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Preface

Since 1994 when the last edition of the present monograph was published, the field of Nonlin-

ear Science has developed tremendously. It is nowadays no longer possible to give a compre-

hensible introduction into, and a balanced overview of the different branches within this field.

Following the general practice of the previous editions it is the scope of this fourth augmented

edition to introduce aspects of Nonlinear Dynamics at a level which is accessible to a wide

audience. We have intensified and added three new topics:

– Control of chaos is one of the most popular branches of Nonlinear Science. As a partic-

ular new aspect we have included a comprehensive discussion of time-delayed feedback

control which is widely used in applications.

– Topics in synchronization became recently quite popular from a fundamental as well as

an applied point of view. We introduce basic concepts as well as novel notions like phase

synchronization or strange nonchaotic, attractors, at an elementary level.

– Spatiotemporal chaos covers a wide range of topics, from classical fields in physics such

as hydrodynamics to current research topics in theoretical biophysics, which are com-

monly related with the nonlinear dynamics of a large number of degrees of freedom. We

introduce here basic features of relevant model systems as well as selected concepts for

quantitative analysis. But our exposition is far from complete.

The fourth edition benefits from data and figures that have been provided by several col-

leagues, in particular by R. Klages, J. Kurths, A. Pikovski, H. Posch, and M. Rosenblum. It

is a pleasure to thank E. Schöll for his kind hospitality during a stay at Berlin University of

Technology, where parts of the new edition were written. We are indebted to the publisher, in

particular to Dr. M. Bär and R. Schulz, for their continual help in preparing the manuscript.

Despite the remarkable support from various people the present edition could still contain

mistakes. We apologize in advance for such inconsistencies and we invite the reader to report

to us any deficiencies.

Kiel/London, October 2004
H. G. Schuster, W. Just



x Preface

Preface to the Third Edition
Since the last edition of this book in 1989 the field of deterministic chaos has continued to

grow. Within the wealth of new results there are three major trends.

– Unstable periodic orbits have been rediscovered as building blocks of chaotic dynamics,

especially through the work of Cvitanovich et al. (1990). They developed an expansion

of physical averages in terms of primitive cycles (see also Appendix H).

– Exploiting the concept of unstable periodic orbits, Ott, Grebogi and Yorke demonstrated

in 1990 that deterministic chaos can be controlled. They found that small time-dependent

changes in the control parameter of the system can stabilize previously unstable periodic

cycles in such a way that the system becomes nonchaotic (see Chapter 10).

– There are new theoretical and experimental results in the field of quantum chaos which

are described excellently in the new books by Gutzwiller (1990), Haake (1991) and Re-

ichl (1992).

During the preparation of the new edition, J. C. Gruel helped with the pictures of the new

chapter, Mrs. H. Heimann typed the new text, M. Poulson and R. Wengenmayr from VCH

Publishers took care of the editorial work. H. J. Stockmann and H. J. Stein contributed the

fascinating pictures of simulations of quantum chaos in microwave resonators. I would like to

thank all these people for their cooperation and patience.

Kiel, August 1994
H. G. Schuster

Preface to the Second Edition
This is a revised and updated version of the first edition, to which new sections on sensitive

parameter dependence, fat fractals, characterization of attractors by scaling indices, the Farey

tree, and the notion of global universality have been added. I thank P. C. T. de Boer, J. L.

Grant, P. Grassberger, W. Greulich, F. Kaspar, K. Pawelzik, K. Schmidt, and S. Smid for

helpful hints and remarks, and Mrs. Adlfinger and Mrs. Boffo for their patient help with the

manuscript.

Kiel, August 1987
H. G. Schuster

Preface to the First Edition
Daily experience shows that, for many physical systems, small changes in the initial condi-

tions lead to small changes in the outcome. If we drive a car and turn the steering wheel only

a little, our course will differ only slightly from that which the car would have taken without

this change. But there are cases for which the opposite of this rule is true: For a coin which is

placed on its rim, a slight touch is sufficient to determine the side on which it will fall. Thus



Preface xi

the sequence of heads and tails which we obtain when tossing a coin exhibits an irregular or

chaotic behavior in time, because extremely small changes in the initial conditions can lead

to completely different outcomes. It has become clear in recent years, partly triggered by the

studies of nonlinear systems using high-speed computers, that a sensitive dependence on the

initial conditions, which results in a chaotic time behavior, is by no means exceptional but is

a typical property of many systems. Such behavior has, for example, been found in period-

ically stimulated cardiac cells, in electronic circuits, at the onset of turbulence in fluids and

gases, in chemical reactions, in lasers, etc. Mathematically, all nonlinear dynamical systems

with more than two degrees of freedom, i. e.,, especially many biological, meteorological or

economic models, can display chaos and, therefore, become unpredictable over longer time

scales. “Deterministic chaos” is now a very active field of research with many exciting results.

Methods have been developed to classify different types of chaos, and it has been discovered

that many systems show, as a function of an external control parameter, similar transitions

from order to chaos. This universal behavior is reminiscent of ordinary second-order phase

transitions, and the introduction of renormalization and scaling methods from statistical me-

chanics has brought new perspectives into the study of deterministic chaos. It is the aim of

this book to provide a self-contained introduction to this field from a physicist’s point of view.

The book grew out of a series of lectures, which I gave during the summer terms of 1982 and

1983 at the University of Frankfurt, and it requires no knowledge which a graduate student

in physics would not have. A glance at the table of contents shows that new concepts such

as the Kolmogorov entropy, strange attractors, etc., or new techniques such as the functional

renormalization group, are introduced at an elementary level. On the other hand, I hope that

there is enough material for research workers who want to know, for example, how deter-

ministic chaos can be distinguished experimentally from white noise, or who want to learn

how to apply their knowledge about equilibrium phase transitions to the study of (nonequilib-

rium) transitions from order to chaos. During the preparation of this book the manuscripts,

preprints and discussion, the remarks of G. Eilenberger, K. Kehr, H. Leschke, W. Selke, and

M. Schmutz were of great help. P. Berge, M. Dubois, W. Lauterborn, W. Martienssen, G.

Pfister and their coworkers supplied several, partly unpublished, pictures of their experiments.

H. O. Peitgen, P. H. Richter and their group gave permission to include some of their most

fascinating computer pictures in this book (see cover and Section 6.4). All contributions are

gratefully appreciated. Furthermore, I want to thank W. Greulich, D. Hackenbracht, M. Heise,

L. L. Hirst, R. Liebmann, I. Neil, and especially I. Procaccia for carefully reading parts of the

manuscript and for useful criticism and comments. I also acknowledge illuminating discus-

sions with V. Emery, P. Grassberger, D. Grempel, S. Grossmann, S. Fishman, and H. Horner.

It is a pleasure to thank R. Hornreich for the kind hospitality extended to me during a stay

at the Weizmann Institute, where several chapters of this book were written, with the support

of the Minerva foundation. Last but not least, I thank Mrs. Boffo and Mrs. Knolle for their

excellent assistance in preparing the illustrations and the text.

Frankfurt, October 1984
H. G. Schuster



Legends to Plates I–XX

Many of these plates are part of Chapter 6. Accordingly, references mentioned in the legends

are to be found on pages 89–125.

I. Biperiodic flow in a Bénard experiment. Figs. 1–8 show interferometric pictures of a

Bénard cell in the biperiodic regime; that is, there are two incommensurate frequencies

in the power spectrum (see also pages 2.1.2–2.1.2). The time between successive pictures

is 10 s. The first period lasts 40 s after which the “mouth” in the middle of the pictures

repeats itself (see Figs. 1 and 5). But the details, e. g., in the upper right corners of Figs. 1

and 5 are not the same; that is, the motion is not simply periodic. (From a film taken by

P. Berge and M. Dubois, CEN Saclay, Gif-sur-Yvette, France.) [page xv]

II. Nonlinear electronic oscillator (see also Fig. 46 on page 66): The current-versus-voltage

phase portraits (at the nonlinear diode) are shown on the oscilloscope screen. For increas-

ing driving voltage one observes the period-doubling route. The nonlinearity of the diode

that has been used in this experiment differs from eq. 4.119. (Picture taken by W. Meyer-

Ilse, after Klinker et al., 1984.) [page xvi]

III. Taylor instability. a) Formation of rolls, b) the rolls start oscillating, c) a more com-

plicated oscillatory motion, d) chaos. (After Pfister, 1984; see also pages 133–136.)

[page xvi]

IV. Disturbed heartbeats. The voltage difference (black) across the cell membrane of one

cell of an aggregate of heart cells from embryonic chicken shows a) phase locking with

the stimulating pulse and b) irregular dynamics, displaying escape or interpolation beats

if the time between successive periodic stimuli (red) is changed from 240 ms in a) to

560 ms in b). (After Glass et al., 1983; see also page 7.3.3.) [page xvii]

V. Chaotic electrical conduction in BSN crystals. The birefringence pattern of a ferroelec-

tric BSN crystal shows domain walls which mirror the charge transport near the onset of

chaos (see also Fig. 116 on page 153). For clarity, the dark lines in the original pattern

have been redrawn in red. (After Martin et al., 1984.) [page xvii]

VI. Power spectra of cavitation noise: The noise amplitude is depicted in colors, and the

input pressure is increasing linearly with time. One observes (with increasing pressure)

a subharmonic route f0 → f0/2 → f0/4 → chaos. This picture is the colored version of

Fig. 47c on page 67. (Picture taken by E. Suchla, after Lauterborn and Cramer, 1981.)

[page xviii]

VII. The Cassini division. The ring of Saturn (a) shows a major gap (b), the so-called Cassini

division, because the motion on this orbit is unstable (see also Fig. 142 on page 174).

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5



xiv Color Plates

(NASA pictures no. P-23068 and P-23207 with permission from Bildarchiv, Baader Plan-

etarium.) [page xviii]
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1 Introduction

Ante mare et terras et, quod tegit omnia,
caelum Unus erat toto naturae vultus in

orbe, Quem dixere Chaos, rudis
indigestaque moles Nec quicquam nisi
pondus iners congestaque eodem Non

bene iunctarum discordia semina rerum.
Ovid

It seems appropriate to begin a book which is entitled “Deterministic Chaos” with an expla-

nation of both terms. According to the Encyclopaedia Britannica the word “chaos” is derived

from the Greek “χαoσ” and originally meant the infinite empty space which existed before

all things. The later Roman conception interpreted chaos as the original crude shapeless mass

into which the Architect of the world introduces order and harmony. In modern usage which

we will adopt here, chaos denotes a state of disorder and irregularity.

In the following, we shall consider physical systems whose time dependence is determin-

istic, i. e., there exists a prescription, either in terms of differential or difference equations, for

calculating their future behavior from given initial conditions. One could assume naively that

deterministic motion (which is, for example, generated by continuous differential equations) is

rather regular and far from being chaotic because successive states evolve continuously from

each other. But it was already discovered at the turn of the century by the mathematician H.

Poincaré (1892) that certain mechanical systems, whose time evolution is governed by Hamil-

ton’s equations, could display chaotic motion. Unfortunately, this was considered by many

physicists as a mere curiosity, and it took another 70 years until, in 1963, the meteorologist

E. N. Lorenz found that even a simple set of three coupled, first-order, nonlinear differential

equations can lead to completely chaotic trajectories. Lorenz’s paper, the general importance

of which is recognized today, was also not widely appreciated until many years after its publi-

cation. He discovered one of the first examples of deterministic chaos in dissipative systems.

In the following, deterministic chaos denotes the irregular or chaotic motion that is gen-

erated by nonlinear systems whose dynamical laws uniquely determine the time evolution of

a state of the system from a knowledge of its previous history. In recent years – due to new

theoretical results, the availability of high speed computers, and refined experimental tech-

niques – it has become clear that this phenomenon is abundant in nature and has far-reaching

consequences in many branches of science (see the long list in Table 1, which is far from

complete).
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Table 1: Some nonlinear systems which display deterministic chaos. (For numerals, see “References”

on page 259.)

Forced pendulum [1]

Fluids near the onset of turbulence [2]

Lasers [3]

Nonlinear optical devices [4]

Josephson junctions [5]

Chemical reactions [6]

Classical many-body systems (three-body problem) [7]

Particle accelerators [8]

Plasmas with interacting nonlinear waves [9]

Biological models for population dynamics [10]

Stimulated heart cells (see Plate IV at the beginning of the book) [11]

We note that nonlinearity is a necessary, but not a sufficient condition for the generation

of chaotic motion. (Linear differential or difference equations can be solved by Fourier trans-

formation and do not lead to chaos.) The observed chaotic behavior in time is neither due to

external sources of noise (there are none in the Lorenz equations) nor to an infinite number

of degrees of freedom (in Lorenz’s system there are only three degrees of freedom) nor to

the uncertainty associated with quantum mechanics (the systems considered are purely clas-

sical). The actual source of irregularity is the property of the nonlinear system of separating

initially close trajectories exponentially fast in a bounded region of phase space (which is,

e. g., three-dimensional for Lorenz’s system).

It becomes therefore practically impossible to predict the long-time behavior of these sys-

tems, because in practice one can only fix their initial conditions with finite accuracy, and

errors increase exponentially fast. If one tries to solve such a nonlinear system on a computer,

the result depends for longer and longer times on more and more digits in the (irrational) num-

bers which represent the initial conditions. Since the digits in irrational numbers (the rational

numbers are of measure zero along the real axis) are irregularly distributed, the trajectory

becomes chaotic.

Lorenz called this sensitive dependence on the initial conditions the butterfly effect, be-

cause the outcome of his equations (which describe also, in a crude sense, the flow of air in the

earth’s atmosphere, i. e., the problem of weather forecasting) could be changed by a butterfly

flapping wings. This also seems to be confirmed sometimes by daily experience.

The results described above immediately raise a number of fundamental questions:

– Can one predict (e. g., from the form of the corresponding differential equations) whether

or not a given system will display deterministic chaos?

– Can one specify the notion of chaotic motion more mathematically and develop quanti-

tative measures for it?

– What is the impact of these findings on different branches of physics?

– Does the existence of deterministic chaos imply the end of long-time predictability in

physics for some nonlinear systems, or can one still learn something from a chaotic

signal?
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Figure 1: Classification of systems which display deterministic chaos. (We consider in the following

only classical dissipative systems, i. e., no quantum systems with dissipation.)

The last question really goes to the fundaments of physics, namely the problem of predictabil-

ity. The shock which was associated with the discovery of deterministic chaos has therefore

been compared with that which spread when it was found that quantum mechanics only allows

statistical predictions.

Those questions mentioned above, to which some answers already exist, will be discussed

in the remainder of this book. It should be clear, however, that there are still many more

unsolved than solved problems in this relatively new field.

The rest of the introduction takes the form of a short survey which summarizes the con-

tents of this book. Figure 1 shows that one has to distinguish between deterministic chaos

in dissipative systems (e. g., a forced pendulum with friction) and conservative systems (e. g.,

planetary motion which is governed by Hamilton’s equations).

The first six chapters are devoted to dissipative systems. We begin with a review of some

representative experiments in which deterministic chaos has been observed by different meth-

ods. As a next step, we explain the mechanism which leads to deterministic chaos for a simple

model system and develop quantitative measures to characterize a chaotic signal. This allows

us to distinguish different types of chaos, and we then show that, up to now, there are at least

three routes or transitions in which nonlinear systems can become chaotic if an external con-

trol parameter is varied. Interestingly enough, all these routes can be realized experimentally,

and they show a fascinating universal behavior which is reminiscent of the universality found

in second-order equilibrium phase transitions. (Note that the transitions to chaos in dissipative

systems only occur when the system is driven externally, i. e., is open.) In this context, univer-

sality means that there are basic properties of the system (such as critical exponents near the

transition to chaos) that depend only on some global features of the system (for example, the

dimensionality).

The most recent route to chaos has been found by Grossmann and Thomae (1977), Feigen-

baum (1978), and Coullett and Tresser (1978). They considered a simple difference equation

which, for example, has been used to describe the time dependence of populations in biology,

and found that the population oscillated in time between stable values (fixed points) whose

number doubles at distinct values of an external parameter. This continues until the number

of fixed points becomes infinite at a finite parameter value, where the variation in time of the



4 1 Introduction

population becomes irregular. Feigenbaum has shown, and this was a major achievement, that

these results are not restricted to this special model but are in fact universal and hold for a large

variety of physical, chemical, and biological systems. This discovery has triggered an explo-

sion of theoretical and experimental activity in the field. We will study this route in Chapter 4

and show that its universal properties can be calculated using the functional renormalization

group method.

A second approach to chaos, the so-called intermittency route, has been discovered by

Manneville and Pomeau (1979). Intermittency means that a signal which behaves regularly (or

laminarly) in time becomes interrupted by statistically distributed periods of irregular motion

(intermittent bursts). The average number of these bursts increases with the variation of an

external control parameter until the motion becomes completely chaotic. It will be shown in

Chapter 5 that this route also has universal features and provides a universal mechanism for

1/ f -noise in nonlinear systems.

Yet a third possibility was found by Ruelle and Takens (1971) and Newhouse (1978). In

the seventies they suggested a transition to turbulent motion which was different from that

proposed much earlier by Landau (1944, 1959). Landau considered turbulence in time as the

limit of an infinite sequence of instabilities (Hopf bifurcations) each of which creates a new

basic frequency. However, Ruelle, Takens, and Newhouse showed that after only two instabil-

ities in the third step, the trajectory becomes attracted to a bounded region of phase space in

which initially close trajectories separate exponentially, such that the motion becomes chaotic.

These particular regions of phase space are called strange attractors. We will explain this con-

cept in Chapter 6, where we will also discuss several methods of extracting information about

the structure of the attractor from the measured chaotic time signal. The Ruelle–Takens–

Newhouse route is (as are the previous two routes) well verified experimentally, and we will

present some experimental data which show explicitly the appearance of strange attractors in

Chapter 7.

To avoid the confusion which might arise by the use of the word turbulence, we note that

what is meant here, is only turbulence in time. The results of Ruelle, Takens, and Newhouse

also concern the onset of turbulence or chaotic motion in time. It is in fact one of the aims (but

not yet the result) of the study of deterministic chaos in hydrodynamic systems, to understand

the mechanisms for fully developed turbulence, which implies irregular behavior in time and

space.

We now come to the second branch in Fig. 1, which denotes chaotic motion in conservative

systems. Many textbooks give the incorrect impression that most systems in classical mechan-

ics can be integrated. But as mentioned above, Poincaré (1892) was already aware that, e. g.,

the nonintegrable three-body problem of classical mechanics can lead to completely chaotic

trajectories. About sixty years later, Kolmogorov (1954), Arnold (1963), and Moser (1967)

proved, in what is now known as the KAM theorem, that the motion in the phase space of

classical mechanics is neither completely regular nor completely irregular, but that the type of

trajectory depends sensitively on the chosen initial conditions. Thus, stable regular classical

motion is the exception, contrary to what is implied in many texts.

A study of the long-time behavior of conservative systems, which will be discussed in

Chapter 8, is of some interest because it touches on such questions as: Is the solar system

stable? How can one avoid irregular motion in particle accelerators? Is the self-generated

deterministic chaos of some Hamiltonian systems strong enough to prove the ergodic hypoth-
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esis? (The ergodic hypothesis lies at the foundation of classical statistical mechanics and

implies that the trajectory uniformly covers the energetically allowed region of classical phase

space such that time averages can be replaced by the average over the corresponding phase

space.)

In Chapter 8 we consider the behavior of quantum systems whose classical limit displays

chaos. Such investigations are important, for example, for the problem of photodissociation,

where a molecule is kicked by laser photons, and one wants to know how the incoming energy

spreads over the quantum levels. (The corresponding classical system could show chaos be-

cause the molecular forces are highly nonlinear.) For several examples we show that the finite

value of Planck’s constant leads, together with the boundary conditions, to an almost-periodic

behavior of the quantum system even if the corresponding classical system displays chaos.

Although the difference between integrable and nonintegrable (chaotic) classical systems is

still mirrored in some properties of their quantum counterparts (for example in the energy

spectra), many problems in this field remain unsolved.

As already mentioned in the preface, the field of deterministic chaos continued to grow

after the last edition of this book in 1989. Especially the concept of unstable periodic orbits

has been rediscovered and developed further by Cvitanovich et al. (1990). Unstable periodic

orbits are the building blocks of chaotic dynamics, and their importance was already known

by Poincaré (1892) and Ruelle (1978).

Exploiting this concept, Ott, Grebogi and Yorke showed in 1990 that deterministic chaos

can be controlled. As we will show in Chapter 10, unstable periodic orbits, which are con-

tained in all chaotic systems, can be stabilized by small time-dependent changes of the control

parameter of the system in such a way that the dynamical behavior becomes non-chaotic. Con-

trol of chaos is, because of its possible technical applications, an extremely active field where

one would hope to make interesting new progress, especially for spatially coupled chaotic

systems.

Synchronization phenomena are related to control problems as, in very simple cases, a

desired state can be reached by external periodic modulation. But synchronization includes

much richer phenomena, especially when nonlinear and chaotic dynamical systems are con-

sidered. Chapter 11 presents a brief introduction into this field.

The study of spatiotemporal chaotic motion is still in its infancy. In Chapter 12 we present

a selection of phenomena and approaches which may turn out to be among the cornerstones on

which a consistent and systematic exposition of this topic may be based. However, an ultimate

answer is currently not available.
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In the first part of this chapter, we review some experiments in which deterministic chaos

has been detected by different methods. In the second part, we present some simple systems

which exhibit chaos and which can be treated analytically.

2.1 Experimental Detection of Deterministic Chaos

In the following section, we will discuss the appearance of chaos in four representative sys-

tems.

2.1.1 Driven Pendulum

Let us first consider the surprisingly simple example of a periodically driven pendulum. Its

equation of motion is

θ̈+ γ θ̇+ sinθ = Acos(ω t) (2.1)

where the dot denotes the derivative with respect to time t, γ is the damping constant, and the

right hand side describes a driving torque with amplitude A and frequency ω. (The coefficients

of θ̈ and sinθ have been normalized to unity by choosing appropriate units for t and A). This

equation has been numerically integrated for different sets of parameters (A, ω, γ), and Fig. 2

shows that the variation of the angle θ with time simply “looks chaotic” if the amplitude A of

the driving torque reaches a certain value Ac. This is a possible, but rather imprecise criterion

for chaos.

Before we proceed to improvements, three comments are in order. First, we would like

to recall the well-known fact that the linearized version of the pendulum equation can be

integrated exactly and does not lead to chaos. The emergence of chaos in the solutions of

eq. (2.1) is, therefore, due to the nonlinear term sinθ. Second, it follows from Fig. 2b and

2d that chaos sets in if the pendulum is driven over the summit where the system displays

sensitive dependence on initial conditions (a tiny touch determines, at θ = π, whether the

pendulum makes a left or right turn). Third, we would like to point out that as a function of

the parameters A and ω, the behavior of the pendulum switches rather wildly between regular

and chaotic motion, as shown in Fig. 2e.
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Figure 2: Transition to chaos in a driven pendulum. a) Regular motion at small values of the amplitude

A of the driving torque. b) Chaotic motion at A = Ac (note the different scales for θ). c) and d) Regular

and irregular trajectories in phase space (θ̇,θ) which correspond to a) and b). e) Phase diagram of the

driven pendulum (γ = 0.2, θ(0) = 0, θ̇(0) = 0). Black points denote parameter values (A, ω) for which

the motion is chaotic. (After Bauer, priv. comm.)
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2.1.2 Rayleigh–Bénard System in a Box
Chaotic motion means that the signal displays an irregular and aperiodic behavior in time. To

distinguish between multiply periodic behavior (which can also look rather complicated) and

chaos, it is often convenient to Fourier-transform the signal x(t):

x(ω) = lim
T→∞

Z T

0
d t eiωt x(t) . (2.2)

For multiply periodic motion, the power spectrum

P(ω) ≡ |x(ω)|2 (2.3)

consists only of discrete lines of the corresponding frequencies, whereas chaotic motion

(which is completely aperiodic) is indicated by broad noise in P(ω) that is mostly located at

low frequencies. Such a transition from periodic motion to chaos is presented in the second

line of Table 2 which shows the power spectrum of the velocity of the liquid in the x-direction

for a Bénard experiment.

In the Bénard experiment, a fluid layer (with a positive coefficient of volume expansion) is

heated from below in a gravitational field, as shown in Fig. 3. The heated fluid at the bottom

“wants” to rise, and the cold liquid at the top “wants” to fall, but these motions are opposed by

viscous forces. For small temperature differences ∆T , viscosity wins; the liquid remains at rest

and heat is transported by uniform heat conduction. This state becomes unstable at a critical

value Ra, of the Rayleigh number R (which is proportional to ∆T , see Appendix A), and a

state of stationary convection rolls develops. If R increases, a transition to chaotic motion is

observed beyond a second threshold Rc.

In order to avoid the appearance of complex spatial structures, actual experiments to de-

tect chaos (in time) in a Rayleigh–Bénard system are usually performed in a small cell (see

Fig. 3c). The boundary conditions limit the number of rolls, that is the number of degrees

of freedom that are counted by the number of Fourier components needed to describe the

spatial structure of the fluid pattern. Besides ∆T , the observed dynamical behavior depends

sensitively on the liquid chosen and on the linear dimensions (a, b, c) of the box (see, for

example, Libchaber and Maurer, 1982). Table 2 shows the power spectrum of the velocity in

Figure 3: The Rayleigh–Bénard instability. a) and b) Transition from heat conduction to convection

rolls in an infinitely extended two-dimensional fluid layer. c) Experiments to detect deterministic chaos

in time are performed in a “match box”.
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Table 2: Detection of chaos in simple systems.

System Equation of Motion Indication

Pendulum θ̈+ γθ̇+gsinθ = Acosωt
x = θ, y = θ̇, z = ωt
ẋ = y
ẏ = −γy−gsinx+Acosz
ż = ω

Signal

Bénard

experiment

ẋ = −σx+σy
ẏ = rx− y− xz
ż = xy−bz

Power Spectrum

Belousov–

Zhabotinsky

Reaction

Ce2(SO4)3
...

Ce4+

�̇x = �F(�x,λ)
�x = [c1, c2, . . .cd ]

Correlation function

Hénon–

Heiles

System

H =
1

2

2

∑
i=1

(p2
i +q2

i )+

+q2
1q2 − 1

3
q3

2

�̇p = −∂H
∂�q

, �̇q =
∂H
∂�p

Poincaré Map

the x-direction, measured via the Doppler effect in light scattering experiments (Swinney and

Gollub, 1978; see also plate I [at the beginning of the book] for a set of interferometric pic-

tures of a Bénard cell). To describe the Bénard experiment theoretically, Lorenz truncated the

complicated differential equations which describe this system (see Appendix A) and obtained

the equations of the so-called Lorenz model:

Ẋ = −σX +σY (2.4a)

Ẏ = rX −Y −XZ (2.4b)

Ż = XY −bZ (2.4c)
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Figure 4: Flow of chemicals in a well stirred reactor. c1(0) . . .cM(0) are the initial concentrations of the

chemicals, and c1 . . .cN(t) are the output concentrations.

where σ and b are dimensionless constants which characterize the system, and r is the control

parameter which is proportional to ∆T . The variable X is proportional to the circulatory fluid

flow velocity, Y characterizes the temperature difference between ascending and descending

fluid elements, and Z is proportional to the deviations of the vertical temperature profile from

its equilibrium value. A numerical analysis of this apparently simple set of nonlinear differ-

ential equations shows that its variables can exhibit chaotic motion above a threshold value

rc (see Appendix B). It should be noted, however, that the Lorenz equations describe the

Bénard experiment only in the immediate vicinity of the transition from heat conduction to

convection rolls because the spatial Fourier coefficients retained by Lorenz only describe sim-

ple rolls. The chaos found by Lorenz in eqs. (2.4a–c) is, therefore, different from the chaos

seen in the experimental power spectrum in Table 2. To describe the experimentally observed

chaos, many more spatial Fourier components have to be retained.

2.1.3 Stirred Chemical Reactions
Another system in which chaotic motion has been studied experimentally in great detail is the

Belousov–Zhabotinsky reaction. In this chemical process, an organic molecule (e. g., malonic

acid) is oxidized by bromate ions; the oxidation is catalyzed by a redox system (Ce4+/Ce3+).

The reactants, which undergo 18 elementary reaction steps (see Epstein et al., 1983), are:

Ce2(SO4)3, NaBrO3, CH2(COOH)2, and H2SO4.

It is not our aim to describe these reactions in detail but to demonstrate that stirred chemical

reactions provide convenient model systems to study the onset of chaos. Figure 4 shows how

a chemical reaction is maintained in a steady state away from equilibrium by continuously

pumping the chemicals into a flow reactor where they are stirred to ensure spatial homogeneity.

For example, the reaction

A+B
k1�
k2

C (2.5)

is described by the equations:

ċA = −k1cAcB + k2cC − r[cA − cA(0)] (2.6a)

ċB = −k1cAcB + k2cC − r[cB − cB(0)] (2.6b)

ċC = k1cAcB − k2cC − r (2.6c)
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where eq. 2.6a can be interpreted as follows. The concentration cA decreases due to colli-

sions between A and B (which generate C), increases due to decays of C (into A and B),

and decreases if the flow rate r increases since for k1 = k2 = 0, eq. 2.6a can be integrated to

cA(t)− cA(0) ∼ exp(−rt).
Generalizing, the reactions of M chemicals of concentrations ci can be described by a set

of first-order nonlinear differential equations

ċi = gi{c j}− r[ci − ci(0)] ≡ Fi{c j, λ} (2.7)

where the function g j{c j} involves nonlinear terms of the form c2
i and cic j if three-body colli-

sions are neglected. The reactions can be studied as a function of the set of control parameters

λ ≡ {ci(0),k j,r} that involves the initial concentrations {ci(0)}, the temperature dependent

reaction velocities {k j} and the flow rate r. Since r influences all individual reactions and can

be easily manipulated by changing the pumping rate of the chemicals, it is usually used as the

only control parameter.

Let us now come back to the Belousov–Zhabotinsky reaction. The variable which signals

chaotic behavior in this system is the concentration c of the Ce4+ ions. It is measured by the

selective light absorption of these ions. The mean residence time of the substances in the open

reactor (i. e., r−1) acts as an external control parameter corresponding to ∆T in the previous

experiment.

Table 2 shows a transition to chaos in this system which is detected via the change in the

autocorrelation function

C(τ) = lim
T→∞

1

T

Z T

0
dt ĉ(t) ĉ(t + τ); ĉ(t) = c(t)− lim

T→∞

1

T

Z T

0
dt c(t) (2.8)

This function measures the correlation between subsequent signals. It remains constant or

oscillates for regular motion and decays rapidly (mostly with an exponential tail) if the signals

become uncorrelated in the chaotic regime (Roux et al., 1981).

It should be noted that the power spectrum P(ω) is proportional to the Fourier transforma-

tion of C(τ)

P(ω) = |ĉ(ω)|2 ∝ lim
T→∞

Z T

0
dτ eiωτC(τ) (2.9)

that is, both quantities contain the same information. Equation (2.9) can be derived by the

usual rules for Fourier transformations if one continues ĉ(t) periodically in T so that ĉ(t) =
ĉ(t +nT ) and n is an integer which leads to

ĉ(ω) = lim
T→∞

Z T

0
dt eiωt ĉ(t) = lim

T→∞

Z T

−T
dt cos(ωt)ĉ(t) . (2.10)

2.1.4 Hénon–Heiles System
Let us finally have a look at a simple nonintegrable example from classical mechanics that dis-

plays chaotic motion. In 1964 Hénon and Heiles numerically studied the canonical equations

of motion of the Hamiltonian

H =
1

2
(p2

1 + p2
2)+

1

2
(q2

1 +q2
2)+q2

1q2 − 1

3
q3

2 . (2.11)
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Figure 5: Equipotential lines V (r,θ) = const. of the Hénon–Heiles system [eq. (2.12)] in polar coordi-

nates.

