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Preface

During the past two decades, revolutionary breakthroughs have occurred in
the understanding of ferroelectric materials, both from the perspective of the-
ory and of experiment. First principles approaches, including the Berry phase
formulation of ferroelectricity, now allow accurate, quantitative predictions of
material properties, and single crystalline thin films are now available for fun-
damental studies of these materials. In addition, the need for high dielectric
constant insulators and nonvolatile memories in semiconductor applications
has motivated a renaissance in the investigation of these materials.

In this book, we present the modern physics of ferroelectricity in oxides
through a set of chapters on topics that collectively represent some of the key
advances and innovations over the last thirty years. After the introductory
chapter, the next four contributions by Resta and Vanderbilt, Chandra and
Littlewood, Rabe and Ghosez, and Spaldin together cover the main recent
theoretical developments in the field. In contrast, the following three contri-
butions by Posadas et al., Lichtensteiger et al. and Paruch et al. comprise
a highly selective presentation of experimental developments, giving illustra-
tions of what can be achieved using the high quality epitaxial oxide films
that can be obtained using the advanced deposition techniques described in
the contribution by Posadas et al. We have chosen to focus on this particular
area, as it is not possible in one book to cover the entire large body of recently
obtained results on new materials using new experimental techniques. At the
end of this book, the interested reader will find handy tables containing key
material properties and useful substrates and growth methods.

We would like to emphasize that this book should not be regarded as
covering the same breadth of subject matter as the classic book by Lines
and Glass (Principles and Applications of Ferroelectrics and Related Mate-
rials) which so definitively codified the knowledge of the first “Golden Age”
of research in ferroelectric oxides, but rather as a complement that brings
the reader from that sound foundation up to the present. Completely new
topics include the modern theory of polarization (Resta and Vanderbilt), first
principles studies of ferroelectrics (Rabe and Ghosez ), and the novel physics
of nanoscale ferroelectric structures and probes, including ultrathin ferroelec-
tric films and short-period superlattices (Posadas et al., Lichtensteiger et al.,
Paruch et al. and Appendix B). New perspectives transform the presenta-
tion of the phenomenological Landau-Devonshire theory in the contribution
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of Chandra and Littlewood and in Appendix A, and the discussion of the
relationship between ferroelectricity and ferromagnetism by Spaldin. Indeed,
in this latter contribution, we will see that reexamination of the physics of
magnetic ferroelectrics in the current context has led to a lively renaissance
for research in the design, synthesis, characterization and theory of so-called
“multiferroic” materials.

June, 2007

Rutgers University, Piscataway NJ, USA Karin M. Rabe
Yale University, New Haven CT, USA Charles H. Ahn
University of Geneva, Geneva, Switzerland Jean-Marc Triscone
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Abstract. Principles of ferroelectricity and information about ferroelectric mate-
rials and their applications are reviewed. The characterization of ferroelectric be-
havior through measurement of electrical hysteresis is discussed in detail. The main
families of ferroelectric oxides, including perovskite compounds and solid solutions,
lithium niobate, layered oxides, magnetic ferroelectric oxides, and electronic fer-
roelectrics are presented and their crystal structures and polarizations given. The
effects of pressure and epitaxial strain on perovskites are described. Recent advances
in the understanding of ferroelectricity in thin films, superlattices and nanostruc-
tures are mentioned. Finally, an overview of applications of feroelectric materials,
both established applications and those under development, is included.

1 Introduction

A ferroelectric is an insulating system with two or more discrete stable or
metastable states of different nonzero electric polarization in zero applied
electric field, referred to as “spontaneous” polarization. For a system to be
considered ferroelectric, it must be possible to switch between these states
with an applied electric field, which changes the relative energy of the states
through the coupling of the field to the polarization −E · P .

The concept of electric polarization is thus key to an understanding of
ferroelectricity. For a finite system, electric polarization is straightforwardly
defined as the dipole moment, obtained from the charge density, divided by
the system volume (though it should be noted that for ultrasmall systems, the
boundaries of the system are not sharp). For an infinite crystal, the definition
of polarization as a bulk property long proved considerably more difficult to
formulate. The resolution, suggested by Resta, King-Smith and Vanderbilt
and now generally referred to as the “modern theory of polarization,” is to
identify the polarization as an integrated current through a transformation
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from one variant to another, the result being expressed as a Berry phase. This
focus on the induced current has the additional advantage of making a direct
connection to the electrical and optical means of measuring polarization.
Another novel aspect of this formalism is that polarization is not a vector
property, but rather a lattice P 0 +2eR/Ω, where R is a vector of the crystal
Bravais lattice and Ω is the volume of the unit cell. An intuitive structure-
based picture is provided by a reformulation of the Berry-phase expression in
terms of the centers of crystalline Wannier functions. These ideas and their
application to ferroelectrics are more fully explained in the contribution by
Resta and Vanderbilt.

In this overview, we present an introduction to ferroelectric materials with
the information needed as background for reading the subsequent chapters of
this book. We only include the most essential points, with special attention
to those not available elsewhere; for more comprehensive background we re-
fer the reader to the classic book by Lines and Glass [1], which is still very
useful despite its copyright date of 1977, and to the invaluable compilations
of data from the literature in the series of volumes of Landolt Börnstein [2,3].
We start by discussing the characterization of ferroelectric behavior through
measurement of polarization switching hysteresis loops. This is followed by a
discussion of the relation between ferroelectricity and crystal structure (more
generally, atomic arrangement), and then a description of the crystal struc-
tures, electric polarizations and phase diagrams of the most commonly stud-
ied ferroelectric oxides; this information will be a handy reference as these
materials are discussed in the various chapters of this book. Finally, we give
up-to-date perspectives on two areas in which there has been rapid develop-
ments in recent years: (1) finite-size effects in ferroelectric thin films, super-
lattices and nanostructures, and (2) technological applications of ferroelectric
oxides.

2 Switching and Hysteresis Loops

As mentioned above, a defining property of ferroelectricity is the switching
between different metastable states by the application and removal of an
electric field. The mechanism of switching is understood to take place on
scales longer than the unit-cell scale, and generally to require the growth
and shrinking of domains through the motion of domain walls, as will be
discussed in more detail in the contribution by Lichtensteiger, Dawber and
Triscone, and the contribution by Paruch, Giamarchi and Triscone. While
the “small distortion” crystallographic criterion discussed in the next section
should generally allow switching, the observation of an electric hysteresis loop
(Fig. 1) is considered necessary to establish ferroelectricity.

In its canonical form, the ferroelectric P–E hysteresis loop is symmetric
and the remnant polarization and coercive fields are easily defined and ex-
tracted. There are, however, a number of potential pitfalls in the accurate
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Fig. 1. (a) Hysteresis loops for a number of PbTiO3/SrTiO3 superlattice samples
with different polarizations. (b) The corresponding current–voltage loops (obtained
during voltage sweeps in which the voltage is cycled, in contrast to leakage current
I–V curves that measure current when the voltage is held constant for a period of
time) from which the polarization–voltage hysteresis loops are obtained, showing
clear switching peaks at the coercive voltage of the sample

performance of this measurement. The starting point for any measurement
of this kind is to realize that the electrical properties of a ferroelectric film
can only be measured when it is fabricated as a device (most typically a
capacitor). Thus, any measurement actually involves a whole system, with
electrodes, wires and interfaces, and sometimes it is these other components
of the system that dominate the electrical response, rather than the intrinsic
properties of the material of interest. In this section we briefly cover the key
ways in which ferroelectric hysteresis measurements are made, with special
attention to the potential errors that can be made and the methods that can
be used to avoid them.

The Sawyer–Tower circuit [4], the original method for measuring ferro-
electric hysteresis, is simple in concept. It is essentially just a capacitance
bridge, relying on the fact that two capacitors in series should have the same
charge. One of these capacitors is comprised of the ferroelectric, and the
other is a standard capacitor with a well-defined capacitance. The potential
across the standard capacitor is plotted on the y-axis, and the ac voltage
applied to the ferroelectric sample is plotted on the x-axis in the X–Y mode
of an oscilloscope. The standard capacitor should be chosen to have a large
capacitance so that the potential across it is small enough not to affect the
potential across the ferroelectric sample. In the ideal case where the current
flowing during this measurement is purely displacive, this measurement will
give accurate values of the ferroelectric polarization. A simple implementa-
tion of this circuit, along with a description of a simple classroom experiment
to observe ferroelectric hysteresis in KNO3, is described in [5].

Unfortunately, especially when they are grown as thin films, ferroelectrics
are seldom perfectly resistive, and a host of factors, such as grain boundaries,
defects, conduction processes such as Schottky injection or Fowler–Nordheim
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tunneling, can allow significant leakage currents to exist. These can make it
difficult to tell the difference between a sample that is simply a linear dielec-
tric and one that is truly ferroelectric. An ideal linear dielectric measured in
a Sawyer–Tower circuit gives a straight line, as the charge on the capacitor
follows the applied voltage. An ideal resistor gives an ellipse in the case of
an applied sine wave, or a football shape when a triangular wave is applied.
Unfortunately, one sometimes measures near the RC time constant of the
sample, and the result is a tilted ellipse or football, which is not very differ-
ent from the measurement observed for an undersaturated hysteresis loop.
Crucially, the zero-field intercept of the polarization axis is NOT a ferro-
electric polarization; it just means the sample is leaky. The problem can be
even more subtle in the case where the sample is a leaky nonlinear dielectric,
which can give the appearance of saturation of the polarization, when in fact
it is simply a reduction of the dielectric constant material at high fields. It is
also common to have samples that, while ferroelectric, are also quite leaky,
leading to rounding of the top of the loop and an overestimate of the value of
the remnant polarization. It is important to note also that the leakage cur-
rent in ferroelectric thin films is usually not linear, and thus a sample may be
quite insulating at low applied fields (and have a low dielectric loss), but be
highly conducting when higher fields are applied in the switching experiment.
Further discussion of these and other artifacts can be found in [6].

There are a number of methods that can be used to avoid these prob-
lems. Measurements can be made at several different frequencies, as artifacts
are usually highly frequency dependent. If a sample only appears to be fer-
roelectric in a narrow range of measurement frequency it is probably not
ferroelectric. Secondly, it is useful to look at the switching current, as done
by current commercial ferroelectric testers, for example the Aixacct TF An-
alyzer or the Radiant Precision Pro, though it is equally possible to do this
with home-built setups. If the sample is ferroelectric, switching peaks are
visible in the I–V curve measured during the switching process (Fig. 1). It
should be noted, though, that the standard hysteresis measurement provided
by these testers will still display the tilted football shape if the sample is a
leaky dielectric.

A number of options are available to distinguish ferroelectric switching
from artifacts. For example, applying a series of voltage pulses and measur-
ing the current transients that result from them allows for separation of the
different components of the electrical response of a ferroelectric device. The
PUND (positive up negative down) measurement is especially useful for this
purpose. In this measurement a train of five pulses is sent. First, an initial
pulse (Pulse 0) to polarize the sample in a definite polarization state is sent.
Pulse 1 then switches the polarization to the other direction. Pulse 2 is then
applied in the same direction as Pulse 1 and so should not switch the sample.
Pulse 3 and Pulse 4 are like Pulses 1 and 2 but in the opposite direction. In
the example shown in Fig. 2, the switching phase can be seen as the voltage
is increased. Following this the voltage is held constant, and if the leakage is
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Fig. 2. Result of a PUND measurement on a ferroelectric sample. The lower inset
shows the pulse train applied to the sample. In this case the delay time between
pulses was 1 s. The upper inset shows the difference between the current for the 1st
and 2nd pulse, and also the 3rd and 4th pulse. This corresponds to the charge that
is switched when the polarization state of the sample is reversed. This measurement
was performed on a PbTiO3/SrTiO3 superlattice

low, as is the case in this sample, no current is seen. A leaky sample would
show a constant current in this phase of the measurement. For Pulse 2, which
is applied after a certain delay time, switching will not be seen in the case
that the polarization is stable. In this case the current measured is due to
the charging arising from the linear component of the dielectric response.
Sometimes a switching peak may be observed when Pulse 2 is applied, which
shows that while there does appear to be a ferroelectric polarization, it is
not stable against backswitching, either to the opposite polarization, or to a
polydomain state, with lower or no net polarization. In this case it is inter-
esting to vary the delay between pulses, which allows one to determine the
relaxation time of the polarization. A recent example of this approach can
be seen in [7].

To determine the switched ferroelectric polarization that is stable for the
chosen delay time, one subtracts the 2nd curve from the 1st and takes the
integral of this switching current to find the switched polarization. For most
devices the value of most interest is that of the polarization that can be
switched and remain switched for a long period of time.
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Comparison of numbers obtained from these kinds of experiments with re-
sults obtained from theoretical first-principles calculations is interesting, but
requires some care. For example, if a calculation does not take into account
domain formation or other extrinsic factors that might affect the stability of
a net polarization on a device, should one compare the polarization obtained
from it to the stable polarization one measures in the PUND experiment, or
rather to the maximum polarization that can be switched by using a very
short delay time between pulses? One may think that it is the latter, but it is
also possible that in this case the charge that remains on the device is not be-
cause of ferroelectricity, but rather because insufficient time was given for the
charge put onto the capacitor due to the linear charging effect to discharge.
Measurements done over a large parameter space (e.g., frequency, field, delay
time between pulses, temperature, etc.) allow meaningful comparisons to be
made.

3 Crystallographic Signature of Ferroelectricity

In all known ferroelectric crystals, the spontaneous polarization is produced
by the atomic arrangement of ions in the crystal structure, depending on their
positions, as in conventional ferroelectrics, or on charge ordering of multiple
valences, as in electronic ferroelectrics. A nonzero spontaneous polarization
can be present only in a crystal with a polar space group. However, for ferro-
electricity it must also be possible to switch between different variants with
an applied electric field, which implies that many polar crystals, a good ex-
ample being wurtzite-structure insulators, are not considered ferroelectric.
One condition that ensures the presence of discrete states of different po-
larization and enhances the possibility of switching between them with an
accessible electric field is that the crystal structure can be obtained as a
“small” symmetry-breaking distortion of a higher-symmetry reference state.
This involves a polar displacement of the atoms in the unit cell, which may be
coupled to nonpolar atomic displacement patterns and to the corresponding
strain; the latter coupling can be quite strong in some ferroelectric oxides,
producing piezoelectric behavior and rich pressure–temperature and epitaxial
strain phase diagrams, as discussed for perovskite oxides below. The magni-
tude of the spontaneous polarization can be estimated using Born effective
charges Z∗e and displacements u from the reference structure as 1

Ω

∑
Z∗eu,

where Ω is the volume of the unit cell; this linearized approximation in many
cases gives a value close to the full Berry-phase or Wannier-function result. In
our overview of ferroelectric oxides below, we will include the high-symmetry
nonpolar and low-symmetry polar structures, with information about the
polarization of the latter, both measured and computed, as available.

In most ferroelectrics, there is a phase transition from the ferroelectric
state, with multiple symmetry-related variants, to a nonpolar paraelectric
phase, with a single variant, with increasing temperature. In most of these
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cases the high-symmetry reference structure is the same as the crystallo-
graphic structure observed in the paraelectric phase. Measured ferroelectric
transition temperatures range from very low (1K) to very high (over 1000K);
for the latter systems there is the possibility that the material melts before
the transition temperature is reached. The symmetry-breaking relation be-
tween the high-symmetry paraelectric structure and the ferroelectric struc-
ture is consistent with a second-order transition, and can be described with a
Landau theory where polarization is the primary order parameter (discussed
in detail in Chap. 4). This analysis naturally leads to the prediction that
the dielectric susceptibility diverges at the transition. From there, the link is
made, through the Lyddane–Sachs–Teller relation, to the vanishing frequency
of a polar phonon, which is the central idea of the soft-mode theory of fer-
roelectrics [8, 9]. Indeed, observation of the temperature dependence of polar
phonons was a key ingredient in the great progress made in understanding
the physics of ferroelectricity in the 1960s and 1970s. Phonon spectroscopy
continues to play a central role in the characterization of ferroelectric tran-
sitions, both via neutron scattering and optical spectroscopy [10, 11]. The
soft-mode theory is illuminating, despite the fact that in many perovskite
ferroelectrics, the transition is weakly first order (that is, there is a discon-
tinuity in polarization and structural parameters, and a latent heat, at the
transition), which may be the result of polarization–strain coupling.

Landau theory analysis, with polarization as the primary order param-
eter, suggests a comparison to magnetic phase transitions. Indeed, Landau
analysis allows also the consideration of a broader range of “improper” fer-
roelectrics where polarization is a secondary order parameter coupled to a
primary nonpolar lattice distortion or to a magnetic order parameter; these
have proved to be especially important in the study of magnetic ferroelectrics.

The principle that ferroelectric structure represents a small distortion of
a high-symmetry reference phase is a powerful one. It has been developed
into a structural criterion for the identification of ferroelectricity in the crys-
tallographic database by Abrahams [12], who has also proposed an empirical
relation between the magnitude of the displacements and the ferroelectric
transition temperature. This approach has been further developed and ap-
plied in, for example, [13, 14]. This principle also provides a systematic ap-
proach for first-principles studies, described in the contribution by Rabe and
Ghosez, where the phonons of the high-symmetry reference structure are
computed and the unstable modes used as guides to identify energy-lowering
distortions [15].

Most of the information about crystal structure of ferroelectrics has been
experimentally obtained from X-ray and neutron-diffraction structural de-
terminations. These yield the average crystallographic structure. Studies of
diffuse scattering [16] and local probes, such as pair-density correlation func-
tion (PDF) analysis [17] and extended X-ray absorption fine-structure spec-
troscopy (EXAFS) [18] reveal that local distortions and fluctuations are also
very important features of the crystal structure. As will be discussed in the
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contribution by Rabe and Ghosez, first-principles predictions of the crystal
structure and polarization can be a valuable complement to experimental
structural determinations to obtain atomic-scale information about atomic
arrangements and electronic states in these complex oxides.

4 Materials

In this section, we provide an overview of the main families of ferroelectric
oxides. While ferroelectricity was discovered in hydrogen-bonded materials,
Rochelle salt and subsequently KDP, the discovery in 1949 of ferroelectricity
in the much simpler, nonhydrogen-containing, perovskite oxide BaTiO3 dra-
matically changed the physical understanding of this phenomenon. BaTiO3

is the prototypical example of the now very large and extensively studied
perovskite oxide family, which includes not only perovskite compounds, but
also ordered and disordered solid solutions. The relative simplicity of the per-
ovskite structure led to a deeper understanding of the origin of ferroelectricity
and quantitative phenomenological and first-principles modeling, which will
be described in the following section. Additional families of important ferro-
electric materials are closely related to the perovskites, being intergrowths of
perovskite layers with other oxides. Finally, we will refer to some additional
ferroelectric oxide structural families that are not related to the perovskites.

4.1 Perovskite Oxides

The most studied family of ferroelectric oxides is that known as the perovskite
oxides (from the mineral perovskite CaTiO3). This is a very large family of
composition ABO3, where A and B each represent a cation element or mixture
of two or more such elements or vacancies. The physical properties of the en-
tire family are extremely diverse: depending on the composition and cationic
ordering, they can be metallic or insulating and exhibit many different types
of structural and magnetic order. The perovskite oxides that are ferroelectrics
in bulk crystalline form are a subfamily; other related compounds might have
a tendency to a ferroelectric instability that is, however, not manifest in the
bulk crystal due to the dominance of other, nonferroelectric, competing types
of order.

The ideal perovskite structure, which can be taken as the high-symmetry
reference structure and is the structure of the high-temperature paraelectric
phase for most ferroelectric perovskite oxides, has space group Pm3m, with
a simple cubic lattice and a basis of 5 atoms. The following description of the
perovskite structure is taken from [19]. As shown in Fig. 3, if the A atom is
taken at the corner of the cube, the B atom is at the center and there is an
oxygen at the center of each face; alternatively, if the B atom is taken at the
corner, the A atom is at the center and O atoms are located at the midpoint
of each edge.
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Fig. 3. Two different views of the unit cell of the ABO3 ideal cubic perovskite
structure. The B atom (grilled pattern) is at the center of an octahedron composed
of oxygen atoms (white pattern). The A atom (dashed pattern) has 12 oxygen first
neighbors. From [20]

Fig. 4. Another view of the ABO3 ideal cubic perovskite structure. From [20]

As is shown more clearly in Fig. 4, in the perovskite structure, the B
atom is at the center of 6 oxygen first neighbors, arranged at the corners
of a regular octahedron. The octahedra are linked at their corners into a 3-
dimensional simple-cubic network, enclosing large holes that are occupied by
A atoms. Each A atom is surrounded by 12 equidistant O atoms. The oxygens
have a lower-symmetry coordination environment: each O atom is adjacent
to 2 B atoms and 4 A atoms. The structure can also be characterized by the
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straight, infinite interpenetrating B–O chains that run in parallel along all
three Cartesian directions.

The prevalence of distortions for compounds crystallizing in the perovskite
structure is related to the structural frustration of the cubic perovskite struc-
ture regarded as an ionic solid. An empirical criterion for the stability of the
perfect perovskite-type structure was put forward by Goldschmidt (1926),
based on the rules he had previously derived for ionic binary compounds. His
model is based on the concept of ionic radius and the following rules: (i) a
cation will be surrounded by as many anions as can touch it, but no more;
(ii) all the anions must touch the cations and the anion–cation distance is
obtained as the sum of their ionic radii. The perovskite structure is fully de-
termined by the size of the oxygen octahedra containing the B atoms, while
the A atoms must fit the holes between the octahedra. Following the rules of
Goldschmidt, this condition provides an ideal relation between ionic radii:

rA + rO =
√

2(rB + rO). (1)

In the ideal cubic perovskite structure, this will in general not be satisfied.
The deviation can be measured through a tolerance factor t defined as follows:

t =
rA + rO√
2(rB + rO)

. (2)

Goldschmidt has shown that the perovskite structure is formed when the
condition expressed by (1) is satisfied (t ≈ 1). When t > 1, the structure
is imposed by the A–O distance and the B atom is too small for the oxygen
octahedron so that the structure will develop a small polar distortion, as in
BaTiO3. Conversely, when t < 1, the A atom is small in comparison to the
hole between the oxygen octahedra: the A atom cannot effectively bond with
all 12 neighboring O atoms. If t is only slightly less than one, rotations and
tilting of the oxygen octahedra will be favored (as in SrTiO3 and CaTiO3);
for smaller t the compound will favor a strongly distorted structure with only
6 neighbors for the A atom as in LiNbO3, to be discussed below. If the value
of t is very different from unity, then the perovskite-type structures will be
unfavorable relative to another of the known ABO3 structure types, which
will not be considered here.

The first perovskite oxide compound identified as being ferroelectric was
BaTiO3. The formal valences are +2 for Ba and +4 for Ti, exactly balanc-
ing the negative total valence of the oxygens. At high temperature, it has
a paraelectric cubic perovskite structure (Pm3m). At 393K, it transforms
from a cubic phase to a ferroelectric tetragonal phase (P4mm), as shown in
Fig. 5. This phase remains stable until 278K, where there is a second trans-
formation to a ferroelectric phase of orthorhombic symmetry (Amm2). The
last transition occurs at 183K. The low-temperature ferroelectric phase is
rhombohedral (R3m). Each transition is accompanied by small atomic dis-
placements, dominated by displacement of the Ti ion relative to the oxygen
octahedron network, and a macroscopic strain. In the successive ferroelec-
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Fig. 5. Crystal structure of the perovskite ferroelectric BaTiO3. (A) High-tem-
perature, paraelectric, cubic phase. (B and C) Room-temperature, ferroelectric,
tetragonal phases, showing up and down polarization variants. The atomic dis-
placements are scaled to be clearly visible. From [23]

tric phases, the polar axis is aligned respectively along the <100>, <110>
and <111> directions corresponding to the direction of the atomic displace-
ments with respect to their position in the cubic reference structure (a re-
cent structural determination of the ferroelectric phases is reported in detail
in [21]). The measured polarizations in the R, O and T phases are 33μC/cm2,
36μC/cm2 and 27μC/cm2, respectively [2, 3]. There is reason to think that
the measured polarization in the R phase may be smaller than the true in-
trinsic polarization, as the first-principles value is 43μC/cm2, which is also
more consistent with a geometric 1 :

√
2 :

√
3 relation [22]. The space group

of each of these phases is a subgroup of that of the cubic structure Pm3m.
However, there is no group–subgroup relation for the T−O and O−R transi-
tions, so that from Landau theory they are expected to be first order. KNbO3

is isostructural with BaTiO3, exhibiting the same sequence of phases, though
the valences of the cations are +1 (K) and +5 (Nb) rather than +2/+4.
The transition temperatures are 701K (C−T), 488K (T−O) and 210–265K
(O−R) with spontaneous polarization in the tetragonal phase measured to
be about 35μC/cm2 [2, 3].

The structures of a number of other +2/+4 perovskites are closely related.
PbTiO3 has a paraelectric–ferroelectric transition at 760K to a tetragonal
P4mm ground state, with a polarization of about 75μC/cm2 measured at
room temperature [2,3,24]. The difference in ground state relative to BaTiO3

can be attributed to a difference in the strain–polarization coupling (see the
contribution of Rabe and Ghosez on first-principles calculations). Another
difference is that displacement of the Pb ion, in addition to that of Ti, is sub-
stantial and contributes signficantly to the spontaneous polarization. Other
substitutions of alkaline-earth cations for Ba2+ yield structural behavior in
general agreement with the tolerance ratio arguments. SrTiO3 exhibits a ten-
dency to a polar instability, with a polar phonon that strongly decreases in
frequency as the temperature is decreased. However, at low temperature, the
phonon stabilizes and the transition does not in fact occur, leading to the
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term “incipient ferroelectric”. This stabilization is presumed to be the ef-
fect of quantum fluctuations, which is consistent with the observation of a
ferroelectric transition in samples with 18O [25]. In addition, there is a struc-
tural phase transition at 120K in which the oxygen octahedra rotate around
a cartesian axis (taken as the z-axis) to lower the symmetry to tetragonal
I4/mcm, called an antiferrodistortive transition [26]. KTaO3 similarly is an
incipient ferroelectric, bearing an analogous relation to KNbO3; however, it
does not undergo an antiferrodistortive transition and remains cubic down to
low temperatures [27]. Ca2+ being an even smaller cation than Sr, the ten-
dency to rotational transitions is even greater, and CaTiO3 has a complex
20-atom nonpolar orthorhombic Pbnm structure, common to a number of
other perovskites, including GdFeO3 and DyScO3.

Ferroelectricity in the perovskite oxide ferroelectrics can exhibit high sen-
sitivity to changes in strain state, typically produced by external stress. Fer-
roelectrics such as Pb(Zr,Ti)O3, because of their favorable piezoelectric prop-
erties, have a significant technological role in actuators and transducers, the
more so as polycrystalline ferroelectric material can be poled by an applied
electric field. More recently, colossal piezoelectric response has been observed
in single-crystal perovskite solid solutions [28]. It has long been accepted that
application of pressure initially reduces the paraelectric–ferroelectric transi-
tion temperature, presumably by favoring the more symmetric paraelectric
structure [29]. The phase diagrams up to high pressures have recently been
the subject of much interest. For PbTiO3, there is theoretical and experimen-
tal evidence for a rich phase diagram at sufficiently high pressures [30, 31].
For BaTiO3, the experimentally determined pressure–temperature phase dia-
gram [32] is shown in Fig. 6a. The same R–O–T–C sequence is observed with
increasing pressure as with increasing temperature. The phase diagram for
epitaxial strain in BaTiO3 thin films is shown in Fig. 6b. The epitaxial strain
constraint changes the phase sequence [33]; the orthorhombic phase disap-
pears altogether, and the rhombohedral phase (which appears only at temper-
atures below those included in Fig. 6b) has a monoclinic distortion imposed
by matching to the square surface of the substrate [34]. For SrTiO3, epitaxial
strain transforms the bulk paraelectric phase into a ferroelectric [35, 36].

The perovskite oxides readily form solid solutions, many of which show
complete miscibility from one endpoint compound to the other. The isoelec-
tronic substitutions, for example Ba/Sr and Ti/Zr, are particularly relevant
to the study of ferroelectricity, as the formal valence counting yields insulat-
ing behavior across the phase diagram, while the change in the cation can lead
to shifts in transition temperatures as well as the appearance or disappear-
ances of particular phases. As a very simple example, the subsitution of Sr
for Ba in BaTiO3 lowers the transition temperatures in the phase sequence,
with the transitions being suppressed altogether as the SrTiO3 endpoint is
approached [37], as shown in Fig. 7a. The details of the diagram in this re-
gion are nontrivial and have been the subject of experimental and theoretical
investigation (see the contribution of Rabe and Ghosez ).
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Fig. 6. (a) Critical temperature vs. pressure phase diagram of BaTiO3, deduced
from X-ray and neutron–diffraction studies. From [32]. (b) Expected Tc of (001)
BaTiO3 under biaxial inplane strain σ, based on thermodynamic analysis. The
green region represents the range (error bars) in the predicted Tc resulting from
the spread in reported property coefficients for BaTiO3 that enter into the thermo-
dynamic analysis. The data points show the observed σ and Tc values of coherent
BaTiO3 films grown by molecular beam epitaxy (MBE) on GdScO3 (blue circle) and
DyScO3 (red circle) substrates and by pulsed laser deposition (PLD) on GdScO3

(blue square) and DyScO3 (red square) substrates. From [34]

The most extensively studied and technologically important solid solu-
tion is PbZr1−xTixO3 (PZT). The standard phase diagram is reproduced in
Fig. 7b. The endpoint compound PbZrO3 is an antiferroelectric with 40 atoms
per unit cell. However, the antiferroelectric structure is destabilized by even
small amounts of Ti substitution to yield two rhombohedral ferroelectric
phases. The vertical phase boundary at about 50%, called the morphotropic
phase boundary (MPB), is associated with the favorable piezoelectric prop-
erties of this system. At the MPB, an applied electric field can easily induce
a transition between the rhombohedral and tetragonal phases, with a large
associated strain response that is relatively insensitive to temperature. Re-
cently, careful re-examination of the phase diagram showed the presence of a
previously unknown monoclinic phase in a very narrow composition range in
the vicinity of the MPB [38] (see also the recent review in [40]). Structurally,
this phase acts as a bridge between the tetragonal and the rhombohedral
phase, as confirmed by first-principles investigation [41]; this behavior ap-
pears to be common to other lead-based perovskites as well [42].

For heterovalent substitutions on the A or B site (or both), the substitu-
tion must be in a fixed ratio in order to produce an insulating state. For mix-
tures of +3 and +5, the balance is 1/2 to 1/2, for example Pb(Sc1/2Ta1/2)O3

(PST) and Pb(Sc1/2Nb1/2)O3 (PSN). For mixtures of +2 and +5, the balance
is 1/3 to 2/3, for example PbMg1/3Nb2/3O3 (PMN) and PbZn1/3Nb2/3O3

(PZN). The more pronounced difference between substituents, relative to the
isovalent solid solutions, produces new phenomena, such as short-range and
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Fig. 7. (a) Critical temperature vs. concentration phase diagram of Sr1−xBaxTiO3,
deduced from X-ray and neutron-diffraction studies. From [37]. (b) PZT phase
diagram. From [38], after Jaffe et al. [39]

long-range ordering of the cation arrangement, and relaxor behavior rather
than true ferroelectricity. For a recent review of relaxor phenomenology and
first-principles investigations, see [43].

4.2 LiNbO3

LiNbO3 and related materials are ferroelectric oxides with a trigonal para-
electric structure. While this structure can, in principle, be obtained through
a distortion of the cubic perovskite structure, the necessary distortion is quite
large, so that these compounds do not revert to the cubic perovskite phase
at high temperatures, and the cubic perovskite structure is not an appro-
priate high-symmetry reference structure. Thus, it is often not considered a
perovskite [1], though it is crystallographically the same as R3c BiFeO3 (see
Fig. 2b in the contribution of Rabe and Ghosez ), differing only in the values
of the structural parameters.
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Fig. 8. Primitive unit cell of the R3c trigonal structure of LiNbO3. Views (a)
perpendicular and (b) parallel to the three-fold axis. From [19]

The paraelectric phase has a rhombohedral unit cell of R3c symmetry
with two formula units per unit cell. The positions of the 10 atoms in the
rhombohedral primitive unit cell are shown in Fig. 8. The threefold axis is
formed by a chain of equidistant A and B atoms. Each B atom is located at
the center of an octahedron formed by 6 oxygen atoms. As for the perovskites,
the R3c structure is composed of oxygen octahedra containing the B atom and
surrounded by the A atoms. However, relative to the perovskite structure, the
oxygen octahedra have been rotated around [111], so that the A atoms only
have 6 oxygen first neighbors, rather than twelve as in the cubic perovskite
structure.

The low-temperature R3c ferroelectric phase is obtained from the para-
electric R3c phase by displacements of the cations along the [111] direction,
breaking the mirror-plane symmetry and resulting in a nonzero spontaneous
polarization. For LiNbO3, the paraelectric–ferroelectric transition occurs at
1483K, with a spontaneous polarization of 71μC/cm2 at room temperature.
The structurally analogous system LiTaO3 has a lower critical temperature
of 838K, with a spontaneous polarization of 50μC/cm2 [2, 3].

4.3 Layered Oxide Ferroelectrics

The Aurivillius phases are layered bismuth oxides Bi2mAn−mBnO3(n+m),
formed by the regular stacking of Bi2O2 slabs and perovskite-like blocks
Ap−1BpO3p+1, as described in [45]. Various A and B cations are allowed,
so that this family has numerous representatives. Examples include Bi2WO6

(n = 1), SrBi2Ta2O9 (n = 2) and Bi4Ti3O12 (n = 3) (see Fig. 9). Ad-
ditional members can be generated by allowing the stacking of perovskite-
like blocks of different sizes. SrBi2Ta2O9 (SBT), because of its very low fa-
tigue [46], has been intensively studied both experimentally and theoreti-
cally [47]. The room-temperature structure is orthorhombic A21am, with
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Fig. 9. Tetragonal structures of Aurivillius compounds Bi2WO6, SrBi2Ta2O9 and
Bi4Ti3O12. Only atoms between 1/2c and 3/4c are shown. From [44]

Fig. 10. Schematic of the crystal structure of a unit cell of the n = 1, 2, 3, 4, 5 and
∞ members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Circles
represent Sr atoms, while Ti atoms are at the center of the octahedra with oxygen
atoms at each apex. From [48]

28 atoms in the primitive unit cell. The polar axis is a, with a polarization
of about 5μC/cm2 [44]. This relatively small value is not generic to Aurivil-
lius ferroelectrics; the polarization of Bi4Ti3O12, for example, is reported as
50μC/cm2 along the a-axis [44].

The Ruddlesden–Popper (RP) family of transition-metal oxides repre-
sents another mode of stacking perovskite blocks, in this case with rocksalt-
structure layers. The members of the family are indexed by n, where n spec-
ifies the thickness of the perovskite layer An+1BnO3n+1, terminated on both
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Fig. 11. The structure of Sr2TiO4 (space group I4/mmm) can be viewed as (a) a
stacking of SrO-terminated SrTiO3 perovskite [001] slabs, (b) a stacking of TiO2

and of SrO planes along [001], and (c) a series of Ti–O chains, infinitely long in
the plane along [001] and [010], and of finite extent along [001] (the Sr atoms have
been removed for clarity.) From [49]

Fig. 12. (a) The crystal structure of KNO3. From [51]. (b) The pressure–
temperature phase diagram of bulk KNO3. From [52]

sides by AO. These are stacked with a lateral shift of 1/2(a0,a0,0), giving
a rocksalt-like relationship between the two adjacent AO layers. The series
Srn+1TinO3m+1 is shown in Fig. 10; the structure of the n = 1 RP phase
is analyzed in detail in Fig. 11. The Sr−Ti series does not contain any fer-
roelectrics; the possibility of ferroelectricity for other compositions has been
the subject of experimental and theoretical speculation1 [49, 50].

4.4 Other Ferroelectric Oxide Families

The existence of numerous additional families of ferroelectric oxides has long
been well known. The types include tungsten bronzes, boracites, Mn3TeO6,
Pb5Ge3O11, Gd2(MoO4)3, R3Sb5O12, LiNaGe4O9, BaAl2O4, and Li2Ge7O15 [1].

1 private communication with D. G. Schlom
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Fig. 13. Crystal structure of LuFe2O4 showing the layered arrangement of Lu (large
dark-gray spheres), Fe (small black spheres) and oxygen (large white spheres) along
the c-axis (left). The Fe double layers are shown with a triangular interconnectivity
(right). From [57]

With the rapid development of experimental techniques and theoretical
frameworks for studying and understanding the physics of ferroelectric ox-
ides, renewed investigation of these families may bring to light examples of
materials with novel mechanisms for ferroelectricity, as well as previously un-
known members of these families with desirable physical properties. As just
one example, KNO3, with a crystal structure based on stacking of triangular
NO3 units with K ions (shown in Fig. 12a), has recently been the subject of
both theoretical [51] and experimental [53] investigation, building on earlier
results including [54] and [52]. This structural complexity, with the ferroelec-
tric distortion coupling to rotation of the triangular units, is closely related
to the rich pressure–temperature phase diagram shown in Fig. 12b.

4.5 Magnetic Ferroelectric Oxides

The ferroelectric hexagonal manganites, exemplified by YMnO3, have re-
cently been of interest due to their magnetic properties [55], and their struc-
ture and properties are therefore discussed at length in the contribution by
Spaldin. Briefly, the high-temperature paraelectric phase is quite distinct from
the perovskite structure. This appears to be an example of an improper fer-
roelectric, where the primary order parameter for the transition appears to
be the rotation of the oxygen polyhedra, which breaks symmetry, leading to
the development of a nonzero polarization along c [56]. The magnetism is
produced by the Mn cations, which are relatively passive in the ferroelectric
transition.
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4.6 Electronic Ferroelectrics

Attention has only recently begun to be paid to the possibility of electronic
ferroelectrics, which in principle would exhibit a symmetry-breaking insta-
bility of the electronic ground state that occurs even if the ions are held
fixed. There has been theoretical work on the Falicov–Kimball model [58–60],
which is relevant to mixed-valent transition-metal and rare-earth compounds,
such as SmB6. Another mechanism for electronic ferroelectricity is based on
charge-ordering phenomena (including charge-density waves) in complex ox-
ides, for example in the perovskite-structure manganites. While multiple va-
lence is most prevalent in transition metals, a few other elements can undergo
a form of charge ordering called charge disproportionation. For example, in
BaBiO3 it has been suggested that 2 Bi4+ → Bi3++ Bi5+, which leads to a
cell-doubling transition as discussed further in the contribution by Rabe and
Ghosez. In this as in most other cases, the charge-ordered states are still of
relatively high symmetry. but there have been reports of systems with spon-
taneous polarization (LuFe2O4 and YFe2O4) [61–65], accompanied by large
dielectric response above a phase-transition temperature. The ferroelectric
and magnetic properties of LuFe2O4 in particular, shown in Fig. 13, have re-
cently stimulated considerable research [57,66]. Intriguing dielectric behavior
related to charge ordering has also been reported for Fe2BO4 [67, 68]. The
large dielectric constant of La1.5Sr0.5NiO4 has been attributed to charge-
density waves (CDWs) [69]; the connection between electronic ferroelectric
and CDW systems is discussed further in the contribution by Chandra and
Littlewood.

4.7 Nonbulk Ferroelectrics

Within the last decade, thinking about ferroelectricity in systems with one or
more reduced dimensions has undergone a marked evolution. Up until the late
1990s, it was widely accepted that ferroelectricity in perovskite oxides would
disappear below a critical size of about 10 nm. Since then, through combined
experimental and theoretical investigation, a new view has emerged to the
effect that this suppression is an extrinsic effect, produced by electrical and
mechanical boundary conditions rather than by intrinsic size effects related
to the collective nature of the ferroelectric instability.

A key result in initiating this change of view was the experimental find-
ing that PZT films can maintain switchable polarization normal to the film
down to thicknesses of a few nm [70], a result supported by the theoretical
prediction that PbTiO3 will maintain a switchable spontaneous polarization
normal to the film down to thicknesses below three unit cells as long as the
depolarization field is fully compensated [71]. This led to a focus on the role
of the depolarization field in producing apparent size effects, with an analysis
by Dawber et al. [72] showing that the expected thickness dependence of the
measured coercive field is due to fixed voltage drops in realistic electrodes,
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along with numerous studies on the effect of incomplete compensation of the
field [73]. In addition to suppressing ferroelectricity, incomplete compensation
may alternatively drive the formation of complex domain structures [74, 75].

With the possibility of ferroelectricity in ultrasmall systems, new ques-
tions arise. In a finite system (a nanoparticle or a dot), formally there is
no ferroelectric–paraelectric phase transition and the criterion for a stable
switchable polarization may have to be formulated dynamically. Another is-
sue is that finite systems, such as films or particles, may be embedded in
asymmetric environments (e.g., different top and bottom electrodes for films).
Even if there are multiple metastable states, these could differ in the degree
of stability. In both cases, the criterion for ferroelectricity should be based
on the stability of two or more variants with different polarizations and the
switchability from one to another by an applied electric field.

The brief overview above highlights just a few of the important results
in recent fundamental and applied research in the physics of nonbulk ferro-
electrics. More discussion can be found in the next section (on applications),
in the contribution by Rabe and Ghosez (on first-principles theoretical stud-
ies) and in the contribution by Lichtensteiger, Dawber, and Triscone (on
finite-size effects).

5 Applications of Ferroelectric Materials

Much interest in ferroelectric materials arises because they possess properties
that are of use in a number of applications. In some cases ferroelectrics are
already among the leading materials for a particular application; in others
the possibilities that are presented by novel materials and geometries are
starting to be realized. Here we present a brief overview of both established
applications and those that may still come.

5.1 Pyroelectric and Piezoelectric Devices

Many applications for ferroelectric materials do not make use of the ferro-
electricity itself but of the related properties of pyroelectricity and piezoelec-
tricity. By symmetry these properties are required for ferroelectricity to exist
(they are necessary but not sufficient, i.e., all ferroelectrics are pyroelectric
and piezoelectric, but not all piezoelectrics are pyroelectric and not all py-
roelectrics are ferroelectric). Pyroelectrics are useful in a variety of imaging
and detection applications. Piezoelectrics find a host of uses in electrome-
chanicial devices. In particular in MEMS, the large piezoelectric coefficients
of ferroelectric solid solutions such as PZT allow for novel miniature elec-
tromechanical devices. More details on these applications can be found in
the review by Muralt [76].
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5.2 Ferroelectric Memory Technology

The desirability of nonvolatile memory technology in computing applications,
in particular in mobile devices, has long been evident, as demonstrated by
the current success of FLASH-based technology, in digital cameras, mobile
phones, MP3 players and a host of other portable devices. FLASH is not,
however, the long-term nonvolatile memory of choice, because of limitations
regarding endurance, scalability and voltage requirements.

Ferroelectrics have been considered for almost twenty years [77] to be a
leading candidate for the next generation of nonvolatile memories. Commer-
cially available devices do exist, but seem to be more common in niche appli-
cations, or as part of an integrated memory device involving several different
memory technologies, rather than as a standalone high-capacity nonvolatile
memory. Other competing technologies also exist, most notably MRAMs and
phase-change memory.

One of the issues that has hindered widespread implementation of ferro-
electrics as memory elements is that, to determine the polarization state of a
ferroelectric, it is usually necessary to attempt to switch the polarization; the
data stored is then erased and must be rewritten, i.e., the read-out operation
is destructive. As ferroelectrics can suffer from fatigue with repetitive cycling,
this destructive read-out places a limitation on the reliability, though over
the years fatigue resistance has been improved by the use of oxide electrodes.
There is still also considerable interest in nondestructive read-out devices,
including ferroelectric field-effect transistors, or through the use of materi-
als or composite structures where ferroelectric and ferromagnetic orderings
are coupled and the electrical polarization direction can be measured from
the magnetization. More information on multiferroics can be found in the
contribution by Spaldin in this volume and in a recent review [78].

More detailed reviews on ferroelectrics for memory applications can be
found elsewhere [6, 79].

5.3 Potential Future Applications

Here, we take a look at a number of interesting possible applications of ferro-
electrics that are in the earlier stages of development. This section is intended
to be inspiring rather than comprehensive.

5.3.1 Ferroelectric Nanostructures

In recent years ferroelectrics have been fabricated in a number of novel ge-
ometries, which in turn have suggested some new applications.

Ferroelectric materials appear to retain their properties on reduction of
size remarkably well, with ferroelectric nanoparticles remaining ferroelectric
to sizes at least as small as 20 nm [80, 81]. The critical thickness in ferroelec-
tric thin films is on the order of a few unit cells (being highly dependent on
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boundary conditions) [71, 73, 82, 83] (see the contribution by Lichtensteiger,
Dawber and Triscone). High-density arrays of ferroelectric nanocapacitors
are thus feasible as the basis for extremely high capacity memory devices.
Focused-ion-beam (FIB) milling [84] and e-beam direct writing [85] can be
used effectively to make capacitors with nanoscale dimensions. A key problem
that remains, is, however, to produce these high-density arrays in a time- and
cost-effective manner, while maintaining good registry and material proper-
ties, which has led to interest in the idea of self-patterning of ferroelectric
nanocapacitors [86].

Ferroelectric nanoshell tubes (polycrystalline ceramic tubes with walls of
nanoscale thickness) have been fabricated by a number of groups [87,88] and
show significant potential for applications, ranging from high aspect ratio
memories to microfluidic delivery systems. The tubes are made by growth
in a porous matrix, which gives them a high degree of regularity and good
registry. Another approach for fabricating ferroelectrics with novel nanoscale
geometries that is yielding interesting results is the FIB technique used by
the group in Belfast [89–91] to cut single crystals into thin films, rings, and
a variety of other interesting shapes.

5.3.2 Field-Effect Devices

Earlier we mentioned briefly the idea of using ferroelectric field-effect tran-
sistors in which the gate dielectric on a conventional FET is replaced by
a ferroelectric material. The conductivity of the semiconductor channel is
modified by the screening charge of the ferroelectric. This is an active area of
research, reviewed in more detail elsewhere [6]; the key obstacle to be over-
come is the poor retention times typical of these devices. The ferroelectric
field effect can also be used to modify the properties of more exotic systems,
particularly superconducting or magnetic oxides [92].

5.3.3 Ferroelectric Device Fabrication
Using Atomic Force Microscopy

Ferroelectricity can be controlled on the nanoscale using an atomic force
microscope (AFM) tip as a mobile top electrode (see the contribution by
Paruch, Giamarchi and Triscone). With this approach, one can envisage us-
ing an AFM tip to write extremely dense arrays of ferroelectric domains for
use as a memory device [93]. Another idea is to make a surface acoustic
wave device (commonly used as a frequency filter in mobile phones) with
reduced feature size by using the AFM tip to write a nanoscale ferroelectric
domain structure in place of the conventional interdigital electrodes, thereby
achieving a much higher operating frequency [94]. Combining the nanoscale
control of ferroelectric domain structure achievable with the AFM with the
modulation of electrical conductivity allowed by the ferroelectric field effect
allows one to locally define in the same material regions of differing electronic
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properties [95]. Using this approach on highly correlated electronic materi-
als, such as high-temperature superconductors, one could potentially design
one-dimensional superconducting wires, superconducting rings and junctions,
superconducting quantum interference devices (SQUIDs) or arrays of pinning
centers.

5.3.4 Ferroelectric Cooling Devices

The idea of using the thermoelectric effect associated with aferroelectric phase
transition for cooling has some history [96, 97], but has recently received
revived attention through the demonstration that with moderate voltages
applied to thin films [98], significant cooling can conceivably be achieved.
This approach is of interest in computing applications where the problem of
heat production is a key challenge.

In this section we have only just scratched the surface of what can con-
ceivably be achieved with ferroelectrics. Several other proposals already exist
and an interesting overview of some other novel device ideas has recently
been written by Scott [99]; beyond this, new ideas are sure to continually
emerge as we push the boundaries of material design in ferroelectric systems.

6 Note from the Editors

At the beginning of this chapter, we described our strategy in selecting topics
for inclusion in this book, highlighting key advances since the classic work of
Lines and Glass [1]. Here, we would add the note that with the nearly expo-
nential growth of the scientific literature, it is impossible to do justice to all
relevant work in a single volume, even with this selective focus. In many cases
we have been able to include only brief references to original papers, which
the reader is encouraged to consult for full information and understanding.
Indeed, there will inevitably be cases where mention of relevant papers was
inadvertently omitted. We apologize to the authors of these papers, and to
those of papers published during work on the book that were not included,
and urge the reader interested in particular subjects to extend their study of
the literature beyond the starting points provided.
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Abstract. In this Chapter we review the physical basis of the modern theory of
polarization, emphasizing how the polarization can be defined in terms of the ac-
cumulated adiabatic flow of current occurring as a crystal is modified or deformed.
We explain how the polarization is closely related to a Berry phase of the Bloch
wavefunctions as the wavevector is carried across the Brillouin zone, or equiva-
lently, to the centers of charge of Wannier functions constructed from the Bloch
wavefunctions. A resulting feature of this formulation is that the polarization is
formally defined only modulo a “quantum of polarization” – in other words, that
the polarization may be regarded as a multi-valued quantity. We discuss the con-
sequences of this theory for the physical understanding of ferroelectric materials,
including polarization reversal, piezoelectric effects, and the appearance of polar-
ization charges at surfaces and interfaces. In so doing, we give a few examples of
realistic calculations of polarization-related quantities in perovskite ferroelectrics,
illustrating how the present approach provides a robust and powerful foundation
for modern computational studies of dielectric and ferroelectric materials.

1 Why is a Modern Approach Needed?

The macroscopic polarization is the most essential concept in any phenomeno-
logical description of dielectric media [1]. It is an intensive vector quantity
that intuitively carries the meaning of electric dipole moment per unit vol-
ume. The presence of a spontaneous (and switchable) macroscopic polariza-
tion is the defining property of a ferroelectric (FE) material, as the name itself
indicates (“ferroelectric” modeled after ferromagnetic), and the macroscopic
polarization is thus central to the whole physics of FEs.

Despite its primary role in all phenomenological theories and its over-
whelming importance, the macroscopic polarization has long evaded micro-
scopic understanding, not only at the first-principles level, but even at the
level of sound microscopic models. What really happens inside a FE and, more
generally, inside a polarized dielectric? The standard picture is almost invari-
ably based on the venerable Clausius–Mossotti (CM) model [2, 3], in which
the presence of identifiable polarizable units is assumed. We shall show that
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Fig. 1. A polarized ionic crystal having the NaCl structure, as represented within
an extreme Clausius–Mossotti model. We qualitatively sketch the electronic polar-
ization charge (shaded areas indicate negative regions) in the (110) plane linearly
induced by a constant field EEE in the [111] direction as indicated by the arrow. The
anions (large circles) are assumed to be polarizable, while the cations (small cir-
cles) are not. The boundary of a Wigner–Seitz cell, centered at the anion, is also
shown (dashed line)

such an extreme model is neither a realistic nor a useful one, particularly for
FE materials.

Experimentalists have long taken the pragmatic approach of measuring
polarization differences as a way of accessing and extracting values of the
“polarization itself”. In the early 1990s it was realized that, even at the
theoretical level, polarization differences are conceptually more fundamental
than the “absolute” polarization. This change of paradigm led to the devel-
opment of a new theoretical understanding, involving formal quantities such
as Berry phases and Wannier functions, that has come to be known as the
“modern theory of polarization”. The purpose of the present chapter is to
provide a pedagogical introduction to this theory, to give a brief introduction
to its computational implementation, and to discuss its implications for the
physical understanding of FE materials.

1.1 Fallacy of the Clausius–Mossotti Picture

Within the CM model the charge distribution of a polarized condensed system
is regarded as the superposition of localized contributions, each providing an
electric dipole. In a crystalline system the CM macroscopic polarization P CM

is defined as the sum of the dipole moments in a given cell divided by the cell
volume. We shall contrast this view with a more realistic microscopic picture
of the phenomenon of macroscopic polarization.

An extreme CM view of a simple ionic crystal having the NaCl structure
is sketched in Fig. 1. The essential point behind the CM view is that the
distribution of the induced charge is resolved into contributions that can be
ascribed to identifiable “polarization centers”. In the sketch of Fig. 1 these are
the anions, while in the most general case they may be atoms, molecules, or
even bonds. This partitioning of the polarization charge is obvious in Fig. 1,
where the individual localized contributions are drawn as nonoverlapping.
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Fig. 2. Induced (pseudo)charge density ρ(ind)(r) in the (110) plane linearly induced
by a constant field EEE in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [4],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contribu-
tions. We show in Fig. 2 the analog of Fig. 1 for this material, with the elec-
tronic distribution polarized by an applied field along the [111] direction. The
calculation is performed in a first-principle framework using a pseudopoten-
tial implementation of density-functional theory [5, 6]; the quantity actually
shown is the induced polarization pseudocharge of the valence electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [7, 8] can be defined as

ε∞ = 1 + 4πχ = 1 + 4π
∂P

∂EEE , (1)

where P is the macroscopic polarization and EEE is the (screened) electric field.
One would like to replace P with P CM, i.e., the induced bond dipole per
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cell. However, in order to actually evaluate P CM, one must choose a recipe
for truncating the integration to a local region, which is largely arbitrary.
Even more importantly, no matter which reasonable recipe one adopts, the
magnitude of P CM is far too small (by at least an order of magnitude) to
reproduce the actual value ε∞ � 12 in silicon. The magnitude of the local
dipoles seen in Fig. 2 may therefore account for only a small fraction of
the actual P value for this material. In fact, as we shall explain below, it is
generally impossible to obtain the value of P from the induced charge density
alone.

1.2 Fallacy of Defining Polarization via the Charge Distribution

Given that P carries the meaning of electric dipole moment per unit volume,
it is tempting to try to define it as the dipole of the macroscopic sample
divided by its volume, i.e.,

P samp =
1

Vsamp

∫

samp

dr rρ(r) . (2)

We focus, once more, on the case of crystalline silicon polarized by an external
field along the [111] direction. In order to apply (2), we need to assume a
macroscopic but finite crystal. But the integral then has contributions from
both the surface and the bulk regions, which cannot be easily disentangled. In
particular, suppose that a cubic sample of dimensions L×L×L has its surface
preparation changed in such a way that a new surface charge density Δσ
appears on the right face and −Δσ on the left; this will result in a change
of dipole moment scaling as L3, and thus, a change in the value of P samp,
despite the fact that the conditions in the interior have not changed. Thus,
(2) is not a useful bulk definition of polarization; and even if it were, there
would be no connection between it and the induced periodic charge density
in the sample interior that is illustrated in Fig. 2.

A second tempting approach to a definition of the bulk polarization is via

P cell =
1

Vcell

∫

cell

dr rρ(r) , (3)

where the integration is carried out over one unit cell deep in the interior of
the sample. However, this approach is also flawed, because the result of (3)
depends on the shape and location of the unit cell. (Indeed, the average
of P cell over all possible translational shifts is easily shown to vanish.) It
is only within an extreme CM model – where the periodic charge can be
decomposed with no ambiguity by choosing, as in Fig. 1, the cell boundary
to lie in an interstitial region of vanishing charge density – that P cell is well
defined. However, in many materials a CM model is completely inappropriate,
as discussed above.
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As a third approach, one might imagine defining P as the cell average of
a microscopic polarization P micro defined via

∇ · P micro(r) = −ρ(r) . (4)

However, the above equation does not uniquely define P micro(r), since any
divergence-free vector field, and in particular any constant vector, can be
added to P micro(r) without affecting the left-hand side of (4).

The conclusion to be drawn from the above discussion is that a knowledge
of the periodic electronic charge distribution in a polarized crystalline solid
cannot, even in principle, be used to construct a meaningful definition of
bulk polarization. This has been understood, and similar statements have
appeared in the literature, since at least 1974 [9]. However, this important
message has not received the wide appreciation it deserves, nor has it reached
the most popular textbooks [7, 8].

These conclusions may appear counterintuitive and disturbing, since one
reasonably expects that the macroscopic polarization in the bulk region of
a solid should be determined by what “happens” in the bulk. But this is
precisely the basis of a third, and finally rewarding, approach to the problem,
in which one focuses on the change in P samp that occurs during some process
such as the turning on of an external electric field. The change in internal
polarization ΔP that we seek will then be given by the change ΔP samp

of (2), provided that any charge that is pumped to the surface is not allowed
to be conducted away. (Thus, the sides of the sample must be insulating,
there must be no grounded electrodes, etc.) Actually, it is preferable simply
to focus on the charge flow in the interior of the sample during this process,
and write

ΔP =
∫

dt
1

Vcell

∫

cell

dr j(r, t) . (5)

This equation is the basis of the modern theory of polarization that will be
summarized in the remainder of this chapter. Again, it should be emphasized
that the definition (5) has nothing to do with the periodic static charge
distribution inside the bulk unit cell of the polarized solid.

So far, we have avoided any experimental consideration. How is P mea-
sured? Certainly no one relies on measuring cell dipoles, although induced
charge distributions of the kind shown in Fig. 2 are accessible to X-ray crys-
tallography. A FE material sustains, by definition, a spontaneous macroscopic
polarization, i.e., a nonvanishing value of P in the absence of any perturba-
tion. But once again, while the microscopic charge distribution inside the
unit cell of a FE crystal is experimentally accessible, actual measurements of
the spontaneous polarization are based on completely different ideas, more
closely related to (5). As we will see below in Sect. 2, this approach defines
the observable P in a way that very naturally parallels experiments, both for
spontaneous and induced polarization. We also see that the theory vindicates
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the concept that macroscopic polarization is an intensive quantity, insensitive
to surface effects, whose value is indeed determined by what “happens” in
the bulk of the solid and not at its surface.

2 Polarization as an Adiabatic Flow of Current

2.1 How is Induced Polarization Measured?

Most measurements of bulk macroscopic polarization P of materials do not
access its absolute value, but only its derivatives, which are expressed as
Cartesian tensors. For example, the permittivity

χαβ =
dPα

dEβ
(6)

appearing in (1) is defined as the derivative of polarization with respect to
field. Here, as throughout this chapter, Greek subscripts indicate Cartesian
coordinates. Similarly, the pyroelectric coefficient

Πα =
dPα

dT
, (7)

the piezoelectric tensor

γαβδ =
∂Pα

∂εβδ
(8)

of Sect. 4.3, and the dimensionless Born (or “dynamical” or “infrared”) charge

Z∗
s,αβ =

Ω

e

∂Pα

∂us,β
(9)

of Sect. 4.2, are defined in terms of derivatives with respect to temperature T ,
strain εβδ, and displacement us of sublattice s, respectively. Here, e > 0 is
the charge quantum, and from now on we use Ω to denote the primitive-
cell volume Vcell. (In the above formulas, derivatives are to be taken at fixed
electric field and fixed strain when these variables are not explicitly involved.)

We start by illustrating one such case, namely, piezoelectricity, in Fig. 3.
The situation depicted in (a) is the one where (2) applies. Supposing that P
is zero in the unstrained state (e.g., by symmetry), then the piezoelectric
constant is simply proportional to the value of P in the final state. The
disturbing feature is that piezoelectricity appears as a surface effect, and
indeed the debate whether piezoelectricity is a bulk or a surface effect lasted
in the literature until rather recently [10–16]. The modern theory parallels the
situation depicted in (b) and provides further evidence that piezoelectricity
is a bulk effect, if any was needed. While the crystal is strained, a transient
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Fig. 3. Two possible realizations of the piezoelectric effect in a crystal strained
along a piezoelectric axis. In (a) the crystal is not shorted, and induced charges
pile up at its surfaces. Macroscopic polarization may be defined via (2), but the
surface charges are an essential contribution to the integral. In (b) the crystal
is inserted into a shorted capacitor; the surface charges are then removed by the
electrodes, and the induced polarization is measured by the current flowing through
the shorting wire

electrical current flows through the sample, and this is precisely the quantity
being measured; the polarization of the final state is not obtained from a
measurement performed on the final state only. In fact, the essential feature
of (b) is its time dependence, although slow enough to ensure adiabaticity.
The fundamental equation

dP (t)
dt

= j(t) , (10)

where j is the macroscopic (i.e., cell-averaged) current density, implies

ΔP = P (Δt) − P (0) =
∫ Δt

0

dt j(t) . (11)

Notice that, in the adiabatic limit, j goes to zero and Δt goes to infinity,
while the integral in (11) stays finite. We also emphasize that currents are
much easier to measure than dipoles or charges, and therefore (b), much more
than (a), is representative of actual piezoelectric measurements.

At this point we return to the case of permittivity, i.e., polarization in-
duced by an electric field, previously discussed in Sect. 1.1. It is expedient
to examine Figs. 1 and 2 in a time-dependent way by imagining that the
perturbing EEE field is adiabatically switched on. There is then a transient
macroscopic current flowing through the crystal cell, whose time-integrated
value provides the induced macroscopic polarization, according to (11). This
is true for both the CM case of Fig. 1 and the non-CM case of Fig. 2. The
important difference is that in the former case the current displaces charge
within each individual anion but vanishes on the cell boundary, while in the
latter case the current flows throughout the interior of the crystal.

Using the examples of piezoelectricity and of permittivity, we have shown
that the induced macroscopic polarization in condensed matter can be defined
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and understood in terms of adiabatic flows of currents within the material.
From this viewpoint, it becomes very clear how the value of P is determined
by what happens in the bulk of the solid, and why it is insensitive to surface
effects.

2.2 How is Ferroelectric Polarization Measured?

FE materials are insulating solids characterized by a switchable macroscopic
polarization P . At equilibrium, a FE material displays a broken-symmetry,
noncentrosymmetric structure, so that a generic vector property is not re-
quired to vanish by symmetry. The most important vector property is in-
deed P , and its equilibrium value is known as the spontaneous polarization.

However, the value of P is never measured directly as an equilibrium prop-
erty; instead, all practical measurements exploit the switchability of P . In
most crystalline FEs, the different structures are symmetry-equivalent; that
is, the allowed values of P are equal in modulus and point along equivalent
(enantiomorphous) symmetry directions. In a typical experiment, application
of a sufficiently strong electric field switches the polarization from P to −P ,
so that one speaks of polarization reversal.

The quantity directly measured in a polarization-reversal experiment is
the difference in polarization between the two enantiomorphous structures;
making use of symmetry, one can then equate this difference to twice the
spontaneous polarization. This pragmatic working definition of spontaneous
polarization has, as a practical matter, been adopted by the experimental
community since the early days of the field. However, it was generally con-
sidered that this was done only as an expedient, because direct access to the
“polarization itself” was difficult to obtain experimentally. Instead, with the
development of modern electronic-structure methods and the application of
these methods to FE materials, it became evident that the previous “text-
book definitions” [7, 8] of P were also unworkable from the theoretical point
of view. It was found that such attempts to define P as a single-valued equi-
librium property of the crystal in a given broken-symmetry state, in the spirit
of (3), were doomed to failure because they could not be implemented in an
unambiguous way.

In response to this impasse, a new theoretical viewpoint emerged in the
early 1990s and was instrumental in the development of a successful micro-
scopic theory [17–19]. As we shall see, this modern theory of polarization
actually elevates the old pragmatic viewpoint to the status of a postulate.
Rather than focusing on P as an equilibrium property of the crystal in a
given state, one focuses on differences in polarization between two different
states [17]. From the theoretical viewpoint, this represents a genuine change
of paradigm, albeit one that is actually harmonious with the old experimental
pragmatism.

We illustrate a polarization-reversal experiment by considering the case
of the perovskite oxide PbTiO3, whose equilibrium structure at zero temper-
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Fig. 4. Tetragonal structure of PbTiO3: solid, shaded, and empty circles represent
Pb, Ti, and O atoms, respectively. The arrows indicate the actual magnitude of the
atomic displacements, where the origin has been kept at the Pb site (the Ti dis-
placements are barely visible). Two enantiomorphous structures, with polarization
along [001], are shown here. Application of a large enough electric field (coercive
field) switches between the two and reverses the polarization

Fig. 5. A typical hysteresis loop; the magnitude of the
spontaneous polarization is also shown (vertical dashed
segment). Notice that spontaneous polarization is a
zero-field property

ature is tetragonal. There are six enantiomorphous broken-symmetry struc-
tures; two of them, having opposite nuclear displacements and opposite values
of P , are shown in Fig. 4.

A typical measurement of the spontaneous polarization, performed
through polarization reversal, is schematically shown in Fig. 5. The hysteresis
cycle is in fact the primary experimental output. The transition between the
two enantiomorphous FE structures A and B of Fig. 4 is driven by an ap-
plied electric field; the experimental setup typically measures the integrated
macroscopic current flowing through the sample, as in (11). One half of the
difference P B − P A defines the magnitude P s of the spontaneous polariza-
tion in the vertical direction. From Fig. 5, it is clear that P s can also be
defined as the polarization difference ΔP between the broken-symmetry B
structure and the centrosymmetric structure (where the displacements are
set to zero). Notice that, while a field is needed to induce the switching in
the actual experiment, ideally one could evaluate ΔP along the vertical axis
in Fig. 5, where the macroscopic field is identically zero. We stress that the
experiment measures neither P A nor P B, but only their difference. It is only
an additional symmetry argument that allows one to infer the value of each
of them from the actual experimental data.
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2.3 Basic Prescriptions for a Theory of Polarization

For both induced and spontaneous polarization, we have emphasized the
role of adiabatic currents in order to arrive at a microscopic theory of P ,
which by construction must be an intensive bulk property, insensitive to the
boundaries. The root of this theory is in (11), whose form we simplify by
introducing a parameter λ having the meaning of a dimensionless adiabatic
time: λ varies continuously from zero (corresponding to the initial system)
to 1 (corresponding to the final system). Then we can write (11) as

ΔP =
∫ 1

0

dλ
dP

dλ
. (12)

In general, “initial” and “final” refer to the state of the system before and
after the application of some slow sublattice displacements, strains, electric
fields, etc. The key feature exploited here is that dP /dλ is a well-defined bulk
vector property. We notice, however, that an important condition for (12) to
hold is that the system remain insulating for all intermediate values of λ,
since the transient current is otherwise not uniquely defined. Note that for
access to the response properties of (6)–(9), no integration is needed; the
physical quantity of interest coincides by definition with dP /dλ evaluated
at an appropriate λ.

In order to focus the discussion onto the spontaneous polarization of a
FE, we now let λ scale the sublattice displacements (the lengths of the arrows
in Fig. 4) leading from a centrosymmetric reference structure (λ = 0) to the
spontaneously polarized structure (λ = 1). Then the spontaneous polari-
zation may be written [17]

P eff =
∫ 1

0

dλ
dP

dλ
(λ = 0 : centrosymmetric reference) . (13)

For later reference, note that this is the “effective” and not the “formal”
definition of polarization as given later in (20) and discussed in the later
parts of Sect. 3.

The current-carrying particles are electrons and nuclei; while the quantum
nature of the former is essential, the latter can be safely dealt with as classical
point charges, whose current contributions to (11) and to (12) are trivial. We
focus then mostly on the electronic term in the currents and in P , although
it has to be kept in mind that the overall charge neutrality of the condensed
system is essential. Furthermore, from now on we limit ourselves to a zero-
temperature framework, thus ruling out the phenomenon of pyroelectricity.

We refer, once more, to Fig. 2, where the quantum nature of the electrons
is fully accounted for. As explained above, in order to obtain P via (11), one
needs the adiabatic electronic current that flows through the crystal while the
perturbation is switched on. Within a quantum-mechanical description of the
electronic system, currents are closely related to the phase of the wavefunction
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(for instance, if the wavefunction is real, the current vanishes everywhere).
But only the modulus of the wavefunction has been used in drawing the
charge distribution of Fig. 2; any phase information has been obliterated,
so that the value of P cannot be retrieved. Interestingly, this argument is
in agreement with the general concept, strongly emphasized above, that the
periodic polarization charge inside the material has nothing to do with the
value of macroscopic polarization.

Next, it is expedient to discuss a little more thoroughly the role of the elec-
tric field EEE . A direct treatment of a finite electric field is subtle, because the
periodicity of the crystal Hamiltonian, on which the Bloch theorem depends,
is absent unless EEE vanishes (see Sect. 5.1). However, while EEE is by definition
the source inducing P in the case of permittivity in (6), a source other than
the electric field is involved in the cases of pyroelectricity (7), piezoelectric-
ity (8), dynamical effective charges (9), and spontaneous polarization (13).
While it is sometimes appropriate to take these latter derivatives under elec-
trical boundary conditions other than those of a vanishing field, we shall
restrict ourselves here to the most convenient and fundamental definitions in
which the field EEE is set to zero. For example, piezoelectricity, when measured
as in Fig. 3b, is clearly a zero-field property, since the sample is shorted at
all times. Spontaneous polarization, when measured as in Fig. 5, is obviously
a zero-field property as well. Born effective charges, which will be addressed
below, are also defined as zero-field tensors. Then, as an example of two dif-
ferent choices of boundary conditions to address the same phenomenon, we
may consider again the case of piezoelectricity, Fig. 3. While in Fig. 3b the
field is zero, in Fig. 3a a nonvanishing (“depolarizing”) field is clearly pres-
ent inside the material. The two piezoelectric tensors, phenomenologically
defined in these two different ways, are not equal but are related in a simple
way (in fact, they are proportional via the dielectric tensor).

Thus, it is possible to access many of the interesting physical properties,
including piezoelectricity, lattice dynamics, and ferroelectricity, with calcula-
tions performed at zero field. We will restrict ourselves to this case for most
of this chapter. As for the permittivity, it is theoretically accessible by means
of either the linear-response theory (see [20] for a thorough review), or via
an extension of the Berry-phase theory to finite electric field that will be
described briefly in Sect. 5.1.

3 Formal Description of the Berry-Phase Theory

In this section, we shall give an introduction to the modern theory of po-
larization that was developed in the 1990s. Following important preliminary
developments of Resta [17], the principal development of the theory was in-
troduced by King-Smith and Vanderbilt [18] and soon afterwards reviewed
by Resta [19]. This theory is sometimes known as the “Berry-phase theory of
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polarization” because the polarization is expressed in the form of a certain
quantum phase known as a Berry phase [21, 22].

In order to deal with macroscopic systems, both crystalline and disor-
dered, it is almost mandatory in condensed-matter theory to assume periodic
(Born–von Kármán) boundary conditions [7, 8]. This amounts to considering
the system in a finite box that is periodically repeated, in a ring-like fashion,
in all three Cartesian directions. Eventually, the limit of an infinitely large
box is taken. For practical purposes, the thermodynamic limit is approached
when the box size is much larger than a typical atomic dimension. Among
other features, a system of this kind has no surface and all of its properties
are by construction “bulk” ones. When the system under consideration is a
many-electron system, the periodic boundary conditions amount to requir-
ing that the wavefunction and the Hamiltonian be periodic over the box. As
indicated previously, our discussion will be restricted to the case of vanishing
electric field unless otherwise stated.

We give below only a brief sketch of the derivation of the central formulas
of the theory; interested readers are referred to [18, 19, 23] for details.

3.1 Formulation in Continuous k-Space

If we adopt for the many-electron system a mean-field treatment, such as the
Kohn–Sham one [5], the self-consistent one-body potential is periodic over the
Born–von Kármán box, provided the electric field EEE vanishes, for any value
of the parameter λ. Furthermore, if we consider a crystalline system, the self-
consistent potential also has the lattice periodicity. The eigenfunctions are
of the Bloch form ψnk(r) = eik · r unk(r), where u is lattice-periodical, and
obey the Schrödinger equation H|ψnk〉 = Enk |ψnk〉, where H = p2/2m + V .
Equivalently, the eigenvalue problem can be written as Hk|unk〉 = Enk |unk〉,
where

Hk =
(p + �k)2

2m
+ V . (14)

All of these quantities depend implicitly on a parameter λ that changes slowly
in time, such that the wavefunction acquires, from elementary adiabatic per-
turbation theory, a first-order correction

|δψnk〉 = −i� λ̇
∑

m �=n

〈ψmk|∂λψnk〉
Enk − Emk

|ψmk〉 , (15)
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where λ̇ = dλ/dt and ∂λ is the derivative with respect to the parameter λ.
The corresponding first-order current arising from the entire band n is then1

jn =
dP n

dt
=

i�eλ̇

(2π)3m

∑

m �=n

∫

dk
〈ψnk|p|ψmk〉〈ψmk|∂λψnk〉

Enk − Emk
+ c.c. , (16)

where “c.c.” denotes the complex conjugate. Time t can be eliminated by
removing λ̇ from the right-hand side and replacing dP /dt → dP /dλ on
the left-hand side above. Then, making use of ordinary perturbation theory
applied to the dependence of Hk in (14) upon k, one obtains, after some
manipulation,

dP n

dλ
=

ie
(2π)3

∫

dk 〈∇kunk|∂λunk〉 + c.c. . (17)

It is noteworthy that the sum over “unoccupied” states m has disappeared
from this formula, corresponding to our intuition that the polarization is a
ground-state property. Summing now over the occupied states, and inserting
in (12), we get the spontaneous polarization of a FE. The result, after an
integration with respect to λ, is that the effective polarization (13) takes the
form

P eff = ΔP ion + [P el(1) − P el(0) ] , (18)

where the nuclear contribution ΔP ion has been restored, and

P el(λ) =
e

(2π)3
�

∑

n

∫

dk 〈unk|∇k|unk〉 . (19)

Here, the sum is over the occupied states, and |unk〉 are understood to be
implicit functions of λ. In the case that the adiabatic path takes a FE crystal
from its centrosymmetric reference state to its equilibrium polarized state,
P eff of (18) is just exactly the spontaneous polarization.

Equation (19) is the central result of the modern theory of polariza-
tion. Those familiar with Berry-phase theory [21, 22] will recognize A(k) =
i〈unk|∇k|unk〉 as a “Berry connection” or “gauge potential”; its integral over
a closed manifold (here the Brillouin zone) is known as a “Berry phase”. It is
remarkable that the result (19) is independent of the path traversed through
parameter space (and of the rate of traversal, as long as it is adiabatically
slow), so that the result depends only on the endpoints. Implicit in the anal-
ysis is that the system must remain insulating everywhere along the path, as
otherwise the adiabatic condition fails.
1 In this and subsequent formulas, we assume that n is really a composite index for

band and spin. Alternatively, factors of two may be inserted into the equations
to account for spin degeneracy.
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To obtain the total polarization, the ionic contribution must be added
to (19). The total polarization is then P = P el + P ion or

P =
e

(2π)3
�

∑

n

∫

dk 〈unk|∇k|unk〉 +
e

Ω

∑

s

Z ion
s rs , (20)

where the first term is (19) and the second is P ion, the contribution arising
from positive point charges eZ ion

s located at atomic positions rs. In principle,
the band index n should run over all bands, including those made from core
states, and Z ion should be the bare nuclear charge. However, in the frozen-
core approximation that underlies pseudopotential theory, we let n run over
valence bands only, and Z ion is the net positive charge of the nucleus plus
core. We adopt the latter interpretation here.

We refer to the polarization of (20) as the “formal polarization” to distin-
guish it from the “effective polarization” of (13) or (18). The two definitions
coincide only if the formal polarization vanishes for the centrosymmetric ref-
erence structure used to define P eff , which, as we shall see in Sect. 3.4, need
not be the case.

3.2 Formulation in Discrete k-Space

In practical numerical calculations, equations such as (16), (17), and (19) are
summed over a discrete mesh of k-points spanning the Brillouin zone. Since
the ∇k operator is a derivative in k-space, its finite-difference representation
will involve couplings between neighboring points in k-space.

For pedagogic purposes, we illustrate this by starting from the one-di-
mensional version of (19), namely, Pn = (e/2π)ϕn, where

ϕn = �
∫

dk 〈unk|∂k|unk〉 , (21)

and note that this can be discretized as

ϕn = � ln
M−1∏

j=0

〈un,kj |un,kj+1〉 , (22)

where kj = 2πj/Ma is the jth k-point in the Brillouin zone. This follows by
inserting the expansion un,k+dk = unk + dk (∂kunk) + O(dk2) into (21) and
keeping the leading term.

In (22), it is understood that the wavefunctions at the boundary points
of the Brillouin zone are related by ψn,0 = ψn,2π/a, so that

un,k0(x) = e2πix/a un,kM (x) (23)

and there are only M independent states un,k0 to un,kM−1 . Thus, it is natural
to regard the Brillouin zone as a closed space (in 1D, a loop) as illustrated in
Fig. 6.
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Fig. 6. Illustration showing how the Brillouin zone in one dimension (left) can
be mapped onto a circle (right), in view of the fact that wavevectors k = 0 and
k = 2π/a label the same states

Equation (22) makes it easy to see why this quantity is called a Berry
“phase”. We are instructed to compute the global product of wavefunctions

. . . 〈uk1 |uk2〉〈uk2 |uk3〉〈uk3 |uk4〉 . . . (24)

across the Brillouin zone, which in general is a complex number; then the
operation “� ln” takes the phase of this number. Note that this global phase
is actually insensitive to a change of the phase of any one wavefunction uk,
since each uk appears once in a bra and once in a ket. We can thus view the
“Berry phase” ϕn, giving the contribution to the polarization arising from
band n, as a global phase property of the manifold of occupied one-electron
states.

In three dimensions (3D), the Brillouin zone can be regarded as a closed
3-torus obtained by identifying boundary points ψnk = ψn,k+Gj

, where Gj is
a primitive reciprocal lattice vector. The Berry phase for band n in direction j
is ϕn,j = (Ω/e)Gj · P n, where P n is the contribution to (19) from band n,
so that

ϕn,j = Ω−1
BZ �

∫

BZ

d3
k 〈unk|Gj ·∇k|unk〉 . (25)

We then have

P n =
1
2π

e

Ω

∑

j

ϕn,j Rj , (26)

where Rj is the real-space primitive translation corresponding to Gj . To
compute the ϕn,j for a given direction j, the sampling of the Brillouin zone is
arranged as in Fig. 7, where k‖ is the direction along Gj and k⊥ refers to the
2D space of wavevectors spanning the other two primitive reciprocal lattice
vectors. For a given k⊥, the Berry phase ϕn,j(k⊥) is computed along the
string of M k-points extending along k‖ as in (22), and finally a conventional
average over the k⊥ is taken:

ϕn,j =
1

Nk⊥

∑

k⊥

ϕn(k⊥) . (27)

Note that a subtlety arises in regard to the “choice of branch” when taking
this average, as discussed in the next subsection. Moreover, in 3D crystals,
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Fig. 7. Arrangement of Brillouin zone
for computation of component of P
along k‖ direction

it may happen that some groups of bands must be treated using a many-
band generalization of (22) due to degeneracy at high-symmetry points in
the Brillouin zone; see [18, 19] for details.

The computation of P according to (26) is now a standard option
in several popular electronic-structure codes (abinit

2, crystal
3, pwscf

4,
siesta

5, and vasp
6).

3.3 The Quantum of Polarization

It is clear that (22), being a phase, is only well-defined mod 2π. We can see
this more explicitly in (21); let

|ũnk〉 = e−iβ(k) |unk〉 (28)

be a new set of Bloch eigenstates differing only in the choice of phase as a
function of k. Here β(k) is real and obeys β(2π/a) − β(0) = 2πm, where m

is an integer, in order that ψ̃n,0 = ψ̃n,2π/a. Then inserting into (22) we find
that

ϕ̃n = ϕn +
∫ 2π/a

0

dk

(
dβ

dk

)

dk = ϕn + 2πm . (29)

Thus, ϕn is really only well-defined “mod 2π”.
In view of this uncertainty, care must be taken in the 3D case when

averaging ϕn(k⊥) over the 2D Brillouin zone of k⊥ space: the choice of branch
cut must be made in such a way that ϕn(k⊥) remains continuous in k⊥.
In practice, a conventional mesh sampling is used in the k⊥ space, and the
average is computed as in (27). Consider, for example, Fig. 7, where Nk⊥ = 4.
If the branch cut is chosen independently for each k⊥ so as to map ϕn(k⊥)
to the interval [−π, π], and if the four values were found to be 0.75π, 0.85π,
0.95π, and −0.95π, then the last value must be remapped to become 1.05π

2 http://www.abinit.org/
3 http://www.crystal.unito.it/
4 http://www.pwscf.org
5 http://www.uam.es/departamentos/ciencias/fismateriac/siesta
6 http://cms.mpi.univie.ac.at/vasp/
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before the average is taken in (27). That is, the correct average is 0.90π,
or equivalently −1.10π, but not 0.40π as would be obtained by taking the
average blindly.

