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Preface

Nearly 50 years since the discovery of molecular beam epitaxy, extraordinary dis-
coveries in science and technology have been fueled by the ability to fabricate mat-
ter with exquisite precision at the atomic level. This capability of producing “de-
signer materials” has catalyzed fundamental scientific discoveries ranging from
two-dimensional electron gases to the quantum and fractional quantum Hall ef-
fects, and has helped launch technological revolutions driven by the development
of transistors and lasers. In addition to preparing carefully crafted thin films with
engineered electronic characteristics, this class of material growth techniques cou-
pled with the revolutionary concept of semiconductor heterostructures has enabled
researchers to synthesize novel two-dimensional quantum wells and superlattices,
and subsequently transfer their implementations into a myriad of electrical and op-
tical devices. By reducing the dimensionality of three-dimensional matter and thus
laterally confining electrons, a variety of new physical properties and carrier effi-
ciencies have emerged in electronics. Many of these material systems have rapidly
moved from the scientific arena to the technological world with significant impacts
throughout society. From information processing to lighting, the rapid progress of
semiconductor science and technology driven by artificially changing the dimen-
sion of matter raises an exciting question: what will the future bring as we continue
to push towards the limit of zero dimensions?

This book addresses the new frontier of zero-dimensional matter and the man-
ifest opportunities for science and engineering. While “no man is an island”, in-
dividual electrons thrive in isolation when localized in semiconductor nanostruc-
tures. Their lifetimes are often longer and their optical emissions typically brighter
than their peers in bulk materials. In a natural progression from thin films to
quantum wells to quantum wires, the availability of semiconductor quantum dots
offers a powerful laboratory within which to explore the limits of quantum confine-
ment and the emergence of well-defined individual electronic states. Commensu-
rate with this additional degree of confinement, smaller dimensions bring a tran-
sition from the classical to the quantum world, along with fundamental questions
regarding the preparation, manipulation, and measurement of these states. These
developments also raise the spectre of next-generation quantum mechanical elec-
tronics and its potential for affecting a discontinuous change in technology. While
the electron charge has been the basis for today’s devices, this new regime allows
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X Preface

us to consider the role of quantum variables such as the electron spin for additional
control in future systems. These flexible structures serve as a common point for re-
search at the intersection of quantum electronics, quantum optics, spintronics, and
quantum computation that currently helps drive the field of quantum information
science.

Beginning with an overall introduction that helps motivate the field, this book
lays a scientific foundation by discussing the basic principles of spin physics and
the broad range of quantum dot structures that have been grown using a variety
of materials and epitaxial techniques. The authors subsequently delve into a dis-
cussion of several schemes for integrating quantum dots into electrical and optical
devices, new phenomena that arise upon coupling quantum dot structures to one
another, and then present salient experimental results, including specific measure-
ment techniques. A substantial portion of the text is spent developing the theory of
spins in quantum dots and spin-based optics, as well as exploring multifunctional
systems that integrate electronics and photonics in a single device. Furthermore,
the authors discuss the unusual role of nuclear spins in quantum dots and their
potential for modifying spin-based phenomena.

If history provides any insight, the emergence of nanometer-scale quantum me-
chanical devices will be accompanied by a new generation of quantum scientists
and engineers who will require a unique set of resources. This volume represents
a thoughtfully prepared combination of experimental and theoretical information
that will serve as an informative perspective for both present and future researchers
in the field.

Santa Barbara, California, USA, April 2009 David D. Awschalom



1

1
Introduction

At the scale of nanometers, approaching the size of the fundamental constituents of
materials, various subdisciplines of physics merge. To provide a closed description
of many nanoscale phenomena, considerations from varied fields must be taken
into account, such as quantum mechanics, optics, quantum optics, semiconduc-
tor physics, material science, atomic and molecular physics, and so on. Crucially,
theory and experiments must go hand in hand in the discovery and elucidation of
such effects. In this book, we present one example of such nanoscale science – the
physics of spins in optically active quantum dots. The variety of areas of physics
that must be brought to mind to understand these systems can be seen in the
structure of this book, which contains chapters on materials growth and synthesis,
solid state and quantum optics theory, and experimental methods.

This chapter will introduce the two key terms in the title: spin, the fundamental
angular momentum of a particle, and nanometer-sized semiconductor structures,
known as quantum dots. Specifically, we focus on quantum dots whose properties
can be measured and controlled via their interaction with light, and how spins in
these structures may be investigated and potentially used for novel applications
such as quantum information processing. We expand the discussion on quantum
dots in Chapter 2 by describing the two main fabrication techniques, semicon-
ductor epitaxy and chemical synthesis. This is followed by some theoretical back-
ground on semiconductor physics and confined states in different types of quan-
tum dots in Chapter 3. We then show in Chapter 4 that semiconductor diodes and
optical cavities can be used to provide the knobs required to control the electri-
cal, optical, and spin properties of optically active quantum dots for applications.
To back up all the experimental findings and techniques, Chapter 5 provides the
elementary theory of the coupling between confined states to electromagnetic ra-
diation. The interactions between spins of carriers and a carrier and the nuclei in
the dot’s crystal lattice are then discussed in Chapter 6, before we switch back to
experimental techniques. The rich toolkit to initialize, manipulate, and read out
spins in quantum dots by optical means is opened and explained in Chapter 7. In
the concluding Chapter 8 we will add another important part to this discussion,
namely the coupling of quantum dots. In coupled quantum dots the interactions
between charges and spins show a subtle interplay and provide us with the po-
tential to use these optically active nanostructures for a scalable architecture for
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2 1 Introduction

quantum information processing and also to observe fundamental phenomena in
coupled quantum dots, analogous to the effects of coupled atoms in molecular
physics.

1.1
Spin

Spin, the intrinsic angular momentum of a particle, was first described theoretical-
ly by George Uhlenbeck and Samuel Goudsmit in 1925, and formalized by Wolf-
gang Pauli in 1926. Experimentally, however, spin phenomena have been observed
and put to practical use for much longer. The earliest known spin-based device
is most likely the magnetic compass. Here, a freely rotating needle is constructed
out of a material in which electron spins align with each other under their mutual
exchange interaction. This leads to a macroscopic spin polarization in the needle
(ferromagnetism), causing the needle to align with the Earth’s magnetic field due
to the Zeeman interaction of a spin with a magnetic field (see Eq. (1.5)). Written
records from ancient China referring to these phenomena date back to the fourth
century BC.

Over the next 2300 years or so, the knowledge of magnetism spread across the
globe. Clever minds devised new uses for the phenomenon, and refined old ones,
ranging from the electric motor, to the dynamo, to the posting of notes on a re-
frigerator. Despite its bountiful technological applications, at the beginning of the
twentieth century, the physical origins of magnetism were still unclear.

As quantum mechanics was being developed in the 1920s, great strides were
made in understanding atomic spectra by quantizing the orbital momentum of
electrons around the atomic nucleus. However, results such as the Stern–Gerlach
experiment, and unexplained splittings in atomic spectra (the “anomalous Zeeman
effect”, and hyperfine splitting) indicated that there were extra quantum degrees of
freedom not being taken into account.

A natural candidate for this unknown quantity was the angular momentum of
a particle. The idea was at first considered to be impossible. Given the known up-
per bound on the radius of the electron, the angular velocity of the electron would
need to be impossibly high to provide the observed splittings. Nevertheless, Uhlen-
beck and Goudsmit published the idea in 1925. Despite its apparent impossibility,
the idea of “spin” nicely explained the observations. Originally a skeptic, Wolfgang
Pauli warmed to the idea and ran with it, redefining spin not as an actual rotation
of a particle, but as an angular momentum intrinsic to the particle, just as charge or
mass are intrinsic properties. He then went on to develop a formalism for dealing
with spin in (nonrelativistic) quantum mechanics (see, e.g., [1]).

Once this theoretical framework was in place, the experimental study of spin
physics could now proceed hand-in-hand with theory, instead of the pure phe-
nomenology of the previous millennia. Throughout the rest of the twentieth cen-
tury numerous advances were made, such as a detailed understanding of magnetic
materials, nuclear spin physics, and spin resonance phenomena. These discoveries
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led to revolutionary technologies such as magnetic resonance imaging (MRI) and
magnetic data storage (tapes, hard drives).

The reservoir of interesting spin phenomena is still far from dry. Recent advances
in materials, electronics, and low temperature technologies have brought new un-
tapped wells of spin physics within reach. One of the fruits of these new capabilities
has been the development of quantum dots, which creates a straightforward way to
isolate single or few spins for study or possible applications.

1.2
Spin-1/2 Basics

According to quantum mechanics, angular momentum as an observable can be
described by two quantities: the angular momentum quantum number l and the
projection of angular momentum on the (say) z axis, m. Throughout this book, we
do not indicate operators with any special notation, assuming that the reader is
familiar with the basics of quantum mechanics and that it is clear from the context
which quantities are operators. The angular momentum quantum numbers are
just the eigenvalues of the commuting operators L2 and L z ,

L2jψi D l(l C 1)„2jψi and L z jψi D m„jψi , (1.1)

where L2 D L2
x C L2

y C L2
z , with L α the angular momentum operator along the

α direction, and jψi is a quantum mechanical state in Dirac notation. The quan-
tum number l can take on half-integer values, and for a given l, the projection m
can take on values m D �l, �l C 1, . . . , l .

In the case of a particle’s spin, we consider an internal angular momentum with
fixed quantum number s, and the projection of the spin can take on 2s C 1 values,
from �s to s. An electron has total spin s D 1/2 and projections ms D ˙1/2.
Therefore, there are two eigenstates for s D 1/2, one with ms D C1/2 denoted j"i
and the other with ms D �1/2 denoted j#i. A general spin state of an electron is
then given in a two-dimensional Hilbert space by a superposition of “spin up” and
“spin down” states,

jψi D αj"i C �j#i , (1.2)

where α and � are complex numbers satisfying the normalization condition jαj2 C
j�j2 D 1.

In the “spin up” and “spin down” basis, it is convenient to represent the opera-
tors Sα in matrix form,

Sx D „
2

�
0 1
1 0

�
Sy D „

2

�
0 �i
i 0

�
Sz D „

2

�
1 0
0 �1

�
.

In this representation, the vector (α, �)T represents the state given by Eq. (1.2),
where T indicates transposition.
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The above matrices without the factor of „/2 are known as Pauli matrices, and
the vector S D �

Sx , Sy , Sz
�

is the spin operator for the electron spin-1/2.
Note that there are four degrees of freedom in the two complex coefficients α

and � in Eq. (1.2). However, the normalization requirement removes one of these
degrees of freedom, and another one is an overall phase that can be ignored as
it cancels in matrix elements whenever an expectation value of an observable is
calculated. Thus there are only two degrees of freedom that we care about, and
Eq. (1.2) can be rewritten in the form

jψi D cos
θ
2

j"i C eiφ sin
θ
2

j#i . (1.3)

The two parameters θ and φ can be thought of as the polar and azimuthal angles
defining a point on a sphere. This is known as the Bloch sphere, shown in Fig-
ure 1.1, and turns out to be a very useful way of picturing a spin 1/2 or any other
two-level quantum system. The usefulness of this picture can be seen by looking
at the expectation values of the spin in the x, y, and z directions. Using the matrix
forms of the Sα operators given above, it is easy to show that the corresponding
expectation values are

hSx i D „
2

cos φ sin θ hSy i D „
2

sin φ sin θ hSz i D „
2

cos θ . (1.4)

These expectation values are equivalent to the x, y, and z components of the Bloch
vector, as shown in Figure 1.1. Therefore, it is correct in some sense to think of
the spin as actually “pointing” along the vector on the Bloch sphere. This one-
to-one correspondence between the quantum state in a two-dimensional Hilbert
space and the intuitive picture of a classical angular momentum vector in Eu-
clidean space is apparently just a coincidence. Note, however, that the correspond-
ing groups acting on the spin in these spaces, SU(2) and SO(3), are not isomor-
phic [1], giving room for purely quantum phase effects not captured in the Bloch

Fig. 1.1 The Bloch sphere. The vectors pointing to the north
and south poles of the Bloch sphere represent the “up” and
“down” eigenstates, with the rest of the sphere representing
superpositions of “up” and “down”.
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sphere picture. For spins larger than 1/2 it is harder to think of a corresponding
visualization in real space. But since here we are typically interested in electron
spins, the Bloch sphere provides a useful and intuitive way of thinking about quan-
tum spin states.

A spin in a magnetic field B has a contribution to its energy from the Zeeman
Hamiltonian,

HZ D g μB

„ B � S , (1.5)

where μB D 9.274 � 1024 J/T is the Bohr magneton. For an electron in vacuum, the
electron gyromagnetic factor or g-factor is approximately g D 2. However, this is
not a universal property. The spin–orbit interaction modifies this quantity, in some
crystals even up to an extent that its sign is reversed. For example, electrons in the
conduction band of GaAs have g D �0.44.

The result of the Zeeman effect on an electron spin is clearly seen by choosing
the z axis to be along the magnetic field, leading to

HZ D 1
2

g μBBz

�
1 0
0 �1

�
. (1.6)

The spin eigenstates j"i and j#i are split by the Zeeman splitting ΔE D g μBBz .
If the spin is not in an eigenstate, then it evolves in time, depending on the Zee-
man splitting. For a spin in the state given by Eq. (1.3) at t D 0, the state evolves
according to (again, ignoring the overall phase)

jψ(t)i D cos
θ
2

j"i C ei(ωL tCφ) sin
θ
2

j#i , (1.7)

where „ωL D g μBBz is the Zeeman splitting. The angular frequency ωL is known
as the Larmor frequency. In the Bloch sphere picture, this corresponds to the spin
vector precessing about the z axis at the Larmor frequency,

S(t) D (cos(ωL t C φ) sin θ , sin(ωL t C φ) sin θ , cos θ ) . (1.8)

This phenomenon is referred to as Larmor precession.
If perfectly isolated from the environment, a spin in a static magnetic field would

obey the dynamics described above forever. In reality, there are a number of effects
that damp the evolution in time of an electron spin in a semiconductor. These ef-
fects can be divided into two categories: those that randomize the relative phase φ,
and those that affect θ in Eq. (1.7). The randomization of θ is referred to as lon-
gitudinal spin relaxation, and is characterized by a time T1. The loss of the relative
phase information φ is referred to as transverse spin decoherence, occurring in
time T2. To illustrate these two time scales, we can say that a spin prepared in the
excited state will relax into equilibrium on the time scale T1. A spin that precesses
in the plane of the equator of the Bloch sphere, as for θ D π/2 in Eq. (1.7), will be
distributed randomly on the equator after the characteristic time T2.
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This type of damping of the Larmor precession is taken into account in the Bloch
equations,

PS(t) D S � h � R(S � S1) . (1.9)

Here, the first term on the right-hand side describes the precession of the spin
components due to a magnetic field B along z, contained in h D (0, 0, ωL), where
ωL is again the Larmor frequency. The second term describes relaxation and de-
coherence of S towards the equilibrium spin polarization S1 D (0, 0, QS ), which
occurs due to

R D
0
@ 1/T2 0 0

0 1/T2 0
0 0 1/T1

1
A . (1.10)

In this description it is intuitively clear that the decoherence time T2 is called the
transverse spin lifetime, as it acts on the transverse spin components, Sx and Sy .
The relaxation time T1, in turn, affects the z component and is therefore called
the longitudinal spin lifetime. The single-spin Bloch equation can be written in the
more compact form

PS(t) D �Ω (S � S1) , (1.11)

since h � S1 D 0. The solution of Eq. (1.9) is now just given by

S(t) D e�Ω tS(0) C (1 � e�Ω t )S1 , (1.12)

with the components

Sx (t) D Sx (0)e�t/ T2 cos(ωL t) C Sy (0)e�t/ T2 sin(ωL t) , (1.13)

Sy (t) D �Sx (0)e�t/ T2 sin(ωL t) C Sy (0)e�t/ T2 cos(ωL t) , (1.14)

Sz (t) D Sz (0)e�t/ T1 C QS �1 � e�t/ T1
�

. (1.15)

In the above solution of the Bloch equations we can nicely see the decay of the
precession amplitude with the characteristic time T2 and the relaxation into an
equilibrium spin polarization QS along z with the characteristic time T1.

As a caveat we would like to mention that not all baths that damp the evolution of
a spin lead to nice exponential decays, as implicitly assumed by the above charac-
teristic decay times T1 and T2. For example, the bath of nuclear spins in a quantum
dot can lead to a power-law decay of electron spin coherence. It has also been ob-
served that if, for example, the bath consists of only relatively few electron spins,
the coherence of a central spin (in one particular case the spin of the so-called nitro-
gen vacancy center in diamond [2]) can also decay according to a power law rather
than an exponential law.
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1.3
Quantum Dots

For many practical applications of spins – for example to realize a quantum bit –
solid state implementations are an attractive option. When electrons or holes – the
mobile carriers of spin in semiconductors – are confined within a tiny structure
with one or more dimensions smaller than the extent of the bulk wavefunctions,
the electronic properties are drastically modified. When this confinement is along
all three spatial directions, a “quantum dot” forms in which, like in a particle-in-
a-box, as shown in Figure 1.2a, the energy levels of carriers are quantized. The
band edges along one of the three spatial directions with resulting discrete ener-
gy levels for electrons and holes are depicted in Figure 1.2b. These energy levels
can, following Pauli’s exclusion principle, hold two electrons or holes of opposite
spin direction. These “orbital states” can be filled sequentially starting from the
lowest levels, the ground state of the quantum dot for each carrier species. Atom-
ic physics holds an equivalent of this shell filling known as “Hund’s rule”. Due
to these remarkable analogies to real atoms quantum dots are often referred to as
their “artificial” counterparts [3]. Instead of continuous bands of conduction and
valence band states, the energy eigenstates are now spatially localized within the
dot, and separated by an energy that increases with increasing confinement.

When the temperature (T) is low enough such that kB T is smaller than the quan-
tum dot energy level spacing (kB is Boltzmann’s constant), the quantized nature of
the energy levels becomes apparent. For temperatures around 4 K, this requires
a QD size of the order of 100 nm, consisting of � 105 atoms. In this regime, quan-
tum dots will exhibit an atom-like spectrum of absorption and emission lines. Fig-
ure 1.3 shows a comparison of the emission lines of helium atoms and a semi-
conductor quantum dot. This correspondence between atoms and quantum dots
provides a useful analogy, and the physics of quantum dots can be understood by
borrowing ideas and concepts from atomic physics. For example, the optical pump-
ing and control of quantum dot states has been demonstrated using the same tech-

(a) (b)

Fig. 1.2 (a) Schematic of a “quantum dot” in which carriers
are confined in all three spatial direction in an area smaller than
the de Broglie wavelength of the particle. (b) The confining
potential, energy levels, and wavefunctions in a simple particle-
in-a-box picture are illustrated for one spatial direction.
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Fig. 1.3 Comparison of a part of the Helium atom spectrum
(a) recorded on a photographic plate and a quantum dot spec-
trum (b) recorded using a CCD detector array. Figure reprinted
with permission from [4]. Copyright by Wiley-VCH Verlag GmbH
& Co. KGaA.

niques that were developed for controlling atomic states. On the other hand, the
study of quantum dots offers much more flexibility than atomic systems. Many
properties of quantum dots are tunable, including their size, shape, and materi-
al, which gives us a large degree of control. Even “artificial molecules” in which
the interaction between two quantum dots can be switched “on” and “off” can be
realized.

1.3.1
Spin-Based Quantum Information Processing with Artificial Atoms

In a classical computer, information is stored and processed in bits, each of which
can take on one of two logic values. Once the values “0” and “1” have been assigned
to the two eigenstates of a two-level system, such as a spin 1/2, the quantum me-
chanical spin dynamics can be viewed as the processing of information. A peculiar-
ity of this information is that the binary values of a single bit can be brought into
a coherent superposition. A bit with this property is called a quantum bit or qubit.
According to the postulates of quantum mechanics, when a qubit is measured, it
is always projected into one of its eigenstates, providing, for example a classical
binary output after the end of a computation. In general, exploiting such unique-
ly quantum effects in spins or other two-level systems via unitary operations goes
by the name of quantum information processing. This field can be divided into
two categories: quantum computing, and quantum communication. These topics
would already fill more than the space provided in this book. We only mention
a few ideas here and refer the reader to the literature for more details.

Before touching on these two developments of quantum information process-
ing, let us briefly consider a few particularities of qubits, namely, coherence and
entanglement. We have seen above that coherence is basically the stability of the
relative phase φ in Eq. (1.7) between the two eigenstates. Preservation of coherence
is obviously a necessary condition for an undisturbed quantum computation. The
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decoherence time therefore imposes a limit on the minimal speed required for suc-
cessful qubit operations. We already mentioned earlier that certain quantum effects
are not captured in a semiclassical framework. A particularly important quantum
property without classical counterpart is the entanglement of quantum states. Two
spins are entangled if their total wavefunction cannot be written as a direct product
of two single-spin states, such as jψ1i1 ˝ jψ2i2. Probably the most famous repre-
sentatives of entangled states are the spin singlet,

jSi D 1p
2

(j#i1j"i2 � j"i1j#i2) (1.16)

and the spin triplet with zero spin projection along the quantization axis z,

jT0i D 1p
2

(j#i1j"i2 C j"i1j#i2) . (1.17)

Clearly, the remaining two triplet states, jTCi D j"i1j"i2 and jT�i D j#i1j#i2

factorize and are not entangled.
Quantum computing exploits the additional computational possibilities due to

quantum mechanical complexity and parallelism in certain algorithms [5]. A fa-
mous example is the quantum algorithm by Peter Shor for the prime factorization
of integers, which provides an enormous speed-up potential when factorizing large
numbers. The crucial difference here lies in different scaling, as the time needed
to factorize an integer on a classical computer grows exponentially with the num-
ber of digits log N , while with Shor’s algorithm it only scales polynomially [6]. The
second famous algorithm is Lov Grover’s quantum algorithm for search in an un-
structured database [7].

David DiVincenzo has formulated criteria that need to be satisfied for quantum
computation [8]. First, a suitable realization of a qubit must be found, in which
information can be written, manipulated, and read out. Then, a register of qubits
needs to be initialized at the beginning of a computation. The qubits must be suffi-
ciently isolated from the environment to provide long enough decoherence times.
In order to process quantum information, gate operations must be implement-
ed. This requires high-precision control of single-qubit rotations and of switchable
two-qubit interactions. It has been shown that single- and two-qubit operations
are sufficient to implement any computation, that is, they form a universal set of
gates [9, 10]. Finally the qubit register must be read out. The scalability is an addi-
tional criterion that needs to be met in practical implementations.

An electron spin in a quantum dot is a popular candidate for a qubit, since it is
a natural two-state system. Electron spins in semiconductors have received much
attention for quantum information applications because (i) semiconductor process-
ing technology should make the scaling to large systems easier, (ii) electron spins
in semiconductors have been found to have long coherence times relative to the
expected times for gate operations, and (iii) spins and charge excitations can be
initialized, addressed, manipulated, and read both by electrical and optical means.
In recent years, a number of schemes have been demonstrated for achieving the
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requirements of state initialization, readout, and control for spin qubits; this is
further discussed in later chapters. Nevertheless, there is still a long way to go be-
fore these elements can be put together in a functioning quantum computer. For
a review on the recent status of spin-based quantum computing, see, for example,
Cerletti et al. [11].

Quantum communication involves the transmission of quantum information
from one place to another. This has applications, for example, in secure communi-
cation (cryptography), in teleportation of quantum states, and in superdense cod-
ing [12]. Cryptography involves sharing a secret key between two parties, such that
the communication can be executed via a traditional communication channel, pro-
tected by a safe encryption. Quantum mechanics helps in distributing a secret key
with the very issue we have when measuring a state: we project it into an eigen-
state. For example, if polarization encoded photons are measured on the way by
a third party in a different basis than the encryption scheme is using (which is
the most probable case), the photon polarizations received in the end will just be
randomized, which is detectable. Other schemes that have recently been imple-
mented with quantum dot single-photon sources [13] involve the encoding of a key
in a stream of single photons. Here, a third party would obviously quench the flow
of information with a beam splitter attack, when detecting photons in a photon
counter at the third party’s site, which is also easily detectable in a communica-
tion scheme using control sequences. Quantum teleportation, in turn, consists of
transmitting the quantum state of an object, for example a photon or an atom,
faithfully onto a second object by performing a clever set of local measurements
and by sharing a pair of entangled particles, for example two photons. Quantum
teleportation has also been implemented using a single photon source provided by
a quantum dot [14]. At this point we do not delve more deeply into these particular
realizations.

Quantum communication necessitates a “flying qubit” – a carrier of quantum
information that can be moved from place to place. Though spins and other qubit
candidates such as single atoms can be moved over micron-scale distances within
their coherence time, the only practical qubits for long-distance quantum commu-
nication are photon-based. Photons make ideal carriers of quantum information
because they travel fast, and they have very long coherence times. The flip side to
the long coherence time is that photons interact very weakly with each other – and
a strong controllable interaction is a desired feature for quantum information pro-
cessing. This leads us to consider a hybrid system with stationary qubits used for
quantum information processing at either end, and flying qubits communicating
faithfully between the two. This requires a way of converting stationary qubits to
flying qubits. Fortunately, spins in optically active quantum dots couple to pho-
tons in a variety of ways, making this an intriguing platform for a potential hybrid
quantum computing/communication system. In this book we want to introduce
not only various ways how quantum information can be transferred between the
photonic and spin domains but also how the electromagnetic wave nature of light
can be used to coherently initialize, manipulate, and read-out the spin of an elec-
tron confined in a quantum dot.
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1.3.2
Optically Active Quantum Dots

For a quantum dot to be considered “optically active” the interaction between light
and carriers in the quantum dot must be sufficiently strong so as to make it use-
ful for scientific investigations or technological applications. The definition of an
“optically active” quantum dot is not entirely strict since virtually all quantum dots
have some measurable interaction with electromagnetic radiation in the optical do-
main, that is, light. Nonetheless, here we will concern ourselves with those types of
quantum dots that are primarily investigated by optical means. The confinement
potential of these dots is typically such that they can hold both electrons and holes
giving rise to a particularly strong interaction with light.

The primary way that light interacts with an optically active quantum dot is
through transitions between the valence band and conduction band states in the
quantum dot or in the surrounding semiconductor material. When light with a suf-
ficiently small wavelength is incident on a quantum dot, transitions can be driven
that serve to excite electrons from the valence band to the conduction band. Like-
wise, the inverse process occurs when an electron relaxes from a conduction band
state to an unoccupied valence band state – light is emitted. This gives two measur-
able quantities for investigating the properties of a quantum dot: optical absorption
and luminescence.

Further optical properties can also be observed and exploited in optically active
quantum dots. Off-resonant interactions, such as the Faraday effect or Raman tran-
sitions are particularly useful for spin readout and manipulation, respectively.

1.3.3
“Natural” Quantum Dots

A very simple quantum dot system, which moreover exhibits an extremely high
optical quality, are so-called “natural” quantum dots. The name originates from
the fact that these dots form naturally in thin quantum wells. Such quantum wells
are fabricated by deposition of two-dimensional films of semiconductor materials
with different bandgaps. For example, if a thin layer (with a width d � 7 nm) of
gallium arsenide (GaAs) is sandwiched between barriers made of aluminum gal-
lium arsenide (AlGaAs) a potential well for both electrons and holes is formed
perpendicular to the layers as shown in Figure 1.2b. The energy of the lowest level
with respect to the band edges of the quantum well material (GaAs) depends on
the width d of the well, that is, the GaAs layer. In the simplest approximation of
a square well potential with infinite barriers we would expect a / d�2 dependence
of the ground state energy and, therefore, a wider well has a deeper lying ground
state. As a matter of fact, semiconductor quantum wells are not always perfectly
flat but exhibit monolayer-high steps. This situation is sketched schematically in
Figure 1.4a. If the areas in which the well is thicker have the appropriate size (typ-
ically � 100 nm) monolayer fluctuations form quantum dots, which are therefore
also sometimes referred to as “interface fluctuation quantum dots” (IFQD). These
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Fig. 1.4 (a) Illustration of interface fluctuation quantum dots:
Quantum dots form at localized monolayer fluctuations of well
thickness. (b) Toy with little balls and dimples.

Fig. 1.5 Photoluminescence and PL excitation spectra of
a “natural” quantum dot. The quantum dot geometry is shown
schematically as an inset. Figure courtesy of W. Heller.

interface fluctuation quantum dots act like the little dimples in the toy shown in
Figure 1.4b where little balls (representing electrons or holes) can be caught1).

In the case of a GaAs-AlGaAs quantum dot the confined electrons and holes can
recombine by emitting light, which is called photoluminescence (PL) if the elec-
trons and holes were previously generated by light, for example by a laser. A typical
example of a PL spectrum and a schematic of the quantum dot geometry is shown
in Figure 1.5. This quantum dot shows a sharp atom-like PL line at and energy
of 1657 meV. The observed linewidth is determined entirely by the resolution of

1) Since this toy does not know about spins,
each dimple can only hold one ball. For
deeper dimples higher occupancy states can
be achieved.
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the experimental apparatus, which underlines the high optical quality of the dot.
In this figure the excited state absorption of the same quantum dot is also shown.
It is measured in a PL excitation (PLE) experiment in which the intensity of the
ground state PL signal is recorded as a function of the excitation laser energy. In
such an experiment a high signal is only observed at laser energies at which the QD
absorbs, which in this example occurs at an energy 5 meV higher than the ground
state. Furthermore, on the right, at even higher energy, the onset of emission from
the quantum well in which the dot is formed (peak at 1670 meV) can be seen.

The preceding discussions of quantum dots and of electron spin dynamics pro-
vide an introduction to these topics that will be delved into more deeply through-
out this book. Chapters 3, 5, and 6 will treat the physics of spins in quantum dots
in much more detail. Moreover, Chapters 7 and 8 describe a number of experi-
mental observations of these phenomena. But first we will continue in Chapter 2
with different physical realizations of QDs. We will start by explaining the basics of
semiconductor heteroepitaxy, which is the underlying method for the fabrication of
embedded QD structures like “natural” dots, which we introduced in the previous
section. We will also discuss the other prominent example of epitaxial quantum
dots, the so-called self-assembled QDs after which we continue with a different
technique to fabricate nanometer-size colloidal quantum dots.
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2
Optically Active Quantum Dots: Single and Coupled Structures

In the rapidly growing field of quantum information processing a significant, but
also quite challenging, goal is the realization of a scalable and robust hardware
using a solid state system. Since the 1990s zero-dimensional semiconductor quan-
tum dot nanostructures have attracted much attention because of their “atom-like”
energy spectrum with the associated discrete density of electronic states. Moreover,
the fabrication methods for many QD realizations provide the crucially required
inherent scalability. After experiments in the last decade of the previous century
demonstrated that carriers confined in QDs indeed are less affected by decoher-
ence effects, charge, and in particular, spin excitations in these nanostructures were
proposed as attractive qubits [11, 15–20].

Nowadays there are two main approaches used to fabricate QDs: (i) semiconduc-
tor heteroepitaxy and (ii) wet chemical synthesis. In this chapter we will introduce
these fundamentally different techniques and describe the electronic structure of
these dots based on the experimentally observed optical properties.

In contrast to “natural” and self-assembled QDs, which we will introduce in the
first section as the most prominent examples for epitaxial QDs, colloidal QDs in-
troduced in the second section of this chapter are not fabricated by epitaxial tech-
niques but are synthesized from solution and, therefore, allow for shell structures
providing an additional degree of freedom to engineer the electronic and optical
properties of these nanostructures.

2.1
Epitaxial Quantum Dots

One of the first QD systems that was studied spectroscopically was the so-called
“natural” or interface fluctuation QDs (IFQDs), which were already described
briefly in the previous chapter. This simple but also high quality type of QD forms
by monolayer fluctuations in thin quantum wells (QWs) [21–24]. In this QD sys-
tem, experiments demonstrated the high quality and low susceptibility to optical
decoherence processes of excitons despite the shallow confinement potential of
these QDs [25–29].

Spins in Optically Active Quantum Dots. Concepts and Methods.
Oliver Gywat, Hubert J. Krenner, and Jesse Berezovsky
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40806-1
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Another widely investigated QD system is presented in the second section:
These self-assembled QDs are nanometer-sized coherent islands grown by self-
assembly in strained material systems via the so-called Stranski–Krastanow growth
mode [30–34]. These islands show excellent structural and optical properties allow-
ing for the observation of few-particle and coherent effects of excitons localized in
individual nanostructures [35–45].

One remarkable breakthrough in the field of semiconductor fabrication tech-
niques is the epitaxial deposition of different semiconducting materials layer by lay-
er. The Greek root “epi-taxis” of the word epitaxy means “in the same manner”, that
is, preserving or adopting the structure of the underlying substrate. This versatile
technique allows us to obtain novel structures in which carriers can be confined in
one, two, or even all three spatial directions, known as quantum wells (QW), quan-
tum wires (QWR), and quantum dots (QD), respectively. These systems led to the
observation of novel physics like the quantum Hall effect, the quantum confined
Stark effect, or the fabrication of materials with “artificial band structures” [46–49];
many of these topics are by now part of advanced student textbooks [50]. Moreover,
advanced device concepts with functionalities not possible with conventional bulk
semiconductor devices have been envisioned and realized. One famous example
in this context is the quantum cascade laser [51]. These developments are often
described by the term “band structure engineering” [52, 53].

In a reactor for semiconductor epitaxy the reactants of the material to deposit are
brought to a (typically) heated substrate either in a vapor or as individual molecules.
These source materials can be either in a chemically bound form, for example,
a metal-organic compound in a carrier gas or as a molecular beam in an ultra-
high vacuum chamber. In these two cases the layers on the growth interface form
either by chemical vapor deposition or by forming layers of adatoms impinging
on the surface. These two methods are called metal-organic chemical vapor depo-
sition (MOCVD) and molecular beam epitaxy (MBE) and represent the two most
frequently used techniques for the fabrication of high quality epitaxial semiconduc-
tor structures. In this book we will not describe these methods in much detail and
refer interested readers to the extensive literature and textbooks on the wide field
of epitaxial deposition techniques, for instance, [54–56].

In epitaxy one can distinguish between two types different growth: (i) homoepi-
taxy where the substrate and the deposited materials are the same and (ii) het-

Frank–van der Merve Volmer–Weber Stanski–Krastanow

Fig. 2.1 Growth modes in semiconductor heteroepitaxy: Frank–
van der Merve (2D), Volmer–Weber (3D), Stranski–Krastanow
(2D–3D).
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eroepitaxy where a different material is deposited on a substrate. Since in heteroepi-
taxy the deposited material and the substrate material are different the chemical
and structural properties at the growth interface determine in which way the im-
pinging material is deposited. In heteroepitaxy three different growth modes exist,
which depend on the detailed energetic balance between surface and strain ener-
gy, depicted schematically in Figure 2.1. For almost identical lattice constants and
crystal structures of the deposited material and the substrate either the Frank–van
der Merve (FvdM) [57] or Volmer–Weber (VW) [58] growth mode takes place. The
growth of the system in either of these growth modes depends on whether the sum
of surface (α2) and interface (�12) energies is less or greater than the surface ener-
gy (α1) of the substrate. FvdM growth mode is observed in material systems with
α2 C �12 < α1, whereas VW growth mode occurs for α2 C �12 > α1. The most
prominent material system with FvdM growth is Ga(Al)As whereas VW growth can
be realized, for example, in the In(Ga)N/GaN material system.

In strained systems, like In(Ga)As/GaAs, In(Ga)As/InP, SiGe/Si or CdSe/ZnSe
the Stranski–Krastanow (SK) growth mode occurs [30]. First, a highly strained two-
dimensional wetting layer (WL) forms until, at a critical thickness, a transition to
island growth occurs. During the WL formation, the elastic energy in this strained
layer accumulates until at a critical thickness the crystal minimizes its total energy
by formation of islands with new facets and edges. These lead to a reduction of
the total free energy in this growth mode since the reduction of the elastic energy
is larger than the increase of surface energy. The formation of new crystal facets
increases the surface energy but this is overcompensated by the decrease of elastic
energy. These islands grow coherently (i. e., without dislocations) until they reach
a critical size and dislocation formation is the only way for strain relaxation to occur.

One major advantage of epitaxial QDs is that they can be grown in layers and,
therefore, embedded in more complex structures containing, for example, contact

(a) Layer sequence (b) TEM

Fig. 2.2 Schematic (a) and transmission electron mi-
crograph (b) of a MBE grown heterostructure containing
AlAs/GaAs superlattices and self-assembled QDs.
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regions and other nanostructures. They can be used as an active emitting medi-
um in high performance laser structures, optical modulators, emitters in photonic
microcavities, or electrically coupled to doped layers. They have found widespread
applications in novel optoelectronic devices with improved performance compared
to systems of higher dimensionality. An example of an epitaxial layer sequence is
shown schematically in Figure 2.2a. This sample contains AlAs/GaAs superlattices,
which form in FvdM growth mode as well as In(Ga)As QDs grown by self-assembly
in SK growth mode. In the transmission electron micrograph in Figure 2.2b the dif-
ferent materials can be clearly identified from the GaAs matrix as dark (AlAs) and
bright (InGaAs) regions.

2.2
“Natural” Quantum Dots Revisited

As mentioned above, an MBE-grown heterostructure consisting of a layer of a semi-
conductor sandwiched between two layers of higher bandgap semiconducting ma-
terial serves to confine electrons to the lower bandgap region and forms the fa-
miliar structure known as a quantum well. This provides a straightforward and
flexible route to obtaining one of the required three dimensions of confinement
needed to produce a quantum dot. In so-called “natural” or “interface fluctuation”
quantum dots (already introduced in Chapter 1), the in-plane confinement arises
from monolayer thick fluctuations in the quantum well width.

2.2.1
Structure and Fabrication

In ideal Frank–van der Merve heteroepitaxy, the interfaces between two materials
are atomically flat. In reality however, the interfaces of a quantum well will have
height fluctuations, increasing or decreasing by one atomic layer. As described in
the previous chapter, these fluctuations result in a landscape in the in-plane direc-
tion of the quantum well with regions of varying thickness. Since the ground state
energy in the conduction band of a quantum well increases as the well width de-
creases, an island in the quantum well surrounded by a region one atomic layer
thinner forms an isolated potential minimum for a conduction band electron or
valence band hole. For such an island of appropriate size, and at sufficiently low
temperature, this potential minimum serves as a quantum dot.

Most commonly, a GaAs quantum well surrounded by AlGaAs barriers is used to
form IFQDs providing confinement for electrons and holes. The growth is carried
out in the same manner as a regular quantum well, except for a pause in the growth
on the order of one minute at the two interfaces of the well. This pause allows the
atoms at the surface to migrate around and form islands of the appropriate size
(�100 nm in diameter). Figure 2.3 shows an STM image of these fluctuations in
an uncovered GaAs layer. Regions of different color represent steps in the height
of plus or minus one atomic layer. From this micrograph one can directly see that
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Fig. 2.3 STM image of a GaAs surface showing monolayer
fluctuations from which IFQDs are formed. Regions of different
shading indicate the monolayer steps on the surface. Reprinted
with permission from [24]. Copyright (1996) by the American
Physical Society.

these interface fluctuations are asymmetric and elongated along the [N110] crystal
direction. This gives rise to an increased anisotropic exchange interaction between
the electron and the hole forming the exciton. This interaction splits the ideally
circularly polarized and thus spin-selective exciton transitions into a linearly polar-
ized doublet [24]. For addressing spins in QDs via the polarization of light this has
to be taken into account. A detailed discussion will be presented in Chapter 6. The
planar density of QDs is typically quite high (on the order of 10 μm�2) and can be
controlled to some degree [59] by adjusting the substrate temperature and waiting
time before and after deposition of the GaAs layer. During these growth interrup-
tions monolayer fluctuations form and a more homogeneous spatial distribution
can be achieved. Since the formation does not rely on self-assembly or shell for-
mation as is the case for Stranski–Krastanow and colloidal QDs, respectively, more
complex structures like coupled pairs of IFQDs are extremely difficult to achieve.
This fact limits the scaling for spin and exciton-based qubits to at most one or two
qubits, respectively [29, 60].

2.2.2
Energy Levels and Optical Transitions

Under optical illumination with photon energy above the quantum well bandgap,
electrons and holes can be excited into the conduction and valence bands of the
quantum dots, respectively. The resulting photoluminescence (PL) spectrum (bot-
tom of Figure 2.4b) shows two distinct broad peaks due to recombination of elec-
trons and holes in the quantum well. The splitting between the two peaks observed
originates from areas of different QW width of 10 and 11 monolayers with the
10 ML areas having a higher transition energy compared to the 11 ML ones. To
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Fig. 2.4 (a) Top: Array of near-field optical apertures with sizes
ranging between 200 and 800 nm in an aluminum mask. Bot-
tom: SEM picture of a nominally 400 nm square aperture.
(b) Photoluminescence spectra of GaAs IFQDs collected
through apertures of various sizes. Reprinted with permission
from [24]. Copyright (1996) by the American Physical Society.

confirm that the 11 ML thick regions are sufficiently small to form dots, individual
interface fluctuations must be isolated. A convenient and frequently applied tech-
nique for the isolation of individual QDs are near-field shadow masks. Here a thin
opaque metal layer (�100 nm) is deposited on the sample surface. This mask is
patterned with submicron apertures beneath which – in the optical near-field –
a single QD or pair of QDs is located whilst the surrounding nanostructures are
blanked out. Figure 2.4 shows PL spectra of IFQDs measured through increasing-
ly small metal apertures fabricated atop the sample. As the aperture size is de-
creased, the broad low energy peak seen in the ensemble measurement breaks up
into a number of sharp peaks corresponding to emission from a few individual
QDs underneath the 1.5 μm aperture. With the smallest 200-nm-diameter aper-
tures, which are in the same range as the average size of and distance between
the IFQD determined by STM (see Figure 2.3), individual PL lines now appear.
These are well-separated in energy, indicating the isolation of just one or very
few QDs. This can be further confirmed by photon-photon time correlation mea-
surements, which prove that these peaks come from a single quantum light emit-
ter. By carefully adjusting the growth parameters, sufficiently large lateral interdot
separations can be achieved, which then do not require the described masking
technique [59].

Given the relatively weak confinement of an IFQD (typical potential barriers in
the lateral direction of about 10 meV), these dots hold only up to two electrons and
holes. Thus, there are only several possible configurations of charge in an IFQD.
These different charge configurations can result in various lines seen in the PL
spectrum of a single QD. For example, if a QD is occupied by one electron and
one hole (the exciton state, often denoted X0), the two can recombine, emitting
a photon at the energy difference between the electron and hole states, minus the
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electron–hole binding energy. Likewise, if the QD is occupied by two electrons and
one hole, or two holes and one electron (negatively or positively charged excitons,
denoted X� or XC respectively), luminescence will be observed at the energy dif-
ference between the charged exciton state and the single electron or hole state.
Finally, a fourth PL line is often observed due to recombination from the biexciton
state (2X0), leaving behind a neutral exciton in the QD. The different species of
excitons in QDs and the energy spacing between their emission lines will be dis-
cussed later in Section 2.3.2 for the example of self-assembled QDs. Unlike the case
of self-assembled In(Ga)As QDs discussed next, the confinement in IFQDs is suffi-
ciently weak that higher-charge states or shells are typically not confined in the dot.
This makes this type of QD unsuitable for high-temperature applications; however,
fundamental proof of principle experiments have often been demonstrated first in
this system.

In addition, by embedding a layer of quantum dots in a diode, the charge state
of the QD can be tuned with an applied voltage across the device. From this type of
data, one can determine the energies of the various charge configurations within
the QD. These types of devices will be discussed in detail in Chapter 4 and they are
the basis for many of the experimental results presented in Chapters 7 and 8.

2.3
Self-Assembled Quantum Dots

The fabrication of self-assembled QDs is based on the Stranski–Krastanow growth
mode that we introduced in Section 2.1. When In(Ga)As is deposited on a GaAs
substrate the � 7% mismatch between the bulk lattice constants of the two ma-
terials leads to the self-assembly of InAs islands on a two-dimensional wetting
layer when the InAs has reached a critical coverage of � 1.7 ML [33, 34]. Fig-
ure 2.5 shows an atomic force micrograph (AFM) of an ensemble of uncapped
InAs islands grown on GaAs. These islands are randomly distributed on the sur-
face and have a height of 5–10 nm and a diameter of 20–30 nm. This size distri-
bution has a strong impact on the optical emission of ensembles of these QDs.

Fig. 2.5 Atomic force micrograph of an ensemble of InAs
islands on GaAs. Micrograph courtesy of P. M. Petroff,
T. A. Truong and H. Kim, UC Santa Barbara.
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For broad size distributions a strong inhomogeneous broadening of the emission
reflects the resulting variation of the electronic levels in the different dots in the
probed ensemble. During the two-dimensional wetting layer growth only a certain
fraction (� 20%) of the deposited indium is incorporated into the WL. The ex-
cess material is present at the surface. The In concentration increases until the
critical value for island nucleation is reached. Afterwards, an efficient transfer of
In adatoms from the surrounding material into the island takes place leading to
an increased In concentration at the apex and an “inverted pyramidal” alloy pro-
file [61, 62].

For studies of individual QDs or QD pairs, material with a sufficiently low sur-
face density of dots is desirable. An elegant approach to fabricate areas of different
surface densities on a single wafer can be achieved by MBE. Such a gradient in
the surface density can be obtained by exploiting the fact that in MBE a molecular
beam impinges from a relatively small source onto the substrate. This molecular
beam is not homogeneous over the area of the substrate but typically forms a gra-
dient across the wafer. For the fabrication of homogeneous films, as for quantum
wells, this material gradient has to be compensated for by rotating the substrate
holder. However, when the substrate rotation is intentionally stopped during the
deposition of the QD material (for instance, InAs) the thickness of this film varies
and decreases from the side close to the In cell to the opposite side. The nominal
amount of material can be set to a value that in the high coverage area the criti-
cal thickness for island formation is reached, that is Stranski–Krastanow growth
of island occurs whilst on the opposite side the deposited material is no longer
sufficient and only a wetting layer is formed [34]. When moving along the mate-
rial gradient across this nucleation border the QD surface density decreases from
several 100 per μm2 to 0. In the transition region, which can, depending on the
MBE chamber’s geometry, extend over several millimeters, individual QDs can be
isolated directly by diffraction limited microphotoluminescence or in combination
with the previously discussed masking technique.

2.3.1
Strain-Driven Self-Alignment

Since the formation of self-assembled QDs is driven by the strain present in
the material, this property can be used to fabricate self-aligned multilayer struc-
tures [63]. For an overview on recent advances on strain-driven self-alignment
and self-assembly of coupled nanostructures on planar and patterned substrates
we refer the interested reader to recent literature [64–66]. A combination of the
different approaches together with optical cavities might provide a direct route to
a controllable architecture for QD-based quantum information processing.

