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This book is dedicated to 

Professor Richard F.W. Bader 

on the occasion of his 75th birthday, 
for his invaluable contributions to the 
physical theory of chemistry. 



‘‘. . . it is in virtue of the form that the matter is some one definite 
thing, and this is the substance of the thing. What Aristotle 
means seems to be plain common sense: a ‘thing’ must be 
bounded, and the boundary constitutes its form. . . . We should not 
naturally say that it is the form that confers substantiality, but 
that is because the atomic hypothesis is ingrained in our imagina-
tion. Each atom, however, if it is a ‘thing’, is so in virtue of its 
being delimited from other atoms, and so having, in some sense, 
a ‘form’.’’ 

Bertrand Russell, A History of Western Philosophy; 
Simon and Schuster, New York (1945). 
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Foreword 

As a graduate student at McMaster University in the years 1975–81 I had the 
good fortune of knowing Richard Bader as a member of my supervisory commit-

tee. The departments of chemistry and physics shared facilities in the building 
that was then called the Senior Sciences Building and is now called the A.N. 
Bourns Building. I was a student in the department of physics, in the theoretical 
physics group, with an office not far from the offices of the Bader group. 
Richard was the first theoretical chemist I ever met. In addition to the annual 

supervisory committee meetings, we chatted occasionally in his office. Looking 
back on those years, I wonder how differently my own career might have turned 
out had I not been inspired by those conversations. And inspired I was! 
Anyone who knows Richard would agree that the single word describing him 

best is passion. Richard Bader is passionate about science. His conviction and 
enthusiasm for his own science, the theory of chemical bonding, are particularly 
infectious. Every session with him left me exhilarated and, at the same time, 
exhausted! His energy far outstripped mine. 
What inspired me most was his passion for ideas and concepts. Our conversa-

tions were not about technical matters such as basis sets or levels of electron cor-
relation. We talked about densities and probabilities in chemical systems, what 
makes a chemical bond, what is an atom in a molecule, why are atoms of a given 
element similar in different molecular environments? Fundamental questions! 
Fundamental ideas! My own efforts at the time were far off the beaten track – 
basis-set-free computational schemes, Thomas Fermi-like molecular models, the 
Hartree–Fock–Slater approximation. As a theoretical physics student with no ex-
pertise in theoretical chemistry, I relied heavily on Richard’s feedback. Any other 
quantum chemist might have discouraged these unconventional projects, but not 
Richard. He was encouraging. He called the work important. He gave me confi-
dence to pursue the unusual, ask the big questions, and, above all, seek out beau-
tiful ideas. 
Science is inherently beautiful. The most powerful ideas are also the simplest 

and the most beautiful. Early in the history of the density-functional theory of 
electronic structure, long before DFT was fashionable, Richard Bader followed 
his own path and developed some of the most beautiful ideas in chemistry. The 
boundaries of atoms in molecules are uniquely and rigorously defined by the 
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electron-density distribution. The topology of the density distribution also maps 
out all the bonds in a chemical system. Its Laplacian reveals the presence of local-
ized electron pairs. Atoms in molecules, bonds, localized electron pairs – these 
are the most fundamental notions in chemistry. Richard Bader has taught us 
that the total electronic density defines them all. 
It is a pleasure and an honor to help celebrate such a uniquely creative career. 

Thank you, Richard, for the inspiration and encouragement during my formative 
McMaster years and throughout my career. And thank you for the beautiful con-
ceptual framework you gave to the theory of chemistry. 

Dalhousie University, October 2006 Axel D. Becke 
Killam Professor of 
Computational Science, FRSC, FRS 
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Preface 

‘‘The manner in which the electron density is disposed in a 
molecule has not received the attention its importance would seem 
to merit. Unlike the energy of a molecular system which requires a 
knowledge of the second-order density matrix for its evaluation [a] 
many of the observable properties of a molecule are determined in 
whole or in part by the simple three-dimensional electron-density 
distribution. In fact, these properties provide a direct measure 
of a wide spectrum of different moments averaged directly over 
the density distribution. Thus the diamagnetic susceptibility, 
the dipole moment, the diamagnetic contribution to the nuclear 
screening constant, the electric field, and the electric field gradient 
(as obtained from nuclear quadrupole coupling constants) provide 
a measure of (aside from any angular dependencies) hri 

2i, hrii, 
hri 

�1i, hri 
�2i, and hri 

�3i, respectively. The electric field at a 
nucleus due to the electron density distribution is of particular 
interest due to the theorem derived by Hellmann [b] and 
Feynman [c]. They have demonstrated that the force acting on a 
nucleus in a molecule is determined by the electric field at that 
nucleus due to the other nuclei and to the electron-density 
distribution.’’ 

a P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959)

b J. Hellman, Einführung in die Quantenchemie (Detiche, Leipzig, Germany, 1937)

c R.P. Feynman, Phys. Rev. 56, 340 (1939)


Richard F.W. Bader and Glenys A. Jones (1963) [a] 

It has been sixteen years since the publication of Richard Bader’s classic 1990 
treatise ‘‘Atoms in Molecules: A Quantum Theory’’ [b]. The theory was founded on 
the recognition that the electron density plays a critical role in explaining and un-
derstanding the experimental observations of chemistry. Bader’s work is among 
the earliest to draw attention to the importance of the electron density in chemis-

try, as the opening quotation, predating the discovery of the Hohenberg–Kohn 
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theorem, suggests. This 1963 paper includes an early example of molecular elec-
tron density contour plots (of the ammonia molecule). 
Bader’s fundamental work in the sixties on molecular electron density distribu-

tions (Table 1) laid the foundations for the theory which was developed in the sev-
enties and eighties by his research group, which became known as the theory of 
atoms in molecules (AIM). In more recent literature this theory is often called the 
quantum theory of atoms in molecules (QTAIM) in recognition of its rigorous 
basis in quantum mechanics [2–6]. The theory relates the concepts of chemistry, 
for example chemical structure, chemical bonding, transferability of functional 
groups, and chemical reactivity, to the topology of the underlying electron-density 
distribution(s). QTAIM has, in effect, moved theoretical chemistry into real three-
dimensional space [7]. In Bader’s words: 

‘‘the charge [electron] density provides a description of the

distribution of charge throughout real space and is the bridge

between the concept of state functions in Hilbert space and the

physical model of matter in real space.’’ [2]


By defining ‘‘proper open quantum systems’’ as special bounded regions within a 
closed (whole) system, followed by the identification of these regions as ‘‘atoms in 
molecules’’, the quantum theory of atoms in molecules brought quantum me-

chanics into applicability to an atom within a molecule. When a molecular prop-
erty can be expressed in terms of a property density, the contribution of an atom to 
that molecular property can be obtained by integrating this density over the 
bounded volume of that atom in the molecule. In this way every atom in a mole-

cule or crystal is characterized by a set of physical properties, each of which corre-
sponds to a molecular property. These atomic properties, naturally, add up to 
those of the total molecular system and, for this reason, parallel and recover the 
properties of the atoms of experimental chemistry [8]. In this sense, the quantum 
theory of atoms in molecules is the quantum mechanics of atoms within mole-

cules and crystals [9–11]. 
The virial theorem, which governs the relationship between the potential and 

kinetic energies of a molecule, occupies a prominent place in molecular quantum 
mechanics. This theorem has been generalized by Bader from its global statement 
(which applies to the molecule as a whole) to a local statement defined at every 
point in space [10]. In other words, the theorem has been re-written in its most 
general form which applies at every point of space in terms of scalar functions of 
space, i.e. densities. This very important generalization, known as the ‘‘local state-
ment of the virial theorem’’, Eq. (54) in Ref. [10] and Eq. (10) in Chapter 1, is, 
perhaps, and to the best of our knowledge, the only known local relationship be-
tween the energy densities and the electron density that applies everywhere in 
space. More precisely, the local virial theorem relates the potential energy density 
and the kinetic energy density distributions locally to a function of the electron 
density, namely, its Laplacian [2, 10]. Bader also postulated [12], and later showed 
[2, 13–15] that the integrated form of this theorem, discovered before its local ex-
pression, translates into a virial theorem satisfied by each atom within a molecule 



Table 1 Early Publications (nineteen-sixties) on molecular electron

density distributions by Professor Richard F.W. Bader.

1. R.F.W. Bader and G.A. Jones, ‘‘The Hellmann-Feynman Theorem and Chemical Binding’’,

Canadian Journal of Chemistry, 39, (1961), 1253–1265.

2.* R.F.W. Bader, ‘‘Vibrationally Induced Perturbations in Molecular Electron Distributions’’, Canadian
Journal of Chemistry, 40, (1962), 1164–1175.

3. R.F.W. Bader and G.A. Jones, ‘‘The Electron Density Distributions in Hydride Molecules, I,

The Water Molecule’’, Canadian Journal of Chemistry, 41, (1963), 586–606.

4. R.F.W. Bader and G.A. Jones, ‘‘The Electron Density Distribution in Hydride Molecules, II,

The Ammonia Molecule’’, Journal of Chemical Physics, 38, (1963), 2791–2802.

5. R.F.W. Bader and G.A. Jones, ‘‘The Electron Density Distributions in Hydride Molecules, III,

The Hydrogen Fluoride Molecule’’, Canadian Journal of Chemistry, 41, (1963), 2251–2264.

6. R.F.W. Bader, ‘‘Binding Regions in Polyatomic Molecules and Electron Density Distributions’’,

Journal of the American Chemical Society, 86, (1964), 5070–5075.

7. R.F.W. Bader, W.H. Henneker and P.E. Cade, ‘‘Molecular Charge Distributions and Chemical

Binding’’, Journal of Chemical Physics, 46, (1967), 3341–3363.

8. R.F.W. Bader, I. Keaveny and P.E. Cade, ‘‘Molecular Charge Distributions and Chemical Binding II.

First-Row Diatomic Hydrides’’, Journal of Chemical Physics, 47, (1967), 3381–3402.

9. R.F.W. Bader and A.K. Chandra, ‘‘A View of Bond Formation in Terms of Molecular Charge

Distributions’’, Canadian Journal of Chemistry, 46, (1968), 953–966.

10. R.F.W. Bader and A.D. Bandrauk, ‘‘Molecular Charge Distributions and Chemical Binding III.

The Isoelectronic Series N2, CO, BF and C2, BeO, LiF’’, Journal of Chemical Physics, 49, (1968),
1653–1665.

11. R.F.W. Bader and A.D. Bandrauk, ‘‘Relaxation of the Molecular Charge Distribution and the

Vibrational Force Constant’’, Journal of Chemical Physics, 49, (1968), 1666–1675.

12. R.F.W. Bader and H.J.T. Preston, ‘‘The Kinetic Energy of Molecular Charge Distributions and

Molecular Stability’’, International Journal of Quantum Chemistry, 3, (1969), 327–347.

13. R.F.W. Bader, I. Keaveny and G. Runtz, ‘‘Polarizations of Atomic and Molecular Charge

Distributions’’, Canadian Journal of Chemistry, 47, (1969), 2308–2311.

14. R.F.W. Bader, P.E. Cade, W.H. Henneker and I. Keaveny, ‘‘Molecular Charge Distributions and

Chemical Binding IV. The Second-Row Diatomic Hydrides, AH’’, Journal of Chemical Physics, 50,
(1969), 5313–5333.

15. R.F.W. Bader and J.L. Ginsburg, ‘‘Relaxations of Molecular Charge Distributions and the Vibrational

Force Constants in Diatomic Hydrides’’, Canadian Journal of Chemistry, 47, (1969), 3061–3074.

*This paper presents an early formulation of the symmetry rules

predicting the outcome of unimolecular and bimolecular reactions.

Kenichi Fukui describes this paper as ‘‘the important theory of Bader’’

in his 1981 Nobel Lecture in the paragraph he devotes to ‘‘names

which are worthy of special mention’’.
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or an extended system (Eq. (33) of Chapter 1). This result, termed the ‘‘atomic

virial theorem’’, in its turn led to the definition of the energy of an atom within a

larger system, for example a molecule or a crystal, i.e. an ‘‘atomic energy’’. The

energy of an atom in a molecule, a very desirable quantity, remained totally elu-

sive until the discovery of the atomic virial theorem, because this energy must, for

example, include contributions from the nuclear–nuclear repulsion energy, con-

tributions which are not trivial to partition on an atom-by-atom basis (Chapters 1

and 3).

Bader’s early studies of molecular electron density distributions (Table 1) coin-

cided with the ground-breaking formulation of modern density functional theory

(DFT) [16] in 1964 and 1965 by Walter Kohn and his co-workers [17, 18]. Contem-

porary DFT functionals (for example those developed by Axel Becke [19–22], and

Lee et al. [23]) are capable of achieving chemical accuracy and of producing

electron-density maps of unprecedented quality, and rapidly.

The advent of DFT, the spectacular increase in the power of computers, and al-

gorithmic advances all led to an explosive growth in the number of studies apply-

ing the quantum theory of atoms in molecules to a very wide range of problems

(as will be seen in this book) from solid-state physics; to the science of materials;

to surface science; to X-ray analyses; to organic, physical–organic, organometallic,

and inorganic chemistry; and to biochemistry and drug design. Accurate calcu-

lated (and experimental) electron-density maps of larger and larger systems are

now routinely computed and analyzed using the QTAIM.

The theory has also benefited significantly from parallel advances in accurate

X-ray crystallography. The development of multipolar refinement techniques, pio-

neered by Hansen and Coppens [24–26], coupled with low-temperature data col-

lection and ever-more sensitive CCD detectors, has enabled crystallographers, for

the first time, to obtain high-resolution experimental electron-density maps of

quality sufficient to capture the fine details of the electron density in the bonding

regions between atoms. Nowadays, crystallographers rely routinely on QTAIM to

decode the wealth of chemical information contained in accurate experimental

electron-density maps, bringing crystallography and chemical theory closer than

ever before (see, for example, Refs [25–28] and the literature cited therein).

Bader’s landmark book [2], which includes (but is more than) an authoritative

review of the theory up to 1990, sets forth the development and principles of this

theory and explains how the atoms of experiment arise naturally from the laws of

quantum mechanics. Since 1990 the field of QTAIM has grown dramatically both

conceptually and in terms of the volume of publications and citations, a growth

that has been reflected in several reviews (see, for example, Refs [3–6, 25–30]).

In 1996, a special issue of the Canadian Journal of Chemistry was dedicated to

Richard Bader on the occasion of his 65th birthday [31]. The objective of this

book is to cover the developments in this field since the publication of Bader’s

book.

QTAIM is rigorous, beautiful, and powerful. It provides a unifying thread of

physical insight in chemistry, which explains its popularity. The breadth of

QTAIM and its applications renders a comprehensive treatment of all its ramifi-
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cations impossible in a book of this size. We have therefore sampled research in

QTAIM by extending invitations to a necessarily incomplete group of world-

leading researchers to review their respective contributions to the field. This has

resulted in a volume written by fifty authors representing thirteen countries in

five different continents (a list of contributors is given below). Despite this im-

pressive list of contributors, we could not possibly have invited all the leaders of

the field, unavoidable omissions for which we do apologize. These omissions,

however, do not diminish the value of the phenomenal cross-section and depth

of current fundamental and applied research in QTAIM that has been captured

in this book.

As the editors of this book it is with considerable humility that we start with

our own introductory chapter. The only reason for this choice is to facilitate the

reading of the remainder of the book by introducing the basic concepts and ter-

minology. The order of the other parts and chapters is purely and exclusively

based on what we think is their logical order. All chapters, including our own,

have been carefully refereed by at least three independent reviewers and were all

revised and corrected before final acceptance.

The book is divided into five parts. The introductory chapter is followed by Part

II which concentrates on the fundamental advances in the theory itself. Part II

reviews the rapid development in the applications of the QTAIM to periodic sys-

tems (solid state and surfaces). Part III focuses on developments resulting from

the synergy between experimental highly accurate X-ray crystallography and the

QTAIM, with particular emphasis on the electron density of large biological mol-

ecules. Part VI deals with the wide diversity of applications of the QTAIM in or-

ganic, physical organic, and organometallic chemistry, and reviews the character-

ization of conventional and non-conventional chemical bonding. Part V reports

on important developments in the use of QTAIM in the modeling of biological

molecules and drug design.

We would like to thank each one of the authors individually for his or her in-

valuable contribution to this volume, and we thank Professor Axel D. Becke for

writing the Foreword. We are much indebted to our publisher, Wiley–VCH, and

its staff for their continual support, professionalism, and invaluable help, with

special thanks to Nele Denzau, Dr. Tim Kersebohm, Dr. Romy Kirsten, Claudia

Nussbeck, Dr. Martin Ottmar, Dr. Gudrun Walter, and Dr. Waltraud Wüst. We

are particularly grateful for the care, rigor, and effort of our peer-reviewers

(many of whom are also among the authors of chapters in this book): Professor

Richard F.W. Bader, Dr. Miguel Blanco, Professor Curt M. Breneman, Dr. Clém-

ence Corminboeuf, Professor Katherine V. Darvesh, Dr. Jason R. Dwyer, Dr. Carlo

Gatti, Professor Kathleen M. Gough, Professor Sławomir J. Grabowski, Professor

George L. Heard, Professor Jesús Hernández-Trujillo, Dr. Sian T. Howard, Profes-

sor Claude Lecomte, Professor Victor Luaña, Professor Peter Luger, Dr. Piero

Macchi, Professor Preston J. MacDougall, Professor Louis J. Massa, Professor

Angel Martı́n Pendás, Dr. James A. Platts, Dr. Paul L.A. Popelier, Dr. Kathy N.

Robertson, Professor Bernard Silvi, Professor Vladimir G. Tsirelson, and Dr. Eliza-

beth A. Zhurova – we thank them all.
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It is with delight that we dedicate this work to Professor Richard F.W. Bader on

the occasion of his 75th birthday.

Chérif F. Matta and Russell J. BoydHalifax, October 2006
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List of Abbreviations Appearing in this Volume

This list is compiled from the abbreviations appearing in this book, and is not,

therefore, a comprehensive compilation of abbreviations in quantum chemistry.

This list of abbreviations is, furthermore, naturally slanted more toward QTAIM

by the inclusion of the abbreviations appearing in this work, for the convenience

of the reader.

(Excellent resources for abbreviations in quantum chemistry include: [1] R.D.

Brown, J.E. Bows, R. Hilderbrandt, K. Lim, I.M. Mills, E. Nikitin, M.H. Palmer;

Acronyms used in Theoretical Chemistry, Pure & Appl. Chem., 68, 387–456,

(1996); and [2] Young, D.; Computational Chemistry: A Practical Guide for Apply-

ing Techniques to Real World Problems, Wiley–Interscience, New York (2001),

pp. 360–370.)

A Adenine

AD Atomic dipole

ADMET Absorption, distribution, metabolism, excretion, and toxicity

AIM Atoms in molecules (or sometimes it implies an atom in a mole-

cule)

aiPI ab initio perturbed ion (method)

ANO Atomic natural orbital(s)

AO Atomic orbital

ASE Aromatic stabilization energy

au or a.u. Atomic unit

aug-cc-pVTZ Dunning’s valence triple zeta correlation consistent basis set aug-

mented with diffuse functions

B3LYP Becke parameter 3, Lee, Yang, and Parr (a gradient-corrected DFT

functional)

B96 Becke 1996 gradient-corrected functional

BCP or bcp Bond critical point

BNP Bare nuclear potential

BO Born-Oppenheimer

BO Bond order

BP Bond path

BPL Bond path-length
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BSSE Basis set superposition error

C Cytosine

CAHB Charge-assisted hydrogen bond(ing)

CAHB(C) Negative-charge-assisted hydrogen bond(ing)

CAHB(B) Positive-charge-assisted hydrogen bond(ing)

CASSCF Complete active space self-consistent field (theory/method)

cc Complex conjugate

CC Coupled-cluster (correlated electronic structure method)

CC Charge concentration

CCD Charge-coupled device (x-ray detector)

CCP or ccp Cage critical point

CCSD Coupled-cluster method with single and double excitations

CCSD(T) Coupled-cluster method with single and double excitations with

singles/triples coupling term

CD Degree of covalence

CD(s) Charge depletion(s)

CG Crystal geometry (as opposed to gas-phase geometry)

CI Configuration interaction

CISD Configuration interaction with single and double excitations

CKRK Cash–Karp–Runge–Kutta (method)

CORR Correlation energy

Cp Cyclopentadienyl ring

CP or cp Critical point

CPHF Coupled-perturbed Hartree–Fock (method)

CT Charge transfer

CUS Coordinatively unsaturated site(s)

c.o.m. Center of mass

DCBS Dimer-centered basis set

DCD Dewas-Chatt-Duncanson (donor-acceptor complexes)

DFT Density functional theory

DHB Dihydrogen bond

DI Delocalization index

DMACB 3,4-bis(Dimethylamino)-3-cyclobutene-1,2-dione

DMSDA Difference of the mean-square displacement amplitude

DNA Deoxyribonucleic acid

DOS Density of (electronic) states

ECHB Electrostatic–covalent hydrogen bond (model)

ECP Effective core potential

ED Electron density

EDD Electron density distribution(s)

EF Eigenvalue following (method)

ELF Electron localization function (Becke and Edgecombe)

EP Electrostatic potential

ESP Electrostatic potential

EXAFS Extended X-ray absorption fine structure
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FCC Face-centered cubic (lattice)

FLU Aromatic fluctuation index (of Solà et al.)

fpLAPW Full potential linearized augmented plane wave (formalism)

FT Fourier transform(ation)

G Guanine

GGA Generalized gradient approximation

GVB Generalized valence bond (method)

hAR Human aldose reductase

HB Hydrogen bond(ing)

HDS Hydrodesulfurization

HF Hartree–Fock (not to be confused with hydrogen fluoride)

HK Hohenberg and Kohn

HOMA Harmonic oscillator model of aromaticity (index)

HOMO Highest occupied molecular orbital

HPLC High-pressure (or high-performance) liquid chromatography

i-VSCC Inner-valence shell charge concentration

IAM Independent atom model

IAS Inter-atomic surface

IGAIM Individual gauges for atoms in molecules

IHB Isolated hydrogen bond

IRC Intrinsic reaction coordinate(s)

IUCr International Union of Crystallography

KE Kinetic energy

KS Kohn–Sham

LCAO Linear combination of atomic orbitals

LDA Local density approximation

LEED Low-energy electron diffraction

LFT Ligand field theory

LI Localization index

LOCC Ligand-opposed charge concentration

LS Local source

LUMO Lowest unoccupied molecular orbital

L.H.S. Left-hand side (of an equation)

MD Molecular dynamics

MEM Maximum entropy method

MO Molecular orbital

MPn nth order Møller–Plesset perturbation theory

MQSM Molecular quantum similarity measures

MRCI Multireference configuration interaction

mRNA Messenger-RNA

n-MR n-Membered ring, e.g. five-membered ring

NA Nuclear attractor

NADPB Nicotinamide adenine dinucleotide phosphate

NBCC Nonbonded charge concentration

NBM Nonbonded maximum (or maxima)
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NBO Natural bond orbital(s) (method)

NCP or ncp Nuclear critical point

NICS (Schleyer’s) nucleus-independent chemical shift

NICS(0) (Schleyer’s) nucleus-independent chemical shift in the plane of an

aromatic ring at its geometrical center

NICS(n) (Schleyer’s) nucleus-independent chemical shift n Å above the

plane of an aromatic ring at its geometrical center

NMR Nuclear magnetic resonance (spectroscopy)

NNA Non-nuclear attractor

NNA Nearest-neighbor approximation

NNM Non-nuclear maximum (or maxima)

NPA Natural population analysis

NR Newton–Raphson (method/technique)

ODM One-electron density matrix

OG (Gas-phase) optimized geometry (as opposed to crystal geometry)

PAHB Polarization-assisted hydrogen bond(ing)

PAH(s) Polycyclic aromatic hydrocarbon(s)

PASA Promolecular atom shell approximation

PBH(s) Polybenzenoid hydrocarbon(s)

PDI para-Delocalization index (of Solà et al.)

PE Potential energy

PES Potential energy surface(s)

PEST Property-encoded surface translator

PH Poincaré-Hopf relationship

ppm Part per million

Pyr Pyridine

QCISD Quadratic configuration interaction with single and double excita-

tions

QCISD(T) Quadratic configuration interaction with single and double excita-

tions (with correction for triple excitations)

QCT Quantum chemical topology

QSAR Quantitative structure–activity relationship(s)

QSPR Quantitative structure–property relationship(s)

QTAIM Quantum theory of atoms in molecules

QTAMC Quantum theory of atoms in molecules and crystals

RAHB Resonance-assisted hydrogen bond(ing)

RCP or rcp Ring critical point

RECON (Rapid TAE) reconstruction (of molecular charge densities)

RHF Restricted Hartree–Fock (method)

RNA Ribonucleic acid

RSS Root summed squares

R.H.S. Right-hand side (of an equation)

SCF Self-consistent field

SCVS Self-consistent virial scaling

SES Sodium electrosodalite
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SF Source function

SI Surface integral

SIEP Surface integral of the electrostatic potential

SIG Surface integral of the G kinetic energy density

SIK Surface integral of the K kinetic energy density

SSHB Short strong hydrogen bond(ing)

std Standard deviation

STM Scanning–tunneling microscope (or microscopy)

T Thymine

TAE (Breneman’s) transferable atom equivalent

TMS Transition metal sulfide(s)

TMS Tetramethylsilane

U Uracil

UHF Unrestricted Hartree–Fock (method)

VHTS Virtual high-throughput screening

VSCC Valence shell charge concentration

VSCD Valence shell charge depletion

VSEPR Valence-shell electron-pair repulsion model of molecular geometry

XRD X-Ray diffraction

ZFS Zero-flux surface
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BP 239, Boulevard des

Aiguillettes

54506 Vandoeuvre-lès-Nancy

CEDEX

France

benoit.guillot@lcm3b.uhp-nancy.fr

Dr. Christopher E. Henze

MS T27-A

NASA Advanced Supercomputing

Division

NASA Ames Research Center

Moffett Field, CA 94035

USA

chenze@nas.nasa.gov
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Université Pierre et Marie Curie

3, Rue Galilée

94200 Ivry sur Seine

France

silvi@lct.jussieu.fr

List of Contributors XXXVII



Prof. Angelo Sironi

Dipartimento di Chimica

Strutturale e Stereochimica

Inorganica

Università di Milano
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1

An Introduction to the Quantum Theory of

Atoms in Molecules

Chérif F. Matta and Russell J. Boyd

1.1

Introduction

The observation that some properties attributed to atoms and functional groups

are transferable from one molecule to another has played a key role in the devel-

opment of chemistry. This observation provides a basis for group additivity

schemes and is exemplified by the constancy of group contributions to thermody-

namic and spectroscopic properties. But what is the electronic basis of this empir-

ical transferability? The quantum theory of atoms in molecules (QTAIM) [1], de-

veloped by Professor Richard F. W. Bader and his coworkers, relies on quantum

observables such as the electron density rðrÞ and energy densities to answer such

a question. Other important (related) questions addressed by QTAIM include:
� What is an atom in a molecule or a crystal?
� How can an atom or a group of atoms be transferable

sometimes in very different external potentials?
� Can one define bonding in molecules unambiguously

especially in borderline cases?

This chapter contains a summary of some of the main concepts of QTAIM. A

more comprehensive and mathematically elegant treatment can be found in

Bader’s book [1].

(Often in this chapter, the word ‘‘molecule’’ includes extended systems such as

polymers, weakly bonded molecular complexes, and molecular and ionic crystals,

in addition to its more traditional meaning of a single, finite, isolated chemically

bonded group of atoms. It will be clear from the context when this term is used

in its traditional or in its larger sense.)

1.2

The Topology of the Electron Density

The topology of the electron density is dominated by the attractive forces of the

nuclei imparting it with its principal topological feature – a substantial local max-

1



imum at the position of each nucleus. A consequence of the dominance of nu-

clear maxima in the electron density distribution is the association of an atom

with a region of space the boundaries of which are determined by the balance in

the forces the neighboring nuclei exert on the electrons. Figure 1.1b is a relief

map of the electron density of the phenolic region of the morphine molecule, in

the plane of the aromatic ring, showing the maxima at the C, O, and H nuclei.

A ‘‘critical point’’ (CP) in the electron density is a point in space at which the

first derivatives of the density vanish, i.e.:

‘r ¼ i
dr

dx
þ j

dr

dy
þ k

dr

dz
!

¼~00 ðAt critical points and
at yÞ

Generally0~00 ðAt all other pointsÞ

8><
>: ð1Þ

where the zero vector signifies that each individual derivative in the gradient op-

erator, ‘, is zero and not just their sum. The gradient of a scalar function such as

rðrÞ (Eq. 1) at a point in space is a vector pointing in the direction in which rðrÞ
undergoes the greatest rate of increase and having a magnitude equal to the rate

of increase in that direction. The maximum at the position of a nucleus consti-

tutes one type of CP, namely, a nuclear critical point (NCP). (The neglect of the

finite size of atomic nuclei in quantum chemical calculations, an exceptionally good

approximation, results in cusps in the potential and in the electron density rðrÞ at
the position of the nuclei. Because of this cusp, the derivatives of the electron

Fig. 1.1 (a) The molecular structure of the morphine molecule with an

indication of the region shown in the relief map in (b). (b) A relief map

representation of the electron density in the plane of the aromatic ring

showing marked maxima at the positions of the carbon and oxygen

nuclei (truncated at rðrÞ ¼ 1:0 au) and much smaller peaks at the

position of the hydrogen nuclei.
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density at the position of a nucleus are not defined and so, in a formal mathemat-

ical sense, this position is not a true critical point. The nuclear maxima behave

topologically as critical points, however.)
One can discriminate between a local minimum, a local maximum, or a saddle

point by considering the second derivatives, the elements of the tensor ‘‘r.

There are nine second derivatives of rðrÞ that can be arranged in the so-called

‘‘Hessian matrix’’, which when evaluated at a CP located at rc is written:

AðrcÞ ¼

q2r

qx2

q2r

qxqy

q2r

qxqz

q2r

qyqx

q2r

qy2
q2r

qyqz

q2r

qzqx

q2r

qzqy

q2r

qz2

0
BBBBBBBB@

1
CCCCCCCCA
r¼rc

: ð2Þ

The Hessian matrix can be diagonalized because it is real and symmetric. The

diagonalization of AðrcÞ is equivalent to a rotation of the coordinate system

rðx; y; zÞ ! rðx 0; y 0; z 0Þ superimposing the new axes x 0, y 0, z 0 with the principal

curvature axes of the critical point. The rotation of the coordinate system is

accomplished via a unitary transformation, r 0 ¼ rU, where U is a unitary matrix

constructed from a set of three eigenvalue equations Aui ¼ liui ði ¼ 1; 2; 3Þ in
which ui is the ith column vector (eigenvector) in U. A similarity transformation

U�1AU ¼ L transforms the Hessian into its diagonal form, which is written ex-

plicitly as:

L ¼

q2r

qx 02
0 0

0
q2r

qy 02
0

0 0
q2r

qz 02

0
BBBBBBBB@

1
CCCCCCCCA
r 0 ¼rc

¼
l1 0 0

0 l2 0

0 0 l3

0
BB@

1
CCA; ð3Þ

in which l1, l2, and l3 are the curvatures of the density with respect to the three

principal axes x 0, y 0, z 0.
An important property of the Hessian is that its trace is invariant to rotations of

the coordinate system. The trace of the Hessian of the density is known as the

Laplacian of the density ½‘2rðrÞ� and, when x ¼ x 0, y ¼ y 0, and z ¼ z 0, is given

by:

‘2rðrÞ ¼ ‘ � ‘rðrÞ ¼ q2rðrÞ
qx2|fflffl{zfflffl}
l1

þ q2rðrÞ
qy2|fflffl{zfflffl}
l2

þ q2rðrÞ
qz2|fflffl{zfflffl}
l3

ð4Þ

where we have dropped the primes of the principal axes.
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Critical points are classified according to their rank ðoÞ and signature ðsÞ and
are symbolized by ðo; sÞ. The rank is the number of non-zero curvatures of r at

the critical point. A critical point that has o < 3 is mathematically unstable and

will vanish or bifurcate under small perturbations of the density caused by nu-

clear motion. The presence of such a CP (with a rank less than three) indicates a

change in the topology of the density and, hence, a change in the molecular struc-

ture. For this reason, critical points with o < 3 are generally not found in equilib-

rium charge distributions and one nearly always finds o ¼ 3. The signature is the

algebraic sum of the signs of the curvatures, i.e. each of the three curvatures con-

tributes e1 depending on whether it is a positive or negative curvature.

There are four types of stable critical points having three non-zero eigenvalues:
� ð3;�3Þ Three negative curvatures: r is a local maximum.
� ð3;�1Þ Two negative curvatures: r is a maximum in the

plane defined by the corresponding eigenvectors but is a

minimum along the third axis which is perpendicular to this

plane.
� ð3;þ1Þ Two positive curvatures: r is a minimum in the plane

defined by the corresponding eigenvectors and a maximum

along the third axis which is perpendicular to this plane.
� ð3;þ3Þ Three curvatures are positive: r is a local minimum.

Each type of critical point described above is identified with an element of

chemical structure: ð3;�3Þ nuclear critical point (NCP); ð3;�1Þ bond critical point
(BCP); ð3;þ1Þ ring critical point (RCP); and ð3;þ3Þ cage critical point (CCP).
The number and type of critical points that can coexist in a molecule or crystal

follow a strict topological relationship which states that:

nNCP � nBCP þ nRCP � nCCP ¼
1 (Isolated molecules)

0 (Infinite crystals)

�
ð5Þ

where n denotes the number of the subscripted type of CP. The first equality

is known as the Poincaré–Hopf relationship (PH) [1] and applies for isolated

finite systems such as a molecule, the second equality is known as the Morse

equation and applies in cases of infinite periodic lattices [2]. The set

fnNCP; nBCP; nRCP; nCCPg for a given system is known as the ‘‘characteristic set’’.

Violation of Eq. (5) implies an inconsistent characteristic set, that a critical

point has been missed, and that a further search for the missing critical point(s)

is necessary. On the other hand, the satisfaction of this equation does not prove its
completeness. For example, if we miss both a BCP and an RCP for a molecule,

Eq. (5) becomes nNCP � ðnBCP � 1Þ þ ðnRCP � 1Þ � nCCP ¼ 1 which is clearly still

valid [3]. The likelihood of missing both a BCP and a RCP is small, however,

and, in practice, satisfaction of Eq. (5) is taken as a proof of the consistency and
completeness of the characteristic set.

A ring critical point will always be found in the interior of a ring of chemically

bonded atoms. When several rings are connected in a manner which encloses an

4 1 An Introduction to the Quantum Theory of Atoms in Molecules



interstitial space, a cage critical point arises in the enclosed space. Figure 1.2

shows the molecular graph (the set of bond paths and critical points) of two

molecules: (a) cubane, and (b) 4-methyl-1,12-difluoro[4]helicene. The bond path

is a single line of maximum electron density linking the nuclei of two chemi-

cally-bonded atoms. (The bond path is discussed in more detail later in this chap-

ter.) In cubane, the bond paths are arranged between the vertices of a cube form-

ing six rings with the consequent appearance of one-ring critical point at the

centre of each face of the cube. These six ring surfaces completely enclose the vol-

ume of the cube and, as a result, a cage critical point forms in the center of the

cube. In Fig. 1.2a, the reader may also note the marked curvature of the bond

paths in cubane, indicative of a significant ring strain in this unstable molecule.

All cage critical points reported in the literature until 2005 were found to be

enclosed by at least three ring surfaces, as stated by Bader in 1990 [1]: ‘‘While it
is mathematically possible for a cage to be bounded by only two ring surfaces, the min-
imum number found in an actual molecule so far is three, as in bicyclo [1.1.1] pentane,
for example’’, a statement reiterated in 2000 [3]. In Fig. 1.2b there is nothing un-

usual about the aromatic system, but the nuclei of the two fluorine atoms in the

‘‘Fjord region’’ are linked by a bond path [4] closing a seven-membered ring

which has quite an unusual topology – it gives rise to two ring critical points and
a cage critical point [5]. We have, thus, recently reported the first example of an

actual molecular system in which a cage is bounded by only two ring surfaces

[5]. Such a CCP (enclosed by two ring surfaces) arises in all the studied deriva-

tives of 1,12-difluoro[4]helicenes [5]. In these molecules, the seven-membered

ring in the Fjord region is so distorted out of planarity that its ring surface splits

into two, giving rise to this CCP [5]. In all cases, the Poincaré–Hopf relationship

is satisfied [5].

1.3

The Topology of the Electron Density Dictates the Form of Atoms in Molecules

The pronounced maxima in the electron density at the positions of the nuclei give

rise to a rich topology. This topology embodies a natural partitioning of the mo-

lecular space into separate mononuclear regions, W, identified as atoms in mole-

cules. The surface bounding an atom in a molecule is one of zero flux in the gra-

dient vector field of the electron density, i.e. it is not crossed by any of the

gradient vectors ½‘rðrÞ� at any point, a statement which is equivalent to satisfying

the condition:

‘rðrÞ � nðrÞ ¼ 0; for all r belonging to the surface SðWÞ ð6Þ

where r is the position vector and nðrÞ the unit vector normal to the surface SðWÞ.
The plot in Fig. 1.3a represents the electron density and its gradient vector field

in the molecular plane of BF3. The figure contrasts the zero-flux surfaces which

partition the molecular space into separate mononuclear ‘‘atomic basins’’ and an

arbitrary surface cutting though the density. The left side of Fig. 1.3a is a contour
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plot of rðrÞ, the contours decreasing in value from the nuclei outward. Instead of

plotting rðrÞ in the right half of Fig. 1.3a (which is a mirror image of the left side

by virtue of the molecular symmetry), we have depicted, instead, the correspond-

ing gradient vector field ‘rðrÞ. The gradient vector field lines partition the molec-

ular space naturally into three fluorine basins and a central boron basin (Fig.

1.3a).

Gradient vector field lines belonging to an atomic basin all converge to one nu-
cleus which acts as an attractor to these gradient vector field lines. In doing so,

these gradient vector field lines sweep a portion of physical space associated with

one nucleus and which is identified as the basin of an atom in a molecule (AIM).

Three-dimensional volume renderings of the atoms and groups of atoms within

the BF3 molecule are shown in Fig. 1.3b. An atom in a molecule is defined as the

union of a nucleus and its associated basin. Each basin is bounded by one (or by

the union of a number of ) zero-flux surface(s) one of which may occur at infinity.

An atom in a molecule may be defined, alternatively and equivalently, as a region

of space bounded by one or more zero-flux surface(s).

Occasionally, local maxima in the electron density can occur at positions other

than those of atomic nuclei, especially in metals [6, 7] and semiconductors [8, 9],

but also in systems such as the solvated electron [10] and at the positions of de-

fects in crystals and color F-centers [11]. The non-nuclear maxima, also known as

non-nuclear attractors (NNA), are topologically indistinguishable from the nu-

clear maxima. Just like a nucleus, an NNA is associated with a basin swept by gra-

dient vector field lines and is bounded by a zero-flux surface. Consequently, NNA

Fig. 1.2 The molecular graph of (a) cubane and (b) 4-methyl-1,12-

difluoro[4]helicene showing the bond paths (lines) and the different

critical points: nuclear (color-coded by element: C ¼ black, H ¼ grey,

F ¼ golden), bond (small red dots), ring (yellow dots), and cage (green

dots) critical points.
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basins constitute proper open quantum systems and are therefore termed ‘‘pseudo-

atoms’’. Pseudo-atoms can be bonded (i.e. share a common interatomic zero-flux

surface, a bond critical point, and a bond path) to atoms and other pseudo-atoms

in a molecule. Non-nuclear attractors and their basins are of great importance in

characterizing metallic bonding and are of substantial theoretical interest. A de-

tailed discussion of NNA can be found in Chapter 7 of this book.

There is a unique set of gradient vectors lines which originate at infinity and

terminate at a point between two bonded atoms, the lines of this set fall by defini-

tion on the zero-flux surface because they satisfy Eq. (6) locally. It should be

noted that the three zero-flux surfaces depicted in Fig. 1.3 are between the boron

and fluorine atoms, the boron atom being bounded three zero-flux surfaces which

merge in pairs at infinity between fluorine basins. There are no zero-flux surfaces

Fig. 1.3 (a) The electron density (left) and

the gradient vector field (right) of the density

in the molecular plane of BF3. The blue

arrows connecting the nuclei trace the bond

paths. The magenta arrows delimiting atomic

basins trace the intersections of the zero-flux

surfaces with the plane. The contours

increase from the outermost 0.001 au

contour followed by 2� 10n, 4� 10n, and

8� 10n au with n starting at �3 and

increasing in steps of unity. The small circles

drawn on the three bond paths are the B–F

bond critical points (BCP). The intersection

of an arbitrary surface with the plane of the

figure, the straight line on the lower right part

of (a), is shown to be crossed by gradient

vectors and is contrasted with a zero-flux

surface. (b) Four three-dimensional

renderings of the density of atoms and

groupings of atoms in BF3. The outer surface

is the 0.002 au isodensity envelope. The zero-

flux surfaces are denoted by the vertical bars

between the atomic symbols. Large spheres

represent the nuclei of the fluorine atoms

(golden) and of the boron atom (blue–gray).

The lines linking the nuclei represent the

bond paths. The BCPs are denoted by the

small red dots. A BCP always lies on the

zero-flux surface shared by the two bonded

atoms.
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between any pair of fluorine atoms in BF3, these surfaces only exist between

bonded atoms and are characteristic of bonding interactions.

The topological definition of an atom follows from the boundary condition ex-

pressed in Eq. (6) and which applies to every point on the surface. This real space

partitioning of the electron density has been shown to be rooted in quantum me-

chanics bringing into coincidence the topological definition of an atom in a mol-

ecule with that of a proper open quantum system (see Chapter 2 and also the de-

tailed derivation of the quantum mechanics of proper open systems [12] from

Schwinger’s principle of stationary action [13]).

1.4

The Bond and Virial Paths, and the Molecular and Virial Graphs

The presence of an interatomic zero-flux surface between any two bonded atoms

in a molecule is always accompanied by another key topological feature – there is,

in real space, a single line of locally maximum density, termed the ‘‘bond path’’

(BP), linking their nuclei. The bond path is a universal indicator of chemical

bonding of all kinds; weak, strong, closed-shell, and open-shell interactions [14].

The point on the bond path with the lowest value of the electron density (mini-

mum along the path) is the bond critical point (BCP) and it is at that point where

the bond path intersects the zero-flux surface separating the two bonded atoms.

The collection of bond paths linking the nuclei of bonded atoms in an equilib-

rium geometry, with the associated critical points, is known as the molecular
graph. (In a non-equilibrium geometry, lines of maximum electron density link-

ing the nuclei are known as ‘‘atomic interaction lines’’, because these may or

may not persist when the geometry is energy-minimized, i.e. optimized.) The

molecular graph provides an unambiguous definition of the ‘‘molecular struc-

ture’’ and can thus be used to locate changes in structure along a reaction path.

Mirroring every molecular graph is a ‘‘shadow’’ graph, again in real space, but

this time the graph is defined by a set of lines of maximally negative potential en-
ergy density. In other words, there is a single line of maximally negative potential

energy density linking the same attractors which share a bond path [15]. This line

of ‘‘maximum stability’’ in real space is termed a ‘‘virial path’’. The collection of

virial paths and the associated critical points constitute the virial graph. The virial

graph defines the same molecular structure as the molecular graph, the virial

field and the electron density being homeomorphic [15].

Figure 1.4 shows the chemical structure and the molecular and virial graphs

of the phenanthrene molecule. This polycyclic aromatic hydrocarbon molecule

has a bond path between the two hydrogen atoms in the bay region, a mode of

closed-shell bonding which has been recently characterized in detail and termed

hydrogen–hydrogen bonding (to be contrasted with dihydrogen bonding) [16, 17].

The virial graph is shown to faithfully map each bond path with a corresponding

virial path including the bond path of a weak closed-shell bonding interaction

such as the hydrogen–hydrogen bonding interaction (Fig. 1.4).
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We conclude this section by stating that atoms that are chemically bonded have
their nuclei linked by a (single) bond path and by an accompanying virial path and
they share a bond critical point and a common interatomic zero-flux surface.

1.5

The Atomic Partitioning of Molecular Properties

The quantum theory of atoms in molecules is a generalization of quantum

mechanics to open quantum systems. Bader has shown that the topological parti-

tioning of the molecules into atomic basins is essential for development of the

quantum mechanics of open systems [12]. The zero-flux condition, Eq. (6), is the

necessary constraint for the application of Schwinger’s principle of stationary

action [13] to part of a quantum system [12].

The partitioning of the molecular space into atomic basins enables the parti-

tioning of electronic properties into atomic contributions in one consistent theo-

retical framework. Among the properties often discussed are the atomic charges

and higher multipolar electric polarizations, atomic volumes, atomic total ener-

gies (and the different contributions to the atomic energies), and the electron lo-

calization within one basin or delocalization between two basins [1, 18].

The expectation value of an operator averaged over all space is given by the sum

of the expectation values of this operator averaged over all the atoms in the mole-

cule or the crystal, in atomic units:

hÔOimolecule ¼
X

all atoms
in the

molecule

i

N

ð
Wi

ð
1

2
½C�ÔOCþ ðÔOCÞ�C� dt 0

� �
dr

� �
ð7aÞ

¼
X

all atoms
in the

molecule

i

ð
Wi

rO dr

� �
¼

X
all atoms
in the

molecule

i

OðWiÞ ð7bÞ

Fig. 1.4 (a) The chemical structure of phenanthrene. (b) The molecular

graph of phenathrene showing the collection of bond paths and

associated critical points. (c) The corresponding virial graph.
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where hÔOimolecule is the molecular expectation value of the operator ÔO, OðWiÞ is
the average of this operator over an atom Wi, and where the sum runs over all

the atoms in the molecule or crystal. Integration over the coordinates of all elec-

trons but one and summation over all spins is symbolized by
Ð
dt 0. Equation (7b)

implies that any molecular property O which can be expressed in terms of a cor-

responding property density in space rOðrÞ can be written as a sum of atomic

contributions obtained by averaging the appropriate operator over the volume of

the atom, i.e. it exhibits atomic additivity.

1.6

The Nodal Surface in the Laplacian as the Reactive Surface of a Molecule

Because the Laplacian is essentially a second derivative, its sign indicates regions

of local electronic charge concentration or depletion with respect to the immedi-

ate neighborhood. Thus, where ‘2rðrÞ > 0 the density is locally depleted and ex-

panded relative to its average distribution; where ‘2rðrÞ < 0 the density is locally

concentrated, tightly bound, and compressed relative to its average distribution. A

local charge concentration behaves as a Lewis base (electron donor) whereas a lo-

cal charge depletion acts as a Lewis acid (electron acceptor).

The Laplacian reproduces the spherical shell structure of isolated atoms in

terms of alternating shells of charge concentration followed by shells of charge

depletion [19, 20]. The spherical nodes in the Laplacian are envelopes bounding

regions of density depletion or concentration. The outer shell of charge concen-

tration, which is followed by a shell of charge depletion extending to infinity, is

called the valence shell charge concentration (VSCC). When an atom is involved

in bonding the spherical symmetry of the VSCC is broken. A chemical reaction

corresponds to the combination of a ‘‘lump’’ in the VSCC of the base with a

‘‘hole’’ in the VSCC of the acid.

Covalently bonded atoms have bonding charge concentrated in the region be-

tween their nuclei. In addition to bonding charge concentrations, lone pairs are

associated with non-bonding charge concentrations. These observations reflect

an underlying mapping between the Laplacian of the electron density and the

Laplacian of the conditional pair density when electrons tend to be localized [21].

The Laplacian of the density is characterized by a rich topology which provides

a basis for the VSEPR model [22–24] of molecular geometry [1, 25–27]. More de-

tails on this topic are available elsewhere [1, 3, 25–29] and Chapter 19 explores

the use of the reactive surface in drug design and drug–receptor molecular

complementarity.

1.7

Bond Properties

A zero-flux surface is defined by a particular set of ‘rðrÞ trajectories all the mem-

bers of which terminate at a single point, the bond critical point, where
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‘rðrÞ ¼ 0. There is one BCP between each pair of atoms that are bonded, i.e., two

atoms linked by a bond path and sharing a common interatomic zero-flux sur-

face. In addition to the set of trajectories which terminate at the BCP and define

an interatomic surface, a pair of trajectories originates at the BCP with each

member of the pair terminating at one of the nuclei of the chemically bonded

atoms. This latter pair of trajectories defines the bond path [14]. Chemical bond-

ing interactions are characterized and classified according to the properties of the

electron and energy densities at the BCP, collectively know as ‘‘bond properties’’.

1.7.1

The Electron Density at the BCP (rb)

The strength of a chemical bond, its bond order (BO), is reflected in the electron

density at the BCP ðrbÞ [1]:

BO ¼ exp½Aðrb � BÞ� ð8Þ

where A and B are constants which depend on the nature of the bonded atoms.

In general, rb is greater than 0.20 au in shared (covalent) bonding and less than

0.10 au in a closed-shell interaction (for example ionic, van der Waals, hydrogen,

dihydrogen, HaH bonding, etc.). rb has been shown to be strongly correlated

with the binding energy for several types of bonding interaction [30–36] and

with the bond length of SaS bonding interactions [37]. Proposals to generalize

Eq. (8) by including more than two elements in the same fitting have recently ap-

peared in the literature [38, 39].

1.7.2

The Bonded Radius of an Atom (rb), and the Bond Path Length

The distance of a BCP from nucleus A determines the ‘‘bonded radius’’ of atom A

relative to the interaction defined by the BCP, and is denoted rbðAÞ. If the bond

path is coincident with the internuclear axis, then the sum of the two associated

bond radii, termed the bond path length, equals the bond length. If, however, the

bond path is curved, or strained chemically, the bond path length will exceed

the bond length. Examples of this latter behavior are found for hydrogen-bonded

interactions and for bonding within strained cyclic molecules (e.g. the curved

CaC bond paths in the cubane molecule, Fig. 1.2a).

1.7.3

The Laplacian of the Electron Density at the BCP (‘2rb)

The Laplacian at the BCP is the sum of the three curvatures of the density at the

critical point (Eq. 4), the two perpendicular to the bond path, l1 and l2, being

negative (by convention, jl1j > jl2jÞ whereas the third, l3, lying along the bond
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path, is positive. The negative curvatures measure the extent to which the density

is concentrated along the bond path and the positive curvature measures the ex-

tent to which it is depleted in the region of the interatomic surface and concen-

trated in the individual atomic basins.

In covalent bonding the two negative curvatures are dominant and ‘2rb < 0,

for example, ‘2rb ¼ �1:1 au for a typical CaH bond. In contrast, in closed-shell

bonding, for example ionic, hydrogen-bonding or van der Walls interactions, the

interaction is characterized by a depletion of density in the region of contact of

the two atoms and ‘2rb > 0. An Na(H���O)bC hydrogen bond, for instance, is

characterized by ‘2rb ¼ þ0:03 au. In strongly polar bonding, (e.g. CaX, where
X ¼ O;N;F), there is a significant accumulation of electron density between the

nuclei, as in all shared interactions, but the Laplacian in this type of bonding can

be of either sign.

1.7.4

The Bond Ellipticity (e)

The ellipticity measures the extent to which density is preferentially accumulated

in a given plane containing the bond path. The ellipticity is defined as:

e ¼ l1

l2
� 1 ðwhere jl1jb jl2jÞ ð9Þ

If l1 ¼ l2, then e ¼ 0, and the bond is cylindrically symmetrical; examples are

the CaC single bond in ethane or the triple bond in acetylene. Thus, e is a mea-

sure of the p-character of the bonding up to the limit of the ‘‘double bond’’ for

which the ellipticity reaches a maximum. On going from a double to a triple

bond, the trend is reversed and the ellipticity decreases with increasing bond or-

der, because at the limit of BO ¼ 3 the bonding regains its cylindrical symmetry

(two p-bonding interactions in two orthogonal planes in addition to a cylindrically

symmetric s-bonding interaction). The ellipticity of an aromatic bond is ca. 0.23

in benzene and that of a formal double bond is ca. 0.45 in ethylene.

1.7.5

Energy Densities at the BCP

Energy densities require information contained in the one-electron density matrix

(and not just the density, its diagonal elements). The energy densities (potential,

kinetic, and total) are used to summarize the mechanics of a bonding interaction.

The potential energy density, VðrÞ, also known as the virial field, is the average

effective potential field experienced by a single electron at point r in a many-

particle system. The virial field evaluated at any point in space is always negative

and its integral over all space yields the total potential energy of the molecule.

The local statement of the virial theorem expresses the relationship between the
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virial field, the kinetic energy density, and the Laplacian, which when written for

a stationary state is [1, 12, 40]:

�h2

4m

� �
‘2rðrÞ ¼ 2GðrÞ þVðrÞ ð10Þ

where

GðrÞ ¼ �h2

2m
N

ð
dt 0‘C� � ‘C ð11Þ

and where GðrÞ is the gradient kinetic energy density and C is an antisymmetric

many-electron wavefunction.

Because we always have GðrÞ > 0 and VðrÞ < 0, the local virial theorem

when applied at a BCP implies that interactions for which ‘2rb < 0 are domi-

nated by a local reduction of the potential energy. Conversely, interactions for

which ‘2rb > 0 are dominated by a local excess in the kinetic energy.

To compare the kinetic and potential energy densities on an equal footing (in-

stead of the 2:1 virial ratio) Cremer and Kraka [41] proposed evaluating the total

electronic energy density ½HðrÞ ¼ GðrÞ þVðrÞ� at the BCP:

Hb ¼ Gb þVb ð12Þ

The total energy density yields the total electronic energy when integrated over

all space. Hb is negative for interactions with significant sharing of electrons, its

magnitude reflecting the ‘‘covalence’’ of the interaction [41].

1.7.6

Electron Delocalization between Bonded Atoms: A Direct Measure of Bond Order

The number of electron pairs shared between two bonded atoms is often called

the bond order. QTAIM provides a bookkeeping of the number of pairs shared be-

tween two atoms by integrating the exchange density once over each of the two

atomic basins. This property may as well be classified under ‘‘atomic properties’’

because it involves the double integration of the exchange density over the basins

of two atoms, but, because it ‘‘counts’’ the number of electron pairs shared be-

tween two atoms, when reported for bonded atoms, it can be regarded as a bond

property.

The magnitude of the exchange of the electrons in the basin of atom A with

those in the basin of atom B is termed the delocalization index between them,

dðA;BÞ, and is defined for a closed-shell system as [42]:

dðA;BÞ ¼ 2jF aðA;BÞj þ 2jF bðA;BÞj ð13Þ
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where the Fermi correlation is defined as:

F sðA;BÞ ¼ �
X
i

X
j

ð
A
dr1

ð
B
dr2ff�i ðr1Þfjðr1Þf�j ðr2Þfiðr2Þg

¼ �
X
i

X
j

SijðAÞSjiðBÞ ð14Þ

where SijðWÞ ¼ SjiðWÞ is the overlap integral of two spin orbitals over a region W

and s represents spin (a or b).

The second-order density matrix obtained from a configuration interaction (CI)

calculation can also be expressed in terms of products of basis functions multi-

plied by the appropriate coefficients enabling one to express the integrated pair

density in terms of overlap contributions. Thus, terms similar to those in Eq.

(14) multiplied by the appropriate coefficients appear in the CI expression for

F sðA;BÞ and electron delocalization is still described in terms of the exchange of

electrons between molecular orbitals, but this time in a wavefunction incorporat-

ing Coulomb in addition to Fermi correlation [42].

If the double integration in Eq. (14) is performed over only one atomic basin,

say atom A, this would yield the total Fermi correlation for the electrons in region

A [43]:

F sðA;AÞ ¼
ð
A
dr1

ð
A
dr2r

sðr1Þhsðr1; r2Þ ð15Þ

where its limiting value is �N sðAÞ, the negative of the s-spin population of atom

A, i.e. the number of s electrons in A being totally localized within this atom be-

cause all remaining s-spin density would then be excluded from A. In other

words, if this limiting value is reached, it implies that the electrons in A do not

exchange with electrons outside A. Thus a localization index ½lðAÞ� is defined as:

lðA;AÞ ¼ jF aðA;AÞj þ jF bðA;AÞj ð16Þ

The limit of total localization, while approached quite closely (b95%) in ionic

systems, cannot usually be achieved and one finds that jF sðA;AÞj < N sðAÞ, indi-
cating that the electrons in region A always exchange, to some extent, with elec-

trons outside the boundaries of A, i.e., they are delocalized.

Because the Fermi correlation counts all electrons, the sum of the localization

indices and half of all the delocalization indices is N, the total number of elec-

trons in the molecule. This, in turn, provides a measure of how these electrons

are localized within the individual atomic basins and delocalized between them,

in effect resulting in bookkeeping of electrons in the molecule:

NðAÞ ¼ lðAÞ þ 1

2

X
B0A

dðA;BÞ ð17Þ
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How closely the sum of the localization and the delocalization indices (Eq. 17)

recovers the total molecular electron population is a global measure of the quality

of the atomic integrations.

The localization and delocalization indices can be calculated from the atomic

overlap matrices using readily available software such as AIMDELOC [44] or LI-

DICALC [45, 46].

It is important to realize that a delocalization index can be calculated between

any pair of atoms whether bonded or not. When dðA;BÞ is calculated between

bonded atoms it yields a measure of the bond order between them if the electron

pairs are equally shared (i.e. there is no appreciable charge transfer) [42, 47].

Because rb and the bond order are strongly correlated (Eq. 8), Matta and

Hernández-Trujillo [48] suggested calibrating this correlation using the delocali-

zation index rather than arbitrarily assigned bond orders:

dðA;BÞ ¼ exp½Aðrb � BÞ� ð18Þ

Equation (18) enables calibration of experimental rb with delocalization indices

obtained by calculation. The fitted equation can then be used to obtain experi-

mental estimates for information on electron sharing contained in a full density

matrix, information which is not accessible in a conventional X-ray diffraction

experiment, from experimentally determined rb [48]. Data for the 21 carbon–

carbon bonds in the estrone hormone could be fitted to the following equation

[49]:

dðC;C 0Þ ¼ expf4:7427� ½rbðin a:u:Þ � 0:2538�g ð19Þ

with r2 ¼ 0:939, a variance of 0.002, and a root mean square deviation of

0.010, and in which dðC;C 0Þ were calculated at the B3LYP/6-311þþGðd; pÞ level
and rb are the experimentally determined electron density values at the CaC
BCPs.

1.8

Atomic Properties

The average of a property O over an atomic basin W, OðWÞ, is calculated from:

OðWÞ ¼ hÔOiW ¼
N

2

ð
W

dr

ð
dt 0½C�ÔOCþ ðÔOCÞ�C� ð20Þ

where ÔO is a one-electron operator or a sum of one-electron operators. Some ex-

amples of commonly computed atomic properties are discussed in the subsec-

tions below.
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1.8.1

Atomic Electron Population [N(W)] and Charge [q(W)]

The total electron population of an atom in a molecule is obtained by setting

ÔO ¼ 1̂1 in Eq. (20). This yields:

NðWÞ ¼
ð
W

rðrÞ dr ð21Þ

which can also be expressed explicitly in terms of the separate spin populations as

the expectation value of the number operator, an integral operator, averaged over

a proper open quantum subsystem:

NðWÞ ¼
X
i

½hciðrÞjciðrÞiaW þ hciðrÞjciðrÞib
W� ð22Þ

in which the separate spin populations are given by:

hciðrÞjciðrÞisW ¼
ð
W

cs�
i ðrÞcs

i ðrÞ dr1Ss
iiðWÞ ð23Þ

where s refers to either a-spin or b-spin, and Ss
iiðWÞ is the ith diagonal element of

the atomic overlap matrix.

The atomic charge is obtained by subtracting NðWÞ from the nuclear charge ZW:

qðWÞ ¼ ZW � NðWÞ ð24Þ

Because of the manner by which atomic populations are defined, Eqs (22) and

(23), QTAIM populations and charges are true quantum expectation values. That

is, they are ‘‘observables’’ in the quantum mechanical sense [18, 50]. Observables

are not necessarily measurable in practice, but any measurable quantity is an ob-

servable or can be expressed in terms of one or more observables. Indirect exper-

imental evidence lends strong support to the physical nature of QTAIM atomic

populations and charges [51] (see also Section 1.9.2).

The deviation of the sum of the atomic populations (or charges) from the cor-

responding molecular value is an indicator of the quality of the numerical inte-

grations. Deviations of less than ca. 0.001–0.002 electrons are regarded as accept-

able for molecules of medium size (up to@100 first to third row atoms).

1.8.2

Atomic Volume [Vol.(W)]

The atomic volume is defined as the space bounded by the intersection of the

zero-flux surface(s) bounding the atom from the molecular interior and a chosen
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outer isodensity envelope (if a side of this atom’s basin extends to infinity). While

a molecule extends in principle to infinity, an outer isodensity of rðrÞ ¼ 0:001 au

is usually chosen as its outer bounding surface for two reasons:

1. this isosurface closely recovers the experimental van der

Waals volumes in the gas phase, and

2. it usually encloses more than 99% of the electron population

of the molecule [1].

The van der Waals surface in condensed phases is closer to the 0.002 au isoden-

sity envelope [1].

1.8.3

Kinetic Energy [T(W)]

There are at least two forms of the kinetic energy operator [52] with two corre-

sponding expressions for the atomic average of the kinetic energy, the Schrö-

dinger kinetic energy:

KðWÞ ¼ � �h2

4m
N

ð
W

dr

ð
dt 0½C‘2C� þC�‘2C� ð25Þ

and the gradient kinetic energy:

GðWÞ ¼ �h2

2m
N

ð
W

dr

ð
dt 0‘iC

� � ‘iC ð26Þ

For the total system and for a proper open quantum system, Eqs (25) and (26)

must yield an identical value for the kinetic energy, of course, i.e. KðWÞ ¼
GðWÞ ¼ TðWÞ. Because the difference between KðWÞ and GðWÞ should vanish for

an atom in a molecule, the (small) departure from zero of this difference as

gauged by the Laplacian (Section 1.8.4) is a measure of the numerical accuracy

of the atomic integrations.

1.8.4

Laplacian [L(W)]

The Laplacian function has the dimensions of electrons� (length)�5. Because of

the zero-flux boundary condition, Eq. (6), the Laplacian of the electron density,

vanishes when integrated over an atomic basin, as can be seen from:

LðWÞ ¼ KðWÞ �GðWÞ

¼ � �h2

4m

ð
W

dr½‘2rðrÞ�

¼ � �h2

4m

ð
dSðW; rÞ‘rðrÞ � nðrÞ ¼ 0 ð27Þ
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the last equality is valid only for the total system or if the integration is performed

over a proper open quantum system bounded by zero-flux surfaces.

How close the integrated Laplacian approaches zero is often used as an indica-

tor of the numerical accuracy of atomic integrations. Deviations from zero are a

measure of integration error. LðWÞa ca: 1:0� 10�3 au for second and third-row

atoms and LðWÞa ca: 1:0� 10�4 au for hydrogen atoms are regarded as accept-

able and are usually paralleled by atomic energies which add up to within a kcal

mol�1 of the directly calculated molecular total energy for a medium size mole-

cule (@100 atoms or fewer). The smaller LðWÞ the better the quality of an atomic

integration.

1.8.5

Total Atomic Energy [Ee(W)]

The partitioning of the total molecular energy into a set of additive atomic ener-

gies is a non-trivial problem that was solved by Bader [1]. To see the difficulties

in partitioning the total energy, one may ask, for instance, how can the nuclear–

nuclear repulsion contribution to the total molecular energy be partitioned on an

atom-by-atom basis?

The kinetic energy density can be expressed:

KðrÞ ¼ � �h2

4m
N

ð
dt 0½C‘2C� þC�‘2C� ð28Þ

which when compared with Eq. (11) yields:

KðrÞ ¼ GðrÞ � �h2

4m
‘2rðrÞ ð29Þ

It is clear from Eq. (29) that the integral of the kinetic energy densities KðrÞ
and GðrÞ over a volume o would usually yield different values because the inte-

gral of the Laplacian does not usually vanish when integrated over an arbitrary

volume, in which case the kinetic energy is not well defined. The kinetic energy

is well defined if, and only if, the integral of the Laplacian term vanishes, i.e.

when this integral is performed over the total system or over an atomic basin

bounded by a zero-flux surface. Integrating Eq. (29) over o, one obtains:

KðoÞ ¼ GðoÞ � �h2

4m
N

ð
o

dr ‘ � ‘r ð30Þ

Using Gauss’s theorem, the volume integral in Eq. (30) can be transformed into

a surface integral:

KðoÞ ¼ GðoÞ � �h2

4m
N

ð
dSðo; rÞ‘r � nðrÞ ð31Þ
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Now it is clear that the second term in the R.H.S. will vanish only for systems

bounded by a zero-flux surface satisfying Eq. (6) (or for the whole system, because

the Laplacian integrated over the entire space also vanishes). Thus only the total

system and proper open sub-systems will have a definite kinetic energy. A proper

open system (one bounded by a zero-flux surface and/or infinity) will be referred

to as W to distinguish it from an arbitrary bounded region of space o. For such a

proper open system one has:

KðWÞ ¼ GðWÞ ¼ TðWÞ ð32Þ

and, because the integral of the Laplacian vanishes over W, the integral of the lo-

cal statement of the virial theorem (Eq. 10) over W yields the atomic virial theorem:

�2TðWÞ ¼VðWÞ ð33Þ

where the VðWÞ is the total atomic virial.

The atomic electronic energy EeðWÞ is given by:

EeðWÞ ¼ TðWÞ þVðWÞ ð34Þ

For systems in equilibrium there are no Hellmann–Feynman forces acting on

the nuclei and the virial equals the average potential energy of the molecule, i.e.

V ¼ V . Under this condition Eq. (33) becomes:

�2TðWÞ ¼ VðWÞ ð35Þ

where VðWÞ is the potential energy of atom W, and Eq. (34) becomes:

EðWÞ ¼ EeðWÞ ¼ TðWÞ þ VðWÞ ¼ �TðWÞ ¼ 1

2
VðWÞ ð36Þ

where EðWÞ is the total energy of atom W.

Thus, the energy of an atom in a molecule at its equilibrium geometry is ob-

tained from the atomic statement of the virial theorem, and EðWÞ ¼ �TðWÞ.
The sum of atomic energies yields, naturally, the total energy of the molecule (ob-

tained directly from the electronic structure calculation) to within a small numer-

ical integration error. This additivity of the atomic energies is expressed as:

Etotal ¼
X
W

EðWÞ ð37Þ

The result shown in Eq. (37) is remarkable. The equation expresses the parti-

tioning of the total molecular energy into atomic contributions, a partitioning

which includes, for example, the nuclear–nuclear repulsion contribution to the
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molecular energy. Such partitioning of the total energy is indispensable if one is

to understand the atomic origins of the energy difference between two isomers

[4, 16, 53], for example, or the atomic origins of potential energy barriers [17, 54].

The deviation of the sum of the atomic energies from the directly calculated to-

tal molecular energy is another global measure of the quality of atomic integra-

tions. A deviation of no more than ca. 1 kcal mol�1 is usually regarded as an in-

dicator of accurate integrations.

The discussion above is based upon the assumption that the calculated molec-

ular wavefunction satisfies the virial theorem exactly, i.e. the molecular virial ratio

�V/T ¼ 2 to infinite accuracy. In practice, the calculated virial ratio deviates

slightly from this ideal value of 2 because of the truncation of the basis set, resid-

ual forces on the nuclei, and the finite nature of the convergence thresholds in a

typical calculation. The manner by which AIMPAC corrects for this deviation is

described in the Appendix.

1.8.6

Atomic Dipolar Polarization [m(W)]

Also known as the first atomic electrostatic moment, atomic dipolar polarization

is the atomic space average of the electronic position vector. It is a three-

dimensional vector with components and magnitude defined in Eqs (38) and

(39), respectively:

mðWÞ ¼
mx

my

mz

0
BB@

1
CCA¼

�e
ð
W

xrðrÞ dr

�e
ð
W

yrðrÞ dr

�e
ð
W

zrðrÞ dr

0
BBBBBBBB@

1
CCCCCCCCA
1�e

ð
W

rWrðrÞ dr ð38Þ

jmðWÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx

2 þ my
2 þ mz

2
q

ð39Þ

with the origin for the vector rW at the nucleus of atom W, i.e. rW ¼ r � RW, r

being the electronic coordinates and RW the nuclear coordinates of atom W. The

first moment measures the polarization of the charge density, that is to say the

departure from sphericity of the electron density.

The dipolar polarization can be used to understand the origins of permanent

and induced molecular dipole moments and dielectric polarization in materials

[55, 56]. Carbon monoxide is an instructive example [57]. The dipole moment of

the CO molecule has the (unexpected) polarity d�CbOdþ, opposite to intuition

based on the relative electronegativities of carbon and oxygen. This observation

is readily explained when one considers both atomic charges and atomic dipoles.

Calculated atomic charges are indeed in accordance with the expected relative

electronegativities of these two atoms (an electronegativity of 2.5 for carbon and
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3.5 for oxygen) [58] with the carbon bearing a positive charge [qðCÞ ¼ þ1:17 au]

and the oxygen a negative charge, resulting in a charge-transfer dipole with the di-

rection þ1:17CbO
��!�1:17. The electron density of each of the two atomic basins re-

sponds to this charge-transfer dipole with an opposing dipolar polarization C
 
bO
 

with a magnitude which is not only sufficient to cancel the charge-transfer dipole

but to slightly exceed it. The net result is a small dipole in complete accordance

with the unexpected experimental result (Fig. 1.5). Thus, it is necessary to take the

vectorial sum of both the charge transfer and the atomic polarization dipoles in

defining atomic or group contributions to the molecular dipole moment [55, 56].

A program, FRAGDIP [59], is available for calculation of additive atomic and

group contributions to the molecular dipole moment. As an illustration, Table 1.1

lists the group contributions to the dipole moments of several naturally occurring

amino acids with their vector sum and compares this sum with the dipole mo-

ments calculated directly from an SCF calculation (second line). Each amino

acid in its neutral form, with general formula RaCH(NH2)COOH, was regarded

as consisting of two groups – the side-chain (Ra) and the ‘‘main chain’’

(aCH(NH2)COOH). The reader can see how closely the group contributions sum

to the molecular dipole.

Fig. 1.5 Contour plot of the electron density

of CO, showing the magnitudes and

directions of atomic and charge-transfer

dipoles (arrow lengths are proportional to the

dipoles magnitudes). The head of an arrow

points to the negative end of a dipole. The

molecular dipole moment is given by the

vector sum of the charge-transfer terms (mCT)

and the atomic polarizations (mAP). The

directly calculated SCF molecular dipole is

0.096 debyes (D) at the B3LYP/6-311þG(3df )
and the corresponding dipole obtained

from group contributions is 0.096 D,

(experimental: 0.110 D). (Reproduced from

Ref. [57] with the permission from the

American Chemical Society).
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Further, the listings in Table 1.1 have been sorted in terms of the magnitude of

the side-chain dipole magnitude, a sorting that reveals a striking regularity in the

genetic code. Most amino acids listed in the upper part of the table with side-

chain dipole magnitude less than 0.81 au (i.e. with non-polar side-chains) are en-

coded by a genetic triplet code having a pyrimidine base as the middle letter in

the mRNA codon (except glycine, which lacks a side-chain, and tyrosine). On the

other hand, most polar amino acids (having side-chain dipole magnitudes greater

than 0.81 au) are encoded by a purine base, serine being the only ‘‘degenerate’’

amino acid, having codons of both types [56, 60]. Whereas this regularity in the

genetic code has been well known for a long time, it is given a quantitative basis

derived directly from the electron density distributions of the amino acids for the

first time [60].

1.8.7

Atomic Quadrupolar Polarization [Q(W)]

The atomic quadrupolar polarization tensor is also known as the second atomic
electrostatic moment. It is a symmetric traceless tensor defined as:

QðWÞ ¼
Qxx Qxy Qxz

Qyx Qyy Qyz

Q zx Q zy Q zz

0
B@

1
CA

1� e

2

ð
W

ð3x2
W � rWÞrðrÞ dr 3

ð
W

xWyWrðrÞ dr 3

ð
W

xWzWrðrÞ dr

3

ð
W

yWxWrðrÞ dr
ð
W

ð3y2W � rWÞrðrÞ dr
ð
W

yWzWrðrÞ dr

3

ð
W

zWxWrðrÞ dr
ð
W

zWyWrðrÞ dr
ð
W

ð3z2W � rWÞrðrÞ dr

0
BBBBBBBB@

1
CCCCCCCCA
ð40Þ

where, as for the first moment, the origin is placed at the nucleus. If the atomic

electron density has spherical symmetry, then
Ð
W
x2
WrðrÞ dr ¼

Ð
W
y2WrðrÞ dr ¼Ð

W
z2WrðrÞ dr ¼ 1

3

Ð
W
r2WrðrÞ dr, and Qxx ¼ Qyy ¼ Q zz ¼ 0. Thus, the quadrupole

moment is another measure of the deviation of the atomic electron density from

spherical symmetry. For example, if a diagonal component of QðWÞ is <0, the

electron density is concentrated along that axis, and vice versa. It is always possi-

ble to find a coordinate system such that the original tensor in Eq. (40) ½QðWÞ� is
diagonalized ½QðWÞ�. The diagonalization of QðWÞ corresponds to a rotation of the

original coordinate system. The diagonalized quadrupole tensor corresponding to

Eq. (40) is written:

QðWÞ ¼
Qx 0x 0 0 0

0 Qy 0y 0 0

0 0 Qz 0z 0

0
BB@

1
CCA ð41Þ
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where Qx 0x 0 , Q y 0y 0 , and Q z 0z 0 are the principal values of the quadrupole moment

with regard to the principal (rotated) axes, the x 0, y 0, and z 0 axes, which corre-

spond to axes of symmetry if they exist in the electron density distribution (the

primes will be dropped for simplicity).

The traceless property of the tensor defined in Eq. (40) (or in its diagonalized

form, Eq. 41) is a consequence of the equality:

r2W ¼ x2
W þ y2W þ z2W ð42Þ

which is always true in any coordinate system. Therefore:

ðQxx þQyy þQ zzÞ ¼ ðQxx þ Qyy þ QzzÞ ¼ 0 ð43Þ

and only five independent components completely specify QðWÞ in the original

coordinate system and only two are sufficient to specify its diagonalized form

QðWÞ.
Finally, the magnitude of the quadrupolar polarization moment is defined as

[62]:

jQj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ðQ 2

xx þQ 2
yy þQ 2

zzÞ
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ðQ2

xx þ Q2
yy þ Q2

zzÞ
r

ð44Þ

1.9

‘‘Practical’’ Uses and Utility of QTAIM Bond and Atomic Properties

1.9.1

The Use of QTAIM Bond Critical Point Properties

Several QTAIM bond properties have been shown to be correlated with experi-

mental molecular properties. For example, the electron density at the BCP, rb,

has been shown on several occasions to be strongly correlated with the bond

energies, and hence provide a measure of bond order (Eq. 8) [1, 30]; the potential

energy density at the BCP has been shown to be highly correlated with hydrogen

bond energies [32]; full interaction potentials in hydrogen bonds were recovered

from the potential energy density at the BCP [63]; p–p stacking interactions in

benzene dimers and in stacked DNA bases and base-pairs have been found to be

highly correlated to BCP and cage critical point data between p-stacked mono-

mers [64–66].

The use of BCP properties in drug design is a field pioneered by Popelier and

coworkers. These authors proposed the construction of a vector space from bond

properties evaluated at the bond critical points, i.e. a point in this space is speci-

fied by a set of bond properties [67–70]. This space was used as a basis for com-

paring related molecules, the smaller the distance between two molecules in this
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space the more they are similar. Quantification of molecular similarity in this

manner has several advantages over other similarity measures (for example

Carbo’s similarity index [71]):

1. it is much faster because it involves no spatial integration

(the density of each molecule is only sampled at the positions

of the BCPs);

2. it is not dominated by nuclear maxima but rather

emphasizes the more interesting chemical bonding regions

of the molecule; and

3. it is not plagued with the alignment problem, in which one

must often choose how to align the molecules to be

compared before the integration.

The new method has been successful in accurately predicting a number of

properties of several series of molecules [67–70].

1.9.2

The Use of QTAIM Atomic Properties

The review in this section follows closely Table 1 of Ref. [51].

Atomic properties have been used to recover and directly predict several ex-

perimentally additive atomic and group contributions to molecular properties, in-

cluding, for example, heats of formation [72], magnetic susceptibility (Refs [73–

77] and Chapter 3 in this book), molecular volumes [78], electric moments (Chap-

ter 3) and polarizability [79–81], Raman intensities [79, 81–84] (see also Chapter

4), IR intensities [85–88] (see also Chapter 4), spectroscopic transition probabil-

ities [89], dielectric polarization in crystals and molecular dipole and quadrupole

moments [55, 90, 91], Wigner–Seitz cells in crystals [92], group additivity in

silanes [93], and Pascal’s aromatic exaltations [1]. They have also been used to

provide an atomic basis for electron localization and delocalization [42, 43, 47,

94, 95].

Atomic properties have also been used empirically to predict several experimen-

tal properties including for example, the pKa of weak acids from the atomic en-

ergy of the acidic hydrogen [96], a wide array of biological and physicochemical

properties of the amino acids, including the genetic code itself, and the effects of

mutation on protein stability [60], protein retention times [97], HPLC column ca-

pacity factors of high-energy materials [98], NMR spin–spin coupling constants

from the electron delocalization indices [99, 100], simultaneous consistent predic-

tion of five bulk properties of liquid HF in MD simulation [101], classification of

atom types in proteins with future potential applications in force-field design

[60, 102–104], reconstructing large molecules from transferable fragments or

atoms in molecules [60, 105–119] (see also Chapters 11 and 12), atomic partition-

ing of the molecular electrostatic potential [120–122], prediction of hydrogen-

bond donor capacity [123] and basicity [124], and to provide an atomic basis for

curvature-induced polarization in carbon nanotubes and nanoshells [125].
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1.10

Steps of a Typical QTAIM Calculation

It should be clear from the outset that QTAIM applies equally well to experimen-

tal [2, 126] and calculated electron densities [1, 3]; in this tutorial, however, we

will discuss calculated densities.

The starting point for the application of the QTAIM theory is the electron den-

sity. The density can be calculated from the many-electron single-determinant or

many-determinant wavefunction (or Slater-like determinants built from Kohn–

Sham orbitals in density functional theory [127]) obtained by a variety of methods

and software. The electron density necessary for meaningful analysis by means of

QTAIM must be obtained with a basis set flexible enough for an accurate repre-

sentation of the bonding regions, in other words it must include polarization

functions. In the case of anions, excited states, and weak bonding interactions be-

tween atoms separated by relatively large distances one must augment the basis

set with diffuse functions. When heavy atoms are present in the molecule, which

usually necessitates the use of effective core potentials (ECP), it is necessary to

treat the valence shell and at least one sub-valence shell explicitly to obtain mean-

ingful results from the integrations. It is important to note that bond paths can-

not be traced to the nuclei of atoms described by ECPs. Alternatively, often the

geometry is optimized with a basis set including the ECP on the heavy atoms fol-

lowed by a single point calculation at the optimized geometry using a full basis

set on all atoms.

The first step in a molecular QTAIM calculation is, thus, the generation of a

wavefunction (or wavefunction-like single determinant in a DFT calculation

[127]) from an electronic structure calculation with software such as Gaussian

[61] or GAMESS [128].

The electron density derived from the wavefunction is then subjected to a

point-by-point topological analysis to locate the bond critical points and the bond

paths, by use of software such as EXTREME [129–131]. The space of the mole-

cule is then partitioned by the zero-flux surfaces and atomic integrations are per-

formed to obtain the atomic contributions to the molecular properties using soft-

ware such as PROAIM and its variants [129–131]. EXTREME and PROAIM are

both part of the AIMPAC suite of programs developed in Professor Bader’s labo-

ratory (McMaster University) [129–131].
Several other software packages derived from AIMPAC are available for analy-

sis of the electron density according to QTAIM. Among the widely used programs

are MORPHY [132], developed by Dr Paul Popelier’s group (University of Man-
chester), and AIM2000 [133–135], developed by Professor Friederich Biegler–

König (University of Bielfeld), both of which apply to molecular calculations. The

program TOPOND [136] (described in Chapter 7) was developed by Dr Carlo

Gatti (National Research Council of Italy) for the analysis of periodic densities ob-

tained from CRYSTAL [137].

After all atomic integrations have been performed to the desired accuracy (as

measured by the value of the integrated Laplacian) one typically uses shell scripts
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and/or simple UNIX/Linux commands such as ‘‘grep’’ to extract the relevant in-

formation from the electronic integration files. In this manner the summarized

results can be further imported to a spreadsheet or a plotting program. Integra-

tion files – which contain the atomic overlap matrices – can be subsequently ana-

lyzed by software such as AIMDELOC [44] or LI-DICALC [45, 46] to obtain the

localization and delocalization indices.

Further, the wavefunction files can be used as input to plotting routines.

GRDVEC can be used to generate two-dimensional plots of the gradient vector

field and/or the interatomic surfaces and bond paths projected on a plane se-

lected by the user (right half of Fig. 1.3a). Contour diagrams of the density (such

as those in the left half of Fig. 1.3a, and Fig. 1.5), the Laplacian, or energy

densities can be generated by first calculating the corresponding grid by the use

of GRIDV software followed by the generation of the graphics file from the grid

Fig. 1.6 The main steps in a simple QTAIM calculation. The software

cited in the figure is part of the AIMPAC suite of programs [129–131].

Other programs are available that can perform most or all of these

steps, including, for example, AIM2000 [133–135], MORPHY [132], and

AIMALL97 [139].
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by using a program such as CONTOR. (GRDVEC, GRIDV, and CONTOR are

components of AIMPAC [129–131]).

The grid generated by GRIDV can be manipulated by utility programs such as

GridV_REFORMATTER (available from the authors) to generate inputs for pro-

grams such as Surfer [138] which produce three-dimensional relief maps of the

field represented by the calculated grid (Fig. 1.1b is an example).

The main steps of a typical QTAIM calculation are summarized in Fig. 1.6.

Appendix: The Inexact Satisfaction of the Molecular Virial Theorem in Electronic

Structure Calculations

For a molecule in an equilibrium geometry (with vanishing forces on the nuclei),

the molecular virial theorem is expressed as:

g ¼ �V

T
¼ 2 ð45Þ

Because of the propagation of numerical errors, small (but non-vanishing)

thresholds of convergence of both the SCF and the geometry optimization steps,

and the use of incomplete basis sets, electronic structure calculations do not usu-

ally satisfy the virial theorem exactly and the virial ratio ðgÞ can deviate by perhaps

as much as 0.01 from the ideal value of 2. As a result of this deviation, atomic

energies will not sum to yield the molecular energy with acceptable accuracy.

Atomic integration software such as PROAIM [129–131] correct for this error

numerically. Thus, instead of simply multiplying each atomic kinetic energy

TðWÞ by ð�1Þ to obtain the total atomic energy EðWÞ, the latter is obtained by

multiplying TðWÞ by ð1� gÞ. These corrected atomic energies do satisfy Eq. (37),

and their sum equals the total molecular energy to within a small numerical inte-
gration error. The virial corrections usually scale linearly with regard to TðWÞ
which, fortunately, leaves the relative stabilities of the atoms unchanged.

The integration software obtains the virial ratio from the wavefunction files

generated by Gaussian [61] or GAMESS [128]. The virial is printed in the last

line in the wavefunction file. For Hartree–Fock or density functional calculations,

Gaussian prints the correct virial in the wavefunction file and the integrations

proceed without problems. For wavefunction files calculated at a post Hartree–

Fock level, for example those obtained using Møller–Plesset perturbation theory

(MPn) or configuration interaction methods (CI), the virial printed in the wave-

function file generated using the Gaussian 98 or 03 [61] programs (which are avail-

able at the time of writing) is the Hartree–Fock virial and not that of the current post-
Hartree–Fock method [even if the key word ‘‘DENSITY ¼ CURRENT’’ is invoked

and despite the fact that the correct (current) wavefunction is printed]. If such a

wavefunction file is fed directly to an integration program, the calculated atomic

energies will be rectified using the Hartree–Fock g (instead of the post Hartree–

Fock g), resulting in atomic energies which do not add up to the molecular value.

Appendix 29



In these circumstances the user must calculate the virial of the current method

‘‘by hand’’ from information contained in the Gaussian ‘‘log’’ or ‘‘out’’ output

file [140], by dividing, for example, the MP2 (or other correlated total energy) by

the kinetic energy listed just after the final electrical multipoles in the Gaussian

output. The wavefunction files must then be edited to reflect this new ‘‘correct’’

virial before submitting it to the integration software [140].

In highly accurate calculations it is sometimes necessary to perform atomic in-

tegrations of energy densities obtained from systems which satisfy the molecular

virial theorem exactly [16, 141]. The author of Chapter 3 of this book, Dr Todd A.

Keith, has written a link [142] for Gaussian [61] implementing Löwdin’s self-

consistent virial scaling (SCVS) [143, 144] which produces final wavefunctions

satisfying the virial theorem to a very high accuracy.
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K. Belohorcová, J. Chem. Phys. 1993,
98, 9669–9677.

83 K. M. Gough, H. K. Srivastava,
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Advances in Theory





2

The Lagrangian Approach to Chemistry

Richard F. W. Bader

2.1

Introduction

This article is written by a chemist for other chemists to explain how and why the

definition of an atom in a molecule requires that one foregoes the usual Hamilto-

nian approach to quantum mechanics and replace it with one expressed in terms

of the Lagrangian and the associated action principle. A consequence of the La-

grangian approach to chemistry is the possibility of foregoing arbitrary models

and dealing instead with observation and physics, so the article should be of par-

ticular interest to experimentalists. It is addressed in particular to younger chem-

ists, those willing to extend their knowledge of quantum mechanics beyond the

orbital model of electronic structure.

2.1.1

From Observation, to Physics, to QTAIM

Thirty-four years have passed since it was first postulated that the virial theorem

should apply to a bounded region of real space – to an atom in a molecule [1].

This postulate was put forth on the basis of the observation of the paralleling

transferability of the topological properties of the electron and kinetic energy den-

sities. In another three years, bringing one to 1975, this postulate was derived

starting from Schrödinger’s first paper on ‘‘wave mechanics’’ [2]. The 1975 paper,

by yielding a variational derivation of the virial theorem for an atom in a mole-

cule, was the initial step in establishing a variational definition of ‘‘an atom in a

molecule’’, one derived from the Lagrangian approach to physics. Thus one pro-

ceeded from observation, to physics, to the quantum theory of atoms in mole-

cules, QTAIM, a theory that applies equally to the total system and to its constit-

uent atoms [3]. By building upon Schwinger’s principle of stationary action [4]

that follows the Lagrangian approach to physics, QTAIM yields a variational state-

ment of the Heisenberg equation of motion for all quantum observables and es-

tablishes the equal applicability of these equations to the total system and its con-
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stituent atoms. In the Heisenberg approach, quantum mechanics is represented

in terms of the equations of motion of the observables, thus emphasizing the ties

that link theory to observation. Thus QTAIM, by uniting the Heisenberg and La-

grangian approaches to physics, unites theoretical chemistry with experiment.

QTAIM brings to the fore the modus operandi of quantum mechanics – to use

the equations of motion – the theorems of quantum mechanics – to predict and

understand the observed properties of a system. This is the approach followed by

Slater in his use of the virial and Feynman theorems which he considered to be

‘‘two of the most powerful theorems applicable to molecules and solids’’ [5].

QTAIM, by extending these and all theorems to an atom in a molecule, enables

one to apply this approach to all problems at the atomic level. The time has ar-

rived to replace the criticisms of these powerful theorems that one finds through-

out the literature, with the clarity and predictive powers of physics.

2.2

The Lagrangian Approach

2.2.1

What is The Lagrangian Approach and What Does it Do?

The Hamiltonian approach to quantum mechanics evolved from Schrödinger’s

wave equation that he derived in 1926 [6]. Yourgrau and Mandelstam (Y&M) in

their prelude to introducing the Lagrangian approach in their monograph on

variational principles in quantum theory state: ‘‘The ordinary Hamiltonian pre-

sentation of quantum mechanics contains, apart from the basic principles of the

subject, two distinct postulates: the commutation relations between generalized

co-ordinates and the momenta, and the equations of motion’’ [7]. The alternative

‘‘Lagrangian approach’’, is based on the action principle, which in its earliest form

was referred to as the principle of least action – first enunciated somewhat imper-

fectly by Maupertuis in 1744 and stated in its present form by Hamilton in 1834.

Y&M point out that in classical mechanics the Lagrangian formalism can be sub-

stituted for the Hamilton theory enabling the laws of mechanics to be expressed

as a single postulate, the principle of least action stated by Hamilton. Y&M go on to

ask: ‘‘The obvious question that arises from such considerations: is it not possi-

ble, and moreover most desirable, to obtain a similar Lagrangian formulation of

the quantum laws depending upon a single postulate only? This aim is achieved

by the Feynman and Schwinger theories’’ [7]. Their theories re-introduced the

action principle into the active fabric of physics, Feynman [8] in 1948 and

Schwinger [4] in 1951, and yield both the equations of motion and the commuta-

tion relations. This chapter shows how Schwinger’s formulation enables one to

ask and answer the question ‘‘what is an atom in a molecule?’’, a question that

cannot be posed within the Hamiltonian approach. Answering the question takes

one on an intellectual journey beginning with Schrödinger, on to Dirac, and end-
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ing with Schwinger, whose principle of stationary action can be extended to yield

the physics of an open system and thus, the theory of atoms in molecules [3]. The

work of Feynman and Schwinger may provide ‘‘the real foundation of quantum

mechanics’’ [9]. Its extension to an atom in a molecule will bring to bear the ad-

vantages of this approach to the understanding and prediction of chemistry [10].

The derivation of the atomistic approach from the action principle imparts the

certainty of physics to the molecular structure hypothesis – that a molecule is a

collection of atoms with additive, characteristic properties linked by a network of

bonds that impart a structure – a concept forged in the crucible of nineteenth-

century experimental chemistry. One hundred and fifty years of experimental
chemistry underlie the realization that the properties of a total system are the

sum of its atomic contributions and Dalton’s atomic hypothesis has emerged as

the operational theory of chemistry. The time has arrived for a shift of emphasis

in the prediction and understanding of chemistry, away from a philosophy based

on the premise held by some that because chemical concepts are beyond physics,

one is free to formulate and choose between a plethora of frequently conflicting

subjective models.

This chapter is intended for a wide audience. Each section opens with an intro-

duction to the essential underlying ideas and their reading will take one through

to the chapter’s goal – an understanding of the rooting of the atomic concept in

the fabric of quantum mechanics. Experimental chemists with a limited knowl-

edge of physics, such as I when I first switched to theory, may skip intervening

sections that provide those more knowledgeable of physics with more mathemat-

ical detail. A recent article provides a narrative of the development of the theory of

atoms in molecules from the properties of the measurable electron density distri-

bution [11].

2.2.2

The Lagrangian and the Action Principle – A Return to the Beginnings

It was the classical concept of ‘‘action’’ that provided Schrödinger with the con-

ceptual basis for his derivation of ĤHc ¼ Ec in the first of the four papers on

‘‘wave mechanics’’ that he published in 1926 [6]. He based its derivation on an

analogy with a method of obtaining a solution to the classical equations of motion

that corresponds to finding the time integral of the Lagrangian over the motion in

question, the ‘‘action integral’’. Thus the action provided the starting point for

Schrödinger’s derivation of his equation that evolved into the Hamiltonian

approach to quantum mechanics. The quantum theory of an atom in a molecule

(QTAIM) was, in turn, first obtained by extension of Schrödinger’s derivation to a

system with finite boundaries [2]. Thus the initial step on the path that leads to

the development an atom in a molecule is accomplished by a return to the action

at the beginning of quantum mechanics, a path that leads directly to Schwinger’s

principle of stationary action [4]. It is the purpose of this section to demon-

strate that wave mechanics had its origin in the action principle and to show
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how this leads unavoidably to the definition of an atom as a bounded piece of real

space.

2.2.3

Minimization of the Action

The principle of least action states that a quantity called the action is minimized

as a system moves from one configuration to another – the action is said to be

‘‘stationary’’ relative to variations in the space–time path connecting the two con-

figurations. Such a path is depicted in Fig. 2.1 for a classical trajectory connecting

initial and final points in space; q1 and q2, at the corresponding times t1 and t2.

The action, denoted by W12, with the dimensions of Planck’s constant h

(energy� time) is the time integral between the limits t1 and t2, of the Lagran-

gian Lðq; _qq; tÞ, a function of the coordinates q, their velocities _qq and the time t

(Eq. 1):

W12 ¼
ð t2

t1

Lðq; _qq; tÞ dt ð1Þ

The mathematical procedure used to minimize the action over an entire path is

outlined below for those desirous of a more complete description. The procedure

yields a differential equation, the Euler equation, the equation of motion for the

chosen Lagrangian; the classical action integral yielding Lagrange’s equations and

the quantum action yielding Schrödinger’s equation. Thus the action principle

enables one to derive Newton’s and Schrödinger’s equations and in this sense

alone it is a more fundamental statement of physics.

Fig. 2.1 A representation of the actual path and a possible varied path

obtained by variation of the position coordinate q connecting the initial

(q1, t1) and final (q2, t2) space–time points for a classical system.
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2.2.4

Steps in Minimizing the Action

The classical Lagrangian equals the difference between the kinetic and potential

energies, L ¼ T� V. It has a value at each point on the trajectory and the ‘‘sum’’

of these values between the two time limits must be a minimum. This problem is

distinct from finding an extremum in some function at a single point in space

using differential calculus. Determining an extremum of a function over an

entire path is accomplished using the ‘‘calculus of variations’’. Assuming the ex-

istence of the ‘‘actual path’’ that is to be found, one generates a ‘‘varied path’’ co-

terminus in space and time, by displacing q on the actual path by an amount dq

at each time t, as depicted in Fig. 2.1, thereby causing a variation or first-order

change in the action integral, dW12. Because W12 must be a minimum for the

true path, the variation dW12 must vanish, and the action is said to be ‘‘station-

ary’’. One of Feynman’s lectures [12] presents a clear and very readable presenta-

tion of the elementary mathematics underlying the derivation of the expression

for dW12 ¼ 0.

The mathematical result of varying the action integral is shown in Eq. (2) for a

single coordinate q.

dW12 ¼
ð t2

t1

fðqL=qqÞ � dðqL=q _qqÞ=dtgdq dt ¼ 0 ð2Þ

The variations in _qq are re-expressed in terms of dq using an integration by parts

(refer to Feynman’s lecture) and the resulting terms at the time end points are

discarded. Thus, the result of the variation is given by the group of terms en-

closed in the curly brackets in Eq. (2), all multiplied only by dq, the variations in

q. Because dq is arbitrary, the only way in which the variation dW12 can vanish is

for the group of terms in the curly brackets to equal zero, yielding a differential

equation, representing Lagrange’s equations:

qL=qq� dðqL=q _qqÞ=dt ¼ 0 ð3Þ

This, as pointed out above, is a general result – minimizing the action gener-

ates a differential equation, called the Euler equation that for the classical action

is Lagrange’s equation of motion. For a single particle L ¼ m _qq2=2� VðqÞ and

the equation reduces to Newton’s equation of motion, i.e. the force, given by

�qV=qq, equals mass times acceleration, m€qq.

If one employs the quantum mechanical Lagrangian and causes the action to

be stationary relative to first-order variations in the wave function C, one obtains

Schrödinger’s time dependent equation, i�hqC=qt ¼ ĤHC, as the Euler equation.

Because Cðq; tÞ is a function of the coordinates and time, one must perform the

variations over the whole of configuration space – all values of q – between the two

time limits, a procedure that again clearly requires the methods of the calculus of

variations.
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2.3

The Action Principle in Quantum Mechanics

2.3.1

Schrödinger’s Appeal to the Action

The purpose of this section is to show how Schrödinger was led to his derivation

of ĤHc ¼ Ec by a procedure that is equivalent to the variation of a constrained

action integral for an infinitesimal time interval. Schrödinger derived ĤHc ¼ Ec

by constructing an expression for the energy of a quantum system in a stationary

state expressed in terms of a ‘‘wave function cðqÞ’’ whose constrained variation

over the whole of configuration space using the calculus of variations yields

ĤHc ¼ Ec as the Euler equation. He based the form of his functional on the clas-

sical Hamilton–Jacobi (H–J) equation whose solution Sðq; tÞ is the indefinite time

integral of the Lagrangian – the action integral.

For most of classical mechanics – to solve Hamilton’s equations of motion, for

example – the Hamiltonian is expressed in terms of the coordinates q and the

momenta p, H½q; p�. The Hamiltonian in the H–J equation expresses the momen-

tum in terms of qS=qq, however, and the H–J equation for a time-independent

system is of the form H½q; qS=qq� ¼ E. Schrödinger argued to replace the solution

S(q) by an unknown function cðqÞ such that the H–J equation be expressed as

H½q; ð�h=cÞqc=qq� ¼ E. Schrödinger did not seek solutions to this equation as in

the classical case, but instead chose to ‘‘seek a function c such that for any arbi-

trary variation of it the integral of the said quadratic form, taken over the whole

coordinate space, is stationary, . . .’’ Then in his italics ‘‘The quantum conditions are
replaced by this variation problem’’ [6].
The result of Schrödinger basing his energy integral on the H–J equation

is that the momentum is expressed as a spatial derivative of the wave function,

a term proportional to qc=qq and, as a consequence, Schrödinger’s energy inte-

gral is, aside from a trivial change in sign and before the imposition of the nor-

malization constraint, equal to the quantum Lagrangian for a stationary state.

Thus Schrödinger’s variation to obtain ĤHc ¼ Ec as the Euler equation is equiva-

lent to the variation of a constrained action integral for an infinitesimal time

interval.

2.3.2

Schrödinger’s Minimization

This section summarizes the steps in the minimization procedure that lead to the

appearance of the Hamiltonian operator and to ĤHc ¼ Ec, the details of the deri-

vation being given in my book [3]. The energy expression that Schrödinger mini-

mized by varying c to obtain his equation is given in Eq. (4). Schrödinger did not

allow c to be complex in his first paper. The integrand is, by analogy with the

Hamiltonian in the H–J equation, a function of cðqÞ and qc=qq.
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Gðc;‘cÞ ¼
ðþy

�y
drfð�h2=2mÞððqc=qxÞ2

þ ðqc=qyÞ2 þ ðqc=qzÞ2Þ þ ðV� EÞccg ð4Þ

The first group of terms represents the kinetic energy, equivalently expressed as

ð�h2=2mÞ‘c � ‘c and V is the potential energy, set equal to �e2=r for the hydro-

gen atom in paper I. E is introduced into the expression as an undetermined mul-

tiplier to ensure that the wave function remain normalized and is identified with

the total energy in the Euler equation.

The variation of Gðc;‘cÞ is actually quite straightforward. If f ðc;‘cÞ
denotes the integrand in Eq. (4), the variation is given by dGðc;‘cÞ ¼Ð
drfðqf=qcÞdcþ ðqf=q‘cÞd‘cg, where f ðc;‘cÞ is varied with respect to both c

and ‘c. To obtain the Euler equation one must clear the expression of the term

involving d‘c a step accomplished using an integration by parts employing the

identity ‘c � d‘c ¼ �‘2cdcþ ‘ � ð‘cdcÞ. This step introduces the usual ki-

netic energy operator �ð�h2=2mÞ‘2c into the variational integral. The resulting

expression for the variation is given in Eq. (5).

dGðc;‘cÞ ¼
ð
drfĤHc� Ecgdc

þ
þ
dSðrsÞfð�h2=2mÞ‘c � nðrÞdcg ¼ 0 ð5Þ

and the integration by parts leads to the appearance of the Hamiltonian operator

ĤH ¼ ð��h2=2mÞ‘2 þ V. The variation consists of a contribution from the variation

of c over the entire system all multiplied by dc and another from its variation on

the surface bounding the system. The surface term arises by applying Gauss’ the-

orem to the final term of the identity used to rid the expression of ‘dc. Because

the surface in this case resides at infinity where, as Schrödinger points out, one

requires dc ¼ 0, the surface term vanishes and the variation dGðc;‘cÞ reduces

to:

dGðc;‘cÞ ¼
ð
drfĤHc� Ecgdc ¼ 0 ð6Þ

The variation in Eq. (6) will vanish for arbitrary dc only if ĤHc� Ec ¼ 0. Thus,

making Gðc;‘cÞ stationary yields Schrödinger’s equation for a stationary state

[13].

2.3.2.1 Two Ways of Expressing the Kinetic Energy

Gðc;‘cÞ expresses the kinetic energy in the form þð�h2=2mÞ‘c � ‘c rather than

as �ð�h2=2mÞc‘2c, as it appears when obtained from Schrödinger’s equation

[14]. It is a consequence of the presence of this term that the extension of the

variation of the action to an open system leads to its unique definition in terms
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of the zero-flux boundary condition [2, 3]. The difference between the two forms

of the kinetic energy is locally proportional to the Laplacian of the electron den-

sity r, as given without loss of generality in Eq. (7) for a one-electron system [3,

15]:

�ð�h2=4mÞðc�‘2cþ c‘2c�Þ � ð�h2=2mÞ‘c� � ‘c ¼ �ð�h2=4mÞ‘2r ð7Þ

a result alternatively expressed as K(r)�G(r) ¼ L(r). Integration of Eq. (7) over a

region of space W bounded by a surface SðW; rsÞ, yields:

KðWÞ �GðWÞ ¼ �ð�h2=4mÞ
ð
W

‘2rðrÞ dt

¼ �ð�h2=4mÞ
þ
dSðW; rÞ‘rðrÞ � nðrÞ ð8Þ

identifying the average kinetic energies as KðWÞ and GðWÞ, respectively. The vol-

ume integral of ‘2r ¼ ‘ � ‘r, the divergence of a vector in Eq. (8), is replaced by

the surface integral of the flux in ‘r through the surface of the region W using

Gauss’ theorem. When the region W refers to all space then KðWÞ ¼ GðWÞ, be-
cause of the vanishing of r and its gradients at infinity, but for a region with finite

boundaries the two quantities differ by the flux in ‘r through the surface of W

and the kinetic energy is ill-defined. If, however, the surface SðWÞ is one of zero-

flux in ‘r as defined in Eq. (9):

‘rðrÞ � nðrÞ ¼ 0 for all points rs on the surface SðW; rsÞ ð9Þ

where nðrÞ is a unit vector normal to the surface, then KðWÞ ¼ GðWÞ and the ki-

netic energy is a well defined quantity [1]. Equation (9) defines a surface that is

not crossed by any trajectories traced out by the vector ‘rðrÞ and is consequently

referred to as a ‘‘zero-flux surface’’. It is this surface that forms the boundary con-

dition for an open quantum system when the action principle is extended to an

open system [2, 3].

2.3.3

Obtaining an Atom from Schrödinger’s Variation

What would happen if one were to repeat Schrödinger’s derivation of his wave

equation for an atom ‘‘in a molecule’’ rather than for an isolated atom? If one

wishes to follow Schrödinger in the search for an atom in a molecule, one has

no choice but to replace the infinite boundaries he placed on his energy expres-

sion in Eq. (4) by a set of finite limits that define a region W. That is, the atom

will be defined as a bounded region of real space [2, 3]. The energy expression

obtained by placing finite limits on Gðc;‘cÞ in Eq. (4) to define a region W is

denoted by Gðc;‘c;WÞ. (c is now allowed to be complex, with the variations in
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c and c� being independent). Its variation must include a term corresponding to

a variation of the boundary if it is to be determined by the variational procedure

rather than being arbitrarily assigned. The variation of Gðc;‘c;WÞ yields the

same terms as given in Eq. (5) for dGðc;‘cÞ together with a second contribution

to the surface integral from the variation of the surface. Because ĤHc ¼ Ec still

applies to the total system of which W is a part, the volume integral of the term

ðĤHc� EcÞdc vanishes and only the surface terms remain in the variation of

Gðc;‘c;WÞ, Eq. (10):

dGðc;‘c;WÞ ¼
þ
dSðW; rsÞfð�h2=2mÞ‘c� � nðrsÞdc

þ dSðW; rsÞf ðc;‘cÞg þ cc ð10Þ

The first surface term, as detailed in the variation of Gðc;‘cÞ, arises by ridding
the expression of variations in ‘c. The second term is the result of varying the

surface of W by varying c. The function f ðc;‘cÞ denotes the integrand in Schrö-

dinger’s functional, Eq. (4), and when evaluated in the surface and multiplied by

the infinitesimal shift in the surface dSðWÞ, the term gives the contribution to the

variation resulting from the variation of c on the surface. Because functions are

not necessarily Hermitian over an open system W, the variation must include con-

tributions from the complex conjugate (cc) terms. Equation (10), which does not

define any particular surface, does not seem promising. Clearly the requirement

of the principle of least action that the variation vanish must be discarded and the

concept of stationarity broadened. This result is initially quite surprising if one

lacks the knowledge that it forms the basis for the generalization of the principle

of least action introduced by Schwinger.

2.3.3.1 The Role of Laplacian in the Definition of an Atom

If an atom is to be a bounded region of space, one might expect its physical de-

scription would require the presence of a surface integral that would describe

contributions to its properties arising from the flux in currents through its sur-

face. It is the purpose of this section to demonstrate that imposition of the zero-

flux boundary condition, Eq. (9), during the variation of Gðc;‘c;WÞ leads to this

very result. This is most important, for it brings the definition of an atom in a

molecule into the realm of physics – the physics of an open system.

Equation (10) is transformed into a statement of physics by two rather remark-

able consequences of the properties of the Laplacian of the electron density,

‘2rðrÞ. The first is that when Schrödinger’s equation is satisfied, the integrand

f ðc;‘cÞ of Schrödinger’s energy integral reduces to �LðrÞ, the term proportional

to ‘2rðrÞ defined in Eq. (7). This same property obtains for the many-electron

case, and for the Lagrangian density of the action integral in the general time-

dependent case, persisting even in the presence of an electromagnetic field.

So the term involving the variation of the surface may be re-expressed as

ð�h2=4mÞdSðW; rsÞ‘2rðrÞ. The second of the remarkable consequences of the Lap-
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lacian is its appearance in the constraint that determines the surface of the open

system. This constraint is presented in detail in several places [3, 16], and is out-

lined only briefly here. Imposing the zero-flux surface condition expressed in

Eq. (9) at every stage of the variation is equivalent to requiring that the varia-

tion of the integral of ‘2rðrÞ over the region W vanish. This condition in

turn enables one to replace the term ð�h2=4mÞdSðW; rsÞ‘2rðrÞ with the term

�ð�h2=4mÞfð‘c�Þdcþ c�d‘cg � nðrÞ, a step outlined in my book (pp. 158 ff ).

Combining this result with the first of the surface terms in Eq. (10) results in a

most remarkable transformation of the surface contribution, from one without

any discernable physical content for a surface of unspecified form into an integral

describing the flux in the variation of the quantum mechanical current density

j(r) through a surface of zero-flux in ‘r, as shown in Eq. (11) for a zero-flux sur-

face.

dGðc;‘c;WÞ ¼ �ði�h=2Þ
þ
dSðW; rsÞdjðrÞ � nðrÞ þ cc ð11Þ

The variation in j(r) is caused by variations in the wave function, as shown in

Eq. (12):

djðrÞ ¼ ð�h=2miÞfc�‘ðdcÞ � ð‘c�Þdcg ð12Þ

Thus imposition of the zero-flux boundary condition on the variation of Schrö-

dinger’s functional causes it to be ‘‘stationary’’, requiring its variation to equal

the surface flux in the current generated by the variations in c. Although un-

known to us at the time of its derivation, Eq. (11) is a result of Schwinger’s prin-

ciple of stationary action for a time-independent system.

2.3.4

Getting Chemistry from dG(c,‘c;W)

Whereas Eq. (11), the expression for the variation in Gðc;‘c;WÞ, links the defini-
tion of an atom with physics, it is not in a useable form. How does one describe

the variation in the wave function that causes the change in j(r), Eq. (12)? Trans-

forming Eq. (11) into an operational form is accomplished by replacing the varia-

tions in c with the action of quantum mechanical operators on c. All physical

changes in the properties of a system, can be described by the action of the appro-

priate quantum mechanical operator ĜG on c. Thus, one makes the substitution

dc ¼ �eði=�hÞĜGc where e denotes an infinitesimal change resulting from the

action of the operator ĜG on c, with ði=�hÞ present for dimensional reasons. ĜGðrÞ
may be any linear Hermitian operator constructed from the electronic position

and/or momentum coordinates of a single electron and is referred to as the gen-

erator of the change in the system. Its application to a wave function causes an

infinitesimal unitary transformation in c. As explained below, it is this step that
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completes the linking of the derivation of an atom in a molecule with

Schwinger’s principle of stationary action. With this substitution, Eq. (11) be-

comes:

dGðc;‘c;WÞ ¼ �ðe=2Þ
þ
dSðW; rsÞjGðrÞ � nðrÞ þ cc

� �
ð13Þ

where jGðrÞ is the current density for the property determined by the generator ĜG:

jGðrÞ ¼ ð�h=2miÞfc�‘ðĜGcÞ � ð‘c�ÞðĜGcÞg ð14Þ

Comparison of Eqs. (12) and (14) shows that the variation in c appearing in

djðrÞ is replaced by the action of ĜG on c in the expression for jGðrÞ. Thus the vari-
ation in Schrödinger’s energy functional for an open system bounded by a zero-

flux surface – an atom in a molecule – is proportional to the surface flux in the

current density of the infinitesimal generator causing the change in the system.

Fluxes in currents normal to the bounding surface are the features that distin-

guish the physics of an open system from that of a total system, for which all sur-

face terms vanish. There are, of course, no current flows in a stationary state in

the absence of a magnetic field but, following Feynman: ‘‘We generalize the word

‘‘flux’’ to mean the surface integral of the normal component of a vector. Al-

though it is not the flow of anything, we still call it the ‘‘flux’’ ’’ [12]. A recent

publication [17] claims that the surface flux term in Eq. (11), and hence in the

general case, Eq. (13), vanishes for a stationary state, appearing to confuse the ab-

sence of a current in a stationary state with its ‘‘flux’’ through a surface, a claim

that invalidates Schwinger’s principle and the physics of an open system, and Eq.

(16) that follows directly for Schrödinger’s equation for a stationary state. A re-

sponse to that paper has recently appeared [18].

The final, encompassing statement of the principle of stationary action for an

open system in a stationary state is obtained by use of the equation of motion

for the generator ĜG. In the general time-dependent case, the time derivative of

the average value of ĜG, dhĜGi=dt is determined by the average of the commutator

ði=�hÞ½ĤH; ĜG�. This average vanishes for a molecule in a stationary state:

hc; ½ĤH; ĜG�ci ¼ 0 ð15Þ

because of the Hermiticity of ĤH, a property that does not usually apply to an open

system [3]. The same commutator average does not however, vanish for an atom

in a molecule, the contribution from the commutator being balanced by the sur-

face flux in the current of ĜG, a result readily obtained from Schrödinger’s equa-

tion [3] and given in Eq. (16):

ði=�hÞhc; ½ĤH; ĜG�ciW þ cc ¼
þ
dSðW; rsÞjGðrÞ � nðrÞ þ cc ð16Þ
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Equation (16) yields the same surface term obtained in the variation of

Gðc;‘c;WÞ and substitution of this result into Eq. (13) yields the atomic state-

ment of the principle of stationary action for a stationary state:

dGðc;‘c;WÞ ¼ �ðe=2Þfði=�hÞhc; ½ĤH; ĜG�ciW þ ccg ð17Þ

This statement determines the physics of an atom in a molecule [3]. All of the

theorems of quantum mechanics are obtained by appropriate choice of the gener-

ator ĜG and thus it applies to every property determined by a quantum mechanical

operator – to all of the measurable properties of a system. The atomic statement

of the virial theorem for example, is obtained by setting ĜG ¼ r̂r � p̂p, the product

of the electronic position and momentum coordinates. Equation (17) applies to
any system bounded by a zero-flux surface and thus a single principle provides the
quantum mechanical description of the total system and of its constituent atoms. In-
deed one may regard the physics of some total system – of the entire molecule –

as a special limiting case of the more general expression pertaining to an open

system given in Eq. (17). Thus when W refers to the total molecule, the commu-

tator average equals zero, Eq. (15), and the variation in Schrödinger’s functional

becomes stationary in the usual sense that dGðc;‘c;WÞ ¼ dGðc;‘cÞ ¼ 0. It is

important to note that the derivation of Eq. (17) yields Schrödinger’s equation

and all of the theorems of quantum mechanics. Thus a single principle serves to

completely determine the physics of a stationary state, of the total system, and of

its constituent atoms, all as a consequence of Schwinger’s principle [3].

2.4

From Schrödinger to Schwinger

2.4.1

From Dirac to Feynman and Schwinger

The generalization of the variation of Schrödinger’s energy functional to obtain

the physics of an open system, Eq. (17), necessitated the generation and retention

of terms resulting from the variation of the surface and of the variation of the

wave function on the surface. Although such terms are discarded in the principle

of least action when applied to a total system, they play a crucial role in the

physics of an open system. It is this step that transforms Schrödinger’s approach

into Schwinger’s principle of stationary action. We can only briefly hint at the

beauty of the chain of reasoning that leads from Dirac to Feynman and

Schwinger and ultimately to an atom in molecule. Dirac introduced transforma-

tion theory into quantum mechanics. This is the underlying mathematical formu-

lation of the new physics which consists of the general mathematical scheme of

linear operators and state vectors with its associated probability interpretation. In

doing so, he stressed how the theory of infinitesimal unitary transformations in
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quantum mechanics parallels the infinitesimal canonical transformations of clas-

sical theory thereby ‘‘providing the mathematical foundation of the analogy be-

tween classical and quantum equations of motion’’. Thus identification of the vari-

ations in c with the action of infinitesimal generators eĜG to obtain Eq. (17) has

deep implications beyond yielding operational expressions for the mechanics of

an open system. In 1933 such thinking led Dirac to write a paper [19] wherein

he posed the question of what would correspond to the limiting classical expres-

sion for the quantum transition amplitude that determines the dynamic behavior

of the system with time. Dirac was asking for the correspondence of quantum

mechanics with the Lagrangian method of classical mechanics, a formulation he

considered to be more fundamental than that based on Hamiltonian theory. Dirac

proposed that the transition amplitude be given by an exponential of ði=�hÞW12,

where W12 is the classical action evaluated along the unique path that causes it

to be stationary, a proposal that set the stage for the reformulations of quantum

mechanics proposed by Feynman in his path integral approach [8] and by

Schwinger in his quantum dynamical principle [4]. Both approaches enable one

to derive the commutation relations, as opposed to the need to postulate them in

the Hamiltonian approach [20].

Schwinger realized that by retaining the variations on the boundary of the

space–time volume of the action integral swept out by the temporal evolution of

a system, followed by their identification with the generators of infinitesimal uni-

tary transformations, he could combine the action principle which yields Schrö-

dinger’s equation of motion with Dirac’s transformation theory and thus recover

‘‘all of physics’’ from a single dynamical principle – the principle of stationary

action [4]. The retention of the variations both of and on the zero-flux surface at

a single time t followed by their identification with the action of infinitesimal

generators is precisely the step made in the generalization of Schrödinger’s vari-

ation of his energy functional leading to Eq. (17). These variations give rise to the

same surface terms that are found in Schwinger’s formulation and are dealt with

in precisely the same manner. While we proceeded out of necessity, Schwinger

did so by choice.

2.4.2

From Schwinger to an Atom in a Molecule

In 1978 it was realized that the generalization of the variation of Schrödinger’s

functional was but a special case of the general statement of physics provided by

Schwinger’s principle of stationary action and the theory of an atom in a mole-

cule was readily extended to the general time-dependent case [16, 21]. Criticisms

of the extension have been responded to in full [22, 23]. The operational state-

ment of Schwinger’s principle of stationary action is given in terms of the varia-

tion of the Lagrangian, Eq. (18):

dLðC;‘C; t;WÞ ¼ ðe=2Þfði=�hÞhC; ½ĤH; ĜG�CiW þ ccg ð18Þ
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The form of this expression is to be compared with that obtained from variation

of Schrödinger’s energy functional for a stationary state, Eq. (17), from which it

differs only by the expected change in sign. On evaluation of the variation in the

Lagrangian, Eq. (18) yields Eq. (19) for the equation of motion for a generator

ĜGðrÞ, a function of the coordinate r of a single electron [24].

ð1=2ÞN
ð
W

dr

ð
dr 0qfC�ĜGðrÞCþ ccg=qt

¼ ð1=2Þfði=�hÞhCj½ĤH; ĜGðrÞ�jCiW þ ccg

� ð1=2Þ
þ
dSðrs;WÞ � fJGðrsÞ þ ccg ð19Þ

The most recent derivation of this result is given in terms of an augmented

Lagrange-function operator, termed a proper operator, because only its variation re-

covers the equations of motion predicted by Schrödinger’s field equation [25].

The resulting open systems are termed proper open systems.
The term N

Ð
dr 0fC�ĜGðrÞCþ ccg, whose time derivative appears in Eq. (19),

defines the density of the property G associated with the operator ĜGðrÞ. The inte-

gration symbol denotes that the operator is averaged over the coordinates of all

the electrons except those denoting the position r, the coordinate of the electron

to be integrated over W. All open-system properties, including the energy, are thus

defined in terms of a real-space density distribution, in the same manner as is the

electron density where the integrand is simply C�C, with the result that the value

of some property for the total system equals the sum of its atomic contributions.

The symbol h iW implies the same averaging. The LHS vanishes for a stationary

state as does the surface term for a total isolated system. The variational result

given in Eq. (19) determines the physics of all measurable properties, the properties
of a total system being a special limiting case of those for an open system.

QTAIM is predicated on the premise that a theory of an atom in a molecule

must predict what can be measured in the laboratory. It is this philosophy that

underlies Hans Bethe’s view of science: ‘‘its great advantage is you can prove

something is true or something is false’’, a statement he further paraphrased as

‘‘In science, you know you know’’ [26]. Therefore, the single necessary and suffi-

cient criterion for determining the relevance of QTAIM atoms to chemistry is

agreement of the predicted additive atomic and group contributions with their

experimental values, agreement with observation being the only test of theory.

QTAIM has demonstrably satisfied this experimental criterion, with examples

from heats of formation, electric and magnetic susceptibilities, and molar vol-

umes, and from the recent demonstration of the recovery of the measured atomic

contributions to infrared intensities obtained from the atomic polar tensor [27,

28]. This agreement is but a necessary consequence of quantum mechanics pre-

dicting all measurable properties, Eq. (19). A recent paper provides a comprehen-

sive summary of the recovery of measured properties by QTAIM [29].

The interested reader is referred to the original papers and my book for a com-

plete description of the extension of Schwinger’s principle of stationary action to
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an open system. There are numerous important nuances that one must take into

account before one attempts a critique. An important example of this stems from

the fundamental step in Schwinger’s approach – the variation of the state vector

on the space–time boundary of the open system with the variation of the surface,

followed by identification of these variations with the generators of infinitesimal

unitary transformations. Thus the theory requires the use of a special class of trial

functions whose variation will correspond to continuous changes in the dynamic

variables of the physical system. This is the very requirement needed to ensure

the applicability of the zero-flux surface condition as the defining constraint of a

proper open system.

Equation (19) is the bridge that links the Lagrangian and Heisenberg represen-

tations of quantum mechanics thereby linking theory with experiment. Table 2.1

Table 2.1 The atomic theorems for molecules and crystals obtained for

several important generators.

Atomic force theorem ĜG ¼ p̂p

m

ð
W

drqJðrÞ=qt ¼
ð
W

dr

ð
dt 0C�ð�‘V̂VÞCþ

þ
dSðrÞsðrÞ � nðrÞ

Atomic virial theorem ĜG ¼ r̂r � p̂p
m

ð
W

drr � qJðrÞ=qt ¼ 2TðWÞ þ
ð
W

dr

ð
dt 0C�ð�r � ‘V̂VÞCþ

þ
dSðrÞr � sðrÞ � nðrÞ

Atomic torque theorem ĜG ¼ r̂r � p̂p

m

ð
W

drr � qJðrÞ=qt ¼
ð
W

dr

ð
dt 0C�ð�r � ‘VÞC�

þ
dSsðrÞ � r � n

Atomic current theorem ĜG ¼ r̂rð
W

drrqrðrÞ=qt ¼
ð
W

dr JðrÞ �
þ
dSnðrÞ � JðrÞr

Atomic continuity theorem ĜG ¼ N̂Nð
W

drqrðrÞ=qt ¼ �
þ
dSJðrÞ � nðrÞ

Atomic power theorem ĜG ¼ p̂p2=2m, written without 1/2mð
W

drqrp2 ðrÞ=qt ¼
ð
W

dr

ð
dt 0ð�h=iÞfðC‘C� �C�‘CÞ � ‘V̂Vg þ

þ
dSRefJp2 ðrÞg

Quantum stress tensor density

sðrÞ ¼ ð�h2=4mÞ
ð
dt 0fð‘‘C�ÞC� ‘C�‘C� ‘C‘C� þC�‘‘Cg

Quantum vector current density

JðrÞ ¼ ð�h=2miÞ
ð
dt 0fC�‘C�C‘C�g
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lists the atomic theorems for molecules and crystals obtained for several impor-

tant generators [30]. One notes the presence in these theorems of the electron

density rðrÞ, the current density j(r) and the quantum stress tensor s
$ðrÞ, quanti-

ties introduced by Schrödinger in 1926 and held by him to be essential to under-

standing the mechanical, electrical, and magnetic properties of matter. For exam-

ple, the atomic virial theorem is required for definition of the energy of an open

system and of the pressure acting on its surface. The atomic current theorem is

required to determine the atomic contribution to the molecular diamagnetic sus-

ceptibility arising from the flux in the position-weighted flux in the induced cur-

rent through the atomic surface. The use of more of these theorems will be illus-

trated in the contributions to this book.