In other words, care must be taken to make a consistent choice of phases
on the right-hand side of (27). However, it is still permissible to shift all of
the Nk⊥ phases by a common amount 2πmj . Thus, each ϕn,j in (26) is only
well-defined mod 2π, leading to the conclusion that P n is only well-defined
mod eR/Ω, where R =

∑
j mjRj is a lattice vector. The same conclusion

results from generalizing the argument of (28) and (29) to 3D, showing that
a phase twist of the form |ũnk〉 = exp[−iβ(k)] |unk〉 results in

P̃ n = P n +
eR

Ω
, (30)

where R is a lattice vector.
These arguments are for a single band, but the same obviously applies

to the sum over all occupied bands. We thus arrive at a central result of
the modern theory of polarization: the formal polarization, defined via (20)
or calculated through (26), is only well-defined mod eR/Ω, where R is any
lattice vector and Ω is the primitive-cell volume.

At first sight the presence of this uncertainty modulo the quantum eR/Ω
may be surprising, but in retrospect it should have been expected. Indeed, the
ionic contribution given by the second term of (20) is subject to precisely the
same uncertainty, arising from the arbitrariness of the nuclear location rs

modulo a lattice vector R. The choice of one particular value of P from
among the lattice of values related to each other by addition of eR/Ω will
be referred to as the “choice of branch”.

Summarizing our results so far, we find that the formal polarization P ,
defined by (20), is only well-defined mod eR/Ω, where R is any lattice vec-
tor. Moreover, we have found that the change in polarization ΔP along an
adiabatic path, as defined by (12), is connected with this formal polarization
by the relation

ΔP :=
(
P λ=1 − P λ=0

)
mod

eR

Ω
. (31)

This central formula, embodying the main content of the modern theory of
polarization, requires careful explanation. For a given adiabatic path, the
change in polarization appearing on the left-hand side of (31), and defined
by (12), is given by a single-valued vector quantity that is perfectly well
defined and has no “modulus” uncertainty. On the right-hand side, P λ=0

and P λ=1 are, respectively, the formal polarization of (20) evaluated at the
start and end of the path. The symbol “:=” has been introduced to indicate
that the value on the left-hand side is equal to one of the values on the right-
hand side. Thus, the precise meaning of (31) is that the actual integrated
adiabatic current flow ΔP is equal to (P λ=1 − P λ=0) + eR/Ω for some
lattice vector R.
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Fig. 8. Polarization as a lattice-valued quantity, illustrated for a 2D square-lattice
system. Here, (a) and (b) illustrate the two possible states of polarization consistent
with full square-lattice symmetry, while (c) illustrates a possible change in polar-
ization induced by some symmetry-lowering change of the Hamiltonian. In (c), the
arrows show the “effective polarization” as defined in (13)

It follows that (31) cannot be used to determine ΔP completely; it only
determines ΔP within the same uncertainty mod eR/Ω that applies to P λ.
Fortunately, the typical magnitude of P eff , and of polarization differences in
general, is small compared to this “quantum”. For cubic perovskites, a � 4 Å,
so that the effective quantum for spin-paired systems is 2e/a2 � 2.0C/m2.
In comparison, the spontaneous polarization of perovskite ferroelectrics is
typically in the range of about 0.3 to 0.6C/m2, significantly less than this
quantum. Thus, this uncertainty mod eR/Ω is rarely a serious concern in
practice. If there is doubt about the correct choice of branch for a given path,
this doubt can usually be resolved promptly by computing the polarization
at several intermediate points along the path; as long as ΔP is small for
each step along the path, the correct interpretation of the evolution of the
polarization will be clear.

3.4 Formal Polarization as a Multivalued Vector Quantity

A useful way to think about the presence of this “modulus” is to regard the
formal polarization as a multivalued vector quantity, rather than a conven-
tional single-valued one. That is, the question “What is P ?” is answered not
by giving a single vector, but a lattice of vector values related by translations
eR/Ω. Here, we explain how this viewpoint contributes to an understanding
of the role of symmetry and provides an alternative perspective on the central
result (31) of the previous subsection.

Let us begin with symmetry considerations, where we find some surprising
results. Consider, for example, KNbO3 in its ideal cubic structure. Because of
the cubic symmetry, one might expect that P as calculated from (20) would
vanish; or more precisely, given the uncertainty expressed by (30), that it
would take on a lattice of values (m1,m2,m3)e/a2 that includes the zero
vector (mj are integers). This expected situation is sketched (in simplified
2D form) in Fig. 8a.
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Table 1. Atomic positions τ and nominal ionic charges Z for KNbO3 in its cen-
trosymmetric cubic structure with lattice constant a

Atom τx τy τz Z ion

K 0 0 0 +1
Nb a/2 a/2 a/2 +5
O1 0 a/2 a/2 −2
O2 a/2 0 a/2 −2
O3 a/2 a/2 0 −2

However, when the result is actually calculated from (20) using first-
principles electronic-structure methods, this is not what one finds. Instead,
one finds that

P =
(

m1 +
1
2
, m2 +

1
2
, m3 +

1
2

)
e

a2
(integer mj) , (32)

which is indeed a multivalued object, but corresponding to the situation
sketched in Fig. 8b, not Fig. 8a!

While this result emerges above from a fully quantum-mechanical calcula-
tion, it is not essentially a quantum-mechanical result. Indeed, it could have
been anticipated based on purely classical arguments as applied to an ideal
ionic model of the KNbO3 crystal. In such a picture, the formal polarization
is written as

P =
e

Ω

∑

s

Z ion
s τ s , (33)

where τ s is the location, and Z ion
s is the nominal (integer) ionic charge,

of ion s. Evaluating (33) using the values given in Table 1 yields P =
( 1

2 ,
1
2 ,

1
2 )e/a2. However, each vector τ s is arbitrary modulo a lattice vector.

For example, it is equally valid to replace τK = (0, 0, 0) by τK = (a, a, a),
yielding P = ( 3

2 ,
3
2 ,

3
2 )e/a2, which is again consistent with (32). Similarly,

since each Z ion
s is an integer,7 the shift of any τ s by a lattice vector ΔR

simply generates a shift to one of the other vectors on the right-hand side
of (32). This heuristic ionic model then leads to the same conclusion expressed
in (32), i.e., that Fig. 8b and not Fig. 8a is appropriate for the case of cubic
KNbO3.

This may appear to be a startling result. We are saying that the polar-
ization as defined by (20) does not necessarily vanish for a centrosymmetric
structure (or more precisely, that the lattice of values corresponding to P does
not contain the zero vector). Is this in conflict with the usual observation that
7 For precisely this reason, it is necessary to use an ionic model with formal integer

ionic charges for arguments of this kind. This requirement can be justified using
arguments based on a Wannier representation.
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a vector-valued physical quantity must vanish in a centrosymmetric crystal?
No, because this theorem applies only to a normal (that is, single-valued)
vector quantity. Instead, the formal polarization is a multivalued vector quan-
tity. The constraint of centrosymmetry requires that the polarization must
get mapped onto itself by the inversion operation. This would be impossible
for a nonzero single-valued vector, but it is possible for a lattice of vector
values, as illustrated in Fig. 8b. Indeed, the lattice of values shown in Fig. 8b
is invariant with respect to all the operations of the cubic symmetry group,
as are those of Fig. 8a. Actually, for a simple cubic structure with full cubic
symmetry, these are the only two possibilities consistent with symmetry. It is
not possible to know, from symmetry alone, which of these representations of
the formal polarization is correct. A heuristic argument of the kind leading
to (32) can be used to guess the correct result, but it should be confirmed
by actual calculation. The heuristic arguments suggest, and first-principles
calculations confirm, that the formal polarizations of BaTiO3 and KNbO3

are not equal, even though they have identical symmetry; they correspond to
Fig. 8a and Fig. 8b, respectively!

How should we understand the spontaneous polarization P s of ferroelec-
trically distorted KNbO3 in the present context? Recall that P s is defined as
the effective polarization P eff of (13) for the case of an adiabatic path carry-
ing KNbO3 from its unstable cubic to its relaxed FE structure. Suppose that
one were to find that this adiabatic evolution carried the polarization along
the path indicated by the arrows in Fig. 8c. In this case, the effective polar-
ization P eff of (13) is definitely known to correspond to the vector sketched
repeatedly in Fig. 8c. However, when one evaluates ΔP from (31), using only
a knowledge of the endpoints of the path, the knowledge of the correct branch
is lost. For example, one could not be certain that the actual ΔP associated
with this path is the one shown in Fig. 8c, rather than one pointing from an
open circle in one cell to a closed one in a neighboring cell (and differing by
the “modulus” eR/Ω). This is, of course, just the same uncertainty attached
to (31) and discussed in detail in the previous subsection, now expressed from
a more graphical point of view.

3.5 Mapping onto Wannier Centers

Another way of thinking about the meaning of the Berry-phase polarization,
and of the indeterminacy of the polarization modulo the quantum eR/Ω, is
in terms of Wannier functions. The Wannier functions are localized functions
wnR(r), labeled by band n and unit cell R, that span the same Hilbert
subspace as do the Bloch states ψnk. In fact, they are connected by a Fourier-
transform-like expression

|wnR〉 =
Ω

(2π)3

∫

dk eik ·R |ψnk〉 , (34)
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Fig. 9. Illustrative tetragonal crystal (cell dimensions a× a× c) having one mono-
valent ion at the cell corner (origin) and one occupied valence band. (a) The dis-
tributed quantum-mechanical charge distribution associated with the electron band,
represented as a contour plot. (b) The distributed electron distribution has been
replaced by a unit point charge −e located at the Wannier center rn, as given by
the Berry-phase theory

where the Bloch states are normalized to unity over the crystal cell. Once
we have the Wannier functions, we can locate the “Wannier centers” rnR =
〈wnR|r|wnR〉. It turns out that the location of the Wannier center is simply

rnR =
Ω

e
P n + R . (35)

That is, specifying the contribution of band n to the Berry-phase polariza-
tion is really just equivalent to specifying the location of the Wannier center
in the unit cell. Because the latter is indeterminate mod R, the former is
indeterminate mod eR/Ω.

Thus, the Berry-phase theory can be regarded as providing a mapping of
the distributed quantum-mechanical electronic charge density onto a lattice
of negative point charges of charge −e, as illustrated in Fig. 9. While the
CM picture obviously cannot be applied to the situation of Fig. 9a, because
the charge density vanishes nowhere in the unit cell, it can be applied to
the situation of Fig. 9b without problem. The only question is whether the
negative charge located at z = (1 − γ)c in this figure should be regarded
as “living” in the same unit cell as the positive nucleus at the origin or the
one at z = c; this uncertainty corresponds precisely to the “quantum of
polarization” eR/Ω for the case R = cẑ.

It therefore appears that, by adopting the Wannier-center mapping, the
CM viewpoint has been rescued. We are in fact decomposing the charge (nu-
clear and electronic) into localized contributions whose dipoles determine P .
However, one has to bear in mind that the phase of the Bloch orbitals is es-
sential to actually perform the Wannier transformation. Knowledge of their
modulus is not enough, while we stress once more that the modulus uniquely
determines the periodic polarization charge, such as the one shown in Fig. 9a.

Before leaving this discussion, it is amusing to consider the behavior of
the Wannier centers rn under a cyclic adiabatic evolution of the Hamiltonian.
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Fig. 10. Possible evolution of positions of Wannier centers (−), relative to the
lattice of ions (+), as the Hamiltonian evolves adiabatically around a closed loop.
Wannier functions must return to themselves, but can do so either (a) without, or
(b) with, a coherent shift by a lattice vector

That is, we want to integrate the net adiabatic current flow as the system is
taken around a closed loop in some multidimensional parameter space. (For
example, one atomic sublattice might be displaced by 0.1 Å first along +x̂,
then +ŷ, then −x̂, and then −ŷ.) Referring to (12) and (13), we have for this
case

ΔP cyc =
∮ 1

0

dλ
dP

dλ
(cyclic evolution: Hλ=0 = Hλ=1) . (36)

From (31), it follows that ΔP cyc is either exactly zero or else exactly eR/Ω
for some non-zero lattice vector R. The latter case corresponds to the “quan-
tized charge transport” (or “quantum pumping”) first discussed by Thou-
less [24].

Now suppose we follow the locations of the Wannier centers rn during
this adiabatic evolution. Since the initial and final points are the same, the
Wannier centers must return to their initial locations at the end of the cyclic
evolution. However, they can do so in two ways, as illustrated in Figs. 10a,b.
If each Wannier center returns to itself, then ΔP cyc is truly zero. However,
as illustrated in Fig. 10b, this need not be the case; it is only necessary that
each Wannier center return to one of its periodic images. If it does not return
to itself, a quantized charge transport occurs.8

4 Implications for Ferroelectrics

Most of the fundamental and technological interest in FE materials arises
from their polarization and related properties, including the dielectric and
piezoelectric responses. The rigorous formulation of the polarization has al-
lowed detailed quantitative investigation of these properties from first prin-
8 We emphasize that this discussion is highly theoretical. While such a situation

could occur in principle, it is not known to occur in practice in any real ferro-
electric material.
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ciples. In this section, we give an overview of the analysis of three key quan-
tities – the spontaneous polarization, the Born effective charges, and the
piezeoelectric response – and discuss case studies for specific perovskite ox-
ides, primarily the tetragonal phase of the FE perovskite oxide KNbO3.

4.1 Spontaneous Polarization

The experimental Ps values for the most common single-crystal FE per-
ovskites in their different crystalline phases have been known for several
decades. However, despite the fact that Ps is the very property characterizing
FE materials, there was no theoretical access to it until 1993. As discussed
above, the common-wisdom microscopic definition of what Ps was basically
incorrect. The modern theory of polarization provides the correct definition
of Ps, as well as the theoretical framework allowing one to compute it from
the occupied Bloch eigenstates of the self-consistent crystalline Hamiltonian.
As soon as King-Smith and Vanderbilt developed the theory [18] – as out-
lined in Sect. 3 – Resta et al. [25] implemented and applied it to compute
the spontaneous polarization of a prototypical perovskite oxide from first
principles.

The case study was KNbO3 in its tetragonal phase, in a frozen-nuclei
geometry taken from crystallographic data. The reciprocal cell is tetragonal:
the integral in (19) was computed according to Sect. 3.2 (see Fig. 7), using the
occupied Kohn–Sham orbitals [5]. The electronic phase so evaluated depends
on the choice of the origin in the crystalline cell, but translational invariance
is restored when the nuclear contribution is accounted for.

The computed phase turns out to be approximately π/3. This is large
enough that it is advisable to check whether the correct choice of branch has
been made for the multivalued function “� ln” in (22), in order to eliminate
the 2π ambiguity discussed in Sect. 3.3. This is done by repeating the calcu-
lation for smaller amplitudes of the FE distortion and making sure that the
phase is a continuous function of the amplitude, as discussed earlier at the
end of Sect. 3.3.

The first-principles calculation of [25] for tetragonal KNbO3 yielded a
value Ps = 0.35C/m2, to be compared to a best experimental value of
0.37C/m2. A similar level of agreement was later found for other perovskites
and using computational packages with different technical ingredients.

One aspect of the calculation deserves some comment. As stated above,
we have adopted a frozen-nuclei approach, which in principle is appropriate
for describing the polarization of the zero-temperature structure only. In the
calculation for KNbO3 discussed above, as well as in other calculations in
the literature, one addresses instead the spontaneous polarization of a finite-
temperature crystalline phase. In fact, the tetragonal phase of KNbO3 only
exists between 225 and 418 ◦C, while the equilibrium structure at zero tem-
perature is rhombohedral and not tetrahedral. Crystallographic data provide
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the time-averaged crystalline structure, while polarization-reversal experi-
ments provide the time-averaged spontaneous polarization. The question is
then whether the time-averaged polarization is equal, to a good approxima-
tion, to the polarization of the time-averaged structure, as the latter is in
fact the quantity that is actually computed. The answer to this question is
essentially “yes”, supported by the finding that the macroscopic polarization
is roughly linear, at the ±10–20 % level, in the amplitude of the structural
distortion. This essential linearity could not have been guessed from model
arguments, and in fact has only been discovered from the ab-initio calcula-
tions [25, 26].

4.2 Anomalous Dynamical Charges

The Born effective-charge tensors measure the coupling of a macroscopic
field EEE with relative sublattice displacements (zone-center phonons) in the
crystal; they also go under the name of dynamical charges or infrared charges.
Within an extreme rigid-ion model the Born charge coincides with the static
charge of the model ion (“nominal” value), while in a real material the
Born charges account for electronic polarization as well. Before the advent of
the modern theory of polarization in the 1990s, the relevance of dynamical
charges to the phenomenon of ferroelectricity had largely been overlooked.

There are two equivalent definitions of the Born tensor Z∗
s . 1. Z∗

s,αβ , as
defined in (9), measures the change in polarization P in the α direction
linearly induced by a sublattice displacement us in the β direction in zero
macroscopic electric field. (Other kinds of effective charge can be defined
using other electrical boundary conditions [27], but this choice of EEE = 0 is
the “Born charge” one.) 2. Alternatively, Z∗

s,αβ measures the force F linearly
induced in the α direction on the sth nucleus by a uniform macroscopic
electric field EEE in the β direction (at zero displacement):

Fs,α = −e
∑

β

Z∗
s,βα Eβ . (37)

Notice that, in low-symmetry situations, Z∗
s is not symmetric in its Carte-

sian indices. Since any rigid translation of the whole solid does not induce
macroscopic polarization, the Born effective-charge tensors obey

∑

s

Z∗
s,αβ = 0 , (38)

a result that is generally known as the “acoustic sum rule” [28].
The Berry-phase theory of polarization naturally leads to an evalua-

tion of the derivative in (9) as a finite difference, and this is the way
most Z∗

s calculations are performed for FE perovskites. However, expres-
sions (9) or (37) based on linear response approaches [20] can be used
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whenever an electronic-structure code implementing such an approach (e.g.,
http://www.abinit.org/, http://www.pwscf.org) is available.

The Born effective-charge tensors are a staple quantity in the theory of
lattice dynamics for polar crystals [29], and their experimental values have
long been known to a very good accuracy for simple materials such as binary
ionic crystals and simple semiconductors. As for FE materials, some exper-
imentally derived values for BaTiO3 were proposed long ago [30]. However,
the subject remained basically neglected until 1993, when [25] appeared. This
ab-initio calculation demonstrated that in FE perovskites the Born charges
are strongly “anomalous”, and that this anomaly has much to do with the
phenomenon of ferroelectricity. Since then, ab-initio investigations of the Z∗

s

have become a standard tool for the study of FE oxides, and have provided
invaluable insight into ferroelectric phenomena [4, 27, 31].

For most FE ABO3 perovskites the nominal static charges are either 1 or
2 for the A cation, either 5 or 4 for the B cation, and −2 for oxygen. On the
contrary, modern calculations have demonstrated that in these materials the
Born charges typically assume much larger values. We discuss this feature
using as a paradigmatic example the case of KNbO3, which was the first to
be investigated in 1993 [25]. The paraelectric prototype structure is cubic,
and the cations sit at cubic sites, thus warranting isotropic Z∗

s tensors. The
oxygens sit instead at noncubic sites so that Z∗

O has two independent com-
ponents: one (called O1) for displacements pointing towards the Nb ion, and
the other (called O2) for displacements in the orthogonal plane. The results
of [25] are that Z∗

s takes values of 0.8 for K, 9.1 for Nb, −6.6 for O1, and
−1.7 for O2. Both the Nb and O1 values are thus strongly anomalous, being
much larger (in modulus) than the corresponding nominal values.

Such a finding appears counterintuitive, since one would expect that the
extreme ionic picture provides an upper bound on the ionic charges. In partly
covalent oxides one would naively guess values smaller, and not larger, than
the nominal ones, for all ions. Instead, anomalous values for the transition
element and for O1 ions have been later confirmed by all subsequent calcula-
tions, using quite different technical ingredients and/or for other perovskite
oxides [27, 32, 33]. The physical origin of the giant dynamical charges is pre-
cisely the borderline ionic–covalent character of ABO3 oxides, specifically
owing to the hybridization of 2p oxygen orbitals with the 4d or 5d orbitals of
the B cation. A thorough discussion of this issue can be found in [4, 31].

4.3 Piezoelectric Properties

Piezoelectricity has been an intriguing problem for many years. Even the
formal proof that piezoelectricity is a well-defined bulk property – indepen-
dent of surface termination – is relatively recent (1972), and is due to R. M.
Martin. This proof was challenged, and the debate lasted for two decades [10–
16]. The piezoelectric tensor γ measures the coupling of a macroscopic field EEE
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with macroscopic strain. The root of the problems with understanding piezo-
electricity is in the fact that – within periodic Born–von Kármán boundary
conditions – strain is not a perturbing term in the Hamiltonian; instead, it
amounts to a change of boundary conditions.

As in the case of the Born effective charges, there are two equivalent
definitions of γ, which is a third-rank Cartesian tensor. 1. γδαβ measures the
polarization linearly induced in the δ direction by macroscopic strain εαβ at
zero field:

γδαβ =
∂Pδ

∂εαβ
. (39)

2. Alternatively, γδαβ measures the stress σαβ linearly induced by a macro-
scopic field in the δ direction at zero strain:

σαβ =
∑

δ

γδαβ Eδ . (40)

The first ab-initio calculation of piezoelectric constants appeared in
1989 [34]; therein, the III–V semiconductors were chosen as case studies.
This work exploited (40), linear-response theory [20], and the Nielsen–Martin
stress theorem [35–37]. Nowadays, most calculations of the piezoelectric ef-
fect in FE materials are based on the finite-difference approximation to (39),
in conjunction with a Berry-phase calculation. The first such calculation, for
PbTiO3, was performed in 1998 [38, 39]; other calculations for other ma-
terials, including some ordered models of FE alloys, were performed soon
afterwards [40, 41].

Macroscopic strain typically induces internal strain as well. That is, when
the cell parameters are varied, the internal coordinates relax to new equilib-
rium positions, in general not mandated by symmetry. This effect is char-
acterized by a set of material-dependent constants known as internal-strain
parameters. In principle, there is no need to deal with internal strain sepa-
rately; (39) is in fact exact, provided that the internal coordinates are contin-
ually relaxed to their equilibrium values as the strain is applied. However, it
is often more convenient to exploit linearity and to compute the piezoelectric
tensor γ as the sum of two separate terms. The first term is the “clamped-
nuclei” one, evaluated by applying a homogeneous macroscopic strain without
including internal strain (i.e., without allowing any internal coordinates to re-
lax). The second term accounts only for the change in polarization induced by
the internal strain, and can easily be evaluated – knowing the internal-strain
parameters and the Born charges – as the change in polarization associated
with induced displacements associated with polar zone-center phonons.

Whenever the crystal has a nonvanishing spontaneous polarization, the
definition of the piezoelectric response becomes more subtle. The simplest
and most natural definition, usually called the “proper” piezoelectric re-
sponse [42], is based on the current density flowing through the bulk of a
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sample in adiabatic response to a slow strain deformation, as in Fig. 3b. The
proper response corresponds in most circumstances to the actual experimen-
tal setup, and, furthermore, is the one having the most direct link to the
modern theory. In order to evaluate a proper piezoelectric coefficient as a
finite difference, it is enough to adopt a Berry-phase formulation in scaled
coordinates as in (26) and evaluate derivatives of the ϕn,j [19,42]. It is worth
emphasizing that the arbitrary quantum of polarization, Sect. 3.3, does not
give rise to any ambiguity in the proper piezoelectric response, since its strain
derivative is zero [42].

5 Further Theoretical Developments

In this section, we briefly introduce a few advanced topics associated with the
theory of polarization, providing references to the literature for those readers
who desire a fuller treatment.

5.1 Polarization in an Applied Electric Field

Up to this point, our treatment has been limited to the case of insulators in
a vanishing macroscopic electric field. Clearly there are many situations, in
which it is very desirable to treat the application of an electric field directly,
especially for FEs and for other types of dielectric materials. However, the
usual theory of electron states in crystals is based on Bloch’s theorem, which
requires that the crystal potential be periodic. This rules out the presence of
a macroscopic electric field EEE , since this would imply a change by eEEE · R of
the electron potential under a translation by a lattice vector R.

Indeed, the difficulties in treating the case of a finite electric field are quite
severe. Even a small field changes the qualitative nature of the energy eigen-
states drastically, and a theory based on such energy eigenstates is no longer
useful. Even more seriously, because the potential is unbounded from below,
there is no well-defined ground state of the electron system! The “state” that
one has in mind is one in which all “valence” states are occupied and all “con-
duction” states are empty. However, for an insulator of gap Eg in a field EEE , it
is always possible to lower the energy of the system by transferring electrons
from the valence band in one region to the conduction band in a region a
distance � Lt = Eg/E down-field. This “Zener tunneling” is analogous to
the autoionization that also occurs, in principle, for an atom or molecule in
a finite electric field.

Nevertheless, we expect that if we start with an insulating crystal in its
ground state and adiabatically apply a modest electric field, there should be
a reasonably well-defined “state” that we can solve for. Indeed, perturbative
treatments of the application of an electric field have long been known, and
are a standard feature of modern electronic structure theory (for a review,
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see [20]). In 1994, Nunes and Vanderbilt [43] proposed a Wannier-function-
based solution to the finite-field problem that, while successful in principle,
was not very useful in practice. Transforming back to Bloch functions, Nunes
and Gonze showed in 2001 [44] how the known perturbative treatments could
be obtained (and, in some cases, extended) by deriving them from a varia-
tional principle based on minimizing an energy functional F of the form

F = EKS({ψnk}) −EEE · P ({ψnk}) . (41)

Here, EKS({ψnk}) is the usual Kohn–Sham energy per unit volume expressed
as a function of all occupied Bloch functions, and similarly P ({ψnk}) is the
usual zero-field Berry-phase expression for the electronic polarization. This
equation is to be minimized with respect to all {ψnk} in the presence of a
given field EEE ; thus, the Bloch functions at minimum become functions of EEE ,
so that the first term in (41) also acquires an implicit EEE dependence.

Subsequently, Souza et al. [45] and Umari and Pasquarello [46] demon-
strated that (41) was suitable for use as an energy functional for a variational
approach to the finite-field problem as well. The justification for such a pro-
cedure is not obvious, in view of the fact that the occupied wavefunction
solutions {ψnk} are not eigenstates of the Hamiltonian. Instead, they can
be regarded as providing a representation of the one-particle density matrix,
which can be shown to remain periodic in the presence of a field [45, 47], or
by treating the system from a time-dependent framework [47] in which the
field is slowly turned on from zero.

Because the “state” of interest is, in principle, only a long-lived resonance
in the presence of a field, there should be some sense in which the above
theory fails to produce a perfectly well-defined solution. This is so, and it
comes about in an unfamiliar way: the variational solution breaks down if
the k-point sampling is taken to be too fine. Indeed, if Δk 	 1/Lt, where
Lt = Eg/E is the Zener tunneling length mentioned above, the variational
procedure fails [45, 46]. The theory is thus limited to modest fields (more
precisely, to EEE 	 Eg/a, where a is a lattice constant).

In any case, it is interesting to discover that the problem of computing P
in an electric field provides, in a sense, the solution to the problem of comput-
ing any property of an insulator in a finite field: it is precisely the introduction
of the Berry-phase polarization into (41) that solves the problem.

5.2 Interface Theorem and the Definition of Bound Charge

It is well known from elementary electrostatics that the bound charge density
in the presence of a spatially varying polarization field is

ρb(r) = −∇ · P (r) , (42)

where ρb(r) and P (r) are macroscopic fields (i.e., coarse grained over a length
scale much larger than a lattice constant). As long as the polarization changes
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Fig. 11. Sketch of epitaxial interface between two different FE crystals, or between
FE domains of a single crystal. The difference in the interface-normal components
of P 1 and P 2 leads to an interface bound charge given by (43)

gradually over space, as in response to a gradual strain field or composition
gradient, there is no difficulty in associating P (r) with the Berry-phase po-
larization of Sect. 3.3 computed for a crystal whose global structure matches
the local structure at r. There is no difficulty with respect to the “choice
of branch” (see Sect. 3.3) since the gradual variation of P allows the choice
of branch to be followed from one region to another, and the bound charge
of (42) is clearly independent of branch.

The case of an interface between two FE materials, or of a FE domain wall
in a single FE material, is more interesting. Consider an epitaxial interface
between two FE materials, as shown in Fig. 11. One naively expects a relation
of the form σb = n̂ · (P 1 − P 2), where σb is the macroscopic bound surface
charge at the interface and n̂ is a unit vector normal to the interface. However,
in general the two materials may be quite dissimilar, so that a choice of branch
needs to be made for the Berry-phase expressions for P 1 and P 2 separately,
leading to an uncertainty in the definition of the bound interface charge σb.

Indeed, a careful analysis of situations of this type is given in [23], where
it is shown that the interface bound charge is given by

σb = n̂ · (P 1 − P 2) mod
e

Aint
(43)

under the following conditions: 1. the epitaxial match is perfect and disloca-
tion free, with a common 1×1 interface unit cell area Aint; and 2. material 1,
material 2, and the interface are all insulating, with a common gap. The in-
terface need not be as abrupt as illustrated in Fig. 11; some relaxations may
occur in the first few neighboring cells to the interface. It is only necessary
to identify P 1 and P 2 with the Berry-phase polarizations of the crystalline
structures far enough from the interface for these relaxations to have healed,
and to interpret σb as the macroscopic excess interface charge density inte-
grated over this interface region.
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Fig. 12. Sketch of density of states that could be associated with the epitaxial
interface of Fig. 11. Valence bands of materials 1 and 2 are hashed; conduction
bands are unfilled; and a band of interface states may either be (a) entirely empty;
(b) entirely filled; or (c) partially filled (i.e., metallic)

The appearance of the caveat “mod e/Aint” in (43) is remarkable, and
confirms that, at least in principle, there can be an uncertainty in the def-
inition of the interface bound charge. This can be understood in two ways.
First, the uncertainty of P 1 and P 2 mod eR/Ω leads to the uncertainty
(eR/Ω) · n̂ = e/Aint, as can be confirmed from simple geometry. Second, on
more physical grounds, we can expect such an uncertainty because of the
flexibility of the condition (2) stating that material 1, material 2, and the
interface must all be insulating with a common gap. Consider a situation like
that illustrated in Fig. 12, where there are m (counting spin) discrete inter-
face bands lying near the middle of a gap that is common to both materials 1
and 2. Panels (a) and (b) both show situations that satisfy the conditions (1)
and (2) of (43), but the interface charge clearly differs by precisely em/Aint

between these two situation. Panel (c) shows a situation that does not satisfy
the stated conditions, as the interface is metallic. In this case, the charge
counting may be done either with reference to the situation of Panel (a), in
which case one either says that a large free-electron charge density is pres-
ent on top of the bound charge defined by situation (a), or else that a large
free-hole charge density is present on top of the bound charge defined by
situation (b).

Similar considerations lead to a “surface theorem” [23] relating the macro-
scopic bound surface charge at a FE/vacuum interface to the surface-normal
component of the polarization of the underlying medium, mod e/Asurf .

In practice, the change in polarization (P 1 − P 2) between two FE ma-
terials is usually much smaller than the quantum, in which case there is a
“natural” choice of branch for the definition of the interface bound charge σint

in (43). However, for materials with large polarizations, such as certain Pb-
and Bi-based perovskites (see, e.g., [48]), the ambiguity in the definition of
interface bound charge may need to be considered with care.
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5.3 Many-Body and Noncrystalline Generalizations

The treatment given so far is based on the 1993 paper by King-Smith and
Vanderbilt [18] and assumes an independent-particle scheme, where polar-
ization is evaluated as a Berry phase of one-electron orbitals, typically the
Kohn–Sham ones [5], which in a crystalline material assume the Bloch form.
Shortly after the appearance of [18], Ortiz and Martin [49] provided the
many-body generalization of the theory, where polarization is expressed as a
Berry phase of the many-body wavefunction.

A subsequent development, by Resta [50], provides a unified treatment of
macroscopic polarization, dealing on the same footing with either indepen-
dent-electron or correlated systems, and with either crystalline or disordered
systems. This approach is based on a novel viewpoint, which goes under the
(apparently oxymoronic) name of “single-point Berry phase”. On practical
grounds, such a single-point Berry phase is universally adopted in order to
evaluate macroscopic polarization within first-principle simulations of disor-
dered systems.9

Here, we give a flavor of the approach, while we refer to the literature
for more complete accounts [50–52]. Let us consider, for the sake of sim-
plicity, a system of N one-dimensional spinless electrons. The many-body
ground wavefunction is then Ψ(x1, x2, . . . xj , . . . xN ), and all the electrons are
confined to a segment of length L. Eventually, we will be interested in the
thermodynamic limit, defined as the limit N → ∞ and L → ∞, while the
density N/L is kept constant. The wavefunction Ψ is Born–von Kàrmàn peri-
odic, with period L, over each electronic variable xj separately. Equivalently,
one can imagine the electrons to be confined in a circular rail of length L: the
coordinates xj are then proportional to the angles 2πxj/L, defined mod 2π.

The key quantity is the ground-state expectation value

zN = 〈Ψ |U |Ψ〉 =
∫ L

0

dx1 . . .

∫ L

0

dxN |Ψ(x1, . . . xN )|2U(x1, . . . xN ) , (44)

where the unitary operator U , called a “twist operator”, is defined as

U(x1, . . . xN ) = exp

⎛

⎝i
2π

L

N∑

j=1

xj

⎞

⎠ , (45)

and clearly is periodic with period L. The expectation value zN is a dimen-
sionless complex number, whose modulus is no larger than one. The electronic
contribution to the macroscopic polarization of the system can be expressed
in the very compact form [50, 52]:

Pel = − e

2π
lim

N→∞
� ln zN , (46)

9 http://www.cpmd.org/
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Notice that, for a one-dimensional system, the polarization has the dimen-
sions of a charge (dipole per unit length). The essential ingredient in (46) is
� ln zN , i.e., the phase of the complex number zN . This phase can be regarded
as a very peculiar kind of Berry phase.

So far, we have assumed neither independent electrons nor crystalline
order; (46) is in fact a very general definition of macroscopic polarization. In
the special case of a crystalline system of independent electrons, the many-
body wavefunction Ψ is a Slater determinant of single-particle orbitals. For
any finite N , (44) and (46) can then be shown to be equivalent to a discretized
Berry phase of the occupied bands, of the same kind as those addressed in
Sect. 3.2.

5.4 Polarization in Kohn–Sham Density-Functional Theory

Suppose we are given the ground-state interacting electron density n(r) of
an insulating crystal. From this, the Kohn–Sham theory [5] gives a unique
prescription for determining a noninteracting system, with an effective Kohn–
Sham potential, having the same ground-state electron density. The following
question then arises: If one computes the Berry-phase polarization from this
noninteracting Kohn–Sham system, does one arrive, in principle, at the cor-
rect many-body polarization?

As shown by Gonze et al. [53, 54], the answer to this question is that, in
general, one does not obtain the correct polarization.

There are three ways to approach this issue. First, one may restrict one’s
considerations to a strictly infinite crystalline system with a given cell shape
and with a uniform macroscopic electric field EEE [53,54]. One can then demon-
strate a generalized Hohenberg–Kohn theorem stating that a given periodic
density n(r) and macroscopic polarization P together uniquely determine a
periodic external potential Vper(r) and electric field EEE . Moreover, the cor-
responding Kohn–Sham construction involves finding an effective periodic
potential V KS

per (r) and effective electric field EEEKS that yield, for a noninteract-
ing system, the same n(r) and P . In this theory of Gonze et al. [53, 54], the
polarization is correct by construction, but at the expense of introducing a
correction EEEKS −EEE that they referred to as an “exchange-correlation electric
field”. The reader is directed to [53, 54] for details.

A second approach is to consider conventional Kohn–Sham theory in the
context of finite macroscopic sample geometries, surrounded by vacuum, and
having particular surfaces, interfaces, or FE domain configurations. An anal-
ysis of this type [55] again leads to the conclusion that the local polarization
obtained from exact Kohn–Sham theory is not, in general, the correct one.
In general, one finds that the longitudinal part of the polarization field P (r)
must be correct (since the corresponding charge density −∇ · P must be cor-
rect), but the transverse part of the polarization field need not be correct.

A third approach is suggested by (44). The wavefunction ΨKS of the non-
interacting Kohn–Sham system is a Slater determinant and is necessarily
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different from Ψ , despite sharing the same single-particle density. Since the
twist operator U is a genuine many-body operator, its expectation value over
ΨKS is in general different from the one over Ψ . The polarization (46), is
different as well.

5.5 Localization, Polarization, and Fluctuations

An insulator is distinguished from a metal by its vanishing dc conductivity
at low temperature. In contrast to what happens in metals, the electronic
charge in insulators (and quite generally nonmetals) cannot flow freely under
an applied dc field; instead it undergoes static polarization. As first pointed
out in 1964 by Kohn, this fact stems from a basic qualitative difference in the
organization of the electrons in their ground state [56]. The modern theory
of polarization has provided much insight into such different organization.

An insulator sustains a nontrivial, material-dependent, macroscopic po-
larization, which is nonvanishing whenever the Hamiltonian is noncentrosym-
metric. Instead, the polarization of a metallic sample is determined by the
Faraday-cage effect and therefore is not a well-defined property of the bulk
material. At the independent-electron level, the polarization of a crystalline
insulator can be expressed in terms of Wannier functions, as discussed in
Sect. 3.5. The key feature is that, in insulators, a set of well-localized orbitals
(the Wannier functions) spans the same Hilbert space as do the Bloch orbitals
of the occupied bands. This is indeed a qualitative difference in the organiza-
tion of the electrons between insulators and metals. In the latter, in fact, it
is impossible to span the Hilbert space of the occupied Bloch orbitals using
well-localized orbitals. This statement can be made more precise by address-
ing the spherical second moments of the charge distributions of the localized
orbitals [57]. Such second moments can be made finite in insulators, while
they necessarily diverge in metals, as discussed below. It therefore emerges
that the key qualitative feature differentiating the ground state of an insula-
tor from that of a metal is electron localization. This applies well beyond the
independent-electron level; in fact, as emphasized already by Kohn in 1964,
the ground wavefunction of any insulator is localized. The modern theory of
polarization leads to a simple and elegant measure of such localization [52].

It is expedient to refer, as in Sect. 5.3, to a system of N one-dimensional
spinless electrons. From (46) it is clear that macroscopic polarization is a well-
defined quantity whenever the modulus of zN is nonvanishing in the large N
limit. In the latter case, the second moment of the electron distribution can
be defined, following Resta and Sorella [58], as

〈x2〉c = − lim
N→∞

1
N

(
L

2π

)2

ln |zN |2 , (47)

where the subscript “c” stands for “cumulant”. The same concept generalizes
to a Cartesian tensor 〈rαrβ〉c in three dimensions. This localization tensor,
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having the dimension of a squared length, is an intensive property and applies
on the same footing to ordered/disordered and correlated/uncorrelated many-
electron systems; it is finite in any insulator and divergent in any metal. In
the special case of an insulating crystalline system of independent electrons,
the meaning of 〈rαrβ〉c becomes more perspicuous. In fact, the trace of this
tensor is a lower bound to the average spherical second moment of the charge
distributions of the Wannier functions of the occupied bands [57]; in the
metallic case, the lower bound is formally divergent.

Two important questions were left unanswered by Resta and Sorella.
Given that in any insulator the localization tensor 〈rαrβ〉c is, at least in prin-
ciple, a well-defined ground-state observable, the first question is whether this
can be measured, and by which kind of experiments. The second question is
whether 〈rαrβ〉c can be related in some way to dc conductivity, given that
the vanishing of the latter characterizes – in addition to macroscopic polar-
ization – the insulating state of matter. Both questions received a positive
answer owing to the work of Souza et al. [51]. They began by showing that
〈rαrβ〉c measures the mean-square fluctuation of the polarization; then, by
exploiting a fluctuation-dissipation theorem, they explicitly linked 〈rαrβ〉c to
the conductivity of the system.

6 Summary

In this chapter we have reviewed the physical basis of the modern theory
of polarization. From a physical viewpoint, we have emphasized that the
polarization may be defined in terms of the accumulated adiabatic flow of
current occurring as a crystal is modified or deformed, and have discussed
the consequences of this picture for the theory of polarization reversal and
piezoelectric effects in FE materials. From a mathematical viewpoint, we
have explained how the polarization is closely related to a Berry phase of the
Bloch wavefunctions as the wavevector traverses the Brillouin zone, and to
the centers of charge of the Wannier functions that may be constructed from
the Bloch wavefunctions. An essential feature of the theory is the fact that
the polarization is formally defined only modulo a “quantum of polarization,”
or equivalently, that it must be regarded as a multivalued quantity. We have
also attempted to clarify how piezoelectric effects and surface and interface
charges are to be understood in terms of the modern theory.

The capability of computing polarization is now available in almost all
commonly used software packages for bulk electronic-structure calculations.
While initially formulated in vanishing electric field, the case of finite field
can be treated by letting the external electric field couple to the polarization
while retaining the Bloch form of the wavefunctions. These methods allow
for the computation of numerous quantities of interest, including spontaneous
polarization, Born effective charges, linear piezoelectric coefficients, nonlinear
dielectric and piezoelectric responses, and the like. Indeed, taken together,
they provide a robust and powerful foundation for modern computational
studies of the polarization-related properties of FE materials.
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Abstract. This contribution begins with a discussion of the homogeneous Landau
theory for bulk ferroelectrics with spatially uniform polarizations, reviewing first-
and second-order transitions and the dielectric response. Next, we allow the polar-
ization to vary with position within a bulk sample, and discuss Landau–Ginzburg
theory and correlation functions. Surface boundary conditions, corresponding to
the situation for thin films, are then added and the resulting polarization profile is
discussed. Here, screening effects, depolarization fields and strain will be important.
The enigmatic extrapolation length is described with remarks about its underlying
physical meaning. Then we switch to a treatment of inhomogeneous systems in the
bulk, where strain effects and domain formation become very important. We end
with a number of open questions for further exploration. Generally, we emphasize
the underlying philosophy and methodology of this phenomenology.

1 Introduction

Based solely on symmetry considerations, Landau theory can provide a reli-
able description of a system’s equilibrium behavior near a phase transition.
This phenemenological approach relates measurable quantities to one another
using a minimum set of input parameters that can be determined either by
comparison to experiment or from first-principles approaches. Landau the-
ory (LT) can therefore serve as a conceptual bridge between microscopic mod-
els and observed macroscopic phenomena. Because it assumes spatial averag-
ing of all local fluctuations, LT is particularly well suited to systems with long-
range interactions such as superconductors and ferroelectrics. In this chapter
we hope to give the curious reader a self-contained contemporary presenta-
tion of the application of Landau theory to ferrolectrics, including references
to more extensive treatments for those who wish more detail [1–6]. We be-
gin by developing LT for homogeneous bulk ferroelectrics, and then consider
the finite-size (thin-film) case [7] within the related Landau–Ginzburg (LG)
approach. Next, we discuss the treatment of inhomonogeneity within this
framework. We end with a number of open questions for future pursuits.

Let us begin by stating in general terms what Landau theory is and then
subsequently what it is not. In a nutshell, Landau theory is a symmetry-based
analysis of equilibrium behavior near a phase transition. In his classic 1937
K. Rabe, C. H. Ahn, J.-M. Triscone (Eds.): Physics of Ferroelectrics: A Modern Perspective,
Topics Appl. Physics 105, 69–116 (2007)
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Fig. 1. Schematic of relationship of Landau theory and first-principles calculations,
microscopic models and experiment in the vicinity of a phase transition

papers, Landau [8–10] notes that a system cannot change smoothly between
two phases of different symmetry; the continuous path that a system can take
between liquid and gaseous states around a first-order critical point is only
possible because there is no symmetry change involved. Furthermore, because
the thermodynamic states of two phases that are symmetrically distinct must
be the same at their shared transition line, the symmetry of one phase must
be higher than that of the other. Landau then characterizes the transition
in terms of an order parameter, a physical entity that is zero in the high-
symmetry (disordered) phase, and changes continuously to a finite value once
the symmetry is lowered; for the case of the paraelectric–ferroelectric transi-
tion [11–16], this order parameter is the polarization P . The free energy, F ,
in the vicinity of the transition is then expanded as a power series of the order
parameter (F(P )) where only symmetry-compatible terms are retained. The
state of the system is then found by minimizing this free energy F(P ) with
respect to P to obtain P0, and specific thermodynamic functions are subse-
quently computed by differentiating F accordingly. As an aside, we note that
if the order parameter is multicomponent, then the Landau free energy is con-
structed from all scalar terms consistent with the system’s symmetries that
are powers and scalar products of the order-parameter components. Here,
for simplicity, we’ll consider a scalar order parameter (P ) unless otherwise
specified.

The appeal of the Landau approach is that it is a straightforward phen-
emenology for linking measurable thermodynamic quantities in the vicinity
of a phase transition. However, it is only as good as its input parameters,
the coefficients of the series-expansion terms in F(P ), which can be deter-
mined from experiment or from first-principles calculations. We emphasize
that Landau theory is strictly a macroscopic approach and thus it cannot
describe any microscopic physics (e.g., atomic displacements, etc.) associ-
ated with the phase transition. In its simplest rendition, the order parameter
(e.g., P ) is considered to be completely uniform.
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Table 1. Phenomenologies and relevant ferroelectric systems (close to Tc)

Phenomenology Ferroelectric
(near Tc)

Landau–Devonshire theory Poled bulk system
(uniform polarization)
Landau–Ginzburg theory Bulk system
(polarization with spatial gradient)
Landau–Ginzburg theory Film
with boundary conditions

A central ansatz of the Landau approach is that the free energy can be
represented as a series expansion of the order parameter in the vicinity of
the transition. At first glance, it may be surprising that singular behavior
associated with a transition can emerge from such a regular expansion. This
occurs because the value of the order parameter that minimizes the free en-
ergy (e.g., P0) is itself a singular function of the expansion coefficients that are
temperature dependent. However, more generally we expect that this power-
law form of F may not be valid very close to the transition. Furthermore,
Landau theory is based on the premise that local fluctuations in the order
parameter are small, whereas we expect that this will not be the case in the
immediate vicinity of the transition.

So when does Landau theory break down? Levanyuk and Ginzburg have
developed [17–19] a criterion that uses Landau theory to estimate its own
demise. More specifically, they argue that for LT to be valid, fluctuations of
the order parameter must be small compared to the order parameter itself
when both are coarse grained over a volume determined by the correlation
length. We shall present a detailed version of their argument once we intro-
duce a specific Landau free energy. Qualitatively, their criterion suggests that
LT works well when the coordination number is high, which can be achieved
either by large dimensionality or by long-range interactions. Since significant
dipolar interactions are present in ferroelectrics, does this mean that Lan-
dau theory is always valid in these systems? It is certainly very useful in
ferroelectrics but we emphasize that the angular dependence of the dipolar
forces leads to non-Landau behavior very close to the transition, though this
region is usually practically unobservable (we will be more specific later).
Indeed historically the theoretical study of a simplified version of this prob-
lem, the uniaxial dipolar model, yielded the first predictions of logarithmic
corrections to Landau exponents [20–23]. Detailed measurements confirmed
these quantitative results in appropriate experimental systems [24], and this
set of findings served as an important benchmark in the development of the
renormalization group method.

Many readers may have encountered the phenomenology of Landau theory
in the context of magnetism, and thus it is worth contrasting its application
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there and in ferroelectrics (and we encourage the interested reader to pursue
more on this subject in the chapter by N. Spaldin in this volume). First and
perhaps foremost, the couplings in a ferromagnet are predominantly short
range, since interactions between magnetic dipoles are essentially negligible.
More specifically we note that the interaction energy between two magnetic
dipoles, each of magnitude one Bohr magneton, at a distance r is

FM =
μoμB

4πr3
≈ α2

4π

(aB

r

)3

, (1)

where aB= 0.05 nm and α ≈ 1
137 , and we are working in atomic units. By con-

trast, for an electrical dipole of magnitude p = eΔaB , the dipolar interaction
force is

FD =
p2

8πεor3
≈ Δ2

4π

(aB

r

)3

, (2)

where the parameter Δ ≈ 1 is determined by examining atomic displace-
ments and transverse effective charges [25]. The ratio of the ferroelectric to
the ferromagnetic dipolar forces is then of order Δ2

α2 ≈ (137)2, so clearly
long-range interactions are more significant in ferroelectrics than in generic
magnetic systems. Thus, LT is more reliable for a broader temperature re-
gion in these electric dipolar systems than in their magnetic counterparts,
though it can provide guiding information in both cases. In conventional fer-
romagnets magnetic dipolar interactions play a role in the determination of
domain structures, whereas in ferroelectrics the analogous dipolar couplings
are important at essentially all length scales.

Screening represents a second qualitative distinction between ferroelectric
and ferromagnetic systems. This phenomenon is due to the presence of free
charges that effectively reduce local fields; it does not have a magnetic analog
due to the absence of free magnetic monopoles. Indeed this simple fact about
screening has been used to explain why magnetism was known in ancient
times but ferroelectricity is a relatively modern discovery [4]. The surface of
a ferroelectric crystal attracts free charge from its environment to neutralize
the effective surface charge that results from the polarization discontinuity;
this partially accounts for the historical name “pyroelectric” to describe tran-
sient fields that were observed upon changes in temperature. Screening effects
are particularly pronounced in ultrathin ferroelectric films, [26–31] where in-
ternal electric fields generated by the ferroelectric dipoles are large enough
to produce both electronic and ionic currents. These processes contribute
to fatigue, to “imprint” and to the memory of domain patterns stored over
time [7]. A detailed understanding of these screening processes, particularly
near metal/ferroelectric interfaces in thin-film devices, requires knowledge of
metal-induced gap states and charge-compensation processes. Since these are
local effects, they can be captured within a Landau–Ginzburg framework and
this physics will be discussed later in the chapter.
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The third major difference between LT treatments of ferroelectricity and
ferromagnetism arises from the strong coupling between the polarization and
the lattice, a feature that is usually not very important in the magnetic case.
Ferroelectric dipoles are generated by the displacement of atoms, and thus on
a local scale there is strong spatial anistropy. Many magnets retain continuous
spin symmetry (e.g., xy or Heisenberg), and thus have low barriers associated
with the reorientation of the magnetization. By contrast, in ferroelectrics
domain walls, discontinuities in the polarization direction, are roughly a few
lattice constants in contrast to the mesoscopic length scale associated with
their magnetic counterparts. In general, the development of a macroscopic
polarization in a ferroelectric will be accompanied by a macroscopic strain,
and thus ferroelectricity and ferroelasticity are closely related phenomena.
Indeed if this strain is suppressed, the transition temperature and even its
order can be modified. Elastic degrees of freedom thus must be represented
in a LT for most ferroelectrics.

Let us now turn to a general outline of this chapter. We will begin with a
discussion of the homogenous Landau theory for bulk ferroelectrics with spa-
tially uniform polarizations, reviewing first- and second-order transitions and
the dielectric response. Next, we allow the polarization to vary with position
within a bulk sample, and discuss Landau–Ginzburg theory and correlation
functions. Surface boundary conditions, corresponding to the situation for
thin films, are then added and the resulting polarization profile is discussed.
Here, screening effects, depolarization fields and strain will be important.
The enigmatic extrapolation length, borrowed from the literature on surface
superconductivity [32], will be described with remarks about its underlying
physical meaning. Then we will switch to a treatment of inhomogeneous sys-
tems in the bulk, where strain effects and domain formation become very
important. We end with a number of open questions for further exploration.
For example, is LT appropriate when both long-range strain and Coulomb
interactions are present? How can we begin to treat the ever-important ques-
tion of dynamics of domain motion within this framework? Landau–Ginzburg
theory is certainly only useful when its constructing assumptions and its in-
put parameters are appropriate; if so, it is a fairly powerful approach, based
almost solely on symmetry, to yield important information about measur-
able quantities in the vicinity of a phase transition. In this chapter we em-
phasize the underlying philosophy and methodology of this phenomenology,
pointing the interested reader to detailed discussions of successful applica-
tions to particular materials including SrTiO3 [33, 34], BaTiO3 [35, 36] and
PbZr1–xTixO3 [37]; towards this more pragmatic end, an Appendix of Lan-
dau parameter sets for specific common ferroelectric systems is included for
easy reference.
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2 Landau–Devonshire Theory

2.1 General Phenomenology

To our knowledge, Landau’s symmetry-based treatment of phase transi-
tions [1,8–10] was first applied to the case of ferroelectrics by Devonshire [14–
16], and in this section we will discuss this Landau–Devonshire theory that is
appropriate for bulk systems with spatially uniform polarization. In general,
the thermodynamic state of any system in equilibrium can be completely
specified by the values of specific variables; for bulk ferroelectrics these in-
clude the temperature (T ), the polarization (P ), the electric field (E), the
strain (η), and the stress (σ). Usually we apply electric fields E and elastic
stresses σ externally, so we can regard the polarization and the strain as “in-
ternal” or dependent variables. A fundamental postulate of thermodynamics
applied to a ferroelectric is that its free energy F can be generally expressed
as a function of ten variables (three components of polarization, six com-
ponents of the stress tensor, and finally one of temperature). Our goal here
is to write down an ansatz for this free energy, using symmetry arguments
whenever possible to pare down the number of terms. The second important
thermodynamic principle that we will also employ is that the values of the
dependent variables in thermal equilibrium are obtained at the free-energy
minimum when the free energy is optimized.

We make the key approximation that in the vicinity of a phase transition
we can expand the free energy in powers of the dependent variables with
coefficients that can be fitted to experiment or gleaned from microscopic
calculations. In the best case, we may be able to truncate this series with only
a few terms. In order to be more specific, let us take a simple example where
we expand the free energy in terms of a single component of the polarization;
for the moment we ignore the strain field, an assumption that might be
appropriate for a uniaxial ferroelectric. We shall choose the origin of energy
for the free unpolarized, unstrained crystal to be zero, and hence we write

FP =
1
2
aP 2 +

1
4
bP 4 +

1
6
cP 6 − EP , (3)

where we have truncated the power series at the sixth term, and a, b and c
are coefficients that will be discussed in more detail shortly. Here we will use
the notational convention that F and F =

∫
dV F refer to the free-energy

density and the total free energy, respectively. The equilibrium configuration
is determined by finding the minima of FP, where we shall have

∂FP

∂P
= 0 . (4)

This equation gives us an expression for the electric field E as a function of
the polarization

E = aP + bP 3 + cP 4 . (5)
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Fig. 2. Free energy as a function of po-
larization for (a) a paraelectric material,
and for (b) a ferroelectric material

Thus we can determine the linear dielectric susceptibility above the transition
by differentiating this equation with respect to P and then setting P = 0 to
obtain

χ =
P

E
=

1
a

. (6)

In the Landau–Devonshire theory it is assumed that around the Curie point
(T ∼ T0)

a = a0(T − T0) (7)

and the other coefficients in the free-energy expansion are independent of
temperature. Combining the last two equations, we find an expression for
the dielectric stiffness

κ =
1
χ

= a0(T − T0) , (8)

which captures the Curie–Weiss behavior (in χ) observed in most ferro-
electrics for T > T0; this provides additional support for the linear tem-
perature ansatz for a. For the sake of completeness, we note that the tem-
perature T0 where a changes sign is close to, but not exactly coincident with,
the Curie temperature, as we shall discuss shortly.

If we include the linear temperature dependence of a, we have the general
expression for the free energy

FP =
1
2
a0(T − T0)P 2 +

1
4
bP 4 +

1
6
cP 6 − EP , (9)

where, to our knowledge, a0 and c are both positive in all known ferro-
electrics [3, 4]. Figure 2 shows the free energy as a function of polarization in
the paraelectric (T � T0) and the ferroelectric (T � T0) phases. How this
free energy transforms between these two configurations will be determined
by the sign of the coefficient b; as we shall see shortly, its sign will deter-
mine the nature of the paraelectric–ferroelectric transition, and whether the
polarization at T < T0 develops continuously or discontinuously.

2.2 Second-Order (Continuous) Transition

If b > 0, then a second-order transition occurs at T = T0, and the free energy
will evolve continuously as a function of decreasing temperature from the
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first schematic (P = 0) in Fig. 2 to the second, that has minima at finite
polarizations P = ±P0. The spontaneous polarization can be estimated by
setting E = 0 in (5); since all the coefficients are positive, we will only retain
the two lowest-order terms. The result is

P0 =
[a0

b
(T0 − T )

] 1
2

, (10)

where we see that the spontataneous polarization Ps will increase with de-
creasing temperature from the point T = T0. We note that if we determine
the dielectric stiffness below the transition (T < T0) then we find

κ = 2a0(T0 − T ) , (11)

which is to be compared with (8), its value just above T0; perusal of these
two expressions suggests that κ vanishes at T = T0 and that consequently
the dielectric suseptibility diverges. In practice, the latter achieves large but
finite values in real materials where this expression is appropriate [3, 4]. We
can now also solve for the discontinuity in the specific heat at the transition;
using P = 0 for T > T0 and (10) for T < T0, we determine

ΔCv = Cv(T = T+
0 ) − Cv(T = T−

0 ) , (12)

where Cv ≡ −T ∂2FP
∂T 2 to obtain

ΔCv =
a2
0T0

2b
(13)

for the Landau expression for this quantity. Schematics associated with this
second-order phase transition as described by Landau–Devonshire theory are
displayed in Fig. 3.

2.3 First-Order (Discontinuous) Transition

Logically (and practically as it turns out), we should also consider the case
of b < 0 (while c remains positive). This is sketched in Fig. 4.

With the negative quartic coefficient, it should be clear that even if T > T0

(such that the quadratic coefficent is positive) the free energy may have a
subsidiary minimum at nonzero P . As a is reduced, which corresponds phys-
ically to the reduction of the temperature, this minimum will drop in energy
below that of the unpolarized state, and so will be the thermodynamically fa-
vored configuration. The temperature at which this happens is, by definition,
the Curie temperature Tc, which, however, now exceeds T0. At any temper-
ature between Tc and T0 the unpolarized phase exists as a local minimum of
the free energy. The most important feature of this phase transition is that
the order parameter jumps discontinuously to zero at Tc. This type of phase
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Fig. 3. Second-order phase transition. (a) Free energy as a function of the polariza-
tion at T > T0, T = T0, and T < T0; (b) Spontaneous polarization P0(T ) as a func-
tion of temperature; (c) The susceptibility χ and its inverse, where χ = ∂P/∂E|P0

is evaluated at the equilibrium polarization P0(T )

Fig. 4. First-order phase transition. (a) Free energy as a function of the polarization
at T > Tc, T = Tc, and T = T0 < Tc; (b) Spontaneous polarization Po(T ) as a
function of temperature; (c) Susceptibility χ

transition is usually called a first-order or discontinuous transition, of which
solid–liquid transitions are common examples.

The procedure for finding the spontaneous polarization and the linear
dielectric susceptibility is conceptually the same as before, but now one can-
not neglect the quartic- and sixth-order terms. Qualitatively we then find a
dielectric stiffness (inverse of the linear susceptibility) that does not vanish
at T0, corresponding to the finite jump in both the susceptibility and the
spontaneous polarization at the transition. Schematics of the free energy, the
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Fig. 5. Schematic picture of hysteresis in an idealized ferroelectric

spontaneous polarization, the dielectric stiffness and the linear susceptibility
are shown in Fig. 4. We note that at T = Tc the three minima are energeti-
cally degenerate. As a result, the system’s behavior at T = Tc will depend on
whether it is approaching Tc from lower or higher temperatures. More specif-
ically, the system will be in one of the two finite polarization (P �= 0) minima
if it is heated from an initial low temperature Ti < Tc, whereas it will be in a
paraelectric state (P = 0) if the initial temperature is high (Ti > Tc). Indeed,
the phenomenon of thermal hysteresis, where the transition temperature de-
pends on whether the sample is heated or cooled, is prevalent in a number
of first-order ferroelectrics including barum titanate [3]. We emphasize that
it is only for T0 < Tc that the ferroelectric minima are thermodynamically
favorable.

In a ferroelectric below T0 there are (at least) two minima of the free
energy, corresponding to spontaneous polarizations of different spatial ori-
entations. The barrier between these minima means that a small electric
field will not immediately switch the polarization. We note that the Landau–
Devonshire theory described here predicts hysteresis [3, 4], shown schemat-
ically in Fig. 5, in the ideal (and fictitious) case where all the dipoles have
to be overturned together to switch from one polarization orientation to the
other.

We note that for ferroelectrics with either continuous or discontinuous
transitions, values of the Landau coefficients can be determined by compar-
ing experimental measurements of κ and Ps to the Landau–Devonshire ex-
pressions; such parameter sets for a number of commonly studied materials
are included in an appendix at the end of this chapter.
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2.4 Coupling to Strain

An important feature of ferroelectric materials is their great sensitivity to
elastic stress. In order to understand why this is so, we can again take recourse
to Landau theory by adding in strain-dependent terms to (9). The strain in
a solid is measured by how the displacement u of a point in the solid varies
with position r, and since this is the dependence of a vector upon a vector,
the answer is a tensor: the strain is usually defined as

ηij =
1
2

(
∂ui

∂rj
+

∂uj

∂ri

)

, (14)

where here i, j indicate the x, y, z components of the vectors. η is therefore a
3× 3 symmetric matrix, with six independent components. In materials that
are cubic (or nearly so) there will be three independent components to the
strain: the volume strain (uniform in all three directions and two kinds of
shear).

In general, the polarization will couple to one or more types of strain, and
specifically which ones can generally be seen by inspection. Consider a cubic
crystal (e.g., BaTiO3) that undergoes a ferroelectric phase transition to a
state where the polarization can point along one of the six orthogonal cubic
directions. Now it is clear that there is a special axis (one of the six directions
after the symmetry has been broken) and so it would no longer be expected
that the crystal as a whole will remain cubic – one expects a distortion into a
tetragonal crystal, which can be described by a tetragonal strain η. The fact
that the lowest-order coupling allowed in this case is of the form ηP 2 (and
not, for example, ηP or η2P ) is of course a matter of symmetry.

For a uniaxial ferroelectric, the leading order terms will be of the following
form

Fη =
1
2
Kη2 + QηP 2 + · · · − ησ . (15)

Here, η is (a component of) the strain field, and the first term represents
Hooke’s law, namely that the elastic energy stored in a solid is quadratically
dependent on the distortion, so K is (one of) the elastic constant(s). The
second term is a coupling between the elastic strain and the polarization; the
fact that this is linear in the strain and quadratic in the polarization depends
on the special symmetry of the transition. While this is the leading term in
pseudocubic materials, there are other materials (e.g., KH2PO4) where the
symmetry is lower, and the coupling can be of the form ηP – linear in both
strain and polarization. Materials with a linear relation between stress and
polarization are called piezoelectric.

Using the free energy, which now consists of the terms in (9) and (15), F =
FP +Fs. we can now determine the properties in equilibrium by minimizing
with respect to both P and η, i. e.,

∂F(P, η)
∂P

=
∂F(P, η)

∂η
= 0 . (16)
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Let us take the second of these equations first:

∂F(P, η)
∂η

= Kη + QP 2 − σ . (17)

There are a few different limits to consider. First, note that if the polar-
ization is zero, we get Hooke’s law η = σ/K. The second – apparently trivial
case – is when a stress is applied to force the strain to be exactly zero at
all times. This is not as absurd as it seems, because often crystals can be
considered to be clamped by their surroundings so that no strain is allowed
at all. One common situation is of a thin epitaxial film that is forced to have
the lattice constants matched to the substrate, and is free to relax only in the
third direction. In the case of perfect “clamping” η = 0, and the free energy
is just as before.

The third case to consider is when no external stresses are applied (σ = 0),
and we then have

η = −QP 2

K
, (18)

so that a spontaneous (tetragonal strain) occurs proportional to the square
of the polarization. Notice now that we can substitute for the strain as a
function of polarization, and we have a free energy

F(P, η(P )) =
1
2
aP 2 +

1
4
(b − 2Q2/K)P 4 +

1
6
cP 6 + · · · − EP . (19)

In comparison with the clamped system, the only change is to reduce the
quartic coefficient (notice that the result is independent of the sign of Q).
This means that in the case of an already first-order transition (b < 0) the
transition is driven even more strongly first order, and T0 is raised. In many
ferroelectrics, the effects of clamping can be large – shifting the transition
temperature by tens of Kelvin, and even changing the order of the transition.
If 2Q2/K > b > 0, a first-order transition becomes second order in a clamped
system where the strain is allowed to relax; this is the case [3] in BaTiO3.

Application of an external hydrostatic pressure leads to a shift [38] in T0

whose sign is determined by that of the volume expansion coefficient; a re-
duced lattice constant is accompanied by a reduction in T0, consistent with
measurements where similar effects have been achieved by chemical substi-
tution [38]. The effect of biaxial stress, where the crystal contracts along two
axes and expands along the third, on T0 was also studied both theoretically
and experimentally [39]; enhancement of T0 was predicted and observed in
barium titanate crystals [39]. We shall see shortly that this effect is even more
dramatic in thin films where such elastic effects occur at the interface to the
substrate.
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Fig. 6. Surface charge density generated by a bulk polarization at an interface

2.5 Domains

So far we have pretended that the polarization in a ferroelectric can be treated
as entirely uniform, and this is far from the case. There are many reasons for
the existence of domains, including nonuniform strain, microscopic defects,
and the thermal and electrical history of the sample. But even in an ideal
crystal, domains are to be expected for energetic reasons associated with
electrostatics.

The macroscopic bulk polarization is produced by a displacement of pos-
itive charge relative to negative charge; at the surface of the sample there
must then be a net charge density of opposite signs on the opposite sides of
the crystal (Fig. 6). Any inhomogeneity in the polarization acts like a charge
density – and in particular the discontinuity in the polarization at an inter-
face or boundary acts like a surface charge, as can be seen by the following
elementary electrostatic argument.

The potential V (r) induced by a dipole p at the origin is

V (r) = − 1
4πεo

p · ∇
(

1
r

)

, (20)

and thus the potential due to a distributed polarization P (r) in a volume τ
bounded by a surface S is

V (r) =
1

4πεo

∫

τ

dr′ P (r′) · ∇r′

(
1

|r − r′|

)

. (21)

Using the product rule: ∇ · (Af) = f∇ · A + A · ∇f , we have

V (r) =
1

4πεo

∫

τ

dr′
[

−∇ · P (r′)
|r − r′| + ∇ ·

(
P (r′)
|r − r′|

)]

, (22)

=
1

4πεo

[

−
∫

τ

dr′ ∇ · P (r′)
|r − r′| +

∫

S

dS · P (r′)
|r − r′|

]

, (23)

where the last manipulation uses the divergence theorem leading to a surface
integral.
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The potential appears to be generated by a distributed bulk charge density

ρ(r) = −∇ · P (r) (24)

as well as a surface charge density

σ = P · n̂ , (25)

where n̂ is the vector normal to the boundary surface S. Occasionally, some
books that like to make arbitrary distinctions between “bound” and “free”
charge will call the charges generated by an inhomogeneous polarization “fic-
titious”. These charges are fictitious only in the sense that they are con-
served – namely if we begin with an electrically neutral system and create a
polarization density from it by moving the electrons relative to the ions, the
integral of the polarization charge (over the whole system) must vanish. They
are in all other respects quite real. The surface charges generate electric fields,
both internal and external to the sample, and the fields themselves store en-
ergy – just as in a capacitor. In an approximation where the polarization P
is assumed to be homogeneous within a domain, and changing abruptly at
surfaces or interfaces, only the surface term survives.

The system will minimize its energy by eliminating – as far as is possible –
the surface charges, and in a thin film, for example, this makes it clear that
the preferred orientation of the polarization will be in the plane of the film,
rather than pointing perpendicular to the film. If one has a crystal that is
thick in all dimensions, another situation is preferable – to introduce domains
where the polarization is oriented to be always parallel to the crystal surface.
Such a situation can, of course, only be achieved by introducing domain walls
into the bulk, and this will produce polarization charges unless the walls are
appropriately oriented.

The interface charge density between two neighboring domains is, by ex-
tension of the formula at a free surface,

σ = (P 1 − P 2) · n̂ , (26)

where P 1, P 2 are the polarizations of the two domains, and n̂ is a unit vector
normal to the interface. The two cases when the surface charge will exactly
vanish are when the polarizations are antiparallel to each other, and parallel
to the domain wall (called a 180◦ domain wall), or when the domain wall
bisects the angle between two domains pointing head-to-tail. Because we are
often dealing with nearly cubic crystals where the possible polarizations are
at 90◦ to each other, the latter is often termed a 90◦ domain wall. Both of
these wall types are illustrated in Fig. 7, which is the ideal configuration of
the polarization in a “bar” of ferroelectric single crystal – and that bears
obvious comparison to the ideal magnetic configuration in a single-crystal
bar magnet, that may be familiar to some.

The presence of domain walls involves other energy costs. First, the do-
main wall is microscopically different from the bulk, and the energy gain of
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Fig. 7. Ideal domain configuration in a single crystal of cubic ferroelectric material,
where the coupling to strain is negligible. On the right is the configuration adopted
when strain effects are important

forming the polarized ground state has been lost. Secondly, the polarization
is coupled to elastic strain – as we saw above – and we must also make sure
that the strain fields are compatible. There is no difficulty with a 180◦ domain
wall, but a 90◦ domain wall produces problems, and the “ideal” configuration
of Fig. 7 is by no means ideal in terms of the strain fields. The existence of
domains in a sample automatically generates inhomogeneities in the strain
that interact in complex ways.

Some contemplation of the two-dimensional pictures above makes it evi-
dent that only certain kinds of domain structures are allowed, unless disloca-
tions, cracks, or voids are introduced into the crystal. The moment we have
inhomogeneous strain, we must remember to maintain the condition that
the displacement field u(r) must be continuous; however, the free energy de-
pends only on the strains η, which are derivatives of u, see (14). Imposing the
continuity constraint gives rise to the additional (St. Venant) compatibility
conditions on the strain fields [40]

∇ × (∇ × η) = 0 , (27)

which formally reduces the number of independent strain components. When
dealing with the allowed arrangements of domains of (locally) homogeneous
strain (except at the boundary), the application of condition (27) (typically
by taking a line integral around the intersection of three domains) determines
the legality of various domain arrangements in two and three dimensions.

This condition can also be used to integrate out a single component of the
strain, at the expense of introducing long-range forces [41], and this approach
can then be used to support calculations and simulations of domain struc-
tures in two [42] and three [43] dimensions. This methodology is now quite
well advanced in understanding ferroelastic effects on domain structures in
martensites [44] though it has not yet been combined with simulations of
both the elastic and the ferroelectric order parameter.
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There is another feature of ferroelectric domain walls that is not shared by
magnetic domains. As far as we are aware, magnetic monopoles do not exist,
and therefore the (fictitious in the sense of conserved) magnetic charges that
are generated on magnetic boundaries cannot be screened. In ferroelectrics,
the surface polarization charges can be, and are, screened by real electrical
charges – from impurities, defects, and migrating ions, for example. The
motion of charged species (on a fairly slow time scale) to domain walls then
provides a mechanism for memory and associated physical phenomena.

This brief introduction to domain structure highlights several issues. The
first is that we need to extend the Landau–Devonshire theory of a uniform
ferroelectric to incorporate nonuniform polarization. This we do by a parame-
terization of the free energy now including terms in powers of gradients – this
is the Ginzburg–Landau theory, introduced in the next section. Secondly, we
noted that the geometry of the sample influences the domain structure, and
in particular that there is potentially antagonism between the strain fields
and electric fields introduced by the domain structure. The final major point
is to note that the effect of inhomogeneities in ferroelectrics is to introduce
long-range forces, from either charge inhomogeneity or strain fields. It is these
two phenomena that complicate a local description of the ferroelectric free
energy.

3 Landau–Ginzburg Theory

3.1 General Considerations

The Landau–Devonshire theory that we discussed in the previous section is
well suited to the description of a poled bulk ferroelectric near its transi-
tion (T0) with a polarization for T < T0 that is spatially uniform. However,
we also offered a physical motivation for treating spatially nonuniform po-
larization in unpoled bulk ferroelectrics, and this will be the subject of our
treatment in this section. Generally speaking, Landau–Ginzburg (LG) the-
ory incorporates small spatial variations of the order parameter (here the
polarization) within the phenomenological Landau–Devonshire theory with
assumptions used originally by Ornstein–Zernike; there, fluctuations of the
order parameter at different wavevectors are assumed to be uncorrelated and
thus independent.

Let us now discuss specifics of this Landau–Ginzburg approach. Slow vari-
ations in the direction of the polarization lead to an additional contribution in
the free-energy density (ΔFLG) that is proportional to |∇P |2. Though here,
as before, we restrict our discussion to the case of a single-component order
parameter, we note that this specific quadratic form of ΔFLG is valid for more
general vector order parameters based on symmetry considerations [1,2]. Let
us return to the scalar order parameter. Then, if we define a polarization
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density P (r) where r is a d-dimensional spatial vector, to lowest order the
Landau–Ginzburg free energy is

F = a0(T − T0)
∫

dd
r {P (r)}2 + γ

∫

dd
r {∇P (r)}2

, (28)

where the second term is simply the leading contribution in an expansion
of polarization–polarization interactions that estimates the additional free-
energy cost if the polarizations at different spatial positions are not parallel.
Using the fact that the polarization is real (i.e., P ∗(q) = P (−q)), then we
can perform a standard Fourier transform to rewrite the Landau–Ginzburg
free energy as

F =
∫

dd
k

(2π)d
(a0(T − T0) + γk2)|P (k)|2. (29)

We note that here we have two quadratic degrees of freedom; by the equipar-
tition theorem we can then write

(a0(T − T0) + γk2)|P (k)|2 = kBT , (30)

where kB is the Boltzmann constant.

3.2 The Polarization Correlation Function

We are now in a position to determine the static two-site polarization corre-
lation function

g(r) = 〈P (r)P (0)〉 − 〈P (0)〉2 , (31)

which is a measure of the fluctuations of the polarization. We note that in
ferroelectrics such quantities can be measured with diffuse X-ray scatter-
ing [4,45]. Taking a Fourier transform of g(r) above in the paraelectric phase
(where 〈P (0)〉 = 0) and assuming that the different wavevector modes are
uncorrelated, we obtain

g(q) = 〈|P (q)|2〉 , (32)

which then, combined with the expression in (30), yields

g(q) =
kBT

a0(T − T0) + γk2
(33)

as the expression for the Fourier transform of the correlation function. Now
we simply take the inverse transform to find

g(r) ∼ kBT

γ

e−r/ξ

rd−2
, T �= T0 (34)



86 Premi Chandra and Peter B. Littlewood

and

g(r) ∼ kBT

γ

1
rd−2

, T = T0 , (35)

where the correlation length is

ξ =
√

γ

a0|T − T0|
=

√
γ

a0T0

√
T0

|T − T0|
≡ ξ0|t|−1/2 , (36)

and t = T−T0
T0

is the reduced temperature. Physically, for T > T0 this corre-
lation length, ξ, corresponds to the length scale over which the polarization
exists; it diverges at T = T0, and for T < T0 it is associated with the length
scale over which P varies from its equilibrium value. We note that the polar-
ization correlation function is exponentially decreasing above the transition,
but has a dimensionally dependent power-law form when T ∼ T0. As a final
note to this subsection, we remark that the dimensions of γ and a0(T − T0)
are E

P 2L and E
P 2L3 , respectively, so that [ξ0] =

√
L2 = L as expected.

3.3 The Levanyuk–Ginzburg criterion

How reliable is this Landau–Ginzburg theory, and when is it no longer valid?
The LG approach is a long-wavelength description of a system near a phase
transition, where its modes are coarse grained on scales of order of the cor-
relation length ξ. The resulting effective free-energy density is written as an
expansion of the order parameter (e.g., P ) averaged over a volume Ωξ de-
termined by ξ. When are the fluctuations of the order parameter, averaged
over the correlation volume Ωξ, small in comparison with its coarse-grained
average? The answer, relevant for the validity of this long-wavelength ap-
proach, is dependent on system dimensionality. We have just seen that the
LG approach yields a two-site correlation function, a measure of the order-
parameter fluctuations, that increases dramatically at T ∼ T0; it is therefore
clear that in the immediate vicinity of T0 the LG expansion is no longer valid.
So how close can we get to the transition itself before this approach no longer
works?

As it turns out, we can use Landau–Ginzburg theory itself to determine
its own fallibility [17–19]. Before we present this argument, let us return to
Landau–Devonshire theory and look at its predictions for behavior near the
phase transition. We recall the expression for the free energy

FP =
1
2
a0(T − T0)P 2 +

1
4
bP 4 − EP , (37)

which we have truncated at quartic order. The equilibrium value of the po-
larization corresponds to a free-energy minimum

∂FP

∂P
= a0(T − T0)P + bP 3 = 0 , (38)



A Landau Primer for Ferroelectrics 87

which yields (for T < T0)

P =

√
a0(T0 − T )

b
∼ (−t)1/2 , (39)

whereas P = 0 in the paraelectric phase. The form of the free energy, (37),
combined with these results for the polarization imply that the associated
specific heat, Cv = −T ∂2F

∂T 2 , has a discontinuity at the transition so that the
mean-field exponent α is zero (i.e., Cv ∼ |t|0).

Equipped with this information, we are now ready to determine the con-
dition for when Landau–Ginzburg theory breaks down. Basically this occurs
when the fluctuation free energy associated with a typical fluctuation of the
order of the correlation length is comparable to the total free energy. The
fluctuation free energy per unit volume can be estimated as

Ffluct ∼
kT

ξd
∼ |t|νd , (40)

where we have used ξ ∼ |t|−ν . We have defined the specific heat, Cv ∼ |t|−α

so that two integrations yield F ∼ |t|2−α. Thus, for a consistent theory, for
t → 0, we must have

d∗ >
2 − α

ν
. (41)

Inputting the mean-field values (α = 0 and ν = 1/2), we get

d∗ > 4 , (42)

which indicates that above the upper critical dimension, d∗ = 4, the LG
approach is valid. We note that the value of d∗ depends on the form of the
Landau expansion and can be different for systems with different underlying
symmetries [46].

This calculation indicates that for real materials in d < 4, the Landau–
Ginzburg approach breaks down close to the phase transition . . . but how
close? Intuitively it seems that the larger the number of neighbors the better
it does, which suggests that it works better for systems with long-range forces.
Let us use what we have learned to put this speculation on a firmer footing,
and here we follow the original Levanyuk–Ginzburg reasoning [17–19]. For
T < T0 let us argue that coarse-grained fluctuations in the polarization must
be small in comparison with the average polarization itself; this translates
into the condition

g(r) � P 2 , (43)

where |r| ∼ ξ. Using our previous results in (34) with d = 3 and (39), we can
rewrite this expression as

kBT0

γξ(T )
� a0(T − T0)

b
, (44)
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which, when using specific expressions for ξ(T ) and Cv in (36) and (13),
results in the standard form of the Levanyuk–Ginzburg criterion

A 1
(ΔCv)2ξ6

0

� |t| , (45)

where A is a constant that is unimportant for our present purposes; here
the key point is that the range of the interaction, ξ0, plays an important
role in determining the validity of the mean-field theory. More specifically,
the Levanyuk–Ginzburg temperature, determined by the expression in (45),
is inversely proportional to the sixth power of the range of the interaction,
and thus Landau–Ginzburg theory should be quite reliable in the vicinity
of the paraelectric–ferroelectric transition. We note that if we generalize the
condition (43) to d dimensions then, using (35) with |r| ∼ ξ and (39), we
obtain

B|t|
d−2
2 � |t|1 , (46)

which is satisfied for d > d∗ = 4 for arbitrarily small |t| where B is a con-
stant. We have thus recovered the same result that we obtained earlier in this
section, namely that Landau–Ginzburg theory is exact for dimensions d > 4
for the ferroelectrics under consideration. Here, we remark that the angular
dependence of the dipolar interactions has not been considered here, and it
is indeed this feature that leads to logarithmic corrections to mean-field ex-
ponents in certain experimentally observable (i.e., d = 3) cases [20–23]. We
note that here we have referred to this condition as the Levanyuk–Ginzburg
criterion (rather than simply that due to Ginzburg) since we have learned1

that Levanyuk, a student of Ginzburg, derived this condition independently
of his advisor and indeed published the result in a sole-author publication [17]
a year before Ginzburg’s paper appeared [18, 19].