The mechanism for the formation of vertically aligned pairs or even chains of
QDs is schematically depicted in Figure 2.6. If a seed layer of QDs is overgrown by
a thin spacer layer the strain field is not fully relaxed at the surface but modulated
by the overgrown islands. This leads to preferential nucleation sites for islands in
the second layer right on top of the overgrown one. This procedure can be repeated
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Fig. 2.6 Strain-driven self-alignment of self-assembled QDs.

several times leading to the formation of vertically aligned columns of QDs. For
thin spacer layers (<15 nm) a stacking probability close to unity can be achieved as
demonstrated in Figure 2.7a [63]. The scheme can be extended to multiple stacks
of QDs. In Figure 2.7b we present an STM image taken on the cross-section of
a cleaved sample. In the image five stacked InAs QDs can be identified. Since the
dots in each layer are grown under nominally identical conditions, and each dot
experiences more strain than the one below it, the lateral dimension of the islands
increases from the bottom to the top layer [67]. By adjusting the growth parameters
in the stacked QD layer(s) the relative size of the dots can be tailored [68–71]. This
method is simpler than other techniques such as twofold cleaved-edge overgrowth
(CEO), a technique that will be described briefly later, since it uses an intrinsic
property of strained heteroepitaxy to achieve ordering. However, due to the inho-
mogeneous nature of the island formation the atomistic precision offered by CEO
cannot be achieved [72]. After the first realization of strain-driven self-alignment
in the InGaAs material system, such structures were investigated using optical
and electrical spectroscopy in order to explore electronic coupling effects in these
nanostructures. In experiments studying individual pairs of stacked QDs, indirect
evidence for quantum dot coupling was obtained [73–76]. More recently, a clear-
er, unambiguous demonstration of coherent coupling has been observed [77]. In
the context of quantum information processing, excitons in electronically coupled
QDs were found to show long decoherence times, much longer than the timescales
required for coherent manipulation using picosecond laser pulses [17, 78].

This method can be further expanded for the fabrication of columnar structures,
so-called quantum posts [79, 80]. The fabrication relies on a deposition cycle of al-
ternating layers of InAs and GaAs where after each layer the growth is interrupted
for approximately one minute. The number of repetitions of this cycle determines
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Fig. 2.7 (a) The pairing probability is found close to unity for
spacers <15 nm. Reprinted with permission from [63]. Copy-
right (1995) by the American Physical Society. (b) X-STM of
a fivefold stack of InAs QDs demonstrates perfect alignment
of the islands. Reprinted with permission from [67]. Copyright
(2003) by the American Institute of Physics.

the height of the nanostructure, which can exceed 60 nm. Furthermore, the diame-
ter and In content can be controlled along the QD axis, that is the growth direction.
Such quantum posts are a recent example of ongoing development in the field of
self-assembled nanostructures with tailored structural and optical properties.

2.3.2
Optical Properties and QD Shell Structure

Photoluminescence (PL) spectroscopy is a powerful and widely applied technique
to investigate the level structure of QDs. In this type of experiment, electron–hole
pairs are photogenerated above the bandgap of the matrix material and then relax
over a sub-ps-timescale into the QDs. Carriers occupying the confined levels can
then recombine radiatively with typical lifetimes of �1 ns, much longer than the
relaxation time to the s (ground) states for electrons and holes. The number of car-
riers present in the system can be adjusted by the optical excitation density. An
example is shown in Figure 2.8, where an ensemble of � 107 QDs is probed by PL
for two levels of excitation density. For low excitation density (P0 D 0.1 W cm�1,
black line) each QD captures occasionally a single electron-hole pair on average.
Since the relaxation times to the s-states are much shorter than the radiative life-
time, mainly emission from the s shell is observed at low excitation densities. As
the excitation density is increased by two orders of magnitude (gray line), more
carriers are present in the system and the higher shells (p , d, f ) are subsequently
filled. This phenomenon is known as level-filling and represents typical behavior
for In(Ga)As QDs. As we discuss in more detail in Chapter 5, an electron in a p shell
will recombine with a hole in the p shell, a d electron with a d hole, and so on,
due to the optical selection rules. The emission of the higher shells is detected in
the PL spectra at higher power densities. Although these different transition lines
can often be clearly resolved in ensemble measurements, as for the sample shown
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Fig. 2.8 Photoluminescence of an ensemble of highly homoge-
neous InGaAs QDs. Four shells are clearly resolved and a char-
acteristic level-filling is observed as the excitation power is in-
creased.

in Figure 2.8, the PL peaks are typically still inhomogeneously broadened due to
size and morphology fluctuations in the quantum dot ensemble. In such ensem-
ble measurements, usually none of the more delicate features such as the exciton
fine structure, as discussed in Section 6.2, can be resolved. Nevertheless, PL spec-
troscopy performed on ensembles of self-assembled QDs is a powerful method to
characterize the optical properties of these nanostructures.

In order to describe the interband optical transitions of QDs, the confined states
of electrons and holes have to be modeled in a realistic way. Already in the early
years of QD research, it was found that a simple harmonic oscillator model pro-
vides a fairly good agreement with the experimental spectra. We introduce this
basic model here and compare the observed optical properties of self-assembled
QDs to its predictions. In InAs/GaAs as well as GaAs/AlGaAs QDs an attractive
confinement potential exists for both electrons (α D e) and holes (α D h). This is
usually referred to as a Type-I band alignment and obviously facilitates optical in-
terband transitions of these QDs2). The discussion presented here is more general
and also holds for most other QD systems.

The typical height of self-assembled QDs in the growth direction z is small
(�5 nm). The confinement along z is therefore treated as for a narrow quantum
well. Since the quantized sub-bands of a narrow quantum well are split far in ener-
gy, only the ground state sub-band E α

z is relevant for the experimentally observable
dynamics of electrons and holes, respectively. In contrast, the lateral dimension
of the QDs in the x y plane is typically much larger (&15 nm), providing an as-
pect ratio of . 1 W 3. The in-plane confinement is therefore much weaker than

2) In Type-II band alignment, in contrast,
either electrons or holes are confined in the
dot, while the carriers with opposite charge

are being pushed out of the dot. A detailed
discussion can be found in most textbooks
on semiconductors, for example, [50, 56].
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along z and determines the observable shell structure of the QD. The in-plane con-
finement for electrons and holes is given approximately by a radially symmetric,
two-dimensional harmonic potential [81–83].

This approximation can be justified by the observed equidistant shells in the QD
spectrum like the typical example shown in Figure 2.8. The strength of the confine-
ment for the two carrier species is given by the frequencies ωα . The eigenenergies
of this well-known problem are given by

E α
m ,n D „ωα (m C n C 1) (2.1)

with the associated two quantum numbers n and m. From these quantum numbers
m , n D 0, 1, 2 . . ., we can directly obtain the level scheme of such an ideal model
QD. The z-component of the angular momentum for each level with quantum
numbers m and n is obtained from the formula Lα

mn D ˙(m � n), where the “C”
and “�” signs apply for electrons and holes, respectively [81]. In analogy to atomic
physics [3], levels with their quantum numbers adding up to mCn D 0, mCn D 1,
m C n D 2, . . . are labeled s, p , d, . . . shells, respectively, in Figure 2.9.

In Figure 2.9b the allowed interband transitions are depicted schematically by
vertical arrows. We study these transitions more closely in Chapter 5 and see there
that they are electric dipole transitions. Here, let us just have a brief look at the
transition energies. As a rough approximation, consider for the moment nonin-
teracting electrons and holes in the quantum dot. The transition energy for an
electron–hole recombination is given in this situation by

Etransition D Eg C
X

αDe,h

E α
z C

X
αDe,h

E α
mα ,nα

D Eg,eff C
X

αDe,h

E α
mα ,nα

, (2.2)

where the usual bandgap energy Eg of the material, including strain, and the con-
finement energy in z direction can be added to an effective bandgap energy, Eg,eff D
Eg CE e

z CE h
z . The two-dimensional harmonic oscillator energies E α

mα ,nα
with quan-
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Fig. 2.9 (a) The parabolic confinement potential of a QD leads
to the formation of equally spaced energy levels labeled s, p , d
for electrons and holes. (b) Structure of the s- and p-shell with
the allowed interband transitions indicated by vertical arrows.
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tum numbers nα and mα describe the in-plane energies of electrons and holes. Op-
tical transitions among these levels give rise to the characteristic lines associated
with the quantum dot transitions s, p, d, . . . shown in Figure 2.8. Later in Sec-
tion 3.4 we show that the Coulomb interaction additionally induces characteristic
shifts in the PL spectra, which we have neglected here for simplicity.

2.4
Alternative Epitaxial Quantum Dot Systems

In addition to “natural” and self-assembled QDs, which we introduced in the previ-
ous sections, many other approaches to achieve quasi-zero-dimensional structures
have been followed over the past years. Some of these systems can be addressed and
controlled optically, while others cannot, depending mainly on the fact whether or
not both carrier species are confined in the dot.

2.4.1
Electrically Gated Quantum Dots

The most prominent example of a QD system that only provides confinement for
one carrier species – in almost every case electrons – are QDs that are induced
in a two-dimensional electron gas (2DEG). Such a 2DEG forms at the interface
between two semiconductors with different band gaps, for example AlGaAs and
GaAs. When a thin doped layer (modulation doping) is incorporated close to the
hetero-interface in the high bandgap material (AlGaAs) the carriers are transferred
to the low bandgap material (GaAs), and due to the electrostatics (positive donor
atoms in the AlGaAs and electrons in the GaAs) a triangular potential for electrons
forms at the interface giving rise to a two-dimensional channel in which electron
transport can take place. A similar situation exists at the oxide-semiconductor in-
terface in metal-oxide-semiconductor field effect transistors. Such hetero-interfaces
have found direct application in devices such as high-electron-mobility transistors
(HEMT) or modulation doped field effect transistors (MODFET). In addition to
QDs artificially defined in these high mobility 2DEGs another area of basic re-
search in these systems is the study of the integer and fractional quantum Hall
effects. The latter was indeed observed for the first time in a sample with a 2DEG
at an AlGaAs/GaAs hetero-interface [47]. A detailed discussion of the 2DEG and
its physics and application can be found in most advanced student textbooks on
low-dimensional semiconductor structures, for example [50].

When metal gate electrodes are defined on the surface of a sample containing
a 2DEG the voltage applied to these gates can be used to repel or deplete the 2DEG
electrons locally right underneath the electrode. Thus, for a 2DEG near the sample
surface and for nanometer-sized gates suitable contact geometries, which isolate
little puddles of electrons that are isolated from the surrounding 2DEG, can be
designed. Such an example is shown schematically in Figure 2.10a. Here the non-
depleted regions in the 2DEG are shown in gray. A QD is formed on the left side
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Fig. 2.10 Gate defined QDs in a 2DEG. (a) Schematic of
a double-dot structure the 2DEG (gray shaded region) is de-
pleted locally underneath the gate electrons thus defining and
isolating QDs in between. (b) and (c) SEM images of a single-
dot and a double-dot structure, respectively. Reprinted with per-
mission from [20]. Copyright (2007) by the American Physical
Society.

between two of the long finger gates, and the shorter gate between then can be used
to tune the number of electrons in the QD. Figures 2.10b and 2.10c show scanning
electron micrographs of gate-defined structures with a single-dot and a double-dot
structure, respectively. In Figure 2.10c two so-called quantum point contacts are lo-
cated next to the two dots, which can be used as extremely sensitive probes for the
number of charges on the adjacent QD. Such gate-defined QDs are widely studied
for implementation of spin-based quantum computation schemes. However this
can be typically done only by electrical means since no confinement potential for
holes is formed at the heterojunction. Moreover, their confinement is extremely
weak, which typically requires that experiments have to be performed at very low
temperatures of tens of milli-Kelvin in dilution refrigerators. Moreover, since only
one carrier species is confined, semiconductors with indirect bandgap in k-space
can be used. In this context Si/SiGe is an interesting material system since the
nuclear environment can be engineered. Recently, significant progress has been
made in the fabrication of isotopically engineered QDs and channels made from
nuclear-spin-free 28Si [84, 85].

A detailed discussion of this very active field of research would go beyond the
scope of this book. We refer the interested reader to recent review articles on these
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types of QDs (for instance, [20, 86]) where exciting results like coherent control
of single electron spins and conditional operations using coupled spin or direct
electron spin resonance are presented.

A related two-dimensional system that attracted wide-spread attraction recently
is graphene. In these single layers of s p 2 hybridized carbon, QDs can be defined,
for example, by etching a nanometer-sized region. Due to the virtually nuclear spin
free environment, this material has been proposed for spin-based quantum com-
putation [87–89].

2.4.2
Advanced MBE Techniques

Alternative approaches using advanced epitaxial techniques such as the growth
of pyramidal QD structures or twofold cleaved-edge overgrowth (CEO) have pro-
duced QDs of high optical quality. In these approaches intersections between QWs
are used to form a QD. At such an intersection, analogous to a IFQD, the carrier
wavefunctions can spread out over a larger volume, therefore lowering locally the
effective bandgap of the system. Using this principle a QD can be realized at the
intersection point of three QWs [72, 90, 91].

This principle is depicted schematically in Figure 2.11a for CEO. In this tech-
nique the sample is fabricated by a three-step process where in the first step a multi-
QW structure (MQW1) is grown. In the two following steps the sample is cleaved
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Fig. 2.11 Quantum dots fabricated by twofold cleaved edge
overgrowth. (a) A single dot forms at the intersection between
three QWs. (b + c) By using a multi-QW structure or superlat-
tice a chain of QDs can be realized with extremely high pre-
cision and the interdot coupling strength can be adjusted by
their separation. Reprinted from [91] with kind permission of
Springer Science+Business Media.
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inside the MBE in ultrahigh vacuum and the “fresh” facet is overgrown by anoth-
er QW perpendicular to the already existing structure. At the intersection between
all three wells a dot is formed as the wavefunctions of electrons and holes can ex-
tend over a larger volume. By appropriate design of the MQW1 sequence isolated
QDs, pairs or even long chains of QDs can be realized as shown in Figure 2.11b
and 2.11c. Due to the atomic precision offered by MBE, QDs can be defined and
positioned with monolayer accuracy. This led the precision of MBE. This led to the
first and, for a long time, only observation of coherent coupling effects in an isolat-
ed QD “artificial molecule” [72]. In contrast to “natural” and self-assembled QDs,
where electrical contacts and gates can be realized in a straightforward way, as we
will show in Chapter 4, this combination of optical and electrical access turned out
to be much more challenging for CEO devices.

Another method using the same concept of “providing more space for the wave-
functions to spread out and lower the state energy” are pyramidal QDs, which are
fabricated by MOCVD. Here a single order multi-QW structure is grown inside
pyramids etched into the wafer surface. The QWs are then grown on the side-
walls of these pyramids. However at the edges their thickness is slightly increased.
Therefore, a high quality, optically active QD or pairs of QDs form at the tip of this
pyramid [92, 93] and many interesting experiments have been performed using
these types of QDs [94].

CEO and pyramidal QDs represent only two of many promising examples that
exploit advanced epitaxial techniques. Many more elegant approaches exist to ob-
tain QDs, coupled QDs, or even QD crystals using such (quasi-) planar methods.
These are discussed in detail in recent books and reviews, for example, [64, 65].

Fig. 2.12 (a) An array of prepositioned nanowires. Reprinted
from publication [96] with permission from Elsevier. (b) TEM
image of an InAs nanowire in which a QD-like structure is iso-
lated by two InP barriers (light gray regions). Reprinted with
permission from [97]. Copyright (2004) by the American Chemi-
cal Society.
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2.4.3
Nanowire Quantum Dots

All techniques presented until now produced more or less planar structures in
which QDs are embedded. A completely different system are nanowires, which are
fabricated by a so-called bottom-up technique [95–98]. Here typically a catalyst or
nucleation center is used to induce the growth of tiny needles with diameters down
to a few nanometers and lengths that can exceed several microns. The material for
these nanowires is provided either by a molecular beam in an MBE chamber or
by metal-organic or other gaseous compounds in a chemical vapor deposition re-
actor. Such nanowires can be grown in a wide range of material systems including
the group IV like silicon and germanium and group III–V compound semiconduc-
tors such as InGaAs and InGaP. Figure 2.12a shows an SEM image of an array of
prepositioned nanowires. These nanostructures have attracted significant interest
since they present an isolated and inherently one-dimensional system. Moreover,
since they can be fabricated by established epitaxial techniques heterostructures
can be obtained within the nanowire. By using the well known materials one can
design and fabricate optically active QDs by embedding a thin layer of material
with a lower bandgap inside the nanowire. An example of such a junction is shown
in Figure 2.12b where two InP barriers (light regions) isolate a thin layer of InAs,
which then can form a QD. In addition, the fabrication of multi-QD structures can
be directly achieved. These nanowire QDs can not only be probed optically but al-
so electrically providing additional degrees of freedom to investigate the electronic
properties of these QDs [99, 100].

Fig. 2.13 (a) SEM image of the studied nanowires. (b) Sharp-
line PL of a single nanowire quantum dot as a function of exci-
tation power. Reprinted with permission from [99]. Copyright
(2003) by the American Institute of Physics.
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An example of a sharp PL line of an InAs QD embedded in a GaAs nanowire is
shown in Figure 2.13b. An SEM image of one of the nanowires studied is shown
in 2.13a. In the power dependent PL (the excitation increases from the lower to
the upper spectrum in 2.13b) the filling of shells is observed comparable to self-
assembled QDs.

We have noted before that nanowires can be also probed electrically making them
a very versatile system. Moreover, for electrical spectroscopy gate electrodes can be
also used to define a QD without the need for heterojunctions within the wire.
This method, known from carbon nanotubes [101, 102], can also be successfully
applied to nanowires, underlining the potential for applications in electronics and
photonics in this system [103].

2.5
Chemically-Synthesized Quantum Dots

An alternative route to quantum dot fabrication relies on wet chemical synthe-
sis [104, 105]. The nucleation and subsequent growth of semiconductor nanocrys-
tals in solution provides a simple and highly flexible method for generating large
ensembles of quantum dots.

Fig. 2.14 Apparatus for synthesis of colloidal nanocrystals. Pre-
cursor molecules are added to the coordinating solvent through
one neck of the flask; the condenser prevents evaporation of the
solvent, and a thermometer measures the temperature.
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2.5.1
Colloidal Growth

A typical setup for growth of nanocrystal QDs (NCQDs) is shown in Figure 2.14.
A number of different growth recipes have been developed, but they all follow
the same basic outline of colloidal growth [105]. A coordinating solvent is pre-
pared in the flask and heated to some high temperature (around 300 ıC). Another
solution containing metal-organic precursor molecules (e. g., dimethyl cadmium,
Me2Cd, and trioctylphosphine selenide, TOPSe, to produce CdSe nanocrystals) is
then quickly injected into the flask. With a high enough concentration of precur-
sors, nanocrystals will begin to nucleate. As the nucleation continues, the remain-
ing concentration of precursors decreases, and the temperature drops. Fairly rapid-
ly, a threshold is crossed beyond which nucleation of new nanocrystals stops. The
temperature is then held at some lower value (around 200 ıC), which allows the nu-
clei to continue to grow. Once the nanocrystals have reached the desired size, the
temperature is lowered further, and the growth is arrested. As long as the time dur-
ing which nucleation occurs is short compared to the growth time, the ensemble
of nanocrystals will be fairly uniform in size. In fact, typical synthesis procedures
yield nanocrystals with a size uniformity of ˙5%, which corresponds to an accu-
racy of about ˙1 atomic layer for typical NCQDs. High-resolution TEM imaging
(Figure 2.15a) of the resulting crystals shows good crystalline order, though giv-
en the large ratio of surface to interior atoms, the lattice is significantly strained.
Most nanocrystal QDs are roughly spherical in shape, though there is often some
faceting of the surfaces reflecting the underlying crystal structure.

Variations on this basic procedure provide great flexibility in the type of nanocrys-
tals produced. Most commonly, II–VI semiconducting materials have been used
to make nanocrystal quantum dots, such as cadmium, zinc, or mercury from
the II column and sulfur, selenium, or tellurium from the VI column. However,
nanocrystals can be fabricated from virtually all types of semiconductors, including

Fig. 2.15 (a) High-resolution TEM image of a single CdSe
nanocrystal. Reprinted with permission from [105]. Copyright
(1993) by the American Chemical Society. (b) A branched tetra-
pod nanocrystal. Reprinted with permission from [107]. Copy-
right (2000) by the American Chemical Society. (c) Cut-away
schematic of a layered “quantum dot-quantum well”.
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III–V materials such as InAs, oxides such as ZnO, and group IV semiconductors
such as germanium and silicon [106].

Additionally, one can also control the shape of the nanocrystals by changing the
growth parameters [107]. Elongated nanocrystals can form “quantum rods”, or even
more fanciful creatures such as branched tetrapods, shown in Figure 2.15b. An-
other interesting degree of freedom afforded by colloidal nanocrystal growth is the
ability to layer different materials within a single nanocrystal [29, 108, 109]. This
can be accomplished by following essentially the same growth procedure outlined
above to nucleate nanocrystals, then repeatedly exchanging the solvent to alternate
between the desired cations and anions. This process results in an onion-like crys-
tal with concentric layers of different materials, built up one atomic layer at a time.
By building a structure of multiple semiconductors with different bandgaps, one
can effectively tailor the potential felt by electrons and holes within a nanocrys-
tal quantum dot. This technique is often used to grow a higher bandgap capping
layer around a lower-bandgap core, to help isolate electrons and holes from the en-
vironment. Alternatively, more complex layered structures can be formed such as
a “quantum dot-quantum well” (or “quantum shell”) in which electrons and holes
are confined to a spherical shell of a low-bandgap material sandwiched between
a higher bandgap core and outer shell (see Figure 2.15c) [110–112].

An interesting feature of nanocrystal quantum dots, as compared with other
types of dots, is that once the fabrication is complete, the story is not over. Many
properties of the dots can still be affected by engineering their environment. The
dots can be removed from solution to form a close-packed solid, they can be dis-
persed on a surface, they can be chemically functionalized, they can be embedded
in a polymer, they can be arranged in an array on the surface of a virus – the list is
essentially endless.

2.5.2
Energy Level Structure and Optical Properties

The spectrum of energy levels in a nanocrystal quantum dot is tricky to calculate.
There are two approaches: to treat the nanocrystal as a small piece of bulk ma-
terial using the effective mass approximation, essentially solving the Schrödinger
equation with the appropriate boundary conditions, or to treat it as a collection of
individual atoms, finding the energy level spectrum using, for example, density
functional theory. Neither of these approaches is ideal. It is unclear whether the
assumptions of a bulk material still apply to a nanocrystal, which may just contain
a few hundred atoms. On the other hand even with just a few hundred atoms, ac-
curate first-principles calculations become difficult. Nevertheless, both approaches
have yielded results that are consistent with experimental evidence. Even in struc-
tures containing layers just a few atoms thick, the effective mass approximation
has proved fairly successful in predicting the energy levels.

Following the first approach described in the preceding paragraph, one finds
spin-1/2 electron states analogous to the energy levels of a hydrogen atom [113] (see
also Section 3.3). The wavefunctions are composed of the underlying Bloch wave-
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functions modulated by an envelope function, which can be labeled nL e , where n is
the principle quantum number, and L is S, P, D, and so on, indicating the angular
momentum quantum number of the envelope function. For example, 1Se denotes
the lowest energy conduction band state with an envelope function with angular
momentum quantum number l D 0. For the hole states, one must include the
orbital angular momentum of the underlying valence band states. These states can
be labeled nL f where n is the principle quantum number, f is the total angular
momentum of the hole state, and L is the lowest angular momentum component
of the envelope function (the hole state envelope functions have a component of
angular momentum l and l C 2). For example, the state 2P3/2 denotes the second
highest energy (second closest to the top of the band) valence band state with an
envelope having a component with l D 1 and l D 3, and with total angular mo-
mentum 3/2. That is, this hole state contains states from the heavy-hole and the
light-hole band, forming with the orbital angular momentum states a total angular
momentum 3/2 state.

Figure 2.16a shows the calculated and measured low-lying electron and hole
states in a CdSe nanocrystal as a function of dot diameter. Note that the spacing
between the low-lying energy levels can be quite large – on the order of 100 meV.
Since this energy is large compared to kBT at room temperature (�25 meV), semi-
conductor nanocrystals behave nicely as quantum dots even at room temperature.
The lowest energy electron and hole states in a typical nanocrystal quantum dot
are the 1Se and 1S3/2 states, respectively. The 1Se state is twofold degenerate due to
the electron’s spin 1/2, and the 1S3/2 state is fourfold degenerate, corresponding to
the projections of angular momentum Jz D �3/2, �1/2, 1/2, 3/2. Therefore, if an
electron–hole pair (i. e., an exciton) is optically excited in the dot, its lowest energy
state will be eightfold degenerate.

Additional considerations may be taken into account when calculating the spec-
trum of states in a nanocrystal quantum dot [113]. For example, deviations from
a spherical shape, or crystal anisotropy may be included, as well as the electron–
hole exchange interaction. These considerations mix various electron and hole
states, and lift the degeneracy mentioned above. This splitting will depend rather
sensitively on nanocrystal size and shape. Figure 2.16b shows the calculated split-
ting of the 1Se and 1S3/2 states as a function of dot diameter using an experimen-
tally determined nanocrystal shape distribution. The different states are labeled by
the projection of the exciton’s total angular momentum, with the solid curves cor-
responding to total angular momentum J D 1 and the dashed curves to J D 2.

As usual, the optical transitions in nanocrystal quantum dots are governed by se-
lection rules requiring conservation of angular momentum. That is, the absorption
or emission of a circulary polarized photon must be accompanied by a change in
the total angular momentum by ˙1. The optically active transitions are indicated
in Figure 2.16b by the solid lines, and the forbidden transitions are indicated by
dashed lines. It is interesting to note that the lowest energy exciton state is not an
optically allowed transition. Thus electrons and holes can only be excited into high-
er energy states, and once the exciton has relaxed into its ground state, it cannot
recombine optically (at least to first order).
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Fig. 2.16 (a) Calculated and measured
spectrum of size levels in CdSe NCQDs vs.
nanocrystal size. Data points are from exper-
iment, solid lines are from theory, dashed
lines are guides to the eye. Reprinted with
permission from [114]. Copyright (1994) by
the American Physical Society. (b) Calculated

splitting of the 1Se � 1S3/2 transition energy
due to various perturbations mentioned in
the text, using an experimentally determined
distribution of nanocrystal shapes. Reprinted
with permission from [113]. Copyright (1996)
by the American Physical Society.

Figure 2.17 shows photoluminescence (PL) spectra (dashed lines) and optical ab-
sorption spectra (solid lines) for various sizes of CdSe nanocrystal quantum dots.
As expected from “particle-in-a-box” considerations, and as borne out by the calcu-
lation shown in Figure 2.16a, the measured spectra shift to higher energy as the
nanocrystal size decreases. The PL and the lowest energy peak in the absorption
spectrum arise from the 1Se–1S3/2 transition. As mentioned above, the lowest en-
ergy transition with significant oscillator strength is not the exciton ground state.
This explains the (“Stokes”) shift between the lowest energy peak in the absorp-
tion and the PL. Excitons are generated in the higher energy, optically active states
and then rapidly relax into the ground state. Even though direct recombination
is forbidden from this state, higher order processes involving phonons or defects
can eventually allow the emission of a photon. This presence of this “dark” exciton
ground state is confirmed by observations of very long radiative lifetimes for exci-
tons in nanocrystal quantum dots (on the order of microseconds). For comparison,
the radiative lifetime of self-assembled InAs dots is on the order of nanoseconds.

In many cases, the 1Se–1S3/2 exciton states are essentially the only relevant states.
Electrons and holes excited into higher energy levels relax quite rapidly (� tens of



2.5 Chemically-Synthesized Quantum Dots 37

Fig. 2.17 Photoluminescence (dashed lines) and optical ab-
sorption (solid lines) of CdSe nanocrystal quantum dots for
various nanocrystal radii. Reprinted with permission from [113].
Copyright (1996) by the American Physical Society.

picoseconds), and any multiexciton states typically have very short lifetimes, on the
order of 100 ps. This short lifetime is due to Auger processes that allow an electron
and hole to recombine, giving their energy to another electron–hole pair. Of course,
there are various exceptions, where the higher energy states come into play. For ex-
ample, measurements have been carried out on electrochemically doped nanocrys-
tals [115], with electrons filling the lowest levels. Also, multi-exciton states can be
observed, albeit on short timescales, which has significant interest for making effi-
cient photovoltaic devices [116]. Nonetheless, in most cases the nanocrystal has at
most one electron and/or hole in the lowest energy states.

When an electron and hole are excited in an NCQD, their initial spin polarization
is determined by the selection rules discussed above. However, once they relax into
the dark exciton ground state they remain there for so long that the spin polariza-
tion is often lost before recombination occurs. For this reason, the polarization of
PL is not a good way to measure the spin in a NCQD. Instead, Faraday rotation has
been used to measure the spin of electrons in such QDs, which will be discussed
in detail in Chapter 7.
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3
Theory of Confined States in Quantum Dots

In this chapter we discuss single-particle models to describe conduction-band elec-
tron and valence-band hole states in quantum dots. We start with a brief review of
semiconductor physics in Section 3.1. We provide a description of quantum con-
finement and present simple models to describe the states of spherical and flat
quantum dots that have proven useful for the theoretical description of structures
introduced in Chapter 2. We conclude the chapter with a brief discussion of exten-
sions of the single-particle model for realistic quantum dots, the Coulomb interac-
tion, and an introduction to the concept of an exciton, a bound pair of an electron
and a hole in quantum dots.

3.1
Band Structure of III–V Semiconductors

This section serves as the basis for our discussion of quantum dot states. While
we assume that the reader is familiar with the basic concepts of solid state theo-
ry [117–119], we summarize here a few results that are useful for the description
of semiconductor quantum dot states. We focus this theoretical discussion on III–
V semiconductor compounds with zincblende structure, such as gallium arsenide
(GaAs) or indium arsenide (InAs). Many current investigations are dedicated to
quantum dots that are formed with such materials, for instance, self-assembled
quantum dots. The III–V band structure fortunately also serves for the discussion
of confined states of a second type of quantum dots, namely, small spherical quan-
tum dot structures consisting of a II–VI semiconductor compound (such as cad-
mium selenide) with hexagonal crystal structure and an axial anisotropy [120].

The electronic band structure of a bulk semiconductor with zincblende structure
is illustrated in Figure 3.1. The bands are parabolic close to their extrema, which
are all located at the Γ point (k D 0), that is, the center of the Wigner–Seitz cell.
The bottom of the conduction (c) band and the top of the valence (v) band are split
by the bandgap energy Eg. The Fermi energy of an intrinsic (that is, undoped) semi-
conductor lies by definition within the bandgap. So in the crystal ground state, the
v band is completely filled, while the c band is empty. The absence of an inversion
center in the zincblende crystal leads to small shifts of the bands in k space [121].

Spins in Optically Active Quantum Dots. Concepts and Methods.
Oliver Gywat, Hubert J. Krenner, and Jesse Berezovsky
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40806-1
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For example, those terms induce a k dependent spin splitting of the c band. Regard-
ing the energy splitting of confined levels in quantum dots, these energy shifts are
small and we neglect them here.

3.1.1
Effective Mass of Crystal Electrons

There is an approximately parabolic energy dispersion around the extrema of
the bands, as shown in Figure 3.1. The electrons thus behave like free effective
particles, which are called crystal electrons [118]. In an isotropic and parabol-
ic band b, the kinetic energy of a crystal electron can be written as „2k2/2m�

b ,
where m�

b is called the effective mass of the crystal electron. Generalizing this
picture to anisotropic energy dispersions, the inverse effective mass is defined as
a second-rank tensor that is obtained from the curvature of the energy dispersion
Eb(k),

�
(m�

b )�1�
α� D 1

„2

@2Eb(k)
@kα@k�

. (3.1)

The effective mass of crystal electrons can be measured experimentally by cyclotron
resonance [117]. In general, we apply the effective mass approximation whenever
the intra-band dynamics of electrons is considered. When studying transitions
between different bands, as in Section 5.2.2, it should be kept in mind that an

(a) (b)

Fig. 3.1 Scheme for the electronic bandstruc-
ture in the vicinity of the Γ point for a three-
dimensional crystal with zincblende lattice
structure (a) without strain (b) in the pres-
ence of uniaxial strain. The bands shown are
the conduction (c) band, the heavy-hole (hh)
band, the light-hole (lh) band, and the spin–
orbit split-off (so) band. Energies are given

on an arbitrary scale as a function of (a) the
wavevector k (b) the in-plane wavevector kk

(perpendicular to the strain axis). The band
ordering displayed in (b) serves for the discus-
sion of confined quantum dot states, where,
in contrast to (a), the hh and the lh bands are
split by Δhh�lh .
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effective mass cannot be taken into account in a meaningful way and the picture
of effective crystal electrons needs to be abandoned.

3.1.2
Spin–Orbit Interaction

The spin–orbit interaction is essential for the structure of the bands of Figure 3.1.
At the heart of the spin–orbit interaction lies the relativistic effect that an electron
moving in an external electric field experiences an effective magnetic field that
couples to its spin S. For an electron with momentum p in the presence of the
electric potential Φ , an expansion in powers of 1/c of the Dirac equation yields in
second-order the term

Hso D � e
2m2

0c2
S � (rΦ � p) , (3.2)

which is called the spin–orbit interaction term. We can see in the above expression
that the effective magnetic field is generated by rΦ � p D p � E, where E is the
static electric field. If the spin–orbit interaction is nearly isotropic in the crystal, we
obtain

Hso � λ s oL � S , (3.3)

where L is the orbital angular momentum of the electron in the semiconductor
crystal and λ s o a constant. Then, with J2 D (L C S)2, the total angular momentum J
of the electron provides a diagonal representation of Hso , and the corresponding
quantum number j is a good quantum number in the semiconductor.

For an electron confined to a two-dimensional crystalline solid, the spin–orbit
interaction Eq. (3.2) takes on a slightly more complicated form,

H2D
s o D αR(px σ y � p y σx ) C �D(�px σx C p y σ y ) C O(p 3) , (3.4)

where αR is the Rashba coefficient, �D the Dresselhaus coefficient, and p D
(px , p y ) the two-dimensional momentum operator. The Rashba term [122] results
from a structure inversion asymmetry of the confinement potential, whereas the
Dresselhaus term [123] is due to the bulk inversion asymmetry of the crystal lattice.
In a strictly two-dimensional system, the cubic Dresselhaus terms can be neglected
relative to the linear terms, as given in Eq. (3.4).

3.1.3
Band Structure Close to the Band Edges

We now take a more detailed look at the band structure of a zincblende semicon-
ductor in the region around the Γ point, as shown in Figure 3.1. In general, the
c band and the v sub-bands, which together form the v band, are twofold degener-
ate if we neglect the small splittings due to the absence of inversion asymmetry, as
mentioned above. At k D 0, the c band has total angular momentum j D 1/2. The
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v band consists of three sub-bands, the heavy-hole (hh), the light-hole (l h), and the
spin-orbit split-off (so) band.

By definition the v sub-bands are completely filled in the crystal ground state.
As the most relevant dynamics of the v sub-bands is therefore due to missing elec-
trons, called holes, the nomenclature refers to holes rather than electrons in some
cases. At k D 0, the hh and the l h band have total angular momentum j D 3/2
and the so band has j D 1/2. The v band states with j D 3/2 and j D 1/2 are split
by the spin–orbit interaction energy Δ s o D 3„2 λ s o/2, which is easily derived from
Eq. (3.3). In the literature, the corresponding spinor representations are called Γ6

for the c band, Γ8 for the hh and the l h band, and Γ7 for the so band [121, 124].
The splitting Δ s o is large in our cases of interest. For example, Δ s o D 340 meV for
GaAs and Δ s o D 380 meV for InAs [125]. We therefore exclude the so states from
our discussion in the following. The above classification of the k D 0 states follows
directly from the symmetry properties of the semiconductor crystal and the atomic
orbitals that give rise to the corresponding bands.

As can be seen in Figure 3.1, the hh and the l h sub-bands are degenerate at the
Γ point and split into two branches for finite wave vectors k. The hh states have the
angular momentum projections Jz D ˙3„/2 and the l h states Jz D ˙„/2 at k D
0. The different curvatures of the two branches induce different effective masses for
heavy and light holes according to Eq. (3.1); this is where their names come from.
In Figure 3.1 we indicate parabolic bands, which is typically only applicable as an
expansion to the regions close to k D 0. Usually, strong mixing occurs between
the bands and sub-bands further away from the band extrema, especially between
the relatively closely located hh and l h sub-bands. This mixing leads to a deviation
from the parabolic dispersion relation. At large k, the total angular momentum j is
thus no longer a good quantum number.

3.1.4
Band-Edge Bloch States

According to Bloch’s theorem, electrons in a periodic crystal potential in the band b
with wave vector k are described by a wave function

hrjΨ b
k i D eik�r ub

k(r) . (3.5)

Here, we apply Dirac’s bra-ket notation on the left-hand side. The Bloch state ub
k(r)

on the right-hand side is a function that is periodic in the Bravais lattice of the
crystal. In the following we consider quantum dots that, due to their spatial con-
finement in three dimensions, provide fully quantized states for crystal electrons.
We consider only values of k close to zero, such that it is a good approximation to
classify the states by the total angular momentum j. It is actually not clear from
the beginning that j is a good quantum number for confined quantum dot states,
especially for small dots with radii of only a few nanometers. For confined states,
decreasing spatial dimensions lead to an increase of the wave number k. This gives
more weight to even higher-order terms in the energy dispersion, which enhances
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the coupling to bands with different angular momenta. However, experimental da-
ta has suggested so far that the small k assumption provides a reasonable approx-
imation for the Bloch states for the types of quantum dots discussed in this book.
Consequently, for the states confined in quantum dots we write for the Bloch states
in the following u( j )

Jz
(r), using the total angular momentum j and the projection Jz

as labels instead of b and k.
The Bloch states of the c band in a semiconductor quantum dot with zincblende

structure have orbital s symmetry,

ju(1/2)
C1/2i D jsij "i , ju(1/2)

�1/2i D jsij #i , (3.6)

where jsi is a function that is invariant under all symmetry transformations of the
Bravais lattice. We define the spin states j"i and j#i along a crystal main axis z, for
example [001]. The above c band edge states are spin degenerate if we neglect small
terms that are cubic in k and which are due to the absence of inversion symmetry
in the zincblende lattice.

The v band Bloch states have orbital p symmetry. By coupling the orbital angular
momentum l D 1 and the spin S D 1/2 according to the usual Clebsch–Gordan
theory, the hh states are obtained as

ju(3/2)
C3/2i D � 1p

2
jx C iyij"i , (3.7)

ju(3/2)
�3/2i D 1p

2
jx � iyij#i , (3.8)

and the l h states as

ju(3/2)
C1/2i D � 1p

6
(jx C iyij#i C 2jzij"i) , (3.9)

ju(3/2)
�1/2i D 1p

6
(jx � iyij"i C 2jzij#i) . (3.10)

In the above expressions, jx ˙ iyi D jxi ˙ ijyi and the states jαi are the p-type
parts of the Bloch states, which transform like the coordinates α D x , y , z. Again,
we omit here the so states (with j D 1/2) because they are far away in energy.

Looking at the above hh and l h states again, we note that for the hh states there
is a one-to-one correspondence between the projections of the total angular mo-
mentum and the spin. For l h states, however, both spin orientations are present in
both angular momentum projections. As we discuss further in Section 5.2.2, this
allows for more l h optical transitions than for hh states.

3.1.5
Coupling of Bands and the Luttinger Hamiltonian

For the discussion of the dynamics of electrons in bands around a specific point
k D k0 in k-space, the so-called k�p theory is a very powerful tool. We do not attempt
a complete discussion of this topic here, and only summarize a few important
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results. For our purposes, k � p theory provides a description in perturbation theory
of the band energies and states near the band extrema at k0 D 0. We stick with
writing k0 for the expansion point below in favor of a more general notation. The
band-edge Bloch states of the type as given in Eqs. (3.6)–(3.10) above serve as an
orthogonal basis for the perturbation expansion in small k around k0. Obviously,
the symmetry properties of the band-edge Bloch states determine the spectrum
near the band extremum obtained in the frame of this theory. The expansion of the
energy En(k0) of the band b D n in small wave vectors k around k0 is the first result
of k �p theory that we show. In the discussion of the quantum dot states later in this
chapter we will come back to this result. We assume that En(k0) is an extremum of
the band n, and that the corresponding electron state is f-fold degenerate with kets
jn1i, . . . , jn f i. To second-order in degenerate perturbation theory we obtain for the
Hamiltonian

hn j jH jnii D δ i j

�
En(k0) C „2k2

2m0

	

C „2

m2
0

X
m¤ns

hn j jk � pjmihmjk � pjni i
E (0)

n � E (0)
m

, (3.11)

where E (0)
n denotes the zeroth-order energy of the unperturbed states jnsi, with the

index s D 1, . . . , f for the degeneracy. In the sum over all m we can usually exclude
m D ns for all s because the momentum matrix element vanishes if taken between
two states with the same parity. The second-order correction with the characteristic
k � p matrix elements has given the name to the theory. In those matrix elements,
k serves as the expansion parameter in the sense of perturbation theory, while p
is an operator acting on the states of the matrix element. To indicate this, many
authors take k in front of the momentum matrix elements. In principle, k �p theory
can be expanded in an arbitrary number of bands.

Another important result from multiband k � p theory is the expression for the
effective gyromagnetic (g) factor of electrons in the c band with energy E (taken
with respect to the band minimum energy, E D 0), [126, 127]

gc(E ) � g0 � 2
3

Ep Δ s o

(Eg C E )(Eg C Δ s o C E )
. (3.12)

Here, g0 D 2.00 is the free electron g factor and Ep D 2(hsjpjxi)2/m0 is the so-
called Kane energy with the momentum matrix element taken between an s-like
and a p-like Bloch state.

If we focus on two valence sub-bands only and write down the Hamiltonian with
the four j D 3/2 Bloch states Eqs. (3.7)–(3.10) for the states jnsi and set En(k0) D 0,
then we obtain the famous Luttinger Hamiltonian [128],

HL D

0
BB@

Hhh c b 0
c� Hl h 0 �b
b� 0 Hl h �c
0 �b� �c� Hhh

1
CCA , (3.13)
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where the asterisk � denotes complex conjugation, and we use the following abbre-
viations,

Hhh D „2

2m0
(γ1 C γ2)



k2

x C k2
y

�
C „2

2m0
(γ1 � 2γ2)k2

z (3.14)

Hl h D „2

2m0
(γ1 � γ2)



k2

x C k2
y

�
C „2

2m0
(γ1 C 2γ2) k2

z (3.15)

c D „2
p

3
m0

γ3kz (kx � iky ) (3.16)

b D „2
p

3
2m0

γ2



k2

x � k2
y

�
� i

„2
p

3
m0

γ3kx ky . (3.17)

In above equations, γ1, γ2, and γ3 are the Luttinger parameters. The values of the
Luttinger parameters γi depend on the strength of the inter-band coupling and are
obtained experimentally. They determine the effective masses of hh and l h states
as indicated in Hhh and Hl h . It is obvious from these expressions that the effective
masses of the hh and the l h bands are usually anisotropic. Sometimes in the lit-
erature a different representation is chosen for the j D 3/2 angular momentum
eigenfunctions than Eqs. (3.7)–(3.10), for example the Luttinger–Kohn representa-
tion [129]. This leads to different phases of some matrix elements in HL compared
to the standard representation, but of course the energy eigenvalues are the same.
The Luttinger Hamiltonian HL can be written down in a more compact form by
using the j D 3/2 angular momentum matrices,

Jx D „
2

0
BB@

0
p

3 0 0p
3 0 2 0

0 2 0
p

3
0 0

p
3 0

1
CCA , (3.18)

Jy D i„
2

0
BB@

0 �p
3 0 0p

3 0 �2 0
0 2 0 �p

3
0 0

p
3 0

1
CCA , (3.19)

Jz D „
2

0
BB@

3 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �3

1
CCA . (3.20)

Using above matrices Jα and the anticommutator f Jα , J�g D Jα J� C J� Jα , we can
alternatively write for the Luttinger Hamiltonian

HL D � „2

2m0

�
γ1 C 5

2
γ2

�
k2 C „2

m0
γ2



k2

x J2
x C k2

y J2
y C k2

z J2
z

�

C „2

m0
γ3
�
kx ky f Jx , Jy g C kx kzf Jx , Jzg C ky kzf Jy , Jzg� . (3.21)

The Luttinger Hamiltonian is sometimes also shown in a form using the momen-
tum operator, which is obtained from above expressions by replacing kα ! pα/„.
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There are two frequently encountered approximations for the Luttinger parame-
ters. In the so-called spherical approximation the parameters γ2 and γ3 are replaced
in HL by the value

γ D 1
5

(2γ2 C 3γ3) . (3.22)

As a consequence of this substitution, the warping of the valence bands due to the
cubic symmetry is neglected. The Luttinger Hamiltonian Eq. (3.21) can then be
written in the compact form

HL,spherical D � „2

2m0

�
γ1 C 5

2
γ
�

k2 C „2

m0
γ (k � J)2 . (3.23)

In our study of the confined quantum dot states below, we will come back to this
form of the v band Hamiltonian.

Another approximation for the Luttinger parameters is the so-called axial ap-
proximation. We do not apply this more special approximation in this book, but
mention it for reasons of completeness. In the axial approximation, γ2 and γ3 are
replaced in the b matrix elements by their average

γ 0 D 1
2

(γ2 C γ3) . (3.24)

After this modification, HL is symmetric about the z axis, and the warping of the
valence bands is neglected in the x y plane only.

3.1.6
Splitting of Heavy Hole and Light Hole Bands

Uniaxial strain in the semiconductor crystal is a mechanism that can lift the degen-
eracy of heavy and light holes at k D 0 [121]. For uniaxial compression in GaAs,
the top of the l h band is higher in energy than the top of the hh band. For uni-
axial stretch, the opposite ordering is achieved. We assume now that the hh and
l h bands are split at k D 0 by an energy Δhh�l h. If the deformation axis z0 does
not coincide with z, a new angular momentum quantization axis is defined for the
v band states. The energy splitting Δhh�l h quenches the transition probabilities be-
tween heavy and light hole states, which is immediately clear in the expression for
transition rates in perturbation theory, where the energy difference enters in the
denominator. According to Chapter 5, the dominant transition mechanism among
the levels of the j D 3/2 manifold are single-photon magnetic dipole transitions
with a total angular momentum difference Δ Jz D ˙„. Hence, the dominant hole
angular momentum transitions are ordered in the sequence

Jz D C3„
2

$ Jz D C„
2

$ Jz D �„
2

$ Jz D � 3„
2

. (3.25)

The direct transition between the two outermost hh states in above sequence obvi-
ously requires an exchange of angular momentum Δ Jz D ˙3„. The leading terms
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of such a transition are due to higher-order processes such as, for example, a three-
photon transition or a combination of photon and phonon transitions, which usu-
ally have a very low transition probability. We conclude from these considerations
that with increasing splitting Δhh�l h, the hh angular momentum states become
“frozen” under usual conditions, when compared to the bulk where the hole an-
gular momentum relaxes typically faster than picoseconds. An important mecha-
nism that can flip a hole spin is given by the electron–hole exchange interaction,
see Section 6.2. However, to become active, the electron–hole exchange interaction
requires the presence of an electron in addition to the hole, of course.