This equation describes, in Cartesian coordinates q1 and q2, two nonlinearly coupled harmonic

oscillators and, in polar coordinates (r,θ), a single particle in a noncentrosymmetric potential

V (r,θ) =
r2

2
+

r3

3
sin(3θ) (2.12)

that is obtained from 1/2(q2
1 +q2

1)+q2
1q2−1/3 q3

2 via q1 = r cosθ and q2 = r sinθ (see Fig. 5).

Their investigation was motivated by empirical evidence that a star moving in a weakly

disturbed cylindrically symmetric potential should have, in addition to the energy E, another

constant of the motion I. This would imply that, for bounded motion, the trajectory of the

Hénon–Heiles system in phase space

�x(t) = [p1(t), p2(t), q1(t), q2(t)] (2.13)

where p1, p2 are the momenta, is confined (via E[�x(t)] = const. and I[�x(t)] = const.) to a

two-dimensional closed surface. In order to check this proposal, Hénon and Heiles followed

a method introduced by Poincaré (1893) and plotted the points in which the trajectory �x(t)
cuts the (p2,q2) plane. If the motion would be confined to a two-dimensional manifold, these

points should form closed curves corresponding to the cut of the two-dimensional closed sur-

face with the (p2,q2) plane. The last line in Table 2 shows that, at low energies, different

initial conditions in the Hénon–Heiles system indeed lead to closed curves in the Poincaré

map. However, for high enough energy (which acts as control parameter for this system) the

lines decay, and the points in the Poincaré map of the Hénon–Heiles model become plane-

filling. This indicates, according to Fig. 6, highly irregular chaotic motion in phase space and

the absence of an additional constant of the motion I.

To summarize:

1. We have presented four possible criteria for chaotic motion:

– The time dependence of the signal “looks chaotic”.

– The power spectrum exhibits broadband noise.

– The autocorrelation function decays rapidly.

– The Poincaré map shows space-filling points.

In all four criteria, chaos is indicated by a qualitative change. Later, we will introduce

some more quantitative measures to characterize deterministic chaos.
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Figure 6: Qualitatively different trajectories can be distinguished by their Poincaré sections: a) chaotic

motion; b) approach of a fixed point; c) cycle; d) cycle of period two.

2. A common feature of the systems listed in Table 2 is that they can be characterized by

low-dimensional first-order differential equations

�̇x = �F(�x,λ); �x = (x1 . . .xd) (2.14)

that are autonomous (i. e., �F does not contain the time explicitly) and nonlinear (�F is a

nonlinear function of the {x j}).

These equations lead to chaotic motion if an external control parameter λ (which can be the

amplitude of the driving torque for the pendulum or the temperature difference ∆T in the

Lorenz model, etc.) is varied. One distinguishes between conservative systems, for which a

volume element in phase space {�x} only changes its shape but retains its volume in the course

of time (an example is the Hénon–Heiles Hamiltonian system for which the Liouville theorem

holds) and dissipative systems, for which volume elements shrink as time increases (see also

Chapter 7).

It is often convenient to study the flow described by the equations of motion (2.14) via the

corresponding (d −1)-dimensional Poincaré map

�x(n+1) = �G[�x(n), λ]; �x(n) = [x1(n), . . .xd−1(n)] (2.15)

that is generated by cutting the trajectory in d-dimensional phase space with a (d−1)-dimen-

sional hyperplane (see Fig. 6) and by denoting the points which are generated with increasing

time by �x(1), �x(2). . . etc. The classifications “conservative” and “dissipative” can then be

generalized from flows to maps [see Chapter 6, eqs. (6.6a, b)].
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Figure 7: Hierarchy for the levels of description of dynamical systems

Let us finally comment on the way in which we shall proceed with our description of

real physical systems. One can generally distinguish several levels of description as shown in

Fig. 7.

A typical example of such a reduction process is given in Appendix A where the Navier–

Stokes equations (which already represent a coarse grained description of molecular motion)

are, for the boundary conditions of a Bénard experiment, reduced to the three differential

equations of the Lorenz model which lead in turn to different Poincaré maps (see Figs. 49,

67) corresponding to different parameter values. Another example has been given by Haken

(1975) who reduced the quantum mechanical equations for a single mode laser to a system of

three rate equations (which is equivalent to the Lorenz system) by concentrating on macro-

scopic photon densities and using the adiabatic approximation (“Slaving principle”).

In the following, we shall not be concerned with the details of this reduction process since

the step from microscopic equations to differential equations for macroscopic variables has

already been covered in several excellent books (Haken 1982, 1984), and the reduction of

differential equations to Poincaré maps can be done numerically. It should also be clear that

this reduction of a many-constituent system to a map, which describes only a few degrees of

freedom, is not always possible; a counterexample would be fully developed spatio-temporal

turbulence. Nevertheless, since it has been found experimentally effective for many physical

systems (see the following chapters), we shall in the remainder of this book concentrate mostly

on the last level in Fig. 7 where the dynamics of a system has been reduced to a one- or two-

dimensional Poincaré map. We shall use these maps as starting points for our description of

chaotic systems in the same sense as one uses the (coarse grained) Ginzburg–Landau Hamil-

tonian to derive universal properties of second-order phase transitions (Wilson and Kogut,

1974). It will then be shown that only some general features of these maps (such as, for exam-

ple, the existence of a simple maximum) determine how chaos emerges. The various “routes

to chaos” differ in the way in which the signal behaves before becoming completely chaotic.
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Although universal features of several routes to chaos have been discovered and verified

experimentally it should be stated explicitly that it is presently practically impossible to theo-

retically predict, for example, from the Navier–Stokes equations with given boundary condi-

tions, the route to chaos for a given experimental hydrodynamic system. This situation could

be compared to ordinary second-order phase transitions where one knows a lot about univer-

sality classes and critical exponents (for example, of magnetic systems) but where it is still a

formidable and often unsolved problem to predict the transition temperature of a given magnet

(Ma 1976). However, this limitation should not disappoint us. The beauty of physics reveals

itself only after asking the right questions, and it seems, from the results summarized in this

book (see especially Table 12 on page 158) that it is equally so for dynamical systems where

the question about universal features has led to the discovery of a beautiful unifying pattern

behind different phenomena in this field.

2.2 The Periodically Kicked Rotator
One of the simplest dynamical systems which displays chaotic behavior in time is the period-

ically kicked damped rotator shown in Fig 8. Its equation of motion is

ϕ̈+Γϕ̇ = F ≡ K f (ϕ)
∞

∑
n=0

δ(t −nT ), ninteger (2.16)

where the dot denotes the time derivatives; Γ is the damping constant, T is the period between

two kicks, and we normalize the moment of inertia to unity. If we make the substitutions

x = ρ, y = ρ̇, z = t, eq. (2.16) can be rewritten as a system of first-order nonlinear autonomous

differential equations

ẋ = y (2.17a)

ẏ = −Γy+K f (x)
∞

∑
n=0

δ(z−nT ) (2.17b)

ż = 1 . (2.17c)

These can be reduced to a two-dimensional map for the variables (xn,yn) = limε→0[x(nT −
ε),y(nT − ε)] by integration. The general solution of (2.17b) for (n+1)T − ε > t > nT − ε is

y(t) = yn e−Γ(t−nT ) +K
∞

∑
m=0

f (xm)
Z t

nT−ε
dt ′ eΓ(t ′−t)δ(t ′ −mT ) . (2.17)

Figure 8: Rotator kicked by a force F .



2.2 The Periodically Kicked Rotator 17

This yields

yn+1 = e−ΓT [yn +K f (xn)] (2.18a)

and by integrating (2.17a) using (2.18a) we obtain:

xn+1 = xn +
1− e−ΓT

Γ
[yn +K f (xn)] . (2.18b)

Equations (2.18a) and (2.18b) are the main results of this section. They reduce the initial set

of three-dimensional differential equations to a two-dimensional discrete map, which yields

a stroboscopic picture of the variables. Below, we list several important limits of this two-

dimensional map which will be discussed in some detail in the following sections.

2.2.1 Logistic Map
This is a one-dimensional quadratic map defined by

xn+1 = rxn(1− xn) (2.19)

where r is an external parameter, and the range of xn is changed from a circle to the interval

[0, 1]. It can be obtained from (2.18b) in the strong damping limit (Γ → ∞) if K → ∞, so that

Γ/K = 1 and f (xn) = (r−1)xn − rx2
n.

2.2.2 Hénon Map
This can be considered as a two-dimensional extension of the logistic map (Hénon, 1976):

xn+1 = 1−ax2
n + yn (2.20a)

yn+1 = bxn (2.20b)

where a and |b| ≤ 1 are external parameters.

To obtain this map from (2.18a) and (2.18b), we rewrite these equations as

yn+1 = e−ΓT [yn +K f (xn)] (2.21a)

xn+1 = xn +
eΓT −1

Γ
yn+1 (2.21b)

and solve (2.21b) for yn+1:

yn+1 = (xn+1 − xn)Γ/( eΓT −1) . (2.22)

If we put yn+1 and yn back into (2.21a), this becomes for T = 1:

xn+1 + e−Γxn−1 = (1+ e−Γ)xn +
1− e−Γ

Γ
K f (xn) . (2.23)

Choosing

1− e−Γ

Γ
K f (xn) ≡−(1+ e−Γ)xn −1+ax2

n; b ≡− e−Γ , (2.24)

eq. (2.23) yields

xn+1 = 1−ax2
n +bxn−1 (2.25)

which is equivalent to (2.20a–b). (Our derivation holds only for b < 0, but the map is mathe-

matically defined for −1 ≤ b ≤ 1.)
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2.2.3 Chirikov Map
This is simply the map of an undamped (Γ → 0) rotator that is kicked by an external force

K f (xn) = −K sinxn (Chirikov, 1979). In this limit eq. (2.18a) and (2.18b) reduce to

pn+1 = pn −K sinθn (2.26a)

θn+1 = θn + pn+1 (2.26b)

where we have chosen T = 1 and introduced the conventional notation xn = θn and yn = pn.

We shall see in the following chapters that, despite the apparent simplicity of all three

maps, their iterates exhibit extremely rich and physically interesting structures.



3 Piecewise Linear Maps and Deterministic Chaos

The nonlinear Poincaré maps introduced in the previous chapter still lead to a rather compli-

cated dynamical behavior (as we shall see in Chapter 4). In this section, we therefore study

some simple one-dimensional piecewise linear maps. Although these maps are not directly

connected to physical systems, they are extremely useful models which, in part one of this

section, allow us to explain the mechanism which leads to deterministic chaos. In the second

part, we will introduce three quantitative measures which characterize chaotic behavior and

calculate these quantities explicitly for a triangular map. Finally, in Section 3.3 we show that

the iterates of certain one-dimensional maps can display deterministic diffusion.

3.1 The Bernoulli Shift
Let us consider the one-dimensional map

xn+1 = σ(xn)−2xn mod1; n = 0, 1, 2 . . . (3.1)

which is shown in Fig 9. If we start with a value x0 the map generates a sequence of iterates x0,

x1 = σ(x0), x2 = σ(x1) = σ(σ(x0)). . . In order to investigate the properties of this sequence

we write x0 in binary representation:

x0 =
∞

∑
ν=1

aν2−ν =̂ (0, a1 a2 a3 . . .) (3.2)

where aν has the values zero or unity. For x0 < 1/2, we have a1 = 0, and x0 > 1/2 implies

a1 = 1. Therefore, the first iterate σ(x0) can be written as

σ(x0) =
{

2x0 for a1 = 0 →
2x0 −1 for a1 = 0 → = (0, a2 a3 a4 . . .) (3.3)

Figure 9: The transformation σ(x) = 2xmod l.

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Figure 10: Emergence of ergodicity by a Bernoulli shift in irrational numbers.

i. e., the action of σ on the binary representation of x is to delete the first digit and shift the

remaining sequence to the left. This is called the Bernoulli shift.
The Bernoulli property of σ(x) demonstrates:

1. The sensitive dependence of the iterates of σ on the initial conditions. Even if two points

x and x′ differ only after their nth digit an, this difference becomes amplified under the

action of σ, and their nth iterates σn(x) and σn(x′) already differ in the first digit because

σn(x) = (0,an . . .) where σ2(x) = σ[σ(x)], etc.

2. The sequence of iterates σn(x0) has the same random properties as successive tosses of

a coin. To see this, we attach to σn(x0) the symbol R or L depending on whether the

iterate is contained in the right or left part of the unit interval. If we now prescribe an

arbitrary sequence R L L R . . ., e. g., by tossing a coin, we can always find an x0 for which

the series of iterates x0, σ1(x0), σ2(x0) . . . generates this sequence. This follows because

σn(x0) = (0, anan+1 . . .) corresponds to R or L if and only if an = 1 or an = 0; i. e., the

sequence R L L R. . . is isomorphous to the binary representation of x0

x0 = (0, 1 0 0 1 . . .)
� � � �
R L L R

(3.4)

Thus, the prescription of a sequence by tossing a coin becomes equivalent to choosing a

special value of x0.

3. The mechanism by which ergodicity emerges in a deterministic system. Let us first

note that we can approximate each point x in the unit interval arbitrarily well by a finite

sequence of binary digits 0, a1, a2 . . . an up to a difference ε = 2−n, say. It will now

be shown that the images σr(x0) (r = l, 2, 3. . . ) of an “arbitrary” irrational number

x0 ∈ [0, 1] approach x to an order ε an infinite number of times; i. e., the system behaves

ergodically.

This follows because a) almost all irrational numbers in [0, 1] (with the exception of a set

of measure zero) in their binary representation contain any finite sequence of digits infinitely

often (see References on page 261) and b) the Bernoulli property of σ(x) shifts these sequences

to the initial position as depicted in Fig. 10. This argument goes right to the heart of the

problem of chaotic motion in deterministic systems, and it shows how chaos arises from the

amplification of the intrinsic “numerical noise” of irrational numbers.

This mechanism of generating deterministic chaos is also quite universal. Its two basic

ingredients are the stretching and backfolding property of the map.
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Figure 11: Stretching and folding of the unit interval under the action of σ(x).

Initially, for x0 < 1/2 say, x0 becomes stretched after each iteration by a factor 2 (see

Fig. 11). But for n > n0 with 2n0 · x0 ≥ 1, the second branch of σ(x) becomes important, and

xn is folded back to the unit interval as shown in Fig. 11. For a general nonlinear map of the

unit interval onto itself, the combination of stretching and backfolding (due to the restriction

to [0, 1]) drives the iterates of an initial point repeatedly over the unit interval and leads to

chaotic motion.

Let us briefly comment on the possible physical consequences of this stretching property

of nonlinear maps. The initial conditions (i. e., the x0) of a physical system can only be de-

termined with finite precision. This “arbitrarily” small but finite error becomes exponentially

amplified (σn(x0) = 2nx0 mod1) via the nonlinear evolution equation. Such an equation thus

acts like a microscope which makes the limits of our precision in physical measurements vis-

ible. Can we, therefore, anticipate that the concept of the continuum with its distinction of

rational and irrational numbers is non-physical and that all physical variables will be quan-

tized? (The Heisenberg uncertainty relation, which limits the precision of our observations

for conjugate variables, has also been found in a gedanken experiment in which one tries to

measure the location and the momentum of an electron via a light microscope with arbitrary

accuracy.) This and related questions, and speculations, are discussed in an interesting article

by J. Ford in Physics Today, April 1983.

3.2 Characterization of Chaotic Motion
In this section, we introduce the Liapunov exponent as well as the invariant measure and

the correlation function as quantitative measures to characterize the chaotic motion which is

generated by one-dimensional Poincaré maps.

3.2.1 Liapunov Exponent

We have already seen in the previous section that adjacent points become separated under the

action of a map

xn+1 = f (xn) (3.5)

which leads to chaotic motion. The Liapunov exponent λ(x0) measures this exponential sep-

aration as shown in Fig. 12. From Fig. 12 one obtains:

ε eNλ(x0) = | f N(x0 + ε)− f N(x0)| (3.6)
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Figure 12: Definition of the Liapunov exponent.

which, in the limits ε → 0 and N → ∞, leads to the correct formal expression for λ(x0):

λ(x0) = lim
N→∞

lim
ε→0

1

N
log

f N(x0 + ε)− f N(x0)
ε

(3.7)

= lim
N→∞

1

N
log

d f N(x0)
dx0

.

This means that eλ(x0) is the average factor by which the distance between closely adjacent

points becomes stretched after one iteration.

The Liapunov exponent also measures the average loss of information (about the position

of a point in [0, 1]) after one iteration. In order to see this, we use in eq. (3.7) the chain rule

d

dx
f 2(x)

∣∣∣∣
x0

=
d

dx
f [ f (x)]

∣∣∣∣
x0

= f ′[ f (x0)] f ′(x0) (3.8)

= f ′(x1) f ′(x0); x1 ≡ f (x0)
to write the Liapunov exponent as

λ(x0) = lim
N→∞

1

N
log

∣∣∣∣ d

dx0
f N(x0)

∣∣∣∣ = lim
N→∞

1

N
log

∣∣∣∣∣
N−1

∏
i=0

f ′(xi)

∣∣∣∣∣
= lim

N→∞

1

N

N−1

∑
i=0

log | f ′(xi)| . (3.9)

As a next step, we discuss the loss of information after one iteration with a linear map. We

separate [0, 1] into n equal intervals and assume that a point x0 can occur in each of them with

equal probability 1/n. By learning which interval contains x0, we gain the information

I0 = −
n

∑
i=1

1

n
ld

1

n
= ld n (3.10)

where ld is the logarithm to the base 2 (see Appendix F). If we decrease n, the information I0 is

reduced, and it becomes zero for n = 1. It is shown in Fig. 13 that a linear map f (x) changes

the length of an interval by a factor a = | f ′(0)|. The corresponding decrease of resolution

leads to a loss of information after the mapping:

∆I = −
a/n

∑
i=1

a
n

ld
a
n

+
n

∑
i=1

1

n
ld

1

n
= − lda = − ld | f ′(0)| (3.11)

Generalizing this expression to a situation where | f ′(x)| varies from point to point and, aver-

aging over many iterations, leads to the following expression for the mean loss of information:

∆I = − lim
N→∞

1

N

N−1

∑
i=0

ld| f ′(xi)| (3.12)
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Figure 13: Increase of an interval 1/n by a linear map.

Figure 14: The triangular map ∆(x).

which is, via eq. (3.9), proportional to the Liapunov exponent:

λ(x0) = (log2) · |∆I| . (3.13)

This relation between the Liapunov exponent and the loss of information is a first step towards

characterization of chaos in a coordinate-invariant way, as will be explored on a deeper level

in Chapter 6.

By way of an example, we now calculate the Liapunov exponent for the triangular map,

∆(x) = r
(

1−2

∣∣∣∣1

2
− x

∣∣∣∣
)

(3.14)

shown in Fig. 14. The function ∆(x) serves as a useful model because, for r > 1/2, it gen-

erates chaotic sequences x0, ∆(x0), ∆[∆(x0)] . . ., and due to its simple form, all quantities that

characterize the chaotic state can be calculated explicitly.

In order to get acquainted with this map, we first consider its fixed points and their stability

for different values of r.

Generally, a point x∗ is called a fixed point of a map f (x) if

x∗ = f (x∗) (3.15)

i. e., the fixed points are the intersections of f (x) with the bisector.

A fixed point is locally stable if all points x0 in the vicinity of x∗ are attracted to it, i. e., if

the sequence of iterates of x0

x0, x1, x2, . . .nn ≡ x0, f (x0), f [ f (x0)] . . . f [ f . . . f (x0) . . .],︸ ︷︷ ︸
n

. . . (3.16)
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Figure 15: a) Stable fixed point at x∗ = 0 for r < 1/2; b) two unstable fixed points for r = 1.

Figure 16: a) Separation of points by iteration with ∆(x) and b) the nth iterate ∆n(x).

converges to x∗ . The analytical criterion for local stability is∣∣∣∣ d

dx∗
f (x∗)

∣∣∣∣ < 1 (3.17)

because the distance δn to x∗ shrinks as

δn+1 = |nn+1 − x∗| = | f (xn)− x∗|
= | f (x∗ +δn)| �

∣∣∣∣ d

dx∗
f (x∗)

∣∣∣∣ ·δn (3.18)

Figure 15 a shows that for r < 1/2 the origin x = 0 is the only stable fixed point to which all

points [0, 1] are attracted. For r > 1/2 two unstable fixed points emerge. Figure 15b shows

how, for r = l, the iterates of x0 and x′0 move away from the “fixed points” x1 = 0 and x2 = 2/3,

respectively. In the following, we shall consider only the case r = 1, which is representative

for r > 1/2.

What can we say about a sequence of iterates if there are no stable fixed points? First of

all we notice that points which are close together, become more and more separated during

the first iterations, as shown in Fig. 16. If we plot the nth iterate ∆n(x), we see from Fig. 16

that again it is piecewise linear and has the slope
∣∣ d

dx ∆n(x)
∣∣ = 2n, except for the countable

set of points j · 2−n where j = 0, 1 . . .2n. Therefore, the separation of “almost all” points
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Figure 17: The Liapunov exponent for the triangular map as a function of r in the vicinity of rc.

x0, x0 + ε grows exponentially with n after n iterations, and the Liapunov exponent becomes

(independent of x0):

λ = log2 . (3.19)

For the general triangular map, eq. (3.14), the Liapunov exponent simply becomes λ = log2r,

and for r > 1/2 we have λ > 0; i. e., we lose information about the position of a point in [0, 1]

after an iteration, whereas r < 1/2 implies λ < 0, and we gain information because all points

are attracted to x∗ = 0.

The Liapunov exponent changes sign at r = 1/2 and, therefore, acts like an “order param-

eter”, which indicates the onset of chaos, as shown in Fig. 17. To make the analogy to critical

phenomena even closer, we observe that λ = log2r scales with a power law near the “critical

point” rc = 1/2.

λ ∝ (r− rc) . (3.20)

This shows that even the simple transition to chaos in the triangular map displays some fea-

tures that are reminiscent of an equilibrium phase transition. As we have already mentioned

before, we will investigate this aspect more generally in Chapter 4. It should also be noted

here that the definition of the Liapunov exponent can be extended to higher dimensional maps.

This will be treated in Chapter 6, where we will also discuss the relation between the Liapunov

exponent and the Kolmogorov entropy and its possible connection to the Hausdorff dimension.

But before we come to these problems, we will first investigate the question of how the iterates

of a one-dimensional map are distributed over the unit interval.

3.2.2 Invariant Measure

The invariant measure ρ(x) determines the density of the iterates of a unimodular map

xn+1 = f (xn), xn ∈ [0, 1], n = 0, 1, 2, . . . (3.21)

over the unit interval and is defined via

ρ(x) ≡ lim
N→∞

1

N

N

∑
i=0

δ[x− f i(x0)] . (3.22)
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If ρ(x) does not depend on x0, the system is called ergodic (see also Section 8.2.2). For this

case, eq. (3.22) allows us to write “time averages” over a function g(x) as averages over the

invariant measure,

lim
N→∞

1

N

N

∑
i=0

g(xi) ≡ lim
N→∞

1

N

N

∑
i=0

g[ f i(x0)] =
Z 1

0
dxρ(x)g(x) . (3.23)

This is the one-dimensional analog of the thermodynamic average in classical statistical me-

chanics which allows us (if the motion in phase space is ergodic) to replace the time average

by an ensemble average over a stationary distribution ρ:

lim
T→∞

1

T

Z T

0
dt A[�x(t)] =

Z
d�x ρ̃(�x)A(�x) . (3.24)

Here A is a function of the time-dependent vector �x = [�p(t), �q(t)] which is composed of the

coordinates �q and momenta �p which follow Hamilton’s equations,

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(3.25)

and ρ̃ is, for example, the microcanonical distribution ρ̃ = δ[H(�x)−E] for an isolated system

of energy E. Note, however, that our one-dimensional example corresponds to a dissipative

system [see e. g., Chapter 2, eq. (2.15)] whereas Hamilton’s equations (3.25) describe a con-

servative model.

For Hamiltonian systems, the dynamical behavior of a general density distribution ρ(�x, t)
in phase space is described by Liouvilles’s equation:

ρ̃(�x, t) = −i Lρ(�x, t) (3.26)

where

L = i
[

∂H
∂�p

∂
∂�q

− ∂H
∂�q

∂
∂�p

]
(3.27)

is the Liouville operator.

The corresponding evolution equation for our one-dimensional model whose time evolu-

tion is given by the map (3.21) can be derived as follows. If we have a point x0, it evolves to

f (x0) after one iteration. This means that a delta-function distribution δ(x− x0) evolves after

one time step to δ[x− f (x0)] which can be written as

δ[x− f (x0)] =
Z 1

0
dyδ[x− f (y)]δ(y− x0) . (3.28)

Generalizing this to the evolution of an arbitrary density ρn(x) at time n we obtain the so-called

Frobenius–Perron equation

ρn+1(x) =
Z

dy δ[x− f (y)]ρn(y) (3.29)

which governs the time evolution of ρn(x). The invariant measure ρ(x) has to be station-

ary because eq. (3.23) makes sense only if ρ(x) is independent of time n, that is, ρ(x) is an

eigenfunction of the Frobenius–Perron operator with eigenvalue 1:

ρ(x) =
Z 1

0
dyδ[x− f (y)]ρ(y) . (3.30)
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Formally, this equation has many solutions (e. g., δ(x− x∗) where x∗ = f (x∗) is an unstable

fixed point). But fortunately, only one of the solutions is physically relevant, namely that one

which is, for example, obtained by solving eq. (3.30) on a computer. In the presence of weak

random noise (which is caused by rounding errors in the computer or physical fluctuations in

real systems), the probability to hit an unstable repelling fixed point x∗ is zero, and therefore

such spurious solutions are automatically eliminated (Eckmann and Ruelle, 1985). In the

following, the invariant measure ρ(x), always means the physically relevant invariant measure

which is stable if a small random noise is added to the system.

Let us consider again, as an example, the triangular map at r = 1:

∆(x) =
{

2x for x ≤ 1
2

2(1− x) for x > 1
2

(3.31)

In this case, eq. (3.30) becomes:

ρ(x) =
1

2

[
ρ
( x

2

)
+ρ

(
1− x

2

)]
(3.32)

which has the obvious normalized solution ρ(x) = 1.

We can also show that this solution is unique. Starting from an arbitrary normalized dis-

tribution ρ0(x), and operating on it n times with (3.29), yields

ρn(x) =
1

2n

2n−1

∑
j=1

[
ρ0

(
j−1

2n−1
+

x
2n

)
+ρ0

(
j

2n−1
− x

2n

)]
(3.33)

which converges towards

ρ(x) = lim
n→∞

ρn(x) = −1

2

[Z 1

0
dxρ0(x)+

Z 1

0
dxρ0(x)

]
= 1 . (3.34)

This means that, for the triangular map at r = 1, the chaotic sequence of iterates x0, f (x0),
f ( f (x0)) . . . uniformly covers the interval [0, 1], and the system is ergodic. As in the case of

the Liapunov exponent, we will later study invariant density for more complicated maps and

show that it is not always a constant.

3.2.3 Correlation Function
The correlation function C(m) for a map (3.21) is defined by

C(m) = lim
N→∞

1

N

N−1

∑
i=0

x̂i+mx̂i (3.35)

where

x̂i = f i(x0)− x̄; x̄ = lim
N→∞

1

N

N−1

∑
i=0

f i(x0) . (3.36)

From this definition follows that C(m) yields another measure for the irregularity of the se-

quence of iterates x0, f (x0), f 2(x0). . . It tells us how much the deviations of the iterates from

their average value,

x̂i = xi − x̄ (3.37)

that are m steps apart (i. e., x̂i+m and x̂i) “know” about each other, on the average.
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Figure 18: The first and second iterates ∆1, 2(y + 1/2) are symmetric about y = 0; the triangular areas

are independent of m = 1, 2.

If the invariant measure ρ(x) for a given map f (x) is known, C(m) can be written in the

following form:

C(m) =
Z 1

0
dxρ(x) x f m(x)−

[Z 1

0
dxρ(x) x

]2

(3.38)

Here, we used the commutative property of the iterates,

xi+m = f i+m(x0) = f i f m(x0) = f m f i(x0) . (3.39)

We, therefore, find for the example of the triangular map:

C(m) =
Z 1

0
dxx∆m(x)−

[Z 1

0
dxx

]2

(3.40a)

=
Z 1/2

−1/2
dyy∆m

(
y+

1

2

)
+

1

2

Z 1/2

−1/2
dy∆m

(
y+

1

2

)
− 1

4

=
1

12
δm,0 (3.40b)

i. e., the sequence of iterates is delta-correlated.

This result follows because a) ∆n(y + 1/2) is symmetric about y = 0; therefore, the first

integral in (3.40b) vanishes for m > 0, and b) the second integral is independent of m, as shown

in Fig. 18. To summarize:

We have found for a general one-dimensional map that a sequence x0, f (x0). . . f n(x0). . .

can be characterized a) by a Liapunov exponent, which tells us how adjacent points become

separated under the action of f ; b) by the invariant density, which serves as a measure of how

the iterates become distributed over the unit interval; and c) by the correlation function C(m),
which measures the correlation between iterates that are m steps apart.

For the triangular map, the Liapunov exponent is λ = log2r, which changes its sign at

r = 1/2. It therefore serves as an order parameter for the onset of chaos. For r = 1, the chaotic

state is characterized by a constant stationary density ρ(x) = 1 and delta-correlated iterates,

i. e., C(m) = (1/12) δm,0.
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3.3 Deterministic Diffusion
In this section, we show that the iterates of certain one-dimensional periodic maps diffuse.

This diffusion indicates that the reduced map generates chaotic motion.

One normally associates diffusion with the Brownian motion of a particle in a liquid.

Its equation of motion, in the case of high friction where the acceleration term ∝ ẍ can be

neglected, is

ẋ ∝ ξ(t) . (3.41)

The ξ(t) are random forces, which are generated by the thermal agitation of the molecules. If

one assumes, as usual, that the ξ(t) are Gaussian-correlated,

〈ξ(t)〉 = 0; 〈ξ(t)ξ(t ′)〉 ∝ δ(t − t ′) (3.42)

one obtains from eqs. (3.41) and (3.42):

〈x(t)〉 = 0 and 〈x2(t)〉 ∝ t . (3.43)

This means that the squared distance from the origin increases linearly with time if the particle

is kicked by random forces (in contrast to x2 ∝ t2 for a constant force k ∝ ẋ). One can show,

with a little more effort, that (3.43) also remains valid (for t → ∞) if the acceleration term is

retained [see, for example, Haken’s book on Synergetics (1982)].

Let us now have a look at the piecewise linear periodic map

xτ+1 = F(xτ) = xτ + f (xτ); τ = 0, 1, 2, . . . (3.44)

where f (xτ) is periodic in xτ,

f (xτ +n) = f (xτ), n = 0, ±1, ±2 . . . , (3.45)

shown in Fig. 19.

Figure 19: Piecewise linear periodic map with a diffusive trajectory (after Grossmann, 1982).
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Figure 20: Decomposition of a piecewise linear map.