3.4 Displacive and Order–Disorder Transitions

The Levanyuk–Ginzburg criterion indicates the validity of the mean-field ap-
proach to the transition, but more fundamental in many practical senses is the
validity of the continuum approximation underlying the LG theory. A contin-
uum theory is, of course, good close enough to a second-order critical point
since the diverging correlation length ξ is much larger than the interatomic
spacing – this is the condition that coarse graining works. But far from the
transition – either well above Tc or well below it – this condition will not
necessarily hold.

If one takes the Landau theory literally as a description of the phase tran-
sition and its dynamics, the order parameter vanishes uniformly everywhere
above the transition temperature. Equivalently, one would say that the lat-
tice displacements corresponding to the electronic polarization are equally
1 Private communication with D. Khmel’nitskii and J. F. Scott.
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uniform – and zero above Tc, finite below. Such a type of transition is termed
displacive. A contrasting limit for an ordering transition is that of local mo-
ment magnetism [47], wherein the magnetic moment on an atom persists
above Tc but the long-range order is destroyed. In the case of a ferroelectric
(or other structural transition), this limit is described as an order–disorder
transition, where the local symmetry-breaking distortions are present in ev-
ery unit cell above Tc, but are randomly oriented at high temperatures, so
there is no net polarization. Any real material will of course lie somewhere
along the spectrum between these two limits.

We have argued above that one reason for the practical usefulness of the
LG approach is that there are intrinsic interactions (elastic and charge) that
are long range, and these induce a long correlation length. But there are also
conditions related to the underlying microscopic drivers for ferroelectricity
that are ineluctably electronic in nature. Although in this chapter we are
largely avoiding microscopic theory, here we engage in a short digression on
the topic of electronic ferroelectricity, which has some relevance to the issue.

Spontaneous development of a ferroelectric moment is always associated
with a (broken-symmetry) atomic displacement, and often this is pictured as
an essentially rigid displacement of charge. But of course the driving force for
ferroelectricity arises from interactions in the electron system, so a completely
rigid displacement of ions is not to be expected. One may study this even
in linear response theory – how much charge redistribution is produced by a
small displacement of the ion – or equivalently how large an electrical dipole
is produced by a particular phonon displacement. Phonons in solids can be
separated into acoustic and optical branches, where the eigenmodes of the
latter describe the relative motion of different ionic species against each other.
One may quantify the electronic rigidity for an optical mode by a number
known as the transverse electric charge Z∗

T [25], which measures (to linear
order) the average electrical dipole moment per unit cell p generated by the
corresponding relative ionic displacement u (taken to be the same in every
cell), i. e.,

p = Z∗
Teu , (47)

where e is the electron charge. There is a different value of effective charge Z∗
T

for each optical mode (and it may be zero if the displacement preserves
inversion symmetry); even a nonferroelectric crystal will usually have dipole-
active modes. A simple case is just that of the rocksalt structure, where the
optical eigenmode is a displacement of the two sublattices relative to each
other. The effective charge can be straightforwardly measured by the optical
response of an infrared-active phonon. The connection to ferroelectricity is
that if such a phonon goes “soft” and acquires a finite frozen amplitude u0,
then Z∗

Teu0 is the approximate magnitude (to linear order) of the ferroelectric
moment per unit cell. This is the classic soft-mode theory of ferroelectric
instability [48–50].
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In the context of the Landau theory, this relates the polarization to the
atomic motion. In a rigid-ion picture, one expects Z∗

T to reflect the charge on
the ion, but it is in fact not uncommon to measure effective charges that are
quite large: for example [51] in the rocksalt structure IV-VI compounds (Z∗

T

values in brackets) PbS (4.8), PbSe (5.8), PbTe (6.5), SnTe(8.1), GeTe(11),
where a rigid-ion viewpoint would lead one to expect Z∗

T ≤ 2. Only the
last two of these materials (which are the least ionic in the Pauling sense!)
become ferroelectric at low temperature. What these large numbers represent
physically is of course that as the nuclei are displaced the electron distribution
alternates from one side of the ion to another, with the electrons moving
much further than the nuclei themselves. This large amplification of motion
happens in electronically driven transitions of the Peierls type [52, 53]; it can
also happen in cases of electronically driven spontaneous symmetry breaking
where the Coulomb interaction favors the breaking of spontaneous orbital
symmetry [54–57].

In these cases, the large induced polarization arises because of a broken
orbital symmetry. Whatever the underlying model, in what one can see in the
not entirely formal limit of a ferroelectric that has Z∗

T → ∞, the transition
is indeed electronic in nature. Moreover, it corresponds in that case to a
metal–insulator transition as well, where the distortion leads to the opening
of a small electronic energy gap 2Δ in the spectrum. Such transitions are in
fact charge-density wave instabilities in disguise, where the broken symmetry
happens also to break inversion symmetry, and the CDW onset is also that
of ferroelectricity. The driving force for these transitions is the opening (or
increase) of an electronic gap at the Fermi energy (for a review, see [58]).

Suppose for a moment that we can ignore the lattice-dynamical effects on
this transition, we can then estimate the transition temperature and correla-
tion length in a weak coupling limit, which is well known to be mathematically
just like the Bardeen–Cooper–Schrieffer theory of superconductivity [59–61]:

TMF
c ∝ Δ � W e−1/λ , (48)

ξ0

a
� W

Δ
, (49)

where W is the electronic bandwidth, a the lattice constant, and λ � 1 the
effective dimensionless interaction strength (scaled by the electronic band-
width), which must be small for this kind of theory to be appropriate. In
weak coupling, the gap and transition temperature are small (in comparison
to the electronic bandwidth) and the correlation length ξ0 is large.

Now we consider the effect of the coupling to the lattice, and in particu-
lar we must take account of dynamical phonons. Provided kBTMF

c is much
smaller than a characteristic phonon energy �ωD, there will be no appreciable
fluctuations of dynamical modes until one is at a temperature very close to
the transition, so the mean-field theory is rather good as an estimate of the
transition temperature. And, moreover, even above Tc the dynamical modes
are weakly excited so there are few thermal fluctuations of the lattice. All
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that remains is just the (small, in this case) mean-field lattice distortion that
smoothly vanishes at Tc. We see that the condition for the displacive limit is
that of ultraweak coupling, namely that

�ωD

W
� e−1/λ . (50)

However, if this condition is violated, thermal fluctuations of dynamical
modes will become important, and the extra entropy associated with the
lattice distortions will drive a transition to the paraelectric phase at a tem-
perature well below the mean-field one [62]. Here, we now crossover to the
“order–disorder” regime of the transition, and we remark that (as commonly
observed in CDW transitions) this crossover happens when λ is still very
small, since typically the electronic bandwidth is two to three orders of mag-
nitude larger than a typical phonon energy.

Thus, we see that there are two potentially quite distinct reasons to sta-
bilize the displacive picture. One is the coupling to elastic strain, and the
presence of long-range forces, about which we will have more to say later.
This is important in all classes of ferroelectrics. A second type is where the
transition is predominantly driven by electronic redistribution of states near
the Fermi level of a metal or narrow-gap semiconductor, and, furthermore,
the displacive limit obtains only when the coupling is very weak, so that elec-
tronic gaps are small in comparison to the Debye frequency. These CDW-like
systems are rare as classic ferroelectrics, (except maybe for SnTe, which has a
transition near 40K and shows the classic soft-mode behavior [63]), but they
are probably quite common in small-moment ferroelectrics where the ferro-
electricity is an “accidental” adjunct to a charge-ordering transition. Such is
potentially the case in charge-ordered manganites, for example [64].

3.5 Recent Developments in Bulk Ferroelectricity

Landau–Devonshire theory has been successful in reproducing the observed
phase behavior in simple ferroelectric compounds (e.g., BaTiO3 and PbTiO3)
and these results are described in many textbooks [3–5]. Recently, it was
shown [65] that the standard sixth-order free-energy expansion can not ac-
count for an observed phase where the polarization is not symmetry-restricted
to an axis. More specifically, a monoclinic phase was observed in PZT for a
given temperature and compositional range [66], that did not emerge from
a standard Landau–Devonshire (sixth-order) treatment [67]. However, this
phase did emerge in the observed parameter regime from simulations [68]
based on a first-principles effective Hamiltonian approach [69]; this result
suggested that no additional physics (or specifically instabilities) were neces-
sary for its description. An eighth-order expansion of the free energy yielded
the observed monoclinic phase [65] where it was argued that the higher-order
terms might be generated by disorder averaging. This analysis will be rele-
vant for other ferroelectric phases where the polarization is constrained to a
symmetry plane.
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In the introduction we alluded to a link between first-principles calcu-
lations and Landau theory, and here we discuss it more specifically. In the
last two decades, there has been great progress in the collective understand-
ing of atomic-scale ferroelectricity through detailed density-functional theory
investigations. We refer the interested reader to two recent reviews [70, 71]
and other chapters in this book for more information about these develop-
ments. First-principles effective Hamiltonians, based on these first-principles
approaches with reduced degrees of freedom, have been analyzed by statis-
tical methods to explore the finite-temperature behavior of ferroelectrics. In
particular, such an effective Hamiltonian approach was very successful in re-
producing the known phase behavior [72, 73] of BaTiO3. More recently, the
compatibility of this particular Hamiltonian and the Landau–Devonshire the-
ory of BaTiO3 was demonstrated [74] in a careful Monte Carlo study of the
order-parameter configuration space. Thus, first-principles density-functional
calculations, via an effective Hamiltonian, can provide the input coefficients
for Landau–Ginzburg theory; this bridging of theoretical methods is crucial
for studying phenomena on many length scales in ferroelectrics.

In this chapter, we focus primarily on the thermodynamic description of
ferroelectrics using Landau–Ginzburg theory. However, the resulting free en-
ergy can be incorporated into a treatment of thermally activated dynamical
processes, specifically the determination of nucleation rates [75]. We note in
passing that the coupling between the polarization and the long-range elastic
degrees of freedom in bulk materials implies that nucleation of new ferroelec-
tric regions must be a cooperative effect in that these events cannot occur
completely independently. Dynamical studies of field-quenched BaTiO3 crys-
tals provide experimental support for this statement [76, 77]. This observed
behavior can be qualitatively described by a modified time-dependent Lan-
dau analysis with simple feedback to account for the strain mediation between
growing regions [78, 79].

In concluding our discussion on bulk ferroelectricity, we note that there
was much work done in this field in the former Soviet Union that was
not communicated to the West. This situation was recently summarized by
Ginzburg [80], and we point the interested reader to these thought-provoking
reminiscences.

4 Reduced Size and Other Boundary Effects

4.1 General Discussion

Ferroelectric materials are very sensitive to electromechanical boundary con-
ditions due to the long-range nature of their underlying electrostatic in-
teractions and to the strong coupling between the polarization and the
strain [7,70,71]. Thus, the influence of surfaces and other boundary conditions
on their collective behavior is very pronounced [81,82]. Furthermore, there are
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numerous ways in which the external environment, via applied boundary con-
ditions, can alter ferroelectric behavior; examples include electric fields due
to surface charges and homogeneous misfit strains. Finally, there is a signifi-
cant commercial impetus to use ferroelectrics for portable high-density data
storage; for such increasingly miniaturized applications, key size-dependent
effects must be understood and modeled in order to optimize design [7, 83].
Typically, the fabricated structures will be of linear dimension 10 nm–1μm,
length scales that are not accessible to purely atomistic methods. However,
such approaches can be used towards determining the effects of local varia-
tions (e.g., compositions, strains, displacements) in conjunction with specific
boundary conditions; the results could then be incorporated into a bridging
phenomenological theory that spans physics on longer length scales to enable
direct comparison with experimental observation.

In this section we summarize key features of Landau–Ginzburg approaches
to ferroelectrics with specific boundary conditions, focusing on the well-
studied case of planar geometries. We begin with semi-infinite ferroelectrics
with a free surface, a case that can be easily generalized to a freestanding
thin film. Because of reduced coordination number at a free surface compared
to the bulk, we expect the average polarization to display altered behavior
at the boundary that could lead to changes in its overall thermodynamic be-
havior [84–86]. We observe how this need for a specific boundary condition
emerges technically from a Landau–Ginzburg approach of the bulk and the
surface free energies. We also discuss the necessary assumptions underlying
the emergence of the so-called extrapolation length from such a treatment and
suggest a test for this often-used (but rarely justified) approach [87]. If the
polarization is normal to the free surface of the ferroelectric film, a geometry
that is often used in practice, then depolarization effects must be included
and this is the topic of the next subsection. Next, we turn to epitaxial misfit
strain, and how it can be turned to dramatically increase the spontaneous
polarization of a ferroelectric film beyond that in the bulk. We end with a
discussion of inhomogenous strain and polarization configurations, a more re-
cent area of investigation that is of particular relevance to three-dimensional
ferroelectric nanostructures [88].

4.2 The Polarization at the Boundary

The presence of the Ginzburg term, |∇P |2, in the Landau–Ginzburg free
energy implies that a boundary condition is necessary to solve the second-
order differential equation that results from the minimization procedure. Let
us consider a semi-infinite ferroelectric with a second-order phase transition
We begin by considering the bulk free energy, including the new gradient
term, of this system

FLG
bulk =

∫

dV

[

γ|∇P |2 − a

2
|P |2 +

b

4
|P |4

]

, (51)
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such that a > 0 (implying T < T0). We note that we can use the divergence
theorem to split the gradient term in (51) into a surface and a volume integral

∫

dV (∇P∇P ) =
∫

dV
[
∇(P∇P ) − (P∇2P )

]

=
∫

dS(n̂ · ∇P )P −
∫

dV (P∇2P ) , (52)

where n̂ is the normal unit vector to the surface. Borrowing from analogous
studies of superconducting [60] and magnetic [89–91] films, we argue that
there is a “surface tension” contribution so that the full free energy (F =
FLG

bulk + Fstension) is now a sum of interior and surface contributions, F =
Finterior + Fsurface, where

Finterior =
∫

dV

[

−γP∇2P − a

2
|P |2 +

b

4
|P |4

]

(53)

and

Fsurface =
∫

dS

[

γ(n̂ · ∇P )P +
α(T − T ∗)

2
|P |2 +

β

4
|P |4

]

. (54)

We note that this form of the “surface tension” free-energy contribution as-
sumes that there exists a temperature T ∗, not necessarily equal to the bulk
transition temperature T0, where the surface becomes ferroelectric; here, the
coefficients α and β are usually considered to be thickness independent with
β � α [60, 84, 85].

If we vary the free-energy density with respect to δP , we obtain

δF =
∫

dV
[
−γ∇2P − a|P | + b|P |3

]
(δP )

+
∫

dS [γ(n̂ · ∇P ) + α(T − T ∗)|P |] (δP ) . (55)

In bulk systems the surface integral in (55) is often neglected, either due to
periodic boundary conditions or due to the absence of variation in P on very
long length scales. However, this approach cannot be justified for finite-size
systems.

For simplicity, let us restrict our attention here to the case where the po-
larization is only z dependent, the surface defined as z = 0, and the sample
occupies the space z > 0. Then the stationary condition for the total free en-
ergy to a small variation δP (z) leads to the second-order differential equation

−γ
d2

P

dz2
− aP + bP 3 = 0 (56)

together with the boundary condition

γ
dP

dz
+ α(T − T ∗)P = 0|z→0+ (57)
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at the surface. We can rewrite the boundary condition as

dP

dz
= −P

δ
|z→0+ , (58)

which results in

P = P (0)e−
z
δ |z→0+ , (59)

with

δ =
γ

α(T − T ∗)
, (60)

where we note that the dimensions of γ and α(T − T ∗) are E
P 2L and E

P 2L2 ,
respectively so, that [δ] = L and δ is the so-called extrapolation length;
here P (0), the polarization at the surface, must be determined by an electrical
boundary condition. We remark that we must obtain

|δ| > ξ0 (61)

in order for this calculation to be self-consistent, where ξ0 is the length scale
over which the polarization has spatial variation in the bulk. We see that δ is
temperature dependent, and its sign is determined by the relative values of T ∗

and T . For example, if, as we have assumed above, T < T0, and T0 < T ∗,
then (T −T ∗) < 0 and δ < 0. In this case, the surface becomes ferroelectric at
a temperature higher than that in the bulk, so the polarization at the surface
increases as indicated in (59). By contrast, it will decrease at the boundary if
T0 > T ∗. This approach has been generalized to ferroelectric films [32, 87, 92]
with the appropriate boundary conditions at the surfaces/interfaces. The
solution of (56) and the film analogs of (59) leads to a thickness-dependent
critical temperature that is qualitatively similar to that observed [32, 87, 92].
It can also be extended to the case where the bulk material has a first-order
transition [93]; now higher-order terms in the Landau–Ginzburg free energy
must be retained. Another generalization is to superlattices with alternating
films of two different materials [92, 94].

The scheme that we have just outlined assumes implicitly that the free
energy of interest can be clearly separated into two distinct parts, Finterior

and Fsurface, that have similar algebraic structures but different transition
temperatures. More specifically, there must be a distinct separation of length
scales associated with the surface and the interior; this requirement translates
into the inequality

ξ0 < |δ| < L , (62)

where L � 1 is the lateral dimension of the sample. To our knowledge, there
is no direct experimental confirmation of the extrapolation length, though it
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may be indirectly accessible via X-ray diffraction [95] and far-infrared mea-
surements. We note that there is some suggestion [96] that the Landau coeffi-
cients for thin films may have some thickness dependence that is not included
in this standard treatment. Another complementary approach is to assume
a spatially varying transition temperature in the finite-size ferroelectric [97].
This might be a productive way of incorporating known imperfections into
the phenomenological theory. Finally, we remind the reader that the Landau–
Ginzburg approach assumes that the free energy can be expressed as a poly-
nomial expansion of the average polarization; as finite-size effects become
increasingly important such coarse graining may no longer be possible. The
possible breakdown of this free-energy ansatz should be checked explicitly
with first-principles methods for a variety of sizes and geometries.

4.3 Depolarization Effects

So far we have discussed finite-size planar ferroelectrics where the polarization
has been parallel to the surfaces of interest. Now we switch to a geometry
where the polarization is normal to the boundary, as displayed in Fig. 8.
Physically we expect a buildup of free surface charge that, if uncompensated,
results in a depolarizing electric field Ed. It is then energetically difficult for
the sample to sustain its uniform polarization, and phases with ferroelectric
domains often result. Since, as we shall see shortly, the depolarization field
increases with decreasing film thickness [26–28], its importance increases with
reduced size and it must be incorporated in the phenomenological description
of such finite-size ferroelectric systems.

In practice, these depolarization effects can be significantly reduced by the
presence of metal electrodes that provide charge compensation at the ferro-
electric boundaries. We now develop an expression for the Landau–Ginzburg
free energy of a short-circuited ferroelectric capacitor that consists of a ferro-
electric film bracketed by two metal electrodes (see Fig. 8). For pedagogical
simplicity, we will consider the short-circuited case (Vext = 0) where the
length scale of the electrodes is significantly larger than that of the film
(L � d; L → ∞), which is in turn greater than the screening length λ
in the electrodes; succinctly, our operating condition is then L � d � λ
and a schematic of this situation is displayed in Fig. 8. We will also assume
that the polarization gradient is negligible at the ferroelectric/electrode in-
terfaces, namely that dP

dz = 0|z=± d
2
, which implies that the inverse extrapo-

lation length in (58) is zero (e.g., δ → ∞). We note that calculations in this
simplified parameter regime yield results that are compatible with experi-
ment [28, 31]. The interested reader is referred to more complex treatments
of the depolarization field for other parameter specifications [98].

Let us consider the zero-potential (short-circuited) ferroelectric capacitor
shown schematically in Fig. 8a. The spontaneous polarization is displayed.
In an idealized system with perfect metal plates, there would be complete
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Fig. 8. (a) Schematic of short-circuited ferroelectric capacitor with L � d � λ and
accompanying plots of the spatial distribution of (b) the charge Q, (c) the poten-
tial V and (d) the depolarization field E. Note that the charge distribution in (b)
would simply be δ functions at the film/electrode interfaces for perfect electrodes;
then V and E would simply be constant and zero

charge compensation at the electrode/ferroelectric interface and thus no de-
polarization field in the film. However, in realistic electrodes, screening charge
resides within a small but nonzero distance from the ferroelectric boundary
(cf. Fig. 8b). For a short-circuited ferroelectric capacitor, this spatial charge
distribution leads to an associated voltage drop in the electrodes and a com-
pensating depolarization potential across the film (cf. Fig. 8c). There is there-
fore an accompanying depolarization field that, in the case of uniform polar-
ization, will simply scale inversely with film thickness (Fig. 8). Intuitively,
we expect the presence of this depolarization field to suppress ferroelectricity
since it is antiparallel to the polarization.
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More formally, we follow previous treatments [98] in the specific limit L �
d � λ to derive the total Landau free energy of the ferroelectric capacitor;
this free energy has two contributions

F = Fe + Ff , (63)

where Fe and Ff are associated with the electrodes and the film, respectively.
We assume that the charge density at each ferroelectric/electrode interface
takes the simple Thomas–Fermi form ρ(z) = Q

z e−
z
λ , where λ is a screening

length [99]. Then, solving for the free energy associated with the field inside
each electrode, we find that

Fe =
λQ2

2ε0εe
, (64)

where εe and ε0 are the permittivities of the electrodes and of free space,
respectively. We note that the choice of εe, a quantity usually defined in
the long-wavelength limit [100], is tricky since it enters this treatment via
a boundary condition at the ferroelectric/electrode interface, and we refer
the interested reader to two distinct approaches to this issue [31, 98] where
comparisons with experiment are made.

Next we turn to the free energy in the film, which has the form

Ff =
∫ d/2

−d/2

[

FP − 1
2
Ed(z)P (z)

]

dz , (65)

where Ed(z) is the depolarization field and the second term in (65) above
represents its self-energy (and hence the factor of 1/2 [84,85]). Using the fact
that there is no free charge in the ferroelectric, we write the depolarization
field in the form Ed(z) = E0 − P (z)

ε0
where by continuity at the interface

E0 = E(±d
2 ) = Q

ε0
. Now we need to find E0 in terms of P (z) since we do not

know Q. Use of the short-circuit condition leads to the expression

E0 =
1

ε0(2λ + d)

∫ + d
2

− d
2

P (z) dz , (66)

which can then be inputted into the expressions (64) and (65) for Fe and Ff,
respectively. We note that for P uniform and λ � d, the depolarization field
takes the form

Ed = E0 −
P

ε0
=

P

ε0

(
1

1 + 2λ
d

− 1

)

∼ 2Pλ

ε0d
, (67)

which varies inversely with the film thickness d and vanishes in the case of
perfect electrodes (λ = 0); we note that a similar result for Ed is found
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by introducing an air gap of thickness λ between the film and perfect elec-
trodes [31, 101] thereby displacing the compensating charge from the ferro-
electric interface.

The Landau free energy for the ferroelectric capacitor then is

F =

(∫ + d
2

− d
2

FP dz

)

+ ΔF , (68)

where

ΔF =
∫ + d

2

− d
2

P 2(z)
2ε0

dz

− 1
2ε0d(1 + 2λ

d )

(

1 − λ

εed(1 + 2λ
d )

)[∫ + d
2

− d
2

P (z) dz

]2

, (69)

where we reiterate that this free energy is for the limits L � d � λ, where
L → ∞ and δ → ∞. We see from (69) that if P is uniform and λ = 0, then
ΔF = 0. However, if P = P (z), ΔF is finite even for perfect electrodes [84,
85]. For uniform P and finite λ, where 2λ

d � 1, (69) yields

ΔF

d
∼ P 2

2ε0

(
λ

εed

)

, (70)

which contributes to the coefficent of the quadratic term in the overall free-
energy density. As a result, the expression for the film’s transition tempera-
ture T ∗ is

1
2
a0(T ∗ − T0) +

λ

2εeεod
= 0 , (71)

which leads to

T ∗ = T0 −
λ

ε0εeda0
, (72)

which is shifted from its bulk value (T0) by a term due to the depolarization
field; we note that when 2λ ∼ d, a more complicated expression results [102]
that suggests that there exists a minimum thickness dmin below which ferro-
electricity is unstable [26, 27, 92]. For a given material, characterized by a0

and T0, this minimum thickness can be tuned by the choice of electrodes [29–
31] whose relevant characteristics enter dmin via λ and εe. However, recent
experiments [103–105] indicate the presence of ferroelectricity below this min-
imum cutoff, which may be consistent with theoretical expectations for a
polydomain ferroelectric state [106]. Naturally, the depolarization effects will
be significantly reduced if the ferroelectric film is treated as a semiconduc-
tor [107] rather than as an insulator. Before closing this section, we note that



100 Premi Chandra and Peter B. Littlewood

recently the dielectric properties of ferroelectric–paraelectric multilayers have
also been studied within this type of thermodynamic approach, and it has
been found that there exists a critical paraelectric film thickness such that
ferroelectricity is completely suppressed due to interlayer electrostatic inter-
actions [108]. We emphasize that the Landau–Ginzburg approach presented
to this point has assumed a single-domain (homogeneous) ferroelectric phase,
and its generalization to include inhomogeneous effects will be discussed later
in this chapter.

4.4 Misfit Epitaxial Strain

The thermodynamic behavior of a ferroelectric film is also sensitive to me-
chanical boundary conditions due to the strong coupling between the po-
larization and the strain. Application of pressure, both hydrostatic [38] and
biaxial [39], is known to affect the transition temperature of bulk perovskite
ferroelectrics. More recently, homogeneous epitaxial strain associated with
substrate–film lattice mismatch has been included in a Landau free en-
ergy [109]; this approach results in strain-induced shifts in the transition tem-
perature and the spontaneous polarization whose signs depends on details of
specific elastic compliances and electrostrictive constants. Furthermore, theo-
retical studies [109–113] of temperature–misfit strain phase diagrams indicate
that there are observable “epitaxial phases” that would not be stable in the
bulk. Indeed the effects of homogeneous misfit strain have been characterized
and controlled to such a degree that BaTiO3 films have been strain engineered
so that their observed spontaneous polarization is more than twice that in
the bulk [114]. Furthermore, room-temperature ferrolelectricity has been ob-
served in strained SrTiO3 films [33, 34], where we note that bulk SrTiO3

remains paraelectric down to the lowest observable temperatures [115].
Let us be more specific. In the phenomenological treatment of epitaxially

strained ferroelectric films grown on thick substrates [109,110], the finite-size
ferroelectric is approached as a bulk material with homogeneous elastic terms
constrained to match the substrate lattice conditions. Here, it is implicit that

L � dc > d > ξ0 , (73)

where L and d are the substrate and the film thicknesses, respectively, ξ0 is
the correlation length and dc is the critical film thickness above which elastic
defects appear; dc varies roughly as the inverse of the lattice mismatch and
is usually approximately 10 nm [114]. With this set of modeling assumptions,
the inplane strains, η1, η2 and η6 (here we follow the conventional Voigt
notation) are constant throughout the film thickness and are completely con-
trolled by the substrate–film lattice mismatch. The associated stresses σ1, σ2

and σ6 are finite but not fixed. By contrast,

σ3 = σ4 = σ5 = 0 , (74)
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since there are no tractions acting on the top film surface. For the special
case of a (001) ferroelectric film grown on a cubic paraelectric substrate

η1 = η2 = η̄ =
a − a0

a
, (75)

where a and a0 are the constrained and the free-film lattice constants, re-
spectively. For this simple case of cubic symmetry η6 = 0 since the angle
between the two lattice vectors remains unchanged (θ = π

2 ). Equations (74)
and (75) represent mixed mechanical boundary conditions associated with
two-dimensional clamping, and the standard elastic free energy F(P, σ) can-
not be used to find the equilibrium properties of these systems [39, 109].
Instead, a Legendre transformation to a modified thermodynamic potential

F̃ = F + η1σ1 + η2σ2 + η6σ6 (76)

must be performed in order to study the equilibrium properties of this con-
strained film.

For pedagogical simplicity, we consider a uniaxial ferroelectric, where P
is the polarization in the z direction. The free energy, with condition (74), of
a cubic ferroelectric is [116]

F = FP − 1
2
s11(σ2

1 + σ2
2) − Q12

[
(σ1 + σ2)P 2

]
− s12σ1σ2 −

1
2
s44σ

2
6 , (77)

where Qij and sij are the electrostrictive constants and the elastic compli-
ances at constant polarization, respectively. Using ∂F

∂σi
= −ηi, and solving for

σ1 = σ2 = σ̄ (in this special case σ6 = 0), we find that

F̃ =
η̄2

s11 + s12
+

1
2
ãP 2 +

1
4
b̃P 4 +

1
6
cP 6 , (78)

where

ã = a − 4η̄Q12

s11 + s12
(79)

and

b̃ = b +
4Q2

12

s11 + s12
, (80)

so that the coefficients of both the quadratic and the quartic polarization
terms in the Landau free energy are renormalized. This has important impli-
cations for the thermodynamic properties of the thin film; more specifically
it means that its transition temperature is shifted from the bulk value (T0)

T ∗ = T0 +
4η̄Q12

a(s11 + s12)
(81)
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as is its spontaneous polarization (please see the discussion preceding (10))
due to the inplane straining of the film by the compressive substrate. The
signs of these shifts will be determined by the relative signs and magni-
tudes of Q12, s11 and s12. We note that such misfit epitaxial strain can
change the nature of the transition from first to second order (b < 0 but
b̃ > 0). For ferroelectric films with multicomponent polarization and with
different orientations, this approach yields a temperature–strain phase di-
agram with equilibrium phases that are not stable in a mechanically free
bulk sample [109–113, 117]. The resulting low-temperature phase diagrams
are very sensitive to the Landau coefficients, particularly for increasing mis-
fit strain; here, the phenomenological approach is nicely complemented by
first-principles studies that can resolve uncertainties associated with these
input parameters [112,113]. This combined phenomenological–first-principles
approach has been very successful in explaining the phase behavior of epitax-
ially strained films and we refer the interested reader to a sample of recent
experimental papers in this field [114, 118–121]. For ultrathin ferroelectric
films with biaxial compressive strain at the substrate interface, the compe-
tition between elastic and surface effects has also been considered [122]. In
particular, we note that if we do include a gradient (Ginzburg) term to the
free energy then the epitaxial strain leads to a modified correlation length

ξ̃ =
√

γ

ã
, (82)

where ξ =
√

γ
a is that associated with the bulk material that is mechanically

free [122]. Similar mechanical boundary conditions have also been studied in
epitaxially strained superlattices [123–125]. We note that recently a combined
numerical–thermodynamic approach resulted in generalized temperature–
strain phase diagrams for thin ferroelectric films that include multidomain
phases [126] inaccessible by the approaches described here that assume ho-
mogeneous polarization.

4.5 Inhomogeneous Effects

In the previous discussion, we assume that the energy cost of uniformly strain-
ing the film to lattice match the substrate is significantly less than that asso-
ciated with other strain-relaxation mechanisms; these include the creation of
elastic dislocations, polydomain formation and even multiphase coexistence,
which are all inhomogeneous in nature. We expect elastic homogeneity for
films thinner than a critical thickess (d < dc), where dc scales (roughly) in-
versely with the lattice mismatch [114]. Typically, such coherent epitaxially
strained films have thicknesses d ≈ 10 nm, though film-growth parameters
can be tuned to achieve d ≈ 50 nm by kinetically suppressing other elastic
relaxation processes [114]. However, the physics of thicker ferroelectric films,
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particularly those used in current applications (d ≈ 120 nm) [71], does in-
clude inhomogeneous effects and next we review aspects of this topic within
a phenomenological framework.

The misfit epitaxial strain decreases roughly exponentially [127–129] with
distance (η(z) ∼ η0e−

1
λ ) from the film/substrate interface with a “strain

depth” of approximately λ ≈ 300 nm and thus is negligible for d � λ.
In films of thickness dc < d < λ, elastic defects often form to accomo-
date film–substrate lattice mismatch. While permitting the film’s lattice con-
stants to relax, these defects generate inhomogenous strains that couple to
the film’s polarization and therefore affect its ferroelectric properties. We
note that compositional and thermal gradients can also produce such in-
homogeneities [130]. Here, we will focus on such elastic effects. Indeed the
epitaxial phenomenological treatment can be generalized to include isotropic
inhomogenous strain due to such lattice defects [131]; this results in further
contributions to the coefficients of both P 2 and P 4 in the free energy, and
thus to a defect-induced change in the transition temperature qualitatively
consistent with experiment [131].

The broadening of the dielectric peak in ferroelectric films with decreas-
ing thickness has been observed by several groups [129,132–134]. In bulk sys-
tems, such behavior is often attributed to disorder and/or low-dimensional
effects [135] but these explanations are not appropriate for ferroelectric films
due to the underlying long-range interactions. Indeed we expect these dipo-
lar systems to be more sensitive to electromechanical boundary conditions
than to local fluctuations. This qualitative idea has been confirmed by mea-
surements on ferroelectric free-standing lamellae of sharp dielectric peaks,
strongly indicating that it is due to substrate-related effects most probably
associated with interfacial lattice mismatch [136].

Recent experiments on the flexoelectric coupling between strain gradients
and the polarization indicate that these effects could be important in thin
films [137–141]. Theoretically, it has been shown that this flexoelectric effect is
enhanced in high-permittivity materials such as ferroelectrics [142,143] where
the coupling is maximized near the dielectric peak. This flexoelectric coupling
has been incorporated into a Landau–Ginzburg framework with the goal of
studying its effect on the thermodynamic properties of epitaxially strained
ferroelectric films [144, 145]. The strain-gradient contribution ΔFC = γ dη(z)

dz ,
couples to the polarization in the free energy, acting as an effective field, so
that the equation for the spontaneous polarization

ãP + b̃P 3 = ΔFC|P=P0 (83)

can only have finite solutions, even in the absence of an external electric field
(E = 0); here, ã and b̃ are the Landau coefficients that have been renormalized
by epitaxial strain. As a result, the inverse dielectric susceptibility

χ−1 = 3b̃P 2
0 + ã (84)
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can never be zero, so the standard singularity in χ is replaced by a broadened
peak. Similarly, the temperature scale associated with the onset of reversible
polarization is distinct from that of the maximum of χ. This approach also
yields a polarization that increases with decreasing film thickness despite the
associated reduction and broadening of the dielectric peak; these seemingly
contradictory features are consistent with known experiments [144, 145].

We have just seen that the presence of strain gradients via the flexoelectric
effect leads to the broadening of the dielectric peak in ferroelectric films.
This phenomena can be generalized to consider other effective fields that
couple linearly to the polarization [146]; possible origins of this effective field
include asymmetric electrodes, compositional and temperature gradients as
well as the stress profiles already considered. Qualitatively the effects on the
dielectric response will be the same, though naturally quantitative differences
will depend on the physical origin of the effective field.

Inhomogeneities, particularly strain and temperature gradients, can also
lead to multidomain formation [147,148] as an overall energy-reduction mech-
anism; this behavior has been observed in relatively thick (d ≈ 500 nm)
films [149]. The competition between different strain-relaxation processes
including domain formation and misfit dislocations has been studied the-
oretically [150, 151]. Within the framework of a Landau–Ginzburg theory,
the development of domain structure has been addressed [106, 147, 148, 152];
qualitatively this is done by seeking polarization solutions of the form

P = P0 + δPk(z)eikx , (85)

where δPk(z) � P0. Such a treatment in nearly cubic ferroelectrics indicates
that a multidomain state may well be stable down to atomic film thick-
nesses, length scales well below the previous estimates that only described
single-domain ferroelectricity [106]. The time evolution of the polarization
and therefore the resulting domain structures can also be obtained by nu-
merical studies of the time-dependent Landau–Ginzburg equations [153]; such
phase-field studies predict specific domain morphologies [35–37, 154, 155] for
epitaxial thin films of a variety of materials including PbZr1–xTixO3, SrTiO3

and BaTiO3. We note that inhomogeneities in multicomponent ferroelectrics
may also lead to multiphase coexistence [36,151,156,157], particularly in the
region of a first-order phase transition.

5 Summary and (Some) Open Questions

At this point we have discussed the main features associated with fer-
roelectrics that have been addressed within a phenomenological Landau–
Ginzburg theory. Due to their underlying long-range interactions, we have
learned that bulk ferroelectrics are well described within this framework; for
the same reason, their finite-size counterparts are very sensitive to electrome-
chanical boundary conditions including surface charge and misfit epitaxial
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strain. Inhomogeneous effects, particularly strain gradients, have also been
discussed. We have now worked our way to the present and naturally there
remain a number of challenges that can be addressed within this framework.
Let us discuss a few of these:

(i) Strain gradients and finite-size effects in novel nanogeometries
Three-dimensional ferroelectric nanogeometries are being explored as key
components in competitive high-density data-storage devices [158]. The
complexity of their topologies and their boundary conditions tends to
favor inhomogenous polarization and strain configurations (e.g., [159–
161]) that remain largely unstudied, particularly from a phenomenologi-
cal standpoint. For example, the energetics associated with the formation
of misfit dislocations in ferroelectrics with curved topologies is known to
be different from those in planar structures [162–164], and the associated
strain gradients could lead to complex three-dimensional polarization pat-
terns.

(ii) Multiferroics
There exist a number of materials that display both long-range ferro-
electricity and incommensurate magnetic order [165] and we refer the
interested reader to the chapter by N. Spaldin in this volume on this
topic. Landau treatments [166–168] for this class of materials have pro-
vided symmetry-based arguments for the type of underlying interactions
that must be present at the microscopic level; furthermore, the couplings
between ferroelectric and magnetic order parameters can be studied in
nanostructured electromagnets [169]. The detailed interplay between mi-
croscopic and phenomenological models should provide guidance on ma-
terial parameters necessary to enhance the magnetoelectric couplings,
particularly at room temperature for device applications.

(iii) Dynamics
The dynamical dielectric response of ferroelectrics should be accessible via
time-dependent Landau–Ginzburg theory, similar to studies performed
with this method in ferroelastics [42]. More generally, a detailed phe-
nomenological study of domain nucleation [170], domain motion (and
domain interlocking [171]) could be particularly useful for the character-
ization of switching properties of thin films [172]. Also, glassy behavior
has been observed in a number of ferroelectric relaxor materials [173,174],
and a phenomenological model of these relaxational dynamics should be
feasible.

(iv) Possible breakdown of Landau–Ginzburg theory
Landau–Ginzburg theory may well break down in ultrasmall ferroelectric
structures where the necessary averaging of the order parameter (i.e., the
polarization) is no longer possible. Also, it remains a challenge to see how
this highly local approach can be used to describe nonlocal elastic and
Coulomb effects, particularly vis a vis domain formation and energetics.

(v) Quantum critical fluctuations
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The paralelectric–ferroelectric transition in the limit T → 0 may well be
a textbook candidate [175–178] for quantum critical behavior [179]. Al-
though some theoretical predictions [180] exist, logarithmic corrections to
mean-field (Landau) scaling should be both theoretically and experimen-
tally accessible and have yet to be explored. As in the classical case [20–
23], ferroelectric materials may well provide the setting for the first de-
tailed study of criticality at a quantum phase transition.

These are only some of the many outstanding challenges that the Landau–
Ginzburg theory of ferroelectrics still has to address. Most generally, it can
provide a solid bridge between the physics on atomistic scales and macro-
scopic measurable quantities, particularly in finite-size ferroelectrics where
electromechanical boundary conditions are crucial and therefore the physics
spans many length scales. In closing, we invite the (hopefully still) curious
reader to partake in these and other adventures with this phenomenological
approach to ferroelectric materials.
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Abstract. The application of first-principles methods to the study of ferroelectric
oxides is reviewed. While the main focus is on the perovskites, particularly the most-
studied compounds BaTiO3, PbTiO3, and SrTiO3, other oxide families, including
LiNbO3, layered perovskites, nitrites and nitrates, and electronic and magnetic
ferroelectrics, are included. Results are presented for crystal structure, polarization
and dielectric and piezoelectric coefficients. The identification of lattice instabilities
through the computation of phonon dispersion relations for a high-symmetry refer-
ence phase is presented. Results at nonzero temperature, obtained through effective
Hamiltonian and interatomic potential approaches, are given. Calculations for solid
solutions, defects, thin films, superlattices and nanostructures are described. Chal-
lenges and prospects for future research are identified.

1 Introduction

First-principles calculations of the structure and properties of materials have
been shown to yield valuable information about the origin of their behavior
at the atomic-scale level for a wide variety of systems. This is particularly
true for ferroelectric oxides, whose structural and chemical complexity leads
to competing interactions where accurate quantitative information is essen-
tial to understanding the behavior. In recent years, the increasing power of
first-principles calculations and the increasing experimental control of syn-
thesis and characterization at the atomic scale have led to a convergence of
theory and experiment, opening up a meaningful dialogue that allows for the
analysis and interpretation of experimental results and the prediction of new
materials.

In a single chapter, it is impossible to provide a comprehensive review
of all first-principles work on ferroelectric oxides. For fuller descriptions of
earlier work and of specific areas, we refer the reader to previous reviews
of the subject, including the short reviews of Vanderbilt [1], Bellaiche [2],
Resta [3] and Cohen [4], and recent topical reviews [5–10]. Longer reviews
include one of first-principles investigations of the dielectric properties of
oxides [11], one of first-principles studies of relaxor ferroelectics [12] and two
on thin-film and nanoscale ferroelectric oxide structures [13, 14]).
K. Rabe, C. H. Ahn, J.-M. Triscone (Eds.): Physics of Ferroelectrics: A Modern Perspective,
Topics Appl. Physics 105, 117–174 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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In this chapter, we review the literature to show how first-principles calcu-
lations have contributed to our understanding of ferroelectrics and advanced
research in the field. Our goal is both to highlight important results for re-
searchers in the field of first-principles analysis, and to provide others with
a useful guide for understanding and using these results in the study of the
physics of ferroelectrics. We begin with an outline of the first-principles meth-
ods most commonly applied to ferroelectric oxides; for details of the methods,
we refer readers to the original papers. This is followed by a presentation of
results for perovskite oxide ferroelectric compounds, for which first-principles
analysis has been most fully developed. Next, we review first-principles results
for other families of oxide ferroelectrics. The technically challenging study of
solid solutions is presented in Sect. 5. Finally, we identify some of the key
future directions for first-principles investigations.

2 First-Principles Methods

In this section, we give an overview of the methods for first-principles calcula-
tions of the ground-state structural energetics and polarization of ferroelectric
crystals at T = 0. We include discussion of density-functional theory (DFT),
Hartree–Fock (HF), and methods for more accurate treatment of correlation,
such as dynamical mean-field theory. For general aspects of the methods,
we refer to appropriate review articles and books (for DFT, see [3] and the
text by Martin [15]; for Hartree–Fock, see [16]; for an application of dynam-
ical mean-field theory see [17]). The following should be consulted for de-
tails of the various first-principles implementations: ABINIT [18], VASP [19],
PWscf [20], SIESTA [21], WIEN2k [22] and CRYSTAL [23]. Here, we will
include only discussion of particular points relevant to ferroelectric oxides
and the results reported later in the chapter.

For ground-state crystal-structure prediction, there is a well-established
procedure [24] based on the Born–Oppenheimer approximation. A starting
structure is chosen, establishing the lattice and space group. The computed
atomic forces [25, 26] and stress tensor [27] are used to move the atoms and
adjust the lattice parameters until the minimum-energy structure of this type
has been identified. Comparison with other choices of lattice and space group
then are used to identify the lowest-energy structure of all those considered.

This approach to crystal-structure prediction has been extensively ap-
plied to ferroelectric oxides since the early 1990s. Early work by Cohen and
Krakauer [28, 29] on BaTiO3 and PbTiO3 using the linearized augmented-
plane-wave (LAPW) method showed that first-principles density-functional
methods could predict the ground-state structures of these prototypical com-
pounds with meaningful accuracy. The pseudopotential method was shown
to be capable of giving comparable results (see Table 1) as long as the
atomic pseudopotential includes high-lying “semicore” states in the valence
band [30–33]. A k-point sampling relatively dense for an insulator, with
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Table 1. Theoretical lattice constant a0 (in Å) of the cubic perovskite structure
of BaTiO3, and its deviation (in %) from the experimental value of 4.00 Å using
different first-principles approaches (DFT, HF or hybrid) with various approxima-
tions (LDA, GGA, WDA, and B3LYP) and implementation schemes (full poten-
tial (FP) versus pseudopotential (PP), combined with various basis functions such
as plane waves (PW), linear augmented plane waves (LAPW), numerical atomic
orbitals (NAO), and Gaussian-type functions (GTF))

a0 Deviation Theory Functional Potential Basis Reference

3.942 −1.4 DFT LDA FP LAPW [28, 35]
3.945 −1.4 DFT LDA PP (Vanderbilt) PW [32, 36]
3.943 −1.4 DFT LDA PP (Teter) PW [37]
3.951 −1.2 DFT LDA PP (Troullier–Martins) PW [38]
3.948 −1.3 DFT LDA PP (Troullier–Martins) NAO [39]
3.96 −1.0 DFT LDA PP (Hay–Wadt) GTF [40]
4.027 +0.7 DFT GGA FP LAPW [35]
4.03 +0.8 DFT GGA PP (Troullier–Martins) NAO [41]
4.023 +0.6 DFT GGA PP (Troullier–Martins) PW [38]
4.03 +0.8 DFT GGA PP (Hay–Wadt) GTF [40]
4.009 +0.2 DFT WDA PP (Troullier–Martins) PW [38]
4.04 +1.0 hybrid B3LYP PP (Hay–Wadt) GTF [40]
4.01 +0.2 HF PP (Hay–Wadt) GTF [40]

6 × 6 × 6 Monkhorst–Pack grids [34] for the primitive perovskite unit cell
being now considered standard, is required to capture the mixed ionic–cova-
lent character of the bonding.

For most calculations, the density functional selected is one of the vari-
ants of the local density approximation (LDA). As illustrated in Table 1 for
BaTiO3, various implementations have been reported (full versus pseudo-
potential approaches, with different basis functions) providing very similar
accuracy. As will be further discussed below, LDA calculations typically un-
derestimate the lattice constants by 1–2% relative to the experimental val-
ues. Generalized gradient approximations (GGA) typically yield larger lat-
tice constants than the LDA, in some cases so much larger as to overesti-
mate the lattice constants [38]. However, a modified GGA introduced in [42]
was shown to give consistently accurate values. Another approximate den-
sity functional, the weighted density approximation (WDA) [38, 43], offers
some improvements over LDA as we shall see below, though its use has not
become widespread. LDA is also found to lead to significant underestimates
of the bandgap; this is particularly irksome in calculations of perovskite het-
erostructures. The LSDA+U (local spin-density approximation with Hub-
bard U) method has proved successful in the study of magnetic ferroelectric
oxides [44–46] and a pseudo-self-interaction correction (SIC) scheme was also
shown to improve the gap of BaTiO3 [47]. As an alternative to DFT, the
Hartree–Fock method has been used in some studies of perovskite oxides [48–
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50], and more recently, extended to hybrid functionals that mix Hartree–Fock
and a local density functional [40, 51–53]. As expected for Hartree–Fock,
the bandgaps are overestimated, and a hybrid approach yields intermedi-
ate results with quite reasonable bandgaps. Other methods for an improved
treatment of electron correlation include Moller–Plesset expansion (MP2),
quantum Monte Carlo (QMC) approaches, and dynamical mean field the-
ory. MP2 is at present practical only in cluster calculations (see, for exam-
ple, [54]). Results for the latter two methods have begun to appear relatively
recently [17], including promising results for highly accurate QMC calcula-
tions of perovskite oxide lattice constants.1

Because of the strong sensitivity of the polarization and other properties
to strain, and the difficulties in remedying this directly through improved
functionals, it is a common practice to perform first-principles calculations
with the lattice parameters constrained to their experimental values, when
known (see discussion in [55], which refers to an earlier discussion in [4]).
This generally yields internal structural parameters, phonon frequencies, and
dielectric and piezoelectric coefficients in good agreement with experiment.
When experimental values for the lattice parameters are not available, using
an upward correction of 1% to the computed values can substantially improve
the predictive accuracy of such calculations.

A systematic formalism for the definition and first-principles computation
of the polarization for periodic crystalline systems [56–58], usually called “the
modern theory of polarization,” has played a central role in the understanding
and computation of polarization and related properties, such as the Born
effective charges, the static dielectric tensor and piezoelectric coefficients.
A fuller description of this theory and its application to ferroelectrics is given
in the chapter by Resta and Vanderbilt in this volume.

Most density-functional implementations rely on periodic boundary con-
ditions. In bulk crystals, these correspond to electrical boundary conditions
in which the macroscopic electric field is zero. Recently, significant progress
has been made in methods for computing structure and properties in finite
electric fields [59–61]. The key observation was that while in an infinite crys-
tal, the Hamiltonian in a nonzero uniform field is unbounded from below
and the true ground state is therefore ill defined, properties measured under
an applied field are those of a metastable state in which crystalline peri-
odicity is preserved. This approach has been implemented in ABINIT [18]
and PWscf [20], and generalized to include constrained polarization calcu-
lations [62] and phonons [63]. The central quantity is the field-dependent
polarization P(E). From P(E) and the field-dependent strain, one can ex-
tract dielectric and piezoelectric responses at finite field. In cases where the
lattice contribution to the polarization dominates, useful results can be more
easily obtained using low-order approximations, including the first-principles
1 L. Wagner and L. Mitas, private communication.
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effective Hamiltonian to be discussed below, the constrained polarization ap-
proach of [64], and the atomic-force approach of [65, 66].

Given the importance of phonons in the physics of ferroelectrics, partic-
ularly the unstable transverse zone-center soft mode of the high-symmetry
reference structure, the first-principles computation of phonon frequencies is
an extremely valuable tool. For zone-center phonons and very high symmetry
points on the zone boundary, phonons can be computed using the frozen-pho-
non method, which involves computing the forces induced by finite displace-
ment of individual atoms via the Hellmann–Feynman theorem. These cal-
culations can be performed using most standard first-principles total-energy
implementations, though it should be noted that the computation of LO
modes at the zone center requires the additional implementation of a method
for computing polarization in order to obtain Born effective charges, Z∗, by
finite differences and the optical dielectric constant, ε∞, using a supercell
approach [67]. A different technique, which involves direct computation of
the second derivatives of the total energy via density-functional perturbation
theory (DFPT) [68–71] allows the computation of the dynamical matrix at
any phonon wavevector q with an effort comparable to the frozen-phonon
computation at q = 0. Both methods give the same result, as the structural
energy function is the same in both cases. An interpolation method that uses
the Born effective charge tensors Z∗, also computed in density-functional
perturbation theory (or by finite difference using polarization differences),
to extract the long-range dipolar interaction allows the plotting of the full
phonon dispersion throughout the Brillouin zone [72]. Implementations in
norm-conserving pseudopotentials (ABINIT [18]), ultrasoft pseudopotentials
(PWscf [20]) and LAPW [73] are available, and applications to a wide variety
of systems are reviewed in [71].

Other physical properties involving perturbations with respect to atomic
displacements, homogeneous electric fields, and homogeneous strains can be
computed through analogous methods. The computation of mixed and second
derivatives with respect to homogeneous strain, which allows direct compu-
tation of the elastic constants and piezoelectric coefficients, can be carried
out by finite-difference methods or, alternatively, in the DFPT formalism
implemented in ABINIT [74–76]. Derivatives with respect to the homoge-
neous electric field within DFPT yield additional quantities, such as optical
and static dielectric constants, and alternative methods for computing Z∗ [69–
71,77]. Systematic combinations of six elementary response tensors determine
a wide variety of properties, including elastic, piezoelectric and dielectric ten-
sors under various electrical and mechanical boundary conditions [78].

Further application of DFPT and implementations also allow the compu-
tation of various additional quantities related to third energy derivatives in a
systematic way [71, 79–81]. This includes the computation of properties rele-
vant to the physics of ferroelectric oxides including Raman spectra, nonlinear
optical susceptibilities and electro-optic coefficients [82–85].
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In the search for the ground state, it is important to keep in mind the lim-
itations of the first-principles method based on optimizing within a selected
space group. In particular, the choice of unit cell can obscure the identifi-
cation of a lower-energy structure with a larger or incompatible unit cell.
However, it is possible rigorously to show at least whether the structure of
interest is a local minimum in the full space of crystal structures through a
stability analysis. This requires computing the full Hessian matrix of second
derivatives of the energy with respect to phonons and strain, that is, the
phonon dispersion relation of the minimum-energy structure, as well as the
elastic constants and the bilinear couplings of the zone-center phonons to
strain, to the extent that the latter are allowed to be nonzero by symmetry.
This is discussed, for example, in the study of the ground-state structure of
PbTiO3 [86].

One of the strengths of first-principles calculations is that, since they do
not require any empirical input, they can be carried out for as-yet hypo-
thetical compounds and structures. This is useful in the search for new ma-
terials with interesting properties (examples in ferroelectric oxides include
Pb2TiO4 [87] and BaTi2O5 [88]), or in determining the unknown structure of
phases for which crystallographic data are incomplete or ambiguous. A pro-
totypical example for the perovskite oxides is PbZrO3 [55, 89].

With typically available computer resources, the maximum number of
atoms per unit cell is approximately one hundred. This is not a significant
limitation for pure bulk compounds and infinite short-period superlattices,
for which the periodic boundary conditions typical of first-principles den-
sity-functional calculations are also fully appropriate. For other structures,
such as solid solutions, and for semifinite or finite systems such as thin films,
nanowires and nanoparticles, as well as for molecular dynamics or finite-
temperature simulations, the constraints are much more severe. For solid
solutions, a periodically repeated supercell (randomly generated or quasiran-
dom [90]) is used. For semi-finite or finite systems, the system is embedded
into a supercell surrounded by a vacuum region sufficiently large to minimize
artificial interactions with its periodic images. Even with this method, there
can be additional difficulties for isolated systems with a total nonzero polar-
ization (for films, if the component of the polarization perpendicular to the
surface is nonzero), as the periodic boundary conditions implicitly impose a
partial compensation of the depolarization field.

For this reason, interpolative methods have been introduced to handle
larger system sizes and to compute the energies of large numbers of configura-
tions. These fall into two main classes: first-principles effective Hamiltonians
and interatomic potentials. The first-principles effective Hamiltonian is con-
structed by projection into a subspace of relevant degrees of freedom, [31,91–
97] in a spirit similar to that of phenomenological Landau–Devonshire (LD)
functionals. For ferroelectric perovskites, the effective Hamiltonian is con-
structed from a Taylor expansion of the energy around the high-symmetry
paraelectric phase in terms of the soft-mode degrees of freedom and the ho-
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mogeneous strain; the use of symmetry yields a form for the soft-mode and
strain dependence identical to that found in Landau–Devonshire functionals,
with the local polarization being related to the soft-mode amplitude by a
constant factor. All parameters that appear in the expansion are determined
from DFT total energy and linear response calculations. Properties at nonzero
temperatures and electric fields, including phase diagrams, dielectric, piezo-
electric and electro-optic coefficients can be computed by performing Monte
Carlo calculations in large supercells containing thousands of primitive per-
ovskite unit cells. In addition, the first-principles effective Hamiltonian has
proved useful for the study of solid solutions [12, 98, 99], where large quasir-
andom supercells are needed to capture the effects of substitutional disorder,
and for systems of nontrivial geometry, including thin films and nanoparti-
cles [100–107].

Interatomic potentials with the form of shell models [108, 109] and pa-
rameters determined from fitting to first-principles calculations have been
developed for several perovskite oxide systems [110–112]. In contrast to the
first-principles effective Hamiltonians, such models give a full atomistic de-
scription including all phonon branches and can in principle account properly
for thermal expansion, which involves anharmonic interactions not just with
the soft-mode branch, but with all phonon modes. However, this requires
the determination of a far larger number of parameters, and the angular and
many-body terms in the potential can be difficult to incorporate accurately.
Bond-valence models, with an even simpler form, have been successfully con-
structed for perovskite oxide systems, including PZT [113, 114]. Properties
at nonzero temperatures and electric fields are computed from interatomic
potentials or bond-valence models using molecular dynamics, which can be
readily performed for systems containing many thousands of atoms.

3 Results for Perovskite Oxide Compounds

The perovskite-structure oxides have been the subject of the majority of
first-principles calculations on ferroelectrics, with the focus being on the
ground-state structure, lattice dynamics, and dielectric and piezoelectric re-
sponse functions. In this section we summarize the approach and results of
these studies. The most studied ferroelectric perovskites are BaTiO3, PbTiO3

and KNbO3. Results have also been reported for NaNbO3 and BiFeO3, as
well as for related perovskite materials, including SrTiO3, CaTiO3, CdTiO3,
BaZrO3, PbZrO3, KTaO3, NaTaO3, SrHfO3, PbVO3, YScO3, BiScO3, BiAlO3

and BiGaO3. In this section, we include both nonmagnetic and magnetic sys-
tems, focusing on their ferroelectric behavior and related properties. We start
this rather lengthy section by discussing results for the ground-state structure
and properties, including unstable modes and strain coupling, and highlight-
ing the importance of electrical and mechanical boundary conditions. Then,
we review the results of studies at nonzero temperature.
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3.1 Ground-State Structure

First, we consider the first-principles calculations for the Pm3m cubic per-
ovskite structure. This is the simplest structure to optimize as it has only
one free structural parameter: the cubic lattice constant a0. The computed
value is usually compared with an “experimental” value taken as a0 for the
cubic phase just above the transition temperature, or extrapolated to T = 0
using the measured thermal expansion coefficient in the high-temperature
cubic phase. In Table 2, we present a compilation of the first-principles lat-
tice constants of various cubic perovskite oxides, obtained within different
approximations.

The LDA results show systematic underestimates of a0 of 1–2%. In most
cases, the GGA overcorrects the LDA results; the modified GGA (here called
GGA’) of [42] being an exception. Although the slight underestimates in LDA
calculations might be considered as reasonable for the study of many other
classes of materials, in the present case, it can have noticeable, sometimes
dramatic, effects on the ferroelectric stability because of the rather strong
polarization–strain coupling in perovskite oxides. Therefore, it has become
common practice, when calculating properties within the LDA, to adjust
the lattice parameters by hand to their experimental values, when they are
known.

It should be noted also that the comparison of the computed and “ex-
perimental” cubic perovskite lattice constant should be considered as rather
a rough guide, as the nature of the ideal Pm3m cubic perovskite structure,
with all atoms at high symmetry Wyckoff positions, is quite different from
that of the observed high-temperature cubic phase, which is characterized by
large fluctuating local distortions that give large distributions of the atomic
positions around the crystallographic average Pm3m structure. This will be
discussed further in the section on nonzero temperature.

In virtually all compounds, the cubic perovskite structure is unstable to
energy-lowering distortions, the most common being polar zone-center dis-
tortions (resulting in ferroelectricity), zone-boundary distortions involving
rotations and/or tilting of the oxygen octahedra, or two or more coupled
such modes producing additional distortions as allowed by symmetry consid-
erations. A simple rule of thumb for predicting likely distortion is based on
ionic radius, specifically the tolerance ratio introduced by Goldschmidt and
described more fully in the contribution of Rabe, Dawber, Lichtensteiger, Ahn
and Triscone. It has been noted that while this analysis is widely useful [32],
it is not predictive in all cases, for example BiAlO3 and BiGaO3 [123].

In the ferroelectrics BaTiO3 and PbTiO3, we find an instability to a zone-
center polar distortion, in which the cations uniformly displace against the
oxygen octahedron network. Since this instability is the defining property of
the ferroelectric perovskites, we now discuss it at some length. Choosing the
two high-symmetry directions [001] or [111] for the polarization yields space
groups P4mm, with three free internal structural parameters and two lattice
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Table 2. Experimental and theoretical lattice constants (in Å) of the cubic per-
ovskite structure of various ABO3 compounds

Compound Experiment Theory Method Reference

I–V compounds

KNbO3 4.016 3.956 (±0.003) DFT (LDA) [32, 35, 36, 38]
4.028 (±0.010) DFT (GGA) [35, 38]
4.011 DFT (WDA) [38]

NaNbO3 3.937 3.914 DFT (LDA) [32, 36]
KTaO3 3.983 3.938 (±0.018) DFT (LDA) [35, 38, 115]

4.033 (±0.002) DFT (GGA) [35, 38]
3.972 DFT (WDA) [38]

II–IV compounds

CaTiO3 3.836 3.809 (±0.003) DFT (LDA) [32, 36]
SrTiO3 3.905 3.862 (±0.012) DFT (LDA) [32, 35, 36, 38, 40, 41]

3.941 (±0.007) DFT (GGA) [35, 38, 40]
3.917 DFT (WDA) [38]
3.94 B3LYP [40]
3.92 HF [40]

BaTiO3 4.000 3.947 (±0.013) DFT (LDA) [28, 32, 35–38, 40, 41]
4.028 (±0.005) DFT (GGA) [35, 38, 40, 41]
4.009 DFT (WDA) [38]
4.04 B3LYP [40]
4.01 HF [40]

CdTiO3 3.800 3.805 DFT (LDA) [116]
PbTiO3 3.969 3.888 (±0.005) DFT (LDA) [29, 32, 36, 38, 97]

3.965 (±0.005) DFT (GGA) [38, 40]
3.933 DFT (GGA’) [42]
3.941 DFT (WDA) [38]
3.96 B3LYP [40]
3.94 HF [40]

PbZrO3 4.133 4.115 (±0.008) DFT (LDA) [32, 36, 89, 117]
BaZrO3 4.193 4.152 (±0.004) DFT (LDA) [32, 36, 118]

4.207 DFT (GGA) [119]
SrZrO3 4.101 4.17 DFT (GGA) [119]
SrHfO3 4.069 4.069 DFT (LDA) [120]
PbVO3 DFT (LDA) [121, 122]

III–III compounds

BiGaO3 – 3.83 DFT (LDA) [123]
BiAlO3 – 3.75 DFT (LDA) [123]
BiScO3 – 3.99 DFT (LDA) [124]
YScO3 – 3.92 DFT (LDA) [124]

constants, and R3m, with two free internal structural parameters and two
lattice parameters, respectively. Optimization of the free structural param-
eters for the tetragonal and rhombohedral symmetries correctly predicts a
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Fig. 1. Total energy as a function of Ti displacement for PbTiO3 and BaTiO3. For
both, it is seen that the ground state with a cubic lattice is rhombohedral. For the
tetragonal state, the increase in equilibrium polarization with strain relaxation is
demonstrated. From [29]

tetragonal ground-state structure of PbTiO3 and a rhombohedral ground-
state structure of BaTiO3 [29], as shown in Fig. 1. The symmetry-breaking
polar distortion is accompanied by the corresponding strain. As can be seen
in the figure, the coupling to strain must be included to reproduce the ground
state correctly: if the lattice vectors are fixed as cubic, the ground states of
both BaTiO3 and PbTiO3 have the polarization along [111].

The marginal stability of SrTiO3 represents a challenging case for first-
principles calculations. Whether a polar instability is obtained depends sen-
sitively on the density functional chosen and on other details of the calcula-
tion [32,125–129]. One source of this sensitivity is variation in the lattice con-
stant in different calculations that, because of the strong polarization-strain
coupling, has a strong effect on the ferroelectric instability. The antiferrodis-
tortive oxygen-octahedron rotation in the low-temperature tetragonal phase
of SrTiO3 also couples to the polar mode, as will be discussed further in
Sect. 3.2. This effect is most noticeable in SrTiO3 because of its marginality,
but is present in all perovskites considered. In particular, the systematic un-
derestimate of the lattice constant in LDA calculations tends to reduce the
polar instability.

Comparison of the structural parameters of tetragonal BaTiO3 and
PbTiO3, obtained in DFT using various functionals, is illustrated in Table 3
(see also the discussion in [38] and Table 5 of [42]). When the lattice pa-
rameters are fixed to their experimental values, LDA, GGA and WDA give
very similar results for the internal structural parameters, in close agree-
ment with the experiment. However, for both compounds, coupled relax-
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ation of atomic positions and unit-cell parameters within the LDA yields
a unit-cell volume, a c/a ratio and ferroelectric atomic distortions that are
all slightly underestimated. Comparisons of the computed structural parame-
ters for cubic structures at the experimental and theoretical lattice constants,
shown in the table, suggest that the underestimate of the ferroelectric dis-
tortion mainly arises from the LDA volume underestimate. In PbTiO3, with
the GGA constrained to the experimental volume 63.28 Å

3
, the computed

c/a = 1.068 is in much better agreement with the experimental value. How-
ever, the fully relaxed GGA calculation yields a supertetragonal high-volume
structure (c/a = 1.24) [42] quite different from the experimental structure.
The WDA leads to only a slight improvement over the GGA result [38]. Only
the modified GGA (GGA’) of [42] gives accurate structural parameters with
full relaxation. For rhombohedral BaTiO3 and rhombohedral KNbO3 at the
experimental lattice parameters, it has been shown [38] that the LDA, GGA
and WDA give very similar results for the internal structural parameters.
Agreement with experiment is quite good except for KNbO3, where the com-
puted displacements are about 30% smaller than the experimental values.

The supertetragonal structure obtained in GGA calculations might be due
to the tendency of GGA to overestimate volume, as a similar structure is ob-
served in LDA calculations for PbTiO3 at negative pressure [132]. In fact, this
supertetragonal structure, illustrated in Fig. 2a, can be regarded as a distinct
structure type that is competitive with the tetragonal perovskite structure for
some compositions. While it is not common as an equilibrium structure, with
the exception of PbVO3 [121, 122] or as-yet hypothetical BiGaO3 [123], with
c/a = 1.23 and 1.3, respectively, it is obtained as the lowest-energy P4mm
structure in calculations of BiFeO3 [133], BiScO3 [134] and BiYO3 [134],
with c/a = 1.27, 1.285 and 1.376 and large polarizations of 1.51, 0.93 and
0.95C/m2, respectively, the latter dominated by the displacement of Bi. Note
though that for all three compounds, the rhombohedral R3c structure, shown
in Fig. 2b, is considerably lower in energy.

3.2 Phonons, Lattice Instabilities and Polarization

One of the most important early advances in the understanding of ferroelec-
tricity was the development of the soft-mode theory of ferroelectrics, which
identified an intimate link to the lattice dynamics [135, 136]. Specifically, as
a function of temperature the lowest-frequency polar-phonon mode in the
paraelectric phase becomes softer, and finally goes to zero frequency, freez-
ing in below Tc to generate the ferroelectric crystal structure. On the other
side of the transition, as the phase boundary is approached with increasing
temperature in the ferroelectric phase, the lowest-frequency polar phonon
becomes softer, decreasing to zero near Tc. The signature of this behavior in
a ground-state first-principles calculation is an unstable polar phonon in the
high-symmetry reference structure [29,137]. As the atomic displacement pat-
tern of the unstable mode is frozen in, a double-well structure is obtained in
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Table 3. Atomic positions along z in the tetragonal phase of BaTiO3 and PbTiO3.
Relaxation of the atomic position has been performed following different theoretical
schemes (Th.) and are compared to the experimental value (Exp.): Th.1, atomic
relaxation at the experimental tetragonal unit-cell parameters; Th.2, full coupled
relaxation of atomic positions and unit-cell parameters; Th.3, atomic relaxation at
the experimental cubic unit-cell parameters; Th.4, atomic relaxation at the theo-
retical cubic unit-cell parameters. Courtesy of Eric Bousquet

Com- Scheme a c/a V z(Ti) z(O1,O2) z(O3) Method
pound

BaTiO3 Exp. 3.986 1.010 63.97 0.515 −0.514 −0.023 [130]
Th.1 3.986 1.010 63.97 0.513 −0.516 −0.025 DFT(LDA)∗

Th.2 3.929 1.010 61.25 0.509 −0.509 −0.013 DFT(LDA)∗

Th.3 4.000 1.000 64.00 0.512 −0.513 −0.021 DFT(LDA)∗

0.514 −0.514 −0.025 DFT(LDA) [30]
Th.4 3.943 1.000 61.30 0.505 −0.505 −0.007 DFT(LDA)∗

PbTiO3 Exp. 3.905 1.063 63.30 0.540 0.612 0.112 [131]
Th.1 3.905 1.063 63.30 0.548 0.628 0.120 DFT(LDA)∗

0.549 0.630 0.125 DFT(LDA) [86]
0.539 0.615 0.111 DFT(LDA) [38]
0.532 0.611 0.105 DFT(GGA) [38]
0.539 0.614 0.110 DFT(WDA) [38]

Th.2 3.835 1.063 59.96 0.532 0.606 0.092 DFT(LDA)∗

3.862 1.054 62.22 0.537 0.611 0.100 DFT(LDA) [86]
3.865 1.046 60.37 0.524 0.589 0.082 DFT(LDA) [42]
3.847 1.239 70.54 0.553 0.662 0.188 DFT(GGA) [42]
3.890 1.078 63.47 0.532 0.611 0.108 DFT(GGA’) [42]

Th.3 3.969 1.00 62.52 0.549 0.610 0.097 DFT(LDA)∗

Th.4 3.879 1.00 58.37 0.527 0.573 0.057 DFT(LDA)∗

∗E. Bousquet and Ph. Ghosez, private communication.

the energy as a function of distortion amplitude. Indeed, there is a strong re-
semblance between the ground-state distortion and the unstable polar mode
of the cubic structure of prototypical cases such as BaTiO3.

Within a quantitative first-principles framework, this correspondence can
be made more precise. The main issue that arises is that the displacement
pattern corresponding to the unstable eigenvector of the dynamical matrix
is, in general, different from the displacement pattern corresponding to the
unstable eigenvector of the force-constant matrix, due to the mass factors.
For the minimum-energy structure, the latter pattern is the one that is ex-
pected to generate the ground-state structure, as it yields the largest neg-
ative curvature of the total energy with respect to the overall amplitude of
displacements. However, determination of the optimal distortion is very de-
pendent on higher-order terms. The fourth-order term determines the energy
gain in the resulting double-well potential; a distortion with large negative
curvature may nonetheless yield an optimized distortion energy that is less
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Fig. 2. (a) Supertetragonal ABO3 structure. The A atoms are in black, the B atoms
in light gray, and the oxygen atoms in dark gray. (b) R3c structure. From [123]

favorable than a distortion with smaller negative curvature, depending on
the relative magnitudes of the respective fourth-order coupling. Moreover,
the optimal distortion pattern for a noninfinitesimal distortion amplitude
may be modified by higher-order couplings to other modes, and even further
modifications may result if the strain is also allowed to change with distortion
amplitude. This can be analyzed quantitatively in first-principles studies; for
BaTiO3, with the eigenvector dominated by Ti displacement relative to the
other atoms, the ground-state distortion is quite accurately given by the un-
stable mode eigenvector (overlap of 98%), while for PbTiO3 with its large
strain and more highly structured eigenvector, the general agreement is good,
though there are quantitative differences [97].

First-principles calculations have provided valuable information for under-
standing the origin of the instability of the polar mode in cubic perovskite
oxide compounds. A pronounced mixed ionic–covalent character for the B−O
bonding in these systems [138–141] has been confirmed by first-principles cal-
culations [29, 37, 142, 143]; this is generally agreed to be an important factor
in producing the ferroelectric ground-state distortion [144]. Indeed, pure size
considerations, as reflected in the tolerance factor, also discussed above, do
not distinguish between polar and antipolar offcenterings for the B cation in
the oxygen octahedron cage.
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In perovskite oxides, with displacement of the B cation relative to the
surrounding oxygen octahedron, the empty d orbitals on the B cation (Ti4+,
Nb5+, Zr4+, etc.) hybridize with the occupied O 2p orbitals, lowering the
energy and redistributing the electron density. This mechanism favors uni-
form displacement of B cations along a B−O−B chain, tending to favor a
ferroelectric ground state (though it should be noted that the displacement
of parallel chains is nearly independent, as will be evident in the discussion
of phonon-dispersion relations, below). Further evidence of the importance of
the mixed ionic–covalent character of the bonding is obtained from compari-
son of BaTiO3 and PbTiO3, exhibiting a difference that extends to a general
distinction between alkaline-earth A cations, with a highly ionic character,
and Pb or Bi A cations, with a more covalent character due to their lone-
pair 6s electrons [145]. In BaTiO3, the unstable mode is dominated by the
Ti displacement and the Ba 5p states do not hydridize significantly with the
valence band, while in PbTiO3, the Pb participates in the polar distortion
and Pb 6s “lone-pair” states hybridize with the oxygen 2p states. Similar
considerations apply to the behavior of KNbO3: the alkali-metal cation does
not participate in the distortion, and the ground-state structure resembles
that of BaTiO3.

The covalent interactions tend to be short range, while the ionic electro-
static interactions are long, in fact infinite, range. This has led to a useful
picture of ferroelectricity in perovskite oxides as resulting from a delicate
balance of short-range and long-range interactions. This picture, first intro-
duced by Cochran in the context of a shell model [135], has been confirmed
and quantified at the first-principles level [29, 146]. The fact that these in-
teractions are affected differently by pressure, finite-size effects, and other
external factors allows for an understanding of the influence of the various
factors on the ferroelectric instability (see, for an early example, the discus-
sion in [147]).

The polarization induced by atomic displacements, given by the Born
effective charges Z∗, plays a key role in understanding both the polar ground
state and the lattice dynamics. The Born effective charges are tensors, defined
as the first derivative of polarization with atomic displacement

Z∗
iαβ =

Ω
e

∂Pα

∂uiβ
|Emac=0 . (1)

As already mentioned in Sect. 2, the Z∗ can be readily computed either from
finite differences of the polarization, or within DFPT [77]. In a purely ionic
model, Z∗ is simply the formal charge on the ion: −2 for oxygen, +2 for
alkaline earths, and +4 for titanium. In first-principles calculations (as well
as in quantitative optical measurements), it is well established that the Born
effective charges characteristic of the ferroelectric perovskite oxides can de-
viate significantly from these nominal values. The large polarization induced
by atomic displacement can be understood in the framework of the mod-
ern theory of polarization (Chap. 1) and is part of the evidence for a strong
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Table 4. Born effective charges of various ABO3 compounds in their cubic struc-
ture. The Born effective charges of the A and B atoms are compared to the nominal
ionic charges ZA and ZB. (Adapted from [148])

ABO3 Z∗
A Z∗

B Z∗
O‖ Z∗

O⊥ Z∗
A/ZA Z∗

B/ZB Method Reference

nominal 3 3 −2 −2
BiAlO3 6.22 2.84 −2.34 −3.38 2.07 0.95 DFT (LDA) [123]
BiGaO3 6.29 3.11 −2.58 −3.40 2.10 1.04 DFT (LDA) [123]

nominal 2 4 −2 −2
CaTiO3 2.58 7.08 −5.65 −2.00 1.29 1.77 DFT (LDA) [142]
SrTiO3 2.56 7.26 −5.73 −2.15 1.28 1.82 DFT (LDA) [148]

2.54 7.12 −5.66 −2.00 1.27 1.78 DFT (LDA) [142]
2.55 7.56 −5.92 −2.12 1.28 1.89 DFT (LDA) [126]
2.4 7.0 −5.8 −1.8 1.2 1.8 experiment [149]

BaTiO3 2.77 7.25 −5.71 −2.15 1.39 1.81 DFT (LDA) [148]
2.75 7.16 −5.69 −2.11 1.38 1.79 DFT (LDA) [142]
2.61 5.88 −4.43 −2.03 1.31 1.47 Pseudo-SIC [47]
2.9 6.7 −4.8 −2.4 1.45 1.68 experiment [149]

BaZrO3 2.73 6.03 −4.74 −2.01 1.37 1.51 DFT (LDA) [142]

PbTiO3 3.90 7.06 −5.83 −2.56 1.95 1.77 DFT (LDA) [142]
PbZrO3 3.92 5.85 −4.81 −2.48 1.96 1.46 DFT (LDA) [142]

nominal 1 5 −2 −2
NaNbO3 1.13 9.11 −7.01 −1.61 1.13 1.82 DFT (LDA) [142]
KNbO3 0.82 9.13 −6.58 −1.68 0.82 1.83 DFT (LDA) [150]

1.14 9.23 −7.01 −1.68 1.14 1.85 DFT (LDA) [142]
1.14 9.37 −6.86 −1.65 1.14 1.87 DFT (LDA) [151]
1.07 8.12 −5.38 −1.80 1.07 1.62 HF [48, 49]

nominal - 6 −2 −2
WO3 - 12.51 −9.13 −1.69 - 2.09 DFT (LDA) [152]

ionic–covalent character for the B−O bonding in these systems as discussed
above [37, 138, 142, 150, 153]. For an extensive review of the concept of Born
effective charges in ABO3 compounds, see [148]. First-principles results are
presented for some representative systems in Table 4. For the oxygens, the
tensor character of the Born effective charge becomes apparent, as the in-
duced polarization for displacement along the B−O chain is typically much
larger in magnitude than the induced polarization for displacement in the
plane perpendicular to the chain. This, combined with a large Z∗ for the
B cation, produces a large mode effective charge for the unstable TO polar
mode [142], characterized by relative displacement of the cations and oxy-
gens. This is illustrated in Table 5 with the mode effective charge defined as

Z
∗
j =

∑

m

M1/2
m Z∗

mξjm , (2)
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Table 5. Frequencies (cm−1) and mode effective charges (|e|) of IR-active trans-
verse optical (TO) phonon modes of various perovskite oxides as computed
by Zhong et al. [142]. The mode effective charge was defined there as Z̄∗

j =
∑

m
M

1/2
m Z∗

mξTO
jm where ξ is the mode eigenvector. (Adapted from [142])

TO1 TO2 TO3
ω Z̄∗ ω Z̄∗ ω Z̄∗

BaTiO3 178i 8.95 177 1.69 468 1.37
SrTiO3 41i 7.37 165 3.22 546 3.43
CaTiO3 153i 6.25 188 4.94 610 4.50
KNbO3 143i 8.58 188 1.70 506 4.15
NaNbO3 152i 6.95 115 2.32 556 5.21
PbTiO3 144i 7.58 121 4.23 497 3.21
PbZrO3 131i 4.83 63 4.86 568 4.30
BaZrO3 95 5.57 193 5.57 514 3.84

where ξjm is the phonon eigenvector. The large mode effective charge of
the unstable mode is the origin of giant LO−TO splitting in these com-
pounds [142].

The spontaneous polarization of the ferroelectric state can be computed
directly from the Berry-phase formalism, or estimated using the computed
Born effective charges and atomic displacements relative to a nonpolar refer-
ence structure using the linearized expression ΔPα = e

Ω
∑

Z∗
iαβδuiβ . In the

latter context, the large mode effective charge of the unstable TO polar mode
can be seen to produce a large polarization for a relatively small distortion.
Using either computed or measured structural parameters and computed Z∗,
the linearized form has been applied to a range of systems, and its validity
examined. For example, application by Zhong et al. [142] with experimental
structural parameters [154,155] gives 0.30, 0.26 and 0.44C/m2 for the tetrag-
onal, orthorhombic and rhombohedral phases of BaTiO3, compared with ex-
perimental values of 0.27, 0.30 and 0.33C/m2, respectively. For KNbO3, a
similar calculation yields 0.40C/m2, agreeing exactly with one experimental
value [154,155]. The Z∗ computed using a different first-principles implemen-
tation [150] (see Table 4) yields a slightly lower value of 0.35C/m2, which is
compared with a different experimental value of 0.37C/m2. For PbTiO3 in
the tetragonal structure, this analysis [142] yields 1.04C/m2 and 0.74C/m2

using experimental structural parameters measured at 295K and 700K, to be
compared with experimental values of 0.75 and 0.50C/m2, respectively. This
can be compared with a value of 0.88C/m2 from a GGA calculation for the
computed PbTiO3 tetragonal structure constrained to the experimental vol-
ume [156]. It is worth noticing that the linear expression above only provides
a rough estimate of the spontaneous polarization since in most cases the Born
effective charges are not constant but strongly sensitive to atomic displace-
ments. As a general rule, they are significantly reduced in the ferroelectric
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phase compared to the paraelectric one, especially along the polarization di-
rection [37, 46, 157]. Direct application of the Berry-phase formalism to the
polar phase should therefore a priori be preferred for accurate calculation of
the spontaneous polarization.

