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Preface

The combination of quantum mechanics and quantum field theory consti-
tutes the most revolutionary and influential physical theory of the twentieth
century. Its impact is felt not only in almost all other sciences, but the fruits
of its application are ubiquitous in everyday life. This textbook is designed
to teach graduate students the underlying quantum-physical ideas, their
mathematical formulations, and the basic problem-solving techniques of
the discipline. It assumes they have taken at least one introductory course
in quantum mechanics as undergraduates and are familiar with the history
of the subject and the basic experimental evidence that led to its adoption,
as well as with many of its fundamental notions. In contrast to most other
authors, I am therefore not introducing the quantum theory via an histor-
ical survey of its early successes. Instead, following the models of books
on classsical mechanics or electromagnetism, I develop the theory from its
basic assumptions, beginning with statics, followed by the dynamics and
details of its specific areas of use as well as the needed mathematical tech-
niques.

Although this book, inevitably, deals largely with the behavior of point
particles under various conditions, I do not regard particles as the funda-
mental entities of the universe: the most basic object is the quantum field,
with the observed particles arising from the field as its quanta. For this rea-
son I introduce quantum fields right from the beginning and demonstrate,
in the first chapter, how particles originate. However, this volume is not
intended to be a full-fledged text of quantum field theory; confining itself to
the fundamental ideas of field theory and their consequences, glossing over
its mathematical difficulties and pitfalls, it does not deal with any of the
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subtleties of that large subject. For the development of the basic quantum
dynamics, the book employs the Lagrangian technique with the principle
of stationary action. The roots of this approach, which includes generating
the canonical commutation rules, go back to a course taught long ago by
Julian Schwinger, filtered through and modified by many years of teach-
ing the subject. Similarly for the manner of introducing the γ-matrices in
Chapter 10.

The general physics preparation of the students for whom this book is
intended should comprise classical mechanics (including its Lagrangian and
Hamiltonian formulations), Maxwell’s theory of electromagnetism, and the
special theory of relativity, as well as some understanding of statistical me-
chanics. As far as mathematics is concerned, they are expected to have a
basic knowledge of linear algebra, linear differential equations—both ordi-
nary and partial—and the theory of functions of a complex variable. The
book’s extensive mathematical appendices contain the needed elements of
vector spaces (including Hilbert space), the Dirac delta function, linear
integral equations, the required classical special functions, and group rep-
resentations.

Rather than mixing this mathematical material with the explanation
of the physics—though some details that the occasion demands are inter-
spersed, set off by horizontal lines and printed in a smaller font—I collected
it at the end, and the instructor will have to present or assign it when
needed. These appendices are not meant to take the place of mathematics
courses appropriate for graduate students in physics or chemistry; they can
serve at best as crutches or reminders. However, the inclusion of group rep-
resentations allows me to apply this invaluable tool more extensively than
do most other comparable graduate texts. A large number of exercises are
sprinkled as boldfaced footnotes throughout the text, others collected at
the end of each chapter.

A word about notation: Many books and research articles employ the
very convenient Dirac notation, in which a general state vector Ψ is denoted
by | 〉, an eigenvector ΨA of A with the eigenvalue A is written |A〉, and
the inner product becomes (ΨA,Ψ) = 〈A| 〉. Although I shall not always
use this notation, when it comes in handy, I shall employ it.

Since the subject of this book now pervades almost all of physics, it is
hard to pin down my diffuse indebtedness. I certainly owe much to the
four teachers from whom I learned quantum mechanics and quantum field
theory as a student: Norman Ramsey, Walter Kohn, John H. Van Vleck,
and, above all, Julian Schwinger. Others to whom I owe a debt of gratitude
for their infusion of wisdom over the years are Res Jost, Joseph Jauch,
and my colleagues at Indiana University, especially Emil Konopinski, John
Challifour, and Don Lichtenberg.

Bloomington, Indiana, USA Roger G. Newton
December 2001
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1
Quantum Basics: Statics

1.1 States and Dynamical Variables

The aim of quantum physics, like that of classical physics, is to give an
explanatory and predictive description of the motions of physical systems:
we want to understand their actions and be able to predict their future
behavior. Therefore, the first two tasks (though not necessarily historically
the first as the theory developed) are to define the parameters in terms of
which such systems are to be described and to lay down the equations of
motion of these parameters so that the future course of any given system
can be determined. The two are not independent, because a wrong choice
in the first will prevent the second from being realized. Thus the most basic
decision is how to specify the state of any physical system at a given time.

Whereas in classical physics the state of a system, defined as precisely
as nature allows, is described by a point in the system’s phase space, in
quantum physics, such a state (called a pure state) is described by a point
(i.e., a vector) in an appropriate Hilbert space H. Just as the precise form
of the phase space depends on the details of the system—the number of its
degrees of freedom, the range of its dynamical variables, etc.—so does H.
Conversely, every vector in H is assumed to describe a possible state of the
system,1 with Ψ and aΨ denoting the same state, when in isolation, for any

1There are a few exceptions to this, called superselection rules, but they need not
concern us for the time being.
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complex constant a, which is mathematically expressed by the statement
that an isolated state is specified by a ray in Hilbert space.2

The Hilbert-space description implies that the states are additive: if Ψ1
and Ψ2 are two states of a given system, Ψ = Ψ1+Ψ2 is also a possible state
of the system. You should especially note that this superposition principle,
whose physical significance will emerge shortly, implies that if the two states
Ψ1 and Ψ2 are combined into another state Ψ = Ψ1 +Ψ2 by superposition,
they are, in Ψ, in some sense correlated, and although Ψ1 and aΨ1 specify
the same state in isolation, the state Ψ′ = aΨ1 + Ψ2 generally differs from
Ψ. (Both the magnitude and the phase of the inner product (Ψ1,Ψ2) of
the two entangled states Ψ1 and Ψ2 have observational consequences, as
we shall see.) In other words, in order to describe a state “as precisely as
nature allows” it has to be specified not just in isolation, but in such a
way that its potential relation to all other possible “completely specified”
states of the same system is also given, and for this it is not sufficient to
describe it as a ray in H; it must be given as a vector. In a figurative sense,
the vector Ψ “has hair,” while the ray spanned by Ψ “is shaved.” It is the
hair on Ψ1 and Ψ2 that describes their correlation and entanglement when
their superposition forms Ψ.

For example, consider the famous two-slit experiment with electrons. If
only slit #1 is open, the electron is in the state Ψ1; if only slit #2 is open,
it is in the state Ψ2. Both of these states by themselves are equally well
described by aΨ1 and bΨ2, respectively, with arbitrary a and b. However,
if both slits are open, the electron is in the state Ψ = c1Ψ1 + c2Ψ2, with a
fixed ratio c1/c2: the two states Ψ1 and Ψ2 in Ψ are now entangled.

A vector in Hilbert space therefore describes the state of a system not
only as perfectly specified in physical isolation but also its readiness for
any potential correlation with other systems and states. There is no ana-
logue of such an entanglement for classical particle states, but for wave
systems such as light, its analogue is the phase information contained in
the full description of light by means of the electromagnetic field, as nec-
essary, for example, for the description of Young’s two-slit experiment. (In
this sense all quantum systems behave analogously to both “particles” and
“waves”—the notorious particle-wave duality—though this analogy must
not be pushed too far.)

When two physical systems I and II, whose Hilbert spaces are HI and
HII, respectively, are combined into one, the Hilbert space of the combined
system is the tensor product (see Appendix B) H = HI⊗HII, and its
states are linear combinations of those special tensor product states of
the form Ψ = ΨI ⊗ ΨII in which the two subsystems are independent of
one another. For example, the Hilbert space of a two-particle system is the

2A ray R is a one-dimensional subspace in H. Consequently there exists a vector
Ψ ∈ H that spans R, so that R consists of all vectors of the form aΨ.
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tensor product of the two Hilbert spaces of its two one-particle subsystems,
formed out of linear combinations Ψ =

∑
nm anmΨI

n⊗ΨII
m of special states

ΨI
n ⊗ ΨII

m of two independent particles, the first one in state ΨI
n and the

second in ΨII
m. Whatever correlation there is between the states of the two

particles in the combined system is expressed in the coefficients anm. After
the two subsystems cease to interact, they may retain information about
their earlier conjunction even when they are far apart, information that
expresses itself in a correlation, so that none of these subsystems by itself is
then specified “as precisely as nature allows”; it is not in a pure state and
cannot be described by a state vector. (We shall discuss the appropriate
means for its description a little later.)

The radioactive decay of an atomic nucleus in which an electron and an
antineutrino are emitted is a typical example. If the original nucleus was in
a pure state, so is the state of the combined nucleus-electron-antineutrino
system after the decay. However, the state of the electron itself, which is the
observationally most easily accessible subsystem, is correlated with those of
the recoiling nucleus and the antineutrino and, regarded without attention
to the antineutrino and the nucleus, is not pure and cannot be described
by a state vector.

The dynamical variables that are observable, such as the locations and
momenta of point particles, which are conventionally denoted by the vectors
�q and �p, are quantum-mechanically represented by Hermitian operators,3

such as �q and �p (boldface letters will be used to denote operators), acting
on the vectors in H. The most fundamental difference between classical and
quantum physics arises from the fact that, whereas a classical state at a
given time t0 uniquely determines the values of all dynamical variables at
t0, a quantum state determines some of them only as non-sharp probability
distributions. From this follow many of the important differences between
classical and quantum physics, and in particular, the probabilistic rather
than strictly causal predictions of the latter. The acausal nature of quantum
physics arises not from any non-deterministic feature in its dynamics, but
from the very definition of the quantum state of a system.

1.1.1 Measurements
When it comes to performing measurements, quantum physics posits three
basic postulates, schematically stated as follows:

3Mathematicians distinguish between symmetric and self-adjoint operators, the dis-
tinction depending on their domain of definition. The word Hermitian, universally cus-
tomary among physicists, is meant to be essentially equivalent to self-adjoint, although
we are not always as careful about the domain of definition as we should be. See Ap-
pendix B.3 for more details on this.
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1. The result of a measurement of the observable A can only be an
eigenvalue A of the corresponding Hermitian operator A.

2. After the measurement with the outcome A, a system originally in
the state Ψ is left in the eigenstate PAΨ of A with the eigenvalue
A, where PA is the projection on the eigenspace of A at A, i.e., the
space spanned by the eigenvectors ΨA (this is called the projection
postulate).

3. If the system is in an eigenstate of A with the eigenvalue A, the
outcome of a measurement of A is A with certainty.

The physical justification of the second assumption, together with the
third, is that an immediate repetition of the measurement had better yield
the same result, else the measurement would have no significance; if the
system were not left in an eigenstate, there would be no such assurance. It
follows from the second postulate that a measurement is, in effect, identi-
cal to the preparation of a state: by measuring the variable A and finding
the value A, we have prepared the system in an eigenstate of the opera-
tor A with the eigenvalue A. (This is really no different from the classical
situation. To prepare a system in a precisely specified state implies that
all the dynamical variables needed for its unique determination have been
measured, and vice versa.) As a result, the states before and after the
measurement are generally different, and this is not necessarily because
of a disturbance caused by the measurement. Although the nature of this
change is special to quantum physics, the intrusive effect of measurements
is a common feature of probabilistic theories. (In classical statistical me-
chanics, probabilistic predictions after a measurement are based on the
assumption of uniform distribution within the phase-space coarse grain of
the measurement, even though without the measurement that distribution
might have been quite nonuniform.)

These postulates, however, must be regarded as no more than schemata,
because they cannot always be implemented literally. The reason is that
most of the operators representing observables, for example, the �qs and
�ps, have spectra that are, at least in part, continuous, and “eigenstates”
or “eigenvectors” corresponding to points in a continuous spectrum, which
we shall refer to as quasi-eigenvectors and quasi-eigenvalues, respectively,
are not normalizable and hence are not members of the system’s Hilbert
space H. If points in the continuous spectrum of the Hermitian operator
A are denoted by A, the quasi-eigenvectors |A〉 are such that their inner
products 〈 |A〉 with all vectors | 〉 ∈ H are well defined as square-integrable
functions of A. (In other words, they are not necessarily finite for each A;
for more about their definition, see Appendix B.3.1.) If we are to avoid ide-
alized measurements of such variables, which would result in quasi-states
described outside H—the inclusion of the description of such idealized mea-
surements and quasi-states, however, is often very convenient, and we shall
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not go out of our way to avoid them—the postulates have to be formu-
lated more carefully as follows: (1) The result A of a measurement of an
observable A must lie in the spectrum of the operator A (the spectrum
of a Hermitian operator always lies along the real line!), and (2), (3) if A
is the result of a measurement of A with an expected error ≤ ∆A and A
lies in the continuous spectrum of A, the system is left in a state in which
A has the expected value A with the variance (or mean-square deviation,
also sometimes called dispersion) ∆A. (If you don’t know what “expected
value” and “variance” are, they will be defined shortly.) However, such a
state, as we shall see explicitly in Section 2.2.2, is not determined to within
a constant factor; it takes at least the measurement of a second observable
to make it so.

Since the necessary and sufficient condition for two Hermitian operators
to have a complete set of eigenvectors in common is that they commute
(see Appendix B), a state can in general not be prepared so as to lead,
with certainty, to specified outcomes of the measurement of two different
observables A and B unless the corresponding operators A and B commute.
In order to identify states of a given physical system uniquely by means of
measurements we have to have a complete set of commuting observables at
our disposal, so that there exists a complete set of states in H, each of which
is labeled by the eigenvalues—and therefore the measurement outcomes—
of these simultaneously measurable dynamical variables. Other observables
of the system, which fail to commute with this set, are then not sharply
defined.

1.1.2 Fields as dynamical variables
While the dynamical variables of particle systems, the �qs and �ps, are ob-
servables, this need not be the case for all systems. The most fundamental
description of submicroscopic physics is given in terms of a field, which
we shall denote by Ψ(�r), an operator-function of space.4 This operator is
generally not Hermitian and hence does not describe an observable. If we
think of Ψ as analogous to �q for a particle, then the Hermitian conjugate Ψ †

turns out to be the analogue of �p, as we shall see in Section 2.3.1. Since the
spatial coordinate vector �r in Ψ(�r), which you should think of as analogous
to the index i on �qi, , i = 1, . . . , n, for an n-particle system, ranges over a
continuum, the number of degrees of freedom of a system described by a
field is necessarily infinite.

4Certain mathematical difficulties make it necessary to define Ψ , strictly speaking,
not at a point but on a small smeared-out region, thus making it a distribution, but we
shall ignore this problem here.
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1.2 Probabilities

The probabilistic nature of quantum states implies that two different states
need not be mutually exclusive: if a system is in state Ψ, it may also have
many of the characteristics of the linearly independent state Φ. Indeed, the
probabilistic assumption stated earlier is made explicit and precise by the
postulate that if the system is in the state Ψ, the probability P (Φ|Ψ) that
it also simultaneously has the properties of the state Φ is given by

P (Φ|Ψ) = |(Φ,Ψ)|2/ ‖ Φ ‖2 ‖ Ψ ‖2 . (1.1)

In particular, the probability for a measurement of the observable A to
come up with the result A is |(ΨA,Ψ)|2/ ‖ ΨA ‖2 ‖ Ψ ‖2, where ΨA is the
eigenvector of A corresponding to the eigenvalue A. (It is therefore often
convenient to normalize all state vectors so that ‖ ΨA ‖= 1 and ‖ Ψ ‖= 1.)
Note that the probability (1.1) depends only on the rays determined by Ψ
and Φ; it does not depend on their “hair.” In case A has several mutually
orthogonal eigenvectors Ψn

A with the same eigenvalue A, which is called
degeneracy, this probability equals

∑
n |(Ψn

A,Ψ)|2/ ‖ Ψn
A ‖2 ‖ Ψ ‖2.

If P (Φ,Ψ) = 1, so that the state Ψ is certain to have all the characteristics
of the state Φ, then you expect physically that the two states must be iden-
tical (at least in isolation), and this expectation is mathematically reflected
in Schwarz’s inequality (see Appendix B), according to which P (Φ,Ψ) = 1
implies Φ = cΨ for some c �= 0. Only if two state vectors are orthogonal,
i.e., if (Ψ,Φ) = 0, are the corresponding states mutually exclusive; if the
system is in one of these states, the probability of finding that it has the
characteristics of the other is zero. The mathematical formalism incorpo-
rates this in the fact that two eigenvectors of a Hermitian operator A that
correspond to different eigenvalues are necessarily orthogonal to one an-
other: if the result of a measurement is A1, the probability of obtaining the
result A2 �= A1 immediately afterwards vanishes, as it physically should. It
is also noteworthy that P (Φ,Ψ) = P (Ψ,Φ): the probability that the state
Ψ has the properties of the state Φ is the same as the probability that Φ
has those of Ψ.

That all measurement results of an observable have to lie in the spectrum
of the corresponding operator is mathematically reflected in the complete-
ness property of the spectra of all Hermitian operators, which means that
any vector Ψ in H can be expanded on the basis of the eigenvectors ΨA of
any Hermitian operator A:

Ψ =
∑
A

cAΨA, (1.2)

where the sum runs over the spectrum of A, which we assume for the
moment to consist of discrete points only. If Ψ and all the eigenvectors ΨA

are normalized to unity, it follows from the mutual orthogonality of the
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latter [just take the inner product of (1.2) with ΨA] that

cA = (ΨA,Ψ), (1.3)

which implies
∑
A |cA|2 = 1 and |cA|2 is the probability P (A|Ψ) of obtain-

ing the result A upon measurement of A in the state Ψ, so that appropri-
ately

∑
A P (A|Ψ) = 1. Thus every state of a system can be decomposed

into eigenstates of any given observable A of the system, and the coeffi-
cients cA are the “probability amplitudes” (the squares of whose magni-
tudes are the probabilities) of obtaining the results A upon measurement
of A: P (A|Ψ) = |cA|2 = |(ΨA,Ψ)|2. If the spectrum of A is continuous,
the sum in (1.2) has to be replaced by an integral, analogous to replacing
a Fourier series by a Fourier integral,

Ψ =
∫
dA c(A)ΨA, (1.4)

where ΨA is a quasi-eigenvector of A that satisfies the equation AΨA =
AΨA with the quasi-eigenvalue A. Here, however, ΨA �∈ H; since it does
not have a finite norm, it is not normalizable. [The quasi-eigenvectors are
analogous to exp(ikx), with (1.4) analogous to a Fourier integral.] These
quasi-eigenvectors are still mutually orthogonal, and they can be so chosen
that

(ΨA,ΨB) = δ(A−B), (1.5)

where δ(A−B) is Dirac’s delta function (see Appendix A for the definition).
We shall call them “δ-normalized” and refer to a set of vectors that satisfy
(1.4) and (1.5) as an orthonormal quasi-basis. Equations (1.4) and (1.5)
imply that

c(A) =
∫
dA (ΨA,Ψ),

and the physical interpretation of |c(A)|2 is that of a probability density:
|c(A)|2dA is the probability of finding the result of a measurement of the
observable A to lie in the interval dA around A. If an operator has a
spectrum that is in part discrete and in part continuous, or if we wish to
write a formula applicable to either kind of spectrum, we shall indicate the
summation over the spectrum by the symbol Σ

∫
.

1.2.1 Correlations
Suppose a system with the Hilbert space H consists of two subsystems
with the Hilbert spaces HI and HII, so that H = HI⊗HII, and a pure
state of the combined system is of the form Ψ =

∑
nm anmΨI

n ⊗ΨII
m. (We

will assume that Ψ is normalized and the sets of states {ΨI
n} and {ΨII

m}
are orthonormal bases in HI and HII, respectively.) In such a state the
probability of finding the two subsystems in states ΨI

n and ΨII
m, respectively,
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is P (n,m|Ψ) = |anm|2, and the probability of obtaining the results A and
B upon measurement of the variable A of system I and of B of system II,
respectively, is given by

P (A,B|Ψ) = |(ΨI
A ⊗ΨII

B ,Ψ)|2 =

∣∣∣∣∣∑
nm

anm(ΨI
A,Ψ

I
n)(Ψ

II
B ,Ψ

II
m)

∣∣∣∣∣
2

.

Therefore the probability of finding system I in the state ΨI
n, irrespective of

what state the other system is in, is given by
∑
m |anm|2. If the two systems

are totally independent and uncorrelated, we should have P (n,m|Ψ) =
P (nI|Ψ)P (mII|Ψ), which will be the case if and only if anm is a product
anm = bncm, in which instance Ψ is of the form

Ψ = ΨI ⊗ΨII. (1.6)

In that case the probability of finding system I in the state ΦI is independent
of the state of system II.

The general state of the form Ψ =
∑
nm anmΨI

n ⊗ ΨII
m of the combined

system may also be written in the alternative form

Ψ =
∑
m

amΦI
m ⊗ΨII

m, (1.7)

where amΦI
m

def=
∑
n anmΨI

n; the states ΦI
m can be assumed to be nor-

malized but they are not necessarily mutually orthogonal. Eq.(1.7) clearly
shows the two systems to be so entangled, even though they may no longer
be in interaction with one another, that when a test finds system II in state
ΨII
m, then system I must be in state ΦI

m, no matter how far separated the
two systems may be. The states ΨII

m may, for example, be eigenstates of an
operator A with the eigenvalue Am, i.e., the result of a measurement of A
on system II with the outcome Am, and the states ΦI

m may be eigenstates
of B with the eigenvalue Bm. When the entire system is in the state Ψ,
neither system I nor system II can be said to be in any eigenstate of A or
B. However, a measurement of A on system II allows us to infer what the
result of a measurement of B on system I would have been, had it been
performed, and thus casting it into an eigenstate of B without ever coming
near the latter, and therefore never disturbing it.

An example of such a situation was used in the famous EPR paper[EPR].
In the somewhat simpler version given by David Bohm,5 the Gedanken ex-
periment goes as follows. A particle of spin 0 at rest decays into two spin-1/2
fragments, which fly off in opposite directions. If at a later time, when they
are far apart, the vertical spin projection of fragment A is measured, the
probability for it to be found up is 1

2 , and similarly for fragment B. But

5[Bohm, D.] p. 614.
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since angular-momentum conservation dictates that the total angular mo-
mentum of the two must be 0, the spin states of the two fragments must
be correlated so as to be opposite to one another. Therefore, if the vertical
spin projection of A is found to be up, we know for certain, without coming
near B for a measurement, that its spin must be down. On the other hand,
if the horizontal spin component of A had been measured and found to
be left, we would know with equal certainty, without approaching it, that
the horizontal spin component of B is right. (Since, by EPR’s definition,
these two statements about the vertical and horizontal spin projections of
B imply that both spin projections are “elements of reality” but quantum
mechanics does not allow them to be simultaneously specified because they
fail to commute, the authors conclude that this theory cannot be a “com-
plete description of reality,” a conclusion that rests on their specific initial,
philosophically based definition of reality.)

All philosophical preconceptions aside, the existence of such correlations
between distant entities that allow reliable inferences to replace actual phys-
ical measurements demonstrates that quantum mechanics does not neces-
sarily imply some irreducible disturbance in the act of measurement, as
is sometimes claimed. Notice also that if two systems are correlated as in
(1.7), a measurement on one of them instantaneously changes the state
of the other, although there may be no interaction (at the present time)
between the constituents of the two systems and no matter how great the
distance between them. This feature, too, of quantum mechanics is a simple
consequence of its probabilistic nature and not of its Hilbert-space formu-
lation.

1.2.2 Interference
The obvious physical interpretation of the superposition of two vectors, as
in Ψ = (Ψ1 + Ψ2)/

√
2, is that if the system is in the state Ψ, it can be

found to have the properties both of the state Ψ1 and of the state Ψ2. As-
suming that Ψ1 and Ψ2 are both normalized and mutually orthogonal, the
probability of finding that the system has the characteristics of either state
is 1

2 , which would be equally true, however, for the linearly independent
state Ψ′ = (eiϕΨ1 + Ψ2)/

√
2 with any real ϕ �= 0.

Suppose now that a system is in the state described by the normalized
vector Φ and we are asking for the probability that, upon measurement,
it will be found in agreement with the state Ψ = (Ψ1 + Ψ2)/

√
2. This

probability is

P (Ψ|Φ) = |(Ψ,Φ)|2 =
1
2
|(Ψ1,Φ) + (Ψ2,Φ)|2

=
1
2
|(Ψ1,Φ)|2 +

1
2
|(Ψ2,Φ)|2 + 	[(Ψ1,Φ)∗(Ψ2,Φ)], (1.8)
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where 	 denotes the real part of a complex number and the star indicates
the complex conjugate. So the probability of finding the state of the system
to agree with Ψ is not necessarily equal to the sum of the probabilities
P (Ψ1|Φ) of finding it in agreement with Ψ1 and P (Ψ2|Φ) of finding it
in agreement with Ψ2, even if the two states Ψ1 and Ψ2 are mutually
exclusive; instead there is an interference term 	[(Ψ1,Φ)∗(Ψ2,Φ)], an effect
that is characteristic of quantum physics and which indicates the correlation
between the two states Ψ1 and Ψ2 when they form a superposition. Since
the interference term is the real part of the product of the two complex
numbers (Ψ1,Φ)∗ and (Ψ2,Φ), the correlation would be different for Ψ′ =
(eiϕΨ1 + Ψ2)/

√
2. For example, if P (Ψ1,Φ) = P (Ψ2,Φ) = p, then P (Ψ,Φ)

may vary between 0 and 2p, depending upon the relative phases of (Ψ1,Φ)
and (Ψ2,Φ).

Whereas this result appears to differ from the classical addition of prob-
abilities for independent systems, it is important to remember that for
two states of a given system to form another state by superposition means
that they are entangled; they are not independent. As already noted earlier,
this kind of quantum entanglement has its analogue in wave systems (the
spectral decomposition, giving the magnitude of the weight of each spec-
tral component, of an electromagnetic wave is not sufficient to specify the
wave uniquely), but it has no classical analogue for systems consisting of
particles. It should therefore be emphasized that the interference term in
(1.8), rather than showing the inapplicability of classical probability the-
ory to quantum mechanics, represents the effect of a kind of correlation
between states of quantum systems that most classical systems lack (and
those classical systems that have such correlations, such as wave systems,
are not usually treated probabilistically). There is no need to invent a spe-
cial theory of probability applicable only to quantum physics.

The kind of correlation between states of physical systems—even between
systems that may be far apart from one another—expressed by the superpo-
sition principle and the resulting interference effects implies a certain non-
locality inherent in quantum physics. Such nonlocal action-at-a-distance,
if postulated as existing between classical particles, is usually regarded as
physically unacceptable; for waves, however, we do not abhor it and in-
deed are quite accustomed to its presence. There is, therefore, no reason
to find puzzling such nonlocal effects as are implied by the quantum su-
perposition principle, and the concomitant, experimentally well confirmed
interferences. They simply indicate that quanta, though we call them “par-
ticles,” are not little billiard balls.6

6In the alternative interpretation of quantum physics put forward by David Bohm,
which tries to avoid the quantum acausality by postulating an underlying quasi-classical
substratum described by hidden variables, the unavoidable nonlocality appears as a
result of an action-at-a-distance between unobservable particles that behave classically,
which is physically much more objectionable. Far from being intuitively more appealing,



1.2 Probabilities 11

1.2.3 Expectation values and variance
The average value (also called the mean, the expectation value or the ex-
pected value) of the observable A in the state Ψ is, by definition, given
by

〈A〉 def= Σ
∫
A

AP (A|Ψ),

the right-hand side of which is easily evaluated by means of (1.2) and (1.3),
with the result

〈A〉 =
(Ψ,AΨ)
‖ Ψ ‖2 =

〈 |A| 〉
〈 | 〉 . (1.9)

The mean value, of course, depends on the state Ψ, but this dependence
is customarily not indicated in the notation 〈A〉. The variance, dispersion,
or root-mean-square deviation of A in the state Ψ is defined by

∆A def=
√
〈(A− 〈A〉)2〉 =

√
〈A2〉 − 〈A〉2. (1.10)

If Ψ is an eigenstate of A, its variance is zero: it is sharp. To see this,
assume that AΨ = AΨ and ‖ Ψ ‖= 1; then

〈A2〉 = (Ψ,A2Ψ) = A2 = 〈A〉2,

and hence ∆A = 0. Conversely, it follows from the Hermiticity of A and
Schwarz’s inequality7 that if ∆A = 0, Ψ must be an eigenstate of A:
assuming that AΨ and Ψ are linearly independent, so that Ψ is not an
eigenstate of A, and that ‖ Ψ ‖= 1, we have

〈A〉2 = |(Ψ,AΨ)|2 <‖ Ψ ‖2‖ AΨ ‖2= (AΨ,AΨ) = (Ψ,A2Ψ) = 〈A2〉,

and therefore ∆A > 0. Thus the only states that are dispersion-free for a
given observable are its eigenstates; in the eigenstates of a given observable
A, the probability distributions of other observables that do not commute
with A cannot be sharp (see the remark at the end of Section 1.1.1).

A general result with an important special case is that the product of the
dispersions of two Hermitian operators is bounded below by one-half of the
average of their commutator, [A,B] def= AB−BA. In order to prove this, let
us subtract from these operators their expectation values in the state to be
considered (which we take normalized to unity) and define A′ def= A− 〈A〉
[this should really be written as A′ def= A − 〈A〉11, where 11 is the unit
operator (which has the property that for all Ψ ∈ H, 11Ψ = Ψ), but we
shall forego this bit of pedantry] and B′ def= B − 〈B〉, so that (∆A)2 =

in fact the Bohm theory is, on these grounds alone, apart from objections based on its
hidden variables, more counterintuitive than the orthodox quantum theory.

7See Appendix B.
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〈(A′)2〉 =‖ A′Ψ ‖2 and (∆B)2 =‖ B′Ψ ‖2, as well as [A,B] = [A′,B′]. We
then have by Schwarz’s inequality

|(Ψ, [A,B]Ψ)| = |(Ψ,A′B′Ψ)− (Ψ,B′A′Ψ)|
≤ |(Ψ,A′B′Ψ)|+ |(Ψ,B′A′Ψ)|
≤ 2 ‖ A′Ψ ‖ ‖ B′Ψ ‖= 2∆A∆B;

so
∆A∆B ≥ 1

2
|〈[A,B]〉|. (1.11)

In this inequality, the right-hand side as well as the variances on the left are
generally state-dependent, except when the commutator between A and B
is a constant (that is, a multiple of the unit operator), as it is in the special
case of a particle’s position �q and momentum �p. In that instance we have
for each component, as we shall justify in Section 2.1.3,

[qk,pl] = i�δkl k, l = 1, 2, 3, (1.12)

(where δkl is the Kronecker symbol, which equals 1 when k = l and 0
otherwise) and therefore, by (1.11),

∆qk∆pk ≥
1
2

�, k = 1, 2, 3, (1.13)

the right-hand side of which is universal, that is, state-independent. This, of
course, is nothing but Heisenberg’s uncertainty (or indeterminacy) relation.

If the two observables A and B commute, (1.11) shows that there is no
lower bound on their uncertainty product. There are, then, states in which
both are specified as sharply as the precision of the measurement appara-
tus permits, in agreement with the fact that such commuting Hermitian
operators have a complete set of eigenvectors in common. Commuting ob-
servables for a given system are physically compatible with one another
and can be specified simultaneously. This may be necessary, for example,
if there is degeneracy in their spectra, so that giving the eigenvalue of only
one of them does not determine a state to within a constant factor.

1.3 Mixed States

The states of physical systems are, of course, not always specified as pre-
cisely as nature allows. In order to represent such less-than-precisely given
states of particle systems, classical statistical mechanics uses the technique
of coarse graining: the phase space is subdivided into small grains, whose
size depends on the accuracy of an experimenter’s measuring instruments
or on the sharpness of an observer’s focus. When a system is specified to be
in one of these grains, its dynamical variables are fixed only approximately,



1.3 Mixed States 13

and it is the task of statistical mechanics to formulate the laws governing
its behavior. Analogously in quantum physics, a system may be specified
only to be in a “coarse grain of the Hilbert space H,” that is, to be in one of
the mutually exclusive (normalized) states Ψn = |n〉 with the probability
pn. In that case, instead of using (1.1) to calculate the probability for the
state of the system to agree with some given (normalized) state Φ = | 〉,
one would calculate this probability by

P (Φ) =
∑
n

pnP (Φ|Ψn) =
∑
n

pn|(Φ,Ψn)|2 = 〈 |
∑
n

pn|n〉〈n| 〉.

Now Pn
def= |n〉〈n| may be regarded as an operator in the sense that

PnΦ
def= (Ψn,Φ)Ψn. Because it projects any arbitrary vector on Ψn, Pn

is called a projection operator, whose two defining characteristics are that
it is Hermitian and idempotent, which means that P2

n = Pn.
It is therefore convenient to define the density operator of a system by

ρρ
def=
∑
n

pn|n〉〈n| =
∑
n

pnPn, (1.14)

where the numbers pn are non-negative, such that
∑
n pn = 1, and PnPm =

Pnδnm. If the state of a given system is described by ρρ, the probability of
finding it to have the properties of the state Φ is expressed by

P (Φ, ρρ) = (Φ, ρρΦ) = 〈 |ρρ| 〉 = 〈ρρ〉. (1.15)

In the special instance in which pn = 0 for all n but one, the density
operator degenerates into a single projection onto the ray representing an
isolated, “shaved” state of the system.

For example, if the system is definitely in one of the two uncorrelated,
truly independent states |1〉 = Ψ1 or |2〉 = Ψ2 with probability 1

2 each,
its density operator is ρρ = 1

2 (P1 + P2) and the probability of finding it
to agree with the state Φ is P (Φ|ρρ) = 1

2 [|(Φ,Ψ1)|2 + |(Φ,Ψ2)|2], without
the interference term present if it were in a superposition of the two states
Ψ1 and Ψ2. Equation (1.15) also implies that if a system is in the state
described by ρρ, the probability of obtaining the result A upon measurement
of the variable A is given by

P (A | ρρ) =
(ΨA, ρρΨA)
(ΨA,ΨA)

=
〈A|ρρ|A〉
〈A|A〉 = tr(PA ρρ), (1.16)

where PA is the projection on the eigenspace of A at the eigenvalue A and
tr denotes the trace (see Appendix B).

Suppose we perform a measurement of the variable A on a system in a
pure state Φ (assumed normalized), so that the probability of obtaining the
result A is given by P (A|Φ) = |(ΨA,Φ)|2 if ΨA is a normalized eigenstate
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of A with the eigenvalue A. (Assume for simplicity that the spectrum of A
is discrete and without degeneracies.) After the measurement with the out-
come A, the state of the system is pure and given by PAΦ = ΨA(ΨA,Φ). On
the other hand, the state of the system after the measurement irrespective
of the outcome8 is not pure but described by the density operator

ρρA =
∑
A

|(ΨA,Φ)|2PA =
∑
A

|A〉 〈 |A〉 〈A| 〉 〈A|, (1.17)

whose eigenvalues are |(ΨA,Φ)|2 and whose eigenfunctions are ΨA = |A〉.9
After the measurement, the system is therefore no longer in a pure state
but in a mixed state.10 More generally, if the state of the system before the
measurement is described by the density operator ρρ, then its state after
the measurement of A, with the “outcome ignored,” is described by

ρρA =
∑
A

PAρρPA. (1.18)

If a system, consisting of two subsystems with Hilbert spaces HI and HII,
is in the pure state Ψ =

∑
nm anmΨI

n ⊗ ΨII
m, then the state of system I,

with system II ignored, is described by the density operator11

ρρ(I) =
∑
n

bnmP(I)
nm, bnm =

∑
k

anka
∗
mk, (1.19)

where
P(I)
nm = |n〉(I) (I)〈m|,

meaning that P(I)
nmΦI = ΨI

n(Ψ
I
m,Φ

I). This may be expressed in the more
general form applicable also to instances in which the system as a whole is
in a mixed state,

ρρ(I) = trIIρρ, (1.20)

where trII means that the trace is taken only over the states in HII. Even
when the complete system is in a pure state, a given subsystem is generally
in a mixed state, represented by a density operator.

8This is often expressed by saying “the outcome is ignored.” Such a formulation,
however, gives the misleading impression that what the experimenter knows or has in
mind influences the state of the physical system. No such inference should be drawn.

9Suppose a standard two-slit experiment is performed with electrons made
visible on a screen and photographed. Describe the state in which “the out-
come is ignored”; how would you record it?

10In terms of ensembles, the measurement of A with the result A yields a new en-
semble of states in each of which A has the same value A (this ensemble is described
by an eigenvector of A with the eigenvalue A). The measurement of A “with the result
ignored” yields an ensembles in which each of the possible eigenvalues A is represented
in proportion to the number of times A was obtained in the measurement. This set is
described by the density operator (1.17).

11Prove this as an exercise.
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As an illustration, consider the example of the radioactive decay of an
infinitely massive (therefore non-recoiling) nucleus in a pure state, with
the emission of an electron and an antineutrino, so that the final state of
the two-particle system consisting of the electron and the antineutrino is
schematically given by

Ψ = Σ
∫
α1α2

f(α1, α2)Ψel(α1)⊗Ψneu(α2),

where Ψel(α1) is the state of the electron, Ψneu(α2) is the state of the
antineutrino, and α1 and α2 denote the eigenvalues or quasi-eigenvalues of
the needed dynamical variables: the energy, the momentum direction, the
angular momentum, etc. If the antineutrino is ignored, the probability of
obtaining the result β upon a measurement on the electron alone is given
by

Σ
∫
γ

|(Ψ,Ψel(β)⊗Ψneu(γ))|2 = Σ
∫
γ

∣∣∣∣Σ∫
α1α2

f(α1, α2)(Ψel(α1),Ψel(β))

× (Ψneu(α2),Ψneu(γ))
∣∣∣2

= (Ψel(β), ρρelΨel(β)),

where

ρρel = Σ
∫
α′

1α
′′
1

[
Σ
∫
γ

f(α′1, γ)f
∗(α′′1 , γ)

]
|α′1〉el〈α′′1 |el.

This shows that, as remarked earlier, the state of the electron will be a
mixture, rather than a superposition, of different momenta and angular
momentum projections.

For another example, take the vectors |En〉 = ΨEn to be normalized
eigenstates of the Hamiltonian H (the energy operator), and let Pn

def=
|En〉〈En| be the projection on |En〉. If the probability of finding the system
in the state |En〉 is p(En), then the density operator of the mixed state in
which there are no correlations between these eigenstates of H is given by

ρρ =
∑
n

p(En)Pn =
∑
n

p(H)Pn = p(H)

because HPn = EnPn and
∑
n Pn = 11 [see (1.23) below]. For a system

in thermodynamic equilibrium at the temperature T , with constituents
distributed according to the Boltzmann distribution p(E) = e−E/kT (where
k is the Boltzmann constant), the density operator can therefore be written
in the simple form

ρρ = e−H/kT . (1.21)

The density operator is the most general representation of an isolated
quantum state. Because we had assumed that the states Ψn in (1.14) are
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mutually exclusive, which means these vectors are mutually orthogonal,
(Ψn,Ψm) = δnm, (1.14) shows that they are the eigenvectors and the pn
are the eigenvalues of ρρ. Since pn ≥ 0 for all n, the density operator is
positive semi-definite, and since the probabilities pn have to add up to
unity,

∑
n pn = 1, its trace, i.e., the sum of its eigenvalues, equals unity:

trρρ = 1. (1.22)

Furthermore we have ρρ2 =
∑
n p

2
n|n〉〈n|, so that 〈ρρ − ρρ2〉 =

∑
n(pn −

p2
n)|〈n| 〉|2 ≥ 0, because for all n, 0 ≤ pn ≤ 1, and therefore pn − p2

n > 0
unless pn = 0 or 1. Only if a single pn = 1 and all others vanish can
we have 〈ρρ − ρρ2〉 = 0. This is the special case in which the system can
be represented by a ray spanned by the vector Ψ def= |a〉, and the density
operator degenerates to a single projection on this ray: ρρ = |a〉〈a|. The
density operator of such a state has the special property of being idempotent:
ρρ2 = ρρ and hence being a projection (on the ray representing the non-
mixed, isolated state).12 The trace of ρρ2 is a number between 0 and 1:
0 < trρρ2 =

∑
n p

2
n ≤

∑
n pn = 1, where the equality holds if and only if

one of the pn = 1 while all the others vanish, which means that ρρ denotes a
non-mixed state. Therefore, for any given system, trρρ2 may be taken to be a
relative measure of the “degree of mixing” or “coherence” of its state. How
small the minimum value of trρρ2 is when the state is completely incoherent,
however, depends on the number of states available to the system: if there
are n states, the minimum of trρρ2 is 1/n.13

1.4 Representations

The spectrum of every Hermitian operator on a Hilbert space H spans the
space: this is the mathematical expression of the physical requirement that
the measurement of an observable on any system must yield some result.
Suppose, to begin with, that the Hermitian operator A corresponding to
the observable A has a discrete point spectrum only, and that to each of its
eigenvalues A there corresponds a one-dimensional eigenspace spanned by
ΨA, i.e., there is no degeneracy; then every Ψ ∈ H can be expanded on the
basis of these mutually orthogonal vectors in the form (1.2). The sequence
of coefficients given by (1.3) as cA = (ΨA,Ψ) = 〈A| 〉 therefore uniquely
represents the vector Ψ; the set of numbers {〈A| 〉}, where A runs over the
spectrum of A, is the A-representation of | 〉. If there is degeneracy, i.e., if
some, or all, of the eigenspaces are multidimensional, then more than one

12I am using the term “non-mixed” rather than “pure” because the state is not as
well defined as nature permits; it is isolated and has “no hair.” States represented by a
density operator never have “hair.”

13Prove this as an exercise.
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physical variable is needed to specify each possible state of the system and
a complete set of commuting observables has to be used to label the basis
uniquely.

A very convenient way of expressing the completeness (1.2) together with
(1.3) is in the formula [assuming 〈A|A〉 = 1 for all A; see (B.16) in Appendix
B] ∑

A

|A〉〈A| = 11, (1.23)

where 11 stands for the unit operator on H. The meaning of (1.23) becomes
clear when both sides act on an arbitrary vector | 〉 ∈ H, in which case it
reads

| 〉 =
∑
A

|A〉〈A| 〉,

combining (1.2) with (1.3). The use of (1.23) becomes particularly conve-
nient when we want to express an arbitrary inner product of two vectors
ΨB = |B〉 and ΨC = |C〉 in the A-representation:

(ΨC ,ΨB) = 〈C|B〉 = 〈C|11|B〉 =
∑
A

〈C|A〉〈A|B〉 =
∑
A

〈A|C〉∗〈A|B〉.

(1.24)
The two quantities appearing on the right-hand side are simply the A-
representations of the vectors |B〉 and |C〉. As a special case of (1.24) we
have, for B = C,

(ΨB ,ΨB) =‖ ΨB ‖2= 〈B|B〉 =
∑
A

|〈A|B〉|2,

or more generally,

‖ Ψ ‖=
√∑

A

|〈A| 〉|2,

expressing the norm of an arbitrary state vector in terms of its A-representation.
Similarly for an arbitrary operator X:

(ΨC ,XΨB) = 〈C|X|B〉 = 〈C|11X11|B〉 =
∑
AA′
〈C|A〉〈A|X|A′〉〈A′|B〉,

which expresses the left-hand side completely in terms of the set of numbers
〈A|X|A′〉 and the A-representatives of |B〉 and |C〉. In other words, in
the A-representation the abstract operator is replaced by a matrix, whose
elements are given by XAA′ = 〈A|X|A′〉. Since operator multiplication now
simply becomes matrix multiplication,

〈A|XY|A′〉 = 〈A|X11Y|A′〉 =
∑
A′′
〈A|X|A′′〉〈A′′|Y|A′〉,
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all abstract calculations in H can be replaced by ordinary numerical matrix
calculations.

These things become a little stickier if the Hermitian operator A has
a continuous spectrum, in which case the quasi-eigenvectors are not in H.
(See Appendix B.3.1 for details.) The Dirac notation, however, is designed
to allow us to manipulate all the formulas given above just as for discrete
spectra, simply replacing sums by integrals: Eq. (1.23) is relaced by (B.23)
in the Appendix, and with the “normalization” (B.24) we obtain the gen-
eralized Fourier integral

| 〉 =
∫
dA |A〉〈A| 〉,

in which |A〉 plays a role analogous to the exponential exp(ikx) and the
integral extends over the continuous spectrum of A.

The “matrix” representing the operator X becomes the kernel X(A′, A′′)
of an integral operator, since by (B.23)

〈A|X|A′〉 = 〈A|11X11|A′〉 =
∫
dA′′ dA′′′ 〈A|A′′〉〈A′′|X|A′′′〉〈A′′′|A′〉

def=
∫
dA′′ dA′′′ 〈A|A′′〉X(A′, A′′)〈A′′′|A′〉.

As we shall see, however, in some instances they become equivalent to
differential operators.

Suppose that |A1〉 is an eigenvector of the operator A with the dis-
crete eigenvalue A1. Then its A-representation {〈A|A1〉} is a sequence with
〈A1|A1〉 = 1 and zeros everywhere else. (This is on the assumption that
there is no degeneracy; if there is, there may be several nonzero entries in
the sequence.) In the A-representation, the operator A acting on an arbi-
trary vector | 〉 becomes simply the number A multiplying the entry 〈A| 〉
in the sequence,

〈A|A| 〉 = A〈A| 〉,
which may be viewed as expressing the fact that the matrix representing the
operator A in the A-representation is diagonal, with the eigenvalues of A on
the diagonal, because 〈A′|A|A′′〉 = A′′〈A′|A′′〉 = A′′δA′A′′ . One therefore
refers to the problem of finding all the eigenvectors of an observable also
as the problem of diagonalizing the matrix representing it on an arbitrary
basis. (We shall discuss this in more detail a little later; see also Appendix
B.)

For continuous spectra, these things are formally the same, even though
there are no actual eigenvectors. The A-representation of a quasi-eigenvector
|A1〉 is the Dirac delta function δ(A− A1), a “function” that differs effec-
tively from zero only at the point A = A1. As for the integral kernel
representing A, it becomes a multiple of the delta function: 〈A′|A|A′′〉 =
A′δ(A′ −A′′). Here are some specific examples of particular importance.
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1.4.1 The configuration representation
Let us begin with the simple case of a single point particle, a system of three
degrees of freedom. The three parameters needed to identify the location of
the particle are denoted by �q, the vector whose components are equal to its
three Cartesian coordinates in Euclidean space. However, the vector �q, as
a dynamical variable, does not denote a point in physical space but a point
in configuration space. For two particles, a system of 6 degrees of freedom,
the 6 needed dynamical variables are the Cartesian coordinates �q1 and �q2
which identify the locations of particles #1 and #2 in physical space and
which make up a vector in the six-dimensional configuration space. Only
for a single particle are the dimensions of the physical space equal to those
of the configuration space; even in that case, however, the two spaces are
distinct and must not be confused.

So the dynamical variables of a single particle in its configuration space
are the three components of �q, and the corresponding mutually commuting
(see Section 2.1.3) Hermitian operators will be denoted by �q. We are now
going to construct their spectra.

Let the eigenvector or quasi-eigenvector of the three components of �q
with the eigenvalues or quasi-eigenvalues �q be |�q〉, so that �q|�q〉 = �q|�q〉. Using
the canonical commutation relation (1.12), we then find for any small real
ε, to first order in ε, that

ql [11− i(ε/�)pl] |ql〉 = [ql − i(ε/�)plql + ε]|ql〉 = (ql + ε) [11− i(ε/�)pl] |ql〉,

which implies that [11− i(ε/�)pl]|ql〉 is an eigenvector or quasi-eigenvector
of ql with the eigenvalue or quasi-eigenvalue ql + ε,

[11− i(ε/�)pl] |ql〉 = |ql + ε〉. (1.25)

This equation, for the derivation of which we used nothing but the com-
mutation relations (1.12), allows us to draw three important conclusions.
The first is that the spectrum of all three components of �q must be continu-
ous: if ql is a quasi-eigenvalue of the l-component ql of the particle-position
operator, then so is ql + ε for any small real ε. Furthermore, this spectrum
must fill the real line from −∞ to +∞, because the only way in which
(1.25) could break down is for [11− i(ε/�)pl]|ql〉 to vanish. But this would
require that the Hermitian operator εpl/� have the quasi-eigenvalue −i,
which is impossible. Hence the spectrum of ql has to be unbounded above
and below.

Since �q is Hermitian and its three components commute, the simulta-
neous quasi-eigenvectors |�q〉 of its three components form a quasi-basis, so
that any vector | 〉 ∈ H can be expanded as in a Fourier integral:

| 〉 =
∫
d3q |�q〉〈�q| 〉, (1.26)



20 1. Quantum Basics: Statics

an equation that we can write symbolically as∫
d3q |�q〉〈�q| = 11. (1.27)

Since 〈�q|�q| 〉 = �q〈| 〉, the operator �q in this representation is simply the
numerical vector �q.

The second conclusion we can draw from (1.25) is that, since a rearrange-
ment of it reads

i�
|ql + ε〉 − |ql〉

ε
= pl|ql〉,

we find in the limit as ε→ 0, pl|ql〉 = i� ∂
∂ql
|ql〉, or

�p|�q〉 = i�∇q|�q〉.

Therefore we obtain for matrix elements 〈 |�p|�q〉 = 〈 |i�∇q|�q〉 = i�∇q〈 |�q〉;
but 〈 |�q〉 is the complex conjugate of the configuration representation of the
vector | 〉, that is, of the configuration-space wave function

ψ(�q) def= 〈�q| 〉

representing the state | 〉. We have therefore found that in the configuration
representation, the momentum operator is given by �p = −i�∇q,

�pψ(�q) = −i�∇qψ(�q), (1.28)

and the expectation value of the momentum is calculated by means of the
formula

〈�p〉 =
∫
d3q ψ(�q)∗(−i�∇q)ψ(�q),

assuming that
∫
d3q|ψ(�q)|2 = 1.

The third conclusion we can draw from (1.25) is to extend it to all finite
shifts a of q by setting ε = a/n, applying (1.25) n times, and letting n→∞.
This leads to the result

|�q + �a〉 = lim
n→∞ [11− i(�p · �a/n�)�p]n |�q〉 = exp(−i�p · �a/�)|�q〉, (1.29)

which identifies the momentum operator �p as the generator of translations.
Note that a power series expansion of the exponential in (1.29) and the use
of (1.28) yields the Maclaurin-series of the left-hand side.

In the configuration representation, the Hilbert space H of a one-particle
system is the space of square-integrable functions of three real variables
(also called L2(IR3)), and the state vector of the system is represented by
a square-integrable function ψ(�q) of the particle’s position �q in its configu-
ration space, with an inner product defined by

(Φ,Ψ) =
∫
d3q φ∗(�q)ψ(�q). (1.30)
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The physical interpretation of the wave function ψ(�q) is that of a probability-
density amplitude, in the sense that the probability of finding the particle in
the infinitesimal neighborhood d3q of the point �q in its configuration space
is given by |ψ(�q)|2d3q. It is also customary to define the probability-current
density of a particle of mass M in its configuration space by

�j(�q) def= − i�

2M
[ψ∗(�q)∇ψ(�q)− (∇ψ∗(�q))ψ(�q)], (1.31)

an expression which makes good physical sense in that the operator−i�∇/M
has the significance of the velocity �p/M , and the two terms are needed to
make the current density real. The density matrix in the configuration rep-
resentation is given in terms of the density operator by

ρρ(�q, �q′) = 〈�q|ρρ|�q′〉 = Σ
∫
n

pnψn(�q)ψ∗n(�q
′). (1.32)

It is extremely important to keep in mind that the wave function ψ is not
a function on physical space but on the configuration space of a particle; ψ
must certainly not be thought of as a condition of space. [The configura-
tion representation is also often referred to as “coordinate representation”;
this name, however, is misleading, because the “coordinate-space” wave
function is not defined on physical space but on the configuration space
of particles; for two particles, it is a function of six variables (see below)
and thus lives on a six-dimensional space, the configuration space of the
two particles. In order to emphasize this point, we denote the particle co-
ordinates as �q rather than �r in this chapter.] Without a clear recognition
of the distinction between physical space and configuration space one is
easily led into puzzling paradoxes, particularly in connection with the de-
scription of measurements. Remember that after a system in a pure state
Ψ is subjected to a measurement of an observable A with the outcome A,
its new state is an eigenvector ΨA of A with the eigenvalue A, i.e., its
state is instantly changed from Ψ to ΨA. If this basic assumption of quan-
tum physics is described in terms of “coordinate space” wave functions, it
leads to the notorious “collapse of the wave function,” which has been end-
lessly discussed over the years because it appears to be an instantaneous
action-at-a-distance effect characteristic of the quantum world. In reality it
should be recognized as the inevitable effect of the probabilistic nature of
quantum physics. Whenever a probabilistic prediction is confronted with an
individual experimental result, the probability distribution instantaneously
“collapses” to a single point. If you are playing roulette and bet your last
$10 on #17, when the ball comes to rest, your state instantly changes from
one in which the probability of owning $360 is 1/36, either to a state in
which you definitely own $360 or to a state in which you are broke. This
becomes puzzling only if wave functions or probability densities are thought
to be analogous to electric fields, defined as conditions of physical space,
so that the collapse appears to be a long-range physical effect.
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For n particles these results are easily generalized. The configuration
space is now 3n-dimensional, and H is the space of square-integrable func-
tions of 3n variables �qk, k = 1, . . . , n, while the momentum of the kth

particle is represented by the differential operator �pk = −i�∇qk
, and

|ψ(�q1, . . . , �qn)|2d3q1 · · · d3qn is the probability for the particles to be found
in the volume element d3q1 · · · d3qn near the point �q1, . . . , �qn of their joint
configuration space. The probability density of one of these particles is ob-
tained from this by integrating |ψ(�q1, . . . , �qn)|2 over the coordinates of the
others. More generally, if the n-particle system is in a pure state with the
(normalized) configuration wave function ψ(�q1, . . . �qn), then particle #1,
considered by itself and isolated, is in a mixed state and its density matrix
is given by

ρρ(�q1, �q′1) =
∫
d3q2 · · · d3qn ψ(�q1, �q2, . . .)ψ∗(�q′1, �q2, . . .). (1.33)

Since the Hilbert space of an n-particle system is the tensor product of
n Hilbert spaces of single-particle systems, every n-particle wave function
can be expanded in a series of products of single-particle wave functions in
the form

ψ(�q1, . . . , �qn) =
∑

k1,...,kn

ak1,...,kn
ψk1(�q1) · · ·ψkn(�qn), (1.34)

if the functions ψk(�q) form a basis in the one-particle Hilbert space.14

1.4.2 The momentum representation
Since all our results concerning the configuration representation were based
on the commutation relation (1.12), which, apart from a sign, is symmet-
rical between �p and �q, we can draw similar conclusions for the momentum
representation. Thus we find that the spectra of the three components of �p
must generally be continuous, running from −∞ to +∞, and a one-particle
system’s Hilbert space can be represented by the space of square-integrable
functions ψ̂(�p) def= 〈�p| 〉 representing the states Ψ = | 〉, with the inner prod-
uct

(Φ,Ψ) =
∫
d3p φ̂∗(�p)ψ̂(�p). (1.35)

The momentum operator is here represented simply by the numerical vector
�p multiplying ψ̂(�p), and the operator �q, operating on a momentum-space
wave function, is represented by the differential operator

�qψ̂(�p) = i�∇pψ̂(�p),

14As an exercise, prove that ΨI ⊗ ΨII is mapped into the product ψIψII of
the corresponding wave functions.
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so that the expectation value of �q is given by

〈�q〉 =
∫
d3p ψ̂(�p)∗(i�∇p)ψ̂(�p).

The physical interpretation of the momentum-space wave function is anal-
ogous to that in configuration space: |ψ̂(�p)|2d3p is the probability for the
particle to have its momentum in the neighborhood d3p of �p.

Again, these things are easily generalized to n particles. The Hilbert
space H is the space of square-integrable functions of 3n variables �pk, k =
1, . . . , n, and the position of the kth particle in its configuration space
is represented by the differential operator �qk = i�∇pk

. The physical in-
terpretation of ψ̂(�p1, . . . , �pn) is that of a probability-density amplitude:
the probability that the momenta of the particles lie in the neighborhood
d3p1 · · · d3pn of the point �p1, . . . , �pn is |ψ̂(�p1, . . . , �pn)|2d3p1 · · · d3pn.

There is, however, an important exception to the continuity of the spec-
trum of the momentum operator, if the particle is confined to a finite spatial
region such as a box. Let us, for simplicity, take a one-dimensional situation
and assume the “box” has length b. Such a case is handled most simply
by repeating the “box” periodically, setting |q + b〉 = eiϕ|q〉, where ϕ is a
constant. As a result we obtain by (1.29)

〈p|q + b〉 = eiϕ〈p|q〉 = 〈p|e−ibp/�|q〉 = e−ibp/�〈p|q〉,

from which we may conclude that bp/� = 2πn−ϕ; the spectrum of p must
therefore consist of the points pn = 2π�

b n+ const., n = 0,±1,±2, . . .. Thus
confining the particle to a “box” has discretized the momentum spectrum.
The same result, of course, holds in three dimensions: if the coordinate
axes are chosen along the sides of the box with orthogonal edges of lengths
bi, i = 1, 2, 3, the ith component of the momentum pi has the eigenvalues
pi,ni = 2π�

bi
ni+const., ni = 0,±1,±2, . . .. The integral in (B.23) then has

to be replaced by a sum, quite analogous to the fact that, whereas Fourier
integrals are used to analyze functions defined on an infinite region, the
appropriate tool for functions on finite intervals is the Fourier series. (In
that case, too, any extension of the series outside the interval of definition
is necessarily periodic.)

1.4.3 The number representation
Just as (1.12) was the essential tool for determining the spectrum and
representations of �q and �p, so to get at the properties of the field operator
Ψ , we shall use the commutation relations

[Ψ(�r), Ψ†(�r′)] = δ3(�r − �r′), [Ψ(�r), Ψ(�r′)] = 0, (1.36)

which will be justified, along with (1.12), in Chapter 2 in the context of
dynamics. (We do not explicitly indicate the fact that the field operators
generally depend on the time; they are all taken at the same time.)
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First of all, it will facilitate the physical interpretation to perform a
Fourier transformation,

Ψ(�r) = (2π)−3/2
∫
d3k ei

�k·�rΨ̂(�k), (1.37)

so that
Ψ̂(�k) = (2π)−3/2

∫
d3r e−i�k·�rΨ(�r), (1.38)

which casts the commutation relations into

[Ψ̂(�k), Ψ̂ †(�k′)] = δ3(�k − �k′), [Ψ̂(�k), Ψ̂(�k′)] = 0. (1.39)

It will also be helpful for the moment to confine the system to a large box,
thereby replacing the Fourier integral by a Fourier series, so that Ψ̂(�k) is
replaced by Ψ̂i and (1.39) takes the form

[Ψ̂i, Ψ̂
†
j ] = δij , [Ψ̂i, Ψ̂j ] = 0. (1.40)

Now consider the Hermitian operator

Ni
def= Ψ̂ †i Ψ̂i, (1.41)

which, according to (1.40), satisfies the commutation relations

[Ni, Ψ̂i] = −Ψ̂i, [Ni, Ψ̂
†
i ] = Ψ̂ †i , (1.42)

and let |ni〉 be an eigenvector of Ni with the eigenvalue ni. It follows from
(1.42) that

NiΨ̂i|ni〉 = (Ψ̂iNi − Ψ̂i)|ni〉 = (ni − 1)Ψ̂i|ni〉,

which implies that Ψ̂i|ni〉 is an eigenvector of Ni with the eigenvalue ni−1.
Therefore, whenever ni is an eigenvalue of Ni, then so is ni−1, except when
Ψ̂i|ni〉 = 0. But the spectrum of the operator Ni is non-negative, because
for all Ψ ∈ H, (Ψ,NiΨ) = (Ψ, Ψ̂ †i Ψ̂iΨ) = (Ψ̂iΨ, Ψ̂iΨ) > 0, except when
Ψ̂iΨ = 0, in which case NiΨ = 0. Consequently, the downward sequence,
in integral steps, of eigenvalues of Ni must terminate before it becomes
negative, and that can happen only when Ψ̂iΨ = 0, which also means that
NiΨ = 0. We therefore conclude that the eigenvalues of Ni must be the
non-negative integers 0, 1, . . .. Similarly we find from (1.42) that

NiΨ̂
†
i |ni〉 = (Ψ̂ †i Ni + Ψ̂ †i )|ni〉 = (ni + 1)Ψ̂ †i |ni〉.

This sequence can terminate at the upper end only at some value of ni for
which Ψ̂ †i |ni〉 = 0, which would imply that 0 = 〈ni|Ψ̂iΨ̂ †i |ni〉 = 〈ni|Ni +
11|ni〉 = (ni+1)〈ni|ni〉, and therefore |ni〉 = 0. It follows that the sequence



1.4 Representations 25

cannot terminate and the eigenvalues of Ni are all the non-negative integers.

As for the normalization, if |ni〉 and |ni + 1〉 are normalized, then c|ni +
1〉 = Ψ̂ †i |ni〉, and hence |c|2 = 〈ni|Ψ̂iΨ̂ †i |ni〉 = 〈ni|Ni+11|ni〉 = ni+1; hence
we may choose c =

√
ni + 1, so that

Ψ̂ †i |ni〉 =
√
ni + 1|ni + 1〉. (1.43)

We then have |1i〉 = Ψ̂ †i |0〉, |2i〉 = 1√
2
Ψ̂ †i |1i〉 = 1√

2
(Ψ̂ †i )

2|0〉, |3i〉 = 1√
3
Ψ̂ †i |2i〉 =

1√
3!
Ψ̂ †i |0〉, and

|ni〉 =
1√
ni!

(Ψ̂ †i )
ni |0〉, (1.44)

where |0〉 is determined by
Ψ̂i|0〉 = 0 (1.45)

for all i, and we assume |0〉 to be normalized. We will tentatively interpret
this result (subject to later verification that this makes sense as far as the
energy is concerned) by saying that |ni〉 is the state that has n quanta
of wave vectors �ki (which, as we shall see in Chapter 2, means they have
momenta ��ki) and no others. The state |0〉 is the vacuum state; it has no
particles. Since all the Ni commute with one another,15

[Ni,Nj ] = 0, (1.46)

there is a complete set of common eigenfunctions.
A general one-quantum state is now given by Ψ1 = | 〉1 =

∑
i aiΨ̂

†
i |0〉, so

that the probability of finding the particle to have momentum ��ki is, by
(1.40) and (1.45),

|〈1i|
∑
j

ajΨ̂
†
j |0〉|2 = |〈0|

∑
j

ajΨ̂iΨ̂
†
j |0〉|2 = |ai|2.

If we abandon the Fourier series, going back to physical space, the general
one-particle state is given by

Ψ1 = | 〉1 =
∫
d3r f(�r)Ψ †(�r)|0〉, (1.47)

and the probability of finding the quantum in the region d3q in its config-
uration space is correspondingly given by |f(�q)|2d3q. By (1.36), the inner
product with another one-particle state Φ1 =

∫
d3q g(�q)Ψ(�q)|0〉, is given by

(Φ1,Ψ1) =
∫
d3q d3q′g∗(�q′)f(�q)〈0|Ψ(�q′)Ψ †(�q)|0〉 =

∫
d3q g∗(�q)f(�q).

15Prove this as an exercise.
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Hence we may conclude that the function f(�q) is nothing but the configura-
tion-space wave function of the one-particle state Ψ1 = | 〉1, and we have

|�q〉 = Ψ †(�q)|0〉, (1.48)

as well as
ψ(�q) = 〈�q| 〉1 = 〈0|Ψ(�q)| 〉1. (1.49)

For a two-particle state the configuration wave function is obtained in
the same manner,

ψ(�q1, �q2) = 〈0|Ψ(�q1)Ψ(�q2)| 〉2. (1.50)

Notice that it follows from (1.36) that the right-hand side of this equation
is symmetric under an exchange of �q1 and �q2, and so must therefore be the
left-hand side. In fact, the variables �q1 and �q2 do not refer to the coordinates
of two different particles at all; they refer, instead, to the two locations in
configuration space that are occupied by quanta. (This is why the number
representation is also referred to as the occupation-number representation.)
Thus the number representation, obtained from the field, automatically has
built into it one of the basic differences between classical and quantum par-
ticles, namely, their indistinguishability, which has profound consequences
for their statistics: instead of being subject to Maxwell-Boltzmann statis-
tics, they obey those of Bose and Einstein (see Chapter 9). You should
notice that whereas the field operator Ψ(�r) lives on physical space—it de-
notes a condition of space—at the point of converting its action on the
vacuum state, as in (1.50), to a wave function, the argument of the field
operator changes to denoting a point in configuration space occupied by a
particle; that’s why the variables in (1.50) were changed from �r to �q.

There is, however, an alternative to the commutation relation (1.36) for
the field, and that is

{Ψ(�r), Ψ†(�r′)} = δ(�r − �r′), {Ψ(�r), Ψ(�r′)} = 0, (1.51)

where {A,B} def= AB + BA is the anti-commutator, or for the Fourier-
transformed operators in the discrete form,

{Ψ̂i, Ψ̂ †j } = δij , {Ψ̂i, Ψ̂j} = 0, (1.52)

the second equation of which implies that Ψ̂2
i = 0. Again defining Ni =

Ψ̂ †i Ψ̂i, we now obtain NiΨ̂i = 0, Ψ̂iNi = Ψ̂i, and N2
i = Ni. The last equation

implies that Ni has only two eigenvalues, 0 and 1 (because the eigenval-
ues have to obey the same equation, n2

i = ni), while we get from the first
Ψ̂i|0〉 = 0 and from the Hermitian adjoint of the first, NiΨ̂

†
i |0〉 = Ψ̂ †i |0〉,

which implies that Ψ̂ †i |0〉 = c|1i〉. Assuming both |0〉 and |1i〉 to be normal-
ized, we find furthermore that |c|2 = 〈0|Ψ̂iΨ̂ †i |0〉 = 〈0|0〉 = 1. So the two
normalized eigenvectors of Ni are defined by

Ψ̂i|0〉 = 0, |1i〉 = Ψ̂ †i |0〉, (1.53)
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while Ψ̂ †i |1i〉 = 0. Again, all the number operators commute, i.e., (1.46)
holds, and there is a complete set of common eigenvectors.

Returning to space coordinates, we may proceed as before to define one-
particle configuration wave functions by

ψ(�q) = 〈�q| 〉 = 〈0|Ψ(�q)| 〉1 (1.54)

and two-particle wave functions by

ψ(�q1, �q2) = 〈0|Ψ(�q2)Ψ(�q1)| 〉2. (1.55)

Now, however, this wave function is anti-symmetric in its two arguments
rather than symmetric; furthermore, because ψ(�q1, �q1) = 0, the two parti-
cles satisfy the exclusion principle. In the aggregate, they therefore obey
Fermi-Dirac rather than Bose-Einstein statistics. We shall return to a more
detailed discussion of multi-particle systems and their properties in Chap-
ter 9.

What have we learned from the introduction of the number representa-
tion? Whereas earlier we had started by assuming the existence of point
particles and described systems by means of the positions and momenta of
these particles as dynamical variables, the new point of departure was the
quantum field. The operator properties of this field then generated quanta
or particles on its own, and the description of physical systems ended up
exactly as before. It may therefore be deemed a matter of choice whether
to regard the particles as the fundamental entities, or the field, or both,
as was the classical approach. The quantum field description, however,
automatically produces particles with quantum properties such as indis-
tinguishability and the two alternatives of symmetric and anti-symmetric
wave functions, properties that would otherwise have to be artificially in-
troduced into the formalism as separate postulates. The field should there-
fore be considered the more fundamental starting point for the quantum
description of nature, with particles arising as a result of the commuta-
tion rules. Indeed the entire notion of the existence of stable objects called
particles is a consequence of the properties of the quantum field.

1.5 Transformation Theory

Suppose that we have a representation {an = 〈An| 〉, n = 1, 2, . . . , } of
a given vector | 〉 on an orthonormal basis |An〉, i.e., | 〉 =

∑
n an|An〉, so

that all states of a system are represented in terms of their probability
amplitudes for finding the results An upon measurement of the dynamical
variable A. In order to understand the system, we have to be able to re-
late this given representation to others, based on measurements of other
variables B. For instance, B may be the same physical parameter as A,
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but expressed with respect to another coordinate frame, or, to allow us to
describe the dynamics of the system, B may be the same variable A at a
later time, or else it may be quite unrelated to A.

To represent | 〉 on another basis of orthonormal vectors |Bn〉, i.e., to
use the probability amplitudes for the measurement outcomes of another
variable B rather than A, takes a unitary transformation, which we find by
expanding each new basis vector on the old basis:

|Bn〉 =
∑
m

|Am〉U (12)
mn , (1.56)

where
U (12)
mn

def= 〈Am|Bn〉. (1.57)

That this transformation is unitary is easily checked by using (1.23):

(U (12)U (12)†)mn =
∑
k

〈Am|Bk〉〈Bk|An〉 = 〈Am|An〉 = δmn,

and similarly for the matrix U (12)†U (12).16

Another way of looking at this basis transformation (see also Appendix
B) is to regard U(12) as the operator that maps every basis vector of the
first basis onto its counterpart in the second,

U(12)|An〉
def= |Bn〉. (1.58)

As (1.57) shows, the operator so defined has U (12)
mn as its matrix elements

in the basis {|An〉}:
U (12)
mn = 〈Am|U(12)|An〉.

The same transformation then allows us to express the matrix X(2)
nm rep-

resenting the operator X on the second basis in terms of its representation
X

(1)
nm on the first. With X(2)

nm = 〈Bn|X|Bm〉, inserting (1.56) yields

X(2)
nm =

∑
kl

U
(12)∗
kn X

(1)
kl U

(12)
lm =

∑
kl

(U (12)†)nkX
(1)
kl U

(12)
lm . (1.59)

Since U (12)† = U (12)−1 = U (21), this can also be written in the form

X(2)
nm =

∑
kl

U
(21)
nk X

(1)
kl U

(12)
lm . (1.60)

Alternatively, this transformation may be viewed as using (1.58) and writ-
ing

X(2)
nm = 〈An|U(12)†XU(12)|Am〉, (1.61)

16Remember that in order for an operator U to be unitary it is necessary and sufficient
that both UU† = 11 and U†U = 11. Similarly for an infinite-dimensional matrix.
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which means thatX(2)
nm is the matrix, on the old basis, of the unitarily trans-

formed operator U(12)†XU(12). Such tranformations are called canonical,
and we shall return to them later. If the new basis is an orthonormal set of
eigenvectors of X, {|Bn〉 = |Xn〉}, then the eigenvectors of the transformed
operator U†XU, which has the same eigenvalues as X, are {|An〉 = U†|Xn〉},
and the transformed operator is diagonal on the old basis.

These transformations work analogously for continuous spectra of Her-
mitian operators and their quasi-eigenvectors satisfying (B.23) and (B.24).
Supposing that another set satisfies

〈B|B′〉 = δ(B −B′), and
∫
dB |B〉〈B| = 11, (1.62)

we define an integral kernel17 or transformation function U (12)(A,B) def=
〈A|B〉, so that

|B〉 =
∫
dA |A〉U (12)(A,B). (1.63)

Again, this kernel is unitary in the sense that∫
dB U (12)(A,B)U (12)∗(A′, B) = δ(A−A′),

∫
dAU (12)∗(A,B)U (12)(A,B′) = δ(B −B′),

and it also serves to transform the integral kernel of an operator X, given
in the A-representation, into the corresponding integral operator in the
B-representation:

X(2)(B,B′) = 〈B|X|B′〉 =
∫
dAdA′ U (12)∗(A,B)〈A|X|A′〉U (12)(A′, B′)

=
∫
dAdA′ U (12)∗(A,B)X(1)(A,A′)U (12)(A′, B′). (1.64)

Suppose now that we are given a Hermitian operator B and its repre-
sentation on a basis {|An〉}, namely, B(1)

nm = 〈An|B|Am〉. On the basis of
its own orthonormal eigenvectors, the matrix representing B is diagonal:
〈Bn|B|Bm〉 = Bnδnm. Therefore, the unitary transformation that takes us
from the A-representation to the B-representation diagonalizes the Hermi-
tian matrix B(1)

nm:∑
kl

(U (12)†)nkB
(1)
kl U

(12)
lm = B(2)

nm = Bnδmn. (1.65)

17Strictly speaking, it is not an integral kernel in the mathematical sense; it usually
has a component that is a Dirac delta-function; in other words, it is a distribution.
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Thus, for a Hermitian operator given as a matrix in some representation,
the problem of finding its eigenvalues and eigenvectors is equivalent to find-
ing the unitary transformation that diagonalizes the matrix, as we already
noted earlier.

In view of the formal similarity of the expressions of these transforma-
tions, independently of whether the matrix elements are between vectors
or quasi-vectors, it is most convenient always to write the transformation
functions in the form 〈A|B〉, irrespective of whether the values of A or B
run over discrete or continuous sets. The summations and/or integrations
will then be indicated by Σ

∫
with a subscript.

Finally, note the composition law obeyed by the transformation func-
tions. If we perform a transformation from one basis (or continuous quasi-
basis) to a second, followed by a transformation to a third, the total trans-
formation is the product, in a matrix sense, of the two, as in

Σ
∫
A

〈B|A〉〈A|C〉 = 〈B|C〉, (1.66)

which follows from (B.23) in the Appendix.
Let us take a specific case and construct the transformation function that

leads from the configuration representation to the momentum representa-
tion of a one-particle system, that is, the function 〈�p|�q〉. In that case we
have

〈�p|�p|�q〉 = i�∇q〈�p|�q〉 = �p〈�p|�q〉.
This differential equation for 〈�p|�q〉 is easily solved, with the result

〈�p|�q〉 = (2π�)−3/2e−i�p·�q/�, (1.67)

the constant (2π�)−3/2 being chosen to make the transformation unitary,
so that both quasi-bases are δ-normalized. Consequently, we have

|�q〉 = (2π�)−3/2
∫
d3p e−i�q·�p/�|�p〉, |�p〉 = (2π�)−3/2

∫
d3q ei�q·�p/�|�q〉,

(1.68)
which shows that the momentum-space wave function and the configuration-
space wave function are simply one another’s Fourier transforms:

ψ̂(�p) = 〈�p| 〉 = (2π�)−3/2
∫
d3q e−i�q·�p/�〈�q| 〉 = (2π�)−3/2

∫
d3q e−i�q·�p/�ψ(�q),

(1.69)

ψ(�q) = 〈�q| 〉 = (2π�)−3/2
∫
d3p ei�q·�p/�〈�p| 〉 = (2π�)−3/2

∫
d3p ei�q·�p/�ψ̂(�p).

(1.70)
The configuration representations of the quasi-eigenfunctions of the mo-

mentum are nothing but the transformation functions 〈�q|�p〉, which are the
complex conjugates of (1.67):

ψ�p(�q) = 〈�q|�p〉 = (2π�)−3/2ei�p·�q/�, (1.71)
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and these are appropriately δ-normalized. Since these wave functions are
not square integrable and thus not in the Hilbert space L2, they do not
represent states of a particle in the ordinary sense. The fact that their
norms are infinite might be interpreted as an indication that they may be
regarded as representing a collection of infinitely many particles: infinitely
long and wide beams of particles with the momentum �p, which is consistent
with the fact that (1.71) implies a uniform current density, as defined by
(1.31), of �p/[M(2π�)3].

For particles confined to a line, a one-dimensional space, these equations
become

ψ̂(p) = 〈p| 〉 = (2π�)−1/2
∫
dq e−iqp/�〈q| 〉 = (2π�)−1/2

∫
dq e−iqp/�ψ(q),

(1.72)

ψ(q) = 〈q| 〉 = (2π�)−1/2
∫
dp eiqp/�〈p| 〉 = (2π�)−1/2

∫
dp eiqp/�ψ̂(p),

(1.73)
and

ψp(q) = 〈q|p〉 = (2π�)−1/2eipq/�. (1.74)

Analogous relations hold for n-particle systems:

〈�p1, . . . , �pn| 〉 = (2π�)−3n/2
∫
d3q1 · · · d3qn e

−i∑j �qj ·�pj/�〈�q1, . . . , �qn| 〉,

〈�q1, . . . , �qn| 〉 = (2π�)−3n/2
∫
d3p1 · · · d3pn ei

∑
j �qj ·�pj/�〈�p1, . . . , �pn| 〉.
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1.6 Problems and Exercises

1. Show how (1.14) implies that pn are the eigenvalues of the density
operator.

2. Calculate the Fourier transform of the function e−α|x| cos(βx), where
α > 0, and of the function 1

α2+x2 .

3. Calculate the three-dimensional Fourier transform of the function
e−αr cos(βr), where α > 0.

4. A 1-ounce rifle bullet takes 0.5 sec to reach its target. Regarding the
bullet as a mass point, and neglecting effects of air resistance and
earth motion, find the order of magnitude of the minimal spread of
successive shots at the target under optimal conditions of aiming and
firing.

5. Suppose you try to balance an ice pick on its point, setting it up
under optimal conditions. What is the longest time T you can expect
it to stand more or less straight? If, performing this experiment, you
manage to keep the pick standing for a longer time than T , have you
thereby disproved quantum mechanics?

6. Consider a one-dimensional system near stable equilibrium. If you try
to set it up at rest in its equilibrium position, what is its minimum
energy on account of Heisenberg’s uncertainty principle?

7. A wheel on a frictionless axle is made to rotate freely with a given
angular momentum. We wish to predict the angular position of a
mark on the wheel after a time t. If the wheel is set in motion under
experimentally optimal conditions, how long does it take until the
position of the mark is entirely uncertain?

8. Two independent physical systems can each exist in three eigenstates
of the operator C, Ψi, i = 1, 2, 3 with the eigenvalues Ci, i.e., CΨi =
CiΨi. They are combined into a total system S whose state is

Ψ = Ψ(a)
1 ⊗Ψ(b)

3 +
1
3
Ψ(a)

3 ⊗Ψ(b)
1 +

1
5
Ψ(a)

3 ⊗Ψ(b)
2 .

Calculate the probability that a measurement on system a that ig-
nores system b will yield the result C3. Exhibit the density matrices
for system a alone and for system b alone.



2
Quantum Basics: Dynamics

2.1 Time Dependence and Commutation Rules

Now that we have at our disposal the basic tools for the quantum repre-
sentation of physical systems, we have to turn to the description of their
development in the course of time, that is, their dynamics.1 The basic idea
is to adopt for the given system a complete set of commuting observables,
which will be assumed schematically to be a single Hermitian operator X,
and let this operator change in the course of time so as to describe the de-
velopment of the system. We will assume the function X(t) to be such that
the possible outcomes of experiments do not depend on t, which implies that
the spectrum of X(t) is time-independent. This does not mean, of course,
that the actual results of measuring the observable X corresponding to X
on a given system do not change in the course of time; it is precisely this
change that we want to determine. In this way of looking at the quantum
dynamics, called the Heisenberg picture, all the time dependence is car-
ried by the dynamical variables, and the vector representing the state of a
developing system remains unaltered. However, if we fix our attention on a
given quasi-eigenstate of the operator X(t) with a specific quasi-eigenvalue
X, that quasi-statevector will depend on t because X does.

So let |X, t〉 be a quasi-eigenstate of X(t) with the quasi-eigenvalue X.
These quasi-eigenstates form a quasi-basis in H, and we focus on the trans-

1For a different approach, known as path integrals, to generating the quantum-
mechanical equations of motion, see [Feynman].
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formation function 〈X2, t2|X1, t1〉, where X1 and X2 are quasi-eigenvalues
of the operators X1(t1) and X2(t2); the latter may have developed from
X1(t1) in the course of time, but not necessarily according to the physically
correct equations of motion. We are looking for a principle that allows us
to determine what the correct equations are. As an essential tool for this
search we will subject the development of the system from the time t1
to the time t2, as well as possibly the endpoint variables, such as t1, t2,
X1(t1), and X2(t2), to infinitesimal variations. The corresponding change
of the transformation function can then be used to define an infinitesimal
operator δW21 with the dimension of an action so that

δ〈X2, t2|X1, t1〉
def=

i

�
〈X2, t2|δW21|X1, t1〉.

The composition law (1.66),

〈3|1〉 = Σ
∫
X2

〈3|X2, t2〉〈X2, t2|1〉,

which holds for any arbitrary intervening time t2 and where we have written
for simplicity |X1, t1〉

def= |1〉, etc., therefore leads to

δ〈3|1〉 = Σ
∫
X2

[δ〈3|2〉〈2|1〉+ 〈3|2〉δ〈2|1〉]

=
i

�
Σ
∫
X2

[〈3|δW32|2〉〈2|1〉+ 〈3|2〉〈2|δW21|1〉]

=
i

�
[〈3|δW32|1〉+ 〈3|δW21|1〉] =

i

�
〈3|δW32 + δW21|1〉,

from which we conclude that

δW31 = δW32 + δW21.

It follows that δW21 = −δW12, since δW11 = 0. Furthermore, since 〈2|1〉 =
〈1|2〉∗, we have δ〈2|1〉 = i

�
〈2|δW21|1〉 = δ〈1|2〉∗ = − i

�
〈1|δW12|2〉∗ =

− i
�
〈2|δW†12|1〉 = i

�
〈2|δW†21|1〉, which implies that

δW21 = δW†21.

2.1.1 The principle of stationary action
We now make the crucial assumption that if X1(t1) turned into X2(t2)
according to some given time-development and δW is an infinitesimal vari-
ation in the neighborhood of a “trajectory” compatible with the correct equa-
tions of motion and commutation relations, then δW is the first variation
of an operator W that satisfies the corresponding relations

W†12 = W12, W31 = W32 + W21.
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Cutting the interval from t1 to t2 into n subintervals then leads to W21 =∑
i Wi i−1 and in the limit as n→∞, to

W21 =
∫ t2

t1

dt L[t], (2.1)

for some L[t], which is called the Lagrangian operator. In order for W, the
action integral, to be Hermitian, L has to be Hermitian too.

Suppose, then, that the system is described by a number of indepen-
dent dynamical variables which we schematically call qi. (These may be
the coordinates of point particles, but they need not be.) For the quantum
description they are Hermitian operators on H, and we assume that the La-
grangian is a function only of these qi and their first time derivatives, so that
L[t] = L(q1, . . . , qi, . . . ; q̇1, . . . , q̇i, . . .), implying that the time-dependence
of L comes entirely from the fact that the qs and q̇s depend on the time. All
of this is quite analogous to the usual assumptions in classical mechanics.
Here, however, we have to worry about the order of the qs and q̇s, which
cannot be assumed to commute. Terms in the Lagrangian that have both
qs and q̇s as factors, always assumed to be polynomials, will have to be
symmetrically arranged in all possible orders, as a result of which L is Her-
mitian. For example, a term q2q̇ in a polynomial will have to appear as
1
3 [qq̇q + q̇q2 + q2q̇]; similarly for qi and qj , etc.

The kinds of changes in the basis or quasi-basis vectors |X〉 we are con-
cerned with are always such as to preserve their orthonormal character,
which means that the new are connected to the old by a canonical trans-
formation: the new set is |X〉new

def= U|X〉old. Such an infinitesimal unitary
transformation is necessarily of the form2 U = 11 + i

�
F, so that for small

changes δ|X〉 def= |X〉new − |X〉old = i
�
F|X〉, where the “small operator”

F is Hermitian and the factor of 1/�, which gives F the dimension of an
action, is inserted as a matter of convenience. The new operator Xnew
that has |X〉new as its eigenvectors or quasi-eigenvectors is then given by
Xnew = UXoldU†, which for infinitesimal changes means that

δ̂X def= Xnew −Xold =
i

�
[F,X]. (2.2)

You should keep in mind that this change δ̂ in the operator X is of a
very specific kind: the changed operator Xnew is such that |X〉new = (11 +
i
�
F)|X〉old is an eigenvector or quasi-eigenvector of Xnew with the same

eigenvalue X as that of |X〉old, with Xold|X〉old = X|X〉old. The operator
F is called the generator of the unitary transformation.

2Why?
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Now any small change in 〈2|1〉 must be due to small changes in the
vectors |1〉 and |2〉. Hence we must have

δ〈2|1〉 =
i

�
〈2|F1 − F2|1〉 =

i

�
〈2|δW21|1〉,

and therefore, since the choice of X1 and X2 is arbitrary,

δW21 = F1 − F2, (2.3)

which is the operator principle of stationary action,3 the quantum gen-
eralization of Hamilton’s principle. It says that in a neighborhood of any
physically allowed time development, i.e., one that follows the correct equa-
tions of motion, the first variation of the action integral (2.1) depends only
on changes at the initial and final times; it does not depend on variations in
the intervening history. If the “endpoints” are kept fixed, the first variation
of the action integral vanishes: W is stationary. Just as in classical mechan-
ics, this principle will generate the equations of motion that determine the
“physically allowed time development” from a given Lagrangian.

2.1.2 The Lagrangian equations of motion
Let us then use (2.1) and the principle (2.3) to generate the equations of
motion; we have

δW21 = δ

∫ t2

t1

dt L =
∫ t2

t1

dt δ0L + L[t2]δt2 − L[t1]δt1, (2.4)

where δ0 is a variation at fixed time. On the assumption that L depends only
on the qs and the q̇s (which, at this point, are all regarded as independent
variables), this variation is given by

δ0L =
∑
i

[[
∂L
∂qi

δ0qi +
∂L
∂q̇i

δ0q̇i]].

We have to be careful with the order in which the operators appear in this
expression: the variations must always appear in the same position as the
varied quantities, and they must be symmetrized. This is what the double
brackets are meant to indicate. (For example, δ0q3 = δ0q q2 + qδ0q q +
q2δ0q.) Furthermore, in order for the varied q̇i near the physically correct
“trajectory” to be the velocity corresponding to the varied qi, the first
variation δ0q̇ must be equal to d

dtδ0q. We therefore have

δ0L =
d

dt

∑
i

[[
∂L
∂q̇i

δ0qi]] +
∑
i

[[
[
∂L
∂qi
− d

dt

∂L
∂q̇i

]
δ0qi]],

3This method of generating it is due to Julian Schwinger.
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and consequently

δW21 =

[∑
i

[[
∂L
∂q̇i

δ0qi]] + L[t]δt

]t2
t1

(2.5)

+
∑
i

∫ t2

t1

dt [[
[
∂L
∂qi
− d

dt

∂L
∂q̇i

]
δ0qi]] = F1 − F2

according to (2.3). The integral here depends on the history of the system
and must therefore vanish in a neighborhood of physically allowed motions
for arbitrary functions δ0qi(t), restricted only by their commutation rela-
tions. If we assume that the δ0qi(t) all commute with the operators in L, it
follows that the bracket in the integrand of (2.6) must vanish:

∂L
∂qi

=
d

dt

∂L
∂q̇i

, i = 1, 2, . . . , n. (2.6)

These are the Euler-Lagrange equations resulting from the principle of
stationary action, the Lagrangian equations of motion, just as in classical
mechanics.

2.1.3 The canonical commutation relations
For actual physical systems, i.e., those satisfying the equations of motion
(2.6), for which, therefore, the last term in (2.6) vanishes, we can conclude
that

F = −
∑
i

∂L
∂q̇i

δ0qi − L[t]δt = −
∑
i

piδ0qi − L[t]δt, (2.7)

where the canonical momenta have been defined by

pi
def=

∂L
∂q̇i

, i = 1, 2, . . . , (2.8)

and these equations have to be solved for the q̇i, thus expressing them in
terms the pj and the qk. Henceforth, the pj and the qk are to be treated as
independent variables. This is what in classical mechanics is called a Leg-
endre transformation; it is designed to lead to the Hamiltonian equations
of motion, which are first-order differential equations in the time, whereas
the Lagrangian equations are generally of second order.

We begin by keeping the time fixed, setting δt = 0, so that

F = −
∑
i

piδ0qi, (2.9)

and we take X to be qj , so that (2.2) and (2.9) say that

δ̂qj =
i

�
[qj ,
∑
k

pkδ0qk].
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Whatever the precise relation between δ0qj and δ̂qj is going to turn out
to be, since the different degrees of freedom are meant to be independent
of one another, we may conclude from this that for k �= j, [qj , pk] = 0,
and we are left with δ̂qj = i

�
[qj , pj ]δ0qj . (Remember we had assumed that

the δ0qi commute with all the operators in L.) Now it is an easy matter of
calculation4 to find that up to linear terms in the variations,

(qj − δ0qj)(11−
i

�
pjδ0qj)|qj〉 = (qj − δ̂qj − δ0qj)(11−

i

�
pjδ0qj)|qj〉, (2.10)

which implies that in order for |qj〉new = (11− i
�
pjδ0qj)|qj〉 to be an eigenvec-

tor of qjnew
def= qj−δ0qj with the eigenvalue qj , we must have δ0qj = −δ̂qj .

It therefore follows that [qj , pj ] = i�, or

[qj , pk] = i�δjk. (2.11)

Similarly, taking X to be pj , (2.2) and (2.9) give us δ̂pj = −δ0pj =
i
�
[pj ,
∑
k pkδ0qk]. However, since the qj and the pk are to be treated as

independent variables, so that variations of the qs do not cause variations
of the ps, it follows that for all j and all k,

[pj , pk] = 0. (2.12)

At this point, note that if the Lagrangian is changed by a total time
derivative,

L̄ = L +
d

dt
W, (2.13)

the Lagrangian equations and hence the dynamics are unchanged. We then
have, by (2.1),

W̄21 = W21 + W2 −W1, (2.14)

and by (2.3),
F̄ = F− δW. (2.15)

So, in order to find the commutation relations between the qs, we change the
Lagrangian by a total time derivative as in (2.13), choosing W = −

∑
j pjqj .

According to (2.15) this gives us a new generating function

F̄ =
∑
j

δ0pjqj ,

in which we now assume that the δ0pj commute with all the operators,
which in turn leads to δ̂qk = −δ0qk = i

�

∑
j δ0pj [qj , qk], from which we

conclude by the same argument as before that we must have for all j and
all k,

[qj , qk] = 0 (2.16)

4Do it.
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because of the assumed independence of the ps and the qs.
Equations (2.11), (2.12), and (2.16) are the complete set of canonical

commutation relations (often referred to as the ccrs), obtained on the as-
sumption that the independent variations δ0qj and δ0pi commute with all
the qs and ps. Note that, except for the factor of i� in (2.11), Eqs. (2.11),
(2.12), and (2.16) are identical to the corresponding Poisson bracket equa-
tions in classical mechanics. Dirac originally employed this analogy to lay
the ccrs down as simple postulates.

2.1.4 The Hamiltonian equations of motion
The next step is to make an infinitesimal shift δt in the time, accompa-
nied by a backward shift of the qs, δ0qi = −q̇iδt to compensate for the
change that qi would ordinarily undergo during δt, thus keeping it fixed.
(These δ0qi of course do not commute with all the operators in L and have
to be moved to the right by means of the ccrs.) According to (2.7), the
concomitant generator is given by

F = Hδt, (2.17)

where the Hermitian operator

H def=
∑
i

[[piq̇i]]− L (2.18)

is defined to be the Hamiltonian of the system, and it is understood to be
expressed as a function of the qs and the ps rather than the qs and the q̇s.

The first consequence of (2.17) is to yield the Hamiltonian equations of
motion of all dynamical variables. Insertion of (2.17) in (2.2) gives

dX
dt

=
i

�
[H,X], (2.19)

on the assumption that the operator X does not depend on the time ex-
plicitly; if X has an additional explicit time dependence, (2.19) has to be
replaced by

dX
dt

=
∂X
∂t

+
i

�
[H,X], (2.20)

called Heisenberg’s equation of motion. Equation (2.19) is easily solved,
giving us, in the Heisenberg picture, the time dependence of all (not intrin-
sically time-dependent) dynamical variables of a system whose Hamiltonian
is H:

X(t) = e
i
�
HtX(0)e−

i
�
Ht. (2.21)

The time-development operator e
i
�
Ht has to be regarded at this point as

no more than a symbolic expression. However, an energy basis of eigenvec-
tors and/or quasi-eigenvectors of H, together with (B.23), may be used to
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expand it in the form

e
i
�
Ht = Σ

∫
E

e
i
�
Et|E〉 〈E|. (2.22)

Other mathematical tools for the construction of the unitary time-develop-
ment operator e

i
�
Ht will be discussed later.

The equations of motion can now be written in the Hamiltonian form.
The commutation relations (2.11), (2.12), and (2.16) imply5 that for any
differentiable function f(q1, . . . ; p1, . . .) of the ps and qs,

[pj , f] = −i� ∂f
∂qj

, [qj , f] = i�
∂f
∂pj

. (2.23)

Equation (2.19) therefore leads to the equations

ṗj = −∂H
∂qj

, q̇j =
∂H
∂pj

, j = 1, 2, . . . , n, (2.24)

just as in classical physics.
What is more, equation (2.17) can be used to obtain the conservation

laws. First of all, (2.19) tells us that any quantity that is not explicitly
time-dependent and that commutes with the Hamiltonian is independent
of the time: it is conserved. Specifically, of course, the Hamiltonian, whose
eigenvalues are the possible energy values of the system, is constant: energy
is conserved. Since this result is a consequence of the assumption that the
Lagrangian (and hence also the Hamiltonian) does not depend explicitly on
the time, it holds for all systems that are invariant under time translations.
The conservation laws are always consequences of invariance properties of a
system. (Recall Noether’s theorem in classical mechanics.) We will shortly
find more of them for specific kinds of systems.

2.1.5 The Schrödinger picture
The Heisenberg picture had been defined so as to keep the state vector of
a developing physical system fixed, while the operators corresponding to
dynamical variables change in the course of time, analogous to the classical
description. However, this is not the only way of proceeding. Since ulti-
mately all physically observable results are expressed as expectation values
or probabilites, which are the squared magnitudes of matrix elements of
observables, the quantities whose time-development really matters are all
of the form (Ψ,XΦ). According to (2.20), such quantities are subject to
the equation

d

dt
(Ψ,XΦ) = (Ψ,

∂X
∂t

Φ) + (Ψ,
i

�
[H,X]Φ). (2.25)

5It will be one of your homework problems to prove this.
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Because H is Hermitian, this same equation can also be obtained by
assuming the state vectors Ψ and Φ to vary with time according to the
equation

i�
d

dt
Ψ = HΨ, (2.26)

while X depends on the time only through its explicit time dependence; in
other words, unless it depends explicitly on the time, the operator X does
not vary.6 This is called the Schrödinger picture. Here the dynamical time
dependence is carried by the state vectors, which satisfy the Schrödinger
equation (2.26), whereas those dynamical variables that do not vary explic-
itly with t are time-independent. The two pictures are entirely equivalent
and lead to the same physical predictions. However, for actual calculations,
the Schrödinger picture is used almost exclusively and is of far greater util-
ity. Just as (2.19) was solved symbolically by (2.21), so we can solve (2.26)
to express the time development of the state vector of a system whose
Hamiltonian is H in the Schrödinger picture,

Ψ(t) = e−
i
�
H(t−t′)Ψ(t′). (2.27)

If the state of a system is described by a density operator rather than
a state vector, the Schrödinger equation of motion is obtained from (1.14)
and the fact that the states Ψn satisfy (2.26). As a result, the equation of
motion of the density operator in the Schrödinger picture is given by

i�
d

dt
ρρ = [H, ρρ]. (2.28)

Since trAB = trBA for any two operators A and B, we have both dtrρρ/dt =
0 and7 dtrρρ2/dt = 0, which implies that not only does the density operator
retain its characteristic property trρρ = 1 in the course of time, but the
“degree of coherence” of a system remains unchanged; if it was in a pure
state at one time, for example, it will remain that way.

By contrast, we saw in the last chapter that a measurement converts a
pure state into a mixed one (or else, instantaneously into an eigenstate of
the measured observable—the infamous “collapse of the wave function”),
which is sometimes ascribed to the disturbance any measurement, no mat-
ter how carefully performed, produces in the measured system. As a result
of this disturbance, the probability of finding a system in the state ΨB at
the time t2, given that it was in the state ΨA at the time t1 < t2, de-
pends upon whether or not a measurement was performed on it at some
intermediate time t1 < t3 < t2, even if the outcome of this measurement
is ignored, a conclusion that is often depicted as one of the weird aspects

6Verify that (2.26) leads to (2.25).
7Show this.
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of quantum mechanics. Such an effect, however, exists for any probabilis-
tic theory, including classical statistical mechanics; it is not an intrinsic
quantum phenomenon.8

The operator symbolically indicated in (2.27), which solves the equation
of motion (2.26) for t > t′, is called the retarded propagator. It is defined
by

G+(t) =
{
e−iHt/� t > 0

0 t < 0
. (2.29)

This propagator allows us to express the state vector Ψ(t) in terms of the
state vector Ψ(t′) at any earlier time t′ < t by (2.27), or

Ψ(t) = G+(t− t′)Ψ(t′). (2.30)

You will easily verify that G+ satisfies the equation(
i�
d

dt
−H
)
G+(t) = 11iδ(t), (2.31)

and furthermore, limt→0+ G+(t) = 11; as a result, the vector Ψ(t) satisfies
the time-dependent Schrödinger equation for t > t′ and approaches Ψ(t′) as
t→ t′.9 Later we shall discuss various ways of constructing this propagator,
which plays a central role in quantum dynamics.

The time dependence of the configuration wave function ψ(�q1, . . . ; t),
which is the inner product of an eigenstate of the �qs and the state Ψ of
a system, can be expressed either in the Heisenberg or in the Schrödinger
picture. If the Heisenberg operators and states are denoted by �q and Ψ,
respectively, we have

�q(t)Ψ�q = �qΨ�q

so that
�qΨ�q = e

i
�
Ht�q(0)e−

i
�
HtΨ�q

or
�q(0)e−

i
�
HtΨ�q = �qe−

i
�
HtΨ�q.

8After coarse-graining, the probability P (G2|G1) of finding a system that was in
grain G1 at t1 in grain G2 at the time t2 is P (G2|G1) = µ[G2 ∩ ϕ21(G1)]/µ(G1) if
ϕ21(G1) is where the Hamiltonian flow takes G1 in the time from t1 to t2, and µ(G) is
the volume of G in phase space. This formula is based on the assumption that the initial
grain G1 is uniformly filled. The flow ϕ(G1), on the other hand, will fill any one grain at
a later time t only sparsely and generally nonuniformly. Therefore, if a measurement is
performed at an intermediate time t3, the new probability of finding the system in G2,
given the result of that measurement, is in a sense “renormalized,” and even if the result
of the intermediate measurement is ignored and we sum over all the possible grains the
system can visit on the way from G1 to G2, the answer will generally differ from that
without intermediate measurement. For more on this, see [Newton 00], pp. 139–147.

9The limits here have to be specified more precisely as having the meaning that
‖ Ψ(t) − Ψ(t′) ‖→ 0 and ‖ G+(t) − 11 ‖→ 0.
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But �q(0) and e−
i
�
HtΨ�q are equal to the Schrödinger operators and states

�q and Ψ�q(t), respectively. Thus we find

ψ(�q, t) = (Ψ�q(t),Ψ) = (Ψ�q, e
− i

�
HtΨ) = (Ψ�q,Ψ(t)),

which means either picture may be regarded as underlying the time-depen-
dent configuration wave function. The same argument holds for momentum-
space wave functions and any other representation. Therefore, the time
dependence of a wave function is governed by the Schrödinger equation in
both pictures.