2.5

Molecular Structure and Structural Stability

2.5.1

Definition of Molecular Structure

The remarkable encompassing physical aspect of the theory is that the same to-

pology that defines an atom in a molecule, leads to a theory of molecular struc-

ture and structural stability. The response of the electron density to the interac-

tion between two atoms is ubiquitous, resulting in the formation of a ð3;�1Þ
critical point whose associated trajectories define not only the presence of the

zero-flux interatomic surface but also delineate a line of maximum electron den-

sity that links the nuclei of neighboring atoms – the ‘‘bond path’’ [3, 31–33]. The

network of bond paths generate a molecular graph that defines a system’s struc-

ture. The topological structures have been shown to recover the ‘‘chemical struc-

tures’’ in a multitude of systems, in terms of densities obtained from both theory

and experiment, structures that were previously inferred from classical models of

bonding in conjunction with observed physical and chemical properties [34].

A bond path meets all the physical requirements set by the Ehrenfest, Feynman

and virial theorems that the atoms be bonded to one another [34]; the two atoms

experience an attractive Ehrenfest force drawing their atomic basins together – no

Feynman force, either attractive or repulsive, acts on the nuclei, because of the

balancing of the repulsive and attractive forces by accumulation of electron den-

sity in the binding region. This same accumulation leads to a reduction of the

electron–nuclear potential energy, the magnitude of which exceeds the increases

in the electron and nuclear repulsion energies, resulting in a decrease in the po-

tential energy equal to twice the decrease in the total energy, all as demanded by

the virial theorem. Thus a bond path is indicative of the accumulation of density

between the nuclei that is necessary for the presence of attractive Ehrenfest

forces, for balancing of the Feynman forces on the nuclei, and for the decrease
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in energy. Its presence is both necessary and sufficient for two atoms to be

bonded to one another [35, 36].

2.5.2

Prediction of Structural Stability

A central concept in the analysis of the stability of gradient vector field is the

equivalence relationship. Two vector fields are said to be equivalent if every trajec-

tory of one field can be mapped on to a corresponding trajectory of the other. By

application of this equivalence relationship to the gradient vector field of the elec-

tron density in behavior space, one arrives at a partitioning of nuclear configura-

tion space RQ, the control space, into a finite number of disjoint regions, the struc-

tural regions, each of which is characterized by a unique molecular graph. The

structural regions form a dense open subset of RQ and a point belonging to

such a region is a stable structure and is called a regular point. The catastrophe

set C is the collection of all structurally unstable points in RQ and serves as the

union of the boundaries of all the structural regions. The result is a structure dia-
gram, a diagram that defines all possible structures and all structural changes linking
the structures for a given system [3, 37]. The Palis–Smale theorem of structural sta-

bility [38] shows that a change in structure can occur by only one of two possible

mechanisms – the bifurcation mechanism arising from the formation of a degen-

erate critical point in the density or through the conflict mechanism wherein the

manifolds of two critical points intersect in what is a manifestly unstable manner.

The topological theory of molecular structure and structural stability leads to

several important observations [3]. A molecular geometry, a point in RQ, should

be distinguished from a molecular structure, which represents an open region of

RQ, that is, structure is generic. Motion in RQ changes the geometry, but leaves

the structure unchanged for motion within the open region associated with a

given structural region. A change in structure is an abrupt and discontinuous

process and occurs when a system point crosses a boundary at a nuclear configu-

ration in RQ belonging to the catastrophe set separating two structural regions.

One finds these ideas being increasingly applied to a wide range of problems.

2.6

Reflections and the Future

2.6.1

Reflections

It is indeed a pleasure to write this chapter for a book that demonstrates the re-

markable progress that has been made in the development and application of

QTAIM. All problems at the atomic level are subject to study by QTAIM and the
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scope of its application is forever widening. The use of the atomic theorems de-

rived from the Heisenberg equations of motion Eq. (19), some of which are dis-

played in Table 2.1 [30], extends beyond the asking of chemical questions of

bonding, structure, and reactivity. The theorems apply to all questions about the

behavior of matter at the atomic level. Indeed, there are many problems that spe-

cifically require the physics of an open system for their statement and solution.

Examples are the operation of the atomic force and electron tunneling micro-

scopes [39], defects in solids [40], the quantum definition of pressure [41], and

the polarization of a dielectric [42]. The atomic statement of the Ehrenfest force

is the equation of motion for an open system. It is capable of describing the mo-

tion of an adsorbed atom on the surface of a substrate or of the forces required

for manipulation of individual atoms or molecules, thereby providing a basis for

nanotechnology. The physical understanding obtainable from the use of the theo-

rems for an open system is only beginning to be explored.

Molecular orbital theory is the theory for the understanding and prediction of

the electronic structure of molecules, predicting the ordering and classification

of many-electron states in terms of one-electron states, and it is indispensable to

all chemists for the understanding of the properties of many-electron systems.

Orbital ordering and state classification forms the basis for the application of the

‘‘second-order Jahn–Teller’’ symmetry rule [43] that underlies Fukui’s frontier or-

bital theory [44] and orbital conservation [45].

Unlike QTAIM, which builds upon the chemical concept of a functional group

with characteristic properties, molecular orbital theory, as Libit and Hoffmann

point out [46], is incapable of recovering this concept, because each molecular or-

bital extends over the entire molecule. Recent papers illustrate the complemen-

tary roles of molecular orbital theory and QTAIM and how QTAIM provides the

possibility of assessing the viability of orbital models [47, 48].

To argue, as some do, that QTAIM overlooks explanations of bonding afforded

by simple orbital models is wrong. What QTAIM does do is enable one to go be-

yond the models. To state that QTAIM, by finding a bond path in Ar2 for exam-

ple, fails to predict the absence of electron pair bonding between closed-shell mol-

ecules is based on improper use of the orbital model [49]. The orbital model

when properly applied and understood using QTAIM, predicts weak bonding be-

tween closed shell systems. It is a travesty to claim that molecular orbital theory

cannot account for the bonding between closed-shell systems by insisting that

one terminates the theory at the single determinant level. Electron correlation is

known to be responsible for the bonding in such cases and is readily accounted

for by inclusion of the interaction of excited configurations with the ground state.

Thus, for example, a CI calculation predicts both bonding and the presence of a

bond path in rare gas dimers [50], a result in accord with the experimental detec-

tion of bound He2 [36].

In summary, there is no conflict of QTAIM with molecular orbital theory. The

conflict is with those who introduce nonphysical concepts, postulating the pres-

ence of repulsive forces in systems wherein no definable repulsive forces act on

the density or on the nuclei [49] (appropriate responses being given in [51, 52]).
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One can hope that younger scientists, not having been exposed to models that

have outlived any usefulness they might have once enjoyed, will place their trust

in physics.

2.6.2

The Future

A necessary next step in the development of the theory is its extension beyond the

fixed nucleus approximation of the Born–Oppenheimer procedure. The topology

of the electron density is a consequence of, and summarizes the physics that

underlies, the form of matter. Whatever new topological features the charge den-

sity may be found to exhibit as a consequence of its averaging over nuclear mo-

tions, they may be incorporated into an expanded theory to provide a still deeper

understanding of the behavior of matter at the atomic level.

Relativistic effects cause no problem, as the mathematical formalism of

Schwinger’s and Feynman’s approaches is manifestly co-variant with regard to

Lorentz transformations, if one adheres to a relativistically invariant Lagrangian

[7], as is done in the development of QTAIM.

James Anderson, a student of Dr. Paul Ayers, has recently extended QTAIM to

the relativistic domain using the ZORA Hamiltonian, as a result of attending my

graduate course. Schwinger’s theory is, of course, relativistically invariant, but

there are a number of crucial steps involved in its extension to an open system,

not the least of which is the zero-flux boundary condition. He finds QTAIM to be

‘robust’, the entire theory comes through unchanged and can be applied with the

same zero-flux boundary condition across the periodic table – including the acti-

nides. It is beautiful the way in which all of the important properties of the rela-

tivistic Lagrangian mimic the essential properties of the non-relativistic case, all

of the derived relativistic expressions reducing to their non-relativistic forms in

the limit of infinite c. I can see no reason for anyone doubting that the zero-flux

boundary is a fundamental property of matter, providing the basis for the gener-

alization of physics to its atomic constituents.

In many problems, the system of interest is an open system embedded in a

much larger one. For example, in the development of molecular devices in nano-

technology one wishes to determine the conductivity of an organic molecule link-

ing two conductors. In biological systems one’s interests may focus on just the

active or binding site of an enzyme. Can one define and study the open system

of interest, rather than resorting to existing ‘‘embedding’’ methods. The proper-

ties of an open system are totally determined by its bounding surface [53]. The

determination of the open system in a simpler environment, then its transfer to

the system of interest, is a possibility that has already been successfully explored

in the construction of biological molecules, in which the groups of interest have

high transferability and close matching of the interatomic surfaces is possible.

The open system variation principle, Eq. (11), offers the possibility of obtaining

the wave function for the entire system by performing the variation over just the

open system of interest, including its surface, and requiring that the variations
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equal the surface flux in the infinitesimal current generated by the variations in

c. The variation is, of course, subject to the constraint that at every stage the sys-

tem be bounded by a zero-flux surface. Baranger [54] has shown that at Hartree–

Fock, minimization of the energy (of the total system) is equivalent to satisfaction

of the vanishing of hc½ĤH; ĜG�ci, Eq. (15), for all one-body operators ĜG, and has

given a procedure for doing so. One could apply the same procedure to a open

system by noting that satisfaction of Eq. (11) is equivalent to satisfying Eq. (16)

for a proper open system, and thus requires that the commutator average over

the open system be given by the surface flux in the corresponding currents for

all one-body operators ĜG.

What is, to me, among the most important of the results derived from the de-

velopment of the theory of atoms in molecules is the paralleling behavior in the

form and properties found for a proper open system. This observation is valid at

all levels of transferability of the density – from near transferability, as found for

the Li atom in its hydride, oxide, and fluoride molecules in the original 1972

paper (the observation that sparked the development of the theory) to the essen-

tially perfect transferability observed, for example, for the transferable methyl and

methylene groups in linear hydrocarbons or amino acid residues in a polypeptide

[55]. Although it is an obvious physical necessity that form determine properties,

it is only through the atoms of QTAIM that this condition is realized, and it is

striking. One need only view the previously illustrated [56] remarkable degree of

paralleling transferability of the electron density, the kinetic energy density, and

the virial field (the potential energy density) of the methylene groups in butane

and pentane as an example. The virial field is a real-space representation of the

average effective potential experienced by a single electron in a many-electron sys-

tem. It is the most short-range description possible of this interaction potential

[57] and its integral over all space yields the total potential energy of the molecule

in the fixed nucleus approximation [58]. Add to this the observation that it is

structurally homeomorphic with the electron density [59] and it would seem to

be a promising starting point for investigation of the energy $ density relation-

ship. The local statement of the atomic virial theorem, by relating the Laplacian

of the density to the kinetic energy density and the virial field, provides a link be-

tween a property of the density with energy [3, 16].

It is clear from the tabulations of experimentally derived group properties that

group additivity must often be only apparent, as is found to apply when a group

is unavoidably perturbed by its environment. The additivity in these cases is a re-

sult of compensatory transferability, the change in a property, energy for example,

and in the charge that is experienced by one group being equal and opposite to

the changes experienced by the other group [60]. Charge is, of course, necessarily

conserved, but for this conservation to be paralleled by all properties is remark-

able, one that can be illustrated by the data in the tables of Benson et al. [61, 62]

and in theoretical calculations [53, 60]. There seems to be a Le Chatellier princi-

ple at work – one that states that two open systems brought into contact respond

in such a way as to minimize the overall changes in their form and properties

[63]. Is it possible to formulate an extremization principle that minimizes the

sum of the energy changes of the two open system when brought into contact?
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Chemistry is a consequence of the short-range nature of the one-electron den-

sity matrix that determines all the mechanical properties of an atom in a mole-

cule [57] with the additional important proviso that all of the necessary physical

information is obtained in its expansion up to second-order with regard to both

the diagonal and off-diagonal terms [3]. The diagonal terms yield the density

rðrÞ, its gradient vector field ‘rðrÞ, and its dyadic ‘‘rðrÞ whose trace yields the

Laplacian ‘2rðrÞ and determines the critical points in ‘rðrÞ and hence in rðrÞ.
The off-diagonal terms yield the current density j(r), the stress tensor s

$ðrÞ and

the tensor ‘jðrÞ whose properties determine the critical points in j(r) [64]. There

is much to be studied. Whereas the topologies of rðrÞ [37] and of j(r) [64] have

been completely characterized and related to the physical properties of the sys-

tem, the same is not true of the stress tensor s
$ðrÞ. The topology of s

$ðrÞ, whose
properties determine the local mechanics of the density, its trace equaling the

virial field and the local statement of the virial theorem, is largely unstudied. Its

eigenvalues and eigenvectors at a degenerate critical point in the density that is

indicative of a change in structure could summarize the mechanical conse-

quences. Similarly, the topology of the Ehrenfest force field, a vector field defined

by ‘ � s$ðrÞ, could prove invaluable in understanding the mechanics of the density.

A surface of zero-flux in this field would demark a region of space for which the

Ehrenfest force vanishes. The final relationship between the density and the en-

ergy will have to account for their paralleling behavior as evinced by the atoms of

QTAIM, so it seems reasonable that the observations of QTAIM regarding the

role of the density in the determination of atomic properties could serve as a start-

ing point in the search for such a relationship [57, 58].
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3

Atomic Response Properties

Todd A. Keith

3.1

Introduction

This chapter describes some applications of the quantum theory of atoms in

molecules (QTAIM) [1] with the objective of an atomic description of molecular

response properties. For the purposes of this chapter, molecular response proper-

ties are observable measures of how a molecule changes as a result of interactions

with external sources, such as applied electric and/or magnetic fields, nuclear

magnetic moments, nuclear displacements from equilibrium, etc. For example,

electric dipole polarizability and hyperpolarizability tensors are measures of how

a molecule’s electric dipole moment changes in response to an external electric

field. Molecular response properties of interest are typically origin-independent.

However, in many cases a corresponding response property density is origin-

dependent and a simple definition of an atomic response property as the integral

of such a density over the space of the atoms results in origin-dependent atomic

contributions. This origin-dependence arises from a ‘‘null’’ molecular property

that vanishes for the whole molecule but not for an atom in a molecule. The clas-

sic example is the electric dipole moment (a first-order response to an external

electric field) for neutral molecules, in which case the ‘‘null’’ molecular property

is the net charge. Because property densities are not unique (any function which

integrates to zero for the molecule can be added to a ‘‘basic’’ property density),

one may try and circumvent this problem by defining a property density that

is origin-independent or whose atomic integrals are origin-independent. This is

not usually possible, however.

A physically meaningful method for defining origin-independent atomic contri-

butions to electric dipoles, electric polarizabilities, magnetizabilities and other

response properties was first introduced by Bader et al. [2–10]. The essence of

this method is to express each atomic contribution as the sum of an atomic ‘‘po-

larization’’ contribution and a set of ‘‘transfer’’ contributions associated with each

group to which the atom is bonded. The expression and interpretation of an

atomic polarization contribution, as the polarization of a ‘‘null’’ property density
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distribution within the nuclear-centered atom, is similar to that for the molecule

as a whole. The transfer contribution associated with a bonded group to an

atomic response property is given by the weighted translation vector from the

atom’s nucleus to the corresponding bond critical point, the weight being the

bonded group’s contribution to the appropriate ‘‘null’’ molecular property. This

method not only provides transferable atomic and group response properties con-

sistent with additivity schemes developed from experimental data [3–10], but is

also quite intuitive. For atoms in one or more rings, however, ambiguities may

arise in the definition of a bonded group. It is, therefore, necessary to restate the

transfer contributions to an atomic response property more generally, in terms of

atomic bond contributions. One well defined and computationally straightfor-

ward method for defining such atomic bond contributions to any ‘‘null’’ proper-

ties and for any molecular system, including those with rings and cages, is de-

scribed in this chapter. In the absence of rings and cages, this more general

method reduces to the original method of Bader et al. [2–10]. Using this method,

expressions for atomic contributions to electric dipole moments, electric static

dipole polarizabilities, infrared vibrational absorption intensities, nuclear virial

energies, and magnetizabilities are presented in some detail, with some illustra-

tive numerical examples.

Although inclusion of nuclear virial energies in a list of response properties

may seem out of place, a discussion of these is included because many molecular

response properties of interest explicitly involve energy derivatives with respect to

nuclear positions (e.g. vibrational frequencies) or involve non-stationary point

geometries (e.g., vertical transition energies) and, therefore, a well defined atomic

contribution to the total molecular energy (i.e. electronic energy plus nuclear

virial energy) is necessary to determine such atomic response properties. In

addition, a working definition of an atomic contribution to the molecular nuclear

virial energy seems to require overcoming origin-dependence issues similar to

those encountered with the other response properties described here.

3.2

Apparent Origin-dependence of Some Atomic Response Properties

When the electric dipole moment m of a molecule is simply partitioned into

atomic contributions [2], the atomic contribution, mðWÞ, for atom W consists of an

origin-independent ‘‘polarization’’ term, mpðWÞ, and an origin-dependent ‘‘charge

transfer’’ term, mcðWÞ:

mðWÞ ¼ �
ð
W

½r � RW�rðrÞ dr þ ½RW � R0�QðWÞ ¼ mpðWÞ þ mcðWÞ ð1Þ

where QðWÞ is the net charge of atom W, RW is the position vector of atom W, and

R0 is the arbitrary origin of the molecular coordinate system. Note that under-

lines are used here to indicate origin-dependent terms.
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Because mcðWÞ is dependent on R0 (unless QðWÞ is zero), mðWÞ as defined in Eq.

(1) is not generally meaningful, just as m itself is not usually meaningful for

charged molecules.

Laidig and Bader [3] first showed that for neutral molecules, a more sophis-

ticated definition for the ‘‘charge transfer’’ atomic contribution can be used,

mcðWÞ, one which is both origin-independent and physically reasonable:

mcðWÞ ¼
XNbðWÞ

L¼1

½RbðWjLÞ � RW�QðLW
GÞ ð2Þ

In this expression NbðWÞ is the number of bond critical points connected to the

nucleus of atom W, RbðWjLÞ is the position vector of the bond critical point be-

tween atom W and atom L, and QðLW
GÞ is the net charge of the group LW

G that

is bonded to atom W via atom L. For example, in the methanol molecule RbðCjOÞ
is the position vector of the bond critical point between the C and O atoms and

QðOC
GÞ is the net charge of the OH group.

Formulas analogous to Eq. (2) have also been used to partition polarizability

tensors [3, 4], magnetizability tensors [5–7], and electronic transition moments

[8] of molecules into origin-independent atomic and group contributions.

For molecular structures in which atoms W and L are bonded within one or

more rings, however, QðLW
GÞ is usually not well defined (the exception being

symmetrically equivalent bonds connecting the atom within the ring or rings) be-

cause the group LW
G to which atom L belongs has at least one other bond to

atom W, say via atom L 0, and it is thus ambiguous which portion of the group

containing both L and L 0 is defined as LW
G and which is defined as L 0

W
G
.

While for atoms in single rings one may attempt to use the well defined ring crit-

ical point instead of the two corresponding bond critical points in Eq. (2), for

atoms in more than one ring this will not work and one is again left with an

ambiguous definition for LW
G.

Contrary to what has been stated previously [6, 8–10], for isolated molecules

this problem cannot be solved by using Gauss’ law to express QðLW
GÞ as the elec-

tric field flux through the interatomic surface between atom L and atom W.

mcðWÞ0 ð�1=4pÞ
XNbðWÞ

L¼1

½RbðWjLÞ � RW�
þ
dSðLjW; rsÞ � EðrsÞ

(for isolated molecules) ð3Þ

The inequality in Eq. (3) ultimately arises because the net charge of an atom in

a molecule cannot be solely expressed in terms of electric field fluxes through its

interatomic surfaces unless the atom is finite in size, i.e. unless the union of its

interatomic surfaces defines a surface completely enclosing a finite volume for

the atom:
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QðWÞ ¼ ð�1=4pÞ
þ
dSðWjInf; rsÞ � EðrsÞ

þ ð�1=4pÞ
XNbðWÞ
L¼1

þ
dSðWjL; rsÞ � EðrsÞ ð4Þ

If a portion SðWjInf Þ of an atom’s bounding surface extends to infinity, the first

term on the RHS of Eq. (4) will usually be non-zero. Unlike local property density

functions (e.g., the electron density and its derivatives, the stress tensor, the cur-

rent density, etc.), which decay exponentially far from a molecule, the electric

field is a non-local function that decays only as r�2 far from a molecule. Because

a surface grows in area as r2, the contribution to the net electric field flux through

the infinite portions of an atomic surface will not vanish.

To extend Eq. (2) to systems with rings and cages it seems useful, if not neces-

sary, to dispense with the notion of the bonded group LW
G and simply restate Eq.

(2) more simply, in terms of bond contributions:

mcðWÞ ¼
XNbðWÞ

L¼1

½RW � RbðWjLÞ�QðWjLÞ ð5Þ

where QðWjLÞ is now defined as the contribution from the directed bond between

atoms W and L to the net charge of atom W. The problem is then to be able to

uniquely determine a set of such bond charges QðWjLÞ in any molecule to enable

use of Eq. (5). In the absence of a ring containing W and L, QðWjLÞ should equal

QðLW
GÞ, so Eq. (2) is recovered in those instances.

The situation is similar for atomic polarizability, magnetizability and other re-

sponse properties.

In the following section, a method of partitioning any ‘‘null’’ (zero value) mo-

lecular property h of any molecular structure into unique bond contributions,

hðWjLÞ, is described.

3.3

Bond Contributions to ‘‘Null’’ Molecular Properties

Consider any ‘‘null’’ (zero value) property h of a molecule. Examples of h are:
� the net charge, Q, of a neutral molecule
� the change in net charge, dQ, of a molecule due to a

perturbation such as an electric field or nuclear displacement
� the net current vector, hJi, induced in a molecule by an

external magnetic field (when the continuity equation is

satisfied)
� the net Ehrenfest force, hFEi, acting on the electrons
� the energy-gradient-based force, GA, acting on a nucleus A at

an equilibrium or other stationary point geometry
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� the Hellman–Feynman electrostatic force, FA, acting on a

nucleus A at an equilibrium geometry or other stationary

point geometry (when the Hellman–Feynman electrostatic

theorem is satisfied)
� the sum of the Hellman–Feynman electrostatic forces, SðFAÞ,
acting on the nuclei at any geometry (when the Hellman–

Feynman electrostatic theorem is satisfied)
� the sum of the energy-gradient-based forces, SðGAÞ, acting on

the nuclei at any geometry

Although such properties vanish for molecules, their atomic contributions hðWÞ
and corresponding bond contributions hðWjLÞ will not typically vanish. The con-

tributions hðWÞ and hðWjLÞ may be of interest directly and/or they may appear in

expressions for other atomic properties that are of interest. Equations (2) and (5)

are examples of the latter.

While the atomic property hðWÞ is typically well defined and easily calculated

by simple partitioning of h (as in each of the cases listed above), a method for cal-

culating the corresponding bond contributions hðWjLÞ has not been previously

defined in a general and computationally convenient way.

Considering a molecule with Na atoms, h is a sum of Na atomic contributions

hðWÞ:

h ¼
XNa

W¼1

hðWÞ ¼ 0 ð6Þ

Using QTAIM [1] to uniquely identify the bonds, rings and cages in a mole-

cule, each atomic contribution hðWÞ to h can be expressed as a sum of bond

contributions hðWjLÞ:

hðWÞ ¼
XNbðWÞ

L¼1

hðWjLÞ ð7Þ

where NbðWÞ is the number of bond critical points to atom W and hðWjLÞ is the

contribution to hðWÞ from the directed bond between atoms W and atom L. To

uniquely solve for all of the 2Nb bond contributions in a molecule, the following

constraint (meaningful only for ‘‘null’’ molecular properties) is used for each

bond:

hðWjLÞ þ hðLjWÞ ¼ 0 ð8Þ

In the absence of rings, the set of Na þ Nb equations defined by Eqs (7) and (8)

is sufficient to uniquely determine the 2Nb ¼ Na þ Nb � 1 bond contributions

because one of the equations is redundant, due to the constraint of Eq. (6). If the
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molecule contains one or more rings, however, an additional constraint is neces-

sary for each ring. The following constraint is proposed here:

XNaðRÞ

W¼1

hðWjWþ 1Þ ¼ 0 ð9Þ

where NaðRÞ is the number of atoms in ring R and hðWjWþ 1Þ is the contribution
from the bond between the Wth atom in the ring and the next atom in the ring.

Note that the counting is done one-way (clockwise or counterclockwise) but that

either one-way sum is equivalent, because of Eq. (8). Note, however, that Eq. (9)

itself does not follow from Eq. (8).

Equation (9) states that the one-way sum of the bond contributions from a ring

to a ‘‘null’’ molecular property is necessarily zero, because a ring is a closed

circuit of bonds. For a molecule with Nr rings, Eqs (7)–(9) constitute a set of

Na þ Nb þNr linear equations involving 2Nb unknowns. There is, however, one

redundant equation, because of the constraint of Eq. (6) and also one redundant

ring equation for each cage. For a molecule with Nc cages there are, therefore,

Na þ Nb þNr � 1�Nc linearly independent equations. Using the Poincaré–

Hopf relationship between Na, Nb, Nr, and Nc [1]:

Number of independent equations ¼ Na þ Nb þ Nr � 1� Nc ¼ 2Nb

¼ number of bond contributions ð10Þ

Thus, the set of linear equations defined by Eqs (7)–(9) has a unique solution

for any structure and any ‘‘null’’ property and can easily be solved without man-

ual effort using a linear equation solver such as the DGELSS routine of LAPACK

[11], which enables apparently (but only apparently) overdetermined sets of equa-

tions as input.

Figures 3.1–3.8 show the bond contributions hðWjLÞ to a generic ‘‘null’’ molec-

ular property h for some generic molecular structures, in terms of the atomic con-

tributions to h. Although an understanding, or picture, of the bond contributions

hðWjLÞ in terms of atomic contributions is not necessary to use them, occasion-

ally such pictures may be helpful for interpretation.

The result obtained from Eqs (7)–(9) for a bond contribution hðWjLÞ in a ring

system is equivalent to the result of averaging the corresponding bond contribu-

AaaB

hðAjBÞ ¼ hðAÞ
hðBjAÞ ¼ hðBÞ

Fig. 3.1 Bond contributions to h in a diatomic molecule.
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AaaBaaC

hðAjBÞ ¼ hðAÞ
hðBjAÞ ¼ �hðAÞ
hðBjCÞ ¼ �hðCÞ
hðCjBÞ ¼ hðCÞ

Fig. 3.2 Bond Contributions to h in a triatomic chain molecule.

A

= n
BaaC

hðAjBÞ ¼ �ð1=3Þ½2hðBÞ þ hðCÞ�
hðAjCÞ ¼ �ð1=3Þ½2hðCÞ þ hðBÞ�
hðBjAÞ ¼ �ð1=3Þ½2hðAÞ þ hðCÞ�
hðBjCÞ ¼ �ð1=3Þ½2hðCÞ þ hðAÞ�
hðCjAÞ ¼ �ð1=3Þ½2hðAÞ þ hðBÞ�
hðCjBÞ ¼ �ð1=3Þ½2hðBÞ þ hðAÞ�

Fig. 3.3 Bond contributions to h in a triatomic ring molecule.

A

= n
BaaCaaD

hðAjBÞ ¼ �ð1=3Þ½2hðBÞ þ hðCÞ þ hðDÞ�
hðAjCÞ ¼ �ð1=3Þ½2hðCÞ þ 2hðDÞ þ hðBÞ�
hðBjAÞ ¼ �ð1=3Þ½2hðAÞ þ hðCÞ þ hðDÞ�
hðBjCÞ ¼ �ð1=3Þ½2hðCÞ þ 2hðDÞ þ hðAÞ�
hðCjAÞ ¼ �ð1=3Þ½2hðAÞ þ hðBÞ�
hðCjBÞ ¼ �ð1=3Þ½2hðBÞ þ hðAÞ�
hðCjDÞ ¼ �hðDÞ
hðDjCÞ ¼ hðDÞ

Fig. 3.4 Bond contributions to h in a branched triatomic ring molecule.
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tion resulting from every possible way of (artificially) minimally opening the ring

(or rings) in which A and B are connected such that they are no longer connected

in a ring or rings. Figures 3.9 and 3.10 illustrate this for a triatomic ring and a

tetraatomic bicyclic ring.

Although a procedure for determining hðWjLÞ on the basis of such pictures

would obviously be tedious, the pictures do provide some insight into the mean-

ing of the ring constraint defined by Eq. (9).

As shown in Section 3.2 for electric dipole moments, one of the uses of the

decomposition of ‘‘null’’ molecular properties into bond contributions is that

apparently origin-dependent atomic contributions to other molecular properties,

such as electric dipole moments, electric polarizabilities, magnetizabilities, infra-

red vibrational absorption intensities, and nuclear virial energies, can be defined

in an origin-independent and physically reasonable manner.

AaaBaaCaaD

hðAjBÞ ¼ hðAÞ
hðBjAÞ ¼ �hðAÞ
hðBjCÞ ¼ �hðCÞ � hðDÞ
hðCjBÞ ¼ �hðAÞ � hðBÞ
hðCjDÞ ¼ �hðDÞ
hðDjCÞ ¼ hðDÞ

Fig. 3.5 Bond contributions to h in a tetraatomic chain molecule.

C

=

AaaB
n
D

hðAjBÞ ¼ hðAÞ
hðBjAÞ ¼ �hðAÞ
hðBjCÞ ¼ �hðCÞ
hðBjDÞ ¼ �hðDÞ
hðCjBÞ ¼ hðCÞ

hðDjBÞ ¼ hðDÞ

Fig. 3.6 Bond contributions to h in a tetraatomic branched chain molecule.
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AaaD
j j
BaaC

hðAjBÞ ¼ �ð1=4Þ½3hðBÞ þ 2hðCÞ þ hðDÞ�
hðAjDÞ ¼ �ð1=4Þ½3hðDÞ þ 2hðCÞ þ hðBÞ�
hðBjAÞ ¼ �ð1=4Þ½3hðAÞ þ 2hðDÞ þ hðCÞ�
hðBjCÞ ¼ �ð1=4Þ½3hðCÞ þ 2hðDÞ þ hðAÞ�
hðCjBÞ ¼ �ð1=4Þ½3hðBÞ þ 2hðAÞ þ hðDÞ�
hðCjDÞ ¼ �ð1=4Þ½3hðDÞ þ 2hðAÞ þ hðBÞ�
hðDjAÞ ¼ �ð1=4Þ½3hðAÞ þ 2hðBÞ þ hðCÞ�
hðDjCÞ ¼ �ð1=4Þ½3hðCÞ þ 2hðBÞ þ hðAÞ�

Fig. 3.7 Bond contributions to h in a tetraatomic ring molecule.

A

= n
BaaC
n =

D

hðAjBÞ ¼ �ð1=8Þ½5hðBÞ þ 3hðCÞ þ 4hðDÞ�
hðAjCÞ ¼ �ð1=8Þ½5hðCÞ þ 3hðBÞ þ 4hðDÞ�
hðBjAÞ ¼ �ð1=8Þ½5hðAÞ þ 2hðCÞ þ hðDÞ�
hðBjCÞ ¼ �ð1=4Þ½2hðCÞ þ hðAÞ þ hðDÞ�
hðBjDÞ ¼ �ð1=4Þ½5hðDÞ þ 2hðCÞ þ hðAÞ�
hðCjAÞ ¼ �ð1=8Þ½5hðAÞ þ 2hðBÞ þ hðDÞ�
hðCjBÞ ¼ �ð1=4Þ½2hðBÞ þ hðAÞ þ hðDÞ�
hðCjDÞ ¼ �ð1=4Þ½5hðDÞ þ 2hðBÞ þ hðAÞ�
hðDjBÞ ¼ �ð1=8Þ½5hðBÞ þ 3hðCÞ þ 4hðAÞ�
hðDjCÞ ¼ �ð1=8Þ½5hðCÞ þ 3hðBÞ þ 4hðAÞ�

Fig. 3.8 Bond contributions to h in a tetraatomic bicylic molecule.

3.3 Bond Contributions to ‘‘Null’’ Molecular Properties 69



It should be emphasized that this method is only applicable to ‘‘null’’ molecu-

lar properties, because of the constraints defined in Eqs (6)–(9). A generalization

of Eqs (6)–(9) to the decomposition of any molecular property P (‘‘null’’ or ‘‘non-

null’’) into physically reasonable bond contributions might be possible, and

would be highly desirable, but is not considered further here except to note that

such a method might produce the following formula for PðWjLÞ when W and L

are not connected in a ring:

PðWjLÞ ¼ ½PðWÞ=ðP� PðWÞÞ�PðLW
GÞ ð11Þ

where PðLW
GÞ is the net value of P for the group that is bonded to atom W via

atom L.

3.4

Bond Contributions to Atomic Charges in Neutral Molecules

Using Eq. (7), the atomic charge QðWÞ of an atom W in a neutral molecule can be

expressed in terms of corresponding bond charges QðWjLÞ as:

A A A A

= n = = n n
BaaC BaaC B C BaaC

1 2 3 4

hðAjBÞ1 ¼ ð1=3Þ½hðAjBÞ2 þ hðAjBÞ3 þ hðAjBÞ4�
¼ ð1=3Þ½hðAÞ � hðBÞ þ 0� ¼ �ð1=3Þ½2hðBÞ þ hðCÞ�

Fig. 3.9 Bond Contributions to h in a Tetraatomic Bicylic Molecule.

A A A A A A A A A

= n = = = = n = n n n n
BaaC BaaC B C BaaC B C B C B C BaaC BaaC
n = n n = = n = n = = n
D D D D D D D D D

1 2 3 4 5 6 7 8 9

hðAjBÞ1 ¼ ð1=8Þ½hðAjBÞ2 þ hðAjBÞ3 þ hðAjBÞ4 þ hðAjBÞ5 þ hðAjBÞ6
þ hðAjBÞ7 þ hðAjBÞ8 þ hðAjBÞ9�

¼ �ð1=8Þ½5hðBÞ þ 3hðCÞ þ 4hðDÞ�

Fig. 3.10 Bond Contributions to h in a Tetraatomic Bicylic Molecule.
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QðWÞ ¼
XNbðWÞ

L¼1

QðWjLÞ ð12Þ

where the set of QðWjLÞ are determined by solving the set of linear equations de-

fined by Eqs (7)–(9). As an example, Table 3.1 shows the set of QðWÞ and QðWjLÞ
for each symmetrically unique atom in para-nitroaniline (shown in Fig. 3.11),

calculated at HF/6-311þþG(2d,2p)//HF/6-311þþG(2d,2p). In addition to being

useful for partitioning electric dipole moments and their derivatives into atomic

contributions, such bond charges might find application in their own right, as de-

scriptors in QSAR studies or in the construction of molecular mechanics force

fields, for example.

3.5

Atomic Contributions to Electric Dipole Moments of Neutral Molecules

The electric dipole moment, m, of a molecule is given by:

m ¼ �
ð
½r � R0�rðrÞ dr þ

XNa

W¼1

ZW½RW � R0� ð13Þ

where rðrÞ is the electron density at a point r in real space, ZW is the nuclear

charge of atom W, RW is the position vector of nucleus W, and R0 is the arbitrary

Table 3.1 Symmetrically unique atomic charges and their bond

contributions in para-nitroaniline.

Atom, W Q(W) Q(WSL1)L1 Q(WSL2)L2 Q(WSL3)L3

C1 þ0.542 þ0.468 N2 þ0.037 C3 þ0.037 C4

N2 �1.309 �0.468 C1 �0.421 H9 �0.421 H9

C3 þ0.047 �0.037 C1 þ0.066 C5 þ0.018 H7

C5 þ0.068 �0.066 C3 �0.063 H12 þ0.197 C11

H7 �0.018 �0.018 C3

H10 þ0.421 þ0.421 N2

C11 þ0.313 �0.197 C5 �0.197 C6 þ0.706 N14

H12 þ0.063 þ0.063 C5

N14 þ0.376 �0.706 C11 þ0.541 O15 þ0.541 O16

O15 �0.541 �0.541 N14

Total[a] þ0.002

aThe deviation from a total net charge of zero is because of numerical

integration errors for the atoms. The maximum atomic integration

error, as measured by jLðWÞj, was 0.001 a.u. for N14.

3.5 Atomic Contributions to Electric Dipole Moments of Neutral Molecules 71



origin of the molecular coordinate system. For neutral molecules ðQ ¼ 0Þ, m is in-

dependent of R0.

As shown in Eq. (1), m can be expressed [2, 3] in terms of atomic dipole polar-

ization contributions, mpðWÞ, and origin-dependent atomic charge-transfer dipole

contributions, mcðWÞ:

m ¼
XNa

W¼1

�
ð
W

½r � R0�rðrÞ dr þ ZW½RW � R0�
� �

¼
XNa

W¼1

�
ð
W

½r � RWrðrÞ dr þ ½RW � R0�
ð
W

�rðrÞ dr þ ZW

� �� �

¼
XNa

W¼1

�
ð
W

½r � RW�rðrÞ dr þ ½RW � R0�QðWÞ
� �

¼
XNa

W¼1

fmpðWÞ þ mcðWÞg ¼
XNa

W¼1

mðWÞ ¼ mp þ mc ð14Þ

where QðWÞ is the net charge of atom W. Using Eq. (12), the origin-dependent

term mcðWÞ can be expressed in terms of bond charges QðWjLÞ as:

mcðWÞ ¼ ½RW � R0�QðWÞ ¼ ½RW � R0�
XNbðWÞ

L¼1

QðWjLÞ ð15Þ

Fig. 3.11 Electron density contours of para-nitroaniline in the nuclear

plane, overlaid with interatomic surfaces (bold) and bond paths (semi-

bold).
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Using Eq. (8), a corresponding origin-independent expression, mcðWÞ, can be

defined, as shown in Eq. (5) and below:

mcðWÞ ¼
XNbðWÞ

L¼1

½RW � RbðWjLÞ�QðWjLÞ ð16Þ

where RbðWjLÞ is the position vector of the bond critical point between atoms W

and L.

Note that for each product RbðWjLÞ�QðWjLÞ for atom W, there is a correspond-

ing term for atom L which cancels it, because of Eq. (8), and therefore:

XNa

W¼1

mcðWÞ ¼
XNa

W¼1

XNbðWÞ

L¼1

½RW � RbðWjLÞ�QðWjLÞ

¼
XNa

W¼1

RWQðWÞ ¼
XNa

W¼1

mcðWÞ ð17Þ

m ¼
XNa

W¼1

mðWÞ ¼
XNa

W¼1

fmpðWÞ þ mcðWÞg ¼ mp þ mc ð18Þ

Note that all the quantities in the expressions for mpðWÞ and mcðWÞ are uniquely
determined by the molecular charge distribution. An essential criterion for any

atomic property is that, once formally defined, its evaluation should be uniquely

determined entirely by the molecular wavefunction, just as the evaluation of the

corresponding molecular property is.

As an example, Table 3.2 shows the z-axis component of mpðWÞ and mcðWÞ
and mðWÞ for each symmetrically unique atom in para-nitroaniline (shown in

Fig. 3.11), calculated at HF/6-311þþG(2d,2p)//HF/6-311þþG(2d,2p). The total

charge-transfer contribution, mc, is over six times that of the opposing total polar-

ization contribution, mp. The dominant contributor to mc is the NO2 nitrogen,

N11, especially the contribution from its bond to the ring, mcðN14jC11Þz.

3.6

Atomic Contributions to Electric Polarizabilities

When a molecule is placed in an electric field, its electron distribution changes in

response (nuclear geometry changes are assumed to be negligible here). A useful

measure of this response is the molecular dipole moment m, whose first deriva-

tive and higher derivatives with respect to the electric field correspond to measur-

able molecular polarizability and hyperpolarizability tensors [13]. Using QTAIM

[1], more detailed information about these molecular responses can be obtained,

by partitioning the dipole moment and its electric field derivatives into atomic

contributions [3, 4].
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The static dipole polarizability tensor of a molecule, a, is the gradient ð‘EÞ of

the molecular electric dipole moment m with respect an external, uniform, and

time-independent electric field E, evaluated in the limit of zero field strength:

a ¼ ½‘Em�E¼0 ¼ ½iðqm=qExÞ þ jðqm=qEyÞ þ kðqm=qEzÞ�E¼0 ð19Þ
From Eqs (13) and (19), a is given by:

a ¼ �
ð
ðr � R0ÞrEðrÞ dr ð20Þ

where the electron density derivative rEðrÞ is given by:

rEðrÞ ¼ ½‘ErðrÞ�E¼0 ¼ ½iðqrðrÞ=qExÞ þ jðqrðrÞ=qEyÞ þ kðqrðrÞ=qEzÞ�E¼0 ð21Þ

Throughout this section, the notation tE is used to indicate the gradient of the

term t with respect to E, evaluated at E ¼ 0. In terms of atomic contributions we

have, from Section 3.5:

a ¼
XNa

W¼1

aðWÞ ¼
XNa

W¼1

mEðWÞ ¼
XNa

W¼1

fmpEðWÞ þ mc
EðWÞg

¼
XNa

W¼1

fapðWÞ þ acðWÞg ¼ ap þ ac ð22Þ

Table 3.2 Atomic and bond contributions (in a.u.) to the z-axis dipole

moment of para-nitroaniline.

Atom, W m(W)z mp(W)z mc(W)z mc(WSL1)zL1 mc(WSL1)zL2 mc(WSL1)zL3

C1 þ0.381 þ0.751 �0.370 �0.422 N2 þ0.026 C3 þ0.026 C4

N2 �0.010 þ0.170 �0.180 �0.782 C1 þ0.301 H9 þ0.301 H10

C3 þ0.101 þ0.005 þ0.096 þ0.024 C1 þ0.083 C5 �0.011 C6

C5 þ0.144 �0.030 þ0.174 þ0.087 C3 þ0.128 C11 �0.042 H12

H7 �0.072 �0.066 �0.006 �0.006 C3

H10 þ0.016 �0.087 þ0.103 þ0.013 N2

C11 þ0.324 �0.568 þ0.892 þ0.126 C5 þ0.126 C7 þ0.641 N14

H12 þ0.012 þ0.035 �0.023 �0.023 C5

N14 þ0.927 �0.922 þ1.849 þ1.290 C11 þ0.279 O15 þ0.279 O16

O15 þ0.436 þ0.146 þ0.290 þ0.290 N14

Total[a,b] þ2.893 �0.563 þ3.456

aThe analytically calculated value for mðWÞz is þ2.901 a.u.
bAn experimental dipole moment for para-nitroaniline (measured in

acetone) is 2.44 a.u. [12].
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The atomic dipole polarization gradient with respect to E, apðWÞ ¼ mp
EðWÞ, con-

tains a basin (B) contribution, ap;BðWÞ, arising from the density gradient rEðrÞ
within the unperturbed atomic basin. It also contains a surface (S) contribution,

ap;SðWÞ, arising from the gradient of the atomic surface S with respect to E:

apðWÞ ¼ �
ð
W

ðr � RWÞrEðrÞ dr þ ap;SðWÞ ¼ ap;BðWÞ þ ap;SðWÞ ð23Þ

Similarly, the gradient of the atomic charge transfer dipole contribution with

respect to E, acðWÞ ¼ mc
EðWÞ, also contains both basin and surface contributions:

acðWÞ ¼ ac;BðWÞ þ ac;SðWÞ ð24Þ

ac;BðWÞ ¼
XNbðWÞ

L¼1

f½RW � RbðWjLÞ�QB
EðWjLÞ ð25Þ

ac;SðWÞ ¼
XNbðWÞ

L¼1

½RW � RbðWjLÞ�QS
EðWjLÞ �QðWjLÞRb

EðWjLÞ ð26Þ

Using Eqs (7)–(9), the electric field derivatives of the bond charges, QEðWjLÞ,
are determined from the electric field derivatives of the atomic charges QEðWÞ:

QEðWÞ ¼ �
ð
W

rEðrÞ dr þQS
EðWÞ ¼ QB

EðWÞ þQS
EðWÞ ð27Þ

The atomic basin and surface bond charge derivative contributions, QB
EðWjLÞ

and QS
EðWjLÞ, can be obtained separately from the corresponding atomic charge

derivatives QB
EðWÞ and QS

EðWÞ.
The contributions to aðWÞ from the surface derivatives with respect to E arise

because both the spatial definition of an atom and an atomic dipole moment con-

tribution are determined entirely by the molecular charge distribution, which is

of course dependent on E. This is physically sound (it is physically essential),

but it also makes the term-by-term evaluation of apðWÞ and acðWÞ more difficult

than usual. However, evaluation of apðWÞ and acðWÞ by numerical differentiation

(using finite field wavefunctions) is straightforward. For example:

apðWÞ � k ¼ 1=2f½mpðWÞ�E¼ek � ½mpðWÞ�E¼0ge�1

� 1=2f½mpðWÞ�E¼�ek � ½mpðWÞ�E¼0ge�1 ð28Þ
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where the average over numerical derivatives for both positive and negative fields

is used. Numerical differentiation to obtain apðWÞ and acðWÞ, together with the

straightforward evaluation of the basin contributions (which involve the analytical

density derivatives rE) enables the surface derivative contributions to apðWÞ and

acðWÞ to be obtained by difference. Note that the sum of all of the atomic surface

derivative contributions is zero:

aS ¼
XNa

W¼1

aSðWÞ ¼
XNa

W¼1

½ap;SðWÞ þ ac;SðWÞ� ¼ 0 ð29Þ

Table 3.3 Atomic contributions (in a.u.) to the principal components of

the electric polarizability tensor of para-nitroaniline.

Atom, W a(W)zz aB(W)zz ap(W)zz ap, B(W)zz ac(W)zz ac, B(W)zz

C1 þ9.332 þ10.623 �3.152 �0.417 þ12.484 þ11.040

N2 þ17.854 þ16.963 �0.034 þ5.210 þ17.888 þ11.753

C3 þ12.865 þ13.133 �2.792 þ1.458 þ15.657 þ11.674

C5 þ12.077 þ12.220 �4.530 þ0.013 þ16.607 þ12.206

H7 þ1.885 þ1.670 þ0.859 þ1.164 þ1.026 þ0.505

H10 þ1.380 þ1.364 þ0.848 þ0.944 þ0.532 þ0.370

C11 þ12.136 þ13.844 �0.580 þ1.514 þ12.716 þ12.330

H12 þ1.250 þ1.004 þ0.433 þ0.632 þ0.817 þ0.372

N14 þ16.944 þ15.656 �3.830 �0.841 þ20.774 þ16.497

O15 þ6.514 þ6.310 þ4.439 þ4.406 þ2.074 þ1.904

Total[a,b] þ128.214 þ128.487 �9.083 þ22.803 þ137.297 þ105.685

Atom, W a(W)xx aB(W)xx ap(W)xx ap, B(W)xx ac(W)xx ac, B(W)xx

C1 þ9.756 þ9.830 �4.362 þ0.041 þ14.118 þ9.789

N2 þ4.413 þ4.435 �1.590 þ1.799 þ6.002 þ2.637

C3 þ8.125 þ8.385 �3.283 þ1.424 þ11.408 þ6.961

C5 þ7.263 þ7.768 �3.220 þ1.178 þ10.483 þ6.591

H7 þ3.998 þ3.558 þ0.881 þ1.972 þ3.117 þ1.587

H10 þ1.258 þ1.221 þ0.645 þ0.778 þ0.613 þ0.442

C11 þ9.994 þ9.663 �3.354 þ0.637 þ13.348 þ9.026

H12 þ3.260 þ2.936 þ0.845 þ1.673 þ2.415 þ1.263

N14 þ6.975 þ7.367 �1.430 �0.494 þ8.404 þ7.861

O15 þ7.672 þ7.578 þ2.925 þ3.367 þ4.747 þ4.211

Total[a,b] þ94.291 þ94.187 �13.150 þ22.766 þ107.441 þ71.421
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Thus, the molecular polarizability a can be written as:

a ¼
XNa

W¼1

aðWÞ ¼
XNa

W¼1

½apðWÞ þ acðWÞ�

¼
XNa

W¼1

½ap;BðWÞ þ ac;BðWÞ þ ap;SðWÞ þ ac;SðWÞ� ¼ aB þ aS ¼ aB ð30Þ

That the sum of the atomic surface derivative contributions vanishes does not

necessarily mean they should be ignored, however, especially when comparing

and/or transferring atomic polarizabilities between molecules.

Using the partitioning method outlined above, Bader et al. [4] studied, among

other things, the atomic and group contributions to the polarizability tensors of

the normal alkane series and showed that the empirical additivity relationship

for the isotropic polarizability of normal alkanes in terms of transferable methy-

lene and methyl group contributions is mirrored by the corresponding theoretical

group contributions, thus providing a theoretical basis for the empirical relation-

ship or an experimental validation for the theoretical definition of QTAIM polar-

izabilities.

As an example here, Table 3.3 shows the diagonal components of apðWÞ and

acðWÞ and aðWÞ for each symmetrically unique atom of para-nitroaniline, calcu-
lated using the coupled–perturbed HF/6-311þþG(2d,2p)//HF/6-311þþG(2d,2p)

level of theory. Also shown in Table 3.3 are the corresponding basin contributions

Table 3.3 (continued)

Atom, W a(W)yy aB(W)yy ap(W)yy ap, B(W)yy ac(W)yy ac, B(W)yy

C1 þ3.183 þ3.291 þ3.185 þ3.291 �0.002 0.000

N2 þ6.950 þ6.936 þ6.983 þ6.936 �0.033 0.000

C3 þ6.337 þ6.282 þ6.340 þ6.282 �0.003 0.000

C5 þ4.710 þ4.796 þ4.742 þ4.796 �0.032 0.000

H7 þ1.115 þ1.113 þ1.117 þ1.113 �0.002 0.000

H10 þ0.389 þ0.403 þ0.375 þ0.403 þ0.013 0.000

C11 þ5.136 þ4.853 þ5.113 þ4.853 þ0.023 0.000

H12 þ0.900 þ0.904 þ0.889 þ0.904 þ0.011 0.000

N14 þ2.190 þ2.203 þ2.140 þ2.203 þ0.050 0.000

O15 þ3.497 þ3.586 þ3.504 þ3.586 �0.007 0.000

Total[a,b] þ51.354 þ51.451 þ51.354 þ51.451 0.000

aThe analytically calculated values of azz, axx, and ayy are þ128.487,

þ94.187, and þ51.451 a.u.
bThe experimentally measured isotropic polarizability (measured in

acetone) is þ114.73 a.u. [12] compared with the analytically calculated

isotropic value of þ91.375 a.u.
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ap;BðWÞ, ac;BðWÞ, and aBðWÞ. The magnitude of the total charge-transfer contribu-

tion to azz is over fourteen times that of the opposing total polarization contribu-

tion. The polarizability axx is similarly dominated by charge transfer whereas the

much smaller ayy is due entirely to atomic polarization, the charge-transfer contri-

bution vanishing by symmetry (the non-zero values shown for acðWÞyy provide a

measure of the error in the results for the other atomic polarizability contribu-

tions). That the sum of aðWÞzz does not equal the sum of aBðWÞzz ¼ azz is because

of error in the numerical differentiation used to obtain the total (basinþ surface)

aðWÞzz contributions, whereas the aBðWÞzz contributions were calculated from the

analytical density derivative. Similar statements apply for the yy and zz compo-

nents. Figure 3.12 shows the effect on the charge distribution of a finite external

electric field (0.05 a.u.) applied along the z-axis. Note that the shift in electronic

charge is opposed to the electric field whereas the shift in the interatomic sur-

faces is in the opposite direction [3].

3.7

Atomic Contributions to Vibrational Infrared Absorption Intensities

Within the (double) harmonic approximation, the intensity of absorption, I, of a

peak in an infrared spectrum for a molecule is proportional to the first derivative

Fig. 3.12 Effect of a finite (0.05 a.u.) electric field applied along the

z-axis of para-nitroaniline in terms of electron density contours,

interatomic surfaces (bold), and bond paths (semi-bold) in the nuclear

plane. Dotted lines correspond to the presence of the field whereas

solid lines correspond to the absence of the field.
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of the electric dipole moment, m, of the molecule with respect to one of the

normal-mode vibrational coordinates x (a combination of nuclear displacement

coordinates from an equilibrium geometry), in the limit of x ¼ 0. For a normal

mode of vibration with frequency nx and normal coordinate x, the corresponding

theoretical absorption intensity, Ix, is [13, 14]:

Ix ¼ Cjðdm=dxÞx¼0j2 ¼ Cjmxj2 ð31Þ

where C is a collection of constants and the notation tx is used to indicate the de-

rivative of the term t with respect x, evaluated at x ¼ 0. Absorption intensities of

vibrational spectra can be understood in terms of atomic and bond contributions

using the equations in Section 3.5 with Eq. (31). The formalism is similar to that

for polarizabilities:

mx ¼
XNa

W¼1

mxðWÞ ¼
XNa

W¼1

fmpxðWÞ þ mc
xðWÞg ¼ mp

x þ mc
x ð32Þ

mp
xðWÞ ¼ �

ð
W

ðr � RWÞrxðrÞ dr þ RW
xQðWÞ

� �
þ mp;S

xðWÞ

¼ mp;B
xðWÞ þ mp;S

xðWÞ ð33Þ

mc
xðWÞ ¼

XNbðWÞ

L¼1

f½RW � RbðWjLÞ�Q xðWjLÞ þ RW
xQðWjLÞ �QðWjLÞRb

xðWjLÞg

¼
XNbðWÞ

L¼1

f½RW � RbðWjLÞ�QB
xðWjLÞ þ RW

xQðWjLÞg

þ
XNbðWÞ

L¼1

f½RW � RbðWjLÞ�QS
xðWjLÞ �QðWjLÞRb

xðWjLÞg

¼ mc;B
xðWÞ þ mc;S

xðWÞ ð34Þ

mS
x ¼

XNa

W¼1

mS
xðWÞ ¼

XNa

W¼1

½mp;SxðWÞ þ mc;S
xðWÞ� ¼ 0 ð35Þ

mx ¼
XNa

W¼1

mxðWÞ ¼
XNa

W¼1

½mpxðWÞ þ mc
xðWÞ�

¼
XNa

W¼1

½mp;BxðWÞ þ mc;B
xðWÞ þ mp;S

xðWÞ þ mc;S
xðWÞ�

¼ mB
x þ mS

x ¼ mB
x ð36Þ
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The normal coordinate derivatives of the bond charges QxðWjLÞ and their

basin and surface contributions, QB
xðWjLÞ and QS

xðWjLÞ, are determined from

the corresponding atomic charge derivatives QxðWÞ using Eqs (7)–(9). QxðWÞ is

given by:

QxðWÞ ¼ �
ð
W

rxðrÞ dr þQS
xðWÞ ¼ QB

xðWÞ þQS
xðWÞ ð37Þ

When compared with the corresponding polarizability term apðWÞ, the term

mp
xðWÞ contains an additional contribution �RW

xQðWÞ, which is the atomic

charge-weighted derivative of the nuclear position RW with respect to xk. Simi-

larly, the charge-transfer term mc
xðWÞ contains an extra contribution for each

bond, RW
xQðWjLÞ, which is the bond-charge-weighted derivative of the nuclear

position RW with respect to coordinate x.

Like the atomic polarizability contributions, the term-by-term evaluation of

the atomic polarization and charge-transfer contributions to an electric dipole de-

rivative with respect to a normal vibrational coordinate is complicated (but in a

physically necessary way) by the dependence of the atomic surfaces on the nu-

clear positions. As with the polarizabilities, however, the total mp
xðWÞ and mc

xðWÞ
can each be easily evaluated by numerical differentiation and the terms involving

the analytical density derivative rxðrÞ can be evaluated directly, thus enabling the

surface derivative contributions to be obtained by difference.

Bader et al. [2] were the first to study molecular dipole moment changes asso-

ciated with normal mode vibrations using QTAIM. Their analysis used finite

displacements along a normal coordinate or symmetry coordinate to observe

changes in mpðWÞ and an origin-dependent charge-transfer contribution which is

somewhat different, and less generally applicable, than the mcðWÞ given here, but

their results clearly showed that changes in atomic polarizations, changes in

atomic charges, and displacement of atomic charges are all important in under-

standing dipole moment derivatives with respect to normal mode vibrational co-

ordinates, and hence IR spectra.

As an example here, Table 3.4 shows the atomic contributions mxðWÞ, mpxðWÞ,
and mc

xðWÞ to the molecular dipole derivative mx for one of the pair of degenerate

bending normal modes of vibration in CO2 and the asymmetric stretching

normal mode, calculated at the coupled–perturbed HF/6-311þþG(2d,2p)//HF/6-

311þþG(2d,2p) level of theory. For the bending mode, shown in Fig. 3.13, the

calculated dipole derivative is þ0.879 a.u. directed along the y-axis. For the asym-

metric stretch, shown in Fig. 3.14, the calculated dipole derivative is 3.793 a.u.

directed along the z-axis. The difference between the calculated dipole deriva-

tives is in good agreement with experimental results [15]. For the bending

mode, the atomic polarization derivatives are counter to the larger magnitude

atomic charge-transfer derivatives. In contrast, for the asymmetric stretching

mode, both the atomic polarization derivatives and the atomic charge transfer de-

rivatives contribute positively to the overall dipole derivative, making it much

larger.
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Fig. 3.13 Effect of finite ðxA0:2 a.u.) bending vibration on CO2 in

terms of electron density contours, interatomic surfaces (bold), and

bond paths (semi-bold). Dotted lines correspond to bent geometry

whereas solid lines correspond to equilibrium geometry.

Table 3.4 Atomic contributions to the dipole moment derivatives of CO2

(in a.u.) with respect to the bend and asymmetric stretch (AS) normal

mode coordinates. Also shown are the atomic charge Q derivatives.[a,b,c]

Atom, W mBend(W)y mp
Bend(W)y mc

Bend(W)y QBend(W)

C1 þ0.191 �0.741 þ0.932 �0.012

O2 þ0.342 �0.795 þ1.137 þ0.006

O3 þ0.342 �0.795 þ1.137 þ0.006

Total þ0.876 �2.331 þ3.207 þ0.000

Atom, W mAS(W)z mp
AS(W)z mc

AS(W)z QAS(W)

C1 þ1.655 þ1.213 þ0.442 �0.049

O2 þ1.068 þ0.780 þ0.288 �0.508

O3 þ1.055 þ0.898 þ0.157 þ0.573

Total þ3.778 þ2.891 þ0.887 þ0.016

aCalculated frequencies for the modes are 776 (bend) and 2551 (AS) cm�1.
bExperimental frequencies for the modes are 667 (bend) and 2349 (AS) cm�1.
cThe experimentally measured ratio of the AS and bend dipole derivatives

is 4.57 [15], compared to the calculated ratio of 4.31.
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3.8

Atomic Nuclear Virial Energies

The electronic energy of an atom in a molecule, EeðWÞ, equivalent to minus the

electronic kinetic energy of the atom, TðWÞ, has a number of important character-

istics [1], including:
� Well defined. The Hamiltonian (K) and Lagrangian (G)

kinetic energy densities integrate to the same atomic

electronic kinetic energy.
� Total energy additivity at stationary point geometries. The

sum of the EeðWÞ in a molecule at a stationary point

geometry is equal to the total energy E of the molecule

because of the molecular virial theorem.
� Transferability. The atomic electronic energies for different

atoms – and their corresponding kinetic energy and virial

field distributions – are similar in a manner which parallels

the atomic charge distribution and which is consistent with

experimentally based atomic and group additivity schemes.

Fig. 3.14 Effect of finite (x@ 0:2 a.u.) asymmetric stretching vibration

on CO2 in terms of electron density contours, interatomic surfaces

(bold), and bond paths (semi-bold). Dotted lines correspond to

asymmetrically stretched geometry whereas solid lines correspond to

equilibrium geometry.
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� An atomic electronic virial theorem is satisfied:

EeðWÞ ¼ �TðWÞ ¼ ð1=2ÞVeðWÞ, where VeðWÞ is the atomic

basin average of the virial of the electronic Ehrenfest force

density plus the atomic surface average of the virial of the

electronic pressure density, i.e. the atomic electronic potential

energy contribution.
� Interpretable in terms of local, real space energy densities.

An open ‘‘problem’’ in QTAIM, however, is that for molecules at non-stationary

point geometries the sum of the atomic electronic energies EeðWÞ does not equal
the total molecular energy E [1] because the forces on the nuclei (and hence the

nuclear virial contribution to the energy) are not zero, i.e. E0Ee. This is easily

seen from the molecular virial theorem [16], i.e., the hypervirial theorem for the

full (electronicþ nuclear) virial operator V̂V:

V̂V ¼ V̂Ve þ V̂Vn ¼ ð1=2Þ
XNe

i¼1

½p̂pi � ri þ ri � p̂pi �

þ ð1=2Þ
XNa

A¼1

½P̂PA � RA þ RA � P̂PA� ð38Þ

ði=�hÞhcj½ĤH; V̂V�jci ¼ ði=�hÞhcj½E; V̂V�jci

¼ 2hcjT̂Tjciþ hcjV̂Vnejciþ hcjV̂Veejciþ hcjV̂Vnnjci

¼ �
XNa

A¼1

RA � ‘AE

¼ 2Tþ Vne þ Vee þ Vnn ¼ 2Tþ V ¼ Tþ E ¼ W ð39Þ

Rearranging Eq. (39) gives:

E ¼ �TþW ¼ ð1=2ÞðVþWÞ ¼ Ee þW ð40Þ

The energy W may be called the ‘‘nuclear virial’’ contribution to the total molec-

ular energy:

W ¼ �
XNa

A¼1

RA � ‘AE ¼
XNa

A¼1

RA �GA ð41Þ

where GA is the familiar energy-gradient based force on the nucleus A (which is,

unfortunately, not equal to the Hellman–Feynman electrostatic FA force on nu-

cleus A in typical ab initio calculations since they typically violate the Hellman-

Feynman electrostatic theorem):
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GA ¼ �‘AE ð42Þ

In terms of atomic electronic energies EeðWÞ ¼ �TðWÞ we have:

E ¼ �TþW ¼
XNa

W¼1

�TðWÞ þW ¼
XNa

W¼1

EeðWÞ þW ð43Þ

For molecular geometries at which GA ¼ 0 for all nuclei (e.g. equilibrium and

transition state geometries), W is zero and atomic electronic energies EeðWÞ are

additive to give the total molecular energy E ¼ Ee.

For non-stationary point geometries this is not true and it is therefore impor-

tant to be able to define a physically reasonable atomic contribution, WðWÞ, to W

so that the total energy additivity of atomic energies is preserved as a molecule

vibrates, reacts, undergoes a vertical electronic transition or otherwise deviates

from a stationary point geometry. In addition, even at equilibrium geometries a

definition for WðWÞ is necessary if one wishes to calculate atomic contributions

to molecule response properties defined in terms of energy derivatives with re-

spect to nuclear coordinates (e.g. vibrational frequencies).

W ¼
XNa

W¼1

WðWÞ ð44Þ

EðWÞ ¼ EeðWÞ þWðWÞ ¼ �TðWÞ þWðWÞ ð45Þ

E ¼
XNa

W¼1

EðWÞ ð46Þ

In the limit of a stationary point geometry, where W ¼ 0, each WðWÞ should

separately equal zero so that the total atomic energy EðWÞ reduces to the atomic

electronic energy EeðWÞ, which is already known to behave correctly at stationary

point geometries:

limW!0½WðWÞ� ¼ 0 ð47Þ

An obvious definition for WðWÞ which satisfies Eq. (47) would be:

WIðWÞ ¼ RW �GW ð48Þ

where GW means the energy-gradient-based force on the nucleus of atom W and

the subscript ‘‘I’’ is used to distinguish this definition from an alternative defini-

tion considered later.

As indicated by the underline, the definition for WIðWÞ in Eq. (48) is origin-

dependent and is, therefore, not directly useful. It also has the physically unrea-
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sonable characteristic that if the force on the nucleus of an atom is zero, its

nuclear virial energy contribution is necessarily zero. To see that this is unphysical

it is important to realize that the total force on a nucleus in a molecule is a

molecular property, and therefore one to which each atom contributes [1]. This

is evident from the Hellman–Feynman electrostatic theorem [16], discussed later

in this section. Equation (48) does, however, provide a good starting point for de-

fining a more physically reasonable WIðWÞ. Because of translation invariance [16],

the sum G of the energy-gradient-based forces GW is zero, i.e. G is a ‘‘null’’ mo-

lecular property:

G ¼
XNa

W¼1

GW ¼ 0 ð49Þ

Thus, the method of partitioning apparently origin-dependent atomic proper-

ties outlined in Sections 3.2 and 3.3 can be used to define an origin-independent

WIðWÞ based on the WIðWÞ given in Eq. (48):

GW ¼
XNbðWÞ

L¼1

GWðWjLÞ ð50Þ

WIðWÞ ¼
XNbðWÞ

L¼1

½RW � RbðWjLÞ� �GWðWjLÞ ð51Þ

The force vector GWðWjLÞ may be interpreted as a ‘‘bond force’’, or a bond con-

tribution to the energy-gradient-based force on the nucleus of atom W. With this

definition of an atomic nuclear virial energy, the corresponding definition of a to-

tal atomic energy EIðWÞ in a molecule at an arbitrary geometry becomes:

EIðWÞ ¼ �TðWÞ þWIðWÞ ¼ �TðWÞ þ
XNbðWÞ

L¼1

½RW � RbðWjLÞ� �GWðWjLÞ ð52Þ

All of the terms in Eq. (52) are readily calculated from standard ab initio wave-

functions. For the additivity of Eq. (46) to be obtained in practice, however, the

molecular virial theorem, Eq. (39), must be satisfied. Of course, satisfaction of

the molecular virial theorem is also necessary at stationary point geometries for

atomic energy additivity to be obtained in practice.

Unfortunately, the molecular virial theorem is not satisfied by wavefunctions

from typical ab initio calculations [16]. It is, however, relatively straightforward

to variationally improve any ab initio calculation to satisfy the molecular virial

theorem using what this author calls ‘‘self-consistent virial scaling’’ (SCVS),

which involves variationally scaling the electronic and nuclear coordinates of a

wavefunction to satisfy the molecular virial theorem in a manner which is ‘‘self-

consistent’’ with the ab initio method of choice. At the Hartree–Fock SCF level,
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SCVS simply means optimizing the coordinate scaling parameter simultaneously

with the MO coefficients – and geometry, if desired. The net result of SCVS is

a legitimate ab initio wavefunction or first-order density matrix and molecular

geometry that satisfies the molecular virial theorem.

Further information about the contributions to WIðWÞ can be obtained by using

the Hellman–Feynman electrostatic theorem [16], which is just the hypervirial

theorem for nuclear momentum operator P̂PA:

ði=�hÞhcj½ĤH; P̂PA�jci ¼ ði=�hÞhcj½E; P̂PA�jci ¼ hcjð‘AV̂VneÞjciþ ‘AVnn

¼ �ZA

ð
drrðrÞðr � RAÞjr � RAj�3 þ

XNa

B0A

ZBðRB � RAÞjRB � RAj�3

" #

¼ FA ¼ �‘AE ¼ GA ð53Þ

In words, the electrostatic force FA on nucleus A is equal to the energy gradient

based force GA when the Hellman–Feynman electrostatic theorem is satisfied.

Thus, if the Hellman–Feynman electrostatic theorem is satisfied, WIðWÞ can be

expressed as:

WIðWÞ ¼
XNbðWÞ

L¼1

½RW � RbðWjLÞ� � FWðWjLÞ ð54Þ

where FWðWjLÞ is the contribution from the bond between atoms W and L to the

electrostatic force on the nucleus of atom W.

In practice, unfortunately, the Hellman–Feynman electrostatic theorem is not

satisfied in typical ab initio calculations [16], and improving typical ab initio

calculations to produce legitimate wavefunctions which satisfy the Hellman–

Feynman electrostatic theorem is somewhat more difficult than for the molecular

virial theorem.

Practical difficulties aside, the Hellman–Feynman electrostatic theorem does

provide an alternative way to define a WðWÞ which should be considered. Com-

bining Eqs (41) and (53) the total nuclear virial energy W can be expressed as:

W ¼
XNa

A¼1

RA �GA ¼
XNa

A¼1

RA � FA

¼
XNa

A¼1

ZARA �
"
�
ð
drrðrÞðr � RAÞjr � RAj�3

þ
XNa

B0A

ZBðRB � RAÞjRB � RAj�3

#
ð55Þ
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The contribution, FAðWÞ, of atom W to the electrostatic force FA on nucleus A

is easily determined (without the Hellman–Feynman electrostatic theorem, the

contribution of W to GA is not easily determined):

FAðWÞ ¼ �
ð
W

drrðrÞðr � RAÞjr � RAj�3 þ ZAZWðRW � RAÞjRW � RAj�3 ð56Þ

Thus, W can be expressed as:

W ¼
XNa

A¼1

RA � FA ¼
XNa

A¼1

XNa

W¼1

RA � FAðWÞ ð57Þ

Using this expression, an origin-dependent atomic contribution, WIIðWÞ, to W

can be defined:

WIIðWÞ ¼
XNa

A¼1

RA � FAðWÞ ¼
XNa

A¼1

ðRA � RWÞ � FAðWÞ þ RW �
XNa

A¼1

FAðWÞ

¼
XNa

A¼1

ðRA � RWÞ � FAðWÞ þ RW � FTotðWÞ ð58Þ

where FTotðWÞ is defined as the sum of the electrostatic forces that the charge

distribution (electron and nuclear) of atom W exerts on all the nuclei. When the

Hellman–Feynman electrostatic theorem is satisfied, the total FTot is a ‘‘null’’ mo-

lecular property, because of translational invariance [16]:

FTot ¼
XNa

W¼1

FTotðWÞ ¼ 0 ð59Þ

An origin-independent WIIðWÞ can therefore be expressed according to Sections

3.2 and 3.3 as:

WIIðWÞ ¼
XNa

A¼1

ðRA � RWÞ � FAðWÞ þ
XNbðWÞ

L¼1

½RW � RbðWjLÞ� � FTotðWjLÞ ð60Þ

and the corresponding total atomic energy EIIðWÞ is given by:

EIIðWÞ ¼ �TðWÞ þWIIðWÞ ð61Þ

To summarize the meaning of the terms in Eq. (60), FAðWÞ is the electrostatic

force that the charge distribution (electronic and nuclear) of atom W exerts on the
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nucleus A while FTotðWjLÞ is the contribution from the (directed) bond between

atoms W and L to the electrostatic force that the charge distribution of atom W

exerts on the all the nuclei in the molecule.

The two definitions for WðWÞ considered here, WIðWÞ in Eq. (51) and WIIðWÞ
in Eq. (60), both employ the strategy of Sections 3.2 and 3.3 to avoid apparent

origin dependence, but WIðWÞ and WIIðWÞ are otherwise different. WIðWÞ has

the advantage that it is relatively easily and reliably calculated as long as the

molecular virial theorem is satisfied whereas WIIðWÞ requires satisfaction of

both the molecular virial theorem and the more difficult Hellman–Feynman the-

orem for its application. WIIðWÞ, however, has the important advantage that its

definition is more consistent with the definition of other atomic properties, and

provides a means for a richer interpretation directly in terms of the charge dis-

tribution. Both definitions, and perhaps others not considered here, should be

investigated.

3.9

Atomic Contributions to Induced Electronic Magnetic Dipole Moments

The electronic magnetic dipole moment, m, of a closed-shell molecule in a uni-

form magnetic field B is given by [13, 17]:

m ¼ ð1=2cÞ
ð
½r � R0� � JðrÞ dr ð62Þ

where JðrÞ is the electronic current density at a point r in real space and R0 is the

arbitrary origin of the molecular coordinate system. Because the net current hJi
is zero for the molecule, m is independent of R0.

Like the electric dipole moment m, the magnetic dipole moment m can be

expressed in terms of atomic magnetic polarization contributions, mpðWÞ, and
origin-dependent atomic ‘‘net current’’ contributions, mcðWÞ, as follows:

m ¼ ð1=2cÞ
XNa

W¼1

ð
W

½r � R0� � JðrÞ dr
� �

¼ ð1=2cÞ
XNa

W¼1

ð
W

½r � RW� � JðrÞ dr þ ðRW � R0Þ �
ð
W

JðrÞ dr
� �� �

¼ ð1=2cÞ
XNa

W¼1

ð
W

½r � RW� � JðrÞ dr þ ½RW � R0� � JðWÞ
� �

¼
XNa

W¼1

fmpðWÞ þmcðWÞg ¼
XNa

W¼1

mðWÞ ¼ mp þmc ð63Þ
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where JðWÞ is the net current of atom W. As in earlier sections, underlines are

used to emphasize that mcðAÞ, and hence mðWÞ, is origin-dependent. Using Eq.

(7), mðWÞ can be expressed in terms of ‘‘bond current’’ contributions JðWjLÞ as:

mcðWÞ ¼ ð1=2cÞ½RW � R0� � JðWÞ ¼ ð1=2cÞ½RW � R0� �
XNbðWÞ

L¼1

JðWjLÞ ð64Þ

Using Eq. (8), a corresponding origin-independent expression, mcðWÞ, can be

defined:

mcðWÞ ¼ ð1=2cÞ
XNbðWÞ

L¼1

½RW � RbðWjLÞ� � JðWjLÞ ð65Þ

where JðWjLÞ is the contribution to the net current of atom from the bond from

atom W to atom L.

Note that for each term RbðWjLÞ � JðWjLÞ for atom W, there is a corresponding

term for atom L which cancels it, because of Eq. (8), and therefore:

XNa

W¼1

mcðWÞ ¼ ð1=2cÞ
XNa

W¼1

XNbðWÞ

L¼1

½RW � RbðWjBÞ� � JðWjBÞ

¼ ð1=2cÞ
XNa

W¼1

RW � JðWÞ ¼
XNa

W¼1

mcðWÞ ð66Þ

m ¼
XNa

W¼1

mðWÞ ¼
XNa

W¼1

fmpðWÞ þmcðWÞg ¼ mp þmc ð67Þ

The meaning of mpðWÞ and mcðWÞ is essentially that the former describes the

magnetic moment arising from current flowing within the atomic basin whereas

the latter describes the magnetic moment from current flowing between atomic

basins. When a current distribution is highly localized, mpðWÞ is larger than

mcðWÞ. When a current distribution is highly delocalized, the opposite is true.

Note that all of the quantities in the expressions for mpðWÞ and mcðWÞ are

uniquely determined by the molecular charge distribution and current density

distributions.

In the absence of an external magnetic field B, the current density JðrÞ vanishes
for closed-shell molecules [13]. For open-shell molecules, JðrÞ does not necessar-

ily vanish even when B ¼ 0 and in such circumstances the corresponding perma-

nent molecular electronic magnetic moment can be expressed in terms of the

atomic contributions mpðWÞ and mcðWÞ described here.
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3.10

Atomic Contributions to Magnetizabilities of Closed-Shell Molecules

Analogous to the electric polarizability tensor a, the magnetizability tensor of a

molecule, w, is the gradient of the molecular electronic magnetic dipole moment,

m, with respect to a uniform magnetic field, B, in the limit of zero field strength

[13]:

w ¼ ½‘Bm�B¼0 ¼ ½iðqm=qBxÞ þ jðqm=qByÞ þ kðqm=qBzÞ�B¼0 ¼ mB ð68Þ

where the notation tB is used to indicate the gradient of the term t with respect to

B, evaluated at B ¼ 0.

From Eq. (62), w is given by:

w ¼ ð1=2cÞ
ð
ðr � R0Þ � JBðrÞ dr ð69Þ

where JBðrÞ is the gradient of the electronic current density JðrÞ with respect to B,

in the limit of zero field strength:

JBðrÞ ¼ ½‘BJðrÞ�B¼0 ¼ ½iðqJðrÞ=qBxÞ þ jðqJðrÞ=qByÞ þ kðqJðrÞ=qBzÞ�B¼0 ð70Þ

The first-order current density Jð1ÞðrÞ induced by B is:

Jð1ÞðrÞ ¼ JBðrÞ � B ð71Þ

Methods for calculating relatively accurate Jð1Þ distributions and their depen-

dent properties, for example magnetizability tensors discussed in this section

and NMR shielding tensors [18], were developed by Keith and Bader [5, 19]. Thor-

ough and correct displays and analyses of Jð1Þ distributions were presented by

Keith and Bader [20] based on methods developed elsewhere [5, 19], along with

pioneering work by Gomes [21].

In terms of atomic contributions to w, from Eq. (67) we have:

w ¼
XNa

W¼1

mBðWÞ ¼
XNa

W¼1

fmp
BðWÞ þmc

BðWÞg

¼
XNa

W¼1

wpðWÞ þ wcðWÞ ¼
XNa

W¼1

wðWÞ ð72Þ

where wpðWÞ and wcðWÞ are given in terms of the current density by:
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wpðWÞ ¼ ð1=2cÞ
ð
W

ðr � RWÞ � JBðrÞ dr ð73Þ

wcðWÞ ¼ ð1=2cÞ
XNbðWÞ

L¼1

f½RW � RbðW;LÞ� � JBðrÞðWjLÞ ð74Þ

Note that, unlike the atomic electric polarizability tensors aðWÞ, there are no

surface derivative contributions to wðWÞ, because ½‘BrðrÞ�B¼0 ¼ 0, i.e. the first-

order correction to the electron density from a magnetic field perturbation van-

ishes because the magnetic field perturbation term in the Hamiltonian (and

hence the first-order perturbed wavefunction) are purely imaginary functions

[13].

Using these formulas, Bader and Keith [6, 7] studied the atomic contributions

to the magnetizability tensors of several series of molecules and the reader is re-

ferred to those papers for details. Especially noteworthy from these studies is that

for the normal alkane series, the QTAIM isotropic magnetic susceptibilities of the

methylene and methyl groups matched the transferable behavior of other proper-

ties for these groups and the magnetic susceptibility of the transferable methyl

and methylene groups of the series matched those of Pascal [22]. Also noteworthy

was that for the benzene molecule it was found that the threefold increase in

magnetic susceptibility for a field applied perpendicular to the plane of the ring,

compared with that for a field applied parallel to the plane of the ring, was largely

because of the wcðWÞ contributions from the carbon atoms, i.e. the flow of current

between the carbon atoms, thus providing a fundamental, physical justification

for the famous ring current model of benzene. The significance of this study

should not be overlooked. The validity of the ring-current model as an explana-

tion for the magnetic response properties of benzene and other aromatic systems

has been debated for decades, usually in terms of orbital models [23]. Keith and

Bader analyzed the validity of the ring current model in the only physically rea-

sonable way possible – by actually identifying the atoms in benzene and quantify-

ing the contribution to the magnetizability tensor in terms of the flow of total,

physical current within the atoms and between the atoms.

As an additional example of this kind, Table 3.5 shows the principal compo-

nents of wpðWÞ, wcðWÞ, and wðWÞ for the symmetrically unique atoms of naphtha-

lene (Figs 3.15 and 3.16), calculated at coupled–perturbed HF/6-311þþG(2d,2p)//

HF/6-311þþG(2d,2p). Also shown are the isotropically averaged contributions

wiso and the contributions to the major anisotropy waniso. From these results it is

apparent that the vast majority of the anisotropy of the magnetic susceptibility in

naphthalene is because of the wcðWÞ contributions from the carbon atoms, which

is again consistent with the ring-current model. Note that the wcðWÞzz contribu-

tion for each of the two fused carbon atoms, C1 and C6, is approximately 50%

larger than that for the other carbons, because the fused carbon atoms have three

CaC bonds instead of two and it is the flow of current across the CaC surfaces

which is responsible for the large wcðWÞzz for the carbon atoms. These numbers

are reflected in the current displays shown in Figs 3.15 and 3.16.
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Table 3.5 Atomic and bond contributions (in cgs-ppm) to the

magnetizability tensor of naphthalene (B/S).

Atom, W w(W)zz wp(W)zz wc(W)zz wc(WSL1)zzL1 wc(WSL2)zzL2 wc(WSL3)zzL3

C1 �21.020 �2.850 �18.171 �7.778 C6 �5.196 C4 �5.196 C9

C4 �15.183 �3.145 �12.038 �5.514 C5 �5.139 C6 �1.385 H13

C7 �16.257 �3.567 �12.689 �5.479 C8 �5.865 C10 �1.345 H17

H11 �2.079 �1.294 �0.785 �0.785 C10

H12 �2.083 �1.273 �0.811 �0.811 C9

Total �184.449 �42.812 �141.637

Atom, W w(W)yy wp(W)yy wc(W)yy

C1 �3.091 �0.978 �2.113

C4 �3.786 �1.182 �2.604

C7 �5.184 �2.761 �2.423

H11 �1.827 �1.316 �0.511

H12 �1.194 �1.194 0.000

Total �54.143 �27.765 �26.378

Atom, W w(W)xx wp(W)xx wc(W)xx

C1 �3.622 �1.241 �2.381

C4 �5.336 �3.351 �1.985

C7 �4.006 �1.910 �2.095

H11 �1.425 �1.274 �0.151

H12 �1.978 �1.322 �0.656

Total �58.223 �33.913 �24.310

Atom, W w(W)iso wp(W)iso wc(W)iso

C1 �9.244 �1.689 �7.555

C4 �8.102 �2.559 �5.542

C7 �8.482 �2.746 �5.736

H11 �1.777 �1.295 �0.483

H12 �1.752 �1.263 �0.489

Total[a] �98.938 �34.830 �64.108

Atom, W w(W)aniso wp(W)aniso wc(W)aniso

C1 �17.664 �1.740 �15.924

C4 �10.622 �0.878 �9.744

C7 �11.662 �1.232 �10.43

H11 �0.452 þ0.001 �0.454

H12 �0.498 �0.014 �0.483

Total �128.267 �11.973 �116.293

aAn experimental value for the isotropic magnetizability of

naphthalene is �91.6 cgs-ppm [24].
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Fig. 3.16 Current density trajectories which intersect a plane@1.0 a.u.

above the nuclear plane of naphthalene and induced by a magnetic field

applied along þZ axis, i.e. coming out of the page. Arrows indicate

direction of current flow. Counterclockwise flow is paramagnetic

whereas clockwise flow is diamagnetic. Interatomic surfaces (bold) and

bond paths (semi-bold) in the nuclear plane are also shown.

Fig. 3.15 Current density trajectories induced in the nuclear plane of

naphthalene by a magnetic field applied along the þZ axis, i.e. coming

out of the page. Arrows indicate direction of current flow. Counterclock-

wise flow is paramagnetic whereas clockwise flow is diamagnetic. Inter-

atomic surfaces (bold) and bond paths (semi-bold) are also shown.
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4

QTAIM Analysis of Raman Scattering

Intensities: Insights into the Relationship

Between Molecular Structure and Electronic

Charge Flow

Kathleen M. Gough, Richard Dawes, Jason R. Dwyer,

and Tammy L. Welshman

4.1

Introduction

The investigation of the interplay between molecular structure and molecular

properties is one that still captivates the imagination. The chemist today relies

on computational modeling to gain insight into known properties and to help

predict the behavior of systems for which experimental data are lacking. This

two-way exchange epitomizes the conversation between experimentalists and the-

oreticians and shows us the way forward in developing our science. New theories

breathe new life and meaning into existing experimental techniques and lead to

the discovery of new truths and insight. Nature has all the answers and we have

but to find them. In this chapter we will outline one such conversation – that

between Raman spectroscopy and the quantum theory of atoms in molecules

(QTAIM). Absolute Raman scattering intensities are difficult to measure yet they

contain much valuable information. As such, they are intrinsically interesting,

but they also provide an excellent framework on which to compose another

theoretical–experimental conversation. QTAIM brings a unique and critical ele-

ment to this enterprise; through this analysis, Raman spectroscopy is cast as an

extremely sensitive probe of the structural origins of molecular function. We will

discover that despite experimental and computational challenges, this dual-

pronged approach yields great rewards.

We have seen in previous chapters the power of real-space analysis and the

transferability of some functional group properties but now we will examine non-

transferable properties. Nontransferable properties are those molecular properties

which cannot be partitioned into functional groups independent of the molecular

setting. It must be emphasized that the failure of some molecular properties to

partition into neat functional group categories is no failure of QTAIM, but is in-

stead a reflection of nature. The power of QTAIM in these instances is to analyze

the detailed electronic distribution using the convenience and familiarity of real-

space rather than an unwieldy multidimensional wavefunction. The electron dis-
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tributions of molecules with ‘‘fixed’’ nuclei have been well characterized by use of

QTAIM [1] and X-ray crystallographic experiments [2]. We now seek the response

of the electron distribution to an infinitesimal structural perturbation in the pres-

ence of a field that can easily be related to the experimental Raman intensity of a

given vibration.

Chemists traditionally think of molecular vibrations according to two different

paradigms – normal mode analysis and functional group identification. The for-

mer is well understood [3, 4] but the quantity and quality of detailed experimental

information required to obtain a reliable, experimentally refined harmonic force

field ensures that this approach is usually restricted to molecules with no more

than 20 atoms [5, 6]. The latter is derived from the nature of molecular vibrations,

because shared functionality often produces similar characteristic vibrational

modes (e.g. CH stretching modes lie between 2700 and 3200 cm�1; CbO
stretches will be found between 1600 and 1900 cm�1).

The vibrational frequency is based on mechanical properties (anharmonically

oscillating atomic masses) whereas the intensity is a function of the change

in permanent (infrared) or induced (Raman) dipole moment. Normal mode anal-

yses of larger molecules [6] reveal that vibrations assigned to a particular func-

tional group always involve some displacement of many other nuclei. Thus, the

variability in the frequency of modes assigned to specific functional groups is

because a molecular vibration is always a property of the entire molecule. We

continue to use functional group assignment because of its simplicity and utility,

while recognizing the limitations.

Analysis of vibrational intensities has often been approximated in terms of

changes in the local dipole moment (permanent or induced) associated with a

change in functional group geometry. The same limitations and caveats – that

functional groups are useful organizing principles but not rigorously transferable

– apply, perhaps even more strongly. In this chapter, we will present a brief intro-

duction to the problem of Raman scattering intensities, a detailed description of

our theoretical approach to its solution, and a discussion of the insight we have

achieved by means of QTAIM analysis. The resulting insights go beyond an expla-

nation of Raman intensities and lead to improved understanding of the very

underpinnings of molecular properties and charge flow. This is accompanied by

some worked examples and suggested exercises for the reader.

4.2

Background to the Problem

Experimental measurements of absolute Raman trace scattering cross-sections

provide a direct physical link to the redistribution of charge in a vibrating mole-

cule. As such, they are an excellent probe for exploring the behavior of molecules

in electric fields. The magnitude of the scattering cross-section, also called inten-

sity, depends on the magnitude of the change in the molecular polarizability ten-
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sor, a, during a vibration, where a is a measure of the magnitude of the dipole

moment ðmÞ induced in a molecule when an electric field (E) is applied:

m ¼ aE ð1Þ

The derivative of the polarizability with respect to some normal mode of vibra-

tion (q) is denoted qa=qq. Our original interest in this problem derived from the

failure of the bond polarizability model [7], an early, extant description of Raman

intensities. This model simplifies the problem by considering a to be a sum of

independent bond polarizability ellipsoids, directed along each bond, in much

the same way that the molecular dipole moment is sometimes approximated as

a sum of bond dipoles. Parameters for the bond polarizability model were con-

structed from experimental data, primarily on alkanes, and some limited transfer-

ability between molecules was reported [7]. One of the most commonly used as-

sumptions was that the derivative for the CH stretch vibrations was unchanged

for a wide variety of hydrocarbons, including saturated alkanes, alkenes, alkynes,

and aromatic compounds. Our experimental studies show that this approxima-

tion is not valid, even for relatively simple alkanes [6, 8–13]. It is moderately valid

when the average intensity of a few small molecules is considered; it fails com-

pletely, however, when individual bonds are examined by selective deuteration.

The model fails because the derivative, and hence the observed scattering inten-

sity, arises from a change in the mean molecular polarizability, in turn dependent

on charge redistribution throughout the entire molecule, not just within one

bond.

4.2.1

Conceptual Approach to a Solution

Our guiding principle has been the conversation between experiment and theory.

Raman trace scattering intensities provide information about the change in mo-

lecular charge distribution during a vibration. Ab initio calculations yield wave-

functions that, through QTAIM, let us examine the atom-by-atom response of

the charge density to the applied field. Our early work was directed toward identi-

fication of the variability in polarizability derivatives for a series of simple alkanes.

Subsequent theoretical modeling revealed the presence of patterns that enabled

us to interpret and predict the behavior of much larger systems.

4.2.1.1 Experimental Measurement of Raman Scattering Intensities

The process of Raman scattering is well understood and is described in many

standard texts [14]. According to the Placzek polarizability theory [15] the differ-

ential Raman scattering cross-section of a fundamental vibrational band (qs=qW,

where W ¼ solid angle in this expression) depends on the square of the derivative

of the invariants of the molecular polarizability (a and g):
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where n0 and ni are the wavenumbers of incident light and the vibration, respec-

tively, gi is the degeneracy of the ith vibrational mode, and h, k, T, and e0 have the

usual meaning (details are given in our experimental papers [6, 8–13]). This

theory assumes that mechanical and electrical anharmonicity are not significant.

The first indication of the inadequacy of transferability appeared during a study

of the correlation between bond length and CH stretch frequency for a series of

perdeuterated alkanes [16]. For cyclohexane-d11, the normal mode for the CH

stretch is essentially the isolated stretch of the lone CH bond. If transferability

were correct, the intensity ratio of the bands from the axial (CHax) and equatorial

(CHeq) stretch vibrations would be 1, given that in the gas phase the molecule

would exist as a 50:50 mixture of the two possible CH orientations. In fact, it is

0.7 (Fig. 4.1) [16].

Since that paper appeared, the absolute Raman trace scattering intensities have

been reported for ethane [8], propane [9], n-butane [10], cyclohexane [11], ethene

[12], ethyne [12], and, most recently, bicyclo-[1.1.1]-pentane [13]. For the pur-

poses of the investigation, we restricted our attention to the trace scattering

ðqa=qqÞ, that is, the change in the mean molecular polarizability that arises from

the totally symmetric vibrations, where:

qa

qq
¼ 1

3

qaxx

qq
þ qayy

qq
þ qazz

qq

� �
ð3Þ

Experimental error is reduced, because these modes produce a strong, narrow

Q branch, due to more restrictive rotational selection rules. In addition, the trace

Fig. 4.1 Isolated CH stretching bands in the Raman spectrum of

gaseous cyclohexane. Randomly protonated C6HD11, showing the

hydrogen impurity in the perdeuterated sample. Reproduced, with

permission, from J. Chem. Phys. 1984, 81, 5352–5361, American

Institute of Physics.
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scattering is nearly invariant to isotopic substitution, enabling us to use the abso-

lute intensity data for several isotopomers. Through force-field analysis, the deriv-

atives are converted to internal coordinates ðqa=qrÞ, where r identifies some

unique CH or CC bond. These data properly report the change in the molecular
polarizability associated with the displacement of an individual bond. Numerous

experimental results demonstrate conclusively that ðqa=qrÞ for CH and CC

stretches are strongly dependent on location and orientation, on molecular size,

and on any strain or steric hindrance (Fig. 4.2).

4.2.1.2 Theoretical Modeling of Raman Scattering Intensities: What We Did

and Why

The intriguing patterns discovered from experiment and supported by ab initio

modeling [17–24] raised several new questions, most importantly, whether varia-

tion in qa=qrCH might increase with molecular size and complexity. We devised

a survey set of thirty-five hydrocarbons comprising the all-trans conformers of

n-alkanes up to C15, iso-butane, six cycloalkanes and methylcycloalkanes, eight bi-

cycloalkanes, four propellanes, and a tetracyclane [20]. These molecules represent

several homologous series and also explore the full range of bonding in saturated

hydrocarbons. The values of qa=qrCH for each symmetrically unique CH bond

were obtained at the Hartree–Fock (HF) level of theory with the D95(d,p) basis

set. Our combined experimental/theoretical approach may be summarized as:
� Use ab initio calculations to model known experimental data.
� Use QTAIM to analyze the wavefunctions, and to interpret

and understand experiments.
� Perform new ab initio calculations to probe for and to predict

patterns for untested molecules for which interesting

behavior is expected.

Fig. 4.2 Values of qa/qrCH from experimental Raman trace scattering

intensities for methane, ethane, propane, trans-n-butane, bicyclo-[1.1.1]-

pentane, and cyclohexane. Hip ðcÞ, Hop ðgÞ, Hm ðzÞ, Hbh ðkÞ, Hax

ðuÞ, Heq ðEÞ. Data from Refs. [6, 8–10, 24].
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� Use QTAIM to test our classifications, and to help us identify

and understand what is transferable (guiding principles

based on structure and composition) and what is not ðqa=qrÞ.

The highly strained bicyclo-[1.1.1]-pentane emerged as a likely example of a

simple, highly symmetric molecule that would have dramatically different

qa=qrCH for the CH bonds, with an absolute qa=qrCH for the bridgehead CH

near the extreme of the values we have surveyed. That the experimental results

perfectly matched the theoretically predicted values has been a very satisfying

endorsement of our approach [24], enabling classification of the variations in

qa=qrCH according to a few geometrical and chemical factors outlined in this

chapter. We then completed extensive ab initio studies on other molecules to

gain a larger perspective on the problem and to create a set of guidelines to de-

scribe what may be expected in other, untested situations, including some addi-

tional saturated hydrocarbons and some alkenes and silanes, for which we calcu-

late the derivatives for CaH, SiaH, CaC, and SiaSi bonds.
It is, of course, of limited use for a theory to merely reproduce experiment if it

does not offer reason or insight or predictive power in addition to replication.

QTAIM analysis of the molecular wavefunction offers us the desired level of in-

formation from which insight may be gleaned, and from which new physical

intuition may be derived. The complex multidimensional wavefunction yields to

the familiar real-space world of the electron density. The simple representation of

bonding by single, double and triple lines is replaced by the richness of a com-

plete cataloguing of the electron distribution throughout a molecule.

The fundamental reasons for departure of a given property from an expected

trend can often be difficult to identify. For molecules, we wish to scrutinize the

various competing and complementary contributions to molecular properties.

One of the triumphs of QTAIM has been to faithfully recover the functional

groups of observational chemistry. Functional group transferability, however, is

an outcome of QTAIM analysis for those instances when the functional group

has experimentally-observed nominal transferability. Molecular structure consists

of many elements, all of which are captured in the topology of the electronic

charge distribution. We have many descriptors for these elements, for example

strain and steric hindrance, the effects of which are local in nature yet affect the

properties of the whole molecule. QTAIM tells us exactly how this occurs.

4.3

Methodology

Our purpose in Sections 4.1 and 4.2 was to make very clear that experiment has

shown there are significantly different Raman scattering intensities from even

such a seemingly robust/stolid/nondescript functional group as CH. We use

QTAIM, which provides a real-space atomic-level description of the fundamental
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molecular properties, to ascertain how the interconnectedness of the atoms and

their relative structural arrangements lead to these dramatic changes in intensity

from molecule to molecule. The main steps are summarized here; details, exam-

ples, advice and cautionary tales follow.

Step 1: Calculate a at the optimized geometry of the molecule

in question. Check: compare acalc with aexpt where

possible

Step 2: Calculate a again for geometries in which the atoms

have been displaced along a symmetric stretch

coordinate,

e.g.: CH4, let all rCH ¼ r (optimized)G 0.01 Å

Step 3: Calculate Da for this symmetry coordinate by finite

difference and convert to Da=DrCH. Check: compare

ðDa=DrCHÞcalc with ðDa=DrCHÞexpt where possible

Step 4: Perform QTAIM analysis on the wavefunctions

obtained in Steps 1 and 2

Step 5: Recover aQTAIM and ðDa=DrCHÞQTAIM from atomic

charges and atomic moments. Check: compare aQTAIM

and ðDa=DrCHÞQTAIM with acalc and ðDa=DrCHÞcalc
Step 6: Examine the QTAIM atomic properties to gain insight

into the patterns that emerge

4.3.1

Modeling a and qqqqqqqqqqqqqqqqqqqqa/qqqqqqqqqqqqqqqqqqqqr

We have relied most heavily on the Gaussian [25] software but this is not a re-

quirement if the wavefunction is accessible to the QTAIM software, typically

AIM2000 [26]. Criteria for setting up a successful calculation and options for

pushing for the highest accuracy with respect to experiment were recently re-

viewed [23]; the main points are presented here.

The basis set must be large and include diffuse and polarization functions to

reproduce experimentally observed behavioral trends. In our earliest calculations

we employed the D95(d,p) basis set because it met this criterion while still being

small enough to enable calculations on molecules such as cyclohexane [18]. In

the Gaussian implementation, a is calculated by use of the analytical coupled–

perturbed Hartree–Fock (CPHF) method. More recently, we explored much larger

basis sets using a coupled cluster method (CCSD(T)) and applied time-dependent

density-functional theory to B3LYP hybrid density functionals [23, 24]. We obtained

benchmark level calculations that accurately reproduce the Raman intensities for

bicyclo-[1.1.1]-pentane to within experimental error.

The first criterion to be met is that the a determined computationally should be

in good agreement with that found experimentally. To obtain calculated values

that are within experimental error, we have found it adequate to use B3LYP with

the aug-cc-pVTZ basis set. It is not necessary to demand such high absolute accu-
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racy to reproduce experimentally observed trends. Much of our early work was

successful with the lower level HF/D95(d,p) calculations (Fig. 4.3) [21, 27]. For

those readers who are interested in pushing the limits of accuracy, in Section 4.4

we present a detailed example of a high-level calculation that will match experi-

mental data.

Having verified that acalc is satisfactory, we approximate qa=qr by finite differ-

ence:

qa

qr
A

Da

Dr
¼ 1

n

aþDr � a�Dr

2Dr

� �
ð4Þ

where the change in bond length, Dr, is typicallyG1:00� 10�12 m; n ¼ number

of symmetrically equivalent bonds stretched or contracted, and aGDr denotes the

mean molecular polarizability at the stretched or contracted geometry. The

accuracy of the central-difference derivative formula is second-order in step

size; we have confirmed that good values are produced even for steps of

Dr ¼ 1:00� 10�11 m [28]. The step size that we recommend here is a typically

accepted value for this type of finite difference model.

4.3.2

Recouping a From the Wavefunction, With QTAIM

According to QTAIM, the dipole induced by the applied field is the result of

charge transfer (CT) between atomic basins and changes in atomic dipole (AD)

Fig. 4.3 Comparison with experimental values of mean molecular

polarizability calculated at the HF/D95(d,p) level. Data from Refs. [22,

27].
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within a basin. In practical terms, ai; jðWÞ, the atomic contribution to the i, jth
entry in the polarizability tensor, is expressed as:

ai; jðWÞ ¼
ðNi � N0Þrj

Ei
þ mi � m0

Ei
ð5Þ

where Ni and N0 are the atomic electron populations when E is applied in the ith
direction and when E ¼ 0, respectively, for atom W located at rj ð j ¼ x; y; zÞ.
Atomic population is the atomic number minus the charge. The AD term is

found from the change in the atomic first moment, m, with and without the ap-

plied field. The ai; jðWÞ are summed over all atoms to give the molecular tensor a.

4.3.3

Recovering qqqqqqqqqqqqqqqqqqqqa/qqqqqqqqqqqqqqqqqqqqr From QTAIM

In other chapters we have seen the incredible insight into structure and its un-

derlying basis, bonding, gained by QTAIM analyses. In essence, this approach

puts skin on the bones of the molecular skeleton; we want, however, to animate

our understanding of bonding, to go beyond the question of static equilibrium

structure and delve into the response of the molecule to perturbation, as seen in

the changes in the topology of the electron density. Short of ionization, we know

that the electrons will remain in the molecule. This is rather unsatisfying. We can

look a little more deeply and report that, in the presence of a perturbing laser

field, the electrons would redistribute themselves within the molecule. As in the

static example, an atomic-level description is convenient and powerful, and pro-

vides a rigorous connection between theory and experiment. The picture now

becomes one of electronic flow throughout a molecule and of reorientation of

charge within atoms.

The recovery of the derivative from the wavefunctions that we have created is a

straightforward process, based on Eqs (4) and (5). For each atom, we can exam-

ine:

qai; j

qr
G

Dai; jðWÞ
Dr

¼ ðNi � N0Þrj
Dr� Ei

þ mi � m0

Dr� Ei
ð6Þ

The right hand side of the equation quantifies the changes in the CT and AD

terms at each atom ðDCTðWÞ=Dr and DADðWÞ=DrÞ, in response to the molecular

vibration and the applied field. We will discuss the patterns and trends that

QTAIM reveals in Sections 4.5 ðaÞ and 4.6 ðqa=qrÞ.

4.4

Specific Examples of the Use of AIM2000 Software to Analyze Raman Intensities

We next carry out the step-by-step procedure of Raman intensity analysis through

QTAIM for H2 and CH4. These molecules are small enough to enable excellent
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calculations relatively quickly while still demonstrating the major outcomes. It is

important to distinguish between the accuracy or method of the calculation and

the actual convergence level of that chosen method. When a is computed numer-

ically (through energy or dipole derivatives) using small applied fields, the results

are sensitive to the SCF convergence, especially when the derived polarizabilities

are computed from small displacements in bond lengths, chosen to better approx-

imate qa=qr. On the basis of error analysis, we recommend a computationally in-

expensive SCF convergence of 10�11 rather than 10�8, a typical default value.

4.4.1

Modeling a in H2

For H2 with only two electrons and one geometric parameter, it is possible to per-

form a very high-level calculation on an ordinary PC; CCSD for a two-electron sys-

tem is equivalent to the full configuration interaction method. With that, we use

the aug-cc-pVQZ basis set, a large correlation consistent basis (quadruple zeta)

with diffuse and polarization functions. The CCSD value of a ¼ 0:856� 10�40

Cm2 V�1 compares very well with experiment (0:858� 10�40 Cm2 V�1) [29], as

per our check of Step 1. Following Steps 2 and 3, we obtain a CCSD value for

Da=Dr of 1:36� 10�30 Cm V�1, again in excellent agreement with several experi-

mental values (1:36� 10�30 Cm V�1) [30].

For the QTAIM calculations we use E ¼ 0.001 au, the same field strength as in

the numerical CCSD Gaussian calculation, to facilitate direct comparisons. It is

small enough to minimize the effect of higher-order polarizabilities, and tends

to give excellent agreement with analytical (CPHF) calculations where the

method allows. One must usually compute wavefunctions for E0 ¼ 0 and with

fields Ex, Ey, and Ez, for each geometry, and average the results obtained from

fields applied in both directions along each axis. For H2 we had aligned the prin-

cipal axis (bond axis) with the z-axis, thereby diagonalizing the polarizability ten-

sor and making axx ¼ ayy. Thus for each unique geometry (Dr ¼ 0,G1:00� 10�12

m), we need only to compute a reference wavefunction file with E0, Ex , and Ez

applied fields (the þ and � directions being equivalent).

It must be stressed that analysis of Raman intensities requires the maximum

accuracy from QTAIM integrations, because we are looking for the effects of

very small perturbations (electrostatic and geometric) on the atomic electronic

properties. A relatively small error of 10�3 au in mðWÞ becomes an error of 1 au

in aðWÞ, in turn producing huge errors in the calculated qa=qr; any insights

gained would be suspect. With AIM2000 we have found the greatest accuracy to

be obtained by integrating in ‘‘natural coordinates’’. We set the relative and abso-

lute integration accuracy values to 1� 10�6, which are two orders of magnitude

tighter than the default and is at the limit of the numerical stability of the current

implementation. The beta-sphere radius is set equal to the distance from the nu-

clear attractor (NA) (not necessarily exactly at the nuclear position) to the nearest

bond critical point. Finally we triple the default maximum path length ‘‘s’’ to
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3� 106. The path length has never been a limiting factor for the molecules con-

sidered. With these values it is common to recover a to better than 99%; this level

of completeness enables, at the very least, semi-quantitative recovery of Raman

intensities.

In Table 4.1 we show the integration data for H2 at equilibrium geometry for

E0, Ex , and Ez (note that all data are in au unless otherwise stated). For E0, the

charge on each atom is zero to within a few parts in 104; the x and y atomic di-

poles cancel to within a few parts in 106. Although the z-component of the molec-
ular dipole should be zero, each atom has a non-zero dipole reflecting the shape

of the densities around the nuclei; these are equal and opposite. The net magni-

tude of the molecular dipole is less than 1� 10�5. This can be regarded as a high-

quality integration, because the dipole error would only affect calculated polariz-

abilities by 1� 10�2. For Ex, symmetry excludes the possibility of charge transfer;

only an induced dipole in the x-direction is possible. The x-coordinate of the den-
sity maxima (NA) is sufficiently distorted by the field to move slightly away from

the nuclear position, rx(NA) ¼ 3:586� 10�5, rx(H) ¼ 0. This is typical of light

atoms. One must be careful to use the position of the NA and not the nucleus

when applying the formulas for atomic electronic properties. For Ez ¼ 0.001 au,

there is both CT between hydrogen atoms and a nonzero AD (distortion of the

density) in each atomic basin. Average atomic contributions to the axx and azz

elements, in au, are computed from Eq. (5): CTðWÞxx ¼ 0, ADðWÞxx ¼ 2:312;

CTðWÞzz ¼ 2:996, ADðWÞzz ¼ 0:152; after summation and conversion we get

aðH2Þ ¼ 0:854� 10�40 Cm2 V�1. The atomic average is equivalent to averaging

the field in both directions along the axis; we find an excellent QTAIM recovery

of 99.7601%.

A word of caution is necessary here. The robustness of electronic structure

codes is usually much greater than that of available QTAIM integration software

(for the accuracies we require). This means that an electronic structure calcula-

tion should always converge to precisely the same energy (and properties) for

symmetry-equivalent species. In contrast, the nature of the QTAIM integration

Table 4.1 QTAIM integration results for H2 at equilibrium geometry (in atomic units).

W Atomic charge mx my mz Atomic energy

E0 H1 0.0002989 �0.0000047 �0.0001498 0.0945175 �0.5666

H2 0.0003008 0.0000004 0.0001436 �0.0945188 �0.5666

Ex H1 0.0002061 0.0023122 �0.0001386 0.0944551 �0.5667

H2 0.0002049 0.0023128 0.0001412 �0.0944540 �0.5667

Ez H1 �0.0041055 0.0000028 �0.0001437 0.0946650 �0.5683

H2 0.0046799 �0.0000005 0.0001420 �0.0943614 �0.5650
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grid could produce orientation-dependant results. With our very accurate values

we could not find any instances of this, despite using much stronger fields to dis-

tort the charge densities, and intentionally integrating in favorable and unfavor-

able orientations, data not shown.

4.4.1.1 Modeling Da/Dr in H2

To complete the analysis of Raman intensities for H2, one must repeat the steps

above for stretched and contracted geometries. Our usual approach is to displace

the nuclei by 0.01 Å; the error in aQTAIM (less than 2%) is, however, still enough to

cause problems with interpretation of qa=qr (QTAIM recovery error of >30%). We

repeated the calculation for Dr ¼G0:04 Å and obtained much better agreement

between GDr, and better overall recovery. The average atomic contributions to

a are shown for Dr ¼ þ0:04 Å, to highlight the orientation dependence of the

changes, i ¼ x; y; z:

x field

DCTðHÞix ¼ ð0:000 0:000 0:002Þ
DADðHÞix ¼ ð0:132 �0:002 �0:002Þ
z field

DCTðHÞiz ¼ ð0:000 0:000 0:205Þ
DADðHÞiz ¼ ð�0:003 �0:004 0:078Þ ð7Þ

For H2, the perpendicular contribution ðaxxÞ is necessarily entirely AD; CT

is the dominant contribution to a along the bond (z axis) and the largest

tensor component overall. The recovered value Da=DrQTAIM for H2 (1:48� 10�30

Cm V�1) is in reasonable agreement with that calculated in Gaussian

(1:36� 10�30 Cm V�1), which is identical with the experimental value [30].

4.4.2

Modeling a and Da/Dr in CH4

For this larger system with ten electrons, we have chosen the B3LYP hybrid den-

sity functional method with the aug-cc-pVTZ basis set. This is very computation-

ally affordable for medium and even larger systems. The computed qa=qrCH is in

perfect agreement with experiment [31] (Steps 1–3, and below). Another advan-

tage is that analytical polarizabilities are available by use of the CPHF method.

This enables us to compare numerical polarizability results obtained from energy

or dipole derivatives with the analytical values. With its Td symmetry, methane

has only one unique, nonzero polarizability tensor element. We chose to orient

the molecule so that the hydrogen atoms appear at the corners of a cube. The

QTAIM results for the equilibrium geometry are shown in Table 4.2. The x, y,
and z directions are equivalent; our electronic structure calculations produce the

same results for all field directions (and are unchanged for a C3v geometry with
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one CH pointed along the z axis, not shown). Thus, we need only perform two

QTAIM analyses (E0 and Ez) at each of Dr ¼ 0,G0:01� 10�12 m (Table 4.3). The

individual CTxz terms are large but cancel on summation, owing to symmetry;

individual ADxz terms are quite small, and also cancel. For the zz terms, we see

the interesting effect of CT from one end of the molecule to the other, with no net

CT to the carbon atom. Carbon, however, has an AD opposing this effect, and the

hydrogen atoms a large AD terms, reflecting the nonspherical density around

each H, in the field direction.

The change in atomic contributions to a at the equilibrium, stretched, and con-

tracted geometries are illustrative of the insights into Raman intensities and

charge flow in general that are possible through QTAIM analysis (Table 4.4).

Table 4.2 QTAIM integration results for methane at equilibrium

geometry for E0 and Ex (in atomic units).

W Atomic charge mx my mz Atomic energy

E0 C 0.0219197 �0.0004455 �0.0000028 0.0000110 �38.0411

H1 �0.0053341 0.0854614 0.0853861 0.0853876 �0.6243

H2 �0.0049950 �0.0860062 �0.0855185 0.0854416 �0.6241

H3 �0.0050035 �0.0860009 0.0855167 �0.0854399 �0.6241

H4 �0.0053182 0.0854648 �0.0853973 �0.0853895 �0.6243

Ex C 0.0219291 �0.0004116 �0.0000410 �0.0015141 �38.0411

H1 �0.0079645 0.0853935 0.0853224 0.0869203 �0.6253

H2 �0.0076480 �0.0859373 �0.0854687 0.0869380 �0.6251

H3 �0.0023261 �0.0860613 0.0856022 �0.0839633 �0.6230

H4 �0.0026376 0.0855481 �0.0854562 �0.0839168 �0.6232

Table 4.3 QTAIM analysis of CT(W) and AD(W) to aiz(CH4) at Ez, Dr ¼ 0 (in atomic units: a0
3).

W CTxz(W) CTyz(W) CTzz(W) ADxz(W) ADyz(W) ADzz(W) ax z ayz azz

C 0.0 0.0 0.0 0.03386 �0.03819 �1.52518 0.03386 �0.03819 �1.52518

H1 3.07854 3.07854 3.07864 �0.06794 �0.06371 1.53278 3.01060 3.01483 4.61142

H2 �3.10500 �3.10509 3.10518 0.06883 0.04983 1.49646 �3.03617 �3.05526 4.60164

H3 3.13346 �3.13355 3.13345 �0.06038 0.08544 1.47667 3.07308 �3.04811 4.61012

H4 �3.13723 3.13723 3.13713 0.08329 �0.05882 1.47276 �3.05395 3.07842 4.60989

SW �0.03023 �0.02287 12.45440 0.05766 �0.02545 4.45349 0.02743 �0.04832 16.90789

B3LYP/aug-cc-pVTZ 0.0 0.0 17.02210

Recovery by QTAIM % 100.027 99.952 99.329
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The average atomic contributions for the Ez field at Dr ¼ 0 are:

CTizðCÞ ¼ ð0 0 0Þ
CTizðHÞ ¼ ð�0:008 �0:006 þ3:114Þ
ADizðCÞ ¼ ðþ0:034 �0:038 �1:525Þ
ADizðHÞ ¼ ð�0:002 �0:003 þ4:608Þ

ð8Þ

A significant contribution to Da=DrCH is the decrease in the opposing AD in

the carbon atom by 0.045 au along with increases in CT(H) and AD(H). This

type of analysis for systems with unusual charge flow (reflected in the Raman in-

tensities) will reveal the structural factors that govern the most extreme behavior.

4.4.3

Additional Exercises for the Interested Reader

Given the limitations in QTAIM integration accuracy, it is important to establish

the best geometric step size for studying ðqa=qrÞ. Using the data provided below,

compute ðDa=DrÞ for methane and H2 using the first-order accurate forward–

difference method for:

(a) stretched and equilibrium geometry, and

(b) equilibrium and contracted geometry.

Answers:

(a) H2: 1.362� 10�30 Cm V�1 methane: 1.264� 10�30 Cm V�1; and

(b) H2: 1.352� 10�30 Cm V�1 methane: 1.245� 10�30 Cm V�1

Table 4.4 QTAIM recovery of a and Da=Dr for CH4, where qa=qr1 qazz=qr.

Parameter(units)[a] Dr(Å) B3LYP QTAIM Recovery (%) Expt.

azz (a0
3) �0.01 16.7200 16.5572 99.026

azz (a0
3) 17.0221 16.9079 99.329

azz (a0
3) þ0.01 17.3288 17.1638 99.048

a (Cm2 V�1) 0 2:807� 10�40 2:787� 10�40 2.85[b]–

2.93[c] � 10�40

Da=Dr� (Cm V�1) 1:245� 10�30 1:055� 10�30

Da=Drþ (Cm V�1) 1:264� 10�30 1:446� 10�30

Da=Dr (Cm V�1) average 1:255� 10�30 1:250� 10�30 99.64 1:26� 10�30[d]

aConversion factor 1.648777631� 10�41 * (a0)
3 ¼ Cm2 V�1.

bRef. [27].
cRef. [33].
dRef. [32].
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Compare these results with those from the second-order accurate central-

difference method using the stretched and contracted data.

Answers: H2 Da=Dr: 1.357� 10�30 Cm V�1 methane: 1.255� 10�30 Cm V�1

Compute the second derivatives using the three-point second-derivative for-

mula and the data below.

Answers: H2: 9.735� 10�21 C V�1 methane: 1.895� 10�21 C V�1.

Run electronic structure calculations computing polarizabilities for methane

and H2 at larger bond displacements (e.g.G0.02 Å,G0.04 Å, . . .G0.1 Å).

How do the values obtained for ðDa=DrÞ compare with those from the smaller

step size? What is the largest step-size that preserves ðDa=DrÞ to within 2%?

Could the largest accurate step-size be estimated from the small step-size second-

derivative result?

Data: a (au) at Contracted/Equilibrium/Stretched geometries (G0.01 Å)

H2: 5.113/5.195/5.277.

Methane: 16.720/17.022/17.329.

4.5

Patterns in a That Are Discovered Through QTAIM

Molecular polarizability to describes the displacement of the electrons in a mole-

cule when it is placed in an electric field. In the language of QTAIM, this dis-

placement has two parts: transfer of charge from one atomic basin to another

and polarization of charge within an atomic basin. The challenge for us is that

the properties we are examining are extraordinarily sensitive to our (in)ability to

numerically recover the full information available in the wavefunction. It is im-

portant to emphasize that this is a numerical and implementation problem rather

than a fundamental problem with the QTAIM theory. Fortunately, we do not have

to push the calculation levels to the limit in Section 4.4 to uncover these patterns.

The results are worthwhile, as is seen in the QTAIM analysis of the polarizabil-

ities of the simple alkanes, for example methane, ethane, and propane [17]. Ini-

tially, we only used the D95(d,p) basis at the HF level, yet we discovered the pat-

terns of behavior [17–21] identical with those revealed in Section 4.4 and

calculated with larger basis sets [27]. In ethane and propane we see the emer-

gence of the patterns in a that underlie those in qa=qr [17].

In Fig. 4.4, we see the effect of Ez on propane. Just as in CH4, the CT term is

greatest along the field axis and is essentially a transfer between the atoms at the

extreme ends of the molecule. In propane, these are the H atoms that lie in the

skeletal plane, denoted Hip (ip ¼ in plane). There is a smaller though still signif-

icant transfer between the methyl hydrogen atoms that lie out of the plane, de-

noted Hop (op ¼ out of plane) and between the terminal methyl carbons. The

methylene group (CHm) does not participate. As might be expected, integration

over the atomic basins of each atom shows that the charge is transferred symmet-

rically, creating a CT dipole that opposes the applied field. The story changes

when we examine the atomic dipoles. The AD(H) are aligned with those created
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through CT. However, the ADs of all three Cs that form the inner skeleton of the

molecule are directed in the opposite sense. The molecular polarizability is the

net result of these opposing contributions.

We found the identical pattern in each field direction and in every molecule we

have analyzed with QTAIM. The amount of charge transferred between terminal

H atoms increases with chain length, while the opposing ADs in the carbon skel-

eton also increase [19]. In cyclohexane [18], when the field is applied along the

nominal ring plane, the CT(Heq) terms are very large. For the field perpendicular

to the ring plane, the CT between the Hax is significant; the CT contribution in

Eqs. (5) and (6) is still smaller, however, because the distance over which the

charge is transferred is smaller. The picture that emerges is similar to the surface

charge polarization of an idealized dielectric body of uniform positive and nega-

tive charges. The surface polarization overrides the effect of the external field on

the interior. The CT on the outer H atoms is countered by an AD formed by re-

organization of charge within the carbon atomic basins.

Fig. 4.4 QTAIM analysis of response for an electric field applied to

propane in the z direction. (a) Charge transfer (CT) and (b) atomic

dipole (AD) contributions (10�40 Cm2 V�1) to the azz term in the

molecular polarizability of propane. By convention, the z-axis is defined

as the axis with maximum polarizability. Data were calculated at the

HF/D95(d,p) level, from Ref. [17].
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4.6

Patterns in qqqqqqqqqqqqqqqqqqqqa/qqqqqqqqqqqqqqqqqqqqrCH That Apply Across Different Structures, Conformations, and

Molecular Types: What is Transferable?

In this section, the emphasis is focused on the dynamic nature of qa=qr com-

pared with the more static nature of the polarizability. In exploring qa=qr, we

seek local details rather than merely global information and QTAIM provides the

means with which to examine the molecular wavefunction. The derivatives are

not transferable, so what is? The answer lies in the patterns revealed by QTAIM

analysis.

Experimental data on absolute Raman trace scattering intensities are the acid

test for the validity of the theoretical models; such experiments are tractable, how-

ever, only for small, highly symmetrical molecules that can be studied easily in

the gas phase. Experimental qa=qr have been obtained for methane, ethane,

propane, butane, cyclohexane, ethene, ethyne, and, most recently, for bicyclo-

[1.1.1]-pentane [6, 8–13]. Relative values for qa=qrCH have been determined for

n-pentane, which occurs as a mixture of trans–trans, gauche–trans and gauche–
gauche conformers in the gas phase at room temperature [19]. Our detailed

QTAIM analyses have been directed to these molecules. We have also completed

survey studies, Steps 1–3 above, on over 50 molecules, to identify trends in calcu-

lated Da=Dr values and to find appropriate candidates for further detailed experi-

mental and theoretical analysis [20–22].

4.6.1

Patterns in Da/DrCH Revealed by QTAIM

From our QTAIM analysis, we have seen that alkanes behave like tiny pieces of

polarizable material, with end-to-end transfer of charge opposed by internal di-

poles. Although this behavior can be trivially understood in a gross sense, what

is of greater interest is to understand the effect of the molecular framework on

the flow of charge and the rearrangement of atomic electron densities. We are

studying the behavior of a charge cloud bound by nuclear attractors and distrib-

uted across distinct atomic basins. With the data in hand we can now explore

the dynamics of the electron density during a molecular vibration.

4.6.1.1 QTAIM Analysis of Da/DrCH in Small Alkanes

Complete QTAIM analysis has been conducted for methane, ethane, propane, the

trans, trans conformation of n-pentane, and cyclohexane [17–19]. The first thing

we note is that the change in a, the mean molecular polarizability associated with

the stretch of any CH bond, arises from changes distributed throughout the mol-

ecule [17–19]. The complexity of the response is illustrated for the three different

CH stretch modes in propane (Fig. 4.5) [17]. The numbers beside each atom are

the atomic contributions (Eq. 6) divided by the number of equivalent bonds, to

give DaðWÞ=DrCH, i.e. the derivative per CH bond (all Da=Dr are reported in units

of 10�30 Cm V�1). The contributions are largest for the atoms of the bond being

stretched, but the contributions from the remainder of the molecule cannot be
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ignored. For the stretch of CHip, there is a net increase in the atomic contribu-

tions to a from the atoms of the bond being stretched, but a decrease for the re-

maining atoms. For the CHop and CHm bond stretches, the large positive atomic

contributions to Da=DrCH are again from the atoms of the stretched bond, but the

Hop and Hm terms are positive for both.

When the atomic contributions are broken down into changes in the CT and

AD terms [17], the results are intriguing, although no overriding pattern can be

discerned from this small set. For all three bond stretches, the AD term is larger

than the CT.
� For the CHip stretch, the DAD=DrCH term is positive for both

Hip and Cter (terminal carbon, to which it is bonded) but

negative for other atoms. The DCT=DrCH term increases for

Cter only.
� For the CHop stretch, the DAD=DrCH term is large and

positive for Hop and Cter but small and negative for the other

atoms. The DCT=DrCH term is almost zero for all but the

Cter, for which it is only one quarter the magnitude of the

value for the CHip stretch.
� For the CHm stretch, DAD=DrCH terms are large and positive

for Hop and Cm (methylene carbon) and negative for the

other atoms. The DCT=DrCH term is again quite small for

most atoms. It is larger and positive for Cm and, surprisingly,

for Hop.

For methane, ethane and propane, the DAD=DrCH contributions to Da=DrCH
are quite similar [17]. As we go from methane to ethane to the CHip stretch in

propane, however, the DCT=DrCH of the bonded carbon increases steadily, from

0 in methane, to 0.286 in ethane, to 0.887 in propane. The same term is only

Fig. 4.5 QTAIM analysis of the atomic contributions to Da/DrCH in

propane for (a) methyl in-plane CH stretch, (b) methyl out-of-plane CH

stretch, and (c) methylene CH stretch. Data were calculated at the HF/

D95(d,p) level, from Ref. [17].
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0.272 and 0.354 for the bonded carbon in the CHop and CHm stretches, respec-

tively. For the CHip stretch in propane, the xx and yy terms are negligible; almost

the entire contribution comes from the zz term: 0, �0.291, and 2.952, respec-

tively. This is intuitively reasonable, because the CHip stretch is almost entirely

in the z direction, thus one expects the change in the polarizability to be greatest

in this direction.