The unstable polar-mode characteristic of ferroelectricity is just one of
three optical modes of the same symmetry (T1u) in the cubic perovskite
structure. In addition, there is a T1u acoustic mode and one T2u mode,
and these three-fold degeneracies are indeed found in calculations in periodic
boundary conditions, corresponding to zero macroscopic electric field. In sys-
tems with symmetry-lowering distortions, there are characteristic changes.
For example, in tetragonal P4mm and rhombohedral R3m, the degenerate
T1u phonons split into A1u and Eu, and the T2u phonon splits and becomes
Raman active, which is an experimental fingerprint for the ferroelectric state.

Next, we turn to the full phonon-dispersion relations of these polar insu-
lators. First, it is necessary to treat properly the q → 0 limit for the pho-
non-dispersion relation, as the long-range electrostatic interactions introduce
the possibility of nonzero macroscopic electric fields. This can be done by
including a nonanalytic contribution to the dynamical matrix that depends
on the Born effective charge tensors Z∗ (discussed above) and the electronic
dielectric constant ε∞ [158, 159]. While in a simple polar solid such as NaCl
with a single optical branch, this results in the well-known splitting of the
transverse optical (TO) and longitudinal optical (LO) frequencies according
to the Lyddane–Sachs–Teller relation [160], in the perovskites the three polar
modes are remixed by the nonanalytic terms, so that there is no longer a one-
to-one correspondence between the TO and LO modes [142, 161]. It should
be emphasized, though, that it is the unstable TO mode, with Emac = 0,
that freezes in to yield the ferroelectric ground state.

The first-principles calculations of the full phonon-dispersion relations for
the unstable cubic perovskite structure led to significant new insights into the
lattice instabilities and local distortions in ferroelectric oxides.2 Structural
instabilities are manifested as phonons with negative ω2; these imaginary
frequencies are by convention plotted as negative. The phonon dispersions of
cubic BaTiO3 [148] and cubic KNbO3 [151] are presented in Fig. 3; as can be
seen, they are very similar. LO−TO splitting is apparent in the limit q → 0.
It is particularly striking that the instability in the lowest-frequency polar
phonon branch is not strongly localized around q = 0. There is an extended
space of unstable phonons that do not contribute to the ground-state struc-
ture; most notably the unstable polar-phonon branch is nearly flat from the
zone center out to the zone boundary in the Γ -X and Γ -M directions. By a
Fourier transform [151], this can be seen to imply that the cubic structure

2 It should be noted that these phonon dispersions, being for an unstable hypo-
thetical reference structure, are not directly comparable to experimental results.
For the ground-state ferroelectric structure, all phonons would be stable and
correspond to measured phonon dispersions in the limit of low temperature.
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of these two compounds is unstable against a localized distortion involving
atomic displacements in a chain about five lattice constants long, with distor-
tions in adjacent chains being fairly independent (this property proves rele-
vant to the investigation of ferroelectricity in nanowires of BaTiO3 [162]). In
addition, this is related to the interpretation of diffuse scattering in the cubic,
tetragonal and orthorhombic phases, to be further discussed in Sect. 3.5.

Full phonon dispersions of the unstable cubic perovskite structure have
also been reported and analyzed for SrTiO3 [126,127], PbTiO3 [117], PbZrO3

[117], CaTiO3 [163], BaZrO3 [164,165], BiAlO3 [123] and BiGaO3 [123]. Some
of them are compared in Fig. 3. SrTiO3, PbTiO3 and PbZrO3 have additional
low-lying phonon branches, and in particular have low-frequency oxygen oc-
tahedron modes at the zone boundary, as does BaZrO3.

Additional lattice instabilities of the cubic perovskite structure, including
rotations and/or tilting of the oxygen octahedra, evident in the phonon-dis-
persion relations just discussed, can contribute to the ground-state distortion,
giving a rich variety of observed perovskite-related structures. In some cases,
the distortion is generated by a single mode, as for the ferroelectric structures
of BaTiO3 and PbTiO3 and the tetragonal antiferrodistortive structure of
SrTiO3. More generally, distortions are produced by two or more modes cou-
pled together, one example being the R3c structure (10 atoms per unit cell),
found in several systems, including PZT [167], BiFeO3 [46] and BiAlO3 [123].
Another case in which first-principles methods have proved very success-
ful is the antiferroelectric 40-atom Pbam structure of PbZrO3 [55, 89, 168].
Competition between modes or groups of coupled modes may eliminate insta-
bilities exhibited by the high-symmetry reference structure. For example, in
SrTiO3, freezing-in of the R-point antiferrodistortive mode, which produces
the nonpolar tetragonal phase below 105 K, suppresses the zone-center polar
instability [125, 128]. Conversely, while R-point antiferrodistortive instabili-
ties are found in many perovskite oxides (see Table 1 in [125]), freezing-in
of the zone-center polar distortion stabilizes the lattice against these rota-
tional distortions in systems such as PbTiO3 and BaTiO3, where they do not
contribute to the ground-state structure. The rotational and ferroelectric in-
stabilities have an opposite dependence on volume: increase in volume tends
to destabilize the polar mode, while stiffening the rotational mode [125, 169].
Thus, this competition is quite sensitive to changes in the lattice constant
by external stress or chemical substitution, which allows some anticipation of
the solid-solution phase diagrams on the basis of the endpoint compounds.

Results have been reported for a number of additional compounds. In
CdTiO3, the oxygen octahedron rotation around [111] is favored over other
distortions considered, including rotation around [001] and tetragonal and
rhombohedral ferroelectric distortions [116]. Cubic CaTiO3 has an unstable
polar mode [170], but other distortions compete to result in a 20-atom non-
polar Pbnm ground state. AgNbO3 has a 40-atom cell with mixed FE and
AFE character and large (14.5◦) octahedral rotations [171]. In 5-atom cells,
the rhombohedral and tetragonal structures are close in energy, with a sub-
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Fig. 3. Phonon dispersions for BaTiO3 [117], PbTiO3 [117], PbZrO3 [117],
KNbO3 [151], SrTiO3 [127] and CaTiO3 [163], in the ideal cubic perovskite struc-
ture at the experimental lattice constant. Symmetry labels follow the convention
of [166], with the A atom at the origin.

stantial polarization close to 70C/m2. Similar calculations for 5-atom cells
of BiScO3 and BiYO3 showed strong ferroelectric instability, dominated by
Bi displacement, with the rhombohedral phase favored over tetragonal [134].
However, rotational distortions are found to be even more energetically fa-
vorable [124]. Cubic BaZrO3 does not have a polar instability, and in exper-
imental structural determinations [164] it has been observed to remain cubic
down to the lowest temperatures, with the rotational instability mentioned
above not expressed either due to a very low Tc or because of quantum fluc-
tuations, analogous to those observed in SrTiO3 and KTaO3 and discussed
further below. However, in [165], it was shown that a lower-energy 40-atom
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nonpolar P1 structure with a rotational distortion has a dielectric response
in better agreement with experiment than that computed for the cubic phase.

3.3 Polarization–Strain Coupling

The coupling of polarization to strain plays an important role in the physics
of perovskite oxide ferroelectrics. The polarization–strain coupling, as defined
in the Taylor expansion around the cubic reference state, is responsible for a
tetragonal, rather than rhombohedral, ground state for ferroelectric PbTiO3,
as discussed above, and for rich phase diagrams for epitaxially-strained thin
films, to be discussed below. Moreover, it has been implicated in the first-
order character of the ferroelectric–paraelectric transition (Sect. 3.5). Coef-
ficients in the Taylor expansion for the coupled zone-center soft mode and
homogeneous strain have been computed from first principles for a set of
eight perovskite compounds in [32], and later updated in [36]. This analy-
sis assumes that the soft-mode eigenvector is fixed, independent of strain.
These couplings are related to the piezoelectric response of the ferroelectric
structures, to be discussed further below.

The strong polarization–strain coupling and the prevalence of competing
instabilities can lead to rich structural phase diagrams for the perovskite ox-
ides as some external parameter or constraint is varied. For applied stress σ,
in particular hydrostatic pressure, first-principles computation of the zero-
temperature phase diagram is straightforward within the Born–Oppenheimer
approximation, requiring only the addition of a term ση to the total energy
being minimized. Within the first-principles framework, it is thus possible to
study the effects of ideal hydrostatic pressure over very wide ranges. Recent
studies of the pressure-induced phases of PbTiO3 have yielded surprising re-
sults. In [172], a rich T−M−R−C phase sequence was found, with the cubic
phase favored above a critical pressure of about 22GPa. In [173, 174], it was
found that at higher pressures, the instability of the polar phonon of cu-
bic PbTiO3 turns around and increases with pressure. It is found that the
I4/mcm AFD distortion characteristic of SrTiO3 dominates, being increas-
ingly stabilized with increasing pressure, and that there is an additional polar
distortion that produces a ferroelectric I4cm ground state. This ferroelectric-
ity at high pressures is consistent with reported Raman observations [173].
The effects of negative pressure on PbTiO3 have also been studied from first
principles [175]. As already mentioned in Sect. 3.1, at around −5GPa, an
abrupt transition is found to a supertetragonal structure with c/a = 1.21.
BaTiO3 undergoes a similar transition, but the critical negative pressure is
substantially higher (around −11GPa).

It is important to note that at least for some materials, including BaTiO3,
the neglect of quantum fluctuations in the approach described above gives
qualitatively wrong results for the pressure-induced phase sequence and crit-
ical pressures. For BaTiO3, using a first-principles effective Hamiltonian ap-
proach with a path-integral quantum Monte-Carlo technique, it was shown
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in [176] that including quantum fluctuations changes the pressure-induced
phase sequence at low temperature from a direct rhombohedral–cubic transi-
tion to the same R−O−T−C sequence observed with increasing temperature
at zero pressure, consistent with experimental determinations. In fact, it was
inferred that the quantum fluctuations have in practice the same effect on
relative phase stability as thermal fluctuations, with the pressure-induced
changes in the potential energy wells leading to the phase transitions. Quan-
tum fluctuation-induced shifts in the phase boundaries are found to be sub-
stantial even at temperatures above 200K.

In contrast to hydrostatic pressure, coherent epitaxial strain imposes an
anisotropic constraint. For perovskites, the most common epitaxial constraint
considered is that of the square (001) surface, requiring the inplane lattice
vectors to be orthogonal and of equal length, yielding a single epitaxial lattice
parameter a. The misfit strain is usually then defined as (a − a0)/a0, where
a0 is the equilibrium lattice constant for the bulk cubic structure. The effects
of epitaxial strain on the structure and properties can be isolated from other
effects in thin films (interfaces, free surfaces, defects) by mapping out the
phase diagram for the bulk material with the epitaxial constraint imposed.
This was first done, in a phenomenological Landau–Devonshire framework,
in [177]. The symmetry-lowering effects of the epitaxial contraint lead to a set
of lower-symmetry phases, labeled as the c-phase, the r-phase, the a-phase,
the aa-phase, and the ac-phase. For the ground state, epitaxial strain phase
diagrams have been mapped out from first principles in [178]. In some sys-
tems, the effects are quite dramatic. For example, SrTiO3 is driven ferroelec-
tric both by tensile and compressive epitaxial strain [179]. However, in other
systems the effects of epitaxial strain on the polarization are less pronounced,
for example in PT, PZT and BFO. This has been interpreted as being a result
of their large spontaneous polarization in [133] and [180].

3.4 Dielectric and Piezoelectric Responses

Most of the interest in ferroelectric oxides arises from their polarization-
related properties, including the dielectric, piezoelectric and electro-optical
responses. The distinctive character of these properties can be directly traced
to the presence of low-frequency polar phonons, which dominate the prop-
erties, producing large lattice responses with high sensitivity to mechanical
and electrical boundary conditions. Near phase boundaries, certain response
coefficients may in fact diverge as the corresponding mode frequency goes to
zero.

The zero-field ground-state static dielectric response at fixed strain can
be computed from first principles, as described in detail in [11], by combin-
ing the results of calculations for the electronic contribution ε∞, which can
be obtained using DFPT techniques, and the lattice contribution obtained
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from the Born effective charges and zone-center polar-phonon frequencies, as
follows:

ε0αβ = ε∞αβ +
4π

Ω0

∑

m

pmα · pmβ

ω2
m

, (3)

where pmα =
∑

κβ Zκβ,αξm
κβ/

√
Mκ is the mode polarity for the phonon with

frequency ωm and eigenvector ξm. In LDA, the electronic dielectric response
ε∞ is well known to be systematically overestimated, a feature that has been
related to the lack of polarization dependence of the approximate exchange-
correlation functional [181, 182]. However, in ferroelectric oxides, this has a
negligible impact on the accuracy of the computed static response as the
computed lattice contribution is about an order of magnitude larger than the
computed electronic response ε∞. For example, in rhombohedral BaTiO3, the
computed value for ε11 is 69, of which only 6.2 is the electronic response [78,
161]. Most of the lattice contribution comes from the lowest-frequency polar
mode, which in many cases also has a large mode effective charge, though the
higher-frequency polar modes do make non-negligible contributions. Near a
phase boundary, where the soft mode goes to zero frequency, the dielectric
response diverges accordingly. First-principles calculations show that low-
frequency polar modes also lead to large dielectric responses in nonpolar
perovskites [170,183]. The temperature dependence of the lowest polar-mode
frequency will in general lead to a pronounced temperature dependence for
ε0; in making comparisons with experiment it should be noted that the first-
principles calculation gives the response in the limit T → 0.

For the first-principles study of piezoelectricity, the quantity that is gen-
erally computed is eα,μν = ∂Pα/∂ημν , the zero-field derivative of polarization
with respect to strain. This can be related, using the elastic coefficients, to the
direct piezoelectric tensor ∂Pα/∂σμν , where σ is the stress tensor. Symmetry
considerations show that the piezoelectric response of the paraelectric cubic
phase is zero. Like the dielectric response, eα,μν can be decomposed into two
terms: the clamped-ion response, in which the fractional coordinates of the
ions remain unchanged and only the homogeneous strain changes, and a con-
tribution produced by the induced relative displacements of ionic sublattices,
as follows:

eα,μν = e0
α,μν − 1

Ω0

∑

m

pmα · gmμν

ω2
m

, (4)

where gmμν =
∑

κβ γμν
κβξm

κβ/
√

Mκ depends on the internal strain parameter
γ, ξm and pmα is the mode polarity defined in the previous paragraph. The
response is thus largest if the lowest-frequency polar mode in the ferroelectric
phase has a frequency close to zero, large mode effective charge, and strong
coupling with strain; it is interesting to note that as the phase transition
is approached from the ferroelectric side, the response diverges, while it is
strictly zero on the paraelectric side. For comparison with experiment, it is
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necessary to separate the proper and improper contributions to the piezo-
electric response: the proper contribution is what is to be compared with the
experimental value, while the improper contribution arises, when the spon-
taneous polarization is nonzero, from rotation or dilation of the crystal [184].
Computed values for PbTiO3 are reported in Table 4 of [156].

The presence of low-frequency polar modes also leads to large differences
between responses for different boundary conditions [78]. Using a systematic
DFPT approach described in Sect. 2, calculations of various responses are
presented for BaTiO3 in [78]. For example, in a piezoelectric material, the
dielectric response at zero stress is larger than the response at fixed strain,
because the change in strain allows an increase in the polarization along the
applied field direction. This is particularly dramatic in the case of BaTiO3 [78]
where ε11 increases from 69 to 265. Similar considerations can be invoked to
explain the large electro-optic response of ferroelectric perovskites, as dis-
cussed in [82, 83].

Equations (3) and (4) also can be used to compute the responses in the
presence of epitaxial strain constraints. Here, too, the relevant coefficients
diverge at phase boundaries as a result of the decreasing frequency of the
soft mode [177, 185, 186].

The dielectric and piezoelectric coefficients just discussed describe the re-
sponse of the system to an infinitesimal electric field. As the field is increased,
nonlinearities in P(E) and η(E) become evident. The electric-field dependence
of the dielectric response (called the tunability) is of particular technological
importance; this has been studied for SrTiO3 in [179]. Nonzero macroscopic
fields are also important in very thin films, as discussed in the contribution of
Rabe, Dawber, Lichtensteiger, Ahn and Triscone, due to incomplete compen-
sation of the depolarization field; the structure, phonons and properties of the
film are modified accordingly. The electric-field-induced shifts of the phonons
have been discussed using both approximate [65] and exact [63] formalisms.

There has been much interest recently in the phenomenon of polarization
rotation, where an applied field noncollinear with the spontaneous polariza-
tion can induce large responses and even drive the system through additional
phase transitions [64, 172, 185, 187, 188]. For small fields, it has been argued
that noncollinear responses should generally be larger than collinear ones, as
it is easier to rotate the polarization than to change its length. In an im-
portant example, a field applied along the [001] direction to a rhombohedral
ferroelectric with polarization along [111] will induce a large strain response
as the polarization rotates and the system transforms from the rhombohedral
to the more highly strained tetragonal phase. This is the accepted mechanism
for large piezoelectric response at the rhombohedral–tetragonal morphotropic
phase boundary (MPB) in PZT and single-crystal PMN-PT [187, 189]. The
path taken by the polarization as it rotates can be quite nontrivial. In [188],
it was shown that the polarization for a prototypical tetragonal ferroelectric
(PZT x = 0.5) in a field along [111] simply rotates in the (110) plane, cor-
responding to an intermediate A-type monoclinic structure. However, in the
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rhombohedral case (PZT x = 0.47) with the field along [001], the polariza-
tion follows a more complex path, R-MA-Tri-MC-T, with the d15 piezoelec-
tric coefficients in the triclinic and MC phases being exceptionally large. At
other phase boundaries it has also been possible to identify large responses
associated with polarization rotation; for example at the pressure-induced
tetragonal–monoclinic transition in PbTiO3 around 10GPa [172].

The structure and properties of coherent perovskite superlattices can
largely be understood by considering the combined effects of epitaxial strain
and electric fields on the constituent layers. This proves to be surprisingly
useful even when the layers are as thin as a few lattice constants [190, 191];
for example, the symmetry lowering observed in experimental studies of
BaTiO3/SrTiO3 superlattices [192] and in first-principles calculations could
be interpreted through this model [193].

3.5 Results at Nonzero Temperature

Part of the fascination of the family of perovskite ferroelectric oxides is re-
lated to the fact that they undergo sequences of temperature-driven structural
phase transitions. The various functional properties (dielectric, piezoelectric,
and optical properties) of direct interest for applications are quite temper-
ature dependent, being especially large or even divergent near the phase-
transition temperatures. To be able to explain these important experimental
observations, first-principles approaches must thus be able to explicitly ac-
count for the effects of temperature.

The most straightforward way would appear to be to perform ab ini-
tio DFT molecular dynamics simulations [194]. Though there still would be
errors due to the density-functional approximation, the Born–Oppenheimer
approximation, and neglect of quantum fluctuations, this would treat cor-
rectly all the atomic degrees of freedom and their nonlinear interactions.
However, this approach is so computationally intensive that currently it is
restricted to relatively small systems and time scales [195], while to capture
the long-wavelength thermal fluctuations that contribute to the perovskite
structural transitions, the simulation cells must contain thousands of atoms.
Thus, for finite-temperature investigations it is necessary to use the approx-
imate interpolative methods described in Sect. 2: the first-principles effec-
tive Hamiltonian [31, 94, 95, 97] and interatomic potentials [110–112]. This is
not necessarily a drawback: because those simplified approaches include the
physics in a transparent way, and are also very helpful in clarifying the mi-
croscopic mechanisms responsible for ferroelectricity, they aid understanding
and assist the experimental–theoretical dialogue.

Here, we present results of first-principles effective Hamiltonian and in-
teratomic potential simulations for three prototypical compounds: BaTiO3,
KNbO3 and PbTiO3. In the effective Hamiltonian calculations, only the soft-
mode and strain degrees of freedom appear explicitly. The phase diagram is
determined by tracking the temperature dependence of these variables. Full



First-Principles Studies of Ferroelectric Oxides 141

Table 6. Magnitude of the spontaneous polarizations (Ps, in μC/cm2) and phase-
transition temperatures (Tc, in K) of BaTiO3 as predicted using an effective Hamil-
tonian (Heff) and a shell-model approach. From [13]

Approach Experiment Heff Shell model
[94] [13] [94] [110]

Cubic Ps 0 0 0 0
↓ Tc 403 335 297 190
Tetragonal Ps 27 30 28 17
↓ Tc 278 240 230 120
Orthorhombic Ps 36 37 35 14
↓ Tc 183 190 200 90
Rhombohedral Ps 33 45 43 12.5

information about the atomic positions is not obtained, as these degrees of
freedom have been eliminated. This approximation is also responsible for an
incorrect description of thermal expansion, which results from higher-order
coupling to the nonsoft-mode degrees of freedom (though corrections within
the effective Hamiltonian framework have been suggested [175]). The inter-
atomic-potential simulations in principle include all of this information.

Magnitude of the spontaneous polarizations and phase-transition temper-
atures of BaTiO3 obtained using an effective Hamiltonian and an interatomic-
potential approach are compared in Table 6. For both methods, the phase
sequences are correctly reproduced. The transition temperatures have rela-
tively large errors; the possible origins of these have been discussed in [175].
This problem is present even in the interatomic-potential case, so it cannot be
attributed exclusively to the treatment of the “irrelevant” degrees of freedom.
The effect on Tc of the LDA underestimate of the lattice-constant problem
is corrected by introducing an artificial pressure into the simulation so that
the lattice constant of the cubic phase matches the experimental value at Tc,
though this does not remove the entire discrepancy.

One interesting result emerging from the first-principles analysis relates
to the role of strain. In the simulation for BaTiO3, setting the polarization–
strain coupling to zero changes the sequence of transitions to a single second-
order cubic–rhombohedral transition [95], showing that the stability of the
tetragonal and orthorhombic phases depends on strain coupling. This effect
can be also easily seen in a simplified eight-site model [196].

In the finite-temperature simulations, it is straightforward to compute
response functions to applied electric fields and stresses, either through a
finite-difference technique or by direct evaluation of the derivative, which
takes the form of a fluctuation average (fluctuations will be discussed further
below) [197, 198]. The response functions that have been studied (dielectric,
piezoelectric, and electro-optic) are all dominated by the low-frequency polar
modes, so that the studies can be carried out either with the first-principles
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Fig. 4. Temperature dependence of the static dielectric constants (a) and piezo-
electric constants (b) in the cubic (C) and tetragonal (T) phases of BaTiO3. The
bottom and top x-axes correspond to the theoretical and experimental tempera-
tures, respectively. From [13]

effective Hamiltonian or with the interatomic potentials. For comparison with
experiment, it is customary to rescale the temperature to match the para-
electric–ferroelectric Tc. This gives excellent agreement, as shown in Fig. 4.
Similar curves have been reported for the electro-optic coefficients in the
tetragonal phase of BaTiO3 [84].

The connection between effective Hamiltonian and Landau–Devonshire
approaches is made stronger by the demonstration that LD parameters can
be extracted from first-principles effective Hamiltonian simulations [199]. The
analysis for BaTiO3 also showed that the temperature dependence of LD pa-
rameters is, in general, not as simple as usually assumed in phenomenological
implementations of LD theory.
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In addition to information about structure and properties, these simula-
tions can also reveal valuable information about the local fluctuations in the
polarization and structure. As mentioned above, the high-temperature cubic
phase in particular is characterized by large local fluctuations around the av-
erage structure. In KNbO3 and BaTiO3, local fluctuations have also been de-
tected in the diffuse X-ray scattering patterns observed by Comes et al. [200]
and the first-principles computation of S(q,ω) reported in [151] shows that
these can be interpreted as dynamical local polar distortions with short-range
chain correlations. These studies have also shed light on the long-standing
issue of whether these transitions should be considered displacive or order–
disorder, suggesting that the character in the compounds studied is of an
intermediate character.

By applying the epitaxial strain constraint in the Monte Carlo simula-
tions, the first-principles effective Hamiltonian can be used to generate the
phase diagram with respect to epitaxial strain and temperature. A study
of BaTiO3 is reported in [178]. The topology of the phase diagram near the
critical temperature reproduces that found in the phenomenological Landau–
Devonshire analysis [177], although the computed transition temperature is
too low. No sign of an ac phase was found in the first-principles analysis; the
stability of this phase appears to be very sensitive to the choice of Landau–
Devonshire parameters [201].

Another application of the first-principles effective Hamiltonian method
is to explore the effects of quantum fluctuations at low temperatures. Re-
ported studies include SrTiO3 [125], KTaO3 [202], BaZrO3 [164] and the
pressure–temperature phase diagram of BaTiO3 [176]. With the inclusion of
quantum fluctuations, the low-temperature structural and dielectric behavior
of SrTiO3, KTaO3 and BaZrO3, particularly the saturation in the dielectric
constant, are correctly reproduced. Above, we have discussed the effects of
pressure on the ground-state structure. In BaTiO3, as discussed above, the
quantum fluctuations act in the same way as thermal fluctuations, signifi-
cantly changing the pressure-induced phase diagram at low temperatures.

4 Results for Other Ferroelectric Oxide Compounds

The same first-principles methods that have been so successfully applied to
perovskites can equally well predict the structure and properties of other fam-
ilies of ferroelectric oxides. Though outside the scope of this book, it is worth
noting that this is true also for nonoxide ferroelectrics, including halide com-
pounds [203], hydrogen-bonded systems such as KDP (potassium dihydrogen
phosphate; KH2PO4) [204, 205] or polymeric systems such as PVDF (poly-
vinylidene fluoride; [−CH2−CF2−]n) [206,207]. While the nonperovskite ox-
ides have been relatively little explored, they are of particular interest as
closer examination may reveal novel phenomena. First-principles investiga-
tion can bring to light examples with distinct mechanisms for ferroelectric-



144 Karin M. Rabe and Philippe Ghosez

ity, including new variations on the soft-mode mechanism, and characteristic
physical properties, which may serve as the inspiration for the identifica-
tion of new ferroelectric materials through a combination of first-principles
prediction and experimental synthesis and characterization.

LiNbO3 and LiTaO3 were among the first nonperovskite ferroelectric ox-
ides to be studied from first principles [208, 209]. They have a uniaxial R3c
structure related to the perovskite structure by large oxygen octahedron ro-
tations around [111] and displacement of the Li atoms along that axis, as
described in more detail in the contribution of Rabe, Dawber, Lichtensteiger,
Ahn and Triscone. The first-principles results show that the Li displace-
ments are strongly coupled to the oxygen displacements, resulting in very
deep double-well potentials. In addition, as in the perovskite oxides, there is
substantial hybridization between the oxygen and transition-metal orbitals.
Studies of the dielectric and dynamical properties including phonon disper-
sion [210,211] and nonlinear optical properties [82,83,212,213] confirm strong
similarities with the perovskite compounds.

The hexagonal P63/mmc phase of BaTiO3, found at very high tempera-
tures, has been studied from first principles in [214] and [215]. The physics
of the soft modes has been suggested to be closely related to that of the
perovskite BaTiO3 phase.

The nitrogen oxide ferroelectrics have low-symmetry phases and rich
phase diagrams. The structure, polarization, elastic constants and ground-
state piezoelectric response of NaNO2 have been investigated from first prin-
ciples in [216–219]. The structure and polarization of KNO3 have been re-
ported in [220]. It was found that in the evolution of the minimum-energy
structure, the relative displacement of the charged K and NO3 groups along
the polar axis is accompanied by an inplane rotation of the NO3 by 60◦.

There are several layered structural families based on the stacking of per-
ovskite layers with other oxide arrangements, described in the contribution
of Rabe, Dawber, Lichtensteiger, Ahn and Triscone. The family in which the
most ferroelectric compounds have been identified is the Aurivillius series
[Bi2O2] [A’n−1BnO3n+1]. The case of bismuth titanate Bi4Ti3O12, poten-
tially interesting in nonvolatile memory applications because of its large po-
larization, has been explicitly considered [221–223]. The technologically im-
portant compound SrBi2Ta2O9 (SBT) has also been thoroughly investigated
from first principles [223, 224]. In first-principles calculations for the high-
symmetry tetragonal phase, an unstable Eu phonon was found that freezes in
preferentially in the [110] direction [223]. In [224], additional first-principles
calculations (including a full phonon-dispersion relation for the tetragonal
phase) and symmetry analysis showed that a second nonpolar mode at the
X point couples to this mode, leading to the observed A21am space-group
symmetry and naturally accounting for the observation of a nonpolar inter-
mediate phase between the high-temperature tetragonal and low-temperature
ferroelectric phases.
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The structures of the members of the Ruddlesden–Popper (RP) series
AO[AnBnO3n] can be viewed as a stacking of AO-terminated ABO3 per-
ovskite [001] slabs with relative shifts of (a0/2)[110], the slabs in the nth mem-
ber of the series having a thickness of n cubic perovskite lattice constants, as
discussed in more detail in the contribution of Rabe, Dawber, Lichtensteiger ,
Ahn and Triscone. No experimental observation of ferroelectricity in RP com-
pounds has yet been reported, though first-principles calculations show that
the as-yet-hypothetical compound Pb2TiO4 would be ferroelectric when epi-
taxially strained [87].

In the Dion–Jacobson series A[A’n−1BnO3n+1], a polar low-temperature
structure has been reported for CsBiNb2O7 [225]. While ferroelectric switch-
ing has not been confirmed experimentally, first-principles analysis of the
structure and lattice instabilities suggest that this compound is ferroelectric
with a substantial polarization and a high critical temperature [226].

Study of nonperovskite systems has been particularly important in the
area of magnetic ferroelectrics, since it has been shown that the perovskite
B−O chain instability requires a d0 state for the B cation, while magnetism
would require a partially filled d shell [227] as described more fully in the
contribution by Spaldin in this volume. Compounds such as BiMnO3 and
BiFeO3 rely on the offcentering of the Bi to produce the ferroelectric in-
stability, as described above. In YCrO3, first-principles calculations show
a ferroelectric instability associated with Y displacement, competing with
a rotational distortion [228]. Ordered mixtures of two different cations can
enhance multiferroic behavior by stabilizing a ferrimagnetic ordering that re-
tains a substantial magnetization, for example Bi2FeCrO6 [229,230]. Another
mechanism compatible with magnetism is geometrically driven ferroelectric-
ity. One well-studied example is YMnO3, an improper ferroelectric in which
a zone-boundary rotation of the oxygen polyhedra induces a zone-center po-
lar distortion [44, 45] (see Fig. 5). BaMnF4 is an example of a geometrically
driven proper ferroelectric with the mechanism elucidated in a recent first-
principles study [231]. More discussion of these results can be found in the
chapter by Spaldin in this volume.

As discussed in the contribution by Rabe, Dawber, Lichtensteiger, Ahn
and Triscone, electronic ferroelectrics exhibit a symmetry-breaking insta-
bility of the electronic ground state that occurs even if the ions are held
fixed. Observation of such behavior has been reported in complex transi-
tion-metal oxides with multivalent cations, for example LuFe2O4 [232], and
the importance of electronic correlation in these systems presents challenges
for first-principles density-functional approaches. First-principles calculations
have been reported for the charge-ordering structural distortion in BaBiO3,
where it has been suggested that Bi4+ → Bi3++ Bi5+ (see [233] and references
therein). While this ordering does not lower the symmetry enough to support
a nonzero polarization, similar ordering in a system with a lower-symmetry
cation sublattice could result in ferroelectricity.
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Fig. 5. Energetics of YMnO3. Left : Energy as a function of the amplitude of the
zone-center polar distortion Γ−

2 (top) and the zone-boundary rotational mode K3

(bottom). Right : Energy as a function of the amplitude of the zone-center polar dis-
tortion Γ−

2 at fixed amplitude of the zone-boundary rotational mode K3. From [45]

From this brief summary, we see that there are many promising possibili-
ties for designing new ferroelectric materials based on natural and artificially
structured reassembly of particular structural motifs. First-principles results
have an important role to play in elucidating alternative mechanisms for the
occurrence of ferroelectricity, chemical and structural trends in ferroelectric
instabilities, and identification of promising compounds for experimental syn-
thesis and characterization. These results can also be productively combined
with empirical structural database searches of the type proposed by Abra-
hams (see [234] and earlier works cited therein) as shown in the work of
Kroumova et al. [235] and Capialls et al. [236].

5 Results for Solid Solutions

The ease with which solid solutions can be formed in many ferroelectric per-
ovskites offers tremendous opportunities for broadening the variety of ma-
terials and optimizing their properties. For isovalent cation subsitution, for
example Ba1−xSrxTiO3 or PbZr1−xTixO3 (PZT), the species can in many
cases be freely substituted on the same site. For heterovalent cations, for ex-
ample PbMg1/3Nb2/3O3 (PMN), the ratio is fixed by charge counting, though
free alloying is possible with multiple cations that preserve overall change bal-
ance, for example PMN:PT. The arrangement of the cations may be random,
exhibit short-range order, or even in some cases exhibit long-range order.

The first-principles computation of the structure and properties of these
systems, however, presents significant technical challenges. To obtain the pe-
riodic boundary conditions required in most implementations, the solid so-
lution is modeled by an ordered supercell that captures the main features of
the cation distribution. This “quasirandom” supercell is ideally large enough
not only to reproduce the composition, but also the distribution of short-
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range environments. For very large supercells, full first-principles calculations
are not practical and interpolative methods based on interatomic potentials
or first-principles effective Hamiltonians, discussed above in the context of
finite-temperature calculations, have been productively applied. An alter-
native approach that has also been applied to ferroelectrics is the virtual
crystal approximation (VCA), where the underlying periodicity of the ideal
perovskite is preserved by averaging the potentials on the substitutional site.
While proper application of this latter method can lead to useful results for
the ground-state structural parameters for comparision with crystallographic
data [237], the neglect of the variations in local structure means that phonons,
in particular, are not accurately reproduced [238]. For the heterovalent case,
the virtual crystal approximation becomes even more problematic.

In the rest of this section, we will review results for a number of sys-
tems, studied through some or all of these techniques. One common theme
is the relation of the structure and properties of the solid solution to those
of the endpoint compounds. There is also considerable interest in identify-
ing composition-driven phase transitions, which appear as vertical or nearly
vertical phase boundaries (morphotropic phase boundaries, or MPBs), as
these are associated with large responses to applied fields and stresses. The
best-known example, to be discussed at greater length below, is the rhombo-
hedral–tetragonal MPB in PZT, to which its excellent piezoelectric behavior
is attributed.

Ba1−xSrxTiO3 is one of the simplest of the perovskite solid solutions.
As x increases, the critical temperatures for the R−O−T−C phase sequence
of BaTiO3 decrease smoothly (this is shown in Fig. 7a of the contribution
by Rabe, Dawber, Lichtensteiger, Ahn and Triscone. As seen in the previous
discussions of BaTiO3 under pressure and of SrTiO3, it seems that both quan-
tum fluctuations and oxygen octahedron rotations play an important role in
the low-temperature SrTiO3-rich portion of the phase diagram; in [239], the
classical treatment with no rotations included yields the R−O−T−C phase
sequence for all x, while the classical interatomic potential analysis [240],
which does include rotation, suggests that the sequence changes to a R−C
transition for x below 0.2.

Largely because of its technological importance, PZT is the most studied
of the solid solutions. Its rich temperature–composition phase diagram has
been recently augmented by the discovery of a new monoclinic phase near
the morphotropic phase boundary, as shown in Fig. 7b of the contribution by
Rabe, Dawber, Lichtensteiger, Ahn and Triscone. Zr and Ti being isovalent,
virtual crystal approximations can be expected to yield useful results. Cal-
culations of the relative energies of the tetragonal P4mm and rhombohedral
R3m and R3c structures as a function of x for one particular implementation
of VCA were presented in [237,241], with an accurate determination of the po-
sition of the MPB. Numerous investigations of structural energetics at x = 0.5
using 10-atom supercells with ordering along [001], [110] and [111] have been
reported in [169, 186, 237, 242, 243], the earliest being [244]. The tetragonal
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P4mm structure is found to be lowest in energy for all three orderings, though
rotational distortions are found to be competitive even at x = 0.50 and play
an increasingly important role as the proportion of Zr increases [167, 169].
The computed polarization is 0.70C/m2 for a tetragonal structure with rock-
salt ordering of the cations, and 0.74C/m2 for Zr and Ti layers alternating
along [001] [242]. Computations of piezoelectric coefficients of the supercells
give large responses consistent with experiments [186, 242, 245]. The use of
much larger supercells in [246] allows a more realistic analysis of the effect of
cation arrangement on the local structure and properties.

The recently discovered monoclinic phase [247] acts as a bridge between
the tetragonal and rhombohedral phases at the morphotropic phase boundary
at x = 0.48, with the polarization rotating in the ac plane. This phase also
naturally emerged from the effective Hamiltonian phase diagram study of [98];
low-temperature simulations as a function of x show the monoclinic phase
for 0.475 ≤ x ≤ 0.495, with lattice parameters in excellent agreement with
those experimentally determined in [247]. A monoclinic low-symmetry phase
also can be produced by the application of tetragonal stress [172,185,244]. It
is interesting to note that a phase of such low symmetry would not normally
arise in a phenomenological Landau–Devonshire analysis, it being necessary
to carry the expansion to eighth order [248]. The difficulty in accurately com-
puting Tc with this approach is again illustrated: the computed value for Tc

at x = 0.50 is greater than 1000K, a substantial overestimate of the ex-
perimental value of 640K [98]. However, for comparison of other computed
properties with experiment, it appears to be useful simply to rescale the tem-
perature. Then, good agreement is obtained between the room-temperature
ceramic averaged d33 = 163 pC/N obtained from the simulation and the value
of 170 pC/N measured experimentally, with a substantial contribution from a
large single-crystal d15. With particular choices of atomic short-range order,
even larger effects can be obtained [249, 250].

Other alloys based on PbTiO3 have also attracted considerable interest for
their possibly favorable piezoelectric properties. The system CdTiO3−PbTiO3

was investigated using ordered supercells in [116]. Alloying with Pb ex-
pands the lattice, which tends to suppress the rotational instability rela-
tive to the ferroelectric instability. This lowers the relative energy of the FE
tetragonal state, though the rotationally distorted structure is still the low-
est-energy structure at the 50:50 composition Pb0.5Cd0.5TiO3. The system
AgNbO3−PbTiO3 was studied in [171]. While pure AgNbO3 is either weak
ferroelectric or antiferroelectric, a 40-atom supercell with rocksalt ordering
on both A and B sites (constrained to the interpolated experimental vol-
ume) shows a relatively small energy difference between the rhombohedral
and tetragonal FE phases, suggesting proximity to an MPB and favorable
piezoelectric properties.

The scandate perovskites have also featured in the experimental-theo-
retical search for new piezoelectric materials. The system BiScO3−PbTiO3

(BS−PT) was investigated in [134], using both the VCA and supercells. For
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BS−PT, tetragonality and polarization at the MPB, either by VCA or 10-
atom rocksalt supercell, are much larger than those measured experimentally,
while the computed piezoelectric response near the MPB is comparable to
that of PZT. Further substitutions on the A site, including Th, Bi, Y and Pb,
were considered in [124]. As Th enters the A site as Th4+, it is introduced
with Pb2+ to match the formal 3+ of Sc. LDA calculation for cubic rock-
salt ordered Th0.5Pb0.5ScO3 yielded an effective perovskite lattice parameter
of 7.55aB (BiScO3 and YScO3 had 7.54 and 7.40, respectively). All had lower
energy for rotation around [111] than around [001]. Th0.5Pb0.5ScO3 has the
tetragonal structure (c/a = 1.08) slightly favored over rhombohedral in the
5-atom ferroelectric states. When both rotational and ferroelectric distortions
are frozen in, the resulting R3 structure has a substantial polarization aris-
ing from Th displacement, though the energy is lowered only an additional
2mRy/Sc below the structure that includes only the rotational distortion. An
even lower energy structure is obtained by combining rotations along [110]
and ferroelectric distortion along [110] to obtain a Cm structure, though it is
suggested that the low energy of this structure may be specific to the partic-
ular Th–Pb rocksalt ordering. Based on these results, it was suggested that
it should be possible to favor ferroelectricity in these system by suppressing
rotational distortions through the replacement of some A site ions with larger
species.

The physics of relaxor ferroelectrics is quite rich, and appears to depend
on chemical disorder and polarization fluctuations at a range of length scales.
This presents additional technical challenges for first-principles calculations.
Recently, aspects of the structure and polarization relevant to relaxor be-
havior have been studied for PMN in [251–254], PbSc1/2Nb1/2O3 (PSN) [12,
99, 249, 255–257], PbFe1/2Nb1/2O3 [258] and solutions with PbTiO3 [257],
including PMN-PT [259], PZN-PT [259] and PSN-PT [260], as well as other
solutions, including Pb(Sc2/3W1/3)O3−Pb(Ti/Zr)O3 [261]; these and other
studies are reviewed in [12]. In PSN and PbSc1/2Ta1/2O3 (PST), the effect of
cation arrangement on properties appears to be particularly strong, exempli-
fied by the ferroelectric vs. relaxor behavior for ordered and disordered forms
of PST, respectively [262]. Indeed, these effects are evident in first-principles
effective Hamiltonian simulations of PSN [12, 99, 249, 255–257]. With the use
of very large (40×40×40) supercells in [99,257], the Burns temperature was
identified in PSN and PMN, and its pressure dependence analyzed.

The sensitivity of properties to cation arrangement in perovskite oxides,
mentioned above, can be exploited to create new classes of artificially struc-
tured materials through control of ordering, compositional grading, composi-
tional modulation, and atomic-scale superlattices. The effects of local electric
fields, misfit strains, and atomic and electronic rearrangement at the inter-
faces combine to yield, in some cases, qualititatively new behavior and lend
themselves well to first-principles studies. For more information, the reader
is referred to recent reviews, including [6, 13, 14].
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The discussion above has been for systems with fixed-ion arrangements.
With first-principles calculations, it is possible also to probe questions of the
ordering of the cations in substitutional solid solutions. Unlike the isovalent
solutions, which show random substitution, the cations in heterovalent so-
lutions arrange themselves with significant degrees of short-range order (for
example, to favor local charge neutrality) and, in many cases, long-range
order. The effects of these arrangements have been discussed above; how-
ever, it is also of interest to understand the factors that result in particular
arrangements as the material is prepared.

Ion ordering on a fixed sublattice is naturally described by statistical
mechanical models, and such models for metal alloys have been highly devel-
oped. In alloy theory models that are based on the cluster expansion (CE)
technique, a statistical mechanical model is formulated by fitting a set of
effective cluster interactions (a CE Hamiltonian) to a set of first-principles
formation energies for various cation configurations. The CE Hamiltonian is
then used as input for Monte Carlo simulations to search for new low-energy
configurations not included in the fit, or to compute finite-temperature phase
diagrams. This approach is suitable for application to perovskite oxide phase
diagrams, with first-principles determination of the model parameters. For
example, the phase diagrams of PST and PST–PT were studied with this
approach in [263–265]. The role of electrostatics was highlighted by a model
in which only long-range interactions were included [266, 267]. This repro-
duces very well the ordering observed in systems where the A cation is Ba,
such as BZT or BMN–BZ, while the ordering in Pb-based systems deviates
from this model. The need for extra short-range terms has been discussed
in [268, 269]. This highlights the important role of covalent bonding in these
systems, as well as coupling to local distortions and strain.

6 Results for Defects

While defects can play a quite important role in the physics of ferroelectric
oxides, they are quite challenging to study using first-principles methods.
In particular, the use of very large supercells is generally required, and the
defect–defect interaction must be corrected for. Thus, there are relatively few
investigations to date; here we review a representative set of papers on point,
line and planar defects, mainly oxygen vacancies and domain walls.

Oxygen vacancies in ferroelectric perovskite oxides have been studied from
first principles in [129, 270–276]. The influence of oxygen vacancies on other
properties, such as magnetization and magnetoelectric effects, has recently
been investigated in BiFeO3 [277].

180◦ and 90◦ domain walls in BaTiO3 and PbTiO3 were studied us-
ing first-principles effective Hamiltonian and full first-principles calculations
in [278, 279]. Both types of walls are found to have a thickness of only one
to two lattice constants as illustrated in Fig. 6. This is consistent with the
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Fig. 6. First-principles description of the evolution of the atomic displacement in
the vicinity of a 180◦ domain wall in PbTiO3. From [279]

calculations presented in [280, 281]. The calculated shift of the atomic planes
across the 180◦ boundary is found to be non-negligible; this may have an im-
pact on the energetics of domain formation in constrained geometries, such
as thin films. The interaction of domain walls and oxygen vacancies was stud-
ied in [282]. Additional discussion of domain walls, including first-principles
results, can be found in the chapters by P. Chandra and P.B. Littlewood and
by Nicola A. Spaldin in this volume.

Antiphase boundaries can be considered as a special type of cation or-
dering, the effects of which have been discussed more generally above, or as
a planar defect. The effects on structure and dielectric properties have been
studied from first principles in [283, 284].



152 Karin M. Rabe and Philippe Ghosez

7 Results for Surfaces, Thin Films, Superlattices,
Nanowires and Nanoparticles

One of the most active areas recently in first-principles calculations for fer-
roelectrics has been in the physics of thin films, superlattices, nanowires and
nanoparticles. As this work has been described in detail in several current
reviews [6, 8, 10, 13, 14], we will discuss this topic only briefly here.

The physics of free surfaces plays a central role in determining the prop-
erties of these systems, due to surface relaxation, reconstruction, and mod-
ification of the electrical and mechanical boundary conditions to which the
interior is subject. Following procedures established in earlier investigations
of semiconductor surfaces, a number of useful surface investigations have been
presented, including [50, 285–294]. The polar character of the bulk systems,
and of ferroelectric states of the films and particles, requires special atten-
tion. For example, as illustrated in Fig. 7, in periodic slab calculations it
is necessary to introduce a controlled compensation for the depolarization
field in the case that there is a nonzero component of the polarization along
the normal to the film [289, 295]; otherwise the large depolarization field will
strongly suppress any tendency to a ferroelectric instability.

Recent progress in both experimental and first-principles techniques has
led to advances in understanding finite-size effects on ferroelectricity in ultra-
thin films. Contrary to previous conventional wisdom, perovskite ferroelectric
films can sustain a substantial polarization along the normal down to thick-
nesses of the order of a lattice constant [100, 296], provided that the depolar-
ization field is fully compensated. This has focused attention on the question
of the compensation of the depolarization field, its incompleteness for realis-
tic metallic electrodes, and the atomic-scale mechanism for compensation in
real systems [297, 298], which continues to stimulate new studies and ideas,
for example [102–104, 106, 295, 299, 300]. This involves not only understand-
ing of the effects of free surfaces, but also of the interface and interactions
with the substrate, if any. Indeed, there may be interesting physical behavior
associated with the substrate, produced by the proximity to the ferroelectric
film on it. One example is the ferroelectric field effect [301], and there is evi-
dence also of atomic-scale effects [302] for which first-principles investigation
should yield valuable insights. Surface effects are also extremely important
in low-dimensional systems such as nanodots and nanowires [162, 303].

The study of ferroelectric multilayers, particularly perovskite superlat-
tices, also has attracted a lot of attention, emphasizing the crucial role
of mechanical and electrical boundary conditions. This includes various
kinds of “bicolor” superlattices, including BaTiO3/SrTiO3 [190, 193, 304–
306], PbTiO3/SrTiO3 [191], KNbO3/KTaO3 [109] and BaTiO3/BaO [39], as
well as tricolor superlattices breaking inversion symmetry (BaTiO3/SrTiO3/
CaTiO3) [307–310]. Such systems are now also accessible experimentally (see,
for example, [311–314] opening the door to the search of artificial materials
with tailored properties.
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Fig. 7. Schematic representation of the planar averaged electrostatic potential of
a slab with a nonvanishing polarization perpendicular to the surface under short-
circuit boundary conditions (a). A fictitious field to guarantee the continuity of the
potential at the boundary of the supercell (dotted lines) appears in the supercell.
This unphysical field might be compensated by a dipole field (b). By tuning the
magnitude of the dipole correction properly, adding or subtracting certain amounts
to the periodically repeated potential, we can simulate a slab under vanishing dis-
placement field (c), or vanishing electric field (d) electrical boundary conditions.
From [289]
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Finite-size effects are expected to be especially important in lower-dimen-
sional ferroelectric nanoscale systems, namely nanowires and nanoparticles,
which have been the subject of recent first-principles investigations [103, 104,
162, 303]. Here, as in films, electrostatics plays an essential role in the stabil-
ity of the ferroelectric state. Electrostatics also has been shown to drive the
formation of complex domain and polarization configurations under appropri-
ate boundary conditions, especially in uncompensated small particles [101].
Appropriate treatment of surface relaxation at the atomic scale might also
constitute a crucial issue in the study of such ferroelectric nanosystems [162].
First-principles calculations should continue to be extremely valuable to ex-
ploring these effects, as well as the effects of the accompanying inhomogeneous
strain.

While epitaxial strain has already been discussed above, we should men-
tion again here that because of the large polarization–strain coupling in many
perovskite oxide ferroelectrics, this is one of the most important effects in
determining the characteristic physics of ferroelectrics in constrained geome-
tries. The interaction of the strain effects with the other factors that con-
tribute to the behavior of thin films should reward further theoretical and
experimental study.

8 Challenges and Prospects

The field of first-principles calculations for ferroelectrics has in recent years
seen rapid gains in the power of algorithms, of computer resources, and of
its conceptual framework. At the same time, experimentalists have made
dramatic progress in the synthesis and characterization of complex oxides in
general and ferroelectrics in particular, allowing control and measurement on
the atomic scale. As already mentioned in the Introduction, these two trends
have converged to produce a lively experimental–theoretical dialogue.

The search for new materials is a central focus of this dialogue. As inter-
esting new materials are identified in the laboratory, first-principles methods
can be brought to bear to analyze their structure and properties at the atomic
scale, and to provide guidance in identifying and exploring related materials.
This was the case for PMN−PT and its colossal piezoelectric effects; other
new classes of materials that are currently of interest include lead-free piezo-
electrics such as (Na1−xKx)0.5Bi0.5TiO3 [315], novel magnetoelectric multi-
ferroics, and electronic ferroelectrics.

Similarly, first-principles results have come to play an important role in
the study of ferroelectricity in constrained geometries at small length scales:
thin films, superlattices, nanoparticles and nanowires. The atomic and elec-
tronic rearrangements at the surfaces and interfaces, and the strong influence
they have on the aggregate properties of the system, can in some cases only
directly be probed by such calculations, and more generally are a valuable
complement to experimental probes.
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Among future challenges for first-principles methods, one of the most rel-
evant to understanding the physical behavior of real ferroelectrics is that of
predicting and analyzing dynamical behavior, particularly dielectric loss. This
will require development of methods and concepts to deal with the multiscale
nature of the defects and microstructure of real ferroelectric materials; such
developments are also crucial to the study of other important dynamical
phenomena, notably switching. Other properties that arise from electronic
excitations, including transport and optical properties, cannot be fully in-
vestigated in ground-state density-functional theory, though there may be
progress as more powerful methods become developed to the point of being
practical for solids as complex as ferroelectrics.

Indeed, new physical ideas and first-principles methods may yet be de-
veloped inspired by the needs of studies of ferroelectrics, following the ex-
ample of the development of the modern theory of polarization. There are
still unresolved questions about the application of DFT to polarized sys-
tems [181, 316–318], connected to errors in the computed electronic dielec-
tric responses [182] and Born effective charges [316, 319]. Another puzzle is
connected to the spurious charge transfer in heterostructures arising from an
incorrect conduction-band lineup,3 apparently inconsistent with the fact that
charge density is a ground-state property and thus should be obtainable in a
DFT calculation.

From this, we see that there continue to be many new promising research
directions, and an increasing integration of first-principles results into the
study of the physics of ferroelectrics. Many of the questions raised here in
this chapter will be answered in the coming years, and more exciting new sys-
tems and puzzles can be expected to emerge and demand lively and vigorous
research.
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ferro

Fer"ro A prefix, or combining form, indicating
ferrous iron as an ingredient; as, ferrocyanide.

[From Latin ferrum, iron.]

Source: Webster’s Revised Unabridged Dictionary,
(c) 1996, 1998 MICRA, Inc.

Abstract. We describe the similarities and differences between ferromagnets –
materials that have a spontaneous magnetization that is switchable by an applied
magnetic field – and ferroelectrics, which have an analogous electric-field switch-
able electric polarization. After comparing the driving force for ion off-centering
that causes the polarization in ferroelectrics with the physics of spin polariza-
tion that causes the magnetization of ferromagnets, we analyze the mechanisms
of domain formation and resulting domain structures in both material classes. We
describe the emerging technologies of ferroelectric and magnetoresistive random
access memories, and discuss the behavior of magnetoelecric multiferroics, which
combine ferromagnetism and ferroelectricity in the same phase.

The “ferro” part in the name “ferroelectric” is something of a misnomer,
since it does not refer to the presence of iron in ferroelectric materials. Rather
it arises from the many similarities in behavior between ferroelectrics, with
their spontaneous electric polarization, and ferromagnets, with their sponta-
neous magnetization. Indeed one of the earliest observations of ferroelectric-
ity ([1]) describes the electric hysteresis in Rochelle salt as “analogous to the
magnetic hysteresis in the case of iron.” A systematic comparison between
the behavior of ferromagnets and ferroelectrics, does not, to our knowledge,
exist in the literature. The purpose of this chapter is to outline the sim-
ilarities in behavior between ferromagnets and ferroelectrics, and, perhaps
more importantly, to point out the differences in their fundamental physics
and consequent applications. We hope that the comparison will be useful
both to readers with a background in ferroelectrics, who can benefit from the
K. Rabe, C. H. Ahn, J.-M. Triscone (Eds.): Physics of Ferroelectrics: A Modern Perspective,
Topics Appl. Physics 105, 175–218 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Comparison of hysteresis loops in (a) BaTiO3, a typical ferroelectric [2]
(copyright (1950) by the American Physical Society), and (b) Fe, a typical ferro-
magnet [3]. Note that the forms of the hysteresis curves are rather similar in the
two cases

techniques, concepts and applications developed in the more mature field of
ferromagnetism, as well as ferromagnetism researchers learning about ferro-
electrics. We feel that such a discussion is particularly timely in light of the
flurry of recent interest in so-called multiferroic materials, which are simul-
taneously ferromagnetic and ferroelectric.

Superficially there are indeed many similarities between ferroelectrics and
ferromagnets. Let us start with the basic definition; a ferroelectric is defined
to be a material with a spontaneous electric polarization that is switchable
by an applied electric field. Likewise, a ferromagnet has a spontaneous mag-
netization that can be reoriented by an external magnetic field. (Note that
in this chapter we will use “polarization” as a generic term to describe both
magnetic and electric polarization.) Usually the switching process is associ-
ated with a hysteresis, which can be very similar in form in the two cases
(Fig. 1). And often a change in the polarization orientation is accompanied by
a change in shape. In both cases the macroscopic polarization can be reduced
to zero by the presence of domains; that is regions of oppositely oriented (and
therefore canceling) polarization within the sample. Both ferromagnetic and
ferroelectric polarization decrease with increasing temperature, with a phase
transition to an unpolarized (paramagnetic or paraelectric) state often oc-
curring at high temperature. Of course, the microscopic features that lead to
ferromagnetism and ferroelectricity are quite distinct; ferroelectrics have an
asymmetry in charge (either ionic or electronic or both), whereas ferromag-
nets have an asymmetry in electronic spin.

On the applications front, the coupling between the polarization order
parameter and the lattice strain leads to the properties of piezomagnetism in
ferromagnets and piezoelectricity in ferroelectrics. Piezoelectric effects tend to
be larger than piezomagnetic, and so ferroelectric piezoelectrics dominate in
transducer and actuator technologies. In addition, the hysteresis that causes
the spontaneous polarization to persist in the absence of an applied field leads
to storage applications in which the direction of either electric or magnetic
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polarization represents the “1” or “0” of the data bit. Here, magnetic ma-
terials have the largest market share, for example in computer hard disks,
and magnetic tape, although ferroelectrics are an upcoming technology for
information storage.

This contribution is organized as follows: In Sect. 1 (Fundamentals) we
compare the fundamental driving force for ion offcentering that causes the
electric polarization in ferroelectrics with the physics of spin-polarization that
results in the magnetization of ferromagnets. In addition, we compare the do-
main structures, and mechanisms of domain formation in ferromagnets and
ferroelectrics. In Sect. 2 (Applications) we focus on the use of ferromagnets
and ferroelectrics in random access memory (RAM) devices, and compare
the emerging technologies of ferroelectric RAM and magnetoresistive RAM.
Finally, in Sect. 3 (Multiferroics) we discuss the rather limited class of mate-
rials known as magnetoelectric multiferroics that are both ferromagnetic and
ferroelectric.

1 Fundamentals

1.1 Understanding the Origin of Spontaneous Polarization

In this section we outline the mechanisms that cause some materials to be
either magnetically or electrically polarized, while most are not. We will see
that, in spite of the similarities in the macroscopic phenomena described
as ferromagnetism or ferroelectricity, the electron-level details that lead to
electric or magnetic polarization arise from quite different origins.

1.1.1 What Causes Ferroelectricity?

In order for a material to exhibit a spontaneous electric polarization it must
have a noncentrosymmetric arrangement of the constituent ions and their
corresponding electrons. To be classified as a ferroelectric, the electric po-
larization must in addition be switchable, and so a nonreconstructive tran-
sition between two stable states of opposite polarization must be accessible
at known experimental fields. In this section we review the origins of ionic
offcentering in known ferroelectrics, and show that, in most cases, the polar
phase is stabilized by energy-lowering chemical-bond formation. Note that a
permanent noncentrosymmetric arrangement of the ions is insufficient; some
noncentrosymmetric structures, such as the wurtzite structure (Fig. 2), do
not permit ferroelectricity since they can not be switched at known experi-
mental electric fields.

Second-Order Jahn–Teller Ferroelectrics

Many ferroelectric structures can be considered to be derivatives of a non-
polar, centrosymmetric prototype phase, of which the most widely studied
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Fig. 2. Materials such as ZnO and GaN, which adopt the noncentrosymmetric
wurtzite structure shown here, have spontaneous electric polarization but are not
ferroelectric since they do not switch in response to an applied electric field

Fig. 3. The centrosymmetric cubic perovskite
structure. The small B cation (in black) is at
the center of an octahedron of oxygen anions
(in gray). The large A cations (white) occupy
the unit-cell corners

example is the perovskite structure shown in Fig. 3. The noncentrosymmetric
structure is reached by shifting either the A or B cations (or both) offcenter
relative to the oxygen anions, and the spontaneous polarization derives largely
from the electric dipole moment created by this shift.

If the bonding in an ideal cubic perovskite were entirely ionic, and the
ionic radii were of the correct size to ensure ideal packing, then the structure
would remain centrosymmetric, and therefore not ferroelectric. This is be-
cause, although long-range Coulomb forces favor the ferroelectric state, the
short-range repulsions between the electron clouds of adjacent ions are mini-
mized for nonpolar, cubic structures [4, 5]. The existence or absence of ferro-
electricity is determined by a balance between these short-range repulsions,
that favor the nonferroelectric symmetric structure, and additional bonding
considerations which act to stabilize the distortions necessary for the ferro-
electric phase [6]. The changes in chemical bonding that stabilize distorted
structures have long been recognized in the field of coordination chemistry,
and are classified as second-order Jahn–Teller effects [7–9], or sometimes
pseudo-Jahn–Teller effects [10], in the chemistry literature.
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The origin of the second-order, or pseudo-, Jahn–Teller effect can be seen
by writing down a perturbative expansion of the energy of the electronic
ground state, E(Q), as a function of the coordinate of the distortion, Q [11]:

E(Q) = E(0) + 〈0|(δH/δQ)0|0〉Q

+
1
2

(

〈0|(δ2H/δQ2)0|0〉 − 2
∑′

n

|〈0|(δH/δQ)0|n〉|2
En − E(0)

)

Q2

+ · · · . (1)

Here, E(0) is the energy of the undistorted ground state, and the Ens are the
excited-state energies. The term that is linear in Q is the first-order Jahn–
Teller contribution, which is nonzero only for degenerate states. This term
is responsible for the characteristic tetragonal distortions in d1 and d4 per-
ovskites, for example. Of the second-order terms, the first, 〈0|(δ2H/δQ2)0|0〉,
is always positive, whereas the second, −2Σ′

n
|〈0|(δH/δQ)0|n〉|2

En−E(0) is always nega-
tive, provided that it is nonzero. If the second term is larger than the first,
then a distortion will cause a second-order reduction in energy. The first term
describes the increase in energy on distortion, in the absence of redistribu-
tion of the electrons, and is dominated by the Coulomb repulsions between
electron clouds. Therefore, it is smallest for closed-shell ions that lack spa-
tially extended valence electrons. Two criteria must be satisfied for the second
term to be large. First, the energy denominator, En − E(0), must be small,
therefore there must be low-lying excited states available. Second, the matrix
element 〈0|(δH/δQ)0|n〉 must be nonzero; this occurs if the product of the
symmetry representations for the ground and excited state and the distor-
tion is totally symmetric. Thus, for a noncentrosymmetric distortion, if the
ground state is centrosymmetric, then the lowest excited state must be non-
centrosymmetric. Note that this term represents the mixing of the ground
state with the excited states as a result of the distorting perturbation, and
as such is associated with the formation of new chemical bonds in the low-
symmetry configuration [12]. A noncentrosymmetric distortion then results if
the lowering in energy associated with the mixing of term two is larger than
the repulsion opposing the ion shift, described by term one [13].

The effect results in two common and subtly different kinds of ferroelectric
distortions. The first is the ligand-field stabilization of the perovskite B-site
transition-metal cation by its surrounding anions, as occurs, for example,
at the Ti site in BaTiO3. Here, the centrosymmetric, formally d0 transition
metal mixes in oxygen p character as it displaces towards an oxygen ion or
group of ions [14] causing an energy-lowering rehybridization. The calculated
change in electronic structure associated with the distortion, in particular the
strong downshift of the bottom of the valence band, is shown in Fig. 4. At the
same time, Ti4+ is a closed-shell ion, and so the increase in Coulomb repulsion
associated with its offcentering is small, thus a noncentrosymmetric distortion
is energetically favorable. The second is driven by stereochemical activity of
ns2 “lone pairs” of electrons, which mix in some cation and anion p character
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Fig. 4. Calculated orbital resolved densities of states in BaTiO3. The upper panels
show the Ti d and oxygen p densities of states in cubic paraelectric BaTiO3. The
lower panels show the densities of states in the same orbitals after the Ti ion is
displaced in the z-direction towards the “on-top” oxygen, OT, in a stylized ferro-
electric phase transition. Note the strong increase in hybridization and shift down
in energy of the on-top oxygen and the Ti orbitals oriented along the direction of
the displacement (dxz and d2

z). The in-plane oxygens, OP, and the other Ti d or-
bitals are largely unaffected. From [14]. Copyright (2002) by the American Physical
Society

and thereby lose their center of symmetry. This “stereochemical activity of
the lone pair” is the driving force for offcenter distortion in the group IV
chalcogenides [15] (for example GeTe). The lone pair can be clearly seen in
the right panel of Fig. 5, which shows the calculated electron-localization
function [16] of GeTe in the high-symmetry rocksalt structure (left) and the
rhombohedral ferroelectric structure (right). Sometimes, both mechanisms
occur in the same material, for example in PbTiO3, where the activity of
the lead ion [17] causes a strain that stabilizes the tetragonal phase over the
rhombohedral phase seen in BaTiO3 [4, 18].

Note that we have so far only considered whether the ions will offcenter
at a local level; whether or not the local distortions line up (to form a ferro-
electric phase) or oppose (to give a structure that is sometimes described as
anti ferroelectric) depends on other factors, which will be discussed later in
the chapter.

Geometrically Driven Ferroelectrics

Note that very few perovskites exist in the ideal cubic structure shown in
Fig. 3, and in fact even those that are not ferroelectric have symmetry-
lowering distortions from the ideal structure. Of particular relevance here
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Fig. 5. Calculated valence-electron localization functions (ELFs) in GeTe in the
high-symmetry rocksalt structure (left) and the rhombohedral ferroelectric struc-
ture (right). Lighter colors indicate regions of strong electron localization, and
darker colors signify poor localization, with the scale bar between the plots running
from ELF values = 0.0 to1.0. The Ge atom is at the center of the picture. The lone
pair localizes as the Ge atom moves offcenter (to the left) in the ferroelectric struc-
ture, and is seen as a lobe-shaped region of high electron localization to the right
of the Ge atom. From [15]. Copyright (2003) by the American Physical Society

are rotations, often called “Glazer tilts”, of the oxygen octahedra, in which
the octahedra are largely undistorted and their corner-sharing connectiv-
ity is maintained [19–21]. Such rotations do not result in a ferroelectric
state in cubic perovskites, since a rotation of an octahedron in one direc-
tion forces its neighbors to rotate in the opposite direction; this retains the
center of symmetry (see the sketch in Fig. 6). However, when they occur
in materials with different lattice structures and symmetries they can in-
deed lead to a ferroelectric ground state. Since the driving force for the
symmetry-lowering distortion is purely geometric (the ions are not the cor-
rect size to exactly maintain the high-symmetry phase) and there is minimal
change in chemical bonding between the high-symmetry and ferroelectric
phases, we call such materials geometrically driven ferroelectrics. Examples
include hexagonal yttrium manganite [22] and tris-sarcosine calcium chloride,
(CH3NHCH2COOH)3CaCl2 [23].

Long-Range Ordering

Given the occurrence of local offcentering of the ions, described above, the
primary driving force for the long-range cooperative ordering that yields
the net ferroelectric polarization is the dipole–dipole interaction. This inter-
action is analagous to the quantum-mechanical exchange, discussed below,
which drives long-range ordering of the magnetic moments in ferromagnets.
It has been computed using first-principles density-functional methods for
BaTiO3 [24, 25].

In some cases, however, competing effects overcome the dipole–dipole in-
teraction’s tendency to promote ferroelectric ordering, and even when the
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Fig. 6. Tilting of the oxygen octahedra in cubic perovskites (schematic). Notice
that when the central octahedron rotates clockwise, its neighbors in the plane are
required to rotate anticlockwise in order to maintain the connectivity. As a result
the final structure is nonpolar

ions are locally offcentered, they order such that their dipole moments cancel
out and there is no net polarization; such behavior is sometimes classified
as antiferroelectricity. Note, however, that antiferroelectrics do not form spe-
cific antiferroelectric domains (although domains can form from associated
ferroelastic coupling in some cases), nor can they be characterized by a pro-
totype/ferroic phase point-group pair [26]. Therefore, although a conceptual
analogy to antiferromagnets is appealing, a formal correspondence between
antiferroelectrics and antiferromagnets does not exist.

As described in the previous subsection, the so-called “Glazer tiltings”
found in many cubic perovskites do not remove the center of symmetry of
the structure, and so they do not, on their own, cause a ferroelectric ground
state. However many materials combine Glazer tiltings with second-order
Jahn–Teller ions, and the tiltings can then affect the nature of the SOJT
offcentering. Figure 7 shows a schematic of an untilted perovskite (left) in
which vertical and horizontal offcentering of the A-site cations are equivalent,
compared with a Glazer-tilted perovskite (right), in which the axes for off-
centering are inequivalent. Often the tiltings even promote the antiparallel
alignment of neighboring SOJT ions; the resulting local dipole moments then
cancel out to give zero net polarization. Such materials, of which PbZrO3

is the prototype [27], are often described therefore as antiferroelectric. In
Fig. 8 we show the calculated phonon band structures for cubic PbTiO3

and PbZrO3, from [28]. The imaginary frequency phonons, which indicate
instabilities from the cubic phase, are plotted on the negative y-axis. Note
that both materials have an unstable Γ point phonon; in PbTiO3 this mode
dominates, resulting in the tetragonal ferroelectric ground state. However, in
the PbZrO3 case, the nonferroelectric rotational instabilities at M and R are
stronger, and combine with the Pb-offcentering Σ(1

4
1
40) mode to produce the

antiferroelectric ground state.
Finally, we point out that in some materials, multiple distortions can

occur that create local dipole moments of different magnitudes but in opposite
directions, such that there is an overall polarization that is smaller than that
which would be produced by each distortion on its own. Such materials are
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Fig. 7. Comparison of A-site offcentering in non-Glazer-tilted (left) and Glazer-
tilted (right) structures. In high-symmetry structures without tiltings, all of the
A-site ions can offcenter in the same geometric direction, favoring a cooperative
ferroelectric distortion. In the tilted case, the axes of offcentering on adjacent ions
are inequivalent, and antiferroelectric ground states are often favored

Fig. 8. Calculated phonon-dispersion relations of PbTiO3 and PbZrO3, along high-
symmetry lines in the simple cubic Brillouin zone. From [28]. Copyright (1999) by
the American Physical Society. Reproduced with permission
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described as ferrielectrics, by analogy with the ferrimagnets that we discuss
below. An example is sodium bismuth titanate, Na0.5Bi0.5TiO3 [29], in which
the Ti4+ and Bi3+ ions move in opposite directions relative to the oxygen
framework, giving opposing contributions to the overall polarization.

1.1.2 What Causes Ferromagnetism?

The criterion for the occurrence of magnetism is quite different from that for
ferroelectricity. Whereas a ferroelectric requires offcenter displacements of
the ions, in a ferromagnet the constituent electrons must have a net angular
momentum. This can arise from either the orbital component of the angular
momentum, or the spin component (if there are unequal numbers of “up”-
and “down”-spin electrons) or both. Indeed there is a strong driving force
for electrons to align their spins parallel (creating unequal numbers of up-
and down-spin electrons); this is the quantum-mechanical exchange energy.
We can develop an intuition for why exchange coupling is such a strong driv-
ing force using simple electrostatic arguments: If two electrons in an atom
have antiparallel spins, then they are allowed to share the same atomic or
molecular orbital. As a result they will overlap spatially, thus increasing the
electrostatic Coulomb repulsion. On the other hand, if they have parallel
spins, then they must occupy different orbitals and so will have less unfavor-
able Coulomb repulsion. So the orientation of the spins affects the spatial part
of the wavefunction, and this in turn determines the electrostatic Coulomb
interaction between the electrons. We can make a rough classical estimate of
the order of magnitude of the Coulomb repulsion between two electrons by
assuming that the average distance between electrons is around 1 Å. Then
the Coulomb energy,

U =
e2

4πε0r
≈ (1.6 × 10−19)2

(1.1 × 10−10)(1 × 10−10)
J ≈ 2.1 × 10−18J ≈ 13 eV . (2)

This is a large energy! So, if the electron distribution is changed even by a
small amount, the effect on the total energy of the system can be significant.
In fact typical exchange energies in solids, defined to be the energy difference
per magnetic ion between ferro- and antiferromagnetically ordered arrange-
ments, are of the order of electron volts. (Note that the magnetic dipolar
energy between two electrons a few Å apart is ∼ 10−6 eV!)

There are two phenomenological theories of ferromagnetism that have
been successful in explaining many of the properties of ferromagnets – the
localized moment theory of Curie and Weiss, which arose from the study of
magnetic insulators, and the Stoner band theory of ferromagnetism in metals.
In the localized moment picture, local magnetic moments exist on the ions
in the solid at all temperatures; below the Curie temperature the moments
align to give a ferromagnetic state, and above the Curie temperature they
are disordered by thermal energy and there is no net magnetization. Such
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behavior is analogous to the order–disorder description of ferroelectrics, in
which the constituent ions are always offcentered, but only below the Curie
temperature do the directions of offcentering align cooperatively to give a net
electric polarization. In the band theory, there are equal numbers of up- and
down-spin electrons above the Curie temperature, and hence no magnetic
moment. Below Tc the up- and down-spin bands are unequally populated
by electrons, leading to a net magnetic moment. Here, the analogy is to
the displacive model of ferroelectricity, in which the Curie temperature is
coincident with offcentering of the ions. We summarize both models in the
next section, and show that, in both cases, tightly bound, localized electrons,
such as transition-metal d, or rare-earth f electrons, provide the impetus for
magnetism to occur.

Localized Moment Model

In a classic 1907 paper [30], Weiss postulated that an internal “molecular
field” acts in ferromagnetic materials to align magnetic moments, arising
from unequal numbers of up- and down-spin electrons localized on each atom
or ion, parallel to each other. This “molecular field” is in fact not the long-
range dipolar interaction envisioned originally, but the short-range quantum-
mechanical exchange interaction mentioned above. Below the Curie tempera-
ture, Tc, the molecular field is so strong that it magnetizes the substance even
in the absence of an external applied field. At high enough temperatures, the
thermal energy, kT , and associated entropic effects overcome the alignment
energy of the molecular field, resulting in random orientation of the mag-
netic moments and paramagnetic behavior. The Weiss picture leads to the
experimentally observed Curie–Weiss law behavior for the susceptibility, χ,
of many magnetic materials:

χ =
C

T − Tc
, (3)

and also accounts for the observed susceptibility of many antiferromagnets
and ferrimagnets.

Stoner Band Model

The Weiss theory breaks down in one important aspect, however: It is unable
to account for the measured values of the magnetic moment per atom in
some ferromagnetic materials, particularly in ferromagnetic metals. There
are two significant discrepancies. First, according to the Weiss theory, the
magnetic dipole moment on each atom or ion should be the same in both the
ferromagnetic and paramagnetic phases. Experimentally this is not the case.
Second, in local moment theory, the magnetic dipole moment on each atom
or ion should correspond to an integer number of electrons. Again this result
is often not observed. A more successful approach for metals is to use the
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Fig. 9. Schematic 3d and 4s up- and down-spin densities of states in first-row
transition metals, with exchange interaction included

Stoner band theory of ferromagnetism [31], in which the fundamental driving
force for ferromagnetism is again the exchange energy, which is minimized
if all the electrons have the same spin. Opposing the alignment of spins is
the increased band energy involved in transferring electrons from the lowest
band states (occupied equally with up- and down-spin electrons) to band
states of higher energy. This band energy prevents simple metals from being
ferromagnetic.

In the elemental ferromagnetic transition metals, Fe, Ni and Co, the Fermi
energy lies in a region of overlapping 3d and 4s bands. The 4s bands are
broad, with a low density of states at the Fermi level. Consequently, the
energy that would be required to promote a 4s electron into a vacant state
so that it could reverse its spin is more than that which would be gained by
the resulting decrease in exchange energy, and so the 4s bands are not spin-
polarized. By contrast, the 3d band is narrow and has a much higher density
of states at the Fermi level. The large number of electrons near the Fermi level
reduces the band energy required to reverse a spin, and the exchange effect
dominates. The exchange interaction produces an exchange potential that
effectively shifts the energy of the 3d band for electrons with one spin direction
relative to the band for electrons with the opposite spin direction, giving
the exchange-split band structure shown in Fig. 9. The magnetic moment
does not necessarily correspond to an integer number of electrons, since the
electrons are shared between partially filled 4s, 3d↑ and 3d↓ bands.
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Fig. 10. Schematic of the superexchange mechanism in MnO. The energy is lowered
if some covalent bonding occurs between the Mn and O ions. In this case the left-
hand Mn is up-spin, and so can only bond with the down-spin electron in the
appropriately oriented oxygen 2p orbital. This leaves the up-spin oxygen electron
to bond with the right-hand Mn ion, which therefore must be down-spin (and so
antiferromagnetic to the left-hand Mn)

Real materials obviously do not behave exactly like either of these simple
models, although one or other is usually a fairly reasonable description in
most cases. For example, rare-earth magnets contain highly localized f elec-
trons that are well described by the Weiss localized moment theory, whereas
in metallic ferromagnets the magnetic order, arising from the less strongly
localized d orbitals, is Stoner-band-like.

Other Kinds of Magnetic Ordering

Although the exchange energy is always minimized when electrons have their
spins parallel to each other, in practice there are many other contributions
to the electronic energy and the net result, particularly in insulators, is often
an antiferromagnetic arrangement. For example, the “superexchange” inter-
action, in which the magnetic ordering between cations is determined by
chemical-bonding considerations with intervening anions, often leads to anti-
ferromagnetism (or ferrimagnetism if the ions are different). Superexchange
is illustrated in Fig. 10, for the example of Mn2+ ions in which an oxygen
atom lies between two filled Mn d orbitals, and has some covalent bond for-
mation with both of them. Note that this driving force for antialignment of
spins is strikingly different from those described in Sect. 1.1.1 that lead to
ferrielectric or antiferroelectric behavior.

Note that, for certain bonding configurations, superexchange interactions
can lead to parallel alignment of magnetic moments – for example if an oxy-
gen atom bonds with two Mn d orbitals, one of which is empty and the
other of which is filled – as illustrated in Fig. 11. Therefore, many magnetic
materials contain a combination of ferro- and antiferromagnetically coupled
ions. The details of the long-range magnetic ordering are then determined
by strain, since ferro- and antiferromagnetically coupled ions have different
bond lengths. Minimizing the strain energy usually results in a net antifer-
romagnetism, for example in LaMnO3, planes of ferromagnetically coupled
Mn ions couple antiferromagnetically to each other [32]. But in magnetic
ferroelectrics, which we discuss in Sect. 3, the additional strain from the
ferroelectric distortion can modify the magnetic ordering.
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Fig. 11. Superexchange mechanism between one empty (marked in red) and one
occupied Mn d orbital. The oxygen ion makes a ligand-field donation of an electron
into the empty Mn d orbital (left); to optimize the Hund’s rule coupling it donates
the electron with spin parallel to that of the Mn ion (up-spin). The down-spin
oxygen electron forms a partial covalent bond with the electron in the occupied
Mn d orbital to its right. For this to occur, the right-hand Mn ion must also be
up-spin, i.e., parallel to the first

1.2 Domains

The subject of ferroelectric-domain formation was covered in the chapter by
P. Chandra and P.B. Littlewood in this volume. Ferromagnets also form
domains, for many of the same reasons. In this section we summarize the do-
main theory of ferromagnetism, and point out the similarities and differences
between ferromagnetic and ferroelectric domains. For a more detailed review
of domains in ferromagnets, see the books by Spaldin [33] and Nesbitt [34],
or the review article by Kittel and Galt [35].

Structure

Domains form so as to minimize the total energy of the material. Although a
single ferromagnetic domain, in which all the magnetic moments were aligned,
would minimize the exchange energy, it also maximizes the magnetostatic
energy, which is the main driving force for domain formation. Other contri-
butions, in particular the magnetocrystalline and magnetostrictive energies,
determine the size and shape of domains. Figure 12 illustrates the reduction
of magnetostatic energy by domain formation. The single-domain sample in
Fig. 12a has a large magnetostatic energy, which is reduced somewhat in
Fig. 12b by the formation of parallel domains. Of course, at the domain
boundaries the magnetic moments are no longer oriented parallel to each
other, and so there is an increase in exchange energy. In Fig. 12c the magne-
tostatic energy is eliminated completely. However, if the material has strong
magnetostriction (which causes the sample to change shape in the direction
of magnetization) or a strong uniaxial magnetocrystalline anisotropy (which
causes the magnetization to align preferentially along a single crystallographic
axis), the perpendicular domains shown in Fig. 12c can be unfavorable. In
this case a structure with very small perpendicular domains, such as that
shown in Fig. 12d, is often the lowest-energy arrangement.

The width of the boundary between magnetic domains (the domain wall)
is determined by a balance between the exchange energy (which prefers wide
walls, so that adjacent magnetic moments are not too far from being parallel
to each other) and the magnetocrystalline energy (which prefers narrow walls,
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Fig. 12. Reduction of the magnetostatic energy by domain formation in a ferromag-
net. The single domain shown in (a) optimizes the exchange, magnetocrystalline
and magnetostatic energies. Often, the arrangement shown in (d) has the lowest
total energy

so that the magnetization is aligned most closely to an easy axis). For typical
transition metals, domain walls are a few hundred angstroms thick (or consist
of a few hundred planes of atoms).