2.2 Systems of Particles

2.2.1 Linear and angular momentum
For a system of point particles, whose locations in configuration space are
denoted by �qi, we can obtain a second conservation law from (2.2) and
(2.9) by subjecting the system to a rigid spatial translation δ�qi = δ�r. Such
a translation is generated by F =

∑
i �pi ·δ�r = �P·δ�r, where �P def=

∑
i �pi is the

total momentum. If the system is invariant under such a rigid translation,
the generator F must commute with the Hamiltonian so that its energy-
eigenstates remain unchanged, and it follows that momentum is conserved:
�P(t1) = �P(t2). Similarly, a third conservation law is obtained by rotating
the entire system by the infinitesimal angle ε about a given axis n̂ (in a
right-handed screw sense), which implies that δ�qi = εn̂ × �qi. This leads
to the generator F = ε

∑
i �pi · n̂ × �qi = εn̂ ·

∑
i �qi × �pi = εn̂ · �L, where

�L def=
∑
i
�Li is the total angular momentum and �Li

def= �qi × �pi are the
angular momenta of the individual particles. It follows that if the system is
invariant under the rotations εn̂, then the corresponding component of the
angular momentum is conserved, and if it is invariant under all rotations,
all components of the angular momentum are conserved. Note, however,
that the three components of the angular momentum do not commute, so
they cannot all be used to label a state. From the commutation relations
(2.11), (2.12), and (2.16) we easily find10 that

[L1,L2] = i�L3 (2.32)

and its cyclical permutations, which can be written in the vector form

�L× �L = i��L. (2.33)

(We shall return to further discussion of the angular momentum in Chapter
5.)

10Verify it.
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2.2.2 The equations of motion
Let us apply our general results to specific kinds of particle systems, be-
ginning with one consisting of a single point particle of mass M , subject
to a conservative force, with the aim of obtaining the equation of motion.
As in classical mechanics, the Lagrangian is given by

L =
1
2
M�̇q

2
− V (�q),

where V is the potential energy. According to (2.8) and (2.18), the momen-
tum is defined as �p = M�̇q and the Hamiltonian is

H =
�p2

2M
+ V (�q). (2.34)

Taking expectation values of (2.24), and remembering that in the Heisen-
berg picture the state vector representing a system is independent of the
time, therefore immediately leads to the equations

d

dt
〈�p〉 = −〈∇V (�q)〉, d

dt
〈�q〉 = 〈 �p

M
〉, (2.35)

which are obviously the quantum analogues of familiar equations of classical
mechanics, implying furthermore that

M
d2

dt2
〈�q〉 = −〈∇V (�q)〉. (2.36)

Equation (2.36), the quantum version of Newton’s equation of motion, is
known as Ehrenfest’s theorem.

If, for a system subject to the Hamiltonian (2.34), Eq.(2.19) is applied
to the operator �q · �p and (2.23) is used, the result is

d

dt
�q · �p = − i

�
[�q · �p,H] =

�p2

M
− �q · ∇V.

In a steady state, i.e., in an eigenstate of the Hamiltonian, however, we
have 〈[�q · �p,H]〉 = 0. It therefore follows that

〈�p
2

M
− �q · ∇V 〉 = 0,

or, in terms of the kinetic energy T = �p2/2M of the particle,

〈T〉 =
1
2
〈�q · ∇V 〉. (2.37)

In classical mechanics, 1
2�q · ∇V is known as the virial of Clausius; thus

(2.37) is the quantum version of the virial theorem.
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In view of (2.34), the Schrödinger equation (2.26) for a single-particle
system in the Schrödinger picture, reads,

i�
dΨ
dt

=
[
�p2

2M
+ V (�q)

]
Ψ. (2.38)

This equation takes its most useful form in the configuration representation,
in which the state of the system is represented by a wave function ψ(�q, t),
and, according to (1.28), the momentum operator �p by −i�∇q, so that the
Schrödinger equation becomes the partial differential equation

i�
∂

∂t
ψ(�q, t) =

[
− �2

2M
∇2
q + V (�q)

]
ψ(�q, t). (2.39)

Recall that the physical interpretation of ρ(�q, t) def= |ψ(�q, t)|2 is the prob-
ability density of finding the particle at the time t in the vicinity of �q in
configuration space; the Schrödinger equation (2.39) therefore allows us to
define a “conservation of probability” in terms of the current density de-
fined by (1.31). Provided the potential function V is real, it is a simple
matter to verify11 by means of (2.39) that ρ and j satisfy the continuity
equation

∇ · j +
∂

∂t
ρ = 0. (2.40)

These things are readily generalized to n particles at the positions �q(j),
for which the Lagrangian is given by

L =
∑
j

1
2
Mj�̇q

(j)2
− V (�q(1), . . .),

the momenta by �p(j) = Mj�̇q
(j)

, and the Hamiltonian by

H =
∑
j

�p(j)2

2Mj
+ V (�q(1), . . .). (2.41)

The Schrödinger equation in the configuration representation therefore
reads

i�
∂

∂t
ψ(�q(1), . . . , t) =

−∑
j

�2

2Mj
∇2
q(j) + V (�q(1), . . .)

ψ(�q(1), . . . , t).

(2.42)

11Do it as an exercise.
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2.2.3 The time-independent Schrödinger equation
For most applications it is extremely useful to separate the partial differ-
ential equations (2.39) and (2.42) as far as the time is concerned, that is,
to make the ansatz that the solution ψ of (2.39) can be written as a prod-
uct ψ(�q, t) = ψ(�q)f(t), and similarly for (2.42). It follows that f(t) has to
satisfy the equation12

i�
df

dt
= Ef,

where E is a constant, and this is easily solved: apart from a constant
factor, f(t) = e−iEt/�. The function ψ(�q), therefore, must satisfy the time-
independent Schrödinger equation[

− �2

2M
∇2
q + V (�q)

]
ψE(�q) = EψE(�q) (2.43)

in the one-particle case, and−∑
j

�2

2Mj
∇2
q(j) + V (�q(1), . . .)

ψE(�q(1), . . .) = EψE(�q(1), . . .) (2.44)

in the n-particle case. In terms of the Hamiltonian differential operators

H def=
[
− �2

2M
∇2
q + V (�q)

]
or

H def=

−∑
j

�2

2Mj
∇2
q(j) + V (�q(1), . . .)

 ,
which are the configuration representations of (2.34) and (2.41), respec-
tively, these equations can be written as

HψE = EψE , (2.45)

which shows that ψE has to be an eigenstate or quasi-eigenstate of H
with the eigenvalue or quasi-eigenvalue E. The physical significance of the
separation constant E is therefore that it is the energy of the system.

Since H is Hermitian, its spectrum is complete. If this spectrum forms a
discrete set of points, any arbitrary square-integrable function of �q can be
expanded on the basis of the eigenfunctions of H,

ψ(�q) =
∑
n

cnψEn(�q),

12This is based on the assumption that the potential V is independent of the time;
otherwise the separation is generally not possible.
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so that Hψ(�q) =
∑
nEncnψEn(�q), from which we may conclude that the

general solution of (2.39) is given by

ψ(�q, t) =
∑
n

cne
−iEnt/�ψEn(�q), (2.46)

and analogously for n-particle systems.
In many instances, however, the spectrum of H is, at least in part, con-

tinuous, with quasi-eigenfunctions ψE(�q). In such cases the discrete sum is
replaced by an integral, so that any square-integrable function of �q can be
written as a generalized Fourier integral,

ψ(�q) =
∫
dE c(E)ψE(�q),

in which the integral ranges over the continuous spectrum. The general
solution of (2.39) is then given by

ψ(�q, t) =
∫
dE c(E)e−iEt/�ψE(�q), (2.47)

and analogously for n-particle systems. If the spectrum is partly discrete
and partly continuous, there will be be both a sum and an integral.

The solutions (2.46) and (2.47) of the Schrödinger equation allow us to
solve the initial-value problem of (2.39) or (2.42). If f(�q) def= ψ(�q, 0) is given,
we expand it on the basis of the orthonormal set {ψEn},

f(�q) =
∑
n

cnψEn
(�q)

where the coefficients cn are obtained by

cn =
∫
d3q ψ∗En

(�q)f(�q). (2.48)

The solution of (2.39) that has f(�q) as its initial value is then (2.46),
with the cn of (2.48). For a continuous spectrum we assume the quasi-
eigenfunctions to be normalized so that∫

d3q ψ∗E(�q)ψE′(�q) = δ(E − E′),

and calculate the function c(E) in (2.47) from f(�q) in a similar manner as
in (2.48):

c(E) =
∫
d3q ψ∗E(�q)f(�q). (2.49)

Analogous relations hold for n-particle systems and for spectra that are
partly discrete and partly continuous.
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2.2.4 Example: Gaussian wave packets
Gaussian wave functions form particularly useful examples for which many
of the needed mathematical manipulations can be carried out explicitly,
with results that often have general qualitative validity. Suppose that the
normalized momentum-space wave function (in one dimension) is given by

p0

FIGURE 2.1. The probability density of a Gaussian wave function centered at
p0. The dashed lines show p0 ± ∆.

ψ̂(p) = ∆−1/2(2π)−1/4e−(p−p0)2/(4∆2). (2.50)

The probability density in momentum space described by this function has
the bell shape shown in Figure 2.1, centered at p = p0 and decreasing to
∼ 0.6 of its peak value at p = p0 ± ∆. The variance (dispersion), defined
by (1.10), of the momentum in this state is easily calculated13 to be

∆p = ∆. (2.51)

The corresponding configuration wave function is found by the one-
dimensional version of (1.67) to be

ψ(q) =
1√
2π�

∫
dp eipq/�ψ̂(p) = ∆1/2�−1/2(2/π)1/4e−q

2∆2/�
2
eiqp0/�.

(2.52)
Note that this too is a Gaussian! Furthermore, if the “half-width” of the
momentum-space Gaussian is ∆, then that of the configuration-space Gaus-
sian is ∆̄ = �/(2∆), and the variance of the particle position is accordingly

∆q = �/(2∆) = ∆̄, (2.53)

13Do it as an exercise.
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so that we find
∆p∆q = ∆∆̄ =

1
2

�. (2.54)

Comparison with (1.13) shows the important result that Gaussian wave
packets minimize the uncertainty product.

There is a simple trick to evaluate the Gaussian integral

I =
∫ ∞

−∞
dx e−cx2

,

namely,

I2 =
∫ ∞

−∞

∫ ∞

−∞
dxdy e−c(x2+y2) = 2π

∫ ∞

0
rdr e−cr2 = π

∫ ∞

0
dr2 e−cr2 =

π

c
;

therefore ∫ ∞

−∞
dx e−cx2

=
√
π

c
. (2.55)

Moreover, ∫ ∞

−∞
dx x2e−cx2

= − ∂

∂c

∫ ∞

−∞
dx e−cx2

=
√
π

2c3/2
. (2.56)

Integrals of the form

J =
∫ ∞

−∞
dx e−cx2−ax,

are evaluated by completing the square, so that cx2 +ax = c(x+ a
2c )

2 − a2

4c , and shifting
the variable of integration, setting y = x+ a

2c , with the result

J =
√
π/c exp(a2/4c).

Let us next look at what happens to a freely developing Gaussian wave
packet in the course of time. Since its time development follows the free
Schrödinger equation (2.38) with V = 0, so that its Hamiltonian is given
by H = p2/2M , the momentum-space wave function ψ̂(p, t) is simply

ψ̂(p, t) = ψ̂(p, 0)e−i(p
2/2M�)t,

and this has to be inserted in (2.52) in place of ψ̂(p),

ψ(q, t) =
1√
2π�

∫
dp ψ̂(p, t)eipq/�

=
(2π)−1/4
√

2π�∆

∫
dp e−(p−p0)2/4∆2−ip2t/(2M�)+ipq/�, (2.57)

an integral that I will let you do as an exercise.14 The most interesting part
of the result is that the factor e−q

2∆2/�
2

in (2.52) is replaced by

exp

[
−∆2

�2

(q − p0
M t)2

1 + 4t2∆4

M2�2

]
,

14Do it.
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which means that two things happen in the course of time: 1) the center of
the packet moves with velocity p0/M , and 2) while the packet retains the
same width in momentum space, its width in configuration space spreads,

∆̄→

√
∆̄2 +

(
t�

2M∆̄

)2

. (2.58)

That the center of the packet moves with the velocity p0/M is, of course,
easily physically understood. Its spreading in configuration space—and that
the narrower it is, the faster it spreads—can be physically explained by the
fact that an uncertainty of ∆̄ in a particle’s position implies an uncertainty
of at least �/∆̄ in its momentum; this is the physical origin of the spreading.

Equation (2.57) expresses the configuration wave function as a superposi-
tion of plane waves traveling with a phase velocity equal to p/2M , because
when q increases by pt/2M , the phase of the integrand remains constant in
time. However, the center of the packet, as we have seen, moves with veloc-
ity p/M . That these results hold not only for Gaussian wave packets but are
of much more general validity can be seen by applying the stationary-phase
argument to integrals of the form

ψ(q, t) =
1√
2π�

∫
dp f(p)e−iωt+ipq/�, (2.59)

where |f(p)| is assumed to have a maximum at p = p0. As |q| or |t| tend
to ∞, the integrand on the right oscillates rapidly as a function of p and
the integral will generally tend to zero,15 except when q is allowed to grow
linearly along with t. In that case, the limit of the integral need not vanish:
its value will come predominantly from the neighborhood of the value (or
values) of p for which the phase of the integrand is stationary, preventing it
from rapidly oscillating; these values of p are determined by the equation

d

dp
[pq/�− ω(p)t+ ϕ] = 0,

where ϕ is the phase of the function f(p) in (2.59). If this equation is
satisfied at a value of p for which |f(p)| is small, the resulting |ψ| will
still be relatively small, whereas |ψ| will be largest when q and t advance
together at a rate at which the phase is stationary at the point p0 at which
|f(p)| has its peak, i.e., when q = t� d

dpω|p=p0 − � d
dpϕ|p=p0 , resulting in the

group velocity
vgroup

def= �dω(p)/dp |p=p0 . (2.60)

In this particular case we have ω(p) = p2/(2M�) and therefore vgroup =
p0/M , which is equal to the velocity of the particle at the center of the

15This theorem, known as the Riemann-Lebesgue lemma, strictly holds if |f(p)| is
integrable.
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packet: the group velocity of the wave packet is equal to the most probable
classical velocity of the particle, a result that we might have expected on
the basis of the correspondence principle. At the same time we see that
if the phase ϕ of the weight function f(p) depends of p, the center of the
packet is shifted backwards by the amount � d

dpϕ|p=p0 , so that its arrival is
retarded by the time delay

τD
def=

�M

p0

dϕ

dp

∣∣∣∣
p=p0

. (2.61)

As for the spreading of the packet with time, the stationary-phase argu-
ment shows that what matters for large times is only the shape of the func-
tion |f(p)| near its peak. Therefore, let us expand log |f(p)| in a Taylor series
around p = p0, keeping only the first term: log |f(p)| = −a(p− p0)2 + . . . ,

and define ∆2 def= 1/4a. Then the integral in (2.59) has the same form as
the one in (2.57), and we obtain the same result (2.58) for the spreading of
the configuration-space packet.

Equation (2.52) illustrates another important point: to measure the po-
sition of a particle with an accuracy ∆ does not uniquely determine its
state to within a constant factor. The last factor in the expression on the
right-hand side of (2.52) can be determined only by a simultaneous mea-
surement of the particle’s momentum, even though the latter is uncertain.
This is a point emphasized in Chapter 1.

2.3 Fields

2.3.1 The matter field
In contrast to particle systems, where the dynamical variables are observ-
ables and hence Hermitian, the field is generally not a Hermitian operator,
and both Ψ and Ψ † enter into the Lagrangian in such a way that L is Hermi-
tian. Rather than regarding the Hermitian and skew-Hermitian16 parts of Ψ
as the independent variables, it will be convenient to take the independent
variables to be Ψ and Ψ †, which is mathematically equivalent.17

In addition to depending on both Ψ and Ψ †, the Lagrangian will now
also contain ∇Ψ and ∇Ψ †; it will generally be of the form

L =
∫
d3xL(Ψ, Ψ †,∇Ψ,∇Ψ †, Ψ̇ , Ψ̇ †), (2.62)

16A skew-Hermitian operator K is such that K† = −K; the Hermitian part of an
operator K is 1

2 (K + K†), and the skew-Hermitian part is 1
2 (K − K†).

17If z = x+ iy, then ∂
∂z

= ∂
∂x

− i ∂
∂y

and ∂
∂z∗ = ∂

∂x
+ i ∂

∂y
. Similarly for operators and

their Hermitian and skew-Hermitian parts.
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where L is called the Lagrangian density, so that

δ0L =
∫
d3x [[

∂L
∂Ψ

δ0Ψ +
∂L
∂Ψ †

δ0Ψ
† +

∂L
∂∇Ψ · δ0∇Ψ

+
∂L
∂∇Ψ † · δ0∇Ψ

† +
∂L
∂Ψ̇

δ0Ψ̇ +
∂L
∂Ψ̇ †

δ0Ψ̇
†]].

Again, we have to take δ0Ψ̇ = ∂
∂tδ0Ψ and δ0Ψ̇ † = ∂

∂tδ0Ψ
† as well as δ0∇Ψ =

∇δ0Ψ and δ0∇Ψ † = ∇δ0Ψ †, and we perform integrations by parts, both in
the time-integral in W and in the space-integral in L, assuming that the
boundary terms at spatial infinity vanish. In place of (2.4) we then obtain

δW21 =
∫ t2

t1

dt

∫
d3x [[

[
∂L
∂Ψ
−∇ · ∂L

∂∇Ψ −
∂

∂t

∂L
∂Ψ̇

]
δ0Ψ

+
[
∂L
∂Ψ †

−∇ · ∂L
∂∇Ψ † −

∂

∂t

∂L
∂Ψ̇ †

]
δ0Ψ

†]]

+
[∫

d3x[[
∂L
∂Ψ̇

δ0Ψ +
∂L
∂Ψ̇ †

δ0Ψ
†]] + Lδt

]t2
t1

. (2.63)

Assuming that the δ0Ψ and δ0Ψ † commute with all the factors in L, we can
therefore conclude that the Lagrangian equations for Ψ and Ψ † read

∂L
∂Ψ
−∇ · ∂L

∂∇Ψ −
∂

∂t

∂L
∂Ψ̇

= 0, (2.64)

∂L
∂Ψ †

−∇ · ∂L
∂∇Ψ † −

∂

∂t

∂L
∂Ψ̇ †

= 0. (2.65)

At this point we add the constraint that Ψ † is the Hermitian conjugate
of Ψ, which makes (2.65) redundant, since it is nothing but the Hermitian
conjugate of (2.64). The canonically conjugate field Π and the Hamiltonian
are defined analogous to (2.8) and (2.18),

Π
def=

∂L
∂Ψ̇

, H def=
∫
d3x [ΠΨ̇ + Ψ̇ †Π†]− L, (2.66)

while the translation generator is obtained from (2.9) and (2.8),

F = − i�
2

(Ψ †∇Ψ −∇Ψ † Ψ) · δ�r,

so that the total momentum

�P def= − i�
2

∫
d3r (Ψ †∇Ψ −∇Ψ † Ψ) (2.67)

is conserved if the system is translationally invariant.
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To be specific, here is the Lagrangian density actually to be used for the
matter field:

L =
i�

2
Ψ †Ψ̇ − i�

2
Ψ̇ †Ψ − �2

2M
∇Ψ † · ∇Ψ − V Ψ †Ψ, (2.68)

where V is a given function of space. The Lagrangian equation of motion
(2.65) that follows from this reads

i�Ψ̇ = − �2

2M
∇2Ψ + V Ψ, (2.69)

which is the Schrödinger equation, applied not to the wave function, as in
(2.39), but to the operator function Ψ(�r, t).

The replacement of the wave function ψ in (2.39) by the field operator
Ψ is often referred to as “second quantization,” because the replacement of
the numerical �qs and �ps by the operators �q and �p is regarded as the first
“quantization” step from classical mechanics, and the replacement of the
numerical wave functions ψ by the field operators Ψ as the second step.
However, though historically correct, this view should be regarded as an
anachronism. Because of the argument given in Chapter 1, there is good
reason to consider (2.69) as the more basic equation, in that the field Ψ leads
to the existence of particles whose wave functions satisfy the Schrödinger
equation (2.39) because the field satisfies Eq. (2.69), as follows from (1.54).

According to (2.66), the canonically conjugate field is given by Π
def=

i�
2 Ψ
†, and the Hamiltonian is found to be18

H =
∫
d3x

[
�2

2M
∇Ψ † · ∇Ψ + V Ψ †Ψ

]
, (2.70)

which can also be written, after an integration by parts, assuming that
Ψ(�r) vanishes sufficiently rapidly at infinity so that boundary terms do not
appear,

H =
∫
d3xΨ†

[
− �2

2M
∇2 + V

]
Ψ. (2.71)

As for the canonical commutation relations, we arrive at the analogues of
(2.11), (2.12), and (2.16) by analogous arguments.19 For this purpose it is
best to proceed as in Section 1.4.3, perform a Fourier transform as in (1.37)
and replace the Fourier integral by a series, so that the functions Ψ̂(�k) and

18Show it.
19The derivation of (2.11) relied on the hermiticity of the dynamical variables. There-

fore the Lagrangian has to be re-expressed in terms of the Hermitian and skew-Hermitian
parts of Ψ and Ψ†, as in (2.78) below, and the result of the calculation has to be re-
expressed in terms of Ψ and Ψ†.
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Π̂(�k) are replaced by sequences Ψ̂j and Π̂j , respectively. The results are
the commutation relations

[Ψ̂i, Ψ̂j ] = 0, [Ψ̂i, Ψ̂
†
j ] = δij , (2.72)

or, without the discretization,

[Ψ̂(�k), Ψ̂(�k′)] = 0, [Ψ̂(�k), Ψ̂ †(�k′)] = δ(�k − �k′), (2.73)

and
[Ψ(�r), Ψ(�r′)] = 0, [Ψ(�r), Ψ†(�r′)] = δ(�r − �r′). (2.74)

The appearance of Dirac delta functions in these relations shows that the
fields cannot really be pointwise defined functions with values that are
operators on the Hilbert space H, as we will nevertheless continue to pretend
as long as it causes no mathematical trouble.

It will be useful to expand the operator function Ψ(�r, t) that solves (2.69)
on the basis of the complete set of eigenfunctions of the Schrödinger equa-
tion (2.43), [

− �2

2M
∇2 + V

]
fE(�r) = EfE(�r),

with the normalization ∫
d3r f∗E(�r)fE′(�r) = δEE′ ,

or, for continuous quasi-eigenvalues, with the Dirac δ(E−E′) on the right.
The expansion

Ψ(�r) = Σ
∫
E

fE(�r)ΨE , (2.75)

which implies, by (2.74), that

[ΨE , ΨE′ ] = 0, [ΨE , Ψ
†
E′ ] = δEE′ , (2.76)

(or with a Dirac δ(E−E′) for continuous E) allows us to transform (2.71)
into the form

H = Σ
∫
E

HE , HE
def= EΨ †EΨE = E NE , (2.77)

where NE
def= Ψ †EΨE , as in (1.41). As we already saw in (1.46), the operators

NE all commute with one another. Therefore there is not only a complete
set of common eigenvectors, but all the NE commute with the Hamiltonian
H, which means they are constants of the motion: their eigenvalues are
conserved.

Remarkably enough, the Hamiltonian HE is, apart from a shift by a
constant, identical to that of a simple harmonic oscillator.
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Field quanta and the harmonic oscillator. Split ΨE into its Hermi-
tian and skew-Hermitian parts, which we will call, by definition,

√
ω
2�

q and√
1

2�ω ip:

ΨE
def=
√

ω

2�

[
q + i

p
ω

]
, (2.78)

where q and p are Hermitian and ω def= E/�. We then find from (2.76) that
[q, p] = i� and from (2.77),

HE =
1
2
(p2 + ω2q2)− 1

2
�ω, (2.79)

which, apart from a shift by the constant − 1
2�ω, is the Hamiltonian of a

simple harmonic oscillator of unit mass and frequency ω. Together with
the results of our discussion in Section 1.4.3 we have therefore learned that
the allowed energy levels of a simple harmonic oscillator of frequency ω are
En = (n + 1/2)�ω, with n = 0, 1, · · · , as follows from (2.77) and the fact
that the eigenvalues of N are the non-negative integers: the energy levels
are equally spaced, each a distance �ω apart from the next, and the ground
state has the energy 1

2�ω.
Because the energy-eigenvalues of a simple harmonic oscillator are equally

spaced in steps of �ω, the field gives rise to quanta, each of energy �ω. If
it were not for that equal spacing, the infinitely many eigenvalues of the
matter-field Hamiltonian for each fixed value of E in (2.77) could not be
interpreted as simply adding another particle of that same energy E. [This
has nothing to do with the spacing between the eigenvalues E of (2.43). We
are adding here particles all with the same energies E.] It follows directly
from (1.54) and (2.69) that the configuration-space wave function of these
particles satisfies the Schrödinger equation, and similarly for multiparticle
systems.

Anti-commutation relations

The results we have obtained are based on the assumption that the vari-
ations δ0Ψ commute with all the operators in the Lagrangian. If, instead,
these variations are assumed to anti-commute with the other operators,
one readily finds all the commutators in (2.72), (2.73), and (2.74) have to
be replaced by anti-commutators:

{Ψ̂i, Ψ̂j} = 0, {Ψ̂i, Ψ̂ †j } = δij , (2.80)

or without the discretization,

{Ψ̂(�k, t), Ψ̂(�k′, t)} = 0, {Ψ̂(�k, t), Ψ̂ †(�k′, t)} = δ(�k − �k′), (2.81)

and

{Ψ(�r, t), Ψ(�r′, t)} = 0, {Ψ(�r, t), Ψ†(�r′, t)} = δ(�r − �r′). (2.82)
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As we have already seen in Chapter 1, these anti-commutation relations
give rise to anti-symmetric multiparticle states obeying the Pauli exclusion
principle.20

2.3.2 Infinitely many particles as a field
A collection of infintely many elastically coupled particles making up a solid
can be treated as equivalent to a quantum field, so that their collective har-
monic vibrations give rise to quanta called phonons. Let us consider a very
simple one-dimensional model, in which the particles are all of equal mass
and are coupled to one another with the same elastic constant (Fig.2.2).
The Lagrangian of such a system is given by

L =
∞∑

n=−∞
[
1
2
M q̇2

n −
1
2
κ(qn+1 − qn)2] (2.83)

if the position operators of the particles in their configuration space are

M M M M M
FIGURE 2.2. Equal masses coupled by equal oscillators.

denoted by qn. The introduction of the function

Ψ(k) def=
∞∑
−∞

qneiπnk, (2.84)

which implies that

qn =
1
2

∫ 1

−1
dk Ψ(k)e−iπnk (2.85)

and therefore

qn+1 − qn = −i
∫ 1

−1
dk Ψ(k) sin(

1
2
πk)e−iπ(n+ 1

2 )k,

20Note, however, that the spin-statistics connection, to be discussed again later, re-
quires that scalar and vector fields, giving rise to spin-0 and spin-1 particles, respec-
tively, obey commutation relations, whereas spinor fields, which give rise to spin-1/2
particles, obey anti-commutation relations. Therefore, the anti-commutation relations
(2.80), (2.81), and (2.82), though written for a scalar field, are possible only if the field
Ψ is a spinor field, which has two components, so that the right-hand sides of the second
equations in (2.80), (2.81), and (2.82) should be multiplied by the unit matrix in spin
space.
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leads to21

L =
∫ 1

−1
dkL(k) =

∫ 1

−1
dk [

1
4
MΨ̇ †(k)Ψ̇(k)− κ sin2(

1
2
πk)Ψ †(k)Ψ(k)].

(2.86)
The Lagrangian equation of motion obtained from this reads

1
4
MΨ̈(k) = −κ sin2(

1
2
πk)Ψ(k),

the solution of which is

Ψ(k, t) = e−iωktΨ(k, 0), (2.87)

where
ωk = 2

√
κ/M sin(

1
2
π|k|). (2.88)

(We shall see that the choice of the sign in the exponential in (2.87) is
needed for consistency.22) The conjugate momentum operator turns out to
be

Π(k) def=
∂L(k)
∂Ψ̇(k)

=
1
4
MΨ̇ †(k) =

i

4
MωkΨ

†(k),

so that we obtain the commutation relations

i�δ(k − k′) = [Ψ(k),Π(k′)] =
i

4
Mωk[Ψ(k), Ψ†(k′)],

or
[Ψ(k), Ψ†(k′)] =

4�

Mωk
δ(k − k′). (2.89)

The number operator for the k-quanta of the field is therefore

N(k) def=
Mωk
4�

Ψ †(k)Ψ(k)

and the field Hamiltonian is given by

H =
∫ 1

−1
dk κ sin2(

1
2
πk)Ψ †(k)Ψ(k) =

∫ 1

−1
dk �ωkN(k), (2.90)

which leads to the Hamiltonian equation of motion23

i�Ψ̇(k) = [Ψ(k),H] = �ωkΨ(k),

whose solution is (2.87).
The string of harmonically coupled point masses described by the La-

grangian (2.83) therefore, for each wave number k, quantum-mechanically
produces quanta whose energy is given by �ωk = 2�

√
κ/M sin( 1

2π|k|) as a
function of k. These quanta are called phonons.

21Show this.
22Try the other sign and see what happens.
23Check this.
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2.3.3 The electromagnetic field
The Lagrangian densitity L for the free electromagnetic field is taken to be

L =
1
8π

(�E2 − �B2), (2.91)

in terms of the electric field �E and the magnetic field �B, which in turn are
expressed in terms of the scalar and vector potentials by

�E = −1
c

∂ �A
∂t
−∇φ, �B = ∇× �A. (2.92)

(Here c is the speed of light.) These potentials are regarded as the dynamical
variables of the field, and �E and �B in (2.91) are to be expressed in terms of
them. The Lagrangian equations of motion obtained from (2.91) via (2.64)
are then found to be the Maxwell equations of the free electromagnetic
field24

∇ · �E = 0, ∇× �B =
1
c

∂�E
∂t
,

while the other two Maxwell equations

∇ · �B = 0, ∇× �E = −1
c

∂�B
∂t
,

are identities that follow directly from (2.92).
The canonically conjugate momenta are defined by (2.66). Since the La-

grangian is independent of φ̇, there is no momentum conjugate to φ, but
the canonical momentum conjugate to the vector potential �A is the vector

�Π
def=

∂L
∂ �̇A

= − 1
4πc

�E,

which leads to the Hamiltonian25

Helmag =
∫
d3r

[
2πc2 �Π2 +

1
8π

�B2 + cφ∇ · �Π
]
,

where �B has to be expressed in terms of the vector potential by (2.92).
Use of the Maxwell equations and the definition of �Π makes the last term
vanish, with the result that the energy operator, that is, the conserved
Hamiltonian, is given in terms of the energy density Uelmag by

Helmag =
∫
d3rUelmag, Uelmag

def=
1
8π

(�E2 + �B2). (2.93)

24Show this as an exercise. It requires some integrations by parts, in which the
boundary terms at infinity are assumed to vanish.

25Show this as an exercise, and also verify that the Hamiltonian equations
of motion are, again, the source-free Maxwell equations.
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As in the case of the matter field, it is best to perform a spatial Fourier
transform before turning to the canonical commutation relations. Thus we
define

�A(�r, t) =
1

(2π)3/2

∫
d3k ei

�k·�r �̂A(�k, t), φ(�r, t) =
1

(2π)3/2

∫
d3k ei

�k·�rφ̂(�k, t)

(2.94)
and express the Lagrangian directly in terms of the Fourier-transformed
fields,

L =
∫
d3k

1
8π

(�̂E · �̂E
†
− �̂B · �̂B

†
), (2.95)

where �̂E = − 1
c

˙̂
�A − i�kφ̂ and �̂B = i�k × �̂A. This leads to the Fourier-

transformed Maxwell equations

�k · �̂E = 0, − 1
c

˙̂
�E = i�k × �̂B, �k · �̂B = 0,

1
c

˙̂
�B = i�k × �̂E,

and the momentum canonically conjugate to �̂A

�̂Π = − 1
4πc

�̂E
†
.

The canonical commutation relations therefore are

[ �̂Aj(�k), �̂Π l(�k′)] = i�δjlδ
3(�k − �k′),

or

[ �̂Aj(�k), �̂E
†
l (�k
′)] = −4πic�δjlδ3(�k − �k′); (2.96)

all other commutators vanish.
The most suitable gauge to adopt is the radiation gauge, also called

the Coulomb gauge, in which26 ∇ · �A = 0 and the scalar potential, which
depends on distant charges instantaneously, is set equal to zero for a pure
radiation field. In that case, the Fourier transformed Maxwell equations for

the vector potential simply read �k · �̂A(�k, t) = 0, so that �̂A(�k, t) is transverse,
i.e., orthogonal to �k, and satisfies the equation of motion

∂2

∂t2
�̂A + ω2 �̂A = 0 (2.97)

with ω def= kc.

26There are certain mathematical difficulties associated with this, which we shall ig-
nore.
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The fact that the field operators �A, �E, and �B are Hermitian has the
immediate consequence that their Fourier transforms are subject to the
constraint

�̂A(−�k, t) = �̂A
†
(�k, t), (2.98)

and similarly for the electric and magnetic fields. In order to take this
restriction into account it is most convenient to define the operators �b(�k, t)
by the equations

�̂E(�k, t) =
√

2π�ω[�b(�k, t) + �b†(−�k, t)], (2.99)

˙̂
�E(�k, t) = −iω

√
2π�ω[�b(�k, t)− �b†(−�k, t)]. (2.100)

In terms of the vector potential, this means that27

�b(�k, t) =
π√
�ω

[ik �̂A(�k, t)− 1
c

˙̂
�A(�k, t)]; (2.101)

they are transverse, �k · �b(�k, t) = 0, and they satisfy the simple equation

of motion �̇b = −iω�b, implying that they can be expressed in terms of
time-indendent operators �a(�k) by

�b(�k, t) = e−iωt�a(�k).

(Remember that ω = kc > 0, so that the operators �b have positive fre-

quency.) Since
˙̂
�E = − 1

c

¨̂
�A = k2c �̂A, the vector potential is given in terms of

�a by

�̂A(�k, t) = −ic
√

2π�

ω
[�a(�k)e−iωt −�a†(−�k)eiωt]. (2.102)

The canonical commutation relations for the operators �a are obtained by
inserting (2.102) and (2.99) in (2.96), with the result

[aj(�k), a
†
l (�k
′)] = δjlδ

3(�k − �k′), (2.103)

while all the other commutators vanish. Thus, again, we arrive at the com-
mutation relations of simple harmonic oscillators, with the result that for
each given �k (best discretized for this purpose), and for each of the two
plane polarizations perpendicular to �k (remember that �k ·�a(�k) = 0), there
are infinitely many states forming a ladder with equidistant steps, �a† acting
as the raising operator and �a as the lowering operator, and the ground state
|0〉 defined by �a|0〉 = 0. The number operator, which counts the number of
quanta in each state of a given �k and plane polarization ê(j) ⊥ �k, is

Nj(�k) = a†j(�k)aj(�k). (2.104)

27Show this as an exercise.
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There remains the task of calculating the energy of this collection of
oscillators.28 Using (2.93), we find that29

Helmag =
1
8π

∫
d3r (�E2 + B2) =

1
8π

∫
d3k [�E(�k) · �E(−�k) + B(�k) ·B(−�k)]

=
∫
d3k �ω

∑
j

a†j(�k)aj(�k) =
∫
d3k �ω

∑
j

Nj(�k).

Thus, the energy of a state |n�k,j〉 of n quanta of wave vector �k and polar-
ization j is

E = 〈n�k,j |Helmag|n�k,j〉 = n�k,j�ω,

as befits a state of n photons, each of energy �ω. Similarly we can calculate
the electromagnetic momentum �P of such a state by using either30

�P =
1

4πc

∫
d3r �E× �B, (2.105)

or else (2.67), with the result31

〈n�k,j |�P|n�k,j〉 = n�k,j�
�k.

Finally, we can find the angular momentum, using the operator form of
the angular momentum of the electromagnetic field,32

�M =
1

4πc

∫
d3r �r × (�E× �B), (2.106)

and we obtain33 for its l component

〈n�k,j |Ml|n�k,j〉 =
〈
n�k,j |a

†
j(�k)[(i∇�k × ��k)l + Sl]aj(�k)|n�k,j

〉
,

where the spin operator S is defined by its action on any vector �f ,

Sj �f
def= i�ê(j) × �f (2.107)

and the operator �L def= i∇�k×��k is interpreted as an analogue of the orbital
angular momentum.34 Since35∑

j S2
j = 2�2, the intrinsic spin of the photon

equals 1�, as s(s+ 1) = 2 means s = 1.(See Chapter 5 for further details.)

28From the physical point of view it is again preferable here to discretize the wave
vectors and replace the Fourier integrals by Fourier series.

29Verify this.
30See [Jackson], p. 238.
31Verify this.
32See [Jackson], p. 333.
33Show it.
34Verify that S satisfies the correct commutation relations (2.33).
35Verify this.
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The radiation field being transverse, �k ·�a(�k) = 0, for a given direction of
�k there are only two linearly independent aj(�k) available. Supposing for the
moment that a coordinate system is chosen in which �k points in the positive
z direction, we may call the two a1

def= ê(1) ·�a and a2
def= ê(2) ·�a, corresponding

to plane polarization in the x and y directions. Alternatively, however, one
may choose the two opposite circular polarizations as fundamental and
correspondingly adopt the complex unit vectors

ê(±) def=
1√
2
(ê(2) ∓ iê(1)),

which are eigenvectors of k̂ · S = S3 with the eigenvalues ±1�:36

S3ê
± = ±�ê±.

These are called helicity eigenstates, and they lead to the operators

a±
def= ê± · a =

1√
2
(a2 ∓ ia1) (2.108)

and the commutation relations37

[a+(�k), a†+(�k′)] = [a−(�k), a†−(�k′)] = δ3(�k − �k′), (2.109)

while all the other commutators vanish. The number operators for the two
helicity states are then defined by

N±(�k) = a†±(�k)a±(�k). (2.110)

The advantage of using helicity, or circular polarization, rather than
plane polarization for the labeling of the photon states is that, whereas the
operators aj(�k) and Nj(�k), j = 1, 2, depend on the choice of a coordinate
system, the number operators N±(�k) do not. This is seen by performing a
rotation of the reference frame around �k. You then find that if the rotation
is by an angle ξ, the new operators a′±(�k) are given by38

a′±(�k) = e±iξa±(�k),

and as a result, the N±(�k) remain unchanged, while their eigenvectors |n�k±〉
undergo a phase change by ±ξ.39

36Show this.
37Check these.
38Show this.
39Since the phase of b±(�k, t) varies in time as −iωt, the circular polarization can be

regarded as a continual rotation of the plane of polarization about �k.
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So here is a summary of our results: a†±(�k) is the creation operator of
a photon of energy �ω = �ck > 0, momentum ��k, and helicity ±�, while
N±(�k) is the corresponding number operator. A normalized state of n�k±
photons of momentum ��k and helicity ±� is, according to (1.41), given in
terms of the normalized vacuum state |0〉 by

|n�k±〉 =
1√
n�k±!

[a†±(�k)]n�k± |0〉. (2.111)

2.4 Canonical and Gauge Transformations

A canonical transformation is a unitary transformation of all the dynamical
variables of a theory by the same operator U, so that, if the original operator
was D, the new one is given by

D′ = UDU−1. (2.112)

Such a transformation leaves all the canonical commutation relations un-
changed, since

[D′1,D
′
2] = UD1U−1UD2U−1 − UD2U−1UD1U−1

= U[D1,D2]U−1 = [D1,D2]

if [D1,D2] is simply a number (i.e., a multiple of the unit operator). Thus
the commutation relations between the p′s and q′s are the same as those
between the ps and qs. Furthermore, since U is unitary, D′ is Hermitian
whenever D is, and the spectra—the possible results of measurements—of
all observables are unchanged. Since the time development of all dynamical
variables in the Heisenberg picture is of the form (2.21), these variables
can be viewed as undergoing, in the course of time, a continuous group of
canonical transformations with U(t) = e

i
�
Ht.

A canonical transformation of the form

U = eif(q,t),

where f is a function of t and the qs only, is called a gauge transformation
of the first kind. It leaves the particle-position operators qk unchanged,
while the momentum operators are changed from pk to

p′k = eifpke−if = eif [pk, e−if ] + pk = −�
∂f

∂qk
+ pk.

Consider, then, a system of particles of charge e. Recall that if the vector
potential �A(�r, t) is replaced by �A′(�r, t) = �A(�r, t) + ∇f(�r, t) and if at the
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same time the scalar potential is changed from φ(�r, t) to φ′ = φ − 1
c
∂
∂tf ,

the electric and magnetic fields remains unchanged.40 Such a change in the
potentials is called a gauge transformation of the second kind. Therefore, if
the canonical momentum operators for a particle of charge e always appear
together with the vector potential in the combination pk − e

cAk, then a
gauge transformation of the second kind changes

pk −
e

c
Ak −→ pk −

e

c
Ak −

e

c

∂

∂qk
f,

which can be compensated by a gauge transformation of the first kind by
setting U = exp( ie

�cf):

pk −
e

c
A′k = U

(
pk −

e

c
Ak

)
U−1. (2.113)

This is why, just as in classical mechanics, the vector potential always has
to appear together with the canonical momentum in the combination

�p− e

c
�A, (2.114)

called the “mechanical momentum.” Moreover, if the Hamiltonian of a
particle of charge e in the presence of electric and magnetic fields reads

H =
1

2M

(
�p− e

c
�A
)2

+ eφ, (2.115)

and similarly for multiparticle systems, then the Hamiltonian for the gauge-
transformed potentials is given by

H′ =
1

2M

(
�p− e

c
�A′
)2

+ eφ′ = UHU−1 − i�U
∂

∂t
U−1,

as a result of which Ψ′ def= UΨ satisfies the Schrödinger equation i� ∂
∂tΨ

′ =
H′Ψ′ if Ψ satisfies i� ∂

∂tΨ = HΨ. Since

1
2M

(
�p− e

c
�A
)2

=
1

2M
�p2 +

e2

2Mc2
�A2 − e

2Mc
(�p · �A + �A · �p),

the interaction term in the Hamiltonian resulting from (2.115) is given by
the last term, which is the equivalent of the classical (1/c) �A ·�j for charged
particles of velocity �p/M .

For the field, a gauge transformation of the first kind takes the form

Ψ(�r, t) −→ Ψ ′(�r, t) = eif(�r,t)Ψ(�r, t), (2.116)

40Show this, using (2.92).
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so that
∇Ψ ′ = eif [∇Ψ + i(∇f)Ψ ].

Therefore if ∇ appears in the form

∇+ i
e

�c
�A (2.117)

and whenever Ψ is subjected to the gauge transformation (2.116), the vector
potential undergoes the gauge transformation of the second kind, �A −→
�A′ = �A +∇g, where g = �c

e f , then

(∇− i e
�c
�A)Ψ −→ (∇− i e

�c
�A′)Ψ ′ = eif (∇− i e

�c
�A)Ψ.

Similarly, the combination

i�
∂

∂t
− eφ (2.118)

is such that(
i�
∂

∂t
− eφ
)
Ψ −→

(
i�
∂

∂t
− eφ′

)
Ψ ′ = eif

(
i�
∂

∂t
− eφ
)
Ψ.

Equation (2.68) shows that the Lagrangian remains invariant under such
combined gauge transformations, from which it follows that the field equa-
tions are unchanged, and so are the canonical commutation relations.41 The
Schrödinger equation (2.69) for the (charged, that is, coupled to the elec-
tromagnetic field) matter field therefore has to contain the vector potential
in the same manner as the Schrödinger equation for the state vector.

If, in the equations governing the field or the state vector of charged
particles, the electromagnetic potentials enter just in the form given by
(2.114), (2.117), and (2.118), and in no additional terms, the result is called
minimal coupling to electromagnetism.

41This line of reasoning may be extended relativistically so that the postulate of
gauge invariance (of the first kind) of the matter-field equations leads to the need for
the existence of an electromagnetic vector potential, coupled in such a way that its gauge
invariance (of the second kind) compensates the first, and which, in turn, has to satify the
Maxwell equations. Even more generally, if the group of gauge transformations is taken
to be non-abelian, the existence of other kinds of fields follows. All modern relativistic
field theories are generated by arguments of this kind.
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2.5 Problems and Exercises

1. Show that the commutation relations (2.11), (2.12), and (2.16) imply
that for any differentiable function f(. . . ,qi, . . . ; . . . ,pi, . . .) of the ps
and qs,

[pj , f ] = −i� ∂f
∂qj

, [qj , f ] = i�
∂f

∂pj
.

Hint: Begin by proving it for polynomials.

2. Show that if f(q) is a differentiable function of q, then

f(q)e−ipc/� = e−ipc/�f(q + c).

3. Show that if f(p) is a differentiable function of p, then

f(p)eiqc/� = eiqc/�f(p + c).

4. Prove that the parity operator commutes with the operator d2

dx2 .

5. Show that the gaussian wave function (2.50) is properly normalized
and calculate the momentum uncertainty as defined by (1.10), i.e.,
confirm (2.51).

6. Do the analogues of (2.50) to (2.54) in three dimensions.

7. Calculate the analogue of (2.58) in three dimensions.

8. Derive (2.105) by defining the momentum as the generator of trans-
lations of the whole system, using the generator (2.9).

9. Derive (2.106) by defining the angular momentum as the generator
of rotations, using (2.9).

10. If an electron is initially localized within a region of diameter 10−4cm,
what is the size of the region in which it will be localized 1 sec later?

11. Suppose you want to minimize the uncertainty of an electron’s posi-
tion .01 sec after its initial position measurement. With what accuracy
should you determine its inital location?



3
The Schrödinger Equation in One
Dimension

According to Eq. (2.43), the time-independent Schrödinger equation for a
one-particle system reads[

�p2

2M
+ V (�q)

]
ΨE = EΨE , (3.1)

assuming that the particle is subject to the potential V (�q), or if the particle
is confined to a line, [

p2

2M
+ V (q)

]
ΨE = EΨE . (3.2)

3.1 A Free Particle

For a free particle in one dimension, subject to no forces or constraints,
(3.2) becomes the simple equation

p2

2M
Ψ = EΨ, (3.3)

so that E is a quasi-eigenvalue of the kinetic-energy operator p2

2M . Since we
have already established that the spectrum of the momentum operator p
of an unconfined particle is the entire real line, it follows that the spectrum
of the kinetic energy operator consists of the positive real line: all non-
negative numbers are in the continuous spectrum of the kinetic energy. In
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the momentum representation, (3.3) becomes

p2

2M
ψ̂(p) = Eψ̂(p), (3.4)

and the Hermitian operator p2 can be replaced by the non-negative number
p2. This equation is easily solved for any given non-negative E; it has two
linearly independent solutions,

ψ̂(±p′, p) = δ(p∓ p′), p′ = +
√

2ME, (3.5)

neither of which is in the Hilbert space L2(IR). Therefore every quasi-
eigenvalue of the kinetic-energy operator is doubly degenerate. The physical
reason for this, of course, is that for a given kinetic energy, the momentum
of the particle can be positive or negative, pointing to the right or to the
left. The quasi-eigenfunctions in (3.5) are normalized so that∫ ∞

−∞
dp ψ̂∗(p′, p)ψ̂(p′′, p) = δ(p′ − p′′).

Using (1.73) and (3.5), we find the configuration-space wave functions of
a free particle of energy E = p2/2M def= �2k2/2M to be

ψ(±k, q) = (2π�)−1/2e±ikq, (3.6)

a result we already obtained in the last chapter, in a somewhat different
notation. It will be convenient, instead of insisting that k = +

√
2ME/�,

to allow the wave number k to be positive or negative, which facilitates the
statement of the normalization of (3.6) to be∫ ∞

−∞
dq ψ∗(k, q)ψ(k′, q) = δ(k − k′)/� = δ(p− p′).

That these functions form a complete set on L2(IR) is expressed by the
equation ∫ ∞

−∞
dpψ∗(p/�, q)ψ(p/�, q′) = δ(q − q′).

Since Eq. (3.4) is invariant under reflection, i.e., under the parity trans-
formation, it can be expected to have odd and even solutions. Such solutions
can be readily formed out of those given by (3.6), namely, sin kq and cos kq.
The fact that the quasi-eigenvalues are degenerate allows us to form solu-
tions such as (3.6) that violate the symmetry of the equation, a feature of
great physical significance possessed by many other systems: the symme-
try of the equation can be spontaneously broken. Ultimately, the breaking
of the symmetry for individual systems is determined by their initial or
boundary conditions: in this particular instance, singling out motion to the
left or right.
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The wave functions (3.5) are, of course, not normalizable and cannot
represent the state of “a free particle.” As noted earlier, they may instead be
regarded as describing beams of infinitely many (independent) free particles
of energy �2k2/2M . The way to recognize that the wave function ei|k|q

describes a beam of particles moving to the right and e−i|k|q to the left
is to remember that the corresponding time-dependent solutions of the
Schrödinger equation are ei(|k|q−ωt) and e−i(|k|q+ωt), respectively; the phase
of the first stays constant when q increases by ωt/|k| = t�|k|/2M as t
increases, while that of the second stays constant when q decreases by the
same amount. A point of fixed phase of the first thus moves rightward and
a point of fixed phase of the second, leftward; the flux density of the first
is �|k|/M ; that of the second, −�|k|/M .

3.2 A Particle With Potential Energy

In one dimension we will encounter the simplest instances of the most im-
portant phenomena described by the one-particle Schrödinger equation in
three dimensions: scattering of particles, resonances with their time delays,
bound states, continuous and band spectra. Let’s look at some specific cases
and then generalize.

3.2.1 The square potential barrier
We begin with a particle moving along the x-axis, encountering a potential
barrier. (From now on we shall write simply x for the particle’s coordinate,
but you should keep in mind that x is really in configuration space, not in
physical space.) Suppose the particle is free in region (i), where x < −a/2,

a/2-a/2

(i) (iii)(ii)

V0

FIGURE 3.1. Square potential barrier of height V0 and width a.

and in region (iii), where x > a/2, while in region (ii), where −a/2 < x <
a/2, its potential energy has the constant positive value V0 (Fig. 3.1). At
the points x = −a/2 and x = a/2, but nowhere else, it encounters forces,
the first pointing to the left, and the second to the right, so that in both
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cases the force repels the particle away from the center of the potential
region. Classically, such a particle, coming in from the left, say, is reflected
back if its energy is less than V0, and passes through the region, after being
temporarily slowed down, if its energy is greater than V0. This is not what
happens quantum mechanically.

The initial condition that particles come in from the left means that,
while in region (i) we can expect flux toward the right (the incoming beam,
whose normalization is under our control) as well as to the left (the reflected
beam), so that there we may write ψl(x) = eikx+Re−ikx, with the constant
R to be determined, in region (iii) there should be no flux toward the left:
if there are any particles in this region, they should all move to the right.
So the solution in region (iii) should be of the form ψl(x) = Teikx, where
T is another constant to be determined. In region (ii), the equation reads
− �

2

2M ψ′′l = (E − V0)ψl, with the solution ψl = beiκx + ce−iκx, where

κ
def=
√

2M(E − V0)/�.

In order for ψl to solve the Schrödinger equation, a second-order differential
equation, both ψl and ψ′l have to be continuous at the point x = a/2, which
leads to the two equations

Teika/2 = beiκa/2 + ce−iκa/2

and
kTeika/2 = κ(beiκa/2 − ce−iκa/2).

Similarly, the two equations of the continuity of ψl and of ψ′l at x = −a/2
read

Reika/2 + e−ika/2 = be−iκa/2 + ceiκa/2

k
[
−Reika/2 + e−ika/2

]
= κ
[
be−iκa/2 − ceiκa/2

]
.

These four equations for the four unknowns, T , R, b, and c are easily solved,
and we obtain

T =
2kκe−iak

2kκ cos aκ− i(k2 + κ2) sin aκ
(3.7)

R =
i sin aκ e−iak(κ2 − k2)

2kκ cos aκ− i(k2 + κ2) sin aκ
. (3.8)

(The two constants b and c are generally of little interest.)
You should, at this point, wonder why the wave function is required to

be continuous and to have a continuous first derivative if all that quantum-
mechanically matters is that it be locally square-integrable. The reason is
the demand that the wave function also be in the domains of definition of
the momentum p and the kinetic energy operator p2/2M . A step discon-
tinuity would prevent the wave function from being in the domain of the
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momentum operator (the derivative would produce a delta function, which
is not locally square integrable), and a discontinuity of the first derivative
would prevent it from being in that of the square of the momentum. There-
fore, the quantum requirements based on Hilbert space considerations are
identical to the demands of the classical theory of differential equations.

Consider the implications of the expressions (3.7) and (3.8). A wave
packet formed out of a superposition of functions of the form ψl(x) will,
for large negative times, have its main contribution from the eikx-term in
the region where x < 0, because that is the only term that can have a
stationary phase; so this is the term that describes the incoming particle.
For large positive times, on the other hand, the term eikx on the left cannot
contribute, whereas both the term Re−ikx on the left and the term Teikx

on the right will; thus these terms describe the outgoing waves. If the solu-
tion ψl is denoted by ψl(k, x), the label k means that in the infinite past,
the particle had the momentum �k; it does not mean that the particle’s
momentum remains �k; this momentum, of course, is not a constant of the
motion and is even undefined during part of the journey.

With the normalization chosen, the flux coming in from the left is given
by k�/M , that going out to the right is |T |2k�/M , and the magnitude of
that being reflected back to the left is |R|2k�/M . Therefore, if by the trans-
mission coeffient we mean the ratio of the magnitudes of the transmitted
to the incoming fluxes, it is given by

|T |2 =
4E(E − V0)

4E(E − V0) + V 2
0 sin2 aκ

, (3.9)

and if the reflection coefficient is defined as the ratio of the magnitudes of
the reflected to the incoming fluxes, it is

|R|2 =
V 2

0 sin2 aκ

4E(E − V0) + V 2
0 sin2 aκ

. (3.10)

[See Figures 3.2 and 3.3 for plots of Eq. 3.10.] It is easy to check that

|R|2 + |T |2 = 1, (3.11)

an important equation that expresses the conservation of flux, that is, the
physical requirement that the reflected and transmitted fluxes must add
up to the incoming flux: �k|R|2/M + �k|T |2/M = �k/M.

The transmission and reflection coefficients for particles coming in from
the right instead of from the left are obtained similarly, by defining a so-
lution ψr(x) that is of the form ψr(x) = Tre

−ikx on the left and of the
form ψr(x) = Rre

ikx + e−ikx on the right. The Wronskian W (ψr, ψl)
def=

ψrψ
′
l − ψ′rψl of these two solutions is a constant,1 and its value for large

1Why?
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FIGURE 3.2. The reflection coefficient (3.10) plotted as a function of x def= E/V0

for 2MV0a
2/�2 = 30.
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1098765432

FIGURE 3.3. The reflection coefficient (3.10) plotted as a function of x def= E/V0

for 2MV0a
2/�2 = 500.

positive x is 2ikT , while its value for large negative x is 2ikTr. We can
therefore conclude that T = Tr; that is, the transmission amplitudes for
left and right incidence are always equal. In this particular case we can say
more: since the potential is invariant under reflection, so must be the values
of R and Rr; hence both the formulas (3.7) and (3.8) hold for left-incidence
as well as right-incidence.

These results have a number of interesting features. Notice the pro-
nounced diffraction effects near the “edge,” when E � V0: at those values
of E ≥ V0 for which aκ = nπ, n = 0, 1, 2, . . ., there is full transmission and
no reflection, the energy differences from one such transmission maximum
to the next being ∆E = π2�2/2Ma2. If the phase of T is defined to be
ϕ− ak, i.e., T = |T |eiϕ−iak, (3.7) tells us that

tanϕ =
k2 + κ2

2kκ
tan aκ,
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and its derivative when sin aκ = 0 is

d(ϕ− ak)
dk

=
a

2κ2 (k2 − κ2),

which implies, according to (2.61), that there is a time delay τ in the
transmitted wave,

τ =
aM

2�kκ2 (k2 − κ2) =
aM2

�3kκ2V0. (3.12)

This should be compared to the classical time delay caused by the slowing
down of the particle as it crosses the barrier, where its velocity is p/M =
�κ/M instead of its original �k/M , as a result of which τcl = aM/�κ −
aM/�k = 2τκ/(k+ κ). If κ� k, so that the particle skims over the top of
a high potential barrier,

τ =
k

2κ
τcl � τcl; (3.13)

the quantum-mechanical time delay is then much larger than the classical
one.

At certain energies two phenomena occur together: 1) the reflection coef-
ficient vanishes—the barrier becomes transparent—and 2) the transmitted
particle emerges after a lengthy delay—the particles linger near the barrier
for a long time; the combination of these two effects is called a resonance. A
delay in the emerging flux is an important part of a resonance phenomenon,
not just the maximal transmission. Except at these special energies, there is
always some reflection; however, since |R|2 ≤ V 2

0 /(2E−V0)2 = 1/(2 EV0
−1)2,

when E � V0, there is essentially full transmission: at high energies, the
barrier becomes practically invisible, as it is classically.

When the energy is below the top of the barrier, E < V0, (3.9) and (3.10)
still hold, but κ becomes imaginary and |T |2 can be written in the form

|T |2 =
1

1 + V 2
0

4E(V0−E) sinh2
(
a
�

√
2M(V0 − E)

) . (3.14)

That this differs from zero shows that there is transmission even below the
top of the barrier; the particles can penetrate it, even though, classically,
they could not. This phenomenon is usually referred to as the tunnel effect.
Far below the top, when 2Ma2(V0 −E)/�2 � 1, the tunneling probability
can be written

|T |2 � 16
E

V0
(1− E

V0
)e−2a

√
2M(V0−E)/�, (3.15)

an expression that can be used as a rough approximation in more general
settings. It allows us, for example, to estimate the lifetime of α-particles
“trapped” inside a nucleus by its potential barrier. (This is left as a problem
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for you to calculate.) At the same time as the amplitude of the transmitted
wave function is reduced by transmission through the barrier and few parti-
cles manage to penetrate it, they are also retarded by the journey. As shown
in Eq.(2.61), this effect can be calculated by means of the k-derivative of
the phase of T , and we find that in the limit when (3.15) is valid, the wave
packet center has been shifted back by the width a of the barrier.2

What are the consequences of rigidly translating the position of the po-
tential? Setting x = x′ − ζ in the Schrödinger equation has the effect of
shifting the potential by ζ to the right. (The origin of the x-axis, i.e., the
center of the barrier, is located at x′ = ζ.) In region (iii), the solution ψl,
when multiplied by the constant eikζ , will now have the form Teikx

′
, and

in region (i) it has the form Re2ikζe−ikx
′
+eikx

′
. Therefore, T is unchanged

and R has to be replaced by Re2ikζ ; neither |T |2 nor |R|2 is changed.

3.2.2 The potential well
The results we have obtained for E > V0 > 0 are equally valid when E > 0
and V0 < 0, so that the potential barrier becomes a potential well (Fig.
3.4), which, from both sides, exerts a force on the particle that attracts it
towards the center. In that case, however, the energy spectrum will consist
not only of the positive real line, but there will also be discrete eigenvalues.
These are found as follows.

a/2-a/2

(i) (iii)(ii)

V0

FIGURE 3.4. Potential well of depth V0 and width a.

First of all, in order for a solution to be square integrable, it cannot be
of the form e±ikx outside the well, with k real; instead we have to look for
decreasing solutions of the form e−|k|x on the right and e|k|x on the left,
with E < 0 and |k| =

√
−2ME/�. The discrete eigenvalues therefore have

to be negative. This makes very good physical sense: the potential energy
at infinite distance being zero—which can be regarded as the definition of
the zero point of the energy—a particle with positive energy can escape

2Show this as an exercise.
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to infinity, while a particle with negative energy cannot. As a result, it is
a general fact that whenever the potential vanishes at infinity (sufficiently
rapidly), the continuous energy spectrum occupies the entire positive half-
axis, while the discrete eigenvalues (if any) are negative.3

Since the potential is an even function of x, we are going to look for odd
and even solutions. In region (iii), the solution must be of the form be−|k|x

while in region (ii), the odd and even solutions are, respectively, ψ = c sinκx
and ψ = c cosκx, where now κ2 = −|k|2 + 2M |V0|/�2. At x = a/2 we have
to match the logarithmic derivatives of the solutions. (This is a convenient
way of making sure that both the function and its derivative are continuous,
and it eleminates an uninteresting constant factor.) For the odd solution,
this requires

|k| = −κ cot(κa/2), (3.16)

and for the even solution,

|k| = κ tan(κa/2). (3.17)

Plotting the left- and right-hand sides of (3.16) as functions of κ shows
the solutions as the intersections of the curve f(κ) =

√
2M |V0|/�2 − κ2

with the curves g(κ) = −κ cot(κa/2). Since f(κ) > 0 up to the point
κ =
√

2M |V0|/� and g(κ) does not turn positive until κ > π/a, there can
be no intersection of f and g unless |V0| > π2�2/2Ma2. (Fig. 3.5.) As |V0|
increases, the number of intersections grows without limit.

For the even solutions, (3.17) shows that we are looking for the inter-
sections of the curve f(κ) with h(κ) = κ tan(κa/2). Since h(κ) starts out
positive at the origin and increases to infinity at κ = π/a, the two curves
will always intersect at least once, so that there is always at least one
solution of (3.17).

The solutions we have found are the bound states of the particle in the
presence of a square well potential, which produces an inward-directed kick
at the two points x = ±a/2 but no other forces. Whereas classically, such
a particle will be confined to the interior if its energy is negative, quantum
mechanicaly it has a finite probability of being found outside. (To calculate
this probability will be one of your homework exercises.) The eigenvalues
are those values of the energy at which the particle can remain in a steady
state without escaping to infinity. This is because if at the time t = 0 the
particle is in an eigenstate ψE(x) of H with the eigenvalue E, then at the
later time t its state is ψ(x, t) = ψE(x)e−iEt/�, so that the probability of
finding the particle in the volume element dx is |ψ(x, t)|2dx = |ψE(x)|2dx,
just as it was at t = 0. By contrast, for any state made up of a superpo-
sition of continuum quasi-eigenstates, such as

∫
dk e−i�k

2t/2Mf(k)ψ(k, x),

3There are instances in which the Schrödinger equation has positive discrete eigenval-
ues, which therefore are embedded in the continuum, but for the one-particle Schrödinger
equation these are exceptional cases, which occur only for rather pathological potentials.
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g(x)

h(x)

f(x)

f(x)

1 2

1

FIGURE 3.5. The upper figure shows the function g(x) = −x cotx, the right-hand
side of (3.16), and the function f(x) =

√
A2 − x2, its left-hand side, with A = 1, 2.

The lower figure shows h(x) = x tanx, the right-hand side of (3.17), and f(x)
with A = 1. Here x def= aκ/2 and A2 def= M |V0|a2/2�

2.

the probability density tends to zero as t→ ±∞: the probability of finding
the particle in any given finite region in the infinity past or future vanishes.
This difference is the essential characteristic of bound states, not just in one
dimension, but in three dimensions as well. (On the other hand, the fact
that, no matter how weak the negative potential −|V0| is, there is always
at least one bound state, is a general feature of the Schrödinger equation
in one dimension; it does not hold in three dimensions.)4 The existence of
such spatially self-confined states of certain specific energies is one of the
most characteristic features of quantum mechanics as distinct from classi-
cal mechanics. As a consequence, two identical systems in the same bound
state are completely indistinguishable and stable: two hydrogen atoms in
isolation are truly identical stable systems.

As the potential well is made deeper and deeper it becomes convenient
to set the origin of energy at the bottom of the well, which means setting
E = �2κ2/2M and k2 = 2M(E − |V0|)/�2 → −∞. In the region outside
the potential well, the wave function then vanishes identically in the limit,
and we are simply left with the problem to solve the Schrödinger equation
ψ′′ = −κ2ψ for −a/2 < x < a/2, with the boundary conditions ψ(−a/2) =

4You should also note that the threshold potential strength at which the first odd
bound state appears just at the energy E = 0, i.e., when |V0| = π2

�
2/2Ma2, the

reflection coefficient vanishes at E = 0.
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ψ(a/2) = 0.5 In agreement with (3.16) and (3.17) in the limit as |V0| → ∞,
this problem has the odd solutions ψ = sinκx with κ =

√
2ME/� =

2nπ/a, n = 1, 2, . . ., and the even solutions ψ = cosκx with κ = (2n +
1)π/a, n = 0, 1, . . .. The ground state has the energy E = (�π/a)2/2M and
(in accordance with Sturm-Liouville theory) its wave function is nodeless,
while the wave function of the nth level has n− 1 nodes.

3.2.3 General transmission and reflection
The physical effects described for the cases of square potential wells and
barriers are of general validity. Whenever the potential vanishes sufficiently
rapidly as |x| → ∞, it is useful to define two linearly independent solutions
ψl and ψr of the Schrödinger equation for E > 0 by the following boundary
conditions: the function ψl(x) is defined by the requirements that as x →
−∞

ψ′l(x) + ikψl(x)− 2ikeikx → 0, (3.18)

while as x→ +∞,
ψ′l(x)− ikψl(x)→ 0; (3.19)

and ψr(x) is defined by the requirements that as x→ +∞,

ψ′r(x)− ikψr(x) + 2ike−ikx → 0, (3.20)

while as x→ −∞
ψ′r(x) + ikψr(x)→ 0. (3.21)

It then follows that there exist three constants T , Rl, and Rr such that as
x→ −∞,

ψl(x) = eikx +Rle
−ikx +O(x−1), ψr(x) = Te−ikx +O(x−1), (3.22)

and as x→ +∞,

ψr(x) = e−ikx +Rre
ikx +O(x−1), ψl(x) = Teikx +O(x−1), (3.23)

from which the ratio of the fluxes leads to the reflection and transmission
coefficients |Rl|2, |Rr|2, and |T |2. That the two transmission amplitudes
are equal follows from the same Wronskian argument as before. Since the
conservation of flux again leads to (3.11), it follows that |Rl|2 = |Rr|2 =
1− |T |2, even though the amplitudes Rl and Rr need not be equal.

5This eigenvalue problem is a special case of the Schrödinger equation on a finite
interval, a standard Sturm-Liouville problem.
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3.2.4 The double well
Suppose now there are two identical wells of width l and with infinitely
high walls, located symmetrically about the origin, a distance 2a apart.
In that case, the energy levels are the sums of any two of the eigenval-
ues for each individual well. However, there now is a twofold degeneracy,
because the energy of a state in which there is a wave with n nodes in
the left well and one with m �= n nodes in the right well is equal to that
of the reflected state, corresponding to the classical fact that for a given
energy, the particle could be either in the left or in the right well. (If the
potential is “well behaved,” rather than being infinite on a stretch of the
real axis, as in this instance, there can be no degeneracy of eigenvalues
in one dimension—though there is degeneracy of the quasi-eigenvalues in
the continuous spectrum— because that would imply that every solution
of this second-order ordinary differential equation with a given energy is
square integrable.) Notice that, even though the Hamiltonian has reflection
symmetry, so that parity is conserved, there are non-symmetric solutions
(solutions that are not eigenstates of parity). This spontaneous symmetry
breaking is possible only because of the degeneracy, which allows the for-
mation of asymmetric superpositions of two reflection-symmetric solutions.

Let us next modify this double well and give it the form shown in Figure
3.6, two wells separated by a barrier of width 2a and height V0. The even

V0

l l2a

FIGURE 3.6. A double potential well with infinitely high walls.

solutions below the barrier top must have the form ψ = coshκx in the
barrier (κ =

√
2M(V0 − E)/�), and ψ = c sin[k(x − l − a)] in the right-

hand well. Matching logarithmic derivatives at the right barrier wall leads
to the equation

κ tanhκa = −k cot kl. (3.24)

The odd solution, on the other hand, should have the form ψ = sinhκx in
the barrier, which leads to the equation

κ cothκa = −k cot kl. (3.25)
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N

H H

H

FIGURE 3.7. The oscillating ammonia molecule.

As V0 →∞, both (3.24) and (3.25) lead to |k cot kl| =∞, i.e., kl = πn, and
each level is doubly degenerate, as we anticipated. However, for aκ� 1 we
have

coth aκ =
1 + e−2aκ

1− e−2aκ ∼ 1 + 2e−2aκ, tanh aκ =
1− e−2aκ

1 + e−2aκ ∼ 1− 2e−2aκ,

and the equation for the even solutions becomes

1
k e

tan(kel) = − 1
κ

(1 + 2e−2aκ),

while that for the odd solutions reads

1
k o

tan(kol) = − 1
κ

(1− 2e−2aκ).

The two levels are now no longer degenerate and we calculate6 the split
between them by setting ko = ke + ε, obtaining

ε =
4k
κl
e−2aκ =

4k�

l
√

2M(V0 − E)
e−2a
√

2M(V0−E)/�.

Therefore, for a high barrier separating the two wells, the degeneracies are
split by

∆E =
8E�

l
√

2M(V0 − E)
e−2a
√

2M(V0−E)/�. (3.26)

This result for the energy splitting has direct physical applications. For
example, the simple potential shown in Figure 3.6 constitutes a “toy model”

6Do it.
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of the tetrahedral ammonia molecule NH3, whose “inversion spectrum”
with a frequency ν ∼ 0.8cm−1 is caused by the effect we have calculated.
It corresponds to a classical picture in which the nitrogen atom slowly
oscillates from one side of the plane of the three hydrogen atoms to the
other (Fig. 3.7). According to (3.26), this oscillation frequency ν = ∆E/2π�

is proportional to the tunneling probability through the potential barrier,
as given by (3.15).

3.2.5 The Kronig-Penney potential
The next example we want to investigate is that of a periodic potential.
Suppose the potential energy is of the form

V (x) =
{
V0 if |x| < a,
0 if a < |x| < a+ b,

and V (x + l) = V (x), with l = 2a + b; this is called a Kronig-Penney
potential (Fig. 3.8). In the nth valley, the solution can be conveniently
written in the form

ψn = An sin k(x+ a− nl) +Bn cos k(x+ a− nl),

where k def=
√

2ME/�, while in the bump to the right of the nth valley it
may be written in the form

 2a           b            2a            b           2a            b           2a

l

V0

FIGURE 3.8. The Kronig-Penney potential.

ψn = an sinκ(x+ a− nl) + bn cosκ(x+ a− nl),

where κ def=
√
k2 − 2MV0/�2. Matching ψn and its first derivative at x =

nl − a gives Bn = bn and kAn = κan; the two matching equations at
x = nl + a can be expressed in matrix form by defining

An
def=
(
An
Bn

)
,

N1
def=
(
− sin bk cos bk
cos bk sin bk

)
, N2

def=
(

(k/κ) sin bκ cos bκ
cos bκ −(κ/k) sin bκ

)
,

so that the equations become N1An+1 = N2An, or An+1 =MAn, where
M def= N−1

1 N2 = N1N2, since N2
1 = 11. As a result, we have An+1 =MnA1,
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and in order for the solution to remain bounded, both to the left and to
the right, An must stay bounded as n→ ±∞, which means thatMn must
not grow without limit, either as n → ∞ or as n → −∞. Consider the
eigenvalues of M. Since detM = 1, the equation det(M− m11) = 0 for
the eigenvalues m of M reads m2 − 2τm + 1 = 0, where τ def= 1

2 trM =
1
2 (M11 +M22). Therefore, m = τ ±

√
τ2 − 1 and m1m2 = 1. In order

for Mn to remain finite as n → ±∞, it is necessary and sufficient that
|m1| = |m2| = 1, which requires τ2 ≤ 1; if τ = ±1 we obtain m1 = m2 = 1,
i.e., M = 11, while τ2 < 1 leads to m1 = m∗2 = τ + i

√
1− τ2. Define

τ
def= cos γ, so that m1 = eiγ , m2 = e−iγ , and the result becomes

cos γ = τ(k) = cos 2aκ cos bk − κ2 + k2

2kκ
sin 2aκ sin bk. (3.27)

[A plot of the function τ(k) is shown in Figure 3.9.] Those regions of the

1

-1

FIGURE 3.9. A plot of the function F (x) def= τ(x/2a), where τ is given by (3.27).
The heavy gray lines make up the spectrum with its gaps.

real k-axis where |τ | ≤ 1 produce the allowed values of E = �2k2/2M,
whereas those stretches where |τ | > 1 are forbidden. In other words, the
spectrum consists of bands separated by gaps.

Suppose that the vectors

C± def=
(
p±

s±

)
are the eigenvectors of M with the eigenvalues e±iγ , respectively, so that
p−∗ = p+ def= p, s−∗ = s+

def= s, and in the nth valley, where nl − b − a <
x < nl − a,

ψ±(x) = e±inγ [p± sin k(x+ a− nl) + s± cos k(x+ a− nl)]
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and for nl − a < x < nl + a,

ψ±(x) = e±inγ [p±
k

κ
sinκ(x+ a− nl) + s± cosκ(x+ a− nl)].

Define, then, u±(x) def= e∓ixγ/lψ±(x), so that for −b− a < x− nl < −a,

u±(x) = e∓i(x−nl)γ/l[p± sin k(x+ a− nl) + s± cos k(x+ a− nl)],

and for −a < x− nl < a,

u±(x) = e∓i(x−nl)γ/l[p±
k

κ
sinκ(x+ a− nl) + s± cosκ(x+ a− nl)],

which shows that u±(x + l) = u±(x). The solution ψ±(x) therefore is
a product of a function with the same periodicity as the potential and
a plane wave with the wave number K def= γ/l.7 The two functions ψ±

are one another’s complex conjugates, ψ− = ψ+∗, and they are linearly
independent, except at the band edges, where sin γ = 0, that is, where
Kl = nπ, n = 0, 1, 2 . . ..

The solutions ψ±(x) are called Bloch functions, and they play an im-
portant role in solid-state physics, since the electrons in a crystalline solid
find themselves in the periodic environment provided by the arrangements
of the molecules. The one-dimensional Kronig-Penney potential constitutes
a very oversimplified model for the motion of electrons along a thin wire.
The band structure of their energy spectrum accounts for the existence of
electrical conduction, in spite of the fact that if the molecules making up
the solid were isolated, the electrons would be bound and localized; it is
the regular arrangement of the molecules in a crystal that allows them to
penetrate the barriers between neighboring molecules and to roam in the
conduction bands as if they were free, albeit with a modified momentum.

3.2.6 The simple harmonic oscillator
The simple one-dimensional harmonic oscillator is probably the most fun-
damental dynamical system in all of physics. Not only does it arise in
many different contexts and guises, but, as stressed already in Chapter 1
and Chapter 2, it lies at the heart of how particles arise from quantum
fields in the first place. (See p. 55.)

The potential energy of a simple oscillator of mass M and classical fre-
quency ω, centered at the origin, is given by V (x) = 1

2Mω2x2, so that its
Hamiltonian is H = p2/2M + 1

2Mω2q2 and the Schrödinger equation in

7According to a theorem by Floquet, wave functions of such a product form exist for
any periodic potential, not just for Kronig-Penney potentials.
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the configuration representation reads

− �2

2M
d2ψ

dx2 +
1
2
Mω2x2ψ = Eψ.

Defining the operator

a def=
1√
2

(
ξ +

d

dξ

)
, so that a† =

1√
2

(
ξ − d

dξ

)
, (3.28)

where ξ def=
√
Mω/�x, allows us to transform the Hamiltonian into

H = �ω(a†a +
1
2
),

while the operators a and a† satisfy the commutation relation

[a, a†] = 1.

We may now utilize our earlier results for the oscillator in Chapter 1. As
we found below Eq.(1.41), the eigenvalues of the operator N def= a†a are
the non-negative integers, so that the eigenvalues of the simple harmonic
oscillator are En = (n+ 1

2 )�ω, where n = 0, 1, 2, . . .. (You may recall that
the “old quantum theory” led to the energies En = n�ω, without the zero-
point energy 1

2�ω.)
The ground state is determined by Eq. (1.45) or aφ0 = 0, which now

reads
φ′0 + ξφ0 = 0,

the solution of which is φ0(ξ) = ce−
1
2 ξ

2
; in order to normalize it, choose8

c = π−1/4; according to (1.44), the normalized nth eigenfunction is then
given by

φn(ξ) =

[
1√
2

(
ξ − d

dξ

)]n
π1/4
√
n!

e−
1
2 ξ

2
. (3.29)

The functions defined by

Hn(ξ)
def= e

1
2 ξ

2
(
ξ − d

dξ

)n
e−

1
2 ξ

2
(3.30)

are called Hermite polynomials (see Appendix D.2),9 and the normalized
harmonic oscillator wave functions are expressed in terms of them by

φn(ξ) =
1

2n/2π1/4
√
n!
Hn(ξ)e−

1
2 ξ

2
, (3.31)

8Show this.
9Demonstrate that Hn is a polynomial of degree n with n real zeros.
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or explicitly,

ψn(x) =
(Mω)1/4

2n/2(π�)1/4
√
n!
Hn(
√
Mω/�x)e−

Mω
2�

x2
. (3.32)

The classical probability density of a particle trapped in a harmonic-
oscillator well can be defined by the length of time the particle spends in
the interval dx, which is dx/ẋ. Since classically x =

√
2E/Mω2 sinωt, the

(normalized) classical probability density is given by

Pcl(x) =
1
π

√
Mω2

2E −Mω2x2 =
1
π

√
Mω2

2E − ω�ξ2
.

The quantum mechanical probability density, on the other hand, is given
by P (x) = |ψ(x)|2. When comparing the two, it is interesting to note
that Hn(ξ) has no zeros for ξ >

√
2n+ 1. [This is proved by writing the

Schrödinger equation in the form φ′′/φ = ξ2−(2n+1). When the right-hand
side of this equation is positive, φ(ξ) is convex toward the ξ-axis, and since it
vanishes at infinity, it cannot have any zeros.] Therefore all the oscillations

E

V

n

n
ψ

FIGURE 3.10. V is the harmonic-oscillator potential, ψn is the corresponding
energy eigenfunction for n = 10, and En is the energy eigenvalue for n = 10.

of the wave function are in the region inside the potential, x2 < 2E/Mω2,
where the particle is classically allowed to be; in the classically forbidden
region, x2 > 2E/Mω2, the wave functions simply decay (Fig. 3.10).

The expectation value of the potential energy in the nth state can be
calculated from the result of #10 of the homework problems and comes
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out to be 〈V 〉 = 1
2�ω(n+ 1

2 ) = 1
2En, just as it does classically: on average,

half the energy is potential energy and half is kinetic.10

It is also interesting to see what happens in the course of time to a
“minimal wave packet” subject to a harmonic oscillator potential. Suppose
that at the time t = 0 the wave function is of the form

ψ(ξ, 0) = e−
1
2 (ξ−ξ0)2 .

By means of the generating function (D.43), this can be expanded in the
form

ψ(ξ) = e−
1
4 ξ

2
0

∞∑
n=0

(ξ0/2)n

n!
e−

1
2 ξ

2
Hn(ξ).

Since e−
1
2 ξ

2
Hn(ξ) = φn(ξ) for the oscillator, the time development of ψ(ξ, t)

can therefore be written down directly, using En = �ω(n+ 1
2 ),

ψ(ξ, t) = e−
1
4 ξ

2
0− 1

2 ξ
2−iωt/2

∞∑
n=0

(ξ0e−iωt/2)n

n!
e−

1
2 ξ

2
Hn(ξ),

which can be resummed,

ψ(ξ, t) = exp[−1
2
(ξ − ξ0 cosωt)2] exp[

i

2
(
1
2
ξ20 sin 2ωt− 2ξξ0 sinωt− ωt)],

so that
|ψ(ξ, t)|2 = e−(ξ−ξ0 cosωt)2 .

This result is noteworthy for two reasons. First of all, the packet does not
change shape in the course of time—it does not spread. Second, the center of
the packet simply oscillates with frequency ω, just like the classical particle.
Such “minimal wave packets” are special cases of states obtained as follows.

3.2.7 Coherent states
The “lowering operator” a defined by (3.28) is, of course, not Hermitian
and does not correspond to an observable; it is nevertheless of interest to
find its eigenvalues, if it has any, which satisfy

aΨα = αΨα.

Expanding Ψα on the basis of the harmonic-oscillator eigenstates |n〉,

Ψα =
∞∑
0

cn|n〉,

10Show that this is in agreement with the virial theorem (2.37).
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and using (1.43), which implies that

a|n〉 =
√
n|n− 1〉,

we obtain ∞∑
0

cna|n〉 =
∞∑
0

cn+1
√
n+ 1|n〉 =

∞∑
0

cnα|n〉,

from which we conclude cn+1 = αcn/
√
n+ 1, and therefore

cn = c0
αn√
n!
.

Now let us check under what conditions on α the alleged state Ψα is nor-
malizable and therefore acceptable as an eigenstate:

(Ψα,Ψα) =
∞∑
0

|cn|2 = |c0|2
∞∑
0

|α|2n
n!

= |c0|2e|α|
2
,

which means that Ψα is normalizable for all complex values of α and every
complex number α is an eigenvalue of a. (So the “discrete” point spectrum
of the non-Hermitian operator a forms a continuum; this cannot happen
for Hermitian operators.) In order to normalize Ψα we choose

c0 = e−
1
2 |α|2 ,

and we have explicitly, with aΨ0 = 0,

Ψα = e−
1
2 |α|2

∞∑
0

(αa†)n

n!
|0〉 = e−

1
2 |α|2+αa†

Ψ0. (3.33)

Since for any eigenvector Ψα of a we have ‖ aΨα ‖= |α| ‖ Ψα ‖ and there
is no limit to the size of |α|, it follows that the lowering operator a is
unbounded. Its domain of definition is the set of all vectors Ψ =

∑
bn|n〉

for which not only
∑
|bn|2 <∞ but also

∑
n|bn|2 <∞; the domains of am

shrink with increasing m.11

The eigenstates of a are called coherent states. Let us see what they are
like in the configuration representation. In terms of12 ξ =

√
Mω/� q we

have the wave function
ψ0 = π−1/4e−

1
2 ξ

2
;

from (3.28), (3.30), (3.33), and (D.43) we therefore obtain

ψα = π−1/4e−
1
2 |α|2
∑
n

1
n!

[
α√
2

(
ξ − d

dξ

)]n
e−

1
2 ξ

2

11Why?
12To avoid confusion, we are going back to using q for the particle’s coordinate.
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= π−1/4e−
1
2 |α|2
∑
n

1
n!

(
α√
2

)n
e−

1
2 ξ

2
Hn(ξ)

= π−1/4e−
1
2 |α|2e−

1
2 ξ

2
e−

1
2α

2+
√

2ξα

= π−1/4 exp
[
1
2
α2 − 1

2
|α|2 − 1

2
(ξ −

√
2α)2
]
,

and as a result,

ψα(q) = π−1/4 exp
[
1
2
α2 − 1

2
|α|2 −

(√
Mω/2� q − α

)2
]
. (3.34)

So the coherent states are Gaussian wave packets. Defining Z = X +
iY

def=
√

2�/Mω α and labeling the coherent states by Z, so that(
q +

i

Mω
p
)
ψZ(q) =

(
q +

�

Mω

d

dq

)
ψZ(q) = ZψZ(q),

we have explicitly

ψZ(q) = π−1/4 exp
{
Mω

2�
[−(q −X)2 + iY (2q +X)]

}
,

from which it becomes apparent that X = 〈q〉, because that’s where the
Gaussian packet is centered. Furthermore, since∫

dq ψ∗Z

(
−i� ∂

∂q

)
ψZ = −iMωY,

it follows that Y = i 〈p〉Mω , so that(
q +

i

Mω
p
)
ψZ =

(
〈q〉+ i

Mω
〈p〉
)
ψZ . (3.35)

(Note, however, that qψZ �= 〈q〉ψZ and pψZ �= 〈p〉ψZ .)
We can easily calculate the dispersions of p and q in these states: from

q =
√

�/2Mω(a+a†) we find that in an eigenstate of a with the eigenvalue
α,

〈q2〉 =
�

2Mω
〈a2 + a†2 + 2a†a + 1〉

=
�

2Mω
(α2 + α∗2 + 2|α|2 + 1)

=
�

2Mω
+X2 =

�

2Mω
+ 〈q〉2;

therefore,

∆q2 = 〈q2〉 − 〈q〉2 =
�

2Mω
,
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and similarly from p = −iMω�

2 (a− a†),

∆p2 = 〈p2〉 − 〈p〉2 =
Mω�

2
,

so that
∆p∆q =

�

2
.

Thus the coherent states saturate the uncertainty product. (That’s because
they are Gaussian.)

When the oscillator is in a coherent state, the number of quanta, and
thus its energy, is not fixed. The time-development of these states is easily
calculated, using the Hamiltonian H = �ω(a†a + 1

2 ). If at the time t = 0
the system is in the state

|Z〉 def= ΨZ = e−
1
2 |α|2
∑
n

αn√
n!
|n〉, α =

√
Mω

2�
Z, (3.36)

where |n〉 is an eigenstate of N = a†a with the eigenvalue n, then at the
time t it is in the state

e−iHt/�|Z〉 = e−
1
2 |α|2e−

i
2ωt
∑
n

(
αe−iωt

)n
√
n!

|n〉 = e−
i
2ωt|Ze−iωt〉.

Since Ze−iωt = X cosωt+Y sinωt+i(Y cosωt−X sinωt), we can conclude
from (3.35) that

〈q(t)〉 = 〈q0〉 cosωt+ 〈p0〉 sinωt,

〈p(t)〉 = 〈p0〉 cosωt− 〈q0〉 sinωt,
which means that these averages behave just like the positions and mo-
menta of the classical oscillator. According to (3.36), the probability wn of
finding n quanta when the system is in a coherent state is given by

wn =
|α|2n
n!

e−|α|
2
,

and it does not vary with time. For large n, Stirling’s formula implies that

logwn = n− n log n+ 2n log |α| − |α|2,

which has a maximum at nmax = |α|2. Thus, when the system is in the
coherent state ΨZ , the number of quanta most likely to be found in it is
nml = Mω

2�
|Z|2; since each of these quanta has the energy E = �ω, the

most likely energy of the oscillator is Eml = 1
2Mω2|Z|2, which is exactly

the classical energy of a harmonic oscillator of amplitude |Z|.
The coherent states of oscillator systems have important physical appli-

cations in quantum optics; for further details, see [Klauder].
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3.3 Problems and Exercises

1. Prove that

‖
(
d2

dx2 + k2
)
eikx−εx

2 ‖2 def=
∫ ∞
−∞

dx

∣∣∣∣( d2

dx2 + k2
)
eikx−εx

2
∣∣∣∣2 → 0

as ε→ 0.

2. Derive the relativistic dispersion relation in vacuum, i.e., find the
relation between the wavelength and the frequency for the de Broglie
wave of a free relativistic particle. Find the relation between the phase
and group velocities and the particle velocity in the relativistic case.
Connect them with those for photons.

3. Calculate the transmission and reflection amplitudes for incidence
of electrons of energies 1eV, 1.5eV, 2eV, 2.5eV, 3eV, and 5eV from
the left on a rectangular potential barrier of height 2eV and width
3× 10−8cm.

4. Use (3.15) to estimate the α-decay lifetime of a uranium nucleus,
making reasonable assumptions about the radius of the nucleus (∼
10−12cm), the energy of the α particle (V0 − E ∼ 12MeV) and its
mean velocity (∼ 109cm/sec).

5. Calculate the reflection and transmission coefficients for the potential
V (x) = αδ(x − a). (In order to find the effect of the delta-function
potential, integrate the Schrödinger equation over a small interval
containing the point a.) Find the bound-state energy if there is one.
(What is the criterion for the existence of a bound state?)

6. Calculate the reflection and transmission coefficients for the potential
V (x) = α[δ(x− a) + δ(x+ a)].

7. Calculate the reflection and transmission coefficients for the potential
V (x) = 0 for x < 0 and V (x) = V0 for x > 0, paying attention to the
fact that these coefficients are defined as flux ratios.

8. Calculate the reflection and transmission coefficients for both direc-
tions of incidence on a potential that vanishes for x < 0, has the neg-
ative value −V0 for 0 < x < a, and the positive value V1 for x > a.
Also find a transcendental equation for the bound-state eigenvalues.

9. Calculate the normalized bound-state eigenfunction of a particle in
the ground state of a square-well potential of width a and depth V0.
What is the probability of finding the particle outside the well? What
is the expectation value of its distance from the center of the well?
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10. Assuming that a one-particle system is in the nth state of a simple
harmonic oscillator, calculate 〈p2〉, 〈q4〉, and the Fourier transform
of ψn(q).

11. Let |n〉, n = 0, 1, . . ., be the complete set of normalized eigenstates
of a simple harmonic oscillator, and define the operator E by E|n〉 =
|n− 1〉. What is E†? Is E unitary?

12. Using (1.43), show that if a is the lowering operator for a simple
harmonic oscillator, then

a|n〉 =
√
n|n− 1〉.

13. Prove that the raising operator a† is unbounded and find its domain of
definition. Also show that the domains of a†m shrink with increasing
m.

14. Find the eigenvalues of the raising operator a†.

15. Prove that the Wronskian W (f, g) = fg′−f ′g of two solutions of the
same second-order ordinary differential equation is a constant.

16. Show that the free-particle Schrödinger equation is invariant under
Galilean transformations. Do this by showing that when the trans-
formation x′ = x−vt is applied (where v is the velocity of the second
reference frame with respect to the first), the transformed wave func-
tion ψ′(x′, t) def= f(x, t)ψ(x, t) satisfies the same equation as a func-
tion x′ as does ψ as a function of x, and f involves only x, t, �,M ,
and v. Find the form of f and show that the traveling-wave solution
ψ(x, t) = Aei(kx−ωt) transforms as expected.

17. Let 〈q〉 and 〈p〉 be the mean values of q and its conjugate momen-
tum p for a system in the state described by the configuration wave
function ψ(q). What are the mean values of q and p in the state with
the wave function

e−i〈p〉q/�ψ(q + 〈q〉)?

18. Consider the Schrödinger equation in one dimension with the poten-
tial V which consists of the periodic repetition, in both directions,
of a given potential U(x) defined for 0 < x < a. Define two linearly
independent solutions on the interval 0 < x < a by the boundary
conditions ψ1(0) = 1, ψ′1(0) = 0, and ψ2(0) = 0, ψ′2(0) = 1, and
derive an inequality that is a criterion for a given energy to be in the
spectrum (i.e., to be in an allowed energy band).

19. Consider the Schrödinger equation in one dimension with the po-
tential V (x) = K2x4. Use the Heisenberg uncertainty relation to
estimate the ground-state energy.



4
One- and Two-Particle Systems in
Three Dimensions

4.1 Free Particles

In three dimensions, the kinetic energy is of course given by |�p|2/2M =
(p2
x+p2

y+p2
z)/2M , and the three components of the momentum operator �p

commute. Since the spectrum of each component is the entire real axis, this
is also the common spectrum of all three components, and the spectrum
of the kinetic energy operator is the positive real line. However, the quasi-
eigenfunctions of H = �p2/2M in the momentum representation are now
given by

ψ̂(�p ′, �p) = δ3(�p− �p ′), |�p ′| =
√

2ME, (4.1)

and each quasi-eigenvalue is infinitely degenerate, because for each fixed
value of |�p ′|2 there is a continuity of directions of the vector �p ′. The nor-
malization of the free momentum-space wave functions (4.1) is such that∫

d3p ψ̂∗(�p ′, �p)ψ̂(�p ′′, �p) = δ3(�p ′ − �p ′′).

The free wave functions in the configuration representation are found
from (1.70) and (4.1) to be

ψ(�k, �q) = (2π�)−3/2ei
�k·�q �k

def= �p/�, (4.2)

normalized so that∫
d3q ψ∗(�k, �q)ψ(�k′, �q) = δ3(�k − �k′)/�3 = δ3(�p− �p ′), (4.3)
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and they form a complete set in L2(IR3),∫
d3pψ∗(�p/�, �q)ψ(�p/�, �q ′) = δ3(�q − �q ′). (4.4)

On the other hand, it is sometimes useful to normalize the wave functions
so that ∫

d3q ψ∗(E, k̂; �q)ψ(E′, k̂′; �q) = δ2(k̂, k̂′)δ(E − E′) (4.5)

and ∫
dΩ�k

∫
dE ψ∗(E, k̂; �q)ψ(E, k̂; �q ′) = δ3(�q − �q ′), (4.6)

where k̂ def= �k/|�k|. In that case the constant (2π�)−3/2 in (4.2) has to be
replaced by (Mk)1/2/[�(2π)3/2]. These functions, of course, satisfy the free
time-independent Schrödinger equation (3.1) in the configuration represen-
tation,1 [

∇2 +
2ME

�2

]
ψ = 0. (4.7)

Since in Cartesian coordinates ∇2
q = ∂2

∂q21
+ ∂2

∂q22
+ ∂2

∂q23
, this partial dif-

ferential equation is separable and the solution is a product of the form
eik1q1eik2q2eik3q3 = ei

�k·�q, with |�k|2 = k2
1 + k2

2 + k2
3 = 2ME

�2 as in (4.2).
Equation (4.7), however, is also separable in another extremely useful

coordinate system, namely, spherical polar coordinates (Fig.4.1), in which

x

y

z r

ϕ

θ

FIGURE 4.1. Spherical polar coordinates.

the Laplace operator takes the form

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2 (4.8)

1With k2 = 2ME
�2 this equation is also known as the Helmholtz equation.
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if we define r def= |q| and θ and ϕ are the spherical polar angles of �q. Use
of this Laplacian in (4.7) and the assumption that ψ can be written as a
product ψ(�q) = R(r)Y (θ, ϕ) lead to

1
R

d

dr

(
r2
dR

dr

)
+ k2r2 = − 1

Y

[
1

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂ϕ2

]
,

which allows us to conclude that both sides of this equation must be equal
to a constant −λ, since the left-hand side is independent of θ and ϕ, and
the right-hand side is independent of r:

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂ϕ2 = λY, (4.9)

and
1
r2

d

dr

(
r2
dR

dr

)
+
λR

r2
= −k2R. (4.10)

The solutions of (4.9) are the spherical harmonics2 Y ml (n̂) def= Y ml (θ, ϕ),
which are discussed in more detail in Appendix D.1. The eigenvalues λ in
(4.9) are −l(l+1), where l is a non-negative integer, l = 0, 1, 2, . . ., and the
lth eigenvalue is (2l + 1)-fold degenerate, with m taking on 2l + 1 integer
values, −l ≤ m ≤ l.

We are then left with the radial equation (4.10), which can be simplified
by setting R(r) def= u(r)/r, so that it becomes

− �2

2M
d2u

dr2
+
l(l + 1)�2

2Mr2
u = Eu. (4.11)

Before discussing the solution of this equation, let us look at the physical
meaning of what has been done.

For a particle of momentum �p and position �q, the operator representing
its orbital angular momentum with respect to the origin is given by

�L = �q× �p; (4.12)

in the configuration representation this becomes �L = −i��q × ∇q, the z-
component of which in spherical polar coordinates is

�Lz = −i� ∂

∂ϕ
, (4.13)

and whose square is given by

�L2 = �L2
x + �L2

y + �L2
z = (−i��q ×∇q)2

= −�2
[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
, (4.14)

2The understanding here is that the direction of the unit vector n̂ is given by the
polar angles θ and ϕ.
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which commutes with �Lz. Therefore, the spherical harmonic Y ml , which
satisfies the equations

LzY ml = −i�∂Y
m
l

∂ϕ
= m�Y ml , (4.15)

�L2Y ml = −�2
[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
Y ml = l(l + 1)�2Y ml ,

(4.16)
is a simultaneous eigenfunction of Lz and �L2, and m and l are the quantum
numbers of the z-component and of the magnitude of the angular momen-
tum (or, more precisely, l(l+1) is the quantum number of the square of its
magnitude). These eigenfunctions are normalized,∫

dΩY m∗l (n̂)Y m
′

l′ (n̂) = δmm′δll′ , (4.17)

where dΩ denotes the solid-angle element d cos θdϕ, and they form a com-
plete set in the space L2(n̂) of square-integrable functions on the unit
sphere,

∞∑
l=0

l∑
m=−l

Y ml (n̂)Y m∗l (n̂′) = δ2(n̂, n̂′) (4.18)

if we write δ2(n̂, n̂′) for the solid-angle delta-function

δ2(n̂, n̂′) =
δ(θ − θ′)

sin θ
δ(ϕ− ϕ′).

In view of the physical meaning attached to the quantum number l, it
is clear that the term l(l + 1)�2/2Mr2 in the radial Schrödinger equa-
tion (4.11) represents the centrifugal potential energy, classically given by
L2/2Mr2, corresponding to the centripetal force exerted on the particle by
its motion.

Let us then return to the radial Schrödinger equation (4.11) and write it
in the simpler form3

−d
2u

dr2
+
l(l + 1)
r2

u = k2u, (4.19)

3The requirement for l to be a non-negative integer, i.e., the quantization of the
angular momentum, arises from (4.9) and the behavior of the sperical harmonics as
functions of the angles (see Appendix D.1); as far as (4.11) or (4.19) are concerned, the
parameter l in them could have any arbitrary value. Physically, however, these equations
make sense only for integer l.
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which u is to satisfy for 0 < r <∞ for a given k2 ≥ 0. In the simplest case,
for l = 0, called the s-wave,4 (4.19) becomes

−d
2u

dr2
= k2u, (4.20)

an equation that has two linearly independent solutions, namely, u = sin kr
and u = cos kr, both of which lead to solutions of the Schrödinger equation
(4.7) that are square-integrable at the origin, since R = u/r and the volume
element is r2dr sin θdθdϕ. However, because the choice of cos kr leads to
ψ ∝ r−1 near r = 0, and ∇2r−1 = −4πδ3(�r) (as you should recognize from
the Poisson equation in electrostatics, where δ3(�r) is the charge density
representing a unit point charge at the origin), the use of cos kr would lead
to a delta-function on the right-hand side of (4.7) instead of 0. (Or, put
differently, such a function would not be in the domain of the kinetic energy
operator.) This solution of (4.19) for l = 0 is therefore not acceptable,
and there is only one acceptable solution of the second-order differential
equation (4.20).

For l > 0, (4.19) has a regular singular point at r = 0, and one of its
solutions behaves like rl+1 at the origin, while the other goes like r−l.
Since the latter does not lead to a locally square-integrable solution of
(4.7), it cannot be used, and we have, again, only one “regular solution,”
the Riccati-Bessel function ul(kr)

def= krjl(kr), where jl is a spherical Bessel
function (discussed in more detail in Appendix D.1.5). The first three of
these functions are given by

u0(x) = sinx
u1(x) = − cosx+ x−1 sinx (4.21)
u2(x) = −3x−1 cosx+ (3x−2 − 1) sinx.

The result is that the general acceptable solution of (4.7) is any linear
combination of functions of the form jl(kr)Y ml (θ, ϕ). That this does not
contradict our previous plane-wave solution (4.2) is demonstrated by the
general expansion

ei
�k·�r =

4π
kr

∑
lm

ilul(kr)Y ml (r̂)Y m∗l (k̂)

= 4π
∑
lm

iljl(kr)Y ml (r̂)Y m∗l (k̂), (4.22)

where we have written r̂ and k̂ for unit vectors in the direction of �r and �k,
respectively, and k = |�k|, r = |�r|. The infinite degeneracy of the eigenvalue

4The terminology, s-wave for l = 0, p-wave for l = 1, d-wave for l = 2, is of spectro-
scopic origin, s standing for the sharp series of lines, p for principal, and d for diffuse.
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k2 of (4.7) now manifests itself in the fact that the integers l and m can
take on infinitely many values. Note that the only solution of the rotation-
ally invariant equation (4.7) that is spherically symmetric is the s-wave,
ψ = sin kr/r. For all other solutions, the degeneracy allows the rotational
symmetry to be spontaneously broken.