The trend continues when we compare methane, ethane, and propane with

the larger molecules cyclohexane [18] and n-pentane [19]. We begin with the

Cter zz contribution to the CHip stretch in pentane. At 1.12, the DAD=DrCH term

is larger than for any of the smaller molecules; the most dramatic change,

however, is found for the DCT=DrCH term, which is now 10.04. The correspond-

ing terms (xx and yy) for the CHop and CHm stretches are an order of magnitude

smaller.

The disparate intensities from CHax and CHeq in cyclohexane set our studies in

motion, so it is very satisfying that QTAIM analysis has provided the key that re-

solves the puzzle. In our arrangement, the CHeq lie in the xy plane and, for the

CHeq stretch, the xx þ yy contributions from the C atoms to DCT=DrCH combine

to a total of 3.346. This is significantly greater than the corresponding contri-

butions to DCT=DrCH for the CHax stretch. As in propane, this CT term is partly

offset by negative contributions at the Heq. The Heq effectively lie at the end of

a pair of short carbon ‘‘chains’’, like the Hip. Although CHax is almost com-

pletely aligned with the z-axis, the carbon zz contribution is only 0.420. Despite

differences in the detail, they are more similar to the CHm in propane and pen-

tane.

4.6.1.2 What Did We Learn From QTAIM That Can be Transferred to the Other

Molecules?

In parsing the quantity of detail in the preceding sections, we have concluded

that it is at least as important to consider the distance across which charge is

transferred as to consider the absolute amount of charge transferred. For any

CH bond stretch, the change in the molecular polarizability is greatest for the ex-

ternal field that is most closely aligned with the bond. The CHeq in cyclohexane

are structurally similar to the CHip bonds in propane and pentane, in that all are

aligned with their carbon chains and effectively lie in the plane of the carbon

atoms. Interestingly, these CH bonds are the shortest in the molecule and always

produce the greatest Raman scattering intensity. The CHax in cyclohexane have

more in common with the CHop and CHm bonds; they are in a plane orthogonal

to the carbon framework and are typically slightly longer, with lower isolated CH

stretching frequencies and weaker Raman scattering intensities (Fig. 4.1).

From experiment we know that qa=qr (CHip) will be larger than that for any

other CH bond in a given molecule, and will increase with chain length. From

QTAIM analysis we see that the distinguishing feature is the increase in the

DCT contribution of the carbon atom. The molecular polarizability is greatest

down the length of the chain; it is also most sensitive to alterations in this dimen-

sion. The DAD contributions are mainly confined to the atoms of the bond being
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stretched. While they too increase with molecular size they do not exhibit, the

dramatic differences found for the DCT(C).

These results form the first of our guiding principles in the Raman scattering

intensities – the magnitude of qa=qrCH is highly dependent on bond location

within the molecule, orientation relative to the carbon skeleton, and the spatial

extent of that skeleton.

4.7

What Can We Deduce From Simple Inspection of qqqqqqqqqqqqqqqqqqqqa/qqqqqqqqqqqqqqqqqqqqrCH and qqqqqqqqqqqqqqqqqqqqa/qqqqqqqqqqqqqqqqqqqqrCC From

Gaussian?

The larger survey calculations of qa=qr using standard electronic structure calcu-

lations include normal and branched alkanes, a diverse selection of cycloalkanes

and bicycloalkanes, hedranes and propellanes, and a few alkenes, alkynes, si-

lanes, and extended sheets [22–24]. Some of these are shown in Fig. 4.6. One of

our goals was to explore the potential variety of qa=qr values that might exist,

seeking extensions to the patterns found above and possible new patterns or fac-

tors to consider. A second goal was to identify candidate molecules for which ex-

treme differences in qa=qr might be observed and which might be amenable to

experimental and QTAIM analysis. The CH and CC stretch in all-trans straight-
chain alkanes up to pentadecane were modeled at the HF/D95(d,p) level [19–21]

as well as the Da=DrCH for the gauche-butane, and the gauche–trans and gauche–
gauche-pentane conformers. The Da=DrCC were calculated up to n-pentacosane
(C25H52). We found that the variety of differences could be categorized into a

few simple patterns that have been discussed thoroughly in our papers. Here we

present specific examples to illustrate the factors that were identified.

4.7.1

Variations in qqqqqqqqqqqqqqqqqqqqa/qqqqqqqqqqqqqqqqqqqqrCH Among the Alkanes

The patterns discovered in the experimental data (Fig. 4.2) are a small part of the

larger picture [19, 22, 23].
� The stretch of the CHip bond always produces the greatest

change in a.
� The CHop and CHm bonds, orthogonal to the chain, are all

quite similar, though there is a slow, regular decrease from

the Da=DrCH in propane with increasing chain length.
� Where conformational change rotates the CH bonds to point

toward each other, and toward the interior of the molecular

skeleton, the value of Da=DrCH decreases. For CH bonds

rotated into the plane of the carbon chain Da=DrCH increases

(Fig. 4.7).
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� At 1.118, Da=DrCH for the methine CH bond is largest in iso-
butane. It has the ‘‘in-plane’’ alignment; the methyl CH bonds

are in-plane (1.107) or out-of-plane (1.000) (Figure not shown).

QTAIM analyses have not been performed on most of these molecules. We

speculate that the pattern of end-to-end CT, opposed by increased ADs at the car-

bons atoms will be the overriding factor. There is a gradual leveling with chain

Fig. 4.6 Effect of conformation and structure

on the magnitude of qa/qrCH. Exo/endo

differences are illustrated in the boat form of

cyclohexane, steric hindrance in

methylcyclopropane, methylcyclobutane, and

1,3-dimethylcyclobutane, and the combined

effects of axial/equatorial and exo/endo are

evident in some of the CH bonds of bicyclo-

[3.3.1]-nonane and tetracyclo-[5.3.3.12; 6.04; 9]-

dodecane, also called iceane. Data were

calculated at the HF/D95(d,p) level, from

Refs. [20, 21].

Fig. 4.7 Effect of molecular conformation on

the magnitude of Da/DrCH in gauche n-butane

and gauche-trans n-pentane. The steric

hindrance imposed by internal rotation

reduces the derivative from approximately

1:05� 10�30 Cm V�1 for the methyl out-of-

plane and methylene CH. Rotation of a CH

into an end-of-chain in-plane position raises

the derivative to a value close to those of the

Hip in all-trans butane and pentane (1.207

and 1.26, respectively). Data were calculated

at the HF/D95(d,p) level, from Refs. [19, 20].
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length, as a result of either the damping effect of intervening methylenes or the

unfavorable nature of large CT over greater distances.

4.7.2

Da/DrCH in Cycloalkanes, Bicycloalkanes, and Hedranes

Alkane rings contain additional categories of CH bond, simplified as axial, equa-

torial, exo, endo and bridgehead. The CHax and CHeq have already been ad-

dressed in cyclohexane. The points below represent the cycloalkane variations on

the trends discovered in the straight chains (Fig. 4.6).
� The difference between CHax and CHeq increases with ring

size.
� Steric crowding and rotation such that bonds are directed

toward the interior of the skeleton results in a decrease in

Da=Dr, whether the bonds are part of the ring or on methyl

substituents.
� Exo/endo differences appear, as seen in the boat form of

cyclohexane.
� Individual effects identified in simple structures combine in

more complicated molecules.

Bicyclo-[3.3.1]-nonane and tetracyclo-[5.3.1.12; 6.04; 9]-dodecane (iceane) serve to

illustrate the combined effects of axial, equatorial, exo, and endo characteristics.

The most dramatic difference in qa=qr was predicted and experimentally verified

in bicyclo-[1.1.1]-pentane [24]. The bridgehead CH experiences the combined en-

hancement of the terminal position and the strain at the carbon atom, to give the

largest qa=qrCH of any molecule in this category, irrespective of size.

4.7.3

Patterns That Emerge in Da/DrCC of Alkanes

The unique CC bonds in straight-chain alkanes and in simple cycloalkanes may

be easily examined with HF and DFT methods [21–23]. On stretching the skele-

ton CC bonds we observe complete reversal of the patterns seen in the CH bonds.

The magnitude of Da=DrCC is smallest when bonds at the outer ends of the chain

are stretched, becoming larger as we progress towards the center of the chain.

Even more curiously, the smallest derivative occurs at the second CC bond from

the end, as if the terminal position imparts a slightly greater looseness to the

charge density. This is not an artifact of the lower level basis set, because the cal-

culations were repeated with B3LYP/aug-cc-pVDZ and identical patterns appeared

(Fig. 4.8). With QTAIM analysis, we hope to gain insight that will explain these

predictions.

For the ring and cage molecules Da=DrCC were calculated for those bonds for

which structural and geometric independence could be maintained. In general,

the derivatives for CC bonds in the rings were smaller than for any of the open
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chains, from a low of 0.904 for the vertical bonds in hexaprismane to a high of

1.293 for the ring CC bonds in 1,4-dimethylcyclobutane. An increase in the calcu-

lated strain energies correlated well (r2 ¼ 0:58, P < 0:0001 for n ¼ 21) with the

decreasing Da=DrCC [21], but this is clearly only part of the story for these compli-

cated structures.

4.7.4

Unsaturated Hydrocarbons and the Silanes: CxH, CyC, and SixSi Derivatives

In keeping with the electrically conductive nature of polyenes and silanes, we ob-

serve much larger Da=Dr for these molecules [22]. The Da=DrCH for the alkenes

follow the same overall patterns as for their saturated counterparts, in that

the stretch of the terminal CHip bond produces the largest change in a, but the

magnitude falls off much more rapidly for the CH bonds along the chain. The

Da=DrCbC values are very large and increase rapidly with chain length (Fig. 4.9).

Fig. 4.8 Patterns in Da/DrCC in the straight-chain alkanes. Derivatives

for each CC bond, numbered from the beginning of a chain (C1–

C2 ¼ bond 1). Data were calculated at the HF/D95(d,p) level for

propane (C3), pentane (C5), nonane (C9), pentadecane (C15), and

pentacosane (C25). Data taken from Ref. [21].

Fig. 4.9 Patterns in Da/DrCH and Da/DrCC in trans-1,3-butadiene and

trans,trans-1,3,5-hexatriene. The end-of-chain effect is magnified by the

polarizability of the p orbitals down the length of the chain, and

reduced perpendicular to the chain, compared with similar values for

the straight-chain alkanes. Data taken from Ref. [22].
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Our silane calculations include only up to Si5H12 (data not shown [22]). For

Da=DrSiH and Da=DrSiaSi the pattern is the same as for the alkanes – the derivative

is largest for SiHip and increases with chain length. The derivatives for the SiHop

bonds are similar to those along the chain and decrease with chain length.

4.8

Conclusion

Results from QTAIM analysis for the molecular polarizability derivative per-

formed on a catalog of molecules can be summarized in two principal conclu-

sions:

1. The elements of structure, viz. alignment (cis/trans, eq/ax,

in-plane/out-of-plane), steric hindrance, and strain, are local

in nature. For rings, strain applies to every atom of that ring.

2. The effects of these local features are distributed across the

molecule.

In a way, QTAIM analysis of qa=qr only serves to emphasize that the molecular

wavefunction is a function of all nuclear and electronic degrees of freedom simul-

taneously.

The QTAIM atoms are as physical as the molecules from which they are recov-

ered, arising naturally from the principles of quantum mechanics. Chemical intu-

ition, based on experiment and theory, relies on identification of the atomic

constituents of molecules as a first step, and then on application of established

patterns of chemical connectivity, or bonding, to obtain principles of molecular

function from structure. We, as chemists, do not work in Hilbert space, but in

real space. Our building blocks are not state vectors but concrete, physical atoms.

QTAIM coupled with quantum chemical calculations serves as a test bench to ex-

plore the intricacies of structure and the interplay between that structure and the

resulting molecular properties. When interesting properties appear, or fail to ap-

pear, from novel structures, experiment can follow and be supported by a sound

theoretical foundation. When interesting properties appear in seemingly standard

structures devoid of exotic structural motifs, the need for theoretical analysis is

equally clear.

Measurement of absolute Raman scattering intensities and their accurate

reproduction through QTAIM are both challenging tasks. QTAIM informs our ex-

isting notions of conformation with an understanding based on the atom-by-atom

contributions to the changes in molecular properties that arise from local envi-

ronmental effects. It turns out for qa=qr that the molecular framework itself is

imprinted on the molecular response. Knowledge of the underlying atomic-level

topological features of the electron density gives insight into how to design de-

sired function into molecular systems. We are free to modify the local environ-

ments of functional groups in any way we choose, including the doping of crys-
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tals. The operating principle is that a local environmental perturbation has a

global effect on a molecular property.

We began this chapter with an investigation of anomalous Raman scattering

intensities from CH functional groups. The first impression might have been

that this was a rather esoteric probe of a mundane group of atoms. Through our

QTAIM analysis we have seen that the Raman intensity is a sensitive probe of

structure-imprinted, structure-mediated charge flow and rearrangement within

the constraints imposed on the molecular framework by the topology of the elec-

tron density.

Authors’ Note

It has become common in the literature to see the QTAIM atoms referred to as

‘‘Bader’s atoms’’. It is a testament to his belief in the supremacy of experimental

observation and the rigors of quantum mechanics that Bader himself decries this

tendency. They are not some construct arising out of an artificial and arbitrary

partitioning of space; they are the quantum mechanical atoms.
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5

Topological Atom–Atom Partitioning of

Molecular Exchange Energy and its Multipolar

Convergence

Michel Rafat and Paul L. A. Popelier

5.1

Introduction

Without force fields the structure and dynamics of sizeable systems (biopolymers

or condensed matter) would be beyond the predictive power of present day com-

puters. The development of force fields has a long and successful history, culmi-

nating into products such as AMBER [1], CHARMm [2] or GROMOS [3], to

name just a few. Despite their ubiquitous use and success they define a paradigm

of accuracy, largely accepted by a community of users, despite known inherent

limitations. It is very difficult to alter this paradigm and achieve a new level of ac-

curacy unless the underlying principles of force field design are also altered, pos-

sibly drastically. That there is an increasing urgent need for sustained research

effort in this direction is backed up by a recent review [4] of Ponder and Case on

force fields for protein simulations. They concluded that ‘‘An increase in computer
power of at least two orders of magnitude should occur over the next decade. Without
further research into the accuracy of force-field potentials, future macromolecular mod-
eling may well be limited more by validity of the energy functions, particularly electro-
static terms, than by technical ability to perform the computations.’’
There are several keys to a much needed alternative approach, all based on

sound principles. The first key is replacing the intrinsically limited point charges

by multipole moments. The second key is to sample as much information as pos-

sible from reduced density matrices (both 1st and 2nd order, starting with the

electron density). This means that molecules and molecular complexes provide

the information with which the force field is endowed, fitted, or trained. This

line of attack come under the supermolecular rather than perturbation approach.

The third key is a robust partitioning method to generate atomic information.

Quantum chemical topology (QCT) [5, 6] is chosen, given its deep roots in

quantum mechanics, its widespread use, and because it generates finite non-

overlapping atoms. A fourth key, which we mention in passing, is the use of

neural networks to capture the fluctuation of multipole moments in response to
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a change in nuclear positions. This method deals with polarization and is cur-

rently under investigation in our laboratory.

Although the literature on the application of point-charge potentials is huge,

it is recognized they have inherent limitations, for example the modeling of lone

pairs and aromatic rings. Several groups (including one in Accelrys) have noticed

the limitations of point charges in their work and make explicit statements [7–18]

in support of multipoles. For example, in their work on the prediction of (crystal)

polymorphs Day et al. [11] went as far as to assert, that ‘‘the atomic charge calcula-
tions might have motivated an exploration of kinetic reasons why hydrogen bonded
dimers are found in the crystal structure of oxazolidine-2,5-dione in preference to
chains; energy calculations with the atomic multipoles model suggest that the preference
is simply energetic and any exploration of other determining factors would have been ill-
founded.’’ Another important example is that of Batista et al. [19], who stated that

‘‘point-charge models are typically tailored to be consistent with various properties of liq-
uid water, but may not reproduce accurately the electric fields in other environments,
such as water clusters, ice, surfaces, and interfaces.’’ This insight is important for

peptide solvation and docking, where small interstitial water clusters can appear.

Over the last few years we have systematically explored the behavior of multi-

pole moments of topological atoms. In a study on the atomic partitioning of the

molecular potential [20] we demonstrated the favorable convergence of the topo-

logical multipole expansion and the reason why [21]. Via a continuous multipole

method involving Bessel functions it was subsequently proven [22] that the

region of convergence of the potential could be enlarged. The introduction of

inverse moments [23] enabled the potential to converge everywhere. The electro-

static interaction between topological atoms could also be successfully expressed

as a convergent multipole expansion and could therefore be used for prediction

[24] of van der Waals complexes and hydrogen-bonded DNA base pairs [25]. The

convergence of the multipole expansion received attention [26] in atom–atom

partitioning of intramolecular and intermolecular Coulomb energy. In that work

seven systems were analyzed – an ethyne dimer, a hydrogen fluoride dimer, a

water dimer, butane, 1,3,5-hexatriene, acrolein, and cis-urocanic acid. The current

work can be seen as a counterpart of that study but for the exchange interaction

rather than the Coulomb interaction. Here we focus on the same systems except

the last. Here, however, the convergence analysis is extended to higher rank and

includes forces rather than just energies.

As far as we know there is no force field that incorporates exchange energy, but

it is possible that it will feature in a future force field. Similarly, the kinetic en-

ergy, another term in the energy partitioning of any quantum system [27], does

not feature in force fields. Yet, these terms greatly affect the total energy surface

of molecules and molecular assemblies and hence their structure and dynamics.

Their effect is typically absorbed in the fitted bonded and non-bonded terms. In

this contribution we only touch upon the question of how exchange energy may

be adopted by a force field. As before, aware of the complexity of this question, we

judge it to be important to first systematically analyze the convergence behavior

of a high-rank multipole expansion of the exchange energy. That such an analysis
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can lead to unexpected results was proven in a recent paper [28], which showed

that both 1,3 and 1,4 interactions can be described on the same footing as

1,n ðn > 4Þ interactions by a convergent multipole expansion of the Coulomb

energy of the participating atom pairs.

5.2

Theoretical Background

Within the Born–Oppenheimer approximation the total closed-shell Hartree–

Fock energy is given by:

E ¼ � 1

2

ð
dr1‘

2
1rðr1; r2Þjr1¼r2

þ 1

2

ðð
dr1 dr2

rtotðr1Þrtotðr2Þ
r12

� 1

4

ðð
dr1 dr2

r1ðr1; r2Þr1ðr2; r1Þ
r12

ð1Þ

where rtot is the total charge density, r12 is the inter-electron distance, and

r1ðr1; r2Þ the first-order reduced density matrix or one-matrix. The latter is given

by:

r1ðr1; r2Þ ¼ 2
X
i

c�
i ðr1Þciðr2Þ ð2Þ

where the sum runs over molecular orbitals ci. The diagonal of this density ma-

trix is the electron density, rðrÞ, which combined with the (total) nuclear charge

density yields the total charge density:

rtotðrÞ ¼
X
A

ZAdðr � RAÞ � rðrÞ ð3Þ

The first term in Eq. (1) defines the kinetic energy and jr1¼r2
means the coordi-

nates r1 and r2 are kept separated until the Laplacian has operated on only one c,

whereupon the coordinates are set equal to each other.

The total energy can be partitioned in terms of topological atoms, denoted W,

via:

E ¼ � 1

2

X
A

ð
WA

dr1‘
2
1rðr1; r2Þjr1¼r2

þ 1

2

X
A

X
B

ð
WA

dr1

ð
WB

dr2
rtotðr1Þrtotðr2Þ

r12
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4

X
A

X
B

ð
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dr1

ð
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dr2
r1ðr1; r2Þr1ðr2; r1Þ

r12
ð4Þ
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where the double sum
P

A

P
B is not restricted in any way, i.e. the interaction

between two different atoms ðA0BÞ is counted twice and the self-interaction of

each atom ðA ¼ BÞ is included. The second group of terms expresses the Cou-

lomb interaction and featured in earlier work [26]. This work focuses on the third

group of terms. Figure 5.1 clarifies how the inter-electron distance r12 is related to

the internuclear distance and the nuclear positions.

Because the molecular orbitals are real it follows that r1ðr1; r2Þ ¼ r1ðr2; r1Þ and,
because r12 ¼ jRþ r2 � r1j, the exchange energy between atoms A and B (appear-

ing in Eq. 4) has the form:

EAB
X ¼ �

ð
WA

dr1

ð
WB

dr2
jr1ðr1; r2Þj2
jRþ r2 � r1j ð5Þ

Fig. 5.1 Atomic basins of the oxygen atoms

in glycine. The nuclei are shown as spheres.

The bond critical points are shown by

encircled dots. The interatomic surfaces are

represented by small triangles. The basins

are capped by an isodensity envelope at 10�3

au. R represents the internuclear vector, RA

and RB the positions of the nuclei A and B in

the global axis system, and r1 and r2 describe

the electron density in the basins A and B,

respectively. The global axis system is shown

outside the molecule and centered on the

global origin.
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Computation of the exchange energy in Eq. (5) involves a six-dimensional (6D)

integral. The same type of integral has to be evaluated in the computation of the

Coulomb interaction but there the numerator, rtotðr1Þrtotðr2Þ, is already separated

(or factorized) in terms of the variables r1 and r2. Because of the entanglement

between variables r1 and r2 in the one-density matrix, the 6D integration for the

exchange energy is much slower than its Coulomb counterpart. Indeed, if there

are n quadrature points in each atomic grid, the numerator (i.e. the one-electron

density matrix) must be evaluated for each pair of grid points, or n2 times. In the

Coulomb 6D integral, on the other hand, the charge density of each basin must

be evaluated in n quadrature points, corresponding to only 2n evaluations of the

electron density in total. In practice, the most straightforward way of separating

the variables r1 and r2 is to express r1ðr1; r2Þ by means of molecular orbitals:

EAB
X ¼ �4

ð
WA

dr1

ð
WB

dr2
X
i

X
j

ciðr1Þciðr2Þcjðr1Þcjðr2Þ
jRþ r2 � r1j ð6Þ

where i and j are summed throughout the molecular orbitals. At this stage it is

convenient to define the overlap function at a point r:

SijðrÞ ¼ 2ciðrÞcjðrÞ ð7Þ

where we point out that the occupation number of two is absorbed in Sij. Substi-

tuting Eq. (7) into Eq. (6) leads to:

EAB
X ¼ �

ð
WA

dr1

ð
WB

dr2
X
i

X
j

Sijðr1ÞSijðr2Þ
jRþ r2 � r1j ð8Þ

This 6D integral is computationally less expensive to evaluate than that in Eq.

(5), because the overlap function is computed in the two atomic grids separately,

which is reminiscent of the computation of rtotðr1Þrtotðr2Þ. The cost of Eq. (8) is

still larger than the 6D integration of the Coulomb energy, however.

Both the exchange and Coulomb energy can be expressed via a multipole ex-

pansion, which has been described in detail before [26]. At the cost of possible

lack of convergence this expansion separates the variables R, r1, and r2, which

are entangled in the expression jRþ r2 � r1j�1.

A binomial Taylor expansion of jRþ r2 � r1j�1 and subsequent application of

an addition theorem for regular spherical harmonics [29, 30] factorizes the elec-

tronic ðr1; r2Þ and geometric (R) coordinates as follows:

1

jRþ r2 � r1j ¼
Xy
l1¼0

Xy
l2¼0

Xl1
m1¼�l1

Xl2
m2¼�l2

Tl1 l2m1m2
ðRÞRl1m1

ðr1ÞRl2m2
ðr2Þ ð9Þ
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and

Tl1 l2m1m2
ðRÞ ¼ ð�1Þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 2l2 þ 1Þ!
ð2l1Þ!ð2l2Þ!

s

� l1 l2 l1 þ l2

m1 m2 �ðm1 þm2Þ

 !
Il1þl2;�ðm1þm2ÞðRÞ ð10Þ

where the expression in large brackets is a Wigner 3j symbol and RlmðrÞ and

IlmðrÞ are the regular and irregular normalized spherical harmonics Ylmðy; jÞ,
respectively:

RlmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

r
r lYlmðy; jÞ ð11aÞ

IlmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

r
r�l�1Ylmðy; jÞ ð11bÞ

The terms in Eq. (9) can be conveniently grouped according to the power of the

interaction distance RAB
�ðl1þl2þ1Þ ¼ RAB

�L by use of Eq. (11b), where L monitors

the rank of the expansion.

Substituting Eq. (9) into Eq. (8) leads to:

EAB
X ¼ �

Xy
l1¼0

Xy
l2¼0

Xl1
m1¼�l1

Xl2
m2¼�l2

Tl1m1 l2m2
ðRÞ

X
ij

Qij
l1m1

ðWAÞQij
l2m2

ðWBÞ ð12Þ

where the exchange moments, Qij
lmðWÞ, unlike their Coulomb counterpart (the

familiar atomic multipole moments), explicitly depend on the molecular orbitals:

Qij
lmðWÞ ¼

ð
W

drSijðrÞRlmðrÞ ð13Þ

Note that both the overlap function Sij (Eq. 7) and the electron density

(deduce from Eq. 2) incorporate the occupation number. Because they share

this feature with (atomic) electrostatic multipole moments, defined as QlmðWÞ ¼Ð
W
drrðrÞRlmðrÞ, they have a very close and simple relationship with exchange mo-

ments, i.e. QlmðWÞ ¼
P

i Q
ii
lmðWÞ.

For completeness we point out that Eq. (10) is only valid when all multipole

moments are expressed relative to the global axis system. It is possible to work

with moments that are expressed relative to their own local atomic axis system.

In this more general approach each atomic frame can take on an arbitrary orien-

tation. For mathematical details we refer to Section 3.3 in Stone’s book [30]. In

our current analysis, however, there is no need for this generalization, because

we analyze single molecules and supermolecules, each expressed relative to a sin-
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gle global axis system. Each atomic local frame has the same orientation as the

global frame, and this is just a special case of the more general approach de-

scribed above. We mention the general approach, however, because it is in this

context that Hättig [31] developed his recurrence formula for computation of

the interaction tensor TðRÞ. This formula enables evaluation of this tensor to an

arbitrarily high rank L. Hence we can now go beyond the limitation of L ¼ 5 of

previous work, where explicit (i.e. pre-calculated) formulae for TðRÞ were used.

The evaluation of explicit formulae, as listed up to rank L ¼ 6 [30, 32], is more

rapid, however.

The exact exchange force is defined by Eq. (14).

FAB
X ¼ �4

ð
WA

dr1

ð
WB

dr2
X
i

X
j

ciðr1Þciðr2Þcjðr1Þcjðr2Þ
r 312

r12 ð14Þ

It is straightforward to differentiate Eq. (12) to obtain the kth force component

from the exchange energy:

FAB
X ; k ¼

Xy
l1¼0

Xy
l2¼0

Xl1
m1¼�l1

Xl2
m2¼�l2

qTl1m1 l2m2
ðRÞ

qRA; k

X
ij

Qij
l1m1

ðWAÞQij
l2m2

ðWBÞ ð15Þ

where RA;k is the kth component of the position vector of the nucleus A and

where we have assumed that the exchange moments do not vary with a change

in nuclear positions. Note that Hättig’s recursive formulae are easy to differenti-

ate with respect to nuclear components.

The development so far has focused on (closed-shell) Hartree–Fock wave func-

tions, but it is possible to extend the multipole formalism to post Hartree–Fock

wave functions. The total (electronic) interaction energy between two topological

atoms is given by Eq. (16):

EAB
ee ¼

ð
WA

dr1

ð
WB

dr2
r2ðr1; r2Þ

jRþ r2 � r1j ð16Þ

where the second-order reduced density matrix r2ðr1; r2Þ can be written in terms

of molecular orbitals as follows:

r2ðr1; r2Þ ¼
X
ijkl

Cijklciðr1Þcjðr1Þckðr2Þclðr2Þ ð17Þ

The only nonvanishing C coefficients at the Hartree–Fock level are Ciijj ¼ 2 and

Cijji ¼ �1. Equation (6) is reproduced by inserting Eq. (17) into Eq. (16) and col-

lecting the terms in the quadruple sum of Eq. (17) corresponding to Cijji ¼ �1.

The multipole expansion for post-Hartree–Fock wave functions is generalized in

a straightforward manner in Eq. (18).
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EAB
ee ¼

Xy
l1¼0

Xy
l2¼0

Xl1
m1¼�l1

Xl2
m2¼�l2

Tl1m1 l2m2
ðRÞ

X
ijkl

CijklQ
ij
l1m1

ðWAÞQ kl
l2m2

ðWBÞ ð18Þ

We note that Pendas et al. [33] developed a monadic diagonalization of

r2ðr1; r2Þ to avoid the computational overhead because of the extra four summa-

tions occurring in Eqs (17) and (18). Using CI wave functions Fradera et al. [34]

and Poater et al. [35] calculated electron localization and delocalization indices for

topological atoms. Their indices are functions of SijðWÞ, which can be identified

with a ‘‘monopolar exchange moment’’ ðl ¼ m ¼ 0Þ, because from Eq. (13) we

learn that Qij
ooðWÞ ¼

Ð
W
drSijðrÞ, because R00ðrÞ ¼ 1. In their work the Cijkl coeffi-

cients were extracted from the ab initio code GAMESS, an involved procedure

that was avoided by Wang and Werstiuk [36]. Taking advantage of the so called

Z-vector method [37] they developed a simpler way to include the Coulomb corre-

lation effects. By introducing natural molecular orbitals and non-integer occupa-

tion numbers the equations developed at the Hartree–Fock level can be retained

for post-Hartree–Fock wave functions.

Because, in this study, we used B3LYP wave functions we need to comment on

the validity and re-interpretation of the multipole formalism, especially Eq. (12)

and some equations leading up to it. There are inherent differences between the

exchange-correlation of the Kohn–Sham formalism and Hartree–Fock formalism

[38, 39]. With Kohn–Sham density-functional theory the total electronic energy of

the real, fully-interacting system is expressed as:

Etot ¼ T0 þ
ð
drrVnuc þ 1

2

ðð
dr1 dr2

rðr1Þrðr2Þ
r12

þ EXC ð19Þ

where T0 is the kinetic energy of the non-interacting reference system, and the

second and third terms are the nuclear interaction energy and the Coulomb en-

ergy, respectively. The last term, EXC, actually defines the Kohn–Sham exchange-

correlation energy. It contains, buried within it, all the details of two-body ex-

change and a kinetic-energy component. Inserting Kohn–Sham orbitals in Eq.

(8) to compute and analyze what looks like an ‘‘exchange’’ energy can be justified

on the grounds of the generality of r1ðr1; r2Þ in Eq. (5) and the similarity between

the Kohn–Sham scheme and the Hartree–Fock scheme. The essence of this work

is to investigate the convergence of multipole expansions of a substantial contri-

bution to the total energy, which is not the Coulomb energy or the exact kinetic

energy. For easy reference we will refer to this energy contribution simply as the

‘‘exchange energy’’.

5.3

Details of Calculations

We have modified the program MORPHY01 to integrate the exchange moments

Qij
lm for a pair of molecular orbitals ði; jÞ. The moments are written in an output
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file. The CPU time required for the integration limited the maximum rank of the

moments computed to L ¼ 10. The atomic basins are capped at the r ¼ 10�7 a.u.

isodensity envelope. Because these calculations are computationally demanding

we used the default grid of MORPHY01 for the 3D integration of the moments,

the number of radial and angular quadrature points being set at ðnr;ny;njÞ ¼
ð80; 30; 50Þ for the b sphere and ð70; 50; 80Þ for the rest of the atomic basin. The

interaction tensor TðRÞ, and its derivatives, were calculated up to an arbitrary

rank L by use of an in-house program containing Hättig’s recurrence formulae.

MORPHY01 was previously used [26] to obtain the (‘‘exact’’, i.e. non-expanded)

Coulomb energy between two topological atoms. This program was modified to

compute the exact exchange energy and force for two topological atoms by 6D nu-

merical integration.

Figure 5.2 shows the geometry and numbering scheme of the six systems

studied. All molecules were optimized, without imposed symmetry, by the pro-

gram GAUSSIAN03 [40] at the same of level of theory, B3LYP/6-311þG(2d,p),

as in the earlier counterpart study [26] on the Coulomb interaction.

Fig. 5.2 Geometry and numbering scheme of the six systems studied:

(a) HF dimer, (b) H2O dimer, (c) C2H2 dimer, (d) butane, (e) 1,3,5-

hexatriene, (f ) acrolein.
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5.4

Results and Discussion

5.4.1

Convergence of the Exchange Energy

The HF dimer often appears as a simple prototype system featuring medium to

strong hydrogen bonding between polar molecules. Table 5.1 shows all possible

atom–atom interactions (
4

2

� �
¼ 6). It is clear that the multipole expansion does

not converge for the nearly equivalent covalently bonded atoms (H1–F3 and H2–

F4), as is observed for the corresponding Coulomb interaction. It is pleasing to

learn that the hydrogen bonded interaction (H1–F4) stabilizes rapidly toward the

exact value of �69.8 kJ mol�1, already at L ¼ 4. This was also observed for the

hydrogen bond Coulomb interaction. Perhaps surprising is the rather sizeable

(but properly converged) exchange energy between the fluorine atoms.

The exact and multipole expanded exchange energies of eleven relevant interac-

tions in the water dimer are presented in Table 5.2. There is a total of
6

2

� �
¼ 15

interactions but four can be left out because of (near) planar symmetry. The pat-

tern observed here is very similar to that of the HF dimer. As expected, the multi-

pole expansion is unable to converge for bonded interactions. For the non-bonded

Table 5.1 Exchange energy (kJ mol�1) between atomic basins with

increasing nuclear separation R in (HF)2 from multipole expansion

(increasing rank L) and 6D numerical integration (exact).

R (a.u.)

H1xF3[a]

1.76

H2xF4[a]

1.75

H1xF4
3.44

H1xH2

4.49

F3xF4
5.17

H2xF3
6.02

L ¼ 1 �660.7 �733.0 �44.0 �0.4 �35.6 �0.4

L ¼ 2 �723.6 �747.9 �61.3 �0.4 �46.9 �0.3

L ¼ 3 �791.1 �858.6 �68.0 �0.4 �51.1 �0.3

L ¼ 4 �784.2 �822.1 �70.1 �0.4 �52.1 �0.3

L ¼ 5 �702.0 �725.7 �70.2 �0.4 �52.5 �0.3

L ¼ 6 �694.0 �773.7 �69.5 �0.4 �52.7 �0.3

L ¼ 7 �770.3 �742.1 �68.9 �0.4 �52.7 �0.3

L ¼ 8 �759.4 �699.4 �68.8 �0.4 �52.5 �0.3

L ¼ 9 �672.4 �1272.6 �69.1 �0.4 �52.2 �0.3

L ¼ 10 �823.4 �791.2 �69.6 �0.4 �52.2 �0.3

Exact �740.4 �783.6 �69.8 �0.4 �52.4 �0.3

aNote that in this and subsequent tables the bonded interactions (i.e.

between two atoms separated by one or two bonds, or 1,2 and 1,3

interactions) are colored in light grey.
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interactions, however, the expansions predict a value very close to that from 6D

integration. Even at short range (for instance the H2–H3 and H5–H6 interac-

tions), for which the Coulomb expansion is expected to fail, the exchange interac-

tion has an error of less than 0.1 kJ mol�1. There are only small differences (less

than 1 kJ mol�1) between the expansions at rank L ¼ 6 and L ¼ 10 for non-

bonded interactions. Although the bonded OaH interaction largely dominates

the other interactions, the intermolecular interactions between H2 and O4, which

represents the hydrogen bond, and the oxygen–oxygen interactions are not negli-

Table 5.2 Exchange energy (kJ mol�1) between atomic basins with

increasing nuclear separation R in (H2O)2 from multipole expansion

(increasing rank L) and 6D numerical integration (exact). The labels

correspond to those in Fig. 5.2.

R (a.u.)

O4xH5

1.82

O1xH3

1.82

O1xH2

1.84

H2xH3

2.90

H5xH6

2.90

H2xO4

3.66

H2xH5

4.62

L ¼ 1 �1009.0 �1064.8 �870.8 �7.5 �8.4 �55.3 �0.7

L ¼ 2 �1087.6 �1135.9 �1002.5 �4.9 �5.1 �78.6 �0.7

L ¼ 3 �1214.7 �1269.6 �1080.4 �5.8 �6.5 �87.6 �0.6

L ¼ 4 �1170.3 �1232.6 �1062.6 �5.6 �6.0 �90.1 �0.6

L ¼ 5 �994.6 �1021.9 �940.2 �5.5 �6.1 �89.6 �0.6

L ¼ 6 �1060.3 �1098.5 �905.2 �5.6 �6.2 �88.3 �0.6

L ¼ 7 �1151.3 �1274.7 �1072.9 �5.6 �6.1 �87.4 �0.6

L ¼ 8 �944.3 �917.7 �1170.6 �5.6 �6.1 �87.6 �0.6

L ¼ 9 �2009.2 �2171.8 �763.8 �5.6 �6.1 �88.4 �0.6

L ¼ 10 �1565.1 �2265.0 �702.7 �5.7 �6.2 �88.9 �0.6

Exact �1109.6 �1161.1 �1003.7 �5.6 �6.1 �88.2 �0.7

R (a.u.)

O1xO4

5.49

O1xH5

6.31

H3xO4

6.34

H3xH5

7.38

L ¼ 1 �34.6 �0.5 �0.8 0.0

L ¼ 2 �44.8 �0.5 �0.8 0.0

L ¼ 3 �48.4 �0.5 �0.8 0.0

L ¼ 4 �48.8 �0.5 �0.8 0.0

L ¼ 5 �49.1 �0.5 �0.8 0.0

L ¼ 6 �49.3 �0.5 �0.8 0.0

L ¼ 7 �49.3 �0.5 �0.8 0.0

L ¼ 8 �49.0 �0.5 �0.8 0.0

L ¼ 9 �48.8 �0.5 �0.8 0.0

L ¼ 10 �48.8 �0.5 �0.8 0.0

Exact �49.0 �0.5 �0.8 0.0
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gible. It is, again, gratifying to note that the hydrogen-bond exchange energy con-

verges rapidly.

The exact and multipole-expanded exchange energies of fifteen selected atom–

atom interactions in the ethyne dimer are presented in Table 5.3. The covalent

bonds CaH and CcC do not converge, the exchange energy of the latter bond be-

ing roughly three times that of the former. The next largest values are approxi-

mately a factor of 30 smaller and occur between the non-bonded C and H atoms

of the respective ethyne moieties. Very low rank expansions approximate the exact

Table 5.3 Exchange energy (kJ mol�1) between selected atomic basins

(AM–BN, where M < N; Fig. 5.2) in (C2H2)2 from multipole expansion

(increasing rank L) and 6D numerical integration (exact).

R (a.u.)

H2xC3
4.27

H2xH4

6.28

H2xC5
8.03

H2xH8

6.23

C3xH4

2.01

C3xH5

7.48

C3xC6
9.72

C3xH8

5.49

L ¼ 1 �45.9 �1.5 �0.1 �0.3 �1252.9 �3.1 �0.4 �10.2

L ¼ 2 �46.5 �1.3 �0.1 �0.4 �1638.9 �4.2 �0.5 �14.1

L ¼ 3 �42.1 �1.3 �0.1 �0.4 �1600.4 �4.6 �0.5 �15.6

L ¼ 4 �42.8 �1.3 �0.1 �0.4 �1455.8 �4.7 �0.5 �16.2

L ¼ 5 �44.2 �1.3 �0.1 �0.4 �1366.9 �4.8 �0.5 �16.3

L ¼ 6 �43.2 �1.3 �0.1 �0.4 �1398.6 �4.8 �0.5 �16.3

L ¼ 7 �42.8 �1.3 �0.1 �0.4 �1665.5 �4.8 �0.5 �16.2

L ¼ 8 �43.7 �1.3 �0.1 �0.4 �1973.7 �4.8 �0.5 �16.2

L ¼ 9 �43.5 �1.3 �0.1 �0.4 �1323.3 �4.8 �0.5 �16.2

L ¼ 10 �42.9 �1.3 �0.1 �0.4 117.4 �4.8 �0.5 �16.3

Exact �43.3 �1.3 �0.1 �0.4 �1486.5 �4.8 �0.5 �16.3

R (a.u.)

H4xC5
8.05

C5xC6
2.26

C5xH7

4.27

C5xH8

2.01

C6xH7

2.01

C6xH8

4.27

H7xH8

6.28

L ¼ 1 �0.1 �3317.1 �47.1 �1222.7 �1260.6 �44.1 �1.4

L ¼ 2 �0.1 �4062.3 �47.5 �1621.8 �1646.8 �45.2 �1.3

L ¼ 3 �0.1 �3591.0 �42.8 �1580.8 �1605.7 �40.8 �1.3

L ¼ 4 �0.1 �3782.0 �43.7 �1428.4 �1461.3 �41.2 �1.3

L ¼ 5 �0.1 �5041.4 �45.2 �1358.2 �1372.7 �42.9 �1.3

L ¼ 6 �0.1 �4568.9 �44.1 �1398.5 �1399.6 �42.1 �1.3

L ¼ 7 �0.1 �761.7 �43.6 �1578.5 �1689.4 �41.1 �1.3

L ¼ 8 �0.1 �1668.4 �44.8 �1940.6 �2049.5 �42.2 �1.3

L ¼ 9 �0.1 �18659.7 �44.5 �1568.4 �1264.1 �43.0 �1.3

L ¼ 10 �0.1 �23057.4 �43.6 �1528.1 466.0 �41.3 �1.3

Exact �0.1 �4003.1 �44.2 �1465.9 �1493.0 �42.0 �1.3
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exchange energies quite well. Several interactions, occurring between atoms more

than 10 a.u. apart, for example H2–C6, H2–H7, C3–H7, and H4–C6 have vanish-

ing exchange energy (i.e. <0.1 kJ mol�1). The convergent behavior of the expan-

sion at short range is excellent, because the difference of energy between ranks

L ¼ 9 and L ¼ 10 is always less than 0.01 kJ mol�1 for non-bonded interactions

and the maximum difference between L ¼ 6 and L ¼ 10 is 0.13 kJ mol�1. The

nonbonded interactions, for example C3–H8 and C3–C5, are not as strong as

in the water dimer but are still significant in terms of ‘‘chemical accuracy’’ (1

kcal mol�1 or 4 kJ mol�1).

The exact and multipole-expanded exchange energies of eight selected atom–

atom interactions in butane are shown in Table 5.4. As in the previous systems

the convergence is faster than for the Coulomb interactions. Remarkably, for

some bonded interactions (for example C5–C8) the difference between the exact

and L ¼ 10 is in the region of 20 kJ mol�1. Also, the exchange energy between C

and H in covalent CaH bonds is fairly constant, whether in butane or ethyne.

The exact and multipole-expanded exchange energies of ten selected atom–

atom interactions in 1,3,5-hexatriene are shown in Table 5.5. In this conjugated

system the exchange energy can still be quite large over long distances. For exam-

ple the exchange energy between the furthest atoms, C1 and C12, is �7.9

kJ mol�1. It is not clear why this value is larger in absolute magnitude than that

for C1–C10, and appears as an exception in a regularly decreasing series of abso-

lute energy values, starting with C1–C4. The same anomaly was found in the

Coulomb interaction [26]. The formally CC double bonds, C1–C4 and C6–C8

are both associated with an energy of approximately �2:5� 103 kJ mol�1. A

single (sigma) CC bond, as found in butane (C1–C5, C5–C8), corresponds to

Table 5.4 Exchange energy (kJ mol�1) between selected atomic basins

(AM–BN, where M < N; Fig. 5.2) in butane from multipole expansion

(increasing rank L) and 6D numerical integration (exact).

R (a.u.)

C1xH4

2.07

C1xC5
2.89

C1xH6

4.08

C1xC8
4.83

C1xC11
7.42

H4xC11
8.03

C5xH6

2.07

C5xC8
2.89

L ¼ 1 �1219.3 �906.4 �27.8 �27.0 �4.2 �0.3 �1192.5 �888.7

L ¼ 2 �1531.9 �1332.6 �31.5 �34.9 �4.7 �0.4 �1509.1 �1312.5

L ¼ 3 �1598.9 �1546.2 �33.2 �38.1 �4.8 �0.4 �1579.9 �1526.6

L ¼ 4 �1478.5 �1603.0 �33.3 �39.5 �4.8 �0.4 �1476.2 �1591.1

L ¼ 5 �1363.2 �1606.1 �33.5 �40.2 �4.8 �0.4 �1368.3 �1594.2

L ¼ 6 �1356.8 �1578.5 �33.4 �40.4 �4.8 �0.4 �1358.1 �1568.1

L ¼ 7 �1531.2 �1561.0 �32.9 �40.5 �4.8 �0.4 �1456.9 �1545.0

L ¼ 8 �1731.5 �1533.3 �33.1 �40.4 �4.8 �0.4 �1588.1 �1535.7

L ¼ 9 �1569.5 �1551.1 �33.4 �40.3 �4.8 �0.4 �1626.0 �1532.0

L ¼ 10 �1446.1 �1579.7 �33.5 �40.2 �4.8 �0.4 �1515.3 �1577.3

Exact �1463.5 �1568.1 �33.2 �40.4 �4.8 �0.3 �1449.6 �1556.0
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approximately �1:5� 103 kJ mol�1. The C4–C6 (hexatriene) exchange energy of

�1:8� 103 kJ mol�1 could then be interpreted as, essentially, a single CC bond

with some double bond character. We note that the Coulomb energy [24] of C1–

C5 in butane is almost half that of C4–C6 in hexatriene. Hence it seems that the

conjugation has much less effect on the exchange energy than on the Coulomb

energy.

The exact and multipole-expanded exchange energies of all
8

2

� �
¼ 28 atom–

atom interactions in acrolein are shown in Table 5.6. Overall, excellent conver-

Table 5.5 Exchange energy (kJ mol�1) between selected carbon basins

(CM–CN, where M < N; Fig. 5.2) in 1,3,5-hexatriene from multipole

expansion (increasing rank L) and 6D numerical integration (exact).

R (a.u.)

C1xC4
2.53

C1xC6
4.66

C1xC8
6.99

C1xC10
9.32

C1xC12
11.60

L ¼ 1 �1822.8 �44.4 �36.2 �2.3 �8.2

L ¼ 2 �2458.4 �54.0 �36.1 �2.3 �8.0

L ¼ 3 �2513.6 �55.0 �34.6 �2.3 �7.9

L ¼ 4 �2536.0 �54.8 �34.7 �2.3 �7.9

L ¼ 5 �2798.9 �55.2 �34.9 �2.3 �7.9

L ¼ 6 �2916.1 �56.1 �34.9 �2.3 �7.9

L ¼ 7 �2222.2 �56.7 �34.8 �2.3 �7.9

L ¼ 8 �1346.2 �55.7 �34.8 �2.3 �7.9

L ¼ 9 �3869.5 �54.2 �34.9 �2.3 �7.9

L ¼ 10 �9335.7 �55.7 �34.8 �2.3 �7.9

Exact �2605.6 �55.5 �34.9 �2.3 �7.9

R (a.u.)

C4xC6
2.73

C4xC8
4.67

C4xC10
7.21

C4xC12
9.32

C6xC8
2.54

L ¼ 1 �1102.9 �41.8 �4.9 �2.3 �1695.1

L ¼ 2 �1625.7 �51.7 �5.4 �2.3 �2332.4

L ¼ 3 �1821.3 �52.9 �5.4 �2.3 �2431.9

L ¼ 4 �1863.8 �52.6 �5.4 �2.3 �2448.6

L ¼ 5 �1892.1 �53.0 �5.4 �2.3 �2635.8

L ¼ 6 �1909.8 �54.0 �5.4 �2.3 �2758.6

L ¼ 7 �1803.0 �54.4 �5.4 �2.3 �2282.2

L ¼ 8 �1599.5 �53.6 �5.4 �2.3 �1542.5

L ¼ 9 �1816.2 �52.5 �5.4 �2.3 �3031.5

L ¼ 10 �2759.3 �53.6 �5.4 �2.3 �7075.1

Exact �1842.1 �53.9 �5.4 �2.3 �2498.6
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gence rates are observed for acrolein. For all the nonbonded interactions there is a

difference between L ¼ 9 and L ¼ 10 of less than 2 kJ mol�1. The C1–C3 bond

has an exchange energy equivalent to that of a single CC bond in butane and the

p bond C5–C3 is also equivalent in energy to the C1–C4 double bond in 1,3,5-

hexatriene. The CbO bond (C1–O7) has a similar exchange energy.

It is possible to establish a link with the delocalization index dðA;BÞ, which
is interpreted as a bond order. One can prove that dðA;BÞ is proportional to

�EX
ABR, where R is the internuclear distance, if EX

AB is restricted to L ¼ 1

(hence l1 þ l2 þ 1 ¼ 1 and therefore l1 ¼ l2 ¼ m1 ¼ m2 ¼ 0).

Table 5.6 Exchange energy (kJ mol�1) between all basins (AM–BN,

where M < N; Fig. 5.2) in acrolein from multipole expansion

(increasing rank L) and 6D numerical integration (exact).

R (a.u.)

C1xH2

2.10

C1xC3
2.78

C1xH4

4.13

C1xC5
4.61

C1xH6

5.04

C1xO7

2.29

C1xH8

6.51

H2xC3
4.13

H2xH4

5.91

H2xC5
4.97

L ¼ 1 �1095.3 �974.1 �22.2 �57.6 �7.3 �1692.7 �5.0 �34.6 �4.8 �7.5

L ¼ 2 �1461.1 �1457.7 �23.0 �72.3 �8.9 �2145.5 �5.1 �35.1 �3.8 �9.8

L ¼ 3 �1486.4 �1659.2 �23.1 �72.1 �9.2 �2152.0 �5.1 �34.7 �4.0 �10.5

L ¼ 4 �1377.5 �1717.7 �23.2 �70.8 �9.3 �2184.3 �5.1 �34.6 �4.0 �10.8

L ¼ 5 �1300.6 �1731.6 �23.5 �72.2 �9.4 �2380.8 �5.1 �35.2 �4.0 �10.9

L ¼ 6 �1337.3 �1718.2 �23.4 �73.9 �9.5 �2464.4 �5.1 �35.1 �4.0 �10.9

L ¼ 7 �1463.9 �1651.5 �23.2 �73.6 �9.5 �2132.3 �5.1 �34.7 �4.0 �10.9

L ¼ 8 �1496.8 �1583.0 �23.3 �72.2 �9.4 �1659.0 �5.1 �34.9 �4.0 �10.9

L ¼ 9 �1226.7 �1695.7 �23.4 �72.3 �9.5 �2419.9 �5.1 �35.3 �4.0 �11.0

L ¼ 10 �953.3 �2001.9 �23.3 �73.9 �9.5 �4760.9 �5.1 �34.9 �4.0 �11.0

Exact �1377.5 �1687.8 �23.1 �73.1 �9.6 �2264.9 �5.1 �37.7 �4.0 �11.0

R (a.u.)

H2xH6

4.50

H2xO7

3.81

H2xH8

7.02

C3xH4

2.05

C3xC5
2.52

C3xH6

3.98

C3xO7

4.48

C3xH8

4.00

H4xC5
4.01

L ¼ 1 �7.1 �81.1 �0.5 �1205.7 �1867.3 �38.9 �80.1 �38.1 �36.0

L ¼ 2 �9.9 �78.7 �0.6 �1563.5 �2494.7 �39.3 �97.6 �39.6 �37.8

L ¼ 3 �10.8 �83.0 �0.6 �1586.7 �2542.7 �37.4 �102.9 �37.4 �36.2

L ¼ 4 �10.9 �82.2 �0.6 �1466.4 �2578.3 �37.8 �104.3 �37.7 �36.3

L ¼ 5 �10.9 �82.6 �0.6 �1354.3 �2848.0 �39.2 �105.0 �39.0 �37.4

L ¼ 6 �10.9 �83.3 �0.6 �1366.2 �2926.2 �38.6 �106.1 �38.5 �36.9

L ¼ 7 �10.9 �82.1 �0.6 �1594.6 �2255.1 �37.8 �107.0 �37.5 �36.1

L ¼ 8 �10.9 �82.4 �0.6 �1761.7 �1521.3 �38.6 �106.1 �38.2 �36.8

L ¼ 9 �10.9 �83.3 �0.6 �1340.7 �3844.3 �39.1 �104.6 �39.1 �37.5

L ¼ 10 �10.9 �82.9 �0.6 �1015.4 �8410.6 �37.8 �105.4 �38.0 �36.3

Exact �10.9 �82.6 �0.6 �1462.0 �2646.6 �42.7 �106.0 �38.4 �36.7
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5.4.2

Convergence of the Exchange Force

We computed the multipole expansion of the exchange force and compared it

with the exact exchange force. Table 5.7 shows the results for some selected inter-

actions of the water dimer. These two tables indicate that the convergence of the

exchange force is not as good as the convergence of the exchange energy. For ex-

ample, the average relative difference in the interactions of acrolein (Table 5.8)

considered is 2.7% for the magnitude of the force whereas the relative difference

of the energy for the same interactions is only 0.6%. In the water dimer the rela-

tive difference reaches 7.6% for the force but only 1.0% for the energy.

5.4.3

Diagonalization of a Matrix of Exchange Moments

Coulomb multipole moments depend only on the electron density, but exchange

moments explicitly refer to a set of molecular orbitals. The choice of these orbitals

is arbitrary, up to a unitary transformation. This is why it is interesting to investi-

gate the intrinsic information stored in the exchange moment matrix, Qlm, which

is defined by the elements fQij
lm; i ¼ 1;N; j ¼ 1;Ng where N is the number of

molecular orbitals. We set out to diagonalize such a matrix and inspect its eigen-

values. For a given moment the corresponding matrix Qlm can be written:

Qlm
ij ¼

XN
k¼1

Ulm
ik q lmk U lm

jk ð20Þ

Table 5.6 (continued)

R (a.u.)

H4xH6

5.83

H4xO7

4.98

H4xH8

4.71

C5xH6

2.05

C5xO7

6.72

C5xH8

2.05

H6xO7

7.33

H6xH8

3.49

O7xH8

8.46

L ¼ 1 �6.3 �8.6 �3.8 �1223.3 �36.7 �1236.8 �2.3 �25.2 �2.0

L ¼ 2 �5.2 �11.0 �3.7 �1576.5 �36.4 �1592.6 �2.4 �19.5 �1.9

L ¼ 3 �5.4 �11.7 �3.7 �1601.0 �35.4 �1610.8 �2.3 �20.8 �1.8

L ¼ 4 �5.4 �11.8 �3.7 �1474.8 �35.5 �1483.9 �2.3 �21.1 �1.8

L ¼ 5 �5.4 �11.9 �3.7 �1363.7 �35.6 �1365.3 �2.3 �20.6 �1.8

L ¼ 6 �5.4 �11.9 �3.7 �1375.0 �35.5 �1381.4 �2.3 �20.6 �1.8

L ¼ 7 �5.4 �11.9 �3.7 �1641.6 �35.5 �1672.5 �2.3 �20.9 �1.8

L ¼ 8 �5.4 �11.9 �3.7 �1837.3 �35.5 �1867.2 �2.3 �20.8 �1.8

L ¼ 9 �5.4 �11.9 �3.7 �1173.7 �35.5 �1229.5 �2.3 �20.4 �1.8

L ¼ 10 �5.4 �11.9 �3.7 �695.0 �35.5 �807.6 �2.3 �20.9 �1.8

Exact �5.37 �11.9 �3.7 �1475.2 �35.5 �1485.6 �2.3 �20.7 �1.8
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Table 5.7 Magnitude[a] of the exchange force between selected atoms

(AM–BN, where M < N; Fig. 5.2) for the water dimer computed from

the multipole expansion and 6D integration.

R (a.u.)

O1xO4

5.49

O1xH5

6.31

H2xH3

2.90

H2xO4

3.66

H2xH5

4.62

H3xO4

6.34

H5xH6

2.90

L ¼ 1 11.9 0.2 4.9 28.6 0.3 0.2 5.5

L ¼ 2 18.9 0.1 1.5 52.6 0.3 0.3 1.2

L ¼ 3 22.6 0.2 3.2 66.6 0.2 0.3 3.8

L ¼ 4 23.3 0.1 2.8 71.7 0.2 0.2 2.7

L ¼ 5 23.7 0.1 2.5 70.5 0.3 0.2 2.7

L ¼ 6 24.1 0.1 2.9 66.4 0.3 0.3 3.2

L ¼ 7 24.2 0.1 2.8 63.3 0.2 0.3 2.7

L ¼ 8 23.5 0.1 2.6 63.9 0.3 0.2 2.9

L ¼ 9 22.6 0.1 2.5 67.5 0.3 0.2 2.9

L ¼ 10 22.7 0.1 3.4 70.2 0.3 0.3 3.3

Exact 23.4 0.1 2.7 66.6 0.3 0.2 2.9

aThe magnitude of the force between the atoms H3 and H5 (R ¼ 7.38

au) is not shown because it is lower than 0.01 kJ mol�1 Å.

Table 5.8 Magnitude of the exchange force between selected atoms

(AM–BN, where M < N; Fig. 5.2) for acrolein computed from the

multipole expansion and 6D integration.

R (a.u.)

C1xH4

4.13

C1xC5
4.61

C1xH6

5.04

C1xH8

6.51

H2xH4

5.91

H2xH6

4.50

H2xO7

3.81

H2xH8

7.02

C3xO7

4.48

C3xH8

4.00

L ¼ 1 10.2 23.6 2.7 1.4 1.5 3.0 40.2 0.1 33.8 18.0

L ¼ 2 11.0 35.6 4.0 1.5 0.9 5.4 37.8 0.2 48.5 19.4

L ¼ 3 11.1 35.4 4.3 1.5 1.0 6.4 44.2 0.2 55.2 16.3

L ¼ 4 11.1 33.3 4.4 1.5 1.1 6.6 42.6 0.2 57.5 17.0

L ¼ 5 11.9 36.0 4.7 1.5 1.0 6.6 43.6 0.2 59.0 19.9

L ¼ 6 11.7 40.3 4.8 1.5 1.0 6.6 45.6 0.2 61.9 18.4

L ¼ 7 11.1 39.5 4.7 1.5 1.0 6.7 41.5 0.2 64.5 15.2

L ¼ 8 11.3 34.9 4.7 1.5 1.0 6.7 42.7 0.2 61.6 17.9

L ¼ 9 11.9 35.1 4.8 1.5 1.0 6.6 46.6 0.2 55.8 21.9

L ¼ 10 11.5 41.9 4.8 1.5 1.0 6.6 44.6 0.2 59.3 16.8

Exact 11.2 37.8 4.9 1.5 1.0 6.7 43.5 0.2 60.9 17.9
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where fqk
lm; k ¼ 1;Ng are the eigenvalues of Qlm and the matrix Ulm represents

the eigenvectors. Because the trace of the matrix is invariant with regard to the

unitary transformation in Eq. (20), the trace of Qlm is equal to the sum of the

eigenvalues.

Table 5.9 shows an example of such ‘‘exchange eigenvalues’’ qlm
k for each of the

ten molecular orbitals and for each atom in the water dimer, when l ¼ m ¼ 0. An

interesting property of this matrix is that its trace (i.e. the sum of its diagonal

elements) is equal to the electrostatic multipole moments. This is illustrated for

the water dimer, where the qk
00 eigenvalues (of a given atom) summed over all

molecular orbitals yield the population of that atom. The population of the water

dimer amounts to 19.9998, illustrating the accuracy of the integration.

Using Eq. (20) we can now express the exchange energy with the diagonalized

exchange moments:

EX ¼ �
X
l1m1

X
l2m2

Tl1m1 l2m2

XN
i¼1

XN
j¼1

ql1m1

i q l2m2

j ðV l1m1 l2m2

ij Þ2 ð21Þ

where the matrix fV l1m1 l2m2

ij ; i ¼ 1;N; j ¼ 1;Ng is defined by:

Vl1m1l2m2 ¼ ðUl1m1

A ÞtUl2m2

B ð22Þ

in which Ul1m1

A and Ul2m2

B are the eigenvectors of the atomic exchange matrices

Ql1m1

A and Ql2m2

B . If Vl1m1l2m2 is the unit matrix the exchange energy is reduced to

Table 5.9 Eigenvalues of the matrix of exchange moments Q00 for all

atoms in the water dimer (labels as in Fig. 5.2).

n[a] O1 H2 H3 O4 H5 H6

1 �2.0000 �0.3725 �0.4344 �2.0000 �0.4097 �0.4103

2 �1.9866 �0.0182 �0.0181 �1.9795 �0.0167 �0.0168

3 �1.9632 �0.0151 �0.0125 �1.9315 �0.0109 �0.0109

4 �1.6494 �0.0107 �0.0034 �1.6315 �0.0028 �0.0028

5 �1.5254 �0.0010 0.0000 �1.5262 �0.0001 �0.0001

6 �0.0085 �0.0005 0.0000 �0.0223 0.0000 0.0000

7 �0.0014 �0.0002 0.0000 �0.0039 0.0000 0.0000

8 �0.0005 0.0000 0.0000 �0.0020 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Population 9.1350 0.4182 0.4685 9.0970 0.4402 0.4409

aThe number of the molecular orbital (accommodating 10� 2

electrons in total), ranked from lowest to highest energy.

138 5 Topological Atom–Atom Partitioning of Molecular Exchange Energy



the Coulomb energy and the exchange moments are equal to the electrostatic mo-

ments. As a result the eigenvector matrix Ulm characterizes the exchange nature

of the interaction.

5.5

Conclusion

In this study we have focused on the exchange component of the Hartree–Fock

energy or, more precisely, the ‘‘exchange-correlation’’ counterpart of the Kohn–

Sham energy. In standard force fields this energy is absorbed in the parameter-

ized bonded part, and not explicitly included in the non-bonded part. Our results

show, however, that the mid-range intermolecular exchange energy is significant

(tens of kJ mol�1) and is, therefore, a crucial part of the total energy. We pre-

sented the use of a spherical tensor multipole expansion to compute exchange en-

ergy and force for a set of small molecules and dimers. The multipole moments

defined by the overlap of molecular orbitals converge well for the exchange and in

many cases better than the Coulomb energy. The exchange force, however, seems

to converge more slowly. The exchange energy associated with L ¼ 1 and multi-

plied by the internuclear distance is proportional to a previously established

bond-order index.
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6

The ELF Topological Analysis Contribution to

Conceptual Chemistry and Phenomenological

Models

Bernard Silvi and Ronald J. Gillespie

6.1

Introduction

In the opinion of the celebrated mathematician and philosopher of science René

Thom, chemical concepts such as those of bonds and valence lack scientific con-

tent [1]. He pointed out that the vocabulary used by chemists to describe matter

at a microscopic level was often ambiguous. In fact most concepts have their ori-

gin in models developed at the beginning of the twentieth century and earlier

which are, therefore, not fully consistent with quantum mechanics. To reconcile

the chemical description of matter with the postulates of quantum mechanics it

is necessary to build a mathematical model. This mathematical model is not

unique, however, because different spaces (geometrical direct space, momentum

space, Hilbert space) and different mathematical theories external to quantum

mechanics can be used for this purpose.

The choice of the geometrical space has been pioneered by Raymond Daudel

with the loge theory [2–4] the applicability of which remained limited to very

small systems because the underlying mathematical theory, Shannon’s informa-

tion theory [5], requires evaluation of the N-particle distribution function. The

theory of dynamical systems [6, 7] is a powerful method of analysis of space which

has been convincingly introduced in chemistry by Richard Bader with the quan-

tum theory of atoms in molecules (QTAIM) [8]. This theory is based on analysis

of the gradient field of the electron-density distribution which enables the parti-

tioning of the molecular space into basins associated to each atom.

The purpose of this chapter is to provide a digest of the topological theory of

chemical bonding with particular emphasis on epistemological aspects. QTAIM

has made important contributions to conceptual chemistry, for example the defi-

nition of the atom within a molecule, of the bond critical point, of the bond path,

and of the charge concentrations or depletions which emerge from analysis of the

Laplacian of the charge density LðrÞ and which make a link with the valence shell

electron pair repulsion (VSEPR) model [9–15]. To provide evidence for basins

which correspond to bonds and lone pairs, however, one must perform dynamic
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system analysis of the gradient vector field of another function [16, 17], the elec-

tron localization function [18]. These methods collectively form what Malcolm

and Popelier call quantum chemical topology (QCT) [19], which can be regarded

as an important part of conceptual chemistry (by conceptual chemistry we mean

the branch of chemistry concerned with analysis of the concepts used by chem-

ists, with their definitions and underlying models). In this chapter we will intro-

duce the electron localization function (ELF) in a very chemical fashion and show

how its topology can be used to revisit different phenomenological models of

bonding or of molecular geometry.

6.2

Why ELF and What is ELF?

The description provided by chemistry considers a molecule as an assembly of

atoms linked by bonds. An atom in a molecule consists of a kernel (the nucleus

and the inner shell electrons) and valence electrons gathered in the valence shell.

The structure of the kernel and the possible numbers of electrons belonging to

the valence shell are given by the position of the element in the periodic table. A

molecule usually has fewer electrons than the sum of the populations of the va-

lence shells of its atoms, because some of the valence electrons may be shared in

two or more valence shells. Such electrons are said to be bonding electrons

whereas the other valence electrons are nonbonding. The arrangement of the

electrons in the valence shells constitutes the chemical electronic structure. In

this description the bonding arises from shared electrons.

One of the objectives of Lewis’s theory of valence [20, 21] is to predict the most

probable structure with the help of additional rules such as the octet rule and the

rule of two. Lewis’s approach emphasizes the electron pair as a key concept. It is

worth noting that an N-electron system has at most N=2 electron pairs in the

chemical description and NðN � 1Þ=2 in the quantum mechanical description.

The chemical approach is not appropriate because many concepts lack a clear def-

inition and because it has no mathematical model behind it.

To recover the Lewis picture within the QCT framework, it is assumed there is

a local function, hereafter called the localization function, whose gradient field en-

ables the partitioning of the molecular space into adjacent non-overlapping vol-

umes hereafter called basins in the following way:

1. The space occupied by an atom (with Z > 2) is divided into

an inner region, the core basin, encompassing the nucleus,

and an external region, the atomic valence shell, gathering its

valence basins which may extend to infinity.

2. A valence basin may be shared by the valence shells of

several atoms.

3. There is a high probability of finding Z � nv electrons within

a core basin where nv is the ordinal number of the group of

the periodic table to which the element belongs (in other

words the conventional number of valence electrons).
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4. There is a high probability of finding an even number of

electrons in a valence basin belonging to a closed-shell

system.

The number of electrons NðWAÞ in each basin WA is given by the integrated

density:

NðWAÞ ¼
ð
WA

rðrÞ dr ð1Þ

which is, alternatively, the expectation value of the basin population operator

NðWAÞ [22], i.e.:

NðWAÞ ¼ hCjN̂NðWAÞjCi ð2Þ

NðWAÞ is, therefore, a statistical average, the variance of which provides a mea-

sure of the electron localization. Zero variance corresponds to perfect localization

within WA whereas a large variance is an indication of a poor localization. The

variance localization criterion can be generalized to any volume and, in particular,

to a sampling volume v around a reference point of coordinate r. The variance

s2ðrÞ is expressed as:

s2ðrÞ ¼ N?ðrÞ þ N==ðrÞ � N 2ðrÞ þ NðrÞ ð3Þ

in terms of the population NðrÞ, and of the opposite spin and the same spin pair

populations:

N?ðrÞ ¼
ð
v
ðpabðr1; r21Þ þ pabðr1; r21ÞÞ dr1 dr21 ð4Þ

N==ðrÞ ¼
ð
v
ðpaaðr1; r21Þ þ pbbðr1; r21ÞÞ dr1 dr21 ð5Þ

respectively. To check the ability of s2ðrÞ to locate the basin boundaries, let us

consider the very simple model of four electrons distributed in two identical cubic

boxes, A and B, of volume V0, sharing a face, we further impose the condition

there is always an opposite spin pair in each box and that the electron density is

constant within the boxes. In this circumstance the electron density and the pair

functions have the expressions:

rðrÞ ¼ 2:0

V0
¼ r for r A A or B ð6Þ

pssðr; r 0Þ ¼
0:0 for r or r 0 in the same box

1:0

V 2
0

for r and r 0 in different boxes

8<
: ð7Þ
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pss 0 ðr; r 0Þ ¼ 1:0

V 2
0

for r and r 0 A A or B ð8Þ

which imply that both ‘r and ‘2r are identically zero and that:

NðrÞ ¼ rv ð9Þ

and

N?ðrÞ ¼ 1

2
r2v2 ¼ 1

2
N 2ðrÞ ð10Þ

and thus

s2ðrÞ ¼ NðrÞ � 1

2
N 2ðrÞ þ N==ðrÞ ð11Þ

If v is chosen to constrain NðrÞ to be constant, the only varying quantity in

s2ðrÞ is N==ðrÞ, which is zero if the sampling volume is totally in one box and

which is maximum when it is equally shared by the two boxes, that is when the

reference point belongs to the boundary. The integrated same spin pair density

over a sampling volume around a reference point is thus a convenient descriptor

of pair formation in the sense of Lewis’s model. The spin pair composition [23]

defined as:

cpðrÞ ¼ NðrÞ�8=3N==ðrÞ ð12Þ

is a quantity independent of NðrÞ for small NðrÞ values.
It has been shown that ELF [18] is an excellent approximation to this function

when put in the Lorentzian form hðrÞ ¼ ð1þ cp2ðrÞÞ�1 which confines the values

of hðrÞ in the [1, 0] interval. ELF was originally conceived as a measure of the

Fermi hole curvature [18, 24] of an Hartree–Fock wavefunction. It has the advan-

tage that it can be expressed analytically in terms of basis functions in all practical

cases where the wavefunction is expressed in terms of orbitals whereas the spin

pair composition must be calculated numerically. ELF has been alternatively in-

terpreted in terms of local excess kinetic energy because of Pauli repulsion [25],

in terms of localized orbitals [26], and, recently, as the nonadditive (inter-orbital)

Fisher information contained in the electron distribution [27].

6.3

Concepts from the ELF Topology

The ELF topology has been extensively used for study of chemical bonding [28–

80], aromaticity problems [81–88], reactivity [89–91], and chemical reactions [92–

105]. Several review papers have already been published [86, 106–108]. The ELF
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theory provides very appealing pictures of bonding and a very ‘‘chemical’’ popula-

tion analysis.

6.3.1

The Synaptic Order

Topological partitioning of the ELF gradient field [16, 17] yields basins of attrac-

tors which can be thought of as corresponding to atomic cores, bonds, and lone

pairs. In a molecule one can find two types of basin:

1. core basins surrounding nuclei with atomic number Z > 2

and labeled C(A), where A is the atomic symbol of the

element, and

2. the valence basins.

The valence basins are characterized by the number of atomic valence shells in

which they participate. This number is called the synaptic order [109]. There are,

therefore, monosynaptic, disynaptic, trisynaptic basins, etc. Monosynaptic basins,

labeled V(A), correspond to the lone pairs of the Lewis model, and polysynaptic

basins to the shared pairs of the Lewis model. In particular, disynaptic basins,

labeled VðA;XÞ, correspond to two-center bonds, trisynaptic basins, labeled

VðA;X;YÞ, to three-center bonds, etc. The valence shell of a molecule is the union

of its valence basins. Because hydrogen nuclei are located within the valence

shells of at least two atoms they are located in the corresponding polysynaptic

basin. For example, the valence basin accounting for a CaH bond labeled

VðC;HÞ contains a proton and is called, for this reason, protonated disynaptic.

The valence shell of an atom, say A, in a molecule is the union of the valence

basins whose label lists contain the element symbol A. Figure 6.1 shows two

examples of trisynaptic basins – the protonated trisynaptic basins of diborane

VðB;B;HÞ, which provides a picture close to the ‘‘protonated double bond’’ of

Pitzer [110], and the pentacoordinated carbons of Al2C2H10, which involves three

VðC;HÞ disynaptic basins and one VðAl;Al;CÞ trisynaptic basin.

6.3.2

The Localization Domains

In the context of ELF analysis the concept of a domain is very important, because

it enables definition of the chemical units within a system and characterization of

Fig. 6.1 Localization domains of B2H6 (left) and Al2C2H10 (right).
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the valence domains belonging to a given chemical unit. The mathematical prop-

erties of the gradient dynamical system do not, by themselves, provide the whole

set of definitions necessary to describe the bonding in molecules. Other mathe-

matically based approaches are therefore required for this purpose.

The topological concept of domain was introduced to chemistry by P. Mezey to

recognize functional groups within organic molecules [111]. Generalized to ELF

isovalues this concept has proven to be an efficient ‘‘generator’’ of clear defini-

tions. Any subset of molecular space bounded by an external closed isosurface

hðrÞ ¼ f is a domain. An f-localization domain is such a subset, with the restric-

tion that each point satisfies hðrÞ > f . A localization domain which surrounds at

least one attractor is called irreducible. If a localization domain contains more than

one attractor it is reducible. An irreducible domain is a subset of a basin whereas

a reducible domain is the union of subsets of different basins. Except for atoms

and linear molecules, the irreducible domains are always filled volumes whereas

the reducible domains can be either filled or hollowed volumes. If the value of

hðrÞ defining the bounding isosurface is increased a reducible domain splits into

several domains each containing fewer attractors than the parent domain. Reduc-

tion of localization occurs at turning points, which are critical points of index 1

located on the separatrix of two basins involved in the parent domain. Ordering

these turning points (localization nodes) by increasing hðrÞ enables one to build

tree-diagrams reflecting the hierarchy of the basins.

For any system there are low values of hðrÞ ¼ f defining a unique composite

parent domain. The successive reductions of localization will split this parent do-

main. Every branch which is a composite domain corresponds to one or more

chemical species. A chemical unit is the union of the basins of the last appearing

composite domain of a branch, if it is a filled volume. In a complex such as the

weak hydrogen bonded system FH���ClH shown in Fig. 6.2 the first reduction

yields two composite domains corresponding to the interacting moieties. Such a

complex cannot be regarded as being chemically bonded [39]. In the same way, in

an ionic pair such as NaCl, the first reduction yields domains corresponding to

the cation and to the anion as shown in Fig. 6.3. In a molecule the initial parent

domain first splits into core domains and a single valence domain which contains

Fig. 6.2 h(r) ¼ 0:06 localization domains and reduction of the

localization tree-diagram of FH���ClH.
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all the valence attractors. The shape of this latter domain is that of a hollowed vol-

ume with as many holes as atomic cores in the molecule. Each hole contains a

core domain as displayed for H2CO in Fig. 6.4.

6.3.3

ELF Population Analysis

ELF population analysis relies on the integrated density over the basin volumes.

The basin populations are the expectation values of the population operator intro-

duced by Diner and Claverie [112]:

N̂NðWAÞ ¼
XN
i

ŷyðriÞ with ŷyðriÞ ¼
1 ri A WA

0 ri B WA

�
N̂NðWAÞ ð13Þ

Fig. 6.3 h(r) ¼ 0:05 (left) and h(r) ¼ 0:5 (right) localization domains

and reduction of the localization tree-diagram of NaCl.

Fig. 6.4 h(r) ¼ 0:4 localization domains and reduction of the

localization tree-diagram of H2CO.
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where N denotes the total number of electrons. The eigenvalues, NðWAÞ, of

N̂NðWAÞ belong to the series of integer values 0; . . . ;N and represent all the acces-

sible numbers of electrons within WA. The eigenvalues of the population opera-

tors of different basins are correlated, because they also obey the closure relation-

ship:

X
A

NðWAÞ ¼ N ð14Þ

The expectation values of the population operators given by Eq. (2) can be ex-

pressed in terms of the volume integral of the one-electron probability distribu-

tion over the basins (Eq. 1). They are real numbers and can be understood as the

average of measurements of the electron numbers NðWAÞ. They also fulfill a clo-

sure relationship, i.e.:

X
A

NðWAÞ ¼ N ð15Þ

These eigenvalues and expectation values are, in fact, determined simultane-

ously. Each set of eigenvalues defines an accessible chemical electronic structure

and the expectation values NðWAÞ can therefore be interpreted as weighted aver-

ages of mesomeric structures. The closure relation of the basin population opera-

tors enables one to perform a statistical analysis of the basin populations by defi-

nition of a covariance matrix [22]. The covariance operator is a matrix operator

whose elements are deduced from the classical expression of the covariance:

côovðWA;WBÞ ¼ N̂NðWAÞN̂NðWBÞ � NðWAÞNðWBÞ ð16Þ

The covariance matrix element expectation values are the differences between

the actual pair populations PðWA;WBÞ and their ‘‘classical’’ analogs NðWAÞNðWBÞ,
or NðWAÞðNðWAÞ � 1Þ for the diagonal elements:

hcôovðWA;WAÞi ¼ PðWA;WAÞ � NðWAÞðNðWAÞ � 1Þ ð17Þ
hcôovðWA;WBÞi ¼ PðWA;WBÞ � NðWAÞNðWBÞ ð18Þ

The diagonal elements of the covariance matrix (the variances), are often de-

noted s2ðNÞ, because they classically represent the square of the standard devia-

tion s.

For open-shell systems it is also very interesting to localize the unpaired elec-

trons by calculating the integrated spin density over localization basins.

Although the topological representation enables rather satisfactory interpre-

tation of the bonding, reliable descriptions in terms of the superposition of chem-

ical structures are often very helpful, at least as explanatory models. As has been

proposed in two previous papers [22, 81], the data provided by the topological
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analysis can be used to build such models and to evaluate their ability to describe

the distribution of electrons. To illustrate this procedure we consider the formal-

dehyde molecule as an example. The valence basin populations and their co-

variances are reported in Table 6.1.

The three mesomeric structures considered are:

(a) H2CbO
(b) H2C

þaO�

(c) H2C
�Oþ

The weights calculated for these structures are 0.24, 0.58, and 0.18 for (a), (b),

and (c), respectively. They yield populations and covariance in good agreement

with population analysis.

6.4

VSEPR Electron Domains and the Volume of ELF Basins

The VSEPR model relies on a distribution of the valence electron pairs among

bonding and nonbonding electron domains [12, 13] which are defined as the re-

gions of space in which the probability of finding an (opposite spin) electron pair

or a large fraction of an electron pair is high. It is assumed that:

1. nonbonding domains or lone pairs are larger in size than

bonding domains and are therefore more repelling;

2. the size of the bonding domains decreases when the

electronegativity of the ligand increases and/or the

electronegativity of the central atom decreases; and

3. multiple bonds have larger domains than a single bonds.

The topology of the Laplacian of the charge density has been invoked as a phys-

ical basis for the VSEPR model [113]. Qualitatively, the valence shell charge con-

centrations (VSCCs) of the central atom correspond to the electronic domains of

the model [12, 13] and they have also been used to explain the geometries of non-

Table 6.1 Valence basin populations (e) and covariance matrix elements of H2CO.

Basin N(W) hcôov(W,WO)i

V(C, H) V(C,O) V(O)

VðC;HÞ 2.13 0.52 �0.17 �0.07

VðC;OÞ 2.43 �0.17 1.16 �0.40

V(O) 2.52 �0.07 �0.40 0.98
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VSEPR molecules [114]. Malcolm and Popelier attempted to justify quantitatively

the VSEPR assumptions on the relative domain sizes by considering the full to-

pology of the Laplacian of the charge density [19]. They concluded that nonbond-

ing domains are larger than bonding domains belonging to the same valence

shell and that multiple bond domains are larger than single bond domains, but

they found that the full topology of the Laplacian does not account for electrone-

gativity effects.

There is, in principle, a one-to-one correspondence between the VSEPR elec-

tronic domains and the valence basins of the ELF function. To define finite vol-

umes, the valence basins are limited by a bounding density isosurface. We have

analyzed the volumes of the basins of approximately 150 molecules. Mathemati-

cally a basin is allowed to extend to infinity, which is not chemically meaningful;

we have therefore limited molecular space by the density isosurface rðrÞ ¼ 10�4

bohr�3, which ensures that no more than 0.2e are omitted.

The volumes of the core basins of the main group elements of the four first

periods range from 0.1 bohr3 (Ne) to 149.5 bohr3 (K). For the group 13–17, how-

ever, the largest value is only 16.5 (Ga). The core volumes of the fourth-period

transition metals are in the range 50.5–20.5 bohr3 (Sc and Ni respectively). It is

worth noting that in transition-metal molecules the core external shell is split into

several basins [66] the volumes of which are of the order of a few bohr3. Figures

6.5 to 6.8 depict the volumes of the V(X) lone-pair basins and the VðX;HÞ and

VðX;XÞ bonding basins as functions of the Allred and Rochow electronegativity

of X [115]. They reveal very good correlations that are almost period-independent.

For a given element the largest deviation occurs for the V(N) basin of CH3CN

whose population is 3.2e. As a general rule, basin volumes decrease when the

Fig. 6.5 Dependence of V(X) volume (bohr3) on w(X) for HF, HCl, HBr,

H2O, H2S, H2Se, NH3, PH3, AsH3, CH3F, CH3Cl, CH3Br, CH3OH,

CH3NH2, H2CO, H2CNH, F2, Cl2, and Br2.C second period elements,

D third period elements,Y fourth period elements.
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electronegativity of X increases. The shrinking of the V(X) basin with electronega-

tivity is a consequence of the radial decay of the electron density, which is gov-

erned by the core net charge. For the VðX;HÞ and VðC;XÞ bonding basins the

observed behavior can be explained by the electronegativity differences which de-

termine the ionic character of the bond. For wðXÞ > wðHÞ or wðXÞ > wðCÞ the

ionic contributions involving either Hþ or CR3
þ tend to reduce the basin volume

whereas the anionic contribution H� or CR3
� act in the opposite direction when

wðXÞ < wðHÞ or wðXÞ < wðCÞ. Finally, the decrease of the VðX;XÞ basin volume

Fig. 6.6 Dependence of V(A, H) volume (bohr3) on w(A) in AHn

hydrides.C second period elements,D third period elements,Y fourth

period elements.

Fig. 6.7 Dependence of V(A, A) volume (bohr3) on w(A).C second

period elements,D third period elements,Y fourth period elements.
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with increasing electronegativity is a consequence of the charge-shift nature of

the bonds [73, 116].

To check the VSEPR assumptions we consider:

1. the V(X), VðX;HÞ, and VðC;XÞ basins of CH3XHn (X ¼ F, Cl,

Br, O, N; n ¼ 0; 1; 2); and

2. the V(X) and VðX;HÞ basins of H2O, H2S, H2Se, NH3, PH3

and AsH3.

The volumes of these basins are reported in Table 6.2. Around the X center in

the CH3XHn series the VðC;XÞ basins are always smaller than the V(X) basins, in

Fig. 6.8 Dependence of V(C, X) volume (bohr3) on Dw.C second period

elements,D third period elements,Y fourth period elements.

Table 6.2 V(X), V(X, H), and V(C, X) basin volumes (a.u.).

Molecule V(X) V(X, H) V(C, X)

NH3 108.9 109.0

PH3 287.4 178.0

AsH3 297.4 183.8

H2O 75.6 86.0

H2S 228.2 139.5

H2Se 231.3 146.0

CH3NH2 96.8 103.5 11.6

CH3OH 69.1 80.6 7.0

CH3F 48.5 7.0

CH3Cl 152.1 13.3

CH3Br 168.6 16.1

152 6 The ELF Topological Analysis Contribution to Conceptual Chemistry and Phenomenological Models



agreement with assumption 1, that lone-pair basins are always larger than the

bonding domains on the same center. They are also in agreement with assump-

tion 2, that the size of a bonding domain decreases when the electronegativity of

the ligand increases. For the period-2 molecules NH3, H2O, CH3NH2, and

CH3OH, however, the V(X) basins are almost equal to, or slightly smaller than

the V(X) basins, which is not in agreement with assumption 2.

This is also true for the third and fourth period hydrides but not for the period-

2 hydrides, for which the V(X) basins are almost equal to, or slightly smaller

than, the ðX;HÞ basins, which is not in agreement with assumption 1. The ELF

analysis therefore supports the first VSEPR assumption, i.e. that nonbonding or

lone-pair domains are larger than bonding domains in the valence shell of the

same central atom, but it is not in accord with the second assumption for hydro-

gen ligands. Gillespie and Robinson [117] have, however, recently concluded

from a survey of bond angles and their relationship with ligand radii that the

most important factor determining bond angles are ligand sizes rather than the

size of bonding pair domains. They have shown, however, that the VSEPR and

ligand–ligand repulsion models usually lead to the same conclusions, except for

hydrogen ligands the particularly small size of which is the key factor in deter-

mining geometry. For a given ligand and central atoms of the same group, the

volume of the VðA;XÞ basin increases with period number and, to some extent,

with decreasing electronegativity. For example, the VðSi;FÞ basin volume is twice

that of VðC;FÞ.

6.5

Examples of the Correspondence Between ELF Basins and the Domains of the

VSEPR Model

6.5.1

Octet Molecules

6.5.1.1 Hydrides (CH4, NH3, H2O)

In these molecules ELF shows:

1. a basin corresponding to the central atom core; and

2. four, three, and two disynaptic basins, respectively,

corresponding to the bonding domains of the VSEPR model,

and one or two monosynaptic basins corresponding to the

lone-pair domains of the VSEPR model.

Hydrides are unique in that hydrogen has no core. Accordingly there is no core

basin. These basins could also be considered to correspond to protonated lone

pairs, i.e. as protonated monosynaptic basins. As shown in Table 6.3, the popula-

tions of the AaH bonds follow the expected trend – they decrease as the electro-

negativity of the central atom increases, that is, when bond polarity increases.
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6.5.1.2 AX4 (CH4, CF4, SiCl4)

For these molecules ELF reveals a basin corresponding to the core, four disynap-

tic basins corresponding to the four bonding basins of the VSEPR model, and a

monosynaptic basin on each ligand corresponding to the sum of the lone-pair

domains of the VSEPR model. Because of the necessary cylindrical symmetry

around a single bond the nonbonding electrons do not, in fact, form three non-

bonding pairs but have a most probable location in a ring perpendicular to the

bond axis and the basin has a corresponding toroidal shape. In CF4 and SiCl4
the population of each of the disynaptic basins is less than two electrons whereas

the populations of the monosynaptic basins are correspondingly larger (Table

6.3). These populations are characteristic of polar bonds, the extent to which the

population of the disynaptic basins is less than two electrons is a measure of their

bond polarity.

6.5.1.3 AX3E and AX2E2 (NCl3, OCl2)

The ELF localization domains of these molecules are displayed in Fig. 6.9. They

look similar to the corresponding hydrides except that the ligands also have a

monosynaptic basin as in the AX4 molecules. It can happen that the expected di-

synaptic basin does not exist, presumably because of the large electronegativity

difference. The monosynaptic (lone-pair) basins seem larger than the bonding ba-

sins, and this is verified by their populations, consistent with the VSEPR model

Table 6.3 V(A), V(A, X), and V(X) basin populations (e), (A ¼ C, N, O, Si; X ¼ H, F, Cl).

Molecule V(A) (A, X) V(X)

CH4 1.98

NH3 2.16 1.91

H2O 2.27 1.66

CF4 1.31 6.54[a]

SiCl4 1.61 6.40[a]

aThe F and Cl lone pairs are merged in a single basin.

Fig. 6.9 ELF ¼ 0.75 localization domains of NCl3 (left) and OCl2 (right).
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that postulated that the lone-pair domains take up more space around the core

than the bonding domains.

6.5.2

Hypervalent Molecules

6.5.2.1 PCl5 and SF6
Hypervalent molecules are those in which the octet rule is violated because their

Lewis structures have more than eight electrons in the valence shell of the central

atom: PCl5 and SF6 are typical examples. ELF plots for these molecules are shown

in Fig. 6.10. In each example there are core basins for each atom, disynaptic

basins corresponding to the domains of the VSEPR model, and a monosynaptic

basin on each ligand. The disynaptic basins have a population of less than two

electrons, showing that the bonds are polar.

6.5.2.2 SF4 and ClF3
According to the VSEPR model these molecules have, respectively, one and two

lone-pair domains in the valence shell of the central atom. The ELF plots in Fig.

6.11 show the monosynaptic basins corresponding to these lone-pair domains.

6.5.2.3 AX7 and AX6E Molecules

The structures of molecules with seven ligands cannot be predicted with certainty

by the VSEPR model. The points-on-a-sphere model shows that the three most

probable structures are the pentagonal pyramid, the mono-capped distorted octa-

Fig. 6.10 ELF ¼ 0.75 localization domains of PCl5 (left) and SF6 (right).

Fig. 6.11 ELF ¼ 0.75 localization domains of SF4 (left) and ClF3 (right).
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hedron, and the mono-capped trigonal prism. All known seven-coordinated mol-

ecules, for example IF7 and TeF7
�, have a pentagonal bipyramid structure. It

might be expected, therefore, that AX6E molecules, for example TeCl6
2�, BrF6

�,
SeF6

2�, and XeF6, would have a structure a based on the pentagonal bipyramid

with a lone pair in an axial position (the least crowded position), that is to say, a

pentagonal pyramid. No AX6E molecules have this shape, however; they are

either octahedral (Oh, for example TeCl6
2� and BrF6

�, or a have a C3v distorted

octahedral shape, for example SeF6
2� and XeF6. It has been proposed that in the

octahedral molecules the ligands take up all the space in the valence shell leaving

no room for nonbonding electrons, which form an outer shell of the core. In C3v

molecules the crowding of the ligands is not as great, so there is room for some

nonbonding density in the valence shell forming what has been described as a

‘‘weak lone pair’’. The ELF plot for these molecules is in good agreement with

this proposal. In Fig. 6.12 it can be seen there is a nonbonding basin in the va-

lence shell of the central atom corresponding to the proposed weak lone pair.

This basin is also involved in strong exchange with the core, consistent with the

idea that the weak lone pair has partial lone-pair and partial core character.

6.5.3

Multiple Bonds

6.5.3.1 C2H4 and C2H2

ELF plots for these two molecules are given in Fig. 6.13. In C2H4 there are four

disynaptic basins corresponding to the four CaH bonds, and a large disynaptic

Fig. 6.12 ELF ¼ 0.75 localization domains of BrF6
� (top left), SeF6

2�

(top right), IF6
� (bottom left), and XeF6 (bottom right).
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basin corresponding to the CbC double bond. This basin has two maxima, one on

each side of the CC axis, and splits into two basins at a sufficiently high value.

These two basins are consistent with the VSEPR model of the double bond which

consists of two bent bonds.

In the ELF plot for C2H2 there are two disynaptic basins corresponding to the

two CH bond domains and a toroidal basin that surrounds the CC axis. This

basin corresponds to the six bonding electrons. In the VSEPR model there would

be three bonding pairs with their most probable locations located around the CC

axis. As Linnett pointed out many years ago in his double quartet theory, however,

there is no reason for the six bonding electrons to be localized as pairs, or indeed

for any electrons that are not on the bond axis of a linear molecule to be fixed in

localized pairs. Linnett proposed that the six bonding electrons have their most

probable positions on a circle perpendicular to the bond axis with opposite spins

alternating (Fig. 6.14). The observed toroidal basin in ELF corresponds to the Lin-

nett model.

6.5.3.2 Si2Me4 and Si2Me2
According to the Lewis model these molecules have double and triple bonds just

as in ethene and ethyne. There has, however, been much discussion about the

real nature of these bonds, because their properties are not in agreement with

these Lewis structures. In particular the molecules are not linear but have a trans
bent shape. The ELF basins, however, give a clear picture of the electron distribu-

tion in these molecules, in which it can be seen that the formally multiple bond-

Fig. 6.13 ELF ¼ 0.75 localization domains of C2H2 (left) and C2H4 (right).

Fig. 6.14 Linnett representations of C2H4 (left) and C2H2 (right).
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ing electrons also have some nonbonding or lone-pair character. The molecule

Me2Si2 (Fig. 6.15) can, for example, be described as a resonance hybrid of:

This structure is consistent with the suggestion that only the most electronega-

tive elements can hold two or three mutually repelling electron pairs close to-

gether in a multiple bond – these are principally the second period elements, C,

N, and O, which do, indeed, form the vast majority of known multiple bonds.

6.6

Conclusions

ELF topological analysis provides a mathematical bridge between quantum me-

chanics and chemistry which relies on the one hand on statistical interpretation

and on the other hand on the theory of dynamical systems. This approach shares

the dynamical system theory, a common mathematical method of partitioning,

with the quantum theory of atoms in molecules. The difference is in the nature

of the potential function used and, therefore, the nature of the properties investi-

gated. QTAIM is rightly claimed to be rooted in physics rather than in chemistry

and the objective of its partition scheme is, accordingly, to define open quantum

systems within which the virial theorem is valid. QTAIM does not, moreover, at-

tempt to define the valence shell of an atom in a molecule. The goal of ELF parti-

tioning is clearly to define basins of attractor corresponding to chemical concepts

such as core and valence shells, bonds, and lone pairs. This is achieved at the ex-

pense of the physical meaning of the basins, which is lost. Another advantage of

the ELF approach is that it provides pictures of the bonding in molecules which

display pictorially the electron domains of the VSEPR model [13] and, in par-

ticular, provide evidence of the lone pairs [118]. ELF analysis has helped to refine

Fig. 6.15 ELF ¼ 0.75 localization domains of Si2Me2.
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the conclusions of the VSEPR model, in particular for so-called hypervalent mol-

ecules [56], and to extend its applicability to the d0 molecules of period 4 metals

by considering basins of the core external shell [66]. Analysis of the basin vol-

umes shows that the volumes of the core basins and of the structural features of

their outermost shell are not always negligible. This analysis also enables ratio-

nalization of the subtle effects of electronegativity and, therefore, is a means of

improving the VSEPR model.
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63 J. Pilmé, B. Silvi, M. Alikhani, J. Phys.
Chem. A 2003, 107, 4506–4514.

64 H. Chevreau, C. Martinsky, A. Sevin,

C. Minot, B. Silvi, New J. Chem. 2003,
27, 1049–1053.

65 J. R. B. Gomes, F. Illas, B. Silvi,

Chem. Phys. Lett. 2004, 388, 132–
138.

66 R. J. Gillespie, S. Noury, J. Pilmé, B.
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Fässler, Angew. Chem. Int. Ed. Engl.
1997, 36, 1809–1832.

107 B. Silvi, I. Fourré, E. Alikhani,
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Part II

Solid State and Surfaces





7

Solid State Applications of QTAIM and the

Source Function – Molecular Crystals, Surfaces,

Host–Guest Systems and Molecular Complexes

Carlo Gatti

7.1

Introduction

This chapter deals with the application of QTAIM to the solid state, except for the

last section, in which the source function – a recently developed tool for the

QTAIM study of the chemical bond from a somewhat original viewpoint – is

introduced.

The chapter starts with an illustration of TOPOND software, which imple-

ments QTAIM for systems periodic in 0 to 3 dimensions, which covers polymers,

surfaces, and crystals, besides molecules. The interface of TOPOND to the multi-

polar package XD is also mentioned, because it enables QTAIM analysis of exper-

imentally derived electron densities. The chapter continues with an example of a

didactic application of TOPOND to a study of crystal field effects on bonding and

on molecular properties in the urea molecular crystal. Clean and chemisorbed

semiconductor surfaces then serve as an example of the wealth of information

provided by QTAIM about the effect of surface formation and reconstruction on

the bonding and atomic properties of first surface layers. Guest–host systems

are discussed as a last example, with emphasis on guest to/from host electron

transfer and on the peculiar features of guest–host bonding interactions. The

relevance of these key issues to materials science applications is briefly touched

upon for thermoelectric materials.

In the last section, the source function (SF) is introduced and examples of its

preliminary and future potential applications and extensions are presented. This

function enables the value of the density at any point within a system to be

equated to a sum of atomic contributions, thus enabling the properties of the

density to be viewed from a totally new perspective. Although depending on the

whole set of interactions within a system, a bond path is topologically associated

only with the two atoms it connects. In contrast, the source function details how

all the other atoms in a system, in addition to the two linked atoms, contribute to

the accumulation of electron density along a bond path and, in particular, to BCP.

It thus discloses nonlocal information on bonding and on complex bonding pat-

165



terns, analogously to the QTAIM delocalization index or the synaptic order of an

ELF valence basin. One advantage of the SF over these two powerful interpretive

tools is that it is directly amenable to experimental determination, since to

evaluate it only the knowledge of the system’s electron density and Laplacian is

required.

7.2

QTAIM Applied to Solids – the TOPOND Package

TOPOND [1–3] has some specific, important features which are summarized be-

low and which mark it out from other QTAIM software for the condensed phase

(a list, not exhaustive, is given elsewhere [4, 5]). As an obvious prerequisite, appli-

cation of QTAIM to the solid state implies a knowledge of at least the electron

density and its derivatives in a representative portion of the system. If the system

is periodic in nature this representative portion corresponds to the unit cell or,

simply, to the unique part of it, the asymmetric unit. The usual practical imple-

mentations of QTAIM to solids usually work on a user’s defined volume, which

includes the basin of the unique atoms within the system and the basins of their

bonded atoms. Precise information about the periodic nature of the system is

usually lost this way, and application of QTAIM to periodic systems is essentially

brought back to a topological study of the electron density of a large cluster of

atoms extracted from the crystal. The electron density is either calculated analyti-

cally or simply given on a grid [4], whereas the r derivatives, in particular those of

order greater than two, are only estimated numerically by the large majority of

software. (Topological analysis of rðrÞ and of ‘2rðrÞ requires rðrÞ derivatives up

to the second and up to the fourth order, respectively.) A full implementation

of QTAIM [6] also necessitates a knowledge of the one-electron density matrix

(ODM) and of the main diagonal of the two-electron density matrix, the pair den-

sity; neither of these is usually available in QTAIM software for solid systems,

however.

Most of the listed shortcomings are, on the contrary, simply absent from TOP-

OND-98 [1, 7], because of its intimate interface with the libraries of, and output

from, the CRYSTAL-98 package [8]. (TOPOND-98 is currently interfaced with

CRYSTAL-98. Linking to CRYSTAL-2003, the most recent release of CRYSTAL,

is currently in progress and planned to be complete by the end of 2006.) The

CRYSTAL software performs ab-initio calculations of the ground-state energy,

electronic wave function, and properties of periodic systems in 0 (molecules), 1

(polymers), 2 (slabs), and 3 dimensions (crystals). Systems with different period-

icity are treated on an equal footing in CRYSTAL, with the single particle wave

functions being expanded, for any periodicity, as a linear combination of Bloch

functions, each of which is defined in terms of local atomic orbitals. Space sym-

metry is fully exploited, with 230 space groups, 80 layer groups, 99 rod groups,

and 45 point groups available to the user. These unique features of CRYSTAL

automatically make TOPOND a powerful tool for application of QTAIM to
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molecules, polymers, surfaces, and crystals, using a single software product.

TOPOND works on electron densities obtained with similar accuracy for differ-

ent aggregations of matter, and topologically analyzes these densities with the

same kinds of algorithm and precision. For example, one may very easily assess

how the topological and atomic properties of a molecule are modified when it

becomes surrounded by equivalent molecules in a given crystalline arrangement,

or how the bonding patterns and atomic properties of a bulk atom in a solid

change when this atom is placed on, and forms the surface of, a solid.

The intimate interface with CRYSTAL enables TOPOND to take advantage of

the full periodic geometrical machinery of the former software. For example,

this implies that when a critical point (CP) is located in a crystal, a full list of

neighboring atoms, with their exact cell locations and with their coordinates

given in fractional or Cartesian form, is immediately available. Or that all atoms

of equivalent symmetry are easily recognized and unnecessary calculations are

avoided as much as possible.

The electron density rðrÞ, [2, 9]:

rðrÞ ¼
X
g; l

X
m; n

Pg�l
m; n w

g
mðrÞwlnðrÞ ð1Þ

and, if needed, all its derivatives up to the fourth order are computed analytically

by TOPOND. In Eq. (1) wm and wn are atomic orbitals, g and l are lattice vectors,

Pg�1 is the ODM associated to orbitals located in crystal cells having relative posi-

tion g� l, and wgm is an atomic orbital located in cell g, but with same shape and

the same fractional coordinates as the wm orbital in the reference zero cell (g ¼ 0).

Evaluation of rðrÞ is not performed using a single threshold distance criterion

from the point r to select whether a wgmðrÞ orbital contribution is to be included

or not into the quadruple sum yielding rðrÞ. Instead, different distance thresholds
are used for each orbital, based on the magnitude of their value at r [9]. This

means that the ‘‘cluster of atoms’’ built around r for evaluating rðrÞ does not

have a predetermined fixed size as in all other QTAIM implementations for sol-

ids, but a different size for each m, n orbital, reflecting its specific diffuseness.

ODMs are available within TOPOND and quantities such as the kinetic energy

densities K(r) or G(r), the virial density VðrÞ, or the electron localization function

(ELF) [10] may be all evaluated exactly, without resorting to their approximate

expressions [11] in terms of rðrÞ, ‘rðrÞ, and ‘2rðrÞ. Unfortunately, the Fermi

hole and the ensuing localization/delocalization indices [12] are not yet computed

by TOPOND, but their evaluation will, hopefully, be included in a future release

of the software, at least for HF or Kohn–Sham type wavefunctions.

The TOPOND package presently comprises five sections [1, 3]. The first two

implement topological analysis of rðrÞ and of ‘2rðrÞ, respectively. The fourth sec-

tion of TOPOND deals with evaluation of atomic basin boundaries and associated

atomic basin properties and the last section performs grid evaluation of several

scalar fields, including the ELF, and traces out molecular/crystal graphs or, gener-

ically, ‘r trajectories in selected molecular/surface/crystal planes. The third sec-
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tion, which is currently being implemented and not yet released is concerned

with evaluation of IAS properties. These include, among others, the integrated

surface charge, the net flux of the total electric field, yielding qðWÞ via the Gauss

theorem [13], and the external source function contribution to the density within

an atomic basin [14]. Two different CP search algorithms are available, the con-

ventional Newton–Raphson (NR) technique and an eigenvector following (EF)

method, proposed by Popelier [15]. The EF method can be seen as an NR method

with a suitable and locally defined shift for the NR step. It is thus much less sen-

sitive than the NR method to the choice of good starting search points. The EF

method can seek CPs of a given kind, irrespective of the structure of the Hessian

of the scalar field at the starting search point – a feature that makes it particu-

larly helpful for topological study of ‘2r, because this function varies quite rap-

idly. Separate searches for the different kinds ð3;�3; 3;�1; 3;þ1; 3;þ3Þ of CPs

are implemented in TOPOND for both the r and the ‘2r fields. A fully automatic

search strategy, able to find sequentially all kinds of electron density CPs, is also

available. This strategy makes use of the relevant EF step prescription for each

kind of CP searched for in sequence. A CP search on a grid, defined in the asym-

metric unit, may be also exploited when the Morse topological relationship [16],

given by Eq. (2):

n� bþ r � c ¼ 0 ð2Þ

(where n, b, r and c are the total number of nuclear, bond, ring and cage CPs) is

not fulfilled by the set of CPs found using the fully automatic search. The CP

search on a grid is usually found to be 2 to 3 orders of magnitude more demand-

ing computationally than the automatic search [3]. If one adopts suitable grid

sizes, however, it seldom misses CPs, even when very flat density distributions

occur, as in the metals. Atomic interaction lines (r field) and atomic graphs (‘2r

field) are determined by TOPOND by tracing the associated steepest ascent/

descent ‘r or ‘ð‘2rÞ paths using a fifth-order Runge–Kutta method with monitor-

ing of local truncation error and adaptive step-size control. Correct parameteriza-

tion of the algorithm (desired accuracy at each step, initial step size, oscillation

control close to the 3, �3 attractors) enables tracing of the correct atomic interac-

tion lines for metals also; for these the occurrence of nonnuclear attractors

(NNAs) [17] is more the rule than the exception and the network of interaction

lines is, consequently, rather complicated and largely unstable with regard to

changes in the computational model or in the cell parameters [1, 3, 18, 19].

7.2.1

QTAIM Applied to Experimental Densities: TOPXD and XD Packages

During the last decade, QTAIM has increasingly been applied to crystalline sys-

tems [20, 21]. This is, on the one hand, because of the technical developments

that have made X-ray diffraction a unique tool for mapping the charge density in
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crystals and, on the other hand, because of noticeable improvements in ab-initio

periodic approaches [22, 23], which have enabled calculation of reliable electron

densities even for crystals having a large number of atoms (>50–100) in the unit

cell. One may safely say that QTAIM is the primary standard theory used by the

X-ray density community to discuss bonding in crystals [21]. This would not have

been possible if software packages implementing the QTAIM for experimental

densities had not been developed, documented, and made generally available in

the past decade. One such software package is the TOPXD program [24, 25],

which enables complete topological analysis of experimental charge densities

on the basis of the Hansen–Coppens multipole formalism [26]. It is based on

TOPOND-98, but with subroutines for geometrical calculation and density evalu-

ations rewritten in the XD package convention [27, 28]. XD is the most widely

distributed package for experimental charge density multipole refinement and

TOPXD is fully integrated in the most recent version, XD 5.01, [27, 28]. The

main features of TOPXD are those of TOPOND, with more extended documenta-

tion, friendly input style, increased speed in evaluating the IAS, and added facili-

ties for their 3D visualization. The experimental electron density and its deriva-

tives up to order 2 are calculated analytically, whereas derivatives of third and

fourth order are obtained with great precision as a numerical finite-difference ap-

proximation of the first and second-order analytical derivatives [24]. In contrast

with TOPOND, properties at a given point r are calculated by including density

contributions from ‘‘pseudoatoms’’ which lie within a given distance threshold

of r. This may limit the accuracy of the calculated properties and requires a check

that the properties being computed converge relative to the distance threshold

[27]. The ODM is not available within TOPXD and XD and all properties depend-

ing on this matrix (Section 7.2) can clearly not be computed.

One of the most important reasons for the popularity of QTAIM is that a large

part of this theory uses, operationally, only information contained in the electron

density r(r), which enables unbiased comparison of theoretical and static experi-

mental densities, irrespective of their diverse origin and of the different approxi-

mations one makes to derive them [20, 21, 29]. Such a comparison may provide

information about the quality of experimental data and the suitability of the

multipolar model used to project the reciprocal space representation of r to its

real-space counterpart [30, 31]. Conversely, it may reveal deficiencies of the theo-

retical approach [30–32], for example poor treatment of the electron correlation,

the use of an insufficiently flexible basis set, or the adoption of a pseudopotential

with core–valence separation which is too crude.

The performance of the adopted multipolar model may be tested as follows [24,

31, 33]. First, a multipole refinement, keeping the positional parameters fixed and

thermal parameters set to 1, is performed using structure factors F generated

with an ab-initio periodic calculation to simulate the X-ray diffraction data set. To-

pological analysis is then performed on the density from the multipole model and

the results compared with those obtained using the primary theoretical density.

It has been shown that the multipole model may significantly bias the topolog-
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ical results, because of the limited flexibility of the radial functions used in the

multipolar analysis. Indeed, the observed discrepancies between theoretical and

experimental, X-ray-derived topological properties are usually found to decrease

substantially when the theoretical densities are projected into the multipole

density functions by refinement of the theoretical F. All of this analysis may be

performed easily by using CRYSTAL, TOPOND, and TOPXD/XD software in

combination.

7.3

QTAIM Applied to Molecular Crystals

Electron distributions of crystals are an amazing source of information about the

weaker and the less conventional atomic interactions [21], besides that provided

about standard chemical bonds. Typical of molecular crystals is the simultaneous

occurrence of normally strong intramolecular bonds, and of generally weak inter-

molecular contacts, with properties of both kinds of interaction being mutually

affected, in contrast with the situation for the isolated molecule or the simple

case of gas-phase molecular aggregates (dimers, trimers, . . .). QTAIM has proved

to be a very powerful tool for isolating, detailing the weak intermolecular interac-

tions responsible of molecular crystal formation and for quantitative characteriza-

tion of the effect of these interactions on intramolecular bonding.

Using the urea crystal as an example, answers will be provided to several sim-

ple questions:

1. How important are packing effects on intramolecular bonds?

2. Does the packing have different impact on the different

atoms/chemical groups present in the molecule?

3. How large is the enhancement of the molecular dipole on

crystallization?

4. How can each oxygen atom in the urea crystal be involved in

four NaH���O hydrogen bonds (HBs)?

5. How does the global molecular volume contraction observed

in the solid result from the individual atomic volume change

on crystallization?

Before illustrating the situation for urea, it is worth mentioning that much

more complex QTAIM applications to molecular crystals have appeared. To save

space, however, these studies cannot be discussed here. I merely quote Refs [34]

and [35] that address the interesting problem of the nature and function of the

weak CH���O intermolecular interactions in crystals by analyzing the experimen-

tal and theoretical densities of the 3,4-bis(dimethylamino)-3-cyclobutene-1,2-dione

(DMACB) crystal. This system is characterized by 23 unique intermolecular and

intramolecular CH���O interactions and by no other type of stronger, and thus

successfully competing, HB. References [34] and [35] discuss basic questions

such as:
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1. Does the existence or the absence of an CH���O CP reflect

specific geometrical features of a CH���O contact in the

DMACB crystal?

2. Can the bonded CH���O contacts in this crystal be classified

as true HB?

3. Do the weak intermolecular HBs induce a large molecular

dipole moment enhancement on crystallization, as typically

found in molecular crystals tied by the much stronger

NH���O and OH���O bonds?

4. Do the crystal and procrystal densities differ in the

topological features of their CH���O contacts and can the

CH���O bond energies thus be reliably retrieved from the

BCP properties alone?

The reader is referred to the original papers to discover why three ‘‘YES’’ and one

‘‘NO’’ were the answers to these questions.

7.3.1

Urea

In the crystal structure (space group P421m), the urea molecules are linked to

each other through HBs to form infinite planar tapes (OaH 00 length 2.06 Å, HBs

shown in red in Fig. 7.1) [36]. Adjacent tapes are mutually orthogonal and

oriented in opposite directions, their cohesion being provided by another set of

HBs (OaH 0 length 1.99 Å, shown in green in Fig. 7.1). Each oxygen atom is in-

Fig. 7.1 The urea crystal. Left: The view is

approximately along the c axis. Molecules are

linked to each other through HBs (red lines)

to form infinite planar tapes. Adjacent tapes

are mutually orthogonal, oriented in opposite

directions and tied together by another set of

HBs (green lines). Right: Intramolecular and

intermolecular bond paths (BCPs: small dots)

for an urea molecule linked through HBs with

another molecule along a tape and with two

molecules of two neighboring orthogonal

tapes. Bond paths in blue are associated with

the shorter NaN contacts (see text). Each

oxygen atom is involved in four HBs, two

within the planar tape and two with

neighboring orthogonal tapes.
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volved in four HBs, two within the tape, and two with neighboring tapes, giving

rise to a relatively high experimental sublimation energy (21G 0.5 kcal mol�1).

The urea structure seems to provide the only instance of a carbonyl atom which

accepts four NaH���O hydrogen bonds [36]. In addition to the expected intramo-

lecular and intermolecular interactions, application of QTAIM to the experimen-

tal geometry crystal periodic wavefunction (RHF/6-31G**) reveals [3] two unique

long N���N intermolecular interactions between orthogonal (NaN, 3.433 Å,

shown in blue in Fig. 7.1, right) and parallel (NaN, 4.267 Å) molecular tapes.

The complete set of CPs in the unit cell (16n, 34b, 26r, and 8c) fulfils Morse’s re-

lationship [16] and it agrees with a recent experimental determination using syn-

chrotron diffraction data and detailed multipolar analysis [37]. (The CP set found

in the first QTAIM study of the urea crystal [2] also fulfilled Morse’s relationship,

but did not include the BCPs and RCPs related to the shorter of the two unique

N���N contacts. With the adoption of automated CP searches in TOPOND-98 (Sec-

tion 7.2), the complete set of CPs reported in the text was found [3, 21]. This set

has been carefully checked with the grid search option of TOPOND-98.) The CP

set is obtained by assigning to each unique CP found by TOPOND-98 a multiplic-

ity equal to the multiplicity of the Wyckoff position where this unique CP is lo-

cated.

7.3.1.1 Urea: Packing Effects

We start by obtaining an idea of the size of packing effects on molecular electron

density (ED) compared with the density changes resulting from molecule forma-

tion. Figure 7.2 shows r contour plots and ‘r trajectory maps in the molecular

plane of a urea molecule in the crystal, for three different ED models. From top

to bottom we see how the ED changes on going from the independent atom

model (IAM) density [26], which is given by the sum of atomic densities with

atoms being placed at the same positions as in the crystal, to the density resulting

from superimposition of the EDs of isolated molecules placed at crystal positions

[8], and, finally, to the ‘‘true’’ crystal ED. The ED changes because of the interac-
tion density – the crystal density minus the superimposition of the density of iso-

lated molecules – are, indeed, barely detectable whereas those resulting from the

deformation density – the crystal density minus the IAM model – are much more

evident. This is, for example, apparent from the noticeable change in the size of

the atomic basins. Despite its smallness, the interaction density is responsible for

the large (37%, vide infra) enhancement of the molecular dipole magnitude jmj
in the crystal [2] and comparison of the atomic basins of the middle and bottom

panels of Fig. 7.2 (right) immediately reveals how sensitive the values of jmj are to
the location of the atomic boundaries and to the atomic ED distribution changes.

The IAS determinations and the subsequent atomic basin integrations must be

very accurate to enable proper evaluation of the molecular dipole enhancement

jDmj occurring in the crystal. The changes of some topological properties at

BCPs on passing from the IAM model to the isolated molecule at crystalline ge-

ometry (CG), then to the noninteracting molecules model, and finally to the crys-

tal density are listed in Table 7.1. When the topological properties are analyzed,
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the effects resulting from the interaction density become clearly detectable. They

are roughly one order of magnitude lower than those resulting from the deformation

density for both intramolecular and intermolecular bonds. The molecular density

and the sum of the noninteracting molecular densities are indistinguishable for

intramolecular bonds. Conversely, the HBs, which are obviously absent in the

isolated molecule, have, in the noninteracting molecules model, BCP properties

already close to those in the crystal. This shows that the effect of packing on the

intramolecular is more evident than that on the intermolecular ED distribution

Fig. 7.2 Electron density contour plots (left)

and ‘r trajectories maps (right) in the

molecular plane of a urea molecule in the

crystal for three different ED models.

Top: IAM model; middle: noninteracting

molecules model; bottom: crystal density

periodic RHF model. In all models the

molecules are placed at positions in the

crystal and have crystal geometry. The

noninteracting molecules and the crystal

periodic RHF densities look very much alike

despite the 37% enhancement in the crystal

of the molecular dipole magnitude. In the ‘r

trajectory maps, note the NH 00���O bond

paths linking molecules along a tape (central

part of each map) and the NH 0���O bond

paths providing cohesion of this tape with

the two neighboring orthogonal tapes (left

and right of each map).
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[34]. The ED for the IAM model and for noninteracting molecules in the crystal

were evaluated by use of the PATO and MOLSPLIT options, respectively, of

CRYSTAL-98. The associated ODMs were then input to the TOPOND-98

software.

The percentage changes in the BCP properties of urea upon crystallization

relative to those for the isolated molecule with the crystal geometry are listed in

Table 7.2. (A full discussion of BCP and atomic property changes on crystalliza-

tion, relative to the gas-phase molecule both with the crystal geometry and with

the gas-phase optimized geometry (with C2v constraint), is given elsewhere [2])

Easy chemical understanding of these changes is immediately obtained by using

the well known Bader and Essen [38] classification of bonds into shared-shell

(‘2rb < 0) and closed-shell (‘2rb > 0) interactions, according to the sign of

Table 7.1 Changes of BCPs properties in urea with change of model density.[a,b]

Bond XxY rb (‘2r)b (l3)b eb

CaO 0.299 0.17 1.02 0.03

0.392 �0.55 1.49 0.07

0.392 �0.55 1.49 0.08

0.381 �0.33 1.75 0.00

CaN 0.264 �0.20 0.52 0.04

0.341 �0.94 0.73 0.05

0.341 �0.94 0.72 0.05

0.349 �1.15 0.53 0.10

NaH 0, 1.009 Å 0.235 �0.39 1.05 0.01

0.345 �1.92 0.78 0.06

0.345 �1.91 0.77 0.06

0.344 �1.95 0.88 0.05

NaH 00, 1.005 Å 0.237 �0.40 1.07 0.01

0.351 �1.92 0.71 0.06

0.351 �1.92 0.71 0.06

0.349 �1.97 0.87 0.05

O���H 0, 1.992 Å 0.029 0.08 0.15 0.06

0.022 0.07 0.12 0.05

0.022 0.07 0.12 0.07

O���H 00, 2.058 Å 0.026 0.07 0.13 0.05

0.019 0.07 0.11 0.01

0.019 0.07 0.11 0.04

aAll quantities except distances in a.u. For each bond the first entry

refers to the IAM model, the second to the molecular density, the third

to the superimposition of noninteracting molecular densities, and the

fourth to the crystal density. The urea molecule is at crystal geometry

([36], 12 K geometry) in all models. The hydrogen bonds have only

three entries because they are clearly absent for the isolated molecule.
bRHF/6-31G** wavefunction when appropriate.
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‘2rb. Although too rigid, this dichotomous classification is usually valid for

bonds among second-row atoms and it is particularly useful when applied on a

relative basis [21]. It provides a set of quantitative indices [38] variation of which

among a series of chemically related compounds or, as in this example, following

a change of phase, pinpoint the effect these perturbations have on the nature of a

given bond [21]. For example, if, on passing from the gas to the crystal phase the

Gb=rb and ðl3Þb values of a bond decrease and the rb, �‘2rb, and jl1; 2;bj=ðl3Þb
values all increase, this bond, upon crystallization, has become more covalent;

the reverse is true if the opposite changes occur. As shown in Table 7.2, for the

CaN bond the rb and �‘2rb values increase and its parallel curvature largely de-

creases whereas the opposite changes occur for the CaO bond on passing from

the molecule to the bulk. The NaH bonds undergo a negligible rb decrease ac-

companied by a noticeable (l3Þb increase. All these changes indicate that the

CaO and NaH bonds become more polar and weaker whereas the covalence and

strength of the CaN bond are enhanced on HBs formation in the crystal. Because

of their link with the second derivative of the electron density, ð‘2rÞb, ðl3Þb, and
eb seem more sensitive indices of crystal field effects than rb values, the changes

of the second derivative-related quantities being at least an order of magnitude

greater than those of rb. For bonds such as CaO and CaN the greater their bond

ellipticity, eb, the larger the extent of their p character. On crystallization, the

double-bond character of CaN is substantially increased whereas for the CaO

Table 7.2 Percentage changes in the BCP properties and changes in the

atomic electron population and out-of-plane atomic quadrupole

moment of urea on crystallization.[a,b,c]

XxY DRx% Drb% D (‘2r)b% D (l3)b% Deb% W DN(W) DQ?(W)

CaO �1.0 �2.8 �40.0 þ17.4 �95.9 C þ0.032 �0.07

CaN þ2.0 þ2.3 þ22.3 �27.4 þ110.6 O þ0.092 þ0.08

NaH 0 þ1.5 �0.3 þ1.6 þ12.8 �20.3 N þ0.087 þ0.36

NaH 00 þ2.9 �0.6 þ2.6 þ22.5 �25.0 H 0 �0.053

H 00 �0.100

aRefs. [2, 21]; data refer to urea at the 12K neutron crystal geometry

[36].
bFor a given property P, DP% is evaluated as

DP% ¼ ½ðPcrystal � PmoleculeÞ=Pmolecule� � 100 whereas DP (P ¼ N;Q?Þ is
given by DP ¼ Pcrystal � Pmolecule.
cRx, the BCP distance from the X atom, is positive (negative) when the

BCP is displaced towards Y (X) in the crystal compared with the

molecule in crystal geometry. Q?(W) is the out-of-molecular plane

atomic quadrupole moment and a negative value denotes out-of-plane

preferential accumulation of charge. A positive value for DQ?(W)
indicates that in the crystal the electronic charge is partially moved

from the out-of-plane to the molecular plane region.
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bond this character is diminished, in agreement with the changes of the other

BCP indices. As expected, the N quadrupole moment component perpendicular

to the molecular plane is found to increase in the bulk (DQ?ðNÞ ¼ 0:36 au, Table

7.2), because electronic charge is removed from the out-of-plane lone pairs and

placed in the CaN bond region [2]. (A negative value of Q?ðWÞ denotes out-of-

plane preferential accumulation of charge [6].) The small increase found for

Q?ðOÞ in the bulk is a result of more uniform electron charge concentration in

the nonbonding regions, because of formation of its four HBs (vide infra).

The BCP displacements upon change of phase (DRx values in Table 7.2) are

smaller for the more polar bonds, because the crystal field may less easily polarize

this kind of bond. BCPs displace in such a way as to reduce the size of the H

atoms and thus make them more positively charged in the bulk (Table 7.2). All

heavy atoms, in contrast, have their population increased, the net result being a

more polarized molecule, a larger dipole moment, and a flux in the crystal of

0.066 electrons from each amino group hydrogen donor to the carbonyl group

acceptor. Table 7.3 shows that the molecular dipole moment magnitude jm j in-
creases in the crystal by 37% and by 53% relative to the isolated molecules in

the crystal and optimized geometry, respectively. As detailed in Table 7.3, the

large dipole moment increase in the bulk is primarily as a result of a large in-

crease of the magnitude of the charge-transfer component mCT, which contributes

88% and to 73% of the reported enhancements. The concomitant decrease of the

first moment component, mA, because of the general reduction of atomic polariza-

tion on crystallization, serves only to slightly enhance the effect resulting from

charge transfer (CT), because, as typically found, the atomic polarization contri-

bution opposes the CT contribution [6].