One sees that the trajectory moves slowly away from the origin. Now we will show that

this motion is in fact diffusive. However, this diffusion is not generated by random forces (as

in the case of Brownian motion discussed above), but rather because the trajectory loses its

“memory” within one or several boxes due to chaotic motion. To substantiate this statement,

we calculate 〈x2〉 explicitly for the map (3.44).

We decompose the coordinate of a trajectory into the box number Nτ and the position

yτ ∈ [0, 1] within a box (Grossmann, 1982):

xτ = Nτ + yτ . (3.46)

The map (3.44) then becomes

Nτ+1 + yτ+1 = F(Nτ + yτ) = Nτ + yτ + f (yτ) (3.47)

which is equivalent to the coupled dynamical laws:

Nτ+1 −Nτ = [yτ + f (yτ)] ≡ ∆(yτ) (3.48a)

yτ+1 = yτ + f (yτ)− [yτ + f (yτ)] ≡ g(yτ) (3.48b)

where [z] denotes the integer part of z. Figure 20 shows the function ∆(yτ), which is an integer

number, describing the magnitude of the jump, and g(xτ) gives the remaining part of the

coordinate at τ+1 .

Using (3.48a), the distances to the origin can be written as

Nt =
t−1

∑
τ=0

(Nτ+1 −Nτ) =
t−1

∑
τ=0

∆(yτ), for N0 = 0 . (3.49)

This yields for the mean squared distance:

〈N2
t 〉 =

t−1

∑
τ,λ

〈∆(yτ)∆(yλ)〉 (3.50)
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Figure 21: The variation of δ as (a−1)1/z if f (x) has a maximum of order z (schematically).

where the average 〈. . .〉 is over all initial conditions y0, and we assumed for simplicity 〈Nt〉= 0.

For the case when the motion generated by g(y) is so chaotic that there are no correlations

among the yτ, i. e.,

〈∆(yλ)∆(yτ)〉 ∝ δλ,τ (3.51)

one finds from (3.47):

lim
t→∞

〈N2
t 〉
t

= lim
t→∞

1

t

t−1

∑
τ=0

〈∆2(yτ)〉 (3.52)

=
Z

dyρ(y)∆2(y) . (3.53)

The step from (3.52) to (3.53) is only possible if g(y) has an invariant density that obeys

ρ(y) =
Z

dxδ[g(x)− y]ρ(x) . (3.54)

Equation (3.53) means that 〈N2
t 〉 increases linearly with t, i. e.,

〈N2
t 〉 = 2Dt for t � 1 (3.55)

with a diffusion coefficient

D ≡ 1

2

Z
dy ρ(y)∆2(y) . (3.56)

It should be clear from the derivation that diffusion occurs as long as the yτ’s are sufficiently

uncorrelated such that the two sums in (3.50) contract to a single sum. (For completely corre-

lated motion of the yτ’s, 〈N2
t 〉 becomes proportional to t2.) This means that the mere presence

of diffusion for a periodic map indicates chaotic motion which destroys correlations within

one box. We will generalize and use this characterization of chaos to some extent in Chap-

ter 9, where we discuss area-preserving maps.

Let us finally derive a simple scaling law for the diffusion coefficient that has a purely

geometric origin. If the intervals δ, through which the trajectories can move from cell to cell,

are small enough (such that one can neglect the variation of ρ in this region, i. e., ρ(x∈ δ) = ρ̄),

then eq. (3.56) can be written as

D ≈ 1

2
ρ̄δ (3.57)

because ∆2 has only the values zero or unity. Figure 21 shows that D scales like

D ∝ (a−1)1/z (3.58)

if the map f (x) has a maximum (and minimum) of order z.
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In this chapter, we study the logistic map

xn+1 = fr(xn) = rxn(1− xn) (4.1)

shown in Fig. 22. It has already been shown in Chapter 2 that eq. (4.1) describes the angles

xn of a strongly damped kicked rotator. But the logistic map, which is, arguably, the simplest

nonlinear difference equation, appears in many contexts.

It has already been introduced in 1845 by P. F. Verhulst to simulate the growth of a pop-

ulation in a closed area. The number of species xn+1 in the year n + 1 is proportional to the

number in the previous year xn and to the remaining area, which is diminished, proportionally,

to xn, i. e., xn+1 = rxn(1−xn) where the parameter r depends on the fertility, the actual area of

living, etc.

Another example is a savings account with a self-limiting rate of interest (Peitgen and

Richter, 1984). Consider a deposit z0 which grows with a rate of interest ε as zn+1 = (1 +
ε)zn = . . .(1 + ε)n+1z0. To prohibit unlimited wealth, some politician could suggest that the

rate of interest should be reduced proportionally to zn+1, i. e., ε → ε0(1− zn/zmax). Then the

account develops according to zn+1 = [1+ε0(1−zn/zmax)]zn which becomes equal to eq. (4.1)

for xn = znε0/zmax(1+ ε0) and r = 1+ ε0.

One could expect for both examples that due to the feedback mechanism the quantities

of interest (population and bank account) develop towards mean values. But as found by

Grossmann and Thomae (1977), by Feigenbaum (1978), and by Coullet and Tresser (1978),

and many others (see May, 1976, for earlier references) the iterates x1, x2, . . . of eq. (4.1)

display, as a function of the external parameter r, a rather complicated behavior that becomes

chaotic for large r (see Fig. 23).

Figure 22: The quadratic map fr(x) on the unit interval.

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Once can, therefore, understand the conclusion that May (1976) draws at the end of his

article in Nature: “Perhaps we would all be better off, not only in research and teaching, but

also in everyday political and economical life, if more people would take into consideration

that simple dynamical systems do not necessarily lead to simple dynamical behavior.”

However, chaotic behavior is not tied to the special form of the logistic map. Feigenbaum

has shown that the route to chaos that is found in the logistic map, the “Feigenbaum route”,

occurs (with certain restrictions which will be discussed below) in all first-order difference

equations xn+1 = f (xn) in which f (xn) has (after a proper rescaling of xn) only a single maxi-

mum in the unit interval 0 ≤ xn ≤ 1. It was found by Feigenbaum that the scaling behavior at

the transition to chaos is governed by universal constants, the Feigenbaum constants α and δ,

whose value depends only on the order of the maximum (e. g., quadratic, i. e., f ′(xmax) = 0,

f ′′(xmax) < 0, etc.). Because the conditions for the appearance of the Feigenbaum route are

rather weak (it is practically sufficient that the Poincaré map of a system is approximately

one-dimensional and has a single maximum), this route has been observed experimentally in

many nonlinear systems.

The following sections of this chapter contain a rather detailed derivation of the universal

properties of this route. We begin with a summary, which is intended to be a guide through

the more mathematical parts.

Section 4.1 gives an overview of the numerical results for the iterates of the logistic map.

It shows that the number of fixed points of fr(x) (towards which the iterates converge) doubles

at distinct, increasing values of the parameter rn. At r = rn the number of fixed points becomes

infinite; and beyond this (finite) r-value, the behavior of the iterates is chaotic for most values

of r.

In Section 4.2, we investigate the pitchfork bifurcation, which provides the mechanism for

the successive doubling of fixed points. It is shown that the doubling can be understood by ex-

amining the image of even iterates ( f [ f (x)], f [ f [ f [ f (x)]]], . . . ) of the original map f (x). This

relates the generation of new fixed points to a law of functional composition. We, therefore,

introduce the doubling transformation T that describes functional composition together with

simultaneous rescaling along the x- and y-axis (T f (x) = −α f [ f (−x/α)]) and show that the

Feigenbaum constant α (which is related to the scaling of the distance between iterates) can be

calculated from the (functional) fixed point f ∗ of T (T f ∗ = f ∗). This establishes the universal

character of α. The other Feigenbaum constant δ (which measures the scaling behavior of the

rn-values) then appears as an eigenvalue of the linearized doubling transformation.

After having provided a method of calculating universal properties of the iterates, we con-

sider several applications in Section 4.3. As a first step, we determine the relative separations

of the iterates and show that the iterates form (at the accumulation point r∞) a self-similar

point set with a fractal dimensionality. We then Fourier-transform the distribution of iterates

to obtain the experimentally measurable, and therefore important, power spectrum.

In any real dissipative nonlinear system, there are, due to the coupling to other degrees of

freedom, also fluctuating forces, which when they are incorporated explicitly into the differ-

ence equations, tend to wash out the fine structure of the distribution of iterates. We determine

the influence of this effect on the power spectrum and show that the rate at which higher

subharmonics become suppressed, scales via a power law with the noise level.

Up to this point, we have only considered the behavior of the iterates near the transition

to chaos. It will be shown next that in the chaotic region (r∞ ≤ r ≤ 4) periodic and chaotic
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r values are densely interwoven and one finds a sensitive dependence on parameter values.

We also discuss the concept of structural universality and calculate the invariant density of the

logistic map at r = 4.

Finally, in Section 4.5 we present a summary that explains the parallels between the

Feigenbaum route to chaos and ordinary equilibrium second-order phase transitions. This

chapter ends with a discussion of the measurable properties of the Feigenbaum route and a

review of some experiments in which this route has been observed.

4.1 Parameter Dependence of the Iterates
To provide an overview in this section, we present several results for the logistic map obtained

by computer iteration of eq. (4.1) for different values of the parameter r. Figure 23 shows the

accumulation points of the iterates { f n
r (x0)} for n > 300 as a function of r together with the

Liapunov exponent λ obtained via eq. (3.9).

Figure 23: a) Iterates of the logistic map, b) Liapunov exponent λ (after W. Desnizza, priv. comm.).
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Figure 24: Distances dn of the fixed points closest to x = 1/2 for superstable 2n-cycles (schematically).

We distinguish between a “bifurcation regime” for 1 < r < r∞ where the Liapunov ex-

ponent is always negative (it becomes only zero at the bifurcation points rn) and a “chaotic

region” for r∞ < r ≤ 4, where λ is mostly positive, indicating chaotic behavior. The “chaotic

regime” is interrupted by r-windows with λ < 0 where the sequence { f n
r (x0)} is again peri-

odic.

The numerical results can be summarized as follows:

1. Periodic regime

(a) The values rn where the number of fixed points changes from 2n−1 to 2n, scale like

rn = r∞ − const.δ−n for n � 1 . (4.2)

(b) The distances dn of the point in a 2n-cycle that are closest to x = 1/2 (see Fig. 24)

have constant ratios:

dn

dn+1
= −α for n � 1 . (4.3)

(c) The Feigenbaum constants δ and α have the values

δ = 4.6692016091 . . . (4.4a)

α = 2.5029078750 . . . (4.4b)

Let us also note for later use that the Rn of Fig. 24 scale similar to rn:

Rn − r∞ = const.′δ−n , (4.5)

furthermore

R∞ = r∞ = 3.5699456 . . .
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2. Chaotic regime

(a) The chaotic intervals move together by inverse bifurcations until the iterates become

distributed over the whole interval [0, 1] at r = 4.

(b) The r-windows are characterized by periodic p-cycles (p = 3, 5, 6 . . .) with succes-

sive bifurcations p, p ·21, p ·22 etc. The corresponding r-values scale like eq. (4.2)

with the same δ but different constants.

(c) Also, period triplings p ·3n and quadruplings p ·4n, etc. occur at r̄ = r̄∞ −const. δ−n

with different Feigenbaum constants δ̄, which are again universal (e. g., δ̄= 55.247. . .
for p ·3n).

4.2 Pitchfork Bifurcation and the Doubling
Transformation

In this section, we show that the “Feigenbaum route” in Fig. 23 is generated by pitchfork

bifurcations that relate the emergence of new branches to a universal law of functional com-

position. By introducing the doubling transformation T (which describes this law), we show

that the Feigenbaum constants α and δ are indeed universal. They appear as the (negative

inverse) value of the eigenfunction of T at x = 1 and as the only relevant eigenvalue of the

linearized doubling operator, respectively.

4.2.1 Pitchfork Bifurcations
As a first step, we investigate the stability of the fixed points of fr(x) and f 2

r (x) = fr[ fr(x)] as

a function of r. Figure 25 shows that fr(x) has, for r < 1, only one stable fixed point at zero,

which becomes unstable for 1 < r < 3 in favor of x∗ = 1−1/r.

For r > 3 = r1 we have | f ′r(x∗)| = |2− r| > 1; i. e., x∗ also becomes unstable according to

criterion (3.17). What happens then?

Figure 25: The fixed points of f , for a) r < 1 and b) 1 < r < 3.
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Figure 26: a) f (x) and f 2(x) = f [ f (x)] for r > r1. b) Generation of two new stable fixed points in f 2

via a pitchfork bifurcation. (The bifurcation diagram looks like a pitchfork, see p. 159)

Figure 26 shows fr(x) together with its second iterate f 2
r (x) for r > r1. We note four

properties of f 2 (the index r is dropped for convenience):

1. It has three extrema with f 2′ = f ′[ f (x)] f ′(x) = 0 at x0 = 1/2, because f ′(1/2) = 0, and

at x1,2 = f−1(1/2), because f ′[ f [ f−1(1/2)]] = f ′(1/2) = 0.

2. A fixed point x∗ of f (x) is also a fixed point of f 2(x) (and all higher iterates).

3. If a fixed point x∗ becomes unstable with respect to f (x), it becomes also unstable

with respect to f 2 (and all higher iterates) because | f ′(x∗)| > 1 implies | f 2′(x∗)| =
| f ′[ f (x∗)] f ′(x∗)| = | f ′(x∗) <2> 1.

4. For r > 3, the old fixed point x∗ in f 2 becomes unstable, and two new stable fixed points

x̄1, x̄2 are created by a pitchfork bifurcation (see Fig. 26b).

The pair x̄1, x̄2 of stable fixed points of f 2 is called an attractor of f (x) of period two

because any sequence of iterates which starts in [0, 1] becomes attracted by x̄1, x̄2 in an

oscillating fashion as shown in Fig. 27.

It is easy to see that f (x) maps these new fixed points of f 2 onto each other, i. e.,

f (x̄1) = x̄2 and f (x̄2) = x̄1 (4.6)

because f 2(x̄1) = x̄1 implies

f f [ f (x,)] = f [ f [(x,)] = f (x,) (4.7)

i. e., f (x̄1) is also a fixed point of f 2, and x̄2 is the only possible choice. ( f (x̄1) = 0 or x∗ are

at variance with f f (x̄1) = x̄1.)
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Figure 27: Iterates of x̄0 if f (x) has an attractor of period two (schematically).

Figure 28: Two pitchfork bifurcations in f 4 lead to an attractor of period 4.

If we now increase r beyond a value r2 the fixed points of f 2 also become unstable. Be-

cause the derivative is the same at x̄1 and x̄2

f 2′(x̄1) = f ′[ f (x̄1)] f ′(x̄1) = f ′(x̄2) f ′(x̄1) = f 2′(x̄2) (4.8)

they even become unstable simultaneously.

Figure 28 shows that after this instability the fourth iterate f 4 = f 2 · f 2 displays two more

pitchfork bifurcations which lead to an attractor of period four; i. e., one observes period
doubling. These two examples can be generalized as follows:

1. For rn−1 < r < rn there exists a stable 2n−1-cycle with elements x∗0, x∗1, . . . x∗
2n−1−1

, that is

characterized by

fr(x∗i ) = x∗i+1, f 2n−1

r (x∗i ),
∣∣∣∣ d

dx∗0
f 2n−1

r (x∗0)
∣∣∣∣ =

∣∣∣∣∣∏i
f ′r(x

∗
i )

∣∣∣∣∣ < 1 (4.9)
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2. At rn, all points of the 2n−1-cycle become unstable simultaneously via pitchfork bifurca-

tions in

f 2n

r = f 2n−1

r · f 2n−1

r (4.10)

that, for rn < r < rn+1, lead to a new stable 2n-cycle.

Our last conclusion represents a first step towards universality because it connects the mecha-

nism of subsequent bifurcations to a general law of functional composition.

Let us add as a caveat that not all quadratic maps of the unit interval onto itself display an

infinite sequence of pitchfork bifurcations, but only those which have a negative Schwarzian

derivative (see Appendix C).

4.2.2 Supercycles
To progress further, we now consider the so-called supercycles. A 2n-supercycle is simply a

superstable 2n-cycle defined by

d

dx∗0
f 2n

Rn (x
∗
0) = ∏

i
f ′Rn(x

∗
i ) = 0 (4.11)

which implies that it always contains x∗0 = 1/2 as a cycle element because this is the only

point where f ′r = 0. Referring to Fig. 24, we can see that the distances dn are just the distances

between the cycle elements x∗ = 1/2 and x1 = f 2n−1

Rn
(1/2), i. e.,

dn = f 2n−1

Rn

(
1

2

)
− 1

2
. (4.12)

In the following it is convenient to perform a coordinate transformation that displaces x = 1/2

to x = 0 such that (4.12) becomes

dn = f 2n−1

Rn (0) . (4.13)

From the previous section, we see that eq. (4.3) implies

lim
n→∞

(−α)ndn+1 = d1 (4.14)

i. e., the sequence of scaled iterates f 2n

Rn+1
(0) converges:

lim
n→∞

(−α)n f 2n

Rn+1
(0) = d1 . (4.15)

Figure 29 suggests that (4.15) can be generalized to the whole interval, and the rescaled

functions (−α)n f 2n

Rn+1
(0)[x/(−α)n] converge to a limiting function g1(x):

lim
n→∞

(−α)n f 2n

Rn+1

[
x

(−α)n

]
= g1(x) (4.16)

Equation (4.16) shows that g1(x) is determined only by the behavior of f 2n

Rn+1
around x = 0 (see

also Fig. 28) and should, therefore, be universal for all functions f with a quadratic maximum.
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Figure 29: The rescaled iterates f 2n

Rn+1
(x) converge towards a universal function. a)–d) Superstable

cycles at R1 and R2. Note the horizontal tangents in b) and d). e) The content of the dashed square of c)

is rescaled (dashed line) and compared to the whole of a) (full line).

4.2.3 Doubling Transformation and α

As the next step, we introduce, by analogy with eq. (4.16), a whole family of functions

gi(x) = lim
n→∞

(−α)n f 2n

Rn+i

[
x

(−α)n

]
; i = 0, 1, . . . (4.17)

We notice that all these functions are related by the doubling transformation T:

gi−1(x) = (−α)gi

[
gi

(
− x

α

)]
≡ Tgi(x) (4.18)
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because

gi−1(x) = lim
n→∞

(−α)n f 2n

Rn+i−1

[
x

(−α)n

]

= lim
n→∞

(−α)(−α)n−1 f 2n−1+1

Rn−1+i

[
− 1

α
x

(−α)n−1

]

= lim
m→∞

(−α)(−α)m f 2m

Rm+i

{
1

(−α)m (−α)m f 2m

Rm+i

[
− 1

α
x

(−α)m

]}

= −αgi

[
gi

(
− x

α

)]
. (4.19)

By taking the limit i → ∞ in (4.18), the function

g(x) ≡ lim
i→∞

gi(x) (4.20)

becomes a fixed point of the doubling operator T:

g(x) = Tg(x) = −αg
[
g
(
− x

α

)]
. (4.21)

This equation determines α universally by

g(0) = −αg[g(0)] . (4.22)

It can easily be shown that µg(x/µ) is also a solution of the fixed-point equation (4.21) with

the same α. Thus, the theory has nothing to say about absolute scales, and we fix µ by setting

g(0) = 1 . (4.23)

Although a general theory for the solution of the functional equation (4.21) is still lacking,

we can obtain a unique solution if we specify the nature of the maximum of g(x) at x = 0

(for example quadratic) and require that g(x) is a smooth function. If we use for g(x) in the

quadratic case the extremely short power law expansion

g(x) = 1+bx2 (4.24)

the fixed point equation (4.21) becomes

1+bx2 = −α(1+b)−
(

2b2

α

)
+O(x4) (4.25)

which yields

b = (−2−
√

12)/4 �−1.366; α = |2b| � 2.73 . (4.26)

These values only differ by 10% from Feigenbaum’s numerical results

g(x) = 1−1.52763x2 +0.104815x4 +0.0267057x6 − . . .

α = 2.502807876 . . . (4.27)

This establishes the universality of α.
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4.2.4 Linearized Doubling Transformation and δ
What can we say about the scaling along the r-axis? The values r = Rn for which a 2n-

cycle becomes superstable, are determined by the condition that x = 1/2 is an element of the

supercycle (see eq. (4.11), i. e., x = 1/2 is a fixed point of f 2n
Rn

(x):

f 2n

Rn

(
1

2

)
=

1

2
(4.28)

which after translation by 1/2 becomes [see eqs. (4.12–4.13)]:

f 2n

Rn (0) = 0 . (4.29)

This equation has a large number of solutions because it also yields the 2n-supercycles that oc-

cur in the windows of the chaotic regime. In order to single out the Rn-values in the bifurcation

region with

r1 < R1 < r2 < R2 < r3 . . . , (4.30)

Equation (4.29) is solved starting from n = 0, and the Rn are ordered as in eq. (4.30).

The Rn tell us how R∞ is approached. In order to prove the scaling relation (4.5),

Rn −R∞ ∝ δ−n , (4.31)

we expand fR(x) around fR∞(x):

fR(x) = fR∞(x)+(R−R∞)δ f (x)+ . . .

where

δ f (x) ≡ ∂ fR(x)
∂R

∣∣∣∣
R∞

. (4.32)

Let us now apply the doubling operator T to this equation. A straightforward linearization in

δ f yields

T fR = T fR∞ +(R−R∞)L fR∞ δ f +O[(δ f )2] (4.33)

where L f is the linear operator

L f δ f = −α
{

f ′
[

f
(
− x

α

)]
δ f

(
− x

α

)
+δ f

[
f
(
− x

α

)]}
. (4.34)

Note that L f is only defined with respect to a function f .

Repeated application of T yields

Tn fR = Tn fR∞ +(R−R∞)LT n−1 fR∞
. . .L fR∞ δ f +O[(δ f )2] . (4.35)

We observe that, according to eqs. (4.17–4.20), Tn fR∞ converges to the fixed point,

Tn fR∞(x) = (−α)n f 2n

r∞

[
x

(−α)n

]
∼= g(x) for n � 1 , (4.36)

and (4.35) becomes approximately:

T n fR(x) ∼= g(x)+(R−R∞)Ln
gδ f (x) for n � 1 . (4.37)
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Figure 30: Parametrization of r by n and µ (schematically), i. e., rn = Rn,1=̂(n, 1) and Rn = Rn,0=̂(n, 0).

This equation can be further simplified if we expand δ f (x) with respect to the eigenfunctions

ϕν of Lg,

Lgϕv = λvϕv; δ f = ∑
v

cvϕv; v = 1, 2 . . . (4.38)

→ Ln
gδ f = ∑

v
cvλn

vϕv (4.39)

and assume that only one of the eigenvalues λν is larger than unity, i. e.,

λ1 > 1 ; |λv| < 1 for v 
= 1 . (4.40)

We then obtain only the contribution from λ1 in (4.39),

Ln
gδ f ∼= c1λn

1ϕ1 for n � 1 , (4.41)

and (4.37) reduces to

Tn fRn(x) ∼= g(x)+(R−R∞) ·δn ·a ·h(x) for n � 1 (4.42)

where we introduced c1 ≡ α, ϕ1 ≡ h, λ1 ≡ δ.

The eigenvalue λ1 ≡ δ is identical with Feigenbaum’s constant because for R = Rn and

x = 0, (4.42) yields

Tn fRn(0) = g(0)+(Rn −R∞) ·δn ·a ·h(0) (4.43)

and from (4.29) we have the condition

Tn fRn(0) = (−α)n f 2n

Rn (0) = 0 . (4.44)

This leads to the desired result (note g(0) = 1)

lim
n→∞

(Rn −R∞) ·δn =
−1

a ·h(0)
= const . (4.45)

The last equation can be generalized if we introduce the slopes

µ ≡=
d

dx∗0
f 2n

r (x∗0) = ∏
i

f ′r(x
∗
i ) (4.46)

as a parameter and characterize r by the pair (n, µ), as shown in Fig. 30. Then we obtain from

(4.43):

lim
n→∞

(Rn,µ −R∞) ·δn =
g0,µ(0)−g(0)

α ·h(0)
(4.47a)
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where

g0,µ(x) = lim
n→∞

(−α)n f 2n

Rn,µ

[
x

(−α)n

]
(4.47b)

is again a universal function of µ.

At the bifurcation points, rn, the slopes always have the same value µ = 1 (see Fig. 30).

Therefore, the rn scale according to (4.47) with the same δ as the Rn of the superstable cycles

(with µ = 0):

rn − r∞ ∝ δ−n for n � 1 . (4.48a)

Note that the accumulation point is the same for all µ:

lim
n→∞

Rn,µ = R∞ = r∞ (4.48b)

because rn ≤ Rn,µ ≤ rn+1 and rn+1 − rn → 0 for n → ∞.

The numerical value for δ can be obtained [by combining (4.34–4.42)] from the universal

eigenvalue equation

Lgh(x) = −α
{

g′
[
g
(
− x

α

)]
h
(
− x

α

)
+h

[
g
(
− x

α

)]}
= δ ·h(x) . (4.49)

To make things simple we retain in the power law expansion for h(x) only the first term h(0),
such that (4.49) becomes an algebraic equation for δ:

−α
{

g′ [g(0)]+1
}

= δ . (4.50a)

The value g′[g(0)] = g′(1) follows for functions with a quadratic maximum (i. e., g′′(0) 
= 0)
by differentiating the fixed-point equation (4.21) twice:

g′′(x) = −
{

g′′
[
g
(
− x

α

)][
g′

(
− x

α

)]2

+g′
[
g
(
− x

α

)]
g′′

(
− x

α

)}
/α

→ g′(1) = −α . (4.50b)

Thus (4.50a) becomes

δ = α2 −α . (4.50c)

(For functions with a maximum of order 2z one finds δ = α1+z −α.)

Using our previously determined value α = 2.73, we obtain δ = 4.72 from (4.50), i. e., an

accuracy of about 1% with respect to Feigenbaum’s numerical result δ = 4.6692016 . . . This

is not so bad if one considers the crudeness of our approximation.

It is of course much more laborious to show that δ is indeed the only eigenvalue of Lg
which is larger than unity. Extensive computer calculations by Feigenbaum and the analytical

results of Collet, Eckmann, and Lanford (1980) have proven this assumption.

Summarizing, the two main results of this section are,

1. the fixed-point equation for the doubling operator (4.21)

Tg(x) = −αg
[
g
(
− x

α

)]
= g(x) (4.51)

which establishes the universality of α;
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2. the linearized doubling transformation (4.42)

Tn fR(x) = g(x)+(R−R∞) ·δn ·a ·h(x) for n � 1 (4.52)

which shows that δ is universal and determines the way in which a function is repelled

from the fixed-point function g(x).
Universality emerges here because the linearized doubling operator Lg has only one rele-

vant eigenvalue λ1 > 1 such that all functions f (x) – with the exception of ϕ1(x) – renormal-

ize, after several applications of T, to the fixed-point function g(x) because the eigenvalues

belonging to f −g = ∑ν
=1 cνϕν are smaller than unity, i. e., are irrelevant.

4.3 Self-Similarity, Universal Power Spectrum, and the
Influence of External Noise

In this section, we calculate the distances between the elements of a 2n-cycle and determine its

power spectrum. It is then shown that external noise changes the power spectrum drastically

and destroys higher subharmonics. Finally, we discuss the bifurcation diagram for r > r∞ and

show that the chaotic behavior of the iterates (of the logistic map) at r = 4 is related to the

chaos of a triangular map.

The power spectrum is an important tool for characterizing irregular motion. In order to

calculate this quantity for a system that exhibits the Feigenbaum route to chaos, we identify the

time variable with n and determine as a first step the relative positions of the cycle elements.

4.3.1 Self-Similarity in the Positions of the Cycle Elements
All we know up to now about the positions of the cycle elements is that according to eqs. (4.3)

and (4.13) the distances dn(0) of the supercycle elements closest to x = 0 scale with α, i. e.,

dn+1(0)
dn(0)

= − 1

α
for dn(0) = f 2n−1

Rn (0), n � 1 . (4.53)

It is now our aim to generalize these equations. We will calculate for all m the distance dn(m)
of the mth element xm of a 2n-supercycle to its nearest neighbor f 2n−1

Rn
(xm),

dn(m) ≡ xm − f 2n−1

Rn (xm) (4.54)

and the change of dn(m) if one increases n,

σn(m) ≡ dn+1(m)
dn(m)

. (4.55)

The function σ(m) changes sign after 2n cycle steps,

σn(m+2n) = −σn(m) (4.56)

because

dn+1(m+2n) = f 2n

Rn+1
(xm)− f 2n

Rn+1
[ f 2n

Rn+1
(xm)]

= f 2n

Rn+1
(xm)− xm = −dn+1(m) (4.57)

and dn(m) is left invariant ( f 2n

Rn
(xm) = xm).
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Let us now consider the values m = 2n−1, i = 0 . . .n, and evaluate σ(m) in the limit n � 1.

The definitions (4.54), (4.55) yield

σn[2n−i] =
f 2n−i

Rn+1
(0)− f 2n

Rn+1
[ f 2n−i

Rn+1
(0)]

f 2n−i
Rn

(0)− f 2n−1

Rn
[ f 2n−i

Rn
(0)]

(4.58)

=
f 2n−i

R(n−i)+i+1
(0)− f 2n−1

R(n−i)+i+1
[ f 2n

Rn+1
(0)]

f 2n−i
R(n−i)+i

(0)− f 2n−i
R(n−i)+i

[ f 2n−1

R(n−1)+1
(0)]

and because

f 2l

Rl+ j
(x) ∼= (−α)−lg j[(−α)lx] for l = n− i → ∞ (4.59)

this becomes

σn[2n−i] =
gi+1(0)−gi+1[(−α)−ig1(0)]
gi(0)−gi([(−α)−i+1g1(0)]

for n � 1 . (4.60)

We note that the functions gi(x) can be obtained from (4.17) and (4.43) for i � 1:

gi(x) = lim
n→∞

Tn fRn+1
(x) = g(x)−δ−i ·h(x) . (4.61)

For smaller i one uses the recursion eq. (4.18),

gi−1(x) = Tgi(x) . (4.62)

If we introduce, for convenience, the new variable x =
m

2n+1
and drop the index n, the sym-

metry relation (4.56) reads

σ
(

x+
1

2

)
= −σ(x) . (4.63)

This generates from our familiar scaling relation (4.53) the value of σ at x = 1/2:

σ(0) =
−1

α
→ σ

(
1

2

)
= −σ(0) =

1

α
. (4.64)

But starting instead from (4.60) we obtain

σ(0+) = lim
i→∞

σ(x = 2−1−i)

= lim
i→∞

g(0)−g[(−α)−ig1(0)]
g(0)−g[(−α)−i+1g1(0)]

=
1

α2
(4.65)

because

g[(−α)−ig1(0)] ≈ g(0)+
1

2
g′′(0)(−α)−2ig2

1(0) (4.66)

and from there and (4.63):(
1

2
+0+

)
= −σ(0+) = − 1

α2
. (4.67)

This means that σ(x) is discontinuous at x = 0 and x = 1/2.

More elaborate calculations show that σ(x) jumps at all rationals as depicted in Fig. 31.

Fortunately, the discontinuities decrease rapidly as the number of terms in the binary expan-

sion of the rational increases, and it is therefore often sufficient to consider only the jumps at

x = 0, 1/4, 1/2.
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Figure 31: The function σ(x) = σm (m = 2n ·x), n � 1 [see eq. (4.55)] indicates how distances between

adjacent points change if one passes, for n� 1, from a 2n- to a 2n+1-superstable cycle (after Feigenbaum,

1980).