4.1.1 The propagator
Before leaving the Schrödinger equation for a free particle, let us look at
the time-dependence of the solutions of the full Schrödinger equation cor-
reponding to solutions such as (4.2), namely, wave packets of the form

ψ(�q, t) = (2π)−3/2
∫
d3k f(�k)ei�k·�q−i�k

2t/2M , (4.23)

where f(�k) is an arbitrary square-integrable function. In order to solve the
initial-value problem, in which ψ(�q, 0) is given, we would determine f by
inverting the Fourier transform (4.23) for t = 0,

f(�k) = (2π)−3/2
∫
d3q ψ(�q, 0)e−i�k·�q. (4.24)

We can obtain a direct expression for the solution of the time-dependent
Schrödinger equation for t > 0 in terms of its initial values by inserting
(4.24) in (4.23):

ψ(�q, t) =
∫
d3q′ G+

0 (�q, �q ′, t)ψ(�q ′, 0), t > 0, (4.25)

where for t > 0 the time-dependent Green’s function or propagator G+
0 is

given by

G+
0 (�q, �q ′, t) =

1
(2π)3

∫
d3k exp

[
i�k · (�q − �q ′)− it�

�k2

2M

]
, (4.26)

while for t < 0 we define G+
0 to be equal to zero. The integral in (4.26) can

be explicitly evaluated5 as

G+
0 (�q, �q ′, t) =

(
M

2π�t

)3/2

exp
(
iM |�q − �q ′|2

2�t
− 3πi

4

)
, t > 0. (4.27)

Note that this function becomes highly singular at t → 0, and it vanishes
uniformly like t−3/2 as |t| → ∞, so that there can be no finite spatial region

5Do it.
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Ω in which the particle can remain localized6 forever. (This is, of course,
quite in agreement with the uncertainty principle, according to which the
particle’s localization in a region of diameter ∆q implies that its momentum
is uncertain by at least �/∆q; therefore, it cannot be expected to remain
localized there for longer than the time T it takes to traverse the region
of diameter ∆q with a velocity equal to ∆p/M , which is T = M∆q/∆p ≤
M(∆q)2/�.) Equations (4.25) and (4.27) tell us specifically that, assuming
ψ(�q, 0) to be integrable, as t→∞,∫

Ω
d3q |ψ(�q, t)|2 = O(t−3). (4.28)

For t �= 0, the propagator evidently satisfies the Schrödinger equation,(
�2

2M
∇2 + i�

∂

∂t

)
G+

0 (�q, �q ′, t) = 0,

and for t→ 0+ (4.26) shows that7

G+
0 (�q, �q ′, 0+) = δ3(�q − �q ′).

Since G+
0 (�q, �q ′, 0−) = 0, so that G+

0 has a step-discontinuity as a function
of t at t = 0, it follows that the equation satisfied by G+

0 is8(
�2

2M
∇2 + i�

∂

∂t

)
G+

0 (�q, �q ′, t) = i�δ(t)δ3(�q − �q ′). (4.29)

In a similar fashion we can define the back-propagator G−0 (�q, �q ′, t), which
satisfies the same equation (4.29), but which vanishes for t > 0, while for
negative times it is given by

G−0 (�q, �q ′, t) = −
(

M

2π�|t|

)3/2

exp
(
iM |�q − �q ′|2

2�t
+

3πi
4

)
, t < 0. (4.30)

It allows us to express ψ0(�q, t) for negative times in terms of its value at
t = 0,

ψ(�q, t) = −
∫
d3q′ G−0 (�q, �q ′, t)ψ(�q ′, 0), t < 0. (4.31)

6Localized here simply means that there is a nonzero probability for the particle to
be found in a given finite region.

7Remember that the Dirac delta function has the representation δ(�r − �r′) =
1

(2π)3
∫
d3kei

�k·(�r−�r′), the three-dimensional analogue of (B.20), which simply expresses
the completeness of the exponentials in the sense of Fourier integrals. Also note that
t → 0+ means that t tends to zero from above.

8Integrate this equation over t from −ε to +ε to see that it gives the correct result.
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4.1.2 Two particles
The kinetic-energy operator for two particles of masses M1 and M2 is given
by

H0 =
�p2

1

2M1
+
�p2

2

M2
= − �2

2M1
∇2

1 −
�2

2M2
∇2

2.

Introducing the center-of-mass coordinates

�R
def=

�q1M1 + �q2M2

M1 +M2

and the relative coordinates

�r
def= �q2 − �q1,

we find that9

H0 =
�P2

2M
+
�p2

2µ
= − �2

2M
∇2
R −

�2

2µ
∇2
r,

where �P def= �p1 + �p2 is the operator of the total momentum, �p def= �p2 − �p1

that of the relative momentum, M def= M1 +M2, and µ
def= M1M2/(M1 +

M2). The Schrödinger equation for two free particles[
− �2

2M1
∇2

1 −
�2

2M2
∇2

2

]
ψ(�q1, �q2) = Eψ(�q1, �q2)

can then be separated by writing ψ(�q1, �q2) = ψ1(�R)ψ2(�r), and the two
functions ψ1 and ψ2 have to satisfy the equations

− �2

2M
∇2
Rψ1 = E1ψ1, − �2

2µ
∇2
rψ2 = E2ψ2, E1 +E2 = E. (4.32)

Thus the two-particle equation is reduced to two one-particle equations and
the Hilbert space H = HI⊗HII is decomposed into the tensor product of
one for the center-of-mass motion and another for the relative motion:
H = HCM⊗Hrel .

If the only forces on two particles are those exerted by them upon one
another, the potential energy is a function of the distance between them,
V (�q1, �q2) = V (�q2 − �q1) = V (�r), and the two-particle Schrödinger equation
can be separated as in the free case. The center-of-mass wave function then
satisfies the free Schrödinger equation as in (4.32), and the relative motion
is described by the equation[

− �2

2µ
∇2 + V (�r)

]
ψ = Eψ, (4.33)

9Prove this.
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which differs from the one-particle equation only by containing the reduced
mass µ in place of the massM . Two-particle systems are therefore described
by the same tools and the same equations as one-particle systems, and our
further discussions of the latter are equally applicable to the former.

4.2 Potentials with Spherical Symmerty

Consider now the Schrödinger equation for a particle in three dimensions
in the configuration representation,

− �2

2M
∇2ψ + V ψ = Eψ (4.34)

and suppose that the potential V is a function of r = |�q| only, which makes
it invariant under rotations. In that case, (4.34) is separable like (4.7) in
spherical polar coordinates and the Laplacian can be expressed as in (4.8).
With the factorization

ψ = R(r)Y (θ, ϕ),

the angular equation is the same as (4.9), which leads to λ = −l(l + 1),
with l = 0, 1, 2, . . ., and spherical harmonics Y ml as solutions, and the radial
equation is given by

− �2

2M

[
1
r2

d

dr
r2
d

dr
Rl −

l(l + 1)
r2

Rl

]
+ V (r)Rl = ERl. (4.35)

Note that the quantum number m does not appear, so that Rl(r) is inde-
pendent of m. The definition ψl(r)

def= rRl(r) casts (4.35) into the simpler
form

− �2

2M
ψ′′l +

[
l(l + 1)�2

2Mr2
+ V (r)

]
ψl = Eψl,

or, multiplying through by 2M/�2

−ψ′′l +
[
l(l + 1)
r2

+
2M
�2 V (r)

]
ψl = k2ψl. (4.36)

This is the equation that has to be solved for each specific radial potential
V (r).

Just as in the case of a particle with one degree of freedom, if V → 0
as r → ∞ we will be looking for negative-energy solutions, i.e., with k2 ≤
0, that are square-integrable — the bound states of the system, if there
are any — and positive-energy solutions with k2 > 0 that are bounded
but not square-integrable: all positive values of E are in the continuous
spectrum of the Hamiltonian. The physical reason is that for E > 0 the
particle has sufficient energy to escape to infinity, which it lacks when
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E < 0. The bound-state solutions ψl(r) of (4.36) can always be chosen to
be real, and, in addition, the angle functions Y (θ, ϕ) may also be taken to be
the real zonal harmonics, defined by (D.34) in Appendix D. The resulting
bound-state eigenfunctions of the three-dimensional Schrödinger equation,
ψl(r)r−1Zcm

l (θ, ϕ) and ψl(r)r−1Zsm
l (θ, ϕ), are then real, and their nodal

surfaces are concentric spheres about the origin, cones about the z-axis with
apex at the origin, and planes through the z-axis. The choice of the direction
of the z-axis, of course, is arbitrary, but every such choice yields a complete
set of linearly independent eigenfunctions with those nodal surfaces.

In the absence of a potential, we know that the positive-energy solutions
are the Riccati-Bessel functions, ul(kr)

def= krjl(kr), whose asymptotic be-
havior for kr � 1 is given by (D.41),

ul(kr) ∼ sin(kr − 1
2
πl) =

i

2
ei

1
2πl[e−ikr − (−1)leikr],

which shows that the ratio of the outgoing amplitude to the incoming
amplitude is simply (−1)l+1. This ratio will change when there is a potential
present, and the change has observable physical effects, as we shall discuss.

4.2.1 The three-dimensional square well
Assume that the potential V (r) has the constant negative value −V0 for
r < b and V = 0 for r > b. Let us first look for the bound-state solutions, for
which E < 0 and hence k2 = −|k|2 = 2ME/�2. In the region r < b we have
to pick the regular solution ul(κr) of (4.19), where κ =

√
2MV0/�2 − |k|2 =√

2M(E + V0)/�, while for r > b the solution we want is w(+)
l (i|k|r), which

is defined in Appendix D.1.5 and which asymptotically decreases as eikr =
e−|k|r [see (D.41)]. Matching the logarithmic derivatives of the two solutions
at r = b leads to the equation

k
w

(+)′
l (kb)

w
(+)
l (kb)

= κ
u′l(κb)
ul(κb)

, (4.37)

which for l = 0 becomes

−|k| = −
√

2MV0/�2 − κ2 = κ cotκb,

the same equation as (3.16) for the odd solution in the one-dimensional
case.10 (Note that b here corresponds to a/2.) In order for this equa-
tion to have a solution it is necessary that cotκb ≤ 0, which means we
need

√
2MV0 b ≥ π�/2; the first bound state will appear, with zero bind-

ing energy, when
√

2MV0 b = π�/2, the second s-wave bound state when

10Why do we get the same equations in these cases?
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√
2MV0 b = 3π�/2, etc. In contrast to the one-dimensional case, a non-

positive potential does not necessarily lead to a bound state in three di-
mensions; in order to bind it has to have a certain minimal strength.

The ground state of a spherically symmetric potential is always an s-
sate; in other words, there can be no state of l > 0 with a lower energy
than the state of lowest energy with l = 0. This is a general theorem, the
obvious physical reason for which is the centrifugal repulsion in states of
higher angular momentum.

The theorem can be proved by a simple application of what is known as the Hellmann-
Feynman formula:

Let the Hermitian operator H depend on a parameter α and let E be an eigenvalue
of H; then

dE

dα
= 〈dH

dα
〉, (4.38)

where the expectation value is taken in the eigenstate of H with the eigenvalue E.
The proof of (4.38) is a simple exercise,11 using the fact that

E = 〈H〉 = (ΨE ,HΨE)/(ΨE ,ΨE)

and differentiating it with respect to α. (All the terms coming from the differentiation
of ΨE cancel.)

In the case at hand, the operator H is the radial Hamiltonian

Hl
def= − d2

dr2
+
l(l + 1)
r2

+
2M
�2

V (r),

and the place of α is taken by l, which, in the radial Schrödinger equation, may be
regarded as a free parameter, forced to take on only integral values by the angular
equation. Now, dHl/dl = (2l+1)/r2, so that 〈dHl/dl〉 > 0, which therefore implies that
the eigenvalue El of Hl is a monotonely increasing function of l:

dEl

dl
> 0.

So if there is a bound state for l > 0, then changing the l-value continuously down to
l = 0 necessarily leads to an s-wave bound state of lower energy. �

For positive energies there are no bound states.12 Just as for a free parti-
cle, the positive energies constitute the continuous spectrum of the Hamil-
tonian, and for reasonable potentials there are no bound states embedded
in the continuum. (Recall the physical reason for this: a particle with a
positive energy is free to escape to infinity and will thus not remain for-
ever confined to a finite region, except under very special circumstances.)
However, whereas the wave function inside the well has to be a multiple of
the regular Riccati-Bessel function ul, the wave function outside the well

11Do it.
12If we are dealing with the relative motion of a two-particle system, the total energy,

including the kinetic energy of the center-of-mass motion, may of course be positive
and its spectrum will, in fact, form a continuum. Remember that here we are fixing our
attention on the CM system.
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can be a linear combination of the Riccati-Bessel function and the Riccati-
Neumann function defined in Appendix D.1.5,

ψl(r) = Alul(kr) +Blvl(kr), r > b.

At the surface of the potential well the logarithmic derivative of this so-
lution has to be matched to βl, the logarithmic derivative of the inside
solution,

k
Alu

′
l(bk) +Blv

′
l(bk)

Alul(bk) +Blvl(bk)
= βl, (4.39)

which fixes the ratio of the constants Al and Bl. Inside the well, for r < b,
the solution of the Schrödinger equation can only be a multiple of the
regular ul(κr), with κ =

√
2MV0/�2 + k2, so that we have

βl = κ
u′l(bκ)
ul(bκ)

. (4.40)

Just as in the one-dimensional case, in which the observed quantitites are
the reflection and transmission coefficients, the experimental observations
are going to take place at large distances outside the well. When kr � 1,
according to (D.41), the asymptotic form of the wave function is

ψl(r) ∼ Al sin(kr − 1
2
πl)−Bl cos(kr − 1

2
πl)

=
Al

cos δl
sin(kr − 1

2
πl + δl)

=
iAl

2 cos δl
e

1
2 iπl−iδl [e−ikr − (−1)leikre2iδl ], (4.41)

where the phase shift δl is defined, modulo π, by

tan δl = −Bl
Al
.

Consequently, the principal long-distance effect of the potential on the wave
function for an individual angular momentum is a shift in its phase, and
therefore a change in the ratio of the outgoing to the incoming spherical
wave amplitudes by a factor of e2iδl . Using (4.39), we can calculate this
phase shift, obtaining13

tan δl =
βlul(bk)− ku′l(bk)
βlvl(bk)− kv′l(bk)

, (4.42)

which for the s-wave case becomes

tan δ0 = tan bk
bk cot bk − bβ0(k)
bk tan bk + bβ0(k)

, (4.43)

13Do it.
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and for the square well bβ0(k) = bκ cot bκ. The values (D.39) and (D.40) of
the Riccati-Bessel and Riccati-Neumann function, used in (4.42), lead to14

the generic low-energy behavior of the phase shifts, when k � 1/b

δl ∼ const.× k2l+1, (4.44)

which implies the important fact, to which we shall return, that when k is
small enough, the s-wave phase shift dominates the others; as the energy
rises, the p-wave phase shift begins to contribute, etc.

4.2.2 The scattering amplitude
The principal observable effect of a potential on a positive-energy particle
approaching a region with potential energy is a deflection from its initial
direction. The requirement that the particle’s momentum in the remote
past (when it is assumed to have been under our control by means of an
accelerator or some other experimental device) was �p = ��k is translated
into a boundary condition on the physically desired solution ψ(+) of the
time-independent Schrödinger equation by subjecting the deviation of ψ(+)

from the plane wave cei�k·�r,

φscatt(�k, �r)
def= ψ(+)(�k, �r)− cei�k·�r

to the radiation condition,

φscatt − ik
∂

∂r
φscatt → 0 as r

def= |�r| → ∞.

This implies there exists a function A(�k′,�k) that depends on the initial
momentum ��k and the final momentum ��k′ def= �|�k|r̂ = �|�k|�r/r pointing
from the center to the observation point �r, such that as r →∞,15

ψ(+)(�k, �r) = c

[
ei
�k·�r +A(�k′,�k)

1
r
eikr
]

+ o(r−1). (4.45)

The constant c depends on the desired normalization. Equation (4.2) tells
us that if ψ(+) is to be normalized as in (4.3) and (4.4), we must choose
c = (2π�)−3/2; on the other hand, if we want the normalization (4.5) and
(4.6), we must take c = (Mk)1/2/[�(2π)3/2].

By the same stationary-phase argument used earlier to connect the Fourier-
transformed functions to the more physical time-dependent wave functions
it follows that in the distant past and at large distances it will be only the
plane-wave term that contributes, while in the far future there will also be

14Show it.
15o(r−1) means that the remainder tends to zero faster than r−1.
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a contribution from the outgoing spherical wave, with the amplitude A,
which is called the scattering amplitude.16 The ratio of this outgoing flux
in the direction �k′ to the incoming flux in the direction �k is given by17

dσ

dΩ′
= |A(�k′,�k)|2, (4.46)

which is called the differential scattering cross section. (The letter Ω′ here
denotes the solid angle subtended by �k′.) Thus (dσ/dΩ′)dΩ′ = |A(�k′,�k)|2dΩ′
is the probability of detecting a particle (whose initial momentum was ��k)
scattered and emerging at large distance r � 1/k in the element of solid
angle dΩ′ around �k′.

In order to see in more detail the magnitude of the incoming spherical
wave that the plane wave contributes asymptotically, we have to use (4.22)
and the asymptotic values (D.41) of the spherical Bessel functions; as r →
∞

ei
�k·�r =

2πi
kr

∑
lm

(−1)l[e−ikr − (−1)leikr]Y ml (r̂)Y m∗l (k̂) + o((kr)−1). (4.47)

[Using (D.30) and (D.28), Eq. (4.47) can be expressed as

ei
�k·�r ∼ (2π/ikr)[eikrδ(k̂, r̂)− e−ikrδ(k̂,−r̂)].]

Therefore, if ψ(+) is to be of the form (4.45), and18

ψ(+)(�k, �r) =
4π
kr

∑
lm

ilψl(k, r)Y ml (k̂)Y m∗l (r̂), (4.48)

we have to choose the normalization of ψl so that its asymptotically incoming-
wave part has the same amplitude as that of the plane wave; this yields the
factor 2πic(−1)l/kr. Its outgoing-wave part, according to (4.41), then has
the amplitude −2πiceiδl/kr. Adding and subtracting the outgoing wave
asymptotically needed to make up the plane wave part, we then obtain

ψ(+) ∼ 2cπi
kr

∑
lm

(−1)l[e−ikr − (−1)leikr]Y ml (r̂)Y m∗l (k̂)

+eikr
2cπi
kr

∑
lm

(1− e2iδl)Y ml (r̂)Y m∗l (k̂),

16As an exercise, flesh this out, making the stationary-phase argument
explicit.

17Since the kinetic energy at t → ∞ is equal to its initial value at t → −∞, the
magnitudes of the initial and final velocities are equal, �|�k′|/M = �|�k|/M, and the flux
ratio equals the ratio of the squares of the amplitudes. In a more general setting, when
inelastic scattering is possible, this is not so, and there appears a factor of |�k′|/|�k| on
the right-hand side.

18Because the spherical symmetry of V (r) implies that ψ(+)(�k, �r) must be rotationally
invariant, the l and m-values of the spherical harmonics in the sum must be equal and
the coefficients ψl are independent of m; see Appendix D.
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from which we conclude that the scattering amplitude has the partial-wave
expansion

A(�k′,�k) =
2πi
k

∑
lm

(1− e2iδl)Y ml (k̂′)Y m∗l (k̂) (4.49)

=
1

2ik

∑
l

(2l + 1)(e2iδl − 1)Pl(cos θ)

=
1
k

∑
l

(2l + 1)eiδl sin δlPl(cos θ) def= f(k, θ), (4.50)

where cos θ def= k̂ · k̂′ and Eq. (D.32) has been used. (That the scattering
amplitude does not depend on the direction of the incident particle but
only on the angle θ between the initial and final directions is a consequence
of the rotational invariance of the potential.)

Thus what for each individual partial wave appears as a simple shift in
phase manifests itself, via interference effects, in the total asymptotic flux
as an observable angle-dependent variation: particles sent, for example, by
an accelerator, toward the center with the momentum ��k are detected by
counters, positioned at various angles, with an angular distribution given
by the differential cross section (4.46).

The total number of particles scattered, per unit time and per unit inci-
dent flux, is called the total scattering cross section. It is easily calculated
from the partial-wave expansion (4.49) by means of Eqs. (D.29) and (D.32),

σtotal
def=
∫
dΩ′

dσ(�k′,�k)
dΩ′

=
∫
dΩ′|A(�k′,�k)|2 ==

4π
k2

∑
l

(2l + l) sin2 δl.

(4.51)
More generally, we obtain in the same manner19∫

dΩ′′A(�k′′,�k′)A∗(�k′′,�k) =
(

2π
k2

)
∑
ll′mm′

(e2iδl − 1)(e−2iδl′ − 1)
∫
dΩ′′ Y ml (k̂′′)Y m∗l (k̂′)Y m

′∗
l′ (k̂′′)Y m

′
l′ (k̂)

=
8π2

k2

∑
lm

(1− cos 2δl)Y ml (k̂)Y m∗l (k̂′)

=
(

4π
k

)2∑
lm

sin2 δlY
m
l (k̂)Y m∗l (k̂′) =

4π
k2

∑
l

(2l + 1) sin2 δl Pl(k̂ · k̂′)

=
4π
k
�A(�k′,�k). (4.52)

19
A means the imaginary part of the complex number A.



106 4. One- and Two-Particle Systems in Three Dimensions

The special case in which �k = �k′ is of particular interest:

σtotal(k) =
4π
k
�A(�k,�k) =

4π
k
�f(k, 0), (4.53)

which is known as the optical theorem. Its physical basis is the fact that
all the flux in the scattered waves originates from interference between the
forward scattering and the incident beam.20 The formula (4.52) is called
the generalized optical theorem. In terms of the dimensionless quantity

F (k, cos θ) def= kA(�k′,�k)

it may be written in the simple form

�F (k, 1) =
1
2

∫ 1

−1
dx |F (k, x)|2, (4.54)

where x def= cos θ. Note that the optical theorem immediately implies a lower
bound on the forward scattering cross section if the total cross section is
given:

dσ

dΩ
(�k,�k) ≥

(
k

4π
σtotal

)2

.

The partial-wave expansions of the scattering amplitude and the cross
section are particularly useful at low energies. This is because, as (4.44)
shows in the case of a square well but which holds more generally, the lth

phase shift goes as k2l+1 when k is small, and consequently only the first
few terms contribute significantly to the series. Generically, the differential
cross section becomes isotropic in the low-energy limit, and for a square
well of radius b, σtotal → 4πb2. Note that this is four times the geometric
cross section. In general, the tangent of the s-wave phase shift will go like

tan δ0 ∼ −ck as k → 0, (4.55)

where the constant c is known as the scattering length, and the zero-energy
limit of the total cross section is 4πc2.

There are, however, a variety of more interesting phenomena that can
occur at low energies, which we can see by studying Eq. (4.43). Suppose
that at some low energy, when bk � 1, the numerator of the right-hand
side of (4.43) is equal to zero, which will be the case when 1− 1

3 (bk)3 = bβ0.
All the other phase shifts are then still negligible; and since sin δ0 = 0, the
s-wave contribution vanishes so that the cross section will be anomalously
small. This is the explanation of what is known as the Ramsauer-Townsend
effect, an unusually small observed scattering cross section of low-energy

20For a discussion of the circuitous history of the optical theorem see [Newton 76].
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(∼ 0.7 eV) electrons on rare-gas atoms. It is analogous to the transparency
of a one-dimensional potential well at certain energies. In three dimensions,
of course, if the numerator of (4.43) vanishes when bk �� 1, there need be
no observable effect because the other partial waves obscure the vanishing
of the s-wave.

Another possibility is that the denominator of the right-hand side of
(4.43) vanishes. In that case the s-wave phase shift rises through 1

2π and
hence sin δ0 = 1: the s-wave scattering amplitude is maximal. If that hap-
pens at an energy E0 = �2k2

0/2M when bk0 � 1, all other phase shifts will
be negligible and the cross section will have a peak of σ = 4π/k2

0 = λ2
0/π :

there is a resonance. An analogous phenomenon occurs when the denom-
inator of (4.42) vanishes for some l > 0, the condition for which is that
kv′l(bk)/vl(bk) = βl. If such an l-wave resonance occurs at a low energy
E0, when bk0 � 1, it is particularly striking, because then that particular
partial wave completely dominates and the differential cross section has the
angular shape of the square of the Legendre polynomial of order l:

dσ

dΩ
� k−2

0 (2l + 1)2P 2
l (cos θ). (4.56)

In the vicinity of an l-wave resonance, the tangent of the lth phase shift
will generally behave like

tan δl ∼
a

1− (k/k0)
, where a > 0. (4.57)

This implies that the cross section, which is proportional to sin2 δl if the
other partial waves can be neglected, goes like

dσ

dΩ
� k−2

0 (2l + 1)2P 2
l (cos θ)

a2

a2 + [1− (k/k0)]2
, (4.58)

a function that has the bell shape shown in Figure 4.2, generally known
as a Breit-Wigner resonance curve.21 It has its maximimum at k = k0 and
decreases to half its maximal value when k − k0 = ±ak0; therefore the
half-width at half-maximum of the Breit-Wigner curve as a function of k is
ak0, and as a function of the energy E = �2k2/2M (if narrow, in the sense
that a� 1) it is

1
2
Γ =

�2k2
0a

M
. (4.59)

Furthermore, it follows from (4.57) that at the resonance, dδl/dk = 1/(ak0),
which, according to (2.61), means that there is a time delay τD in the
outgoing wave,

τD =
M

�k0

dδl
dk

=
M

�ak2
0
, (4.60)

21In the context of classical electromagnetic radiation, the same shape is called
Lorentzian.
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E E0

Γ Γ
22

FIGURE 4.2. A Breit-Wigner resonance curve of width Γ.

indicating that the particle is temporarily caught in an unstable kind of
“state.” This delay is the quantum analogue of the classical phenomenon
of “orbiting,” in which the particle may circle the attracting center of force
many times before finally escaping. Multiplying the two equations (4.60)
and (4.59), we find the important relation

ΓτD = 2� (4.61)

between the width Γ of a resonance curve as a function of the energy and
the “lifetime” τD of the corresponding “state” that is temporarily brought
into being. In a vague sort of way (4.61) may be thought of as a consequence
of the uncertainty relation between the energy of the unstable “state” and
the duration of its existence.

As (4.57) indicates, the phase shift at a sharp resonance steeply rises, increasing by
π. This behavior can also be expressed in terms of the S matrix,

Sl
def= e2iδl =

1 + i tan δl
1 − i tan δl

� k − k0 − iak0

k − k0 + iak0
, (4.62)

which shows that near a sharp resonance the S matrix has (or appears to have, because
(4.62) may be only an approximation valid on the real axis) a simple pole in the lower
half of the k-plane near the real axis. (When the potential strength is increased so as
to move the resonance first to the origin and then to produce a bound state, the pole
moves to the upper half plane.)

Let’s see what happens when the resonance occurs very close to zero
energy and the potential strength is increased so as to move the resonance
to the origin, in which case the denominator in (4.42) vanishes at k = 0.
Comparison with (4.37) shows that the critical potential strength needed
to accomplish this is exactly the same as that required to introduce, for
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k

k

π

π/2

π

FIGURE 4.3. The upper figure shows a phase shift for l > 0 at low energies. The
solid curve shows the phase shift if the potential is not quite strong enough to
bind; the dashed curve, when there is a shallow bound state. The lower figure
shows the behavior of an s-wave phase shift under similar conditions.

the same angular momentum, a new bound state with zero binding energy.
According to Eqs. (D.39) and (D.40), used in (4.42), the phase shift near
the orgin then goes like

tan δl ∼ k2l−1,

implying that for l > 0 the phase shift still vanishes (modulo π) at k = 0,
whereas for l = 0 it approaches π/2 (modulo π). (This exceptional situ-
ation is called a zero-energy resonance or a half-bound state.) Before the
potential reaches its critical value, the phase shift at k � 0 has a positive
slope, so that the scattering length is negative; at the critical strength,
the scattering length diverges, and it becomes positive when the potential
strength is further increased to produce a bound state of negative energy.
At the same time, the phase shift, which was an increasing function of k
before the introduction of the bound state, decreases from π at k = 0 after
the introduction of the bound state. (The low-energy behavior of the phase
shifts for l > 0 and for l = 0 is shown in Figure 4.3.) Thus, every time
the increasing potential strength passes a critical value to introduce a new
bound state, the phase shift of the same angular momentum at zero energy
discontinuously jumps by π; as a result, the zero-energy phase shift δl(0)
(if δl(k) is defined so as to vanish as E → ∞) equals π times the number
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nl of bound states of the same angular momentum:

δl(0) = nlπ, (4.63)

which is known as Levinson’s theorem.22

There is, however, an important difference between the case of l = 0
and those of l > 0. In the former case, the phase shift never quite rises
to π/2 when the potential is below critical strength, thus not causing a
resonance, whereas in the cases of l > 0, it rises through π/2 almost to π,
thus causing a resonance at a low value of the energy. The physical reason
for this difference is the presence of the centrifugal barrier for l > 0, which
manages to trap the particle and keep it near the origin for a while.

4.2.3 Transformation to the laboratory system
As we saw, the Schrödinger equation for a two-particle system in its center-
of-mass reference frame, in which the two particles interact via a potential
V , is identical to that for a one-particle system with V as an external
potential, except for the replacement of the mass M of the particle by the
reduced mass µ of the two. We therefore always treated two-particle systems
in its barycentric frame. Experiments, however, are rarely performed in the
center-of-mass frame; more often than not, they are done in a coordinate
system, called simply the laboratory frame, in which one of the particles is
initially at rest. We thus have to find the transformation leading from the
scattering angle θ in the barycentric frame to the scattering angle ϑ in the
laboratory frame.

p

p

p

p

2

21

1’

’
P

P
1

1

2

’

’

             Center-of-mass frame                                                   Laboratory frame

θ ϑ

FIGURE 4.4. Initial and final particle momenta in the barycentric and in the
laboratory frame.

We will denote the initial and final momenta of the particles in the lab
frame by �P1, �P2, �P ′1, and �P ′2, respectively, and their counterparts in the

22In the exceptional case of l = 0 in which there is a zero-energy resonance, (4.63) is
replaced by δ0(0) = (n0 + 1

2 )π.
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CM frame �p1, �p2, �p ′1, and �p ′2 (Fig. 4.4). In the barycentric frame we have
�p1 + �p2 = �p ′1 + �p ′2 = 0, and we define p def= p1 = p2 = p′1 = p′2. In the
laboratory, particle #2 will be assumed to be initally at rest: �P2 = 0.
Therefore 0 = �P2 = �p2 +M2�vCM and hence,

�vCM =
�p1

M2
,

and it follows that

�P1 = �p1 +M1�vCM = (1 + γ)�p1, γ
def=

M1

M2
.

Similarly,
�P ′1 = �p ′1 +M1�vCM = �p ′1 + γ�p1,

which leads to

�P1 · �P ′1 = P1P
′
1 cosϑ = (1 + γ)(γ + cos θ)p2

and
P

′2
1 = p2(1 + γ2 + 2γ cos θ).

As a result we find

cos2 ϑ =
(γ + cos θ)2

1 + γ2 + 2γ cos θ
, (4.64)

which leads to the simpler formula

tanϑ =
sin θ

γ + cos θ
. (4.65)

The cross sections in the CM system and in the lab frame are related by

dσLAB

dΩ
=

dσ

d cosϑdϕ
=

dσ

d cos θdϕ
d cos θ
d cosϑ

=
dσCM

dΩ
d cos θ
d cosϑ

,

and we find from (4.64) that

d cosϑ
d cos θ

=
1 + γ cos θ

(1 + γ2 + 2γ cos θ)3/2
,

so that
dσLAB

dΩ
=
dσCM

dΩ
(1 + γ2 + 2γ cos θ)3/2

1 + γ cos θ
. (4.66)

Equation (4.65) implies that always sinϑ < 1/
√

1 + γ2 and ϑ < θ. If
M1 > M2, so that a heavier particle is scattered in the laboratory by
a lighter one that is initially at rest, then ϑ is always less than 90o: no
particle can be turned back by a lighter one; indeed, when M1 �M2, the
scattering in the laboratory is all concentrated near the forward direction;
if the two particles have equal masses, then ϑ = 1

2θ, so that backward
scattering in the CM system becomes 900 scattering in the laboratory. On
the other hand, if M1 � M2, the two frames of reference are nearly the
same and the laboratory angle is almost equal to the center-of-mass angle.
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4.2.4 The Coulomb potential
The hydrogen atom, the simplest atomic system in nature, provided histor-
ically the first important test for the quantum theory, initially in the form
of the “old quantum theory” of Bohr and Sommerfeld, and subsequently for
Schrödinger’s, with later refinements by Dirac and by Feynman, Schwinger,
and Tomonaga, the first owing to relativity and the second to quantum
electrodynamics.

As a first step in the treatment of this two-particle problem we separate
out the center-of-mass motion as in Section 4.1.2, after which the wave
function of the relative coordinates of the electron with respect to the
nucleus has to satisfy a one-particle Schrödinger equation with the reduced
mass µ = Mm/(m +M), if we denote the masses of the electron and the
nucleus, respectively, by m and M , and the electric charge of the nucleus
by Ze (allowing for the possibility of Z �= 1, say, in the case of a helium
ion):

− �2

2µ
∇2ψ − Ze2

r
ψ = Eψ, (4.67)

where the reduced mass µ of the electron differs from its actual mass by
only 0.05%. The potential being rotationally invariant, we next separate
out the angular dependence, writing ψ = r−1ψl(r)Y ml (θ, ϕ), so that ψl
must satisfy the radial equation

−ψ′′l +
[
l(l + 1)
r2

− 2µZe2

�2r

]
ψl =

2µE
�2 ψl.

The Coulomb potential has two special characteristics to be recognized
immediately: it is singular as r−1 at the origin, and it decreases relatively
slowly, as r−1, at infinity. The first does not cause any serious difficulties,
but the slow decrease at large distance has important consequences, as we
shall see, both for the bound states and for the scattering. This physically
important potential does not belong to the class (of potentials decreas-
ing faster than r−2 at infinity) to which all of our previous mathematical
statements are applicable.

4.2.5 The hydrogen atom
Let us first look at the bound states and assume therefore that E < 0. It will
be convenient to multiply the radial Schrödinger equation by �2/(8µ|E|),
to define the new independent variable ρ def= r

√
8µ|E|/�, and to introduce

the constant λ def= Ze2
√
µ/(�
√

2|E|), after which the radial Schrödinger

equation for fl(ρ)
def= ψl(r) reads

f ′′l +
(
λ

ρ
− 1

4
− l(l + 1)

ρ2

)
fl = 0. (4.68)
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At this point we factor out the dominant behavior of fl at infinity and at
the origin, defining gl(ρ)

def= ρ−l−1e
1
2ρfl(ρ), which leads to the new equation

ρg′′l + [2(l + 1)− ρ]g′l + [λ− (l + 1)]gl = 0. (4.69)

Making the Frobenius ansatz gl = ρs
∑∞

0 anρ
n leads to the indicial equa-

tion23

s(s− 1) + 2s(l + 1) = 0,

whose solutions are s = 0 and s = −(2l + 1), as expected.24 The coeffi-
cients an for the regular solution, i.e., the one with s = 0, must satisfy the
recursion relation25

an+1 = an
n+ l + 1− λ

(n+ 1)(n+ 2l + 2)
,

so that for the tail end of the series an+1/an ∼ 1/n, like the power series
for eρ. Therefore fl will grow without bounds for large ρ unless the series
breaks up, which will happen if and only if λ is an integer n larger than or
equal to l + 1, λ = n = l + 1 + n′, n′ = 0, 1, 2, . . .. Consequently we find
that the bound-state energies of the Coulomb potential are given by

En = −Z
2e4µ

2�2n2 , n = l + 1, l + 2, l + 3, . . . , (4.70)

where n is called the principal quantum number and n′ def= n− l− 1, which
takes on all non-negative integral values, is called the radial quantum num-
ber.

This result has three significant characteristics, the first two being con-
sequences of the slow decrease of the potential at large distance, and the
third special to the Coulomb potential:

1. There are bound states for all angular momenta.

2. For each angular momentum there are infinitely many bound states.
The energies of these states accumulate at the origin, thus getting
denser and denser there. Neither 1 nor 2 is the case for potentials
that decrease faster than r−2 at infinity.

3. In addition to the normal m-degeneracy due to the rotational sym-
metry of the potential, there is also an l-degeneracy: the ground state,
designated 1s, is necessarily an s-wave and non-degenerate; but the
first excited level, with n = 2, consists of two states, one with l = 0,

23Show this.
24Why?
25Show this.



114 4. One- and Two-Particle Systems in Three Dimensions

the 2s-state, and the other with l = 1, the 2p-state; the second ex-
cited level consists of three states, with l = 0, l = 1, or l = 2,, the
3s, 3p, and 3d-states, etc. The total number of states of the nth en-
ergy level is

∑n−1
0 (2l + 1) = n(n − 1) + n = n2; so the nth level is

n2-fold degenerate. This is a very special property of the Coulomb
potential, to the explanation of which, by means of a symmetry, we
shall return in the next Subsection. We shall also see later that not
even relativistic corrections serve to remove the l-degeneracy in the
hydrogen atom; it takes the effects of quantum electrodynamics to do
that.

The bound-state wave functions are obtained by solving (4.69), which
is identical to Eq. (D.67) in Appendix D.4. The function gl, therefore, is
an associated Laguerre polynomial L2l+1

n−l−1(ρ), and according to (D.70), the
normalized Coulomb wave functions are given by

ψnlm(r, θ, ϕ) = 2
[(n− l − 1)!]1/2

n2[(n+ l)!]3/2
(Ze2µ)3/2

�3

×
(
R

n

)l
e−R/2nL2l+1

n−l−1(
R

n
)Y ml (θ, ϕ), (4.71)

where

R
def=

2Ze2µ
�2 r.

Parabolic coordinates

The Schrödinger equation with a Coulomb potential can be separated not
only in spherical polar coordinates but also in parabolic coordinates, and
it is instructive to to do so. These coordinates are defined by

ξ
def= r − z, η

def= r + z, ϕ
def= arctan(y/x), (4.72)

where r is the distance from the origin, r def=
√
x2 + y2 + z2, and ϕ is the

azimuthal angle about the z-axis. The Laplacian in these coordinates is
given by26

∇2 =
4

ξ + η

[
∂

∂ξ
ξ
∂

∂ξ
+

∂

∂η
η
∂

∂η

]
+

1
ξη

∂2

∂ϕ2 . (4.73)

The ansatz ψ = f(ξ)g(η)h(ϕ) in the Schrödinger equation therefore leads
to the equation

2�2

µ

ξη

ξ + η

d
dξ ξ

d
dξf

f
+

2�2

µ

ξη

ξ + η

d
dηη

d
dη g

g
+

2Ze2ξη
ξ + η

+ Eξη = − �2

2µ

d2h
dϕ2

h
,

26Prove this.
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from which we may conclude that both sides have to be equal to a constant,
which will be called �2m2/2µ, so that

h(ϕ) = eimϕ,

and the requirement that h be single-valued forcesm to be zero or a positive
or negative integer. Multiplication by (1

ξ + 1
η ) then leads to

−2�2

µ

d
dξ ξ

d
dξf

f
− Ze2 − Eξ +

�2

2µ
m2

ξ
=

2�2

µ

d
dηη

d
dη g

g
+ Ze2 − �2

2µ
m2

η
,

both sides of which must now be equal to a constant, independent of η
and ξ, which we shall call β. As a consequence we obtain the following two
equations:

d

dξ
ξ
d

dξ
f +
(
Ze2µ

2�2 −
|E|µξ
2�2 −

m2

4ξ
+
βµ

2�2

)
f = 0, (4.74)

d

dη
η
d

dη
g +
(
Ze2µ

2�2 −
|E|µη
2�2 −

m2

4η
− βµ

2�2

)
g = 0, (4.75)

both of which are of the form

1
ζ

d

dζ
ζ
d

dζ
F +
(
λ

ζ
− m2

4ζ2 −
1
4

)
F = 0, (4.76)

where ζ
def= (
√

2µ|E|/�)ξ and λ
def= Ze2+β

�

√
µ/8|E| for f , while ζ

def=

(
√

2µ|E|/�)η and λ
def= Ze2−β

�

√
µ/8|E| for g. The Frobenius ansatz leads

to the indicial equation s2 = m2/4,27 whose solutions are s = ±m/2. Thus
the regular solution of (4.76) behaves at the origin like ζ |m|/2; since it is
easy to see that at infinity F goes like e−ζ/2, we set

F (ζ) def= ζ |m|/2e−ζ/2G(ζ),

which leads to the equation

ζG′′ + (|m|+ 1− ζ)G′ + [λ− 1
2
(|m|+ 1)]G = 0. (4.77)

This equation is again of the form of Eq. (D.67), and the solutions f and g
are obtained by setting λ1 = 1

2 (|m|+1)+n1 for f and λ2 = 1
2 (|m|+1)+n2

for g, where n1 and n2 are non-negative integers; hence

λ1 + λ2 =
Ze2

�

√
µ

2|E| = n1 + n2 + |m|+ 1 def= n.

27Show this.
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The resulting energy eigenvalues agree with (4.70), and the (non-normalized)
eigenfunctions are given by

ψmn1n2(ξ, η, ϕ) = e−α(ξ+η)/2n(ξη)|m|/2L|m|n1+|m|(αξ/n)L|m|n2+|m|(αη/n)eimϕ,
(4.78)

where

α
def=

Ze2µ

�2 .

At this point you may be puzzled by the fact that the eigenfunctions
shown in (4.71) vanish when the associated Legendre functions of θ vanish,
which means that their zero-surfaces are cones and spheres, whereas the
eigenfunctions shown in (4.78) vanish when the associated Laguerre poly-
nomials of αη/n and αξ/n vanish, which implies that their zero-surfaces are
paraboloids. The reason why these two sets of eigenfunctions are compati-
ble is the l-degeneracy, owing to which the eigenfunctions are not unique,
which shows that there is a connection between the unusual degeneracy of
the Coulomb spectrum and the fact that the Schrödinger equation with a
Coulomb potential is separable in more than one coordinate system.

More on the l-degeneracy

[This section makes use of some of the results of Chapter 5 and is best read
after that chapter.]

For the classical Kepler problem with the Hamiltonian H = �p2/2µ−a/r,
the vector �v× �L−a�r/r, called the Laplace-Runge-Lenz vector, is a constant
of the motion.[Goldstein] (Here �v is the velocity of the particle and �L = �r×�p
is its angular momentum.) Similarly, in quantum mechanics, the operator

�M def= �p× �L− �L× �p− �2η�r/r, η
def= 2µZe2/�2 (4.79)

commutes with the Hamiltonian H = �p/2µ−Ze2/r of the hydrogen atom:28

[ �M,H] = 0.

Furthermore, since �M is a vector, its commutation relations with the an-
gular momentum �L are (see Section 5.1)

[L2,M3] = i�M1

and its cyclic permutations, while [Lj ,Mj ] = 0. In addition, of course, �L
is a constant of the motion,

[�L,H] = 0

28Show it.
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and it also satisfies the commutation relations of a vector,

[L2,L3] = i�L1,

etc. Obviously �L · �M = �M · �L = 0, and we find that29

�M× �M = −8i�µ�LH

as well as
�M2 − �4η2 = 8µH(�L2 + �211). (4.80)

Confining ourselves now to the subspace of a fixed bound-state energy
level −|E|, and defining �N def= �M/2

√
2µ|E|, we then obtain the commuta-

tion relations
1
2
(�L± �N)× 1

2
(�L± �N) = i�

1
2
(�L± �N),

which are identical to the commutation relations of the angular momen-
tum �L. It therefore follows that the eigenvalues of [ 12 (�L ± �N)]2 must be
�2n±(n± + 1), where the numbers n± are non-negative integers or half-
integers. But since �L · �N = �N · �L = 0, it follows that (�L+ �N)2 = (�L− �N)2,
and consequently the eigenvalues of �L2 + �N2 are �2(n2 − 1), where the
n

def= 2n±+ 1 are positive integers. Eq.(4.80) therefore implies that �2n2 =
Z2e4µ/2|E|, or

E = −Z
2e4µ

2�2n2

in agreement with (4.70).
The interest of this derivation of the energy levels of hydrogenic atoms

lies in the fact that the six operators �L and �N, all of which commute
with the Hamiltonian H, satisfy exactly the commutation relations of the
generators of the group O(4) of rotations in 4-dimensional Euclidean space,
so that the l-degeneracy of the discrete spectrum implied by (4.70) is the
result of the invariance of the hydrogenic Hamiltonian under that group.
The degeneracy is therefore not accidental but normal for this symmetry.
For further details about the use of the O(4) symmetry, see [Bander], pp.
330 and 346.

4.2.6 Coulomb scattering
Let us next consider the case of positive energy of a system consisting of
two particles of charge Z1e and Z2e.30 Separating the Schrödinger equation
in spherical polar coordinates leads to the radial equation

ψ′′l + k2ψl =
2n
r
kψl +

l(l + 1)
r2

ψl. (4.81)

29Prove these equations.
30For scattering of an electron by a proton, the system of which hydrogen is a bound

state, we would have to take Z1 = −1 and Z2 = 1.
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where

n
def=

Z1Z2e
2µ

�2k
=
Z1Z2e

2

�v
.

The parameter n here is the analogue of the principal quantum number
for the bound states but is now taking on continuous values, and v is the
relative velocity of the two particles when they are far apart.

For large values of r, when the centrifugal term is ignored, the solution
of (4.81) can be easily seen to be approximately

ψl ∼ e±i(kr−n log r),

rather than the usual e±ikr. Because of the slow decrease of the Coulomb
potential, the usual results for scattering, that the radial wave functions
simply suffer a constant phase shift, are thus inapplicable. To solve the
radial equation, we again set

ψl(r)
def= rl+1eikrfl(r),

obtaining the equation

rf ′′l + 2(ikr + l + 1)f ′l + 2[ik(l + 1)− nk]fl = 0. (4.82)

Comparison with the confluent hypergeometric equation (D.57) in Ap-
pendix D.3 shows that the regular solution of this equation is the confluent
hypergeometric function

fl(r) = clF (l + 1 + in| 2l + 2 | − 2ikr),

and therefore,

ψl(r) = clr
l+1eikrF (l + 1 + in| 2l + 2 | − 2ikr), (4.83)

whose asymptotic behavior for large r, according to (D.59), is

ψl(r) ∼ cl
Γ(2l + 2)

Γ(l + 1− in)
(2ik)−(l+1)eikr−in log(2ikr)

+ cl
Γ(2l + 2)

Γ(l + 1 + in)
(−2ik)−(l+1)e−ikr+in log(−2ikr)

=
cl(2l + 1)!enπ/2

2lkl+1|Γ(l + 1 + in)| sin[kr − n log 2kr − π

2
l + ηl], (4.84)

where ηl is defined as the phase of Γ(l + 1 + in):

Γ(l + 1 + in) def= |Γ(l + 1 + in)|eiηl .

Therefore the asymptotic form of the radial wave function is of the form

ψl(r) ∝ sin[kr − n log 2kr − π

2
l + ηl]. (4.85)
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As in the case of bound states, it will be instructive to separate the
Schrödinger equation in parabolic coordinates, as defined in (4.72), and
defining the z-axis as the direction of the incoming particles. We make the
ansatz

ψ
def= eik(η−ξ)/2Ξ(ξ),

in the hope of finding a solution Ξ(ξ) that asymptotically differs from
unity by a term proportional to eikξ = eik(r−z), which, when multiplied
by eik(η−ξ)/2, will give us the expected outgoing wave. Insertion of the
ansatz in the Schrödinger equation with the Laplacian (4.73) yields the
equation

ξΞ′′ + (1− ikξ)Ξ′ − nkΞ = 0, (4.86)

identical with the confluent hypergeometric equation (D.57); therefore, the
solution of (4.86) regular at the origin is given by

Ξ(ξ) = cF (−in| 1 |ikξ),

which, according to (D.59), goes asymptotically as

Ξ(ξ) ∼ c

{
1

Γ(1 + in)
ein log(−ikξ)

(
1− n2

ikξ

)
+

1
Γ(in)

eikξe−(1+in) log(ikξ)
(

1− (1 + in)2

ikξ

)}
.

We therefore find the long-distance behavior

ψ ∼ cenπ/2

Γ(1 + in)

{
ei[kz+n log[k(r−z)]]

(
1− n2

ik(r − z) + . . .

)
+ fC(θ)

1
r
ei[kr−n log(2kr)]

(
1− (1 + in)2

ik(r − z) + . . .

)}
, (4.87)

where

fC(θ) = −ne
−in log sin2 θ/2+2iη0

2k sin2 θ/2
, (4.88)

and we have used the fact that

Γ(1 + in)
Γ(−in)

=
Γ(1 + in)
Γ(1− in)

Γ(1− in)
Γ(−in)

= −ine2iη0 .

The leading terms in both parentheses will dominate when |n2/k(r −
z)| � 1, which requires not only that kr � 1 but also that the angle θ
not be too small, i.e., that we are not looking in the forward direction.
Since in all practical cases, kr is extremely large, the excluded forward
cone is too small to be of any significance. With this proviso, then, the
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Coulomb scattering amplitude is represented by (4.88), and the differential
cross section for Coulomb scattering is

dσ

dΩ
= |fC(θ)|2 =

n2

[2k sin2(θ/2)]2
=
(
Z1Z2e

2

2µv2

)2

csc4(θ/2), (4.89)

which by a remarkable coincidence is identical to the Rutherford cross sec-
tion for classical Coulomb scattering. You should note particularly the
sharp forward peaking of this scattering cross section and its strong in-
crease at small relative velocities. Another notable feature is the fact that
the scattering does not depend on whether the particles have charges of
equal or opposite signs. (The phase of the scattering amplitude, however,
does depend on it, and especially strongly so near the forward direction.)

If the wave function ψ is to be normalized to unit incident flux, (4.87)
shows that we must choose

c =
e−nπ/2Γ(1 + in)√

v
,

and the Coulomb wave function becomes, with n def= Z1Z2e
2µ/�2k,

ψ(r, k, θ) =
1√
v
e−nπ/2Γ(1 + in)eikr cos θF (−in| 1 |2ikr sin2 θ/2), (4.90)

whose absolute magnitude squared at the origin is

|ψ(0, k, θ)|2 =
1
v
e−nπ|Γ(1 + in)|2,

or, since Γ(1 + z)Γ(1− z) = πz/ sinπz,

|ψ(0, k, θ)|2 =
1
v

2nπ
e2nπ − 1

. (4.91)

This is the probability density of finding the two particles in close proximity
to one another, an important fact for nuclear reactions. In the limit as
v → 0, this probability density approaches 2|n|π/v when n < 0, i.e., when
the force is attractive, and it approaches 2|n|πe−2nπ/v when n > 0, i.e.,
when the force is repulsive. The two cases differ by a factor of

e−2πZ1Z2e
2/�v,

called the Gamow factor, which expresses the strongly repulsive effect of
the Coulomb barrier between two particles whose electrical charges have
the same sign. It plays a significant role in nuclear physics, for example, in
the explanation of some radioactive decays and in the rate of thermonuclear
reactions in the sun.
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4.3 The Inverse Problem

The determination of the bound-state energies and the scattering amplitude
for a given potential function is called the direct problem of the Schrödinger
equation. However, from the point of view of explaining experimental data,
it is often much more interesting to pose the inverse problem: given the
scattering amplitude and bound-state energies (call them “the data” for
short), can we determine the potential in the Schrödinger equation that
produces them? The relation between the data and the potential being
nonlinear, the solution to this problem is not straightforward.

A relatively simple procedure sometimes employed is to assume that the
potential is a member of a given multi-parameter family of functions for
which we know how to solve the Schrödinger equation, either exactly or
by numerical computation. We then compare the results calculated for a
range of values of the parameters with the data and choose the values
leading to the best fit. This has the drawback that there is no guaranty
that the potential sought is uniquely determined by the data; moreover,
the real underlying potential might not belong to the assumed family at
all and may have a quite different shape. It is therefore useful to try to
approach the inversion of the map from a large class of potentials to the
data as a mathematical problem without any preconceptions.

If we confine ourselves to central potentials and expand the scattering
amplitude in a partial-wave series, the inverse problem may be posed in
two different ways:

1. Suppose the phase shift of one angular momentum � is given for all
energies, can we determine the potential?

2. Suppose all phase shifts are given at one non-zero energy E, can we
determine the potential?

The answer to the first question is that if there are no bound states of
angular momentum �, then the potential is uniquely determined. However,
when there are n ≥ 1 bound states of angular momentum �, we also need to
know all their energies. There still remains one additional free parameter
for each bound state, a positive constant which specifies the slope of the
normalized bound-state wave function at the origin.

The answer to the second question, from an experimental point of view
much more interesting than the first, is that there is always at least a one-
parameter family of potentials that produce the same phase shifts at the
specified energy E. In fact, there exists at least a one-parameter family
of potentials for which all phase shifts vanish at E. Only if we restrict
ourselves to potentials that decrease faster than r−3/2 at infinity is the
solution to the inverse problem at fixed energy unique.
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4.3.1 Solution procedure
To illustrate the mathematical method that can actually lead from the
data of a fixed angular momentum to the potential, take the case � = 0
and define the function

h(r) def=
1
2π

∫ ∞
−∞

dk eikr[e2iδ(k) − 1]−
∑
n

Mne
−κnr, (4.92)

where δ is the s-wave phase shift, −�2κ2
n/2M are the energies of the bound

states, and the Mn are positive constants. The following linear integral
equation,

A(r, r′) = h(r + r′) +
∫ ∞
r

dr′′ h(r′ + r′′)A(r, r′′), (4.93)

which is called the Marchenko equation after the Russian mathematician
V.A. Marchenko, then has to be solved for each given r. [In (4.93), r plays
the role of a fixed parameter.] Its solution leads to the potential

V (r) = − �2

M

d

dr
A(r, r), (4.94)

which, when inserted in the s-wave Schrödinger equation yields the phase
shift δ and the given bound state energies. A similar procedure allows the
construction of the potential from a knowledge of the phase shifts of any
other angular momentum and the corresponding bound states.

In order to derive the Marchenko equation, we have to define two auxiliary solutions
of the s-wave Schrödinger equation. The first is a regular solution ϕ(k, r) that satisfies
the boundary condition at the origin,

ϕ(k, 0) = 0, ϕ′(k, 0) = 1.

This function is the solution of the linear integral equation31

ϕ(k, r) = k−1 sin kr +
2M
k�2

∫ r

0
dr′ sin k(r − r′)V (r′)ϕ(k, r′), (4.95)

which can always be solved uniquely by iteration, even for complex values of k. As a
result, ϕ(k, r) is an entire analytic function of k, with no singularities anywhere. Since
ϕ vanishes at r = 0, it must be a multiple of the physical wave function ψ.

The other solution we need is defined by the boundary condition at infinity,

lim
r→∞ f(k, r)e−ikr = 1. (4.96)

It is the solution of the integral equation

f(k, r) = eikr − 2M
k�2

∫ ∞

r
dr′ sin k(r − r′)V (r′)f(k, r′), (4.97)

31As an exercise, show that a solution of (4.95) solves the Schrödinger
equation.
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which also can always be solved by iteration for all k with 
k ≥ 0. This function, called
the Jost solution of the s-wave Schrödinger equation, is an analytic function of k, regular
everywhere in the upper half-plane, but since it generally does not vanish at r = 0, it is
not physical, except when for k = iκ, with κ > 0, the function

f(k) def= f(k, 0), (4.98)

vanishes, f(iκ) = 0, in which case f(iκ, r) is a solution that vanishes at the origin and also
decreases exponentially at infinity; it thus is a bound-state wave function and −�κ2/2M
is the energy of a bound state. So the bound-state energies are the zeros of f(k) in the

upper half plane. For large |k| with ν def= 
k ≥ 0, one finds from (4.97) that

f(k, r) ∼ eikr, f(k) ∼ 1 (4.99)

and from (4.95) that
ϕ(k, r) = k−1 sin kr + o(|k|−1e|ν|r). (4.100)

Since, for real k, the two function f(k, r) and f(−k, r) are linearly independent, it
must be possible to express ϕ(k, r) as a linear combination of these two solution of the
Schrödinger equation,

ϕ(k, r) = af(k, r) + bf(−k, r),
and the two coefficients a and b are calculated by means of the boundary condition of ϕ as

a = f(−k)/D(k) and b = −f(k)/D(k), where D(k) def= f ′(k, 0)f(−k, 0)−f ′(−k, 0)f(k, 0).
The expression D(k) is the Wronskian of the two solutions f(k, r) and f(−k, r) of the
Schrödinger equation, a second-order ordinary differential equation, and thus is inde-
pendent of r, as already remarked in Chapter 3. We can thus evaluate it just as well at
r → ∞, in which case we obtain from the boundary condition (4.96) that D = 2ik, and
as a result

ϕ =
1

2ik
[f(k, r)f(−k) − f(−k, r)f(k)]. (4.101)

Comparison with (4.41) shows that we can therefore conclude,

f(−k)
f(k)

= e2iδ(k). (4.102)

Now define the Fourier tranform

A(r, r′) def=
1
2π

∫ ∞

−∞
dk e−ikr′

[f(k, r) − eikr]. (4.103)

When r′ < r, because of the analyticity of f(k, r) and the asymptotics (4.99), the path of
this integral can be closed by a large semicircle in the upper half plane, so that Cauchy’s
theorem implies that A(r, r′) = 0 for r′ < r, and the inverse of (4.103) reads

f(k, r) = eikr +
∫ ∞

r
dr′ A(r, r′)eikr

′
. (4.104)

Next, (4.101) together with (4.102) implies that

f(−k, r) = e2iδf(k, r) − 2ikϕ(k, r)/f(k),

which we insert in (4.103) after changing k into −k, for r′ > r

A(r, r′) =
1
2π

∫ ∞

−∞
dk eikr

′{[e2iδ(k) − 1][f(k, r) − eikr] + eikr[e2iδ − 1]

+ [f(k, r) − eikr] − 2ik[ϕ(k, r)/f(k) − k−1 sin kr]}.
The first term is the convolution32 of A(r,−r′) with the Fourier transform

h(r) def=
1
2π

∫ ∞

−∞
dk [e2iδ(k) − 1]; (4.105)

32Show this.
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the second term is h(r+r′); and the third and fourth term vanish by contour integration
if there are no bound states. The result is (4.93). If there are bound states, the function
h has to be defined as in (4.92) rather than as in (4.105), and again the result is (4.93).

Finally, insert (4.104) in the radial Schrödinger equation and you will find that for
r′ > r, the function A(r, r′) has to satisfy the partial differential equation(

∂2

∂r2
− ∂2

∂r′2

)
A(r, r′) =

2M
�2

V (r)A(r, r′)

and the boundary condition (4.94). �

Of course, one also has to prove that the potential obtained by (4.94),
when used in the s-wave Schrödinger equation, indeed leads to the data
used as input in the definition of the function h. For those and further
details, including the precise conditions on the potential under which the
procedure works, generalizations to � > 0, as well as a solution to problem
(2), the inverse problem at fixed energy, see [Chadan].

Note that the uniqueness of the inversion procedure from a knowledge of
a single phase shift of an angular momentum for which the potential pro-
duces no bound states implies that if a scattering amplitude is given for all
energies, then the fact that it comes from an underlying central potential33

not only makes the phase shifts of all angular momenta dependent on one
another, but this scattering amplitude also determines the bound states.
To see this, all you have to do is use a phase shift of an angular momentum
for which there are no bound states—in the specified class there always
exists such an �-value—to find the underlying potential V ; all the other
phase shifts and the bound states, if any, are then determined by V .

An example

As a simple example, suppose that, with a, b > 0,

e2iδ(k) =
k − ia
k + ia

k + ib

k − ib ,

which means that

k cot δ =
ab+ k2

b− a . (4.106)

The function h(r) is then easily calculated34 by evaluating the integral
in (4.92) using contour integration (after adding a large semicircle in the
upper half plane) and applying the Cauchy residue theorem,

h(r) = −2bβe−br, β
def=

b− a
b+ a

.

33This potential has to be in a class for which the procedure works, which requires
that rV (r) be integrable. Roughly speaking, this means that V (r) is not as singular at
the origin as r−2 and that it decreases faster than r−2 at infinity.

34Do it.
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Thus the Marchenko equation (4.93) becomes

A(r, r′) = −2bβ[e−b(r+r
′) +
∫ ∞
r

dr′′ e−b(r
′+r′′)A(r, r′′)].

The function B(r, r′) def= A(r, r′)eb(r+r
′) therefore must satisfy the equation

B(r, r′) = −2bβ
[
1 +
∫ ∞
r

dr′′ e−2br′′
B(r, r′′)

]
,

which implies that it is independent of r′ and we obtain

B(r, r′) = − 2bβ
1 + βe2br

or

A(r, r′) = −2bβ
e−b(r+r

′)

1 + βe−2br .

Therefore the potential is given by

V (r) =
2bβ�2

M

d

dr

1
β + e2br

= −4b2β�2

M

e2br

(β + e2br)2
. (4.107)

4.3.2 The phase of the scattering amplitude
The above inversion procedure starts from the assumption that either one
phase shift is known for all energies or all phase shifts are known at one
energy. In reality, however, a scattering experiment measures the scattering
cross section rather than the scattering amplitude, a knowledge of whose
phase is needed to determine the phase shifts. Is there a way of determining
the phase of the amplitude if the cross section, i.e., its absolute magnitude,
is given?

We have one handle on this problem, and that is the generalized optical
theorem (4.52). If the scattering amplitude is written in the dimensionless
form

A(�k′,�k) def= k−1F (x) def= k−1G(x)eiϕ(x)

with x = cos θ and G(x) ≥ 0,35 a change of variables in the angle integra-
tion36 changes (4.52) into

�F (x) =
1
2π

∫ ∫
dy dz

F (y)F ∗(z)√
1− x2 − y2 − z2 + 2xyz

,

35In order not to clutter up the notation, the k-dependence of F and G has been
suppressed.

36Carry this out as an exercise.
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where the region of integration is the interior of the ellipse in which the
radicand in the integral is positive. This equation may be expressed in
terms of the phase ϕ of the scattering amplitude:

sinϕ(x) =
∫ ∫

dy dz H(x, y, z) cos[ϕ(y)− ϕ(z)], (4.108)

in which

H(x, y, z) def=
G(y)G(z)

2πG(x)
√

1− x2 − y2 − z2 + 2xyz
.

Equation (4.108) may be regarded as a nonlinear integral equation for
the phase ϕ of the scattering amplitude if the cross section G2(x) is experi-
mentally given. Unfortunately, not much is known about general conditions
under which it has a solution and when this solution is unique. One thing
is immediately clear: if ϕ(x) is a solution of (4.108), then so is π − ϕ(x);
thus there can at best be uniqueness of the solution of (4.108) modulo this
ambiguity: the generalized optical theorem, together with a knowledge of
the differential cross section, can determine the phase shifts, if at all, only
to within an overall sign. If the function

Q(x) def=
∫ ∫

dy dz H(x, y, z)

exceeds 1 for some value of x, there are particular problems concerning
both the existence and the uniqueness of a solution, and explicit examples
of non-uniqueness (beyond the one mentioned above) are known [Crichton].
However, it can be proved that if for all −1 ≤ x ≤ 1, Q(x) ≤ M < 1,
then (4.108) has a solution; moreover, if M < 0.62, then this solution
is unique and can be constructed by a convergent sequence of successive
approximations.37

The fact that (4.108) always has a solution if only the cross section is
small enough (so that M is small) has quite interesting physical implica-
tions. Suppose an experimentally given differential cross section is express-
ible as a linear combination of the first 2L+ 1 Legendre polynomials, i.e.,
from P0(cos θ) to P2L(cos θ). One would then be tempted to conclude that
the corresponding scattering amplitude contains no partial waves higher
than L.38 But since the phase shifts are real, this would allow for only
L+ 1 real coefficients, whereas the expansion of the given differential cross
section generally requires 2L+ 1 real coefficients. It would therefore follow
that the reality of the phase shifts (which is equivalent to the generalized

37[Newton 82], pp. 633–636.
38As an exercise, show that if the partial-wave expansion of the amplitude

terminates exactly at order L, then the Legendre expansion of its magnitude
squared must contain a term of order 2L.
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optical theorem) imposes strong restrictions on the possible angular shape
of a differential cross section. We have, however, found that if the cross sec-
tion is small enough, this conclusion is incorrect: any shape is compatible
with the generalized optical theorem. The only way out of this apparent
contradiction is that almost all differential cross sections that can be ex-
pressed in terms of the first 2L+ 1 Legendre polynomials require infinitely
many terms in the partial wave expansions of their corresponding ampli-
tudes.

4.4 Potentials without Spherical Symmetry

4.4.1 Green’s functions
In Section 4.2.2, we discussed the scattering amplitude and its partial-wave
expansion for a particle subject to a rotationally invariant potential. We
will now take up the case in which such symmetry is lacking. In order
to define, or calculate numerically, a solution of the Schrödinger equation
that satisfies the boundary condition (4.45), it is most convenient to define
a Green’s function that satisfies the equation

(∇2 + k2)g+
0 (k,�r − �r ′) = δ3(�r − �r ′) (4.109)

and the “outgoing-wave boundary condition” for r = |�r| → ∞,

g+
0 (k,�r − �r ′) ∝ eikr

r
.

The physical significance of this function is best appreciated by going back
to the time-development of a state.

The retarded propagator G+(t), which allows us to express the state
vector Ψ(t) in terms of the state vector Ψ(t′) at any earlier time t′ < t
by (2.30), was defined in (2.29). What we now need for solving the time-
independent Schrödinger equation is its Fourier transform,

G+(E) def=
1
i�

∫ ∞
−∞

dt eiEt/�G+(t), (4.110)

which, as it stands, is not well defined, because the integral does not con-
verge. However, since G+(t) vanishes for t < 0, there will be no problem if
E is taken to be complex, with a positive imaginary part iε. The integral
is then easily carried out, with the result

G+(E) = (E + iε−H)−1, (4.111)

where the limit ε→ 0+ is understood.
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Of course, all of this can be done equally well in terms of the free Hamil-
tonian, consisting only of the kinetic energy, H0 = �p2/2M , in which case
we form first G+

0 (t) just as in (2.29), and then take its Fourier transform
as in (4.110),

G+
0 (E) def=

1
i�

∫ ∞
−∞

dt eiEt/�G+
0 (t), (4.112)

with the result
G+

0 (E) = (E + iε−H0)−1, (4.113)

which is called the free Green’s function (in contrast to (4.111), which is
the complete Green’s function). In the momentum representation G+

0 (E)
is diagonal and given explicitly by the function

Ĝ+
0 (E, �p) = 1

/(
E + iε− �p2

2M

)
. (4.114)

From this we calculate the Green’s function in the configuration represen-
tation by means of (1.71),

G+
0 (E;�r, �r ′) = (2π�)−3

∫
d3p ei(�r−�r

′)·�p/�Ĝ+
0 (E, �p),

with the result39

G+
0 (E;�r, �r ′) = − M

2π�2

eik|�r−�r
′|

|�r − �r ′| , (4.115)

where k = +
√

2ME/�. It satisfies the differential equation40(
�2

2M
∇2 + E

)
G+

0 (E;�r, �r ′) = δ3(�r − �r ′) (4.116)

and the outgoing-wave boundary condition. This function therefore differs
from that defined in (4.109) simply by a factor of 2M/�2. In fact, since for
|�r| � |�r ′| and k|�r| � (k|�r ′|)2,

k|�r − �r ′| = k[|�r| − �r · �r ′/|�r|+O((|�r ′|/|�r|)2))] = kr − �k′ · �r ′ + o(1),

where �k′ def= k�r/r, we have in that limit

G+
0 (E;�r, �r ′) � − M

2π�2

eikr

r
e−i�k

′·�r ′
. (4.117)

The function G+
0 (E;�r, �r ′) is nothing but the Fourier transform of the prop-

agator already calculated earlier, with the result (4.27). Similarly as in

39Do this integral as an exercise in contour integration in the complex
plane. You should do the angle integration first.

40Verify this.
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(4.30), there is also a (free) back-propagator, which determines the state
vector Ψ0(t) in terms of Ψ0(t′) for t < t′. Its Fourier transform, the corre-
sponding Green’s function, is the operator41

G−0 (E) = (E − iε−H0)−1, (4.118)

which in the configuration representation takes the form42

G−0 (E;�r, �r ′) = − M

2π�2

e−ik|�r−�r
′|

|�r − �r ′| = G+∗
0 (E;�r, �r ′). (4.119)

Regarded as an operator, we have

G−0 (E) = G+†
0 (E). (4.120)

Let us now use these Green’s functions for solving the Schrödinger equa-
tion. In order to solve the equation(

�2

2M
∇2 + E

)
ψ = V ψ

for E > 0, with the outgoing-wave boundary condition, apply the inverse of
the operator on the left, which according to (4.113) is the Green’s function
G+

0 , and you obtain the equation

ψ+(�k, �r) = (2π)−3/2ei
�k·�r +

∫
d3r′G+

0 (E;�r, �r ′)V (�r ′)ψ+(�k, �r ′), (4.121)

or explicitly,

ψ+(�k, �r) = (2π)−3/2ei
�k·�r − M

2π�2

∫
d3r′

eik|�r−�r
′|

|�r − �r ′| V (�r ′)ψ+(�k, �r ′), (4.122)

which is called the Lippmann-Schwinger equation. The inhomogeneous term
ψ0(�k, �r)

def= (2π)−3/2ei
�k·�r in it arises because the operator E − H0 =

E + �
2

2M∇2 annihilates it, so that the inverse (E −H0)−1 cannot be well
defined, which is also reflected in the need for the iε in (4.113).

Any solution of (4.122) solves the Schrödinger equation.43 Moreover, ac-
cording to (4.117), this solution has the asymptotic form

ψ+(�k, �r) = (2π)−3/2ei
�k·�r − M

2π�2r
eikr
∫
d3r′ e−i�k

′·�r ′
V (�r ′)ψ+(�k, �r ′)+ o(

1
r
),

(4.123)

41Show this.
42Show this.
43Verify this explicitly.
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where �k′ def= k�r/r. The meaning of the label �k on the wave function ψ+(�k, �r)
resides entirely in the use of the inhomogeneity ψ0(�k, �r) = (2π)−3/2ei

�k·�r in
(4.122), which means, physically, that it reflects the fact that the time-
dependent origin of ψ+(�k, �r) was a wave function describing a particle that
in the remote past had the (approximate)44 momentum ��k. (The momen-
tum is, of course, not a constant of the motion!)

The scattering wave functions ψ+(�k, �r), together with the bound-state
functions ψEn(�r), form a complete set in the Hilbert space in the sense of
the completeness relation (B.16) and the generalization of (B.20) in the
appendix, which may be written symbolically∑

n

ψEn
(�r)ψ∗En

(�r ′) +
∫
d3k ψ+(�k, �r)ψ+∗(�k, �r ′) = δ3(�r − �r ′), (4.124)

meaning that every square-integrable function on IR3 may be expanded in
the form

f(�r) =
∑
n

cnψEn(�r) +
∫
d3k g(�k)ψ+(�k, �r),

where

cn =
∫
d3r f(�r)ψ∗En

(�r), g(�k) =
∫
d3r f(�r)ψ+∗(�k, �r).

Applying the operator (E ± iε − H)−1 to (4.124) leads to the following
expression for the complete Green’s function:

G±(E;�r, �r ′) =
∑
n

ψEn(�r)ψ∗En
(�r ′)

E − En
+
∫
d3k

ψ+(�k, �r)ψ+∗(�k, �r ′)
E ± iε− �2

2M k2
. (4.125)

This formula carries important information about the dependence of the
complete Green’s function on the variable E: it implies that for fixed �r and
�r ′, the functions G+(E;�r, �r ′) and G−(E;�r, �r ′) are the boundary values on
the real axis of an analytic function G(E;�r, �r ′) of E, which is meromorphic
in the complex plane cut along the continuous spectrum from E = 0 to
E =∞, with simple poles at the bound-state eigenvalues En. Moreover, the
residue of G(E;�r, �r ′) at the pole En is equal to

resn = ψEn(�r)ψ∗En
(�r ′), (4.126)

where ψEn(�r) is the normalized bound-state eigenfunction. The disconti-
nuity of G(E) across the cut is found by Eq.(A.2) in the appendix to be

44Remember that a particle whose state is described by a well-defined time-dependent
wave function in a Hilbert space cannot have a precisely defined momentum; if square-
integrable, it must be a superposition of quasi-eigenfunctions of �p with various values
of �p.
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given by

(E + iε−H)−1 − (E − iε−H)−1 = −2πiδ(E −H), (4.127)

where the symbolic expression δ(E−H) is, according to (4.125), explicitly
given by

G(E + iε;�r, �r ′)−G(E − iε;�r, �r ′) =
2πMk

i�2

∫
dΩ′′ψ+(�k′′, �r)ψ+∗(�k′′, �r ′),

(4.128)
or

δ(E −H) def=
Mk

�2

∫
dΩ′′ψ+(�k′′, �r)ψ+∗(�k′′, �r ′).

The complete Green’s function can be used to solve (4.121) and express
ψ+ in the form45

ψ+(�k, �r) = ψ0(�k, �r) +
∫
d3r′G+(E;�r, �r ′)V (�r ′)ψ0(�k, �r ′), E =

�2k2

2M
,

(4.129)
which is useful for many purposes, even though G+ can rarely be explicitly
constructed.

4.4.2 The scattering amplitude

k

k’

-k

-k’

FIGURE 4.5. Initial and final particle momenta in the original scattering and in
its reciprocal.

Comparison of (4.123) with (4.45) shows that the scattering amplitude
can be expressed in terms of ψ+ as

A(�k′,�k) = − M

2π�2

∫
d3r′ ψ∗0(�k′, �r ′)V (�r ′)ψ+(�k, �r ′). (4.130)

In contrast to the case of a central potential discussed in Section 4.2.2, the
scattering amplitude now depends separately on the direction of incidence
and the scattering direction rather than only on the angle between the two.

45You should verify that the function defined by (4.129) solves the
Schrödinger equation.
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This dependence, however, is subject to an important symmetry, called
reciprocity,

A(�k′,�k) = A(−�k,−�k′), (4.131)

depicted in Figure 4.5. It says that the scattering from the direction �k to
�k′ is the same as that in the reverse direction, from −�k′ to −�k. An crucial
ingredient in its derivation is the assumption that the potential V is real,
which, as we shall see later, is equivalent to time-reversal invariance.

To demonstrate (4.131), write (4.130) in the form −4πA(�k′, �k) = (ψ0(�k′),Vψ+(�k)),

V def= 2MV/�2. Substituting (4.121) and using the fact that G−
0 = G+†

0 can be employed
as in (4.121) to define a solution ψ−(�k, �r) = ψ+∗(−�k, �r), one obtains

−4πA(�k′, �k) = (ψ0(�k′),Vψ0(�k)) + (ψ0(�k′),VG+V ψ0(�k)) = (ψ0(�k′),Vψ0(�k))

+(G−V ψ0(�k′),Vψ0(�k)) = (ψ−(�k′),Vψ0(�k))

= (ψ0(−�k),Vψ+(−�k′)) = −4πA(−�k,−�k′).

Furthermore, the scattering amplitude satisfies the optical theorem,

�A(�k,�k) =
k

4π
σtotal(�k) =

k

4π

∫
dΩ′ |A(�k′,�k)|2, (4.132)

which we already encountered in (4.53) for the special case of a central
potential.

To prove (4.132) in the physically most meaningful way, call the direction
of incidence the z-axis, so that the wave function at large distance z � 1/k
in the nearly forward direction, in terms of the incident wave ψinc, has the
form

ψ+ � [1 + r−1eik(r−z)A(0)]ψince
ikz

if we write A(0) for the forward scattering amplitude A(�k,�k). Let this wave
(or the corresponding particles) be detected on a screen whose dimensions
are small compared to the distance from the scattering center, so that on
it not only

x2 + y2 � z2,

because the scattering angle is small, but also

zk

(
x2 + y2

z2

)2

� 1.

Expansion then gives

k(r − z) = k[
√
z2 + (x2 + y2)− z] = k(x2 + y2)/2z + o(1)

and thus
r−1eik(r−z) � z−1eik(x

2+y2)/2z.
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At a point (x, y) on the screen we therefore have

|ψ+|2 � |ψinc|2|1 + z−1eik(x
2+y2)/2zA(0)|2

� |ψinc|2
{

1 + 2z−1	[eik(x
2+y2)/2zA(0)]

}
.

To calculate the total number of particles detected, integrate this over the
area of the screen. Assuming that the screen is large in the sense that on
its edge

x2 + y2 � 2πz
k
,

(while still x2 + y2/z2 � 1) the resulting integral
∫
dx dy eik(x

2+y2)2z can
be extended, with little error, all the way to infinity, and we have46∫ ∞

−∞
dx

∫ ∞
−∞

dy eik(x
2+y2)/2z = 2πizk−1.

If the area of the screen is a, we therefore find that the total number of
particles detected on the screen is

|ψinc|2[a− 4πk−1�A(0)],

in which the second term represents the amount by which the particle count
has been diminished. The condition on the diameter D of the screen for
this approximation to be good is that√

z/k � D � z,

so that the screen must be neither too large nor too small; specifically,
it should include many diffraction rings, and not only the central spot.
The effect here calculated is generally known as shadow scattering; it is
the result of an interference between the incident beam and the forward-
scattered particles.

Since the number of particles (or the probability of their detection) is
conserved, the flux missing in the forward direction must have gone some-
where else: it must be equal to the total number of particles scattered. We
therefore conclude that

σtotal = 4πk−1�A(0),

which is (4.132).47

46Do this as an exercise.
47This manner of deriving the optical theorem clearly shows that if there is not only

elastic scattering but also absorption or inelastic scattering, σtotal has to include those
cross sections as well.



134 4. One- and Two-Particle Systems in Three Dimensions

Eq.(4.132) is a special case of the generalized optical theorem,

A(�k′,�k)−A∗(�k,�k′) =
ik

2π

∫
dΩ′′A∗(�k′′,�k′)A(�k′′,�k)

=
ik

2π

∫
dΩ′′A(�k′,�k′′)A∗(�k,�k′′), (4.133)

which we have already encountered for radial potentials in (4.52) and from
which (4.132) follows when �k′ = �k. If the S matrix is defined by

S(�k′,�k) def= δ2(Ω′,Ω)− k

2πi
A(�k′,�k), (4.134)

then (4.133) is the statement that S is unitary:48∫
dΩ′′ S∗(�k′′,�k′)S(�k′′,�k) =

∫
dΩ′′ S(�k′,�k′′)S∗(�k,�k′′) = δ(Ω,Ω′). (4.135)

As the derivation of the optical theorem indicated, the basic origin of the
unitarity of the S matrix is the conservation of probability or the conserva-
tion of flux.

For the derivation of (4.133) it is most convenient to write the solution of the Lippmann-
Schwinger equation in the form (4.129) in terms of the complete Green’s function
G+. Therefore, the scattering amplitude may be written in the form −4πA(�k′, �k) =

(ψ0(�k′),Vψ0(�k))+(ψ0(�k′),VG+(E)V ψ0(�k)), V def= 2MV/�2, and as a result, by (4.128),

A(�k′, �k) −A∗(�k,�k′) = − M

2π�2
(ψ0(�k′), V [G+(E) − G−(E)]V ψ0(�k))

=
ik

(2π)(4π)2

∫
dΩ′′ (ψ0(�k′),Vψ+(�k′′))(ψ+(�k′′),Vψ0(�k))

=
ik

2π

∫
dΩ′′ A(�k′, �k′′)A∗(�k,�k′′),

which proves the second version of (4.133); the first version then follows from (4.131).�

4.4.3 Solving the Lippmann-Schwinger equation
The most straightforward method of solving the integral equation (4.121)
is to iterate it, that is, to re-insert it in itself repeatedly, thereby generating
the series

ψ+(�k, �r) = ei
�k·�r +

∫
d3r′G+

0 (E;�r, �r ′)V (�r ′)ei�k·�r
′

+
∫
d3r′d�r ′′G+

0 (E;�r, �r ′)V (�r ′)G+
0 (E;�r ′, �r ′′)V (�r ′′)ei�k·�r

′′

+ . . . , (4.136)

48Show this.
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called the Born series.49 If the potential V is multiplied by a “coupling
constant” λ, (4.136) is a power series in λ. For sufficiently weak potentials
(or small enough λ), the first term in (4.136) may suffice, which results in
the Born approximation to the scattering amplitude

ABorn(�k′,�k) def= − M

2π�2

∫
d3r V (�r)ei(�k−�k

′)·�r. (4.137)

As you will notice, it has the special property of being a function of the
momentum transfer �(�k − �k′) only. On purely dimensional grounds, the
criterion for its validity may be expected to be roughly that

V R

�v
� 1 (4.138)

if V is the “average” strength of the potential, R is its range, and v is
the velocity of the incoming particle. This means that the time R/v that
the particle spends inside the potential should be short compared to the
characteristic time �/V required by the interaction to influence it. As a
consequence, the Born approximation can be expected to be good at high
energies, and indeed one can show that in general the scattering amplitude
approaches it as k →∞. The criterion (4.138), however, is not foolproof and
does not always work. As a notable case in point, the Born approximation
to the Rutherford cross section is the exact answer at all energies!50

The great drawback of the Born series is that it generally fails to con-
verge. While it converges for “sufficiently large” energies and for “suffi-
ciently weak” potentials, the precise meaning of “sufficiently” here is hard
to pin down. (See Appendix C for more on the radius of convergence of the
Born series.)

There is, however, another procedure of solving the integral equation
(4.121), namely, the Fredholm method. If the equation is written in the
formal shorthand

[11−G+
0 (E)V ]ψ+(�k) = ψ0(�k),

so that its solution is

ψ+(�k) = [11−G+
0 (E)V ]−1ψ0(�k),

and the operator [11 −G+
0 (E)V ] is regarded as a generalized matrix, then

we might be tempted to proceed with the construction of [11−G+
0 (E)V ]−1

as with that of the inverse of a matrix, beginning with the calculation of
the determinant of [11 −G+

0 (E)V ]. As is shown in Appendix C, this idea
indeed works, and the determinant is known as the Fredholm determinant.
Replacing V by λV leads to a series-expansion of det2[11 − λG+

0 (E)V ] in

49Mathematicians call it a Neumann series.
50Not the phase of the amplitude, though.
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powers of λ, which (provided V is in a suitable, large class of functions,
given by (C.22)) always converges, no matter how large λ. (The reason for
the replacement of the ordinary Fredholm determinant by the modified one
denoted by det2 is explained in Appendix C.) Thus we have

[11− λG+
0 (E)V ]−1(�r, �r ′) =

N (E;�r, �r ′)
det2[11− λG+

0 (E)V ]
, (4.139)

where both the numerator and the denominator can be expanded in a power
series that converges for all (real and complex) λ.

The determinant det2[11−λG+
0 (E)V ] serves another useful purpose. The

Fredholm alternative states that an inhomogeneous Fredholm integral equa-
tion has a unique solution if and only if its homogeneous version has only
the trivial solution, ψ = 0. Just as for matrices, a nontrivial solution of the
homogeneous equation exists if the determinant vanishes. But since the
complete Green’s function can be written in the form

G+(E) = [E + iε+
�2

2M
∇2 − V ]−1 = [11−G+

0 (E)V ]−1G+
0 (E) (4.140)

the vanishing of det2[11− λG+
0 (E)V ] leads to a pole of G+(E), indicating

a discrete eigenvalue. A nontrivial solution of the homogeneous Lippmann-
Schwinger equation can therefore occur only for E < 0, and the zeros of
det2[11−G+

0 (E)V ] are the bound-state energies.



4.5 Problems and Exercises 137

4.5 Problems and Exercises

1. Derive (4.46) from (4.45), using (2.39).

2. Consider the one-particle Schrödinger equation

i�
∂

∂t
ψ(�r, t) = − �2

2M
∇2ψ(�r, t) +

∫
d3r′ V (�r, �r ′)ψ(�r ′, t).

Derive the conditions for the nonlocal potential V (�r, �r ′) that ensures
the conservation of probability. Does a current that depends only on
ψ at a point exist in this case?

3. Consider the one-particle Schrödinger equation

i�
∂

∂t
ψ(�r, t) = − �2

2M
∇2ψ(�r, t) + [V1(�r) + iV2(�r)]ψ(�r, t),

where V1 and V2 are real. Show that probability is not conserved
unless V2 ≡ 0 and give an expression for the rate at which probability
is “lost” or “gained” in a given spatial volume Ω.

4. If ψ1 and ψ2 are two solutions of the same Schrödinger equation, show
that ∫

d3r ψ∗1(�r, t)ψ2(�r, t)

does not depend on the time.

5. Show that for a three-dimensional wave packet,

d

dt
〈x2〉 =

1
M
〈xpx + pxx〉.

6. Suppose that in the Schrödinger equation for a bounded region the
potential is changed everywhere by the addition of a constant c. What
is the resulting change in the wave functions and the eigenvalues?

7. Consider the Schrödinger equation in two dimensions with a potential
that depends only on the radial distance r from the center. Separate
the equation; what are the angle functions and what is the radial
equation?

8. Calculate (a) the normalized bound-state eigenfunction of a particle
in the ground state of a spherical square-well potential of radius b
and depth V0; (b) the probability of finding the particle outside the
well; and (c) the expectation value of its distance from the center of
the well.



138 4. One- and Two-Particle Systems in Three Dimensions

9. Calculate the mean value 〈r〉 of the distance between the electron
and the proton in a hydrogen atom in a state of angular momentum
l and principal quantum number n.

10. Calculate 〈r2〉 for a hydrogen atom in a state of angular momentum
l and principal quantum number n. From this and the result of the
last problem, calculate ∆r.

11. Calculate the phase shifts for scattering by an impenetrable sphere,
i.e., V (r) = 0 for r > R, and V (r) =∞ for r < R. What is the low-
energy limit of the lth phase shift for Rk � 1? What is the low-energy
limit of the total cross section?

12. Consider the special cases of (4.106) with a = 0 and with b = 0.
What are the corresponding potentials? Is there anything unusual
about either of these?

13. Find the eigenvalues and eigenfunctions of the Schrödinger equation
in three dimensions with the potential V = 1

2c(x
2 + y2 + z2). What

are the degeneracies of the three lowest eigenvalues?

14. Consider the radial Schrödinger equation with l = 0 and the potential
V (r) = −λe−r/a, λ > 0. Change variables from r to z def= e−r/2a and
show that the result is Bessel’s equation. What boundary conditions
are to be imposed on the solutions as functions of z, and how can
these be used to determine the bound-state energy levels? What is
the smallest value of λ for which a bound state can exist?

15. The Schrödinger equation for a rigid body of moment of inertia I
about a given axis, constrained to rotate about this axis, is

i�
∂ψ(ϕ, t)
∂t

= −�2

2I
∂2ψ(ϕ, t)
∂ϕ2 .

What boundary condition must be supplied for the solutions of this
equation? Find the general solution.

16. Consider the radial Schrödinger equation for l = 0 with the potential
V (r) = 1

2K
2r2 for r > a and V = 0 for r < a. Derive a transcendental

equation that determines the energy eigenvalues.

17. Show that the expectation value of the potential energy of an electron
in the nth state of a hydrogen atom is given by

− e
4M

�2n2 .

From this result find the expectation value of its kinetic energy.
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18. Calculate the Born approximation to the differential cross section (a)
in the center-of-mass system and (b) in the laboratory system for
collisions of two particles of equal mass M if the interaction potential
is

V (r) = γe−αr.

19. Do the same for the potential

V (r) = γe−α
2r2 .

20. Do the same for the potential

V (r) = γe−αrr−3/2.

21. Do the same for the potential

V (r) = γe−αr/r.

Take the limit α→ 0 and comment on the result.

22. The definition
ψl � Al sin(kr − πl/2 + δl)

of the phase shift δl refers explicitly to the wave number k and hence
to the energy. How do you reconcile this with the fact that, physically,
the energy can be shifted by a constant without effect? Is the zero-
point of the energy fixed in scattering theory? If so, by what?

23. Using the fact that the function G+(�r, �r ′) def= −eik|�r−�r ′|/4π|�r − �r ′|
satisfies the equation (∇2+k2)G+(�r, �r ′) = δ(�r−�r ′) and an outgoing-
wave boundary condition, show that the coefficients G+

l (r, r′) in the
expansion

G+(�r, �r ′) =
∑
l,m

Y ml (r̂)Y m∗l (r̂′)G+
l (r, r′)rr′

satisfy the differential equation[
∂2

∂r2
− l(l + 1)

r2
+ k2
]
G+
l (r, r′) = δ(r − r′)

and the boundary condition that, for fixed r′, as r →∞ G+
l contains

outgoing spherical waves only. How does G+
l behave when r and r′

are interchanged?

24. Use the results of the last problem to construct G+
l (r, r′).



140 4. One- and Two-Particle Systems in Three Dimensions

25. (a) Calculate the s-wave scattering phase shift for a repulsive po-
tential shell that vanishes for r < R and for r > 3R/2, while for
R < r < 3R/2 it has the constant value V = V0. (b) What is the am-
plitude of the l = 0 wave function in the region outside the potential
shell when V0 is large (with respect to what?)?

26. For the same potential as in the last problem: (a) Show that for
special values of the energy that are very close to eigenvalues for
the case when V0 = ∞, the amplitude outside is very small. Also
calculate the s-wave phase shift for these special values of the energy.
(b) Calculate the derivative of the phase shift at these energies and
relate it to the time delay. Are these resonances? (c) Calculate the
approximate widths of the peaks in the partial-wave cross section
from the derivatives of the phase shifts and relate them to the time-
delays. Explain what is going on here physically.

27. Two particles of mass 3 × 10−25g interact with one another with a
force of range ∼ 10−12 cm. A scattering experiment is carried out
at 200 keV center-of-mass energy. If the differential cross section is
measured with an accuracy of a few percent, what do you expect the
general form of the angle dependence to be?

28. Let the potential in the Schrödinger equation be nonlocal of the form

V (�r, �r ′) =
N∑
1

λnfn(�r)fn(�r ′).

Calculate the scattering amplitude.

29. Find the energy eigenvalues of the Schrödinger equation in two dimen-
sions for the harmonic oscillator potential V (x, y) = 1

2K(x2 + 4y2).
Is there degeneracy? What are the eigenfunctions?

30. (a) Calculate the scattering cross section in the Born approximation
for two particles in their center-of-mass system if their mutual inter-
action is described by the potential

V (r) = λr−1e−βr cos(αr).

Discuss what happens when α and β tend to zero. (b) What is the
center-of-mass cross section if the two particles are indistinguishable?

31. Consider a particle subject to a central potential of the form V (r) =
∞ for r < a, V (r) = −V0 for a < r < b and V (r) = 0 for r > b, with
V0 > 0. (a) Calculate the s-wave phase shift δ. How does δ behave
for large energy? Comment. Are there resonances at large energy?
(b) Derive the transcendental equation that has to be satisfied by the
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energy of a bound state. (c) For what values of V0 are new bound
states introduced? What is the value of the cross section at E = 0
when V0 has one of those values?

32. By setting r = x2, show that the Schrödinger equation with a Coulomb
potential can be reduced to that for a spherically symmetric harmonic
oscillator.
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5
Symmetries

5.1 The Angular-Momentum Operator

As we saw in Section 2.2, the angular momentum of a system of parti-
cles, and indeed of any physical system, is the generator of rotations for
that system. As a result, the properties of the angular-momentum operator
are intimately connected to the system’s behavior under rotations. In this
chapter we shall study this connection in detail.

If the coordinate frame employed to specify the parameters of a given
physical system is rotated, all state vectors will be mapped into new ones,
Ψ �→ Ψ′, in such a way that

|(Ψ,Φ)|2 = |(Ψ′,Φ′)|2,

because all probabilities of physical measurements have to remain un-
changed. According to a theorem by Eugene Wigner, the state vectors
can therefore always be chosen in one of two ways: the vectors Ψ′ are re-
lated to Ψ either by a unitary transformation, Ψ′ = UΨ, UU† = U†U = 11,
or else by an antiunitary one, Ψ′ = VΨ, VV† = V†V = 11, where V is
such VaΨ = a∗VΨ, which means that V is not a linear operator but a
so-called antilinear one. However, since all pure rotations are continuously
connected to the unit operator (no rotation at all), which is unitary, the
second possibility is ruled out, and we must have Ψ′ −Ψ = (U− 11)Ψ.

Consider, then, a rotation of the coordinate frame about the axis n̂ by
the infinitesimal angle ε in the right-handed screw sense. (According to
Euler’s theorem, every rotation in a space of odd dimensions leaves at least
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one direction invariant; in three dimenions this direction, called the axis of
rotation, is unique—unless the rotation is the identity transformation—and
the transformation is a rotation about that axis.) The form of the unitary
transformation must in that case be

U− 11 def=
1
i�
εn̂ · �J,

where �J is Hermitian in order for U to be unitary,1 and the � is inserted for
convenience, making εn̂·�J/� dimensionless. By definition, and in agreement
with our discussion in Section 2.2, the generator �J of rotations is the angular
momentum operator for the system. For a finite rotation by an angle θ about
the axis n̂ the operator U can be obtained as a limit of a large number of
small rotations,

U = lim
m→∞

(
11− iθ

m�
n̂ · �J
)m

= e−
i
�
θn̂·�J. (5.1)

For operators, we have to require that under rotations of the coordinate
axes,

(Ψ,GΦ) = (Ψ′,G′Φ′) = (Ψ,U−1G′UΦ),

and therefore,
G′ = UGU−1,

which implies that for infinitesimal rotations of the coordinate axes,

G′ =
(

11− i

�
εn̂ · �J

)
G
(

11 +
i

�
εn̂ · �J

)
= G− i

�
ε[n̂ · �J,G];

thus when the coordinate frame is infinitesimally rotated, the infinitesimal
change in the operator G is given by

G′ −G def= δpG = − i
�
ε[n̂ · �J,G] =

i

�
[G, �J] · n̂ε. (5.2)

5.1.1 Active and passive rotations
To understand the meaning of (5.2), consider two kinds of rotations and
carefully distinguish between them: on one hand, those of the coordinate
system, that is, of the three axes with respect to which a quantity or the
components of an operator such as G are specified, and, on the other hand,
those of the physical system itself. The former are called passive transfor-
mations, and the latter, active transformations. If the reference axes are
rotated, the coordinates of a point of a physical system undergo a linear
transformation A; if the physical system is rotated and the axes are held

1Prove this.
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fixed, the system’s coordinates undergo the transformation A−1, the in-
verse of the first. The behavior of quantities under passive transformations
defines their formal, mathematical classification as scalars, vectors, tensors
of rank two, etc. But a physical quantity may be a scalar and yet not be
invariant under rotations of the system of which it is a property: the en-
ergy of a system of charged particles is a scalar, but in the presence of an
external electric field, it is not necessarily invariant under rotations of the
system. If �P is the total momentum of a system and �A is some given fixed
vector, �A · �P is a scalar, but it is not invariant under active rotations of the
system, because under such rotations �P changes but �A remains unaltered.
On the other hand, if, like �P , the vector �A is a property of the system
rather than being externally given, then the fact that �A · �P is a scalar
implies that it is also invariant under active rotations. From the point of
view of physical consequences, both active and passive transformations are
important to consider.

In quantum mechanics, the distinction between being an externally given
quantity and being a dynamical property of a physical system is imple-
mented by the distinction between a number2 and an operator. All dynam-
ical variables are operators on the Hilbert space of the system. Therefore, if
the components of an operator transform under passive rotations like those
of a vector, then they do so also under active rotations. But note that the
inner product of two vectors, �A · �B, though a scalar under passive rotations,
is invariant under active rotations only if either both �A = �A and �B = �B
are operators or neither one is.

Suppose, then, that G is an observable that is invariant under active
rotations of the system about the axis n̂. The left-hand side of (5.2) must
therefore vanish, and it follows that

[G, �J · n̂] = 0;

furthermore, if G is invariant under all rotations, we can conclude that

[G, �J] = 0, (5.3)

that is, G commutes with all three components of the angular momentum.
One such quantity is G = �J · �J, so that we have

[�J · �J, �J] = 0; (5.4)

all components of the angular momentum commute with the square of its
magnitude, �J2 def= �J · �J = J2

x + J2
y + J2

z.

2By a number I mean what Dirac calls a c-number. Do not confuse this with being
a numerical function in a specific representation of the Hilbert space, like the potential
in the Schrödinger equation in the configuration representation.
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For another example, if the Hamiltonian H (which is a scalar) of a system
is invariant under active rotations, it must commute with all components
of the angular momentum,

[H, �J] = 0,

and therefore also with �J · �J. This implies that every component of the
angular momentum is a constant of the motion, and so is the square of its
magnitude, a specific instance of Noether’s theorem.

Suppose next that �G is a vector variable of a system, that is, it has three
components that behave like those of a vector under passive rotations, but
it is also internal to the system and therefore must behave like a vector
under active rotations as well. Under an active infinitesimal rotation εn̂ it
must thus change as

δa �G = −δp �G = εn̂× �G,

or by (5.2),

n̂× �G =
1
i�

[�G, �J] · n̂, (5.5)

which means that 1
i� [Gx,Jy] = Gz,

1
i� [Gx,Jz] = −Gy, and its cyclic

permutations of indices, while all other commutators of components of �J
and �G vanish. A special instance is that of �G = �J, in which case we obtain

[Jx,Jy] = i�Jz,

and cyclic permutations of its indices, which can also be written in the
compact form

�J× �J = i��J. (5.6)

Thus, the three components of the angular momentum do not commute,
and they cannot all be simultaneously diagonalized. On the other hand,
since the operator �J2 = �J · �J commutes with all the components, we can
choose an arbitrary z-axis and use the simultaneous eigenvalues of �J2 and
Jz to label states. Furthermore, if the Hamiltonian of the system is invariant
under rotations, these eigenvalues are good quantum numbers, i.e., they are
conserved.

In order to find the eigenvalues of Jz and �J2, define

j±
def= [Jx ± iJy]/�, jz

def= Jz/�, (5.7)

so that j− = j†+, and

j2 def= �J2/�2 = j−j++jz(jz+1) = j+j−+jz(jz−1) =
1
2
(j−j++j+j−)+j2z. (5.8)

The commutation relations (5.6) then lead to

jzj+ = j+(jz + 1), jzj− = j−(jz − 1), (5.9)
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as well as
[j+, j−] = 2jz. (5.10)

Now let |j,m〉 be a simultaneous eigenstate of jz with the eigenvalue m and
of j2 with the eigenvalue j(j + 1),

jz|j,m〉 = m|j,m〉, j2|j,m〉 = j(j + 1)|j,m〉,

or
Jz|j,m〉 = �m|j,m〉, �J2|j,m〉 = �2j(j + 1)|j,m〉;

then the spectrum of �J2 is formed by the values of j that are integers or
half-integers, j = 0, 1

2 , 1,
3
2 , 2, . . . , and the spectrum of Jz/� consists, for

each given j, of the 2j + 1 values m = −j,−j + 1, . . . , j − 1, j.

Proof: Without any prejudgment of the values of m and j, it follows from (5.9) that

jz j+|j,m〉 = j+(jz + 1)|j,m〉 = (m+ 1)j+|j,m〉,
and

jz j−|j,m〉 = j−(jz − 1)|j,m〉 = (m− 1)j−|j,m〉.
Therefore, if m is an eigenvalue of jz , so is m+ 1, unless j+|j,m〉 = 0, and so is m− 1,
unless j−|j,m〉 = 0. However, we have

0 ≤‖ j−|j,m〉 ‖2 = 〈jm|j+j−|j,m〉 = 〈jm|j2 − jz(jz − 1)|j,m〉
= j(j + 1) −m(m− 1) = (j +m)(j −m+ 1),

and

0 ≤‖ j+|j,m〉 ‖2 = 〈jm|j−j+|j,m〉 = 〈jm|j2 − jz(jz + 1)|j,m〉
= j(j + 1) −m(m+ 1) = (j −m)(j +m+ 1).

