculation of the integrals in Eq. (9.192) if one takes into
account the interactions of polar groups. These interactions result in the contribution W p

n to
the aggregation work Wn . It is more simple to calculate the contribution of the interactions
separately, taking all other integrals in Eq. (9.192) as if the interaction of polar groups is
nonexistent. Then, the surface tension γ , the radius of the dividing surface r ′, and the limiting
area a can be referred to as the surface of the hydrocarbon core (γ = γ0, r ′ = r , a =
(4π)1/3 (3v)2/3), and the volume vα is identified with the volume vC of the hydrocarbon chain
entering the hydrocarbon core. Using such an approach, Eq. (9.192) can be written as

Wn =
n∫

1

(w1n − w1) dn +
n∫

1

2γ0vC

rkBT
dn −

n∫
1

aγ0

kBT
dn (9.193)

+
n∫

1

ln

(
c1n

c1

)
dn + W p

n .

Evidently, the difference w1n −w1 is the work of transfer of a surfactant molecule from the so-
lution (the β-phase) to the molecular aggregate in the absence of pressure and surface tension.
Considering the hydrocarbon core as the α-phase, we express this work of transfer as wβα (the
order of indices indicates the direction of transfer). For the dilute solution, the work wβα does
not depend on the concentration of the solution. This result follows already from the afore-
mentioned absence of the dependence of the work w1 on c1 for the dilute solution and also
from the fact that the work w1n is generally independent of c1. If we denote the concentration
of the hydrocarbon tails in the β- and α-phases by cβ and cα, respectively, then it is evident
that cβ = c1; however, strictly speaking, cα �= c1n (the concentration of hydrocarbon chains
in the hydrocarbon core is not equal to that of the molecules in the aggregate). However, ac-
cording to Eq. (9.179), at nC � 1 and n � 1, the radius r is so large that it considerably
exceeds the thickness of the hydrophilic layer of an aggregate and the distance from the layer
to the surface of the hydrocarbon core. Denoting by R the radius of a spherical molecular
aggregate, we then have R ≈ r , and it follows from c1n = 3n/4π R3 and cα = 3n/4πr3

that c1n ≈ cα. Since for a dilute solution c1n/c1 ∼ 104–105 and cα/c1 ∼ 104–105 hold,
the equality ln(c1n/c1) ≈ ln(cα/c1) will be fulfilled with even higher accuracy. Taking into
account this equality and cα = const, we write Eq. (9.193), after calculating the integral in
the penultimate term at n � 1, as

Wn =
n∫

1

wβα dn +
n∫

1

2γ0vC

rkBT
dn −

n∫
1

aγ0

kBT
dn + n ln

(
cα

c1

)
+ W p

n . (9.194)

In addition to W p
n , there are other contributions to Wn due to the work of transfer. Some

of them are already known in the integral form; the others will be calculated by integrating
(during the integration, it is admissible to ignore the lower limit, similarly as was done in the
penultimate term in Eq. (9.194)).

Let us begin with the hydrophobic contribution W h
n to the work Wn given by the first term

on the right-hand side of Eq. (9.194). For the work wβα of transfer of the entire hydrophobic
part of a single surfactant molecule containing nC hydrocarbon groups from the surfactant
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solution to the hydrocarbon bulk phase through the flat surface, we have the empirical expres-
sion

wβα = −BnC , (9.195)

which is valid at nC � 1. Here, B is a positive dimensionless parameter of hydrophobic inter-
action. Equation (9.195) does not refer to the zero-valued but rather to atmospheric pressure
(identical in both phases). However, this difference can be ignored due to the small com-
pressibility of liquids. The positive value of the parameter B reflects the hydrophobicity of
the hydrocarbon groups. According to the empirical data, B 	 1.4 at 20 °C. The difference
between the work of transfer of one or two segments of a hydrocarbon chain nearest to the
polar group and that of the end methyl group from the work −B does not practically affect
the applicability of Eq. (9.195) at nC � 1. The fact that in the accepted model of molecular
aggregates, the hydrocarbon core is really not the infinite bulk phase but is surrounded by the
surface with radius r will be taken into account somewhat later. Equation (9.195) shows that
the desired hydrophobic contribution W h

n to the aggregation work Wn is given by

W h
n = −nBnC . (9.196)

A negative value of the hydrophobic contribution W h
n to the work Wn facilitates the formation

of molecular aggregates in a micellar solution.
The hydrophobic tail of a surfactant molecule is slightly deformed at packing into the

spherical hydrocarbon core of the molecular aggregate and its conformation, on average, dif-
fers from the conformation in the infinitely large hydrocarbon phase. The difference in con-
formations generates a positive contribution to the work of the molecular aggregate formation.
The corresponding so-called deformation contribution W d

n is described in Refs. [10, 53] and,
in the notation employed here, is given by

W d
n = n

3π2

80

r2

N L2 , (9.197)

where N is the number of rigid segments in the hydrophobic part of the surfactant molecule
and L is the length of the rigid segment. Evidently, the product N L is equal to the length lC

of the hydrophobic part of a surfactant molecule. According to Ref. [53], the rigid segment
contains, on average, 3.6 methylene groups in the case of the hydrophobic part composed
of such groups, so that N = nC/3.6. With this relation and Eq. (9.181) we obtain from
Eq. (9.197) the estimate

W d
n ≤ 0.1nnC . (9.198)

Comparing Eqs. (9.196) and (9.198), we see that at B 	 1.4 the W d
n contribution gives a small

correction to the hydrophobic contribution W h
n . Thus, hereafter the contribution W h

n is ne-
glected [27, 28].

As mentioned above, the hydrophobic core is actually not an infinite bulk phase with
a flat interface. According to Eq. (9.190), the curvature of latter leads to the appearance of the
Laplace pressure, and a contribution W L

n to the work of transfer, which is represented by the
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second term on the right-hand side of Eq. (9.194). Using Eqs. (9.179) and (9.180), we rewrite
the integrand in the second term on the right-hand side of Eq. (9.194) as

2γ0vC

rkBT
= 8πγ0

3kBT

[
3v (nC + 1)

4π

]2/3 1

n1/3
. (9.199)

Only the dependence of γ0 on n still remains unspecified in Eq. (9.199) so far. For simplicity,
we consider the surface tension γ0 as constant and equal to its value for the flat surface. The
possible dependence of the total surface tension γ on the size of the molecular aggregate is
further taken into account through the contribution of polar groups.

Integrating now Eq. (9.199) with respect to the aggregation number n and ignoring the
lower limit of integration at n � 1, we obtain the Laplace contribution W L

n to the aggregation
work in the form

W L
n = 4πγ0

kBT

[
3v (nC + 1)

4π

]2/3

n2/3 . (9.200)

Equations (9.200) and (9.179) indicate that this contribution is equal to the Gibbs surface
energy (4πγ0r2

/
kBT ) of the hydrophobic core (in units of kBT ). Introducing a positive di-

mensionless parameter b3 as

b3 ≡ (4π)1/3γ0[3v(nC + 1)]2/3/kBT , (9.201)

we may present Eq. (9.200) as

W L
n = b3n2/3 . (9.202)

Equation (9.202) yields the inequality W L
n > 0. Positive values of the Laplace contribu-

tion W L
n to the work Wn impede the formation of molecular aggregates in a micellar solution.

Let us now consider the contribution W p
n of polar groups. The forced approach of the

polar groups due to the addition of the monomers into the molecular aggregate results in
an interaction, whose most typical part is the mutual electrostatic repulsion of dipoles. We
denote this electrical contribution to the work Wn by W el

n and consider the case when the
electrostatic component characterizes rather well the total interaction of polar groups: W el

n ≈
W p

n . Because the molecular aggregates are formed in a solution at constant temperature and
external pressure, W el

n is nothing else but the Gibbs electric energy of a capacitor formed by
the hydrophilic parts of the surfactant molecules in the molecular aggregate. Assuming that
the capacitor formed by the hydrophilic parts of the surfactant molecules in the molecular
aggregate possesses spherical symmetry, we arrive in kBT units at [5, 7]

W el
n = (zen)2 δ

8πkBT ε0ε (r + �l) (r + �l + δ)
. (9.203)

Here, ze is the electric charge of a single hydrophilic part of a surfactant molecule in the
dipole (e is the elementary charge); δ is the length of the dipole of the hydrophilic part, i.e.,
the capacitor thickness; ε is the effective permittivity of a capacitor medium; ε0 is the dielectric
constant; and �l is the bond length connecting the hydrophobic part of a surfactant molecule
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with its polar hydrophilic part. We assume that the inequality r + �l � δ holds (which,
according to Eqs. (9.179) and (9.180), is valid at nC � 1 and n � 1). Assuming further the
inequalities r � δ and r � �l to be valid at nC � 1 and n � 1, we can rewrite Eq. (9.203)
using Eqs. (9.179) and (9.180) as

W el
n = b1n4/3 , (9.204)

where

b1 ≡ (ze)2 δ

2(4π)1/3kBT ε0ε[3v(nC + 1)]2/3
(9.205)

is a positive dimensionless parameter.
A positive value of the electric contribution W el

n to the work Wn impedes the formation of
molecular aggregates in a micellar solution. It should be mentioned that we calculated the total
contribution of polar interactions from both the chemical potential and surface tension. For our
purposes, there is no necessity to calculate separately the contribution of mutual repulsion of
polar groups to the surface tension that results, as it is known, in a decrease of the surface
tension with an increase in the micelle size. In addition to electric forces, yet more powerful
forces of direct repulsion of polar groups arising at their contact, are possible under very close
approach of the hydrophilic parts of surfactant molecules. Such picture is typical in the case
when the molecular packing in micelles is governed by the size of polar groups. However,
we focus our attention to the case when hydrocarbon chains determine the packing, and polar
groups participate in the micellization only via the long-range forces of electric repulsion.

The penultimate term on the right-hand side of Eq. (9.194) can be called the concentra-
tion contribution. Combining this term with other contributions that are proportional to the
aggregation number n and introducing the dimensional parameter b2,

b2 ≡ BnC + aγ0

kBT
+ ln

( c1

cα

)
= BnC + (4π)1/3 (3v)2/3 γ0

kBT
+ ln

( c1

cα

)
, (9.206)

we rewrite the work of aggregate formation Wn , employing Eqs. (9.194), (9.196), (9.202), and
(9.204) as [27]

Wn = b1n4/3 − b2n + b3n2/3 . (9.207)

The terms in Eq. (9.207) are arranged in decreasing powers of n. Evidently, Eq. (9.207) is
valid at n � 1.

According to Eqs. (9.205), (9.206), and (9.201), the coefficients b1, b2, and b3 are the
dimensionless parameters independent of the aggregation number n. In addition, the coeffi-
cients b1 and b3 do not depend on the concentration c1 of surfactant monomers in solution.
Equation (9.207) is consistent with the expression reported in Refs. [6, 56]. However, the co-
efficient at n obtained in Refs. [6, 56], does not explicitely include the dependence on the
monomer concentration in the solution.
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9.13 Critical Micelle Concentration and Thermodynamic
Characteristics of Micellization

9.13.1 Results of Analysis of the Droplet Model

With the dependence of aggregation work Wn , given explicitly by Eq. (9.207), we are able
to find all thermodynamic characteristics of micellization in the droplet model of molecular
aggregates. Taking into account that the coefficients b1, b2, and b3 are independent of n,
Eq. (9.207) yields

∂Wn

∂n
= 4

3
b1n1/3 − b2 + 2

3
b3n−1/3 ,

∂2Wn

∂n2 = 4

9
b1n−2/3 − 2

9
b3n−4/3 . (9.208)

With Eq. (9.208) we can derive the roots n = nc and n = ns of the equations(
∂Wn

∂n

)
n=nc

= 0 ,

(
∂Wn

∂n

)
n=ns

= 0 , (9.209)

determining the aggregation numbers nc and ns of critical and stable molecular aggregates,
respectively. The fact that the largest root ns corresponds to the minimum and, respectively,
the smallest root nc, to the maximum of the work Wn follows from b1 > 0 and an asymptotic
rise of the work Wn with an increase in the aggregation number n. The root n = n0 of the
equation(

∂2Wn

∂n2

)
n=n0

= 0 (9.210)

determines the inflection point n0 of the work Wn ,

n0 = (
b3
/

2b1
)3/2 . (9.211)

According to Eqs. (9.211), (9.205), and (9.201), the inflection point n0 of the work Wn does
not depend on the monomer concentrations c1 in the surfactant solution. Equation (9.211)

allows one to reveal the constraint on the value of
(
b3
/

2b1
)3/2, at which n0 fits the region of

aggregation numbers n that is realistic for spherical molecular aggregates.
The droplet model of molecular aggregates reflects the existence of the potential maximum

and potential well of the work Wn at a sufficiently high monomer concentration c1 in the
surfactant solution. We denote the monomer concentration in surfactant solutions, at which
the potential maximum and potential well of the work Wn appear, by c10. Since at c1 = c10
the maximum and minimum of the work Wn merge in its inflection point n0, Eq. (9.209) yields(

∂Wn

∂n

)
c1=c10,n=n0

= 0 . (9.212)

Note that the concentration c10 is lower than the CMC, at which the potential well of the
work Wn begins to play a significant role in the consumption of the total amount of surfactant
from micellar solution.
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Let us represent Eq. (9.206) as

b2 = ln

(
c1

c10

)
+ b̃2 , (9.213)

where b̃2 is no longer dependent on c1. Using Eqs. (9.212), (9.211), and (9.208), we then
arrive at

b̃2 = 4

3
(2b1b3)

1/2 , (9.214)

which, together with Eq. (9.213), gives a dependence between the coefficient b2 and the coeffi-
cients b1 and b3 in Eq. (9.207). Finally, substituting Eqs. (9.213) and (9.214) into Eq. (9.207),
we obtain

Wn = b1n4/3 −
[

ln

(
c1

c10

)
+ 4

3
(2b1b3)

1/2
]

n + b3n2/3 . (9.215)

Equation (9.215) contains three parameters b1, b3, and c10, which are independent of n and
c1. The introduction of the parameter c10 allows us to eliminate the dependence on B and cα

in Eq. (9.215). All three parameters b1, b3, and c10 have a clear physical meaning.
According to Eqs. (9.206), (9.213), and (9.214), the parameter c10 is related to the para-

meters B and cα by

ln
(c10

cα

)
= −BnC − (4π)1/3 (3v)2/3 γ0

kBT
+ 4

3
(2b1b3)

1/2 . (9.216)

Taking into account cα = 1/vC and Eq. (9.180), we rewrite Eq. (9.216) as

ln (vc10) = −BnC − (4π)1/3 (3v)2/3 γ0

kBT
− ln (nC + 1) + 4

3
(2b1b3)

1/2 . (9.217)

Equations (9.215) and (9.209) show that the aggregation numbers of critical and stable mole-
cular aggregates satisfy the following relations at c1 > c10:

nc = (8b1)
−3
{

25/2 (b1b3)
1/2 + 3 ln

(
c1

c10

)
(9.218)

−
√[

25/2 (b1b3)
1/2 + 3 ln

(
c1

c10

)]2

− 32b1b3




3

,

ns = (8b1)
−3
{

25/2 (b1b3)
1/2 + 3 ln

(
c1

c10

)
(9.219)

+
√[

25/2 (b1b3)
1/2 + 3 ln

(
c1

c10

)]2

− 32b1b3




3

.
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Figure 9.2: Dependences of nc and ns (left), and Wc and Ws (right) on the concentration ratio
c1/c10

Let us calculate, now, the thermodynamic characteristics of the kinetics of micellization such
as nc, ns, Wc, Ws, �nc, and �ns in the droplet model of a surfactant spherical molecular
aggregate. We use the following values of the initial parameters of the model

nC = 18 , γ0 = 30
mN

m
, ε = 30 ,

δ = 3 × 10−10 m , z = 1 , T = 293 K . (9.220)

For the accepted value of the parameter nC (it can be an octadecyl radical that can be com-
pletely packed into the hydrocarbon core or a fragment of a longer aliphatic hydrocarbon rad-
ical), Eq. (9.182) is reduced to n < 108. Results of the calculations reported below are fairly
sensitive to the values of the parameters γ0, ε, and δ. From Eqs. (9.205), (9.201), and (9.211)
with the help of Eq. (9.220), we have

b1 = 1.13 , b3 = 22.4 , n0 = 31.2 . (9.221)

Results of the calculation of the dependence of nc and ns on c1/c10 obtained with Eqs. (9.218),
(9.219), and (9.221) are shown in Fig. 9.2. At c1/c10 = 1, the values nc and ns coincide
and are equal to n0. As the ratio c1/c10 increases, the value nc decreases monotonically and
the value ns increases monotonically; moreover, ns increases faster than nc decreases so that
the curve has the form of an asymmetric loop. In this case, the constraints ns < 108 and
nc � 1, which are required as the conditions of the applicability of the droplet model of
molecular aggregation at nC = 18, are fulfilled to increasingly lower extent. Figure 9.2 also
demonstrates the dependences of Wc and Ws on the concentration ratio c1/c10 obtained using
Eqs. (9.215), (9.218), (9.219), and (9.221). At c1/c10 = 1, the values Wc and Ws coincide.
As the ratio c1/c10 increases, the values Wc and Ws decrease monotonically; moreover, Wc
decreases much slower than Ws.

Finally, the results of the calculations of the dependences of �nc and �ns on the ra-
tio c1/c10, obtained using Eqs. (9.215), (9.218), (9.219), (9.33), and (9.221), are shown in
Fig. 9.3. At c1/c10 = 1, the values �nc and �ns tend to infinity. As the ratio c1/c10 increases,
the values �nc and �ns decrease monotonically; however, the inequality �nc < �ns is ful-
filled (the peak of the aggregation work becomes noticeably narrower than the potential well).
Figures 9.2 and 9.3 agree with Fig. 9.1.
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Figure 9.3: Dependences of �nc and �ns on the concentration ratio c1/c10

Let us consider further the CMC. The values at the CMC will be marked by a subscript m.
Going back to the CMC in Eq. (9.120) for cM , and using the bimodal approximation (9.118)
and definition (9.137) of the degree of micellization α, we obtain [27]

Wsm = ln

(
π1/2 1 − αm

αm
nsm�nsm

)
. (9.222)

As discussed earlier in Section 9.10, we take the critical degree of micellization as αm ≈ 0.1.
Possible deviations of the value αm from 0.1 are slightly manifested in Eq. (9.222) due to
weaker sensitivity of the logarithm to its argument. Substitution of Eq. (9.219) into Eq. (9.215)
at c1 = c1m makes it possible to express the value Wsm on the left-hand side of Eq. (9.222) as
a known function of the ratio c1m/c10. Using Eqs. (9.218) and (9.215) and the second relation
of Eq. (9.33) at c1 = c1m , we can also represent the right-hand side of Eq. (9.222) as a known
function of the ratio c1m/c10. As a result, a transcendental equation for the determination of
the ratio c1m/c10 can be derived from Eq. (9.222) at αm 	 0.1. Solving this equation with
Eq. (9.221), we have

c1m
/

c10 = 1.58 . (9.223)

Substituting Eqs. (9.223) and (9.221) into Eqs. (9.218) and (9.215) and into the second relation
of Eq. (9.33), we find

nsm = 79.0 , Wsm = 9.67 , �nsm = 12.6 . (9.224)

Similarly, substituting Eqs. (9.223) and (9.221) into Eqs. (9.218) and (9.215) and into the first
relation of Eq. (9.33), we obtain

ncm = 12.3 , Wcm = 29.1 , �ncm = 4.97 . (9.225)

As is seen from Eqs. (9.224) and (9.225), the values nsm and ncm for the droplet model are
located at the CMC in the realistic region of aggregation numbers admitted by the constraint
n < 108. It is also seen that the inequality nsm � 1 and even the inequality ncm � 1 are
fulfilled, which are necessary for the applicability of the theory.
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The dependence of the thermodynamic characteristics of micellization on the number nC

of hydrocarbon groups in the hydrophobic part of a surfactant molecule (the length of the hy-
drocarbon chain) is also important for any model of molecular aggregates. Figures 9.4 and 9.5
show the behavior of the values ncm , n0, and nsm as well as the values Wcm , Wsm , and c1m/c10
as functions of nC in the range 12 ≤ nC ≤ 27. Although the number nC in Eq. (9.220) varies
in this case, the other parameters in Eq. (9.220) are assumed, for definiteness, to be constant.
As is seen from Fig. 9.4, regardless of the rapid increase in the value nsm with an increase in
nC , Eq. (9.182) is fulfilled at n = nsm rather well. This result can be explained by a quadratic
increase of the right-hand side of Eq. (9.182) with an increase in nC .

According to definitions (9.205) and (9.201), the product b1b3 is independent of nC . With
Eqs. (9.221) and (9.217), we obtain

ln (vc10) = −BnC − (4π)1/3 (3v)2/3 γ0

kBT
− ln (nC + 1) + 9.4 . (9.226)

Within the entire range 12 ≤ nC ≤ 27, the inequality ln (vc10) < −10 follows from Equa-
tion (9.226) and B = 1.4. As shown in Fig. 9.5, within the same range, the ratio c1m/c10 is
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approximately equal to 1.6. We then have ln (vc1m) = ln (vc10) + ln(1.6) with a rather high
accuracy. Therefore, in addition to Eq. (9.226), the relation [27]

ln (vc1m) = −BnC − (4π)1/3 (3v)2/3 γ0

kBT
− ln(nC + 1) + 9.9 (9.227)

is also valid. According to Eq. (9.227), the logarithm of the concentration c1m , i.e., the loga-
rithm of the CMC, decreases with an increase in nC almost linearly at nC � 1. This result is
confirmed by the known experimental data [6, 10, 53, 56].

9.13.2 The Quasidroplet Model

As is known from experiments [6] and the theory of the hydrophilic–hydrophobic balance [5],
water molecules can partly penetrate into the depth of a micelle. In this sense, the droplet
model considers the limiting version of the structure of a molecular aggregate that completely
excludes water penetration into the hydrocarbon core. It is thus of interest to consider the
model of a surfactant spherical molecular aggregate allowing for the maximal (in accordance
with the packing rules) penetration of water molecules into the aggregate and, hence, realizing
another limiting version of the structure of the hydrocarbon core. This model is called the
quasidroplet model of surfactant molecular aggregates [29]. The formation of micelles from
surfactant molecules begins with the appearance of molecular aggregates of two, three, or
more monomers. In this case, the part of the would-be micelle is occupied by water. As new
surfactant molecules are added to the aggregate, water is displaced from the space between
surfactant molecules in the aggregate; however, at small aggregation numbers, water can rather
deeply penetrate into the molecular aggregate.

In the quasidroplet model of molecular aggregates, shown schematically in Fig. 9.6, the
hydrophobic part of each molecule constituting the aggregate is represented by two fragments.
The first fragment counted from the hydrophilic part is still surrounded by water molecules.
The second fragment is in the internal region of the molecular aggregate into which water
molecules cannot penetrate. This region is similar to the hydrocarbon core in the droplet model
of the molecular aggregate, and which explains the name “quasidroplet model.” Due to mu-
tual repulsion of the hydrophilic parts, the first fragments of monomer hydrophobic parts are
located, on average, on the radii coming out from the aggregate center and are uniformly dis-
tributed over all directions in space. The angle φ formed by two such radii corresponding to
adjacent monomers in the aggregate is determined by the aggregation number n and, at fairly
large values of n, is given by the simple formula

ϕ = (4π/n)1/2 for n � 1 . (9.228)

We bear here in mind that fairly large values are, in particular, such values of n that satisfy the
inequality ϕ/2 � 1 allowing to replace the function sin (ϕ/2) by its argument. In this sense,
a value n = 10 is no longer small.

The radius rα of the internal (free of water molecules) region in the center of a molecular
aggregate is determined by the possibility of arrangement of water molecules with the char-
acteristic diameter dH2O between the first fragments of the hydrophobic parts of neighboring
surfactant molecules in the aggregate with the characteristic cross-section diameter d . This
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Figure 9.6: Quasidroplet model of molecular aggregates: (1) the hydrophilic part of a surfactant
molecule, (2) the boundary of water penetration into the aggregate, (3) the hydrophobic part of
a surfactant molecule, and (4) the hydrocarbon core of the molecular aggregate

internal region is filled with the second (in the aforementioned meaning) fragments of the
hydrophobic parts of the monomers constituting the aggregate. With Eq. (9.228), we obtain

rα = (
d + dH2O

)
n1/2/

(
2π1/2

)
, (9.229)

where the approximation sin (ϕ/2) ≈ ϕ/2 is used. We assume here, as in the droplet model,
that the second fragments of the hydrophobic parts interact with each other in such a way that
they seemingly constitute the hydrocarbon phase. We will call the internal region of molecular
aggregate determined as above the hydrocarbon core similar to the case of that droplet model.
We use the values d = 5.2 Å [5] and dH2O = 3.1 Å for the further numerical estimates.

Let us find the number �nC of hydrocarbon groups in the second fragments of the hy-
drophobic parts of molecules, constituting the hydrocarbon core. The volume �vC of each
fragment can be represented in the form

�vC = v (�nC + 1) , (9.230)

where the fact that the terminal methyl group has a characteristic volume v0, which is approx-
imately twice as large as the volume v is taken into account. According to the packing rule,
we have

4

3
πr3

α = n�vC . (9.231)
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Equations (9.230) and (9.231) with Eq. (9.229) result in

�nC = (
d + dH2O

)3
n1/2/

(
6π1/2v

)
− 1 . (9.232)

The determination of the number �nC from Eq. (9.232) as a continuous quantity suggests that
this number is already fairly large. Let us assume that this condition is fulfilled, if

�nC > 4–5 . (9.233)

In view of Eq. (9.232), Eq. (9.233) implies the existence of a lower bound n1, n > n1, for the
aggregation numbers in the quasidroplet model. According to Eqs. (9.232) and (9.233), we
obtain

n1/2
1 = (5–6) 6π1/2v/

(
d + dH2O

)3
. (9.234)

In contrast, the condition �nC < nC introduces the upper bound n2 of aggregation numbers
permissible for the applicability of the proposed model. With Eq. (9.232), the value n2 is
determined as

n1/2
2 = (nC + 1)6π1/2v/

(
d + dH2O

)3
. (9.235)

At the characteristic values of d , dH2O, and v, we have the estimate

6π1/2v/
(
d + dH2O

)3 ≈ 1/2 . (9.236)

We now combine the constraints on the aggregation number in the quasidroplet model. Equa-
tions (9.234)–(9.236) allow us to conclude that the permissible values of the aggregation num-
ber n should fit the range

(5–6)2
/

4 < n < (nC + 1)2
/

4 . (9.237)

Note that the lower bound of n in Eq. (9.237) agrees with the constraint introduced in the note
to Eq. (9.228).