3.1.7
Electrons and Holes

Via an external excitation of the semiconductor, for example by the absorption of
a photon, an electron in a v band state can be excited into a c band state. This
process leaves an unoccupied state in the v band, which is called a hole. As unoc-
cupied states give rise to the intraband dynamics in the otherwise filled v band, it is
usually more intuitive to consider holes in these cases, for example for the confine-
ment in a quantum dot structure. In contrast, we usually stick with the electron
picture when calculating transition matrix elements, for simplicity. In Chapter 5
we investigate in more depth the optical selection rules that need to be satisfied for
inter-band transitions related to radiation.

In the hole picture we take into account that there is a net positive charge asso-
ciated with an empty valence band state. This is the result of the positive nuclear
charge, which is not neutralized by the surrounding electrons. As band states are
delocalized, the unoccupied state moves through the crystal and effectively behaves
like a particle with a positive charge. We thus may consider the empty v band state
as an effective particle with positive elementary charge e and the effective mass of
the corresponding band.

3.2
Quantum Confinement

For a single particle with momentum p, quantum mechanical behavior generally
becomes apparent when it moves in a potential that varies significantly on a length
scale comparable to its de Broglie wavelength λ p D h/p , where h is Planck’s con-
stant. As we already mentioned earlier in this book, semiconductor quantum dots
with an extension in all three dimensions on the order of nanometers to tens of
nanometers exhibit a discrete energy spectrum of fully quantized electron states.
Here we discuss a few important concepts and models of quantum confinement.
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3.2.1
One-Dimensional Confinement

We start our discussion of confined states with a brief example, the quantum con-
finement along one crystal axis z due to a deep rectangular potential well. This
model is usually applied to quantum wells with growth direction z, but is also rel-
evant to quantum dots with a flat, that is, oblate, shape. The confinement along
z quantizes the z-component pz of the momentum operator. Already at this level
we can see that the hh and l h states with a given pz are split at the Γ point (k D 0)
by a confinement energy

jΔz
hh�l hj D hp 2

zi
�

1
2ml h

� 1
2mhh

�
, (3.26)

with the effective masses taken along z, and the usual quantum mechanical ex-
pectation value, h. . . i. Obviously, one-dimensional confinement raises the l h band
above the hh band in energy. Because of the lifting of the hh–l h degeneracy along
the crystal axis z, the confinement asymmetry defines an angular momentum
quantization axis for the v band states along z. In practice, the presence of strain
also needs to be taken into account for the v band structure, such as the uniax-
ial deformations discussed in Section 3.1.6. Actually, in self-assembled quantum
dots, the strain overcompensates the sub-band reordering due to the asymmetric
confinement in many cases and leads to a resulting band ordering as illustrated in
Figure 3.1b.

3.2.2
Quantum Dot Confinement

For an electron in the band b that is confined to a quantum dot, the equation of mo-
tion takes on quite a simple form in the effective mass approximation. It becomes
the motion of a crystal electron with an effective mass m�

b in an effective potential
Vqd,b(r) that characterizes the shape of the quantum dot. These effective quantities
spare us the more difficult treatment of the Schrödinger equation in presence of
the full crystal potential of the quantum dot. The effective potentials Vqd,b(r) may be
different for different bands b, since they are valid for crystal electrons in different
branches of the energy dispersion relation.

Another approximation that we apply to quantum dot states in this book is the
envelope function approximation. In this approximation, the total wave function
jΨbi of a single electron in the band b is written as

hrjΨbi D
X

l,mI j, Jz

c j, Jz
l,m ψ l m(r)u( j )

Jz
(r) , (3.27)

with the Bloch functions u( j )
Jz

(r), envelope functions ψ l m(r), and expansion coeffi-

cients c j, Jz
l,m . This wave function is similar to the wave function Eq. (3.5) for Bloch
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electrons. However, in contrast to the plane wave function exp (ik � r) of Bloch elec-
trons in the crystal, the envelope functions ψ l m(r) are localized at the quantum dot
according to the effective quantum dot potentials Vqd,b(r) of the specific band b. The
indices l, m are the angular momentum quantum numbers for spherical quantum
dots. For other types of quantum dots, a different basis may be more suitable. The
envelope function approximation Eq. (3.27) can be justified only for quantum dots
for which the potential Vqd,b(r) varies over a length scale much larger than the lat-
tice constant.

Referring back to our previous discussion of the splitting of heavy and light hole
states, we note that typical hh–l h splittings found in quantum dot experiments
are on the order of Δhh�l h � 10 meV across many different systems. Usually, the
energetically lowest interband transitions between the c and v bands in quantum
dots are hh transitions, indicating that the v band ordering is mainly determined
by strain.

In the following, we discuss two examples of experimentally relevant quantum
dot models. The first model is for spherical quantum dots, which are usually chem-
ically synthesized colloidal dots, and the second model is for parabolic, lens-shaped
self-assembled quantum dots.

3.3
Spherical Quantum Dot Confinement

Spherically symmetric quantum dot structures are special due to their maximum
spatial symmetry. As is well known from quantum mechanics, the Schrödinger
equation with a spherically symmetric potential can be reduced to a one-dimen-
sional problem, namely, the radial Schrödinger equation. For the most simple
cases, this allows for an analytical solution of the confined states in a spherical
quantum dot structure. Spherical quantum dots are usually surrounded by anoth-
er material into which the confined wave functions may protrude. It is sometimes
desirable to cover a quantum dot with a large-bandgap material, for example to
avoid photoluminescence bleaching due to carrier trapping in surface states. Even
more elaborate systems are nested spherical shells that surround a core, separated
by interlying large-bandgap barriers.

We discuss here a generic system for the above mentioned structure types, name-
ly, a spherical quantum dot (which we refer to as the core) embedded in an infinitely
large shell that consists of a different material than the core. The interface between
the core and the shell deserves special consideration due to the abrupt jump in
the effective mass of the band electrons. To solve this problem, an ansatz for the
lowest-energy wave function pieces is made and then the conditions are shown that
need to be satisfied to connect a wave function piece in the core with a piece in the
shell.
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3.3.1
Conduction-Band States

We consider a core made of a semiconductor a, with radius r0, surrounded by an
infinitely large shell made of a semiconductor b. Before we solve the Schrödinger
equation for a c band electron in this core-shell structure, we note that its effective
mass is position dependent,

m�
c (r) D ma for r < r0 , and m�

c (r) D mb for r > r0 . (3.28)

In this situation, the usual kinetic energy operator p2/2m�
c (r) (or, alternatively, also

[1/2m�
c (r)]p2) is not Hermitian because the radial part of the momentum operator

and a function of r do not commute. However, we may obtain a Hermitian form of
the kinetic energy by an ordering of operators such as

H0,c D p
1

2m�
c (r)

p . (3.29)

The c band Hamiltonian for the envelope function is in the two-band approxima-
tion and in effective-mass theory given by

H D H0,c C Vc(r) , (3.30)

where H0,c is in a Hermitian form as given above and Vc(r) is the effective radial
potential of the core-shell structure. We set the c band energy of the core to zero
and assume a step-like radial potential,

Vc(r) D Vc Θ (r � r0) , (3.31)

where Θ (r) is the Heaviside step function. We now consider r ¤ r0 and discuss
the solutions away from the boundary between the core and the shell.

In envelope function theory, Eq. (3.27), the electron wave function can be repre-
sented as

Ψc(r) D
X

l,mI j, Jz

c j, Jz
l,m Yl m(Or)Rl(r)u( j )

Jz
(r) , (3.32)

where the envelope function has the well known structure with the angular mo-
mentum eigenfunctions Yl m and the radial eigenfunctions Rl , and c j, Jz

l,m are the
Clebsch–Gordan coefficients. Further, Or D r/r is a radial unit vector. It can be seen
in Eq. (3.32) that for spherical quantum dots there are two important kinds of angu-
lar momenta: There is the total angular momentum J of the Bloch function, which
is the angular momentum of the band, and there is the orbital angular momen-
tum L of the envelope function Yl m(Or)Rl (r). Electron states in a spherically symmet-
ric structure can be classified according to the total angular momentum F D L C J
and the parity operator P, which acts on the wave function as PΨ (r) D Ψ (�r). Note
that J is invariant under the action of P because it is a band angular momentum.
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For the c band states the internal angular momentum is j D 1/2, and therefore
each of the eigenstates j f, Fzi is composed of two parts with orbital angular mo-
menta l D f ˙„/2, respectively. Yet, these two parts have different parities because
of their orbital components, as PYl m D (�1)l Yl m. A classification according to F, P,
and n, where n enumerates the radial solutions for a given l, is therefore equivalent
to a classification according to the quantum numbers (n, l, m , Jz ) for the conduc-
tion band states. We write for the conduction-band (electron) eigenstates

hrjnlm Jzi D Yl m(Or)Rl (r)u(1/2)
Jz

(r) , (3.33)

where Rl satisfies at r ¤ r0 the radial Schrödinger equation with angular momen-
tum quantum number l,�

�@2
r � 2

r
@r C l(l C 1)

r2 � k2
nl

	
Rl (r) D 0 . (3.34)

Here, @r is the partial derivative with respect to the radial coordinate r. In terms of
the eigenenergies Enl we have defined in the above equation

k2
nl D 2m�

c (r)
„2

�
Enl � Vc(r)

�
. (3.35)

In the following, we consider the case of zero external magnetic field and drop the
spin index Jz . As Vc is constant for r ¤ r0, the radial solution of Eq. (3.34) is given
there by

Rl (r) D c1 j l(knl r) C c2 y l(knl r) , (3.36)

with parameters c1,2 and j l and y l are the l-th order spherical Bessel function of
first and second kind, respectively. In terms of the Bessel functions Jν and Yν ,
the spherical Bessel functions are given by j l(x ) D p

π/2x JlC1/2(x ) and y l(x ) Dp
π/2x YlC1/2(x ).
For l D 0, the spherical Bessel functions of first and second kind read

j0(r) D sin r
r

, y0(r) D � cos r
r

. (3.37)

For states in the classically forbidden region, a suitable basis is given by the spher-
ical Hankel functions of first and second kind, h˙

l (ir) D j l(ir) ˙ iy l(ir), of which
the zeroth-order states are given by

hC
0 (ir) D � e�r

r
, h�

0 (ir) D er

r
. (3.38)

Since y l(r) diverges at r D 0 for all l, the wavefunction in the core is a spherical
Bessel function of the first kind. In order to connect the solutions of the wave
functions for the core and the shell piece by piece, we write for the ansatz in the
core the wave function

Rcore
l (r) D a1

j l(knl,corer)
j l(knl,corer0)

, (3.39)
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where a normalization and the parameter a1 have been introduced for conve-
nience. For the classically forbidden wavefunction in the shell, the radial wave
vector is imaginary, knl,shell D i�nl,shell, and we choose the ansatz

Rshell
l (r) D a2

h(C)
l (i�nl,shellr)

h(C)
l (i�nl,shellr0)

C a3
h(�)

l (i�nl,shellr)

h(�)
l (i�nl,shellr0)

. (3.40)

For the classically allowed shell radial states, that is, the states with an energy larger
than Vc , a suitable ansatz is given by

Rshell
l (r) D a2

j l(knl,shellr)
j l(knl,shellr0)

C a3
y l(knl,shellr)
y l(knl,shellr0)

. (3.41)

The total radial wavefunction is assembled as follows,

Rl (r) D 1p
N

h
Rcore

l (r)Θ (r0 � r) C Rshell
l (r)Θ (r � r0)

i
, (3.42)

where N is a normalization constant. The shell wave function ansatz is chosen
according to whether the state under investigation is confined by the shell or prop-
agates through it at an energy above Vc. The coefficients a1, a2, and a3 contained in
the above equation are determined by the boundary conditions of the Schrödinger
equation. The first set of boundary conditions to be satisfied at r D r0 is obtained
from postulating the continuity of the wavefunction. If we assume that the Bloch
states of the two crystals in the core and the shell are approximately equal and
nonzero at the interface r D r0, then we see that the continuity of the envelope
functions is necessary at r D r0. For the second set of conditions to connect the
core and the shell states, we note that the frequently used assumption of the con-
tinuity of the derivative of the wave functions at the boundaries cannot be made
if the effective mass is position dependent. Instead, we need to go back to the un-
derlying principle of the continuity of the probability current [130]. To obtain the
condition for the probability current, we multiply Eq. (3.34) from the left-hand side
with r2 and obtain

�@r
�
r2@r Rl

�C �
l(l C 1) � r2k2

nl

�
Rl D 0 . (3.43)

We integrate this equation radially over the boundary r0 in the region r0 � δ . . . r0 C
δ, which yields for δ ! 0 the condition

1
m�

core
@r Rcore

l (r0) D 1
m�

shell
@r Rshell

l (r0) (3.44)

for the continuity of the probability current. In the above equation, the effective
masses have been taken corresponding to the region from which the boundary is
approached. For m�

core ¤ m�
shell, the above condition Eq. (3.44) induces a kink in

the envelope function at the interface, in clear disagreement with the simplified
assumption of the continuity of the derivative of the wavefunction.
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The above boundary conditions have been found to give a reasonably good ap-
proximation for the c band states of spherically symmetric heterostructures, which
we discussed in the beginning of Section 3.3. An alternative approach to the treat-
ment of abrupt interfaces is to redefine the Bloch states for the entire heterostruc-
ture [130].

We conclude our discussion of the c band states with a few general remarks.
In the derivation of the c band states above we have applied a number of strong
assumptions and drastic simplifications. It is clear that the model discussed above
is phenomenological and has strict limitations. It can be expected that ab-initio
calculations that take into account the full crystal potential of the quantum dots
provide a more accurate description of the confined states, though at the price of
larger computational complexity. Quite surprisingly, the model discussed above
(in combination with the v band model discussed below), which is based on the
effective mass approximation and the envelope function approximation, has been
shown to provide a good description of the observed spectra not only for small
spherical quantum dots, but also for core-shell structures such as a single shell
(sometimes called quantum-dot quantum-well) surrounded by spherical barriers
made of a different material [131], and structures consisting of a core coupled to
a shell through an interlying barrier [132]. While the observed good agreement
might be coincidental, future investigations will show whether these models also
work well for other structures with different sizes and materials.

3.3.2
Valence Band States

For the confined v band states we take into account the hh and the l h band. Ac-
cording to k � p-theory, the Hamiltonian for the v band is at r ¤ r0 in the four-band
approximation and in effective-mass theory given by

H D H0,v C Vv (r)

D
�

γ1(r) C 5
2

γ (r)
	

p2

2m0
� γ (r)

m0
(p � J)2 C Vv (r) , (3.45)

where H0,v is the Luttinger Hamiltonian in the spherical approximation, see
Eq. (3.23). The vector of angular momentum 3/2 operators is denoted by J, and the
Luttinger parameters γ1(r) and γ (r) are defined as

γ1(r) D
�

γ1,core for r < r0

γ1,shell for r0 < r ,
(3.46)

and

γ (r) D
�

γcore for r < r0

γshell for r0 < r .
(3.47)

We apply the usual basis of the band-edge Bloch states u Jz with angular momen-
tum j D 3/2 in the following. The radial potential Vv (r) for the v band is defined
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similarly to Vc(r) as a spherical barrier potential. The v band states can be repre-
sented in envelope function theory according to Eq. (3.32), where we insert the
j D 3/2 manifold. In contrast to the c band states, the classification of the v band
states according to the total angular momentum F and the parity operator P pro-
vides coupling of the radial states l and l C 2 in the envelope functions, leading
to s � d coupling, p � f coupling, and so on. We represent the v band states as
jnl f I Fzi, which are obtained by applying the usual relations of Clebsch–Gordan
coefficients. See Appendix A for the f D 3/2 and f D 1/2 states with even and
odd parity. Obviously, the mixing of hh and l h states, which occurs along with the
coupling of l and l C 2 states, leads to more complicated expressions for the v band
states than for the c band states.

The solutions for the radial envelope wavefunctions Rl and RlC2 are obtained
from the following set of coupled differential equations [133, 134],

�
A B
C D

��
Rl

RlC2

�
D E

�
Rl

RlC2

�
, (3.48)

where we have introduced the differential operators

A D � „2

2m0
(γ1 C c1γ )

�
@2

r C 2
r
@r � l(l C 1)

r2

�
C Vv (r) , (3.49)

B D c2γ
„2

2m0

�
@2

r C 2l C 5
r

@r C (l C 1)(l C 3)
r2

�
, (3.50)

C D c2γ
„2

2m0

�
@2

r � 2l C 1
r

@r C l(l C 2)
r2

�
, (3.51)

D D � „2

2m0
(γ1 � c1γ )

�
@2

r C 2
r
@r � (l C 2)(l C 3)

r2

�
C Vv (r) . (3.52)

Equation (3.48) is solved in terms of the spherical Bessel functions of first and
second kind (or a linear superposition of them, such as the spherical Hankel func-
tions), similarly as for the c band.

Connecting the core and shell wave function pieces for the v band at the inter-
face is achieved by applying the same postulates as for the c band wave functions,
namely, the continuity of the wave function and the continuity of the probability
current. The latter condition requires the continuity of the expression0

@ γ1@r C c1γ
�
@r C 3

2r

� �c2γ


@r C lC3

r

�
�c2γ



@r � l

r

�
γ1@r � c1γ

�
@r C 3

2r

�
1
A� Rl

RlC2

�
(3.53)

at the boundary r D r0.
In many experiments, cadmium selenide (CdSe) is used as the material of choice

for spherical quantum dots. For CdSe with wurtzite crystal structure, there is a lat-
tice anisotropy present that splits hh and l h states. This can be taken into account
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by the anisotropy Hamiltonian [120]

Han D Δ

"�
3
2

�2

� J2
z

#
. (3.54)

For example, for bulk CdSe, Δ D 25 meV [120, 135]. This lifts the degeneracy of an
l f -multiplet.

The ansatz described above can be readily extended to nested spherical het-
erostructures containing more than just one interface between two different ma-
terials. For example, for coupled core-shell structures, this simple model has pro-
vided a surprisingly accurate description of the observed photoluminescence spec-
tra [132]. While the envelope function approximation and also the effective mass
approximation can, strictly speaking, not be applied to structures extending only
over a few monolayers, the above model has been applied as an asymptotic guess,
and surprising coincidence of energies has been obtained for the core-shell struc-
tures under study.

3.3.3
Deviations from a Spherical Dot Shape

Meier and Awschalom have shown that a broken spherical symmetry can account
for a mixing of the 1S3/2 and 1P3/2 valence band multiplets [134], which was visible
in experimental Faraday rotation data [131]. To take this deformation into account
in a simple model, an additional potential term may be included in the Hamiltoni-
an,

δV(r) D v0 sin θ (1 C cos φ) , (3.55)

which mixes, for example, the states 1S3/2 and 1P3/2. The angles θ and φ denote
the azimuthal and polar angle of r relative to the lattice symmetry axis, respectively,
and v0 is a fit parameter. The admixture of s-type to p-type multiplets redistributes
the spectral weight and increases the number of resonances with comparable am-
plitude in the Faraday rotation signal. Further, the redistribution of spectral weight
also explains the absence of pronounced resonances in the absorption signal. Com-
pared to spherical shells, broken symmetry gives rise to a larger energy splitting
between the lowest valence band states with dominant p-type and s-type envelope
wave functions, consistent with the large Stokes shift between the PL peak and the
absorption edge observed for CdS/CdSe/CdS embedded quantum shells [112, 131].

3.4
Parabolic Quantum Dot Confinement

In Section 2.3.2 we already introduced the parabolic confinement model for quan-
tum dots with a flat shape, such as interface fluctuation quantum dots or some
types of self-assembled quantum dots.
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Again, the confinement along the growth direction z is very strong. Depending
on the circumstances it may be convenient to assume a rectangular or a parabolic
confinement potential. Along z, the wave function is considered to always be in
the ground state as the level splittings are typically very large. Due to strain, the
energetically lowest hole states are typically hh states.

We then introduce an additional confinement in the plane according to the shape
of the quantum dot. In general, for a confinement with circular symmetry in the
x y plane, the z component Fz of the angular momentum F is a good quantum
number. Then, the confined valence band states have pure hh or l h character since
they can be classified according to F2 and Fz . In Section 2.3.2 we used the quantum
numbers l and m for the sake of a simple notation.

As an approximation for the low-lying quantum dot states, we assume a parabolic
in-plane confinement with frequency ωb ,

Vqd,b(x , y ) D mb ωb

2

�
x2 C y 2� , (3.56)

which provides the well known ground state of the envelope wave function,

ψ b
HO,0(x , y ) D 1

ab
p

π
exp

"
� 1

2a2
b

(x2 C y 2)

#
. (3.57)

Here, we denote ab D p„/mb ωb the effective electron (hole) Bohr radius for
b D c (b D v ). The energy spectrum consists of equally spaced levels separated by
an energy „ωb .

There are exact solutions for the eigenfunctions if a perpendicular magnetic field
B is included into the two-dimensional harmonic confinement [136, 137]. Those
new eigenstates are called Fock–Darwin states. Here we provide the general solu-
tion which, for example, has been applied to model the states in laterally [138, 139]
or vertically [140] adjacent quantum dots. The Fock–Darwin ground state is given
by

ψ b
FD,0(x , y ) D

s
�b

πa2
b

exp

"
� �b

2a2
b

(x2 C y 2)

#
. (3.58)

Here, �b D
q

1 C (ωL
b /ωb)2 is a compression factor due to the magnetic field,

where ωL
b D eB/2cmb is the Larmor frequency. The energy level spacing of Fock–

Darwin states is given by „ωb �b . It follows from Eq. (3.58) that the orbital effect
of the magnetic field, giving rise to the cyclotron motion of carriers, induces an
increased confinement that is characterized by the parameter �b , which provides
a wave function compression and an increase of the level spacing. The excited
Fock–Darwin states are obtained analogous to the usual harmonic oscillator states,
taking into account the appropriate Hermite polynomials in x and y.

For a pair of laterally coupled quantum dots [138, 139], consisting of quantum
dots D D 1, 2 centered at positions r D abD that lie symmetric to the origin in the
x y plane, the vector potential is taken in the symmetric gauge, A(r) D (B � r)/2.
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Hence, the vector potential is centered at the origin, not at the individual quantum
dots. This gives rise to an additional phase factor in the wave function Eq. (3.58)
for quantum dot D, which then takes on the form

ψ b,D
FD,0(x , y ) D

s
�b

πa2
b

exp

"
� �b

2a2
b

(r � abD )2

#
exp

�
iqb

2e l2
B

(Oz � abD ) � r
	

.

(3.59)

Here, Oz is the unit vector along z, lB D p„c/eB is the magnetic length, and qb is
the charge of the confined carrier, that is, qb D ˙e for electrons or holes, respec-
tively, where e is the elementary charge.

While quantum dots are in reality three-dimensional objects, already a two-
dimensional model, taking Fock–Darwin states as above into account provides
qualitatively useful insights for the properties of coupled quantum dots [138].
However, for “flat” quantum dots that are vertically coupled, a three-dimensional
model is necessary to take tunneling between the dots into account [140].

In reality, circular confinement as we assumed above, is of course, only an ide-
alized model that neglects any anisotropies that may be present in the quantum
dot shape or also the crystal lattice. An anisotropic confinement in the plane of the
quantum dot, such as an elliptical shape, for example, induces mixing of angular
momentum eigenstates, among them the energetically close valence band levels,
such as heavy and light holes. Yet, we have focused on quantum dots with a pure
hh ground state and circular in-plane confinement here, motivated by evidence of
weak level mixing in many experiments.

3.5
Extensions of the Noninteracting Single-Electron Picture

Taking into account more than one confined electron in a quantum dot means that
we need to carefully reconsider our model. So far, we have relied on an effective
single-electron picture, where the total interaction with the crystal has – thanks
to periodicity and crystal symmetry – been plugged into effective single-particle
parameters, such as the effective mass. We now extend our model in order to de-
scribe interacting few-carrier states in quantum dots. Obviously it can be expected
that the crystal-induced properties such as the effective mass do not change when
having identical particles confined together in a quantum dot. However, we need
to take into account the overall symmetry of the many-particle wave function and
many-particle interactions.

3.5.1
Symmetry of Many-Particle States in Quantum Dots

If we model several carriers in a quantum dot we need first of all to take into ac-
count their quantum mechanical indistinguishability. For electrons this results in
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taking Fermi–Dirac statistics into account, that is, the total multi-electron wave-
function must be completely antisymmetric. We remember that for free electrons,
a completely antisymmetric wave function can be formed either by an antisymmet-
ric orbital and a symmetric spin part of the wave function, or vice versa, by a sym-
metric orbital part and an antisymmetric spin part. In the frame of the envelope
function approximation for c band electrons, we find an analogy of the envelope
function with the orbital wave function of a free electron, and of the band-edge
Bloch function with the spin wave function, respectively.

For the case of two identical c band electrons, we recover the analog of the triplet
and singlet states, where the spin wave functions are replaced by the correspond-
ing Bloch functions. For the v band, the situation is a bit different due to the strong
spin–orbit coupling of the bands. For degenerate hh and l h states, the Hilbert
space is four-dimensional and there are wider possibilities for an antisymmetric
Bloch part than for the c band. For the case of hh states with the l h states split
far away in energy, however, we recover two twofold degenerate Bloch states in
the absence of external magnetic fields. The symmetric and the antisymmetric
Bloch states formed by pure hh states or pure l h states resemble the singlet and
triplet states. However, as we know from Clebsch–Gordan theory, the antisymmet-
ric hh Bloch state, for example, is not a total angular momentum zero or s state, but
rather a superposition of an s and a d state. We therefore refer to the antisymmetric
hh state as a pseudo singlet, for example, and not as a singlet.

3.5.2
Coulomb Interaction

Considering more than one electron in a quantum dot also means that we need to
take the Coulomb interaction into account. The Coulomb potential describes the
pairwise interaction of two particles with electric charges q1,2 and positions r1,2,
and is given by

VCoul(r1, r2) D q1q2

4π�

1
jr1 � r2j , (3.60)

with the dielectric constant � D �0�r , where �r is the dielectric number. In princi-
ple, this takes us beyond the picture of noninteracting single particles, which we
applied earlier in this chapter in the derivation of the confined states in quantum
dots. The Coulomb potential enters as an additional term, possibly redefining the
energy structure of confined quantum dot states.

Yet, in many types of quantum dot structures the Coulomb interaction energy be-
tween confined charge carriers is much smaller than the typical energy level split-
tings due to the confinement. In these cases one can take the Coulomb interaction
into account by perturbation theory, for example.

In the other extreme case, that is, for quantum dots with energy level splittings
that are small compared to Coulomb interaction energies, an ansatz based on non-
interacting wave functions is far from the real situation because the Coulomb re-
pulsion or attraction induces significant changes in the structure of the orbital wave
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functions. These considerations are also important for bound pairs of electrons and
holes, the so-called excitons.

3.5.3
The Concept of Excitons in Quantum Dots

A bound pair of a c band electron and a v band hole in a semiconductor is called
an exciton. Excitons can be created, for example, by optically exciting an inter-band
transition in a semiconductor. The electron and the hole of an exciton usually form
a bound state in the bulk crystal due to the Coulomb interaction between the neg-
ative charge �e of the electron and the effective positive charge +e of the hole.

Depending on the ratio of the effective masses of the electron and the hole,
me/mh, an exciton may be similar to an effective hydrogen atom (if the hole is
much heavier than the electron, me/mh � 1), or may resemble rather the positron-
ium (for me/mh � 1) and shows a corresponding characteristic spectrum of bound
states in bulk semiconductors. Excitons may also form complexes of several exci-
tons that are bound together, so-called multi-excitons.

The three-dimensional confinement of quantum dots usually alters some proper-
ties of excitons when compared to free excitons in a bulk semiconductor, due to the
additional boundary conditions imposed on the electron and hole wavefunctions.
Reducing the spatial extension of quantum confinement leads in general to energy
level shifts toward higher energies, as the energy of the confined states increases.
This spectral blue shift is sometimes called the confinement effect. Further, if the
confinement geometry imposes a reduced symmetry on the confined states, then
qualitative changes may be observed in the optical spectra, such as the level mix-
ing and redistribution of spectral weights mentioned in Section 3.3.3, or the fine
structure splitting of the exciton levels in quantum dots with a slightly elliptical
shape mentioned in Section 6.2. Such effects are basically due to state mixing and
may be observed in the spectra, as radiative transitions among the confined quan-
tum dot levels satisfy certain selection rules, which are discussed in more detail in
Chapter 5.

When observing the spectra of exciton and multi-exciton states in quantum dots,
we observe not only features due to the quantum confinement, but also due to
the Coulomb interaction. The Coulomb interaction already plays a role on the
single-exciton level, as there is a competition of the Coulomb interaction versus
the quantum dot confinement in defining the states and the energy spectrum. In
this competition, the relative magnitude of the associated energies is essential. In
the so-called strong-confinement regime, the single-particle confinement energies
due to the quantum dot potential are much larger than the electron–hole Coulomb
interaction energy. The exciton energy spectrum is then determined mainly by the
confinement. An alternative definition of the strong-confinement regime can be
given as the limit in which the quantum dot radius is much smaller than the “nat-
ural” Bohr radius a X of a free exciton. In this book, we focus on quantum dots
in the strong confinement regime. In the strong confinement regime we usually
make an ansatz for excitons with noninteracting single-particle wavefunctions for
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electrons and holes and take the Coulomb interaction into account, for example, in
the frame of perturbation theory, or in a variational ansatz.

3.5.4
Carrier Configurations in the s Shell and Energies

Here we briefly return to the parabolic quantum dot model and look at the differ-
ent s-shell configurations. These configurations are of particular interest for many
proposals to process quantum information with exciton or spin qubits in quan-
tum dots. In the low-excitation regime, when optically active quantum dots are in
equilibrium occupied by no or one electron and/or hole, carriers relax to the s-shell
typically on a sub-ns timescale from the higher p , d, . . . levels.

The four optically active s-shell states are depicted schematically in Figure 3.2,
which shows the level diagrams for electrons (N) and holes (M), analogous to Fig-
ure 2.9 with the spin orientation indicated by the orientation of the symbols. Fig-
ure 3.2a–d shows the neutral exciton (X0), the negatively and positively charged
excitons (X1�, X1C), where one additional carrier joins the exciton, and the biexci-
ton (2X0). In addition to the states shown for X0, X1�, and X1C, there is a second
version with inverted spins, giving rise to an inverted polarization of the emitted
photon. The optical selection rules for the recombination process are discussed lat-
er in Section 5.2.2. In addition to these optically active or “bright” excitonic states,
there are also two optically inactive or “dark” exciton states in the s shell. These
are obtained from the state shown in Figure 3.2 for X0 when inverting either the
electron or the hole spin. This configuration leads to an angular momentum dif-
ference of ˙2 for the transition, which cannot be achieved with an electric dipole
transition, hence these states are “dark”. In the following we focus on the “bright”
excitonic states.

The charged excitons X1� and X1C are special as they have a filled s shell for
one carrier type, respectively. The s orbital state of the c band can be occupied by
maximally two electrons, forming a singlet state. Electrons with equal spins can-
not occupy the s shell due to the Pauli exclusion principle. For the s shell of the
v band we recall from our discussions earlier in this chapter that in self-assembled
quantum dots the hh and l h states are typically split such that the s shell provides

X
0

2X
0

X
1-

X
1+

(a) (b) (c) (d)

Fig. 3.2 The four types of bright s-shell excitonic states in
a quantum dot: (a) the neutral exciton X0, the (b) negatively
and (c) positively charged exciton, X1� and X1C, respectively,
and (d) the biexciton 2X0. For the first three, there is also a spin-
inverted version not shown in this figure.
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two hh states. Again, if two holes are present, they have an antisymmetric angular
momentum (Bloch) part that we refer to as a pseudo singlet.

Taking into account the Coulomb interaction for electrons and holes, we can cal-
culate the energies of the above states. We assume the strong confinement regime
and take the Coulomb interaction as a perturbation of the confined states into ac-
count to first order. The obtained energies are

EX 0 D E e C E h � V eh , (3.61)

EX 1C D E e C 2E h C V hh � 2V eh , (3.62)

EX 1� D 2E e C E h C V ee � 2V eh , (3.63)

E2X 0 D 2E e C 2E h C V ee C V hh � 4V eh , (3.64)

where E e and E h are the confinement energies of electrons and holes, respectively,
and the Coulomb interaction energies are given by

V eh D e2

4π�
hψe ψhj 1

jre � rhj jψe ψhi , (3.65)

V ee D e2

4π�
hψe1ψe2j 1

jre1 � re2j jψe1ψe2i , (3.66)

V hh D e2

4π�
hψh1ψh2j 1

jrh1 � rh2j jψh1ψh2i . (3.67)

3.6
Few-Carrier Spectra of Self-Assembled Quantum Dots

We return here to the self-assembled quantum dots introduced in Section 2.3 and
apply the theoretical considerations of the present chapter to this system.

3.6.1
From Ensemble to Single Quantum Dot Spectra

In the ensemble spectra of self-assembled quantum dots, such as Figure 2.8, a clear
shell structure is revealed. The spacing between the different shells is on the order
of several tens of meV. We have mentioned in Section 2.3.2 that the shell structure
of these dots can be approximated well by a harmonic oscillator model for both elec-
trons and holes. From this model we can now conclude how many carriers can be
accommodated in each shell. Further, they can be filled sequentially when increas-
ing the optical excitation density, starting from the lowest s-levels for electrons and
holes.

Within a quantum dot ensemble, each individual dot has its distinct energy struc-
ture. However, the expected sharp emission lines from single-dot transitions re-
main hidden due to the random size and morphology distributions in the ensem-
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ble. A solution to circumvent this averaging problem is the isolation of individual
dots. This can be achieved, for example, by using the masking technique described
in Chapter 2, or the fabrication of low surface-density ensembles by stopping the
substrate rotation during quantum dot growth. To be able to repeatedly study the
same dot over a longer period of time, a masking technique can be applied to find
the dot of interest again. Using such techniques it is possible to isolate single self-
assembled dots and to study the structure of the different orbital shells in more
detail.

In Figure 3.3, PL signals recorded of a single dot are shown. These spectra show
narrow lines with width Γ < 150 µeV, which can be attributed to different occu-
pancy states of the dot. These states as well as their coherent properties have been
investigated in great detail by many researchers [22, 27, 29, 42, 141–143]. Single
quantum dots have been studied especially by power dependent PL spectroscopy
and often in combination with applied static electric fields.

The most simple occupancy state giving rise to an optical transition is the single-
exciton state X0. Figure 3.3 shows emission spectra of a single dot as a function
of excitation power. At low power only one line is detected, originating from the
decay of X0. With increasing excitation power, a second line appears in the s-shell
with a quadratic dependence on excitation density. This line is attributed to the
biexciton 2X0, where the quantum dot is occupied by two electron–hole pairs in the
s shell. To be precise, the observed additional line results from the optical decay of

Fig. 3.3 Photoluminescence of a single quantum dot as a func-
tion of excitation power. At low powers only the two s-shell tran-
sitions are observed and with increasing powers also p-shell
transitions are observed. Data courtesy J. J. Finley, Walter Schot-
tky Institute, TU München.
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one electron–hole pair of the biexciton, leaving behind the second one (which itself
would then decay as a X0). The 2X0 transition energy is shifted to lower energy
with respect to the X0 transition due to the additional many-particle interactions of
the biexciton. We elaborate on these interaction-induced shifts in Section 3.6.2. At
even higher excitation powers, also the p-shell is occupied, which, due to additional
interactions with additional carriers, leads to further shifts, such as the new s-shell
transition 3X0

s . These observations match with the previously described model of
a quantum dot shell structure for electrons and holes when few-carrier interactions
are taken into account. a The observed inter-shell spacing for this type of dot is
typically on the order of 20–50 meV and provides a relatively large energy scale
when compared to the interaction-induced line shifts which are in the 1–10 meV
range.

3.6.2
Transition Energies of Few-Particle States

We have given the energies of the excitonic states of the s-shell above in Sec-
tion 3.5.4. These are straightforward to expand by including the p and higher shells.
Instead of proceeding with this here, let us now look in more detail at the transition
energies from the s-shell states. Due to energy conservation, the observed photon
energy ΔE is given by the difference between the initial and final excitonic states,

ΔE D E in � E fin. (3.68)

If the initial state is X0, X1C, or X1�, the final state is just the crystal ground state
(with energy Ecgs D 0), the single-hole state (with energy Eh), or the single-electron
state (with energy Ee), respectively. For these transitions, the transition energies
according to Eqs. (3.61)–(3.63) are given by

ΔEX0 D E e C E h � V eh , (3.69)

ΔEX1C D E e C E h C V ee � 2V eh , (3.70)

ΔEX1� D E e C E h C V hh � 2V eh . (3.71)

Here, we notice that if there is a difference in the absolute magnitude of the
Coulomb interaction between like (V ee, V hh) and unlike (V eh) particles, the tran-
sition lines of charged excitons will shift in the PL spectrum with respect to
the neutral exciton line. Since the hole wave function is typically more strongly
localized than the electron wave function, the ordering of the Coulomb matrix ele-
ments can sometimes be assumed as V ee < V eh < V hh . Based on these relations,
we can estimate the shifts of the s-shell charged excitons with respect to X0: Since
V ee < V eh , we expect that X� is shifted to lower energies, while due to V eh < V hh ,
XC is shifted to higher energies. The resulting line ordering is most of the time
observed for self-assembled QDs but does not necessarily hold true for any QD
system since it depends on the particular Coulomb interactions.
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Obviously, if the final state contains more than a single particle, the complete
interaction energy of the final state must be taken into account as well. For example,
if we look at the decay of a biexciton into an exciton, we obtain from Eqs. (3.61)
and (3.64),

ΔE2X0 D E e C E h C V ee C V hh � 3V eh . (3.72)

This transition energy is different from the exciton transition Eq. (3.69) if V ee C
V hh ¤ 2V eh . Similarly as for the charged excitons, the biexciton transition line
may be shifted to lower or higher energies in the PL spectrum, depending on the
ordering of the interaction energies between electrons and holes. In Figure 3.3, the
biexciton line is shifted to lower energies, indicating that the attractive interaction
between electrons and holes overcompensates the repulsion of identical carriers

Fig. 3.4 Calculated transition energies for neutral and charged
excitons in a single quantum dot relative to X0 (e1 h1). The ar-
rows show the different contributions to the total energy. The
Coulomb interaction (δEcoul) leads to shifts to lower and high-
er energy, and correlation effects (δEcor) only to lower energy.
Reprinted with permission from [144]. Copyright (2001) by the
American Physical Society.
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in the dot under study. The shift of the biexciton relative to the exciton transition
energy, ΔEX0 � ΔE2X0 , is called the biexciton binding energy. For most quantum
dot systems, a positive biexciton binding energy was observed, that is, a shift of the
biexciton to lower energies compared to X0 [22, 143]. This behavior is also obtained

Fig. 3.5 (a) Observed biexciton binding energy (symbols) as
a function of quantum dot transition energy. A transition from
“binding” to “anti-binding” biexcitons is observed for increasing
transition energy. (b) Calculated binding energy as a function
of bound states reproduces the observed behavior. Reprinted
with permission from [145]. Copyright (2003) by the American
Physical Society.



66 3 Theory of Confined States in Quantum Dots

theoretically for a harmonic oscillator potential, taking experimental values for the
effective masses into account [83].

Thus, the shifts observed with transition energies when additional carriers are
introduced provide a measure for the difference of few-particle Coulomb energies.

In the discussion of the excitonic emission of a quantum dot we have accounted
so far only for the single particle energies of the different carriers and their mutual
direct Coulomb interaction in first-order perturbation theory. For a more precise
description, the Coulomb exchange interaction and also higher-order correlations
need to be taken into account.

Figure 3.4 shows the results of a combined theoretical and experimental study of
charged excitons in a single quantum dot by Regelman and coworkers [144]. The
calculated emission intensity (solid lines) is plotted as a function of energy relative
to the neutral exciton transition. The labels give the number of additional carriers
compared to the single exciton (e1h1). A comparison of the calculated emission
energies with the experimental result (shaded bars) shows good qualitative agree-
ment. The calculations by Regelman et al. confirm that the Coulomb interaction
can induce shifts (labeled δEcoul) to lower and higher energies, whilst correlation
shifts (δEcor) occur only toward lower energies. In addition, as discussed in the
previous paragraph, the Coulomb interaction depends strongly on the spatial ex-
tension of the carrier wavefunctions. Therefore, strong variations of the magnitude
of these shifts are observed when comparing different quantum dots due to mor-
phology fluctuations. In contrast, correlation effects lead to approximately constant
shifts to lower energy.

Figure 3.5 shows results of a combined experimental and theoretical study by
Roth et al. [145] of the biexciton binding energy in single quantum dots as a func-
tion of the observed X0 energy. In Figure 3.5a the experimentally observed biexciton
binding energy, ΔEX0 � ΔE2X0 , is plotted as a function of the exciton energy. A clear
transition from “binding” (ΔEX0 �ΔE2X0 > 0) to “anti-binding” (ΔEX0 �ΔE2X0 < 0)
biexcitons are observed for decreasing dot size, that is increasing transition energy.
This observation was explained by a strong variation of the correlation contribu-
tion δEcor for the biexciton state. A comparison of experimental findings to the-
oretical calculations of the correlation effects showed that for larger dots, mostly
“binding” biexcitons are expected, whereas for smaller dots correlation effects are
less pronounced and “anti-binding” biexcitons can be observed. This behavior is
attributed to a decrease in the number of bound states in the dot as demonstrated
in Figure 3.5b [145, 146]. As a side remark, one should exercise care with the ter-
minology of “binding” and “anti-binding” biexcitons since all particles are bound
by the quantum dot confinement, which is in contrast to the bulk crystal, where
“anti-binding” biexcitons would split into two excitons.
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4
Integration of Quantum Dots in Electro-optical Devices

The ability to manipulate and control the properties of quantum dots and other
nanostructures is a key requirement for any application. We have shown in the
previous chapters that the electronic and optical properties are determined by the
structural, morphological and chemical properties of the dot, which can be con-
trolled only to a certain degree. Therefore, a knob to turn is required to tune the
electronic levels, add or remove charges to or from the dot or even turn on and off
interactions between two neighboring dots. An elegant parameter for this purpose
is a static electric field. We will show that in a semiconductor diode such an electric
field, and also the number of particles in a dot, can be adjusted and controlled by
simply changing an applied gate voltage. Furthermore, the optical response of a QD
can be strongly modified by the optical field of a cavity, which we will introduce in
the last part of the chapter.

4.1
Tuning Quantum Dots by Electric Fields

The number of carriers injected into a QD from a doped contact can be adjusted
deterministically via Coulomb blockade [40, 147], furthermore, the energy levels
for both electrons and holes can be tuned. This results in a shift of the optical
transition frequency due to the quantum confined Stark effect (QCSE). The QCSE
can be further used to turn on and off quantum mechanical coupling in a pair
of QDs providing the basis for a scalable qubit architecture. In this section we
introduce the most frequently used device, which allows for both the application of
static electric fields and control of the number of carriers confined in a QD or pair
of coupled QDs.

4.1.1
Semiconductor Diodes

The most frequently used devices to apply static electric fields and control the num-
ber of carriers (electrons or holes) in epitaxially grown QD nanostructures by a gate
voltage are semiconductor diodes. These can be either bipolar p-i-n structures or

Spins in Optically Active Quantum Dots. Concepts and Methods.
Oliver Gywat, Hubert J. Krenner, and Jesse Berezovsky
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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unipolar metal semiconductor junctions. The latter type of device are so-called
Schottky diodes and are most frequently used if only one carrier species is to be
electrically controlled. If electrons or holes are to be injected in the QDs either n-i-
or p-i-Schottky diodes are used. If both carrier species are required, for example, for
QD-lasers or single photon sources p-i-n diodes are the devices of choice [148–150].

The band structure of an n-type Schottky diode is schematically depicted in Fig-
ure 4.1. In this case by changing the gate voltage (VGate) electrons can be added from
the n-region to the QD and simultaneously a positive static electric field is tuned
over the QD layer. For p-type devices the electric field orientation is reversed and
holes can be loaded into the QDs [151]. In the following we restrict the discussion
to n-type devices although the same arguments apply also for p-contacts and holes
taking into account the inverted polarity.

As we can see from Figure 4.1 the QDs themselves are embedded in the intrin-
sic (unintentionally doped) region of length dintrinsic of the junction and are sepa-
rated by a tunneling barrier of thickness dtunnel from the heavily doped n-contact.
The i-region above the QDs typically contains a higher bandgap AlGaAs barrier or
short-period AlAs/GaAs superlattice to prevent current flow and leakage in forward
direction. Since the Fermi energy, EF, is pinned close to the conduction band edge
in the n-contact, the electric field F drop across the intrinsic region can be tuned
by applying a gate voltage VGate between the n-contact and a top metal electrode
forming a Schottky-contact. For heavily doped contacts and long intrinsic regions,

n+-
GaAs

VBI - VGate

EF

i-GaAs

Quantum Dots 

F

Metal

i-AlGaAs

dintrinsic

dtunnel

Fig. 4.1 Band structure of an n-i Schottky diode with QDs em-
bedded in the intrinsic region. In such a device the static elec-
tric field F can be tuned by applying a gate voltage (VGate) be-
tween the doped n-contact and the metal Schottky gate. Further-
more, a well defined number of carriers can be injected across
a tunneling barrier from the contact into the QDs.
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F can be approximated linearly as

F D VBI � VGate

dintrinsic
, (4.1)

with VBI being the built-in voltage, that is, the “height” of the Schottky barrier.
For GaAs-based structures VBI is typically in the range of �0.8 V and only weakly
dependent on the metal used for the gate electrode. In contrast, for p-i-n junctions
VBI is given by the energy differences between the hole and electron quasi Fermi
levels in the p and the n regions. For high doping concentrations these are close to
the band edges, giving rise to a built-in potential of approximately the bandgap of
the material. In typical GaAs-based devices electric fields jF j > 300 kV/cm can be
applied before electrical breakdown occurs in the reverse direction. Such a static
electric field provides a powerful tuning mechanism since it can be used to tune
the energies of optical transitions in QDs via the dc Stark effect (QCSE) which,
furthermore, can be used to manipulate the interdot couplings in pairs of closely
stacked QDs.

4.1.2
Voltage-Controlled Number of Charges

In an epitaxially grown structure, the layer thicknesses can be adjusted with mono-
layer precision, allowing for delicate tuning of the device properties. As already
indicated in Figure 4.1, the distance between the n-contact and the QD layer(s),
dtunnel can be precisely tuned, which controls the interaction and tunneling rate
between electrons in the reservoir and confined in the QD.