Consequently, j−|j,m〉 = 0 implies that either m = −j or m = j + 1; but the latter
possibility is ruled out by the fact that j2 = 1

2 (j−j+ + j+j−)+ j2z implies3 m2 ≤ j(j+1).
Similarly, j+|j,m〉 = 0 implies m = j. We can therefore conclude that m has to run in
integral steps from −j to +j, taking on 2j + 1 values, and thus j and m both have to
be either integers or half-integers. �

Just as in the case of the simple harmonic oscillator, the spectra of Jz
and �J2 follow directly from their commutation relations. Furthermore, we
find that4

j+|j,m〉 =
√

(j −m)(j +m+ 1)|j,m+ 1〉, (5.11)

and
j−|j,m〉 =

√
(j +m)(j −m+ 1)|j,m− 1〉, (5.12)

3Why?
4Prove these two equations.
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if |j,m〉, |j,m+1〉, and |j,m−1〉 are all normalized to unity. These equations
imply that

〈j,m+ 1|j+|j,m〉 = 〈j,m|j−|j,m+ 1〉 =
√

(j −m)(j +m+ 1),

and all other matrix elements of j± vanish. Consequently the only nonvan-
ishing matrix elements of the x and y components of the angular momentum
are just above and below the diagonal, given by

〈j,m+ 1|Jx|j,m〉 = 〈j,m|Jx|j,m+ 1〉 =
1
2

�
√

(j −m)(j +m+ 1), (5.13)

−〈j,m+1|Jy|j,m〉 = 〈j,m|Jy|j,m+1〉 =
i

2
�
√

(j −m)(j +m+ 1). (5.14)

As another application of (5.11), note that if the Hamiltonian of a phys-
ical system is invariant under all rotations, we saw that the angular mo-
mentum is a “good quantum number,” i.e., both m and j are conserved.
But we can say more: the three quantities, H, �J2, and Jz can all be si-
multaneously diagonalized; let |E, j,m〉 be an eigenfunction of the three
operators with the eigenvalues E, j(j + 1)�2, and m�, respectively (or a
quasi-eigenfunction, if E is a quasi-eigenvalue). We then have

H|E, j,m+ 1〉 = cHj+|E, j,m〉 = cj+H|E, j,m〉
= Ecj+|E, j,m〉 = E|E, j,m+ 1〉,

and similarly for j−. Therefore the eigenvalue (or quasi-eigenvalue) E of H
must be (2j + 1)-fold degenerate. This important m-degeneracy of the en-
ergies of any rotationally invariant system is a special instance of Theorem
E.9 in the Appendix, which also tells us that the so-labeled states |E, j,m〉
span the entire Hilbert space.

5.1.2 An oscillator model
The technique of generating the spectrum of the angular momentum op-
erators �J2 and �Jz is so similar to that of constructing the spectrum of
a harmonic oscillator that it suggests the search for an underlying model
that relates the two. In particular, we might wonder if there is an operator
with the eigenvalues j, rather than just j2 with the eigenvalues j(j + 1).
The following model, which accomplishes both these aims, was invented by
Schwinger.

Suppose there are two independent harmonic oscillators, each described
as in Sections 1.4.3 and 3.2.6. Let their lowering operators be j+ and j−, so
that

[j+, j−] = [j+, j
†
−] = 0, [j+, j

†
+] = [j−, j

†
−] = 1,
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and the number operators are defined by N±
def= j†±j±. We then know that

the spectra of the two commuting Hermitian operators N± are the non-
negative integers, and their simultaneous eigenstates |n+, n−〉 can be gen-
erated from the “vacuum state” |0, 0〉, defined by

j+|0, 0〉 = j−|0, 0〉 = 0, (5.15)

by means of the creation operators as in (1.44),

|n+, n−〉 =
j
†n+
+ j

†n−
−√

n+!n−!
|0〉. (5.16)

Now set

j+
def= j†+j−, j−

def= j†−j+, jz
def=

1
2
(j†+j+ − j†−j−) =

1
2
(N+ −N−), (5.17)

and you find that the j± and jz satisfy the commutation relations (5.9)
and (5.10). Furthermore, if we define J def= 1

2 (j†+j+ + j†−j−) = 1
2 (N+ + N−),

Eq.(5.8) leads, after a bit of algebra,5 to

j2 = J (J + 1), (5.18)

and it follows that

jz|n+, n−〉 =
1
2
(n+ − n−)|n+, n−〉, J |n+, n−〉 =

1
2
(n+ + n−)|n+, n−〉.

(5.19)
Therefore, the labels n+ and n− on the states |n+, n−〉 might as well be
replaced by the eigenvalues m and j of jz and J , respectively, with m =
1
2 (n+ − n−) and j = 1

2 (n+ + n−), or n+ = j + m and n− = j − m.
Consequently, the state |n+, n−〉 is an eigenstate of �J2 and of �Jz with the
eigenvalues �2j(j + 1) and �m, respectively, and we have by (5.16),

|j,m〉 =
j
†n+
+ j

†n−
−√

n+!n−!
|0, 0〉 =

j† j+m+ j† j−m−√
(j +m)!(j −m)!

|0, 0〉. (5.20)

For j = 1/2, this leads to

|1
2
,
1
2
〉 = j†+|0, 0〉, |1

2
,−1

2
〉 = j†−|0, 0〉,

so that the two operators j†+ and j†− create the up and down states of a spin-
1/2 particle. Thus (5.20) may be regarded as a decomposition of states of
arbitrary angular momentum into those of spin-1/2.

5Do it.
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The technique employed here, which consists essentially of factorizing
an operator whose spectrum is bounded below, has found fruitful physical
applications in other contexts, such as, for example, in what is called “su-
persymmetry.” Intuitively helpful and appealing though it may be, there
is, however, no reason to endow the procedure with any deeper physical
significance than its mathematical usefulness.

5.1.3 States of spin-1 and spin-1/2
Suppose, then, that χ1

m, m = 1, 0,−1, are the three normalized simultane-
ous eigenvectors of �J2 with the eigenvalue 2�2 (i.e., j = 1) and of Jz with
the eigenvalues �, 0,−�, respectively, and we write them as

χ1
1 =

 1
0
0

 , χ1
0 =

 0
1
0

 , χ1
−1 =

 0
0
1

 . (5.21)

In a representation using these three vectors as a basis, the operator Jz
then is represented by the matrix

D1(Jz) = �

 1 0 0
0 0 0
0 0 −1

 , (5.22)

and from (5.13) and (5.14) we find that

D1(Jx) =
�√
2

 0 1 0
1 0 1
0 1 0

 , D1(Jy) =
i�√
2

 0 −1 0
1 0 −1
0 1 0

 . (5.23)

Similarly, if

χ
1/2
1/2 =

(
1
0

)
, χ

1/2
−1/2 =

(
0
1

)
(5.24)

are the two simultaneous eigenvectors of �J2 with the eigenvalue 3�2/4 (i.e.,
j = 1/2) and of Jz with the eigenvalues 1

2�,− 1
2�, respectively, then the

three components of the angular momentum are represented by the matri-
ces D1/2(Jx) = 1

2�σx, D1/2(Jy) = 1
2�σy, and D1/2(Jz) = 1

2�σz, where σx,
σy, and σz, are given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.25)

These are called the Pauli spin matrices, and they satisfy the equations

σ2
j = 11, j = x, y, z, σxσy = iσz and cyclic permutations, (5.26)
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as well as
σiσj + σjσi = 0, if i �= j,

which means
σiσj + σjσi = 2δij . (5.27)

Since they are representations of the components of the vector �J, they form
a vector �σ under rotations, so that for any given numerical vector n̂, n̂ · �σ
is a scalar, which moreover has the property

(n̂ · �σ)2 = 11. (5.28)

In any adopted coordinate frame, we are, nevertheless, free to use the ma-
trices (5.25) for the three components of �σ.

For many calculations it is convenient to note that every 2 × 2 matrix M can be
expressed as a linear combination of the unit matrix and the three Pauli matrices,

M = a11 +
∑
j

bjσj ,

and the coefficients are given by6 a = 1
2 trM , bj = 1

2 trMσj .

5.2 The Rotation Group

Since the angular momentum is the generator of rotations, its properties
are directly related to those of the three-dimensional rotation group, and it
is instructive to connect the physical properties of the angular momentum
to mathematical results obtained by studying the representations of the
group SO(3) of proper rotations in three dimensions.

Let T be a (real, orthogonal) three-dimensional rotation matrix that
transforms the old Cartesian coordinates x1, x2, x3 of a given point into
those with respect to new, rotated coordinate axes:7

x′i =
3∑
j=1

Tjixj , i = 1, 2, 3, with
∑
i

x′2i =
∑
i

x2
i , and detT = 1. (5.29)

According to Euler’s theorem, mentioned earlier, every rotation about the
origin in three dimensions is a rotation about an axis through the origin.
This axis �a is a vector left invariant by T , so that T�a = �a. If its length is
taken to be the angle ψ of the rotation (in the right-handed screw sense),

6Show it.
7Explain why it is convenient to define the rotation matrix so that the

sum on the right-hand side runs over the first index rather than the second.
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�a completely determines the rotation, and in spherical polar coordinates it
is given by

�a = ψ

 cosϕ sin θ
sinϕ sin θ

cos θ

 . (5.30)

Thus three angles are required to identify the rotation, 0 ≤ ϕ ≤ 2π, 0 ≤
θ ≤ π, and 0 ≤ ψ ≤ π. (Any rotation about the axis �a by an angle ψ > π
is equivalent to one about −�a by ψ < π.) The group manifold, consisting
of all the possible endpoints of �a, is therefore a ball of radius π. This group
manifold is doubly connected.

The reason is that, because a rotation by π about �a is identical to a rotation by π

about −�a, every point on the surface of the ball (the group manifold) has to be identified
with its polar opposite. As a result, any curve starting at a point P on the surface and
ending at the polar opposite of P is closed, and such curves cannot be continuously
contracted to a point.

As discussed in Appendix E, we can therefore expect the rotation group
SO(3) to have double-valued quasi-representations.

Using the orthogonality property of the matrix T , the equation for �a may
be written in the form (T − T̃ )�a = 0, which implies that the components
of �a may be determined by the triple ratio

a1 : a2 : a3 = (T32 − T23) : (T13 − T31) : (T21 − T12). (5.31)

In order to determine the angle of rotation (and thus the length of �a), do
the rotation in three steps: 1) rotate the axis to the z-axis, 2) perform a
rotation by the angle ψ (in the right-handed screw sense) about the z-axis,
and 3) rotate the axis back to its original position. The rotation about the
z-axis is of the form

x′i =
∑
j

T
(3)
ji xj ,

where the matrix T (3) is given by

T (3) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .
If the matrix M takes the z-axis into the axis of rotation with the polar
angles ϕ, θ, then the entire transformation has to be of the form T =
MT (3)M−1.8 Therefore we have

trT = trMT (3)M−1 = trT (3) = 1 + 2 cosψ, (5.32)

8This implies that, group-theoretically, all rotations by the same angle ψ are in the
same class.
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which makes it easy to calculate ψ from T .
The Hurwitz invariant integrals, to be used for all integrations over

functions of the three-dimensional rotation group, according to (E.67) in
the Appendix, have a Haar measure dµ with the weight function 2(1 −
cosψ) sin θ; they are thus of the form∫

dµ . . . = 2
∫ π

0
dψ(1− cosψ)

∫ 2π

0
dϕ

∫ π

0
dθ sin θ . . . . (5.33)

If the integral is over a class function, i.e., a function of ψ only, it becomes

2
∫ π

0
dψ(1− cosψ)

∫ 2π

0
dϕ

∫ π

0
dθ sin θ f(ψ) = 8π

∫ π

0
dψ (1− cosψ)f(ψ),

and the “volume” of the group is h =
∫
dµ = 8π2.

Another convenient parametrization of rotations employs Euler angles,
defined by the following sequence of rotations of the axes:

1. rotate the coordinate frame by α about the z-axis;

2. rotate the new frame by β about the new y′-axis;

3. rotate the new frame by γ about the new z′′-axis,

where 0 ≤ α ≤ 2π, 0 ≤ β ≤ π, and 0 ≤ γ ≤ 2π. Therefore, the rotation
matrix T is given by the following product of three matrices:

T = (5.34)


cos γ sin γ 0
− sin γ cos γ 0

0 0 1







cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ







cosα sinα 0
− sinα cosα 0

0 0 1




from which we can calculate the total rotation angle ψ by (5.32), with the
result9

cos
(

1
2
ψ

)
=
∣∣∣∣cos
(

1
2
β

)
cos
[
1
2
(α+ γ)

]∣∣∣∣ . (5.35)

The Haar measure in terms of Euler angles turns out to be10

dµ = dα dβ dγ sinβ. (5.36)

A third useful parametrization of rotations uses the Cayley-Klein param-
eters, defined in terms of the Euler angles by

a = e−i
1
2 (α+γ) cos

(
1
2
β

)
, b = ei

1
2 (α−γ) sin

(
1
2
β

)
. (5.37)

9You should do this calculation as an exercise.
10Prove this as an exercise.
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The geometric connection between rotations in three dimensions and the
Cayley-Klein parameters is based on a stereographic projection of a sphere
of unit diameter, sitting with its south pole on the origin of the complex
plane: every point P on the sphere is projected to a point C in the complex
plane by drawing a ray from the north pole through P to C in the plane
(Fig. 5.1). A rotation of the plane then corresponds to the homographic
transformation

w =
az + b

−b∗z + a∗
.

C

FIGURE 5.1. The stereographic projection C in the complex plane of the point
P on the sphere.

The matrix

S =
(

a b
−b∗ a∗

)
, |a|2 + |b|2 = 1, (5.38)

with a and b defined by (5.37), thus assigns to every rotation in three di-
mensions a unitary, unimodular 2×2-matrix; these matrices form the group
SU(2). Thus the matrices S appear to form a two-dimensional representa-
tion of SO(3), except for one fact: a rotation by 2π (take α = γ = 0, and
β = 2π) corresponds to S = −11, so that to every rotation in three di-
mensions there correspond two matrices S: this “representation” is double-
valued. (We noted earlier that, because the group manifold of SO(3) is
doubly connected, such double-valued “representations” could be expected
to exist.) Since the group manifold of SU(2) is simply connected, it has no
multiple-valued representations: SU(2) is the universal covering group of
SO(3). Conversely, the 3× 3 matrices T form an unfaithful representation
of the group SU(2).

There are infinitely many irreducible representations of SU(2) (see Ap-
pendix E), one each of dimensionality 2j + 1, where j = 1

2 , 1,
3
2 , 2,

5
2 , . . ..

Those with integral j are called even representations and they are the
irreducible representations of the rotation group SO(3); those with half-
integral j are called odd representations and they form double-valued quasi-
representations of SO(3). From the physical perspective, both the integral
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and the half-integral values of j have the significance that �2j(j+ 1) is the
eigenvalue of the square of the angular momentum, �J2 = �J·�J. Furthermore,
the angular momentum operators Jx,Jy,Jz differ only by a common con-
stant factor from the infinitesimal generators of the rotation group, from
which its Lie algebra (see Appendix E) is formed, while the operator �J2

differs from the Casimir operator of that algebra again only by a constant
factor.

The fact that the even-dimensional “representations” of SO(3) (i.e., those
with half-integral values of j) are not single-valued explains why the num-
bers l(l+ 1)�2 with l = 1

2 ,
3
2 , . . . do not appear as eigenvalues of the square

of the orbital angular momentum �q × �p, a variable that has a classical
analogue. The eigenvectors of the angular momentum with half-integral
quantum numbers change sign under rotations by 2π, but since all observ-
able quantities contain squares of matrix elements, they are unaffected.
Thus these half-integral angular-momentum quantum numbers and all their
consequences are typical quantum effects without classical analogues.

5.2.1 Angular momentum and the carrier space
If, for a fixed value of j, the matrices {Dj

µν(α, β, γ)} form the (2j + 1)-
dimensional irreducible representation Γj of SU(2), where α, β, γ are the
Euler angles of the corresponding rotation in three dimensions, then the
carrier space of this representation is spanned by a set of orthonormal
vectors Ψj

µ, each of which belongs to one row of Dj
µν in the sense that if

the rotation operator O(α, β, γ) takes Ψj
µ into Ψ

′j
µ , then

Ψ
′j
µ = O(α, β, γ)Ψj

µ =
∑
ν

Dj
νµΨ

j
ν . (5.39)

For j = 1, Cartesian coordinates lead to the usual form of vectors with
three components, Vµ, which transform among each other like those of the
Cartesian coordinates of a point in three-dimensional Euclidean space, that
is, as in (5.29). This means, if we define

�X
def=

1
r

 x
y
z

 ,
then under a rotation of the coordinate axes, �X ′ = T̃ �X, where T is the
matrix given by (5.29), and if the three components of the Cartesian vector
�V are similarly arranged in the form of a column matrix, then �V ′ = T̃ �V .
Alternatively, if the three eigenvectors of �J2 with the eigenvalue 2�2 (i.e.,
j = 1) and the eigenvalues �, 0,−� of Jz are used (which means that
spherical polar coordinates are employed), then the relevant comparison is
with the transformation properties of spherical harmonics of order 1: the
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three components of a spherical vector transform under rotations like the
three spherical harmonics Y −1

1 , Y 0
1 , Y

1
1 , and we form

Y def=

 Y 1
1 (θ, ϕ)
Y 0

1 (θ, ϕ)
Y −1

1 (θ, ϕ)

 = i

√
3
8π

 −eiϕ sin θ√
2 cos θ

e−iϕ sin θ


=

i

r

√
3
4π

 −(x+ iy)/
√

2
z

(x− iy)/
√

2

 .
One then readily finds that11

Y = −i
√

3
4π
M �X, (5.40)

where M is the unitary matrix

M def=
1√
2

 1 i 0
0 0 −

√
2

−1 i 0

 . (5.41)

Therefore, under a coordinate rotation Y transforms into Y ′ = D1Y, and
the transformation matrix D1 is related to T by12

D1(α, β, γ) =MT̃ (α, β, γ)M†. (5.42)

Every Cartesian vector �V can be re-expressed by M as a spherical vector
V by

V =

 V1
V0
V−1

 =M�V , (5.43)

so that its three components belong to the three eigenvalues of Jz, as well
as belonging to the angular momentum j = 1. For example, when dealing
with a vector field ψµ, it is physically more meaningful to express its three
components as those of a spherical vector, using the matrix M given by
(5.41), so that the particles that emerge from its quantization are clearly
labeled as having the intrinsic angular momentum or spin 1. This is the
connection between the fact that the electromagnetic field is a vector field
and the consequence that its quantum, the photon, has spin 1.

11Check this.
12Note two things: 1) whereas the normal enumeration of columns increases from left

to right and that of rows from top to bottom, here it is customary to do the opposite;
2) as Y is a column vector, the square matrix D1 has to stand on the left, which is
the opposite of what (5.39) indicates, so that D1 = D̃1. As a result, the order of two
successive rotations is reversed in these matrices: D1(R1R2) = D1(R2)D1(R1).
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For j = 1/2, the two-component objects that transform under rotations
using the matrices {D1/2

mm′} given in the Appendix, are called spinors. In
other words,

χ1/2′
m = O(α, β, γ)χ1/2

m =
1/2∑

m′=−1/2

D
1/2
m′m(α, β, γ)χ1/2

m′ , m = −1
2
,
1
2
.

(5.44)
This means that if the spinor is written as a column vector,

χ1/2 =
(
a
b

)
= aχ

1/2
1/2 + bχ

1/2
−1/2, (5.45)

where χ1/2
1/2 and χ1/2

−1/2 are spin-up and spin-down spinors as given in (5.24),
and the transformation is written in the form χ1/2′ = D1/2χ1/2, then the
matrix D1/2 for a rotation by the Euler angles α, β, γ is given by

D1/2(α, β, γ) =
(
e

i
2α 0
0 e−

i
2α

)(
cos β2 sin β

2
− sin β

2 cos β2

)(
e

i
2γ 0
0 e−

i
2γ

)
.

(5.46)
Thus for spinors, a rotation of the coordinate system by the angle α about
the z-axis leads to the new spinor

χ1/2′
=
(
e

i
2α 0
0 e−

i
2α

)
χ1/2, (5.47)

while a rotation of the coordinate axies about the y-axis by the angle β
transforms it into

χ1/2′
=
(

cos β2 sin β
2

− sin β
2 cos β2

)
χ1/2. (5.48)

These transformations can be written in terms of the Pauli matrices
(5.25) in the following way. Since by (5.26) each of the three Pauli matrices
σn, n = 1, 2, 3, is such that σ2

n = 11, the power series expansion shows that13

eiωσn = 11 cosω + iσn sinω. (5.49)

Therefore it is easily seen that

ei
α
2 σz =

(
e

i
2α 0
0 e−

i
2α

)
,

and

ei
β
2 σy =

(
cos β2 sin β

2
− sin β

2 cos β2

)
,

13Verify this.
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so that for a rotation of the coordinate system by the angle α about the
z-axis,

χ1/2′ = ei
α
2 σzχ1/2,

and for a rotation by β about the y-axis,

χ1/2′ = ei
β
2 σyχ1/2.

These equations are nothing but restatements of (5.1), together with the
fact that for j = 1/2, the components of the angular momentum operator �J
are represented by D1/2(Jn) = 1

2�σn, n = 1, 2, 3. For an arbitrary rotation
by ω about the axis n̂, we have

χ1/2′ = ei
ω
2 n̂·�σχ1/2 (5.50)

in terms of the vector �σ defined after (5.27). Because of (5.28), the matrix
e−i

ω
2 n̂·�σ can be written as

ei
ω
2 n̂·�σ = 11 cos

ω

2
+ in̂ · �σ sin

ω

2
, (5.51)

and use of (5.25) leads to

n̂ · �σ =
(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
(5.52)

if the vector n̂ has the components (sin θ cosϕ, sin θ sinϕ, cos θ), so that θ
and ϕ are the polar angles of the direction of n̂. Eq.(5.50) shows, when
the rotation is by 2π, the rotation matrix is eiπn̂·�σ = −11, so that spinors
change sign under a rotation by 3600; this is the double valuedness of the
quasi-representations for half-integral j. Since the three components σj ,
j = 1, 2, 3, form a vector, i.e., they transform among one another under
rotations of the coordinate system like the Cartesian coordinates (so that
n̂ · �σ is a scalar), they must satisfy the equation

e−i
ω
2 n̂·�σσjei

ω
2 n̂·�σ =

∑
k

Tkjσk, (5.53)

where T is the rotation matrix given by (5.34) in terms of Euler angles.
For any given normalized spinor χ1/2, written in the form (5.45), define

the angles ξ, η, ζ by writing a = eiη cos ξ, b = eiζ sin ξ. It then follows that,
if the system is in the state χ1/2, the probability of finding the spin to be
up, i.e., for the system to be in the state χ1/2

+1/2, is cos2 ξ. We calculate the
expectation value of the spin by using (5.25), finding that14

2
�
〈�J〉 = 〈�σ〉 = (sin 2ξ cos(ζ − η), sin 2ξ sin(ζ − η), cos 2ξ),

14Check this.



5.2 The Rotation Group 159

which means that 〈�σ〉 is a unit vector with the polar angles θ = 2ξ, ϕ = ζ−η.
We may now ask if there is a direction n̂ such that

n̂ · �σχ1/2 = χ1/2.

If such a spinor χ1/2 �= 0 exists, then in the rotated coordinate system in
which the z-axis points in the direction n̂, it has “spin up” (i.e., χ1/2 is
an eigenvector of σz with the eigenvalue 1). A simple calculation15, using
(5.45) and (5.52), leads to the conclusion that indeed such a χ1/2 exists,
and the polar angles of n̂ are given by the equation a/b = e−iϕ cot θ2 , so
that

cot
θ

2
=
|a|
|b| = cot ξ, ϕ = ζ − η. (5.54)

This result has the physical interpretation that for the spinor (5.45), the
angles θ = 2ξ and ϕ = ζ − η are the polar angles of the “direction of
the spin.”16 However, the “spin direction,” as such, of a particle is not a
directly experimentally observable vector.

Behavior under reflections

Whereas under coordinate rotations the components of �J have to behave
like those of a vector, they, like the components of the rotation axis n̂, must
not change sign under inversion (again, so that n̂ · �J remains invariant): �J
must be an axial vector. This implies that its three components should
really be regarded as those of an anti-symmetric tensor of rank 2, and they
should be written in the form

J1
def= J23 = −J32 (5.55)

and its cyclic permutations. From this perspective, Jkl is the generator of
rotations in the (kl)-plane, and the commutation relations (5.6) become

[Jkl,Jrs] = i�[δkrJls − δksJlr + δlsJkr − δlrJks], (5.56)

while the anti-commutation relations (5.27) appropriate for spin-1/2 take
the form

1
2
{σkl, σrs} = δkrδls − δksδlr. (5.57)

15Do it.
16Be cautioned that this works for spin-1/2 only! For higher spins there does not

always exist a direction of the z-axis such that the given spin function is an eigenvector
of �Jz with the maximal eigenvalue �j.
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5.2.2 Polarization and the spin density matrix

Suppose, now, that |+〉 def= χ
1/2
+ is of the form (5.45), so that it denotes an

eigenstate of spin up in the direction n̂ specified by a/b = e−iϕ cot θ2 , and

|−〉 def= χ
1/2
− =

(
b∗

−a∗
)

= b∗χ1/2
1/2 − a

∗χ1/2
−1/2

denotes the corresponding spin down state. The density operator

ρρ = p+|+〉 〈+| + p−|−〉 〈−|. (5.58)

then defines a mixed state in which p+ is the probability of finding spin up
in the direction n̂, and p− is the probability of finding spin down in that
direction. A little calculation17 shows that in this state

�P
def= 〈�σ〉 = (p+ − p−)n̂. (5.59)

The vector �P is called the polarization vector of the state; its direction has
the polar angles θ, ϕ, while its magnitude is called the degree of polarization,

P
def= |�P | = |p+ − p−|.

It can be directly calculated from the density operator by the formula18

trρρ2 =
1
2
(1 + P 2), (5.60)

and the density matrix (the representation of the density operator on the
basis of spin-up and spin-down states with respect to the z-axis) can be
expressed in the form

ρρ =
1
2
(11 + �P · �σ). (5.61)

If P = 0, the spin state is unpolarized, with equal probability for spin up
and down; if this is the case for one direction n̂, it is equally the case for
any other direction.19

For spin-1 (e.g., photons), the spin operator acting on a Cartesian vector
f may be defined, as we already did in (2.107), by

Sj �f
def= i�ê(j) × �f, j = 1, 2, 3, (5.62)

where ê(j) is the unit vector in the direction of the j-axis. The three eigen-
states of the z-projection of the spin are then given by20

| ± 1〉 =
1√
2
(ê(2) ∓ îe(1)), |0〉 = îe(3).

17Do it.
18Show this.
19Show this.
20Show that S3| ± 1〉 = ±�| ± 1〉 and S3|0〉 = 0.
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Now define

|ϕ〉 def=
1√
2
(eiϕ|+ 1〉+ e−iϕ| − 1〉) = ê(1) sinϕ+ ê(2) cosϕ

and

|ϕ̄〉 def=
1√
2
(eiϕ|+ 1〉 − e−iϕ| − 1〉) = −i(ê(1) cosϕ− ê(2) sinϕ),

so that 〈ϕ̄|ϕ〉 = 0. These states correspond to plane polarization for a beam
in the z direction, ϕ being the angle of polarization with respect to the y
axis for |ϕ〉, and orthogonal to that for |ϕ̄〉. For the two probabilities pϕ ≥ 0
and pϕ̄ ≥ 0, with pϕ+pϕ̄ = 1, the density operator for a partially polarized
beam can be expressed in the form

ρρϕ = pϕ|ϕ〉〈ϕ|+ pϕ̄|ϕ̄〉〈ϕ̄|,

and the degree of polarization is given by

P = pϕ − pϕ̄ = 2pϕ − 1.

A bit of algebra shows that21 trρρ2
ϕ = 1

2 + 1
2P

2, or

P 2 = 2trρρ2
ϕ − 1.

Furthermore, we find22

ê(1) · ρρϕ · ê(1) =
1
2
(1− P cos 2ϕ),

ê(2) · ρρϕ · ê(2) =
1
2
(1 + P cos 2ϕ),

ê(2) · ρρϕ · ê(1) =
1
2
P sin 2ϕ,

so that the polarization angle may be expressed as

tan 2ϕ =
2ê(2) · ρρϕ · ê(1)

ê(2) · ρρϕ · ê(2) − ê(1) · ρρϕ · ê(1) .

5.2.3 The magnetic moment
The most direct handle on the experimental determination of the projection
of the angular momentum of a particle in a given direction is the fact that if
an electrically charged particle has an angular momentum, it has a magnetic

21Do it.
22Check these equations.
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moment. Immersed in a magnetic field, it is therefore subject to torques
and other forces whose effects are observable, the best known of which
is its deflection in a Stern-Gerlach experiment. As we shall discuss later
in more detail, the energy of a point particle of charge e, mass M , and
orbital angular momentum �L = � �L in a weak uniform magnetic field �B is
given by −(e/2Mc) �B · �L, which means that it has an effective magnetic
moment �µ = (e/2Mc)�L = (e�/2Mc) �L. If −e and M are the charge and
mass, respectively, of the electron, the factor µ0 = (e�/2Mc) is called the
Bohr magneton.23 If the particle, in addition, has the intrinsic spin angular
momentum �S, this adds the energy −(e/Mc)S, which means that a spin-
1/2 particle has an intrinsic magnetic moment �µ = (e/Mc)�S = (e�/2Mc)�σ.
Note the factor of 2, called the g-factor, by which the gyromagnetic ratio
(the ratio of the magnitude of the magnetic moment to that of the angular
momentum) of the spin contribution differs from the orbital. We shall return
to it again later.

As a result, the magnetic moment of a system of charged particles, such
as the electrons in an atom, is given by

�µ = − e

2Mc
(�L + 2�S) = −µ0( �L+

∑
i

�σ(i)), (5.63)

where � �L is the total orbital angular momentum, and 1
2�
∑
i �σ

(i) is the
sum of all the spin angular momenta of the electrons. It is important to
remember that �µ is not proportional to the total angular momentum.

The experimentally measured magnetic moment of a charged particle
with spin always differs from the Bohr magneton (i.e., its g-factor differs
from 2) by a certain amount, which is explained by its interaction with
the quantum field. In the case of the electron, the deviation of the g-factor
from 2 is extremely small but very accurately predicted by quantum elec-
trodynamics. For the proton—in this instance, the Bohr magneton has to
be replaced by the nuclear magneton, which is about 1846 times smaller
because of the mass ratio—the deviation of the g-factor from 2 is quite
large (g � 2.79) and roughly predicted by the field theory of the strong in-
teractions, where precise calculations are difficult. The same field-theoretic
mechanism that leads to such anomalous magnetic moments of charged
particles also induces magnetic moments in some neutral ones, so that, as
a result of its strong interaction with the chromodynamic field producing
quarks, the neutron has a magnetic moment of about −1.9 nuclear magne-
tons.

23Because of its measurement by means of a magnetic field, the eigenvalue m of the
z-component of the angular momentum is usually called the magnetic quantum number.
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5.2.4 Addition of angular momenta
Suppose two independent physical systems, one in a state Ψ(1)(j1,m1) with
angular momentum quantum numbers j1,m1, and the other in the state
Ψ(2)(j2,m2), are combined, so that the system as a whole is in the state
Ψ(j1, j2;m1,m2) = Ψ(1)(j1,m1) ⊗ Ψ(2)(j2,m2). This state may alterna-
tively be written as a superposition of states of various total angular mo-
menta

Ψ(j1, j2;m1,m2) =
∑
j,m

〈j,m|j1,m1; j2,m2〉Ψ(j,m), (5.64)

in which the numbers

〈j,m|j1,m1; j2,m2〉 = (Ψ(j,m),Ψ(j1, j2;m1,m2))

are called Clebsch-Gordan coefficients.24 Since all the components of �J(1)

commute with all the components of �J(2) (the systems are assumed inde-
pendent), and Jz = J(1)

z +J(2)
z , we must have m = m1 +m2, which implies,

first of all, that if both j1 and j2 are either integral or half-integral, then j
must be integral; otherwise j is half-integral; second, |j1−j2| ≤ j ≤ j1 +j2,
because |m| ≤ j, |m1| ≤ j1, and |m2| ≤ j2. If we think of the angular
momentum as a classical vector (as in the “old quantum theory”), then the
inequalities |j1 − j2| ≤ j ≤ j1 + j2 simply restate the triangle inequalities

||�J(1)| − |�J(2)|| ≤ |�J(1) − �J(2)| ≤ |�J(1)|+ |�J(2)|

of the old vector-addition model. Consequently, we have

Ψ(j1, j2;m1,m2) =
j1+j2∑

j=|j1−j2|
〈j,m1 +m2|j1,m1; j2,m2〉Ψ(j,m1 +m2).

(5.65)
If the basis functions are normalized, the matrix of the Clebsch-Gordan co-
efficients has to be unitary and 〈j1,m1; j2,m2|j,m〉 = 〈j,m|j1,m1; j2,m2〉∗
so that we also have

Ψ(j,m) =
∑

m1+m2=m

〈j,m|j1,m1; j2,m2〉∗Ψ(j1, j2;m1,m2). (5.66)

[Note that j1 and j2 are not summed over in (5.66).] Expressions for the
Clebsch-Gordan coefficients are given in Appendix E, but here we shall
construct some of them.

24Other names used for the Clebsch-Gordan coefficients in the physics literature are
Gaunt coefficients, Slater coefficients, and Wigner coefficients.
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Two spin-1/2 systems

A system consisting of two spin-1/2 particles can be in four states, with
each of the individual particles in states χ1/2

1/2 or χ1/2
−1/2, making up the two-

particle states χ1/2(1)
±1/2 ⊗χ

1/2(2)
±1/2 . Using these states, we can form two-particle

states with total angular momentum j = 1 or j = 0 (2 · 2 = 3 + 1); for
obvious reasons, the first is called a triplet, the second, a singlet. In order to
construct these states out of the individual spinors (assumed normalized),
we start by noting that if, in the triplet,m = −1, it is necessary for bothm1

and m2 to have the values −1/2, which means that χ1
−1 = χ

1/2(1)
−1/2 ⊗χ

1/2(2)
−1/2 ;

similarly we must have χ1
1 = χ

1/2(1)
1/2 ⊗χ1/2(2)

1/2 . In order to construct χ1
0, we

form the operators j+ as in (5.7), so that j+ = j(1)+ + j(2)+ . Equation (5.11)
then tells us that

√
2χ1

0 = j+χ1
−1 = (j(1)+ + j(2)+ )χ1/2(1)

−1/2 ⊗ χ
1/2(2)
−1/2

= χ
1/2(1)
1/2 ⊗ χ1/2(2)

−1/2 + χ
1/2(1)
−1/2 ⊗ χ

1/2(2)
1/2 .

Thus the three triplet states are given by

χ1
−1 = χ

1/2(1)
−1/2 ⊗ χ

1/2(2)
−1/2 ,

χ1
0 =

1√
2
(χ1/2(1)

1/2 ⊗ χ1/2(2)
−1/2 + χ

1/2(1)
−1/2 ⊗ χ

1/2(2)
1/2 ), (5.67)

χ1
1 = χ

1/2(1)
1/2 ⊗ χ1/2(2)

1/2 .

The singlet state has to be orthogonal to all three of the triplet, which
allows us to conclude that it must be

χ0 =
1√
2
(χ1/2(1)

1/2 ⊗ χ1/2(2)
−1/2 − χ

1/2(1)
−1/2 ⊗ χ

1/2(2)
1/2 ). (5.68)

Notice the important fact that the singlet state is anti-symmetric under an
interchange of the two spins, while all three components of the triplet state
are symmetric.

If a system consisting of two-particles of spin-1/2 is in the singlet state
(5.68), each of the one-particle subsystems alone, that is, with the other
one ignored, is in a mixed state whose spin density operator is given by25

ρρ =
1
2
(P+ + P−) =

1
2
11,

where P± are the projections on the spin-up and spin-down states. It is as
“incoherent” as is possible for a spin-1/2 state to be, with trρρ2 = 1

2 .
26

25Prove this.
26As an exercise, prove that for any spin-1/2 system, trρρ2 ≥ 1

2 .
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On the other hand, if the other particle is not ignored, the entanglement
of the states χ1/2(1)

−1/2 ⊗ χ
1/2(2)
1/2 and χ1/2(1)

1/2 ⊗ χ1/2(2)
−1/2 in the expression (5.68)

has important physical consequences. For example, if the two-particle sys-
tem is in the state χ0, what is the probability that a measurement of the
variables A on particle #1 and B on particle #2 will yield the results A
and B, respectively? Denoting the two eigenstates by χ

(1)
A and χ

(2)
B , this

probability is

P (A,B) = |(χ0, χ
(1)
A ⊗ χ

(2)
B )|2

=
1
2
|(χ1/2

1/2, χA)(χ1/2
−1/2, χB)− (χ1/2

−1/2, χA)(χ1/2
1/2, χB)|2,

which differs from the product of the two probabilities of finding A for
particle #1 and B for #2. The result of the measurement of A on particle
#1 thus depends on the result of the measurement of B on particle #2, even
though the two particles may be very far apart. Specifically, if two spin-1/2
particles are the decay products of a spin-0 parent system, they fly off in
opposite directions in a singlet state like (5.68), and their entanglement
leads to the kind of correlation described by Bohm in his version of the
EPR Gedanken experiment discussed in Chapter 1; it allows us to infer the
spin projection of one of them by measuring that of the other.

The singlet and triplet states of two spin-1/2 particles could also have
been constructed by exploiting their opposite exchange properties, in the
following way. Suppose a system of two spin-1/2 particles is in the state
χ

1/2(1)
a ⊗ χ1/2(2)

b . Then the operator

Pexch
def=

1
2
[11 + �σ(1) · �σ(2)], (5.69)

called the spin exchange operator switches the two spin states, in the sense
that27

Pexchχ
1/2(1)
a ⊗ χ1/2(2)

b = χ
1/2(1)
b ⊗ χ1/2(2)

a .

Since two such exchanges lead back to the original state, it follows that
P2

exch = 11, which implies that its two eigenvalues are ±1. The eigenstate
with the eigenvalue 1 is the triplet state of the two spin-1/2 particles, and
the state with the eigenvalue −1 is the singlet.28

Spin-1/2 plus orbital angular momentum

The wave function of a spin-0 particle subject to a rotationally invariant
Hamiltonian, we have seen, can be written as a superposition of products of
a radial function and a spherical harmonic, fixing the magnitude and the z-
component of its orbital angular momentum, Rl(r)Y ml

l (θ, ϕ). If the particle

27Prove this.
28As an exercise, construct the four states in this manner.



166 5. Symmetries

has spin-1/2, each such product wave function has to be multiplied by a
spinor χ1/2

ms , so that, apart from the energy, the wave function is labeled
by (l,ml,ms) (the additional, fixed label 1/2 for the magnitude of the
spin being understood29). Rotational invariance of the Hamiltonian now,
however, does not necessarily entail conservation of the orbital angular
momentum, so that l and ml need not be good quantum numbers; instead,
the good quantum numbers are the total angular momentum j and its z-
componentm = ml+ms. It is therefore useful to construct angle-dependent
spinors that are eigenfunctions of �J2 = (�L+ �S)2 and of Jz = Lz +Sz, if by
�S we mean the spin angular momentum operator.30

For convenience, define �J def= �J/� = �L+ 1
2�σ, so that

�J 2 = �L2 + �L · �σ +
1
4
�σ2 = �L2 + �L · �σ +

3
4
. (5.70)

Both �L2 and �L·�σ are rotationally invariant and therefore commute with �J2

and Jz; they therefore have simultaneous eigenvectors with �J2 and Jz. It
will be one of your homework assignments to show that for the states with
j = l+ 1

2 , �L ·�σ has the eigenvalue l, and for the states with j = l− 1
2 , �L ·�σ

has the eigenvalue −l − 1. We may thus define two projection operators

P+
def= [(l+1)11+ �L·�σ]/(2l+1), P−

def= [l11− �L·�σ]/(2l+1), P+ +P− = 11
(5.71)

so that P+ = 1 when acting on a state with j = l + 1
2 and P+ = 0 when

acting on a state with j = l− 1
2 , while P− = 1 when acting on a state with

j = l − 1
2 but P− = 0 when acting on a state with j = l + 1

2 .
These two projections may be used to construct spin functions Zml,j with

j = l + 1
2 and with j = l − 1

2 ,

P+Y
m−1/2
l (θ, ϕ)χ1/2

1/2 = AZml,l+ 1
2
(θ, ϕ),

P−Y
m−1/2
l (θ, ϕ)χ1/2

1/2 = BZml,l− 1
2
(θ, ϕ).

In order for these Zml,j to be normalized, A and B have to be chosen (apart
from an arbitrary phase factor),31

A =

√
1
2

+
m

2l + 1
, B =

√
1
2
− m

2l + 1
. (5.72)

29If we are talking about the Schrödinger equation of a system consisting of two spin-
1/2 particles, on the other hand, the total spin may be 0 or 1, and these two states may
be coupled.

30This is analogous to the need in electromagnetic theory for constructing vector
spherical harmonics, which are eigenfunctions of the total angular momentum made up
of the “orbital” angular momentum and spin-1 functions, in accordance with the fact
that the photon has spin-1 (i.e., the electromagnetic field is a vector field).

31Prove this as an exercise.
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For these calculations it is useful to introduce σ±
def= 1

2 (σx±iσy) and L±
def= Lx±iLy ,

so that �L · �σ = Lzσz + L+σ− + L−σ+ and σ+χ
1/2
−1/2 = χ

1/2
1/2, while σ−χ

1/2
1/2 = χ

1/2
−1/2.

As a result of evaluating the actions of P± on Y m−1/2
l (θ, ϕ)χ1/2

1/2 we then
find that32

Zml,l+ 1
2

=

√
1
2

+
m

2l + 1
Y
m− 1

2
l χ

1/2
1/2

+

√
1
2
− m

2l + 1
Y
m+ 1

2
l χ

1/2
−1/2, (5.73)

Zml,l− 1
2

=

√
1
2
− m

2l + 1
Y
m− 1

2
l χ

1/2
1/2

−
√

1
2

+
m

2l + 1
Y
m+ 1

2
l χ

1/2
−1/2. (5.74)

5.2.5 Spherical tensors and selection rules
Consider an operator T 0

0 that is invariant under active rotations, so that
it commutes with all components of the angular momentum. If OR is a
rotation operator, we then have (assuming the irreducible representations
Dj and Dj′

are unitary),

〈α′j′m′|T 0
0 |αjm〉 = 〈α′j′m′|ORT 0

0 O−1
R |αjm〉

=
∑
nn′

Dj′
m′n′(R)〈α′j′n′|T 0

0 |αjn〉Dj∗
mn(R),

which implies that∑
n

〈α′j′m′|T 0
0 |αjn〉Dj

nm(R) =
∑
n′
Dj′
m′n′(R)〈α′j′n′|T 0

0 |αjm〉.

Lemmas (E.2) and (E.3) (Schur’s lemma) in Appendix E therefore allow
us to draw the conclusion that 〈α′j′m′|T 0

0 |αjm〉 = 0 unless j = j′ and
m = m′. One says that for rotationally invariant operators, the selection
rule is ∆j = 0 and ∆m = 0; moreover, the nonvanishing matrix elements
are independent of m (so that 〈α′jm′|T 0

0 |αjm〉 is not just diagonal, but a
multiple of the unit matrix in spin space).

32Show this.
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Next take a Cartesian vector operator �G and its commutation relation
(5.5) with the angular momentum. Applying (5.5) twice yields33

[�G, �J2] = i�(�J× �G− �G× �J).

Now using the fact that the left-hand side of this equation is a vector
operator, substitute [�G, �J2] for �G, and you find34

[[�G, �J2], �J2] = 2�2(�J2 �G + �G�J2)− 4�2�J(�G · �J). (5.75)

Taking matrix elements of this equation for j �= j′, and using other needed
quantum numbers α that are eigenvalues of a rotationally invariant opera-
tor, we obtain

〈α′j′m′|[[�G, �J2], �J2]− 2�2(�J2 �G + �G�J2)|αjm〉 = 0,

which, after a little algebra35, leads to

[(j − j′)2 − 1][(j + j′ + 1)2 − 1]〈α′j′m′|�G|αjm〉 = 0.

Therefore the selection rule for matrix elements of a vector operator is

j′ = j ± 1.

For j′ = j, on the other hand, (5.75) yields

〈α′jm′|�G|αjm〉 =
〈α′jm′|�J�G · �J|αjm〉

�2j(j + 1)

=
1

�2j(j + 1)

∑
α′′j′′m′′

〈α′jm′|�J|α′′j′′m′′〉〈α′′j′′m′′|�G · �J|αjm〉.

But since the α are eigenvalues of a rotationally invariant operator, �J is
diagonal in α as well as in j, and since �G · �J is invariant under rotations,
it is not only diagonal in m but the matrix element is independent of m.
As a result we obtain

〈α′jm′|�G|αjm〉 = F(α′, α, j)〈jm′|�J|jm〉, (5.76)

where

F(α′, α, j) =
〈α′jm|�G · �J|αjm〉

�2j(j + 1)
, (5.77)

so that all the specific dependence of the left-hand side of (5.76) upon m

and m′ is contained in the matrix element of �J and does not depend on �G.

33Show this as an exercise.
34Do this as an exercise.
35Do it.
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To obtain the selection rule for ∆m when j′ �= j, we have, of course,
〈α′j′m′|Gz|αjm〉 = 0 unless m = m′, because [Gz,Jz] = 0. Using (5.5), we
find that [jz,Gx + iGy] = Gx + iGy, and therefore

〈α′j′m′|Gx + iGy|αjm〉 = (m′ −m)〈α′j′m′|Gx + iGy|αjm〉,

implying that 〈α′j′m′|Gx+ iGy|αjm〉 = 0 unless m′ = m+1; similarly we
find that 〈α′j′m′|Gx − iGy|αjm〉 = 0 unless m′ = m − 1. It follows from
these two results that the matrix elements of Gx and Gy vanish unless
∆m = ±1. What is more, because [(Gx + iGy), j+] = 0, it follows from
(5.11) and (5.12) that

〈α′j′m+ 2|Gx + iGy|αjm+ 1〉√
(j′ −m− 1)(j′ +m+ 2)

=
〈α′j′m+ 1|Gx + iGy|αjm〉√

(j′ −m)(j′ +m+ 1)
. (5.78)

As a specific physical application, consider expectation values of the mag-
netic moment of an atom, as given by (5.63). Assuming the Hamiltonian
of the atom to be rotationally invariant, we have, according to (5.76)

〈�µ〉 = − e

2mc
〈Ejm|(�L + 2�S)|Ejm〉 =

〈jm|�J|jm〉
�j

µeff , (5.79)

where the effective “magnetic moment of the atom” is given by

µeff =
〈Ejm|�µ · �J|Ejm〉

�(j + 1)
. (5.80)

But from �L2 = (�J−�S)2 and �S2 = (�J− �L)2 we find �S · �J = 1
2 (�J2 +�S2 − �L2)

and �L · �J = 1
2 (�J2 + �L2 − �S2), so that by (5.63)

�µ · �J = − e

2Mc
(�L · �J + 2�S · �J) = − e

2Mc
(
3
2
�J2 +

1
2
�S2 − 1

2
�L2)

and therefore

µeff = − e

2Mc

〈jm| 32�J2 + 1
2
�S2 − 1

2
�L2|jm〉

�(j + 1)
.

In the so-called LS coupling scheme it is a good approximation to assume
that all the electronic orbital angular momenta couple to a total �L and all
the spins couple to a total spin angular momentum �S, which then couple
to a total �J = �L + �S. In that approximation therefore

µeff = −µ0 j

[
1 +

j(j + 1)− l(l + 1) + s(s+ 1)
2j(j + 1)

]
. (5.81)

The bracket is called the Landé g-factor for LS coupling.



170 5. Symmetries

Spherical tensors

As already mentioned for the case of vectors, for quantum-mechanical pur-
poses it is more convenient to classify tensors in terms of their irreducible
transformation properties under rotations, rather than in terms of their
Cartesian transformation properties, particularly if the components of the
tensor are operators. So if we are given, for instance, a Cartesian tensor
of rank 2, Tµν , then we know it transforms under a rotation of the coordi-
nate system like xµxν , that is, T ′µν =

∑
κσ TκµTσνTκσ, where T is given by

(5.29). On the other hand, (5.40) tells us that

1
r
xµ = i

√
4π/3

∑
m

M∗mµY m1 .

Therefore
∑
µνMm1µMm2νTµν transforms like Y m1

1 ⊗ Y m2
1 , and we have

Y m1
1 ⊗ Y m2

1 =
2∑
l=0

〈l,m1 +m2|l1,m1; l2,m2〉∗Y m1+m2
l .

The simple equation 3 · 3 = 5 + 3 + 1 suggests that a general tensor of
rank 2, which has 3 · 3 = 9 components, can be decomposed into a direct
sum of parts that transform according to the angular momenta 2, 1, and 0.
These components are obtained by means of (5.43) and the Clebsch-Gordan
coefficients as

T̂ jm =
∑
m1m2

〈j,m|1,m1; 1,m2〉
∑
µν

Mm1µMm2νTµν , j = 0, 1, 2. (5.82)

We can easily recognize the three irreducible pieces of a Cartesion ten-
sor of rank 2 as follows. First, split the tensor (in an invariant manner)
into its symmetric and anti-symmetric parts: Tµν = T (s)

µν + T (a)
µν , where

T (s)
µν

def= 1
2 (Tµν + Tνµ) and T (a)

µν
def= 1

2 (Tµν − Tνµ). Furthermore, the trace of

the tensor, T0
def=
∑
µ Tµµ is invariant under rotations, which implies that

T0 transforms like Y 0
0 and thus corresponds to j = 0; T (a) has three com-

ponents, and, as you know, these transform under rotations like the (axial)
vector Tµ

def=
∑
κσ εµκσTκσ.36 We are then left with a traceless symmetric

5-component piece T (st)
µν

def= T (s)
µν − 1

3T0δµν , which corresponds to the angu-
lar momentum j = 2. (This is the reason why the graviton, the quantum of
the gravitational field, which is described in the general theory of relativity
by a symmetric tensor of rank 2, has spin 2.)

The principal reason why the classification of tensor37 operators accord-
ing to their irreducible transformation properties under rotations is more

36εµκσ is the totally anti-symmetric tensor with ε123 = 1.
37Including vectors, which are tensors of rank 1.
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convenient for quantum mechanics than their classification according to
their Cartesian transformation properties is that it allows us to calculate
more easily the matrix elements of such operators between eigenstates of
the total angular momentum, and in particular, to ascertain when such
matrix elements vanish. As we shall discuss in more detail later in Chapter
8, the moduli squared of such matrix elements determine the transition
probabilities from one of these states to another, caused by a perturbation
of a rotationally invariant Hamiltonian by a tensor operator. If the matrix
element vanishes, the corresponding transition is forbidden, i.e., in the first
approximation (or possibly, exactly) its probability is equal to zero; the
lists of such forbidden transitions are called selection rules, some of which
we have already derived for scalars and Cartesian vectors.

To see the advantage of using spherical rather than Cartesian tensors,
consider a matrix element of a tensor operator such as 〈α′j′m′|T lM |αjm〉,
where α denotes all the other quantum numbers (such as the energy, for
example) needed to specify the state uniquely. Under a rotation R, imple-
mented in the Hilbert space by the operator OR, we have

〈α′j′m′|T l ′M |αjm〉 = 〈α′j′m′|ORT lMO
†
R|αjm〉

=
∑
M ′
〈α′j′m′|T lM ′ |αjm〉Dl

M ′M (R).

However, we also have

ORΨαjm =
∑
n

ΨαjnD
j
nm(R),

and
O−1
R Ψαjm = O†RΨαjm =

∑
n

ΨαjnD
j∗
mn(R),

so that∑
M ′
〈α′j′m′|T lM ′ |αjm〉Dl

M ′M (R) =
∑
nn′

Dj′
m′n′(R)〈α′j′n′|T lM ′ |αjn〉Dj∗

mn(R).

(5.83)
On the other hand, we have for the Clebsch-Gordan coefficients

〈j′m′|j,m; l,M〉 = (Ψ(j′,m′),ORO−1
R Ψ(j,m)⊗Ψ(l,M))

=
∑
nn′M ′

Dj′
m′n′(R)〈j′n′|j, n; l,M ′〉Dj∗

mn(R)Dl∗
MM ′(R),

and therefore, using the unitarity of the D’s,∑
M ′
〈j′m′|j,m; l,M ′〉Dl

M ′M (R) =
∑
nn′

Dj′
m′n′(R)〈j′n′|j, n; l,M〉Dj∗

mn(R).

(5.84)
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Comparison of (5.84) with (5.83) shows the two relations between the D
matrices to be the same, which means that the coefficients must be pro-
portional; denote the constant of proportionality, called the reduced matrix
element, by 〈α′j′ ‖ T l ‖ αj〉, and you obtain

〈α′j′m′|T lM |αjm〉 = 〈j′,m′|j,m; l,M〉 〈α′j′ ‖ T l ‖ αj〉. (5.85)

This important result is called the Wigner-Eckart theorem, a special
case of which was (5.76). It not only tells us that all the dependence on
the variables m,m′, and M is contained in the Clebsch-Gordan coefficients,
but it implies the selection rules

∆j ≤ l, ∆m = M ≤ l, (5.86)

meaning that unless |j − j′| ≤ l and m′ − m = M , the matrix element
vanishes and the transition is forbidden. (We shall return to this.)

5.3 Time Reversal

5.3.1 The time-reversal operator
What would happen if the direction of time were reversed, as in a video
tape run backwards? Since the directions of all motions are reversed, it
would be appropriate to call pressing the back button motion reversal, but
it is customarily designated as “time reversal.”

Consider first the dynamical variables of a particle system: it is clear that
under time reversal, the position �q remains unchanged, while the momen-
tum �p changes sign. Analogously for other dynamical variables: the angular
momenta �L and �S, as well as the total angular momentum �J, change sign.
If there is an electromagnetic field, the Maxwell equations require that the
electric field, as well as the scalar potential, remain invariant, whereas the
magnetic field and the vector potential change sign. Supposing the Hamil-
tonian of the system to be H, we shall call the time-reversed Hamiltonian,
obtained by making all the appropriate changes in the dynamical variables
and fields, HTR, so that under time reversal,

H→ HTR.

Under a reversal of the direction of time, t → t′ = −t, the Schrödinger
equation

i�
∂Ψ(t)
∂t

= HΨ(t),

becomes

−i�∂ΨTR(t′)
∂t′

= HTRΨTR(t′).
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Let us then define the time reversal operator ϑ by

ϑΨ(t) def= ΨTR(t), (5.87)

so that ϑ�qϑ−1 = �q, ϑ�pϑ−1 = −�p, etc., and in particular,

HTR = ϑHϑ−1; (5.88)

the time-reversed Schrödinger equation therefore reads

−i�ϑ∂Ψ(t)
∂t

= ϑHΨ(t). (5.89)

Now, since two successive time reversals clearly cancel each other out, ϑ2

should be a multiple of the unit operator. But remember that ϑ�σϑ−1 = −�σ,
which means that for the spin, time reversal is equivalent to a rotation by
π; therefore ϑ2 is equivalent to a rotation by 2π, and spinors change sign
under such a rotation. Consequently, for states that contain n spin-1/2
degrees of freedom, the action of ϑ2 results in multiplication my (−1)n:

ϑ2 = α11, α = (−1)n. (5.90)

Furthermore, multiplication of (5.89) by ϑ and comparison with the original
Schrödinger equation leads to the conclusion that

ϑi = −iϑ.

According to the Wigner theorem mentioned earlier, ϑ has to be either
unitary or “antiunitary”; here we see that the time-reversal operator ϑ
must be antiunitary, so that for all complex numbers c,

ϑcΨ = c∗ϑΨ, (5.91)

and for any pair of vectors,

(ϑΨ, ϑΦ) = (Φ,Ψ). (5.92)

Suppose now that A is a dynamical variable that is invariant under time
reversal, like �q, for example, and ΨA is an eigenvector belonging to the
eigenvalue A:

AΨA = AΨA.

Then it follows that, since A is real,

ϑAΨA = AϑΨA = AϑΨA,

implying that ϑΨA is also an eigenvector, with the same eigenvalue. There-
fore, if there is no degeneracy,

ϑΨA = eiγΨA,
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and the (arbitrary) phase of ΨA can always be chosen38 so that γ = 0:
if there is no degeneracy, all the eigenvectors of a time-reversal invariant
operator can be chosen so that they are simultaneously eigenvectors of ϑ
with the eigenvalue 1. (We shall return to the case of degeneracy below.)

On the other hand, let B be a dynamical variable that anti-commutes
with ϑ, i.e., one that changes sign under time reversal, like �p, for example,
and let ΨB be an eigenvector with the eigenvalue B. In that case, we
find similarly, that if B is an eigenvalue, then so must be −B, and the
eigenvectors can be chosen in such a way that

ϑΨB = Ψ−B .

These results have an immediate bearing on the behavior of wave func-
tions under time reversal. First, take a configuration-space wave function
ψ(�q) = (Ψ�q,Ψ). In this case we have

ψTR(�q) = (Ψ�q, ϑΨ) = (ϑΨ�q, ϑΨ) = (Ψ,Ψ�q) = ψ∗(�q).

Therefore, if the eigenstates of the operators �q are appropriately chosen,
time reversal sends every configuration wave function into its complex con-
jugate, and if it is the wave function of a time-reversal invariant state, it
must be real.

For momentum-space wave functions, with appropriately chosen momen-
tum eigenvectors, we obtain in a similar way

ψTR(�p) = (Ψ�p, ϑΨ) = ψ∗(−�p), (5.93)

which implies that if Ψ is invariant under time reversal, then ψ(−�p) =
ψ∗(�p).

5.3.2 Time-reversal invariance
Next we want to explore the consequences if the Hamiltonian of a system
is time-reversal invariant; so we now assume that ϑHϑ−1 = H, or

ϑH = Hϑ.

According to the result shown above, it then follows that all the non-
degenerate eigenvectors of H are invariant under time reversal and their
configuration-space eigenfunctions can be chosen to be real. In the same
way it follows that the configuration representation of the operator H itself,
the operator that appears in the Schrödinger equation when written in the
configuration representation, must also be real. This means, in particular,
that if there is a nonlocal potential, i.e., a potential that is not diagonal

38Prove this.
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in configuration space, the integral kernel representing it must not only be
Hermitian but real. Any model that includes a complex potential with a
non-vanishing imaginary part cannot be time-reversal invariant: it leads to
absorption or emission, processes that distinguish one direction of the time
from the other.

Degeneracy

Consider now a system whose Hamiltonian is invariant under time reversal,

[ϑ,H] = 0,

and also has the symmetry group G of operators OR,

[OR,H] = 0,

which are themselves time-reversal invariant, [O, ϑ] = 0. Let Ψ(i)
µ be an

eigenvector of H with the energy E that belongs to the µth row if the ith

irreducible representation of G,

ORΨ(i)
µ =

∑
ν

Ψ(i)
ν D(i)

νµ(R).

Then
ϑORΨ(i)

µ = ORϑΨ(i)
µ =

∑
ν

(ϑΨ(i)
ν )D(i)∗

νµ (R),

which says that ϑΨ(i)
µ belongs to D(i)∗. According to Section E.2.2 in the

appendix, if a representation is of type 3, it is not equivalent to its complex
conjugate. Therefore, if the representation D(i) is of type 3, the energy level
under consideration must belong also to the inequivalent representation
D(i)∗: thus the degeneracy is doubled.

On the other hand, suppose Ψ(i) belongs to an irreducible representation
D(i) of type 1 or 2, meaning that there exists a unitary matrix M such that
D(i)∗(R) = MD(i)(R)M−1, and according to the results of Section E.2.2,
M̃ = cM , where c = 1 if it is of type 1 and c = −1 if it is of type 2.
Therefore,

a(i)
µν

def= (ϑΨ(i)
µ ,Ψ(i)

ν ) = (ϑΨ(i)
ν , ϑ2Ψ(i)

µ ) = α(ϑΨ(i)
ν ,Ψ(i)

µ ) = αa(i)
νµ,

where α, defined by (5.90), equals ±1, depending upon whether the number
of spin-1/2 degrees of freedom is even or odd. But we know that ϑΨ(i)

µ be-
longs to the representation D(i)∗; so if the level has the normal degeneracy
equal to the dimension of D(i), there must exist a unitary matrix M such
that ϑΨ(i)

µ
def= Ψ̄(i)

µ =
∑
ν Ψ(i)

ν Mνµ. It follows that

a(i)
µν = (Ψ̄(i)

µ ,Ψ(i)
ν ) =

∑
λ

M∗λµ(Ψ
(i)
λ ,Ψ(i)

ν ) = M∗νµ,
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from which we conclude that α = c.
Thus we have the following theorem: If the representation to which the

level belongs is of type 1 and the number n of spin-1/2 degrees of freedom
is even, or if the representation is of type 2 (which is possible only if its
dimension is even) and n is odd, time-reversal invariance does not increase
the degeneracy; in all other cases, it doubles the degeneracy.

A special case of this result is one in which a given representation is
one-dimensional; i.e., on grounds of symmetry under G the level is non-
degenerate. In that case D ≈ D∗ means, of course, that D = D∗ and the
representation is real; moreover, it has to be of type 1. Consequently we
can infer what is known as Kramers’s theorem: If an atomic system is
invariant under time reversal (implying that there is no external magnetic
field present), then an odd number of electrons makes every energy level at
least twofold degenerate.
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5.4 Problems and Exercises

1. Derive the commutation relations of the components of the angular
momentum operator �J with the components of a dynamical variable
of the physical system that transform like a tensor of rank 2.

2. Denote by |j,mx〉 a normalized eigenfunction of the �J2 and Jx with
the eigenvalues j(j + 1) and mx, respectively. Use (5.13) and (5.14)
to calculate 〈j,m|j,mx〉.

3. For j = 1, calculate the coefficients a, b, c in |1,mx〉 = a|1,m =
−1〉 + b|1,m = 0〉 + c|1,m = 1〉, where m is an eigenvalue of jz and
mx is an eigenvalue of jx.

4. Suppose that A and B are either two numerical vectors, or else vectors
whose components are operators that commute with �σ. Prove that

(A · �σ)(B · �σ) = A ·B + i�σ ·A×B.

5. Prove that if �A commutes with �σ, then

�σ �A · �σ = �A11 + i�A× �σ

and
[�σ, �A · �σ] = 2i�A× �σ.

6. Show that the eigenstates of �J 2 def= ( �L + 1
2�σ)2 with the eigenvalue

(l + 1
2 )(l + 3

2 ) are eigenstates of �L · �σ with the eigenvalue l, and the
eigenstates of �J 2 with the eigenvalue (l− 1

2 )(l+ 1
2 ) are eigenstates of

�L · �σ with the eigenvalue −l − 1.

7. Show that the two operators defined by (5.71) are projections (i.e.,
that they are idempotent).

8. Suppose a physical system is in the angular-momentum state χ =
aχ1

1 + bχ1
0 + cχ1

−1, where |a|1 + |b|2 + |c|2 = 1 and χ1
1, χ

1
0, χ

1
−1 are the

spin-1 states (5.21). Calculate the expectation value of �J .

9. Show that the bilinear product of two spinors χ̃1/2iσyφ
1/2 = χ

1/2
1 φ

1/2
2 −

χ
1/2
2 φ

1/2
1 is invariant under rotations.

10. Suppose that two successive rotations are performed, first by the
angle θ about the axis n̂ and then by an angle φ about m̂. Show in
terms of the spin-1/2 matrices that the rotation matrix for this is the
same as first rotating by φ and m̂ and then rotating by θ about a
new axis n̂′ that is obtained from n̂ by the second rotation.
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11. Let �A and �B be two vector operators. Show directly from their com-
mutation relations with the angular momentum that �J commutes
with �A · �B.

12. Calculate the spinor matrix T that corresponds to a rotation in terms
the Euler angles.

13. Let Ψmx
be the normalized eigenvector of �J 2 with the eigenvalue 2

(i.e., j=1) and of jx with the eigenvalue mx. Then we must be able
to write

Ψmx = aΦ−1 + bΦ0 + cΦ1,

where Φm are the simultaneous normalized eigenvectors of jz with
the eigenvalue m and of �J 2 with the eigenvalue 2. Find a, b, and c.

14. Suppose that n̂ and m̂ are two linearly independent vectors and that
the operator A commutes with n̂ · �J as well as m̂ · �J. Show that this
implies that A commutes with all components of �J.

15. Let�s be the spin angular momentum vector, in units of �, of a particle
of spin-1 (i.e., �s2 = s(s+ 1) = 2) and define sp

def= p̂ ·�s, where p̂ is an
aritrary unit vector. (a) Show that s3p = sp, and

exp(−iϕsp) = 11− isp sinϕ+ s2p(cosϕ− 1).

Write this out explicitly in a representation in which sp is diagonal.
(b) Take p̂ in the z direction and construct the matrices for sx and
sy in a representation in which sz is diagonal. (Use the commutation
relations with sz.)

16. Consider a spin-1/2 particle. Show that in the space of states of a
given orbital angular momentum l, the operators

(l + 1)11 + �L · �σ
2l + 1

and
l11− �L · �σ

2l + 1

are projections onto the states of total angular momentum j = l+ 1
2

and j = l − 1
2 , respectively.

17. Let �S be the total spin (in units of �) of a system of two nucleons.
(a) Show that the operator Q def= (�S ·�r)2/r2 is a projection. (b) Show
that the tensor operator S12

def= 2(3Q− �S2) satisfies the identity

S2
12 = 4�S2 − 2S12

and that its only possible eigenvalues are 0, 2, and −4.
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18. Show that (a) if a 2× 2 matrix commutes with all three of the Pauli
matrices then it must be a multiple of the unit matrix, and (b) if a
2× 2 matrix anti-commutes with all three of the Pauli matrices then
it must be the zero matrix.

19. Assume that the Hamiltonian of a particle of spin-1/2 has the form

H =
1
2
(Q011 + �Q · �σ),

where Q0 is an operator that acts on the non-spin degrees of freedom
and �Q is a numerical vector. Let �P be the polarization vector. Prove
that

�
d�P

dt
= �Q× �P ,

d(�P )2

dt
= 0,

and that if �Q is constant, then �Q · �P and (d�P/dt)2 are constants of
the motion.

20. Show that if two pure states of a spin-1/2 particle are orthogonal, then
the polarization vectors of these two states are equal and opposite.

21. Consider a spinless particle subject to a spherically symmetric Hamil-
tonian. Suppose it is in an unpolarized mixed state of angular mo-
mentum l (i.e., all z-projections of its angular momentum are equally
probable). Write down its angular momentum density matrix in the
configuration representation.

Let the configuration representation matrix of the operator A be

〈�r|A|�r ′〉 =
∑
l

Al(r, r′)Pl(r̂ · r̂′).

Calculate its expectation value (at fixed r and r′) in the aforementioed
mixed state.

22. Suppose a pair of spin-1/2 particles is produced in a pure triplet state.
Calculate the spin density matrix for one of the particles alone.

23. Suppose that Gx is the x-component of a vector operator. What
are the selection rules for the operator G2

x; i.e., for which differences
between j and j′ and between m and m′ must the matrix elements
〈j′,m′|G2

x|j,m〉 vanish?

24. A transmitter simultaneously sends two correlated (but not necessar-
ily identical) signals to a pair of independent receivers, A and B, that
are far distant from each other. Each of the receivers has a switch
that is set at either 1 or 2, independently of the other, before the
arrival of the signal. Upon receiving the signal, each receiver flashes
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either a red or a green light. Each run is recorded in the form, say,
“2G1R” indicating “receiver A, set at 2, flashes green; receiver B,
set at 1, flashes red.” A long sequence of runs is examined and the
following is found: (a) neither 1G2G nor 2G1G ever occurs; (b) 1R1R
never happens; (c) 2G2G happens one-third of the time when both
receivers are set at 2.

Suppose we denote a pair of signals from the transmitter by, say,
[GR,RR], meaning “if A is set at 1, flash green, if set at 2, flash red;
if B is set at 1, flash red, if set at 2, flash red.”

Now notice that (a) implies no messages of the form [G ·, ·G] or of
the form [·G,G ·] were sent, and (b) implies no messages of the form
[R ·, R ·] were sent either. But 2G2G can be brought about only by one
of the four signals of the form [·G, ·G], each of which would lead to a
contradiction with (a) or (b). (Show this.) Therefore, (c) contradicts
the combination of (a) and (b).

Show how the observed results can be obtained if the two signals are
made up of beams of atoms of spin-1/2, each of the pair originating
from the decay of a spin-1 molecule in a specific, fixed pure state,
and both receivers are equipped with Stern-Gerlach devices that are
oriented vertically if set at 1 and horizontally if set at 2. If an SG
apparatus finds spin up or right it flashes red, and if it finds down or
left it flashes green.



6
Stationary Approximation Methods

Since very few quantum problems are amenable to exact solution, it is
important to have a variety of approximation methods at our disposal.
This chapter will describe several such procedures for stationary states,
applicable under various physical circumstances and for different purposes.

6.1 The WKB Approximation

In this section we are going to study the behavior of quantum-mechanical
one-particle systems when the wavelength λ of the wave function is short
compared to the scale on which the potential changes by a significant frac-
tion, which is analogous to the emergence of geometrical optics from phys-
ical optics when the wavelength of light is small compared to the scale on
which the index of refraction changes. Since λ = 2π�/p, this means we are
talking about high energy. At the same time, the approximation may also
be regarded as the regime where � is small, so that we are close to classi-
cal physics. In principle, after all, classical physics ought to emerge from
quantum physics when the size of Planck’s constant can be regarded as neg-
ligible. However, as we shall see, the manner in which this happens is not
as simple and straightforward as you might expect. The regime that stops
just short of going to the classical limit, and which is therefore referred to
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as the semi-classical approximation, is also called the WKB approximation
(after G. Wenzel, H. A. Kramers, and L. Brillouin).1

Suppose we write a one-particle wave function in the form

ψ(�r, t) = AeiS(�r,t)/�, (6.1)

denoting the particle’s position in its configuration space conventionally by
�r, and where A is a constant. Insertion in the Schrödinger equation then
leads to the following equation for the complex function S:

− i�

2M
∇2S +

1
2M

(∇S)2 + V +
∂S

∂t
= 0. (6.2)

You will notice that when � = 0, this equation goes over into the Hamilton-
Jacobi equation of classical mechanics, whose solution S is called Hamilton’s
principal function and in terms of which �p = ∇S. In the classical limit,
therefore, the particle’s physically possible trajectories are orthogonal to
the surfaces of constant S, that is, to the surfaces of constant phase of the
wave function.

If ψ is an eigenfunction of the energy, then

ψ(�r, t) = ψ(�r)e−iEt/�,

so that if ψ is written in the form

ψ(�r) = AeiW (�r)/�,

then
S(�r, t) = W (�r)− Et.

The resulting equation for W is

− i�

2M
∇2W +

1
2M

(∇W )2 + V = E, (6.3)

which shows that as � → 0, W approaches what in classical mechanics is
called Hamilton’s characteristic function.

Let us now take the case in which the configuration space is one-dimen-
sional (the WKB approximation is really applicable only when a problem
can be reduced to a one-dimensional one), so that the equation for W
becomes

−i�W ′′ +W ′2 + 2M(V − E) = 0. (6.4)

This may be either an instance of one-dimensional motion or that of a
particle in three dimensions with a central potential after separating out

1It is also called the JWKB approximation, the letter J standing for H. Jeffreys.
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the angular variables. [In the latter case, V in (6.4) contains the centrifugal
term �2l(l + 1)/2Mr2.] Setting W = �u changes (6.4) to

u′2 − iu′′ = k2, (6.5)

where

k(x) def=
2π
λ(x)

def=

√
2M
�2 [E − V (x)] (6.6)

is the local wave number and λ(x) is the local wavelength.
Next, set

u(x) def=
∫ x

dx′ g(x′) +
1
2

log g(x),

which implies that

ψ(x) = g−1/2exp[i
∫ x

dx′ g(x′)], (6.7)

and the equation for g becomes

g2 − 3
4

(
g′

g

)2

+
1
2
g′′

g
= k2(x). (6.8)

The somewhat complicated non-linear equation (6.8) is now solved by
successive approximations on the assumption that the function k(x) is
slowly varying, i.e., that ∣∣∣∣dλdx

∣∣∣∣� 2π,

so that it is meaningful to refer to a “local wavelength.” This assumption
implies that ∣∣∣∣d(1/k)dx

∣∣∣∣ = ∣∣∣∣ 1
k2

dk

dx

∣∣∣∣ = ∣∣∣∣ 1
2k3

d(k2)
dx

∣∣∣∣� 2π,

or,

λ

∣∣∣∣d(E − V )/dx
E − V

∣∣∣∣� 1.

In other words, the relative change of the kinetic energy over one wave-
length should be small.

When k = const., the solutions of (6.8) obviously are g = ±k. In the
first approximation, therefore, we use these values also when k is slowly
varying.

A better approximation would be given by

g2 = k2 +
3
4

(
k′

k

)2

− 1
2
k′′

k
,
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but that would differ from g2 = k2 by terms of order (k′/k)2 and k′′/k. If k′/k � 1
inside the whole region of interest, as assumed, then k′′/k has to be small there as well
for g = ±k to be a good approximation.

The WKB approximation is thus given by

ψWKB(x) = A exp[−1
2

log k(x)± i
∫ x

dx′ k(x′)]

or
ψWKB(x) =

A√
k(x)

e±i
∫ x dx′ k(x′), (6.9)

which in the classically forbidden region, where E < V , becomes

ψWKB(x) =
A′√
κ(x)

e±
∫ x dx′ κ(x′), κ(x) def=

√
2M
�2 [V (x)− E]. (6.10)

Suppose, then, that we wish to solve a bound-state problem for a po-
tential well, or a reflection problem on a barrier. In that case it would
be necessary to connect the wave function with a continuous logarithmic
derivative across a boundary between a classically allowed and a classi-
cally forbidden region; but in the vicinity of this boundary, the assumption
k′/k � 1 breaks down, because k(x) vanishes at the boundary. Classically,
a point where k = 0 is generally a turning point of the motion. The princi-
pal problem of the WKB approximation is therefore to find the connecting
formulas for the wave function across such a turning point, the vicinity of
which must be treated separately.

6.1.1 The connecting formulas
For simplicity, choose x in such a way that the turning point is at the
origin, x = 0, so that

k2(x) = cx+ . . . .

Thus c > 0 means that the classically allowed region is to the right (Fig.
6.1), so that the turning point is on the left, and the Schrödinger equation
near the turning point reads, in appropriate units,

ψ′′ + cxψ = 0.

In terms of ξ1
def=
∫ x
0 dx

′ k(x′) = 2
3

√
cx3 + . . . for x > 0, two linearly

independent solutions in the classically allowed region near the turning
point are

ψ = const.

√
ξ1
k
J±1/3(ξ1) = const.

√
xJ±1/3(

2
3

√
cx3),
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E

V

x

FIGURE 6.1. A turning point to the left of a classically allowed region.

and two solutions in the forbidden region are, in terms of ξ2
def=
∫ 0
x
dx′ κ(x′),

ψ = const.

√
ξ2
κ
I±1/3(ξ2) = const.

√
|x|I±1/3(

2
3

√
c|x|3),

where J and I are conventional Bessel functions of real and imaginary
arguments, respectively.2 These functions have the following behavior near
the origin:

J±1/3(ξ)
ξ→0−→ (

1
2
ξ)±1/3/Γ(1± 1

3
),

I±1/3(ξ)
ξ→0−→ (

1
2
ξ)±1/3/Γ(1± 1

3
);

therefore, the solution which for x > 0 is
√
xJ1/3, becomes

3−1/3c1/6

Γ(4/3)
x

near x = 0, whereas the solution which for x < 0 is
√
|x|I1/3 becomes

3−1/3c1/6

Γ(4/3)
|x| = −3−1/3c1/6

Γ(4/3)
x.

Consequently,
√
xJ1/3 fits smoothly with −

√
|x|I1/3, and similarly we find

that
√
xJ−1/3 fits smoothly with +

√
|x|I−1/3.

At a distance that is many wavelengths away from the turning point, but
not so far that the potential differs drastically from the straight line as-
sumed near the turning point, the asymptotic forms of the Bessel functions
are3

J±1/3(ξ) �
√

2
πξ

cos(ξ ∓ π

6
− π

4
),

2The asymptotically decreasing solution is known as the Airy integral, Ai(z) def=
1
π

∫∞
0 ds cos[(s3/3) + zs], and in terms of this function, ψ(x) = Ai(−c1/3x).
3See [Erdélyi], vol. 2, pp. 85/6.
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I1/3(ξ) �
1√
2πξ

eξ,

and

I+1/3(ξ)− I−1/3(ξ) � −
√

2
πξ

sin
π

3
e−ξ.

Therefore, the solution which far to the left of the turning point is of the
form

−
√

2
πκ

sin
π

3
e−

∫ 0
x
dx′ κ(x′),

must, many wavelengths to its right, be of the form

−
√

2
πk

[
cos(ξ1 −

π

4
+
π

6
) + cos(ξ1 −

π

4
− π

6
)
]

= −2

√
2
πk

cos
π

6
cos(ξ1 −

π

4
)

= −2

√
2
πk

sin
π

3
cos
(∫ x

0
dx′ k(x′)− π

4

)
.

Consequently the following two WKB solutions, the first in the classically
forbidden region on the left, and the second in the classically allowed region
on the right, are smoothly connected at the turning point:

1√
κ(x)

exp
[
−
∫ 0

x

dx′ κ(x′)
]

ltp−→ 2√
k(x)

cos
[∫ x

0
dx′ k(x′)− π

4

]
, (6.11)

where the arrow indicates that the formula is stable when used in the direc-
tion indicated, and only then. This is because, when used in the opposite
direction, a small perturbation of the function on the right would produce
an exponentially increasing and thus asymptotically dominant term on the
left.

Similarly, we find for arbitrary η that there is a smooth connection be-
tween the functions on the right and the left of the turning point,

sin η√
κ(x)

exp
[∫ 0

x

dx′ κ(x′)
]

ltp←− 1√
k(x)

cos
[∫ x

0
dx′ k(x′)− π

4
+ η

]
,

(6.12)
which implies that

1√
κ(x)

exp
[∫ 0

x

dx′ κ(x′)∓ iπ
4

]
ltp←− 1√

k(x)
exp
[
±i
∫ x

0
dx′ k(x′)

]
.

(6.13)
The formula (6.11) shows that an exponentially decreasing, and thus asymp-
totically small, addition on the left would produce a non-negligible change
of the function on the right; therefore, (6.12) and (6.13) should be used only
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in the direction of the arrows indicated. These are the connecting formulas
for a turning point on the left.

On the other hand, if the classical turning point is on the right, we find
by similar arguments4 that

2√
k(x)

cos
[∫ 0

x

dx′ k(x′)− π

4

]
rtp←− 1√

κ(x)
exp
[
−
∫ x

0
dx′ κ(x′)

]
, (6.14)

1√
k(x)

cos
[∫ 0

x

dx′ k(x′)− π

4
+ η

]
rtp−→ sin η√

κ(x)
exp
[∫ x

0
dx′ κ(x′)

]
,

(6.15)
or

1√
k(x)

exp
[
±i
∫ 0

x

dx′ k(x′)
]

rtp−→ 1√
κ(x)

exp
[∫ x

0
dx′ κ(x′)∓ iπ

4

]
.

(6.16)
When the energy is near a point at which the slope of the potential

vanishes, or where two classical turning points are close to one another, so
that the assumption of a straight-line (non-horizontal) potential behavior
cannot be maintained over a distance of many wavelengths, these formulas
have to be modified. (For further details, see [Fröman].)

6.1.2 Examples

E
V

 x  x2 1

III                              II                                  I    

FIGURE 6.2. A potential well.

As a first example, we use the WKB approximation to calculate the
energy levels in a potential well of the form shown in Figure 6.2. In
region I the wave function must have the form

ψ =
1√
κ

exp
[
−
∫ x

x1

dx′ κ(x′)
]
,

4Derive these.
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while in region III it must be of the form

ψ =
A√
κ

exp
[
−
∫ x2

x

dx′ κ(x′)
]
.

For region II we obtain from the connecting formula (6.14) for the right
turning point

ψ =
2√
k

cos
[∫ x1

x

dx′ k(x′)− π

4

]
,

and for the left turning point from (6.11),

ψ =
2A√
k

cos
[∫ x

x2

dx′ k(x′)− π

4

]
=

2A√
k

cos
{
−
∫ x1

x

dx′ k(x′) +
π

4
+ [
∫ x1

x2

dx′ k(x′)− π

2
]
}

=
2A√
k

cos
[∫ x1

x

dx′ k(x′)− π

4
− η
]
,

where
η =
∫ x1

x2

dx′ k(x′)− π

2
.

In order for this ψ to be equal to the result obtained from the right-hand
turning point, it is necesssary and sufficient that

η = nπ,

where n is an integer. Therefore, the requirement is that
∫ x1

x2
dx k(x) =

(n+ 1
2 )π, or

2
∫ x1

x2

dx
√

2M [En − V (x)] = (n+
1
2
)h. (6.17)

The left-hand side of this equation being the phase integral of the motion,
you will recognize the formula as the old Sommerfeld quantization rule,
including the somewhat more sophisticated 1/2-term. However, since the
connecting formulas hold only at distances that are many wavelengths away
from the classical turning point, the result is a good approximation only
when n� 1, in agreement with the fact that the Sommerfeld rule originates
in the correspondence-principle limit. Notice that (6.17) implies that if
V →∞ as x→ ±∞, then there must be infinitely many energy levels.

As a second example, consider tunneling through a barrier. The
potential is now assumed to have a shape such as that shown in Figure
6.3, and we take the incident wave to come from the left, so that in region
I there is no wave traveling to the left. Therefore, the WKB solution in
region I must be of the form

ψ =
A√
k

exp
[
i

∫ x

x1

dx′ k(x′)
]
∼ A√

k
exp
[
i

∫ ∞
x1

dx′ [k(x′)− k]
]
eik(x−x1).
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E

x x12

III II I

V

FIGURE 6.3. A potential barrier.

The connecting formula (6.13) tells us that in region II the WKB solution
must thus be

ψ =
A√
κ

exp
[∫ x1

x

dx′ κ(x′)− iπ
4

]
=

A√
κ

exp
[∫ x1

x2

dx′ κ(x′)− iπ
4

]
exp
[
−
∫ x

x2

dx′ κ(x′)
]
.

In region III, the smoothly connected WKB wave function is, therefore, by
(6.14),

ψ =
2A√
k

exp
[∫ x1

x2

dx′ κ(x′)
]
e−iπ/4 cos

[∫ x2

x

dx′ k(x′)− π

4

]
=

A√
k

exp
[∫ x1

x2

dx′ κ(x′)
]{

exp[−i
∫ x2

x

dx′ k(x′)]

− i exp[i
∫ x2

x

dx′ k(x′)]
}

∼ A√
k

exp
[∫ x1

x2

dx′ κ(x′)
]{

exp[−i
∫ x2

−∞
dx′ [k(x′)− k]− ik(x2 − x)]

−i exp[i
∫ x2

−∞
dx′ [k(x′)− k] + ik(x2 − x)]

}
.

For large |x|, the first term in the braces of the second line goes as eikx and
thus represents the incident wave traveling to the right, while the second
term goes as e−ikx and represents a reflected wave traveling to the left;
thus the ratio of the transmitted to the incident amplitude is

T = e
− ∫ x1

x2
dx κ(x)

eik(x2−x1)e
i(

∫ x2
−∞ +

∫ ∞
x1

)dx [k(x)−k] = ei
∫ ∞

−∞ dx [k(x)−k].

The transmission coefficient, i.e., the ratio of the transmitted to the incident
flux, is therefore, in the WKB approximation,

|T |2 = exp
[
−2

�

∫ x1

x2

dx
√

2M [V (x)− E]
]
, (6.18)
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where the points x1 and x2 are the solutions of the equation V (x) = E.
The ratio of the reflected to the incident amplitude, on the other hand, is

R = −i exp
[
2i
∫ x2

−∞
dx [k(x)− k] + 2ikx2

]
,

whose absolute magnitude equals 1, which expresses the fact that in the
WKB approximation necessarily |T | � 1. (As the energy approaches the
top of the barrier, this is no longer the case, and the WKB approxima-
tion has to be modified, as indicated earlier.) By conservation of flux, the
reflection coefficient has to be

|R|2 = 1− |T |2,
but since the approximation includes only the leading term, it simply yields
|R|2 = 1.

6.1.3 Scattering in the WKB approximation
Let us next look at the manner in which quantum scattering approaches
classical scattering in the limit as �→ 0. It will turn out that this approach
is rather complicated.

Assuming that the potential is spherically symmetric, the first step, of
course, is to perform a partial-wave analysis and consider a fixed angular-
momentum quantum number l. The relevant potential then includes the

E

r
r0

V+ l(l+1)
r2

FIGURE 6.4. The effective potential at a given l > 0.

centrifugal term,

Veff(r) def= V (r) +
�2l(l + 1)

2Mr2
,

as shown in Figure 6.4. Therefore, define

κl(r)
def=

√
2M
�2 [V (r)− E] +

l(l + 1)
r2

, kl(r)
def=

√
2M
�2 [E − V (r)]− l(l + 1)

r2
.

(6.19)
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The point r = r0 is defined by kl(r0) = κl(r0) = 0. In the classically
forbidden region near the origin, the radial wave function is supposed to
be regular; therefore, in the WKB approximation it must there be of the
form

ψl =
1
√
κl

exp
[
−
∫ r0

r

dr′ κl(r′)
]
.

The connecting formula (6.11) tells us that for r > r0 it must thus be

ψl =
2√
kl(r)

cos
[∫ r

r0

dr′ kl(r′)−
π

4

]
=

2√
kl(r)

sin
{∫ r

r0

dr′ [kl(r′)− k] +
π

4
+ (r − r0)k

}
∼r→∞

2√
k

sin
{
kr +

π

4
− kr0 +

∫ ∞
r0

dr′ [kl(r′)− k]
}
,

since kl(r) ∼ k as r →∞. As a result, we can conclude that the phase shift
in the WKB approximation is given by

δWKB
l =

π

4
+
π

2
l−kr0+

∫ ∞
r0

dr′ [kl(r′)−k] =
π

2
(l+

1
2
)−
∫ ∞
r0

dr′ r′
d

dr′
kl(r′).

(6.20)
Since the dominant term in kl(r) near the origin is the centrifugal term,

the behavior of the WKB wave function ψl(r) near r = 0 is

ψ → const. r1/2exp[
√
l(l + 1) log r] = const. r

1
2+
√
l(l+1),

whereas we know that the behavior of the exact radial wave function is as
rl+1. Therefore, replacing l(l + 1) by (l + 1

2 )2 and using

kl(r)
def=

√
2M
�2 [E − V (r)]−

(l + 1
2 )2

r2
. (6.21)

in (6.20), rather than (6.19), can be expected to improve the approximation.
The argument leading to the expression (6.20) for the phase shift is based

on the assumption that for a particle of angular momentum l there exists
a distance r0 of closest approach, classically speaking, which is assured for
l > 0, because of the centrifugal repulsion. For l = 0, however, such a point
r0 will generally not exist. Fortunately, this hiatus does not present any real
obstacle, since in the semi-classical regime many phase shifts contribute to
the scattering and the l = 0 term matters little, as we shall elaborate now.

The WKB approximation to the scattering amplitude does not consist
simply of the use of the WKB phase shifts. The second important step is
to rely on the fact that, since at high energies many l-values enter into the
scattering amplitude, the large l-values will carry most of the burden of



192 6. Stationary Approximation Methods

the result. Or, looked at in another way: classically, each deflection angle
is associated with a specific value of the angular momentum, which means,
as �→ 0, a fixed large l-value. The idea, therefore, is to do two things with
the partial-wave expansion of the scattering amplitude: (a) to replace the
Legendre polynomials in (4.50) by their asymptotic values for large l, and
(b) to replace the series in (4.50) by an integral.

In step (a), the appropriate approximations are, for sin θ > 1/l,

Pl(cos θ) �
√

2
π(l + 1

2 ) sin θ
cos[(l +

1
2
)θ − π

4
], (6.22)

and for sin θ < 1/l,

Pl(cos θ) � (cos θ)l J0[(l +
1
2
) sin θ], (6.23)

(where J0 is the Bessel function of order 0) which are fairly accurate even
when l is not very large.

Step (b) is justified by the fact that many l-values make significant con-
tributions to the partial-wave sum, and the WKB phase shift is a relatively
slowly varying function of l. Restricting ourselves to scattering angles θ
that are not too small, we then obtain from (a) and (b), using (6.22),

f(k, θ) =
1

2ik

∑
l

(2l + 1)(e2iδl − 1)Pl(cos θ)

≈ 1
ik

1√
2π sin θ

∫ ∞
0

dl

√
l +

1
2

[
ei[2δl+(l+ 1

2 )θ−π
4 ]

+ e−i[2δl+(l+ 1
2 )θ+ π

4 ]
]

=
1
ik

1√
2π sin θ

∫ ∞
0

dl

√
l +

1
2

[
ei[2δl+(l+ 1

2 )θ+2πnl−π
4 ]

+ e−i[2δl+(l+ 1
2 )θ+2πnl+ π

4 ]
]
,

where the “1” has been dropped because it contributes only for θ = 0,
and the terms 2πnl, with n an arbitrary integer, have been added in the
exponentials without changing the result. Now writing J

def= �(l + 1
2 ), so

that

δWKB
l =

1
�

[
π

2
J −
∫ ∞
r0

dr
d

dr

√
2M(E − V )− J2r−2

]
, (6.24)

the approximation to the scattering amplitude can be written in the form

f(k, θ) ≈ 1√
�

1
ip

1√
2π sin θ

∫ ∞
0

dJ J1/2 (eiϕ+ + eiϕ−
)
,
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with

ϕ±
def= [2�δWKB

l ± Jθ ∓ π

4
+ 2πn(J − 1

2
�)]/�.

The final step in the approximation procedure is to evaluate the above
integrals by the method of stationary phase. For � → 0, as the terms
eiϕ± become more and more oscillatory, thus leading to cancellations, the
principal contribution to the integral comes from those J-values for which
one of the phases is stationary, that is, locally independent of J , i.e., those
for which

2
∂δWKB
l

∂l
± θ + 2πn = 0, (6.25)

where the equation with the +sign leads to the leading contribution from
ϕ+, and the equation with the −sign, from ϕ−.

Recall now that the classical deflection function Θ for a particle, which
determines the asymptotic deviation θ of a particle’s final trajectory from
its incoming direction5 by the formula

θ = ∓[Θ(J) + 2πn],

where n is an integer such that 0 < θ < π, is given in terms of the angular
momentum J by

Θ = π − 2
∫ ∞
r0

dr r−2[2M(E − V )J−2 − r−2]−1/2.

This deflection function can be expressed in terms of the WKB phase shift,
as given by (6.24), in the form

Θ(J) = 2�
∂δWKB
l

∂J
= 2

∂δWKB
l

∂l
. (6.26)

Thus (6.25) shows that in the limit as �→ 0, the quantum-mechanical scat-
tering amplitude is concentrated precisely at the classical scattering angle.
If, for a given value of the angle θ, we denote the stationary value of l by
l0 and expand the phases ϕ± about l0, we obtain

ϕ±(l) = 2δWKB
l ± (l +

1
2
)θ ∓ π

4
+ 2πnl = ϕ0 +

1
2
(l − l0)2ϕ′′0 + . . .

and hence

f(k, θ) ≈ 1
ik

√
l0 + 1

2

2π sin θ
eiϕ0

∫ ∞
−∞

dl e
i
2 (l−l0)2ϕ′′

0 =
1
ik

√
l0 + 1

2

−iϕ′′0 sin θ
eiϕ0 ,

5See, for example, [Newton 82], Sec. 5.1.
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where the integral has been extended to infinity with insignificant error
because almost all of its value comes from contributions in the region of
stationary phase anyhow. Insertion of

ϕ′′0 = 2
∂2δWKB

l

∂l2
=

∂Θ
∂(l + 1

2 )

therefore leads to the limit of the scattering cross section

dσ

dΩ
= |f |2 =

1
k2

l + 1
2

sin θ

∣∣∣∣∂(l + 1
2 )

∂θ

∣∣∣∣
=

1
2ME

J

sin θ

∣∣∣∣∂J∂θ
∣∣∣∣ = b

sin θ

∣∣∣∣∂b∂θ
∣∣∣∣ ,

where b = J/p is the classical impact parameter. This is precisely the
classical result.

The scattering amplitude, on the other hand, has, of course, no classical
analogue, and in most circumstances its phase has no directly observable
consequences. However, this is not so if there exists more than one value
of l for which the phase of either ϕ+ or ϕ− is stationary. In that case,
the quantum scattering cross section is the modulus squared of the sum of
the various amplitudes obtained from the stationary points, and there will
be interference effects that differ from the classical result, which would be
the sum of the cross sections for the various impact parameters leading to
the same scattering angle if Θ is not a monotone function of the impact
parameter. These interference effects do not disappear as � → 0 but, in-
stead, become highly oscillatory. (The angular widths of the interference
fringes are of the order of the ratio between the de Broglie wavelength of
the scattered particles and the difference between two impact parameters
that lead to the same deflection angle.) As the phase of the scattering
amplitude turns out to be proportional to k =

√
2ME/�, this means at

the same time that energy differences that macroscopically are considered
small lead to large phase differences and observable interferences analogous
to the diffraction effects that are the remnant deviations of physical optics
from geometrical optics. Specific physical applications of these effects have
been found, for example, in α-particle scattering by nuclei.6

There is an important physical lesson in this result: classical physics
does not directly emerge as the limit �→ 0 of quantum physics; that limit
here simply does not exist. Classical results are valid for the description of
the scattering of marbles and billiard balls because the interference effects
would be noticeable only if the energies of the missiles could be controlled
far more precisely than is macroscopically feasible; they are washed out by
the practical experimental errors of observations of such objects.

6For details, see the papers [Ford 59a] and [Ford 59b].
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6.2 Bound-State Perturbation Theory

The next topic will be perturbation theory as applicable to the bound-state
solutions of the time-independent Schrödinger equation. The question to
be answered is, if the Hamiltonian of a system is altered by a small amount,
what are the corresponding small changes in the energy levels and in the
energy eigenvectors?

Assume, then, that the Hamiltonian is of the form

H = H0 + λH′, (6.27)

where the unperturbed Hamiltonian H0 is now not just the kinetic en-
ergy but includes some known interaction. For simplicity, assume that the
spectrum of H0 consists of discrete points only, and the eigenvalues E0

n,
n = 1, 2, . . ., as well as the (normalized) eigenfunctions |E0

n〉 of H0 are
known. Furthermore, assume that both the eigenvalues and the eigenvec-
tors of H can be expanded in a power series in λ, of which we are interested
only in the first few terms.7

As we saw in Section 4.4.1, the eigenvalues and eigenvectors of H can be
recognized as the poles and residues of the resolvent operator,

(E −H)−1 =
∑
n

|En〉 〈En|
E − En

, (6.28)

which is nothing but a re-expression of (4.125) in operator form. Conse-
quently the equation

〈E0
m|(E −H)−1|E0

m′〉 =
∑
n

〈E0
m|En〉 〈En|E0

m′〉
E − En

(6.29)

may be used to recognize the eigenvalues of H from the positions of the
poles of the function of E on the left, and the transformation functions
〈E0

m|En〉 from the corresponding residues. Once the numbers 〈E0
m|En〉 are

known, so are the new, perturbed, normalized eigenvectors by their expan-
sion

|En〉 =
∑
m

〈E0
m|En〉 |E0

m〉 (6.30)

on the basis of the unperturbed eigenvectors.
Let us isolate the terms up to λ2 in the operator8

(E −H)−1 = (E −H0 − λH′)−1 = (E −H0)−1 [11− λH′(E −H0)−1]−1
;

7The question of whether the series converges or perhaps is a non-convergent asymp-
totic series will be left open.

8Remember that (AB)−1 = B−1A−1.
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that is,

(E −H0 − λH′)−1 = (E −H0)−1 + λ(E −H0)−1H′(E −H0)−1

+λ2(E −H0)−1H′(E −H0)−1H′(E −H0)−1

+λ3[(E −H0)−1H′]3(E −H0 − λH′)−1, (6.31)

and from now on ignore the last term. The neglect of such higher-order
terms in powers of λ relies on the assumption that the operator norm
‖ λ(E−H0)−1H′ ‖ is small compared to 1, and this requires not only that
λ be sufficiently small for a given H′, but also that E not be too close to
one of the eigenvalues of H0. Perturbation theory has to be treated very
cautiously if the spacing of the eigenvalues of H0 is very close and a shifted
eigenvalue of H gets near the next eigenvalue of H0. (This case will be
considered separately in Section 6.2.2.)

6.2.1 The nondegenerate case
Assuming for the moment—subject to later correction—that there is no
degeneracy, writing

H ′nm
def= 〈E0

n|H′|E0
m〉,

and keeping only terms up to order λ2, we obtain from (6.31)

〈E0
n|(E −H)−1|E0

m〉 =
δnm

E − E0
n

+ λ
H ′nm

(E − E0
n)(E − E0

m)

+ λ2
∑
k 	=n

H ′nkH
′
km

(E − E0
n)(E − E0

k)(E − E0
m)

+ λ2 H ′nnH
′
nm

(E − E0
n)2(E − E0

m)
+ . . .

=
Nnm(E)
Dn(E)

, (6.32)

where the numerator Nnm and the denominator Dn are given by

Nnm(E) def= δnm

1− λ H ′nn
E − E0

n

− λ2
∑
k 	=n

|H ′nk|2
(E0

n − E0
k)(E − E0

n)


+λ

H ′nm
E − E0

m

+ λ2
∑
k 	=n

H ′nkH
′
km

(E − E0
k)(E − E0

m)
+ . . . (6.33)

Dn(E) def= E − E0
n − λH ′nn − λ2

∑
k 	=n

|H ′nk|2
E0
n − E0

k

+ . . . . (6.34)

The terms belonging to Nnm are unambiguously distinguished from those of Dn by
the fact that Dn is independent of m and of the form Dn(E) = E−E0

n−λa+λ2b+ . . .,
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while Nnm varies with m and remains finite in the vicinity of E = E0
n. So, first take

n = m to identify Dn and Nnn:
1

E − E0
n

+ λ
H′
nn

(E − E0
n)2

+λ2
∑
k �=n

|H′
nk|2

(E − E0
n)2(E − E0

k)
+ λ2 (H′

nn)2

(E − E0
n)3

+ . . .

=
1

E − E0
n

1 + λ
H′
nn

(E − E0
n)

+ λ2 (H′
nn)2

(E − E0
n)2

+ λ2
∑
k �=n

|H′
nk|2

(E − E0
n)(E0

n − E0
k)

+ . . .


×
1 + λ2

∑
k �=n

|H′
nk|2

E − E0
n

(
1

E − E0
k

− 1
E0
n − E0

k

)
+ . . .


=

E − E0
n − λH′

nn − λ2
∑
k �=n

|H′
nk|2

E0
n − E0

k

+ . . .

−1

×
1 − λ2

∑
k �=n

|H′
nk|2

(E − E0
k)(E

0
n − E0

k)
+ . . .

 ;

then multiply the left-hand side of (6.32) by this Dn to calculate Nnm for n �= m.

From the denominator function Dn(E) we can conclude that the pole
occurs at the shifted eigenvalue E = En, where

En = E0
n + λH ′nn + λ2

∑
k 	=n

|H ′nk|2
E0
n − E0

k

+ . . . , (6.35)

while from the numerator function Nnn(En) for m = n, evaluated at E =
En, it follows that

|〈E0
n|En〉|2 = 1− λ2

∑
k 	=n

|H ′nk|2
(E0

k − E0
n)2

+ . . . ,

or, to within an arbitrary phase,

〈E0
n|En〉 = 1− 1

2
λ2
∑
k 	=n

|H ′nk|2
(E0

k − E0
n)2

+ . . . . (6.36)

For m �= n, the numerator function becomes, to order λ2,

Nnm(En) = 〈E0
n|En〉 〈En|E0

m〉

= λ
H ′nm

En − E0
m

+ λ2
∑
k 	=n

H ′nkH
′
km

(En − E0
k)(En − E0

m)
+ . . .

from which it follows (since we found that 〈E0
n|En〉 differs from 1 only by

a term of order λ2) that for m �= n,

〈E0
m|En〉 = λ

H ′mn
En − E0

m

+ λ2
∑
k 	=n

H ′mkH
′
kn

(En − E0
k)(En − E0

m)
+ . . .
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= λ
H ′mn

E0
n − E0

m

+λ2

∑
k 	=n

H ′mkH
′
kn

(E0
n − E0

k)(E0
n − E0

m)
− H ′mnH

′
nn

(E0
n − E0

m)2

+ . . . . (6.37)

Equations (6.35) and (6.37) are the eigenvalue shifts and the expansion
coefficients of the eigenfunctions to second-order perturbation theory, pro-
vided there is no degeneracy and the unperturbed levels are not too closely
spaced.