Evidently, the first (surrounded by water molecules) fragments of the hydrophobic parts of
surfactant molecules constituting the aggregate contain nC − �nC hydrocarbon groups each
and have the length (nC − �nC) l1. Adding this length to the radius rα , using Eqs. (9.229)
and (9.232), we find the radius r of a sphere with the center in the middle of the molecular
aggregate as

r = l1(nC + 1) +
[(

d + dH2O
)
/
(

2π1/2
)

− (d + dH2O
)3

l1/
(

6π1/2v
)]

n1/2 . (9.238)

The hydrophobic parts of surfactant molecules enter this sphere completely. According to
Eq. (9.233), we have r − rα ≥ 0. Introducing the notation

αqd =
[(

d + dH2O
)
/
(

2π1/2
)

− (d + dH2O
)3

l1/
(

6π1/2v
)]

[l1(nC + 1)]−1 , (9.239)
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we rewrite Eq. (9.238) as

r = �1 (nC + 1)
(

1 + αqdn1/2
)

. (9.240)

Substituting the numerical values of the parameters into Eq. (9.239), we arrive at the estimate

αqd ≈ −0.15/(nC + 1) . (9.241)

With Eq. (9.237), this estimate demonstrates that the term αqdn1/2 in the second round brackets
on the right-hand side of Eq. (9.240) is bounded in its absolute value as∣∣∣αqdn1/2

∣∣∣ � 0.08 . (9.242)

Note that, according to Eqs. (9.238) or (9.240), the radius r decreases with an increase in
the aggregation number n due to the negative value of the parameter αqd. Nevertheless, the
radius r is larger than the radius of the hydrocarbon core in the droplet model of surfactant
molecular aggregates at each n satisfying Eq. (9.237). Equations (9.228), (9.229), and (9.240)
determine the geometric parameters of the molecular aggregates in the quasidroplet model. Let
us assume that the molecular aggregate is in a mechanical equilibrium at these parameters.

Taking into account the fairly small number of molecules in the molecular aggregates that
are of interest to us, their geometric and thermodynamic characteristics in the quasidroplet
model undergo noticeable changes on adding a new molecule to the aggregate. In particular,
the hypothetical condensed phase for the substance constituting the hydrocarbon core of the
molecular aggregate consists only of the second (in the meaning indicated at the beginning of
this section) fragment of the hydrocarbon chains of surfactant molecules. The characteristics
of such a phase changes as the length of these fragments varies with aggregation numbers.

In any phase, the molecular chemical potential is given by the standard expression (9.185).
If the phase characteristics of the molecular aggregate do not change with the attachment of
a surfactant monomer, then Eq. (9.189) would follow from Eq. (9.185) allowing us to deter-
mine the difference in the monomer chemical potentials in the aggregate and in the solution.
We just need to take into account that, during this process, only the second fragment of the
hydrophobic part of a molecule is transferred from the solution to the hydrocarbon core of the
molecular aggregate.

If the surface of the hydrocarbon core is flat and the hydrophobic part of a surfactant mole-
cule is completely transferred to the core, then the work of transfer of a single hydrophobic
part from water to the bulk of the hydrocarbon phase would be equal to the value known from
experiments. This value is a linear function of the number of carbon atoms constituting the
hydrocarbon part with the coefficient of linear dependence B , the positive dimensionless para-
meter of hydrophobic interaction, determined earlier. Since in the quasidroplet model only the
second fragment of the hydrophobic part of a surfactant molecule enters into the hydrocarbon
core composed of �nC hydrocarbon groups, the relevant transfer work wβα can be evidently
represented as

wβα = −B�nC . (9.243)

With Eq. (9.232), we can write Eq. (9.243) also in the form

wβα = −a3n1/2 + B , (9.244)
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where

a3 ≡ B
(
d + dH2O

)3
/
(

6π1/2v
)

. (9.245)

The surface of a hydrocarbon core is curved and is characterized by the surface tension γ0;
therefore, the work of surfactant molecule transfer from the solution to the molecular aggre-
gate contains a contribution wL expressing the work required to overcome the Laplace pressure
difference on this surface (the surface of polar groups will be accounted for separately). For
a spherical surface (with a radius rα) of the hydrocarbon core composed of molecular frag-
ments with a volume �vC , this contribution is (instead of the third term on the right-hand side
of Eq. (9.191)) given by

wL =
(

2γ0

rαkBT

)
�vC . (9.246)

Substitution of Eqs. (9.229) and (9.230) for rα and �vC into Eq. (9.246) taking into account
Eq. (9.232) yields

wL =
(

2γ0

3kBT

) (
d + dH2O

)2
. (9.247)

In addition, one should take into account that the surfactant molecule is not transferred as
a whole into the bulk of the hydrocarbon phase but remains in a position when it intersects the
aggregate dividing surface (to which the surface tension is referred) with the cross section a.
Therefore, the monomer chemical potential in the aggregate also contains, as well as in the
droplet model, the additional surface contribution (−γ0a0/kBT ).

During the transfer of a surfactant molecule to the molecular aggregate, polar groups re-
main in the solvent medium; however, they approach each other and form the electrical double
layer. The corresponding electrostatic contribution wel can be estimated, as in the case of the
droplet model, with the aid of the model of a spherical capacitor. We take advantage here of
Eq. (9.203) for the electrostatic contribution W el

n . According to Eq. (9.183), we can calculate
the electrostatic contribution wel by differentiating Eq. (9.203) with respect to the aggregation
number n and using Eq. (9.240) for the radius r of the surface confining the hydrocarbon parts
of surfactant molecules in the quasidroplet model of molecular aggregates. When writing the
result and utilizing the inequalities r � δ and r � �l at nC � 1 and n � 1, we ignore the
second-order terms due to the small (because of the constraint (9.242)) value of αqdn1/2. With
Eq. (9.240), we find

wel = 2a1n

[
1 − 5

2
αqdn1/2

]
, (9.248)

where

a1 ≡ (ez)2δ

8πε0ε[l1 (nC + 1)]2kBT
. (9.249)

According to above given derivation, the contribution wel takes into account the change in the
characteristics of the molecular aggregate (more specific, its radius r ) on the attachment of
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new molecules to the aggregate. Let us now take into account the contributions wβα and wL,
as well as the concentration contribution wconc = ln(c1n/c1) given by the last term on the
right-hand side of Eq. (9.191).

We will specify the chemical potentials of a surfactant monomer in an aggregate and the
relevant contributions caused by the change in the characteristics of molecular aggregates with
an accent. It follows from the above considerations that

w′
el = wel . (9.250)

As is seen from Eq. (9.232), when the next molecule is attached, the number �nC of hydro-
carbon groups (entering into the aggregate core) of the hydrophobic part of each molecule
constituting the aggregate increases. According to Eq. (9.230), the volume �vC (the volume
of the fragments of the hydrophobic parts of surfactant molecules forming the hydrocarbon
core) also increases. The increase in the number �nC gives rise to the energy gain from the
transfer of the corresponding fragment of the hydrophobic part of surfactant molecules to the
hydrocarbon core of the aggregate. Extending Eq. (9.243), we can write

w′βα = −B

(
�nC + n

∂�nC

∂n

)
. (9.251)

The factor n in front of the derivative with respect to n suggests that all n molecules in the
molecular aggregate participate in the formation of the chemical potential in this aggregate.
From Eq. (9.251) with Eqs. (9.232) and (9.245), we obtain

w′βα = −3

2
a3n1/2 + B . (9.252)

According to Eq. (9.195), the contribution wβα in the droplet model is independent of the
aggregation number of the molecular aggregate; however, the similar contribution w′βα in the
quasidroplet model increases in its absolute value with n according to Eq. (9.252). In this case,
it can be shown that the contribution (9.252) is smaller in its absolute value as compared to the
similar contribution for the droplet model in the lower part of the range of permissible values
of aggregation numbers determined by Eqs. (9.237); in contrast, it is larger in the upper part.

During the attachment of a new molecule to the aggregate, an increase in the volume �vC

of all second fragments of the hydrophobic parts of molecules constituting the hydrocarbon
core of the aggregate tends to increase the work required for overcoming the Laplace pressure
difference on the surface of the hydrocarbon core. We determine the contribution w′

L, which
takes into account this effect, by

w′
L = 2γ0

rαkBT

(
�vC + n

∂�vC

∂n

)
(9.253)

generalizing Eq. (9.246). Hence, combining Eqs. (9.229), (9.230), and (9.232), we arrive at

w′
L = γ0

kBT

(
d + dH2O

)2
. (9.254)

Equation (9.254) shows that the contribution w′
L is independent of the aggregation number.

This circumstance distinguishes the quasidroplet model from the droplet model where a simi-
lar contribution is inversely proportional to the cubic root of n.
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The molecular concentration cα in the contribution wconc is estimated in the case of the
quasidroplet model as the concentration of the second fragments of the hydrophobic parts of
surfactant molecules constituting the hydrocarbon core of the molecular aggregate. According
to Eqs. (9.230) and (9.232), at the suggested dense core packing, the concentration cα is then
estimated by the relation

cα = [v1 (�nC + 1)]−1 = 6π1/2

n1/2(d + dH2O)3 . (9.255)

The dependence of the concentration cα on the aggregation number n (which was absent in the
droplet model) requires the refinement of the contribution wconc. Performing this refinement,
using Eq. (9.255), and acting by analogy with Eqs. (9.251) and (9.253), we obtain

w′
conc = ln

(
cα

c1

)
+ n

∂ ln
(
cα
/

c1
)

∂n
= ln

[
6π1/2

c1n1/2(d + dH2O)3

]
− 1

2
. (9.256)

For dilute solutions, the ratio cα/c1 is fairly large (∼ 105). Although Eq. (9.255) for cα is
a rough estimate, these values lead to practically exact expressions for ln(cα/c1), which have
been actually used in Eq. (9.256). Similar to Eq. (9.191), we can represent the desired chemical
potential µ̄′

1n of surfactant molecules in the molecular aggregate in the quasidroplet model as

µ̄′
1n = µ̄1 − w′βα + w′

L − γ0a

kBT
+ w′

el + w′
conc . (9.257)

Substituting Eq. (9.257) into Eq. (9.184) and taking into account Eqs. (9.248), (9.250), (9.252),
(9.254), and (9.256), we can write the expression for the aggregation work Wn in the case of
the quasidroplet model at n � 1 as [29]

Wn = −a3n3/2 + a1n2
(

1 − 2αqdn1/2
)

− 1

2
n ln n (9.258)

+
{

B +
(

γ0

kBT

)[(
d + dH2O

)2 − a
]

− ln

[
c1
(
d + dH2O

)3
6π1/2

]}
n .

According to Eq. (9.258), there is a point n = n0 of inflection of the work Wn in the case of the
quasidroplet model. This point is independent of the concentration of the solution and satisfies
Eq. (9.210) with substitution of Eq. (9.258). There is also a monomer concentration c10 that
satisfies Eq. (9.212) with substitution of Eq. (9.258). The work Wn rises monotonically with n
at c1 < c10. This result leads to the absence of relatively stable aggregates in the solutions at
such surfactant concentrations. At c1 > c10, the work Wn is characterized by a local maximum
at nc and a local minimum at ns corresponding to micelles. As c1 increases, the points nc and
ns move correspondingly to the left and right from the inflection point n0. Thus, the qualitative
behavior of the aggregation work Wn in the case of the quasidroplet model is similar to that in
the droplet model.

Let us consider an approximation for the work Wn allowing for an analytical study. For
such purposes, we omit in Eq. (9.258), according to Eq. (9.242), the terms proportional to the
parameter αqd and set ln n = ln n0 (assuming that the relative deviations of n from n0 are not
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so large in the near-critical and micellar regions of aggregation numbers). Then we can rewrite
Eq. (9.258) as

Wn = −a3n3/2 + a1n2 +
(

9a3
2

32a1
− ln

c1

c10

)
n , (9.259)

where Eqs. (9.258), (9.210), and (9.212) yield

n0 = (3a3/8a1)
2 , (9.260)

ln
c10
(
d + dH2O

)3
6π1/2 = − 9

32

a3
2

a1
+ B (9.261)

+
γ0

[(
d + dH2O

)2 − a
]

kBT
− ln

3a3

8a1
.

Note in conclusion that the significant formal difference in the dependence of the work Wn on
the aggregation number n according to Eq. (9.259) for the quasidroplet model and according to
Eq. (9.215) for the droplet model is in fact that the work Wn is represented in Eq. (9.215) as the
expansion in powers of the cubic root of n, whereas in Eq. (9.259) the expansion is performed
in powers of the quadratic root of n. Latter result can be considered as a reflection of an almost
two-dimensional structure of the surfactant molecular aggregate in the quasidroplet model
with a structure similar to the rolled surfactant monolayer. A comparison of the predictions
of both models in application to experimental data should demonstrate which of these models
and in which cases more fully accounts for the properties of real micellar solutions.

9.13.3 Comparison of Droplet and Quasidroplet Models

We have seen in the preceding sections that both the droplet and the quasidroplet models of
molecular aggregates result in different (albeit qualitatively similar) dependences of the aggre-
gation work on the aggregation number and the concentration of surfactant monomers. At the
same time, simplified assumptions concerning both the structure of the molecular aggregates
and the way how the basic interactions of the surfactant molecules constitute the aggregate
are taken into account introduce some uncertainty into the quantitative data obtained by using
these models. It seems natural to interpret this uncertainty as the result of the insufficiently
correct determination of the initial parameters of the models of the aggregates. The predictive
power of the models can be increased by introducing representative experimental characteris-
tics of micellization, provided that formulas linking the initial parameters of the models with
the observable values are understood as rigorous relations.

By now, relatively reliable experimental data on the position of the potential well of the
work of surfactant molecular aggregate formation on the aggregation number axis (on the
mean micelle size, ns), as well as on the half-width of this well (the average statistical scat-
tering of micelle sizes, �ns), are available in literature for various micellar solutions. These
data can be refined in the course of further experimental study of the equilibrium distribution
with respect to the micelle aggregation numbers. Note that the value �ns can experimentally
be found by measuring the time t1 of fast relaxation of the micellar solution.
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According to their physical meaning, the initial parameters of the droplet and quasidroplet
models of molecular aggregates (represented by the coefficients in Eqs. (9.215) and (9.259))
cannot be determined directly from experiment or by molecular simulations. At the high sen-
sitivity of the thermodynamic characteristics of micellization to these parameters, it is more
convenient to initially take into account in the theory the position and half-width of the poten-
tial well of the aggregation work. As a result, this procedure allows us to relate the theory to
experiment, moreover, in application to specific micellar solutions. Therefore the main aim of
this section is to demonstrate how, knowing the experimental position and half-width of the
potential well of the aggregation work, one can find all other thermodynamic characteristics
of micellization, in particular, those referring to molecular aggregates in the premicellar (pre-
critical and near-critical) regions of their sizes and those which are not easily accessible in
experiment. We will follow here the approach proposed in Ref. [22]. An alternative approach
based on deriving and solving the differential equations for the initial parameters of the model
aggregation work was considered in Ref. [58].

It follows from Figs. 9.2 and 9.3 that the values ns and �ns undergo in the droplet model
only relatively small changes with concentration c1, beginning with the CMC where the sur-
factant starts to be accumulated in micelles and ending with the concentrations at which almost
the whole surfactant is accumulated in micelles. As we will see below, the same is true in the
quasidroplet model. Along with that, taking into account Eq. (9.126) and ns � 1, the function
exp (−Ws) rapidly increases as c1 increases from c1m at the CMC. This property makes the
concentrations c(e)

n in Eq. (9.45) sensitive to the values ns and�ns, thereby decreasing the er-
ror of experimental determination of these values via Eq. (9.45). The total concentration cM of
micelles in the micellar region is determined at solution equilibrium by Eq. (9.120). Dropping
the sign ∼ and neglecting the weak dependence of the half-width �ns on c1, we get from
Eqs. (9.120) and (9.126) the useful relation ∂ ln cM

/
∂c1 = ns

/
c1, which makes it possible to

determine experimentally the value ns, provided that the dependence of cM on c1 is known.

Equation (9.222) relates the value Wsm of the aggregation work at CMC, i.e. at c1 =
c1m , with the value nsm of the aggregation number, the value �nsm of the average statistical
scattering of micelle sizes, and the value αm of the degree of micellization at c1 = c1m . The
critical degree of micellization αm is estimated as αm ≈ 0.1. Then, according to Eq. (9.137),
we have nsmcMm/c1m ≈ 1/9 so that the relative amount of substance in the micelles at the
CMC is still small, although it is already noticeable. In order to increase the ratio nscM/c1
approximately tenfold and, hence, for the relative amount of surfactant in micelles to exceed
unity, we need to increase the concentration c1 from c1m by the value �c1, small compared
to c1m . Equations (9.120) and (9.126) result in �c1

/
c1m ≈ ln (10)

/
(nsm − 1). Note that, as

we will see below, the value �c1 also turns out to be small as compared to the increase of
c1m − c10 at the concentration c1 required to achieve the CMC after the appearance of the
potential barrier and the potential well of the work Wn . This result supports the correctness
of the approximate value αm ≈ 0.1 of the critical degree of micellization accepted and the
corresponding approximate value of the CMC. Possible small deviations of the value αm from
αm ≈ 0.1 can be only slightly manifested in Eq. (9.222) due to the low sensitivity of the
logarithm in Eq. (9.222) to its argument at nsm�nsm � 1.

Let us now analyze other thermodynamic characteristics of micellization at the CMC that
may depend on the choice of the specific model of the molecular aggregates. We start with
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the droplet model. The second relations in Eqs. (9.209) and (9.33) at c1 = c1m , ns = nsm ,
�ns = �nsm , Eqs. (9.222), (9.215) and the definition Wsm ≡ Wn |c1=c1m ,n=nsm give three
transcendental equations that allow us to analytically express three parameters b1, b3, and
ln
(
c1m
/

c10
)

via nsm , �nsm , and αm. Solving these equations, we obtain

b1 = 9n2/3
sm

(�nsm)2 (1 + ε) , b3 = 9n4/3
sm

(�nsm)2 (1 + 2ε) , (9.262)

ln

(
c1m

c10

)
= 1.1nsm

(�nsm)2 (1 − 1.3ε) , (9.263)

where the quantity ε depends on nsm , �nsm , and αm and is determined by

ε = 1

3

(
�nsm

nsm

)2

ln

(
π1/2 1 − αm

αm
nsm�nsm

)
. (9.264)

At αm ≈ 0.1 and typical (by the order of magnitude) estimates nsm ∼ 102 and �nsm ∼ 10,
we get from Eq. (9.264) the result ε ∼ 0.03 so that the value of ε can be considered as small
in comparison to 1. Therefore, we keep only the principal (linear with respect to ε) correction,
ignoring quadratic and higher order corrections with respect to ε. We emphasize that the exis-
tence of a fairly small parameter

(
�nsm

/
nsm

)2 is responsible for the strong inequality ε � 1.
Note that Eqs. (9.262) are not restricted in their validity by the constraint ε � 1.

Employing Eqs. (9.215) and (9.262)–(9.263), we find the analytical dependence of the val-
ues ncm , �ncm , and Wcm on nsm , �nsm , and αm. Taking into account only the first equations
in Eqs. (9.209) and (9.33) at c1 = c1m , nc = ncm , �nc = �ncm , as well as the definition
Wcm ≡ Wn |c1=c1m ,n=ncm , we arrive at

ncm = nsm

8
(1 + 3ε) , �ncm = �nsm

23/2

(
1 + 3

2
ε

)
,

Wcm = 9

16

(
nsm

�nsm

)2 (
1 + 11

3
ε

)
. (9.265)

Equations (9.222) and (9.263)–(9.265) express thermodynamic characteristics of micelliza-
tion at the CMC via nsm , �nsm , and αm in the droplet model of molecular aggregates. Equa-
tion (9.263), together with Eq. (9.217) for the concentration c10, allows us to find the exper-
imentally measurable CMC. According to Eqs. (9.265), the inequalities �ncm < �nsm and
�ncm/ncm > �nsm/nsm are valid. Hence, the scattering of aggregation numbers in the re-
gion of the potential barrier of work Wn is smaller than that of the aggregation numbers in the
region of the potential well of the work Wn . However, the relative scattering of the aggregation
numbers in the region of the potential barrier is larger than that of the aggregation numbers in
the region of the potential well.

Let us illustrate the preceding statements by simple numerical calculations. For compar-
ison, we consider two typical cases with nsm = 100, �nsm = 15, and �nsm = 20 (for
simplicity, we vary only �nsm out of two parameters, nsm and �nsm). From Eqs. (9.222) and
(9.262)–(9.264), at αm ≈ 0.1, nsm = 100, and �nsm = 15 we can easily find

Wsm = 10.1 , b1 = 0.926 , b3 = 21.4 ,
c1m

c10
= 1.61 , (9.266)
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and for nsm = 100 and �nsm = 20,

Wsm = 10.4 , b1 = 0.552 , b3 = 13.3 ,
c1m

c10
= 1.30 . (9.267)

Furthermore, from Eqs. (9.264)–(9.265) at αm ≈ 0.1, nsm = 100, and �nsm = 15, we can
easily obtain

ncm = 15.3 , �ncm = 5.90 , Wcm = 31.9 , (9.268)

and for nsm = 100 and �nsm = 20,

ncm = 17.7 , �ncm = 8.54 , Wcm = 21.2 . (9.269)

Let us now recover the dependence (at the CMC) of the thermodynamic characteristics of
micellization on the initial parameters b1 and b3 of the droplet model of molecular aggregates.
It can be easily done by expressing in Eqs. (9.262) and (9.264) the parameters nsm and �nsm

by the pertubation theory at ε � 1 via the initial parameters b1 and b3. As a result we obtain

nsm =
(

b3

b1

)3/2 (
1 − 3

2
ε

)
, �nsm = 3b3

1/2

b1
, (9.270)

ε = 3b1

b2
3

ln

(
3π1/2 1 − αm

αm

b2
3

b5/2
1

)
. (9.271)

The high sensitivity of the parameter nsm and a lower sensitivity of the parameter �nsm to
the values of the parameters b1 and b3 are evident. In order for Eqs. (9.270) to secure realistic
estimates of nsm ∼ 102 and �nsm ∼ 10, and correspondingly, in order for Eq. (9.271) to
secure the inequality ε � 1, the values of the initial parameters b1 and b3 of the droplet
model should satisfy rather severe constraints. Equations (9.270)–(9.271), with Eqs. (9.222),
(9.263), and (9.265), determine in an analytical form the desired dependence (at the CMC) of
all thermodynamic characteristics of micellization on the parameters b1 and b3 of the droplet
model of molecular aggregates. In particular, the approximations for the values nsm and ncm ,

nsm ≈
(

b3

b1

)3/2

, ncm ≈ 1

8

(
b3

b1

)3/2

(9.272)

follow from Eqs. (9.270) and (9.265) when correction terms containing the small parameter ε
are ignored. From Eqs. (9.211) and (9.272), we have ncm

/
n0 ≈ 1

/
23/2 and nsm

/
n0 ≈ 23/2.

These relations indicate that the relative positions of maximum, inflection point, and minimum
of work Wn on the aggregation number axis are independent of the parameters b1 and b3 in
the droplet model of molecular aggregates.

Let us now turn to the quasidroplet model of molecular aggregates. The second equations
in Eqs. (9.209) and (9.33) at c1 = c1m , ns = nsm , �ns = �nsm , Eqs. (9.222) and (9.259), and
the definition Wsm ≡ Wn |c1=c1m ,n=nsm give again three transcendental equations that allow us
to analytically express the three parameters a1, a3, and ln (c1m/c10) via nsm , �nsm , and αm.
Solving these equations, we obtain

a1 = 4

(�nsm)2 (1 + ε) , a3 = 8n1/2
sm

(�nsm)2

(
1 + 4

3
ε

)
, (9.273)
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ln
c1m

c10
= 1

2

nsm

(�nsm)2 (1 − ε) , (9.274)

where the quantity ε depends on nsm , �nsm , and αm and is given by

ε = 3

4

(
�nsm

nsm

)2

ln

(
π1/2 1 − αm

αm
nsm�nsm

)
. (9.275)

At αm ≈ 0.1 and typical (by the order of magnitude) estimates nsm ∼ 102 and �nsm ∼ 10,
we have from Eq. (9.275) the result ε ∼ 0.07. Thus the value of ε can be considered as
small as possible compared to 1 in the quasidroplet model. This result allows us to keep
only the principal (linear with respect to ε) correction, ignoring quadratic and higher order
corrections with respect to ε. Similar to the droplet model, the existence of a fairly small
parameter

(
�nsm

/
nsm

)2 is responsible for the strong inequality ε � 1. Note that Eqs. (9.273)
are not restricted in its validity to the constraint ε � 1.

Using Eqs. (9.259) and (9.273)–(9.274), we find the analytical dependence of the values
ncm , �ncm , and Wcm on nsm , �nsm , and αm. Taking into account only the first equations
in Eqs. (9.209) and (9.33) at c1 = c1m , nc = ncm , �nc = �ncm , as well as the definition
Wcm ≡ Wn |c1=c1m ,n=ncm , we arrive at

ncm = nsm

4
(1 + 2ε) , �ncm = �nsm

21/2

(
1 + 1

2
ε

)
, (9.276)

Wcm = 1

4

(
nsm

�nsm

)2 (
1 + 11

3
ε

)
. (9.277)

Equations (9.222), (9.274)–(9.277) express the thermodynamic characteristics of micelliza-
tion at the CMC via nsm , �nsm , and αm in the quasidroplet model of molecular aggregates.
Equation (9.274), together with Eq. (9.261) for the concentration c10, allows us to find the
experimentally measurable CMC.

Let us perform a comparison of the droplet and quasidroplet models. According to Equa-
tions (9.276), the inequalities �ncm < �nsm and �ncm/ncm > �nsm/nsm are still valid
in the quasidroplet model. According to Eq. (9.277), a fairly strong dependence of the value
Wcm on the large parameter (nsm/�nsm)2 still exists. However, as is now seen from a com-
parison of Eqs. (9.277) and (9.265), this dependence is approximately 9/4 times weaker than
in the droplet model of molecular aggregates. Correspondingly, the extremely strong depen-
dence of exp (Wcm) on the large parameter (nsm/�nsm)2 becomes now weaker approximately
by exp

[
(5/16) (nsm/�nsm)2] times. Because exp (Wcm ) determines the time of slow relax-

ation of the micellar solution, it can be expected that, for micellar solutions where this time
is not so long and, hence, exp (Wcm) is not very large, the quasidroplet model of molecular
aggregates provides the estimate exp (Wcm) ∼ exp

[
(1/4) (nsm/�nsm)2], which seems to be

preferable. On the contrary, for micellar solutions where this time is very long and, hence,
exp (Wcm) is also very large, the droplet model of molecular aggregates provides the estimate
exp (Wcm) ∼ exp

[
(9/16) (nsm/�nsm)2], which seems to be preferable in this alternative

case. Note also that, in the quasidroplet model at the same values nsm and �nsm , the values
ncm and �ncm will be approximately twice as large as in the droplet model (as is seen from
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a comparison of Eqs. (9.276) and Eqs. (9.265)) and, on the contrary, the value ln (c1m/c10)
will be approximately twice as small as in the droplet model (as evident from a comparison of
Eqs. (9.274) and (9.263)).