Table 7.3 Urea. Changes of the molecular dipole moment and of its

atomic and charge-transfer components on crystallization.[a,b]

Contribution OG Molecule CG Molecule Crystal

mA, (DjmA|%) 0.71 0.54 0.45 (�16.7)

mCT, (DjmCT|%) �2.52 �2.56 �3.22 (þ25.8)

m, (Djmj%) �1.81 �2.02 �2.77 (þ37.1)

aRef. [2]; OG and CG refer to gas-phase optimized geometry (C2v con-

straint) and crystal geometry isolated molecules. All quantities in a.u.
bThe dipole component parallel to the C2 axis (directed from C to O

atoms) is reported. Because of the C2v symmetry of the molecule, this

is the only nonvanishing component; mA and mCT are the first moment

and the charge-transfer components of the total dipole moment m.

The percentage dipole changes are evaluated as:

DjPj% ¼ ½ðjPcrystalj � jPCGmoleculejÞ=jPCGmoleculej� � 100, for

P ¼ mA; mCT; m.
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Careful analysis of the Laplacian CPs, in the valence shell charge concentration

(VSCC) of the oxygen atom, provides an explanation of how this atom can form

four NH���O bonds in the bulk [2]. In the urea molecule, in its C2v optimized

geometry, the two ð3;�3Þ � ‘2r nonbonded maxima (NBMs) associated with the

O atom lone pairs are linked by a ð3;�1Þ � ‘2r saddle point, lying in the molec-

ular plane (Fig. 7.3). The CO bond noticeably elongates in the crystal, from 1.229

to 1.261 Å, and as a result, this in-plane single saddle point bifurcates into two

saddle points lying above and below the molecular plane (Fig. 7.3). Correspond-

ingly, the two NBMs decrease in value, from 5.921 in the OG molecule to 5.669

a.u. in the crystal, whereas the charge concentration at the saddle point increases

from 3.869 to 3.913 a.u., even though this point bifurcates in the bulk. The oxy-

gen NBMs are the most electron-rich region in urea and their �‘2r value greatly

exceeds the value of other charge concentrations (CCs) in the molecule, including

those of the potentially competing NBMs (2.022 a.u.) associated with the N lone

pair [2]. Conversely, the two ð3;�1Þ saddles interconnecting the oxygen NBMs

are the second most electron-rich regions in the molecule and they are seen as

maxima by the ð3;þ3Þ charge depletions (CDs) of H atoms approaching the oxy-

gen VSCC in a plane containing the CaO axis and perpendicular to the molecular

plane. HBs can thus be formed either approaching the ð3;�3Þ NBMs or the two

Fig. 7.3 Hydrogen bonds in the urea crystal

and the �‘2r distribution. Left: On

crystallization, the CO bond lengthens and

the in-plane single saddle point linking the

two O lone pair nonbonded �‘2r maxima

bifurcates into two saddle points lying one

above and the other below themolecular plane.

Right: The O atom in the bulk may thus

become involved in four NH���O hydrogen

bonds (HBs). The in-plane HBs (dotted

lines) are formed by aligning the ð3;þ3Þ
charge depletions (CDs) of the two H 00

atoms of another molecule along a tape with

the two O lone pair charge concentrations.

The two out-of-plane HBs (dashed lines)

exploit the alignment of the ð3;þ3Þ charge
depletions of H 0 atoms of two neighboring

orthogonal tapes with the two ð3;�1Þ O
saddle points formed by the CO bond

lengthening in the bulk. The saddle points

are much better aligned with the H 0 CDs
than are the nonbonded maxima with the H 00

CDs. This explains why the out-of-plane HBs

are shorter and stronger than the in-plane

HBs.
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saddles interconnecting them. Both options are exploited in bulk urea and each O

atom thus becomes involved in four HBs. The oxygen VSCC changes in such a

way as to form a torus of nearly uniform charge concentration in its nonbonded

region, which increases its capability to form more than two HBs, and which

agrees with the discussed increase of Q?ðOÞ and the decrease of the CaO bond

p character occurring in the bulk. It is worth noting that the bifurcation of the

saddle point interconnecting the two oxygen NBMs also occurs in the isolated

urea molecule, if the crystal geometry is adopted. Thus, the lengthening of the

CaO bond in bulk urea, with the ensuing loss of the CaO bond p character and

changes in the oxygen nonbonded regions, seems to be a key step in the onset

of the observed 3D HB network in the bulk. A rationale for the out-of-plane HBs

being shorter (1.992 Å) than the in-plane HBs is given elsewhere [2]. Basically,

the oxygen ð3;�1Þ saddle points may be much more easily aligned to their facing

hydrogen ð3;þ3Þ CDs than is possible for the oxygen NBMs.

Table 7.4 lists the individual atomic volumes and their sum over a molecule or

over the atoms of the aCO and aNH2 functional groups for the urea molecule in

the crystal and in the gas phase (CG and OG geometries). This table reveals how

the atomic size of the different atoms or groups of atoms in the molecule changes

on crystallization and how the molecular volume contraction observed in the solid

occurs.

For the gas-phase molecules, the volumes determined using the 0.001 (V1) and

the 0.002 a.u. (V2) density envelope are reported, and the basin total volumes, VT,

also are given for the crystal, because of their finite size in the condensed phase.

Table 7.4 Urea. Changes of the molecular, atomic, and functional group

volumes on crystallization.[a]

W OG Molecule CG Molecule Crystal

V1 V2 V1 V2 V1 V2 VT

C 18.7 17.4 19.9 18.5 21.0 19.1 21.2

O 129.7 108.9 132.2 111.1 115.6 104.6 124.3

N 118.0 100.8 117.9 101.4 120.2 107.5 135.0

H 0 24.7 18.9 24.6 18.8 16.8 15.3 17.7

H 00 26.7 20.2 27.4 20.8 18.2 16.3 18.7

CO 148.4 126.3 152.1 129.6 136.6 123.7 145.5

NH2 169.4 139.8 170.0 140.9 155.2 139.1 171.4

Molecule 487.3 406.0 492.2 411.5 447.0 401.8 488.2

aRef. [2]; V1 and V2 are the volumes of the portion of the atomic

basins where r is equal to or exceeds 0.001 or 0.002 a.u., respectively.

VT is the total volume of the atomic basin; its value is finite only in the

bulk.
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The computed total molecular volume in the crystal (488.2 a.u.) reproduces ex-

tremely well the volume per molecule in the unit cell (489.5). As a reaction of

the molecules to the intermolecular exchange forces, the molecular volume re-

duces on crystallization by approximately 10% if the V1 values are compared and

by about 2% if the V2 values are considered, with VT being very close to V1 in the

gas phase. V2 is approximately 90% and 83% of V1 in the bulk and gas phases,

respectively, indicating that the molecular density dies off more rapidly in the

bulk than in the gas phase. Interestingly, the reported trends do not apply to the

individual atomic basins, but they do to the aCO and aNH2 groups. This sug-

gests that the two functional groups respond as the whole molecule to the change

of phase, despite their constituting atoms reacting in quite different ways to the

same perturbation. The contraction of the molecular volume on crystallization

originates primarily from contraction of the atomic basins directly involved in

the hydrogen bonds. For other atoms a small expansion is observed. The sub-

stantial decrease of oxygen (DV2 ¼ �6%) and hydrogen (H 0, DV2 ¼ �19%; H 00,
DV2 ¼ �28%) atomic volumes is related to the mutual penetration of their van

der Waals envelopes after HB formation. Penetration is measured by the differ-

ence, DR, between the nonbonded radius of the H or of the O in the isolated mol-

ecule and the distance from the corresponding atoms to the HB CP in the crystal.

(The nonbonded radius is taken as the average distance from the nucleus to the

0.001 a.u. contour in the isolated molecule [6].) The DR values are, as expected,

higher for the shorter HB (H: 0.70; O: 0.56 a.u.) than for the longer HB (H: 0.59

and O: 0.54 a.u.) and the HB bond length difference results mostly in H 0 being
penetrated much more efficiently than H 00.

7.4

QTAIM Applied to Surfaces

Several experimental techniques are now available for obtaining qualitative

information on the geometrical reconstructions which occur at semiconductor

surfaces. The electronic structure and, especially, accurate EDD of the surface

are much less accessible experimentally [39, 40]. In contrast, not only do ab-initio

periodical calculations of model surfaces usually reproduce the observed geomet-

rical distortions satisfactorily, but also do afford a fairly accurate description of

both the electronic structure and the EDD at the surface [41]. QTAIM analysis of

the ab-initio wavefunctions then results in valuable, quantitative insight into the

interplay between geometrical reconstructions, electronic relaxations, and bond-

ing [42, 43].

QTAIM enables one to address very basic and important issues, for example:
� How is the bonding of the surface atoms affected?
� What is a ‘‘dangling’’ bond and how are its properties

modified by surface reconstruction?
� How rapidly do the surface perturbations and the changes in

these perturbations that result from the adsorption process
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decay into the crystal in terms of the properties of the atoms

in each of the succeeding layers?
� What are the charges on the surface atoms on a free surface

and in the chemisorbed states?
� How much electronic charge is transferred and in what

direction?
� What is the atomic origin and nature of the surface ‘‘double

layer’’?
� What atoms are exposed on a particular chemisorbed or clean

surface?
� How can the surface character of an atom be defined?

Answers to these questions are given below for the Si (111)(1�1) clean and

hydrogen-covered surfaces [42] and for the well known (2�1) reconstruction of

the (111)(1�1) surface [43].

7.4.1

Si(111)(1D1) Clean and Hydrogen-covered Surfaces

The Si(111)(1�1)aH surface, in which all the silicon dangling bonds (DBs) are sa-

turated by a single monolayer of hydrogen atoms, is one of the most ideal and

simple semiconductor surfaces [44]. The clean Si(111)(1�1) surface, in which

the DBs of the threefold-coordinated atoms of the first layer are not allowed to

form bonds, is an ideal surface, which is not found in nature and which serves

here and in the next discussed example for comparison purposes. These two sur-

faces were both described [42, 43] using the slab model (SLAB keyword) in the

CRYSTAL program. A slab is a 2D periodic structure with two infinite periodic

surfaces parallel to a crystalline plane (111, in our case), and a finite thickness,

defined by the number of layers of atoms considered. Definition of a proper slab

thickness is not a trivial task and the reader is referred to the original paper for

technical details [42]. Stick-and-ball representations of the adopted centrosym-

metric ten-layer slab models for the two surfaces are shown in Fig. 7.4 (top). In

Tables 7.5 and 7.6 their bond and atomic properties are listed as a function of

depth from surface and compared with corresponding data for the Si bulk and

the SiH4 molecule. Labeling of the Si atoms, with Si1 being an Si atom in the

outermost Si layer, is reported in Fig. 7.4 (top). Bonding patterns in a plane nor-

mal to the slabs’ surfaces and containing nuclei Si1 to Si5 are made evident by

the ‘r trajectories portrayed in Fig. 7.4 (middle).

The large CT from Si1 to H induces noticeable asymmetry (DBCP values, Table

7.5) of the surface Si1aSi2 back bonds which become stronger (rb, ‘2rb, l3

values, Table 7.5) than in the bulk, whereas in the clean slab these same bonds

are weakened compared with the Si crystal, in accordance with the well-known

propensity of the (111)(1�1) surface to evolve in favor of other reconstructions

(Section 7.4.2). Analysis of the dependence of SiaSi bond properties on depth

from the surface indicates that starting from Si2aSi3 bond in the hydrogen-
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covered and from Si3aSi4 bond in the clean surface, the SiaSi bonds become

bulk-like.

The negatively charged H layer [q(H) ¼ �0:736] in the hydrogen-covered slab

is almost entirely balanced [q(HþSi1þSi2) ¼ þ0:015] by the first two Si layers,

with more than 94% of the compensating charge coming from Si1 atoms

[q(Si1) ¼ þ0:698]. Distortions in the charge of surface cells are often treated [45]

in terms of a uniform macroscopic surface density of dipoles. In this representa-

Fig. 7.4 Si(111)(1�1)aH, Si(111)(1�1) and

Si(111)(2�1) surfaces. Top: Adopted slab

models and labeling of the atomic layers. For

the reconstructed Si(111)(2�1) surface, only

half of the centrosymmetric slab is shown.

On reconstruction, the surface dangling

bonds are on nearest-neighbor sites rather

than on next-nearest-neighbor sites. In

Si(111)(2�1) there are two layers of chain-

bonded atoms, a top layer (Si1 and Si2) of

threefold-coordinated atoms and a lower

layer (Si3 and Si4) of fourfold-coordinated

atoms. Middle: ‘r trajectories and bonding

pattern in planes normal to the slabs’

surfaces and containing the Si1 to Si5 nuclei

[Si(111)(1�1); Si(111)(1�1)aH] or (right)

Si1aSi4 bonds [Si(111)(2�1)]. Bottom: �‘2r

contour plots in the same planes of the ‘r

trajectories for the Si(111)(1�1)aH and

Si(111)(1�1) slabs. In the reconstructed

Si(111)(2�1) surface (right), contour plots in

five different planes normal to the surface are

juxtaposed to show the whole bonding

network among the atoms of the two

outermost layers. Adapted, with permission,

from Figs. 2 and 3 of Ref. [42], F. Cargnoni,

C. Gatti, E. May, D. Narducci, J. Chem. Phys.

2000, 112, 887–899 (Copyright 2000,

American Institute of Physics) and from Figs.

1, 3, and 4 of Ref. [43], F. Cargnoni, C. Gatti,

Theor. Chem. Acc. 2001, 105, 309–322

(Copyright 2001, Springer).
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tion the ‘‘surface layer’’, i.e. that portion of a crystal having nonbulk properties, is

referred to as surface double layer. The ‘‘surface layer’’ of the hydrogen-covered

system may be described as a double layer in which the internal layer is com-

posed of Si1 and Si2 atoms. The H and Si1 atoms in the hydrogen-covered sur-

face polarize in such a way as to oppose the electric field created by the CT within

the surface double layer. In fact, the H and Si1 atomic dipole nonzero compo-

nents mz are both directed away from the surface (Table 7.6). The hydrogen cover-

age has the effect of reversing and greatly enhancing the magnitude of the Si1

polarization in the clean system, in which Si1 accumulates negative charge out-

wards. This agrees with the differences between the Laplacian distribution for

the two slabs (Fig. 7.4 bottom). Four-bonded charge concentrations (BCCs) along

the corresponding SiaSi bonds are observed for all the Si atoms, except Si1, in

both systems. Si1 in the hydrogen-covered surface lacks the BCC associated with

the Si1aH bond, because of the large amount of electron transfer from Si1 to the

H atom and the ensuing loss of an Si VSCC along this bond. Instead, in the clean

surface, the dangling sp3 orbital per surface atom manifests itself as a nonbonded

charge concentration (NBCC), characterized by a closer distance from the Si nu-

cleus and half of the Laplacian value at a BCC in the bulk.

By analogy with the bonding properties, almost perfect convergence toward the

bulk values are also observed for the integrated properties beyond the first two or

Table 7.5 Relationship between bond properties and depth from surface

for hydrogen-covered and clean Si(111)(1�1) slabs compared with

silicon bulk and SiH4.[a,b]

Bond Re (Å) DBCP rbD100 ‘2rbD100 (l3)bD100 e

Si(111)(1�1)aH; Si(111)(1�1) clean
SiaH 1.487 4.1 11.40 38.2 76.6 0.0

Si1aSi2 2.362 �1.4 8.83 �13.3 2.1 0.02

2.362 0.1 8.35 �11.2 2.7 0.05
Si2aSi3 2.378 0.8 8.53 �12.1 2.2 0.0

2.381 �0.1 8.40 �11.7 2.3 0.0
Si3aSi4 2.374 0.0 8.54 �12.2 2.3 0.0

2.375 0.0 8.53 �12.1 2.3 0.0
Bulk Si

SiaSi 2.375 0.0 8.53 �12.1 2.3 0.0

SiH4

SiaH 1.476 3.8 11.9 37.3 80.1 0.0

aRef. [42]; RHF/3-21G(d,p) periodic or molecular wavefunctions; slabs:

totally relaxed geometrical/basis set model [42]. If not otherwise stated,

all quantities in a.u.
bData for the clean surface in italics; DBCP is the distance from the

BCP to the XaY bond midpoint, expressed as a percentage of half the

bond length. A positive DBCP value indicates that the BCP is closer to X.
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three atomic layers. The only exception is the atomic energies, which is not found

to converge to bulk values in both slabs, because the electric field created by the

surface double layer shifts the binding energies of electrons. This is, therefore,

the result of a physical phenomenon known to occur in any finite crystal, i.e. a

crystal having surfaces [45]. A more detailed explanation is given on page 895 of

Ref. [42].

Figure 7.4 (middle) shows that in the clean slab both Si1 and Si2 atoms have

infinite volume, whereas starting from the Si3 atoms inward the atoms have a fi-

nite volume, as in the bulk. The surface nature, in particular that of the Si1

atoms, is made evident by their increased V1 volume, relative to that in the bulk

(<30% for Si1). In contrast, in the hydrogen-covered slab the Si1 atoms have a

finite volume, largely shrunk relative to that in the bulk, and are completely iso-

lated from the outside because of their interaction with H atoms. In this slab the

Si2 atoms become the only, nonfinite volume, surface Si atoms, an observation

which explains why, experimentally, passivant substitution or oxidation are medi-

ated by Si2 atoms and never occur directly at Si1 atoms [46].

An interesting measure of the ‘‘surface’’ character of an atom in a slab may

be obtained by defining a diffuseness D of its electron distribution, given by

D ¼ ½ðV1 � V2Þ=V1� � 100. As expected, the largest value of D is found for the

Table 7.6 Relationship between atomic properties and depth from

surface of hydrogen-covered and clean Si(111)(1�1) slabs compared

with silicon bulk.[a,b]

W q(W) mz(W) DE(W) DV1(W) D(W)

Si(111)(1�1):H; Si(111)(1�1) clean
H �0.736 þ0.43

Si1 þ0.698 þ1.23 0.176 �18.1 3.4

þ0.003 �0.31 �0.206 þ42.8 8.5
Si2 þ0.053 �0.03 0.011 þ0.1 2.3

�0.019 þ0.06 0.068 þ3.5 1.9
Si3 �0.015 �0.03 0.016 �0.4 0.8

þ0.013 þ0.02 0.066 �1.4 0.5
Si4 �0.002 �0.01 0.017 �1.0 0.7

þ0.001 þ0.01 0.060 �0.5 0.6
Bulk Si

Si 0 0 0 0 0.6

aRef. [42]; wavefunctions and slabs model as for Table 7.5. All

quantities in a.u.; data for the clean surface in italics.
bThe only nonzero mz component of the atomic dipole normal to the

surface is reported. The z axis is directed away from the surface.

Energies DE and volumes DV1 are given relative to bulk silicon

(DX ¼ Xslab � Xbulk;X ¼ E;V1Þ; diffuseness, D, is given by

D ¼ ½ðV1 � V2Þ=V1� � 100.
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Si1 atom in the clean slab (Table 7.6). This atom is characterized by an electron

density lower than 0.002 a.u. in more than 8% of the volume of its V1 basin,

whereas the corresponding values for Si bulk or for atoms Si3 to Si5 in both slabs

do not exceed 0.8%.

7.4.2

Si(111)(2D1) Reconstructed Surface

The Si(111) surface structure obtained after low-temperature (T < 600 K) ultra-

high vacuum cleavage, has a (2�1) reconstruction [39], with two buckled layers

of chain-bonded surface atoms (Fig. 7.4). This surface is a prototype of clean

semiconductor surfaces and, although apparently simple, has several intriguing

features which have motivated almost 30 years of experimental and theoretical ef-

forts [39, 41, 44]. The top layer is formed by threefold-coordinated atoms (Si1 and

Si2) and the lower layer by fourfold-coordinated atoms (Si3 and Si4). (There are

two unique atoms per layer in the reconstructed surface and one unique atom

per layer in the non reconstructed surface. The unique atoms of the first layer

(Si1, Si2) and second buckled layer (Si3, Si4) are, respectively, in ideal correspon-

dence with the Si1 and Si2 unique atoms in the unreconstructed Si(111)(1�1)

surface. A centrosymmetric slab, with a 2�1 unit cell and consisting of 14 layers,

for a total of 28 Si atoms per cell was used [43] to model the (111)(2�1) surface

(Fig. 7.4, top, right).) On reconstruction the surface dangling bonds become lo-

cated on nearest-neighbor sites rather than on next-nearest neighbor sites as

in the (111)(1�1) surface and the reconstructed surface structure is customarily

interpreted in terms of the Pandey’s p-bonded chain model [47]. According to

this model, the zigzag chain of adjacent pz orbitals can, in principle, p-bond as

in organic materials, forming bonding and antibonding surface p states.

QTAIM is here used to quantify how close to reality is Pandey’s interpretation

of the driving force under surface reconstruction [43]. Analysis of the Laplacian

distribution (Fig. 7.4, bottom), shows that in the first buckled layer only Si1 and

not Si2 atoms have an NBCC pointing away from the surface. The Si1 NBCC,

moreover, has a magnitude which is approximately 20% less than that found for

Si1 in Si(111)(1�1). After reconstruction, therefore, the single electrons associ-

ated with the nominal dangling bonds of the threefold-coordinated atoms either

(Si2) take part entirely in bond reconstruction or (Si1) become at least partially

involved in rebonding, compared with the first layer atoms in the Si(111)(1�1)

surface. Inspection of bond ellipticity profiles along the bond paths of each pair

of bonded atoms in the two outermost layers of the reconstructed surface adds

further insight (Fig. 7.5). As expected, the highest p character is that of the

Si1aSi2 bond in the first layer. The ellipticity profile along the bond path is indic-

ative of a very asymmetric contribution to the p bond from the two atoms, in ac-

cordance with the large differences found in their Laplacian distributions and

atomic properties [43]. Interestingly, significant ellipticities are also observed for

the bonds between the first and second layer (Si2aSi3, Si1aSi4) and those within

the second layer (Si3aSi4). This reveals that the p conjugation extends over a 2D
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array of bonds, rather than being strictly localized along the topmost layer 1D

chains, as hypothesized in the Pandey’s model. Adoption of a spin-polarized

RHF solution, in place of a simple RHF picture, leads to a significant energy re-

duction for the reconstructed surface, accompanied by an increased atomic equal-

ization within each pair of bonded atoms and by noticeable enhancement of the

surface bonds p-delocalization (Fig. 7.5).

In general, the (2�1) reconstruction involves much larger surface-cell charge

distortions than found in the (1�1) surface and noticeable changes in the atomic

polarization of the surface layer atoms. The effect of buckling is to largely differ-

entiate the properties of the two unique atoms of each surface layer. For example,

the net charge of Si1 atom is þ0.138e and that of Si2 is �0.225e (UHF results, at

LEED geometry), compared with the value of þ0.003 e for Si1 in the (111)(1�1)

surface. These charge rearrangements, along with the onset of a 2D partially p-

delocalized bond network, lead to SiaSi bonds in the first two layers that are, on

average, as strong as in the crystal [43]. This contrasts with the non reconstructed

Fig. 7.5 Si(111)(2�1) surface. Bond ellipticity (e) profiles along the

bond path of each unique pair of bonded atoms in the two outermost

layers. Results refer to the LEED geometry for the surface [48]. Adapted,

with permission, from Fig. 4 in Ref. [43], F. Cargnoni, C. Gatti, Theor.

Chem. Acc. 2001, 105, 309–322 (Copyright 2001, Springer).
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surface in which the corresponding Si1aSi2 bonds are, instead, weaker than in

the bulk (Table 7.5).

Comparison of the Si1 and Si4 basins (middle, right) with the Si1 and Si2 ba-

sins (middle, center) in Fig. 7.4 shows that after the 2�1 reconstruction only the

atoms of the topmost layer (Si1, Si2) have infinite volume whereas the atoms of

the second layer (Si3, Si4) – differently from those in the unreconstructed surface

– are already finite, as in the bulk. Convergence toward bulk values of both bond

and atomic properties was found to start from the fifth layer inwards, i.e. at a

greater depth from surface than in the clean and hydrogen-covered (111)(1�1)

surfaces. The reader is referred to Ref. [43] for full details of this QTAIM study.

7.5

QTAIM Applied to Host–Guest Systems

Host–guest chemistry is a fundamental branch of supramolecular chemistry [49]

and the guest@host concept has served to describe the structure of most supra-

molecular systems [50]. Typical questions of host–guest chemistry are the nature

of bonding interactions between the guest and the host and the amount of elec-

tronic charge transferred to the host from the guest, or vice versa. These are not

just academic issues, because the exciting functional properties of these systems,

and their optimum tuning, may crucially depend on how the guest binds to

the host and how this binding may be suitably chemically modified. Standard

methods of bond analysis and charge partitioning may prove particularly inade-

quate in this area, because these supramolecular assemblies are usually held to-

gether by noncovalent interactions (HBs, van der Waals forces, p–p interactions,

and/or electrostatic effects), which are much weaker than covalent bonds and, ex-

cept for HBs, usually nondirectional. QTAIM, being firmly rooted in physics and

not based on any preconception of bonding, is once more the theory of choice.

QTAIM is applied here to two peculiar host–guest crystalline systems – the

type I inorganic clathrates A8Ga16Ge30 (A ¼ Sr, Ba), which have promising ther-

moelectric properties [51], and sodium electrosodalite (SES), in which the guest,

which explicitly requires QTAIM to be identified and localized, gives rise to an or-

dered bcc lattice of F-centers with concentration three order of magnitude higher

than in the ionic solids [52].

7.5.1

Type I Inorganic Clathrates A8Ga16Ge30 (AF Sr, Ba)

Type I clathrates consist of two type of cage, the twenty-atom dodecahedron and

the twenty-four-atom tetrakaidecahedral cages (Fig. 7.6, left), which are usually

formed by group 13 and Group 14 elements and which each encapsulate a guest

metal atom A [53]. The metal atoms ‘‘rattle’’ in these oversized cages and are

known to have localized, low-frequency phonon modes that reduce the thermal

conductivity to values comparable to those of amorphous semiconductors, with-
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out significantly affecting the semiconductor-like properties of the host cages’

crystalline framework [51]. These systems thus have, potentially, the ideal ther-

moelectric properties of a phonon glass and an electron single crystal (PGEC)

[54].

Structural chemists usually regard these clathrates as Zintl phases in which the

guest atoms completely transfer/accept valence electrons to/from the framework

[53]. This belief is firmly supported by the observation that all known clathrate

type I structures have a common number of 184 valence electrons per unit cell,

despite the large number of elemental compositions forming these structures.

Studies on the very promising A8Ga16Ge30 (A ¼ Sr, Ba) thermoelectrics based

on theoretical EDD [55] or maximum entropy method (MEM) analysis of experi-

mental EDD [56] have, however, called into question the ionic character of the

guest atoms and rather propped up the idea of their almost neutrality. The guest

atoms are usually found far from the cage center and with displacements and vi-

brational frequencies which differ from guest to guest and, for a given guest,

from the large to the small cage [55, 56, 57]. This experimental observation gives

some credibility to the idea of a not fully ionic metal guest, because a direc-

tional, not purely electrostatic guest–host interaction, with possible incomplete

CT, seems to be operating. Analysis of the density of states (DOS) and bands fea-

tures obtained from the same wavefunction from which the theoretical EDD was

Fig. 7.6 A8Ga16Ge30 (A ¼ Sr, Ba) (a) The

clathrate type I structure (fully symmetric

ideal structure, Pm3n space group). The large

dark atoms are A guests (2a site) hosted in

the twenty-atom cages and the large gray

atoms are A guests (6d site) hosted in the

twenty-four-atom cages. The small dark gray

and light gray atoms are the 6c, 16i and 24k

framework sites, respectively. In the Pm3n

structure Ga atoms are located at 16i

positions. (b) Sr8Ga16Ge30 at minimum P1

geometry – contour map of the ab-initio

periodic pseudo-potential (PP) density in a

plane containing an Sr atom in a twenty-atom

cage (a site) and two Ge atoms at positions i

and k at distances of 3.46 and 3.65 Å from

the Sr atom. The nuclei on the left of the

central Sr atom are less than 0.1 Å from the

plane of the plot. Positions are labeled

according to Pm3n space-group. The bond

paths do not terminate at nuclei, because

this is a PP density. The Ge and Ga atoms at

k positions, with distances from Sr greater

than 3.6 Å turn out to be nonbonded to the

central Sr atom in the P1 geometry relaxed

structure. Adapted, with permission, from

Figs 1 and 4 of Ref. [59], C. Gatti, L. Bertini,

N. P. Blake, B. B. Iversen, Chem. Eur. J. 2003,

9, 4556–4568 (Copyright 2003, Wiley).
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derived strongly suggests, however, that the guest atoms are acting as electron do-

nors [55, 58], which seems in sharp contrast [59, 60] with their claimed almost

neutrality.

We used QTAIM to shed light on these conflicting views. Table 7.7 shows

QTAIM net charges for the guest atoms A for the most stable P1 space group-

optimized structure of each clathrate [58]. Irrespective of whether they occupy

the large or the small cage, guest atoms are almost completely ionized. Their net

charges, averaged over the two and the six unique twenty-atom and twenty-four-

atom cages in the crystal cell, are approximately 1.68e and 1.77e for the Sr and Ba

clathrates, respectively. These values are to be compared with the corresponding

charges of 1.72e and 1.76e in the SrO and BaO oxides, which are both well known

examples of crystalline ionic compounds. Very similar net charges for A ¼ Sr,

Ba are obtained for the second more stable clathrate structure and also for the

idealized, fully symmetric Pm3n structure having all the Ga atoms in the 16i
framework site (Fig. 7.6, left).

The question arises of why this clear-cut picture of the guest ion/neutral atom

dilemma is so at odds with previous suggestions from theory [55] and experiment

[56]. The main reason is that in these studies charge transfer (CT) was defined

relative to a reference density, rather than using QTAIM to identify the actual shape

of the atomic basins in the clathrate and then obtain their electron populations.

The reference density was taken as the density of the interleaved, noninteracting

A8 and Ga16Ge30 sublattices in the theoretical study [55], or as the nonuniform

prior density in the MEM experimental analysis. In both studies the electron pop-

ulation on a guest atom, calculated by integrating the EDD within a sphere of

given radius centered on the atom, was found to be basically constant whether

Table 7.7 A8Ga16Ge30 (A ¼ Sr;Ba): Atomic net charges of guest atoms

A compared with corresponding charges in SrO and BaO.[a,b]

System/model W q(W)/e

Small cages Large cages

Clathrate/ab initio Sr 1.669 (0.001) 1.687 (0.005)

Ba 1.743 (0.001) 1.773 (0.003)

Clathrate/IAM Sr �0.096 �0.126

Ba 0.858 0.576

SrO/ab initio Sr 1.717

BaO/ab initio Ba 1.758

aRef. [59], data for the most stable P1 clathrate structures [55] and for

the SrO and BaO crystals, T2 wavefunction model [59]. There are 2

and 6 unique twenty-atom and twenty-four-atom cages in the P1

structure; average net charges (standard deviations) are listed.
b IAM computation at the Pm3n space group geometry.
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computed from the true density of the clathrate or from the reference densities

detailed above. Hence guest-to-host charge transfer was inferred not to occur in

the clathrate. Such an empirical evaluation differs substantially from the QTAIM

result [59], because when the interaction among the host framework and the

guest atoms is turned on, new attractive and repulsive physical forces come to

the play and the EDD should no longer be geometrically apportioned among the

host and the guest as when the interaction is turned off. Table 7.7 shows that

QTAIM partitioning of the IAM density, as opposed to that of the crystal density,

would predict much less ionized guest atoms – the Sr atoms becoming almost

neutral and the Ba atoms having their net charge more than halved. The IAM

density is not a quantum object, nor is there any physical need for the zero-flux

recipe to predict the A atoms to be neutral for IAM densities. It is, however,

worth noting that the claim of the presence of almost neutral guest atoms in

A8Ga16Ge30 roughly corresponds to the outcome one would obtain if the QTAIM

analysis, instead of being applied to the true density of the clathrate, were to be

performed on a model density which neglects the charge rearrangement because

of bonding.

By describing the guest atoms as highly ionized species, QTAIM analysis rec-

onciles theory with the Zintl phase view structural chemists have of the inorganic

class I clathrates. QTAIM results also agree with the negligible contributions pro-

vided by Sr and Ba to the valence states close to the Fermi level and with the dom-

inant contributions Sr and Ba provide to the conduction states close to this level

(see DOS analysis in Ref. [59]).

Geometry relaxation from the fully symmetric Pm3n clathrate structure to the

most stable and second most stable P1 structures leads to noticeable displace-

ment of Sr and Ba atoms from the centers of the twenty-atom and, particularly,

the twenty-four-atom cages, for which the displacement is as large as 0.81 and

0.42 Å for Sr and Ba, respectively [56]. The force driving this guest atom disorder

lies in the replacement of the many, very weak, guest–host bonds present in the

fully symmetrical clathrate cages (twenty for the small cage and eight for the

large cage) with the fewer, stronger and shorter chemical interactions characteriz-

ing the P1 geometry clathrates (Fig. 7.6 right) [59]. For example, only 2.8(8) and

4.0(11) guest–host BCPs are found on average for the Sr and Ba clathrates in the

large cages, instead of the eight present in the fully symmetrical structure. These

remaining bonds are, however, substantially stronger, as indicated by the 50%

(Sr) and 16% (Ba) average increases of their rb values relative to those of the

corresponding bonds in the Pm3n clathrate structure. Differences between the

rattling frequencies in the Sr and Ba clathrates, and between their larger or

smaller cages, have recently been related to, and found to comply with, the rela-

tive strength of the guest–host interactions, as ordered by the rb values [57]. On

the whole, all the recovered bonds, including those significantly strengthened

after clathrate geometry relaxation, retain properties typical of a closed-shell ionic

interaction (low rb, low and positive ‘2rb; BCP location close to the positive ion),

with the guest–host binding energy being essentially electrostatic in nature. Full

details on this study may be found in the original papers [59, 60].
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7.5.2

Sodium Electrosodalite

The sodalite host framework, (SiAlO4)6, is a bcc array of b cages consisting of reg-

ularly alternating SiO4 and AlO4 tetrahedrons (Fig. 7.7a). To balance the formal

negative charge of the host, each b cage contains three positive guest Na atoms.

When exposed to sodium vapor the sodalite gradually turns blue, then purple,

and eventually black [61]. The color change has been ascribed to formation of F
centers in the tetrahedral Na4

3þ clusters containing the three existing Na ions

and the excess Na atom absorbed in each b cage. The resulting sodalite structure,

named sodium electrosodalite (SES) has cubic symmetry with each unit cell con-

taining two b cages and two perfect tetrahedral arrangements of sodium atoms

inside each b cage [Na8(SiAlO4)6]. The unit cell thus contains two unpaired elec-

trons and SES undergoes an antiferromagnetic transition at 48 K [52]. The

unpaired electrons are thought to have predominantly s character, because of the

spherical symmetry of the sodalite cage, and this material has been identified as

the first example of an s-electron antiferromagnet. Electron density distributions

for the ferromagnetic and the antiferromagnetic phase are very much alike, with

Fig. 7.7 F center in sodium electrosodalite

(SES). (a) Schematic diagram of the sodalite

framework formed by a bcc array of b cages

consisting of regularly alternating SiO4 and

AlO4 tetrahedrons. The circles in the figure

correspond to regularly alternating Al and Si

atoms bridged by an O atom. In the SES

(space group P43n), the Na4
3þ tetrahedral

clusters are located inside each b cage. There

are two b cages and two unpaired electrons

in each unit cell (ferromagnetic phase). The

NNAs associated with the F centers are

located at the center (2a site) of the Na4
3þ

clusters and form a bcc lattice, with same

cell parameter as SES. (b) Total electron

density and (c) spin density in the sodalite

cage, in the ð1; 1; 0Þ plane. Contour levels at
2, 4, and 8� 10n a.u., with n ranging from 0

to �3 for the total density and from 0 to �4

for the spin density. In the spin density the

first line is the zero contour. The contour

level closest to the NNA has similar shapes

and equal value (0.004 a.u.) in both maps,

because the F center contains almost solely

unpaired electron density. (d) ELFa in the

ð1; 1; 0Þ plane. The first dashed contour is the

zero contour and the increase is 0.05 per

contour up to 0.45. The first full contour has

the value 0.5 and the increase is 0.05 per

contour up to 1.00. (Adapted, with

permission, from Figs. 1, 2, and 4 from Ref.

[62] G. H. K. Madsen, C. Gatti, B. B. Iversen,

L. Damjanovic, G. D. Stucky, V. I. Srdanov,

Phys. Rev. 1999, B59, 12359–12369; Copyright

1999, American Physical Society).
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alternating ordering of the spin density being the only difference between the

two phases [62]. (For this reason, we report here only the QTAIM analysis for

the ferromagnetic phase.)

When the guest Na atom is added to the sodalite host, we know exactly, from

structural analysis, where the Na cation goes. It becomes totally indistinguishable

from the pre-existing Na cations. The question remains, however, of where the

extra electron added to each sodalite cage ‘‘locates’’. Is it primarily delocalized

over each Na ion clusters or is it (well) localized somewhere? And, supposing

we can physically ‘‘identify’’ this electron as another ‘‘atomic’’ constituent of the

lattice, can this new constituent be related to the formation of the bcc lattice of F
centers in SES?

As shown in Fig. 7.7b, QTAIM analysis of the SES periodic UHF electron den-

sity distribution finds an NNA, located at the center (2a site) of each Na4
3þ cluster

and bonded to its neighboring four Na atoms [62]. Spatial distribution of NNAs

gives rise to a bcc lattice with the same cell parameter as SES and with the same

spatial distribution of the F centers determined from spectroscopy. The unpaired

electron therefore has a separate identity – it behaves as a quantum mechanical

open system and has its own set of properties (Table 7.8). In the real space, the

F center manifests itself as the union of a maximum in the electron density at

the nonnuclear position 2a and of the basin associated with this NNA. As shown

in Table 7.8, the F center has an electron population of 0.730e and contains al-

most solely unpaired electron density, with over 97% of the electrons being spin

a electrons. This explains why the electron density and the spin density distribu-

tion in the sodalite cage look very much the same in a large region surrounding

the NNA (Figs. 7.7b and 7.7c). Over 69% of the unpaired density in the unit cell

is contained in the two F center basins, the remaining 31% being shared between

the eight Na (16.4%) and the twenty-four O basins (14.4%).

We now use the ELF distribution for the a-spin orbitals, ELFa [21, 62], to dem-

onstrate that the unpaired electron density in the F-center basin is to a large ex-

tent associated with a localized a-spin orbital. Indeed, the Na–NNA BCP lies close

Table 7.8 Atomic and nonnuclear attractor (NNA) properties in the

ferromagnetic phase of sodium electrosodalite Na8(AlSiO4)6.[a]

W N(W) NaCb (W) VT(W) G(W)/N(W)

NNA 0.730 0.692 316.3 0.09

O 9.757 0.012 135.5 7.69

Na 10.095 0.041 71.9 15.93

Si 10.572 0.000 18.2 27.31

Al 10.369 0.000 23.3 23.13

aRef. [62]; all quantities in a.u.; Na�b is (Na � Nb ), the excess number

of electron of spin a in the atomic basin and GðWÞ=NðWÞ is the basin

kinetic energy G per electron.
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to the 0.5 ELFa contour (Fig. 7.7d) and, by moving toward the center of the Na

tetrahedron, i.e. toward the NNA, ELFa rapidly increases regularly up to the value

of unity. If the density is dominated by a single, localized a-spin orbital in the

NNA basin, the local curvature of the spherically averaged same-spin conditional

pair density has to vanish or nearly vanish [10] and, as a consequence, the ELF

value must approach unity. As expected, complementary behavior is observed for

the corresponding map for ELFb [21, 62], with most of the volume of the NNA

basin being characterized by an ELFb value close to zero.

The NNA basin has the largest basin volume (316 a.u.) and a very low and flat

electron density, yielding an average volume per electron of 433 a.u., approxi-

mately 31 times than that of the oxygen anions, the second most ‘‘diluted’’ atoms.

The 1.46e of the two F-center basins in the unit cell occupy 13.4% of the crystal

volume, even though they represent only 0.32% of the total electronic charge. The

electron density is very loosely bound in the F-center basins, as indicated by the

very low kinetic energy per electron, GðWÞ=NðWÞ value of 0.09 a.u. (Table 7.8).

Such a value can be compared with those of other NNA basins associated with

‘‘free electrons’’ in the alkali metal clusters (0.06–0.08 a.u.) [17, 62, 63], in the

Be metal (0.282 a.u.) [62, 64], and in a cluster model of an F-center in an ionic

solid (0.184 a.u.) [65].

7.6

The Source Function: Theory

Few years ago, Richard Bader and I showed [14] how the electron density at any

point r within a molecule may be viewed as consisting of contributions from a

local source LSðr; r 0Þ operating at all other points of the space where the local

source has the expression:

rðrÞ ¼
ð
LSðr; rOÞ drO ¼

ð
W

LSðr; rOÞ drOþ
X
W 00W

ð
W

LSðr; rOÞ drO ð3Þ

LSðr; rOÞ ¼ �ð1=4pÞ‘
2rðrOÞ

jr � rOj ð4Þ

In Eq. (4), the Green’s function ð4pjr � rOjÞ�1 is an influence function [66], which

represents the effectiveness of the cause ‘2rðr 0Þ to give rise to the effect r(r). The
effectiveness depends on the reciprocal of the distance between the element

of Laplacian of the density ‘2rðr 0Þ dr 0 and the point of interest given by r. (By

combining Eqs. (3) and (4), one gets rðrÞ ¼ �ð1=4pÞ Ð ‘2rðrOÞ
jr � rOj drO. This expression

is formally equivalent to that for W(r), the electrostatic potential generated at r by

the system’s electron distribution rðrÞ. One may envisage rðrÞ as the potential

generated at r by the system’s Laplacian density distribution [14].)
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Calling the integral of LSðr; r 0Þ over the basin of an atom or group of atoms the

source function (SF) contribution, Sðr;WÞ, from that atom or group of atoms to

rðrÞ:
ð
W

LSðr; rOÞ drO1Sðr;WÞ ð5Þ

one can envisage the electron density at a point within an atom as determined

solely by an internal SF self-contribution and by SF contributions from the re-

maining atoms or groups of atoms within a molecule:

rðrÞ ¼ Sðr;WÞ þ
X
W 00W

Sðr;W 0Þ ð6Þ

The SF is thus a measure of the relative importance of an atom’s or group’s

contribution to the density at any point [14]. The decomposition afforded by Eq.

(6) enables one to view the properties of the density from a new perspective and

establishes the SF as a novel tool for providing chemical insight [14, 67]. (Modi-

fied versions of the PROMEGA/PROAIMV and TOPOND-98 software enable one

to evaluate the atomic SF contributions to the density at a selected list of points.

This software is available from the author upon request.)

At this point one may ask oneself which is the physical meaning behind the

local source LSðr; r 0Þ. Several interpretations are possible [14, 66, 68], the more

insightful being probably that which links LSðr; r 0Þ with the local expression of

the virial theorem [6]:

LSðr; rOÞ ¼ � 1

p

2GðrÞ þ VðrÞ
jr � rOj ð7Þ

The local source is thus related to the failure to locally satisfy the virial relation-

ship between twice the integrated kinetic energy and virial field densities. Molec-

ular regions where the electron density is concentrated ð‘2rðr 0Þ < 0Þ and where

the potential energy dominates the kinetic energy are a source for the electron

density at a point r. Conversely, regions where the electron density is depleted

ð‘2rðr 0Þ > 0Þ and where the kinetic energy dominates potential energy act as a

sink, removing electron density at r. The effectiveness of the electron density at

r 0 to be a source or a sink for the electron density at another point r is then

related to the magnitude of its charge concentration or depletion at r 0, weighted
by the inverse of the distance between the two points.

The SF may be investigated using as a reference point any point r in a system,

including the nuclei and the NNAs [67]. The BCPs have usually been taken as the

least biased choice for points representative of bonding interactions [14, 67]. For

an isolated atom, the SF contribution to any point r is always positive, because

rðrÞ isb0 everywhere. For systems with more than one atom, it is found that, in
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general, the positive LS contributions from an atomic basin to the density at sys-

tem’s BCPs dominate its negative contributions. In some special circumstances,

however, it may happen that an atom acts as a sink rather than as a source for

the density at a given system’s BCPs [67]. The relevance of such instances will

be discussed in Sections 7.6.2 and 7.6.3.

Analysis of LSðBCP; r 0Þ profiles with r 0 running along a bond path have been

discussed for the series of second-row diatomic hydrides and for several hydro-

gen-bonded systems in the gas and crystalline phases [68]. With respect to the in-

tegral form of the SF function, the study of its local form, LSðBCP; r 0Þ, along a

bond path, introduces further detail. It enables discovery of which regions in the

basins of the two linked atoms accumulate or remove charge at the BCP, as a

function of the nature of the bond and of the external perturbations (substituent

effects, crystal field, etc.) acting on this bond. The local form of the SF is dis-

cussed no further in this chapter. It does, however, represent an interesting fin-

gerprint of a given bonding interaction and the reader is referred to the original

paper [68] for further details.

7.6.1

The Source Function and Chemical Transferability

The SF has been used in several examples [14, 67] as a very sensitive measure

of an atom’s or chemical group’s transferability and of the consequences thereof.

Indeed, the ‘‘perfect’’ transferability of a group property from one molecule to

another not only implies a corresponding transferability of the group’s electron

density but also that the sum of contributions to this density from the remaining

atoms or group of atoms in the system remain constant.

After ethane the terminal methyl group in n-alkanes is known to have transfer-

able atomic properties, for example energy, electron population, volume, and

spectroscopic properties, irrespective of the length of the chain [6]. The transfer-

ability of the electron distribution in the methyl group is good enough also to

yield a constant value of rb at its unique CaH bond. The SF group contributions

to this rb value are displayed in Table 7.9 for ethane, propane, butane, and pen-

tane [14]. The contribution from the atoms in the methyl group to rb are constant

at 0.270 a.u. throughout this series, with the contribution from the two equivalent

hydrogen atoms of the methyl group to this amount equaling 0.0210 a.u. for all

four molecules. The contribution from the neighboring methylene group seems

to be constant after ethane. The constancy in the rb value (0.283 a.u.) for the ter-

minal CaH bond is because there is a constancy in the sum of the source contri-

butions to rb from groups external to the methyl group, the quantity Sðrb; extÞ,
irrespective of the length of the chain. Thus extending the propane chain by remov-

ing a hydrogen atom from the external methyl group and replacing it with

another methyl group yields an ethyl group, whose SF in butane contributes

0.0036 a.u. to rb compared with 0.0035 a.u. from the external methyl group in

propane. When this ethyl group is further extended by a methylene group to ob-
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tain the propyl group in pentane, the SF contribution remains unchanged at

0.0036 a.u. Thus the ethyl group in propane contributes the same as the butyl

group in pentane, with the result that the H and C atoms of the methyl have their

characteristic properties in hydrocarbons.

The series LiaX (X ¼ F, O, N, Cl, H) is another interesting example of the use

of the SF as a very sensitive tool to test the extent of chemical transferability [67].

The Li atom in this series is known to have nearly constant and transferable prop-

erties, including its net charge and atomic energy [6]. In the limit of perfect trans-

ferability, the SF contribution from Li at the BCP should remain constant along

the series and changes in rb values, as a function of X, should only be determined

by correspondingly equal changes in Sðrb;XÞ. As shown in Ref. [67], the rb value

decreases by almost a factor of two along the series and similar behavior is found

for Sðrb; LiÞ. The change of Sðrb; LiÞ along the series indicates that this quantity

is a more sensitive index of a departure from perfect transferability than are the

integral averages yielding the atomic population and energy. Interestingly, the

profiles of Sðr; LiÞ along the LiaX axis, show that the Li atom makes a constant

contribution to rðrÞ for any X, up to a distance of 0.58 Å from the Li nucleus

(Fig. 3 in Ref. [67]). This is near the distance of the BCP closest to the Li nucleus

in the series. The observed changes in Sðrb; LiÞ are merely a consequence of the

progressive shift towards the X nucleus along the series.

The most important result is that the contributions from Li to rb remain al-

most constant throughout the series, at approximately 40%, however. The con-

stant cationic nature of Li in the LiX series seems to be mirrored in a constant

percentage SF contribution from Li to rb rather than in a constant source. The

shift in the BCP location along the series serves to maintain constant this relative

contribution of Li to rb.

Table 7.9 Source function contributions to HaCH2 BCP in methyl group.[a]

Molecule Atomic group source function contributions rb(HxCH2) S(rb; ext)

Ethane HaCH2 CH2 H 0.2830 0.0126

0.2704 0.0100 0.0026

Propane HaCH2 CH2 CH3 0.2827 0.0126

0.2701 0.0091 0.0035

Butane HaCH2 CH2 CH2 CH3 0.2827 0.0127

0.2701 0.0091 0.0020 0.0016

Pentane HaCH2 CH2 CH2 CH2 CH3 0.2827 0.0127

0.2702 0.0090 0.0019 0.0008 0.0009

aRef. [14]; all quantities in a.u.; Sðrb; extÞ is the sum of source

contributions to rb from groups external to the methyl group. It is

given by the sum (except HaCH2) of the atomic group source

contributions listed in the second column for each molecule.
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7.6.2

Chemical Information from the Source Function: Long and Short-range Bonding

Effects in Molecular Complexes

This section shows how the SF may be used as a tool to disclose the extent of

local/nonlocal character of a bonding interaction, using only information con-

tained in the system’s electron distribution. Hydrogen-bonded molecular com-

plexes [67] are discussed at length and very recent results [69] on the ‘‘metal–

metal’’ bond in polynuclear metallic complexes are discussed briefly.

Energies of hydrogen-bonds, which extend from approximately 15 to 50

kcal mol�1 for strong bonds down to 1 to 4 kcal mol�1 for weak bonds, are

evidence of a wider range of atomic interactions than is observed for covalent or

ionic bonds or van der Waals forces [70]. The dominating energy contributions

depend on the nature of the H-donor (D) and H-acceptor (A) atoms and of the

distance, dD���A between them.

The reaction path for approach of two water molecules, within the linear Cs

constraint, is first introduced as a guide to understanding how the SF contribu-

tions to the hydrogen bond rb value change with changes in the nature of the

HB. Table 7.10 reports percentage atomic sources, SðW 0 þ W 00 þ � � � Þ%, from

dD���A distances typical of a weak isolated HB to those occurring in very strong

HBs, the dD���A equilibrium distance being 3.020 Å, at the RHF/6-311G(2d,2p)

level. As shown in the table and in Fig. 7.8a, the atomic percentage contributions

change dramatically along the reaction path. It is only the percentage global

contribution from either the H-donor or the H-acceptor molecule which remains

almost constant, and not dissimilar from each other, at values of approximately

44–48% and 56–52%, respectively. Also stable enough, and approximately 30–

40%, is the value of S(HþD)%, the percentage contribution from the H involved

in the HB and the oxygen donor D. Its relative constancy indicates that, besides

the donor and acceptor molecules, DaH also behaves to a some extent as an

atomic ‘‘transferable’’ group. Conversely, the percentage source contribution

from the H, S(H)% seems to be the most distinctive marker of the change of the

nature of the hydrogen-bond along the reaction path. S(H)% is very small and

positive only for very short dD���A distances and rapidly becomes negative and

even highly negative at distances larger than 2.5 Å. At equilibrium distance,

S(H)% is as negative as �72.3%. Why is this so? In weak and moderate strength

HBs, the shape of the H basin and of the Laplacian distribution along the

OH���O axis are highly asymmetric, with regions of negative Laplacian surround-

ing the OaH BCP and with the HB critical point being, instead, located in a re-

gion of pronounced positive Laplacian (Fig. 6, Ref. [67]) and, hence, of negative

local source contributions, LSðBCP; r 0Þ. As the dH���O distance increases, the HB

critical point moves progressively away from the OaH negative Laplacian region

and becomes surrounded by regions of positive Laplacian of increasing size and

located within the H basin. Accordingly, the SF contributions from the H to the

HB critical point become increasingly negative the larger the oxygen donor to ox-

ygen acceptor separation.
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At variance with the situation for typical covalent bonds, for which the sum of

SF contributions from the two bonded atoms to their BCP rb value is usually at

least as large as 90% [67], the percentage contributions from the H and the donor

oxygen, S(HþD)%, or from the H and the acceptor oxygen, S(HþA)%, are usu-

ally much smaller, if not even negative. This is the result of the hydrogen-atom

behaving as a sink for most of the D���A distances and as a scarce source at very

short distances. Percentage values close to 85–90% are obtained only when the

sum of percentage contributions from all the three atoms directly involved in the

HB, S(HþDþA)%, is considered, and only for dH���O distances below 2.5 Å. This

confirms the at least three-center nature of HBs [71]. As shown in Table 7.10,

however, the sum of SF contributions from the remaining atoms in the molecular

Table 7.10 Source contributions at the hydrogen-bond CP along the

reaction path for the approach of two water molecules and in a number

of prototypical hydrogen-bonded complexes.[a,b,c]

dD � � �A, Å, system,

hydrogen-bond class

rb ‘2rb S(H)% S(HBD)% S(HBDBA)% SMolD%

Reaction path for the approach of two water molecules
3.25 0.010 0.041 �116.0 28.6 31.6 47.7

3.02, 1, IHB 0.016 0.067 �72.3 34.3 53.0 47.6

2.75 0.031 0.124 �35.5 38.7 71.0 48.4

2.50 0.056 0.216 �12.5 42.9 83.9 46.4

2.25 0.106 0.333 þ2.8 42.5 88.7 46.2

2.00 0.199 0.208 þ13.1 42.7 93.5 44.7

Prototypical hydrogen-bond complexes
3.02, 1, IHB 0.016 0.067 �72.3 34.3 53.0 47.6

2.75, 2, PAHB 0.035 0.092 �14.4 38.7 69.7 –

2.54, 3, RAHB 0.056 0.148 þ2.1 36.8 70.8 –

2.37, 3 0, RAHB* 0.177 �0.425 32.2 40.7 89.5 –

2.43, 4, �(CAHB) 0.167 �0.392 32.1 40.4 90.3 43.8

2.41, 5, þ(CAHB) 0.167 �0.415 31.4 41.0 92.7 43.5

aRef. [67]; All quantities in a.u. if not otherwise stated.
bThe hydrogen bond (HB) systems are labeled as in the text and in

Fig. 7.8 and are classified according to the HB class they belong [71].

H, D, A are, respectively, the H directly involved in the HB, the

hydrogen-donor and the hydrogen-acceptor O atoms. For system 2 only

one HB is reported, the other two being very much alike.

SðW 0;W 00; . . .Þ expresses the sum of percentage source contributions

from atoms ðW 0;W 00; . . .Þ. SMolD% is the percentage source contribution

from the hydrogen-donor molecule, for those systems for which this

molecule can be identified.
cSystem 3 0 is classified as RAHB*, because it does not correspond to

the energy minimum equilibrium configuration but to the TS for H

atom migration.
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Fig. 7.8 Hydrogen-bonded molecular

complexes – percentage atomic source

contributions to the electron density at the

HB critical point. (a) Changes of percentage

atomic source contributions along the

reaction path for the approach of two water

molecules, within the linear Cs dimer

constraint; (b) Typical hydrogen-bonded

systems: 1 water dimer at equilibrium

geometry; 2 cyclic homodromic water trimer;

3 malonaldeyde, Cs equilibrium form, and 3 0,
C2v transition state for hydrogen migration; 4

open form of the formic acid–formate anion

complex; 5 H5O2
þ. Source contributions are

displayed as balls whose volume is

proportional to the percentage contribution

from each atom, with positive sources dark

shaded and negative sources light shaded.

The black dot denotes the HB critical point

for which atomic source contributions are

evaluated. The source contribution from the

H atom directly involved in the HB is a

distinctive marker of the nature of the HB.

S(HþDþA)% values are shown for each

system and represent the sum of percentage

sources from the H atom directly involved in

the HB and from the hydrogen-donor and

hydrogen-acceptor oxygen atoms. The sum of

sources from the remaining atoms are as

large as 47% in 1, an HB dominated by

electrostatic interactions, and become less

than 10% in the essentially covalent HBs 4

and 5. (Adapted, with permission, from Figs.

5 and 7 of Ref. [67], C. Gatti, F. Cargnoni, L.

Bertini, J. Comput. Chem. 2003, 24, 422–436,

Copyright 2003, Wiley).
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complex becomes large past 2.5 Å and, for instance, is as large as 47% at equilib-

rium. With the exception of short dH���O distances, the description of the OH � � �O
bond as a three-center interaction seems far from reality. As the donor-to-acceptor

distance increases, other atoms in the complex become progressively involved in

the hydrogen-bond (Fig. 7.8a), in accord with the increasing electrostatic charac-

ter of the interaction.

The trend of SF contributions at the HB critical point occurring in real, proto-

typical hydrogen-bonded systems can now be easily appreciated. Following the

Gilli and Gilli HB classification [71], Table 7.10 report data for:

1. the water dimer at equilibrium geometry, an isolated HB

(IHB);

2. the cyclic homodromic water trimer, a polarization-assisted

HB, (PAHB);

3. malonaldeyde, in its Cs equilibrium form, a resonance-

assisted HB (RAHB);

4. the open form of the formic acid–formate anion complex, a

negative charge-assisted HB, (�)CAHB; and

5. the symmetrical [H2O���H���OH2]
þ dimer, a positive charge

assisted HB, (þ)CAHB.

Also listed in the table are the data for the C2v malonaldehyde TS (3 0) for

hydrogen-atom transfer between the two oxygen atoms. The percentage source

from the H is corroborated as a characteristic, ideal marker of the nature of the

hydrogen-bond, with changes in value as a function of the nature of HB that are

even more pronounced than for the water dimer at different distances (Table 7.10

and Fig. 7.8b). This same behavior is observed for changes of percentage sources

from other atoms and groups of atoms. The role of atoms other than the triad of

atoms directly involved in the hydrogen-bond is clearly confirmed. The sum of

the contributions from their sources is large for the IHB (47.0%), intermediate

for the PAHB (30.3%) and the RAHB, and, indeed, small for theGCAHB com-

plexes, consistent with the increased HB covalence along the series. Interesting

are the values for malonaldeyde, the RAHB model system. The percentage contri-

bution from the HþDþA triad of atoms is as low as in the water trimer PAHB,

which has a donor-to-acceptor distance approximately 0.2 Å larger. It seems that

the RAHB molecule 3 is characterized by an enhanced source contribution from

atoms other than the HþDþA triad and by local character of the DaH and DaA
interactions less than expected on the basis of the donor–acceptor separation

only. Similar features occur in the transition state 3 0, which has more delocalized

sources than the �CAHB system 4, despite a smaller dD���A distance than 4. Fur-

ther details on the classification of HBs according to the SF are reported in the

original paper [67], with an interesting parallel between such a classification and

that afforded [72] using the ELF.

We move now to the metal–metal bond. Since its discovery back in the 1960s,

the metal–metal bond has kept challenging theory to enable detailed understand-

ing of its nature in many transition metal molecular complexes. The advent and
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increasing acceptance of topological analysis of the chemical bond have made it

manifest that many traditional ideas of bonding are not applicable to these atypi-

cal bonds [73, 74]. Yet, even within the realm of topological approaches, well es-

tablished bond classification schemes must be critically reconsidered and revised

when applied to metal–metal bonds [21, 75]. For example, bond classification

based on the sign of ‘2rb has proved to be largely inadequate [75] for bonds that

usually involve atoms missing the outermost regions of charge depletion and

concentration in their atomic Laplacian distributions and that have very low

j‘2rbj values, which makes the sign of ‘2rb quite indeterminate and the use of

‘2rb, as the only classification index deceiving. Other quantities, for example the

QTAIM delocalization indices, the jVb=Gbj ratio [76], the energy density Hb, the

bond degree, Hb=rb [76], the synaptic order, and the population of ELF valence

basins [77, 78] have all been proposed as more informative topological indices in

these instances [75, 79, 80]. Their application to an X-ray charge density study is

in practice precluded, however, because evaluation of these indices requires the

knowledge of the first (and second) density matrices which are, in general, not

directly amenable to experiment. We have thus tested [69] SF analysis for several

first transition row saturated and unsaturated binuclear homoleptic metal car-

bonyls, some of which have been seriously investigated both by theory and experi-

ment [74, 81–83], and for the M2(formamidinate)4 complexes for which a com-

parative QTAIM and ELF study has already appeared [73].

The SF percentage contributions in Mn2(CO)10, a system with a formal metal–

metal bond order of unity and whose bonding is still a matter of debate, are pre-

sented in Fig. 7.9 [74, 82, 83]. The Mn atoms act as a sink for the electron density

Fig. 7.9 Percentage atomic source

contributions in Mn2(CO)10. Percentage

sources at the MnaMn BCP (left), MnaCeq

BCP (middle) and (CaO)eq BCP (right) are

shown (Ceq 1 equatorial C). The percentage

sources are portrayed with the same

convention as in Fig. 7.8. Numerical values

for the dominant positive and negative

percentage sources are also displayed.

Sources from the two atoms connected by

the bond path are as high as 98.2% for the

strong covalent–polar (CaO)eq bond, 63.8%

for the MnaCeq dative bond, and highly

negative (�50%) for MnaMn bond, where

the carbonyl O atoms overbalance the

electronic charge subtracted at BCP from the

two Mn atoms.
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at the metal–metal BCP and the carbonyl groups, essentially the carbonyl oxygen

atoms, provide a positive contribution to rb, so outweighing the negative source

from the two Mn atoms. The SF views the MnaMn bond in Mn2(CO)10 as

strongly nonlocalized, with the ligands inducing a noticeable polarization of the

Laplacian distribution of the Mn basins so that they remove electronic charge

from the bond midpoint. Conversely, a very different distribution of sources is ob-

served for the dative MnaCeq bonds and, in particular, for the (CaO)eq bonds,

with the sum of percentage sources from the two linked atoms being 63.8% and

98.2%, respectively. Similar behavior is observed for the axial MnaC and CaO
bonds, with small changes in the percentage source values relative to the equato-

rial bonds, paralleling the corresponding small changes in the bond lengths. Al-

though the contribution from Mn and C to the MnaCeq BCP is positive and al-

most equally distributed between the two atoms, it is smaller than that of polar

or nonpolar covalent bonds. The most important ‘‘external’’ contribution comes

from the neighboring oxygen atom (14%), the other atoms in the molecule con-

tributing the remaining 22.2%. For (CaO)eq the percentage sources comply with

the supposedly covalent/polar nature of this bond, despite the positive, close to

zero, Laplacian value found at the BCP. The polar character of the bond results

in the O atom percentage source being significantly higher (57.8%) than that of

the C atom (40.4%).

In the Co2(CO)x (x ¼ 8–5) series [84], source contributions from the Co atoms

increase and become positive with decreasing net positive charge on the Co

atom and with increasing formal CoaCo bond order, from one to four [69].

Trends of source contributions from Co atoms parallel the corresponding trends

of d(CoaCo) delocalization indices. Other proposed bond indices, such as ‘2rb,

the bond degree, Hb/rb, and jVjb=Gb, all fail to reproduce the trends in the

d(CoaCo) delocalization indices. In contrast, agreement between the source con-

tributions and the delocalization indices persists even when the CoaCo BCP is

lacking and the CoaCo mid-point is used to replace the CoaCo BCP as a refer-

ence point for evaluating the source contributions. The presence (Co2(CO)8, D3d)

or not (Co2(CO)8, C2v) of a CoaCo BCP is, however, mirrored in characteristic dif-

ferent local source profiles along the CoaCo internuclear axis in the two cases.

Although this analysis [69] has been performed on theoretically derived electron

densities, it may be easily extended with no approximations to charge densities

obtained from experiment, if available.

7.6.3

The Source Function: Latest Developments

The SF may be used to introduce an unambiguous full-electron population anal-

ysis [67]. By integrating Eq. (6) over a basin W, Eq. (8) is obtained:

NðWÞ ¼
ð
W

rðrÞ dr ¼
ð
W

Sðr;WÞ dr þ
X
W 00W

ð
W

Sðr;W 0Þ dr ð8Þ
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and NðWÞ may thus be decomposed in an inner contribution Ni(W) and in a outer
contribution No(W):

NðWÞ ¼ MðW;WÞ þ
X
W 00W

MðW;W 0Þ ¼ NiðWÞ þ NoðWÞ ð9Þ

MðW;WÞ represents the contribution to the electron population of W from its own

basin, whereas MðW;W 0Þ is the contribution to this same population from basin

W 0. The matrix M is not usually symmetric and defines a full population analysis

based only on the observable ‘2r. Preliminary results, and the noteworthy nu-

merical difficulties encountered in implementation of this unambiguous popula-

tion analysis, have recently been presented [85] and will soon be published [86].

Interesting correlations of MðW;WÞ and MðW;W 0Þ with, respectively, the localiza-

tion and the delocalization indices, have been observed in several diatomic mole-

cules and along the ethane, ethylene, acetylene series. Such population analysis

may potentially be applied, with no approximations, to the experimental electron

densities.

Extension of the SF approach and of population analysis based on the SF to the

a and b-components of the spin-polarized densities is planned for the near future.
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8

Topology and Properties of the Electron Density

in Solids

Vı́ctor Luaña, Miguel A. Blanco, Aurora Costales, Paula Mori-

Sánchez, and Angel Martı́n Pendás

8.1

Introduction

Most chapters in this book explore the foundation and consequences of the quan-

tum theory of atoms in molecules [1–17] (QTAIM) when applied to gas-phase

molecules. Although most of the theory remains unaltered for solids, there are

some significant differences that should be taken into account.

First, solids are an exciting challenge to physical bonding theories, because of

their wide diversity of macroscopic and microscopic behavior. Insulators and

electrical conductors; ionic, covalent, and molecular crystals; a rich variety of

magnetic conductors; impurities and defects that can modify local and even bulk

properties; significant differences between bulk and surface electronic properties;

and a yet to be understood effect of grain shape and size on electronic and me-

chanical solid properties. The field offers a large collection of problems awaiting

and deserving a careful look.

Topologically the main difference between solids and gas phase molecules is

that atomic basins always have a finite size inside solids. As a consequence, the

electron density of solids always has a rich collection of ring and cage critical

points, in addition to the usual bond and nuclear points that dominate the topo-

logical description of molecules. Finite basins also imply well defined atomic radii

in every geometrical direction. In this way the topology of the electron density

provides a firm foundation for the important concept in the solid state theory of

the atomic (ionic) radius, which played a prominent role in the early theories of

phase stability. We will observe how the radius concept emerges again in topolog-

ical analysis of the electron density as we rationalize the different topologies ob-

served in families of compounds.

The large variability and mixture of types of bonding that may be found to-

gether in a given crystal makes the solid state a sort of paradise for complex

topological behavior. This includes all kinds of nonstandard connectivities, for
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example bonds to rings, or bond to bonds, that are stabilized in high-symmetry

situations [18], nonnuclear attractors which are rather uncommon in isolatedmole-

cules, and topological polytypism, i.e. systems with the same atomic arrangement

with electron densities with different topologies.

Solids also change volume and shape, and undergo electronic and structural

phase transitions under the influence of external thermodynamic conditions,

most notably pressure and temperature. Several metastable phases can, in fact,

coexist for the same thermodynamic regime. The graphite, diamond, and buck-

minsterfullerene allotropes of carbon come to mind as simple and well known

examples of this polymorphism. The availability of external variables that may be

controlled at will introduces a wide scenario that lies outside the capabilities of

experimental molecular physics. Pressure, the state variable that is most easily si-

mulated, may be used to push atoms well past their equilibrium positions in the

gas phase, so many profound questions that are still the subject of debate may

find a natural answer here. One example is the role of unusual bond paths, for

example those occurring among the anions in ionic crystals. These are intrinsic

bond paths, surviving the large geometrical changes that are introduced on

compression. Another is the effect of the virial of the nuclear forces in determin-

ing atomic energies, which is obscured in geometrically constrained isolated

molecules.

The mechanics of quantum atoms in solids also provides a rigorous micro-

scopic formulation of thermodynamic properties [19, 20]. The exhaustive parti-

tion of volume into atomic contributions, for example, enables us to immediately

partition some important physical properties of crystals, for example the macro-

scopic compressibility. This generates fruitful chemical images of atoms being

differentially compressed under application of an external pressure, in accordance

with their intrinsic, atomic compressibility.

Last, but not least, we cannot forget that the electron density in crystals is an

experimental observable. The applications of the quantum theory of atoms in

molecules have enjoyed an important boost in the last decade, coupled with the

availability of increasingly accurate experimental densities [21]. Many, if not

most, experimentalists have now embraced the QTAIM to rationalize their data,

leaving behind all the problems associated with use of density difference maps.

The day that experiments provide equivalent or even more accurate densities

than careful computation is approaching very quickly.

Gatti and coworkers embraced QTAIM methods when discussing the electron

density of l-alanine [22, 23], although Zou’s work in Bader’s laboratory was, prob-

ably, the first attempt to derive specifically crystalline concepts, for example the

Wigner–Seitz cell, from the electron density topology [24, 25]. Whereas approxi-

mately 15 years have passed since these seminal topological works in crystals, the

field is still in its infancy, and whole terrains remain unexplored. For example,

the very-high-pressure regime, in which large bonding changes are expected to

occur, has not been appropriately simulated, and the always difficult simulation

of temperature has simply been ignored. These difficult problems, together with

many others, guarantee plenty of free room for future work.
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It is not our purpose in this chapter to provide a thorough review of the QTAIM

work performed for solid materials. There are already excellent accounts that

cover that work (for example, the review by Koritzansky and Coppens [21] on ex-

perimental densities, Gatti’s excellent paper on computational results [26], and

Chapters 10–12 of this book). We will focus, in contrast, on some of the basic

topological information obtained when studying solids that is not present at the

isolated gas phase level. For the rest of this chapter we will assume the solid to

be in a crystalline state, so space-group symmetry will be an essential aspect of

the determination and analysis of electron density. Our discussion will also be

limited to ideal bulk properties like most of the studies published so far. (See

Chapters 7 and 9 of this book for authoritative discussions of surfaces).

8.2

The Electron Density Topology and the Atomic Basin Shape

Solid state theory assumes an ideal crystal model is formed as a translationally

invariant repetition of a parallelepipedic unit cell. Such an ideal crystal has no

borders, but the þy and �y limits along each crystallographic direction are

connected to form a ring. Whereas a finite molecule inhabits S3, the ordinary

three-dimensional space, the ideal crystal belongs in R3, the three-dimensional

torus. As a consequence, the Poincaré–Hopf formula, that connects the number

of critical points (CP) of any molecular scalar field, is substituted here by the

Morse relationships [27]:

n; cb 1; b; rb 3; n� bþ r � c ¼ 0; ð1Þ

where n, b, r, and c denote the number of ð3;�3Þ –nuclear–, ð3;�1Þ –bond–,

ð3;þ1Þ –ring–, and ð3;þ3Þ –cage–, CPs, respectively, that can be found in each
crystal unit cell. Apart from this traditional (rank, signature) notation, the four

types of nondegenerate CP can be distinguished in terms of the dimensionality

of their attraction and repulsion basins, from 0D (points) to 3D (volumes), as

summarized in Table 8.1.

Space group symmetry plays an essential part in the determination and analy-

sis of the crystalline electron density. The gradient vector field must fulfill the

point group symmetry within the unit cell; it must, therefore, be aligned with

the symmetry axes, be contained within the symmetry planes, and be zero wher-

ever an inversion point occurs. As a consequence, the local point group symmetry

of some positions within the unit cell ensures the gradient vector field will be

zero there. For example, the coincidence of three noncollinear symmetry axes, of

an axis and a perpendicular plane, or the existence of a single inversion center

will force that particular place to be a CP. Table 8.2 summarizes the crystallo-

graphic symmetries that guarantee the presence of a CP.

The points with special symmetry within the unit cell have been catalogued for

the 230 space groups [28, 29] under the denomination of Wyckoff positions.
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Close inspection of Table 8.2 reveals that the sites ensured to be a CP are nothing

but those Wyckoff positions having their three crystallographic coordinates fixed

by symmetry. It is also interesting to notice that all other special positions,

though not guaranteeing the occurrence of a CP, strongly limit their possible lo-

cation. One-parameter and two-parameter special positions may have a null gradi-

ent point at selected values of those parameters, though the actual point may

coincide with a higher symmetry position. In that way, the search for some hard-

to-find CPs can be bracketed.

Table 8.3 shows the electron-density topology of face-centered cubic (FCC) Al.

The unit cell of this metallic phase contains four Al atoms at Wyckoff ’s 4a posi-

Table 8.1 Critical points (CP) of the electron density classified by rank,

signature, and the dimensions of its attraction and repulsion basins

(AB and RB, respectively). The attraction (repulsion) basin is defined as

the geometrical place of all uphill gradient vector field lines ending in

(starting from) the CP. Only the nondegenerate CPs, i.e. those with

rank 3, should occur in an ordinary molecule and crystal, the

appearance of a degenerate point would indicate structural instability.

(r, s) AB RB QTAIM name Description

ð3;�3Þ 3D 0D Nucleus (n) Local maximum

ð3;�1Þ 2D 1D Bond (b) First-order saddle

ð3;þ1Þ 1D 2D Ring (r) Second-order saddle

ð3;þ3Þ 0D 3D Cage (c) Local minimum

ð2;�2Þ 2D 0D Degenerated 2D maximum

ð2; 0Þ 1D 1D 2D saddle

ð2;þ2Þ 0D 2D Degenerated 2D minimum

ð1;�1Þ 1D 0D Degenerated 1D maximum

ð1;þ1Þ 0D 1D Degenerated 1D minimum

ð0; 0Þ 0D 0D Inflection point

Table 8.2 Symmetry of fixed-point positions ensuring the presence of a critical point.

Triclinic Cið1Þ
Monoclinic C2hð2=mÞ
Orthorhombic D2ð222Þ D2hðmmmÞ
Tetragonal C4hð4=mÞ D4ð422Þ D2dð42mÞ D4hð4=mmmÞ
Trigonal C3ið3Þ D3ð32Þ D3dð3mÞ
Hexagonal C3hð6Þ C6hð6=mÞ D6ð622Þ D3hð62mÞ D6hð6=mmmÞ
Cubic Tð23Þ Thðm3Þ Oð432Þ Tdð43mÞ Ohðm3mÞ
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tions, 24 AlaAl bond CPs, 32 ring CPs, and two different types of cage point, one

at the 4b octahedral site and a second at the 8c tetrahedral position. Four out of
these five types of CP occur at positions completely fixed by the local symmetry.

Only the ring CPs happen along the ðx; x; xÞ line, with a single free parameter.

As happens in molecules, the crystal volume is divided, by means of zero flux

surfaces, into quantum regions in which all quantum observables are well de-

fined and all quantum laws can be locally applied [1, 7, 14–16, 32]. No gradient

field line can cross those surfaces except the single 1D repulsion (attraction) line

of the bond (ring) CP whose 2D attraction (repulsion) basin is the origin of the

surface.

The smallest quantum region in a crystal is a primary bundle [33], formed by

all the gradient vector field lines of the electron density going uphill from a given

cage CP to a given nuclear CP. The bundle is topologically equivalent to a polyhe-

dron, with vertices, edges and faces in numbers that fulfills Euler’s invariant

formula:

facesþ vertices ¼ edgesþ 2: ð2Þ

Apart from the nuclear and the cage points that originate the bundle, the

vertices are bond and ring CPs. The faces correspond to the surface of the 2D at-

traction basins of the bond, and to the 2D repulsion basins of the ring CPs. The

intersection between these surfaces gives rise to the edges of the bundles. The

most basic topological structure of the crystal is that of its distinct primary bun-

dles, and of their interconnections.

Primary bundles are, however, not reported in common topological analyses of

the electron density. They are normally collected to introduce coarser partitions of

space in which bigger zero-flux bounded regions are taken as the primary objects

of study.

Union of all the primary bundles sharing the same maximum gives rise to an

atomic basin. The interior of this object is nothing but the attraction basin of its

Table 8.3 Electron density topology of Al for the experimental FCC

crystal structure at ambient conditions (space group Fm 3 m, a ¼
4:0495 Å). The results correspond to a wien [30] fpLAPW calculation

using the PBE96 [31] generalized gradient approach (Section 8.7).

Wyckoff Pos. CP

4a m3m ð0; 0; 0Þ Al 1.5181103

4b m3m ð1=2; 1=2; 1=2Þ c1 1.656710�2 þ2.236810�2

8c 43m ð1=4; 1=4; 1=4Þ c2 2.797510�2 þ8.466810�3

24d m:mm ð0; 1=4; 1=4Þ b 2.995410�2 �1.212710�3

32f :3m ðx; x; xÞ x ¼ 0:28574 r 2.808310�2 þ7.211810�3
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central n CP. All the other types of CP lie at the boundaries of the atomic basins.

Atomic basins, like the primary bundles, are topologically equivalent to polyhe-

dra. Faces are now made of the complete 2D attraction basin of a bond CP, which

is contained in the face; edges correspond to the 1D attraction basin of a ring CP,

also contained in the edge; the vertices are cage points.

Whereas atomic basins have been the main topological object in all QTAIM

studies published so far, there is a second way of collecting the primary bundles

that deserves some attention. The union of all the bundles that share the same

minimum will produce the 3D repulsion basin of the cage point. The other types

of CP lie again at the surface of this object, but the mapping is now reversed – n
points are the vertices, 1D repulsion basins of the b points form the edges, and

the faces correspond to the 2D repulsion basin of r points.
The FCC Al crystal has two different types of primary bundle; both are shown

in Fig. 8.1. The first is formed by the gradient lines from a c1 cage point to an Al

atom and contains four r and four b CPs on its surface. The second type is

formed from a c2–Al pair, and contains three r points and three b points. Most

of the bundles that we have found on crystals respond to this pattern of 2þ 2m
vertices, where mb 3 is the same number of r as of b points.

The atomic basin of every Al atom is formed (Fig. 8.2) by collecting six Al–c1
and eight Al–c2 bundles to form an easily recognizable rhombic dodecahedron.

In a similar way, six bundles form the octahedral repulsion basin of the c1 CPs,

and four bundles fill in the tetrahedral hole of a c2 CP.

Fig. 8.1 Al–c1 and Al–c2 primary bundles for the FCC Al crystal. The

bundle surfaces have been colored according to the ‘2r scalar field to

show the rapid variation of the electron density close to the Al nucleus.

Notice that the bundles have n–b, b–r, and r–c edges, but not n–r nor

b–c lines.
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8.3

Crystalline Isostructural Families and Topological Polymorphism

A most significant fact emerges when the electron density is systematically ana-

lyzed in families of crystals – compounds with the same crystalline structure

which are expected to have similar chemical properties have, however, different

topologies of r. An example of this topological polytypism is provided by the alka-

line-earth halides, MX2, in the fluorite structure. These 20 compounds have one

of three different topologies, represented in Fig. 8.3. What is most interesting is

that the actual topology of a compound can be exactly predicted by determining

the size ratio of the M and X species along the M–X bond path. When the M cat-

ion is less that 0.6 times the X anion, large faces created by the X–X bond critical

Fig. 8.2 Six Al–c1 and eight Al–c2 primary bundles form the atomic

basin of Al. Four and six bundles, respectively, form the repulsion basin

of c1 and c2 cage points. Each bundle is of a single solid color to show

their matching in forming the coarser basin objects.
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points dominate the anionic basin, which fills most of the crystal volume. The

X–X bond paths continue to exist when RM is in between 0.6 and 1.2 times RX ,

but the size and effect of the X–X bonds decays progressively as we approach

the upper limit. When RM=RX b 1:2, both M and X basins finally approach the

shape dictated by their coordination in the crystalline structure (an octahedron

and a tetrahedron, respectively) and the only bonding remaining is the M–X

bond path between the nearest neighbors.

Similar geometrical reasoning explains the topological polytypism in other

families we have examined, for example the B1 and B2 phases of alkali halides

[33, 34], the alkaline/alkaline-earth perovskites AMX3 [35], and their elpasolites

A2MX4 [36]. The distance from a nucleus to its basin surface is very dependent

on direction, but those directions determined by the bond paths contain the

most useful information and enable us not only to systematize the occurrence of

a given topology but also to explain trends in the thermodynamic properties of

the crystals [37].

The examples above are of different compounds, albeit structurally related, with

different topologies. A change of crystal structure as a result of a phase transition

will also modify the electron density topology, but the interesting question is

whether is it is possible for a single compound to have several different topologies

without there being a structural change. We have found two different types of sit-

uation in which this behavior seems to be the norm.

The first example is the metallic phases of the low-electronegativity elements.

BCC Li is the most extreme example, because it has approximately twenty differ-

ent topologies for a change in the lattice size from 2.4 to 4.8 Å [18], but all the

alkaline and alkaline-earth metals share the same tendency toward topological

change. Perhaps most amazing is that the change follows a well defined trend,

revealed when the many topologies are classified according to some significant

features:

B2: first and second metal neighbors are bonded;

B1: only nearest neighbors bond CPs remain; and

M: the topology has nonnuclear maxima (NNM), also referred to as nonnuclear

attractors (NNA), in addition to the prototypical nuclear ð3;�3Þ CPs [38–40].

Fig. 8.3 Topological polytypism in alkaline-earth fluorites.
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The topology of the different metals follows a common trend on compression:

B2 ! B1½! M � ! B2 . . . . The cause of this topological lability is that the electron
density is almost constant, i.e. flat, throughout the valence region of these metals.

An appropriate measurement of the valence flatness is provided by the ratio [41]:

f ¼ rmin
c

rmax
b

ð3Þ

where rmin
c is the absolute minimum of the electron density, and rmax

b is the max-

imum electron density found among the bond CPs. Typical covalent, ionic, and

molecular solids have f values quite close to zero. Alkali metals, in contrast,

approach f ¼ 100% (98% Li, 95% Na and K, 91% Rb, and 88% Cs at their respec-

tive experimental geometries) and truly resemble the ideal Drude model of a free

electron gas.

Topological polymorphism can also be expected for nonelementary compounds

when the different elements share an extremely similar electronegativity. BP is a

prototype for this example. Whereas the B3 zinc blende structure is maintained

for a wide range of pressures and temperatures, we have found [42] that the stan-

dard polarity, Bþ0:85P�0:85 under ambient conditions, undergoes a reversal on ap-

plication of hydrostatic pressure. The inversion occurs through an intermediate

situation in which the P valence shell is transferred to a nonnuclear maximum

before being caught by the B atom. In this way the low-pressure boron phosphide

phase is transformed into high-pressure phosphorus boride, even though both

are structurally equivalent.

8.4

Topological Classification of Crystals

The main topological properties of a prototypical set of compounds are listed in

Table 8.4. A traditionally debated and often controversial question among solid

state scientists is what constitutes the ionicity, covalence, and metallicity of a ma-

terial. This question can be systematically answered with the aid of the magni-

tudes provided by the QTAIM analysis [41]. As is apparent from Table 8.4, the

electron density at a bond CP, rb, is characteristically large for covalent bonding.

It is not easy, however, to compare the bond CP between two different pairs of

elements in terms of theirs rb values. The Laplacian of the electron density at a

point, ‘2rð~rrÞ, measures whether the electron density is locally concentrated

ð‘2r < 0Þ or depleted ð‘2r > 0Þ there, and provides a detailed map of the basic

and acidic regions, respectively, of the crystal [43]. In a typically covalent bond, a

region of negative Laplacian would include the bond path together with the two

bonded nuclei. Prototypical ionic bonds, in contrast, would have spherical shells

of basic character on each nucleus, the bond critical point occurring in a region of

acidic character. Between both extreme examples we can find a collection of polar
bonding situations with mixed signs. The ratio �l1=l3 enables measurement of
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bond directionality, which is characteristically >1 for covalent bonds and <1

otherwise. Crystal ionicity, on the other hand, can be typically associated with

large absolute values of the charge integrated on the basins. Metals are revealed

by the flatness of the electron density in the valence region, which can now

be measured quantitatively by the ratio of the electron density on the lowest

density cage CP to the highest bond CP in the crystal. This flatness index, Eq.

(3), can even be particularized to a plane or a line for low-dimensional metallic

systems.

Among the crystals in Table 8.4, diamond and N2 clearly have covalent bond

CPs. For CaF2 and Li2O there is evidence of large ionicity, and Al and Li are char-

acteristically metallic. For the N2 crystal there is, in addition to the main NaN

bond CP, another two types of bond path between neighboring molecules, which

are clearly differentiated by their low density, positive and small Laplacian, and

low bond directionality. For the Li crystal, in contrast, nonnuclear maxima of

the electron density are observed. The NNM have been shown to occur in many

homoatomic molecules and crystals when the appropriate internuclear distance

regime is examined [38]. The appropriate distance range is, usually, much

smaller than the typical equilibrium distances, and only a few atomic combina-

tions can have NNM under normal thermodynamic conditions. These include

metals, for example Li and Na, and also crystals, for example CaC2. The occur-

Table 8.4 Topological properties of a representative collection of

crystals, including covalent, ionic, metallic, and molecular compounds.

The values rb and ‘2rb are the electron density and the Laplacian,

respectively, at a bond CP. l1 a l2 a l3 are the eigenvalues of the

Hessian, and the ratio �l1/l3 in the table corresponds to a bond CP.

Q(A) is the charge integrated within the basin of A. The last column

is the valence density flatness, f (Eq. 3). The results correspond to HF-

LCAO calculations (Section 8.7). All magnitudes are given in atomic units.

Crystal AB rb ‘2rb Cl1/l3 A Q(A) f (%)

Diamond CaC 0.2659 �0.9044 3.75 C 0.000 4.8

N2 NaN 0.7380 �2.9228 4.13 N 0.000 0.0

NaN 0.0023 0.0158 0.12

NaN 0.0012 0.0099 0.10

CaF2 CaaF 0.0297 0.1780 0.15 Ca 1.821 1.3

FaF 0.0127 0.0627 0.14 F �0.911

Li2O LiaO 0.0278 0.2055 0.15 Li 0.897 7.3

OaO 0.0101 0.0317 0.17 O �1.792

Al AlaAl 0.0308 0.0084 0.47 Al 0.000 56.8

Li LiaNNM 0.0071 0.0067 0.02 Li 0.825 89.2

NNMaNNM 0.0078 �0.0010 10.44 NNM �0.137
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rence of NNM is neither characteristic nor exclusive of metals, as was conjectured

when this rare topological feature was first discovered.

8.5

Bond Properties – Continuity from the Molecular to the Crystalline Regime

One of the most important features of solid state behavior with regard to the ap-

plication of QTAIM methods is enlargement of the narrow window of bonding

ranges of molecules. In solids, external properties such as pressure and tempera-

ture, or the occurrence of polymorphism within a given substance, enable us to

observe a given bond over a wide range of different distances within the same

chemical environment, and even tune these distances at will. Whereas consider-

ation of, for example, the NaN bond in N2 at distances different from the equilib-

rium distance is theoretically easy, this is not achievable in the gas phase, and

thus molecular quantum chemists seldom look into the dependence on distance

of bond properties. This dependence has, in contrast, been the topic of several

solid state studies both of ionic bonds [34, 37, 42, 44] and of intramolecular and

intermolecular hydrogen bonds (by Espinosa et al. [45–47] and Gálvez et al. [48]).

All these studies show that for the same bond (or type of bond) in different solid-

state conditions there is clear dependence of bond densities ðrbÞ and Laplacians

ð‘2rbÞ on interatomic distance, usually linear in a logarithmic plot. Thus, geo-

metric arguments related to ionic radii, for example, should be intimately related

to bond properties, and these are, in turn, related to bond energetics [49]. These

arguments can, however, be taken a step further; there is, in fact, a continuous

bonding regime from the molecular to the crystalline limits [50, 51], with several

universal features [52].

To unveil the relationship between the geometrical arguments and the different

chemical behavior of bonds, it is most useful to seek approximate models that

provide simplified, even analytical results. In this respect, the promolecular

model (Section 8.7) provides an atomistic image of the chemical bond; using the

sum of free atomic densities as an approximation, a good qualitative picture of

the bond properties is obtained. This can be seen in Fig. 8.4, in which the main

features of a high-level CISD N2 Laplacian are reproduced qualitatively by the

promolecular HF Laplacian. This dependence serves also to explain an important

universal feature – the bond type, as given by ‘2rb, is also a function of distance

[52]. Thus, N2, a covalently bonded molecule at the equilibrium distance (2.1

bohr) and in a certain range around it, has a positive Laplacian for distances

larger than 3 bohr, and again for distances smaller than 1 bohr. This is already

present in the simplified promolecular model, being related to a balance between

the radial curvature and slope of the atomic densities. It is thus an atomic feature:

the atomic shell structure is unchanged at large distances, shared at intermediate

distances, where the shells interpenetrate substantially, and is completely fused at

very short distances, where the K shells of the N atoms start to interact, initially
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in a unshared manner. The same kind of behavior can be seen in other homodia-

tomics, for example Na2 and Ne2, with very different kinds of bond at the equilib-

rium distance, depending mainly on the range at which this distance falls for

each of the species. The basic difference in heterodiatomics with quite different

electronegativities (NaF and AlN) is that the valence shells do not fuse, but rather

are totally or partially transferred from one atom to the other.

Further analysis of the parallel curvature in the bond point enables simple

explanation of another important phenomenon – the existence of nonnuclear

maxima of the electron density [18, 38]. There is, indeed, a window (marked in

the graph) in which, for N2, NNM are observed in the CISD density, and although

this is not so for the promolecular density (its curvature falls short of becoming

negative by a small amount), it is present for C2 (inset of Fig. 8.4). It can thus be

shown to be a feature present in many homonuclear bonds (and also some heter-

onuclear bonds [42]), and easily related to atomic shell structure.

In addition to this universal behavior of the bond density and Laplacian, with

evolution quite similar in different compounds, they also have two more univer-

sal quantitative features. The first is apparent from analysis of the same type of

bond in different molecules and crystals – the dependence of the bond properties

on distance is the same for a given pair of atoms, continuous even for quite dif-

ferent types of bonding, as explained above. An example is seen in the inset of

Fig. 8.4, in which data from single, double, and triple CaC bonds are depicted

Fig. 8.4 Promolecular and CISD//TZVþ(3d,1f ) bond point Laplacians

(absolute value, on a logarithmic scale) in the N2 X–
1Sþ

g ground state.

The inset shows CaC bond point densities for a set of B3LYP//6-

311G(3df,p) molecules (C2, ethane, ethene, ethine, benzene,

anthracene, alene) and PBE-fpLAPW crystals (diamond and graphite at

a wide range of distances, plus CaC2), with the bond point density

dependence on CaC distance for C2
3Pu.
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with diamond and graphite crystal bond data for a wide range of distances. There

is a general trend (slightly different for the long-distance interlayer van der Waals

bonds in graphite, poorly described by these calculation) in all these situations

which can be almost quantitatively fitted by the dependence of the behavior of

the C2 molecule on distance. Obviously, this is an even better model than the pro-

molecule, because CaC bond features are included. Thus, the type of bonding is

again a question of distance, which can also be read in the reverse way – the

chemistry of the molecule determines the type of bond, and hence a given dis-

tance must occur. This interrelationship between geometric features and chemi-

cal behavior is behind the success of the geometric arguments previously given.

Finally, there is another kind of universal feature, by which bond properties can

be transferred even across different bonding pairs with a common atom. To do

this, the independent variable cannot be the interatomic distance, because this

varies substantially with atomic sizes, but is instead the distance, rA, from the

common atom to the bond point. When this is done for a large number of group

III nitride clusters, the corresponding B3-phase crystals, nitrogen hydrides, and

N2, the plot of bond density against rN plot has a common trend, quite similar

to the N2 and promolecular trends [52]. To justify this trend, an exponential tail

model of the atomic densities within the promolecular scheme, a further simpli-

fication, can be used to prove that, in fact, the homodiatomic and different heter-

odiatomic logarithmic plots differ approximately by a constant. This constant is

not large, and depends on the different rates of decay of the atomic densities.

Thus, the density (and to a lesser extent, its Laplacian) at the bond point is a

universal function of the distance to a given atom, except for a small term that

depends on the nature of the atom at the other end of the bond.

All of these arguments point in the same direction – the general features of

bond properties mainly depend on geometry; because geometry depends, in

turn, on bond type and strength, we can conclude that, as empirically proven

previously, rb and ‘2rb are good indicators of bond strength and type.

8.6

Basin Partition of the Thermodynamic Properties

In addition to a topological theory of chemical bonding, QTAIM is also a very

successful atomic quantum theory – its definition of the atom as a proper open

system, fulfilling atomic versions of the key theorems of quantum mechanics,

provides a starting point for the following discussion. As is well known [49],

QTAIM definition of atomic properties entails construction of appropriate local

densities for the property at hand, and integrating these within the atomic basin,

OA ¼
Ð
WA

rOð~rrÞ d~rr. This is termed an atomic average for the property, although

the name is misleading – it is a sum of property O values at different points, not

an average of values of the property. Then, for properties conforming with this,

an atomic partition can be obtained, O ¼
P

A OA. Properties such as atomic
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volumes (unit density), electron populations/atomic charges (electron density), ki-

netic energies (kinetic energy densities), . . . can be evaluated in this way. (Chapter

1 of this book).

When considering a macroscopic crystal in the static limit, it is readily seen

that extensive properties conform to the above scheme. Partitioning an extensive

property within QTAIM is thus straightforward, by just defining the correspond-

ing property density. Intensive properties, however, cannot be partitioned in this

way. If any, a local associated value for the property can be defined instead of

a density, and this local value should correspond to the macroscopic one via an

appropriate average of the form P ¼
P

A wAPA [53]. The weight function wa de-

pends on the type of intensive property. If the derivative of an extensive property

is involved (e.g. in the compressibility k ¼ �V�1ðqV=qpÞ), then wA ¼ VA=V [19]

(and the local compressibility value will be kA ¼ �V�1
A ðqVA=qpÞ). If, on the other

hand, derivatives with respect to an extensive property are involved (as in the bulk

modulus B ¼ �Vðqp=qVÞ), it is found that wA ¼ dVA=dV (and the local bulk

modulus is BA ¼ �VAðqp=qVA). These sentences can be formalized by employ-

ing a linear operator technique [53], which goes beyond the purposes of this

contribution.

An important point must be stressed here, however – this formalism, treating

macroscopic properties as parameters for variation of local or global extensive

properties (implicitly assuming a constant-p statistical ensemble in the k and B
determinations, through the VðpÞ and VAðpÞ computed equations of state) is

just one of various possibilities. For example, in the definition of pressure, one

may use such a relationship to define p ¼
P

A wApA with pA ¼ �dEA=dVA and

wA ¼ dVA=dV via the EAðVÞ and VAðVÞ implicitly defined functions, or one may

use the local definitions of stress and pressure, as in Pendás 2002 [20]. The latter

leads to a local partition factor wA ¼ VA=V and to an atomic pressure which is

defined also as an average, pA ¼ V�1
A

Ð
WA

pð~rr Þ d~rr. Both partitions lead to the same

total value, but local values depend on how the ratio and the derivative weight fac-

tors are related (usually in a simple manner). Again, we will focus on the former

scheme, with parametric VðpÞ curves, because of its simplicity.

As an example of how this thermodynamic property partitioning works, we will

first consider the AB2O4 spinel family (A ¼ Zn, Mg; B ¼ Al;Ga). Most oxide

spinels have experimental B values very narrowly clustered around 200 GPa, a

fact that requires theoretical justification. Instead of B, the simpler partition of

the compressibility:

k ¼ � 1

V

qV

qp

� �
¼

X
A

VA

V
� � 1

VA

qVA

qp

� �� �
¼

X
A

wAkA ð4Þ

will be used, so that:

1

B
¼ k ¼

X
A

wAkA ¼
X
A

wA
1

BA
ð5Þ
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Now, by obtaining VðpÞ from a series of aiPI calculations (Section 8.7), for a

range of volumes, followed by fitting of an analytical equation of state, and doing

the same for the QTAIM-obtained VA values at each V (thus implicitly obtaining

VAðpÞ), we can evaluate local compressibilities, kA, and the weighting factors,

wA ¼ VA=V [19]. This leads to the results gathered in Table 8.5.

From these results, the total B values are 216, 211, 216, and 214 GPa, with nu-

merical fitting errors smaller than 1 GPa on each. Now, the reasons behind the

BA200 GPa constant value are clear from Eq. (5) – the larger contributions to

the compressibility will be those with larger wA and larger 1=BA, both cases point-

ing to the O atoms. For the volume fraction, not only is the O atom, anion-like,

larger than any of the cation-like atoms, but also there are four of them per seven-

atom formula unit and hence wO contributes more than 70% in all crystals. For

the local compressibility/inverse local bulk modulus, anion-like O atoms are

more compressible than the hard, positively charged, A and B cation-like atoms,

but the difference is not as large: BO is approximately 200 GPa, divalent Mg and

Zn have BA values of approximately 270 and 245 GPa, and trivalent Al and Ga

have BB of approximately 335 and 290 GPa. Thus the average will be clearly

dominated by the O atom, which has a remarkably similar compressibility in all

four spinels considered, and is expected to behave in the same way in other

spinels.

These arguments are general in their spirit but particular in their values. For

example, the 20 alkali halides in the B1 phase [19] have quite different bulk mod-

uli, ranging from 7.6 GPa in CsI to 80.9 GPa in LiF. The reason for this is mainly

the large variation in sizes, with cations taking from less than 8% (LiI) to almost

70% (CsF) of the unit cell volume. There is also a large variability of local BA,

both for different atoms (36, 35, 20, 18, and 12 GPa for the cation in the ACl se-
ries) and for the same atom in different compounds (31, 27, 14, 13, and 9 for the

Cl atom in the same ACl series). This is because of the much softer regions of

the local VAðpÞ equation of state sampled by these compounds, compared with

the hard spinels – divalent and trivalent cations are very small and incompress-

ible, and the stronger electrostatic forces also place a large stress over the O

atom, whereas the comparatively larger monovalent cations are much more com-

Table 8.5 Local bulk moduli (BW, in GPa) and volume fractions ðwWÞ for
some AB2O4 spinels. Note that each wW includes the multiplicity of W

within the crystal unit cell.

Spinel wA BA wB BB wO BO

MgAl2O4 0.089 282 0.099 332 0.813 202

MgGa2O4 0.088 261 0.164 284 0.749 196

ZnAl2O4 0.136 246 0.095 335 0.769 203

ZnGa2O4 0.135 241 0.158 308 0.707 196
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pressible which, together with the weaker electrostatics, results in less stress over

the halide anions. Thus, partitioning of thermodynamic data into atomic compo-

nents aids interpretation of their values and provides a powerful tool for qualita-

tive predictions based on atomistic intuition.

8.7

Obtaining the Electron Density of Crystals

Most solid state electronic structure methods make use of pseudopotential tech-

niques to avoid the explicit calculation of the atomic-like core regions. The

valence electron density obtained from those calculations can, in principle, be

completed by addition of the missing atomic core densities [54–56]. It must be

noticed, however, that there are many different strategies for obtaining pseudo-

potentials, usually involving quite different partitions of the atomic density into

core-like and pseudovalence contributions. An inappropriate match between the

core and valence portions can result in spurious topological features. Whereas

the field is very promising, some effort is still needed, in our opinion, to compare

the results from the main types of pseudopotential currently in use. There is,

therefore, a limited number of methods that provide the all electron crystalline

electron density in and analytical form suitable for high-quality QTAIM studies.

Under the promolecular approximation the crystalline electron density is ob-

tained as a sum of atomic contributions:

rð~rrÞ ¼
X
j

rjð~rr �~RRjÞ ð6Þ

where the sum runs over all atoms, and rjð~rr �~RRjÞ is the electron density of the

atom situated at ~RRj. This simple formula not only enables rapid approximate esti-

mation but lies at the core of the experimental determination of the electron den-

sity from X-ray and neutron diffraction experiments. As a further simplification,

the atomic densities can be assumed to retain the spherical symmetry of the free

atoms. Although the promolecular model lacks the internuclear electron density

accumulation characteristic of true covalent bonding, it has been observed to fre-

quently retain the topological features of the density in nonmolecular crystals.

Even such fine details as the tiny nonnuclear maxima of some alkaline metals

[18] can be retained. In contrast, the promolecular model has been shown to

miss intermolecular bond CPs, i.e. give a different topology, in some molecular

crystal studies [57].

The ab initio perturbed ion (aiPI) [58, 59] method has been used quite success-

fully for calculation of the electron density of many ionic crystals [33–35, 37, 44,

51, 60]. The method solves the Hartree–Fock equations of a solid in a localized

Fock space by partitioning the crystal wavefunction into local, weakly overlapping,

group functions, each containing a fixed number of electrons and a single nu-

cleus. The aiPI crystal density can be described as a promolecular-like formula
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where the atomic contributions have been self consistently adapted to the crystal

environment.

The crystal software of Dovesi et al. [61, 62] exploits the same MO-LCAO

(crystal orbitals by linear combination of atomic Gaussian functions should be

the motto here) approach that dominate quantum chemical studies in the molec-

ular realm. Hartree–Fock (HF) and density functional theory (DFT) calculations

have been used to examine the electron density topology of many ionic, covalent,

molecular, and metallic crystals [26, 63–65]. It must be remarked, however, that

use of the rich and flexible bases that are common within the molecular regime

usually gives rise to linear dependencies and other technical problems that render

the crystal calculation unsuitable. The molecular basis sets must then be trun-

cated and Gaussian exponents less than 0.03–0.05 bohr�2, approximately, become

forbidden. To compensate for this problem, the lowest retained Gaussian expo-

nents are usually massaged or optimized within the crystal. When those difficul-

ties are taken into account, the method remains one of the two best techniques

available to obtain the crystalline electron density. The next version of the soft-

ware, release of which is planned for 2006, promises a definitive solution to the

basis set problem and could produce a significant breakthrough in the field.

The other candidate for the best technique crown is the full potential linearized

augmented plane wave (fpLAPW) formalism, implemented in the wien [30, 66]

software by Blaha et al. The method uses different treatment for nonoverlapping

spherical regions close to the nuclei, muffin tins, than for the internuclear regions.

Atomic orbitals inside each muffin tin are described as the product of spherical

harmonics and fully relativistic radial functions. Plane waves and a scalar relativ-

istic treatment is applied to the internuclear region. The wave functions of both

pieces are forced to match on value and slope at the muffin boundaries, but per-

fect agreement is not possible, because it would require inclusion of infinite

spherical harmonics within each atomic sphere. Some care is then required to

ensure that any remaining discontinuity in the density or its slope is not seen by

the topological algorithms. Saturating the internuclear region with plane waves

is, in contrast, both easy and inexpensive.

The fpLAPW, HF-LCAO, and aiPI topological properties of MgO and ZnO, two

representative examples of the crystals that can be examined with the three tech-

niques, are compared in Table 8.6. As usually occurs, the three techniques arrive

at the same topology, which validates the very rapid and very stable aiPI proce-

dure for analyzing trends and exploring the effect of geometry changes. They

also agree on the properties of the main bond critical points. The aiPI calculation,
however, underestimates the electron density at the ring and cage CPs and, in

general, in the low-density regions of the crystal. The effect is more significant,

because the average coordination index becomes smaller. The basin integrated

charges provide clear evidence of this – the charges in the oxide basin agree

for MgO (LCAO: �1.795, and aiPI: �1.852e) but differ substantially for ZnO

(LCAO: �1.496, and aiPI: �1.800e). The difference between the fpLAPW and

HF-LCAO results is mainly because of the correlation effects taken into account

in the first calculation: DFT-LCAO results (not shown in the table) close the gap

8.7 Obtaining the Electron Density of Crystals 223



between the LCAO and LAPW techniques. The correlation tends to increase the

electron density population of the bond CPs at the expense of the population of

the low-density regions.

The theoretical electron densities can be corrected by using the crystal form

factors, Fobsð~hhÞ, derived from experimental diffraction measurements [67, 68]. In

principle, the electron density of the crystal can be obtained directly from the

form factors:

robsð~rrÞ ¼
X
~hh

Fobsð~hhÞe�i2p~hh�~rr ð7Þ

Table 8.6 Comparison of the crystal topologies obtained by use of

fpLAPW (PBE96 [31] GGA), HF-LCAO, and aiPI calculations on MgO

(rock-salt structure, a ¼ 4:210 Å) and ZnO (wurtzite structure,

a ¼ 3:250 and c ¼ 5:207 Å). The (n,b,r,c) column provides the number

of CPs of each type found in the unit cell. The rA/rB column gives the

distance from the nuclei to a bond CP along the bond path. Atomic

units are used throughout.

Crystal Method (n, b, r, c) CP r(~rrc) ‘2r rA/rB

MgO fpLAPW ð8; 48; 48; 8Þ bðMg;OÞ 0.03911 0.21775 1.716/2.262

bðO;OÞ 0.01770 0.04553 2.813/2.813

r 0.01713 0.05651

c 0.00998 0.02402

MgO HF-LCAO ð8; 48; 48; 8Þ bðMg;OÞ 0.03599 0.25421 1.694/2.284

bðO;OÞ 0.01611 0.04900 2.813/2.813

r 0.01507 0.06309

c 0.00723 0.03096

MgO aiPI ð8; 48; 48; 8Þ bðMg;OÞ 0.03266 0.28543 1.704/2.274

bðO;OÞ 0.01183 0.05363 2.813/2.813

r 0.01075 0.06737

c 0.00444 0.02460

ZnO HF-LCAO ð4; 10; 8; 2Þ bðZn;OÞ 0.07870 0.47364 1.789/1.941

bðZn;OÞ 0.07554 0.44617 1.802/1.962

bðZn;OÞ 0.00650 0.02995 2.903/3.173

r 0.00649 0.02990

r 0.00437 0.01926

c 0.00177 0.00850

ZnO aiPI ð4; 10; 8; 2Þ bðZn;OÞ 0.07961 0.51117 1.797/1.932

bðZn;OÞ 0.07568 0.48603 1.811/1.953

bðZn;OÞ 0.00363 0.02172 2.809/3.268

r 0.00363 0.02171

r 0.00261 0.01354

c 0.00082 0.00466
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where the sum runs over the infinite lattice planes. In practice, however, the

number of form factors determined is severely limited by the experimental condi-

tions. Equation (7) comprises a series of alternating terms and truncation of the

sum to any finite number of terms, no matter how large, produces a density that

does not satisfy the required analytical conditions. In particular, robsð~rrÞ can have

unphysical negative values and is full of spurious hills and valleys that render it

not useful the gradient vector field.

The electron density obtained as a Fourier difference synthesis has much better

analytical properties [71]:

rð~rrÞ ¼ rmð~rrÞ þ
X
~hh

DFð~hhÞe�i2p~hh�~rr ð8Þ

where rmð~rrÞ is a smooth model density and

DFð~hhÞ ¼ Fobsð~hhÞ �
ð ð ð

rmð~rrÞei2p
~hh�~rr d~rr ð9Þ

is the difference between the values measured and calculated using rm for plane
~hh. A particular form of promolecular model constitutes the basis for the Hansen–

Coppens multipole refinement model [72], used on most current studies of the

experimentally determined electron density [21], but nothing prevents use of

crystal’s LCAO or wien’s fpLAPW as the source of the rm. The theoretical elec-

tron density supplies the information missing on the incomplete set of experi-

mental form factors and the experimental data correct any effect not accounted

for in the theoretical calculation, for example imperfect treatment of electronic

correlation or an incomplete basis set. This combination of theoretical and exper-

imental data can be of great help when investigating problems that lie at the

resolution limit of either approach.

This is illustrated for the Si crystal in Fig. 8.5, in which the electron density

along a nearest-neighbors SiaSi line is plotted. Addition of purely atomic den-

sities (i.e. the promolecular model) produces a bond CP at the ð0; 0; 0Þ position

with a very low density, 0.05e bohr�3. HF and BPW91-DFT LCAO calculations in-

troduce nonnuclear attractors between nearest-neighbor silicon atoms that have

been the subject of much speculation [73]. The HF result provides a high density,

0.098e bohr�3 at the SiaSi midpoint, which is slightly reduced to 0.090e bohr�3 at

the correlated level. When these three model densities are corrected with the con-

solidated set of Cumming and Hart [69] and the Sake and Kato [70] set of form

factors, all nonnuclear maxima disappear, and a well developed bond point

appears. The corrected densities are, in fact, very similar, differing by less than

0.0015e bohr�3 in the bonding region.

The meaning of those results should be assessed with some care. The SiaSi dis-

tance in the RTP (room temperature and pressure) diamond phase lies at the up-

per limit of a window of existence of NNM [38]. This is one of the reasons silicon
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is an interesting target. The use of a small or unbalanced basis set, differences in

the approximated treatment of the correlation, and other small computational de-

tails can modify the theoretical equilibrium distance enough to make the NNM

appear or disappear. The experimental form factors are corrected, on their own,

to avoid some well known effects, for example the directionally dependent X-ray

absorption or the different time expended on measurement of the different

Fobsð~hhÞ. The experimental form factors also unavoidably contain some thermal

motion noise, even if they have been deconvoluted from thermal agitation. Nei-

ther quantum mechanical calculations nor experimental diffraction data are thus

free from trouble when examining problematic systems lying at the edge of topo-

logical regions. The interesting thing is that both approaches can be combined in

several ways, giving the researcher new tools to examine the stability of difficult

topological features.
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Fig. 8.5 Electron density of the Si crystal along the xxx crystallographic

direction. This is the line connecting two nearest neighbors situated on

x ¼ 1/8 and x ¼ �1/8, respectively. Lines (a) through (c) are the raw

promolecular, HF-LCAO, and DFT-LCAO electron densities, respectively.

Lines (d) through (f ) correspond to the same model densities, now

corrected with the experimental form factors [69, 70].
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9

Atoms in Molecules Theory for Exploring the Nature

of the Active Sites on Surfaces

Yosslen Aray, Jesus Rodrı́guez, and David Vega

9.1

Introduction

The atoms in molecules theory provides a rigorous definition of chemical bonds

for all types of molecules and solids [1–10] and has proven useful in analysis of

the physical properties of insulators, pure metals, and alloys [4–8]. In particular,

it has been observed that the strength of the bonding between a given pair of

atoms in a molecule correlates with the values of the electron density at the bond
critical point, rb [1]. A simple relationship between the binding energy and rb in

periodic solids has also been reported [4, 6, 8]. The AIM theory also leads to

unique partition of three-dimensional space into a collection of chemically identi-

fiable regions called atomic basins (the atoms in a molecule or in a crystal). These

are the most transferable pieces one can define in exhaustive partitioning of the

real space [1]. In this chapter we describe the implementation of an algorithm

that uses the r(r) topological information to determine the main elements of the

AIM theory for periodic systems, and discuss an application to nanocatalysis.

9.2

Implementing the Determination of the Topological Properties of r(r) from a

Three-dimensional Grid

The CPs are usually calculated using the Newton–Raphson (NR) technique [11].

The NR algorithm starts from a truncated Taylor expansion at a point r ¼ r0 þ h,

about r0 of a multidimensional scalar function ð‘rðrÞÞ:

‘rðrÞ ¼ ‘rðr0Þ þH0hþ higher order terms ð1Þ

where H is the Hessian (the Jacobian of ‘rðrÞÞ at point r0. The best step, h, to

move from the initial r0 to the CP is h ¼ �H�1‘rðr0Þ. This correction is then

used to obtain a vector rnew ¼ rold þ th (t is a small value) and the process is iter-
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ated to ‘rðrÞ ¼ 0. The NR algorithm requires evaluation of the first and second

partial derivatives of r, at arbitrary points r.

The points of the necessary gradient paths to determine the bond paths, crystal

graphs, and IAS are solutions of the differential equation [1]:

drðsÞ=ds ¼ ‘rðrðsÞÞ ð2Þ

where the notation rðsÞ implies that a point r on a given path is dependent upon

the path parameter s. Equation (2) represents three first-order differential equa-

tions (dxiðsÞ=ds ¼ qr=qxi, xi ¼ x; y; z) and yields unique solutions only when par-

ticular values are assigned to three constants of integration. This corresponds to

fixing some initial point on a trajectory, at s ¼ s1, for example. A trajectory of the

gradient vector field of r(r) is a parametrized integral curve, a solution curve, of

the differential equation for ‘r(r). By fixing a point on a given trajectory all other

points which lie on the same path, can be obtained by solving Eq. (2). This is

achieved by using a fifth-order Cash–Karp Runge–Kutta (CKRK) method [12].

The general form of the Runge–Kutta formula is:

xnþ1 ¼ xn þ c1k1 þ c2k2 þ c3k3 þ c4k4 þ c5k5 þ c6k6 ð3Þ

where xn ¼ ðxn; yn; znÞ and kj over an interval h are:

k1 ¼ h‘rðrÞjr¼xn

k2 ¼ h‘rðrÞjr¼xnþb21k1

� � �
k6 ¼ h‘rðrÞjr¼xnþb61k1þ���þb65k5

The particular values of the various constants ðcj; bijÞ are given in Ref. [12].

It is apparent the key for implementation of the NR and CKRK algorithms is

calculation of the required derivatives of r(r), at arbitrary points r. To develop a

method enabling us to study complex systems, irrespective of the basis set (ana-

lytically or numerically) used, a numerical method on electron densities given on

regular, not necessarily homogeneous three-dimensional grids was implemented.

The necessary partial derivatives are evaluated using a five-degree Lagrange poly-

nomial interpolation of r(r) and are fed into an automated algorithm for system-

atic determination of the all CPs. For just one dimension the interpolating poly-

nomial of degree n� 1 through n points y1 ¼ f ðx1Þ, y1 ¼ f ðx1Þ; . . . ; yn ¼ f ðxnÞ
is given by the Lagrange’s formula:

PðxÞ ¼
Xn

k¼1

Yn
j¼1; j0k

ðx � xjÞ

Yn
j¼1; j0k

ðxk � xjÞ
yk ð4Þ
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There are n terms, each a polynomial of degree n� 1 and each constructed to

be zero at all xj except one, at which it is constructed to be yk. For a homogeneous

grid, xj ¼ x1 þ ð j� 1Þh, where h is the step size. Defining s ¼ ðx � xaÞ=h so that

xa and xaþ1 are the central points of the grid, we obtain x ¼ xa þ sh. Substituting
this last expression in Eq. (4) we have:

P ¼
Xn

k¼1

Yn
j¼1; j0k

ða� jþ sÞ

Yn
j¼1; j0k

ðk� jÞ
yk ð5Þ

and

P ¼
Xn

k¼1

wk; nðsÞ � yk ð6aÞ

where

wk;nðsÞ ¼

Yn
j¼1; j0k

ða� jþ sÞ
Yn

j¼1; j0k

ðk� jÞ
ð6bÞ

wk;nðsÞ are polynomials of degree n� 1 in s. The n-degree derivative of these ex-

pressions is:

dvP

dxv
¼ 1

hv

Xn

k¼1

wðvÞ
k; nðsÞ � yk

wðvÞ
k;nðsÞ ¼

dvwk;nðsÞ
dsv

ð7Þ

Equations (6) and (7) provide an accurate, rapid, and efficient way of interpolat-

ing r(r) and its derivatives at many arbitrary points. The easiest way to determine

those derivatives is to develop wk;nðsÞ as an s polynomial. For example, in Table

9.1 the s polynomial expression for wk;nðsÞ and its first and second derivatives

for interpolation with n ¼ 4; 6, and 8 points are reported. The explicit expression

for n ¼ 4 (Fig. 9.1) is given by:

rðxÞ ¼ ð�s3 þ 3s2 � 2sÞ=6r1 þ ðs3 � 2s2 � sþ 2Þ=2r2
þ ð�s3 þ s2 þ 2sÞ=2r3 þ ðs3 � sÞ=6r4 ð8Þ

For a three-dimensional system P is evaluated at points surrounding a box

containing the current point and in such a way that any coordinates of the point
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x are at the center of the points arrangement. The interpolation is accomplished

by a sequence of one-dimensional interpolations. For example, on a Cartesian

mesh (Fig. 9.2) of tabulated values yk (black circles) such as a parallelepiped, a

two-dimensional square-mesh with approximated yi (dark gray circles in Fig. 9.2)

Fig. 9.1 One-dimensional example of the interpolation at x with n ¼ 4

points, xi and ri are the abscissa and density values at grid point i.

Fig. 9.2 Example of the interpolation method

for a three-dimensional mesh of points.

Black circles denote the points with tabu-

lated values of the function. The open circle

denotes the current point where the function

must be interpolated. (a) A square of inter-

polated values at points denoted by gray circles

is obtained applying the one-dimensional

Lagrange interpolation to each line of

six points along the black arrows. (b) and

(c) show the square array after the first

approximation. In (c) the light circles denote

a new approximation using four-point linear

interpolation along the black arrows. Finally,

using a one-dimensional interpolation on the

light gray line, the approximation of the

function at the current value is obtained.
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values on a plane that coincides with just one of the coordinates of the current

point (open circle) is determined. Then, on the plane, a linear mesh (Fig. 9.2c)

that coincides with an additional coordinate of the current point is approximated.

Finally, the value of P is interpolated on this linear arrangement.

The final equation is:

P ¼
Xn1
k1¼1

Xn2
k2¼1

Xn3
k3¼1

wk1; n1ðs1Þ � wk2 ;n2ðs2Þ � wk3; n3ðs3Þ � yk1k2k3 ð9Þ

Taking advantage of the crystal symmetry and the properties of the gradient

paths of r(r) associated with the CPs, we have implemented a very rapid, auto-

mated algorithm for systematic determination of the all CPs inside the unit cell

of the crystal. First, it determines the bond CP among each pair of atoms (first

and second neighbors) using the NR method. Because the gradient paths associ-

ated with the negative eigenvalues at the bond CPs originate mainly in the cage

CPs, the algorithm then simply searches the origin of some of these paths (for

each bond CP) applying the NR method at these points. Finally, searching along

the lines connecting nearest neighbor cage CPs, all the ring CPs can be found.

Symmetry is used to generate all the CPs having the same type of symmetry

(same Wyckoff letter) and to avoid calculation of a CP that has already been

determined.

9.3

An Application to Nanocatalyts – Exploring the Structure of the

Hydrodesulfurization MoS2 Catalysts

Transition metal sulfides (TMS) are a very important class of catalysts character-

ized by stability under harsh conditions in hydrodesulfurization (HDS), hydrode-

nitrogenation (HDN), and hydrogenation reactions [13–15]. In these processes

the surfaces of the sulfides are reduced by sulfur elimination, by use of a large

excess of hydrogen at temperatures ranging from 573 to 673 K creating coordina-

tively unsaturated sites (CUS) or vacancies around the metals. The CUS behave

as electron-withdrawing sites whose properties may be regarded as a Lewis acid

type center interacting with electron-donating organic substrates [16–18]. It is

suggested the nature of these sites is intimately related to the metal–sulfur bond

strength [16–19]. Basic studies support the idea that differences between catalytic

activity is related to variations in the concentration of CUS (the Lewis acid sites),

which in turn depend on the metal–sulfur bond strength [20–31]. Nickel (and

cobalt)-promoted molybdenum sulfide catalysts have for many years been re-

garded as being among the most important catalysts used in refineries. Studies

using X-ray absorption fine structure (EXAFS) have established that the active

Mo atom is present as small MoS2-like nanostructures [32, 33]. Adsorption and

activity experiments [34, 35] have revealed that the active sites reside at the edges
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of the MoS2 structures, and high-resolution scanning tunneling microscopy

(STM) and density-functional theory (DFT) studies [36] have recently shown that

the MoS2 nanoclusters adopt a hexagonal shape exposing two different types of

edge, Mo edges covered with S monomers and fully sulfur-saturated S edges. In-

corporation of nickel or cobalt into these edges significantly increases the activity

of the catalyst [14, 37–39]. Under typical sulfidation conditions Ni is preferen-

tially incorporated into the metal edge.

9.3.1

Catalyst Models

MoS2 bulk is a layered-type crystal the lattice of which is described by the hexag-

onal space group P63/mmc with a ¼ b ¼ 3.160 Å and c ¼ 12.294 Å [40]. Its crys-

tal structure belongs to a family of polytypic structures with close-packed triangu-

lar double layers of S with Mo atoms arranged in the trigonal–prismatic holes of

the S double layers (Fig. 9.3).

Mo atoms occupy the 2c Wyckof positions with coordinates (1/3, 2/3, 1/4) and

the S atoms the 4f position with coordinates (2/3, 1/3, 0.371) [41]. Each Mo atom

is bonded to six S atoms in a trigonal–prismatic arrangement. The closest SaS
distances are across the double layer and within the close-packed layers; the

interlayer SaS distances are much larger and of the van der Waals type. The mor-

phology of the catalysts [16] can be depicted as small MoS2 particles (crystallites)

dispersed at the surface of the support (usually SiO2, graphite, etc). These par-

ticles have an average size of approximately 600G 200 Å2 and their reactivity de-

pends on preferential exposed faces or planes. HDS catalysis is largely a surface

process and, therefore, we must consider surface models. These models are usu-

ally obtained by cutting the three-dimensional bulk structure along a particular

plane defined by using the appropriate Miller index [29, 39, 42]. For example,

the so called basal plane of a MoS2 crystallite [36] is produced by cleaving the

crystal along the (001) plane (Figs. 9.3b and 9.3c). This plane is fully covered by

sulfur atoms and is inactive for HDS reactions. Cleavage of the bulk structure

parallel to (010) plane (Figs. 9.3d and 9.3e) produces the well known edge surface

exposing coordinatively unsaturated molybdenum or sulfur atoms. Each of the ex-

posed Mo atoms is coordinated to four sulfur atoms and each terminal sulfur

atom is coordinated to two Mo atoms. Several studies have shown that the bare

Mo edge terminating in a row of undercoordinated Mo atoms is very unfavorable;

such edges will therefore have high affinity for S adsorption. The real morphol-

ogy of the MoS2 catalyst active sites has been deduced from experimental and

theoretical studies. STM enables direct imaging of catalytically relevant surface

structure on the atomic scale. By studying a realistic HDS model system consist-

ing of a few-nanometer-wide gold-supported MoS2 particles it has been shown

that the morphology of the nanoparticles is sensitive to sulfiding and reaction

conditions [36]; this means triangles are formed under heavy sulfiding conditions

and truncated hexagons under more sulfo-reductive conditions resembling HDS

conditions. These hexagonal clusters expose the basal plane and two different
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types of edge – Mo edges covered with S monomers and fully saturated S edges

[36]. Different models have been used to study the edge structure of MoS2 cata-

lysts using DFT methods – cluster models including a finite number of atoms

[43, 44], a single SaMoaS periodic slab [45, 46], and a larger slab model contain-

ing two SaMoaS sheets exposing Mo and S edges alternately [29, 38, 39, 47–54].