The exchange energy cost per square meter, σex, within a domain wall is
given by

σex =
kTc

2

( π

N

)2

N
1
a2

J · m−2 , (4)

where N + 1 is the number of atomic layers in the wall, and a is the spacing
between the atoms. The anisotropy energy cost per square meter, σA, is given
by

σA = KNa J · m−2 , (5)

where K, the magnetocrystalline anisotropy constant, is a measure of the
cost of not having all the atoms aligned along easy axes. The exchange energy
cost, the anisotropy energy cost and the sum of these two energy costs are
plotted in Fig. 13 for iron, for which K = 0.5 × 105 J · m−3, a = 0.3 nm, and
Tc = 1014 ◦C.

The minimum energy occurs when d(σex+σA)
dN = 0. That is, −kTc

2

(
π
a

)2 1
N2 +

Ka = 0. Solving for N gives

N =
π

a

√(
kTc

2Ka

)

. (6)

(Note that this also corresponds to the N value for which σex = σA.) Sub-
stituting the values of K, Tc and a for iron into this expression gives N =
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Fig. 13. Variation of exchange energy, anisotropy energy and their sum as a func-
tion of domain-wall thickness (obtained using (4) and (5), with parameters for iron)

255. Therefore, the wall thickness, Na = 76.8 nm, and the wall energy is
7mJ · m−2.

Such wide domain walls in ferromagnets are in sharp contrast to those
in ferroelectrics, which have been shown both experimentally (using high-
resolution transmission electron microscopy) [36] and by ab-initio calcula-
tions [37] to have a thickness of only a few lattice constants. In turn, the
domain-wall energies in ferroelectrics are considerably larger than those in
typical ferromagnets. Stemmer et al. [36] compared lattice parameters deter-
mined using HRTEM with predictions based on Landau–Ginzburg theory to
extract a value of 50mJ · m−2 for a 90◦ domain wall in PbTiO3. For com-
parison, first-principles calculations [37] give a value of 35mJ · m−2 for a 90◦

domain wall and ∼150mJ · m−2 for a 180◦ domain wall (with the exact value
depending on the details of the symmetry used in the calculation). The same
first-principles study [37] also showed that the change in polarization in fer-
roelectric domains is accommodated by a reduction in the magnitude of the
local atomic displacements at the domain wall. This is in contrast to the
situation in magnetic domains, where the local moments are not significantly
reduced, but instead rotate their orientation through the width of the wall.

Size Effects

Although the size of an actual domain is influenced by many factors, including
the size of the sample, the nature of the surface, and the defect structure,
below a certain size (typically a few hundred angstroms), particles contain
only one domain. This can be understood qualitatively by arguing that, below
this size, the domain wall is just too wide to fit into the particle. We can
make a more quantitative estimate of the size of single-domain particles by
looking at the balance between the magnetostatic energy and the domain-wall
energy (Fig. 14). A single-domain particle (Fig. 14a) has high magnetostatic
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Fig. 14. Balance between magnetostatic and domain-wall energies in single and
multidomain particles. (a) shows a single-domain particle with high magnetostatic
energy. In (b), introduction of a domain wall has reduced the magnetization energy
but increased the exchange energy

energy but no domain-wall energy, whereas a multidomain particle (Fig. 14b)
has lower magnetostatic energy but higher domain-wall energy. In fact, the
magnetostatic energy is proportional to the volume of the particle (i.e., r3,
where r is the particle radius), and the domain-wall energy is proportional to
the area of the wall, r2. The dependence of the magnetostatic and exchange
energies on particle radius is plotted in Fig. 15. Below some critical radius,
rc, it is energetically unfavorable to form domain walls and a single-domain
particle is formed.

So large single-domain particles form if either the domain-wall energy is
large (because of, for example, large magnetocrystalline anisotropy) so that
wall formation is unfavorable, or if the saturation magnetization is small, so
that the magnetostatic energy is small.

Properties of Small Particles

The coercivity of small particles as a function of particle size is shown in
Fig. 16. Notice that, as the particle size is reduced into the single-domain
region, the coercivity increases. This is because the magnetization-reversal
process cannot take place via domain-wall motion, but must rather use the
energetically more demanding route of magnetization rotation. Such single-
domain particles are useful in, for example, data-storage applications, since
their coercive switching fields tend to be large.

Below a certain particle size, known as the superparamagnetic limit, how-
ever, we see that the coercive field goes to zero. This occurs when thermal
fluctuations are able to exceed the magnetic anisotropy energy that aligns
the magnetization in a specific direction. The anisotropy energy is given by
the product of the anisotropy constant, K, and the volume of the particle.
As the volume is reduced, KV becomes comparable to the thermal energy
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Fig. 15. Relative stability of single- and multidomain particles. The dashed line
shows the energy associated with the formation of single-domain particles. Below
the critical radius, rc, single-domain particles have a lower energy than multi-do-
main particles (shown by the solid line)

Fig. 16. Coercivity as a function of size for
small particles of a ferromagnetic material
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kT . As a result, thermal energy can overcome the anisotropy “force” and
spontaneously reverse the magnetization of a particle from one easy direc-
tion to the other, even in the absence of an applied field. The critical size
at which superparamagnetism occurs depends on the anisotropy energy of
the particle, but is typically around 100 Å diameter for spherical particles at
room temperature. Below this size, a permanent spontaneous magnetization
will not be measured.

In contrast, ferroelectricity can be observed down to very small sizes, even
on the scale of a few lattice constants, under appropriate electrical and me-
chanical boundary conditions. More discussion can be found in the chapters
by K. M. Rabe and P. Ghosez (first-principles) and by C. Lichtensteiger,
M. Dawber and J.-M. Triscone (finite-size effects) in this volume.

The origin of both the different size dependencies and different domain-
wall widths in ferroelectrics and ferromagnets can be understood to result
from the different atomic-level mechanisms driving ferromagnetism and fer-
roelectricity. Ferromagnets prefer wide domain walls, in which adjacent mag-
netic moments are oriented close to each other, because the exchange coupling
between magnetic moments is strong, and the magnetocrystalline anisotropy
energy, which couples the spin to the lattice, is driven by spin-orbit coupling,
which is comparatively weak.

In ferroelectrics the situation is quite different in that the energies of the
“anisotropy” and “exchange” effects are comparable. For example, the cal-
culated energy difference in BaTiO3 between the rhombohedral ground state
(in which the atoms displace along the [111] direction) and the higher-energy
tetragonal phase (in which they displace along [100]) is around 5meV [18]. We
take this quantity to be the ferroelectric analog of the magnetocrystalline an-
isotropy energy in ferromagnets. The energy difference between ferroelectric
and antiferroelectric configurations (which we call the “ferroelectric exchange
energy”) for the same set of atomic displacements has been calculated in the
context of the study of ferroelectric domain walls; for BaTiO3 it is 15meV
per formula unit [38]. Therefore, the energetic driving force for maintaining
wide domain walls (the exchange energy) is comparable in magnitude to that
favoring narrow walls (the anisotropy energy) in ferroelectrics. Finally, we
point out that the calculated energy difference between the ferroelectric and
high-symmetry cubic phase in BaTiO3 at the experimental lattice constant
is ∼15meV [18]. Therefore, it is feasible to include unpolarized layers in the
domain walls. In contrast, in typical ferromagnets, the calculated energy dif-
ferences between ferro- and paramagnetic configurations is of the order of
1 eV. In this case it is easy to see why the full value of the magnetic moment
is maintained through the domain wall, and changes from one domain to the
other by rotating its orientation.
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2 Applications

In principle, ferromagnets and ferroelectrics could find many similar applica-
tions. Both have spontaneous and switchable polarizations that can therefore
be used for data storage. Both have coupling between the polarization and
the strain, which can be exploited in transducer applications such as sensors
or actuators. And their large susceptibilities to magnetic or electric fields lead
to applications in which they concentrate flux. For example, the high perme-
ability of ferromagnets is exploited in transformer cores, and the large dielec-
tric susceptibility of ferroelectrics is used in capacitor applications. However,
their most widespread applications are quite distinct. Piezoelectric ceram-
ics such as PZT have an almost total monopoly on transducer applications
such as sonar detectors. The primary reason for this is that typical elec-
trostrictive strains, driven by structural phase transitions, are considerably
larger than typical magnetostrictive strains, which are caused by the much
weaker spin-orbit interaction. For example, the elongation along the polar
axis in tetragonal ferroelectric PbTiO3 is around 1% of its high-symmetry
cubic phase lattice parameter (optimized piezoelectrics such as PZT have
even larger responses), whereas length changes caused by magnetization of
Fe and Ni are three orders of magnitude smaller. While there has been some
recent progress (and considerable current research) on “giant magnetostric-
tive” materials [39] such as the terbium-dysprosium-iron alloy terfenol-D,
shape changes are still not large (∼0.1%) and other problems such as eddy-
current losses and poor durability have limited their adoption in devices. In
contrast, magnetic media have a clear lead in tape and disk storage, in large
part because of low cost and technology maturity, but also because of the
straightforward read process associated with magnetic fringing fields at the
surfaces of magnetized samples.

In this section we focus on one specific pair of devices in order to compare
and contrast the properties of ferromagnets and ferroelectrics. Instead of
choosing the most widely used applications for each, we use random access
memories (RAMs) for our case study. Our motivation is twofold: first, the
technological objectives of ferroelectric random access memory (FRAM) and
magnetoresistive random access memory (MRAM) are similar, allowing for a
direct comparison between the two; therefore the distinct architectures that
have emerged in the two cases illustrate details of the two phenomena and
materials, and the associated differences in system engineering, required to
make a working device. And second, both technologies are fairly immature,
so exciting new advances emerge regularly.

FRAM and MRAM distinguish themselves from traditional semiconduc-
tor random access memory (RAM) by their nonvolatility, that is the fact that
they retain data when the power is switched off. In addition to the obvious
advantage of not losing the unsaved portion of one’s carefully written book
chapter during a power outage, this also means lower power consumption
(very important for portable technologies) and faster boot-up times for com-
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Fig. 17. Crosspoint architecture used for FRAM and MRAM devices

puter applications. Also, both FRAM and MRAM have fast read, write and
access times, distinguishing them from existing nonvolatile technologies such
as flash and read-only memories (ROMs). Their current limitations are low
density and high cost, although current research efforts might well overcome
both.

Both MRAM and early (up to around 1980) FRAM devices use what
is called a “crosspoint” architecture, in which memory cells are arranged in
a square matrix, joined by two perpendicular arrays of wires, as shown in
Fig. 17. (The same architecture was also widely used in ferrite-core memories
in the 1960s.) To switch a particular magnetic or ferroelectric cell, currents
are passed down the horizontal and vertical wires (called “bit lines” and
“word lines”) that intersect at that cell. The combined action of the mag-
netic fields associated with the horizontal and vertical currents causes that
cell to switch, without (ideally) affecting the other cells in the system. Such
crosspoint architectures allow for higher signal-to-noise ratios, and higher
densities compared with corresponding serial architectures. However, they
have a problem with “crosstalk”, in which applying less than the nominal
switching voltage along a row (or a column) sometimes also switches an un-
addressed bit. This is because the switching is activation-field dependent, so
that if e(eEa/kT ) is enough to switch 100% of the time, e(eEa/2kT ) will switch
sometimes! In fact, the crosspoint architecture was abandoned for FRAMs
and existing commercial devices instead use a passgate architecture with a
transistor behind each bit.
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Fig. 18. Schematic cross section of a FRAM unit cell. Courtesy of Fujitsu Limited

2.1 Ferroelectric Random Access Memories

The memory cells in the most well-established FRAM systems consist of
two components, the ferroelectric capacitor (whose + or − polarization state
gives the “1” or “0” data bit) and a transistor, to isolate the bit from its
neighbors. A schematic cross section of a FRAM cell is shown in Fig. 18.
Various capacitor structures are in use, including ferroelectric SrBi2Ta2O9

between Pt electrodes, and PZT between conducting oxide electrodes. As
described above, a bit is written by applying a short voltage pulse of half
the strength required for switching along the bit’s horizontal connection, and
another along its vertical connection.

One disadvantage of most existing schemes is that the read process is
destructive. A positive voltage is applied to the memory cell by sending two
half-strength positive pulses, as described above for writing. If the cell is al-
ready in the + state, then no switching occurs. However, if the cell is in the
− state, a large, nonlinear switching response is measured as the polariza-
tion reverses. Nondestructive read architectures are more desirable since the
state of the bit does not need to be restored after reading, however, they are
currently less well developed.

Reference [40] provides a good introductory review on ferroelectric mem-
ories. For a more extensive treatment, see the book “Ferroelectric Memories”
by J.F. Scott [41].

2.2 Magnetoresistive Random Access Memories

Here, we give a summary of current MRAMs; for a more complete review
see [42]. The most promising memory cells for MRAM are so-called mag-
netic tunnel junctions (MTJs), which are placed at the intersection of the
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Fig. 19. Schematic of a magnetic tunnel junction in its high-resistance (magnetic
layers antiparallel) and low-resistance (magnetic layers parallel) states

bit and word lines. An MTJ consists of two ferromagnetic layers separated
by an insulating tunneling barrier. One of the ferromagnetic layers is pinned
by an adjacent antiferromagnet to align in a specific direction, while the
other is able to reorient in response to an applied field. A schematic of the
structure is shown in Fig. 19. The relative orientations of the ferromagnetic
layers determine the resistance of the structure (parallel alignment allows
current flow, whereas antiparallel has a high resistance). Therefore the par-
allel and antiparallel arrangements can be used as “1” and “0” data bits,
which are easily detectable because of their different conductivities. The dis-
covery of the effect was first reported more than 20 years ago [43], but only at
low temperature and at very low bias. The substantial changes in resistance
with orientation needed to make a workable device were achieved only re-
cently [44]. Note that large changes in electrical resistivity are not associated
with reorientations of ferroelectric polarization, and so an electrical analog
of a magnetic tunnel junction does not exist.

The MRAM write process is similar to that of FRAM; A bit is written
by passing a sequence of current pulses (not necessarily of equal magnitude)
along the appropriate word and bit lines; the combined magnetic fields asso-
ciated with the current pulses are sufficient to switch the magnetization. In
MRAM, however, the read process is more straightforward than in FRAM.
The current that passes from the word line, through the bit and into the
appropriate bit line is detected. A small current indicates antiparallel align-
ment of the magnetic layers, whereas a large current passes if the layers are
parallel. Schematics of the read and write processes are shown in Fig. 20.

Finally, we point out that is difficult to predict the relative prospects
of FRAM and MRAM in the marketplace. A comparison is in fact rather
unfair, since they are at quite different levels of maturity, with MRAM
showing tremendous promise in the laboratory, but FRAM having already
evolved to the production stage. For example, in 2004, every SONY Playsta-
tion contained a ferroelectric FRAM, and over a million FRAM chips per
month were being sold in sizes of 4Mbit (Matsushita/Panasonic), 8Mbit (In-
fineon/Toshiba product announcement for 2004), up to 32Mbit (Samsung).
Meanwhile, MRAMs were being seriously considered by numerous companies,
including for example IBM and Motorola. Suffice to say that both technolo-
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Fig. 20. Schematic of the read and write processes in magnetoresistive random
access memories. Courtesy of International Business Machines Corporation. Unau-
thorized use not permitted

gies have strong supporters and proponents and might find more widespread
use within a short to medium time frame.

3 Multiferroics

A multiferroic is a material in which two or all three of ferroelectricity, ferro-
magnetism and ferroelasticity occur in the same phase [45]. In this section we
briefly summarize the current state of research in the field of ferromagnetic
ferroelectric multiferroics. (For reviews see [46–48].) We emphasize that such
materials are still uncommon, and many aspects of their behavior are not
yet well understoond. As such they are a ripe and rapidly emerging area for
future research.

Part of the motivation for the study of multiferroics lies in their potential
applications. (We emphasize that at this stage these are rather speculative.)
Possibilities include multiple-state memory elements [49], in which data is
stored both in the electric and the magnetic polarizations, or novel memory
media that might allow writing of a ferroelectric data bit, and reading of the
magnetic field generated by association. This would remove the disadvantage
of the destructive read process currently associated with ferroelectric memo-
ries. One can envisage magnetic-field-tunable electrical and optical properties
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(such as dielectric or nonlinear optical response) or electric-field-tunable mag-
netic behavior. Finally, unusual actuators or transducers, in which the ability
to couple either to the electric or the magnetic polarization is exploited, could
be developed.

The remainder of this section is organized as follows: First, we discuss
the chemical and physical origins behind the scarcity of the coexistence of
ferromagnetism and ferroelectricity. Then we review the phenomenon of mag-
netoelectric coupling. A survey of some known magnetic ferroelectrics follows,
with a discussion of open problems, and future work concludes the section.

3.1 The Scarcity of Ferromagnetic Ferroelectrics

The fundamental physics behind the scarcity of ferromagnetic ferroelectrics
has been reviewed by Hill in [50] and [51]. To summarize, the most com-
mon mechanism for stabilizing offcentering in perovskite oxide ferroelectrics,
the ligand-field stabilization of the small cation by the surrounding oxygens
described in Sect. 1.1.1, does not occur if the small cation is magnetic. In sim-
ple chemical terms, the second-order Jahn–Teller effect occurs for transition-
metal ions with formally empty d-states (that exhibit “d0-ness”) whereas,
as explained in Sect. 1.1.2, the existence of magnetism requires localized, in
this case d, electrons. This is the reason why none of the common (ferro-
or antiferro-) magnetic perovskite structure oxides (for example LaMnO3,
SrRuO3, GdFeO3) shows ferroelectric behavior.

In order for ferroelectricity and magnetism to coexist, the atoms that
offcenter to give the electric dipole moment therefore tend to be different
from those that carry the magnetic moment. In the perovskite structure ox-
ides, this can be achieved by exploiting the stereochemical activity of the
lone pair on the large (A-site) cation to provide the ferroelectricity, while
keeping the small (B-site) cation magnetic. This is the mechanism for ferro-
electricity in the Bi-based magnetic ferroelectrics, the most widely studied
of which is bismuth ferrite, BiFeO3 [52]. Another option is to make a dou-
ble perovskite in which one of the sublattices is magnetic, and the other
consists of ferroelectric d0 cations. This has been successful in a number of
cases, however, the magnetic and electric ordering temperatures tend to be
low because of dilution of the sublattices. Reference [53] contains a review
of double perovskites that had been tried before 1970; some modern exam-
ples include B-site ordered Pb2CoWO6 [54] (ferromagnetic and ferroelectric),
B-site disordered Pb2FeTaO6 [54, 55] (ferroelectric and antiferromagnetic)
and Pb2FeNbO6 [56], which is ferroelectric and antiferromagnetic, with weak
ferromagnetism below around 10K. Also, note that there is no incompati-
bility between the coexistence of magnetic ions and the geometrically driven
ferroelectrics described in Sect. 1.1.1, and the antiferromagnetic ferroelectric
YMnO3 falls into this class. Finally, we mention an intriguing recent report of
a small ferroelectric polarization in magnetic TbMnO3 [57]. At low tempera-
ture, and in a certain magnetic-field range, the stable magnetic ground state
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is an incommensurate sinusoidal spin spiral that lacks inversion symmetry.
Within this magnetic state, the structure is described by a polar space group,
and ferroelectricity is symmetry-allowed. The resulting polarization is small
since there is no “driving force” for offcentering, however, since it is caused
directly by the magnetic ordering, strong, and possibly novel magnetoelectric
interactions should be expected.

We also point out that, in order to be ferroelectric, a material must be
insulating (otherwise the mobile charges would screen out the electric po-
larization). This adds an additional constraint, because many ferromagnets
tend to be metallic, with most magnetic insulators having antiferromagnetic
ordering. Recent predictions of large polarization and magnetization in ferri -
magnetic materials [58] might circumvent this problem. The insulating re-
quirement can also cause problems if samples are leaky since this can sup-
press ferroelectric behavior even if the structure is noncentrosymmetric. This
is a common problem in the case of magnetic ferroelectrics, since magnetic
transition-metal ions are often able to accommodate a wider range of valence
states than their diamagnetic counterparts. This in turn can lead to oxygen
nonstoichiometry and hopping conductivity.

3.2 Magnetoelectric Coupling

The independent existence of two or more ferroic order parameters in one
material results in fascinating physics in its own right [51], but the coupling
between magnetic and electric degrees of freedom gives rise to additional
phenomena. The linear and quadratic magnetoelectric (ME) effects, in which
a magnetization linear or quadratic in the applied field strength is induced by
an electric field (or an electric polarization is induced by a magnetic field), are
already well established [59]. The free energy, G, can be expanded in terms
of the electric field, E, and the magnetic field, M as:

G(E,H) = G0 + PiEi + MiHi +
1
2
εijEiEj +

1
2
μijHiHj + αijEiHj

+
1
2
βijkEiHjHk +

1
2
γijkHiEjEk + · · · . (7)

Here, Pi and Mi are the spontaneous polarization and magnetization, re-
spectively, in direction i, ε and μ are the dielectric permittivity and magnetic
permeability, α is the linear magnetoelectric susceptibility tensor, and β and γ
are the bilinear magnetoelectric susceptibility tensors describing the “EHH”
and “HEE” responses, respectively. The symmetry groups that permit the
occurence of the linear and bilinear magnetoelectric effects, and the form of
the corresponding tensors have been tabulated [60, 61]; importantly the lin-
ear magnetoelectric effect can only occur in crystals with ferromagnetic or
antiferromagnetic point groups, although bilinear effects can occur in dia-
magnetic and paramagnetic materials. A table of magnetoelectric coefficients
in materials that show the linear magnetoelectric effect is given in [62]; values
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include (in rationalized Gaussian units) 1.75 × 10−2 for TbPO4 (the largest
value resported for a single-phase material) and 1 × 10−4 for Cr2O3. Note
that the SI value (in s/m) is 4π

3×108 times the rationalized Gaussian value.
Recently, more complex coupling scenarios have been investigated. Exam-

ples are the coupling of the antiferromagnetic and ferroelectric domains in
hexagonal YMnO3 [63] or the large magnetocapacitance near the ferromag-
netic Curie temperature in ferroelectric BiMnO3 [64]. Especially interesting
are scenarios where the direction of the magnetization or electric polarization
can be modified by an electric or magnetic field, respectively. Early work on
nickel-iodine boracite [65] showed that, below ∼ 60K, reversal of the spon-
taneous electric polarization rotates the magnetization by 90◦, indicating
that the axis of the magnetization, but not its sense, can be controlled by
an electric field. Conversely, the small (0.08μC/cm2) electric polarization in
perovskite TbMnO3 was recently rotated by 90◦ using a magnetic field at
low temperatures (∼ 10–20K) [57]. And recent computational studies [66]
have suggested that electric-field-induced 180◦ switching of the magnetiza-
tion should be possible in materials in which the origin of the magnetization
is the spin-orbit coupling.

3.3 Some Materials Examples

3.3.1 BiFeO3

BiFeO3 is probably the most well-studied multiferroic, and certainly the most
well-studied Bi-based perovskite ferroelectric. It is of tremendous interest, not
just for its multiferroic properties, but also because it does not contain lead,
and therefore is a candidate replacement for traditional PZT in Pb-free piezo-
ceramics. It has a rhombohedrally distorted perovskite structure with space
group R3c [67,68] (Fig. 21), and has long been known to be ferroelectric, with
a Curie temperature of ∼ 1100K [69]. It is a G-type antiferromagnet, in which
the Fe magnetic moments are coupled ferromagnetically within the pseudo-
cubic (111) planes and antiferromagnetically between adjacent planes, and
the Néel temperature is ∼ 640K [70]. Superimposed on the antiferromagnetic
ordering, there is a spiral spin structure [71] in which the antiferromagnetic
axis rotates through the crystal with an incommensurate long-wavelength
period of ∼ 620 Å. This spiral spin structure leads to a cancellation of any
macroscopic magnetization that might occur through a canting of the anti-
ferromagnetic sublattices (so-called weak ferromagnetism [72, 73]) and also
inhibits the observation of the linear [74], although not the quadratic [75],
magnetoelectric effect. The spiral spin structure can be suppressed, and the
linear magnetoelectric effect observed, by doping [76] or by application of a
high magnetic field [74].

The ferroelectricity in BiFeO3 is driven by the stereochemically active
lone pairs on the Bi ions, which cause large relative displacements of the Bi
and O ions along the [111] direction [77]. These displacements are noticeably
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Fig. 21. Schematic view of the R3c structure built up from two cubic perovskite
unit cells. The cations are displaced along the [111] direction relative to the an-
ions and the oxygen octahedra rotate with alternating sense around the [111] axis.
From [66]. Copyright (2005) by the American Physical Society

extreme when compared with those in nonlone-pair-active perovskite ferro-
electrics such as BaTiO3 or KNbO3, but are consistent with those observed
in other Bi-based perovskites [78]. These large displacements combine with
anomalously large Born effective charges to produce one of the highest the-
oretical polarizations known, ∼ 90μC/cm2, plus or minus the polarization
quantum [77]. The majority of recent measurements [52, 79] are consistent
with this value, although there have been reports of giant (> 150μC/cm2)
polarization (see for example [80]), of thickness-dependent polarization in thin
films [52] and a number of reports of rather small polarizations [69, 81, 82],
likely as a result of incomplete switching and unsaturated hysteresis loops.
Table 1 (taken from [77]) summarizes the experimental data. The wide spread
is perhaps a consequence of an intrinsic difficulty in multiferroics; transition-
metal ions can readily adopt different valence states, and so defects such as
oxygen vacancies are easily accommodated. These in turn cause hopping con-
ductivity, poor insulation, leaky hysteresis loops and unreliable ferroelectric
response.

Two recent reports of spontaneous magnetization in thin-film samples [52,
84] are particularly intriguing. A likely origin of the magnetization is a cant-
ing of the antiferromagnetic sublattices, combined with a suppression of the
spiral in the thin film, resulting in a macroscopic magnetization. Such weak
ferromagnetism is intimately connected with the symmetry of the system [72];
in BiFeO3 it can occur if the sublattice magnetizations are oriented in the
(111) plane so that the symmetry is reduced to the magnetic space group Bb
or Bb′. A recent first-principles study concluded [66] that the preferred orien-
tation of the magnetic moments is indeed within the (111) plane, compatible
with the existence of weak ferromagnetism, and that the magnetic moments
cant away from the collinear direction (while remaining in the (111) plane)
by an angle of about 1◦ (Fig. 22). This leads to a small but measurable
magnetization of approximately 0.05μB per iron ion provided that the long-
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Table 1. Various measured values for the polarization in BiFeO3, in chronological
order with the oldest at the top

Ref. P (μC/cm2) Sample type

[69] 6.1 bulk single crystals

[81] 2.5 (Bi0.7Ba0.3)(Fe0.7Ti0.3)O3 films (300 nm)
on Nb-doped SrTiO3

[82] 2.2 polycrystalline films (200 nm)

[52] 50–90 thin films (400–100 nm)
on SrRuO3/SrTiO3

[83] 35.7 polycrystalline films (350 nm)

[79] 8.9 bulk ceramics

[80] 158 polycrystalline films (300 nm)

Fig. 22. Calculated magnetic structure including the spin-orbit interaction: The
two iron magnetic moments rotate in the (111) plane so that there is a result-
ing spontaneous magnetization, M. From [66]. Copyright (2005) by the American
Physical Society

wavelength spiral is suppressed. This value is consistent with values reported
in [84] and for the thicker samples in [52], however, [52] also reports an in-
crease in magnetization as film thickness is decreased, which remains to be
explained.

The details of the thickness dependence of the polarization and magneti-
zation are still not well understood and provide strong motivation for further
work both on BiFeO3 and on other multiferroic thin films.
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3.3.2 BiMnO3

BiMnO3 is unusual because (as established in early work [85–87]) it is a
ferromagnetic insulator, with a Curie temperature of around 100K. Moti-
vated by the observation of ferroelectricity in BiFeO3, Hill and Rabe [88]
used density-functional theory to search for ferroelectricity in BiMnO3, and
indeed found a strong ferroelectric instability consisting in large part of rela-
tive Bi−O displacements. A subsequent structure determination using both
electron and neutron diffraction [89] indicated monoclinic symmetry with a
C2 space group, both compatible with the existence of ferroelectricity. And
a calculation of the electron localization function for the experimentally de-
termined structure [90] showed that the lone pairs on the Bi play a crucial
role in stabilizing the ferroelectric ground state. Motivated by these results,
ferroelectric hysteresis loops were measured in polycrystalline samples, as
reproduced in Fig. 23. The electric hysteresis persisted into the ferromag-
netic regime, suggesting a coexistence of ferromagnetism and ferroelectricity,
although the very small values for saturation polarization, and the loss of
switching response near room temperature, are indicative of incomplete po-
larization switching and leakage in the material.

Although there had been a number of reproducible reports of ferromag-
netism in BiMnO3 in the 1960s, when the material was revisited in the 1990s
a number of researchers suggested that the magnetic ordering was probably
driven by defects such as oxygen vacancies, rather than being intrinsic to the
system. This assessment was based on the robust antiferromagnetic behavior
of the closely related perovskite, LaMnO3, which is well explained by Good-
enough’s valence-bond-theory considerations [32]. However, it is important
to remember that, even in LaMnO3, each Mn ion has four neighbors that
are ferromagnetically coupled to it, and two that are antiferromagnetically
coupled; i.e., the majority of Mn−Mn interactions are in fact ferromagnetic.
Since ferro- and antiferromagnetic coupling lead to different Mn−Mn dis-
tances, the stress in the LaMnO3 lattice is reduced if the orbitals order to
align all the ferromagnetic interactions in one plane, with adjacent planes
coupled antiferromagnetically to each other, as shown in Fig. 24a. However,
analysis of Mn−O bond lengths in BiMnO3 indicates the presence of an un-
usual orbital ordering, shown in Fig. 24, which is driven by strain introduced
by the stereochemically active Bi lone pairs. This arrangement does not lead
to cancellation of the feromagnetic interactions, and results in a net ferro-
magnetism in BiMnO3 [92]. Thus, the lone pairs are responsible for both the
ferroelectricity and the ferromagnetism.

The most recent experiments observed a centrosymmetric-to-noncen-
trosymmetric structural phase transition at TE = 750–770K [64], and found
a magnetocapacitance effect in which changes in dielectric constant were in-
duced by applied magnetic fields near the magnetic ordering temperature [64].

This small literature of work on BiMnO3 and BiFeO3 is encouraging be-
cause it establishes the viability of inducing ferroelectric distortions using the
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Fig. 23. P–E hysteresis loops of: (a) polycrystalline BiMnO3 and (b) thin film of
BiMnO3 on Si(100) through the ferromagnetic Curie temperature. From [91]

Fig. 24. The two-dimensional orbital ordering in LaMnO3 (a) is compared with
the three-dimensional orbital ordering in BiMnO3 (b). The bold lines represent the
orientation of the dz2 orbitals, as revealed by elongations of the MnO6 octahedra.
The black circles show the positions of the Mn ions, and the gray circles represent
the oxygens. From [92]. Copyright (2002) by the American Physical Society
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A-site cation, even in materials in which the B-site cation is not ferroelec-
trically active. In addition, it shows that such materials can have ferromag-
netic ground states. However, it also highlights some problems that might be
generic to all multiferroics. First, the samples tend to be leaky, and the ferro-
electric hysteresis is lost at temperatures far below the 750K phase transition
to the centrosymmetric phase, as a result of the conductivity. This might be
expected to occur in many multiferroics, since the transition-metal ions that
must be incorporated in order to provide magnetism are notoriously flexible
in their choice of oxidation state. Perhaps choosing more robust ions such
as Fe3+ (d5) and Cr3+ (d3) might alleviate this problem. Next, insulating
ferromagnetism is notoriously difficult to obtain, and even in materials such
as BiMnO3, it is not very robust. Therefore a room-temperature ferromag-
netic ferroelectric, with large magnetization and electric polarization, might
continue to be elusive.

3.3.3 YMnO3

YMnO3 is an antiferromagnetic ferroelectric, in which the mechanism for fer-
roelectricity has only recently been identified [93,94]. Although the antiferro-
magnetic arrangement of the magnetic moments yields no net magnetization,
we discuss YMnO3 here because the mechanism for the ferroelectricity is com-
patible with the existence of magnetic ions, and so is promising for the design
of new ferromagnetic ferroelectrics. YMnO3 forms in a hexagonal structure
consisting of layers of MnO5 trigonal bipyramids, with Y3+ ions occupying
sevenfold coordinated interstices. The MnO5 trigonal bipyramids are in-plane
corner linked to form nonconnected layers and the apical oxygen ions (OT)
form two close-packed layers, separated by a layer of Y3+ ions. A schematic
view of the crystal structure is given in Fig. 25. Early (1960s) work [95,96] es-
tablished YMnO3 to be ferroelectric, with space group P63cm, and revealed
an A-type antiferromagnetic ordering with noncollinear Mn spins oriented
in a triangular arrangement [97, 98]. However, these early structure determi-
nations incorrectly concluded that the ferroelectric polarization arises from
an offcenter distortion of the Mn ion towards one of the apical oxygen ions.
(Yakel et al. [95] reported the two Mn-OT distances to be 1.84 Å and 1.93 Å.)

Recent single-crystal X-ray diffraction measurements by van Aken et al.
[22, 99–101] show that the reported offcentering of the Mn ions is incor-
rect [95, 102], and in fact the Mn ions remain at the center of the oxygen
bipyramids. (The modern results are more accurate because the hkl reflec-
tions with both l < 0 and l > 0 are measured. This is necessary for such
twinned and noncentrosymmetric crystals due to anomalous corrections on
the scattering factors). Instead, the main difference between the high- and
low-temperature structures is that in the high-temperature phase all ions are
constrained to planes, parallel to the ab plane. Below the transition temper-
ature the structure loses the mirror planes perpendicular to the hexagonal
c-axis. First-principles density-functional calculations by van Aken et al. [93]
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Fig. 25. The crystal structure of YMnO3 in the paraelectric (left) and ferroelectric
(right) phases. The trigonal bipyramids depict the MnO5 polyhedra and the spheres
represent Y ions. The left panel shows the stacking of two consecutive MnO5 layers
and the sandwiched Y layer looking down the c-axis in the paraelectric phase. The
right panel shows the layered nature of YMnO3 and the out-of-plane displacements
that cause the ferroelectric dipole moment.

confirm the experimental ground-state structure, and reproduce the exper-
imentally reported ferroelectric polarization [103] (∼ 6μC/cm2). The struc-
tures of the high- and low-symmetry phases are shown in Fig. 26, with the
experimental bond lengths indicated.

Density-functional calculations also indicate that no significant changes
in chemical bonding occur between the high- and low-symmetry phases, and
that the Born effective charges remain close to the formal ionic charges; this
is consistent with the small values of ferroelectric polarization compared to
those in conventional perovskite ferroelectrics such as BaTiO3 or PbTiO3.
Indeed, in this case, the ferroelectric phase transition is driven entirely by
electrostatic forces and size effects. The Y3+ ion is too small to fill the A-
site of the high-symmetry structure, and below the Curie temperature the
structure collapses to reduce the volume at the Y3+ site. The details of the
temperature phase diagram have, however, proved difficult to establish un-
ambiguously. Observation of features at two separate temperatures in high-
temperature diffraction [104] led to the suggestion that the transition from
the paralectric P63/mmc to the ferroelectric P63 cm phase takes place in
two steps. As temperature is reduced, the unit-cell-tripling K3 mode would
first lower the symmetry but not lead to a ferroelectric polarization.

At a significantly lower temperature a ferroelectric transition would take
place without further reduction in symmetry. This would be consistent with
earlier reports of no symmetry-lowering structural phase transition at the
ferroelectric Tc [105, 106]. However, first-principles calculations show that
the polarization is nonzero once the K3 mode sets in, so that there is a
single improper ferroelectric transition; the lower-temperature feature could
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Fig. 26. Left: 3-dimensional schematic view of YMnO3 in one of the two ferro-
electric polarized states. Right: MnO5 polyhedra surrounded by Y layers. (a) and
(b) panels show the measured atomic positions in the centrosymmetric and fer-
roelectric structure, respectively [107, 108]. In all cases the arrows indicate the
directions of the atomic displacements moving from the centrosymmetric to the
ferroelectric structure

be attributed to nonlinearity in the dependence of the polarization on the
K3 amplitude [94].

The possibility of designing new magnetic ferroelectrics using this “geome-
trically driven” mechanism to provide the ferroelectricity has not yet been ex-
tensively explored. In principle, however, it holds tremendous promise, since
no chemical rehybridization is required to drive the offcentering, and so there
is no incompatibility with the presence of magnetic ions.
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Fig. 27. Sketch of the crystal structure of TbMnO3. The arrows indicate the
magnitudes of the local magnetic moments at the Mn ions. The lower plots show
how the atomic displacements from the ideal centrosymmetric positions correlate
with the magnitude of the Mn magnetic moments. Adapted by permission from [57]

3.3.4 TbMnO3

Finally we mention an entirely new mechanism for combining magnetism
and ferroelectricity that has recently been demonstrated in TbMnO3 [57].
Although the effect occurs only at very low temperatures, and leads to small
(∼10−2 μC/cm2) polarizations, it is intriguing because the ferroelectricity
occurs as a result of the magnetic ordering, and hence is intimately coupled.
Below ∼30K, the magnetic ordering in TbMnO3 is a spin spiral that is
incommensurate with the crystal structure, and lacks inversion symmetry.
As a result, when the spin spiral occurs, ferroelectricity becomes symmetry
allowed, and a small polarization develops (Fig. 27).

3.4 Composites

Composite materials containing both ferromagnets and ferroelectrics offer
an alternative to single-phase multiferroics. A number of architectures have
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Fig. 28. Pillars of cobalt ferrite grown within a barium titanate matrix. From [112]

been tried, largely focused on bulk ceramics. In particular, thick-film bi- and
multilayers of nickel ferrite and lead titanate [109], and of lanthanum man-
ganites and lead zirconium titanate [110] as well as particulate composites of
PZT/Ni-ferrite [111] show robust magnetoelectric properties. Most recently,
“nanopillars” of cobalt ferrite, CoFe2O4, have been grown within a barium
titanate matrix using pulsed vapor deposition (see Fig. 28) [112]. This ap-
proach is particularly promising for obtaining thin films with large magne-
toelectric coefficients, because epitaxial matching between the ferroelectric
and the ferrimagnet is obtained in three dimensions (rather than just two as
in multilayers). Preliminary results are encouraging, and the field is ripe for
further experimental and theoretical exploration.

4 Outlook

It is clear that ferromagnets and ferroelectrics share more in common than
the roots of their names, in spite of having some important differences. In
particular, many growth methods, characterization techniques and theoreti-
cal implementations, are applicable to both areas. However their respective
research fields have, in large part, developed independently, with little overlap
between their researchers. We hope that this chapter will ease the transition
for workers wishing to move between the two fields, and even provide some
motivation for crossfertilization and collaboration.
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[75] C. Tabarez-Muñoz, J.-P. Rivera, A. Bezinges, A. Monnier, H. Schmid: Mea-
surement of the quadratic magnetoelectric effect on single crystalline BiFeO3,
Jpn. J. Appl. Phys. 24, 1051–1053 (1985) 201

[76] I. Sosnowska, W. Schäfer, W. Kockelmann, K. H. Andersen, I. O. Troyanchuk:
Crystal structure and spiral magnetic ordering in BiFeO3 doped with man-
ganese, Appl. Phys. A 74, S1040–S1042 (2002) 201

[77] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, K. M. Rabe: First-
principles study of spontaneous polarization in multiferroic BiFeO3, Phys.
Rev. B 71, 014113 (2005) 201, 202
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Abstract. This chapter addresses key developments in the ability to grow epitaxial
oxide films and provides examples of possible applications of these structures.

1 Introduction

Over the past two decades, a tremendous amount of progress has been
achieved in the epitaxial growth1 of thin films of various complex oxides,
including ferroelectrics. Many groups are now capable of routinely grow-
ing single-crystalline films of ferroelectrics, high-Tc superconductors, colos-
sal magnetoresistive (CMR) materials, magnetic, dielectric, conducting, and
other types of oxides over a wide range of thicknesses and with a high de-
gree of control over the properties and structures. Such progress has been
driven and made possible by several key aspects. First, the availability of
various single-crystalline oxide substrates has been crucial in the ability to
grow high-quality single-layer epitaxial complex oxide films with properties
equaling, and sometimes surpassing, the bulk single-crystal forms of the ma-
terials. In the late 1980s and early 1990s, substrate development was driven
1 Epitaxy literally means “from the surface” and was first used in the mineralogi-

cal literature to describe the formation of crystalline materials that always had
crystallographic relationships as determined by faceting. In modern thin-film
growth, epitaxy refers to the deposition of a crystalline layer that is in registry
to an underlying crystalline substrate.
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by the efforts of researchers to grow complex materials such as the high-Tc

superconductors YBa2Cu3Ox and Bi2Sr2CanCun+1Ox. The newly developed
substrates were not only structurally matched to the high-Tc superconduc-
tors, but some also possessed dielectric properties tailored to fit some specific
microwave applications of the materials. Much study has also been devoted
to substrate preparation in order to obtain an atomically flat surface, which
is crucial in certain applications such as field-effect devices, as well as in
the ability to grow high-quality multilayers and superlattices. Because of the
importance of having a good substrate, new substrates are continually be-
ing developed even today, as exemplified by the development of rare-earth
scandate single crystals. These recent developments are being driven by the
desire to tune the strain of the film to be grown to obtain greatly improved
properties as well as to induce new phenomena. High-quality substrates that
span the entire range of lattice constants of the perovskite structure and that
can be made atomically flat are becoming available.

A second key to progress in epitaxial growth has been the continuous
improvement in the various growth techniques. In the 1990s, most oxide film
growth was done using sputtering and pulsed laser deposition (also known
as laser ablation). The principle behind these two techniques is to eject the
source material by either a plasma or a laser, with the ejected material even-
tually finding its way onto the substrate. Many improvements in these tech-
niques were driven by the goal of obtaining high-quality complex oxide films
with atomically smooth surfaces. More recently, the use of molecular beam
epitaxy (MBE) in growing complex oxides has become feasible. The devel-
opment of MBE techniques for oxide growth has opened up the ability to
have submonolayer control over film deposition. Oxide MBE has enabled
the growth of complex oxide superlattices that are similar to semiconductor
superlattices in terms of quality, which has resulted in the ability to test
idealized theoretical models, particularly in the field of studying the effect
of strain on ferroelectricity. The ability to grow virtually any complicated
structure has made real-time feedback between theory and experiment a re-
ality. Oxide MBE has also been crucial in the ability to integrate complex
oxides directly onto semiconductors, in particular onto silicon, where SiO2

formation is intolerable for certain applications.
A third key in the development of epitaxial film growth techniques has

been the adaptation of concepts used in the semiconductor field to fabricate
multiple materials systems that can be used as a new experimental platform
for the study of complex oxides. One such device concept that has recently
gained attention is the growth of complex oxide superlattices. These superlat-
tices allow one to potentially customize the properties of the entire system for
a specific experiment or application. For example, one can use strained-layer
superlattices to achieve a large increase in the polarization of a ferroelectric
film while drastically reducing leakage currents. There are also technologi-
cal driving factors that are involved in the development of epitaxial complex
oxides. One example is the need to replace SiO2 with high-k dielectrics for
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continued scaling of silicon-based metal-oxide-semiconductor field effect tran-
sistors to the sub-65-nm regime. There is also a continuing search for a suit-
able gate dielectric for wide-bandgap semiconductors such as GaN and SiC.
Furthermore, the possibility for various integrated sensor-transistors where
the transistor is directly coupled to the environment for greater sensitivity,
lower power operation, and higher operating speed is a strong motivation for
further work in this area. This type of application requires direct interfacing
between a functional complex oxide and a traditional semiconductor, and
achieving an abrupt interface turns out not to be straightforward.

2 Thin-Film Growth of Complex Oxides

In order to grow high-quality thin films of complex oxides that typically con-
tain three or more elements, one must use film-deposition techniques that al-
low one to either a) stoichiometrically transfer the composition of the source
material to the substrate or b) allow one to precisely control (with mono-
layer or better degree of precision) the fluxes of the elements involved. This
is primarily because of the multicomponent nature of the typical complex
oxide, and also because many of these materials do not have line composi-
tions. This means that, unlike in the growth of compound semiconductors,
one cannot have an excess of one element over another (with the exception
of oxygen) without also resulting in an excess of that element in the film.
Three film-deposition techniques are now routinely used to grow epitaxial
films of complex oxides: pulsed laser deposition or PLD, sputter deposition,
and molecular beam epitaxy. These three techniques fall under the broad cat-
egory of film deposition methods known as physical vapor deposition (PVD),
where chemical reactions are not involved in the growth of the film. This
section looks more closely at each of the three techniques. Aspects applica-
ble to all three methods are discussed first (vacuum chamber and substrate
heating), followed by specific aspects of each growth method.

2.1 Vacuum Chamber

A large number of variations of the basic physical vapor deposition system
exists, but many features are common to most setups. The essential compo-
nents of a modern PVD system are shown in Fig. 1. A thin film is grown on a
substrate that is held on a sample manipulator. In the simplest cases the sam-
ple may be attached to a fixed heater element, but it is more common to have
a manipulator that also allows the sample to be rotated, shifted, and possi-
bly tilted in the chamber. Mechanical manipulation is necessary in ultrahigh
vacuum systems for loading and unloading samples, but also for positioning
the sample for in-situ diagnostics, for example, by electron diffraction.

Depending on the specific deposition technique and source material, thin-
film growth is done at background gas pressures ranging from ultrahigh vac-
uum (UHV) up to pressures on the order of a few Torr. Although thin films,
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Fig. 1. Schematic diagram of a basic PVD system

especially oxides, are usually not grown in UHV conditions because of the
presence of relatively large amounts of oxygen, particularly for sputter and
pulsed laser deposition, it is still often necessary to have a UHV-capable
deposition chamber in order to reduce the level of contaminants in the de-
position system during growth and to perform vacuum annealing of samples.
Well-designed deposition chambers can reach base pressures of ≈ 10−10 Torr,
and a load-lock chamber is used for changing samples and targets to keep
the main chamber clean. The vacuum pump can be attached directly to the
chamber with a gate valve. For sputtering and PLD, in order to work at gas
pressures above 1mTorr, it is possible to close or throttle the gate valve and
use a separate bypass valve to reduce the gas flow through the main pump.
An angle valve in parallel with the gate valve performs well as a bypass line
and can be adjusted so that the backpressure of the main pump does not
exceed safe limits, even when the pressure in the chamber approaches 1Torr.

The process gas is usually fed into the chamber with a molecular leak
valve. A nozzle can be used to direct the fresh gas directly at the sample
surface. Pressure measurements can be done with multiple gauges, combin-
ing convectron-type, ion, and absolute-pressure capacitive gauges. Since each
gauge measures pressure at a different point in the chamber, care needs to
be taken when trying to estimate the true partial pressure of oxygen at the
sample surface, especially when a nozzle is used on the gas-feed line.

2.2 Temperature Control and Monitoring

Many oxide materials need to be grown at elevated temperatures to obtain
a suitable crystal structure, phase, domain structure, lattice orientation, or
simply to improve crystallinity. The easiest way to heat a sample to moderate
temperatures is to use a resistive block heater or a ceramic heater. A sub-
strate can be attached to the heater by silver paste or clamped directly to
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the heater surface. The sample temperature can be monitored by attaching a
thermocouple to the heater block or heater surface. Resistive-heater designs
are common in simple deposition systems that do not require very high tem-
peratures [1]. The cost of the heater element is low, and due to their compact
size, heater blocks can be integrated into complex sample manipulators and
goniometers [2].

It is common to use oxygen as a background gas during oxide thin-film
growth. Due to oxidation, the use of resistive block heaters can become prob-
lematic at temperatures above about 500 ◦C. Metals and alloys that are com-
monly used at high temperatures under UHV conditions cannot generally be
used in the presence of oxygen. (Metals like molybdenum and tungsten form
oxides that are volatile at low temperatures [3].) These problems limit the
choice of materials that can be used as heaters. Many alloys are normally
protected by the formation of oxides on the metal surface. Common protec-
tive layers consist of Cr2O3 or Al2O3. At reduced pressures chromium oxides
are volatile above 1000 ◦C [4]. Even alloys normally protected by a layer of
SiO2 may not survive at low pressures if the oxide layer is reduced to SiO,
which is also volatile [5]. Oxidized nickel appears to be sufficiently stable
up to the melting point of nickel at 1455 ◦C. Due to oxidation, the highest
temperature where resistive heaters have been used for PLD of oxide films is
around 1000 ◦C [6].

A more practical solution is to use radiative heaters based on halogen or
quartz lamps [7]. Such heaters can work in the presence of oxygen and heat
samples to about 1000 ◦C. The temperature limit is set by the type of sample
mounting and the maximum power that can be handled by lamps in vacuum.
Multiple lamps can be used to heat large-area samples homogeneously, as
shown in Fig. 2a. It is possible to build lamp-based blackbody sample stages,
where a substrate is held by its edges and kept in thermal equilibrium with
the heater. The advantage of this technique is reduced contamination of the
sample because it is only supported by the edges. True thermal equilibrium is,
however, impossible to achieve because the substrate must be at least partly
exposed to a vapor source for deposition to occur. Large lamp heaters also
bring a large amount of heat into a vacuum system. Thermal management
usually involves carefully placed heat reflectors and shields, combined with
water-cooled shrouds. Without water cooling, multiple kilowatt-level heaters
would quickly heat up the chamber walls and other vacuum components,
causing excessive outgassing and sample contamination.

For small samples of up to about 20mm in diameter, it is more practical to
use a single lamp and to focus the light onto the sample with a water-cooled
gold-plated mirror. This design is illustrated in Fig. 2b. Water cooling is still
essential because the heating power of the lamp is in the range of 1 kW. This
power level is sufficient to evaporate the gold plating from the mirror if it is
not water cooled. Since the lamp is not a point light source, the heater can
provide a reasonably homogeneous heating spot for direct sample heating or
for use with a metal sample holder, as shown in Fig. 2b.
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Fig. 2. Radiative substrate heaters. (a) A blackbody thermal equilibrium heater for
large substrates, (b) a focused light lamp heater for small substrates, (c) delivery
of optical power into a chamber with a light guide, (d) using a fiber-coupled laser
for sample heating

Placing heating lamps in a vacuum chamber presents two problems: the
need to use in-vacuum water cooling and the difficulty of working in a higher-
temperature range. The power rating for lamps is usually given with the
assumption that the lamps are cooled by ambient air. In vacuum it is usually
possible to use only about half the rated power to avoid melting of the quartz
body. To obtain kW-level heating power thus dictates the use of physically
large lamps, which increase the size of the whole heater assembly.

Despite these limitations, lamp heaters can offer high reliability and good
temperature stability in either UHV or ambient pressure environments. Lamp
heaters have low cost and can be easily controlled with commercial power
controllers using thermocouple feedback.

One way to improve on conventional in-vacuum lamp heaters is to move
the light source outside of the vacuum system. This is particularly useful if
the deposition system also contains in-situ characterization tools that require
better access to the sample. Light can be brought to the sample with a
quartz light guide [8], as shown in Fig. 2c. The quartz rod is mounted on
a differentially pumped o-ring feedthrough and can deliver kW-level light
power to the sample stage. The cooling of the lamp can now be done in air,
reducing price and simplifying the vacuum-system design. Temperatures of
up to 1500 ◦C have been obtained with this technique [9].

It is possible to improve heating efficiency by using a laser as a light
source [10]. In this case, light can be brought to the chamber with an optical
fiber and focused on a sample with simple collimation optics, as shown in
Fig. 2d [11]. Rigid uncoated fibers can also be used inside vacuum chambers,
bringing the heating laser light close to a sample. This can be useful for more
complex sample-stage designs [12].
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A laser heater heats only the minimum necessary area of the sample or
sample holder, reducing outgassing. For thin-film growth optimization, it
is even possible to use a focused heating laser spot to generate controlled
temperature gradients in a sample [13]. The temperature range of a laser
heater is limited by the heating area and the maximum laser power. The
main heat-loss path from a sample is through the sample holder and sample
stage. Additional heat loss starts to occur at high background pressures,
increasing the necessary heating power to maintain a constant temperature.
At least for small samples, it is easy to achieve essentially any temperature
up to the melting points of many oxides, even in the presence of oxygen. In
practical designs, the limiting factor for sample temperature is the sample-
holder material.

The method of mounting a sample is critical for all radiative heating
schemes. Many substrate materials can be heated directly by the infrared
light from incandescent lamps. The largest benefit of direct optical heating
is the ability to work with large substrates. If a sample holder is used, it is
problematic to attach a large substrate to a holder while ensuring good heat
contact over the whole substrate area. This is possible, at least in principle,
with metal alloys and silver or platinum paste, but removal of large samples
can be difficult without breaking the substrate. Another important benefit
is reduced contamination of the sample. This is particularly important for
samples that are characterized by magnetization measurements, since small
traces of metal from the sample holder can attach to the backside of a sub-
strate. Due to the small volume of a thin-film sample, even small amounts of
metal contamination can distort the measured magnetization curves.

Direct optical heating is not an option for some of the most common sub-
strate materials, such as nondoped SrTiO3 and LaAlO3. In these cases it is
necessary to mount a substrate on a holder that is heated by the light source.
A sample can be clamped to a sample holder directly, but this usually leads to
poor thermal contact and uneven substrate heating, and thus direct clamp-
ing is usually only an option for low-temperature work. A common technique
is to use silver paste between the substrate and sample holder. If the paste
is applied evenly so that no bubbles are trapped under the substrate, good
thermal contact can be achieved. Samples mounted with silver paste need
to be degassed before heating to high temperature, however, adding delay
to the film-fabrication process. If the sample needs to be processed close to
the melting point of silver, it may be necessary to use additional clamping
to prevent the sample from detaching from the holder. Silver paste can be
problematic for mounting large samples, as it can be difficult to remove a sub-
strate without cracking, as mentioned above. If the deposition temperature
is above 900 ◦C, it is possible to use platinum paste instead of silver [13].

The substrate temperature is a critical process parameter for thin-film
growth. Unfortunately, it is also one of the most difficult parameters to mea-
sure and control accurately. For resistive heaters and radiative heating sys-
tems, where a large sample holder block is used, it may be feasible to use
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embedded thermocouples. The temperature reading from the heater block,
however, is not the true temperature of the substrate surface. Thermocouples
are also deliberately placed away from the hottest central part of the heater;
otherwise oxidation at very high temperatures can reduce the lifetime of a
thermocouple or disturb the homogeneity of the sample temperature.

The surface temperature of a substrate or a film can, in principle, be
measured directly by optical pyrometry. A pyrometer measures the intensity
of the light radiated from the sample surface and calculates the temperature
assuming that the sample is a gray body, i.e., emits blackbody radiation,
but with an emissivity factor of less than unity. The temperature range and
requirements for optics depend on the working wavelength range and the
type of sensor used in the pyrometer. The wavelength of maximum emission
intensity from a blackbody is described by Wien’s law. At room tempera-
ture the emission maximum is at about 10μm, gradually shifting to shorter
wavelengths at higher temperatures, reaching 2μm at 1200 ◦C. For working
temperatures above 1000 ◦C, it is common to use Si detectors that operate
at 0.96μm. Due to the shift of the thermal emission spectrum towards the
infrared at lower temperatures, these sensors are not accurate below about
600 ◦C. In this range, better sensitivity can be obtained with InGaAs sensors
that detect near-infrared radiation at 1.5 to 2.5μm. Such pyrometers cover
nearly the whole thin-film growth temperature range from 200 to 1500 ◦C.
For accurate measurement of temperatures below 200 ◦C, it is necessary to
use even longer wavelength detectors, like PbSe at 4μm or thermopiles that
sense a wide spectral range from 8 to 14 μm. Detection at longer wavelengths
has the added advantage that many oxide substrates, such as SrTiO3 have
absorption bands above 12μm, which means that the pyrometers can actually
see thermal emission from the substrate, not from the sample holder. Most
undoped oxides are transparent at 2μm, which means that a pyrometer with
an InGaAs or PbSe sensor looking at undoped SrTiO3 will mostly measure
thermal emission from the sample holder behind the substrate rather than
the substrate itself. The intensity of infrared emission from the sample is
given by Stefan’s law, I = εσAT 4, where ε is the emissivity, σ is Stefan’s
constant, A is the detection area, and T is the absolute temperature. Due to
the T 4 dependence of emission intensity, even a small error in the estimate
of the sample emissivity will result in a large error in the calculated temper-
ature. This is a particularly serious problem at very high temperatures or
for samples with very low emissivities. If a substrate is mounted on a shiny
metal sheet, like nickel, the effective emissivity of a SrTiO3 substrate at 2μm
can be easily reduced to about 0.3.

The problem of transparent substrates can, to some extent, be solved by
using a very long wavelength pyrometer, since oxides like SrTiO3 and LaAlO3

have absorption bands above 12μm and thus significantly higher effective
emissivities [14]. Thermopile detectors work well in the 8 μm to 14μm spectral
range, but require special viewports on the vacuum chamber. Sensitivity is
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also lower at higher temperatures, where the thermal emission maximum
shifts closer to the visible range of the spectrum.

Another difficulty in estimating the surface temperature of a sample arises
at the start of a deposition run. If the emissivity of the film material differs
significantly from the substrate, for example when depositing a black film on
a transparent substrate, the pyrometer will detect a change in the emitted
infrared intensity and will show a gradual increase of temperature. In reality,
if the sample is attached to a large metal holder, the true surface temperature
probably changes very little, and what the pyrometer is detecting is a change
in emissivity. If the pyrometer is the only feedback channel for temperature
control, the only choice is to determine the substrate temperature before
starting film growth and to use constant heating power during the actual
deposition. The problem of determining the accurate absolute temperature of
a sample means that published temperature values can have large systematic
errors. It is therefore common that film-growth conditions, especially the
temperature, need to be optimized for each individual deposition system.

2.3 Pulsed Laser Deposition

Pulsed laser deposition (PLD) is a thin-film growth technique where ma-
terial is evaporated from a solid target with a laser pulse and transferred,
through a gas phase, to the growth front of a film. The evaporated material
is transferred from the evaporation target to the film surface without gas-
phase reactions. The main advantage of PLD is the use of a solid target that
generally has the desired film stoichiometry. An intense laser pulse can heat a
small volume at the surface of the target to very high temperatures, where a
plasma is formed and essentially all elements in the target material evaporate
simultaneously. The stoichiometry of the target is thus directly transferred to
the film and the problem of controlling the ratios of several elements in the
film can be solved by preparing a target pellet with the desired composition.
Oxide targets are commonly made by standard powder ceramic techniques,
where the desired composition can be obtained by simply mixing precursors
in suitable weight ratios. This is technically much easier than, for example,
measuring and adjusting the flux ratios of individual atomic sources in the
MBE process.

Since PLD is not element specific, it is easy to switch from one composition
to another by simply changing targets. Many common PLD systems contain
a carousel that can hold several different targets. The same film-growth sys-
tem can thus be used to grow many different compounds with only minor
adjustments to the process parameters. This multitarget capability is also
useful for fabricating heterostructures, superlattices, and devices.

Another advantage of PLD is the ability to use a suitable background gas
in the deposition chamber. This is particularly important when working with
oxides, because it is possible to introduce oxygen into the growth chamber at
pressures of up to about 1Torr. For comparison, MBE can only work under
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Fig. 3. Components of a pulsed laser deposition system, including manipulators,
sample heating, vacuum pumps and gauges, and analysis tools, such as RHEED

high-vacuum conditions, and sputtering requires the presence of other gases,
such as argon.

2.3.1 Laser

Pulsed laser deposition is a very flexible film-growth technique in terms of
ablation target material selection and geometry. The layout shown in Fig. 3
is vertical, with the sample manipulator at the top of the chamber and the
targets at the bottom, but many other orientations are also possible. The
layout of the sample and the position of the targets are often dictated by
external factors, such as the position of the deposition laser and other pro-
cess-monitoring equipment. An important process parameter for PLD is the
distance between the target and the sample. Multiple targets can be easily
integrated into PLD systems, and a target manipulator usually allows targets
to be changed, scanned, and moved to the desired distance from the sample.
Light from a pulsed ablation laser enters the chamber through an optical
viewport and is focused on the target surface at an angle.

The ablation plume generated by an intense laser pulse is perpendicular
to the target surface. The plume size and shape depend on the energy of the
laser pulse and the shape and size of the laser spot that is projected onto
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Fig. 4. Target and laser scanning. Targets can be rotated (a) or scanned (b) in
order to erode the surface evenly. In special cases, such as large-area film growth,
it is also possible to scan the laser beam across the target surface (c). The scan
path and the plume shape are also illustrated. The asymmetry of the plume shape
is shown in (a)

the target surface. The distance from the target to the substrate is usually a
few centimeters. For shorter distances, it is difficult to hit the target surface
with a laser beam, and for much longer distances the deposition rate would
become unacceptably low.

The ablation laser usually illuminates an area of about a square millimeter
on the target surface. The target would erode quickly if laser pulses were
continuously fired at the same spot. To avoid such erosion, targets can be
continuously rotated, as shown in Fig. 4a, consuming the target material
uniformly. Target rotation is mechanically the most simple solution, but it
can be difficult to orient the laser spot in a radial direction on the target, as
shown in Fig. 4a. Over time, erosion still occurs, and a groove develops on the
target surface. If the ablation laser hits the edge of the groove, the emitted
plume will tilt, causing inhomogeneous deposition profiles. Groove formation
can be further reduced by scanning a target in x–y directions, as shown in
Fig. 4b. If the motion is controlled by a computer, any desired area of the
target can be uniformly eroded. This is particularly useful when small or
irregular single crystals are used as PLD targets. Large-area film depositions
have also used laser-beam scanning (Fig. 4c), but this is not optimal due to
film composition variations at the edges of the plume.

A variety of different lasers can be used for PLD work. The most com-
mon types are excimer gas lasers and frequency-multiplied Nd:YAG solid-
state lasers. Among the excimer lasers, KrF (248 nm), ArF (193 nm), and
XeCl (308 nm) are the most common. Compact high-power YAG lasers also
exist, delivering up to about 100mJ at the fourth harmonic (266 nm). The
two types of lasers differ considerably in terms of spatial and temporal beam
characteristics. Glass lasers generally output a well-defined circular beam at
the fundamental wavelength (1064 nm for Nd:YAG). Even after multiplica-
tion to the third or fourth harmonic, the laser output can still be handled as
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an approximately parallel beam with a semi-Gaussian intensity cross section.
The typical pulse length of a high-power YAG laser is around 4 or 5 ns.

Excimer lasers output longer pulses, with most of the pulse energy deliv-
ered in ≈ 20 ns. Laser light is generated in a large gas volume, and excimer
lasers therefore have very low beam quality. Commonly used high-power ex-
cimer lasers output a rectangular beam, with 10mm × 20mm being a fairly
typical beam area. In addition to a large beam cross section, the divergence
can be very high, up to ≈ 5mrad. Both the beam size and divergence are
also functions of the laser discharge voltage. When excimer lasers are used,
it is therefore necessary to take special precautions in conditioning the beam
before entry into an ablation chamber. In the simplest layout, an aperture
is placed in front of the laser, removing low-energy edges of the beam and
extracting a beam with a nearly top-hat intensity profile. This beam is then
focused on the target surface with a single lens. More elaborate setups are
necessary if the energy density needs to be controlled accurately. In that case,
zoom lenses with true imaging optics and beam-energy homogenizers may be
used.

2.3.2 Targets

For oxide thin-film growth, the targets are usually pressed ceramic pellets that
contain the desired material composition. Synthesis of the target material
is done by conventional powder ceramic techniques, and conventional bulk
analysis techniques can be used to ensure that the target has the desired
composition. In many cases, instead of composition analysis, it is sufficient
to verify by X-ray diffraction that the pellet consists of the desired target
phase and contains no extra phases. It is generally advisable to use targets
with the highest possible density. For ceramic powders, this can be achieved
in a laboratory environment by simple cold isostatic pressing.

For some materials, large single crystals are available. The use of single-
crystal targets is preferable because it reduces the number of particles that
are ejected from the target by laser pulses. In the case of pressed powder tar-
gets, it is common to see particles on the surface of a film grown by PLD. The
particles are a serious problem when very flat film surfaces are required, for
example for device fabrication. A number of schemes have been developed to
avoid particles from a target reaching the film surface. The earliest attempts
to eliminate this problem made use of the fact that evaporated atoms travel at
much higher speeds than large clusters or macroscopic particles. It is possible
to use fast-spinning shutters to catch the slower particles before they reach
the substrate [15, 16]. Tselev et al. [17] have developed methods for deflect-
ing the evaporated atoms in an ablation plume and also review many of the
other techniques that have been developed. Some of these techniques, such as
off-axis or shadowed depositon, are problematic in terms of composition con-
trol; others, such as fast shutters or crossed plumes, significantly complicate
the vacuum-system design. It is generally easier to reduce the problem by
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improving the morphology of the target, i.e., using single crystals. The use of
x–y rastering of targets instead of simple rotation also appears to reduce the
ejection of particles, mostly because the chances for eroding columnar spikes
into the target surface are reduced [18, 19].

The assumption made in PLD experiments is that the stoichiometry of
the target is directly transferred to the film. Whether this assumption holds
true or not depends on the composition of the target and the intended use
of the film. PLD originally gained in popularity due to successful growth of
high-temperature superconductor films, such as YBa2Cu3O7−δ. This partic-
ular materials system is not sensitive to slight compositional variations on
the order of a few per cent because the material segregates into the stoichio-
metric phase and islands of BaCuO2 or CuO, depending on which way the
stoichiometry is skewed [20, 21]. The segregated phases have no influence on
the transport measurements, and a film as a whole still shows a very sharp
superconducting transition at a temperature that coincides with the bulk
value.

Problems appear when some of the elements in the film are much more
volatile than others. For example, sodium can be easily lost when deposit-
ing La1/2Na1/2TiO3 films by PLD due to re-evaporation from the film sur-
face [22]. Evaporation loss of sodium increases with sample temperature,
and it is therefore necessary to optimize simultaneously the growth temper-
ature and the Na:La enrichment factor in the target to obtain stoichiometric
films. In this particular material, it is possible to use an intentionally non-
stoichiometric, Na-rich target to compensate for evaporation losses during
high-temperature growth if only structural and dielectric properties are of
interest.

More significant difficulties appear when samples are used for leakage
current, breakdown field, carrier concentration, or mobility measurements.
These parameters are sensitive to very small composition deviations, because
unless the nonstoichiometry of the film can be corrected by bulk segregation
of a secondary phase, any cation ratio deviations from the ideal values will
induce lattice defects in the film. The defects function as dopants and thus
affect the number of carriers, carrier trapping, carrier mobility, etc. A good
example in this sense is the prototypical perovskite, SrTiO3, which can trans-
form from an insulator into a metal at carrier concentrations that are in the
range of 1019 cm−3. A composition deviation of 0.1% would be much larger
than the characteristic impurity concentration that is known to alter the
electronic phase of the material. Composition variations of a fraction of a
per cent are, unfortunately, not reliably measurable by standard composition
analysis methods, such as inductively coupled plasma emission spectroscopy
or electron probe microanalysis, and often go undetected for this reason.
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2.3.3 Ablation Process

The main process parameters that can be used to control the stoichiometry
of a film grown by PLD are the laser energy, power density, and the laser
spot size on a target surface. These parameters control the evaporation pro-
cess. Other important parameters are the background gas pressure and the
target–sample distance. In some cases, the film composition is also a func-
tion of sample temperature. As mentioned before, this happens when volatile
elements are present in the film.

The ablation process has been studied in great detail by various au-
thors [23,24]. The ablation process itself is strongly dependent on the risetime,
length, and wavelength of the laser pulse. The ablation conditions that are
found in publications should therefore be qualified with the type of laser and
wavelength that was used. The most popular lasers for PLD are gas excimer
lasers, which produce a pulse that has a half-width of about 20 ns. Solid-
state lasers, such as Nd:YAG, ususally have shorter pulses, in the range of
4 to 5 ns. A recent trend is to use ps or even fs lasers for ablation experiments,
although due to cost and low pulse energies these lasers are not widely used.
The ablation mechanism is very different in all three cases.

The laser pulse initially causes a strong electronic excitation in the target
material. Electronic excitation is possible even when the bandgap of the target
material is higher than the photon energy of the laser, i.e., it is possible to use
a KrF excimer laser with a photon energy of 5 eV to ablate sapphire, which
has a bandgap energy of about 9.5 eV [25, 26]. The possible mechanisms are
multiphoton absorption and initial absorption at defect sites. It is easier to
ablate a polycrystalline Al2O3 target than a single-crystal target with small
excimer lasers (20 ns, 200mJ pulse), which appears to support the idea that
absorption at least initially occurs at defects.

The absorbed laser energy is transferred to ions in the surface layer on
a picosecond timescale, also forming an ablation plasma plume above the
surface. In the case of a femto- or picosecond laser pulse, the excitation ends
at this point, and the plasma can expand, finally reaching the substrate.
A more complicated process occurs for longer laser pulses because the heat-
ing time is long enough for a macroscopic region of the target to melt. The
depth of melting depends on the laser wavelength and pulse length. This ef-
fect is generally detrimental to the PLD process because melting can cause
stoichiometry gradients in the sample, especially if the material melts in-
congruently. Even in simple targets, such as silicon, the ablating laser may
erode the surface unevenly. Due to shadowing, any surface instabilities that
do appear get amplified to the point where sharp needle-like cones form on
the target surface, pointing towards the incident laser [19, 27]. The process is
illustrated in Fig. 5. Target surface roughening of this nature can cause the
plume to tilt, altering the plume stoichiometry and resulting in the ejection
of macroscopic particles from the target. As shown in Fig. 5c, macroscopic
particle ejection may be caused by the erosion of the asperities or by the
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Fig. 5. Target-surface degradation. An originally flat target surface (a) is melted
by the ablation laser. Uneven etching and redeposition of ablated material amplifies
any surface inhomogeneities, resulting in sharp asperities on the target surface (b),
which can act as sources of macroscopic particles, ejected from the target surface
during ablation (c)

ejection of liquid droplets from the parts of the surface that are exposed to
the highest laser light intensity [28]. This problem is particularly serious for
low melting point materials, such as Si, but also for many metals, where the
thickness of the molten layer is increased due to better thermal conduction.
For such materials PLD is not an optimal deposition technique.

The particular mechanism that is responsible for particle ejection from
PLD targets can, to some extent, be inferred from the morphology of the
target [29] and the shape of the particles observed on the film surface by
scanning probes, such as atomic force microscopy (AFM). Microprobe com-
position analysis can also be used. Nonstoichiometric segregating particles
tend to grow in the film [21], while macroscopic particles ejected from a tar-
get tend to have diameters that are much larger than the film thickness.
Liquid droplets impacting the film surface can also be identified by their
characteristic shape, as shown in Fig. 6. Analysis of particle shapes by AFM
is often sufficient to determine if the particles present on the film surface are
caused by liquid droplets originating at the target, solid particles ejected from
a target, or secondary phases segregating in the film during growth [21, 30].

Target surface erosion can be avoided or at least reduced by decreasing the
thickness of the molten layer that forms during a laser pulse. The practical
solution is to use the shortest available laser wavelength, which has a smaller
absorption length in the target material. This is one of the reasons why KrF
excimer lasers are popular, and in the case of YAG lasers, the third or fourth
harmonic is used. The formation of needle-like asperities on a target surface
can also be reduced by suitable combination of target scanning and rotation,
which ensures that, over time, all points on the target surface are hit by the
ablation laser from different directions.
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Fig. 6. (a) An AFM image of ring-like structures formed by an impact of liquid
droplets on a film surface during ablation of a Si−Al−Ba alloy. (b) Height profile
taken along the path indicated in the AFM image

Due to the formation of a plasma plume close to the target surface, it
is not possible to define the maximum target temperature that is reached
during an ablation pulse, but estimates based on the velocity of ions in the
ejected plume suggest temperatures in the range of 6000K to 12 000K [31].
Estimating the true target surface temperature is complicated by the fact
that the plasma plume forms on a picosecond timescale, while the laser pulse
may last for 5 ns to 20 ns. As a result, there is also significant gas-phase
plasma heating by the laser pulse, and the velocity of atoms in the plume
therefore depends strongly on the laser fluence, with values of about 10 km/s
being quite common. For a target–sample distance of 50mm, the plume thus
reaches the film surface in 5 μs. The kinetic energy of a Sr atom travelling at
104 m/s would be nearly 50 eV. The types of ionic and atomic species present
in the plume can be inferred from the optical emission spectra of the plume.
For complex oxides, the plume consists of a mixture of single ions, neutral
atoms, and some oxide species. Plume emission spectra of high-temperature
superconductors have been carefully studied, and BaO, YO, CuO, etc., have
been observed during the ablation of Y−Ba−Cu−O targets [31].

The ablation plume is strongly peaked along the surface normal of the tar-
get. Measurement of film-thickness profiles on large samples shows that the
plume consists of an ablative component, where the deposition rate is propor-
tional to cosn θ, and a Knudsen component, proportional to cos θ [32]. The
spread of the plume depends on the size of the laser spot on the target sur-
face, laser power density, and background gas pressure. The plume contains
atoms that can be neutral or ionized. The level of ionization also depends on
the ablation conditions. The expansion of various plume components is not
uniform, and although the angular dependence of ablated material can often
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be described with a cosn θ dependence (Fig. 7a), there are small differences
in the expansion for the higher- and lower-energy particles.

The ablation plume functions as a mass filter, with lighter elements hav-
ing a slightly higher density in the center of the plume, effectively having a
higher n in the cosn θ angular dependence. The effect is presumably more
pronounced in compositions that consist of cations with large mass ratios,
but stoichiometry variations of around 0.5% can be seen even in fairly sim-
ple cases, such as SrTiO3, where the Sr/Ti mass ratio is 1.8. The center of
SrTiO3 films tend to be slightly Ti-rich when analyzed by microspot X-ray
fluorescence.

The mass-separation effect in laser-ablation plumes is a function of laser
power density. For excimer lasers, with a 20 ns and 100mJ pulse focused to
a 1mm2 spot on the target, the power density is 500MW/cm2. The same
spot size for a YAG laser with a 50-mJ and 4-ns pulse would increase the
power density to over 1GW/cm2. This power density can be easily increased
by focusing the laser to a smaller spot area, and it is thus realistically pos-
sible to operate a PLD chamber in the range of 1010 W/cm2, where even
isotopic enrichment [33] has been observed, although this usually happens
with picosecond lasers that can approach 1014 W/cm2 [34, 35].

These power-density estimates assume that the laser pulse has a square
temporal shape. In reality, the time profile of an excimer pulse consists of
an initial fast edge and a fairly long decay [36]. Even in the case of high-
power YAG lasers, the pulse shape is not Gaussian because in order to reach
high output power from a physically small laser, multimode operation is
used. A nonseeded laser therefore outputs a pulse that can have very fast
high-amplitude components. While such time-profile details can usually be
ignored when discussing target surface heating, they do affect the way a laser
pulse interacts with the plasma that forms at the target surface within a
few hundred picoseconds. In practice, it is the risetime of the laser pulse
that matters the most for laser ablation. Lasers with faster pulse risetimes
can achieve equivalent evaporation characteristics at a lower integrated pulse
energy [36].

2.3.4 Film Growth Using PLD

The strongly forward-peaked expansion of the ablation plume results in a
narrow region on a substrate where the film-deposition rate can be considered
homogeneous. A number of process parameters affect the plume shape and
size. The most important factors are the ambient background gas pressure,
the laser energy density, and the laser spot size on the target surface. In
most cases, the cosn θ approximation works well in describing practical plume
profiles, as shown in Fig. 7b.

Due to geometric constraints, as shown in Fig. 3, the ablation laser beam
hits the target surface at an angle of about 30◦ to 45◦. As a result, the laser
spot shape on the target surface is asymmetric, elongated along the beam



236 Agham-Bayan Posadas et al.

Fig. 7. (a) The ablation-plume shapes and the corresponding film-thickness profiles
for a strongly peaked plume with n = 20 (thick line) and a wide plume with n = 5
(thin line). (b) A false-color photograph of a SrTiO3 target ablation plume. The
superimposed black curve is given by cos10 θ. The size and position of a 10-mm
wide substrate and the estimated film thickness profile are shown in white

direction. The forward peaking of the plume depends on the interaction area
at the target surface, with a smaller ablation spot resulting in a wider plume
with a lower n. An asymmetric laser spot thus also distorts the shape of the
plume and plume cross sections along the laser-beam direction, and directions
perpendicular to the laser beam can have quite different film-thickness pro-
files, as illustrated for two different laser spot sizes in Fig. 7a and in Fig. 4a.
As a result, the thickness profiles observed on PLD samples tend to be shaped
like ovals, and the thickness inhomogeneity between the edge of a sample and
the center can easily reach 30% [37].

The thickness inhomogeneity of PLD films is accompanied by small stoi-
chiometric variations as well. In general, lighter elements tend to be concen-
trated at the center of the film, while the concentration of heavier elements
increases towards the edges. A number of schemes have been developed to al-
leviate this problem. The simplest technique is to increase the distance (h in
Fig. 7a) between the target and the substrate. Typical distances that are used
in PLD chambers vary from about 30mm to 80mm. Increasing the distance
further would reduce the deposition rate to impractically low levels. In the
case of epitaxial oxide films, the substrate material cost is also significant
and it is therefore common to use small film samples. Characteristic sample
sizes are 5mm to 10mm. While this approach is adequate for characterizing
materials, it is not suitable when films are grown for device applications be-
cause larger samples need to be processed. Larger films can still be grown by
PLD, but sample- or target-scanning techniques have to be used. Rotating
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the substrate above an offcenter plume is technically the easiest solution and
can provide reasonable thickness homogeneity across several tens of mm [37].

It is more difficult to correct for the compositional variations across the
film surface. Attempts to do so have shown promising results for materials
like BaZrO3 and PbZrxTi1-xO3, although variations on the order of a few
per cent still remain [37]. Whether such composition variations are critical or
not depends on the materials system and the intended use of the film. In the
case of high-temperature superconductors, for example, excellent results have
been obtained in repairing compositional errors by scanning the laser beam
across a target surface and thus periodically shifting the position of the plume
relative to the center of the substrate [38]. In ferroelectric films destined for
device applications, it is necessary to control the density of structural defects
at a much lower level than is measurable by X-ray diffraction. It is common
to observe variations of electronic properties of films grown by PLD across
the surface of a substrate. Parameters such as dielectric constants, leakage
currents, photoconductivity, and carrier mobility are particularly sensitive
even to very low concentrations of defects, below 1020 cm−3, in the films.
Even in seemingly simple materials, such as SrTiO3, it is therefore difficult
to fabricate films that have similar dielectric behavior as high-quality bulk
crystals [39,40]. While the concentration of defects in thin films is expected to
be higher due to the kinetic nature of the film-growth process, the variation
of composition on the order of a per cent across the film surface will dominate
the defect density. Variation of material properties across the substrate must
be considered when evaluating oxide-based electronic devices [41].

It is also important to note that the kinetic energy of individual ions in
a plume can exceed 100 eV. This energy is high enough to cause sputter-
ing at the film surface. Due to the variation of deposition rate across the
film surface, the sputtering rate is also position dependent. Resputtering of
material from the film surface is a particularly serious issue in compounds
such as PbZrxTi1−xO3 (PZT) that contain volatile heavy elements. It has
been shown [42] that PZT films grown by PLD suffer from a considerable
loss of Pb at the center of the film, where resputtering by the plume is the
strongest. There is no simple way to correct this problem, except by increas-
ing the target–substrate distance and possibly using a lower energy sensity for
the deposition laser. If the energy is reduced close to the ablation threshold,
compositional deviations may start to occur in the target as well [30, 43].

Resputtering can also affect materials that do not contain volatile ele-
ments, such as SrTiO3. This is a particular problem for the growth of super-
lattices and heterostructures because sputtering by the plume is inevitable,
and it can seriously affect the structure of the interface layers. This can
be observed by measuring the inplane transport properties of SrTiO3 het-
erostructures during and immediately after deposition. A sharp increase of
conductivity can be observed, even when insulating oxides are grown on nor-
mally insulating SrTiO3 substrates [44]. In this case, the plume removes oxy-
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gen from the interface, inducing conductivity in a thin layer of SrTiO3 close
to the interface.