Let us illustrate the preceding considerations by simple numerical calculations, again. For
comparison, we consider two typical cases with nsm = 100, �nsm = 10, and �nsm = 15 (for
simplicity, we vary only �nsm out of two parameters, nsm and �nsm). From Eqs. (9.222) and
(9.273)–(9.275), at αm ≈ 0.1, nsm = 100, and �nsm = 15, we can easily find

Wsm = 9.68 , a1 = 0.0429 , a3 = 0.877 ,
c1m

c10
= 1.59 , (9.278)

and for nsm = 100 and �nsm = 15

Wsm = 10.1 , a1 = 0.0208 , a3 = 0.436 ,
c1m

c10
= 1.20 . (9.279)

Furthermore, from Eqs. (9.275)–(9.277) at αm ≈ 0.1, nsm = 100 and �nsm = 10, we can
easily obtain

ncm = 28.6 , �ncm = 7.33 , Wcm = 31.7 , (9.280)

and for nsm = 100 and �nsm = 15

ncm = 33.5 , �ncm = 11.5 , Wcm = 18.0 . (9.281)

Let us now recover the dependence on the initial parameters a1 and a3 in the quasidroplet
model. From Eqs. (9.273) and (9.275), by the perturbation method at ε � 1, we obtain

nsm =
(

a3

2a1

)2 (
1 − 2

3
ε

)
, �nsm = 2

a1/2
1

(
1 + 1

2
ε

)
, (9.282)

ε = 48a3
1

a4
3

ln

(
π1/2 1 − αm

αm

a2
3

2a5/2
1

)
. (9.283)

The high sensitivity of the parameter nsm to the parameters a1 and a3 and lower sensitivity of
the parameter �nsm to the parameter a1 are evident. In order for Eqs. (9.282) to provide real-
istic estimates of nsm ∼ 102 and �nsm ∼ 10, and correspondingly, in order for Eq. (9.283) to
provide the inequality ε � 1, the values of the initial parameters a1 and a3 of the quasidroplet
model should satisfy rather severe constraints. Equations (9.282)–(9.283), with Eqs. (9.222),
(9.274), and (9.276)–(9.277), determine in an analytical form the desired dependence (at the
CMC) of all thermodynamic characteristics of micellization on the parameters a1 and a3 of
the quasidroplet model of molecular aggregates. In particular, the approximations for values
nsm and ncm ,

nsm ≈
(

a3

2a1

)2

, ncm ≈
(

a3

4a1

)2

(9.284)

follow from Eqs. (9.282) and (9.276) when corrections due to terms containing the small
parameter ε are ignored. From Eqs. (9.260) and (9.284), we have ncm/n0 ≈ (2/3)2, nsm/n0 ≈
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(4/3)2. These relations indicate that the relative positions of maximum, point of inflection and
minimum of the work Wn on the aggregation number axis are independent of the parameters
a1 and a3 in the quasidroplet model of molecular aggregates.

Let us now derive formulas for the thermodynamic characteristics of micellization in the
droplet and quasidroplet models of molecular aggregates that are valid in the region c1 >
c1m of monomer concentration c1. It is natural that within the framework of the models, all
conclusions will be referred only to the region of concentrations where micelles still retain
their spherical shape. As will be shown below, this concentration region can be considered,
even on the accumulation (in micelles) of almost the entire surfactant in the micellar solution
(when the degree of micellization is close to unity and the total surfactant concentration is
much higher than the CMC), as so narrow that the relations

nc ≈ ncm , ns ≈ nsm , �nc ≈ �ncm , �ns ≈ �nsm (9.285)

hold in this region with a high accuracy with an error that does not exceed several percent. It
follows from Eq. (9.142) that, even at

cM/cMm � 103 , (9.286)

the inequality

c1/c1m < 1 + (6.91/nsm) (9.287)

is valid. According to Eq. (9.137) and αm 	 0.1, we have α 	 0.99 at the upper limit
of inequalities (9.286) and (9.287). This result implies that micelles already accumulate the
main part of the entire surfactant in micellar solution. Hereafter, we assume that Eqs. (9.286)
and (9.287), which indicate the narrowness of the concentration region c1 > c1m , are fulfilled.

For the droplet model of molecular aggregates we can find with Eqs. (9.208), (9.33)
and (9.215) the dependence of the values nc, ns, �nc, and �ns on the concentration c1 via
ln
(
c1
/

c10
)

even in an analytical form. Equations (9.287) and (9.263) show that, at the upper
limit of the constraint (9.287), we have

ln (c1/c10) ln (c1m/c10)

ln (c1m/c10)
	 6.28

(
�nsm

nsm

)2

. (9.288)

For simplicity, we ignore here and below the correction terms of order ε. Thus we see that
the deviation of the value of ln (c1/c10) from its magnitude at the CMC is relatively small at
(�nsm/nsm)2 ∼ 10−2. Then, retaining the principal (with respect to this deviation) contri-
butions to the dependences of nc, ns, �nc, and �ns on ln (c1/c10) and taking into account
Eqs. (9.262)–(9.263), (9.265), and (9.288), we obtain

nc 	 ncm

[
1 − 3.45

(
�nsm

nsm

)2
]

,

ns 	 nsm

[
1 + 3.45

(
�nsm

nsm

)2
]

,

�nc 	 �ncm

[
1 − 3.45 (�nsm/nsm)2

]
(9.289)
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�ns 	 �nsm

{
1 −

[
0.77 ln

(
π1/2(1 − αm)

αm
nsm�nsm

)
− 2.65

]

×
(

�nsm

nsm

)4
}

. (9.290)

The same approach can be used for the quasidroplet model. Here Eqs. (9.208), (9.33), and
(9.259) allow us to determine the dependence of nc, ns, �nc, and �ns on the concentration c1
via ln

(
c1
/

c10
)

(again, in an analytical form). As follows from Eqs. (9.287) and (9.274), we
have at the upper limit of the constraint (9.287) in the quasidroplet model the result

ln
(
c1
/

c10
)− ln

(
c1m
/

c10
)

ln
(
c1m
/

c10
) 	 13.8

(
�nsm

nsm

)2

. (9.291)

We see that the deviation of ln (c1/c10) from its value at the CMC is still relatively small.
Then, retaining principal (with respect to this deviation) contributions to the dependences of
nc, ns, �nc, and �ns on ln (c1/c10) and taking into account Eqs. (9.273)–(9.274), (9.276),
and (9.291), we obtain in the quasidroplet model

nc 	 ncm

[
1 − 6.91

(
�nsm

nsm

)2
]

, ns 	 nsm

[
1 + 3.45

(
�nsm

nsm

)2
]

, (9.292)

�nc 	 �ncm

[
1 − 5.18

(
�nsm

nsm

)2
]

,

(9.293)

�ns 	 �nsm

[
1 − 2.59

(
�nsm

nsm

)2
]

.

It follows from Eqs. (9.289)–(9.290) and (9.292)–(9.293) at
(
�nsm

/
nsm

)2 ∼ 10−2 that
Eqs. (9.285) are fulfilled with high accuracy at the upper limit of the constraint (9.287). Evi-
dently, this statement is valid throughout the concentration region c1 > c1m admitted by the
constraint (9.287). The existence of the small parameter

(
�nsm

/
nsm

)2 is responsible for the
fulfillment of Eqs. (9.285) in the droplet and quasidroplet models of molecular aggregates.

Note also the following circumstance. According to Eq. (9.287), a relative increase in
monomer concentration c1 that is needed to accumulate almost the whole surfactants in mi-
celles after reaching the CMC turned out to be still markedly lower than the relative increase
in the monomer concentration c1estimated by Eqs. (9.266), (9.267), (9.278), and (9.279) that
is necessary to reach the CMC after the appearance of the potential barrier and potential well
of the work Wn at c1 = c10. This results confirm all statements that have been made above
concerning the physical meaning of the CMC.
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10 Nucleation in a Concentration Gradient

Andriy M. Gusak and Fiqiri Hodaj

Nothing has such power to broaden the mind
as the ability to investigate systematically and truly all

that comes under your observation in life.

Marcus Aurelius

A detailed analysis of the thermodynamics and kinetics of nucleation in solid solutions in
the presence of concentration gradients is presented. Different modes of intermediate phase
nucleation in the vicinity of the initial contact interface of a diffusion couple and their compe-
tition are considered. The possibility of a temporary suppression of certain phases as well as
of oscillatory nucleation regimes is demonstrated.

10.1 Introduction

The present review is devoted to the modeling and theoretical description of the “Big Bang”
of solid-state reactions, the very initial stages including nucleation. The evident nanotrend
of materials science makes the initial stages of solid-state reactions (a true nanoprocess) a
very important issue. Till the 1980s, the diffusion community, occupied mainly with diffusion
and reactions in macrosamples, treated the initial stages of these processes as some exotic
problem, basically, as a theoretical one. The reason was that the initial stage is usually being
“forgotten” by the system in the further course of its evolution (in accordance with basic
principles of nonequilibrium thermodynamics and statistical mechanics), when the diffusion
zone reaches several micrometers [1, 2]. In the case of reactive diffusion, the “initial stage”
means the period till the formation and parabolic growth of all stable intermediate phases. It
includes, in principle, the following substages:

(i) nucleation of intermediate phases, i.e., the formation of supercritical nuclei (islands) of
the new phase at or in the vicinity of the initial contact interface [2–8].

(ii) Growth of new phase islands and competition (for space and material) between them till
the formation of phase layers with a more or less planar geometry [9–11]. In the case of
ternary and multicomponent systems, two-phase layers can be formed as well.

(iii) Overcoming interfacial barriers (if they exist) [1, 12] and/or relaxation of the vacancy
subsystem.

For the first time, a practical interest in the analysis of the initial stages of solid-state reac-
tions arose in connection with the investigation of reactive diffusion in thin films. The usually
observed one-by-one (sequential) phase growth led to the conclusion that the initial stage of
evolution might well be for some phases simultaneously the final stage. If, for example, the
evolution of the intermediate phase A1B2 is suppressed by some reason during the growth of
the phase A2B1 till the consumption of pure B, this phase will never appear at all. Yet, even for
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explaining phase suppression, people tried to avoid the consideration of nucleation processes.
Instead, the suppression has been explained in terms of interplay of diffusion and interfacial
barriers. The most successful theory of this type was developed by Goesele and Tu [12]. Intro-
ducing some rather arbitrary rate constants for fluxes across interfaces, they managed to derive
expressions for the critical thicknesses of suppressing phases and delay periods of suppressed
phases. Nucleation issues, in terms of the standard nucleation approach but in application to
solid-state reactions, have been discussed first by d’Heurle in 1986 [3].

The situation became even more intriguing with the discovery of the solid-state amor-
phizing reactions [13, 14] demonstrating the growth of metastable amorphous layers without
any evidence of stable phase formation till the amorphous layer has reached a certain critical
thickness of hundreds of nanometers. It looked like as if nucleation and/or growth of stable
phases has been suppressed not just by low temperatures, but by the growing metastable phase.
Detailed differential scanning calometry investigations of solid-state reactions in multilayers
by the groups of Barmak and Gas [9, 15, 16] demonstrated the possibility of two heat-release
maxima for the same phase. Such feature can be explained in terms of some kind of two-
stage phase formation (the first stage being possibly the lateral growth of new phase islands).
Recently, Schmitz et al. used an atom-probe tomography method to investigate the very ini-
tial stage of solid-state reactions [17, 18]. This method, with a resolution of a few angstroms,
provides us with the three-dimensional distribution of atoms of the reacting species. These
experiments clearly show that usually even the first islands of the first phase to grow do not
form immediately after contact. Thus, indeed, the “nanovector” of solid-state reactions makes
it more and more important to properly take the nucleation stage into account.

In 1982, one of the authors (A.G.), jointly with his teacher, the late Professor Cyrill Gurov
(Institute for Metallurgy, Moscow), presented a simple (even “naive,” as we realize it today)
model of phase competition taking into account the nucleation stage of each phase ([4], see
also [19]). Actually, the only concept that had been taken in Ref. [4] from nucleation theory
was the existence of a critical nucleus. Such critical nuclei appear due to some “miraculous
process” called heterophase fluctuations, which are stochastic events and cannot be described
by any deterministic model. The initial idea was just that each phase cannot start from zero
thickness; it should start, in contrast, from some well-defined critical size of the particle (of
the order of nanometers). In contrast to the standard nucleation theory, critical nuclei of in-
termediate phases during reactive diffusion are formed in a strongly inhomogeneous region,
the interfacial zone between other phases. Therefore, from the very beginning they have to let
diffusion fluxes pass through themselves. Evidently, such fluxes will change abruptly when
passing across each newly formed boundary of the newly born nuclei, and thus speed up the
boundary motion.

The picture of interface movement due to flux steps described above is well known from
the analysis of diffusion couples where it is called the Stephan problem and means diffusive
interactions between neighboring phases. Yet, including nucleation events into the descrip-
tion, the initial width of each phase is taken now to be equal to the critical nucleus size (in-
stead of zero). The peculiarity of the initial stage is just the possibility that the width of some
new-phase nucleus (the distance between left and right boundaries), can decrease as well as
increase. If it decreases, then the nucleus becomes subcritical, and should disappear. Usually
it happens if the neighboring phases have a larger diffusivity and comparative thickness. Then
these neighbors (“vampires” or “sharks”) will destroy and consume all of the newly forming
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nuclei, making the new phase to be present only virtually in the form of constantly forming
(due to heterophase fluctuations) and vanishing (due to diffusive suppression by the neigh-
bors) embryos. Based on these ideas, a simple mathematical scheme was developed allowing
one to predict the sequence of phase formation and incubation periods, provided one knows
the integrated Wagner diffusivities and sizes of critical nuclei for each phase. One of the most
simple examples of this scheme is presented in Sect. 10.2. This scheme was then applied to
competition with solid solutions [5], to phase growth under strong electric currents [20], to
reactive diffusion in ternary systems [21], and to phase competition in reacting powder sys-
tems [7, 22]. Applications to the electric field case demonstrated that the phase spectrum of
the reaction zone can be influenced and even controlled by a strong enough current density.
Large current densities have been expected then to become a real possibility of affecting the
processes under study due to the miniaturization of integrated schemes and the introduction of
the flip-chip technology [23]. Recent results on reactive diffusion in under-bump metallization
(UBM)-solder contacts under a strong current crowding confirm this point of view.

Later we realized that in our naive model of phase competition we had taken into account
the inhomogeneity of the nucleation region only partially. Namely, we treated the diffusive
interactions of the newly born nuclei, but we did not consider the possible change of the nu-
cleation barrier, size and shape, caused by the very fact of existence of sharp concentration
gradients. Thus, we had to reconsider the thermodynamics of nucleation in a concentration
gradient. The very first version of such theory was presented at the All-Union Conference De-
fects and Diffusion 1989 (DD-89) in Russia and first published in May 1990 [6] (see also [19]).
The main idea was that if prior to intermediate phase formation a narrow layer of a metastable
solid solution or amorphous alloy has been formed at the base of the initial interface, the sharp
concentration gradient inside this layer provides a decrease of the total bulk driving force of
nucleation and a corresponding increase of the nucleation barrier. Nuclei were taken to be
spheres, appearing in the strongly inhomogeneous concentration profile of the parent phase,
so that the local driving force of transformation could change significantly from the left to the
right along the diameter of the nucleus. This effect appeared to be nonnegligible, since usu-
ally the intermediate phases have a very strong concentration dependence in the Gibbs energy.
The main result of this analysis was the new type of size dependence of the Gibbs energy
containing now in addition to the terms of second order (surface energy, positive) and third
order (bulk driving force, negative), a new term proportional to the fifth order of size R and
the concentration gradient (∇C) squared, i.e.,

�G (R) = αR2 − β R3 + γ (∇C)2 R5 . (10.1)

Here the parameter γ is positive and proportional to the second-order derivative of the new
phase Gibbs energy with respect to the concentration. Equation (10.1) implies that for a large
enough gradients ∇C > ∇Ccrit (typically ∇Ccrit ∼= 108 m−1) the dependence �G (R) be-
comes a monotonically increasing function of R (infinitely high nucleation barrier) resulting
in a thermodynamic suppression of nucleation by very sharp concentration gradients. Thus,
according to our model, at the very initial stage of reactive diffusion nucleation can be sup-
pressed even without diffusive competition, just due to too narrow space regions favorable for
the transformation.

Independently similar results were published by Desre et al. in 1990 and 1991 [24, 25].
This approach was applied then to a description of solid-state amorphizing reactions [24–27],
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explaining why stable intermetallics are formed in a diffusion zone only after the amorphous
layer exceeds some critical thickness. Despite the similarity of the results, the models of nucle-
ation in a sharp concentration gradient, outlined in Refs. [6,19] and [24,25] assumed quite dif-
ferent possible mechanisms of phase formation (different nucleation modes). In Refs. [6, 19],
a polymorphous mode was suggested on the basis of the following picture: Initially diffusion
is assumed to lead to the formation and growth of a metastable parent solution with a sharp
concentration profile. When this profile becomes smooth enough to provide sufficient space
for compositions favorable for a new intermediate phase, this very phase nucleates just by
reconstruction of atomic order without changing immediately the concentration profile (i.e.,
at “frozen-in” diffusion). Such model treats the process essentially as a polymorphic transfor-
mation.

In Refs. [24, 25], the transversal nucleation mode was suggested on the basis of the fol-
lowing picture of the process. It is assumed here that each thin slice of the newly formed
nucleus, perpendicular to the direction of the concentration gradient, is considered to be the
result of decomposition in the corresponding thin infinite slice of the parent solution, leading,
of course, to a redistribution of atoms among new and old phases. In this transversal mode,
the redistribution proceeds within each slice, independently of the other ones.

In Ref. [28], one more mechanism of phase formation was proposed (and analyzed in
more detail in Refs. [29, 30]), the total mixing (longitudinal) nucleation mode, when the re-
distribution of atoms proceeds during nucleation, but only inside the newly forming nucleus.
In contrast to the two previous modes, in this case the concentration gradient assists nucle-
ation since in Eq. (10.1) the coefficient γ is negative. The above-mentioned approach was
generalized taking into account shape optimization [31–34], the effect of stresses [35], ternary
systems [36], and heterogenous nucleation at grain boundaries [32]. Most simple models in
the frame of this approach are presented in Section 10.3.

It is quite “natural” to expect that nature will use the mechanism with the lowest nucleation
barrier, i.e., the total mixing mode. However, nucleation is governed not only by thermody-
namics but also by kinetics. Thermodynamics of nucleation with constraints indicates only
some probable paths of evolution. The real path is determined by the kinetics of the process,
taking into account not only the free energy profit but also the different “mobilities” along
each path.

All the above-mentioned models treat the case when the system, prior to nucleation, can
form a metastable parent phase with a broad concentration range, overlapping the equilibrium
concentration range of the new stable phase (Fig. 10.1). Yet, in most cases the solid-state reac-
tions proceed in couples with small mutual solubilities even in metastable states (Fig. 10.2). In
the case of phase γ nucleation between α and β, these phases, in the absence of phase γ , have
metastable solubilities Cαγ and 1 − Cβγ . Prior to nucleation the interdiffusion should lead
to a step-like concentration profile that has a concentration gap

(
Cαγ , Cβγ

)
and, therefore,

is not overlapping the phase γ concentration range. Of course, in this case the polymorphic
mode of transformation is impossible. The transversal mode, in contrast, is quite possible here
and should be realized as a simultaneous decomposition of metastable nonhomogeneous so-
lutions within the concentration intervals

(
Cαγ , Cαβ

)
and

(
Cβα, Cβγ

)
on both the sides of

the interface. Some aspects of this problem, concerning the nucleus shape, have been treated
in Refs. [37, 38]. The nucleus shape, being an important factor of nucleation in a concentra-
tion gradient, is not a decisive one [29]. Therefore, in our present analysis in Sect. 10.4 (see
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Figure 10.1: Illustration of nucleation by the polymorphic transformation mode at a frozen-in
concentration profile. (a): Composition dependences of the Gibbs free energy per atom in the old
and new phases. (b): Frozen-in concentration profile in the diffusion couple being approximately
linear in the nucleation region

also [39]) we, so far, have left the shape problem aside, concentrating on “gradient effects” on
the nucleation barrier.

The main idea, developed in Sect. 10.4, is that the effect of concentration gradients (or,
better, chemical potential gradients) should be especially important for nucleation in systems
with limited solubility, especially when at least one intermediate phase is already growing. It is
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Figure 10.2: Stable and metastable equilibria in a binary system with a limited solubility of
the ambient solid solution. A composition in the intervals
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quite possible that in this case, the “gradient approach” can give a key for the understanding of
a sequential phase growth. We analyze the general case of phase “i” nucleation at the interface
between nonhomogenous (with gradients of concentration and of chemical potentials) phase
layers L and R. We apply this general formalism, respectively, to nucleation at the interface
between (a) two diluted solutions α and β, (b) two already growing intermediate phases (1)
and (3), and (c) growing phase (1) and diluted solution β.

As mentioned above, thermodynamic profit is a necessary but not sufficient condition for
successful nucleation and growth. Kinetics can be a decisive factor as well. To describe the-
oretically the nucleation kinetics, we use the Fokker–Planck approach, applied widely in the
nucleation theory after the classical work of Zeldovich [40]. Our contribution to this approach
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is just taking into account that the driving force depends on the concentration gradient, which
in turn depends on time according to diffusion laws. It has been shown in Ref. [30] that the
relative contribution of each mechanism depends on the ratio of atomic mobilities in the parent
and nucleating phases. If the atomic mobility in the new phase is much lower than that in the
parent one, we can forget about the total mixing mode. In the opposite case (high mobility in-
side the new phase), nucleation will proceed via total mixing and very fast (“fast is the first”).
As will be shown, one of the “raisins” of the total mixing (assisting) mode is that the easily
formed nuclei, if not growing too fast in comparison with the decrease of the concentration
gradient, after some period of time can find themselves to be subcritical and will be destroyed
again. The main results will be briefly reviewed in Sect. 10.5.

10.2 Phase Competition under Unlimited Nucleation

What do we mean by phase competition during solid-state reactions? Let us consider a dif-
fusion couple consisting of two partially soluble species A and B diffusing into each other
and forming the intermediate phases and possibly the solid solutions. Let the binary system
A–B has three stable intermetallic phases 1, 2, 3, a metastable compound 4, and a metastable
amorphous phase 5. The composition dependences of the Gibbs free energy for these phases
are shown in Fig. 10.3. According to the standard theory, for sufficiently long annealing times,
three stable planar phase layers should grow according to parabolic laws. Very often the real
situation is, however, different, only one stable phase grows, only the metastable crystalline
phase grows, or an amorphous one is found. Thus, phases compete with each other, as well as
different regimes of reactive diffusion.

It has been well known for several decades that the reactive diffusion in thin films usually
demonstrates “one by one” (sequential) phase formation [41, 42]. Despite the existence of
several stable intermediate phases at the phase equilibrium diagram, only one growing phase
layer is usually observed. The next phase appears, or at least becomes visible, only after one
of the terminal materials has been consumed, so that the first phase has no more material
for further growth, become itself a material for second phase formation, and so on. Such
sequential growth has, at least, three possible explanations:

(i) “Just slow growth” The first phase to grow usually has the maximum diffusivity and,
hence, grows fast (according to d’Heurle [42], “fast is the first” or “first is fast”). Other
phases, with less diffusivities, grow even slower than they could do alone, without a fast
growing neighbor. For example, in the case of two simultaneously growing phases 1 and
2 with significantly different integrated Wagner diffusivities D1�C1 � D2�C2, where

Di�Ci =
Ci R∫

CiL

D̃ (C) dC , Ci R − Ci L = �Ci ,
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Figure 10.3: Phase spectrum of a binary system: (a) schematic composition dependences of the
Gibbs free energy per atom of the intermediate phases and (b) phase spectrum of the diffusion
zone for long annealing times

�Ci is the homogeneity interval, C is the atomic fraction of the B-component, and
D̃ (C) is the interdiffusion coefficient [2,43,44]; their thickness �Xi obeys the following
parabolic laws (omitting factors of the order of unity):

�X1 ≈ √
2D1�C1t1/2 , �X2 ≈ 2D2�C2√

2D1�C1
t1/2 ,

so that

�X2

�X1
≈ D2�C2

D1�C1
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holds. Note that in the absence of the fast phase 1, the second phase would grow much
faster as

�X single
2 ≈

√
2D2�C2t1/2 .

Thus, according to this first explanation, other phases exist and grow, but too slowly, and
their layers are so thin that it is just difficult to detect them.

(ii) Interfacial barriers and competition[12] Interfacial barriers are believed to cause the
initial linear phase growth. In the case of single phase formation the interfacial barriers
simply slow down the rate of formation, making it linear instead of parabolic. In the case
of two phases the barriers can make the growth rate of some phase formally negative
even for zero thickness, which means that this phase will be totally absent. The model,
as outlined in Ref. [12], is nice, but the constants of the interfacial kinetics are, to our
knowledge, adjusting parameters.

(iii) Diffusive suppression of critical nuclei [4–7] Any phase can start growing only from
the nuclei of some critical size lcr. Yet, since these nuclei (born as a result of inevitable
heterophase fluctuations) are from the very beginning situated in the sharply inhomoge-
neous system and, hence, take part in diffusive interactions, they can shrink to subcritical
(unstable with respect to dissolution) sizes due to diffusive suppression by a neighboring,
fast growing phase.

To simplify the analysis, let us consider a binary diffusion couple A–B with two interme-
diate phases 1 and 2. Let the layer of phase 1 grow according to the law

�x1 =
√

2D1�C1

C1(1 − C1)
t (10.2)

and the phase 2 form a critical nucleus with a longitudinal size l2 at the moving interface
1-B due to heterophase fluctuations (so that there are no thermodynamic constraints). As will
be shown in Sect. 10.3, sharp concentration gradients lead to a plate-like shape of the nuclei
(leaving aside the total mixing mode up to the last section). Therefore one can consider left
and right boundaries of the nucleus as being nearly flat. Drops of the diffusion fluxes at these
boundaries generate their evolution according to the laws

(C2 − C1)
dx2L

dt
= D1�C1

�x1
− D2�C2

l2
,

(1 − C2)
dx2R

dt
= D2�C2

l2
− 0 .