In particular, for small values of dtunnel only a short triangular barrier exists
through which carriers can efficiently tunnel from the contact acting as a reser-
voir into the QDs. This process is schematically depicted in Figure 4.2 for the case
of a single QD. Under reverse bias (V < V1e) (see Figure 4.2a), the Fermi ener-
gy of the electron reservoir is below the lowest energetic electron level (s-shell) of
the QD. Under these conditions no electron tunnels from the contact into the QD,
which remains empty. As the forward bias is increased to V1e � V � V2e the s-
states of the QD shift below EF, and one electron can enter the QD as shown in
Figure 4.2b. Tunneling of a second electron is blocked due to the Coulomb repul-
sion by the electron occupying the dot. This effect is referred to as the Coulomb
blockade and is often described by considering the QD as a small capacitor with
a capacitance (CQD). In this picture, which is often applied for electrostatically de-
fined QDs [20, 86], the energy level of the second electron or hole to be added into
the QD is shifted toward higher energies by the Coulomb addition energy depend-
ing only on the elementary charge and the capacitance of the QD,

EC D e2

CQD
. (4.2)

As a direct consequence, this additional Coulomb energy contribution has to be
overcome, and therefore, this effect is commonly referred to as the Coulomb block-
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(a)

(b)

(c)

Fig. 4.2 Deterministic charging of a QD via Coulomb block-
ade. (a) For low voltages the QD is empty. (b) When the s-level
of the QD drops below the Fermi energy, one electron enters
the QD. (c) The second electron can only enter the QD when
the forward voltage is increased further to compensate for the
Coulomb addition energy.

ade. We want to note that this effect is observed in any QD-like system such as, for
example, gate-defined QDs at sufficiently low temperatures with kBT < EC. On-
ly if the forward bias is increased even further to V > V2e is a second electron
transferred into the QD.

Adding charge carriers into the QD gives rise to a pronounced response of the
device capacitance [147]. At each voltage where the QD occupancy changes by one
carrier, a characteristic step or peak occurs in the capacitance-voltage trace allowing
for precise measurements of the Coulomb addition energies. A typical example is
shown in Figure 4.3a for a hole (p-type) and 4.3b electron (n-type) charging sample.
Increasing positive (negative) gate voltage corresponds to forward biasing the n- (p)-
type device, which allows for the addition of electrons (holes) to the QDs. For both
the electron and hole charging samples, distinct charging features are resolved as
the junction is brought toward forward bias. These peaks correspond to filling the
ground (s-shell) with one and two electrons/holes and then the first excited state (p-
shell) of the QDs with increasing forward bias. For all shells, distinct peaks can be
identified, each of which correspond to an increase of the number of carriers in the
QD by 1. From these charging experiments detailed information on the electron-
ic level structure can be deduced. For example, it has been shown that for holes,
Hund’s rule and the Aufbau principle of atomic physics are violated [152–154].



4.1 Tuning Quantum Dots by Electric Fields 71

holes            electrons 

(a) (b)

Fig. 4.3 Typical capacitance-voltage traces for a p-type (a) and
n-type (b) Schottky diode that allows for adding electrons and
holes into the QDs’ s- and p-shells, respectively. Data courtesy
Andreas D. Wieck, Ruhr-Universität Bochum.

4.1.3
Optically Probing Coulomb Blockade

In optically active QD structures the Coulomb blockade can be observed using op-
tical spectroscopy, in addition to electrical means. By adding a photogenerated elec-
tron–hole pair, a single exciton (X0 D 1e C 1h), the emission of this exciton, and
any electrically injected excess charges can be probed [40, 155].

In Figure 4.4 we present a typical example of a photoluminescence experiment
performed on a single self-assembled InGaAs QD embedded in a charge-tunable
n-i Schottky diode. The optical transitions attributed to the main emission lines
are shown in Figure 4.5. As the gate voltage is tuned, a clear switching behavior
between different emission lines is observed, which can be explained by discrete
charging events. Moreover, all spectral lines show a pronounced energy shift as the
gate voltage is tuned. This shift is due to the QCSE since the electric field is also
tuned.

For large reverse bias, V < V1, no excess electrons are injected from the n-
contact. Therefore, a single emission line of the optically added exciton X0 is de-
tected. As the reverse bias is decreased to V1 < V < V2 a first electron tunnels into
the QD. The presence of this electron leads to the additional formation of singly
negatively charged excitons, X1� D 2e C 1h in this voltage range. The emission
line of X1� is significantly red-shifted by �4.7 meV with respect to X0. This shift
occurs due to the modified few-particle Coulomb interactions (e–e repulsion and e–
h attraction), which we discuss in Section 3.5. Moreover, this shift typically ranges
in the order of 3–6 meV for most commonly studied QD systems.

For V2 < V < V3 the s-shell of the QD gets populated by a second electron by
injection from the doped reservoir. However, in contrast to the neutral and singly
charged excitons, the addition of a second electron gives rise to two new emis-
sion lines labeled X2�

singlet and X2�
triplet. From the gate voltages at which switching
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Fig. 4.4 Charged exciton emission from a single QD. For in-
creasing VG electrons are controllably added to the QD and
emission of the neutral (X0), singly (X1�) and doubly negatively
(X2�) charged excitons is detected.

between different exciton species occurs the Coulomb addition energy can be de-
duced analogous to purely electrical techniques. Similar data has been obtained
by several groups worldwide demonstrating the general nature of the underlying
mechanisms [40, 151, 156–162].

The observation of two spectral lines for X2� can be explained by taking into
account both the initial and final state of the radiative decay and, moreover, the
exchange interaction between the spins. The radiative decays of the four emission
lines detected are summarized in Figure 4.5. For X0 and X1� only the s-shell is
occupied in the initial and final state of the decay. The shift between the two emis-
sion lines arises from the additional direct Coulomb interaction terms between the
electron(s) and the hole in the initial state. For X1� the s-shell in the conduction
band is filled completely with two electrons of opposite spin orientation and, there-
fore, additional contribution from exchange Coulomb interactions do not have to be
taken into account.

In contrast, for X2� the optically generated electron cannot relax to the filled s-
shell of the QD but remains in a p-level with random spin orientation (see the lower
panel of Figure 4.5). When the hole recombines with one of the two electrons con-
fined in the s-shell one electron remains in both the s-shell and the p-shell. Since
these two electrons occupy different orbital states, their spin wavefunctions can
form both singlet S D 0 or triplet S D 1 states. Due to the electron s–p exchange
interaction the absolute energy of the triplet state is shifted to lower energy rel-
ative to the singlet level. In the optical decay the energy difference between the
initial X2� and the final 2e state is measured, and therefore, the emission line of
the higher lying singlet state is shifted to lower energies compared to the triplet
line, as observed in experiment. Moreover, for the S D 1 triplet three states with
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Fig. 4.5 Decay of neutral (X0), singly charged (X1�) and doubly
charged exciton (X2�). For X2� two final states exist for which
the two electrons in the s and p shell form either a spin singlet
or triplet which gives rise to the observation of two emission
lines.

MS D 0, ˙1 whilst for the S D 0 singlet only one state with MS D 0 exists. This
ratio of 3 W 1 is also reflected in the experimental data shown in Figure 4.4 by the
intensity ratio of the two spectral lines. These findings clearly indicate that direct
and exchange few-particle Coulomb interactions give rise to pronounced shifts and
their contributions can be clearly identified in the optical spectrum. Moreover, for
optical transitions both the initial and final state have to be taken into account. In
particular for the coupled QD structures discussed in Chapter 8 both aspects are
crucial to explain the complex emission patterns.

Finally, we want to note that the data shown in Figure 4.4 was recorded for
a rather long barrier between the n-contact and the QDs of 40 nm. For such long
barrier widths the injection rate is low and the QD is not in a charge equilibrium
giving rise to the observed parallel emission of differently charged excitons at the
same gate voltage. When dtunnel is reduced, the tunneling time for electrons in and
out of the QD can be tailored, and discrete charging steps can be resolved [158].
However, short tunneling times can lead to a significant reduction of the coher-
ence time of spins and excitons due to interaction via tunneling or scattering be-
tween the confined spin in the QD and the (mostly) incoherent bath of spins in
the n-contact. These cotunneling effects have to be minimized for an efficient spin
pumping scheme [163]; this is described in more detail in Section 7.1.2.

4.1.4
Quantum Confined Stark Effect

The response of quantum states to static electric fields is known as the Stark effect.
For excitons confined in semiconductor nanostructures the Stark shift can exceed
the exciton binding energy. This was demonstrated for the first time for quantum
well excitons by D. A. B. Miller et al. in 1984 [48, 164]. They observed shifts much
larger than the exciton binding energy, up to electric fields 50 times larger than the
classical ionization field. Since this effect is a direct consequence of the quantum



74 4 Integration of Quantum Dots in Electro-optical Devices

confinement it is referred to as the quantum confined Stark effect (QCSE). The
QCSE turned out to be an extremely useful mechanism to tune optical transitions
in low-dimensional semiconductor structures. Therefore, it found application in
the spectroscopy of single and coupled QDs [70, 156, 165–169], since it provides
extremely high accuracy simply by modulating a gate voltage.

In this section we develop a simple model of the QCSE and show some implica-
tions on the optical properties of quantum wells and QDs.

General Aspects
An exciton is formed by two particles of opposite charge, one electron and one
hole, which themselves are influenced by an electric field, due to their charge. An
electric field leads to a small relative displacement of e and h and a finite dipole
moment. This dipole moment couples to the electric field and the Stark shift of
a small excitonic dipole is given by

ΔEStark D �p � F . (4.3)

Here p is the excitonic dipole moment (oriented from the positive to the negative
charge) and F the static electric field. According to this relation the Stark effect
always leads to a shift of the exciton transition to lower energy. However, at zero
electric field the center of the electron and hole wavefunctions in a QD can be
displaced by a distance s0, leading to a zero-field dipole moment p0 D es0. In a first
approximation, an electric field induces a small dipole moment following a linear
dependence

p D �F C p0 . (4.4)

Here � is the polarizability of the exciton, a measure for how easily the electron and
hole can be pulled apart, that is, polarized. The resulting electron–hole separation
sind D �F/e is, therefore, defined through

p D esind C p0 . (4.5)

The magnitude of the QCSE can be derived to be

E D E0 � p0 � F � �F 2 , (4.6)

where E0 is the zero-field exciton energy and F D jFj. The electric field leads to
a quadratic shift of the exciton transition to lower energy. The vertex of the parabola
can be shifted from F D 0 if a finite e–h displacement is present without an electric
field applied. For a symmetric structure p0 D 0, however, as discussed later, for self-
assembled QDs nonzero p0 is observed. In semiconductor nanostructures, the e–h
displacement is limited by the size of the system. Therefore sind increases with F up
to the dimension of the system and thereafter remains constant for higher fields.
As a direct consequence the QCSE changes from a quadratic to a linear dependence
for high electric fields. This effect can be observed only for excitons confined in low-
dimensional systems since the confinement potential inhibits field ionization and
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Fig. 4.6 Quantum confined Stark effect of AlGaAs-GaAs QWs
of different width. The polarizability � – that is, the curvature
of the Stark parabola – increases for thicker wells. Furthermore,
at high fields a transition to a linear regime is observed as the
wavefunctions of electron and hole are pulled towards the op-
posite sides of the QW. Reprinted with permission from [170].
Copyright (1985) by the American Physical Society.

increases the exciton binding energy3). Typical examples of the QCSE are shown
in Figure 4.6 for three quantum wells of different width. For low electric fields,
F < 90 kV/cm the shift of the PL peak energy (symbols) is well reproduced by
the anticipated quadratic dependence (line). The dependence weakens to linear
for high F with a larger slope for the wider wells. This is also consistent with the
distance of centers of the two wavefunctions asymptotically approaching the well
width.

The polarizability � strongly depends on the size of the nanostructure. For
a quantum well structure with infinite confinement potential the polarizability can
be calculated by perturbation theory [50, 171, 172] if the electrostatic contribution
is small compared to the sub-band energies of electron and hole,

jeF w j � „2 π2

2m�w2
, (4.7)

where w is the width of the well. The Hamiltonian of the problem can be written
as

H D H0 C eFz , (4.8)

3) For example, the binding energy increases by
a factor of 4 for QW excitons compared to
bulk semiconductors. These effects become
more pronounced when the size of the
nanostructure is smaller than or of the same

order as the 3D exciton Bohr radius a�
B . For

III–V semiconductors this value is in the
10 nm range, for instance, for bulk GaAs
a�

B � 11 nm [56].
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where H0 is the usual quantum well Hamiltonian with the corresponding eigen-
states ψn . For the ground state ψ1, which has even parity, the first order correction
given by

ΔE 1 D hψ1jeFzjψ1i (4.9)

equals zero. Therefore, the second-order perturbation has to be included and it can
be shown that the resulting Stark shift for the interband transition between the
lowest electron and hole levels is given by

ΔEStark D �F 2 D 1
24π2

�
15
π2 � 1

�
(m�

e C m�
h )e2w4

„2 F 2 . (4.10)

In this expression m�
e/ h are the effective masses of electron and hole. Furthermore,

in this approximation we also neglected any effects of the electric field on the ex-
citon binding energy, which is definitely required for a more realistic description.
Clearly, due to the dependence to the fourth power, the polarizability � of the exci-
ton strongly depends on the size w of the nanostructure. For example, a reduction
of the effective size by a factor of 2 leads to a reduction of � by a factor of 16. There-
fore, the polarizability is a very sensitive probe of the confinement potential and
size of nanostructures and thus can be used, for instance, to determine the relative
size of two QWs. This can be clearly seen in Figure 4.6 where the magnitude of the
QCSE increases along with the well width. Furthermore, due to the strong mor-
phological anisotropy of self-assembled QDs, a strong dependence of the QCSE on
the electric field direction is expected. In the following subsection we present the
structural properties of self-assembled QDs and their effect on the magnitude of
the QCSE depending on the orientation of the electric field vector.

The Quantum Confined Stark Effect in Quantum Dots
In the general discussion of the QCSE in the previous section we demonstrated
that the magnitude of the QCSE is strongly influenced by the size of the QD. In
Figure 4.7 the energy of the s-shell transition of InAs self-assembled QDs is plot-
ted as a function of an external electric field. In the inset the orientation of F with
respect to the QD is indicated as arrows for the two different polarities of the de-
vices used in the experiments. In contrast to typical III–V QWs the vertex of the
Stark parabola is shifted to negative electric fields for self-assembled QDs, indi-
cating a nonzero value of p0 and, therefore, a finite displacement of the centers
of gravity of the e and h wavefunctions at F D 0 [165]. From the electric field at
which the maximum transition energy is observed, a permanent dipole moment
of p0 � 7 � 10�29 Cm can be derived. This dipole moment corresponds to an e–
h displacement of s0 � 4 Å with the hole wavefunction localized at the QD apex
and the electron wavefunction at the base. This finding can be explained by an
increasing In-content towards the apex of the dot. Electron states are delocalized
over the whole QD due to their smaller effective mass and are less sensitive to the
morphology of the island since the conduction band wavefunctions in III–V ma-
terials are affected primarily by hydrostatic components of the strain. In contrast,



4.2 Optical Cavities 77

n - i - p p - i - n

F F

-300       -200        -100           0           100          20
1.04

1.05

1.06

1.07

1.08

T = 200K
T

ra
ns

iti
on

E
ne

rg
y

(e
V

)

Electric Field (kV/cm)

n - i - p p - i - n

F F

Fig. 4.7 Quantum confined Stark effect of self-assembled
InAs QDs. The maximum of the parabola is shifted to nega-
tive electric fields due a finite excitonic dipole moment present
for F D 0. Reprinted with permission from [173]. Copyright
(2005) by IOP Publishing Ltd.

the higher effective mass of holes leads to a localization in areas of deeper effective
confinement in regions of high biaxial strain at the apex of the QD. As a direct
consequence, in the exciton the centers of the electron and hole wavefunctions are
shifted apart with the hole localized on top of the electron. This results in a small
permanent dipole moment of the exciton with no electric field applied.

The QCSE of a QD exciton can be directly used for laser absorption spectroscopy
with high spectral resolution. Here the QD exciton energy is tuned in and out of
resonance with a narrow band laser via the QCSE allowing a highly sensitive lock-
in detection of the direct absorption of the QD. Due to the small energy shifts
required in this technique the QCSE can be approximated linearly and for typical
field-tunable structures as described in this chapter. Typical shifts are in the order
of �2.5–3 μeV per mV gate voltage applied to the device [167]. This technique will
be discussed further in Chapter 7.

4.2
Optical Cavities

The interaction between light and quantum dots can be enhanced by placing the
dots within an optical cavity. This section will outline several types of cavities that
are readily integrated with quantum dot systems. We will also discuss a few ex-
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Fig. 4.8 Schematic of a Fabry–Pérot resonator consisting of two
reflective surfaces surrounding a medium with index of refrac-
tion, n, separated by a distance, l. Incident light of wavelength λ
is partially transmitted into the cavity where it undergoes multi-
ple reflections within the cavity.

perimental results that have employed cavities in spin-related studies in quantum
dots.

Perhaps the simplest cavity design is a planar Fabry–Pérot resonator [174], shown
in Figure 4.8. Such a cavity consists of two parallel partially reflective surfaces.
When light is incident on one side, some of the light is transmitted into the re-
gion between the surfaces. A portion of this light then reflects back and forth. If
the spacing between the reflective surfaces is such that the multiple reflections
interfere constructively, then a resonance occurs at this wavelength. When such
a condition is satisfied, light builds up inside the cavity. Due to the finite reflec-
tivity of the surfaces, some of the light is also transmitted out the other side. It is
relatively straightforward to calculate the transmission coefficient to be

T D 1

1 C F sin2 δ
2

, (4.11)

where F is the “finesse” of the cavity defined in terms of the reflectivity of the
surfaces, R, as

F D 4R
(1 � R)2 . (4.12)

In equation (4.11), δ is the phase shift of the light after each round trip, and is
given by

δ D
�

2π
λ

�
2nl cos θ , (4.13)

where λ is the vacuum wavelength of the light, n is the index of refraction between
the surfaces, l is the spacing between the surfaces, and θ is the angle of incidence.

Figure 4.9 shows the calculated transmission for a Fabry–Pérot cavity. The trans-
mission spectrum shows a series of sharp peaks that occur when the resonance
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Fig. 4.9 Calculated transmission through a Fabry–Pérot res-
onator with finesse, F D 4311 (R D 0.97), n D 1.5, l D 3 µm,
and normal incidence.

condition is satisfied. These peaks are modes of the cavity, and their width decreas-
es with increasing finesse. Another useful quantity for characterizing an optical
cavity is the Q-factor, which is defined as the ratio of the wavelength of a cavi-
ty mode to the full-width-at-half-maximum of the mode. In Figure 4.9, the cavity
modes have Q � 2000. The fact that there are only certain allowed photon ener-
gies within the cavity can be thought of as a concentration of the photon density of
states into narrow bands.

If one thinks of the light inside a cavity as bouncing back and forth multiple
times before eventually escaping, it is clear that the interaction will be increased
between the light and a quantum dot placed inside the cavity. For example, if Fara-
day rotation is used to measure the spin of electrons in quantum dots embedded in
a cavity, the signal will be enhanced with each reflection of the light. The Faraday
effect, described in more detail in Chapter 7, yields a spin dependent rotation of the
plane of polarization of linearly polarized light. With each pass through the cavity,
the light interacts with the spin in the dots and is rotated through an increasing-
ly large angle. The enhancement of Faraday rotation of a quantum dot ensemble
by a cavity was investigated in the work of Y. Q. Li et al. [175], in which a layer of
nanocrystal quantum dots was incorporated within a planar Fabry–Pérot cavity. The
reflective surfaces making up the cavity in this case were distributed Bragg reflec-
tors (DBRs), composed of alternating layers of titanium dioxide and silicon diox-
ide. The differing index of refraction of the two materials results in high reflectivity
for light within a specific wavelength range that depends on the layer thicknesses.
A first DBR was deposited by electron beam evaporation, capped by a final SiO2 lay-
er with a width of half the final cavity width. A layer of nanocrystal quantum dots
was then chemically deposited on the DBR, and additional layers were evaporated
on top to complete the cavity and fabricate a top DBR. As a control, the top DBR
was only grown over half of the sample, which allowed comparison of the signal
with and without the cavity.
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The results are shown in Figure 4.10a. The oscillating signal shows the coherent
precession of an ensemble of spins, measured using Faraday rotation. The open
symbols show the cavity enhanced signal, and the closed symbols show the da-
ta from the same samples, but in a region without the completed cavity. Clearly,
a large enhancement of the signal is achieved. The same non-cavity-enhanced data
in part 4.10a is shown in Figure 4.10b on a smaller scale. The same spin precession
is observed, but with approximately 20 times smaller amplitude. The enhancement
is quantified in Figure 4.10c. The enhancement of the signal increases roughly lin-
early with the cavity Q-factor. This allows the measurement of smaller numbers of
quantum dots, or measurement with lower laser intensities.

Another effect of an optical cavity on a quantum dot is due to the change of the
photon density of states within the cavity, mentioned above. Interactions between
the states in the dot and the light depend on this density of states. For example, the
rate of optically driven transitions will depend on this density of states, as can be
seen from Fermi’s golden rule. This phenomenon is known as the Purcell effect,
and will be discussed further in Section 5.5. There has been much work investigat-
ing such effects in cavity quantum dot systems, but not too many studies specifi-
cally addressing the spin physics. One study that has been performed is described

Fig. 4.10 (a) Coherent spin precession measured by cavity en-
hanced Faraday rotation. Filled symbols show the nonenhanced
signal. (b) Nonenhanced data from part (a), shown on a small-
er scale. (c) Enhancement of Faraday rotation as a function of
cavity Q-factor. Reprinted figure with permission from [175].
Copyright (2006) by the American Institute of Physics.
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in S. Ghosh et al. [176]. Here, interface fluctuation quantum dots are embedded
in microdisk cavities. These cavities consist of a semiconductor disk with a diam-
eter of several microns supported from the bottom by a narrow post. Light can
propagate within the disk in a “whispering gallery mode” with the light making
successive total internal reflections around the perimeter of the disk. In this work,
spins in the quantum dots were measured using time-resolved Kerr rotation (see
Chapter 7), and from this, the effective transverse spin lifetime, T �

2 , was extracted.
When the cavity was optically pumped sufficiently strongly to produce lasing be-
havior, an increase in T �

2 was observed. Though the reason for this increase is not
entirely understood, it clearly involves the modified interaction between light and
the spins in the cavity.

Much of the present work involving quantum dots in cavities is focused on dots
embedded in photonic crystal cavities [177]. A photonic crystal can be formed by
etching a regular array of holes into a thin semiconductor slab. In the same way
that a regular array of atoms in a solid can produce a bandgap for electrons in the
material, these holes can produce a bandgap for photons with wavelength on the
same order as the hole spacing. By omitting several holes from the center of such
a pattern, a small region can be formed without the bandgap present elsewhere.
This serves to confine light with certain wavelengths inside this region, forming
an optical cavity. If the thickness of the material is chosen appropriately, the light
will also be confined in the vertical direction, so the cavity confines light in all three
dimensions.

These structures provide very small, high-quality cavities that are readily integrat-
ed with self-assembled quantum dot systems. A significant amount of progress has
been made in observing coupling between the quantum dot states and the cavity
modes (e. g., [178]). However, there has not been much observed to date specifically
involving spins in the quantum dots. Nonetheless, there is much promise for spin
related studies in these systems. For example, proposals exist to use such integrated
cavities for optically-mediated coupling of spins in two quantum dots [179], or fully
scalable spin-based quantum computing [180]. Along similar lines, arrays of mi-
crodisk cavities may be fabricated on a chip and used to couple multiple quantum
dots to perform quantum computing, as was proposed by Imamoglu et al. [181]
(see Chapter 5 for more discussion of this proposal).
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5
Quantum Dots Interacting With the Electromagnetic Field

Quantum dots as described in the previous chapters exhibit interesting types of
interaction with the electromagnetic field (which we equally refer to as the radia-
tion field). In this chapter we provide a discussion of radiative transitions between
quantum dot states, which involve an exchange of energy with the radiation field.
In terms of photons, the energy quanta of the electromagnetic field, these process-
es describe the absorption and emission of photons by the quantum dot. This is
followed by a brief discussion of the driven two-level system, where we introduce
the useful concept of the generalized master equation, which takes a dissipative
environment into account. We then review the theory of cavity quantum electro-
dynamics with strong and weak coupling regimes. Finally, we discuss dispersive
interaction phenomena of quantum dots and the radiation field, highlighting a few
that are relevant to the physics of spins in quantum dots. These include the readout
or manipulation of spins via the ac Stark effect and the cavity-mediated coupling of
two quantum dots.

5.1
Hamiltonian for Radiative Transitions of Quantum Dots

In this section we discuss electric dipole and magnetic dipole transitions between
bound states of a quantum dot. Basically, we review here the usual model for the in-
teraction of an atom with electromagnetic radiation, as discussed in many standard
textbooks on quantum optics, for example [182, 183], and apply it to the scenario of
a quantum dot.

5.1.1
Electromagnetic Field

The Hamiltonian of the quantized electromagnetic field in the Heisenberg picture
is given by

Hf(t) D
X
k,s

„ωk

�
a†

ks (t)aks(t) C 1
2

�
, (5.1)

Spins in Optically Active Quantum Dots. Concepts and Methods.
Oliver Gywat, Hubert J. Krenner, and Jesse Berezovsky
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40806-1
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where aks(t) and a†
ks(t) are the photon annihilation and creation operators acting

on the mode characterized by the wave vector k and the polarization s. As already
mentioned in the introductory chapter, we do not highlight operators with special
notation, assuming that it is clear from the context which symbols are operators.
The photon angular frequency ωk is connected with the wave vector k by the usual
relation ωk D ck, with k D jkj and the speed of light c. The term proportional
to 1/2 in Eq. (5.1) is known as the zero-point contribution of the field and is not
further discussed here.

5.1.2
Nonrelativistic Electron–Photon Interaction

For the radiative interaction of a quantum dot we first consider the nonrelativistic
Hamiltonian of an electron interacting with the electromagnetic field. The action
of the electromagnetic field on matter is described in terms of the scalar potential
Φ and the vector potential A. For simplicity we set Φ D const., here, such that the
electric field is generated by the vector potential only,

E(r, t) D �rΦ � @tA(r, t) D �@t A(r, t) , (5.2)

where @t is the partial derivative with respect to time t, and r is the nabla operator,
with rΦ D 0 in our case. The magnetic field is given by the rotation of the vector
potential,

B(r, t) D r � A(r, t) , (5.3)

where � is the usual vector product. We assume that the electron moves in a time-
independent crystal potential V(r) and has the free mass m0, the electric charge
q D �e, and the spin operator S. The interaction Hamiltonian for this situation is
given by

Hnonrel D 1
2m0

�
p � qA(r, t)

�2 C V(r) � q
m0

S � B(r, t) . (5.4)

For the vector potential it is convenient to choose the Coulomb (or transverse)
gauge, r � A(r, t) D 0, such that the electron momentum operator p and the vector
potential of the quantized field A commute. This can be shown using the explicit
form of A, Eq. (5.6), below. After applying the Coulomb gauge in Eq. (5.4) we can
immediately write

Hnonrel D p2

2m0
C V(r) � q

m0
A(r, t) � p C q2

2m0
A2(r, t)

� q
m0

S � B(r, t). (5.5)
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For the electromagnetic field in vacuum, the quantized expression for the vector
potential reads

A(r, t) D
X
k,s

s
„

2�ωk Vmode

h
aks (0)eksei(k�r�ωk t ) C a†

ks(0)e�
kse

�i(k�r�ωk t )
i

D
X
k,s

A k

h
aks(0)eksei(k�r�ωk t ) C a†

ks (0)e�
kse

�i(k�r�ωk t )
i

.

(5.6)

Here, eks is the unit polarization vector for the mode with wave vector k and polar-
ization s, � is the dielectric constant (in vacuum, � D �0), and Vmode is the quantiza-
tion volume of the electromagnetic field. We choose all dimensions of Vmode much
bigger than the photon wavelength λ, such that the plane wave expansion of A as
shown in Eq. (5.6) exists, which is our scenario of choice in the following. In turn,
for photon modes confined by a cavity or resonator, the cavity defines the mode
quantization volume. For some cavities with dimensions on the order of a wave-
length, a numerical calculation may actually be necessary to accurately obtain the
fields present in the cavity modes. Every mode with wave vector k has two possi-
ble polarizations, s D 1, 2. The two unit polarization vectors eks are by definition
orthonormal, e�

ks � ek0 s0 D δ s s0 δkk0 , where the asterisk � denotes complex conju-
gation. They are further oriented transversal to the photon propagation direction,
k � eks D 0. It is usual to order them such that they form a right-handed system
with the photon propagation direction, ek1 � ek2 D k/ k. The unit polarization vec-
tors eks are oriented parallel to the electric field vector E(r, t), which follows from
Eq. (5.2). Obviously, for a linear polarization basis (such as s D H, V for horizontal
and vertical polarization) both polarization vectors of a given k are real-valued. For
the circular polarization basis (s D σC, σ� for right- and left-handed circular po-
larization) we choose the complex unit polarization vectors ekσ˙ D (1, ˙ı)/

p
2 in

the plane perpendicular to k.

5.1.3
Total Hamiltonian for a Quantum Dot and a Field

For the total Hamiltonian H of the electron interacting with the quantized electro-
magnetic field we obtain from the above considerations

H D Hnonrel C Hf D H0 C Hint C Hf , (5.7)

where Hf is given by Eq. (5.1), and we have ordered the remaining terms as

H0 D p2

2m0
C V(r) , (5.8)

Hint D � q
m0

A(r, t) � p � q
m0

S � B(r, t) . (5.9)

Here, we have neglected the term / A2(r, t) in Eq. (5.5), which describes photon–
photon scattering, assuming that it is small compared to the term linear in A. This
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is true for low-intensity fields and is a good approximation for most optical experi-
ments.

We now specialize to an electron in a quantum dot interacting with the elec-
tromagnetic field. For simplicity we consider a single quantum dot in the crystal
ground state and at temperature T D 0 K. The potential V(r) is the total crystal
potential of the quantum dot. For a quantum dot with a size much smaller than
the photon wavelength and that is embedded in a material with dielectric num-
ber �r , the dielectric constant to be chosen in A(r, t) is � D �r�0. For a quantum
dot in the strong confinement regime, we can basically apply the standard mod-
el of a two-level system interacting with the quantized electromagnetic field from
quantum optics. We assume in the following that there are stationary states of the
time-independent Hamiltonian H0 of the quantum dot, of which the two confined
single-particle states j1i and j2i are coupled by the radiation field. When discussing
the selection rules for electric and magnetic dipole transitions we specify the condi-
tions for the coupling of such states. For this chapter it will be sufficient that there
are two stationary states j1i and j2i of H0 and we need no further information
about H0.

We now transform H into the Schrödinger picture where the time dependence of
the field is removed. We obtain for the electron momentum coupled to the vector
potential

A(r) � p D
X
k,s

A k



akseik�reks � p C a†

kse
�ik�re�

ks � p
�

. (5.10)

For quantum dots, the wavelength of the coupled photon mode is typically much
larger than the spatial extension of the confined electron wave functions involved
in the transition. Hence, k � r � 1, and we can perform a multipole expansion,

e˙ik�r D 1 ˙ ik � r C . . . , (5.11)

which we may truncate after the lowest nonvanishing term in the transition matrix
elements taken from Eq. (5.10). In the remainder of this chapter, we discuss the
first two interaction terms of the multipole expansion. The first term gives rise to
electric dipole transitions, whereas the second term gives rise to magnetic dipole
and electric quadrupole transitions.

5.2
Electric Dipole Transitions

At optical wavelengths, that is in the range λ � 380 nm . . . 780 nm, most transi-
tions in matter that are induced by electromagnetic radiation are electric dipole
transitions [183]. Mathematically, the dipole approximation corresponds to setting
exp(˙ik � r) � 1 in Eq. (5.10) and inserting the resulting expression into Eq. (5.9).
The dipole approximation is exact for a point-like emitter, for which the position of
the electron can be chosen as r D 0, and therefore the spatial variation of the elec-
tromagnetic field is not important, apart from its polarization, which is discussed in
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Section 5.2.1. For typical quantum dots, the dipole approximation is usually a good
approximation. To give an example, for self-assembled InAs or InGaAs quantum
dots the energetically lowest interband transitions are typically in the near infrared
(k � 1 µm�1), while r is on the order of the quantum dot size (usually a few tens of
nanometers). Thus, k r � 10�2 in this example. Further, the term eS � B(r, t)/m0 c
in Eq. (5.9) can safely be neglected in the dipole approximation because its tran-
sition matrix elements are smaller by a factor k r(� 1) than the transition matrix
elements of A � p [183]. Altogether, Eq. (5.9) simplifies in the dipole approximation
to

Hint � � q
m0

X
k,s

A k



akseks � p C a†

kse
�
ks � p

�
. (5.12)

The scalar products in Eq. (5.12) indicate that the coupling strength of the elec-
tron and the electromagnetic field depends on the cosine of the angle between eks

(or e�
ks ) and p. The coupling is zero if an involved electron momentum is aligned

perpendicular to eks .
In the following we describe the quantum dot as a two-level system with the

ground state j1i and the excited state j2i, where H0jii D Ei jii for i D 1, 2. For
simplicity, we consider the interaction with one single photon mode and drop the
summation over k and s. We assume that the mode is resonant with the transition,
ωk D (E2 � E1)/„, or quasi-resonant, jωk � (E2 � E1)/„j � δ1,2, where δ1,2 is the
linewidth of the transition between j1i and j2i. For further insight into the two-
level dynamics we multiply Hint from the left- and the right-hand sides with the
unity operator of the two-level system, j1ih1j C j2ih2j. The diagonal momentum
matrix elements vanish because p changes the parity of the state it is applied to. We
introduce the raising operator σC D j2ih1j and the lowering operator σ� D j1ih2j
and obtain

Hint � � q
m0

A k

h
aks (σCeks � h2jpj1i C σ�eks � h1jpj2i)

Ca†
ks

�
σCe�

ks � h2jpj1i C σ�e�
ks � h1jpj2i�i . (5.13)

We note that the Hamiltonian Eq. (5.13) contains energy nonconserving terms,
namely the emission of a photon combined with an excitation of the quantum dot,
and the Hermitian conjugate expression of this process. However, these terms van-
ish due to angular momentum selection rules if we consider coupling with a cir-
cularly polarized mode (cf. [182], p. 752). For the coupling with a mode of arbitrary
polarization, the rotating wave approximation (RWA) may be applied. In the RWA
only the energy-conserving interaction terms in Eq. (5.13) are kept. This is usu-
ally a good approximation when the mode and the emitter are resonant or quasi-
resonant, as we have assumed here, and can be justified as follows: We transform
into a frame rotating with the angular frequency ω of the field. In this frame, the
energy nonconserving terms rotate at a frequency 2ω and are averaged out to ze-
ro on a time scale larger than � 1/2ω, which is fast for optical frequencies when
compared to typical radiative lifetimes. Assuming a circularly polarized mode, or
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alternatively, applying the RWA to a mode with noncircular polarization, we obtain
the usual interaction Hamiltonian for electric dipole transitions,

HED
int D � q

m0
A k



aks σCeks � h2jpj1i C a†

ks σ�e�
ks � h1jpj2i

�
. (5.14)

With this interaction Hamiltonian we obtain the famous Jaynes–Cummings
Hamiltonian [184] from cavity quantum electrodynamics (cavity QED) [185],

H D H0 C Hf C HED
int . (5.15)

Before we discuss the conditions for nonvanishing electric dipole transition matrix
elements, we introduce two frequently encountered quantities that characterize the
transition efficiency, namely, the optical Rabi frequency,

„Ωks D
ˇ̌̌
ˇ q

m0
A keks � h2jpj1i

ˇ̌̌
ˇ D e

m0

s
„

2�r�0ωk
jeks � h2jpj1ij , (5.16)

and the oscillator strength,

f2,1 D 2jeks � h2jpj1ij2
m0jE2 � E1j . (5.17)

The optical Rabi frequency is basically analogous to the usual Rabi frequency of
a spin driven by an external ac field (which is typically a magnetic dipole transition,
see Section 5.3). The oscillator strength is named after a classical model of oscil-
lators coupled to the electromagnetic field. In this classical model, the oscillator
strength describes the fraction of oscillators that are effectively coupled to the field.
The above expression for f2,1 is a generalization of the classical expression.

5.2.1
Electric Dipole Selection Rules

The scalar product of the unit polarization vector with the momentum matrix ele-
ment lies at the core of the electric dipole interaction of an electron and a photon.
Let us first consider the momentum matrix element h2jpj1i alone, which is nonze-
ro only if the states j1i and j2i satisfy certain symmetry criteria. These symmetry
criteria are called the electric dipole selection rules. As the momentum operator
changes the parity of a state (from even to uneven, and vice versa), the momentum
matrix element is nonzero only if the states j1i and j2i have different parity. Further
criteria are obtained depending on the exact form of the states j1i and j2i.

As a first example, we consider orbital angular momentum eigenstates j1i D
jl, m , msi and j2i D jl 0, m0, m0

si, where l (l 0), m (m0), and ms (m0
s) are the quantum

numbers of the orbital angular momentum, its projection, and the spin, respective-
ly, which are all defined along an axis, for example z. For these states, the selection
rules

l � l 0 D ˙1 , m � m0 D 0, ˙1 and ms D m0
s (5.18)
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must be satisfied [183]. Note that the third of the above conditions, the conservation
of the spin orientation, follows directly from the absence of spin operators in the
matrix element.

As a second example, we consider the selection rules in the presence of spin–
orbit coupling, Hso D λ s oL � S, as given by Eq. (3.3). In this situation, we apply
Clebsch–Gordan theory to couple the spin 1/2 and the orbital angular momentum
and switch to the basis of total angular momentum states, j1i D j j, j z I l, m , msi
and j2i D j j 0, j 0

z I l 0, m0, m0
si, which diagonalizes Eq. (3.3). The above electric dipole

selection rules then transform into

j � j 0 D 0, ˙1 , l � l 0 D ˙1 , and j z � j 0
z D 0, ˙1 . (5.19)

The electric dipole selection rules stated in Eqs. (5.18) and (5.19) are the usual rules
that apply to atomic transitions as well [183]. The transitions with j z � j 0

z D ˙1 are
circularly or σ polarized, as they involve net transfer of angular momentum, while
the j z � j 0

z D 0 transitions are linearly or π polarized.
Finally, the scalar product of the unit polarization vector of the photon and the

momentum matrix element of the electron imposes a geometrical condition on the
electric dipole interaction. To elaborate further on this property we need to take the
crystal symmetry into account for the states j1i and j2i, which is studied in more
detail in the following.

5.2.2
Interband Transitions in a III–V Semiconductor

Regarding the optical control and detection of spin, we have seen above that the ra-
diative transitions with typically the largest coupling strength – the electric dipole
transitions – are actually spin conserving. However, as we recall from the previous
chapter, in many types of semiconductors there is spin–orbit coupling present that
couples the electron spin with the angular momentum of the Bloch state, for ex-
ample in the p-type valence band states. For many spin-related optical schemes, the
spin–orbit coupling is the key to access spins via optical polarization.

To illustrate this, we work out the electric dipole transition matrix elements of
a III–V semiconductor quantum dot. According to Eq. (5.19), a transition between
the c band ( j D 1/2) and the v band ( j D 3/2) edges satisfies the selection rule
for j. For simplicity, we consider the coupling with a single photon mode in a Fock
state jnksi where the photon population number is given by nks . We take into
account the envelope function approximation from Chapter 4 and consider the
states

j1i D jφ cijuc
Jz

ijnks C 1i and j2i D jφ vijuv
J 0

z
ijnksi , (5.20)

where jφbi is the envelope function and jub
Jz

i the Bloch function of band b D c, v
with angular momentum projection Jz . For the modulus of the photon absorp-
tion matrix element, for example, we obtain after a calculation that we leave as an
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exercise to the reader,

jh2jHED
int j1ij D e

m0
A k

p
nks C 1

ˇ̌̌
ˇeks � huc

Jz
jpjuv

J 0
z
i
Z

d3r φ c(r, σ)φ�
v (r, σ)

ˇ̌̌
ˇ .

(5.21)

As we can see in the above equation, it turns out that the electric dipole transition
matrix element between the c and v bands is a product of an overlap integral of the
corresponding envelope functions and a momentum matrix element of the c and
v Bloch states of the semiconductor crystal.

The overlap integral of the envelope functions determines between which con-
fined levels an optical transition is allowed. Obviously, for the harmonic oscillator
states mentioned earlier in Section 2.3.2 recombination will only occur between
electron and hole states with the same orbital symmetry.

The symmetry properties of the Bloch functions Eqs. (3.6–3.10) provide further
insights into the structure of the momentum matrix element. The zincblende lat-
tice has cubic symmetry, thus the matrix elements hsjpαjαi D pcv are equivalent
for α D x , y , z. This interband momentum matrix element pcv is a material con-
stant that is related to the Kane energy Ep D 2p 2

cv /m0, which can be found in
tables, for example, Appendix C.

We now take the scalar product with the unit polarization vector into account and
consider a photon that propagates in a direction given by the polar angles (θ , φ)
with respect to a coordinate system coinciding with the cubic crystal axes. When
we calculate the momentum matrix elements with the Bloch functions we note that
there are circularly polarized transitions from the hh band as well as the l h band
to the c band. For the circularly polarized hh–c transition, the transition matrix
element is obtained up to a global phase as

eks � huc
σ/2jpjuv

σ3/2i D pcv

2
eiσφ(cos θ � σ s) . (5.22)

Here, σ D ˙1 is a parameter related to the spin σ/2 of the electron involved, which
also assures spin conservation, and s D ˙1 is the photon circular polarization σ˙.
For the l h transition, in turn, we obtain up to a global phase

eks � huc
σ/2jpjuv

�σ/2i D pcv

2
p

3
e�iσφ(cos θ � σ s) . (5.23)

The different prefactors of above two expressions Eqs. (5.22) and (5.23) are respon-
sible for the famous ratio 1/3 of the optical transition rates for l h and hh states.
For l h, there is also a linearly polarized transition to the c band due to the jzi part
of the Bloch states. This transition matrix element is up to a global phase given by

eks � huc
σ/2jpjuv

σ/2i D pcvp
3

sin θ . (5.24)

For the case of spontaneous emission, the above matrix elements suggest that the
polarization of the emitted photon depends not only on the spin of the recombining



5.2 Electric Dipole Transitions 91

Fig. 5.1 Illustration of the different photon polarizations from
a given σ transition upon emission into different directions. The
central arrow indicates a dipole transition moment along z, the
thin black arrows are photon propagation directions, and the ar-
rows near their endings show the corresponding polarizations.

exciton, but also on the direction in which the photon is detected after emission.
To illustrate this with an example, for a hh transition with angular momentum +1
transferred to the field, and photon emission along the angular momentum quan-
tization axis, say z, the photon is of circular polarization σC. For emission at an
angle θ with respect to z, the photon polarization can be viewed as the result of
a projection of the angular momentum onto the photon propagation direction. It
is given by a superposition of the two photon polarizations σ˙ with relative am-
plitudes according to Eq. (5.22). For an increasing θ , the photon polarization thus
evolves from circular to elliptical, as an increasing component of the opposite cir-
cular polarization is admixed. For emission exactly perpendicular to z, the photon
polarization is linear. If θ increases even further, the photon polarization is ellipti-
cal again, until for θ D π the photon polarization is σ�, the circular polarization
opposite to the one for θ D 0. The different photon polarizations for different
emission directions are illustrated in Figure 5.1.

We conclude the section on electric dipole transitions with two comments related
to the classical description.

5.2.3
Equivalent Classical Electric Dipole Picture

In the dipole approximation actually only the electric field is involved in the inter-
action, and the magnetic field B is neglected completely. Especially, the interaction
of B with the spin is negligible because it is proportional to k � r � 1, which is on
the order of the terms that are dumped in the dipole approximation. Further, the
orbital effect of B due to the Lorentz force is also irrelevant in the dipole approxi-
mation, which seems clear in view of the fact that the coupling term A � p can in
the dipole approximation be transformed right away into a coupling of the form
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d � E, where d D er is the electric dipole moment operator and E the electric field.
To see this we consider the classical Hamiltonian for the interaction of the electric
dipole moment d with the electric field, HED

classic D �d � E, and insert the vector
potential of the quantized field using the definition E D �@t A. If we use a similar
representation in terms of the states j1i and j2i as for Hint, we obtain

HED
classic D �iωk A k

h
aks



σCeks � h2jdj1i C σ�eks � h1jdj2i

�
�a†

ks

�
σCe�

ks � h2jdj1i C σ�e�
ks � h1jdj2i�i . (5.25)

We now go back to our quantum mechanical interaction Hamiltonian Eq. (5.13) in
the dipole approximation. We notice that the momentum operator can by replaced
by the commutator of r and H0 by using the relation [r, H0] D i„p/m0. For ωk D
(E2 � E1)/„ we can replace all momentum matrix elements by expressions of the
form

h2jpj1i D im0

„ h2j[H0, r]j1i D im0

„ (E2 � E1)h2jrj1i
D im0ωkh2jrj1i . (5.26)

It is an easy exercise to verify that we thus obtain the Hamiltonian Eq. (5.25)
from Hint in the electric dipole approximation. This classical correspondence leads
us to the concept of an electric dipole moment of a transition. This in some sense
provides a more intuitive picture of an electric dipole transition than the momen-
tum matrix element. The electric field of a photon can induce a dipole transition
only if a “jump” of the atomic wave function (or of the Bloch states in a semicon-
ductor) that provides a suitable transition dipole moment can be accomplished.

5.2.4
Semiclassical Interaction with a Laser Field

For a coherent photon state jαi, the semi-classical interaction Hamiltonian of
a two-level system coupled to a classical field is recovered from the full quantum
mechanical expression Eq. (5.14). A coherent photon state jαi is defined by

jαi D exp



αa†
L � α�aL

�
j0i , (5.27)

where α 2 C, a(†)
L are photon operators of the laser mode, j0i is the photon vacu-

um, and the mean number of photons in the mode is given by jαj2. Since coherent
states are eigenstates of the annihilation operator,

aLjαi D αjαi , (5.28)

the photon operators in Hint are simply replaced by complex numbers α and α�,
respectively. Provided that the interaction with the two-level system does not signif-
icantly change the state of a laser field, a coherent state is obviously a good approx-
imation for the laser field. Hence, a semiclassical interaction description is usually
sufficient for the interaction of a laser driving a two-level system [182].
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5.3
Magnetic Dipole Transitions

The second term in the multipole expansion may be the dominant term in a transi-
tion matrix element if the electric dipole term vanishes due to selection rules. This
second term (/ k � r) leads to momentum matrix elements of the form hij(k � r)(eks �
p)j j i in Hint. We add to this term the interaction / S � B of the spin with the mag-
netic field. The resulting interaction term can be represented as the sum of a mag-
netic dipole term and an electric quadrupole term [183]. The magnetic dipole term
describes the coupling of the total magnetic dipole moment of the electron to the
magnetic field. For transitions between angular momentum eigenstates jl, ml , msi
and jl 0, ml 0 , ms0i with orbital and spin magnetic moment ml and ms , respectively,
the selection rules for magnetic dipole transitions are

l � l 0 D 0 , ml � ml 0 D 0, ˙1 , and ms � ms0 D 0, ˙1 . (5.29)

In the presence of the spin–orbit interaction Hso D λL � S, as in Section 5.2, the
magnetic dipole selection rules transform into

l � l 0 D 0 , j � j 0 D 0, ˙1 , and m j � m j 0 D 0, ˙1 . (5.30)

The selection rules for electric quadrupole transitions are given by l � l 0 D 0, ˙2
and ml � ml 0 D 0, ˙1, ˙2.