As long as the film-thickness profiles on the sample surface are reasonably
homogeneous, it is possible to use intentionally off-stoichiometric targets to
correct for nonstoichiometries occurring either due to evaporation, resput-
tering, or the high volatility of particular elements. This technique can be
used to grow films of La1/2Na1/2TiO3 at elevated temperatures that would
normally result in a large loss of Na from the film [22]. High-quality films
that show no dielectric phase transitions at low temperatures can be grown
by using an offstoichiometric target with a Na/La ratio of 1.75. In this case
the growth temperature could be increased to 600 ◦C, yielding superior crys-
tallinity. The technique, however, is time consuming to set up because the
target composition has to be retuned for each deposition system.

2.4 Sputter Deposition

Sputtering is the process of removing atoms from the surface of a target by ki-
netic-energy transfer from an incoming flux of highly energetic particles. This
technique, in particular geometries or with specific deposition parameters,
shares with PLD the main feature of being able to stoichiometrically transfer
the composition of the target to the growing film [45, 46], and this character-
istic makes it highly suited to the growth of multielement compounds, such
as complex oxides, with relative ease compared to thermal processes, such as
evaporation and MBE. This short overview describes the operational prin-
ciples and general aspects of sputter deposition as applied to the growth of
complex oxides. Many details and historical developments are left out, and
readers are referred to the many excellent texts that have been written on the
topic [45, 47–49]. In addition, aspects of thin-film growth by PLD described
above also apply to sputtering. In particular, aspects regarding the vacuum
chamber and temperature monitoring and control of the substrate are essen-
tially the same for all of the deposition techniques described in this chapter.
The form of the source material, known as the target, is also the same as
in PLD, where a ceramic disk of the material to be grown is typically used.
Readers are referred to Sect. 2.3.2 for more information on targets.

2.4.1 Sputtering Process

Sputtering involves the ejection of atoms from the surface of a target, which
serves as the source material for film deposition. There are several types of
sputter deposition techniques, depending on how the flux of energetic par-
ticles that bombards the target surface is created, the kinetic-energy range
of the bombarding particles, and the geometry of the system [50–52]. The
interaction between a solid and an incident flux of energetic particles de-
pends on the binding energy of the solid and on the specific kinetic energy of
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the incident particle. There is typically a threshold kinetic energy before any
significant quantity of atoms of the target is dislodged. In technical terms,
the sputtering yield (defined as the number of ejected target atoms per inci-
dent particle) is said to be negligible below this threshold, which is typically
in the range of ≈ 10 eV. As the kinetic energy of the incident particles is
increased to the range of 50 eV to 1000 eV, one enters the so-called “knock-
on” regime [53–55], where the incident particle dislodges a few surface atoms
that transfer their energies to surrounding atoms in a series of collisions.
This series of somewhat random collisions can cause a near-surface atom to
be occasionally hit from below causing that atom to be ejected from the tar-
get surface. This knock-on regime is where sputter-deposition systems are
operated. At higher incident energies (2–20 keV), each incident particle es-
sentially vaporizes a small region of the target in a cascade collision involving
a very large number of atoms of the target. At even higher energies, on the
order of 50 keV to 100 keV, the scattering cross section becomes small and
the incident ions are essentially implanted into the target [53–55].

The basic method of generating the incident flux of particles in sputter
deposition is through the creation of a plasma or glow discharge in an inert-
gas environment. The inert-gas ions produced are accelerated towards the
target by an electric field. A schematic of the electrode configuration for the
basic sputtering process is shown in Fig. 8. The source material or target
is attached to the cathode. An electric field of sufficient strength is applied
between the anode and cathode, causing the ionization of the gas between the
electrodes. The gas is typically Ar, which is ionized to Ar+. The Ar+ ions
are accelerated by the electric field towards the target, while electrons are
attracted to the anode. The heavy Ar+ ions bombard the target, transferring
their kinetic energy to the target, causing the atoms at or near the surface
of the target to be ejected. The ejected target atoms are then collected onto
a heated substrate.

2.4.2 The Sputtering of Insulators

Because many functional complex oxides, such as ferroelectric oxides, are
insulators, the basic dc-sputtering setup described above and shown in Fig. 8
does not work. Charge will build up at the surface of the insulating target and
will eventually cancel out the external electric field, causing the plasma to
be extinguished. This limitation can be overcome by applying an alternating
electric field instead of a dc electric field. At low frequencies, both electrons
and ions can respond to the oscillating field. In this regime, during one half
of the cycle, sputtering of the target (attached to the cathode) occurs, and
during the other half of the cycle, sputtering of the anode occurs. This anode
sputtering is known as resputtering [56] and is detrimental to film growth,
since the film is being sputtered away during one half of the electric-field
cycle. One solution to this problem is to use high frequencies in the RF
regime. By exploiting the fact that the heavy Ar+ ions cannot respond to
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Fig. 8. Schematic diagram of a basic sputtering system. The target is attached to
the cathode, which is negatively biased compared to the rest of the system

an RF electric field while the electrons still can, sputtering of insulators is
achievable without also resputtering the deposited film [57].

Most sputtering systems used for growing oxides utilize electromagnetic
fields with a frequency of 13.56MHz to generate the plasma. The target
is attached to the powered electrode while the rest of the vacuum chamber,
including the substrate, is normally grounded. The RF electric field generates
a plasma, but only the electrons are light enough to respond to the alternating
field at this frequency. The heavy Ar+ ions see only the average electric field.
The target, which is located at the “cathode”, is normally much smaller than
the “anode” (typically the chamber itself). The smaller area of the cathode
results in a higher electron concentration during each half-cycle compared
to the electron concentration at the anode. After a few cycles, this results
in a net negative dc bias at the target compared to ground. It is this self-
generated negative dc bias at the target that the Ar+ ions see. The target
self-bias accelerates the Ar+ ions towards the target, causing sputtering of
the target surface atoms. A schematic of a typical RF sputtering setup is
shown in Fig. 9.

2.4.3 Process Gas

As with PLD, a background gas at relatively high pressure can be utilized
during the deposition, and in fact, sputtering requires a sufficient gas pres-
sure before a plasma can be generated. In most oxide deposition processes,
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Fig. 9. Schematic diagram of a typical RF sputtering system. The Ar+ ions cannot
follow the RF field and respond only to the dc self-bias

an amount of oxygen is also introduced in addition to the argon gas, usually
on the order of 10%–50%. The oxygen is primarily to ensure that the oxide is
oxidized as grown [58]. Also, the total gas pressure used during the sputter-
deposition process itself is another control parameter that can be adjusted, in
addition to the usual substrate temperature and source flux. A higher back-
ground gas pressure results in increased thermalization of the ejected target
atoms, resulting in more uniform growth [58]. However, this increased pres-
sure also affects the efficiency of the sputtering process, causing a reduction
in the growth rate [59].

Another potential issue with the use of oxygen in the sputtering atmo-
sphere is the creation of O – ions (in addition to O+

2 ions). These negative
oxygen ions tend to be accelerated towards the substrate, causing resputter-
ing of the growing film. This process produces a preferential resputtering,
often leading to off-stoichiometric films [56]. This can be partially suppressed
by sputtering at high pressure and/or by using a geometry known as off-axis
sputtering [60]. The main feature of off-axis sputtering (shown in Fig. 10) is
that the target and substrate are positioned such that they are at some large
angle with respect to each other, typically 90◦. The off-axis geometry greatly
reduces resputtering and has been known to produce atomically smooth films
at the expense of a reduced deposition rate (since most of the flux is ejected
with momenta perpendicular to the target surface).
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Fig. 10. Off-axis sputtering geometry showing relative position of sputtering gun
and substrate

2.4.4 Preferential Sputtering

The sputtering yield is defined as the number of ejected target atoms per
incident bombarding ion. The yield depends on the chemical-bonding envi-
ronment and the atomic mass of the ejected species [61]. For multielement
sources typically used for complex oxide growth, each element has its own
sputtering yield. Some elements sputter more easily than others, which can
cause problems with the film composition. Fortunately, this problem with
preferential sputtering is relatively easy to overcome. The phenomenon of
preferential sputtering will result in one element being ejected more often
than another element. However, this also results in the target surface being
depleted of the element that sputters more easily, leaving the target surface
with a composition that is low in the element that sputters easily and high in
the element that does not sputter easily. At some point, equilibrium will be
attained such that the actual flux of ejected atoms from both species will be
the same as the bulk composition of the target. It is therefore important for
sputtering deposition processes to perform a “presputtering” or “condition-
ing” of the target for a sufficiently long time (several hours is typical) at the
plasma conditions to be used for the actual growth. This target presputtering
ensures that the flux is stoichiometric. This, however, is not always sufficient
to ensure stoichiometric films since, as mentioned above, preferential resput-
tering caused by oxygen ions can occur. Presputtering also cleans the target
surface of any extrinsic impurities resulting from the handling of the target
prior to mounting in the growth chamber.

2.4.5 Technical Considerations in Sputter Deposition

One important innovation that was made in sputtering technology was the
implementation of the magnetron configuration [62], which involves the use
of a cylindrical magnet whose magnetic field lines are directed along the
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Fig. 11. Electric and magnetic field configuration in a planar magnetron. The
electrons are primarily confined in a torus-shaped area in front of the target

radial direction. This magnet is typically situated behind the target. The
radial magnetic field in combination with the perpendicular electric field at
the target surface serves to confine the electrons in a torus-shaped region
in front of the target surface, thus increasing the ionization probablity near
the target, leading to higher deposition rates [47, 63]. Figure 11 shows the
standard magnetron setup. Further optimizations of the basic magnetron,
such as the unbalanced magnetron, have been developed and are described
in [63] and [64].

For RF sputtering systems, another important aspect is the RF power
supply. Most RF power supplies are designed for specific impedances (typi-
cally 50Ω pure resistive) and thus entails an additional requirement for proper
operation. The impedance of the plasma, which depends on the growth cham-
ber and sputtering-gun geometry, has both resistive and reactive components,
and must be matched to the power-supply impedance in order for the sup-
plied power to be transferred as efficiently as possible to the plasma [57]. This
impedance matching is commonly done by using an automatic impedance-
matching network, which consists of two variable capacitors (one in series and
one in parallel) along with a large inductor. The variable capacitors are auto-
matically adjusted by feedback from measurements of the reflected RF power,
which is minimized. During the growth, the plasma impedance can drift be-
cause of the growing film and the conditions of the target, especially if the
film and substrate have very different conductances, necessitating the contin-
uous adjustment of the matching network. For this reason, it is preferable to
have automatic (rather than manual) tuner networks for sputter-deposition
systems.

Sputtering systems also require water cooling of the sputtering guns. The
Ar-ion bombardment of the target causes the target and the magnet behind
the target to heat up. Without water cooling, the temperature can rise, melt-
ing the target and destroying the magnet. Also, similar to PLD, most oxide
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targets are ceramics that are bonded by some kind of solder to a copper
backing plate, which is attached to the end of the sputtering gun. The solder
can melt at around 300 ◦C, resulting in target bonding failure if there is in-
sufficient water cooling. In some sputter-deposition systems, especially older
systems, because the water goes through the powered electrode, the water
must have a specific resistivity range so that there is minimal ion transfer
to/from the cooling water.

2.4.6 Reactive Sputtering

A less commonly used method to grow complex oxides is reactive sputter-
ing [65, 66]. Reactive sputtering involves sputtering from elemental (metal)
sources in the presence of oxygen. The chemical reaction between the metal
atoms and oxygen at the substrate surface produces the oxide film. One ad-
vantage of reactive sputtering is that one can employ dc sputtering systems,
which are less expensive than RF systems, since metal targets do not have
the problem of charging. Also, there is more flexibility in composition control
of the film, but this composition flexibility can also be a disadvantage. The
lack of line compositions in complex oxides requires one to have a very high
degree of control over the source fluxes and oxygen partial pressure in order
to obtain high-quality epitaxial films. For this reason, reactive sputtering is
more typically used to grow simple oxides and not complex oxides. In order
to achieve composition flexibility and control at the same time, one often uses
molecular beam epitaxy, which is described in the next section.

2.5 Oxide Molecular Beam Epitaxy

Molecular beam epitaxy [67] is a crystal-growth technique that builds the
crystal structure of a growing thin film with atomic-layer precision through
flux control of thermally evaporated beams of the film’s constituent elements
in a vacuum. These beams are directed at a crystalline substrate to form the
film of interest through reaction and crystallization (see Fig. 12).

Conceptually, the process of MBE as described above is simple in that
changing the sequence of materials deposited can result in a predetermined
crystal structure. Many of the creative crystal structures are, in fact, devices
that have been designed and grown using MBE and owe their technologi-
cal success to the simplicity of the MBE growth process. The challenge of
MBE comes when the structure and chemistry of the surface do not follow
from the sequence of materials deposited. In this case, the film grower re-
lies on electron-spectroscopic techniques that are inherently surface sensitive
and that work well in the vacuum environment of MBE to provide feedback
to the growth process. These two strengths of MBE, conceptual simplicity
and powerful characterization techniques, have combined to make MBE both
scientifically and technologically successful.
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Fig. 12. Oxide MBE hardware. This schematic view of components contained in a
vacuum chamber illustrates the geometry for a typical MBE system. The compo-
nents are designed to directly access the fundamental parameters of crystal growth
on a surface. The substrate is heated using techniques similar to those described
in Sect. 2.2. For uniform deposition of the metal component (green spheres), the
substrate can be rotated during growth, which also allows complete characteri-
zation of reciprocal space using RHEED (see Sect. 2.5.2). Metals are evaporated
from precisely heated crucibles and shuttered to control the deposition of individ-
ual, atomic-scale layers. The rate and level of metal deposition is controlled during
growth using feedback from RHEED, which gives a different pattern characteristic
of the growing surface, as observed on a fluorescent screen opposite the focused
source of high-energy electrons. Not shown for clarity is a quartz crystal monitor
that is moved to the position of the substrate for calibration of the deposition rate
and removed during growth. Oxygen is supplied by directing a beam of molecular
or atomic oxygen, or ozone through a nozzle (blue spheres). Other components in-
clude a residual-gas analyzer for measuring the chemical make-up of the gases in
the vacuum chamber in addition to a hot-filament, ionization gauge for measuring
the overall level of vacuum

For MBE, technological success has meant implementation in the com-
mercial production of devices. This was true first for laser diodes used in com-
pact disc players and continues today for high-speed transistors used in cell
phones. While MBE is not generally considered to be a commercial produc-
tion tool, the power of MBE combined with the imperative of an application
has motivated a number of companies to practice commercial MBE.

Scientifically, we are interested here in its inherent precision in structural
control at interfaces and surfaces, which is essential for controlling ferro-
electric properties. Electrical and structural boundary conditions have been
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shown to strongly couple to the polarization of a ferroelectric thin film. Pre-
cise structural control at interfaces and surfaces also means that first-prin-
ciples theoretical techniques such as density-functional theory can be used
to understand the structure–property relationships we are interested in for
ferroelectric devices [68].

2.5.1 Hardware

Atomic-layer control is achieved by careful arrangement of the components
of the MBE system (Fig. 12). Shuttered, thermal-evaporation sources are
aimed at a heated substrate where the evaporant condenses and reacts. The
manipulator that holds the substrate can also be raised and lowered parallel
to the substrate surface normal, as well as rotated around the surface nor-
mal. Ideally, provision is made for optional shielding of the substrate (not
shown in Fig. 12) from deposition when the sources are operating and their
shutters are open. Epitaxy of the growing film is measured using a focused,
high-energy electron beam (10–35 kV) that is directed from the side of the
chamber onto the sample at a low (0.5 to 5◦) incident angle, a technique called
reflection high energy electron diffraction (RHEED). The diffracted electron
beam is imaged using a fluorescent screen mounted on the side of the growth
chamber opposite to the electron gun. The low incident angle guarantees a
small penetration depth, on the order of a few angstroms, into a flat surface
so that the observed diffraction is mostly from the growing film surface. The
deposition rate from individual sources is calibrated using a thickness rate
monitor, such as a quartz microbalance that can be moved into the substrate
position. The deposition rate is typically calibrated before film growth with
the substrate shielded from the sources.

Thermal evaporation sources consist of a heater that surrounds a cru-
cible that holds either liquid or solid metal. Flux control is accomplished by
controlling the crucible temperature, as measured using a thermocouple. In
addition, a cold shutter gates the evaporant to the substrate. Efficient sources
use heat shields to surround the heater and hot crucible, along with a cooling
shroud to absorb excess heat. Heating from a hot source leads to degassing of
the vacuum chamber walls; these unintended gases impinge on the substrate
and can be incorporated as impurities and possibly affect the thermodynam-
ics and kinetics of film growth. The flux profile from a point-source crucible
varies as the cosine of the incident angle relative to the substrate normal. If
the source is tilted, as it must be in order to aim multiple sources at a single
substrate, then the flux will fall off from the near edge to the far edge, leading
to flux and thickness nonuniformities. A uniform, time-averaged flux across
the substrate is achieved by continuously rotating the sample during growth.
Rotation has the added advantage of allowing a complete characterization of
the surface structure via RHEED during growth.

The range of metals that are incorporated in the perovskite structure
that one might be interested in growing is large, and thus one is interested
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in evaporating a diverse set of metals. The practical difficulty of holding
a hot metal in a crucible can be a difficult issue. To see how this issue is
resolved in practice, the example of evaporating titanium for BaTiO3 growth
is discussed below. For reasonable growth rates of 10 Å/s, the vapor pressure
of the titanium should be about 10−2 Torr for a source that is 40 cm from
the substrate. The temperature of Ti required to reach this vapor pressure is
1750 ◦C, at which temperature titanium is molten.

The common refractory materials used for crucibles react with or dissolve
into titanium and fail at these temperatures. Pure titanium in graphite reacts
at a eutectic of 1648 ◦C, and titanium is continuously soluble in tantalum [69].
To solve this problem, one observes that there exists a carbide of titanium
that will contain a carbon–titanium solution up to 2776 ◦C. In practice, one
can use an alloy of titanium and carbon that has the composition of the C:Ti
liquidus at 1800 ◦C, or 1.4 wt%. When this charge melts at the eutectic tem-
perature of 1648 ◦C, a carbide forms at the crucible wall in contact with the
melt that contains the molten alloy. Using this technique, high fluxes can be
obtained. Pure titanium may also be sublimed near its melting temperature
of 1670 ◦C. Increasing the surface area of the evaporant and placing it closer
to the substrate also achieves higher fluxes. In practice, this has been done
using a titanium sphere that is heated radiatively without a crucible [70].

Barium, strontium and calcium can be contained in a tantalum crucible.
These alkaline-earth metals can be purified to 99.995%, with the major impu-
rities being the other alkaline-earth metals. The metals are packed in argon,
and air exposure must be avoided while the metal is being transferred into
the crucible. Once loaded into crucibles, the alkaline-earth metals should
first be heated near the operating temperature for a few days to remove ad-
sorbed hydrogen and water from unintentional air exposure. The hydrogen
evolved decreases during this process from a chamber pressure of 10−5 Torr
to 5×10−9 Torr. The hydrogen background remains at a level of 5×10−9 Torr
during growth. While the presence of hydrogen during growth does not ap-
pear to affect the growth of the oxides, the consequences on properties and
growth are still being investigated.

2.5.2 RHEED

In this subsection we describe RHEED as a flexible tool for characterizing
atomic surface structure and morphology during growth; many of the re-
sults summarized in this chapter rely on this technique. Before the advent
of differentially pumped RHEED guns that were designed to operate in the
low-vacuum environments of PLD and chemical vapor deposition (CVD) [71],
RHEED was the exclusive domain of MBE [72]. RHEED is relatively inex-
pensive, and because of its side-view geometry (Fig. 12), it is straightfor-
wardly integrated into most MBE growth-chamber designs. Because of these
advantages, RHEED has been one of the most important tools for study-
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ing thin-film nucleation and growth, and has been an indispensable tool for
developing processes for the growth of thin-film oxides.

A fundamental characteristic of RHEED is the strength of the scattering
process; as a result, the diffraction pattern in grazing incidence is sensitive to
the structure of a flat surface. The surface sensitivity can be understood as
arising from the grazing incident angle. For 10-keV electrons, the penetration
depth at normal incidence is on the order of 30 Å. For an incident angle
of 1◦, penetration is trigonometrically reduced by a factor of 57 to give a
penetration depth on a smooth surface of only 0.5 Å. Consequently, only the
surface diffraction is observed.

The surface diffraction observed using RHEED is an image of the recipro-
cal lattice of the surface structure. The reciprocal lattice is the discrete set of
wavevectors for plane waves with the periodicity of the real lattice. Because
the surface breaks the periodicity of the lattice in the z-direction (perpen-
dicular to the surface), a discrete set of wavevectors of the reciprocal lattice
exists only in the two dimensions parallel to the surface. Perpendicular to
the surface, all values of wavevector are allowed so that the reciprocal lattice
is a collection of rods perpendicular to the surface.

In RHEED, the diffraction is from electrons with a relatively short wave-
length of 0.12 Å for 10-keV electrons. The resulting diffraction pattern from
planes of reciprocal space is imaged on a fluorescent screen opposite the
RHEED gun. The sample is rotated about its surface normal for a complete
characterization of the scattering in reciprocal space.

For a perfect surface, the rods are narrow, and spots are observed along
an arc on the RHEED screen where the inplane momentum transfer of the
scattered electrons has the value of the reciprocal lattice. If broad rods or
streaks are observed, this is due to poor crystallinity where the rows of atoms
are partially disordered and are arranged with a range of angles relative to
the incident beam. The surface diffraction collected in this way sensitively
characterizes the rich variety of surface structures and phases that arise from
the deposition of submonolayer to monolayer amounts of material.

RHEED is also effective at determining surface roughness, a consequence
of the low incident angle. Any surface asperity due to roughness or the nucle-
ation of islands results in three-dimensional scattering that is characterized
by the observation of Bragg spots. These spots are observed because the inci-
dent electron beam is incident on the island at a high angle and can diffract
from a three-dimensional set of planes in a volume that is on the order of the
penetration depth, ≈ 30 Å. This property of RHEED is useful for identifying
the nucleation of unwanted phases by indexing the diffraction pattern and
measuring the lattice parameters.
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Fig. 13. Global growth characteristics. The temperature dependences of surface
diffusivities, Ds, and bulk diffusivities, Db, are plotted as a function of growth
temperature normalized to the absolute melting temperature, Tm. This diagram
summarizes three material classes: metals, alkali halides (AH), and the covalently
bonded semiconductors, silicon and germanium. The arrows indicate growth tem-
peratures for atomically smooth homoepitaxy. Above surface diffusivities of 10−8

to 10−7 cm2/s, films are expected to grow smoothly. Above Ds > 10−15 cm2/s,
RHEED oscillations are expected. Bulk diffusion will significantly impact superlat-
tice growth for Db > 10−19 cm2/s. (Figure taken with permission from [73])

2.5.3 Fundamentals of Growth

The success of MBE in producing complex devices and intricately layered
crystal structures can be attributed to the fundamentals of atomic diffusion
and nucleation on a surface and in the bulk (Fig. 13) [73]. Due to the reduced
coordination of surfaces relative to the bulk and the availability of empty
lattice sites, surface diffusion is fast and bulk diffusion is slow, so that the
nucleation of layers is easy, while diffusion into the bulk is difficult. The
process for forming a layered crystal structure starts with a substrate that
is stepped (Fig. 20), which, as will be discussed in Sect. 3, is required for
growing high-quality layers. The features of this surface that are important
for epitaxy are atomic-height steps and large-area terraces that are atomically
flat facets between steps. If an atom can diffuse to a step, it will stick because
of the increased coordination at lattice sites of the step. This mode of growth
has been aptly described as step-flow growth, in that the steps simply move
without changing the surface [73]. Because the surface does not change, no
change is observed in the RHEED pattern.

Sufficient energy for this diffusion is normally supplied by thermal excita-
tions from a hot substrate. If the growth rate is high enough and the substrate
temperature is low enough, then before the deposited atoms can reach a step,
multiple atoms nucleate to form an island on the terrace, which contributes
to the roughness of the surface. As deposition proceeds, the density of these
islands increases until a full atomic layer has been deposited and the surface
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is again smooth. Diffraction from the surface now oscillates as the surface
roughness changes in a periodic way. It has been observed that this process
cannot proceed indefinitely because islands will nucleate on islands, etc., so
at low temperatures or high deposition rates the surface eventually becomes
rougher and the oscillations in surface diffraction are damped. The smoothest
layers are deposited at high temperatures where the surface diffusion coeffi-
cient exceeds 10−8 to 10−7 cm2/s [73] (see arrows in Fig. 13).

In order for the atomically smooth layer to remain unchanged so that it
performs its function in a working device, the constituents of the layer must
not diffuse into the bulk for the duration of device synthesis [73]. While bulk
diffusion is inherently much slower than surface diffusion, the distance over
which diffusion destroys the layer is on the order of an atomic layer, and the
bulk diffusion coefficient needs to be less than 10−19 cm2/s (lower dashed line
of Fig. 13).

The two criteria of sufficient surface diffusion and insufficient bulk dif-
fusion define a kinetic window of crystal growth. For metals, this window
is narrow, at a substrate temperature of ≈ 1/3 the melting temperature in
absolute temperature units (Tm). For alkali halides this window is very large
and ranges from 1/9 to 1/3 of Tm. For covalently bonded materials, such as Si
and Ge, the window ranges from 1/2 the melting temperature to the melting
temperature itself [73].

To apply these rules of thumb to the oxides we used as examples in this
subsection, we note that the alkali halides are ionically bonded, just like the
alkaline-earth oxides, and the perovskite oxides have both ionic and covalent
bonding character and so should have surface diffusion coefficients similar to
the covalently bonded materials. The melting temperatures of the alkaline-
earth oxides range from 2191K for BaO to 3125K for MgO; for CaTiO3

the melting temperature is 2521K. We can use these melting temperatures
as a starting point for determining the substrate temperature for atomically
smooth growth.

A second consideration of particular importance in the growth of oxides
involves the thermodynamics and kinetics of the metal–oxygen pair. In what
follows, we will find that kinetics dominate the formation of the alkaline-earth
oxides and perovskites. In the case of titanium oxide, the thermodynamics are
characterized by the heats of reaction across the phase diagram for the Ti−O
system [74]. While other phases are possible, we consider here four phases
in the order of oxygen content, close-packed hexagonal titanium metal, rock-
salt TiO, hexagonal Ti2O3 and tetragonal anatase TiO2. Using the compiled
heats of reaction, one finds that TiO2 is thermodynamically stable at 800K
down to 10−14 Torr. While the stoichiometry does not depend on equilibrium
considerations for these oxides, one can control the nucleation of different
phases by changing the relative arrival rate of titanium and oxygen.

By way of illustration, an epitaxial multilayer of the titanium oxides was
grown on the basal plane of an Al2O3 substrate [75]. The growth of this mul-
tilayer was accomplished by codepositing titanium and oxygen onto Al2O3.
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Fig. 14. Oxide multilayer. The micrograph is a high-resolution transmission elec-
tron micrograph of a TiO/Ti2O3 multilayer viewed in cross-section. The images are
taken down the azimuth of Ti2O3 and the Al2O3 crystal. Note that the polar trun-
cation of the TiO (111) surface is stabilized in this multilayer oxide heterostructure
(see [75])

For a growth rate of 0.06 Å/s, the arrival rate of oxygen is high enough at
5 × 10−6 Torr to completely react with the titanium on the surface to form
TiO2. As the pressure is reduced to 5 × 10−7 Torr, TiO will nucleate, while
Ti2O3 will nucleate at an intermediate pressure. One can grow a multilayer
of two oxides by valving the oxygen source to vary the arrival rate of oxygen
between 5×10−7 Torr and 1×10−6 Torr. One chooses a substrate temperature
of 900 ◦C based on the melting point of covalently bonded TiO2. The basal
plane of Ti2O3 grows on the basal plane of sapphire, and the (111) plane of
rocksalt TiO grows on the basal plane of Ti2O3. This sequence is repeated to
form the oxide multilayer (Fig. 14). This illustration is a simple example of
controlling crystal structure using the easily manipulated variables of MBE.
More complex examples exist in the literature, for example, where oxygen
stoichiometry can be varied by changing the arrival rate in a PLD deposition
of LaTiO3+b/2 [76]. Here, the properties were observed to change for this
perovskite oxide from a metal to a ferroelectric by simple manipulation of
the oxygen content.

Because kinetics is such an important aspect of MBE, the form of oxygen
that is supplied to the substrate for reaction is an important consideration.
While molecular oxygen is the easiest form to deliver to the growing film,
diatomic oxygen is relatively unreactive due to the large binding energy of
the molecule (5.2 eV) [77]. Therefore, atomic sources of oxygen [78] produced
by both RF plasma and ozone sources [79] have been used in the MBE growth
of perovskite oxides.
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The above considerations apply to homoepitaxial growth, where the crys-
tal being grown is the same as the substrate, as well as to heteroepitaxy,
where the crystal being grown is different from the substrate. For the latter
case, the task of matching materials is more than just matching symme-
tries and lattice parameters, but also making a transition in bonding across
a heteroepitaxial interface with atomic-layer precision. In the following, we
describe the physics of forming a heteroepitaxial interface.

For oxides, a simple example is the growth of SrTiO3 (001) on MgO (001).
Both crystals have stable (001) faces, and both are cubic with a mismatch of
7.5% when oriented with their respective a-axes aligned, the so-called “cube-
on-cube” orientation. When the structures are examined, the SrO plane of the
perovskite SrTiO3 is that of a simple rocksalt structure, just like the plane of
MgO of the (001) face. However, to achieve lattice matching, these two planes
must be rotated 45◦ to one another. If this is done, then there is no way to
match the electrostatics of these ionic planes. If the anions of the SrO plane
are aligned with the cations of the MgO plane, then there will be some anions
with anions as nearest neighbors. This situation is energetically unstable due
to Coulomb repulsion. On the other hand, if the TiO2 plane of the SrTiO3

is matched to the (001) face of MgO, then the cations of the top plane can
be matched with the anions of the MgO substrate to achieve a low-energy
interface. The solution is to take advantage of the layer-sequencing ability of
MBE to start with the TiO2 plane of SrTiO3 to start the heteroepitaxy.

Similar electrostatic arguments were invoked to explain the epitaxy of
silicon on LaAlO3 [80]. In this example, the interface was formed by heating
silicon deposited on a LaAlO3 substrate, which was subsequently annealed.
Electron micrographs of the interface after this process revealed that the
interface developed a 3× 1 reconstruction between the silicon lattice and the
LaAlO3 lattice, which has a lattice misfit of only 1.3%. To understand why the
interface rearranges itself from the bulk truncations of matched crystals, the
electrical structure of the interface needs to be examined. Although LaAlO3 is
a perovskite with a structure analogous to the structure of SrTiO3, the cation
sublattices have different valences. Simply viewed, the Sr valence is 2+ and
the Ti valence is 4+ in SrTiO3 with oxygen at 2−. This arrangement means
that each atomic plane of SrTiO3 is neutral, making the (001) face stable.
For LaAlO3, however, the valences of both La and Al are 3+, which means
that the AlO2 plane has a net negative charge, while the LaO plane has a
net positive charge. These two planes combine to form a (001) truncation of
LaAlO3 that is polar. The sharp truncation of (001) LaAlO3 is stabilized by
a 3 × 1 reconstruction of the interface. This example not only demonstrates
other ways to fit an oxide on silicon, but is an example of the rich variety of
electrical structures possible at oxide interfaces [81].

In Sect. 4.2, another oxide/silicon interface will be described in detail. In
contrast to the Si/LaAlO3 interface, this interface can be built up system-
atically using the layer-sequencing capability of MBE. Each of the layers of
the interface is stable, and the components consist of the rocksalt alkaline
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Table 1. Lattice parameters and chemical stability

Material Lattice parameter (Å) Gibbs energy of formation (kJ/mol) [77]

MgO 4.2112 [87] −569.3
CaO 4.8112 [88] −603.3
SrO 5.16 [87] −561.9
BaO 5.539 [89] −525.1

earth oxides and the cubic perovksite SrTiO3. In the following two subsec-
tions we describe the details and characteristics of the MBE growth of each
component in a way that illustrates the fundamentals discussed above.

2.5.4 Alkaline-Earth Oxide Growth

The alkaline-earth oxides of magnesium, calcium, strontium and barium have
all been grown and studied using MBE. They possess the rock-salt structure
and are ionic crystals, just like the alkali halides that have been extensively
studied since 1928, when Royer first developed the rules for epitaxy [67]. The
alkaline-earth oxides, however, are difficult to study due to their hygroscopic
nature, and there are a limited number of ways to study intrinsic properties,
one of which is to grow them in vacuum [82].

The attractive properties for epitaxial growth of the alkaline-earth oxides
are their simple chemistry and crystal structure, their range of lattice pa-
rameters, and their limited reactivity (see Table 1). By alloying the various
alkaline-earth oxides by codepositing the alkaline-earth metals, the lattice
parameter of an oxide surface can be varied from 4.21 Å to 5.54 Å. A lattice-
matched oxide surface can be grown and used as a substrate for the growth
of other cubic oxides [83–86].

Growing these oxides is straightforwardly accomplished by evaporating
the alkaline-earth metals in the presence of molecular oxygen. The compound
itself, MO, can also be evaporated using a high-energy (6 keV) electron beam
to sublime the molecule. When a reactive method is chosen, oxygen and the
alkaline-earth metal readily react via:

Ba + O2 ⇔ BaO + O. (1)

While this reaction seems elementary, it shows that during growth four dif-
ferent molecules are on the surface: barium metal, molecular oxygen, molec-
ular barium oxide and atomic oxygen.

The metal–oxygen reaction has been studied in the MBE environment at
room temperature, and the metal on the surface has been found to oxidize at
oxygen arrival rates equivalent to 1× 10−7 Torr for a metal flux of 0.1 ML/s
(1 ML of oxide is based on the bulk lattice parameter of the oxide) [90].
This corresponds to an approximately 10:1 ratio of arrival rate for molecular
oxygen to alkaline-earth metal at the growth pressure. At these pressures,
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Fig. 15. Temperature and pressure diagram describing conditions for ledge growth
of BaO. Flat, homoepitaxial growth is realized for conditions to the right of the
solid boundary in the graph and defines the conditions for synthesizing devices with
atomically sharp interfaces (taken from [92])

the mean free path of metal atoms is much larger than the distance to the
shutter, and molecular beams are easily achieved.

Substrate temperatures for ledge growth have also been measured using
RHEED oscillations for MgO [91] and BaO [92] (Fig. 15). The substrate
temperatures required for smooth growth are typically very low because of
the high mobilities of all of the species present on a growing surface. The high
mobility is a direct consequence of the strong ionic bonding of the oxides that
has been studied in the alkali halides [93].

We have empirically determined the growth conditions for flat growth of
BaO and graphically represent them in Fig. 15. The growth rate was 1 ML
of BaO every 5 s, resulting in a surface with ledges spaced ≈ 300 Å apart.
Above a temperature of 275 ◦C, BaO grows with a flat morphology regardless
of oxygen pressure. For oxygen pressures below 3 × 10−7 Torr, the substrate
temperature can be reduced to 175 ◦C. The low growth temperature required
for smooth growth of the alkaline-earth oxides means that they are easily
incorporated into multilayer heterostructures without phase separation [94]
or interdiffusion [93].

2.5.5 Perovskite Growth

Since the discovery of high-temperature superconducting oxides, there has
been an explosion of interest in perovskite oxides for use in heterostructure
devices [95]. The properties of these oxides can range from superconducting
to ferroelectric to ferromagnetic. The variety of properties is achieved by
changing the composition on the cation sublattice of the perovskite structure,
ABO3, or closely related structures. Functionality has been realized when
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ferroelectric perovskites are integrated with semiconductors [96–99] or other
oxides.

The growth of perovskite thin films by MBE is associated with a number
of challenges when compared to other techniques, such as sputtering, metal-
organic-chemical-vapor deposition (MOCVD), or PLD. The most notable is
stoichiometry control of the line-compound ABO3. While the oxygen con-
tent is controlled by absorption, the arrival rates of the A cation and the
B cation must be matched for perovskites such as SrTiO3 and BaTiO3. Some
ferroelectric perovskites, such as PbTiO3 have one volatile cation component,
and the stoichiometry can be serendipitously controlled within a thermody-
namic growth window of substrate temperature and PbO overpressure [100].
While maintaining the correct stoichiometry is a challenge, a key advantage
of MBE is the ability to control the formation of heterostructural interfaces
with atomic-layer precision. The following discussion focuses on this strength.

The perovskites that we consider here are SrTiO3 and BaTiO3, both of
which have a structure based on the cubic perovskite structure. As mentioned
earlier, this structure consists of neutral cation–oxide layers, BaO or SrO in
one layer and TiO2 in the next, which allows the perovskite structure to
be built up in a layer-by-layer fashion. Conversely, codepositing the cations
builds the structure up in a unit cell-by-unit cell fashion.

For layer-by-layer deposition, the reaction described by (1) takes place
during BaO deposition as the atoms diffuse on the TiO2-truncated surface,
while the following reaction takes place on the BaO-truncated BaTiO3 sur-
face:

Ti + O2 ⇔ TiO2. (2)

The most straightforward approach to ensuring correct stoichiometry is
to measure the flux from each cell before deposition by closing the shutter
covering the substrate. After calibration, film growth can begin by sequen-
tially opening each shutter for an amount of time that corresponds to 1 ML
of growth. While the deposition rate can be calibrated sufficiently accurately
with a quartz crystal monitor by averaging over many monolayers of deposi-
tion, real-time monitoring of a single monolayer is not accurate enough be-
cause of thermal drift of the quartz oscillator frequency. The thermal drift is
a consequence of the changing heat load on the quartz crystal that is exposed
to the hot evaporation source. When the shutter is opened, the temperature
of the crystal changes enough to change the frequency of the crystal that is
equivalent to tens of angstroms of elemental deposition. A second problem
with this method is that, even with calibration, the flux from the source can
also drift.

The perovskite structure can accommodate an excess of alkaline-earth
metal as extra planes that have the rocksalt structure and are commensurate
with the perovskites lattice. Ordered lattices with extra planes make up a
series of Ruddleson–Popper phases that can be viewed as superlattices of
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Fig. 16. Nucleation of incommensurate rough islands on a BaTiO3 surface with
excess TiO2. If the stoichiometry is not controlled using the methods outlined in
the text, then rough islands of other phases containing barium and titanium will
nucleate. These islands show up in RHEED as Bragg spots (circled in figure) due
to the large volume of material that diffracts

alkaline-earth oxide and the perovskite [101]. Excess TiO2 forms phases that
are not commensurate with the growing perovskite surface and nucleate as
rough islands on an otherwise flat perovskite surface (see Fig. 16). These
islands destroy the layered structure, and flat growth cannot be continued.

A class of methods for controlling the stoichiometry takes advantage of
the fact that the surface diffraction is different for each deposited layer, BaO
or TiO2 [101–103]. If RHEED is observed during growth and the intensity is
monitored in different regions of reciprocal space, then the intensity is ob-
served to change, depending on whether the surface is being covered with
BaO or TiO2. When the intensity reaches a predetermined value for a com-
plete monolayer, deposition of that layer is stopped, and deposition of the
next layer is started.

An example of this approach is to monitor the RHEED pattern that is
characteristic of surface reconstructions that form at 1/2 ML over coverage
of either BaO or TiO2 [102, 103]. If one starts with a flat, TiO2-truncated
surface and adds 1/2 ML more of TiO2, a doubling of the surface periodicity
is observed along the 〈210〉 direction of (001) BaTiO3 (see Fig. 17). If one
assumes that the intensity of this diffraction feature is directly proportional
to the amount of excess TiO2 on the surface, then one can control growth
by opening the shutter over the Ti source to expose the BaO-truncated sur-
face until this feature is just barely observed, at which time the shutter is
closed. From a fit of the TiO2 peak, one estimates that the coverage can
be controlled to within about 0.03 ML, with the error arising from the high
background around the peak. Ideally, this should be a null technique because
a stoichiometric surface should have no peaked intensity at this position in
reciprocal space.

Next, we consider oxygen stoichiometry. The reactions in (1) and (2)
take place sequentially if one grows layer-by-layer, as discussed above. An
alternative is to match both metal deposition rates and deposit both met-
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Fig. 17. RHEED stoichiometry control. If the RHEED is monitored near the 〈210〉
direction of (001)BaTiO3, then excess titanium can be detected at submonolayer
levels. This excess can then be corrected before nucleation of other phases as islands.
The RHEED image shows that the BaTiO3 surface with excess TiO2 is atomically
flat by the rod-like diffraction evident in panel (a). Panel (b) is a line scan through
the (1,0.5) rod and can be used to quantify the amount of excess TiO2 to within
≈ 0.03 monolayer

als simultaneously. For this case, the following reaction takes place on the
growing surface:

Ba + Ti +
3
2
O2 ⇔ BaO + TiO2. (3)

These techniques have been compared by measuring the crystalline per-
fection of the resulting films [103] as characterized by X-ray rocking curves.
This investigation showed that the codeposition route was superior because
it promotes a more complete oxidation of the titanium, as measured by X-ray
photoelectron spectroscopy (XPS). One possible explanation for this result
may be the presence of atomic oxygen during codeposition in (3), which re-
acts more rapidly than molecular oxygen, with oxygen vacancies trapped in
the growing surface. Substoichiometric oxides can be avoided by using more
reactive sources of oxygen such as ozone [104] or RF-generated atomic oxy-
gen [78].

3 Substrates

Even with access to advanced physical vapor deposition techniques that are
able to transfer the composition of the desired material to the substrate, it is
difficult to obtain a single-crystalline epitaxial film, much less a multilayered
structure, without the availability of atomically flat substrates. When thin
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Fig. 18. Typical oxide crystal structures and lattice distortions: (a) perfect cubic
perovskite, (b) tetragonal distortion, (c) GdFeO3-type orthorhombic distortion

Fig. 19. Polished SrTiO3 substrate surface
(Shinkosha). Image size is 0.5 μm × 0.5 μm

films of complex oxides are grown by atomic-layer techniques, especially when
the film thickness is in the nanometer range, it is necessary to start from
an atomically flat substrate surface because it would otherwise be difficult
to guarantee correct atomic-scale layer ordering during film growth. Rough
starting surfaces can cause a variety of structural defects and thus alter the
dielectric, ferroelectric and other properties of a film. Surface flatness over
longer distances, on the order of μm, is also necessary when films are grown
for device applications, such as tunnel junctions or field-effect devices. Surface
flatness over multiple layers is also critical when growing superlattices. Any
roughness on the substrate surface can lead to unintentional electrical shorts
in thin barrier layers.

When compared to well-established substrates, such as silicon, oxide crys-
tal surfaces are generally harder to prepare with a similar degree of perfection,
which is partly due to the complexity of the lattice and the large number of
constituent elements.
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Fig. 20. Model of a step-and-terrace perovskite surface. All terraces have the
same terminating atomic layer if all steps have the same height, equal to a single
perovskite unit cell. The miscut angle determines the average terrace width

Among oxide substrate materials, SrTiO3 has probably been characterized
in the greatest detail. The techniques and problems that arise in the prepara-
tion of a well-ordered crystal surface for thin-film growth are discussed here
by using SrTiO3 as an example.

SrTiO3 is a cubic perovskite at room temperature with a lattice constant
of 0.3905 nm. The basic perovskite unit cell of SrTiO3 at room temperature
is shown in Fig. 18a, where the B-site cations are drawn at the corners of the
unit cell, surrounded by oxygen octahedra. The A-site cation is at the center
of the cell. SrTiO3 single crystals show a structural transition to a tetrago-
nal phase when cooled below 105K. The presence of even lower symmetry
phases below about 50K has been suggested, based on X-ray analysis [105].
The tetragonal low-temperature phase is illustrated in Fig. 18b. The oxygen
octahedra surrounding the Ti atoms are tilted in the a–b plane, resulting in a
doubling of the lattice constant along the a- and b-axes [106]. The tetragonal
distortion is quite small, with c/a = 1.00056 [105].

SrTiO3 substrates usually have the (001) orientation, ideally exposing
a surface terminated by the TiO2 layer. Other cut directions can also be
used to obtain a tetragonal (110) or a hexagonal (111) surface. Typical oxide
substrates delivered by commercial crystal vendors have a polished surface
with very low average roughness. An atomic force microscope (AFM) image of
a mechanochemically polished SrTiO3 substrate is shown in Fig. 19. The cross
section of the image shows that the peaks and valleys rarely exceed the height
of a single perovskite unit cell, which is approximately 0.4 nm. On an atomic
scale, however, this surface is not well ordered, exposing all possible atomic
layers at the surface. The polishing process can also contaminate the surface
with elements that are not normally present in the crystal, such as Si, if silica-
based polishing agents are used. The polishing is done at room temperature
and can induce significant strain in the surface layer of the crystal [107]. There
is therefore no guarantee that such a surface would be thermally stable above
room temperature.
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Preparation of an atomically flat and well-ordered oxide surface is a chal-
lenging task. An atomically flat surface should show a regular step-and-
terrace structure, determined by the miscut angle of the crystal (Fig. 20).
If all steps on such a surface have the height of a single unit cell, one can
assume that all terraces are terminated by a chemically identical atomic layer.

A variety of surface-preparation techniques have been developed for ob-
taining clean crystal surfaces. Some techniques, such as sublimation of Bi
films [108], are mainly useful for removing carbon contamination from a sur-
face without affecting the structure of the surface layer. This is mostly useful
for surface-sensitive analysis of samples prepared by ex-situ techniques. Other
methods, such as ion bombardment [109] have also been used, but due to
mass-dependent sputtering rates of atoms on the surface, this technique can
result in stoichiometry changes in the surface layer. Generally, the preferred
method for converting an atomically rough polished surface into a well-or-
dered step-and-terrace surface is to use wet etching and high-temperature
annealing. Various combinations of these steps have been used to obtain very
high quality SrTiO3 substrates [110–112].

Substrate annealing, without wet etching, can be used to improve the
flatness of various substrate materials. Unfortunately, simple annealing of
a polished SrTiO3 surface does not yield the desired result [113]. Although
high-temperature annealing promotes recrystallization of the surface layer of
the substrate and thus helps to planarize a roughly polished surface, there are
also a number of problems that can appear in annealed perovskite crystals.
The biggest problems relate to the thermodynamic stability of the crystal,
imperfect control of the terminating layer, and step-edge dynamics.

Various studies have shown that the stoichiometry of SrTiO3 single crys-
tals tends to change during high-temperature annealing [114,115]. The domi-
nant mechanism is the formation of oxygen vacancies, especially when anneal-
ing is done at low oxygen pressure in a film-deposition chamber. Increasing
the background oxygen pressure during annealing can prevent such vacancy
formation, but it still leaves the possibility of cation-vacancy formation. In
ternary ABO3 oxides, the probability of cation-vacancy formation does not
drop at high temperature, even when the oxygen pressure is increased [116].
In the case of SrTiO3, the most likely point defects are thus oxygen and
Sr vacancies. This in turn can lead to macroscopic segregation of Sr on the
surface of the crystal [114, 117].

The segregation effects have an obvious influence on the crystal termina-
tion. Although an annealed SrTiO3 crystal typically assumes a predominantly
TiO2-terminated surface, there is still a significant amount of Sr present as
well. The composition of the terminating layer of a substrate can be stud-
ied by AFM and ion-scattering spectroscopy. AFM can be used to analyze
the surface composition if macroscopic surface segregation takes place. Topo-
graphic images can be used to detect the presence of step-edge heights that
are not multiples of the unit-cell height. If, for example, SrO forms islands
on the substrate surface, one would expect to see 0.2-nm or 0.6-nm high
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Fig. 21. Step bunching observed by AFM on a 0.5 wt% Nb-doped SrTiO3 (001)
surface. The image size is 2 μm × 2μm. One and two unit-cell high steps can be
seen on the surface after annealing in air for 1 h

step edges in addition to single unit-cell 0.4-nm edges [111]. A more useful
technique, however, is to use friction-force microscopy (FFM), where the lat-
eral friction force of the AFM tip is measured as the tip is dragged over the
sample surface. The interaction force between a tip and the surface depends
on the chemical composition of the surface layer and thus affects the lateral
force exerted on the AFM tip. The likely mechanism for different interac-
tion forces is the reaction of the crystal surface with atmospheric moisture,
resulting in higher friction over a SrO-covered surface than a TiO2-covered
surface [118]. Friction-force microscopy can be used to detect nanometer-scale
regions where the predominant termination character changes [119].

Another problem caused by high-temperature annealing is related to step-
edge dynamics of vicinal SrTiO3 surfaces. An annealed substrate surface
should ideally show nearly straight and equidistant single unit-cell steps. An-
nealing SrTiO3 substrates at 1000 ◦C or higher, particularly at high oxygen
pressures, can easily induce step-edge faceting and step bunching. An exam-
ple of a 0.5 wt% Nb-doped SrTiO3(001) substrate annealed for 1 h in air in
a furnace is shown in Fig. 21. Bunched steps of two unit cells are present on
this surface; bunched step edges can be several unit cells high and disrupt
the growth of thin epitaxial layers.

One way to improve the surface flatness while avoiding compositional
changes is to use wet etching [110,120]. Various etching procedures have been
developed for SrTiO3. Planarization of polished SrTiO3 can, for example, be
achieved by etching in a buffered hydrofluoric acid (BHF), NH4F−HF. The
pH of the acid has to be adjusted carefully; values above 5 tend to leave etch
residue on the surface, while a pH below 4 results in a high density of square
etch pits. This behavior is not unique to etching with BHF; similar behavior
applies to other etchants as well, such as HCl [121].

The planarization process can be followed in real time by performing AFM
measurements of the substrate surface inside an acid bath [122]. The acid
dissolves the SrO layer preferentially and thus quickly removes any segregated
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Fig. 22. Surface-morphology evolution of a SrTiO3 (001) substrate during BHF
etching. Images were taken at etching times of (a) 0 min, (b) 5 min, (c) 8 min, and
(d) 12min [122]. Image sizes are 1 × 1 μm2

Sr from the surface. After that, etching proceeds in step-flow mode if the pH
of the acid is chosen suitably. In such a process, Sr is removed from the step
edges, also lifting off the covering TiO2 layer. The step-flow etching process is
very efficient at planarizing a polished crystal surface within a few minutes.
The choice of the pH is important because there is a possibility that the acid
will form an etch pit in the middle of a terrace. The step flow thus has to
proceed at a rate that is fast enough for the newly formed etch pit to be
removed by the constantly shifting step edges before the pit depth increases.
The process is illustrated in Fig. 22., where one can see the progression of an
etched substrate surface to an atomically flat step-and-terrace surface.

The etching rate depends on the pH and also on the morphology of the
step edges. The fact that etch pits are rectangular, rather than circular in
shape, shows that the etching rate of kink sites on the step edges is faster
than for ridge sites. This is also shown by the fact that the step edges move
approximately

√
2 times more quickly when the miscut direction is at a 45◦

angle to the high-symmetry [100] and [010] directions. The drawback of the
etching-rate variation is that the etching rate needs to be adjusted for each
substrate, depending on the miscut direction.

Other etching techniques can be used if the substrates are well pol-
ished and planarization can be achieved by an annealing step. For example,
Koster et al. [111] have studied the effectiveness of soaking a SrTiO3 crystal in
water to promote the formation of Sr hydroxide groups wherever Sr is present
on the crystal surface. This method is more gentle on the crystal than pro-
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Fig. 23. Recrystallization of the SrTiO3 surface during annealing. (a) Formation of
nm-scale islands starts at temperatures below 500 ◦C. (b) Nearly uniform terraces
reform above 700 ◦C. (c) A regular step-and-terrace structure can be regained above
900 ◦C [124]. The images are taken from different samples, which is why the average
terrace width varies

longed BHF etching, because the TiO2-terminated surface is stable in water.
The Sr hydroxides can be efficiently removed by a brief BHF etching step,
which reduces the chance of creating etch pits at the surface. A drawback of
this method is the need for a final annealing at around 950 ◦C in order to
obtain a well-defined step-and-terrace surface. As discussed earlier, this can
cause Sr segregation, and thus the termination of the final crystal surface
by the TiO2 layer is still not perfect when characterized by ion scattering or
photoemission spectroscopy.

The nature of the nonstoichiometric surface layer that forms in SrTiO3

at high temperature has been studied by various structural and composition
analysis techniques [113,114,117,123]. Instead of the bulk changes that affect
a layer several tens of nm in depth, for thin-film growth, the behavior of the
few topmost unit cells is what is crucial.

It is known that at intermediate annealing temperatures the step edges on
vicinal SrTiO3 form meandering patterns due to recrystallization of the crys-
tal surface [120]. The recrystallization process can be monitored directly by
in-situ high-temperature scanning tunneling microscopy (STM). The degra-
dation of a polished and etched SrTiO3 surface starts at a very low temper-
ature. Ion-scattering spectroscopy shows the appearance of Sr on the surface
when a crystal is heated to 300 ◦C [112]. STM measurements of surfaces
heated to 550 ◦C show that the crystal surface breaks up to a depth of at
least three unit cells, and an atomically smooth surface is regained only af-
ter annealing at temperatures well above 700 ◦C [124]. In order to regain a
regular step surface in one or two hours, the temperature needs to be even
higher, ususally in the 900 ◦C to 1000 ◦C range.

The surface appears to go through two transformation stages. The first
change occurs in the 300 ◦C to 500 ◦C range, where a surface that has been
prepared at room temperature by polishing and possibly etching breaks up,
forming many nm-scale islands with a height of 1 or 2 unit cells on the surface
(Fig. 23a). This change can be easily detected by scanning probe microscopy
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and coincides with the appearance of Sr scattering peaks in ion-scattering
spectra [112]. The final recrystallization starts to occur above 700 ◦C, as seen
by in-situ STM (Fig. 23b) [125]. It is interesting to note that the temper-
ature where long-range step-edge changes start to occur coincides with the
temperature where bulk diffusion starts to bring Sr to the crystal surface,
possibly hinting at a link between the presence of defects and diffusion at
the crystal surface. Straight step edges can only be obtained after long an-
nealing, typically on the order of 1 h (Fig. 23c). The time required to obtain
straight step edges and hole-free terraces depends on the miscut angle of
the substrate, with the annealing time being proportional to the average ter-
race width. It is generally advisable to perform the recrystallization anneal
at the lowest temperature where the required annealing time is still exper-
imentally acceptable. Although the surface-diffusion processes can be sped
up considerably by increasing the annealing temperature above 1000 ◦C, the
risk of generating macroscopic SrOx segregation and step-edge faceting or
bunching also increases. In general, atomically well-ordered surfaces of cubic
perovskites are difficult to produce. Cleaving is possible for various layered
compounds, but in the case of cubic crystals such as SrTiO3, this would again
produce a surface with a mixed termination. The best way to obtain atom-
ically well-ordered surfaces appears to be long-term annealing at moderate
temperatures [114, 126].

While the surface structure and treatment procedures for obtaining high-
quality oxide substrates have been studied in great detail for SrTiO3, much
less work has been done on other substrate materials. Epitaxial thin films
usually have a significant lattice mismatch with the substrate, and the resid-
ual strain in the film can have a strong effect on the ferroelectric, dielectric,
magnetic, and transport properties of the film. An obvious way of controlling
strain effects in thin films is to use a substrate with a suitable in-plane lattice
parameter. Some of the more common substrate materials that can be used
for oxide thin-film growth are compared in Table 2.

A popular substrate material with a smaller lattice parameter than
SrTiO3 is LaAlO3. The crystal structure of LaAlO3 is rhombohedral at room
temperature, but a transition to a cubic phase occurs above 800K [128, 135].
As a result of this phase transition, crystal surfaces heated above the transi-
tion temperature develop an irreversible twin structure [113,136]. Atomically
flat step-and-terrace (001) surfaces can still be prepared by etching polished
substrates in concentrated HCl under ultrasonic agitation at room tempera-
ture for 5min and annealing the substrates in air at 1000 ◦C for a few hours.
All steps on the surface have a height of a single pseudocubic perovskite unit
cell, but due to the twin formation, the direction of surface steps varies from
place to place, depending on which twin grain is observed. Coaxial impact col-
lision ion-scattering spectroscopy (CAICISS) analysis [137] has shown that
the terminating layer consists of AlO2, with less than 10% of LaO on the
surface. The presence of residual La on the surface is likely due to similar
mechanisms as were discussed in the case of SrTiO3. All step edges on atom-
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Table 2. Lattice parameters and crystal structures of selected substrate materials

Material Structure Lattice constants

SrTiO3 cubic > 105 K a = 3.905 Å [105, 106]
tetragonal < 105 K c/a = 1.00056

BaTiO3 cubic > 390 K a = 4.01 Å [127]
tetragonal > 270 K a = 3.99 Å

c = 4.04 Å
orthorhombic > 180K c = 3.98 Å

a = 4.01 Å
rhombohedral < 180 K a = 4.00 Å

LaAlO3 cubic > 800 K a = 3.81 Å [128]
rhombohedral < 800 K a = 5.36 Å

(3.79 Å)

LSAT cubic > 150 K a = 3.87 Å [129]
tetragonal < 150 K a = 5.46 Å

c = 7.73 Å
(3.86 Å)

NdGaO3 orthorhombic a = 5.43 Å [130]
b = 5.50 Å
c = 7.71 Å
(3.86 Å)

LaGaO3 orthorhombic < 420K a = 5.49 Å [131]
b = 5.53 Å
c = 7.78 Å
(3.89 Å)

rhombohedral > 420 K a = 3.93 Å

KTaO3 cubic a = 3.99 Å [132]

MgO cubic a = 4.21 Å [133]

DyScO3 orthorhombic a = 5.44 Å [134]
b = 5.71 Å
c = 7.89 Å
(3.94 Å)

GdScO3 orthorhombic a = 5.49 Å [134]
b = 5.75 Å
c = 7.93 Å
(3.97 Å)

ically flat surfaces have a single unit-cell height, which means that there is
no macroscopic segregation of La atoms on the surface.

The dielectric constant of LaAlO3 is 24, which is much lower than SrTiO3,
even at room temperature. This makes LaAlO3 a suitable substrate for mi-



266 Agham-Bayan Posadas et al.

crowave applications. The dielectric loss figure of LaAlO3 is 10−3 at room
temperature, but drops sharply when cooled below 100K [138]. One prob-
lem for applications, however, is that the twinning that occurs at 800K
means that the structure of a film that is grown at a high temperature
may change when cooled to the usual characterization temperatures at or
below 300K. These problems can be mostly avoided by using a solid-solution
crystal (LaAlO3) 0.3−(Sr2AlTaO6) 0.7 (LSAT) [139,140]. This crystal remains
cubic at room temperature, although a lower-symmetry phase appears below
150K [129].

Atomically flat LSAT surfaces can be obtained by annealing in air for
2 h at 1300 ◦C. The annealed surfaces usually show slightly meandering step
edges with a height of approximately 0.4 nm, which equals half of the LSAT
unit-cell height. The dominant terminating layer is the B-site of the crystal,
which in this case is the AlO2−δ/TaO2−δ layer. The contribution from the
A-site layer is less than 10% in CAICISS time-of-flight spectra [141].

A very different surface appears on annealed NdGaO3 crystals. Atomically
flat terraces can be obtained by annealing polished crystals in air without
the need for chemical etching. Ion-scattering measurements have shown that
unlike most other substrates, NdGaO3 (001) surfaces are terminated by the
A-site NdO layer. This property makes NdGaO3 useful for the growth of high-
quality YBa2Cu3O7−δ high-temperature superconductor films with reduced
twinning [142, 143]. The lattice parameters of gallates can also be tuned by
selecting a suitable A-site cation. The most common cases for substrates
are NdGaO3 and LaGaO3. Rare-earth gallates generally have the GdFeO3

structure, with each orthorhombic unit containing four basic perovskite units,
as illustrated in Fig. 18c [144, 145]. For the purpose of oxide film growth, the
crystal surface can be viewed as a distorted perovskite with displaced oxygen
ions.

Thermal expansion in gallates is anisotropic, with values ranging from
αb = 2.3×10−6 K−1 to αa = 11.3×10−6 K−1 in NdGaO3 [130,131,146]. The
thermal stability of gallates is lower than for other commonly used substrates,
and decomposition of the crystal and segregation of Ga to the surface has
been observed after annealing NdGaO3 wafers above 1000 ◦C [147].

The Nd and La gallate substrates have a pseudocubic unit cell that is
slightly smaller than SrTiO3. For NdGaO3, for example, using the orthorhom-
bic (110) surface would give an average pseudocubic surface with a lattice
parameter of 3.86 Å. One advantage of using nontitanate substrates is the
lower dielectric constant of gallates (compared to SrTiO3) at room tempera-
ture [138, 145]. These two materials are not sensitive to oxygen loss and do
not suffer from charge-transfer effects that are commonly seen in SrTiO3.
NdGaO3 is therefore a convenient substrate for measuring transport proper-
ties of very thin oxide films [148].

For substrate materials that have larger lattice parameters than SrTiO3,
KTaO3, MgO, and rare-earth scandates, such as DyScO3, are used. KTaO3 is
a cubic perovskite with a lattice constant of 0.3989 nm and a thermal expan-
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sion coefficient of 6.7 × 10−6 ◦C−1 [132, 149]. Unlike SrTiO3, which becomes
tetragonal below 105K, KTaO3 remains cubic at all temperatures from the
melting point down to the mK range [150]. It is possible to dope KTaO3

with Ca, resulting in an n-type semiconductor with a gap of 3.5 eV [151,152].
The room-temperature mobility of carriers in KTaO3 is 30 cm2/V · s, which
is 5 times higher than in SrTiO3, making KTaO3 an attractive candidate for
use in oxide electronics [152, 153].

Pure KTaO3 is also an incipient ferroelectric that does not have an obvious
ferroelectric transition, although ferroelectric-like behavior has been reported
below 1K [154]. KTaO3 can be driven into a ferroelectric state when Ta is
partially replaced with Nb. KTa1-xNbxO3 is ferroelectric in the x > 0.05 dop-
ing range, with some of the highest known dielectric constant values at room
temperature, approaching 104 [152]. The ferroelectric transition temperature
can be tuned from about 70K for x = 0.05 to 700K for x ≈ 1 [155].

The use of KTaO3 as a thin-film substrate became popular due to thermal
stability and lattice match with high-Tc superconductors, such as YBaCu3O7

and Sr1-xLaxCuO2 [132,149,156]. In addition to superconductors, the growth
of various ferroelectrics, such as KNbO3 and Pb1-xLaxTiO3, on KTaO3 has
also been reported [157–159].

Reliable surface treatment for obtaining an atomically flat surface for
high-quality film growth is less well established than for SrTiO3. Various
etching procedures have been explored, but these do not always result in
atomically flat step-and-terrace surfaces [149]. A combination of etching pol-
ished crystals in buffered KOH, followed by annealing at 750 ◦C, has been
shown to produce a step-and-terrace surface [160].

Cubic MgO is another material that is widely used as a thin-film substrate.
The lattice parameter of MgO is 0.4212 nm, making it one of the largest unit
cells available among oxide substrates. The thermal expansion coefficient is
8×10−6 K−1. The dielectric constant is 9.8 with a loss tangent of about 10−5

at 10GHz [133]. The dielectric constant is relatively low among other oxide
substrates and does not depend strongly on temperature or frequency, which
is why MgO is often used as a substrate for the fabrication of microwave de-
vices and thin films that are characterized at microwave frequencies. Optical
transparency is good, ranging from the infrared to the ultraviolet. MgO is
also one of the most inexpensive oxide substrate materials.

The highest-quality crystal surface can be obtained by cleaving MgO crys-
tals in vacuum. Steps with a single unit-cell height, 0.4 nm, and single atomic-
layer height (0.2 nm) can be seen on such surfaces [161]. Significant relaxation
of atomic positions occurs at the step edges, which can affect nucleation and
initial growth on MgO [162].

Vacuum cleaving, however, is not a practical choice for thin-film work. In-
stead, it is common to use mechanically polished surfaces that can be further
processed by chemical etching, for example in phosphoric acid, followed by
annealing in air or oxygen at temperatures around 1100 ◦C. The exact choice
of annealing time and temperature can have a strong influence on the films
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grown on MgO substrates. In particular, domain formation and orientation in
thin films are strongly affected [163]. The surface morphology of MgO (001)
substrates appears to depend on the impurity concentration and crystal qual-
ity of a particular batch of substrates. For that reason, optimal processing
conditions vary, but in general, annealing for a few hours at about 1100 ◦C
appears to give good surface flatness. Higher temperatures can result in ex-
cessive surface roughening, and longer annealing times increase the amount
of residual Ca in the crystal that segregates to the surface [164]. A combina-
tion of etching, annealing in air, followed by a brief anneal in the deposition
chamber under UHV conditions, produces the best surface in terms of atomic
ordering and reproducibility [165].

Typical MgO crystals also have significant impurity concentrations, in
the tens to hundreds of parts per million (ppm). The dominant impurity
is Ca. Large MgO crystals are also not true single crystals. Instead, crystals
consist of many millimeter-scale grains that are delineated by low-angle grain
boundaries. The size, shape, and angular distribution of MgO grains can be
analyzed with a high-resolution 4-axis X-ray diffractometer [166]. The grain
boundaries can affect the step formation on the surface and the segregation
of impurities [167]. When substrates are annealed for several hours at 1200 ◦C
and higher, large three-dimensional islands form on the crystal surface. The
segregated islands mostly consist of Ca, as shown by Auger, photoemission,
and ion-scattering spectroscopy [168–170].

Although MgO is not particularly hygroscopic, damage by atmospheric
moisture has been noted. The dominant damage mechanism appears to be
localized erosion of the MgO surface by the formation of small etch-pit-like
features [171]. Prolonged exposure of a cleaved crystal to ambient atmosphere
can result in micrometer-scale particles appearing on the surface [113]. The
most common substrate orientation for MgO is [001]. Other orientations are
also possible, such as [110] or [111], but in the case of MgO, these surfaces are
not charge neutral and usually facet during etching and annealing [172, 173].

The range of lattice constants between SrTiO3 and KTaO3 can be cov-
ered by various rare-earth scandates. The most common compositions used
for substrates are DyScO3 and GdScO3, with pseudocubic lattice parameters
of 0.3943 nm and 0.3967 nm, respectively. DyScO3 has the smallest lattice
parameter in the scandate family. The largest lattice parameter is 0.405 nm
for LaScO3. All of these crystals have the GdFeO3-type orthorhombic struc-
ture, but the distortion from simple cubic perovskite structure is small [134].
The surfaces of scandate crystals have not been characterized as well as other
more popular materials, but annealing substrates at 1100 ◦C in oxygen for
12 h, followed chemical etching, has been found to improve the quality of films
grown on DyScO3 [174].

Scandate substrates are particularly useful for studying strain effects in
ferroelectric films. The lattice constants of DyScO3 and GdScO3, for example,
can be used to grow SrTiO3 films with a large tensile in-plane strain [175,
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176], BaTiO3 films with compressive strain [177], and strain-free infinite-layer
compounds [174].

Another substrate material that can be useful for strain-effect studies
is the prototypical ferroelectric, BaTiO3. With a cubic lattice parameter of
4.01 Å, it is one of the largest cubic perovskite unit cells and is useful for
looking at tensile strain effects in thin oxide films. The main difficulty with
BaTiO3 as a substrate material is the cubic-to-tetragonal phase transition
that occurs at around 120 ◦C. The room-temperature tetragonal phase is fer-
roelectric but usually has a multidomain structure, with the tetragonal c-axis
pointing randomly in any of the three high-symmetry directions of a crystal.
Although single-domain BaTiO3 substrates are commercially available, once
the crystal is heated to a typical film-growth temperature and then cooled
back to room temperature, the multidomain structure reappears. For this rea-
son, the main use of BaTiO3 as a substrate has been limited to the observation
of stepwise strain-related transition in films as the sample is cooled across
the tetragonal, monoclinic, or rhombohedral phase transitions of BaTiO3.
Jumps in resistivity have been observed in superconducting films [178], and
both transport and magnetization have been modulated by strain in SrRuO3

films [179] and in colossal magnetoresistance manganite films [180].

4 Applications of Epitaxial Oxide Thin Films

With the availability of both atomically flat substrates and film-deposition
methods specialized for the growth of complex oxide materials, one can now
deposit extremely high quality single-layer complex oxide materials and mea-
sure their properties. In addition, one can use advanced film-deposition tech-
niques to combine various materials, each with their distinct functionality,
to fabricate novel, artificially layered materials systems that are tailored for
a specific application or study. For example, one can fabricate superlattices
to optimize a set of properties for a specific application or to have an ideal
system to study interface charge transfer. In addition, functional oxides can
be integrated directly onto various semiconductors for studying the chemi-
cal physics of highly dissimilar interfaces, as well as to fabricate functional
transistors that respond to control parameters other than electric fields, such
as pressure, temperature, and magnetic fields. This section gives a flavor of
the various developments and prospects for possible applications of artifi-
cially structured epitaxial complex oxide heterostructures and superlattices.
We focus on two examples, strain engineering and ferroelectric superlattices,
and complex oxide growth on elemental semiconductors. Other exciting de-
velopments, such as oxide ferroelectric field-effect devices and the idea of
realizing electronic nanofeatures using an atomic force microscopy controlled
local ferroelectric field effect proposed in 1997 [181] and explored in super-
conductors, [182,183] are not discussed here. A review of these developments
can be found in [184].
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Fig. 24. Enhancement of the polarization values in BaTiO3 achieved by epitaxial
growth on scandate substrates [177]

4.1 Strain Engineering and Superlattices

4.1.1 Strain Engineering in Epitaxial Thin Films

The manipulation of material properties through strain engineering or the
construction of artificially layered ferroelectric superlattices is an exciting
and active area of research. The power of strain engineering for ferroelec-
tric materials has been dramatically demonstrated by the achievement of
enormous enhancements of the polarization and transition temperature in
BaTiO3 [177], as shown in Fig. 24, and the ability to force SrTiO3 to be a
room-temperature ferroelectric [176]. These experiments used the advanced
deposition techniques described above, along with high-quality scandate sub-
strates to grow epitaxial films under a high degree of epitaxial strain.

Strain engineering has a strong theoretical basis in Landau–Ginzburg the-
ory [185], which showed the capacity to produce new phases and modified
transition temperatures (as for example in PbTiO3 (Fig. 25)) when films are
epitaxially constrained by a substrate. More recently, first-principles calcu-
lations have reinforced these ideas and provide a powerful approach for the
accurate prediction of strain–temperature phase diagrams of ferroelectric ma-
terials (a detailed discussion can be found in [186]). Though there are some
differences in the specific predictions for certain materials according to the
theoretical approach used, in general both theory and experiment point to
strain engineering as a powerful means to deliver materials with exceptional
properties, or to grow films in different phases from those in which they are
normally found as bulk materials. In Fig. 26, the degree to which the transi-
tion temperature can be expected to be modified (based on Landau theory)
in both BaTiO3 and SrTiO3 is demonstrated, along with the experimentally
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Fig. 25. Phase diagram of (001) single-domain PbTiO3 thin films epitaxially grown
on different cubic substrates providing various misfit strains in the heterostructures.
The second- and first-order phase transitions are shown by thin and thick lines,
respectively [185]. The aa-phase is orthorhombic, the r-phase monolinic, and the
c-phase tetragonal

realized transition temperatures in these materials grown on scandate sub-
strates [176, 177].

4.1.2 Strain in Superlattices

Superlattices have the potential to take strain engineering one step further.
One limitation on the capacity for strain engineering to deliver useful devices
is the limitation on the thickness that can be achieved while maintaining the
coherent growth required to maintain the epitaxial strain condition imposed
by the substrate. Superlattices can often be grown to greater thicknesses
coherently than films of a single material, with the superlattice structure
impeding the formation of misfit dislocations. For example, in the case of a
BaTiO3/SrTiO3 superlattice on a SrTiO3 substrate, by alternating BaTiO3

and SrTiO3 layers the epitaxial strain from the substrate can be kept through-
out the sample to much greater thicknesses than in BaTiO3 alone. Two points
should be borne in mind: one is simply that the overall lattice misfit of the
BaTiO3/SrTiO3 superlattice relative to the substrate is less than that of
BaTiO3 alone; second, the layered structure itself may inhibit the formation
of misfit dislocations by reducing the thickness of the individual layers that
are under strain. One also sees in the case of PbTiO3/SrTiO3 superlattices
(shown in Fig. 27) that very thin, high-quality layers of SrTiO3 can be grown
within the PbTiO3 layers at much lower temperatures (here at 460 ◦C) than
would be required for the growth of thick SrTiO3 films [187]. It turns out that
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Fig. 26. Expected Tc of (a) (001) BaTiO3 (from [177]) and (b) (001) SrTiO3 (from
[176]) based on a thermodynamic analysis. The range of transitions represents the
uncertainty in the predicted Tc resulting from the spread in reported property
coefficients. Note that the vertical scales are in K (bottom) and ◦C (top), and
strains are in % for the top figure as in the original work
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Fig. 27. Cross-sectional TEM images of a 20-bilayer (PbTiO3)3/(SrTiO3)3 sample.
(a) Bright-field image shows the intended layering of the structure. (b) High-reso-
lution TEM shows the perfect crystalline structure of the material. (c) Diffraction
image demonstrating superlattice periodicity [187]

Fig. 28. (a) First-principles calculations of a number of BaTiO3/SrTiO3 superlat-
tices, showing the tilting of the polarization in the SrTiO3 layers. BaTiO3 is colored
blue, SrTiO3 is red, and interfacial layers are gray [190] (b) X-ray diffraction ω scans
around the (033) reflection for the STO layer in a relaxed (BaTiO3)10/(SrTiO3)10
superlattice. The splitting of the peak is an indication of orthogonal symmetry,
indicating an in-plane distortion in the SrTiO3 layers [189]

the requirements for growth of thin layers of material within a superlattice
are somewhat relaxed, which is attractive from a practical point of view.

Superlattices can also be grown with layers sufficiently thick that the sub-
strate constraint is either partially or fully relaxed, allowing more complicated
strain interactions between the component layers. An example of the striking
behavior that can occur in relaxed superlattices is that in BaTiO3/SrTiO3

superlattices, where it has been shown both experimentally [188,189] and the-
oretically [190] that the SrTiO3 layers (and not the BaTiO3 layers) acquire
an in-plane polarization.
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4.1.3 Electrostatic Coupling Between Layers

From the ability to impose strains from the substrate to the ability to uti-
lize strain interactions between layers, there is a large scope for using strain
interactions to tune the properties of ferroelectric materials. However, strain
is not the only interaction of importance. Electrostatics emerges as perhaps
a dominant determining factor of superlattice properties. As demonstrated
theoretically in BaTiO3/SrTiO3 [191], and from both experiment and theory
in PbTiO3/SrTiO3 [187], the polarization of superlattices of these materials
as a function of the ratio of the thicknesses of the constituent layers is largely
determined by the requirement that the system maintain a constant electri-
cal displacement throughout the system (in the absence of free charge). In
readily polarizable materials, this translates to the polarization being close
to constant from one layer to the next due to the large electrostatic energy
penalty that arises for a discontinuity of the polarization at the interface be-
tween two materials. Nevertheless, the unusual recovery of the polarization
observed recently for low ratios of PbTiO3/SrTiO3 [187] points to the fact
that electrostatics may not give the whole picture. In addition, SrTiO3 is a
highly polarizable material, and it may be that if a less-polarizable material
is used, then the electrostatic energy penalty for polarizations may not be as
dominant in determining the overall properties of the superlattice. Recently,
Nakhmanson et al. [192] have proposed a model derived from first-principles
simulations of the BaTiO3/SrTiO3/CaTiO3 system, in which, in addition to
electrostatic terms, they propose an additional interaction term that takes
into account the thickness of the constituent layers.

There have been a number of papers that look at superlattices within the
framework of Landau theory, and a variety of terms have been proposed to
account for the coupling between layers [193–195]. The coupling of domains
between layers has recently been looked at by Stephanovich et al. [196], and
recently a series of papers that used Landau theory with primarily electro-
static coupling have pointed to large enhancements of dielectric properties
(both in size and tunability of the dielectric constant) [197, 198].

4.1.4 Selected Examples of Material Combinations

BaTiO3/SrTiO3 Superlattices

Perhaps the most-studied superlattice system, both experimentally and the-
oretically, is the BaTiO3/SrTiO3 superlattice. Much of this work was moti-
vated by the findings of Tabata et al. [199], which suggested extremely high
dielectric constants could be produced in these materials. It has been demon-
strated by O’Neill et al. [200] that this high dielectric constant was due to
Maxwell–Wagner relaxation. However, superlattices remain an attractive can-
didate for engineering high dielectric constant materials, and theoretical and
experimental work in this direction is proceeding.
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KNbO3/KTaO3 Superlattices

Another combination that has been studied in detail is the KNbO3/KTaO3

system [157, 201]. One of the interesting aspects of the theoretical modeling
(shell-model molecular dynamics) [202,203] on this system is that in contrast
to the results obtained from first-principles calculations on BaTiO3/SrTiO3

or PbTiO3/SrTiO3, there is considerable variation of the polarization within
the layers of the superlattice. Also, it has been shown experimentally in this
system that antiferroelectricity can be induced by the superlattice ordering
of a ferroelectric and a paraelectric material [201].

PbTiO3/SrTiO3 Superlattices

After some initial work by Jiang et al. [204], who used MBE to produce high-
quality PbTiO3/SrTiO3 superlattices, this particular combination did not
receive much attention until recently. In contrast to BaTiO3/SrTiO3, the
lattice mismatch between these two materials is extremely small. While this
means that strain interactions between the constituent layers are potentially
less interesting, it also means that this superlattice is more straightforward
to grow, and excellent-quality superlattice samples can be grown to large
thicknesses using off-axis RF sputtering [187]. This system can be viewed as
a model for studying electrostatic and other interactions while removing the
lattice-mismatch effect that might otherwise control the behavior. Despite
the lack of complicated strain interactions, this system does exhibit some
rather surprising behavior, with an unexpected recovery of the ferroelectric
polarization in samples with very thin PbTiO3 layers [187].

PbTiO3/PbZrO3 Superlattices

In contrast to the examples discussed so far, this system combines a ferro-
electric and an antiferroelectric material, as opposed to a ferroelectric and a
paraelectric. Furthermore, it resembles one of the most commercially impor-
tant ferroelectric solid solutions, lead zirconate titanate (PZT). One of the
key applications for PZT is in piezoelectric devices, due to its high piezo-
electric coefficient when its composition lies close to the morphotropic phase
boundary at a Zr:Ti ratio of 52:48. Theoretical results suggest that artifi-
cially induced compositional ordering could increase the already high values
achieved in this compound as a solid solution [205]. Another detailed first-
principles study of the PbTiO3/PbZrO3 1/1 superlattice has been carried
out by Bungaro and Rabe [206]. Although a few experimental examples of
this system [207,208] do exist, it does not appear that the possibilities of this
system have yet been explored thoroughly experimentally.

Tricolor Superlattices

Tricolor superlattices, where the superlattice period contains 3 materials
rather than 2, are of special interest, as the first principles study of Sai
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Fig. 29. (a) Cross-sectional Z-contrast image of the interfaces between BaTiO3 and
SrRuO3 films, indicated by the black arrow. (b,c) AFM topographic images (image
size: 4 × 5 μm2) with single terrace steps (approx 0.4 nm) (b) of SrRuO3 and (c)
of a 200 nm-thick (SrTiO3)2(BaTiO3)2(CaTiO3)2 superlattice. Inset in (c) shows
a RHEED pattern confirming the smooth surface. (d) Cross-sectional Z-contrast
image of compositionally abrupt interfaces in (SrTiO3)2(BaTiO3)2(CaTiO3)2; the
diagram shows its atomic structure. (The light blue octahedra and the red, green
and blue spheres represent TiO6, and Ca, Ba and Sr, respectively.) (e) XRD θ–2θ
scan of a (SrTiO3)2(BaTiO3)6(CaTiO3)2 superlattice, confirming the long-range
periodicity and high crystallinity. The STO (001) and (002) peaks are from the
SrTiO3 substrate, and the first and second sets of superlattice peaks are marked
with blue and red numbers, respectively [211]

et al. [209] showed the possibility of producing ferroelectric systems with
broken inversion symmetry based on these systems. Pioneering work has
been realized by Waruswithana et al. [210] and Lee et al. [211] who grew
tricolor ferroelectric superlattices of BaTiO3/SrTiO3/CaTiO3 (see Fig. 29).
It remains challenging, however, to experimentally demonstrate breaking of
inversion symmetry, since most ferroelectric samples display asymmetry in
their electrical properties due to extrinsic considerations, such as the nature
of the electrode/ferroelectric interfaces or gradients in defect densities in the
samples that arise during the growth process.