(10.3)

We neglect here the solubility of A in B . Hence, the rate of change of the width of the critical
nucleus is equal to

d�x2

dt

∣∣∣∣
l2

= dx2R

dt
− dx2L

dt
= 1

C2 − C1

(
− D1�C1

�x1
+ 1 − C1

1 − C2

D2�C2

l2

)
. (10.4)
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One can easily see that this expression is positive for large values of �x1, but can be negative
for small values of �x1. If

�x1 < �x∗
1 = 1 − C2

1 − C1

D1�C1

D2�C2
l2 ,

then (d�x2/ dt)|l2 < 0 holds, so that every critical nucleus decreases (being “eaten” by the
rapidly growing neighbor phase 1) and therefore becomes a subcritical (unstable) embryo and
will be dissolved. Such unsuccessful attempts of phase 2 nucleation will be repeated during
the “incubation period”

τ = C1 (1 − C1)

2D1�C1

(
�x∗

1

)2 = C1 (1 − C2)
2

2 (1 − C1)

D1�C1

(D2�C2)
2

l2
2 . (10.5)

In order to determine which of the phases will grow first, one has to consider the diffusional
interaction between two initial layers of critical nuclei of both phases. One can easily check
that

d�x1

dt

∣∣∣∣
l1

= 1

C2 − C1

(
C2

C1

D1�C1

l1
− D2�C2

l2

)
,

d�x2

dt

∣∣∣∣
l2

= 1

C2 − C1

(
− D1�C1

l1
+ 1 − C1

1 − C2

D2�C2

l2

) (10.6)

hold. Here we have three possibilities:

(i) Phase 2 (“vampire”) starts growing, “eating” the nuclei of phase 1 at

D1�C1

D2�C2

l2

l1
<

C1

C2
⇒ d�x1

dt

∣∣∣∣
l1

< 0 ,
d�x2

dt

∣∣∣∣
l2

> 0 .

(ii) Both phases grow from the moment of nucleation at

C1

C2
<

D1�C1

D2�C2

l2

l1
<

1 − C1

1 − C2
⇒ d�x1

dt

∣∣∣∣
l1

> 0 ,
d�x2

dt

∣∣∣∣
l2

> 0 .

(iii) Phase 1 (“vampire”) starts growing, “eating” the nuclei of phase 2 at

D1�C1

D2�C2

l2

l1
>

1 − C1

1 − C2
.

Such a simple approach can be easily generalized to an arbitrary number of intermediate
phases [8].
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10.3 Thermodynamics of Nucleation in Concentration
Gradients: Case of Full Metastable Solubility

10.3.1 General Aspects

In the previous section, we considered the formation of critical nuclei as an unlimited source
of candidates for further growth. Problems appeared only when these critical nuclei entered
the competition process. Of course, such simplified picture is too naive. The existence of a
sharp concentration gradient in the vicinity of a nucleation site should change the thermo-
dynamics of nucleation. Nucleation barriers (saddle points) for intermediate phase formation
in the diffusion zone have to be computed in a more rigorous approach, taking into account
the redistribution of components outside the newly born nucleus. The parent inhomogeneous
phase (or two adjacent phases) are metastable with respect to new-phase formation, but si-
multaneously it is (they are) unstable with respect to further interdiffusion. Therefore, at fixed
size and composition of the nucleus the optimal distribution for outside parent phase(s) will
be reached only after full homogenization. Obviously, the nucleus will not “wait” for the com-
pletion of this process. It means that true minimization of the Gibbs potential for nucleation
during diffusion is impossible. Therefore, the problem of nucleation in an inhomogeneous
system has to be solved under certain constraints, which are determined by the kinetics of the
diffusion processes. Depending on the type of constraints one can distinguish between differ-
ent nucleation modes. We can point out at least three possible different nucleation modes:

1. The polymorphic mode (Gusak [6,19]): This mode is possible if the parent metastable (for
example, amorphous) phase can exist in a concentration range advantageous for a new
intermediate phase. First, interdiffusion forms a concentration profile in the parent phase
overlapping the concentration interval where the new intermediate phase has a lower
Gibbs potential (Fig. 10.1). Then the polymorphic transformation takes place in a limited
region forming the lattice of a new phase at a frozen-in concentration gradient. After
this step, diffusion proceeds and the newly born nucleus interacts with the parent phase
due to a step-like change of the diffusion fluxes at its boundaries. The role of the parent
phase can be played by the metastable solid solution or a previously formed amorphous
layer. Obviously, in order that this mode may determine the process, the rate of lattice
reconstruction has to be much higher than the rate of diffusion in the parent phase.

2. The transversal mode (Desre [24, 25]): This mode is possible for both cases shown in
Figs. 10.2 and 10.3. In the case shown in Fig. 10.3, interdiffusion prior to the formation
of an i -phase nucleus leads to “meta-quasiequilibrium” α − β with metastable concen-
tration ranges

(
Cαγ , Cαβ

)
and

(
Cβα, Cβγ

)
, unstable with respect to decomposition into

α + γ and β + γ . According to the model developed by Desre [25], during nucleus for-
mation in a concentration gradient (in the x-direction) each thin slice (x, x + dx) of this
nucleus forms by unlimited redistribution of the components inside this slice indepen-
dently of other slices. The concentration Cnew (x) in this nucleus slice is determined by
the concentration Cold (x) in the surrounding phase (for the same slice) according to the
rule of parallel tangents (not the joint tangent) via

∂gnew

∂Cnew = ∂gold

∂Cold .
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Obviously, to make the transversal mode real, the diffusivity in the parent phase(s) has to
be much larger than that in the new phase (Dm � Di ).

3. Total mixing (longitudinal) mode (Hodaj, Desre [28]): This mode supposes nucleus for-
mation only by cost of the transformed region of the parent phase, hereby the concen-
tration distribution outside the nucleus is assumed to be unchanged. Obviously, to make
this mode real, the diffusivity in the evolving phase has to be much larger than that in the
parent phase (Di � Dm).

In the general case, all these modes (and, may be, some others) will operate simulta-
neously. Which of them dominates, is a problem of the kinetics and will be discussed in
Sect. 10.5. In the subsequent analysis, we will discuss first in detail the thermodynamics of
each of these modes.

10.3.2 The Polymorphic Nucleation Mode

Let the nucleus of the intermediate phase appear in the frozen-in concentration profile formed
by interdiffusion in the metastable continuous phase (solid solution or amorphous phase;
Fig. 10.1). The change of the Gibbs free energy caused by the formation of the nucleus is
then given by

�G = n
∫ (

gnew (C (x)) − gold (C (x))
)

S (x) dx + σ S . (10.7)

Here we neglect volume changes (atomic density n1 ≈ n2 = n) and the corresponding stresses
(such effects will be discussed below). S is the area of the newly formed interfacial surface, σ
is its surface energy per unit area, S(x) is the area of the nucleus cross section with the plane x
perpendicular to the concentration gradient, and g is the Gibbs free energy per atom. To make
the mathematics simpler, the following approximations are employed in the further analysis:

gold (C) = gold
0 + αold

2

(
C − Cold

0

)2
, (10.8)

gnew (C) = gnew
0 + αnew

2

(
C − Cnew

0

)2
, (10.9)

C (x) ∼= C (0) + x∇C . (10.10)

Taking into account Eqs. (10.8)–(10.10), one obtains

�G = n
∫ (

A0 + A1∇C · x + A2 (∇C)2 x2
)

S(x) dx + σ S

with

A0 = −
(

gold
0 − gnew

0 + αold
(
C (0) − Cold

0

)2

2
− αnew

(
C (0) − Cnew

0

)2

2

)
,

A1 = αnew (
C (0) − Cnew

0

) − αold
(

C (0) − Cold
0

)
,

A2 = αnew − αold

2
.

(10.11)
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Spherical Nuclei

Let the nucleus be a sphere with the center at some point xc, so that the relation

S (x) = π
(

R2 − (x − xc)
2
)

holds. Then simple algebra transforms Eq. (10.7) into

�G = σ4π R2 + nπ
(

B0
4
3 R3 + B2

4
15 R5

)
, (10.12)

with

B0 = A0 + A1xc∇C + A2x2
c (∇C)2 , B2 = A2 (∇C)2 . (10.13)

First of all one has to determine the optimal place for nucleation from the conditions

∂�G

∂xc
= 0 ,

∂2�C

∂x2
c

> 0 ,

xc = − A1

2A2∇C
= αold

(
C (0) − Cold

0

) − αnew
(
C (0) − Cnew

0

)(
αnew − αold

)∇C
.

(10.14)

The above conditions correspond to a minimum if the inequality αnew > αold holds. Thus,
when the concentration gradient changes with time, the optimal place of nucleation shifts but
the corresponding concentration in the center

C (0) + xc∇C = C (0) − A1

2A2

remains the same.
Furthermore we restrict ourselves to nuclei forming in the optimal place. In this case the

size dependence of �G has the simple form

�G(R) = αR2 − β R3 + γ (∇C)2 R5 , (10.15)

where

α = 4πσ , γ = 4πn

15

(
αnew − αold

2

)
, β = 4πn

3

(
A2

1

4A2
− A0

)
,

β = 4πn

3

(
gold

0 − gnew
0 + αnewαold

2
(
αnew − αold

) (Cold
0 − Cnew

0

)2
)

.

(10.16)

The coefficient β fulfills the inequality β > 0 if the curve gnew(C) intersects the curve gold(C).
As follows from Eq. (10.15), the dependence �G(R) can be monotonically increasing or
nonmonotonic in R, depending on the magnitude of the concentration gradient (Fig. 10.4).
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Figure 10.4: Size dependence of the Gibbs free energy due to the formation of a spherical
particle in a concentration gradient (see text). (a) Nucleation is forbidden thermodynamically.
(b) Metastable nuclei can be formed. (c) Nucleation is possible

Case (a) in Fig. 10.4 corresponds to full suppression of nucleation at sharp concentration
gradients. It is found for

∇C > (∇C)crit
2 = β

α

√
β

5γ
.

Case (b) implies a possibility of metastable nucleus formation. It is realized if the conditions

(∇C)crit
2 > (∇C) > (∇C)crit

1 = β

α

√
4β

27γ

hold. Case (c) allows the possibility of forming a stable particle of the new phase, the size of
which will increase with decreasing (with time, due to interdiffusion) concentration gradients.
It is realized for

∇C < (∇C)crit
1 .

Hereby simple algebra gives the following expressions for the critical values of the concentra-
tion gradient (∇C)crit

1,2, corresponding to crossovers c ↔ b and b ↔ a, respectively:

(∇C)crit
1 = β

α

√
4β

27γ
, (∇C)crit

2 = β

α

√
β

5γ
. (10.17)

One can see that the values of (∇C)crit
1 and (∇C)crit

2 are rather close, so that the regime of
metastable nucleation is difficult to detect. Moreover, we shall see below that the shape opti-
mization excludes this regime (if one does not take stresses into account).
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Spheroidal Nuclei

Evidently, since concentration gradients suppress nucleus growth in the longitudinal direction,
nature will find alternative possibilities of increasing the nucleus volume (and decreasing the
Gibbs free energy) by transversal growth. This statement means that nuclei forming in the
diffusion zone should be of nonspherical shapes. For each fixed nucleus volume, one has to
take into account a shape optimization. A first attempt in this direction was made in 1991 [31].
Nuclei (embryos) were supposed to be spheroids, with a (rotational) symmetry axis directed
along the ∇C-direction with parameters R‖ (‖ x) and R⊥ (⊥ x). In this case, �G is a function
of two arguments, the volume V and the shape parameter η = (R⊥/R||) at a fixed concentra-
tion gradient ∇C = (1/L). One gets

�G(R||, R⊥)

2πn
= −2

3


�g0 R|| R2⊥ + g′′

15L2
R3|| R2⊥ + 2σ

n


 R2⊥

2
+ R|| R2⊥

2

√∣∣∣R2|| − R2⊥
∣∣∣

×




ln

(√(
R⊥
R||

)2 − 1 + R⊥
R||

)

 , R⊥

R|| > 1

arcsin

(√
1 −

(
R⊥
R||

)2
)


 , R⊥

R|| < 1 ,

(10.18)

where

R|| =
(

3V

4π

) 1
3

η− 2
3 , R⊥ =

(
3V

4π

) 1
3

η
1
3 .

At any fixed volume V, the optimal shape η (V ) is found by minimizing the function�G (η|V ).
The function ηopt (V ) increases to infinity at some value V ∗ (Figure 10.5), which is deter-
mined by the concentration gradient (the larger the ∇C , the less the V ∗). The dependence
�G(V ,ηopt(V )) looks different for sharp and smooth concentration gradients (Figs. 10.5(a)
and (b)).

Thus, the main result of the previous paragraph, the existence of a concentration gradient
above which nucleation of an intermediate phase is forbidden, is reestablished. Yet, the pos-
sibility of metastable nuclei formation disappeared due to shape optimization. New results of
the analysis are (i) the formation of plate-like nuclei (of course, this result is not valid if the
critical value of �G is much higher than 60kBT ) and (ii) the decrease of the nucleation barrier
and a corresponding increase of the value of the critical concentration gradient due to shape
optimization.

Of course, the assumption of a spheroidal shape of the nucleus has to be justified as well.
To verify this assumption and the validity of the above-mentioned results, we will present the
results of the Monte Carlo (MC) simulation of nucleus formation in the following section.
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Figure 10.5: Left: Dependence of the optimal shape on the nucleus volume. Right: Dependence
of the Gibbs free energy on the volume of the nucleus with optimized shape for (a) ∇C >

(∇C)crit and (b) ∇C < (∇C)crit

MC Simulation of Nucleus Shapes

Let the interdiffusion in the binary A–B couple lead to the formation of a metastable parent
phase (solid solution or amorphous phase) with a concentration gradient inversely propor-
tional to

√
Dt , where D is the diffusivity in the parent phase. We investigate the possible

nucleation of the stable intermediate phase in this gradient. Let the concentration depen-
dences of the Gibbs potential for both phases are approximately parabolic with minima at
Cnew

0 = Cold
0 = (1/2) (latter approximation is important only for comparison with analytical

solutions and is not required for the Monte Carlo simulation). The concentration profile in the
parent phase in the vicinity of the forming nucleus is approximated by a linear dependence.

Here we limit ourselves to the polymorphic mode suggesting that nucleation proceeds
fast in the frozen-in concentration gradient and concentration changes start due to diffusion
after nucleation. We divide the homogeneous alloy into “elementary” cells, each of them can
transform from the old to the new phase and vice versa, depending on thermodynamic profit
that is determined by the bulk driving force and the number of neighboring cells with different
phase states. The simulation procedure is anticipated as follows: Each cell is assumed to exist
in one of two phase states, the old and new ones. The change of the state in the cell leads to
a change of both bulk and surface energy terms. For example, if the cell transforms from the
old to the new state then the change of the Gibbs potential for the system is equal to

�G =
(

gnew (C) − gold (C)
)

a3n + σ�Na2 . (10.19)

Here C is the concentration in the cell depending on its position (x-coordinate, if the concen-
tration gradient is parallel to x), n is the atomic density, a is the cell size, σ is the surface
tension between old and new phases, �N is the change of the number of neighboring cells
with different states (it is an even number ranging from −6 to +6). If �G is negative the
transformation is accepted, otherwise the acceptance probability is given by exp(−�G/kB T )
(Metropolis algorithm).
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Figure 10.6: Examples of nucleus shape simulation results for sharp (a) ∇C = 109 m−1 and
smooth (b) ∇C = 107 m−1 concentration gradients. The parameters employed in the simulation
are σ = 0.15 J m−2, a = 1.5 × 10−10 m, n = 1029 m−3, (∂2g/∂C2) = 7.77 × 10−19 J,
gold

0 − gnew
0 = 7.48 × 10−21 J

In order to make the Monte Carlo procedure time saving we restrict changes of the state to
cells in the boundary layer of the evolving nucleus. The following algorithm has been realized:
(0) In the initial state, all cells belong to the old phase. Randomly, we choose one cell as a
nucleation site and try its transformation according to the Metropolis procedure (�N = 6).
(1) One of the boundary cells is chosen randomly (the cell belongs to the boundary set if it
belongs to the nucleus and has at least one neighbor of the old phase). (2) Furthermore, the
cluster consisting of the chosen boundary cell and its six neighbors is analyzed. One of the
seven cells of this cluster is chosen randomly. This choice is accepted if the chosen cell is
central (transformation new → old) or if it is a neighbor belonging to the old phase (trans-
formation old → new). Otherwise, the attempt is repeated. (3) The change of the Gibbs
potential for a possible transformation is calculated according to Eq. (10.19) and the decision
on acceptance/nonacceptance is made according to the Metropolis procedure. Step (2) of the
above-mentioned algorithm artificially increases the probability of nucleus growth. Otherwise
the subcritical embryo would be most probably destroyed and the formation of a supercrit-
ical nucleus would require a very long computation time. The results of the simulation are
presented for sharp and smooth concentration gradients in Fig. 10.6.

Effect of Elastic Stresses

In the previous analysis, the difference of molar volumes of the new and parent phases leading
to stresses and additional energy terms have been neglected. The influence of stresses on
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intermediate phase nucleation was studied in detail in Ref. [35]; the respective results will be
summarized here. We consider the case that the lattice of the intermediate phase differs from
the parent lattice to such extent that the interface nucleus phase is incoherent from the very
beginning. Taking into account elastic stresses, one can represent the change of the Gibbs free
energy due to nucleation in the following form:

�G = �Gbulk + �Gsurf + �Gelastic , (10.20)

where the first two terms have been described above; the elastic term is written under the
assumption of a spheroidal nucleus shape employing the Nabarro model

�Gelastic = 2

3
µ
2nV E

(
R⊥
R||

)
.

Here 
 is the dilatation (
 = (vp − v i)/vp, where v i and vp are the atomic volumes of the
intermediate and parent phases), V is the volume of the nucleus, E is the Nabarro function (see
below), 2R1 is the longitudinal size, 2R2 is the transversal size, and µ is the shear modulus of
the parent phase.

The Nabarro function is quite well approximated by the polynomial

E (x) = 3
4πx − 3

(π

2
− 1

)
x2 +

(
3
4π − 2

)
x3 .

Employing the above given relations, a simple algebra leads to the following dependence of
the Gibbs potential on the nucleus volume and shape factor ϕ = (R⊥/R||),

�G (V , ϕ) = −n�gmV + C3

(
1

ϕ

) 4
3

V
5
3

+ C4


ϕ

2
3 +

ln
(√

ϕ2 − 1 + ϕ
)

√
ϕ2 − 1

(
1

ϕ

) 1
3


 V

2
3 + 2

3µ

(
v i − vp

)2

vp E

(
1

ϕ

)
nV ,

(10.21)

where

C3 = πng′′

10
(

4
3π

) 2
3

, C4 = 2πσ(
4
3π

) 2
3

.

The shape is optimized at every fixed volume and then the dependence �G (V ) for the op-
timized shape is investigated. As follows from a detailed analyis, taking account into the
elastic energy changes the main results only quantitatively. The critical gradient still ex-
ists, but slightly decreases. Calculations have been carried out for the following parame-
ters: αnew = 7.77 × 10−19 J, �gmax ≡ gnew

0 − gold
0 = 7.77 × 10−21 J, σ = 0.15 J m−2,

µ = 5 × 1010 N m−2. The dilatation was varied from 0 to 0.1. The dependences of the nucle-
ation barrier on the concentration gradients for different dilatations are shown in Fig. 10.7.
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Figure 10.7: Dependence of the intermediate phase nucleation barrier �Gcr on the concen-
tration gradient ∇C (in m−1) for different values of dilatation: (a) 
 = 0.00, (b) 
 = 0.01,
(c) 
 = 0.03, and (d) 
 = 0.05

Nucleation is practically suppressed for a sufficiently high nucleation barrier �Gcr >
60kBT . We took T = 600 K (at which solid-state amorphizing reactions take place in the
system Ni–Zr). One can see that the value of the critical gradient changes slightly, but the
height of the nucleation barrier for gradients near the critical value can change significantly.
For example, at a concentration gradient ∇C = 3×108 m−1 the dilatation 
 = 0.05 increases
the nucleation barrier by 65% and the nucleation probability decreases by 3 × 106 times.
Stresses influence the nucleus shape as well (Fig. 10.7). Both factors – concentration gradient
and stress – lead to plate-like nuclei. Thus, stresses arising due to nucleation of intermediate
phases can influence the nucleation probability if the concentration gradient is close to the
critical value (above which nucleation is totally forbidden).

Shape Optimization for Clusters with Rotational Symmetry:
Rigorous Analytical Approach

Nucleation of phase 1 from the parent phase is considered at a first stage as a nondiffusive
transformation without compositional changes involving only the reconstruction of the lattice.
The change of the Gibbs free energy caused by nucleation can be expressed as

�G = n

x=R||∫
x=−R||

�g (C(x)) πy(x)2 dx + σ

x=R||∫
x=−R||

2πy(x)

√
1 +

(
dy

dx

)2

dx , (10.22)

if one neglects stresses and crystal peculiarities and considers the nucleus to be a body of
revolution with arbitrary boundary shape y(x). The second term is the ordinary surface energy.
The first term shows the gain in the bulk Gibbs free energy at nucleation taking into account
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Figure 10.8: Shape parameter ρ = R⊥/R|| versus the nucleus volume V (in m−3) at dilata-
tions 
 = 0.0, 0.05, 0.07, 0.10 and a concentration gradient ∇C = 2.2 × 108 m−1 (curves
a′, b′, c′, d ′) and without gradient (curves a, b, c, d)

the nonuniformity of the driving force. In the case of a constant value of �g the first term
would depend only on the volume, not on the shape. The shape would be determined by the
minimization of the second term and would be spherical. If the concentration gradient exists
the first term depends on the shape as well. The shape can be found from the variation problem
for �G (y (x) , V ) at every fixed volume V . Then one can build the dependence �G (V )
considering the shape to be optimized for every V . Omitting rather tricky mathematics and
the details of the numeric algorithm (cf. [32]), we review here only the main results.

We found the existence of a scale invariance: The nucleus shape depends on the vol-
ume and concentration gradient via the ratio V/L2 (strictly speaking, via the parameter P =
(C1V/C2L2), where C1 = (ng′′/2 (2π)

2
3 ), C2 = (2πσ/ (2π)

2
3 )). We determined the optimal

nucleus shape and the dependence �G (V ) for values of P varying from 0 to 20. For larger
values of P the convergence interval becomes very narrow and to get into this interval one
must take very small steps �V .

As mentioned above the nucleus shape is determined only by the parameter P . At first,
both longitudinal and transversal sizes increase, but the transversal size increases faster, so
that deviations from spherical shape also increase. Yet the shape differs substantially from
spheroidal: the corresponding coefficient of variation increases with P (0.5% at P = 0.5 and
21% at P = 15.8). Thus, according to our calculations, if the nucleus can grow, it must form
almost flat “pancake” like islands. The dependence of the change of the Gibbs potential on the
nucleus volume is determined by the concentration gradient or by the parameter L. At L < L∗
this dependence appeared to be monotonic (Fig. 10.8(a)), which implies a thermodynamic
prohibition of the new intermediate phase formation at a sharp concentration gradient (initial
stage of reactive diffusion). At L < L∗, the dependence �G (V ) has a familiar form with a
maximum corresponding to the critical nucleus. In contrast to the result obtained for the case
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of spherical nuclei, a second extremum – a minimum – is absent. This result implies that in the
absence of stresses the transversal growth of nuclei is restricted only by other nuclei and/or by
sample borders.

Completing the analysis, we give below a summary of results for the polymorphic nucle-
ation mode:

1. Nucleation of an intermediate phase is thermodynamically forbidden if the diffusion zone
is too narrow:(

∂C

∂x
>

1

L∗

)
.

2. If nucleation is possible at(
∂C

∂x
<

1

L∗

)
,

the nucleus has a nonspherical shape which differs substantially from a spheroidal one.
Its shape is determined by the ratio (V/L2).

3. The nucleus grows mainly in a direction transversal to the concentration gradient; the
ratio (R⊥/R||) tends rapidly to infinity with increasing volume and can be restricted only
by other nuclei or sample borders or by composition fluctuations.

4. Nucleation at the grain boundary changes the results only quantitatively.

5. Taking into account elastic stresses practically does not change the critical value of the
concentration gradient but changes the nucleation barriers.

10.3.3 Transversal Nucleation Mode

The transversal nucleation mode was first introduced by Desre and Yavari [24] for cubic nu-
clei without shape optimization. In 1998 shape optimization was performed by Hodaj, Gusak,
and Desre [15] for the simplest case of parallelepipeds in the following way. Let an embryo
(nucleus) in the form of a parallelepiped 2h ×2h ×2r be formed in the concentration gradient
∇C of a metastable parent phase (2r along ∇C). Every thin slice 2h × 2h × dx with a con-
centration Cnew(x) forms at the cost of the slice ∞ × ∞ × dx with the concentration Cold(x)
according to the rule of parallel tangents (Fig. 10.9).

To avoid the misunderstanding, we will prove this rule. Consider a small volume �V of
the new phase with a concentration Cnew and components B, formed in a large volume V0 of
the old phase with an initial concentration Cold (V0 � �V ). The formation of the new phase
slightly changes the concentration of the old phase, so that �C = (Cold−Cnew/V0−�V )�V
(taking conservation of matter into account). The change of the Gibbs free energy due to new
phase formation is then given by

�G = σ S + n
[
gnew (

Cnew)�V + gold
(

Cold + �C
)

(V0 − �V ) − gold
(

Cold
)

V0

]
,
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Figure 10.9: Left: Scheme of driving forces per atom of the nucleus for (a) polymorphic,
(b) transversal and (c) total mixing modes. Right: Scheme of transversal nucleation modes;
vertical arrows show the direction of redistribution in the slice dx

with

gold
(

Cold + �C
)

≈ gold
(

Cold
)

+ ∂gold

∂C
�C .

Here S is the interface area, and σ is the surface tension. Substituting �C from the condition
of conservation of mass, one obtains

�G = σ S − �V n

(
gold

(
Cold

)
+ ∂gold

∂Cold

(
Cnew − Cold

)
− gnew (

Cnew))
= σ S − N�g .

The value �G is minimal for such Cnew, for which

∂�G

∂Cnew = 0 = −�V

(
∂gold

∂Cold
− ∂gnew

∂Cnew

)

holds. Thus, a maximal decrease of the Gibbs free energy (and the corresponding maximal
formation probability) is reached for Cnew, satisfying the rule of parallel tangents. The driving
force per atom of the nucleus (not of the total system) is equal to

�gb = gold
(

Cold
)

+ ∂g

∂C

(
Cnew − Cold

)
− gnew (

Cnew) ,
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Figure 10.10: Rule of parallel tangents

and is determined by the vertical interval between two parallel tangents as shown in Fig. 10.10.