4.3.2 Hausdorff Dimension
According to Fig. 31, the distances between nearby points in a supercycle change with univer-

sal ratios after each bifurcation. The self-similarity of this pattern can be characterized by the

Hausdorff dimension of the attractor.

If, for a set of points in d dimensions, the number N(l) of d-spheres of diameter l needed

to cover the set increases like

N(l) ∝ l−D for l → 0 (4.68)

then D is called the Hausdorff dimension of the set. [The quantity defined in eq. (4.68) is

actually the capacity dimension which agrees for our purposes with the Hausdorff dimension

whose rigorous definition is, e. g., elaborated in Falconer’s book on the Geometry of Fractal
Sets (1985)]. For the self-similar sets shown in Fig. 32, D can be calculated from

D = − log[N(l)/N(l′)]
log(l/l′)

(4.69)

We note that the length L of the Cantor set shown in Fig. 32 is indeed zero:

L = 1− 1

3
− 2

9
− 4

27
. . . = 1− 1

3

∞

∑
v=0

(
2

3

)v

= 0 . (4.70)

The Hausdorff dimension D∗ of a 2n-cycle can be calculated in the limit n → ∞ as follows. If

for a 2n-supercycle we need N(l) = 2n segments of length l to cover all its points, then from

Fig. 31 it is found that the mean minimum length l′ to cover all N(l′) = 2n+1 cycles is given

approximately by

l′ ≈ 1

2n+1

[
2n l

α
+2n l

α2

]
(4.71)

which yields

D∗ = − log2/ log

[
1

2

(
1

α
+

1

α2

)]
∼= 0.543 . (4.72)
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Figure 32: Hausdorff dimension of a straight line and of some typical self-similar point sets, so-called

fractals (drawn after Mandelbrot, 1982). It is understood that the ramifications continue ad infinitum.

Koch’s curve is a line of infinite length that encloses a finite area.

Figure 33: Positions of the cycle elements for fRn(x) = Rnx(1− x).

This value differs only by 5 % from Grassberger’s (1981) analytical and numerical result

D∗ = 0.5388 . . . (The numerical result was obtained by covering the attractor with succes-

sively smaller segments l and counting N(l)).
Figure 33 demonstrates the typical Cantor-set structure of the attractor. We will now show

that this leads to a remarkably simple change in the measurable power spectrum after each

bifurcation step.



50 4 Universal Behavior of Quadratic Maps

Figure 34: Change of the Fourier components after one bifurcation (schematically).

4.3.3 Power Spectrum
The power spectrum P(k) can be obtained by resolving the element xn(t) ≡ f t

Rn
(0) of a 2n-

cycle (t = 1, 2, . . . ,2n ≡ Tn) into its Fourier components an
k

xn(t) = ∑
k

an
k e

2πik
Tn t . (4.73)

The periodicity of the cycle implies

xn(t) = xn(t +2n) → e2πik = 1 → k = 0, 1, . . . ,2n −1 (4.74)

i. e., after each bifurcation step from n → n+1, 2n new subharmonics with frequencies k/2n+1

(k = 1, 3, 5, . . .) are obtained, as shown in Fig. 34. The corresponding change in the an
k’s can

be calculated from σ(m).
As a first step, we invert (4.73):

an
k =

1

2n

2n

∑
t=1

e
2πikt

2n xn(t) ≈ 1

T n

TnZ

0

dt e
2πikt

Tn xn(t) (4.75)

and by splitting the interval [0, Tn+1] into two halves with Tn = 1/2Tn+1 we obtain:

an+1
k =

TnZ

0

dt
2Tn

[xn+1(t)+(−1)kxn+1(t +Tn)] e−
πikt
Tn . (4.76)

The new even harmonics an+1
2k are essentially represented by the old spectrum at n(see Fig. 34),

because

an+1
2k =

TnZ

0

dt
2Tn

[xn+1(t)+ xn+1(t +Tn)] e−
2πikt

Tn

≈
TnZ

0

dt
Tn

xn+1(t) e−
2πikt

Tn ≈
TnZ

0

dt
Tn

xn(t) e−
2πikt

Tn = an
k . (4.77)
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The calculation of the odd components is somewhat more delicate, and we require our previ-

ously calculated function σ(x).
From (4.76) we have

an+1
2k+1 =

TnZ

0

dt
2Tn

[xn+1(t)− xn+1(t +Tn)] e−
(2k+1)πit

Tn (4.78)

and

xn+1(t)− xn+1(t +Tn) = xn+1(t)− f 2n

Rn+1
[xn+1(t)] = dn+1(t)

= σ
(

1

2Tn

)
dn(t) (4.79)

with

dn(t) = xn(t)− xn(t +Tn−1) = ∑
k

an
k [1− (−1)k] e

2πikt
Tn

= 2∑
k

an
2k+1 e

2πi(2k+1)
Tn . (4.80)

Thus, we obtain:

an+1
2k+1 = ∑

k
an

2k′+1

TnZ

0

dt
Tn

σ
(

t
2Tn

)
e

2πit
Tn [2k′+1− 1

2 (2k+1)]

≈ ∑
k′

an
2k′+1

[
1

α2
+

1

α
+ i(−1)k

(
1

α
− 1

α2

)]
1

2πi
1

2k′ +1− 1
2
(2k +1)

(4.81)

because

1Z

0

dξ σ
(

ξ
2

)
e2πiξy ≈ 1

α2

1/2Z

0

dξ e2πiξ +
1

α

1Z

1/2

dξ e2πiξy

=
1

2πi
1

y
[( eπiy −1)/α2 +( e2πiy − eπiy)/α] (4.82)

where σ(x) is approximated by a simple piecewise constant function.

Replacing the sum over k′ in (4.81) by an integral and using

1

2πi

Z
dk′xn

2k′+1

1

2k′ +1− 1
2
+(2k +1)

≈ 1

4
xn
(1/2)(2k+1) (4.83)

we eventually obtain:

|an+1
2k+1| ≈ µ−1|an

(1/2)(2k+1)| , µ−1 =
1

4α

√
2

(
1+

1

α2

)
(4.84)

µ−1 = 0.1525, i. e., 10 log10 µ = 8.17 dB .



52 4 Universal Behavior of Quadratic Maps

Figure 35: Numerically determined power spectrum for a quadratic map. Subsequent odd subharmonics

differ by a factor µ−1 (after Collet and Eckmann, 1980).

Therefore, the amplitudes of the odd subharmonics, which appear after each bifurcation step,

are “in the mean” just the averaged amplitudes of the old odd components reduced by a con-

stant factor µ−1. (The many approximations which have been made in deriving (4.84) require

this cautious restriction to averages.) The universal pattern∣∣an+1
2k

∣∣ ≈ |an
k | ,

∣∣an+1
2k+1

∣∣ ≈ 0.152
∣∣∣an

(1/2)(2k+1)

∣∣∣ (4.85)

is shown schematically in Fig. 34 and is reasonably consistent, e. g., with the numerical result

found for the quadratic map f (x) = 1−1.401155x2 depicted in Fig. 35.

4.3.4 Influence of External Noise
The full details of this power spectrum cannot be observed experimentally because there will

always be some external noise due to the coupling to other degrees of freedom (see Fig. 36).

In order to discuss this perturbation quantitatively, we add a noise term ξn, to the logistic

equation:

xn+1 = fr(xn)+ξn (4.86)

and calculate its influence on the cascade of bifurcations.

Here, ξn are Gaussian-distributed variables with averages

〈ξnξn′ 〉 = σ2δn,n′ (4.87)

(similarly their Fourier components ξk are Gaussian-distributed), and σ measures the intensity

of the white noise. We recall that the new Fourier components |an+1
k | of a 2n+1-cycle are a

factor of µ−1 smaller than the old components |an
k |. This means that any finite external noise

eventually suppresses all subharmonics above a certain n, as shown in Fig. 36c.

In fact the values R, (above which all subharmonics become unobservable because they

have merged into the chaos provided by the external noise) and the corresponding amplitude

σn are related by a power law

(R∞ −Rn) ∝ σγ
h (4.88)

where γ = logδ/ logµ.
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Figure 36: a) Iterates of the logistic map n = 1 and its Liapunov exponent λ, compared to b) the

corresponding quantities in the presence of external noise with amplitude σ = 10−3 (after Crutchfield,

Farmer and Huberman, 1982). Although the noise washes out the fine structure in the iterates and in λ,

there is still a sharp transition to chaos which is indicated by the change of sign of λ in b). c) Suppression

of subharmonics in the presence of white noise σ. Note that the subharmonic amplitudes are reduced by

a factor µ−1 for n → n+1 (schematically).

This can be derived as follows: If at R1 a noise level σ1 is just sufficient to suppress the

first subharmonic |a1
k | then all |an

k |= µ−n|a1
k | will disappear at Rn for σn = µ−n. If the common

n is eliminated, the corresponding scaling relations

(R∞ −Rn) ∝ δ−n (4.89a)

σn ∝ µ−n (4.89b)

yield (4.88).
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Figure 37: Suppression of the periodic regime by the presence of external noise for the logistic map

(after Crutchfield, Farmer and Huberman, 1982).

The decrease of Rn with increasing noise amplitude as in (4.88) has been verified numeri-

cally as shown in Fig. 37.

The external noise, which produces chaos for Rn < R∞ plays a similar role as a magnetic

field which causes a finite magnetization above the critical point of a magnet. This analogy

has been worked out by Shraiman, Wayne, and Martin (1981) who have shown, for example,

that the Liapunov exponent scales in the presence of external noise like

λ = rβλ0[r−1/γσ] ; β = log2/ logδ ; r = R∞ −R (4.90a)

or equivalently

λ = σθλ1[rσ−γ] ; θ = log2/ logµ (4.90b)

where λ0,1 are universal functions (see Fig. 38). These results have also been obtained by

Figure 38: Numerical determination of the scaling function λ1(γ) in eq. (4.90b). The quantity λσ−θ is

plotted against 100 values of y = rσ−γ at each of three noise levels: σ = 10−6 (�), 10−8 (�) and 10−10

(×) (after Crutchfield et al., 1981).
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Feigenbaum and Hasslacher (1982) using a decimation of path integrals. Their method, which

has a wide range of potential applications, is explained in Appendix E. Equation (4.90a) is

reminiscent of the scaling behavior of the magnetization M at a second-order phase transition:

M = rβ f (r1/γh) (4.91)

where r = |T −Tc| is the temperature distance to the critical point, and h is the magnetic field.

For the onset of chaos, where λ changes sign, eq. (4.90a) yields

0 = λ0[r−1/γσ] → r−1/γ ·σ = const. (4.92)

i. e., our equation (4.88).

4.4 Behavior of the Logistic Map for r∞ ≤ r

Let us now discuss the behavior of the logistic map for r ≥ r∞. We have already seen above

that at r∞ the sequence of bifurcations ends in a set of infinitely many points, the so-called

Feigenbaum attractor, which has a Hausdorff dimension D = 0.548. . . Figure 23 shows that

the Liapunov exponent λ of the logistic map at r∞ is still zero, i. e., the Feigenbaum attractor is

no strange attractor (see Chapter 6 for the definition of this object). But according to Fig. 23,

λ becomes mostly positive for r > r∞, and it is therefore reasonable to say that chaos starts

at the end of the bifurcation region. Although the detailed behavior of the iterates (of the

logistic map) appears rather complicated in this region, it shows regularities which are again

dictated by the doubling operator and therefore universal. It will be shown in the first part of

this section that for r∞ < r, periodic and chaotic regions are densely interwoven, and one finds

a sensitive dependence on the parameter values. Next we discuss the structural universality

discovered by Metropolis, Stein and Stein (1973) which preceeded the work of Feigenbaum

(1978). Finally we calculate the invariant density at r = 4 and explain the scaling of the reverse

band-splitting bifurcations.

4.4.1 Sensitive Dependence on Parameters
Figure 32 shows that for r∞ < r ≤ 4 “chaotic parameter values” r with λ > 0 and non-chaotic

r with λ < 0 are densely interwoven. Close to every parameter value where there is chaos,

one can find another r value which corresponds to a stable periodic orbit, that is, the logistic

map displays a sensitive dependence on the parameter r. The practical implications of this

behavior are worse than those of sensitive dependence on initial conditions. When chaos

occurs, the only alternative is to resort to statistical predictions. But for sensitive dependence

on parameters, statistical averages become unstable under variations in parameters because the

average behavior of the system may be completely different in the periodic and in the chaotic

case.

Although there is a rigorous proof (Jacobson, 1981) that the total length of chaotic param-

eter intervals in r∞ ≤ r ≤ 4 is finite, there remain the following questions:

– Which fraction of parameter values is chaotic?

– What is the probability that a change in the parameter values will lead to a change in

qualitative behavior. Since it is no longer possible to distinguish experimentally (i. e.,
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Figure 39: a) Piece of a fat fractal with measure µ(0), b) its coarse grained measure µ(l) is larger than

µ(0) because only those holes that are bigger than the resolution l are deleted.

when one has finite precision) between chaotic and nonchaotic parameter values, one

can only make statistical predictions for the parameter dependence of the system.

An answer to these questions has been given by D. Farmer (1985) who calculated numer-

ically the coarse grained measure (i. e., total length) µ(l) of all chaotic parameter intervals for

f (x) = rx(1− x) and g(x) = rsin(πx). Coarse grained means that all nonchaotic holes on the

r axis, with a size larger than l, were deleted (see Fig. 39).

Figure 40 shows that µ(l) scales like

µ(l) = µ(0)+Alβ (4.93)

where β = 0.45±0.05 is numerically the same for both maps, whereas µ(0) = 0.8979 (0.8929)

for f (x) and g(x) respectively.

The set of chaotic parameter values with a scaling behavior described by eq. (4.93) is an

example of a “fat” fractal. Fat fractals have, in contrast to the “thin” fractals considered on

page 49, a finite measure (i. e., volume). A typical example of a fat Cantor set is shown in

Fig. 41 which is obtained by deleting from the unit interval the central 1/3, 1/9, 1/27. . . of each

piece.

The remaining lengths scale like ln = 1/2[1− (1/3)n]ln−1. Using Nn = 2n, the Hausdorff

dimension D of this fat Cantor set becomes D = 1 via eq. (4.69). However, its volume scales

Figure 40: The logarithm of the change ∆µ(l) = µ(l)− µ(0) in the coarse grained measure of chaotic

parameter intervals plotted against the logarithm of the resolution l (after Farmer, 1985).



4.4 Behavior of the Logistic Map for r∞ ≤ r 57

Figure 41: Fat fractal which is constructed by deleting the central 1/3 then 1/9. . . of each remaining

subinterval (compare this to the thin fractal in Fig. 32).

according to:

µ(ln) − µ(0) = Nnln −N∞l∞ =
n

∏
j=1

[
1−

(
1

3

) j
]
−

∞

∏
j=1

[
1−

(
1

3

) j
]

∝

∝ 1−
∞

∏
j=n+1

[
1−

(
1

3

) j
]

∝ 1−
(

1

3

)n

for n → ∞ . (4.94)

Via ln ∝ (1/2)n for n → ∞ then follows:

µ(l)−µ(0) ∝ lβ with β = log3/ log2 . (4.95)

Let us now come back to the physical meaning of eq. (4.93). It answers both questions

raised above. The measure µ(0) gives the fraction of chaotic parameter values in r∞ < r < 4.

The exponent β determines the probability p that a variation in r will change the qualitative

behavior of the iterates. If one is sitting on a chaotic parameter value, p is proportional to the

probability of finding a nonchaotic hole of size l, that is, p ∝ µ(l)−µ(0) ∝ lβ.

This situation means, for numerical computations of the logistic map (which are usually

done with a precision l ∼ 10−14) that the odds of a mistake (i. e., that a trajectory believed to

be chaotic is actually periodic) are, for β ∼= 0.45, of the order 10−6, which is acceptable.

According to Farmer (1985), one speaks only then of sensitive dependence on parameters,

if β < 1 (i. e., if the odds of a mistake are larger than in the trivial case where one has p ∼ l−1).

It has been found (Farmer, 1986) that the set of parameter values where quasiperiodic be-

havior occurs in the subcritical circle map is also a fat fractal (see Chapter 7). This implies sen-

sitive dependence on parameters which distinguish between quasi-periodic and mode-locked

behavior (i. e., sensitive parameter dependence is not necessarily tied to chaos). Let us finally

note that the fact that the exponent β is numerically the same for the logistic map f (x) and

the sine map g(x) indicates a sort of global universality which is different from that originally

found by Feigenbaum since it applies to a set of positive measure (volume) rather than just

special points as period-doubling transitions.

4.4.2 Structural Universality
Structural universality in unimodal maps was discovered by Metropolis, Stein and Stein

(1973). They considered the iterates of the logistic map f (x) in the periodic windows. Start-

ing from x0 = 1/2, i. e., from the x value which corresponds to the maximum of f (x), the
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Figure 42: The map xn+1 = rxn(1− xn) with r = 3.49856 displays a 4-cycle of the type RLR.

sequence of iterates f n(x0) on a periodic attractor can be characterized by a string RL . . .
where R or L indicates whether f n+1(x0) is to the right or left of x0 (see e. g., Fig. 42). Table 3,

which has been computed by Metropolis et al. (1973), shows that the sequence of strings is

(up to cycles of length 7) the same for f (x) = rx(1− x) and g(x) = qsinπx. This numerical

result (which has actually been calculated for cycles up to length 11 and for other unimodal

Table 3: Universal sequences for two unimodal maps.

Period U-sequence Parameter value r Parameter value q
in xn+1 = rxn(1− xn) in xn+1 = qsin(πxn)

2 R 3.2360680 .7777338

4 RLR 3.4985617 .8463822

6 RLR3 3.6275575 .8811406

7 RLR4 3.7017692 .9004906

5 RLR2 3.7389149 .9109230

7 RLR2LR 3.7742142 .9213346

3 RL 3.8318741 .9390431

6 RL2RL 3.8445688 .9435875

7 RL2RLR 3.8860459 .9568445

5 RL2R 3.9057065 .9633656

7 RL2R3 3.9221934 .9687826

6 RL2R2 3.9375364 .9735656

7 RL2R2L 3.9510322 .9782512

4 RL2 3.9602701 .9820353

7 RL3RL 3.9689769 .9857811

6 RL3R 3.9777664 .9892022

7 RL3R2 3.9847476 .9919145

5 RL3 3.9902670 .9944717

7 RL4R 3.9945378 .9966609

6 RL4 3.9975831 .9982647

7 RL5 3.9993971 .9994507
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maps) suggests that the ordering of the sequence of RL . . . strings is universal for all maps on

the [0, 1] interval which have a differentiable maximum and fall off monotonically on both

sides. This so-called structural universality has been put on a rigorous footing by Gucken-

heimer (1980). It does not depend on the order of the maximum as the metric universality
of Feigenbaum (1978) (a “metric” is needed there to measure the distances which scale).

But it should be noted that structural universality seems to be restricted to one-dimensional

maps because in higher dimensions, up to now, no ordering has been found, and one can have

coexisting cycles of different length with different basins of attraction (see also Section 6.4).

From the mathematical point of view, the sequence of cycles in an unimodal map f (x) is

completely described by Sarkovskii’s theorem (1964). It states that if f (x) has a point x which

leads to a cycle of period p then it must also have a point x′ which leads to a q-cycle for every

q ← p where q and p are elements in the following sequence:

1 ← 2 ← 4 ← 8 ← 16 . . .2m . . . ←
. . .2m ·9 ← 2m ·7 ← 2m ·5 ← 2m ·3 . . . ←
. . .22 ·9 ← 22 ·7 ← 22 ·5 ← 22 ·3 . . . ←
. . .2 ·9 ← 2 ·7 ← 2 ·5 ← 2 ·3 . . . ←
. . . 9 ← 7 ← 5 ← 3 . . . ←

(4.96)

where the symbol ← means “precede” (for a proof, see references of this chapter). It should

be emphasized that Sarkovskii’s theorem is only a statement concerning different x values at a

fixed parameter value. It says nothing about the stability of the periods nor about the range of

parameter values for which it could be observed. It follows, from the sequence in eq. (4.96),

that if f (x) has period three, then this implies that it must also have all periods n where n is

an arbitrary integer. This is the famous theorem of Li and Yorke (1975) “Period three implies

chaos”. But it should be noted that “chaos” in this theorem means only aperiodic behavior

and does not imply automatically a positive Liapunov exponent.

4.4.3 Chaotic Bands and Scaling
The logistic map at r = 4,

xn+1 = 4xn(1− xn) ≡ f4(xn) , (4.97)

can actually be solved by the simple change of variables:

xn =
1

2
[1− cos(2πyn)] ≡ h(yn) . (4.98)

Then eq. (4.97) can be converted into

1

2
[1− cos(2πyn+1)] = [1− cos(2πyn)][1+ cos(2πyn)] =

1

2
[1− cos(4πyn)] (4.99)

which has one solution:

yn+1 = 2yn mod1 ≡ g(yn) or yn = 2ny0 mod1 . (4.100)
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Figure 43: The invariant density for f4 = 4x(1− x) (schematically).

This implies the following solution to eq. (4.98):

xn =
1

2
[1− cos(2π2ny0)] (4.101)

where y0 =
1

2π
arccos(1−2x0) . (4.102)

Using eqs. (4.97–4.100), the invariant density ρ4(x) of f4(x) can be calculated from its defini-

tion:

ρ4(x) = lim
N→∞

1

N

N−1

∑
n=0

δ(x− xn) = lim
N→∞

1

N

N−1

∑
n=0

δ[x−h(yn)] .

Using ρ(y) = 1 [which holds in analogy to the triangular map on page 27 also for the map in

eq. (4.100)] eq. (4.101) becomes:

ρ4(x) =
Z 1

0
dyρ(y)δ[x−h(y)] =

2

|h′[y(x)]| (4.103)

i. e.,

ρ4(x) =
1

π
1√

x(1− x)
(4.104)

as depicted in Fig. 43.

These results show that the map fr(x) becomes ergodic for r = 4 and that the invariant

density of a chaotic map need not always be a constant.

For the Liapunov exponent eq. (4.104) yields at r = 4:

λ =
Z 1

0
dx ρ4(x) | f ′(x)| = log2 (4.105)

i. e., the same value as for the map in eq. (4.100) which demonstrates that the Liapunov expo-

nent is indeed invariant under a change of the coordinates.

Figure 44 makes it plausible that the r-values for the inverse cascade (in which the chaotic

regime at r = 4, which extends from 0 ≤ x ≤ 1, is decomposed into finer and finer subintervals

In that merge into the Feigenbaum attractor) are again determined by the law of functional

composition.



4.5 Parallels between Period Doubling and Phase Transitions 61

Figure 44: a) Bifurcations for r < r∞ and the corresponding merging of chaotic regions for r > r∞; the

dark areas indicate the corresponding invariant densities (see Fig. 43). Note the nonlinear scale on the

abscissa. (After Grossmann and Thomae, 1977.) b) The lengths In of the chaotic intervals are again

related to functional composition and the r̄n therefore scale like r̃n − r∞ ∼ δ−n.

4.5 Parallels between Period Doubling and Phase
Transitions

In the first part of this section we present a dictionary of the corresponding terms used in

the bifurcation route to chaos and in the renormalization-group theory for second-order phase

transitions. In the second part we summarize the measurable properties that characterize the

Feigenbaum route and discuss some representative experiments.

We have already seen in Chapter 3 that the Liapunov exponent corresponds to the order

parameter near a second-order phase transition. Table 4 shows that for the bifurcation route

to chaos the analogy to a magnetic phase transition can be worked out in more detail. Both

phenomena show a certain self-similarity (in the bifurcation pattern and in the pattern of spin-

up/spin-down clusters near a critical point) which forms the basis for a renormalization-group

treatment. Universality emerges then because there are only a few relevant eigenvalues (see

also Appendices E and D).
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Table 4: Parallels between phase transitions and period doubling.

Phase transitions Period doubling

Ginzburg–Landau functional One-dimensional map

H =
R

ddx[c(∇σ)2 + tσ2 +uσ4] fR(x)
with parameter vector µ = (c, t, u)

Distance to the critical point Distance from R∞
t = T −Tc R−R∞

Order parameter Liapunov exponent

〈σ(x)〉 (Magnetization) λR (changes sign at R∞)

Formation of block spins → Functional composition →
renormalization-group transformation R doubling operator T

with fixed point H∗ (=̂µ∗) with fixed point g
R[µ∗∗] = µ∗ T[g] = g

Linearized renormalization-group Linearized doubling

transformation transformation

R2n [µ∗] = µ∗ +(T −Tc)2ny1�e1 Tn fR(x) = g(x)+(R−R∞) ·δn ·a ·h(x)

Parameter space: Space of functions:

critical surface stable manifold

�e1 = unstable direction a ·h(x) = one-dimensional unstable manifold

We can also derive scaling laws for the Liapunov exponent λ and the correlation function

C(m) which are similar to those for the magnetization and the spin-spin correlation near a

magnetic phase transition.

According to (3.9), the Liapunov exponent of a map f is (for x0 = 0) is given by

λ( f ) = lim
n→∞

1

n

n

∑
i=0

log | f ′[ f i(0)]| . (4.106)

Using

T f ·T f · · ·T f = (T f )i = −α f 2i
(
− x

α

)
(4.107)

and

d

dx
T f = f ′

[
f
(
− x

α

)]
f ′

( x
α

)
(4.108)
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we find

λ[T f ] = 2 lim
n→∞

1

2n

2n+1

∑
i=0

log | f ′[ f i(0)]| = 2λ[ f ] (4.109)

which can be iterated to

λ[ f ] = 2−nλ[Tn f ] . (4.110)

By choosing f = fR, we can use

Tn fR(x) = g(x)+(R−R∞) ·δn ·a ·h(x) (4.111)

in (4.110) which yields, by setting (R−R∞)δn = 1, the scaling relation

λ fR = (R−R∞)βλ[g(x)+a ·h(x)] (4.112)

with β = log2/ logδ as a critical exponent.

This equation describes the approach of the Liapunov exponent to zero if a sequence of Rs

with the same µ (see Fig. 30) approaches R∞; i. e., the power law λ ∝ (R−R∞)β holds for the

envelope of λ.

In a similar way, for the correlation function (3.35)

C[m, f ] = lim
n→∞

1

n

n

∑
i=0

f i(0) f i+m(0) (4.113)

one finds the scaling relation

C[m, T f ] = α2 lim
n→∞

1

n

n

∑
i=0

f 2i(0) f 2i+2m(0)

= α2 lim
n→∞

{
2

1

2n

2n

∑
i=0

f i(0) f i+2m(0)− (4.114)

− 1

n

n−1

∑
i=0

[ f (0)] f 2i+2m[ f (0)]

}

i. e.,

C[m, T f ] = α2C[2m, f ] (4.115)

and by using again (4.107):

C[m, fR] = α−2nC[2−nm, g(x)+(R−R∞) ·δn ·a ·h(x)] . (4.116)

Equation (4.116) leads to a variety of scaling laws, depending on which combination of vari-

ables we set equal to unity. We mention that at R∞ the correlation function decays with a

power law in m:

C[m, fR∞ ] = α−2nC[2−nm, g(x)] = m−η C[1, g(x)] (4.117)

with η = logα2/ log2.

These power laws have the following counterparts in magnetic phase transitions:

λ ∝ |R−R∞|β =̂ M ∝ |T −Tc|β (4.118a)

C(m) ∝ m−η at R∞ =̂ C(|x|) ∝ |x|−η at Tc (4.118b)

where M is the magnetization and C(|x|) is the spin–spin correlation function.
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4.6 Experimental Support for the Bifurcation Route
After a preponderance of theory, let us now present some experimental support for the Feigen-

baum route. First, we summarize its measurable fingerprints:

– There exists an infinite cascade of period doublings which leads to subharmonics in the

power spectrum at frequencies 2−n · f0 where f0 is the basic frequency.

– Each subharmonic lies below the preceeding level by a factor µ−1 = 0.1525 (10log10 µ =
8.17 dB).

– The control parameter r scales for subsequent subharmonics n like rn − r∞ ∝ δ−n.

– External noise destroys the fine structure of the power spectrum, and the noise level must

decrease by a factor µ−1 to make one more subharmonic observable.

– The Poincaré map of the system is one-dimensional and shows a single quadratic maxi-

mum.

Following Feigenbaum’s work, the bifurcation route to chaos has been found in many ex-

perimental systems, from the kicked pendulum and chemical reactions. . . to optically bistable

devices. Below we discuss three representative examples in more detail.

Figures 45 and 46 show the power spectra for a Bénard experiment and for a nonlinear

driven electrical RCL-oscillator.

The experimental set up for the Bénard experiment has already been described in Chap-

ter 2. (We note that depending on the parameters of the liquid, the size of the cell, etc., the

Bénard system exhibits different routes to chaos.) Libchaber and Maurer (1980) found the

following properties of the Feigenbaum route in a Bénard experiment with liquid helium:

1. With increasing temperature difference (which is proportional to the control parameter r)

there appear subharmonics of frequencies f /2, f /4, f /8 and f /16 where f is the basic

frequency.

2. Subsequent subharmonics differ by about 10 dB in qualitative agreement with theory

(µ=̂8.2 dB).

Higher subharmonics are probably suppressed by external noise.

Although these results leave little doubt that the Feigenbaum route is involved, the explicit

reduction of the hydrodynamic equations, which describe the system to a one-dimensional

Poincaré map with a single quadratic maximum, has still not been demonstrated.

The situation is somewhat better for the nonlinear RCL-oscillator shown in Fig. 46. The

nonlinear element in this circuit is, according to Linsay (1981), the capacitor-diode, which

leads to the following nonlinear relation between charge q and voltage V :

V (g) =
[

1+
V (q)
0.6

]0.43 q
C0

. (4.119)

The differential equation for the time dependence of q is

Lq̈+Rq̇+V (q) = V0 sin(2π f1t) (4.120)
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Figure 45: a) Bénard cell with only two-roll convection pattern of liquid helium, basic frequency

f = 0.5 s−1. b)–d) Power spectrum of the temperature x(t) with increasing Rayleigh number which

is proportional to r. e) The heights of the nth subharmonics are compared with Feigenbaum’s theory

(horizontal lines). (After Libchaber and Maurer, 1980.)

and the circuit acts like an analog computer for a driven nonlinear oscillator. Figure 46 shows

that for special values of V , (which is proportional to the control parameter r) the sequence

of current signals In = I(t0 + nT ), where the time T = 1/ f1, can indeed be generated from

a one-dimensional map with a quadratic maximum. (The current is related to the charge via

I = q̇, and In corresponds to xn). The corresponding power spectrum exhibits, as expected,

all the features of the bifurcation route and yields an estimate for δ which deviates by 10 %

from Feigenbaum’s asymptotic value. See also the phase portraits (I(t) versus V (t)) for the

nonlinear RCL-oscillator of Lauterborn et al. (1984) in Plate I at the beginning of the book.

We note also that there exists theoretical (Rollins and Hunt, 1982) and experimental (S. Mar-
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Figure 46: A) Circuit for the driven nonlinear RCL-oscillator. B) The observed current I(t +T ) vs. T (t)
yields a one-dimensional map with a single maximum. C) Determination of δ from the values of the

control parameter V0. D) a – c: Subharmonics in the power spectrum for increasing V0; d: comparison

with Feigenbaum’s theory (horizontal lines). (After Linsay, 1981.)

tin, priv. comm.) evidence that the chaotic behavior of RCL-oscillators with Varactor diodes

(which were used in the experiments above) is not caused by the nonlinearity of the diode but

by its large recovery time. But, this situation can again be described by a one-dimensional

noninvertible map.