Multiferroic Superlattices

Multiferroic materials are currently of significant interest. One of the key
possibilities is to use ferroelectric/magnetic bilayers or superlattice struc-
tures to look for coupling between ferroelectric and magnetic ordering. In
the case of BaTiO3 and CoFe2O4, the superlattice geometry was found to
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provide less-effective coupling than a columnar nanostructure [212]. There
are also interesting possibilities in using materials that are already multifer-
roic by themselves, for example BiFeO3 [213], in multilayer structures [214].
Another approach in this direction is to use the ferroelectric field effect to
charge dope materials, as has already been done to modify superconducting
properties [183, 184].

Ferroelectric/Ferroelectric Superlattices

Work combining two ferroelectric materials together in a superlattice struc-
ture, for example PbTiO3 and BaTiO3 [215], is less common than studies that
combine a ferroelectric and a nonferroelectric. Using this approach, one can
consider more subtle aspects than simply engineering giant figures of merit
by combining two materials with similar polarizations but different switching
properties. This possibility may give insights into switching processes and
domain dynamics.

Interfacial Charge States

In another oxide superlattice, non-ferroelectric LaAlO3/SrTiO3, discontinu-
ity of the charge states of the layers at a LaO/TiO2 interface leads to a
conductive interface between two band insulators (see Fig. 30) [216, 217]. If
it is possible to generate similar conducting interfaces between a ferroelec-
tric insulator and another insulator, one can conceive of tuning the extent of
the ferroelectric coupling between layers, adding another degree of control in
material design. Reference [216] demonstrates the physics of this approach
and also highlights the use of RHEED monitoring of PLD growth in order to
obtain interfaces of the desired nature. The ability to control accurately the
termination of the interfaces gives yet another parameter that could conceiv-
ably be modified to manufacture a tailored material.

4.1.5 X-Ray Characterization of Superlattices

Due to their additional periodicity, superlattices can produce impressive
X-ray diffraction patterns, and these contain a large amount of information
about the structure of the material. One can assess the quality of the sample
and also use it as a tool for probing the underlying physics.

In the development of oxide materials, useful parallels can be found with
earlier work on semiconductors (see, for example, the comparison of MBE-
grown BaTiO3/SrTiO3 and GaAs/AlAs superlattices in [218]). For example,
in analyzing X-ray diffraction patterns, it is useful to refer to the techniques
used to analyze GaAs/AlxGa1−xAs superlattices. Here, the nth peak of a
superlattice diffraction pattern in the (001) direction from a sample with a
superlattice wavelength of n unit cells gives the average c-axis lattice pa-
rameter. In the case of GaAs/AlxGa1 − xAs, this information can be used to
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Fig. 30. (a) RHEED intensity oscillations of the specular reflected beam for
the growth of LaAlO3 directly on the TiO2-terminated SrTiO3 (001) surface.
(b) Schematic of the resulting (LaO)+/(TiO2)

0 interface, showing the composi-
tion of each layer and the ionic charge state of each layer. (c) RHEED oscillations
for the growth of LaAlO3, after a monolayer of SrO was deposited on the TiO2

surface. (d) Schematic of the resulting (AlO2)
– /(SrO) 0 interface [216]

determine the composition of the superlattice. The lattice-parameter differ-
ence between GaAs and AlAs is only 0.008 Å (0.15%), and yet, a reliable
extraction of the composition can be achieved. In ferroelectric oxides, where
one wishes to use a similar measurement to quantify the lattice distortions
related to the ferroelectric polarization, one is aided greatly by the strong
strain–polarization coupling typical of ferroelectric perovskites. For exam-
ple, in the case of PbTiO3, the difference in the c-axis lattice parameter
between the ferroelectric (4.152 Å) and paraelectric (4.022 Å) lattice param-
eter is 0.13 Å (3.2%). One can thus use X-ray diffraction as a powerful tool
to study the ferroelectric properties of a superlattice (Figs. 31 and 32) [187].
When combined with other measurements, the relationship between electrical
and structural properties can be explored in depth.
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Fig. 31. θ–2θ X-ray diffractogram for a 20-bilayer (PbTiO3)9/(SrTiO3)3 superlat-
tice [187]

Fig. 32. Average c-axis lattice parameter plotted against the number of unit cells
of lead titanate per bilayer showing the suppression and recovery of ferroelectricity.
Complementary piezoelectric microscopy images are shown as insets [187]

4.2 Crystalline Oxides on Semiconductors (COS)

Incorporating a ferroelectric as a functional element into a device was ac-
complished early in the history of the transistor. In a series of patents,
Looney et al. [96] were the first to describe the invention of a ferroelectric
transistor where the state of the conducting channel was determined by the
sign of the out-of-plane polarization. However, a nonferroelectric layer of
glue that screened the field effect of the ferroelectric oxide prevented practi-
cal implementation of this device. The development of crystalline oxides on
semiconductors eliminated the glue at the ferroelectric oxide/semiconductor
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interface and replaced it with an atomically sharp, heteroepitaxial transis-
tion [219].

A parallel and currently more urgent technology driver is an atomically
sharp transition from oxide to semiconductor in metal-oxide-semiconductor
field-effect transistor (MOSFET) devices, which is required to continue the
advance in transistor speed as described by Moore’s law, an historical observa-
tion of the exponential increase in transistor speed and integration [220]. This
requirement of scaling is described by the International Technology Roadmap
for Semiconductors (ITRS) [221]. In the 2005 version of the ITRS, the scal-
ing of the MOSFET is followed to the year 2016, at which time the channel
length should be 9 nm. All dimensions of the transistor scale more or less pro-
portionally so that for 9 nm channel lengths, the thickness of the gate oxide,
silicon dioxide, at this point must be less than 5 Å. This dimension is on the
order of an atomic layer and is the length scale of the desired heteroepitaxial
transition.

It is also at this scale that the concept of an interface phase is useful for
designing and understanding heteroepitaxial interfaces. A type of interface
phase was originally proposed in 1929 to explain the rectifying behavior of
point metal contacts with semiconductors. Here, the phase was envisioned as
a chemical inhomogeneity of high resistivity. Seminal work by Schottky [222]
in 1938 describes a layer of space charge that is expected to be at the inter-
face of a semiconductor–metal contact and results in the observed rectifying
behavior, without invoking a chemical inhomogeneity. Walker et al. have re-
visited the role of an interface phase and found that it is inherent for any
semiconductor–metal or semiconductor–oxide junction, and thus adding a
missing piece of Schottky’s formalism [223].

The concept of the interface phase was outlined by Cahn and Hilliard
in 1958 [224] for inhomogeneous systems: the order parameter of the inter-
face rearranges itself to minimize its depth gradient. In Cahn and Hilliard’s
example, the order parameter was density or composition and was used to
describe wetting. For thin films, the following are examples of this inter-
face phase: sub-oxides at the amorphous silicon dioxide/silicon interface, the
electronic changes observed at polar oxide heterojunctions [225], and sub-
monolayer silicide formation for crystalline oxides on silicon. For amorphous
silicon dioxide on silicon, the dominant energetic consideration is steric hin-
drance at the interface, and as a consequence, the interface is composed of
a graded layer of suboxides of SiO2 [226]. Similar bonding considerations for
a crystalline interface between the oxide and silicon are paramount, and one
finds that a submonolayer of silicide is required to promote epitaxy of oxides
on semiconductors [227].

The principles of growth of crystalline oxides on silicon are described
below. Many of the details are structural and are derived from RHEED ob-
servations under different growth conditions. This approach was first outlined
in 1991 by McKee et al. for the growth of BaTiO3 on silicon [227]. The key to
the growth of crystalline oxides on semiconductors (COS) is the deposition
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Fig. 33. Phase-diagram representation of heteroepitaxy. A successful route of many
possible layer sequences is outlined in red in panel (a). This route avoids sili-
cates and titanium silicides that do not form surface structures compatible with
both silicon and the alkaline-earth oxide (schematically indicated in panel (a) by
arrows). The specific route to the alkaline-earth oxide is shown in panel (b) as
three steps that establishes the tie line between a monolayer silicide and alka-
line-earth oxide (solid line). The deposition of extra alkaline-earth metal (3/8 ML)
ensures that, during the oxidation step (schematically indicated by the two arrows
in panel (b)), the surface composition remains in the lower left-hand corner of the
three-component phase diagram, avoiding the formation of silicates

of a silicide prior to oxide growth. In this way the reaction between BaO and
silicon is controlled and confined to a thickness of less than 1 monolayer (ML).

4.2.1 Layer-Sequenced COS Growth

The beginning of crystalline oxide growth involved clean silicon or germa-
nium, and the endpoint is a perovskite oxide. These endpoints are plotted
on a set of three component phase diagrams in order to consider possible ap-
proaches to making the heteroepitaxial transition (Fig. 33). The direct route
from silicon to SrTiO3 has been shown not to work thermodynamically be-
cause titanium reacts with silicon and oxygen to form an amorphous silicate
and polycrystalline silicide. While thermodynamic considerations alone do
not mean that this route will be unsuccessful, the property that disqualifies
this approach is the lack of a commensurate and crystalline structure for the
silicate or silicide, even at submonolayer coverages. This fact is observed by
RHEED when SrTiO3 is directly deposited on silicon by a disappearance of
diffraction from an ordered surface after less than 1 ML coverage. As can be
seen in the set of three component phase diagrams, there is more than one
way to get from silicon to SrTiO3. In the following discussion, we describe a
successful path.

One starts with clean silicon that is prepared using standard wet chemical
cleaning followed by a UV-ozone produced oxide. This oxide is easily sublimed
at 850 ◦C in UHV to produce a clean 2 × 1 Si(001) surface. It is important
in the cleaning process that SiC is not observed in the RHEED. Subsequent
growth is disrupted if even small amounts are present.

One begins with deposition of Sr metal and proceeds along the Si−Sr
phase line in Fig. 33 to produce an intermediate silicide. The growth condi-
tions required in order to synthesize a crystalline ordered layer that does not
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Fig. 34. RHEED control of silicide deposition. The diffracted intensity at the 3rd-
order and half-order rod locations along the 〈110〉 Si(001) surface indicates where
surface phases are complete

react uncontrollably is to deposit 1/4 ML at temperatures between 550 ◦C
and 700 ◦C onto a clean 2 × 1 Si(001) surface. This step can be controlled
by RHEED by stopping the Sr deposition when the 1/4 ML 2 × 1 phase is
completed (see Fig. 34). One stops the Sr deposition when diffraction from
the 3 × 2 phase is observed to disappear [228]. For this process to work, we
assume that the fractional coverage of the 1/6 ML phase is proportional to
the intensity of the 3rd-order rod, while the coverage of the 1/4 ML structure
is proportional to the intensity of the half-order rod [74]. This progression is
shown in Fig. 34 and shows the 3rd-order rod peaking at 1/6 ML and the
half-order rod peaking at 1/4 ML. This diffraction is consistent with chains
of alkaline-earth metal atoms ordering along 〈110〉 directions with triple the
〈110〉 Si lattice spacing, which is then fully replaced at 1/4 ML by alkaline-
earth metal atoms at double the 〈110〉 lattice spacing. At 1/4 ML, the first
step in the growth of COS is complete, and one arrives at Step 1 in Fig. 33b.
The importance of this step has been tested by attempts to grow lattice-
matched oxides on clean silicon, as well as on 1/6 ML Sr covered Si(001) (see
Fig. 36). At least 1/4 ML is required to promote epitaxy.

The next step involves forming an ordered metal surface that can be
subsequently oxidized. This step allows a clean transition from the silicide to
the oxide, where one finds that an ordered 3 × 1 metal surface forms at 3/8
additional alkaline-earth metal coverage, which is flat and commensurate with
the silicon. Because the surface mobility of the metal is high, one performs this
deposition at substrate temperatures between 100 and 200 ◦C. The RHEED
pattern indicates that it is highly ordered and flat. At this point one is at
Step 2 in Fig. 33b.

To get to Step 3 in Fig. 33b, one oxidizes the 3/8 ML alkaline-earth metal
layer by leaking molecular oxygen into the chamber with the substrate at
100 ◦C. If the arrival rate of oxygen is kept below 1Langmuir/s, this oxidation
can be controlled by limiting the oxygen exposure at about 10 s. The RHEED
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pattern that results is, like the 1/4 ML silicide, a 2×1 pattern, highly ordered
and flat. The RHEED is consistent with an ordered alkaline-earth oxide layer
on top of the silicide.

Some of the silicide remains after the oxidation step has been concluded,
as determined using Z-contrast microscopy, as well as by looking at the phase
of the RHEED oscillations during growth of the growing oxide on the sili-
cide. In such an experiment, Norga et al. [229] found that 0.41 ML of the
Sr deposited in the first step does not oxidize and remains at the interface.
Z-contrast microscopy shows a Sr layer with double the periodicity of the
silicon in the [110] direction, consistent with the 2 × 1 diffraction observed
at 1/4 ML [219]. At the end of the oxide growth step, one achieves a tran-
sition from silicon to alkaline-earth oxide with a transition layer of silicide
in between, where local equilibrium between adjacent layers maintains the
stability of the heterostructures.

Continued deposition of alkaline-earth metal in the presence of oxygen re-
sults in highly ordered and flat Ba0.7Sr0.3O. At this point the difficult steps of
heteroepitaxy have been completed and a transition to homoepitaxial growth
is required. Because one wants atomically abrupt surfaces and interfaces,
one needs to establish conditions (including oxygen pressure and substrate
temperature) for flat growth, using surface and bulk diffusion to establish a
growth window, as described in the molecular beam epitaxy section.

With the completion of the alkaline-earth oxide, one follows the layer
sequencing indicated in bold in Fig. 33a. This route avoids the formation
of silicates, as shown by the photoelectron spectra for silicon coming from
a silicon-oxide interface that is buried. (Photoelectrons can be measured
through oxide films up to 50 Å thick.) Figure 35 compares the Si-2p peak
spectrum taken from the 1/4-ML silicide structure with that from a 6-ML
thick (BaSr)O oxide on silicon. There is no evidence of silicon in a silicate or
silicon dioxide. Silicon in silicates or SiO2 would have peaks at 102.5 eV and
104 eV, respectively [230, 231]. The shoulder seen in the spectrum from the
oxide interface has been attributed to an electron energy-loss process from
the barium 4d peaks [232] (not shown in the graph).

For the growth of the perovskite, the transition from homoepitaxy to
heteroepitaxy must be made in a different growth regime. The Ti−O bond
in perovskites such as SrTiO3 has a covalent part. Growth temperatures
for flat, crystalline SrTiO3 are greater than 550 ◦C [233, 234]. However, one
observes that the diffraction from the surface of alkaline-earth oxide films
thinner than 10 ML deteriorates above 400 ◦C. This is not attributable to
a thermodynamically driven reaction with the oxide because, as shown in
Fig. 36, the alkaline-earth oxide is still observed even after a 700 ◦C anneal,
as was done for the structure shown in the micrograph. Moreover, films thicker
than approximately 50 Å are stable at temperatures of greater than 700 ◦C.

The growth of crystalline perovskite thin films requires growth temper-
atures above 550 ◦C. Since one cannot use such high growth temperatures,
one deposits the perovskite in a layer-by-layer fashion at low temperatures,
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Fig. 35. XPS and RHEED of a 6-ML alkaline-earth oxide on silicon. After the
heteroepitaxial transition is finished, the crystalline quality of the lattice-matched
Ba0.7Sr0.3O is seen in panel (b)). The silicates of Fig. 33 have been avoided as
shown by X-ray photoelectron spectroscopy in panel (a). The core-level spectrum
for silicates would show up as a peak at a binding energy of 104 eV

Fig. 36. Oxide growth from two different starting surface phases. (a,b) Epitaxy of
the lattice-matched Ba0.7Sr0.3O from the 3×2 Sr:Si(001) surface phase (panel (a)).
The resulting diffraction pattern after 1 ML is shown in panel (b), showing poor
epitaxy. (c,d) Epitaxy from the 2 × 1 Sr:Si(001) phase (panel (c)). The result-
ing diffraction pattern after 1 ML is shown in panel (d), showing that the 2 × 1
Sr:Si(001) phase facilitates the epitaxy of lattice-matched Ba0.7Sr0.3O on silicon.
Note that for all RHEED images shown in this chapter, the out-of-plane scattering
vector for the diffraction is vertical and increasing going down the page. The scale
in the panels locates the Si(001) surface mesh rods
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Tg = 200 ◦C, and subsequently anneals in vacuum to recrystallize the amor-
phous film to obtain an epitaxial, single-crystal film of perovskite grown on
an AO template.

The deposition of the elemental metals is done in 10−6 Torr oxygen to form
the oxide. The total thickness of the deposition can be anywhere from 3 to
10 unit cells thick. The result is an amorphous RHEED pattern. Recrystal-
lization of the amorphous film takes place at 550 ◦C after about 60 s [235]. The
resulting SrTiO3 shows a sharp diffraction pattern that, for films less than
50 Å thick, is commensurate with the silicon with a +1.5% strain [68, 219].
This is determined by comparing the in-plane lattice parameter of the diffrac-
tion with that for clean silicon. Large critical thicknesses on the order of 80 Å
thick have been observed for BaTiO3 growth on SrTiO3, a +2.3% misfit [236].

The completion of SrTiO3 defines what is meant by COS. The general for-
mula one introduces for COS is (AO)n(A′BO3)m, where (AO)n is n mono-
layers of alkaline-earth oxide and 2 monolayers make up one unit cell of
the rocksalt structure. (A′BO3)m is m unit cells of the perovskite structure,
where A′ is Sr, Ba, or Ca, and B is titanium. As discussed earlier, a number
of transition metals, Zr as an example, can also replace titanium for increased
flexibility in materials choice. An example of n = 3 and m = 3 is shown in
Fig. 36.

Variations in the COS approach have been described by A. Herrera-
Gomez et al. [237] and Mari and Ishiwara [238]. These processes result in
an oxide on silicon by chemically reducing an approximately 20-Å thick sili-
con dioxide film with Sr metal to SiO at temperatures high enough to drive
off SiO. These temperatures are lower than those required to drive off SiO2

and so may be more amenable to production. If excess Sr is supplied to
the initial SiO2 film, then heating in vacuum will desorb the silicon dioxide
and some of the excess Sr [237, 238]. This process will leave a coverage of
Sr on the surface that depends critically on the thermal history of the sub-
strate [229, 237]. The resulting mixture of surface structures is dictated by
the thermodynamics of the individual surface phases. After this deoxidation
process is complete [237], the oxide growth continues within the framework
described here at some point between 1 and 2 on the diagram of Fig. 33b.

4.2.2 How the Silicide Facilitates Epitaxy

In this section we explore ways to understand how the transition between
covalent bonding of the semiconductor and the ionic bonding of the oxide
is buffered by the silicide, including how the bonds change symmetry across
the interface from tetrahedral in the silicon to spherical in the oxide. Ex-
perimentally, the key to this transition was found to be the preparation of
ordered surface phases prior to oxide growth. To understand why the 1/4 ML
surface phase facilitates epitaxy one examines first the physical structure of
the Sr−Si surface phases at 1/4 and 1/6 ML. Next, systematic changes that



286 Agham-Bayan Posadas et al.

can be made to interface structure via experiment and density-functional the-
ory (DFT) are studied to learn about the role of the Sr that remains at the
interface.

One piece of evidence for the structure of the surface phase is the tem-
perature at which an ordered surface phase forms, which occurs above a
substrate temperature of 550 ◦C [223]. On the other hand, RHEED from the
2 × 1 surface phase at 1/4 ML coverage remains unchanged down to room
temperature, implying that the formation of the 2× 1 surface phase is kinet-
ically suppressed at room temperature.

This kinetic limitation is consistent with the SrSi2 stoichiometry observed
in Z-contrast microscopy [219]. The development of this stoichiometry re-
quires diffusion of silicon from terraces to steps, which takes place at temper-
atures above 550 ◦C (see Fig. 12). Surface diffusion of silicon is also required
to explain STM images of the 3 × 2 surface phase formed at high tempera-
tures [239]. Here, the Sr atoms appear to be sitting below the surrounding
terrace of dimerized silicon atoms. These features require the removal of at
least some of the silicon dimers.

One then starts with the interface structure derived from the Z-contrast
images and explores the role of each component of the interface in buffering
the transition in bonding. The structure of the interface considered here is
based on a c 4×2 surface mesh with two alkaline-earth metal atoms (from Be
to Ba) per unit cell located at hollow sites of the undimerized silicon surface
(see Fig. 37). The four silicon atoms in the silicide are also located on hollow
sites, displaced half of a surface mesh spacing away from the bridge site of
bulk, tetrahedral-coordinated silicon. Various components of the interface
phase can be identified: the bulk silicon substrate, the Sr in the silicide, the
silicon in the silicide, and the bulk-terminated alkaline-earth oxide film.

The following discussion relies on the structure as deduced by Z-contrast
microscopy (Fig. 38). Additional experimental methods are desirable to lo-
cate all of the atoms in the structure (oxygen and silicon) such as X-ray
crystal truncation rod measurements. Other structures have been proposed
that rely on total-energy calculations to determine the structure with the low-
est energy [240, 241]. DFT calculations conclude that there are lower-energy
structures than the one treated here, the main difference being that the other
structures do not involve a silicide between the oxide and silicon. The lowest-
energy surface structures are simple adsorbed alkaline-earth metal structures
that order in every other 〈110〉 row of the silicon surface. A series of phases
such as those observed in RHEED is realized for these models by increasing
the density of metal atoms in the 〈110〉 chains.

To explore the role of each component layer, one systematically changes
the interface both experimentally and theoretically and observes how the
properties respond. To do this experimentally, one changes the alkaline-earth
metal at the interface from Be to Ba, while keeping the composition of the
oxide fixed and measuring the band offset between oxide and silicon. The
band offset between the silicon and alkaline-earth oxide is sensitive to the
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Fig. 37. Z-contrast microscopy of an n = 3, m = 3 COS heterostructure. The key
to a heteroepitaxial transition to SrTiO3 is a lattice-matched alkaline-earth oxide.
The image is taken down the 〈110〉 direction of the Si(001) substrate and the 〈100〉
direction of the alkaline-earth oxide and perovskite. 3 ML of alkaline-earth oxide
forms the substrate for subsequent perovskite epitaxy

Fig. 38. COS interface structure. The interface structure shown here was deter-
mined experimentally using Z-contrast microscopy (cross section and plan view).
The green spheres are silicon atoms, the blue spheres are alkaline-earth metal atoms,
and the yellow spheres are oxygen atoms. The oxide layers of the cross-sectional
view are removed in the plan view to clearly show the positions of the atoms in a
single c4 × 2 surface mesh of the interface phase [223]
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Fig. 39. Variation of alkaline-earth oxide–silicon band offset. As the alkaline-metal
atoms are moved, either by DFT calculation (solid line) or experimentally by chang-
ing the ionic size of the alkaline-earth metal ion (points), the band offset varies
linearly with distance. This variation shows that the plane of alkaline-earth metal
atoms are positively charged with 2+ valence. Figure taken from [223]

magnitude of the polarization at the interface, which is modulated by chang-
ing the composition of the interface phase. The dipole contribution to the
band offset is determined by how charge rearranges itself at the interface
phase and is given by:

ΔV =
e2

4π

∫

(n̄(z) − n0)z dz , (4)

where n0 is the average electronic density of the oxide and the silicon sub-
strate, and n̄(z) is the macroscopic average of the electronic density across
the interface where both electron densities are planar averages. If the alka-
line-earth metal in the silicide becomes ionic by donating its two electrons
to the interface (it is less electronegative than silicon), then changing the
position of this plane of atoms normal to the interface (the distance dA in
Fig. 38) should change the magnitude of one of the interface dipoles. Indeed,
DFT calculations of charge density of the occupied states for this interface
structure show that the negative charge is located around the silicon atom in
the silicide and leaks a few atomic planes into the silicon substrate (purple
plot of electron density in Fig. 38). The alkaline-earth metal now plays the
role of a test charge on the interface, allowing one to determine the character
of the interface bonding.

Calculations show that the distance between oxide and alkaline-earth
metal in the silicide influences the band offset in a way that is consistent with
simply moving the positive, ionic component of the interface dipole (Fig. 39).
In addition to the theoretical observation of charge localized on the silicon
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atoms of the silicide, one also finds from DFT calculations that the Si−O
bond length remains constant as the interface dipole changes strength. This
implies that the strong covalent silicon–oxygen bond involving the silicon in
the silicide and the first alkaline-earth oxide plane controls the epitaxial inter-
face. Furthermore, the electrons involved in this bonding are donated by the
alkaline-earth metal in the silicide and thus keep the interface charge neutral.
These structural and chemical properties of the interface phase facilitate the
epitaxy of crystalline oxides on silicon.

Much of the recent work in the growth of crystalline oxides on semiconduc-
tors is aimed at replacing SiO2 in metal oxide semiconductor transistors [242],
where variations on SrTiO3 are possible in order to manipulate the electronic
structure [243] or ferroelectric functionality [68, 236]. This layer-sequencing
approach has also motivated fresh attempts at crystalline oxide growth on
semiconductors other than silicon, such as Ge [104] and GaAs [244, 245].
Similar efforts for growing epitaxial oxides on wide-bandgap semiconductors
are also being pursued [246, 247]. Further applications can be imagined if
the SrTiO3 on silicon is used as a substrate itself for the deposition of other
functional components of a device such as ferroelectrics [248] and other semi-
conductors [115, 249].

4.3 Conclusions

The continuing advances in epitaxial growth techniques and surface char-
acterization, combined with the availability of high-quality single-crystalline
substrates, has spurred these new applications of complex oxide thin-films,
which allows one to examine new phenomena as well as to develop new kinds
of devices. The combination of advances in thin-film fabrication technology
and new materials opens up broad avenues for both new device applications
and a deeper understanding of the materials themselves.
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Abstract. In this chapter, we have reviewed, with a focus on our own efforts,
the history, current and future perspectives on the problem of ferroelectric size
effects. This past decade has seen an explosion of activity in the field of nanoscale
ferroelectrics, with a broad spectrum of novel and artificial materials explored,
and a huge potential for new discoveries and novel applications and devices. It is
safe to say that although we are at present building a solid understanding of the
fundamental driving force for ferroelectric size effects, we can expect some new and
fascinating physics to manifest itself as we continue to push the envelope in this
exciting and rapidly developing area.

1 Size Effects in Ferroelectrics

Ferroic materials, ferromagnets, ferroelectrics and ferroelastics are similarly
named for the reason that they all exhibit hysteretic responses to driving
forces. For both ferroelectrics and ferromagnets, size effects are of keen in-
terest for very practical reasons: their ferroic behavior makes them useful for
storing information and the smaller they can be made the more information
can be stored.

In ferromagnets, the nature of the problem is quite well defined: when
the size of ferromagnetic nanoparticles decreases, the magnetic anisotropy
energy decreases at the same time. When this energy becomes smaller than
the thermal energy kBT of the grains, thermal fluctuations will flip the mag-
netic moment of the nanoparticles randomly and cause the loss of a macro-
scopic magnetic moment. This effect is referred to as the superparamagnetic
limit [1]. This limit is typically 50 nm, which corresponds to a storage density
of ∼ 40Gb/m2.

In ferroelectrics, size effects turn out to be a more loosely defined problem.
In the context of ferroelectric nanoparticles, the term “superparaelectric”
limit has become popular [2], a notion that may be somewhat confusing. An
analogy to the superparamagnetic limit would give the following: the depth of
the PbTiO3 double well is typically of −0.1 to −0.2 eV/unit cells, around 4 to
8 times kBT at room temperature, leading one to consider that in principle
even one unit cell of a ferroelectric material might be resistant to thermal
fluctuations. In reality this is not the case: ferroelectricity is instead limited
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Topics Appl. Physics 105, 305–338 (2007)
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by the relevant electrical and mechanical boundary conditions [3], and in fact
more frequently by the practical issues involved in producing high-quality
samples on the extreme nanoscale.

2 Size Effects
in the Ginzburg–Landau–Devonshire Theory

Historically, there have been many attempts to study the size dependence of
ferroelectric properties, leading to a rich literature of both experimental and
theoretical studies.

Within the Ginzburg–Landau–Devonshire-type phenomenological theory,
Kretschmer and Binder [4] introduced a framework for considering size effects
through two lengths, the correlation length and the extrapolation length. This
framework was then expanded and applied to a number of situations by Tilley
and Zeks [5].

The idea of an intrinsic size effect is largely driven by the concept of
a correlation volume, this being related to the required number of aligned
dipoles for ferroelectricity to occur. In fact, the strong long–range interactions
along the polar axis and the weaker interactions perpendicular to this axis
lead to an anisotropic correlation volume. Reducing the sample size below
the critical length parallel to the polar axis modifies the balance between the
short-range forces, which favor a centrosymmetric paraelectric phase, and the
long–range interactions. Thus, an instability of the ferroelectric phase might
be expected for films below a certain thickness. Extremely pertinent to this
discussion, however, is the question of what the size of this correlation length
should be. In fact this depends greatly on how close to the phase transition
the system is, as it is given by

ξ =
√

κ

|α| , (1)

where α = γ(T − T0) and κ is a material constant. While it is only a few
lattice parameters far from the transition temperature, it should diverge close
to the phase transition.

The intrinsic surface effect on the polarization in ferroelectrics was first
studied by Kretschmer and Binder in 1979 [4]. They used a phenomenological
approach to describe polarization variations at the film surface. To do so, a
surface term was added to the Ginzburg–Landau–Devonshire expansion of the
total free energy, leading to the introduction of the so-called extrapolation
length δ, such that

dP/dz = −P0/δ . (2)

A positive extrapolation length δ indicates a decrease of the polarization near
the surface, while a negative extrapolation length indicates an increase, in
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comparison with the bulk of the film. By introducing this term, a polarization
gradient is introduced into the film. This concept has then been used in many
papers to calculate polarization profiles.

While useful, the weakness of the phenomenological approach resides in
the fact that an extrapolation length has to be introduced. Theoretical works
based on Ginzburg–Landau–Devonshire theory predicted that ferroelectricity
is suppressed in small particles and thin films [6, 7] at relatively large sizes
compared to what has been recently observed experimentally.

3 Extrinsic Size Effects

In many cases, and especially in the past, samples below a certain size did
not display ferroelectricity, not because intrinsic size effects had suppressed
it but rather due to difficulties in fabrication.

As an example, we can consider the case of BaTiO3 thin films. Feuer-
sanger et al. [8,9] reported in 1963–1964 that in stoichiometric BaTiO3 films
prepared by electron-beam evaporation the ferroelectric phase becomes un-
stable for film thicknesses below about 0.1μm. Later, similar measurements
by Slack and Burfoot [10] in 1971 on flash-evaporated BaTiO3 films showed
that even the thinnest films they fabricated (∼ 0.04μm) showed ferroelectric
switching behavior. Measurements by Tomashpolski et al. [11–14] in 1974 on
vacuum-deposited BaTiO3 films showed sharp, well-defined, dielectric anoma-
lies near 120 ◦C down to film thicknesses of 0.023μm. For a film thickness
of 0.01μm, this anomaly disappeared but an anomaly near 0 ◦C was still
evident.

More recent results, on a range of materials, point to a much lower crit-
ical thickness, with ferroelectricity detected in polymer films down to 10 Å
(Bune et al. in 1998 [15]) and in perovskite Pb(Zr0.2Ti0.8)O3 films down to
40 Å – 10 unit cells (Tybell et al. in 1999 [16]). Very recently, X-ray syn-
chrotron studies have revealed periodic 180◦ stripe domains in 12 to 420 Å
thick epitaxial films of PbTiO3 grown on insulating SrTiO3 substrates [17,18].

The fact that the experimentally obtained minimum thickness for a fer-
roelectric thin film has decreased by orders of magnitude over the years is a
clear sign that for the most part the suppression was due to limitations on
sample quality. For example, dead layers, grain boundaries and defects such
as oxygen vacancies are all known to have strong influences on ferroelectric
properties.

Frequently, a surface layer with significantly different properties from
those in the interior of the film can exist. The idea of a space-charge layer
near the surface of a ferroelectric dates back to Känzig in 1955 [19]. Typi-
cally, this space charge is considered to be mainly due to oxygen vacancies.
The presence of oxygen vacancies at the surface layers and their redistribu-
tion with electrical cycling has been suggested as the cause of polarization
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fatigue [20–22] and in general oxygen vacancies are widely implicated in most
of the failure mechanisms of ferroelectric capacitors.

A nonswitching dielectric “dead layer” [23–25] could be considered to arise
from many causes, for example pinning of domain walls [26] or screening of
the internal field by a depletion layer [27]. Damage can also be created at the
surface layer by bombardment of the sputtering ions during the deposition of
a top electrode [23], or by changes in stoichiometry due to the loss of volatile
elements such as lead or oxygen.

Dead layers can suppress ferroelectricity directly and also give rise to
measurement issues. For example, in bulk, the maximum in the dielectric
constant is fairly well correlated with the transition temperature, but this
is not always the case in thin films if there is a dead layer. As pointed out
in [28], a series capacitor model is required to extract the true transition
temperature, which in the case of BaxSr1 − xTiO3 has been shown to be
independent of thickness [29], in contrast to the temperature at which the
permittivity maximum occurs, which can depend quite strongly on thickness.

4 Effect of Screening

In recent years, a degree of maturity in materials-processing techniques was
reached, allowing fundamental size effects to be experimentally probed rather
than those simply imposed by processing limitations. Thankfully, along with
the experimental advances, one of the most significant developments in the
study of ferroelectricity has been the development of powerful first-principles
calculations [30]. Not only have these shed enormous light on the fundamental
origin of ferroelectricity, but they are also an ideal way of probing the nature
of ferroelectric size effects.

The predominant role of electrostatic boundary conditions in controlling
ferroelectricity in very thin films has now been demonstrated from first prin-
ciples [31–33], but in fact the idea of imperfect screening has considerable
history; in the 1970s [34, 35], researchers at IBM studied the effect that a
finite screening length for the electrodes would have on the critical thickness
of films within the framework of the Ginzburg–Landau–Devonshire theory.

Simple Electrostatic Model

In an idealized ferroelectric capacitor where the plates are perfect conduc-
tors, as shown schematically in Fig. 1a,b, the screening charges are located
precisely at the electrode/ferroelectric interface, exactly compensating the
surface charges of the polarization P in the ferroelectric film. However, in
realistic electrodes the screening charges are distributed over a small but fi-
nite region in the metal, as shown in Fig. 1c. The crucial physics associated
with realistic electrodes is incomplete compensation: screening charges in the
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Fig. 1. (a) Schematic representation of a short-circuited electrode/ferroelectric/
electrode structure with the ferroelectric film homogeneously polarized with spon-
taneous polarization Ps. (b) Schematic representation of the associated charge dis-
tribution in the presence of perfect electrodes. (c) Charge distribution, (d) voltage
and (e) field profiles in the presence of realistic electrodes. Here, the film is taken
to be a perfect insulator. From Dawber et al. [37]

metal plates are displaced from the interfaces. For a short-circuited ferro-
electric capacitor, this spatial charge distribution creates finite dipoles at the
interfaces and leads to an associated voltage drop

ΔV =
λeff

ε0
P (3)

at each interface (Fig. 1d), and a compensating depolarization potential
across the film is necessary to ensure that the whole structure is an equipo-
tential [34]. There is therefore an associated finite depolarization field Ed in
the film, as shown in Fig. 1e. Assuming two similar interfaces with the top
and bottom electrodes, then

Ed = −2
ΔV

d
= −2

λeff

dε0
P , (4)

where d is the thickness of the film. The parameter λeff has the dimension
of a length and will be referred to as the effective screening length of the
system [36]. A small screening length would mean a better screening of these
surface charges, and therefore a smaller depolarization field and a more stable
ferroelectric phase.

The depolarization field in the sample increases as the sample thickness
is decreased and eventually suppresses ferroelectricity. There are other ways
that a system can try to avoid a depolarization field, the most obvious be-
ing the formation of a ferroelectric domain structure [17, 18], but it is also
becoming apparent that surface molecules and the nature of the bonding at
the interface are key controlling factors in how well a ferroelectric can retain
its properties as its size is reduced [38].
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Fig. 2. Topography images in three dimensions obtained for scan areas of 1 μm2 on
PbTiO3 thin films of ∼ 459, 132, 74, 45, 24 and 12 Å thickness, giving root-mean-
square values of 1.5, 1.3, 1.6, 2.3, 2.4 and 1.7 Å respectively. The vertical scales used
in these 3D representations are equal to the thickness of the samples, allowing a
comparison of the roughness of the surface with the total film thickness. As can be
seen from the data, the average thickness remains well defined, even for ultrathin
films down to three unit cells

4.1 Recent Experimental Work: Ultrathin Films
on Metallic Electrodes

The experimental approach used by our group to address the problem was
to measure tetragonality versus film thickness in thin PbTiO3 films using
X-ray diffraction [39] and X-ray photoelectron diffraction [40, 41]. The X-ray
photoelectron diffraction technique was also used to study the noncentro-
symmetry of the unit cells in the same samples.

Using offaxis radio-frequency magnetron sputtering [42] onto metallic Nb-
SrTiO3 substrates, a series of epitaxial c-axis oriented PbTiO3 perovskite
films was grown, with thicknesses ranging from 500 Å down to one unit cell
(a detailed description of the deposition parameters can be found in [43]).

To probe finite-size effects in thin films, a key requirement is to have
materials with smooth surfaces, and therefore a well-defined thickness. In
order to get information about the surface quality of the films, atomic force
microscope topographic measurements were performed on all the samples,
showing that the films are essentially atomically smooth with a root-mean-
square roughness between 2 and 6 Å over 10 × 10μm2 areas. The vertical
scales used in the 3D representations in Fig. 2 are equal to the thickness
of the samples, allowing a comparison of the roughness of the surface with
the total film thickness. As can be seen from the data, the average thickness
remains well defined, even for ultrathin films down to 3 unit cells.

The piezoresponse mode of the atomic force microscope was used to probe
the domain structure of different films [44, 45]. Ten stripes were drawn using
alternate +12V and −12V voltages applied to the tip over a 1.6 × 1.6μm2

area. In Fig. 3, the 3.2 × 1.6μm2 background piezoresponse signal contain-
ing the written stripes was then compared to the signal from the stripes,
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Fig. 3. Piezoresponse signal obtained after writing ten stripes using alternate +12 V
and −12 V voltages applied to the tip

and found to be equal to the signal obtained for the +12V written stripes
suggesting a single polarization in the as-grown sample. All the investigated
films were found to be “monodomain-like” over the studied areas, typically
a few μm2.

X-Ray Diffraction

X-ray measurements allowed us to precisely determine the thickness of the
films and the c-axis lattice-parameter value, and to confirm epitaxial growth.
Bulk PbTiO3 is tetragonal and ferroelectric at room temperature, with TC =
763K, a = 3.902–3.904 Å and c = 4.135–4.156 Å [46, 47]. θ–2θ scans give
information on the c-axis value (c). Examples are shown in Fig. 4 for films
of 396, 132 and 73 Å, revealing the thin high-intensity substrate diffraction
peak as well as the broader film diffraction peak. The θ–2θ diffractograms,
revealing only (00l) reflections, demonstrate that the films are purely c-axis
with the polarization normal to the film surface.

Laue oscillations in θ–2θ scans and low-angle reflectometry (see inset of
Fig. 4 (top)) allow, through simulation, the precise determination of the num-
ber of planes involved in the diffraction, and thus the film thickness, as well
as the deposition rate, even for films down to 24 Å.

Since at room temperature the a-axis lattice parameter of ferroelectric
bulk PbTiO3 is 3.902–3.904 Å [46,47], very close to the 3.905 Å of the SrTiO3,
the films are expected to be coherent with their a-axis equal to the SrTiO3

lattice parameter. Grazing incidence diffraction on a ∼ 86 Å thin film con-
firmed this picture displaying a unique (200) reflection. Measurements of the
PbTiO3 (101) reflection for the thickest films (∼ 504 Å and ∼ 396 Å) gave an
estimation of a = 3.90±0.01 Å. The a-axis value used below in the theoretical
modeling is thus taken as constant and equal to 3.905 Å.

Being able to systematically measure the c-axis lattice parameter down
to 24 Å is of interest since its value can be correlated to the macroscopic po-
larization, as demonstrated below. Indeed, our experiments can be described
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Fig. 4. Top: Low-angle and (001) X-ray diffraction measurements (thick lines)
and simulations (thin lines) for a 396 Å thick film. Middle: θ–2θ diffractogram
revealing (00l) reflections from l = 1 to 5 for the same 396 Å thick film. Bottom: θ–
2θ diffractograms around (002) for three films of different thicknesses: 396, 132 and
73 Å, respectively, allowing the decrease of the c-axis with thickness to be clearly
seen. From [39]

using the model Hamiltonian approach (see [39, 48] and the chapter by K.
M. Rabe and P. Ghosez in this book for more details):

Hfilm
mod = Hbulk

mod [ξ, eαβ ] − EdP , (5)

where Hbulk
mod [ξ, eαβ ] is the bulk model Hamiltonian expressed as a function of

the ferroelectric distortion ξ and taking into account the strain e, Ed is the
depolarization field and P the polarization. Perfect pseudomorphic thin films
on top of a cubic substrate are considered and the inplane strains (exx = eyy)
are fixed throughout the structure independently of the film thickness, in
order to constrain the a-axis lattice constant imposed by the SrTiO3 substrate
(3.905 Å). In the model Hamiltonian approach, the strains are defined with
reference to the bulk cubic structure of PbTiO3 so that the epitaxial growth
imposes exx = eyy = (aSTO − aPTO)/aPTO with aSTO = 3.905 Å and aPTO =
3.969 Å. The energy is then minimized for different thicknesses in terms of ξ
(supposed uniform and perpendicular to the film, ξ = ξz) and ezz.

From the values of ξz we deduce Pz, using

Pz =
1

Ω0
ξzZ

∗ , (6)
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where Z∗ is the Born effective charge. In this calculation, the polarization is
enforced to be uniform throughout the whole film. Indeed, a relaxation of this
constraint shows that the histogram of the possible values of Pz is extremely
sharp around a given value of the polarization, confirming the validity of the
uniform approach. However, surface effects, i.e., surface relaxation/rumpling,
are not taken into account.

From the values of ezz we deduce c/a, using the definition of strain within
the model Hamiltonian approach with respect to the cubic phase:

ezz ≡
c − aPbTiO3

aPbTiO3

, (7)

→ c = aPbTiO3
(1 + ezz) , (8)

→ c

aSrTiO3

=
aPbTiO3

aSrTiO3

(1 + ezz) . (9)

A direct relation between ξ and c/a can be obtained from a second-order
development:

( c

a

)
=

( c

a

)

0
+

∂
(
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a

)

∂ξ

∣
∣
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∣
∣
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∂ξ2

∣
∣
∣
∣
∣
ξ=0
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By symmetry, the second term on the right has to be equal to zero, giving
( c

a

)
=

( c

a

)

0
+ αξ2 . (11)

Using again (6), we get that
( c

a

)
=

( c

a

)

0
+ α′P 2 . (12)

We thus see that measuring the evolution of c/a with thickness allows us to
probe the evolution of polarization as a function of film thickness.

It was found that c decreases with decreasing thickness, suggesting a
reduction of the polarization for the thinnest films.

Figure 5 shows this result: the film tetragonality, i.e., the c/a ratio, is
plotted as a function of film thickness for different series of samples (top).
As can be seen, the data for both series collapse and the c/a ratio decreases
very substantially for films thinner than 200 Å.

We also note that a very similar reduction of tetragonality has recently
been observed by Tybell1. It has also been checked experimentally that the
c-axis values did not change after the deposition of a gold electrode and
shorting of the gold electrode and the metallic substrate (insuring short-
circuit conditions).

These results will be analyzed later.
1 private communication with Thomas Tybell
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Fig. 5. Evolution of the c/a ratio with the film thickness. Top: experimental
results for different series (circles and squares), and with a gold top electrode
added (crosses); the dashed line is the phenomenological theory prediction (see
main text) assuming a ratio between the extrapolation and the correlation length
δ/ξ = 1.41 [49]; the solid line is the model Hamiltonian prediction for λeff = 0.12 Å,
rescaled to give a maximum tetragonality in agreement with the experimental data.
Bottom: results from the model Hamiltonian calculations for λeff = 0.23 Å (dashed
line), λeff = 0.12 Å (solid line) and λeff = 0.06 Å (dotted line). Inset : thickness
dependence of the spontaneous polarization P from the model Hamiltonian for
λeff = 0.12 Å. From [39]

X-Ray Photoelectron Diffraction

Another interesting approach to probing ferroelectricity in ultrathin films is
to use X-ray photoelectron diffraction [50, 51], an element-specific and sur-
face-sensitive (20–30 Å, depending on the electron mean free path) technique.
X-ray photoelectron diffraction has been widely used in surface crystallogra-
phy and studies of the orientation of adsorbed molecules, surface segregation,
and interdiffusion at interfaces. Because of the chemical sensitivity of pho-
toemission, a given atom type is chosen by selecting one of its core levels.
The local geometry around the selected atom can be probed by performing
intensity versus emission-angle scans of a chosen photoemission line. The res-
olution of this technique is sufficient to directly probe the intracell atomic
displacements associated with ferroelectricity, and to measure the material
tetragonality.

The outgoing photoemitted electrons exhibit a strongly anisotropic angu-
lar intensity distribution. This angular distribution is due to the interference
of the directly emitted photoelectron wave with the scattered electron waves.
The analysis of the interference (or diffraction) patterns is facilitated by the
so-called forward-focusing effect taking place for photoelectron kinetic ener-
gies greater than ≈ 0.5 keV. When considering a row of atoms, scattering at
the first few atoms along this row focuses the electron flux in the emitter-
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Fig. 6. Schematic representation of the forward-focusing effect with Pb atoms as
the emitter in a PbTiO3 unit cell. Core electrons have well-defined binding energies,
and their photoemission spectra exhibit characteristic emission lines. By selecting
a particular emission line, photoelectrons from a given emitter can be chosen, thus
probing the local real-space environment of the emitter. The interpretation is facil-
itated by forward focusing of the electron flux along the emitter-scatterer direction

scatterer direction. This enhancement of the intensity in the emitter-scatterer
direction is schematically illustrated in Fig. 6. The forward-focusing effect is
further amplified for electron scattering by heavy atoms. In a semiclassical
picture this can be understood as the focusing of the electron wave by the
high number of protons in high atomic number atoms. Note that, despite the
forward-focusing effect, the experimentally measured angles are sensitive to
multiple interferences, refraction and possible anisotropic atom vibrations at
the surface. In the present case of PbTiO3, Pb scattering is highly dominant
compared to the scattering by other elements.

In order to probe the tetragonality of the films, i.e., the c/a ratio of
the Pb lattice, Pb was chosen as the emitter atom (Pb 4f7/2 core level,
Ekin = 1115.5 eV), and Pb−Pb forward-focusing directions were used. Since
Pb atoms are absent from the substrate, this study can be done down to a
monolayer of ferroelectric material.

As a second step, in order to probe the noncentrosymmetry, O was chosen
as the emitter atom (O 1 s core level, Ekin = 724.1 eV), since it has the
largest displacement [46] and has Pb scatterers as nearest neighbors (Fig. 7).
However, the O contribution from the Nb−SrTiO3 substrate becomes non-
negligible for films thinner than the photoelectron inelastic mean free path,
making the study of films thinner than 20 Å more difficult.
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Fig. 7. (A) Stereographic projection of experimental and theoretical O 1 s emission
line intensities on quarter hemispheres for four different cases: experimental data for
a 20 Å thin film and theoretical simulations taking into account “up”-, “para”- and
“down”-state structures. Normal emission corresponds to the center of the plot and
grazing emission (θ = 70◦) to the outer border. (B) R-factor calculation to quantify
the agreement between experiment and simulations for different structures, where
a low R-factor corresponds to good agreement. A cut in the (100)-plane containing
Pb and O atoms is shown to facilitate the discussion. A downward shift of Pb and
O atoms optimizes the fit. From [40]

4.1.1 Results of Combined Experimental
and Theoretical Investigations

The model Hamiltonian used following (5) predicts a critical thickness below
which the spontaneous polarization vanishes and the c/a ratio of the resulting
paraelectric phase saturates at 1.03, as a result of the mechanical constraint
imposed by the substrate. This can be seen in Fig. 5 (bottom). Above the
critical thickness, the spontaneous polarization gradually increases up to the
bulk value, as does the c-axis lattice parameter, due to the polarization–strain
coupling, known to be particularly large in PbTiO3 [52]. The evolution of
c/a is thus a signature of the progressive change of P and suppression of
ferroelectricity in ultrathin films.

The model Hamiltonian, although appropriately describing PbTiO3, is
known to overestimate the polarization–strain coupling. At the bulk level, the
model predicts c/a = 1.09 while the experimental value is equal to ∼ 1.06 [48].
In order to remove this bulk overestimation, and for a direct comparison of the
theoretical and experimental evolution of c/a, the theoretical curves in Fig. 5
(top) have been renormalized to give a tetragonality of 1.068 at 500 Å, in
agreement with the experimental data. Only the strength of the polarization–
strain coupling is rescaled, while the c/a value of the paraelectric phase, a
priori properly predicted through the macroscopic elastic constants, can be
kept unchanged, at a value of 1.03.



Ferroelectric Size Effects 317

First-principles results for the SrRuO3/BaTiO3 interface [36] yield λeff =
0.23 Å. Because the screening might be slightly different for the present sys-
tem composed of distinct interfaces, the theoretical results are reported in
Fig. 5 (bottom) for slightly different values of λeff; λeff is not strictly identical
to the Thomas–Fermi screening length: it does not scale with the metal car-
rier density only, but depends on both the metal and the metal/ferroelectric
interface. Consequently, it is not trivial to estimate how it will evolve from one
interface to another. The value deduced from the SrRuO3/BaTiO3 interface
provides a relevant order of magnitude but it might be slightly different from
that of the PbTiO3/Nb−SrTiO3 interface. To take this effect into account,
the theoretical Fig. 5 (bottom) displays three different theoretical curves, cor-
responding to three slightly different screening parameters λeff; λeff = 0.23 Å,
λeff = 0.12 Å, and λeff = 0.06 Å. Whatever the value of λeff, the general
predictions of the model remain unchanged: there is a substantial reduction
of the spontaneous polarization in ultrathin films, together with a concomi-
tant reduction of the tetragonality. Only small quantitative differences are
observed. The best agreement with the experimental data is obtained for
λeff = 0.12 Å. This short screening length might suggest a better screening
for the present system but might also be partly attributed to an overesti-
mate of the theoretical critical thickness due to the simplicity of the model
Hamiltonian and to the fact that the simulations were performed at T = 0.
A similar model for BaTiO3 predicts a critical thickness of 35 Å, larger than
the first-principles value of 24 Å reported in [33].

Looking at the experimental points on Fig. 5 (top), both the range of
thicknesses at which the c/a ratio starts to decrease and the shape of the
evolution agree with the prediction of the model Hamiltonian calculations
for λeff = 0.12 Å. This supports an incomplete screening of the depolarization
field as the driving force for a global reduction of the polarization in perovskite
ultrathin films. In contrast, the phenomenological theory including only an
intrinsic suppression of ferroelectricity at the surface through the so-called
extrapolation length parameter δ [49] predicts a much sharper decay with no
substantial decrease of polarization predicted above 50 Å, which is not borne
out by the experimental observations.

Importantly, the thinnest films have a much higher tetragonality than
the value of 1.03 expected for the paraelectric phase from the macroscopic
theory of elasticity. The 1.03 tetragonality corresponds to the paraelectric
phase (zero polarization) strained by the SrTiO3 substrate. Since PbTiO3 is
subject to a compressive strain, it will tend to minimize the elastic energy
by elongating along the normal direction. This is completely independent of
the polarization state, and can be predicted by the macroscopic theory of
elasticity. So, below the critical thickness, the depolarization field has sup-
pressed the polarization with the result of a centrosymmetric unit cell for
PbTiO3, but the system is tetragonal due to the lattice mismatch between
the paraelectric PbTiO3 and SrTiO3. This tetragonality remains constant as
the film thickness increases as long as the material stays paraelectric. As soon
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as a spontaneous polarization appears, the related offcenter displacement be-
tween the center of effective negative charges and positive charges along the
c-axis produces an additional elongation of the c-axis value, and thus a larger
tetragonality.

No saturation of c/a, the signature of a complete suppression of ferro-
electricity, was experimentally identified, clearly implying that films much
thinner than 50 Å are still ferroelectric. Moreover, if we additionally take
into account surface relaxation/rumpling [40], we find for a paraelectric film
of just one unit cell a tetragonality of 1.01. This even lower paraelectric limit
confirms that even the thinnest film measured by X-ray diffraction is still
ferroelectric.

To follow the behavior below 24 Å we need to consider the X-ray pho-
toelectron diffraction measurements. Considering first oxygen as the emitter
atom, a fully automated computer code for calculating electron diffraction in
atomic clusters via multiple scattering [53], based on the muffin-tin potential
approximation [54], was used to calculate the X-ray photoelectron diffrac-
tion pattern. Comparison between the experimental measurement and the
simulations (Fig. 7), both by visual examination and mathematical analy-
sis, confirms that the measured interference pattern is best simulated with
the “up”-state. This demonstrates unambiguously that, for a film as thin
as 20 Å, the O atoms have a noncentrosymmetric position in the Pb cage
corresponding to a nonvanishing spontaneous polarization.

In the surface region (five top unit cells) that is probed by the X-ray pho-
toelectron diffraction technique, the evidence of polar atomic distortion may
also arise from the natural atomic relaxation at the film surface and inter-
face already present in the paraelectric phase. A proper interpretation of the
data therefore requires independent quantification of both the polarization
and the surface effects. From the ab-initio calculations, we know that the
surface effect alone would give a picture resembling a “down”-state, the cor-
responding O−Pb atoms being shifted in the opposite direction from what is
observed (see [40]), confirming that the shift is due to the polarization effect.
The possibility of a surface antiferrodistortive reconstruction, as reported by
Streiffer et al. [17, 18, 55], was explored but no evidence for it was found in
our room-temperature experiments.

An interesting phenomenon happened here. The X-ray photoelectron
diffraction measurements show that the samples are monodomains with an
“up”-polarization. But the opposite polarization was determined using atomic
force microscopy on the as-grown samples. After X-ray photoelectron diffrac-
tion, it was checked on the thickest films (∼ 500 Å) using the same atomic
force microscope procedure that the polarization was still up, meaning that
X-ray photoelectron diffraction uniformly switches the polarization of the
films by exposure to a conventional X-ray source, attesting to the switchable
character of the polarization. The details behind the switching are presently
not known, but we believe that it occurs at the initial stage of the experiment
while the measurement itself is essentially done in zero field. Indeed, our re-
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sults do not depend on the X-ray intensity, suggesting that the films are in
an equilibrium state during the measurements. The influence of the X-ray
intensity on the tetragonality was measured. A modification of the tetrago-
nality would have indicated, via the polarization–strain coupling, a variation
of the spontaneous polarization. But no dependence on the X-ray power was
found.

In a second step, considering Pb as the emitter atom, X-ray photoelec-
tron diffraction was used to determine the tetragonality. As demonstrated by
the X-ray diffraction measurements, below 200 Å the tetragonality decreases
as the film thickness decreases. With X-ray photoelectron diffraction, using
Pb as emitter, the tetragonality was measured down to the unit-cell level as
shown in Fig. 8. The absolute values of c/a, deduced from the forward-focus-
ing angles, are particularly large. This might reflect a strong enhancement of
the polarization in the probed surface region (of the order of 80%), even larger
than in the theoretical prediction of Ghosez et al. [31]. The large increase of
c/a suggested by the X-ray photoelectron diffraction measurements could
also be explained by a strong increase of the strain–polarization coupling at
the surface. It is difficult to discriminate between the two possible effects dis-
cussed above and a combination of both might be happening. Moreover, as
previously stated, X-ray photoelectron diffraction does not necessarily mea-
sure the precise atom–atom directions, and the anomalously large forward-
focusing c/a might also be partly related to other effects (anisotropic atom
vibrations at the surface, refraction and multiple-scattering interferences).
Therefore, a comparison with X-ray diffraction [39] may be done at the rela-
tive level, explaining why we superimposed the different results in one graph
in Fig. 8, but used two distinct scales.

To study the evolution of the tetragonality as a function of the film thick-
ness, the measured X-ray photoelectron diffraction values are compared to the
c/a values obtained by X-ray diffraction. The X-ray photoelectron diffraction
measurement in Fig. 8 confirms the evolution of c/a obtained from the X-ray
diffraction measurements and agrees with the theoretical prediction (solid
line) relying on the suppression of polarization due to imperfect screening of
the depolarization field. The similar thickness dependence for the X-ray pho-
toelectron diffraction (very surface sensitive) and the X-ray measurements
(average of the whole film) implies that the polarization evolves at the sur-
face in the same way as at the interior of the film and that there is no thick
paraelectric dead layer at the surface. In addition, the X-ray photoelectron
diffraction tetragonality measurement shows a continuous decrease of tetrag-
onality down to the thickness of one unit cell. Note that a film with a thickness
of one unit cell corresponds to two Pb−O and one Ti−O layers. Two ribbons
are drawn in Fig. 8, labeled 1 and 2. They indicate the regions within which
c/a values of 1.03 and 1.01 are crossed with respect to both c/a scales. For
film thicknesses above two unit cells, the c/a values are larger than 1.03, the
value expected at the bulk level for the paraelectric phase (resulting from the
mechanical constraint imposed by the substrate). This observation directly
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Fig. 8. Tetragonality (c/a ratio) as a function of film thickness: X-ray diffraction
results for different series (open circles, open squares and open triangles), and with
a gold top electrode added (crosses); X-ray photoelectron diffraction results (full
squares); result from model Hamiltonian calculations with λeff = 0.12 Å (solid line).
Ribbons, labeled 1 and 2, are discussed in the text. The right scale indicates the
c/a values extracted from the X-ray photoelectron diffraction experiment

implies, via the polarization–strain coupling, that the films still have a finite –
although reduced – spontaneous polarization. At thicknesses of one or two
unit cells, as can be seen in Fig. 8, c/a drops even more, reaching a value
close to 1.01 for the one unit-cell thick film. This further decrease highlights
that macroscopic elasticity no longer applies at such thicknesses where the
interlayer atomic distances are affected by surface relaxation and rumpling,
as discussed in [40]. The measured tetragonality agrees with the computed
value of 1.01 for the one-unit-cell thick relaxed paraelectric film, suggesting
the absence of any additional ferroelectric distortion at this thickness.

This study thus directly demonstrates noncentrosymmetry, unambigu-
ously a result of ferroelectricity in PbTiO3 thin films down to 20 Å. The
measurements of the tetragonality, with a continuous decrease down to the
bare substrate, show that even extremely thin films (3 unit cells) have a c/a
value larger than 1.03, attesting to the presence of a nonvanishing sponta-
neous polarization at this thickness scale. As the film thickness is reduced to a
single unit cell, the experiments, together with calculations, strongly suggest
that both noncentrosymmetry and tetragonality are governed by surface ef-
fects, giving rise, for our geometry, to a polar relaxed structure but probably
without a switchable ferroelectric distortion.

4.1.2 Other Similar Studies

The effect of thickness scaling for ultrathin perovskite films in the presence
of real electrodes was studied by the group of Ramesh in thin c-axis oriented
Pb(Zr0.2Ti0.8)O3/SrRuO3 heterostructures grown epitaxially and coherently
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Fig. 9. Theoretical thickness dependence of the normal average polarization P , the
tetragonality c/a, and the out-of-plane piezoelectric constant d33 at room temper-
ature. The evolution of the domain structure from monodomain to polydomain is
represented in the inset. From [57]

on SrTiO3 insulating substrates by pulsed laser deposition [56]. This work
also suggests that the nature of the electrostatics at the ferroelectric electrode
interface plays a significant role in the scaling of ferroelectric thin films. How-
ever, in contrast to our own work, they did not find a concomittant decrease
in the tetragonality, while a drastic reduction in the switched polarization
was observed, as shown in Fig. 9. This apparent contradiction was explained
theoretically on the basis of a polydomain-formation model.

The group of Noh also studied the thickness-dependent ferroelectric prop-
erties in fully strained SrRuO3/BaTiO3/SrRuO3 ultrathin capacitors, with
ultrathin BaTiO3 layers from 30 to 5 nm [58] and measured the decrease in
polarization from electrical measurements. X-ray diffraction measurements
showed a decrease of the c-axis lattice constant as the film thickness de-
creases, although remaining larger than the bulk value for all the samples.
They also have claimed to measure the depolarization field from the relax-
ation-time characteristic of the polarization [59], as shown in Fig. 10.

4.2 Scaling of the Coercive Field

Beyond the changes in polarization, one of the most relevant parameters that
changes significantly as the sample thickness is reduced is the coercive field.
For the last forty years the semiempirical scaling law [60, 61], Ec(d) ∝ d−2/3,
has been used successfully to describe the thickness dependence of the co-
ercive field in ferroelectric films ranging from 100μm to 200 nm [62]. A new
derivation of this scaling law based on inhomogeneous, as opposed to homo-
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Fig. 10. Dependence of the polarization relaxation time under external voltages in
a 15-nm thick BaTiO3 capacitor. From [59]

geneous, nucleation has recently been developed by Chandra et al. [63]. In
the ultrathin polyvinyliden fluoride films of Bune et al. [15], a deviation from
this relationship was seen for the thinnest films [64]. Although they attribute
this to a new kind of switching taking place (simultaneous reversal of polar-
ization, as opposed to nucleation and growth of domains), Dawber et al. [37]
have shown, on the contrary, that if the effects of a finite depolarization field
due to incomplete screening in the electrode are taken into account, then
the scaling law holds over six decades of thickness and the coercive field
does not deviate from the value predicted by the scaling law as shown in
Fig. 11. Recently, Pertsev et al. [65] measured coercive fields in very thin
PbZr0.52Ti0.48O3 films. Although they have used a different model to explain
their data, it can be seen that in fact the d−2/3 scaling law describes the data
very well.

It is an interesting point that if the depolarization field exceeds the coer-
cive field then the material is expected to form a polydomain ground state. In
practical terms this may sometimes be the meaningful definition of the “crit-
ical thickness for ferroelectricity”, rather than defining it as the thickness at
which the system goes from ferroelectric to paraelectric.

4.3 Thin Films on Insulating Substrates

In the work of Streiffer et al. [17, 18], thin c-axis oriented PbTiO3 perovskite
films were grown epitaxially and coherently on SrTiO3 insulating substrates
by metalorganic chemical vapor deposition. In-situ X-ray synchrotron diffrac-
tion studies revealed 180◦ stripe domains with periods 1.2–10 nm (going as
∼ d1/2), and PbO-terminated surface c(2 × 2) reconstruction, in films from
420 down to 12 Å thickness. Because here the films are grown on an insu-
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Fig. 11. The scaling of coercive field with thickness in ferroelectrics, from mm
to nm scale. The bottom figure is the three sets of data from the upper figure all
normalized to the same value at 10−6.5 m. From [37]

lating substrate, domains of opposite polarization are formed to reduce the
depolarization field.

In their work on epitaxial PbTiO3 thin films grown on insulating SrTiO3

and conducting Nb-doped SrTiO3 substrates, van Helvoort et al. [66] showed
that all their samples, with thicknesses ranging from 50 to 200 Å, displayed
a compressively strained layer at the PbTiO3/SrTiO3 interface, with the
strain vector parallel to the polarization direction. They also showed that
the width of this strained layer, ∼ 15–30 Å, was dependent on the electrode
environment. These findings rely on low-angle annular dark-field scanning
transmission electron microscopy. The X-ray diffraction analysis revealed a
gradual decrease in their measured c-axis lattice parameter from the bulk
value of 4.16 Å, for films thinner than ∼ 200 Å. The size of the strained
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interfacial layer was measured to be 27–30 Å (∼ 7 unit cells) for PbTiO3

grown on insulating SrTiO3, and 18–20 Å (∼ 5 unit cells) for PbTiO3 grown
on conducting Nb-doped SrTiO3 (similar to the value found for PbTiO3

grown on insulating SrTiO3, but covered by a Pt/Au electrode), independent
of thickness. If we attribute this decrease of the c-axis to a decrease of the
polarization, the data suggest that the polarization is reduced for films grown
on insulating SrTiO3.

All these data show that when films are grown on insulating materials,
some alternative mechanism is used to compensate the depolarization field,
and there appears to be a number of possibilities, i.e., the formation of a
domain structure, screening via surface adsorbates, or formation of a strained
interfacial layer. In general, all these screening mechanisms would be expected
to be less effective than a conducting electrode.

5 Superlattices

Growing superlattices is an interesting way of making artificial materials
by combining epitaxially perovskites with different electronic properties and
lattice parameters. Historically, much of this effort has been focused on
BaTiO3/SrTiO3 [67–74]. Other combinations that have been studied in-
clude KNbO3/KTaO3 [75–78], PbTiO3/SrTiO3 [79], PbTiO3/BaTiO3 [80],
PbTiO3/PbZrO3 [81, 82], and tricolor superlattices of SrTiO3/BaTiO3/
CaTiO3 [83, 84].

Other studies have shown that superlattices can be designed with unusual
properties. For example, a superlattice consisting of thin layers of BaCuO2

and SrCuO2 exhibits superconductivity, whereas neither of these two oxides
is superconducting by itself [85], or a superlattice consisting of thin layers
of SrZrO3 and SrTiO3 exhibits ferroelectricity, whereas neither of these two
oxides is ferroelectric [86]. Warusawithana et al. [83] first and more recently
Lee et al. [84] (see also [87]) assembled their superlattice with three differ-
ent building blocks: BaTiO3, SrTiO3 and CaTiO3. The use of three different
compounds breaks the inversion symmetry normally associated with ferro-
electricity, resulting in asymmetric polarization and an extra degree of free-
dom for optimizing the ferroelectric properties [88]. Experimental efforts in
superlattices with compositional breaking of inversion symmetry are starting
also on magnetic systems (Ogawa et al. [89]).

All these studies show that such structures can be built with atomic pre-
cision and they can possess properties that surpass those of the individual
building blocks, and underline the potential of designing artificial superlat-
tices with unique properties.

The construction of ferroelectric superlattices also allows one to study
the behavior of the polarization as the thickness of a ferroelectric layer in a
dielectric environment is reduced. In BaTiO3/SrTiO3, first-principles stud-
ies [71] suggest that both the SrTiO3 and BaTiO3 layers are polarized such
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Fig. 12. Comparison of results from the first-principles calculations (open circles),
the electrostatic model (solid line) and experiment (solid squares), obtained by
plotting the fractional change in the superlattice tetragonality c̄

a
− 1 relative to the

estimated tetragonality of bulk PbTiO3 with the inplane lattice parameter con-
strained to the SrTiO3 substrate. Inset : close-up of the region with the anomalous
recovery. From [90]

that the polarization is approximately uniform throughout the superlattice.
The driving force behind this is the large electrostatic energy penalty for a
buildup of charge at the interface caused by discontinuous polarization in the
normal direction. This suggests that superlattices present an opportunity to
create a model system for studying ferroelectric size effects with electrostatics
as the driving force.

In a very similar way to the studies on thin films, we can use X-ray
diffraction to follow the evolution of the polarization in PbTiO3/SrTiO3 su-
perlattices by following the evolution of the average c-axis lattice parameter,
c̄, as the PbTiO3 layer thickness is varied while the SrTiO3 layer thickness is
kept constant at 3 unit cells. If the wavelength of the superlattice is nc̄ then
the nth peak in a θ–2θ scan will always correspond to c̄ irrespective of the
value of n, allowing the average c-axis lattice parameter of the superlattice
to be easily determined. In practice, this peak is easily identifiable due to its
high intensity and proximity to the substrate peak. Intuitively, one expects
a decrease of the ferroelectric polarization as the thickness of the PbTiO3

layers relative to the SrTiO3 layers is reduced, which should result in a con-
comitant decrease of the average lattice parameter. For samples with a ratio
of PbTiO3/SrTiO3 greater than one, this is in fact what we observed, as
shown in Fig. 12.

We were able to understand the behavior using an electrostatic model in
which the energy of the superlattice was considered as the weighted sum of
the material energy, the energy cost of a particular polarization for PbTiO3

and SrTiO3 (computed from first principles), and an electrostatic energy cost
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for a difference in polarization in the two materials, an expression derived
by considering the electrostatic boundary conditions in the problem. This
model is indeed very similar in conception to that used for understanding the
decrease in polarization as the thickness of a PbTiO3 film is decreased. The
full details of this model can be found elsewhere [90], the key point being that
the electrostatic energy of a given layer in a superlattice with layer thicknesses
lp and ls is obtained from short-circuit boundary conditions for each bilayer
as a function of the polarizations P 0

p and P 0
s , assuming continuity of the

electric displacement, and is given by

Eelec(P 0
p , P 0

s ) =
lpls

ε0(lp + ls)
(P 0

s − P 0
p )2 . (13)

The most important point to draw from this is that there is a large energy
cost if the polarizations differ in the two materials. Therefore, the values
of the polarization in the two materials always remain very similar for any
geometry. In addition, the size of this polarization is predicted to decrease as
the fraction of PbTiO3 relative to SrTiO3 is reduced. In Fig. 12 we show the
evolution of the tetragonality with PbTiO3 thickness for the experimental
results, the electrostatic model, and full first-principles calculations, in each
case normalized by the estimated tetragonality of fully ferroelectric PbTiO3.

It can be seen that for samples that have more PbTiO3 than SrTiO3 the
experimental data and theoretical predictions are in fairly good agreement.
However, neither theoretical approach can account for the observed experi-
mental behavior when the ratio of PbTiO3 to SrTiO3 is further decreased.
Here, we see an increase of the lattice parameter, which corresponds to a
recovery of the ferroelectricity, confirmed by using piezoelectric atomic force
microscope measurements. At this point the recovery is not understood, but
it suggests the possibility that at reduced dimensions the unusual and poten-
tially useful behavior that might be obtained is beyond even that which is
theoretically anticipated.

From a different perspective, putting its limitations aside, the possession
of a simple model to describe the system is a tremendous tool for accelerating
the progress towards the research goal of tailored materials for advanced ap-
plications, moving us from simple trial and error towards targeted fabrication
of the most interesting geometries and combinations of materials.

6 Other Geometries

To this point we have focused on size effects due to the reduction of the
thicknes of a thin film, as this is the most experimentally accessible size effect
that can be studied by the growth of epitaxial thin films. Naturally, however,
reducing the size of a ferroelectric sample in more than one dimension will
also have significant effects, and in a technological context where devices are
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Fig. 13. Transition temperature versus par-
ticle size measured in PbTiO3 ultrathin par-
ticles by Ishikawa et al. [91]

rarely infinite planes, these effects are at least as, if not more, relevant than
those related to reduction of film thickness.

6.1 Nanoparticles

Many results have suggested that TC decreases for particles below a charac-
teristic size. Transition temperature versus particle size was measured in 1988
in PbTiO3 ultrafine particles by Ishikawa et al. [91]. PbTiO3 fine particles
were prepared by an alkoxide method and Raman studies of the samples were
performed for different average particle size as a function of temperature. The
ferroelectric TC was indirectly measured as the temperature at which the fre-
quency of the soft–mode E(1TO) vanished. TC was found to decrease with
decreasing particle size with dcrit = 12.6 nm, as shown in Fig. 13. Size effects
on ferroelectricity of ultrafine particles of PbTiO3 were also studied by Jiang
and Zhong et al. [92, 93]. Particles ranging from 20 to 2000 nm in diameter
were produced by a sol-gel process followed by calcining at different temper-
atures. High-resolution transmission electron microscopy was used to image
the nanostructure of these ultrafine ferroelectric lead titanate particles. High-
resolution images and selected-area diffraction patterns showed that all the
particles had tetragonal structure; the c/a ratio and domain size both de-
creased with decreasing particle size and the particles became monodomain
when their diameter was less than 20 nm. A domain-wall width of 14 Å was
deduced from strain contrast shown by 90◦ domain walls.

In 1989, Uchino et al. [94] performed a detailed study of the variation of
the tetragonal distortion c/a with particle size in BaTiO3 and, having identi-
fied the TC as that temperature at which c/a tends to 1, estimated the critical
size for the existence of ferroelectricity dcrit = 120 nm. Tsunekawa et al. [95]
studied the critical size and anomalous lattice expansion in nanocrystalline
BaTiO3 particles prepared by the alkoxide method, with sizes ranging from
250 to 15 nm in diameter. The lattice constants were obtained from the elec-
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tron-diffraction patterns of various orientations of single particles in the size
range of 15–250 nm in diameter and indicated a change from a tetragonal
(ferroelectric) phase to a cubic (paraelectric) one occurring around 80 nm in
diameter.

The ability to produce still smaller nanoparticles continues to evolve.
Sol-gel synthesis of freestanding ferroelectric PbZr0.5Ti0.5O3 nanoparticles
of 10–30 nm was demonstrated by Liu et al. [96]. O’Brien et al. [97] demon-
strated the synthesis of monodisperse nanoparticles of barium titanate with
diameters ranging from 6 to 12 nm using sol-gel techniques combined with
nanoparticle-synthesis methods.

6.2 Areal Size Effects

Size effects related to reduction of the areal size of ferroelectrics are perhaps
of more practical significance than those related to thickness, because the
critical area limits the maximum density of any ferroelectric memory device.

A number of approaches have been used to fabricate ferroelectric capac-
itors with small areas [2]. These include focused-ion-beam milling, electron-
beam direct writing, and a number of techniques for producing arrays of
nanoscale capacitors by self-patterning. In the focused-ion-beam milling pro-
cedure, the minimum size can be limited by the implantation of Ga ions
that occurs in the processing, though some steps can be taken to “repair”
this damage after deposition. The electron-beam direct writing technique
has been successful in producing some extremely small structures, but is a
time-consuming technique. Both focused-ion-beam [98,99] and electron-beam
direct writing [100] have been used to fabricate structures with lateral size
below 100 nm. It does not appear that reduction of areal capacitor size to
this point significantly affects the ferroelectric properties, provided damage
is not caused to the material in fabrication.

6.3 Self-Patterning

For practical applications, the idea of producing ferroelectric nanostructures
by self-patterning methods is extremely appealing. One way to produce self-
patterned arrays of nanocrystals is to induce ordering by making use of in-
teractions between islands through the substrate. This approach could be
used to produce arrays of metallic nanoelectrodes on top of a ferroelectric
film [101, 102] or alternatively arrays of crystals from the ferroelectric ma-
terials themselves [103, 104]. The description of self-patterned ferroelectric
nanocrystals by the models of Schukin and Williams has been undertaken
by Dawber et al. [105]. Two groups have grown PbTiO3 nanocrystals on
Pt/Si(111) substrates to measure size effects in ferroelectricity [106, 107].
These studies both show a lack of piezoresponse in structures below ∼ 20 nm
in lateral size. There remain questions over whether this is a limitation of the
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measuring technique, or whether mechanical constraints hinder the piezore-
sponse of the nanocrystal, and it seems unlikely that this represents a fun-
damental size limit for ferroelectricity. Chu et al. [108] have highlighted the
role that misfit dislocations can play in hampering ferroelectricity in small
structures.

6.4 Novel Ferroelectric Geometries

Recently, some interesting novel geometries for ferroelectric materials, briefly
discussed below, have been explored.

6.4.1 Nanotubes

Ferroelectric nanotubes can now be grown within a silicon matrix. BaTiO3

and PbZr0.52Ti0.48O3 tubes with diameters from 500 nm up to several μm,
wall thickness of 90–100 nm, and lengths of more than 100μm were realized by
a fabrication method based on wetting of the pore wall of porous templates.
Piezoresponse scanning probe microscopy showed ferroelectric switching in
submicrometer tubes (lead zirconate titanate tube with an outer diameter
of 700 nm and wall thickness of 90 nm) [109]. High aspect ratio transparent
strontium-bismuth-tantalate nanotubes, with wall thickness of ∼ 40 nm, di-
ameters ranging from a few hundred nanometers to 4μm and lengths about
100μm, were realized using liquid-source misted chemical deposition [109–
111]. A variety of applications for these structures could be envisaged in-
cluding pyroelectric detectors, piezoelectric ink-jet printers, and 3D trenched
capacitors for high-density memories. Little is known about what effect this
geometry has on the ferroelectric properties.

6.4.2 Nanowires – Nanorods

Ferroelectric materials can also be grown as “nanowires” or “nanorods” [112–
114]. These structures can be realized using solution-phase decomposition of
bimetallic alkoxide precursors in the presence of coordinating ligands. Sin-
gle-crystal BaTiO3 and SrTiO3 nanowires of diameters 5–70 nm and length
reaching up to 10μm have been achieved. Scanning probe microscopy in-
vestigations showed that local nonvolatile electric polarization can be repro-
ducibly induced and manipulated on nanowires as small as 10 nm in diameter.
First-principles simulations clearly have enormous potential in helping to un-
derstand the ferroelectric behavior of nanosize ferroelectric objects and the
effect that unusual geometries will have. There have been some studies of this
kind on nanodisks and nanowires [115–117].
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Abstract. Nanoscale ferroelectric domains in epitaxial Pb(Zr0.2Ti0.8)O3 thin films
were investigated using atomic force microscopy to allow the static roughness con-
figuration and dynamic response of ferroelectric domain walls in these materials to
be accessed. The observed dependence of domain size on writing time revealed a
two-step switching process in which nucleation under the atomic force microscope
tip is followed by radial domain growth. We obtained a non-linear dependence of
domain wall velocity on the electric field, v ∝ exp−(1/E)μ, characteristic of a creep
process. The domain wall motion was analyzed both in the context of stochastic
nucleation in a periodic potential as well as that of an elastic manifold in a disor-
der potential, in better agreement with the dimensionality of the system and the
values of the dynamic exponent μ ∼ 0.6. Independent measurements of domain
wall roughness in the same films revealed a power law growth of the correlation
function of relative displacements B(L) ∝ L2ζ with ζ ∼ 0.26 at short length scales
L, followed by an apparent saturation at large L. These results give rise to a clear
physical picture of domain walls in ferroelectrics as elastic sheets in the presence
of “random-bond” disorder, and where dipolar interactions play an important role,
effectively increasing the dimensionality of the system to 2.5, in agreement with
theoretical predictions.

1 Introduction

The diverse electronic properties of ferroelectric perovskites make them par-
ticularly interesting for miniaturized multifunctional devices such as mem-
ories [1, 2], actuators, filters [3] and sensors [4] in which their piezoelectric
and pyroelectric properties as well as their switchable ferroelectric polar-
ization can be exploited. Since the proposed applications generally rely on
multidomain configurations with coexisting regions of opposite polarization
separated by thin elastic interfaces, or ferroelectric domain walls, understand-
ing the mechanisms that control domain evolution in the presence of electric
fields or temperature variations is of crucial importance. In particular, it is the
static and dynamic behavior of domain walls that determines domain stabil-
ity and growth at the microscopic level of individual domains, and therefore
their usefulness for potential applications, and that will be examined in this
chapter.
K. Rabe, C. H. Ahn, J.-M. Triscone (Eds.): Physics of Ferroelectrics: A Modern Perspective,
Topics Appl. Physics 105, 339–362 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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After a brief introduction to the static and dynamic physics of elastic
interfaces in disordered elastic systems (for a detailed presentation, the reader
is directed to [5, 6]), we present a review of the noninvasive, local atomic
force microscopy studies of ferroelectric domains in epitaxial Pb(Zr0.2Ti0.8)O3

(PZT) thin films, demonstrating domain-wall motion in these films to be a
disorder-controlled creep process [7,8], with short length scale measurements
of static roughness [9] consistent with so-called “random bond” disorder in
the presence of dipolar interactions. Finally, we discuss these results in the
context of recent studies of domain-wall kinetics.