Using the rule of parallel tangents for each thin slice dx of the parallelepiped, one obtains

�G = −n

xc+r∫
xc−r

�g
(

Cold(x) −→ Cnew(x)
)

4h2 dx + 2σ14h2 + 4σ24hr ,

where

Cold(x) = C(0) + x∇C , Cnew(x) = Cnew
0 + αold

αnew

(
Cold(x) − Cnew

0 (x)
)

.

Here σ1 and σ2 are the surface tensions for phases located perpendicular and parallel to the
concentration gradient. Rather simple algebra, analogous to that in Sect. 10.3, shows that the
optimal center for nucleation is determined by

Copt = xc∇C + C(0) = Cold
0 + Cnew

0 − Cold
0

1 − αold

αnew

. (10.23)

In this case

�G = −α8h2r + γ (∇C)2 h2r3 + 8
(
σ1h2 + 2σ2hr

)
(10.24)
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holds, where

α = n


gold

0 − gnew
0 + αold

2

(
1 − αold

αnew

) (
Cnew

0 − Cold
0

)2


 ,

γ = 4πn

3
αold

(
1 − αold

αnew

)
.

(10.25)

It is convenient to express �G as a function of the volume V = 8h2r and the shape parameter

ϕ = h

r
, r = 1

2
V

1
3 ϕ− 2

3 , h = 1

2
V

1
3 ϕ

1
3 ,

resulting in

�G (V , ϕ) = −aV 1 + (∇C)2 γ

32
ϕ− 3

2 V
5
3 + 2σ1

(
ϕ

2
3 + 2sϕ− 1

3

)
V

2
3 , (10.26)

where s = (σ2/σ1) is the Wulff parameter. The function �G (V | ϕ) has, at every fixed vol-
ume, one minimum, which is determined by the condition (∂G/∂ϕ) = 0, which gives the
following expression for the optimal shape:

ϕopt =
(

h

r

)
opt

= s

2
+

√
s2

4
+ γ (∇C)2V

32σ1
. (10.27)

For small volumes it leads to the Wulff rule

ϕopt (V → 0) = s = σ2

σ1
. (10.28)

For large volumes, the shape parameter tends to infinity as V
1
2 , i.e.,

ϕopt (V → ∞) ≈
(
∇C2V

) 1
2
(

γ

32σ1

) 1
2

, (10.29)

which implies a plate-like shape – the concentration gradient limits the longitudinal size,

rV →∞→rmax =
(

4σ1

γ (∇C)2

) 1
3 ∼ (∇C)−

2
3 , (10.30)

but does not limit the transversal growth,

hV →∞ ∼ V
1
3

(
V

1
2

) 1
3 = V

1
2 → ∞ .

One can see that the shape parameter depends on the product (∇C)2 V , which implies some
kind of scale invariance.
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Thus, the volume dependence of �G for optimized shapes is given by

�G = −αV 1 + γ (∇C)2

32


 s

2
+

(
s2

4
+ γ (∇C)2 V

32σ1

) 1
2



− 4
3

V
5
3

+ 2σ1




 s

2
+

(
s2

4
+ γ (∇C)2 V

32σ1

) 1
2



2
3

+ 2s


 s

2
+

(
s2

4
+ γ (∇C)2 V

32σ1

) 1
2



− 1
3


 V

2
3 . (10.31)

In the limiting cases of small and large volumes, we have

�G (V → 0) ≈ 6
(
σ1σ

2
2

) 1
3

V
2
3 ,

�G (V → ∞) ≈

−α + (∇C)

2
3

3

2

(
σ 2

1 γ

4

) 1
3

 V 1 ,

(10.32)

respectively. One can easily see that, depending on the value of the concentration gradient, �G
can be a monotonically increasing function or nonmonotonic with a maximum (nucleation
barrier). For

∇C > (∇C)crit = 4α

3σ1

(
2

3

a

γ

) 1
2

nucleation is forbidden; for

∇C < (∇C)crit

nucleation is possible. Thus, the transversal mode under the condition of shape optimization,
gives qualitatively the same results as the polymorphic mode:

1. Nuclei should be more plate-like – the more the volume, the more the concentration
gradient – the shape being determined by their product (∇C)2 V .

2. Nucleation is forbidden if the concentration gradient exceeds a certain critical value about
108–109 m−1.

10.3.4 Total Mixing Mode of Nucleation

Another possibility of nucleation in a fixed gradient is a redistribution of components only
inside the forming nucleus resulting in a constant concentration Cnew and a new lattice, and
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an unchanged gradient outside the nucleus. In this case, the change of the Gibbs free energy
due to formation of the nucleus of the parallelepipedal shape 2h × 2h × 2r is given by the
following expression:

�G = 4
(

2σ1h2 + 4σ2hr
)
+n4h2

xc+r∫
xc−r

{
gnew

[
Cnew(x) − gold

(
Cold(x)

)]}
dx , (10.33)

where xc is the coordinate of the nucleus center,

Cold(x) = C(0) + x∇C , Cnew(x) = C(0) + x∇C = const ,

and gnew and gold are parabolic as in previous sections. Optimization of the place of nucle-
ation xc gives

C (0) + xc∇C = Cnew
0 − Cold

0

1 − αold

αnew

+ Cold
0 . (10.34)

For this optimal place of nucleation simple mathematics leads to the relation

�G = 4
(

2σ1h2 + 4σ2hr
)

− α8h2r + γ|| (∇C)2 h2r3 , (10.35)

where

α = n


gold

0 − gnew
0 + αold

2

(
Cnew

0 − Cold
0

)2

1 − αold

αnew


 , γ|| = −4n

3
αold . (10.36)

The main peculiarity here is the negative sign of γ||. This property implies that, in contrast
to the polymorphic and transversal modes, in the case of operating the total mixing mode the
concentration gradient favors nucleation. Therefore, at any concentration gradient nucleation
via the total mixing mode is always possible in thermodynamic sense. As we will see at the
end of this chapter, kinetics can nevertheless suppress such nucleation mode.

The most interesting feature in the case of total mixing mode is the behavior of the shape
of the nuclei. The dependence �G (ϕ) is, at fixed volumes, nonmonotonic with one minimum
and one maximum for small volumes (Fig. 10.11(a)) and monotonically increasing for large
volumes (Fig. 10.11(b)). The extremum condition (∂G/∂ϕ) leads to

ϕ2 − Sϕ + γ|| (∇C)2 V

32σ1
= 0

with two solutions

ϕ1,2 = S

2
±

√
S2

4
− γ||

(∇C)2 V

32σ1
.
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Figure 10.11: Dependence of �G on the shape parameter ϕ for the total mixing mode at small
((a) (∇C)2V < (8S2σ1/γ||)) and large ((b) (∇C)2V > (8S2σ1/γ||)) values of (∇C)2V
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Figure 10.12: “Phase shape transition” for the total mixing mode

The first solution corresponds to a metastable minimum and the second to a maximum. These
solutions disappear for (∇C)2 V > (8S2σ1/γ||), so that the nucleus should rapidly transform
into a needle-like structure (see Fig. 10.12). Thus, one has something like a shape phase tran-
sition. Obviously all above-mentioned considerations are valid only for ∇C = const along the
nucleus, so that the needle cannot exceed the size of the diffusion zone. Of course, the total
mixing mode should operate as well if the redistribution in the transversal direction in the
parent phase is absent. For this case, the diffusivity of the new phase should be much larger
than that of the old one.
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10.4 Thermodynamics of Nucleation at the Interface:
The Case of Limited Metastable Solubility

10.4.1 Nucleation of Line Compounds
at the Interface during Interdiffusion

Let us consider now the case that phases L and R have already developed some concentra-
tion profiles CL(X) and CR(X) with a concentration gap (CL R, CRL) and metastable regions
(CLi , CRL) and (CL R, CRi ), favorable for nucleation of a line compound “i” (Fig. 10.13).
Let us find the change of the Gibbs free energy due to nucleation (by transversal mode) of a
parallelepiped 2h × 2h × 2r of the new phase with 2h being the size in the lateral (axes Y , Z )
directions under the influence of a concentration gradient in the longitudinal (axis X) direc-

�g

C
Li

X

A B

i

0 1C
LR i

C C
B C

Ri
C

RL

region favourable
for nucleation

L

R

L

R

x=0
y

interface /L R

2
r

L R

�gi

Figure 10.13: Schematic representation of intermediate phase nucleation at the L/R interface
with L and R being the parent phases. �gi is the driving force per mole of atoms for the L +
R → i reaction. The distribution of the nucleus volume among the phases is determined by an
additional optimization procedure
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tion. The longitudinal size 2r consists of parts overlapping the phases L and R and originated
from these phases, i.e., 2r = rL + rR . Then we get

�G = 4h2 (σi L + σi R − σL R) + 4(2h) (rLσi L + rRσi R )

+ 1



y∫
y−rL

�g (CL(X) −→ Ci ) 4h2 d X + 1



y+rR∫
y

�g (CR(X) −→ Ci ) 4h2 d X .

(10.37)

Here  is the atomic volume of phase “i”, σi L , σi R , and σL R are the corresponding sur-
face tensions, and y specifies the position of the L/R interface with respect to the x-axis
(x = 0 is located at the center of the embryo). The driving forces per atom of the nucleus for
Lmetast −→ i and Rmetast −→ i precipitation are expressed by the “parallel tangents rule”
(not to confuse with the “common tangent rule”); for Lmetast −→ i , we get

−�g (CL (X) −→ Ci ) = gL (CL (X)) − gi − (CL (X) − Ci )
∂gL

∂C

∣∣∣∣
C=CL(X)

(10.38)

and a similar expression for Rmetast −→ i by analogy. Further we employ expansions into
Taylor series both for concentrations and for Gibbs free energies per atom, resulting in

CL (X) ≈ CL (y) + (X − y) ∇CL |X=y−0 for X < y ,

CR (X) ≈ CR (y) + (X − y) ∇CR |X=y+0 for X > y ,
(10.39)

gL (CL) ≈ gL (CL R) + (CL − CL R) g′
L + (CL − CL R)2

2
g′′

L ,

gR (CR) ≈ gR (CRL) + (CR − CRL) g′
R + (CR − CRL)2

2
g′′

R .

(10.40)

Here the first- and second-order derivatives with respect to the concentration are taken at the
metaequilibrium compositions CL R and CRL (see Fig. 10.13). Substitution of Eqs. (10.39)–
(10.40) into Eq. (10.38), and then Eq. (10.38) into Eq. (10.37) gives, after simple but extended
algebra,

�G =
[
4h2 (σi L + σi R − σL R) + 42h (rLσi L + rRσi R )

]
+ �gi

4h2


(rL + rR)

+ 2h2



[
(Ci − CL R) g′′

L∇CLr2
L + (CRL − Ci ) g′′

R∇CRr2
R

]
+ 2h2

3

[
g′′

L (∇CL)2 r3
L + g′′

R (∇CR)2 r3
R

]
. (10.41)

Here (−�gi) is the driving force of the reaction L + R −→ i per atom of i .
The first two terms in Eq. (10.41) represent the classical model of heterogeneous nucle-

ation �Gclassic (yet, without taking into account Young’s equilibrium conditions at the three-
phase junctions – otherwise we would have a nonsymmetrical cap with much less transparent
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mathematics for the gradient effects). The gradient effect is represented here both by linear
∇C terms and by quadratic (∇C)2 terms providing, respectively, a fourth and fifth order power
size dependence. In the case of total metastable solubility, the optimization of the nucleation
place had led to elimination of the linear terms in the concentration gradient (Sect. 10.3). In
the case of limited solubility, they remain and, moreover, may play a decisive role. Indeed,
rL∇CL is evidently less than the metastable composition range �CL = CL R − CLi of the L-
phase and rR∇Cr < �C = CRi −CRL . If we consider as parent only those phases with small
mutual solubility (as we do here!), then we can neglect the terms (∇C)2 r3 in comparison with
(∇C)1 r2, since ∇Cr � 1. In this case, we arrive at

�G = �Gclassic + 2h2



[
(Ci − CL R) g′′

L∇CLr2
L + (CRL − Ci ) g′′

R∇CRr2
R

]
. (10.42)

Equation (10.42) is the basic one for the further analysis.
Minimization of �G with respect to rL or rR (with fixed sum 2r ) results, in the particular

case of equal surface tensions σ for all interfaces, in

rL = 2r
�

1 + �
, rR = 2r

1

1 + �
(10.43)

with

� = (CRL − Ci ) g′′
R∇CR

(Ci − CL R) g′′
L∇CL

. (10.44)

Substituting Eqs. (10.43)–(10.44) into Eq. (10.42), one has the following expression for the
change of the Gibbs free energy due to nucleation,

�G = �Gclassic + 8h2r2



AL AR

AL + AR
(10.45)

with

AL = (Ci − CL R) g′′
L∇CL , AR = (CRL − Ci ) g′′

R∇CR .

The values of the products g′′∇C are the most important parameters for the further estimates.
Let us take them as known.

From Eqs. (10.43)–(10.44) it is evident that the nucleus will prefer to overlap more with
the smaller gradient term g′′∇C . Also from Eq. (10.45) one can conclude that the gradient
contribution to the change of the Gibbs free energy is controlled by the smaller of the two
terms AL and AR and determined by g′′∇C (differences of compositions are of the order of
unity). Note that for the simplest case of a cubic shape, h = r , one has, for a limited solubility
within the parent phase (instead of Eq. (10.1) for full solubility within the parent phases), the
relation

�G (r) = �Gclassic + qr4 = αr2 − βr3 + qr4 (10.46)

with

α = 20σ , β = 8�gi


, q = 8



AL AR

AL + AR
. (10.47)
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Depending on the value of q , the �G(r) dependence can be monotonically increasing (large q ,
nucleation forbidden), or with a metastable minimum (intermediate values of q), or with a sta-
ble minimum (small q , nucleation possible) in analogy with the results presented in Fig. 10.4.
A crossover to possible nucleation (second minimum at zero level) means

∂�G

∂r

∣∣∣∣
r∗

= 0 , �G
(
r∗) = 0 . (10.48)

It gives

r∗ = 2α

β
= 5

σ

�gi
, qcrit = β2

4α
= 4 (�gi)

2

5σ2
(10.49)

or [
AL AR

AL + AR

]crit

= (�gi)
2

10σ
. (10.50)

The intermediate phase suppression criterion is then

AL AR

AL + AR
>

(�gi)
2

10σ
. (10.51)

Let us recall that (−�gi) is the driving force of the reaction L + R −→ i per atom of i . Below
we will apply the just developed formalism to different types of adjacent phases L and R.

10.4.2 Nucleation between Two Growing Intermediate Phase Layers

Let L and R be the intermediate phases 1 and 3, growing simultaneously between mutually
almost insoluble materials A and B . We study here nucleation of phase 2 at the interface 1/3
(cf. Fig. 10.14). We suppose that 1, 2, and 3 are line compounds. In this case it is more conve-
nient to treat chemical potential gradients instead of concentration gradients. Mathematically
it can be done via

g′′
1∇C1 = ∂

∂ X

(
∂g1

∂C

)
≈

∂g1
∂C

∣∣∣
13

− ∂g1
∂C

∣∣∣
1α

�X1
=

g3−g1
C3−C1

− g1−gm
α

C1−0

�X1

= C3

C1 (C3 − C1)

(−�g10)

�X1
,

(10.52)

where (−�g10) is a driving force of the reaction A + 3 −→ 1 (see Fig. 10.14). Similarly,

g′′
3∇C3 = 1 − C1

(1 − C3) (C3 − C1)

(−�g30)

�X3
, (10.53)

where (−�g30) is a driving force of reaction 1 + B −→ 3. Thus, in this case, we have

AL = A1 = w1
(−�g10)

�X1
, AR = A3 = w3

(−�g30)

�X3
, (10.54)
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Figure 10.14: Schematic representation of phase 2 nucleation between phases 1 and 3 already
growing in an A/B couple. �g10, �g30, and �g20 are the driving forces per mole of atoms for
the reactions A + B → 1, A + B → 3, and 1 + 3 → 2, respectively

where

w1 = (C2 − C1) C3

C1 (C3 − C1)
, w3 = (1 − C1) (C3 − C2)

(1 − C3) (C3 − C1)
. (10.55)

Then, the phase 2 suppression criterion (10.51) can be easily reduced to the following form:

�g10

�g30

ξ3

w3
+ �g30

�g10

ξ1

w1
< 5

�g10�g30

(�g20)
2 , (10.56)

where

ξ1 = �X1(
2σ
�g10

) = �X1

lcr
1

, ξ3 = �X3(
2σ
�g30

) = �X3

lcr
3

. (10.57)

Note that w1 and w3 are of the order of unity.
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Figure 10.15: Schematic representation of phase 2 nucleation between intermediate phase 1
and the diluted solution, β, already growing in an A/B couple. �g10 and �g20 are the driving
forces per mole of atoms for the reactions A + B → 1 and 1 + β → 2, respectively

If phases 1 and 3 are mutually symmetric (�g10 = �g30 , w1 = w3), then the criterion
Eq. (10.51) is reduced to

�X1

lcr
1

+ �X3

lcr
3

< 5
(�g10)

2

(�g20)
2 . (10.58)

�g20 is a driving force of the reaction 1(L) + 3(R) −→ 2 (see Fig. 10.14).
If phase 1 is much wider than phase 3, i.e.,

�X1

�X3
�

(
�g10

�g30

)2

,

then one can show that nucleation of phase 2 is preferable at the side of phase 1 (rR ≈ 0), and
the criterion (10.58) is reduced to

�X1

lcr
1

< 5
(�g10)

2

(�g20)
2

. (10.59)
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The estimates (10.58) and (10.59) are very important. They demonstrate that the critical thick-
ness of the first (and fast) growing phase can be rather large, since the driving force of the
second phase formation (from already growing phases 1 and 3) is often significantly less than
that of the first phase formation from one compound and one pure element (see Fig. 10.14).

10.4.3 Nucleation between Growing Intermediate Phase
and Dilute Solution

Let L and R be respectively the growing phase 1 and the diluted solution of A in B (β). In
this case the phase 2 suppression criterion is(

A1 Aβ

A1 + Aβ

)
>

(�g20)
2

10σ
(10.60)

with, as before,

A1 = (C2 − C1) g′′
1∇C1 = w1 (10.61)

and

Aβ = (
Cβ1 − C2

)
g′′
β∇Cβ ≈ (1 − C2)

kB T

1 − Cβ
∇Cβ . (10.62)

In the above equations, �g10 and �g20 are the driving forces of the reactions A + B → 1 and
1(L) + B(R) → 2, respectively (see Fig. 10.15).

To express the gradient in a diluted solution in the presence of a growing intermediate
phase, one has to solve the following set of algebraic equations for simultaneous parabolic
growth of the phase 1 layer and of the β-solution with parabolic movement of interfaces A/1
and 1/β

C1
kA1

2
= − D1�C1

k1β − kA1
, (10.63)

(1 − C1)
k1β

2
= D1�C1

k1β − kA1
−

√
Dβ

π

(
1 − Cβ1

) exp

(
− k2

1β

4Dβ

)

1 − erf

(
k1β

2
√

Dβ

) , (10.64)

where yA1 = kA1
√

t and y1β = k1β
√

t . Analytically, we can treat the limiting case (which
is most often encountered) given by the conditions Dβ � D1�C1 (very low diffusivity in
solution, which is common for high melting B). Omitting elementary algebra and expansions
into Taylor series, we will immediately get the results, i.e.,

k1β ≈
√

C1

1 − C1

√
2D1�C1 , �X1 ≈

√
1

C1 (1 − C1)

√
2D1�C1t ,

∇Cβ ≈ (
1 − Cβ

)√ C1

1 − C1

√
2D1�C1

2D2
β t

,

(10.65)
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so that

Aβ ≈ (1 − C2)

√
C1

1 − C1

√
2D1�C1

kBT

2Dβ
√

t

and

A1

Aβ
= C2 − C1

C1 (1 − C2)

�g10

kB T

Dβ

D1�C1
� 1 (10.66)

holds. By the above given conditions, the relation (A1 Aβ/A1 − Aβ) ≈ A1 is fulfilled and the
suppression criterion is

�X1

lcr
1

< 5
C2 − C1

C1 (1 − C1)

(
�g10

�g20

)2

. (10.67)

Thus, in the case of a smaller driving force for the second phase and low diffusivity in B the
thermodynamic suppression of phase 2 may be rather significant. Consequently, the best can-
didates for the suppression of the second phase by chemical potential gradients are the systems
with a large difference in melting temperature between the constituents. More probably, the
first phase to grow will be that phase which is more close to the low-melting-point element.
Then, for the second phase we will have the situation as analyzed in this section.

10.5 Kinetics of Nucleation in a Concentration Gradient

The thermodynamic possibility of nucleation does not guarantee new phase formation due to
kinetic constraints, caused by finite rates at interfaces and, first of all, by diffusional interac-
tions between the newly born and parent phases. For this reason, we will analyze, in addition
to the thermodynamic factors discussed before, peculiarities of the kinetics of nucleation in
concentration gradients.

10.5.1 Kinetics of Intermediate Phase Nucleation
in Concentration Gradients: Polymorphic Mode

As we have seen in Sections 10.3 and 10.4, in fact, nucleation can be inhibited by too sharp
concentration gradients. Therefore, the system should wait and prepare sufficiently smooth
concentration profiles in the contact zone as a prerequisite for subsequent nucleation.

According to the classical nucleation theory, nucleation is some kind of a miracle (pro-
ceeding in violation of the second law of thermodynamics) and consists of sequential elemen-
tary miracles of one-by-one attachment events. Following the classical approach [40], one can
describe the statistics of such miracles in the framework of a Fokker–Planck approach. Let us
start with the assumption that at the initial stage of nucleus formation, the rearrangement of
the lattice can take place without a modification of composition, i.e., let us assume a polymor-
phic transformation. The appropriate generalization of the Gibbs theory of nucleation for this
case was developed already in Sect. 10.3 and will be employed now.
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The evolution of the system of aggregates of the new phase will be described in terms
of the continuous distribution function f (N, t) (cf. also Chapter 3). Here f (N, t) d N is the
number of aggregates in the range of cluster sizes N, N + d N at time t . The distribution
function f (N, t) for the nuclei of a new phase is determined by the Fokker–Planck equation

∂ f (N, t)

∂ t
= ∂

∂ N
(�ν f ) + ∂2

∂ N2 (ν̄ f ) = − ∂ j

∂ N
, (10.68)

where the “density of fluxes” j in size space consists of drift term �ν f and the “diffusional,”
purely stochastic term ν̄ f , which makes the very process of nucleation possible.

In the present analysis, ν̄ = ((ν+ + ν−)/2) is assumed to have a constant value, where ν±
are the frequencies of increase (or decrease) of the number N of atoms or molecules in a cluster
by one A-atom joining (leaving) the embryo lattice (in combination with k B-atoms required
for preserving the stoichiometry A1 Bk). �ν = ν+−ν− depends on the thermodynamic driving
force via

�ν = − 1

kBT

∂G

∂ N
ν̄ . (10.69)

In the case of phase formation by the polymorphic mode, the gradient term is positive (the con-
centration gradient inhibits nucleation). Assuming a spherical nucleus shape, the dependence
of the Gibbs free energy on the number of atoms in the nucleus has the following form:

�G (N) = �gm N +
(

3

4πn

) 2
3 g′′

10
(∇C)2 N

5
3 +

(
3

4πn

) 2
3

4πσ N
2
3 . (10.70)

Here g′′ is the second-order derivative of the Gibbs free energy per atom with respect to the
concentration of the new phase. If the concentration gradient in the nucleation place changes
according to a parabolic law via

(∇C)2 = 1

4π Dparentt
, (10.71)

then the drift term in the Fokker–Planck equation explicitly depends on time. Physically such
dependence results in the lowering of the nucleation barrier due to interdiffusion in the parent
phase(s).

For the further analysis, it is convenient to employ the dimensionless variables

τ ≡ ν̄t , α ≡ �gm

kBT
< 0 , β = C3

g′′ ν̄

kBT
24π Dparent

, γ ≡ C3
8πσ

3kBT
, (10.72)

where C3 = (3/4πn)
2
3 holds. Treating ν̄ approximately as a constant, we have

∂ f (N, t)

∂τ
= ∂2 f

∂ N2 + ∂

∂ N

[
f

(
α + β

N
2
3

τ
+ γ

N
1
3

)]
. (10.73)
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Figure 10.16: Dependence �G(N) for sharp concentration gradients ∇C (small annealing
times)

A numerical solution of the latter equation has been obtained for a fixed total number of
nucleation sites (heterogeneous nucleation)∫

f (N, t) d N = const . (10.74)

The evolution in time of the size distribution f (N, t) corresponds to the evolution of the po-
tential field �G(N) but is shifted in time. For small annealing times, when the concentration
gradient remains sharp enough, the dependence �G(N) monotonically increases so that nu-
cleation is thermodynamically forbidden (cf. Fig. 10.16). During this period, the distribution
f (N) remains monotonically decreasing. After a certain thermodynamic “incubation time,”
when the concentration gradient in the parent phase becomes less than the critical value, nu-
cleation becomes thermodynamically possible (�G(N) becomes nonmonotonic with a max-
imum corresponding to the nucleation barrier). Yet, the distribution function f (N) reveals a
maximum not immediately, but after a certain “kinetic incubation period” (Fig. 10.17).

We define an incubation time as a period of peak formation for the size distribution func-
tion f (N) (not counting an initial peak at N = Nmin). Obviously, in a dimensionless time
scale τ , the incubation time (τinc) should depend on the ratio of two kinetic parameters, ν̄ and
Dparent.

The dependences τinc
(
Dparent/ν̄

)
are shown for different values of the surface tensions in

Fig. 10.18. To evaluate the realistic range of the ratio (D/ν̄) one should take into account that
the frequency ν can be estimated as

ν ∼ N
2
3

Dboundary

λ2
,

where Dboundary is the diffusivity at the interface between the new and old phases, N is the
number of atoms in the nucleus, and λ is the characteristic length of random walk of the atom
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looking for a suitable place of joining the new phase. It is reasonable to suppose that the
conditions Dboundary > Dparent and λ > a hold, where a is an atomic distance. If N ∼ 30,
then λ ∼ 10−10–10−8 m and (D/ν̄) has values in the range 10−17–10−21 m2. One can notice
that with growing diffusivity of the parent phase, the dimensionless incubation time decreases
to some asymptotic level. It means that this level represents the time for nuclei growth even
when gradient effects do not hinder nucleation. Then we may consider the difference τ − τmin
as a time of “concentration preparation.”