From these studies a clear picture of the MoS2 edge structures has emerged. The

most external Mo atoms of the Mo edge contain 50% sulfur coverage with each

sulfur atom bridged to two neighboring molybdenum atoms. Significant recon-

struction of the Mo edge occurs; the bridged S atoms are shifted by half a lattice

constant relative to the bulk S lattice and move down to a bridging position in-

plane with the Mo lattice. The S edges remain fully sulfided and a maximum

Mo coordination to six sulfur atoms is achieved in one configuration where the

edge is terminated by a row of sulfur atoms positioned in a bridge position close

to those expected from bulk-terminated MoS2. Both edge geometries lead to a co-

ordination number of six for the outermost molybdenum atoms and two for the

corresponding sulfur atoms. The local atomic structure of NiMoS catalysts has

been resolved by means of DFT calculations coupled with simple thermodynam-

ics determinations [29, 38]. Under typical sulfidation conditions nickel is prefer-

entially incorporated into the metal edge in a square planar geometry with 0%

sulfur. On a partially promoted metal edge, sulfur atoms bond to the outermost

Mo atoms and the promoter atoms tend to be uncovered [38]. High-resolution

electron microscopic studies of silica-supported Mo based catalysts have shown

that the morphology of the catalyst can be depicted as small particles with an

average size of 29 Å (mean diameter) and three slabs in width dispersed on the

surface of the support [16]. Figure 9.4a shows a model of such a particle interact-

ing with a dibenzothiophene molecule. The structure of the particle edge (the

active site) is emphasized by means of a white square.

In this section we will study the larger periodic slab model (Fig. 9.4b) that ex-

poses alternating layers of Mo and S edges denoting nanoparticles several layers

wide. The unit cell (9:480� 12:294� 36:000 Å3) of this surface has three and

six bridged S atoms above the Mo and S edges, respectively. This cell contains a

periodic slab of several layers of atoms initially having the same structure of the

surface built directly from the bulk. Vacuum layers thicker than 15 Å were used to

ensure there were no interactions between adjacent slabs. The geometry of the

models was optimized by using algorithms included in the Dmol3 program [55,

56]. The two upper rows were allowed to relax while the atoms of the lower rows

were kept fixed at their optimized bulk positions to simulate bulk constraints.

Fig. 9.3 (a) Ball-and-cylinder model of the

MoS2 bulk 1� 2 cell illustrating the sheet

arrangement of Mo and sulfur atoms.

(b) Side view of three sheets and (c) Top view

of a 4� 5 cell of the (001) MoS2 surface

(the basal plane). (d) Side view and (e) top

view of a 4� 2 cell of the hypothetical (010)

MoS2 surface. White cylinders denote the unit

cell whereas light blue and yellow spheres

denote the Mo and S atoms, respectively.

Spheres in (e) emphasize the outermost

atoms of the surface.

H
________________________________________________________________________________
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Fig. 9.4 (a) Ball-and-cylinder model showing

a side view of a hypothetical NiMoS nano-

particle that simulates the particles of

Ref. [16] supported on an Au (111) surface.

Blue, dark blue, and yellow spheres denote

the Mo, Ni, and S atoms, respectively, on the

edges. A white rectangle emphasizes the

structure of the active site that interacts with

a dibenzothiophene (white and yellow

cylinders) molecule. (b) Side view of the

periodic model of the MoS2 edges. Light blue

and yellow cylinders denote the Mo and S

atoms, respectively. Dark blue cylinders

denote the Mo atoms on the S edges. Green

and yellow spheres denote the outermost S

atoms on the Mo and S edges, respectively.
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9.3.2

The Full r(r) Topology of the MoS2 Bulk

In the MoS2 unit cell, six sulfur atoms locally coordinate with one Mo atom to

form a trigonal prismatic structure. Each Mo atom is surrounded by the six near-

est sulfur atoms at a distance of 2.404 Å forming an MoS2 sheet, and each S atom

is surrounded by the three nearest Mo atoms on the sheet and by the three sec-

ond nearest S atoms located on a neighboring MoS2 sheet. All the CPs of that

unit cell have been located and the data that characterize them are given in Table

9.2. In this table the corresponding Wyckoff letter in the International Tables of

Crystallography [57] identifies the critical points within a unit cell. This identifica-

tion is useful for determining the topology of the electron density of an extended

system. Figure 9.5a illustrates the bond and cage CPS determined inside the

MoS2 sheets. The bond paths are shown as gray lines connecting the bound

atoms. There are six nuclei in the primitive cell, two molybdenum (light blue

spheres), located at the position labeled c, and four sulfur (yellow spheres), at po-

sition f. There are twelve MoaS bond critical points (gray spheres) at position k, six
four-membered ring CPs at f , and one trigonal prism-like cage (red spheres) at b.

Table 9.2 Topological properties (au) of r(r) at the critical points for

MoS2 bulk space group: P63/mmc (D4
6h in Schoenflies notation).

Wyckoff

letter

Site

symmetry

Critical point l1 l2 l3 rb

k 12 CS MoaS b �0.1073 �0.0809 0.3212 0.0908

g 6 C2h SaS b �0.0056 �0.0056 0.0388 0.0112

h 6 C2v Four-membered

2Moa2S r
�0.0347 0.0058 0.0492 0.0433

b 2 D3h Three-membered

3 Mo r
�0.0149 0.0288 0.0292 0.0159

k 12 CS Four-membered

1Moa3S r
�0.0024 0.0062 0.0127 0.0070

d 2 D3h Red c (Fig. 9.6b) 0.0253 0.0260 0.0664 0.0311

f 4 C3v Green c (Fig. 9.6c) 0.0048 0.0062 0.0062 0.0057

a 2 D3d Pink c (Fig. 9.6e) 0.0017 0.0022 0.0022 0.0045

c 2 D3h Mo n

f 4 C3v S n
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This cage is defined by just three nonplanar curved faces (Fig. 9.5b) with a ring

CP at the center of each face. A set of four MoaS bond paths delineates each of

those ring structures. The set of gradient paths which originates at each of those

ring CPs and terminate at the nucleus defines the so called ring surface (Fig.

9.5b). A set of three of those ring surfaces defines the cages located at b.
An additional set of six SaS bond CPs was also found at position g (white

spheres in Fig. 9.6a) in the middle of each pair of neighboring MoS2 sheets.

These bond CPs are weaker interactions than the MoaS bonds, as evidenced by

the values of r (rMoaS ¼ 0:0908 au and rSaS ¼ 0:0112 au) at rc and are character-

istic of van der Waals interactions [1, 10, 58–60]. Similar results have been pub-

lished for many hydrogen-bonded systems [59, 60] and van der Waals molecules

[58]. The presence of these SaS bond CPs creates additional sets of ring and cage

points between the MoS2 sheets (Figs. 9.6a and 9.6c). Four distorted trigonal

prism cages (green spheres) at f positions, two fourteen-faced cages at a posi-

tions (pink spheres), twelve four-membered rings at k and two six-membered

ring CPs at d have also been determined. Each cage at f is formed by three

curved faces (Fig. 9.6c) defined by two MoaS and two SaS bond paths with a

ring CP at the center of each face. The cages located at a positions are defined

by fourteen curved faces (Figs. 9.6d and 9.6e): six four-membered faces shared

Fig. 9.5 (a) Bond (dark gray spheres) and cage (red spheres) r(r)

critical points located inside the bulk MoS2 sheets. Large light blue and

yellow balls denote the Mo and S atoms, respectively. (b) Representa-

tion of the ring surface (white faces) defined by the gradient paths that

originate at the ring CPs (blue spheres) and end at the nuclei. Three of

these ring surfaces define the faces of the red cages.
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with the cages at f (green spheres), two three-membered faces defined by a ring

surface bonding three Mo atoms at the top and at the bottom of the cage, and

six three-membered faces shared ( just the half of the face) with the cages at b
(Fig. 9.6f ).

The entire set of critical points defines specific bonding polyhedra, the packing

of which gives rise to the MoS2 bulk structure. The topology of these polyhedra is

determined solely by the number of corners, edges, and faces. Convenient nota-

tion for these polyhedra [5] is {corner number, edge number, face number}. The

network of bond paths (Figs. 9.6a and 9.6d) describing the atomic connectivity

shows that the crystal graph of MoS2 results from packing of three types of

polyhedron – two {5, 6, 3} such as that shown in Figs. 9.6b and 9.6c and one

{12, 18, 8} (Fig. 9.6e), with each face of the distorted trigonal prisms located at f
shared with a {12, 18, 8}. The volume spanned by the paths ending at a given

nucleus defines the basin of the atom. A 3D view of the IAS and the atom basin

are given in Fig. 9.7. There are eleven cage critical points defining an Mo atom

and a set of eight cages defines the S atoms. The paths that originate at four cages

and terminate at a b CP define each inter-atomic surface. There is a set of six

MoaS surfaces bounding the Mo atomic basin and a set of three MoaS and three

SaS surfaces bounding the S atoms. Consequently, the Mo and S atoms have D3h

and C3v symmetry, respectively. Along the MoaS bond paths, both atoms have

curved faces corresponding to MoaS bonds – concave in the basin of the molyb-

denum and convex in that of the sulfur. This result agrees with a transfer of elec-

tronic density from the Mo atom to the sulfur atom [1, 31]. These basins display

the full local point-group symmetry at the nuclear sites and fill the space without

overlapping each other.

Fig. 9.6 (a) Ball-and-cylinder model illus-

trating the bond and cages r(r) critical points

of the MoS2 bulk. Large light blue and

yellow balls denote the Mo and S atoms,

respectively. Dark gray and red spheres

denote the MoaS bond and cage CPs,

respectively, inside the sheets. White, gray,

and pink spheres denote the SaS bond and

cage CPs locate between the sheets. (b) Five

nuclei (three Mo and two S), six MoaS bond

paths, and three four-membered curved faces

define each {5, 6, 3} red cage. (c) Green

cages located at f Wyckoff positions define a

layer of {5, 6, 3} polyhedra just below the red

cages. (d) Top view (just the 001 Miller

plane) of the cell shown in (a) illustrating the

space (red triangle with a red sphere at the

center) occupied by the {5, 6, 3} polyhedra

defined by the red cages. The empty triangles

(without red spheres at the center) are filled

for {12, 18, 14} polyhedra defined by the pink

cages. (e) Twelve nuclei (six Mo and six S),

twelve MoaS and six SaS bond paths, and

fourteen faces define each {12, 18, 14} pink

cage. (f ) Representation of the three-

membered ring surface (white faces) defined

by the gradient paths that originate at the

ring CPs (dark blue spheres) and end at the

Mo nuclei. Three lateral three-membered ring

surfaces (gray cylinders) complete the top of

the cage. Right: half of the ring surfaces

shared with the red cages define these lateral

three-membered faces.

H
________________________________________________________________________________
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9.3.3

The r(r) Topology of the MoS2 Edges

The r(r) topology of the MoS2 edge model (Fig. 9.8) has shown the presence of

almost the same type of CP as that of the bulk case – MoaS (gray spheres) and

SaS bond critical points (white cylinders), four-membered ring CPs, trigonal

prism-like cages (small red spheres), distorted trigonal prism cages (green

spheres), and fourteen-faced cages (pink spheres). A new kind of cage (big

red spheres) capped by the outermost sulfur atoms on the metal edge (big yellow

spheres) is the main difference from the bulk CPs. These cages are built with

four curved faces and describe {6, 8, 4} polyhedra (Fig. 9.8b). Thus, the graph

of the exposed structure for the MoS2 surface results from the packing of these

{6, 8, 4} and {5, 6, 3} polyhedra similar to the bulk one with a green cage at the

Fig. 9.7 (a) Side and (b) top view of the

region of space (the basin) bounded by six

concave interatomic surface that defines an

Mo atom. Each interatomic surface is defined

by the paths that originate at four cages CP

(red spheres) and terminate at MoaS bond

CPs (gray spheres). (c) Side view of the S

atom basin. Three convex (at the top) and

three planar (at the bottom) interatomic

surfaces are defined by the paths that

terminate at three MoaS and three SaS bond

CPs, respectively. Dark blue spheres denote

ring CPs that bound each pair of cage CPs.
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middle (Fig. 9.8c). Each {6, 8, 4} polyhedron is defined by eight MoaS bond paths

with an average rb value (Table 9.3) of 0.0926 au, and contains a cage CP with a rc
value of 0.0297 au, and the {5, 6, 3} polyhedra are defined by three MoaS bond

paths with an average rb value of 0.0916 au and three SaS bond with rb value of

0.0087 au and contain a cage with rc value of 0.0054 au. The former polyhedra

whose nuclei are bonded by a much bigger electron density should therefore be

more stable than the {5, 6, 3} polyhedra.

The basin for the outermost Mo atoms is bordered by six MoaS inter-atomic

surfaces. A set of seven cages (the paths that originate at the cages and terminate

at the Mo nuclei outline its associated basin) defines these Mo atoms. In a similar

way to the bulk example, the internal IAS are generated by the paths that origi-

nate at four cages while the outermost IAS are defined by two cages only and

by the paths from the infinite (the open space) and terminate at the bond CPs.

Fig. 9.8 (a) Side view of a ball-and-cylinder

model illustrating the bond and cages r(r)

critical points of the MoS2 edge. Large light

blue and yellow balls denote the Mo and S

atoms, respectively. Dark gray spheres and

white cylinders denote the MoaS and SaS
bond CPs, respectively. Red, green, and pink

spheres denote the cage CPs in the same

sense of Fig. 9.6. Big spheres emphasize the

outermost cage CPs. (b) {6, 8, 4} polyhedron

defined for the outermost S atoms on the

metal edge. (c) Most external {5, 6, 3}

polyhedra bonded to the exposed Mo atoms

of the sulfur edge.
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The basin for the outermost S atoms on the Mo edge and on the sulfur edge is

bordered by two and four MoaS IAS, respectively. Figure 9.9 shows a top view of

several of those S basins.

It is apparent the Mo atoms are totally covered by the sulfur atoms, which ob-

struct access of incoming molecules, for example dibenzothiophene that contains

polluting sulfur atoms [47, 50, 52, 54]. This result agrees with the known inactiv-

ity of this kind of site, similar the basal plane that only exposes sulfur atoms. We

must therefore create vacancies or CUS on this surface by a reduction process to

generate available Lewis acidic sites. Usually, H2 reacts with surface sulfur atoms

to create a vacancy and produce H2S [50]. The energy to create a sulfur vacancy

can therefore be calculated by using the equilibrium: Surface-SþH2 , Surface-

kþH2S (where ‘k’ denotes a vacancy). Thus the creation energy, CE, of a sul-

fur vacancy is given by the expression:

CE ¼ EðSurface-@Þ þ EðH2SÞ � EðSurface-SÞ � EðH2Þ ð10Þ

The energy for each sulfur removal has been reported and the stability of each

surface has been deduced using a DFT methodology based in pseudo potentials

and plane wave basis sets [51]. The CE and the Lewis acidity strength of sulfur

vacancies or coordinative unsaturated sites on the MoS2 edges were recently

studied using density-functional theory for periodic systems and an electrostatic

potential based method [61]. On the sulfur edge, the gradual removal of the six

Table 9.3 Topological properties (au) of r(r) at the outermost critical points for MoS2 edges.

Edge Critical point l1 l2 l3 rb

Sulfur MoaS b �0.1011 �0.0943 0.3054 0.0916

Sulfur Four-membered

2Mo–2S r
�0.0068 0.0216 0.0496 0.0323

Three-membered r

Sulfur Four-membered

1Mo–3S r
�0.0023 0.0072 0.0127 0.0061

Sulfur Red c (Fig. 9.8) 0.0066 0.0122 0.0733 0.0311

Both Green c (Fig. 9.8) 0.0015 0.0051 0.0087 0.0054

Both Pink c (Fig. 9.8) 0.0012 0.0026 0.0026 0.0029

Both SaS b �0.0047 �0.0043 0.0307 0.0087

Mo MoaS b new �0.1010 �0.0962 0.3215 0.0926

Mo c new (Fig. 9.8) 0.0050 0.0117 0.0690 0.0297
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S atoms of the cell (Fig. 9.4b) was studied and for each case geometrical optimi-

zation was conducted for the most stable configuration reported. For the Mo

edge, gradual removal of the three S atoms (Fig. 9.4b) ending with complete ex-

posure of the underlying Mo atoms was also studied. The Lewis acidity strength

of these specific sites can be explored by use of the electrostatic potential, V(r),
which enables us to determine directly where the electron-rich sites in a molecule

or crystal are located [61–72].

V(r) at a point r generated by a molecule or crystal is given by:

VðrÞ ¼ VNðrÞ þ VEðrÞ ð11Þ

Fig. 9.9 (a) Top view of a ball-and-cylinder model illustrating the bond

and cages r(r) critical points of the MoS2 edge. (b) Top view of the

MoS2 edge surface showing the IAS defining the exposed basin of the

outermost S atoms. Black lines emphasize the basin of some Mo atoms,

showing that these atoms are encapsulated by the external S atoms.
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where the two terms VN(r) and VE(r) represent the bare nuclear and electronic

contributions, respectively, to the total electrostatic potential. The sign of V(r) at
a given point indicates either the nuclear (positive) or the electronic (negative) ef-

fects are dominant. The electrostatic potential at r generated by the total charge

distribution, r tot, of a periodic system is given by:

VðrÞ ¼
X
n

ð
r totðr 0 � RnÞjr � r 0j�1 dr 0 ð12Þ

The summation extends to all direct lattice vectors, the prime on the integral

sign indicating that an infinitesimal region about r ¼ r 0 is excluded from the do-

main of integration to avoid divergent nuclear self-interaction terms that would

otherwise arise in the electrostatic energy per cell. r tot may be decomposed into

electronic and nuclear components, as follows:

rnucðrÞ ¼
X
a

qadðra; rÞ ð13Þ

where the summation extends to all the reference cell nuclei, with atomic num-

bers and position vectors denoted qa and ra, respectively.

r elðrÞ ¼ �
X
ij

X
mn

PmR inR jwmðr � RiÞw�n ðr � RiÞ ð14Þ

where P is the density matrix and wmðr � RiÞ is the mth reference cell basis func-

tion translated by the direct lattice vector Ri. The summations over i and j extend
to all direct lattice vectors, while those over m and n include all the basis functions

of the reference cell. Substitution of Eq. (13) and Eq. (14) into Eq. (12) gives the

nuclear and electronic V(r) contributions.

For the region nearest to the nucleus VN dominates and the topology of V(r) is
similar to that of the electron density [73, 74], r(r), i.e. positive maxima at the

nuclear site and a positive saddle point between every pair of bonded atoms. The

existence of maxima is, nevertheless, ruled out by an established result that, ex-

cept for the nuclear position, there cannot be any strict local maxima in the V(r)
map [65, 66]. For the region where VE dominates, V(r) is negative and the V(r)
topography can be more complex. It is, however, well known that lone pairs of

electrons and double p bonds (CbC, CbN, etc) are usually characterized as nega-

tive minima [64, 66]. In summary, the region nearest the nucleus is always posi-

tive whereas the region where the potential is negative contains the minima that

characterize the atom lone pairs. The minima of the negative region denote the

zones to which an approaching electrophile may be attracted. In contrast, the pos-

itive regions do not have maxima that might indicate sites for nucleophilic attack.

Politzer and Sjoberg have, nevertheless, shown that by computing V(r) on the
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Table 9.4 Creation energy, CE (Eq. 10), and maximum positive value of

V(r) for the sites studied on the Mo and S edges of molybdenum

sulfide [61].

Site Edge Number of sulfur

atoms removed

CE

(kJ molC1)

V(r) maximum

(kJ molC1)

2 S 2 34.581 15.491

3 S 3 72.579 51.982

4 S 4 260.579 54.085

5 S 5 515.409 131.695

6 Mo 1 153.345 44.371

7 Mo 2 271.810 142.040

8 Mo 3 458.538 142.877
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0.002-electron Å�3 contour isosurface [75] of the molecular electronic density

r(r), the susceptibility of molecules to nucleophilic attack can be quantified.

They demonstrated that the relative magnitudes of the positive electrostatic po-

tential in different regions on this surface do reveal the sites most susceptible to

nucleophilic attack. This contour isosurface for a group of diatomic molecules

and for methane encompasses at least 95% of the electronic charge and yields

physically reasonable molecular dimensions [75]. A similar approach, mapping

the V(r) values on this isosurface on to colors to identify the host sites in which

nucleophiles (most positive zone) and electrophiles (most negative zone) should

bind, was used to explore the Lewis acid sites on the MoS2 edges. In addition, to

quantify the susceptibility of the active sites, the minimum and maximum V(r)
values at the determined host zones were also determined using the Newton–

Raphson technique described in Section 9.3. The reported CEs and V(r) maxi-

mum values [61] that characterize the Lewis acid strength of the studied sites

are listed in Table 9.4. These values suggest that the energetically more favorable

sites are located on the sulfur edges; their Lewis acidity strength is, however,

much smaller than the site acidity at the molybdenum edges. As a compromise

of Lewis acidity strength and energy site 3 with 50% sulfur coverage is suggested

as the most hydrodesulfurization-active site. Sites 5, 7, and 8 are very acid sites

but at a cost of a huge CE, as is apparent from Table 9.4. These CE results con-

firm the previously suggested greater stability of the {6, 8, 4} polyhedra on the Mo

edges than the {5, 6, 3} polyhedra on the S edges. Because removal of each S

atom of the S edge destroys two {5, 6, 3} polyhedra, destruction of six these last

polyhedra to create site 3 costs half the energy necessary to destroy just one {6, 8,

4} polyhedron to create site 6 (Table 9.4).

The r(r) topology for site 3 is shown in Fig. 9.10a. This site is obtained by re-

moving three S atoms from the cell, just on the S edge; the remaining three S

atoms again occupy bridging positions between the Mo sites. In contrast with

the Mo edge, however, the S atoms are tilted to conform as far as possible to the

bonding MoaS network present in the solid. The MoaS distances at the S edge

vary between 2.29 and 2.32 and are shorter than the MoaS distances (2.40) of

the surface without vacancies. The S atoms with the shortest MoaS distances

(two by cell) have only one SaS bond (Fig. 9.10a) completing tricoordinated S

atoms whereas the other S atom of the cell preserves the two SaS bonds located

Fig. 9.10 (a) Top view of a ball-and-cylinder

model illustrating the bond and cage r(r)

critical points of site 3. Large light blue and

yellow balls denote the Mo and S atoms,

respectively. Dark gray spheres and white

cylinders denote the MoaS and SaS bond

CPs, respectively. Pink spheres denote cage

CPs in the same sense as in Fig. 9.8. Note

that holes (emphasized by white rectangle

and circles) have appeared in the bond path

network. (b) Top view of site 3 showing

the IAS defining the exposed basin of the

outermost S atoms. Holes in the interatomic

surfaces (emphasized by white rectangle and

black circles) suggest the site where the Mo

atoms are most accessible to the incoming

molecules. Dotted black lines show the basin

of the Mo atoms on the sulfur edges just

encapsulated by the external S atoms.

H
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Fig. 9.11 (a) Top view of the 0.002 e Å�3

contour of V(r) mapping of the V(r) field

values on to colors placed over the IAS

defining the basin of the outermost sulfur

atoms. The color map tab at the bottom is:

dark blue (�157.530 to �78.765 kJ mol�1),

sky blue (�78.765 to 42.008 kJ mol�1), light

blue (�42.008 to �31.506 kJ mol�1), dark

green (�31.506 to �21.004 kJ mol�1), green

(�21.004 to �10.502 kJ mol�1), light green

(�10.502 to 0.000 kJ mol�1), yellow (0.000 to

26.255 kJ mol�1), yellow cream (26.255 to

52.510 kJ mol�1), orange (52.510 to 65.638

kJ mol�1), brown (65.638 to 78.765 kJ mol�1),

purple (78.765 to 91.893 kJ mol�1), light red

(91.893 to 105.020 kJ mol�1) and red

(105.020 to 144.403 kJ mol�1). White squares

indicate the most positive zones on the V(r)

contour. (b) Side view of the basin of the

outermost sulfur atoms. The 0.002 au

contour of V(r) is used to define the border

of these open atoms. V(r) mapped on this

border enables us to locate the stronger

Lewis acid sites.
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in the inter-edge space, forming four-coordinated atoms. Holes (denoted as a

white rectangle in Fig. 9.10a) can be observed in the bond path network, between

each pair of consecutive four-coordinated S atoms.

The basins for the outermost S atoms of site 3 are shown in Fig. 9.10b. It is

apparent that compared with the surface without vacancies (Fig. 9.9b), the basins

on the S edge have suffered a drastic change in their shape. These atoms spread

to occupy the space liberated in the vacancies and adopt a triangular form like an

arrow head. The base of each triangle is defined by the SaS IAS and the opposite

angle (head point) penetrates inside the vacancy, occupying the space liberated by

the removed S atoms, ending at the middle of the network bond path hole. The

region around these head points (denoted by rectangles and circles in Fig.

9.10b) should be the sites with smaller sulfur electronic density on the surface,

enabling access to the Mo atoms (the Lewis acid sites). This can be easily checked

by means of the electrostatic potential. This let us visualize directly the stronger

Lewis acid sites (most positive zones) by surface mapping the V(r) values on to

colors on the 0.002 electron Å�3 isosurface of r(r). Figure 9.11a shows the

superimposition of this color map on the exposed S atom basins of the MoS2
edges model. Starting from the most negative V(r) values (caption of Fig. 9.11a),

three kinds of blue and three kinds of green denote the most negative values and

two kinds of yellow and one orange denote the positive V(r) values. The orange

region corresponds to the most positive site and, as is apparent from Fig. 9.11,

it perfectly matches with the hole where two sulfur basin head points almost

converge.

Exposed atoms, atoms in an isolated molecule, have substantial open parts that

extend to infinity. These atoms are open or unbounded at the exterior of the

surface and a practical definition [9] is to cap the atom with an isosurface of the

electron density with small r(r) value representing the van der Waals envelope of

the system. The 0.002 electron Å�3 contour of r(r) shown in Fig. 9.11 just defines

the border of the outermost sulfur atoms of the (010) MoS2 surface. Figure 9.11b

shows a side view of the atomic shape of these sulfur atoms. It is worthy of note

that the stronger Lewis acid sites are located between the sulfur atoms at the bot-

tom of the r(r) 0.002 contour valley. This is the region where the Mo atoms are

most accessible to incoming molecules.

In summary, there is a profound relationship between the vacancy creation en-

ergy, i.e. the energy necessary to remove exposed sulfur atoms from the MoS2
surface and the nature (number of bond paths and r(r) value at the bond and

cage CPs) of the exposed polyhedra defining the surface graph. The structure

and shape of the basins of the exposed sulfur atoms also enable us to visualize

and locate the Lewis acid sites on this surface.
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Interpretation of Experimental Electron

Densities by Combination of the QTAMC

and DFT

Vladimir G. Tsirelson

10.1

Introduction

Richard Bader summarized his longstanding studies dealing with development of

the quantum theory of atoms in molecules and crystals (QTAMC) in his classic

book published in 1990 [1]. He demonstrated that the ground-state electron den-

sity rðrÞ, its gradient vector field, ‘rðrÞ, and the Laplacian field, ‘2rðrÞ, enable
definition of bond paths, the lines of maximum electron density linking some of

the nuclei, which can be identified at the equilibrium geometry, with the chemi-

cal bonds, and enable characterization of the type of these bonds in molecules

and crystals. Originally, QTAMC was developed using electron density calculated

from the wavefunctions. Later, it was demonstrated [2–5] that electron density de-

rived from results from accurate X-ray, g-ray, and synchrotron radiation diffraction

experiments could also be analyzed in the same manner. Initial application of

QTAMC to the experimental electron density of compounds with different types

of chemical bond [6–11] showed that this function has a similar topology and the

same set of critical points as quantum-mechanical r. Thus, the experimental elec-

tron density seems to be suitable for the QTAMC analysis of bonding in mole-

cules and crystals, with electron density deduced from the wavefunctions. This

approach is now widely used for exploration of experimental features of electron

density; a thorough review of the results obtained from this type of work is avail-

able elsewhere [12–19].

In addition to electron density and its derivatives, Bader has also described the

role of the positively-defined electronic kinetic energy density:

gðrÞ ¼ ð�h2=2mÞ‘r‘r 0gðr; r 0Þjr ¼ r 0 ð1Þ

and the potential energy density which is negative everywhere, defined by

expression:

vðrÞ ¼ �
X
a

½Zae
2=ðr � RaÞ�rðrÞ þ e2

ð
½Gðr; r1Þ=ðr � r1Þ� dr1 þ Vn ð2Þ
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where gðr; r 0Þ and Gðr; r1Þ are one-electron and two-electron density matrices, re-

spectively, Za is the charge the nucleus a, e and m are the electronic charge and

mass, respectively, and Vn is the nuclear repulsion. These functions are related by

the local form of the virial theorem [20]:

2gðrÞ þ vðrÞ ¼ ð�h2=4mÞ‘2rðrÞ ð3Þ

Finally, the density of the total electronic energy is defined as:

heðrÞ ¼ gðrÞ þ vðrÞ ð4Þ

Exploration of energy distributions in molecules by use of wavefunction-based

calculations [21–26] has revealed that analysis of the local electronic energy is

a direct approach to characterization of bonding in molecules and crystals. In

particular, it facilitates recognition of the type of atomic interactions from the

properties of bond critical points at rb � heðrbÞ < 0 and gðrbÞ=rðrbÞ < 1, and

‘2rðrbÞ < 0, are observed for shared-type atomic interactions whereas heðrbÞq 0,

gðrbÞ=rðrbÞ > 1, and ‘2rðrbÞ > 0 are typical for intermediate and closed-shell in-

teractions [16, 18, 23, 27].

Bader has also stressed [26, 28] that the potential energy density represents the

field of the virial of the Ehrenfest force [29] acting on an electron at r, the virial

field vðrÞ. Irrespective of the type of atomic interaction, each bond path in the

electron density at equilibrium geometry is homeomorphically mirrored by a vi-

rial path, a line of maximum negative potential energy density linking the same

nuclei [24]. The presence of the bond paths and virial path provides, according to

Ref. [26], an indicator of bonding atomic interaction. A network of the virial and

bond paths defines a molecular graph, which is independent of the nuclear vibra-

tions in a stable system.

It was, of course, a challenge to perform real-space energy analysis of bonding

on the basis of the experimental electron density (ED). There is, fortunately, a

theory which establishes the interconnection between the electron density and

energy densities of different kinds. This is the density-functional theory (DFT)

[30–40] which exploits r as a main variable and determines all the properties of

atoms, molecules, and crystals in the ground electronic state [41]. Thus, DFT is a

basis for quantitative characterization of bonding in terms of energy densities and

other functions related to electron density. It is, therefore, attractive to combine

the formalism of the DFT with experimental electron density to analyze the na-

ture of atomic and molecular interactions in molecules and solids in terms of

the local energies. This might, in principle, be done in two different ways. The

exact functionals connecting r and the energy densities of electrons – the kinetic,

potential, exchange and correlation densities – are, in general, unknown [41].

DFTmethods therefore use either the Kohn and Sham orbital scheme [42] or ap-

proximate functionals with explicit (but nonunique) dependence of these func-

tions on r and its derivatives [31]. The former approach might be achieved by

use of an idempotent one-electron density matrix iteratively reconstructed from
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the experimental electron density [12] or by use of Hartree–Fock calculations con-

strained to obtain the wavefunctions that reproduce experimental X-ray structure

factors [43]. The latter approach is closer to the Hohenberg–Kohn formulation of

the DFT [41] – it is orbital-free and enables avoidance of the variational determi-

nation of wavefunctions. This is the approach used in this chapter – our objective

is to demonstrate here that it enables more comprehensive extraction of the infor-

mation about chemical bonding contained in the experimental electron density.

10.2

Specificity of the Experimental Electron Density

First, we must clarify what is implied by ‘‘experimental’’ electron density. Experi-

mental X-ray structure factors enable reconstruction of the electron density by

means of Fourier series. Such density is strongly distorted by series truncation

and is hardly suitable for quantitative topological analysis [12]. The electron den-

sity is therefore reconstructed from experiment by means of the multipole model

in which the electron density of a molecule or crystal is presented as a sum of

aspherical pseudoatomic densities, ratomðrÞ, each of which is expanded into a con-

vergent series over the spherical harmonics or over their real combinations, ylmG.

There are a few multipole models, differing in insignificant details [12, 13]. In

one of these, the Hansen–Coppens model [44], which we use in this work, the

pseudoatomic density has the form:

ratomðrÞ ¼ rcoreðrÞ þ Pvk
03rvalðk 0rÞ þ

X4

l¼0

k 003Rlðk 00rÞ
Xl

m¼�l

PlmGylmGðr=rÞ ð5Þ

where rcore and rval are the atomic core and valence electron densities, respec-

tively, described by the wavefunctions of the free atoms, k 0 and k 00 are atomic

valence-shell contraction–expansion terms, and Pval and PlmG are the multipole

electronic populations. The radial density functions have the exponential form

RlðrÞ@ r nl expð�k 00xrÞ, where nl is related to the principal quantum number of

the atom. The electronic populations of multipoles and the k terms are deter-

mined by least-square fit to the experimental structure factors.

All the multipole models are rather flexible; it is, however, necessary to keep

several points in mind. The exponential term, x, in the radial density functions

RlðrÞ corresponds to the best model fit to the restricted number of low-angle X-

ray structure factors and depends mainly on the electron density of the valence

subshells. At the same time, the orbital exponential terms of the Hartree–Fock

or Kohn–Sham basis functions are derived from the requirement of a minimum

energy of a system; they are, therefore, more sensitive to the distribution of core

electrons whose energies are higher. The interatomic density associated with

interference of the atomic orbital is, moreover, not accounted for completely in

the multipole model consisting of the atomic-like terms. The same is true for

the part of the valence electron density localized near the nuclei. Further:
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� the cusp condition is not necessary preserved during model

fitting;
� the multipoles on different centers are not orthogonal (the

Hirshfeld multipole model [45] is an exception); and
� the orthogonality of the core and valence s-type density

functions of the same pseudoatom is not fulfilled in the

Hansen–Coppens multipole model.

An attempt to correct the last shortcoming [46] failed.

Generalizing previous experience [11–19] we can conclude that X-ray diffrac-

tion experiments yield a quasi-static model of electron density extrapolated to in-

finite resolution, which is, typically, as precise around the bond critical point as

@0.05 e Å�3. The experimental error becomes larger closer to nuclei and in-

creases with the atomic number in the vicinity of nuclei; therefore ‘‘internal’’

atomic regions (RA0.3 Å) are normally excluded from consideration. Despite

this, it is well-documented that experimentally derived electron density distribu-

tions have similar topology and the same set of the critical points as the corre-

sponding quantum-mechanically derived densities [12–19].

Recent studies have shown the situation is not as encouraging for the Laplacian

of the electron density [47–49]. For the closed-shell and intermediate atomic in-

teractions [1], the Laplacian is restored from experiment in reasonable agreement

with direct wavefunction calculations. In this instance contraction of the density

toward the bond path is small, ‘2rðrbÞ > 0 and the atomic-like presentation of

the electron density by the multipole model is quite reasonable. For shared

atomic interaction ð‘2rðrbÞ < 0Þ, the electron density curvatures perpendicular

to the bond path, l1 and l2, are determined with good accuracy; the multipole

model has, however, failed to correctly describe the electron-density curvature

along the bond path, l3. As a result, the overall error in the experimental Lapla-

cian ‘2rðrbÞ ¼ l1 þ l2 þ l3 in this example can reach 50% [48].

Thus, the experimental electron density reconstructed with current multipole

models can be regarded as an approximate homeomorphic image of the ‘‘true’’ r

derived from the first principles, which is reasonably accurate for the closed-shell

and intermediate atomic interactions and has significant quantitative uncertainty

along the bond line for shared atomic interactions.

10.3

Approximate Electronic Energy Densities

10.3.1

Kinetic and Potential Energy Densities

The key problem in DFT is to express the kinetic, potential, and total electronic

energy in terms of rðrÞ [31, 32, 38]. The problem is the same for the energy den-

sities. One way of solving this problem for kinetic energy density uses the fact
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that the one-electron density matrix gðr; r 0Þ, which defines the kinetic energy by

use of Eq. (1), is related to the one-particle Green function by the inverse Laplace

transform [38]. The gradient expansion of the Green function around the classi-

cal Thomas–Fermi approximation [50] leads to the following approximate expres-

sion for kinetic energy density:

gDFTðrÞ ¼ ð3�h2=10mÞð3p2Þ2=3rðrÞ5=3

þ ð�h2=72mÞ½‘rðrÞ�2=rðrÞ þ ð�h2=6mÞ‘2rðrÞ ð6Þ

Application of this formula, which is valid for smooth (but not necessarily

small) variation of the electron density, to real systems implies the local homoge-

neity approximation [41] – the energy density at each point r is supposed to be

the same as that of a homogeneous electron gas with the same electron density,

which is equal to rðrÞ everywhere. Note the role of Laplacian term in Eq. (6)

[32, 51–60] – although it does not affect the average total and atomic energies its

presence provides a description of the electronic shells and improves the local

kinetic energy behavior of the valence electrons.

Consideration of the asymptotic properties of the kinetic energy density, Eq. (1),

derived from the one-electron density matrix shows [20] that the long-range be-

havior of the approximate gDFTðrÞ, Eq. (6), is physically acceptable [60]. In con-

trast, the function gðrÞ, Eq. (1), becomes ð1=2ÞZ2riðRiÞ as r ! Ri, where riðRiÞ
is the value of the electron density at the positions of the nuclei, Ri, while approx-

imate gDFTðrÞ, Eq. (6), becomes minus infinity as r ! Ri, because of the Lapla-

cian term. The radius of the negative hole around the nuclei is maximum for

the hydrogen atom (0.15 Å), is less than 0.02 Å for atoms with Zb 11 and reaches

0.005 Å for Z ¼ 36 (Kr). This observation fits the 1/Z-dependency of this radius

[55]. From the consideration given above it follows that the physically meaning-

less negative gDFT regions are completely within the region of uncertainty of this

function, because of experimental and model errors in ED; they should therefore

be excluded from the discussion during interpretation of the approximate gDFTðrÞ.
In other points of the position space, gDFTðrÞ, Eq. (6), is quite close to the quan-

tum mechanical gðrÞ, Eq. (1) [52, 61]. Thus, the use of the experimental electron

density and its derivatives to determine the kinetic energy density has a physical

basis.

Approximation Eq. (6) opens the way to determination of the potential energy

density from X-ray experiments. It has been postulated [62, 63] that the model

electron density derived by the fit to experimental structure factors does obey the

local virial theorem, Eq. (3), the same as the quantum-mechanical rðrÞ does.

Then, using gDFTðrÞ, Eq. (6), and ‘2rðrÞ, it is possible to obtain the potential en-

ergy density by use of Eq. (3) and calculate electronic energy density heðrÞ, Eq. (4),
from the experimental ED. This approximation is nonevident; subsequent studies

[61, 64, 65] have shown, however, that gDFTðrÞ, Eq. (6), calculated from the exper-

imental electron density leads to physically reasonable (negative everywhere) po-

tential energy density.
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After other work [58, 62, 63, 66–68], the approach summarized above became a

popular tool for determination of the energy characteristics at the bond critical

points of crystalline systems [14–19, 67–71]. It is, however, necessary to mention

that the above-mentioned inability of the current multipole models to correctly

describe the curvature of the experimental electron density along the bond path

for shared atomic interaction influences all existing QTAMC bonding descriptors

which contain the Laplacian term. Fortunately, electron density for the closed-

shell and intermediate atomic interactions is reconstructed correctly and corre-

sponding kinetic energy density approximated by use of Eq. (6) behaves properly

in the internuclear space [72]. Equations (6), (2), and (4) are therefore completely

applicable to systems with closed shells and intermediate atomic interactions.

To illustrate the actual situation with the applicability of the gradient expan-

sion, Eq. (6), to the determination of the energy densities, let us consider these

functions for urea, CO(NH2)2. The electron density in a single urea molecule

removed from a crystal was reconstructed from data from two diffraction exp-

eriments – an X-ray four-circle diffractometer experiment at 148 K [73] and an

X-ray synchrotron experiment at 123 K [74]. Multipole data derived from X-ray

and synchrotron results were taken from Refs [73] and [75]. The approximate

kinetic energy density, gEXP=DFTðrÞ, and the potential energy density, vEXP=DFTðrÞ,
were calculated from the multipole data by use of Eq. (3) and Eq. (6). We then

calculated the wavefunction for the urea molecule by the Hartree–Fock method

in the 6-311G** basis set using the PC version [76] of the GAMESS software

[77]. The optimized molecule geometry was taken from Ref. [61]. First, the gradi-

ent expansion Eq. (6) was used to calculate the kinetic energy density gHF=DFT ðrÞ
from the wavefunction and the local potential energy vHF=DFTðrÞ was calculated by

means of the local virial theorem, Eq. (3), which is valid in the Hartree–Fock

theory. Second, the same functions were also calculated directly from the

Hartree–Fock wavefunctions using the AIMPAC software suite [78]. The later

functions will subsequently be referred to as gHFðrÞ and vHFðrÞ, respectively.
By comparing electron densities derived for urea by different methods (Fig.

10.1), we see that both experimental EDs are in very reasonable agreement, ex-

cluding the vicinity of the hydrogen nuclei (we ignore small distortions of the

density present on the periphery of molecules because of the effect of the crystal-

line environment). More complete and accurate synchrotron-measured electron

density is also in quantitative agreement with the Hartree–Fock electron density

practically everywhere in the position space. Functions gEXP=DFTðrÞ derived from

the data from both experiments (Fig. 10.2) are in remarkable mutual quantitative

agreement (again excluding the vicinity of the hydrogen nuclei); they differ, how-

ever, from results from direct Hartree–Fork calculation, gHFðrÞ (note that the

geometry of the urea molecule in a crystal depends on the temperature of the ex-

periments and is different from that in the free state). A similar difference is ob-

served between gHFðrÞ and gHF=DFTðrÞ. The approximate function gHF=DFTðrÞ and
both experimental kinetic energy densities reconstructed in the same manner via

the multipole model are in close agreement.
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Both functions vEXP=DFTðrÞ derived from the experimental data (Fig. 10.3) are

also in close agreement; they differ from vHFðrÞ only in secondary details.

Let us now compare the experimental and Hartree–Fock energy densities for

ionic LiF crystal. Multipole-model data were taken from Ref. [79]. Hartree–Fock

(6-311G*) calculations were performed for the cubic-like cluster Li14F
þ
13 of opti-

mized geometry [80] surrounding the central fluorine ion to simulate a crystal.

Experimental and theoretical electron densities of LiF are in evident agreement

(Figs 10.4a and 10.4b). Comparison of the approximate DFT-based local energy

densities gEXP=DFTðrÞ and vEXP=DFTðrÞ with results from direct Hartree–Fock calcu-

Fig. 10.1 Electron densities of urea derived by different methods:

(a) reconstructed from the synchrotron diffraction experiment [74],

(b) reconstructed from the X-ray diffraction experiment [73], (c) calcu-

lated theoretically by use of the Hartree–Fock /6-311G** method.

Line intervals are ð2; 4; 8Þ � 10n e Å�3 (�2a na 2).
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lation were also in quantitative agreement everywhere in space with maximum

deviation of@0.01 a.u. in the low-density region of vEXP=DFT ðrÞ around the center

of the (100) plane of the cubic unit cell.

Thus the quantitative agreement between Hartree–Fock and experimentally

modeled energy densities is reached for the closed-shell (and intermediate [81])

atomic interactions with the leading atomic-like electron density contributions.

The failure of the multipole model to correctly describe the electron-density cur-

Fig. 10.2 Distributions of the kinetic energy

in the urea molecule. Left and right parts of

each figure represent the local kinetic ener-

gies obtained from different sources: (a) left,

synchrotron data; right, X-ray diffraction

data; (b) left, synchrotron data; right,

Hartree–Fock result; (c) left, X-ray diffraction

data; right Hartree–Fock result; (d) left,

calculation by use of Eq. (6) and Hartree–

Fock wavefunctions; right, Hartree–Fock

result. Line intervals are ð2; 4; 8Þ � 10n

atomic units (�2a na 2). The geometry of

the free molecule and of the molecule in the

crystal are different, which is why the maps

were merged in such a way that the positions

of the C atoms coincided.
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vature along the bond path for shared atomic interactions is, however, a major

source of distortion of the energy distribution around the bond critical points. At

the same time it is essential that the local energy functions gEXP=DFT and vEXP=DFT
have the same topology as the corresponding Hartree–Fock functions. We expect

that use of more flexible radial functions in the multipole model, as it discussed

elsewhere [47, 48], will remove this defect.

This shortcoming of the model density is less vital for shared atomic interac-

tions (because of partial compensation of contributions) if, in accordance with

Ref. [21], one calculates the difference functions:

dgðrÞ ¼ gðrÞ � gproðrÞ ð7Þ

and

dvðrÞ ¼ vðrÞ � vproðrÞ ð8Þ

(the suffix ‘‘pro’’ denotes functions calculated for a procrystal – a hypothetical sys-

tem consisting of spherical noninteracting atoms placed in the same positions as

real atoms). These difference functions reveal, at the semiquantitative level, the

changes in corresponding energy densities caused by formation of a crystal from

the atoms. Figs 10.5 and 10.6 depicting the functions dgðrÞ and dvðrÞ for crystal-
line urea and LiF, respectively, explicitly demonstrate the difference between the

covalent and ionic bonding mechanisms as reflected in the energy distribution in

Fig. 10.3 Distribution of the potential energy in the urea molecule. Left

and right parts of each figure represent the local potential energies

obtained from different sources: (a) left, synchrotron data; right,

Hartree–Fock result; (b) left, X-ray diffraction data; right, Hartree–Fock

result. Line intervals are ð2; 4; 8Þ � 10n atomic units (�2a na 2).
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Fig. 10.5 Crystalline urea – the difference functions dgðrÞ ¼ gðrÞ � gproðrÞ
(a) and dvðrÞ ¼ vðrÞ � vproðrÞ (b) characterizing changes in the kinetic

and potential energy densities, correspondingly, caused by formation

of a crystal from the atoms. Line intervals are 0.05 a.u. Solid lines

correspond to excessive (positive) kinetic energy density and (negative)

potential energy density.

Fig. 10.4 Distributions of electron density and kinetic and potential

energy in the (100) plane of crystalline LiF: (a) experimental electron

density, (b) Hartree–Fock (cluster) electron density, (c) experimental

kinetic energy density, (d) Hartree–Fock kinetic energy density, (e)

experimental potential energy density, (f ) Hartree–Fock potential energy

density. Line intervals areGð2; 4; 8Þ � 10n a.u. (�2a na 2).

H
________________________________________________________________________________
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position space. In urea, the kinetic energy density increases strongly in the inter-

nal electronic shells of nonhydrogen atoms and only slightly (and irregularly) in

the intramolecular bonds and electron lone-pair regions. In contrast, the potential

energy density regularly increases in the intramolecular bonds and in the electron

lone pairs (and within the cores of nonhydrogen atoms). Distributions of both

functions in the hydrogen bond areas are close to the superimposition of the

free atoms. Thus, distributions dgðrÞ and dvðrÞ show the stabilizing enhancement

in the potential energy along the bond lines and in the electron lone pairs of the

oxygen atom and details of destabilizing contributions of the local kinetic energy

during formation of crystalline urea from atoms.

The distribution of functions dgðrÞ and dvðrÞ in the ionic LiF crystal (Fig. 10.6)

is dramatically different. Formation of this crystal from the neutral atoms is ac-

companied by concentration of the kinetic energy in the Li atom basins and

more pronounced enhancement in the (negative) local potential energy within

the F atomic basins. This reveals the stabilizing role of the anions during LiF

crystal formation. Note that the areas of the energy concentration/depletion in

LiF are close to spherical.

Consideration of the functions dgðrÞ and dvðrÞ for some organic compounds

and cubic perovskite SrTiO3 [82, 83] led to similar conclusions. It was also noted

[82] that partial covalence of the TiaO bond in SrTiO3 manifests itself in the no-

ticeable dipole-type dvðrÞ distribution and small excessive dipole-type dgðrÞ distri-
bution around the O atoms directed to the Ti atoms; it explicitly exhibits the polar

bonding contribution in the TiaO closed-shell interaction. Thus, the energy distri-

bution features can help in explicit topological electron density characterization of

the polar shared atomic interactions (or partially ionic bonds) and provide a new

insight into bonding mechanisms from data of the X-ray diffraction experiment.

Fig. 10.6 Crystalline LiF: the difference functions dgðrÞ ¼ gðrÞ � gproðrÞ
(a) and dvðrÞ ¼ vðrÞ � vproðrÞ (b). Line intervals are 0.05 a.u. Solid lines

correspond to excessive (positive) kinetic energy density and (negative)

potential energy density.
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The energy distributions depicted in Figs. 10.1–10.6 show the importance of

consideration of all the position space in studies of bonding in molecular sys-

tems. No significant details are seen in the position–space energy distributions

in ionic LiF crystal, therefore information about atomic interactions, which is

concentrated in the bond critical points, is sufficient for bond description. In con-

trasts, many energy-density features reflecting the bonding mechanism in urea

(for example, the electron lone pairs) cannot be taken in account if only the

bond critical points are considered.

It is well known that the rapid variation of the electron density in the vicinity of

the nuclei and its slow variation in the valence electron shells makes it difficult

to find a functional for kinetic energy density which provides a good description

everywhere in the position space [32, 60]. We have tested a few other approxima-

tions for describing the kinetic energy density via the electron density and its de-

rivatives; our observations can be briefly summarized as follows. Inclusion of the

4th-order correction to the gradient expansion Eq. (6) [84] did not result in dis-

cernible improvement. The Lee–Lee–Parr formula [85] (plus the Laplacian term)

yielded gDFTðrÞ in quantitative agreement with the gradient expansion. Zero-order

presentation of the Green function in the mean-path approximation using the

Feynman path–integral method [54] yields an expression differing from Eq. (6)

by the numerical coefficients in front of the gradient corrections; this resulted in

physically meaningless areas with vDFTðrÞ > 0 in the low-electron-density regions,

for example the periphery of free molecules or the centers of the faces of a cubic

unit cell of LiF. Kinetic energy density derived using the virial theorem relation-

ships of density-functional theory [57] seemed to depend on the origin of the

coordinate system; this makes its application to molecules and crystals difficult.

And, finally, the Weizsacker approximation [86], which corresponds to rapidly

oscillating density (as happens in atomic cores), has failed to describe the

middle-bond areas.

It would be interesting to test the hybrid orbital-free energy functionals [87] to

search for the better energy-density description.

10.3.2

Exchange and Correlation Energy Densities

In DFT, the exchange-correlation energy, Exc, describes a contribution of non-

classical electron–electron interaction to total energy [88]. Exc is usually decom-

posed into the exchange, Ex, and the correlation, Ec, parts [31]; correspondingly,

the exchange, ex, and correlation, ec, energy densities are often discussed. These

functions are not uniquely defined (they can, for example, be altered by addition

of any functional of r that integrates to zero over the density, or by coordinate

transformation [88]); they also have a different physical content in different

versions of DFT [88]. The densities ex and ec nevertheless play an important role

in DFT; they also extend naturally a set of the functions, which are considered in

QTAMC.

Many approximations have been developed which enable expression of ex and
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ec via rðr), ‘rðrÞ, and ‘2rðrÞ (reviewed elsewhere [38]). We consider here the

gradient-corrected exchange energy density by Becke [89], which is expressed for

spin-unpolarized (i.e. the closed-shell) systems as:

ex ¼ ex;uniform � ð1=2Þ1=3 bX 2

1þ 6bX � sinh�1ðXÞ rðrÞ
4=3 ð9Þ

where:

ex;uniform ¼ � 3

4

3

p

� �1=3
r4=3ðrÞ; b ¼ 0:0042; X ¼ j‘rsðrÞj

rsðrÞ4=3

ex;uniform is the Dirac–Slater exchange density for a uniform electron gas; the

value of ð1=2ÞrðrÞ is assigned for the spin density rsðrÞ. We consider also the

gradient-corrected correlation energy density ecðrÞ by Perdew–Burke–Ernzerhof

[90]:

ecðrÞ ¼ ½ecðrÞ þHðrÞ�rðrÞ ð10Þ

where ecðrÞ is correlation energy per electron for a uniform electron gas [91] and:

HðrÞ ¼ g ln 1þ b

g
t2ðrÞ 1þ AðrÞt2ðrÞ

1þ AðrÞt2ðrÞ þ A2ðrÞt4ðrÞ
� �� �

;

AðrÞ ¼ b

g exp � ecðrÞ
g

� �
� 1

; tðrÞ ¼ j‘rðrÞj=½2ksrðrÞ�; ksðrÞ ¼ 2
3

p
rðrÞ

� �1=6
;

(b ¼ 0:066725, g ¼ 0:031091). Approximations Eq. (9) and Eq. (10) are popular

in DFT applications [38, 40, 88] and we use them to explicitly reveal regions of

potential energy reduction in crystalline urea, CO(NH2)2, caused by exchange be-

tween electrons of the same spin and spin-independent electron correlation.

The structure of urea (space group P421m, Z ¼ 2 (2 mm)) is characterized by

ribbons of hydrogen-bonded molecules arranged head-to-tail along the c axis

(Fig. 10.7a). The plane of each ribbon is perpendicular to adjacent ribbons di-

rected oppositely along the c axis. The oxygen atom of a carbonyl group is

Fig. 10.7 Structure of crystalline urea (a) and distributions of the

electronic energy density heðrÞ (b), the gradient-corrected exchange

energy density ex (c), Dirac–Slater exchange energy density (d),

gradient-corrected correlation energy density (e), and correlation energy

density for a uniform electron gas (f ). Line intervals areGð2; 4; 8Þ � 10n

a.u. (�3a na 3); negative values are solid.

_______________________________________________________________________________
G
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H-bonded to the neighboring molecule in the same ribbon and, simultaneously,

is involved in H-bonds with two adjusted ribbons. Distributions of the exchange

and correlation energy densities in urea are shown in Fig. 10.7, with total elec-

tronic density heðrÞ Eq. (4). The energy density heðrÞ (Fig. 10.7b) achieves its low-
est negative values on the intramolecular bond lines, revealing areas of concentra-

tion associated with bonding interactions and lone pairs. (These features cannot

be attributed to the presence of the Laplacian term in Eq. (6) – the Hartree–Fock

electronic energy density has the same features.) Simultaneously, alternating

negative minima and positive maxima observed in the vicinity of nuclei have

the shell structure of bonded O, N, and C atoms. At the same time, heðrÞ is

slightly positive in the intermolecular hydrogen bonds in urea, where kinetic

energy dominates. The function heðrÞ enables hydrogen bonds of different length

to be distinguished: the longer H-bond (dO...H2 ¼ 2:064ð2Þ Å) is characterizing

by a minimum value of he;min ¼ þ0:00179 a.u. whereas the shorter H-bond

(dO...H1 ¼ 2:007ð2Þ Å) has the less positive value he;min ¼ þ0:00139 a.u. Similar

behavior of heðrÞ in crystalline urea (148 K data) and a-oxalic acid dihydrate,

C2H2O4�H2O, has been reported elsewhere [61, 92]. This also agrees with a gen-

eral observation made for weakly bounded molecular systems [25] and weak and

intermediate hydrogen bonds [93].

A map of the local exchange energy ex (Eq. 9), depicted in the same plane (Fig.

10.7c), in addition to deep energy wells in the vicinity of the nuclei, also has neg-

ative exchange-energy density bridges between bounded atoms, which contributes

to the potential energy reduction during the crystal formation. The magnitudes of

exchange contributions reflect the features of a bond, e.g. the shorter H-bond in

urea is characterized by a lower value of ex ¼ �0:005 a.u. than its longer counter-

part (�0.004 a.u.).

Function ex does not reproduce explicitly such typical bonding features as the

bond charge and electron lone-pair concentrations or core density alternations.

Although the last of these may be made evident by calculating ‘2½�exðrÞ�, there
is no need to do this because the Laplacian of electron density itself provides us

with this information.

It is worth noting that the gradient-corrected exchange density Eq. (9) is quite

similar to the Dirac–Slater exchange density for a uniform electron gas, ex;uniform,

depicted in Fig. 10.7d. The main discrepancy is observed in the vicinity of nuclei

whereas on the bond lines it is only 0.002 a.u.

A map of the local gradient-corrected correlation energy, ec, (Fig. 10.7e) shows

the contribution of the electron correlation to the total electronic energy, which is

independent of the electron spin. It also reveals the energy wells in the vicinity of

the nuclei and the negative energy density bridges between bounded atoms, in-

dicative of reduced potential energy. Simultaneously, in contrast with the function

ex, the gradient-corrected correlation energy density ec has the typical bonding

features of bond charge and lone-pair electron concentrations. These features are

absent in the map of correlation energy for a uniform electron gas ec;uniform ¼
ecðrÞrðrÞ computed in accordance with Ref. [91] (Fig. 10.7f ). Similar results were
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obtained early for molecules [94]. Thus, analysis of the correlation energy density

reconstructed from the experimental electron density in the gradient-corrected

approximation can provide precise details of the bonding mechanisms.

10.4

The Integrated Energy Quantities

The average molecular energy calculated by use of the variational principle using

the kinetic energy approximation, Eq. (6), is only qualitatively close to the experi-

mental value [31, 60]. At the same time, computation of approximate gDFT , Eq.
(6), with the Hartree–Fock wavefunctions leads to average kinetic energy differing

from the Hartree–Fock energy by approximately 1%. It is, therefore, worth deter-

mining the integrated energy-related quantities from the experimental ED com-

bined with Eq. (6), especially because experimental r is close to the theoretical

value.

According to Bader [1], the position space of a molecule or crystal may be di-

vided into atomic basins separated by surfaces satisfying the zero-flux condition:

‘rðrÞ � nðrÞ ¼ 0; Er A SiðrÞ ð11Þ

These basins are identified with bonded atoms (pseudoatoms). An integral of

any property, A(r), over the volume of an atom i, Wi:

hAii ¼
ð
Wi

AðrÞ dV ð12Þ

yields an average value of the property. These quantities are uniquely determined

because
Ð
Wi
‘2rðrÞ dV ¼ 0. The sum of atomic contributions thus obtained yields

the value of the property for a whole system and for the functional atomic groups,

bonded molecules, and elementary cells in a crystal.

Atomic components of electronic energy, He, for H2O (in a-oxalic acid dihy-

drate, C2H2O4�H2O), NH3, and Cl2 molecules removed from a crystal are given

in Table 10.1. The integral
Ð
Wi
‘2rðrÞ dV over each of the atomic basins was less

thanG10�3 a.u., thus the latter number is an estimate of the integration error.

After summing, atomic contributions yield the electronic energy of a molecule.

Quantum chemistry-calculated energy values He for free molecules (Table 10.1)

are in reasonable agreement with ‘‘experimental’’ energies, despite the slight dis-

tortion of the experimental electron densities by the parent crystal environment.

The largest discrepancy of 1.7% obtained for the Cl2 molecule may be attributed

to the relatively low accuracy of the corresponding X-ray diffraction experiment.

We note, however, that even with the perfect X-ray diffraction data energies of in-
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termolecular interaction or cohesion can hardly be obtained in this way, because

their typical values are comparable with experimental uncertainty.

The atomic integrated values of the exchange energy, Ex, the correlation energy,

Ec, and the corresponding molecular values are also given in Table 10.1. A maxi-

mum Ex discrepancy of 2.5% is observed for Cl2 molecule, whereas a maximum

Ec discrepancy of 7.5% is found for H2O molecule. The last disagreement is

partially the result of the different correlation energy definitions in quantum

chemistry and DFT [88]. Overall agreement between experimentally derived

and theoretically computed exchange and correlation energies is, nevertheless,

reasonable. The same conclusion is valid for the crystalline wea (Table 10.2).

10.5

Concluding Remarks

Our approach consists in the joint use of the QTAMC and DFT to treat the elec-

tron density and density-dependent functions obtained with the multipole model

is fitted to accurate X-ray diffraction data. Despite current problems with adequate

Table 10.1 Atomic contributions to the electronic energy, He, exchange

energy, Ex, and correlation energy, Ec, calculated from the model

electron densities for water (in a-oxalic acid dihydrate), ammonia, and

chlorine molecules (all the molecules removed from a crystal). The total

molecular values calculated by summing atomic contributions are also

listed; the corresponding nonempirically calculated values are given in

parentheses. All values are given in atomic units.

Molecule/atom He Ex Ec

O �75.743 �8.759 �0.322

H2O H �0.298 �0.162 �0.011

H �0.296 �0.160 �0.011

Total �76.337

(�76.171 [100])

�9.081

(�8.946 [101])

�0.344

(�0.371 [102])

NH3 N �55.300 �7.129 �0.290

H �0.301 �0.171 �0.012

Total �56.204

(�56.326 [100])

�7.642

(�7.670 [101])

�0.326

(�0.340 [102])

Cl2 Cl �451.517 �26.887 �0.667

Total �903.034

(�918.892 [100])

�53.774

(�55.094 [101])

�1.334

(�1.380 [102])
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description of the electron density for shared atomic interactions (which can be

overcome by use of a more sophisticated multipole model), the level of unifica-

tion of the theoretical and experimental methods achieved substantially increases

the amount of information derivable directly from X-ray diffraction data. It re-

veals how the total electronic energy and its different components are distributed

over a molecule and crystal and provides a real-space insight into the energetics

of the chemical bond. We also hope that analysis of the exchange and correlation

energy densities derived in different approximations from experimental electron

density may be useful for improving existing DFT functionals.

It is worth mentioning that we did not consider all aspects of the aforesaid

approach. Approximate determination of the electron localization function,

localized-orbital locator, the local (and integrated) internal temperature of an elec-

tron gas, and associated entropy from the experimental electron density and its

derivatives is reported elsewhere [92, 95, 96]; the kinetic energy density was de-

scribed in these works by use of Eq. (6). Dirac–Slater exchange potential and

one-electron potential determined using experimental electron density are de-

Table 10.2 Atomic volumes, Wi, restricted by zero-flux surfaces

shown in the picture below, atomic electron populations, Pi, and

the integrated atomic electronic, He; i , exchange, Ex; i , and correlation,

Ex; i, energies of the urea molecule computed by integration of

corresponding densities derived from the X-ray synchrotron data at

123 K (see text). Only values for symmetry-independent atoms are given.

Atom Wi , Å
3 Pi, e He, i, a.u.[a] Ex, i, a.u.[a] Ec, i, a.u.[a]

C 4.818 4.27(2) �37.108(1) �4.595(1) �0.143(1)

O 16.486 9.19(2) �75.498(1) �7.043(1) �0.324(1)

N 17.985 7.96(2) �55.502(1) �8.715(1) �0.281(1)

H1 3.847 0.65(2) �0.446(1) �0.237(1) �0.016(1)

H2 3.923 0.66(2) �0.450(1) �0.238(1) �0.016(1)

aThe sum of the atomic energy contributions over a single molecule is

�225.402(1) a.u. The molecular Hartree–Fock/6-311G** energy is

�224.046 a.u., whereas the B3LYP/6-311G** method yields �225.401 a.u.
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scribed elsewhere [27, 97]. Bonding analysis in terms of the critical points

properties is also given elsewhere [18].

Calculation of all the energy characteristics from the electron density in this

work was performed with the WinXPRO program [97, 98] using the relativistic

many-configuration wavefunctions from Ref. [99].
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11

Topological Analysis of Proteins as Derived

from Medium and High-resolution Electron

Density: Applications to Electrostatic Properties

Laurence Leherte, Benoı̂t Guillot, Daniel P. Vercauteren,

Virginie Pichon-Pesme, Christian Jelsch, Angélique Lagoutte,

and Claude Lecomte

11.1

Introduction

The details observable in protein crystal structures depend on experimental dif-

fraction resolution. In X-ray diffraction (XRD), the experimental resolution (Å) is

defined by d ¼ l=ð2 sin yÞ where y is the Bragg angle and l the wavelength. At

the usual resolution for macromolecular crystallography 1:6 < d < 3 Å, the num-

ber of Fourier components Fðh; k; lÞ of the electron density (ED) as obtained from:

rexpðx; y; zÞ ¼ V�1
X
h

X
k

X
l

jFðh; k; lÞj exp ijðh; k; lÞexp �½2piðhx þ kyþ lzÞ�

ð1Þ

is not enough for estimation of all the atomic properties. Crystallographic refine-

ment must generally be completed by using a standard stereochemistry for the

macromolecule.

Another possibility, instead of using stereochemistry, is to use topological tools.

Indeed, topological analysis of the ED can be applied at different resolution levels.

For the lower-resolution structures the density maxima often do not correspond

to atomic positions but should rather be associated with atomic groups. For exam-

ple, at@3-Å resolution, we and others have shown that for protein crystallography

there is a correspondence between ED peaks and the backbone or side-chain

atoms of the amino acid residues [1–3]. For example, Guo et al. [2] showed that

3-Å resolution ED distributions could be reconstructed from structure factors

generated by residue centers. Topological analysis of a medium resolution ED

will, therefore, mostly deal with the ð3;�3Þ critical points (CPs), which are the

maxima of the ED distribution, and their correspondence with chemical groups

to give a geometrically meaningful representation of the protein. Such represen-
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tations built on ð3;�3Þ CP properties have, for example, been used in protein–

protein and protein–DNA docking applications [4].

At higher resolution, d < 2:5 Å, one can observe atomic details and an isotropic

atomic Debye Waller factor Bj ¼ 8p2huj
2i, where huj

2i is the mean square

atomic displacement, can be estimated. The dynamic structure factor can be

written:

FdynðHÞ ¼
XNat

j¼1

fjðHÞ exp 2piðH:rjÞ exp �ðBj sin
2 y=lÞ ð2Þ

where Nat stands for the number of atoms in a unit cell, and fjðHÞ stands for the
atomic scattering factors, i.e. the Fourier transform of the free and neutral atom

ED (independent atom model, IAM).

When d <@1:4 Å, the isotropic temperature factor may be replaced by an an-

isotropic factor for non hydrogen atoms:

FdynðHÞ ¼
XNat

j¼1

fjðHÞ exp 2piðH:rjÞ exp½�2p2ðhihkU
ija�i :a

�
k Þ� ð3Þ

where U ij are the tensor elements of the anisotropic atomic displacement and ai
�

stands for the ith reciprocal dimension of the crystal unit cell.

The accuracy of the resulting ð3;�3Þ CPs located at the atomic positions is

good enough to validate deviations from the standard geometry and evidence the

ED of some hydrogen atoms, especially those with a small B factor. At a resolu-

tion value estimated to be d < 0:9 Å, diffraction data, when accurate enough, con-

tain information at a subatomic scale. Thus, information on valence ED distribu-

tion may be obtained when the anisotropic thermal displacement values are small

enough, corresponding to an equivalent isotropic B factor lower than about 5 Å2

[5].

The ð3;�3Þ CPs correspond to nuclei and therefore give an atomic description

of the protein structure; hydrogen atoms clearly show up. Deviations from the

spherical free atom ED, i.e. deviations from the IAM, appear in the dynamic ex-

perimental deformation ED maps as ED peaks located on the chemical bonds:

DrdynðrÞ ¼ V�1
X
H

ðjFobsj � jFcaljÞ expðijcalÞ expð�2piH:rÞ ð4Þ

At subatomic resolution, analysis of the total ED thus enables topological de-

scription of the atomic properties: atomic basins and their properties may be de-

fined (charge, volume, dipole moment) as transferable pieces to evaluate chemi-

cal bonding and ligand or inhibitor–protein interactions [23].

In this review, we will describe topological approaches based on both medium

and high-resolution ED representations and try to link them in a more general
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way by using topological results to calculate electrostatic properties of a high-

resolution protein model by using the transferability principle.

The chapter will be divided in four parts. The first part will focus on the techni-

cal details of the approaches used for topological analysis of high and medium-

resolution ED distributions. The second part will summarize results related to

the topological analysis approach based on our multipolar ED database fragment

description (see below). To test both methods on a real example we will focus, in

the last two sections, on results obtained by both approaches applied to the hu-

man aldose reductase (hAR) structure [6]. The analysis will focus on a selected

subset of the protein active site involved in the binding of the NADPþ cofactor

adenine moiety. The third part will be dedicated to results of topological analysis

of ED at medium resolution and the fourth part will describe applications to the

modeling of protein electrostatic properties.

11.2

Methodology and Technical Details

11.2.1

Ultra-high X-ray Resolution Approach

In contrast with the IAM model, in which all atoms are assumed to be neutral,

spherical, and independent, the crystal static valence ED is modeled by a sum of

multipolar pseudo atom density ratvalðrÞ located at atomic centers [7–11], while the

atomic core density rcoreðrÞ remains unchanged:

ratvalðrÞ ¼ k3PvalrvalðkrÞ þ
Xl max

l¼0

k 03Rnlðk 0rÞ
X
mH

PlmHylmGðy; jÞ ð5Þ

where the term rval represents the spherically averaged free atom HF valence den-

sity. The second term of the summation describes the nonspherical part, in which

the radial functions used are of Slater type: RnlðrÞ ¼ Nr nl expð�xrÞ.
The functions ylm are spherical harmonics in real form; the ðy; jÞ coordinates

are expressed in an atom-centered local axis system which facilitates application

of chemical similarity. The refinable terms are the k and k 0 coefficients, which de-

scribe the expansion–contraction of the perturbed valence ED [11], and the popu-

lation terms Pval and Plm.

To apply this formalism to ultra high resolution protein diffraction data we

have proposed a multipolar data library [12, 13]: high resolution XRD data have

been collected in the Laboratoire de Cristallographie et de Modélisation des Matériaux
Minéraux et Biologiques (LCM3B), Nancy, France, for a large group of mono or

polypeptides to precisely determine the ED distribution of all natural amino acids

(neutral or charged). Multipole refinement of the related structure factors enabled

the building of an experimental database of multipolar properties for each
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protein-type atom in a given chemical environment [12, 13], from which a spe-

cific atom-type nomenclature has been developed. As an example, Fig. 11.1 gives

the static electron deformation density:

DrstaticðrÞ ¼
XNat

j¼1

½ratj multðr � rjÞ � ratj IAMðr � rjÞ� ð6Þ

calculated from the experimental database in the protein main chain HNaCbO
peptide plane.

The valence ED distribution of covalent interactions and nonbonding electron

pairs is clearly apparent. The database values were shown to be transferable to

the protein amino acids and enable calculation of aspherical atomic scattering

factors to be used for protein refinement. The validity of these aspherical scatter-

ing factors was checked more than 10 years ago [12] and has been confirmed

since then by several studies. They have been successfully used to refine ultra-

high-resolution protein structures – a scorpion toxin [14], crambin [15], and

hAR [16]. As shown in these papers, the use of aspherical scattering factors im-

proves all least-square statistical indices and consequently, leads to more physi-

cally meaningful bond distances and thermal anisotropic displacement data. As-

pherical features, for example nonbonded density on CbO oxygen atoms, are also

taken into account [17]. This finding, which was not surprising because it had al-

ready been reported by us and others from porphyrin [18] and naphthalene-type

compound [19] charge density studies, led us to the development of the MoPro

package of crystallographic programs [10]. In MoPro, for any chemical type of

atom belonging to a protein type molecule the corresponding aspherical scatter-

ing factor is automatically assigned and these scattering factors can then be fur-

ther used in the refinement process. Such generalized refinement, which is not

Fig. 11.1 Static deformation ED in the peptide-bond plane obtained

with the multipolar ED database. Contour interval 0.05 e Å�3.

Full lines: positive values, dashed lines: negative and zero values.
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necessarily a charge density refinement, because the aspherical scattering factors

can be fixed, should be generalized to all small molecule refinements in the fu-

ture. Furthermore, as shown below, this atom transferability enables estimation

of electrostatic properties at least as accurate as when conventional force fields

are used [16, 20].

Another approach, based on high-level theoretical calculations, was later pro-

posed by P. Coppens’ group [21]. The objective of their theoretical database is dif-

ferent from ours because the also transferable multipolar data will be used to es-

timate properties such as protein–protein or protein–ligand interaction energies

based on theoretical ED reconstruction whereas our approach is based on experi-

mental ultra-high-resolution XRD data. Comparison of our experimental database

and Coppens’ theoretical database is in progress and will be published soon. A

similar project has been recently proposed by Lüger and coworkers [22].

To summarize, we have at our disposal an experimental database which con-

tains data for a set of transferable multipolar pseudo atoms that can be used for

protein refinement and estimation of electrostatic properties. These transferable

pseudo atoms have their own topology and may therefore be regarded as experi-

mental topological atoms as defined by Bader [23]. In this work, topological anal-

ysis of the ED of those fragments has been performed according to the QTAIM

theory. The corresponding data, i.e. CP, rb, ‘
2rb and li calculated using the New-

Prop software [24], are discussed in Section 11.3.

11.2.2

Medium-resolution Approach

11.2.2.1 Promolecular Electron Density Distribution Calculated from Structure

Factors

Several approaches are available for modeling protein ED maps at different levels

of resolution. One consists in calculation of structure factors FðHÞ from the

atomic coordinates r of the system and the IAM atomic scattering factors f ðHÞ
and then in the application of a Fourier transformation (FT) algorithm to gener-

ate an ED distribution rðrÞ (Eq. 1). This procedure can be completed using any

crystallographic refinement program package, for example XTAL [25].

The set of reciprocal space vectors H that is actually considered in the FT calcu-

lation is always finite and determines the crystallographic resolution d of the

map.

As already mentioned, in a high-resolution map the density maxima actually

correspond to atomic positions whereas in a lower-resolution map they are, in-

stead, associated with groups of atoms. For a protein structure, at a resolution of

approximately 3 Å, there is good correspondence between the ED peaks and the

backbone or the side-chains of the amino acid residues [1–3]. Guo et al. [2], for

example, showed that 3-Å ED distributions could be reconstructed from the so-

called ‘‘globbic’’ structure factors associated with residue centers.

Following QTAIM, one can locate ð3;�3Þ CPs, i.e. ED maxima, using the pro-

gram ORCRIT [26, 27]. In this sense, statistical studies that were conducted on a

set of 140 highly idealized protein structures (resolution ¼ 2.85 Å, no hydrogen
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atoms, XTAL default overall isotropic thermal variable hu2i ¼ 0:035 Å2, overall

atom occupancy ¼ 1) led to macromolecular models built on CP properties that

could be used in protein–protein and protein–DNA docking applications [4].

11.2.2.2 Promolecular Electron Density Distribution Calculated from Atoms

Another approach used to model medium-resolution ED distributions consists in

smoothing of an analytical representation of the ED. A simple way to model a

molecular ED distribution function is to consider that it is the summation over

individual atomic contributions ra.

The use of molecular properties such as the ED reconstructed in the framework

of a promolecular representation has several essential advantages. First, as for the

first method described above computation times are substantially reduced com-

pared with, for instance, ab initio quantum-mechanical calculations. This is espe-

cially appealing when studying macromolecular systems [28].

In their works related to the promolecular atom shell approximation (PASA),

Amat et al. [29] used atomic Gaussian ED functions that were fitted on 6-311G

atomic basis set results (coefficients and exponents can be downloaded from

http://iqc.udg.es/cat/similarity/ASA/funcset.html). A molecular or promolecular

ED distribution is thus a sum over atomic Gaussian functions wherein expansion

coefficients are positive to preserve the statistical meaning of the density function

in the fitted structure:

raðr � RaÞ ¼ Za

X3

i¼1

wa; i½ð2va; i=pÞ3=4e�va; ijr�Raj2 �2 ð7Þ

where wa; i and za; i are the fitted terms.

In our approach to generate smoothed 3D ED functions, rM is directly ex-

pressed as the solution of the diffusion equation according to the formalism pre-

sented by [30]:

ra; tðr � RaÞ ¼
X3

i¼1

sa; i where sa; i ¼ aa; ie
�ba; ijr�Ra j2 ð8Þ

with:

aa; i ¼ Zawa; ið2va; i=pÞ3=2ð1þ 8va; itÞ�3=2 and ba; i ¼
2va; i

ð1þ 8va; itÞ
ð9Þ

where t is the ED smoothing degree. It has previously been demonstrated that t is
actually equivalent to the overall isotropic temperature factor B, i.e., more pre-

cisely [31]:

2t ¼ B ¼ 8p2hu2i ð10Þ

The peaks in a smoothed ED map can obviously be located with ORCRIT, in

the same way as for maps generated with the software XTAL. Because the analyt-

ical expression of rðrÞ is known, however, peaks can also be located analytically,
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without calculation of an ED grid [32]. To follow the pattern of local maxima in a

molecular ED distribution, as a function of the degree of smoothing, an algo-

rithm initially described by Leung et al. [33] was implemented. The different

steps of that merging/clustering algorithm, described elsewhere [32], consist in

following the trajectory of the ED maxima, rpeakðtÞ, in a progressively smoothed

ED distribution function:

rpeakðtþ DtÞ ¼ rpeakðtÞ þ D

rpeakðtÞ
‘rpeakðtþ DtÞ ð11Þ

where ‘rpeak is the density variation and D is a predetermined constant value. The

trajectory search is stopped when ‘rpeakðtÞ is lower than or equal to a limit value

gradlim.
In all examples treated so far, the settings were always D ¼ 2:80� 10�5 Å2, the

number of iterations 2000, and gradlim was set equal to 1:275� 10�4 e Å�4. The

results obtained using that algorithm are the location of the local maxima (peaks),

their density, eigenvectors, and Laplacian values, and the atomic content of all

fragments, at each value of t between 0 and tmax (Fig. 11.2).

11.2.3

A Test System – Human Aldose Reductase

The two topological approaches described above are applied in this section to

the hAR structure, solved at a subatomic resolution of 0.66 Å as previously de-

scribed by Howard et al. [6]. It consists of 316 amino acid residues bonded with

the cofactor NADPþ and the inhibitor IDD594. There are 617 water sites and two

citrate ions. The whole complex crystallizes in space group P21 with cell data

a ¼ 49.43, b ¼ 66.79, c ¼ 47.40 Å, b ¼ 92:40�. The full multipolar refinement of

hAR is being performed and will be reported elsewhere [34]. In cases of chronic

hyperglycemia, aldose reductase is known to reduce part of the excess of glucose

to sorbitol [35], accumulation of which in cells leads to long-term diabetes dis-

eases, for example cataracts or nephropathies. hAR inhibition is, therefore, a

well researched pharmacological target.

To test the different approaches of ED topological description and to apply

these methods in the framework of analysis of electrostatic properties, a small

structure subset was selected within the hAR model. It consists of the first amino

acid layer surrounding the adenine moiety of the NADPþ cofactor (Fig. 11.3).

This subset, referred to below as the ‘‘adenine binding site’’, consists of ten

amino acids (160 atoms) of several types:
� four nonpolar residues (LEU212; PRO215; LEU228;

ALA245);
� two polar residues (SER263 and ASN272);
� two formally þ1 electron (e) positively charged amino acids

(LYS262 and ARG268); and
� two formally �1 e negatively charged amino acids (ASP216

and GLU271).
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Fig. 11.2 (Top) Dendrogram depicting the

results of the hierarchical merging/clustering

algorithm applied to the PASA ED distribu-

tion of TYR39 of the hAR structure. Results

for different values of t (0.280, 0.420, and

0.560 Å2) are emphasized using vertical lines.

The corresponding ED peaks are symbolized

using open circles. (Bottom) 2D molecular

representation of the information contained

in the top figure. Fragments corresponding to

ED peaks are represented at t ¼ 0:280 (plain

lines) and 0.420 (dotted lines) Å2.
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Fig. 11.3 (Top) Schematic view of the hAR structure with the adenine-

binding-site amino acids selected for electrostatic potential calculations

explicitly represented. (Bottom) Close view of the adenine binding site.

It consists of the ten amino acids of the hAR structure directly surround-

ing the adenine moiety of the NADPþ cofactor.
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All electrostatic computations described in the last part of this chapter will take

into account this substructure selection only (including hydrogen atoms), thus

neglecting the contribution from all other atoms of the protein model. In ac-

cordance with the formal charges content of the adenine binding site, global

electroneutrality of the fragment will be ensured in all electrostatic potential

computations.

11.3

Topological Properties of Multipolar Electron Density Database

As described above, an experimental database of pseudo atom ED is being com-

pleted in Nancy [13]. It currently includes all chemical types of atom involved in

protein structures and some nucleic acids.

Topological analysis of the ED of the fragments built from our database has

been performed as follows using NewProp [24, 36]. The ED of eleven peptides

has been reconstructed at the crystallographic experimental geometry using data-

base values to provide some statistical insight of transferability. The QTAIM atom

charges Q and volumes V were then calculated for all 101 atom types in the data-

base. When possible, the values were averaged over similar atoms occurring

in the molecules stored in the database. For example, for the peptide moiety

HNaHaCaaCbO, C atoms occur 22 times in the database and Ca atoms occur

15 times. Figure 11.4 gives a 2D representation of the atom types (Q versus V).

One can see that these two atomic properties can be classified according to their

chemical function or/and atomic neighbors. H(X) atoms (where X stands for

the bonded heavy atom) can be grouped in three clusters [H(O), H(N)], H(C),

and H(S), the largest charge of þ0.8 e corresponding to the smaller volume

(less than 1 Å3), depending on the electronegativity of the X atom (or H atom

acidity).

The same conclusion can be drawn for the carbon atoms C(O), C(N), or the

oxygen O(C), and O(H) atoms with charges as high as þ1.25 e and �1.00 e for

C and O, respectively.

The C(C) and C(H) atoms (named C in Fig. 11.4) may have a positive or nega-

tive charge betweenG0.5 e associated with large volume differences (from 6 to

15 Å3) but no further classification shows up; this is also valid for the N atom

but with a less varying charge (�1.1 e to �1.4 e) associated with a large volume

(from 10 to 17 Å3).

The clustering of the topological properties can also be observed by inspection

of Table 11.1, which gives the topological characterization of some atom types

stored in the database, after transfer to the following moieties:
� the peptide plane HNaHaCaaCbO, calculated at the

experimental geometry of the tyrosine–glycine peptide bond

in Leu–Enkephalin [41, 37] compound.
� the aromatic group of the tyrosine amino acid [38].
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The corresponding values theoretically obtained by Matta and Bader [39] are

also provided for comparison. The authors used, after geometry optimization,

an HF procedure (Gaussian94 software [40] with a 6-311þþG** basis set) to

calculate the ED of the 24 amino acids in their nonzwitterionic form

H2NaCaHa(R)aCOOH. When available, values described in Coppens’ theoretical

database [21] for nonhydrogen atoms of the peptide plane moiety are also

reported.

The BCP positions in XaH covalent bonds depend on the nature of the X atom,

which determines the electron population of the hydrogen atom: hence d2 (H–

BCP distance) changes by 41% when going from H(C) to H(O) (0.34 to 0.20 Å)

whereas d1 (BCP–X distance) changes by 4% (0.74 to 0.77 Å) only; this is also in

proportion to the XaH distance. This competition between X and H atoms does

not show up when CaN and CaO bond topological properties are compared –

even with large electronegativity differences, they both belong to the same cluster

but d1, d2, or d1=d2 do not suggest the same ðQ ;VÞ couple.
Comparison of experimental values with Matta’s theoretical values reveals good

agreement for rb, but with an almost systematic trend – the theoretical ED at BCP

is approximately 10% larger than the experimental value. This behavior is less

pronounced when experimental database rb values are compared with the Cop-

pens’ theoretical values for the peptide plane moiety.

Fig. 11.4 Relationship between net atomic QTAIM charges Q (e) and

the atomic basin volume V (Å3) for all the atom types stored in the

multipolar ED database.
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The dependence of ðQ ;VÞ values on the nature of the peptide is shown in

Table 11.2, which gives the topological properties of the C and O atoms of the

peptide CbO group as determined over all peptide molecules stored in the data-

base. Average values and standard deviations are also reported. The C and O

atomic multipolar ED data are the same as extracted from the database, irrespec-

tive of the type of peptide, and the resulting ðQ ;VÞ values only depend on the na-

ture of the side-chain or on its conformation. Because the local CbO geometry is

Table 11.1 Topological characterization of the electron density at the BCP.[a]

d1 d2 rb ‘2r l1 l2 l3

Peptide group HNaHaCaaCbO
0.749 0.775 1.70 C12.58 C11.90 C10.88 10.19 CaxC
0.765 0.765 1.75 �17.40 CaC (saturated)

1.77 �12.9 �12.5 �11.3 10.9

0.640 0.818 1.89 C10.72 C13.28 C12.80 15.36 CxN
0.519 0.913 1.94 �20.36 CaN

1.66 �6.8 �11.40 �10.50 15.1

0.486 0.754 2.83 C28.50 C26.19 C23.33 21.02 CyO
0.397 0.795 2.93 2.41 CbO

2.78 �26.90 �24.10 �22.10 19.3

0.703 0.381 1.67 C14.47 C14.79 C14.52 14.84 CaxHa

0.688 0.396 1.98 �26.48 CaH (saturated)
0.774 0.255 2.03 C25.19 C26.58 C24.86 26.25 NxH
0.745 0.256 2.39 �45.11 NaH
Tyrosine aromatic group aCCara (CHaraHar)4aOHTyraHOTyr

0.696 0.697 2.13 C19.58 C16.08 C13.55 10.06 CHarxCHar

0.692 0.694 2.18 �24.38
0.692 0.700 2.12 C19.31 C15.91 C13.48 10.08 CCarxCHar

0.686 0.706 2.17 �24.19
0.694 0.700 2.14 C19.91 C16.58 C13.55 10.22 CHarxCOar
0.646 0.741 2.20 �25.42
0.564 0.796 2.17 C15.09 C16.94 C16.47 18.33 COarxOHTyr

0.435 0.920 1.94 �0.24
0.737 0.339 1.77 C18.61 C16.90 C15.78 14.06 CHarxHar

0.682 0.394 1.97 �26.23
0.765 0.205 2.05 C25.88 C33.37 C32.36 39.85 OHTyrxHOTyr

0.174 0.773 2.59 �68.80

arb (e Å�3) and ‘2r (e Å�5) are the ED and its Laplacian at the BCP;

l1, l2, l3 (e Å�5) are the eigenvalues of the Hessian matrix of r; d1 and

d2 (Å) are the distances from the BCP to the first and second atoms

defining the bond. The first line corresponds to the multipolar

database (bold). When available, the second line gives the results of

Matta and Bader [39] (italics). For the peptide group, when present, the

third line gives values from Coppens’ theoretical databank [21].
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Table 11.2 Atomic QTAIM charge, Q (e), and basin volume, V (Å3),

obtained from topological analysis of the multipolar ED database. The

basin volumes have been defined by inter atomic boundaries based on

zero flux surfaces. The results are only given for the carbonyl CbO
atoms in several peptide crystals.

Carbon OxygenCarbonyl

Molecule[a]

Atom Q V Atom Q V

actr C_1 1.118 6.645 O_1 �0.874 16.470

actr C_2 1.152 6.028 O_2 �1.024 18.147

acdelt C_1 1.155 6.136 O_1 �1.012 17.668

acdelt C_2 1.234 5.679 O_2 �1.005 17.950

enk C_1 1.157 5.647 O_1 �1.023 17.680

enk C_2 1.202 5.531 O_2 �1.044 17.731

enk C_3 1.196 5.783 O_3 �1.030 19.317

enk C_4 1.184 6.261 O_4 �1.047 17.051

trig C_1a 1.215 5.687 O_1a �1.055 16.960

trig C_2a 1.205 5.609 O_2a �1.025 15.959

trig C_1b 1.214 5.378 O_1b �1.030 16.335

trig C_2b 1.209 5.717 O_2b �1.034 17.232

ygg C_1 1.165 5.390 O_1 �1.109 18.443

ygg C_2 1.200 5.466 O_2 �1.062 16.586

gd C_1 1.184 6.082 O_1 �1.048 17.392

actyr C_1 1.083 6.445 O_1 �0.992 18.355

gt C_1 1.221 5.854 O_1 �1.043 17.376

prohis C_1 1.173 5.719 O_1 �1.045 16.832

prohis C_2 1.257 5.037 O_2 �1.072 19.927

prohis C_3 1.198 5.705 O_3 �1.059 18.919

acgln C_1 1.104 6.412 O_1 �1.065 17.962

alamet C_1 1.167 5.917 O_1 �1.040 18.235

Average 1.182 5.824 �1.035 17.660

RMSD[b] 0.041 0.380 0.042 0.963

SEM[b] 0.009 0.083 0.009 0.205

aenk, Leu–enkephalin [37, 41]; ygg, Tyr–Gly–Gly [38]; gd, Gly–Asp

[38]; actr, N-acetyl-l-tryptophan [42]; acdelt, N-acetyl-a,b-dehydro-
phenylalanine methylamide [43]; trig, triglycine [44]; actyr, N-acetyl-
l-tyrosine ethyl ester monohydrate [45]; gt, glycyl-l-threonine dihydrate

[46]; alamet: dl-alanylmethionine [47]; prohis, terbutyl-CO-proline–

histidine–NHmethyl [48]; acgln, N-acetyl-l-glutamine [49].
bRMSD, root mean square deviation for the sample (N ¼ 23); SEM,

¼ RMSD/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þp

, standard error of the mean.
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identical for all carbonyl groups (bond lengths differ by 0.01 Å only), and the in-

teratomic surface of the C atom is limited by N, O, and Ca, the variability of the C

atomic basin can originate only from the region above and below the peptide

plane, i.e. the side-chains. The O atom is bonded to C only, but its basin is also

closed by the intermolecular interactions that occur in the crystal. This could

explain the greater variability of V for the O atom than for the C atom, as shown

in Table 11.2. In contrast, the QTAIM net charges Q show almost no fluctua-

tions, with QðCÞ ¼ 1:181ð9Þ e, and QðOÞ ¼ �1:035ð9Þ e. In conclusion, the only

significant (but small) change is the oxygen atomic basin with V ¼ 17.66 Å3,

RMSD ¼ 1 Å3, SEM ¼ 0.2 Å3, because of intermolecular interactions with differ-

ent H���O hydrogen bond geometries. The QTAIM charges thus seem to be

totally transferable and can be tested as simple point charges in electrostatic prop-

erty calculations (Section 11.5).

The atomic charges on the peptide group and on the tyrosine aromatic ring for

different models of the molecular ED are summarized in Table 11.3. Atomic

charges presented here are:
� average atomic QTAIM charges, denoted QTAIMEXP,

obtained by experimental multipolar database ED integration

within atomic basins (line 1);
� atomic QTAIM charges, denoted QTAIMTHEO, as reported by

Matta et al. [39] (line 2); and
� atomic charges, denoted QVAL, directly computed from

average Pval values stored in the multipolar ED database by

using QVAL ¼ N � Pval (line 3)

Comparison of the atomic charge values shows that QVAL charges are usually

much smaller than QTAIMEXP and QTAIMTHEO charges, especially for nonhydro-

gen atoms, i.e., when atoms are associated with large atomic basins. One also ob-

serves that, even though the CP of all tyrosine CaC covalent bonds are similar

(Table 11.1), their QTAIM charges largely differ and enable very good discrimina-

tion of CHar, CCar, and COar atoms (the atom names arise from the multipolar

database nomenclature and indicate aromatic carbon atoms linked to two carbon

and one hydrogen, to a carbon, or to an oxygen atom, respectively). The basin vol-

umes also enable differentiation of the three types of atom – the more negative

the charge, the larger the volume.

11.4

Analysis of Local Maxima in Experimental and Promolecular Medium-resolution

Electron Density Distributions

In this part of the chapter results from peak analysis of medium-resolution ED

distributions are presented and discussed. Results obtained by use of the so-called

promolecular XTAL model are compared with experimental data at the same

resolution, i.e. using the observed Fobs. All calculated maps were built according

to the hAR crystal structure, including hydrogen and solvent atoms with their
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refined occupancies. In addition, two experimental 2Fobs–Fcalc maps were consid-

ered at 2.85 and 3.5 Å resolution.

11.4.1

Experimental and Promolecular Electron Density Distributions Calculated from

Structure Factors

Both experimental and a calculated maps were considered for each of the two

crystallographic resolution values 2.85 and 3.5 Å as selected from Becue et al.

Table 11.3 Atomic net charges Q (e), basin volume V (Å3) for the atoms

in the peptide HNaHaCaaCbO group and in the tyrosine aromatic

cycle. The values were obtained by averaging over the n atoms used to

build the database.[a]

Peptide group Tyrosine aromatic group

Atom type Q V n Atom type Q V n

C 1.181(9) 5.82(8) 22 CHar C0.270(6) 14.06(23) 26

1.774(6) 4.59(2) 0.019(6) 8.27(8)
0.024(7) �0.155(4)

O C1.035(9) 17.66(21) 22 Har 0.244(4) 6.43(15) 26

�1.35(3) 19.95(7) �0.007(4) 7.27(5)
�0.307(3) 0.170(2)

N C1.272(9) 14.05(21) 21 CCar C0.109(11) 9.57(24) 5

�1.160(4) 16.64(11) �0.005(10) 10.32(6)
�0.312(6) �0.040(34)

H 0.752(23) 1.33(14) 23 COar 0.466(4) 8.44(16) 3

0.373(4) 4.52(5) 0.521 9.113
0.320(5) 0.053(67)

Ca 0.135(8) 6.92(4) 15 OHTyr C1.128(11) 17.97(56) 3

0.577(2) 6.11(2) �1.273 18.034
�0.111(10) �0.461(28)

Ha 0.142(2) 6.41(19) 16 HOTyr 0.80(10) 0.96(51) 3

�0.003(3) 6.86(2) 0.624 2.904
0.196(5) 0.389(18)

CaGly C0.028(6) 9.40(18) 12

0.617 7.305
0.224(9)

HaGly 0.180(2) 6.28(18) 24

0.009(0) 6.58(30)
0.201(2)

aFirst line (bold), QTAIM charges (QTAIMEXP) from the multipolar

database ED; second line (italics), QTAIMTHEO charges from Matta and

Bader [39]; third line, QVAL charges (multipolar ED database). The

estimated standard deviation of the mean is given in parentheses.
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[3]. As described in Section 11.2.2, the promolecule maps were built with the soft-

ware XTAL [25], using the experimental atomic positions and thermal data B,
whereas the experimental 2Fobs–Fcalc maps were obtained directly by Fourier

transformation using multipolar phases and structure factors moduli. Three of

the four maps under study were characterized by the grid intervals 0.581, 0.566,

and 0.571 Å, along the unit cell axes a, b, and c, respectively. The experimental

map generated at 2.85 Å was calculated using grid intervals equal to 0.499,

0.510, and 0.489 Å.

The software ORCRIT [26] was then applied to these four maps to locate their

ED maxima. To remove CPs originating from ripples in the ED distributions be-

cause of series-termination errors, a cut-off value was selected to eliminate most

of the unidentified low density peaks. This cut-off mainly affects the number of

peaks from bound water molecules, as shown in a study about the use of 2Fobs–

Fcalc maps [50]. This lower limit value and the ED value of the highest peak found

in each map are reported in Table 11.4.

In contrast with the hierarchical merging/clustering algorithm based on an an-

alytical derivation of the ED peaks, there is no generation of fragments associated

with the peaks. This therefore forbids their identification on the basis of their

atomic content. To assign a chemical identification to each protein peak in a given

grid, therefore, a list of reference sites was established. For each amino acid resi-

due, n, two centers-of-mass (c.o.m.) locations were calculated, one for the side-

chain and the other for the backbone atoms (CbO)na(NaCa)nþ1. Other selected

reference sites were the solvent and heteroatoms of the complex. The peak was

then identified by determining its nearest protein, solvent, or heteroatom site.

Table 11.4 Number of peaks in experimental and promolecular XTAL ED

maps of hAR at resolution values of 2.85 and 3.5 Å, and mean distances

in Å (in parentheses) between the peaks and their nearest amino acid

site (main chain or side-chain c.o.m.), or solvent atom site.

2.85 Å 3.5 ÅResolution

No. of peaks

Experimental Promolecular Experimental Promolecular

Main chain 322

(0.599G 0.434)

317

(0.548G 0.421)

271

(0.997G 0.459)

237

(0.995G 0.436)

Side-chain 340

(0.893G 0.554)

313

(0.870G 0.567)

288

(0.868G 0.525)

227

(0.770G 0.470)

Ligand 7 8 6 5

NADPþ 11 10 9 8

Citrate 4 4 6 4

Water 329

(0.478G 0.331)

315

(0.408G 0.289)

234

(1.193G 0.529)

206

(0.940G 0.380)

ED range (e Å�3) 0.6–4.95 0.8–5.46 0.6–3.86 0.5–3.07
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The results reported in Table 11.4 show that the total number of peaks de-

pends, as expected, on the resolution. The number of side-chain peaks is close to

the number of backbone peaks. This is especially true at 2.85 Å resolution, where

each amino acid residue leads to a backbone and a side-chain peak, as already

explained by Leherte et al. [1], Guo et al. [2], and Becue et al. [3]. The mean dis-

tances between the peaks and their nearest protein site is indeed shorter at

2.85 Å, except for the side-chains for which the peaks can be located farther from

the c.o.m. in long chains. A statistical analysis of the backbone peaks was carried

out as a function of the amino acid residue type. It showed that most of the

amino acid backbones are represented by one peak only. More precisely, this con-

cerns 90.5% (266/295) and 92.9% (275/296) of the peaks observed in the experi-

mental and promolecular ED maps generated at 2.85 Å, respectively, and 82.9%

(189/228) and 95.1% (215/226) in the corresponding ED maps generated at a res-

olution value of 3 Å. Backbone groups are more often represented by two peaks in

the experimental map.

In the same way as for the backbone, side-chain groups lead to most single ED

maxima, and most of the residue side-chains represented by two or more peaks

can be regarded as medium or large groups. Short side-chain residues containing

no heteroatoms (O or S), or only one, are represented by one peak only, i.e. ALA,

CYS, GLY, SER, and THR, at d ¼ 2:85 Å. At d ¼ 2:85 Å, all TRP side-chains,

which contain two fused rings, lead to at least two peaks, a trend that is partly

verified for TYR side-chains (one aromatic ring and one hydroxyl group).

Finally, there are more discrepancies between experimental and promolecular

XTAL at 3.5 Å resolution, e.g. for ARG, CYS, GLY, HIS, LEU, LYS, and PRO. In

conclusion, such promolecular models are less predictive (in terms of topology,

for instance) at low resolution; to confirm this, however, additional studies would

be required.

Three-dimensional representations of the ED distributions of the adenine bind-

ing site are displayed in Fig. 11.5. A detailed analysis of the associated peaks is

given in Table 11.5. The size and the atomic content of an amino acid residue af-

fect the number of its peaks in a medium-resolution ED map. Table 11.5 shows

that the density values at the peak locations are, in contrast, not clearly depen-

dent on amino acid type. Let us also mention, however, that the residues CYS and

MET, when present, are an exception because they contain sulfur atoms and lead

to higher-density peaks [1, 3].

11.4.2

Promolecular Electron Density Distributions Calculated from Atoms (PASA Model)

The hierarchical merging/clustering algorithm described in Section 11.2.2.2 does

not require any calculation of the ED maps. It is based solely on a knowledge of

the analytical expression of the promolecular ED function and its first derivative.

The decomposition of the protein structure into fragments was achieved at t
values ranging from 0 to 0.70 Å2, i.e. B ¼ 0 to 110.6 Å2, with a step of 0.014 Å2.
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The evolution of the number of ED maxima as a function of t is shown in Fig.

11.6. This evolution is characterized by several well marked steps associated with

the formation of specific fragments. The merging of the atoms to form fragments

first occurs between the H atoms and their chemically bonded neighbors at

t ¼ 0:014 Å2. Then, as already shown [31], the C and O atoms of the backbone

carbonyl groups begin to merge starting at t ¼ 0:098 Å2. Between 0.196 and

0.280 Å2, the atoms of the amino acid backbones merge until regular fragment

structures, for example (CbO)aNaCa and (CbO)aNaCaaCb (for clarity, H atoms

are not shown) are fully created at approximately t ¼ 0:350 Å2. At this particular

value of t the shortest rms deviation (0.458 Å) is observed between the coordinates

of the backbone peaks and their corresponding c.o.m.

Fig. 11.5 3D representations of the ten amino acid residues of the

adenine binding site of the protein hAR (thin black sticks) and

corresponding local maxima (black spheres) observed in experimental

and promolecular XTAL ED distributions at resolutions d ¼ 2:85 and

3.5 Å. The NADPþ structure is displayed using thick black sticks. Two

density iso-contour levels are displayed at a high and a low selected ED

value, using triangulated and solid surfaces, respectively.
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The numbers of fragments/peaks obtained at t ¼ 0:350 and 0.420 Å2 are pre-

sented in Table 11.6. As already mentioned [31], t ¼ 0:420 Å2 enables partitioning

of the protein structure into parts located either on the backbone or on the side-

chains. At that particular value of t most of the side-chains are represented by one

maximum located at an average distance of 0.76 Å from the side-chain c.o.ms (Ta-

ble 11.6). If the number of backbone peaks is close to the number of amino acid

residues, the number of side-chain peaks is relatively smaller than in XTAL maps

and the number of solvent peaks is greater. This is because, in XTAL maps, exper-

imental values of B, which differ for each atom and are rather large for the

solvent, are considered. In smoothed PASA maps only one value of B (that is

equivalent to 2t) is valid for the whole set of atoms. Let us also mention that the

lowest density value in any ED map is equal to 0.0 e Å�3, because of the specific

parameterization scheme adopted by Amat et al. [29]. This scheme indeed forces

the weight w of the Gaussian functions in the PASA representation (Eqs 7 and 9)

to be positive.

Table 11.5 Identification and density values of the peaks associated with

the ten amino acid residues of the adenine binding site of the hAR

structure as obtained by CP analysis of experimental and promolecular

XTAL ED maps at resolution values of 2.85 and 3.5 Å. ‘‘bak’’ and ‘‘sid’’

stand for ‘‘backbone’’ and ‘‘side-chain’’, respectively.

Amino acid site r (e ÅC3)

2.85 Å 3.5 Å

Experimental Promolecular Experimental Promolecular

LEU212 bak 1.385 1.737 1.784 1.496

LEU212 sid 1.363 1.781, 0.890 2.103 1.786

PRO215 bak 1.314 1.655 1.405

PRO215 sid 1.779 1.768 1.833

ASP216 bak 1.452, 1.247 1.823 1.787 1.397

ASP216 sid 1.133 1.618, 1.594 1.548, 1.075 1.376

LEU228 bak 1.409 1.973 1.241 1.476

LEU228 sid 1.199 1.880 1.830 1.711

ALA245 bak 1.841 1.974 2.021 1.428

LYS262 bak 1.681, 1.275 1.972 2.544 1.810

LYS262 sid 1.522 1.754, 1.539 1.551 1.286

SER263 bak 1.599, 1.574 1.831, 1.722 1.789 1.400

ARG268 bak 1.700 2.121 1.745 1.462

ARG268 sid 2.069, 1.524 2.152, 1.750, 1.734 2.099, 1.079 1.415

GLU271 bak 1.255, 1.209 1.547 1.718 1.341

GLU271 sid 0.888 1.546 1.328 1.428

ASN272 bak 1.490 1.864 1.501 1.607

ASN272 sid 1.086 1.726, 1.469 1.688 1.358
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Detailed analysis of the fragment content shows that at t ¼ 0:350 Å2, 32% (108/

334) of the backbone fragments contain the (CbO)aNaCa atoms, and 37% (125/

334) contain the (CbO)aNaCaaCb atoms. With a smoothing value of 0.420 Å2

these ratios change to 26 (86/331) and 37% (124/331), respectively. Residues are

more regularly decomposed into one backbone and one side-chain fragment.

Fig. 11.6 Total number of fragments/peaks (black squares) and

numbers of peaks close to any backbone c.o.m. (black spheres) or

side-chain c.o.m. (open squares) in the PASA ED distribution of hAR

structure as a function of the smoothing term t.

Table 11.6 Number of fragments/peaks in smoothed PASA ED maps of

the hAR structure at t ¼ 0:350 and 0.420 Å2, and mean distances in Å

(in parentheses) between the peaks and their nearest amino acid site

(main-chain or side-chain c.o.m.), or solvent atom site.

Number of peaks tF 0:350 Å2 tF 0:420 Å2

Backbone 334; (0.316G 0.297) 331; (0.283G 0.320)

Side-chains 290; (0.843G 0.543) 224; (0.757G 0.532)

Ligand 6 6

NADPþ 11 9

Citrate 7 6

Water 528; (0.214G 0.628) 520; (0.232G 0.597)

ED range (e Å�3) 0.0–2.895 0.0–2.288
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There are two exceptions – the TYR side-chain, which is represented by two frag-

ments, [CgaCd] and [(Ce)2CzaO], and VAL, for which backbone and side-chain

atoms form only one fragment. The other backbone of the amino acid residues

leads either to two fragments, e.g. CbO and NaCaaCb in for 7.4% (23/311 and

23/308, at 0.350 and 0.420 Å2, respectively) of the amino acid residues, or to

larger fragments containing, for example, Cg.

As detailed further in this chapter, the atomic fragment content of the ten

amino acid residues that constitute the adenine binding site of the protein will

be used to determine fragment charges and calculate molecular electrostatic prop-

erties. For this particular set of amino acid residues it is apparent the fragment

contents are identical, at both t ¼ 0:350 and t ¼ 0:420 Å2 (Table 11.7). There are

only two exceptions, LYS262 and GLU271, for which two fragments at t ¼ 0:350

are merged at t ¼ 0:420 Å2. GLU271 is also a particular example for which the

two sites occupied by the side-chain atoms lead to two fragments at t ¼ 0:350 Å2.

For fragments close to a backbone c.o.m., the CbO group belongs to residue n;
the other atoms belong to amino acid residue nþ 1. For example, LEU212_bak

is composed of (CbO)212 and (NCa)213, and THR244_bak contains (CbO)244 and

(NCaCb)245. In these two examples, residues 212 and 245 are part of the adenine

site whereas 213 and 244 are not.

For a given value of t, all density values are very close to each other. Some frag-

ments are, however, characterized by lower values under two conditions – either

there are two fragments for a residue side-chain (LYS262 and GLU271) or the

side-chain is composed of C and H atoms only (LEU212 and LEU228).

Comparison of the local density maxima observed in experimental and promo-

lecular XTAL or smoothed ED maps is depicted in Fig. 11.7. It is readily apparent

that the strongest similarity (shortest distances) between the two promolecular

models and/or the experimental results occurs between the peaks observed in

the smoothed PASA maps, at t ¼ 0:350 or 0.420 Å2, and the XTAL/experimental

maps at a resolution of 2.85 Å. Indeed, approximately two thirds of the calculated

distances lie below 1 Å. For example, 50% and 15% of the distances calculated be-

tween the peaks in a map smoothed at t ¼ 0:350 Å2 and the peaks in a promolec-

ular XTAL map at 2.85 Å belong to [0, 0.5 Å[ and [0.5, 1.0 Å[, respectively.

11.5

Calculation of Electrostatic Properties from Atomic and Fragment Representations

of Human Aldose Reductase

One of the most important applications of this topological analysis is to electro-

static potential properties, as shown, for example, by Muzet et al. [16]. Hence, un-

derstanding of electrostatic properties and interaction energies is of prime impor-

tance in the prediction of protein–protein, protein–DNA, and drug–receptor

recognition and interactions. Systematic calculation of atomic charges by theoret-

ical DFT methods [16] or by experimental electron density analysis [15] can be a
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limiting factor when rapid prediction of such interaction patterns is needed.

Thus, database retrieval of interaction properties combined with reduced models

enable acceleration of such calculations.

In this part of the chapter, adenine binding site high-resolution electrostatic

potentials, computed using full multipolar database transferred data and the

QTAIMEXP charge model, are compared. These properties are also compared to

Table 11.7 Atomic content, density values r, and charges of the

fragments that contain atoms of the hAR adenine binding site as

obtained using a hierarchical merging/clustering algorithm applied to

the PASA ED distribution. For clarity, bonded H atoms are not shown.

‘‘bak’’ and ‘‘sid’’ stand for ‘‘backbone’’ and ‘‘side-chain’’, respectively.

Nearest c.o.m. Fragment content r (e ÅC3) Fragment charge (e),

tF 0:420 Å2

Unit

charge

QVAL QTAIMEXP

tF 0:350 Å2 tF 0:420 Å2

PRO211 bak (CbO)aNaCa 1.167 1.039 0.059 �0.318

LEU212 bak (CbO)aNaCa 1.174 1.039 �0.206 0.111

LEU212 sid CbaCga(Cd)Cd 0.999 0.891 0.258 0.448

SER214 bak NaCaaCbaCgaCd 1.181 1.073 0.196 �0.583

PRO215 bak (CbO)aNaCaaCb 1.181 1.046 �0.050 �0.104

ASP216 bak (CbO)aNaCaaCbaCg 1.188 1.053 �0.206 0.111

ASP216 sid Cga(Od)Od 1.181 1.039 �1 �0.833 �0.578

LEU227 bak (CbO)aNaCaaCb 1.188 1.059 0.155 �0.216

LEU228 bak (CbO)aNaCaaCbaCgaCda(Oe)Oe 1.174 1.046 �0.206 0.111

LEU228 sid Cga(Cd)Cd 0.999 0.891 0.162 0.346

THR244 bak (CbO)aNaCaaCb 1.188 1.059 0.208 �0.215

ALA245 bak (CbO)aNaCaaCb 1.181 1.053 �0.206 0.111

PRO261 bak (CbO)aNaCaaCb 1.181 1.039 0.155 �0.216

LYS262 bak (CbO)aNaCa 1.174
1.046 �0.050 �0.104

LYS262 sid Cg 0.918

LYS262 sid CdaCeaNz 0.985 0.857 1 0.832 0.706

SER263 bak (CbO)aNaCa 1.174 1.039 �0.206 0.111

SER263 sid CbaOg 1.059 0.918 �0.109 �0.347

GLU267 bak (CbO)aNaCaaCb 1.181 1.046 0.215 �0.216

ARG268 bak (CbO)aNaCa 1.181 1.053 �0.206 0.111

ARG268 sid CgaCdaNeaCza(N)N 1.181 1.039 1 0.853 1.169

ALA270 bak (CbO)aNaCaaCba[Cg]chainB 1.161 1.039 0.135 �0.215

GLU271 bak (CbO)aNaCa 1.147 1.033 �0.157 �0.206

GLU271 sid [CgaCdaOe1Oe2]chainAa[Oe1]chainB 0.992
0.857 �1 �0.737 �0.477

GLU271 sid [CdaOe2]chainB 0.817

ASN272 bak (CbO)aNaCaaCb 1.167 1.039 �0.216 0.111

ASN272 sid CbaCga(Od)Nd 1.167 1.019 0.158 0.345
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the electrostatic potential calculated at medium resolution, using the fragment

description of the adenine binding site associated with different point-charge

models.

11.5.1

Medium- and High-resolution Approaches of Electrostatic Potential Computations

The high-resolution electrostatic potential generated in the adenine binding site

by the protein environment has been computed by VMoPro [10] using, on one

hand, the charge-density terms (k, k 0, Pval, and Plm, Eq. 5) as transferred from

the multipolar database (most accurate description) and, on the other hand, the

QTAIMEXP charge model (Section 11.3) [23, 24, 36].

In both cases, to ensure fragment electroneutrality, the total charge of the ad-

enine binding site was set equal to zero by initially correcting atomic charges us-

ing the following procedure. The sum of adenine binding site atomic valence

populations for neutral and charged atoms are compared. The difference, divided

by the number of atoms (i.e. 160, including hydrogen atoms), is then subtracted

for each atom in the adenine binding site. When using the multipolar database

values (which includes QVAL charges), as already observed by transfer over the

full hAR structure [16], the charge increment to be brought to each atom is

Fig. 11.7 Frequency of occurrence of distances measured between the

peaks observed in PASA ED maps of hAR smoothed at t ¼ 0:350 (t350)

and 0.420 (t420) Å2, and promolecular XTAL or experimental ED maps

at resolution values of 2.85 (R285) and 3.5 (R35) Å. Histogram bars are

displayed in the following comparison sequence: t350–R285, t420–

R285, t350–R35, t420–R35, t350–R285exp, t420–R285exp, t350–R35exp,

t420–R35exp. exp denotes ‘‘experimental’’.
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very small, þ0.008 e, and is thus acceptable as largely below the standard devia-

tions of the database values and below the experimental standard uncertainties

for valence populations observed in a charge-density refinement. For QTAIMEXP

charges, the amount of charge needed to ensure electroneutrality of the adenine

binding site fragment is slightly higher, þ0.018 e, but comparable with the multi-

polar database standard deviations. The resulting high-resolution electrostatic po-

tentials are displayed Fig. 11.8 in two orthogonal planes.

To compute electrostatic potential in the medium-resolution approach, charges

attributed to the adenine binding site fragments obtained by analysis of smoothed

PASA ED distributions (with a selected smoothing degree of t ¼ 0:420 Å2), were

calculated by the following procedure.

First, each fragment that contained at least one atom of the adenine binding

site was selected. Fragment charges were then calculated as summations over

the atomic charges associated with their constituting atoms. Three different

sets of atomic charges were considered – the QVAL charges (Section 11.3, page

298), the QTAIMEXP charges, and unit charges obtained by setting all fragment

charges equal to zero, except for the side-chain fragments ARG (þ1), GLU (�1),

LYS (þ1), and ASP (�1). The latter model was used by Becue to calculate an elec-

trostatic scoring index for protein–protein and protein–DNA docking applications

[51].

The adenine binding site fragment charges calculated from the three sets of

atomic and unit charges described above are given in Table 11.7. This table shows

that, except for ARG268, the QVAL charges of the charged amino acids ASP216,

LYS262, and GLU271 are closer to the very simple unit-charge model than those

using the QTAIMEXP charge model. For example, ASP216 side-chain fragment

net charge is �0.83 e for QVAL but only �0.58 e for QTAIMEXP. The LYS262 QVAL

charge is 0.83 e compared to 0.71 e for the QTAIMEXP charge. For ARG268, the

situation is inverted, 1.17 e for QTAIMEXP charges compared with 0.85 e for the

QVAL charges. Accumulation of charges on side-chain fragments is, however, al-

ways coherent with the formal charge currently used for such amino acids. For

the neutral or polar amino acids present in the adenine binding site model,

QVAL and QTAIMEXP fragment charges are not always consistent, because numer-

ous sign differences occur (Table 11.7). For example, when the backbone frag-

ment obtained by the clustering procedure adopts a �0.21 e negative charge

with QVAL charges, the corresponding QTAIMEXP charge is equal to þ0.11 e.

Furthermore, the correlation between the signs of QVAL and QTAIMEXP pseudo

atomic charges (without any clustering procedure) is only 63%. QTAIMEXP

charges obtained by integration of the experimental multipolar database ED are

usually found be more different than the QVAL charges – positive and negative

charges have more pronounced absolute values.

The adenine binding site fragment charges QVAL, QTAIMEXP, and unit charges,

which we have located on ED maxima identifying each fragment in the clustering

procedure, have been used to generate point-charge calculated electrostatic poten-

tials based on medium-resolution ED topology. They are shown in Fig. 11.9 in the

same orientations as defined for the high-resolution electrostatic potentials.

308 11 Topological Analysis of Proteins as Derived from Medium and High-resolution Electron Density



11.5.2

Electrostatic Potential Comparisons

Initially, despite of the discrepancies pointed out in Section 11.3 between the

multipolar database QVAL charges (from valence population data) and QTAIMEXP

charges, comparison of the two high-resolution electrostatic maps calculated with

Fig. 11.8 High-resolution electrostatic

potentials (e Å�1) calculated using multipolar

database values of Pval and Plm (left), and

QTAIMEXP charge model (right), with the

software VMoPro [10]. Contours are displayed

in the adenine plane defined by the atoms

C5A, N7A, and N6A (top) and in a plane

perpendicular to the adenine moiety going

through C5A, O_LYS262, and CD_ARG268

atoms (bottom). The interval between

contours is 0.05 e Å�1. Negative, positive,

and zero contours are displayed in dashed,

thin grey, and thick dark lines, respectively.
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Fig. 11.9 Medium-resolution electrostatic potential calculated from the

fragment description of the adenine binding site of hAR using atomic

charges from the QVAL model (left), QTAIMEXP charges model (middle),

and unit fragment charges (right). Plane and contour definitions are the

same as in Fig. 11.8. Fragments were generated from a PASA ED

distribution smoothed at t ¼ 0:420 Å2.
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VMoPro (Fig. 11.8) reveals surprisingly good qualitative agreement for the ad-

enine moiety binding regions. For example, the electronegative area generated

by the group of oxygen atoms OD1_ASN272, OE2, and OE1_GLU271 close to

the NH2 function of the adenine group is very well conserved (Fig. 11.8, top).

This is consistent with the electrostatic complementarity expected between the

adenine NH2 group, which has been found to be positively charged in charge-

density studies of other adenine-containing compounds [52, 53], and this electro-

negative region generated by the protein atoms. It is also seen that the adenine

double ring is located in a slightly electropositive area in both instances, with

atom H8A pointing toward a small region ranging from slightly electronegative

(multipolar database values) to strongly electronegative (QTAIMEXP charges), be-

cause of the atom O_LYS262. This discrepancy in the area of the H8A adenine

atom arises from the more pronounced negative QTAIMEXP charge for the back-

bone O atom. Very interestingly, however, the region of zero potential (iso-

contour 0.0 e Å�1) separating electronegative and electropositive regions is always

very well conserved, indicating qualitative agreement between the two representa-

tions. The main discrepancies between multipolar database and QTAIMEXP de-

scriptions are usually located close to the atoms, because electrostatic potential

values computed from data transferred from multipolar database takes directly

into account the nonspherical part of the ED in the form of high-order electro-

static moments [54] whose contributions have shorter spatial extent than zero

order moments (point charges). Hence, the quantitative difference between the

two representations is 0.15 e Å�1 close to the O atoms that are hydrogen bonded

to the NH2 adenine group whereas it is only 0.05 e Å�1 on its double ring posi-

tion. When electrostatic potentials are compared in the plane perpendicular to the

adenine moiety (Fig. 11.8 bottom), the difference between the electronegative

area magnitudes close to the H8A atom is still observed. Another difference

arises in the opposite region, where the zero potential iso-contour is shifted to-

ward the protein surface in the QTAIMEXP charges instance, because of their

high magnitudes when compared with the QVAL charges of the multipolar data-

base values.

In the medium-resolution approaches, atomic details in the electrostatic maps

are leveled out (Fig. 11.9). The main electrostatic potential features that were

pointed out previously are, however, conserved, i.e. the two negative areas close

to the aNH2 group and H8A, and a globally positive region at the level of the ad-

enine rings. It is also observed that the position of the zero iso-contour is rather

well preserved with the QVAL charge model whereas it is shifted slightly away

from the aNH2 function for the QTAIMEXP charge model when t increases. In
maps calculated in the plane perpendicular to the adenine rings, two positive re-

gions appear on each side of the rings. This feature is observed both with the

QVAL and QTAIMEXP charge models but is absent from the results calculated

with the unit charge model. One thus concludes that if unit charges are sufficient

to globally model the charge distribution of a whole protein structure they are too

limited to properly take into account fine details of a receptor site. The QVAL or

QTAIMEXP models should therefore be used.

11.5 Calculation of Electrostatic Properties from Atomic and Fragment Representations 311



11.5.3

Electrostatic Interaction Energies

Electrostatic interaction energy values were calculated between the adenine group

of NADPþ and the adenine binding site. All three models were considered, at

atomic resolution and using a smoothing degree of t ¼ 0:420 Å2. The atomic

charges of the adenine group were those of MacKerell et al. [55]. Interestingly, in-

teraction energy values obtained within the framework of a simple point charge

Coulombic interaction depict, in all models, stabilization of the adenine group

within the protein cavity. Indeed, electrostatic interaction energies computed in

the atomic description using QTAIMEXP charges and multipolar database QVAL

charges are �152.3 and �84.3 kJ mol�1, respectively, whereas the fragment de-

scription leads to �74.6, �49.8, and �46.5 kJ mol�1 with QTAIMEXP, QVAL and

unit charges, respectively. This stabilization is emphasized in the framework of

the QTAIMEXP charge model for both atomic and medium-resolution descrip-

tions, because of to their greater magnitudes. Surprisingly, interaction energy ob-

tained for the unit-charge model is very close to that obtained for QVAL fragment

charges, despite discrepancies observed in electrostatic potential representations.

11.6

Conclusions and Perspectives

This chapter presents several concepts and techniques for conducting topological

analysis of protein ED distributions at different levels of resolution. It particu-

larly focuses on the transferability of electronic information from high to low-

resolution representations.

Several descriptions of ED distributions were considered. First, experimental

ED distributions were modeled at a subatomic resolution level (d < 0:9 Å) by use

of a multipolar description that enables determination of atomic charges in accor-

dance with the Bader QTAIM approach [24, 36]. Second, a CP analysis technique

developed by Johnson [26] was applied to both experimental and promolecular

ED distributions at medium resolution (dA3 Å) to locate their ED maxima. In

this second approach, promolecular ED grids were obtained by Fourier trans-

formation of calculated structure factors. Third, a smoothing algorithm was ap-

plied to a Gaussian promolecular description of the ED distribution to locate its

maxima and to define their corresponding molecular fragments by a clustering

procedure.

Application of these different approaches were proposed to study the electro-

static properties of the adenine binding site of the hAR structure bound with the

cofactor NADPþ [6]. More precisely, the atomic charges that were obtained at a

subatomic resolution level were used to calculate medium-resolution fragment

charges. Two sets of atomic charges, characterized by overall charge neutrality,

were used – database atomic charges directly obtained from the valence popula-
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tions and topological QTAIM charges derived from the transferred ED multipolar

database.

Topological analysis of ED distributions reconstructed from the multipolar da-

tabase showed that atomic properties such as charge and volume enabled classifi-

cation of the atoms according to their chemical function or their chemical environ-

ment. For example, atoms bonded to O and N, or to C, formed different clusters.

This observation emphasized the effect of the electronegativity of atoms involved

in a chemical bond. This clustering of topological properties was described in

more detail for the atoms belonging to the peptide group HNaHaCaaCbO, and
to those forming the aromatic group of the amino acid tyrosine. The QTAIM

charges seemed to be totally transferable and were thus regarded as simple point

charges in electrostatic property calculations.