The electric quadrupole transition can be interpreted as the interaction of the
electric quadrupole moment with the gradient of the electric field [183]. It is usu-
ally experimentally possible to place the emitter at a location, for example, inside
a cavity, where the magnetic field is large and the gradient of the electric field is
negligible, enabling the excitation of only a magnetic dipole transition. Typical ex-
amples for magnetic dipole transitions are magnetic resonance transitions, such
as electron spin resonance.

5.4
Generalized Master Equation of the Driven Two-Level System

We provide a brief overview of the dynamics of two levels that are coupled by an
external oscillating field. Additionally, the environment is coupled to the two-level
system, which induces transitions and affects the coherent time evolution of the
two-level system. In this section we present the generalized master equation de-
scription of this problem. It is a straightforward task to apply the master equation
formalism to a simple two-level system, and we find it useful to work out a few
details here.
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5.4.1
The Driven Two-Level System

To be specific, we consider a spin 1/2 in a static magnetic field Bz along z with
the ground state j "i and the excited state j #i. The spin is driven by a circularly
polarized magnetic field B?(t), which rotates in the x y plane with frequency ω.
The Hamiltonian of this system is well known from electron spin resonance [1]
and can be written as

HS D „Δ
2

σz C „Ω
2

�
cos(ω t)σx C sin(ω t)σ y

�
, (5.31)

where Δ D ge μBBz and Ω D ge μBB?. Here we have assumed an isotropic g factor
of the electron, ge, which applies to c band electrons in many semiconductors. For
a linearly polarized magnetic field we would obtain the same Hamiltonian after
decomposing the field into two counter-rotating components and keeping only one
of them after applying the RWA. It is important to note that in the linearly polarized
case only half the amplitude of the magnetic field enters in Ω .

We now rewrite the above Hamiltonian in terms of the density operator � of the
spin 1/2, which consists of the matrix elements �"", �##, �#", and �"#, where
we apply the notation �nm D jnihmj. The off-diagonal matrix elements are com-
plex conjugates, �"# D ��

#"
, since � is Hermitian. Using �nm instead of the Pauli

matrices, the Hamiltonian reads

HS D „Δ
2

�
�## � �""

�C „Ω
2

�
e�iω t�"# C eiω t�#"

�
, (5.32)

We now transform into the frame rotating at frequency ω. This is achieved by the
unitary operator

U D e� iωt
2 (�##��"") , (5.33)

which, when applied in the Schrödinger equation, leads us to the transformed
Hamiltonian

H 0
S D U†HSU � iU†@t U

D „δ
2

�
�## � �""

�C „Ω
2

�
�"# C �#"

�
, (5.34)

where δ D Δ � ω is the detuning of the field with respect to the level splitting.

5.4.2
System-Reservoir Approach

Having obtained the Hamiltonian HS (or H 0
S) of the driven two-level system we

can obtain the dynamics of the system by solving the Von Neumann equation.
However, we additionally want to take into account the coupling to a reservoir that
damps the coherent time evolution of the system [186, 187]. Such a reservoir can be
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the electromagnetic field with all its modes, for example, or the reservoir of lattice
vibrations, the phonons, or any other bath coupling to the two-level system.

For this it is convenient to consider the density operator �SCR of the system S
and the reservoir R. The total Hamiltonian consists of three parts, H D HS C
HR C HS–R, where HS describes the coherent dynamics of S, HR is the Hamiltoni-
an of R, and HS–R is the interaction of S and R which is the term responsible for
the damping of S. The density operator of the system, which we have labeled �, is
obtained by taking the trace over the R degrees of freedom in �SCR. The trace over
R is now also taken in the equation of motion. In the Born and Markov approxima-
tions, the equation of motion for � is obtained as a generalized master equation in
the Lindblad form [187],

P� D L� . (5.35)

Here, L is a superoperator acting on the density operator. For the individual matrix
elements, the above equation reads explicitly

P�nn D �ihnj [H, �] jni C
X

j

Wn j � j j �
X

j

W j n�nn (5.36)

P�nm D �i hnj [H, �] jmi �
2
41

2

X
j

(W j m C W j n ) C Vm C Vn

3
5 �nm .

(5.37)

Here, Wnm is the relaxation rate for the process leading from state m to state n, and
Vn and Vm are called pure decoherence rates.

Consequently, the generalized Master equation of the driven two-level system
reads

P�"" D Ω
2

�
�#" � �"#

�C W"#�## � W#"�"" (5.38)

P�## D Ω
2

�
�"# � �#"

�C W#"�"" � W"#�## (5.39)

P�#" D �
�

iδ C 1
T2

�
�#" C i

Ω
2

�
�## � �""

�
. (5.40)

Here, W"# and W#" are the rates of incoherent spin flips that are induced by the
interaction with the reservoir. The spin relaxation time T1 is connected to these
rates by 1/T1 D W"# C W#". Further, in the equation for the off-diagonal matrix
element we have introduced the abbreviation

1
T2

D 1
2

�
W"# C W#"

�C V" C V# . (5.41)

Obviously, T2 is the characteristic decay time of �#", which identifies it as the
decoherence time of the two spin states. We notice that we can rewrite the above
equation using T1,

1
T2

D 1
2T1

C V" C V# . (5.42)
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This indicates that T2 has a lower bound, T2 � 2T1. We notice that increasing
incoherent spin-flip rates increase the decoherence rate as well, adding up to the
intrinsic spin decoherence rate, V" C V#. This increase of the decoherence rate
due to relaxation processes is of course also true in the more general case for the
decoherence of two levels n and m in an arbitrary multilevel system, as we can see
in the second term on the right-hand side of Eq. (5.37). Any incoherent process
that takes the system out of the states n or m with a certain rate will increase the
decay rate of the coherence. Therefore small decoherence rates are only found in
strongly isolated systems.

As a special approximation, the adiabatic approximation consists in setting the
off-diagonal matrix elements constant, P�"# D 0. This allows for an algebraic re-
placement of the off-diagonal matrix elements in Eqs. (5.38) and (5.39). It turns
out that the spin populations in the adiabatic approximation are determined by the
equations

P�"" D �(Weff C W#")�"" C (Weff C W"#)�## (5.43)

P�## D (Weff C W#")�"" � (Weff C W"#)�## . (5.44)

where we have introduced an effective driving rate

Weff D T2 Ω 2

2(T 2
2 δ2 � 1)

, (5.45)

which is basically the spin-flip rate induced by the external driving by a field with
detuning δ and Rabi frequency Ω . It is easily verified that this rate is of Lorentzian
shape as a function of δ, with a width of twice the spin decoherence rate, 2/T2. This
characteristic quenching of the driving as a function of the detuning δ enables the
measurement of the spin decoherence rate, or rather, a lower bound for it (if ad-
ditional line broadening mechanisms are present), via the transition linewidth in
electron spin resonance (ESR). It is clear from the above equations that the dynam-
ics in the adiabatic approximation is dominated by the total spin driving rates

W total
"# D Weff C W"# and W total

#" D Weff C W#" . (5.46)

For the stationary solution, the entire density operator is constant, P� D 0 and thus
we set P�"" D P�## D 0 in the above equations. This leads to the following analytical
solution for the stationary spin populations, which we denote by N�"" and N�##,

N�"" D W total
"#

W total
"# C W total

#"

, (5.47)

N�## D W total
#"

W total
"#

C W total
#"

, (5.48)

which in the case W"# D W#" are of course both equal to 1/2 due to normaliza-
tion.
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In the frame of a system-reservoir approach as discussed above, we could now
also work with a generalized master equation to look at dissipative regimes in the
optical interaction, similarly as for electron spin resonance.

The two-level model discussed above is also easily expandable to systems con-
sisting of more than just two levels. There is a big variety of situations in quantum
dots for which a generalized master equation description is suitable. An example
of this is optically detected resonance of a single electron spin in a quantum dot.
Here, we consider the above two spin states plus the two X 1� charged exciton or-
bital ground states with opposite hh spin orientations [188, 189]. This four-level
system is driven by a field that induces electron spin resonance, as in the exam-
ple shown above, and by an additional circularly polarized laser field that drives
one optical transition. In a suitable regime of field intensities, the electron spin
dynamics modulates the photoluminescence [188], or, alternatively, the photocur-
rent extracted from the dot [189], which allows one to measure single-electron spin
decoherence optically. While this is a first-order optical method to detect spin prop-
erties in a quantum dot, there are other fascinating approaches for spin detection
and manipulation by second-order interactions with light. These will be discussed
in the Sections 5.6, 7.2, and 7.3.8.

Before we continue this chapter with quantum dots interacting with cavity res-
onators, a few further remarks on electron spin decoherence in quantum dots
are due. As summarized, for example, in the tutorial by Cerletti et al. [11], the
spin–orbit interaction transfers orbital fluctuations affecting an electron, due to
phonons for example, into its spin domain; this has been studied for quantum
dots by a number of authors in great detail. It has been shown that in leading order
these fluctuations are transverse to the direction of an applied magnetic field [190].
As these fluctuations do not contribute to the intrinsic decoherence rate of the
spin, T2 D 2T1 is obtained for this particular decoherence mechanism. Yet, there
are usually further decoherence mechanisms for an electron spin in a quantum
dot, leading to the often encountered situation where T2 � 2T1. These include the
dipolar coupling to other spins and the hyperfine coupling to nuclear spins, which
will be discussed in Chapter 6.

Now back again to the interaction with the electromagnetic field. The intensity
of the electromagnetic field can be increased in experiments by means of a cavity.
In the following we summarize the basics of cavity quantum electrodynamics.

5.5
Cavity Quantum Electrodynamics

We now consider an optically active structure, such as a quantum dot, coupled to
a cavity mode, and discuss a few elementary regimes of cavity quantum electrody-
namics (cavity QED). We refer to the quantum dot as an emitter in the following.
A cavity basically defines boundary conditions for a volume that confines the elec-
tromagnetic field. Different kinds of cavities were already introduced in Section 4.2.
As already mentioned there, a cavity is usually tailor-made to modify the interaction
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of a certain emitter with the electromagnetic field in a specific way. If a cavity pro-
vides an increased density of photon modes to which an emitter can couple, then
the optical interaction can be enhanced. In contrast, if an emitter couples to a fre-
quency range where the cavity provides a smaller mode density than free space,
then the interaction strength can also be reduced.

In experiments, the cavity enhancement effect can be maximized basically
by three types of adjustments. First, the cavity must be designed such that the
emission line of the emitter and the cavity mode match spectrally. Second, the
emitter must be located at a position where it couples to the field maximum.
Third, the polarization of the emitter’s transition must match the mode polariza-
tion.

If a cavity mode is the dominant mode to which the emitter couples, then we
invoke the Jaynes–Cummings Hamiltonian described in Section 5.2. For the elec-
tromagnetic mode volume, the actual cavity mode volume is inserted into the vec-
tor potential. Consequently, the amplitude of the cavity electric and magnetic fields
increase with decreasing mode volume. The interacting emitter and cavity mode
are now united into a joint system. By introducing incoherent transition rates
for this system, in the emitter subsystem we can now take into account the cou-
pling of the emitter with a reservoir, for example all other modes of the electro-
magnetic field. If we assume that this electromagnetic reservoir is in its vacuum
state, then we may neglect excitations by it and restrict ourselves to the decay rate
Wem, which is also called the spontaneous emission rate. The other subsystem,
the cavity mode, also exhibits a photon decay rate, Wcav, namely the rate at which
photons are lost in the cavity, for example by transmission through a not com-
pletely reflecting cavity boundary. This decay rate gives rise to a finite linewidth of
the cavity mode, Δω D Wcav, which is often also expressed by the quality factor
Q D ω/Δω D ω/ Wcav. Similarly as for the emitter, if the surrounding electro-
magnetic field is in the vacuum state, we may neglect processes that feed photons
into the cavity mode from the outside.

There are various treatments of a damped emitter in a damped cavity in the liter-
ature, for example in the presence of a laser that drives the system [186], which are
recommended for further study of such problems. We now focus on the distinction
of two important regimes for the Jaynes–Cummings Hamiltonian, the regime of
strong coupling and the regime of weak coupling.

5.5.1
Strong Coupling Regime

The strong coupling regime of cavity QED is reached if the coupling of the emitter
and the cavity, the Rabi frequency Ω , is by far the largest transition rate in the sys-
tem. Again, we consider an emitter that is resonant or quasi-resonant with a cavity
mode. We diagonalize the Jaynes–Cummings Hamiltonian and obtain eigenstates
that are coherent superpositions of emitter and photon states. In fact, if the emit-
ter is prepared in an excited state at a certain point in time, this single energy
quantum oscillates coherently between the emitter and the resonant cavity mode



5.5 Cavity Quantum Electrodynamics 99

at a rate determined by Ω , as is typical for coherent coupling. In a realistic system,
decoherence is present, which damps this coherent oscillation.

In the following, we briefly review the theory of the strong coupling regime. For
the Hilbert space of the emitter coupled to the cavity mode we use the basis vectors
ji, ni D jii ˝ jni. Here, jii D jgi, jei describes the ground and excited states of the
emitter with energies Eg and Ee , respectively, and jni is a photon Fock state with
the number of photons n. We switch here to the e and g notation for the emitter for
an easier distinction between photon number and emitter states. Clearly, the state
jg, 0i, consisting of the photon vacuum and the emitter in its ground state, forms
an invariant subspace, as there is no other state with the same energy.

After diagonalization of the Jaynes–Cummings Hamiltonian we obtain the well
known “dressed states”,

j C ni D cos θnjg, ni � i sin θnje, n � 1i (5.49)

j � ni D sin θnjg, ni C i cos θnje, n � 1i (5.50)

for n > 0, where the mixing angle θn characterizes the coupling strength in the
presence of n energy quanta versus the detuning and is given by the relation

tan(2θn) D Ω
p

n
δ

. (5.51)

Here, δ is again the detuning of the field with respect to the transition, δ D Δ � ω,
where „Δ D Ee � Eg. The eigenstate for zero energy quanta (n D 0), as already
mentioned above, is jg, 0i. The corresponding eigenenergy is given by E0 D 0. For
n > 0, we obtain

E˙n D „ωn � „δ
2

˙ „
2

p
nΩ 2 C δ2 . (5.52)

The square root in the above term provides the characteristic level repulsion of
a strongly coupled system. For δ D 0, the splitting ECn � E�n is just the photon
number dependent Rabi splitting. Strong coupling has been achieved for a single
quantum dot in a micropillar cavity [191], in a photonic crystal nanocavity [192,
193], and in a microdisk cavity [194].

The strong coupling regime of cavity QED is particularly interesting for quantum
information schemes as it allows one to convert localized qubits into flying qubits
suitable for transmission of quantum information [195]. If several qubits interact
with one cavity mode, then the cavity can act as a bus for quantum information
that couples qubits with comparably large spatial separations [196, 197].

5.5.2
Weak Coupling Regime

The weak coupling regime of cavity QED is basically characterized by a Rabi fre-
quency that is smaller than or comparable to other transition rates of the system. In
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view of the dynamics, we observe in the weak coupling regime exponential decays
for the spontaneous photon emission, in contrast to the strong coupling regime,
where typically damped oscillations occur. So the weak coupling regime can be de-
fined by a Rabi frequency that is small compared to the optical decoherence time.
The most prominent feature of the weak coupling regime is the cavity-induced
modification of the photon density of states. As the rates of photon absorption and
spontaneous emission according to Fermi’s golden rule depend on the energetical-
ly available photon modes, an enhancement or reduction of the mode density at
the transition frequency will increase or reduce these optical transition rates, re-
spectively. The effect of the cavity-enhanced transition rate has first been described
by Purcell for nuclear spin transitions in a radio-frequency cavity and has since
been called the Purcell effect [198]. For a single quantum dot, Purcell factors in
the range of � 2 . . . 10 were obtained already a few years ago in microdisk cav-
ities [199] and in micropillar cavities [200–202]. In addition to the enhancement
of spontaneous emission, a suppression of the emission rate by an order of mag-
nitude has also been demonstrated for an off-resonant microcavity in the weak
coupling regime [203].

5.6
Dispersive Interaction

For spins in quantum dots, an important class of interaction phenomena is given
by the dispersive interaction with the radiation field. Here we especially consider
a few types of coherent two-photon processes, which are typically induced by the
field of a cavity or by shining high-intensity laser light on a quantum dot. In some
of these processes there is a photon being absorbed and a photon of equal ener-
gy being emitted simultaneously, and there is no net energy transfer between the
quantum dot and the field. Such processes are, for example, also responsible for
the refraction of light in matter. The usage of dispersive phenomena goes even fur-
ther than that, as we are exploring in the following. From the availability of a given
second-order transition or, conversely, its blocking due to the Pauli principle, and
the back-action on the photon field one can, for example, determine the state of
an emitter, thus allowing for optical readout of quantum dot states. Taking advan-
tage of optical selection rules, the effect of Faraday rotation or also Kerr rotation this
way even enable the dispersive readout of spin states, as we discuss in Section 7.3.4.
Here we first discuss a few fundamental properties of the dispersive regime. A use-
ful technique in this context is the Schrieffer–Wolff transformation [118] as we
show in the following.

5.6.1
Lamb Shift and AC Stark Shift

Here we stick with the notation introduced in Section 5.5 and start with the Jaynes–
Cummings Hamiltonian of an emitter labeled with i that is coupled to a cavity
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mode,

H D „Δ i sz ,i C „Ωi



asC

i C a† s�
i

�
C „ωa† a . (5.53)

Here we apply the pseudo-spin operators sz ,i D (1/2)(jeiiheji � jgiihgji ), sC
i D

jeiihgji and s�
i D jgiiheji , and the notation „Ωi for the interaction energy. We con-

sider the dispersive regime, where the cavity mode is nonresonant with all tran-
sitions of the emitter, and the coupling of cavity and emitter in Eq. (5.53) can be
treated perturbatively. The coupling of the emitter i and the cavity can be integrated
out to leading order by a Schrieffer–Wolff transformation U [181, 197]. Explicitly,
we transform to the Hamiltonian

H 0 D U H U† , (5.54)

where U D exp A i is a unitary operator generated by

A i D Ωi

δ i



asC

i � a† s�
i

�
. (5.55)

As a result we obtain

H 0 D eA i He�A i

D H C [A i , H ] C 1
2

[A i , [A i , H ]] C . . .

� „Δ i

2
sz ,i C „ω

�
a† a C 1

2

�
C „Ω 2

i

δ i

�
a† a C 1

2

�
sz ,i . (5.56)

The last line of the above equation is obtained to second order in Ω for the case
when Ω

p
n � δ. The last term in the last line describes the ac Stark shift (be-

ing proportional to the photon number operator, a† a) and the Lamb shift (being
proportional to 1/2).

In the above equation we can see that, depending on the state of the qubit, the
cavity resonance shifts by ˙Ω 2

i /δ i due to the ac Stark shift, where δ i is the pho-
ton detuning with respect to the transition of the emitter i. A measurement of the
cavity resonance shift hence provides a readout mechanism for the qubit. This has
beautifully been demonstrated for a Cooper pair box at the charge degeneracy point
coupled to a stripline resonator [204], which is a system with excellent conditions
to realize quantum optics schemes in a solid state environment. In turn, the ac
Stark shift can be interpreted as a field induced shift of the emitter level splitting.
For spin levels this is the equivalent of an effective magnetic field BStark that cre-
ates a Zeeman splitting. Taking into account the two circularly polarized modes
(C and �) in a Schrieffer–Wolff transformation as shown above, it is found that
the effective Zeeman splitting depends on the difference in the number of right-
and left-circularly polarized photons,

gμBBStark D „Ω 2
i

δ i



a†

CaC � a†
�a�

�
. (5.57)
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This equation provides the intriguing possibility to apply effectively a magnetic
field pulse just by a pulse of circularly polarized light. In Section 7.3.8 we elaborate
on this topic and review a recent experiment in which such tipping pulses were
applied to a single electron spin confined to a quantum dot.

In the following section we explore how cavity photons can couple two emitters
or spins.

5.6.2
Two Emitters Interacting with a Cavity

It is straightforward to extend the above considerations to two emitters (or qubits)
i D 1, 2 that are coupled to the cavity mode. For simplicity, we assume Ω1 D
Ω2 D Ω ¤ 0 and that the emitters do not interact by any other mechanism. The
Hamiltonian is now given by

H D „
X

iD1,2

h
Δ i s i,z C Ωi



asC

i C a† s�
i

�i
C „ωa† a , (5.58)

and can be integrated out to leading order by a similar Schrieffer–Wolff transfor-
mation U D exp A as for a single emitter, where now A D A 1 C A 2. The resulting
effective Hamiltonian is [181, 197]

H 0 D „
�

ω C 2Ω 2

δ1
s1,z C 2Ω 2

δ2
s2,z

�
a† a

C „
�

Δ1 C Ω 2

δ1

�
s1,z C „

�
Δ2 C Ω 2

δ2

�
s2,z

C „
2

�
Ω 2

δ1
C Ω 2

δ2

�

sC

1 s�
2 C s�

1 sC
2

�
, (5.59)

with δ1,2 D Δ1,2 � ω. The last of the above terms shows that the cavity mediates an
effective coupling between the two emitters in second order as it captures processes
where a photon is emitted by one emitter and absorbed by the other. Based on this
type of interaction, two-qubit gates have been proposed for spins in quantum dots
that interact with an optical cavity mode via stimulated Raman transitions [181] and
for Cooper pair boxes in a cavity [197]. It is possible to go a step further from here
and include an additional direct coupling between the two qubits. This serves as
a starting point to investigate how far such an interaction could actually disturb the
cavity-mediated coupling, or under which conditions the ac Stark effect can also be
used to read out coupled two-qubit states [205].
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6
Spin–spin Interaction in Quantum Dots

In this chapter we discuss various types of spin interaction in quantum dots. This
involves spins from electrons and holes, as well as nuclear spins. The interaction
of electrons includes the dipolar interaction of their spins as well as the Coulomb
exchange interaction, which is an effective spin–spin interaction. The electron–
hole exchange interaction in an anisotropic environment mixes and reorders the
exciton states, which has a practical impact on the transfer of spin quantum states
onto photon polarization states and vice versa. Finally, the hyperfine interaction
couples the system of electron spins to the nuclear spins embedded in the crystal
lattice, which form an important reservoir for the damping of the electron spin
dynamics in quantum dots.

6.1
Electron–Electron–Spin Interaction

The interaction of electrons includes the Coulomb interaction as well as the dipolar
interaction of their magnetic moments. Regarding the spin dependent ordering of
the energy eigenstates, it turns out that both of those interactions contribute, but
quite on a different scale.

The Coulomb interaction couples the orbital part of a pair of two electrons. Ac-
cording to the rules of angular momentum addition, the two electron spins S1 and
S2 can either form an antisymmetric state with total spin 0, the spin singlet state,

jSi D 1p
2

(j"#i � j#"i) , (6.1)

or one of the three symmetric states with total spin 1, the spin triplet states,

jT0i D 1p
2

(j"#i C j#"i) , jTCi D j""i, jT�i D j##i , (6.2)

for which the z projections are 0, +1, and �1, respectively.
The postulate of Fermi–Dirac statistics that the total wave function must be com-

pletely antisymmetric, then implies that a spin singlet has a symmetric orbital
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wavefunction, while a spin triplet has an antisymmetric orbital wave function. This
different orbital symmetry can lead to different Coulomb exchange energies. The
resulting energy splitting of singlet and triplet states is in an indirect relation with
spin due to symmetry; the Coulomb exchange interaction may thus be considered
as an effective spin interaction of two electrons. For two spin 1/2 electrons, this ef-
fective spin interaction can be represented in the form of a Heisenberg interaction,

HHeisenberg D JS1 � S2 , (6.3)

with the exchange splitting J between the singlet and triplet states, which is easily
seen after a transformation into the singlet–triplet basis. In a system of two coupled
quantum dots, which we study in more detail in Chapter 8, J is on the order of the
interdot Coulomb interaction. Depending on the particular system, J may reach
a magnitude of �0.1 meV [11, 205].

For the magnetic dipolar interaction we consider the magnetic moments g1μBS1

and g2μBS2, which are associated with the two spins, where μB is the Bohr mag-
neton and g1 and g2 are the gyromagnetic factors of the two electrons, respectively.
The dipolar interaction is given by the expression

Hdipolar D g1g2μ2
B

R3

�
S1 � S2 � 3

(R � S1)(R � S2)
R2

	
, (6.4)

where R is the vector connecting the sites of the two spins. We notice that the
dipolar interaction consists of two terms, an isotropic part of the Heisenberg form
and an anisotropic part. If we consider two spins that are fixed at two sites and
choose our coordinate system such that R D R(sin θ , 0, cos θ ), then we obtain for
the dipolar interaction the more intuitive form

Hdipolar D g1g2μ2
B

R3
[S1 � S2

�3 (sin θ S1,x C cos θ S1,z) (sin θ S2,x C cos θ S2,z)] . (6.5)

If we consider spins with a quantization axis along z, then it can easily be seen in
the anisotropic part, the second line in above equation, that spin mixing is induced
by nonzero terms proportional to the x components of the spin operators. Obvious-
ly, the relative spin alignment due to the anisotropic part of the dipolar interaction
depends on the relative spatial configuration, θ , of the two spins. The magnetic
dipolar interaction of two electron spins in neighboring quantum dots is typically
on the order of � 10�9 meV and therefore much smaller than the exchange inter-
action.

6.2
Electron–Hole Exchange Interaction

A Coulomb exchange term also appears in the Coulomb interaction matrix ele-
ments of electron and hole states in different bands. The inter-band Coulomb ex-
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change interaction, which is usually referred to as the electron–hole exchange in-
teraction, leads to a fine structure splitting of excitonic levels.

6.2.1
Exciton Fine Structure

We review the electron–hole exchange interaction here, considering hh and l h ex-
citon states. According to the method of invariants, the exchange splitting of the
ground state of a confined exciton with symmetry Γ6 � Γ8 (see Section 3.1) can be
written as an effective coupling of the electron spin S and the hole angular momen-
tum J [124, 206],

Hexc D �
X

iDx ,y ,z

�
ai J h

i S e
i C bi



J h

i

�3
S e

i

�
. (6.6)

Here, ai and bi are coupling constants, and the j D 3/2 angular momentum
operators Ji for the valence band holes are given by Eqs. (3.18–3.20) as shown in
Chapter 3. In a quantum dot with anisotropic shape we expect anisotropic coupling
constants ai and bi . In the following, we show how such an anisotropic electron–
hole exchange interaction affects the exciton states in the basis of the eight energet-
ically lowest bright and dark hh and l h exciton states, denoted by j J h

z , S e
z i. For our

basis we use the exciton states j 3
2 , � 1

2 i, j � 3
2 , 1

2 i, j 3
2 , 1

2 i, j � 3
2 , � 1

2 i, j 1
2 , 1

2 i, j � 1
2 , � 1

2 i,
j 1

2 , � 1
2 i, j � 1

2 , 1
2 i, in which Eq. (6.6) takes on the matrix form

Hexc
.D
�

A hh A hh�l h

A�
hh�l h A l h

�
, (6.7)

where A hh, A l h, and A hh�l h are 4 � 4 block matrices. Here we note that these
combinations of electron and hole states include both optically active (bright) and
optically inactive (dark) exciton states. Explicitly,

A hh D

0
BB@

Δ0 Δ1 0 0
Δ1 Δ0 0 0
0 0 �Δ0 Δ2

0 0 Δ2 �Δ0

1
CCA , (6.8)

where

Δ0 D 3
4

az C 27
16

bz (6.9)

Δ1 D � 3
8

(bx � b y ) (6.10)

Δ2 D � 3
8

(bx C b y ) . (6.11)
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The term Δ1 couples the bright and Δ2 the dark hh exciton states, respectively. The
bright and the dark hh excitons are split by 2Δ0. The block matrix

A hh�l h D

0
BB@

Δ3 0 0 0
0 Δ3 0 0
0 0 Δ4 0
0 0 0 Δ4

1
CCA (6.12)

mixes hh and l h excitons with

Δ3 D �
p

3
4

(ax C ay ) � 7
p

3
16

(bx C b y ) , (6.13)

Δ4 D �
p

3
4

(ax � ay ) � 7
p

3
16

(bx � b y ) , (6.14)

and, finally, the coupling of the l h exciton states is provided by

A lh D

0
BB@

�Δ5 Δ6 0 0
Δ6 �Δ5 0 0
0 0 Δ5 Δ7

0 0 Δ7 Δ5

1
CCA , (6.15)

where the splitting between dark and bright l h excitons amounts to 2Δ5, and

Δ5 D 1
4

az C 1
16

bz , (6.16)

Δ6 D � 1
2

(ax � ay ) � 5
4

(bx � b y ) , (6.17)

Δ7 D � 1
2

(ax C ay ) � 5
4

(bx C b y ) . (6.18)

Let us first have a look at the ideal case. For rotational symmetry of the dot, and for
cubic crystal symmetry (which is given for a Γ6�Γ8 exciton) we obtain ax D ay and
bx D b y . In this case, Hexc is diagonal for the bright excitons (Δ1 D Δ6 D 0), and
we obtain bright excitons according to the usual interband transitions. In contrast,
the dark excitons are mixed due to Δ2 and Δ7. In quantum dots with a splitting
Δhh�l h of heavy and light hole states, the electron–hole exchange interaction can
further be simplified [206, 207]. As for quantum dots typically Δhh�l h � 10 meV,
the hh–l h splitting is much larger than typical electron–hole exchange interaction
energies (.0.05 meV in “natural” GaAs dots [24], .0.2 meV in InAs dots [168, 207,
208], .0.3 meV in CdSe/ZnSe dots [209]). We may therefore restrict ourselves to
hh states and the exchange interaction described by Eq. (6.8).

For a quantum dot with an asymmetric shape in the x y plane, bx ¤ b y is pos-
sible, leading to a coupling of j 3

2 , � 1
2 i and j � 3

2 , 1
2 i. The circularly polarized bright

excitons thus transform into linearly polarized exciton states,

1p
2

�ˇ̌̌
ˇ32 , � 1

2


˙
ˇ̌̌
ˇ� 3

2
,

1
2

�
(6.19)
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Fig. 6.1 PL excitation spectrum of a single neutral IFQD with no
applied magnetic field. The x 0x 0 (y 0 y 0) spectrum is measured
with both the excitation light and the collected light polarized
linearly along the [110] ([N110]) directions. Reprinted with per-
mission from [24]. Copyright (1996) by the American Physical
Society.

which are split by the energy δehx D 2Δ1. For elliptic dots these intrinsic basis
states are oriented along the major and the minor axis, respectively [210].

For example, GaAs interface fluctuation quantum dots tend to be elongated along
the [N110] crystal direction (see Figure 2.3 in Chapter 2). In this type of dots the elec-
tron–hole exchange interaction results in a fine-structure splitting δehx of the exci-
ton PL peak on the order of tens of μeV, as shown in Figure 6.1. If a magnetic field
is applied such that the Zeeman splitting is larger than this anisotropic exchange
splitting, then the circularly polarized eigenstates are restored [211].

The mixing of bright exciton spin states in anisotropic quantum dots is undesir-
able for a faithful conversion of quantum information from spin states into photon
polarization states, and vice versa. In this context, an intriguing idea is the gener-
ation of a pair of polarization-entangled photons from the decay of a ground state
biexciton 2X0 in a quantum dot. In the following section we introduce this concept
and ways how the exciton fine structure can be overcome in practical applications.

6.2.2
Biexcitons and Polarization-Entangled Photons

The decay of a ground state biexciton in a quantum dot has been proposed to gener-
ate polarization-entangled photons [149, 212]. This scheme is in some sense anal-
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ogous to atomic s-p-s cascades, for which photon entanglement has been demon-
strated by several violations of Bell’s inequalities [213–215].

The exciton fine structure plays a crucial role in the realization of this biexciton
proposal. The decay of a biexciton in a quantum dot occurs typically in a cascade of
two subsequently emitted photons, each from a recombining electron–hole pair. It
turned out in a number of experiments that the photons were not entangled if the
exciton, which remained after the emission of the first photon in the quantum dot,
was subject to a resolvable fine structure splitting [216–220]. This exciton energy
splitting effectively erased the quantum mechanical interference of the two decay
paths that was necessary to transfer the exciton spin entanglement into a photon
polarization entanglement. The splitting of the intermediate exciton spin states
meant that the photon that was emitted first and the remaining exciton in the dot
were not only entangled in spin and polarization, respectively, but also in energy
or frequency. Hence, the entanglement spread out into the orbital part of the ex-
citon where any measurement of the energy would already project the entangled
wavefunction into an unentangled state.

Two groups then reported the successful generation of polarization-entangled
photons from the biexciton cascade in a single quantum dot [221, 222]. Improving
the quantum dot growth conditions in both cases led to a reduced exciton split-
ting, and spectral filtering then erased the “which path” information of the decay
cascade.

Some alternative proposals involving spin and photon entanglement have been
made to overcome the problem with the exciton fine structure splitting in quan-
tum dots. These include applying an in-plane magnetic field to merge the exciton
lines by a Zeeman shift, and also making use of charged excitons. For example,
a scheme using two positively charged excitons X1C in two quantum dots for the
generation of two polarization-entangled photons has been proposed, which can
also be extended to a scheme producing entangled four-photon states of the Green-
berger–Horne–Zeilinger type [223]. A recent proposal to electrically generate en-
tangled electron spin-photon states using interband transitions of a double dot in
a p-i-n diode structure is based on negatively charged excitons, X1�, which have
a vanishing fine structure splitting as the electrons couple to a spin singlet [224].

We have shown in Section 5.2.2 that the photon polarization depends on the
emission direction with respect to the exciton angular momentum quantization
axis z. This also affects the degree of entanglement of the two photons. Gywat et al.
have calculated the von Neumann entropy to quantify the degree of bipartite pho-
ton entanglement of the biexciton cascade as a function of the photon emission
angles [139, 223]. As a result, the entanglement is maximal for emission along z.
For emission at small polar angles θ around z, entanglement is only weakly re-
duced with θ , but then drops to zero if any of the two photons is emitted perpen-
dicular to z. Surprisingly, due to quantum mechanical interference, a maximum
photon entanglement can be obtained by choosing appropriate azimuthal detec-
tion angles, for which the admixed components with opposite circular polarization
cancel. This leaves behind the original maximally entangled state for all angles θ
except for θ D π/2, for which destructive interference is maximal [223].
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6.3
Hyperfine Interaction

The Hamiltonian for the magnetic interaction between an electron with spin S,
gyromagnetic factor g (g D 2.00 for a free electron), and orbital angular momentum
L, and a nucleus with spin I and gyromagnetic factor γ is given by (see [225])

HHF D gμBγ„I �
�

L
r3

� S
r3

C 3
r(S � r)

r5
C 8π

3
Sδ(r)

	
. (6.20)

The second and third terms form the usual magnetic dipole–dipole interaction
term, as has already been shown for the electron–electron dipolar interaction. The
term with the delta function δ(r) is called the Fermi contact hyperfine interaction.
For an atomic electron with a total angular momentum j D l ˙ 1/2 it is possible
to write HHF D A j I � j. Here, for an s electron we obtain

A j D 8π
3

gμBγ„ jψ(0)j2 , (6.21)

while for l ¤ 0,

A j D gμBγ„
�

1
r3


l(l C 1)
j ( j C 1)

, (6.22)

with the expectation value h. . . i. Similarly, for a free atom or a paramagnetic
molecule with many electrons with a total angular momentum J it is possible to
write HHF D A J I � J.

The hyperfine interaction leads to a number of interesting phenomena since the
two classes of spins involved have quite different properties. Nuclear spins couple
much more weakly to their environment than electron spins, as their main interac-
tion types are the Fermi contact hyperfine interaction with electrons, as well as the
dipolar interaction with spins of spatially close electrons and other nuclei. Nuclear
spins typically have much longer lifetimes than electron spins, which are much
more strongly coupled to their environment.

The hyperfine interaction energy shows up as characteristic shifts of the electron-
ic and nuclear energy levels if there is polarization of one part of the spin system.
For the electrons, an energy shift induced by nuclear spin polarization is called
the Overhauser shift. In turn, a shift of nuclear energy levels due to electron spin
polarization is referred to as the Knight shift.

The presence of hyperfine levels that involve different configurations of electron
and nuclear spins also provides powerful spin relaxation and decoherence process-
es in some systems due to mutual spin flips of electrons and nuclei. These effects
are usually strong at zero external magnetic field where spin flips are energy con-
serving. Yet, due to the different magnetic moments of nuclei and electrons, a mis-
match of their Zeeman splittings can be induced by a finite magnetic field, which
quenches this interaction channel.

For an electron in a typical semiconductor quantum dot, the electron wave func-
tion may easily extend over � 105 nuclei. In gallium arsenide, for instance, each
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of these nuclei has spin I D 3/2. The contact hyperfine interaction then provides
the dominant coupling of electron and nuclear spins. As the electron probability
density changes across the quantum dot, the coupling strength to the nuclei varies
from typically about A j � 10�6 meV near the dot center down to A j � 0 at the
tails of the electron wave function [11]. As a result of the hyperfine interaction, spin
coherence of electrons in most types of quantum dots is suppressed efficiently and
typically lost on the order of �1 ns. Several publications have addressed the theo-
ry of hyperfine-induced electron spin decoherence [138, 226–228]. A more detailed
overview of this topic can be found in [11].

Recently, hole spins in quantum dots have received increasing attention as carri-
ers of quantum information. See Section 7.2.2 for a few recent experiments in this
direction. Basically, for the v band the hyperfine interaction is different than for the
c band. First of all, the Fermi contact hyperfine interaction vanishes because the
p-like Bloch functions have zero overlap with the nuclear sites. Further, the dipolar
coupling term for heavy holes takes in the quasi two-dimensional limit the form of
a simple z–z or Ising coupling, as shown by Fischer et al. [229]. These authors have
shown that in spite of these apparent simplifications, the hyperfine interaction of
the hole spin can be quite strong, and the hyperfine coupling strength can be about
only an order of magnitude smaller than for the c band. This analysis holds for un-
strained material. The Ising form of the hyperfine coupling in this regime means
that the main source of decoherence for hole spins is the broad frequency distribu-
tion of the nuclear spins (due to the absence of the hyperfine flip-flop terms) [229].
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7
Experimental Methods for Optical Initialization, Readout, and
Manipulation of Spins in Quantum Dots

Much has been written about the potential for quantum information processing in
various systems. In virtually all cases, the requirements that must be met for any
useful operations to be carried out can be divided into three categories. First the
quantum system that is being used as a qubit must be initialized into a known state.
In the case of electron spin qubits, for example, all of the spins might be placed
into a spin “up” state. Next the actual quantum operations must be carried out. In
general, this may involve operations on a single qubit, or operations that couple two
or more qubits together. In both cases, the qubit states are manipulated. For spin
qubits, a single qubit operation may be realized by coherent control of the spin
state, or a two-qubit operation may be effected by letting two spins evolve under
their mutual exchange interaction. Finally, usually after these manipulations have
been completed, the final states of the qubits must be read out. This corresponds to
a measurement of spin “up” or spin “down” for each qubit in the case of electron
spin qubits.

These three requirements – initialization, manipulation and readout – are all
possible using optical methods for a qubit consisting of an electron spin in a quan-
tum dot. To be sure, many challenges remain before a useful quantum device can
be made based on optically controlled spins in quantum dots. But individually, the
ingredients necessary have all been demonstrated in a variety of ways.

Optical initialization of spins in quantum dots can be quite straightforward, sim-
ply relying on the spin dependent optical selection rules often present in semicon-
ductors. More involved spin pumping schemes, as discussed below, can be used
to achieve higher initialization fidelity. The same selection rules that allow for spin
initialization also permit the spin state to be read out – most simply, by the polar-
ization of light emitted upon recombination of an electron and a hole. Additionally,
spin dependent absorption or the Faraday effect may be used to read out the spin.
Finally, nonlinear optical effects such as Raman transitions or the optical Stark ef-
fect may be used to optically manipulate the spin of electrons in a quantum dot.

This chapter will describe various experimental methods for initialization, ma-
nipulation, and readout of spins in quantum dots by highlighting recent results
from the literature. This is not intended to be an exhaustive review, but instead to
serve as an illustration of the various techniques being employed.

Spins in Optically Active Quantum Dots. Concepts and Methods.
Oliver Gywat, Hubert J. Krenner, and Jesse Berezovsky
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40806-1
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Table 7.1 Main results of papers highlighted in this chapter, with key figures of merit in bold.

Optical Orientation [121] Spin pumping in bulk semiconductors

Cortez et al. [230] Nonresonant spin pumping in dots
Atatüre et al. [161] Resonant spin pumping in single dots

High fidelity: >99.8%

Gammon et al. [231] Dynamic nuclear polarization in quantum dots
Kroutvar et al. [232] Spin storage and readout

T1 � 20 ms

Besombes et al. [233] Readout of a single Mn spin in a quantum dot

Högele et al. [234] Single dot spin-selective absorption
Epstein et al. [235] Hanle measurement on an ensemble of dots

Bracker et al. [211] Single dot Hanle measurement
T�

2 � 15 ns

Gupta et al. [236] Time-resolved Faraday rotation on nanocrystal dots
T�

2 � 2 ns at 300 K
Greilich et al. [237] Spin echoes in a quantum dot ensemble

T2 � 3 µs

Berezovsky et al. [60] Single spin Kerr rotation measurement

Mikkelsen et al. [238] Observation of coherent dynamics of a single spin
Berezovsky et al. [239] Ultrafast manipulation of spin coherence

Press et al. [240] Coherent spin control, Ramsey fringes
Up to 13 π rotations in several ps, 91% fidelity π -rotation

7.1
Optical Spin Initialization

The groundwork for the optical initialization of spins in quantum dots goes back
to the work on optical orientation of spins in bulk semiconductors, mostly done
in the 1960s and 1970s. These results are presented in the seminal book, Optical
Orientation [121], published in 1984. There, the selection rules for interband transi-
tions in semiconductors are exploited to selectively excite spin-polarized electrons
and holes into the conduction and valence bands, respectively (see also Chapter 5).
To review this effect, a schematic of the band structure of GaAs is shown in Fig-
ure 7.1a. Optical transitions are possible from the heavy hole band (angular mo-
mentum J D 3/2, Jz D ˙3/2), the light hole band ( J D 3/2, Jz D ˙1/2), and the
split-off band ( J D 1/2, Jz D ˙1/2). For the purposes of optical orientation, the
energy of light is typically chosen to not excite carriers from the split-off band. Fig-
ure 7.1b shows the transitions involving circularly polarized light from the heavy
and light hole bands to the conduction band. Since the absorption of a circular-
ly polarized photon must be accompanied by a change of angular momentum ˙„
elsewhere, an electron–hole pair created by such absorption can only take the paths
as indicated in the figure. Since the probabilities for the heavy hole transition is
three times larger than that of the light hole transition, circularly polarized light
that excites both transitions yields an ensemble of electrons with an average spin
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(a)

(b)

Electrons

Heavy holes

Light holes

Split-off holes

Fig. 7.1 (a) Band structure of GaAs; Eg is the band gap, Δ the
spin–orbit energy. (b) Circularly polarized band edge optical
transitions, with relative strength of each transition.

polarization of ideally 50%. If strain is introduced into the semiconductor lattice,
then the heavy–light hole degeneracy is lifted. Then the energy of the optical excita-
tion may be tuned to only excite heavy or light holes. In this case, up to 100% spin
polarization may be obtained.

If spin polarized electrons and holes are excited in an undoped semiconductor
they will recombine on a timescale typically less than a nanosecond, with the po-
larization of the emitted light related to the spin polarization of the pair at the time
of recombination. The results of Optical Orientation also discuss optical spin polar-
ization in doped semiconductors. In this case, the spins of the dopant carriers (for
example, consider electrons) can also be optically polarized. When circularly polar-
ized light is used to generate excess spin-polarized electrons and holes, the holes
may recombine with unpolarized dopant electrons. In fact, this will predominant-
ly be the case if the dopant electrons outnumber the optically excited ones. When
this occurs, then the spin-polarized electron is left behind in the conduction band.
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This allows observation of the electron spin over periods of time not limited by the
recombination of electrons and holes [241].

These results for optical spin initialization in bulk semiconductors largely hold
true for spins confined to quantum dots, with a few complications here and there.
When a spin polarized electron–hole pair is excited in a quantum dot system, the
charge carriers may be created within the dot itself, in a “wetting layer” or even in
the surrounding barriers. (Here, the wetting layer refers to the wetting layer present
in Stranski–Krastanov dots, or the quantum well in interface fluctuation dots – see
Chapter 2.) Once excited, the electron and hole can then relax down into the lowest
available state of the dot. When the dot is unoccupied, this energy relaxation goes
all the way down to the ground state, typically maintaining the spin state to some
extent (at least for the electron, the hole spin is often lost). Thus one can pump spin
polarized excitons fairly easily. One exception to this rule is in dots with significant
shape anisotropy, which causes electrons and holes to relax into linearly polarized
eigenstates [24].

Of particular interest are processes that can polarize a single electron spin in
a quantum dot, with the absence of a hole. The electron–hole recombination time
is typically on the order of 100 ps in many dots. The electron spin lifetime, on the
other had, can be significantly longer. Therefore by looking at single electrons, the
spin can be studied over much longer timescales.

7.1.1
Nonresonant Spin Pumping

In order to observe the long-term dynamics of single electron spins in quantum
dots, one must first dope the quantum dots such that they contain a single elec-
tron in equilibrium. This can be accomplished by incorporation of the dots into
a charge-tunable electronic structure (see Chapter 4), or by including an n-type
delta doped layer near the quantum dots. It is this second approach that is used in
the work of S. Cortez et al., “Optically driven spin memory in n-doped InAs-GaAs
quantum dots” [230]. In these experiments, circularly polarized nonresonant exci-
tation is used to polarize the spin of the dopant electron in self-assembled InAs
quantum dots.

The self-assembled quantum dots in this study are grown by molecular beam
epitaxy (see Chapter 2), and the doping concentration is chosen to add approxi-
mately one electron to each dot. The energy of the excitation laser is tuned to the
InGaAs wetting layer (1.44 eV), whereas the photoluminescence of the dots is cen-
tered around 1.15 eV. By changing the helicity of the excitation (either σC or σ�),
either spin up or spin down electrons may be added to the continuum of states in
the wetting layer. The optically excited electrons and holes then rapidly relax into
the quantum dots. The singly doped dots then contain the two electrons and a hole,
in a “trion” or negatively-charged exciton state. One of the electrons may then re-
combine with the hole, emitting a photon whose circular polarization depends on
the spin of the recombining carriers. Figure 7.2a illustrates the initial trion and
final single electron state of the dot. Assuming the electrons are initially in the sin-
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Fig. 7.2 (a) Decay of a trion leaves a single electron in the dot.
(b) Top: Polarized luminescence spectra of a quantum dot en-
semble at two pump intensities. Bottom: Polarization of lu-
minescence spectra in undoped and n-doped dot ensembles.
Reprinted with permission from [230]. Copyright (2002) by the
American Physical Society.

glet ground state, the spin of the electron remaining in the dot is then opposite
to that of the annihilated electron. If the dynamics of the situation are such that
electrons of one spin orientation are more likely to recombine with the hole, then
there will be a net spin polarization of the single electrons left behind.