10.5.2 Kinetics of Nucleation via the Total Mixing Mode

For the total mixing mode, the gradient term (factor γ ) in Eq. (10.73) is negative, i.e., the
concentration gradient ∇C supports the nucleation process. For this reason, the results of
the calculation for the total mixing mode differ substantially from those for the polymorphic
mode. First of all, nucleation is never suppressed. Moreover, the nucleation behavior may be
oscillatory as well. For a certain range of parameters the time evolution of the new phase
volume is nonmonotonic (see Fig. 10.19). A similar nonmonotonic behavior is observed as
well for the number of smallest embryos (in our case Nmin = 5) for the same thermodynamic
parameters except surface tension (Fig. 10.19).

Why are the embryos generated intensively at the very first stage and then are partially
dissolved? Our answer is the following: For the total mixing mode the gradient term supports
nucleation. At first the gradient is large making the nucleation barrier low and the nucleation
process easy. With time the gradient decreases, and the nucleation barrier and the critical nu-
cleus size increase. Therefore, particles that had been generated earlier as supercritical and
which did not manage to reach the new critical size find themselves to be subcritical and are
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dissolved. In other words, if the growth rate of the particles is less than the rate of the critical
size growth (due to decreasing concentration gradient), these particles will be disintegrated.
We observed such nonmonotonic behavior of new phase formation during interdiffusion also
by Monte Carlo simulations both for second-order and first-order phase transitions in a con-
centration gradient [45, 46].

10.5.3 Interference of Nucleation Modes

As we have just seen, nucleation of an intermediate phase during reactive diffusion can pro-
ceed via different “modes,” each being characterized by its own nucleation barrier, own fre-
quency factor, and own shape/volume dependence. We restricted ourselves to a special shape,
to parallelepipeds, retaining only one free shape parameter ϕ = (h/r), where 2h and 2r are
the nucleus sizes in transversal and longitudinal directions. In general, every mode has its own
velocity determined by diffusivities and embryo shape.

In Ref. [30], we considered the interference of two modes – transversal and total mixing.
Nucleation modes operate simultaneously with different rates

ν+/− (N) = ν
(b)
+/− (N) + ν

(c)
+/− (N) . (10.75)

Rather tricky mathematics, using the steady-state solutions of the Fokker–Planck equation
with additive contributions to frequencies from two modes, demonstrated that interference
leads to a dependence of the effective nucleation barrier on the ratio of the kinetic parameters
– the larger the diffusivity of the new phase, the lower the effective nucleation barrier.
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The specific form of the function �G̃cr
(∇̃c

)
(reduced to a dimensionless form) depends

on the ratio

� = Di

4D
exp

(
−�Ḡ(c) − �Ḡ(b)

θ

)
,

including the ratio of diffusivities in intermediate and parent phases. At � < �∗, the function
�G̃cr(∇̃c) is nonmonotonic with a maximum (Fig. 10.20), which shifts to zero ∇̃c with in-
creasing � to �∗. With decreasing to zero values of � this maximum �Gmax

cr tends to infinity
(the transversal mode is overwhelming). At � > �∗, the function �G̃cr

(∇̃c
)

is monotonic
– the sharper the concentration gradient, the less the nucleation barrier (total mixing mode is
overwhelming). Thus, strictly speaking, there is no critical gradient in the general case, and
nucleation of an intermediate phase is possible at any gradient due to the possibility of the to-
tal mixing mode. Instead of a critical gradient, above which nucleation would be impossible,
a characteristic gradient exists at which the probability of nucleation has its smallest values.

In the process of interdiffusion, in the parent phase the concentration gradient decreases
and the nucleation barrier increases first. It means that the nuclei of the new phase, formed at
the very beginning, can become subcritical at a later stage (if they had no time for growth).
Therefore, an oscillatory regime of intermediate phase formation can be possible. Thus, the ki-
netic constraints and the interference of different nucleation modes lead to effective nucleation
barriers depending on the ratio of diffusivities as well as on usual thermodynamic factors.
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11 Is Gibbs’ Thermodynamic Theory
of Heterogeneous Systems Really Perfect?

Jürn W. P. Schmelzer, Grey Sh. Boltachev, and Vladimir G. Baidakov

The strongest arguments prove nothing
so long as the conclusions are not verified by experience.

Experimental science is the queen of sciences
and the goal of all speculation.

Roger Bacon

The important thing in science is not so much
to obtain new facts

as to discover new ways of thinking about them.

Sir William Bragg

The theory determines what can be measured.

Albert Einstein

Results of a critical analysis of the advantages and shortcomings of the classical Gibbs’ ap-
proach to the description of heterogeneous systems in application to the determination of
the parameters of the critical clusters and the work of critical cluster formation in nucleation
theory are outlined. A generalization of Gibbs’ classical approach is developed allowing us
to give a theoretically well-founded description not only of thermodynamic equilibrium but
also of thermodynamic nonequilibrium states consisting of a cluster or ensembles of clusters
of, in general, arbitrary sizes and composition in the otherwise homogeneous ambient phase.
Most importantly, the generalization of Gibbs’ approach allows us to incorporate into the de-
scription a dependence of the surface tension of the clusters of arbitrary sizes on the state
parameters of both coexisting phases. In application to the determination of the parameters of
the critical clusters, the generalized Gibbs’ approach results in relations different, in general,
from the equilibrium conditions as derived by Gibbs. For macroscopic phases (large sizes of
the critical clusters), the results coincide. However, for clusters of nanometric sizes, the gener-
alized Gibbs’ approach leads to different results for the determination of the state parameters
of the critical clusters and the work of critical cluster formation as compared with the classical
Gibbs’ method. As one of the highly important consequences, the results of the generalized
Gibbs’ approach turn out to be in qualitative and partly even quantitative agreement with the
van der Waals square gradient and more advanced density functional computations of the pa-
rameters of the critical clusters and the work of critical cluster formation. The generalized
Gibbs’ approach allows us to advance, in addition, the hypothesis that the clusters of critical
sizes have different temperatures as compared with the ambient phase. If this result will be
confirmed by further independent methods it follows that nucleation is, in principle, a non-
isothermal process. Taking into account this principal nonisothermal character of nucleation
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will result then in a variety of additional consequences with respect to the determination of
the parameters of the critical clusters and the work of critical cluster formation.

11.1 Introduction

Despite many years of intensive research, the theoretical description of the kinetics of nu-
cleation and the subsequent growth is still a challenging topic of research. One of the basic
problems one is confronted with the analysis of these phenomena is the description of the state
of the clusters evolving in the course of the nucleation-growth process and, in particular, the
determination of the state of the critical clusters and the work of critical cluster formation. The
work of critical cluster formation determines, in almost all existing theoretical approaches to
nucleation, essentially the steady-state nucleation rate (see, e.g. [1–10], Chapters 4 and 5).

In order to determine the state of the critical clusters and the work of critical cluster for-
mation, up to now predominantly Gibbs’ classical thermodynamic theory of heterogeneous
systems is employed [11] either in order to predict, making certain additional assumptions,
the work of critical cluster formation or, once this quantity is determined via alternative ap-
proaches such as density functional computations of different levels of sophistication, in order
to determine the properties of critical clusters [12–16]. Hereby it is commonly believed that
Gibbs’ theory is not only the first comprehensive theory but also the most perfect thermody-
namic theory of heterogeneous systems.

Indeed, already Gibbs, when analyzing his thermodynamic approach, came to a similar
quite optimistic conclusion. He wrote (cited after [17]): “Although my results were in a large
measure such as had been previously obtained by other methods, yet, as I readily obtained
those which were to me before unknown, or by vaguely known, I was confirmed in my belief
in the suitableness of the method adopted.” The power of Gibbs’ method was demonstrated
also in the further application of Gibbs’ theory for more than hundred years, now.

On the other hand, when applied to the description of critical clusters (of systems of nano-
metric sizes) the question has been advanced from time to time whether Gibbs’ theory is really
as perfect for this particular application as assumed or whether it has to be modified in one
or the other way leaving it untouched in the analysis of problems where it has demonstrated
convincingly its power. Some of such examples are the extended discussions on the necessity
of taking into account translational and rotational degrees of freedom in the description of
the work of critical cluster formation [18–20] and the analysis of a topic termed recently [21]
the Renninger–Wilemski problem [22–25]. To some extent, this discussion is directed to the
problem whether Gibbs’ method allows an appropriate description of the bulk properties of
critical clusters or not.

A detailed analysis shows that Gibbs’ classical approach does not give, in general, an
appropriate description of the bulk properties of critical clusters [15,26,27]. This shortcoming
is, as we believe, the major reason for the problems occuring in its application in nucleation
theory aimed at the interpretation of nucleation experiments [28–30]. Here one is confronted
partly with grave deviations between experimental results and theoretical predictions with
respect to the values of the nucleation rate [31, 32]. To a certain degree, these problems can
be overcome by the introduction of appropriate dependences for the curvature dependence
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of the surface tension. However, proceeding in such a way other internal contradictions may
arise [29, 31].

Another problem inherent to Gibbs’ approach consists in the restriction to an analysis of
equilibria of heterogeneous substances (cf. the title of his paper [11]). This restriction allows
us to avoid some highly nontrivial problems in the development of the thermodynamic theory
but results in a grave limitation as well. For example, it does not allow us – without the intro-
duction of more or less founded additional assumptions – to describe clusters or ensembles of
clusters in the ambient phase for nonequilibrium states, when the necessary thermodynamic
equilibrium conditions are not fulfilled (i.e., for sub- or supercritical clusters). Here it is com-
monly widely assumed – without having at ones disposal a sound theoretical basis allowing
the estimate of the accuracy of such assumption – that the properties of such clusters refer
widely to the properties of the newly evolving macroscopic phase. This lack of theoretical
foundation is highly unfortunate per se but even more taking into account the growing inter-
est in the properties of matter at nanoscale sizes. So, with respect to both nucleation and the
description of the evolution of clusters and cluster ensembles of sub- and supercritical sizes
a generalization of Gibbs’ thermodynamic approach is highly desirable. Such a generalized
thermodynamic theory could serve then as a sound basis for more detailed approaches in the
analysis of the structure of matter at the nanometer length scales.

Attempts of a generalization of Gibbs’ thermodynamic theory have been advanced by dif-
ferent authors and with different methods and results (see, e.g., [33–36] for an overview).
In all these analyses, however, Gibbs’ fundamental equation for the superficial (or interfa-
cial) parameters was basically not changed. As a result, also the form of the thermodynamic
equilibrium conditions, as derived by Gibbs in his approach, has remained unchanged. In re-
cent years, a new approach to the determination of the work of critical cluster formation in
nucleation theory has been developed [26–30, 37–46]. It was demonstrated for quite differ-
ent applications that by employing this approach, Gibbs’ [11] and van der Waals’ [12, 13]
(or more advanced density functional [14–16]) approaches to the description of the work of
critical cluster formation can be reconciled, i.e., the newly developed method leads to qual-
itatively and partly even quantitatively similar results with respect to this quantity and with
respect to the description of the properties of critical clusters as compared with density func-
tional computations. In particular, the newly developed method leads to a vanishing of the
work of critical cluster formation in the vicinity of the spinodal. In performing the respective
analysis, only the knowledge of the bulk properties of the respective phases and the values of
the interfacial tension for an equilibrium coexistence of the respective phases at planar inter-
faces have to be known in order to compute the respective quantities for clusters of critical
sizes. The thermodynamic approach, underlying the mentioned new developments, leads to
different expressions for the determination of the size parameters and the state of the critical
clusters as compared with Gibbs’ original method. For this reason, an intensive analysis of
Gibbs’ thermodynamic theory has been performed. This analysis leads to the conclusion that
Gibbs’ theory has to be modified, indeed, in order to give an adequate description both of
the state of critical clusters, the processes of their formation (i.e., the state of subcritical clus-
ters) and of the subsequent growth of supercritical clusters [28–30]. Similar conclusions were
drawn with respect to critical cluster formation recently in [21] by a different argumentation
as well. We would like to underline that both approaches – the classical Gibbs’ method and
its generalization – lead to equivalent results for phase coexistence at planar interfaces. Thus,
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the methods and results of the description of macroscopic phase equilibria are not affected by
the generalization of Gibbs’ method.

The aim of the present analysis consists in a comprehensive outline of the respective gener-
alization of Gibbs’ theory and the derivation of some further consequences for the description
of nucleation processes not discussed so far. In particular, it is shown that the condition of
equality of temperatures of the critical cluster and the ambient phase – as derived via Gibbs’
classical approach – has to be modified, in general, as well. The chapter is organized as fol-
lows: In Section 11.2, the essential ideas of Gibbs’ classical approach are summarized as the
basis for the subsequent generalization performed in Section 11.3. Some important conse-
quences are analyzed in Section 11.4. A discussion of the results and some further possible
developments (Section 11.5) completes the chapter.

11.2 Gibbs’ Classical Approach

11.2.1 Basic Assumptions

The first comprehensive thermodynamic theory of heterogeneous systems was developed
by J.W. Gibbs [11]. In Gibbs’ theory, the real system, consisting of the homogeneous bulk
phases and the interfacial region between the coexisting phases, is replaced by an idealized
model system. This model system is formed out of two homogeneous subsystems divided by
a mathematical surface, representing the interfacial zone. The deviations from additivity of
the thermodynamic quantities are expressed through the introduction of superficial quantities
formally attributed to this mathematical surface (postulate 1). In particular, for the internal
energy U , the entropy S and the mole or particle numbers of the different components, n j ,
j = 1, 2, . . . , k, of the whole system, we get

U = U1 + U2 + Uσ , S = S1 + S2 + Sσ , n j = n j1 + n j2 + n jσ . (11.1)

For the bulk contributions to the thermodynamic quantities, specified here by the subscripts
(1) and (2), the common postulates and results of the thermodynamics of homogeneous phases
are assumed to hold. In other words, both bulk phases are assumed to be in an internal ther-
modynamic equilibrium. The so-called superficial quantities Uσ , Sσ , and n jσ , introduced to
account for the deviations from additivity, depend both on the properties of the interfacial
region and on the choice of the dividing surface. They may be both positive and negative.

The superficial quantities obey – following Gibbs’ original approach [11] – a relation
similar to the fundamental equation of bulk phases (postulate 2)

dUσ = Tσ dSσ +
k∑

j=1

µ jσ dn jσ + σ d A + C1 dc1 + C2 dc2 . (11.2)

Here A is the surface or interfacial area, σ is the interfacial tension or specific interfacial
energy, c1 and c2 are the principal curvatures of the considered surface element, while the
parameters C1 and C2 describe the variation of the internal energy connected with changes
of the curvature of the surface element. Tσ and µ jσ are the values of the temperature and
chemical potentials assigned to the interface.
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As noted by Gibbs [11], he supposed his theory to be valid generally when applied to
cases in which the surface of discontinuity is spherical however small the radius may be.
For small nonsperical clusters, limitations of the applicability of his theory have to be taken
into consideration as pointed out by himself. In order to avoid these additional difficulties
and to concentrate the analysis on the principal aspects, here we consider therefore the case
of formation of spherically shaped drops or bubbles (denoted further, in general, as clusters)
leaving straightforward generalizations to a future analysis. If one restricts, as we will do,
the considerations to spherical interfaces, then Eq. (11.2) is further simplified (c1 = c2 = c,
C1 + C2 = C) to

dUσ = Tσ dSσ +
k∑

j=1

µ jσ dn jσ + σ d A + C dc . (11.3)

An integration of this equation results in

Uσ = Tσ Sσ +
k∑

j=1

µ jσ n jσ + σ A . (11.4)

The form of Eq. (11.4) is independent of the particular choice of the dividing surface; the
different quantities entering this equation do depend on this choice, of course.

A derivation of Eq. (11.4) and comparison with Eq. (11.3) yields then the well-known
Gibbs adsorption equation in the general form

Sσ dTσ + A dσ +
k∑

j=1

n jσ dµ jσ = C dc . (11.5)

Thus, in Gibbs’ approach an explicite dependence of the thermodynamic properties on the
curvature is incorporated into the description, in general. However, it was also shown already
by Gibbs [11] that for a definite choice of the dividing surface, the parameter C in Eq. (11.5)
becomes equal to zero. In such situation, the size dependence remains but enters the descrip-
tion implicitly via a possible size dependence of Tσ and µ jσ . The particular dividing surface,
corresponding to C = 0, is, following Gibbs’ notation, denoted as the surface of tension [11].
This particular dividing surface is chosen in the majority of applications of Gibbs’ theory to
processes of nucleation.

Equation (11.5) describes in Gibbs’ classical approach the change of the surface tension
with variations of the state parameters of the system. However, in order to allow definite con-
clusions, the quantities Tσ and µ jσ have to be specified. Such procedure has been performed
by Gibbs for phase coexistence in equilibrium states, exclusively (remember that the title of
Gibbs’ fundamental work [11] is “On the equilibrium of heterogeneous substances”). A brief
rederivation of Gibbs’ equilibrium conditions is given in the following section.

11.2.2 Equilibrium Conditions for Clusters in the Ambient Phase

As a particular application of Gibbs’ theory, we will consider now processes of formation of a
cluster (drop or bubble, for example) in an ambient phase. Then we will calculate the change
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of the characteristic thermodynamic potential connected with such process in dependence on
the parameters specifying the state of the cluster. Specifying, for the considered application,
the quantities describing the cluster phase by the subscript α, the characteristics of the ambient
phase by β, and the superficial quantities further by σ , one obtains

U = TαSα − pαVα +
k∑

j=1

µ jαn jα + Tβ Sβ − pβVβ (11.6)

+
k∑

j=1

µ jβn jβ + σ A + Tσ Sσ +
k∑

j=1

µ jσ n jσ ,

dU = Tα dSα − pα dVα +
k∑

j=1

µ jα dn jα + Tβ dSβ (11.7)

−pβ dVβ +
k∑

j=1

µ jβ dn jβ + Tσ dSσ + σ d A + C dc +
k∑

j=1

µ jσ dn jσ .

Here V is the volume and p is the pressure. For an isolated system with the boundary condi-
tions

V = Vα + Vβ = const, S = Sα + Sβ + Sσ = const,

(11.8)

n j = n jα + n jβ + nσ = const,

the general thermodynamic equilibrium condition (dU)S,V ,{n} = 0 [11] reads

(dU)S,V ,{n} = (Tα − Tσ ) dSα + (
Tβ − Tσ

)
dSβ

−(pα − pβ) dVα + σ d A + C dc

+
k∑

j=1

(µ jα − µ jσ ) dn jα +
k∑

j=1

(µ jβ − µ jσ ) dn jβ = 0 . (11.9)

Considering possible variations of the independent variables (chosen here to be given by the
set of quantities Sα , Sβ , n jα, n jβ , and Vα) and taking into account that for a spherical clus-
ter, the surface area, the curvature, and the volume of the cluster are dependent quantities,
Eq. (11.9) yields

µ jα (Tα, pα, {xα}) = µ jβ
(
Tβ, pβ, {xβ}) = µ jσ , j = 1, 2, . . . , k , (11.10)

Tα = Tβ = Tσ , (11.11)

pα − pβ = 2σ

R
+ C

dc

dVα
. (11.12)

Here R is the radius of the critical cluster for any of the possible choices of the dividing surface
(the position of the dividing surface has to be well defined, but a number of different definitions
can be employed). {x} denotes the sets of molar fractions of the different components that have
to be taken into account for a characterization of the state of both bulk phases. Thus, so far
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we assume that the state of both bulk phases is described by pressure, temperature, and the set
of independent molar fractions of the different components. Later we will employ alternative
sets of variables for the description of the state of the cluster and ambient phases as well, e.g.,
the set of particle densities of the different components {ρ} and the entropy density, s.

Equations (11.10)–(11.12) are a direct consequence of Gibbs’ classical approach. As evi-
dent from the considerations given above, their derivation requires exclusively the expressions
for the change of the internal energy of both bulk phases, Gibbs’ expression for the superficial
quantities (Eq. (11.3)), and the general thermodynamic equlibrium conditions (dU)S,V ,{n} =
0. No further additional assumptions are employed. Moreover, Eqs. (11.10) and (11.11) al-
low the following additional conclusion. Provided one knows the dependence of the chemical
potentials of the different components in both bulk phases on an appropriate set of state pa-
rameters, the knowledge of the state of the ambient phase allows us to determine uniquely
the bulk state parameters of the cluster phase. Hereby these reference bulk state parameters
of the cluster phase are independent of the choice of the dividing surface. In addition, em-
ploying again Eqs. (11.10) and (11.11), we can now replace Tσ and µ jσ in Gibbs’ adsorption
equation (11.5). This relation describes then, how the surface tension is varied if the system
goes over from one equilibrium state to a neighboring one. For such variations of the state of
the considered two-phase systems, the surface tension is uniquely defined by either the state
parameters of the ambient phase or those of the cluster phase (both sets of parameters are
connected uniquely by Gibbs’ equilibrium conditions (11.10) and (11.11)).

In contrast to the bulk properties of the critical clusters – following Gibbs’ classical ap-
proach – both the size of a cluster and the value of the surface tension depend, in general, on
the choice of the dividing surface. If we choose, for example, the surface of tension (specified
by a subscript s) as the dividing surface, then for any state of the ambient phase Eq. (11.12)
uniquely determines the ratio σs/Rs. Consequently, for any given state of the ambient phase
one can determine the value of the radius of the surface of tension provided one knows the
value of the surface tension, referred to the surface of tension, for this given equilibrium state.
This knowledge is sufficient for the determination of the values of the surface tension for any
other well-defined dividing surface and the respective cluster radius as well. Indeed, as shown
by Ono and Kondo [47], the term C(dc/dVα) can be expressed generally via the notional
derivative [dσ/d R] as C(dc/dVα) = [dσ/d R]. Latter expression [dσ/d R] means a varia-
tion of the position of the dividing surface, the physical state of the system being remained
unchanged. In particular, for the equimolecular dividing surface in one-component systems
(defined via nσ = 0 and characterized by the radius Re and the surface tension σe), the re-
lation [dσ/d R] = dσe/d Re holds. For multicomponent systems, such property holds for a
dividing surface introduced first by König [48] and denoted recently as König’s dividing sur-
face [49]. In any case, provided one knows the dependence of the surface tension, referred
to the surface of tension, σs, on the radius of the surface of tension, Rs, one can determine
directly both the surface tension, σ , and the radius of the dividing surface, R, for any other
well-defined dividing surface via the relation [47]

σ(R)

σs(Rs)
= R2

s

3R2 + 2R

3Rs
. (11.13)

Consequently, in order to determine the size of the critical clusters, we have to know – follow-
ing Gibbs’ classical approach – the dependence of the surface tension, referred to the surface
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of tension, on the state parameters of one of the bulk phases (or any equivalent information)
for the respective unstable equilibrium states.

However, in the search for extrema and saddle points (where the necessary equilibrium
conditions are fulfilled) of the characteristic thermodynamic potential, we have to compare
not different equilibrium states but different nonequilibrium states (where the state parameters
of the cluster phase and, in particular, the surface tension are not determined by the equilibrium
conditions) and to search for the singular points (extrema or saddle points) then. For thermo-
dynamic nonequilibrium states – consisting of single clusters (or ensembles of such objects)
in the homogeneous ambient phase – the surface tension has to depend, in general, on both
the states of the ambient and the newly evolving phases. Such dependence cannot be incorpo-
rated into the description in Gibbs’ classical approach. Indeed, according to Gibbs’ adsorption
equation (11.5), σ can be considered as a function of curvature c and (k + 1) additional inde-
pendent state parameters. The number of independent parameters, required to determine the
intensive state parameters of some given bulk phase, is equal to (k +1). Consequently, in order
to incorporate into the description a dependence of the surface tension on the state parameters
of both coexisting bulk phases (two times (k +1) variables), Gibbs’ fundamental equation has
to be generalized.

Summarizing these results, we conclude that Gibbs’ original treatment is well suited to de-
scribe variations of the state parameters, including, for example, thermodynamical potentials
and the surface tension, for reversible, quasiequilibrium processes, proceeding via a sequence
of equilibrium states. It does not allow us in its original version to describe nonequilibrium
states. For this reason, it does not give the appropriate tool for the search of saddle points or
extrema of the thermodynamic potentials modeling cluster formation in nucleation and growth
processes. We will return to this crucial point shortly.

11.2.3 The Work of Critical Cluster Formation

The change of the internal energy in cluster formation, �U , can be written – following Gibbs’
approach – generally as (e.g., [10])

�U = Uhet − Uhom = TαSα + Tβ Sβ + Tσ Sσ − T S − pαVα − pβVβ + σ A

+pV +
∑

µ jαn jα +
∑

µ jβn jβ +
∑

µ jσ n jσ −
∑

µ j n j . (11.14)

Neglecting changes of the state of the ambient phase in cluster formation (i.e., if the system is
sufficiently large as compared with the size of the cluster), we have p = pβ , µ j = µ jβ , and
T = Tβ (p, T , and µ j are the pressure, temperature, and chemical potential in the homoge-
neous initial state, respectively). Taking further into account the boundary conditions (11.8),
Eq. (11.14) is simplified to

�U = Sα(Tα − Tβ) + Sσ (Tσ − Tβ) + (pβ − pα)Vα + σ A

+
∑

n jα(µ jα − µ jβ) +
∑

n jσ (µ jσ − µ jβ) . (11.15)

Equation (11.15) gives a formal solution of the problem of determination of the change of the
internal energy in cluster formation. However, this equation cannot be employed as far as the
values of the superficial parameters, in particular, of Tσ and µiσ and the state parameters of
the cluster phase are not specified. This problem is, as already mentioned, not analyzed by
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Gibbs. He restricted his analysis to equilibrium states. For equilibrium states, latter problems
are resolved immediately. Indeed, with Gibbs’ equilibrium conditions (11.10) and (11.11), we
then get the following general expression for the work, W∗, of critical cluster formation:

W∗ = (pβ − pα)Vα + σ A . (11.16)

The state parameters of the cluster phase are determined here uniquely via a subset of Gibbs’
equilibrium conditions (11.10) and (11.11). Equation (11.16) holds widely independent of the
boundary conditions employed provided (as we assumed) the state of the ambient phase is
not changed in the course of formation of the critical cluster, i.e., if the system is sufficiently
large. For systems of finite size, additional terms have to be accounted for and the form of these
additional terms depends on the boundary conditions employed [21, 33, 34, 50–52]. Thus, for
clusters of critical sizes, fulfilling the necessary equilibrium conditions as derived via Gibbs’
original treatment, the change of the thermodynamic potential in critical cluster formation can
be determined uniquely provided the value of the surface tension is known in dependence on
the state of the ambient phase. Moreover, employing the equation for pressure equilibrium
(Eq. (11.12)), we generally get

W∗ = 1

3
σ A − Vα

{
C

dc

dVα

}
= 1

3
σ A − Vα

[
dσ

d R

]
. (11.17)

For the surface of tension, we get, as a special case, the following general result:

W∗ = 1

3
σ A = 16π

3

σ 3(
pα − pβ

)2 . (11.18)

Thus, for any value of the work of critical cluster formation it is always possible to find a value
of the surface tension such that above equation is fulfilled. However, following Gibbs’ original
approach, we have no possibility (without introducing further assumptions) of formulating
expressions for the thermodynamic potentials of thermodynamic nonequilibrium states. Thus,
the problem arises, how Gibbs’ theory can be extended to allow a description of clusters of
arbitrary sizes in the otherwise homogeneous ambient phase (see also [33–36]).