Molecular electrostatic potentials generated by the adenine binding site in the

hAR structure and the electrostatic interaction energies of the adenine moiety

with the protein binding site were calculated using several charge models. The

two first models were built from the two sets of atomic charges. Each of these

two sets was also used to calculate fragment charges. Finally, a fifth charge model

was built by assigning formal unit charges to the ARG, LYS (þ1) and GLU, ASP

(�1) side-chains. Comparison of these five models led to several observations.

First, although atomic database and QTAIM charges have similar signs, the

QTAIM charges have more pronounced positive and negative values than the

database charges. When applied to fragment representations, database and QTAIM

fragment charge signs may differ, depending on fragment content. Second, all

charge models, atomic or fragment-based, gave similar results, i.e. the adenine

moiety is located in a slightly positive area and its aNH2 and H8A group/atom

are pointing toward a negative area. It is however shifted away from the adenine

group with the topological model when t increases. Fragment representations, up

to medium smoothing (t ¼ 0:420 Å2), are thus acceptable descriptions for model-

ing electrostatic properties of a protein site. Third, two positive regions occur on

either side of the adenine plane, except with the formal unit charge model. In

that last instance all four unit charges of the adenine binding site are located on

one side only of the adenine rings and do not properly depict its 3D electrostatic

properties. Finally, all electrostatic interaction energies adopt the same stabiliza-

tion effect toward the adenine group within its binding site, even with the formal

unit charges. The topologically based electrostatic energy is, however, more nega-

tive, because of the more pronounced individual atomic charges.

This work will have a variety of applications. In this chapter, the clustering pro-

cedure used to partition a protein structure into fragments is based on progres-

sive smoothing of the protein promolecular ED distribution, i.e. a change in the

overall temperature factor. The decomposition of a protein structure as a function

of the crystallographic resolution rather than the temperature factor could be con-

sidered. This would enable deeper comparison with the CPs obtained using John-

son’s approach [26]. For more general application purposes, a database of atomic

charges could be combined with a database of protein fragment contents and

used to automatically generate reduced protein steric and electrostatic representa-
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tions. Such representations are expected to be useful in docking applications, for

example, which are nowadays largely used to predict protein–protein, protein–

DNA, and protein–ligand interaction patterns.
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12

Fragment Transferability Studied Theoretically

and Experimentally with QTAIM – Implications

for Electron Density and Invariom Modeling

Peter Luger and Birger Dittrich

12.1

Introduction

It is interesting to note that as early as 1915, three years after the discovery of X-

ray diffraction, Peter Debye made a note that the distribution of electron density

should be obtainable from this new experimental method [1]. It took ninety years,

however, until, in the autumn of 2005, Philip Coppens’ highlight article (entitled

‘‘Charge Densities Come of Age’’) appeared in ‘‘Angewandte Chemie’’ [2]. He

pointed out it was a long way from Debye’s vision in 1915 to the current stage of

electron-density work, that progress was slow, and that the major advances had all

occurred in the last decade. The substantial progress made in electron density re-

search in the last few years rests on three pillars:

1. advances in experimental techniques – high-brilliance X-ray

sources (synchrotron beamlines), very low temperatures

(T ! 10 K), and CCD area detection;

2. theoretical developments, e.g. Bader’s QTAIM theory [3],

enabling the derivation of quantitative topological data; and

3. computing – the development and distribution of specific

computer program systems for all aspects of electronic

density work, including refinement, analysis, and

visualization of results.

As a result of these simultaneous developments, electron-density studies of en-

tire classes of chemically related compounds or of larger molecules became feasi-

ble in a reasonable time. Routine application of electron-density work is in sight.

In this chapter we would like to start with a brief summary of recent experi-

mental advances which enable verification of the transferability of atomic frag-

ments from significant experimental data, a key feature of Bader’s QTAIM theory.

Understanding of what constitutes chemical similarity led to the introduction of

invarioms, pseudoatom fragments of electron density that are invariant in trans-

fer from one molecule to another, and to their recent applications. Invarioms en-

317



able replacement of the independent atom model (IAM), and their introduction

will possibly add another pillar to high-resolution crystallographic work.

12.2

Experimental Electron-density Studies

12.2.1

Experimental Requirements

The electron density of a chemical structure consists of a large spherical contribu-

tion and a very small nonspherical contribution located mainly in the regions of

the covalent bonds and some nonbonding (lone pair) regions. Because chemistry

happens in the latter regions, one is more interested in the aspherical part of the

electron density and observation of these small effects requires very precise ex-

periments. Atoms in crystals are not at rest, being described by well-known dis-

placement terms which decrease as the temperature is reduced. Because thermal

smearing should be as small as possible, data collection should be performed at

the lowest temperature achievable. At low temperatures, moreover, high-order re-

flections are more likely to have significant intensities above the background.

High-order data are needed not only to improve accuracy and resolution but also

to provide sufficient data for the refinement of the increased number of variables

of the Hansen and Coppens multipole model [4]. To summarize, several experi-

mental requirements must be met:
� excellent single-crystal quality
� precise intensity-data collection
� high resolution (sin y=l > 1:0 Å�1 or d < 0:5 Å)
� hard X-radiation, e.g. MoKa or shorter, synchrotron radiation
� high completeness and redundancy in reciprocal space,

hence use of an area detector is preferable
� low temperature (Ta 100 K)

Whether or not a data set is suitable for electron-density determination must be

carefully examined. Several criteria can be used:
� conventional figures of merit, Rint, Rs, R(F) or R(F

2), Rw(F),

GoF
� the Hirshfeld test [5] – a covalently bonded pair of atoms of

comparable mass can be regarded as rigid with respect to

thermal motion, so that the displacement parameter

components of the atoms in question should be equal in

bond direction
� the quality of the residual electron density obtained by

Fourier transformation of the difference between observed

and multipole-model structure factors – the residual density

should be unstructured and low
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Figure 12.1 illustrates an example of a proper electron-density data set mea-

sured for the dipeptide l-phenylalanyl–l-proline.H2O. All criteria mentioned

above have been fulfilled. In particular, the residual density is featureless except

for a small signal next to one of the hydrogen atoms. The Hirshfeld test was also

satisfied in that the maximum difference of displacement parameter components

on a bond wasa 0.0005 Å2.

12.2.2

Recent Experimental Advances

For several decades single-crystal X-ray data collection was performed with four-

circle diffractometers with point detectors operated in serial detection mode, so

that usually no more than 500–1000 reflections could be collected per day. The

appearance of CCD area-detection diffractometers in the mid nineties was a

major breakthrough. It was shown that this type of detection led to data sets of

sufficient accuracy for electron-density work and that the data collection time

could be reduced from weeks or months to one or a few days [6–8].

12.2.2.1 Synchrotron Radiation Compared with Laboratory Sources

Because optimum experimental conditions depend not only on detector type and

quality but also on the choice of primary radiation and the data-collection temper-

ature, we will discuss these aspects in some detail. On a laboratory scale most

crystallographers have a sealed 2.4-kW Mo tube or sometimes a rotating anode

available; synchrotron radiation should be considered as a favorable alternative.

Synchrotron beamlines provide a bright source of X-radiation with outstanding

Fig. 12.1 Electron density of the dipeptide

l-phenylalanyl–l-proline.H2O, an example

of a proper data set. Tetragonal, P43212,

a; b ¼ 8:197, c ¼ 41:226 Å, V ¼ 2769 Å3,

T ¼ 90 K, MoKa, (sin y=lÞmax ¼ 1:20 Å�1,

Smart 1K CCD diffractometer, 112.138

measured reflections, 11.139 symmetry-

independent, reflections with Fo > 2:5

s(Fo):10.120 (91%!), completeness: 99.2%,

redundancy: 9.92, Rint ¼ 2.8%. Multipole

model: 653 parameter, R(F) ¼ 2.7%,

Rw(F) ¼ 2.3%, GoF ¼ 1:82. Left: Molecular

structure with hydrogen bonds to the water

molecule; middle/right: static/residual map

in the plane of the phenyl ring, contour

intervals 0.1/0.05 e Å�3.
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properties. Most important for electron density experiments are the very high in-

tensity and the tunable wavelength, enabling choice of lA0:5 Å or even shorter.

This enables high-resolution data sets to be collected, if needed also for smaller

crystals, for which absorption and extinction problems are minimized.

An example in which synchrotron radiation was essential for collection of a

high-resolution data set is illustrated by Fig. 12.2 for a highly substituted C60 full-

erene derivative.

Fullerenes are usually very unsuitable for experimental electron-density studies

because of poor crystal quality and the high mobility of the molecules in the crys-

tal lattice. This is why, for example, there is no electron-density study of an un-

substituted fullerene. After several unsuccessful attempts we were able to grow

suitable crystals of the highly substituted Th-symmetrical derivative dodecakise-

thoxycarbonyl-C60-fullerene, C102H60O24 [10] (Fig. 12.2), which co-crystallized

with 1,2-difluorobenzene. On the basis of a data set of more than 350,000 reflec-

tions measured in five days at 100 K up to a resolution of sin y=l ¼ 1:26 Å�1 on

beamline D3 of Hasylab/DESY, a properly resolved electron-density distribution

and related bond-topological and atomic properties [9, 11] were derived.

If well-diffracting crystals of sufficient size can be grown, high-resolution data

collection can be conducted with laboratory equipment. An example is a data set

for vitamin B12 (Fig. 12.3). Although B12 crystals of desired size can be grown

rather easily in a variety of solvents, they are extremely unstable when taken out

of the mother liquor, being destroyed within seconds. This made careful, but also

time-consuming crystal preparation necessary. To avoid the risk of wasting syn-

chrotron beamtime, data were collected by use of a Bruker Smart 1K diffractom-

eter with conventional MoKa radiation from a sealed 2.4-kW tube and were very

suitable for further electron-density evaluation. Figure 12.3 shows the static defor-

Fig. 12.2 High-resolution synchrotron data set for the fullerene

derivative dodecakisethoxycarbonyl-C60-fullerene. Left: summary of the

crystallographic data. Right: static deformation density map in an

equatorial plane of the C60 sphere [9] Copyright 2002 and Reproduction

with Permission from American Chemistry Society.
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mation density distribution in the corrin plane; further derivation of topological

properties is still in progress.

12.2.2.2 Data Collection at Ultra-low Temperatures (10–20 K)

Low-temperature diffraction experiments are normally conducted at temperatures

of approximately 100 K, making use of conventional nitrogen gas-stream devices.

It has been shown [13], however, that substantial and, hence, favorable reduction

of thermal motion occurs when the temperature is further reduced to 10–20 K.

Because of reduction of the displacement parameters, the number of high-order

reflections with intensities significantly above the background increases, and this

is of utmost importance for electron-density work. These ultra-low temperatures

can be achieved either by replacing nitrogen with helium in open-flow gas-stream

devices or by using closed-cycle helium cryostats. Open-flow helium systems have

the disadvantages of high cost of helium consumption and are, for this reason,

rarely used in normal university laboratories.

Closed cycle helium cryostats which, in the double-stage version, reach a tem-

perature of 10–20 K, are a low-running-cost alternative, because no gas is con-

sumed. The cold head of the cryostat, which carries the crystalline sample, must,

however, be enclosed in a cylindrical vacuum chamber. When point detectors

were used, beryllium or carbon chambers were acceptable, but these result in

an intolerable background pattern on CCD area detector frames. This technical

Fig. 12.3 Left: molecular structure of vitamin

B12 in the crystalline modification

cocrystallizing with 12 water and 3 propanol

molecules. Summary of crystallographic data

[12]: orthorhombic, P212121, cell volume

8952(3) Å3, Z ¼ 4, MoKa, T ¼ 100 K, a total

of 660,822 reflections collected,

(sin y=lÞmax ¼ 1:22 Å�1, 98,204 unique,

78,606 reflections with I > 2s(I) (80%),

Rint ¼ 0:038, R(mul) ¼ 0:03. Right:

experimental static deformation density in

the plane of the corrin ring. Contour levels

0.1 e Å�3.
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problem of the vacuum chamber was recently solved by replacing beryllium with

a Kapton film as cylinder-wall material of the vacuum chamber (Fig. 12.4) [14].

This results in a much lower and practically unstructured background and

makes the combination of a closed-cycle cryostat with a modern area detector fea-

sible. In a comparative study of four high-order data sets for strychnine single

crystals at 100, 25, and 15 K, it was shown that I/s ratios of high-order reflections

improved most favorably when synchrotron radiation and a temperature of 15 K

were used [14].

On the basis of current technical developments, experimental advances in high-

speed evaluation of electron densities can be expected – data collection periods of

hours or even minutes are within reach. This was demonstrated by a 12-h se-

quence of diffraction experiments recently conducted at the protein crystallogra-

phy beamline X10 SA of the Swiss light source (SLS) at the Paul Scherrer Insti-

tute (Villigen, Switzerland) [15]. It resulted in a total of 400,000 reflections of four

high-resolution X-ray data sets for electron density determination. Because of the

brilliant primary beam properties, intensities could be observed even for tiny crys-

tals and in very high regions of reciprocal space.

One particular example of this experimental sequence is illustrated in Fig. 12.5,

which shows the static map in the purine plane of adenosine after aspherical

atom refinement. It was generated from a quick 1 h test dataset of more than

22,000 reflections. The covalent bonding features are properly resolved, even

though this data set was acquired in one of the shortest measurements ever con-

ducted in experimental electron-density work.

Fig. 12.4 Left: Huber four-circle diffractometer at beamline D3

(Hasylab) equipped with helium cryostat and Bruker Smart 1K CCD

area detector. The vacuum chamber wall at the cold head of the

cryostat is made of Kapton film. Right: background resulting from

different vacuum cylinder materials – beryllium (above) and Kapton film

(below) [14] Copyright 2003 and Reproduction with Permission from

International Union of Crystallography (IUCr).
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The conclusion reached from all the experimental conditions discussed above is

that if beam conditions are stable synchrotron radiation is the first choice for

high-resolution electron-density data collection. This is especially true if smaller

crystals are to be used; further advantages are reduced absorption and extinction.

Cooling to low temperatures of approximately 10–20 K is superior to the 100 K

cooling normally used, because many significant high-order reflections can be

measured. If, however, crystals are large enough and diffract properly, MoKa radi-

ation can be sufficient, as was demonstrated by the data collection of vitamin B12

at 100 K.

The 12-h sequence of diffraction experiments described above suggests the pos-

sibility of establishing high-throughput techniques in electron density research,

thereby making electronic information of entire classes of chemically or biologi-

cally related compounds available at an increased pace. Together with the invar-

iom data base approach that will be detailed in the next sections, high-speed eval-

uation of electron densities could become a routine task to be conducted in a time

comparable with those currently needed for conventional X-ray analyses.

12.3

Studying Transferability with QTAIM – Atomic and Bond Topological Properties of

Amino Acids and Oligopeptides

A key feature of Bader’s theory of atoms in molecules is the partitioning of a mo-

lecular structure into sub-molecular regions, functional groups, or single atoms.

The partitioning procedure makes use of the zero-flux surface (ZFS) in the

electron-density gradient vector field ‘r(r). Surfaces of this type establish atomic

basins around nuclear attractors of the corresponding trajectories of ‘r(r) and

Fig. 12.5 Static deformation density map in the purine plane of

adenosine, based, as far as we are aware, on the fastest data set ever

acquired for electron-density work (exposure time < 1 h) [15] Copyright

2005 and Reproduction with Permission from American Chemistry

Society.
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uniquely define atomic volumes. Together with identification of critical points on

bond paths, rings, and cages, tools are at hand for quantitative evaluation of

bonding, atomic, or functional group properties. Transferability of the above-

mentioned quantitative data is essential for application of database approaches to

modeling of the electron density of larger systems. On the electronic level, it can

be expected that density and derived properties of a functional group composed of

atomic fragments should have high transferability when compared for different

but chemically related molecules.

The biologically important class of the twenty genetically encoded amino acids

was one of the first in which this transferability was systematically examined ex-

perimentally and theoretically. Bader and Matta have published complete topolog-

ical data on all twenty amino acids based on theoretical calculations [16–18] and

experimental studies on sixteen of the twenty amino acids have been performed

by different groups, as detailed in Table 12.1. This class of compounds is thus

the first for which a complete set of theoretical electron-density data is available

and for which the corresponding experimental studies are approaching complete-

ness.

Quantitative results for bond topological properties are summarized in Fig.

12.6 and Table 12.2 [19]. Figure 12.6a shows r(rbcp) values and Laplacians for the

five main chain bonds common to all amino acids (CO, CO(H), CN, CaaC 0

(¼ CCO) and CaaCb (¼ CCR)) from the sixteen experimental studies. With the

Table 12.1 Summary of available experimental charge-density studies on amino acids (from [19]).

Compound Radiation (Å) Res. (ÅC1) Temp. (K) Refs

a-Gly (XaN) 1.2 120 20

a-Gly Mo, 0.71 1.15 23 21

l-Ala Mo, 0.71 1.08 23 22, 23

dl-Val Sy, 0.45 1.54 100 24, 25

dl-Ser Mo, 0.71 1.22 123 26

dl-Ser Sy, 0.45 1.54 100 26, 24, 25

l-Thr Ag, 0.56 1.34 19 26

l-Cystine Mo, 0.71 1.123 110 8

l-Asn.H2O Sy, 0.64 1.073 20 27

l-Asn Sy, 0.53 1.46 100 26, 24, 25

l-Gln Mo, 0.71 1.08 130 28

dl-Asp Ag, 0.56 1.368 20 29

dl-Glu Sy, 0.53 1.3 100 26, 24, 25

dl-Lys.HCl Sy, 0.5 1.38 100 24, 25

dl-Arg.H2O Sy, 0.49 1.4 100 30

dl-His Mo, 0.71 1.23 110 31

l-Trp.HCO2H Sy, 0.54 1.38 100 32

dl-Pro.H2O Sy, 0.50 1.12 100 6, 24, 25

l-Phe.HCO2H Mo, 0.71 1.18 25 19
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exception of l-phenylalanine, which contains a neutral carboxyl group, all experi-

mental results are for negatively charged carboxylate groups. In all cases both

C 0aO bond lengths differ mainly because of weak intermolecular interactions, so

the r(rbcp) values for these bonds are not merged. CO(H) stands for the longer

C 0aO bond, which is commonly related to a lower r(rbcp) value.

The corresponding results from calculation of experimental geometries are

listed in Fig. 12.6b. Different authors have used different basis sets. Because, as

discussed elsewhere [24], the effect of the wavefunctions used is not negligible,

the entries are separated into four blocks according to the basis sets used.

Matta’s and Bader’s theoretical results for the 20 amino acids are listed in Fig.

12.6c. For their calculations they separated the amino acid molecules into the

main-chain part, which is set to neutral, and the side-chain part, which is sup-

posed to be the dominant state at pH 7; this implies that Lys, Arg, and His are

protonated and the alkyl side-chains of Asp and Glu are deprotonated. The dia-

gram illustrates the different topological properties of the two different CO bonds

in neutral amino acids compared with the zwitterionic forms in Figs 12.6a and

Fig. 12.6 Representation of the r(rbcp)s and

Laplacians of the five main chain bonds in

amino acids [19] Copyright 2006 and

Reproduction with Permission from

Oldenbourg Publisher, Germany. (a)

Experimental results. (b) Data from

theoretical calculations at experimental

geometry. Block separation according to

different basis sets was used: HF/6-

311þþG��, HF/6-311þþG(3df,3pd), B3LYP/

6-311þþG�� and B3LYP/6-311þþG(3df,3pd),

respectively. (c) Data from ab initio

calculations for neutral amino acids (Matta

and Bader, RHF/6-311þþG�� [18]).
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12.6b. The positive Laplacians of the CO bonds describe partial ionic character. As

a result of this the r(rbcp) values of the CN bond are higher than for the zwitter-

ionic molecules, in accordance with chemical understanding. In the experimental

data there is a small difference between the C 0aO bonds which originates in the

weak interactions described.

Table 12.2 Mean values and absolute and relative standard deviations

(s and s=r) for the five main chain bonds. First line – experiment

(multipole); second–fifth line – calculations at experimental geometry

(HF/6-311þþG**; HF/6-311þþG(3df,3pd); B3LYP/6-311þþG**;

B3LYP/6-311þþG(3df,3pd)); sixth line – theoretical values (Matta and

Bader, RHF/6-311þþG**) [19].

Bond r(r) (e ÅC3) s (e ÅC3) s/r(r) (%) n[a] ‘2r(r) (e ÅC5) s (e ÅC5) s/‘2r(r) (%) n[a]

CO 2.857 0.110 3.8 16 �35.631 4.263 12.0 16

2.590 0.037 1.4 5 �7.540 1.557 20.6 5

2.702 0.033 1.2 11 �16.045 1.625 10.1 11

2.594 0.096 3.7 5 �10.326 1.430 13.9 5

2.668 0.055 2.0 5 �17.470 1.728 9.9 5

2.938 0.021 0.7 24 �2.480 0.618 24.9 24

CO(H) 2.717 0.105 3.9 16 32.356 5.170 16.0 16

2.540 0.023 0.9 5 10.680 1.474 13.8 5

2.641 0.023 0.9 11 18.138 1.331 7.3 11

2.533 0.041 1.6 4 13.248 1.431 10.7 4

2.578 0.027 1.0 5 18.590 0.988 5.3 5

2.081 0.033 1.6 24 1.680 0.226 13.5 24

CN 1.685 0.083 4.9 17 10.506 2.652 25.2 17

1.547 0.139 8.8 5 5.020 8.579 170.9 5

1.586 0.093 5.9 11 8.540 4.754 55.7 11

1.538 0.013 0.8 4 10.120 0.426 4.2 4

1.622 0.101 6.2 5 13.320 2.326 17.5 5

1.896 0.027 1.4 24 21.739 0.711 3.3 24

CCO 1.735 0.072 4.2 17 12.594 2.657 21.1 17

1.758 0.013 0.7 5 18.120 0.268 1.5 5

1.787 0.016 0.9 11 18.830 0.398 2.1 11

1.665 0.028 1.7 5 13.850 0.588 4.2 5

1.688 0.031 1.8 5 14.528 0.602 4.1 5

1.817 0.013 0.7 24 19.247 0.273 1.4 24

CCR 1.681 0.076 4.5 16 11.231 2.136 19.0 16

1.718 0.046 2.7 5 16.520 0.988 6.0 5

1.735 0.038 2.2 11 16.822 0.842 5.0 11

1.624 0.045 2.8 5 12.744 1.023 8.0 5

1.664 0.040 2.4 5 13.942 0.713 5.1 5

1.705 0.031 1.8 24 16.260 0.606 3.7 24

an is the number of contributing entries.
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Averages and statistical standard deviations (s values) of the quantities illus-

trated in Fig. 12.6 are listed in Table 12.2. For the experimental averages of the

five bonds considered (first lines in Table 12.2) the s values are, approximately,

within 0.07–0.11 e Å�3 and 2–5 e Å�5 for r(rbcp) and ‘2r(rbcp), respectively. For

the 24 entries of Matta and Bader’s theoretical calculations (all obtained with the

same basis set RHF/6-311þþG��, last lines for each bond in Table 12.2) the s val-

ues are much smaller, and here intermolecular interactions are not considered. It

was, nevertheless, shown that results of ab initio calculations with different basis

sets can vary in the same range as experimental data.

It can be concluded that despite a variety of experimental and refinement con-

ditions and different b-substituents and crystal environments, the overall results

for experiment and theory are very consistent in their respective ranges. With re-

gard to Bader’s concept of transferability of submolecular properties these data

are useful for predicting the bond properties of larger systems of biological inter-

est, which often cannot be determined experimentally.

Between single amino acids and macromolecules, for example proteins, are the

oligopeptides, which contain the building blocks of proteins. We would like to

compare the transferability of atomic volumes and charges in the peptide bond

region for several oligopeptides. For this purpose we make use of experimental

data for five dipeptides, one hexapeptide, and four tripeptides. The latter are part

of a systematic study of tripeptides of the type l-ala–XXX–l-ala, were the central

amino acid residue XXX was varied to examine whether this central residue af-

fects transferability in the peptide bond region.

The results obtained so far are summarized in Fig. 12.7. The averages of com-

parable quantities show that the internal consistency for volumes is <1 Å3. The

atomic volumes at the other Ca and C 0 atoms are equal within twice the statistical

error, except if Ca belongs to a Gly residue. The average volumes of the (non-Gly)

Ca atoms are more than 1 Å3 smaller than those of the Gly Ca atoms, in which

the second hydrogen atom enables the carbon to expand. A nearest-neighbor ef-

fect is also seen for the N atoms. In proline the nitrogen atom is part of the five

membered ring and bonded to a third carbon atom instead of hydrogen, which

reduces the volume by more than 1 Å3, by analogy with the above quoted volume

expansion for the glycine Ca.

The QTAIM charges (for averages see also Fig. 12.7) agree within the given atom

types by 0.07–0.16 e, which is a surprisingly small spread. The Ca atoms carry a

small positive charge, the hydrogen atoms of the peptide NaH are moderately

positively charged and the C 0 atoms carry a high positive charge, whereas strong

negative charges close to 1 e are observed on the N and O atoms. These experi-

mental results indicate that polarization of Bader atoms is much higher than ob-

tained, for example, from theoretical orbital models (NBO or Mulliken charges)

[35] or than used in force field parameterization. For example, the amber [36]

force field uses charges of �0.5 for oxygen, þ0.5 for carbon, �0.57 for nitrogen,

and þ0.37 e for hydrogen atoms in the peptide bond. The definition and determi-

nation of atomic charges have been subjects of controversial discussions in recent

years [35] and charges derived from different methods may differ significantly.
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QTAIM charges are based on well-defined atomic segments of the electronic

charge density and can be derived from an experiment [37, 38].

The positive charges on the Ca, C
0, and H atoms total approximately þ1.7 e and

the negative charges on N and O amount to approximately �2e, so for each pep-

tide bond region an excess of �0.3 e must be compensated by the side-chains or,

for glycine, another hydrogen atom.

A preliminary conclusion of this study of the peptide bond is that very repro-

ducible atomic properties for the contributing atoms can be derived if the chem-

ical environment is comparable. A significant experimentally detectable effect of

next-nearest neighbors on the electron density of Ca-type atoms was not observed.

The results therefore show the validity of the nearest/next-nearest neighbor ap-

proximation and encourage the use of database approaches for electron-density

modeling of macromolecules.

12.4

Invariom Modeling

Conventional interpretation of atomic-resolution X-ray data is based on the pro-

molecule model (superimposition of spherically symmetric, isolated atomic den-

Fig. 12.7 Average atomic charges (e) and volumes (Å3) of the atoms in

the peptide bond region. A refers to five dipeptides and one

hexapeptide [33]; B refers to the four tripeptides AAA.12H2O [34],

APA.H2O, AYA.H2O, and AYA.C2H5OH (to be published); av is the

average over all entries. n is the number of contributing entries.
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sities), also termed the independent atom model (IAM). At this level the exact-

ness of the reconstruction of the diffraction image is limited to the main charac-

teristic of the topology of the crystalline electron-density distribution, that is, the

occurrence of maxima at the nuclear positions.

To replace the IAM with an aspherical scattering model we recently introduced

the concept of invarioms (pseudoatoms that are invariant on transfer from one

molecule to another) [39]. A pseudoatom is a density fragment of the multipole

model (rigid pseudoatom formalism) that was introduced in 1978 [4] on the basis

of earlier work [40], and has been described in full detail elsewhere [41, 42]. ‘‘In-

dividual’’ invariom aspherical scattering factors take into account the chemical en-

vironment of a bonded atom. A finite set of invarioms, identified by connectivity

and bonding, can be assigned to each chemical element. The density of an invar-

iom is extracted from a quantum chemical geometry optimization of a small

model compound containing the invariom and its defining nearest/next-nearest

neighbor atoms terminated by hydrogen atoms or a suitable fragment in the sec-

ond coordination sphere, as will be detailed later. For the purpose of building a

database of such invarioms, theoretical structure factors [43] were calculated

from geometry-optimized model compounds. These ‘‘simulated data’’ are trans-

formed by least-squares refinement into multipole electron-density data for the

invariom. The total density of a molecule is obtained by superimposition of its

constituting invarioms. When used to interpret conventional X-ray data of moder-

ate resolution, complex invariom scattering factors improve structure refinement

almost to the extent of a free multipole refinement with high-resolution data, and

the geometry obtained by invariom structure refinement of low-resolution data is

almost identical as when high-resolution data are used. Figure 12.8 illustrates se-

lection of invarioms and their associated model compounds for the structure of

dl-serine. The scheme also shows the invariom nomenclature that will be ex-

plained later.

Fig. 12.8 ORTEP plot [44] of the molecular structure of dl-serine at

20 K with atomic numbering scheme, invarioms assigned using

notation explained in Section 12.4.1, and the model compounds

used to obtain the invariom electron density.
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The method described here differs in important aspects from the experimental

approach suggested by Pichon-Pesme et al. [45–47] for ultra-high resolution pro-

tein crystallography. Because our approach does not rely on experimental data,

measurement errors and bias arising as a result of inadequate modeling of the

thermally smeared density are excluded. We also provide a consistent definition

for transferable sites in terms of invarioms that can be generated, in principle,

for all chemically relevant bonding situations at any level of theory.

Some relevant details of a similar database approach by Volkov et al. [48] must

be mentioned. In the work of Volkov et al. populations are averaged over model

compounds that were chosen from a large possible range, so that deviation from

electrical neutrality is different from results using our invariom database, in

which only one defined model compound is used for each invariom. Rules for

setting up a model compound will be given below. Inclusion of a notation scheme

in the invariom concept also enables automation of least-squares refinement of

experimental X-ray data.

12.4.1

Invariom Notation, Choice of Model Compounds, and Practical Considerations

In invariom notation the element symbol of the atom of interest, in capitals, be-

gins the name, then formal bond order and nearest neighbors follow in lower

case ordered by their position in the periodic table (heavier atoms first). The order

of the ligands in the invariom name is determined by their decreasing bond

order. For mesomerism or delocalized systems a bond order of 1.5 is specified.

For these, the next-nearest neighbors must be taken into account in the name.

Next-nearest neighbors are also used for invariom names of hydrogen and hyper-

valent atoms. This is achieved by writing the next-nearest neighbors according to

the previous rules in brackets after the nearest neighbors (examples are given in

Fig. 12.8). For chiral invarioms, R or S is used as a prefix (CIP rules), separated by

a dash. Because, usually, next-nearest neighbors only are considered, chiral invar-

ioms occur a lot less frequently than chiral atoms. Finally a þ or a � indicates a

charge when the model compound used is an ion, for example the acetic acid an-

ion. The sign is best placed at the very end of the name.

The invariom approach differentiates between chemical environments by dis-

tinguishing between single and mesomeric bonds, which enables rules to be set

up for generation of model compounds. For single-bond systems the model com-

pounds simply include the nearest neighbors saturated by hydrogen atoms. This

is also valid for double/triple bonded systems. Charged groups, for example

RaNH3
þ, require a charged model compound. For hydrogen atoms, next-nearest

neighbors must be included to achieve proper electroneutrality during summa-

tion over invariom fragments at the application stage. Next-nearest neighbors are

also included for delocalized systems and hypervalent atoms. When extended

mesomeric or delocalized systems occur in a structure, the whole mesomeric

fraction of the molecule must be included in the model compound in a suitable
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manner. A good example is the model compound of a carbon invariom assigned

to any atom of a benzene ring. The obvious advantage of calculating the complete

ring is that use of a radical – here the propenyl-radical taking into account nearest

neighbors only – can be avoided.

For practical application of invariom modeling analysis of the IAM geometry is

the starting point. For this purpose the empirical relationship below [49] is used

to identify covalent bonds, where d is the distance between the atoms, in Ång-

stroms, rc is the covalent radius, and jDðENÞj the difference between the Allred–

Rochow electronegativities [50] of two atoms in a structure.

d � 0:85a rcðatom1Þ þ rcðatom2Þ � 0:08jDðENÞj ð1Þ

When d � 0:85 is smaller than the sum of the covalent radii of the two atoms

multiplied by an electronegativity difference a bond is found. To differentiate be-

tween single/mesomeric/double, and triple bonds the same empirical relation-

ship, Eq. (1), is used to assign a bond distinguishing term w (Eq. 2):

w ¼ ½rcðatom1Þ þ rcðatom2Þ � 0:08jDðENÞj� � d ð2Þ

The distinction between a singe/mesomeric/double bond is arbitrary and not

very distinctive for some delocalized systems, but experience with a large number

of structures and optimized model compounds led to the establishment of reli-

able values for sensible distinction where to include next-nearest neighbors and

where it is unnecessary.

Software [51] has been developed that enables the automation of the modeling

process. It automatically analyses molecular geometry, assigns invariom names to

each atom in a structure, uses invariom notation to find and transfer database

density values and writes input files for the respective aspherical-atom refinement

program xd [52].

12.4.2

Support for Pseudoatom Fragments from QTAIM

We were interested whether or not it is possible to support the invariom approach

by means of QTAIM. Integration over the atomic basin as defined by the zero flux

surface of r(r) yields well-defined atomic charges, and we will focus on theoreti-

cally calculated AIM charges of several chemically related example molecules to

investigate the limits of transferability.

The level of transferability needed for the X-ray scattering model is limited to

the possible accuracy and resolution of the experimental data. Although perfect

transferability is not reached in theory, current experimental limitations enable

approximations to be made. One factor reducing transferability is hydrogen bond-

ing; different conformations [16] can also lead to slightly different charges.
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Bader et al. have shown for a series of hydrocarbons and silanes that a CH2

group contributes an identical amount to the energy [53]. For other, more compli-

cated fragments, assuming QTAIM transferability is less valid and the approach

to subdivide a molecule into QTAIM atoms and functional groups less successful.

While application is justified for classes of molecules with identical fragments,

this approach is not suited to a generalized scattering model. The choice of an

atom-based fragment is, furthermore, left to the researcher.

To illustrate these points several compounds were geometry-optimized using

the basis set D95þþ(3df,3pd) as available in the software gaussian [54]. Their

electron densities were then analyzed with Bader’s QTAIM (morphy software

[55]).

In the first series of alcohols shown in Fig. 12.9, the oxygen atom is always

bonded to a carbon atom and a hydrogen atom. The atomic charge of the oxygen

atom is almost identical in these example molecules, and for the hydrogen atom

attached to it (Table 12.3). Small differences are because of intermolecular hydro-

gen bonding of the oxygen atom and due to different conformations. On can con-

clude the OH group has very high transferability.

Fig. 12.9 Series of alcohols studied with high

OH fragment transferability – from left to

right methanol, ethanol, isopropanol, 2-

butanol, and phenol. On the other hand, the

charge on the carbon atom to which the

oxygen is attached differs by a large amount.

This is readily explained by the different

chemical environments of the carbon atoms.

Whereas in methanol only three hydrogen

atoms are attached to it, in ethanol one, in

isopropanol two, and in isobutanol three

methyl groups are also found with the

corresponding hydrogen atoms.

Table 12.3 Atomic charges for a series of alcohols.

Molecule Atom Charge (e) Atom Charge (e) Atom Charge (e)

Methanol O �1.10 H 0.56 C 0.61

Ethanol O �1.10 H 0.56 C 0.59

Isopropanol O �1.10 H 0.55 C 0.56

2-Butanol O �1.10 H 0.55 C 0.53

Phenol O �1.12 H 0.58 C 0.48
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If one wishes to reconstruct the electron density based on the sum of atomic

QTAIM fragments as successfully attempted earlier [56], the carbon atom attached

to the OH group cannot be regarded as transferable and the assumption of car-

bon transferability would introduce a systematic error in a scattering model,

whereas the oxygen and hydrogen atoms have very similar or identical charges.

We have also calculated atomic QTAIM charges of a number of amides (Fig.

12.10 and Table 12.4). For these molecules transferability is only found for the ox-

ygen atoms that are partly double-bonded to the carbon atom of the peptide bond.

The nitrogen atoms of the amino group are similar in formamide and acetamide,

and in N-methylformamide and N-methylacetamide, but differ in the two groups.

The situation is analogous with the carbon atom – charges differ between substi-

tuted and nonsubstituted atoms, but are in agreement when the neighbors are

similar. We conclude that, to a good approximation, atoms have similar QTAIM

charges when their nearest neighbored atoms are identical [57]; this approach is

termed the nearest-neighbor approximation (NNA).

We can also observe ‘‘compensatory transferability’’ in the charges, to use the

term introduced by Bader [53]. When two possible mesomeric Lewis formulae

can be written for a molecule, charge compensation can be assumed to be more

pronounced than for a molecule consisting of single-bonded atoms only.

These observations illustrate the reasons for the choice of model com-

pounds used to predict the electron density for invariom modeling as mentioned

above.

Fig. 12.10 Series of amides with low fragment transferability. From

left to right: formamide, acetamide, N-methylformamide, and

N-methylacetamide.

Table 12.4 Atomic charges for a series of amides.

Molecule Atom Charge (e) Atom Charge (e) Atom Charge (e)

Formamide O �1.16 N �1.16 C 1.50

Acetamide O �1.18 N �1.16 C 1.44

N-methylformamide O �1.16 N �1.15 C 1.49

N-methylacetamide O �1.17 N �1.15 C 1.43
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12.5

Applications of Aspherical Invariom Scattering Factors

12.5.1

Molecular Geometry and Anisotropic Displacement Properties

Invariom modeling improves the accuracy of molecular geometry from X-ray sin-

gle crystal diffraction, especially for hydrogen atoms, for which bond distances

become comparable with results from neutron diffraction or theoretical calcula-

tions. Modeling with aspherical scattering factors has been shown to be more ap-

propriate than application of the IAM [58]. Asphericity shifts [59] are bond-length

aberrations because of the use of the IAM. They occur, for example, in longer

CaO bonds, because of spherical averaging over the oxygen valence density in

the IAM at low resolution; CbC bonds can also be affected. Asphericity shifts

disappear in invariom model refinements, although such differences are often

within the error range of the least squares.

Improvement of molecular geometry for dl-serine by using invarioms is shown

in Table 12.5 by comparison of bond distances of the 298 K X-ray invariom data

with room-temperature neutron study results for different resolution [60]. In es-

sence, invariom modeling provides an improved scattering factor model and, as a

result, the least-squares fit of aspherical scatterers to experimental structure factors

usually leads to substantial improvement of the crystallographic R-factors and the

goodness of fit, and to a reduction of the remaining residual electron density.

Table 12.5 Neutron (N) bond lengths of dl-serine compared with X-ray (X)

invariom and the IAM model at room temperature.

Bond Distance (N) Distance (X, invarioms) Distance (X, IAM)

sin y/lF 0:98 sin y/lF 0:6 sin y/lF 0:98 sin y/lF 0:6

O(1)aC(1) 1.248(1) 1.2487(5) 1.248(2) 1.2479(7) 1.246(2)

O(2)aC(1) 1.257(1) 1.2585(5) 1.257(2) 1.2586(8) 1.256(2)

O(3)aC(3) 1.414(1) 1.4150(5) 1.414(2) 1.4172(8) 1.417(2)

O(3)aH(4) 0.981(1) 0.95(1) 0.97(2) 0.92(2) 0.92(3)

N(1)aC(2) 1.487(1) 1.4884(5) 1.488(2) 1.4883(7) 1.490(2)

N(1)aH(11) 1.037(1) 1.048(9) 1.05(2) 0.96(2) 0.94(2)

N(1)aH(12) 1.045(1) 1.03(1) 1.03(2) 0.95(2) 0.96(2)

N(1)aH(13) 1.041(1) 1.03(1) 1.02(2) 0.94(2) 0.94(2)

C(1)aC(2) 1.531(1) 1.5316(5) 1.532(2) 1.5291(7) 1.528(2)

C(2)aC(3) 1.518(1) 1.5201(5) 1.519(2) 1.5165(8) 1.514(2)

C(2)aH(2) 1.101(1) 1.080(7) 1.07(2) 0.956(9) 0.93(2)

C(3)aH(31) 1.095(1) 1.096(9) 1.10(2) 0.97(2) 0.97(2)

C(3)aH(32) 1.095(1) 1.121(9) 1.12(2) 1.00(2) 0.98(2)

334 12 Fragment Transferability Studied Theoretically and Experimentally with QTAIM



Another result of the modeling process is the increased physical significance of

the anisotropic displacement parameters that describe thermal motion (and disor-

der) in a structure, as can be proven by the results of the Hirshfeld test [5]. Figure

12.11 shows the effect of the inclusion of the aspherical density in the anisotropic

temperature parameters with regard to data resolution for dl-serine. Temperature

data for carbon, nitrogen and oxygen are not regarded as including bonding

effects if the difference of the mean-square displacement amplitudes (DMSDA)

is smaller than 0.001 Å2. A mean DMSDA value for the six nonhydrogen bonds

was used in Fig. 12.11 in the study of dl-serine [58] and this value was plotted

against resolution for invariom scattering factors obtained with the basis set

B3LYP/6-311þþG(3df,3pd). Whereas for the IAM at 100 K deconvolution of elec-

tron density and thermal effects was not achieved and the test was not fulfilled at

a resolution of 0.55 Å�1 in sin y=l (or d ¼ 0:9 Å), by using the invariom model the

Hirshfeld test was fulfilled for all three temperatures (20 K, 100 K, 298 K) inves-

tigated. It was concluded that this, or higher, resolution is recommended for in-

variom modeling.

12.5.2

Using the Enhanced Multipole Model Anomalous Dispersion Signal

Absolute configuration of light atom structures is of crucial importance in the

pharmaceutical industry. Although the phenomenon of chirality was discovered

many years ago, the relevance of the absolute structure of a drug applied to the

Fig. 12.11 Mean value for bonds between C, N, and O for the Hirshfeld

test plotted against resolution. Above 10� 10�4 Å2 (dotted line) the

test is not regarded as fulfilled, as suggested by Hirshfeld [58]

Copyright 2005 and Reproduction with Permission from IUCr.
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human organism was not recognized until the Contergan/Thalidomide scandal

in the early sixties. These events made clear that absolute structure can be of out-

most importance and that it should be carefully analyzed for every drug candidate

before it is registered as a drug, even though it was later found that Thalido-

mide racemizes in vivo. The proportion of single-enantiomer drugs among new

drugs introduced into the market is rapidly growing, and reached@70% in 2002

[61]. There are stringent legal requirements to determine the absolute configura-

tion of drug molecules. A related aspect is the possibility of extending or sidestep-

ping patents by invoking chirality. Single-crystal X-ray structure analysis enables

determination of the absolute structure from the intensity difference between

Friedel pairs, because of anomalous dispersion. The objective of such an analysis

is, usually, to assign absolute configuration to chiral molecules in a crystal struc-

ture and considerable effort has been devoted to this research topic. Introduction

of the x parameter by Flack [62] enabled unambiguous assignment of enantio-

morph polarity and the x parameter is widely used and implemented in many

least-squares refinement software, for example crystals [63], shelxl [64] or

gfmlx [65]. Absolute determination of structure requires that the anomalous dis-

persion signal is sufficiently pronounced. We have recently shown that the multi-

pole model provides additional inversion distinguishing power [66]. Invariom

modeling with fixed density terms provides a means of exploiting this to improve

absolute structure determination with CuKa, and it has been found that high-res-

olution MoKa datasets can provide almost similar information when evaluated

with the invariom approach.

12.5.3

Modeling the Electron Density of Oligopeptide and Protein Molecules

For the purpose of structural refinement of amino acid, oligopeptide and protein

molecules the naturally occurring amino acids were analyzed in terms of their in-

variom fragments, and a database with 73 entries that covers this class of com-

pound was generated from 37 model compounds. This invariom database has

been validated on 42 experimental small-molecule crystal structures (from IUCr

journals), of different quality and resolution, covering not only the naturally oc-

curring amino acids, but some of their derivatives, their protonated/unprotonated

states, and most common solvents (details of the structures studied have been

published elsewhere [67]).

Figure 12.12a shows the crystallographic R-factor for IAM and invariom models

for these trial structures. R(F) is always equal to or better for the invariom model,

when compared with the IAM. The difference RðFIAMÞ � RðFinvÞ depends on the

resolution and temperature of an experiment. Improvements are more apparent

at lower temperatures, because of better deconvolution of thermal and electronic

effects. Because low-resolution datasets do not contain as much information on

the aspherical part of r(r), improvement of the R-factor is smaller than when

more extended datasets are used. Figure 12.12b compares the positive residual

electron density Dr(r) for the IAM and invariom models. Here, the most interest-

ing feature can be observed for a high resolution structure containing sulfur,
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where the residual density for the invariom model is substantially reduced and

becomes comparable with that of other structures that do not contain sulfur.

In disordered structures analogous behavior is seen for Dr(r) and reduction of

the R-factor. For such structures the residual density is similar or even increased

Fig. 12.12 (a) Comparison of the crystallographic R(F) factor for the

IAM and invariom models. (b) Comparison of the residual density Dr(r)

for the IAM and invariom models [67] Copyright 2006 and Reproduction

with Permission from IUCr.

12.5 Applications of Aspherical Invariom Scattering Factors 337



by use of the invariom model. One can conclude that the remaining, unmodeled,

density is the reason for only small improvements of the R-factor for disordered
structures.

An important conclusion for protein refinement can therefore be drawn from

disordered structures – it is the modeling of disorder and the completeness of

the structural model, rather than the aspherical electron density contribution,

that limit the fit of calculated and experimental structure factors and, therefore,

the quality of the results. As already remarked, invariom modeling requires data

resolution of da 0:9 Å or sin y=lb 0:55 Å�1. This resolution is also recom-

mended for protein data.

12.6

Conclusion

From systematic study of amino acids and oligopeptides by experimental electron

density analysis using Bader’s QTAIM an understanding of fragment transfer-

ability emerged. Use of appropriate model compounds now enables reproduction

of molecular electron density r(r) from fragments; the result is a good approxima-

tion to the total density when the invariom pseudoatoms density description is

employed. A pseudoatomic fragmentation of a molecular electron density retain-

ing the local chemical environment of an atom enables convenient extension of

the IAM scattering model. Such invariom modeling improves the inversion dis-

tinguishing power in absolute structure determination and yields ‘‘charge-density

quality’’ geometries from low-resolution standard X-ray datasets. Anisotropic dis-

placement parameters become physically meaningful and all properties that

can be derived from a model electron density can be rapidly calculated for larger

molecules so that a convenient approach to electron densities of macromolecules

(proteins, polynucleotides) is feasible.

To apply invariom modeling for standard small-molecule structures no further

calculations nor extra experimental procedures are necessary, making it a rapid,

readily accessible, and useful tool for standard crystallographic work. In this way

high-throughput techniques, which have been established in a variety of fields of

X-ray diffraction-based structure research, can also be applied in experimental

electron-density work. This would be of special importance in the biological

sciences. In medical chemistry, where it is a fundamental challenge to understand

drug–target recognition processes, knowledge of electron-density distribution is a

valuable completion of structure information and serves as a basis for a better

understanding of such interactions than consideration of steric properties only.

Since rapid screening of a large number of chemical compounds is indispensable

in structure-guided drug discovery, the generation of electronic information of

entire classes of chemically or pharmacologically related compounds would be

highly desirable. This can become a routine task to be performed in time periods

comparable to those currently needed for conventional X-ray analyses.
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51 Hübschle, C. B., and Dittrich, B.

invariomtool, a Preprocessor

Program for Aspherical Atom

Modeling with xd Using Invarioms.

Freie Universität Berlin, 2004.
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13

Interactions Involving Metals:

From ‘‘Chemical Categories’’ to QTAIM,

and Backwards

Piero Macchi and Angelo Sironi

13.1

Introduction

The Lewis model [1] enables description of bonds between main group elements

but its extension to the realm of transition metal compounds is difficult because

many subtle effects complicate solution of the chemical bonding puzzle. Interpre-

tation is equally uncertain for weak intermolecular interactions. Similarly, the

quantum theory of atoms in molecules (QTAIM) [2] readily visualizes the intu-

itive concepts of atoms and bonds whereever the Lewis theory works whereas

for transition metal complexes the topology of the electron density r(r) reveals

chemical bonding features in a less straightforward manner.

More effort is therefore necessary to build up the ‘‘correspondence rules’’ link-

ing QTAIM to traditional bonding concepts. As soon as a proper model is

devised, however, significant information can be retrieved, resulting in new

understanding or even some re-thought of ‘‘classical’’ chemical bonds involving

transition metals. This is the objective of this chapter. Some examples from the

recent literature will be discussed. To enable unbiased comparison we reproduce

all theoretical calculations at the same level of theory, B3LYP/6-311þþG(2d,2p),

except for metal hydride bridges, for which it has been demonstrated [3] that

B3LYP [4] functional is less reliable than BP86 [5].

13.2

The Electron Density in Isolated Metal Atoms – Hints of Anomalies

What is the electron density of an isolated atom telling us about that atom? Many

atomic properties can be predicted from a knowledge of the distribution of the

ground-state electron density of the isolated element. For example, the concentra-

tion of the valence electrons, and their separation from the core, can be used to

predict bond distances, the tendency to form covalent bonding, the degree of lo-

calization of the bonding electrons, etc.

345



As pointed out by Bader [2, 6], the negative Laplacian (L(r) ¼ �‘2r(r)) of an

isolated ground-state atomic density [7] reproduces the electronic shell structure,

alternating positive and negative regions with a maximum and a minimum for

each shell [8]. However, heavy atoms deviate from this behavior [9]: the expected

maxima and minima of the N shell are not observed for the elements from Sc

to Ge, but from As to Kr the M and N shells are again separated, although the

outermost maxima do not necessarily have L(r) > 0 (the radial L(r) for N, Mn,

and As are shown in Fig. 13.1). Similar trends are observed for the elements of

successive rows and have been justified on the basis of the diffuse character of

the outermost electrons [10b]. The electron density r(r) decreases regularly to

zero, as also do the kinetic energy density G(r) and the potential energy density

V(r) in absolute values (being everywhere negative). The total energy density

H(r) (¼ V(r)þG(r)) is not monotonic, however, although it does not have the

same structure as L(r).

Because of to the local virial theorem [2]:

ð�h2=4mÞ‘2rðrÞ ¼ 2GðrÞ þ VðrÞ ð1Þ

H(r) can be rewritten as:

HðrÞ ¼ GðrÞ þ VðrÞ ¼ 1=2ðð�h2=4mÞ‘2rðrÞ þ VðrÞÞ ð2Þ

showing it is somewhat reminiscent of the features of the Laplacian distribution:

an atom usually has an inner (core) region and an outer (valence) shell, irre-

Fig. 13.1 H(r) (solid line) and L(r) (bold line) radial profiles of the

isolated N (a), Mn (b) and As (c) atoms. r is in Å, H(r) and L(r) are in

a.u. (left scale for L, right scale for H). L(r) of As has a ripple maximum

of its outermost shell at ca. r ¼ 1:3 Å (this is missing in Mn).
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spective of its principal quantum number. The boarders might occur at H(r) > 0

and the ‘‘atomic’’ limit at large r (Fig. 13.1).

When a chemical bond is formed, all these functions are no longer spherical

and their properties characterize atomic interactions. In particular, L(r) enhances

the features of the charge distribution and electron pair localization, providing a

physical connection with the classical Lewis model and the valence shell electron-

pair repulsion theory [11]. L(r), however, remains affected by the distribution in

the unperturbed atom. For example, when a covalent bond links two second-row

atoms, each has a distinct valence shell charge concentration (VSCC, maxima of L(r))

along the bond path, quite close to the location of the corresponding L(r) valence

shell maxima in the isolated atomic density. Because the outermost shells of the

two bonded atoms partially overlap, we have L(r) > 0 in the bond region, typical

of an open-shell interaction. Naively, this enables visualization of the electron shar-
ing mechanism; this is, however, better explained physically by means of the bond

delocalization index (d) [12, 13] related to the electron pairs shared between two

atoms (Table 13.1). Along the bond path, V(r) dominates G(r), hence H(r) < 0.

The regions where the electrons are localized are also visible in the H(r) distri-

bution, see for example Fig. 13.2a, in which the H(r) distribution of C2H6 is

Table 13.1 Properties of the electron-density distribution in some reference molecules discussed in the text.

Compound Bond,

A–B

dAxB
(Å)[a]

dA-bcp
(Å)[a]

dB-bcp
(Å)[a]

rb
(e ÅC3)

‘2rb
(e ÅC5)

Hb/rb
(h eC1)

Gb/rb
(h eC1)

Þ
AXB r(r)

(e ÅC1)[b]
d(A, B)

[SCF][c]

H2 HaH 0.743 0.371 0.371 1.822 �29.2 �1.12 0.00 1.42 1.00

C2H6 CaC 1.529 0.765 0.765 1.597 �11.9 �0.75 0.23 2.15 1.00

C2H4 CbC 1.326 0.663 0.663 2.381 �27.1 �1.19 0.39 2.98 1.89

NaF NaaF 1.942 0.902 1.040 0.342 9.92 0.27 1.76 0.53 0.27

Ne2 NeaNe 3.795 1.898 1.898 0.002 0.06 0.86 1.18 0.004 0.002

CO CcO 1.126 0.386 0.740 3.416 5.31 �1.92 2.03 3.23 1.81

H3BCO BaC 1.521 0.495 1.025 1.004 10.42 �0.85 1.58 2.06 0.47

H3BCO CcO 1.130 0.390 0.740 3.366 4.87 �1.89 1.99 3.21 1.64

Cr(CO)6 CraC 1.927 0.952 0.976 0.717 11.2 �0.28 1.37 2.12 0.83

Cr(CO)6 CcO 1.140 0.392 0.748 3.291 3.09 �1.89 1.96 3.23 1.62

Co2(CO)6(NH3)2 CoaN 2.063 0.973 1.090 0.502 8.40 �0.14 1.31 1.42 0.51

Co2(CO)6(PH3)2 CoaP 2.190 1.013 1.177 0.628 4.10 �0.34 0.80 1.98 0.81

Co2(CO)6(AsH3)2 CoaAs 2.320 1.044 1.277 0.512 3.52 �0.30 0.78 1.76 0.71

Na2 NaaNa 3.052 1.526 1.526 0.063 �0.03 �0.13 0.10 0.52 1.00

Co2(CO)6(AsH3)2 CoaCo 2.693 1.346 1.346 0.244 0.10 �0.30 0.33 1.58 0.52

a For each bond, dAaB, dA-bcp, and dB-bcp are the A–B interatomic distances

and the distances of atoms A and B, respectively, from the bcp.
b
Þ
AXB rðrÞ is the electron density integrated over the (A|B) interatomic surface.

c d(A, B) is the delocalization index between atoms A and B.
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shown. The topology of L(r) defines the so called atomic graph around each atom

in a molecule, which typically reproduces its hybridization state [2].

If, in contrast, an ionic bond is created, as in NaF, the outermost shells of the

cation and the anion are superimposed. The bcp is shifted towards Na in a large

and flat negative region of L(r) where r(r) is small (Table 13.1). The electronic

configurations of F and Na now coincide with that of Ne and are better approxi-

mated by two closed shells. Only a small electron delocalization is actually observed

at the bcp and G(r) dominates in the valence region; thus a large area of H(r) > 0

separates the two atoms (Fig. 13.2b).

Although the correlation between L(r) and covalent interactions seems valid,

Cremer and Kraka [14] were the first to note it could not suffice for weaker cova-

lent bonds and, instead, they proposed investigating whether the electron density

in the bonding region stabilized the system, for example by analyzing H(r) at the

bcp or over the whole interatomic surface. The implicit assumption is that molec-

Fig. 13.2 H(r) distributions in (a) C2H6, (b) NaF, (c) Ne2, (d) CO

(contours increase in value in the orderGx � 10n a.u., where

x ¼ 1:0; 2:0; 4:0; 8:0 and �3a naþ2; solid lines are negative

contours). Bold labels and dots represent atoms lying in the plane;

empty symbols represent atoms projected on to the plot plane. IAS and

molecular graphs are superimposed.
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ular density would be defined by the boundary of H(r), an idea more recently

applied by Tsirelson [15], who reconstructed the energy-density plots in ionic

and molecular crystals from experimentally derived electron density, by using

DFT-like approximations to compute G(r) [15, 16], hence H(r), by use of Eq. (1).

The plots in Fig. 13.2 demonstrate that the intuition of Cremer and Kraka was

probably correct. This approach can be even more useful when applied to transi-

tion metal chemistry.

Bader also considered the energy-density quantities in detail, suggesting that

H(r), G(r), and V(r) be measured on the basis of the total amount of electron den-

sity, with which they clearly correlate. Indicators such as Hb/rb or Gb/rb thus in-

form us whether the potential or kinetic energy density is dominating at the bcp
or whether G(r) is in local excess with respect to the electron density itself. Gr/rr
usually increases in correspondence with a ‘‘shell closure’’ – ‘‘external’’ if two

closed-shell atoms are interacting or ‘‘internal’’ at short interatomic distances,

for example in multiple bonds, in which the two cores become close (this is dis-

cussed in more detail elsewhere [17]).

When the bond is covalent but is significantly polarized the interatomic surface

is shifted toward the VSCC of the least electronegative atom and, eventually, both

VSCCs belong to the basin of the most electronegative atom. In CO the bcp is so

close to C that ‘2rb > 0 and Gb/rb > 0. Nevertheless, the H(r) is everywhere neg-

ative (Fig. 13.2). The shift of the bcp significantly affects the delocalization index

between C and O, which no longer represents the expected number of Lewis

bonded pairs (Table 13.1), counting of which in the presence of charge transfer

is not possible solely on the basis of the pair density [13].

13.3

Two-center Bonding

As introduced in the previous section, the chemistry of main-group elements

is usually characterized by ionic or covalent bonds. The latter are typically dis-

cussed in terms of interactions between hybridized atomic orbitals, in which each

binding partner contributes one electron to the bonding pair. This picture is sub-

stantially valid for metal–metal bonds also, but according to the most popular

theories on transition metal chemistry (for example the ligand-field theory, LFT)

[18], different genealogy is required when describing two-center (2c) metal–

ligand bonding [19] resulting from interaction of doubly occupied orbitals on the

ligand and empty orbitals on the metal (donation) or vice versa (back-donation).
A different viewpoint was proposed by Bersuker [20], who assigned the nature

of two-center–two-electron (2c–2e) bonds without resorting to the actual parent-

hood of the electrons involved in the bonding but differentiating between valence

(localized) and coordination (delocalized) bonds. This scheme is, apparently,

closer to the actual phenomenon of the electron density because, in principle,

when a chemical bond is formed the participating electrons lose their original af-

filiation. ‘‘However, the genealogic concepts seems to be quite convoluted also
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within the framework of QTAIM, because the bonding to transition metals is

characterised by a ‘‘low overlap’’ [18] and thus quite reminiscent of the electron

density distribution at atomic level.’’

Following the genealogy scheme, we analyze two different 2c bonds to a metal:

the classical coordination of a ligand (i.e. the donation of one electron pair) and

metal–metal bonding (i.e. pairing of two electrons).

13.3.1

The Dative Bond

A classical donor–acceptor bond involving main-group atoms is, for example,

OCaBH3 [21]. The Laplacian distribution, the bond paths, and the interatomic

surfaces are shown in Fig. 13.3a. A unique VSCC, corresponding to the lone pair

of the nucleophilic atom (C) and charge depletion at the electrophilic atom (B) are

found along the bond path. The interatomic surface is shifted toward the acceptor

and lies inside the charge-depletion shell of B. Therefore, ‘2rb > 0, although sig-

nificant deformation has occurred relative to the constituting molecular frag-

Fig. 13.3 ‘2r(r) and H(r) distributions in H3BCO (a and b) and

(CO)5Cr(CO) (c and d). Contours and labeling are as in Fig. 13.2.

350 13 Interactions Involving Metals: From ‘‘Chemical Categories’’ to QTAIM, and Backwards



ments. The presence of some polarization undermines a simple electrostatic

model for this bond. In fact, although G(r) is certainly large, it does not over-

whelm V(r), hence H(r) has a negative continuum between B and C (Fig. 13.3b).

As anticipated above, interactions in which polarity plays an important role are

characterized by significantly reduced delocalization indexes, d(B, C) ¼ 0:47.

From a different perspective, some energy partitioning schemes [22] predicted

that the electrostatic energy affords the largest stabilization in these complexes. It

is conceivable that the electrostatic and the covalent terms are closely connected

and mutually reinforced, and thus more difficult to separate by analyzing r(r).

H(r), however, cannot inform us which effect dominates but rather on the occur-

rence of some stabilization as a result of orbital interaction [14].

No inverse effect (i.e. from B to C) is observable, because the CaO bond indica-

tors (including the distance) are not affected by the coordination and delocaliza-

tion between O and B is very small (d ¼ 0:03). There is, however, some electron

sharing between the C and the H atoms (d ¼ 0:24), because of the delocalized na-

ture of the bonding inside the BH3 unit.

13.3.1.1 Metal Carbonyls

The binary transition-metal carbonyl complexes M(CO)n are the most studied or-

ganometallic molecules, and are often used as reference materials to describe the

bonding of transition metals in low oxidation states. The bonding in Cr(CO)6,

Fe(CO)5, and Ni(CO)4 is usually understood in terms of the Dewar–Chatt–

Duncanson mechanism [23], which invokes reciprocal donation of electron pairs

(one from the C lone pair and one from correctly oriented metal d orbitals). The

electrons used in the bonding are quite localized in nonbonded regions of the

isolated unperturbed fragments, i.e. M(CO)n�1 and CO. Because of the above-

mentioned genealogy, this localization is only marginally affected by the forma-

tion of a bond (Fig. 13.3c). Electron delocalization between the metal and the

carbonyl is, in fact, approximately 1.0 (Table 13.1), even though more than one

electron pair is formally involved in the bonding.

The MaC interatomic surface lies in a region of charge depletion even more

pronounced than that in OCaBH3, although associated with H(r) < 0 (Fig.

13.3d). Again the dichotomy between covalent and electrostatic interaction is

mixed, without easy deconvolution [24].

The three complexes introduced above are also representative of three different

types of stereochemistry (octahedral, bipyramidal, and tetrahedral) and electronic

configurations (d6, d8 and d10) of zerovalent metals. In LFT terms they corre-

spond to different splitting of d-orbitals (t2g/eg; e 00/e 0/a1; eg/t2g) [18], which

affects L(r) distribution of the isolated metals in their corresponding electronic

configuration [10]. The atomic graphs of the metals predicted at theoretical level

and those derived from accurate experimental electron density determination

were compared in a recent study [25]. In Cr(CO)6 the atomic graph of Cr is cubic

in shape [eight vertexes, twelve edges, and six faces]. The eight vertexes are

ð3;�3Þ critical points of L(r) (i.e. charge accumulations produced by the t2g orbi-

tals) and the six faces are centered by ð3;þ3Þ critical points (i.e. charge depletion
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because of the empty eg orbitals, disposed in the direction of the incoming ligand

density). This configuration has been associated with a ‘‘lock and key’’ mecha-

nism [26], but is basically the visual representation of the LFT prediction. The

atomic graphs of Fe(CO)5 and Ni(CO)4 have, respectively, trigonal prismatic [6,

9, 5] and octahedral [6, 12, 8] shapes, though somewhat dependent on the density

model employed [25]. Atomic charges show that back-donation is in the order

Cr > FeANi, in agreement with computed and observed stretching frequencies.

Cortés-Guzmán and Bader [27] related the atomic quadrupole moments of C

and O to the amount of s-donation and p-back-donation. The changes occurring

to quadrupole moments of a carbonyl axially coordinated to a metal are expected

to address the accumulation of density along the axis (because of s-donation) in

contrast with that perpendicular to the axis, occupying a torus around the bound

atom (indicative of increased p-density on the carbonyl C). Although the theoreti-

cal quadrupole moments were confirmed by the experimental determination [25],

some caution is necessary because the atomic volumes of C atoms change quite

substantially on coordination.

13.3.1.2 Donor–Acceptor Interactions of Heavy Elements

Many complexes contain a donor–acceptor interaction between a heavy main-

group element and a metal. One might expect L(r) to be affected by the small

amount of charge concentrated in the atomic valence shell of the donor, and

questions about the real nature of such interactions could arise. For this reason

we studied the AsaCo bond in Co2(CO)6(AsPh3)2 [28]. Although the region of

negative Laplacian around As is very small in theoretical maps, and absent from

experimental maps, we found many similarities with more classical donor–

acceptor bonds. If the whole class of Co2(CO)6(XH3)2 molecules (X ¼ N, P, As)

is considered (Fig. 13.4 and Table 13.1) we note they share very similar features

of H(r) distribution and that the Laplacian lobe corresponding to the location of

the donor electron pair on X decreases for the heavy elements. Despite this, the

topological indexes do not depict the CoaAs bond as a weak interaction: the

delocalization is larger than in NaCo and only slightly smaller than in PaCo. We

can, moreover, appreciate the tight correlation between the Hb/rb and d(Co, X).

13.3.2

Direct Metal–Metal Bonding

The most studied metal–metal bonds are those in homoleptic M2(CO)n dimers or

in some homo or heteroleptic small metal clusters. The presence of direct chem-

ical bonding between two metals was the subject of discussion for many years.

When dealing with ‘‘unsupported’’ MaM contacts, lack of bridging ligands and

the 18-electron rule drive chemists to speak of direct covalent (as in Mn2(CO)10)

or even dative (as in CrOs(CO)10) [29] MaM bonds. Some doubts arose, however,

when semiempirical calculations were performed to address 1,3 M���CO interac-

tions as the major source of attraction [30]. Previous accurate electron-density de-

terminations by X-ray diffraction [31, 32] were unable to furnish a solution to the
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Fig. 13.4 ‘2r(r) and H(r) distributions in [Co2(CO)6(NH3)2] (a and b),

[Co2(CO)6(PH3)2] (c and d), and [Co2(CO)6(AsH3)2] (e and f ).

Contours and labeling are as in Fig. 13.2.
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puzzle. In fact, interpretation of rather noisy deformation density maps could not

produce a clear picture of the MaM interactions. Theoretical deformation maps,

also, could not reveal bonding effects, because density accumulation in MaM
bonds is visible only through fragment deformation maps [33], i.e. using as promo-

lecule the superimposition of computed [MLn]
� fragments rather than spherical

atoms.

QTAIM later offered, instead, a less ambiguous understanding of the MaM in-

teractions, with clear distinction between unsupported species (in which an MaM
bond path is found) and ligand bridged species (in which a MaM bond path is

usually not found) [10, 34]. QTAIM was used to interpret the experimental charge

density of Mn2(CO)10 [35, 36] and Co2(CO)6(AsPh3)2 [28] that confirmed the

presence of a bond path linking the two metals. While Macchi et al. [28] and

Farrugia et al. [36] considered the MaM interactions as genuine covalent bonds

(based especially on Cremer and Kraka’s criterion), however, [14] Bianchi and

coworkers classified the MnaMn bond as metallic with features ‘‘between ionic

and covalent’’ [35b]. The main argument was the positive Laplacian found at the

MaM bcp. On the basis of a similar reasoning, Uhl et al. classified the NiaNi
interaction in CpNi(m-InCH3)2NiCp as closed-shell [37].

Inspection of the Laplacian distribution along an MaM bond path shows that

the bcp is located in an L(r) maximum (although Lb < 0) produced by condensa-

tion of the two vanishing N shells (if first period transition metals are concerned)

[10]. This is somewhat similar to what occurs in simple metal or semimetal dia-

tomic molecules (for example Na2 or B2) [17]. The potential energy density still

dominates at the bcp (thus Hb < 0) and the total amount of kinetic energy density

per electron is small (Gb/rb f 1). Despite the small rb, the MaM interaction is

not necessarily weak; the density integrated over the whole zero-flux surface sep-

arating two bonded atoms provides meaningful results when diffuse electrons

contribute to the bond (e.g. Na2 in Table 13.1). This concept was stressed in

the analysis of Co2(CO)6(AsPh3)2 [28], in which classification problems based on

‘‘traditional’’ QTAIM rules were first addressed. Since then, many other bonding

indicators and classification schemes have been proposed, sometimes leading to

controversial interpretation. For example, Gervasio et al. [38] applied, to transition

metals, the scheme of Espinosa and coworkers [39], who classified bonding inter-

actions according to the spatial region they occupy: the shortest interatomic

separation is characteristic of pure shared-shell bonds (‘2rb < 0 and Hb < 0),

the longest is characteristic of pure closed-shell bonds (‘2rb > 0 and Hb > 0),

and the central region (‘2rb > 0 and Hb < 0) is called a transit region. All inter-
actions with transition metals fall in the intermediate region [38], as one might

expect on the basis of their properties at the isolated atom level. This of course

suggests MaM and MaL bonds cannot be pure closed shell bonds, as originally

proposed [35a], and that these interactions are weaker than covalent bonds

between main group atoms. Gervasio et al. [38] also used the flatness criterion,
f ¼ rmin=ðrbcpÞmax, [40] to classify chemical bonds in solids: a large flatness was

associated with closed-shell bonds and a low flatness with stronger covalent

bonds. This criterion cannot be applied to isolated molecules, because rmin would
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simply be zero. This limitation has been tackled [38] by analysis of a supported

MaM bond system, Co2(CO)6(m-CO)(m-C4H2O2), with an unexpected MaM bond

and a ring-type molecular graph. rrcp was therefore taken as the rmin reference for

the flatness; it therefore seemed to be quite large, as in closed-shell bonds. The

bias introduced is quite severe and would not enable study of an unsupported

system. Accurate analysis performed by Farrugia [34c] also revealed that no MCM

ring structure is actually present in Co2(CO)6(m-CO)(m-C4H2O2), because the di-

rect CoaCo bond path is missing; this invalidated the conclusions of Ref. [38].

It is worth remarking that the terms ‘‘closed-shell character’’ or ‘‘open-shell

character’’ of a chemical bond refer to the electronic configuration of the ‘‘par-

ent’’ fragments. When the bond is formed, such rigorous partition is no longer

possible and the electron density itself cannot provide this information, except

by resorting to a phenomenological correspondence with prototype situations. It

was in this way that Bader [2] derived, for second and third-row molecules, a sim-

ple ‘‘translation’’ of the orbital concepts using ‘2r(r) (Table 13.1). However, the

absence of VSCC for some heavier elements undermines this scheme [41]. The

concept of ‘‘shared interaction’’ mainly implies the concerted movement of a certain
fraction of electrons in two (or more) atomic basins. Within QTAIM, the correct indi-

cator for such a concept is the delocalization index d, whose definition is based on

the presence of the same electron pair(s) in two (or more) atomic basins. The de-

localization index is defined on the basis of pair-density distribution and is, there-

fore, not accessible from experimental X-ray diffraction experiments, in contrast

with the electron density [42]. Correspondence with electron density defined

properties is, therefore, necessary for interpretation of results from experimental

work.

In Table 13.1 it is apparent that the metal–metal bond in unsupported

(XH3)(CO)3CoaCo(CO)3(XH3) molecules is associated with dA0:5, which would

violate the assumption that the two metals share one electron pair to satisfy the

18-electron rule. We noted, however, that the electron-sharing process in metal

carbonyl dimers is rather complex, because it involves not only the two metals

but also the equatorial carbonyls (Scheme 13.1(I)) [17]. This is in agreement

with the later finding by Ponec et al. [43] on the basis of application of domain-

averaged Fermi holes theory to Mn2(CO)10: the MnaMn bond has the character

Scheme 13.1 MaMaCO and MaCOaM bonding in transition metal carbonyl clusters.
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of an ordinary covalent single s-bond but evidence of Mn���(CO) intramolecular

interactions is also observed. It has been suggested that the shape of the MaC
bond paths (slightly bent toward the other metal) and the Laplacian of the equa-

torial carbonyls may be evidence of a contribution from CO to the MaM [28]. It

should be noted that all these observations transfer the problem of the MaM
bond in M2(CO)n to multicentered bonding. We will consider this more explicitly

in Section 13.4.3 on supported metal–metal bonds.

Bonds between alkali metals in Na2 or K2, which share with CoaCo of

Co2(CO)6(XH3)2 the small rb and the positive ‘2rb, but have delocalization in-

dexes able to reproduce the expected bonding electron pair involved, might be re-

garded as truly unsupported MaM bonds. Once again, the concept of covalence is

apparent from Hb (< 0) and from the small amount of kinetic energy density per

electron (Gb/rb a 0:5 he�1).

13.4

Three-center Bonding

The interactions among three atoms is associated with a variety of molecular

graphs (Scheme 13.2) [44] that might represent different modes of bonding, al-

though this commonly accepted interpretation should be treated with caution.

Scheme 13.2 Molecular graphs associated with three-center bonding to a metal atom.
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The same molecular graph is, in fact, sometimes associated with different coordi-

nation modes (recognized on the basis of other indicators) or different molecular

graphs might represent a very similar bonding situation in which minor geome-

try changes result in different bond path connectivity. In three-center (3c) sys-
tems, the ring structure is the reference, but not necessarily associated with three

separated and localized bonds. Inward curvature of the paths is often an indica-

tion of a 3c delocalized bond, at variance with the ring structure, with outward

paths typical of three localized bonds. Depending on the kind of interaction, one

can observe ring rupture or the degeneration of bcp and rcp into a T-shape struc-

ture, a catastrophe point in the conformational space of XMY systems [2].

In organometallic chemistry 3c bonding is quite relevant to interpreting the do-

nation of p and s-density of a preformed bond. This is at the heart, for example,

of metal–olefin coordination, agostic interactions, dihydrogen complexes, bridg-

ing hydrides, and carbonyl supported metal–metal interactions, all presented

below.

13.4.1

p-Complexes

The coordination of an olefin to a metal is one of the most studied chemical

bonds involving transition metals – a prototypical bond with enormous implica-

tions, for example in catalysis. Many theoretical investigations have been con-

ducted to understand the features of the Mah2(CbC) bond, leading to the dichot-

omy between Dewar–Chatt–Duncanson (DCD) donor–acceptor complexes and

metallacycles. The total number of electrons involved in the bonding is the same,

but their spatial localization (and the hypothetical spin state of the interacting

fragments) is quite different. In the DCD complex, a bonding electron pair (the

p-density of the olefin) is s-donated to the metal which, in turn, back donates d-
electrons of p symmetry into the empty p� of the olefin. In a metallacycle, instead,

two localized 2c–2e MaC bonds are formed at the expense of the CaC double

bond character (Scheme 13.3).

Scheme 13.3 MO interaction in DCD and metallacycle coordination.
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We recognize three main modes of bonding:

1. Closed shell interaction: The olefin is coordinated to the metal

without significant orbital interaction and binding is achieved

by electrostatic interaction between a positively charged metal

and the electron density of the CbC bond. One example is

olefin coordination to a closed shell cation, as in Na(C2H4)
þ.

In Fig. 13.5, we can appreciate the features of the molecular

graphs associated with this mode of bonding, characterized

by a T-shape graph (i.e. a single line of maximum electron

density is connecting Na and the CbC bcp). In other words,

we are unable to locate separate bonds between the metal

and each carbon atom. On the basis of ‘2r(r) distribution

(Fig. 13.5a), the two fragments are almost unchanged from

the isolated Naþ and C2H4 and the closed shell nature of the

interaction is also revealed by H(r), the negative regions of

Fig. 13.5 ‘2r(r) and H(r) distributions in the metal–olefin plane of

Na(C2H4)
þ (a and b) and Cr(CO)5(C2H4) (c and d). Contours and

labeling as in Fig. 13.2.
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which inside the two fragments are separated by a large area

of H(r) > 0 (Fig. 13.5b). Despite a very low covalence, was

shown by Frenking et al. [45] that this mode of coordination

is associated with a large stabilization energy (relative to the

constituting fragments).

2. Dewar Chatt Duncanson (DCD) ring complex: If back-donation
and donation are active but relatively small, the p electron

density is still primarily involved in the CbC bond but the p

orbitals are slightly rehybridized and some electron density

gradients of the C atoms join the interatomic surface of Ni

forming two separate inwardly curved or ‘‘endocyclic’’ MaC
bond paths. The more abundant the donation, the straighter

the bond paths will appear (Fig. 13.6). This can be

emphasized by drawing the contribution to ‘r(r) of the p-

orbital of the free olefin as reported in Fig. 13.7. In free

ethylene, at short range around each C atom j‘rðrÞj has a
mirror-symmetric four-lobe shape. If the unperturbed olefin

density is superimposed to the MLn density, a T-shape

Fig. 13.6 ‘2r(r) distributions in the metal–olefin plane of: (a) super-

imposition of Ni(CO)2 and (C2H4) densities in the same geometry of the

adduct; (b) Ni(C2H4)(CO)2; (c) Ni(C2H4)(PH3)2; (d) Ni(C2H4)(NH3)2.

Contours and labeling as in Fig. 13.2.
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molecular graph appears, but when the DCD mechanism is

switched on, the mirror symmetry of j‘rðrÞj is lost, the
j‘rðrÞj lobes undergo a ‘‘disrotation’’ (Fig. 13.7b), and the

molecular graph assumes a ring shape (Fig. 13.6).

3. The metallacycle: On increasing the metal–olefin interaction,

two localized MaC bonds are formed and the CbC p-density

is broken. The benchmark molecular graph is cyclopropane,

characterized by exocyclic bond paths [46], although the

different electronegativity and stereochemical requirements

of C and M do not enable this limit to be reached. The

topology of metallacycles is substantially similar to that

depicted in point 2, but the charge concentrations along the

MaC bonds are more pronounced and the concavities of the

bond paths at C are reduced. The DCD model no longer

works, because the perturbation is now too large and a

complete spin reallocation has produced two MaC covalent

interactions. Indeed, a proper ring shape structure is

retrieved from the superposition of C2H4 density in the

Fig. 13.7 Side view of j‘rðrÞj generated by the p density in C2H4 in

different electronic states and geometries: (a) ground state (1Ag) in an

isolated molecule; (b) 1A1, as in (CO)2Ni(C2H4); (c)
1A1, as in

(NH3)2Ni(C2H4); (d)
3B2 as in (NH3)2Ni(C2H4).
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triplet state (3B2) on to the MLn density. The olefin HOMO

orbital is associated with more exocyclical gradients (Fig.
13.7c) and the bond order of MaC and CaC bonds becomes

much closer in agreement with the delocalization indexes.

Based on QTAIM and charge decomposition analysis, Frenking [47] concluded

that the DCD ring complex structure is quite typical of metals in lower oxidation

states. It is apparent from Table 13.2, however, that for some 16 or 18-electron

complexes of zero-valent metals the range of CaC distances span from shorter

(<1.40, hence closer to the classical DCD complex) to larger (>1.44). The main

rationale seems to be the acidity of the metal fragment: if the metal is coor-

dinated to electron-withdrawing ligands (for example acidic CO) metal back-

donation is poor and the olefin coordination is weaker; in contrast, electron-

donating groups opposed to the olefin induce larger back-donation. Accordingly

we see that CaCaM bond path angles approach the geometrical angles (see

Scheme 13.4 for definitions).

The QTAIM data for a series of metal–olefin complexes emphasize the tight

correlation between CbC elongation (hence C rehybridization) and the tendency

to produce more separated MaC bond paths (Table 13.2). This was previously

formulated in experimental determination of r(r) in a typical DCD complex,

(Ni(COD)2) [48] (COD ¼ 1,5-cyclooctadiene). Scherer and coworkers [49], on

the other hand, have recently drawn, for some 16-electron Ni(XR3)2(C2H4) com-

plexes (X ¼ N, P; R ¼ alkyl, H), the density (and Laplacian) of the molecular or-

bital mainly responsible of the olefin-to metal-donation. Their outward pointing

shapes would suggest that endocyclic bond paths are not the correct markers of

donation. Donation of the paired p-density (point 2 above) is, however, always

mixed with that of the unpaired sp3-like density (point 3) thus any molecular or-

bital cannot be representative of the pure DCD bonding mode, especially because

the examples chosen are ahead in the metallacycle conversion (Table 13.2). The

reasoning in point 2 is based on the expected behavior of the olefin not contami-

nated by its triplet configuration and it is valid if the objective of molecular graph

analysis is to retrieve a given electronic configuration out of a multiconfigura-

tional system.

Scheme 13.4 Definition of bond path differences in MX2 systems.
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ÅC

5
)

H
b
/r

b

(h
eC

1
)

d
(X
,
X
)

d
(Å
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In the same work, Scherer et al. discussed other interesting features of the bond

paths at the metal atom. In a classical DCD complex the acceptor metal d-orbital

is empty and usually bisects the CaMaC angle, whereas the orbitals involved in

back-donation are exocyclically directed, for example Cr(CO)5(C2H4) in Fig. 13.5

and Table 13.2. Thus, one should expect outward curvature at the metal, as one

can appreciate from the ‘2r(r) distribution, which is indicative of charge accumu-

lation by the Cr 3d shell to lie outside the CraC2 ring. This is not observed for late

transition metals, however, particularly the d10 elements [28, 49], which have

all d orbitals occupied and therefore should have a spherical Laplacian. The

back-donation process induces an aspherical density, with charge depletion corre-

sponding with the orbitals involved. Thus, in contrast with Cr, in Ni complexes

there is a dominant negative region of the Laplacian associated with an orbital

not involved in the back-bonding (and thus completely filled) and pointing toward

the center of the MC2 ring. Consequently, the bond paths at Ni (or even at Fe) are

slightly endocyclic. Scherer and coworkers also noted that around the midpoints of

the NiaC bonds the path curvatures change again (becoming exocyclic), because
there the p-back-bonding orbitals dominate. It should be noted that this is not

the rule, but an exception for electron-richer metal.

The Laplacian usually shows two distinct charge concentrations, corresponding

with the MaC bonds, which become larger as the MaC bond strengthens, in

agreement with the shape of the bond paths and with the larger amount of elec-

tron density at bcp. Accordingly, MaC and CbC delocalization indexes reproduce

quite well the reallocation of the olefin p-density in MaC interactions. Eventually,

in coordination mode 3, the distribution of total energy density is characterized

by a unique negative region incorporating both the metal and the olefin frag-

ment. All the arguments proposed above can be used to identify the different

bonding contributions in parallel (||) or perpendicular (?) coordination of an

olefin in the equatorial plane of Fe(CO)4(C2H4). From simple orbital reasoning

[50] the parallel stereochemistry is favored, because back-donation is more active.

Assuming the same coordination geometries for parallel and perpendicular

Fe(CO)4(C2H4), we can appreciate from Table 13.2 that the parallel conformer

has the features associated with larger back-donation and stronger MaC interac-

tions (i.e. smaller d(CbC), larger d(MaC), and smaller inward curvature of the

bond paths).

13.4.2

s-Complexes

Although the donation of p density to a metal was discovered and studied much

earlier than that of s density, p and s-complexes share many similarities. As far as

hydrogen is concerned, s-complexes span dihydrogen compounds, agostic inter-

actions, and bridging hydrides [51], the bonding of which is usually described in

terms of 3c–2e bonds. There is now general consensus that 3c–2e systems may

have many different geometries, take some 3c–4e character (depending from the

relevance of p-donation from the metal), and, eventually, evolve into two 2c–2e
bonds.
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13.4.2.1 Dihydrogen and Dihydride Coordination

The first dihydrogen complexes (W(CO)3(PR3)2(H2), R ¼ cyclohexyl, isopropyl)

were reported in 1984 by Kubas et al. [52]. Some pioneering QTAIM studies on

h2 coordination of H2 to a metal were published in the early nineties [53, 54]. In

the dihydrogen complexes the mechanism of coordination is reminiscent of the

DCD model, although based on donation of s-density. Accordingly, whereas the

metal–olefin coordination is characterized by the p-complex–metallacycle dichot-

omy, the dihydrogen complexes have similar uncertainty with regard to dissocia-

tion into dihydride. Similarly, there are weakly bound complexes, observed when

the metal center is quite acidic and characterized by a TM molecular graph (e.g.

Cr(CO)5(H2)), and strongly bound complexes, characterized by more substantial

back-donation and a genuine ring graph (e.g. Cr(PH3)5(H2)). Because the H

atoms lack of directional orbitals, however, the MaH bond paths of the ring struc-

ture are quite inwardly curved and the H2 density is only weakly polarized in the

direction of the metal. Dapprich and Frenking [53] reported a ring structure

(though almost collapsed) for (CO)5M(H2) molecules (M ¼ Cr, Mo, W) based on

MP2 and CCSD(T) calculations with effective core potential basis sets. The overall

picture is, nevertheless, not very different because in both circumstances the

dominant interaction is the HaH bond, as demonstrated by the topological and

delocalization indexes (Table 13.2), whereas the metal–ligand interaction is just

above a pure closed-shell limit (especially in Cr(CO)5(H2)). On the basis of charge

decomposition analysis, Dapprich and Frenking [53] estimated the amount of do-

nation and back-donation, concluding that H2 is a much weaker p-acceptor than

CO, thus justifying the molecular graphs observed.

Tomás et al. [55] showed that a dihydrogen complex can further proceed in

the oxidative addition of H2, which was associated with a small barrier. The final

product is an heptacoordinated bipyramidal complex with two hydride ligands in

the pentagonal plane, but not in the cis configuration. The transition state is a

structure containing an H2 moiety with H���H separation of more than 1.5 Á̊. In

some complexes this structure is actually a stable isomer, because the minimum

on the potential energy surface is attained at larger H���H separation, whereas in

others an equilibrium between dihydrogen and dihydride can be established [55].

The main chemical problem is then associated with the presence of some resid-

ual H���H bonding.

13.4.2.2 Agostic Interactions

Within the QTAIM formalism, Popelier and Logothetis were the first to address

the differences between agostic interactions (in d0 TiIV complexes) and the 3c–

4e hydrogen bonds [56]. They concluded that an agostic interaction is character-

ized by a bond path with values of the electron density and the Laplacian at

the bcp characteristic of an ionic, closed-shell interaction. They proposed criteria

based on the variations of atomic Hb properties which, however, lack generality

(Table 13.3). Scherer and McGrady [57], in contrast, showed that b-agostic interac-

tions in d0 metals occur because of delocalization of the MaCa bond over the

metal–alkyl moiety (negative hyperconjugation) rather than the presence of a
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3c–2e M���HbaCb interaction. In a combined experimental and theoretical study

on Ti(dhpe)Cl3(C2H5) (dhpe ¼ H2PCH2CH2PH2) a significantly pronounced

bond path for the TiaHb was not found [58]. In support of this theory, the authors

addressed the characteristic curvature of the TiaCa bond path (Fig. 13.8) and its

ellipticity along the whole path. We also note that delocalization indexes are very

informative: if an agostic interaction is activated, both d(MaCa) and d(CbaHb) de-

crease in favor of d(CaaCb) and d(MaHb).

It is worth noting that if the main mechanism is hyperconjugative, exo or endo
Hb should both be affected by the agostic interaction. Indeed, the endo and exo
(which is not a minimum on the PES) conformers of TiCl3(C2H5) are character-

ized by the same features of a weak agostic type interaction. If a TiaHb bond path

is found in the exo conformer it is simply because of an additional and, perhaps,

negligible source of bonding (i.e. a closed-shell Ti���Hb interaction) which does

not significantly account for the overall stability of that conformer. The H(r) dis-

tribution is in agreement with this view (Fig. 13.8).

Fig. 13.8 ‘2r(r) and H(r) distributions in Ni(dhpe)(C2H5)
þ (a and b)

and TiCl3(C2H5) exo (c and d).
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Scherer and McGrady also pointed out that the availability of local Lewis acidity

sites on the metal is a feature that favors agostic interactions, as revealed by the

VSCCs about the metal atom.

In contrast, electron-richer metals afford real 3c–2e agostic interactions – see

the comparison between (dhpe)Cl3Ti(CH2H5) and [(dhpe)Ni(CH2H5)]
þ. As sug-

gested for the Cp(CO)2Mn/HSiCl3 adduct, however [44, 59], an agostic interac-

tion may transform into (or consist of ) the more classical oxidative addition prod-

uct. This process is of paramount interest in catalysis.

On the basis of these observations we can locate two extremes: the weak agostic
and incipient oxidation adducts. The former is associated with an MYX graph

(Scheme 13.2, X ¼ C, Y ¼ H) close to the breaking of the MaY path, the latter

with a ring structure close to the breaking of XaY to afford an XMY graph. They

are also distinguishable on the basis of d(MaH)/d(XaH) which is close to zero in

the agostic interaction of early transition metals but could reach unity in ‘‘sym-

metric agostic’’ interactions (Section 13.4.2.3).

13.4.2.3 Hydride Bridges

An apparently different type of s-coordination to a metal is that of hydrides bridg-

ing two metal atoms. An experimental and theoretical study of the electron den-

sity distribution of [Cr2(m2-H)(CO)10]
� has shown, however [60], that many simi-

larities with agostic interactions can be drawn for MaHaM systems which,

traditionally, were classified on the basis of open or closed 3c bonding (Scheme

13.5). Stereochemical considerations led to the conclusion that a closed system is

more adherent to reality, because the direction opposite to the axial ligands point

toward the MHM ring center rather than to the hydride, suggesting the presence

of some direct MaM bonding. It should be noted that this hypothesis was formu-

lated before the agostic interaction was actually discovered.

The potential energy surface of [Cr2(m2-H)(CO)10]
� is particularly flat [3]: the

gas phase molecule has Cs symmetry, a nearly symmetric bridge and staggered

carbonyl groups (Fig. 13.9) but in the solid state many other conformers can be

found as a function of the perturbation induced by the environment; this enables

definition of an ‘‘experimental’’ interconversion path between the Cs staggered

conformer and a pseudo-D4h (C2v) conformer with eclipsed carbonyl groups and

an almost linear MaHaM system (Fig. 13.9). A CraCr bond path is not present

and the electron sharing between the two atoms is small and almost constant as

a function of CraHaCr bending. The linear geometry, in which no direct metal–

Scheme 13.5 Hypothesis for bonding in MaHaM systems.
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metal bonding is possible and which contains almost the same amount of deloc-

alization as in the bent structures, should also be noted. QTAIM analysis did

not reveal a ‘‘unique’’ effect responsible for stabilization of one isomer over

the others. One is tempted to conclude that ‘‘packing forces’’ have a significant

effect in determining the solid-state conformation of this anion but some general

features emerge. For example, the shift of the H atom out of the idealized

(OC)axaM direction seems to be a consistent in MaHaM systems and cannot be

attributed to the increased direct M���M interaction. Indeed, an unexpected role

played by the nearby equatorial carbonyls has been recognized, because of the

features of the Fermi hole density distribution and the corresponding H���CO de-

localization indexes (d approx. 0.1 [60]).

Accurate comparison of [(CO)5CraHaX]� systems (Table 13.4) revealed much

similarity between two X-moieties Cr(CO)5 and BH3, classically regarded as isolo-

bal [61]. On reducing the acidity of X the limit of a weak agostic interaction can

be reached, for example with X ¼ [CH3]
þ. Within this framework it is reasonable

that, although asymmetric (M���HaC) and symmetric hydride bridge (MaHaM)

have undisputedly different geometries, they share a common bonding nature

(at least as far as s-donation of CaH occurs). In more asymmetric (classical) agos-
tic interactions, there is a kind of schizophrenic behavior of the metal, the bind-

ing of which could be directed alternately toward H or X (or even be absent, as

shown above). As the MaH and XaH bonds become more similar in strength,

the MaH overwhelms M���X and the structure is characterized by a small M���X
delocalization. In the limiting case, X ¼ Cr(CO)5, d(MaH)/d(XaH) approaches

unity and we can speak of a symmetry-stabilized agostic interaction [60].

Fig. 13.9 Scatter plot of the dependence of CraHaCr angles (triangles)
and CeqaCraCraCeq torsion (circles) on Cr���Cr distance, taken from the

many crystal structures of [Cr2(m2-H)(CO)10]
� salts. Empty symbols

indicate outlier geometry, the nature of which is discussed elsewhere

[60].

368 13 Interactions Involving Metals: From ‘‘Chemical Categories’’ to QTAIM, and Backwards



Ta
b
le

1
3
.4

S
u
m
m
ar
y
o
f
Q
TA

IM
an

al
ys
is
o
f
X
aH

an
d
X
���Y

in
te
ra
ct
io
n
s
in

X
aH

aY
an

d
Y
aH

sy
st
em

s.

X
xH

xY
d
(Å
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13.4.3

Carbonyl-supported Metal–Metal Interactions

Metal cluster scientists have extensively debated the role of direct MaM inter-

action in carbonyl-bridged 3c–4e metal–metal bonds. This has led to several

papers reporting studies of the two most representative molecules, Fe2(CO)9 and

Co2(CO)8 [17]. The QTAIM shows that the most relevant difference between

bridged and unbridged isomers is, respectively, the absence or presence of a

MaM bond path (Scheme 13.1(I) and (IIIb)). The topology of a bridged system

was first reported for Co2(CO)8 by MacDougall [10, 33a]. Fe2(CO)9 was the topic

of a long theoretical debate. Whereas empirical rules predict direct FeaFe bond-

ing, many MO calculations (semiempirical or ab initio) concluded there was no

interaction between the two metals given the small d overlap [62], though VB cal-

culations provided more evidence of an interaction [63]. Mealli and Proserpio [64]

found that an FeaFe bond is formally present even if the through-bond intermetal

repulsion overcomes the attractive through-space FeaFe interaction. QTAIM anal-

yses have been reported by MacDougall [10] and by Bo et al. [34], who did not find

a direct MaM bond path and concluded that ‘‘Fe2(CO)9 is built up by the bridging

carbonyls’’ [34], in agreement with the earlier suggestion by Summerville and

Hoffmann [65]. Bo et al. also noted many features of the m2-coordination:
� the larger envelope of the valence shell surrounding the

carbon, indicative of more delocalized bonding through the

metals;
� a larger electronic population on the carbonyl carbon, as a

consequence of the better metal-to-ligand charge transfer in

the bi-coordinative mode; and
� the presence of two nonbonded VSCCs on the bridging

oxygen, indicative of an incipient rehybridization.

Delocalization of the bond was confirmed by analysis of the Fermi hole density

maps [34].

The first experimental validation of the electron-density distribution in m-CO

systems came from analysis of the tetrahedral cluster Co4(CO)11(PPh3) [66]. In

agreement with all-electron HF calculations on the C3v Co4(CO)12 isomer, no di-

rect CoaCo bond path was found for the three bridged edges (the overall topolog-

ical features of which resembled those of Co2(CO)8).

To complete the analysis of the hypothetical conversion path from terminal to

symmetrically bridging M2(CO) systems, analysis of a semibridging conforma-

tion was undertaken [67]. This study proved that the terminal-to-bridge metamor-

phosis of a carbonyl, although accompanied by an abrupt change in the molecu-

lar graph, actually lies on a type of continuum, especially if the electron-sharing

process is considered. The delocalization indexes of MaM and MaC interactions

change along the interconversion path in such a way that the overall sharing in-

dex is almost constant. This explains both the carbonyl fluxionality in transition

metal clusters and the observed continuity of conformations in known MaCOaM
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fragments [17]. Thus, even when the carbonyl is terminally bound to just one of

the two metal atoms, an MaCOaM system is characterized by interplay of direct
and indirect MaM and MaC interactions that results in substantial delocalization

through the system. This interplay generates different molecular graphs and

hampers formation of any truly localized bond, which explains why the MaM un-

supported bond has less delocalization than expected (in favor of 1,3 M���CO
interactions). In symmetrically bridged metal dimers the view proposed is in

agreement with the many indications of MaM bonding (first and foremost the

18-electron rule) because substantial metal–metal electron delocalization is actu-

ally present, even in the absence of a direct bond path.

On the basis of H(r) distribution and analysis of the contribution of each

molecular orbital, Rehinhold et al. [68] came to the conclusion that some direct

MaM bonding is actually visible in supported MaM bonds. We note that this

view does not contradict the interplay of interactions introduced above and made

more visible by the delocalization indexes.

13.5

Concluding Remarks

In the last few years QTAIM has become the model for interpreting theoretical

and experimental electron density distributions. Within this framework, the link

between bonding modes and topological properties has been fully achieved for

molecules of main group atoms. In contrast, the correspondence rules derived

cannot be extended in a straightforward manner to organometallic compounds,

because bonds to a transition metal have different and much narrower spectrum

of topological indexes. Metals are always characterized by diffuse ns valence den-

sity lacking concentration of charge in the bonding region, even when electron

sharing is important. Thus, classifications based on ‘2r(r) might be misleading

or at least incomplete.

On moving from 2c to 3c interactions the situation becomes even more compli-

cated, because there are sudden changes in the molecular graph produced by

small perturbations of the relative ‘‘weight’’ of each bonding contribution. When

a system is close to a catastrophe point, it is the shape rather than the topology of

a given molecular graph that is informative, and several examples have been dis-

cussed in which the presence of a bond path was actually misleading because it

could not completely explain the molecular geometry observed.

We have shown that d(A, B) and H(r) are the most reasonable indicators of

the covalent contribution to the total bonding between two (or more) atoms, not

least because they are rather insensitive to abrupt changes of the molecular

graphs. They are a bridge between traditional chemical categories (mainly formed

on the basis of simple MO schemes) and quantum mechanics of the electron

density; much work is, however, still required to derive the appropriate correspon-

dence rules, which must take into account subtler details of the molecular

graphs.
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Applications of the Quantum Theory of Atoms

in Molecules in Organic Chemistry –

Charge Distribution, Conformational Analysis

and Molecular Interactions

Jesús Hernández-Trujillo, Fernando Cortés-Guzmán,

and Gabriel Cuevas

14.1

Introduction

This chapter deals with description of the structure and reactivity of several or-

ganic molecules by use of the quantum theory of atoms in molecules (QTAIM)

[1]. For some topics, emphasis is put on the information that can be obtained

from the bond critical points (BCPs) and the delocalization of the Fermi hole den-

sity, as accounted for by the delocalization index between two atoms. Relation-

ships between these two types of descriptor are discussed to illustrate how the

QTAIM can account for their known experimental chemical behavior. The rest of

the chapter analyzes the 3JHH coupling constants of some aliphatic and aromatic

molecules (Section 14.2), conformational processes including rotational barriers

of XCH2CH2X molecules and the anomeric effect of heterocyclohexanes (Section

14.3), and the electronic structure of aromatic molecules (Section 14.4). Finally,

closing remarks from a global perspective are presented in Section 14.5.

14.2

Electron Delocalization

14.2.1

The Pair-density

Information about the electronic structure of a molecule in a given state is

provided by the wavefunction Cðx1; x2 . . . ; xNÞ of the N-electron system, were

x ¼ ðr; sÞ, represents the space and spin coordinates of an electron. According to

the postulates of quantum mechanics, Cðx1; x2 . . . ; xNÞ, contains all the informa-

tion that can be known about the system [2, 3]. As an alternative, characterization

can also be performed in terms of the properties of the electron-density functions

derived from the wavefunction. One of these provides the probability density for
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finding any of the N electrons in a volume element that includes both its space

and spin coordinates, dx1, irrespective of the position and spin of the remaining

electrons:

gðx1Þ ¼ N

ð
C�ðx1; x2; . . . ; xNÞCðx1; x2; . . . ; xNÞ dx2 . . . dxN ð1Þ

By means of an integration of this function over the spin coordinate s1 one ob-

tains the one-density:

rðr1Þ ¼
ð
gðx1Þ ds1 ð2Þ

i.e. the probability density of finding an electron in a spatial volume element dr1.
Integration of rðr1Þ over all space yields the number of electrons in the system,

N. This scalar field is the electron density obtained experimentally from crystallo-

graphic experiments. Because the underlying theory of the topological properties

of the electron density has been discussed in detail elsewhere [1], the rest of this

subsection will be devoted to a brief description of the pair density, because its

use for analysis of electron delocalization from the viewpoint of the QTAIM is

spread throughout several papers. The pair density is defined by:

pðx1; x2Þ ¼ NðN � 1Þ
2

ð
C�ðx1; x2; . . . ; xNÞCðx1; x2; . . . ; xNÞ dx3 . . . dxN ð3Þ

This function determines the probability of finding any two electrons in space–

spin volume elements dx1 and dx2, irrespective of the spin and position of the re-

maining electrons. The corresponding spinless function is obtained when inte-

gration over the spin coordinates s1 and s2 is performed. Thus:

Pðr1; r2Þ ¼
ð
pðx1; x2Þ ds1 ds2 ð4Þ

represents the probability of any two electrons being one at r1 and the other at

r2 simultaneously, irrespective of the position of the remaining electrons and of

their spin. Because the molecular Hamiltonian involves only one-electron and

two-electron operators, no higher than pair density functions are necessary to de-

scribe the interactions. Double integration of Pðr1; r2Þ yields the number of elec-

tron pairs of the N-electron system. From these equations, rðr1Þ can be obtained

from Pðr1; r2Þ by integration as follows:

rðr1Þ ¼ 2

N � 1

ð
Pðr1; r2Þ dr2 ð5Þ
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The one-density function can be expressed in terms of spin contributions:

rðr1Þ ¼ raðr1Þ þ rbðr1Þ ð6Þ

in which the spin state of the electrons is given by the spin functions a and b. The

spin density can also be defined as the difference raðr1Þ � rbðr2Þ, a scalar field

that accounts for the excess of spin up ðaÞ over spin down ðbÞ contributions to

the one-density.

Pðr1; r2Þ can also be resolved into its spin contributions by integration of

pðx1; x2Þ over all spin possibilities:

Pðr1; r2Þ ¼ P aaðr1; r2Þ þ P abðr1; r2Þ þ P baðr1; r2Þ þ P bbðr1; r2Þ ð7Þ

For example, P abðr1; r2Þ is the probability density of having an electron at dr1
with spin a and another at dr2 with spin b. In addition, the conditional probability

of finding an electron at r1 if another electron is at r2, irrespective of the position

of the remaining electrons, is obtained from the pair density:

P2ðr1; r2Þ
rðr1Þ ¼ rðr2Þ½1þ hðr1; r2Þ� ð8Þ

The term hðr1; r2Þ is a distribution function determined by inclusion of Cou-

lomb correlation and, to a greater extent, by the spin distribution of the electrons,

as required by the Pauli exclusion principle. In the absence of Coulomb correla-

tion, exchange correlation is the only one present and hxðr1; r2Þ is called the

Fermi hole density in which the subindex x emphasizes its exchange correlation

dependence. This density vanishes for the contributions of a–b interactions, be-

cause the motion of two electrons with different spin is uncorrelated and is differ-

ent from zero for two electrons with the same spin. At the restricted Hartree–

Fock level (RHF), the Fermi hole density for a electrons is [4]:

ha
xðr1; r2Þ ¼ �

X
i; j

f�
i ðr1Þf�

j ðr2Þfjðr1Þfiðr2Þ

raðr1Þ : ð9Þ

Double integration of the product raðr1Þhx aðr1; r2Þ over the basin of a given

atom A defined by the QTAIM provides a measure of the number of electrons

located on that atom, whereas double integration over the basins of two different

atoms A and B in the molecule, not necessarily sharing an interatomic surface,

accounts for the number of electrons shared between them. In this manner, local-

ization and delocalization indices lðAÞ and dðA;BÞ, respectively, are defined by [5]:

lðAÞ ¼
X
i; j

h
1=2
i h

1=2
j SijðAÞ2; dðA;BÞ ¼ 2

X
i; j

h
1=2
i h

1=2
j SijðAÞSijðBÞ ð10Þ
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In these definitions, hi and hj denote the occupation numbers of natural orbi-

tals fi and fj and SijðAÞ is the overlap integral of fi and fj over the basin of atom

A. For RHF, the summations run over the occupied orbitals, hi ¼ hj ¼ 2, and re-

duce to [6]:

lðAÞ ¼ 2
X
i; j

SijðAÞ2; dðA;BÞ ¼ 4
X
i; j

SijðAÞSijðBÞ ð11Þ

These latter expressions have also been used in the Kohn–Sham approximation

(KS) and it has been found that the corresponding numerical values are similar

to those found with RHF [7], although its use can be criticized because of the

N-representability problem of KS orbitals.

The localization and delocalization indices add up to the atomic population,

NðAÞ ¼ lðAÞ þ 1
2

P
B0A dðA;BÞ, and the total number of electrons of atom A that

are delocalized is DðAÞ ¼ NðAÞ � lðAÞ. The delocalization of the Fermi hole has

been used to explain several chemical effects. Of these, two important examples

are:

1. their relationship with the Lewis model of electron pairs [6];

and

2. their ability to provide a physical foundation for the VSERP

model of molecular geometry [8].

In addition, the delocalization indices and the properties of the one-density,

which in what follows will be referred to as the electron density rðrÞ, enable ap-

propriate characterization of the chemical bond, as is illustrated in the examples

discussed in this chapter.

14.2.2
3JHH Coupling Constants and Electron Delocalization

One direct application of the delocalization index is in the study of coupling con-

stants between vicinal H atoms of organic molecules. Beginning from the Hamil-

tonian for the electron interactions in the field of nuclei with magnetic moments,

four main contributions are identified for the nuclear–nuclear spin-coupling

constants – the Fermi contact, the paramagnetic spin–orbit, the spin–dipolar,

and the diamagnetic spin–orbit interactions [9]. Of these, the Fermi contact con-

tribution has frequently been found to be dominant, for example for protons not

directly bonded to each other. For this example, by use of molecular orbital theory

[10], it has been found that the coupling constant, J, for nuclei with coordinates

Rn and Rn 0 is proportional to
P

i; j f
�
i ðRnÞf�

j ðRn 0 ÞfjðRnÞfiðRn 0 Þ and, from Eq. (9),

to the product raðRnÞhaðRn;Rn 0 Þ. J has, moreover, also been written in terms of

P abðRn;Rn 0 Þ � P aaðRn;Rn 0 Þ, the excess number of b over a electrons at Rn 0 given

that there is an a electron at Rn; this difference can be related to orbital-based def-

initions of bond order [10]. Consequently, the Fermi contact contribution to 3JHH

results mainly from the coupling of nuclear spins mediated by the electronic
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spins and, to a great extent, from the values of the s-type orbitals at the nuclear

positions. From this discussion, it is reasonable to assume proportionality be-

tween 3JHH 0 and d(H, H 0) [11], an assumption that is supported by the empirical

correlations described below.

An important feature of the Fermi contact contribution is its sensitivity to geo-

metric changes. This is illustrated by the well-known Karplus-type behavior [12]

of 3JHH 0 of ethane as a function of the HaCaCaH dihedral angle, f – the 3JHH 0

values obtained from valence bond calculations were successfully subject to non-

linear fitting of type cos2 f. Interestingly, the corresponding values of d(H, H 0)
shown in Fig. 14.1 have the same trend as a function of f [4]. Accordingly,

nonlinear fit of d(H, H 0) against f of the type dðH;H 0Þ ¼ A cos2 fþ B can be

achieved. Following Karplus [12], the fitting yields the data given in Table 14.1

for f less than or greater than 90 degrees. From this it can be concluded that elec-

tron delocalization is responsible for the conformational behavior of 3JHH 0 of

ethane.

This conclusion can be extended beyond ethane, as can be observed from the

good empirical correlations reported [11] between 3JHH and d(H, H 0), with corre-

lation coefficients, r 2, of 0.990 and 0.975, for several polybenzenoid and aliphatic

hydrocarbons, respectively, using RHF/6-31G(d,p) wavefunctions. These results

Fig. 14.1 Relationship between d(H, H 0) and the HaCaCaH 0 dihedral
angle for ethane. QCISD/6-311G(d,p) wavefunctions used.

Table 14.1 Nonlinear fit of the form dðH;H 0Þ ¼ A cos2 fþ B for

dðH;H 0Þ for the dihedral angle, f, of ethane.[a]

f A B Correlation coefficient

0–90 0.0067 0.0016 0.9997

90–180 0.0079 0.0018 0.9988

aQCISD/6-311þþG(2d,2p) wavefunctions used.
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support the conclusion that proton–proton vicinal coupling constants are a conse-

quence of electron delocalization and exemplify how the Fermi exchange density

contains information related to nonbonded atoms.

It is interesting to note that satisfactory empirical correlations have also been

reported for FaF coupling constants [13], even though higher angular momen-

tum functions included on the F atoms involve larger contributions from dipolar

terms. This probably works because of error cancellation between other than

Fermi contact terms, with the latter remaining as the most important contribu-

tion, or because of the very tight electron density in the neighborhood of the F

nuclei. Further study is necessary to clarify these points.

14.3

Conformational Equilibria

14.3.1

Rotational barriers

14.3.1.1 Rotational Barrier of Ethane

Internal rotation about single bonds is discussed in many textbooks as a relevant

feature of molecular conformation and its dynamics, and ethane is often consid-

ered in theoretical work as a prototype for analysis of this phenomenon. After

Kemp and Pitzer [14] proposed the existence of a rotational barrier in ethane in

1937, several explanations have been invoked [15]; but the discussion of its origin

is far from complete.

Of several experimental measurements reported [16, 17], a value of 2.93

kcal mol�1 [18] can be regarded as the most accepted value for the barrier and

2.79 kcal mol�1 seems to be a reasonable best estimate from CCSD(T)/6-

311G(3df,2p) calculations [19]. The barrier is usually attributed to a steric effect,

because of repulsion between CaH bonds or between vicinal H atoms in the

eclipsed conformation [20]. A popular explanation of the barrier has been given

with the use of natural bond orbital analysis in which hyperconjugation is re-

garded as the source of the conformational preference of the molecule [21–23]

(by means of sCaH ! s�
CaH vicinal interactions) although such a model has been

criticized [24].

Bader et al. [25] provided an alternative explanation based on the QTAIM using

the energy partitioning included in the molecular Hamiltonian without resort to

any hypothetical reference state. In this partition, the contributions to the poten-

tial energy of the molecule are the attractive (nuclear–electron) and repulsive

(nuclear–nuclear plus electron–electron) terms. Accordingly, the barrier results

from the decrease of magnitude of the attractive interaction in the eclipsed con-

formation, despite the accompanying reduction in the repulsion contribution.

The origin of the rotational barrier in ethane can be traced back to the behavior

of the atomic energies along the barrier, one of the main results being that the

energy of a carbon atom has the same trend as the barrier (Fig. 14.2). The carbon
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atoms are more stable for the staggered conformer by 5.1 kcal mol�1 and H

atoms are more stable in the eclipsed conformation with a total contribution to

the barrier of �2.28 kcal mol�1. The change of the potential energy of the carbon

atom is mainly because of the nuclear-electron contribution of the carbon atom,

þ62.06 kcal mol�1, which indicates a decrease in the magnitude of attraction,

compared with a reduction of �57.09 kcal mol�1 for the atomic repulsive contri-

bution. These values are in accordance with both the molecular results reported

by Bader et al. [25] and with the Ehrenfest force – the force exerted on the elec-

tron distribution by the other electrons and the nuclei [26]. It was found there is a

decrease in the attractive Ehrenfest force acting on the C atoms when rotation

from the staggered to the eclipsed conformation occurs. Because in these two

conformations the Feynman forces acting on the nuclei vanish, the Ehrenfest

force explains the barrier. This evidence makes it unnecessary to use any repul-

sive model to explain the rotational barrier (for example one based on Pauli repul-

sions, for which no force operator can be defined) [27].

Small but decisive charge redistribution accompanies all these energy changes.

The electron population of the carbon atom increases by 0.007 e (Table 14.2), as

does the CaC bond distance (by 0.0141 Å) during rotation from the staggered to

the eclipsed conformer. As a consequence, rbðrÞ at the CaC BCP decreases by

0.007 au. The electronic energy density, HðrÞ ¼ GðrÞ þ VðrÞ, the sum of the posi-

tive definite kinetic energy density plus the potential energy density, is useful

for characterization of chemical bonding [28]. HbðrÞ at the CaC BCP of ethane

becomes less negative by 0.011 au, indicative of lower CaC bond stability in the

eclipsed conformation. Additional evidence of the charge polarization occurring

Fig. 14.2 (a) Molecular and atomic energies of carbon and hydrogen

atoms along the rotational barrier of ethane. (b) Localization and

delocalization indices for ethane. QCISD/6-311þþG(2d,2p)

wavefunctions used. Values relative to the staggered conformer.
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during the process is given by the shift of the charge centroid, given by minus the

dipole moment of the methyl group, 0.001 au away into the nonbinding region of

the molecule.

In the same process, the number of electrons located on a carbon atom

increases by 0.0114 e whereas its total delocalization decreases by 0.0044 e. The

main contribution to the latter, 0.0113 e, comes from the lower CaC delocaliza-

tion (Fig. 14.2). In addition, the electrons a carbon shares with an hydrogen atom

remain almost unchanged. The QCISD values of l(C) are 4.2044 e and 4.1930 e

for the eclipsed and staggered conformations, respectively. The main change in

delocalization is that between C1 and C2, increasing in the staggered conforma-

tion by 0.0113 electron pairs (ep). The delocalization between C1 and the H atoms

bonded to it decreases in the staggered conformation by 0.0017 ep whereas

the CaH bonds remain almost unchanged. The delocalization between C1 and

the hydrogen atoms bonded to C2 increases in the staggered conformation by

0.0009 ep. The amounts of electron localization of a carbon atom, l ¼ 100[l(C1)/

N(C1)], are 70.95% and 70.84%, in each conformation. The total delocalization of

carbon to the other basins, D(C1) ¼ N(C1)� l(C1), is 1.7214 e for the eclipsed and

1.7259 e for the staggered conformation. The amount of electron delocalization of

C1 into the other basins in the staggered conformation, 100[d(C1, X)/2N(C1)], is

7.21% with C2 and 7.02% with each of the three hydrogen atoms bonded to C1;

the rest of the delocalization, 0.88%, occurs with the hydrogen atoms bonded to

C2.

It is also interesting to note that whereas Karplus-type behavior (discussed in

Section 14.2) is observed for electron delocalization between vicinal hydrogen

atoms, this is not so for the energy barrier. In contrast, CaC delocalization is in

accordance with the features of the barrier – during rotation toward the eclipsed

arrangement the electrons shared between the carbon atoms become more local-

ized on the respective basins thus, reducing the electron–nuclear attraction and

increasing the nuclear repulsion between them.

14.3.1.2 Rotational Barrier of 1,2-Disubstituted Ethanes

This subsection presents results from a study of the conformational behavior

of the molecules XCH2CH2X, where X ¼ CH3;Cl, or F. It has been shown exper-

Table 14.2 Electron population, atomic energy, localization, and

delocalization indices of carbon atom in ethane (au) from QCISD/

6-311þþG(d,p) calculations.[a]

Angle N(C) E(C) l(C) D(C) d(C, CO)

0 5.9258 �37.87012 4.2044 1.7214 0.8422

60 5.9189 �37.87419 4.1930 1.7259 0.8535

aRef. [26].
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imentally that whereas the antiperiplanar (app) conformation is the most stable

for the conformers of both butane [20] and 1,2-dichloroethane [29], the gauche
(sc) conformation is the most stable for 1,2-difluoroethane [29], a behavior known

as the gauche effect [30].
The highest of the rotational barriers of butane occurs when the two methyl

groups eclipse each other and has been attributed to the action of van der Waals

repulsion between them. In this instance the anti conformer is the one observed

experimentally, with an anti-gauche energy difference that lies between 0.67 and

0.97 kcal mol�1 in the gas phase [31]. For 1,2-dichloroethane the anti conformer

is the most stable; the energy difference between this and the gauche conformer is

estimated to be between 0.9 and 3 kcal mol�1, depending on the experimental

technique used [32]. The highest of the barriers in this molecule has been attrib-

uted to dipole–dipole repulsion between the CaCl bonds [33].
The gauche effect occurs when X is an electron-withdrawing substituent, for

example F or O, and has been found in many molecules in addition to 1,2-

disubstituted ethanes, although 1,2-difluoroethane is regarded as a typical exam-

ple. Microwave, Raman, infrared, and nuclear magnetic resonance (NMR) studies

indicate that the gauche conformer is the most stable for this molecule and

the anti–gauche energy difference has been found to be between 0.6 and 0.9

kcal mol�1 [34]. The rotational barrier for 1,2-difluoroethane has been deter-

mined computationally using several levels of theory [22, 33, 35]. A value of 0.8

kcal mol�1 for the anti–gauche energy difference has been reported at the MP2/

ANO level but even the RHF approximation, whenever a sufficiently large basis

set is used, accounts for the gauche effect of the molecule [36].

Several explanations have been proposed for the gauche effect. On the basis of

analysis of the evolution of the bent-bond CaC trajectory of the molecule during

rotation, Wiberg and coworkers [37] concluded that a destabilizing interaction in

the anti rotamer makes the gauche conformer the most stable. The gauche effect
has also been explained in terms of enhanced sCaH ! s�

CaF hyperconjugative in-

teractions in the gauche conformer [38]. Alternatively, increased orbital overlap be-

tween the HOMO molecular orbitals of two interacting CFH2 radicals when the F

atoms are in a gauche arrangement has been used as an explanation [36].

As for ethane the CaC bond distance of molecules XCH2CH2X undergoes the

most relevant changes during rotation for which, according to Table 14.3, there is

a well defined trend as a function of X – it is shorter for the anti than for the

gauche conformation of butane; it is nearly equal for both conformers of 1,2-

dichloroethane; and is shorter for the gauche conformation of 1,2-difluoroethane

as a consequence of the gauche effect.
The atomic energies of the central carbon atoms of the molecules, shown in

Fig. 14.3a, indicate that whereas for butane and 1,2-dichloroethane these atoms

are more stable in the app conformation, for 1,2-difluoroethane they are more

stable at 90 degrees. In addition, the relative substituent energies shown in Fig.

14.3b indicate that X has a stabilizing effect when the substituents are eclipsed,

except for Cl, for which this effect is observed when this atom becomes eclipsed

with an H atom. The behavior of the substituent energy is in clear contradiction
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Table 14.3 CaC bond distance in XCH2CH2X molecules.[a]

X Conformer

syn gauche

CH3 1.530 1.535

Cl 1.510 1.508

F 1.510 1.500

aValues given in Å, obtained at the B3LYP/6-311þþG(2d,2p)
approximation.

Fig. 14.3 (a) Atomic energies of the carbon atom along the rotational

barrier for 1,2-disubstituted ethanes; (b) substituent energies; and (c)

d(C, C 0) and (d) d(C, X) delocalization indices. B3LYP/6-311þþG (2d,

2p) wavefunctions were used. Values relative to the anti conformer.
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with any explanation of the barrier based on atomic or functional group repulsion

in the molecules; in the same way as for ethane, the main source of the barrier is

the increase of E(C).

An explanation of the gauche effect can be provided by QTAIM analysis of the

process. A lack of coincidence between the angle at which the gauche conformer

is observed (70�) and the E(C) minimum for the three molecules is found. Where-

as for butane and 1,2-dichloroethane the carbon atoms are more stable at 80�, for
1,2-difluoroethane the angle is 90�, as a result of the balance among all atomic

contributions. Note that for 1,2-difluoroethane the most important energy contri-

butions to this balance come from both the central carbon atoms and the gauche
H atom. Of these, the former has a stabilizing and the latter a destabilizing effect;

at 70�, the H atom that is not app to the vicinal F atom has the least destabilizing

effect and the carbon atom has the most stabilizing effect. As a consequence, the

gauche effect in 1,2-difluoroethane is observed.

Electron delocalization between the central carbon atoms follows the same

trend as in ethane; d(C, C 0) is smaller for the eclipsed conformations (Figs 14.3c

and 14.3d). In particular, this delocalization for the gauche conformer follows the

order CH3 < Cl < F, in agreement with the gauche effect for FCH2CH2F. CaX
delocalization follows the reverse order, being larger for the eclipsed conforma-

tions. d(F, F 0) also undergoes important changes during internal rotation – it is

maximum at both the F/F eclipsed and anti conformations and minimum for a

torsion angle of ca. 100� (Fig. 14.4). d(F, H) is smaller and maximum when F

and H are at their anti and syn conformations, respectively. This does not support

the classic hyperconjugative model as the origin of the gauche effect, however, be-
cause the change of d(F, H) contributes only 0.006 e but the change of d(C, C 0)
contributes 0.013e to the gauche conformer. From these results, the relative con-

Fig. 14.4 d(F, H) and d(F, F 0) delocalization indices. B3LYP/6-311þþG

(2d,2p) wavefunctions were used.
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former stability can be associated with electron delocalization between the central

C atoms.

14.3.2

Anomeric Effect on Heterocyclohexanes

A relevant aspect of the QTAIM to experimental chemists is the rigorous descrip-

tion of bonding it provides in terms of rðrÞ, because in this theory the existence of

a bond path is both a necessary and sufficient condition for the existence of a

chemical bond [39]; this provides chemists with an important tool for analysis of

covalent, shared, and polar interactions. This subsection shows the relevance of

the bond-path trajectories as a guide for the design of new compounds.

The participation of weak intramolecular interactions in a conformational pro-

cess can be illustrated by the anomeric effect, defined as the thermodynamic pref-

erence of an electronegative substituent to assume the axial position when it ac-

quires a position a to an annular heteroatom. The anomeric effect occurs in the

SaCaP(O) segment when the diphenylphosphinoyl group is attached to position

2 of 1,3 dithiane (Scheme 14.1) [40]. In this example, an atypical hydrogen bridge

in the CHaOP group is essential for preference of the substituent.

In 1982 Juaristi et al. described, for the first time, the anomeric effect at the

SaCaP(O) segment [41], with a value of 2.64 kcal mol�1, one of the largest values

yet reported for this effect. Later, the enthalpic nature of this type of effect was

established [42–44]. This phenomenon baffled the scientific community – weak

anomeric effects were expected because of the low electron-donating nature of

the atoms involved (from the second row of the periodic table) [45, 46].

One of the models used to describe the anomeric effect relies on hyperconjuga-

tion [47]. X-ray diffraction data of the axial conformer do not, however, show the

Scheme 14.1 Conformational equilibrium of 2-diphenylphosphinoyl-1,3-dithiane.
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bond shortening and lengthening patterns required by this model – the CaS
bond should be shorter and the CaP bond longer in the axial conformer than in

the equatorial conformer, but this cannot be observed (Fig. 14.5a) [48]. An alter-

native explanation proposed a through-space electronic interaction between the S

and P atoms. An interaction between 3p(S) and 3d(P) orbitals was then proposed.

According to Graczyk [49], if the SS and SP nonbonding distances are ca 3.00 Å

and the maximum radial extent of the phosphorus 3d orbital is 2.43 Å [50], either

no or very small 3p–3d overlap is possible. Schleyer et al. questioned the rele-

vance of 3p–3d interactions on theoretical grounds [51].