6.2.2 Closely spaced levels
In order to handle the more complicated case in which two unperturbed
levels, call them E0

1 and E0
2 , are so closely spaced that there is a possibility

that a small perturbation may actually make them cross, let us write the
resolvent operator (E − H)−1 in a convenient form by introducing the
mutually orthogonal projection operators

P1
def= |E0

1〉〈E0
1 |, Q1

def= 11− P1 =
∑
n 	=1

|E0
n〉〈E0

n|

and defining

Q′ def= Q1(E −H0)−1Q1 =
∑
n 	=1

|E0
n〉〈E0

n|
E − E0

n

.

A bit of straight-forward algebra9 leads to the following expression:

(E −H0 − λH′)−1 = Q′(11− λH′Q′)−1

+ (11− λQ′H′)−1P1(E − E0
1 −M)−1P1(11− λH′Q′)−1, (6.38)

where
M def= λP1(11− λH′Q′)−1H′P1.

Next, we separate out the second level by means of the projection

P2
def= |E0

2〉〈E0
2 |

and define

Q′′ def= Q′ − P2

E − E0
2
.

9Do it!
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Regarding E−E0
2 as of the same order as λ|H ′22|, one then obtains, to first

order,

M = λP1H′P1 +
λ2

E − E0
2
P1H′P2

(
11− λ

E − E0
2
P2H′P2

)−1

P2H′P1 + . . . .

Now, according to (6.38), the position of the pole of (E −H)−1 near E0
1

is obtained, to first order, from the equation

E = E0
1 + 〈E0

1 |M|E0
1〉 = E0

1 + λH ′11 +
λ2|H ′12|2

E − E0
2 − λH ′22

,

which means, with E′1
def= E0

1 + λH ′11 and E′2
def= E0

2 + λH ′22,

(E − E′1)(E − E′2) = λ2|H ′12|2,

the solutions of which are (assuming E0
1 < E0

2),

Ea =
1
2
[E0

1 + E0
2 + λ(H ′11 +H ′22)]

− 1
2

√
[E0

1 − E0
2 + λ(H ′11 −H ′22)]2 + 4λ2|H ′12|2 < E′1,

Eb =
1
2
[E0

1 + E0
2 + λ(H ′11 +H ′22)]

+
1
2

√
[E0

1 − E0
2 + λ(H ′11 −H ′22)]2 + 4λ2|H ′12|2 > E′2.

Take the case when H ′11 > 0, H ′22 < 0, and H ′12 �= 0. As shown in Figure
6.5, what is happening here is that the two levels, which in ordinary first-
order perturbation theory would cross as λ increases, because E′1 is rising
linearly and E′2 is declining, are apparently repelled by one another; for
large enough λ, E′b, which started out decreasing from E0

2 , will rise like
E′1, and E′a, which began by rising from E0

1 , will decrease like E′2, and the
levels never actually intersect. Thus, what at first sight looks like a crossing
of the two levels with increasing λ, on closer inspection reveals itself as no
crossing at all, but a switching of the identities of the two levels, with a
small remaining gap.

6.2.3 The case of degeneracy
The case in which there is degeneracy in the unperturbed spectrum and a
perturbation removes it—that is, it splits a single energy level into several
distinct ones—is the physically most interesting one, because minute split-
tings are much easier to observe experimentally than simple small shifts.
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FIGURE 6.5. The upper figure shows the change of two energy levels as a function
of λ according to ordinary first-order perturbation theory; the lower figure shows
the way they actually change when the proximity of the levels is taken into
account.

It is therefore important to note that, if there is degeneracy in the unper-
turbed spectrum, the procedure given above breaks down. The underlying
reason for this is not hard to understand: on the degenerate subspace (the
eigenspace of H0 at the degenerate eigenvalue E0

n) the (normalized) basis
vectors, as eigenvectors of H0, are not uniquely determined (to within a
phase factor); any orthogonal linear combination of them would serve as
well. But in order for the λ-expansion to make sense, the eigenvectors have
to be continuous functions of λ. So if the perturbation removes the degener-
acy, envision starting with the perturbed eigenfunctions and continuously
decreasing λ to 0, thus turning the perturbation off; the eigenvectors will
then approach a specific set of eigenvectors on the degenerate subspace,
the “correct linear combinations” of the original basis vectors, which, in
the absence of the perturbation, are arbitrarily oriented. If an “incorrect
linear combination” had been chosen when attempting to start the pertur-
bation expansion, these basis vectors would not be continuously connected
to the perturbed eigenvectors, and the perturbation theory would fail at
the lowest order of λ that removes the degeneracy. Let’s see how this, in
fact, manifests itself.
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To begin with, consider first-order perturbation theory. While the first-
order energy shift λH ′nn of the nth level seems to present no difficulties
if E0

n = E0
n′ , you will notice from (6.36) and (6.37) that there is going

to be trouble because of vanishing energy-denominators. To remove the
problem, we make use of the freedom to rotate the eigenvectors |E0

nj
〉 on

the degenerate subspace and define a new set of orthonormal eigenvectors
by

|E0
nl
〉〉 def=

∑
j

Mjl|E0
nj
〉, (6.39)

where the matrix M is unitary. The new matrix elements of the perturba-
tion on the degenerate subspace are then

Ĥ ′ninj

def= 〈〈ni|H′|nj〉〉 = (M−1H ′M)ij , (6.40)

and, since H′ is Hermitian, M may be chosen so as to diagonalize the
perturbation matrix H ′ on the E0

n-eigenspace of H0. The effect of using
Ĥ ′nm instead of H ′nm in the expansions, beginning with (6.32), is then that
the summations exclude all the terms for which E0

k = E0
n, and in the

formula that replaces (6.37) for 〈〈E0
ni
|Enj 〉, i �= j, the linear term in λ is

missing. The numbers Ĥ ′nn that appear in (6.35) as the first-order energy
shifts are now the eigenvalues of the perturbation matrix on the degenerate
subspace, and they are calculated in the usual manner as the zeros of the
secular equation for the matrix.

If the eigenvalues of the perturbation matrix H ′ on the degenerate sub-
space are not all equal, so that the diagonal matrix elements Ĥ ′nini

are
not all the same, then (6.35) shows that the degeneracy is (at least in
part) removed in first order, that is, whereas several unperturbed energies
are degenerate, their first-order perturbed values are no longer all equal.
For the calculation to work, the correct linear combinations of unperturbed
eigenfunctions have to be chosen, namely, those that diagonalize the pertur-
bation matrix on the degenerate subspace, and these are the eigenfunctions
of H0 that are the continuous limits of the eigenfunctions of H0 + λH′ as
λ→ 0.

An example. Denote the eigenvalues of the unperturbed Hamiltonian
by E0

n, n = 0, 1, 2, . . ., and let the matrix of a perturbation H′ on the basis
of the eigenstates of H0 be H ′nm. Assume that E0

0 is nondegenerate and
that E0

1 is twofold degenerate. We then have to find the eigenvalues of the
matrix

λ

(
H ′11 H ′12
H ′21 H ′22

)
,

which means we have to solve the secular equation∣∣∣∣ λH ′11 − ε λH ′12
λH ′21 λH ′22 − ε

∣∣∣∣ = 0,
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or

ε2 − ελ(H ′11 +H ′22) + λ2(H ′11H
′
22 − |H ′12|2) = 0.

Therefore, the degeneracy is removed in first order and the two energy
shifts are, in first order perturbation theory,

E±1 − E0
1 = λ

[
1
2
(H ′11 +H ′22)±

1
2

√
(H ′11 −H ′22)2 + 4|H ′12|2

]
,

leading to a split of the originally degenerate level into two levels with an
energy difference given by

∆ = λ
√

(H ′11 −H ′22)2 + 4|H ′12|2.

The only way for this split to vanish, that is, for the degeneracy not to be
removed in first order, is for H ′11 = H ′22 and H ′12 = 0, which makes the
matrix H ′ equal to H ′1111.

Degeneracy removal in second order

If, after the diagonalization of the matrix H ′ on the degenerate subspace,
the diagonal values Ĥ ′nini

are all equal, then the degeneracy is not removed
in first order. At the same time, this means that all the eigenvalues of the
matrix of H ′ on that subspace are the same, which implies that H ′ there
is a multiple of the unit matrix, and the diagonalization was not necessary
because it must have been diagonal to begin with. Equation (6.37) shows
in that case an analogous problem arises in second order for 〈E0

n′ |En〉 if
E0
n′ = E0

n. If the degeneracy is removed in first order, then En − E0
n′ is of

order λ and the first line of (6.37) shows that the λ2-term becomes linear
in λ, with no ensuing difficulty. However, if the degeneracy is not removed
in first order, then En − E0

n′ in the denominator is of order λ2, and the
λ2-term becomes independent of λ, thus remaining nonzero as λ→ 0.

The remedy is analogous to the previous case. It is now necessary to
diagonalize the matrix

Mn′n =
∑
k 	=n

H ′n′kH
′
kn

E0
n − E0

k

= 〈E0
n′ |H′Qn(E0

n −H0)−1QnH′|E0
n〉,

on the degenerate subspace, where Qn is the projection on the orthogo-
nal complement of the eigenspace of H0 at E0

n, and the basis functions
that do this diagonalization are the “proper linear combinations” of the
original basis functions that fit continuously with the perturbed eigenfunc-
tions. (Since, by assumption, the matrix H ′ on the degenerate subspace is
a multiple of the unit matrix, this change of basis has no effect on it.)
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6.2.4 Second-order shifts from first-order states
Suppose the wave function has been calculated to first order in λ, that is,
according to (6.37) and (6.36),

〈E0
k|En〉 = 〈E0

k|E1
n〉 = λ

H ′kn
E0
k − E0

n

, k �= n,

while 〈E0
n|E1

n〉 = 1. We then find that to second order in powers of λ

λ〈E1
n|H′|E1

n〉 = λH ′nn + 2λ2
∑
k 	=n

|H ′kn|2
E0
n − E0

k

+ . . .

and

〈E1
n|H0|E1

n〉 = E0
n + λ2

∑
k 	=n

E0
k|H ′kn|2

(E0
n − E0

k)2
+ . . .

= E0
n

1 + λ2
∑
k 	=n

|H ′kn|2
(E0

n − E0
k)2

 − λ2
∑
k 	=n

|H ′kn|2
E0
n − E0

k

+ . . .

=

1 + λ2
∑
k 	=n

|H ′kn|2
(E0

n − E0
k)2

E0
n − λ2

∑
k 	=n

|H ′kn|2
E0
n − E0

k

+ . . . ,

so that

〈E1
n|H0 + λH′|E1

n〉 =

1 + λ2
∑
k 	=n

|H ′kn|2
(E0

n − E0
k)2


×

E0
n + λH ′nn + λ2

∑
k 	=n

|H ′kn|2
E0
n − E0

k

+ . . . .

Furthermore,10

〈E1
n|E1

n〉 = 1 + λ2
∑
k 	=n

|H ′kn|2
(E0

n − E0
k)2

+ . . . .

Comparison with (6.35) shows that therefore, if we define the functional

EH(Ψ) def=
(Ψ,HΨ)
(Ψ,Ψ)

, (6.41)

then to second order [writing En
def= E

(2)
n +O(λ3)]

E(2)
n = EH(ΨE1

n
), (6.42)

10The first-order state vectors are normalized to first order, but not to second order!
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which means that the energy is given correctly to second order as the ex-
pectation value of H in the eigenstate as calculated correctly to first order,
just as the energy is given correctly to first order as the expectation value
of the Hamiltonian in an eigenstate that is correct to zeroth order (see
(6.35)). The underlying reason for this will become aparent in Section 6.3.

6.2.5 Effects of symmetry
Suppose that the Hamiltonian H0 has a symmetry group G (for example,
H0 is rotationally invariant) and the degeneracy of the level E0

n is normal,
that is, E0

n belongs to an irreducible representation of G (in the rotationally
invariant case, each level belongs to a specific value of l, and there is just the
m degeneracy). If H′ has the same symmetry group, then H must have at
least the same degeneracy; H′ cannot remove this degeneracy in any order.
This follows, first of all, from the fact that G is then a symmetry group
of H = H0 + λH′, but it can also be seen in each order of perturbation
theory, because Schur’s lemma E.3 in Appendix E tells us that all matrix
elements H ′nk that connect different irreducible representations vanish, and
that on each degenerate subspace (i.e., for each irreducible representation),
the matrix {H ′nn′} is a multiple of the unit matrix.

If H0 has accidental degeneracy as well (say, a level of one angular mo-
mentum l happens to have the same energy as a level of another angular
momentum l′), this degeneracy can be removed by H′, and using the basis
vectors belonging to irreducible representations of G is automatically the
correct choice to make perturbation theory work.

Next, suppose that H′ has less symmetry than H0 (say, it has only axial
symmetry). In that case, the symmetry group G′ of H is a subgroup of
G, and every representation of G is also a representation of G′. However,
if it is irreducible as a representation of G, it need not be irreducible as
a representation of G′. Let En belong to the κ-dimensional representation
Γκ, irreducible for G, and suppose that Γκ contains the two irreducible
representations Γκ1

1 and Γκ2
2 of G′: Γκ = Γκ1

1
⊗

Γκ2
2 . Then the originally

κ-fold degenerate level E0
n can be split into two levels, one of degeneracy

κ1 and the other of degeneracy κ2, and again, the basis vectors according
to the irreducible representations Γκ1

1 and Γκ2
2 of G′ are the correct choice,

because on these bases H ′ is diagonal.
There is, however, another possibility: there may be accidental degen-

eracy in H0 in which the states of the level transform under the same
irreducible representation several times over. In such a case, the arguments
given are insufficient, and it becomes necessary to do additonal work to
find the “correct linear combinations.”
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6.2.6 Relativistic correction to hydrogenic levels
The relativistic Hamiltonian of a particle of electric charge e subject to a
scalar potential φ differs from its nonrelativistic form; since the relativistic
energy-momentum relation for such a particle is

(E − eφ)2 = M2c4 + c2�p2,

Schrödinger already introduced a relativistic wave equation that has the
same form as the nonrelativistic equation that bears his name, but with
the Hamiltonian operator defined by

(H− eφ)2 = M2c4 + c2�p2. (6.43)

Rather than fully treating the resulting modified equation, which is subject
to some special difficulties (we shall discuss relativistic wave equations in
Chapter 10), it is sometimes useful and sufficient to apply a first-order
relativistic correction to the kinetic energy,

T =
√
�p2c2 +M2c4 −Mc2 =

�p2

2M
− (�p2/2M)2

2Mc2
+ . . . , (6.44)

which means that the first-order correction to the nonrelativistic Hamilto-
nian H0 of a hydrogenic atom is given by

H′rel = − (�p2/2M)2

2Mc2
= − 1

2Mc2
(H0 +

Ze2

r
)2. (6.45)

In first-order perturbation theory, the energy shift is thus

∆E = − 1
2Mc2

[
E02 + 2Ze2E0〈r−1〉+ Z2e4〈r−2〉

]
, (6.46)

which means we need to calculate the expectation values 〈r−2〉 and 〈r−1〉
in hydrogenic states.

The radial Hamiltonian for a hydrogenic atom is given by

H0 =
1

2M

[
p2
r +

�
2l(l + 1)
r2

]
− Ze2

r
.

To calculate 〈r−2〉, employ the Hellmann-Feynman formula (4.38), differentiating H0
with respect to the parameter l,11

∂E0

∂l
=
〈
∂H0

∂l

〉
=

�
2

M
(l +

1
2
)〈r−2〉.

On the other hand, according to (4.70), the energy eigenvalues of a hydrogenic atom are

E0
n = − Z2e2

2n2a0
, n = l + 1 + nr,

11As already noted earlier, in the radial Hamiltonian, l is a parameter that can be
changed continuously; the requirement that l be an integer arises from the angular part
of the Hamiltonian.
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where

a0
def=

�
2

Me2
, (6.47)

is the Bohr radius, so that
∂E0

∂l
=
∂E0

∂n
=
Z2e2

n3a0
,

with the result

〈r−2〉 =
Z2

n3a2
0

1
l + 1

2

. (6.48)

In order to calculate 〈r−1〉, differentiate H0 with respect to Z and again apply the
Hellmann-Feynman formula:〈

∂H0

∂Z

〉
= −e2〈r−1〉 =

∂E0

∂Z
= − Ze2

n2a0
;

therefore
〈r−1〉 =

Z

n2a0
. (6.49)

Inserting the results (6.48) and (6.49) in (6.46) yields the following rela-
tivistic shift in the nth energy level of a hydrogenic atom

∆Erel
n =

Z4α4

2n3

(
3
4n
− 1
l + 1

2

)
Mc2, (6.50)

in which

α
def=

e2

�c
(6.51)

is the fine-structure constant, whose dimensionless value is α � 1/137.037.
It should be noted that we applied perturbation theory and managed

to calculate small corrections to the eigenvalues, even though the pertur-
bation is not “small” in an operator sense; it is, however, small for these
particular states. Note also that relativity destroys the l-degeneracy of the
nonrelativistic hydrogen atom. (This is true, however, only if the spin of
the electron is neglected, as we shall see later.)

6.2.7 The Stark effect
Let us apply stationary perturbation theory to a physical system consisting
of a hydrogen atom in a weak, uniform external electric field of magnitude
E . In this case, the unperturbed Hamiltonian is

H0 = − �2

2M
∇2 − e2

r
,

and if the z-axis is chosen in the direction of the electric field, the interaction
with the electric field is given by

H′ = eφ = −eEz.
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This perturbation, of course, is not small in the operator sense; it is un-
bounded. Not only that, but the total potential energy tends to −∞ in one
direction, so that the system cannot have any bound states at all! In the
presence of the electric field, the original bound states, in fact, all become
unstable states, with a finite lifetime. Nevertheless, perturbation theory
works, and the shifts from the original energies of the stable states to those
of the new, unstable ones will be small if the electric field is sufficiently
weak.

In first order, the shift in the energy of the nth level is simply

∆En = H ′nn = −eE
∫
d3r z|ψn|2

if ψn is the nth eigenfunction of the unperturbed Hamiltonian. Consider
first the ground state. In that case we must have l = m = 0, and the
eigenfunction is spherically symmetric; as a result, the integral on the right
vanishes, since the integrand is anti-symmetric. There is no first-order Stark
effect in the ground state of the hydrogen atom.

The first excited level is fourfold degenerate, with the angular momen-
tum quantum numbers (l,m) = (0, 0), (1, 0), (1, 1), (1,−1). Because z and
Lz commute, the matrix elements of z connecting different values of m
necessarily vanish: 0 = 〈m|zLz − Lzz|m′〉 = (m′ −m)〈m|z|m′〉. Therefore,
there are nonvanishing off-diagonal matrix elements for the first two of the
above listed angular momenta only, and these are

H ′2l0,2l′0 = −eE
∫
d3r ψ∗2l0zψ2l′0

= −eE2π
√

2
2l + 1

√
2

2l′ + 1

×
∫ ∞

0
drr2

∫ 1

−1
d cos θ Rl(r)Rl′(r)r cos θPl(cos θ)Pl′(cos θ).

Since
∫ 1
−1 d cos θ cos θP 2

l (cos θ) = 0, the diagonal elements of this 2 × 2
submatrix are zero, and the off-diagonal elements are12

H ′200,210 = H ′210,200 = −2πE√
3
a0

2
3

1
2!3!3/24

∫ ∞
0

dρ ρ4L1
2(ρ)L

3
3(ρ)e

−ρ = 3ea0E ,

where a0 is the Bohr radius given by (6.47). So the perturbation matrix is

H ′ = 3ea0E
(

0 1
1 0

)
,

12The two relevant Laguerre polynomials are L3
3(ρ) = −6 and L1

2(ρ) = 2(ρ− 2). You
should verify this.
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whose eigenvalues are±3ea0E . As a result, the two degenerate levels (2, 1, 0)
and (2, 0, 0) are split, one shifted upward by 3ea0E , the other downward
by the same amount, while there still remain the two degenerate, unshifted
levels (2, 1, 1) and (2, 1,−1). The latter two will, of course, be shifted in
second order, but for a weak electric field, this second-order shift will be
much smaller than the first order.

Now recall that the interaction energy of an electric point dipole �a in an
electric field �E is −�a· �E. Therefore, the hydrogen atom in a state with n = 2
acts as though it had an electric dipole moment of magnitude −3ea0, which
can be oriented parallel, anti-parallel, or perpendicular to �E. In the ground
state, no such permanent electric dipole moment can exist; there can then
be only an induced dipole moment, so that the interaction energy is pro-
portional to E2: this is the quadratic Stark effect, which manifests itself
in second order. Note that the electric dipole moment of a charged system
is given in terms of its charge density ρ by

∫
d3r �rρ, which quantum me-

chanically becomes e
∫
d3r �r|ψ|2. Because H0 is rotationally invariant, this

would vanish on parity grounds, if it weren’t for the degeneracy; therefore
in its first excited state the hydrogen atom can have a permanent electric
dipole moment, a spontaneous breaking of its symmetry, only because of
the degeneracy of that state!

6.3 Variational Methods

In this section we shall describe an approximation procedure that is par-
ticularly useful for precise numerical calculations.

6.3.1 Bound states
Suppose that E is an eigenvalue of H and that ΨE is a corresponding eigen-
vector, HΨE = EΨE ; then the functional EH(Ψ) defined by (6.41), which
is simply the expression for the expectation value of H in an eigenstate, is
such that EH(ΨE) = E. Furthermore, this expression for the eigenvalue has
the remarkable property of being stationary with respect to small variations
in Ψ in a neighborhood of an eigenvector ΨE of H. To see this, calculate

δEH(Ψ) =
(δΨ,HΨ) + (Ψ,HδΨ)

(Ψ,Ψ)
− (Ψ,HΨ)

(δΨ,Ψ) + (Ψ, δΨ)
(Ψ,Ψ)2

=
(δΨ, [(Ψ,Ψ)H− (Ψ,HΨ)]Ψ) + ([(Ψ,Ψ)H− (Ψ,HΨ)]Ψ, δΨ)

(Ψ,Ψ)2
,

for arbitrary small δΨ, to first order in ‖ δΨ ‖, and this vanishes when
Ψ = ΨE . What is more, it follows from the second line that if δEH(Ψ) = 0
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for arbitrary small δΨ, then (Ψ,Ψ)HΨ − (Ψ,HΨ)Ψ = 0,13 which implies
that Ψ is an eigenvector of H with the eigenvalue E = (Ψ,HΨ)/(Ψ,Ψ).
Therefore, we have the following:

Theorem 6.1 The functional EH(Ψ) defined by (6.41) is stationary near
Ψ = ΨE if and only if ΨE is an eigenvector of H with the eigenvalue
E = EH(ΨE).

In view of this theorem, the point spectrum of H may be defined as the set
of those values of EH(Ψ) at which this functional is stationary.

We can say more: if E0 is the energy of the ground state, i.e., the smallest
eigenvalue of H, then for all Ψ,

EH(Ψ) ≥ E0,

as is easily seen14 by expanding Ψ on the basis of the eigenstates of H. So at
Ψ = ΨE0 , the stationary point of E is actually a global minimum with the
value E0. This implies that if we have a pretty good approximation Ψ to the
ground state ΨE0 , then the value of EH(Ψ) is a very good approximation to
the ground-state energy. We can put it this way: if the trial function Ψapprox

differs from the exact eigenfunction Ψexact by an unknown error-vector of
order ε,

Ψapprox = Ψexact + εΨ′,

then the eigenvalue calculated as the expectation value of H in the state
Ψapprox,

EH(Ψapprox) = Eapprox = Eexact + ε2c+ . . . ,

is correct with an error of order ε2. This explains why the perturbation of
a state vector, calculated by means of (6.41) and the use of a state vector
that is correct to first order, leads to an eigenvalue that is correct to second
order, and why the zeroth-order state is sufficient to calculate the eigenvalue
to first order. Moreover, the thus calculated approximate eigenvalue always
lies above E0. As a result, the perturbation result (6.35) can be sharpened
for the ground state,

Eexact
0 ≤ E0

0 + λH ′00 − λ2
∑
k 	=0

|H ′0k|2
E0
k − E0

0
+ . . . . (6.52)

Suppose the functional EH(Ψ) is restricted to vectors Ψ that are orthog-
onal to the ground state Ψ0. In that case the value of the so restricted
functional is never less than the energy of the first excited state,15

EH(Ψ)|(Ψ,Ψ0)=0 ≥ E1,

13First you conclude that its real part vanishes, and then, replacing δΨ by iδΨ, that
its imaginary part vanishes.

14Show it.
15Show it.
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and it attains its global minimum there.
The important lesson to be learned is that for numerical purposes, the

employment of a stationary expression such as

E = 〈H〉 = (ΨE ,HΨE)/(ΨE ,ΨE),

has great advantages over others, such as

E = (Φ,HΨE)/(Φ,ΨE),

with an arbitrary Φ, which is equally correct but not stationary near the ex-
act state ΨE . After all, every numerically given eigenfunction is inevitably
an approximation, and the calculation of the energy by means of the sta-
tionary formula minimizes the resulting error.

To use the variational method as a practical calculational tool, one usu-
ally starts with a family of trial functions Ψ(α) that depend on one or more
parameters α and that are preferably chosen so as to resemble (say, in the
configuration representation) in some rough way the shape of the antici-
pated eigenfunction. One then calculates f(α) def= EH(Ψ(α)) and finds the
value α0 of α at which f(α) has a minimum; the best approximation to the
ground-state energy obtainable from this chosen family of trial functions is
then Eapprox

0 = f(α0). Furthermore, if Ψ(α0) is a good approximation to the
exact eigenstate, then Eapprox

0 is an even better approximation to the exact
ground-state energy E0; moreover, we can be sure that Eexact

0 ≤ Eapprox
0 .

The approximation can be made better and better by using trial functions
with more and more parameters. This is, in fact, how most eigenvalues of
complicated Hamiltonians of physical systems are calculated in practice in
order to be compared with experimental results.

6.3.2 The helium atom
Consider the Hamiltonian of the helium atom,

H = − �2

2M
(∇2

1 +∇2
2)−

2e2

r1
− 2e2

r2
+

e2

r12
= H0 + H′, (6.53)

where

H0
def= − �2

2M
(∇2

1 +∇2
2)−

2e2

r1
− 2e2

r2
, H′ def=

e2

r12
.

Since E
(Z)
H

def= Z2EH = −Z2e2/2a0, with a0 = �2/Me2, is the ground-
state energy of a hydrogenic atom of nuclear charge Z, the ground-state
energy of H0, in which the two electrons don’t interact with one another,
is E0 = 8EH, and the normalized wave function is the product of the two
hydrogen wave functions, given by (see Section 4.2.5)

ϕ =
8
πa3

0
e−2(r1+r2)/a0 . (6.54)
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The first-order energy shift owing to the interaction H′ between the two
electrons is therefore

∆E =
64e2

π2a6
0

∫
d3r1d

3r2
e−4(r1+r2)/a0

|�r1 − �r2|
, (6.55)

an integral that I will ask you do as a homework problem. The result is

∆E =
5
2
|EH| =

5
4
e2

a0
,

so that the shifted ground-state energy is given by

E′0 = (−8 +
5
2
)|EH| = −

11
4
e2

a0
= −2.75

e2

a0
. (6.56)

Since the interaction energy, as you will notice, is not a small fraction of
the energy of the system, first-order perturbation theory is not likely to be
a very good approximation. Therefore, we are going to use the variational
method to improve it, using the functional (6.41), whose value at ϕ of (6.54)
is just (6.56). In place of (6.54), we employ as normalized trial function

ϕZ =
Z3

πa3
0
e−Z(r1+r2)/a0 , (6.57)

which would be appropriate for an atom of nuclear charge Z instead of 2.
With this wave function, you find16

〈− �2

2M
∇2〉 = Z2 e

2

2a0
, 〈1

r
〉 =

Z

a0
, 〈 1

r12
〉 =

5
8
Z

a0
,

so that

〈H〉 =
e2

a0
(Z2 − 4Z +

5
8
Z) =

e2

a0
(Z2 − 27

8
Z).

Using Z as the variational parameter, this expression is to be minimized,
with the result17

Zmin =
27
16
, 〈H〉min = −

(
27
16

)2
e2

a0
= −2.85

e2

a0
, (6.58)

which is to be compared to the experimental value, Eexp
0 = −2.904e2/a0.

Thus the variational procedure has obviously improved the agreement. The
physical interpretation of the fact that a Z value of 27/16 leads to a better
result than Z = 2 is that each of the orbital electrons shields the Coulomb
potential seen by the other, so that the effective nuclear charge that binds

16Verify these equations.
17Verify this.
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them both is Zeff = 27/16 < 2. More complicated trial functions have been
used to calculate better approximations to the ground-state energy, and
there is quite satisfactory agreement between theoretical and experimental
results. (In Section 9.1 we shall return to other aspects of the helium atom,
such as auto-ionization and inelastic scattering.)

6.3.3 Scattering
The variational method may also be applied to scattering problems. Con-
sider the calculation of phase shifts for a central potential V (r). Any regular
solution of the radial Schrödinger equation for given l ≥ 0 and k > 0 can
be so normalized that its asymptotic form for large r is given by

ϕ(r) ∼ aϕ cos(kr − π

2
l) + k−1 sin(kr − π

2
l); (6.59)

the number aϕ then determines the phase shift by [see (4.41)]

aϕ = k−1 tan δl. (6.60)

In other words, if a regular solution ϕ of

Hlϕ = k2ϕ, (6.61)

with

Hl
def= − d2

dr2
+
l(l + 1)
r2

+
2M
�2 V (r), (6.62)

is normalized so that

lim
r→∞[kϕ(r) sin(kr − π

2
l) + ϕ′(r) cos(kr − π

2
l)] = 1, (6.63)

and aϕ is defined by

aϕ
def= lim

r→∞[ϕ(r) cos(kr − π

2
l)− k−1ϕ′(r) sin(kr − π

2
l)], (6.64)

then (6.60) determines the phase shift. If such a solution is inserted in the
functional defined by

f(ϕ) def= lim
r→∞[ϕ(r) cos(kr−π

2
l)−k−1ϕ′(r) sin(kr−π

2
l)]−
∫ ∞

0
dr ϕ[Hl−k2]ϕ,

(6.65)
the integral vanishes, with the result that f(ϕ) = aϕ. Moreover, if we require
that the function ϕ be regular at the origin and have the asymptotic form
(6.59) with an unknown aϕ, then you will easily verify18 by two integrations
by parts, that its first variation near a regular solution of (6.61) vanishes:

δf(ϕ) = 0.

18Do it.
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This means that the phase shift δl can be calculated by inserting an exact
regular solution ϕ of (6.61) with the asymptotic normalization (6.63) in the
functional, which then has the value

f(ϕ) = aϕ = k−1 tan δl.

On the other hand, if ϕ is an arbitrary trial function (not necessarily a
solution of (6.61)) that vanishes at the origin, has the asymptotic normal-
ization (6.63), and is a good approximation to a regular solution of (6.61),
then the calculated value of f(ϕ) will be a very good approximation to the
value of aϕ that determines the exact phase shift δl by (6.60). For numer-
ical calculations of the phase shift from a numerical solution of (6.61) it
is therefore much preferable and likely to yield more accurate results to
employ (6.65) rather than simply (6.64).
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6.4 Problems and Exercises

1. Use the WKB approximation to show that an attractive potential
in three dimensions that falls off like r−n for large r has an infinite
number of bound states if n ≤ p. What is the value of p obtained in
this way?

2. A particle of zero angular momentum is subject to the potential

V (r) =
{
−V0 if r < r0,
α/r if r > r0,

where α > 0 and V0 > 0. Use the WKB approximation to calculate
the transmission probability if the particle is inside the well and has
the energy E. (The reult is known as Gamow’s formula.) From this,
estimate the probability per unit time for the particle to get out, and
hence the lifetime of the state.

3. Show that the WKB approximation gives the correct energy eigen-
values for all states of the harmonic oscillator.

4. Consider the energy levels of a double potential well with a high bar-
rier in the center, as shown in Figure 3.6. As we saw in Chapter 3, the
levels are almost degenerate. By regarding the splitting of the levels
as giving rise to “beats” that describe the passing back and forth
of a particle from one well to the other, calculate the approximate
energy split by means of the transmission coefficient in the WKB
approximation.

5. Calculate the transmissioin coefficient for the penetration of the bar-
rier potential V = A − 1

2α
2x2 at an energy E < A in the WKB

approximation.

6. Show that for any two vectors �a and �b,

3
∫
dΩ�a · r̂�b · r̂ = �a ·�b.

7. Do the integral in (6.55), using the expansion (D.9).

8. Consider a particle of mass M free to move along the x-axis, subject
to the potential

V =
4
√

2M
�

A|x|, A > 0.

(a) Use the variational method to find a reasonable approximation to
the ground-state energy. Is the exact ground-state energy likely to be
greater than your result, or smaller?
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(b) By a similar method, find an approximation to the lowest energy
of a state of odd parity.

9. A rotationally invariant Hamiltonian of a spinless particle is subject
to a perturbation H′ that is the y-component of a vector. In first-
order perturbation theory, calculate the energy shifts of the s and p
bound states, assuming that there is no accidental degeneracy.

10. Consider a rigid spherically symmetric system whose center is fixed
and whose moment of inertia about that center is I. Write down its
kinetic energy and add the perturbation H′ = α(LxLy +LyLx). Cal-
culate the energies of the first four levels in first-order perturbation
theory. Is this answer an approximation or is it exact?

11. Consider a hydrogen atom inserted in a constant electric field. What
are the good quantum numbers for the atom in that situation? Use
ordinary first-order perturbation theory for a weak electric field to
calculate the first-order energy shifts of all the levels of the atom. Is
this answer reliable?

12. Calculate the energy eigenvalues for the anharmonic oscillator, whose
Hamiltonian is given by

H = p2/2M +
1
2
Mω2x2 + αx4

for small α to first order in α.

13. Calculate the second-order energy shifts in a one-dimensional har-
monic oscillator subject to the perturbation H′ = αx3. Does this
system actually have bound states? Comment and explain.

14. Use a trial function of the form φ(�r) = e−αr to approximate the
ground state of a particle of mass M and charge e in the Coulomb
potential −e/r. Is the result a good approximation?

15. Two one-dimensional harmonic oscillators of the same mass and clas-
sical frequencies are weakly coupled; the Hamiltonian is given by

H =
p2

1 + p2
2

2M
+

1
2
Mω2(x2

1 + x2
2) + αx1x2.

Calculate the three lowest energy eigenvalues to first order in α.

16. The proton is actually not a point charge but has a charge distribution
whose r.m.s. radius is ∼ 0.8× 10−13cm. Show that electronic s-states
are much more sensitive to the finite nuclear size than are states of
higher angular momentum, and by how much. (What is the physical
reason for this?) Estimate the energy shifts for the 1s and 2s levels in
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hydrogen by assuming that the proton’s charge is uniformly spread
over a sphere, and compare your result with the fine-structure split-
ting. How big are these effects for a muon bound to a proton? What
about a bound system consisting of a proton and an antiproton?

17. A particle of mass M is bound by a potential that has the form
V (r) = −Ar−2 sin(πr/R) for r < R, and V = 0 for r > R, with
4MA/�2 = 103. Use the variational method with a trial function
e−αr to get a good limit on the lowest energy eigenvalue.

18. Using the variational method and the trial function φ(x) = e−α
2x2

find an approximation to the ground-state energy of a particle of mass
M in one dimension, subject to the potential V (x) = 1

2Mω2x2. Is the
result a good approximation?

19. Consider a rotating system subject to the Hamiltonian

H0 = �L2/2I +AL2
z

with AI < 2 and a small perturbation H′ = αL2
x. Find the energies

of the four lowest levels in first-order perturbation theory.



7
Static Magnetic Fields

7.1 The Larmor Precession

A magnetic field �B(�r) can be generated by the vector potential

�A(�r) =
1
4π
∇×
∫
d3r′

�B(�r ′)
|�r − �r ′| , (7.1)

so that �B = ∇× �A. As we saw in Section 2.4, this vector potential manifests
itself in the Hamiltonian of a particle of charge e in the form

H =
1

2M

(
�p− e

c
�A
)2

+ V. (7.2)

If the field �B is uniform, the vector potential can be taken to be

�A =
1
2
�B × �r;

therefore in this case

(�p− e

c
�A)2 = �p2 +

e2

c2
�A2 − e

c
(�p · �A+ �A · �p)

= �p2 +
e2

c2
�A2 − e

2c
(�p · �B ×�r + �B ×�r · �p)

= �p2 +
e2

c2
�A2 − 2Mµ0 �B · �L,
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where �L = �r × �p/� is the orbital angular momentum operator in units of
�, and

µ0
def=

e�

2Mc
.

Thus the Hamiltonian of a particle of charge e in the presence of a static,
uniform magnetic field and no other forces becomes

H =
�p2

2M
+

e2

2Mc2
�A2 − µ0 �L · �B, (7.3)

or, for a sufficiently weak magnetic field (so that the Lorentz force on
the moving particle is small compared to the centrifugal force, evB/c �
Mv2/r), more simply

H =
�p2

2M
− µ0 �L · �B, (7.4)

the last term being the energy of the effective magnetic moment of the
moving charged particle in a magnetic field. As mentioned in Chapter 5, the
factor by which this magnetic moment differs from the angular momentum
is called the gyromagnetic ratio, and its magnitude µ0 for an electron is the
Bohr magneton, whose numerical value is

µ0 = e�/2Mc = 0.927× 10−20ergs/gauss.

Equation (2.19) allows us to write down the equation of motion for the
angular momentum in the form

i�
d

dt
�L = [ �L,H] = −µ0[ �L, �L · �B]

because the first term in (7.4) is invariant under rotations and hence com-
mutes with �L. The commutation relations (2.32) therefore yield the equa-
tion of motion

d �L
dt

=
µ0

�
�L × �B, (7.5)

just as classically. The result is a precession of the angular momentum
vector about the magnetic field1 with the Larmor frequency

ωL
def=

eB
2Mc

(7.6)

if B is the magnitude of the magnetic field.
Let us find the energy eigenvalues of the Hamiltonian (7.2). In the con-

figuration representation, the time-independent Schrödinger equation has
the form [

− �2

2M
(∇− i e

�c
�A)2 + V

]
ψ = Eψ. (7.7)

1Show this.



7.1 The Larmor Precession 219

Consider the simplest case, a uniform magnetic field Bêz in the z-direction,
and no other potential. Such a magnetic field can be generated by the vector
potential

Ax = −1
2
By, Ay =

1
2
Bx, Az = 0.

In cylindrical coordinates, the Schrödinger equation then reads2[
− ∂2

∂ρ2 −
1
ρ

∂

∂ρ
− 1
ρ2

∂2

∂φ2 −
∂2

∂z2 +
ρ2

4R4
c

+ i
1
R2
c

∂

∂φ

]
ψ =

2ME

�2 ψ,

where

Rc
def=

√
�c

eB
is the cyclotron radius. The assumption that ψ has the form ψ = f(z)F (ρ, φ),
as in the usual separation of variables, leads to f(z) = eiKz. Subsequently
expanding the φ-dependence of F (ρ, φ) in a Fourier series

F (ρ, φ) =
∞∑

m=−∞
eimφRm(ρ),

yields the following differential equation for Rm(ρ):[
− ∂2

∂ρ2 −
1
ρ

∂

∂ρ
+
m2

ρ2 +
ρ2

4R4
c

]
Rm(ρ) =

(
2ME

�2 −K2 +
m

R2
c

)
Rm(ρ).

(7.8)
For comparison, consider the Schrödinger equation of an isotropic har-

monic oscillator of mass M in two dimensions:[
− �2

2M
∇2 +

1
2
Mω2

L(x2 + y2)
]
ψosc = Eψosc,

with ωL as defined by (7.6). In polar coordinates, after the same separation
of variables as before, this becomes[

− ∂2

∂ρ2 −
1
ρ

∂

∂ρ
+
m2

ρ2 +
M2

�2 ω
2
Lρ

2
]
Rosc
m =

2ME

�2 Rosc
m . (7.9)

The spectrum of the two-dimensional harmonic oscillator is easily obtained
from that of the one-dimensional one, because in Cartesian coordinates the
eigenfunctions are simply products of those in one dimension; that is, they
are of the form

ψn1,n2(x, y) = Hn1(
√
MωL/�x)Hn2(

√
MωL/�y)exp

[
−MωL

2�
(x2 + y2)

]
,

2Show this.
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where the Hn are Hermite polynomials, and the energy eigenvalues are the
sums of those for the two one-dimensional oscillators

Eosc
n = �ωL(n1 +

1
2

+ n2 +
1
2
), n1, n2 = 0, 1, 2, . . . .

Since Hn is a polynomial of order n, the highest powers of cosφ and sinφ in
ψn1,n2(x, y) are cosn1 φ and sinn2 φ; this implies that (a) for a given value
of m, as in (7.8), we must have n1 = n2, so that the polynomials in cosφ
and sinφ can add up to eimφ = (cosφ + i sinφ)m; and (b) as a function
of φ, for a given value of n = n1 = n2 there are no Fourier components of
order higher than |m| = 2n; in other words, for a given value of m, we must
have 2n ≥ |m|. It follows that the eigenvalues of (7.9) are 2MEosc

n /�2, with

Eosc
n = �ωL 2(n+

1
2
), n = |m|, |m|+ 1, |m|+ 2, . . . .

However, since MωL/� = 1/(2R2
c), the operator in (7.8) is identical to that

in (7.9); therefore, its eigenvalues are

2M
�2 En −K

2 +
m

R2
c

=
2M
�2 �ωL(2n+ 1) = R−2

c (2n+ 1),

implying that the energies of the charged particle in the magnetic field are

En = �ωc(n+
1
2
) +

�2K2

2M
, n = 1, 2, . . . , (7.10)

where ωc
def= eB/Mc = 2ωL is the cyclotron frequency, and for each given

value of n, the allowed values of m are |m| < 2n. The term �2K2/2M is, of
course, nothing but the part of the kinetic energy owing to the motion in
the direction of the magnetic field, which is unaffected by that field, just as
classicially. So, the circular projection of the classical motion of a charged
particle on the plane perpendicular to the magnetic field is quantized, with
an energy spectrum equal to that of a simple harmonic oscillator of the
cyclotron frequency, while the component of the motion in the direction of
the magnetic field retains its continuous spectrum.

It is interesting to note that the problem can also be solved by adopting
a different gauge for the vector potential, in which

Ax = −By, Ay = Az = 0,

so that (7.7) becomes[
− ∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 −
2iy
R2
c

∂

∂x
+
y2

R4
c

]
ψ =

2ME

�2 ψ. (7.11)

The ansatz
ψ

def= eiKz+ikxf(y),
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(which is justified by the fact that (7.11) does not contain the variables x
and z, so that the Hamiltonian commutes with the x and z components
of the momentum, as a result of which these momentum components are
conserved) leads to the differential equation3 for f

−f ′′ + (y + kR2
c)

2

R4
c

f =
(

2ME

�2 −K2
)
f, (7.12)

which is identical to the equation of a simple one-dimensional harmonic
oscillator with the cylcotron frequency ωc, but with its center displaced to
y0

def= −kR2
c . The resulting energy eigenvalues agree with (7.10), and the

(non-normalized) eigenfunctions are given by

ψn = eiKz+ikxHn(
y − y0
Rc

)e−(y−y0)2/2R2
c , (7.13)

in terms of Hermite polynomials (see Appendix D.3). The (real) value of k
being arbitrary, the center y0 of the motion is arbitrary as well, and there
is an infinite degeneracy.

7.2 The Aharanov-Bohm Effect

As you know, classically it is only the magnetic field that can have any
physical effects, not the vector potential, which is subject to gauge trans-
formations. However, in quantum mechanics, this is not so, as the following
will demonstrate.

Suppose there is a magnetic field �B that is confined to a restricted region
Ω in space (such as the interior of a solenoid), and the corresponding vector
potential is (to within a gauge transformation) given by �A, so that �B =
∇× �A. In the region Ω outside Ω, this vector potential does not necessarily
vanish, but since there ∇× �A = 0, it follows that the line integral

∫ �r
d�r ′ · �A

is independent of the path of integration,4 and �A is a well-defined function
of �r such that �A = ∇

∫ �r
d�r ′ · �A. Consequently, you easily verify that

∇− ie
c
�A = exp

[
i
e

c

∫ �r

d�r ′ · �A
]
∇ exp

[
−ie
c

∫ �r

d�r ′ · �A
]
,

which implies that if the boundary conditions associated with (7.7) force
the wave function ψ to vanish in the region where �B �= 0, that is, the
particle is kept away from the magnetic field, the new wave function

ψ′(�r) def= ψ(�r) exp

[
−ie
c

∫ �r

d�r ′ · �A
]

3Show this.
4Prove this.



222 7. Static Magnetic Fields

satisfies the Schrödinger equation[
− �2

2M
∇2 + V

]
ψ′ = Eψ′;

the vector potential has been tranformed away, making itself felt, however,
in the phase of the wave function.

Suppose, then, that a coherent beam of charged particles is split, with
one half passing to the left and the other half passing to the right of an
infinitely long solenoid with a magnetic field inside, with no penetration
of the particles possible. As the split beam is recombined, their two halves
have different phases, because the line integrals for the two wave functions
are different, and they will show interference effects from the phase differ-
ence, ∣∣∣∣∣exp

[
−ie
c

∫ �r

path I
d�r ′ · �A

]
− exp

[
−ie
c

∫ �r

path II
d�r ′ · �A

]∣∣∣∣∣
2

=

∣∣∣∣∣exp

[
−ie
c

(∫ �r

path I
−
∫ �r

path II

)
d�r ′ · �A

]
− 1

∣∣∣∣∣
2

=
∣∣∣∣exp
[
−ie
c

∮
d�r ′ · �A

]
− 1
∣∣∣∣2 = 4 sin2

( e
2c

Φ
)
,

where Φ is the total magnetic flux in the interior of the solenoid. The
resulting observable interference fringes can be experimentally manipulated
by changing the current in the solenoid and hence the magnetic flux Φ. This
shows that the vector potential has detectable effects in a region of space
in which the magnetic field vanishes. Even though the charged particles
are totally excluded from the region of the magnetic field, the fact that,
according to (7.1), there has to be a nonvanishing vector potential exterior
to the field leads to consequences which have in fact been experimentally
observed. This is called the Aharanov-Bohm effect.

7.3 Charged Particles with Spin

A charged spin-1/2 particle of mass M , such as an electron, automatically
has a magnetic moment

�µ = µ0�σ,

where µ0 is the Bohr magneton. The magnitude of this magnetic moment,
as we shall see in Chapter 10, requires the relativistic Dirac equation for an
explanation; in the non-relativistic Schrödinger equation, its inclusion by
Pauli was ad hoc. Moreover, that the magnitude of the magnetic moment
of the electron is exactly one Bohr magneton is an approximation, albeit
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an excellent one, corrections to which owe their existence to the effects of
quantum electrodynamics.

The nonrelativistic Hamiltonian of an electron in the presence of a static
magnetic field thus includes the “Pauli term” and is of the form

H =
1

2M
(�p− e

c
�A)2 + V − µ0�σ · �B, (7.14)

which for a uniform magnetic field �B becomes

H = H0 + H1, H0
def=

�p2

2M
+ V, (7.15)

H1
def=

e2

2Mc2
�A2 − µ0(�σ + �L) · �B =

e2

2Mc2
�A2 − µ0(2�S + �L) · �B, (7.16)

where �S is the spin angular momentum (in units of �) of the particle.
Just as for the orbital angular momentum, we can now derive the equa-

tion of motion for the spin angular momentum, namely,

d�S
dt

=
e

Mc
�S× �B, (7.17)

which leads to a precession about the magnetic field with the cyclotron
frequency ωc = eB/Mc, i.e., twice that of the orbital precession ωL.

7.3.1 Spin-orbit coupling and the fine structure
The first of the consequences of effective internal magnetic fields in atoms is
a relativistic phenomenon that arises from the fact that a magnetic moment
moving in the static electric field of the nucleus sees an effective magnetic
field

�B′ = −1
2
�v

c
× �E, (7.18)

which exerts a torque on it.

In order to prove (7.18), consider the torque on the magnetic moment of an electron
moving in the static electric field produced by a point charge. To begin with, the effective
electric dipole moment �p of a magnetic dipole �µ moving with the velocity �v is, to first
order in v/c,

�p =
�v

c
× �µ,

so that the torque on it exerted by an electric field �E is given by

�p× �E = (
�v

c
× �µ) × �E.

Hence the equation of motion for the intrinsic angular momentum �S of an electron, which
has a magnetic moment �µ = e

Mc
�S, and whose motion is governed by the Newtonian
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equation M�̇v = e �E, is given by

d�S
dt

= (
�v

c
× �µ) × �E

=
1
2
(
�v

c
× �µ) × �E − 1

2
(�µ× �v

c
) × �E

= −1
2
( �E × �v

c
) × �µ− 1

2
[(�µ× �E) × �v

c
+ (�µ× �v

c
) × �E]

= −1
2
( �E × �v

c
) × �µ+

M

2ce
d

dt
[
�v

c
× (�µ× �v)] − M

2ce
�v

c
× (�̇µ× �v)

= −1
2
( �E × �v

c
) × �µ+

1
2
d

dt
[
�v

c
× (�S × �v

c
)] − 1

2
�v

c
× (�̇S × �v

c
),

or
d

dt
[�S − 1

2
(
�v

c
× �S) × �v

c
] =

1
2
�µ× ( �E × �v

c
) − 1

2
�v

c
× (�̇S × �v

c
),

which implies that to first order in v/c

d�S
dt

=
1
2
�µ× ( �E × �v

c
) = �µ× �B′,

where the effective magnetic field is given by (7.18).

The unexpected factor of 1
2 , which owes its existence to the precession

of the electron’s spin, is known as the Thomas factor after L.H. Thomas.
(Remember that the magnetic field seen by an observer moving with the
velocity �v with respect to a frame in which there is only an electric field
�E is given by �B = −�vc × �E.) As a result, the interaction energy of the
electron’s magnetic moment with the Coulomb field in an atom is

H′LS = −�µ · �B′ = −1
2
�µ · ( �E × �v

c
)

= −µ0

2c
�σ · −Ze�r

r3 × �p
M

=
µ0Ze

2Mcr3�σ ·�r× �p

= Zµ2
0
�σ · �L
r3 , (7.19)

in which �L is the orbital angular momentum in units of �. Since this inter-
action energy depends both on the spin and the orbital angular momentum
of the electron, it is called spin-orbit coupling. Thus the Hamiltonian of an
electron in a hydrogenic atom is given by

H = H0 + H′LS, H0 =
�p2

2M
− Ze2

r
. (7.20)

Let us, then, calculate the first-order energy shift due to the perturba-
tion (7.19). Since �σ · �L is a scalar operator and therefore invariant under
active rotations of the system, it commutes with �J, and the perturbation is
diagonal in the eigenvalues of �L2, �S2, and Jz, as is H0; therefore, degenerate
perturbation theory works, and the first-order energy shift is given by

∆E = Zµ2
0〈�σ · �Lr−3〉, (7.21)
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where �σ · �L can be replaced by its eigenvalue (�σ · �L)′ in the state under
consideration. Because �J2 = (�L + �S)2, we find that j(j + 1) = l(l + 1) +
3
4 + ( �L · �σ)′, and therefore,

( �L · �σ)′ =
{

l if j = l + 1
2 ,

−(l + 1) if j = l − 1
2

}
=

2l(l + 1)(j − l)
j + 1

2

. (7.22)

We still need the expectation value 〈�σ · �Lr−3〉 in hydrogenic states.

The radial hamiltonian for a hydrogenic atom is given by

H0 =
1

2M

[
p2
r +

�
2l(l + 1)

r2

]
− Ze2

r
,

so that
i

�
[pr,H0] = −�

2l(l + 1)
Mr3

+
Ze2

r2
,

which allows us to evaluate 〈l(l + 1)r−3〉; because 〈[pr,H0]〉 = 0 it follows from (7.22)
that5

〈�σ · �L r−3〉 =
2(j − l)
j + 1

2

〈l(l + 1)r−3〉 =
2Z(j − l)
a0(j + 1

2 )
〈r−2〉, (7.23)

where a0 is the Bohr radius, defined in (6.47). Using the result (6.48), we therefore
obtain

〈�σ · �L r−3〉 =
Z3

n3a3
0

2(j − l)
(l + 1

2 )(j + 1
2 )
. (7.24)

Inserting Eq. (7.24) into Eq. (7.21) yields the following spin-orbit shift:

∆ELS
n =

Z4µ2
0

a3
0n

3

2(j − l)
(l + 1

2 )(j + 1
2 )
. (7.25)

Therefore, the fine structure of the spectrum, which is the combination of
the spin-orbit shift (7.25) and the relativistic shift of (6.50), in the nth

energy level of a hydrogenic atom, is given by

∆ELS rel
n =

Z4α2

n3

[
3
4n
− 1
j + 1

2

]
Ry, (7.26)

in which

Ry def=
e2

2a0
=

1
2
α2Mc2 (7.27)

is the Rydberg unit, whose approximate numerical value, expressed as a
frequency, is 330,000 MHz and in terms of which the unperturbed energies
of a hydrogenic atom are given by

E0
n = −Z

2

n2 Ry.

5Notice that the factor l(l+1) vanishes for l = 0, while 〈r−3〉 is infinite in an s-state;
the combination 〈l(l + 1)r−3〉 is nevertheless finite and well defined.
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The most remarkable feature of (7.26) is that, whereas the spin-orbit and
the straight relativistic energy shifts by themselves destroy the originally
present l-degeneracy, their combination conspires to reinstate it!

The ground state of hydrogen, that is, the 1s-state, is shifted by −α2/4
Ry, while the first excited state, the degenerate 2s, 2p-state, is split into two
levels, the lower one still degenerate, 2s 1

2
and 2p 1

2
, and the upper one 2p 3

2
,

with an energy difference of α2/16 Ry, which corresponds to a frequency of
the radiation emitted in a transition of about 11, 000 MHz or a wavelength
of approximately 3 cm. The degeneracy of the 2s 1

2
and 2p 1

2
states was

finally found in 1951 to be broken by 1062 MHz in an experiment by Lamb
and Retherford, a phenomenon, called the Lamb shift, that is explained by
quantum electrodynamics.

7.3.2 The Zeeman effect
Consider an electron bound by a central potential V (r), in the presence of a
uniform external magnetic field �B in the z direction that is weak enough for
the term proportional to �A2 in (7.16) to be negligible, and yet strong enough
to dominate over the internal magnetic field (and the straight relativistic
effect), so that the effective Hamiltonian is given by

H = H0 +H′B, H0
def=

�p2

2M
− Ze

2

r
, H′B

def= −µ0B(2Sz+Lz) (7.28)

while H′LS and H′rel can be neglected. The order of magnitude of the ef-
fective magnetic field (7.18) seen by the magnetic moment of an electron
in a hydrogen atom is about 105 gauss.6 Therefore, if the atom finds itself
in an external magnetic field that is strong compared to this figure, the
spin-orbit interaction can be considered negligible. The resulting shifts in
the energy levels is called the Paschen-Back effect.

The Paschen-Back effect

Because the g-factors of the orbital and spin magnetic moments are not
equal, the Hamiltonian (7.28) does not commute with Jz or with �J2, so
that angular momentum is not conserved, but a complete set of commuting
observables is given by �L2, �S2,Lz, and Sz.

In first-order perturbation theory, the shifted energy levels are given by

En = E0
n − µ0mlsB, where mls

def= ml + 2ms, (7.29)

which shows that the ml- and ms-degeneracy that is there when B = 0
is removed.7 For the hydrogen atom, the 1s-state is split into two levels,

6Show this.
7Why can we use non-degenerate perturbation theory?
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one shifted up by µ0B and the other down by the same amount, resulting
in an energy difference of 2µ0B between them; the originally eight-fold
degenerate state 2s, 2p is split into five levels, each a distance µ0B apart:

unpert. pert. mls n l ml ms n l ml ms

——— 1 1 0 0 1/2
1s ——- 2µ0B �

——— −1 1 0 0 −1/2

——— 2 2 1 1 1/2
——— 1 2 1 0 1/2 2 0 0 1/2

2s, 2p —— ——— 0 2 1 1 −1/2 2 1 −1 1/2
——— −1 2 1 0 −1/2 2 0 0 −1/2
——— −2 2 1 −1 −1/2

The weak-field Zeeman effect

Next consider the Hamiltonian of an electron bound by a nucleus in the
presence of an external field that is so weak that the internal effects leading
to the fine structure are dominant. In that case, the starting point is an
unperturbed Hamiltonian that includes H′LS as well as H′rel, and H′B is
the perturbation. For the unperturbed Hamiltonian l and m (where m�

is the eigenvalue of �Jz) are then good quantum numbers. Since H′B is
diagonal in these quantum numbers, so that degenerate perturbation theory
works, we simply need to calculate 〈H′B〉 in such a state. Now, since H′B =
−µ0B(Lz + 1

2σz), we have

〈H′B〉 = −µ0B(m+
1
2
〈σz〉),

and we need 〈σz〉ljm, which can be calculated by means of (5.73) and (5.74),
with the result,

〈σz〉l,j=l± 1
2

=
l + 1

2 ±m
2l + 1

−
l + 1

2 ∓m
2l + 1

= ± 2m
2l + 1

.

Consequently, the energy shift is given by

∆E = −m
l + 1

2 ±
1
2

l + 1
2

µ0B,

which means that the weak-field Zeemann effect is

∆E = −m
j + 1

2

l + 1
2

µ0B. (7.30)

The effective magnetic dipole moment of an atom in a weak magnetic
field may be conveniently defined by

µ
def= −∂E

∂B ,
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which may be written as
µ

def= mgµ0,

so that, according to (7.30), the effective g-factor of the atom is given by

g =
j + 1

2

l + 1
2

. (7.31)

Note that this has the value g = 2 for l = 0 and the limit g = 1 as l→∞:
when l = 0, the magnetic moment is entirely due to the spin of the electron,
whereas in the limit as l → ∞, the spin contribution is negligible and the
magnetic moment is all due to the orbital motion.

The intermediate Zeeman effect

If the external magnetic field is neither weak nor strong compared to the
effective internal one (but still not strong enough for the �A2-term in the
Hamiltonian to have to be included), then the unperturbed Hamiltonian
must be taken to be H0 of (7.15) and the perturbation is H′LS +H′rel +H′B.
If j, l,m (again, �m is the eigenvalue of �Jz) are used as quantum numbers,
then there is j-degeneracy in the unperturbed levels, and, after writing

H′B = −µ0B(Jz +
1
2
σz),

degenerate perturbation theory requires the diagonalization of σz on the
degenerate subspace, which has j = l ± 1

2 . The calculation of the energy
shift in this case will be left as an exercise; the result is

∆En =

{
1

l(l + 1)

[
−mηn +

1
2(2l + 1)

± 1
2

√
1 + η2

n −
4mηn

(2l + 1)

]

+
3
4n
− 1
l + 1

2

}
ξn, for l �= 0, (7.32)

and

∆En = 1− 2mµ0B +
[

3
4n
− 2
]
ξn for l = 0, (7.33)

where

ξn
def=

Z4α4

2n3 Mc2, ηn
def=

µ0l(l + 1)
ξn

B.

In contrast to the weak-field case, in which the ± referred to j = l± 1
2 , the

± here cannot be so identified; both levels contain a superposition of the
two. As a consequence of (7.32) and (7.33), the effective magnetic moment
of the atom is given by

µ = µ0

m∓ 1
2

ηn − m
l+ 1

2√
1 + η2

n − 2mηn

l+ 1
2

 , for l �= 0, (7.34)
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which depends on B and is thus an induced magnetic moment; and

µ = 2mµ0 for l = 0. (7.35)

7.3.3 The hyperfine structure
In studying the structure of hydrogenic atoms we have been assuming that
their nuclei are simple point charges producing an electrostatic field de-
scribed by a Coulomb potential. In fact, however, atomic nuclei also have
magnetic moments and therefore produce magnetic fields. In this section
we shall investigate the effects of these fields.

The order of magnitude of the magnetic moment of a nucleus is roughly
that of the nuclear magneton,

µNM
def=

e�

2MNc
=

M

MN
µ0,

if M is the mass of the electron and MN that of the nucleus. For hydrogen,
the nuclear magneton is therefore about 1846 times smaller than the Bohr
magneton, and correspondingly, the effect on the hydrogen spectrum can
be expected to be much smaller than the fine structure. The actual, exper-
imentally measured value µN of the proton’s magnetic moment, however,
differs from µNM, as already mentioned in Chapter 5, and it is this value
that is relevant for our calculations.

The vector potential produced by a magnetic moment �µN fixed at the
origin is

�A =
�µN × �r
r3

= −�µN ×∇
1
r
.

If again the �A2 term is neglected, the addition to the hydrogen Hamiltonian
caused by the nuclear magnetic moment will be

H′NM =
e

Mc
�p · �A− µ0�σ · �B

= − e

Mc
�p · �µN ×�r

r3 + µ0�σ · ∇ × (�µN ×∇r−1)

= − e

Mc

�µN ·�r× �p
r3 + µ0�σ · ∇ × (�µN ×∇r−1)

= −µ0
�µN · �L

r3 + µ0�σ ×∇ · (�µN ×∇)r−1,

but since

�σ ×∇ · (�µN ×∇)r−1 = (�σ · �µN∇2 − �σ · ∇�µN · ∇)r−1,

this becomes

H′NM = −µ0
�µN · �L

r3 +µ0

[
�σ · �µN

r3 − 3
�σ ·�r �µN ·�r

r5

]
−4πµ0 �σ·�µNδ3(�r). (7.36)
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The physical meaning of the three terms in this expression is that the first
term describes the interaction of the nuclear magnetic moment with the
orbital moment, the second, which can also be written in the form

µ0

[
�σ · �µN

r3 − 3
�σ ·�r �µN ·�r

r5

]
= −µ0�σ · ∇�µN · ∇r−1,

describes that of the nuclear magnetic moment with the intrinsic magnetic
dipole moment of the electron, and the third is a contact term, an effect of
the possibility of the electron’s passing right through the nucleus.

We will calculate the level splitting that results from this perturbation in
the 1s-state only, because the absence of fine structure in that case makes
the effect most easily observable.

For l = 0, the wave function is spherically symmetric, and for such
functions we have∫

d3r f(r)[�σ · ∇ �µ · ∇ − 1
3
�σ · �µ∇2]r−1 = 0. (7.37)

To prove (7.37) split the integral into two parts, the first extended over the exterior
of a sphere about the origin of radius ε, the second over its interior. For the first, we
have ∇2r−1 = 0 and8

I1 =
∫
r>ε

d3r f(r)�σ · ∇ �µ · ∇r−1 =
∫
r>ε

d3r f(r)r−3(3�σ · r̂ �µ · r̂ − �σ · �µ) = 0.

For the second part,

I2 =
∫
r<ε

d3r∇ · [f(r)(�µ�σ · ∇r−1 − 1
3
�σ · �µ∇r−1)]

−
∫
r<ε

d3r [∇f(r)] · (�µ�σ · ∇r−1 − 1
3
�σ · �µ∇r−1)]

= f(ε)
∫
dΩ (

1
3
�σ · �µ− �µ · r̂�σ · r̂) −

∫ ε

0
dr

∂

∂r
f(r)

∫
dΩ(

1
3
�σ · �µ− �µ · r̂�σ · r̂) = 0.

Therefore for an l = 0 state, �σ · ∇ �µ · ∇r−1 may be replaced by 1
3�σ ·

�µ∇2r−1 = −(4π/3)�σ · �µ δ3(�r), and as a result we have for s-states in the
configuration representation

H′NM = −8π
3
µ0�σ · �µNδ3(�r). (7.38)

Let the nuclear spin be i, its spin-vector operator�I (both i and�I in units of
�), and write

�µN
def=
|µN |�I

i
,

8I will ask you to prove the last step in the following equation as a home-
work problem.
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so that (7.38) becomes

H′NM = −8π
3
|µ0||µN |

i
δ3(�r)�σ ·�I. (7.39)

In order to calculate the first-order perturbation of the energy we therefore
need the eigenvalues of �σ ·�I.

Since the atom is assumed to be in an s-state, the total angular momen-
tum of the system (in units of �) is given by

�F =�I +�J =�I +
1
2
�σ,

which implies that
�F2 =�I2 +�I · �σ +

3
4
.

We obtain the eigenvalues of�I · �σ from this just as we found those of �L · �σ
in (7.22):

f(f + 1) = i(i + 1) +
3
4

+ (�σ ·�I)′

if the eigenvalues of �F2 are f(f + 1), from which it follows that the eigen-
values of�I · �σ are

(�I · �σ)′ =
2i(i + 1)(f − i)

f + 1
2

, f = i± 1
2
.

Therefore in an l = 0 state of the atom, the hyperfine structure produced
by first-order perturbation theory is a doublet,

〈H′NM〉 =
8π
3
|µ0| |µN |

i
|ψ(0)|2 2i(i + 1)(f − i)

f + 1
2

,

which is split by the energy difference

∆E =
8π
3

(
e�

2Mc

)(
e�

2MNc

)
2i + 1

i
µ∗N |ψ(0)|2, (7.40)

where µ∗N
def= µN (2Mnc/e�) is the magnitude of the nuclear magnetic mo-

ment in units of the nuclear magneton. In the ground state of a hydrogenic
atom, (4.71) leads to

|ψ(0)|2 = 4
(
Z

a0

)3 1
4π
,

which yields the split

∆E =
4
3
µ∗N

2i + 1
i

M

MN
Z3α2 Ry. (7.41)
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For the proton, i = 1
2 and µ∗N = 2.7925, which gives the numerical

value of the frequency corresponding to the hyperfine split for the ground
state of hydrogen as 1416 MHz, compared to an experimental value of
1420 MHz. The discrepancy is accounted for by the fact that the electron
has an anomalous magnetic moment, about 0.1% higher than µ0 (for the
discovery of which Polykarp Kush was awarded the Nobel prize in 1955).
Since µ∗N is experimentally measured in units of the magnetic moment of
the electron, this also increases µ∗N by about 0.1%, resulting in a total
increase in the theoretically predicted value of the hyperfine split by 0.2%,
in satisfactory agreement with observation. Note that the frequency of 1420
MHz corresponds to a wavelength of 21 cm for the radiation emitted in a
transition from the upper to the lower of the two levels; this is the famous
21 cm signature-line of the hydrogen spectrum.
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7.4 Problems and Exercises

1. Derive (7.32) and (7.33).

2. Show that (7.32) and (7.33) go over into (7.29) and (7.30), respec-
tively, as η →∞ and η → 0.

3. A spin-1/2 particle of charge e and mass M is placed in a constant
magnetic field H. If its spin initially points in the z direction and H
is in the x direction, calculate the direction of its spin at the time t.
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8
Time-Dependent Hamiltonians

In this chapter we shall study problems in which the Hamiltonian depends
explicitly on the time, so that energy is not conserved. Three different kinds
of approximations may be applicable in such a situation. The first applies
when the time-dependent part of the Hamiltonian is weak compared to the
time-independent part, for which the solutions of the Schrödinger equation
are assumed to be known. In that case, an analogue to the perturbation
theory discussed in Chapter 6 can be used. The second kind of approxima-
tion is used when the change is very rapid, like the sudden switching on
and off of an external field. The third is applicable when the Hamiltonian,
on the contrary, changes very slowly; for reasons to be discussed it is called
the adiabatic approximation. The approximation methods appropriate to
these three kinds of situations will be taken up in that order.

8.1 Perturbation Theory

The Hamiltonian in the Schrödinger equation

i�
∂

∂t
Ψ(t) = H(t)Ψ(t)

is now assumed to consist of two parts,

H(t) = H0 + H′(t),

and the eigenvalues and eigenstates of the time-independent H0 are as-
sumed to be known. The question we would like to answer is this: if the
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system is in a state Ψ(t) and a measurement of H0 is performed, what is the
probability of obtaining the result En (where En is an eigenvalue of H0)?
The answer, of course, is that this probability is the magnitude squared
of the amplitude (ΨEn

,Ψ(t)). Furthermore, since Ψ(t) can be expanded in
the form

Ψ(t) =
∑
n

(ΨEn ,Ψ(t))ΨEn =
∑
n

(ΨEn(t),Ψ(t))ΨEn(t),

in which ΨEn(t) = ΨEn exp(−iEnt/�), the inner products 〈En| 〉t
def=

(ΨEn
(t),Ψ(t)) determine everything we might want to know about Ψ(t).

Use of the Schrödinger equation gives us

i�
∂

∂t
〈En| 〉t = 〈En|H−H0| 〉t,

which means that 〈En| 〉t satisfies the differential equation

i�
∂

∂t
〈En| 〉t = 〈En|H′(t)| 〉t. (8.1)

Since
〈En| 〉t = e

i
�
Ent(ΨEn

,Ψ(t)) = (ΨEn
, e

i
�
H0tΨ(t)),

Eq. (8.1) may also be thought of as originating from the equation

i�
∂

∂t
Ψ(t) = H′(t)Ψ(t), (8.2)

where
Ψ(t) def= e

i
�
H0tΨ(t), H′(t) def= e

i
�
H0tH′(t)e−

i
�
H0t.

The underlined quantities are the state vectors and operators in the interac-
tion picture, (also sometimes called the Dirac picture). As the Schrödinger
equation (8.2) shows, it stands between the Schrödinger picture, in which
the state vectors carry all the time dependence and the dynamical opera-
tors are time-independent (unless they have an intrinsic time dependence),
and the Heisenberg picture, in which the state vectors are constant and the
dynamical operators depend on the time. Here both the state vectors and
the dynamical variables vary with time, but the time dependence of the
state vectors is governed by the interaction alone (i.e., by the part of the
Hamiltonian that is regarded as the interaction in the particular case at
hand), and the time dependence of the dynamical operators is independent
of the interaction:

dO
dt

=
∂O
∂t

+
i

�
[H0,O].

Assuming that initially, at the time t = −∞, the system was in the eigen-
state ΨEi of H0, the appropriate initial condition to go with the Schrödinger
equation is

lim
t→−∞ ‖ Ψ(t)−ΨEi(t) ‖= 0, (8.3)
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and hence, 〈Ef | 〉t → δfi as t → −∞, assuming that both Ef and Ei are
point eigenvalues. The differential equation (8.1) with the initial condition
(8.3) can therefore be replaced by the integral equation

〈Ef | 〉t = δfi +
1
i�

∫ t

−∞
dt′ 〈Ef |H′(t′)| 〉t′

= δfi +
∑
k

1
i�

∫ t

−∞
dt′H ′fk(t

′)〈Ek| 〉t′eiωfkt
′
, (8.4)

where
H ′fk(t)

def= 〈Ef |H′(t)|Ek〉, ωfk
def= (Ef − Ek)/�.

If the interaction H′ is weak (or for sufficiently small λ if H′ is replaced by
λH′), a first approximation to the solution of (8.4) is obtained by replacing
〈Ek| 〉t′ in the integral by its initial value δfi, so that

〈Ef | 〉t � δfi +
1
i�

∫ t

−∞
dt′H ′fi(t

′)eiωfit
′
. (8.5)

Suppose now that the time dependence of H′ consists simply of being
turned on at the time t = 0 and off at t = T , and having the constant value
H′ from 0 to T . In that case, for t > T ,

〈Ef | 〉t � δfi −H ′fi
eiωfiT − 1

�ωfi

so that for f �= i the probability that the system will be found to have the
energy Ef at the time t ≥ T is

Pfi(t) � 4|H ′fi|2
sin2( 1

2ωfiT )
�2ω2

fi

. (8.6)

Though the right-hand side of this approximate equation is not necessarily
less than 1, the approximation is, of course, good only if it is, in fact, much
less than 1.

For a fixed time interval T and a fixed initial energy Ei, the function
of Ef , the energy to which the system has made a transition, defined by
(8.6), is plotted in Figure 8.1. It is sharply peaked at ωfi = 0, that is, at
the energy Ef = Ei, where energy is conserved, with a maximum value
proportional to T 2 and a width D = 2π�/T . Thus, the length of time T
during which the perturbation acts is related to the “energy uncertainty”
∆E by T∆E � h, in accordance, in some sense, with the uncertainty
principle. As we shall see, when the perturbation is slowly turned on and
off, the system tends to remain in the “same state” whose energy slowly
shifts; in general, however, the perturbation causes transitions from one
level to another. If higher orders of perturbation theory are taken into
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D
FIGURE 8.1. The transition probability as a function of the energy.

account, there are many intermediate transitions back and forth, which are
called virtual.

In contrast to (8.6), we might have expected that the transition prob-
ability from one level to another is proportional to the time T , so that it
makes sense to define a transition probability per unit time. Such a result,
however, can be obtained only if the levels in the target area, i.e., near Ef
in the region of the peak in Figure 8.1, are closely spaced, and if in this
region H ′fi is essentially independent of f . In that case we would integrate
and obtain for the area under the peak∫ 2π/T

0
dω

sin2(ωT/2)
ω2 = T

∫ 2π

0
dx

sin2 1
2x

x2 ∝ T.

In a situation in which there are many closely spaced states near the final
state with the energy Ef , all with nearly the same energy Ei as the initial
state, let us assume that there are ρ(f) states per unit energy interval (the
density of final states) and that ρ(f) and |H ′fi| are slowly varying functions
of f . Then the probability of a transition to any one of the states in the
peak of Figure 8.1 is

P =
∑
f

|〈Ef | 〉T |2 =
∫
dEf ρ(f)|〈Ef | 〉T |2

=
∫

peak
dEf ρ(f)

4
�2 |H

′
fi|2

sin2( 1
2ωfiT )
ω2
fi

.

The assumption that ρ(f) and |H ′fi| are slowly varying functions of f in the
peak allows us to take both outside the integral, after which the integral
is extended from −∞ to ∞, since its value comes almost entirely from the
peak anyway, with the result

P =
4
�
ρ(f)|H ′fi|2

∫ ∞
−∞

dω
sin2( 1

2ωT )
ω2 =

2π
�
Tρ(f)|H ′fi|2, (8.7)
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which finally gives us a constant transition probability per unit time,

Wfi =
2π
�
ρ(f)|H ′fi|2, (8.8)

a formula known as Fermi’s golden rule.
Two criteria have to be satisfied for this result to be valid. On one hand,

the assumption that both ρ and H ′fi be slowly varying over the width
D = 2π/T (in frequency space) of the peak in Figure 8.1 means that we
need

∂H ′ρ
∂ω
D � H ′ρ,

or

T � 2π
∂|H ′|ρ/∂ω
|H ′|ρ ;

on the other hand, the probability (8.7) has to be small compared to 1:

2π
�
Tρ|H ′|2 � 1.

Consequently the time T must be neither too small nor too large:

2π
∂|H ′|ρ/∂ω
|H ′|ρ � T � �/2π

ρ|H ′|2 ,

and this is possible only if

∂|H ′|2ρ
∂ω

� �

(2π)2
.

Notice the important fact, which should always remain part of your phys-
ical interpretation of the quantum-mechanical formalism, that the modulus
squared of the matrix element H ′fi of the perturbation H′ is a measure of
the transition probability (and hence of the spectral intensity, in the case of
transitions in which a photon is emitted) from the state ΨEi to the state
ΨEf

. This implies in particular that if H ′fi = 0, i.e., if H′ has no non-
vanishing matrix elements connecting the two levels, then Wfi = 0: the
transition cannot go, to first order. To put it another way: the perturba-
tion induces transitions only between states that it connects. This is the
basis of the physical relevance of the selection rules discussed earlier, and
such a view of the matrix elements H ′fi is also at the heart of the physical
interpretation usually attached to such perturbation-theoretic formulas as
(6.35): the perturbation induces “virtual” (energy-nonconserving) transi-
tions, from the level n to the level k and back, and, in higher order, from
n to k to m and back, etc., and the probability amplitudes for all these
processes are to be added up.
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Since Wfi as given by (8.8) is the probability per unit time of a transition
from the level i to the level f , the probability of the opposite transition,
from f to i, is given by

Wif =
2π
�
ρ(i)|H ′if |2.

Thus, apart from the factor of ρ(i), the density of final states, Wif and Wfi

are equal, because H′ is Hermitian. This is known as the reciprocity theorem;
it is a quantum analogue of the classical reversibility of the equations of
motion.

The first-order perturbation formula (8.5) is applicable not only when the
perturbation is weak, but also when, however strong, it acts only for a very
short time. This means, specifically, that the duration T of its action is such
that T � 1/ωfi for the level f nearest to i, and, in addition, |H ′fi|T/�� 1.
In that case (8.5) becomes for f �= i,

Pfi =
1
�2

∣∣∣∣∣
∫ T

0
dtH ′fi(t)

∣∣∣∣∣
2

, (8.9)

which is called the sudden approximation.

8.1.1 Application to exponential decay
Suppose at the time t there are Nm(t) systems of the same kind occupying
the mth energy level of the Hamiltonian H0. Then the decrease in this
population during the time dt, owing to transitions to the group n of (closely
spaced) levels (assuming there are no others accessible), is1

−dNm(t) = dtNm(t)Wnm.

The solution of this equation,

Nm(t) = Nm(0)e−Wnmt,

is the familiar exponential decay law of the initial state, and it gives a
“half-life” (in first-order perturbation theory),

τm =
1

Wnm
=

�

2π
1

ρ(n)|H ′nm|2
, (8.10)

so that Nm(τm)/Nm(0) = 1/e. An equivalent way of deriving it is to cut
the time t into p small intervals of length t/p and to express Nm(t) in the
form

Nm(t) = Nm(0) lim
p→∞

(
1−Wnm

t

p

)p
= Nm(0)e−Wnmt.

1If other groups are accessible, Wnm has to be replaced here by
∑
nWnm.
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There is, however, something quite puzzling about this result, so easily
derived. The expression used for the transition probability after the time t,
based on a constant transition probability per unit time, Pfi = Wfit, must
surely break down when Wfit > 1. Yet we assume that the exponential de-
cay law holds for times when Wfit > 1; otherwise it would tell us very little.
The explanation is most clearly seen in the second manner of deriving the
exponential law given above. The underlying assumption is that the system
is examined over and over again after short intervals; it is not left alone
to develop on its own without having measurements performed. That this
makes a difference, even if the outcomes of the intermediate measurements
are ignored, is characteristic of all probabilistic theories; it is not a special,
peculiar property of quantum mechanics.2

Therefore, the exponential decay law is an outcome of an assumption
of almost constant observation (or of other coherence-destroying interac-
tions, such as with the environment) of a system; it is not an exact law
of quantum mechanics. In fact, a system in an unstable state, left to its
own devices, decays exponentially neither initially nor asymptotically. In
many circumstances, however, it does follow an exponential law for many
lifetimes after an initial transient period, but the demonstration of this is
much more complicated than that given above.3

In addition, the specific relation (8.10) between the lifetime and the ma-
trix element H ′nm of the perturbation, is, of course, a first-order perturba-
tion theory result; it ignores all the decays that can take place via interme-
diate states and, in particular, it ignores the possibility of back-reactions

2Consider the analogous situation in statistical mechanics. What is the probability
PBA of a given system, originally at the time t = t1 in the state A, defined by a coarse
grain Gt1 (A) of volume Ω(Gt1 (A)) in phase space, to be found in the state B, defined
by a coarse grain G(B), at a later time t2? In order to calculate it, we have to study the
Hamiltonian flow from A to B and count how many of the systems in Gt1 (A), assumed
uniformly distributed there, end up in G(B); the result is

PBA =
Ω(Gt1,t2 (A) ∩G(B))

Ω(Gt1 (A))
,

if Gt1,t2 (A) denotes the collection of systems at the time t2 originally in Gt1 (A). Simi-
larly, for the time t3 > t2,

PCB =
Ω(Gt2,t3 (B) ∩G(C))

Ω(Gt2 (B))
,

and the probability of finding the system at the time t3 in the state C, given that it was
in the state A at the time t1 and was found in the state B at the time t2, is PBAPCB .
Now, if the result of the intermediate measurement is to be ignored, we have to sum
over all the possible grains G(B) that the system could have visited at the time t2. But
in general

∑
B PBAPCB �= PCA, because the states B that the system could visit at t2

from A do not exhaust the phase space, and the grains it does visit are not necesssarily
uniformly populated by the flow from A.

3See [Newton 61].
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to the initial state. In many practical situations, such as the decay of an
excited atomic energy level, that back-reaction is quite negligible because
of the much larger phase-space volume available to the final states than in
the initial state.

8.1.2 Application to scattering
Fermi’s golden rule may also be applied to the calculation of scattering cross
sections. For this purpose, imagine the particle system to be confined to a
box of sidelength L, with periodic boundary conditions. Then the number
of free states in the wave-vector interval d3k′ is given by

ρ(k′)dEk′ = ρ(k′)
�2k′dk′

M
= d3k′(L/2π)3 = k′2dk′ dΩ(L/2π)3,

from which we conclude that the density of final states is

ρ =
(
L

2π

)3
Mk′

�2 dΩ. (8.11)

The number of particles of velocity v in the final solid-angle dΩ, per unit
time and incident flux v/L3, is

dσ

dΩ
dΩ =

W

v/L3 = W
L3M

�k
,

so that by (8.8),

dσ

dΩ
=
Mk′

�2

(
L

2π

)3
ML3

�k

2π
�
|H ′fi|2,

where now

H ′fi =
∫
d3r

e−i�k
′·�r

L3/2 H ′(�r)
ei
�k·�r

L3/2 .

Therefore we have in the first approximation, since k′ = k,

dσ

dΩ
=
(

M

2π�2

)2 ∣∣∣∣∫ d3r V (�r)ei(�k−�k
′)·�r
∣∣∣∣2 , (8.12)

which is the Born approximation, as given by (4.137). Notice that the box
size L, which served only an auxiliary purpose, has canceled out. The ar-
tificial assumption of a finite box, which makes the spectrum discrete, can
be dropped, as we did earlier. In that case the proper delta-function nor-
malization is achieved by chosing as the free wave functions ei�k·�r/(2π)3/2,
with one particle per volume (2π)3, so that the flux is v/(2π)3, and the
density of states,

ρ(k) =
Mk

�2 dΩ. (8.13)
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The same reasoning is applicable to inelastic scattering. In that case, the
unperturbed Hamiltonian includes the interaction that leads to the inital
and final bound states (such as the nuclear Coulomb potential responsible
for the electronic states of an atom), and the initial and final states used
for the matrix element are such bound states, combined with the free states
of the scattered missile; the perturbation H′ is the interaction that allows
the system to make an energy nonconserving transition, the missing energy
being accounted for by the difference between the initial and final energies
of the missile. The Born-approximation result in that case is of the same
form as given above, except that k′ �= k and the formula (8.12) has to be
multiplied by the ratio kfinal/kinitial.

8.1.3 Second order perturbation theory
If the second-order term in the iterative solution of (8.4) is kept, the result
is that (8.5) must be replaced by

〈Ef | 〉t � δfi +
1
i�

∫ t

−∞
dt′H ′fi(t

′)eiωfit
′

− 1
�2

∑
k

∫ t

−∞
dt′′H ′fk(t

′′)eiωnkt
′′
∫ t′′

−∞
dt′H ′ki(t

′)eiωkit
′
.

For the case in which the interaction is simply constant until t = T , when
it is switched off, the second-order term becomes

− 1
�2

∑
k

H ′fkH
′
km

∫ t

−∞
dt′′ eiωfkt

′′
∫ t′′

−∞
dt′ eiωkit

′

=
1
�2

∑
k

H ′fkH
′
ki

ωkm

[
eiωfit − 1

ωfi
− eiωfkt − 1

ωfk

]
, (8.14)

as a result of which we obtain

〈Ef | 〉t � δfi −
1
�

[
H ′fi −

∑
k

H ′fkH
′
ki

Ek − Ei

]
eiωfit − 1

ωfi

−
∑
k

H ′fkH
′
ki

ωki

eiωfkt − 1
ωfk

. (8.15)

Hence, just as before, there will be a large contribution, increasing with
time, when ωfi � 0, but there is also such a contribution when ωfk � 0, and
the latter need not conserve energy. This effect, however, owes its existence
entirely to the sudden switching on and off of the interaction; as we shall
see shortly, when the switching is slow, no such energy non-conserving
transitions will occur.
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Paying attention only to the energy-conserving transitions, we thus find
that the transition probability per unit time, to second order, is given by

Wfi =
2π
�
ρ(f)

∣∣∣∣∣H ′fi −∑
k

H ′fkH
′
ki

Ek − Ei

∣∣∣∣∣
2

=
2π
�
ρ(f)
∣∣∣∣〈Ef |H′ −H′

1
H0 − Ei

H′|Ei〉
∣∣∣∣2 . (8.16)

This form, however, works only when H ′fi = 0, because otherwise the sum
contains energy denominators that vanish; if H ′fi �= 0, then the form given
in (8.14), which remains finite when k = i, has to be retained.

Here is an intuitively appealing interpretation: In view of the physical
meaning of the matrix element H ′fi as representing a transition from level
i to level f , the terms H ′fkH

′
ki evidently represent two-step transitions

via an intermediate state k. So the second-order term
∑
k H

′
fkH

′
ki/(Ek −

Ei) represents all the transitions via a “virtual” intermediate state. Since
these intermediate states are of a transitory nature and the system is never
actually experimentally caught there, energy need not be conserved. To say,
then, that a certain transition is allowed only via n intermediate steps is
equivalent to saying that the nth order transition probability is the first one
not to vanish. However, let us not attach too much reality to such physical
interpretations of the mathematics; appealing and useful as a guide to our
intuition as they may be, they are no more than ideas based on a particular
method of approximation, namely, perturbation theory.

8.1.4 Interaction with electromagnetic fields
The interaction of charged particles with the electromagnetic field gives rise
to the emission and absorption of radiation; if we shine light (or other elec-
tromagnetic radiation) on an atom, it will absorb photons and emit them,
and the probability for such emissions and absorptions can be calculated
by time-dependent perturbation theory. For a particle of charge e and no
spin, subject to the scalar potential V , which may or may not be of elec-
tromagnetic origin, and to the external electromagnetic vector potential �A,
the Schrödinger equation with minimal coupling reads[

1
2M

(�p− e

c
�A)2 + V

]
ψ = i�

∂

∂t
ψ. (8.17)

In the radiation gauge, where ∇ · �A = 0, the configuration-space Hamilto-
nian therefore is given by

H = − �2

2M
∇2 + V +

e2

2Mc2
�A2 +

ie�

Mc
�A · ∇.
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In order to study the emission and absorption of radiation, however, we
have to treat the vector potential �A not as an externally given function
but as a quantum field like in Section 2.3.3. Of course, in the presence of
charged particles, this field is not correctly described by the free Maxwell
equations, but since we are going to confine ourselves to first-order per-
turbation theory, it will suffice to insert in (8.17) the free vector-potential
operator, which is given by (2.102) for a fixed wave vector �k, apart from a
multiplicative factor to be fixed later, in the form

�A(�r, t) = i[ei(�k·�r−ωt)�a(�k)− e−i(�k·�r−ωt)�a†(−�k)], (8.18)

in terms of the creation and annihilation operators �a† and �a of photons.
The unperturbed, zero-order, state vectors of the system are then products
of states of the free electromagnetic field, which we shall, for the time
being, denote simply by the short-hand |em〉, and, in the configuration
representation, bound-state wave functions ψn of the particles, which are
solutions of the Schrödinger equation (8.17) with �A = 0,

H0 = − �2

2M
∇2 + V.

The perturbation is given by

H′ =
ie�

Mc
�A · ∇,

while the A2-term will be neglected as too small to matter.
If the original state of the system is of the form |i〉 = |emi〉ψi(�r) and

the perturbation is turned on at the time t = 0, then at a later time t the
inner product of the developing state | 〉t with a state |f〉 = |emf 〉ψf (�r),
according to (8.5), is given to first order by

〈f | 〉t � δfi +
1
i�

∫ t

0
dt′H ′fie

iωfit, (8.19)

where
H ′fi

def=
ie�

Mc

∫
d3r 〈f |�A · ∇|i〉. (8.20)

This gives

〈f | 〉t � δfi +
ie

Mc

[
H ′′
∫ t

0
dt′ ei(ωfi−ω)t −H ′′′

∫ t

0
dt′ ei(ωfi+ω)t

]
= δfi +

e

Mc

[
H ′′

ei(ωfi−ω)t − 1
ωfi − ω

−H ′′′ e
i(ωfi+ω)t − 1
ωfi + ω

]
, (8.21)

where

H ′′ def= 〈emf |
∫
d3r ψ∗f (�r)e

i�k·�r�a(�k) · ∇ψi(�r)|emi〉

= 〈emf |�a|emi〉 ·
∫
d3r ψ∗f (�r)e

i�k·�r∇ψi(�r)
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and

H ′′′ def= 〈emf |
∫
d3r ψ∗f (�r)e

−i�k·�r�a†(�k) · ∇ψm(�r)|emi〉

= 〈emf |�a†|emi〉 ·
∫
d3r ψ∗f (�r)e

−i�k·�r∇ψi(�r).

As we discussed before, the expression (8.21) is of appreciable size only
when the denominators in it are small, that is, when either Ef = Ei + �ω
or Ef = Ei−�ω. In the first instance, the factorH ′′ vanishes unless the final
electromagnetic field contains one less photon of energy �ω, momentum ��k,
and polarization indicated by �a, while in the second instance H ′′′ vanishes
unless the final field contains one additional such photon. Thus the first
case is one in which the bound system, for example, an atom, absorbs a
photon and jumps to a higher level whose additonal energy equals that of
the photon, and the second case is one in which the bound system descends
to a lower level, emitting a corresponding photon. Of course, since we have
fixed the perturbation to have a given wave number, there may not be
such energy levels of the bound system. Furthermore, we have already seen
that a constant transition probability per unit time will emerge only if
transitions to a group of states with closely spaced energies are considered.

Let us, then, assume that the radiation field consists, not of a single
plane wave, but of an incoherent mixture of many plane waves with no
phase relation between them, their intensities distributed according to a
function f(ω). In that case we have to add the transition probabilities and
we obtain for the case of absorption,

|〈f | 〉t|2 �
4e2

M2c2

∫
dω f(ω)|H ′′|2

sin2[ 12 (ωfi − ω)t]
(ωfi − ω)2

.

The direction of the matrix element 〈emf |�a|emi〉 should be expressible in
terms of a unit vector êpol in the direction of the polarization of the ra-
diation. To express the magnitude of the matrix element in terms of an
intensity, use the fact that the Poynting vector of the radiation described
by the vector potential �A(�r, t) = �A0e

i(�k·�r−ωt) + �A∗0e
−i(�k·�r−ωt) is given by

�S = c
4π
�E× �B = ω

π
�k| �A0|2 sin2(�k ·�r−ωt+α), so that its intensity, the (time)

average value of the magnitude of the Poynting vector, is

I = |�S|av =
ω2

2πc
|f(ω) �A0|2.

Therefore the square of its magnitude, weighted by f(ω), should be

f(ω)|〈emf |�a|emi〉|2 = f(ω)
∑
nf

〈emi|�a†|nf 〉 〈nf |�a|emi〉

= f(ω)〈emi|�a†�a|emi〉 = f(ω)ni(ω)

=
2πc
ω2 I(ω),
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in which we have made use of the fact that all the additional terms in
the sum over the number nf of photons in the final state vanish because �a
destroys just one photon of energy �ωi. This allows us to write the transition
probability as

|〈f | 〉t|2 �
8πe2

M2c

∫
dω

ω2 I(ω)
sin2[ 12 (ωfi − ω)t]

(ωfi − ω)2

∣∣∣∣∫ d3r ei
�k·�rψ∗f êpol · ∇ψi

∣∣∣∣2 .
From this point on we proceed as before: in the limit when t → ∞

the probability becomes very sharply peaked at ω = ωfi. Assuming that
the intensity does not vary rapidly near ω = ωfi, we take it and all the
other functions of ω outside the integral, leaving us with the absorption
probability per unit time,

P abs
fi =

1
t
|〈f | 〉t|2 �

8πe2

M2c

I(ωfi)
ω2
fi

Mfi

∫ ∞
−∞

dω
sin2[ 12 (ωfi − ω)t]
t(ωfi − ω)2

=
4π2e2

M2c

I(ωfi)
ω2
fi

Mfi, (8.22)

where

Mfi
def=
∣∣∣∣∫ d3r ei

�k·�rψ∗f êpol · ∇ψi
∣∣∣∣2 , (8.23)

with the understanding that |�k| = |ωfi|/c.
Similarly we proceed to calculate the probability per unit time for induced

emission from the second term in (8.21), with the result

P emi
fi =

4π2e2

M2c

I(ωfi)
ω2
fi

M′fi,

where I(ωfi) = I(−ωfi) = I(ωif ) is necessary for I(t) to be real, and

M′fi
def=
∣∣∣∣∫ d3r e−i�k·�rψ∗f êpol · ∇ψi

∣∣∣∣2 =
∣∣∣∣∫ d3r ei

�k·�rψ∗i êpol · ∇ψf
∣∣∣∣2 =Mif ,

which is proved by integrating by parts and using the fact that êpol·∇ei�k·�r =
0, because êpol · �k = 0. We therefore find that

P emi
fi = P abs

if . (8.24)

The radiation field induces as many transitions in one direction as in the
other.

The dipole approximation

If the size (i.e., the spread of its bound-state wave function) of the bound
system, the atom, is small compared to the wavelength of the emitted
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or absorbed radiation, then in the region which contributes almost all of
the value of the integral in M we have �k · �r � 1 and it will be a good
approximation to set ei�k·�r � 1 in the integral, so that

Mfi �
∣∣∣∣∫ d3r ψ∗f ê · ∇ψi

∣∣∣∣2 =
∣∣∣∣M� ωif

∫
d3r ψ∗f ê · �rψi

∣∣∣∣2 . (8.25)

To prove this, use integrations by parts, assuming that the boundary terms vanish:

(Ei − Ef )
∫
d3r ψ∗

f ê · �rψi =
∫
d3r ê · �r(ψ∗

fHψi − ψiHψ∗
f )

= − �
2

2M

∫
d3r ê · �r(ψ∗

f∇2ψi − ψi∇2ψ∗
f ) = − �

2

2M

∫
d3r ê · �r∇ · (ψ∗

f∇ψi − ψi∇ψ∗
f )

=
�
2

2M

∫
d3r ê · (ψ∗

f∇ψi − ψi∇ψ∗
f ) =

�
2

M

∫
d3r (ψ∗

f ê · ∇ψi).

Therefore we obtain in this approximation,

P abs
fi =

4π2e2

c�2 I(ωfi)|êpol · (�r)fi|2, (8.26)

where (�r)fi is shorthand for
∫
d3r ψ∗f�rψi. Since ψf and ψi are orthogonal,

the vector �r may be taken with respect to any arbitrary origin, and e�r is the
electric dipole moment of a particle at �r with respect to that origin. That is
why the transitions for which (8.26) is the approximate probability per unit
time are called dipole transitions. If θ is the angle between the direction of
polarization êpol and �r, we have |êpol · (�r)fi|2 = |(�r)fi|2 cos2 θ. Averaging
this over all directions of polarization gives the absorption probability per
unit time from an unpolarized radiation field4

P abs = BI(ωfi)/c, (8.27)

where

B =
4π2cα

3�
|(�r)fi|2 (8.28)

is called the Einstein B coefficient. (Here α is the fine-structure constant
α

def= e2/�c.)
The fact that �r is a vector immediately leads to certain selection rules

for dipole transitions. As we have seen in Section 5.2, if the potential that
binds the system is spherically symmetric, for (8.28) not to vanish we must
have

∆l = ±1, ∆m = 0,±1,

4Prove that for the three-dimensional avergage, cos2 θ = 1/3.
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(if l is not a good quantum number, the first is replaced by ∆j = 0,±1),
that is, dipole transitions can occur only between states for which ∆l = ±1
and ∆m = 0,±1; if the dipole transition probability is zero, such transitions
are called forbidden.

If the incident radiation is not incoherent but plane polarized along the
z-axis, the relevant dipole matrix element is (z)fi, for which the selection
rule is ∆m = 0; on the other hand, if the radiation is polarized along the x
or y-axis (or in any direction perpendicular to the z-axis), then ∆m = ±1.
Of course, for these selection rules to make any observable difference, the
m-degeneracy must be removed, say, by a strong external magnetic field
(the Paschen-Back effect). In such a situation, we must have ∆m = 0 for
polarization along the magnetic field, and ∆m = ±1 for polarizaton that
is orthogonal to it; if the radiation is circularly polarized, the selection rule
is ∆m = 1 for right-circular polarization and ∆m = −1 for left-circular
polarization.5

In case a certain dipole transition is forbidden, more terms in the power-
series expansion

ei
�k·�r = 1 + i�k · �r + . . .

or in the spherical-wave expansion (see Appendix D)

ei
�k·�r =

∞∑
l=0

iljl(kr)Pl(cos θ)

have to be taken into account. Every term in the ensuing expansion of the
transition probability is then smaller by a factor of ak relative to the previ-
ous one, if a is the spatial extent of the relevant bound-state wave function.
Thus if ak � 1, the probability of a forbidden transition is suppressed at
least by a factor of (ak)2 relative to an allowed one.

In some instances, the exact matrix element (8.23) may vanish; in that
case the transition is called strictly forbidden and one has to employ higher
order perturbation theory to calculate the transition probability, which
then is very small. An important example of such a situation is one in
which both the initial and final states have l = 0. They are then both
spherically symmetric, while êpol ·�k = 0; hence, if the z-axis is chosen along
the polarization direction êpol, the integrand is odd in z and thus vanishes.
Consequently, l = 0→ l = 0 transitions are strictly forbidden.

Note that all of these statements hold both for absorption and for induced
emission of radiation.

Spontaneous emission of radiation

The interaction of a bound electrically charged system with the radiation
field gives rise not only to absorption and induced emission of photons but

5Show this.
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also to their spontaneous emission, with no light or other radiation shining
on the system. In order to calculate the probability for this to occur, we
avail ourselves of Fermi’s golden rule (8.8), which means we must first
determine what the appropriate density ρf of final states is for photons.
If the field is confined to a cubical box of sidelength L, we know that the
allowed wavelengths are λ = L/n, so that the allowed wavenumbers for each
of the three orthogonal directions are 2πn/L, and the number of states in
the wave-vector interval d3k is (L/2π)3d3k. Therefore,

ρdE = ρ�dω =
(
L

2π

)3

d3k = dΩk2dk

(
L

2π

)3

= dΩ
ω2dω

c3

(
L

2π

)3

,

or

ρ = dΩ
ω2

�c3

(
L

2π

)3

. (8.29)

Since no radiation shines on the atom, the initial state is the photon
vacuum state and only the creation operator �a† in (8.18) will contribute,
leading to a state with one photon of momentum �k�, so that the appropriate
normalization of �A for finding one photon per unit volume has to be such
that

�A|0〉 = ic

√
2π�

ω
L−3/2ei(

�k·�r+ωt)�a†(�k)|0〉

and (8.20) gives

|H ′fi|2 =
2π�3e2

M2ωL3Mfi,

whereMfi is defined by (8.23). Insertion of this and (8.29) in (8.8) gives the
probability per unit time for the spontaneous emission of a single photon
of plane polarization êpol and momentum in the interval dΩ around �k from
the state ψi of the charged system to the state ψf , whose energy is lower
by the amount �ω, the energy of the emitted photon,

Wfi = dΩ
e2�ω

2πM2c3
Mfi. (8.30)

In the dipole approximation, in which ei�k·�r is replaced by 1, this expres-
sion becomes, by (8.25),

Wfi =
α

2πc2
ω3|êpol · (�r)fi|2dΩ.