The upper panel of Figure 7.2b shows the photoluminescence spectrum of the
ensemble of n-doped InAs dots pumped with both σC-polarized excitation in the
wetting layer, and with the σC- and σ�-polarized PL collected separately.The po-
larization of the PL can be defined as

P D ICC � IC�

ICC C IC�
, (7.1)

where ICC (IC�) is the intensity of the σC (σ�) luminescence pumped with
σC-polarized excitation. The lower panel of Figure 7.2b shows the polarization of
the PL in the top panel, as well as the polarization of PL from a sample of un-
doped dots. (The experimental setup for these measurements, as well as additional
time-resolved measurements from this work will be discussed further below.) The
positive polarization of the undoped dots simply reflects the polarization of the op-
tically oriented electrons and holes. The situation is more complicated for the dots
doped with an additional electron. The PL from the singly-charged dots displays
polarization opposite to that of the excitation light. To understand this result, one
must take into account the various pathways for the relaxation of carriers in the
dot.

It is assumed in this work that the polarization of the holes is lost before being
captured by the dots due to the strong spin–orbit coupling in the valence band, and
the initial polarization of the electrons is essentially 100%. When an electron and
hole relax into a dot, there are two possibilities: the spin of the resident electron in
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the dot is parallel or anti-parallel to the spin of the optically excited electron. If they
are anti-parallel, then the optically-excited electron can relax all the way down to the
singlet ground state of the trion. The subsequent recombination of the hole with
one of the two electrons then depends on the randomly oriented hole polarization,
and the luminescence is on average unpolarized. In the case where the electrons
are parallel however, as long as the spin of the injected electron is preserved, it can
only relax into a higher-energy triplet state. The possible relaxation pathways are
illustrated in Figure 7.3.

If the electron relaxes into this triplet state, there are two further possibilities:
that the hole spin is polarized parallel or anti-parallel to the two electron spins. In
the latter case, the resident electron in the lowest energy level may just directly re-
combine with the hole, resulting in positive polarization. However, there is another
strong relaxation pathway in these dots due to the anisotropic exchange interaction
between the electrons and holes. This interaction allows the higher energy electron
to rapidly relax to the singlet ground state by way of a spin flip with the hole. The
emission from this state is then polarized opposite to the excitation polarization.
When the hole spin is initially polarized parallel to the electron spins in the tri-
on state, no recombination can occur, and the anisotropic exchange mechanism is
not significant in this state. Eventually, the higher energy electron can relax into
the ground state via a phonon-assisted transition, also yielding negatively polarized
emission. By analyzing the rates of these various mechanisms, Cortez et al. found
that the negatively-polarized emission dominates, as is observed experimentally.

The conclusion of the arguments above is that the nonresonant excitation of
spin polarized electrons and holes into singly-charged quantum dots pumps the

Fig. 7.3 Trion decay processes that can lead to positively or
negatively circularly polarized emission. When the resident
spins are preferentially polarized in the down direction, the
processes on the right dominate.
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spin of the resident electron in the dot in a direction parallel to that of the injected
electrons. However, because this polarization results from a competition between
positive and negative contributions, the magnitude of the polarization is limited, in
this case, to about �20%. Similar effects are observed in GaAs interface fluctuation
quantum dots, though are equally complicated to explain.

7.1.2
Resonant Spin Pumping

The limit of the maximum achievable spin pumping by nonresonant excitation
can be overcome by using resonant spin pumping schemes. For example, in the
work of M. Atatüre et al., “Quantum-dot spin-state preparation with near-unity fi-
delity” [161], the spin polarization of an electron in a quantum dot is polarized to
better than 99.8%.

In this work, the sample consists of self-assembled InAs quantum dots embed-
ded in a diode structure, which allows for electrical control of the equilibrium
charge state of the dots. The quantum dot here is operated in the singly charged
state. Additionally, the ability to apply an electric field across the structure gives
one fine control over the energy levels via the quantum confined Stark shift. This
experiment is performed on a single dot, which is first characterized by micro-
photoluminescence spectroscopy (see Chapter 2). To measure the spin in the quan-
tum dot, a differential absorption technique is employed. This method measures
the optical absorption due to the quantum dot transitions, which can reveal the
spin state due to Pauli blocking (see Section 7.2.4 for more details).

A narrow-linewidth continuous-wave laser is used to both probe the absorption
of transitions and also to perform the spin pumping. In contrast to the previous
example, here the excitation of the dot is performed resonantly. In order to under-
stand the physics of this system, it is useful to look at the different optical transi-
tions in the quantum dot. Figure 7.4a and 7.4b shows these transitions, with the
bottom two levels indicating the spin-up and spin-down single electron ground
states, and the upper levels indicate the trion states with the electrons in the singlet
ground state and either hole spin up or down.

Due to the selection rules previously discussed, circularly-polarized excitation of
one helicity strongly drives the transition between the two states on the left, and
the other helicity drives the transition between the states on the right. Transitions
between the left trion state and the right single electron state (and vice versa) are
forbidden to first order, but still occur weakly due to heavy-light hole mixing, or
an external magnetic field. Additionally, transitions between the spin-up and spin-
down single electron states can occur due to spin flips with nuclear spins or interac-
tion with the nearby electron reservoir. However, these transitions are suppressed
at nonzero magnetic field, due to the different Zeeman splittings for the electrons
and nuclei.

The spin pumping is achieved by driving one of the allowed transitions using
circularly polarized excitation, as shown in Figure 7.4. Primarily, the system transi-
tions between the spin-down state and the hole-spin-down trion state (Figure 7.4a).
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Fig. 7.4 (a) A circularly polarized laser drives
the transition, at a rate Γ , to the trion state.
Occasionally with rate γ , this state may re-
lax to the opposite single spin state, which
may then flip back via an electron-nuclear
spin flip, at a rate �"# . (b) In a magnetic field,
�"# is suppressed and electrons in the spin-
up state are trapped. (c) Absorption of the

spin-down to trion transition as a function of
gate voltage, at various magnetic fields. With
a magnetic field present, absorption is sup-
pressed over a range of bias as the electron is
trapped in the spin-up state. Reprinted with
permission from [163]. Copyright (2008) by
the American Physical Society.

Occasionally, the spin-up state may be populated through a “forbidden” transition
from the trion, or by a nuclear-induced spin flip. However, the state can return to
the spin-down state via another electron-nuclear spin flip, and the bright transition
will continue to occur. The situation is different, however, when a magnetic field is
applied (Figure 7.4b). In this case, the nuclear-induced spin flips do not occur. Now
if the weakly allowed transition takes place from the trion state to the spin up state,
there is no way to return to the spin down state – the spin has been pumped into
the spin up state. Even though the transition to the spin up state is not too likely, it
will happen eventually, and then the spin will have been pumped.

This effect can be observed in the absorption spectra shown in Figure 7.4c. The
observed line in the left panel of Figure 7.4c shows the absorption of the transition
being driven in part a. (The slope of the line is due to the quantum confined Stark
shift of the levels as the gate voltage is swept.) In the middle and right panels of
Figure 7.4c, the absorption of this transition is largely suppressed because the state
is stuck in the spin-up state and the spin-down trion transition can no longer be
driven. The suppression does not occur over the entire singly-charged bias range
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Fig. 7.5 Suppression of the spin-down to trion absorption, θ ,
as the magnetic field is increased. The measurement sensitivity
limits the observed suppression to about 0.002, or a spin prepa-
ration fidelity of 99.8%. Inset: Suppression of the absorption
peak with spin pumping. Reprinted with permission from [163].
Copyright (2008) by the American Physical Society.

since near the edges, coupling to the electron reservoir in the device leads to spin
flips between the two ground states. Similarly, the spin pumping is only efficient
for a range of magnetic field, large enough to suppress the nuclear-induced spin
flips, and small enough to avoid phonon-related spin flips [163]. The magnitude of
this suppression at the optimal conditions is shown in Figure 7.5, as the magnetic
field is increased. The absorption is decreased by a factor of about 10�3 until the
detection sensitivity of this experiment is reached. This means that the quantum
dot is in the single spin up state about 99.8% of the time.

A similar method has been used by D. Kim et al. [242] to initialize and measure
spins in two coupled InAs quantum dots. Here, initialization fidelity of 96% was
obtained. Furthermore, due to the coupling of the dots, the spin state of the electron
in one of the dots may be read out using a transition involving the other dot. In this
way, the spin can be measured nondestructively (that is, without driving transitions
involving the initialized spin itself).

One potential drawback of this method of spin pumping is that it can only initial-
ize the spin state into an eigenstate (one of the two Zeeman-split levels). A solution
to this problem has been demonstrated by X. Xu et al. [243], by using a second laser
to trap an electron spin in a quantum dot in an arbitrary coherent state. This “coher-
ent population trapping” operates in a similar way to the scheme describe above,
where a laser drives one of the transitions of a three-level system. In this case, how-
ever, the transition that is “forbidden” above (that is, slow) is also optically allowed,
and is driven by a second laser. The coherent interaction of these two lasers with
the three level system drives transitions when the system is in a particular coherent
state, but does not drive transitions when the system is in another coherent “dark”
state. Thus, the two lasers will drive transitions in the dot until the spin winds up
in the dark state, where the spin will then be trapped. The particular state that is
trapped can be controlled by adjusting the relative intensity of the two lasers.
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Alternatively, from a quantum information processing standpoint, the spin ini-
tialization step must then be followed by efficient spin rotations. Thus if the spin is
initialized into an eigenstate, one may then simply perform rotations on the spin
to produce an arbitrary coherent state. This is the route taken by Press et al. [240],
as described at the end of this chapter.

Another potential drawback of this pumping technique is that it cannot be per-
formed in zero magnetic field. The field is needed to suppress the nuclear-spin-
induced electron spin flips that occur at low magnetic field. This problem has been
avoided by B. Gerardot et al. [244], by looking at a hole spin in the valence band as
opposed to an electron in the conduction band. Because the hole states have p-like
symmetry, their wavefunctions have a node at the lattice ions. Therefore there is
very little coupling between the hole spin and the nuclear spins, and the pumping
scheme described above works at zero magnetic field. The lack of interaction with
the nuclear spins also makes holes interesting for potentially longer spin dephas-
ing times, as mentioned again in the next section.

7.1.3
Nuclear Spin Pumping

When the electron spins are polarized in a quantum dot, the spin may also be
transferred to the surrounding nuclear spins via the hyperfine interaction (see Sec-
tion 6.3). The polarization of Ga and As nuclear spins of an interface fluctuation
dot is studied in the work of D. Gammon et al., “Electron and nuclear spin in-
teractions in the optical spectra of single GaAs quantum dots” [231]. In these ex-
periments, undoped quantum dots are formed at the interfaces of a 4.2-nm-thick
AlGaAs/GaAs quantum well. One quantum dot is located and measured using
micro-photoluminescence spectroscopy. Electrons and holes are pumped into the
quantum well states (analogous to the wetting layer in self-assembled dots) us-
ing circularly polarized light. The spin-polarized electrons that relax into the dot
interact and undergo spin flips with the nuclear spins. Over several seconds, the
electron spins are continuously repumped and build up a substantial polarization
of nuclear spins.

Also through the hyperfine interaction, the nuclear spin polarization causes
a splitting in the electron levels (the Overhauser shift). This splitting can be direct-
ly observed in the photoluminescence spectrum from the quantum dot. Figure 7.6
shows such a spectrum from a single dot. The nonresonant excitation is circularly
polarized, and only linearly polarized light along the [110] axis is collected. At zero
magnetic field, a single narrow line is seen (the orthogonally polarized lumines-
cence is also shown, with a small splitting seen due to the anisotropic exchange
interaction). As a magnetic field is applied, the line splits into a doublet due to the
combined effects of the Zeeman splitting and the Overhauser shift.

Figure 7.7 shows the splitting between the two PL lines as a function of ap-
plied magnetic field for both right and left circularly polarized excitation. Except
for a small region about zero field, the splitting changes linearly with magnetic
field as expected for the usual Zeeman splitting. However, the y-intercept of the
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Fig. 7.6 Single dot, linearly polarized photoluminescence spec-
tra, with σC polarized excitation. As a magnetic field is applied,
the observed splittings change due to the Zeeman and Over-
hauser effects. At zero field, both linearly polarized components
are shown, with a small splitting due to the anisotropy of the
dot shape. Reprinted with permission from [231]. Copyright
(2001) by the American Physical Society.

splitting is offset from zero in the positive direction for σC excitation, and in the
negative direction for σ� excitation. This is indicative of nuclear spin polariza-
tion, the sign of which depends on the polarization of the optically excited electron
spins. The observed splitting corresponds to a polarization of roughly 65% of the
nuclei interacting with the electron in the dot. Seen as an effective magnetic field,
the nuclear spins are providing a field of BN D 1.2 T. (Note that the energy shifts
of the lines cross zero at ˙1.2 T when the nuclear polarization cancels the applied
field.)

Additional evidence that this offset is due to nuclear spin polarization is obtained
by sweeping an applied radio-frequency (RF) field through the nuclear spin reso-
nance frequencies. When the frequency sweeps through the resonance, the nuclear
spins are depolarized. The lower inset in Figure 7.7 shows this depolarization as
a function of the RF frequency scan rate. From this plot, it can be seen that the
nuclei require about 3 seconds to repolarize between depolarization events. This
timescale on the order of seconds is typical for dynamic nuclear polarization pro-
cesses and provides a good indication that the nuclear spins are responsible for the
observed effect. Virtually no other spin-related effects in these systems are known
to operate on such slow timescales.
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Fig. 7.7 Splitting of the quantum dot lumi-
nescence as a function of magnetic field, for
excitation of both helicities. The data show
the expected linear Zeeman splitting as well
as a shift due to the nuclear polarization. Top
inset: close-up of the zero-field dip (see [231]).

Bottom inset: Depolarization of the nuclear
spins, showing a build-up time of several sec-
onds. Reprinted with permission from [231].
Copyright (2001) by the American Physical
Society.

The polarization of nuclear spins is a fairly ubiquitous phenomenon in quantum
dots. It has been suggested that nuclear spins can possibly be used as a relatively
long term way of storing quantum information. Long time scale (� minutes) inter-
actions have been observed between nuclear and electron spin states in quantum
dots (see, e. g., Greilich et al. [245], discussed in Section 7.3.5). Such “quantum
memory” schemes have been demonstrated by transferring quantum information
from the electron spin to a single nuclear spin of a phosphorus donor [246], or
a defect state (nitrogen-vacancy center) in diamond [247]. The situation is more
complicated in quantum dots, however, since an electron in the dot typically inter-
acts with many nuclear spins.

Often, however, nuclear spin polarization is an unwanted complication, and is
suppressed by rapidly modulating the helicity of optical excitation. Since the nu-
clear spins require seconds to polarize, if the excitation helicity is switched much
faster than this, the nuclear polarization will remain negligible. Also, as mentioned
above, hole spins are expected to interact very weakly with the nuclear spins. Thus,
the use of a hole spin as a qubit may by a promising route.
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7.2
Optical Spin Readout

In optically active quantum dots, there are several ways to read out the state of spins
using optical means. The simplest method is to measure the polarization of lumi-
nescence from the quantum dots. Due to spin dependent interband transitions
governed by optical selection rules in the presence of the spin-orbit interaction, the
polarization of luminescence can often yield information about the spin state in
the dot before recombination of the carriers.

One of the simplest schemes for measuring polarized photoluminescence is
shown in Figure 7.8. Here, circularly polarized light is focused onto the sample
to pump spin polarized carriers as discussed in the previous section. Circular po-
larization is achieved by passing the excitation light (typically provided by a laser)
through a linear polarizer followed by a quarter wave plate with its axis at 45ı to
the polarizer axis. The quarter wave plate retards the phase of the component of
the light along the wave plate axis by a quarter of one wavelength. The result is
that, in this configuration, the linearly polarized light is converted to either right
or left circular polarization depending on whether the quarter wave plate is set to
plus or minus 45ı with respect to the linear polarizer. (For a detailed discussion of
polarization optics, see [174].) Any excitation light that is transmitted through the
sample is then blocked to prevent this light from entering the detector.

Assuming the luminescence is emitted isotropically, the light collection path can
be placed at any angle to the excitation. However, the spins will be polarized along
the excitation light direction, so if one wishes to measure the polarization along the
same axis, the excitation and the collection paths should be as parallel as possible.
The luminescence is collected and collimated by a lens whose focal point is over-
lapped with the excitation spot. Emitted light of one circular polarization can be se-
lected by repeating the same operation as in the excitation path in reverse. A quarter
wave plate converts the circularly polarized components of the light to orthogonal
linear polarization components. A subsequent linear polarizer then transmits only
one such linear polarization. The transmitted light is then sent to a detector, such
as a photodiode. In order to measure the polarization as defined in Eq. (7.1), one
must measure the intensity at the detector, then rotate the linear polarizer in the
collection path by 90ı to measure the other circular component of the emission.
Alternatively, the quarter wave plate in the excitation path may be rotated to switch
the helicity of the optical excitation.

Fig. 7.8 Setup for measuring polarized photoluminescence.
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There are numerous variations on this basic setup that can offer various im-
provements. For example, the quarter wave plates may be replaced by liquid crystal
variable retarders that act the same as a wave plate, but with a retardation that can
be set electronically. This removes the need to manually rotate polarizers or wave
plates. Further, one of the quarter wave plates may be replaced by a photo-elastic
modulator. A PEM is an oscillating variable retarder that can modulate the helicity
of light between right and left circular polarization at typical frequencies of tens of
kHz. The intensity of the light at the detector will then be modulated at this fre-
quency, with the amplitude of oscillation proportional to the degree of polarization
of the luminescence. A lock-in amplifier may then be used to detect this oscillating
signal. If the helicity of the excitation light is modulated in this way, the build-up
of nuclear spin polarization will also be suppressed.

Another modification to the setup shown in Figure 7.8 is to place optical filters in
the collection path. By using high-pass, low-pass, or band-pass optical filters, a spe-
cific part of the emission spectrum may be selected for measurement. Additionally,
if the optical excitation is nonresonant with the emitting energy levels, optical fil-
ters can be used to ensure that the excitation light does not reach the detector. In
this case, if one uses filters in the collection path, the collection path may be placed
in line with the excitation path, which is desirable in some situations.

Along similar lines, the detector shown in Figure 7.8 may be replaced by a spec-
trometer. Now, the entire spectrum of the emitted light may be recorded (by a CCD
camera, for example), and the right and left circularly polarized spectra may be
compared. This method is particularly useful in quantum dot studies where the
luminescence from the dots must be measured separately from that of the wet-
ting layer, or in single dot studies where luminescence lines from different dots or
different transitions must be distinguished.

These methods for measuring polarized luminescence are useful for reading out
the spin state of electrons and holes in quantum dots, however much more infor-
mation can be obtained using time-resolved techniques to observe the dynamics of
the spin states as they evolve in time.

7.2.1
Time-Resolved Photoluminescence

The experimental methods described above can be directly extended to measure
luminescence as a function of time on picosecond or nanosecond timescales. There
are at least three ways to accomplish this: (i) Photoluminescence up-conversion,
(ii) Time-correlated photon counting, and (iii) A fast streak camera.

The first step in all time-resolved measurements is to initialize the system at
a given time, t D 0. In all-optical experiments this is accomplished by using
a pulsed laser for the excitation. For spin studies in quantum dots, a mode-locked
Titanium-sapphire laser is often used. These lasers have tunable wavelength in the
near-infrared range and output pulses with duration from about 100 fs to sever-
al ps. The repetition rate of the laser pulses is set by the cavity geometry and is
typically around 80 MHz.
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In Cortez et al. [230], discussed above, photoluminescence up-conversion is used
to measure the temporal decay of the photoluminescence after the excitation (see,
e. g., [248]). In this scheme, the luminescence and a time delayed probe pulse are
overlapped and passed through a nonlinear material, typically �-barium borate
(BBO), which emits “up-converted” photons at the sum frequency of two incom-
ing photons, when phase matching conditions are met. Since this process is highly
nonlinear in the incoming intensity, a change in the luminescence intensity coin-
cident in time with the probe pulse provides a significant change in the intensity
of the up-converted light. The probe light is provided by a pulse derived from the
same pulse used for the excitation. By controlling the time delay between the exci-
tation and the arrival of this additional pulse one can gate the measurement of the
photoluminescence. This method can provide very high temporal resolution (only
limited by the duration of the probe pulse, down to femtoseconds).

Time-correlated single photon counting (TCSPC) is a more direct way of time-
gating a luminescence measurement. In this scheme, the excitation pulse is also
sent to a fast photodiode. When this photodiode detects the photons of the pump
pulse, it sends a “start” signal to a second photodiode. The luminescence is sent to
this second photodiode, which begins waiting for a photon detection as soon as it
receives the “start” signal. Once a photon from the luminescence is received, the
second photodiode sends a “stop” pulse. The time delay between the “start” and
“stop” is then recorded, and the sequence is repeated many times. By building up
a histogram of these delay times, the temporal profile of the luminescence can be
mapped out. This is a powerful technique that has many variations, though limited
by the speed of the electronics.

One final method for measuring time resolved photoluminescence is by using
a streak camera. In such a device, the luminescence is incident on a photomul-
tiplier tube, which converts the stream of photons to a stream of electrons. The
electrons then pass through a set of electrodes with a fast ramped voltage, synchro-
nized to the pump pulse. This ramping voltage causes the electrons to spread out
spatially (into a streak), with the electrons entering first deflected less than those
that enter later. The electrons are then measured by a spatially-resolved detector
where one end of the streak corresponds to photons that hit the photomultiplier
tube at t D 0, and then proceeding linearly in time along the streak.

7.2.2
Spin Storage and Retrieval

The techniques discussed above for measuring time-resolved PL, along with a po-
larization measurement, provide a direct measure of the spin state of the recom-
bining exciton or trion state. In the case of trion PL, the spin of the electron in
the dot prior to trion formation may be inferred by further analysis. A more di-
rect way of observing the time dependence of a single spin state in a quantum
dot was developed in M. Kroutvar et al., “Optically programmable electron spin
memory using semiconductor quantum dots” [232]. In this work, a layer of self-
assembled InAs quantum dots are embedded in an epitaxially grown device that
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allows for the control of the charge state of the dots with a bias voltage. Moreover,
the device contains a p-doped region separated from the dots by a narrow undoped
GaAs barrier. Under the appropriate bias conditions when electrons and holes are
optically excited into the dots, the holes will rapidly tunnel out into the p-doped
reservoir while the electrons remain in the dot. This allows for a means of inject-
ing single, spin polarized electrons into the dots when the excitation is circularly
polarized.

The spin of these electrons can then be read out a time later by applying a volt-
age pulse that injects holes from the reservoir back into the dots. This scheme for
initializing and reading out spins is illustrated in Figure 7.9. In part 7.9a, circularly
polarized light resonantly pumps spin polarized electrons and holes into the quan-
tum dots. (At most one electron–hole pair can be injected into each dot, since addi-
tional interaction energy would be required to add any additional carriers.) In this
initialization stage, a voltage is applied across the device to remove the hole from
the dot and send it into the p-doped hole reservoir. For a time Δ t (Figure 7.9b),
the electron is stored in the dot. Then, the bias across the device is changed to
send unpolarized holes from the reservoir back into the dots (Figure 7.9c). This
hole may then recombine with the electrons, and the circular polarization of this
electro-luminescence indicates the spin of the stored electrons. A single-photon
counter (photodiode) is used to detect the luminescence after it has passed through

Fig. 7.9 Device for initialization, storage, and
readout of spins in quantum dots. (a) Spin
polarized electron–hole pairs are excited in-
to the dots, and the hole quickly tunnels out.
(b) The electron is stored in the dot for a time
Δ t. (c) A bias is applied to the device, causing

the hole to tunnel back into the dot, result-
ing in luminescence, which is measured by
a detector turned on only during this phase
of the experiment. Reprinted by permission
from Macmillan Publishers Ltd.: Nature [232],
copyright (2004).
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Fig. 7.10 Electroluminescence from the quantum dots after
a storage time of 1 μs, in a magnetic field of 8 T. With a linearly
polarized pump (a), the luminescence shows no circular polar-
ization, but does with a circularly polarized pump (b). Reprinted
by permission from Macmillan Publishers Ltd.: Nature [232],
copyright (2004).

a spectrometer. To avoid detecting the excitation light, the detector is only turned
on during the readout phase of the measurement.

This method provides the ability to initialize an ensemble of single electron
spins, then store them for a set time, then read out the remaining spin polarization.
In this work, the technique was employed to study the longitudinal electron spin re-
laxation time as a function of an applied magnetic field. Figure 7.10 shows the σC-
and σ�-polarized readout electro-luminescence spectra 1 μs after the initialization
pulse, and in an applied magnetic field of 8 T parallel to the spin polarization. On
the left, the excitation is linearly (π-) polarized, and no net circular polarization is
observed in the luminescence, indicating zero electron spin polarization. However,
with a σ� polarized pump, there is a clear σ� circular polarization of the lumines-
cence. This indicates that the electrons have retained their spin polarization after
a storage time of 1 μs.

Figure 7.11a shows the circular polarization of the readout spectra as a function
of storage time for both σC and σ� excitation. Here, the temperature is 1 K, and an
8 T longitudinal magnetic field is applied. One can clearly see that the σC-pumped
spins yield σC polarized excitation initially, decaying over time to the opposite po-
larization. On the other hand, the σ�-pumped spins yield the σ� polarized PL with
no appreciable decay in the observed time window.

These results can be understood in terms of the insets to Figure 7.11a. The two
lines indicate the Zeeman-split spin states occupied by the electron in the quan-
tum dot. σC-polarized excitation excites the electron into the upper sublevel. Over
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Fig. 7.11 (a) Spin memory as a function of storage time. Spins
initialized in the higher-energy state thermalize to the lower
energy state with a relaxation time on the order of ms. (b) Spin
memory as a function of storage time at various magnetic fields
(y axis is on a logarithmic scale). Reprinted by permission from
Macmillan Publishers Ltd.: Nature [232], copyright (2004).

a timescale characterized by the spin relaxation time T1, the electron may transition
to the lower level. Under these experimental conditions, the thermal occupation of
the upper state is quite low (about 2%), so the electron effectively relaxes to the
lower level and then stays there. Likewise, the σ� excitation injects the electron in
to the lower energy sublevel, and therefore it just stays there.

By fitting the σC-excitation data to a decaying exponential, the spin relaxation
time (T1) can be extracted. Figure 7.11b shows the same type of data as in part a,
at various magnetic fields. In this case, the y axis is plotted on a log scale, so the
exponential dependence of the decay appears as a linear decrease.

At each magnetic field, the decay follows a single exponential, but the T1 time
decreases dramatically as the magnetic field is increased. In fact, the dependence
of T1 on magnetic field is found to obey a power law with an exponent of approx-
imately �5. This dependence is consistent with a theoretical explanation for the
spin flip mechanism in which acoustic phonons mediate spin-flips between the
Zeeman levels by way of the spin–orbit interaction [249, 250].

The longest spin relaxation time measured in these experiments was T1 D 20 ms
at a magnetic field of B D 4 T and temperature T D 1 K. The detection sensitiv-
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ity prevents measurement at lower magnetic field, but the T1 time of these self-
assembled quantum dots is likely to continue increasing as the field is lowered.

Alternatively, this device can be designed to have an electron-doped reservoir,
which allows for the storage and readout of hole spin. This was demonstrated by
D. Heiss et al. [251], and the hole spin T1 time was found to go up to hundreds of
microseconds. While not as long as the electron spin relaxation time, this is much
longer than the unconfined hole spin lifetime. Given this relatively long lifetime,
as well as the lack of coupling to nuclear spins mentioned above, it may be useful
to use hole spins as qubits.

The measurements described above provide a measurement of the spin re-
laxation time, T1, but are not able to see the spin coherence time, T2. D. Heiss
et al. [252] have proposed a modification to this experiment that would allow the
observation of coherent spin dynamics in a similar setup. In this proposal, the
idea is to perform the same optical electron spin initialization and storage in the
diode device. But while the spin is stored, a second optical pulse re-excites the dot,
spin dependently. That is, a circularly polarized pulse is used so that if the spin
is polarized in one direction the trion state is generated, and if the spin is in the
other state the trion cannot form due to Pauli blocking. After this second excitation
the hole again rapidly tunnels out of the dot, leaving either one or two electrons in
the dot, depending on the prior spin of the first electron. Now, when the readout
phase arrives and a hole tunnels back into the dot, trion emission will be observed
if the dot contained two electrons, but only exciton emission if the dot contained
a single electron. By this difference in the emission, one can determine the spin
of the electron at the time the second excitation pulse arrived. In between the first
excitation pulse, coherent manipulation of the spin may potentially be performed,
perhaps by electron spin resonance, or other optical means (see below).

Though this proposal has not yet been put into practice exactly as described,
something similar has been demonstrated in the work of Ramsay et al. [253] Here,
a similar scheme is employed with a hole being initialized and stored, except the fi-
nal readout is performed electrically instead of optically via the luminescence. The
experiment proceeds as described above, and the second excitation laser resonantly
and spin-selectively drives the transition to the positively-charged trion state. This
results in spin dependent Rabi oscillations between the single hole and trion state.
If the second laser intensity is chosen to induce a Rabi oscillation through an an-
gle of π, then the dot either contains a single hole, or a positively charged trion,
depending on the initial hole state. So far, this is essentially the same as in the
Heiss proposal. Now however, if the trion state has been formed, the electron will
rapidly tunnel out of the dot (and later, the two holes will tunnel out as well). This
results in a measurable current through the device, as was first demonstrated in
the work of A. Zrenner et al. [42]. This photocurrent provides a sensitive measure-
ment of the spin in the dot at the time of arrival of the second excitation pulse. In
the present work, this allows time resolved measurement of the hole spin in the
dot with few picosecond resolutions. One drawback to this work is that the hole
spin being studied tunnels out of the dot within a few nanoseconds (as compared
to the electrons which tunnel in about 50 ps). This limits the time that the spin can
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be observed. This may be overcome by a device of a different design, or perhaps by
implementing the optical readout of the Heiss proposal above.

7.2.3
Magnetic Ions

Though not discussed at length in this book, magnetic atoms may be incorporated
into quantum dots and their spin probed by optical means. This has been beautiful-
ly demonstrated in the work of Besombes et al. “Probing the spin state of a single
magnetic ion in an individual quantum dot” [233]. This work focuses on single,
MBE-grown CdTe quantum dots embedded in ZnTe. At the appropriate time dur-
ing growth, manganese atoms are added to produce roughly equal quantum dot
and manganese densities. Some of the dots will then contain a single manganese
atom.

The spin of the manganese atom (S D 5/2) couples to the spin of a “bright”
( J D 1) exciton in the quantum dot, resulting in splitting of the exciton states.
The exchange interaction between the 2S C1 D 6 manganese angular momentum
states results in a sixfold splitting of the exciton levels, as shown in Figure 7.12.

X
without

Mn
X with Mn

JZ= ±1 JZ= –1 JZ= +1

SZ= –5/2 SZ= +5/2

 –3/2  +3/2

 –1/2  +1/2

 +1/2  –1/2

 +3/2  –3/2

 +5/2  –5/2

σ– σ+

Fig. 7.12 Splitting of the exciton (X) state in a quantum dot
due to interaction with a single manganese atom. The state
may decay via emission of a σC or a σ� photon. Reprinted
with permission from [233]. Copyright (2004) by the American
Physical Society.
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Fig. 7.13 Photoluminescence from a quantum dot containing
a single manganese atom. At B D 0 T, the spectrum is split
into six more or less equal lines. At B D 11 T, the lower-energy
states of the manganese spin occur with higher probability.
Reprinted with permission from [233]. Copyright (2004) by the
American Physical Society.

This splitting can be directly observed as a sixfold splitting of the single dot PL
spectrum (Figure 7.13) at zero magnetic field.

The interaction between the quantum dot and the manganese atom may be
turned on and off by electrically tuning the charge state of the dot. Further, by
performing photon correlation measurements on this sixfold emission, dynam-
ics of the manganese spin can be investigated. Such measurements have found
fluctuations in the Mn spin state with a characteristic time of about 20 ns. These
fluctuations are attributed to interactions with the optically excited carriers. If these
interactions could be suppressed, it is possible that the Mn spin state could be pre-
served for significantly longer [254].

The interaction of a Mn impurity spin and carrier spins in an InAs quantum
dot has also been investigated in the work of A. Kudelski et al. [255] In this case,
the interaction is somewhat more complicated. In the II–VI CdTe quantum dots
discussed above, the Mn energy levels are isolated from the quantum dot levels,
and the spins only interact through their exchange interaction. In InAs/GaAs dots,
however, the Mn levels are such that the Mn defect forms an acceptor state with
an activation energy of 113 meV. That is, the Mn atom has a hole bound to it with
a binding energy of 113 meV. If the defect atom is ionized, a hole is added to the
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valence band of the semiconductor. By using photoluminescence spectroscopy of
a single dot coupled to a Mn atom in a magnetic field, the interaction between the
Mn ion spins, the bound hole spin, and optically excited quantum dot carriers is
investigated.

7.2.4
Spin-Selective Absorption

In contrast to measuring emitted light, one can also probe spins in quantum dots
using the absorption of light. The general scheme is illustrated in Figure 7.14. In
a quantum dot containing a single electron in the spin-up state, transitions to the
spin-down state may occur, but transitions to the spin-up state are forbidden by
the Pauli exclusion principle. Thus, circularly polarized light of one helicity will
not interact with the dot, while the other helicity may be absorbed or resonantly
scattered.

This spin measurement technique was demonstrated in A. Högele et al., “Spin-
selective optical absorption of singly charged excitons in a quantum dot” [234].
Here, InGaAs self-assembled quantum dots are incorporated in a charge-tuning
device as described in Chapter 4, and elsewhere. A single dot is located and charac-
terized using photoluminescence spectroscopy. With the dot tuned into the singly-
charged regime, a narrow linewidth continuous wave laser is focused onto the dot.
The transmitted light is then collected on the other side of the dot. A differential
absorption technique is used to enhance the signal. By modulating the bias across
the device, the energy of the transition is modulated due to the quantum confined
Stark effect. This allows one to measure a small relative change in absorption due
to the quantum dot, eliminating background fluctuations. The signal may also be
maximized by focusing the light as tightly as possible on the dot. By using a solid
immersion lens, substantial signal can be obtained, even from a single quantum
dot [256].

At zero magnetic field, a single dip in the optical absorption is seen as the laser
energy is tuned across the energy of the negatively charged trion transition of the
quantum dot (Figure 7.15a). This type of single dot absorption measurement pro-
vides high resolution spectroscopic information about the dot. Here, the transition
energy is found to be 1.27087 eV, with a full width at half maximum of 2.3 μeV.

Fig. 7.14 Schematic of transitions from the single electron state
to the negatively charged trion. For a given helicity of light (say,
σ�), only one transition can occur.
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Fig. 7.15 (a) Transmission spectrum show-
ing a dip due to absorption from a single
electron-doped quantum dot. (b) Single-dot
transmission spectra at 0, 1.5, and 4.0 T mag-
netic fields showing Zeeman splitting of the
transition. (c) Top: Energy of the σC and σ�-

polarized transmission dips as a function of
applied magnetic field. Bottom: Splitting be-
tween the two sets of data above showing
a linear Zeeman splitting. Reprinted with per-
mission from [234]. Copyright (2005) by the
American Institute of Physics.

When a magnetic field is applied, the electron energy level splits, resulting in
a splitting of the observed transition energy into a doublet. As the field increases,
the two levels will be occupied unequally as given by the thermal equilibrium (these
experiments are carried out at T D 1.5 K). Figure 7.15b shows the absorption dip
at B D 0 T, then the two Zeeman-split dips at B D 1.5 and 4.0 T. These spectra
are recorded with linearly polarized light, and therefore are sensitive to both spin-
polarized transitions. As the magnetic field is increased, one can see the increasing
energy splitting, as well as a shift in the relative intensities of the two dips. This is
attributed to the unequal thermal occupation of the two spin levels, yielding greater
absorption in the less frequently occupied level.

The two different spin levels can be independently resolved by measuring the
absorption of right or left circularly polarized light. Figure 7.15c shows the energy
of the σC and σ� absorption dips as a function of magnetic field. As expected, the
two levels split in energy linearly with magnetic field (shown in the bottom panel),
with a parabolic overall shift due to the diamagnetic shift.

The experiment described above illustrates the general method of spin readout
via absorption, but the technique is quite flexible and has been employed with
a number of variations. The work above uses the absorption as a probe of the equi-
librium spin population in the dot. In Atatüre et al. [161], discussed above, the same
laser is responsible for pumping the spin state and also reading it out through the
quenching of the absorption when the spin has been polarized. Of course, a sec-
ond laser may be used as well to initialize the spin state before being probed by the
change in spin dependent absorption of a second laser. For example, the Atatüre
work was extended by M. Kroner et al. [257] to include a second laser, which allows
independent spin pumping and readout revealing additional information about the
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physics involved. Another example of two-color spin preparation and absorption
readout is in the work of D. Kim et al. [242], which was mentioned above. Here,
one laser is used to pump a spin in a pair of coupled quantum dots, and the second
laser is used to probe the spin of that electron using transitions involving the other
quantum dot.

This method of spin readout via spin-selective absorption allows the measure-
ment of spin states with high spectroscopic resolution. These types of techniques
are reminiscent of atomic physics, and there are many analogies in terms of possi-
ble experiments. For example, the spin pumping discussed above in Atatüre et al.,
and the Faraday rotation technique discussed in the next section are both closely
related to techniques used in atomic physics experiments.

7.3
Observation of Spin Coherence and Optical Manipulation

Thus far, this chapter has focused mainly on initialization and measurement of
spins into stationary eigenstates (“spin-up” or “spin-down”). Optical excitation can
also be used to generate spin polarized electrons and holes in states that are not
spin eigenstates. The resulting spin state will evolve in time, as introduced in
Chapter 1. The same types of optical techniques discussed above can be applied
to study these coherently evolving quantum states. Additionally, optical techniques
may be employed to coherently control the spin state, as discussed in Sections 7.3.8
and 7.3.9.

7.3.1
The Hanle Effect

Using the polarization of time-averaged quantum dot luminescence as a probe of
the spin polarization, one can obtain some information about the spin dynamics in
a magnetic field. This type of experiment is known as a Hanle measurement [121],
and the setup is essentially the same as for quantum dot luminescence measure-
ments shown in Figure 7.8. A circularly polarized laser is incident on the sample
in the +x direction, serving to inject spin-polarized electrons and holes. A magnetic
field Bz is applied in the z direction. The polarization of the subsequent photolu-
minescence (PL) collected back along the x direction reveals the steady-state spin
polarization along the measurement direction.

This steady-state spin polarization can be calculated by taking an initial electron
spin polarization S0 at t D 0 along the +x direction. (For simplicity, we will as-
sume that the hole spin lifetime is very short and can be ignored.) The spin then
precesses, and the x component of the spin as a function of time is given by

Sx (t) D
�

0 t < 0
S0 cos(ωL t) exp(�t/T �

2 ) t 	 0
. (7.2)
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Fig. 7.16 Illustration of the Hanle effect. At zero magnetic field
(on the left), spins initialized in the x direction do not precess
and the time-averaged spin projected on the x direction is max-
imal. As the magnetic field is increased, the spin precesses
through some angle within its lifetime, resulting in a reduced
time-averaged projection along the x direction.

ωL D g μBB/„ is the Larmor precession frequency, and for generality both spin
decoherence and dephasing are included in the spin lifetime T �

2 . The steady state
spin polarization Sx is then found by integrating Eq. (7.2) from t D (�1, 1):

Sx /
Z 1

0
S0 cos(ωL t) exp(�t/T �

2 )dt D S0

�
1/T �

2

ω2
L C (1/T �

2 )2

�
. (7.3)

Thus as a function of magnetic field (proportional to ωL), the measured PL polar-
ization sweeps out a Lorentzian function with width B1/2 D „/(g μBT �

2 ). This effect
is illustrated in Figure 7.16. If the g-factor is known, then this measurement reveals
the effective transverse spin lifetime, T �

2 . The analysis of the Hanle measurement
can be done more rigorously and quantitatively by setting up and solving rate equa-
tions for spin injection, decay, and recombination [121]. The theory can be extended
to the case of nuclear polarization, nonexponential decay, doped semiconductors,
and so on This was the technique used for much of the initial exploration of spin
physics in semiconductors, such as in the work described in Optical Orientation.

7.3.2
Ensemble Hanle Effect

The Hanle effect provides a straightforward way to obtain information about the
spin coherence of electrons and holes in an ensemble of quantum dots. If one mea-
sures the photoluminescence polarization from an ensemble of quantum dots, the
only necessary addition to perform a Hanle measurement is a transverse magnet-
ic field. This was demonstrated, for example, by R. J. Epstein et al., “Hanle effect
measurements of spin lifetimes in InAs self-assembled quantum dots” [235]. In
this work, undoped self-assembled InAs dots are placed in an optical cryostat with
a superconducting magnet providing a transverse field (transverse to the light prop-
agation direction). The setup is essentially the same as in Figure 7.8. Spin polarized
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electrons and holes are excited into the wetting layer (1.45 eV) using circularly po-
larized light. The emitted light is passed through a monochromator (or spectrom-
eter) to measure the spin coherence time as a function of emission energy.

The circular polarization of the emission as a function of magnetic field (shown
in Figure 7.17a) displays the expected peaked lineshape around zero field. How-
ever, the central peak does not decay all the way to zero, and in fact, a second,
broader peak must be included in the fit to match the data. As described above,
the width of the Hanle peak is related to the effective transverse spin lifetime by
B1/2 D „/(g μBT �

2 ). Therefore, each Lorentzian component of the fit can be asso-
ciated with a value of gT �

2 . The g-factor of these quantum dots was not measured,
but similar dots have been found to have g � 1.7. Using this value, one can arrive
at an approximate value for the effective spin coherence time, T �

2 .
The extracted values of gT �

2 are shown in Figure 7.17b for three different sam-
ples as a function of magnetic field. Both the narrow and broad fit components
are shown. The narrow peak yields a coherence time on the order of 100 ps at
T D 4 K, decreasing as the temperature increases. The broad component yields
a much shorter spin lifetime; on the order of a few picoseconds. The origin of this
short spin lifetime component is unclear. One possibility may be the short-lived
hole spin coherence.

Fig. 7.17 (a) Hanle curves from InAs quantum dots at var-
ious temperatures. (b) gT �

2 extracted from Hanle measure-
ments as a function of temperature. Hanle data is fit to two
lifetimes, shown as the solid and dashed data. Three samples
are measured with different dot shapes (see [235] for details.).
Reprinted with permission from [235]. Copyright (2001) by the
American Institute of Physics.
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Since the quantum dots in this experiment are undoped, optical excitation will
tend to generate one or more electron–hole pairs in the dots. Therefore, the ob-
served spin lifetime cannot be longer than the recombination time of an exciton in
the dot. It is possible that this is the limiting factor in these experiments.

On close observation of the data in Figure 7.17a, one can see small, very sharp
peaks around zero magnetic field in the lower temperature data. The origin of these
peaks is not explained in this work, though it may stem from another, much longer
spin lifetime component. One possibility is that it arises from the occasional gen-
eration of a trion state in some of the dots. As we will see in the next section,
Hanle data from a negatively charged exciton state can reflect the single spin co-
herence time, independent of the electron–hole recombination time [211, 258]. In
the present experiment, however, the neutral and charged exciton behavior can-
not be easily disentangled since the emission energy of these two states differs by
only about 4 meV – much less than the broadening of the PL peaks due to inho-
mogeneity within the ensemble. This inhomogeneity may be removed by looking
at a single quantum dot, yielding much greater spectroscopic resolution. Clearly,
there are a number of questions that cannot be answered by an ensemble Han-
le measurement alone. For a more detailed understanding of spin coherence in
quantum dots, we must turn to single quantum dot studies, and/or time-resolved
experiments.

7.3.3
Hanle Effect Measurement of a Single Quantum Dot

In general, optical measurements of a single quantum dot provide additional infor-
mation over ensemble measurements. This is illustrated in the previous section,
where the spectroscopic resolution is not high enough to separate different tran-
sitions within the dots. Single dot measurements are typically more technically
difficult, but can overcome some of the limitations of inhomogeneous broadening.

In the work of A. S. Bracker et al., “Optical pumping of the electronic and nu-
clear spin of single charge-tunable quantum dots” [211], Hanle measurements are
performed similar to those above, but looking at a single quantum dot.

The dots in these experiments are interface fluctuation quantum dots, formed in
a 4.2-nm wide GaAs quantum well, with AlGaAs barriers. As has been discussed
numerous times above in the case of self-assembled dots, these quantum dots are
also embedded in a diode structure that allows for control over the charge state
of the dots. Electrons and holes are excited into the quantum well (analogous to
the wetting layer in self-assembled dots) with a circularly polarized laser. To isolate
a single quantum dot, a metal mask layer is deposited on the surface of the sample
with submicron apertures. The laser is focused onto the sample using a micro-
scope objective, and the each aperture is checked to find one with a good-looking
quantum dot directly underneath. This quantum dot is then characterized with
photoluminescence spectroscopy.

Photoluminescence of the quantum dot as a function of the bias voltage across
the device is shown in Figure 7.18a. Three different lines are identified in the spec-



138 7 Experimental Methods for Optical Initialization, Readout, and Manipulation of Spins

Fig. 7.18 (a) Photoluminescence from a sin-
gle quantum dot as a function of applied bias.
The neutral exciton (X0), negatively charged
exciton (X�) and positively charged exciton
(XC) lines are indicated. (b) Circular polar-
ization of the three lines indicated in (a).
The different curves for the X� state corre-

spond to different excitation intensity or pow-
er (see [211]). (c) Illustration of the different
recombination processes giving rise to the
observed lines. Reprinted with permission
from [211]. Copyright (2005) by the American
Physical Society.

tra: the neutral exciton, X0, the negatively charged exciton, X1� (labeled X�), and
the positively charged exciton X1C (labeled XC). There is an abrupt change be-
tween the X0 and XC lines and the X� line around approximately 4 V. It is here
that the equilibrium state of the dot switches from zero to one electron. When the
dot is empty in equilibrium, optical excitation can generate the X0 state, or if an
excess hole is captured in the dot, the XC state. However, with an electron already
resident in the dot, the X� state is predominantly formed.

Figure 7.18b shows the degree of circular polarization of the three identified
lines indicated in part a. The X0 emission is almost entirely unpolarized, due to the
anisotropic exchange interaction arising from the elongated shape of these quan-
tum dots (see Chapter 2). The XC emission has a large, positive polarization. This
state is composed of two holes in a singlet state, with the net spin polarization de-
termined only by the electron. The positive polarization of this emission reflects
the spin of the optically injected electrons. The polarization of the X� emission is
more complicated. The three curves shown in the figure correspond to different ex-
citation energies or intensities. In some cases, the polarization is negative, similar
to the case of self-assembled dots discussed above by Cortez et al. [230]. However,
in this type of quantum dot other processes contribute that depend on the exci-
tation energy, and the contribution from electrically injected electrons, which can
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lead to positive polarization of the X� emission [211]. The diagrams in Figure 7.18c
illustrate the different transitions yielding the observed emission.