Mikolaczyk suggested a rationalization for the origin of the anomeric effect

in the SaCaP segment in terms of an interaction between the oxygen atom of

the phosphinoyl group and the hydrogen atoms at the 4,6-syn-diaxial positions
[52]. Such a hypothesis is based on the observation that the distance between

these hydrogen atoms and the oxygen atom is shorter than the sum of their van

der Walls radii. On the other hand, interpretation of microwave data led Mikolajc-

zyk et al. [53] to conclude that the hydrogen bridge on the CHaOP segment is of

no relevance.

Calculation of the electronic properties of 2-dimethylphosphinoyl-1,3-dithiane

(1) at the B3LYP/6-31G(d,p) level established that the axial conformer in which

the O atom is on the ring pointing towards the axial H atoms at positions 4 and

6 is the most stable of four possible conformers (Table 14.4). Computational re-

sults obtained from experimental data establish that for evaluation of the confor-

mational energy it is possible to replace the phenyl groups of the experimentally

studied compound by methyl groups [40].

Interestingly, conformers A and B of compound 1 (see numbering scheme in

Table 14.4) acquire the same atomic arrangement as that found in the SaCaP

Fig. 14.5 Molecular graphs of (a) 1-ax and (b) t-butyl cyclohexane

calculated at the B3LYP level with the 6-31G(d,p) and 6-311G(2d,2p)

basis sets, respectively. Paths connecting CCPs are shown as green

lines. BCPs, RCPs, and CCPs are shown as small red, yellow, and green

spheres.
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anomeric segment, so that if any stereoelectronic effect was to participate in mo-

lecular stabilization, it should remain constant. Rotation of the phosphinoyl group

results in destabilization of 6.37 kcal mol�1, however. In conformer B, the methyl

group points towards the center of the ring causing, the molecular energy to

increase. If conformer B of compound 2 is used as a reference in which cyclohex-

ane is taken as the basic system, an energy increase of only 3.81 kcal mol�1 rela-

tive to the minimum value of C is observed. This is similar to the effect experi-

enced by a tert-butyl group on cyclohexane in which, as illustrated in Fig. 14.5b,

the presence of hydrogen–hydrogen bond paths precludes assignment of repul-

sive character to 1,3-syn diaxial interactions in the molecule [54]. The energy in-

crease can be a consequence of the loss of CHaOP interactions and of an increase

of methyl group interactions now oriented over the dithiane ring. This would lead

to a difference of 2.56 kcal mol�1 that can be attributed to both CHaOP interac-

tions and stabilization energy of 1.28 kcal mol�1 for each of them.

Figure 14.5a shows the critical points of the molecule. The presence of two

CHaOP bonds yields a molecular structure similar to that of adamantane and en-

ables the formation of three additional rings besides that of 1,3-dithiane. A total

of four ring critical points (RCPs) and one cage critical point (CCP) are therefore

generated. It is interesting to note that as the two BPCs have different rbðrÞ
values – one being stronger than the other [40]. In this instance the associated

bond paths are curved; they are, therefore, longer than the geometrical bond dis-

tances. Bond-distance analysis shows the difference between the two interactions.

The trajectory with rbðrÞ ¼ 0:011 au corresponds to a bond length of 4.726 au

whereas for the other, rbðrÞ ¼0.010 au, corresponds to a trajectory length of

4.799 au.

Replacement of the S atoms with methylene groups, 2, causes rbðrÞ to decrease

[55]. Introduction of methylene groups might be expected to cause a decrease of

Table 14.4 Relative energy and HbðrÞ of the CHaOP interaction of

conformers A–D, in kcal mol�1 at B3LYP/6-31G(d,p) level.

Compound/Conformer A B C D

1: X ¼ S, Y ¼ CH2, Z ¼ H 0.0/(0.011, 0.10) 6.37 5.83 4.45

2: X ¼ CH2, Y ¼ CH2, O, Z ¼ H 1.49/(0.009, 0.009) 3.81 0.0 0.35

3: X ¼ S, y ¼ S, Z ¼ H 0.0/(0.039, 0.039) 7.61 6.38 5.01

4: X ¼ SO2, Y ¼ CH2, Z ¼ H 0.0/(0.036, 0.036) 11.62 8.53 5.00

5: X ¼ S, Y ¼ CH2, Z ¼ F 2.96 0.39 0.0 0.21
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acidity of the H atoms at positions 4 and 6, a weaker CHaOP bond, and, as a con-

sequence, the equatorial conformer should be preferred. In addition, introduction

of a third S atom at position 5 of 1,3-dithiane, 3, should increase the acidity of the

CaH group, with a concomitant increase of rbðrÞ. The experimental conforma-

tional preference of 1,3,5 trithiane is 1.43 kcal mol�1 [48], a larger value than

that for 1.

Something similar happens when the amount of oxidation of the sulfur atoms

is increased, as shown for molecule 4. In addition, on these molecules there is no

possibility of the sulfur atoms having any stereoelectronic interaction with the P

atom. The preference for the axial position is, nevertheless, preserved because the

acidity of the H atoms of interest is larger than for 1,3-dithiane [55].

It is also relevant that the conformational preference of the substituent at posi-

tion 2 of the axial conformation with a gauche arrangement of the oxygen atom

increases with rbðrÞ for the bridge CHaOP BCP.

The strongest interaction is produced when the S atom is oxidized to its corre-

sponding sulfone. It is, unfortunately, not possible to confirm these results exper-

imentally for 1,3-dithiane, because of the impossibility of obtaining the disulfone

while at the same time keeping the chair conformation of the 1,1,3,3-tetraoxa-1,3-

dithiane ring. Because of this, dimethylphosphinoyl(methylsulfanyl)methane, 6,

was studied, taking into consideration that the acidity of the hydrogen atom that

is a to S can be modulated to modify its oxidation state and, depending on the

results obtained, to perform the synthesis.

Scheme 14.2 shows the six stable conformers of compound 6. Three have a

gauche arrangement of the CaSaCaP segment and three have the anti conforma-

tion. Of these, conformer 6-A, in which the O atom approaches an H atom of

the methyl group, is the most stable. The corresponding interaction energy coin-

cides with the value obtained from analysis of 2-diphenylphosphinoyl-1,3-dithiane

Scheme 14.2 Minimum-energy conformers in the potential-energy

surface of dimethylphosphinoyl(methylsulfanyl)methane (6). Adapted

from Ref. [40].
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(1.8 kcal mol�1). The energy of conformer 6-C is 3.92 kcal mol�1 higher than that

of 6-A. The difference is less for 6-B, because the CaS and PaO bonds are peripla-

nar, probably because of a stabilizing sOaP ! s�
CaS stereoelectronic interaction.

Of the three anti conformers, only 6-E (the most stable of the gauche series) pre-
serves such interaction.

There is a CHaOP BCP with rbðrÞ ¼ 0:019 au on conformer 6-A and an asso-

ciated RCP (Fig. 14.6). The bond path length is 4.7049 au and the geometric

length is 4.6524 au.

Scheme 14.3 shows the results from optimization of the geometry of dimethyl-

phosphinoyl (methylsulfonyl)methane, 7. Only four conformers can be found,

three with a gauche and only one with an anti arrangement of the CaSaCaP
segment. From this, only the latter keeps an antiperiplanarity that enables

sOaP ! s�
CaS interactions. The energy minimum corresponds to the conformer

for which the CHaOP interaction is possible. Two nonobvious BCPs are found

for compound 7-A, one for the POaHC trajectory of interest and another for the

SOaCH trajectory of one of the methyl groups with a sulfonyl O atom.

The BCP typical of the CHaOP interaction can be found on 7-A with rbðrÞ ¼
0:0152 au. A second bond path is evident for SOaHC with rbðrÞ ¼ 0:0111 au.

Scheme 14.3 Conformers of minimum energy in the potential-energy

surface of dimethylphosphinoyl(methylsulfonyl)methane (7). Adapted
from Ref. [40].

Fig. 14.6 RCPs and BCPs on conformer 6-A. Critical are points labeled as in Fig. 14.5.
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That the energy difference is so large compared to the other conformers led to the

proposal it be synthesized; which was accomplished with a 70% global yield from

chloromethyl methyl sulfide. The NMR spectrum of 6 contain a singlet signal at

2.22 ppm for the methyl group and a doublet at 3.22 ppm, with 2JHaP ¼ 13:0 Hz,

for the methylene group. The signals for the aromatic rings are complex and cen-

tered at ca 7.5 and 7.8 ppm. In contrast, the spectrum for compound 7 contains a

triplet signal centered at 3.226 ppm and 4JHaH ¼ 0:75 Hz for the methyl group,

and a double of quartets centered at 4.518 ppm and 4JHaH ¼ 0:75 y 2JHaP ¼ 9:0

Hz for methylene. Calculation of the coupling constants of the different hydrogen

atoms of conformer 7-A leads to the conclusion a W-type coupling is responsible

for the additional multiplicity. This shows that the CHaOP bridge exists and re-

sults in slower methyl rotation, thus enabling the observed 4JHH coupling.

It has been proposed from theoretical studies that CHaObC interactions in

purinic and pyrimidic pairs are repulsive in nature [56]. The analysis described

herein enables characterization of the attractive CHaOP interaction relevant to

the anomeric effect of the SaCaPaO segment, however, just as predicted by

chemical intuition and emphasized theoretically [27].

14.4

Aromatic Molecules

14.4.1

Electronic Structure of Polybenzenoid Hydrocarbons

The molecular and electronic structures and intermolecular interactions of aro-

matic molecules have been successfully explained by the QTAIM in terms of

rðrÞ, its Laplacian, ‘2rðrÞ, and the kinetic energy density, HðrÞ. Bond paths have

been reported [57] between ortho H atoms in angular polybenzenoid hydrocar-

bons (PBHs), thus providing evidence for the presence of hydrogen–hydrogen

bonding as in tert-butylcyclohexane [54], shown in Fig. 14.5b. Bader et al. [58] an-

alyzed the properties of rðrÞ of benzene and several protonated derivatives and

Wiberg [59] reported good correlations among the properties of rbðrÞ with bond

distances and with the p component of Fulton bond index of PBHs. Howard and

Krygowski [60] also reported good correlations for the values of rðrÞ at the RCPs

in their study of aromaticity descriptors.

Matta et al. [61] further investigated the relationship between electronic and

geometric data with the delocalization index. The correlations obtained imply

that for the PBHs analyzed there is a nonobvious relationship between the one-

electron information contained in rbðrÞ and two-electron properties such as

d(C, C 0) for bonded C atoms and HbðrÞ. This finding allows information about

the pair-density to be obtained from rðrÞ that might not be readily available, al-

though formally accessible, experimentally. In other words, the main features of

chemical bonding found from d(C, C 0) can also be obtained from the electron

density of these molecules, as shown by the patterns of the electron isodensity
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maps shown in Fig. 14.7. Notice, for example, how rðrÞ is more localized in the

inner ring of phenanthrene, as indicated by the greater volume contained in the

envelope encompassing the C9aC10 bond. In addition, because more electron de-

localization between bonded C atoms is associated with a more negative ‘2rbðrÞ
and HbðrÞ, greater bond stabilization is associated with a larger bond order quan-

tified by d(C, C 0).
All of the values reported in Table 14.5 are intermediate between those of

single and double bonds. For example, the RHF/6-31G(d,p) value of rbðrÞ at

the CaC BCP for cyclohexane is 0.255 and the corresponding d(C, C 0) is 0.961,

whereas for the CaC double bond of cyclohexene they are rbðrÞ ¼ 0:363 and

d(C, C 0) ¼ 1.811. These values are to be compared with those of benzene, the ref-

erence aromatic molecule, or with the C9aC10 bond in phenanthrene, the latter

of which have more double-bond character. The values reported in Table 14.5 are

consistent with the envelopes of Fig. 14.7.

Aromatic monoradicals and diradicals are also of interest. For example, m-

benzyne-derived compounds are stable toward rearrangement to their ortho and

para isomers, and the experimental information suggests this molecule is in the

Fig. 14.7 Isodensity maps of rðrÞ for (a) benzene, (b) tetralin, (c)
naphthalene and (d) phenanthrene obtained at the HF/6-31G(d,p)

approximation. Dark envelopes are for rðrÞ ¼ 0:3274 au, the value for

the benzene CaC BCP. A value of rðrÞ ¼ 0:001 au was used for the

outer envelopes. Adapted from Ref. [61].
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singlet electronic state [62], as can be inferred from its reactivity as an electro-

phile rather than as a free radical [63]. The importance of these compounds is

illustrated, for example, by the use of o-benzyne nickel(0) complexes in the syn-

thesis of PBHs [64]. Benzyne diradicals have also been investigated by theoretical

methods. Nicolaides et al. [65] reported CI calculations on didehydrobenzenes

and compared their results with thermochemical data [66], and Clark et al. [67]

analyzed the relative stability of dehydrobenzenes to H-abstraction processes by

means of CASSCF and GVB calculations. The electronic structure of aromatic

radicals in the doublet state and of diradicals in both their singlet open shell and

triplet states have also been investigated with QTAIM [68]. In these cases, in ad-

dition to d(C, C 0) and the properties of rbðrÞ at the CaC BCPs, the critical points

of ‘2rðrÞ have provided insight into bonding pattern for benzene and pyrene-

derived radicals and diradicals – the charge concentrations revealed by the min-

ima of ‘2rðrÞ clearly indicate the radical character of phenyl and dehydropyrenes

in the doublet state, and the properties of rbðrÞ at the CaC BCPs and the CaC 0

delocalization indices are similar to the corresponding values for benzene.

More pronounced electronic redistribution occurs for singlet diradicals. For

example:

Table 14.5 rbðrÞ, ‘2rbðrÞ, and HbðrÞ at nonequivalent CaC BCPs and the

corresponding d(C, C 0) values of several PBHs.[a]

Molecule Bond rb(r) ‘2rb(r) Hb(r) d(C, CO)

Benzene CaC 0.3274 �1.0163 �0.3506 1.388

Naphthalene C1aC2 0.3432 �1.0912 �0.3855 1.533

C1aC9 0.3095 �0.9320 �0.3128 1.222

C2aC3 0.3106 �0.9386 �0.3161 1.245

C9aC10 0.3170 �0.9598 �0.3273 1.278

Phenanthrene C1aC2 0.3391 �1.0744 �0.3761 1.479

C1aC11 0.3160 �0.9608 �0.3257 1.270

C2aC3 0.3188 �0.9791 �0.3325 1.296

C3aC4 0.3376 �1.0640 �0.3729 1.476

C4aC12 0.3137 �0.9448 �0.3217 1.276

C9aC10 0.3549 �1.1520 �0.4129 1.630

C10aC11 0.2993 �0.8884 �0.2934 1.143

C11aC12 0.3191 �0.9656 �0.3316 1.308

C12aC13 0.2880 �0.8252 �0.2720 1.145

m-Benzyne C1aC2 0.3061 �0.6579 �0.3247 1.436

C2aC3 0.3022 �0.7956 �0.3200 1.393

C3aC4 0.3027 �0.7955 0.2943 1.347

aHF/6-31G(d,p) wavefunctions used for benzene, tetralin, naphthalene,

and phenanthrene [61]. In the case of m-benzyne in the singlet-

diradical electronic state, a B3LYP/6-31þþG(d,p) wavefunction within

the broken symmetry approach was used [68]. The carbon atomic

numbering is given in Scheme 14.4.
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1. the CaC bond properties of the dehydrogenated carbon

atoms of o-benzyne are similar to those of a triple bond;

2. the open-shell nature of p-benzyne in the singlet diradical

state is revealed by the existence of critical points of ‘2rðrÞ
on the dehydrogenated C atoms; and

3. the lack of a bond path between C1 and C5 in m-benzyne

(Table 14.5 and Scheme 14.4) prevents one from assigning a

chemical bond between these two atoms, despite the large

electron delocalization between them, thus explaining the

large distortion of the molecular geometry.

Similar properties have been reported for aromatic triradicals [69] by means of

the QTAIM.

Although the properties of rðrÞ at the BCP have not been regarded as useful as

those at RCPs for discussion of aromaticity [60], this analysis has shown how the

electronic structure of PBHs is recovered well from them and from their relation-

ship with d(C, C 0). A useful aromaticity index can be defined [61]:

y ¼ 1� n

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðd0 � diÞ2
s

ð12Þ

where n is the number of C atoms on a ring of a PBH, and do and di are the total

delocalization of a carbon atom with all other carbon atoms in benzene and on

the given ring of the PBH, respectively. In addition, c is a constant such that y is

zero for cyclohexane and unity for benzene and its value depends on the level of

approximation used. y does not rely on the s–p separability (for example, the hy-

drogenated ring of tetralin is not planar) and can be regarded as a reformulation

of the geometric HOMA [70] index taking advantage of the high correlation be-

tween CaC bond distances and d(C, C 0). y recovers bonding characteristics of

PBHs – aromatic dilution, greater electron localization and differential reactivity.

This is illustrated, for example, by the following RHF/6-31G(d,p) values [61]:

Scheme 14.4 Carbon-atom labeling for naphthalene, phenanthrene, and m-benzyne.
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y ¼ 1 and 0.807 for benzene and naphthalene, respectively; 0.960 and 0.278 for

the aromatic and hydrogenated rings of tetralin, respectively; and 0.863 and

0.650 for the outer and inner rings of phenanthrene, respectively. The bonding

pattern obtained from rðrÞ, the individual CaC delocalization indices, and the y

aromaticity index, agree with the description provided by Clar’s aromatic sextet

model for these molecules [71]. For example:

1. the rings in naphthalene are less aromatic than in benzene;

and

2. the aromaticity of the inner ring of phenanthrene is low, with

the C9aC10 bond having the characteristics of a double bond,

in agreement with the known addition reactivity of the

molecule.

It must also be considered that further improvement of delocalization indices

should account for the multidimensional nature of aromaticity with regard to

the structural, electronic, magnetic and energetic aspects involved in this notion

[72].

14.5

Conclusions

This chapter has shown how the QTAIM enables quantification of chemical con-

cepts that are elusive in other approaches, for example those of the chemical bond

and of aromaticity. The formality of a theory based on an observable property –

the electron density – provides the experimenter with useful tools to construct

models that enable explanation of their observations on key chemical concepts,

for example reactivity and conformation.

It was discussed how electron delocalization is responsible for the 3JHH cou-

pling constants for several systems – the Karplus-type behavior of 3JHH of ethane

during internal rotation and trends of 3JHH values for cyclic aliphatic and aro-

matic compounds. The rotational barrier of ethane and substituted ethanes was

explained on energetic grounds that are a consequence of the charge redistribu-

tion along the barrier. For example, as the Ehrenfest forces in both eclipsed and

staggered conformations of ethane are attractive, but of smaller magnitude in the

former arrangement, there is no need to use a repulsive model to explain the bar-

rier. Analysis of the anomeric effect on heterocyclic molecules provides an illus-

trative application of how the structural criteria obtained from the QTAIM can

guide the design of compounds useful for demonstrating molecular effects of in-

terest. The electronic structure of polybenzenoid hydrocarbons obtained from the

topology of the electron density and two-electron properties such as the electronic

energy density and the electron delocalization index provide a clear bonding pat-

tern and a definition of aromaticity. This broad range of examples provides a co-

herent description of chemical bonding and interactions in organic chemistry

characterized by the QTAIM.
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Aromaticity Analysis by Means of the Quantum

Theory of Atoms in Molecules

Eduard Matito, Jordi Poater, and Miquel Solà

15.1

Introduction

Aromaticity is a concept formulated to account for the unusual properties of an

important class of organic and inorganic molecules – the aromatic compounds

[1, 2]. Aromaticity is currently enjoying a resurgence of interest as its scope of ap-

plication has expanded from the organic to the inorganic realm of chemistry [3].

The new class of all-metal and inorganic aromatic compounds which has been

synthesized has prompted new definitions of aromaticity applicable to both

classic and novel aromatic molecules. According to the most recent definition of

Schleyer and coworkers [4], aromaticity is a manifestation of electron delocaliza-

tion in closed circuits, in either two or three dimensions, which results in energy

reduction, often quite substantial, and a variety of unusual chemical and physical

properties. These include a tendency toward bond length equalization, unusual

reactivity, characteristic spectroscopic features, and distinctive magnetic proper-

ties related to the strong induced ring currents in aromatic systems [5].

Although aromaticity is not a directly observable quantity, its importance as a

central concept in chemistry has not diminished since the discovery of benzene

by Michael Faraday in 1825 [6]. Yet its quantification has proved remarkably elu-

sive. Nearly everyone agrees there is not yet a well-established method for quanti-

fying the aromatic character of molecules. Aromaticity is usually evaluated indi-

rectly by measuring a physicochemical property that reflects the aromatic

character of molecules. Thus, most aromaticity indicators are based on the clas-

sical aromaticity criteria, namely, structural, magnetic, energetic, and reactivity-

based measures [2], although, more recently, new ways of quantifying aromaticity

based on the electronic properties of the molecules have been devised (a review

has recently been published [7]). Although the existence of many aromaticity de-

scriptors complicates matters, it is also true that the use of differently-based aro-

maticity criteria is recommended for aromaticity analysis, because of its multi-

dimensional character [8, 9].
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Structure-based measures of aromaticity rely on the idea that important mani-

festations of aromaticity are equalization of bond lengths and symmetry. Among

the most common structure-based indices of aromaticity, one of the most effec-

tive is the harmonic oscillator model of aromaticity (HOMA) index [10], defined

by Kruszewski and Krygowski as:

HOMA ¼ 1� a

n

Xn

i¼1

ðRopt � RiÞ2; ð1Þ

where n is the number of bonds considered and a is an empirical constant fixed

to give HOMA ¼ 0 for a model nonaromatic system and HOMA ¼ 1 for a system

with all bonds equal to an optimum value Ropt, assumed to be achieved for fully

aromatic systems. Ri stands for a running bond length. The HOMA value can be

split into the energetic (EN) and geometric (GEO) contributions according to the

relationship [11]:

HOMA ¼ 1� EN �GEO ¼ 1� aðRopt � RÞ2 � a

n

X
i

ðR� RiÞ2: ð2Þ

The GEO contribution measures the decrease/increase in bond length alterna-

tion and the EN term takes into account the lengthening/shortening of the mean

bond lengths ðRÞ of the ring. The higher the HOMA value the more aromatic the

system.

Magnetic indices of aromaticity are based on the p-electron ring current that

is induced when the system is exposed to external magnetic fields. Probably

the most widely used magnetic-based indicator of aromaticity is the nucleus-

independent chemical shift (NICS) proposed by Schleyer and coworkers [4, 12].

It is defined as the negative value of the absolute shielding computed at a ring

center or at some other interesting point of the system. Rings with large negative

NICS values are regarded as aromatic. The more negative the NICS values, the

more aromatic the rings. Antiaromatic rings, in contrast, are characterized by

positive values of NICS.

Finally, energy-based indices of aromaticity make use of the fact that conju-

gated cyclic p-electron compounds are more stable than their chain analogues.

The most commonly used energetic measure of aromaticity is the aromatic stabi-

lization energy (ASE), calculated as the reaction energy of a homodesmotic reac-

tion [13].

Although aromaticity plays a prominent role in current chemistry, aromaticity

measures based on electronic descriptors are rare. Among these, we can mention

the HOMO–LUMO gap, absolute and relative hardness, the electrostatic poten-

tial, and the polarizability [14]. None refers directly to the electronic delocalization

in aromatic species. If we take into account that electron delocalization is the
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main factor responsible for manifestation of aromaticity, this fact is surprising.

The electron structure of the molecules is obviously strongly connected with aro-

maticity, and QTAIM provides a wide set of concepts to characterize electronic

structure – atomic populations and charges, electron localization and delocaliza-

tion (through the so-called LIs and DIs, vide infra), BCP, RCP (one should bear in

mind that aromaticity manifests in molecules with ring structures), among others

[15]. In this sense, the QTAIM provides a formidable scheme for the construction

of measures of aromaticity.

In the last five years we have concentrated our research efforts on quantifying

aromaticity by measuring the extent of electron delocalization in molecules using

the set of tools that the QTAIM theory provides for this task [7]. In this chapter

we briefly review the new aromaticity criteria defined by us that make use of the

QTAIM concepts. The chapter is organized as follows. Section 15.2 covers the def-

inition of electron delocalization in the QTAIM theory; Section 15.3 analyzes elec-

tron delocalization in benzene, the quintessential aromatic molecule; Section 15.4

gives the definition of the new aromatic indexes based on analysis of electron de-

localization; Section 15.5 discusses several applications of the newly defined in-

dexes to the analysis of aromaticity; and, finally, in Section 15.6, we summarize

the main conclusions.

15.2

The Fermi Hole and the Delocalization Index

Most methods used to determine the extent of electronic localization/

delocalization in molecules employ the two-electron density, Gð~rr1s1;~rr2s2Þ, also
named second-order density or pair density [16]. This is the simplest quantity

that describes the pair behavior and is usually interpreted as the probability den-

sity of finding two electrons with spins s1 and s2 simultaneously at positions~rr1
and ~rr2, respectively, irrespective the position and spin of the other N � 2 elec-

trons. Integration of this function over the spin variables yields the spin-less pair

density, Gð~rr1;~rr2Þ, which can be split into an uncorrelated pair density and a part

that gathers all exchange and correlation effects:

X
s1; s2

Gð~rr1s1;~rr2s2Þ ¼ Gð~rr1;~rr2Þ ¼ rð~rr1Þrð~rr2Þ þ Gxcð~rr1;~rr2Þ: ð3Þ

The uncorrelated component of the pair density, given by the product

rð~rr1Þrð~rr2Þ, provides the probability of finding simultaneously two independent
electrons at positions~rr1 and~rr2. The difference between Gð~rr1;~rr2Þ and rð~rr1Þrð~rr2Þ is
known as the exchange-correlation density [17], Gxcð~rr1;~rr2Þ, which is a measure of

the extent to which density is excluded at~rr2 because of the presence of an elec-

tron at ~rr1. Integration of the exchange-correlation density of a given molecule
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through all space yields the negative of the total number of electrons in this mol-

ecule.

The Fermi and Coulomb hole density is another two-electron function directly

connected to the exchange-correlation density. It is defined as:

rxcð~rr1;~rr2Þ ¼
Gxcð~rr1;~rr2Þ
rð~rr1Þ ð4Þ

and represents the decrease/increase, relative to the uncorrelated probability den-

sity, in the probability of finding an electron in position~rr2 when a reference elec-

tron is fixed at position~rr1. In two landmark works [18, 19], Bader and Stephens

using a Hartree–Fock (HF) wavefunction, which includes only the Fermi hole,

showed that the extent of localization or delocalization of an electron at ~rr1 is

determined by the corresponding localization/delocalization of its Fermi hole. A

localized Fermi hole indicates the presence of localized electronic charge in

the position of the electron of reference and vice versa. For this reason, Fermi

density hole maps have been widely used to analyze the electronic localization/

delocalization [20].

Equation (4) shows that the exchange-correlation density is nothing but the

Fermi and Coulomb hole density weighted by the density of the reference elec-

tron. Bader and coworkers [19, 21] used this quantity to define the localization

and delocalization indexes (LIs and DIs) from the double integration of the

exchange-correlation density over the atomic basins defined within the QTAIM

theory:

lðAÞ ¼ �
ð
A

ð
A
Gxcð~rr1;~rr2Þ d~rr1 d~rr2 ð5Þ

dðA;BÞ ¼ �2

ð
B

ð
A
Gxcð~rr1;~rr2Þ d~rr1 d~rr2 ð6Þ

The term dðA;BÞ is a quantitative measure of the number of electrons delocal-

ized or shared between atomic basins A and B, and lðAÞ is a measure of the aver-

age number of electrons localized on basin A. The following sum rule can easily

be demonstrated:

NðAÞ ¼ lðAÞ þ 1

2

X
B0A

dðA;BÞ ð7Þ

Equation (7) proves that the total number of electrons belonging to a given

basin can be exactly partitioned into its localized ðlðAÞÞ and delocalized
1
2

P
B0A dðA;BÞ

� �
parts. In addition, for closed-shell wavefunctions, one can de-

fine the global delocalization or valence of atomic basin A as:
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VðAÞ ¼
X
B0A

dðA;BÞ ¼ 2½NðAÞ � lðAÞ� ð8Þ

As shown in the next sections of this chapter, we have used these quantities to

define new electronically based aromaticity descriptors.

15.3

Electron Delocalization in Aromatic Systems

In 1996, Bader and coworkers [22], in a seminal work, analyzed electron delocal-

ization in benzene, the archetypal aromatic molecule. They observed by means of

contour maps of the Fermi-hole density in conjugated species that the inter-

atomic delocalization of the p-electrons on a given atom, in general, decreases

with the distance of the second atom from the one in question. For benzene,

however, there is significantly more delocalization of the p density into the basins

of the para-related carbon atoms than into those of the meta-related carbon atoms,

despite the shorter distance to the latter. These data are in accordance with the

energy ordering of the principal resonance structures of benzene – the two Ke-

kulé structures are the most important, then the Dewar structure connecting

para-related carbon atoms, which is, in turn, more relevant than that connecting

meta-related atoms. To corroborate what happens in benzene, Bader and co-

workers [22] studied the effect of geometrical distortion on delocalization of the

p electrons in benzene by considering a symmetrical distortion (S) in which each

equilibrium CaC bond length of 1.42 Å was increased by 0.06 Å in an a1g stretch-

ing mode, and a b2u unsymmetrical one (U) obtained by alternately increasing

and reducing the bond lengths to 1.54 and 1.34 Å, respectively. The results indi-

cated there is no significant change in the delocalization of the p electrons for S;

for U, however, it is seen how delocalization between para carbon atoms largely

decreases. The values of the DIs for benzene also confirm the larger delocaliza-

tion in the para form than in the meta form. In particular, Bader and coworkers

obtained the following DIs at the HF/6-31G(d) level of theory: dðC;C 0Þpara ¼
0:101 e and dðC;C 0Þmeta ¼ 0:070 e. At the same level of theory, it is important to

recognize that Fulton and Mixon reported, some years previously, almost identical

values for dðC;C 0Þpara and dðC;C 0Þmeta [23]. Interestingly, these authors showed

that the dðC;C 0Þpara has a large p component (0.09 e), at variance with

dðC;C 0Þmeta. The larger DI found between para-related carbon atoms than be-

tween meta-related carbons has been corroborated by use of larger basis sets

and higher levels of calculation. For example, the CISD/6-311G(d,p) values of

dðC;C 0Þpara and dðC;C 0Þmeta in benzene are 0.071 and 0.054 e, respectively [24].

This result is, therefore, not an artifact of the method used and, consequently, it

has sound physical foundation for being the basis of the definition of our para-DI
(PDI) index of aromaticity (vide infra).
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15.4

Aromaticity Electronic Criteria Based on QTAIM

Sondheimer defined as aromatic those molecules with a ‘‘measurable degree of cy-
clic delocalization of a p-electron system’’ [25]. Likewise, Schleyer and coworkers [26]

considered the aromaticity ‘‘associated with cyclic arrays of mobile electrons with fa-
vorable symmetries’’ and ‘‘the unfavorable symmetry properties of antiaromatic systems
lead to localized, rather than to delocalized electronic structures’’. These definitions

stress the existence of a direct connection between aromaticity and electron delo-

calization. As said in the introduction, unfortunately, aromaticity does not have a

universally accepted quantitative descriptor. This is the reason for the continuous

search for new aromaticity indexes, and the exhaustive revision of the existing

ones in this quest for a less ambiguous index which, at the same time, agrees

with the most elementary chemical basis of aromaticity. Two aromaticity mea-

sures based on DIs have recently been proposed, the PDI and the fluctuation aro-

matic index (FLU) measures. In this context it is worth mentioning, first, the

work of Matta and Hernández-Trujillo [27] who attempted to construct an

HOMA-like index from the QTAIM by substituting the bond length by the total
electron delocalization, and, second, the use by Bultinck et al. [28] of the n-center
electron DIs as descriptors of aromaticity.

15.4.1

The para-Delocalization Index (PDI)

As already said, Bader and coworkers reported that delocalization in benzene is

greater for para-related (para-DI) than for meta-related carbon atoms (meta-DI).
With this idea in mind, Poater et al. [29] decided to undertake a study to validate

the averaged para-DI in six-membered rings (6-MRs) as a measure of local aroma-

ticity. The PDI is a specific measure of aromaticity for 6-MR, in which there are

three para-related positions, namely ð1; 4Þ, ð2; 5Þ and ð3; 6Þ:

PDI ¼ dð1; 4Þ þ dð2; 5Þ þ dð3; 6Þ
3

ð9Þ

where dðA;BÞ, the DI, is defined as in Eq. (6).

The correlation between PDI and other measures of aromaticity (HOMA, mag-

netic susceptibility, and NICS) for the series of M1 to M10 polycyclic aromatic hy-

drocarbons (PAHs) given in Scheme 15.1 served to validate this measure as a re-

liable index of aromaticity [29]. The above cited work by Matta and Hernández-

Trujillo [27] appeared shortly after the introduction of the PDI with the proposal

of another local aromaticity index, y, similar to the geometric HOMA, but using

the DI as a measure of electron sharing alternation within a ring. This index y

was calculated for a series of PAHs revealing perfect correlation with HOMA,

and a relatively good correlation with NICS. It has been also found that PDI and

the index y result in the same trends for a series of common aromatic molecules

[7].
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The main shortcoming of PDI is that it can only be applied to 6-MR. This dis-

advantage was somehow overcome by the introduction of DDI [29]. DDI is based

on the intuitive idea of comparing the electron delocalization between formal sin-

gle and double bonds. For compounds with a formal Lewis structure, the differ-

ence between the DI for double and single bonds in a given ring was suggested as

a measure of aromaticity. The smaller the difference (the lower the value of DDI)

the closer is electron delocalization in double and single bounds, an indication

that both single and double bonds have delocalization typical of aromatic com-

Scheme 15.1 Reprinted, with permission, from Ref. [31]; copyright

2005, American Institute of Physics.

15.4 Aromaticity Electronic Criteria Based on QTAIM 405



pounds. The greater the difference, on the other hand, the closer the structure to

the Lewis structure, indicative of quite localized electrons, which is known to pre-

vent aromaticity. This relationship was especially useful for five-membered ring

(5-MR) species, for example the series C4H4aX (X ¼ CH�, NH, S, O, SiH�, PH,

CH2, AlH, SiHþ, BH, CHþ), for which a reasonable agreement between DDI and

NICS values was obtained. Nonetheless, DDI needs a clear Lewis structure to

compare double and single bonds, and its application to rings of different sizes

is less clear. In addition, nonaromatic and antiaromatic systems are not well dif-

ferentiated by DDI values. In this sense, the quest for a new aromaticity index

based on DIs, powerful enough to deal with rings of any size and able to distin-

guish between nonaromatic and antiaromatic species, led to the aromatic fluctua-

tion index (FLU).

15.4.2

The Aromatic Fluctuation Index (FLU)

Sondheimer’s definition [25] suggests using cyclic electron delocalization as a

measure of aromaticity. Although PDI focused on para-related carbon atoms and

DDI on a couple of bonds in the ring, there was no attempt to construct an aro-

maticity index by examining the DI of all bonded pairs in a given ring. It is worth

mentioning, however, that Bird [30] has compared Gordy bond orders of all

bonded pairs in a given ring to define a measure of aromaticity that has some re-

semblance to our FLU index. These two indexes are similar in the sense that both

compare the values of the bond orders for all pairs of adjacent atoms in the ring

with a value of reference to give a measure of aromaticity. The FLU index was

constructed by following the HOMA philosophy, i.e. measuring divergences (DI

differences for each single pair bonded) from aromatic molecules chosen as a ref-

erence; cf. Eq. (1). The formula below was given for FLU [31]:

FLU ¼ 1

n

XRING
A�B

VðBÞ
VðAÞ

� �a dðA;BÞ � dref ðA;BÞ
dref ðA;BÞ

� �� �2
ð10Þ

where the summation runs over all adjacent pairs of atoms around the ring, n is

equal to the number of atoms of the ring, VðAÞ is the global delocalization of

atom A given in Eq. (8), dðA;BÞ and dref ðA;BÞ are the DI values for the atomic

pairs A and B and its reference value, respectively, and

a ¼ 1 VðBÞ > VðAÞ
�1 VðBÞaVðAÞ

�
ð11Þ

The second factor in Eq. (10) measures the relative divergence with respect to

a typical aromatic system, and the first factor in Eq. (10) penalizes those with

highly localized electrons. The reference DI values for CaC and CaN bonds were

obtained from benzene (1.4 e) and pyridine (1.2 e) at the HF/6-31G(d) level of
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theory. In a forthcoming work we will also give the reference data for BaN bonds,

which will be taken from (0.77 e) [32].

As is readily apparent, unlike PDI, FLU can cope with rings of different sizes

and furnishes global and local measures of aromaticity. The weakness of FLU,

however, as it is also for HOMA, is the need for typical aromatic systems as refer-

ences. One must also be aware that FLU is actually measuring the relative elec-

tronic divergence of a given ring in a molecule relative to a molecule chosen as a

reference. It is, therefore, worth noting that FLU (the same is true for HOMA)

must be applied with care when studying the change of aromaticity along a reac-

tion coordinate, because it fails to recognize instances when aromaticity is en-

hanced on deviation from the equilibrium geometry (vide infra) [33].

15.4.3

The p-Fluctuation Aromatic Index (FLUp)

To overcome the need for reference data which prevents the FLU to be applied in

a straightforward manner to any molecule, another index based on the QTAIM

was designed – the FLUp; this measures the divergence of p-delocalization from

its average [31]:

FLUp ¼ 1

n

XRING
A�B

VpðBÞ
VpðAÞ

� �a
dpðA;BÞ � dav

dav

� �� �2
ð12Þ

where dav is the average value of the p-DI for the bonded pairs in the ring, and the

other symbols denote the aforementioned quantities calculated using p-orbitals

only. FLUp can only be exactly calculated for planar molecules, where DI can be

(exactly) decomposed into its s and p contributions. Nevertheless, orbital localiza-

tion schemes can always be used to obtain approximate p-DI for nonplanar mole-

cules.

The correlation between FLUp and FLU is shown to be excellent for a series of

organic compounds (cf. Table 15.1 and Scheme 15.1). There is, however, no rea-

son to expect this always to be true. Indeed, FLUp is measuring the amount of

homogeneous delocalization in a p-system, whereas FLU is measuring the extent

of similarity with reference aromatic molecules. Hence, for organic species for

which aromaticity comes from delocalization of the p-system, one expects both

indexes to reproduce the same trends; differences will, however, arise for inor-

ganic species, the aromaticity of which is not exclusively driven by p-electron de-

localization.

Correlation of PDI, FLU, and FLUp with other aromaticity indexes is usually

reasonably good (cf. Table 15.2) for the series of compounds given in Scheme

15.1, perhaps with the exception of NICS values, as one would expect. One can,

therefore, see how QTAIM provides a formidable scheme for measurement of ar-

omaticity. It is also worth noticing that some other molecular decompositions, for

example fuzzy-atom [34], can furnish measures of aromaticity in excellent agree-

ment with those derived from QTAIM DIs [35].
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15.5

Applications of QTAIM to Aromaticity Analysis

In this section we present some applications of the QTAIM to the analysis of ar-

omaticity in buckybowls, fullerenes, substituted and unsubstituted PAHs, and in

the simplest Diels–Alder reaction.

15.5.1

Aromaticity of Buckybowls and Fullerenes

Different studies have attributed ambiguous aromatic character to fullerenes [36],

which are regarded as aromatic by some criteria and as nonaromatic by others

[37–39]. For example, their magnetic properties are indicative of extensive cyclic

p-electron delocalization and substantial ring currents; evidence against their aro-

maticity, however, is that they are very reactive. We have analyzed the local aroma-

ticity of fullerenes and buckybowls [40, 41], which also have fullerene-like physi-

cochemical properties, to clarify their aromatic character. Table 15.3 lists the HF/

6-31G(d)//AM1 values of the NICS, PDI, and HOMA measures of aromaticity,

with the average pyramidalization angles, for a series of planar and bowl-shaped

PAHs and fullerenes, i.e. from benzene to buckminsterfullerene (C60), repre-

sented in Scheme 15.2.

The three local aromaticity criteria almost give the same trend for the different

rings of the PAHs studied. Clear aromatic character is assigned to the hexagonal

rings of benzene, naphthalene, and C20H10 and to the outer 6-MRs of C26H12 (C)

and C30H12 (C and D), whereas the inner 6-MRs of C26H12 (A), C30H12 (A), and

C60 are found to be moderately aromatic. In contrast with the significant local ar-

omaticity of 6-MRs, the 5-MRs have antiaromatic character. It is also worth

noticing some convergence in the local aromaticity of the inner 6-MRs when go-

Table 15.2 Pearson coefficient (r 2) for correlation between different

aromaticity indexes for the series of molecules in Table 15.1 at the HF/

6-31G(d) level of theory.

HOMA NICS(0) NICS(0)zz NICS(1) NICS(1)zz PDI FLU FLUp

HOMA 1.00 0.30 0.33 0.43 0.41 0.68 0.90 0.78

NICS(0) 1.00 0.98 0.96 0.97 0.50 0.47 0.67

NICS(0)zz 1.00 0.96 0.98 0.64 0.49 0.70

NICS(1) 1.00 0.99 0.55 0.60 0.72

NICS(1)zz 1.00 0.60 0.58 0.72

PDI 1.00 0.79 0.53

FLU 1.00 0.89

FLUp 1.00
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ing from the most aromatic benzene to the partially aromatic C60. Unexpectedly

for the bowl-shaped PAHs, the most pyramidalized outer rings have the largest

local aromaticities, even though this trend agrees with the Clar model of aroma-

ticity, which attributes more aromaticity to outer rings [42].

Another interesting fullerene is C70 [40], the structure of which arises from the

insertion of an equatorial belt of five 6-MRs into C60 (Scheme 15.3), causing it to

have different reactivity and local aromaticity [43]. Experimentally, the pole is less

planar than the equatorial belt, which should imply lower aromaticity of the for-

mer. The HF/6-31G(d)//AM1 aromaticity criteria in Table 15.3 confirm that ring

E, as expected, has the largest aromaticity, followed by ring B, located at the pole

and, unexpectedly, by ring D, even though this is located in the equatorial belt.

Compared with C60, rings B and E of C70 are more aromatic than 6-MRs of C60,

in line with the accepted greater aromaticity of C70 [37]; despite this is more

reactive [38]. NICS values of C70 are, in contrast, surprisingly high compared

with those for C60, even though they have similar geometric environments and

pyramidalization angles. It must be noticed that experimental chemical shifts in

Table 15.3 HF/6-31G(d)//AM1 calculated values of NICS (ppm),

HOMA, para-delocalization (PDI) (electrons) indices, and average

pyramidalization angles for the carbon atoms present in a given ring

(Pyr, in degrees) for a series of aromatic compounds.[a]

Molecule Ring NICS HOMA PDI Pyr

C6H6 6A �11.7 0.987 0.101 0.0

C10H8 6A �11.3 0.807 0.074 0.0

C14H8 6A �2.7 0.603 0.067 0.0

5B 13.1 �0.205 0.0

C20H10 6A �8.6 0.652 0.058 4.6

5B 7.6 0.357 9.1

C26H12 6A �5.6 0.474 0.037 6.9

5B 3.9 �0.142 6.3

6C �10.0 0.746 0.078 2.8

C30H12 6A �6.5 0.390 0.043 9.2

5B 6.8 0.113 10.1

6C �9.4 0.652 0.061 5.1

6D �8.1 0.614 0.057 4.6

C60 6A �6.8 0.256 0.046 11.6

5B 6.3 �0.485 11.6

C70 5A 2.8 �0.481 11.9

6B �11.5 0.294 0.046 11.8

5C �1.3 �0.301 11.0

6D �8.8 0.141 0.028 10.1

6E �17.3 0.697 0.059 9.6

aAdapted, with permission, from Ref. [40]; copyright 2003, Wiley–

VCH.
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Scheme 15.2 Reprinted, with permission, from Ref. [40]; copyright 2003, Wiley–VCH.
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3He@C70 and 3He@C60 follow the same trend as calculated NICS for C70 and

C60 [44].

15.5.2

Effect of Substituents on Aromaticity

Benzene is regarded as the archetype of aromaticity, fulfilling all the criteria at-

tributed to this property [2]. This molecule has been used as the reference for

the proposal of quantitative descriptors of substituent effects, that is, the Ham-

mett substituent constants [45]. We have tried to establish a relationship between

the substituent effect and the aromaticity of a series of monosubstituted

derivatives of benzene [46]. Table 15.4 contains the HF/6-31þG(d)//B3LYP/6-

311þG(d,p) NICS, the B3LYP/6-311þG(d,p) HOMA, and the B3LYP/6-

311G(d,p)//B3LYP/6-311þG(d,p) PDI aromaticity measures, with different sub-

stituent constants (explained elsewhere [46, 47]). It is apparent that, although

the nature of the substituents varies substantially along the series (sp varying

from �0.66 for a strongly electron-donating NH2 substituent to 1.91 for a

strongly electron-accepting NNþ substituent), no significantly large changes of ar-

omaticity are observed. This proves the high resistance of the p-electron structure

of benzene, in agreement with its preference for substitution rather than addition

reactions. In addition, PDI is the only index that gives a direct correlation be-

tween aromaticity and the substituent constants (Fig. 15.1), thus proving to be a

good descriptor of changes of p-electron delocalization in substituted benzenes

[46].

In another study the substituent effect was analyzed for a series of carbazole

derivatives (Scheme 15.4) and an attempt was made to predict the reactivity of

these systems quantitatively as a function of the substituent by measuring differ-

Scheme 15.3 Reprinted, with permission, from Ref. [40]; copyright 2003, Wiley–VCH.
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ent local aromaticity criteria [48]. As is apparent from Fig. 15.2 for the substituted

ring, the results for the three aromaticity criteria are scattered over a narrow

range of values. As in the previous example, the p-electron structure of the aro-

matic ring is slightly affected by substituents. There is also clear divergence in

Table 15.4 GIAO/HF/6-31þG(d) NICS, B3LYP/6-311þG(d,p) HOMA,

and B3LYP/6-311G(d,p) PDI aromaticity indices, calculated at B3LYP/

6-311þG(d,p) geometry, for differently substituted benzene (C6H5X)

structures. Also listed are substituent constants sþ, s�, sm, and sp and

resonance constants Rþ and R� (m and p refer to meta and para

substitution and þ and � indicate the ability of the substituent to

effectively delocalize either a positive or negative charge).[a]

xX NICS

(ppm)

HOMA PDI

(electrons)

sB/sC sm sp RB/RC

aNNþ �10.6 0.96 0.080 3.43 1.76 1.91 1.85

aNO �9.8 0.98 0.091 1.63 0.62 0.91 1.14

aNO2 �10.9 0.99 0.096 1.27 0.71 0.78 0.62

aCN �10.3 0.98 0.096 1 0.56 0.66 0.49

aCOCl �9.9 0.98 0.095 1.24 0.51 0.61 0.78

aCOCH3 �9.7 0.98 0.097 0.84 0.38 0.5 0.51

aCOOCH3 �9.8 0.98 0.097 0.75 0.37 0.45 0.14

aCOOH �9.7 0.98 0.097 0.77 0.37 0.45 0.43

aCHO �9.6 0.97 0.095 1.03 0.35 0.42 0.70

aCONH2 �9.9 0.98 0.098 0.61 0.28 0.36 0.35

aCCH �10.1 0.97 0.096 0.53 0.21 0.23 0.31

aCl �10.7 0.99 0.099 0.19 0.37 0.23 �0.31

aF �11.7 0.99 0.098 �0.03 0.34 0.06 �0.52

aH �9.7 0.99 0.103 0 0 0 0

aPh �9.3 0.98 0.098 �0.18 0.06 �0.01 �0.30

aCH3 �9.7 0.98 0.100 �0.31 �0.07 �0.17 �0.32

aOCH3 �10.8 0.98 0.094 �0.78 0.12 �0.27 �1.07

aNH2 �9.8 0.98 0.093 �1.3 �0.16 �0.66 �1.38

aOH �10.8 0.99 0.095 �0.92 0.12 �0.37 �1.25

aReprinted, with permission, from Ref. [46]; copyright 2004, American

Chemical Society.

Scheme 15.4 Reprinted, with permission, from Ref. [48]; copyright

2004, Royal Society of Chemistry.
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Fig. 15.2 Comparative plot of HOMA, NICS (ppm), and PDI (electrons)

for the substituted ring (Subs) for the series of carbazole derivatives

studied. The x-plot enumeration can be found in Scheme 15.4. Adapted,

with permission, from Ref. [48]; copyright 2004, Royal Society of

Chemistry.

Fig. 15.1 Plot of PDI (electrons) against sm (a) and sp (b). The

correlation coefficients are �0.83 and �0.91, respectively. Reprinted,

with permission, from Ref. [46]; copyright 2004, American Chemical

Society.
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the ordering of the different systems by local aromaticity values given by the

B3LYP/6-31þþG(d,p) values of NICS, HOMA, and PDI, at variance with previous

analyses of aromaticity which resulted in relatively good agreement among the

different aromaticity criteria. One must be very cautious with the results, because

it is not being possible to give a definite answer about the relative aromaticity of

these rings. Finally, it is worth saying that the different trends found by use of

these criteria are not completely unexpected, because we are considering descrip-

tors based on different physical properties.

The last study on this subject has consisted in the analysis of how metal cations

and ionization affect the aromaticity of the Watson–Crick guanine–cytosine base

pair (GC) [49]. Table 15.5 contains the B3LYP aromaticity results (HOMA, PDI,

NICS, and FLU) for the 6-MRs and 5-MRs studied (Fig. 15.3). H-bond formation

in GC implies some loss of p-charge in N1 and a gain in O6, thus increasing the

relevance of the resonance structure 2 (Fig. 15.3), which favors intensification of

Table 15.5 NICS (ppm), PDI (electrons), HOMA, and FLU measures of

the aromaticity of the five and six-membered rings of guanine (G) and

six-membered ring of cytosine (C) computed by the B3LYP method.[a]

System NICS

(ppm)

PDI

(electrons) HOMA FLU

G-5 G-6 C-6 G-6 C-6 G-5 G-6 C-6 G-5 G-6 C-6

GC �11.94 �4.10 �1.86 0.036 0.040 0.848 0.795 0.703 0.025 0.033 0.035

[GC]þ �5.41 �0.31 �2.49 0.023 0.042 0.829 0.550 0.773 0.028 0.048 0.031

Ca2þ-GC �10.67 �4.76 �2.53 0.044 0.045 0.843 0.886 0.797 0.023 0.024 0.029

Cuþ-GC �10.64 �4.59 �2.25 0.040 0.043 0.869 0.898 0.761 0.021 0.027 0.032

Cu2þ-GC �7.37 �2.00 �3.07 0.022 0.040 0.915 0.760 0.822 0.033 0.058 0.039

aAdapted, with permission, from Ref. [49]; copyright 2005, Taylor and

Francis. Details of the basis set used can be found in Ref. [49].

Fig. 15.3 Schematic representation of charge transfer in the GC base

pair. G is guanine and C is cytosine. Reprinted, with permission, from

Ref. [49]; copyright 2005, Taylor and Francis.
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the aromatic character of the guanine 6-MR. The increased aromaticity of the

guanine and cytosine 6-MRs which results from interactions with Cuþ and Ca2þ

is also attributed to the strengthening of hydrogen-bonding in the GC pair, which

stabilizes the charge-separation resonance structure 2 [50]. This effect is stronger

for the divalent Ca2þ metal cation than for the monovalent Cuþ. The observed re-

duction of the aromaticity of the 5-MRs and 6-MRs of guanine because of ioniza-

tion or interaction with Cu2þ is caused by the oxidation process that removes one

p electron, disrupting the p-electron distribution.

15.5.3

Assessment of Clar’s Aromatic p-Sextet Rule

The introduction of Hückel’s 4nþ 2 rule enabled better comprehension of aroma-

ticity [51], although strictly it could only be applied to monocyclic conjugated sys-

tems. This was solved later by Clar’s model of the extra stability of 6n p-electron

benzenoid species [42, 52]. According to Clar’s rule, the Kekulé resonance struc-

ture with the largest number of disjoint aromatic p-sextets, i.e. benzene-like moi-

eties, is the most important for the characterization of the properties of polycyclic

aromatic hydrocarbons (PAHs). Aromatic p-sextets are defined as six p-electrons

localized in a single benzene-like ring separated from adjacent rings by formal

CaC single bonds. For example, application of this rule to phenanthrene reveals

that resonance structure 2 (Scheme 15.5) is more important than resonance

structure 1; which is translated into major local aromaticity of the outer rather

than inner rings. The Clar structure of a given PAH is the resonance structure

with the maximum number of isolated and localized aromatic p-sextets, with a

minimum number of localized double bonds. A PAH with more p-sextets is ki-

netically more stable than its isomer with fewer. In addition, p-sextets are re-

garded as the most aromatic rings of PAHs. Some PAHs (e.g. phenanthrene)

have a single Clar structure whereas others have several. For these latter, Clar’s

rule cannot differentiate which of the resonance structures is mainly responsible

Scheme 15.5 Reprinted, with permission, from Ref. [53]; copyright 2005, Wiley–VCH.
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for the aromaticity of the system. In this study we investigate whether three local

aromaticity criteria, PDI, HOMA, and NICS, give results consistent with Clar’s

original qualitative p-sextet rule [53].

The PAHs studied are depicted in Scheme 15.6. PAHs 1–5 have a single Clar

structure and 6–10 have several Clar valence structures, also represented. The

corresponding local aromaticity values, calculated at the B3LYP/6-31G(d) level,

can be found in Table 15.6. First, for systems with a single Clar structure (1–5),

p-sextet rings have higher PDI values, higher HOMA, and more negative NICS

than non-p-sextet rings. Hence, all three aromaticity criteria used agree perfectly

with the qualitative description given by Clar’s rule. Second, for systems with sev-

eral Clar structures, it is apparent that the overall aromaticity of the system given

by PDI and HOMA agrees with the superimposition of all possible Clar struc-

tures. For example, for 7, PDI and HOMA attribute very similar aromaticity to

rings A and B, which proves the non-localizability of the p-sextet. NICS, however,

attributes much more aromatic character to ring B than ring A, although it is

claimed this is because of overestimation by NICS of the local aromaticity of the

inner rings of PAHs [54].

Table 15.6 PDI (in electrons), HOMA, and NICS (in ppm) values for the

PAHs studied. The numbering is given in Scheme 15.6.[a]

Ring Molecule

1 2 3 4 5 6 7 8 9 10

PDI A 0.080 0.069 0.086 0.084 0.083 0.076 0.066 0.080 0.069 0.079

B 0.047 0.043 0.026 0.034 0.041 0.066 0.053 0.066 0.057

C 0.044 0.068 0.038 0.031

D 0.073 0.084 0.085

E 0.085

HOMA A 0.856 0.834 0.889 0.811 0.872 0.769 0.619 0.829 0.697 0.749

B 0.435 0.553 �0.030 0.383 0.356 0.696 0.542 0.730 0.305

C 0.518 0.788 0.266 �0.097

D 0.838 0.883 0.820

E 0.883

NICS A �10.06 �12.74 �8.63 �9.44 �9.93 �9.98 �8.84 �9.94 �9.30 �10.19

B �6.82 �5.07 �1.18 �4.13 �5.38 �12.60 �7.69 �11.69 �7.68

C �5.47 �11.27 �4.58 �3.91

D �11.58 �9.81 �9.55

E �8.99

aAdapted, with permission, from Ref. [53]; copyright 2005,

Wiley–VCH.
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15.5.4

Aromaticity Along the Diels–Alder Reaction. The Failure of Some Aromaticity Indexes

This work [33] analyzes the aromaticity along the Diels–Alder reaction between

1,3-butadiene and ethane to yield cyclohexene (Scheme 15.7) [55, 56], which is

often taken as a prototypical pericyclic concerted reaction. This reaction is charac-

terized by an aromatic transition state (TS) [56, 57], thus along the reaction path a

Scheme 15.6 Adapted, with permission, from Ref. [53]; copyright 2005, Wiley–VCH.
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peak of aromaticity around the TS is expected. The trends of aromaticity along the

path for the different criteria applied, at the B3LYP/6-31G(d) level, can be found

in Fig. 15.4. Only the magnetic NICS(1) and the electronic PDI criteria find the

most aromatic point along the reaction path around the TS of the reaction. In

contrast, both geometric HOMA and electronic FLU regard cyclohexene as the

most aromatic species in this reaction. This latter trend is also given by the RSS

(root summed squares) of the best fitted plane for atoms in the ring, which is an

unambiguous measure of molecular planarity [33]. It shows the product as the

most planar species, thus in principle implying greater p-electron delocalization.

The failure of RSS proves that the flatter structure is not necessarily the more ar-

omatic. On the other hand, HOMA and FLU measure variances of structural and

electronic patterns around the ring, and might fail if they are not applied to stable

species, for example in a reaction with major structural and electronic changes.

The failure of some indices to detect the aromaticity of the TS in the simplest

Diels–Alder cycloaddition thus reinforces the idea of the multidimensional char-

acter of aromaticity [8] and the need to use several criteria to quantify it.

15.6

Conclusions

A key aspect of aromatic compounds is the p-electron delocalization (and s and

even d-electron delocalization in all-metal and inorganic aromatic species) present

in these molecules. In this chapter we have defined three new aromaticity indexes

founded on evaluation of electron delocalization in the framework of the QTAIM,

i.e. the para-delocalization (PDI), aromatic fluctuation (FLU), and FLUp indexes.

We have shown that theoretical studies of electron delocalization using QTAIM-

based tools have significantly improved our understanding of aromaticity in full-

erenes, substituted benzene derivatives, polycyclic aromatic hydrocarbons, and

chemical reactivity. The lack of a universally accepted measure of aromaticity, its

multidimensional character, and the limitations of almost all descriptors of aro-

maticity stress the need for new aromaticity criteria in addition to those defined

Scheme 15.7 Reprinted, with permission, from Ref. [33]; copyright 2005, Elsevier.
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in this chapter. In a given study of a series of compounds, one can safely reach a

definite conclusion about their aromaticity only when differently based indicators

of aromaticity lead to the same results. For this reason, in our opinion, careful

analysis of the aromaticity of a set of molecules must be performed using elec-

tronically based descriptors, for example the PDI or FLU indexes, and geometry-

based indicators such as the HOMA index, magnetically based measures, for ex-

ample NICS, and energetically based descriptors, for example ASEs.
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Rev. 2001, 101, 1385–1419; M. K.
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Tetrahedron 1996, 52, 10255–10264;
T. M. Krygowski, M. K. Cyrański,
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Chem. 1996, 100, 7449–7454; T.
Akasaka, E. Mitsuhida, W. Ando, K.

Kobayashi, S. Nagase, J. Am. Chem.
Soc. 1994, 116, 2627–2628; A. L.
Balch, J. W. Lee, M. M. Olmstead,

Angew. Chem. Int. Ed. Engl. 1992, 31,
1356–1358; C. Bellavia-Lund, F.

Wudl, J. Am. Chem. Soc. 1997, 119,
9937–9937; M. S. Meier, G. W. Wang,

R. C. Haddon, C. P. Brock, M. A.

Lloyd, J. P. Selegue, J. Am. Chem.
Soc. 1998, 120, 2337–2342; C.
Thilgen, A. Herrmann, F. Diederich,

Angew. Chem. Int. Ed. Engl. 1997, 36,
2269–2280.

44 Z. Chen, R. B. King, Chem. Rev. 2005,
105, 3613–3642.

45 L. P. Hammett, Chem. Rev. 1935, 17,
125–136.

46 T. M. Krygowski, K. Ejsmont, B. T.

Stepién, M. K. Cyrański, J. Poater, M.
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16

Topological Properties of the Electron

Distribution in Hydrogen-bonded Systems

Ignasi Mata, Ibon Alkorta, Enrique Espinosa, Elies Molins,

and José Elguero

16.1

Introduction

The hydrogen bond (HB) is the most important weak interaction found in nature.

It is responsible for the three dimensional shape of biopolymers (proteins and

nucleic acids) and for the structure of water, in both the liquid and solid phases.

Life processes extensively use the making and breaking of HBs as part of con-

catenated reactions involving huge amounts of biomolecules. In addition, it has

profound implications in the mode of action of drugs and in molecular packing,

recognition, and crystal engineering [1].

In the literature, the moieties involved in HB interaction are usually identified

as hydrogen donor (or electron acceptor) and hydrogen acceptor (or electron do-

nor). In this chapter the donor (D) and acceptor (A) terms are schematically rep-

resented as DaH���A.
The H���A interaction distance d(H���A) varies from 1.2 to 2.5 Å (or up to 3.0 Å,

depending of the criteria used). This is not true for covalent bonds, for which the

range is much smaller. Dependence of hydrogen bond properties on the internu-

clear distance can, therefore, be clearly observed for hydrogen bonds (HBs), as

shown by the DaH bond distance, which seems to depend on d(H���A). The mu-

tual dependence of bond distances on both sides of the hydrogen atom can easily

be understood in terms of the bond-order model proposed by Pauling, which as-

sumes a total valence equal to 1 for the hydrogen atom involved in the HB inter-

action [2–5].

Similar dependencies have been found for the electron-density properties from

application of QTAIM methodology to the hydrogen bond. Topological analysis of

rðrÞ was initially used to identify the presence of HB interactions. Thus, charac-

terization of CaH���O hydrogen bonds has been used to generalize a set of

criteria to establish the presence of hydrogen-bonding interactions based on the

QTAIM theory [6]. These criteria have been applied to the study of other hydro-

gen bonds apart from CaH���O interactions, and a further extension has been
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developed for dihydrogen bonds (DaH���HaM) [7]. More recently, topological

analysis has revealed the dependence of electron density properties on H���A dis-

tance and the interdependences between these properties.

This chapter covers theoretical and experimental studies that analyze the de-

pendence of the topological and energy properties of the electron distribution in

HB systems either on the H���A distance or on other properties of rðrÞ. As a par-

ticular point of interest, Section 16.6 discusses attempts which have been made to

analyze the rðrÞ properties in a comprehensive range of interatomic distances,

from covalent to weak HB interactions. In general, the theoretical studies consid-

ered here have been undertaken in two different manners. The first treats the

complexes by following a reaction coordinate, where the HB distance between

the two DaH and A moieties involved is artificially modified. The second

approach assembles information from complexes that have different internuclear

H���A distances at their equilibrium geometries. The former method has the ad-

vantage of reducing secondary effects that arise in the latter as a result of the dif-

ferent electronegativities of the D and Y groups in the DaH���AaY systems. It

should be noted, however, that, in the former instance, the observed dependen-

cies do not necessarily follow the same quantitative behavior as systems in equi-

librium. The second method can, moreover, be used with experimental electron

densities in crystals. Occasionally both approaches have been combined in the

same study, filling the gaps in the data for complexes in equilibrium with calcu-

lated magnitudes that have been obtained by making use of reaction coordinates.

16.2

Topological Properties of the Hydrogen Bond

16.2.1

Topological Properties at the Bond Critical Point (BCP)

Within the QTAIM theory a bond between two atoms is characterized by a line of

maximum electron density (the bond path) that connects both nuclei and inter-

sects the zero-flux surface of the electron density gradient field ‘rðrÞ at a topolog-
ical ð3;�1Þ point, called the bond critical point (BCP).

Some particular properties of the electron distribution at the BCP are:

1. rb is the smallest value of the electron density along the bond

path; and

2. it corresponds to the maximum of rðrÞ at the interatomic

surface (IAS) between both atoms.

The uniqueness of this point has been used to define some characteristics of

the whole bond (for example bond distance, degree of covalence, interaction en-

ergy, etc.) in terms of a number of rðrÞ properties at BCP. The most studied topo-
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logical properties at the BCP are the electron density ðrbÞ, its Laplacian ð‘2rbÞ
and the eigenvalues of the Hessian matrix (l1, l2 and l3), the latter indicating

the three main curvatures of rðrÞ at the BCP. If rðrÞ at the BCP has a saddle

distribution, two of the eigenvalues have negative values and correspond to the

curvatures that are perpendicular to the bond path and the third is positive

and represents the curvature of the rðrÞ distribution along the bond path. By

convention, the negative curvatures are l1 and l2 ðl1 < l2 < 0Þ, and the positive

one is l3. The Laplacian of the electron density ‘2rðrÞ, which is defined as the

sum of the three eigenvalues of the Hessian, l1, l2 and l3, provides information

about either the charge concentration ð‘2rðrÞ < 0Þ or the charge depletion

ð‘2rðrÞ > 0Þ of the electron distribution. For hydrogen bonds, rb is usually small

and ‘2rb > 0, both being characteristic magnitudes of closed-shell interactions.

(See also Chapter 1 of this book).

The first publications in which topological analysis of rðrÞ was used to charac-

terize hydrogen-bonded systems included theoretical calculations [HF/6-31G(d,p)]

of the complexes formed between nitrile derivatives and hydrogen halides (HF

and HCl) [8, 9]. In these studies the rb magnitudes calculated for each hydrogen

halide were linearly correlated with the H���A distance. A similar linear correla-

tion was also observed for ‘2rb [9]. The small range of HB distances (0.28 and

0.36 Å for XCN���HF and XCN���HCl complexes, respectively) induced researchers

to postulate linear relationships rather than other kinds of dependence. Similar

conclusions were also reached by other authors when they considered a small

range of distances. When the range expanded, however, the curvature of the rb
and ‘2rb data distributions became evident, as shown by a theoretical study of

carbenes and silylenes as HB acceptors [10] and experimental analysis of H���O
interactions [11].

The first study describing the nonlinear behavior of the rb magnitude with the

bond distance does not correspond to the analysis of a weak interaction but to the

SaS bond, which can expand by 0.5 Å ð1:70 < d(SaS) < 2:25 Å) [12]. These re-

sults clearly showed that a double-logarithm function, which can be expressed as

an equivalent power function, enables better fitting of the data distribution than a

linear regression (Fig. 16.1). In the same way, the experimentally derived rb mag-

nitudes of the CO bonds in citrinin were better fitted by a simple exponential

function than by a linear function [13].

In experimental analysis of XaH���O (X ¼ C, N, O) hydrogen bond interac-

tions in crystals [11], rb, ‘
2rb, and the curvatures were exponentially depen-

dent on intermolecular distance (Fig. 16.2). For the same set of HB interac-

tions, an exponential relationship was also found between the sum of the

negative curvatures l1 þ l2 and the positive curvature l3 [14]. These dependen-

cies have been also derived in theoretical studies of H���F hydrogen-bonding

interactions [15]. It is particularly worthy of note that the fitting data found for

rb in experimental H���O and in the theoretically calculated pure closed-shell

H���F interactions {rb ¼ 65(27)� exp[�3.2(2)d(H���O)]} and {rb ¼ 63(10)�
exp[�3.552(7)d(H���F)]} are very similar.
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Fig. 16.1 Relationship between d(SaS) distance (Å) and rb (a.u.). The

fitted curve corresponds to d(SaS) ¼ 1:229r�0:269. (Values taken from

Ref. [12]).

Fig. 16.2 Relationship between l3 (e Å�5) and H���O distance (Å) data

for experimental XaH���O (X ¼ C, N, O) hydrogen-bonding interactions

in crystals. (Values taken from Ref. [14]). The equation of the fitted

curve is: l3 ¼ 0:65ð13Þ � 103 exp½�2:6ð1ÞdðH���OÞ�.
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16.2.2

Integrated Properties

Within a molecule, each atomic basin W is defined as the space region covered by

all the gradient paths of rðrÞ ending at its nuclear position. These atomic regions

are delimited by zero-flux surfaces of ‘rðrÞ which do not belong to the atoms and

represent their topological borders. From QTAIM methodology, atomic basins

can be regarded as quantum subsystems of the molecular quantum system.

Thus, the magnitude of a given molecular property P can be obtained by using

the integration within the basins W, which provides the atomic contributions PW

to the molecular property P ðP ¼ SWPWÞ. Several integrated properties have been

analyzed in theoretical studies of HBs, for example charge, energy, volume, and

atomic dipole polarizability. On HB formation, the hydrogen atom involved in

the interaction becomes more positively charged, energetically destabilized, and

its volume and dipole moment decrease. These changes were first observed for

weak CaH���O hydrogen bonds by comparing the integrated properties of the

complexes with those of the free monomers [6]. They have been included as

four of the eight criteria used to establish hydrogen-bonding interactions from to-

pological analysis of rðrÞ. When an HB is formed, electrons are typically pro-

moted from the lone pair of the acceptor to the s� antibonding orbital of DaH
(except for blue shift hydrogen bonds, in which other orbitals of the donor mole-

cule are involved [16–18]), weakening the covalent bond and producing changes

in the energy, charge, and dipole moment of the hydrogen atomic basin that are

intrinsically related to each other. Indeed, as shown for hydrogen bonds in dimers

of tetrahydroimidazo[4,5-d]imidazole derivatives [19], there is a clear correlation

between the variations of the net charge and the energy of the hydrogen atom

on HB formation (Fig. 16.3).

The shrinking of the hydrogen atom volume is explained by the proximity of

the HB acceptor and the concomitant overlap of their electron clouds. Exceptions

are observed for very weak HB complexes, however – volume increments have

sometimes been observed for this kind of atom [6, 20, 21]. According to the topo-

logical properties it must be noticed that, for these examples, the interaction

should disappear if there are small changes in the geometry.

The literature contains few studies dealing with the dependence of these prop-

erties on intermolecular distance. For complexes in the equilibrium geometry

formed with dihydrogen bonds it has been observed that changes in energy,

charge, and volume of the protic hydrogen tend to decrease smoothly as the

H���H distance increases, following exponential relationships that depend on the

donor moiety [21]. The behavior of these integrated magnitudes along reaction

coordinates depends on the complex, as shown by the qualitatively different de-

pendencies with the A���H distance for (FH)2 and (H2O)2 (Fig. 16.4) [22]. Thus,

for (FH)2 the energy of the hydrogen atom increases regularly as the distance is

reduced, up to a local maximum that is observed at a distance slightly larger than

the equilibrium distance Req. Similar behavior is also observed for the integrated

charge of the hydrogen atom in the H���F interaction of (FH)2, but here the max-
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imum occurs at the equilibrium distance (Fig. 16.4). These features are not ob-

served for (H2O)2, a result that is explained by the incipient formation of a cova-

lent bond in (FH)2 that should be able to stabilize the hydrogen in (FH)2, whereas

for (H2O)2 this process would be hindered by stronger repulsion, leading to the

more important variation observed for the integrated properties of its involved hy-

drogen atom (notice the different scale of Figs 16.4a and 16.4b).

Fig. 16.4 Relationship between the integrated charge (e) on hydrogen

atoms involved in H���F (a) and H���O (b) hydrogen-bonding

interactions and the interaction distances (Å) for the (FH)2 and (OH2)2
dimers. (Values taken from Ref. [22]).

Fig. 16.3 Relationship between the change in of the net charge (e) and

the change in energy (kJ mol�1) for all the hydrogen atoms of tetra-

hydroimidazo[4,5-d ]imidazole on dimer formation. (Values taken from

Ref. [19]). The fitted linear equation is: DCharge ¼ 0:603ð4Þ � 10�3�
DEnergy� 0:05ð22Þ � 10�3.
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The increase of the hydrogen net positive charge in the H���A interaction is ac-

companied by a decrease in the net charge of the donor molecule, indicative of

the well-known electron transfer from the acceptor molecule that reproduces the

expected acid–base behavior. In general, this electron transfer tends to be less im-

portant as the interatomic distance increases, being almost negligible for weaker

interactions. In complexes involving a single hydrogen bond the charge transfer

increases regularly as the molecules approach [22] whereas for complexes involv-

ing several hydrogen bonds more complex behavior is observed. This is true for

the formamide–formic acid complex [23], which is stabilized by two HB interac-

tions (NaH���O and OaH���O, the former being only observed for C���C dis-

tances shorter than 5.0 Å), and where both molecules behave as donor and ac-

ceptor. Despite the intricate dependence of charge transfer between molecules

(Fig. 16.5), the strongest OaH���O interaction causes electron transfer from the

formamide toward the formic acid in all the interaction range of distances. This

transfer becomes more important as the intermolecular C���C distance shrinks

to approximately 3.7 Å, which corresponds to a shorter distance than the equilib-

rium geometry.

16.3

Energy Properties at the Bond Critical Point (BCP)

The total electron energy density at a given point of space, HðrÞ, is defined as the

sum of the kinetic GðrÞ and the potential VðrÞ contributions. The last two are

Fig. 16.5 Variation of the net molecular charge (e) with intermolecular

C���C distance (Å) in the formamide/formic acid complex (values taken

from Ref. [23]). Req represents the C���C distance corresponding to the

equilibrium geometry of the complex.
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related to the local energy contribution of the Laplacian of rðrÞ by the local form

of the virial theorem (Eq. 1 in a.u.):

1

4
‘2rðrÞ ¼ 2GðrÞ þ VðrÞ ð1Þ

Because GðrÞ > 0 and VðrÞ < 0, local depletion of the charge density

ð‘2rðrÞ > 0Þ is related to a preponderance of twice the kinetic energy density

over the potential energy density, whereas the local concentration ð‘2rðrÞ < 0Þ
corresponds to the opposite situation. These local energy magnitudes cannot be

derived from the electron density distribution alone; knowledge of the wavefunc-

tion is also necessary. Thus, the exact magnitudes of GðrÞ and VðrÞ (and therefore

also that of HðrÞ) cannot be extracted from experimental analysis of rðrÞ in crys-

tals. They can, however, be estimated by use of Eq. (1) and Abramov’s functional

(Eq. 2 in a.u.), which links the topological properties of the electron distribution

(rðrÞ, ‘rðrÞ and ‘2rðrÞ) to the local kinetic energy density [11, 24, 25]:

GðrÞ ¼ 3

10

� �
ð3p2Þ2=3rðrÞ5=3 þ 1

72

� � j‘rðrÞj
rðrÞ þ 1

6

� �
‘2rðrÞ ð2Þ

At BCP positions the second term of Eq. (2) vanishes, because the first deriva-

tive becomes zero, and the local energy densities are functionals of rb and ‘2rb.

It should be noted that in the original work of Abramov, good agreement with

Hartree–Fock calculations of GðrÞ is obtained in the medium-range region only,

i.e. for distances of approximately 0.5–2.1 Å from atomic nuclei.

Equations (1) and (2) were applied for the first time to a large experimental data

set of 83 XaH���O (X ¼ C, N, O) hydrogen-bonding interactions for which BCPs

were experimentally observed between 0.5 and 1.2 Å from the hydrogen atom and

between 0.5 and 1.6 Å from the oxygen atom [24]. For this data set the estimated

values of Gb and Vb were exponentially dependent on the H���O distance (Fig.

16.6), and there was an exponential interdependence between them. Later, similar

features were also found for H���F hydrogen-bonded systems by use of theoretical

data [15].

Several theoretical articles have dealt with the validity of these local energy esti-

mates and their associated limitations. Analysis along the bond paths of the HB

complexes formed by (FH)2 and (OH2)2 in their minimum energy configuration

show that the Abramov functional (Eq. 2) elegantly reproduces the magnitude of

the electron kinetic energy density well in the intermediate H���A region where

the BCP is located but fails in regions close to the nuclei, especially around the

hydrogen nucleus [26]. For a set of 37 H���F HBs, comparison of the Gb magni-

tudes calculated by use of Eq. (2) with those obtained from the ab-initio wave

function reveals an almost perfect match [27]. In the same study, estimated

values of the potential component, Vb, and the total energy density Hb, derived
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from application of the virial theorem were, again, both in very good agreement

with the corresponding theoretical magnitudes. Study of NaH covalent and N���H
hydrogen-bonding interactions shows that the Abramov functional works well for

HBs longer than 1.9 Å, overestimating the ab-initio results for closer interaction

distances and providing random results for covalent NaH bonds [28]. For dihy-

drogen bonded complexes it has been found that Eq. (2) underestimates Gb mag-

nitudes at long distances and overestimates them at short distances by up to 10%

[21].

In addition to the exponential dependencies on H���O distance, excellent linear

relationships between V and the sum of the perpendicular curvatures, l1 þ l2,

and between G and the curvature along the bond path direction, l3, have been

found for both experimental H���O and the theoretical H���F data sets. It is

particularly worthy of note that the linear regressions performed with these data

sets have equivalent fitting data (Fig. 16.7). The topological and energy dependen-

cies on H���A distance observed for the reported experimental data have enabled

interpretation of the strengthening of the HB interaction in terms of those rðrÞ
properties [14, 24]. Local energy densities are dimensionally equivalent to a pres-

sure. Hence VðrÞ is interpreted as the pressure exerted on the rðrÞ distribution to

concentrate it and GðrÞ is interpreted as the counterpart pressure exerted by rðrÞ
against the environment, as a reaction to the former because of the electron–

electron repulsion. Thus, the greater the potential energy density the stronger

the repulsion, leading to a greater kinetic energy.

Fig. 16.6 Exponential relationships between Gb and Vb (kJ mol�1 a0
�3)

and the H���O distance (Å). (Values taken from Ref. [24]). The fitted

curves are Gb ¼ 12ð2Þ � 103 exp½�2:73ð9ÞdðO���HÞ� and
Vb ¼ �50:0ð1:1Þ � 103 exp½�3:6dðO���HÞ�.
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As a consequence of bond formation, a maximum distribution of rðrÞ is created
along the bond path; this is the indication of the established interaction. The cur-

vatures of the electron distribution in the perpendicular plane at any point of the

bond path, and in particular at the BCP, increase with increasing concentration of

rðrÞ. Along the bond path rðrÞ decreases from the nuclei towards the BCP, where

it has a local minimum, and the curvature along this direction increases with

charge depletion. The increase of the negative magnitude l1 þ l2 is accompanied

by an increase of the positive amplitude, l3, indicating that a sharper electron

concentration in the plane where rðrÞ is maximum is necessarily followed by

larger rðrÞ depletion along the direction of the bond path. Thus, at BCP, Vb and

Gb are related to the charge concentration of rðrÞ in the perpendicular plane to

the bond path and to its charge depletion along the path direction, respectively.

The linear relationships observed between the local energy densities and the topo-

logical curvatures reflect this situation. In this way, when the H���A distance

shortens and the HB interaction becomes stronger, accumulation of charge in

the internuclear region increases in magnitude with all topological and energetic

properties at the BCP. Indeed, for a pure closed shell interaction, and as a con-

sequence of Pauli’s principle, the increase of rb is accompanied by a more im-

portant rðrÞ depletion ð‘2rb > 0Þ that follows from l3 > jl1 þ l2j within the

range of distances considered. According to the linear correlations Gb z l3 and

Vb z l1 þ l2, this is related to the observed ratio of pressures jVbj=Gb < 1 for

this type of interaction.

Fig. 16.7 Linear relationships between local energy densities Gb and Vb

(kJ mol�1 a0
�3) and electron density curvatures (e Å�5) for

experimental O���H and calculated F���H hydrogen bonds. (Values taken

from Refs [14] and [15]). The linear fitting corresponds to the equations

Vb ¼ 35:1ð7Þðl1 þ l2Þ and Gb ¼ 15:3ð1Þl3 for the (O���H) HB.
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16.4

Topological Properties and Interaction Energy

The interaction energy, which is the stabilization occurring as a result of complex

formation, provides a measure of the strength of the interaction. It is calculated

as the difference between the energy of the complex and the energies of the iso-

lated monomers, and corresponds to the negative value of the dissociation energy.

With the objective of gaining insight into the connection between the local

behavior of the electron distribution in hydrogen-bonding regions and the

integrated properties of complexes, the dependence of the interaction energy on

the BCP properties has been explored in parallel with the distance dependencies

of the latter. This approach has been undertaken to characterize the strength of

hydrogen bonds in molecular crystals, thus providing a link between local rðrÞ
quantities associated with intermolecular interactions and crystal properties.

With the initially proposed linear dependencies of rb and ‘2rb on hydrogen

bonding distance, linear correlations of these topological properties with the in-

teraction energy have also been reported for XCN���HCl and XCN���HF com-

plexes (Fig. 16.8), and for carbenes as HB acceptors [8–10]. Similar results have

been also recently been obtained for a wide variety of HB systems with a wide

range of interaction strengths, from weakly bonded complexes in the van der

Waals limit, for example CH4���Ar, to the almost covalent interaction in the

H3O
þ���H2O complex [29]. In this last study, linear regression was applied to the

rb data represented against the interaction energy in the full interaction range

Fig. 16.8 Dependence of rb (a.u.) on the interaction energy (kJ mol�1)

[9]. The linear regressions are: Ei ¼ �13ð1Þ þ 2133ð66Þrb and

Ei ¼ �21:8ð6Þ þ 2558ð30Þrb for the XCN���HCl and XCN���HF

complexes, respectively.
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taken into account. As for ‘2rb, however, although the proportionality is valid for

weak HBs the regression should be regarded as an unpolished approximation for

strong interactions. According to these analyses, the accumulation of electrons

between the acceptor and the hydrogen, represented by rb, reflects the interaction

strength, characterization that has also been used for other type of interaction, for

example SiaO bonds in silicates [30]. In this last example the interaction energy

calculated from rb confirms predictions of bond strength by empirical models.

On the basis of experimental analysis of electron density for 83 XaH���O
hydrogen-bonding interactions in crystals, a different approach to the character-

ization of the interaction energy has been proposed in terms of the local energy

densities at BCP [31]. By comparing the dependence of Vb on the HB distance

observed for this set of experimental H���O interactions with that for the dissocia-

tion energies, De, theoretically calculated for several dimers, an approximately lin-

ear relationship between Vb and the interaction energy, Ei ¼ �DeA1=2Vb was

found.

By following this phenomenological relationship, derivation of an interaction

potential for H���O hydrogen bonds was undertaken [31] on the basis of the

topological analysis of rðrÞ for this experimentally characterized interaction. The

interaction potential function is defined as:

U ¼ �nHb ð3Þ

where n is a constant in volume units (0.982 a0
3) which was calculated by using

the force constant of H���O hydrogen bonds in ice VIII (k ¼ 22:7 N m�1) experi-

mentally determined from Raman spectroscopy [32]. Here Hb is expressed as the

sum of the exponential dependencies fitted for Gb and Vb (Fig. 16.6). From Eq. (3)

it should be noted that the potential well depth at equilibrium geometry corre-

sponds to ðHbÞmax, which represents the greatest excess of kinetic energy that r

can afford at BCP, leading to the most efficient r depletion at the interatomic sur-

face. Thus, the internuclear distance associated with ðHbÞmax (i.e. equilibrium ge-

ometry) is the best compromise between the quantity of bonding charge and its

degree of depletion (reflected by rb and ‘2rb, respectively) furnishing the deepest

stabilization of a pure closed-shell interaction [15]. According to the terms in-

volved in Eq. (3), the interaction potential is expressed as:

U ¼ 49100� expð�3:6rÞ � 11800� expð�2:73rÞ ð4Þ

where U is in kJ mol�1 and r is the H���O interatomic distance in Å. It is worthy

of note that when the interaction energy function Ei ¼ �De ¼ 1=2Vb has been

corrected for the polarization energy jU0
polj at their equilibrium distance, which

was theoretically calculated for ice VIII [33], the new function �De þ jU0
polj

crosses the U ¼ �nHb potential at its minimum. As far as �DeðrÞ represents

the interaction energy at any equilibrium distance r, the crossing between

�DeðrÞ þ jU0
polj and U ¼ �nHb at Umin elegantly indicates the internal agree-

ment between both descriptions (Fig. 16.9).
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Both U ¼ �nHb and De ¼ �1=2Vb were checked against experimentally de-

rived thermodynamic properties of ice VIII, leading to a good estimate of the

heat of sublimation at 0 K and excellent agreement with the H���O expansion dis-

tance from 0 to 273 K calculated from the linear coefficient of expansion of ice.

Several energy properties, for example polarization, cohesion, and binding ener-

gies, calculated by use of those functions were also found to be in good agree-

ment with theoretical calculations for ice VIII and ice Ih for experimental and cal-

culated geometries. The U ¼ �nHb potential was also successfully compared

with Buckingham and Morse-type potentials, which are used in semi-empirical

atom–atom potential methods and in spectroscopy, respectively, for representing

hydrogen bond energy. Indeed, when they were constrained to have the same fea-

tures (i.e. the same position, potential, and curvature) as those describing the po-

tential curve U ¼ �nHb at its minimum, the comparisons revealed almost perfect

matching over the complete range of distances considered.

In a later theoretical study involving H���F hydrogen-bonding interactions [15]

the proportionality factor obtained (@0.42) was similar to that derived between EI

and Vb for H���O interactions (@0.5). In this work, study of the (FH)2 system at

different intermolecular distances, also showed that the distance of the minimum

interaction energy at equilibrium geometry also corresponds to the maximum of

Hb [15]. Both theoretical findings support the U ¼ �nHb and DeA�1=2Vb cor-

respondences that were derived from experimental data. In the same theoretical

study, the degree of softening term (SD), defined as Hb=rb for Hb > 0, was

also used to estimate Ei magnitudes. For the data set for neutral complexes

XaH���FaY, plots of the theoretically calculated energies Ei against the corre-

Fig. 16.9 Interaction potential UðrÞ ¼ �nHb and polarization-corrected

dissociation energy DeðrÞ þ jU0
polj ¼ �1=2Vb (kJ mol�1) along the

interatomic distance (Å), with the Morse ðUMorseÞ and Buckingham

ðUBuckgÞ potentials for the hydrogen bond [31].
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sponding values of Vb and of SD gave a narrower distribution of data for the latter

when both were fitted by use of linear regression.

16.5

Electron Localization Function, h(r)

The electron localization function (ELF), hðrÞ, was originally defined by Becke and

Edgecombe as [34]:

hðrÞ ¼ 1=ð1þ q2Þ ð5Þ

where q ¼ ðT � TwÞ=TTF, and T is the kinetic energy, and Tw and TTF are the von

Weizsäcker and the Thomas–Fermi kinetic energy functionals, respectively. TTF

gives the kinetic energy of a homogeneous electron gas having the same density

as the point in the electron density which is under consideration and Tw is an in-

homogeneity correction. ELF takes values in the range 0 < hðrÞ < 1. (See Chapter

5 of this book for a review on the ELF).

In the regions where the electrons are localized Pauli repulsion has little effect

and, therefore, TATw and hðrÞA1. If, however, the Pauli repulsion is strong and

electrons are delocalized, ðT � TwÞ is large and hðrÞA0. The value hðrÞ ¼ 0:5 cor-

responds to the electron localization of a homogenous electron gas. ELF local

maxima are known as attractors and correspond to local charge concentrations.

For these attractors, the topological partition of the ‘hðrÞ gradient vector field

yields basins that can be associated either with core electrons (core basins) or

with bonds and lone pairs (valence basins). The valence basin is characterized by

the synaptic order, which is the number of participating atomic valence shells.

The synaptic order is given by the number of core basins sharing a boundary

with the valence basin, plus the number of nuclei of hydrogen atoms it contains.

Depending on their synaptic order, valence basins are classified as monosynaptic,

disynaptic, trisynaptic, etc. Monosynaptic basins correspond to the lone pairs

of the Lewis model, and polysynaptic basins to the shared pairs of the Lewis

model. Disynaptic basins therefore correspond to two-center bonds, trisynaptic

basins to three-center bonds, etc. The basins are delimited by zero-flux surfaces

S (‘hðrÞ � nðrÞ ¼ 0, Er A S), where ð3;�1Þ critical points topologically analogous

to BCPs are also found.

For hydrogen bonds two valence basins appear in the bonding region. One,

which corresponds to the electron pair that belongs to the DaH bond, is a disy-

naptic basin in contact with the core basin of the donor and contains the hydro-

gen. The other is a monosynaptic basin that corresponds to the acceptor lone pair.

Three ð3;�1Þ critical points are observed in DaH���A hydrogen bonds, two be-

tween the core and the valence basins, the other in the surface separating both

valence basins. The behavior of ELF in the hydrogen-bonding region is illustrated

by the ELF profiles depicted in Fig. 16.10.
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Topological analysis of the ELF has been used to characterize the strength of

the HB interactions on the basis of the values of hðrÞ at the ð3;�1Þ critical points
[36]. This is done by use of the core-valence bifurcation index, which is defined

as:

Q ¼ hvv � hcv ð6Þ

where hvv is the value of hðrÞ at the ð3;�1Þ point between both valence basins and

hcv is the largest of the hðrÞ values at the two ð3;�1Þ points between the core and

valence basins.

The Q index has been interpreted from the localization domains, which are the

volumes enclosed by isosurfaces of the ELF (hðrÞ ¼ f , where f is a constant with

0 < f < 1). Hence, if Q is negative, in the range hvv < f < hcv, there are separated

localization domains for the donor and the acceptor. If Q is positive, however, a

localization domain containing both valence attractors is observed. Q < 0 corre-

sponds to weak complexes, for example N2���HF, whereas Q > 0 is observed for

stronger complexes, for example H3N���HF (both are depicted in Fig. 16.10). In

Fig. 16.10, the different sign of Q can be deduced from the values of ELF at the

ð3;�1Þ critical points, which are the minima in the plot. For weak complexes

the value of hðrÞ at the critical point between both valence basins ðhvvÞ, which is

the central minimum in the plot, is below the value of hðrÞ for the other two min-

ima; the opposite situation is observed for the strong complexes. It has been

shown that the more negative the value of Q, the stronger the interaction; there

is an almost linear correlation between this index and the dissociation energy of

the complexes [35] for a given donor (Fig. 16.11).

Fig. 16.10 hðrÞ along the N���HF hydrogen bond of the N2���HF and

H3N���HF complexes. The N���F distance has been normalized to the

same value in both traces [35].
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The changes both in the distribution of the ELF magnitudes and in the ob-

served domains during the proton-transfer process in strong HB complexes sug-

gest that hydrogen bonding is accompanied by strong electron localization in the

intermolecular regions. This has been shown for proton transfer between an imi-

dazole and a carboxyl group [37]. At the middle stage of the N���H���O transfer, a

single localization domain with an ELF value larger than 0.5 bridges both mole-

cules through the hydrogen, indicating strong electron localization throughout

the hydrogen-bonding region. This situation contrast with the initial and the final

stages of proton transfer, in which the donor and acceptor valence shells seem

to be separated by a region of depleted electron distribution, represented by ELF

values of@0.2. Three ELF attractors are, moreover, observed in the middle stage

of the proton transfer, because the hydrogen is no longer included in the valence

basins of either the nitrogen or the oxygen but appears as a sharp ELF peak at the

hydrogen position.

16.6

Complete Interaction Range

16.6.1

Dependence of Topological and Energy Properties on the Interaction Distance

From weak van der Waals to strong covalent interactions, hydrogen atoms inter-

act and bind with other atoms in very different forms. This can be easily observed

Fig. 16.11 Relationship between dissociation energy (kJ mol�1) and

core-valence bifurcation index (Q) for FaH���A complexes [36]. The fitted

line corresponds to the equation De ¼ 334ð22ÞQþ 26ð1Þ.
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by making use of the topological properties of rðrÞ. For example, for H���X
hydrogen-bonding interactions ‘2rb is positive whereas for XaH covalent bonds

‘2rb is negative. Thus, according to topological characterization of rðrÞ, ‘2rb < 0

and ‘2rb > 0 are, respectively, indicative of closed-shell and shared-shell interac-

tions. Despite these differences, the existence of very short HB complexes has en-

abled almost continuous consideration of the binding properties of the pair of

atoms X and H from covalent to very weak interactions.

The first attempt to find a unique dependence of rb on the interaction distance,

including covalent and HB complexes, corresponds to the CaH and C���H in-

teractions. For these a semi-logarithmic relationship was proposed for 33 sys-

tems with internuclear distances between 1.0 and 2.8 Å (correlation coefficient

r 2 ¼ 0:996) [38]:

dðCaH;C���HÞ ¼ 0:52ð2Þ � 0:43ð3Þ lnðrbÞ ð7Þ

This equation can be also expressed as an exponential dependence of rb on the

distance. Double logarithm functions, which are equivalent to power functions

rb ¼ AdB have also been successfully used to fit similar dependencies of rb in co-

valent bonds, however [12]. Statistical analysis of the best fitting of rb data for 16

types of bond, including covalent and hydrogen bonds, and using either a double

logarithm or single logarithm model, has been reported [39]. According to the re-

sults, the second model, which corresponds to exponential dependence, provides

slightly better statistical results for all kind of interaction.

Although a single exponential enables good fitting for the complete range of

distances, statistical analysis conducted later for a large set of NaH���N complexes

shows that a significantly better fit results when two separate exponential regres-

sion functions of the same type are used, one for the covalent NaH and the other

for the H���N hydrogen-bonding interactions [40]. In the same way, in a theoreti-

cal study of F���H hydrogen bonded complexes [15], in which covalent FaH bonds

were also included, it was proposed that data corresponding to the shared-shell

and to the closed-shell regions are better fitted with independent exponentials.

Then, to describe the whole interaction range with a single continuous depen-

dence, a joint function (Eq. 8) linking both exponentials was derived. By following

this method the joint function is obtained by dividing the complete range of dis-

tances into three parts, which correspond to the covalent, transition, and non-

covalent interactions. After fitting of the data with single exponentials within the

covalent and noncovalent regimes independently, the data included in the transi-

tion regime are fitted to a three-variable function defined as:

JðxÞ ¼ f ðxÞ 1

1þ eEðx�aÞ=c þ gðxÞ 1

1þ e�Eðx�bÞ=c ð8Þ

where a, b, and c are the fitting terms, E is a normalization factor, and f ðxÞ and
gðxÞ are the fitted exponentials within the covalent and noncovalent ranges, re-

spectively. Further studies of covalent bonds and hydrogen-bonding interactions
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involving the pairs H and X ¼ C, N, S confirmed the quality of this method for

representing the whole interaction range with a single function not only for rb
but for all the topological and energy properties of rðrÞ at BCP [5, 41, 42]. Most

recently, and making use of the elegantly matching Morse-type function and the

potential energy function defined in terms of Hb [31], the joint function has been

used to fit Hb and ‘2rb data [43].

Before the joint function was proposed, the behavior of rb in the transition

region between closed-shell and covalent interactions was studied for protic

systems A���H���D [44]. By displacing the hydrogen atom along the reaction coor-

dinates the behavior of rb between the states AaH���D and A���HaD was charac-

terized. The results showed that rb at both critical points are related by:

rbð1Þ
rbð01Þ

þ rbð2Þ
rbð02Þ

¼ 1 ð9Þ

where rb(01) and rb(02) are, respectively, the rb values for the free donors AaH
and DaH, and rb(1) and rb(2) are the corresponding rb magnitudes in the com-

plex. This expression, which can be derived from Eq. (7), shows that the rb mag-

nitude of interactions involving hydrogen atoms is an additive property when it is

expressed as a relative quantity without dimensions. Accordingly, the relationship

between the rb magnitudes at both critical points in the complex is linear. Indeed,

in theoretical analysis of the electron distribution in NaH���N HBs, this linear re-

lationship was revealed between the rb magnitudes corresponding to the covalent

NaH bond and to the hydrogen bonding N���H interaction [28]:

rbðNaHÞ ¼ 0:3506� 1:302rbðN���HÞ ð10Þ

The same study showed that the relationship between the curvatures at both

sides of the hydrogen atom is much more complex than is found for rb. Thus,

good quality fitting could only be achieved for the ratios l3(NaH)/l3(N���H) and

l12(NaH)/l12(N���H), where ½l12 ¼ ðl1 þ l2Þ=2�, but for neither l3(NaH) nor

l12(NaH) as functions of l3(N���H) or l12(N���H). Considering logarithmic de-

pendencies, these relationships are expressed as:

ln
l12ðNaHÞ
l12ðN���HÞ

� �
¼ �1:237� 1:939 ln½�l12ðN���HÞ�

� 0:1389 ln½�l12ðN���HÞ�2 ð11Þ

and

ln
l3ðNaHÞ
l3ðN���HÞ

� �
¼ 0:9033þ 1:5434 lnfln½l3ðN���HÞ�g ð12Þ

where r 2 ¼ 0:998 and r 2 ¼ 0:988 for Eqs (11) and (12), respectively.
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Despite the different relationships of rb for closed-shell and for shared-shell in-

teractions, it is difficult to recognize the range of distances where the transition

between these two regions occurs, because of the smooth changes observed for

this topological property. A similar situation is found for l12, as shown for the iso-

lated H���F system and for a set of 79 XaH���FaY complexes (Fig. 16.12a)

[15]. Considering the parallel curvature, l3, the change of dependence associated

Fig. 16.12 Relationships between (a) curvatures (e Å�5) and (b) local

energy densities (kJ mol�1 a0
�3) at BCP and H���F distance (Å) for the

isolated H���F interaction (white symbols) and for a set of 79 XaH���FaY
complexes (black symbols). The lines were obtained by fitting joint

functions [15]. The inset focuses Gb data corresponding to the

[FaH���F]-system.
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with the transition between both kind of interaction is revealed by a shoulder

for the isolated H���F pairwise interaction and by a broad peak for the set of

XaH���FaY complexes (Fig. 16.12a). The latter corresponds to calculated values

for the [F���H���F]� system along the reaction coordinates from [FaH���F]� to

[F���HaF]�. This proton-transfer process is energetically characterized by Gb

(Fig. 16.12b), which has a local maximum at the distance d(F���H)¼ 1:120 Å

and is very close to that of the symmetrical proton position [F���H���F]�
(d(F���H) ¼ 1:138 Å). The dependencies of the curvatures and the local energies

on d(F���H) are similar when comparing l3 to Gb and l1 to Vb for both data sets.

Of all the topological properties at BCP, the Laplacian ‘2rb is the only one with

qualitatively different behavior in covalent and noncovalent regions. Thus, in the

covalent region the negative magnitude of ‘2rb increases exponentially as the

bond distance decreases, because of the larger charge concentration. For a typical

hydrogen-bond region ‘2rb is positive and increases as the atoms approach, be-

cause the interaction remains of the closed-shell type, and, therefore, greater

charge depletion of rðrÞ is observed.
Several studies involving reaction coordinates of the molecular approach cover-

ing positive and negative regions of ‘2r have shown the generic shape of this

topological property along the interatomic distance (Fig. 16.13) [15, 26]. A maxi-

mum of ‘2rb is always observed in the transition region between typical hydro-

gen bonds and covalent interactions, and can be fitted by making use of a joint

function (Eq. 8). A similar profile, also with a maximum of ‘2rb, has been ob-

Fig. 16.13 Dependence of ‘2rb (e Å�5) and Hb (kJ mol�1 a0
�3) on the

interatomic distance (Å) for isolated H���F systems [15].
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served in transitions from closed-shell to shared-shell interactions involving

atoms other than hydrogens, as for example LiF or CO interactions [45]. Further

studies using a set of complexes at their equilibrium geometries, some of which

have interaction distances in the transition region, confirmed the profile of the

dependence of ‘2rb on internuclear distance [5, 15, 41, 42]. The dihydrogen

bond has been also studied [46]; it has a similar ‘2rb profile, indicating that for

very strong hydrogen bonds the interaction is covalent. Indeed, the negative mag-

nitude of the Laplacian and results from energy decomposition analysis have

shown that, in contrast with medium and weak hydrogen bonds, the H���H elec-

trostatic interaction is no longer the largest attractive term for the strong hydro-

gen bond.

The dependence of the total electron energy density Hb on the interaction dis-

tance has a profile similar to that of ‘2rb, also having a local maximum. Whereas

for weak hydrogen bonds Hb is positive, because of the excess of kinetic energy

Gb over potential energy Vb, for covalent bonds Hb is negative, because of the

reverse situation, and becomes more negative as the atoms approach each other,

leading to a greater charge concentration in the interatomic region. For interme-

diate examples of stronger hydrogen-bonding interactions, in which covalent

features start to appear, Hb is found to be negative while ‘2rb is still positive.

Positive and negative values of Hb, respectively, have been used as an alternative

way of defining ionic and covalent bonds, because this quantity avoids the prob-

lems observed for ‘2rb with some covalent bonds [47]. Bonds containing very

electronegative atoms (for example F2, CO, H2CO, and HCN) have positive values

of ‘2rb whereas the corresponding values of Hb for these molecules are negative,

as in other covalent bonds.

All the topological and energy properties of rðrÞ at BCP, except ‘2rb and Hb,

change smoothly with distance, varying from closed-shell to shared-shell charac-

teristics in a continuous way and without any sudden alteration that could be as-

sociated with a transition from hydrogen bonding to covalent interactions. This

transition has been studied in strongly hydrogen-bonded complexes in which pro-

ton transfer occurs [37]. For these systems, however, neither ‘2rb nor Hb have

maxima in the range of distances considered, because only strong hydrogen

bonds and covalent interactions are found along the proton-transfer process and

the ‘2rb and Hb data calculated along the reaction coordinates were fitted to a

single exponential function plus an independent term.

A coefficient which could be used to monitor closed-shell or shared-shell char-

acter and the strength of the interaction would be useful for qualitative and quan-

titative characterization of bonds. The ratio Gb=rb was initially proposed as a clas-

sification criterion for distinguishing between different types of chemical bond

[48]. Covalent interactions involve a large amount of electron density and, because

the charge is locally concentrated, the kinetic energy density is expected to be

comparatively small; the opposite situation is expected for closed-shell interac-

tions, for example ionic or hydrogen bonding or van der Waals interactions.

Thus, Gb=rb < 1 and Gb=rb > 1 have been proposed for classifying shared and
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closed-shell interactions, respectively. In a theoretical study involving NaH���N hy-

drogen bonds with internuclear distances up to 2.3 Å, however, the Gb=rb ratio

never reached unity [28].

When assembling XaH and X���H interactions the characteristic features

shown by both ‘2rb and Hb have been used to divide the whole range of interac-

tion distances into three regions (Fig. 16.13) [15, 49]. Region I corresponds to

weak hydrogen bonds with interaction energies Ei < 12:0 kcal mol�1 and larger

interaction distances. Within this range of distances ‘2rb > 0 and Hb > 0, and

the interaction can be regarded as pure closed-shell type. The maximum of Hb

occurs in this region, and the distance where Hb ¼ 0 marks the border between

regions I and II. Region II is situated at intermediate distances and is character-

ized by ‘2rb > 0 and Hb < 0. This region is associated with a closed-shell inter-

action with some covalent character and contains from medium to strong hydro-

gen bonds with interaction energies typically in the range 12:0 < Ei < 24:0 kcal

mol�1. The maximum of ‘2rb is observed in this region and is a direct conse-

quence of the excess of Vb over Gb, starting the concentration of rðrÞ and, there-
fore, being at the origin of the loss of exponential behavior of ‘2rb in region I.

The transition to region III occurs at ‘2rb ¼ 0, where the shortest distances and

the strongest interaction energies (Ei > 24:0 kcal mol�1) are found. In this

region, ‘2rb < 0 and Hb < 0, both falling to deep negative magnitudes with

shortening of the interaction distance. Region III corresponds to strong HBs,

low-barrier hydrogen bonds (LBHB), and covalent bonds. In accordance with the

topological and energy properties of rðrÞ, all these interactions are of shared-shell
type.

From the local form of the virial theorem and the definition of Hb, the three

regions can also be defined by the magnitudes of the ratio jVbj=Gb. Thus, regions

I, II, and III correspond to jVbj=Gb < 1, 1 < jVbj=Gb < 2 and jVbj=Gb > 2, re-

spectively. This ratio enables identification and quantification of the closed-shell

and shared-shell characteristics of interactions. In particular, this index has been

used to classify metal–oxide bonded interactions [50] and to investigate the na-

ture of metal–metal interactions [51].

Calculations, using the natural bond orbital (NBO) method, performed for the

population of the bonding molecular orbitals for the isolated H���F system, sup-

port the partition of the whole interaction range of distances into three regions

(Fig. 16.14). Indeed, according to these data, the formation of the bonding molec-

ular orbital starts (as observed from the first converged calculation of the orbital)

when the hydrogen and the fluorine atoms approach at d(F���H) A2:1 Å. This dis-

tance corresponds to the change in the behavior of the ratio jVbj=Gb (inset in Fig.

16.14), indicating a reorganization of rðrÞ associated with a more important in-

crease of jVbj relative to Gb, and it occurs close to that corresponding to

jVbj=Gb ¼ 1, defining the border between regions I and II. For shorter distances

there is rapid filling of the bonding orbital, which extends along the narrow re-

gion II. The bonding orbital is almost filled at the border of regions II and III,

where jVbj=Gb ¼ 2. Further shrinkage of the bonding distance has very small
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consequences on the bonding-orbital population, which remains within the

values expected for a covalent bond.

The index jVbj=Gb and the bond-degree (BD), defined as Hb=rb, have been de-

rived from analysis of the H���F interaction with the objective of characterizing

pairwise atom–atom interactions [15, 51]. BD, which can be interpreted as either

the total pressure per electron density unit or the total energy per electron at

BCP, has been defined as the softening degree (SD) for Hb > 0 (Section 16.4)

and as the covalence degree (CD) for Hb < 0. For jVbj=Gb < 1 (i.e. for Hb > 0),

the electron distribution is ideally depleted ð‘2rb > 0Þ according to the local

form of the virial theorem. As the internuclear distance shortens, the ratio

jVbj=Gb increases and the interaction becomes stronger, leading to more charge

in the internuclear region (rb increases) and to a regular decrease of SD to zero

at jVbj=Gb ¼ 1. At shorter distances, 1 < jVbj=Gb < 2 ðHb < 0Þ and, from Eq. (1),

‘2rb > 0. Despite the positive value of ‘2rb, the more important increase of jVb|

in relation to Gb reduces the magnitude of ‘2rb to zero at jVbj=Gb ¼ 2. Then, for

shorter interaction distances, an important increase of the negative magnitudes

of both ‘2rb and Hb is observed, indicating that electrons are concentrated and

the interaction has strong covalent character. As a consequence of the observed

electron redistribution in the H���F bonding molecular orbital, an initial amount

of covalence (CD ¼ Hb=rb, for Hb < 0) appears in H���F interactions for which

‘2rb > 0 and Hb < 0, and the negative magnitude of CD increases regularly

with shortening of the distance from Hb ¼ 0 to very short geometries for covalent

Fig. 16.14 Dependences of the index jVbj=Gb (squares) and the number

of electrons filling the bonding molecular orbital (triangles) on the

interatomic distance (Å) for the isolated H���F system [15].
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interactions ðjVbj=Gb > 2Þ. Thus, BD decreases continuously and regularly from

positive to negative values as the interatomic distance shortens along the entire

interaction range.

16.6.2

Perturbed Systems

The dependence of the topological and energy properties of rðrÞ at BCP through-

out the complete range of interaction distances is qualitatively the same for all the

A���H interactions studied. The exact quantitative form of the corresponding pro-

files, which can be regarded as the signature of rðrÞ, depends on the environment

around the A���H interacting atoms, however. Thus, the profiles of ‘2rb and of

Hb observed for different complexes that have been studied along reaction coordi-

nates, appear displaced from one complex to another [23].

Accordingly, changes in the environment of the interaction should affect the

BCP properties. Further evidence of this is given by the behavior of ‘2rb in the

two hydrogen bonds present in the formamide–formic acid complex (Fig. 16.15)

[23]. For large intermolecular separations a single OaH���O hydrogen bond is ob-

served; a second NaH���O hydrogen bond is formed when the molecules are close

enough. While the NaH���O interaction has the expected dependence on the reac-

tion coordinate, a second local maximum and, consequently, a local minimum, is

observed for OaH���O. The minimum is reached at the largest distance where the

BCP associated with the NaH���O bond is observed, indicating that the OaH���O
hydrogen bond is affected by the modification of its environment induced by for-

mation and breaking of the NaH���O interaction.

Fig. 16.15 Relationship between ‘2rb (a.u.) and the intermolecular

d(C���C) distance (Å) for the HCOOHaHCONH2 complex [23].
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The effect of external perturbations on the topological and energy properties at

BCP has been studied by considering both addition and subtraction of one elec-

tron to and from the neutral F���H system, leading to (F���H)þ and (F���H)� [52].

Thus, both ionic states are regarded as extreme cases of a net charge perturbation

induced on the system by the environment. The most stable of the three calcu-

lated systems is the neutral one, as shown by its deepest energy, and by its largest

rb and ‘2rb values at the equilibrium configuration, which are indicative of

greater stabilization energy and a larger and more concentrated quantity of

charge in the interatomic region.

Comparing the dependence of the BCP properties on bond distance for the

three systems within the range 0.8–3.0 Å enables observation of the effect of

perturbation on the electron distribution of the neutral system. Thus, taking

into account the electron configuration of the (F���H) neutral system

ðð1sÞ2ð2sÞ2ð3sÞ2ð1pÞ2ð2pÞ2ð4sÞ0Þ, in (F���H)� the supplementary electron is

added to the 4s antibonding orbital. As a consequence, the extra charge expands

the bonding molecular orbital toward both nuclei, increasing the depletion of the

electron distribution and removing part of the charge from the bonding region, as

observed in the dependencies of rb and ‘2rb on bond distance, as shown in Fig.

16.16 for the latter. The presence of an additional electron also hinders formation

of the bonding orbital, as seen by the highest value of the maximum of the Lap-

lacian and its displacement toward shorter distances.

For (F���H)þ, vertical ionization of one electron from the 2p nonbonding orbital,

which is mainly localized around the fluorine, polarizes the bonding molecular

orbital toward this atom, removing charge from the bonding region and, there-

Fig. 16.16 Relationship between ‘2rb (e Å�5) and the F���H distance

(Å) for F���H, (F���H)þ, and (F���H)� [52].
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fore, destabilizing the bond. This molecule is formed from a neutral fluorine and

a proton (it has no electron charge as counterpart), so the exchange interaction

does not occur within this system, leading to negative ‘2rb values and, therefore,

to a net local concentration of charge over almost the full interaction range of dis-

tances. As a consequence, no local maximum of ‘2rb appears in region II (Fig.

16.16).

16.7

Concluding Remarks

This chapter contains a summary of the relationships found, so far, for the topo-

logical and energy properties of rðrÞ in hydrogen-bonded systems, and their ob-

served dependence on the interatomic H���A distance. The long and interesting

path which awaits new research workers in this field may enable explanation of

macroscopic physicochemical properties in terms of microscopic quantities de-

rived from electron density properties. Understanding these relationships is a

challenge, and a major objective in this field.
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Relationships between QTAIM and the

Decomposition of the Interaction Energy –

Comparison of Different Kinds of Hydrogen

Bond

Sławomir J. Grabowski

17.1

Introduction

Intramolecular and intermolecular hydrogen-bonding interactions are the subject

of intense interest because of their role in many physical, chemical, and biologi-

cal processes, for example they affect the arrangement of molecules in crystals,

the behavior of liquids and gases, and determine properties of materials such

acidity, basicity, and susceptibility to electrophilic or nucleophilic substitution,

etc. All of these effects of hydrogen bonding are rooted in the underlying electron

density distribution, because ‘‘matter is a distribution of charge in real space, of

pointlike nuclei embedded in the diffuse density of electronic charge’’ [1]. The

quantum theory of atoms in molecules (QTAIM) is a powerful tool that can be

used for analysis of inter-atomic interactions, as is apparent from this book.

Analysis of hydrogen bonds as a specific class of weak interactions is often per-

formed in physicochemical studies [2–5]. QTAIM [6] uses novel descriptors, for

example the properties of the electron density at the bond critical point (BCP),

which enable one to gain deeper insight into the nature of the chemical bond as

reviewed in this book (the properties of BCP and their interpretation are reviewed

in Chapter 1).

In a typical hydrogen-bonding interaction, generally symbolized XaH���Y,
where XaH designates the proton donating bond and Y is an acceptor centre,

the bond critical points of both the XaH and of the H���Y bonding interactions

provide crucial information characterizing the bonding. The bond properties de-

termined at the XaH and H���Y BCPs include:
� the electron densities at the BCPs (rXH, rH���Y);
� their Laplacians (‘2rXH, ‘

2rH���Y); and
� the energy properties of both bond critical points, usually

designated Hb, Gb, and Vb (Chapter 1).

In other words, QTAIM puts at ones disposal an entire set of topological prop-

erties for characterizing both bonding interactions of all types and traditional
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geometrical properties. Figure 17.1 shows an example of a hydrogen-bonded

system, the acetylene–water complex, with a CaH proton-donating bond and the

oxygen atom of water as an acceptor, in which the topological characteristics of

these interactions may be considered in addition to the XaH (CaH) and H���Y
(H���O) bond lengths.

One of the early definitions of hydrogen bonding is that of Pauling [7]

who stated, ‘‘under certain conditions an atom of hydrogen is attracted by rather

strong forces to two atoms, instead of only one, so that it may be considered to

be acting as a bond between them. This is called the hydrogen bond.’’ QTAIM

enables characterization of a wide diversity of hydrogen bonding interactions

(XaH���Y) by use of the above-mentioned topological descriptors, irrespective of

the nature of X and Y. ‘‘A hydrogen bond, which includes the van der Waals com-

plexes, is defined to be one in which a hydrogen atom is bound to the acid frag-

ment by a shared interaction, rðrcÞ large and ‘2rðrcÞ < 0, and to the base by a

closed-shell interaction, rðrcÞ small and ‘2rðrcÞ > 0’’ [8].

The wide diversity of hydrogen bonds is the subject of different classification

schemes. In several monographs classification is achieved on the basis of the

hydrogen-bond energies – weak hydrogen bonds (1–4 kcal mol�1); medium (4–

15 kcal mol�1), and strong (15–40 kcal mol�1) [3, 4]. It is worth mentioning that

the hydrogen bond energy ðEHBÞ is often identified with the binding energy [9],

which is usually computed as the difference between the total energy of the com-

plex ðEABÞ and the energies of the isolated monomers (EA and EB). EAB assumes

negative values for stable complexes.

EHB ¼ EAB � ðEA þ EBÞ ð1Þ

For simplicity, the absolute values of binding energies are denoted jEHBj in the

text and EHB values are given in figures. In this chapter the hydrogen bond energy
is the energy of the H���Y interaction within the XaH���Y system and the binding
energy refers to the interacting system as a whole, as defined in Eq. (1). The termi-

nal parts of molecules sometimes contribute substantially to binding energies. In

this chapter, both terms are equivalent because:

1. interactions between terminal moieties are negligible in most

systems (with a few exceptions which are described in detail);

and

2. all reported hydrogen bond energies are calculated in

accordance with Eq. (1).

Fig. 17.1 The hydrogen bond in the acetylene–water complex.
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Rozas et al. [10] have proposed a classification of hydrogen-bonding interac-

tions based on energy and topological data. For weak hydrogen bonds with hydro-

gen bond energy jEHBj < 12 kcal mol�1, ‘2rH���Y > 0 and Hb > 0. For hydrogen

bonds of medium strength 12 kcal mol�1 < jEHBj < 24 kcal mol�1, ‘2rH���Y > 0

and Hb < 0. For strong hydrogen bonds jEHBj > 24 kcal mol�1, ‘2rH���Y < 0 and

Hb < 0 (where Hb is the electron energy density at H���Y BCP). This classification

shows that weak hydrogen bonds eventually merge with (weaker) van der Waals

interactions whereas strong hydrogen bonds merge, at the other end of the con-

tinuum, with covalent and polar bonds. ‘2rAB < 0 is indicative of covalent A–B

bonds and ‘2rH���Y < 0 is also characteristic of very strong hydrogen bonds; this

means that such hydrogen bonds have the characteristics of covalent bonds. (The

covalence of strong hydrogen bonds is discussed elsewhere [11–13].) A negative

value of Hb is often regarded as sufficient reason to classify an interaction as co-

valent [14]. It is, in contrast, difficult to classify an interaction as hydrogen bond if

it is very weak, conditions under which hydrogen-bonding criteria are not univer-

sally accepted [15]. These very weak interactions may be regarded as van der

Waals attractive interactions. One can state there is a continuous transition from

covalent bonds to hydrogen bonds and, finally, to van der Waals interactions [16,

17]. For this reason, Desiraju has suggested that hydrogen bonding is an ‘‘inter-

action without borders’’ [18].

Figure 17.2 shows the relationship between H���Y distance and hydrogen bond

energy; black circles correspond to ‘2rb < 0, grey circles to ‘2rb > 0 and Hb < 0

and white circles to ‘2rb > 0 and Hb > 0. It is apparent that energies and H���Y
distances correspond approximately to the topological properties. Hydrogen

bonds are strong if the H���Y distance is less than ca. 1.2 Å and weak if the dis-

tance is greater than ca. 1.8 Å. Figure 17.2 was obtained on the basis of the differ-

ent types of hydrogen bond discussed below.

Fig. 17.2 The relationship between H���Y distance (Å) and the binding energy (kcal mol�1).
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Parthasarathi et al. [19] recently proposed yet another classification based on the

relationship between H���Y distance and the electron density at the corresponding

BCP, covering the regions from covalence to van der Waals interactions. The to-

pological properties at the BCP can enable better characterization of a particular

hydrogen bonding interaction than the binding energy, because the properties de-

termined at the BCP are specific to the particular H���Y interaction whereas the

binding energy, as already mentioned, more often than not includes, in addition

to the contribution of the hydrogen bond of interest, contributions from interac-

tions between other parts of molecules, which can sometimes be significant [20].

The BCP properties single out the characteristic of the H���Y interaction of in-

terest from the rest of the system. Having said that, however, one must also rec-

ognize that the bond path and BCP attributed to H���Y are affected by the electron

density of the whole system. An example is represented by the T-shaped configu-

ration of the LiCcCLi���HF complex, in which an FaH���p hydrogen bond path is

present. The binding energy calculated for that system at the MP2/6-

311þþG(d,p) level of theory [21] amounts to 15.4 kcal mol�1 whereas such en-

ergy for the T-shaped HCCH���HF complex is 3.1 kcal mol�1. The principal con-

tribution to the energy for the former system seems to be Li���F electrostatic

interactions.

17.2

Diversity of Hydrogen-bonding Interactions

Pauling argued that hydrogen bonds may only be formed by electronegative

atoms (the X and Y atoms of XaH���Y) and stressed that the hydrogen bond is

electrostatic in nature [7]. Despite Pauling’s statements, early studies indicated

that even atoms of very low electronegativity, for example carbon, can act as hy-

drogen donors in a hydrogen bond and that CaH���Y hydrogen bonds are possible

[22]. Such CaH���Y hydrogen bonds were first found in crystal structures [23];

later their existence was proved by use of refined statistical methods [24]. It has

been pointed out that carbon atoms may also act as proton acceptors and that

XaH���C hydrogen bonds [25] and even CaH���C [26–28], are possible.

Interestingly, p-electrons can also act as proton acceptors, i.e. as Lewis bases.

CaH���p hydrogen bonds are often responsible for the arrangement of molecules

in crystals [29]. These unconventional hydrogen bonds are usually very weak.

The dihydrogen bond (DHB) is a special type of hydrogen-bonding interac-

tions. The DHB may be denoted XaHþd����dHaY, because of the presence of a

proton-donating XaH bond, as for a typical hydrogen bond, but, unlike a typical

hydrogen bond, the proton acceptor is a second hydrogen atom bearing excess

negative charge [30]. Such interactions were extensively studied in the last decade

and were found to have characteristics very similar to those of typical hydrogen

bonds [31]. Dihydrogen bonding is extremely important in (bio)chemistry be-

cause, for example, it occurs in the preliminary stages of the release of hydrogen

gas in several biochemical processes [32].
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An important characteristic of DHBs is that they are relatively strong compared

with typical hydrogen bonds – the binding energy of a dihydrogen bonded

complex very often exceeds 10 kcal mol�1 [33, 34]. For example, the binding

energy for an FH���HLi model system is 11.9 kcal mol�1 at the QCISD(T)/6-

311þþG(d,p) level of approximation [33]. Very strong DHBs [13, 35], for example

those in the H2OH
þ���HBeH complex and other, related, systems have binding

energies in the range 20–30 kcal mol�1. At the other end of the scale, very weak

DHBs are also known which border van der Waals interactions [36]. In other

words, DHBs cover a broad spectrum of interactions from very weak (van der

Waals-like) to very strong (covalent-like) [17] in the same way as conventional hy-

drogen bonds.

It is crucial to know the nature of a DHB interaction, because H���H contacts

are very common, for example in crystal structures of organic compounds.

Such contacts may be stabilized by DHBs, by van der Waals interactions, and by

hydrogen–hydrogen interactions, which have recently been detected and charac-

terized [1].

Figure 17.3 shows the relationship between proton���acceptor distance and

�Vb=Gb ratio. This relationship for H���F interactions – covalent-shared and

Fig. 17.3 Relationship between proton–

acceptor distance and �Vb=Gb ratio. Filled

circles denote dihydrogen bonds. Open

circles denote species with s-electrons as

proton acceptors (two species are covered in

the figure because the H���Y distance and

�Vb=Gb ratio are close to each other). The

filled square denotes [FHF]�. Open squares

denote so-called ‘‘resonance-assisted

hydrogen bonds’’, for example OH���O,

NH���O, and OH���N. Filled triangles denote

p���Hþ���p interactions. Open triangles denote

complexes with p-electrons as a proton

acceptor (e.g. the T-shaped acetylene dimer

and the T-shaped FH���C2H2 complex).

Crosses denote other hydrogen bonded

systems; among these is the trans-linear

water dimer.
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non-covalent-closed-shell interactions – has been investigated [37]. The depen-

dence presented here (Fig. 17.3) is mainly that for DHB systems (filled circles),

but other types of hydrogen bond are also included. The ‘‘charge-assisted hydro-

gen bond’’ (filled square) is represented by [FHF]� and there are also so-called

‘‘resonance-assisted hydrogen bonds’’ [38] and, finally, typical hydrogen bonds

such as that in the trans-linear water dimer (see caption of Fig. 17.3).

From Fig. 17.3 it is apparent that �Vb=Gb increases if the H���Y distance

(where Y denotes the proton acceptor) decreases. The (nonlinear) correlation is

particularly strong for dihydrogen-bonded systems. Changes of �Vb=Gb have

the same trends as for other hydrogen-bonded interactions.

Because the electronic potential and kinetic energy density at the BCP (Vb and

Gb, respectively) are negative and positive, respectively, everywhere the decrease

in the H���Y distance results in an increase of �VC=GC. This last ratio may be

treated as a measure of the covalence of a chemical bonding interaction. When

the ratio is greater than 2, the corresponding Laplacian at the H���Y BCP is nega-

tive ð1=4‘2rb ¼ 2Gb þ VbÞ, and when the ratio is between 1 and 2 the Laplacian

is positive and Hb ðHb ¼ Vb þ GbÞ is negative. Finally, when this ratio is less than

1, both values, i.e. the Laplacian and Hb, are positive. These three previously

mentioned regions correspond, respectively, to covalent interactions, partially co-

valent interactions, and noncovalent attractive interactions, for example moderate

and weak hydrogen bonds and van der Waals interactions.