11.2.4 Extension of Gibbs’ Classical Approach
to Nonequilibrium States

In order to determine the thermodynamic potentials for nonequilibrium states in the frame-
work of Gibbs’ classical approach, one of the problems one has to solve – according to the
considerations given in the previous section – consists in the determination of the values of
µ jσ and Tσ in Eq. (11.15). In accordance with an intensive analysis of such problems by
Defay et al. [53], Prigogine and Bellemans ([54], a surface phase has no real autonomy, in
general), and Rowlinson and Widom ([14], we cannot measure or define unambigously the
thermodynamic properties of the surface phase), we developed some time ago the postulate
that the superficial quantities have to be set equal to the respective parameters of one of the
coexisting macrophases [33, 34]. In application to cluster formation, we demand (the alterna-
tive possibility will be analyzed somewhat later) as an additional postulate (postulate 3) that



11.3 A Generalization of Gibbs’ Thermodynamic Theory 427

the superficial parameters Tσ and µ jσ have to be set equal to the respective quantities of the
ambient phase (see also [14])

Tσ = Tβ , µ jσ = µ jβ . (11.19)

With these conditions, Eq. (11.15) is simplified to

�U = Sα(Tα − Tβ) + (pβ − pα)Vα + σ A +
∑

n jα(µ jα − µ jβ) (11.20)

and becomes well defined. Note that this relation is valid independent of the choice of the state
parameters of the reference phase for the description of the bulk properties of the cluster. Other
thermodynamic potentials of nonequilibrium states, appropriate for the respective alternative
boundary conditions, can be derived from this relation straightforwardly (e.g., [14, 33–38]).

11.3 A Generalization of Gibbs’ Thermodynamic Theory

11.3.1 A Generalization of Gibbs’ Fundamental Equation
for the Superficial Parameters

Equation (11.20) allows us to compute the thermodynamic potentials of thermodynamic sys-
tems consisting of a cluster or ensembles of clusters in the otherwise homogeneous ambient
phase providing us in this way with a first step in the generalization of Gibbs’ classical ap-
proach. However, the final solution of such task should include, as outlined earlier, an incorpo-
ration into the theory of the possible dependence of the surface tension of the state parameters
not only of one phase but also of both of the coexisting bulk phases. As will be shown in the
further analysis, in order to solve such task, Gibbs’ fundamental equation for the superficial
parameters has to be generalized. Indeed, if one follows further Gibbs’ classical procedure,
then the additional relations (11.19) lead to the conclusion that the surface or interfacial ten-
sion is determined by the properties of the ambient phase exclusively (and, in general, on the
curvature). Indeed, a substitution of Eqs. (11.19) into Gibbs’ adsorption equation (11.5) yields

Sσ dTβ + A dσ +
k∑

j=1

n jσ dµ jβ = C dc , (11.21)

verifying this statement. However, for thermodynamic nonequilibrium states (if we are in-
terested in variations of the interfacial tension if the system is transferred to a state slightly
different from the initial state), the surface tension has to depend, in general, on the state pa-
rameters of both the ambient and the newly evolving phases. Consequently, variations of the
interfacial tension should depend on changes of the thermodynamic state of both bulk phases.
Thus, we have to analyze how such property can be incorporated properly into the description
modifying the classical Gibbs’ treatment not more than absolutely necessary.

In order to resolve mentioned problems, let us analyze more carefully Gibbs’ fundamen-
tal equation for the superficial quantities (Eq. (11.2)) resulting in Gibbs’ adsorption equa-
tion (11.5). The right-hand side of Eq. (11.2) consists of two parts. One group of terms
(σ d A + C1 dc1 + C2 dc2) accounts for the work done by changing the shape and surface
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area of the considered surface element. The second group (Tσ dSσ + ∑
µ jσ dn jσ ) describes

variations of the thermodynamic state parameters of the interfacial region or the parame-
ters describing it in Gibbs’ model approach. Thus, employing Gibbs’ fundamental equa-
tion (11.2), it is assumed that the thermodynamic state of the interface can be described
by (k + 1) independent parameters (e.g., Tσ and µ jσ , j = 1, 2, . . . , k). However, for a
two-phase system in a thermodynamic nonequilibrium state, the total number of degrees of
freedom of both bulk phases is 2(k + 1), i.e., for each of the bulk phases (k + 1) vari-
ables may vary independently (Gibbs’ phase rule). Each of the independent variables may
affect then the properties of the interfacial region. It follows as a consequence that Gibbs’
fundamental equation cannot give, in principle, a complete description of the possible vari-
ations of the state of the interface in dependence on the state parameters of the coexist-
ing bulk phases for nonequilibrium states of the considered systems. The number of in-
dependent variables is too small. A complete description requires, consequently, a depen-
dence of Uσ on 2(k + 1) thermodynamic state parameters supplemented by appropriate work
terms accounting for the change of the shape and surface area of the considered surface ele-
ment.

The above-mentioned requirements are fulfilled by the following generalization of Gibbs’
classical approach. In this generalization, we employ Gibbs’ method of dividing surfaces,
again, and define the different superficial parameters via Eqs. (11.1) or similar relations. How-
ever, in contrast to Gibbs’ classical method, we generalize the fundamental equation (11.2)
as

dUσ = Tσ dSσ +
k∑

j=1

µ jσ dn jσ + σ d A + C dc +
k+1∑
i=1

φiα dϕiα , (11.22)

retaining the additional conditions as given by Eq. (11.19). In Eq. (11.22), {ϕiα} is a com-
plete set of intensive variables, specifying the bulk state of the cluster phase. The restric-
tion to intensive variables {ϕiα} in the specification of above dependence is a consequence
from the fact that the surface tension of a given surface element cannot depend on the spa-
tial extensions of the cluster phase but only on the intensive thermodynamic state parame-
ters. The coefficients φiα are a measure of the effect of variations of the thermodynamic
state parameters ϕiα of the cluster phase on Uσ for a given state of the ambient phase and
surface area and, in general, for a given value of the curvature of the surface element. Of
course, in order to realize, a reversible process as described by Eq. (11.22) certain well-
defined constraints have to be introduced to prevent irreversible flow processes (cf. Refs. [21,
36]).

Since all state parameters ϕiα are intensive variables, an integration of Eq. (11.22) results
in Eq. (11.4) again. It follows as a first consequence that the expressions for the thermo-
dynamic potentials remain formally unchanged as compared with Gibbs’ original method.
In particular, for the change of the internal energy in cluster formation we get Eq. (11.15)
again, and taking into account Eq. (11.19) an expression identical to Eq. (11.21). As a re-
sult, we can also determine any other thermodynamic potentials for any nonequilibrium states
of the considered type. The respective expressions are identical to those that one obtains in
the extension of the classical Gibbs’ approach to nonequilibrium states as we discussed be-
fore.
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However, the generalization of Gibbs’ fundamental equation for the superficial quantities
(Eq. (11.22)) reads now

dUσ = Tβ dSσ +
k∑

j=1

µ jβ dn jσ + σ d A + C dc +
k+1∑
i=1

φiα dϕiα . (11.23)

The generalized Gibbs’ adsorption equation then gets the form

Sσ dTβ + A dσ +
k∑

j=1

n jσ dµ jβ = C dc +
k+1∑
i=1

φiα dϕiα . (11.24)

It leads to the consequence that the surface tension has to be considered, in general, as a
function of the state parameters of both the ambient and the cluster phases. This result is the
basic difference between the classical and the generalized Gibbs’ approaches as discussed
here. Taking (Tβ, {ρβ}) as the set of independent variables for the description of the state of
the ambient phase, we have

φiα = A

(
∂σ

∂ϕiα

)
{ρ jβ},Tβ ,c

(11.25)

as one of the possible expressions for the determination of the coefficients φiα . Defining the
surface of tension in the generalized approach – similar to Gibbs’ original approach – via
C = 0, again, the condition of constancy of c in Eq. (11.25) may be omitted.

11.3.2 The Equilibrium Conditions in the Generalization
of Gibbs’ Approach

While the form of the expressions for the thermodynamic potentials is the same in the classical
and the generalized Gibbs’ approaches, the form of the equilibrium conditions is changed.
With dU = dUα + dUβ + dUσ and Eq. (11.23), we get

dU = (
Tα − Tβ

)
dSα +

(
pβ − pα + σ

d A

dVα
+ C

dc

dVα

)
dVα (11.26)

+
k∑

j=1

(
µ jα − µ jβ

)
dn jα

+
k+1∑
i=1

φ jα dϕ jα + (· · · ) dS + (· · · ) dV +
k∑

i=1

(· · · ) dni .

The terms containing brackets (· · · ) will have no effect on the results of the further deriva-
tions and are not given explicitely here. In order to employ the general equilibrium conditions
(dU)S,V ,{n} = 0, we choose – as one possible set of independent variables for the description
of the bulk properties of the cluster phase – the variables {ϕiα} = (sα, ρ1α, ρ2α, . . . , ρkα) with
sα = (Sα/Vα) and ρiα = (niα/Vα). We then obtain

(dU)S,V ,{n} =
[(

Tα − Tβ

)
sα + (

pβ − pα

) + σ
d A

dVα
+ C

dc

dVα
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+
k∑

j=1

ρ jα
(
µ jα − µ jβ

) dVα (11.27)

+
k∑

j=1

[(
µ jα − µ jβ

)
Vα + φ jα

]
dρ jα

+ [(
Tα − Tβ

)
Vα + φsα

]
dsα = 0 .

For other choices of the set of independent variables, the form of the resulting expressions can
be different, but the final results with respect to the properties of the critical clusters have to
be, of course, the same.

In the derivation of Eq. (11.27), again, only the expressions for the changes of the internal
energies of both the bulk phases, the generalization of Gibbs’ fundamental equation (11.24),
and the general equilibrium conditions are employed. Equation (11.27) then results (with
Eqs. (11.25)) originally in the following set of equilibrium conditions:

(
Tα − Tβ

)
sα + (

pβ − pα

) + σ
d A

dVα
+ C

dc

dVα
+

k∑
j=1

ρ jα
(
µ jα − µ jβ

) = 0 , (11.28)

(
µ jα − µ jβ

)
Vα + φ jα = 0 or

(
µ jβ − µ jα

) = 3

R

(
∂σ

∂ρ jα

)
{ρiβ },Tβ ,c

, (11.29)

(
Tα − Tβ

)
Vα + φsα = 0 or

(
Tβ − Tα

) = 3

R

(
∂σ

∂sα

)
{ρiβ },Tβ ,c

. (11.30)

For the surface of tension – defined again via C = 0 – we then get the more simple results

(
Tα − Tβ

)
sα + (

pβ − pα

) + σ
d A

dVα
+

k∑
j=1

ρ jα
(
µ jα − µ jβ

) = 0 , (11.31)

(
µ jβ − µ jα

) = 3

Rs

(
∂σ

∂ρ jα

)
{ρiβ },Tβ

, (11.32)

(
Tβ − Tα

) = 3

Rs

(
∂σ

∂sα

)
{ρiβ },Tβ

. (11.33)

Evidently, Eqs. (11.28)–(11.33) are reduced to Gibbs’ classical expressions (11.10)–(11.12)
again, if the possible (and essential) dependence of the surface tension on the state parame-
ters of the cluster phase is neglected in the analysis. Substitution of the equilibrium con-
ditions (11.28)–(11.30) into the general expression for the change of the internal energy in
cluster formation (Eq. (11.20)) yields

�U∗ = 1

3
σ A − Vα

{
C

dc

dVα

}
. (11.34)
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For the generalized surface of tension (defined via C = 0, again) this relation is simplified to
the conventional expression

�U∗ = 1

3
σ A . (11.35)

The subscript ∗ in Eqs. (11.34) and (11.35) specifies the values of the internal energy of the
critical clusters. Thus, the general equations for the determination of the work of critical clus-
ter formation in the generalized Gibbs’ approach are identical to the results of the classical
Gibbs’ method. Differences in the values of this quantity in dependence on supersaturation
are due thus exclusively to differences in the bulk parameters of the critical clusters the corre-
sponding values of the surface tension and the size f the critical clusters.

With the above given considerations, the general thermodynamic formalism of the gen-
eralization of Gibbs’ approach is completed. The further analysis will be directed now to a
discussion of possible methods of application of this theoretical schema and of some basic
results.

11.3.3 Determination of the Dependence of the Surface Tension
on the State Parameters of the Coexisting Phases

In order to employ the newly developed expressions (11.28)–(11.33) for the determination of
the state properties of the critical clusters, we have to know – as one of the prerequisites of the
analysis – the dependence of the interfacial tension on the state parameters of both coexisting
phases. We will perform the respective analysis for the generalized surface of tension, deter-
mined similar to Gibbs’ classical approach via C = 0. In such a case, an explicite dependence
of the surface tension on the curvature does not occur. Implicitely, the surface tension may
change in dependence on the cluster size due to the dependence of the cluster bulk properties
on the size of the clusters. Thus, the choice of the surface of tension has the unique advan-
tage that it allows us to employ dependences for the surface tension obtained for macroscopic
samples to the determination of the properties of clusters.

The surface tension, referred to the surface of tension in the generalized Gibbs’ approach,
can be considered (according to the generalization of Gibbs’ fundamental equation (11.24)) as
a function of well defined sets of the intensive state parameters of both coexisting phases. We
demand, moreover, that the surface tension has to depend generally on the sets of differences
of the intensive state parameters of the two considered bulk phases. Denoting the respective
sets as {ϕiα} and {ϕiβ }, respectively, we get

σα,β = σα,β

(
(ϕ1α − ϕ1β), (ϕ2α − ϕ2β), . . . , (ϕk+1,α − ϕk+1,β )

)
. (11.36)

By choosing the dependence in such a form, the limiting condition σ → 0 for ({ϕ jα −ϕ jβ} →
0, j = 1, 2, . . . , k +1) has to be fulfilled (i.e., when both phases become identical, the surface
tension should be equal to zero). A truncated Taylor expansion of σα,β with respect to the
differences {(ϕ jα − ϕ jβ)} reads then initially

σα,β =
k+1∑
j=1


 j
(
ϕ jα − ϕ jβ

) +
k+1∑

i, j=1


i j
(
ϕiα − ϕiβ

) (
ϕ jα − ϕ jβ

) + · · · . (11.37)
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The quantity σα,β denotes the value of the surface tension, when a cluster (with parameters
specified by α) is formed in an ambient phase (specified by the subscript β). However, since
σα,β is, by the above given derivation, independent of the phase which forms the cluster,
and that represents the surrounding bulk and is equal to the respective value for a planar
coexistence of both phases, the symmetry relation σα,β = σβ,α = σ has to be fulfilled. It
follows that the linear terms with respect to the density differences and, more generally, any
odd terms vanish. Instead of Eq. (11.37), we then obtain in the lowest approximation

σ =
k+1∑

i, j=1


i j
(
ϕiα − ϕiβ

) (
ϕ jα − ϕ jβ

) + · · · . (11.38)

In order to employ this relation, we have to determine the independent parameters 
i j . This
task can be performed by measuring the value of the surface tension for a planar coexistence of
the two phases for different sets of state parameters of the ambient phase. Since only the sums

i j + 
 j i (for i �= j ) can be determined uniquely, we may assume without loss of generality

i j = 
 j i . In order the surface tension to be positive semidefinite, hereby well-defined condi-
tions have to be fulfilled concerning possible values of the parameters (cf., e.g., [39,41,44,46]).
We can specify in more detail the kinds of intensive variables the surface energy has to depend
on. The surface energy can be expected to be determined – according to the approach devel-
oped – by the volume densities of particle numbers and entropies (or temperatures) in both
coexisting phases, i.e., by the local conditions in the vicinity of the interface. For this reason,
we derived here the equilibrium conditions for these sets of independent variables.

For one-component systems, dependences similar to Eq. (11.38) are widely used for the
description of the interfacial tension for liquid–gas phase coexistence (e.g., Macleod’s and
similar equations [14,41,55]) and for phase separation processes in solutions (Becker’s equa-
tion [39,56]). Generalizations of such types of dependences to phase coexistence in multicom-
ponent systems have been advanced – in the framework of Gibbs’ original approach (where
their application is, however, partly questionable by above-discussed reasons) – already as
well [57]. Thus, the above-described method of specification of the dependence of the surface
tension on the state parameters of both phases can be considered as well-founded and will be
employed in the further analysis.

11.3.4 Analysis of an Alternative Version

In connection with the proposed here method of generalization of Gibbs’ theory to nonequi-
librium states the question may arise whether or not the alternative possibility

Tσ = Tα , µ jσ = µ jα . (11.39)

is utilized instead of Eq. (11.19). As a first general argument in favor of Eq. (11.19) instead
of Eq. (11.39), one can advance the preposition that the properties Tσ and µiσ of the interface
have to be determined mainly by the properties of the macroscopic ambient phase. However,
as shown below, one may also develop an even more conclusive additional argument in fa-
vor of Eq. (11.19). Indeed, following the same procedure as earlier but employing this time
Eq. (11.39), we get instead of Eq. (11.20)

�U = S̃α(Tα − Tβ) + (pβ − pα)Vα + σ A +
∑

ñ jα(µ jα − µ jβ) ,
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(11.40)

S̃α = Sα + Sσ , ñ jα = n jα + n jσ .

This relation gives a well-defined expression for the internal energy as well. It is less conve-
nient, however, as compared with Eq. (11.20) since here U is, in part, not expressed directly
via the parameters of the cluster phase, n jα, Sα but via ñ jα and S̃α .

Similar to Eq. (11.40), the generalizations of Gibbs’ fundamental and Gibbs’ adsorption
equations (Eqs. (11.22) and (11.24)) read now

dUσ = Tα dSσ +
k∑

j=1

µ jα dn jσ + σ d A + C dc +
k+1∑
i=1

φiβ dϕiβ . (11.41)

Sσ dTα + A dσ +
k∑

j=1

n jσ dµ jα = C dc +
k+1∑
i=1

φiβ dϕiβ . (11.42)

Taking (Tα, {ρα}) as the set of independent variables for the description of the state of the
cluster phase, we get the following expression for the coefficients φiβ :

φiβ = A

(
∂σ

∂ϕiβ

)
{ρ jα},Tα,c

. (11.43)

The general equilibrium condition reads, now, instead of Eq. (11.27),

(dU)S,V ,{n} = (
Tα − Tβ

)
d S̃α +

[(
pβ − pα

) + σ
d A

dVα
+ C

dc

dVα

]
dVα (11.44)

+
k∑

j=1

(
µ jα − µ jβ

)
dñ jα +

k+1∑
i=1

φ jβ dϕ jβ = 0 .

However, in any variations of the state parameters of the cluster (volume, entropy, par-
ticle numbers), the state parameters of the ambient phase remain constant. We consider, as
outlined earlier, a sufficiently large system where the formation of a cluster does not affect
the state parameters of the ambient phase. Therefore, dϕiβ = 0 holds and we obtain the con-
ventional Gibbs’ adsorption equation (Eq. (11.42) becomes equivalent to Eq. (11.5)) and the
conventional Gibbs’ equilibrium conditions (Eq. (11.44) leads to Eqs. (11.10)–(11.12)).

It turns out that the alternative possibility of determining the properties of heterogeneous
systems in nonequilibrium states, utilizing Eqs. (11.39) instead of Eqs. (11.19), does not lead
to any modifications of the basic equations, the properties of the critical clusters, and the
work of critical cluster formation as compared with Gibbs’ classical approach. Indeed, with
the condition dϕiβ ∼= 0, Eq. (11.41) becomes equivalent to the fundamental equation as em-
ployed by Gibbs [11]. Therefore, only the condition introduced with Eq. (11.19) allows one to
incorporate into the description the required dependence of the surface tension of the state pa-
rameters of both the ambient and the newly evolving phases. For this reason, condition (11.19)
is preferable to Eq. (11.39).
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11.4 Applications:
Condensation and Boiling in One-Component Fluids

11.4.1 Nucleation at Isothermal Conditions

In order to illustrate the consequences of the above-developed theory, we consider here the
case of formation of droplets and bubbles in a van der Waals fluid first for isothermal con-
ditions, i.e., we suppose that the temperature in the whole system is kept constant by some
appropriate mechanism. The results are compared with van der Waals’ square gradient den-
sity functional computations. The equations employed and the method of computations are
outlined in detail in [27, 41, 44] (see also the Appendix). Therefore, we can concentrate here
the attention immediately on the results.

For isothermal conditions and one-component systems, liquid and gas are distinguished
by the density, ρ, or the specific volume, v. Following Eqs. (11.33) and (11.38), the surface
tension has to be written then (in a first approximation) in the form

σ = 
(θ)
(
ρl − ρg

)χ (11.45)

with χ = 2. For any arbitrary value of the temperature θ , the parameter 
 can be determined
then from the knowledge of the densities at the liquid and vapor branches of the binodal curves
and the value of the surface tension for an equilibrium coexistence of both phases at planar
interfaces (for the method of determination of the macroscopic value of σ as employed in our
analysis, see [27]). In Fig. 11.1, the binodal and spinodal curves of a van der Waals fluid are
given in reduced variables θ = T/Tc and ω = v/vc (here Tc is the critical temperature and vc
the critical volume of the fluid).

We first consider condensation and bubble formation at a temperature θ = 0.7. The super-
saturation is changed then by variations of the specific volume of the ambient phase between
the respective binodal and spinodal curves. In Fig. 11.2, the specific volume of the liquid in
the droplet of critical size and the specific volume of the gas in the bubble of critical size
are shown. The dotted curves refer to the values of these parameters, when Gibbs’ original
method is used. The dashed curve presents the results obtained via the generalized Gibbs’
approach employing Eq. (11.45) with χ = 2. The full curves refer to the respective results,
when the van der Waals square gradient method is employed for the computations of the work
of critical cluster formation and the results are then used to compute the respective quantities
as determined via Gibbs’ original method (via Eqs. (11.10), (11.12), and (11.18)). Similarly,
in Fig. 11.3, the sizes of the critical clusters are shown when the surface of tension is chosen
as the dividing surface. Finally, in Fig. 11.4, the work of critical cluster formation is presented
for condensation and boiling as obtained by the different methods of computation. Similar
results were obtained in already cited papers [27, 41, 44]; however, there the parameter χ was
set equal to χ = 2.5. Such choice made there was motivated by experimentally observed
dependences of the surface tension on the state parameters of the coexisting phases. The re-
sults obtained with Eq. (11.45) but assuming χ = 2.5 are given in Figs. 11.2–11.4 by the
dashed-dotted curves.

Analyzing the results presented in Figs. 11.1–11.4, we come to the following conclusions
(for a more detailed analysis see [41, 44, 45]):
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Figure 11.1: Binodal (full line) and spinodal (dotted line) curves of the van der Waals fluid.
The phase transformation proceeds via nucleation and growth processes for initial states located
between the binodal and spinodal curves. For the process of condensation of gases by nucleation
and growth, the initial states are located between the right-hand side branches of both curves.
Similarly, bubble formation occurs for initial states between the left-hand side branches of the
curves

(i) Gibbs’ classical approach does not give a correct description of the bulk properties of
the cluster phase (Fig. 11.2). In contrast, the generalized Gibbs’ approach is in, at least,
qualitative agreement with the results of density functional computations, in particular,
for high supersaturations.

(ii) The radius of the critical cluster, referred to the surface of tension, has, for small and
moderate supersaturations similar values, when (a) the classical Gibbs approach is used
for its determination supplemented by the capillarity approximation and (b) when the
respective size parameter is computed via the generalized Gibbs’ approach. Only for ini-
tial supersaturations near the spinodal, approaches (a) and (b) lead to different results.
Here the radius of the surface of tension, computed via the generalized Gibbs’ approach,
diverges (in agreement with density functional computations of characteristic size para-
meters of the critical clusters). In contrast, the radius of the surface of tension, determined
via the classical Gibbs’ method employing the van der Waals computations for the work
of critical cluster formation, tends here to zero. The radius of the surface of tension, de-
termined via the generalized Gibbs’ approach, gives in this way a much more realistic
description of the real spatial dimensions of the critical clusters as the respective quantity
determined via the combined van der Waals–Gibbs method.

(iii) The size of the critical clusters, determined via the methods (a) and (b), remains nearly
constant for intermediate supersaturations. This range of intermediate supersaturations
corresponds commonly to the range of experimental observations of nucleation processes.
It follows as a consequence that the size of the critical clusters should be of the same
order of magnitude independent of the degree of supersaturation reached in a specific
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Figure 11.2: Dependence of the specific volumes of the liquid, ωl, in the drops and of the gas,
ωg, in the bubbles of critical sizes, employed as reference states for the description of the bulk
contributions to the thermodynamic potential, on the initial supersaturation. For condensation
(left part of this and subsequent figures), the supersaturation is determined by the value of the
specific volume of the gas, ωg. For bubble formation (right part of the figures), the supersatu-
ration may be expressed via the molar volume of the liquid, ωl. The dotted curves refer here
and later on to the respective values of the molar volumes as determined via Gibbs’ original
approach. The dashed curves correspond to the newly developed generalized Gibbs’ approach
utilizing Eq. (11.45) with χ = 2, while the dashed-dotted curves correspond to similar results
obtained with a value of χ equal to χ = 2.5. The full curves represent the results of calculations
of the specific volumes in the center of the critical clusters performed via the van der Waals
square gradient approximation. In both cases (condensation and boiling), the temperature is set
equal to T = 0.7 Tc and is assumed to be the same in both the ambient and the newly evolving
phases

experiment. Similar results have been obtained also for segregation in solid and liquid
solutions and bubble formation in liquid–gas solutions [26,39,46]. Thus, such feature of
the nucleation process seems to be of widely universal nature.

(iv) Both the van der Waals and the generalized Gibbs’ approach lead, for moderate and high
values of the initial supersaturation, to lower values of the work of critical cluster forma-
tion as compared with the classical Gibbs’ method when in its application the capillarity
approximation is employed. However, while the dependences of the critical cluster com-
position and the critical cluster size on supersaturation in the generalized Gibbs’ approach
behave in a qualitatively similar way, the dependence of the work of critical cluster for-
mation on supersaturation is qualitatively different for the cases χ = 2 and χ = 2.5,
respectively. As shown earlier [37, 41], near the spinodal the work of critical cluster for-
mation tends to zero for values of the parameter χ > 2, only. For χ = 2, we get small but
finite values of the work at the spinodal. In the case considered, this value is near kBT .