To demonstrate that the Feigenbaum route indeed occurs in quite different systems, we

finally describe an experiment by Lauterborn and Cramer (1981) in which this route has been

observed in acoustics (Fig. 47a). They irradiated water with sound of high intensity and

measured the sound output of the liquid. The nonlinear elements in this system are cavitations,

i. e., bubbles filled with water vapor which are created by the pressure gradients of the initial

sound wave and whose wall oscillations are highly nonlinear.

Figure 47 shows a sequence of power spectra that is obtained experimentally (b) and from

a numerical calculation (c) (in which only a single spherical bubble was considered). With

increasing input pressure (which is the external control parameter), one observes a subhar-

monic route to chaos that, besides the sequence f0 → f0/2 → f0/4 . . . → chaos, also contains

f0/3. Moreover, the system shows signs of reverse bifurcations where it returns from chaotic

behavior to a line spectrum.
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Figure 47: Experimental setup for genera-

tion and detection of cavitation noise (a). Se-

quence of observed (b) and calculated (c)

power spectra for different input pressures.

The noise amplitude is encoded as grey scale

and the input pressure (which is measured

experimentally by the voltage at the driving

piezoelectric cyclinder) is increased linearly

in time. See also the coloured version of c) in

Plate V at the beginning of the book. (After

Lauterborn and Cramer, 1981.)



5 The Intermittency Route to Chaos

By intermittency we mean the occurrence of a signal that alternates randomly between long

regular (laminar) phases (so-called intermissions) and relatively short irregular bursts. Such

signals have been detected in a large number of experiments. It has also been observed that the

number of chaotic bursts increases with an external parameter, which means that intermittency

offers a continuous route from regular to chaotic motion. In the first section of this chapter,

we present mechanisms for this phenomenon proposed by Pomeau and Manneville (1979)

and discuss type-I intermittency which is generated by an inverse tangent bifurcation. It is

shown in the second section that the transition to chaos via intermittency has in fact universal

properties and represents one of the rare examples where the (linearized) renormalization-

group equations can be solved exactly. These results will be used in Section 5.3 to demonstrate

that intermittency provides a universal mechanism for 1/ f -noise in nonlinear systems. In the

final section, we summarize typical properties of the intermittency route and discuss some

experiments.

5.1 Mechanisms for Intermittency

The intermittency route to chaos has been investigated in a pioneering study by Pomeau and

Manneville (1979). They solved numerically the differential equations of the Lorenz model,

Ẋ = σ(X −Z) (5.1a)

Ẏ = −XZ + rX −Y (5.1b)

Ż = XY −bZ (5.1c)

and for the Y -component they found the behavior shown in Fig. 48.

For r < rc, Y (t) executes a stable periodic motion. Above the threshold rc the oscillations

are interrupted by chaotic bursts, which become more frequent as r is increased until the

motion becomes truly chaotic.

Pomeau and Manneville gave the following interpretation for this behavior: The stable

oscillations for r < rc correspond to a stable fixed point in the Poincaré map (see also Fig. 6).

Above rc this fixed point becomes unstable. Because there are essentially three ways in which

a fixed point can lose its stability (in all of them the modulus of the eigenvalues of the lin-

earized Poincaré map becomes larger than unity), Pomeau and Manneville distinguished the

three types of intermittency shown in Table 5. (See also Table 7, p. 85, for the form of the

signal.)

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Figure 48: Time plot of one coordinate in the Lorenz model (after Pomeau and Manneville 1980).

Table 5: Three types of intermittency.

Type Characteristic behavior

and maps

Typical map (ε < 0 → ε > 0) Eigenvalues

I A real eigenvalue crosses

the unit circle at +1.

xn+1 = ε+ xn +ux2
n

II Two conjugate complex

eigenvalues cross the unit

circle simultaneously.

rn+1 = (1+ ε)rn +ur3
n

θn+1 = θn +Ω
III A real eigenvalue crosses

the unit circle at −1.

xn+1 = −(1+ ε)rn −ur3
n

5.1.1 Type-I Intermittency

Figure 49 shows a Poincaré map for the Lorenz model, after Pomeau and Manneville who

plotted the values yn where y(t) crossed the plane x = 0. If this figure is compared with

Table 5, it is seen that the Lorenz model displays intermittency of type I.

This transition to chaos is characterized by an inverse tangent bifurcation in which two

fixed points (a stable and an unstable one) merge as depicted in Fig. 50.

For r > rc the map has no stable fixed points. However, a sort of “memory” of a fixed

point is displayed since the motion of the trajectory slows down in the vicinity of xc and

numerous iterations are required to move through the narrow channel between the map and

the bisector. This leads to the long laminar regions for values of r just above rc in Fig. 48.



5.1 Mechanisms for Intermittency 71

Figure 49: Poincaré map of the Lorenz model for r slightly above rc = 166 (after Pomeau and Man-

neville, 1980).

Figure 50: Mechanism for type-I intermittency. a) Poincaré map for ε = r− rc ≤ 0, b) Poincaré map for

ε > 0 and motion of the trajectory, (note that the “ghost of the fixed point” xc attracts trajectories on the

left hand side and repels them on the right hand side), c) inverse tangent bifurcation.
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Figure 51: Window with period three in the chaotic regime.

After the trajectory has left the channel, the motion becomes chaotic until reinjection into the

vicinity of xc starts a new regular phase. The theory of Pomeau and Manneville explains only

the laminar motion but gives no information about the mechanism which generates chaos.

Another example for type-I intermittency appears in the logistic map

xn+1 = f(xn) = rxn(1− xn) . (5.2)

Numerically, it is found that for rc = 1+
√

8 this map exhibits a cycle of period three with

subsequent bifurcations, i. e., there is a window in the chaotic regime as shown schematically

in Fig. 51. The iterates for r-values larger and smaller than rc are shown in Fig. 52. There is a

regular cycle of period three slightly above rc; but below rc laminar regions occur interrupted

by chaos.

Figure 52: Iterates of the logistic map starting from x = 0.7; a) in the stable three-cycle region rc − r =
−0.02; b) in the intermittent region rc − r = 0.002. (After Hirsch et al. 1981.)
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Figure 53: The threefold iterated map f 3
r (x) for r = rc

An explanation of this peculiar behavior follows from Fig. 53, which shows the third

iterate of fr(x) at r = rc. There are three fixed points that become unstable for r < rc and

lead to intermittency of type I. It should be noted that inverse tangent bifurcations provide

(in contrast to pitchfork bifurcations in which the number of fixed points is doubled) the only

mechanism by which an uneven number of fixed points can be generated in the logistic map.

5.1.2 Length of the Laminar Region
As the next step, we calculate the average length 〈l〉 of a laminar region (as a function of the

distance ε = r − rc from the critical point) for the logistic map. It will become clear from

our derivation that the result for 〈l〉(ε) is not confined to this special map but holds for any

Poincaré map that leads to type-I intermittency.

Expanding f 3
r (x) around the points xc and rc that are determined by

d

dx
f 3
rc
(xc) = 1 , f 3

rc
(xc) = xc (5.3)

we obtain

f 3
r (x) = f 3

r [xc +(x− xc)] = xc +(x− xc)+ac(x− xc)2 +bc(r− rc) (5.4)

where

2ac ≡ d2 f 3
r

dx2

∣∣∣∣
xc,rc

bc ≡ d f 3
r

dr

∣∣∣∣
xc,rc

(5.5)

(A similar equation holds for all three fixed points of f 3
rc
(x), but we choose the middle point

for convenience as the result is independent of the constants).

With y ≡ (x− xc)/bc and ac ≡ ac ·bc > 0 the recursion for the map

xn+1 = f 3
r (xn) (5.6)

transforms via (5.4) in the vicinity of xc into

yn+1 = yn +ay2
n + ε; ε = r− rc . (5.7)
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(A similar map is obtained if the Poincaré map in Fig. 49 is expanded around the point of

tangency). The laminar regions are now defined by the requirement that subsequent iterates

change only very little; i. e., their distance to xc should be smaller than a threshold value c:

|yn| < c � 1 . (5.8)

In this region we can therefore safely replace the difference equation (5.7) by the differential

equation,

dy
dl

= ay2 + ε (5.9)

(l counts the iterations in the laminar region) which after integration yields

l(yout, yin) =
1√
aε

[
arctan

[
yout√

ε/a

]
− arctan

[
yin√
ε/a

]]
(5.10)

To find the average length 〈l〉 of a laminar region, we assume that after having left the laminar

region at yout = c, the point becomes, after some irregular bursts, reinjected to |y| < c at yin,

with a probability function P(yin), which is symmetric about xc, i. e., P(yin) = P(−yin).
This yields

〈l〉 =
cZ

−c

dyin P(yin) l(c, yin) =
1√
aε

arctan

[
c√
ε/a

]
. (5.11)

For c/
√

ε/a � 1, the average length 〈l〉 varies as

〈l〉 ∝ ε−1/2 . (5.12)

This characteristic variation was first derived by Pomeau and Manneville (1980) and is valid

numerically for the logistic map as shown in Fig. 54.

Figure 54: a) Sequence of third iterates f 3n
r (x0) for rc−r = 0.0001 showing regions of laminar behavior

interrupted by intermittent irregularities; b) the points show 〈l〉 versus ε for c = 10−2, and the line is the

asymptotic limit 〈l〉 = (π/2)(εa)−1/2. (After Hirsch et al., 1981.)
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Figure 55: f (x) and f 2(x) vs. x for x ≥ 0. a) The second iterate is constructed by plotting, in addition to

b) the square which contains f (x), the same square rotated through 90:̊ The arrows indicate how f [ f (x)]
is obtained. b) The second iterate f 2(x) looks similar to the original f (x) in the dotted square.

5.2 Renormalization-Group Treatment of Intermittency
The intermittency phenomenon has also been investigated by the renormalization-group meth-

od using the doubling operator which we encountered previously for the Feigenbaum route.

The idea is as follows: One considers a generalization f (x) of the map (5.7) for ε = 0 to

arbitrary exponents z > 1 which for x → 0 has the form

f (x → 0) = x+u|x| . (5.13)

Its second iterate f 2(x) shows (because of the linear term in x), after proper rescaling, the same

asymptotic behavior (see Fig. 55). This is reminiscent of Fig. 29 for the logistic map. It could,

therefore, be asked whether repeated application of the doubling operator T to a function of

type (5.13) could also lead to a fixed point f ∗(x) of T:

T f ∗(x) = α f ∗
[

f ∗
( x

α

)]
= f ∗(x) (5.14)

but with the boundary conditions (5.13), i. e., f ∗(0) = 0 and f ∗′(0) = 1 instead of f ∗(0) = 1

and f ∗′(0) = 0 for the Feigenbaum bifurcations.

It has been shown by Hu and Rudnick (1982) that together with the new boundary con-

dition (.5.13) the fixed-point equation (5.14), which is characteristic for intermittency, can be

solved exactly.
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Here, the trick is to write the recursion relation

x′ = f (x) (5.15)

in implicit form

G(x′) = G(x)−a (5.16)

i. e.,

x′(x) = G−1[G(x)−a] = f (x) (5.17)

where a is a free parameter. The fixed-point equation

α f ∗[ f ∗(x)] = f ∗(αx) (5.18)

then becomes

αx′′(x) = x′(αx) (5.19)

or by operating on this with G:

G(αx′′) = G[x′(αx)] = G(αx)−a . (5.20)

Next, eq. (5.16) is used to obtain

G(x′′) = G(x′)−a = G(x)−2a (5.21)

i. e.,

1
2
G(x′′) = 1

2
G(x)−a . (5.22)

Comparison of (5.20) and (5.22) indicates that to solve the fixed-point equation, G must have

the property

1
2
G∗(x) = G∗(αx) . (5.23)

The simple choice G∗(x) = |x|−(z−1) with α = 2
1

(z−1) yields the desired result.

The fixed-point function therefore becomes

f ∗(x) = G∗−1[G∗(x)−a] = [|x|−(z−1) −a]−1/(z−1) (5.24)

which for a = (z−1)u fulfils boundary condition (5.13). This derivation shows that the fixed-

point map for intermittency is mathematically related to a translation G(x′) = G(x)−a; how-

ever, a simple physical explanation for this connection is not clear.

It is of course enough to find the fixed-point function f ∗(x) but one wants to classify the

perturbations to f ∗ according to their relevance (see, e. g., Table 4). We investigate, therefore,

how the doubling transformation T acts (to linear order in ε) on a function

fε(x) = f ∗(x)+ εhλ(x) for ε � 1 . (5.25)

Using the definition (5.14) for T we find:

T fε = α fε

[
fε

( x
α

)]
(5.26)

= α f ∗
[

f ∗
( x

α

)
+ εhλ

( x
α

)]
+ εαhλ

[
f ∗

( x
α

)
+ εhλ

( x
α

)]
= α f ∗

[
f ∗

( x
α

)]
+ εα

{
f ∗′

[
f ∗

( x
α

)]
hλ

( x
α

)
+hλ

[
f ∗

( x
α

)]}
+O(ε2)

= f ∗(x)+λεhλ(x)+O(ε2) .
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The last equation holds only if hλ(x) is an eigenfunction, with the eigenvalue λ, of the lin-

earized doubling operator L f ∗ :

L f ∗ [hλ(x)] ≡ α{ f ∗′[ f ∗(x)]hλ(x)+hλ[ f ∗(x)]} = λhλ(αx) (5.27)

by analog to eq. (4.49) for the Feigenbaum route.

We now show that the method used above (to find the fixed-point function f ∗) allows us

also to find the spectrum of eigenvalues λ and the corresponding eigenfunctions hλ. First we

write fε(x) in implicit form using eq. (5.17):

fε(x) = f ∗(x)+ εhλ(x) = x′ = G−1
ε [Gε(x)−a] . (5.28)

If we expand

Gε(x) = G∗(x)+ εHλ(x) (5.29)

then hλ(x) can be expressed in terms of Hλ(x) (and vice versa) by comparing the factors linear

in ε on both sides of (5.28).

Next we consider the second iterate,

x′′(x) = fε[ fε(x)] (5.30)

and apply Gε to this. This yields

Gε(x′′) = Gε(x′)−a = Gε(x)−2a (5.31)

or more explicitly:

G∗(x′′)+ εHλ(x
′′) = G∗(x)+ εHλ(x)−2a . (5.32)

Because G∗(x) has the form of a simple power of x we try a similar ansatz for Hλ(x):

Hλ(x) = |x|−ρ . (5.33)

Using the property (5.23) of G∗(x), (5.32) then becomes

G∗(αx′′ +λεHλ(αx′′) = G∗(αx)+λεHλ(αx)−a (5.34)

or

Gλε(αx′′) = Gλε(αx)−a (5.35)

→ αx′′ = G−1
λε [Gλε(αx)−a] (5.36)

where

λ = 2
p+1−z

z−1 . (5.37)

With (5.28) this translates into

α fε[ fε(x)] = fλε(αx) = f ∗(αx)+λεhλ(αx) . (5.38)

By comparing this result with eq. (5.26) we see that λ is indeed the eigenvalue of hλ, which is

determined by

f ∗(αx)+λεhλ(αx) = G−1
λε [Gλε(αx)−a] . (5.39)
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Figure 56: Shift ε from tangency.

Solving (5.39) to order ε one obtains

hλ(x) =
1

up

[
|x|−(z−1) −u(z−1)

]− z
z−1

·
{
|x|−p −

[
|x|−(z−1) −u(z−1)

]− p
z−1

}
(5.40)

eqs. (5.37) and (5.40) represent the main results of this section. They provide the information

as to how T acts (to linear order in the deviation f − f ∗) on a function f that obeys the boundary

condition (5.13), because we obtain by expanding f (x)− f ∗(x) into hλ(x):

Tn f (x) = Tn( f ∗(x)+ f (x)− f ∗(x)) (5.41)

= Tn( f ∗(x)+∑
λ

cλhλ(x)) = f ∗(x)+∑
λ

λncλhλ(x)

The intermittency route therefore represents – in contrast to the Feigenbaum route – one of the

rare examples where the linearized renormalization-group equations can be solved exactly.

As an application, we now calculate the dependence of the duration 〈l〉 of a laminar region

on the shift ε of the map from tangency shown in Fig. 56.

The eigenfunction hλ in eq. (5.40) has been normalized, so that its lowest order term in x
is |x|2z−1−p. We therefore see that a constant shift ε from tangency corresponds to a relevant

perturbation with p = 2z−1. The eigenvalue λε, that corresponds to this is

λε = 2
z

z−1 (5.42)

With this information we can determine 〈l〉(ε) by a simple scaling procedure.

Because 〈l〉 is related to the number of iterates of x0, and f 2(x) = f [ f (x)] only requires

half as many steps as f (x), we arrive at the scaling relation

〈l〉[T f (x0)] =
1

2
〈l〉[ f (x0)] . (5.43)

Using (5.26) this becomes after many iterations

〈l〉[ f (x0)] = 2n〈l〉 [Tn f (x0)] = f ∗(x0)+ ελn
εhλ(x0)

from which for ελn
ε = 1 we obtain with (5.42):

〈l〉 ∝ ε−v with v =
z−1

z
. (5.44)
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For z = 2 this agrees with our previous result (5.12). One can show with the same method that

a perturbation which is linear in x, i. e.,

f (x) = f ∗(x)+ εx (5.45)

leads to

〈l〉 ∝ ε−1 (5.46)

and perturbations εxm with m > z are irrelevant.

Finally, we mention that the effect of external noise with amplitude σ on intermittency has

been treated by Hirsch, Nauenberg, and Scalapino (1982) with the net result that 〈l〉 scales

like

〈l〉 = ε−vg(σµε) with µ =
z−1

z+1
(5.47)

where g is a universal function.

5.3 Intermittency and 1/f-Noise
It has been observed experimentally that the power spectra S f of a large variety of physical

systems (see Table 6) diverge at low frequencies with a power law 1/f δ(0.8 < δ < 1.4). This

phenomenon is called 1/f -noise. Despite considerable theoretical efforts, a general theory

encompassing 1/f δ-divergencies in several experiments is still lacking.

In the following, we show that a class of maps which generates intermittent signals also

displays 1/f δ-noise, and we link the exponent δ to the universal properties of the map using the

renormalization-group approach. Although the intermittency mechanism for 1/f -noise is – as

we shall demonstrate below – well verified numerically for maps, it still remains unresolved,

whether it also provides an explanation for the experiments shown in Table 6. (We do not

think that the intermittency mechanism which is very sensitive to external perturbations could

explain the robust 1/f -noise found in resistors, cf. Fig. 57. But there is a good chance to find

this mechanism in chemical reactions and in the Bénard convection; see Manneville (1980),

and Dubois et al. (1983).)

Table 6: Systems showing 1/ f -noise.

System Signal System Signal

Carbon film Current Zener diode Current

Metal film Current Bipolar transistor Current

Semiconductor Current Field effect transistor Current

Metal contact Current Thermocell Thermovoltage

Semiconductor contact Current Electrolytic concentration cell Voltage

Ionic solution contact Current Quartz oscillator Frequency

Superconductor Flux Earth (5 days mean of rotation) Frequency

Flow vacuum tube Current Sound and speech sources Loudness

Junction diode Current Nerve membrane Potential

Schottky diode Current Highway traffic Current
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Figure 57: Example for 1/f -noise in the current of a bipolar transistor (after D. Wolf, 1978).

Figure 58: The map f (x) has the limiting behavior f (x→ 0) = x+uxz and is arbitrary beyond x = c with

the only requirement that this part of the map produces random reinjection into the region 0 ≤ x0 ≤ c
with a probability P̂(x0).

We want to calculate the power spectrum S f for the map

Xn+1 = f (xn) (5.48)

in Fig. 58 where xn ≥ 0. In other words, we only use that part of the map where the “ghost

of the fixed point” is repulsive (compare Figs. 50 and 65). Therefore our mechanism for 1/ f -

noise only works for type-III (and type-II) intermittency (Ben-Mizrachi et al., 1985). It is

useful to express S f via the correlation function C(m):

S f ∝ lim
N→∞

1

N

N

∑
m=0

cos(2πm f )C(m) (5.49)
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Figure 59: a) The iterates xn = f n(x0) as a function of time, showing laminar and chaotic behavior

according to whether the trajectory is in [0, c] or in the chaotic region; b) the idealized signal.

Figure 60: The probability of finding a signal at m, assuming there was a signal at zero, can be expressed

by P(l).

where

C(m) = lim
N→∞

1

N

N

∑
n=0

xn+mxn . (5.50)

(This result follows by Fourier transformation from the definitions in eqs. (5.49) and (5.50).)

To evaluate C(m), we idealize the signal as shown in Fig. 59b, i. e., we assume that xn is

practically zero in the laminar regions and replace the short burst regions by lines of height

one. C(m) then becomes proportional to the conditional probability of finding a signal at time

m, given that there occurred a signal at time zero.

Next, we express C(m) in terms of the probability P(l) of finding an intermission of length

l, which we shall calculate below in a universal way. Figure 60 shows that

C(1) = P(1)
C(2) = P(2)+P(1)2 = P(2)+C(1)P(1)
C(m) = P(m)+C(1)P(m−1)+ . . .+C(m−1)P(1) (5.51)
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which can be written as

C(m) =
m

∑
k=0

C(m− k)P(k)+δm,0 (5.52)

if we define P(0) = 0, C(0) = 1.

We now use eq. (5.24) to calculate the probability P(l) of finding a laminar region of

length l for (5.48).

P(l) is related to the probability P̂(x0) via

P̂(x0)dx0 = P̂[x0(l)]
∣∣∣∣ dx0

dl

∣∣∣∣ dl ≡ P(l) dl (5.53)

→ P(l) = P̂[x0(l)]
∣∣∣∣ dx0

dl

∣∣∣∣ (5.54)

and since it follows from Fig. 58 that

f l(x0) = c → x0 = x0(l) (5.55)

x0(l) can be calculated by using the doubling operator. In the absence of relevant perturbations

(which will be discussed later), we have

Tn f (x0) = αn f 2n(x0/αn) ≈ f ∗(x0) , for n � 1 (5.56)

i. e., the function is driven to the fixed point. This yields

f 2n(x0) = α−n f ∗(αnx0) . (5.57)

Here both α = 2
1

z−1 and f ∗(x) = |x|[1−(z−1)u|x|z−1]−
1

z−1 depend only on z which determines

the universality class. If we use (5.57) in (5.55), we obtain for l = 2n):

x0(l) ∝ l
1

z−1 (5.58)

and with (5.54) this yields the desired universal result for P(l),

P(l) ∝ P̂(0)l−
z

z−1 . (5.59)

Here we assumed that P̂(x0) varies only slowly with x0, i. e., P̂(x0) ∝ l−
1

z−1 → 0 ≈ P̂(0), for

l � 1.

We pass on to continuous time variables since we are only interested in the long-time limit,

and solve (5.52) by Laplace transformation using the convolution theorem. This yields

Cs =
1

1−Ps
with gs ≡

∞Z

0

dt e−st g(t) (5.60)

from which we obtain S f as

S f =
∞Z

0

dt cos(2π f t)C(t) =
1

2
[Cs→2πi f −Cs→−2πi f ] . (5.61)
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Figure 61: Numerically determined power spectra for z = 5/2 and z = 2 compared to eq. (5.62) (after

Procaccia and Schuster, 1983).

Substitution of P(l) from (5.59) into (5.60) and (5.61) yields

lim
f→0

S f ∝




f−
2z−5
z−1 z > 3

| log f |2
f 1/2

z = 3

f−
1

z−1 2 < z < 3

1

f | log f |2 z = 2

f−
2z−3
z−1 3

2
< z < 2

| log f | z = 3
2

const. z < 3
2

(5.62)

(The results for z ≥ 3 are from Ben-Mizrachi et al., 1985.)

Figure 61 shows that this result agrees reasonably well with the numerically determined

power spectra of the map

xn+1 = xn + xz
n mod1 (5.63)

for

z =
5

2
and z = 2 . (5.64)
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Figure 62: Power spectrum of the map xn+1 = ε + xn + x5/2
n mod1. The inset shows the scaling of fc

with ε as predicted in eq. (5.62) (after Procaccia and Schuster, 1983).

Let us now briefly discuss the effect of perturbations. The low frequency divergence of the

power spectrum arises because arbitrarily long laminar regions [P(l) ∝ l−z/(z−1)] occur with

finite probability in the (unperturbed) map in Fig. 58. But we also showed in Section 5.2 that

in the presence of relevant perturbations (as, e. g., a shift ε from tangency) the average duration

of an intermission becomes finite:

〈l〉 ∼ ε−v . (5.65)

This yields a cutoff

fc ∼ 〈l〉−1 ∼ εv (5.66)

in the 1/f δ-behavior of S f as shown in Fig. 62.

5.4 Experimental Observation of the Intermittency Route
Table 7 summarizes some measurable characteristic properties of the intermittency route to

chaos. The different types of intermittency can be distinguished by the form of the signal

and by the distribution P(l) of the laminar lengths. Below we present a derivation of P(l)
and describe two representative experiments in which type-I intermittency has been detected.

Type-II intermittency has (to the best of our knowledge) not yet been found in a real exper-

iment. This section closes with brief report on the first experimental observation of type-III

intermittency.

5.4.1 Distribution of Laminar Lengths
We assume that the signal is randomly reinjected (with a probability P̂(x0)) into the laminar

régime in such a way that we can use eq. (5.54):

P(l) = P̂(x0)
∣∣∣∣ dx0

dl

∣∣∣∣ . (5.67)
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Table 7: Characteristic properties of different types of intermittency.

Type Poincaré map Laminar Signal Distribution P(l)
I

xn+1 = xn + x2
n + ε increases monotonously

II

rn+1 = (1+ ε)rn +ur3
n spirals

θn+1 = θn +Ω
III

rn+1 = −(1+ ε)xn −ux3
n alternates

In order to obtain x0(l), we approximate, as in (5.9), the Poincaré map for type-I intermittency

(see Table 4)

xn+1 = ε+ xn +ux2
n (5.68)

in the laminar region by the differential equation

dx
dl

= ε+ux2 . (5.69)

This yields, by integration,

l =
1√
εu

[
arctan

[
c√
εu

]
− arctan

[
x0√
εu

]]
(5.70)

where c is the maximum value of x(l) in the laminar régime (see Fig. 58). P(l) follows from

eqs. (5.67) and (5.70):

P(l) =
ε

2c

{
1+ tan2

[
arctan

[
c√
εu

]]
− l

√
εu

}
(5.71)

and

〈l〉 =
∞Z

0

dl P(l)l ∼ ε−1/2 for ε → 0 . (5.72)

The distributions P(l) for the two other types of intermittency are obtained in a similar way,

with the net results

P(l) ∼ ε2 e4εl

( e4εl −1)2
for type II (5.73)
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Figure 63: Intermittency for a Bénard experiment: The vertical velocity component measured in the

middle of a Bénard cell changes with increasing Rayleigh number from periodic motion (a) via intermit-

tent motion (b) to chaos (c) (after Berge et al., 1980).

and

P(l) ∼ ε3/2 e4εl

( e4εl −1)3/2
for type III. (5.74)

For type-II intermittency eq. (5.67) has to be replaced by P(l) = P̂(r0)| dr0/ dl| because the

Poincaré map is two-dimensional.

5.4.2 Type-I Intermittency
Figure 63 shows the vertical velocity as a function of time for a Bénard experiment. The signal

shows a behavior which is typical for type-I intermittency.

The nonlinear RCL-oscillator described on page 66 also displays the intermittency route.

Type-I intermittency is indicated in Fig. 64 by the Poincaré map, the scaling behavior of the

lengths of the laminar regions, and the maximum in P(l) for l > 0.

5.4.3 Type-III Intermittency
Type-III intermittency has first been observed by M. Dubois, M. A. Rubio and P. Berge (1983)

in Bénard convection in a small rectangular cell. They measured the local horizontal temper-

ature gradient via the modulation of a light beam that was sent through the cell.

Figure 65 (on p. 88) shows the time dependence of the light intensity that is characteristic

for type-III intermittency. The intermittency appears simultaneously with a period-doubling

bifurcation. One observes the growth of a subharmonic amplitude together with a decrease in

the fundamental amplitude. When the subharmonic amplitude reaches a high value, the signal

loses its regularity, and turbulent bursts appear.
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Figure 64: Intermittency in the nonlinear RCL-oscillator: a) I(t +5T ) versus I(t) which corresponds to

the fifth iterate of the logistic map at tangency which is shown in b). c) The measured averaged length

for which the laminar regions scales like < l >∝ ε−0.43 (where ε ∼V0 −Vc) is in reasonable agreement

with the prediction of Manneville and Pomeau 〈l〉 ∝ ε−0.5. d) P(l) vs. laminar lengths l (in units of 5 T)

for ε = 2.5×10−4. (After Jeffries and Perez, 1982.)

By plotting subsequent maxima In of both the subharmonic mode (even n, crosses) and the

fundamental mode (odd n, squares), the Poincaré map shown in Fig. 65b is obtained. Its form

can be described by

In+2 = (1+2ε)In +bI3
n (5.75)

where b is a constant and ε ∝ (R−Rc) measures the distance to the critical Rayleigh number

Rc (which corresponds to the threshold of the intermittent behavior). Equation (5.75) can be

derived from the map

In+1 = f (In) = −(1+ ε)In −uI3
n (5.76)

with b = u(2+4ε). Its eigenvalue

λ = f ′(0) = −(1+ ε) (5.77)

crosses the unit circle at −1, which again signals type-III intermittency according to Table 5.
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Figure 65: a) Time dependence of the light intensity which is roughly proportional to the local horizontal

temperature gradient. b) Poincaré map In+2 versus In constructed from the data in a) for ε = 0.098. The

amplitudes of the light modulation in the turbulent bursts have not been drawn. Note that the “ghost of

the fixed point” ◦ is purely repulsive. c) Number N of laminar lengths with l > T0, i. e., N =
R ∞

T0
P(l)dl

versus T0. The experimental points agree with the line obtained (5.74) for ε = 0.098. (After Dubois et
al., 1983.)



6 Strange Attractors in Dissipative Dynamical Systems

In the first part of this chapter we show that nonlinear dissipative dynamical systems lead

naturally to the concept of a strange attractor. In Section 6.2, the Kolmogorov entropy is in-

troduced as the fundamental measure for chaotic motion. Section 6.3 deals with the problem

of how much information about a strange attractor can be obtained from a measured random

signal. We discuss the reconstruction of the trajectory in phase space from the measured time

series of a single variable and introduce generalized dimensions and entropies. It is demon-

strated how these quantities can be obtained from a measurement and how one can extract

from them the distribution of singularities in the invariant measure that characterizes the static

structure of a strange attractor and the fluctuation spectrum of the Kolmogorov entropy, which

describes the dynamical evolution of the trajectory on the attractor. Finally we present, in the

last section, a collection of pictures of strange attractors and fractal boundaries.

6.1 Introduction and Definition of Strange Attractors
In this section, we consider dissipative systems that can be described either by flows or maps.

Let us begin with dissipative flows. These are described by a set of autonomous first-order

differential equations,

�̇x = �F(�x), �x = (x1, x2, . . . xd) (6.1)

and the term dissipative means that an arbitrary volume element V enclosed by some surface

S in phase space {�x} contracts. The surface S evolves by having each point on it follow an

orbit generated by (6.1). This yields, by the divergence theorem,

dV
dt

=
Z

V

ddx

(
d

∑
i=1

∂F
∂xi

)
(6.2)

and dissipative systems are defined by dV/dt < 0.