The films described in these studies were all grown on single-crystal
(001) oriented Nb-doped (0.5%) SrTiO3 substrates by inverted off-axis radio-
frequency magnetron sputtering, in a mixture of argon and oxygen (Ar:O2 =
58:42) at 180mTorr and at a substrate temperature of ∼ 500 ◦C. After
growth, the films were cooled to ambient temperature under a continuous
flow of process gas. Subsequent film characterization by X-ray diffraction
and atomic force microscopy revealed “cube-on-cube” growth of c-axis ori-
ented PZT. Multiple orders of finite-size-effect peaks indicated high-quality
crystallization and allowed precise measurement of film thickness. AFM mea-
surements of the sample topography revealed extremely flat and uniform sur-
faces over large areas, with a measured root-mean-square roughness of ∼ 3 Å
over a 5μm × 5μm for typical films.

2 Ferroelectric Domain Walls
as Elastic Disordered Systems

To understand the microscopic static and dynamic behavior of ferroelec-
tric domain walls, it is useful to consider these objects within the broader
framework of disordered elastic systems. Ferroelectric materials are charac-
terized by energetically equivalent, degenerate ground states with oppositely
directed, switchable remanent polarization, and separated by an energy bar-
rier, as shown schematically in Fig. 1. Unlike ferromagnetic materials, in
which the direction of magnetization essentially rotates freely through 180◦

between oppositely polarized domains, giving rise to relatively wide domain
walls, ferroelectrics present a polarization axis determined by the crystalline
structure of the material. As a result, the orientation of the polarization
changes very abruptly between oppositely polarized domains, with zero mag-
nitude locally at the center of the extremely thin domain walls. In PbTiO3, for
example, a domain wall thickness of ∼ two lattice constants was determined
by first-principles calculations [10].

These domain walls can be considered as elastic objects, whose surface
tends to be minimized in order to decrease the total energy of the system.
However, the walls may meander from an elastically optimal flat configu-
ration to take advantage of particularly favorable regions of the potential
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Fig. 1. Schematic diagram of a Pb(Zr0.2Ti0.8)O3 unit cell, with energy vs. atomic
displacement (the ionic motion at the phase transition is exaggerated for the pur-
pose of the illustration) showing two degenerate ground states separated by an
energy barrier U0. The Pb and Ti/Zr ions are positively charged and the O ions
are negatively charged, giving opposite polarization directions PDOWN and PUP as
a function of their displacement from their positions in the cubic paraelectric unit
cell (figure after [7])

landscape. The dynamic response of the system can be accessed by the ap-
plication of an electric field that asymmetrizes the ferroelectric double-well
potential, favoring one polarization state by reducing the energy necessary to
create a nucleus with polarization parallel to the field, and thereby promotes
domain-wall motion. From the point of view of elastic disordered phenom-
ena, epitaxially grown monocrystalline perovskite thin films are particularly
useful as a model system for experimental study, allowing precise control of
crystalline quality and film thickness over three orders of magnitude, from
∼ 0.1 nm to hundreds of nm using modern oxide growth techniques (see
Chap. 6) and where nanometer resolution of ferroelectric domain structure
is possible with atomic force microscopy.

3 Static and Dynamic Behavior
of Elastic Disordered Systems

From a fundamental physics perspective, understanding the behavior of elas-
tic objects pinned by periodic or disorder potentials is of crucial importance
for a large number of physical systems ranging from vortex lattices in type II
superconductors [6, 11, 12], charge-density waves [13, 14] and Wigner crys-
tals [15, 16] to interfaces during growth [17] and fluid-invasion [18] processes,
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Fig. 2. Domain wall as elastic manifold trapped in a random disorder potential. In
equilibrium, the domain wall exhibits a characteristic roughness, measured by the
correlation function B(L) = 〈[u(z + L) − u(z)]2〉 of the displacements u(z) from
an elastically ideal flat configuration with respect to the length L of the domain
wall. In the presence of a small driving force f < fc due to the applied electric
field E, the domain wall can move to another favorable configuration in the disorder
potential, as shown by the dotted line, via a nonlinear response, known as creep
(figure after [8]).

and magnetic domain walls [19,20]. The common feature of the different elas-
tic disordered systems is the presence of a d-dimensional deformable object
whose energy can be described by elasticity theory and whose optimal T = 0
configuration would be flat or spatially homogeneous. However, these elastic
objects interact with the potential of the disordered (crystalline) medium in
which they are embedded. The presence of a commensurate potential due to
the underlying crystal lattice favors the positioning of the manifold in poten-
tial minima, but maintains its flat configuration. However, random variations
of the potential due to the presence of disorder allow the manifold to meander
from the elastically ideal flat configuration to take advantage of particularly
favorable regions of the potential landscape. Thermal fluctuations also tend
to roughen the manifold since this increases the entropy.

The resulting distortion of the elastic object from its flat configuration is
given by the displacement vector u(z), where z are the d internal coordinates,
such that the total spatial dimension is D = d + 1, as shown in Fig. 2 for a
one-dimensional manifold of thickness ξ.

In general, many types of disorder are possible: macroscopic defects like
twin planes or columnar irradiation tracks have a significant spatial extent,
and probably act as strong pinning centers. For this discussion, we consider
only high-quality films in which the dominant disorder can be reduced to
a random, spatially varying density of point defects (vacancies, impurities,
etc.), and weak collective pinning. Theoretically, two classes of disorder have
been intensively studied. For “random-bond” disorder, equivalent to defects
that locally modify the ferroelectric double-well potential depth, but maintain
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its symmetry, one can model the disorder by a random potential acting at
the position of the interface and

Udisorder =
∫

dd
zV (u(z), z) . (1)

Another form of disorder, so-called “random field”, occurs when defects lo-
cally asymmetrize the ferroelectric double-well potential, leading to a different
form for Udisorder. If the disorder is weak, the central-limit theorem allows its
approximation by a Gaussian random potential. The disorder is then only
characterized by its correlation length rf and the strength of the random
potential. In the absence of an external driving force, the configuration of
the manifold results from the competition between the elastic forces and the
random potential. This configuration can be characterized by measuring the
correlation function of relative displacements, which shows a power law gov-
erned by different exponents

B(L) = 〈[u(z + L) − u(z)]2〉 = ξ2

(
L

Lc

)2ζ

, (2)

where 〈· · · 〉 denotes thermal averaging (thermodynamic equilibrium) and · · ·
denotes an ensemble average over the realization of the disorder. In a realistic
experimental situation the ensemble average is performed by averaging over
all pairs of points separated by a distance L, assuming that the system is
self-averaging.

The roughness exponent ζ is a function of the type of disorder present in
the film, and the dimensionality of the manifold. For a line (d = 1) and purely
thermal fluctuations in the absence of disorder, ζ = 0.5. In a random-bond
scenario, an exact value of ζ = 2/3 has been calculated for a line [21–23] and
ζ ∼ 3/5 [24, 25] is expected for two-dimensional interfaces. In a random-field
scenario the roughness exponent has been calculated as ζ = 4−d

3 .
The competition between elasticity and disorder present in the static de-

scription also governs the dynamical behavior of the interface in the presence
of an external force. For ferroelectric domain walls, this driving force is due to
either externally applied or internal electric fields, or to line tension of domain
walls with nonzero curvature, all promoting domain-wall motion and thus the
growth or decay of domains. Although at T = 0 the domain wall is pinned
by the disorder until a critical force fc is reached, at finite temperatures it
can be driven by forces below fc, since barriers to motion, however high, can
always be passed via thermal activation. This response to a small external
force is of special theoretical and practical interest. Initially thermal activa-
tion above the pinning barriers was believed to lead to a linear response at
finite temperature [26]. However, it was subsequently realized that a pinning
potential, either commensurate [6] or disordered, [5, 6, 27–29], can lead to di-
verging barriers and thus to a nonlinear response, known as creep, where the
velocity is of the form v ∝ exp(−βUc(fc/f)μ). β is the inverse temperature,
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Uc a characteristic energy and fc a critical force. The dynamical exponent μ
again reflects the nature of the disorder and the dimensionality of the system.
From the values of ζ calculated for the one- and two-dimensional random-
bond-disorder systems, one can obtain values of μ = 0.25 and μ ∼ 0.5–0.6,
for the dynamical exponent in these scenarios. For random-field disorder,
the calculated value of ζ gives μ = 1 for any interface with dimensionality
between 1 and 4.

Despite extensive studies of the creep process in periodic vortex sys-
tems [6, 11, 12], precise determination of the exponents has proven difficult,
given the many scales present in this problem although results in agree-
ment with the theoretical predictions of ζ = 0 have been observed [30]. For
interfaces, creep and disorder-controlled domain-wall roughening have been
quantitatively confirmed in ultrathin magnetic films [19], where exponents
μ = 0.25 and ζ = 2/3 have been measured, in good agreement with the value
predicted for one-dimensional (line) domain walls in a random-bond disorder.
In ferroelectric materials, a phenomenological model derived from measure-
ments of domain growth in bulk samples [31–33] initially suggested that the
domain walls were pinned by the periodic potential of the crystal lattice it-
self. However, thermally activated decay of naturally occurring domains in
cleaved triglycine sulfate single crystals studied at room temperature and
under heating suggested random-bond disorder-governed behavior [34, 35].
In addition, recent measurements of the piezoelectric effect [36], dielectric
permittivity [37], and dielectric dispersion [38] in ferroelectric ceramics and
sol-gel films have shown features that cannot be described by the existing
phenomenological theories. Quantitative nanoscale studies of individual fer-
roelectric domain walls offered a promising means of resolving these open
questions.

4 Experimental Observation of Domain-Wall Creep

Using a metallic AFM tip to create nanoscale circular domains by the ap-
plication of voltage pulses with different magnitude (writing voltage) and
duration (writing time), the dependence of domain size on these parameters
can be measured. As reported in [39] for epitaxial PbZr0.2Ti0.8O3 thin films,
a linear dependence of domain size on the writing voltage was observed, sub-
sequently confirmed in other ferroelectric materials [40], above a threshold
related to the minimum field required for switching, as shown in Fig. 3 for
4 different samples 37.0–95.4 nm thick and a voltage range of 4–20V.

Domain radius was also observed to logarithmically depend on the writ-
ing time for times longer than ∼ 10μs, as shown in Fig. 4, with a 500%
change in domain radius observed in the time range from ∼ 10μs to ∼ 10 s.
For shorter times, the domain radii appeared to saturate at ∼ 20 nm, a size
we relate to the 25–50 nm nominal radius of curvature of the AFM tip used
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Fig. 3. Domain radius as a function of the writing voltage for 37.0-, 50.0-, 91.0-
and 95.4-nm thick PbZr0.2Ti0.8O3 films, where writing times of 100ms, 10ms, 25 μs
and 100 ms, respectively, were used. The domain radius appears to depend linearly
on the writing voltage applied to create the domain. The error bars shown for the
91.0 nm sample are representative of those in the other samples, and are due to the
spread of domain radii for a given writing voltage and writing time

Fig. 4. Domain radius as a function of the writing time for 37.0-, 54.5-, 81.0- and
95.4-nm thick PbZr0.2Ti0.8O3 films. For writing times shorter than ∼ 10 μs, the
domain radius appears to saturate at ∼ 20 nm, a limit related to the size of the
AFM tips used in the experiment. For longer writing times, domain size appears
to grow logarithmically. All domains, including those written with the shortest
(∼ 100 ns) pulses, remained completely stable through the one-week duration of
the measurements
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for these experiments. For each writing time, multidomain arrays were writ-
ten, and the domain radius was calculated by averaging over the measured
domain radii along their vertical and horizontal axes, with a rms error of
∼ 10%. All imaged domains appeared homogeneous and well defined and no
randomly nucleated domains were observed. These data suggest a two-step
switching process where initial rapid nucleation and forward growth across
the thickness of the sample occur under the AFM tip, and are followed by
slower radial motion of the domain wall outwards, perpendicular to the po-
larization direction, increasing the lateral size of the domain. We analyzed
this radial domain-wall motion in the framework of a pinned elastic system
by comparing the velocity and the driving force exerted on the wall, in our
case due to the electric field E applied by the tip. Considering arrays written
with consecutive pulse durations, we extracted the domain-wall velocity as
v = r(t2)−r(t1)

t2−t1
, the difference in domain radii at the two subsequent writing

times divided by the difference in the writing times themselves. The electric-
field distribution was obtained by modeling the tip as a charged sphere, with
radius α taken as equal to the domain saturation size of 20 nm. Applying a
voltage V to the tip at the surface of the ferroelectric film with dielectric
constant ε produces a charge q = 4πεε0αV on the model tip. Taking into
account both the effect of the film and the conductive substrate, we are able
to find the field E⊥(r, z) at any point (r, z) within the film. r is the horizontal
distance (in the plane of the film) away from the center of the spherical tip,
and z is the depth within the film (up to thickness λ) from the center of
the tip. In our experiments, the domain radii remain comparable to the size
of the tip, so further simplification can be obtained by considering only the
first order of image-charge reflections in the film and the substrate. Since the
voltage drop V across the film is simply the integral of this field over the
film thickness V =

∫ α+λ

0
E⊥(r, z) dz we can define the average field across

the film E(r) = E⊥(r), which shows a 1/r dependence in this first-order ap-
proximation.1 As one moves further away from the tip, a crossover to higher
orders of r dependence in the denominator is expected for the field. This
simplified model shows reasonable agreement with a more accurate numeri-
cal simulation of a hyperbolic tip in contact with a ferroelectric film grown on
a metallic substrate.2 Here, a 1/r dependence of the electric field is observed

1 We also note that the linear dependence of domain size on the writing voltage
strongly supports the E(r) ∝ 1/r dependence obtained in our simple electric-field
model. This can be rapidly seen when a more general form for the electric field
E(r) ∝ 1/rν is considered. Integrating (4) with this electric-field dependence,
we obtain rνμ = V μ ln t. Thus, for a given writing time, domain size would
be expected to show a power-law dependence on the writing voltage rν ∝ V .
Instead, we observed a clear linear dependence, suggesting that indeed ν = 1.

2 private communication with Ø. Dahl and T. Tybell, Norwegian University of
Science and Technology, Trondheim (2003).
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out to r ∼ 300 nm, for a tip 1μm high with α = 20nm radius of curvature.
Beyond this, a crossover to 1/r2 and even steeper field decay occurs.

Although the field E(r) is highly inhomogeneous at large length scales,
it can be taken as constant over the very small thickness of the ferroelectric
domain wall. One can thus relate the velocity v(r) of the domain wall at
a distance r from the tip to a field E(r) = V α

rλ , where r = r(t1)+r(t2)
2 . An

Arrhenius plot of the velocity against the inverse field, shown in Fig. 5, reveals
that our data are in good agreement with a creep behavior

v ∼ exp− Uc

kBT

(
E0

E

)μ

(3)

over multiple decades of velocity, from 10−3 to 10−9 m/s, and for fields varying
from 107 to 5×108 V/m.3 The values of the dynamical exponent μ were found
to be ∼ 0.6 in most samples, although with some samples showing values
closer to 1. These data were the first indication that domain-wall motion
in ferroelectric thin films was a creep process, and led us to investigate its
microscopic origins.

5 Domain-Wall Creep in a Commensurate Potential

Early studies [31, 32] of domain growth carried out by optical and etching
techniques on bulk samples reported a nonlinear electric-field dependence
of the velocity v ∝ exp−1/E known as Merz’s law (with implicit values of
μ = 1, if these results are to be considered in the general framework of creep).
At the time, a phenomenological theory based on the stochastic nucleation of
new domains at existing domain boundaries was put forward by Miller and
Weinreich to explain the observed behavior [33]. The wall moves forward due
to the formation of a nucleus as shown in Fig. 6. The energy change due to
the formation of a nucleus is

ΔF = −2PsEV + σwA + Udepolarization . (4)

Nucleation and subsequent domain-wall motion would occur if the energy
gain due to switching a volume V of ferroelectric with spontaneous polariza-
tion Ps to the polarization state energetically favorable with respect to the
3 We note that during AFM writing, the exact magnitude of the effective field is

difficult to quantify, because of both the effects of a possible dielectric gap [41]
and variations in tip shape. Local piezoelectric hysteresis measurements on 120–
800-Å thick films show that the minimum switching field is ∼ 6–16 times larger
than the bulk coercive field, an effect that is not observed with macroscopic elec-
trodes on the similar films. The effective field E in the experiments is therefore
presumably ∼ one order of magnitude smaller than that calculated as E(r) in
this study. This has no effect on the exponent μ governing the exponential ve-
locity dependence. Unless otherwise noted, the values reported are the directly
calculated ones, with no further corrections.
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Fig. 5. Domain wall speed as a function of the inverse applied electric field for 37.0-,
54.5-, 81.0- and 95.4-nm thick PbZr0.2Ti0.8O3 films. The data agree with the creep
equation v ∼ exp[− R

kBT

(
E0
E

)μ
] with μ = 0.93, 0.62, 1.09, and 0.69, respectively.

Fits of the data to log v = A(1/E)μ are shown for the 54.5 and 95.4 nm films. The
10% root-mean-square error in the local electric field is given by the precision of
the domain-size measurements

Fig. 6. Schematic drawing of a triangular step nucleated at the surface of the film
on a 180◦ domain wall, as described by Miller and Weinreich [33]. The applied
electric field E is parallel to PDOWN, favoring domain-wall motion to the right
(figure after [33]).

direction of the applied field E would balance the energy cost of extending the
surface A of the domain wall (with a surface energy density of σw) as well as
the incurred depolarization energy cost Udepolarization. In fact, this mechanism
is identical4 to that of an elastic manifold weakly driven in a periodic pinning
potential (tilted washboard potential, as described for example in [6]). The
nucleus thickness (c in Fig. 6) is the distance between two mimima of the
periodic potential given by the ferroelectric crystal lattice spacing.
4 In the absence of a depolarization field the nucleus is isotropic. Taking into

account the depolarization changes the shape of the nucleus, but does not affect
in an essential way the physics leading to the creep process.



Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films 349

Since the energy gain due to the displacement of a nucleus into the neigh-
boring pinning valley grows with the volume of the nucleus, while the energy
cost essentially scales with its surface, for small electric fields (E → 0) a large
nucleus can be expected. Depending on the wall dimensionality d, balancing
the two energy terms V ∼ Ld and A ∼ Ld−1, where L is the spatial extension
of the nucleus, leads to different behavior. For a one-dimensional domain wall
(string, d = 1), the nucleus consists of two point-like kinks, whose activation
energy therefore always remains finite, and the system exhibits a linear re-
sponse to small driving forces. For a two-dimensional domain wall on the
other hand, minimizing (4) gives L∗ ∼ 1/E, showing that the size of the
nucleus grows as the electric field decreases. In this scenario the energy bar-
riers to domain-wall motion, and thus nucleus growth, grow as Δ(E) ∼ 1/E,
using (4), giving a nonlinear response with v ∝ exp−1/E. The stochastic
nucleation proposed by Miller and Weinreich can thus explain the observed
nonlinear response only if the domain wall itself is a two-dimensional surface
embedded in a three-dimensional crystal. This means that the dimensions of
the nucleus, at a given field E, have to be smaller than the thickness of the
system. Otherwise, the energy of the nucleus saturates, resulting in the linear
response of the one-dimensional scenario. It is also important to note that
if the creep consists of motion in a commensurate potential the dynamical
exponent is constrained to be μ = 1. As already mentioned, this particular
scenario is microscopically related to the intrinsic periodic pinning of the do-
main wall by the ferroelectric crystal lattice potential. The strength of this
potential was calculated in ab-initio studies of 180◦ domain walls in PbTiO3,
showing that the wall energy varies from 132mJ/m2 to 169mJ/m2 depending
on whether the domain wall is centered on a Pb−O or Ti−O2 plane in the
crystal [10].

To test whether the observed creep behavior is indeed due to the stochas-
tic nucleation process, we calculated the size of the critical nucleus, follow-
ing the formulation derived by Miller and Weinreich for the energetically
most favorable dagger-shaped nucleus of horizontal extension a, height l and
thickness c forming at an existing 180◦ domain wall, as shown in Fig. 6 [33],
where Ps is the polarization, b the inplane lattice constant, ε the dielectric
constant of PZT at ambient conditions, and E the applied electric field.
The depolarization energy can be written as Udepolarization = 2σpba2

l , with
σp = [4P 2

s b ln (0.7358a/b)]/ε [33]. By minimizing the free-energy change due
to nucleation with respect to the dimensions of the nucleus a and l, with c
taken as equivalent to the lattice constant b (the distance between two min-
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ima in the commensurate potential), the size of the critical nucleus a� and l�,
as well as the activation energy ΔF �, can be calculated as [33]:

a� =
σw(σw + 2σp)
PsE(σw + 3σp)

,

l� =
σ

1/2
w (σw + 2σp)

PsE(σw + 3σp)1/2
,

ΔF � =
4b

PsE
σp(σw + 2σp)

(
σw

σw + 3σp

)3/2

. (5)

To compute the actual values, standard parameters for PZT (Ps = 0.40C/m2,
ε = 100, b = 3.96 Å), and the ab-initio value for the domain-wall energy
density5 σw = 0.132mJ/m2 can be used. In our case, the applied electric
field varied from ∼ 2 to 20MV/m (with the factor 10 correction), depending
on the thickness of the sample used and the distance from the AFM tip, with
the most intense fields for thin films and small domains. Corresponding values
of σp were between 1.6 and 0.9 J/m2. Since σp is therefore greater than σw,
following Miller and Weinreich, the expressions for the critical values can be
simplified to:

a� =
2
3

σw

PsE
,

l� =
2σ

1/2
w σ

1/2
p√

3PsE
,

ΔF � =
8b

3
√

3PsE
σ1/2

p σ3/2
w . (6)

For the field range used, these equations would give critical values of a� ∼
12.5–125 nm and l� ∼ 53–710 nm. These results imply that for the given
electric field range, the vertical size of the critical nucleus would exceed the
thickness of the film itself. This suggests that the films are in a 2-dimensional
limit, with the domain walls acting as a quasi-one-dimensional manifold, for
which the Miller and Weinreich stochastic nucleation model, or alternatively,
weakly driven motion through a commensurate potential, could not explain
the nonlinear response observed. In addition, the values for the activation
energy of ∼ 0.6 × 10−21–0.5 × 10−20 would suggest extensive domain-wall
motion as a result of thermal activation already at room temperature, a phe-
nomenon not observed in PZT. Finally, the values of the dynamical exponent
we observe, generally not equal to one, are also a strong indication that an
alternative microscopic mechanism for the observed creep process should be
considered.
5 This value is computed for PbTiO3. The presence of Zr in PZT would lead to

local variations of this energy density.
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6 Domain-Wall Creep in a Random Potential

In the alternative scenario of a canonical “glassy” system, an elastic manifold
is weakly collectively pinned by the quenched disorder potential present in
the medium, with important consequences for both its static and dynamic
behavior. Disorder is present in any realistic system: in PbZr0.2Ti0.8O3, va-
cancies and other defects in the lattice structure are likely sources of disorder.
Another possibility is the presence of Zr atoms (the material is essentially a
solid solution of 20% PbZrO3 in 80% PbTiO3), although preliminary studies
of domain-wall dynamics in pure PbTiO3 show similar static and dynamic
exponents. In ferroelectric films the presence of disorder would dominate do-
main-wall behavior for both 1- and 2-dimensional walls at large scales. How-
ever, given the thinness of the domain wall, we note that the commensurate
potential of the crystal is also present in the problem, although possibly at
length scales below those experimentally accessible with our current system.

In order to analyze the effects of disorder on domain-wall motion we again
consider the energy of a segment of ferroelectric domain wall of length L
displaced by u(z) from the elastically ideal flat configuration as shown on
Fig. 2. The energy scales as6

U(u,L) = σwu2Ld−2 − Udisorder[u] − 2PsELdu , (7)

where the first term describes the elastic-energy contribution, and is expressed
for a local elasticity.7 A more accurate description of long-range forces, such as
dipolar forces, modifies the elasticity and amounts to replacing d by (3d−1)/2
in the following formulas (see [42] and References therein). The second term
is due to pinning by the disorder potential, and the third is the energy due to
the application of an external electric field. Udisorder depends on the precise
nature of the disorder.

As detailed in Sect. 3, in the absence of an external electric field E, an
equilibrium roughness configuration of the domain wall would be expected,
characterized by a power-law growth of B(L) with different exponents. For r
smaller than a characteristic length, the Larkin length Lc [43,44], B(L) grows
as B(L) ∼ L4−d. Below this length there is no metastability and no pinning
of the elastic interface. Above the Larkin length, the growth still follows a
power law, but with an exponent 2ζ (B(L) ∼ L2ζ) dependent on the nature
of the disorder. The Larkin length corresponds to the length for which the
displacements are of the order of the size of the interface or the correlation
6 There are constants of order one, dependent on the dimension d, which have

been omitted from each term in the energy. These constants will not affect the
creep exponent μ.

7 Note that in order to take into account the depolarization effects lengths along
the vertical axis have to be scaled by a factor (σp/σw)1/2, as in (6). Here, L
denotes lengths perpendicular to the polarization direction.
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length of the random potential8 B(Lc) = max(ξ, rf). The Larkin length is
thus the smallest length at which the wall can be weakly pinned, and above
which it can adjust elastically to optimize its local configuration.9 Above Rc

one can thus write

B(L > Lc) = max(ξ, rf)2
(

L

Lc

)2ζ

. (8)

Lc is also the length scale at which pinning appears in the system in the
presence of a driving force. Using10 (7) for u ∼ ξ and L = Lc one can directly
obtain11 the critical field Ec

Ec �
σwξ

Ps

(
1
Lc

)2

. (9)

In our case, a rough estimate of the values of Ec may thus be obtained by
extrapolating the linear behavior of the velocity, which occurs at high field
values. Although we were unable to extend our measurement significantly
into this region, we can nonetheless at least place a lower bound on the value
of Ec of 180MV/m, as indicated on Fig. 7 for one of our thinner films, where
higher values of the field could be implemented. Taking ξ to be of the order
of a unit cell, we can use the field data to extract an approximate value of
Lc ∼ 0.2 nm, below the limit of resolution of our measurement.

In the creep regime, we can rewrite (7). For simplicity we write formulas
for the isotropic case. Using the scaling u ∼ ξ(L/Lc)ζ one obtains

E(u,L) = Uc

(
L

Lc

)d−2+2ζ

− 2PsELd
cξ

(
L

Lc

)d+ζ

, (10)

where Uc = σwξ2Ld−2
c . Minimizing the energy with respect to the external

field E, we obtain the size of the minimal nucleus as

Lcreep/Lc = (fc/f)1/(2−ζ) , (11)

with f = 2PsE. The minimal barrier height to be passed by thermal acti-
vation thus corresponds to the length L∗, leading to a velocity of the form

v ∝ exp
(
−βUc(fc/f)

d−2+2ζ
2−ζ

)
, (12)

8 In this simplified description we assume that the temperature is low enough to
neglect thermal effects.

9 Above Lc, the domain wall can also remain locally pinned on individual strong
pinning sites, but in the present discussion, only weak collective pinning is con-
sidered.

10 We now denote simply by ξ the max(ξ, rf).
11 As before, the length here is the length perpendicular to the polarization direc-

tion.
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Fig. 7. Domain-wall velocity as a function of the applied electric field in a 37-
nm PbZr0.2Ti0.8O3 film. Extrapolating the linear behavior at high fields allows the
critical field Ec to be estimated as 180 MV/m (figure after [8]).

if one assumes an Arrhenius law in passing the barriers. The very slow (creep)
response is due to the fact that for a small force the system would have to
rearrange large portions of the interface to be able to find a new metastable
state of low enough energy. The barriers a domain wall must pass to make
such a rearrangement therefore diverge as the force goes to zero.

The expression (11) gives the critical nucleus size Lcreep as a function
of the applied field E and Lc. We note that this expression is independent
of the dimensionality of the film, and that the applied and critical fields
are present as a ratio, thus removing the uncertainty associated with the
correction of the field in the AFM tip–ferroelectric thin-film configuration. As
for the case of the periodic potential, these expressions are valid if the size of
the nucleus is smaller than the thickness of the sample. Otherwise, one of the
dimensions of the nucleus should be replaced by the thickness, transforming
a two-dimensional interface into a one-dimensional line. A crucial difference
between the periodic and the disordered cases is that creep due to disorder
can still exist in the one-dimensional situation, contrary to the periodic case.
Note that the question of whether the films should be considered as one- or
two-dimensional depends on which mechanism controls the nucleus. A film
could thus be in the one-dimensional limit for the periodic potential, thereby
invalidating the periodic potential as a possible origin for the creep process,
and still be in the two-dimensional limit for the disorder provided that the
size of the nucleus due to disorder remains smaller than the thickness of the
film. Although creep is still present in the one-dimensional disordered case,
the value of the exponent μ depends on the dimension. Using the values
for Ec and Lc we obtained, we can estimate the size of the critical nucleus for
the creep process and compare it with that found for the Miller–Weinreich
formulation. In our system, the applied field is a function of the distance r
away from the tip center. Using the largest possible (random-field) value of ζ
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we find Lcreep to vary between 0.2 and 1 nm in the thinnest films (29.0–
51.0 nm), and 0.2 and 2.5 nm in the thickest films (95.0–130.0 nm). We note
that the formalism used in the section on incommensurate pinning of the
domain wall was developed in particular to describe linear domain walls, with
an applied force, and therefore domain-wall creep, perpendicular to the wall.
However, in the case of the circular domains we investigated, Lcreep ∼ 0.01r,
where r is the radius of the domain, so the approximation of a linear domain
wall seems reasonable.

7 Experimental Observation of Domain-Wall Roughness

Although the studies of domain-wall dynamics allowed us to determine that
indeed disorder, rather than a commensurate pinning potential, was the
mechanism governing the observed radial creep of domain walls in epitaxial
thin films, questions about the exact nature of this disorder remained open.
In order to ascertain the precise physics of the pinned domain walls and also
the possible role of the long-range dipolar interactions that exist in ferroelec-
tric materials, a direct analysis of the static domain-wall configuration was
performed, allowing the roughness exponent ζ and the effective domain-wall
dimensionality deff to be extracted. To measure domain-wall roughness, we
wrote linear domain structures with alternating polarization by applying al-
ternating ± writing voltages while scanning the AFM tip in contact with the
film, then imaged the resulting domain walls with the maximum resolution
of our experimental setup (∼ 2–5 nm), allowing us to extract the correlation
function of relative displacements B(L). As shown in Fig. 8 for the three
different films used, we observe the expected power-law growth of B(L) at
short length scales,12 comparable to the ∼ 50–100 nm film thickness, followed
by saturation of B(L) in the 100–1000 nm2 range, indicating the absence of
large-scale relaxation of the domain walls at ambient conditions from their
initial straight configuration determined by the AFM tip position during
writing.
12 We note that that the observed power-law growth nonetheless extends out to

length scales above the resolution limit determined by the tip size (∼ 5 nm)
and its interaction with the ferroelectric film, where inherent noise in the AFM
measurement could give rise to artefacts such as spurious correlations at short
lenght scales (∼ 10–20 nm). We specifically chose a minimal pixel size of 5–10 nm
(depending on the two image sizes used) to try and minimize the contribution
of such artefacts, with most of our data points for the correlation thus being
taken over greater scales. For the correlation function of relative displacements
at ambient conditions, we observe the power-law growth behavior from which we
derive the 2.5 effective dimensionality out to length scales of the order of 100 nm
(6–16 pixel scales), well into the limit where the effects of small length scale noise
can be safely disregarded. Moreover, we clearly demonstrate the reproducibility
of the imaging of particular nanoscale features in multiple sequential length scans
of the same domain wall.
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Fig. 8. Average displacement correlation function B(L) for different sets of fer-
roelectric domain walls in 50-, 66- and 91-nm thick PbZr0.2Ti0.8O3 films, shown
out to L = 300 nm. Power-law growth of B(L) is observed at short length scales,
followed by saturation, suggesting a nonequilibrium configuration at large L ((a)
and (c) after [9])

At ambient conditions, no relaxation from this flat as-written configura-
tion at large L was apparent over an observation period of one month [9],
indicating that room-temperature thermal activation alone is not sufficient
to equilibrate the domain walls over their entire length. These results are in
agreement with our previous studies [3,8] in which both linear and nanoscopic
circular domains remained completely stable over 1–5 month observation pe-
riods. Such high stability is inherent to the physics of an elastic disordered
system, where energy barriers between different metastable states diverge as
the electric field driving domain-wall motion goes to zero, which makes relax-
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Fig. 9. Typical ln–ln plot of B(L). Fitting the linear part of the curve (left of the
vertical line) gives 2ζ. Average values of the characteristic roughness exponent ζ
extracted from the equilibrium portion of the B(L) data are 0.26, 0.29 and 0.22 in
the 50-, 66- and 91-nm thick PbZr0.2Ti0.8O3 samples, respectively (figure after [9]).

ation exceedingly slow. In fact, we believe that even the relaxation leading to
the observed power-law growth of B(L) at smaller length scales is not purely
thermal, but occurs due to subcritical stray fields during the writing process
itself. When the direction of the applied electric field is reversed to form the
alternating domain structure, the neighboring region already written with the
opposite polarity nonetheless experiences the resulting electric field, allowing
the domain wall to locally reach an equilibrium configuration. To ensure that
domain-wall relaxation was not hindered by the pinning planes of the lattice
potential in the ferroelectric films [10, 45], we also wrote sets of domain walls
at different orientations with respect to the crystalline axes. We found no cor-
relation between the roughness of domain walls and their orientation in the
crystal. This result is in agreement with the analysis of the previous section,
pointing out the negligible role of the commensurate potential compared to
the effects of disorder.

From the short length scale power-law growth of B(L), we extract a value
for the roughness exponent ζ, characterizing the roughness of the domain wall
in the random-manifold regime where an interface individually optimizes its
energy with respect to the disorder potential landscape. As shown in Fig. 9,
a linear fit of the lower part of the ln(B(L)) vs. ln(L) curve allows 2ζ to be
determined. Average values of ζ ∼ 0.26, 0.29 and 0.22 were obtained for the
50, 66 and 91 nm thick films, respectively.

In addition to the investigations of static domain-wall roughness described
above, we independently measured domain-wall dynamics in each film, ob-
taining values of 0.59, 0.58 and 0.51 for the dynamical exponent μ in the 50-,
66- and 91-nm thick films, respectively.13

13 These μ values are lower than the three values measured in [7], but consistent
with all the subsequent measurements performed on nine other films, all grown
under similar conditions.
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8 Domain Walls in the Presence
of Random-Bond Disorder and Dipolar Interactions

In this section we show how these data, analyzed in the theoretical framework
of a disordered elastic system, provide information on the microscopic mech-
anism governing domain-wall behavior. The direct measurement of domain-
wall roughness clearly rules out the lattice potential as a dominant source of
pinning. In that case, the walls would have been flat with B(L) ∼ a2, where
the lattice spacing a ∼ 4 Å is the period of the pinning potential [10]. Given
the stability and reproducibility of the wall position over time, the effect of
thermal relaxation on the observed increase of B(L) can also be ruled out.
The measured roughness must thus be attributed to disorder. As discussed
in Sect. 3, for random-bond disorder, the roughness exponent ζRB = 2/3 in
deff = 1 and ζRB ∼ 0.2084(4 − deff) for other dimensions, while for random-
field disorder ζRF = (4 − deff)/3. Should the wall be described by standard
(short-range) elasticity, deff in the above formulas is simply the dimension d of
the domain wall (d = 1 for a line, d = 2 for a sheet). However, in ferroelectrics
the stiffness of the domain walls and thus their elasticity under deformations
in the direction of polarization is different from that for deformations perpen-
dicular to the direction of polarization because of long-range dipolar interac-
tions. The elastic energy (expressed in reciprocal space) thus contains not only
a short-range term H = 1

2

∑
q Cel(q)u∗(q)u(q) with Cel = σwq2 but also a cor-

rection term due to the dipolar interaction Cdp = 2P 2
s

ε0ε

q2
y

q + P 2
s ξ

ε0ε

(−3
4 q2

x + 1
8q2

)

where y is the direction of the polarization, P is the ferroelectric polarization
and ε and ε0 are the relative and vacuum dielectric constants. Because qy now
scales as qy ∼ q

3/2
x , the effective dimension deff to use in the above formulas

is deff = (3d − 1)/2 [42, 46]. Using the above expressions for the roughness
exponent we see that the measured ζ ∼ 0.26 value would give deff ≥ 3 for ran-
dom-field disorder, ruling out this scenario. On the other hand, random-bond
disorder would give deff ∼ 2.5–2.9, a much more satisfactory value, which is
compatible with a scenario of two-dimensional walls (sheets) in random-bond
disorder with long-range dipolar interactions.

This conclusion can be independently verified by the dynamic measure-
ments, since the creep exponent μ is related to the static roughness exponent ζ
via μ = deff−2+2ζ

2−ζ . The values of these two exponents from the independent
static and dynamic measurements can therefore be used to calculate deff . For
the 50-, 66- and 91-nm thick films we find deff = 2.4, 2.5 and 2.5, respectively,
in good agreement with the expected theoretical value for a two-dimensional
elastic interface in the presence of disorder and dipolar interactions. Taken
together, these two independent analyses provide strong evidence that the
pinning in thin ferroelectric films is indeed due to disorder in the random-
bond universality class. Note that for the short-range domain-wall relaxation
observed, the walls are in the two-dimensional limit. However, if equilibrium
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domain-wall roughness could be measured for larger L, a crossover to one-
dimensional behavior would be expected, with a roughness exponent ζ = 2/3.

9 Recent Studies
of Ferroelectric Domain-Wall Dynamics

Until recently, detailed nanoscopic experimental studies of ferroelectric do-
main walls have been relatively rare. However, the available, and continually
expanding technological tools permitting direct access to individual ferro-
electric domains at the necessary scales have resulted in significant interest
in the subject. In bulk single crystals of lithium niobate, recent work has
focused on the ultrahigh-voltage regime leading to “domain breakdown”, the
formation of filamentous equilibrium length scale domains by rapid forward
growth [47]. In the framework of an elastic disordered system, as mentioned
in Sect. 3 subcritical domain-wall motion was probed in single-crystal films
of triglycine sulfate [34], where thermally activated domain growth and dy-
namic scaling in agreement with predictions for random-bond disorder were
independently observed, concurrently with our studies of the same phenom-
ena in PbZr0.2Ti0.8O3. In triglycine sulfate films, where the disorder potential
appears to be relatively weak, the effects of line tension due to domain cur-
vature and thermal evolution even at ambient temperature can be readily
accessed [35], in contrast to the epitaxial PbZr0.2Ti0.8O3 films, which show
much higher domain stability [48]. Subsequent nanoscopic AFM studies of
ferroelectric domains in lithium niobate [40, 49] also showed a similar linear
dependence of domain size on the magnitude of the applied voltage, and an
exponential dependence of domain-wall velocity on the applied electric field,
using the charged-sphere model for the tip, as described in [7]. Domain-wall
creep was also accessed by susceptibility measurements in single crystals of
periodically poled potassium titanate phosphate [50] and potassium hydride
phosphate [51], eliminating many of the possible effects of grain boundaries
and other macroscopic defects present in sol-gel films. In these studies, the au-
thors indirectly probe domain-wall behavior in both subcritical and sliding
regimes, and find critical exponents, in agreement with quenched random-
field models for an elastic interface. More experimental observations in both
single crystals and epitaxial thin films, focusing especially on the microscopic
nature of the disorder and its interaction with domain walls, would obvi-
ously be very useful. In this respect, promising new techniques, such as time-
resolved X-ray microdiffraction, allowing ferroelectric domain-wall motion to
be accessed in real time,14 could yield interesting results.
14 private communication with A. Grigoriev (2005)
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10 Conclusions

Using the unprecedented control and precision provided by AFM, we were
able to study the growth of individual nanoscale ferroelectric domains in epi-
taxial thin films, investigating the static and dynamic behavior of domain
walls. Our studies demonstrate that domain-wall motion in ferroelectric thin
films is a creep process in which v ∝ exp(−βUc(Ec/E)μ), with a dynamical
exponent μ ∼ 0.6. This process controls the lateral growth of domains in
low electric fields applied by an AFM tip. A detailed analysis of the possi-
ble microscopic origins of the observed domain-wall creep suggests that it is
the result of competition between elastic behavior and pinning in a disor-
der potential. The reduced dimensionality of our thin films compared to the
size of the critical nucleus precludes pinning in the commensurate potential
of the crystal itself as the mechanism for the nonlinear field dependence of
the velocity. All the domains show high stability (up to 4 months for the
longest-duration experiments), inherently explained by the physics of a sys-
tem in which elasticity and pinning by a disorder potential compete, leading
to glassy behavior in the presence of low electric fields. In addition, we were
able to extract the power-law growth of the correlation function of relative

displacement B(L) ∝
(

L
Lc

)2ζ

from the short length scale roughness configu-
ration of domain walls, with a static roughness exponent ζ ∼ 0.2. Combining
these two independent results, a value of 2.5 was obtained for the effective
dimensionality deff , in very good agreement with theoretical predictions for
2-dimensional elastic interfaces in the presence of random-bond disorder and
dipolar interactions. However, many intriguing questions about these low-
dimensionality systems remain open: the possibility of 1-dimensional behavior
at higher length scales, a greater role of the commensurate lattice potential
in films where the disorder potential is weaker, and the thermal response of
the system are all potential research avenues. The precise control of the crys-
talline quality and thickness possible with current oxide growth techniques, as
well as the nanoscale resolution provided by atomic force microscopy, make
epitaxial ferroelectric perovskite thin films a useful and readily accessible
model system for the study of elastic interfaces in disordered media, and we
hope will be the focus of many future studies.
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APPENDIX A –
Landau Free-Energy Coefficients
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The thermodynamics of ferroelectrics is usually described by the phenomeno-
logical Landau–Devonshire theory. Using the free energy for the unpolarized
and unstrained crystal as the reference, the free energy of a ferroelectric crys-
tal as a function of strain and polarization can be written as (see, e.g., [1])

F (ε, P ) =
1
2
αijPiPj +

1
3
βijkPiPjPk +

1
4
γijklPiPjPkPl

+
1
5
δijklmPiPjPkPlPm +

1
6
ωijklmnPiPjPkPlPmPn

+
1
2
cijklεijεkl − aijkεijPk − 1

2
qijklεijPkPl + · · · , (1)

where αij , βijk, γijkl, δijklm, and ωijklmn are the phenomenological Landau–
Devonshire coefficients, and cijkl, aijk, and qijkl are the elastic, piezoelectric,
and electrostrictive constant tensors, respectively. If the parent phase is cen-
trosymmetrical, all odd terms are absent:

F (ε, P ) =
1
2
αijPiPj +

1
4
γijklPiPjPkPl +

1
6
ωijklmnPiPjPkPlPmPn

+
1
2
cijklεijεkl −

1
2
qijklεijPkPl + · · · . (2)

In (2), the set of coefficients, α, γ and ω, in the Helmholtz free energy corre-
spond to those measured under a clamped boundary condition.

Under the stress-free boundary condition, the macroscopic shape change
of a crystal due to the ferroelectric phase transition is described by the spon-
taneous strain that can be obtained through the derivative of the Helmholtz
free energy (2) with respect to strain, i.e.,

σij = cijklε
0
kl −

1
2
qijklPkPl = 0 . (3)

Solving (3) for strain, we have

ε0
kl =

1
2
sijklqklmnPmPn = QijmnPmPn , (4)

where ssijkl is the elastic compliance tensor and

Qijmn =
1
2
sijklqklmn . (5)
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Topics Appl. Physics 105, 363–372 (2007)
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Substituting the spontaneous strain (4) back into the free-energy expres-
sion (2), we have

G(P ) =
1
2
αijPiPj +

1
4

(

γijkl −
1
2
smnorqmnijqorkl

)

PiPjPkPl

+
1
6
ωijklmnPiPjPkPlPmPn + · · · , (6)

or

G(P ) =
1
2
αijPiPj +

1
4

(γijkl − 2cmnorQmnijQorkl) PiPjPkPl

+
1
6
ωijklmnPiPjPkPlPmPn + · · · . (7)

The fourth-order coefficients are different for the clamped (2) and stress-
free (7) boundary conditions, and they are related by

γ′
ijkl = γijkl −

1
2
smnorqmnijqorkl = γijkl − 2cmnorQmnijQorkl , (8)

where γ′
ijkl is the fourth-order coefficient for the stress-free boundary condi-

tion. In general, experimentally determined coefficients correspond to γ′ since
it is usually easier to do measurements under stress-free boundary conditions.

In the following, the Landau–Devonshire coefficients are presented for a
number of oxides, including the well-studied systems BaTiO3, SrTiO3 and
PZT, collected from the open literature. All the data were provided for the
stress-free boundary conditions unless noted otherwise. They are all in SI
units with the temperature in K.

1 BaTiO3

For BaTiO3, a Landau–Devonshire potential up to eighth order has been
employed,

G(Px, Py, Pz) = α1

(
P 2

x + P 2
y + P 2

z

)
+ α11

(
P 4

x + P 4
y + P 4

z

)

+α12

(
P 2

xP 2
y + P 2

y P 2
z + P 2

xP 2
z

)
+ α111

(
P 6

x + P 6
y + P 6

z

)

+α112

[
P 2

x

(
P 4

y + P 4
z

)
+ P 2

y

(
P 4

x + P 4
z

)
+ P 2

z

(
P 4

x + P 4
y

)]

+α123P
2
xP 2

y P 2
z + α1111

(
P 8

x + P 8
y + P 8

z

)

+α1112

[
P 6

x

(
P 2

y + P 2
z

)
+ P 6

y

(
P 2

x + P 2
z

)
+ P 6

z

(
P 2

x + P 2
y

)]

+α1122

(
P 4

xP 4
y + P 4

y P 4
z + P 4

xP 4
z

)

+α1123

(
P 4

xP 2
y P 2

z + P 4
y P 2

z P 2
x + P 4

z P 2
xP 2

y

)
. (9)

Two sets of coefficients for (9) are given in Table 1. The elastic and elec-
trostrictive coefficients are listed separately in Table 2. The free energy under
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Table 1. Landau–Devonshire potential coefficients for BaTiO3 (SI units and
T in K)

Coefficients Sixth order [2, 3] Eight-order [4]

α1(105 C−2 · m2 · N) 3.34(T − 381) 4.124(T − 388)
α11(106 C−4 · m6 · N) 4.69(T − 393) − 202 −209.7
α12(108 C−4 · m6 · N) 3.23 7.974

α111(107 C−6 · m10 · N) −5.52(T − 120) + 276 129.4
α112(109 C−6 · m10 · N) 4.47 −1.950
α123(109 C−6 · m10 · N) 4.919 −2.5009

α1111(1010C−8 · m14 · N) 0.0 3.863
α1112(1010C−8 · m14 · N) 0.0 2.529
α1122(1010C−8 · m14 · N) 0.0 1.637
α1123(1010C−8 · m14 · N) 0.0 1.367

Table 2. Elastic and electrostrictive coefficients of BaTiO3 [1, 3, 5–9]. (Note that
additional data on the elastic constants of BaTiO3 can be found in [1] and [8])

c11(1011 N · m−2) 1.78
c12(1011 N · m−2) 0.964
c44(1011 N · m−2) 1.22
Q11(C

−2 · m4) 0.10, 0.11
Q12(C

−2 · m4) −0.034, −0.045
Q44(C

−2 · m4) 0.029, 0.059

a constant strain, ε, can be easily obtained from the above stress-free free
energy through

F (P, ε) = G(P, σ = 0) +
1
2
cijkl

(
εij − ε0

ij

) (
εkl − ε0

kl

)
, (10)

where ε0
ij is given by (4).

2 SrTiO3

To describe both the proper ferroelectric and the antiferroelastic distortion
(AFD) structural transition in SrTiO3 requires both the spontaneous polar-
ization P = (Px, Py, Pz) and the structural order parameter q = (q1, q2, q3)
as the order parameters.

The structural order parameter represents the linear oxygen displacement
that corresponds to simultaneous out-of-phase rotations of oxygen octahedra
around one of their four-fold symmetry axes. A fourth-order Landau polyno-
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mial as a function of the polarization and structural order parameter is given
by

G(Pi, qi) = AijPiPj + AijklPiPjPkPl + Bijqiqj

+Bijklqiqjqkql + CijklPiPjqkql , (11)

where i, j = x, y, z, Aijkl, Bijkl and Cijkl are constants and Aij and Bij

are functions of temperature. Keeping only the terms allowed by the cubic
symmetry of the SrTiO3 crystal, one has

G = α1

(
P 2

x + P 2
y + P 2

z

)
+ α11

(
P 4

x + P 4
y + P 4

z

)

+α12

(
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xP 2
y + P 2

y P 2
z + P 2

xP 2
z

)
+ β1

(
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z

)

+β11

(
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z

)
+ β12

(
q2
xq2
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yq2

z + q2
xq2

z

)

−t11
(
P 2

xq2
x + P 2

y q4
y + P 2

z q2
z

)

−t12

[
P 2

x

(
q2
y + q2

z

)
+ P 2

y

(
q2
x + q2

z

)
+ P 2

z

(
q2
x + q2

y

) ]

−t44 (PxPyqxqy + PyPzqyqz + PzPxqzqx) , (12)

where αij , βij , and tij are assumed to be constants and α1 and β1 depend
on temperature.

ε0
ij is the stress-free strain or the transformation strain as a result of the

structural and/or ferroelectric transitions,

ε0
ij = Qijklpkpl + Λijklqkql , (13)

in which Qijkl and Λijkl represent, respectively, the electrostrictive coeffi-
cient and the linear–quadratic coupling coefficient between the strain and
structural order parameter.

3 PbZr1−xTixO3 (PZT)

Existing experimental measurements in PZT have been fitted to a sixth-order
polynomial:

G(Px, Py, Pz) = α1

(
P 2

x + P 2
y + P 2

z

)
+ α11

(
P 4

x + P 4
y + P 4

z

)

+α12

(
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y + P 2

y P 2
z + P 2

xP 2
z

)
+ α111

(
P 6

x + P 6
y + P 6

z

)

+α112
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(
P 4

y + P 4
z

)
+ P 2

y

(
P 4

x + P 4
z

)
+ P 2

z

(
P 4

x + P 4
y

) ]

+α123P
2
xP 2

y P 2
z . (14)
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Table 3. Landau–Devonshire coefficients for SrTiO3 (SI units and T in K) [10–15]

α1(105 C−2 · m2 · N) 405 [coth(54/T ) − coth(54/30)]
263.5 [coth(42/T ) − 0.90476] , T < 50 K
7.37(T − 28), T > 70K
7.06(T − 35.5), T > 100 K

α11(109 C−4 · m6 · N) 1.70
α12(109 C−4 · m6 · N) 1.37
Q11 (C−2 · m4) 0.0457, 0.08, 0.066
Q12 (C−2 · m4) −0.0135,−0.015,−0.013
Q44 (C−2 · m4) 0.00957
c11 (1011 N · m−2) 3.156, 3.181, 3.36, 3.48
c12 (1011 N · m−2) 1.01, 1.025, 1.027, 1.07
c44 (1011 N · m−2) 1.19, 1.215, 1.236, 1.27
β1 (1029 N · m−4) 1.32 [coth(145/T ) − coth(145/105)]
β11 (1050 N · m−4) 1.69, 1.58, 1.20, 0.996
β12 (1050 N · m−6) 3.88, 3.78, 2.88, 2.73
Λ111018 m−2 8.7, 14.7, 9.32, 8.35
Λ121018 m−2 −7.8,−7.34,−6.4,−5.54
Λ441018 m−2 −9.2,−9.88,−6.93,−7.56
t11 (1029 C−2 · N) −1.74,−2.10
t12 (1029 C−2 · N) −0.755,−0.845
t44 (1029 C−2 · N) 5.85

The corresponding Landau–Devonshire and electrostrictive coefficients are
given by [16–20]

α1 = (T − T0)/2ε0C0, ε = 8.85 × 10−12,

α11 = (10.612 − 22.655x + 10.955x2) × 1013/C0,

α111 = (12.026 − 17.296x + 9.179x2) × 1013/C0,

α112 = (4.2904 − 3.3754x + 58.804e−29.397x) × 1014/C0,

α12 = η1/3 − α11, α123 = η2 − 3α111 − 6α112,

η1 =
[
2.6213 + 0.42743x − (9.6 + 0.012501x) e−12.6x

]
× 1014/C0,

η2 =
[
0.887 − 0.76973x + (16.225 − 0.088651x) e−21.255x

]
× 1015/C0,

T0 = 462.63 + 843.4x − 2105.5x2 + 4041.8x3 − 3828.3x4 + 1337.8x5,

C0 =
(

2.1716
1+ 500.05(x−0.5)2

+ 0.131x + 2.01
)

× 105 , when 0.0≤x≤0.5,

C0 =
(

2.8339
1+ 126.56(x−0.5)2

+ 1.4132
)

× 105 , when 0.5≤x≤1.0,

Q11 =
0.029578

1+ 200(x−0.5)2
+ 0.042796x + 0.045624,

Q12 =
0.026568

1+ 200(x−0.5)2
+ 0.012093x − 0.013386,

Q44 =
1
2

(
0.025325

1 + 200(x − 0.5)2
+ 0.020857x + 0.046147

)

,
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Table 4. The compliance tensor was estimated for a number of compositions [21]

Ti content x 0.4 0.5 0.6 0.7 0.8 0.9

s11 (10−12 m2/N) 8.8 10.5 8.6 8.4 8.2 8.1
s12 (10−12 m2/N) −2.9 −3.7 −2.8 −2.7 −2.6 −2.5
s44 (10−12 m2/N) 24.6 28.7 21.2 17.5 14.4 12

Table 5. Landau–Devonshire potential coefficients for PbTiO3 (SI units and
T in K) [16, 22]

α1(105 C−2 · m2N) 3.8(T − 752) Q11 (C−2 · m4) 0.089
α11(108 C−4 · m6N) −0.73 Q12 (C−2 · m4) −0.026
α12(108 C−4 · m6N) 7.5 Q44 (C−2 · m4) 0.0675
α111(108 C−6 · m10N) 2.6 s11 (C−12 · m2/N) 8.0
α112(108 C−6 · m10N) 6.1 s12 (C−12 · m2/N) −2.5
α123(108 C−6 · m10N) −37 s44 (C−12 · m2/N) 9.0

where x is the mole fraction of PbTiO3 in PZT. The units are SI with the
temperature in K. The elastic compliance values for a number of selected
compositions were provided in [21] (Table 4).

4 PbTiO3

For pure PbTiO3, the free-energy coefficients are given in Table 5.

5 LiTaO3 and LiNbO3

LiNbO3 and LiTaO3 belong to the 3m point group. Denoting the crystallo-
graphic uniaxial directions as the z-axis, the free-energy expansion is given
by [23]

F = −α1

2
P 2

z +
α2

4
P 4

z +
α3

2
(
P 2

x + P 2
y

)
+ β1ε

2
3 + β2 (ε1 + ε2)

2

+β3

[
(ε1 − ε2)

2 + ε2
6

]
+ β4ε3 (ε1 + ε2) + β5

(
ε2
4 + ε2

5

)

+β6 [(ε1 − ε2) ε4 + ε5ε6] + γ1 (ε1 + ε2) P 2
z + γ2ε3P

2
z

+γ3 [(ε1 − ε2) PyPz + ε6PxPz] + γ4 (ε5PxPz + ε4PyPz) , (15)

where electrostriction terms that do not involve the primary z component
of polarization have been ignored. The corresponding coefficients are given
in Table 6 (noted that in this example, αi are determined at constant zero
strain rather than constant zero stress).
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Table 6. Landau-Devonshire potential coefficients for LiTaO3 and LiNbO3 [23]

Coefficients LiTaO3 LiNbO3

α1(109 C−2 · N · m2) 1.256 2.012
α2(109 C−2 · N · m2) 5.043 3.608
α3(109 C−2 · N · m2) 2.22 1.345
β1(1010 N · m−2) 13.55 12.25
β2(1010 N · m−2) 6.475 6.4
β3(1010 N · m−2) 4.925 3.75
β4(1010 N · m−2) 7.4 7.5
β5(1010 N · m−2) 4.8 3
β6(1010 N · m−2) −1.2 0.9
γ1(109 C−2 · N · m2) −0.202 0.216
γ2(109 C−2 · N · m2) 1.317 1.848
γ3(109 C−2 · N · m2) −2.824 −0.33
γ4(109 C−2 · N · m2) 4.992 3.9

Table 7. Landau-Devonshire potential coefficients for SrBi2Nb2O9 (E is Young’s
modulus and ν is Poisson’s ratio) [24]

α1(106 C−2 · m2 · N) 1.03(T − 663) Q11(10−3 C−2 · m4) 0.385
α11(108 C−4 · m6 · N) −0.94 Q12(10−3 C−2 · m4) −0.04
α12(108 C−4 · m6 · N) 9.38 Q44(10−3 C−2 · m4) 0.05
α111(108 C−6 · m10 · N) 11.8 E(10−12 m2/N) 0.29
α112(108 C−6 · m10 · N) 23.6 ν(10−12 m2/N) 0.31

6 Sr0.8Bi2.2Ta2O9

For Sr0.8Bi2.2Ta2O9, the only existing Landau free-energy description is a
single double-well potential [25],

F = −2.03 × 105(T − 620)P 2 + 3.75 × 109P 4 , (16)

where T is in K and F and P are in SI units.

7 SrBi2Nb2O9

The thermodynamics of SrBi2Nb2O9 ferroelectrics was modeled using the
following free-energy function,

G(Px, Py) = α1

(
P 2

x + P 2
y

)
+ α11

(
P 4

x + P 4
y

)
+ α12P

2
xP 2

y

+α111

(
P 6

x + P 6
y

)
+ α112

(
P 2

xP 4
y + P 2

y P 4
x

)
. (17)

Due to the lack of experimental data in this system, many of the coefficients
were estimated (Table 7).
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Index

BaTiO3, 364, 365

coefficient, 363
absent, 363
corresponding, 368
elastic, 363–365
electric compliance, 363
electrostrictive, 363–365, 367
free–energy, 368
Landau free-energy, 363
Landau–Devonshire, 363, 364, 367
piezoelectric, 363

description

Landau free-energy, 369

Landau–Devonshire, 363
potential, 364
potential coefficient, 365, 368

LiNbO3, 368, 369
LiTaO3, 368, 369

PbTiO3, 368
PbZr1−xTixO3 (PZT), 364, 366, 368

Sr0.8Bi2.2Ta2O9, 369
SrBi2Nb2O9, 369
SrTiO3, 364–367
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A key appeal of epitaxial ferroelectric thin films is that they possess a vari-
ety of functional properties. It is found that these properties can be varied
according to the choice of substrate used for the growth. The choice is not un-
limited, however, some materials being much easier to grow on one substrate
than another (usually because of a more similar crystal lattice). The technique
used for the deposition can also be important in determining the properties
of the resulting film. Motivated by this we present here some tables in which
we have collected a limited number of references that detail the properties of
particular material/substrate combinations when a particular growth method
has been used. We hope this will be useful to researchers as an aid in assess-
ing the best approach to take when they are contemplating embarking on a
research project that calls for a ferroelectric thin film with specific properties.
Neither the materials, nor the references, are intended to be in any way a
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have been studied quite extensively as epitaxial thin films, and are therefore
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in the chapter by Agham-Bayan Posadas in this volume that gives the lattice
parameters of a number of the most popular substrate materials.
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Table 3. BiFeO3.

Materials Substrate Growth

method

Structure Lattice

parameters (Å)

Thickness

(nm)

BiFeO3 (001)SrTiO3 PLD a = 3.905

c = 4.104

35 and 20

BiFeO3 (001)SrTiO3 PLD a = 3.905

c = 4.073

5

BiFeO3 (001)SrTiO3 PLD slightly modified

MA type

monoclinic

structure

c = 3.997

β = 89.2◦

aMA/
√

2 = 3.907

bMA/
√

2 = 3.973

200

BiFeO3 (111)c, (001)c

and

(110)cSrTiO3

PLD rhombohedral d〈001〉 = 3.959 200

BiFeO3 Si substrate

with SrTiO3
as a template

layer

PLD monoclinic out-of-plane

lattice constant

3.95 Å

(pseudocubic

unit)

200

BiFeO3 (001)c single

crystal

SrTiO3

PLD significant

epitaxial

constraint,

monoclinically

distorted from

the

rhombohedral

structure

d〈001〉 = 4.001

d〈101〉 = 2.792

d〈111〉 = 2.278

200

BiFeO3 (110)c single

crystal

SrTiO3

PLD significant

epitaxial

constraint,

monoclinically

distorted from

the

rhombohedral

structure

d〈001〉 = 3.984

d〈101〉 = 2.828

d〈111〉 = 2.307

200

BiFeO3 (111)c single

crystal

SrTiO3

PLD unconstrained

single domaine

with

rhombohedral

crystal structure

as bulk

d〈001〉 = 3.959

d〈101〉 = 2.810

d〈111〉 = 2.306

200

BiFeO3 (001)SrTiO3 PLD tetragonal-like

with the c-axis

normal to the

substrate

surface, with a

small monoclinic

distortion of

about 0.5◦

a = 3.935 and

c = 4.0 in a

200 nm sample

50–500

(Bi0.7Ba0.3)

(Fe0.7Ti0.3)O3

Nb-doped

SrTiO3(100)

PLD
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Table 3. continued

Bottom

electrode

Top

electrode

εr d33 (pm/V) P

(μC/cm2)

Saturation

magn.

ME coef.

(dE/ dH)

Ref.

La2/3Sr1/3MnO3

buffer layer

11 nm

[10]

La2/3Sr1/3MnO3

buffer layer

11 nm

[10]

SrRuO3 500 Å [11]

SrRuO3 500 Å 100 0.6 emu/g [12]

SrRuO3 200 Å Pt ≈ 170 ≈ 60 (≈ 30

for 100 nm

and ≈ 120

for 400 nm)

45 [13]

SrRuO3 500 Å 55 [14]

SrRuO3 500 Å 80 [14]

SrRuO3 500 Å 100 [14]

SrRuO3 70 50–60 5–

150 emu/cm−3
3 V/cm.

Oe at

zero

field

[15]

2.5 0.2 emu/g [16]
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Table 4. Pb(Zr,Ti)O3 (PZT)

Materials Substrate Lattice

mismatch

Growth

method

Structure Lattice

parameters (Å)

Pb(Zr,Ti)O3
45/55

Pb(Zr,Ti)O3
52/48

Si + 100 Å

epitaxial (001)

SrTiO3 by MBE

off-axis RF

magnetron

sputtering

(600 ◦C –

oxygen

pressure of

400 m Torr)

Pb(Zr,Ti)O3
52/48

SrTiO3(100) 3.35 % off-axis RF

magnetron

sputtering

(600 ◦C –

oxygen

pressure of

400 m Torr)

PbTiO3 SrTiO3(100) hydrothermal

method at

150 ◦C

c domain

and small

amount of

a domain

4.13 for

c-domains and 3.92

for a domains

Pb(Zr,Ti)O3 (100)SrTiO3 MOCVD

PbTiO3 SrTiO3(110)

etched 0.5 mm

thick

hydrothermal

method at

150 ◦C

c-axis 4.158

PbTiO3 SrTiO3(110)

etched 0.5 mm

thick

hydrothermal

method at

150 ◦C

c-axis 4.153

Pb(Zr,Ti)O3 SrTiO3(100) hydrothermal

method at

150 ◦C

4.134

Pb(Zr,Ti)O3
40/60

Si[100] with

SrTiO3 template

layer (15 nm)

sol-gel and

spin-coating

polycrys-

talline

Pb(Zr,Ti)O3
40/60

Si[100] with

SrTiO3 template

layer (15 nm)

sol-gel and

spin-coating

(001)-

texture

Pb(Zr,Ti)O3
40/60

Si[100] with

SrTiO3 template

layer (15 nm)

sol-gel and

spin-coating

epitaxial Si(011) = 3.82

SrTiO3(001) = 3.09

LSCO = 3.85

PZT = 4.04

Pb(Zr,Ti)O3 platinum-buffered

silicon

screen

printing

Pb(Zr,Ti)O3
52/48

(100) SrTiO3 and

(100) Si with an

yttria stabilized

zirconia buffer

layer

90◦ off-axis

sputtering
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Table 4. continued

Thickness

(nm)

Bottom

electrode

Top

electrode

d33 P

(mC/cm2)

Ec

(kv/cm)

Ref.

400 SrRuO3 200 mm diameter

polycrystalline

SrRuO3

53 pm/V 52 [17]

400–4000 epitaxial SrRuO3
by 90◦ off-axis

RF magnetron

sputtering

330 pm/V [18]

epitaxial SrRuO3
by 90◦ off-axis

RF magnetron

sputtering

200 pm/V [18]

430 50 nm SrRuO3
RF sputtered

platinum

0.083 mm2

evaporated

97 pC/N 60 [19]

> 2000 (100)SrRuO3 [5]

100 50 nm SrRuO3
RF sputtered

platinum

0.083 mm2

evaporated

96.5 290 [6]

50 50 nm SrRuO3
RF sputtered

platinum

0.083 mm2

evaporated

[6]

500 SrRuO3 RF

sputtered

epitaxial 200 nm

19.2 21.8 [7]

120 (La0.5Sr0.5)CoO3
70 nm RF

sputtering

(La0.5Sr0.5)CoO3
70 nm RF

sputtering - Pt

25 pm/V [20]

(La0.5Sr0.5)CoO3
70 nm RF

sputtering

(La0.5Sr0.5)CoO3
70 nm RF

sputtering - Pt

75 pm/V [20]

(La0.5Sr0.5)CoO3
70 nm RF

sputtering

(La0.5Sr0.5)CoO3
70 nm RF

sputtering - Pt

125 pm/V [20]

up to

12 000

50 pC/N 2.5 40 [21]

[22]
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Table 5. Bismuth-layered ferroelectric perovskites

Materials Substrate Growth

method

Structure

SrBi4Ti4O15 (111)Pt/TiO2/SiO2/(100)Si MOCVD single-axis, c-oriented

SrBi2Ta2O9 SrZrO3/(Y2O3)x(ZrO2)1−x/Si PLD a-axis oriented

SrBi2Ta2O9 Pt/Ti/SiO2/Si(100) PLD polycrystalline

Bi4 − x
NdxTi3O12 (100)SrTiO3 PLD epitaxial (001)-oriented

Bi4 − x
NdxTi3O12 (110)SrTiO3 PLD epitaxial (118)-oriented

Bi4 − x
NdxTi3O12 (111)SrTiO3 PLD epitaxial (104)-oriented

Bi3.25La0.75Ti3O12 yttria-stabilized

zirconia-bufferedSi(100)

PLD epitaxially twinned

a axis oriented

Bi3.25La0.75Ti3O12 (001)SrTiO3 PLD epitaxially twinned

(001)-oriented

Bi3.25La0.75Ti3O12 (011)SrTiO3 PLD epitaxially twinned

(118)-oriented

Bi3.25La0.75Ti3O12 (111)SrTiO3 PLD epitaxially twinned

(104)-oriented

SrBi2Ta2O9 MgO(100) PLD c-oriented

SrBi2Ta2O9 (110)-oriented SrLaGaO4
(lattice parameters: tetragonal,

a = 0.3843 nm, c = 1.268 nm)

PLD epitaxial with a mix

of (100) and (116)

orientations

SrBi2Ta2O9 (100)- SrPrGaO4 (tetragonal,

a = 0.3813 nm, c = 1.253 nm)

PLD (001)-oriented

SrBi2Ta2O9 MgO(111)/YSZ(100)/Si(100) PLD non-c-axis-oriented,

(103) orientation

Sr0.8Bi2.2Ta2O9 (001)LaAlO3 PLD epitaxial growth

along (001)

SrBi2Nb2O9 (110)SrTiO3 PLD nearly phase pure epitax-

ial films with the c-axis

of the films at 45◦ with

respect to the substrate

normal

SrBi2Nb2O9 (111)-oriented SrTiO3 PLD (103)-oriented, nearly

phase pure epitaxial film

SrBi2Ta2O9 (001) LaAlO3 (cubic

a = 3.81 Å), (001)SrTiO3 (cubic

a = 3.905 Å) and

(001)LaAlO3–Sr2AlTaO6 (cubic

a = 7.737 Å)

PLD (001)-oriented

SrBi2Ta2O9 (001)-oriented Nb-doped

SrTiO3

PLD (001)-oriented

SrBi2Ta2O9 (011)-oriented Nb-doped

SrTiO3

PLD (116)-oriented

SrBi2Ta2O9 (111)-oriented Nb-doped

SrTiO3

PLD (103)-oriented

SrBi2Ta2O9 (110) MgO RF

magnetron

sputtering

orthorhombic,

a-/b-axis oriented

SrBi2Ta2O9 (100) MgO RF

magnetron

sputtering

orthorhombic,

c-axis oriented

SrBi2Ta2O9 (100) SrTiO3 MOCVD (001)-oriented

SrBi2Ta2O9 (110) SrTiO3 MOCVD (116)-oriented

SrBi2Ta2O9 (001)LaAlO3–Sr2AlTaO6 and

(100)LaSrAlO4

PLD (001) and (110)
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Table 5. continued

Thickness

(nm)

Bottom

electrode

Top

electrode

εr P (mC/cm2) Ec (kv/cm) Ref.

(100)c-oriented LaNiO3 140 [23]

[24]

350 Pt gold [25]

SrRuO3 not

ferroelectric

not

ferroelectric

[26]

SrRuO3 6 120 [26]

SrRuO3 20 50 [26]

SrRuO3 32 [27]

SrRuO3 0.6 [28]

SrRuO3 10.4 [28]

SrRuO3 16 [28]

100 270 [29]

[30]

[30]

(111)SrRuO3 5.2 76 [31]

LaNiO3 270 not

ferroelectric

not

ferroelectric

[32]

300 epitaxial SrRuO3 235 11.4 [33]

500 epitaxial (111)SrRuO3 185 15.7 [34]

100-500 [35]

133 not

ferroelectric

not

ferroelectric

[36]

155 4.8 84 [36]

189 5.2 52 [36]

[37]

[37]

200 (100) SrRuO3 70 at

1 kHz

not

ferroelectric

not

ferroelectric

[38]

200 (110) SrRuO3 140 at

1 kHz

11.4 80 [38]

[39]
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Table 6. Lattice parameters and crystal structures of selected substrate materials
(details and references in chapter by Posadas)

Material Structure Lattice constants

SrTiO3 cubic > 105 K a = 3.905 Å
tetragonal < 105 K c/a = 1.00056

BaTiO3 cubic > 390 K a = 4.01 Å
tetragonal > 270 K a = 3.99 Å

c = 4.04 Å
orthorhombic > 180 K c = 3.98 Å

a = 4.01 Å
rhombohedral < 180 K a = 4.00 Å

LaAlO3 cubic > 800 K a = 3.81 Å
rhombohedral < 800 K a = 5.36 Å

(3.79 Å)

LSAT cubic > 150 K a = 3.87 Å
tetragonal < 150 K a = 5.46 Å

c = 7.73 Å
(3.86 Å)

NdGaO3 orthorhombic a = 5.43 Å
b = 5.50 Å
c = 7.71 Å
(3.86 Å)

LaGaO3 orthorhombic < 420 K a = 5.49 Å
b = 5.53 Å
c = 7.78 Å
(3.89 Å)

rhombohedral > 420 K a = 3.93 Å

KTaO3 cubic a = 3.99 Å

MgO cubic a = 4.21 Å

DyScO3 orthorhombic a = 5.44 Å
b = 5.71 Å
c = 7.89 Å
(3.94 Å)

GdScO3 orthorhombic a = 5.49 Å
b = 5.75 Å
c = 7.93 Å
(3.97 Å)
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mechanical boundary condition, 306

branch choice, 45–48, 50, 53, 59, 60
Brillouin zone, 31, 44–46

CaTiO3, 8, 10
centers, 33

polarization, 33
centrosymmetric structure, 39
charge, 33

Born, 36, 54–56
dynamical, 36, 41, 54
electronic, 33
induced, 33

induced polarization, 33

interface, 59, 60

ionic, 49

periodic, 34

polarization, 41, 51

surface, 34, 59, 60

transport, 52

charge disproportionation, 19

charge-density wave, 19

charge-ordering phenomenon, 19

Clausius–Mossotti model, 32–34, 37

CM, 51

coefficient, 363

absent, 363

corresponding, 368

elastic, 363–365

electric compliance, 363

electrostrictive, 363–365, 367

free–energy, 368

Landau free-energy, 363

Landau–Devonshire, 363, 364, 367

piezoelectric, 363

coercive field, 321–323

conductivity, 64

correlation length, 306

correlation volume, 306

crystal structure, 6

current, 37, 43, 56

adiabatic, 40, 47, 52

macroscopic, 39

transient, 37, 40

dead layer, 307, 308, 319

density matrix, 58

density-functional theory, 62

Kohn–Sham, 42, 53, 62

Depolarization effects, 96
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description
Landau free-energy, 369

dielectric tensor, 33, 41
dipolar interactions, 357
disordered elastic systems, 340, 351

commensurate pinning potential, 348
creep, 343, 347, 353
critical field Ec, 352, 353
elastic objects pinned by periodic or

disorder potentials, 341
Larkin length Lc, 351
random-bond, 342, 343, 357, 358
random-field, 343, 357

disordered systems, 61
displacive and order–disorder transi-

tions, 88
domain wall, 59
dynamical exponent μ, 344, 347, 356,
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DyScO3, 12

effective domain-wall
dimensionality deff , 354, 357, 359

effective screening length, 309, 317
electric, 41
electric field, 54, 57, 58, 62

applied, 57
exchange-correlation, 62
finite, 57, 58
force induced by, 54
macroscopic, 57

electronic ferroelectric, 19
electrostatic boundary condition, 308,

326
epitaxial strain, 12
extrapolation length, 306, 307, 317

ferroelectric, 1
electronic, 19
improper, 7, 18
incipient, 12

ferroelectric domain walls, 339, 340,
343, 355

creep, 349
critical nucleus, 347, 349, 350, 353
domain wall

velocity v(r), 346, 347

field
depolarizing, 41

field-effect, 22
films, 19
first-principles study, 7

Gd2(MoO4)3, 17
GdFeO3, 12
global, 45
growth, 249, 250, 253

alkaline-earth oxide, 253
perovskite, 254, 255

heater, 222
laser heater, 225
radiative heater, 223
resistive block heater, 223

Hohenberg–Kohn theorem, 62
hysteresis, 2

artifacts, 4
Sawyer–Tower circuit, 3

hysteresis cycle, 39
hysteresis loop, 39

improper ferroelectric, 7, 18
incipient ferroelectric, 12
inhomogeneous effects, 102
insulator, 63
ionic model, 49

KNbO3, 48–50, 53, 55
KNO3, 18
KTaO3, 12

Landau theory, 7, 11
Landau–Devonshire, 363

potential, 364
potential coefficient, 365, 368

Landau–Devonshire theory, 74
Coupling to Strain, 79
First-Order Transition, 76
Second-Order Transition, 75

Landau–Ginzburg theory, 84
Boundary Effects, 92
bulk ferroelectric, 84
extrapolation length, 95
Levanyuk–Ginzburg criterion, 71, 86

latent heat, 7
lattice dynamics, 55
Li2Ge7O15, 17
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LiNaGe4O9, 17
LiNbO3, 10, 14, 368, 369
LiTaO3, 368, 369
localization, 63
LuFe2O4, 18, 19
Lyddane–Sachs–Teller relation, 7

memories, 21
MEMS, 20
metals, 63
misfit epitaxial strain, 100
Mn3TeO6, 17
molecular beam epitaxy, 220, 244, 245,

247
morphotropic phase boundary (MPB),

13
multiferroic, 105

nanoparticle, 20, 327
nanorod, 329
nanostructures, 21
nanotube, 329
nanowire, 329
nanowire/nanorod, 329
neutron scattering, 7

optical pyrometry, 226
optical spectroscopy, 7
oxide on semiconductor, 279

silicide, 285
SrTiO3, 281

oxygen vacancy, 307, 308
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Pb(Sc1/2Ta1/2)O3 (PST), 13
PbMg1/3Nb2/3O3 (PMN), 13
PbTiO3, 11, 12, 38, 56, 368
PbZn1/3Nb2/3O3 (PZN), 13
PbZr1−xTixO3 (PZT), 13, 364, 366,

368
PbZrO3, 13
permittivity, 36, 37, 41
perovskite, 38, 48, 53–55, 60
perovskite oxide, 8
perturbation theory, 42, 43
phase, 40

mod 2π, 46
twist, 47

phase transition, 6
piezoelectric tensor, 36, 41, 55

proper, 56
piezoelectricity, 36, 37, 41, 55
piezoelectrics, 12, 13, 20
polarization, 1, 6, 11, 15, 31

absolute, 32
Berry-phase, 41, 50, 51, 54, 58, 59, 62
bulk, 34, 35
change, 47, 56
differences, 32, 38
effective, 40, 43, 44, 50
electronic, 33, 58, 61
formal, 40, 44, 47–50
induced, 40
ionic, 44, 47
local, 62
longitudinal, 62
macroscopic, 31, 32, 35, 37, 41, 54,

61, 63
many-body, 61
microscopic, 35
modern theory, 35, 38, 41, 47, 54
modern theory of, 31, 32, 43, 47, 53,

63
multivalued, 50
quantum, 46, 48, 50, 57
quantum of, 31, 47, 51, 60
reversal, 38, 39
spontaneous, 35, 38–41, 43, 48, 50,

53, 56
time-averaged, 54
transverse, 62

polydomain, 321–324
pressure, 12, 18
pulsed laser deposition, 220, 222, 227,

228
ablation, 232
ablation plume, 235
presputtering, 242
pressure, 221
pulsed ablation laser, 228
target, 230

pyroelectric coefficient, 36
pyroelectrics, 20

Quantum critical fluctuations, 105
quantum fluctuation, 12
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R3Sb5O12, 17
relaxor, 14
RHEED, 246, 247, 256, 281–283, 285
roughness exponent ζ, 343, 354, 356,

359
Ruddlesden–Popper (RP) family, 16

Screening, 72
silicon, 33, 34
size effects, 19
soft-mode theory, 7
solid solution, 8, 12
sputtering, 220, 222, 238, 241, 242

cooling, 243
insulator, 239
magnetron, 242
off-axis sputtering, 241
presputtering, 242
pressure, 221
process gas, 240
reactive sputtering, 244
RF, 240
target, 230, 238

Sr0.8Bi2.2Ta2O9, 369
SrBi2Nb2O9, 369
SrBi2Ta2O9, 15
SrTiO3, 10, 12, 364–367
strain, 6

internal, 56
macroscopic, 56

structural frustration, 10
substrate, 257

gallate, 266
KTaO3, 266
LaAlO3, 264
LSAT, 266
MgO, 266
scandates, 266
SrTiO3, 259–262
table, 265

superlattice, 220, 271, 273, 324–326

BaTiO3/SrTiO3, 274
BaTiO3/SrTiO3/CaTiO3, 274
electrostatics, 274
ferroelectric/ferroelectric, 277
interfacial charge state, 277
KNbO3/KTaO3, 275
multiferroic, 276
PbTiO3/PbZrO3, 275
PbTiO3/SrTiO3, 274, 275
strain, 271
tricolor, 275
X-ray diffraction pattern, 277

superparaelectric limit, 305
superparamagnetic limit, 305
surface, 36, 55
switching, 2
symmetry, 48, 50, 54

cubic, 50

temperature, 36
thermoelectric effect, 23
thin film, 310, 322
tolerance factor, 10
tolerance ratio, 11
tungsten bronze, 17
twist operator, 61

Wannier center, 50–52
Wannier function, 6, 50, 63, 64
wurtzite-structure insulator, 6

X-ray, 7
X-ray diffraction, 310, 311, 318, 319,

321–323, 325
X-ray photoelectron diffraction, 310,

314, 318, 319

YFe2O4, 19
YMnO3, 18

Zener tunneling, 57, 58
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