Figure 17.4 shows the relationship between H���H distance and the Laplacian of

the electron density at the corresponding BCP. The region of negative values of

the Laplacian corresponding to very strong covalent interactions is clearly appar-

Fig. 17.4 The relationship between the H���H distance (in Å) and the

Laplacian of the electron density at the bond critical point (in au) for

dihydrogen bonded systems.
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ent, as also is the region of positive Laplacian for the interactions of closed-shell

systems; this is in agreement with Fig. 17.3.

17.3

The Decomposition of the Interaction Energy

It is claimed in different definitions of hydrogen bonding that it is an electrostatic

interaction [2–4]. It is also stated, occasionally, that hydrogen bonding has a

covalent nature especially when it is strong or very strong. According to the

electrostatic–covalent hydrogen bond (ECHB) model [39, 40] weak and moderate

hydrogen bonds are mostly electrostatic. When the proton���acceptor distance de-

creases, the strength of the hydrogen bond increases and so does its covalence

and the electrostatic nature becomes less important.

Desiraju [18] claims that hydrogen bonding is a conglomerate of electrostatic

(acid/base), polarization (hard/soft), van der Waals (dispersion/repulsion), and co-

valent (charge-transfer) interactions. These energy components can be obtained

from an interaction energy-decomposition scheme. The approach proposed by

Morokuma [41] can be used to decompose the binding energy. The Hartree–

Fock energy is expressed as:

DESCF ¼ ESþ PLþ EXþ CTþMIX ð2Þ

where ES is the electrostatic interaction energy, PL the polarization interaction

energy, defined as the energy of the distortion of the monomers’ charge distribu-

tions, and CT the energy of charge transfer between the monomers (both CT and

PL interaction energy terms are referred to changes of the electronic charge dis-

tribution as a result of complexation). These terms are most often attractive for

stable complexes whereas EX, the exchange energy resulting from antisymmetri-

zation of the wave function, is usually not. MIX is the energy difference between

the SCF interaction energy and these four components. Although the correlation

energy (CORR) is not included in the SCF binding energy ðDESCFÞ, it can be cal-

culated as the difference between the energy when correlation is taken into ac-

count ðDEÞ and the SCF energy.

DE ¼ DESCF þ CORR ð3Þ

The dispersion energy, often attributed to the van der Waals interaction, is the

most important attractive energy component within the electron correlation en-

ergy. The dispersion energy originates from mutual polarization of the electron

charge distribution of interacting monomers. In other words, it is the interaction

of instantaneous multipoles [42].

Results from the decomposition scheme based on the variation–perturbation

approach [43, 44] are presented here. The components of the interaction energy

are obtained within the MP2 method for this decomposition scheme (designa-
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tions different from those of the Morokuma scheme are used here to distinguish

both approaches):

DEMP2 ¼ EEL
ð1Þ þ EEX

ð1Þ þ EDEL
HF þ ECORR

ð2Þ ð4Þ

where EEL
ð1Þ is the first-order electrostatic term describing the Coulombic interac-

tion of static charge distributions of interacting molecules, EEX
ð1Þ is the first-order

exchange component resulting from the Pauli exclusion principle, and EDEL
HF

and ECORR correspond to higher-order delocalization and correlation terms. The

delocalization term represents the effect of mutual deformation of the electron

density as a result of complexation [45]. In other words, changes of the electron

distribution within connected monomers affect both interacting species and elec-

tron transfer between them. Hence this term approximately contains CT and PL

interaction energies of the Morokuma and Kitaura approach.

The delocalization interaction energy term can be related to the delocalization

index (DI) [46], because the latter is a quantitative measure of the sharing of elec-

trons between two interacting species (because it measures the number of elec-

trons pairs delocalized between two atoms in the absence of significant charge

transfer between them). The sharing of electrons between the hydrogen atom

and the proton acceptor Y is usually larger the stronger the hydrogen bond [47].

According to the variation–perturbation approach (Eq. 4) the starting wave

functions of the subsystems are obtained by using a dimer-centered basis set

(DCBS) [48], significantly reducing the basis set superposition error (BSSE) for

the total interaction energy and its components. It has been shown that this

approach enables removal of the BSSE contributions to the Heitler–London first-

order interaction energy term, EHL [49]:

EHL ¼ EEL
ð1Þ þ EEX

ð1Þ ð5Þ

It is apparent that decomposition schemes can be useful for gaining insight

into the nature of the interactions of interest and, perhaps, for obtaining a defini-

tion for the term ‘‘covalence’’.

17.4

Relationships between the Topological and Energy Properties of Hydrogen Bonds

Different interactions are analyzed in this section in accordance with

the variation–perturbation approach based on calculations at the MP2/6-

311þþG(d,p) level of approximation. Full-geometry optimizations were per-

formed for all complexes considered and in this step no BSSE correction was ap-

plied to the Born–Oppenheimer (BO) energy surface. In recent studies, geometry

optimizations have been performed on the BO surface corrected for BSSE.

For weakly interacting monomers, some reports indicate that the differences be-

tween the corrected and uncorrected BO surfaces are negligible [50] whereas
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other studies indicate that such differences can be significant [51]. For all results

presented here BO energy surface was not corrected for BSSE, however, for such

optimized geometry the BSSE was reduced significantly by the applied decompo-

sition scheme described in the previous section.

Decomposition of the interaction energy yields insight on the character of the

interaction. For example, for the trans-linear dimer of water the electrostatic com-

ponent is �8.8 kcal mol�1, the exchange interaction energy term is 6.8 kcal mol�1,

and the remaining delocalization and correlation terms are �2.2 and �0.3

kcal mol�1, respectively. For the H2OH
þ���HBeH complex already discussed, de-

composition of interaction energy is as follows. The electrostatic, exchange, deloc-

alization, and correlation terms are �12.0, 19.9, �24.4, and �4.2 kcal mol�1, re-

spectively. It is apparent that for the water dimer the electrostatic interaction

energy is the most important attractive term. For the much stronger dihy-

drogen bond in the second example the delocalization is twice as large (if one

considers the modulus) than the electrostatic term. In other words one may ex-

pect for strong short hydrogen bonds that the most important attractive term is

delocalization whereas for typical moderate and weak hydrogen bonds the electro-

static contribution dominates. The greater importance of delocalization is, hence,

attributed to covalence. For very strong DHBs, as in the H2OH
þ���HBeH complex

and related species, a strong correlation is found between both the exchange

energy and the delocalization on one hand and the H���H distance on the other.

The other interaction energy terms do not correlate with this ‘‘intermolecular’’

distance (H���H distance). Figure 17.5 shows these relations for very strong

DHBs. For very strong hydrogen bonds, which are covalent in nature, the delocal-

Fig. 17.5 Correlations between H���H distance (Å) and the interaction

energy components (kcal mol�1). Empty squares show the exchange

energy, full squares the delocalization energy, full circles the

electrostatic energy, and empty triangles the correlation energy.
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ization and exchange energies are responsible for the stability of the systems

containing them. One can see from Fig. 17.5 that the importance of electrostatic

interaction increases with decreasing H���H distance but not to the same extent

as the delocalization energy. In other words, the ratio of the delocalization and

electrostatic energy terms should correspond to the strength of hydrogen bond-

ing. Such a correlation was found for the formamide dimer and its fluorine deriv-

atives [52]. It has also been found [53] that when this ratio is@0.45 the hydrogen

bonding interaction is covalent or partly covalent, as is apparent from the nega-

tive sign of the Laplacian of the electron density at the H���Y BCP or at least the

negative value of Hb. This ratio, similar to the �Gb=Vb ratio, is thus a measure of

the strength of the hydrogen bond and of the covalence of the interaction. The

relationship between both ratios is depicted in Fig. 17.6 for a homogeneous sam-

ple of bonding interactions (empty squares correspond to related systems with

OaH���O and NaH���O hydrogen bonds assisted by p-electron delocalization, the

full square denotes the [FHF]� system, and crosses correspond to other com-

plexes, for example the water dimer). The linear correlation coefficient for the

first class of systems is 0.988. Figure 17.6 also shows the regions of covalence,

partial covalence, and of the weaker interactions for which both the Laplacian

and Hb values are positive.

Figure 17.6 also shows that there is a correlation between topological data de-

rived from the QTAIM and the energy data obtained from decomposition of the

interaction energy. Hence the question arises of whether the topological data cor-

relate with the energy components. The electronic potential energy density at the

BCP correlates with the H���Y distance for hydrogen bonded systems, because it

was found for OaH���O interactions that EHBA 1
2Vb [54]. It follows that the high

values of hydrogen bond energy and of the modulus of Vb are indicative of cova-

Fig. 17.6 Relationship between the �Gb=Vb ratio and the ratio of the

interaction energy components (delocalization to electrostatic). The

meanings of the symbol are as for Fig. 17.3.
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lence because if jVbj > 2Gb then ‘2rb < 0. A negative value of the Laplacian in-

dicates a concentration of electronic charge in the inter-atomic region.

Figure 17.7 shows the correlation between the exchange energy component and

Vb. Two groups are considered:

1. OH���O, NaH���O, and OaH���N (formamide and its

derivatives, simple carboxylic acids); and

2. charge-assisted DHBs systems (H2OH
þ���HBeH complex and

related species).

A strong correlation within each of these groups can be seen in the figure. This is

connected with the strong exponential correlation between the exchange energy

and the proton���acceptor distance [55]. The exchange energy, similar to Vb, corre-

lates well with the binding energy and with the H���Y distance, the latter often re-

flects the strength of hydrogen bonding which (at the limit) is sometimes referred

to as the ‘‘short strong hydrogen bond’’ (SSHB) [56].

Figure 17.8 shows the relationship between the delocalization energy and Vb,

where again two groups of complexes are considered. The figure shows there is

a strong correlation between the delocalization energy and Vb for both groups,

as is revealed by the high regression coefficients.

Figure 17.9 shows the relationship between the electrostatic interaction energy

term and Vb. It is very interesting that for the sample of systems in which there

is strong p-electron delocalization (NH���O and OH���O hydrogen bonds in car-

boxylic acids and formamides) there is a linear relationship between both the

topological and energy data. The situation is dramatically different for charge-

assisted dihydrogen bonds for which interactions are very strong and H���H dis-

tances are short. In such circumstances there is no correlation. The delocalization

and exchange terms correlate with Vb for very strong interactions whereas the

electrostatic term does not. This indicates that the electrostatic interaction, as op-

Fig. 17.7 Relationship between the exchange energy (kcal mol�1) and

the potential energy density at the H���Y BCP (Vb in au). Circles denote

CAHB-DHBs and squares denote OH���O and NH���O.
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posed to the delocalization and the exchange terms, is not the ‘‘driving’’ interac-

tion for very strong hydrogen bonds.

17.5

Various Other Interactions Related to Hydrogen Bonds

17.5.1

HB � � � p Interactions

Figure 17.3 shows the range of dihydrogen bonds, from very strong charge-

assisted DHBs to very weak bonds bordering with van der Waals interactions. In-

teractions such as p���Hþ���p in C2H2���Hþ���C2H2 and C2H4���Hþ���C2H2 com-

plexes [57], which are related to hydrogen bonding, are also included in the fig-

Fig. 17.8 Relationship between the delocalization energy component

(kcal mol�1) and the potential energy density at the H���Y BCP (Vb in

au). Circles denote CAHB-DHBs and squares denote RAHBs.

Fig. 17.9 Relationship between the electrostatic energy component

(kcal mol�1) and the potential energy density at the H���Y BCP (Vb in

au) Circles denote CAHB-DHBs and squares denote RAHBs.
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ure. For both complexes the proton is more firmly bound to one of two available

p-electron systems. For C2H2���Hþ���C2H2, the proton is closer to one of the acet-

ylene molecules (Fig. 17.10); for C2H4���Hþ���C2H2 the proton is closer to C2H4.

In both complexes C2H2���Hþ and C2H4���Hþ can therefore be treated as proton-

donating systems. For the two short Hþ���p contacts, the corresponding Lapla-

cians ð‘2rHþ���pÞ are negative, indicating that the proton is covalently bonded to

the p-electron system. For the longer Hþ���p contacts, the values of ‘2rHþ���p are

positive but the corresponding Hb values are negative, indicative of partly cova-

lent nature. Figure 17.3 shows that the �Vb=Gb ratios for such complexes are ex-

tremely high, despite the longer Hþ���p distances, both falling outside the main

trend of the relationship.

It has also been found that the delocalization interaction energy is important

in these complexes. For the C2H2���Hþ���C2H2 complex the electrostatic, ex-

change, delocalization, and correlation energy terms are �24.5, 46.9, �33.2, and

�8.4 kcal mol�1, respectively. For the C2H4���Hþ���C2H2 complex these interac-

tion energy terms are �13.1, 19.9, �11.2 and �5.3 kcal mol�1, respectively.

Studies on p���Hþ���p bond complexes indicate these interactions can be

regarded as very strong partly covalent hydrogen bonds. The binding energies

for these complexes are �19.1 and �9.7 kcal mol�1 if the C2H2���Hþ and

C2H4���Hþ moieties, respectively, are the proton donors to acetylene.

Summarizing, p���Hþ���p bond complexes are characterized by a relatively high

�Vb=Gb and EDEL
ðRÞ=EEL

ð1Þ values which are unexpectedly high if the H���Y dis-

tance is taken into account (for other hydrogen bonds with the similar H���Y dis-

tances, these ratios are much smaller). It seems this is a common feature of the

interactions between protons and p-electrons. For the T-shaped FH���C2H2 com-

plex and for the acetylene dimer, in both of which p-electrons are the proton ac-

ceptor, the H���Y distance (where Y is the middle of a CcC triple bond) is equal to

Fig. 17.10 The Hþ���p interaction for acetylene.
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2.186 and 2.697 Å, respectively, whereas the corresponding ratio EDEL
ðRÞ=EEL

ð1Þ is
0.45 and 0.25, respectively, and the �Vb=Gb ratio is equal to 0.68 and 0.79, respec-

tively.

17.5.2

Hydride Bonds

DHBs may be regarded as protic–hydric interactions, because the protic XaHþd

bond contains a hydrogen atom carrying a positive charge whereas the hydric

hydrogen (�dHaY) acts as the proton acceptor [58]. Rozas et al. [58] suggested

that X����dHaY systems are also possible in, for example, LiaH���Li and

BeaH���Be. These authors named this interaction ‘‘inverse hydrogen bonding’’.

It has also been suggested this interaction is called the ‘‘hydride bond’’ [59],

because the term ‘‘inverse’’ is usually reserved for so-called blue-shift hydrogen

bonds [60]. This type of interaction (BaH���Naþ) has been observed in an

experimental crystal structure [61]. The hydride bonding in the BeH2���Liþ,
BeH2���Naþ, and BeH2���Mg2þ linear complexes, and the variation–perturbation

partitioning of interaction energy, have recently been investigated by use of the

QTAIM [59]. The binding energies calculated at the MP2/aug-cc-pVQZ level of

theory for these systems are �13.3, �11.7, and �59.7 kcal mol�1, respectively.

The delocalization energy term is the most important attractive term in these

complexes. Similar results were obtained for agostic bonds, delocalization being

responsible for stabilization of the systems. It is worth noting that the agostic

bonds in CH4���LiNH2, CH4���NaNH2, and CH4���Naþ have weak-to-moderate

binding energies ranging from 2 to 6 kcal mol�1 [59].

Figure 17.11 shows a classification of the interactions discussed. The arrows

indicate electron transfer. One may expect that agostic bonding is a special kind

of hydride bonding, because in the former the CaH (or SiaH) bond acts as a

Lewis base and metal centre acts as a Lewis acid.

The direction of electronic charge transfer for numerous complexes bound by a

variety of interactions (Fig. 17.11) has been analyzed at different levels of approx-

imation. In one study [62] the CHelpG scheme was used to calculate the atomic

charges. For the conventional OaH���O hydrogen bond in the trans-linear water

dimer, the transfer of electronic charge from acceptor to the donor amounts to

32 millielectrons (me) at the MP2/aug-cc-pVTZ//MP2/aug-cc-pVDZ level. More

significant charge transfer of 205 me (from BeH2 to the hydronium ion) is ob-

served in the strong charge-assisted dihydrogen bond of the H2OH
þ���HBeH

complex at the MP2/aug-cc-pVDZ level. For hydride bonding in the HBeH���Liþ
system electron transfer to Liþ cation amounts to 41 me at the MP2/aug-cc-pVQZ

level and for CH4���LiNH2, CH4���NaNH2, and CH4���Naþ transfer to the metal is

41, 31, and 52 me, respectively, at the MP2/aug-cc-pVDZ level. Only for the stron-

gest (HBeH���Mg2þ) interaction is Hb negative (at the MP2/aug-cc-pVTZ level) –

Hb has positive values for the other complexes. This means that hydride bonds,

even when very strong, cannot be classified as a covalent interaction.
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17.6

Summary

A wide range of interactions can be classified as hydrogen bonding. The

proton���acceptor distance (H���Y) is an approximate measure of the strength of

such interactions. The consensus in the literature is that short H���Y distances

imply covalent hydrogen bonding which turns gradually for longer distances

into an essentially electrostatic interaction [18, 38, 39], the latter characterization

is consistent with Pauling’s definition of the hydrogen bond [7]. This also agrees

with the QTAIM, because for short H���Y distances the electron density at the

BCP is high, similar to that of covalent and polar bonds, and occasionally the Lap-

lacian and/(or at least) Hb is negative. It has also been found that the �Vb=Gb

ratio increases with decreasing H���Y distance. A similar relationship has been ob-

served for the ratio of the delocalization and electrostatic interaction energy

terms; this ratio increases for shorter proton–acceptor distances, indicative of

greater importance of the delocalization energy for shorter distances. The latter

relationship is valid for hydrogen bonds and sub-class of these interactions –

Fig. 17.11 Classification of hydride bonds.
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dihydrogen bonds. In other words this is unique for Brønsted acid–Brønsted base

interactions. For hydride bonds the delocalization interaction energy is the domi-

nant attractive term. Topological data clearly show, however, that such interac-

tions, despite of the significant binding energies, are not covalent, because the

values of the Laplacian at the BCPs of Lewis acid–Lewis base contacts are posi-

tive. One may, therefore, expect that the increased covalence of hydrogen bonding

connected with the increasing importance of the delocalization energy is the

unique feature of this interaction.

Finally, DHBs are found to be a subclass of typical hydrogen bonds, ranging

from very weak van der Waals-like interactions to very strong bordering on cova-

lent bonds, as is also observed for hydrogen bonds.
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QTAIM in Drug Discovery and

Protein Modeling

Nagamani Sukumar and Curt M. Breneman

18.1

QSAR and Drug Discovery

The introduction of a new drug to the market is often the culmination of a long

and arduous process of laboratory experimentation, lead-compound discovery,

animal testing and preclinical and clinical trials – a process which can typically

take as long as 10–15 years from hit to lead to marketable drug. On average, 9

out of 10 promising leads fail, often at an advanced stage in the drug discovery

pipeline, because of adverse ADMET (absorption, distribution, metabolism, excre-

tion, and toxicity) properties. One of the most attractive strategies for streamlin-

ing and accelerating the process of drug discovery is virtual high-throughput

screening (VHTS), employing quantitative structure–activity/property relation-

ships (QSAR/QSPR) modeling. The goal of QSAR/QSPR is the development of

correlations between molecular structure and pharmaceutical properties, thereby

transforming the search for compounds with specific properties, by use of chem-

ical intuition and experience, into a mathematically quantified and computerized

form. When a correlation between structure and activity/property is found and

validated, any number of compounds from large pharmaceutical databases, in-

cluding those not yet synthesized, can be virtually screened on the computer to

select structures with the desired properties. Virtual screening using ADMET fil-

ters can eliminate compounds likely to have adverse side-effects, identifying the

‘‘losers’’ early in the process, to achieve the desired objective of ‘‘fail early, fail

cheaply’’. The most promising compounds can then be chosen for laboratory syn-

thesis and preclinical testing, thereby conserving resources and accelerating the

process of drug discovery.

QSAR and QSPR have proved highly effective within homologous sets of mol-

ecules, as is apparent from the extensive literature on the subject [1, 2]. Tradi-

tional QSAR methods have not, however, been as successful when applied to

more structurally diverse sets of data. This difficulty is partly because of the type

of molecular property descriptors used and partly because of the complexity

of chemistry space. Descriptors representing simple molecular properties were
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often favored in early studies, because they seemed to provide intuitive insight

into the physicochemical nature of the biological activity or chemical property

under consideration. In recent years, descriptors that correlate with less clearly

defined intermolecular interactions have often been found to lead to models

with better predictive power [3–11]. Clark [12–14] has argued that the use of

descriptors based on local properties calculated at the molecular van der Waals

surface, and that do not encode the chemical constitution directly, are likely to

provide more generalizable QSPR models that encourage scaffold hopping be-

tween diverse regions of chemistry space.

Quantum-chemical descriptors are derived from actual molecular electron den-

sity distributions and are readily accessible via ab-initio or semi-empirical calcula-

tions. QSAR/QSPR models employing electron-density-derived descriptors are

thus applicable to a wide variety of molecules and have the required flexibility to

compute physical, chemical and biological properties. The primary disadvantage

of such descriptors is the intensive computational effort required to generate

them via quantum-chemical calculations, precluding their routine use for large

biological molecules or large pharmaceutical datasets. This drawback is circum-

vented in a QTAIM-based approach, described in Section 18.2. The atom typing

scheme and generation of the transferable atom equivalent (TAE) library are out-

lined in Section 18.3, and TAE reconstruction and descriptor generation are dealt

with in Section 18.4. Several families of QTAIM-based descriptors are presented

in Section 18.5 and a few sample applications in Section 18.6.

18.2

Electron Density as the Basic Variable

In 1964, Hohenberg and Kohn [15] proved that the external potential vðrÞ is de-

termined, within a trivial additive constant, by the distribution of electron density

rðrÞ. Because rðrÞ determines the number of electrons:

N ¼
ð
rðrÞ dr ð1Þ

it follows that rðrÞ also uniquely determines the ground state wave function c,

the ground state electronic energy, the molecular structure, and all the other elec-

tronic properties of the molecule. Thus Bader et al. [16–20] have shown that the

topology of the gradient paths of the electron density, ‘rðrÞ, completely specifies

the molecular graph. In 1981 Riess and Münch [21] extended the Hohenberg and

Kohn theorem to subdomains of a bounded quantum system and showed that

the ground-state density of an arbitrary subdomain uniquely determines the

ground-state properties of this or any other domain. In fact, any nonzero volume

part of the nondegenerate ground-state electron density contains all information

about the molecule. This has been termed the holographic electron density theo-

rem [22, 23]. Further, all information about latent molecular properties not
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exhibited by a given molecular structure but exhibited by the same molecule in a

different state or conformation is fully encoded in any nonzero volume of the

nondegenerate ground state electron density. A latent property may be regarded

as the response of a molecule to a specific interaction; this principle provides fur-

ther theoretical justification for QSAR, because most biological activity depends

not on the properties of isolated molecules in their equilibrium geometries but

on the response of molecules to complex intermolecular interactions.

Although the electron density, in any finite region of space, encodes all molec-

ular properties, in accordance with the Hohenberg–Kohn and Reiss–Münch the-

orems, the density itself is a rather insensitive function of the atomic and molec-

ular environment, because of the ‘‘near-sightedness’’ of electronic matter [24–26]

– i.e. rðrÞ depends significantly only on the potential vðr 0Þ at points r 0 near r. The
effect on rðrÞ of changes of vðr 0Þ at distant points r 0 beyond a cut-off distance R
ðEjr 0j > RÞ decays monotonically as a function of R. To within an accuracy of dr

the electron density rðrÞ cannot ‘‘see’’ any perturbation beyond the distance R.
This ‘‘near-sightedness’’ is, in fact, what makes the study of chemistry more

than just an encyclopedic catalog of properties of individual molecules and en-

ables the approximate transferability of atomic and functional group properties

from one molecule to another in a similar environment. Understanding the phys-

ics and chemistry of large molecules would have been impossible if not for the

transferability principle. Because of the Reiss–Münch theorem, perfect transfer-

ability of an atom or functional group between molecules is an unachievable

limit, although it can be approached very closely [27]. This approximate transfer-

ability of fragment properties lies at the heart of the chemical effectiveness of the

QTAIM, which is exploited in the transferable atom equivalent reconstruction

(TAE RECON) method. The locality principle is also behind other local computa-

tional methods, for example the divide and conquer scheme [28, 29]. The rela-

tionship between the concepts of transferability and similarity has been discussed

by Matta [30] in terms of the short-range nature of the reduced first-order density

matrix.

In contrast with other fragment-based electron density reconstruction tech-

niques [31–33], TAE descriptors encode the distributions of electron density-

based molecular properties, for example kinetic energy densities [18], local average

ionization potentials [34], electrostatic potentials [35–38], Fukui functions [39–42],

electron density gradients, and second derivatives or Laplacian distributions [18]

(Section 18.3), rather than the density itself. The TAE RECON method is an at-

tractive formulation for rapid molecular electron density reconstruction. QTAIM-

based descriptors are capable of generating high-quality models when used with

modern machine learning techniques, for example principal-component analysis,

artificial neural networks [43–45], kernel partial least squares (KPLS), or support

vector machine (SVM) regressions [46], with feature selection accomplished us-

ing genetic algorithms [47], sensitivity analysis [48], or a 1-norm linear support

vector regression (SVR).

The TAE RECON method is based on the QTAIM [17, 18], wherein an atom in

a molecule is defined as the union of an attractor (usually an atomic nucleus) and
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its basin (the electron density distribution rðrÞ), bounded by an atomic surface of

zero flux in the gradient of the electron density:

‘rðrÞ:nðrÞ ¼ 0; for all r belonging to the surface SðWÞ ð2Þ

where nðrÞ is a unit vector normal to the surface. This is the boundary condition

necessary for application of Schwinger’s principle of stationary action to an open

system [49]. Atoms defined in this way have been shown to satisfy the virial the-

orem. An extensive body of work [16–19, 49–63] has revealed that virial partition-

ing gives a natural and rigorous meaning to the intuitive concept of an atom in a

molecule, and convergence of the electrostatic interaction based on topological

atoms has been computationally demonstrated [64–66]. Atoms defined in this

way have uniquely identifiable properties that are approximately additive and

transferable from one molecule to another. This transferability feature is really

the basis of the TAE method [3, 65–70], because it enables transfer of atomic

properties calculated using ab-initio methods in a small molecule to a much

larger molecule containing the same (or very similar) type of atom. This naturally

brings up the question of how to define a TAE atom type, which will be discussed

in Section 18.3.

18.3

Atom Typing Scheme and Generation of the Transferable Atom Equivalent (TAE)

Library

The quality of molecular TAE descriptors can only be as good as the atom-type

representation in the TAE atom type library; it is, therefore, highly desirable to

use a representation that reproduces the bonding environment of the atom being

modeled as faithfully as possible. Any method that uses atom-based properties to

construct and calculate molecular properties must have a consistent atom-typing

scheme. For instance, Kier and Hall’s electrotopological state (E-state) atoms are

selected on the basis of their element identity, valence state, and number of

neighboring hydrogen atoms [71] whereas other methods select atom types based

on their element type, valence, and connectivity [72]. The atom types in RECON

are defined using several criteria (in descending order of priority):

1. element type or atomic number,

2. coordination number (number of other atoms connected to

the atom in question),

3. atomic numbers and coordination numbers of the bonded

neighbors,

4. size of the ring system, if any, containing the atom, and

5. next-nearest neighbors for mono-coordinate atoms.

RECON employs a sequential fallback procedure which uses the best available

representation for each atom (closest match in the TAE library). A requested atom
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type is compared with each atom type in the TAE library in succession – by string

comparison to entries in a sorted TAE list file, as described in detail by Breneman

and coworkers [3, 65, 66] – until the library atom type string with the best match

is found. This atom type is then used to model the requested atom in the mole-

cule. The TAE library in our present implementation of RECON [73] contains 915

atom types, but this number is capable of as much expansion as deemed neces-

sary. In a virtual high-throughput application on a large pharmaceutical dataset,

one would, in general, expect to find some atom types that are not as well repre-

sented in the library as others. The atom types in each molecule are categorized

using the Atomtyper algorithm, which also identifies any new atom types en-

countered that are not satisfactorily represented in the TAE library and must be

generated.

The TAE library of topological atomic charge density fragments is constructed

in a form that enables rapid retrieval of the fragments and molecular assembly.

Associated with each atomic charge density fragment in the TAE library are the

coordinates of the bond critical points (BCP) of the atomic charge density (used

to translate and reorient the atomic charge density fragments to the molecular co-

ordinate system for molecular electron density reconstruction and visualization, if

desired) and additive atomic charge density-based descriptors that encode elec-

tronic and structural information relevant to the chemistry of intermolecular in-

teractions. These descriptors are described in detail in Section 18.5.

The generation of the TAE library starts with identification of atom types (using

Atomtyper); this is followed by computation of ab-initio molecular wave functions

(Hartree–Fock using the 6-31þG(d) theoretical model) [74]. Determination of the

topology of the electron density and location of BCP (points along the bond paths

connecting pairs of atoms where the electron density reaches its minimum) is

performed using the SADDLE program [75]. The TAE atomic surfaces comprise

interatomic surfaces defined by the zero-flux condition (2) and the external van

der Waals surface of the atom, defined by the rðrÞ ¼ 0:002 e bohr�3 isosurface.

Although the external surfaces of an atom in an isolated molecule in free space

extend out to infinity, in a real interacting molecule a more meaningful boundary

is the distance of nonbonded contacts or the van der Waals surface, which has

been shown to correlate well with an electron density isosurface [76]. All TAE de-

scriptors are computed on these rðrÞ ¼ 0:002 e bohr�3 isosurfaces. The intera-

tomic surfaces are determined, in the PROAIM program [75], by generating a

set of steepest descent paths in electron density radiating outward from the

BCP. These zero-flux surfaces and the external van der Waals surfaces together

form boundaries for integration of the electron-density-derived properties of

each atom within a molecule. Electron-density-derived properties (Section 18.5)

of the atomic fragments are then computed for each atom in the TAE library,

and the van der Waals surface distributions of these properties are encoded in

the form of histograms (Fig. 18.1). Finally, an index file listing all atom types in

the TAE library is constructed in a form that enables rapid retrieval and atom type

matching (as described above) [65, 66].
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18.4

TAE Reconstruction and Descriptor Generation

The molecular geometry and/or connectivity information for each input molecule

is read at run-time by the RECON algorithm. Atomic connectivity, if not specified

in the input, can be determined using a distance criterion – a table of standard

single-bond distances is used for this purpose and any pair of atoms with a sepa-

ration less than 110% of the corresponding single-bond distance are considered

Fig. 18.1 (a) Politzer local average ionization potential PIPðrÞ-encoded
van der Waals surface of Pyrilamine, (b) its histogram distribution, and

(c) its shape–property histogram distribution from PEST (Adapted from

Ref. [132]). The z-axis in (b) and (c) is proportional to the surface area

of the respective histogram bins.
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bonded. The size of the ring (if any) that an atom in a molecule belongs to is de-

termined by stepping along the connectivity tree. The current implementation of

the RECON algorithm handles connectivity up to four, and rings of three, four,

five, and six members are detected, as also are bridgehead atoms, each of which

is represented by a distinct atom type.

When atom types and environments have been determined, the closest match

is assigned for each atom in the input molecule from the precomputed TAE

library of atom types. The densities of the atomic fragments can be combined, if

desired, after translating the atomic electron density distributions into the molec-

ular framework and rotating them into the proper orientation by matching the

BCP as shown in Fig. 18.2 and described in detail by Whitehead et al. [65].

The molecular TAE descriptors are usually constructed by appropriate arithme-

tic operations on the respective atomic descriptors stored in the data files that

constitute the TAE library. Thus the only computational operations involved in

the generation of molecular TAE RECON descriptors are atom-type assignment

and matching, then combination of molecular TAE descriptors. This makes the

method highly suitable for VHTS applications, because it scales well with both

molecular size and the size of the database – a database of 42,689 drug-like mole-

cules from the NCI HIV database could be screened within 7.6 min. on a 1.7

GHz Intel Pentium with 529 KB RAM under the Mandrake Linux operating sys-

tem (Table 18.1) [77]. The TAE descriptors are described in detail in Section 18.5.

Fig. 18.2 TAE Reconstruction of thiophenol.

(a) TAE electron distribution in its native

position. In the first step, the first TAE

electron-density fragments are translated to

the molecular coordinates of the model

atom, as shown in (b). The charge-density

distribution is then rotated using a

quaternion procedure; the results illustrated

in (c). These steps are repeated for all atoms

in the molecule until the entire molecular

charge distribution is reconstructed, as

shown in (d–f ) [65, 132].
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18.5

QTAIM-based Descriptors

When all the atoms in a molecule have been typed, the molecular TAE descriptors

are computed, usually by simple addition of the corresponding (precomputed)

descriptors of the atomic fragments from the TAE library. Some electronic proper-

ties retrieved from the library after TAE reconstruction are listed in Table 18.2.

These descriptors fall into four general classes:
� traditional descriptors, for example molecular volume,

surface area, and dipole moments, computed from the TAE;
� topological descriptors, which depend only on the molecular

connectivity, for example the molecular connectivity index

ðw0Þ [78] and atom type counts;
� electron-density-derived TAE surface descriptors – extrema,

surface integral averages, and histogram bins are generated

for each of the properties in Table 18.2; and
� descriptors sensitive to the molecular coordinates and

requiring a 3D structure for their evaluation, for example

RECON autocorrelation descriptors (RAD), PEST shape–

property hybrid descriptors [79], based on Zauhar’s shape

signature ray-tracing scheme [80, 81], and an implementation

of GETAWAY descriptors [8, 9] computed from the spatial

coordinates of the atoms and based on a leverage matrix, the

so-called molecular influence matrix.

Table 18.1 CPU times in seconds for RECON running on an SGI 300

MHz MIPS R12000 processor with FPU 640 MB RAM and IRIX64

release 6.5 and on 1.7 GHz Intel Pentium with 529 KB RAM under the

Mandrake Linux operating system [77].

Test dataset Number of

molecules

File

format

SGI 300 MHz

Octane MIPS

R12000 FPU; 640

MB IRIX64

1.7 GHz Intel

Pentium Linux;

529 MB RAM

User

CPU (s)

System

CPU (s)

User

CPU (s)

System

CPU (s)

MAO inhibitors 1650 SDF 102.7 44.5 15.3 3.5

1641 SMILES 122.3 45.9 61.3 3.6

Proteins 25 PDB 186.8 194.5 65.1 17.6

NCI AIDS 42,689 SDF 2327.2 1131.0 391.0 67.5
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The TAE volume and surface area descriptors have meanings similar to those

of other volume and surface descriptors computed using most modern molecular

modeling programs. Molecular volume is most often associated with hydrophobic

effects and tends to be correlated with the energy required to ‘‘dig a hole’’ in the

solvent medium for the molecule. This is the sum of the energies required to

break existing noncovalent interactions between solvent molecules, and the desol-

vation energies of the binding site with which the molecule might interact. In

the case of solution binding and molecular recognition the desolvation energy of

the solute molecule is also related to its volume. Other descriptors computed in

Table 18.2 Electron-density-derived properties after molecular reconstruction.

Integrated Energy

Integrated electron population

Volume

Surface area

Topological Molecular connectivity index ðw0Þ
Topological autocorrelations (TRAD)

Surface electronic properties – surface extrema, surface integral averages, histogram bins,

wavelet coefficients derived from surface distributions, and autocorrelations based on atomic

integral averages are available for each property

EP Electrostatic potential EPðrÞ ¼ P
a

Za

jr�Ra j �
Ð rðr 0 Þ dr 0

jr�r 0 j

DRN Electron density gradient normal to 0.002

e bohr�3 electron density isosurface

‘r:n

G Electronic gradient kinetic energy density GðrÞ ¼ �ð1=2Þð‘c�:‘cÞ
K Electronic Schrödinger kinetic energy

density

KðrÞ ¼ �ð1=2Þðc�‘2cþ c‘2c�Þ

DGN Gradient of the Schrödinger kinetic

energy density normal to surface

‘K:n

DGN Gradient of the gradient kinetic energy

density normal to surface

‘G:n

F Fukui F� function scalar value F�ðrÞ ¼ qrðrÞ
qN

h i
v
ArHOMOðrÞ

L Laplacian of the electron density LðrÞ ¼ � 1
4‘

2rðrÞ ¼ KðrÞ �GðrÞ
BNP Bare nuclear potential BNPðrÞ ¼ P

a
Za

jr�Ra j

PIP Local average ionization potential PIPðrÞ ¼ P
i
riðrÞjei j
rðrÞ

Descriptors requiring 3D coordinates:

RAD Recon autocorrelation descriptors for all TAE surface properties above

PEST Shape–property hybrid descriptors for all TAE surface properties above

GETAWAY [8, 9] Based on a leverage matrix – the molecular influence matrix
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RECON are the total TAE energy, the integrated electron population, and sim-

ple topological descriptors, for example the molecular connectivity index and

atom type counts [78, 82–91].

18.5.1

TAE Descriptors

Among the TAE descriptors, the gradient of the electron density normal to the

molecular surface ð‘r:nÞ, has been used to distinguish ‘‘soft’’ regions of polariz-

able electron density from more tightly held regions. For example, values of ‘r:n

are much smaller over electron-rich systems and aromatic rings than over polar-

ized or electron-deficient alkyl carbon atoms. Because rðrÞ decreases away from

the attractors, ‘r:n is always negative; large negative values of ‘r:n indicate the

electron density of the underlying molecular region is more tightly held and less

likely to extend very far from the molecule.

Histogram bins of the electrostatic potential (EP), defined as:

EPðrÞ ¼
X
a

Za

jr � Raj �
ð
rðr 0Þ dr 0
jr � r 0j ð3Þ

its surface integral (SIEP), extrema, and integral average (SIEPIA), represent the

scalar electrostatic potential values on the surface of the atom or molecule. Elec-

trostatic potential has been implicated in many molecular and intermolecular

phenomena, including acid–base interactions, solvation behavior, and pKa corre-

lations [36, 37, 92]. These descriptors are often found in the best models of

hydrogen-bonding systems and in regressions involving polar or dipolar mole-

cules. Donor/acceptor behavior is also modeled well by use of these histogram

descriptors. Whereas electropositive and electronegative regions of the molecular

surface are represented by the high and low histogram bins of EP, respectively,

the middle bins correspond to hydrophobic regions.

Another set of descriptors is derived from the bare nuclear potential (BNP),

mapped on to the molecular electron density isosurface. BNP is simply the first

term in Eq. (3). Because the geometry and orientation of the nuclei reflect the

electron-density distribution, the strength of the BNP field mapped on to an

electron density isosurface indicates the regions of imbalance between the

nuclear–electron attractive forces and the interelectron repulsive forces. This pro-

vides information complementary to that obtained via the electrostatic potential.

The electronic gradient kinetic energy density distribution, G is defined as:

GðrÞ ¼ �‘c�:‘c ð4Þ

The surface integral (SIG) of G can be interpreted as being associated with dif-

ferences in donor/acceptor activity. The Schrödinger kinetic energy density, K,

given by:

KðrÞ ¼ �ðc�‘2cþ c‘2c�Þ ð5Þ
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is a rather smooth function over the surface of a typical molecule and is most

negative in those portions of space where there is a local concentration of nega-

tive charge [18]. This also corresponds to areas of negative Laplacian, because

imbalances of K and G are responsible for nonzero Laplacian values:

LðrÞ ¼ � 1

4
‘2rðrÞ ¼ KðrÞ �GðrÞ ð6Þ

The Laplacian ð‘2rÞ is the trace of the second derivative matrix of the electron

density at any point in space and has been extensively studied by Bader et al. It

has been implicated as a descriptor in the selectivity of electrophilic aromatic sub-

stitution and in donor–acceptor interactions. The truly indicative regions are the

negative Laplacian peaks, which form near the outer core regions of the electron

density of molecules. When these peaks are in regions of nonbonded electron

density or in regions of electrophilic attack their magnitude tends to be useful

for prediction of the rates of these reactions [18, 93]. Such ‘‘negative Laplacian

peaks’’ are usually seen within 0.25–0.4 Å of an electron donor atom – well within

the molecular van der Waals surface chosen for this analysis. ‘‘Shadows’’ of these

internal extrema are, nevertheless, often present on the molecular surface. These

‘‘Laplacian shadows’’ on the molecular van der Waals surface are the best indica-

tors of what is going on inside the molecular surface. These surface manifesta-

tions of the internal Laplacian peaks are often opposite in sign to that of the

actual peak, as a result of Laplacian normalization. Consequently, slightly less

negative regions of surface values of K often indicate the presence of Brönsted

bases [94].

The rate of change of the K electronic kinetic energy density normal to and

away from the molecular surface ð‘K:nÞ has been shown to describe differences

between the polarizability and hydrophobicity of molecular regions [94]. More

negative ranges of this function indicate that the region is more hydrophobic

and less susceptible to electrophilic attack [18, 59, 95]. Likewise, ‘G:n and ‘r:n

are often significant in correlation models of dispersion interactions [94].

One of the most interesting and underexploited descriptors is the local average

ionization potential, called ‘‘I-bar’’, of the GIPF parameter set of Politzer et al.

[34, 96], referred to here as the Politzer ionization potential (PIP):

PIPðrÞ ¼
X
i

riðrÞjeij
rðrÞ ð7Þ

PIP histogram descriptors appear in many diverse models of disparate phe-

nomena. PIP is correlated with several intermolecular binding modes, for exam-

ple induced-dipole interaction. PIP descriptors also carry information about the

‘‘hardness’’ or ‘‘softness’’ of a region of electron density, and donor–acceptor

information. Quite frequently, PIP descriptors occur, with ‘r:n and SIK, in

models describing differential solubility or hydrophobic–hydrophilic interaction

tendency.
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Another class of molecular and regional descriptors is derived from the Fukui

radical reactivity indices ðFÞ, defined as:

FðrÞ ¼ qrðrÞ
qN

� �
v

A
1

2
ðrLUMOðrÞ þ rHOMOðrÞÞ ð8Þ

The Fukui index defined above describes radical reactivity. Similar Fukui indices:

F�ArHOMOðrÞ ð9Þ

and

FþArLUMOðrÞ ð10Þ

describe reactivity toward electrophilic and nucleophilic attack, respectively. The

Fukui indices are somewhat related to PIP, in that both involve a perturbation ex-

pression which is meant to describe the spatial distribution of radical reactivity.

For PIP the molecular surface is encoded with energy-weighted orbital densities

whereas for F there is a selectable denominator term which places the reactivity

index on a cationic, radical, or anionic scale.

Other electron-density-derived descriptors used in the literature [13, 14] include

the local electron affinity:

EAðrÞ ¼ �PN
i¼LUMO riðrÞeiðrÞPN
i¼LUMO riðrÞ

ð11Þ

the electronegativity:

wðrÞ ¼ ðPIPþ EAÞ=2 ð12Þ

the local hardness:

hðrÞ ¼ ðPIP� EAÞ=2 ð13Þ

and the local polarizability:

aðrÞ ¼ �PN
i¼1 ri

0ðrÞqiaiðrÞPN
i¼1 ri

0ðrÞqi
ð14Þ

defined within the framework of semi-empirical MO theory. Ehresmann [13, 14]

found that the local electron affinity, local hardness, and local polarizability had

little correlation with other descriptors in common use and these descriptors

effectively extend the variance of the descriptor set. Use of local electron-density-

derived descriptors potentially leads to an increased likelihood of scaffold hopping
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(i.e. switching from one structural type to another) in QSAR and virtual screening

applications and to more robust and general QSPR models.

Encoding of surface property distributions may be accomplished by use of mul-

tiple methods, and use of alternatives to histogram-based representations have

often proved useful. One such alternative scheme involves the use of wavelet

coefficients to capture TAE-encoded surface-property distributions [97, 98]. In

recent years, wavelet encoding has gained popularity in diverse applications as

an efficient means of data compression and pattern recognition [97]. The wavelet

basis has advantages over the Fourier basis in that, although the trigonometric

functions used in Fourier expansion are monochromatic in frequency but entirely

delocalized in position, the wavelet basis is well localized in both frequency and

position. Wavelet encoding and decoding can be accomplished by use of a simple

scaling and dilation algorithm. Wavelet encoding enables a more compact repre-

sentation of molecular surface property distributions than use of histogram de-

scriptors. Our implementation of TAE property modeling with wavelet coefficient

descriptors (WCD) has been described by Sundling et al. [97, 98]. Molecular

WCDs can be reconstructed additively from the constituent atomic WCDs.

18.5.2

RECON Autocorrelation Descriptors

RECON autocorrelation descriptors are patterned after whole surface autocorrela-

tion descriptors [79] and are a computationally inexpensive way of including 3D

shape information within the TAE RECON formalism. RADs use integrated TAE

surface properties ðPxÞ to calculate property autocorrelations using Gasteiger’s

formula [99]:

AðRxyÞ ¼ 1

n

X
x; y

Px � Py ð15Þ

The autocorrelation function is then binned by the distance ðRxyÞ between

atoms x and y; n is the number of atomic pairs. The electron-density-derived

TAE properties are integrated over the external atomic surfaces to compute

RAD. Generation of RAD data involves a mere 3–5% CPU overhead over the

computation of 2D TAE descriptors for drug-sized molecules. Where 3D struc-

tures are not available, the topological distances between pairs of atoms may be

used for binning the autocorrelation function, to yield conformation-insensitive

2D RAD or TRAD (topological RECON autocorrelation descriptors).

18.5.3

PEST Shape–Property Hybrid Descriptors

TAE descriptors can be supplemented, with some increase in computation time,

by hybrid shape–property descriptors that encode detailed information about mo-

lecular shape without requiring an alignment procedure. The supplemental infor-
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mation available from these descriptors is useful where the shape of the molecule

plays a determining role in binding. Property-encoded surface translator (PEST)

descriptors [79] may be computed using atomic fragment-based TAE RECON

property-encoded surface reconstructions, as shown in Fig. 18.3 (or using ab-

initio or semi-empirical electron-density surfaces and electronic properties). The

Zauhar shape signature ray-tracing scheme [80, 81], upon which PEST descrip-

tors are based, seeks to encode the shape of the molecular volume by using the

distribution of ray lengths obtained by performing a ray-tracing procedure within

the molecular van der Waals envelope, beginning from an arbitrary starting posi-

tion. The converged ray-length distribution then represents a distinctive ‘‘shape

signature’’ of the molecule. PEST records the ray lengths and TAE properties at

each point where the rays encounter the molecular surface, to generate two-

dimensional hybrid shape–property histogram descriptors, as shown in Fig.

18.1c. The algorithm for combining the densities of the TAE fragments, after

translating them into the molecular framework and rotating them into the proper

orientation by matching up BCP, is described by Whitehead et al. [65] and the

ray-tracing and descriptor computation algorithms are described by Breneman

et al. [79]. Inclusion of PEST hybrid shape–property descriptors with 2D topolog-

Fig. 18.3 (a) Politzer local average ionization potential PIPðrÞ, (b)
kinetic energy density KðrÞ, and (c) Laplacian distribution ‘2rðrÞ of
benzene reconstructed from atomic densities. The seams show the

zero-flux surfaces ‘r:n ¼ 0. Shown alongside are the corresponding

PEST ray-trace descriptors [79].
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ical descriptors increases the predictive capability of QSAR and QSPR models.

The information content of PEST shape–property descriptors has been shown to

be comparable with or greater than 3D field-based methods such as CoMFA

[100], with the considerable advantage of not requiring an explicit alignment rule.

18.5.4

Electron Density-based Molecular Similarity Analysis

Electron density functions have been used to develop the idea of molecular quan-

tum similarity measures (MQSM) for rational drug design and have been exten-

sively applied to pharmacological and toxicological problems [101–115]. MQSM

encapsulates the principle that the more similar two molecules are, the more

similar will their properties be [101, 116, 117]. The degree of similarity can be

established on the basis of the electronic distribution, the topology of the BCP

[111–115], or any electron-density-derived property. Vercauteren et al. [118] have

developed a procedure for similarity searching of molecules on the basis of com-

parison of critical point representations of 3D electron-density maps. Pair-wise

and multiple comparisons between the molecular critical point graphs are per-

formed using a Monte Carlo/simulated annealing technique. The method has

been used for similarity searching of pharmaceutical ligands at different levels

of crystallographic resolution.

Girones et al. [119] have developed a kinetic energy density-based molecular

quantum similarity measure (KE MQSM) for two quantum objects:

ZAB ¼
ð
KAðrÞKBðrÞ dr ð16Þ

which can be used to construct a Carbo index of similarity:

CAB ¼ ZABðZAAZBBÞ�1=2 ð17Þ

As a means of interpreting and visualizing molecular structure, Ponec [109,

110] introduced the so-called domain-averaged Fermi hole:

gW
Aðr1Þ ¼ NWrAðr1Þ � 2

ð
W

rAðr1; r2Þ dr2 ð18Þ

where

NW ¼
ð
W

rAðrÞ dr ð19Þ

is the mean number of electrons in the domain W and rAðr1; r2Þ is the pair den-

sity. Girones and Ponec [120] used the domain-averaged Fermi hole density to de-

fine the fragment molecular quantum self-similarity measure for fragment A:
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ZAA
W ¼

ð
W

gW
AðrÞgWAðrÞ dr ð20Þ

Similarity indices based on the density can give exaggerated weight to small

mismatches in regions of space with high electron density, e.g. in the vicinity of

nuclei, when comparing molecules with slightly different geometry. To provide a

more balanced measure of similarity that reflects the reactivity of the molecule

without being biased by small nuclear cusp mismatches, Matta [30] proposed

the use of the integral of the Laplacian to define a ‘‘reactivity’’ similarity index

for a pharmacophore:

RWWW 0 ¼

Ð
WWW 0

‘2rðrÞb0

‘2rW‘
2rW 0 dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
W

‘2rðrÞb0
‘2rW 0 dv

Ð
W 0

‘2rðrÞb0

‘2rW dv
r ð21Þ

A recent application of TAE fragments for similarity searching consists of using

the statistics of TAE atom type fragments, clustered in accordance with the prior-

ity scheme described in Section 18.3, to sample neighborhoods in molecular-

property space and to assess the predictivity of models constructed using other

descriptors. This assessment is then used to supplement a training set with

more molecules in regions of molecular-property space that are poorly repre-

sented in the training set. Application to the design of novel selective displacers

for protein chromatography has been discussed [121].

In collaboration with our group, Oloff, et al. [122] have developed a novel

structure-based cheminformatics approach (CoLiBRI) using TAE RECON de-

scriptors to search for complementary ligands, based on representation of both

receptor-binding sites and their respective ligands in a space of universal chemi-

cal descriptors. The binding site atoms involved in the interaction with ligands

were identified by applying Delaunay tessellation to the X-ray structures of the

ligand–receptor complexes. TAE RECON descriptors were calculated independ-

ently for each ligand and for its active-site atoms. This representation of both

ligands and active sites using the same set of chemical descriptors enables corre-

lation of chemical similarities between active sites and their respective ligands to

be elucidated. A procedure for mapping patterns of nearest-neighbor active site

vectors in a TAE RECON space on to those of their complementary ligands en-

ables prediction of a virtual complementary ligand vector in the ligand chemical

space from the position of a known active site vector; this is followed by estima-

tion of chemical similarity of the virtual ligand vector and molecules in a chemi-

cal database, to identify real compounds most similar to the virtual ligand. Thus,

knowledge of the structure of the receptor active site enables identification of its

complementary ligands in large databases of chemical compounds by use of rapid

chemical similarity searches. Conversely, starting from the chemical structure of

the ligand one may identify possible complementary receptor cavities. Applied to

a data set of 800 X-ray characterized ligand–receptor complexes, knowledge of the

active site structure enabled identification of its complementary ligand among the
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top 1% of a large chemical database in over 90% of all test active sites when a

binding site of the same protein family was present in the training set. When

test receptors were highly dissimilar and not present among the receptor families

in the training set, CoLiBRI was still able to quickly eliminate 75% of the chemi-

cal database as improbable ligands.

18.6

Sample Applications

18.6.1

QSAR/QSPR with TAE Descriptors

Several illustrative applications of QSAR/QSPR modeling with TAE descriptors

are shown in Figs 18.4–18.7. Figure 18.4 shows the results of modeling the acute

toxicity of organic compounds in fish using RECON descriptors and KPLS mod-

els constructed using Analyze [123]. The results are averaged over 100 bootstraps.

The dataset [124] comprises 375 molecules, 300 of which are used for training

and 75 for testing the model predictions. Predictions on the test set have a

Fig. 18.4 Results from KPLS models for the acute toxicity of 375

organic compounds to fathead minnows [124], constructed with

Analyze [123] and RECON descriptors, averaged over 100 bootstraps.

R2 ¼ 0:86 for the training set (300 molecules); 0.81 for the test set (75

molecules); leave one out (LOO) Q2 ¼ 0:76.
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Fig. 18.5 (a) Bagged SVM model for Caco-2 permeability with RECON,

MOE, and PEST descriptors using fifteen features. (b) Star plot showing

descriptor importance in 20 SVM bootstraps for Caco-2 permeability.

The eight descriptors on the left are negatively weighted; the seven on

the right are positively weighted; each ray represents a separate

bootstrap; the radius of each ray represents the weight or importance of

that descriptor in that bootstrap [133].
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Q 2 statistic of 0.81. In this case addition of 2D descriptors does not improve the

models.

Figure 18.5 shows the results from a bagged SVM model for Caco-2 permeabil-

ity with RECON, MOE, and PEST descriptors using fifteen features. Descriptor

importance in 20 SVM bootstraps is depicted in the star plot in Fig. 18.5b, in

which each ray represents a separate bootstrap and the radius of each ray repre-

sents the weight or importance of that descriptor in that bootstrap.

TAE RECON descriptors have also been used for the prediction of polymer

properties [125, 126]. Figure 18.6 shows the results from KPLS modeling [126]

of the glass transition temperatures of 300 polymers from the Bicerano data set

[127], using TAE RECON descriptors of the repeat unit end-capped with two

monomer units. One-hundred and seventy-three polymers were used in the train-

ing set and 127 in the test set. This model yielded excellent prediction results, as

is apparent from the score of Q 2 ¼ 0:928 for the test set.

18.6.2

Protein Modeling with TAE Descriptors

Although a limited set of ab-initio computations of some small proteins have re-

cently been reported, routine ab-initio computations on proteins within a reason-

able time are not currently feasible. This is where the advantages of the TAE re-

construction method are evident. Two-dimensional TAE descriptors for proteins

based on the primary structure, i.e. the amino acid sequence, can be computed

very rapidly with RECON, using the amino acid residues as the TAE fragments.

Such studies have been performed and used to model the retention times of

Fig. 18.6 Prediction of the glass transition temperatures of polymers

[126] from the Bicerano data set [127] of 300 polymers, 173 in the

training set and 127 in the test set. Kernel PLS modeling using TAE/

RECON descriptors from repeat unit end-capped with two monomer

units, five latent variables. Test set Q2 ¼ 0:928.
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proteins in chromatographic columns under a variety of experimental conditions

[128–130]. TAE multipoles can also be used to generate more refined EP surfaces

for proteins. As an example, Fig. 18.7 shows the EP surface of a small protein,

turkey egg-white lysozyme 135L, computed using RECON through hexadecapole

order. Computation of 3D RAD and PEST descriptors using the 3D protein struc-

ture and integrated atomic TAE properties entails a small computational overhead

but is still accessible even when using very modest computational resources

[131].

18.7

Conclusions

We have seen that the QTAIM is a powerful method for rapid generation of ab-

initio quality electron densities and electronic properties of large molecules, pro-

teins, and entire of pharmaceutical databases, using TAE RECON technology.

Electron-density-derived descriptors generated using the TAE RECON method

have also been successfully used to predict diverse molecular properties. Such

conformation-insensitive descriptors are valuable in their own right for several

reasons:
� For a molecule that has not yet been synthesized,

conformational information is not available and can be

theoretically computed only by energy minimization, which

is often computation-intensive and sensitive to details of the

Fig. 18.7 The EP surface of the turkey egg-white lysozyme 135L,

computed using RECON through hexadecapole order. The surface here

is constructed as a simple union of atom-centered spheres at

predetermined van der Waals radii for each atom.
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algorithm and the values used. It is desirable to have a set of

theoretical descriptors that have uniquely defined values,

irrespective of the details of minimization.
� Even for naturally occurring biomolecules, the active

conformation responsible for a certain physiological effect is

often unknown. For large fluxional molecules like proteins

the minimum energy conformation, even if known, need not

correlate with the physiologically active conformation.

Further, no single conformation may be sufficient to explain

the observed activity.
� RECON descriptors can be supplemented, with some

increase in computation time, by hybrid shape–property

descriptors from the PEST algorithm. PEST descriptors

encode information about the molecular shape, without

requiring an alignment procedure for their computation. The

supplementary information available from PEST descriptors

is useful when the shape of the molecule plays a determining

role in binding.
� RAD descriptors may be used, where necessary, to achieve an

optimum compromise between conformation sensitivity and

computation speed. Computation of RAD incorporates

conformational information into the descriptors, while

introducing a mere 3–5% CPU overhead.

In this respect and in terms of speed and high-throughput capability, RECON

descriptors scale computationally in much the same way as topological descrip-

tors [78, 82–91], with the added advantage that they contain information derived

from the electron density distribution, well beyond that contained in indices de-

rived from connectivity alone. The TAE RECON technology has promise for vir-

tual high-throughput screening and design of focused libraries.

Several other electron-density-derived properties are amenable to computa-

tional evaluation in a QTAIM framework and are likely to be of value as mo-

lecular descriptors in different contexts. Electron-density-derived measures of

molecular similarity provide a convenient and fundamental means of exploring

chemistry space and assessing the similarities of molecules, the predictive capa-

bility of a QSAR model, or the diversity of a molecular library. The QTAIM is

also, currently, one of the most computationally tractable methods for going be-

yond classical models for study of biological molecules and their interactions.

CoLiBRI affords rapid prefiltering of large chemical databases to eliminate com-

pounds that have little chance of binding to a receptor active site. Knowledge of

the receptor active site structure affords straightforward and efficient identifica-

tion of its complementary ligands with CoLiBRI; conversely, starting from the

ligand chemical structure, one may also identify possible complementary receptor

cavities. The QTAIM thus provides the basis for a versatile collection of promis-

ing techniques for drug-design applications.
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19

Fleshing-out Pharmacophores with Volume

Rendering of the Laplacian of the Charge

Density and Hyperwall Visualization

Technology

Preston J. MacDougall and Christopher E. Henze

19.1

Introduction

‘‘When the distribution of charge over an atom is the same in two different mol-

ecules, i.e. when the atom or some functional grouping of atoms is the same in

the real space of two systems, then it makes the same contribution to the total

energy and other properties in both systems.’’ This quotation, from page 3 of Ri-

chard Bader’s classic monograph [1], displays at once his style and precision of

writing, and his desire to get right to the crux of the matter at hand. In this chap-

ter, we examine the charge densities of sets of functional groupings of atoms in

drug molecules. These sets are referred to as the ‘‘pharmacophores’’ presumed to

be responsible for the pharmacological activity of the drugs [2].

When two things are the same, it does not matter how you look at them. As

long as you look at them in the same way, they will look the same. If two things

are not the same, particularly if they are different in a subtle way, then their

appearance can be quite dependent on how you look at them. For instance, the

silhouette of one’s right hand, palm down, is nearly indistinguishable from the

silhouette of one’s left hand, palm up.

An extremely coarse description of pharmacophores is required for rapid

screening of a large number of possible drug molecules for variously defined

measures of ‘‘fitness’’ with regard to their interaction with a known active site

on an enzyme, or some other biological target. Typically, formless spheres are

used to represent either inclusion or exclusion volumes, where hydrophobic

groups should, or should not be, respectively. Similar, but alternatively labeled,

spheres are also used to position hydrophilic groups. Other groups that may be

included in a pharmacophore are, but are not limited to:
� positive or negative formal, or partial, charges;
� aromatic rings;
� hydrogen-bond acceptors; and
� hydrogen-bond donors.
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For the last three there may be directional constraints in addition to positional

constraints. This reflects the empirical observation that the most stable p–p inter-

actions are face-on, and XaH���Y hydrogen bonds are most frequently linear, or

very close to being linear. An illustrative example of a pharmacophore is given in

Fig. 19.1, in this case matched by penamecillin, a penicillin derivative.

To draw an anatomical analogy to a pharmacophore, a zoologist does not need

to recover all of the bones of an animal to identify the species, its gender, and ap-

proximate age, even without doing any genetic testing. Just a finite number of key

skeletal components will suffice. Just as there are millions of 75-year-old men but

only one R.F.W. Bader (who hopefully still has a long life ahead of him), much

more detail is needed in the pharmacophore to winnow from the billions of

drug-like molecules those that will have a beneficial effect (let alone the single

most effective drug possible).

A common approach in drug design is to start with a ‘‘hit or miss’’ approach

with regard to the pharmacophore – does a molecule have all the required fea-

tures within an acceptable distance or not? For most binding sites there will still

be a very large number of hits, and from that point different researchers may use

different, but almost always proprietary, algorithms to calculate the overall bind-

ing energy. There may be an optimum range for this result, and other factors

must also be considered, for example solubility in water and fat, conformational

flexibility, and permeability through barriers in vivo. Irrespective of which bind-

ing algorithm is used, the pharmacophore is obsolete at this point. The entire

molecule is fed into a fitting algorithm, all of which are highly approximate by

necessity, incapable of accurately describing the weak van der Waals interactions

that are key to biomolecular interactions.

Fig. 19.1 A pharmacophore model for penamecillin. Only those features

near the reactive site are included in the model. The green arrows

indicate hydrogen bond-acceptor features and the lone mauve arrow

indicates the hydrogen bond-donor feature. The gray spheres are

hydrophobic exclusion volumes, and the yellow sphere marks the sulfur

atom. Created by ‘‘Discovery Studio Visualizer’’, Accelrys Software,

2005.
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By ‘‘fleshing-out’’ pharmacophores with their highly accurate charge-density

distributions, we hope to provide insight into which secondary factors, for exam-

ple ring size or substituent electronegativity, are most likely to impart subtle but

important differences in the reactivities of key functional groups. The long-term

plan is that more detail could be added to pharmacophores, but that these would

be minimal, and would be informed by model-independent, physical characteris-

tics of the functional groups that they are meant to represent. These refined phar-

macophores would yield far fewer ‘‘hits’’ on initial screening, potentially enabling

high-fidelity quantum mechanical modeling of the binding of all ‘‘first cut’’

molecules to the targeted active site, thus yielding a ‘‘final cut’’ of much higher

quality.

To flesh-out the reactive sites of pharmacophores we have used volume render-

ing of the Laplacian of the charge density. We previously demonstrated that this

graphical technique is very effective for identifying physical features associated

with hydrogen-bond-donor sites of different strength, and plainly apparent dis-

crimination between hydrophilic and hydrophobic regions, all without the benefit

of ‘‘rules’’ [3]. To best identify subtle differences between corresponding functional

groups of similar, but not identical, molecules we have explored the use of the

recently developed hyperwall at NASA Ames [4].

These visualization technologies, and several insights into how pharmaco-

phores might be most efficiently augmented, are discussed in greater detail

below.

19.2

Computational and Visualization Methods

19.2.1

Computational Details

All the electron densities discussed here are obtained from ab initio electronic-

structure calculations. With the exception of cisplatin, they are all at the Hartree–

Fock level, with all-electron basis sets of high-quality (double-zeta plus polariza-

tion, or better). The cisplatin charge density was derived from an MP2 calculation

employing an effective core potential [5]. All computational details, for example

software packages used, basis sets, geometric data, and any optimization con-

straints, can be found in the references cited.

19.2.2

Volume Rendering of the Laplacian of the Charge Density

It has been amply demonstrated, for large and small molecules and for crystals,

and with representation from different regions of the periodic table, that sites of

chemical reactivity can be related to the subtle and subatomic ‘‘lumps and holes’’
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in matter manifested as topological features in the Laplacian of the charge density

[6–10].

A wry observation by G.N. Lewis, on receipt of the Franklin Medal, bears re-

peating here. He wrote ‘‘It is always of interest to find that some of our most

modern scientific ideas have been vaguely anticipated by scientists of earlier cen-

turies. One of the ideas of Lemery, a contemporary of Robert Boyle, is amusingly

discussed in a well known history of chemistry, as follows: ‘Yet one of his theoret-

ical conceptions was very odd, and shows how far astray a capable man may won-

der, when he deserts observed facts for philosophical speculations. He thought

that chemical combination between two substances, such as an acid and a base,

might be accounted for by supposing that the particles of the one were sharp, and

those of the other porous, and that chemical combination was effected by the fit-

ting of the points into the holes!’ ’’ [11].

‘‘Fitting’’ incurs the need to measure both size and shape. This is easy for a tai-

lor, but topological features in the Laplacian are challenges to the design chemist.

It is quite tedious, and of uncertain significance, to exhaustively partition the en-

tire Laplacian distribution into attractor basins, in a manner analogous to atomic

partitioning [3, 12]. Qualitative assessments of feature size and shape are easily

performed, and are informative, especially within a series of related molecules.

These typically employ contour diagrams of the Laplacian, or iso-value surfaces,

for example the outer ‘2r ¼ 0 ‘‘envelope’’. Contour diagrams can characterize

both size and shape of features, but one ‘‘slice’’ at a time. For molecules of low

symmetry, this is troublesome. The utility of Laplacian envelopes is not hindered

by low symmetry, but the extent of size and shape characterization is limited by

selection of a single value of the Laplacian.

Volume rendering [13] enables a continuous range of Laplacian values, or any

other scalar data, to be visualized over a three-dimensional volume of any size.

The complete occlusion of valence shell charge concentration (VSCC) features ‘‘in-

side’’ the valence shell charge depletion (VSCD) that surrounds all molecules, for in-

stance, is prevented by a tunable ‘‘opacity transfer function.’’ In our implementa-

tion of this graphical technique [3], this function can be adjusted interactively

with superimposed Gaussian and step functions. It has the effect of rendering

volume elements in 3D texture memory as opaque, invisible, or with adjustable

levels of translucence. The rendering color is keyed to the value of the Laplacian

at that point, with warmer colors indicating greater local concentration of

electronic charge (white > red > orange > yellow), and cooler colors indicating

greater local depletion of electronic charge (violet > blue > green). In much the

same way as dye-stained organelles in a cell come into and out of focus under

the microscope, topological features that are associated with reactive sites, for ex-

ample lone pairs, can be probed for size and shape in three dimensions.

The results are useful and visually satisfying, providing a ‘‘holistic’’ method of

molecular visualization that not only resonates with what chemists intuitively

imagine molecules to be like, but have appealing aesthetic qualities that

garishly-colored mirrored balls and golden rods do not [14]. Figure 19.2 is a work-

station screenshot of the purine base adenine being rendered with our volume
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rendering software, nicknamed EVolVis, for Electronic Volume Visualizer. Mini-

mum hardware requirements, and details of the program’s algorithm, which uses

OpenGL and the X Window system, are given in Ref. [3].

Those who are familiar with Laplacian distributions, will immediately see that

this one image provides more information than multiple Laplacian envelopes, or

a very large number of contour diagrams, all of which must be mentally collated

to furnish a full 3D mental image of the molecule. The frame shown yields si-

multaneous rendering of lone pair features, for example on the three imine nitro-

gen atoms (bulbous red protrusions), the deep p charge depletions above and

below the carbons (blue balls), and the shallow charge depletions behind the

amino hydrogen atoms (little green ‘‘yarmulkes’’). Adjusting the appropriate

slider bar can ‘‘grow’’ the orange VSCCs (new growth becoming ‘‘cooler’’ in

color) until the p holes ‘‘close’’. The last carbon to do so must have the greatest

local depletion at the corresponding ring CPs, thus implying the greatest suscep-

tibility to attack by nucleophiles.

Figure 19.3 is a volume rendering of ‘2r for penamecillin, the molecule that

was shown schematically in Fig. 19.1. The color key is as in Fig. 19.2, but the

transfer function has been adjusted to contrast the hydrophilic diester chain (top

right) and the hydrophobic aromatic ring (bottom left), and to bring into focus

the key features on the perimeter of the reactive pocket (bracketed by the aro-

matic ring). There are 22 hydrogen atoms in this molecule, but only one is pre-

dicted by the ‘‘N, O, F rule’’ to be a hydrogen-bond donor. This amide hydrogen is

jutting into the reactive pocket and is, indeed, revealed to have the only small

charge depletion (green yarmulke) that is seen at the ‘‘appropriate’’ sites in ad-

enine (Fig. 19.2). The sulfur atom also borders the reactive pocket, and its twin

lone pair charge concentrations (orange) are rendered quite differently from those

of any of the oxygen atoms. One of the sulfur atom’s large charge depletions is

also exposed to the reactive pocket, creating a chemically anisotropic environment

for whatever fills it. This anisotropy is, literally, a highly varying ‘‘texture’’ which

is naturally rendered by the Laplacian of the charge density.

The pharmacophore in Fig. 19.1, along with the rest of the molecule, is fleshed-

out in Fig. 19.3, but it is impossible to attribute pharmacological significance to

the physical features that are revealed. Comparing the full, fleshy details of the

pharmacophore in an active drug with those in an inactive drug would be an ex-

cellent opportunity to learn something about the pharmacological significance of

the sizes and shapes of topological features in the Laplacian.

Wagner et al. have reported crystallographic studies of penamecillin and its par-

tially oxidized sulfoxide (the only difference is that one of the lone pairs is

replaced with an oxo ligand) [15]. Local oxidation can be expected to alter the elec-

trostatic potential in the region of oxidation, which was indeed observed by Wag-

ner et al., in addition to some conformational differences.

We repeated the volume rendering procedure for the second penicillin deriva-

tive, again using the nuclear coordinates from the crystallographic investigations.

Again, as might be expected, there are large areas of near-perfect transferability

far from the site of oxidation, whereas there are gross differences at the
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Fig. 19.3 Volume rendering of ‘2r in penamecillin. Adapted from Ref. [3].

Fig. 19.2 A screenshot of adenine ‘‘under the

microscope’’ of volume rendering of the

Laplacian of the charge distribution. The

white line in the pop-up window is the overall

opacity transfer function that produced the

image shown. It is composed of simple

Gaussian and step functions that are

individually tuned with the slider controls

shown. Color corresponds directly to the

value of the Laplacian, with white being the

most negative and violet being the most

positive. The same general color scheme is

used in all other volume renderings in this

work. Adapted from Ref. [3].
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sulfur. These same observations would be made by comparing the minimally-

informative pharmacophores that correspond to the two molecules. We are inter-

ested in the subtle, but chemically significant details that may be evident in the

fleshed-out pharmacophores. By sequentially volume rendering the Laplacian dis-

tributions of the two molecules, such differences can be identified, but we are

back in a similar situation as before – having to mentally contrast separate ren-

derings. Truly parallel renderings would be preferable.

19.2.3

The Hyperwall

The hyperwall [4] is simply a 2D array of flat-screen displays with each display

driven independently by a graphics workstation and with all the workstations con-

nected by a network switch. Single large images can be rendered on the aggregate

display (‘‘powerwall mode’’), but we have found it generally more useful to dis-

play sets of related images (‘‘hyperwall mode’’). The sets can be laid out according

to a single identifier or a pair (row, column), and the set members (slaves) may be

functionally connected to each other and/or to a controlling terminal (master

node) over the intervening network. This arrangement provides a large number

of pixels (65 million in the current implementation) but retains a high level of

system support (CPU, GPU, memory, disk) per pixel, so that multiple instances

of resource-intensive graphics techniques, for example time-varying volume visu-

alization, can be efficiently deployed in parallel. The simultaneous display of, and

interaction with, such visualizations provides a high-bandwidth, information-rich

exploratory environment that enhances the remarkable power of our own visual

systems for detecting differences, trends, outliers, and subtle patterns.

A powerwall is simply a very large image made up of multiple computer

screens – the total information content is equal to the sum of its parts. By relating

the information content of the screens, in a user-controlled manner, the hyper-

wall is a demonstration of the teamwork maxim.

19.2.4

Hyper-interactive Molecular Visualization

In Fig. 19.4, what distinguishes the hyperwall from a powerwall is not apparent.

For one thing, it is a static picture. On a powerwall the screens can simply display

distinct video streams, but on the hyperwall ‘‘blocks’’ of screens, or the entire

7� 7 array, can be synchronized. It is also possible for the user’s interaction

with one screen, or a row/column of screens, to refresh the data displayed on

other screen(s). For example, one column could be a series of related molecules,

and the cursor on the ‘‘master node’’ (left, foreground in Fig. 19.4) could move

a small cube in a concerted manner within each molecule. Another column

could display 3D scatter plots of data within the cube on the molecule of the

same row.
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For our purpose of identifying subtle differences in the real functional groups

that constitute the pharmacophore models of related drug molecules, we use

rows of ‘‘slaves’’ for different molecules, and columns of slaves for functional

groups, including those in the pharmacophore. The conformational differences

in the derivatives is apparent in column 1, In column 6, the two screens appear

almost identical, even though the phenyl rings are oriented quite differently. In

column 5 the diester side-chains are conformationally different but reactive fea-

tures are rendered synchronously as the transfer function sweeps different parts

of the Laplacian spectrum. The differences between the rendering of the lone

pairs on keto and ether oxygen atoms are more pronounced than similar features

in different rows.

More contrast is seen in columns 2, 3, and 4 as the rendering searches for re-

active features. The ‘‘blocking’’ of columns, individually or in groups, enables op-

timum transfer functions for different elements of the pharmacophore. An mpeg

file with a sample video of interactive rendering on the hyperwall, can be down-

loaded at www.nas.nasa.gov/~chenze/preston/pen2.mpg.

Fig. 19.4 The NASA Ames hyperwall with

parallel interactive volume rendering of two

derivatives of penicillin – one active, one

inactive. One of us (PJM) is clearly excited.

The upper row has volume renderings of the

Laplacian for penamecillin. The lower row

has corresponding images for the inactive

sulfoxide derivative. Starting from the left,

the columns are: entire molecules, in the

conformation observed in the corresponding

crystal (note that the reactive pocket is not

bracketed by the aromatic ring in the in-

active form); b-lactam groups present in all

penicillin derivatives (the blue halo is around

the carbonyl oxygen and the reddish lumps

on the right is the lone pair on the tertiary

amino nitrogen); the reactive pocket with

amide hydrogen in the middle; sulfur (upper)

or sulfoxide group (lower); diester side-chain;

aromatic ring (note how nearly perfectly

transferable it is). High-resolution images

of each of these screens is available online

at www.nas.nasa.gov/Groups/VisTech/

hyperwall/ Select ‘‘Papers, etc.’’ in the left

menu, and then ‘‘screendumps2’’ in the

index. Clicking on the top penicillin thumb-

nail will bring up a screenshot similar to

Fig. 19.4. Then, clicking on any hyperwall

screen will link to a large, high-resolution

image of that particular screen.
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One possible reason for the inactivity of the oxidized derivative is revealed in

column 5. The hydrogen-bond donor feature that is fully exposed in the reactive

pocket of the active form (Fig. 19.3) is severely deformed by the nearby oxygen

atom of the added oxo group (Fig. 19.5). Intra-molecular hydrogen bonding thus

could interfere with this molecule’s pharmacological activity.

Filling the hyperwall with fleshed-out pharmacophores, and scrolling through

libraries of drug molecules, all the while searching for insights such as those

above, is an exciting prospective use of this combination of visualization tech-

niques.

19.3

Subatomic Pharmacophore Insights

19.3.1

Hydrogen-bonding Donor Sites

In the first systematic study of hydrogen bonding orientations on the basis of to-

pological properties of the Laplacian, Carroll et al. used HF as donor and a variety

of bases as acceptors [16]. They found excellent agreement with reported geome-

Fig. 19.5 A volume rendering of ‘2r in the reactive pocket of the

inactive penicillin derivative. The local charge depletion behind the

amide hydrogen (green yarmulke, indicated by the arrow) is seen pulled

to the right, interacting with the nearby oxo group in that direction

(some key atoms in this region are identified). This image is a

screenshot of column 3, row 2, from Fig. 19.4.
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tries of such van der Waals complexes when the local charge depletion behind the

hydrogen atom of HF was collinearly aligned with the nucleus of the base atom

and its nonbonded charge concentration.

We have found that this topological feature of the donor hydrogen atom’s

VSCD is usually not present when the XaH is not a rule-based donor hydrogen

bond, and that, when present, its magnitude parallels that of expected hydrogen-

bond-donor strength [3]. All the XaH bonds in Figs 19.2 and 19.3 are consistent

in this regard. We note that it is not simply a rendering artifact. The VSCD topol-

ogy behind the hydrogen atoms of most CaH bonds, and XaH bonds in general

when X is less electronegative than H, is opposite to that of the yarmulkes. They

are local ‘2r minima within the VSCD whereas the yarmulkes are local maxima.

The Laplacian for the hydroxy isomer of guanine is volume rendered in Fig.

19.6. There are four types of XaH bonds, and the presence and size of the yar-

mulkes behind each is consistent with its expected hydrogen bonding capacity or

strength. As expected, the amino and imino features are very similar.

Within QTAIM, identification of reactive sites, and their characterization, is

performed by topological analysis of ‘2r by virtue of its role in describing the

energetics of many-electron systems in stationary states [1]. Such a model-

independent procedure cannot be expected always to conform to established

rules. Figure 19.7 indicates that hydrogen-bond donor features are not only found

‘‘where expected’’. ‘‘Weak hydrogen bonds’’, that do not follow the standard

‘‘rules’’, are believed to frequently play important structural and mechanistic roles

in biological processes. Important classes of such hydrogen-bond donors are CaH

Fig. 19.6 Volume rendering of ‘2r in 6-hydroxy-2-aminopurine.

A different color key was used, but the ordering is the same as

that discussed in the text. Adapted from Ref. [3].
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bonds in which the carbon atom is ‘‘activated’’ by a highly electronegative sub-

stituent, for example fluorine, or oxygen in aldehydes. Corresponding to weak

H-bond donor strength, the yarmulkes behind the hydrogen atoms in methyl flu-

oride are barely formed (Fig. 19.7), but they are a topological change, relative to

simple alkanes, induced by fluorine substitution.

With systematic studies, the existence, strength, and direction of hydrogen-

bond donor features in pharmacophore models could be simply augmented with

knowledge gleaned from topological analyses of ‘2r. Similar pharmacophore im-

provement is envisaged for hydrogen-bond acceptor features, based on analogous

topological studies of nonbonded charge concentrations. Such studies have been

well-reported in the literature [6–10].

19.3.2

Inner-valence Shell Charge Concentration (i-VSCC) Features in Transition-metal

Atoms

Within the context of the orbital model of electronic structure, when explaining

the ground states of elements in the d-block of the nth row of the periodic table,

Fig. 19.7 Volume rendering of ‘2r in methyl fluoride. Note the barely

formed yarmulkes beyond each of the ‘‘activated’’ hydrogen atoms.

The pink halo is the torus of nonbonded charge concentration

corresponding to the three lone pairs on fluorine.
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we must point out to our students that there are exceptions to the aufbau princi-

ple. Depending on electron count, electrons may occupy either (n)s or (n� 1)d

atomic orbitals. There are assorted reasons given for this orbital jockeying, but

the similarity of the energy levels of these nonphysical one-electron states always

features.

In the minds of students the energy overlap often leads to the incorrect as-

sumption that (n)s and (n� 1)d orbitals also have comparable radial distribu-

tions. In fact, the radial distribution functions of (n� 1)d orbitals peak at radii

much closer to those of an (n� 1)s orbital in the same atom, which is considered

to be part of the ‘‘core’’.

In many-electron reality an electron is just an electron. For an atom in the d-

block of the periodic table the local concentration maxima in the outermost shell

of charge concentration have significant contributions from what are ostensibly
core and valence orbitals. Since these concentrations have been shown to have

stereochemical consequences and to effect metal–ligand bonding [17–19], the

outermost shell of charge concentration in the ‘‘core’’ is called the inner VSCC,

or i-VSCC.

Figure 19.8 is a good illustration of a common topological relationship between

the i-VSCC of a transition-metal atom and the dative bonding charge concentra-

tions in the ligand sphere – lumps fitting into holes or grooves. The high angular

momentum of electrons at the radii of the holes allows them much sharper defi-

nition than is seen in the p holes of organic compounds. This imparts stronger

Fig. 19.8 Volume rendering of ‘2r in cisplatin. A different color key was

used, but the ordering is the same as discussed in the text. Adapted

from Ref. [3].
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directionality to metal–ligand interactions than is seen in groups IA and IIA,

without invoking covalence.

Because many enzymes have transition-metal ions at or near their active site,

factors affecting optimum coordination directions for different metals, and in

their different oxidation states, may aid pharmacophore development. In much

the same way as a hydrogen-bond donor feature in a pharmacophore includes a

single, collinear arrow (Fig. 19.1), a Pt(II) feature could include four variously di-

rected arrows. Ligand field theory suggests that they should be at 90� angles,

anchored by permanent ligands, but volume rendering of ‘2r then topological

analysis could refine these directions. These latter investigations may seem un-

necessary if one assumes that the geometries of countless coordination com-

plexes already imply optimum directions of metal–ligand bonding for different

metal ions in their different oxidation states. This, however, is not always a valid

assumption.

19.3.3

Misdirected Valence in the Ligand Sphere of Transition-metal Complexes

The geometry of chromyl chloride, CrO2Cl2, is ‘‘opposite’’, in a VSEPR model

sense, from that of sulfonyl chloride, SO2Cl2. Both have distorted tetrahedral geo-

metries, but the angle between the double bonds to oxygen are is smaller than the

tetrahedral angle when the central atom is chromium, whereas it is larger (as ex-

pected) when the central atom is sulfur.

This and other geometric conundrums involving transition-metal atoms con-

tinue to be clarified by computational and experimental examination of the topo-

logical properties of the i-VSCC of the metal atom [17–20]. One reoccurring curi-

osity is that of misdirected valence.

Liehr coined the term ‘‘misdirected valence’’ in 1964 to improve the ligand the-

oretical predictions of the spectra of chelation complexes and other metallacycles

[21]. If one ignores the metal atom that is chelated by a diamine, for instance, the

shape around each nitrogen will be trigonal pyramidal, and the principal axes will

be directed in the general direction of the metal atom. The ‘‘bite angle’’ of the

ligand, and the size and d-electron count of the metal ion, will determine how

‘‘well-aimed’’ these axes are. Simple geometry-based corrections for misdirected

valence greatly improved the accuracy of ligand field theory in such complexes [21].

Figure 19.9 presents stark physical, not inferred, evidence of misdirected

valence. In CrO2Cl2, the stereochemical effect of the ligand-opposed charge con-

centrations of chromium’s i-VSCC [18, 19] has narrowed the OCrO angle. In Fig.

19.9b the approximate twofold axis that is typically collinear with the MbO bond,

and bisects the nonbonded charge concentrations in the VSCC of oxygen, is

strongly askew. As indicated in Fig. 19.9b by the double-headed arrow, the local

twofold axes, with regard to the structure of the VSCCs of the two oxygen atoms,

are not directed at the chromium nucleus, but at the single charge depletion in the

i-VSCD that apparently serves as the point of attraction for the oxygen ligands

[18].
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Also in Fig. 19.9, the strong asymmetry in the CaR bonds of a Schrock carbene

[22] is evidently another example of misdirected valence and not a result of an

agostic interaction between a metal ion and a CaH bond. Here the metal is a nio-

bium(III) ion in H2CbNbCl2C5H5. The double bond in such Schrock carbenes

couples a carbene, for which triplet ground states are favored, to d2 metal ions,

for which, again, a triplet state is favored.

As discussed earlier, for the general case of d-block atoms, the two 4d electrons

are regarded as being chemically valent but as making their physical contribution

primarily to the outermost core shell of charge concentration (in this case the

4th). Also contributing largely to this ‘‘outer core’’ shell of charge concentration

are the eight 4s and 4p (truly) core electrons. The topology of the i-VSCC of the

Fig. 19.9 Contour plots of the Laplacian of

the charge density for SO2Cl2 (a), CrO2Cl2
(b), and H2CNbCl2C5H5 (c and d). The

solid (dashed) contours indicate negative

(positive) Laplacian values, and the contour

values are spaced logarithmically (jaggedness

is a grid artifact). Plots a and b are centered

on the mid-point of the SbO (a) and CrbO

(b) bonds, and the stars (squares) indicate

maxima (minima) in �‘2r. Plots c and d are

centered on the mid-point of the NbbC bond.

The computed equilibrium geometry of this

molecule is between these two ‘‘rocked’’

geometries. In b, c, and d, the arrows

indicate approximate local twofold rotational

axes.
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niobium atom has, as one might expect in an extended Lewis model, four large

and two smaller concentrations. The local maxima in the Laplacian form a dis-

torted trigonal prism whose four-sided faces are perpendicular to the plane

shown in Fig. 19.9 (c and d) [18].

The cyclopentadienide ligand occupies such a large fraction of the ligand

sphere that, again, there is a forced misdirected valence. To demonstrate that the

‘‘rocking’’ of the carbene is not caused by a M���HaC attraction, we depict the re-

markable invariance of both the i-VSCC of niobium and all the charge concentra-

tions of the carbene, for pivotal 5� deviations about the equilibrium geometry.

There is no notable distortion of the niobium i-VSCC, nor ‘‘agostic’’ CaH bond-

charge concentration until the carbene has been rocked much further along this

constrained reaction coordinate [23].

Allowing for such misdirected valence in pharmacophore definition would not

be a simple matter. For example, steric factors within the ligand sphere of the

metal atom would have to somehow mesh with its optimum coordination direc-

tions. The most important modification would be to shift the focal point of ligand
attraction from its assumed position at the metal’s nucleus, to inner valence shell

topological features.

19.4

Conclusion

Rapid screening in the vast virtual space of chemical compounds and all their

conformations requires extremely high selectivity to be of any practical use. For

quality results the selection tools must also be accurate. There can be no doubt

about the fineness and utility of the set of tools for characterizing the structural

and atomic properties of matter that have been developed over the decades by the

‘‘Bader school’’. These tools have a rigorous theoretical foundation and are backed

by experimental results. Richard Bader has seen the future and, in it, computa-

tional chemists ‘‘synthesize’’ arbitrarily large and complex molecules like nature

does it, cutting and splicing together the most convenient fragments, not ‘‘from

the beginning’’ every time [24].

Matta has demonstrated the feasibility of this approach for known drug mole-

cules [25]. Breneman et al. [26] have developed the transferable atom equivalent

(TAE) method that can rapidly predict key properties of large molecules from a

finite set of atomic descriptors that have been obtained from QTAIM analysis of

smaller molecules. Indicating its potential utility in drug design, this method has

had some success in modeling van der Waals interactions [27]. Breneman’s TAE

approach is reviewed in Chapter 18 of this book.

Until Bader’s vision is achieved, drug screening tools can be incrementally im-

proved in a manner that is consistent with the proven success of the Bader

school’s philosophy – seek advances based on rigorous theory and back them

up with experiment. We have demonstrated ways in which modern computer

graphics techniques can be used to extract physical and insightful information

about pharmacophore features. We have also suggested practical ways in which

19.4 Conclusion 513



pharmacophore features could be augmented with data that can be obtained from

computation or experiment. These suggestions may be particularly beneficial

because they all relate to noncovalent interactions, which are key to pharmaco-

logical activity and are a weakness of current high-throughput ab-initio methods.
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a
ab initio wavefunction 86

ab initio periodic approaches 169

Abramov functional 432

Abramov energy density 432

absolute hardness 400

absorption intensity 79

accuracy of atomic integrations 17, 18

acenaphthylene 408

acetamide 333

acrolein 129, 135, 136

action integral 41

action principle 39, 40, 44

active site 511

additivity of the atomic energy 10

adenine 312

adenine binding site 305ff., 308, 312, 313

adenine binding site of the protein hAR

302, 303, 310

adenosine 323

ADI 405, 406

agostic interaction 364, 366, 367, 512

agostic systems 365

AIM2000 27, 101, 103ff.

AIMALL97 28

AIMDELOC 15, 28

AIMPAC 27, 29, 264

Al 216

Al2C2H10 145

AlaAl bond 211

aliphatic hydrocarbons 379

alkali halides 214

alkali metal clusters 192

alkaline-earth metals 214

alkane 77, 91, 109, 116 f.

n-alkanes 99

n-alkenes 194

alkyne 114

amino acid 21, 22, 24, 301, 324, 325

amino acid residues 56, 285, 302, 303,

327

ammonia 276

analytical CPHF method 101

anharmonicity 98

anomeric effect 375, 386

anthracene 408

aromatic compounds 399

aromatic radicals 393

aromatic stabilization energy 400

aromatic transition state (TS) 418

aromatic p-sextets 416

aromaticity 394, 395, 399

– indices 394, 418 f.

asphericity shifts 334

atom types in proteins 26

atomic additivity schemes 82

atomic basin 6, 211, 428

– shape 209ff.

– volume 16, 295

atomic charge 9, 16, 75, 328, 401

– derivatives 80, 81

– transfer derivatives 80

– transfer dipole contribution 75

atomic components 176

atomic continuity theorem 51

atomic contributions 50, 62, 65, 71, 73, 74,

76, 81, 90 ff., 108

– to a 112

– to Da=DrCH 112

– to the electronic energy 18ff., 276

– to the magnetizability tensors 91

– to the polarizability tensors 77

atomic current theorem 51, 52

atomic dipolar polarization 20

– contribution 72

– gradient 75

atomic dipoles 109

atomic electric polarizability tensors 91
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atomic electronic energy 19, 84

atomic electronic kinetic energy 17, 82

atomic electronic virial theorem 19, 83

atomic electrostatic multipole moments

20–25, 126

atomic energy XXII, 20, 29, 84

atomic exchange matrices 138

atomic force

– microscope 54

– theorem 51

atomic fragments 317

atomic graph 348

atomic group source function 195

atomic interaction lines 8

atomic interactions 260, 347

atomic magnetic polarization contribution

88

atomic multipolar ED 296

atomic multipole moments 20–25, 126

atomic multipoles model 122

atomic net charges 16, 188, 295, 299

atomic net current contribution 88

atomic nuclear virial energy 82ff., 85

atomic polarizability 77

atomic polarization 20–25, 78, 80

atomic populations see atomic electron

population

atomic power theorem 51

atomic properties 15–25, 26, 194

atomic quadrupolar polarization 24

atomic quadrupole moment 24, 175, 352

atomic source contributions in Mn2(CO)10
200

atomic surface derivative contributions 76

atomic theorems 51

atomic torque theorem 51

atomic virial theorem XXII, 19, 51

atomic volume 16, 277, 328, 352

attraction (repulsion) basin 210

Au (111) surface 240

AX4 (CH4, CF4, SiCl4) 154

AX6E molecules 155 f.

AX7 molecules 155 f.

b
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back bonds 180

back-bonding 363

back-donation 363, 364

p-back-donation 352

basin populations 16, 154

basin volume 16, 297, 299
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461

BCC see bonded charge concentration

BCP see bond critical point

Becke and Edgecombe 438

benzene 392, 393, 395, 403, 406, 408, 412

benzocyclobutadiene 408

m-benzyne 392ff.

BF3 6ff.

BH3 368

bicyclo-[1.1.1]-pentane 98, 100, 101, 111,

116

bicyclo[3.3.1]nonane 115

bicycloalkane 99, 114, 116

binding energy 454
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bond charges 72, 75, 80, 275

bond contribution 66ff., 69 ff., 74, 92

– to the energy-gradient-based force 85

bond critical point (BCP) 4, 10, 25, 141, 168,

231, 260, 271, 375, 426, 431ff., 477

bond current contribution 89

bond ellipticity 12, 184, 185

bond force 85

bond order 11, 13, 15, 25, 135

bond path 4, 11, 52, 141, 232, 260, 386

– connectivity 357

bond polarizability model 97

bond properties 11, 218

bonded charge concentration (BCCs) 182

bonded interactions 130

bonded radius 11

bond-length aberrations 334

bond-order model 425

borazine 407

Born–Oppenheimer energy surface 460

Born–Oppenheimer approximation 123

Born–Oppenheimer procedure 55

Bragg angle 285

branched alkane 114

BSSE see basis set superposition error

Buckingham-type potentials 437

buckminsterfullerene allotropes of carbon

208

buckybowls 409

bulk modulus 220, 221

1,3-butadiene 418

butane 111, 115, 129, 194

2-butanol 332

c
C2H2 156

C2H2 dimer 129
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(C2H2)2 132

C2H4 156

C2H6 348

CaF2 216

cage critical point 4, 5, 168, 388

calculus of variations 41

Carbo index of similarity 26, 487

carbon monoxide 20, 21, 348, 445

carbonyl supported metal–metal interactions

357

Cash–Karp Runge–Kutta (CRRK) method

232

catalytic activity 236

catastrophe point 357

CH bond 111

CH stretching modes 96

CH4 103, 109

characteristic set 4

charge-assisted hydrogen bonds 199, 458

charge concentrations 141

charge-density refinement 308

charge transfer 78, 176, 188, 431

– contribution 73, 80

– dipole 21

– moments 176

chemical structure 52

chemical transferability 195

chiral invarioms 330

chiral modules 336

chirality 336

chlorine 276

chrysene 408

CIF3 155

cisplatin 510

Clar structure 417

Clar’s aromatic sextet 395, 416f.

class I clathrates 189

clathrate type I structure 187

closed-shell bonding 8, 12

closed-shell character 355, 445

closed-shell interactions 11, 174, 260, 358,

427, 436, 441, 443

clustering procedure 313

CO see carbon monoxide

CO(NH2)2 264, 272

CO2 82

Co2(CO)6(ASH3)2 352, 353

Co2(CO)6(NH3)2 353

Co2(CO)6(PH3)2 353

Co2(CO)6(XH3)2 352

Co2(CO)6(m-CO)(m-C4H2O2) 355

Co2(CO)8 201, 369

[(CO)5CraHaX]� 368

(CO)5M(H2) 364

commutator average 47

compensatory transferability 56

complementary ligands 488

p-complexes 357ff.

p-complex–metallcycle 364

compressibility 220, 221

conditional pair density 10, 192

conformational space 357

connectivities 207

contergan/thalidomide scandal 336

CONTOR 29

coordination 351

coordinatively unsaturated sites (CUS) 236

core basin 142

core-valence bifurcation index 439

correlation energy 276, 277

correspondence rule 345

Coulomb

– correlation 14, 377

– energy 123, 125, 134, 139

– expansion 131

– hole density 402

– interaction 125, 129, 133

coupling constants 375

covalence degree (DC) 447

covalent bonds 216, 354, 455

CPHF method 80, 91, 106

CPU time 129

Cr(CO)5 368

Cr(CO)5(C2H4) 363

Cr(CO)5(H2) 364

Cr(CO)6 351

Cr(PH3)5(H2) 364

CraCr path 367

[Cr2(m2-H)(CO)10]
� 367

crambin 288

creation energy 247, 250

critical points 2, 167, 209, 210

CrOs(CO)10 MaM bonds 352

CRRK see Cash–Karp Runge–Kutta

CRYSTAL 27, 166, 167, 174, 223, 336

– graphs 232

– software 170

– topologies 224

CRYSTAL’s LCAO 225

crystalline isostructural families 214ff.

crystallization 175, 176, 179

crystallographic R-factors 334, 337

cubic perovskite SrTiO3 270

current density 64, 89, 93

curvatures 3, 443

cusp condition 262

cyclic delocalization 404

cycloalkane 99, 114, 116
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cyclohexa-1,3-diene 408

cyclohexa-1,4-diene 408

cyclohexane 98, 101, 111, 113, 115, 408

cyclohexene 408

cytosine 415

d
Dalton’s atomic hypothesis 39

dangling bonds (DBs) 180

database of protein fragment contents 313

dative bond 350ff.

DB see dangling bonds

DC see covalence degree

DCBS see dimer-centered basis set

DCD see Dewar–Chatt–Duncanson
Debye–Waller factor 286

deformation density 172, 173

– maps 354

delocalization 9, 13–15, 351, 375

p-delocalization 407

delocalization index 13–15, 135, 166, 167,

201, 347, 351, 355, 363, 375, 377, 378, 391,

395, 402, 405, 407, 460

density of states (DOS) 187

depletions 141

Dewar structure 403

Dewar–Chatt–Duncanson (DCD)

– donor–acceptor complexes 357, 361,

363

– ring complex 359

– mechanism 351

– model 364

DI see delocalization index

diagonalized quadrupole tensor 24

diamagnetic spin–orbit interactions 378

diamond 208, 216, 219

dielectric polarization 20

Diels–Adler reaction 409, 418 f.

1,12-difluoro[4]helicenes 5, 6

diffuseness D 183

dihydrogen bond 426, 456

dihydrogen bonding 8

dihydrogen complexes 364

dimer-centered basis set (DCBS) 460

dimethylcyclobutane 115

dimethyl-phosphinoyl (methylsulfonyl)

methane 390

dipeptide l-phenylalanyl–l-proline H2O 318

dipole derivative 80

dipole moment 21, 22

– derivatives of CO2 81

dipole polarizability tensor 74

Dirac–Slater exchange density 272

diradicals 393

dispersion energy 459

dissociation energy 436, 439, 440

disynaptic basins 145, 438

dl-serine 329, 334

DMACB 170, 171

DMSDA see mean-square displacement

amplitudes

DNA bases 25

docking applications 314

domain-averaged Fermi hole 487

s-donation 352

donor–acceptor bond 350

donor–acceptor interaction 352

DOS see density of states
Drude model 215

e
ECP see effective core potential

EF see eigenvector following
effective core potential (ECP) 27

Ehrenfest

– force 53, 64, 260, 381

– theorem 52

eigenvector following (EF) 168

electric dipole derivative 80

electric dipole moment 68, 71

electric dipole polarization 61

electric field 78, 109, 110

– derivative 73, 75

– flux 63

electric polarizability 68, 73ff., 90

– tensor 76

electric susceptibility 50

electron delocalization 13–15, 376, 382, 385,

395, 399, 400–401

electron isodensity maps 391

electron localization 9, 14, 128, 143, 401,

440

electron localization function (ELF) 142ff.,

191, 277, 438

electron pair localization 347

electron transfer 431

electron tunneling microscope 54

electronegativity 20, 150, 215, 294, 218, 313,

311, 484

electronic current density 90

electronic energy of an atom in a molecule

82

electronic pressure density 83

electronic structure of molecules 54

electrophile attack 249

electrostatic force 86

– on a nucleus 87

electrostatic interaction energies 312, 313

518 Index



electrostatic model 351

electrostatic moments 20–25, 138, 139

electrostatic potential 249, 311, 400, 475,

482

electrostatic properties 287, 289, 305ff.

– of a protein site 313

electrostatic–covalent hydrogen bond model

459

ELF see electron localization function

– ELF basins 149ff.

– ELF population analysis 147ff.

– ELF topology 144ff.

– ELF valence basin 166, 200

ellipticity 12

elpasolites 214

energy density 12 ff., 272

energy derivatives 84

energy-gradient-based force 64, 65, 86

– on the nucleus 83

enzymes 511

estrone hormone 15

ethane 98, 109, 112, 113, 194, 379, 380, 418

ethanol 332

ethene 98, 111

ethyne 98, 111

Euler equation 41

Euler’s invariant formula 211

exact exchange energies 133

exact exchange force 127

EXAFS see X-ray absorption fine structure

exchange between electrons of the same spin

272

exchange correlation 377

exchange density 274

exchange eigenvalues 138

exchange energy 122, 124, 125, 127, 128,

130ff., 136, 276, 277

exchange force 136, 137

exchange interaction 131

exchange interaction energy 461

exchange moments 126, 139

exchange potential 278

exchange-correlation density 401, 402

exchange-correlation energy 271

expectation value of an operator 9

experimental electron density 261

experimental H���O interactions 436

external magnetic field 89

external potential 474

EXTREME 27

f
F2 445

F-center in sodium electrosodalite 190

F-center basins 192

F-centers 186

FeaFe bonding 369

Fermi

– contact 378

– contact contribution 379

– – to 3JHH 378

– correlation 14

– hole 144, 167, 375, 377, 378, 402,

403, 487

– level 189

ferromagnetic phase of SES 191

Feynman path–integral method 271

Feynman

– force 52, 381

– theorem 52

FaF coupling constants 380

F���H hydrogen bonded complexes 441

[F���H���F]� system 444

FaH���p hydrogen bond path 456

FH���ClH 146

(FH)2 420, 437

first atomic electrostatic moment 20

first derivative of the electric dipole moment

78

first-order reduced density matrix 123

Fisher information 144

fixed nucleus approximation 55

flatness 354

p-fluctuation aromaticity index (FLUp)

406ff., 415, 419, 420

flux through a surface 47

force fields 26, 121

formamide 333

formic acid–formate anion complex 199

Fourier

– difference synthesis 225

– transformation 289

fpLAPW see full potential linearized plane

wave

FRAGDIP 21

fragment charges 312

fragment deformation maps 354

fragment electroneutrality 307

fragment representations 313

fragment transferability 338

free electron gas 215

Fukui

– frontier orbital theory 54

– functions 475

– Nobel Lecture XXI

– radical reactivity indices 484

full potential linearized augmented plane

wave (fpLAPW) formalism 223
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fullerenes 319, 409

Fulton bound index 391

g
GAMESS 27, 29, 128

gauche effect 383

Gauss’s theorem 18

Gaussian 27, 29, 30, 106, 114ff., 332

Gaussian 03 129

Gaussian 94 295

genetic code 22–24, 26

GFMLX 336

GIAO 413

globbic structure factors 289

glycine 124

goodness of fit 334

gradient kinetic energy 17

gradient path 242, 428, 474

gradient vector 6

– field 6, 142, 259, 323

– field lines 211

– instability 210

gradient-corrected correlation energy 275

gradient-corrected energy density 272

gradient-corrected exchange density 274

graphite 208, 219

GRDVEC 28, 29

Green’s function 192, 263, 271

GRIDV 28, 29

group additivity schemes 82

group contribution 22, 50

– to the polarizability tensors 77

guanine 415, 416

guanine–cytosine base pair 415

guest atoms 188

guest–host binding energy 189

guest–host systems 165ff.

– binding energy 189

h
H2NaCaHa(R)aCOOH 21–23, 295

H3N���HF 439

H2O dimer 129

Hamiltonian approach to quantummechanics

38

Hammett substituent constants 412

Hansen–Coppens XXII

– multipole model 261, 262, 318

hAR see human aldose reductase

harmonic approximation 78

harmonic oscillator model of aromaticity

(HOMA) 394, 400, 404, 406ff., 410,

412ff., 420

Hartree–Fock

– energy 123

– virial 29–30

– wave functions 127

Hattig’s recurrence formulae 129

HB see hydrogen bond

HCCH���HF complex 456

HCN 445

HCH���O intermolecular interactions 170

HDN see hydrodenitrogenation
HDS see hydrodesulfurization
heats of formation 50

heavy main-group element 352

hedrane 114, 116

Heisenberg

– equation of motion 37

– representation of quantum mechanics

51

Hellman–Feyman

– electrostatic force 19, 65, 83

– electrostatic theorem 83, 85, 87, 88

Hermitian operator, linear 46

Hermiticity 47

Hessian matrix 3, 231, 427

hexaprismane 117

1,3,5-hexatriene 129, 134

HF dimer 129, 130

H���F hydrogen-bonding interactions 437

H���H bonding 8, 9, 11

H���H electrostatic interaction 445

hierarchical merging/clustering algorithm

292, 301

higher-order polarizability 104

high-pressure phosphorous boride 215

high-resolution

– electrostatic potentials 306, 308, 309

– protein model 287

Hirshfeld

– multipole model 262

– test 318, 335

H���N hydrogen-bonding interactions 441

(H2O)2 131, 132, 430

H���O hydrogen bonds 436

H���O interactions 437

Hohenberg–Kohn

– formulation of DFT 261

– theorem XX, 474, 475

HOMA see harmonic oscillator model of

aromaticity

homodesmotic reaction 400

homogeneous electron gas 263

homoleptic M2(CO)n dimers 352

host–guest

– chemistry 186

– systems 186ff.
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human aldose reductase (hAR) 287ff.,

291ff., 300

– crystal structure 299

– structure 307, 312, 313

hybrid orbital-free energy functionals 271

hydride bond 466

hydride bridges 367ff.

hydrides 153

hydrodenitrogenation (HDN) 236

hydrodesulfurization (HDS) 236, 237

hydrogen bond(ing) (HB) 170, 177, 197,

199, 217, 273, 331, 416, 425, 427, 429, 453

– Coulomb interaction 130

– donor 504

– energies 454

– exchange energy 132

– intermolecular 453

– molecular complexes 198

hydrogen–hydrogen bonding 8

hydroimidazo[4,5-d]imidazole 430

hydrophilic regions 500

hydrophobic effects 481

hydrophobic regions 500

hydrophobic–hydrophilic interaction tendency

483

hydrophobicity 483

hydroxy-2-aminopurine 508 (6-)

hyperconjugation 386

hyperpolarizability 61, 73

hypervirial theorem 83, 86

hyperwall mode 505

i
I2O 216

IAM see independent atom model

ice VIII 436

iceane see tetracyclo-[5.3.1.12; 6.04; 9]-
dodecane

independent atom model (IAM) 172, 174,

189, 286 f., 329, 334, 336

independent transferability 113

induced electronic magnetic dipole moments

88 f.

influence function 192

infrared intensity 50

infrared spectrum 78

infrared vibrational absorption intensity 68

inhibitor–protein interactions 286

inner-valence shell charge concentration

(i-VSCC) 509ff.

inorganic clathrates 186

integrated atomic electronic energy 277

integration error 18, 276

intensity of absorption 78

interaction

– density 261

– energy 435

– energy-decomposition scheme 459

– potential 436

– tensor 127

interatomic surface (IAS) 8, 11, 63, 244,

232, 377, 426, 477

intermolecular interaction 131, 435

invariom 317, 331, 334

– aspherical scattering factors 329

– database 330, 336

– pseudoatoms density 338

inverse hydrogen bonding 466

inverse moments 122

ionic bonds 217

ionic character 151

ionic contributions 151

ionicity 216

isobutane 99

isodensity envelope 17

isopropanol 332

isotropic polarizability 77

k
Karplus-type behavior 379, 382

– of 3JHH 395

Kekulé

– resonance structure 416

– structures 403

Kenichi Fukui XXI

kinetic energy 43 f., 122, 123, 266

– density 12, 13, 18, 37, 259, 262ff.,

349, 354, 381, 391, 432, 482, 483

– operator 17

– per electron 192

Kohn–Sham

– approximation 378

– density-functional theory 128

– exchange-correlation energy 128

– orbitals 128

l
Lagrange polynominal interpolation 232

Lagrangian

– action principle 37

– classical 41

– equation of motion 41

– representation of quantum mechanics

51

L-alanine 208

Laplacian of the electron density 3, 10, 17,

44, 141, 149 f., 177, 182, 192, 200, 215, 218,
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Laplacian of the electron density (cont.)

259, 262, 324, 346, 363, 427, 445, 458, 483,

488, 500ff.

LBHB see low-barrier hydrogen bonds

Le Chatelier principle 56

Leu–Enkephalin 294

Lewis, G. N. 502

– acid 10, 252, 253, 466

– acidity VSCCs 367

– base 10, 466

– model 145, 345, 352, 378, 438

– structures 157

LFT see ligand-field theory

Li 216

LiCcCLi���HF complex 456

LI-DICALC 28

LIF 269, 270

ligand–protein interactions 286

ligand-field theory (LFT) 349, 352

limits of transferability 331

local aromaticity criteria 413

local bulk moduli 220, 221

local dipole moment 96

local electron affinity 484

local electronic charge concentration 10

local energy densities 443

local exchange energy 273

local hardness 484

local polarizability 484

local source (LS) 192, 194

local statement of the virial theorem XX, 13,

56, 346

localization

– domains 145ff., 156

– function 142

– indices 14, 15, 167, 377

– nodes 146

– tree-diagram of H2CO 147

– tree-diagram of NaCl 147

lock and key mechanism 352

lone pair 145, 438

– electron concentrations 275

Lorentzian form 144

low-barrier hydrogen bonds (LBHB) 446

low-electronegativity elements 214

low-pressure boron phosphide 215

LS see local source

m
M���CO interactions 352

M2(CO)n 356

macromolecular crystallography 285

magnetic dipole moment 88

magnetic susceptibility 50

magnetizability 64, 68, 90

– tensor of naphthalene 92

malonaldehyde 199

matrix of exchange moments 136ff.

maximum entropy method (MEM) 187, 188

MaC interactions 370

mean molecular polarizability 97, 98

mean-path approximation 271

mean-square displacement amplitudes

(DMSDA) 335

measurable properties 50

medium-resolution electrostatic potential

310

MEM see maximum entropy method

metallacycles 357

metal–metal (M-M) bond(ing) 199, 349, 352,

354ff., 370

– bond path 354, 369

– contacts 352

– interactions 354, 370

metal–olefin complexes 361

methane 107, 109, 113

methanol 332

methyl fluoride 509

methyl group 77, 195

N-methylacetamide 333

methylcycloalkanes 99

methylcyclobutane 115

N-methylformamide 333

methylcyclopropane 115

methylene group 56, 109

misdirected valence 511

Mn���(CO) intramolecular interactions 356

Mn2(CO)10 201, 355

MnaMn bond 200, 201, 355

molar volumes 50

molecular complexes 196ff.

molecular crystals 170ff.

molecular devices 55

molecular dipole 170, 176

molecular electrostatic potentials 313

molecular expectation value 10

molecular graph 8, 52

molecular orbital theory 54

molecular polarizability 73, 77, 96ff., 99,

109, 110, 113

molecular potential 122

molecular quantum similarity measures

(MQSM) 487

molecular response properties 61

molecular similarity 26

molecular structure stability 52

molecular virial theorem XX, 29, 86, 88

molecular volume 481
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molecular graph 5

Møller–Plesset perturbation theory 29

monopolar exchange moment 128

monosynaptic basins 145, 438

MORPHY 27, 332

– 01 128, 129

Morse equation (relationship) 4, 168, 172

Morse-type potentials 437

MoaS
– bond 242, 244, 246

– inter-atomic surfaces 246

MoS2 239, 245ff.

– bulk 241ff., 244

– unit cell 241

MQSM see molecular quantum similarity

measures

mRNA codon 22–24

muffin tins 223

multiple bonds 156ff.

multiple-exchange energies 133

multipolar database library 287, 306, 307,

309

multipolar ED database fragment 287

multipolar refinement technique XXII

multipole expansion 130ff., 137

multipole model 264, 277, 336

multipole moments 121

n
N���N contacts 172

N2 216

N2���HF 439

NaCl 146

NADPþ 293, 302, 312

NaF 348

nanotechnology 55

naphthalene 91, 93, 392ff., 408

naphthacene 408

natural bond orbital (NBO) 446

natural coordinates 104

natural orbitals 378

NBM see non-bonded maxima

NBO see natural bond orbital

Ne2 348

nearest-neighbor approximation (NNA) 333

negative hyperconjugation 364

net current vector 64

neural networks 121

Newton’s equation of motion 41

Newton–Raphson (NR) technique 168, 231,

236

N���H hydrogen-bonding 433

NaH���N hydrogen bonds 172, 446

– complexes 441

NaH���O hydrogen bonds 172, 448, 462

NICS see nucleus-independent chemical

shift

NiMoS 239, 240

NiaNi interaction 354

NMR shielding tensors 90

NaN
– bond 217

– contacts 171, 172

NNA see non-nuclear attractors and nearest-

neighbor approximation

non-bonded charge concentration (NBCC)

182

non-bonded interactions 130

non-bonded maxima (NBM) 177, 178

non-nuclear attractors (NNA) 6, 168, 191–

193, 208, 314

non-nuclear maxima (NNM) 6, 216, 218,

314, 225, 226

non-stationary point geometry 62, 83, 84

normal mode vibration 80

normalized spherical harmonics 126

normal-mode vibrational coordinates 79, 80

NR see Newton–Raphson
N-representability problem 378

nuclear critical points 2, 4, 168

nuclear momentum operator 86

nuclear virial energy 62, 68, 83, 86

nucleophilic attack 249, 250

nucleus-independent chemical shift (NICS)

400–420

null (zero value) molecular property 61, 62,

64, 66, 70

numerical integration error 29

o
observables 16

occupation numbers 378

octet rule 155

OH fragment transferability 332

OaH���O hydrogen bond 448, 462

oligopeptide molecules 336ff.

one-electron density matrix 56, 123, 166,

260, 263

open quantum system 44

open-shell character 355

orbital conservation 54

orbital models 54

ORCRIT 289, 290

origin-dependent atomic charge-transfer

dipole contribution 72

origin-dependent atomic contributions 61,

68, 87

origin-dependent atomic property 85
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origin-dependent charge transfer term 62

origin-dependent polarization term 62

origin-independent atomic contribution 61

origin-independent property density 61

overlap function at a point 125

p
packing forces 368

PAH see polycyclic hydrocarbon
pair density 166, 376

– functions 376

para-delocalization index (PDI) 404ff., 410,

414, 415, 417

paramagnetic spin–orbit 378

para-nitroaniline 71ff., 74, 76ff.

PASA see promolecular atom shell

approximation

path integral approach 49

Pauli

– exclusion principle 377

– repulsion 144, 381, 438

PBH see polybenzenoid hydrocarbons

PCl5 155

PDI see para-delocalization index

penamecillin 499, 504

penicillin 506, 507

– derivative 504

n-pentacosane 114

pentadecane 114

pentane 111, 113, 115, 194

peptide

– bond 328

– crystals 297

– HNaHaCaaCbO group 299

– plane HNaHaCaaCbO 294

pericyclic concerted reaction 418

periodic systems 231

perovskites 214

pharmacophores 499

phenanthrene 8, 392ff., 408, 416

phenol 332

pKa of weak acid 26

Poincaré–Hopf formula (relationship) 4,

6 f., 66, 209

point-charge models 122

polar bonds 215, 455

polarizability 64, 78, 80, 110, 111, 400, 483

– tensor 11103

polybenzenoid hydrocarbons (PBHs) 391,

393, 394

– aromatic dilution 394

polycyclic aromatic hydrocarbons (PAHs)

404, 409, 410, 416, 417

polymorphism 208

polysynaptic basins 438

population analysis 145

porphyrin 288

post Hartree–Fock wave functions 27–30,

127

potential energy density 8, 12, 25, 56, 259,

262ff., 349, 354, 381, 462

powerwall mode 505

primary bundle 211, 212

principle

– of least action 38

– of stationary action 47, 49

PROAIM 27, 29, 193, 477

procrystal 267

PROMEGA 193

promolecular atom shell approximation

(PASA) 290

promolecular model 217, 222

promolecule maps 300

propane 98, 109ff., 194

propellane 99, 114

proper open quantum system 7, 8, 50

proper operator 50

properties after molecular reconstruction

481

protein

– binding site 313

– crystal structures 285

– crystallography 285

– electrostatic properties 287

– main chain HNaCbO peptide plane

288

– molecules 336ff.

– refinement 289

– retention time 26

– stability 26

– structure 289, 311

protein–DNA docking 290

protein–ligand interaction energies 289

protein–protein docking 290

protein–protein interaction energies 289

proton–proton vicinal coupling constants

380

pseudoatom 7, 275, 329

– fragments 317

pseudoatomic density 261

pseudopotential 169, 222

pyracelene 408

pyridine 406, 408

pyrimidine 408

q
QTAMC see quantum theory of atoms in

molecules and crystals
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quadrupole moment 24

quality of an atomic integration 18

quantitative structure–activity/property

relationship 473

quantum

– observables 37

– self-similarity measure 487

– stress tensor density 51

– vector current density 51

quantum theory of atoms in molecules and

crystals (QTAMC) 259, 272

quinoline 408

r
radial density functions 261

radius concept 207

Raman

– scattering intensity 95, 97 ff., 103ff.

– spectroscopy 95

rank 4

reciprocal space vectors 289

RECON 476ff.

reduced density matrices 121

reference density 188

regularity in the genetic code 24

Reiss–Münch theorem 475

relative hardness 400

relativistic effects 55

relief map of the electron density 2

residual electron density 318, 337

resonance structures 416

resonance-assisted hydrogen bonds 457, 458

response properties 62

R-factor 336

ring

– critical point (CP) 4, 5, 168, 388

– currents 399

– strain 5

– surface 5

rotational barriers 375

s
scanning tunneling microscopy (STM) 237

Schrock carbene 512

Schrödinger’s

– functional 46

– kinetic energy 17

– time dependent equation 41

Schwinger’s principle of stationary action 8,

46, 50, 476

scorpion toxin 288

SCVS see self-consistent virial scaling
SD see softening degree

second atomic electrostatic moment 24

second-order (pair) density 401

second-order density matrix 14

second-order Jahn–Teller symmetry rule 54

self-consistent virial scaling (SCVS) 30, 85,

86

self-interaction 124

separability 394 (s–p)

SES see sodium electrosodalite

SF4 155

SF6 155

shared-shell

– character 445

– interactions 174, 441, 443

sharing of electrons 13

shell structure 346

SHELXL 336

short strong hydrogen bond (SSHB) 463

Si crystal 225, 226

Si(111)(1� 1) 180ff., 184

Si(111)(1� 1)aH 181

– surface 180

Si(111)(2� 1) 180

– reconstructed surface 184ff.

– surface 185

Si2Me2 157

Si2Me4 157

side-chain fragments 308

signature 4

silanes 114, 117 f.

silicon bulk 182

similarity index 26, 488

single-enantiomer drugs 336

singlet diradicals 393

SiaO bonds in silicates 436

SiaSi bond properties 180

slab model 180, 181

sodium electrosodalite (SES) 186, 190ff.

softening degree (SD) 447

solid peoperties 207

source contribution 198, 201

source function 165, 192ff., 196ff., 201 f.

spherical harmonics 125

spin density 148, 190, 191

spin population 16, 143

spin–dipolar interactions 378

spin-independent electron correlation 272

spin-less pair density 401

SaS
– bond 242, 251, 427

– bond critical points 242, 245

– bond paths 242

– interatomic surface 253

SSHB see short strong hydrogen bond

stability of gradient vector field 53
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p–p stacking interaction 25

STM see scanning tunneling microscopy

stress tensor 64

strong hydrogen bonds 455

strong van der Waal’s covalent interactions

440

structural stability 52, 53

substituent effects 412

supramolecular chemistry 186

surface

– contribution 46

– derivatives 75

– flux 47

– layer 182

– terms 46

symmetry-stabilized agostic interaction 368

synaptic order 145, 166, 438

synchrotron radiation 318ff.

t
TAE see transferable atom equivalent

tert-butylcyclohexane 391

tetalin 392

tetracyclene 99

tetracyclo-[5.3.1.12; 6.04; 9]-dodecane (iceane)

115

tetrahydroimidazol[4,5-d]imidazole 429

tetralin 395

thermodynamic property 208

– of ice VIII 437

– partitioning 220

Thomas–Fermi

– approximation 263

– kinetic energy functional 438

three-center (3c) systems 357

three-center bonding 356ff.

TiCl3(C2H5) 366

time-independent electric field 74

TMS see transition metal sulfides

topological atoms 123, 129

topological multipole expansion 122

topological polymorphism 215

topological polytypism 208, 214, 215

topological properties 376

TOPOND 27, 165ff., 170

TOPXD 168ff.

total energy 123

total energy density 346, 432

total molecular volume 178

total polarization contribution 73

transferability 55, 56, 82, 111, 194, 287, 294,

297 f., 317, 324, 327, 331, 332, 504

transferable atom equivalent (TAE) 474ff.,

513

transferable methylene contribution 77

transferable multipolar data 289

transition metal sulfides (TMS) 236

transition probability 26

transition metal

– atoms 509ff.

– carbonyl complexes 351

– ions 511

triazine 408

triphenylene 408

trisynaptic basins 145, 438

TS see aromatic transition state

two-center bonding 349ff.

two-center–two-electron (2c–2e) bonds 349

two-electron density matrix 166, 260

tyrosine 22, 24, 294, 299

tyrosine–glycine peptide bond 294

u
uniform electron gas 272

unsaturated hydrocarbons 117 f.

urea 171ff., 264ff.

– crystal 171, 177

v
valence basin 142, 438

– populations 149

valence flatness 315

valence shell charge concentration (VSCC)

149, 177, 182, 347, 349, 350, 355, 502

valence shell charge depletion (VSCD) 502,

508

valence shell electron pair repulsion (VSEPR)

model 141, 149, 150, 153ff., 157, 158,

378, 511

– electron domains 149ff.

van der Waals

– bonds in graphite 219

– complexes 454

– interactions 455

– repulsion 383

variation of the surface 45

vibrational frequency 84, 96

vibrational modes 96

vibrational spectra 79

virial 30

virial field 12, 56

virial graph 8

virial of the electronic Ehrenfest force 83

virial operator 83

virial path 8, 9, 260

virial ratio 20, 29

virial theorem XX, 20, 29, 37, 52, 85, 260,

271, 432
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virtual high-throughput screening 473

vitamin B12 320, 321, 323

VmoPro 307, 309, 311

volume rendering 500

volumes 150, 178

von Weizäcker kinetic energy functionals

438

VSCC see valence shell charge

concentrations

VSCD see valence shell charge depletion

VSEPR see valence shell electron pair

repulsion

w
W(CO)3(PR3)2(H2) 364

Walter Kohn XXII

water 276

water dimer 137, 138, 199

Watson–Crick base pair 415

wavefunction 27, 42, 85

weak hydrogen bonds 455

weak interactions 441

weak van der Waal’s covalent interactions

440

WIEN 223

WIEN’s fpLAPW 225

x
XD 165, 168, 169

XaH���FaY complexes 443, 444

XaH���O hydrogen-bonding interactions in

crystals 436

XaH���Y hydrogen bonds 499

(XH3)(CO)3CoaCo(CO)3(XH3) molecules

355

X-ray absorption fine structure (EXAFS) 236

XTAL 289, 290, 298, 300, 303

z
zero flux

– condition 6, 9, 17, 44, 46, 275

– surface 6, 9, 10, 44, 48, 323, 354, 426,

429
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