An example of this kind of flow is given by the Lorenz model

Ẋ = −σX +σY

Ẏ = −XZ + rX −Y (6.3)

Ż = XY −bZ

for which one finds via (6.2)

dV
dt

= −(σ+1+b)V < 0; (σ > 0, b > 0) (6.4)

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Figure 66: The Lorenz attractor, after a computer calculation by Lanford (1977).

Figure 67: Successive maxima of Z of the Lorenz attractor (after E. N. Lorenz, 1963).

i. e., the volume element contracts exponentially in time:

V (t) = V (0) e−(σ+1+b)t (6.5)

If, on the other hand, the trajectory generated by the equations of the Lorenz model for r = 28,

σ = 10, b = 8/3 is considered (see Fig. 66), one finds that it is: a) attracted to a bounded

region in phase space; b) the motion is erratic, i. e., the trajectory makes one loop to the right,

then a few loops to the left, then to the right, etc.; and c) there is a sensitive dependence

of the trajectory on the initial conditions, i. e., if instead of (0, 0.01, 0) an adjacent initial

condition is taken, the new solution soon deviates from the old, and the number of loops is

different. Figure 67 shows a plot of the nth maximum Mn of Z versus Mn+1. The resulting

map is approximately triangular, which corresponds, according to the material discussed in

Chapter 3, to a chaotic sequence of Mns.
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Figure 68: Self-trapping of a flow line in a bounded region of the plane. Exponential separation of

points is at variance with continuity (note the opposing arrows).

Summarizing: The trajectory depends sensitively on the initial conditions; it is chaotic;

it is attracted to a bounded region in phase space; and [according to eq. (6.4)] the volume

of this region contracts to zero. This means that the flow of the three-dimensional Lorenz

system generates a set of points whose dimension is less than three; i. e., its volume in three-

dimensional space is zero. At first sight, one might think of the next lower integer dimension,

two. However, this is forbidden by the Poincaré—Bendixson theorem which states that there

is no chaotic flow in a bounded region in two-dimensional space. We refer, e. g., to the mono-

graph by Hirsch and Smale (1965) for a rigorous proof of this theorem. However, Fig. 68

makes it plausible that both the continuity of the flow lines and the fact that a line divides a

plane into two parts restrict the trajectories in two dimensions so strongly that the only possi-

ble attractors for a bounded region are limit cycles or fixed points. The solution to this problem

is that the set of points to which the trajectory in the Lorenz system is attracted, the so-called

Lorenz attractor, has a Hausdorff dimension which is noninteger and lies between two and

three (the precise value is D = 2.06). This leads, in a natural way, to the concept of a strange

attractor which appears in a large variety of physical, nonlinear systems.

A strange attractor has the following properties (a more formal definition can be found in

the review articles by Eckmann and Ruelle, 1985):

a) It is an attractor, i. e., a bounded region of phase space {�x} to which all sufficiently

close trajectories from the so-called basin of attraction are attracted asymptotically for

long enough times. We note that the basin of attraction can have a very complicated

structure (see the pictures in Section 6.4). Furthermore, the attractor itself should be

indecomposable, i. e., the trajectory should visit every point on the attractor in the course

of time. A collection of isolated fixed points is no single attractor.

b) The property which makes the attractor strange is the sensitive dependence on the initial

conditions, i. e., despite the contraction in volume, lengths need not shrink in all direc-

tions, and points, which are arbitrarily close initially, become exponentially separated at
the attractor for sufficiently long times. This leads to a positive Kolmogorov entropy, as

we shall see in the next section.

All strange attractors that have been found up to now in dissipative systems have fractal

Hausdorff dimensions. Since there exists no generally accepted formal definition of a strange

attractor (Ruelle, 1980; Mandelbrot, 1982), it is not yet clear whether a fractal Hausdorff di-

mension follows already from a)–b) or should be additionally required for a strange attractor.

A strange attractor arises typically when the flow contracts the volume element in some direc-

tions, but stretches it along the others. To remain confined to a bounded domain, the volume
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Figure 69: a) Two strange attractors I and II with different basins of attraction separated by a boundary

B. b) Deformation of a volume element on a strange attractor with increasing time. This leads to the

foliated fractal structure shown in Fig. 91c.

element is folded at the same time. By analogy to the broken linear maps in Chapter 3, this

stretching and backfolding process produces a chaotic motion of the trajectory at the strange

attractor (see also Fig. 69).

Because the definition given above describes the properties of a set of points, the concept

of a strange attractor is not confined to flows, and dissipative maps can also generate strange

attractors. A map

�x(n+1) = �G[�x(n)]; �x1(n) = [x1(n), . . . xd(n)] (6.6a)

is called dissipative if it leads to a contraction of volume in phase space, i. e., if the absolute

value of its Jacobian J, by which a volume element is multiplied after each iteration, is smaller

than unity:

|J| =
∣∣∣∣det

(
∂Gi

∂x j

)∣∣∣∣ < 1 . (6.6b)

The Poincaré—Bendixson theorem that restricts the dimension of strange attractors gener-

ated by flows to values larger than two does not hold for maps. This is because maps generate

discrete points and the restrictions imposed by the continuity of the flow are lifted. Dissipative

maps can therefore lead to strange attractors that also have dimensions smaller than two. Let

us consider two illustrative examples which, because of their lower dimensionality, are easier

to visualize than the Lorenz attractor.

6.1.1 Baker’s Transformation
Figure 70 shows the usual baker’s transformation, which is an area-preserving map (reminis-

cent of a baker kneading dough), and the non-area preserving, dissipative baker’s transforma-

tion. The mathematical expression for the latter is

xn+1 = 2xn mod1 (6.7a)

yn+1 =




ayn for 0 ≤ xn <
1

2
1

2
+ayn for

1

2
≤ xn ≤ 1

(6.7b)

where a < 1/2.
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Figure 70: a) Baker’s transformation; b) dissipative baker’s transformation.

The first equation (6.7a) is our old friend from Chapter 3: the transformation σ which leads

to the Bernoulli shift. It has a Liapunov exponent (in the x-direction), λx = log2 > 0, which

leads to the sensitive dependence on the initial conditions, and makes the object resulting

from repeated applications of this map to the unit square, a strange attractor. The attractor is

an infinite sequence of horizontal lines, and its basin of attraction consists of all points within

the unit square. The Liapunov exponent in the y-direction is λy = loga < 0, and lengths are

contracted in this direction such that the net result (of stretching in the x- and shrinking in the

y-direction) is a volume contraction, as required for a dissipative map.

The Hausdorff dimension DB of this strange attractor can be calculated as follows: In

the x-direction the attractor is simply one-dimensional (as the map σ(x) of Chapter 3). The

Hausdorff dimension in the y-direction follows from its definition

lim
l→0

N(l) ∝ l−Dy (6.8)

and from the self-similarity of the attractor in the vertical direction, shown in Fig. 70b. This

yields

N(a)
N(a2)

=
1

2
= a−Dy → Dy = log

(
1

2

)
/ loga (6.9)

and finally

DB = 1+Dy = 1+
log2

| loga| . (6.10)
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6.1.2 Dissipative Hénon Map
This is the two-dimensional analogue of the logistic map introduced by Hénon (1976), and we

recall its recursion relation from Chapter 2

xn+1 = 1−ax2
n + yn (6.11a)

yn+1 = bxn . (6.11b)

This map is area contracting, i. e., is dissipative for |b| < 1 because its Jacobian is just∣∣∣∣det

( −2axn 1

b 0

)∣∣∣∣ = |b| . (6.12)

The action of the map is shown in Fig. 71.

Figure 71: Decomposition of the action of the Hénon map T = T3 ·T2 ·T1 on an ellipse.
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Figure 72: a) The Hénon attractor for 104 iterations. Some successive iterates have been numbered

to illustrate their erratic movement on the attractor. b), c) Enlargements of the squares in the preceding

figure. d) The height of each bar is the relative probability to find a point in one of the six leaves in c).

(After Farmer, 1982a, b.)

Let us now examine its iterates for, e. g., b = 0.3, a = 1.4. Figure 72 a shows the result of an

iteration with 104 steps, and we have indicated the dynamics by enumerating some successive

points on the attractor that looks like a very tangled curve. Figures 72b–c show details of

the regions inside the box of the previous figure and reveal the self-similar structure of the

attractor. The Hausdorff dimension of the Hénon attractor is: D(a = 1.4,b = 0.3) = 1.26. This

result was obtained by placing a square net of width l over the diagram, counting the number

N(l) of squares occupied by points, and forming D = − liml→0 logN(l)/ log l. If Fig. 72c is

resolved into six “leaves”, then the relative probability of each leaf can be estimated by simply

counting its number of points. The height of each bar in Fig. 72d is the relative probability,

and the width is the thickness of the corresponding leaf.

The different heights of the bars in Fig. 72d show that the Hénon attractor is inhomoge-

neous. This inhomogeneity cannot be described by the Hausdorff dimension alone and in the

following we shall therefore introduce an infinite set of dimensions which characterize the

static structure (i. e., the distribution of points) of the attractor. However, before this step, it is

useful to discuss the Kolmogorov entropy that describes the dynamical behavior at the strange

attractor.
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6.2 The Kolmogorov Entropy
The Kolmogorov entropy (Kolmogorov, 1959) is the most important measure by which chaotic

motion in (an arbitrary-dimensional) phase space can be characterized.

Before we introduce this quantity, it is useful to recall that the thermodynamic entropy S
measures the disorder in a given system. A simple example, for a system where S increases, is

that of gas molecules that are initially confined to one half of a box, but are then suddenly al-

lowed to fill the whole container. The disorder in this system increases because the molecules

are no longer separated from the other half of the box. This increase in disorder is coupled

with an increase in our ignorance about the state of the system (before the confinement was

lifted, we knew more about the positions of the molecules).

More precisely, the entropy S, which can be expressed as

S ∝ ∑
i

Pi logPi (6.13)

where {[Pi} are the probabilities of finding the system in states {i}, measures, according to

Shannon et al. (1949) (see Appendix F), the information needed to locate the system in a

certain state i∗, i. e., S is a measure of our ignorance about the system.

This example from statistical mechanics shows that disorder is essentially a concept from

information theory. It is therefore not too surprising that the Kolmogorov entropy K which

measures “how chaotic a dynamical system is”, can also be defined by Shannon’s formula in

such a way that K becomes proportional to the rate at which information about the state of the

dynamical system is lost in the course of time.

6.2.1 Definition of K
K can be calculated as follows (Farmer, 1982a, b): Consider the trajectory �x(t) = [x1(t),
. . .xd(t)] of a dynamical system on a strange attractor and suppose that the d-dimensional

phase space is partitioned into boxes of size ld . The state of the system is now measured at

intervals of time τ. Let Pi0...in be the joint probability that�x(t = 0) is in box i0,�x(r = τ) that it

is in box i1, . . . , and�x(t +nτ) that it is in box in. According to Shannon, the quantity

Kn = − ∑
i0 ... in

Pi0 ... in logPi0 ... in (6.14)

is proportional to the information needed to locate the system on a special trajectory i∗0, . . . i∗n
with precision l (if one knows a priori only the probabilities Pi0...in ). Therefore, Kn+1 −Kn is

the additional information needed to predict in which cell i∗n+1 the system will be if we know

that it was previously in i∗0 . . . i∗n. This means, that Kn+1−Kn; measures our loss of information

about the system from time n to time n+1.

The K-entropy is defined as the average rate of loss of information:

K = lim
τ→0

lim
l→0

lim
N→∞

1

Nτ

N−1

∑
n=0

(Kn+1 −Kn) =

= − lim
τ→0

lim
l→0

lim
N→∞

1

Nτ ∑
i0 ... iN−1

Pi0 ... iN−1
logPi0 ... iN−1

(6.15)
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Table 8: K-entropies for (one-dimensional) regular, chaotic and random motion.

Regular motion

Initially adjacent points stay adjacent

Pi0 = l, Pi0i1 = l ·1
K = 0

Chaotic motion

Initially adjacent points become exponentially

separated

Pi0 = l, Pi0i1 = l e−λ

K = λ > 0

Random motion

Initially adjacent points are distributed with equal

probability over all newly allowed intervals

Pi0 = l, Pi0i1 ∝ l2

K ∝ − log l → ∞

Here we assumed for simplicity that a) Pi0i1 factorizes into Pi0 · (1/N) where N is the number

of possible new intervals which evolve from i0 and b) Kn+1 −Kn = K1 −K0 for all n.

The limit l → 0 (which has to be taken after N → ∞) makes K independent of the particular

partition. For maps with discrete time steps τ = 1, the limit τ → 0 is omitted. Table 8 shows

that K is indeed a useful measure of chaos. K becomes zero for regular motion, it is infinite in

random systems, but it is a constant larger than zero if the system displays deterministic chaos.

6.2.2 Connection of K to the Liapunov Exponents
For one-dimensional maps, K is just the positive Liapunov exponent [see Table 8 and eq.

(3.11)]. In higher dimensional systems, we loose information about the system because the

cell in which it was previously located spreads over new cells in phase space at a rate which is
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Figure 73: A two-dimensional map transforms a small circle into an ellipse with minor and major radii

distorted according to the Liapunov exponents λx, and λy. Note that eλ− does not enter K because, due

to this exponent, no new cells are covered after one time step.

determined by the positive Liapunov exponents (see Fig. 73). It is therefore plausible that the

rate K at which information about the system is lost is equal to the (averaged) sum of positive

Liapunov exponents (Pesin, 1977):

K =
Z

ddx ρ(�x)∑
i

λ+
i (�x) . (6.16)

Here ρ(�x) is the invariant density of the attractor. In most cases, the λs are independent of �x;

the integral then becomes unity, and K reduces to a simple sum.

The definition of the Liapunov exponent λ for a one-dimensional map G(x) [see eq. (3.9)],

eλ = lim
N→∞

(
N−1

∏
n=0

∣∣∣∣ dG
dnx

∣∣∣∣
)1/N

(6.17)

can be easily generalized to d dimensions, where we have d exponents for the different spatial

directions,

( eλ1 , eλ2 , . . . eλd )= lim
N→∞

(magnitude of the eigenvalues of
N−1

∏
n=0

J(�xn))1/N (6.18)

and

J(�x) =
(

∂G
∂x j

)
(6.19)

is the Jacobian matrix of the map�xn+1 = �G(�xn).
Note that the eigenvalues {λi} of the Jacobian matrix are invariant under coordinate trans-

formations in phase space, i. e., from (6.16), K is also invariant, as one would expect for such

an important physical quantity.
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Figure 74: Exponential separation of nearby trajectories in phase space (schematically).

Let us briefly comment on the computation of Liapunov exponents for flows. First, there

is a difference in the calculation of Liapunov exponents for maps λM and flows (λF) which

can be explained by the following trivial example.

The Liapunov exponent λM of the map

xn+1 = axn → xn = en logax0 (6.20)

is obviously λM = loga. Whereas one obtains for the flow

ẋ = ax → x(t) = eat x(0) , (6.21)

the result that nearby trajectories separate with rate a, i. e., the Liapunov exponent λF is simply

λF = a. (Both examples show no chaos, of course, because backfolding is missing).

For general flows described by an autonomous differential equation

�̇x = �f (�x) , (6.22)

the difference�ε(t) of infinitesimal neighbored trajectories (see Fig. 74) develops according to

�̇ε = M(t)�ε (6.23)

where

Mi j(t) =
∂ fi

∂x j
{�x[t,�x(0)]} (6.24)

is the Jacobian matrix taken at the point�x(t). Therefore, in order to integrate eq. (6.23) one has

to integrate eq. (6.22) first to know �x[t,�x(0)]. However, eq. (6.23) can be integrated formally

yielding

�ε(t) =


T̂ exp


 tZ

0

dt ′M(t ′)





�ε(0) ≡ L(t)�ε(0) (6.25)

where the time ordering operator T̂ has to be introduced because the matrices M(t) and M(t ′)
usually do not commute at different times t and t ′. The Liapunov exponents λ1 . . .λd of the

flow are, in analogy to eq. (6.18), defined as

( eλ1 , eλ2 , . . . eλd ) = lim
t→∞

(magnitude of the eigenvalues of L(t))1/t . (6.26)

The Liapunov exponents in eq. (6.26) generally depend on the choice of the initial point�x(0).
Even if �x(t) moves on a strange attractor, a change in �x(0) could place the system into the

basin of attraction of another attractor with a different set of λi’s (see, e. g., Fig. 69).
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Figure 75: Numerical calculation of the largest Liapunov exponent λm. To avoid overflow, one calcu-

lates the divergence of nearby trajectories for finite timesteps τ, renormalizes�ε(iτ) to unity after each

step and takes the average:

ε(τ) = �ε(0)exp(λ1 τ); �ε(2τ) = [�ε(τ)/|�ε(τ)|] eλ2τ . . .

λm = lim
n→∞

1

n

n

∑
i=1

λi = lim
n→∞

1

nτ

n

∑
i=1

log |�ε(τi)| .

We will not discuss all numerical methods which have been developed in order to extract

the Liapunov exponents from eqs. (6.22–6.24) (see the References of this section for some ex-

amples), but only explain the simplest method which yields the largest Liapunov exponent λm.

Expanding in eq. (6.25),�ε(0) with respect to the eigenvectors�ε j of L(t), i. e.,

�ε(0) =
d

∑
j=1

a j�e j ; a j =�e j · ε(0) (6.27)

we obtain by using

L(t)�e j ∝ eλ jt�e j for t → ∞ . (6.28)

via eq. (6.25):

|�ε(t)| =
∣∣∣∣∣

d

∑
j=1

a j�e j eλ jt eiψ jt

∣∣∣∣∣ ∝ eλ
mt for t → ∞ . (6.29)

Here, ψ j denotes the phase angle of the jth eigenvalue of L(t), which can be complex, and

eλmt dominates the sum in eq. (6.29) because the remaining terms decay as exp[−|λm −λ j|t].
In order to obtain λm, one could therefore start with any randomly chosen value for �ε(0),
calculate�ε(t) by numerical integration of eqs. (6.22–6.24), and extract λm via eq. (6.29). To

avoid overflow in the computer, this is usually done in steps as shown in Fig. 75.

Plate XVII, at the beginning of this book, and Fig. 76 display the parameter dependence of

λm for the driven pendulum with an additional torque and for the Lorenz model, respectively.

In both cases, one observes a sensitive dependence of order λm < 0 and chaos λm > 0 on the

parameter values.

6.2.3 Average Time over which the State of a Chaotic System can be
Predicted

The K-entropy also determines the average time over which the state of a system, displaying

deterministic chaos, can be predicted. Consider, e. g., the simple one-dimensional triangular

map in Fig. 15b, which is confined to the unit square. After n time steps, an interval l increases
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Figure 76: The largest Liapunov exponent of the Lorenz model (eqs. (2.4) for σ = 10, b = 8/3) as a

function of the parameter r = R (after K. Schmidt priv. comm.).

to L = l eλn. If L becomes larger than 1, we can no longer locate the trajectory in [0, 1], and

all we can say is that the system has a probability

ρ0(x) dx (6.30)

of being in an interval [x, x + dx] ∈ [0, 1], where ρ0(x) is the invariant density of the system.

In other words, precise predictions about the state of this system are only possible for times n
that are smaller than Tm:

l eλTm = 1 → Tm =
1

λ
log

(
1

l

)
. (6.31)

Above Tm one can only make statistical predictions. Equation (6.31) can be generalized to

higher dimensional dynamical systems by replacing λ by the K-entropy (Farmer, 1982a):

Tm ∝
1

K
log

(
1

l

)
. (6.32)

Note that the precision l, with which the initial state is located, only influences Tm logarithmi-

cally. Let us summarize our results about the K-entropy:

– It measures the average rate at which information about the state of a dynamical system

is lost with time.

– For one-dimensional maps, it is equal to the Liapunov exponent. In higher dimensional

systems, K measures the average deformation of a cell in phase space and becomes equal

to the integral over phase space of the sum of the positive Liapunov exponents.

– It is inversely proportional to the time interval over which the state of a chaotic system

can be predicted.

Furthermore, in the next section, we shall show that K can be directly obtained by measur-

ing the time dependence of one component of a chaotic system. These results show that the

K-entropy is the fundamental quantity by which chaotic motion can be characterized, and we

define a strange attractor as an attractor with a positive K-entropy.
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6.3 Characterization of the Attractor by a Measured Signal
Having experimentally observed a seemingly chaotic signal, one wants to know what infor-

mation it contains about the strange attractor. To provide an answer, we proceed in several

steps.

First, we will explain the result of Takens (1981) who has shown that, after the transients

have died out, one can reconstruct the trajectory on the attractor (the whole time dependent

vector�x(t) = [x1(t), x2(t) . . .] in phase space) from the measurement of a single component,

say x1(t). A knowledge of the time series of one variable is therefore sufficient to reconstruct

the statical and dynamical properties of the strange attractor.

Since the whole trajectory contains too much information, we then follow a series of pa-

pers by Grassberger, Hentschel and Procaccia (1983), Halsey et al. (1986), Eckmann and

Procaccia (1986) and introduce a set of averaged coordinate invariant numbers (generalized

dimensions, entropies, and scaling indices) by which different strange attractors can be distin-

guished. For this purpose, we divide the attractor into boxes of linear dimension l, and denote

by pi the probability that the trajectory on the strange attractor visits box i. By averaging

powers of the pi’s over all boxes, we obtain the generalized dimensions Dq, defined by

Dq = − lim
l→0

1

q−1

∣∣∣∣ 1

log l

∣∣∣∣ log

(
∑

i
pq

i

)
(6.33)

that are formally similar to the free energy Fβ of ordinary equilibrium thermodynamics:

Fβ = − lim
1

β
1

N
log

[
∑

i
( e−Ei)β

]
(6.34)

where Ei are the energy levels of the system, N is its particle number, and β is the inverse

temperature. Since ∑i pq
i , which appears in eq. (6.33), is for q > 1 the total probability that

q points of the attractor are within one box, it is obvious that the Dq measure correlations

between different points on the attractor and are therefore useful in characterizing its inhomo-

geneous static structure.

But, it will be shown below that the (negative) Legendre transform f (α) of the Dq (more

precisely of (q−1)Dq):

f (α) = −(q−1)Dq +qα (6.35a)

α =
∂
∂q

[(q−1)Dq] (6.35b)

is more appropriate to describe universal properties of strange point sets.

Let us briefly explain the meaning of f (α) (its connection to the Dq’ s will be shown

below). Assuming ergodicity, the probabilities pi are, by construction, related to the invariant

density ρ(�x) of the attractor:

pi =
Z

|�xi−�x|≤1

dd xρ(�x) (6.36)

where�xi denotes the center of box i. If pi(l) diverges for l → 0 as

pi(l → 0) ∝ lαi (6.37)
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Figure 77: The invariant measure has different power law singularities on a strange attractor. f (α)
measures the Hausdorff dimension of the set of points with the same power α.

the invariant density has, according to eq. (6.36), at �xi a singularity whose strength is char-

acterized by αi. Since different points �xi on the attractor can have different strengths αi, it

is useful to introduce a function f (α) which measures the Hausdorff dimension of the set of

points {�xi} on the attractor which have the same strength of singularity α. f (α) characterizes

the static distribution of points on the attractor and can therefore also be used for point sets

which are not generated dynamically (see Fig. 77).

In order to describe the dynamical behavior of the trajectory on the attractor, we use the

quantities Pi0...in which we have introduced already to define the K-entropy via eq. (6.14). The

Pi0...in measure the probability that the trajectory visits a certain sequence i0 . . . in of boxes of

size l in time n. By playing with these variables the same game as with the Pi, we introduce

generalized entropies K, via:

Kq = − lim
l→0

lim
n→∞

1

q−1

1

n
log ∑

i0 ... in

Pq
i0 ... in (6.38)

and show that their Legendre transform g(λ) is connected to the fluctuations of the K-entropy

around its mean value K, given by eq. (6.15).

It will also be demonstrated that both quantities, the Dqs and the Kqs (and therefore f (α)
and g(λ)) can be extracted from a time series of a single variable. Two further important

quantities, which can be obtained in this way, are the embedding dimension of the attractor,

that is, the dimension of the space with the lowest integer dimension, which contains the

attractor, and the amplitude of white noise on the signal. Thus irregularities originating from

deterministic motion on the attractor can be separated from disturbing white noise.

6.3.1 Reconstruction of the Attractor from a Time Series
It is not always possible to measure all components of the vector �x(n) simultaneously. This

clearly holds for an infinite-dimensional system. If we define the dimension of a system by the

number of initial conditions, then the so-called Mackey–Glass equation (Mackey and Glass,

1977)

ẋ =
ax(t − τ)

1+{x(t − τ)}10
−bx(t) (6.39)

(which describes the regeneration of blood cells) obviously provides a simple example of an

infinite-dimensional system, because all the x(t)-values in the interval t, t−τ have to be known
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(as initial conditions) to solve it. How do we proceed in this, or the less difficult case, where

we have an attractor embedded in d-dimensional space, but measure only one component of

the signal?

It has been shown by Takens (1981) that one can reconstruct certain properties of the

attractor in phase space from the time series of a single component. Instead of the rather

cumbersome proof, we present the following simplified argument. As an example, consider a

two-dimensional flow generated by

d

dt
�x = �F(�x) �x = {x, y} (6.40)

Every point {x(t + τ),y(t + τ)} then originates uniquely from a point {x(t),y(t)}, and the

relation between both points is one-to-one because the trajectories do not cross (otherwise the

trajectory would not be determined uniquely by the initial conditions). Next, we construct a

sequence of vectors

�ξ(t) = {x(t), x(t + τ)} (6.41)

�ξ(t + τ) = {x(t + τ), x(t +2τ)] .

Since the components of�ξ are related to {x(t),y(t)} via the one-to-one relationships

ξ1(t) = x(t) (6.42a)

ξ2(t) = x(t + τ) =
t+τZ

t

dt ′ F1{x(t ′), y(t ′)}+ x(t)

∼= τF1{x(t), y(t)}+ x(t) (6.42b)

with a Jacobian |τ(∂F1/∂y)| �= 0, it is plausible that the information contained in the time

sequences �x(ti) and �ξ(ti))(ti = iπ) is the same, and both sequences should lead to the same

characteristic dimensions. A simple example for which �x(ti) and�ξ(ti) are indeed completely

equivalent is a circle:

�x(ti) = {x(ti), y(ti)} = {sin(2πti), cos(2πti)} =

=
{

sin(2πti), sin

[
2π

(
ti +

1

4

]}
=

{
x(ti), x(ti +

1

4

)}
=�ξ(ti) . (6.43)

But we should be aware that arguments are only heuristic and can only be applied “cum grano

salis” to situations where strange attractors appear. What Takens (1981) actually proved is the

following: “If �̇x = �F(�x) generates a d-dimensional flow, then eq. (6.44),

�ξ(t) = {x j(t), x j(t + τ), . . . , x j[t +(D−1)τ]} (6.44)

where x j(t) is an arbitrary component of �x, provides a smooth embedding for this flow, if

D = 2d +1. The metric properties in both spaces (the d-dimensional {�x(t)} and the (2d +1)-
dimensional {�ξ(t)}) are the same in the sense that distances in {�x(t)} and {�ξ(t)} have a ratio

which is uniformly bounded and bounded away from zero”.

The relation between the dimension of the original flow, d, and the embedding dimension

D may be understood in terms of a simple topological argument. Consider, e. g., a closed orbit
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D=2

D=3

D=1

Figure 78: Diagrammatic view of the delay embedding of a limit cycle (left) with D-dimensional delay

coordinates for D = 1,2 and 3 (right).

Figure 79: Reconstruction of the Rössler attractor for a = 0.15, b = 0.20, c = 10.0;�x0 = (10.0,0,0) from

a time series: a) x,y coordinates of the “true” attractor obtained by numerical integration of eq. (6.45a–

c); b) and c) reconstructions for τ = 0.23, 0.39, 3.26, measured in units of the average orbital time,

respectively. (After Fraser and Swinney, 1986.)

in the original phase space, i. e., a limit cycle in the �x-space (cf. Fig. 78). Clearly, its dimen-

son is d = 1. Equation (6.44) yields a transformation to new coordinates. If one considers

one-dimensional embeddings, D = 1, then the new coordinate is a scalar and the limit cycle is

mapped onto a line. Of course this mapping is not invertible since self intersections occur in

the�ξ-space. If we choose D = 2 then still self intersections may appear and these intersection

points are structurally stable, i. e., one cannot remove the intersection by a small perturbation.

If we take a three-dimensional embedding, D = 3 = 2d + 1, then the image curve in�ξ-space

is typically free of any self intersection, so that eq. (6.44) yields the desired invertible trans-

formation. A similar argument may be applied to objects of higher dimension, e. g., invariant

manifolds and even to fractal attractors.

Figure 79 shows a reconstruction of (a projection of) the Rössler attractor (Rössler, 1976),

which is generated by the system,

ẋ = −z− y (6.45a)

ẏ = x+ay (6.45b)

ż = b+ z(x− c) (6.45c)
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from about 6× 105 points for different choices of the delay time τ. Although for an infinite

amount of noise-free data, τ could be chosen almost arbitrary (Takens, 1981), it can be seen

from Fig. 79 that for a finite time series the quality of the reconstruction depends on τ. If

τ is too small, x(t) and x(t + τ) become practically indistinguishable and one obtains a lin-

ear dependence that is not present for the coordinates of the real trajectory. It is, therefore,

reasonable to choose the decay time of the autocorrelation function C(t) of the signal xn for

τ,

C(t) = lim
N→∞

1

N

N−1

∑
n=1

xnxn+t ≡ 〈x0xt〉 (6.46a)

C(τ) ≈ 1

2
C(0) (6.46b)

which ensures that x(t) and x(t + τ) become linearly independent, but other choices for τ
have also been proposed (Fraser and Swinney, 1986; Liebert, Kaspar and Schuster, 1987).

6.3.2 Generalized Dimensions and Distribution of Singularities in the
Invariant Density

In this section, we discuss the meaning of the generalized dimensions Dq for special values

of q and demonstrate explicitly the connection of Dq to the distribution f (α) of singularities

in the invariant density of a strange attractor. Proceeding in a similar way as in Section 6.2,

we chop the trajectory�x(t) = [x1(t) . . .xd(t)] of a dynamical system on a strange attractor into

a sequence of points �x(t = 0), �x(t = τ) . . . x(t = Nτ) and partition the d-dimensional phase

space into cells ld . The probability pi of finding a point of the attractor in cell number i
(i = 1, 2, . . .M(l)) is then given by

pi = lim
N→∞

Ni

N
(6.47)

where Ni is the number of points {�x(t = jτ)} in this cell.

The generalized dimensions Dq which are related to the qth powers of pi via

Dq = lim
l→0

1

q−1

log

(
M(l)
∑

i=0
pq

i

)

log l
; q = 0, 1, 2 . . . (6.48)

For q → 0 we obtain from (6.48)

D0 = lim
l→0

(
log

M(l)

∑
i=0

1

)
/ log l = − lim

l→0

logM(l)
log l

(6.49)

which is just the usual definition (4.68) of the Hausdorff dimension of the attractor (i. e.,

D = D0).
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As q → 1, eq. (6.48) becomes

D1 = − lim
l→0

S(l)
log l

(6.50)

where

S(l) = −
M(l)

∑
i=0

pi log pi . (6.51)

Since S(l) is the information gained, if we know {pi} and learn that the trajectory is in a

specific cell i, D1 is called the information dimension. It tells us how this information gain

increases as l → 0.