If φ is the angle between the polarization of the emitted radiation and the
real vector �Rfi formed by the magnitudes of the three components of the
complex vector (�r)fi, then |êpol · (�r)fi|2 = |(�r)fi|2 cos2 φ. Let θ be the angle
between �Rfi and �k, and ϕ′ the angle between the plane formed by �k and
Rfi and the polarization vector êpol; then cos2 φ = sin2 θ cos2 ϕ′, so that

Wfi =
α

2πc2
ω3|(�r)fi|2dΩ sin2 θ cos2 ϕ′,
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whereas the probability of emitting a photon whose polarization is orthog-
onal to êpol is given by the same expression with cos2 ϕ′ replaced by sin2 ϕ′.
Therefore the probability of emitting a photon into dΩ, irrespective of its
polarization, is

Wfi =
α

2πc2
ω3|(�r)fi|2dΩ sin2 θ.

Finally we integrate over all emission directions and obtain the probabil-
ity per unit time of emitting a photon in any direction while the system
makes a transition with an energy difference Ei−Ef = �ωif (in the dipole
approximation),

Wfi = A
def=

4
3
αω3

if

c2
|(�r)fi|2, (8.31)

which is called the Einstein A coefficient. Since each photon carries away
the energy �ω, the emitted power is given by

P =
4
3
e2ω4

c3
|(�r)fi|2,

an expression that should be compared to the classical result for the average
power emitted by a moving electric dipole, which is

P =
2

3c3
�̈p

2
,

where �p is the electric dipole moment. In comparing the two expressions,

keep in mind that if �p = �p0e
−iωt+c.c. = 2�p0 cosωt, then �̈p

2
= 4ω4�p2

0cos2 ωt
= 2ω4�p2

0, so that the quantum result can be simply obtained by the rule:
replace �p by the dipole matrix element (e�r)fi corresponding to the transi-
tion.

The selection rules that hold for absorption are equally applicable to
spontaneous emission. Suppose the atom is immersed in a strong static
magnetic field, splitting the normal m-degeneracy. Adopt a z-axis in the
direction of the magnetic field. Then (z)fi vanishes unless ∆m = 0, and
(x)fi and (y)fi vanish unless ∆m = ±1. Therefore the light emitted in a
transition with ∆m = 0 must be polarized along the z-axis (i.e, parallel
to the magnetic field), which implies that its intensity is maximal in the
plane at right angles to �B; it is called π-light. On the other hand, the light
emitted in a transition with ∆m = ±1 can have no polarization component
in the direction of the magnetic field; such transitions give rise to right and
left circularly polarized light (σ-light), respectively, with maximal emission
intensity parallel to the magnetic field.

Planck’s formula

Suppose the walls of a cavity made of atoms at the temperature T contains
radiation with the frequency distribution I(ω); in other words, the energy in
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the frequency interval dω around ω is dE = I(ω)dω. The electric charges in
the walls in a state of energy Em are induced to emit radiation of frequency
ω at the rate I(ω)B, where B is given by (8.28), and they spontaneously
emit radiation at the rate A given by (8.31), descending to the state En
with Em−En = �ω, while they absorb radiation at the rate I(ω)B making
the opposite transition. When in thermodynamic equilibrium, the ratio of
the number of atoms in the upper state to that in the lower one should
be exp(−�ω/kT ), where k is Boltzmann’s constant, so that the following
equation must hold in a state of eqilibrium:

e−�ω/kT

[
4e2ω3

3�c3
|(�r)nm|2 +

4π2e2

3�2c
I(ω)|(�r)nm|2

]
=

4π2e2

3�2c
I(ω)|(�r)nm|2.

As a result, the frequency distribution of the radiation in the cavity has
to be given by the solution of this equation, which is known as the Planck
distribution formula:

I(ω) =
�ω3

π2c2
(
e�ω/kT − 1

) . (8.32)

Note that this distribution is independent of all the quantities (such as
the dipole moments e�rnm and the energies En and Em) that refer to the
properties of the walls and can therefore be expected to be universally
applicable. As �→ 0, it goes over into the classical Rayleigh-Jeans law,

Iclass(ω) =
ω2

π2c2
kT,

the modification of which to the form (8.32) by Max Planck, you will recall,
was the beginning of the quantum theory. The experimental verification of
Planck’s formula serves as an indirect confirmation of Einstein’s A and B
coefficients.

Linebreadth

The fact that a bound system of electrically charged particles spontaneously
emits radiation when at an energy level from which it is able to descend
to one of lower energy implies that all such states, which would be bound
states if it were not for the electric charge of the constituents, are unstable;
only the ground state of a charged system is truly stable. Indeed, the total
probability per unit time of a decay of a given level labeled i is given by

Wi =
∑
f

Wfi,

where the sum runs over all the states of lower energy than Ei; as a result,
the lifetime of the state is τ = 1/Wi. But, according to the uncertainty



8.2 Slowly Changing Hamiltonians 253

principle, a state with the lifetime τ can be thought of as having a “width”
Γ = �/τ ; that is, its energy can be defined only with an error ± 1

2Γ. A
classical analogue would be a simple, charged, harmonic oscillator, whose
emission of radiation leads to a damping of its amplitude, so that its time
dependence is given by e−iω0te−

1
2γt with γ = 1/τ . If such an oscillator

is set to start at the time t = 0, the Fourier transform of its motion is
given by 1/[i(ω0 − ω) − 1

2γ], the square of whose absolute magnitude is
1/[(ω0 − ω)2 + 1

4γ
2]. Since 1

2γ is the fractional decrease in the oscillator’s
amplitude, γ is the fractional decrease of its energy and τ = 1/γ is the time
after which the oscillator has lost approximately half of its energy; γ is also
the width, at half maximum, of the “spectral line” whose shape is shown
in Figure 4.2 on page 108. At the energies E = E0 ± 1

2Γ, Γ = �γ = �/τ ,
the photon emission has dropped to half its maximum at E = E0. The
resulting broadening effect on the atomic energy levels is called their natural
line breadth. For atomic dipole transitions, the relative frequency width is
about γ/ω ∼ 10−7, which implies a lifetime6 τ ∼ 1

3 × 10−8sec. Thus, the
normal half-life of excited states of atomic systems is about 1

3 × 10−8sec.

8.2 Slowly Changing Hamiltonians

In order to solve the Schrödinger equation

i�
∂Ψ
∂t

= H(t)Ψ (8.33)

with a time-dependent Hamiltonian, it is useful to introduce instantaneous
eigenvectors of H(t) (which, of course, vary with time),

H(t)Φn(t) = En(t)Φn(t), (8.34)

and we shall assume for simplicity that the spectrum is purely discrete,
with no degeneracies. At the time t, the solution of (8.33) can be expanded
on the basis of these states and we define the coefficients cn(t) by writing
the expansion in the form

Ψ(t) =
∑
n

cn(t)Φn(t) exp
[
− i

�

∫ t

0
dt′En(t′)

]
, (8.35)

insertion of which in (8.33), with the use of (8.34), leads to

∑
n

(Φ̇ncn + ċnΦn) exp
[
− i

�

∫ t

0
dt′En(t′)

]
= 0,

6Check this.
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if the time-derivative is denoted by a dot. Using the orthogonality of the
Φn (and assuming they are normalized), this leads to the equation

ċk = −
∑
n

cn(Φk, Φ̇n)exp
[
− i

�

∫ t

0
dt′ (En(t′)− Ek(t′))

]
. (8.36)

On the other hand, differentiating (8.34) with respect to the time and
taking the inner product of the result with Φk, yields for k �= n,

(Φk, Φ̇n) =
〈Ek|Ḣ|En〉
En − Ek

. (8.37)

Finally, defining the time-dependent phase of the state Φn by7

γ̇n
def= i(Φn, Φ̇n), (8.38)

and defining

ak
def= ck exp

[
−i
∫ t

0
dt′ γ̇k(t′)

]
= cke

−iγk(t),

we arrive at the following differential equation for the coefficients ak

ȧk =
∑
n 	=k

an
Ḣkn

En − Ek
exp
[
−i
∫ t

0
dt′ ωnk − i(γk − γn)

]
, (8.39)

where we have written 〈Ek|Ḣ|En〉
def= Ḣkn. Assuming that the time-change

of the Hamiltonian began at the time t = 0 when the system was in the
state Φm(0), the initial condition to go with the differential equations (8.39)
is

ak(0) = δkm.

Up to this point, we have made no approximations. However, suppose
now the Hamiltonian changes very slowly; for example, let it have the form
H(t) = f(εt)H, where f(t) is a given continuous function that describes the
switching-on of the perturbation H, such that f(−∞) = 0 and f(0) = 1,
and let ε� 1, making the rate of change very small. Then the right-hand
side of (8.39) is negligible and so are all the ak except for am, which remains
close to 1, implying that

|(Ψ(t),Φn(t)|2 = |an(t)|2 � δnm.

Thus the probability of finding the system in any state other than that of the
slowly changing energy Em(t) is negligible. Instead of inducing transitions

7Prove that γ̇n is real.
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to states of other energies, as would be the case if the change were more
rapid, the slowly varying Hamiltonian acts adiabatically; the system stays
in the “same state” whose energy slowly adapts itself. This is called the
adiabatic approximation.

There is another noteworthy effect associated with such an adiabatic
change in the Hamiltonian, and that is the change in the phase γm(t) of
the state vector or the eigenfunction. Suppose that at the time T the Hamil-
tonian returns to its original value that it had at the time t = 0. The system
will then have returned to its original energy Em, but its eigenfunction will
have acquired an additonal phase γm(T ), known as the geometric phase or
Berry’s phase.8 It is experimentally observable when two identical systems,
one of which has gone through a closed circuit, are brought together and
the interference effects produced by their phase difference are measured.

For example, take a case in which the time-dependence of the Hamilto-
nian describes an externally produced motion of a part A of it in physical,
three-dimensional space, parametrized by a vector �R(t), such as the posi-
tion of the center of mass of A, so that the time dependence of Φm(t) is the
result of the fact that Φm depends on �R and Φm(t) = Φm(�R(t)). If during
the time from t = 0 to T , �R slowly performs a closed loop, then

γm(T ) = −�
∫ T

0
dt (Φm(�R(t)), Φ̇m(�R(t))

= −�
∮
d�R · (Φm(�R(t)),∇�RΦm(�R(t)),

an integral that does not necessarily vanish. In fact, by Stokes’s theorem,9

γm(T ) = −�
∫
C

d�S · ∇�R × 〈Em|∇�R|Em〉

= −�
∫
C

d�S · (∇�RΦm,×∇�RΦm)

= −�
∫
C

d�S ·
∑
n 	=m

(∇�RΦm,Φn)× (Φn,∇�RΦm),

where C denotes the area encircled by the loop described by A. Just as
(8.37) was obtained, we now have for n �= m

〈Em|∇�R|En〉 = (∇�RH)mn/(En − Em),

where (∇�RH)mn
def= 〈Em|(∇�RH)|En〉, and as a result, the geometric phase

is given by

γm(T ) = −�
∫
C

d�S ·
∑
n 	=m

(∇�RH)mn × (∇�RH)nm
[En(�R)− Em(�R)]2

. (8.40)

8After M.V. Berry.
9Why is n = m excluded in the last line?
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8.3 Problems and Exercises

1. Integrate (8.32) and thereby derive the Stefan-Boltzmann law for
radiation from a black body.

2. Using Fermi’s golden rule, calculate the lifetime of a state of the
hydrogen atom immersed in a weak, uniform, constant electric field.

3. An unpolarized ultraviolet light beam shines on a hydrogen atom in
its ground state. (a) Calculate the absorption probability per unit
time (in the dipole approximation) if the wavelength of the beam is
tuned to 2.2157× 10−5cm. (b) Suppose the beam is plane polarized.
Using the polarization direction as the axis of quantization, i.e., the
z-axis, which m-sublevels of the excited atom will be populated? (c)
If you wish to populate specifically a sublevel with m = 1 or m = −1
and no others, what will you have to do?

4. Taking the fine structure into account, calculate the absorption prob-
ability per unit time for linearly polarized radiation by a hydrogen
atom at a frequency appropriate for the transition from the ground
state (a) to the 2p 1

2 level, and (b) to the 2p 3
2 level. (Calculate this

in lowest-order perturbation theory, without taking into account the
change in the wave functions produced by the fine structure pertur-
bation.)

5. Let the polar angles of the wave vector �k be θ and ϕ, and let those of
the polarization vector be θ′ and ϕ′. Calculate the probability (in the
dipole approximation) for the spontaneous emission of a photon by
an atomic system if �rfi is (a) in the z-direction, (b) in the x-direction,
and (c) in the y-direction. From these results, show that if the photon
comes from a transition with ∆m = 0, then the emission probability is
maximal in the xy-plane, and if it comes from a transition with ∆m =
±1, then the emission probability is maximal in the z-direction.



9
Multiparticle Systems

9.1 Two Particles Interacting with a Center

In Chapter 4 we studied systems consisting of two particles interacting with
one another and saw that in such a case the Schrödinger equation can be
reduced to that of a single-particle system in the center-of-mass coordinate
frame. In this section we shall consider systems that consist of two particles
in interaction not only with each other but also with an external center of
force. Think, for example, of a helium atom with an infinitely massive
nucleus. Whereas in Section 6.3.2 we applied perturbation theory and the
variational method to the calculation of the ground-state energy of this
particular system, here we want to study other, more general phenomena
that can occur in such instances, such as inelastic scattering, resonance
scattering, and auto-ionization.

The Hamiltonian of our system is assumed to be of the form

H def= Ta + Tb + Va(�ra) + Vb(�rb) + V (ab)(�rab), (9.1)

where Ta and Tb are the two kinetic-energy operators,

Ta
def=

�p2
a

2M
, Tb

def=
�p2
b

2M ′
,

and �rab
def= �ra−�rb. In the absence of interaction between the two particles,

that is, when V (ab) = 0, the Schrödinger equation is separable and the
solutions of (9.1) are linear combinations of products of solutions of the
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one-particle Schrödinger equations,

[Ta + Va(�ra)]ψ(a) = E(a)ψ(a), [Tb + Vb(�rb)]ψ(b) = E(b)ψ(b), (9.2)

so that the eigenvalues and quasi-eigenvalues of (9.1) are the sums of the
eigenvalues and quasi-eigenvalues of the two equations in (9.2). Thus the
spectrum of the two-particle system looks schematically as indicated in
Figure 9.1.

E

Particle b Particle a Particles a & b
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E   +E

E   +E

0

0 0

0
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E

FIGURE 9.1. The left-hand figures show the separate spectra of the two par-
ticles, while the right-hand figure shows the two-particle spectrum for the
non-interacting particles. The continuous spectrum is shown in gray; in the light
gray energy region of the third figure, particle b is in its ground state and particle
a is unbound. The energies Es are the thresholds: in the region above Es2 , b can
be in its excited state E(b)

1 and a unbound; above Es3 , a can be bound and b free;
above Es4 both particles can be free.

You should look at this figure carefully and understand its implications.
Whereas each of the one-particle systems has bound states of negative
energy and a positive-energy continuous spectrum, which is separated from
the bound states, the continuous spectrum of the two-particle system begins
at Es1 , the lowest energy of the two ground states, in this case the ground
state of particle b. The physical reason for this is that above that energy
particle a can escape to infinity: the atom can be ionized. The energy
Es2 is the threshold above which particle a can be free while b is in its
excited state E

(b)
1 ; above this energy there could be inelastic scattering

of a, with b initially in its ground state and finally in the excited state
E

(b)
1 , or vice versa, if there were an interaction that would make such a
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transition go. Above Es3 there could be exchange reactions, in which b
collides with a bound and a emerges with b bound, or vice versa, if there
were an interaction, and above Es4 both a and b can be free, so that, with
interaction, either particle could collide with the other one bound, ending
up with both free (double ionizaton), or one of them could be captured and
remain bound.

A particular feature to be noted is that an excited state of the combined
system is embedded in the continuous spectrum (degenerate with a quasi-
eigenvalue): the system can exist, at the same energy, both in a bound
state and in a dissociated state, i.e., ionized, because the energy of a state
in which particle b is in its second level and a is bound (so both are bound)
is equal to the energy of a state in which b is in its lowest level and a has
been expelled and is free.

Imagine now slowly cranking on the interaction V (ab) (say, multiplying
V (ab) by a coupling parameter λ and allowing λ to increase from zero).
Such a perturbation will, of course, shift the discrete energy levels, but it
will also generally allow the bound state in which b is in its excited state
and a in its ground state to “leak” and make a transition to the dissociated
state in which b in its ground state and a free, thus destroying the stability
of the original bound state and giving it a finite lifetime. For atoms, this
is called the Auger effect, and for molecules, predissociation. A concrete
example is that of a helium atom excited to its (2s)2 state (both electrons
in a 2s-state, with opposite spins, 81.6 eV above the ground state), which is
degenerate with a state with one of the electrons in its 1s ground state and
the other free (the ionization threshold is 54.4 eV above the 2s-state). The
electron-electron interaction will therefore induce a radiationless transition,
ionizing the atom and leaving it in its ground state.

So long as the interaction V (ab) is sufficiently weak, the Auger-transition
probability W per unit time can be calculated by Fermi’s golden rule, (8.8),

W =
2πMk1

�3

∫
dΩf |〈f |V (ab)|i〉|2, (9.3)

where k2
1

def= 2M(E − E(b)
0 )/�2, |i〉 is the initial state with both particles

bound (the (2s)2-state in the case of helium), and 〈f | encompasses all the
degenerate final states with b bound in its ground state (the 1s state for
helium) and a free in the continuum but moving in various directions,
and we must integrate over all these. [Equation (8.13) has been used here
for the density of final states.] The lifetime of the unstable state is thus
τ = 1/W . (However, it is also possible for the bound state of the two
particles to remain stably bound even when the interaction V (ab) is strong,
remaining stable because the exact transition probability to the ionized
state happens to be vanish; but this should be regarded as a more-or-less
accidental situation.)
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Since particle a is free at the energy in question, it can, of course, also
come in and be scattered by the potential Va. In the absence of the two-
particle interaction V (ab), its scattering will be uninfluenced by the presence
of particle b, but when V (ab) is turned on, the fact that the two-particle
system can form an almost-bound state will manifest itself strongly as a
resonance. There will be a sharp peak of width Γ in the squared magnitude
of the scattering amplitude so that the scattering cross section has the
characteristic shape

σ(E2) ∝ [(E2 −R)2 +
1
4
Γ2]−1, (9.4)

shown in Figure 4.2, and Γ is related to the lifetime τ of the unstable state
by the relation

Γτ = �, (9.5)

which we saw earlier. Moreover, the phase of the scattering amplitude at
the resonance sharply rises by π, so as to produce a delay in the outgoing
particles, just as it would classically if they emerged after orbiting the center
for a while. Let’s take a look at the mathematics of how this happens.

Suppose the two-particle wave function is expanded on the basis of prod-
ucts of one-particle wave functions, each of which solves the Schrödinger
equation with its own potential, as in (9.2),

ψ(E,�ra, �rb) = Σ
∫
ψ(a)(E(a), �ra)ψ(b)(E(b), �rb), (9.6)

where E(a) + E(b) = E and the functions ψ(b) are assumed normalized, so
that

ψ(a)(E(a), �ra) =
∫
d3rb ψ

(b)∗(E(b), �rb)ψ(E,�ra, �rb)

and ψ(a)(E(a), �ra) satisfies the set of coupled Schrödinger equations1

Σ
∫
β

Hαβψ
(a)
β = Eαψ

(a)
α , (9.7)

where

Hαβ
def=
(
− �2

2M
∇2 + Va(�r)

)
δαβ + V

(ab)
αβ (�r), (9.8)

V
(ab)
αβ (�r) def=

∫
d3rb ψ

(b)
α (�rb)V (ab)(�rb − �r)ψ(b)∗

β (�rb), (9.9)

and the indices α and β run partly over discrete and partly over continuous
values.

1Show it.
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In order to deal with a manageable model system, let us truncate this
infinite set of coupled equations by assuming that particle b has only two
possible states (thereby removing the possiblity of exchange reactions in
which initially particle b is bound and a free, while finally a is bound and
b free), and write (9.7) in matrix notation,

(T + V)Ψ = EΨ, (9.10)

where Ψ has two components, the first being the wave function of particle
a for the case in which b is in its ground state of energy E(b)

0 and hence the
energy of a is E1

def= E − E(b)
0 , and the second component being the wave

fucntion of a when b is in its second state of energy E
(b)
1 and hence that

of particle a is E2
def= E − E(b)

1 ; E is the diagonal matrix with E1 and E2
on its diagonal. The two states are referred to as the two channels of the
system. Since the bound-state wave functions ψ(b)

1 and ψ(b)
2 can be chosen

real, the matrix V is real and symmetric.
To calculate the scattering of particle a we proceed just as in the single-

channel case considered in Chapter 4: we have to solve the Lippmann-
Schwinger equation

Ψ+ = Ψ0 + G+
0 VΨ+, (9.11)

in which G+
0 is the diagonal (in channel space) matrix that solves the

equation
(E −T)G+

0 = 11 (9.12)

with the usual outgoing-wave boundary condition. (Here 11 is both the unit
matrix in channel space and the unit operator.) The two components of
Ψ0 depend on the initial channel: if initially particle b is in its ground
state while particle a comes in, the first component of Ψ0 is the plane
wave (2π)−3/2ei

�k1·�r, where k2
1 = |�k1|2

def= 2ME1/�
2, and the second com-

ponent equals zero; if initially b is in its second state, the first compo-
nent of Ψ0 vanishes and its second component equals (2π)−3/2ei

�k2·�r, where
k2
2

def= |�k2|2 = 2ME2/�
2. These two column matrices can be arranged in a

2 × 2 matrix, with the free solution written as (2π)−3/2ei
�K·�r, where �K is

a diagonal matrix with the diagonal elements �k1 and �k2. In terms of the
matrix K, which has k1 and k2 on the diagonal, K def=

√
2ME/�, the free

Green’s function is expressible in the form

G+
0 (E,�r, �r ′) = − M

2π�2

eiK|�r−�r
′|

|�r − �r ′| ,

from which we obtain the asymptotic form of Ψ+

Ψ+(E,�r) ∼ (2π)−3/2[ei �K·�r +
1
r
eiKrA(E; k̂f , k̂i)],
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where k̂i and k̂f are the initial and final momentum directions, and A is
the 2× 2 matrix

A(E; k̂f , k̂i) = − M

2π�2 Θ(f, i), (9.13)

Θ(f, i) def= (Ψ(f)
0 ,VΨ(i)+) def=

∫
d3rΨ∗0( �Kf , �r)V(�r)Ψ+( �Ki, �r). (9.14)

The scattering cross section from the initial channel i and direction k̂i, to
the final channel f and direction k̂f is given by2

dσ(f, k̂f , i, k̂i)
dΩ

=
kf
ki
|Afi(E; k̂f , k̂i)|2. (9.15)

Specification of a channel amounts to specifying in which of its two states
particle b is and at the same time determining the values of kf and ki. If the
two states are the same, the scattering is elastic; otherwise it is inelastic,
with different inital and final energies of particle a as well as of particle b
but with the total energy conserved.

Just as in Section 4.4, it is convenient to define a complete Green’s func-
tion by the equation

(E −T− V)G+ = 11 (9.16)

and the outgoing-wave boundary condition, and solve (9.11) by writing

Ψ+ = Ψ0 + G+VΨ0,

so that Θ(fi) has the form

Θ(f, i) = (Ψ(f)
0 ,VΨ(i)

0 ) + (Ψ(f)
0 ,VG+VΨ(i)

0 ). (9.17)

Let us also define the diagonal matrix Green’s function G+ whose elements
g+
1 and g+

2 satisfy

[E1 −T− v1]g+
1 = 11, [E2 −T− v2]g+

2 = 11, (9.18)

and the outgoing-wave boundary condition, where

v1(�r)
def= Va(�r) + V

(ab)
11 (�r), v2(�r)

def= Va(�r) + V
(ab)
22 (�r). (9.19)

We are particularly interested in the case in which channel 1 is open, i.e.,
particle a has enough energy to be in its continuous spectrum, while channel
2 is closed so that it is below its continuum (the energy region between Es1
and Es2 of Figure 9.1).

Multiplying (9.16) by G+ on the left, we obtain the equation for the full
Green’s function, (11−G+V int)G+ = G+, or,

G+ = G+ +G+V intG+, (9.20)

2Where does the factor kf/ki come from?
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where
V int def= V

(ab)
12 Q

in terms of the matrix

Q
def=
(

0 1
1 0

)
.

Also define

P1
def=
(

1 0
0 0

)
P2

def=
(

0 0
0 1

)
.

Since P1 commutes with G+ and P1Q = QP2, multiplication of (9.20) by
P1 and by P2 leads to

P1G+ = g+
1 P1 + g+

1 V intP2G+,

P2G+ = g+
2 P2 + g+

2 V intP1G+,

and substitution of the first equation into the second, to

P2G+ = g+
2 P2 + g+

2 V intg+
1 P1 + g+

2 V
(ab)
12 g+

1 V
(ab)
12 P2G+,

or,
(E2 −T− v2 − V (ab)

12 g1V
(ab)
12 )P2G+ = P2 + V intg+

1 P1, (9.21)

implying that G+
2

def= P2G+P2 is a Green’s function that satisfies the equa-
tion

[E2 − H(E1)]G+
2 = P2, (9.22)

with the nonlocal, energy-dependent, non-Hermitian, effective Hamiltonian

H(E1)
def= T + v2 + V

(ab)
12 g1(E1)V

(ab)
12

= T + v2 + V
(ab)
12 P(E1 −H1)−1V

(ab)
12

− iπV (ab)
12 δ(E1 −H1)V

(ab)
12 , (9.23)

in which use has been made of (A.2) as well as of the symbolic expression
in (4.127), P stands for Cauchy’s principal value, and H1

def= T + v1. The
intuitive physical interpretation of this effective Hamiltonian seen by par-
ticle a when it is in channel 2 is that in addition to seeing the ordinary
potential v2, it sees the effect of the interaction V (ab) causing a transition
to channel 1, where it can propagate freely (subject only to the potential
v1), followed by a transition back to channel 2.

The operator G2
def= [E2 − H(E1)]−1P2 will have a pole at an eigenvalue

A(E(B)
1 ) of H,

H(E(B)
1 )u = A(E(B)

1 )u,
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which in the absence of V (ab) would simply be the eigenvalue E(a)
0 of T+V2.

But (9.23) and (9.19) show that the presence of V (ab) shifts it not only along
the real axis but generally into the complex plane,

A(E(B)
1 ) def= R− 1

2
iΓ,

which is the reason why the state becomes unstable, as we have seen. When
V (ab) is small, therefore, u � ψ(a) as well as Γ � R. For real energies in
the vicinity of E2 = R (9.17) shows that the elastic scattering amplitude of
particle a in channel 1 contains a rapidly varying term that, as a function
of the energy, behaves like

(Ψ0(�k′1), V
(ab)u)(u, V (ab)Ψ0(�k1))

[E2 −R+ 1
2 iΓ]

, (9.24)

producing a sharp peak of width Γ in the magnitude of the amplitude and
in the elastic scattering cross section that has the characteristic shape (9.4)
shown in Figure 4.2. From (9.23) and a comparison of (4.127) with (4.128)
we calculate the value of Γ for weak V (ab) to be

Γ = 2π(ψ(a)(E(a)
0 ), V (ab)

12 δ(E1 −H1)V
(ab)
12 ψ(E(a)

0 ))

=
2πMk1

�2

∫
dΩ1|(ψ(a)(E(a)

0 ), V (ab)
12 ψ(a)(�k1))|2

=
2πMk1

�2

∫
dΩ1

∣∣∣∣∫ d3rad
3rb ψ

(a)∗(E(a)
0 , �ra)ψ(b)∗(E(b)

1 , �rb)

× V (ab)(�ra − �rb)ψ(a)(�k1, �ra)ψ(b)(E(b)
0 , �rb)

∣∣∣2 .
Comparison with (9.3) shows that the width Γ of the resonance peak is
related to the lifetime of the unstable state by (9.5). It follows from (9.24)
that the phase of the scattering amplitude at the resonance sharply rises
by π.3

9.2 Identical particles

Even in classical physics certain phenomena involving more then one parti-
cle depend on whether the particles are identical or distinguishable by their
masses or other characteristics. For example, if two idential particles are
scattered by one another and their emergence is counted by detectors, the
numbers of particles #1 registering in detector A and of #2 in detector B
has to be added to the number of particles #2 registering in A and of #1 in

3Show this.
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B: the cross sections in which the final particles are and are not exchanged
have to be added to arrive at the correct count.

In quantum mechanics, however, the situation is very much more serious.
Classically, two particles with identical properties can still be distinguished
by their history; they have a certain individuality: we can keep track of
them by following them along their trajectories. In quantum mechanics,
this cannot be done; any attempt to identify one along its track would
alter the experiment. Since neither individuality nor history can be used
for identification, the only possible marker of a particle is its state, specified
by the measured values of a complete set of commuting observables. Two
identical particles in the same state are fundamentally indistinguishable,
in keeping with the assumption that the state of a system, as given by its
state vector (in the ideal situation of a pure state), completely specifies all
the properties of the system at one time. Moreover, in order to arrive at
the correct scattering cross section in a situation such as described in the
first paragraph above, the scattering amplitudes have to be added rather
than the cross sections, which results in additional interference effects that
depend on the relative phases of the two amplitudes.

Consider, then, a wave function of N identical particles ψ(1, 2, . . . , N ; t)
(where the numbers indicate the particles in some specified states), and let
E12 be the operator that exchanges particles 1 and 2, so that

E12ψ(1, 2, . . . , N ; t) def= ψ(2, 1, . . . , N ; t).

Since, in order to ensure that experimental results cannot distinguish be-
tween particles, all expectation values have to be invariant under the ex-
change, we must have |E12ψ|2 = |ψ|2, and hence E12ψ = eiϕψ with ϕ real:
ψ must be an eigenfunction of E12 with an eigenvalue of modulus 1. What
is more, if we want single-valuedness of the wave function, we ought to have
E2
12 = 11. The eigenvalues of E12 must therefore be ±1, and all physically

acceptable wave functions ψ of these particles have to be eigenfunctions of
E12.

Next, take exchanges between identical particles 2 and 3 and suppose
that

E12ψ = ψ and E23ψ = −ψ.

But4 E13 = E12E23E12 and therefore E13ψ = −ψ, while also E13 = E23E12E23
and therefore E13ψ = ψ. Consequently we have to conclude that there have
to be two classes of identical particles: those whose wave functions are sym-
metric under exchange of any two of them, and those whose wave functions
are anti-symmetric; no wave function of N identical particles can be sym-
metric under the exchange of some of them and anti-symmetric under the
exchange of others. Note that the exchange operators E12 and E23 don’t

4Check this.
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commute, so there is no complete set of common eigenfunctions, but there
are eigenfunctions that are symmetric under all exchanges, and others that
are anti-symmetric, and these two classes are the only ones physically ac-
ceptable. Therefore, the Hilbert space of several identical particles contains
vectors that do not correspond to physically realizable states.

There is, however, the following caveat: The argument that the eigen-
values p = eiϕ of the exchange operator E12 have to be ±1 is based on
the assumption that when two particles are physically exchanged by trans-
porting them along some path, and the process is repeated along another
path, the wave function has to return to its original value, else it would not
be single-valued. For purely topological reasons, this reasoning is correct
in three dimensions, where two exchanges are topologically equivalent to
none, even if the exclusion principle (or a hard core repulsion) is taken into
account and the particles are prevented from occupying the same point.
However, in two dimensions (or in a multiply connected three-dimensional
manifold), the argument breaks down: no number of repeated exchanges
is necessarily topologically equivalent to zero exchanges if coincidence is
excluded. The reason is the same as that discussed in Section 7.2 in the
context of the Aharanov-Bohm effect. As a result, identical particles con-
fined to a two-dimensional configuration space need not be members of one
of the only two classes allowed in three dimensions; their wave functions
can have more complicated properties under exchange than simple sym-
metry or anti-symmetry: under exchange their wave functions may change
by arbitrary phase factors. Such particles, which have come to be known
as anyons, play significant roles in the physics of the solid state, where
two-dimensional films and surface structures come into play. We shall not
pursue this topic further in this book.5

If a wave function is symmetric or anti-symmetric at one time, it will
retain this property for all time. This is because ψ(t) = exp(−iHt/�)ψ(0),
and we must have [Eij ,H] = 0, or else the particles would be dynamically
distinguishable. Therefore if Eijψ(0) = ±ψ(0), then

Eijψ(t) = exp(−iHt/�)Eijψ(0) = ±exp(−iHt/�)ψ(0) = ±ψ(t).

The next question is how to construct such totally symmetric or anti-
symmetric wave functions. Suppose that ψ(1, 2, . . . , N) is an arbitrary wave
function of N identical particles. In order to construct a symmetric func-
tion, we simply add all the wave functions obtained by exchanging pairs of
particles:

ψsy(1, 2, . . . , N) def=
∑
perm

ψ(i, j, . . . , N),

5For a good survey, see [Canright]; see also [Shapere].
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where the sum runs over all permutations. Similarly, an anti-symmetric
function is constructed by

ψantisy(1, 2, . . . , N) def=
∑
perm

εij...ψ(i, j, . . . , N),

where εij... is the sign of the permutation; that is, εij... = 1 if i, j, . . . is an
even permutation of 1, 2, . . . (it takes an even number of exchanges to get
from one to the other), and εij... = −1 if i, j, . . . is an odd permutation of
1, 2, . . . (it takes an odd number of exchanges).6

As an example take the case of N non-interacting identical particles. Any
eigenfunction of the Hamiltonian H =

∑N
j=1 Hj of such a system can be

written as a linear combination of product wave functions, each of which
are eigenfunctions of identical individual Hamiltonians Hj :

ψ = ψn1(1)ψn2(2) · · ·ψnN
(N),

where

Hjψnj
= Enj

ψnj
, and E = En1 + En2 + . . .+ EnN

.

Such functions, however, are generally neither symmetric nor anti-symmetric.
Since there clearly is exchange degeneracy (unless all the Eni are equal)—
that is, the total energy of the system is invariant under exchange—we can
take linear combinations of such product wave functions with the same to-
tal energy and still have an energy eigenfunction. So to form a symmetric
energy eigenfunction we simply take

ψsy(1, 2, . . . , N) def=
1√
N !

∑
perm

ψn1(i1)ψn2(i2) · · ·ψnN
(iN ), (9.25)

and the exchange degeneracy is thereby generally removed.
A simple way to form an anti-symmetric wave function is to take the

Slater determinant,7

ψantisy(1, 2, . . . , N) def=
1√
N !

∣∣∣∣∣∣∣∣∣
ψn1(1) ψn1(2) . . . ψn1(N)
ψn2(1) ψn2(2) . . . ψn2(N)

...
...

...
ψnN

(1) ψnN
(2) . . . ψnN

(N)

∣∣∣∣∣∣∣∣∣ . (9.26)

If the one-particle wave functions are all ortho-normal and each state is
occupied by one particle, the wave functions defined by (9.25) and (9.26)

6You should check that any exhange of two particles in ψantisy as defined
above changes the sign of that wave function.

7Why is this wave function anti-symmetric?
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are properly normalized. To see this, take the square of the norm of the
symmetric wave function,

(ψsy, ψsy) =
1
N !

∑
perm

(ψn1(1), ψn1(1)) (ψn2(2), ψn2(2)) · · · = 1
N !

∑
perm

1 = 1.

(As an exercise, I will ask you to calculate the proper normalization factor
if some levels are occupied by more than one particle.) The argument for
the anti-symmetric case is the same as for the symmetric case.

If two particles described by an anti-symmetric wave function are in the
same state, the wave function, of course, has to vanish. Therefore such par-
ticles obey the Pauli exclusion principle: no state can accommodate more
than one of them. The distinction between the two kinds of particles that
exist in nature can therefore be put most simply by saying: One kind is
subject to the Pauli principle and the other kind is not. This distinction
has important consequences in statistical mechanics. When in thermody-
namic equilibrium at the temperature T , the energies En of fundamentally
indistinguishable particles not subject to the Pauli principle are distributed
according to Bose-Einstein statistics:

P (En) ∝
1

e(En−µ)/kT − 1
, (9.27)

where k is Boltzmann’s constant and µ is the so-called chemical potential.
[For a derivation, see (9.47) below.] On the other hand, if they are subject
to the exclusion principle, they obey Fermi-Dirac statistics,

P (En) ∝
1

e(En−µ)/kT + 1
. (9.28)

[For a derivation, see (9.48).] The first are therefore called bosons and the
second, fermion. (Now you may appreciate why the other kinds of particles
possible in two-dimensional or multiply connected three-dimensional struc-
tures are called anyons.) Inspection of the two distributions shows that
both approach Maxwell-Boltzmann statistics for high energies, but for low
energies (compared to kT ) they deviate markedly from e−En/kT as well as
from one another.

Of the known particles, electrons, protons, neutrons, muons, and neu-
trinos are examples of fermions; photons and pions are bosons. It is one
of the most fundamental facts of physics that all fermions have half (odd)
integral spin, while all bosons have integral spin. The ultimate explanation
of this spin-statistics connection rests on the theory of relativity and re-
quires tools that go beyond the scope of this book;8 in Chapter 10 we shall
see a partial explanation. The spin-statistics connection holds not only for

8For a good review, see [Duck].
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elementary particles but also for compound systems such as atoms and nu-
clei: those of integral spin act like bosons, and those of half-integral spin
like fermions. For example, the fact that C12-nuclei are bosons manifests
itself in their mutual scattering by a constructive interference peak at 900

in their center-of-mass system because the two scattering amplitudes for di-
rect and exchange scattering have to be added; were they fermions, the two
amplitudes would have to be subtracted, which would result in destructive
interference and a minimum.

Perhaps the most dramatic manifestation of the fact that even bound
systems of integral spin behave like bosons is their observed behavior at
extremely low temperatures. As we shall see in the next section, bosons
are, in fact, actually attracted into states that are already heavily occupied,
the result of which is called Bose-Einstein condensation. The atoms of
liquid 4He all congregate in the state of lowest energy when cooled to near
00 Kelvin, whereas those of 3He behave quite differently; as is appropriate
for them as fermion they must all occupy different states and thus fill the
lowest energy levels as high as necessary, the top level being called the
Fermi surface.

A gas that is a Bose-Einstein condensate, whose existence was predicted
by Satyendranath Bose and Albert Einstein in 1925, is not to be confused
with an ordinary collection of atoms or molecules all of which are in their
lowest energy state. In the condensate, the N -particle state is pure, and the
entire system consisting of many atoms is describable by a wave function
in its 3N -dimensional configuration space rather than by a density matrix:
the states of all the atoms are phase-correlated. Such a state of a gas at
ultra-low temperature was first observed experimentally only a few years
ago.

9.2.1 Fock space
In view of the essential indistinguishability of identical particles, a way of
labeling states of more than one of them that is more convenient than trying
to specify which particle is in which state, is to use the occupation-number
representation already introduced in Section 1.4.3, which is a natural ex-
pression of the view that particles are no more than manifestations of an
underlying quantum field. Here one defines a standard order of the states
(which requires infinitely many tags), for example, by increasing energy and
some fixed conventional order for degenerate states, and labels the states
of the system by identifying which of them are occupied and by how many
particles, as in

Ψ(0, 1, 0, 0, 2, 0, . . .) def= Ψ([n]) def= |[n]〉,

where [n] denotes the set of occupation numbers in the standard order.
This is clearly a more appropriate manner of dealing with the fact that
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the particles have no identity than attempting to specify which of them
is where. It is called the occupation-number representation and the Hilbert
space whose basis vectors are so labeled is also called Fock space, after the
Russian physicist V. Fock. Whereas for bosons the occupation numbers are
unrestricted, for fermions, of course, none of them can exceed 1.

As we saw in Section 1.4.3, the proper mathematical tools for the de-
scription of these states are the annihilation and creation operators, which
are conventionally written as ai and a†i , respectively (these are the same as
the Ψ̃i and Ψ̃ †i in Section 1.4.3). For bosons they satisfy the commutation
relations

[ai,a
†
j ] = δij , [ai,aj ] = 0. (9.29)

In terms of the occupation-number operator for state i, Ni
def= a†iai, we then

have
Ni|[n]〉 = ni|[n]〉. (9.30)

The total number operator,

N def=
∑
i

Ni =
∑
i

a†iai, (9.31)

has as its eigenstates all the states of a system containing a fixed, given
number of particles, and its eigenvalues are these total numbers of particles.
(The system is now a field rather than a collection of particles.)

As we saw,

a†i | . . . , ni, . . .〉 =
√
ni + 1| . . . , ni + 1, . . .〉,

which can also be written as

a†i |[n]〉 =
√
ni + 1|[n] + 1i〉, (9.32)

so that

|[n]〉 =
· · · (a†2)n2(a†1)

n1

√
n1!n2! · · ·

|0〉 =
(an1

1 an2
2 · · ·)†√

n1!n2! · · ·
|0〉, (9.33)

as in (1.43) and (1.44).
For fermions, we have to be a little more careful about the order of these

operators because they anti-commute:

{ai,a†j} = δij , {ai,aj} = 0. (9.34)

As we saw in Section 1.4.3 these anti-commutation relations lead to the
Pauli exclusion principle, so that only occupation numbers 0 and 1 are
allowed. In order to end up with consistent signs, the action of a†i has to
include a sign factor such as

a†i |[n]〉 = (−1)p(1− ni)|[n] + 1i〉, (9.35)
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where p is the number of occupied states in [n] higher than i. (This sign
then of course depends on the order of states adopted by convention, but
it will remain consistent once this order is fixed.) Let us check that this
works correctly:

a†1|0〉 = |1, 0, 0, . . .〉
a†2|1, 0, 0, . . .〉 = |1, 1, 0, 0, . . .〉 = −a†1|0, 1, 0, 0, . . .〉 = −a†1a

†
2|0〉

= a†2a
†
1|0〉 = a†2|1, 0, 0, . . .〉.

Had the factor (−1)p (or some other conventional sign factor) not been
present in (9.35), this would not have come out consistent.9

The state vectors of one-particle systems in which the particle occupies
the state i are Ψi = |i〉1 = a†i |0〉 and the completeness of the states used
as a basis implies that

∑
i |i〉1 1〈|i| = 111, or∑

i

a†i |0〉〈0|ai = P1, (9.36)

where P1 is the projection on the subspace of all one-particle states in the
Fock space. Both P1 and N should, of course, be independent of the basis of
states used in the definition, and they are.10 This includes even quasi-bases
such as the configuration basis, which was employed in Section 1.4.3. Thus,

ρ(�q) def= Ψ †(�q)Ψ(�q)

is the density of particles in configuration space and

N =
∫
d3q Ψ †(�q)Ψ(�q)

their total number; the projection on the one-particle subspace is given by

P1 =
∫
d3q Ψ †(�q)|0〉〈0|Ψ(�q).

In this language a general one-particle state is given by | 〉1 = Ψ1 =∑
j cja

†
j |0〉, so that the probability of finding the particle in the state i is

given by

|〈1i| 〉1|2 = |〈1i|
∑
j

cja
†
j |0〉|2 = |〈0|

∑
j

cjaia
†
j |0〉|2 = |ci|2,

where the commutation relations (9.29) have been used and the fact that
ai|0〉 = 0. To obtain a one-particle wave function, we proceed as in Section

9Verify this.
10Prove this as an exercise.
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1.4.3. Using either (1.36) or (1.51), depending on whether the particles are
bosons or fermions, and (1.48), with the result (1.49), and

ψ(�q) = 〈0|Ψ(�q)| 〉1 =
∑
j

cj〈0|Ψ(�q)a†j |0〉 =
∑
j

cjψj(�q), (9.37)

where ψj(�q) is the wave function of the state j.
If a new set of annihilation operators is introduced by a unitary trans-

formation U in the sense that

a′i =
∑
j

Uijaj ,

then for bosons
[a′i,a

†
j ] =
∑
k

Uik[ak,a
†
j ] = Uij , (9.38)

and therefore, since a′i
† =
∑
j U
∗
ija
†
j ,

|i〉′1 = a′i
†|0〉 =

∑
j

U∗ija
†
j |0〉 =

∑
j

U∗ij |j〉1,

which means that the matrix Uij is the transformation function connecting
the two one-particle bases |i〉′1 and |j〉1, Uij = (Ψ′i,Ψj). If the new “basis”
is a quasi-basis, for example the quasi-basis for the configuration repre-
sentation, then Uj(�q) = 〈�q|j〉 = ψj(�q), the normalized one-particle wave
function of the jth state, and we have by (9.38),

[Ψ(�q),a†j ] = ψj(�q). (9.39)

For fermions the same equations hold, with the commutators in (9.38) and
(9.39) replaced by anti-commutators. The commutators [Ψ(�q),aj ], resp.
anti-commutators {Ψ(�q),aj}, of course, all vanish.

The general two-boson wave function is obtained by repeated application
of (9.39), remembering that whenever Ψ(�q) abuts |0〉 the result vanishes,11

ψ(�q1, �q2) = 〈0|Ψ(�q2)Ψ(�q1)| 〉2 =
∑
i 	=j

cij〈0|Ψ(�q2)Ψ(�q1)a
†
ia
†
j |0〉

+
∑
j

cjj√
2
〈0|Ψ(�q2)Ψ(�q1)a

†2
j |0〉

=
∑
i 	=j

cij [ψi(�q2)ψj(�q1) + ψi(�q1)ψj(�q2)] +
∑
j

cjj
√

2ψj(�q2)ψj(�q1)

=
∑
ij

dijψi(�q1)ψj(�q2), (9.40)

11Fill in the missing steps.
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where dij
def= cij + cji = dji for i �= j, and djj

def=
√

2cjj . Thus ψ(�q1, �q2)
is automatically symmetric. The two-fermion wave function, on the other
hand, is given by the anti-symmetric combination12

ψ(�q1, �q2) =
∑
ij

cij [ψi(�q2)ψj(�q1)− ψi(�q1)ψj(�q2)] =
∑
ij

dijψi(�q2)ψj(�q1),

(9.41)
where dij = cij − cji = −dji.

ForN particles, we have similarly, | 〉N =
∑

[n] c[n]|[n]〉, and the n-particle
wave function for bosons,

ψ(�q1, �q2, . . .) = 〈0| · · ·Ψ(�q2)Ψ(�q1)| 〉N
=
∑
[n]

c[n]√
n1!n2! · · ·

〈0| · · ·Ψ(�q2)Ψ(�q1) · · ·a†n2
2 a†n1

1 |0〉, (9.42)

where the sum runs over all [n] such that n1 + n2 + . . . = N, and the
right-hand side can be expressed as a linear combination of products of N
one-particle wave functions by successively commuting, or anti-commuting,
all the Ψ(�q) to the right. For bosons, the result is automatically symmetric,
and for fermions anti-symmetric.

The Hamiltonian in Fock space is expressed in terms of the operators aj
and a†j . In the simplest instance,

H =
∑
kl

H
(1)
kl a†kal. (9.43)

Acting on a one-particle state, in which the particle is in the state Ψn, it
results in

H|1n〉 =
∑
kl

H
(1)
kl a†kala

†
n|0〉 =

∑
k

H
(1)
kn a†k|0〉 =

∑
k

H
(1)
kn |1k〉,

which identifies H(1)
kl as

H
(1)
kl = 〈1k|H|1l〉 = (Ψk|H|Ψl).

Acting on a two-particle state, the result is

H|1n, 1m〉 =
∑
kl

H
(1)
kl a†kala

†
na
†
m|0〉 =

∑
k

[H(1)
km|1k, 1m〉 ±H

(1)
kn |1k, 1n〉],

the sign being + for bosons and − for fermions. Similarly for N -particle
states. As you can see, this Hamiltonian acts on one particle at a time,

12Verify this.
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taking it out of its original state and inserting it another, conserving the
total number of particles,13 [H,N] = 0.

For a system of identical non-interacting particles it is most convenient
to use a representation that diagonalizes the one-particle Hamiltonian, so
that the basis for the occupation number representation diagonalizes H(1),

H =
∑
k

a†kakH
(1)
kk =

∑
k

NkEk,

Ek being the energy of a particle in the state k. The Fock states are eigen-
states of this Hamiltonian:

H|[n]〉 =
∑
k

EkNk|[n]〉 =
∑
k

nkEk|[n]〉.

Let us now add a one-particle perturbation H′, so that

H =
∑
k

NkEk +
∑
kl

a†kH
′
klal.

This perturbation may, for example, be an electromagnetic wave producing
a transition from |[n]〉 to |[n′]〉 = |[n] + 1k − 1l〉. In first-order perturbation
theory, the transition probability is then proportional to |〈[n′]|H′|[n]〉|2,
and for k �= l we have for fermion

〈[n′]|H′|[n]〉 = 〈[n] + 1k − 1l|H′|[n]〉 = H ′kl〈[n] + 1k − 1l|a†kal|[n]〉
= ±(−1)pl+pk(1− nk)nlH ′kl

so that
|〈[n] + 1k − 1l|H′|[n]〉|2 = |H ′kl|2nl(1− nk). (9.44)

Suppose, on the other hand, that the particles are bosons. In that case we
have 〈[n] + 1k − 1l|a†kal|[n]〉 =

√
nl(nk + 1) for k �= l and as a result,

|〈[n] + 1k − 1l|H′|[n]〉|2 = |H ′kl|2nl(1 + nk). (9.45)

Thus both for fermions and for bosons, the transition probability is pro-
portional to the number of particles in the initial state l before, times the
number of particles in the final state k after, the transition. In the fermion
case, if the final state is occupied, there can be no transition, a fact that
may be interpreted as an effective repulsion. In the boson case, on the
other hand, the transition probability is enhanced if the final state is oc-
cupied: there is, in effect, an attraction, as though bosons were gregarious
and prefered to be in the same state.

13Prove this.
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The next more complicated kind of Hamiltonian is of the form

H =
1
2

∑
klrs

H
(2)
kl,sra

†
ka
†
laras, (9.46)

which annihilates one-particle states and which, on others, describes the
interaction of two particles by extracting them from their orginal states
and inserting them into new ones. It also conserves the total number of
particles.14 (All operators that are products of the same number of creation
as annihilation operators conserve the number of particles.)

For a system with one-particle and pairwise interactions (and again a
representation is used that diagonalizes the one-particle Hamiltonian) the
total Hamiltonian will be

H =
∑
k

NkEk +
1
2

∑
klrs

H
(2)
kl,sra

†
ka
†
laras

and if there is no degeneracy, the first-order energy shift resulting from the
interaction will be given by

∆E[n] =
1
2

∑
klsr

H
(2)
kl,sr〈[n]|a†ka

†
laras|[n]〉.

If the particles are fermions, we find that15

〈[n]|a†ka
†
laras|[n]〉 = nknl(δrlδsk − δkrδls).

Therefore,

∆E[n] =
1
2

∑
k 	=l

nknl[H
(2)
kl,kl −H

(2)
kl,lk],

where the second term on the right is called the exchange-energy term,
which arises because the particles may be exchanged in the course of the
interaction. For example, if the states k and l of two spin-1/2 particles sim-
ply differ by their spins, it is convenient to use the spin-exchange operator
defined in (5.69), which leads to

∆E[n] =
1
2

∑
k 	=l

nknl(Ψkl, [H(2) −H(2)Pexch]Ψkl)

=
1
2

∑
k 	=l

nknl(Ψkl,H(2) 1
2
(11− �σ(k) · �σ(l))Ψkl).

The exchange interaction of two spin-1/2 fermions can therefore in some
circumstances be regarded as a spin-dependent force.

14Prove this.
15Show this.
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For bosons, on the other hand, the corresponding result for the first-order
energy shift is16

∆E[n] =
1
2

∑
k

nk(nk − 1)H(2)
kk,kk +

1
2

∑
k 	=l

nknl[H
(2)
kl,kl +H

(2)
kl,lk].

The first term represents the interaction of two particles in the same state
k, 1

2nk(nk−1) being the number of pairs in the state, which in the fermion
case, of course, vanishes.

9.2.2 Bose-Einstein and Fermi-Dirac distributions
As an application, consider an assembly of bosons in equilibrium by col-
lisions with an atomic system (say, making up the walls of the container)
at temperature T . The number of transitions from N1 atoms at energy
E1 and nm bosons of energy εm to N2 atoms at energy E2 and nl bosons
of energy εl will be, according to (9.45), AN1nm(nl + 1) with some con-
stant A, wheras the number of transitions going in the reverse direction is
AN2nl(nm + 1), so that at equilibrium

nm(nl + 1)N1 = nl(nm + 1)N2,

and the conservation of energy requires E1 + εm = E2 + εl. At equilibrium,
the ratio N1/N2 has to follow the Boltzmann law,

N1

N2
= exp[−E1 − E2

kT
] = exp[−εl − εm

kT
].

The result is the equation

nm
nm + 1

nl + 1
nl

= exp
εl − εm
kt

,

or (
1 +

1
nl

)
exp[− εl

kT
] =
(

1 +
1
nm

)
exp[− εm

kT
] = C,

where C is a constant, independent of the energies of the bosons. Therefore

nm =
1

C exp(εm/kT )− 1
, (9.47)

and C is determined by the constraint

N =
∑
m

nm =
∑
m

1
C exp(εm/kT )− 1

.

16Show this.
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Eq. (9.47) is the Planck distribution law for bosons, or Bose-Einstein statis-
tics.

For fermions (9.44) has to be used instead of (9.45) and the result is17

the Fermi-Dirac statistical distribution

nm =
1

C exp(εm/kT ) + 1
, (9.48)

where, again, C has to be calculated from the constraint that the total
number of particles is fixed.

17Check this.
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9.3 Problems and Exercises

1. Use Fermi’s golden rule (8.8) to calculate the Auger transition prob-
ability per unit time for a helium atom from its (2s)2 state. (Enclose
the atom in a large cubic box to discretize the continuous spectrum.)

2. Suppose that state n1 of a given system is occupied by m1 identical,
non-interacting particles, state n2 by m2, etc. Express the properly
normalized multiparticle wave function in terms of the single-particle
functions.

3. Suppose two spin-1/2 particles are in a state in which the total an-
gular momentum is a good quantum number; if they are in a singlet
state, what is their lowest possible orbital angular momentum? What
if they are in a triplet state?

4. Suppose that a new ortho-normal basis is used for the definition of
occupation numbers in Fock space, Ψ′i =

∑
j UijΨj . How are the new

annihilation operators a′i related to the old ones? Show that the total
number operator N and the projection operator on one-particle states
P1 are invariant under such a change in basis.

5. Let two identical spin-1/2 particles interact via a spin-independent
attractive central potential strong enough to bind.

(a) What are the values of the total angular momentum j and of the
parity in the ground state?

(b) For a given value of j and a given parity, how many possible
states are there? Disregard the different orientations (i.e., m values)
and make a list of the possible states (i.e., their l values and their
total spin values) in each of the four relevant kinds of cases.

6. Consider a helium atom in the simplest approximation, in which the
electrons don’t interact with one another. If the electrons had spin 1,
and hence obeyed Bose-Einstein statistics, what would be their total
spin in the ground state?

7. Two identical spin-0 particles are free to move along a line; they
do not interact with one another, but each is subject to a harmonic
force from the origin that corresponds to the classical frequency ω.
The two-particle system is in an eigenstate of the total energy with
the eigenvalue 2�ω.

(a) Write down the density matrix of the system.

(b) Calculate both the expectation value and the root-mean-square
deviation from that expectation of the energy of one of the particles
alone, with the other one ignored.



10
Relativistic Electron Theory

10.1 Preliminaries

The Lagrangian (2.68) for the nonrelativistic matter field had been adopted
because it leads to the equation of motion (2.69) and the Hamiltonian
(2.70), which is equivalent to (2.34) for a quantum, and the latter equation
is the quantum version of the Newtonian energy-momentum relation for a
particle. In order to arrive at the appropriate relativistic field equation, it
suggests itself that one proceed analogously with the relativistic energy-
momentum relation, which for a free particle of mass M reads

E2 = �p 2c2 +M2c4,

where c is the velocity of light. The result of thus defining the Hamiltonian
operator to be H def=

√
�p2c2 +M2c4 is a Schrödinger equation that reads

either
i�
dΨ
dt

=
√
�p2c2 +M2c4Ψ (10.1)

or else its once iterated version

−�2 d
2Ψ
dt2

= (�p2c2 +M2c4)Ψ. (10.2)

In the configuration representation, (10.1) would then lead to the equation

i�
∂ψ

∂t
=
√
−�2c2∇2 +M2c4ψ,
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which would be hard to handle because of the square root on the right,
while (10.2) would lead to the more manageable

−�2 ∂
2ψ

∂t2
= (−�2c2∇2 +M2c4)ψ,

or [
−�2
(
∇2 − 1

c2
∂2

∂t2

)
+M2c2

]
ψ = 0. (10.3)

The field producing quanta whose one-particle wave function satisfies this
equation can be generated from the Lagrangian density

L = �2Ψ̇ †Ψ̇ − �2∇Ψ † · ∇Ψ −M2c4Ψ †Ψ,

which leads to the canonically conjugate momentum operator

Π = �2Ψ̇ †

and the Hamiltonian1

H =
∫
d3r [�−2ΠΠ† + �2c2∇Ψ † · ∇Ψ +M2c4Ψ †Ψ ]. (10.4)

In the presence of an electromagnetic field described by the scalar po-
tential φ and a vector potential �A, the concomitant relativistic Schrödinger
equation in the configuration representation for a particle of charge e then
is the following:(

i�
∂

∂t
− eφ
)2

ψ =
[
(−ic�∇− e �A)2 +M2c4

]
ψ, (10.5)

which is, in fact, the equation proposed by Schrödinger as the appropriate
relativistic generalization of his original, nonrelativistic equation. Eq. (10.5)
is known as the Klein-Gordon equation.2

Eqs.(10.3) and (10.5), while relativistically invariant, have two serious
flaws as proposed wave equations for electrons: first, while the field Hamil-
tonian (10.4) is positive definite, its eigenvalues are the squares of the
energies, and there is no way of forcing these energies to be positive; they
automatically come out both positive and negative. Second, if (10.5) is
used for an electron in a hydrogen atom, it, by itself, does not account cor-
rectly for the fine structure of the spectrum, as we saw in Section 6.2.6; the
Pauli term would have to be added ad hoc, in a Lorentz-invariant manner.
Therefore, to describe the behavior of the wave function (or the underlying
field) of an electrically charged particle of spin-1/2, such as the electron, a
totally new equation is needed. (However, the Klein-Gordon equation does
have its use as a relativistic wave equation for particles of spin 0.)

1Show it.
2After O. Klein and W. Gordon.
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10.1.1 Relativistic spin
In order to be able to exploit the extensive analogies that exist between
Lorentz transformations, which leave x2

1 + x2
2 + x2

3 − (ct)2 invariant, and
rotations, which leave the Euclidean distance invariant, let us temporarily
introduce a four-dimensional Euclidean space by setting x4

def= ix0
def= ict.

This means that, at the expense of having to deal with a purely imaginary
x4, the Lorentz group is replaced by the rotation group O(4), which leaves
x2

1 + x2
2 + x2

3 + x2
4 invariant. Furthermore, for reasons that will become

apparent, it will be most convenient to generalize such objects as rotation
and reflection operators from 3 to 5 dimensions, thus dealing with O(5),
and subsequently to descend to 4, the dimensionality of space-time.

Recall what we know about the spin-1/2 rotation generators 1
2�σ in three

dimensions. The unitary rotation operator for the spin degrees of freedom
is given in terms of them by

S = exp[i
ω

2
n̂ · �σ], (10.6)

if the rotation axis and angle are n̂ and ω, respectively. The three compo-
nents of �σ form an axial vector and are, more properly, the components
of an anti-symmetric tensor of rank two, as in (5.55), so that 1

2σlk is the
generator of rotations that leave the (lk)-plane invariant. The appropri-
ate commutation relations for such rotation generators are (5.56), and the
anti-commutation relations for spin-1/2 are (5.57).

Next, define Rk as the unitary operator for a reflection through the k-
axis for spinors, so that, for example, R1 corresponds to the transformation
x′1 = x1, x

′
2 = −x2, x

′
3 = −x3. Since the σkl are the components of a tensor

of rank 2, they must transform like

σ′1 = R−1
1 σ1R1 = R−1

1 σ23R1 = σ23 = σ1,

σ′2 = R−1
1 σ31R1 = −σ31 = −σ2,

σ′3 = R−1
1 σ12R1 = −σ12 = −σ3,

etc., which implies

R−1
k σlRk =

{
σl for k = l
−σl for k �= l,

(In other words, Rk commutes with σk and anti-commutes with the other
σs.) or

R−1
k σrsRk =

{
−σrs for k = r or k = s
σrs for k �= r, k �= s.

Because R1 is a reflection operator through the 1-axis, it is equivalent to
a rotation by ±π in the (23)-plane and must therefore be

R1 = exp
[
±iπ

2
σ23

]
= ±iσ23 = ±iσ1,
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according to (10.6) and (5.49), and similarly for the others:

Rk = ±iσk. (10.7)

As reflection operators, the Rk must be the components of an axial vector,
just like σk, and hence the signs in (10.7) must be the same for all three of
them. They are thus skew-Hermitian and, since we are dealing with spin-
1/2, it follows from (10.7) that they satisfy the anti-commutation relations

1
2
{Rk,Rl} = −δkl. (10.8)

Furthermore, we find that

R1R2R3 = (±i)3σ1σ2σ3 = ±11

and if the plus sign in (10.7) is adopted by convention, i.e., Rk = +iσk,
then

R1R2R3 = 11. (10.9)

From (5.56) we obtain the commutation relations

1
2i

[Rk, σlm] = δkmRl − δklRm. (10.10)

Finally, notice that

R1R2 = −σ1σ2 = −iσ3 = −iσ12,

so that more generally,

RkRl = −iσkl = exp
[
−iπ

2
σkl

]
, (10.11)

which expresses a rotation by π in the (kl)-plane as two reflections, through
the k- and l-axes.

In any dimension, the number n(n − 1)/2 of real parameters in O(n)
equals the number of components of anti-symmetric tensors of rank 2, so
that rotations can be generated by 1

2

∑n
µ,ν=1 εµνσµν in terms of the rotation

generators σµν . Alternatively, they may be viewed as products of n(n −
1)/2 individual rotations 1

2ϕσµν , each of which keeps a plane invariant and
requires only a single parameter. The rotation generators σµν are therefore
the most basic objects needed.

10.1.2 The γ-matrices
We now turn to O(5). Using Greek indices running from 1 to 5, there are
10 rotation generators Σµν = −Σνµ, and 5 reflection operators, which we
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shall call γµ for a reflection through the µ-axis. The rotation operators have
to satisfy commutation relations analogous to (5.56),

1
2i

[Σµν ,Σλκ] = δµλΣνκ − δµκΣνλ + δνκΣµλ − δνλΣµκ, (10.12)

and because they are supposed to be a representation for spin-1/2, the
anti-commutation relations

1
2
{Σµν ,Σλκ} = δµλδνκ − δµκδνλ (10.13)

analogous to (5.57), provided that one member of the pair (µν) agrees with
one of the (λκ). [Equation (10.12) implies that [Σµν ,Σλκ] = 0 if all four of
the indices are different.]

In order to obtain the relation between the reflection operators and the
rotation generators, we have to realize that whereas in three dimensions a
reflection through the 1-axis is equivalent to a rotation by π in the (23)-
plane, in five dimensions it is accomplished by a rotation in the (23)-plane
combined with a rotation in the (45)-plane. Therefore, in place of (10.7),
we must have, except possibly for an arbitrary sign, γ1 = (iΣ23)(iΣ45), and
take conventionally

γ1 = Σ23Σ45 (10.14)

and its cyclic permutations of the indices. As a result, we find that γ2
µ = 11,

and the reflection operators are Hermitian, whereas in three dimensions
R2
k = −11 and they are skew-Hermitian. For µ �= ν we find from (10.12)

and(10.14),3

γµγν = iΣµν = exp[i
π

2
Σµν ] (10.15)

and hence
1
2i

[γµ, γν ] = Σµν . (10.16)

We also obtain from (10.14) and the commutation relations of the Σs,

γ1γ2γ3γ4γ5 = −11. (10.17)

In fact, as you should verify for yourself, all the properties of the rotation
operators imply those of the reflection operators and vice versa.

It is instructive to write down the entire list:

γ1 = Σ23Σ45 = Σ25Σ34 = Σ24Σ53

γ2 = Σ34Σ51 = Σ31Σ45 = Σ35Σ14

γ3 = Σ45Σ12 = Σ42Σ51 = Σ41Σ25

γ4 = Σ51Σ23 = Σ53Σ12 = Σ52Σ31

γ5 = Σ12Σ34 = Σ14Σ23 = Σ13Σ42.

3Check this.
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Note particularly that the expressions for γ1, γ2, and γ3 are just like those
for the Rs in three dimensions, except that they are all multiplied by Σ45.

So here we have 16 linearly independent Hermitian operators,

11, Σµν , γµ, µ, ν = 1, . . . , 5,

which form the basis of a linear algebra. [The product of a γ with a Σ
can be expressed as a multiple of a Σ by means of (10.15) and (10.17), the
product of two γs in terms of a Σ by (10.15), and the product of two Σs
in terms of γs by (10.15) and (10.17). This is the reason for going to five
dimensions rather than directly to four, where the rotation and reflection
operators, together with the unit operator, would not form the basis of an
algebra.] Therefore, for a representation of these 16 operators by means of
16 linearly independent matrices, these matrices can be no smaller than
4× 4.

How many of these 4 × 4 matrices can be chosen to be real and how
many purely imaginary? Since the operators are Hermitian, so must be
the matrices; hence a real matrix has to be symmetric and an imaginary
one anti-symmetric. Among the 16 independent 4 × 4 matrices, exactly
ten can be chosen symmetric and six anti-symmetric; therefore ten of the
Hermitian matrices can be taken to be real and six imaginary. The only
consistent choice, as you should check for yourself (for example, all six γs
real would lead to all ten Σs imaginary, which is too many), is to have
three real and two imaginary γs, which yields four imaginary Σs and six
real ones; since 11 is real, this works out correctly. So we choose γ1, γ2, and
γ3 to be real (because eventually, the first three coordinates play a different
physical role from the others) and γ4 and γ5 purely imaginary.

When descending to four dimensions, from now on unless otherwise
noted, Greek subscripts will be understood to run from 1 to 4, with 5 explic-
itly written out. Since physics demands a Lorentzian rather then Euclidean
metric, the requirement is that the fourth component of any “real” vector
be imaginary, while the first three have to be real. Similarly, all the com-
ponents of a tensor of rank two have to be real, except those with one
subscript equal to 4, which are imaginary. Applied to the tensor 〈Σµν〉,
this implies that, even though Σµν is Hermitian, we must have

〈Σµν〉∗ =
{
−〈Σµν〉 for µ or ν = 4
〈Σµν〉 for µ, ν �= 4 ,

which implies

〈Σµν〉∗ = 〈γ4Σµνγ4〉. (10.18)

Because the carrier space corresponding to the 4× 4 rotation matrices is
four-dimensional, the vectors u in this space, i.e., the relativistic spinors,
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have to have four components:4 uα, α = 1, . . . , 4, and we shall regard them
as column matrices, writing (u, v) def=

∑
α u
∗
αvα

def= ũ∗v = u†v. However,

if we were to define 〈Σµν〉
def= ũ∗Σµνu for normalized spinors u, as we did

nonrelativistically, the result would be 〈Σµν〉∗ = 〈Σµν〉, rather than (10.18).
The expectation value therefore has to be defined relativistically as5

〈Σµν〉
def= u†γ4Σµνu.

It is consequently convenient to define an adjoint spinor by

ū
def= ũ∗γ4 = u†γ4, (10.19)

so that
〈Σµν〉

def= u†γ4Σµνu = ūΣµνu, (10.20)

as well as generally for any operator A acting a relativistic spinor wave
functions,

〈A〉 def= ūAu, (10.21)

(assuming u is normalized, see below) from which it follows that

〈A〉∗ = 〈γ4A†γ4〉,

implying that 〈iγ5〉 is real and 〈iγµ〉 and 〈iγ5γµ〉 have the correct reality
properties of four-vectors. For example, let us test the reality property of
〈iγµ〉 with this new definition of the expectation value. We find that for
µ = 1, 2, 3,

〈iγµ〉∗ = (ũ∗γ4iγµu)∗ = −ũ∗iγµγ4u = ūiγµu = 〈iγµ〉,

whereas 〈iγ4〉∗ = −〈iγ4〉, which is just the way a “real” four-vector ought
to behave. Similarly for 〈iγ5γµ〉.

There is, however, another difficulty. The interpretation of ūAu as the
expectation value of A is based on the assumption that ūu = 1. But,
although ūu is real, there is no assurance that it is positive for all u, so
that ūu cannot necessarily be made equal to 1 by rescaling of u.

For infinitesimal rotations in the (µν)-plane by an angle ε � π the
rotation operator that transforms spinors according to u′ = Su is given by

S = 11 +
i

2
εΣµν ,

4These four spinor components are not to be confused with four space-time compo-
nents!

5Exercise: Show that this definition satisfies (10.18).
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which leads to the rotation operator for finite rotations by the angle ϕ in
the (µν)-plane,

S = lim
n→∞

(
11 +

i

2
ϕ

n
Σµν

)n
= exp[

i

2
ϕΣµν ] = 11 cos

ϕ

2
+ iΣµν sin

ϕ

2
. (10.22)

The most general rotation in 5 dimensions is the product of 10 such opera-
tors, analogous to the way in which a general rotation in three dimensions
is the product of three rotations by Euler angles. However, the general
rotation matrix for infinitesimal rotations can also be written in the form

S = 11 +
i

2

4∑
µ>ν=1

εµνΣµν = 11 +
i

4

4∑
µ,ν=1

εµνΣµν ,

where εµν = −ενµ, |εµν | � 1, but this cannot be simply exponentiated as
in (10.22).

The inverse of the rotation matrix (10.22) is of course given by

S−1 = exp[− i
2
ϕΣµν ] = 11 cos

ϕ

2
− iΣµν sin

ϕ

2
,

which for real ϕ is equal to S†, because Σµν is Hermitian; but for actual
Lorentz transformations, including boosts, for which one of the indices µ
or ν equals 4, the angle ϕ has to be taken imaginary (see below), so that
in that case S† = S. These cases can all be combined in the formula

S† = γ4S−1γ4; (10.23)

thus S is generally not unitary. As a result of (10.23), if under a Lorentz
transformation a spinor u goes over into

u′ = Su,

then its adjoint becomes

ū′ = u†′γ4 = u†S†γ4 = ūS−1,

so that
〈A〉′ = ū′Au′ = ūS−1ASu = 〈S−1AS〉. (10.24)

The matrices S form a four-dimensional representation of the Lorentz
group which is different from the defining representation given by the 4×4
matrices that transform space-time four-vectors, and the carrier space of
this representation is the space of relativistic spinors which transform like

u′ = Su.
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We now abandon imaginary fourth components of venctors and use
µ, ν = 0, 1, 2, 3, defining γ0

def= −iγ4, and the Lorentz metric −g00 = g11 =
g22 = g33 = 1, gµν = 0 for µ �= ν, and gµν = gµν ; then

γµγν = gµν + iΣµν . (10.25)

According to (10.17), the Hermitian matrix γ5 is related to the other γ
matrices by

γ5 = −γ1γ2γ3γ4 = iγ0γ1γ2γ3. (10.26)

and the adjoint spinor, in terms of which expectation values are defined as
in (10.21), is given by

ū
def= iu†γ0.

The γ matrices play a central role in the relativistic formulation of quantum
mechanics and it is important to study their properties.

Let us, then, verify that 〈iγµ〉 behaves like a vector under rotations.
(Since we found 〈iγ4〉 to be imaginary, 〈iγ0〉 is real, so that all four compo-
nents of 〈iγµ〉, µ = 0, . . . , 3 are real.) You will easily check,6 using (10.16),
that for (10.22), that is, for a rotation in the (µν)-plane,

S−1iγµS = iγµ cosϕ+ iγν sinϕ,

S−1iγνS = iγν cosϕ− iγµ sinϕ,

whereas S leaves the other three γs unchanged. It therefore follows that
under the rotation (10.22) in the (µν)-plane, for µ, ν = 1, 2, 3,

〈iγµ〉′ = cosϕ 〈iγµ〉+ sinϕ 〈iγν〉,

〈iγν〉′ = − sinϕ 〈iγµ〉+ cosϕ 〈iγν〉,
and for κ �= µ, ν,

〈iγκ〉′ = 〈iγκ〉.
For an actual Lorentz transformation describing boosts, say, of velocity

v along the x-axis, we have to take µ = 1, ν = 4, and set ϕ = iψ, where

sinhψ def=
v/c√

1− (v/c)2
, coshψ =

1√
1− (v/c)2

,

which makes

S = exp[−1
2
ψΣ14] = 11 coshψ − Σ14 sinhψ.

The result is
〈iγ1〉′ = coshψ 〈iγ1〉+ i sinhψ 〈iγ4〉,

6Do it.
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〈iγ4〉′ = −i sinhψ 〈iγ1〉+ coshψ 〈iγ4〉,
or

〈iγ1〉′ =
〈iγ1〉 − (v/c)〈iγ0〉√

1− (v/c)2
,

〈iγ0〉′ =
〈iγ0〉 − (v/c)〈iγ1〉√

1− (v/c)2
.

Thus for general proper, orthochronous Lorentz transformations given by

x′µ =
3∑

ν=0

A ν
µ xν , µ = 0, 1, 2, 3,

(where now only real coordinates have been employed, with x0 = ct), we
have

S−1γµS =
3∑

ν=0

A ν
µ γν , µ = 0, 1, 2, 3, (10.27)

and therefore

〈iγµ〉′ =
3∑

ν=0

A ν
µ 〈iγν〉, µ = 0, 1, 2, 3,

which means that the four quantities 〈iγµ〉, µ = 0, 1, 2, 3, transform like the
coordinates xµ and therefore form a Lorentz four-vector.

We similarly find7 that under proper rotations and Lorentz transfor-
mations, 〈iγ5〉 is invariant and 〈iγ5γµ〉 is a four-vector, while under space
reflection, for which S = iγ4, 〈iγµ〉 is a vector, 〈iγ5γµ〉 a pseudo-vector, 〈 | 〉
a scalar, and 〈iγ5〉 a pseudo-scalar, and under time reversal, with S = iγ4γ5,
〈 | 〉 changes sign, 〈iγ5〉 is invariant, 〈iγµ〉 is a pseudo-vector, and 〈iγ5γµ〉 is
a vector. The operator S = γ5 does a complete space-time reflection, and
under this transformation 〈 | 〉 and 〈iγ5〉 are pseudo-scalars, while 〈iγµ〉 and
〈iγ5γµ〉 are pseudo-vectors.

Just as it was useful nonrelativistically to define a spin exchange matrix
by (5.69), so we define here the matrix

I
def=

1
4

16∑
A=1

S(1)
A ⊗ S(2)

A , (10.28)

where SA is one of the 16 Hermitian matrices (all of which are such that
S2
A = 11) 11, γµ,Σµν , µ, ν = 1, . . . , 5, and the superscript distinguishes be-

tween the two systems, S(1)
A acting on system #1 and S(2)

A acting on #2.
It has the property that

S(1)
C I = IS(2)

C , C = 1, . . . , 16, (10.29)

7Verify all these statements.
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as well as
S(2)
C I = IS(1)

C , C = 1, . . . , 16. (10.30)

Moreover, as you will prove in a homework problem,

I2 = 11, (10.31)

where 11 is the unit matrix both in the space #1 and in #2.

Since the SA form the basis of an algebra, we have for A �= B,

SASB =
∑
D

aABDSD. (10.32)

The coefficients aABD can be calculated by taking traces, and we find (as I will ask you
to prove as a homework problem)

aABC =
1
4
trSASBSC , (10.33)

which implies that
aABC = aCAB = aBCA.

Consequently we obtain

S(1)
C I =

∑
A

S(1)
C S(1)

A ⊗ S(2)
A =

∑
AD

aCADS(1)
D ⊗ S(2)

A

=
∑
AD

S(1)
D ⊗ aDCAS(2)

A =
∑
D

S(1)
D ⊗ S(2)

D S(2)
C = IS(2)

C .

Equation (10.30) is proved similarly.

Therefore I is the exchange operator between #1 and #2, and because
of (10.31), its eigenvalues are ±1. If two particles are in a state that is
symmetric under spin exchange, then I = 11, and if they are in an anti-
symmetric spin state, I = −11. The exchange operator can also be expressed
in terms of the γ-matrices,

I = 11− 1
8
(11−

5∑
1

γ(1)
µ ⊗ γ(2)

µ )2, (10.34)

as I will ask you to prove as a homework problem. It therefore follows
that for anti-symmetric states,

5∑
1

γ(1)
µ ⊗ γ(2)

µ =
{
−311

511 ,

while for states symmetric under spin exchange

5∑
1

γ(1)
µ ⊗ γ(2)

µ = 11,
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i.e.,
4∑
1

γ(1)
µ ⊗ γ(2)

µ = 11− γ(1)
5 ⊗ γ(2)

5 , (10.35)

and
5∑

µ<ν=1

Σ(1)
µν ⊗ Σ(2)

µν = 211,

which implies that for symmetric states

4∑
µ<ν=1

Σ(1)
µν ⊗ Σ(2)

µν = 11 + γ
(1)
5 ⊗ γ(2)

5 . (10.36)

As an application, suppose that u(1) and u(2) are the same states, so
that u(1) ⊗ u(2) = u⊗ u is symmetric under exchange. It then follows from
(10.35) that

−
3∑

µ,ν=0

(ūiγµu)gµν(ūiγνu) = (ūu)2 + (ūiγ5u)2 > 0, (10.37)

since both ūu = ũ∗γ4u and ūiγ5u are real. Therefore, 〈iγµ〉 is a time-like
four-vector. If (10.35) is multiplied by iγ(1)

5 ⊗ iγ(2)
5 , the result is

4∑
1

(iγ(1)
5 γ(1)

µ )⊗ (iγ(2)
5 γ(2)

µ ) = 11 + iγ
(1)
5 ⊗ iγ(2)

5 ,

which, when expectation values are taken, leads to

4∑
1

(ūiγ5γµu)2 =
3∑

µ,ν=0

(ūiγ5γµu)gµν(ūiγ5γνu) = (ūu)2 + (ūiγ5u)2 > 0,

(10.38)
implying that 〈iγ5γµ〉 is a space-like four-vector. Not only that, but since
multiplication of (10.35) by iγ(1)

5 yields

4∑
µ=1

iγ
(1)
5 γ(1)

µ ⊗ γ(2)
µ = iγ

(1)
5 − iγ(2)

5 ,

it follows that

4∑
1

(ūiγ5γµu)(ūiγµu) =
3∑

µ,ν=0

(ūiγ5γµu)gµν(ūiγνu) = 0, (10.39)

which says that 〈iγ5γµ〉 and 〈iγµ〉 are orthogonal to one another.
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In a similar manner we find from (10.36) that

4∑
µ<ν=1

(ūΣµνu)2 =
3∑

µ>ν=0,λ>κ=0

(ūΣµνu)gµλgνκ(ūΣλκu) = (ūu)2 − (ūiγ5u)2

(10.40)
as well as

4∑
µ>ν=1

(ūiγ5Σµνu)2 =
3∑

µ>ν=0,λ>κ=0

(ūiγ5Σµνu)gµλgνκ(ūγ5Σλκu)

= (ūu)2 + (ūiγ5u)2 (10.41)

and

4∑
µ>ν=1

(ūiγ5Σµνu)(ūΣµνu) =
3∑

µ>ν=0,λ>κ=0

(ūiγ5Σµνu)gµλgνκ(ūΣλκu)

= 2(ūu)(ūiγ5u). (10.42)

These equations imply that under proper Lorentz transformations, which
leave ūu and ūiγ5u invariant, 〈Σµν〉 and 〈iγ5Σµν〉 behave like tensors of
rank two.

Charge conjugation

There is another important transformation of the γ matrices, which, for
reasons that will become clear in Section 10.2.1, is called charge conjuga-
tion. It is defined by a unitary matrix C, C†C = 11, that takes a spinor u
into

uc
def= C˜̄u, (10.43)

and which is such that for µ = 0, . . . , 3,

C−1γµC = −γ̃µ. (10.44)

Such a transformation leaves the anti-commutation relations implied by
(10.25) unchanged, and it may be chosen to be C = γ0 if the four γ-
matrices γ0, . . . , γ3 are taken to be real. The four-component objects uc

are spinors under proper Lorentz transformations,8 that is, they are such
that uc′ = Suc if u′ = Su.

It is easy to check9 that the definition (10.43) implies

ūc = −ũC−1,

8It will be a homework exercise to show this.
9Do it.
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and therefore
ūcuc = −ūu.

Similarly, we find that
ūciγµu

c = ūiγµu,

as well as
ūciγ5u

c = −ūiγ5u,

and
ūciγ5γµu

c = −ūiγ5γµu.

So, under charge conjugation, 〈iγµ〉 remains invariant, while 〈iγ5〉, 〈iγ5γµ〉,
and 〈 | 〉 change sign.

10.2 The Dirac Equation

We now have the tools to construct a suitable differential operator that
can be used in a relativistically invariant field equation. Since the set γµ
transforms under Lorentz transformations as in (10.27), it follows that

γµ
∂

∂xµ

def= γµ∂
µ

is such that in a new coordinate frame

(γµ∂µ)′
def= γµ

∂

∂x′µ
= Sγµ∂µS−1.

(From now on we shall use the summation convention, so that repeated
indices are automatically summed over from 0 to 3.) This operator will be
denoted by ∂/ :

∂/
def= γµ∂

µ = �γ · ∇+ γ0
1
c

∂

∂t
,

(here �γ denotes the three-vector with the components γ1, γ2, γ3) so that
under Lorentz transformations

∂/ ′ = S∂/S−1, (10.45)

where ∂/ ′ def= γµ∂
′µ. (Note particularly that in every frame the same set of

γ matrices may be used.) According to (10.25)

∂/ 2 =
1
2
{γµ, γν}∂µ∂ν = gµν∂

µ∂ν = ∇2 − 1
c2
∂2

∂t2
. (10.46)

Thus ∂/ may be regarded as a square root of the relativistically invariant
d’Alembert operator ∇2 − ∂2/∂(ct)2.
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Let us, then, write down the simplest candidate for a Lorentz invariant
Lagrangian density for a free electron field:

L = Ψ̄

(
1
2

�c∂/− 1
2

�c∂/← +Mc2
)
Ψ

= Ψ †
(

1
2

�cγ4�γ · ∇ −
1
2

�cγ4�γ · ∇←

− i �

2
∂

∂t
+ i

�

2
∂

∂t←
+ γ4Mc2

)
Ψ, (10.47)

(where the subscript ← indicates that the differentiation is to operate to-
ward the left) if we assume the field Ψ to have four components that trans-
form like those of a relativistic spinor, i.e., Ψ ′ = SΨ under Lorentz trans-
formations. [We will see shortly what the physical meaning of the constant
term Mc2 in (10.47) is.] The Lagrangian equation of motion obtained from
(2.65) for the free field then reads10

(�∂/+Mc)Ψ = 0, (10.48)

which is the Dirac equation. The result of multiplying it by (�∂/ −Mc) is,
according to (10.46),(

�2

c2
∂2

∂t2
− �2∇2 +M2c2

)
Ψ = 0, (10.49)

so that every solution of (10.48) must also solve (10.49), which is identical
to (10.3). Thus M in the Lagrangian (10.47) will be the mass of the quanta
produced by the field. The Hamiltonian is obtained just like (2.71),

H = −
∫
d3r Ψ̄(�c�γ · ∇+Mc2)Ψ. (10.50)

That (10.48) is a covariant equation follows immediately from the fact
that the Lagrangian from which it is generated is invariant, but we also
find directly that after a Lorentz transformation (10.48) reads

(�∂/ ′ +Mc)Ψ ′ = 0.

It thus has the same form in the moving or rotated laboratory as before,
with the same γ-matrices.

Before we can find out what kinds of particles will be produced by the
field that satisfies (10.48), we have to look at the solutions of the same
equation as applied, not to a field but to a numerical spinor function:

(�∂/+Mc)u(�r, t) = 0. (10.51)

10Show this as an exercise.
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This equation will obviously have plane wave solutions of the form

u(�r, t) = u exp[i(�k · �r − ωt)] = u exp(ixµkµ),

where k0 def= −ω/c and the constant spinor u must satisfy the equation

(i�γµkµ +Mc)u = 0. (10.52)

Multiplication of this equation by (i�γµkµ −Mc) yields (M2c2 + �2�k2 −
�2ω2/c2)u = 0, which implies that ω is related to �k by

ω = ±
√
M2c4

�2 + c2�k2.

For a given vector �k and a given value of M , the Hermitian 4× 4 matrix
Γ(�k) def= γ0(−��γ ·�k+iMc) must have four linearly independent eigenvectors;
two of them belong to the eigenvalue �ω/c = +

√
M2c2 + �2�k2 and two to

�ω/c = −
√
M2c2 + �2�k2. To label the degenerate states, we introduce the

Hermitian matrix �Σ·k̂ [where Σ1
def= Σ23, and its cyclic permutations, Σµν is

given by (10.25), and k̂ def= �k/|�k|]; this matrix, which has the eigenvalues ±1
called positive and negative helicity, commutes with Γ(�k) and can be em-
ployed to label the states by u±(�k, ω). Moreover, (10.44) together with the
facts that the components of �γ are Hermitian while γ0 is skew-Hermitian,
leads to

CΓ∗(�k)C−1 = −Γ(−�k),

from which it follows by (10.43) that if Γ(�k)u(�k) = (�ω/c)u(�k), then

Γ(�k)uc(−�k) = −(�ω/c)uc(−�k).

Therefore every negative-frequency solution equals the charge conjugate of a
positive-frequency solution, and vice versa. We also find11 that if �Σ · k̂u = u,
then �Σ·k̂uc = −uc. Thus there are four mutually orthogonal eigenvectors of
Γ(�k), which can be labeled u±,±, the first ± indicating positive or negative
helicity and the second the eigenvalues ω = ±

√
c2k2 +M2c4/�2. [However,

since u±,−(�k) = −(u∓,+)c(−�k), we can equally well take the four to be
u+,+, u−,+, and their charge conjugates.] We will assume that the u±,±(�k)
are normalized, u†±,±(�k)u±,±(�k) = 1. This implies12 that

ū±,±(�k)u±,±(�k) =
Mc2

�ω
u†±,±(�k)u±,±(�k) =

Mc2

�ω
.

11Show this.
12Show this.
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The spinor functions u±,+(�k) exp(i�k ·�r−iωt) and u±,−(�k) exp(i�k ·�r+iωt),
with ω = +

√
c2k2 +M2c4/�2, form a complete set of solutions of (10.51)

and the spinor field Ψ(�r, t) subject to (10.48) can be expanded in the form

Ψ(�r, t) = (2π)−3/2
∫
d3k
∑
h=±

[
ei(
�k·�r−ωt)uh,+(�k)ah(�k)

+ ei(
�k·�r+ωt)uh,−(�k)b†h(�k)

]
, (10.53)

where the coefficients ah(�k) and bh(�k) are operators given by

ah(�k) = (2π)−3/2
∫
d3r u†h,+(�k)Ψ(�r, t)e−i(�k·�r−ωt)

b†h(�k) = (2π)−3/2
∫
d3r u†h,−(�k)Ψ(�r, t)e−i(�k·�r+ωt).

Since Ψ is a spinor field, it has to satisfy anti-commutation relations (the
spin-statistics connection) as in (2.80), (2.81), and (2.82), whose use leads
to the anti-commutators13

{ah(�k),a†h(�k′)} = δhh′δ(�k − �k′), {bh(�k),b†h(�k′)} = δhh′δ(�k − �k′), (10.54)

and

{ah(�k),ah(�k′)} = 0, {bh(�k),bh(�k′)} = 0,

{ah(�k),bh(�k′)} = 0, {ah(�k),b†h(�k′)} = 0.

These anti-commutation relations are now employed to construct the num-
ber representation as in Section 1.4.3: the vacuum state |0〉 is defined by

ah(�k)|0〉 = bh(�k)|0〉 = 0

for all �k and h = ±, and the state of one particle of helicity h in the state
�k with ω > 0 is generated from it by

|1〉 = a†h(�k)|0〉,

while the one-particle state with helicity h and ω < 0 is generated by

|1〉 = b†h(�k)|0〉.

There are no states with more than one particle of the same �k, the same
helicity, and the same sign of ω. The Hamiltonian (10.50) turns out to be14

H =
∫
d3k �ω

∑
h

[
a†h(�k)ah(�k)− bh(�k)b

†
h(�k)
]
.

13Show this.
14Check this.
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At this point it is best to discretize the �k-values, as we did before. Using
the discretized version of (10.54), we then obtain, apart from an infinite
constant, after returning to the continuous form,

H =
∫
d3k �ω

∑
h

[
a†h(�k)ah(�k) + b†h(�k)bh(�k)

]
=
∫
d3k �ω

∑
h

[
Nh,+(�k) + Nh,−(�k)

]
, (10.55)

where Nh,+(�k) def= a†h(�k)ah(�k) and Nh,−(�k) def= b†h(�k)bh(�k) are the number
operators for a given �k, helicity h, and positive and negative frequencies,
respectively. Each of the particles with wave vector �k produced by the field
thus has the positive energy �ω. You should particularly note that this is the
case only because of the employment of anti-commutation relations. Had we
instead used commutation relations, the negative-frequency particles would
have had negative energy. By contrast, recall that for the electromagnetic
field we had to use commutation relations: these are specific instances of
the spin-statistics connection.

The total momentum operator is also easily calculated by means of
(2.67),15 with the result

�P =
∫
d3k ��k

∑
h

[
Nh,+(�k) + Nh,−(�k)

]
. (10.56)

Thus we have found that, for each given �k, the particles produced by the
field Ψ have the energy E = �ω > 0 and the momentum �p = ��k, and since
ω2 = �k2c2 +M2c4/�2, their energy and momentum are connected by the
equation E2 = �p 2c2 +M2c4, which implies that they have the mass M and
satisfy the correct relativistic energy-momentum relation. Furthermore, the
physical meaning of the helicity �Σ · k̂ = �Σ · p̂ is the projection of the spin on
the particle’s momentum direction, a coordinate-invariant use of the spin
projection.

The general one-particle configuration-space wave function is defined by

ψ(�r, t) def= 〈 |Ψ̃ †(�r, t)|0〉,

(the transpose has to be taken in order to have the spinor ψ come out as
a column vector) and as a result of (10.48), the equation satisfied by the
one-particle wave function is16

(�∂/∗ +Mc)ψ = 0.

15Do it.
16Show this.
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If the four γ-matrices γ0, . . . , γ3 are taken to be real, as we chose them, this
becomes

(�∂/+Mc)ψ = 0; (10.57)

for other choices, the γ-matrices in (10.57) and (10.48) differ by a canonical
transformation without physical effect.

Equation (10.57) can be rewritten in the form of a Schrödinger equation
after multiplying it by γ0 and defining �α def= γ0�γ = �α† and β def= −iγ0 = β†,

i�
∂

∂t
ψ =
(
i�c�α · ∇ − βMc2

)
ψ = Hψ (10.58)

if the Hamiltonian is defined as

H def= i�c�α · ∇ − βMc2 = −c�α · �p− βMc2, (10.59)

which is not to be confused with the field Hamiltonian H of (10.55), and
where �p is the momentum operator of the particle. The vector �α has the
components αi = −Σ4i, so that it is the generator of a relativistic boost in
the direction i, and {αi, αj} = 2δij . Since α2

i = 11, the eigenvalues of αi are
±1.

Equation (10.58) may be treated just like the nonrelativistic Schrödinger
equation, and we may calculate the velocity of the particle by

d�q
dt

=
1
i�

[�q,H] = − c

i�
[�q, �α · �p] = −c�α,

which implies that, remarkably enough, the eigenvalues of any component
of the particle’s velocity are ±c. Whenever an instantaneous measurement
of the speed of an electron is made, it can therefore come out only as the
velocity of light, in one direction or the other. You have to remember that
relativistically, the velocity is not simply a multiple of the momentum, and
in order to measure it, two closely spaced, precise position measurements
have to be made, which renders the particle’s corresponding momentum
quite uncertain. (If all momenta are equally likely, the expectation or av-
erage value of the momentum is infinite.) The expectation value of any
component of its velocity, which of course is always less than that of light,
comes about as a result of a rapidly oscillatory motion (which has come
to be known by the German word Zitterbewegung) over a distance equal to
the electron’s Compton wavelength �/Mc.

The Heisenberg equation of motion for the velocity of the electron is given by

i��̇α = [�α,H] = 2�αH + 2c�p,

so that i��̈α = 2�̇αH; therefore
�̇α = �̇α0 e

2Ht/i�,
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and as a result,

�α =
i�

2
�̇αH−1 − c�pH−1 =

i�

2
�̇α0 e

2Ht/i�H−1 − c�pH−1.

Consequently,

�̇q = −c�α = − i�c

2
�̇α0 e

2Ht/i�H−1 + c2�pH−1.

The first term on the right-hand side oscillates rapidly with an amplitude equal to half
the Compton wavelength. Any practical velocity measurement takes much longer than
the period �/2Mc2 ∼ 10−21sec of this oscillation, so that the first term averages to zero
and the result of the measurement is only the second term, which has the classical value
�̇q = c2�pH−1. It is the rapidly oscillating first part that gives each component of the
velocity the eigenvalues ±c.

The adjoint equation of (10.57) reads

ψ̄(�∂/← −Mc) = 0,

and if this equation, multiplied by ψ, is added to (10.57), multiplied on the
left by ψ̄, the result is

∂µψ̄γµψ = 0, (10.60)

which has the form of a current conservation equation ∇ ·�j + ∂ρ/∂t = 0 if
the relativistic probability-current density four-vector is defined by jµ

def=

〈icγµ〉, so that �j def= 〈ic�γ〉 and ρ def= 〈iγ0〉 = ψ†ψ for normalized ψ.

Solving the free Dirac equation

Up to this point we have had no need to write down the γ-matrices explic-
itly. All that was ever required were the commutation and anti-commutation
relations implied by (10.25) and those of the rotation generators Σµν for
spin-1/2, though it was sometimes convenient to assume the four matrices
γ0, . . . , γ3 to be real. Let us now, instead, choose the matrices �α and β to
have the form

�α = i

(
0 �σ
−�σ 0

)
, β =

(
11 0
0 −11

)
, (10.61)

which implies that17

�γ =
(

0 �σ
�σ 0

)
, �Σ =

(
�σ 0
0 �σ

)
. (10.62)

(Here 11 denotes the 2 × 2 unit matrix, and the components of �σ are the
Pauli spin matrices.)

17Show this; also show that these matrices satisfy the correct commutation
and anti-commutation relations.
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After setting ψ(�r, t) = u exp[i(�p · �r − p0t)/�], (10.58) turns into the set
of algebraic equations for u

(�α · �p+ βMc)u = −p0

c
u.

Write the four-component spinor u in terms of two two-component spinors
v and w,

u
def=
(
v
w

)
,

and you obtain the two equations

i�σ · �pw +Mcv = −p0

c
v, i�σ · �pv +Mcw =

p0

c
w,

which imply that p2
0 = M2c4 +�p 2c2; using the subscripts ± for the helicity,

�Σ · �pu± = ±|�p|u±, we obtain the equations18

v± = ∓ ic|�p|
|p0|+Mc2

w±, for ω = p0/� > 0,

w± = ∓ ic|�p|
|p0|+Mc2

v±, for ω = p0/� < 0.

In the nonrelativistic limit, the momentum is small compared to the rest
mass (times c), |�p| � Mc. Therefore for ω > 0, ‖ v ‖�‖ w ‖, while for
ω < 0 it’s the other way around, ‖ w ‖�‖ v ‖; the upper two components
of a spinor u (in this representation) are thus referred to as the “small
components” when ω > 0, whereas for ω < 0, the lower two are the “small
components.” The large components are then the eigenvectors of the or-
dinary, nonrelativistic, two-component spin in the momentum direction,
�σ · p̂.

10.2.1 Electrons in an electromagnetic field

In the presence of an electromagnetic field generated by the potentials �A
and φ, these potentials have to enter the matter-field equations in the usual
manner together with the derivatives, so that i�∇ is replaced by i�∇+ e

c
�A

and i� ∂
∂t by i� ∂

∂t − eφ. Since the four quantities φ and �A behave under
Lorentz transformations like the components of a four-vector, this means
that if we define A0 def= −φ, the Dirac equation for the field Ψ , in the
presence of the electromagnetic potentials Aµ reads

[γµ(�∂µ − i
e

c
Aµ) +Mc]Ψ = 0, (10.63)

18Check this.
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and the Dirac equation for the one-particle wave function of the quanta
produced by the field reads similarly,

[γµ(�∂µ − i
e

c
Aµ) +Mc]ψ = 0, (10.64)

which implies that the quanta of the matter field are coupled to the elec-
tromagnetic field and have the electric charge e.

The new version of (10.49) in the presence of the electromagnetic poten-
tials is obtained by multiplying (10.64) by γµ(�∂µ − i ecAµ) −Mc, so that
if ψ solves (10.64) it also satisfies the equation[

γµ(�∂µ − i
e

c
Aµ)γν(�∂ν − i

e

c
Aν)−M2c2

]
ψ = 0.

Use of (10.25) and the equations (2.92) connecting the potentials to the
electric and magnetic fields leads to19

γµ(�∂µ − i
e

c
Aµ)γν(�∂ν − i

e

c
Aν)

= gµν(�∂µ − i
e

c
Aµ)(�∂ν − ie

c
Aν) +

i

2
Σµν [(�∂µ − i

e

c
Aµ), (�∂ν − ie

c
Aν)]

= −gµν(−i�∂µ −
e

c
Aµ)(−i�∂ν − e

c
Aν) +

e�

c
�Σ · �B +

ie�

c
�α · �E.

Therefore ψ has to solve the equation

[−M2c4 − gµν(cpµ − eAµ)(cpν − eAν) + ec��Σ · �B + iec��α · �E]ψ = 0

if we define p0 def= −i�∂/(c∂t). In the nonrelativistic approximation the last
term in the bracket is dropped because �α ∼ �v/c; moreover,

(cp0 − eφ)2 −M2c4 − (c�p− e �A)2 + ec��Σ · �B

=
[
cp0 − eφ−

√
M2c4 + (c�p− e �A)2 − ec��Σ · �B

]
×
[
cp0 − eφ+

√
M2c4 + (c�p− e �A)2 − ec��Σ · �B

]
∼ (Mc2 + . . .)

[
cp0 − eφ−Mc2 − (c�p− e �A)2

2Mc2
+

e�

2Mc
�Σ · �B + . . .

]

→Mc2

[
Enr − eφ−

(c�p− e �A)2

2Mc2
+

e�

2Mc
�Σ · �B

]

where Enr
def= cp0 −Mc2 is the nonrelativistic energy. The nonrelativistic

time-independent Schrödinger equation obtained from (10.64) thus reads[
1

2M
(�p− e

c
�A)2 − e�

2Mc
�σ · �B + eφ

]
ψ = Eψ,

19Do the details of this calculation.
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which means that the Hamiltonian agrees with (7.14). The Dirac equation
thus automatically leads to the correct Schrödinger equation for spin-1/2
particles in the nonrelativistic limit, including the Pauli term with the
Bohr-magneton strength and the correct gyromagnetic ratio.