The Hanle measurement is performed by monitoring the polarization of these
different luminescence lines while sweeping an applied magnetic field perpendic-
ular to the spin polarization axis. This is illustrated in Figure 7.19b, and the results
are shown in part a. As expected, the XC and X� lines are well-fit by a Lorentzian
lineshape, while the X0 polarization remains at zero.

From these curves, the spin coherence time T �
2 can be extracted from the width

of the Hanle curves using the relation B1/2 D „/(g μBT �
2 ), and estimating g � 0.2

from previous measurements on these quantum dots. In this way, coherence times
of 150 ps and 16 ns are found for the XC and X� lines, respectively. The 150 ps line
is consistent with the radiative recombination time in these quantum dots (and
also consistent with the spin lifetime measured in ensembles of self-assembled
dots described above). Clearly, the coherence time measured for the X� emission
is much longer than the recombination time.

The Hanle curve from the X� emission is attributed to the behavior of the sin-
gle electron in the quantum dot before the charged exciton (trion) formation. That
is to say, the polarization of the X� emission depends on the spin of the resident
electron in the dot, before an additional electron and hole are added via optical
excitation. This single electron spin coherence time is consistent with what is the
expected dephasing of the spins due to interaction with the randomly oriented nu-
clear spin polarization (see Chapter 6). Other mechanisms, however, cannot be
ruled out.

Although this measurement looks at a single quantum dot, it is still averaged
over many repeated initializations of that quantum dot. Therefore, effects due to an
inhomogeneous distribution of quantum dots are eliminated, but time-varying in-

Fig. 7.19 (a) Hanle curves from the three transitions observed
in the quantum dot. (b) Schematic of the experiment. Circular-
ly polarized light excites the spin along the z direction, which
then precesses around the magnetic field applied in the x direc-
tion. The steady-state spin along the z direction is measured
via photoluminescence. Reprinted with permission from [211].
Copyright (2005) by the American Physical Society.
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homogeneities remain. Most notably, the random nuclear spin polarization varies
slowly in time, and may still affect the spin measured in these experiments. Still,
these single dot measurements greatly increase the spectroscopic resolution, as
well as removing the distribution of a quantum dot ensemble, which could lead to
additional dephasing of the spin precession. To date, no optical measurements of
spin in one or more quantum dots has been performed with a single initialization
and readout cycle (a so-called single shot measurement). Some of these dephasing
effects can be corrected by performing a spin echo-type measurement, which will
be described below (see Section 7.3.5).

7.3.4
Time-Resolved Faraday Rotation Spectroscopy

The Faraday and Kerr rotation effects provide a very useful technique for observing
the coherent spin dynamics of electrons in both bulk semiconductor systems as
well as quantum dots. For one example, we will look at the results of J. Gupta et al.,
in “Spin dynamics in semiconductor quantum dots” [236], which focuses on time
resolved measurements of spin coherence in ensembles of nanocrystal quantum
dots.

This work uses Faraday rotation measurements to observe the dynamics of opti-
cally excited electron and hole spins in CdSe nanocrystals. These nanocrystals are
chemically synthesized as described in Chapter 2, and then suspended in a polymer
film for measurements. The measurements are carried out in a magneto-optical
cryostat at temperatures between 4 K and room temperature, with the ability to
apply a magnetic field in the transverse direction.

When linearly polarized light is transmitted through matter with different re-
fractive indices for left- and right-handed circularly polarized light, nC and n�,
a rotation of the plane of polarization is generated. Assume the light is of frequen-
cy ω and travels a distance L through matter. Due to different phase velocities of
the two circularly polarized components, v˙ D ω/ k˙ D c/n˙, a phase difference
L(k� � kC) D (ωL/c)(n� � nC) accumulates between them when passing through
the sample. It can be shown geometrically that the rotation angle θ of the polar-
ization plane of linearly polarized light is half the phase difference of the circular
components. We therefore obtain

θ D E L
2„c

(n� � nC) , (7.4)

where E D „ω. This rotation of the plane of linearly polarized light is known as
Faraday rotation. An analogous effect occurs when light reflects off of the surface –
this effect is known as the Kerr rotation. As can be seen in the above equation,
Faraday rotation (or Kerr rotation) is not related to extinction, it is only related to
a relative change in the refractive indices n� and nC, which is generated due to
magnetically polarized carriers. Thus, Faraday rotation can be regarded as a “mag-
netically induced” optical activity or optical rotation. The origins of Faraday and
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Fig. 7.20 Setup for time resolved Faraday rotation.

Kerr rotation will be discussed in a more quantum mechanical framework in Sec-
tion 7.3.6.

The setup used for these measurements is illustrated in Figure 7.20. An am-
plified Ti:Sapphire laser is used to drive an optical parametric amplifier (OPA),
which can produce pulses of light approximately 100 fs in duration, tunable in
wavelength throughout the visible spectrum. This is the relevant wavelength range
for CdSe structures, as well as quantum dots composed of other II–VI semiconduc-
tors. A second parametric amplifier may be synchronized to the first, allowing for
pump and probe beams of differing wavelengths. Alternatively, the train of laser
pulses may be divided into two paths by means of a beamsplitter to form pump
and probe paths. The pump beam is reflected off of a translatable mirror before
both beams are focused through the same lens onto the sample. By translating
the mirror in the pump path, the distance traveled by the pump pulses can be ad-
justed relative to that traveled by the probe pulses. This allows fine control over
the relative arrival time of the two pulses at the sample. Given the speed of light
c D 3 � 108 m/s, changing the position of the mirror in the pump path by 1 mm
changes the arrival time at the sample by about 6.7 ps.

Before arriving at the sample, the pump beam is circularly polarized to excite
spin polarized electrons and holes, and the probe beam is linearly polarized for
the measurement of Faraday rotation. After passing through the sample, the pump
beam is blocked and the probe beam, whose polarization has now been rotated due
to the Faraday effect, is directed into the collection path.

Typical polarization rotations in such measurements tend to be on the order of
1 mrad or less. To achieve sensitive polarization measurements, a balanced photo-
diode bridge technique is often employed. As shown in Figure 7.21, the polariza-
tion of the probe beam, initially vertical, is rotated through an angle θF . The probe
beam is then passed through a half-wave plate, which reflects the polarization about
its axis at 22.5ı, resulting in the polarization at an angle θ D π/4 � θF . Next, the
probe is passed through a polarizing beamsplitter, which separates the horizon-
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Glan-Thomson
(polarizing)
beamsplitter

Fig. 7.21 Measurement of linear polarization rotation using
a balanced diode bridge. Incoming light of intensity I0 with
polarization rotated from the vertical by a small angle θF is
measured as an output voltage Vout proportional to θF .

tally and vertically polarized components of the light. Assuming θF is small, the
horizontal and vertical components have intensity IH(V ) � I0(1 ˙ θF )/

p
2 where

the incoming probe beam has intensity I0. These two beams are then focused onto
a pair of photodiodes, and the difference between the two photocurrents is mea-
sured by the diode bridge circuit. This circuit contains a pair of photodiodes and at
least one operational amplifier to take the difference of the two diodes. Additional
operational amplifiers may be used to also output the signal from each photodiode.
This difference signal SH�V / IH � IV D p

2I0θF , and is thus proportional to the
Faraday rotation angle.

The signal-to-noise is improved by employing lock-in amplifier techniques.
The pump beam is modulated between left and right circular polarization using
a photo-elastic modulator (PEM) at a frequency of tens of kHz, and the probe beam
is modulated (turned on and off) at a frequency of 100s of Hz using a mechanical
chopper (a rotating wheel with alternating opaque and open regions). The output
of the photodiode bridge is then sent to a lock-in amplifier referenced to the PEM,
and the output of this lock-in is sent to a second lock-in, referenced to the chopper
frequency. This has the effect of eliminating various noise sources, as well as only
measuring the component of the probe light modified by the injected spins.

Typical time-resolved Faraday rotation traces are shown in Figure 7.22a, in
a transverse magnetic field of 0.25 T, and at a temperature of 6 K. Here, samples
of CdSe nanocrystals, as well as CdSe cores overgrown with a thin cap of CdS are
measured. At t D 0, the pump pulse arrives and excites typically at most one elec-
tron–hole pair in a given quantum dot. Since the initial state is in a superposition
of the spin-up and spin-down eigenstates (as defined by the applied field), the spin
state then begins to precess. When the probe pulse arrives, it projects the state
onto the laser propagation direction, yielding a cosinusoidal trace as a function of
the probe delay. Additionally, the signal decays with time due to spin decoherence
and dephasing. From the frequency of the observed oscillations, one can extract
the g-factor for spins in the quantum dots, and the decay of the signal provides
a measure of the effective spin coherence time T �

2 . Note that the spin decoherence
here is not limited by electron–hole recombination, since the radiative lifetime is
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Fig. 7.22 (a) Time-resolved Faraday rotation data from CdSe
quantum dots, and CdSe dots capped with a CdS shell. The
data show the projection of the spins as they coherently precess
around a magnetic field. (b) Coherent spin precession near
room temperature. The dotted line shows the spin dynamics
in zero magnetic field. Reprinted with permission from [236].
Copyright (1999) by the American Physical Society.

very long in these dots (see Chapter 2). At higher magnetic field, the decay of the
spin precession is due to dephasing due to the distribution of quantum dot size
and shape. Since each nanocrystal has a slightly different g-factor, the spins become
out of phase with each other leading to a cancelation of the total signal. Apart from
such dephasing it is not well known what the dominant decoherence mechanisms
are in such quantum dots. Interaction with randomly oriented nuclear spins has
been suggested to give the right order of magnitude [226], but little experimental
evidence exists.

Figure 7.22b shows the coherent spin precession in these CdSe quantum dots
near room temperature (T D 282 K). Remarkably, there is essentially no difference
from the data at T D 6 K. The strong confinement of electrons in these quantum
dots provides large level splittings, allowing the nanocrystals to continue function-
ing as quantum dots even at room temperature.

The data in Figure 7.22 shows some slight deviations from perfect single-
frequency oscillatory behavior. This can be seen more clearly at higher applied
fields (Figure 7.23a). At 4.0 T, the Faraday rotation trace shows clear beating behav-



144 7 Experimental Methods for Optical Initialization, Readout, and Manipulation of Spins

Fig. 7.23 (a) As the magnetic field is in-
creased, the lifetime measured by time-
resolved Faraday rotation becomes shorter
due to inhomogeneous dephasing. At high
magnetic field, the presence of multiple pre-
cession frequencies becomes clear. (b) Two
of the measured precession frequencies as

a function of magnetic field from an ensemble
of CdSe quantum dots. Inset: Fourier trans-
form of a time-resolved trace showing mul-
tiple precession frequencies. Reprinted with
permission from [236]. Copyright (1999) by
the American Physical Society.

ior, due to precession at multiple distinct frequencies. These precession frequen-
cies are found to vary linearly with the magnetic field (Figure 7.23b), corresponding
to multiple distinct g-factors. The observation of multiple g-factors is ubiquitous
in studies of spin precession in nanocrystal quantum dots. Evidence suggests that
these different precession frequencies are related to electron vs. exciton spin pre-
cession [259], or the state of charge traps on the surface of the dots [115]. Further
study is needed to fully understand the dynamics of spin states in these systems.

Despite the mystery of multiple g-factors, all of the g-factors show an expected
monotonic shift with nanocrystal size. Figure 7.24 shows the measured g-factors
(open symbols) as a function of CdSe nanocrystal diameter. The lines correspond
to theoretical calculations. The lowest g-factor agrees with a theoretical description
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Fig. 7.24 Two measured g-factors in CdSe quantum dots, as
a function of nanocrystal diameter. Solid points indicate g-
factors measured by magnetoabsorption. Lines show differ-
ent theoretical models (see [259]). Reprinted with permission
from [259]. Copyright (2002) by the American Physical Society.

in terms of the g-factor shift for single electron spins with increasing confinement
(see Chapter 3). The higher g-factors agree with a calculation of the precession of
electron-hole pairs, described in [259].

7.3.5
Coherent Spin Echos – Measurement of T2

In all optical studies of spins in quantum dots to date, averaging over multiple it-
erations is performed either in time with a single dot, or both in time and over
an ensemble of dots. The ability to perform optical single-shot readout of a single
spin in a quantum dot would be a landmark achievement. As is seen in nuclear
spin resonance experiments, however, some information lost from ensemble av-
eraging can be regained by spin echo techniques [225]. This idea has been most
strikingly employed in the area of optically active spins in quantum dots in the
work of A. Greilich et al., in “Mode-locking of electron spin coherences in singly
charged quantum dots” [237] and “Nuclei-induced frequency focusing of electron
spin coherence” [245].

In traditional nuclear spin echo techniques, short radio-frequency pulses are
applied to coherently manipulate the spins through well defined angles around
the Bloch sphere. The same RF technique may be applied to spins in quantum
dots [260, 261], though the relatively short coherence time of electron spins com-
pared to nuclear spins limits the practicality of this technique. The ability to per-
form fast coherent spin rotations using optical pulses is now becoming possible
in quantum dot systems (see Sections 7.3.8 and 7.3.9), though spin echo measure-
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ments have not yet been performed along these lines. Instead, A. Greilich et al.
have taken advantage of a surprising effect in which the precession frequencies in
an ensemble of quantum dots automatically synchronize in a way that leads to the
rephasing of the spins.

The samples in these experiments consist of multiple layers of InGaAs self-
assembled quantum dots, with delta-doped layers included to put, on average,
one electron in each dot. Optical pump pulses are provided by a mode-locked
Ti:Sapphire laser emitting pulses of 1.5 ps duration, once every 13.2 ns. These
pump pulses are circularly polarized and resonantly excite trions which, on recom-
bination, leave behind a spin polarized electron. The recombination time of the
trion is a few hundred picoseconds, which is seen only as a distortion of the signal
on these short timescales.

The subsequent dynamics of the electron spins are monitored through time-
resolved Faraday rotation, as in the previous section. Figure 7.25 shows the mea-
sured spin precession at three different magnetic fields. At positive times (with the
Faraday rotation probe pulse arriving after the pump), typical spin precession is
observed with a decay time that decreases with increasing magnetic field. This is
similar to the dephasing discussed in the previous section, attributed to the inho-
mogeneous range of g-factors among the ensemble of quantum dots. This dephas-
ing causes the signal to disappear within a few nanoseconds though, crucially, the
coherence of individual spin states may persevere despite being out of phase with
the ensemble. Interestingly, unlike in the previous section a nearly symmetric sig-

Fig. 7.25 Time-resolved Faraday rotation from an ensemble of
singly-charged InAs quantum dots. The signal decays at positive
time due to inhomogeneous dephasing and then comes back
into phase at negative times due to frequency-locking of the
spin precession. Complex behavior near zero delay is attributed
to the presence of the trion state. Figure courtesy A. Greilich,
D. R. Yakovlev and M. Bayer, TU Dortmund.
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nal is seen at negative times, with the probe pulse arriving just before the pump
pulse.

To understand these results, it is important to bear in mind that the pulses are
repeated every 13.2 ns. Thus, for example, �500 ps in the figure corresponds to
the probe arriving 12.7 ns after the previous pump pulse. The interpretation of
the data is that the repeated excitation somehow takes the continuous distribu-
tion of precession frequencies, and concentrates them into certain discrete values.
Specifically, the only allowed spin precession frequencies ω e are those that satisfy
TR D 2πN/ω e , where TR is the time between pump pulses and N is an integer.
That is, a whole number of spin precessions must fit evenly into the repetition pe-
riod of the laser. With this condition, the ensemble of spins dephases as usual, but
at a multiple of the repetition period all of the spins come back into phase with
each other.

The explanation for this phenomenon was given in [245]. The key to this effect
is that when the trion state is optically excited by the pump pulse, electron-nuclear
spin flips that are otherwise forbidden may occur. Then first consider a quantum
dot whose precession frequency already satisfies the condition above. After an elec-
tron spin is initially polarized (say in the x direction), at any multiple of 13.2 ns later
the subsequent pump pulses will be unable to re-excite the dot since it will already
contain a spin in the x direction. That is, when the pump pulse arrives, a trion
cannot form due to the Pauli exclusion principle. Since trion formation or decay is
needed for the electron-nuclear spin flips to occur, the nuclear spins around this
dot will be frozen, at least on timescales shorter than the natural nuclear spin fluc-
tuations. On the other hand, consider a quantum dot precessing at a frequency
not satisfying the condition above. When subsequent pump pulses arrive, the spin
will have at least some projection onto the negative x direction. Thus a trion may
be excited in such a dot, re-initializing the electron spin as well as allowing for
a perturbation to the nuclear spin polarization.

With a continuous train of optical pumping, quantum dots whose precession
frequencies do not match up with the repetition period undergo repeated perturba-
tions of their surrounding nuclear spin polarization. Eventually, the nuclear spins
will be polarized such that they generate an effective magnetic field exactly bringing
the precession frequency into one of the resonance frequencies. Once this occurs,
this dot will join the subset of dots with frozen nuclear spin. Over time, virtually all
of the dots in the ensemble will have achieved this frequency-locked state. In fact,
this phenomenon shows remarkable memory effects over timescales of minutes
due to the long spin memory of the nuclei.

This spin echo effect provides a nice way of measuring the electron spin coher-
ence time, T2, free from inhomogeneous dephasing effects. The Faraday rotation
signal observed at “negative” time comes from contributions to the signal from
spins initially polarized at 13.2 ns, 26.4 ns, and so on, earlier. Therefore, the signal
will have decayed somewhat compared to the initial values immediately after t D 0.
If the laser pulse repetition time is increased, this negative time signal should be-
come smaller in accordance with the spin coherence time.
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Fig. 7.26 Amplitude of the negative-time Faraday rotation signal
as a function of the pulse repetition period. Curves 1 and 2
are for two different pump intensities. Fits to these data yield
T2 D 3.0 µs. Figure courtesy A. Greilich, D. R. Yakovlev and
M. Bayer, TU Dortmund.

Figure 7.26 shows the magnitude of the negative time data as a function of the
time between pump pulses. The solid lines compare this data to the theory, which
has the coherence time T2 as its only fitting parameter. From this theoretical fit,
the T2 time is extracted and found to be T2 D 3.0 µs. This coherence time is three
orders of magnitude longer than the dephasing times observed without the spin
echo. It is also two orders of magnitude longer than spin lifetimes measured in
single dot studies that include a time average over many iterations [211, 238]. This
remarkably long T2 time provides motivation that some application may be found
for these systems in the area of quantum information processing.

7.3.6
Single Spin Kerr Rotation Measurement

The Faraday rotation measurements discussed thus far have all been performed
on large ensembles of spins. Such measurements on single quantum dots are also
possible. Although the signal from a single dot is smaller than from an ensemble,
several factors work in one’s favor. The laser can be focused as tightly as possible on
the dot. Also, the Faraday or Kerr rotation signal from a single dot is concentrated
spectrally in a smaller region, whereas an inhomogeneous ensemble it is spread
over a larger range in energy. By using a narrow linewidth laser, one can look only
in the relevant spectral range around the dot resonance. A cavity may also be used
to enhance the optical response of the dot, increasing the single spin signal.

The work of J. Berezovsky et al., “Nondestructive optical measurements of a sin-
gle electron spin in a quantum dot” [60] demonstrates the ability to observe the
electron spin in a single quantum dot using Kerr rotation spectroscopy. These re-
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Fig. 7.27 Schematic of the sample for single spin measure-
ments. The sample consists of a layer of GaAs interface fluctu-
ation quantum dots surrounded by distributed Bragg reflectors
forming an optical cavity. The structure is doped and gated so
as to control the charging of the dots and the quantum well.

sults present a continuously time-averaged measurement. This technique can be
extended into the time domain, as described in Section 7.3.7.

A schematic of the sample used in this work is shown in Figure 7.27. The sample
is grown by molecular beam epitaxy and consists of a single 4.2-nm GaAs quantum
well in the center of a planar Al0.3Ga0.7As λ-cavity. A 2-min. growth interruption at
each quantum well interface allows interface fluctuation quantum dots to form.

The quantum dot layer is centered within an optical microcavity with a resonance
chosen to enhance the interaction of the optical field with the quantum dot. See
Section 4.2 for more discussion of cavity-enhanced Faraday rotation. The front and
back cavity mirrors are distributed Bragg reflectors composed of 5 and 28 pairs of
AlAs/Al0.3Ga0.7As λ/4 layers, respectively. This asymmetrical design allows light to
be injected into and emitted from the cavity on the same side. Based on previous
measurements with similar cavities [175, 262], the Kerr rotation enhancement is
expected to be enhanced by a factor of � 15 at the peak of the cavity resonance.

Additionally, the quantum dots are embedded in a diode-like structure, similar
to those discussed previously, allowing the charging of the dots and the quantum
well to be controlled with a bias voltage. On the top surface of the device, a metal
layer forms a Schottky contact with 1-μm apertures fabricated by electron-beam
lithography. This layer serves as both a front gate and a shadow mask for isolating
single dots.

As discussed in Section 7.3.4, the magneto-optical Kerr effect results in a rotation
of the plane of polarization of linearly polarized light with energy E upon reflection
off the sample, and is analogous to the Faraday effect for transmitted light. For both
effects, the rotation angle is determined by the difference of the dynamic dielectric
response functions for σC and σ� circularly polarized light, which are proportion-
al to the interband momentum matrix elements, P˙

c,v D hψc j Opx ˙ i Op y jψv i, where
ψc (ψv ) is a conduction (valence) band state [134, 263]. Due to the cavity, both
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reflection and transmission contribute to the measured polarization rotation. For
simplicity, we refer only to Kerr rotation. For a single conduction-band energy level
in a quantum dot containing a spin-up electron in a state ψ", optical transitions to
the spin-up state are Pauli-blocked, and the KR angle is then given by

θK (E ) D C E
X

v



jPC

#,v j2 � jP�
#,v j2

� E � E0,v

(E � E0,v )2 C Γ 2
v

, (7.5)

where C is a constant, and E0,v and Γv are the energy and linewidth of the transition
involving the valence band state jψv i, respectively. For a single transition in the
sum, with Γ � jΔj � E , where Δ D E � E0, note that θK � Δ�1, which decays
more slowly than the absorption line, (� Δ�2) [134, 264]. Therefore, for a suitable
detuning, Δ, KR can be detected while photon absorption is strongly suppressed.
This gives the Kerr rotation measurement a nondestructive property, whereby the
spin may be minimally affected by the measurement.

A continuous wave, circularly polarized Ti:Sapphire laser is used to excite
spin-polarized electrons and holes. A second, linearly polarized continuous wave
Ti:Sapphire laser is used as the probe for Kerr rotation measurements. The two
beams are made collinear and sent into the same microscope objective. The ob-
jective focuses both beams onto the sample (spot size �1 μm), which sits inside
a liquid Helium flow cryostat. Additionally, the iron poles of an electromagnet are
positioned above and below the sample cold finger to apply magnetic fields up to
�0.1 T.

The light reflected off (or emitted from) the sample is collected through the ob-
jective and passed through a long-pass optical filter to block the pump beam. The
rotation of the probe polarization is then detected by a balanced photodiode bridge,
as described in Section 7.3.4. The difference channel of the diode bridge is sent
to a voltage preamplifier and two lock-in amplifiers, and the signal is averaged for
several seconds to reduce noise. During this measurement time of several seconds,
the pump repeatedly re-initializes the spin. In this sense, it is a measurement of
a single spin in a dot repeated many times and averaged in time. Finally, the pump
polarization is switched between σC and σ� with a liquid crystal variable wave-
plate, and a measurement of the rotation angle is taken at each helicity. The differ-
ence between these two values yields the signal modulated at both the pump and
probe frequencies, and which depends on the sign of the pump helicity. Sweeping
the probe laser energy with a measurement at each energy maps out the spectral
dependence of the Kerr rotation.

First, a good-looking QD is found and characterized using photoluminescence
spectroscopy. Figure 7.28 shows the luminescence as a function of bias voltage for
a single quantum dot. Also shown is the polarization of the emission of two of the
observed lines. This is similar to the behavior described above in Section 7.3.3. In
this case, three different lines are identified. Above 0.5 V a single line is observed at
1.6297 eV, which is attributed to recombination from the negatively-charged exciton
(trion, or X�) state. Below 0.5 V this line persists faintly, and a bright line appears
3.6 meV higher in energy due to the neutral exciton (X0) transition. The presence
of the X� line at Vb < 0.5 V implies that occasionally a single electron is trapped in
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Fig. 7.28 (a) Single dot photoluminescence versus bias voltage.
The neutral exciton (X0), charged exciton (X�) and biexciton
(XX) lines are identified. (b) The degree of circular polarization
of the X0 (black) and X� (gray) PL lines as a function of bias
voltage. The biexciton PL is unpolarized.

the dot, forming an X� when binding to an electron and a hole. In addition, a faint
line at 1.6292 eV is visible from radiative decay of the biexciton (XX).

The X0 PL shows a small, but positive polarization over the entire range of bias
where X0 PL is present. This reflects the polarization of the injected electrons and
holes. The magnitude of the circular polarization is most likely reduced from the
polarization of the injected carriers due to the anisotropy of the electron-hole ex-
change interaction in the dot. This effect arises from elongation of the dots along
the [110] crystal axis [24], causing electrons and holes to relax into states emitting
linearly polarized light.

The polarization of the X� line is similar to that observed in Section 7.3.3. After
the recombination of the X�, the negative circular polarization seen over much of
the bias range means that the electron left in the dot is polarized in the spin-up di-
rection. (For the purposes of this discussion, “spin-up” will refer to the polarization
direction of the optically excited spins.) In this way, both optical injection and trion
recombination serve to pump lone spin-up electrons into the dot.

The data in the top panel of Figure 7.29 show the Kerr rotation signal as a func-
tion of probe energy for σC and σ� pump helicity. Here, the applied bias is Vb D
0.2 V and the quantum dot is in the uncharged regime. The photoluminescence
at this bias is also shown, with the X� and X0 energies indicated by the dotted
lines. These energies coincide spectrally with two sharp features observed in the
Kerr rotation data, labeled � � and � 0, respectively. In the bottom two panels of
Figure 7.29 the sum and difference of the σC and σ� data is shown. The feature
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Fig. 7.29 (a) Kerr rotation data as a func-
tion of probe energy with σC and σ� polar-
ized pump at Vb D 0.2 V, in zero magnetic
field. The PL at this bias is also shown (solid
line), and the X� and X0 energies are indi-
cated by the dotted lines. (b) The sum of the
two curves shown in (a), representing spin-

independent effects, such as the spike (la-
beled � 0) at the X0 energy. (c) The difference
of the two curves shown in (a), representing
the spin dependent signal. The feature � �

at the X� energy is attributed to single spin
detection.

� 0 at the X0 energy clearly does not depend on the sign of the injected spin and
is similar to features seen in single dot absorption measurements [23]. This peak
may be due to polarization dependent absorption in the QD. We focus here on
the (σC � σ�) data, which represents KR due to the optically oriented spin po-
larization. The feature � � at the X� energy only appears in the difference data,
indicating that it is due to the injected spin polarization, shown in Figure 7.30 at
four different bias voltages. For all voltages, the � � feature is centered at the X�

transition energy, indicated by the triangles. These data can be fit to Eq. (7.5) in-
cluding only a single transition in the sum, on top of a broad background (solid
lines, Figure 7.30). From the free parameters in these fits various parameters can
be determined: the transition energy E0, amplitude A (defined as half the differ-
ence of the local maximum and minimum near E0), and width Γ of the � � Kerr
rotation feature.

By measuring this Kerr rotation spectrum around the X� resonance in a quan-
tum dot, one obtains a measurement of the spin polarization of the single electron
state. Hanle-type measurements can be obtained using this technique by applying
a transverse magnetic field. The typical Lorentzian lineshapes are observed, though
the analysis is somewhat complicated by the presence of multiple lifetimes, as in
Section 7.3.2.
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Fig. 7.30 Single spin Kerr rotation feature as a function of bias
voltage. The � � KR feature is present over a large range of
bias voltage, though it broadens and decreases in amplitude as
the charging increases. Lines are fits to an odd-Lorentzian plus
a broad (Gaussian) background. Triangles indicate the energy
of the X� transition, determined from PL measurements.

7.3.7
Time-Resolved Observation of Single Spin Coherence

The ability to sequentially initialize, manipulate, and read out the state of a qubit,
such as an electron spin in a quantum dot, is a requirement in virtually any scheme
for quantum information processing [15, 20, 265]. However, the optical measure-
ments of a single electron spin described in the previous section have focused on
time-averaged detection, with the spin being initialized and read out continuous-
ly. In the work of M. H. Mikkelsen et al., “Optically detected coherent spin dy-
namics of a single electron in a quantum dot” [238], the measurement scheme of
the previous section is modified to directly observe the coherent evolution of an
electron spin in a single dot, using time-resolved Kerr rotation spectroscopy. This
all-optical, nondestructive technique allows one to monitor the precession of the
spin in a superposition of Zeeman-split sublevels with nanosecond time resolu-
tion.

In the present work, as in Section 7.3.6, the electron is confined to a single inter-
face fluctuation quantum dot. The dot is embedded within a diode structure, allow-
ing controllable charging of the dot with a bias voltage [40]. Also, the QD is centered
within an integrated optical cavity to enhance the small, single spin KR signal [60].
See Figure 7.27 for a schematic of the sample structure. With circularly polarized
excitation, spin-polarized electrons and holes are pumped into the quantum well,
according to the selection rules governing interband transitions in GaAs [121]. One
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or more electrons and/or holes then relax into the dot. By measuring the subse-
quent single dot photoluminescence, the equilibrium charge state of the quantum
dot as well as the energies of various interband optical transitions as a function
of bias voltage can be determined [60, 211]. The measurements described below
are performed at a bias voltage where the dot is nominally uncharged, and the
optical excitation injects one or more electrons or holes. In this regime, the dot
may contain a single spin-polarized electron through the capture of an optically
injected electron, or spin dependent X� decay [60]. Knowing the transition energy
EX� from the PL measurements, the spectroscopic dependence of the Kerr effect is
used to isolate the dynamics of the single electron spin from that of multiparticle
complexes, such as charged or neutral excitons.

The setup used for time-resolved single spin measurements is similar to the
setup for the continuous measurement, but with a few important modifications.
Instead of the continuous pump laser, a mode-locked Ti:Sapphire laser provides
pump pulses with energy Epump D 1.653 eV, and duration �150 fs at a repetition
period Tr D 13.1 ns. The bandwidth of the spectrally broad pump pulses is nar-
rowed to �1 meV by passing the pump beam through a monochromator. The probe
pulses are derived from the same wavelength tunable continuous wave Ti:Sapphire
laser as in Section 7.3.6. However, the probe laser is now passed through an electro-
optic modulator, allowing for electrical control of the probe pulse duration from cw
down to 1.5 ns. The modulator is driven by an electrical pulse generator triggered
by the pump laser, allowing for electrical control of the time delay between the
pump and the probe pulses with picosecond precision. This technique yields short
pulses while maintaining the narrow linewidth and wavelength tunability of the
probe laser. With these pulsed pump and probe lasers, a time-resolved measure-
ment may be performed, as described in Section 7.3.4. As in the time-resolved mea-
surements described above, though the signal is averaged for several seconds (the
spin is re-initialized and probed millions of times), the stroboscopic pump/probe
technique allows measurement with high time resolution.

For a fixed delay between the pump and the probe, the Kerr rotation angle, θK,
is measured as a function of probe energy. At each point, the pump excitation is
switched between σC and σ� polarization, and the spin dependent signal is ob-
tained from the difference in θK at the two helicities. The resulting Kerr rotation
spectrum is fit to a single term of Eq. (7.5) plus a constant vertical offset, y0. The
amplitude, θ0, of the odd-Lorentzian is proportional to the projection of the spin
in the dot along the measurement axis. By repeating this measurement at various
pump-probe delays, the evolution of the spin state can be mapped out.

The single spin Kerr rotation amplitude as a function of delay, measured with a 3-
ns duration probe pulse and a magnetic field B D 491 G, is shown in Figure 7.31a,
exhibiting the expected oscillations due to the coherent evolution described above.
Figure 7.31b–f shows a sequence of Kerr rotation spectra at several delays, and the
fits from which the data in Figure 7.31a are obtained. In the inset of Figure 7.31a
the offset y0 is shown, which oscillates with the same frequency as the single spin
Kerr rotation but decays with a shorter lifetime. This behavior may be consistent
with that of free electron spins in the quantum well, previously investigated in
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(a)

(b)

(e)

(c) (d)

(f)

Fig. 7.31 (a) As the pump-probe delay is
varied, coherent precession is seen as oscilla-
tions in the measured projection of the spin.
The solid curve is a fit to the model and the
dotted line shows the same curve but without
the probe pulse convolution. The inset shows
the offset, y0 as a function of delay. The error

bars are the standard error in the fits to the
Kerr rotation spectra. (b)–(f) KR spectra at
increasing pump-probe delay showing ampli-
tude oscillations in time. The solid curves are
the fits from which the solid points in part (a)
were obtained.

time-averaged measurements [258]. Due to the small confinement energy of these
dots (several meV) relative to the quantum well, one does not expect a significant
shift in the g-factor between the quantum dots and the well.

The solid line in Figure 7.31a is a fit to a simple model of spin precession
(see [238]), from which values of the precession frequency and effective coherence
time T �

2 may be extracted. The model includes a convolution with the measured
profile of the 3-ns-duration probe pulse, which smears out the features to some ex-
tent. The dashed line shows the model curve without the probe pulse convolution,
plotted with the same parameters for comparison.

In Figure 7.32a the precession of the spin is shown at three different magnetic
fields. As expected, the precession frequency increases with increasing field. The
solid lines in Figure 7.32a are fits to the model, and the frequency Ω obtained
from such fits is shown in Figure 7.32b as a function of magnetic field. A linear
fit to these data yields an electron g-factor of jgj D 0.17 ˙ 0.02, consistent with



156 7 Experimental Methods for Optical Initialization, Readout, and Manipulation of Spins

(b)

(a)

Fig. 7.32 (a) Spin precession at three magnetic fields. The error
bars are the standard error in the fits to the Kerr rotation spec-
tra. (b) Precession frequency, Ω , as a function of magnetic field.
The error bars represent the standard deviation from repeated
measurements. The linear fit yields a g-factor of ˙0.17 ˙ 0.02.

the range of g-factors for these quantum dots found in previous ensemble or time-
averaged measurements [211, 266]. At zero magnetic field, as shown in Figure 7.33,
the spin lifetime is found to be T �

2 D 10.9˙0.5 ns. This value agrees with previous
time-averaged [211] and ensemble [258, 266] measurements where the relevant de-
cay mechanism is often suggested to be dephasing due to slow fluctuations in the
nuclear spin polarization. However, these polarization fluctuations are not expect-
ed to result in a single exponential decay of the electron spin [226, 227], suggesting
that decay mechanisms other than nuclear spin fluctuations might also be relevant
in this case. In these quantum dots, the electronic level spacing of �1 meV [24] is of
the same order as kB T for this temperature range. Therefore, thermally-activated or
phonon-mediated processes [190, 249, 267, 268] which yield an exponential decay,
might be significant in this regime.

These measurements constitute a noninvasive optical probe of the coherent evo-
lution of a single electron spin state with nanosecond temporal resolution, which
is a key ingredient for many spin/photon-based quantum information propos-
als [269, 270]. Furthermore, this technique provides a sensitive probe of the dynam-
ics of the spin, revealing information about the spin coherence time and g-factor.
Future work may exploit this ability to further explore the relevant decoherence
mechanisms and the electron-nuclear spin interactions.
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(a) (b)

Fig. 7.33 (a) Decay of the spin polarization
with B D 0. The solid line is a single exponen-
tial fit convolved with the probe pulse, giving
a reduced �2 D 3.8. The error bars are the
standard error from the fits to the KR spectra.
(b) The same data as (a) with a fit to a model
of nuclear spin dephasing, yielding an obvi-

ously poorer fit, and a reduced �2 D 24.3.
A fit to the same model multiplied by an addi-
tional exponential decay factor, to model both
nuclear dephasing and other decoherence
mechanisms, is also shown. This fit is also
significantly worse than that in (a).

7.3.8
Optical Spin Manipulation

Using ultrafast optical pulses to coherently manipulate the spin state of an elec-
tron is a key ingredient in many proposals for solid state quantum information
processing [180, 181, 271–274]. Though electrical control of single spins has been
achieved [260, 261], the nanosecond timescales required for such manipulation
limits the number of operations that can be performed within the spin coherence
time. For example, single electrons were confined to a gate-defined 2DEG dot, and
the spin control was achieved via spin resonance induced by a stripline deposited
on the sample. The speed of such a spin rotation is limited by the maximum at-
tainable AC magnetic field. (Electron spin resonance is also possible in optically
active quantum dots. This was described theoretically [188], and then observed ex-
perimentally [261]. However, the optical techniques used in such experiments have
been described above, and the ESR is essentially an electrical technique so will not
be discussed further here.) On the other hand, spin control via picosecond-scale
optical pulses yields an improvement of several orders of magnitude in the manip-
ulation time. In J. Berezovsky et al. “Picosecond coherent optical manipulation of
a single electron spin in a quantum dot” [239], such a scheme for a single electron
spin in a quantum dot is demonstrated, monitoring the coherent evolution of the
spin state using time-resolved Kerr rotation spectroscopy. The spin is subjected to
an intense, off-resonant laser pulse, which induces a rotation of the spin through
angles up to π radians on picosecond timescales.

The optical (or ac) Stark effect (OSE) was first studied in atomic systems in the
1970s [275–277] and subsequently explored in bulk semiconductors and in quan-
tum wells [278–280]). In recent years, OSE has been used to observe ensemble spin
manipulation in a quantum well [281] and to control orbital coherence in a quan-
tum dot [282]. Additionally, other optical manipulation schemes have been explored
on ensembles of spins [283, 284]. As described in Section 5.6, it is found that an
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(a) (b)

Fig. 7.34 (a) The quantum dot transitions
relevant to the optical Stark effect, illustrat-
ed in the basis along the y axis (the growth
direction). The single electron ground state
is coupled optically to the negatively charged
exciton (trion) state. For a given circular po-
larization, the selection rules allow a nonzero

matrix element only for one such transition.
(b) When an off-resonant circularly polarized
optical field is applied, one spin state is shift-
ed due to the OSE. This results in a spin split-
ting (effective magnetic field) for the single
electron.

optical field with intensity Itip, detuned from an electronic transition by an energy
Δ, induces a shift in the transition energy

ΔE � d2 Itip

Δ
p

�/μ
, (7.6)

where d is the dipole moment of the transition, and � and μ are the permittivi-
ty and permeability of the material [279]. Figure 7.34 shows the relevant energy
levels for the quantum dot system considered here. The ground state consists of
a single electron in the lowest conduction band level, spin-split by a small magnet-
ic field, Bz . The lowest energy interband transition is to the trion state consisting
of two electrons in a singlet state and a heavy hole. Due to the optical selection
rules (see Chapter 5), the dipole strength of this transition in the basis along the
y direction from the spin-up (-down) ground state is zero for σC (σ�) polarized
light, as indicated in the diagram. Therefore, for circularly polarized light, the OSE
shifts just one of the spin sublevels and produces a spin splitting in the ground
state, which can be represented as an effective magnetic field, BStark, along the
light propagation direction. By using ultrafast laser pulses with high instantaneous
intensity to provide the Stark shift, large splittings can be obtained to perform co-
herent manipulation of the spin within the duration of the optical pulse (here,
BStark � 10 T). Note that this phenomenon can also be described in terms of a stim-
ulated Raman transition [180, 272], or as an avoided crossing between excitons and
photons [285].

As in the previous two sections, the sample consists of a layer of charge-tunable
GaAs interface QDs embedded in an optical cavity (see Figure 7.27). A schematic
of the experimental setup is shown in Figure 7.35, in all its gory detail. This is sim-
ilar to the setup of the last two chapters, but again, with some significant changes.
In this case, three synchronized, independently tunable optical pulse trains are fo-
cused onto the sample: the pump, the probe, and the “tipping pulse” (TP). The
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Fig. 7.35 Setup for Stark tipping measurements.

pump and tipping pulse are both derived (by means of a beamsplitter) from the
mode-locked Ti:Sapphire laser generating a train of � 150-fs-duration pulses at
a repetition rate of 76 MHz. The pump is circularly polarized and tuned to an en-
ergy E D 1.646 eV (FWHM �1 meV), thereby injecting spin-polarized electrons
and holes into the continuum of states above the dot [121]. One or more of these
electrons or holes can then relax into the dot. The circularly polarized TP (duration
�30 ps, FWHM D 0.2 meV) is tuned to an energy below the lowest quantum dot
transition and is used to induce the Stark shift. The relative time delay between the
pump pulse and the TP is controlled by a mechanical delay line in the pump path.

As in the previous section, the probe pulse is generated by passing a narrow
linewidth continuous-wave laser through an electro-optic modulator synchronized
with the pump/TP laser. The resulting 1.5-ns-duration pulses probe the spin in the
QD through the magneto-optical Kerr effect [238].

In a typical measurement, the pump pulse arrives at t D 0 along the y axis
(growth direction), and in some cases, a single spin-polarized electron will relax
into the quantum dot. For pump helicity σ˙, this electron is (up to a global phase)
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initially in the state

jψ(t D 0)i D 1p
2

(j "i ˙ ij #i) , (7.7)

where “up” and “down” are chosen as the basis states along the external magnetic
field Bz . The spin then begins to coherently precess at the Larmor frequency ω D
g μBBz/„:

jψ(t)i D 1p
2

�
e�iω t/2j "i ˙ ieiω t/2j #i� , (7.8)

where g is the effective electron g-factor, μB is the Bohr magneton, and „ is the
reduced Planck constant. At time t D ttip, the TP arrives and generates an addi-
tional spin splitting along the y axis for the duration of the pulse. During this time,
the spin precesses about the total effective field (which is typically dominated by
BStark), and then continues to precess about the static applied field. The probe then
measures the resulting projection of the spin in the dot, hSy i at t D tprobe. This se-
quence is repeated at the repetition frequency of the laser (76 MHz), and the signal
is averaged for several seconds for noise reduction. As described in Section 7.3.4,
the pump and probe are modulated using mechanical choppers, allowing for lock-
in detection to measure only spins that are injected by the pump. Also, the pump is
switched between σC and σ�, with a measurement made at each helicity. The spin
signal is then taken as the difference between these values, eliminating any spu-
rious signal from spins not generated by the pump (for instance, phonon-assisted
absorption from the TP [286]), or non-spin-dependent rotation of the probe polar-
ization.

It is convenient to understand the observed spin dynamics in the Bloch sphere
picture, described in Chapter 1. Here, the spin state is represented as a vector
(Sx , Sy , Sz ), where (0, 0, ˙Sz ) represents the eigenstates j "i and j #i, and vec-
tors with nonzero Sx and Sy represent coherent superpositions of j "i and j #i.
In this picture, the dynamics of the spin can be calculated by applying the appro-
priate sequence of rotation matrices to the initial state. Figure 7.36 illustrates the
sequence of rotations described by the model.

The initial spin state at t D 0 is taken to be

S0 D
0
@ 0

S0,y

S0,z

1
A , (7.9)

where the initial component in the z direction, S0,z , is assumed to be small due to
misalignment of the pump beam from normal incidence. Before the tipping pulse
arrives, the spin freely precesses around the applied field. At t D ttip, the tipping
pulse rotates the spin through an angle φtip about the y axis. Since the duration
of the TP is much less than ω�1, the tipping is assumed to occur instantaneously.
At t > ttip, this state S(ttip) then precesses freely about the z axis at the Larmor
frequency.
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Fig. 7.36 Sequence of rotations in the Stark tipping model.
(a) Before TP the spin is approximately along the y axis and
then precesses about the magnetic field, Bz . (b) At t D ttip ,
the spin is instantaneously rotated about the y axis through an
angle φtip . (c) After TP, the spin continues to precess about the
magnetic field.

This model can be extended further to include the effects of spin decoherence,
as well as dynamic nuclear polarization (see [239]).

Figure 7.37a shows the time evolution of a single spin in a transverse magnetic
field, with no TP applied. Each data point is determined from the fit to a KR spec-
trum at a given pump-probe delay. Using the model outlined above, a least-squares
fit to this data can be performed to determine various parameters in the model: ω,
T �

2 , and the effective field from the nuclear polarization, Bn . The gray curve in Fig-
ure 7.37a shows the result of this fit, and the dotted line is the corresponding plot
of the model without probe pulse convolution. As expected, the spin is initialized
at t D 0, and then precesses freely about the applied field.

The data in Figure 7.37b and c show the same coherent spin dynamics of Fig-
ure 7.37a, but with the TP applied at t D ttip. The intensity of the TP is cho-
sen to induce a 1.05π rotation about the y axis. In Figure 7.37b, the TP arrives
at ttip D 1.3 ns, when the projection of the spin is mainly along the x axis. This
component of the spin is thus rotated by the TP through � π radians. The predict-
ed spin dynamics as given by the model is shown in the dotted line, and the same
curve convolved with the probe pulse is given by the solid line. Note that this curve
is not a fit – all of the parameters are determined either in the fit to Figure 7.37a,
or elsewhere. Only the overall amplitude of the curve has been normalized. Here,
the spin is initialized at t D 0, and as before, precesses freely until the arrival of
TP. After TP, the spin has been flipped and the resulting coherent dynamics show
a reversal in sign. This can be clearly seen by comparing the sign of the measured
signal at the position indicated by the dashed line in Figure 7.37.

Figure 7.37c shows the spin dynamics again with the same parameters, but with
ttip D 2.6 ns. The spin at this delay will have only a small projection in the x–z
plane and the TP-induced rotation about the y axis will have only a small effect on
the spin state. This expectation is borne out in the data, where the spin dynamics
show essentially the same behavior as in the absence of the TP (Figure 7.37a).
Again, the model yields qualitatively the same behavior.
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(a)

(b)

(c)

Fig. 7.37 (a) Coherent spin precession with
no TP. Error bars indicate the standard error
in the fits to the KR spectra. The solid curve
is a fit to the model convolved with the probe
pulse; the dotted line is the same, without the
probe pulse convolution. (b) and (c) Same
conditions as (a) but with TP applied at
ttip D 1.3 ns and ttip D 2.6 ns, respective-
ly, with intensity Itip D 4.7 � 105 W/cm2 and

detuning Δ D 2.65 meV, to induce a 1.05π
rotation. The solid curves in (b) and (c) are
from the model, using parameters obtained
elsewhere. The gray dashed line highlights the
change in sign of the spin precession in (b)
as compared to (a) and (c). The diagrams on
the right illustrate the effect of TP on the spin
dynamics.

These results demonstrate the ability to coherently rotate a single electron spin
through angles up to π radians on picosecond timescales. A simple model includ-
ing interactions with nuclear spins reproduces the observed electron spin dynamics
with a single set of parameters for all of the measurements. In principle, at most
200 single qubit flips could be performed within the measured T �

2 of 6 ns. Howev-
er, by using shorter tipping pulses and QDs with longer spin coherence times, this
technique could be extended to perform many more operations within the coher-
ence time. A mode-locked laser producing � 100-fs-duration tipping pulses could
potentially exceed the threshold (� 104 operations) needed for proposed quantum
error correction schemes [265]. Additionally, this spin manipulation technique may
be used to obtain a spin echo [287], possibly extending the observed spin coherence
time, as in Section 7.3.5.
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7.3.9
Putting It All Together

Though real quantum information processing has yet to be demonstrated in an op-
tical quantum dot spin-based scheme, the recent work of D. Press et al., “Complete
quantum control of a single quantum dot spin using ultrafast optical pulses” [240]
demonstrates the current state of the art in putting together the various necessary
elements. In this work, high fidelity optical spin pumping, ultrafast optical manip-
ulation, and optical spin readout are all combined in one experiment.