For a homogeneous attractor where all pi are the same, i. e., pi = 1/M(l), we have

S(l) = −
M(l)

∑
i=0

1

M(l)
log

1

M(l)
= logM(l) . (6.52)

Furthermore, the information dimension is always less or equal to the Hausdorff dimension,

that is,

D1 ≤ D0 . (6.53)

This can be proven by maximizing S(l) under the constraint ∑i pi = 1:

∂
∂p j

[
−

M(l)

∑
i=1

pi log pi +λ∑
i

pi

]
= 0 (6.54a)

→ p j = e−1+λ . (6.54b)

After eliminating the Lagrange multiplier λ via the constraint, eq. (6.54b) yields

p j =
1

M(l)
(6.55)

S(l) ≤ max[S(l)] = logM(l) (6.56)

from which eq. (6.53) follows after division by log l.
The inequality (6.53) has been generalized to (Hentschel and Procaccia, 1983):

Dq′ ≤ Dq for q′ > q (6.57)

where the equality sign holds if the attractor is uniform.

In order to explain the connection between the Dqs and the singularities in the invariant

density of an attractor, we calculate Dq for a one-dimensional system which has a power law

singularity in its invariant density ρ(x) at x = 0, i. e.,

ρ(x) =
1

2
x−1/2 for x ∈ [0, 1] . (6.58)

This is just the behavior of ρ(x) near x = 0 for the logistic map at r = 4 [see eq. (4.104)] where

we ignored the singularity at x = 1 to simplify our argument. (The Dqs will be the same for

both systems).
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Figure 80: The invariant density ρ(x) = 1/2(x)−1/2 for 0 ≤ x ≤ 1, x1 = 0, x2 = l, . . . (schematically).

Figure 80 shows that

pi =
xi+lZ

xi

ρ(x) dx ∝
{

l1/2 for i = 1

l1 for i �= 1
(6.59)

Thus,

∑
i

pq
i =


 lZ

0

ρ(x) dx




q

+ ∑
i �=1

[ρ(xi)l]q (6.60a)

∼=

 lZ

0

ρ(x) dx




q

+ lq−1

1Z

l

dx ρ(x)q (6.60b)

= (1−a)lq/2 +alq−1 (6.60c)

where a =
(

1

2

)q (
1− q

2

)−1

. Equation (6.60c) can be written as

∑
i

pq
i
∼=

Z
dα ρ(α)l− f (α)lαq (6.61)

where

ρ(α) = (1−α)δ
(

α− 1

2

)
+aδ(α−1) (6.62)

and

f (α) =

{
0 for α =

1

2
1 for α = 1

(6.63)

The interpretation of eqs. (6.59–6.63) is as follows. Associated with different singularities for

the density of states ρ(x) (e. g., ρ(x → 0)∼ x−1/2, ρ(x)∼ const. otherwise) which gives rise to

different singularities for pi(l)∼ lαi in eq. (6.59), are different exponents f (α) which measure

the fractal dimension of the density of these singularities on the attractor. The singularity with

exponent α = 1/2 occurs just at one point, that is, f (α = 1/2) = 0, whereas α = 1 occurs in a

whole one-dimensional interval, that is f (α = 1) = 1. This concept of a distribution f (α) of
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fractal dimensions which are associated with a whole set of singularities of strength a can be

generalized to strange attractors, and it turns out that the functions f (α) are again universal, for

example, for the Feigenbaum attractor or the attractor, which is associated with the transition

from quasiperiodicity to chaos. This type of universality, which is again associated with a

whole set of singularities and not just a single exponent, is also called global universality. (It

should be noted that the term global universality is also used if a whole range of parameter

values has universal properties as will be explained in Chapter 7).

By way of generalizing our example, we now make the scaling hypothesis that

pi(l) ∼ lαi (6.64)

(where i denotes the box i of linear dimension l) occurs in ∑i pq
i with a density

ρ(α)l− f (α) dα (6.65)

such that the sum can be estimated as:

Zq ≡ ∑
i

pq
i
∼=

Z
dα ρ(α)l− f (α)lαq =

Z
dα ρ(α) e[− f (α)+αq] log l (6.66)

i. e., we wrote Zq as an integral over the singularities α. In the limit l → 0, the integral can be

evaluated using the saddle point approximation [see Appendix E, eq. (E.7)] and becomes:

Zq ∝ e−[ f (α)−αq] log l (6.67)

where the dominating value of α is determined by:

∂
∂α

[qα− f (α)] = 0 → f ′(α) = q (6.68a)

∂2

∂α2
[qα− f (α)] > 0 → f ′′(α) < 0 . (6.68b)

This yields via eqs. (6.33) and (6.66–6.67) for Dq:

Dq = {[qα(q)− f [α(q)]}/(q−1) (6.69)

and after differentiation

α(q) =
∂
∂q

[(q−1)Dq] . (6.70)

By eliminating, via eq. (6.70), the variable q in favor of α and using eq. (6.69), one obtains

f (α) as (negative) Legendre transformation of (q−1)Dq:

f (α) = q(α)− [q(α)−1]Dq(α) . (6.71)

For our example with ρ(x) = x−1/2, we find from eqs. (6.69–6.71):

Dq α(q) f (α)

q ≥ 2
1

2

q
q−1

1

2
0

q ≤ 2 1 1 1

i. e., the α-spectrum consists of two points, as calculated above [see eq. (6.63)].



110 6 Strange Attractors in Dissipative Dynamical Systems

Numerical determination of the dimensions Dq, by covering the phase space with a set of

boxes of volume ld and counting the number of iterates which lie in a certain cell, is rather

cumbersome and in fact impossible for attractors of higher dimensions. However, we can

replace the sum over the uniformly distributed boxes in ∑i pq
i by a sum over nonuniformly

distributed boxes around the points x j of a time series which results, e. g., from a map xn+1 =
f (x j).

∑
i

pq
i = ∑

i


 Z

Box i

ρ(x) dx




q

∼= ∑
i

[ρ(xi)l]
q = ∑

i
ρ(xi)l [ρ(xi)l]

q−1

∼=
Z

ρ(x) dxp̃(x)q−1 ∼= 1

N ∑
j

{
p̃[ f j(x0)]

}q−1

=
1

N ∑
j

p̃q−1
j . (6.72)

Here xi is an element of box i and p̃[ f j(x0)] ≡ p̃ j, is the probability of the trajectory to be

in a box of size l around the iterate x j = f j(x0). Equation (6.72) should make it plausible,

mathematical rigor is not attempted, that the change from pq
i to p̃ jq−1 is due to the fact that

the points x j of the time series (and the boxes around them) are nonuniformly distributed. We

next generalize eq. (6.72) to higher dimensional systems and write the probability p̃ j, that an

element of the time series falls into an interval l around the element�x j as:

p̃ j =
1

N ∑
i

Θ(l −|�xi −�x j|) (6.73)

where Θ(x) is the Heaviside step function.

Using eqs. (6.72–6.73), ∑i pq
i becomes

∑
i

pq
i =

1

N ∑
j

[
1

N ∑
i

Θ(l −|�xi −�x j|)
]q−1

= Cq(l) . (6.74)

For q = 2, this reduces to the correlation integral C(l) introduced by Grassberger and Procaccia

(1983a) which measures the probability of finding two points of an attractor in a cell of size l:

M(l)

∑
i=0

p2
i = the probability that two points of the attractor lie within a cell r = 0

∼= the probability that two points at the attractor are separated

by a distance smaller than l

= lim
N→∞

1

N2
{number of pairs i j whose distance |�xi −�x j| is less than l}

= lim
N→∞

1

N2 ∑
i j

Θ(l −|�xi −�x j|)

= C(l) = correlation integral . (6.75)
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Figure 81: log2 C(l) versus log2 l for the Hénon map. The slope yields D2 = 1.21 (after Grassberger

and Procaccia, 1983a).

The correlation integral C(l) can be used to determine the following properties from a mea-

sured time series:

– The correlation dimension D2:

D2 = lim
l→0

1

log l
log∑

i
p2

i (6.76)

which yields a lower bound to the Hausdorff dimension D0, i. e., D2 < D0. Figure 81

shows how D2 is determined from C(l) for the Hénon map.

Figure 82 demonstrates how Takens’ reconstruction of the trajectory from the measure-

ment of a single variable (Takens, 1983) works for the computation of C(l) for the Lorenz

attractor.

Figure 82: logC(l) versus log l for the Lorenz model. The lower line is obtained directly from the three-

dimensional time series {x(ti), y(ti), z(ti)} whereas the upper line originates from the reconstructed series
�ξ(ti) = {x(ti),x(ti +τ),x(ti +2τ)}. The slopes of both curves are the same, i. e., the correlation dimension

D2 = 2.05 obtained by both methods is the same, as stated above (Grassberger and Procaccia, 1983a).
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Figure 83: D2 = 1.95±0.03 determined from a single-variable time series for the Mackey–Glass equa-

tion with parameter values τ = 17, a = 0.2, b = 0.1 for different embedding dimensions d (Hentschel

and Procaccia, 1983).

– The embedding dimension d:
Figure 83 shows the l dependence of the correlation integral for the Mackey–Glass sys-

tem. Although this system has an infinite dimension, its correlation dimension is finite

and smaller than 3. It is therefore sufficient to use a simple time series with a three-

dimensional vector�ξ(ti) = {x(ti),x(ti + τ),x(ti +2τ)} to determine D2. The dimension d
in�ξ(t) = {x(ti) . . .x(ti +(d −1)τ)}, above which D2 no longer changes, is the (minimal)

embedding dimension of the attractor.

– Separation of deterministic chaos and external white noise:
The correlation integral can also be used as a tool to distinguish between determinis-

tic irregularities, which arise from intrinsic properties of the strange attractor, and ex-
ternal white noise. Suppose we have a strange attractor embedded in d-dimensional

space and we add an external white noise. Each point on the attractor then becomes sur-

rounded by a uniform d-dimensional cloud of points. The radius of this cloud is given

by the noise amplitude l0. For l 
 l0, eq. (6.74) counts these clouds as points, and

the slope of a plot of logC(l) versus log l yields the correlation exponent of the attrac-

tor. For l � l0, most of the points counted lie within the uniformly filled d-dimensional

cells, and the slope crosses over to d, as shown in Fig. 84 for the noisy Hénon attrac-

tor.

Finally, let us briefly comment on the intuitive meaning of the variable q and then present

two examples of Dq and f (α) curves.
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Figure 84: logC(l) as a function of log l for the Hénon map embedded in three dimensions. Curve 1

is for the map without noise and yields D2 = 1.25. Curve 2 is for the map with random noise with

amplitude 5 ·10−3. Curve 3 is for the map with noise amplitude 5×10−2. Curve 2 and 3 break at length

scales that are determined by the noise level below which the slope is approximately 3 (Ben-Mizrachi et
al., 1983.)

If one replaces, in the definition of Dq via eq. (6.33), the pi by the probabilities p̃ j, for a

trajectory to fall in a box around an iterate (see eq. 6.72) then the resulting expression

Dq = − lim
l→0

1

q−1

∣∣∣∣ 1

log l

∣∣∣∣∑
j

p̃ j(l)q−1 (6.77)

resembles closely the expression Fβ of the free energy of an N-particle equilibrium system at

a temperature T = β−1:

Fβ = − lim
N→∞

1

β
· 1

N ∑
i

(
e−Ei

)β
. (6.78)

The variable | log l| corresponds to the number of particles and q−1 corresponds to the inverse

temperature β. It follows already from eq. (6.77) that, for q → +∞, the most concentrated

parts of the measure (large p̃i’s) are being stressed; whereas for q → −∞, the most rarified

parts (small p̃is) become dominant. In this sense, q indeed serves as the (inverse) temperature

in statistical mechanics where at every temperature a different set of energy levels Ei (i. e.,

probabilities exp(−βEi)) becomes dominant in the free energy.

Fig. 85 shows the Dq and f (α) curves for the Feigenbaum attractor that is generated by

the iterates of the logistic map xn+1 = rxn(1−xn) at r = r∞ = 3.5699 . . . (see Section 4.4). The

function f (α) must be concave because eq. (6.68b) requires f ′′(α) < 0, and the maximum of

f (α) at α = αm is equal to the Hausdorff dimension D0 because at the maximum f ′(αm) = 0

which yields via eqs. (6.68a–6.68b)

f ′(αm) = qm = 0 (6.79)

and

D0 = f (αm) . (6.80)
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Figure 85: The functions Dq and f (α), computed from eqs. (6.33), (6.71), and (6.74), for the Feigen-

baum attractor (after K. Pawelzik, priv. comm.).

Furthermore, we see from eq. (6.69) that, as long as f (α) remains bounded, the limiting

dimension D+∞ becomes equal to the corresponding α values, i. e., D+∞ = α(+∞) which

implies via eq. (6.59) f [α(+∞)] = 0. Thus, the zeros of f (α) are equal to D±∞, and the slope

of f (α) is infinite at these points because of eq. (6.68a).

The dimension D−∞ which is associated with the most rarified regions of the Feigenbaum

attractor can be calculated as follows. The size ln, of the most rarified region on the 2n attrac-

tor, which approaches the Feigenbaum attractor for n → ∞, decreases as α−n where α is the

Feigenbaum constant. This is due to the fact that the function σ(x) from Section 4.3 which

measures the ratio of the distances between the elements of subsequent supercycles, has its

maximum at α−1 (see Fig. 31); i. e., the largest distance decreases like α−n. The probability

pn of a point on the 2n cycle to lie within the interval ln, is just pn = 2−n because only one

point of the cycle is contained in ln. Putting everything together, D−∞ becomes:

D−∞ = lim
q→−∞

lim
n→∞

1

q−1

1

log ln
log pq−1

n =
log2

logα
∼= 0.75551 . . . (6.81)

which is in excellent agreement with the numerical result in Fig. 85 obtained from the time

series of the logistic map. Figure 85 shows that Dq converges very slowly against its limits

D+∞, but α(q = +∞) = D+∞ can be easily extrapolated from the corresponding f (α) curves.

Thus, the transformation to f (α) leads to better estimates of D+∞ than the direct calculation

of the Dqs. Another advantage of the f (α) spectrum is the fact that it represents (e. g., for

the Feigenbaum attractor) a smooth universal curve which yields the global density of scaling

indices. The universal function σ(x) of Feigenbaum, which everywhere describes the local

scaling (see Section 4.3), contains in principle the same (and even more) information as f (α),
but it is nowhere differentiable and is, therefore, a function that is difficult to use. A further

example where the merits of the f (α) representation of experimental data become obvious

is given in Chapter 7 where we investigate the question whether an experimental orbit ob-

tained from a forced Rayleigh–Bénard experiment is in the same universality class as the orbit

generated from a circle map.
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6.3.3 Generalized Entropies and Fluctuations around the K-Entropy
We generalize in this section the expression

K = lim
l→0

lim
n→∞

1

n ∑
i0 ... in−1

Pi0 ... in−1
logPi0 ... in−1

(6.82)

for the Kolmogorov entropy of a map [see eq. (6.15)] by introducing in analogy to the Dqs a

whole set of entropies Kq:

Kq = − lim
l→0

lim
n→∞

1

n
1

q−1
log ∑

i0 ... in−1

Pq
i0 ... in−1

(6.83)

and we show, by way of an example, that their Legendre transformation is related to the

spectrum of fluctuations g(λ) around the K-entropy.

If we introduce a variable T = e−n, eq. (6.83) can be rewritten as

Kq = lim
l→0

lim
T→0

1

logT
1

q−1
log ∑

i0 ... in−1

Pq
i0 ... in−1

(6.84)

which looks – apart from the fact that we have a whole series of indices, instead of just one

– similar to eq. (6.23) for the Dqs with l replaced by T . It is, therefore, reasonable to try, in

analogy to eq. (6.64) the scaling ansatz

Pi0 ... in−1
∝ T λ(i0 ... in−1) (6.85)

where the number of λ(i0, . . . in) in the interval λ, λ+ dλ is [in analogy to eq. (6.65)] propor-

tional to

ρ(λ)T−g(λ) dλ . (6.86)

Using the same arguments as in eq. (6.86), we arrive at the limit T → 0 at

Kq =
1

q−1
[λq−g(λ)] (6.87)

where λ is determined by the saddle point conditions:

g′(λ) = q (6.88a)

and

g′′(λ) < 0 . (6.88b)

In order to see the physical meaning of the numbers λ and of the distribution g(λ), we consider

as a simple example the piecewise expanding map

f (x) =




x
p

for 0 ≤ x ≤ p

1− x
1− p

for p ≤ x ≤ 1
(6.89)

shown in Fig. 86 and compute Kq and g(λ) explicitly for the dynamical system defined by

xn+1 = f (xn) . (6.90)
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Figure 86: Tent map defined via eq. (6.89).

The probabilities Pi0...in−1
and the sums ∑i0...in−1

Pq
i0...in−1

≡ Sn
q appearing in eq. (6.84) then

become:

Pi0 =
{

p if x1 ∈ [0, p]
1− p if x1 ∈ [p, 1] → S1

q = pq +(1− p)q (6.91)

Pi0i1 =




p2 if x1, x2 ∈ [0, p]
p(1− p) etc.

(1− p)2
→ S2

q = [pq +(1− p)q]2

i. e., Sn
q = [pq +(1− p)q]n which yields for Kq:

Kq =
−1

q−1
log[pq +(1+ p)q] . (6.92)

For the limit q → 1, we obtain from eq. (6.92) the Kolmogorov entropy

K1 = p log

(
1

p

)
+(1− p) log

(
1

1− p

)
. (6.93)

K1 is, as expected, equal to the positive Liapunov exponent λm of the system, which can also

be obtained directly from

λm =
Z

dx ρ(x) log
∣∣ f ′(x)

∣∣ = p log

(
1

p

)
+(1− p) log

(
1

1− p

)
(6.94)

where we used the fact that the invariant density ρ(x) = 1 for f (x). (This can be checked by

using eq. (6.89) in the Frobenius–Perron equation (3.29).

Next, we compute λ(q) and g(λ) via eqs. (6.87, 6.92):

λ(q) =
∂

∂q
(q−1)Kq =

= −[pq log p+(1− p)q log(1− p)]/[pq +(1− p)q] (6.95)

which becomes, for

x = pq/[pq +(1− p)q] , (6.96)
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equal to

λ = λ(x) = −[x log p+(1− x) log(1− p)] . (6.97)

Similarly, we obtain from (6.87) and (6.96):

g[λ(q)] = (q−1)Kq −qλ(q) =
= − log[pq +(1− p)q]+

+[pq log pq +(1− p)q log(1− p)q]/[pq +(1− p)q]
= x logx+(1− x) log(1− x) . (6.98)

Equation (6.98) yields g(λ) as shown in Fig. 89 if we eliminate x in favor of λ via eq. (6.97).

The quantity λ(x), which appears in eq. (6.97), has a very simple interpretation. It is just the

“Liapunov exponent” of a finite series of iterates of length n which visits r times the interval

[0, p] in Fig. 86:

enλ(y) = ∏
j

∣∣ f ′(x j)
∣∣ =

(
1

p

)r (
1

1− p

)n−r

(6.99)

→ λ(y) = −[y log p+(1− y) log(1− p)] (6.100)

where y = r/n. The probability P̂ of finding it λ(y) is equal to the probability of finding in a

series of iterates, r times a point which is in [0, p] and (n− r) times a point which is located

in [p, 1], that is,

P̂ =
(

n
r

)
pr(1− p)n−r . (6.101)

Using Stirlings’ formula n! ∼= nn, this becomes:

log P̂ ∼= n
[

y log

(
y
p

)
+(1− y) log

(
1− y
1− p

)]
= (6.102)

= n[y logy+(1− y) log(1− y)−λ(y)]

where we can again replace y by λ via eq. (6.90) to obtain P̂(λ).
By comparing eqs. (6.97–6.98) and (6.100, 6.102), we see that eng(λ) is (apart from a factor

eλ) equal to the probability P̂(λ) of seeing in a finite series of iterates the “Liapunov exponent”

λ. The Legendre transformation from the variable q in Kq to the variable λ yields, therefore,

the distribution g(λ) which describes the fluctuations of the Liapunov exponent for a time

series of length n. Note that we used for our interpretation a map which is piecewise expanding

(i. e., | f ′(x)| ≥ 1 for all x ∈ [0, 1]) and which yields, therefore, only positive expansion rates

λ. For general systems (which can also be higher dimensional), our results generalize to the

statement that eng(λ) describes the fluctuation spectrum of the (sum of the) positive Liapunov

exponents, i. e., of the Kolmogorov entropy for finite time series (see Fig. 87).
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Figure 87: Different trajectories of length n occur with probabilities Pi0...in−1
. The distribution of the

finite time “K-entropies” λ = − liml→0(1/n)∑i0...in−1
Pi0...in−1

logPi0...in−1
is given by eng(λ) where g(λ)

is the negative Legendre transformation of Kq.

The numerical computation of Kq from a measured time series proceeds in a fashion which

is closely analogous to the Dqs. By generalizing eq. (6.74),

∑
i

pq
i =

1

N ∑
i

{
1

n ∑
j

Θ[l −|�xi −�x j|]
}q−1

= Cq(l) , (6.103)

to a whole trajectory of length n we obtain:

∑
i0 ... in−1

Pq
i0 ... in−1

=
1

N ∑
i

{
1

N ∑
j

Θ

[
l −

√
n

∑
m=0

(�xi+m −�x j+m)2

]}q−1

≡ Cq
n(l) .

(6.104)

This is again a generalization of a correlation integral Cn(l) which has been introduced by

Grassberger and Procaccia (1983b):

Cn(l) = lim
N→∞

1

N2

{
number of pairs i j with

√
n−1

∑
m=0

(�xi+m −�x j+m)2 < l

}
∼=

∼= ∑
i0 ... in−1

P2
i0 ... in (6.105)

and which yields the correlation entropy:

K2 = − lim
l→0

lim
n→∞

1

n
log ∑

i0 ... in−1

P2
i0 ... in−1

. (6.106)

K2 represents, in analogy to eq. (6.57), a lower bound to the K-entropy K = K1 ≥ K2, and

K2 > 0 provides a sufficient condition for chaos. Figure 88 shows the results for Cn(l) and K2

for the Hénon map with a = 1.4, b = 0.3.
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Figure 88: a) logCn(l) versus log l for different values of n calculated from a series of N = 15000 points

for the Hénon map. b) As → ∞ and l → 0, K2(n, l) calculated from eq. (6.47) approaches the common

value K2 = 0.325±0.2 (Grassberger and Procaccia, 1983b).

However, eqs. (6.83, 6.104) yield, for q → 1, an explicit expression for the K-entropy

itself:

K = K1 = lim
l→0

lim
n→∞

1

n
1

N ∑
i

log

{
1

N ∑
j

Θ

[
l −

√
n−1

∑
m=0

(�xi+m −�x j+m)2

]}
(6.107)

which can be calculated from a measured signal. The condition K > 0 provides, of course, a

sharper condition for chaos than K2 > 0 (see also Cohen and Procaccia, 1985).

Let us finally summarize our results by a single formula which demonstrates that all gen-

eralized dimensions Dq and entropies Kq can be extracted from experimental data. Equa-

tions (6.83) and (6.104) yield for n → ∞ and l → 0:

logCq
n(l) ∝ n(q−1)Kq . (6.108)

If we watch the sequence of limits (first n → ∞ then l → 0), we can combine eqs. (6.33, 6.54,

6.74, 6.83, 6.104) and obtain the compact expression

lim
l→0

lim
n→∞

logCq
n(l) = (q−1)Dq log l +n(q−1)Kq . (6.109)

Therefore, a plot of logCq
n(l) – which can be determined from an observed time series via

eq. (6.104) – versus log l yields, for fixed q and different values of n, straight lines, with

slopes (q− 1)Dq whose separations along the y-axis converge for n → ∞ to (q− 1)Kq (see,

e. g., Fig. 88 for q = 2). The spectra f (α) and g(λ) can be obtained by Legendre transforma-

tion from these quantities. Figure 89 shows examples of Kq and g(λ) curves that have been

obtained by this method from a numerically generated time series of the tent map (6.89).
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Figure 89: a) Kq- and b) g(λ)-spectrum of the tent map [eq. (6.89)]. Full lines: Theoretical curves

obtained from eqs. (6.87, 6.92). Dots: Numerical results obtained via eqs. (6.87, 6.109) for 2000 iterates.

(After Pawelzik and Schuster, 1987.)

Let us finally add a word of caution. It is by no means completely straightforward to

obtain, from an experimentally measured time series, the Dq and Kq curves, because the signal

is noisy, the length of the series is finite, and the delay time which is needed to reconstruct

the attractor [see eq. (6.44)] is generally unknown. All this adds a good deal of ambiguity to

the application of the procedures described by eq. (6.109). We would like to call attention to

the Proceedings of a conference on “Dimensions and Entropies in Chaotic Systems” (edited

by Mayer-Kress, 1986) where merits and limits of different numerical procedures to extract

dimensions, entropies, and Liapunov exponents from a time series are discussed.

6.3.4 Kaplan–Yorke Conjecture

Although we above made a distinction between dynamic properties of a strange attractor, such

as the Liapunov exponents, and static properties measured by the Dqs, both quantities are in

fact connected. For example, if we have a flow in three-dimensional phase space with two

negative Liapunov exponents, we know that the attractor contracts to a line with Dq = 1 for

all q (see Fig. 90).

Another example is the attractor which belongs to the non-area preserving baker’s trans-

formation (6.7). Its Hausdorff dimension DB [see eq. (6.10)] can be expressed in terms of the

Liapunov exponents λ1 = log2, λ2 = loga:

DB = 1+
λ1

|λ2| . (6.110)
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Figure 90: Connection between the dimensions of simple attractors embedded in three-dimensional

phase space and the signs of their three Liapunov exponents given in the brackets. (Zero means that the

Liapunov exponent has this value.) (After Shaw, 1981.)

Kaplan and Yorke (1979) conjectured the following more general formula for arbitrary strange

attractors:

DKY = j +
∑ j

i=1 λi

|λ j+1| . (6.111)

Here DKY is the Hausdorff dimension according to Kaplan and Yorke, and the Liapunov expo-

nents are ordered λ1 > λ2 > .. . > λd , such that j is the largest integer for which ∑ j
i=1 λi > 0.

Although this formula has been checked numerically and shown to hold for some cases by

Russel et al. (1980) (see Table 9), it seems to be rigorously valid only for homogenous attrac-

tors, and its range of applicability is still an active field of research.

Table 9: Test of the Kaplan–Yorke Conjecture.

System D (numerically) DKY

Hénon map

a = 1.2, b = 0.3 1.202 ± 0.003 1.200 ± 0.001

a = 1.4, b = 0.3 1.261 ± 0.003 1.264 ± 0.002

Zaslavsky map eq. (2.21a,b) for

f (x) = cosx 1.380 ± 0.007 1.387 ± 0.001
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6.4 Pictures of Strange Attractors and Fractal Boundaries
D. Ruelle writes at the end of his article on strange attractors in The Mathematical Intelli-
gencer (1980): “I have not (yet) spoken of the aesthetic appeal of strange attractors. These

systems of curves, these clouds of points suggest sometimes fireworks or galaxies, sometimes

strange and disquieting vegetal proliferations. A realm lies here to explore and harmonies to

discover”. Figure 91 shows several examples of strange attractors that support this statement.

But we will see in the following that already the boundaries of attraction of simple rational

maps of the complex plane onto itself can have very complicated structures. If these objects

are plotted in color they show striking parallels to some of the self-similar pictures of M. C.

Escher.

Let us begin with a study of the basins of attraction for the fixed points z∗ = (1, e2πi/3,

e4πi/3) of the map

zn+1 = zn − (z3
n −1)/(3z2

n) (6.112)

in the complex plane. (Equation (6.112) is just Newton’s algorithm for the solution of f (z) =
z3 −1 = 0 (0 = f (z) ≈ f (z0)+ f ′(z0)(z− z0) → z1 = z0 − f (z0)/ f ′(z0), etc.).)

One could think that the different basins of attraction for the roots z∗ on the unit circle

would be separated by straight lines, But, if one runs eq. (6.112) on a computer and colors

starting points, which move to 1, e2πi/3, e4πi/3, in red, green and blue, respectively (and

black if the starting point does not converge), one sees from the results in Plate VIII (the

color Plates I–XX are shown at the beginning of the book) that the boundary of the different

basins forms highly interlaced self-similar structures (see also Fig. 92). This fractal boundary

solves the nontrivial problem of how to paint a plane with three colors in such a way that each

boundary point of a colored region (e. g., red) is also a boundary point of the other regions

(green, blue).

The boundary of a basin of attraction of a rational map is nowadays called the Julia set
(Julia, 1918) (for a more precise definition see, e. g., Brolin, 1965). “Usually” Julia sets are

fractals (for f (z) = z2 the Julia set is the unit circle), and the motion of iterates on these sets

is chaotic.

Next we consider the map

zn+1 = fc(zn) = z2
n + c (6.113)

in the complex plane for complex parameter values c. Equation (6.113) is the logistic map

xn+1 = rxn(1− xn) in new variables x = 1/2− z/r; c = (2r− r4)/4.

The boundary of the basin of attraction of z∗ = ∞ forms a Julia set c of fc(z), which

depends on c:

Jc = boundary of {z| lim
n→∞

f n
v (z) → ∞} . (6.114)

Figure 93 shows several examples of these sets. An important theorem by Julia (1981) and

Fatou (1919) states that Jc is connected, if and only if, limn→∞ f n
c (0) /→ ∞. Since this limit

depends only on c, one is led to consider the set M of parameter values c in the complex plane

for which Jc is connected, i. e.,

M = {c|Jc is connected = [c| lim
n→∞

f n
c (0) /→ ∞} . (6.115)
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Figure 91: a), b), Both pictures are composed of different parts of strange attractors which arise if

one iterates discretized versions of ẏ = y(1− y) and the pendulum equation, respectively (after Prüfer,

1984; Peitgen and Richter, 1984). c) Poincaré plot (�xn =�x(t = nT )) of trajectories of the driven Duffing

oscillator (ẍ+ γẋ+ax+bx3 = A+Bcos(2πt/T )) in the chaotic regime (after Kawakami, 1984).
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Figure 92: Self-similarity of the Julia set for eq. (6.112) (see also Plate VIII) (after Peitgen and Richter,

1984).

Figure 93: Two typical Julia sets of fc(z) in eq. (6.90). a) c = 0.32+0.043i, b) c = −0.194+0.6557i.
(After Peitgen and Richter, 1984.)
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Figure 94: Correspondence between the structure of “Mandelbrot’s set” M in the c-plane and the struc-

ture of bifurcations of the (transformed) logistic map xn+1 = x2
n + c along the real c-axis (after Peitgen

and Richter, 1984).

The set M is called “Mandelbrot’s set” after B. B. Mandelbrot who first published (1980) a

picture of M (see Fig. 94). It shows that M has also a fractal structure (but it is no Julia

set). This study was extended by Peitgen and Richter (1984). If c does not belong to M,

then limn→∞ f n
c (0) → ∞. Therefore, they define “level curves” in the following way: color

a starting point according to the number of iterations it needs to leave a disk with a given

radius R. As shown by Douady and Hubbard (1982), lines of equal color can be interpreted

as equipotential lines if the set M is considered to be a charged conductor. Plates VIII–XV

show the fascinating results of this procedure which brings us back to Ruelles’ remark at the

beginning of this section.