Next, let us check what charge conjugation accomplishes, when applied
to (10.63). Using (10.43) and (10.44), we find20 that if Ψ satisfies (10.63),
then its charge conjugate Ψ c satisfies the equation

[γµ(�∂µ + i
e

c
Aµ) +Mc]Ψ c = 0,

which implies that the field Ψ c gives rise to particles whose wave functions
satisfy (10.64) with the same mass but with the opposite sign of the charge.
(That is why the transformation (10.43) is called charge conjugation.) Thus,
the Dirac equation automatically contains the prediction of the existence
of positrons (though this was recognized as a prediction only after the
experimental discovery of positrons).

Here, then, is a summary of the remarkable features of Dirac’s equation:

• It is form-invariant under Lorentz transformations.

• It describes a field that gives rise to spin-1/2 particles with the correct
gyromagnetic ratio.

• Even though it has solutions of positive and negative frequency, the
energy of its solutions is always positive, provided its solutions are
assumed to obey anti-commutation relations and thus give rise to
fermions; therefore it incorporates the spin-statistics connection.

• It contains within it the prediction of the existence of positrons.

Historical note: When Dirac invented his equation, it was in the form
of the wave equation (10.64) rather than for a field. He therefore had to
struggle with the problem of how to deal with the negative-frequency so-
lutions, which appeared to have negative energies because E = �ω. His
solution to this quandary was the ingenious hole theory: all the negative-
energy states are normally occupied by an infinite sea of electrons, which
as fermions obey Pauli’s exclusion principle, so that under ordinary cir-
cumstances these negative-energy states are unavailable to the electrons
we observe. When one of these states happens to be empty, creating a hole
in the sea of negative-energy states, this hole, as an absence of a parti-
cle of negative energy and negative charge, acts like a particle of positive
energy and positive charge. So the hole theory was a device to solve the
negative-energy problem without using a field, but it made sense only if
electrons were assumed to be fermions. Therefore, it too used the spin-
statistics connection in an essential fashion. Using the Dirac equation for

20Show this.
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the quantum field as a starting point, rather than as the result of “sec-
ond quantization,” avoids the artificiality of the hole theory and solves the
negative-energy problem by means of the spin-statistics connection in the
form of anti-commutation rules for the spinor field.

The Dirac equation as a field equation, together with the Maxwell equa-
tions, with the electric four-current operator21

Jµ
def= ecΨ̄ iγµΨ

as a source term (the space part of Jµ is the ordinary electric current den-
sity and J0 is the electric charge density), regarded as equations for the
electromagnetic quantum field [so that the electromagnetic potentials in
(10.63) are operators] make up the enormously successful theory of quan-
tum electrodynamics (QED). However, it took another 30 years before the
difficulties arising from the infinities this theory leads to were overcome by
Feynman, Schwinger, and Tomonaga, and it lies beyond the scope of this
book.

10.3 The Dirac Equation for a Central Potential

In the presence of a static electric field generated by a central potential φ(r),
the time-independent Dirac equation for the wave function of an electron
reads

Hφψ
def= [−c�α · �p− βMc2 + eφ(r)]ψ = Eψ. (10.65)

The orbital angular momentum � �L now is not a constant of the motion,
but the total angular momentum � �J = �( �L+ 1

2
�Σ) is: since φ and �α · �p are

invariant under rotations, so is the entire Hamiltonian,

[ �J ,Hφ] = 0,

and the total angular momentum is conserved. As usual, the eigenvalues of
�J 2 are j(j + 1) with j = 1/2, 3/2, . . .. Now, it follows from Eq. (5.70) that
�J 2 + 1

4 = (11 + �Σ · �L)2, which implies that (11 + �Σ · �L)2, but not necessarily
11 + �Σ · �L itself, is a constant of the motion. However, it turns out that the
Hermitian operator

K def= β(11 + �L · �Σ)

does commute with the Hamiltonian Hφ.

Since �L · �Σ commutes with β and with φ(r), it is only necessary to show that [β( �L ·
�Σ+11), �α ·�p] = 0 in order to prove that [K,Hφ] = 0. Furthermore, since β anti-commutes

21Show that this current operator changes sign under charge conjugation.
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with �α, what needs to be shown is that {( �L · �Σ + 11), �α · �p} = 0. So let us calculate

R
def= { �L · �Σ, �α · �p}.
Since [ �J , �α · �p] = 0 and �J · �Σ = �L · �Σ + 3

2 , we have R = { �J · �Σ − 3
2 , �α · �p} =

�J ·{�Σ, �α·�p}−3�α·�p. Next, use �α = −γ5�Σ and obtain {�Σ, �α·�p} = −γ5{�Σ, �Σ·�p} = −2γ5�p,
as a result of which �J · {�Σ, �α · �p} = −2γ5( �L + 1

2
�Σ) · �p = �α · �p. Therefore, R = −2�α · �p,

so that { �L · �Σ + 11, �α · �p} = 0 and consequently, [β( �L · �Σ + 11), �α · �p] = 0, which proves
that [K,Hφ] = 0.

According to (5.70), K2 = (11+ �L · �Σ)2 = �J 2 + 1
4 , so that the eigenvalues

κ2 of K2 are j(j+1)+ 1
4 = (j+ 1

2 )2, which implies that the eigenvalues of K
are κ = ±(j + 1

2 ), and the values of |κ| are the positive integers. Moreover,
since22 K2 = �L2 + 11 + �L · �Σ, we have

�L2 = K2 − βK.

Therefore, in the representation (10.61), when β = 1 (the upper com-
ponents of the four-spinor), then for κ = j + 1

2 we must have l(l + 1) =
(j+ 1

2 )2−(j+ 1
2 ) = (j+ 1

2 )(j− 1
2 ), so l = j− 1

2 = κ−1, and for κ = −(j+ 1
2 )

we have l(l + 1) = (j + 1
2 )2 + (j + 1

2 ) = (j + 1
2 )(j + 3

2 ), so l = j + 1
2 = −κ;

when β = −1 (the lower components) we find similarly that for κ = j + 1
2 ,

l = j + 1
2 = κ and for κ = −(j + 1

2 ), l = j − 1
2 = −(κ + 1). So here is the

table of values.

β κ j �Σ · �L
1 l + 1 l + 1

2 κ− 1
1 −l l − 1

2 κ− 1
−1 l l − 1

2 −(κ+ 1)
−1 −(l + 1) l + 1

2 −(κ+ 1)

Note that β is not a constant of the motion, but in the nonrelativistic
limit it is: In the representation (10.61), β = 1 for the upper components
and β = −1 for the lower ones. So if the small components are set equal
to zero, as they are in the nonrelativistic approximation, the spinors u are
eigenfunctions of β. For positive frequencies, the lower two components
are the large ones and therefore β = −1 in the nonrelativistic limit; for
negative frequencies, the upper components are large, so that β = +1. As
a result, in the nonrelativistic limit the sign of the eigenvalue of K is in a
one-to-one relation with the two cases l = j ± 1

2 , but in general there is no
such correspondence.

To expand the angle dependence of solutions of (10.65) we use the two-
component spinor angle functions Zmlj defined by (5.73) and (5.74). How-

22Show this.
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ever, they will be relabeled, using κ instead of l,

Ẑmκj
def=

{
Zm
j− 1

2 j
when κ = j + 1

2

Zm
j+ 1

2 j
when κ = −(j + 1

2 ) ,

so that
(�σ · �L+ 11)Ẑmκj = κẐmκj .

Since, furthermore,23 with r̂ def= �r/r, {�Σ · r̂, �σ · �L+ 11} = 0, it follows that

�σ · r̂Ẑmκj = Ẑm−κj .

We can therefore write a four-component spinor eigenfunction of K that is
also a function of r in the form

Ψκ(r) =
1
r

(
F (r)Ẑmκj

−G(r)�σ · r̂Ẑmκj

)
,

insertion of which in (10.65), together with the fact that

�σ · �p�σ · �r = �p · �r − i��σ · �L = −3i�11− i�r ∂
∂r
− i��σ · �L,

�σ · �r �σ · �p = �r · �p + i��σ · �L = −i�r ∂
∂r

+ i��σ · �L,

yields the two coupled equations24(
d

dr
+
κ

r

)
G =

(
a1 −

eφ

�c

)
F,

(
d

dr
− κ

r

)
F =

(
a2 +

eφ

�c

)
G,

where

a1
def=

Mc2 + E

�c
, a2

def=
Mc2 − E

�c
.

Defining
a

def=
√
a1a2 =

√
M2c4 − E2/�c

and the dimensionless radial distance ρ def= ar, we obtain(
d

dρ
+
κ

ρ

)
G =

(
a1

a
− eφ

a�c

)
F, (10.66)(

d

dρ
− κ

ρ

)
F =

(
a2

a
+

eφ

a�c

)
G. (10.67)

23Prove this.
24Show this as an exercise.
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In the free case, when φ = 0, these two equations can be uncoupled25 to
read

−G′′ + κ(κ+ 1)
ρ2 G = aG, − F ′′ + κ(κ− 1)

ρ2 F = aF,

and a = |�p|/� = k, so that G = ρjκ(ρ) and F = ρjκ−1(ρ). For general
potentials, however, Eqs. (10.66) and (10.67) cannot be uncoupled.

10.3.1 The hydrogen atom
For a nuclear point charge of strength Ze, the Coulomb potential is given
by φ = Ze/r, and the potential energy seen by an electron is eφ = −Ze2/r
or

eφ

a�c
= − Ze

2

�car
= −γ

ρ
, γ

def=
Ze2

�c
= αZ,

where α def= e2/�c is the fine structure constant.
We proceed as in the nonrelativistic case, defining F (ρ) def= f(ρ)e−ρ and

G(ρ) def= g(ρ)e−ρ, thereby obtaining the equations for f and g,

g′ − g +
κ

ρ
g =
(
a1

a
+
γ

ρ

)
f, f ′ − f − κ

ρ
f =
(
a2

a
− γ

ρ

)
g.

The Frobenius ansatz f = ρs
∑∞

0 cnρ
n, and g = ρs

∑∞
0 bnρ

n, leads to the
recursion relations26 for n > 0,

bn(n+ s+ κ)− bn−1 = γcn +
a1

a
cn−1 (10.68)

cn(n+ s− κ)− cn−1 = −γbn +
a2

a
bn−1, (10.69)

and for n = 0 to the indicial equations

(s+ κ)b0 − γc0 = 0, γb0 + (s− κ)c0 = 0,

which require that s2 − κ2 + γ2 = 0 and therefore for the solution regular
at the origin,

s = +
√
κ2 − γ2.

Notice that, in contrast to the nonrelativistic Coulomb wave functions, the
solutions are not polynomials, and they may even be singular at the origin
(when s < 1).27 Now multiply (10.68) by a, (10.69) by a1, and add the

25Do it.
26Derive them.
27If s < 1

2 , the derivative of the wave function is not square integrable at the origin,
so that the expectation value of the momentum does not exist. For κ = 1, to prevent
this requires that γ < 1

2

√
3, i.e., Z < 119. For heavier (point) nuclei the Dirac equation

would lead to problems.
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results to obtain

bn[a(n+ s+ κ)− a1γ] = cn[a1(n+ s− κ) + aγ],

which, together with (10.68), yields the recursion relation

bn

[
(n+ 2 + κ)− γ a(n+ s+ κ)− a1γ

a1(n+ s− κ) + aγ

]
= bn−1

[
1 +

a1

a

a(n− 1 + s+ κ)− a1γ

a1(n− 1 + s− κ) + aγ

]
,

implying that for n→∞
bn
bn−1

� cn
cn−1

� 2
n
.

Therefore the tail end of the series behaves like e2ρ, which means that the
solutions increase exponentially unless the series terminates. (That is, for
real values of a; for E > Mc2 a is imaginary and there is no need for
the series to break up: these are the scattering states.) It follows from the
recursion relations that both series must then end at the same point, and
if bn′ is the last non-zero term, we must have

2a(n′ + s) = (a1 − a2)γ,

which, with the explicit values of a, a1, a2, and γ, leads to the energy levels28

E = Mc2
[
1 +

α2Z2

(n′ +
√
κ2 − α2Z2)2

]− 1
2

. (10.70)

The ground-state energy of a hydrogenic atom is therefore

Emin = Mc2
√

1− α2Z2,

as compared to the nonrelativistic ground-state energy ENR
min = − 1

2α
2Z2Mc2

(which, of course, does not include the rest energy Mc2). According to
(10.70) the energies are independent of the sign of κ, which is the analogue
of the nonrelativistic l-degeneracy. For αZ � 1 the energy eigenvalues may
be expanded in powers of αZ, giving29

E = Mc2
[
1− α2Z2

2n2 −
1
2
α4Z4

|κ|n3 +
3
8
α4Z4

n4 + . . .

]
,

where n def= n′ + |κ|, or

E −Mc2 = −α
2Z2Mc2

2n2 − α4Z4Mc2

2n3

(
1
|κ| −

3
4n

)
+ . . . , (10.71)

28Show this.
29Check this.
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which agrees with the previously calculated value (4.70) together with
(7.26) for the fine structure.

Note that κ can take on positive or negative values, except when n′ = 0.
In that particular case (10.68) says that c0/b0 = −a/a1 < 0 and the indicial
equation says γc0/b0 = κ+s = κ+

√
κ2 − γ2; therefore only κ < 0 is allowed

for n′ = 0, which makes the ground state non-degenerate, with n′ = 0 and
κ = −1. The energy of the first excited states is obtained from (10.70)
by setting n′ = 1, and there still is a twofold degeneracy, with κ = ±1,
just as in the fine-structure correction to the nonrelativistic energy. As
mentioned at the end of Section 7.3.1, this degeneracy is finally broken by
the Lamb shift and explained by the “radiative corrections” of quantum
electrodynamics.

For the calculation of the hydrogenic wave functions by means of the
Dirac equation, see [Rose] [Note, however, that Rose uses a representation
of �α that differs from (10.61).]
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10.4 Problems and Exercises

1. Prove the following equations for the reflection operators γµ in five
dimensions:

1
2
{γµ, γν} = δµν ,

γ−1
µ Σνλγµ =

{
−Σνλ for µ = λ or µ = ν
Σνλ for µ �= λ, µ �= ν.

and
1
2i

[γµ,Σλν ] = δµνγλ − δµλγν .

2. Prove (10.31).

3. Prove (10.33).

4. Prove (10.34).

5. Prove (10.36) for states of two particles that are symmetric under
exchange.

6. Prove that if the matrix M commutes with all the matrices γµ, µ =
1, . . . , 4, then M must be a multiple of the unit matrix.

7. Show that the charge conjugate spinors uc are spinors under proper
Lorentz transformations.

8. From the relativistic relation between the velocity and the momentum
of a particle, find the velocity probability distribution if the momen-
tum is uniformly distributed. Show from this that if the momentum
is uniformly distributed, then 〈v〉 = c.

9. (a) Show that if u0 is the relativistic spinor of an electron in its rest
system, then ū0γjγ0u0 = 0 for j = 1, 2, 3.

(b) Supposing that the spin of the electron in its rest system is in the
x-direction, calculate 〈�Σ〉 in a reference frame in which the electron
has the momentum p in the z-direction.
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A
The Dirac Delta Function

The Dirac delta function is defined by the property that for any continuous
function f(x) on the interval (a, b) with a < 0 < b,∫ b

a

dx f(x)δ(x) = f(0). (A.1)

Of course, there really is no such function; δ(x) is, instead, a generalized
function or a distribution.1 It may be thought of as an idealization of an
infinitely sharp spike of area 1, concentrated at the point 0, physically
exemplified by a sharp pulse at the time t = 0. For example, we may define
the function

δε(x)
def=

i

2π

[
1

x+ iε
− 1
x− iε

]
=

ε/π

x2 + ε2
(A.2)

and the integral as the limit, to be taken after the integral is carried out,∫ 1

−1
dx δ(x)f(x) def= lim

ε→0

∫ 1

−1
dx δε(x)f(x) = f(0) lim

ε→0

2
π

cot−1 ε = f(0).

In a similar manner, the Cauchy principal value is defined by

P 1
x

def=
1
2

[
1

x+ iε
+

1
x− iε

]
(A.3)

1For more details, see, for example, [Lieb], Chapter 6.
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in the sense that

P
∫ 1

−1
dx

f(x)
x

def= lim
ε→0

∫ 1

−1
dx f(x)

1
2

[
1

x+ iε
+

1
x− iε

]
.

As a result we have the useful formula, in which it is understood that
0 < ε� 1,

1
x+ iε

= P 1
x
− iπδ(x). (A.4)

Alternatively, we may take

δε(x)
def=

sin(x/ε)
πx

,

which is not sharply spiked at the origin but, instead, oscillates infinitely
rapidly as ε→ 0 everywhere except at the origin, which has the same effect.
The Dirac delta function may also be regarded as the derivative of a unit
step function, called the Heaviside function: θ(x) = 0 for x < 0, while
θ(x) = 1 for x > 0. It is easily seen that θ′(x) = δ(x), because for any
a < 0 < b, by an integration by parts,∫ b

a

dx f(x)θ′(x) = f(b)θ(b)− f(a)θ(a)−
∫ b

a

dx f ′(x)θ(x)

= f(b)−
∫ b

0
dx f ′(x) = f(0).

If the function f(x) has a step-discontinuity at x = 0, the effect of
multiplying it by δ(x) is ambiguous and the result depends on the context.
In most instances it is convenient to define∫ b

a

dx f(x)δ(x) =
1
2
[f(0+) + f(0−)], (A.5)

where f(0+) and f(0−) are the limits from above and below, respectively,
and a < 0 < b.

Here are some properties of δ(x) that are very useful for formal manip-
ulations. The first is that it is even:

δ(−x) = δ(x). (A.6)

Furthermore, it follows from
∫ b
a
dx δ(cx) = 1

|c|
∫ |c|b
|c|a dy δ(y) = 1

|c| that for all
real c �= 0,

δ(cx) =
1
|c|δ(x). (A.7)

The derivative of a delta-function is defined by integration by parts:∫ b

a

dx δ′(x)f(x) = −
∫ b

a

dx δ(x)f ′(x). (A.8)
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We also have
xδ(x) = 0,

and
δ′(−x) = −δ′(x).

If g(x) is monotonely increasing and passes through 0 between a and b,
then a change of variables gives

∫ b
a
dx f(x)δ[g(x)] =

∫
dy f(x)δ(y)/g′(x),

where g(x) = y so that x = g−1(y), from which we conclude that

δ[g(x)] = δ(y)/g′[g−1(y)]. (A.9)

The three-dimensional delta function δ3(�r−�r ′), which is physically exem-
plified by the charge density of a unit point charge located at �r ′, has to be
handled carefully, depending on the coordinate system used. In Cartesian
coordinates, it is simply given by

δ3(�r − �r ′) = δ(x− x′)δ(y − y′)δ(z − z′),

but in spherical polar coordinates it has to be2

δ3(�r − �r ′) =
δ(r − r′)

r2
δ(θ − θ′)

sin θ
δ(ϕ− ϕ′). (A.10)

2Why?
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B
Hilbert Space

B.1 Linear Vector Spaces

We begin by defining a complex linear vector space V: a collection of objects
called vectors, with the following properties1:

1. To any pair of vectors Φ1 and Φ2 in V, there corresponds a third
vector Φ ∈ V, called the sum of Φ1 and Φ2, Φ = Φ1 + Φ2, such that
addition is (a) commutative, Φ1 +Φ2 = Φ2 +Φ1, and (b) associative,
Φ1 + (Φ2 + Φ3) = (Φ1 + Φ2) + Φ3.

2. V contains a unique vector 0 such that for all Φ ∈ V, Φ + 0 = Φ.

3. For every Ψ ∈ V there is a unique vector −Ψ ∈ V such that Ψ−Ψ def=
Ψ + (−Ψ) = 0.

4. For every complex number2 c (called a scalar) and every Ψ ∈ V there
is a vector cΨ ∈ V, called the product of the two, such that 1Ψ = Ψ
and multiplication is associative: a(bΨ) = (ab)Ψ.

5. Multiplication by scalars is distributive over vector addition, a(Ψ +
Φ) = aΨ + aΦ as well as over scalar addition, (a+ b)Ψ = aΨ + bΨ.

1It will help your intuition always to keep in mind the analogues of these properties
for ordinary real Euclidian vector spaces and to think geometrically.

2If these numbers are restricted to be real, V is a real linear vector space, such as
ordinary three-dimensional Euclidian space.
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6. For any two vectors in V an inner product is defined as a complex
number such that

(Ψ,Φ) = (Φ,Ψ)∗, (Ψ,Ψ) ≥ 0,

(where ∗ denotes the complex conjugate), (Ψ,Ψ) = 0 if and only if
Ψ = 0, and

(Ψ, c1Φ1 + c2Φ2) = c1(Ψ,Φ1) + c2(Ψ,Φ2).

It then follows that3

(c1Φ1 + c2Φ2,Ψ) = c∗1(Φ1,Ψ) + c∗2(Φ2,Ψ).

Any two vectors Ψ and Φ which are such that (Φ,Ψ) = 0 are called
orthogonal to one another. Similarly, two sets of vectors S1 and S2 are
called mutually orthogonal if all the vectors in S1 are orthogonal to all the
vectors in S2.

The norm, or “length,” of a vector Ψ ∈ V is defined by

‖ Ψ ‖=
√

(Ψ,Ψ),

so that ‖ cΨ ‖= |c| ‖ Ψ ‖, and ‖ Ψ ‖= 0 if and only if Ψ = 0. A vector
whose norm equals unity is called normalized; such a vector is also called
a unit vector.

The inner product and the norm satisfy two extremely useful inequalities:
Schwarz’s inequality,

|(Φ,Ψ)| ≤‖ Φ ‖ ‖ Ψ ‖, (B.1)

where equality holds if and only if Φ and Ψ are multiples of one another or
one of them vanishes, and the triangle inequality,

‖ Ψ + Φ ‖≤‖ Ψ ‖ + ‖ Φ ‖, (B.2)

in which equality holds if and only if there exists a real, non-negative num-
ber c such that either Ψ = cΦ or Φ = cΨ.

Schwarz’s inequality is proved by a simple evaluation of the squared norm
of the vector ‖ Φ ‖2 Ψ− (Φ,Ψ)Φ:

0 ≤ ([‖ Φ ‖2 Ψ− (Φ,Ψ)Φ], [‖ Φ ‖2 Ψ− (Φ,Ψ)Φ])
= ‖ Φ ‖2 (‖ Φ ‖2 ‖ Ψ ‖2 −|(Φ,Ψ)|2),

3In other words, the inner product is linear in its second member and “antilinear” in
the first, a definition that is universally customary among physicists. In the mathematical
literature you will find that mathematicians usually employ an inner product linear in
the first and antilinear in the second member.
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which proves it. Note that ‖‖ Φ ‖2 Ψ − (Φ,Ψ)Φ ‖= 0 if and only if Ψ is a
multiple of Φ or one of them vanishes. As for the triangle inequality, I will
ask you to prove it as an exercise, using Schwarz’s inequality.

The vectors in a set {Ψi �= 0, i = 1, . . . , n} are called linearly dependent
if there exists a set of complex numbers {ci, i = 1, . . . , n}, not all of them
equal to zero, such that

∑
i ciΨi = 0; if this equation holds for no set of

complex numbers other than {ci = 0, i = 1, . . . , n}, then the n vectors are
called linearly independent.

Suppose that V is such that there is a maximal number of linearly in-
dependent vectors in it, i.e., given any set of non-zero vectors with more
than n members, they must be linearly dependent. The number n is then
called the dimension of V. It follows that, given any set of n linearly in-
dependent vectors {Ψi ∈ V, i = 1, . . . , n}, every given vector Φ ∈ V can
be written as a linear combination of the form Φ =

∑n
i=1 ciΨi, and the set

{Ψi ∈ V, i = 1, . . . , n} is called a basis in V. The most useful kinds of
bases are the orthonormal ones, for which (Ψi,Ψj) = δij , i, j = 1, . . . , n.4

In that case, the coefficients in the expansion Φ =
∑
i ciΨi are easily calcu-

lated, ci = (Ψi,Φ), and the inner product of two vectors becomes the sum
of products of these coefficients: if Φ1 =

∑
i c

(1)
i Ψi and Φ2 =

∑
i c

(2)
i Ψi,

then (Φ1,Φ2) =
∑
i c

(1)∗
i c

(2)
2 , and as a special case, ‖ Φ ‖2=

∑
i |ci|2 =∑

i |(Ψi,Φ)|2, which is known as Parseval’s equality.
A set of vectors in V that forms a linear space by itself is called a subspace.

For example, the set of linear combinations of m < n linearly independent
vectors {Ψi}mi=1 in an n-dimensional space V form anm-dimensional proper
subspace of V; it is called the space spanned by the vectors {Ψi}m1 . On the
other hand, the set of all vectors Ψ in V such that ‖ Ψ ‖≤ 1 is not a
subspace.5 The orthogonal complement S⊥ of a subspace S is the set of all
vectors in H that are orthogonal to all vectors in S.6

Tensor products. Suppose VI and VII are two linear vector spaces
with complete sets of orthonormal basis vectors {ΨI

i}ni=1 and {ΨII
j }mj=1,

respectively. We may then form n × m new orthonormal vectors Ψij
def=

ΨI
i ⊗ ΨII

j by defining their inner products (Ψij ,Ψkl)
def= (ΨI

i,Φ
I
k)(Ψ

II
j ,Ψ

II
l ).

The n×m-dimensional linear vector space V spanned by the vectors {Ψij}
is called the tensor product of VI and VII, written V = VI⊗VII. The
members of V can all be expressed in the form of linear combinations of
the kind Ψ =

∑n
i=1
∑m
j=1 aijΨ

I
i ⊗ΨII

j .
Direct sums. The direct sum of the two spaces VI and VII is a space

V
def= VI⊕VII of dimension n+m whose vectors are pairs Ψ def= {ΨI,ΨII}

with the inner product (Ψ,Φ) def= (ΨI,ΦI)VI +(ΨII,ΦII)VII . Its first n basis

4δij is the Kronecker symbol; its value equals 1 when i = j and 0 otherwise.
5Why not?
6Is it a subspace?
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vectors may be taken to be {ΨI
i, 0} and its secondm are {0,ΨII

j }, so that ev-
ery vector Ψ ∈ V has the form Ψ =

∑n
i=1 ai{ΨI

i, 0}+
∑m
j=1 bj{0,ΨII

j }, with
the inner product (Ψ,Φ) =

∑n
i=1 a

∗
i a
′
i+
∑m
j=1 b

∗
jb
′
j if Φ =

∑n
i=1{a′iΨI

i, 0}+∑m
j=1 b

′
j{0,ΨII

j }.

B.2 Infinite-Dimensional Linear Vector Spaces

If there is no limit to the number of linearly independent vectors in V, its
dimension is infinite, and certain new constraints arise from requirements
of convergence. Specifically, the space is called complete if Cauchy se-
quences converge in it. A sequence S = {Ψn}∞1 of vectors in V is called
a Cauchy sequence if for every given ε > 0 there exists an N such that
for all n,m ≥ N , ‖ Ψn − Ψm ‖< ε. Thus, if V is complete and S is a
Cauchy sequence {Ψn} in it, then there exists a vector Ψ ∈ V such that
‖ Ψn−Ψ ‖→ 0 as n→∞. A Hilbert space is a complete linear vector space
with an inner product. (Spaces of finite dimensionality are automatically
complete.) The only Hilbert spaces we will be dealing with are complex. It
is important to note that a subspace S of a Hilbert space H is not necessar-
ily a Hilbert space; S may not be complete, which means it may not contain
all its limit points: a Cauchy sequence of vectors in S may converge to a
vector Ψ ∈ H but Ψ �∈ S. In order to make it into a Hilbert space it may
have to be completed by adding all its limit points that were not already
contained in it. The tensor product HI⊗HII of two Hilbert spaces HI and
HII is defined to be the Hilbert space that is the completion of the tensor
product of the two vector spaces as defined earlier for finite-dimensional
vector spaces.

A Hilbert space H is called separable if it contains a countable set of
vectors that is dense7 in H. All the Hilbert spaces of interest to physics are
separable.

A basis in an infinite-dimensional Hilbert H space cannot be defined
quite as simply as in a space of finite dimension. An infinite sequence of
linearly independent vectors {Ψn}∞1 in H is called a basis in H if every
Ψ ∈ H can be expanded in the form Ψ =

∑
n cnΨn. The meaning of this,

more precisely, is that if we call the partial sums Sm
def=
∑m
n=1 cnΨn, then

limm→∞ ‖ Ψ − Sm ‖= 0. Again, the most useful bases are those that are
orthonormal, because for these the expansion coefficients can be calculated
simply by cn = (Ψn,Ψ).

A vector Ψ in H is uniquely determined if we know its inner products
(χ,Ψ) with all χ ∈ H. This is so because then, specifically, all the coefficients
cn = (Ψn,Ψ) in its expansion Ψ =

∑
n cnΨn on the orthonormal basis

7A set S of vectors in a Hilbert space H is dense in H if for every given ε > 0 and
every Ψ ∈ H there is a vector Φ ∈ S such that ‖ Ψ − Φ ‖< ε.
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{Ψn} are determined; therefore it is, in fact, sufficient to know all the inner
products cn = (Ψn,Ψ) with a set of basis vectors.

Examples An example of a Hilbert space is L2(IR), the space of square-
integrable functions f(x) on the real line. Here the inner product is defined
by

(f, g) def=
∫ ∞
−∞

dx f∗(x)g(x),

and the norm, ‖ f ‖2 def=
∫∞
−∞ dx |f(x)|2. Another example is provided by

the space l2 of square-summable sequences s = {sn}∞1 , for which the inner
product is

(s, t) def=
∞∑
1

s∗ntn,

and the norm ‖ s ‖2 def=
∑∞

1 |sn|2. (The expansion of vectors in H on a basis
constitutes a one-to-one linear mapping of H on l2.) The space L1(IR) of
integrable functions, on the other hand, is not a Hilbert space. The Hilbert
space L2(IR3) of square-integrable functions f(�r) on the three-dimensional
Euclidian space IR3 is the tensor product L2(IR)

⊗
L2(IR)

⊗
L2(IR) of three

copies of L2(IR).

B.3 Operators

A linear operator M on H is a linear mapping that sends every vector Ψ in
some subspace D(M) ⊆ H into a unique vector Φ in a linear space R(M)
which may or may not be a subspace of H: Φ = MΨ; the linearity of the
mapping means that M(c1Ψ1 + c2Ψ2) = c1MΨ1 + c2MΨ2. The product
of two operators is defined by associativity, (MN)Ψ = M(NΨ) [assuming
that D(M) ⊆ R(N)], and they may or may not commute. The space D(M)
on which M is defined is called its domain, and the set R(M) of images of
D(M) under the mapping M is called its range; thus, M maps its domain
D(M) into its rangeR(M). Most, but not all, of the operators M of interest
for us are such that both D(M) ⊆ H and R(M) ⊆ H.

If R(M) ⊆ H and the “matrix elements” (Υ,MΦ) of M are known
for all Φ in the domain of M and all Υ ∈ H, then the operator M is
uniquely determined, because we can evaluate the numbers cn = (Ψn,MΦ),
which are the expansion coefficients of the image Ψ = MΦ of Φ on the
orthonormal basis {Ψn}.
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The norm of the operator M is defined by the upper limit of the norms
of the images of all the unit vectors in H,8

‖M ‖def= sup
Ψ∈H

‖MΨ ‖ / ‖ Ψ ‖, (B.3)

or equivalently,

‖M ‖def= sup
Φ,Ψ∈H

|(Φ,MΨ)|/ ‖ Ψ ‖ ‖ Φ ‖ . (B.4)

If this number is finite, the operator is called bounded; otherwise it is un-
bounded. A “bounded operator on H” is defined on all of H: D(M) = H,
and its range is a subspace of H: R(M) ⊆ H; on the other hand, if M is
unbounded, its domain D(M) is not all of H, i.e., D(M) ⊂ H.

As an example, take a projection operator P onto a one-dimensional sub-
space S spanned by the unit vector Φ, defined by PΨ def= (Φ,Ψ)Φ. If S
is n-dimensional, spanned by the orthonormal set {Φi}n1 , P is defined by
PΨ =

∑n
i=1(Φi,Ψ)Φi. In either case, P is both Hermitian (see below) and

idempotent: P2 = P. Such operators are defined on all of H, so D(P) = H,
and their range is S. The norm of a projection operator is always equal to
one: ‖ P ‖= 1.9

The operator norm satisfies both Schwarz’s inequality,

‖MN ‖≤‖M ‖ ‖ N ‖, (B.5)

and the triangle inequality,10

‖M + N ‖≤‖M ‖ + ‖ N ‖ . (B.6)

The Hermitian conjugate (also called Hermitian adjoint) M† of M is
defined by

(Φ,M†Ψ) def= (Ψ,MΦ)∗, (B.7)

and the operator M is called Hermitian if M = M†. Such operators are
singled out for representing physical observables because it immediately
follows from (B.7) that all expectation values of a Hermitian operator are
real numbers:

�〈M〉 = 0 if M = M†. (B.8)

If these expectation values are all positive, 〈M〉 > 0, M is called positive
definite; if 〈M〉 ≥ 0, it is called positive semi-definite.

8“sup” means “least upper bound.”
9Why?

10I’ll let you prove these as exercises.
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To be mathematically careful, however, we have to pay attention to questions of
domain here. Equation (B.7) makes sense only on the assumption that there are vectors
Υ and Ψ ∈ H such that for all Φ ∈ D(M), (Ψ,MΦ)∗ = (Φ,Υ). If such pairs of vectors
exists, then the vectors Ψ form the domain of M† and the vectors Υ its range. Note
also that if the domain of M is a proper subspace of H, the right-hand side of (B.7) is
not defined on all of H, and hence not all the matrix elements of M† are defined by this
equation; specifically, its range is not completely defined. For example, we could, without
changing the equation, add to M† any operator whose range is orthogonal to D(M), if
such an operator exists. The strict definition of a Hermitian operator, of course, depends
on such domain questions, and the equation M† = M implies that D(M) = D(M†).
Only then do mathematicians call M self-adjoint, and only then are certain important
theorems applicable. If the domain question is left open, M is called symmetric by
mathematicians. It is such subtleties, and more, that we usually ignore as physicists,
which does not mean, however, they are unimportant!11

As an important example, take H to be the space L2(a, b) of square-
integrable functions of a ≤ x ≤ b and consider the operator p def= −id/dx.
Since the functions in L2 are not all differentiable, the domain of p can
be no larger than the subspace of differentiable functions in L2. (However,
this subspace is not a Hilbert space. To complete it, its limit points have to
be added. The most convenient way of doing so is to define the derivative
operator in terms of Fourier transforms.) Furthermore, since∫ b

a

dx f∗(x)[−i d
dx

]g(x) =
∫ b

a

dx [−i d
dx
f(x)]∗g(x)+i[f∗(a)g(a)−f∗(b)g(b)],

the operator is Hermitian only if its domain is restricted to the functions
for which the end-point terms are absent. This can be accomplished, for
example, by adopting boundary conditions such that all the functions in
the domain of p vanish at the points a and b, or by assuming them to be pe-
riodic: f(b) = f(a). If a is taken to be −∞ and b =∞, then the possible os-
cillating boundary terms are ignored. (Remember that a square-integrable
function need not necessarily vanish at infinity.) Again, the best way of
doing this is to start with the Fourier-transform space of L2-functions f̃(k)
and the (unbounded) multiplication operator k, whose domain of definition
D(k) is the space of functions such that kf̃(k) ∈ L2. The inverse Fourier
transform of the operator of multiplication by k is then the unbounded op-
erator −id/dx and its domain is the space of functions that are the Fourier
transforms of functions in D(k), a proper subspace of L2(IR).

Suppose a bounded operator M maps all of H one-to-one onto all of H.
In that case, it clearly has an inverse M−1, the operator that inverts the
mapping, also defined one-to-one from H onto H. The assumption that the

11For further mathematical details on these questions, see, for example, [Reed].



322 B. Hilbert Space

mapping of M is one-to-one, however, excludes the possibility that there
is a vector Υ �= 0 in H that is annihilated by M: MΥ = 0, because if
such an Υ exists, then MΦ = M(Φ + Υ), implying that the mapping is
not one-to-one. Conversely, if there are two vectors Φ1 and Φ2 such that
MΦ1 = MΦ2, then M(Φ1 − Φ2) = 0. The set of non-zero vectors Υ ∈ H
that are annihilated by M is called its nullspace,12 which we shall denote
by N (M); it is a subspace. Thus the necessary and sufficient condition for
a bounded operator to have an inverse is that its nullspace be trivial, which
means it contains only the zero-vector.

Just as the introduction of an orthonormal basis {Υn}∞1 in H allows us
to represent vectors Ψ by the sequence of their projections on these basis
vectors, so we can represent operators by matrices. This is done by defining

Mmn
def= (Υm,MΥn), (B.9)

or in Dirac notation, writing Υn = |n〉,

Mmn
def= 〈m|M|n〉, (B.10)

so that the representation of the image MΨ of Ψ under the mapping M is
given by the sequence

〈m|M| 〉 =
∑
n

Mmn〈n| 〉, m = 1, 2, . . . ,

where | 〉 def= Ψ. Operator multiplication is thereby converted into ma-
trix multiplication: if K is the matrix representing the product MN, then
Kmn =

∑
kMmkNkn, which is most easily seen by using, between the two

operators MN, the symbolic statement∑
n

|n〉〈n| = 11 (B.11)

of the assumption that the sequence {Υn = |n〉} forms an orthonormal
basis in H. [The meaning of (B.11) resides entirely in what it leads to when
acting on an arbitrary vector Ψ = | 〉 ∈ H, which is | 〉 =

∑
n |n〉〈n| 〉.] It

is, however, important to remember that the matrices we are dealing with
here are infinite-dimensional and, because of convergence problems of the
infinite series involved in their products, they lack some of the familiar
properties of finite-dimensional matrices, as we shall see.

B.3.1 Hermitian operators and their spectra
The spectrum of a Hermitian operator M consists of two sets of points,
one of which, but not both, may be empty. The first set, called the point

12It is also sometimes called its kernel.
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spectrum or discrete spectrum, consists of those numbers α, if any, for which
there exists a vector Ψα ∈ H such that13

(M− α)Ψα = 0. (B.12)

These numbers, called eigenvalues of M, are necessarily real, because (B.12)
implies (Ψ,MΨ)/(Ψ,Ψ) = α, the left-hand side of which is real, according
to (B.8). They form a denumerable, discrete set of points (which we shall
not prove here).

The second part of the spectrum of a Hermitian operator consists of
those numbers α, if any, with the property that for any given ε > 0 there
exists a unit vector Ψα

ε ∈ H such that

‖ (M− α)Ψα
ε ‖< ε, (B.13)

but there exists no Ψα ∈ H such that (M−α)Ψα = 0. These numbers form
the continuous spectrum of M, and we shall call them quasi-eigenvalues.
The continuous spectrum of a Hermitian operator also lies on the real line,
as is proved by a simple calculation for any complex α = α1 + iα2 and
‖ Ψ ‖= 1,

‖ (M− α)Ψ ‖2=‖ (M− α1)Ψ ‖2 +α2
2 ≥ α2

2,

which implies that for a given α2 �= 0, the left-hand side cannot be arbi-
trarily small. Thus the entire spectrum of a Hermitian operator lies on the
real line. The “continuous spectrum” of a Hermitian operator indeed forms
a continuum (which we shall also not prove here).14

If α is an eigenvalue of M, there may be more than one corresponding
eigenvector: the nullspace N (M − α) (called the eigenspace of M at the
eigenvalue α) may be n-dimensional, with n > 1. The eigenvalue is then
said to have multiplicity n or to be n-fold degenerate, and we can introduce
n mutually orthogonal eigenvectors that span the eigenspace. The eigen-
vectors belonging to two different eigenvalues of a Hermitian operator, on
the other hand, are automatically mutually orthogonal. [This can be seen
by taking the inner product of MΨ1 = α1Ψ1 with Ψ2 and subtracting the
complex conjugate of the inner product of MΨ2 = α2Ψ2 with Ψ1, which
results in 0 = (Ψ2,MΨ1)− (Ψ1,MΨ2)∗ = (α1−α2)(Ψ2,Ψ1), since α1 and
α2 are real. Therefore (Ψ1,Ψ2) = 0 if α1 �= α2.]

Let us define Pαn
to be the projection on the nullspace N (M − αn),

so that P2
αn

= Pαn
, P†αn

= Pαn
, and (M − αn)Pαn

= 0. The extremely

13Strictly speaking, M−α should be written in the form M−α11, but it is customary
to omit the unit operator 11.

14By contrast, the “continuous spectrum,” which mathematicians call the “essential
spectrum,” of non-Hermitian operators may contain isolated points, and the “discrete
spectrum” (i.e., the eigenvalues) may form a continuum. In some instances the two kinds
of spectra of a Hermitian operator may overlap, that is, some point eigenvalues may be
“embedded in the continuum.”
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important spectral theorem asserts that, if the spectrum of the Hermitian
operator M consists of discrete eigenvalues only, the direct sum of all the
nullspaces N (M−αn) is equal to all of H; this means that the eigenvectors
of M span the Hilbert space H. As a result, the operator M can then be
expanded in the form

M =
∑
n

αnPαn
(B.14)

and we have the “resolution of the identity”∑
n

Pαn = 11, (B.15)

from which (B.14) follows by multiplication by M. If we write {|αn〉} for
the set of orthonormal eigenvectors of M in the Dirac notation, (B.15) can
also be written in the form15∑

n

|αn〉〈αn| = 11, (B.16)

generally called a completeness relation and its immediate consequence,
Parseval’s equality for any vector | 〉 ∈ H,

〈 | 〉 =
∑
n

|〈αn| 〉|2. (B.17)

Here is an instance of an important difference between finite-dimensional matrices
and those representing operators on an infinite-dimensional Hilbert space. In the n-
dimensional case the eigenvalues α of the matrix M can be found from the fact that
if the nullspace N (M − α) is nontrivial, i.e., if there exists a vector Ψ �= 0 such that
(M − α)Ψ = 0, α must solve the nth-order algebraic equation det(M − α) = 0. In
the infinite-dimensional case, however, this determinant is not necessarily well defined.
In the next chapter we shall discuss conditions under which such infinite-dimensional
determinants exist and how they can be calculated. Note also that, whereas the proof of
the spectral theorem in the finite-dimensional case is trivial when there is no degeneracy,
and when there is, consists simply of the demonstration that the geometric and algebraic
degeneracies are equal, its proof for operators on an infinite-dimensional Hilbert space
is more intricate and we shall not give it here.

The case of a continuous spectrum is more difficult to handle in the
abstract without introducing additional mathematical machinery. Let us
begin by considering an example. Suppose our Hilbert space is the space
L2(−a, a) of square-integrable functions from −a to a: f(x), − a < x < a.

15This notation is somewhat ambiguous. In the case of degeneracy, we will have to
assume that when some αn are equal, the corresponding eigenvectors are mutually or-
thogonal.



B.3 Operators 325

Let the operator M be − d2

dx2 , defined on the domain of twice differen-
tiable functions with periodic boundary conditions: f(a) = f(−a), and
f ′(a) = f ′(−a); ; then the eigenvalues of M are the non-negative num-
bers λ2

n = (πn/a)2, n = 0, 1, . . . , and each eigenvalue is twofold degener-
ate: to each eigenvalue λ2

n there correspond two normalized eigenfunctions
f±n(x) = 1√

2a
e±iλnx. The Fourier theorem tells us that these functions

form an orthonormal basis in L2(−a, a): every function f(x) ∈ L2(−a, a)
can be expanded in the form f(x) = 1√

2a

∑∞
−∞ cne

πinx/a, and the co-

efficients are given by cn = 1√
2a

∫ a
−a dx f(x)e−πinx/a. Let us next take

the Hilbert space to be L2(IR), the space of square-integrable functions
from −∞ to +∞, with the same operator M = − d2

dx2 , defined for func-
tions whose second derivatives are also square-integrable. In that case, the
spectrum consists of the continuum of all non-negative numbers λ2, and
to each quasi-eigenvalue there again correspond two quasi-eigenfunctions
(2π)−1/2e±iλx, but these functions are not square-integrable: they are not
in the Hilbert space.16 Nevertheless, the Fourier integral theorem says that
any function f(x) ∈ L2(IR) can be represented as an integral of the form

f(x) =
1√
2π

∫ ∞
0

dλ2 [g1(λ)eiλx + g2(λ)e−iλx
]

=
1√
2π

∫ ∞
−∞

dλ g(λ)eiλx,

(B.18)
where the function g(λ) is given by

g(λ) =
1√
2π

∫ ∞
−∞

dx f(x)e−iλx. (B.19)

The two formulas (B.18) and (B.19) can be combined in the symbolic form17

1
2π

∫ ∞
−∞

dλ eiλ(x−x′) = δ(x− x′), (B.20)

which yields (B.18) and (B.19) on multiplication by f(x) and integrat-
ing. Furthermore, the “normalization” of the quasi-eigenfunctions fλ(x) =
(2π)−1/2e±iλx is such that∫

dx f∗λ(x)fλ′(x) = δ(λ− λ′). (B.21)

16In some vague sense the spectrum of this operator may be thought of as arising from
the operator on L2(−a, a) by letting a → ∞, in which case its eigenvalues become more
and more closely spaced. Note, however, that the normalized eigenfunctions vanish in
the limit.

17Caution: The use of the Dirac delta function in the context of a Hilbert space like L2

is inherently ambiguous, because functions in L2 are not defined pointwise and need not
be continuous. For example, the 0-function in L2, which is such that

∫
dx |f(x)|2 = 0,

can differ from 0 at infinitely many points.
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For a general Hermitian operator M with a continuous spectrum S (and
no point spectrum), the points of which we shall denote by α, the situa-
tion is analogous. To every Ψ ∈ H there corresponds a square-integrable
complex-valued function fΨ(α),

Ψ↔ fΨ(α),

defined on S, such that

MΨ↔ fMΨ(α) = αfΨ(α), (B.22)

and Parseval’s equality holds,

‖ Ψ ‖2=
∫

S

dα |fΨ(α)|2,

with the properties that if Ψ↔ fΨ(α) and Φ↔ fΦ(α), then for all complex
a and b, aΨ + bΦ↔ faΨ+bΦ(α) = afΨ(α) + bfΦ(α) and

(Φ,Ψ) =
∫

S

dAf∗Φ(α)fΨ(α).

The function fΨ(α) corresponding to Ψ def= | 〉 will be denoted by f(α) def=
〈α| 〉, while f∗(α) def= 〈 |α〉. As a function of Ψ it has the linearity properties
of an inner product of the vector Ψ = | 〉 with the quasi-vector |α〉, and the
latter is such that, according to (B.22), M|α〉 = α|α〉, and∫

S

dα |α〉〈α| = 11, (B.23)

as well as
〈α|α′〉 = δ(α− α′), (B.24)

which implies that, analogous to Fourier integrals,

| 〉 =
∫

S

dα |α〉〈α| 〉 =
∫

S

dα |α〉f(α). (B.25)

The quasi-eigenvector |α〉 is not in H, because a square-integrable function
need not have a finite value at every point, so there is no assurance that for
a given α the inner product 〈α| 〉 has to be finite for all | 〉 ∈ H. (In fact, for
every α ∈ S there must exist an | 〉 ∈ H such that 〈α| 〉 is not finite, because
otherwise α would be an eigenvalue of M rather than a quasi-eigenvalue.)18

Let {φn} be an orthonormal basis in H; then

δnm = (φn, φm) =
∫

S

dα f∗φn
(α)fφm(α) (B.26)

18See also the formulation in terms of rigged Hilbert spaces; e.g., [Bohm, A.].
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as well as

(Ψ,Φ) =
∑
n

(Ψ, φn)(φn,Φ)

=
∫

S

dA

∫
S

dα′ f∗Ψ(α)fΦ(α′)
∑
n

fφn(α)f∗φn
(α′)

=
∫

S

dα f∗Ψ(α)fΦ(α),

from which we conclude that∑
n

fφn(α)f∗φn
(α′) = δ(α− α′). (B.27)

To every function f ∈ L2(S), conversely, there corresponds a vector
Ψ ∈ H. The expansion coefficients cn of this Ψ on a basis {φn} are given
by

cn =
∫

S

dα f∗φn
(α)f(α),

which by (B.26) implies that

‖ Ψ ‖2=
∑
n

|cn|2 =
∫

S

dα |f(α)|2.

To prove that S indeed constitutes the continuous spectrum of the op-
erator M, choose any α ∈ S, any normalised Ψ ∈ H, and let Φε ∈ H be the
normalised vector in H corresponding to

fε(β) def=

√
ε/π

ε2 + (β − α)2
.

Then

|(Ψ, (M− α)Φε)|2 =
∣∣∣∣∫

S

dβ (β − α)fΦε(β)f∗Ψ(β)
∣∣∣∣2

≤
∫

S

dβ′ |fΨ(β′)|2
∫

S

dβ
(β − α)2ε/π
ε2 + (β − α)2

≤ ε

which implies that α is in the continuous spectrum of M [unless there
exists an eigenvector Υ ∈ H, with (M− α)Υ = 0, which is not the case by
construction].

If the spectrum of M is partly discrete and partly continuous, then the
expansions consist in part of sums and in part of integrals.

For a general, abstract formulation of the spectral theorem for Hermitian operators,
we proceed as follows. Let M be a given Hermitian operator whose spectrum S consists of
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the countable point spectrum Sp = {α1, α2, . . .}, with corresponding eigenvectors Ψn
def=

|αn〉, and the continuous spectrum Sc, S = Sp ∪ Sc. Define the spectral projection,
which is a projection operator function P(α), α ∈ S, that is monotonely non-decreasing
[which means that P(α)P(α′) = P(α′)P(α) = P(α) if α ≤ α′] from 0 to 11, and such that
[M,P(α)] = 0 for all α ∈ S and M =

∫
SdP(α)α as a Stieltjes integral. This spectral

projection is defined so that for all Ψ,Φ ∈ H,19

(Ψ,P(α)Φ) =
∑

αn∈Sp

θ(α− αn)(Ψ,Ψn)(Ψn,Φ) +
∫

Sc

dα′ θ(α− α′)f∗
Ψ(α′)fΦ(α′).

The spectral theorem consists of the equation (which we are not going to pove)∫
S
dP(α) = 11. (B.28)

In terms of the notation (Ψn,Ψ) = 〈αn| 〉 and fΨ(α) = 〈α| 〉, the spectral projection
may be written in the form

P(α) =
∑

αn∈Sp

θ(α− αn)|αn〉 〈αn| +
∫

Sc

dα′θ(α− α′)|α′〉 〈α′|,

and the spectral theorem is the “resolution of the identity”∫
Sc

dα |α〉 〈α| +
∑

αn∈Sp

|αn〉 〈αn| = 11, (B.29)

meaning that for all Ψ ∈ H,

Ψ = | 〉 =
∫

Sc

dα |α〉 〈α| 〉 +
∑

αn∈Sp

|αn〉 〈αn| 〉, (B.30)

as well as the Parseval equality

‖ Ψ ‖2= 〈 | 〉 =
∫

Sc

dα| 〈α| 〉|2 +
∑

αn∈Sp

|〈αn| 〉|2. (B.31)

B.3.2 More on operators
An operator M that satisfies the equation M†M = 11 is isometric, which
means it preserves the lengths of all Ψ ∈ H, ‖MΨ ‖=‖ Ψ ‖; furthermore, if
two vectors Ψ and Φ are orthogonal, so are their images under the mapping
M: if (Ψ,Φ) = 0, then 0 = (Ψ,M†MΦ) = (MΨ,MΦ). However, if the
range of M is a proper subspace of H, let χ �= 0 be in the orthogonal
complement20 R⊥(M) of R(M); then for all Ψ ∈ H we have (M†χ,Ψ) =
(χ,MΨ) = 0, and hence M†χ = 0, as well as conversely: if M†χ = 0,
then (χ,Φ) = 0 for all Φ ∈ R(M); therefore, N (M†) = R⊥(M). In such a
case we must have MM† �= 11, because the left-hand side annihilates any

19Show that the so-defined function P(α) has all the properties mentioned.
20The existence of a vector orthogonal to R(M) implies that the range is not dense

in H.
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vector in N (M†), whereas the right-hand side does not. So while for finite-
dimensional matrices M†M = 11 implies MM† = 11, for operators on an
infinite-dimensional space these two equations are independent. If, on the
other hand, M†M = MM† = 11, then M is called unitary. So for a unitary
operator, M† = M−1. A unitary operator U transforms any orthonormal
basis {Ψn} in H into another orthonormal basis {Φn} by Φn = UΨn.

Suppose now that the operator M is represented as a matrix M with
elementsMmn = (Ψm,MΨn) on some given orthonormal basis {Ψn}. Then
the new matrixM′ representing M on the new basis {Φn = UΨn} has the
matrix elements

M′mn = (Φm,MΦn) = (Ψm,U†MUΨn) =
∑
kl

U∗kmMklUln, (B.32)

where
Uln

def= (Ψl,UΨn) (B.33)

is the matrix representing U on he old basis {Ψn}, in terms of which the
new vectors are given by

Φn =
∑
m

ΨmUmn. (B.34)

Conversely, any matrix Mmn given in the basis {Ψn}, together with the
transformation property (B.32) defines an operator M on H. Note that
if M is Hermitian, then the matrix M is also Hermitian: the Hermitian
property is preserved under unitary transformations.

If M is Hermitian and its spectrum consists of discrete points only, its
eigenvectors χn, corresponding to the eigenvalues αn, can be assumed to
form an orthonormal basis in H, so that Mχn = αnχn and as a result
M′mn = (χm,Mχn) = αnδmn. This means that M′ is diagonal and the
unitary transformation defined by (B.33) has diagonalized the matrix M:
given a matrix M representing a Hermitian operator M, finding its eigen-
values and eigenvectors is equivalent to diagonalizing M. Moreover, it fol-
lows from (B.32) and (B.34) that if U is the diagonalizing matrix, then∑

n

MmnUnl = αlUml, (B.35)

which means that the columns of the matrix U consist of the components
of the eigenvectors of M on the old basis, the lth column forming the
eigenvector belonging to the lth eigenvalue.

A very useful notion is that of the trace of an operator. If the operator
X is given as a matrix Xnm in some representation, its trace is defined by
trX def=

∑
nXnn, that is, the sum of its diagonal elements. An important

property of the trace is its invariance under a change of basis. This is easily
proved: trX(2) =

∑
nX

(2)
nn =

∑
nkl U

(12)∗
kn X

(1)
kl U

(12)
ln =

∑
nX

(1)
nn = trX(1),
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by the unitarity property of U (12). Therefore it makes sense to refer to the
trace of the operator, rather than specifying its matrix representation. If X
is Hermitian, we may represent it on the basis of its eigenvectors, in which
case the diagonal elements are its eigenvalues. So the trace is the sum of
its eigenvalues. (In cases of degeneracy, each eigenvalue has to be counted
as many times as its degeneracy indicates.)

These things work, formally, equally well for a quasi-basis and the case of
quasi-eigenvalues, provided that the integral kernelM(β, γ) that takes the
place of the matrixMmn, and which is formed by means of quasi-vectors,
M(β, γ) = 〈β|M|γ〉, exists, which, even for a bounded operator M, cannot
always be taken for granted.

The trace of an operator may be evaluated also using a quasi-basis,
because∫

dB 〈B|X|B〉 =
∑
mn

∫
dB U (12)∗

m (B)XmnU(12)n(B) =
∑
n

Xnn, (B.36)

or,

trX =
∫
dB 〈B|X|B〉. (B.37)

Equation (B.37) shows, however, that if the spectrum of the Hermitian
operator X is continuous, then its trace cannot be finite; it is not the
integral over its quasi-eigenvalues.

Finally, there is the important fact that if M and N are two Hermitian
operators that commute with one another, [M,N] = 0, then there exists
an orthonormal basis of common eigenvectors for them, which implies that
they can be simultaneously diagonalized. This is proved as follows.

Suppose that Mχ = αχ; then αNχ = NMχ = MNχ, which means that
Nχ is an eigenvector of M with the same eigenvalue α. Therefore, if α is
not degenerate, we must have Nχ = βχ and χ is an eigenvector of N as
well. On the other hand, if α is m-fold degenerate, then Nχ must lie in
the m-dimensional eigenspace of M at α, a space we may assume to be
spanned by the orthonormal basis {χr}m1 , so that Nχr =

∑
n χncnr, where

cnr = (χn,Nχr) is a Hermitian m ×m matrix. Diagonalizing this matrix
by introducing a new orthonormal basis in the eigenspace of M then has
the effect of ending up with an orthonormal basis consisting of eigenvectors
of both M and N. �

A complete set of commuting Hermitian operators on H is a set of such
operators all of whose eigenvectors can be unambiguously labeled by their
eigenvalues. If an eigenvalue of one of these operators is degenerate, the
eigenspace is spanned by a basis of eigenstates of the other operators in
the set. For example, in L2(IR) we may take the operator M def= − d2

dx2 ,
whose quasi-eigenvalues, as we saw, are twofold degenerate, and add the
parity operator P defined by Pf(x) def= f(−x), which commutes with M.
If f±λ(x) = e±iλx are two linearly independent quasi-eigenfunctions of M
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with the eigenvalue λ2, then the common quasi-eigenfunctions of M and P
are the even and odd combinations of f±λ, which are cos(λx) and sin(λx).
These functions, then, form a complete set of common quasi-eigenfunctions
of the two Hermitian operators M and P, with cos(λx) belonging to the
pair of quasi-eigenvalues (λ2,+1) and sin(λx) to the pair (λ2,−1).
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B.4 Problems and Exercises

1. Prove the triangle inequality (B.2) for vectors in a Hilbert space,
using Schwarz’s inequality.

2. Prove that every finite-dimensional linear vector space (with an inner
product) is complete.

3. Prove that (B.3) and (B.4) are equivalent.

4. Prove Schwarz’s inequality (B.5) for the norm of the product of two
linear operators on a Hilbert space.

5. Prove the triangle inequality (B.6) for the norm of the sum of two
linear operators on a Hilbert space.

6. Prove the inequality (Ψ,MP(α)Ψ) ≤ α ‖ Ψ ‖2 for all Ψ ∈ H, if P(α)
is the spectral projection for M.

7. Take H to be the space of square-integrable functions f(x) on the
real line, L2(IR), and let M be the operator of multiplication by
the square-integrable function h(x), defined on all of H. Prove that
R(M) ⊆ L1(IR). [Note that L1(IR) is not a subspace of L2(IR).]

8. Prove that the nullspace N (M) of a linear operator M on H is a
subspace of H.

9. Show that if M is a Hermitian operator, then its norm is equal to the
absolute value of the upper or lower end of its spectrum, whichever
is the larger.

10. Show that the operator defined by the left-hand side of (B.16) is a
projection.

11. Let H be the space L2(IR) of square-integrable functions f(x), and
consider the operator x of multiplication by x. Show that every real
number x is a quasi-eigenvalue of x as defined by (B.13).

12. Let H be the space L2(IR) of square-integrable functions f(x), and
consider the operator p def= −i ddx . Show that every real number p is a
quasi-eigenvalue of p as defined by (B.13).



C
Linear Integral Equations

C.1 Fredholm Methods

The integral equations we are dealing with in quantum mechanics are usu-
ally Fredholm equations, or they can be transformed into such. A Fredholm
equation of the first kind is a homogeneous equation of the form1

f(�r) = λ

∫
d3r′K(�r, �r ′)f(�r ′),

which we shall write in the operator form f = λKf , or

(11− λK)f = 0,

and its inhomogeneous version, called a Fredholm equation of the second
kind,

f(�r) = g(�r) + λ

∫
d3r′K(�r, �r ′)f(�r ′), (C.1)

or, in operator form,
(11− λK)f = g.

The inhomogeneity g is assumed to be square-integrable, the operator (or
integral kernel) K is assumed to be compact, and we are looking for solu-
tions f that are also square-integrable; so we are working on the Hilbert
space of square-integrable functions.

1We are taking the variables �r and �r ′ to be in three-dimensional Euclidian space,
but they could be in other spaces.
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Compactness of an operator means that it can be arbitrarily closely
approximated by an operator of finite rank, i.e., by an operator whose
range is of finite dimensions and which is therefore representable as a finite-
dimensional matrix. [If K is of finite rank, it can be written as a finite
sum of the form K(�r, �r ′) =

∑N
1 Fn(�r)Gn(�r ′).] Compact operators share

many of the simple properties of finite matrices, particularly the fact that,
except for the origin, their spectra consist of point eigenvalues only. Each of
these eigenvalues has finite degeneracy, and they accumulate at the origin.
Furthermore, if α is an eigenvalue of K, then α∗ is an eigenvalue of K†. (If
K is compact, so is K†.)

If α is an eigenvalue of K, then for λ = 1/α the homogeneous version
of (C.1) has a nontrivial solution h ∈ L2, and since h can be added to
any solution of (C.1), the solution of the inhomogeneous equation can, of
course, not be unique. But can the inhomogeneous equation still have solu-
tions? This works just as for matrices: suppose h is an eigenfunction of K,
Kh = αh;, and h′ is an eigenfunction of K† with the eigenvalue α∗. Tak-
ing the inner product of the inhomogeneous equation (C.1) with h′ then
immediately leads to the consequence (h′, g) = 0. Therefore, a necessary
condition for the inhomogeneous equation (C.1) to have a solution is that
the inhomogeneity g be orthogonal to all solutions of the adjoint homoge-
neous equation h′ = λ∗K†h′. That this condition is also sufficient can be
seen by restricting K to the orthogonal complement of its eigenspace at
1/λ.

The result of this reasoning is the Fredholm alternative: If the homo-
geneous version of (C.1) has no nontrivial solution in L2, then the inho-
mogeneous equation (C.1) has a unique solution in L2; if the homogeneous
form of (C.1) has a nontrivial solution in L2, then (C.1) has a solution in
L2 if and only if g is orthogonal to all solutions of the adjoint homogeneous
equation h′ = λ∗K†h′.

Assuming, then, that 1/λ is not an eigenvalue of K, the next question is
how to solve (C.1), i.e., how to construct the operator M−1 def= (11−λK)−1,
in terms of which the solution of (C.1) is given by f = M−1g. The Fred-
holm method is to proceed just as for finite-dimensional matrices, which
is as follows. The matrix M−1 is a matrix N, whose transpose consists of
the cofactors of M, divided by the determinant of M, ∆ def= detM, so that

NM = MN = 11∆. (C.2)

Now both ∆ and N may be expanded in power series in λ,

N =
∑∞
n=0 λ

nNn, N0 = 11,

∆ =
∑∞
n=0 λ

n∆n, ∆0 = 1.
(C.3)

For finite-dimensional matrices, of course, these power series terminate and
become polynomials. Next use the familiar differentiation rule for determi-
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nants,
d∆
dλ

= trN
dM
dλ

= −trNK, (C.4)

and combine it with (C.2):

−11trNK = −NK +
dN
dλ

M = −KN + M
dN
dλ

.

Inserting the expansions (C.3) in this equation, we obtain the recursion
relations for n ≥ 1

Nn = KNn−1 −
1
n

11trKNn−1 = Nn−1K−
1
n

11trKNn−1, (C.5)

and

∆ = 1−
∞∑
n=1

λn

n
trKNn−1. (C.6)

These expansions may next be used to construct the inverse in the form

M−1 =
1
∆

N def= 11 +
λ

∆
Y (C.7)

by the series

Y = KN =
∞∑
n=0

λnYn,

Yn = KYn−1 + K∆n = Yn−1K + K∆n, n > 0, Y0 = K, (C.8)

∆ =
∞∑
n=0

λn∆n, ∆n = − 1
n

trYn−1, ∆0 = 1. (C.9)

The function ∆(λ) is called the Fredholm determinant, and Y is called the
first Fredholm minor.

Other expressions for ∆ and Y are obtained by defining the determinants

yn+1(�r, �r ′;�r1, . . . , �rn)
def=∣∣∣∣∣∣∣∣∣

K(�r, �r ′) K(�r, �r1) . . . K(�r, �rn)
K(�r1, �r ′) K(�r1, �r1) . . . K(�r1, �rn)

...
... . . .

...
K(�rn, �r ′) K(�rn, �r1) . . . K(�rn, �rn)

∣∣∣∣∣∣∣∣∣ , (C.10)

and in terms of them, we find that

Y (�r, �r ′) = K(�r, �r ′) +
∞∑
n=1

(−λ)n

n!

∫
d3r1 · · · d3rn yn+1(�r, �r ′;�r1, . . . , �rn),

(C.11)
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as well as

∆ = 1 +
∞∑
n=1

(−λ)n

n!

∫
d3r1 · · · d3rn yn(�r1, �r1;�r2, . . . , �rn). (C.12)

Now we have to answer two questions: 1) What are the requirements on
K for all the quantities in (C.8), (C.9), (C.11), and (C.12) to make sense?
2) Under what conditions do the power series in (C.8), (C.9), (C.11), and
(C.12) converge? The answer to the first question is that trKn has to be
finite for n = 1, 2, . . . , and that will be assured if trK =

∫
d3rK(�r, �r) is

finite, and, in addition, K is in the Hilbert-Schmidt class, which means
trKK† <∞, or, more explicitly,∫

d3rd3r′ |K(�r, �r ′)|2 <∞. (C.13)

Being in the Hilbert-Schmidt class ensures that K is compact; in fact, al-
though it is not a necessary condition for compactness, the Hilbert-Schmidt
test is the simplest one to perform, and many of the kernels of integral
equations of physical interest pass it. On the other hand, in some impor-
tant instances the trace of K fails to exist, so that the first terms in the two
Fredholm expansions are not well defined. In that case there is a simple
remedy: in (C.11), replace yn+1 by

y′n+1(�r, �r
′;�r1, . . . , �rn)

def=∣∣∣∣∣∣∣∣∣
K(�r, �r ′) K(�r, �r1) . . . K(�r, �rn)
K(�r1, �r ′) 0 . . . K(�r1, �rn)

...
... . . .

...
K(�rn, �r ′) K(�rn, �r1) . . . 0

∣∣∣∣∣∣∣∣∣ , (C.14)

and in (C.12) replace yn by

y′′n(�r1, . . . , �rn)
def=

∣∣∣∣∣∣∣∣∣
0 K(�r1, �r2) . . . K(�r1, �rn)

K(�r2, �r1) 0 . . . K(�r1, �rn)
...

... . . .
...

K(�rn, �r1) K(�rn, �r2) . . . 0

∣∣∣∣∣∣∣∣∣ . (C.15)

The so defined modified first Fredholm minor,

Y ′(�r, �r ′) def= K(�r, �r ′) +
∞∑
n=1

(−λ)n

n!

∫
d3r1 · · · d3rn y′n+1(�r, �r

′;�r1, . . . , �rn),

(C.16)
and the modified Fredholm determinant,

det
2

(11− λK) def= ∆′ = 1 +
∞∑
n=1

(−λ)n

n!

∫
d3r1 · · · d3rn y′′n(�r1, �r2, . . . , �rn),

(C.17)
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neither of which contains K(�r, �r), can be used just like Y and ∆; that is,

M−1 = 11 +
λ

∆′
Y′.

In fact, it turns out that if trK exists, then

Y′ = YeλtrK, ∆′ = ∆eλtrK, (C.18)

so that Y/∆ = Y′/∆′ is an identity. On the other hand, since neither Y′

nor ∆′ contain trK, they will exist even when trK does not.
As for the second question, the series in (C.3), (C.11), and (C.12) con-

verge absolutely for all complex values of λ.2 Therefore, the modified Fred-
holm procedure can be used for all integral kernels in the Hilbert-Schmidt
class.

If, for a specific value λ = 1/α, the Fredholm determinant (or its modified
form) vanishes,

det[11− (1/α)K] = 0, (C.19)

then the homogeneous form of (C.1) has a nontrivial solution; that is to
say, α is an eigenvalue of K. So ∆(λ) [or ∆′(λ)] serves both to construct
the solution of (C.1) and also to find the eigenvalues of the operator K.

C.2 The Born Series

Another possibility of solving the integral equation (C.1) is to expand the
solution in a power series in λ—this is called a Neumann series by mathe-
maticians and a Born series by physicists—i.e., to expand

(11− λK)−1 =
∞∑
n=0

λnKn,

which amounts to solving (C.1) by iteration. What is the radius of conver-
gence of this power series? If a function F (λ) is holomorphic in a neighbor-
hood of the origin and its singularity closest to 0 is λ0, then the power-series
expansion of F converges absolutely for all |λ| < |λ0|. Now, it follows from
the Fredholm method that the expansion of the numerator function Y in
(11 − λK)−1 has an infinite radius of convergence; therefore, the relevant
question here is, what is the radius of convergence R of the power series
expansion of 1/∆(λ)? Since the zero of ∆ that is closest to the origin is
λ0 = 1/α0, where α0 is the eigenvalue of K with the largest modulus, the
answer is simply R = 1/|α0|. In contrast to the Fredholm procedure, which

2We shall not prove this here; for a proof, see, for example, [Newton 82], Section 9.3,
where (C.11), (C.12), and (C.18) are also proved.
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converges for all values of λ, the Born series therefore always has a finite
radius R of convergence; for |λ| > R it diverges. While this expansion is
simpler than the Fredholm method, its general lack of convergence is a
serious drawback.

C.3 Application to the Lippmann-Schwinger
Equation

In the case of the Lippmann-Schwinger equation, none of the assumptions
made in the general theory given above are satisfied. However, if (4.122) is
multiplied by |2MV (�r)/�2|1/2e−i�k·�r, one obtains the equation

φ(�k, �r) = |2MV (�r)�2|1/2 +
∫
d3r′K(�k;�r, �r ′)φ(�k, �r ′), (C.20)

where

K(�k;�r, �r ′) def= −2M |V (�r)V (�r ′)|1/2v(�r ′)e
i[k|�r−�r ′|−�k·(�r−�r ′)]

4π�2|�r − �r ′| (C.21)

and v(�r) def= V (�r)/|V (�r)|. Therefore, if V ∈ L1(IR3), then the inhomoge-
neous term is square-integrable, and if V is in the Rollnik class, defined
by3 ∫

d3rd3r′
|V (�r)V (�r ′)|
|�r − �r ′|2 <∞, (C.22)

then K is Hilbert-Schmidt,

trKK† =
∫
d3rd3r′ |K(�k;�r, �r ′)|2 <∞

for all k such that �k ≥ 0. On the other hand, K(�k;�r, �r) is infinite, so it is
appropriate to apply the modified Fredholm method to solve (C.20) and

∆(k) def= det
2

[11−K(k)]

is well defined and an analytic function of k that is holomorphic in the upper
half plane (since each term in its Fredholm expansion is analytic in k). As a
result, the solution φ of (C.20) exists, is unique and square-integrable for all
�k ≥ 0, except for values of k = kn such that ∆(kn) = 0. For such kn, the
homogeneous version of (C.20) has a nontrivial square-integrable solution,

3For example, if for some ε, a, C > 0 and all �r, V (�r) < C(a + r)−3−ε, then V is in
the Rollnik class. Prove this.
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which, for �k > 0, leads to a square-integrable solution of (4.122) and thus
a bound state. It follows that the zeros of ∆(k) in the upper half plane
must be confined to the imaginary axis, so that the bound-state energies
Ebd
n = �2k2

n/2M are real. For potentials in the Rollnik class, there can be
no positive point eigenvalues, and hence no bound states of positive energy.
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D
Special Functions

D.1 Spherical Harmonics

The partial differential equation (4.9) can be separated by setting Y (θ, ϕ) =
f(θ)g(ϕ), which leads to the equation

sin θ
f

d

dθ

(
sin θ

df

dθ

)
− λ sin2 θ = −1

g

d2g

dϕ2 .

From this we conclude that both sides must be equal to a constant m2:

d2g

dϕ2 = −m2g, (D.1)

and
1

sin θ
d

dθ

(
sin θ

df

dθ

)
− m2

sin2 θ
f − λf = 0. (D.2)

Equation (D.1) is immediately solved by

g = eimϕ,

and if Y is to be single-valued as ϕ increases by 2π, m must be either zero
or a positive or negative integer: m = 0,±1,±2, . . .. Equation (D.2), on the
other hand, can be rewritten in the form of Legendre’s differential equation
by setting cos θ = x,

d

dx
(1− x2)

d

dx
f(x)−

(
λ+

m2

1− x2

)
f(x) = 0. (D.3)
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Note that the differential equation (D.3) remains unchanged if x is replaced
by −x. Therefore, the solutions may be chosen to be either even or odd
functions of x.

D.1.1 Legendre polynomials
Consider first the case of m = 0. The Frobenius ansatz f(x) = xσ

∑
n anx

n

then leads to the recursion relation1

(σ + n+ 1)(σ + n+ 2)an+2 = [(σ + n)(σ + n+ 1) + λ]an (D.4)

with the indicial equation σ(σ − 1) = 0, which assures that a−2 = 0 and
the series starts with n = 0. Therefore either σ = 0 or σ = 1; the choice
of σ = 0 yields an even solution, whose expansion in powers of x2 begins
with the constant term a0 and

an+2 =
n(n+ 1) + λ

(n+ 1)(n+ 2)
an n = 0, 2, . . . ;

that of σ = 1 leads to an odd solution, for which

an+2 =
(n+ 2)(n+ 1) + λ

(n+ 2)(n+ 3)
an n = 0, 2, . . . ,

the power series in x2 being multiplied by x. For n → ∞ in both cases,
an+2/an ∼ 1, so that the tail end of the series goes like

∑
k x

2k, which
diverges as x→ ±1. In order for the solution to be well-behaved at x = ±1
the series must therefore be required to terminate and become a polynomial,
which can happen only if, for some even integer n either λ = −n(n+ 1) or
λ = −(n+1)(n+2). So we must have λ = −l(l+1), l = 0, 1, 2, . . ., and the
solution is a polynomial of degree l, called the Legendre polynomial Pl(x),
with the parity (−1)l:

Pl(−x) = (−1)lPl(x). (D.5)

They are conventionally normalized by setting Pl(1) = 1.
A useful way of generating the Legendre polynomials is by expanding

the generating function

T (x, y) def=
1√

1− 2xy + y2
, (D.6)

in a power series in y for |y| < 1,

T (x, y) =
∞∑
l=0

ylPl(x). (D.7)

1Show this.
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That the coefficients are indeed the Legendre polynomials is proved by
means of the partial differential equation2[

(1− x2)
∂2

∂x2 − 2x
∂

∂x
+ y

∂2

∂y2 y

]
T (x, y) = 0. (D.8)

Insertion of the expansion (D.7) in (D.8) shows that the coefficient of yl

must satisfy Legendre’s equation (D.3) with m = 0; furthermore, for x = 1
the expansion (D.7) must go over into that of 1/(1 − y), which requires
that Pl(1) = 1. Note that (D.7), written in a different form, means that for
|x| < |y| and x · y = |x||y| cos θ,

1
|x− y| =

∞∑
l=0

|x|l|y|−l−1Pl(cos θ). (D.9)

The function T also satisfies the equation3

(1− x2)
∂T

∂x
= yT + y(y − x)∂T

∂y
, (D.10)

from which we obtain by inserting (D.7),

(x2 − 1)P ′l = −lPl−1 + lxPl. (D.11)

Similarly, the equation4

(1− xy)∂T
∂x
− y2 ∂T

∂y
= yT (D.12)

leads to
P ′l = xP ′l−1 + lPl−1. (D.13)

Other recursion relations for the Legendre polynomials are

(l + 1)Pl+1 − (2l + 1)xPl + lPl−1 = 0, (D.14)

xP ′l − P ′l−1 = lPl, (D.15)

P ′l+1 − P ′l−1 = (2l + 1)Pl, (D.16)

the last two of which follow from the others.
The following representation, called Schläfli’s integral, sometimes comes

in handy:

Pl(x) =
1
2l

1
2πi

∮
dz

(z2 − 1)l

(z − x)l+1 , (D.17)

2Check this.
3Check this.
4Check this.
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where the contour integral in the complex plane runs counter clock wise
around the point x. It is proved by inserting it in the left-hand side of (D.3)
for m = 0 and finding

(1− x2)P ′′l − 2xP ′l + l(l + 1)Pl =
1− l

2l(2πi)

∮
dz

d

dz

(z2 − 1)l+1

(z − x)l+2 = 0.

Furthermore it is easily seen that for x = 1 the right-hand side of (D.17)
equals 1.

Equation (D.17) can also be written in the form

Pl(x) =
1

2ll!

(
d

dx

)l 1
2πi

∮
dz

(z2 − 1)l

z − x ,

and this integral is readily carried out, with the result

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l, (D.18)

which is known as Rodrigues’s formula. It follows from this formula that
Pl(x) has exactly l zeros between −1 and +1.5 An alternative way of writing
it is

Pl(cos θ) =
(−1)l

2ll!

(
d

d cos θ

)l
(sin θ)2l. (D.19)

That two Legendre polynomials of different degrees are mutually orthog-
onal, ∫ 1

−1
dxPl(x)Pl′(x) = 0, l �= l′,

follows directly from multiplying Legendre’s differential equation (D.3) for
Pl by Pl′ , integrating, and subtracting the same equation for Pl′ , multiplied
by Pl and integrated, using an integration by parts. The normalization
integral is most simply calculated by using the generating function and the
previous result:∫ 1

−1
dx

1√
1− 2xy + x22 =

1
x

log
1 + y

1− y = 2
∑
l

y2l

2l + 1

=
∑
ll′
yl+l

′
∫ 1

−1
dxPl(x)Pl′(x) =

∑
l

y2l
∫ 1

−1
dxP 2

l (x),

from which we conclude that∫ 1

−1
dxPl(x)Pl′(x) =

2
2l + 1

δll′ . (D.20)

5Why?
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The Legendre polynomials form an orthogonal basis on the Hilbert space
L2(−1, 1). Furthermore, every polynomial of degree n can be expressed as
a linear combination of Legendre polynomials of order l ≤ n.

D.1.2 Associated Legendre functions
The associated Legendre functions Pml are defined for 0 ≤ m ≤ l in terms
of the Legendre polynomials by

Pml (x) def= (1− x2)m/2
(
d

dx

)m
Pl(x), (D.21)

or

Pml (cos θ) def= (sin θ)m
(

d

d cos θ

)m
Pl(cos θ). (D.22)

[One of the exercises for this Appendix requires you to show that we must
always have |m| ≤ l, and (D.21) gives a nonzero result only in that case.]
For m < 0, it is convenient to define

P
−|m|
l (cos θ) def= (−1)m

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ), (D.23)

so that the following formula, derived from (D.21) and Rodrigues’s (D.18),

Pml (cos θ) =
(−1)l+m

2ll!
(l +m)!
(l −m)!

(sin θ)−m
(

d

d cos θ

)l−m
(sin θ)2l, (D.24)

holds for −l ≤ m ≤ l. The function Pml (x) has the parity (−1)l+m:

Pml (−x) = (−1)l+mPml (x). (D.25)

D.1.3 Spherical harmonics
We are now ready to assemble the functions Pml (cos θ) and eimϕ into spher-
ical harmonics, adopting a convenient phase convention (which varies from
one author to another):

Y ml (n̂) def= Y ml (θ, ϕ) = (−1)mil
[
2l + 1

4π
(l −m)!
(l +m)!

]1/2
eimϕPml (cos θ),

(D.26)
where θ and ϕ are the polar angles of the unit vector n̂. These functions
have the complex conjugation property

Y m∗l = (−1)l+mY −ml , (D.27)

the parity (−1)l

Y ml (−n̂) = (−1)lY ml (n̂), (D.28)
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and they form an orthonormal basis in the Hilbert space of square-integrable
functions on the unit sphere:∫

dΩY m∗l (n̂)Y m
′

l′ (n̂) = δll′δmm′ , (D.29)

∞∑
l=0

l∑
m=−l

Y ml (n̂)Y m∗l (n̂′) = δ2(n̂, n̂′), (D.30)

where dΩ is the solid-angle element and δ2(n̂, n̂′) is the Dirac delta-function
on the unit sphere such that∫

dΩ′δ2(n̂, n̂′)f(n̂′) = f(n̂).

The meaning of the symbolic (D.30) is that every square-integrable function
f(n̂) on the unit sphere can be expanded in the form

f(n̂) =
∞∑
l=0

l∑
m=−l

aml Y
m
l (n̂), where aml =

∫
dn̂ Y m∗l (n̂)f(n̂). (D.31)

The Legendre polynomial Pl(n̂ · n̂′) = Pl(cos θ), where θ is the angle
between n̂ and n̂′, can be expressed in terms of spherical harmonics of n̂
and n̂′ of the same order:

4π
l∑

m=−l
Y ml (n̂)Y m∗l (n̂′) = (2l + 1)Pl(n̂ · n̂′), (D.32)

which implies that any well-behaved rotationally invariant function of n̂
and n̂′ can be expanded in terms of spherical harmonics of equal m-values:

f(n̂, n̂′) =
∑
l

l∑
m=−l

clY
m
l (n̂)Y m∗l (n̂′),

with coefficients cl that are independent of m.

D.1.4 Zonal harmonics
Instead of forming complex spherical harmonics, it is also possible to assem-
ble real solutions of Eq. (4.9). This is done by choosing as the two linearly
independent solutions of (D.1), g = sin(mϕ) and g = cos(mϕ) rather than
g = e±imϕ. The resulting real functions

Zsm
l (θ, ϕ) =

√
2l + 1

2π
(l −m)!
(l +m)!

sin(mϕ)Pml (cos θ), (D.33)

Zcm
l (θ, ϕ) =

√
2l + 1

2π
(l −m)!
(l +m)!

cos(mϕ)Pml (cos θ), (D.34)
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are called zonal harmonics. Their nodal surfaces are circular cones about
the z-axis (the zeros of the Legendre functions) and planes through the
z-axis (the zeros of the trigonometric functions).

D.2 Spherical Bessel Functions

Dividing Eq. (4.19) by k2 and setting kr def= x transforms it into the simpler
equation

u′′ − l(l + 1)
x2 u+ u = 0, (D.35)

which, upon defining U(x) def= x−1/2u(x), turns into Bessel’s equation,

x2U ′′ + xU ′ + [x2 − (l +
1
2
)2]U = 0.

Therefore, the radial functions that solve (4.10) for λ = −l(l+ 1) differ by
a factor of x−1/2 from Bessel functions of half-integral order. Since x = 0
is a regular singular point of this differential equation, there is a regular
and an irregular solution. The regular solution is conventionally defined in
terms of a Bessel function by

jl(x)
def=
√

π

2x
Jl+ 1

2
(x) (D.36)

and is called a spherical Bessel function. Two kinds of irregular solutions
are the spherical Neumann function,

nl(x)
def= (−1)l+1

√
π

2x
J−l− 1

2
(x), (D.37)

and the spherical Hankel function,

h
(1)
l (x) def=

√
π

2x
H

(1)
l+ 1

2
(x) = jl(x) + inl(x). (D.38)

The functions jl and nl are both real and of the general form P (x) sinx+
Q(x) cosx, where P and Q are polynomials in 1/x, while h(1)

l (x) has the
form of a polynomial in 1/x times eix such that h(1)

l (ix) is real.
The solutions of (D.35) differ from the functions defined above by a factor

of x, and they are called Riccati-Bessel, Riccati-Neumann, and Riccati-
Hankel functions, respectively:

ul(x)
def= xjl(x),

vl(x)
def= xnl(x),
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and
w

(+)
l (x) def= i(−1)lxh(1)

l (x) = (−1)l+1[vl(x)− iul(x)].

Making the Frobenius ansatz u(x) = xσ
∑
n anx

n near the origin to solve
(D.35), we obtain6 the indicial equation σ(σ−1) = l(l+1), whose solutions
are σ = l + 1 and σ = −l. Thus the regular solution goes as xl+1 near the
origin, and the irregular solution goes as x−l. More precisely,

ul(x) =
xl+1

(2l + 1)!!
+ . . . , (D.39)

where (2l + 1)!! def= 1 · 3 · 5 · · · (2l + 1), and

vl(x) = −(2l − 1)!!x−l + . . . . (D.40)

The function ul(x) has the parity (−1)l+1 and vl(x) has the parity (−1)l.
[The functions x−l−1ul(x) and xlvl(x) can be expanded in power series in
x2.] The asymptotic behavior of these functions as x→∞ is as follows:

ul(x) � sin(x− 1
2
πl), vl(x) � − cos(x− 1

2
πl), w(+)

l (x) � eix+ 1
2πl. (D.41)

For l = 0 these functions are simply u0 = sinx, v0(x) = − cosx, and
w0(x) = eix.

D.3 Hermite Polynomials

The Hermite polynomials satisfy the differential equation on the real axis,
−∞ < x <∞,

H ′′ − 2xH ′ + (λ− 1)H = 0. (D.42)

In order for a solution of this equation not to grow like ex
2

at infinity
(and thereby overwhelm the factor e−

1
2x

2
needed to form a solution of the

Schrödinger equation for a simple harmonic oscillator), λ must be an odd
integer, λ = 2n + 1, n = 0, 1, . . . , in which case H is a polynomial of
degree n and with the parity of n.7 [Note that (D.42) is invariant under
reflection, so you expect its solutions to be odd or even functions.] They
can be defined by the generating function

S(t, x) def= e−t
2+2tx =

∞∑
n=0

tn

n!
Hn(x), (D.43)

6Show it.
7Prove these assertions.
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To show that the coefficients Hn satisfy (D.42), insert the expansion in the
differential equation

∂

∂x
S = 2tS;

comparing coefficients leads to the conclusion that

H ′n(x) = 2nHn−1(x), (D.44)

whereas its insertion in the equation

∂

∂t
S = 2(x− t)S

leads to
Hn+1(x) = 2xHn(x)− 2nHn−1(x). (D.45)

Differentiation of (D.44) and use of (D.45) then leads to (D.42). Further-
more, since

∂n

∂xn
S = (2t)nS,

the expansion of which in powers of t starts with tn, we conclude that
(d/dx)nHm(x) = 0 for m < n, so that the coefficient Hm(x) must be a
polynomial of order m. The normalization of the Hermite polynomials is
fixed by (D.43).

Equation (3.30) implies that Hn+1(x) = e
1
2x

2
(x−d/dx)e− 1

2x
2
Hn(x), and

therefore

Hn+1(x) =
(

2x− d

dx

)
Hn(x), (D.46)

which can also be written in the form

Hn+1(x) = −ex2 d

dx

(
e−x

2
Hn(x)

)
, (D.47)

implying that

Hn(x) = (−1)nex
2
(
d

dx

)n
e−x

2
. (D.48)

The first few of these polynomials are given by

H0 = 1
H1 = 2x
H2 = 4x2 − 2.

The Hermite polynomials are mutually orthogonal with the weight func-
tion e−x

2
. This can be proved by means of the generating function (D.43):∫ ∞

−∞
dx e−t

2+2txe−t
′2+2t′xe−x

2
= e2tt

′
∫ ∞
−∞

dx e−[x2−2x(t+t′)+(t+t′)2]
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= e2tt
′
∫ ∞
−∞

dx e−x
2

= e2tt
′√
π =
√
π

∞∑
0

(2tt′)n

n!

=
∑
nm

tnt
′m

n!m!

∫ ∞
−∞

dx e−x
2
Hn(x)Hm(x),

from which we conclude that∫ ∞
−∞

dx e−x
2
Hn(x)Hm(x) = δnm

√
π2nn!. (D.49)

In a similar manner we find that∫ ∞
−∞

dxx2e−x
2
H2
n(x) =

√
π2nn!(n+

1
2
). (D.50)

The value of Hn(x) at the origin can also be obtained from the generating
function, and we find that

Hn(0) =
{

0 for odd n
(−1)n/2n!/(n/2)! for even n

(D.51)
Finally, the Hermite polynomials form a complete set in the sense

∞∑
n=0

exp[− 1
2 (x2 − x′2)]√
π2nn!

Hn(x)Hn(x′) = δ(x− x′), (D.52)

meaning that for all f ∈ L2(IR),

f(x) =
∞∑
n=0

1√
π2nn!

e−
1
2x

2
cnHn(x), (D.53)

where
cn =

∫ ∞
−∞

dx f(x)e−
1
2x

2
Hn(x). (D.54)

D.4 The Hypergeometric Function

The hypergeometric function is defined by the hypergeometric series

F (a, b; c; z) def= 1 +
ab

c
z +

a(a+ 1)b(b+ 1)
2!c(c+ 1)

z2 + . . . (D.55)

and it satisfies the differential equation

z(1− z)F ′′ + [c− (a+ b+ 1)z]F ′ − abF = 0. (D.56)
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Setting z = x/b and F (z) = G(x), we obtain

x
(
1− x

b

)
G′′ +

(
c− a+ b+ 1

b
x

)
G′ − aG = 0,

which, in the limit as b→∞, goes over into the equation

xG′′ + (c− x)G′ − aG = 0, (D.57)

whose regular solution

F (a| c |x) def= lim
b→∞

F (a, b; c;
x

b
) = 1 +

a

c
x+

a(a+ 1)
2!c(c+ 1)

x2 + . . .

=
∞∑
s=0

Γ(a+ s)Γ(c)
Γ(c+ s)Γ(a)

xs

s!
(D.58)

is called the confluent hypergeometric function.
The asymptotic behavior of this function for large x is as follows:

F (a| c |x) � Γ(c)
{

1
Γ(a)

ex+(a−c) log x
(

1 +
(1− a)(c− a)

x
+ . . .

)
+

1
Γ(c− a)e

−a log(−x)
(

1 +
a(a− c+ 1)

x
+ . . .

)}
.(D.59)

D.5 Laguerre Polynomials

The Laguerre polynomials are defined by the generating function

U(t, x) def=
e−tx/(1−t)

1− t =
∞∑
n=0

tn

n!
Ln(x), (D.60)

which shows that
Ln(0) = n!. (D.61)

Since U satisfies the partial differential equation8

t
∂

∂t
U + (1− x) ∂

∂x
U + x

∂2

∂x2U = 0,

the coefficients solve the differential equation

x
d2

dx2Ln(x) + (1− x) d
dx
Ln(x) + nLn(x) = 0, (D.62)

8Check this.
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which has a regular singular point at x = 0. The generating function leads
to the following recurrence relations,

L′n = nL′n−1 − nLn−1, (D.63)

Ln+1 = (2n+ 1− x)Ln − n2Ln−1, (D.64)

and they can be explicitly expressed in the form

Ln(x) = ex
dn

dxn
(e−xxn) =

(
d

dx
− 1
)n

xn, (D.65)

which shows them to be polynomials of order n.
The associated Laguerre polynomials9 are defined by

Lmn (x) = (−1)m
dm

dxm
Ln+m(x), (D.66)

which shows that they are also polynomials of degree n, and they satisfy
the differential equation (sometimes called Laplace’s equation)

x
d2

dx2L
m
n (x) + (m+ 1− x) d

dx
Lmn (x) + nLmn (x) = 0. (D.67)

They are special cases of confluent hypergeometric functions defined by
(D.58),

Lmn (x) =
[(n+m)!]2

n!m!
F (−n |m+ 1 |x), (D.68)

and their generating function is

e−tx/(1−t)

(1− t)m+1 =
∞∑
n=0

tn

(n+m)!
Lmn (x), (D.69)

from which their normalization integral can be obtained as∫ ∞
0

dxxpe−xLpn(x)L
p
m(x) = δmn

[(p+ n)!]3

n!
. (D.70)

When n is not an integer, these functions are still defined by (D.68), but
they are not polynomials, and the integrals in (D.70) diverge.

9Some authors use (−1)mLmn−m to denote the polynomial here denoted by Lmn .
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D.6 Problems and Exercises

1. Derive the recursion relation (D.4) for the coefficients in the power
series expansion f(x) = xσ

∑∞
0 anx

n of a solution of Legendre’s dif-
ferential equation for m = 0.

2. Let f(x) be a solution of Legendre’s equation for m > 0 and define
g(x) = (1 − x2)−m/2f(x). Find the differential equation satisfied by
g, expand it in the form g(x) = xσ

∑∞
0 bnx

n, and find the recursion
relation for the coefficients bn. Show thereby again that in order for
g to be continuous at x = ±1, the expansion must break up, and this
happens if and only if l is an integer such that l ≥ m.

3. Show that the function (D.6) satisfies the partial differential equation
(D.8) and that, if T (x, y) is expanded in a power series in y, the
coefficients, as functions of x, must satisfy Legendre’s equation for
m = 0.

4. Show that T (x, y) satisfies the partial differential equation (D.10) and
use this equation to derive (D.11).

5. Show that T (x, y) satisfies the partial differential equation (D.12) and
use it to derive (D.13).

6. Show that the function Pml defined by (D.21) satisfies Legendre’s
equation. (Hint: Use Schläfli’s integral representation.)

7. Let Pl be the lth Legendre polynomial. Show that �L2Pl(�r · �r ′) =
�L′2Pl(�r · �r ′) and (�L + �L′)Pl(�r · �r ′) = 0. Use these two equations to
prove (D.32).

8. Show that the Hermite polynomial Hn(x) has n real zeros. (Hint: Use
(D.47).)

9. Show that

Hn(x) =
(

2x− d

dx

)n
1.

10. Prove (D.50).

11. Prove (D.51).

12. Prove that the associated Laguerre polynomial Lmn (x) has n positive
zeros.
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E
Group Representations

E.1 Groups

A group G is a collection of mathematical objects, such as transformations
of a physical system or of a reference frame, for which an associative bi-
nary operation called multiplication is defined [i.e., (AB)C = A(BC)] that
satisfies the following axioms:

1. The collection is closed, i.e., if A ∈ G and B ∈ G then AB ∈ G.

2. G contains a unit element E such that for all A ∈ G, EA = AE = A.

3. For every A ∈ G there is a unique inverse A−1 such that A−1A =
AA−1 = E.

There is no general requirement for multiplication to be commutative,
AB = BA; if all elements of a group G commute, G is called Abelian.
The number of elements in G is called its order. Any subset of a group G
that forms a group by itself (with the multiplication law inherited from
G) is called a subgroup; its order must be a divisor of the order of G (La-
grange’s theorem). Two groups are called isomorphic if there is a one-to-one
mapping between them that preserves multiplication—i.e., if A �→ A′ and
B �→ B′, then AB �→ A′B′. If the mapping is not one-to-one, so that more
than one element of G is mapped on the same element of G′, they are called
homomorphic.

The set of permutations of n objects is an example of a group of finite
order; this group is called Sn, and its order is n!. Cayley’s theorem asserts
that every group of order n is isomorphic to a subgroup of Sn.
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IfA,X ∈ G, then the elementXAX−1 is called conjugate toA:XAX−1 ∼
A. Conjugation is an equivalence relation: it is reflexive (A ∼ A), transitive
(if A ∼ B and B ∼ C, then A ∼ C), and symmetric (if A ∼ B, then
B ∼ A). Elements of a group that are all conjugate to one another form a
class. The unit element E is, of course, in a class by itself, and the whole
group G can be divided into disjoint classes. A subgroup that contains all
the classes of its elements is called an invariant, or normal, or self-conjugate
subgroup, or also a normal divisor.

The group S3 of permutations of three objects may serve as an example.
Calling E = (123), A = (132), B = (213), C = (321), D = (231), F =
(312), where (132)[abc] = [acb], etc., the multiplication table of the group
is as follows:

E A B C D F
A E D F B C
B F E D C A
C D F E A B
D C A B F E
F B C A E D

This group contains three classes: E; D,F ; A,B,C and four subgroups,
all of which are Abelian: E,A; E,B; E,C; E,D,F, the last being self-
conjugate.1

If G1 and G2 are two groups of orders n1 and n2 with the elements
E1, A1, B1, . . . and E2, A2, B2, . . . , respectively, we can form the direct prod-
uct group G1 ×G2 of order n1n2 with the elements A1 ×E2, A1 ×A2, A1 ×
B2, . . . B1 ×E2, . . . and the obvious multiplication law. An example would
be the permutations of pairs (abc, αβγδ) of three balls and four cubes, such
that

(abc, αβγδ)→ (acb, βαγδ) = (132)× (2134),

etc. Then E1 × E2, E1 × A2, E1 × B2, . . . is isomorphic to G2, and E1 ×
E2, A1 × E2, B1 × E2, . . . is isomorphic to G1, so that both G1 and G2 are
(invariant) subgroups of G1 × G2, and each element in G1 × G2 is uniquely
expressible as a product of elements in G1 and G2: A1×B2 = (A1×E2)(E1×
B2). Furthermore, the elements in the two subgroups G1 and G2 commute.
Conversely, if G1 and G2 are two mutually commuting subgroups of G, such
that each element of G can be uniquely written as a product of an element
of G1 and an element of G2, then we say that G = G1 × G2.

1Show all of this as an exercise.
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E.2 Representations

A representation Γ(G) of the group G is a mapping of the elements R of G to
a set of square matrices D(R), such that group multiplication corresponds
to matrix multiplication. The n-dimensional linear vector space on which
the n× n matrices act is called the carrier space of the representation.

There are two kinds of representations: (a) isomorphic or faithful ones,
i.e., those that are one-to-one, so that each matrix corresponds to one and
only one group element, and (b) homomorphic or unfaithful ones, in which
the same matrix may represent more than one group element. It is cus-
tomary to assume that all the matrices are non-singular and D(E) = 11,
where 11 is the unit matrix, so that D(A−1) = D−1(A). If a representation
is unfaithful, more than one group element must be mapped into 11.2 Ev-
ery group has the trivial (unfaithful) representation that associates each
element with the unit matrix.

Here is our first important theorem:

Theorem E.1 A matrix representation (using non-singular matrices) of
a group of finite order can always be made unitary by a canonical transfor-
mation.

To prove this, call the matrices in the representation Ag and define the Hermitian matrix

H
def=
∑
g∈G

AgA†
g ,

where the summation runs over all the elements of the group. The matrix H can be
diagonalized by a unitary matrix U :

UHU−1 def= h =
∑
g∈G

(UAgU−1)(UA†
gU

−1) =
∑
g

A′
gA′†

g , A′
g

def= UAgU−1,

so that the diagonal elements are given by

hii =
∑
k

∑
g∈G

(A′
g)ik(A′†

g )ki =
∑
k

∑
g∈G

|(A′
g)ik|2 > 0,

because det A′
g = det Ag �= 0. Therefore, we can take the inverse of the square root:

11 = h−1/2
∑
g

A′
gA′†

g h
−1/2.

The new matrices

A′′
g

def= h−1/2A′
gh

1/2 = (h−1/2U)Ag(h−1/2U)−1

are now unitary:

A′′
gA′′†

g = h−1/2A′
ghA′†

g h
−1/2 = h−1/2

∑
f

A′
gA′

fA′†
f A′†

g h
−1/2

= h−1/2
∑
f

(A′
gA′

f )(A′
gA′

f )†h−1/2 = h−1/2
∑
f ′

A′
f ′A′†

f ′h
−1/2 = 11,

2Prove this.
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because (A′
gA′

f ) runs through the entire group. �

Any two representations that are related by a canonical transformation,
D′(R) = SD(R)S−1 for all R ∈ G, are called equivalent, written as D′ ≈ D;
so the theorem says that every representation is equivalent to a unitary
one. We may therefore restrict ourselves always to unitary representations.

Suppose now you take two representations of a group G, with matrices
Ag and Bg, and form the new matrices(

Ag 0
0 Bg

)
with the blocks Ag and Bg on the main diagonal, thus forming a new rep-
resentation. If this construction is followed by a canonical transformation,
its origin is no longer apparent.3 A representation that can be transformed
by a canonical transformation (the same for all the group elements) into
such block form (the same kinds of blocks for all the elements) is called
fully reducible4; otherwise it is irreducible. You can see the significance of
this distinction: irreducible representations are the only new ones; a fully
reducible representation is just equivalent to one pieced together out of old
ones by a direct sum.

For example, the group S3, whose multiplication table was given above,
has the unfaithful two-dimensional representation that assigns the unit
matrix to the elements E,D, and F , while A,B, and C are represented by
the matrix

C =
(
−1/2 −

√
3/2

−
√

3/2 1/2

)
.

The Hermitian matrix C can be diagonalized by a canonical transforma-
tion, which, of course, leaves the unit matrix representing E,D, and F
unchanged. Therefore, this representation is reducible; since the eigenval-
ues of C are ±1, it is made up of two one-dimensional representations, one
of which is the trivial representation that assigns the number 1 to all six
group elements, and the other is E,D,F = 1 and A,B,C = −1.