First, spins are pumped into a singly-charged InAs self-assembled quantum dot
in essentially the same way as described above in Atatüre et al. [161], except here the
magnetic field is applied in the plane of the sample, and thus the excitation light is
polarized linearly instead of circularly. This serves to pump spins into a Zeeman-
split eigenstate, in a direction perpendicular to the laser direction. Here, the pump
laser is on continuously throughout the experiment, but only has a small effect dur-
ing the manipulation and measurement of the spin. This optical pumping yields
an initialization fidelity of about 92%.

The spin of the electron in the dot is measured using a photoluminescence tech-
nique analogous to the absorption technique used in the Atatüre work. Instead of
measuring the absorption of the pumping transition, here the spin is measured
by the luminescence emitted while the pumping transition is being driven. Once
the spin has been pumped into the initialized state, this transition is no longer
driven and no luminescence is detected. If the spin is rotated back into the other
state (or has some projection onto the other state) then the pumping laser excites
its transition again and photons are detected. Thus no luminescence signal means
the spin is in the initialized state, and maximal luminescence means the spin is in
the opposite state.

Once the spin is initialized, it may be then manipulated using an off-resonant
tipping pulse, as described in the previous section. Here, the tipping pulse is about

Fig. 7.38 Coherent manipulation of a single spin showing ro-
tations up to 13π. Reprinted by permission from Macmillan
Publishers Ltd.: Nature [240], copyright (2008).
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Fig. 7.39 Ramsey fringes of a single electron spin in a quantum
dot. (a) A π/2 pulses rotate the spin to be perpendicular to
the magnetic field, which then precesses for a time τ before
a second π/2 pulse is applied. (b) A pair of π pulses are applied
separated by time τ. Only small fringes are observed. Reprinted
by permission from Macmillan Publishers Ltd.: Nature [240],
copyright (2008).

4 ps in duration (that is, the manipulation of the spin takes place in �4 ps). As
above, by increasing the tipping pulse intensity, the spin may be rotated through
increasingly large angles. Figure 7.38 shows the spin, as monitored by the lumines-
cence, being rotated by the tipping pulse as a function of tipping pulse intensity.
The first π rotation is found to have fidelity of 91%.

This experiment is further extended by adding a second tipping pulse applied
a controllable time, τ, after the first. This allows the observation of so-called Ramsey
fringes. In Figure 7.39a the spin is measured after the application of a pair of π/2
ultrafast rotations, separated by a time τ. The spin, initialized into an eigenstate of
the magnetic field, is rotated by the first pulse to be perpendicular to the magnetic
field. The spin then precesses freely until the arrival of the next pulse. If the spin
has precessed a full whole number of times, the second π/2 pulse will rotate the
spin the rest of the way to be opposite to the original direction. On the other hand,
if the spin has precessed a whole number of times plus a half precession, the spin
will be rotated back to its initial direction. The result is that, as the time between the
pulses is swept, the signal oscillates between the maximum and minimum, with
different coherent states being generated in between.

Figure 7.39b shows the same thing as part 7.39a, only with a pair of π pulses.
Here, the first π pulse rotates the spin into the opposite eigenstate, which then
ideally remains there until the next pulse rotates the spin back to the initial state.
This results in no observed fringes – the small fringes are present only due to small
nonidealities in the experiment.

By adjusting the timing and intensities of these two tipping pulses, the spin can
be rotated into any arbitrary state. This complete access to any point on the Bloch
sphere, with high fidelity and picosecond operation times, coupled with high ini-
tialization fidelity represents real progress towards optically-addressed, spin-based
quantum information processing in quantum dot systems. One of the main chal-
lenges that remains is the scaling up of these systems to many coupled qubits.
One possible solution is proposed by S. M. Clark et al. [180], by coupling a number
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Fig. 7.40 Proposed scheme for scalable quan-
tum computing with optically controlled spins
in quantum dots. Single qubit rotations are
performed using the methods described
in Sections 7.3.8 and 7.3.9 while two-qubit

operations are performed via light in the
waveguide through an effect analogous to
the Faraday effect discussed in Section 7.3.4.
Reprinted with permission from [180]. Copy-
right (2007) by the American Physical Society.

of quantum dots together via an integrated waveguide. This proposed scheme is
shown schematically in Figure 7.40. The quantum dots are shown arranged around
a circular waveguide, with each dot sitting within an optical cavity (potentially an
integrated photonic crystal cavity, see Section 4.2) to enhance the interaction be-
tween light and the dots. Single qubit operations may be performed as described
above in the previous two sections. Two-qubit operations (or more) might be ef-
fected by injecting light into the waveguide that could then couple any resonant
quantum dots via a conditional phase shift, related to the Faraday effect described
in Section 7.3.4.

Whether this proposal turns out to be possible or not, the methods and results
described in this chapter provide an indication that there is significant potential for
quantum information science and possible applications involving spins in optically
active quantum dots.
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8
Controlling Charge and Spin Excitations in Coupled Quantum
Dots

In the “artificial atom” picture of quantum dots, a set of coupled quantum dots
reminds us of an artificial molecule. Each quantum dot offers orbitals that are well
localized in space, and the tunneling of electrons as well as the electromagnetic
interaction provide coupling mechanisms just as in the smaller molecular counter-
parts.

In this chapter we consider a pair of coupled quantum dots, which we refer to
as a quantum dot molecule (QDM). We start this chapter with a simple model
for a single electron that is delocalized in a quantum dot molecule. The delocal-
ized single-electron states are then shown to be observable in the optical spectrum
of a single exciton, X0. We then consider two-electron states in the quantum dot
molecule and review established theoretical models from molecular physics, which
are then applied to interpret recent experimental work.

8.1
Tunable Coupling in a Quantum Dot Molecule

The model of a particle hopping between two orbitals jψ0
i i, where i D 1, 2, is well

known from quantum mechanics textbooks. We start our discussion of a pair of
interacting quantum dots by introducing this underlying basic concept. We then
show that carriers in a quantum dot molecule exhibit this behavior.

8.1.1
A Toy Model for Coupled Systems: The Two-Site Hubbard Model

Let us assume that the Hamiltonian in the absence of any interdot coupling is H0

and the orbitals have eigenenergies E 0
i , such that

H0jψ0
i i D E 0

i jψ0
i i . (8.1)
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After introducing a transfer term t, which couples the two dots, the new eigen-
states can be written as a linear combination of the uncoupled states

H jψ ii D Ei jψii , (8.2)

jψii D αjψ0
1i C �jψ0

2i , (8.3)

where the numerical parameters α and � are calculated in the following. The re-
sulting coupled Hamiltonian can be written in matrix notation as

H PD
�

E 0
1 t12

t�
12 E 0

2

�
, (8.4)

with the coupling included by the transfer matrix elements hψ0
2 jtjψ0

1i D t21 D t�
12.

After diagonalization, the eigenvalues of the coupled system are obtained,

E˙ D E 0
1 C 1

2
Δ ˙ 1

2

p
Δ2 C j2t12j2 , (8.5)

where the energy difference between the uncoupled eigenstates is Δ D E 0
2 � E 0

1 .
The coefficients α and � in Eq. (8.3) satisfy the normalization condition jαj2 D
1 � j�j2, and, explicitly,

jαj2 D j2t12j2
j2t12j2 C (Δ ˙p

Δ2 C j2t12j2)2
. (8.6)

The coupled eigenenergies E˙ as a function of Δ are shown schematically in Fig-
ure 8.1. Clearly, for a degenerate system (Δ D 0) we obtain the minimum energy
splitting,

minjE� � ECj D j2t12j , (8.7)

which is determined by the coupling strength alone. The corresponding eigenstates
are the symmetric and antisymmetric superpositions of the uncoupled states,

jψ�i D 1p
2

�jψ0
1i C jψ0

2i� , (8.8)

jψCi D 1p
2

�jψ0
1i � jψ0

2i� , (8.9)

referred to as the bonding (jψ�i) and the antibonding (jψCi) molecular states.
Here, the index of the wave function refers to the associated energy E˙. As the
degeneracy is lifted (Δ ¤ 0), the eigenstates evolve from completely hybridized
states asymptotically into the uncoupled states jψ0

i i with increasing detuning. This
behavior is characteristic for tunable coupled quantum states and is called avoided
crossing or anticrossing. Therefore, its observation is a direct proof and character-
istic fingerprint of coherent coupling between two quantum states.
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Fig. 8.1 Level anticrossings as a signature of
coherent coupling. (a) Two-site Hubbard mod-
el with eigenenergies E˙ provided by Eq. (8.5)
as a function of the energy level detuning
Δ D E2 � E1. With increasing absolute value
of the detuning, the energies evolve asymptot-
ically into the uncoupled eigenvalues E0

2 and
E0

1 D 0. The minimum splitting is given by

j2t12j for Δ D 0 for the completely hybridized
states. (b) Realistic calculation for the lowest
energies of an exciton in a QDM as a function
of an applied electric field, taking into account
electron tunneling and the Coulomb interac-
tion. The asymptotic states are here the direct
and indirect exciton state, respectively.

We underline that at this point no assumption has yet been made about the na-
ture of the coupling that is captured by the transfer term t. Several types of coupling
are possible for quantum dots. Ouyang and Awschalom have observed coherent
spin transfer between quantum dots coupled by a benzene ring [288]. The exper-
imental results have been successfully modeled with a similar model to that out-
lined above by Meier et al. [289], assuming a direct carrier transfer via the coupling
molecule. These results were in reasonable agreement with atomistic calculations
by Schrier and Whaley [290].

As another example, resonant Förster transfer is a process that can transfer an
exciton from one quantum dot to another [291, 292]. Without going into further
detail here, Förster transfer results from the electrostatic dipole interaction Hamil-
tonian

tF D e2

4π�R3

�
hr1ihr2i � 3

R2
(hr1i � R) (hr2i � R)

	
, (8.10)

where R denotes the relative position of the quantum dots and hr1,2i are the dipole
transition matrix elements between the exciton vacuum and the one-exciton states
in dots 1 and 2, respectively. Govorov has provided detailed calculations for the
Förster transfer between quantum dots of various shapes [291]. Nazir et al. have
studied in further detail the Förster coupling of three-dimensional parabolic quan-
tum dots [292]. The matrix elements for Förster transfer between nested spherical
quantum shells have been calculated in [205]. In general, if the symmetry axes of
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both quantum dots are aligned, then the Förster transfer in Eq. (8.10) conserves
the exciton spin [291, 292].

As discussed in Section 5.6, the dispersive interaction with a cavity mode can
provide another mechanism to couple exciton or spin states of spatially separated
quantum dots, with a maximum strength tDisp D Ω 2(1/Δ1 C 1/Δ2) for excitons,
where Δ i refers to the detuning of the cavity mode with respect to the exciton
transition of dot i, and Ω is the optical Rabi frequency.

Direct tunneling is a fourth possibility for quantum dot coupling. In this case,
orbitals of the two dots have finite overlap, which allows for quantum tunneling
between the two sites. Burkard and coworkers have provided molecular theory cal-
culations for two electrons in laterally [138] and vertically [140] coupled quantum
dots, as well as for a biexciton in laterally coupled quantum dots [139]. Berezovsky
and coworkers have investigated the coupling of a core and a shell in a spherical
heterostructure [132]. In the following we highlight experiments that have shown
that the states of coupled quantum dots can be understood in detail with theories
adapted from molecular physics.

8.1.2
An Exciton in a QD Molecule: A Coupled System

In coupled QDs studied in optical experiments, interband excitations, that is, exci-
tons are probed. We are now going to describe these basic charge excitations and
their manipulation using static electric fields. In order to put the simple model
shown above into practice we have to determine the detuning Δ between QD lev-
els and its underlying tuning mechanism.

Let us consider a system consisting of two (i D 1, 2) vertically stacked quantum
dots with height hQD,i which are separated by a barrier of thickness di d , to which
we refer to as the interdot distance. When subject to an axial electric field (parallel
to the QD stack), the energies of the confined uncoupled states of the two QDs
are tuned relative to each other due to the Stark effect. The resulting energy level
difference is

Δ D
�

di d C hQD,1

2
C hQD,2

2

�
F D δ � F , (8.11)

where we call δ the interdot electrostatic lever arm. This equation allows for con-
version of the electric field F into the detuning Δ. Using Eqs. (8.6) and (8.11), the
energy splitting of the coupled QD system as a function of F can be calculated as

ΔE D
q

(2Em)2 C δ2(F � Fm)2 , (8.12)

where 2Em is the coupling energy for a pair of states labeled m in the two QDs,
which are brought into resonance at their corresponding “critical” resonance
field Fm .

In an interband optical experiment such as PL spectroscopy, the radiative emis-
sion of excitons is observed. Let us consider the fundamental interband excitation
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in a QDM, the charge neutral single exciton X0 D 1e C 1h. It turns out that signa-
tures of coherent coupling between the QDs can be observed in exciton PL spectra.

In general, one can distinguish between two different species of excitons in
a QDM: spatially direct excitons, for which e and h are localized in the same dot,
and spatially indirect excitons, for which e and h are localized in different dots. In
the following, we focus on quantum coupling mediated by tunneling of the elec-
tron part of the exciton wavefunction. Even though coupling between hole levels
has raised a lot of interest recently [293–296], it is typically much weaker than for
electron levels due to the smaller spatial extension of hole wave functions. The elec-
tron levels of the two dots are detuned relative to each other by changing F. At the
corresponding resonance field F1eC1h these levels are degenerate. Now, taking in-
to account the tunnel coupling through the thin barrier between the two QDs, we
obtain hybridization of the electron part of the exciton wavefunction into bonding
and antibonding orbitals, as outlined in Section 8.1.1. The resulting bonding and
antibonding exciton branches are called XB and XA in the following, respectively.

This model at present only accounts for the coupled e levels in the QDM. We
now include the total electrostatic interaction with F and the Coulomb interaction
between e and h. As discussed in Section 4.1.4, an exciton localized in a nanostruc-
ture subject to a static electric field F exhibits a shift due to the quantum confined
Stark effect (QCSE). This shift is given by �p F , where p D edeh is the electrostatic
dipole moment of the exciton, with the separation deh of the e and h wavefunction
centers within the same dot. In a single QD, the e–h separation is limited by the
height of the dot (which is typically around deh D 0.5 nm). In contrast, for indi-
rect excitons the dipole moment is determined mainly by the interdot separation,
di d , which can be significantly larger than deh . In the following we show data for

Fig. 8.2 Electric-field controlled anticrossing between spatially
direct and indirect neutral excitons in a single QDM. The elec-
tric field F increases from the top to the bottom spectrum. At
the resonance, the electron part of the exciton wave function
hybridizes into bonding and antibonding states, giving rise to
the names of the corresponding exciton branches XB and XA,
respectively.
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an example QDM consisting of two self-assembled dots separated by di d D 10 nm
(typical values for this type of QDs range between 4 nm and 18 nm). This gives rise
to largely different dipole moments of indirect and direct excitons in the structure
under study,

p indir ' e � 10 nm 
 pdir ' e � 0.5 nm . (8.13)

Hence, the QCSE provides a straightforward way to detune the energy of direct and
indirect excitons relative to each other.

In a symmetric QDM, the resonance between the dot levels would be expected at
F D 0. However, the Coulomb interaction between e and h also has to be taken into
account. Obviously, the direct exciton has a much larger attractive Coulomb matrix
element than the indirect exciton. It is found that the total energy difference of the
direct and the indirect exciton is actually given by �20–30 meV [70, 77]. This leads
to a shift of the resonance field compared to the simple model that only considers
the single-particle levels. Further shifts can be engineered by tailoring the sizes of
the two dots during fabrication [71].

In Figure 8.1a we show the energies of the bonding and antibonding states in the
frame of a two-site Hubbard model, described by Eq. (8.5). For comparison, Fig-
ure 8.1b shows a realistic calculation [70, 77] of spatially direct and indirect exciton
energies in a pair of vertically stacked and coupled InGaAs/GaAs dots separated by
10 nm as a function of an axial electric field. In both of these cases an anticrossing
is clearly visible, being an unambiguous fingerprint and direct proof of quantum
coherent coupling.

A typical series of PL spectra as a function of the static electric field recorded from
an individual QDM is shown in Figure 8.2. This QDM consisted of two approxi-
mately identical dots, which were embedded in an n-type Schottky diode. Taking
into account the device polarity and geometry, F increases from �12 kV/cm (top
spectrum) to �19 kV/cm (bottom spectrum). In the spectra, two lines labeled XB

and XA exhibit a clear anticrossing behavior, as anticipated from the above consid-
erations. At �16 kV/cm the resonance between the rapidly shifting indirect and the
weakly shifting direct excitons is obtained. As shown in Eq. (8.7), the minimal en-
ergy splitting between the bonding and antibonding states provides the coupling
energy. The anticrossing becomes even clearer when plotting the extracted peak
positions as a function of F, as shown in Figure 8.3a.

For further analysis we plot the energy splitting between XB and XA as symbols
in Figure 8.3b. At the critical electric field, Fcrit D F1eC1h D 15.8 kV/cm, the min-
imum splitting is observed and provides a coupling energy of E1eC1h D 3.2 meV.
Furthermore, these values are reproduced by a fit of Eq. (8.12) which is shown
as a solid line in Figure 8.3b. The excellent agreement of the experimental data
and the fit, which uses the adapted expression for a set of two coupled quantum
states, underlines that semiconductor QDMs indeed show the behavior of an artifi-
cial molecule. In the following we elaborate on this property and introduce models
from molecular physics. We also highlight how the resulting effects can be ob-
served in a QDM.
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(a)

(b)

Fig. 8.3 Extracted emission line energies (a) and splitting (b) of the anticrossing in Figure 8.2.

8.2
Molecular Theory of Confined States in Coupled Quantum Dots

We have seen above that the behavior of coupled quantum dots mirrors the physics
of a diatomic molecule. In the following, we consider the Heitler–London method
and the Hund–Mulliken approach from molecular physics, which have proven use-
ful for the interpretation of recent experimental work.

The Heitler–London method provides an ansatz for the molecular bond between
neutral atoms. In their original work [297], Walter Heitler and Fritz London in-
vestigated the coupling of two hydrogen atoms with the nuclei fixed in space. We
consider two closely spaced atoms a and b with ground state orbitals φa and φb ,
respectively, that have a spatial overlap integral S. The ansatz for the two-electron
wave function consists of the orbitally symmetric and antisymmetric states,

hr1, r2jΨ˙i D φa(r1)φb(r2) ˙ φb(r1)φa(r2)p
2 ˙ 2jS j2 . (8.14)

Obviously, the symmetric (or bonding) wave function is a spin singlet, while the an-
tisymmetric (or antibonding) wave function is a spin triplet. In the Heitler–London
ansatz, a large on-site Coulomb repulsion is assumed for the electrons such that
the double occupancy of an atom can be excluded due to energetic reasons. Here,
we use the terms bonding and antibonding also for two-electron states, in addition
to the delocalized single-electron states. The Heitler–London approach can be ex-
tended by including into the Hilbert space the two states in which both electrons
are on the same atom,

hr1, r2jΨai D φa(r1)φa(r2) and hr1, r2jΨbi D φb(r1)φb(r2) . (8.15)
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This approach is called the Hund–Mulliken approach (or approximation) after
Friedrich Hund and Robert S. Mulliken. Obviously, for interacting electrons, the
occupancy of the same dot leads to an additional energy term, the on-site Coulomb
repulsion.

When adapting these models to quantum dot systems we replace the atom or-
bitals by the confined quantum dot states in the envelope function approximation,
as introduced in Chapter 3.

8.3
Optically Probing Spin and Charge Excitations in a Tunable Quantum Dot Molecule

We return to our study of PL spectra of QDMs. At this point we take into account
molecular theory for the states containing two electrons, namely, the two-electron
state and the negatively charged exciton X1�. These states are the initial or final
states of the radiative decays shown at the center and the right of Figure 8.4. En-
ergy splittings due to two-electron interactions in the QDM leave a characteristic
footprint in the respective transition energies.

8.3.1
Optical Response with Initial and Final State Couplings

We have shown in Section 8.1 that coherent coupling in a QDM gives rise to anti-
crossings of two spectral lines that belong to the coupled states. The anticrossing of
the bonding and antibonding exciton states XA and XB discussed in Section 8.1.2
arises from a coupling in the initial state of the radiative decay. Furthermore, as
shown in the example of the X2� decay in a single QD in Section 4.1.3, the sin-
glet and triplet spin structure of the final state explains in the case of a X2� the
observation of two emission lines.

Similarly as for the single QD spectra discussed in Section 3.6, the spectra of
excitonic states in QDMs can be described when taking into account the direct

(a) (b) (c)

Fig. 8.4 Decay of neutral (a) singly charged (b), and doubly charged (c) exciton in a QDM.
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and exchange Coulomb interactions, as well as quantum couplings for both the
initial and final states of the radiative decay. In this section we present a detailed
discussion of singly (trions) and doubly negatively charged excitons in a QDM. In
a PL experiment the decays from the initial excitonic states X0, X1� and X2�, were
observed. The corresponding final states were the crystal ground state, the single-
electron (1e) state, and the two-electron (2e) state, respectively. These transitions
are summarized and shown schematically in Figure 8.4. In contrast to a single
QD, the experimental data suggested here that electrons can tunnel between the
two dots, whenever this is energetically favorable.

Here we mainly focus on the simplest case of the negative trion in a QDM and
demonstrate the basic principle of charge and spin dependent couplings in both the
initial and final state of the optical transition. For the negative trion, both Coulomb
and Pauli blockade effects occur between the two electrons, in addition to quantum
mechanical tunneling between the dots. Obviously, for the final 1e state, tunnel
coupling also needs to be taken into account, while there is no Coulomb contribu-
tion present [293, 298].

In a first step, we calculate the absolute energies of the initial X1� and the final
1e state of the optical transition. For these calculations we use a Hund–Mulliken
approach, as outlined in Section 8.2, and a one-band effective mass Hamiltonian
with harmonic confinement potentials for both electrons and holes [140]. From
these calculations we are able to determine the spin and carrier number depen-
dent energy states including their dependence on the electric field. The results are
presented in Figure 8.5 with the spatial distribution of electrons and holes for the

Fig. 8.5 Calculated absolute energies of the initial trion and
final 1e state of the optical transition.
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lowest lying trion and 1e levels. For both the initial trion and final electron state
clear anticrossings, which are due to the tunnel coupling, are resolved. The res-
onance for the trion is shifted to higher electric field compared to the 1e due to
the net attractive Coulomb interaction with the additional e–h-pair present in the
QDM. Thus, to establish resonance this relative shift has to be overcome, giving
rise to a detuning between the resonance fields F1e and F2eC1h .

Crucially, for X1� the two-electron spin state has to be taken into account. These
spins can form either an S D 0 singlet or S D 1 triplet wavefunction. For the
triplet trion state no direct configuration is energetically accessible since the Pauli
principle requires that for a symmetric spin wavefunction the two electrons must
occupy different orbital states, when localized in the same dot. Therefore, for S D 1
only an indirect configuration exists, which shifts rapidly with F.

The absolute energies of all aforementioned states are plotted as a function of
the externally applied electric field in Figure 8.5. For the 1e final state, a clear anti-
crossing between the weakly shifting electron level in the upper dot (eUD) and the
rapidly shifting state in the lower dot (eLD) is expected. The minimum energy split-
ting 2E1e observed at F � 8.5 kV/cm reflects the tunnel coupling energy of a single
electron. The singlet X1� levels (solid lines in Figure 8.5) also show a resonance
between weakly shifting direct and rapidly shifting indirect trion states, for which
both electrons are either localized in the upper dot, or one electron is localized in
each dot, respectively. As described before, this resonance is shifted in F relative to
the 1e anticrossing. Moreover, a larger splitting 2E2eC1h > 2E1e is expected than
for the single electron since two electrons mediate the coupling. In addition to the
singlet trion levels, the indirect triplet state is plotted as a dashed line in Figure 8.5,
which shifts rapidly with F and moves just as a straight line through the anticross-
ing singlet levels.

Fig. 8.6 Energies of the initial trion and final 1e state of the
optical transition marked in Figure 8.5.
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Obviously, the individual Coulomb interaction terms determine a distinct reso-
nance field for a given number of carriers in the QDM. These characteristic offsets
in F provide the potential to establish quantum mechanical coupling specifically
for the initial or final state of certain optical transitions.

The energy of the optical transition observed in experiment is calculated as the
energy difference of the initial trion and the final 1e state. The six possible tran-
sitions between the three trion and two electron states are marked and labeled in
Figure 8.5 and their transition energies are plotted in Figure 8.6. From this char-
acteristic X-pattern the initial and final state coupling energies can be determined.
The transitions labeled as 1 and 2 (black solid lines) occur from a common initial
singlet trion level into the delocalized 1e states and, therefore, measure 2E1e at F1e.
In contrast, transitions 1 (black) and 3 (gray) have a common final state, and their
minimum splitting 2E2eC1h occurs at the singlet trion resonance at F2eC1h . For the
X1� triplet (dashed lines), only one initial state exists, therefore, only the 1e reso-
nance is mapped out, giving rise to a regular anticrossing pattern of transitions 5
and 6 at F1e .

8.3.2
Electric Field Induced Coupling of Charged Trions in a QD Molecule

We have shown in Section 8.3.1 that the interplay of spin and charge dependent
quantum coupling in the initial and final state of the optical transitions gives rise
to a characteristic X-pattern of spectral lines. Figure 8.7 shows a grayscale plot of
spectra recorded in an emission experiment from a single QDM as a function of F.
In addition to the X0 resonance at F � 15.8 kV/cm the anticipated X-pattern is
clearly resolved. In particular, transition 2, which corresponds to the evolution of

Fig. 8.7 Experimental observation of negatively charged trions in a tunable QDM.
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a direct, singlet X1� into an indirect configuration, is clearly resolved. In addition,
the weaker features of transitions 1 and 3 are found. Moreover, the anticrossing of
lines 5 and 6 originating from the decay of the indirect triplet trion state can be
identified.

The extracted peak positions of the observed X1� and X2� emissions are summa-
rized and plotted as symbols in Figure 8.8a and b, respectively. When comparing
the experimental data for the trion emission to our calculations (shown as lines in
Figure 8.8), we find excellent agreement between the calculated and experimentally
observed transition energies. This strongly supports our approach using molecu-
lar theory for the states containing one and two delocalized electrons in the QDM,
which are summarized in Figure 8.4. We further analyzed the splittings 2Em for
the observed resonances at fields Fm in initial and final states by using Eq. (8.12).
The results of these fits are shown in Figure 8.8. We find that the coupling energies
of X0 and 1e of 3.2 and 3.4 meV are very similar since in both cases one electron
mediates the coupling. This finding confirms that tunnel coupling is the dominant
mechanism in our system.

The shift of the resonance fields of the neutral exciton and the singlet trion,
F1eC1h D 15.8 kV/cm and F2eC1h D 10.6 kV/cm, of ΔFC1e D �5.2 kV/cm is de-
termined by the change of the electrostatic energy upon adding one electron to the
QDM. This shift can be analyzed further within a capacitive model, which is typi-
cally applied for electrostatic QDs [20, 86]. In this model the change of electrostatic

(a)

(b)

(c)

Fig. 8.8 Comparison between experiment (symbols) and theory
(lines). (a) singlet (open circles) and triplet (open triangles)
trions, (b) X2� singlet (open squares) and triplet (full squares).
(c) Measured splitting with fits of Eq. (8.12).
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energy upon adding an extra carrier is given by

ΔEC D dΔF D e2/CM

�
C1C2

C2
M

� 1
��1

, (8.16)

with d being the interdot separation, C1,2 the single QD capacitance, and CM the
interdot mutual capacitance [86]. Using the measured value of ΔEC D ΔFC1e �d D
5.2 meV and C1 D C2 D 10 aF we obtain a value of CM D 3 aF. The ratio of
CM /C1,2 � 0.3 confirms the relatively strong electrostatic interaction between the
two dots.

Moreover, a similar shift of the critical field Fcrit as observed between X0 and
X1� is expected between the 1e and 2e electron state resonances. These two states
are the final states of the trion and doubly charged X2� transitions, respectively, as
shown in Figure 8.4c. Analogous to the trion initial states, for the 2e final states
the spin configuration has to be considered. As shown for X1�, the singlet 2e state
should show an anticrossing between a direct and an indirect configuration, in
contrast to the triplet, which should not hybridize due to the large splitting to the
p shell when compared to the e � e Coulomb energy. The electron triplet should
therefore remain indirect and cross through the singlet lines. From our electrostat-
ic considerations presented for the X0 and singlet X1� resonance fields, we expect
the 2e to be shifted by � FC1e with respect to the 1e resonance. In the spectra in
Figure 8.7 a pair of anticrossing emission lines with a third line crossing through
is observed at F2e � 2.8 kV/cm, very close to the expected value of 3.2 kV/cm. In the
detailed analysis in Figure 8.8b and c of the doubly charged X2� exciton, we find the
same coupling energy 2E2e D 4.4 meV as for the trion singlet resonance, to which
two electrons also contribute. This and the observation with a crossing triplet line
provide further evidence for our assignment. We observe that the increased cou-
pling energy for the resonances involving two instead of one electron is analogous
to shifts in the spectrum of the neutral and ionized hydrogen molecule. This shift
is given by the different Coulomb interactions when the two electrons are on the
same dot or distributed among two dots, involving different direct and exchange
Coulomb interaction terms. We can measure this splitting to be 1.25 meV in the
splitting between the singlets X1� and X0 at a high electric field. Remarkably, this
splitting agrees well with the observed change in coupling energy, underlining the
analogy between an artificial QDM and a real hydrogen molecule. We want to un-
derline here that this effect cannot be observed directly in a real hydrogen molecule
since the antibonding orbitals are energetically above the vacuum level. Another re-
markable effect that is not observable in an “atomic” molecule is the formation of
an antibonding ground state. Recently, this counterintuitive phenomenon was ob-
served in specially designed “artificial” molecules by Doty et al. [299]. Just taking
these two examples, artificial molecules formed by two QDs provide a fascinating
playground to test molecular physics. Moreover, new and surprising effects come
into focus since tunable electronic and structural properties offer a unique toolkit
for tailored artificial molecules.
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Fig. 8.9 Relative intensities (symbols) and splittings (lines) for
trion-triplet and neutral exciton resonance demonstrating final
and initial state couplings, respectively.

We have shown in Section 8.1 that for the neutral exciton anticrossing at F D
F1eC1h , the two emission lines exhibit the minimum splitting. However, a high-
er intensity is observed for the lower-energy branch, as can be seen in Figure 8.7.
This finding is consistent with relaxation from the upper (antibonding) to the lower
(bonding) exciton state within the radiative lifetime of the two states. Such relax-
ation can only occur if coupling is present in the optically excited, initial state of the
transition. In contrast, we have shown that for the decay of the triplet trion state
no coupling takes place in the initial state but only between the final 1e states, as
highlighted in Figure 8.4. Therefore, we plot the energy splittings and relative in-
tensities of the X0 and triplet X1� (transitions 5 and 6) anticrossings as a function
of the electric field in Figure 8.9. In contrast to the neutral exciton, for the trion res-
onance the relative intensities are equal at the corresponding critical field F1e. This
finding clearly excludes relaxation and provides evidence that this transition occurs
from a single initial state into a coupled final state, consistent with our previously
developed picture. We stress that relaxation can lead to the suppression of transi-
tion 4 and the different intensities of the other singlet transitions (1–3). In addition,
for the 2e anticrossing, no relaxation is observed as can be seen in Figure 8.7.

8.4
Future Directions

In contrast to single QDs, quantum dot molecules provide an inherently scalable
architecture for the implementation of quantum logic using spin or charge ex-
citations. In particular, 2e states are of interest for such purposes and schemes
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for optical spin gating have attracted much interest [300, 301]. Recently, the spin
fine structure of singly and doubly charged QDMs as well as the biexciton states
have been analyzed in great detail [295, 296, 302, 303]. Understanding the pecu-
liarities of these states is essential for the realization of any related scheme for
quantum information processing. At the time when this book was written, the
latest developments in this field included conditional absorption experiments in
coupled QDs [304] and the demonstration of optical spin initialization and non-
destructive measurement in a QDM [242] using methods discussed in Chapter 7.
Further directions for future research also include direct electron spin resonance
experiments [261] for which a pronounced change of the g-factor at resonance in
a QDM [294, 299, 305] may be exploited. Moreover, QDMs embedded in microcav-
ities offer a large potential for more sophisticated schemes where spins interact via
the optical field of a microcavity [181]. Since QDs can be precisely and controllably
coupled in these systems [306], these techniques and methods might become cru-
cial in the future. The first promising steps towards coupled and controllable cavity
emitter coupling have already been taken [179, 307].

We hope that we have been able to give our readers a book at hand that not
only provides an in-depth overview of the underlying experimental and theoretical
concepts, but also shows the vast potential and depth of this field, which is at the
forefront of contemporary solid state and nanoscale research.
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Appendix A
Valence Band States for Spherical Confinement

We apply the usual basis of the band-edge Bloch states u j z with angular momen-
tum j D 3/2 in the following. In contrast to the conduction band states, the clas-
sification of the valence band states according to the total angular momentum F
and the parity operator P provides coupling of l and l C 2 radial states (i.e., s � d
and p � f coupling) in the envelope radial wave functions. We represent the va-
lence band states as jnL F I Fzi. Applying the usual relations of Clebsch–Gordan
coefficients, we obtain the F D 3/2 and F D 1/2 states with even parity as
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Similarly, the F D 3/2 and F D 1/2 states with odd parity are obtained as
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Appendix B
List of Constants

Table B.1 Values of important constants rec-
ommended by the Committee on Data for Sci-
ence and Technology (CODATA) [308]. See also
http://physics.nist.gov/cuu/Constants/index.html.

Quantity Symbol Value Unit

Speed of light c 299 792 458 m/s
Magnetic constant μ0 4π � 107 D 12.566 370 614. . . � 10�7 N/A2

Electric constant �0 D 1/μ0 c2 8.854 187 817 � 10�12 F/m

Impedance of the vacuum Z0 D p
μ0/�0 376.730 313 461. . . Ω

Elementary charge e 1.602 176 487(40) � 10�19 A s

Free electron mass
me 9.109 382 15(45) � 10�31 kg

me c2 510 998.910(13) eV

Planck’s constant h
6.626 068 96(33) � 10�34 J s

4.135 667 33(10) � 10�15 eV s

Reduced Planck’s
constant

„ D h/2π
1.054 571 628(53) � 10�34 J s

6.582 118 99(16) � 10�16 eV s

Magnetic flux quantum Φ0 D h/2e 2.067 833 667(52) � 10�15 Wb
Conductance quantum G0 D 2e2/ h 7.748 091 7004(53) � 10�5 S

von Klitzing constant RK D h/e2 25 812.807 557(18) Ω

Fine structure constant α D e2/4π�0„c 7.297 352 5376(50) � 10�3

Inverse fine structure
constant

α�1 1/137.035 999 711(96)

Bohr radius aB D 4π�0„2/me e2 0.529 177 208 59(36) � 10�10 m

Rydberg energy
R1 D α2me c/2h 10 973 731.568 527(73) 1/m
R1 hc 13.605 691 93(34) eV

Bohr’s magneton μB D e„/2me
927.400 915(23) � 10�26 J/T
5.788 381 7555(79) � 10�5 eV/T

Free electron g-factor g �2.002 319 304 3622(15)

Free electron magnetic
moment

μe �928.476 377(23) � 10�26 J/T
μe/μB �1.001 159 652 181 11(74)

Boltzmann constant kB
1.380 6504(24) � 10�23 J/K

8.617 343(15) � 10�5 eV/K
electron volt e/C eV 1.602 176 487(40) � 10�19 J
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Appendix C
Material Parameters

Table C.1 Parameters of III–V and II–VI semiconductors [50, 309–314].

GaAs AlAs InAs ZnSe CdSe CdS

Lattice constant
Zincblende a (nm) –
300 K

0.5653 0.5660 0.6058 0.5668 – 0.5818

Wurtzite a axis (nm) 0.423 0.414
Wurtzite c axis 0.7011 0.671

Bandgap – 0 K (eV) 1.52 2.23 0.42 2.820 1.841 2.585
300 K (eV) 1.42 2.15 0.35 2.713 1.751 2.485

E Γ
gap 3.02

Band minimum Γ X Γ Γ Γ Γ

Effective mass (m0)

m�
e 0.067 0.15 (Γ ) 0.026 0.15 0.11 0.21

m�
(e,l) 1.3 (L) 1.1

m�
(e,t) 0.23 (L) 0.19

m�
hh 0.5 0.5 0.41 1.4 > 1 k c axis 0.64–0.685

m�
lh 0.082 0.15 0.026 0.15 0.45 ? c axis

Spin-orbit split off
energy
Δ so (eV) 0.34 0.28 0.38 0.40 0.42 0.062

Electron g-factor �0.44 1.85 (L) �14.8 1.15 0.68

Dielectric constant �r 13.2 10.1 15.1 9.1 10.16 (k) 9.38

9.29 (?)

Kane energy EP (eV) 25.7 21.1 22.2 17.5
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lue, M. S. (2007) Strong extinction of
a far-field laser beam by a single quantum
dot. Nano Letters, 7, 2892–2896.

257 Kroner, M., Weiss, K. M., Biedermann,
B., Seidl, S., Holleitner, A. W., Badolato,
A., Petroff, P. M., Öhberg, P., Warbur-
ton, R. J., and Karrai, K. (2008) Resonant
two-color high-resolution spectroscopy
of a negatively charged exciton in a self-
assembled quantum dot. Physical Review
B, 78, 075429.

258 Dzhioev, R. I., Korenev, V. L., Za-
kharchenya, B. P., Gammon, D., Bracker,
A. S., Tischler, J. G., and Katzer, D. S.
(2002) Optical orientation and the Hanle
effect of neutral and negatively charged
excitons in GaAs/Alx Ga1�x As quantum
wells. Physical Review B, 66, 153409.

259 Gupta, J. A., Awschalom, D. D., Efros,
Al. L., and Rodina, A. V. (2002) Spin dy-

namics in semiconductor nanocrystals.
Physical Review B, 66, 125307.

260 Koppens, F. H. L., Buizert, C., Tielrooij,
K. J., Vink, I. T., Nowack, K. C., Meunier,
T., Kouwenhoven, L. P., and Vander-
sypen, L. M. K. (2006) Driven coherent
oscillations of a single electron spin in
a quantum dot. Nature (London), 442,
766–771.

261 Kroner, M. et al. (2008) Optical detec-
tion of single-electron spin resonance in
a quantum dot. Physical Review Letters,
100, 156803.

262 Salis, G. and Moser, M. (2005) Faraday-
rotation spectrum of electron spins in
microcavity-embedded GaAs quantum
wells. Physical Review B, 72, 115325.

263 Kupriyanov, D. V. and Sokolov, I. M.
(1992) Optical-detection of magnetic-
resonance by classical and squeezed light.
Quantum Optics, 4, 55–70.

264 Guest, J. R. et al. (2002) Measurement of
optical absorption by a single quantum
dot exciton. Physical Review B, 65, 241310.

265 Awschalom, D. D., Loss, D., and Samarth,
N. (eds) (2002) Semiconductor Spintronics
and Quantum Computation. NanoScience
and Technology, Springer-Verlag.

266 Gurudev-Dutt, M. V. et al. (2005) Stimulat-
ed and spontaneous optical generation of
electron spin coherence in charged GaAs
quantum dots. Physical Review Letters, 94,
227403.

267 Semenov, Y. G. and Kim, K. W. (2004)
Phonon-mediated electron-spin phase dif-
fusion in a quantum dot. Physical Review
Letters, 92, 026601.

268 Erlingsson, S. I., Nazarov, Y. V., and
Fal’ko, V. I. (2001) Nucleus-mediated
spin-flip transitions in GaAs quantum
dots. Physical Review B, 64, 195306.

269 Meier, F. and Awschalom, D. D. (2004)
Spin-photon dynamics of quantum dots
in two-mode cavities. Physical Review B,
70, 205329.

270 Leuenberger, M. N. (2006) Fault-tolerant
quantum computing with coded spins
using the conditional Faraday rotation
in quantum dots. Physical Review B, 73,
075312.

271 Combescot, M. and Betbeder-Matibet, O.
(2004) Theory of spin precession moni-



204 References

tored by laser pulse. Solid State Communi-
cations, 132, 129–134.

272 Chen, P., Piermarocchi, C., Sham, L. J.,
Gammon, D., and Steel, D. G. (2004) The-
ory of quantum optical control of a single
spin in a quantum dot. Physical Review B,
69, 075320.

273 Pryor, C. E. and Flatté, M. E. (2006) Pre-
dicted ultrafast single-qubit operations
in semiconductor quantum dots. Applied
Physics Letters, 88, 233108.

274 Economou, S. E., Sham, L. J., Wu, Y., and
Steel, D. G. (2006) Proposal for optical
U(1) rotations of electron spin trapped
in a quantum dot. Physical Review B, 74,
205415.

275 Cohen-Tannoudji, C. and Dupont-Roc,
J. (1972) Experimental study of Zeeman
light shifts in weak magnetic fields. Physi-
cal Review A, 5, 968–984.

276 Cohen-Tannoudji, C. and Reynaud, S.
(1977) Dressed-atom description of reso-
nance fluorescence and absorption spec-
tra of a multi-level atom in an intense
laser beam. Journal of Physics B, 10, 345–
363.

277 Suter, D., Klepel, H., and Mlynek, J.
(1991) Time-resolved two-dimensional
spectroscopy of optically driven atom-
ic sublevel coherences. Physical Review
Letters, 67, 2001–2004.

278 Combescot, M. and Combescot, R. (1988)
Excitonic Stark shift: A coupling to
“semivirtual” biexcitons. Physical Review
Letters, 61, 117–120.

279 Joffre, M., Hulin, D., Migus, A., and
Combescot, M. (1989) Laser-induced ex-
citon splitting. Physical Review Letters, 62,
74–77.

280 Papageorgiou, G., Chari, R., Brown, G.,
Kar, A. K., Bradford, C., Prior, K. A.,
Kalt, H., and Galbraith, I. (2004) Spectral
dependence of the optical Stark effect
in ZnSe-based quantum wells. Physical
Review B, 69, 085311.

281 Gupta, J. A., Knobel, R., Samarth, N.,
and Awschalom, D. D. (2001) Ultrafast
manipulation of electron spin coherence.
Science, 292, 2458–2461.

282 Unold, T., Mueller, K., Lienau, C., Elsaess-
er, T., and Wieck, A. D. (2005) Optical
control of excitons in a pair of quan-
tum dots coupled by the dipole-dipole

interaction. Physical Review Letters, 94,
137404.

283 Dutt, M. V. G., Cheng, J., Wu, Y., Xu, X.,
Steel, D. G., Bracker, A. S., Gammon, D.,
Economou, S. E., Liu, R.-B., and Sham,
L. J. (2006) Ultrafast optical control of
electron spin coherence in charged GaAs
quantum dots. Physical Review B, 74,
125306.

284 Wu, Y., Kim, E. D., Xu, X., Cheng, J.,
Steel, D. G., Bracker, A. S., Gammon,
D., Economou, S. E., and Sham, L. J.
(2007) Selective optical control of elec-
tron spin coherence in singly charged
GaAs-Al0.3Ga0.7As quantum dots. Physi-
cal Review Letters, 99, 097402.

285 Klingshirn, C. (2006) Semiconductor Op-
tics. Springer, 3rd edn.

286 von Lehmen, A., Zucker, J. E., Heritage,
J. P., and Chemla, D. S. (1987) Phonon
sideband of quasi-two-dimensional ex-
citons in GaAs quantum wells. Physical
Review B, 35, R6479.

287 Rosatzin, M., Suter, D., and Mlynek, J.
(1990) Light-shift-induced spin echoes in
a J = 1/2 atomic ground state. Physical
Review A, 42, R1839–R1841.

288 Ouyang, M. and Awschalom, D. D. (2003)
Coherent Spin Transfer Between Molecu-
larly Bridged Quantum Dots. Science, 301,
1074–1078.

289 Meier, F., Cerletti, V., Gywat, O., Loss, D.,
and Awschalom, D. D. (2004) Molecular
spintronics: Coherent spin transfer in
coupled quantum dots. Physical Review B,
69, 195315.

290 Schrier, J. and Whaley, K. B. (2005)
Atomistic theory of coherent spin
transfer between molecularly bridged
quantum dots. Physical Review B, 72,
085320.

291 Govorov, A. O. (2003) Spin and energy
transfer in nanocrystals without tunnel-
ing. Physical Review B, 68, 075315.

292 Nazir, A., Lovett, B. W., Barrett, S. D.,
Reina, J. H., and Briggs, G. A. D.
(2005) Anticrossings in Förster coupled
quantum dots. Physical Review B, 71,
045334.

293 Stinaff, E. A., Scheibner, M., Bracker,
A. S., Ponomarev, I. V., Korenev, V. L.,
Ware, M. E., Doty, M. F., Reinecke, T. L.,
and Gammon, D. (2006) Optical signa-



References 205

tures of coupled quantum dots. Science,
311, 636–639.

294 Doty, M. F., Scheibner, M., Ponomarev,
I. V., Stinaff, E. A., Bracker, A. S., Korenev,
V. L., Reinecke, T. L., and Gammon, D.
(2006) Electrically tunable g factors in
quantum dot molecular spin states. Physi-
cal Review Letters, 97, 197202.

295 Scheibner, M., Doty, M. F., Ponomarev,
I. V., Bracker, A. S., Stinaff, E. A., Korenev,
V. L., Reinecke, T. L., and Gammon, D.
(2007) Spin fine structure of optically
excited quantum dot molecules. Physical
Review B, 75, 245318.

296 Scheibner, M., Ponomarev, I. V., Stinaff,
E. A., Doty, M. F., Bracker, A. S., Hellberg,
C. S., Reinecke, T. L., and Gammon, D.
(2007) Photoluminescence spectroscopy
of the molecular biexciton in vertically
stacked InAs-GaAs quantum dot pairs.
Physical Review Letters, 99, 197402.

297 Heitler, W. and London, F. (1927)
Wechselwirkung neutraler Atome und
homöopolare Bindung nach der Quan-
tenmechanik. Zeitschrift für Physik, 44,
455–472.

298 Krenner, H. J., Clark, E. C., Nakaoka, T.,
Bichler, M., Scheurer, C., Abstreiter, G.,
and Finley, J. J. (2006) Optically probing
spin and charge interactions in a tunable
artificial molecule. Physical Review Letters,
97, 076403.

299 Doty, M. F., Climente, J. I., Korkusinski,
M., Scheibner, M., Bracker, A. S., Hawry-
lak, P., and Gammon, D. (2009) Antibond-
ing ground states in InAs quantum-dot
molecules. Physical Review Letters, 102,
047401.

300 Türeci, H. E., Taylor, J. M., and Imamoğlu,
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