Nevertheless, we can prolong the curve for the dependence of the work of critical cluster
formation on supersaturation to zero also for the case χ = 2. This possibility is due to the
following circumstances (see also [30]): For any value of the initial supersaturation, in the
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Figure 11.3: Dependence of the size of the critical clusters (referred to the surface of tension)
on the initial supersaturation. The dotted curves refer to the respective values as determined
via Gibbs’ approach (employing the capillarity approximation). The dashed curves refer to the
newly developed generalized Gibbs’ approach utilizing Eq. (11.31) with χ = 2. The dashed-
dotted curves show similar results but for a value of the parameter χ equal to χ = 2.5. The
full curves represent the results of calculations performed via the van der Waals square gradient
approximation used then for the determination of the respective quantities introduced via Gibbs’
classical approach. It is assumed here again that the temperature is the same in both the ambient
and the newly evolving phases
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Figure 11.4: Dependence of the work of critical cluster formation on the initial supersaturation.
The dotted curves refer to the respective values as determined via Gibbs’ original approach
if the capillarity approximation is employed. The dashed curves refer to the newly developed
generalized Gibbs’ approach utilizing Eq. (11.45) with χ = 2. The dashed-dotted curves show
similar results but for a value of the parameter χ equal to χ = 2.5. The full curves represent
the results of calculations performed via the van der Waals square gradient approximation. It is
assumed here again that the temperature is the same in both the ambient and the newly evolving
phases
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range between binodal and spinodal (ωbin ≤ ω ≤ ωspin), the equilibrium conditions (11.31)–
(11.33) lead to two different solutions. In addition to the results shown in Fig. 11.2 there exists
a second solution ωcluster = ω, i.e., the specific volume of the critical cluster is equal to the
specific volume of the ambient phase. This solution is physically meaningless for ωbin ≤ ω ≤
ωspin (it leads to negative values of the critical cluster size), but it is the only solution for
ω > ωspin. Here it results in values of the work of critical cluster formation identically equal
to zero. Thus, for χ = 2 we get finite values for the work of critical cluster formation at
the spinodal, but, as soon as we consider initial states inside the unstable region, the theory
predicts values of the work of critical cluster formation equal to zero (independent of the value
of the parameter χ in the range χ ≥ 2). Moreover, it can be seen that Eq. (11.45) with χ = 2
leads to a better agreement with the results for the work of critical cluster formation between
the generalized Gibbs’ and the van der Waals square gradient approaches as compared with
the assumption χ = 2.5 (cf. also [27]). One may suppose that this correlation is connected
with the similarity of the square gradient van der Waals approach employed and the method
leading to the relation for the dependence of the surface tension on the state parameters of
both coexisting phases: Both approaches employ Taylor expansions truncated at the quadratic
terms. However, this correlation and its possible origin require some further detailed analysis.

11.4.2 Analysis of the General Case

The above-discussed results rely on one additional assumption. It is assumed that the tem-
perature in the critical droplet or the bubble of critical size is equal to the temperature of the
ambient phase. This assumption is widely employed in the theoretical analysis of nucleation
phenomena. It is founded by Gibbs’ classical approach (cf. Eq. (11.11)) if one assumes, as is
usually done, that the evolution to the new phase proceeds via the saddle point of the appro-
priate thermodynamic potential. However, according to the generalized Gibbs’ approach the
assumption of equality of temperatures of both phases (the ambient phase and the reference
phase employed for the description of the bulk properties of the critical clusters) is, in general,
not correct (cf. Eqs. (11.30) and (11.33)). In the following analysis, we will try to establish
an estimate of the temperature differences of the critical cluster as compared with the ambient
phase and compare the results concerning the parameters of the critical clusters with those
obtained under the assumption that nucleation proceeds at isothermal conditions (restricting
here the analysis to the case χ = 2).

In order to determine the dependence of the surface tension on the state parameters of
both phases in the general situation, we employ Eq. (11.38). Utilizing this equation, we have
to know, for example, the dependence of the surface tension not only on the differences of the
volume, mass or particle densities of the different components but also on the differences of
the volume densities of the entropies, s, of the different phases. The surface tension can be
expressed then (according to Eq. (11.38)) generally as

σ = 
ρ

(
ρα − ρβ

)2 + 
ρ,s
(
ρα − ρβ

) (
sα − sβ

) + 
s
(
sα − sβ

)2 · · · . (11.46)

In order to employ this equation, we have to determine the values of the coefficients 
ρ ,

ρ,s , and 
s . However, we have at our disposal only one relation connecting the values of the
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surface tension at the planar interface at some given temperature (here T/Tc = 0.7) with the
equilibrium particle and entropy densities of the coexisting phases ρ

(eq)
α , ρ(eq)

β , s(eq)
α , and s(eq)

β .
In order to get some first insight into the possible dependences, we parametrize Eq. (11.46)

and analyze the resulting dependences for different parameter values. Hereby, we have to
realize that the parameters 
 or their equivalents have to obey the conditions


ρ ≥ 0 , 
s ≥ 0 , |
ρ,s | ≤ √

s
ρ (11.47)

in order to get positive values of the surface tension independent of the differences of the state
parameters. As a first dependence, we employ the relation

σ

σ∞
= α


 ρα − ρβ

ρ
(eq)
α − ρ

(eq)
β




2

+ (1 − α)


 sα − sβ

s(eq)
α − s(eq)

β




2

, 0 ≤ α ≤ 1 . (11.48)

It realizes the limit 
ρ,s = 0. We write the second parametric dependence for the surface
tension in the form

σ

σ∞
= β2


 ρα − ρβ

ρ
(eq)
α − ρ

(eq)
β




2

+ 2β(1 − β)


 sα − sβ

s(eq)
α − s(eq)

β





 ρα − ρβ

ρ
(eq)
α − ρ

(eq)
β




+(1 − β)2


 sα − sβ

s(eq)
α − s(eq)

β




2

. (11.49)

It realizes the limit 
ρ,s = √

s
ρ for values of β in the range 0 < β < 1 and 
ρ,s =

−√

s
ρ for values of β in the range 1 < β. The constancy of ρβ and Tβ in Eq. (11.33)

implies that also sβ can be considered as constant. Consequently, for our purposes we may
rewrite Eq. (11.33) as

(
Tβ − Tα

) = 3

Rs

(
∂σ

∂sα

)
ρβ ,sβ

. (11.50)

Generally, the values of the coefficients 
 do not depend on whether condensation or boiling
is analyzed. Consequently, in general, the thermal effect on nucleation – as follows from the
generalized Gibbs’ approach – will be asymmetric for both considered cases of phase forma-
tion.

In order to proceed with the computations, we have to know the location of the binodal
curve, the entropy density, and the value of the surface tension of a van der Waals fluid ana-
lyzed here as the model system. The respective derivations and results are given in the Appen-
dix. Employing these results, we can now determine quantitatively the changes in temperature
in the critical cluster as compared with the temperature in the ambient phase. The respec-
tive results for condensation and boiling of a van der Waals fluid are shown in Fig. 11.5. In
Fig. 11.5, the temperature in the ambient phase is chosen equal to T/Tc = 0.7, again. The
solid curves correspond to a dependence of the surface tension on the state parameters of both
phases as described by Eq. (11.48) with (1): α = 0.8 and (2): α = 0.5. The dashed and dotted
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Figure 11.5: Change of the temperature in a droplet (left curve) and a bubble (right curve) of
critical sizes in dependence on supersaturation. The temperature in the ambient phase is equal
to T/Tc = 0.7, again. The full curves correspond to a dependence of the surface tension as
described by Eq. (11.48) with (1): α = 0.8 and (2): α = 0.5. The dashed and dotted curves refer
to a dependence of the surface tension on the state parameters as described by Eq. (11.49) with
β = 2/3 (dashed) and β = 2 (dotted curve)

curves refer to a dependence of the surface tension on the state parameters as described by
Eq. (11.49) with β = 2/3 (dashed) and β = 2 (dotted curve). It turns out that the sign of the
difference may vary in dependence on the relation employed for the dependence of the surface
tension on the state parameters of both phases.

Taking into account the differences in temperature of the critical cluster and the ambi-
ent phase, the dependence of the size of the critical clusters (drops or bubbles) and the work
of critical cluster formation on supersaturation will be different as compared with the re-
sults obtained via the assumption of isothermal nucleation. These differences are illustrated in
Figs. 11.6 and 11.7. In the computations for the isothermal case (full curve), the parameter χ
in Eq. (11.45) was set equal to χ = 2. The dashed curve shows the results for the critical
cluster size and the work of critical cluster formation utilizing Eq. (11.48) with a value of the
parameter α equal to α = 0.5.

The above-given results show that the deviations of the temperature of the critical cluster
from the respective values of the ambient phase can be significant. Moreover, the temperatures
can deviate in different directions in dependence on the particular expression employed for the
dependence of the surface tension on the state parameters. Thus, in order to apply the theory
to the description of nucleation, methods of determination of the dependence of the surface
tension on the state parameters on both phases have to be advanced in the future analysis.

11.5 Discussion

According to the predictions of the generalized Gibbs’ approach, the temperatures in the crit-
ical cluster and the vapor have, in general, to differ. This difference may lead to significant
variations in the size of the critical clusters and the value of the work of critical cluster forma-
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Figure 11.6: Effect of change of temperature on the size of the critical clusters. The temperature
in the ambient phase is chosen equal toT/Tc = 0.7, again. The full curves correspond to the
isothermal case, while the dashed curve gives the results when the dependence of the surface
tension on the state parameters of both phases is described by Eq. (11.48) with α = 0.5
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Figure 11.7: Effect of change of temperature on the work of critical cluster formation. The tem-
perature in the ambient phase is chosen equal to T/Tc = 0.7, again. The full curves correspond
to the isothermal case, while the dashed curve gives the results when the dependence of the
surface tension on the state parameters of both phases is described by Eq. (11.48) with α = 0.5

tion as compared with the case when equal values of the temperature are assumed; however,
for the considered case the resulting variations occurred to be of minor importance. In general,
it may serve as an additional factor the implementation of which may improve the agreement
between experimental and theoretical results on nucleation kinetics. It is planned to check the
predictions of the generalized Gibbs’ approach with respect to the temperature of the critical
clusters by independent methods. Here molecular dynamics is one possible tool allowing us to
come to some definite conclusions. It is planned to extend existing work [58] in this direction
to an analysis of this problem. An alternative theoretical method to verify the predictions of
the generalized Gibbs’ approach is possibly the application of the methods of small systems’
statistical physics (e.g., [59]). It is expected that the research along this line will also allow us
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to specify more definitely the form of the dependence of the surface tension on the state para-
meters of both coexisting phases. Since the generalized Gibbs’ approach has shown its power
in the prediction of the bulk properties of the critical clusters [21,26,27,46], it can be expected
that the predictions with respect to temperature will be verified as well. In the alternative case,
one would have to suppose – modifying slightly the generalized Gibbs’ approach as outlined
here – that, with respect to temperature, the conditions Tα = Tσ (cf. Eqs. (11.39)) are fulfilled
leaving the conditions for the chemical potentials (µ jσ = µ jβ) untouched (cf. Eq. (11.19)).
In such a case, Eqs. (11.30) and (11.33) should be replaced by equality of temperatures as
in the original Gibbs’ approach. However, so far we cannot see any reason why it should be
necessary to make such a distinction.

Note that the newly developed modified Gibbs’ approach has some further significant ad-
vantage as compared with Gibbs’ original method (and existing density functional calculations
as well): It allows us to determine theoretically the state of clusters not only of critical sizes
but – employing some generally rather weak additional assumption (see [29, 30]) – the state
of clusters of sub- and supercritical clusters as well. An analysis of this topic in application to
condensation and bubble formation will be performed in a forthcoming paper. However, this
particular problem is only one of the broad spectra of possible future directions of research,
where the generalized Gibbs’ approach is expected to lead to new highly interesting results.

11.6 Appendix

The thermal equation of state for one mole of a van der Waals fluid is given by(
p + a

v2

)
(v − b) = RgT . (11.51)

Here p is the pressure, v is the molar volume, T is the temperature, and Rg is the universal
gas constant. a and b are two parameters reflecting specific properties of the system under
consideration. The parameters a, b and the universal gas constant Rg may be expressed via
the molar volume, vc, the pressure, pc, and the temperature, Tc, at the critical point. We get

a = 3 pcv
2
c , b = 1

3
vc , Rg = 8

3

pcvc

Tc
. (11.52)

Employing Eq. (11.52), Eq. (11.51) can be written in the form of a law of corresponding states
as (

� + 3

ω2

)
(3ω − 1) = 8θ (11.53)

with

� = p

pc
, ω = v

vc
, θ = T

Tc
. (11.54)

The position of the classical spinodal curve can be found via the determination of the
extrema of the thermal equation of state �(ω, θ) (Eqs. (11.51) and (11.53)) considering the



11.6 Appendix 443

temperature θ as constant. By taking the derivative of �(ω) with respect to ω, we obtain from
Eq. (11.53) the result

∂�(ω)

∂ω
= −6

[
4θ

(3ω − 1)2 − 1

ω3

]
= 0 ,

(3ω − 1)2

ω3 = 4θ . (11.55)

For θ < 1 this equation has two positive solutions ω
(left)
Sp and ω

(right)
Sp for ω corresponding

to the specific volumes of both the macrophases at the spinodal curves (or at the limits of
metastability).

Similarly, the binodal curves give for θ ≤ 1 the values of the specific volumes of the
liquid and the gas phases coexisting in thermal equilibrium at a planar interface (ω(eq)

l (θ) =
ω

(left)
B : specific volume of the liquid phase, ω

(eq)
g (θ) = ω

(right)
B : specific volume of the gas).

For θ = 1, both solutions coincide at the critical point (ω(eq)
l = ω

(eq)
g = ωc = 1), again.

The location of the binodal curve may be determined from the necessary thermodynamic
equilibrium conditions (for planar interfaces) – equality of pressure and chemical potentials –
via the solution of the set of equations

�l(ωl, θ) = �g(ωg, θ) , µl(ωl, θ) = µg(ωg, θ) . (11.56)

Here µ denotes the chemical potential of the atoms or molecules in the liquid (l) and the gas
(g). For a van der Waals fluid, we have generally [41](

µ(ω, θ)

pcvc

)
= −8θ

3
ln (3ω − 1) + 8θω

3ω − 1
− 6

ω
+ χ(θ) . (11.57)

Here χ(θ) is some well-defined function only of temperature. The binodal and spinodal curves
for a van der Waals gas are shown in Fig. 11.1. For a reduced temperature θ = 0.7, the position
of the binodal curves is given by ω

(left)
B = 0.467, ω

(right)
B = 7.811; the respective parts of the

spinodal curves are located at ω
(left)
Sp = 0.579; ω

(right)
Sp = 2.376.

Further, the Helmholtz free energy per mole, f , of a van der Waals fluid is given by [41](
f

pcvc

)
= −8θ

3
ln(3ω − 1) − 3

ω
+ χ(θ) , (11.58)

where (if the isochoric heat capacity, cv, is supposed to be constant) the function χ(θ) may be
written as

χ(θ) = −8

3

cv

Rg
θ ln(θ) + 8

3
θα0

1 + 8

3
α0

2 . (11.59)

The constant α0
2 is not significant for the computations, and the constant α0

1 can be determined
knowing the value of entropy Sid

0 of a perfect gas at some reference state (T0, ρ0). We then get

α0
1 = cv

Rg
− Sid

0 (T0, ρ0)

Rg
+ ln

(
ρc

ρ0

)
− cv

Rg
ln

(
Tc

T0

)
. (11.60)
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The statistical analysis of a monoatomic perfect gas (cv = 1.5Rg) gives

Sid
0

Rg
= 2.5 + ln

[
g

(
M RgT0

2π(NAhp)2

)3/2 RgT0

NA p0

]
. (11.61)

NA is the Avogadro number, and h = 2πhp is Planck’s constant. The theoretical determina-
tion of the entropy Sid

0 was performed for p0 = 0.101325 MPa, T0 = 298.15 K for argon. The
following additional parameter values were employed: molar mass M = 39.948 (g/mol),
spin degeneracy g = 1, critical parameters Tc = 150.687 K, pc = 4.863 MPa, ρc =
13.407 mol/dm3.

With d f = −s dT − p dv and Eq. (11.52), we arrive further at

s = − Tc

pcvc

(
∂ f

∂θ

)
ω

= Rg ln(3ω − 1) − pcvc

Tc

(
∂χ

∂θ

)
ω

. (11.62)

The knowledge of the binodal curve allows one to determine the specific volumes of both
coexisting phases in dependence on temperature. Equation (11.62) yields then the respective
values of the entropy per mole in both the coexisting phases.
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12 Summary and Outlook

Jürn W.P. Schmelzer

The first principle is that you must not fool yourself; and you
are the easiest person to fool.

Richard Feynman

Pleasure in the job puts perfection in the work.

Aristotle

Finally, the task formulated in the introduction is fulfilled and an overview on a number of
different current topics of research in the wide field of theory and applications of first-order
phase transitions is outlined. It was (not always but in most of the time) a pleasure for the
authors to prepare the respective chapters and for the editor to bring them into the final form. In
the course of this work, also some other necessary first principles have been taken permanently
into account (see above) which should facilitate the desired standard. Whether such desire
could be realized, has to be evaluated already and exclusively by the reader.

Coming to the completion stage of the present book, the question immediately arises what
will be the possible further developments in the field of research considered in the next years.
Of course, making predictions in this respect is always a dangerous endeavor connected with
high uncertainties and affected by personal preferences. Thus, here only one possible further
development will be sketched which has already shown to some extent its possible value in
the analysis of nucleation and growth processes.

As mentioned already in the introduction, in the theoretical description of nucleation-
growth processes presently Gibbs’ classical thermodynamic theory of heterogeneous systems
is employed predominantly for the description of the properties of the critical clusters. The
validity of this statement can be proven easily by having a close look at the contributions
given in the present monograph.

The analyses of the properties of the critical clusters and the determination of the work
of critical cluster formation, based on the classical Gibbs’ approach, can be supplemented by
different versions of density functional computations. In most of such approaches, the interac-
tion potentials between the particles of the considered systems have to be known. As it turns
out, the results allow a qualitative analysis of the dependence of the work of critical cluster
formation on supersaturation. However, quantitatively the results depend very sensitively on
the choice of the interaction potentials, this way these methods encounter here serious prob-
lems when applied to the analysis of experimental data on nucleation motivating the search
for new approaches (cf. e.g. [1–3]). The van der Waals’ density functional computations, as
employed in Chapter 5 in application to boiling in binary liquid–gas solutions, have the sig-
nificant advantages that they require exclusively the knowledge of data on the thermodynamic
bulk properties of the systems under consideration and the interfacial properties for planar
interfaces. This way, the problems with the choice of the interaction potentials do not occur
here. However, they have certain well-known limitations as well.

Nucleation Theory and Applications. Edited by J. W. P. Schmelzer
Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3527-40469-4
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In order to overcome the mentioned shortcomings, in recent years a generalization of
Gibbs’ classical approach has been developed and used for the description of nucleation
processes (cf. Refs. [2, 3] and Chapter 11). This generalization of Gibbs’ classical method
leads, for a variety of different applications discussed, to dependences of the work of critical
cluster formation on supersaturation that are qualitatively and widely even quantitatively in
agreement with density functional computations. Moreover, the generalized Gibbs’ approach
has the similar advantage as van der Waals’ density functional computations, in order to em-
ploy this method only the knowledge of the bulk properties of the respective substances and
the values of the specific interfacial energy for coexistence of the respective phases at planar
interfaces have to be known. The generalized Gibbs’ approach employs Gibbs’ method of
dividing surfaces as well. However, Gibbs’ fundamental equation for the superficial or sur-
face quantities is generalized allowing to introduce into the description the dependence of the
surface tension on the state parameters of both coexisting phases. In this theory, first the ther-
modynamic potentials for the respective nonequilibrium states are formulated. After this task
is performed, the general equilibrium conditions are derived. They coincide with Gibbs’ ex-
pressions for phase coexistence at planar interfaces, they lead, however, to different equations
for the determination of the properties of the critical clusters and the work of critical cluster
formation for critical clusters of finite sizes.

An example of the resulting differences is shown in Fig. 12.1. In this figure, the para-
meters of the critical clusters are given in dependence on supersaturation [3]. As a particular
application, boiling in helium–nitrogen solutions is considered. For the chosen value of tem-
perature the density ρliq = 24.7 kmol m−3 corresponds to the binodal curve, while the density
ρliq = 22.48 kmol m−3 refers to the spinodal curve. In Fig. 12.1, x is the molar fraction of he-
lium in the critical bubble, � is a measure of the thermodynamic driving force, R is a measure
of the size of the critical bubble, and W∗ is the work of critical bubble formation. The results
as obtained via Gibbs’ classical approach employing in addition the capillarity approximation
are given by the dotted curves, the results obtained via the generalized Gibbs’ approach by the
full curves, and the results of van der Waals’ density-functional computations are given by the
dashed curves (for more details see Ref. [3]). It is evident that the generalized Gibbs’ approach
leads to results widely equivalent to those of density-functional computations. In particular,
it leads to vanishing values of the work of critical cluster formation for initial states near the
spinodal. It turns out that the generalized Gibbs’ approach allows one to describe the para-
meters of the critical clusters not only in one-component (as discussed in detail, for example,
in Chapter 11) but also in multicomponent systems in a way that is, at least, qualitatively in
agreement with density functional computations.

It follows as one of the consequences of the preceding analysis that the clusters of critical
sizes have properties that are widely different, in general, from the properties of the newly
evolving macroscopic phases. By this reason, also the properties of sub- and supercritical
clusters will depend, in general, both on supersaturation and cluster size. In order to develop,
consequently, an appropriate description of the course of the phase transitions, one has to
develop a method to establish the dependence of composition of clusters of arbitrary sizes
on mentioned parameters. As a first step in this direction, we developed in Refs. [4, 5] the
proposal that the clusters will evolve in such a way as to follow the valley of the appropriate
thermodynamic potential on a path of evolution passing the critical point (similarly to a ball
moving in a force field or a river following the valley of some landscape). In application to
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Figure 12.1: Composition of the critical cluster x , thermodynamic driving force of nucleation
�, the radius R of the critical cluster for different definitions of this parameter and the work of
critical cluster formation, W∗, for bubble formation in a binary liquid-gas solution (for details
see Ref. [3] and text)

segregation in binary solutions, one can then determine the change of the state of the cluster
in dependence on its sizes as illustrated in Fig. 12.2 (cf. also Chapter 3).

The change of the composition of the clusters in dependence of their sizes leads to a
size-dependence of almost all thermodynamic (in particular, the driving force and the sur-
face tension) and kinetic parameters (diffusion coefficients and growth rates) determining the
course of the phase transition (for details, see again Ref. [4]). Note that this size dependence
is connected with changes of the bulk properties of the clusters. An explicit size dependence
of some of the thermodynamic parameters – like the growth rate – connected with interfacial
contributions to the thermodynamic potentials may be of significance in addition as well.

Here we would like to draw the attention to one additional point which is discussed in
detail in Ref. [6]. Following the thermodynamic analysis in the framework of the generalized
Gibbs’ approach, as done here, we come to the conclusion that the kinetics of nucleation and
growth in solutions does not proceed according to the classical picture but exhibits features
typical for spinodal decomposition. According to the results of the analysis as illustrated in
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Figure 12.3: Comparison of the classical model of phase separation in multicomponent solu-
tions (left side) with the scenario as developed based on the generalized Gibbs’ approach (right
side; see text)

Figs. 12.2 and 12.3, nucleation proceeds as follows. In a part of the ambient phase with a
radius near to the critical one (both Rc and the ratio R/Rc depend on supersaturation [6]),
the composition is changed until the properties of the newly evolving macroscopic phase are
reached. Only afterwards, the classical picture – growth in size of aggregates with nearly con-
stant composition – reflects the situation correctly. The classical model does not give a correct
description for the stage of nucleation. Note that this result is confirmed by the statistical-
mechanical analyses of model systems [7,8] giving this way an additional confirmation of the
validity of the generalized Gibbs’ approach employed here.

The determination of the trajectory of evolution by purely thermodynamic arguments (evo-
lution along the valley of the thermodynamic potential), as employed in Fig. 12.2, has one
disadvantage mentioned already in Ref. [4], it does not account for the specific features of
the kinetics of the processes of cluster growth and its possible effects on the choice of the
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(left side) and path of the evolution in the space of particle numbers in the clusters, n1 and n2.
Here Rc and nc are the critical radius and the total number of particles in the critical cluster.
The computations are performed for segregation in a regular solution. In generalization of the
results as given in Fig. 12.2, here also the effects of the kinetics are incorporated. Different
evolution paths are obtained for different values of the ratio of the diffusion coefficients of both
components (for details see Ref. [6])

trajectory of cluster evolution. Moreover, the question remains partly open, which set of ther-
modynamic variables is most suited to be employed in the determination of the preferred path
of evolution. These shortcomings have been overcome in generalization of the thermodynamic
criterion as developed in Ref. [6]. According to this generalization, the preferred path of evo-
lution of the clusters is determined by the deterministic equations of motion of cluster growth
starting with initial states slightly above and below the critical cluster size. As evident from
Fig. 12.4, the incorporation of such kinetic effects may modify the above-discussed scenario
quantitatively but not qualitatively.

This way, the generalized Gibbs’ approach is able to lead to a variety of new insights into
the course of first-order phase transformations. In addition to the mentioned results, it allows
a new interpretation of the problem of existence or non-existence of metastable phases in
crystallization of different glass-forming melts and the evolution of bimodal cluster size dis-
tributions for intermediate stages of segregation processes (cf. Ref. [4] and Chapter 4) and the
behavior of phase separating systems near the classical spinodal curve (cf. Ref. [6]). In par-
ticular, it is shown that ridge crossing nucleation may be the dominating mechanism of phase
formation not only in metastable but also in unstable initial states near the spinodal curve. As a
further consequence, it leads to the conclusion that, not merely as an exception but as the rule,
the temperature in the critical cluster has to be different from the temperature of the ambient
phase (cf. Chapter 11). Such effects are expected to be of considerable importance for the
understanding of the course of first-order phase transitions and require partly a quite different
approach as compared with the classical methods. Some of such possible modifications have
been already discussed in Chapter 3, but, as it seems, this will be only the beginning of such a
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process of revision of classical methods. This way, it is believed that the further development
of the generalized Gibbs’ approach in application to nucleation and growth processes and its
consequences may serve as a quite powerful tool in order to resolve problems in the compar-
ison of experimental results and theoretical predictions which have not found a satisfactory
solution so far.
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