Now, think about the carrier space S of a given representation Γ(G), and
let U be a subspace of S. If for every vector v ∈ U and every Dg ∈ Γ(G) we
have Dgv ∈ U , then U is called an invariant subspace of S for the group G.
The question of whether Γ is reducible is equivalent to the question whether
its carrier space has any invariant subspaces for G. If so, we can find an
orthogonal basis such that each basis vector lies entirely in one invariant

3Note that a simultaneous rearrangement of rows and corresponding collumns can be
accomplished by a canonical tranformation.

4An n-dimensional representation is called reducible if it is eqivalent to one in which
all the matrices have an m×m, m < n, block of zeros in the lower left-hand corner. A
reducible unitary representation is necessarily fully reducible.
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subspace, i.e., different subsets of these basis vectors span different invariant
subspaces; the matrices in Γ are then in block form and the representation
has been reduced.5

The following lemma is a useful tool for deciding whether a given repre-
sentation is reducible:

Lemma E.2 A matrix M that commutes with all the matrices in a given
irreducible representation Γ of a group is necessarily a multiple of the unit
matrix; and conversely, if the only matrix that commutes with all the ma-
trices in Γ is a multiple of the unit matrix, Γ is irreducible.

Proof: If the representation is reducible, then there certainly exists a matrix other
than c11 that commutes with all the matrices in it. When the representation is in block
form, we need only take a diagonal matrix that has different constants on the diagonal
for each of the blocks (i.e., it is a different multiple of the units matrix for each of the
blocks separately). Therefore, if the only matrix that commutes with them all is of the
form c11, then the representation is irreducible. To prove the converse, i.e., that if the
representation Γ is irreducible, then there exists no matrix other than a multiple of the
unit matrix that commutes with all the matrices in Γ, we assume that the matrix M that
commutes with all the matrices in Γ can be diagonalized by a canonical transformation
S. (First, make the representation unitary; in this form it follows that both M and M†

commute with all the matrices, and therefore so do the Hermitian matrices M+M† and
i(M −M†), which can be diagonalized.) Now apply the canonical transformation S to
all the matrices in Γ too. But a diagonal matrix M commutes with another matrix only
if the latter is in block form, with blocks corresponding to the eigenvalues of M that
are equal. Therefore all the matrices in the representation must now be in block form,
and the representation is reducible, unless all the eigenvalues of M are the same, which
makes M a multiple of the unit matrix. �

Lemma E.2 can now be used to prove the following important proposi-
tion, known as Schur’s lemma:

Lemma E.3 Let D(1)(R) and D(2)(R) be the matrices of two irreducible
representations of G of dimensions n1 and n2, respectively, and let M be
a rectangular matrix so that for all R ∈ G, D(1)(R)M = MD(2)(R). If
n1 �= n2, then M = 0; if n1 = n2, either M = 0 or else it has an inverse,
in which case the two representations are equivalent.

To prove this, assume, without loss of generality, that the representations are unitary.
It then follows from M†D(2)†(R) = D(1)†(R)M† that M†D(2)−1(R) = D(1)−1(R)M†,
so that M†D(2)(R−1) = D(1)(R−1)M† and therefore for all R ∈ G, M†D(2)(R) =

5A matrix that leaves a subspace invariant does not necessarily leave its orthogonal
complement invariant. So it is not necessarily in block form, or fully reduced. However,
a unitary matrix does; this is why for a unitary representation, reducible implies fully
reducible.
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D(1)(R)M†, which implies MM†D(2)(R) = MD(1)(R)M† = D(2)(R)MM†. Therefore,
by Lemma E.2,MM† = c11. Hence, if n1 = n2, so thatM is a square matrix, either c = 0,
in which case

∑
k |Mik|2 = 0 and hence M = 0, or c �= 0, in which case M−1 = 1

c
M†. If

n2 �= n1, say, n2 > n1, we make M square by filling up the square matrix with zeros on
the right, thereby forming the square matrix N , so that NN† = MM† = c11. But now
detN = 0, so it has no inverse, which makes it impossible that c �= 0. It follows that
c = 0 and hence M = N = 0. �

The following orthogonality theorem plays an important role in the con-
struction of irreducible representations.

Theorem E.4 Let D(1)(R) and D(2)(R) be matrices of two inequivalent
irreducible representations of a group G of order h. Then∑

R∈G
D(1)
µν (R)D(2)

λκ (R−1) = 0

for all µ, ν, λ, κ, and∑
R∈G
D(1)
µν (R)D(1)

λκ (R−1) = δµκδνλh/n1,

where n1 is the dimension of the representation D(1).

Of course, if the representation is unitary, then Dλκ(R−1) = (D−1)λκ(R) =
D∗κλ(R).

Proof: Define the following matrix:

M
def=
∑
R∈G

D(1)(R)XD(2)(R−1),

where X is an arbitrary n1 × n2-matrix. Now

MD(2)(S) =
∑
R∈G

D(1)(R)XD(2)(R−1S) =
∑
T∈G

D(1)(ST )XD(2)(T−1) = D(1)(S)M.

Therefore by Schur’s lemma: if n1 �= n2, then M = 0; choosing Xij = δiνδjλ now yields
the first equation of the theorem. If n1 = n2, then, since the two representations are
assumed to be inequivalent, again M = 0, and we get the first equation. If we take the
two representations to be equal, as in the second equation, then, by Lemma (E.2), M
must be a multiple of the unit matrix, and the same choice of X as before yields

Mµκ =
∑
R

D(1)
µν (R)D(1)

λκ (R−1) = c(ν, λ)δµκ,

the trace of which gives

c(ν, λ)n1 =
∑
µ

Mµµ =
∑
Rµ

D(1)
µν (R)D(1)

λµ (R−1) =
∑
R

D(1)
λν (E) = hδλν .

�
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E.2.1 Character
The character of a group element in a given representation is the trace of
the matrix representing it: χ(R) def= trD(R). By the character of a represen-
tation we mean the collection of the numbers that are the traces of all the
matrices. Note that the character is a class function, since χ(ABA−1) =
trD(ABA−1) = trD(A)D(B)D−1(A) = trD(B) = χ(B). For similar rea-
sons, equivalent representations have the same characters. The character
of an irreducible representation is called primitive.

Taking traces of the two formulas in Theorem E.4 leads to the orthogo-
nality theorem for primitive characters:

Theorem E.5∑
C

√
NC/hχ

(i)(C)
√
NC/hχ

(j)∗(C) = δij ,

where the sum runs over the classes of the group, NC is the number of
elements in the class C, χ(i) and χ(j) denote the characters of irreducible
representations i and j, respectively, and h is the order of the group.

(This theorem implies, incidentally, that for all but the trivial representa-
tion,

∑
R χ(R) = 0.6) We may therefore form an h-dimensional complex

linear vector space, in which the different primitive characters form mutu-
ally orthogonal vectors; in fact, the dimensionality of the space need only
be equal to the number of classes in the group. Hence it follows immediately
that the number of irreducible representations of a given group G cannot
be larger than the number of classes in G. Indeed, the following, stronger
proposition holds. (Its proof will be given a little later, when we have all
the needed tools.)

Theorem E.6 The number of inequivalent irreducible representations of
a group G is equal to the number of classes in G.

Since this theorem, together with Theorem E.5, implies that the primitive
characters form an orthogonal basis in a linear vector space whose dimen-
sionality equals the number of classes in G, it is equivalent to the statement
that ∑

i

χ(i)(C)χ(i)∗(C ′) = δCC′h/NC , (E.1)

(where the sum runs over all the inequivalent irreducible representations,
that is, over all the primitive characters) which says they form a complete
set. Indeed, Theorem E.5 and Eq. (E.1) together are equivalent to Theorem
E.6.

6Why?
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Theorem E.5 allows us to determine how many times each irreducible
representation Γ(i) of a group G is contained in a given representation Γ,
which is written in the form

Γ = k1Γ(1) ⊕ k2Γ(2) ⊕ . . . =
⊕
i

kiΓ(i),

meaning that when Γ is reduced to block form, the block corresponding
to the irreducible representation Γ(i) appears ki times. Taking the trace of
this implies χ(R) =

∑
i kiχ

(i)(R), multiplication of which by χ(j)∗(R) and
summing over R then yields, according to Theorem E.5,

kj =
1
h

∑
C

NCχ(C)χ(j)∗(C). (E.2)

It follows from this that the number of times an individual irreducible
representation is contained in a given representation is independent of the
way the reduction was performed; it is unique. The theorem also implies
that a necessary and sufficient condition for two irreducible representations
to be equivalent is that their characters are the same. (Clearly, if they
are equivalent, their characters are the same; if they are inequivalent, the
theorem says that their characters are orthogonal.) The same then follows
for all representations, since their content of irreducible ones is unique.

Suppose now that Γ =
⊕

i kiΓ
(i), so that χ(R) =

∑
i kiχ

(i)(R), and from
the orthogonality theorem,

∑
R∈G
|χ(R)|2 =

∑
C

NC |χ(C)|2 =
∑
i

k2
i

∑
C

NC |χ(i)(C)|2 = h
∑
i

k2
i , (E.3)

which immediately implies that if for a given representation
∑
R |χ(R)|2 >

h, then it must be reducible.
The regular representation is another useful tool. It is defined by the

following matrices:7

Dµν(Ri)
def=
{

1 if R−1
µ Rν = Ri

0 otherwise. (E.4)

What this amounts to is writing down the h × h multiplication table for
the group, but with the inverses of the elements in the left column. For the

7Prove that this defines a representation.
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group S3 this looks as follows:

E A B C D F

E−1 E A B C D F
A−1 A E D F B C
B−1 B F E D C A
C−1 C D F E A B
D−1 F B C A E D
F−1 D C A B F E

The 6× 6 matrix representing A then has the entry 1 wherever A appears
and zeros everywhere else, etc.

How many times does the regular representation contain the ith irre-
ducible representation? We saw that hki =

∑
R χ

reg(R)χ(i)∗(R); but for the
regular representation χreg(R) = 0 unless R = E, in which case χreg(E) = h
and χ(i)(E) = ni. Therefore ki = ni : the regular representation contains
each irreducible representation Γ(i) as many times as the dimensionality
of Γ(i). Since the left-hand side of the equation χreg(C) =

∑
i niχ

(i)(C)
vanishes unless C = E, in which case it equals h, we have the general
formula: ∑

i

niχ
(i)(C) =

{
0 if C �= E
h if C = E

. (E.5)

Using (E.3) for the regular representation leads to the result that h2 =
h
∑
i k

2
i = h

∑
i n

2
i , which implies another general formula,∑

i

n2
i = h. (E.6)

We are now ready to prove Theorem E.6.

Proof of Theorem E.6: In any given irreducible representation of a given group G with
the matrices D(R), form the following class function:

Ω(C) def=
∑
R∈C

D(R), (E.7)

C being a class in G. Multiplying two of them, we obtain

Ω(C)Ω(C′) =
∑
R∈C

∑
S∈C′

D(R)D(S) =
∑
R∈C

∑
S∈C′

D(RS), (E.8)

where RS runs through whole classes as R and S do, with the result that

Ω(C)Ω(C′) =
∑
C′′

aCC′C′′Ω(C′′), (E.9)

in which the coefficients aCC′C′′ are non-negative integers that simply count the number
of times the same class C′′ appears in the sum.

Note that for any A ∈ G
Ω(C)D(A) =

∑
R∈C

D(R)D(A) = D(A)
∑
R∈C

D(A−1RA) = D(A)
∑
R∈C

D(R) = D(A)Ω(C).
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Since Ω(C) commutes with all the matrices in the group, we conclude by Lemma E.2
that

Ω(C) = αC11,
the trace of which yields trΩ(C) = NCχ(C) = αCn, where n is the dimension of the
representation and NC is the number of elements in the class C; thus, αC = NCχ(C)/n,

Ω(C) =
NC

n
χ(C)11,

so that according to (E.9)

Ω(C)Ω(C′) =
NCNC′

n2
χ(C)χ(C′)11 =

∑
C′′

aCC′C′′
NC′′

n
χ(C′′)11,

or, for the ith irreducible representation,∑
C′′

ni
aCC′C′′NC′′

NCNC′
χ(i)(C′′) = χ(i)(C)χ(i)(C′).

Summing this formula over i, that is, over all the irreducible representations, and using
(E.5), we obtain∑

i

χ(i)(C)χ(i)(C′) =
∑
C′′

aCC′C′′NC′′

NCNC′

∑
i

niχ
(i)(C′′) =

aCC′ENC′′

NCNC′
h.

Now, if A and B are in the same class C, then A−1 and B−1 are also in the same
class, which we’ll call C−1; so we have

Ω(C)Ω(C−1) = aCC−1EΩ(E) + . . . .

But you can get E only if R = S−1 in (E.8), and that happens NC times; therefore

aCC−1E = NC = NC−1 .

On the other hand, if C′ �= C−1, then one will never get E, so that

aCC′E = 0 for C′ �= C−1.

The fact that χ(C−1) = χ∗(C) then leads to (E.1), and therefore proves the theorem.�

E.2.2 Real representations
Here we want to study conditions under which a given irreducible repre-
sentation Γ of a group G, if it is not already real, is equivalent to a real rep-
resentation, i.e., when there exists a canonical transformation that makes
all the matrices in Γ real. A look at the character of Γ allows us to make
an immediate distinction: if all the characters are real, then Γ ≈ Γ∗; if they
are not, Γ �≈ Γ∗. Clearly then, if Γ is equivalent to a real representation, its
character has to be real. We can therefore distinguish between three classes
of representations:

1. The characters are all real, so that Γ ≈ Γ∗; in that case, either

a) Γ is equivalent to a real representation, in which event the repre-
sentation is called of type 1 (or “integer”), or else

b) Γ is not equivalent to a real representation, in which event it is
designated of type 2 (or “half-integer”).
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2. The characters are not all real (so that Γ �≈ Γ∗), in which case the
representation is called of type 3.

Lemma E.7 A given irreducible representation Γ is of type 1 if and only
if there exists a symmetric matrix X such that the matrix K defined by

K
def=
∑
R∈G
D̃(R)XD(R) (E.10)

is �= 0; it is of type 2 if and only if there exists an anti-symmetric X such
that K �= 0; it is of type 3, if for all X, K = 0. If a representation is of
odd dimension and all its characters are real, it is necessarily of type 1.

Proof: Assume that Γ is irreducible and unitary, and suppose we have case (1), so
that D ≈ D∗ = D̃−1. There then exists a unitary matrix M such that for all R ∈ G,
MD(R)M−1 = D∗(R) = D̃−1(R), or

D̃(R)MD(R) = M.

The transpose of this equation reads

D̃(R)M̃D(R) = M̃,

and its inverse reads
D−1(R)M−1D̃−1(R) = M−1.

Multiplying these two equations leads to M−1M̃ = D−1(R)M−1M̃D(R), or

D(R)M−1M̃ = M−1M̃D(R).

Because Γ is irreducible, Schur’s lemma implies that M−1M̃ must be a multiple of the
unit matrix, or

M̃ = cM,

whose transpose is M = cM̃ = c2M, and therefore c2 = 1, and M must be either
symmetric or anti-symmetric. Since det M̃ = detM and det(−M) = (−1)n detM if the
dimensionality of M is n, c = −1 can occur only for a representation of even dimension;
if the dimension of Γ is odd, M must be symmetric.

Suppose now that c = +1, so that M is symmetric and unitary; in that case the
representation Γ is of type 1. To prove this, we define the unitary, symmetric matrix N
such that N2 = M ,8 and we have N2D(R)N−2 = D∗(R), which implies

D′(R) def= ND(R)N−1 = N−1D∗(R)N = N∗D∗(R)N∗−1 = (ND(R)N−1)∗ = D′∗(R).

The representation Γ′ ≈ Γ is thus real and the representation is of type 1. Moreover,
because D and N are both unitary, so is D′; therefore D′ is real, orthogonal.

For any given irreducible, unitary representation Γ, next define a matrix K by (E.10),
where X is an arbitrary square matrix. We then have

D∗(R)K = D̃(R−1)K =
∑
S∈G

D̃(SR−1)XD(S) =
∑
T∈G

D̃(T )XD(TR) = KD(R)

for all R in the group. In case (2), i.e., if the representation is of type 3, it follows
by Schur’s lemma that K = 0, no matter what X is, whereas in case (1), i.e, if the

8Prove that such an N always exists.
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representation is of type 1 or 2, K is invertible and connects D∗ with D in the sense
that

D∗(R) = KD(R)K−1.

Similarly, we find D∗(R)K̃ = K̃D(R), and hence D(R)K† = K†D∗(R), from which it
follows that

K†KD(R) = D(R)K†K.
In case (1) we can therefore conclude from Schur’s lemma that, unless K = 0, we must
have K†K = a11 for some a > 0. We can then multiply X by a−1/2 so that the new
K is unitary, K−1 = K†. The matrix K defined by (E.10) therefore has precisely the
property assumed above for the matrix M . Thus, if the representation is of type 3, K
must vanish for all X; if for some choice of X, K fails to vanish and is symmetric, the
representation is of type 1.

Conversely, assume that the representation Γ is of type 1, so that there exists a unitary
transformation T that makes it real:

D(R) = TD′(R)T−1, D′(R) = D′∗(R).

In that case

K =
∑
R∈G

D̃(R)XD(R) = T̃−1
∑
R∈G

D̃′(R)T̃XTD′(R)T−1,

and
K′ def= T̃KT =

∑
R∈G

D̃′(R)YD′(R),

where Y def= T̃XT . The new K′ has the same symmetry as K: if K̃ = cK, then K̃′ =
T̃ K̃T = cT̃KT = cK′. Written out in detail, we have, according to Theorem E.4, if h is
the order of the group and n the dimension of the representation,

K′
µν =

∑
αβ

∑
R∈G

D′
αµ(R)YαβD′

βν(R) =
h

n

∑
αβ

Yαβδαβδµν =
h

n
δµνtrY,

which implies that K′ is symmetric, and so is K. Therefore, a necessary and sufficient
condition for the representation to be of type 1 is that there exist a matrix X such the K
of (E.10) fails to vanish and is symmetric. Moreover, if one such X exists, every matrix
X leads to a K that either vanishes or is symmetric.

The formula (E.10) shows that the symmetric part 1
2 (K + K̃) of K is produced by

the symmetric part of X, and its anti-symmetric part is produced by the anti-symmetric
part of X. Since, for any given X, K is either symmetric or anti-symmetric, we need to
test only symmetric matrices X: if and only if there exists a symmetric X that leads to
a K �= 0, Γ is of type 1. �

E.2.3 Kronecker products
Suppose that the matrices D(i)(R) form the ith irreducible representation
of a group G. We can then form the Kronecker product (also called the direct
product) of two of these representations, D(i×j)(R) def= D(i)(R) ⊗ D(j)(R),
defined by9

D(i×j)
µν,λκ(R) def= D(i)

µλ(R)D(j)
νκ (R).

9Prove that this is a representation of the group.
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(Here the rows are numbered by the two indices µν and the columns by the
two indices λκ. They can, of course, be renumbered by single indices, but
that would complicate the notation.) This representation will, in general,
be reducible and contain the lth irreducible representation kijl times, so
that we have the Clebsch-Gordan series,

Γ(i×j) def= Γ(i) ⊗ Γ(j) =
⊕
l

kijlΓ(l), (E.11)

or, for the matrices,

D(i×j)(R) =
⊕
l

kijlD(l)(R).

The coefficients kijl are easily found by the use of Theorem E.5,

kijl =
1
h

∑
R∈G

χ(i)(R)χ(j)(R)χ(l)∗(R). (E.12)

For example, the number of times the trivial representation is contained in
Γ(i×j) is

kij1 =
1
h

∑
R∈G

χ(i)(R)χ(j)(R),

which is zero unless Γ(i) and Γ(j)∗ are equivalent, in which case it equals 1.
Note that if k̄ijl is defined to be the number of times Γ(l)∗ is contained

in Γ(i) ⊗ Γ(j), i.e.,

Γ(i) ⊗ Γ(j) =
⊕
l

k̄ijlΓ(l)∗,

then k̄ijl is completely symmetric in all its indices:

k̄ijl =
1
h

∑
R

χ(i)(R)χ(j)(R)χ(l)(R). (E.13)

E.2.4 Carrier spaces
Let us look at all this from the perspective of the carrier space. Suppose
that the group G, such as a group of symmetries of a physical system, is
implemented by unitary operators {OR}R∈G on a Hilbert space H, so that
OROS = ORS , and the unitary matrices D(i)(R) form the ith irreducible
representation of G. Define a set of operators

P(i)
µν

def=
ni
h

∑
R∈G
D(i)∗
µν (R)OR, (E.14)
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and you find,10 by the use of Theorem E.4, that

P(i)
µνP

(j)
λκ = δijδλνP(i)

µκ. (E.15)

The operators
P(i)
µ

def= P(i)
µµ =

ni
h

∑
R∈G
D(i)∗
µµ (R)OR (E.16)

then have the property

P(i)
µ P(j)

ν = δijδµνP(i)
µ . (E.17)

Furthermore,

P(i)†
µν =

ni
h

∑
R∈G
D(i)∗
νµ (R−1)OR−1 = P(i)

νµ,

as a result of which the P(i)
µ are Hermitian: they are orthogonal projections

onto mutually orthogonal subspaces. We also find

OSP(i)
µν =

ni
h

∑
R∈G
D(i)∗
µν (R)OSR =

ni
h

∑
T∈G
D(i)∗
µν (S−1T )OT

=
ni
h

∑
λ

D(i)∗
µλ (S−1)

∑
T

D(i)∗
λν (T )OT

=
∑
λ

D(i)
λµ(S)P(i)

λν . (E.18)

Now take any normalized eigenvector of P(i)
µ ,11 so that

P(i)
µ ψ(i)

µ = ψ(i)
µ ,

and form ni − 1 partners of it by

ψ(i)
ν

def= P(i)
νµψ

(i)
µ .

The so defined orthonormal12 set of ni vectors {ψ(i)
κ }κ=1,...,ni

then has the
property

OSψ
(i)
ν = OSP(i)

νµψ
(i)
µ =

∑
λ

D(i)
λν(S)P(i)

λµψ
(i)
µ

=
∑
λ

D(i)
λν(S)ψ(i)

λ .

10Prove this.
11There generally is more than one; that is, the range of the projection P(i)

µ is generally
not one-dimensional.

12Prove that they are orthonormal.
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Hence under the group G, expressed in terms of the operators {OR}R∈G ,
the ψ

(i)
ν transform among themselves: they form an invariant subspace,

which is the carrier space of the ith irreducible representation. One says
that ψ(i)

ν belongs to the νth row of the ith irreducible representation. Each
of the partners ψ(i)

ν of the original ψ(i)
µ has the property P(i)

ν ψ
(i)
ν = ψ

(i)
ν ,13

so it does not matter which of these vectors you start with. Furthermore,
if P(i)

ν ψ
(i)
ν = ψ

(i)
ν , then

ψ(i)
ν = P(i)

ν ψ(i)
ν = P(i)

νλP
(i)
λνψ

(i)
ν = P(i)

νλψ
(i)
λ .

Hence P(i)
ν ψ

(i)
ν = ψ

(i)
ν is a necessary and sufficient condition for ψ(i)

ν to have
ni − 1 partners such that ψ(i)

λ = P(i)
λνψ

(i)
ν , and they belong to the λth row

of the ith irreducible representation. Define S(i,m) to be the ni-dimensional
invariant subspace spanned by all the partners of one of the ψ

(i)
µ . (The

label m refers to the fact that the range of the projection P(i)
µ may not be

one-dimensional, and there are other, possibly infinitely many, eigenvectors
of P(i)

µ with which we could have started the procedure of this paragraph.)
Note that whenever a set of vectors in H transform among themselves,

so that
ORψν =

∑
µ

Dµν(R)ψµ,

the matrices Dµν(R) form a representation of the group G.14
Finally, we define the projection operators

P(i) def=
∑
µ

P(i)
µ =

ni
h

∑
R∈G

χ(i)∗(R)OR =
ni
h

∑
C

χ(i)∗(C)K(C), (E.19)

where K(C) def=
∑
R∈C OR is the analogue on H of the matrix Ω(C) defined

in (E.7). The operator P(i) is idempotent, P(i)2 = P(i),15 and such that if
ψ(i) =

∑
ν aνψ

(i)
ν , then P(i)ψ(i) = ψ(i).16 So any vector in an invariant sub-

space S(i,m) belonging to the ith irreducible representation is an eigenvector
of P(i). One says that ψ(i) belongs to the ith irreducible representation. The
space S(i) on which P(i) projects is the direct sum S(i) =

⊕
m S(i,m).

Lemma E.8 The mutually orthogonal17 projection operators P(i) add up
to the unit operator; i.e., their eigenvectors span the entire Hilbert space H.

13Prove this.
14Prove this.
15Prove this.
16Prove this.
17Prove that they are mutually orthogonal.



370 E. Group Representations

Proof: We have∑
i

P(i) =
1
h

∑
R∈G

OR

∑
i

niχ
(i)∗(R) =

1
h

∑
R

OR χ
reg∗(R),

where χreg is the character of the regular representation. But χreg(R) = 0 unless R = E,
in which case χreg(E) = h. Therefore∑

i

P(i) = OE = 11,

where 11 is the unit operator on H. �

This lemma implies that H can be decomposed into a direct sum of
mutually orthogonal subspaces S(i), each belonging to one of the irreducible
representations of G, and each S(i) in turn can be decomposed into a direct
sum of (generally infinitely many) invariant subspaces S(i,m) of dimension
ni (the dimension of the ith irreducible representation) such that S(i,m)

is spanned by ni mutually orthogonal vectors that are all partners of one
another, and every vector Ψ ∈ H can be written as a superposition of the
form Ψ =

∑
imµ aimµ|i,m, µ〉, where |i,m, µ〉 ∈ S(i,m) and |i,m, µ〉 belongs

to the µth row of the ith irreducible representation, all the vectors |i,m, µ〉,
µ = 1, . . . , ni, with fixed i and m, being partners of one another.

Suppose now that the Hermitian operator H on H is invariant under the
group G, i.e., it commutes with all the operators OR, R ∈ G, and hence also
with all the projections P(i)

µ . There then exists a complete orthonormal set
of eigenfunctions or quasi-eigenfunctions |E, i,m, µ〉 labeled by the eigen-
values or quasi-eigenvalues E of H and by the row µ of the ith irreducible
representation of G. What is more, if H|E, i,m, µ〉 = E|E, i,m, µ〉, then
also

E|E, i,m, ν〉 = EP(i)
νµ|E, i,m, µ〉 = P(i)

νµH|E, i,m, µ〉 = HP(i)
νµ|E, i,m, µ〉

= H|E, i,m, ν〉,

so that all the partners of a row of an irreducible representation have the
same eigenvalue or quasi-eigenvalue E and thus E must have the degeneracy
of the dimension of that representation. Moreover, according to (E.15),

〈E, i,m, ν|H|E, j, n, µ〉 = 〈E, i,m, ν|P(i)
ν HP(j)

µ |E, j, n, µ〉
= 〈E, i,m, ν|HP(i)

ν P(j)
µ |E, j, n, µ〉 = 0

if i �= j. As a result, and in view of Lemma E.8, we have

Theorem E.9 Let the Hermitian operator H on a Hilbert space H be in-
variant under a group G of transformations whose irreducible representa-
tions have dimensions n1, n2, . . . ; then H is spanned by a set of orthonormal
vectors |E, i,m, µ〉, such that |E, i,m, µ〉 belongs to the µth row of the ith

irreducible representation of G, E is an eigenvalue of H, H|E, i,m, µ〉 =
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E|E, i,m, µ〉, and for each fixed i, the values of E are equal for all 1 ≤
µ ≤ ni; thus, the eigenvalue is ni-fold degenerate. Furthermore, all matrix
elements of H connecting two different irreducible representations vanish.
(If E is a quasi-eigenvalue, the wording of this statement has to be changed
accordingly.)

If there is no further degeneracy, i.e., if any two so-labeled eigenfunction
|E, i,m, µ〉 and |E′, j, n, ν〉 with i �= j have E �= E′, then the degeneracy is
called normal; any additional degeneracy is called accidental.

E.2.5 Clebsch-Gordan coefficients
If the normalized vectors belonging to the ith irreducible representation
of a group G are {ψ(i)

µ }µ=1,...,ni
and we wish to decompose the vectors

ψ
(i)
µ ⊗ψ(j)

ν in the carrier space of the Kronecker product of the ith and the
jth irreducible representation into a sum of vectors that belong to individual
rows of irreducible representations, the lth representation will appear kijl
times, and we have

ψ(lκ)
σ =

ni∑
µ=1

nj∑
ν=1

〈i µ, j ν|l κ σ〉ψ(i)
µ ψ(j)

ν , κ = 1, . . . , kijl, (E.20)

where the 〈i µ, j ν|l κ σ〉 are called Clebsch-Gordan coefficients. Since clearly
there must be as many basis functions of one kind as of the other, it follows
that ∑

l

kijlnl = ninj .

Assuming the irreducible representations to be unitary, so that the basis
functions are orthonormal, the matrix of Clebsch-Gordan coefficients is
unitary, ∑

lκσ

〈i µ, j ν|l κ σ〉〈l κ σ|i µ′, j ν′〉 = δµµ′δνν′ , (E.21)

as well as ∑
µν

〈l κ σ|i µ, j ν〉〈i µ, j ν|l′ κ′ σ′〉 = δll′δκκ′δσσ′ , (E.22)

where
〈l κ σ|i µ, j ν〉 = 〈i µ, j ν|l κ σ〉∗,

and the relation (E.20) can be inverted to read

ψ(i)
µ ψ(j)

ν =
∑
lκσ

〈l κ σ|i µ, j ν〉ψ(lκ)
σ . (E.23)

Since D(i)
µν(R) = (ψ(i)

µ ,ORψ
(i)
ν ), these relations lead to corresponding

relations between the Kronecker products of the representation matrices,
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namely,

D(i)
µλ(R)D(j)

νι (R) =
∑
lκσσ′
〈i µ, j ν|l κ σ′〉D(l)

σ′σ(R)〈l κ σ|i λ, j ι〉. (E.24)

This equation implies that the Clebsch-Gordan coefficients make up the
matrix that reduces the Kronecker product to block form. However, if some
of the blocks are equal, so that the same irreducible representation occurs
more than once, the reduction is ambiguous. We have assumed in these for-
mulas that the various repetitions ψ(iκ)

µ transform equally, and not under
equivalent but unequal representations. The complicating issue of repeti-
tions of the same irreducible representations becomes simplified for groups
that are simply reducible, which many of the groups of physical interest
are. Here is the definition of a simply reducible group: 1) for each R ∈ G
there exists an A ∈ G such that R−1 = ARA−1; in other words, every
member of the group is in the same class as its inverse; 2) the Kronecker
product representation of two irreducible representations contains no irre-
ducible representation more than once. The first of these implies that all
the primitive characters are real.18

Use of Theorem E.4 together with (E.24) leads to∑
R∈G
D(i)
µν(R)D(j)

νι (R)D(k)∗
ρα (R) =

h

nk

∑
κ

〈ι µ, j ν|k κ ρ〉〈k κα|ι λ, j ι〉, (E.25)

and for simply reducible groups this reduces to the following:∑
R

D(i)
µν(R)D(j)

νι (R)D(k)∗
ρα (R) =

h

nk
〈ι µ, j ν|k ρ〉〈k α|ι λ, j ι〉, (E.26)

where the index κ now no longer appears. If the question is redefined to
be: how many times does the Kronecker product contain Γ(k)∗, which we
shall indicate by a bar over the k, and we lump the factor

√
nk into the

CG-coefficient, the results are called 3j-symbols:

〈j̄3µ3|j2µ2, j1µ1〉n−1/2
j3

def=
(

j1 j2 j3
µ1 µ2 µ3

)
. (E.27)

It follows that∑
R

D
(j1)
µ1µ′

1
(R)D(j2)

µ2µ′
2
(R)D(j3)

µ3µ′
3
(R) = h

(
j1 j2 j3
µ1 µ2 µ3

)∗(
j1 j2 j3
µ′1 µ′2 µ′3

)
.

(E.28)
This formula implies that ∣∣∣∣( j1 j2 j3

µ1 µ2 µ3

)∣∣∣∣
18Why?
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is symmetric under the interchange of any two of its columns. Phases can
always be chosen in such a way that the 3j-symbols are even under even
permutations and odd under odd permutations of its columns.

E.3 Lie Groups

Many groups of interest to physics have infinitely many elements, labeled
by a set of p continuous, real parameters, as in R(a), where a denotes the
entire set, a = {a1, . . . , ap};19 one usually chooses R(0) = E, if by 0 we
mean {0, 0, . . . , 0}. The multiplication law is given by

R(b)R(a) = R(c), where c = φ(a, b), (E.29)

so that the function φ takes the place of the multiplication table; because
of the associativity law of the group, it must have the property

φ(φ(a, b), d) = φ(a, φ(b, d)). (E.30)

Let us denote the parameter for [R(a)]−1 by ā, so that R(a)R(ā) = E, and
the equation φ(a, ā) = φ(ā, a) = 0 is solved by ā = f(a). If the functions φ
and f are analytic, the group is called a Lie group; it is called compact if
the p-dimensional parameter space is bounded and closed.

E.3.1 Coordinate transformations
Most of the groups of physical interest are transformations of coordinates
on an n-dimensional space (which need not necessarily be the real, physical
space). Here are some examples:
• The linear group in n dimensions, called GL(n): a group of linear trans-
formations of the form

x′i =
n∑
j=1

Mjixj , i = 1, . . . , n, with detMij �= 0.

This is the group of n× n nonsingular, real matrices; it has n2 parameters
varying from −∞ to ∞ and is thus not compact.
• The special linear group SL(n), which is the group of unimodular n × n
matrices, i.e., such that detM = 1. It has n2 − 1 parameters.
• The orthogonal group O(n). These are the real coordinate transformations
such that

∑n
i=1 x

2
i =
∑n
i=1 x

′2
i , which means that the matrices have to be

orthogonal,
n∑
i=1

MikMij = δkj .

19It is assumed that these are all essential and cannot be reduced to a smaller set.
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They have n(n − 1)/2 parameters.20 The orthogonality condition implies
that detM = ±1, but only the matrices with detM = 1 are continu-
ously connected to the unit matrix. The orthogonal, unimodular matrices
form the orthogonal group SO(n) of pure rotations; if reflections are to be
included, O(n) is a mixed continuous group, with an additional discrete
parameter. For example, O(2) is a mixed one-parameter group (one an-
gle), and O(3) is a mixed three-parameter group (3 Euler angles), and they
include reflections.
• The unitary group U(n) is made up of unitary n× n matrices,∑

i

UkiU
∗
ji = δkj .

These are the complex coordinate transformations such that
∑n
i=1 |xi|2 =∑n

i=1 |x′i|2. Each matrix has n2 free real parameters,21 and since each ele-
ment must be ≤ 1, the parameter space is closed and U(n) is compact; it
has O(n) as a subgroup.22

• The special unitary group SU(n) is a (n2−1)-parameter subgroup of U(n)
consisting of the unitary matrices with detU = +1.
• The rigid motions in three-dimensional Euclidian space,

x′i =
3∑
j=1

Tjixj + ai, i = 1, 2, 3,

where the matrices {Tji} are real orthogonal; the rigid motions form a
six-parameter group, whose parameter space is not closed.
• If we add the dilations, x′i = axi, we have the seven-parameter similitude
group.
• The addition of inversions on spheres (see Figure E.1) to the group of
rigid motions makes it into the ten-parameter conformal group.

E.3.2 Infinitesimal generators
For general coordinate transformations (not necessarily linear), writing x
for the set of n coordinates and a for the set of p parameters, we have

x = f(x′, b), x′ = f(x′′, a), x = f(f(x′′, a), b) = f(x′′, c), f(x, 0) = x,
(E.31)

with the multiplication law

c = φ(a, b), φ(a, 0) = φ(0, a) = a.

20Prove this.
21Prove this.
22Why?
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P’

FIGURE E.1. Inversion on a sphere of radius r; the points P and P ′ are such
that OP ×OP ′ = r.

On the assumption the group elements depend on the parameters continu-
ously and differentiably, so that we are dealing with a Lie group, it is most
convenient to look at infinitesimal transformations.

The transformation
xi = fi(x′, a) (E.32)

can be varied infinitesimally in two different ways:

xi + dxi = fi(x′, a+ da) = fi(x, δa).

The change da is a variation of the parameters anywhere in the group,
while δa is a variation in the vicinity of a = 0, that is, in the neighborhood
of the identity transformation. If the second way is adopted, we have

dxi =
∑
k

∂fi(x, a)
∂ak

∣∣∣∣
a=0

δak =
∑
k

uik(x)δak, (E.33)

where

uik(x)
def=

∂fi
∂ak

∣∣∣∣
a=0

i = 1, . . . , n, k = 1, . . . , p. (E.34)

At the same time, the multiplication law ci = φi(a, b), together with ai =
φi(a, 0) = φi(0, a), leads to

ai + dai = φi(a, δa),

and therefore,
dai =

∑
k

Aikδak, (E.35)
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where

Aik
def=

∂φi(a, b)
∂bk

∣∣∣∣
b=0

. (E.36)

The p×p matrix {Aik} must be nonsingular; this is because the set of equa-
tions ci = φi(a, b) defining multiplication in the group has to be uniquely
solvable for the ai in terms of the bk and the cj as well as for the bi in
terms of the ak and the cj , which requires that the Jacobian of the system
not vanish. But that Jacobian is equal to detA, so we must have

detA �= 0, (E.37)

and it is legitimate to define B as the inverse of A: B def= A−1, i.e.,∑
l

BilAlk = δik. (E.38)

Therefore Eqs. (E.35) may be inverted to read

δai =
∑
j

Bijdaj , (E.39)

so that (E.33) becomes

dxi =
∑
kl

uikBkldal,

or
∂xi
∂al

=
∑
j

uij(x)Bjl(a), (E.40)

which implies that

uij =
∑
l

∂xi
∂al
Alj . (E.41)

If the xi are thought of as functions varying with the aj , (E.40) may be
regarded as a set of partial differential equations, whose solution is given
by (E.32), with the x′i serving as initial conditions.

The question now is, how does an arbitrarily given differentiable function
F (x), which depends on the parameters ai via the xj , change when the ai
are varied near zero? The answer is

dF (x) =
∑
i

∂F

∂xi
dxi =

∑
il

∂F

∂xi
uilδal =

∑
l

δalXlF, (E.42)

where the Xl are a set of differential operators,

Xl
def=
∑
i

uil(x)
∂

∂xi
, (E.43)
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called the infinitesimal generators (or simply the generators) of the group.
There are as many of them as there are parameters: a p-parameter group
has p infinitesimal generators. With the xi regarded as functions of the aj ,
these infinitesimal generators may, according to (E.41) also be written in
the form

Xl =
∑
ij

∂xi
∂aj
Ajl

∂

∂xi
=
∑
j

Ajl(a)
∂

∂aj
. (E.44)

As a simple example, take F = xs. It then follows from (E.43) that Xlxs =
usl(x).

We next calculate the commutation relations between the infinitesimal
generators, and we find (see below)

[Xk,Xl] =
∑
r

crklXr, (E.45)

where the crkl are given as functions of the group parameters by

crkl =
∑
ij

[
Aik

∂Ajl
∂ai

−Ail
∂Ajk
∂ai

]
Brj , (E.46)

and in terms of the xi∑
i

(
uik

∂ujl
∂xi

− uil
∂ujk
∂xi

)
=
∑
s

ujsc
s
kl. (E.47)

From (E.46) and (E.47) we may draw the important conclusion that the
crkl are independent of the xi and of the group parameters; they are called
the structure constants of the Lie group. They are real numbers, even
though in some specific realization of the group, the xi may be complex.
Furthermore, the functions Bij satisfy the following equation in terms of
these constants, known as Maurer’s relation:

∂Bri
∂aj

− ∂Brj
∂ai

=
∑
lk

BliBkjcrlk. (E.48)

Proof of (E.45): We can proceed in two ways. First, use (E.44):

[Xk,Xl] =
∑
ij

[
Aik

∂

∂ai
Ajl

∂

∂aj
− Ail

∂

∂ai
Ajk

∂

∂aj

]

=
∑
ij

[
Aik

∂Ajl
∂ai

− Ail
∂Ajk
∂ai

]
∂

∂aj

=
∑
ijs

[
Aik

∂Ajl
∂ai

− Ail
∂Ajk
∂ai

]
∂xs

∂aj

∂

∂xs

=
∑
ijr

[
Aik

∂Ajl
∂ai

− Ail
∂Ajk
∂ai

]
BrjXr,
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by the use of (E.40), which proves (E.45) and (E.46).
However, we can also proceed as follows:

[Xk,Xl] =
∑
ij

(
uik

∂

∂xi
ujl

∂

∂xj
− uil

∂

∂xi
ujk

∂

∂xj

)

=
∑
ij

(
uik

∂ujl

∂xi
− uil

∂ujk

∂xi

)
∂

∂xj
,

from which (E.47) may be concluded because the right-hand side has to equal
∑
s csklXs.

�
Proof that the crkl are constants: Remember that (E.40) has (E.32) as a solution, with

the x′
i as independent integration constants. Now, (E.46) expresses the crkl in terms of

the ai alone, so since the xj are functions of the ai and the independent integration
constants x′

j , the crkl cannot depend on the xj .
Suppose now that we change the aj and the x′

i together in such a way that the xk
remain fixed. Then differentiation of (E.47) with respect to ar gives∑

s

ujs(x)
∂cslk
∂ar

= 0

for all x and all j, l, and r. This implies that for all r

∂cslk
∂ar

= 0,

because otherwise the functions ujs(x) would be linearly dependent, which by (E.33)
would imply that the number of parameters chosen is not minimal. Therefore, contrary
to the appearance of (E.46), the crkl must be independent of the group parameters as
well as of the xj . �

Proof of (E.48): From the fact that A and B are inverses of one another it follows
that

crkl =
∑
ij

[
Aik

∂Ajl
∂ai

− Ail
∂Ajk
∂ai

]
Brj

=
∑
ij

(
−AikAjl

∂Brj
∂ai

+ AilAjk
∂Brj
∂ai

)

=
∑
ij

(AilAjk − AikAjl
) ∂Brj
∂ai

=
∑
ij

AilAjk
(
∂Brj
∂ai

− ∂Bri
∂aj

)
,

which implies (E.48). �

The structure constants are obviously anti-symmetric in their lower in-
dices,

crkl = −crlk, (E.49)

and it follows from the Jacobi identity for commutators,23

[[A,B],C] + [[B,C],A] + [[C,A],B] = 0, (E.50)

23Show this as an exercise.
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that they obey the identity∑
s

(cslkc
r
sm + cskmcrsl + csmlc

r
sk) = 0. (E.51)

Sophus Lie proved that equations (E.49) and (E.51) are sufficient conditions
for a set of Aij , and hence a set of Bkl, to exist such that the differential
equations (E.40) are solvable and functions fi as in (E.32) exist that form
the group. (We shall not prove this.) It is then always possible to return
from infinitesimal transformations to the full Lie group of finite transfor-
mations.

E.3.3 The Lie algebra
We now form a p-dimensional linear vector space whose members are of the
form A =

∑
i ciXi, with real ci, and make up an algebra by defining products

of such linear combinations in terms of products of the Xi by using (E.45).
In this algebra the left-hand side of (E.45) will be interpreted as the product
of Xk and Xl rather than as the commutator. The result is called the Lie
algebra of the group. If the coefficients ci are allowed to be complex, we
obtain its complex extension.24 Note that multiplication in a Lie algebra
in general is neither commutative nor associative: [A,B] = −[B,A] and in
general

[[A,B],C] �= [A, [B,C]].

Examples: Take a one-parameter group defined by xj = fj(x′, t). Then
uj(x) = ∂fj/∂t|t=0, dt = A(t)δt, and B = 1/A, while

X =
∑
j

uj(x)
∂

∂xj
= A ∂

∂t
,

and uj = Xxj . So we have the differential equation

dxj
dt

= ujB(t) = B(t)Xxj ,

which is easily solved by

xj(t) = et
′Xxj(0), t′(t) def=

∫ t

0
dt′′ B(t′′).

In terms of the canonical parametrization t′, rather than t, we thus find that,
if xj = et

′′Xx′′j and x′′j = et
′Xx′j , then xj = e(t

′+t′′)Xx′j = e(t
′′+t′)Xx′j . So the

24Two different Lie algebras may have the same complex extension. For example, two
Lie algebras may differ by having several structure constants of opposite signs, but the
products may be made to agree by multiplying some of the generators by i.
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group is Abelian: every one-parameter Lie group is Abelian, and in terms
of its canonical parametrization it is such that R(t1)R(t2) = R(t2)R(t1) =
R(t1 + t2), which means that φ(t1, t2) = c(t1 + t2).

For a two-parameter non-Abelian group we must have

[X1,X2] = aX1 + bX2.

It is then always possible25 to form new generators

X′1 = α11X1 + α12X2, X′2 = α21X1 + α22X2,

so that
[X′1,X

′
2] = X′1.

For a three-parameter non-Abelian group there are only the following
three possibilities:

a) [X1,X2] = X1, and all others zero. This means that X3 commutes with
the others and defines an invariant subgroup.

b)
[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2,

c)
[X1,X2] = X3, [X2,X3] = −X1, [X3,X1] = −X2.

Case (b) is exemplified by SO(3), as is discussed in more detail further on.

(Note that a simple change of Xj → −Xj for all j, changes the signs of all
three commutators.) Case (c) is that of the 3-dimensional “Lorentz group,”
which leaves x2 + y2 − z2 invariant.

A Lie algebra A is called simple if it contains no ideals other than 0 and
A itself. (A subset B of A is an ideal of A if [X,Y ] ∈ B for all X ∈ A and
all Y ∈ B.) If it contains no nonzero Abelian ideals, it is called semisimple.
(A Lie algebra A is called Abelian if [X,Y ] = 0 for all X,Y ∈ A.)

E.4 Representations of Lie Groups

Just as for groups of finite order, a representation of a Lie group is a map-
ping of the group elements R on matrices R �→ D(R), but the D(R) are
now allowed to be infinite-dimensional, or equivalently, bounded operators
on a Hilbert space: the generally nonlinear transformations f are to be rep-
resented by linear operators on a finite-dimensional or infinite-dimensional
linear vector space. Since each group element is uniquely labeled by the set

25Prove this.
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of parameters a, so will be the representing invertible matrices or opera-
tors D(a), and since the multiplication law is embodied in (E.29), the same
must hold for the Ds:

D(b)D(a) = D(c), where c = φ(a, b). (E.52)

In order to ensure that as many of the results for representations of finite
groups as possible also hold for Lie groups, it is necessary that wherever
summations over group elements appear in the former, they can be replaced
without error by integrals in the parameter space. This requires the adop-
tion of integration measures or weight functions with special properties. If
you recall the proofs of Schur’s lemma or of the orthogonality theorem, the
essential steps were of the following kind, in which R = AR′:∑

R∈G
f(R) =

∑
R′∈A−1G

f(AR′) =
∑
R′∈G

f(AR′) =
∑
R∈G

f(AR),

which works because the summation is over the entire group G, and A−1G =
G for any A ∈ G. Therefore, if the sums over all group elements are to be
replaced by integrals ∫

dµ(a) . . . =
∫
dpa ρ(a) . . .

in the parameter space and these are to be invariant under left multiplica-
tion, as above, we need∫

dph ρ(h)F(H) =
∫
dpf ρ(f)F(CF ) =

∫
dph ρ(h)F(CH)

if H = CF . The resulting integral is called the Hurwitz invariant integral
and the measure is called Haar measure. The left-invariant measure turns
out to be

ρl(a) = 1/det[∂φi(b, a)/∂bj ]b=0, (E.53)

while the right-invariant measure is

ρr(a) = 1/det[∂φi(a, b)/∂bj ]b=0. (E.54)

Comparison with (E.36) shows that therefore

ρr = 1/detA, (E.55)

and it is important to note that for compact groups, the left and right-
invariant measures are equal:

ρr = ρl,
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which we shall not prove.26

Proof of (E.53): Suppose that H = BA, G = CB, and F = CBA = CH = GA, and
we denote the Jacobian by Jl; then we have

dpf = Jl(c, h)dph = Jl(c, h)Jl(b, a)dpa = Jl(g, a)dpa,

which implies that Jl(φ(b, c), a) = Jl(c, φ(a, b))Jl(b, a) and for a = 0,

Jl(g, 0) = Jl(φ(b, c), 0) = Jl(c, b)Jl(b, 0).

Therefore, since dpg = Jl(c, b)dpb, it follows that

dpg

Jl(g, 0)
=

dpb

Jl(b, 0)
.

But since g = φ(b, c) for G = CB, the Jacobian is given by Jl(b, c) = det[∂φi(c, b)/∂cj ]
and hence

Jl(b, 0) = det
[
∂φi(c, b)
∂cj

]
c=0

.

Thus the left-invariant measure is given by (E.53), and similarly, the right-invariant
measure is given by (E.54). �

Example. For the two-parameter group defined by the transformation
x′ = (1+a1)x+a2, which is not compact, we find that27 ρl = (1+a1)−2, so
that dµl(a) = da1da2/(1 + a1)2, whereas ρr = (1 + a1)−1, so that dµr(a) =
da1da2/(1 + a1). This is an example of a non-compact group for which the
left and right-invariant measures are unequal.

For compact groups, all the summations over group elements that are
used for groups of finite order can be replaced by integrals, and, if these
integrals are over continuous functions, they necessarily converge. The order
h =
∑
R∈G of the group in all the needed theorems will simply be replaced

by

h =
∫
dpa ρ(a) def=

∫
dµ(a),

which may be called the volume of the group. So Theorem E.1 holds for
finite-dimensional matrix representations of compact groups, and it follows
that if such a representation is reducible, it is fully reducible. (This state-
ment holds also for noncompact groups that are semisimple.) Lemmas E.2
and E.3, of course, hold again. Next, look at Theorem E.4: it is valid for
compact groups with the sum replaced by a Hurwitz integral. But suppose
that one of the representations is infinite-dimensional; that would imply
that

∫
dµ(a) |Dµν(a)|2 = 0, for all µ and ν, which is impossible. Therefore

we conclude—

Lemma E.10 All the irreducible representations of a compact Lie group
are finite-dimensional.

26For a proof, see, e.g., [Hamermesh], pp. 316f.
27Prove this as an exercise.
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The result of Theorem E.5 for compact groups reads∫
dµ(a)χ(i)(a)χ(j)∗(a) = δijh, (E.56)

for any two primitive characters. So, if a given representation Γ is reducible
to the direct sum Γ =

⊕
i kiΓ

(i), containing the ith irreducible represen-
tation ki times, then χ(a) =

∑
i kiχ

(i)(a), and the number of times the
representation Γ(i) is contained in Γ is given by

ki =
1
h

∫
dµ(a)χ(i)∗(a)χ(a);

as a result we have the analogue of (E.3)∫
dµ(a) |χ(a)|2 = h

∑
i

k2
i . (E.57)

The regular representation of a Lie group is defined as an integral
operator on the parameter space (thus it is an infinite-dimensional repre-
sentation):28 ∫

dµ(c)Dreg(a; b, c)f(c) = f(φ(a, b)), (E.58)

which means that Dreg(a; b, c), representing the group element R(a), can
be written in the form

Dreg(a; b, c) = δp(c− φ(a, b))/ρ(c),

where δp is the Dirac delta-function in the p-dimensional parameter space;
its character is given by

χreg(a) = hδp(a).

To show this in a mathematically nonrigorous way, consider

χreg(a) =
∫
dµ(b) Dreg(a; b, b) =

∫
dpb δp(b− φ(a, b)),

which vanishes unless a = 0. But∫
dpaχreg(a) =

∫
dpb dpa δp

[
b− φ(0, b) −

∑
i

∂φ

∂ai

∣∣∣∣∣
a=0

ai

]

=
∫
dpb/det(∂φi/∂aj)|a=0 =

∫
dµ(b) = h,

which implies that χreg(a) = hδp(a).

28Show that this is a representation.
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We therefore have
hδp(a) =

∑
i

kiχ
(i)(a),

where ki is the number of times the ith irreducible representation is con-
tained in the regular representation, which implies that29 ki = ni: just as
for finite groups, the regular representation of a compact Lie group contains
its ith irreducible representation Γ(i) as many times as the dimensionality
of Γ(i). Remember that, according to Lemma E.10, all the ni are finite.
But the delta-function cannot be expressed as a finite sum of functions
χ(i). It follows that the number of inequivalent irreducible representations
of a compact Lie group is infinite.

The Casimir operator

Define the symmetric matrix {gij} by

gij = gji
def=
∑
sr

csirc
r
js (E.59)

in terms of the structure constants of a given Lie algebra, and its inverse
{gik}, ∑

m

gimgmj = δij . (E.60)

(It is a theorem by Cartan that this inverse exists if and only if the algebra
is semisimple.) The Casimir operator of the Lie algebra is defined by

C
def= −

∑
rs

grsXrXs; (E.61)

it has the important property that it commutes with all the infinitesimal
generators:

CXi = XiC, i = 1, . . . , p. (E.62)

Equation (E.62) is proved by calculating

XiC− CXi =
∑
rs

grs[XrXs,Xi]

=
∑
rsl

(grsclsiXrXl + grsclriXlXs) =
∑
rsl

grsclsi(XrXl + XlXr)

=
∑
rslm

grsglmcsim(XrXl + XlXr) =
∑
rslm

(grsglm + glsgrm)csimXlXr,

29Show this.
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where
csir = −cisr

def=
∑
l

clsiglr =
∑
lmn

clsic
n
lmcmrn,

and these constants are totally anti-symmetric in all their indices.30 It therefore follows
that ∑

sm

(grsglm + glsgrm)csim = 0,

and hence (E.62). �

Now take a representation of the Lie algebra; this leads to a representa-
tion of C, and the matrix representing C commutes with all the matrices in
the group. Therefore, if the representation is irreducible, by Lemma E.2,
the matrix representing C must be a multiple of the unit matrix, i.e., it must
be simply a number, a number that can be taken to characterize the irre-
ducible representation. Therefore every irreducible representation may be
labeled by an eigenvalue of the Casimir operator. For a compact, semisimple
Lie algebra, it is always possible to choose a basis in which

grs = −δrs

(which we shall not prove); in that case we have csrl = −crls and

C =
∑
r

XrXr. (E.63)

E.4.1 Multiple valuedness
If the group manifold of a Lie group G is not simply connected, there is
the possibility that some representations of a Lie group are multi-valued
functions of the parameters,31 and there is no way to simply disconnect or
disregard the redundant region of the parameters. The universal covering
group G′ of G is a group that is mapped homomorphically on G and whose
manifold is simply connected, so that all its irreducible representations are
single valued functions of the parameters.

For example, take the group G defined by the functions R(ϕ) = eiκϕ, κ
not an integer, for which R(ϕ1)R(ϕ2) = R(ϕ1 + ϕ2), and whose manifold
is the unit circle (which is doubly connected). The parameter ϕ cannot
be restricted to 0 < ϕ < 2π/κ without violating the continuity of the
multiplication law ϕ3 = ϕ1 + ϕ2; hence there is no way of avoiding the
multi-valuedness of functions on the group manifold, and as a result there
are multi-valued representations of the group. The group G′ formed by
the points a, with −∞ < a < ∞, and the multiplication law defined by
addition, R′(a)R′(b) = R′(c) if c = a+ b,32 is the universal covering group

30Prove this, using (E.51).
31Why is this impossible if the group manifold is simply connected?
32What is the unit element of this group?
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of G; the mapping from G to G′ via R′(a) = R(a) is a homomorphism, but
the irreducible representations of G′ are single valued.

E.4.2 The group O(2)
The rotation groups in n dimensions are formed by those transformations
x′i =

∑n
j=1Rjixj , i = 1, . . . , n, on n-dimensional Euclidian space that

leave the length invariant:
∑
i x

2
i =
∑
i x

′2
i . It may also be defined as the

group of real orthogonal n×n matrices.33 We distinguish between the pure
rotation group, which consists of those matrices M with detM = +1, and
the rotation-reflection group, for which detM = ±1.34 We now consider
the specific case of two dimensions.

The elements of the pure rotation group may be taken to be the 2 × 2
matrices

R(ϕ) =
(

cosϕ − sinϕ
sinϕ cosϕ

)
, (E.64)

in the sense that if the coordinate system is rotated counter-clockwise by
ϕ, the coordinates of a point are changed from (x, y) to (x′, y′), where

x′ = x cosϕ+ y sinϕ, y′ = −x sinϕ+ y cosϕ, (E.65)

i.e.,
(x′, y′) = (x, y)R(ϕ).

The matrices (E.64), of course, form their own two-dimensional represen-
tation D(ϕ). You find easily35 that

R(ϕ)R(ϕ′) = R(ϕ+ ϕ′) = R(ϕ′)R(ϕ),

which implies that the group is Abelian. Therefore its irreducible represen-
tations are all one-dimensional. Indeed, the matrix

S =
1√
2

(
1 i
1 −i

)
diagonalizes all the matrices in the representation,

D′(ϕ) = SD(ϕ)S−1 =
(
eiϕ 0
0 e−iϕ

)
,

33Do not confuse the dimensionality of a representation of this group with the dimen-
sionality of the defining matrices; the latter, of course, form a representation, but there
are infinitely many others.

34Do the matrices with detM = −1 form a subgroup?
35Do it.
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which means it has been reduced to the direct sum of the two one-dimensional
representations D(1)(ϕ) = eiϕ and D(−1)(ϕ) = e−iϕ.

The functions ui are given by u1 = y and u2 = −x, so that the generator,
in its two forms, is given by

X = y
∂

∂x
− x ∂

∂y
=

∂

∂ϕ
. (E.66)

Since the multiplication law is given by

ϕ3 = φ(ϕ1, ϕ2) = ϕ1 + ϕ2,

we find that the Haar measure is dµ(ϕ) = dϕ, the Hurwitz invariant integral
is simply

∫ 2π
0 dϕ . . ., and the “volume” of the group is h =

∫ 2π
0 dϕ = 2π.

Now, all functions of the form eimϕ are representations of the group, but
unlessm is chosen to be 0 or a positive or negative integer, these representa-
tions are multi-valued. (The existence of such multi-valued representations
was to be expected, since the group manifold if not simply connected.)
If we wish to restrict ourselves to single-valued ones, we have to choose
m = 0,±1,±2, . . . ,

D(m)(ϕ) = eimϕ.

We then have, as is required by the orthogonality theorem E.4,∫ 2π

0
dϕD(m)∗(ϕ)D(m′)(ϕ) = 2πδmm′ ,

and if there are any other irreducible representations, they have to be or-
thogonal to all of these, by Theorem E.4. The Fourier theorem, however,
tells us that there are no such (square-integrable) functions. Therefore,
these are all the single-valued irreducible representations of the pure rota-
tion group in two dimensions. From a physics point of view, it will become
clear that we are interested also in the double-valued representations, and
for these m can take on half-integral values as well. The coordinates on
which the diagonalized matrices D′(ϕ) act are given by

(x, y)S−1 =
1√
2
(x− iy, x+ iy) def= (X,Y ),

so that the rotations are X ′ = eiϕX, Y ′ = e−iϕY .
Consider now the rotation-reflection group in two dimensions; the reflec-

tions here are on a line, not through the center. (The latter are equivalent
to a rotation by 180o in two dimensions.) This is a mixed continuous group,
with elements R+(ϕ) of determinant +1 and elements R−(ϕ) of determi-
nant −1. This means we add the matrices

R−(ϕ) =
(
− cosϕ sinϕ
sinϕ cosϕ

)
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to the previously defined

R+(ϕ) =
(

cosϕ − sinϕ
sinϕ cosϕ

)
,

and the canonical transformation by S turns the matrices R− into

D′(ϕ,−) = SD(ϕ,−)S−1 =
(

0 e−iϕ

eiϕ 0

)
.

This group is not Abelian, and the defining representation is not reducible.
There are two one-dimensional representations, the trivial representation
D(0)(ϕ,+) = D(0)(ϕ,−) = 1, and

D(00)(ϕ,+) = 1, D(00)(ϕ,−) = −1,

and the two-dimensional representations36

D(m)(ϕ,+) =
(
eimϕ 0

0 e−imϕ

)
,

D(m)(ϕ,−) =
(

0 e−imϕ

eimϕ 0

)
,

with m = 0,±1,±2, . . .. The rotations with reflections are all in one class;37

that is why they all have the same character χ(m)(ϕ,−) = 0.
Figure E.2 shows four examples of three-dimensional objects that have

the symmetry of the two-dimensional rotation group, some with, some with-
out reflections. Cases (a) and (c) have irreducible representations of one and
two dimensions, while the irreducible representations of cases (b) and (d)
are all one-dimensional.

E.4.3 The group SO(3)
The three-dimensional proper rotation group is formed by the group of real,
orthogonal, unimodular matrices T . As discussed in Section 5.2, it can be
parametrized by an angle of rotation 0 ≤ ψ ≤ π and two polar angles θ
and ϕ that specify the orientation of the axis of rotation, as in (5.30).

The Haar measure for the group, in terms of the three angles ψ, θ, and
ϕ, is given by 2(1 − cosψ) sin θ dψdθdϕ, so that the Hurwitz integral is of
the form

2
∫ π

0
dψ(1− cosψ)

∫ 2π

0
dϕ

∫ π

0
dθ sin θ . . . , (E.67)

and the “volume” of the group is h = 8π2.

36Prove that these are irreducible.
37Prove this.
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(a) (b)

(c) (d)

FIGURE E.2. Four three-dimensional objects with rotational symmetry about the
z-axis: (a) two-dimensional rotation-reflection symmetry, plus reflections through
the center; (b) two-dimensional rotation symmetry, plus reflections through the
center; (c) two-dimensional rotation-reflection symmetry; (d) two-dimensional
rotation symmetry only. Only object (d) has a screw sense.

To calculate the Haar measure, we begin by using the three components a1, a2, a3,
of the vector �a defined in (5.30) as group parameters. We then have to compare the
changes dai starting from arbitrary ai to the changes δai starting from zero. The matrix
for an infinitesimal rotation is given by

Tε =

 1 −δa3 δa2
δa3 1 δa1

−δa2 δa1 1


and an arbitrary rotation T augmented by a small increment is T ′ = TεT . We may
choose the coordinate system so that T is of the form

T (3) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ,

in which case we find that

T ′ = T +

 −δa3 sinψ −δa3 cosψ δa2
δa3 cosψ −δa3 sinψ −δa1

−δa2 cosψ + δa1 sinψ δa2 sinψ + δa1 cosψ 0

 .
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The new rotation angle is obtained by taking the trace:

1 + 2 cosψ′ = 1 + 2 cosψ + 2δa3 sinψ,

from which we conclude that cosψ′ = cos(ψ − δa3), or ψ′ = ψ − δa3. The triple ratio

a1 : a2 : a3 = (T32 − T23) : (T13 − T31) : (T21 − T12)

for the components of �a leads to

a′
1 = da1 = c[δa2 sinψ + δa1(1 + cosψ)],

a′
2 = da2 = c[−δa1 sinψ + δa2(1 + cosψ)],

a′
3 = a3 + da3 = c[2δa3 cosψ + 2 sinψ].

To find c, calculate (always keeping only linear terms in δa)

ψ′2 =
∑
i

a′2
i = c2[4 sin2 ψ + 8δa3 sinψ cosψ],

and from this,
ψ′ = ψ + δa3 = 2c sinψ(1 + δa3 cotψ),

so that

c =
ψ + δa3(1 − ψ cotψ)

2 sinψ
;

therefore, if we define dai =
∑
j Aijδaj as in (E.35), we find that

A =

 ψ 1+cosψ
2 sinψ

1
2ψ 0

− 1
2ψ ψ 1+cosψ

2 sinψ 0
0 0 1

 ,

whose determinant is given by

det A =
ψ2

2(1 − cosψ)
.

The weight function in the Haar measure is therefore

ρ =
2(1 − cosψ)

ψ2

and the measure is found to be dµ = da1da2da3 2(1 − cosψ)/ψ2. Finally, the Jacobian
for expressing the measure in terms of the angles ψ, θ, ϕ, is nothing but the familiar
expression for the volume element in spherical polar coordinates, with ψ in place of r,∣∣∣∣∂(a1, a2, a3)

∂(ψ, θ, ϕ)

∣∣∣∣ = ψ2 sin θ,

and as a result we obtain (E.67).

As discussed in Section 5.2, the Cayley-Klein parameters define a ho-
momorphism between SO(3), whose manifold is doubly connected, and its
universal covering group SU(2) of unitary, unimodular 2 × 2 matrices S,
given by (5.37) and (5.38) in terms of the Euler angles of the rotation.

To find the irreducible representations of the rotation group, we analyze
the solutions of the Laplace equation (i.e., the free Schrödinger equation at
zero energy)

∇2f(x, y, z) = 0, (E.68)
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which is invariant under rotations. Every solution of (E.68) that is a ho-
mogeneous polynomial of x, y, and z of order l can be expressed in the
form

f = rl
l∑

m=−l
a(l)
m Y

m
l (θ, ϕ)

if (E.68) is separated in spherical polar coordinates as in (4.8), where the
Y ml are the spherical harmonics. If the coordinate system is rotated by
Rα,β,γ (in terms of the Euler angles α, β, γ, so that θ, ϕ �→ θ′, ϕ′, the
homogeneous polynomial solutions of (E.68) of order l transform among
themselves, and we must have

rlY ml (θ′, ϕ′) = Oα,β,γr
lY ml (θ, ϕ) =

∑
m′
D(l)
m′m(α, β, γ)rlY m

′
l (θ, ϕ),

if Oα,β,γ denotes the rotation operator. It follows that the matrices
Dlmm′(α, β, γ) form a (2l + 1)-dimensional representation of the rotation
group.38 [The same conclusion can be drawn from the fact that, accord-
ing to (4.16), the Y ml for a given l are eigenfunctions of the rotationally
invariant operator �L2 with the eigenvalue l(l + 1)�2.]

Now, because the Euler angle α is a rotation of the z-axis and Y ml (θ, ϕ)
has the form given in (D.26), we have39

Oα,0,0Y
m
l (θ, ϕ) = e−imαY ml (θ, ϕ),

and hence

D(l)
mm′(α, 0, 0) = e−imαδmm′ ;

similarly,

D(l)
mm′(0, 0, γ) = e−imγδmm′ .

We can therefore conclude that Dlmm′ must have the form

D(l)
mm′(α, β, γ) = e−imγdlmm′(β)e−im

′α. (E.69)

These representations are irreducible.

38The functions D(l)
mm′ (α, β, γ) are also the eigenfunctions of the Schrödinger equation

for a symmetrical top, in which case m� and m′
� are the eigenvalues of the angular-

momentum projections on the body and space-fixed axes, respectively.
39Where does the minus sign in e−imα come from?
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We prove that the representation (E.69) is irreducible by showing that the only matrix
M that commutes with all of the matrices {D(l)

m′m(α, β, γ)} for a fixed given value of l
is a multiple of the unit matrix.

If M commutes with the matrix {Dl
m′,m(α, 0, 0)} for all α, it must be diagonal.

Furthermore,

Yml (−β, 0) = P0,β,0Y
m
l (0, 0) =

∑
m′

dlm′m(β)Ym
′

l (0, 0) = il
√

2l + 1
4π

dl0m(β),

according to (D.26). Since the left-hand side of this equation does not identically vanish,
dl0m(β) �≡ 0. Therefore, for general values of β, 0 = [M,d]0m = M00d0m − d0mMmm,

and hence M00 = Mmm, and M is a multiple of the unit matrix. �

The (2l+1)-dimensional matrices {dlmm′(β)} can be calculated from the
fact that

Y ml (θ − β, 0) =
∑
m′

dlm′m(β)Y m
′

l (θ, 0),

with the result that for m′ > m

dlmm′(β) =

√
((l +m′)!(l −m′)!
(l +m)!(l −m)!

(cos
1
2
β)m+m′

× (sin
1
2
β)m

′−mP (m′−m,m′+m)
l−m′ (cosβ) (E.70)

= (−1)m
′−mdlm′m(β),

where the P (a,b)
n are Jacobi polynomials,40 special cases of which are the

Legendre polynomials, Pn = P
(0,0)
n .

The next question is, what are the primitive characters of SO(3)? Since
we saw that all the elements of the group with the same total rotation angle
belong to the same class, and the character χ(ψ) is a class function, we can
take any convenient way of performing the rotation by ψ; take the Euler
angles (α, β, γ) = (ψ, 0, 0): D(l)

mm′(ψ, 0, 0) = e−imψδmm′ . This leads to the
result

χ(l)(ψ) =
l∑

m=−l
e−imψ = 1 + 2 cosψ + 2 cos 2ψ + . . . 2 cos lψ

= sin[(l +
1
2
)ψ]/ sin

1
2
ψ. (E.71)

Are these representations of SO(3) we have constructed all the irreducible
representations of the group? The answer is a qualified yes. If there were

40See [Erdélyi], vol. II, p. 168.
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any others, their characters would have to be orthogonal to all the primitive
characters χ(l) in the sense of the Hurwitz integral (see Theorem E.5), and
therefore orthogonal to all χ(l) − χ(l−1):∫ π

0
dψ (1− cosψ) cos(lψ)χ(ψ) = 0, for all l.

By the Fourier theorem it then follows that χ(ψ) = 0. Therefore, the
{D(l)

m′m} are all the single-valued irreducible representations of SO(3).
However, as we have seen, there is a homomorphism between SO(3) and

SU(2), so that the representations of the rotation group form unfaithful
representations of SU(2), in which the matrices representing S and −S
are equal; in addition, there are irreducible representations of SU(2) that
form double-valued “representations” of SO(3). Let Γ be an irreducible
representation of SU(2). Since the 2×2 matrix −11 [which belongs to SU(2)]
commutes with all the elements of the group, so must D(−11) with all
the matrices; consequently D(−11) must be a multiple of the unit matrix.
Because furthermore D2(−11) = D(11), it follows that

D(−11) = ±D(11);

and the representations of SU(2) can be divided into odd and even ones.
For general S we have

D(−S) = D(−11)D(S) = ±D(S).

So the even irreducible representations of SU(2) are the irreducible repre-
sentations of SO(3); the others are not really representations of SO(3) but
may be dubbed quasi-representations, for whichD(R1)D(R2) = ±D(R1R2),
and the sign cannot be fixed. The matrices S themselves, of course, form
an odd representation of SU(2) and hence a quasi-representation of SO(3).

The irreducible representations of SU(2) are found similarly as those of SO(3). The
transformation

u′ = au− b∗v, v′ = bu+ a∗v, |a|2 + |b|2 = 1,

transforms the homogeneous polynomials of degree 2j in the two variables u and v, that
is, linear combinations of the 2j + 1 products u2j , u2j−1v, . . . v2j , among themselves.
Define

ξm =
uj+mvj−m√

(j +m)!(j −m)!
, m = −j, . . . , j.

Then, using the complex numbers a and b as the group parameters (which, because
|a|2 + |b|2 = 1, means three real parameters), one finds

Ra,bξm(u, v) = ξm(u′, v′) =
∑
m′

D(j)
m′m(a, b)ξm′ (u, v)

=
(au− b∗v)j+m(bu+ a∗v)j−m√

(j +m)!(j −m)!

=
∑
µν

√
(j +m)!(j −m)!

(j +m− µ)!µ!(j −m− ν)!ν!
aj+m−µa∗ν(−b∗)µbj−m−νu2j−µ−νvµ+ν ,
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from which one obtains the representation matrices

D(j)
m′m(a, b) = aj+ma∗j−m′

bm
′−m∑

µ

cj
µmm′

(
− |b|2

|a|2
)µ

, (E.72)

cj
µmm′

def=
[(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

(j +m− µ)!µ!(j −m′ − µ)!(m′ −m+ µ)!
.

To express these matrices in terms of the Euler angles, use (5.37), with
the result that again Djm′m(α, β, γ) = e−i(mα+m′γ)djm′m(β) and

djm′m(β) = (cos
1
2
β)2j(cot

1
2
β)m−m

′∑
µ

cjµmm′(−1)µ(tan
1
2
β)2µ, (E.73)

which shows that if j is an integer, the representation is even, and if j is
a half-integer, the representation is odd. The proofs that these representa-
tions are irreducible and that there are no other irreducible representations
of SU(2) are the same as those for SO(3).41

The infinitesimal generators In order to obtain the generators of
SO(3) it is simplest to take advantage of the fact that the rotations about
the z-axis form a subgroup of SO(3), and we found in (E.66) that the
generator of this two-dimensional rotation group is X3 = x2

∂
∂x1
− x1

∂
∂x2

.
Similarly, the rotations about the other two axes are, separately, subgroups
and their generators are formed in an analogous way. Therefore we may
conclude that the three generators of SO(3) are given by

Xi = −
3∑

j,k=1

εijkxj
∂

∂xk
, (E.74)

where εijk = 1 for i, j, k = 1, 2, 3 and εijk is totally anti-symmetric in all
its indices, that is,

X1 = x3
∂

∂x2
− x2

∂

∂x3

and its cyclic permutations. It is then an easy calculation to obtain the
commutation relations

[X1,X2] = X3, [X3,X1] = X2, [X2,X3] = X1. (E.75)

This implies that the structure constants defined by (E.45) are c312 = c231 =
c123 = 1, and the Casimir operator, as defined by (E.61), is given by

C = −2
∑
l

X2
l . (E.76)

41The proof that these representations are unitary is left as an exercise.
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Clebsch-Gordan coefficients

Let Ψ(j1,m1) and Ψ(j2,m2) be vectors in the carrier spaces of irreducible
representations of SO(3) of dimensions 2j1 + 1 and 2j2 + 1, respectively, in
other words, eigenvectors of two independent angular momenta �J(1)2, �J(2)2,
and J(1)

z , J(2)
z , respectively. We now want to construct the Clebsch-Gordan

coefficients, connecting the eigenstates of the total angular momentum �J =
�J(1) +�J(2) to the Kronecker product of those of the two individual angular
momenta, in the same notation as in (5.64),

Ψ(j,m) =
∑

m1+m2=m

〈j,m|j1,m1; j2,m2〉∗Ψ(j1, j2;m1,m2),

where Ψ(j1, j2;m1,m2)
def= Ψ(j1,m1)⊗Ψ(j2,m2). In order to do that, define

�J = �( �J1 + �J2) and j(i)± as in (5.7), and utilize (5.11) and (5.12). As we saw
in Chapter 5, when m = j, then j+Ψ(j, j) = 0, so that, if

Ψ(j, j) =
∑
m

amΨ(j1,m)⊗Ψ(j2, j −m),

where am = 〈j, j|j1,m; j2, j −m〉, we must have

0 = (j(1)+ + j(2)+ )Ψ(j, j)

=
∑
m

am[
√

(j1 −m)(j1 +m+ 1)Ψ(j1,m+ 1)⊗Ψ(j2, j −m)

+
√

(j2 − j +m)(j2 + j −m+ 1)Ψ(j1,m)⊗Ψ(j2, j −m+ 1)]

=
∑
m

[
√

(j1 −m)(j1 +m+ 1)am

+
√

(j2 − j +m+ 1)(j2 + j −m)am+1]Ψ(j2,m+ 1)⊗Ψ(j2, j −m),

which implies that

am+1 = −

√
(j1 −m)(j1 +m+ 1)

j2 − j +m+ 1)(j2 + j −m)
am. (E.77)

This determines all the am in terms of he lowest, a−j1 , and the latter can
then be fixed (to within a phase, which is arbitrary) by normalization. In
order to construct all the other Clebsch-Gordan coefficients, apply j− to
Ψ(j, j) and use (5.12). Explicit expressions for all of them can be found in
[Wigner].

Since 〈jm|j1,m1; j2,m2〉 = (Ψ(j,m),Ψ(j1,m1)⊗Ψ(j2,m2)) and all these
angular-momentum eigenstates are orthonormal, the Clebsch-Gordan coef-
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ficients form a unitary matrix:42∑
j,m

〈j,m|j1,m1; j2,m2〉〈j,m|j1,m′1; j2,m′2〉∗ = δm′
1m1δm′

2m2 (E.78)

as well as∑
m1,m2

〈j′,m′|j1,m1; j2,m2〉〈j,m|j1,m1; j2,m2〉∗ = δjj′δmm′ . (E.79)

The group O(3)

The group of all real orthogonal 3 × 3 matrices T includes those with
detT = −1; these are the improper rotations, which combine a proper
rotation with an inversion of the coordinate system. This group can be
regarded as the direct product of SO(3) with the Abelian group of order
two whose two elements are E and I, with I2 = E. The group O(3) therefore
has two irreducible representations, D(l)

± for each irreducible representation
D(l) of SO(3), those for which

D
(l)
+ (IR) = D

(l)
+ (R),

and those for which
D

(l)
− (IR) = −D(l)

− (R).

42Note that j1 and j2 are always fixed and never summed over.
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E.5 Problems and Exercises

1. Prove that a group whose order is a prime number must be Abelian.

2. Consider the group S3, whose multiplication table is given earlier in
section E.1. Here are three representations:

1) D(1) = 1 for all elements.

2) D(2)(E) = D(2)(D) = D(2)(F ) = 1, and D(2)(A) = D(2)(B) =
D(2)(C) = −1.

3)

D(3)(E) =
(

1 0
0 1

)
D(3)(A) =

(
1 0
0 −1

)
D(3)(B) =

1
2

(
−1

√
3√

3 1

)
D(3)(C) =

1
2

(
−1 −

√
3

−
√

3 1

)
D(3)(D) =

1
2

(
−1

√
3

−
√

3 −1

)
D(3)(F ) =

1
2

(
−1 −

√
3√

3 −1

)
Verify that these are, indeed, representations. Write down the char-
acters. Is the third representation irreducible? If not, reduce it; if it
is, are there any other irreducible representations?

3. Prove that the representations of SU(2) given in terms of (E.73) are
unitary.

4. Prove that all the irreducible representations of a group G are one-
dimensional if and only if G is Abelian.

5. Consider the tetrahedral group T, which consists of the 12 rotations
that leave a regular tretrahedron invariant: there are 3 rotations C2
by 180o, four rotations C3 by 120o and four rotations C2

3 by 240o.
Show that they form four classes and find the dimensions of all the
irreducible representations. Also construct the table of primitive char-
acters, and, finally, all the irreducible representations. (The orthogo-
nality theorems are the essential tools for this.)

6. Let A def=
∑
i ciXi and B def=

∑
i c
′
iXi be two elements of a Lie algebra

with the structure constants csij . Show that [A,B] = C with C =∑
s c
′′
sXs, where c′′s =

∑
ij cic

′
jc
s
ij .
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δ-normalized, 7
π-light, 251
σ-light, 251

Abelian group, 355
absorption, 133

of photons, 244
probability, 248

acausal, 3
accidental degeneracy, see degener-

acy, accidental
action integral, 35
action-at-a-distance, 10
adiabatic approximation, 235, 255

change, 255
Airy integral, 185
ammonia molecule, 80
angular momentum, 43, 93, 94, 161

conservation in the Dirac equa-
tion, 302

precession, 218
spectrum, 146, 148

annihilation operators, 270
anti-commutation relations, 26, 55–

56
anti-commutator, 26, 55
antilinear, 316

antilinear operator, 143
antiunitary operator, 173
antiunitary transformation, 143
anyons, 266
associated Laguerre polynomials, 114,

352
Auger effect, 259
auto-ionization, 257

back-propagator, 129
barrier penetration, 73
barycentric coordinates, 98

frame, 110
basis, 6, 317, 318
beams, 31, 69
Berry’s phase, 255
Berry, M.V., 255
Bessel’s equation, 347
Bloch functions, 82
Bohm theory, 11
Bohm, David, 10, 165
Bohr magneton, 162, 218, 222, 229,

301
Bohr radius, 206
Bohr, Niels, 112
Born approximation, 135, 242
Born series, 135, 337
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radius of convergence, 338
Bose, Satyendranath, 269
Bose-Einstein condensation, 269
Bose-Einstein statistics, 26, 268, 277
boson, 268–270, 274
boson attraction, 274
bound state, 75, 339

embedded in the continuum, 101,
259

of zero binding energy, 109
bounded operator, 320
Brillouin, L., 182

c-number, 145
canonical commutation relations, 19,

39, 53, 59, 60
canonical momenta, 37
canonical transformation, 29, 35, 63,

358
carrier space of a representation, 155,

284, 357, 358
Cartan, E., 384
Casimir operator, 155, 384

of SO(3), 394
Cauchy principal value, 311
Cauchy sequence, 318
Cayley’s theorem, 355
Cayley-Klein parameters, 153, 390
ccrs, see canonical commutation re-

lations
center-of-mass coodinates, see barycen-

tric coordinates
center-of-mass motion, 98
center-of-mass reference frame, see

barycentric frame
centrifugal barrier, 110
centrifugal potential energy, 94
channels, 261, 262

closed, 262
open, 262

character of a representation, 361
charge conjugate, 291, 294, 301
circular polarization, 62
class, 152, 356
Clebsch-Gordan

coefficients, 163, 395–396
for SO(3), 395

series, 367
coarse grain, 13, 42, 241

coherence, 16
degree of, 41

collapse of the wave function, 21
collective vibrations, 56
commutator, 11
commuting observables, 5, 33

complete set of, 5, 17
commuting operators, 330
compact Lie group, 373
compact operator, 334, 336
complete linear vector space, 318
complete set of commuting Hermi-

tian operators, 330
completeness, 6, 17
completeness relation, 130, 324
complex extension of a Lie algebra,

379
complex potential, 175
composition law, 30
Compton wavelength, 297
conduction bands, 82
configuration

representation, 30
space, 19
wave function, 43, 68

confluent hypergeometric
equation, 119
function, 351

conformal group, 374
conjugate group element, 356
connecting formulas, 184
conservation laws, 40
conservation of flux, 71, 134
conservation of probability, 134
conserved quantities, 40
constant of the motion, 146
continuity equation, 45
continuous spectrum, 18, 323
coordinate representation, 21
correct linear combinations for de-

generate perturbation the-
ory, 200–204

correlation, 2, 3, 10
Coulomb barrier, 120
Coulomb gauge, 59
Coulomb potential, 112
creation operators, 270
cross section, 111
crossing of energy levels, 198–199
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current density, 45
current operator four-vector, 302
cyclotron frequency, 220, 223
cyclotron radius, 219

d-wave, 95
deflection function, 193
degeneracy, 6, 12, 68, 78, 91, 95, 116,

323
accidental, 204, 371
normal, 175, 371

delta function, 311
three-dimensional, 313

dense set of vectors, 318
density matrix, 21, 160
density of final states, 238, 242

for photons, 250
density of particles, 271
density operator, 13, 15, 41, 160
diagonal, 29
diagonalize, 30, 329
differential operator, 22
differential scattering cross section,

104
dimension of a vector space, 317
dipole approximation, 247, 250
dipole transition, 248
Dirac equation, 293, 298, 301
Dirac notation, viii
Dirac picture, 236
Dirac, P.A.M., 112
direct product, 366

of groups, 356
direct sum, 317
discrete spectrum, 323
dispersion, 5, 11, 48
dispersion-free, 11
distribution, 311
disturbance, 4, 8, 9
domain of an operator, 319, 321
double-valued representations

of O(2), 387
of SO(3), 393

dynamical variables, 3, 19

Ehrenfest’s theorem, 44
eigenspace, 323, 330
eigenstate, 4, 330
eigenvalue, 4, 323

embedded in the continuum, 323
eigenvector, 323
Einstein A coefficient, 251
Einstein B coefficient, 248
Einstein, Albert, 269
electric charge density, 302
electric current density, 302
electric dipole moment, 208, 248

effective, 223
induced, 208

electric dipole radiation, 251
electric field, 206
electrical conduction, 82
electromagnetic field, 156, 244, 274,

280, 296, 299
angular momentum, 61
momentum, 61
spin operator, 61

electromagnetic radiation, 244
emission of photons, 244
energy, 40, 46

not conserved, 235
positive, 296

energy bands, 81
energy density, 58
energy splitting, 79
energy-momentum relation,

relativistic, 296
ensemble, 14
entanglement, 2, 8, 10, 165
EPR, 8
equations of motion, 34–36
equivalent representations, 358
essential spectrum, 323
Euler angles, 153, 391, 394
Euler’s theorem, 143, 151
Euler-Lagrange equations, 37
even representations of SU(2), 393
exchange degeneracy, 267
exchange energy, 275
exchange reaction, 259
exclusion principle, 27, 268
expectation value, 5, 11, 320

relativistic, 285
expected value, see expectation value
exponential decay law, 240–241

factorizing an operator, 150
faithful representations, 357
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Fermi surface, 269
Fermi’s golden rule, 239
Fermi-Dirac statistics, 268, 277
fermion, 268–270, 274
Feynman, Richard, 112, 302
Feynman-Hellmann formula, see Hellmann-

Feynman formula
field operator, 23
field quanta, 55
fine structure, 225, 280, 307
fine-structure constant, 206
first Fredholm minor, 335
Floquet’s theorem, 82
flux, 71

density, 69
ratio, 104

Fock space, 270, 271
Fock, V., 270
forbidden transitions, 171, 172, 249
Fredholm

alternative, 136, 334
determinant, 135, 335

modified, 336
equation

of the first kind, 333
of the second kind, 333

method, 135, 334
Frobenius ansatz, 113, 115, 305, 342,

348
fully reducible representation, 358

g-factor, 162, 226
effective for atom, 228

Gamow factor, 120
gauge invariance, 65
gauge transformation, 221

non-abelian, 65
of the first kind, 63, 64
of the second kind, 64, 65

Gaunt coefficients, 163
Gaussian integral, 49
Gaussian wave packets, 87
generating function

for associated Laguerre polyno-
mials, 352

for Hermite polynomials, 348
for Laguerre polynomials, 351
for Legendre polynomials, 342

generator, 35, 39, 43, 144

of a Lie group, 377
of rotations, 143, 151, 155, 159,

281
of SO(3), 394
of translations, 20, 52

geometric phase, 255
geometrical optics, 181, 194
GL(n), 373
golden rule, 239
good quantum number, 146
Gordon, W., 280
graviton, 170
Green’s function

complete, 128–136
free, 127, 128

ground state, 101
group of rigid motions, 374
group velocity, 50
gyromagnetic ratio, 162, 218, 301

Haar measure, 153, 381
for O(2), 387
for SO(3), 388

half-bound state, 109
half-integer representation, 364
half-life, 240
Hamilton’s characteristic function, 182
Hamilton’s principal function, 182
Hamilton’s principle, 36
Hamilton-Jacobi equation, 182
Hamiltonian, 39, 44, 52, 280, 293,

295, 297
effective, 263
in Fock space, 273
of the field, 53
of the helium atom, 210
relativistic, 205

Hamiltonian equations of motion, 37,
39

Hamiltonian flow, 42, 241
harmonic oscillator, 54, 60, 82, 148

in two dimensions, 219
wave functions, 83

Heaviside function, 312
Heisenberg picture, 33, 40, 42
Heisenberg’s equation of motion, 39
Heisenberg’s uncertainty relation, 12
helicity, 62, 294, 296
helium atom, 259
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Hellmann-Feynman formula, 101, 206
Helmholtz equation, 92
Hermite polynomials, 83, 220, 221
Hermitian, 320

adjoint, 320
conjugate, 320
operator, 3, 323

hidden variables, 11
high energy, 135, 181
Hilbert space, 1, 318

rigged, 326
separable, 318

Hilbert-Schmidt class, 336, 337
hole theory, 301
homomorphic, 355
Hurwitz integral, 153, 381
hydrogen atom, 112

Dirac equation, 305
hydrogen spectrum, 21cm line, 232
hyperfine structure, 231–232
hypergeometric equation, 118

series, 350

idempotent, 320
ignored outcome, 14
improper rotations, 396
incoherent, 164
indistinguishable, 26, 27, 265
inelastic scattering, 104, 133, 243,

257, 258
infinitesimal generators, see genera-

tor
infinitesimal transformations, 375
infinitesimal variations, 34
initial condition, 70
initial-value problem, 47
inner product, 316
integrable functions, 319
integral kernel, 330
integral operator, 18
interaction picture, 236
interference, 9, 10
intermediate state, 244
invariant subgroup, 356
invariant subspace, 358
inverse of an operator, 321
inversion on spheres, 374
irreducible representation, 358
isolated state, 2

isometric, 328
isomorphic, 355

Jacobi identity, 378
Jacobi polynomials, 392
Jeffreys, J., 182
Jost solution, 123

kernel of an operator, 322
kinetic-energy operator, 67
Klein, O., 280
Klein-Gordon equation, 280
Kramers’s theorem, 176
Kramers, H.A., 182
Kronecker symbol, 317
Kush, Polykarp, 232

l-degeneracy, 113, 116–117, 306
laboratory frame, 110
Lagrange’s theorem, 355
Lagrangian, 35, 44, 279
Lagrangian density, 52, 53, 280, 293
Lagrangian equations of motion, 37,

52, 53
Laguerre polynomials, 207
Lamb shift, 226, 307
Landé g-factor, 169
Laplace’s equation, 352
Laplace-Runge-Lenz vector, 116
large components of a relativistic spinor,

299, 303
Larmor frequency, 218
Legendre polynomials, 342
Legendre transformation, 37
Legendre’s differential equation, 341
Levinson’s theorem, 110
Lie algebra, 155
Lie, Sophus, 379
lifetime, 108, 241, 253, 264
line breadth, natural, 253
linear group, 373
linear operator, 319
linear vector space, 315

real, 315
linearly independent, 317
linebreadth, 252
Lippmann-Schwinger equation, 129,

134, 338
homogeneous, 136
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local wave number, 183
local wavelength, 183
logarithmic derivative, 75
Lorentz four-vector, 288
Lorentz group, 286
Lorentz transformation, 281, 286–288,

292, 301
low energies, 106
lowering operator, 85, 90
LS coupling scheme, 169

m-degeneracy, 148
magnetic field, 218, 226
magnetic moment, 162

anomalous of the electron, 232
effective, 218, 228
induced, 229
intrinsic, 162
of a nucleus, 229
of an atom, 169
of the neutron, 162
of the proton, 162, 229

magnetic quantum number, 162
Marchenko equation, 122, 125
matrix element, 319
Maurer’s relation, 377
Maxwell equations, 58, 65, 302
mean-square deviation, 5
measurement, 3, 27, 41
mechanical momentum, 64
minimal coupling, 65
minimal wave packet, 85
mixed state, 15, 160
mixing, degree of, 16
momentum operator, 20
momentum representation, 30, 68
momentum space, 22
momentum spectrum

discretized, 23
momentum transfer, 135
momentum-space wave function, 43
motion reversal, 172
multiplication law for Lie groups, 373
multiply connected group manifold,

385

Neumann series, 135, 337
nodal surfaces, 100
nodes, 77, 78

Noether’s theorem, 40, 146
nonlocal potential, 137, 140, 174
nonrelativistic limit of the Dirac equa-

tion, 301
norm

of a vector, 316
of an operator, 320

normal degeneracy, 371
normal divisor, 356
normal subgroup, 356
normalized, 316
nuclear magneton, 162, 229
nullspace, 322
number operator, 25, 27

O(2), 374, 386
O(3), 374, 396
O(4), 117, 281
O(5), 281
O(n), 282, 373
occupation-number representation, 26,

269, 270
odd representations of SU(2), 393
one-particle state, 271
optical theorem, 106, 132

generalized, 106, 125, 134
orbiting, 108, 260
order of a group, 355
orthogonal, 6, 316
orthogonal complement, 317
orthogonal group, 373
orthonormal basis, 27, 317

quasi-basis, 7
outgoing waves, 71
outgoing-wave boundary condition,

127, 128

p-wave, 95
parabolic coordinates, 114–116, 119
parity transformation, 68
Parseval’s equality, 317, 324, 326, 328
partial-wave expansion, 105
particle-wave duality, 2
particles from quantum field, 55
Paschen-Back effect, 226
path integrals, 33
Pauli exclusion principle, 56, 268, 270,

301
Pauli matrices, 150, 157
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Pauli term, 223, 280
Pauli, Wolfgang, 222
periodic potentials, 82
phase information, 2
phase shift, 103

in the WKB approximation, 191
variational calculation, 213

phase velocity, 50
phonons, 56, 57
photons, 62, 156, 166
Planck distribution, 252, 277
Planck’s formula, 251
plane polarization, 62, 161
point spectrum, 209, 323
Poisson brackets, 39
polarization

degree of, 160
of radiation, 246

polarization vector, 160
positive definite, 320

semi-definite, 320
positrons, 301
predissociation, 259
primitive character, 361
principal quantum number, 113
principal value, 311
principle of stationary action, 36
probabilistic predictions, 3
probabilistic theories, 4, 241
probabilities, 6

addition of, 10
probability amplitude, 7
probability conservation, 45
probability density, 7, 22, 45, 48
probability-current density, 21

four-vector, 298
probability-density amplitude, 21, 23
projection operator, 13, 320
projection postulate, 4
propagator, 42, 96, 128

retarded, 42, 127
pure rotation group, 386

QED, see quantum electrodynamics
quantum electrodynamics, 112, 114,

162, 223, 226, 302, 307
quantum field, 5, 27, 162, 245
quasi-basis, 33, 330
quasi-eigenfunction, 325

quasi-eigenvalue, 4, 323
quasi-eigenvectors, 4, 29
quasi-vector, 326

radial equation, 99
radial Hamiltonian, 101
radial quantum number, 113
radiation condition, 103
radiation field, 62
radiation gauge, 59, 244
radiationless transition, 259
radioactive decay, 3, 15
raising operator, 90
Ramsauer-Townsend effect, 106
range of an operator, 319
ray in Hilbert space, 2, 6
Rayleigh-Jeans law, 252
reciprocity, 132, 240
reduced mass, 99, 112
reduced matrix element, 172
reducible representation, 358
reflection coefficient, 71, 77
reflection operator, 281–283
reflections, 68, 159
regular representation, 362

of a Lie group, 383
regular solution of the Schrödinger

equation, 95, 122
relative coordinates, 98
relative motion, 98
relativistic field equation, 279
relativistic Schrödinger equation, 280
representations of groups

double-valued, 154, 158
even, 154
integer, 364
irreducible, 154, 204
odd, 154
of type 1, 364
of type 2, 364
of type 3, 365

representations of vectors, 16, 27
repulsion of energy levels, 199
resolution of the identity, 324, 328
resolvent operator, 195
resonance, 73, 107, 108, 110, 260, 264

Breit-Wigner curve, 107
zero-energy, 109

resonance scattering, 257
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resonance shape, 260
reversibility, 240
Riccati-Bessel function, 95, 100, 347
Riccati-Hankel function, 347
Riccati-Neumann function, 102, 347
Riemann-Lebesgue lemma, 50
rigid translation, 43
Rodrigues’s formula, 344
Rollnik class, 338
root-mean-square deviation, 11
rotation, 43

active, 145
generator, 282, 283
infinitesimal, 285
invariance, 43, 105, 145
matrix, 151
of the coordinate system, 144
of the physical system, 144
operator, 281, 283, 286
passive, 145

rotation-reflection group, 386
in two dimensions, 387

Rutherford cross section, 120, 135
Rydberg, 225

S matrix, 108, 134
unitarity, 134

s-wave, 95
scalar potential, 58
scattering amplitude, 104

WKB approximation, 193
phase near resonance, 264

scattering cross sections, 242
scattering length, 106, 109
Schläfli’s integral, 343
Schrödinger equation, 41, 45, 53, 55,

70
time-independent, 46, 67

Schrödinger picture, 41, 42
Schur’s lemma, 167, 204, 359
Schwarz’s inequality, 6, 12, 316

for the operator norm, 320
Schwinger, Julian, 36, 112, 148, 302
second quantization, 53, 302
selection rule, 167, 169, 171, 239, 248,

251
self-adjoint operator, 3, 321
self-conjugate subgroup, 356
semiclassical approximation, 182

semisimple Lie algebra, 380
shadow scattering, 133
similitude group, 374
simple Lie Algebra, 380
simply reducible, 372
singlet states, 164
SL(n), 373
Slater coefficients, 163
Slater determinant, 267
slow changes, 235
small components of a relativistic spinor,

299, 303
SO(3), 151, 388
SO(n), 374
Sommerfeld quantization rule, 188
Sommerfeld, Arnold, 112
spatial translation, 43
special linear group, 373
special unitary group, 374
spectral gaps, 81
spectral intensity, 239
spectral line shape, 253
spectral projection, 328
spectral theorem, 324, 327
spectrum, 5, 6

continuous, 323, 326
of a Hermitian operator, 322

spherical Bessel function, 95, 347
spherical Hankel function, 347
spherical harmonics, 93, 94
spherical Neumann function, 347
spherical polar coordinates, 92, 99
spherical vector, 156
spin

density operator, 164
direction, 159
exchange operator, 165, 275, 288
of the photon, 61
operator, 160
precession, 223

spin-1, 156, 160
spin-1/2, 222
spin-orbit

coupling, 224
energy shift, 225

spin-statistics connection, 56, 268, 295,
296, 301

spinor, 157, 164
adjoint, 285, 287
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relativistic, 284, 286, 293
splitting of energy levels, 199
spontaneous emission of radiation,

249
spontaneous symmetry breaking, 68,

78, 96, 208
square-integrable functions, 319, 321
square-summable sequences, 319
state, 1

anti-symmetric, 56
isolated, 2
preparation of, 4
pure, 1
two-particle, 26
unstable, 260

stationary phase, 50, 71, 103, 193
statistical mechanics, 42
steady state, 75
Stern-Gerlach experiment, 162
strictly forbidden transitions, 249
structure constants

of a Lie group, 377
of SO(3), 394

Sturm-Liouville problem, 77
SU(2), 154
SU(n), 374
subgroup, 355
subspace, 317
subsystem, 2, 7, 14
sudden approximation, 235, 240, 243
summation convention, 292
superposition principle, 2, 10
superselection rules, 1
symmetric operator, 3, 321
symmetrical top, 391

tensor product, 2, 317, 318
tensors, 145

Cartesian, 170
spherical, 170–172

tetrahedral group, 397
Thomas factor, 224
threshold, 258
time delay, 51, 73, 74, 107, 260

classical, 73
time reversal, 172

invariance, 132, 173, 174
effect on degeneracy, 175–176

operator, 173

time-development operator, 39
time-translation invariance, 40
Tomonaga, Sin-Itiro, 112, 302
total momentum, 43, 52
total scattering cross section, 105
trace of an operator, 13, 329
transformation function, 30
transformations

active, 144
passive, 144

transition
energy nonconserving, 243
induced, 239
probability, 171, 238, 274

per unit time, 238, 239
virtual, 239

translation, 74
invariance, 52

transmission coefficient, 71, 77
trial functions, 210
triangle inequality, 316

for the operator norm, 320
triplet states, 164
tunneling, 73, 80, 188
turning point, 184
two-boson wave function, 272
two-particle spectrum, 258
two-slit experiment, 2, 14

U(n), 374
unfaithful representations, 357
unit vector, 316
unitary

group, 374
operator, 329
representation, 358
transformation, 28, 143

universal covering group, 154, 385
unpolarized, 160
unstable state, 108, 207, 241, 252,

260, 264

vacuum state, 25
variance, 5, 11, 48
vector potential, 58, 60, 219, 245

detectable effects, 222
virial of Clausius, 44
virial theorem, 44, 85
virtual state, 244
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virtual transition, 238, 239
volume of a Lie group, 382

wave function, 26, 45
anti-symmetric, 27, 265, 273
collapse of, 41
normalization, 103
spreading, 50, 51
symmetric, 27, 265, 273
time reversal, 174
two-particle, 27

Wenzel, G., 182
width of a state, 253
Wigner coefficients, 163

Wigner’s theorem, 143, 173
Wigner, E. P., 143
Wigner-Eckart theorem, 172
WKB approximation, 182
Wronskian, 71

Zeeman effect
intermediate, 228
strong, 226
weak-field, 227

zero-point energy, 83
Zitterbewegung, 297
zonal harmonics, 100