7 The Transition from Quasiperiodicity to Chaos

In the first section of this chapter, we shall discuss the emergence of a strange attractor in the

Ruelle–Takens–Newhouse route to turbulence (in time) and present some experimental sup-

port for this route. The subsequent section contains a study of the universal properties of the

transition from quasiperiodicity to chaos via circle maps and we introduce two renormaliza-

tion schemes, which are appropriate to describe local and global universality. In Section 7.3,

we present experimental evidence that circle maps indeed provide a useful description of the

transition from quasiperiodicity to chaos in real systems. The chapter ends with a critical

review of different transition scenarios that lead to a chaotic behavior.

7.1 Strange Attractors and the Onset of Turbulence
We come now to one of the most fascinating and difficult questions; namely, how the onset

of fluid turbulence in time (we will not consider the distribution of spatial inhomogeneities) is

related to the emergence of a strange attractor.

To understand what has been undertaken in this area, we first introduce the Hopf bifurca-

tion (Hopf, 1942).

7.1.1 Hopf Bifurcation
A simple Hopf bifurcation generates a limit cycle starting from a fixed point. For example,

consider the following differential equations in polar coordinates:

dr
dt

= −(Γr + r3); Γ = a−ac (7.1a)

dθ
dt

= ω . (7.1b)

Their solutions are

r2(t) =
Γr2

0 e−2Γt

r2
0(1− e−2Γt)+Γ

with r0 = r(t = 0) (7.2a)

θ(t) = ωt with θ(t = 0) = 0 . (7.2b)

For Γ ≥ 0 the trajectory approaches the origin (fixed point), whereas for Γ < 0 it spirals

towards a limit cycle with radius r∞ = |(a−ac)|1/2, as shown in Fig. 95.

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Figure 95: Hopf bifurcation from a fixed point (a) to a limit cycle (b), and behavior of the eigenvalues

λ (c).

If (7.1a,b) is transformed into rectangular coordinates

dx
dt

= −{Γ+(x2 + y2)}x− yω (7.3a)

dy
dt

= −{Γ+(x2 + y2)}y− xω (7.3b)

and linearized about the origin, we obtain

d�f
dt

= A�f (7.4)

where �f = (∆x, ∆y), and A is the matrix

A =
( −Γ −ω

ω −Γ

)
(7.5)

with eigenvalues λ± = −Γ± iω. This means that at a Hopf bifurcation a pair of conjugate

eigenvalues crosses the imaginary axis, as indicated in Fig. 95c.

7.1.2 Landau’s Route to Turbulence

A Hopf bifurcation introduces a new fundamental frequency ω into the system. As early as

1944 Landau therefore suggested a route to turbulence (in time) in which the chaotic state is

approached by an infinite sequence of Hopf instabilities, as shown in Fig. 96.

Although this route leads to a time dependence which becomes more and more compli-

cated as more and more frequencies appear, the power spectrum always remains discrete and

approaches the continuum limit only after an infinite sequence of Hopf bifurcations.
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Figure 96: Landau’s route to chaos. As the parameter R increases, more and more fundamental (i. e.,

incommensurate) frequencies are generated by Hopf bifurcations.

Figure 97: Power spectrum of the convection current for a Bénard experiment (after Swinney and Gol-

lub, 1978). With increasing (relative) Rayleigh number R∗ = R/Rc the following states are observed:

a) periodic movement with one frequency and its harmonics, b) quasiperiodic motion with two incom-

mensurate frequencies and their linear combinations, c) nonperiodic chaotic motion with some sharp

lines, d) chaos.

7.1.3 Ruelle–Takens–Newhouse Route to Chaos
Figure 97 shows that this is not the case for the Bénard experiment. After the appearance of

two fundamental frequencies, the power spectrum becomes continuous.

This experiment was in fact performed, after the theoretical work of Ruelle, Takens, and

Newhouse (1978) who had suggested a route to chaos which is much shorter than that pro-

posed by Landau (1944). They showed that, after three Hopf bifurcations, regular motion

becomes highly unstable in favor of motion on a strange attractor (see Fig. 98).
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Figure 98: The Ruelle–Takens–Newhouse route to chaos.

To be precise, we quote their theorem verbatim (Ruelle, Takens, Newhouse) (1978): “Let

v be a constant vector field on the n-torus T n = Rn/Zn. If n > 3, every C2 neighborhood

of v contains a vector field v′ with a strange Axiom A attractor. If n > 4, we may take C∞

instead of C2.” (Here C2 means that the neighborhood of the vector field is twice continuously

differentiable, an Axiom A attractor (see Smale, 1967) is essentially our strange attractor, and

we finally mention that the original work of Ruelle and Takens (1971) described the decay of

a four-torus instead of a three-torus as in the theorem above.)

This means practically that if a system undergoes three Hopf bifurcations, starting from

a stationary solution as a parameter is varied, then it is “likely” that the system possesses a

strange attractor after the third bifurcation. The power spectrum of such a system will exhibit

one, then two, and then possibly three independent frequencies. When the third frequency

is about to appear, some broad band noise will simultaneously appear if there is a strange

attractor. Practically, the three torus can decay (into a strange attractor) immediately after the

critical parameter value for its existence has been reached, such that one observes in the power

spectrum only two independent frequencies, that is, two Hopf bifurcations and then chaos as

shown in Fig. 97.

It is understandable that chaotic motion only becomes possible after two Hopf bifurca-

tions, when the trajectory can explore additional dimensions, because doubly periodic motion

corresponds to a trajectory on a torus (i. e., on a two-dimensional manifold), on which chaos is

forbidden by the Poincaré–Bendixson theorem. However, Ruelle and Takens (1978) showed

that a strange attractor is not only possible, but that there exist certain perturbations which

definitely convert quasi-periodic motion on a three torus into chaotic motion on a strange

attractor. The subtle point is that these perturbations can be infinitesimal; however, not all

infinitesimal perturbations will lead to a destruction of the three torus such that the probability

for the appearance of a strange attractor nevertheless can be small. The resulting attractor is,

in contrast to the three-torus, robust with respect to small changes in the parameters of the

system.

The proof of this theorem is mathematically too involved to be presented here. Instead, we

will proceed as follows. First we will present the results of a numerical experiment by Gre-

bogi, Ott and Yorke (1983) who investigated the strength of the perturbation which is needed

to destroy a three-torus in favor of a strange attractor. Basically, they confirmed numerically

the theorem of Ruelle, Takens and Newhouse (1978), which had been obtained analytically,

but their calculations suggest that smooth perturbations must have a finite strength in order to

generate a strange attractor from a three-torus. Next, we describe two experimental examples

where three independent frequencies have been observed together with broadband noise in the
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power spectrum, and two experiments in which the destruction of a two-torus into a strange

attractor has been observed by reconstruction of the Poincaré map. Since, in the last two

experiments, the third frequency has not been observed, one could ask whether there exists

a direct transition from a two-torus to a strange attractor that is independent of the Ruelle–

Takens–Newhouse (1978) mechanism. We leave this question open, because such a transition

could be interpreted as an example of the Ruelle–Takens–Newhouse scenario in which the

three-torus becomes destroyed by an infinitesimal perturbation at the very moment as it is

about to appear, so that one practically observes the decay of a two-torus into a strange attrac-

tor (see, however, Curry and Yorke, 1978, for another interpretation). Finally, we discuss, in

the next section, universal features of the transition from (two-frequency) quasiperiodicity to

chaos in terms of simple circle maps, and describe some relevant experiments.

7.1.4 Possibility of Three-Frequency Quasiperiodic Orbits
Newhouse, Ruelle and Takens (1978) showed that, in a system with a phase-space flow con-

sisting of three incommensurate frequencies, arbitrarily small changes to the system convert

the flow from a quasiperiodic three-frequency flow to chaotic flow.

One might naively conclude that three-frequency flow is improbable since it can be de-

stroyed by small perturbations. However, it has been shown numerically by Grebogi, Ott and

Yorke (1983) that the addition of smooth nonlinear perturbations does not typically destroy

three-frequency quasiperiodicity. (In the proof by Newhouse et al., the small perturbations

required to create chaotic attractors have small first and second derivatives, but do not neces-

sarily have small third- and higher-order derivatives, as expected for physical applications.)

The calculation by Grebogi et al. (1983) can be summarized as follows: According to

Section 7.2, the Poincaré map associated with a flow having two incommensurate frequencies

(perturbed by ε f (θ)) can be described by the map (7.13):

θn+1 = θn +Ω+ ε f (θn) (7.6)

where f (θ) is periodic in θ, and θn is taken modulo 1. By analogy, a flow with three incom-

mensurate frequencies corresponds to a map:

θn+1 = θn +ω1 + εP1(θn, ϕn) (7.7a)

ϕn+1 = ϕn +ω2 + εP2(θn, ϕn) (7.7b)

where θn and ϕn are again taken modulo 1, and P1, 2 are periodic in θn and ϕn. The parameters

ω1, and ω2 are incommensurate with each other and with unity; that is, integers p, r, q do not

exist for which pω1 +qω2 + r = 0. By expressing P1, 2 as a Fourier sum of terms

Ar,s sin[2π(rθ+ sϕ+Br,s)] (7.8)

and retaining (somewhat arbitrarily) only the terms (r, s) = (0, 1), (1, 0), (1, 1), (1, −1),
Grebogi et al. calculated the Liapunov exponents λ1, λ2 for the map (7.7) for random values

of ω1, ω2, Ar,s and Br,s. Their results are summarized in Table 10, which shows that for a

fixed typical choice of P1, 2 the measure of (ω1, ω2) yielding chaos approaches zero as ε → 0.

Three-frequency quasiperiodicity is possible only when ε < εc, where the map is invertible.

The data in this table were computed using 256 random values of (ω1, ω2). The Liapunov

exponents have been determined to the order 10−4 (Grebogi et al., 1983a).
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Table 10: Observed frequencies for different types of attractors.

Type of attractor Liapunov exponents ε
εc

= 3
8

ε
εc

= 3
4

ε
εc

= 9
8

Three-frequency λ1 = λ2 = 0 82 % 44 % 0 %

quasiperiodic

Two-frequency λ1 = 0 λ2 < 0 16 % 38 % 33 %

quasiperiodic

Periodic λ1 < 0 λ2 < 0 2 % 11 % 31 %

Chaotic λ1 > 0 0 % 7 % 36 %

A transition from quasiperiodicity to chaos which still exhibits three-frequency quasiperi-

odicity (i. e., the decay of this state to a strange attractor is not complete) has been observed

by Libchaber, Fauve, and Laroche (1983) in a Bénard experiment with mercury in a magnetic

field (see Fig. 99) and by Martin, Leber and Martienssen (1984) in the voltage spectrum of a

ferroelectric Barium-Sodium-Niobate (BSN) crystal (see Fig. 100).

In the first case, the horizontal field serves as a second control parameter and additionally

increases the viscosity of the electrically conducting fluid. In the second, the Ba2NaNb5O15

Figure 99: Log-linear plot of the power spectrum (of the local temperature) in a Bénard experiment

with mercury in a magnetic field. a) Quasiperiodic region with two incomensurate frequencies f1 and

f2; b) three-frequency periodicity, i. e., f1 f2 and f3 are present together with self-generated noise which

decays exponentially. (Libchaber et al., 1983.)
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Figure 100: Power spectrum of the voltage across a BSN crystal through which a constant dc-current is

maintained. With decreasing temperature, one observes a transition from one→two→three fundamental

frequencies to chaos (after Martin, Leber and Martienssen, 1984).

crystal, which displays a nonlinear current–voltage characteristic, is placed into a heating

oven through which a constant flow of humidified oxygen is maintained (part of the conduc-

tion mechanism is due to oxygen vacancies). A stabilized dc current is applied along the c-axis

of the sample and one measures the voltage across the crystal together with the birefringence

pattern. With increasing voltage, “domains” emerge from the cathode and disperse gradually

through the crystal (see Plate IV at the beginning of the book). Since there are three con-

trol parameters (temperature, current density and oxygen flow), BSN provides an interesting

system for experimental studies of chaos.

7.1.5 Break-up of a Two-Torus

It has been mentioned above that the conversion of quasiperiodic motion into chaotic motion

on a strange attractor could occur apparently from a two-torus if the three-torus is so unstable

that the third incommensurate frequency cannot be observed. Such transitions belong in prin-

ciple also to the Ruelle–Takens–Newhouse scenario (see, however, Curry and Yorke, 1978)

and have been seen in two hydrodynamic experiments.
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Figure 101: Poincaré sections for the Bénard experiment: a) Schematic section through torus; b)–

d) experiments showing with increasing Rayleigh number a transition form quasiperiodic motion (b) to

substructures indication the destruction of the torus (c) and then to a strange attractor (d). (After Dubois,

Berge and Croquett, 1982.)

Dubois and Berge (1982) observed experimentally the emergence of a strange attractor in

a Bénard experiment. They measured the time series of temperature T (t) and reconstructed a

two-dimensional Poincaré section by plotting [T (t), Ṫ (t)] at intervals t = nτ, where ω0 = 2π/τ
was determined from an independent measurement of the velocity. (This is another method

of reconstructing an attractor from the measurement of one variable; note that in our example

from chapter 6.3�x(t) = [sin(2πt), cos(2πt)] [eq. (6.43)] the y component y = cos(2πt) could

be obtained by differentiation, i. e., y ∝ ẋ.) Figure 101 shows how the Poincaré section, which

consists of a closed loop (as expected for a section of a torus), develops into a strange attractor.

Another example for the emergence of chaos after two Hopf bifurcations has been ob-

served after a Taylor instability by Swinney and Gollub (1978). The Taylor instability occurs

in a fluid layer between an inner cylinder rotating with an angular velocity Ω and a stationary

outer cylinder (see Fig. 102 and Plate III at the beginning of the book). For small Ω, angular

momentum fed to the inner cylinder is transported outside by viscosity (a). Above a critical

angular velocity Ωc, this state becomes unstable, and momentum is transported by annular

convection cells (b). At still higher Ωs, periodic and multiply periodic oscillations of these

cells occur which merge into chaos after two Hopf bifurcations.

The following results in Fig. 103 have been obtained by reconstructing the phase space

for a Taylor experiment from a time series of the radial velocity {v(tk), . . . , v(tk +mτ)} with

tk = k · τ0, k = 0, 1, 2, . . ., (τ0 < τ):

a) The Poincaré section shows the break-up of a torus similar to Fig. 101.
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Figure 102: The Taylor instability and power spectrum of the velocity (after Swinney and Gollub, 1978).

Figure 103: Experimental properties of a strange attractor which occurs in a Taylor experiment: a) Plane

of the Poincaré section and break-up of the torus with increasing Ω. b) K-entropy (�) and largest

Liapunov exponent (•) vs. Ω/Ωc. c) Hausdorff dimension D (•) and correlation dimension D2 (�) vs.

Ω/Ωc. (After Brandstäter et al., 1983.)

b) The K-entropy [obtained via eq. (6.109] and the largest Liapunov exponent λ (obtained

from the separation of nearby orbits in five-dimensional phase space) become positive

for Ω > Ω∗. This proves experimentally the existence of a strange attractor.

c) The Hausdorff dimension D (obtained via eq. (6.49) and D2 (obtained via eq. (6.76)

increase slowly with Ω/Ωc. This shows that there are only a few relevant degrees of
freedom even at Ω-values that are 30% above the critical value Ω∗ = 120, at the onset of

chaos.
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7.2 Universal Properties of the Transition from
Quasiperiodicity to Chaos

The transition from quasiperiodic motion on a two-torus to chaotic motion has also been

investigated by studying simple maps (Feigenbaum and Kadanoff, 1982; Rand et al., 1982,

1983; Jensen et al., 1984).

Figure 104 shows that the motion on an unperturbed unit torus can be described in polar

coordinates by the Poincaré map

θn+1 = f (θn) ≡ θn +Ωmod1 . (7.9)

The parameter Ω = ω1/ω2 determines the winding number

w = lim
n→∞

f n(θ0)−θ0

n
(7.10)

which measures the average shift of the angle θ per iteration in eq. (7.10), the modulo in f has

to be omitted. We find from eqs. (7.9–7.10) w = Ω. But it should be noted that the definition

of the winding number w given in eq. (7.10) holds for all maps of the unit circle onto itself.

In order to obtain an idea of how eq. (7.9) should be modified to describe the break-up

of a torus in a physical system, we reconsider our kicked rotator from Chapter 2, eq. (2.18),

for the case when a constant torque ΓΩ has been added to the driving force. If we make, in

eqs. (2.18a,b), the following simplifying substitutions for T = 1:

xn → θn ;
eΓ −1

Γ
yn −Ω → rn ; e−Γ = b (7.11a)

K f (θn) → Γ
1− e−Γ

K
2π

sin(2πθn)+ΓΩ (7.11b)

we obtain

θn+1 = θn +Ω− K
2π

sin(2πθn)+brn mod1 , (7.12a)

rn+1 = brn − K
2π

sin(2πθn) , (7.12b)

Figure 104: Motion on a unit torus. For rational ω1/ω2 = p/q, the trajectory closes after q-cycles. This

is called a mode-locked state. For irrational ω1/ω2, the motion is called quasiperiodic; the trajectory

never closes and covers the whole torus.
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Figure 105: Break-up of a torus as described by the dissipative circle map [eqs. (7.12a,b)] (after Bauer,

priv. comm.).

where θn is the angle of the kicked rotator at time n, rn = yn[( eΓ −1)/Γ]−Ω is – apart from

a constant shift – proportional to the angular velocity yn = θ̇(t = n). Equations (7.12a–7.12b)

define the so-called dissipative circle map. For vanishing nonlinearity (K = 0) and finite

damping rate b = e−Γ < 1, eqs. (7.12a–7.12b) reduce to the unperturbed map eq. (7.9) where

Ω sets the rate of rotation.

Figure 105 shows that the dissipative circle map indeed describes the break-up of a torus

if the parameter K which measures the strength of the nonlinearity sin(2πθn) is increased

from K = 0.814 to K = 1.2. In both pictures, we plotted yn = (1 + 4rn)sinθn versus xn =
(1+4rn)cosθn with θn and rn from eq. (7.12) and Ω = 0.612, b = 0.5.

These pictures should be compared to Figs. 101 and 103 which show the destruction of a

torus in experimentally measured Poincaré maps. For strongly dissipative systems (b → 0),

the radial motion of the trajectory disappears in eqs. (7.12a, b), and they reduce to the one-

dimensional circle map:

θn+1 = f (θn) ≡ θn +Ω− K
2π

sin(2πθn)mod1 , (7.13)

which describes the transition from quasiperiodicity to chaos only by the motion of the angles

θn. Here θn is again understood modulo 1; K provides, in analogy to the Reynold’s number, a

measure for the nonlinearity sin(2πθn) (which must be added to obtain a transition to chaos),

and Ω again sets the rate of rotation [see eq. (7.10)]. In the following section, we study the

break-up of the torus into a strange attractor via this map. It will be shown below that (by

analogy to the logistic map for the period-doubling route) the special form of f (θ) is rather

unimportant, and, of more importance, are the following general features of f (θ):

– f (θ) has the property f (θ+1) = 1+ f (θ).

– For |K| < 1, f (θ) (and its inverse) exists and is differentiable (i. e., f (θ) is a diffeomor-

phism).

– At K = 1, f−1(θ) becomes nondifferentiable, and for |K| > 1, no unique inverse to f (θ)
exists.

To obtain an overview of the behavior of the circle map (7.13), we show in Plate XVI (at
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Figure 106: Variation of the map f (θ) with the parameter K. Note, that for K > 1, the map becomes

noninvertible.

Figure 107: Phase diagram of the circle map (schematically). K < 1: Within the Arnold tongues

(hatched) the winding number w is rational, and one has mode locking. K = 1: the Arnold tongues

moved together, the remaining nonmode-locked “holes” form a Cantor set. K > 1: Chaos becomes

possible, but coexists with order. The lines correspond to the parameter values for superstable, that is,

nonchaotic cycles which are associated with the mode-locking regions.

the beginning of this book) its Liapunov exponent λ depicted in colors as a function of the two

control parameters K and Ω. We distinguish three regimes (cf. Fig. 106):

– For |K| < 1, one finds the so-called Arnold’s tongues (Arnold, 1965) where the motion

is mode-locked; that is, the winding number w [see eq. (7.10)] is rational. Between these

tongues, the winding number is irrational. Both areas in the K −Ω plane, the mode-

locking and the non-mode-locking one, are finite (see Fig. 107).

– At K = 1, the Arnold’s tongues moved together in such a way that the non-mode-locked

Ω intervals form a self-similar Cantor set with zero measure.

– For |K| > 1, the map becomes noninvertible, chaotic behavior becomes possible, but

chaotic and nonchaotic regions are densely interwoven in parameter space (i. e., the K −
Ω plane).

In the following section, we will investigate these different regimes in more detail. In

the first part of this section, we study the nonchaotic mode-locking behavior. Mode locking

means, according to eq. (7.10), that the ratio between the number of cycles, which the system

executes divided by the number of oscillations of the driving force (think of a kicked rotator),

is a rational number. Thus, mode locking with winding number w = 1 corresponds to complete

synchronization between the external force and the system. Since this phenomenon occurs

very often in nature – already in the 17th century the Dutch physicist Ch. Huyghens observed
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synchronization between two clocks hanging back-to-back on a wall – the understanding of

mode locking in nonlinear systems is of considerable interest.

In the second part of this section, we investigate universal properties at the transition from

quasiperiodicity to chaos using different renormalization group formalisms. Since one has

two control parameters K and Ω one has to distinguish between local scaling behavior, which

occurs near a point in the K−Ω plane, and global scaling behavior, which occurs for a whole
set of Ω values and describes the merging together of the Arnold tongues as the line K = 1, is

approached in Fig. 107.

It will be shown that the local transition from quasiperiodicity to chaos near an irrational

winding number displays, as a function of the control parameter Ω in its renormalization group

description, some formal analogies to the period-doubling route. In contrast, the numerically

found global scaling requires a different normalization group approach, and we will only

calculate the universal Hausdorff dimension of the Cantor set which is formed by the non-

mode-locked Ω intervals at K = 1 (see Fig. 107).

7.2.1 Mode Locking and the Farey Tree
In this subsection, we investigate the mode locking which occurs in the iterates of the circle

map. It will be shown that for fixed K the width of an Arnold tongue decreases if the de-

nominator q in the corresponding rational winding number w = p/q increases. The resulting

hierarchy of tongues at K = 1 can be conveniently represented by a Farey tree which orders all

rationals in [0, 1] according to their increasing denominators (see Hardy and Wright, 1938).

For a general mode-locked state with w = p/q, the corresponding Ω interval Ω = Ω(K)
can be calculated from the condition that a q-cycle with elements θ∗1, . . . , θ∗q occurs in the

circle map (7.13):

f q
Ω,K(θ∗i ) = p+θ∗i (7.14)

which is stable, i. e.,

f q′
Ω,K(θ∗i ) =

∣∣∣∣∣
q

∏
i=1

f ′Ω,K(θ∗i )

∣∣∣∣∣ =

∣∣∣∣∣
q

∏
i=1

[1−K cos(2πθ∗i )]

∣∣∣∣∣ < 1 . (7.15)

(Here the indices K and Ω indicate that the left hand side in eqs. (7.14, 7.15) is still a function

of both variables.) Equations (7.13–7.15) yield, e. g., for w = 1:

fΩ,K(θ0) = θ0 → Ω =
K
2π

sin(2πθ0) (7.16)

and ∣∣ f ′Ω,K(θ0)
∣∣ = |1−K cos(2πθ0)| < 1 . (7.17)

For |K| < 1, the boundaries | f ′Ω,K(θ0)| = 1 are reached for θ0 = ±π/4 which implies, via

eq. (7.16), that the first Arnold tongue is a triangle with a width Ω

Ω = ± K
2π

(7.18)

as shown in Fig. 107.
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Figure 108: The mode-locking structure of the circle map, eq. (7.13) at K = 1. The devil’s staircase is

complete; the numbers denote the rational winding numbers (after Jensen at al., 1984).

The general eqs. (7.13–7.15) have been solved numerically by P. Bak and T. Bohr (1984)

who found that for 0 < K < 1 a whole interval ∆Ω(p/q, K) of Ω values is associated to

every rational winding number. For K = 1, these intervals form a complete self-similar devil’s

staircase as shown in Fig. 108. The staircase for K = 1 is termed complete because the sum S
of all Ω intervals is equal to 1, i. e.,

S = ∑
p,q

∆Ω(p/q, 1) = 1 . (7.19)

For 0 < K < 1, the staircase becomes incomplete, i. e., S < 1.

Figure 108 shows that the widths of the steps become smaller if the denominator in the

corresponding winding number increases. Furthermore, if we have two steps with winding

numbers p/q and p′/q′, then the largest step in between has a winding number (p+ p′)/(q+
q′). If we list a few examples: 0/1 < 1/2 < 1/1; 1/2 < 2/3 < 1/1; 1/2 < 3/5 < 2/3, etc.,

we see that (p+ p′)/(q+q′) is the rational number with the smallest denominator which lies

between p/q and p′/q′. Thus the Farey tree, shown in Fig. 109, which orders all rationals p/q
in [0, 1] with increasing denominators q, orders also all mode-locking steps with w = p/q in

the circle map according to their decreasing widths.

Up to now, our observations were only based on numerical evidence shown in Fig. 108;

however, there exists also a simple analytical result that establishes the relation between the

devil’s staircase and the Farey tree.

The monotony of the circle map (and its iterates) in Ω implies that to every winding num-

ber in the Farey tree belongs exactly one mode-locking step in the devil’s staircase. Suppose

one has a superstable q-cycle f q
Ω(p,q)(θ) = p + θ and a q′-cycle f q′

Ω(p′,q′(θ
′). If we combine

both iterations we obtain:

f q
Ω(p,q)[ f q′

Ω(p′,q′)(θ)] = p+ p′ +θ (7.20)

that is, a cycle with the winding number (q + q′)/(p + p′). Increasing Ω(p,q) in f q
Ω(p,q)

overshoots this cycle. This can be compensated by reducing Ω(p′,q′) in f q′
Ω(p′,q′). Due to the

fact that both iterates are monotonous in Ω, one can repeat this procedure until both Ω values
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Figure 109: The Farey tree orders all rationals in [0, 1] with increasing denominators according to the

rule that the largest rational between p/q and p′/q′ is (p+ p′)/(q+q′) (after Cvitanovic and Soderberg,

1985a).

coincide. Hence, the Ω interval between the p/q and p′/q′ cycles, always contains an Ω value

which corresponds to a (p+q′)/(q+q′) cycle as claimed above.

The Farey tree construction has a universal importance because it orders not only the

mode-locking regions for the circle map, but also for real systems such as a driven pendu-

lum, Josephson junctions, and sliding charge density waves. This of course means that the

dynamics of these systems can be reduced to circle maps as will be shown in Section 7.3.

7.2.2 Local Universality
The transition from quasiperiodicity to chaos is characterized by two types of universality.

One is associated with the transition from quasiperiodicity to chaos for a special, that is, local

winding number, and it shows close parallels to the period-doubling route. Its experimental

verification is difficult because minute changes in winding numbers lead to large changes in

scaling behavior. The second type is called global universality and pertains to a whole range of

winding numbers. It describes the scaling behavior of the set of Ω values, complementary to

the Arnold tongues on which the dynamical system is mode-locked, and it has been observed

experimentally in several systems.

We begin with an investigation of the transition from quasiperiodicity to chaos for the

golden mean winding number, because it also forms the basis for the investigation of the

global universality for the circle map. In order to observe a transition from quasiperiodicity to

chaos in the iterates of (7.13), two parameters have to be adjusted. If we increase, for example,

the nonlinearity via K, Ω must always be balanced to keep the winding number w fixed to a

given irrational value (this guarantees quasiperiodicity). But how can this be performed for a

winding number which still gives the average shift of θ per iteration, and which, however, for

general maps has to be defined as the limit [see eq. (7.10)]:

w = lim
n→∞

f n(θ0)−θ0

n
(7.21)

(where the modulo in f has to be omitted)? We use the following method which has been

suggested by Greene (1979) (in a similar context for Hamiltonian systems). One calculates
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for fixed K the value Ωp,q(K) which a) belongs to a q-cycle of the map f (θ), b) contains θ = 0

as an element, and c) provides a shift by p. Thus, Ωp,q which generates a rational winding

number w = p/q, is defined by

f q
K,Ω(0) = p . (7.22)

Next, the irrational winding number is approximated by a sequence of truncated continued

fractions, i. e., rationals. If we consider, for example, the winding number w∗ = (
√

5− 1)/2

which has as a continued fraction of the simple form

w∗ =
1

1+ 1
...

(7.23)

then the so-called Fibonacci numbers Fn which are defined by

Fn+1 = Fn +Fn−1 ; F0 = 0 ; F1 = 1 ; n = 0, 1, 2, . . . (7.24)

via

wn =
Fn

Fn+1
=

Fn

Fn +Fn−1
= (7.25a)

=
1

1+
Fn−1

Fn

=
1

1+
1

1+ . . .︸ ︷︷ ︸
n times

(7.25b)

yield a sequence of rationals wn which converges towards

w∗ = lim
n→∞

wn . (7.26)

For n → ∞ eqs. (7.25a, b) yield

w∗ =
1

1+w∗ → w∗2 +w∗ −1 = 0 → w∗ = (
√

5−1)/2 . (7.27)

This number is the so-called golden mean, which is defined in geometry by sectioning a

straight line segment in such a way that the ratio of the longer segment l to the total length

L equals the ratio of the shorter segment to the longer segment, i. e., w∗ = l/L = (L− l)/l.
In the following, we confine ourselves to this special winding number w∗ = (

√
5− 1)/2 =

0.6180339, which is the “worst” irrational number in the sense that it is least well approxi-

mated by irrationals [see eqs. (7.23–7.25)]. Although any given irrational number has a unique

representation by continued fractions, the renormalization scheme has, up to now, only been

applied to the so-called quadratic irrationals, which are the solutions of a quadratic equation

with integer coefficients, and for which the continued fraction representation is periodic.
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Using the procedure described above, Shenker (1982) obtained the following numerical

results for the circle map (7.13):

a) The values of the parameters Ωn(K) (7.13) which via (7.22) generate the winding num-

bers wn in (7.25), geometrically tend to a constant, i. e.,

Ωn(K) = Ω∞(K)− const · δ̃−n (7.28a)

where

δ̃ =
{ −2.6180339 . . . = −w∗−2 for |K| < 1

−2.83362 . . . for |K| = 1
(7.28b)

is a universal constant that, however, depends on w∗.

b) The distances dn from θ = 0 to the nearest element of a cycle which belongs to wn

dn = f Fn
Ωn

(0)−Fn−1 (7.29a)

scale like

lim
n→∞

dn

dn+1
= α̃ (7.29b)

where α̃ is again a universal constant with values

α̃ =
{ −1.618 . . . = −w∗−1 for |K| < 1

−1.28857 . . . for |K| = 1
(7.29c)

(Note, that f Fn+1

Ωn
(0)−Fn = 0).

c) Figure 110 shows the periodic function

u(t j) = θn(t j)− t j ; j = 0, 1, 2, . . . (7.30)

that measures the time dependence of the cycle elements

θn(t j) = θ( j ·wn) ≡ f j(0) (7.31)

for times t j ≡ j ·wn in the limit n → ∞. (Here, f j(0) is taken at Ωn(K), and u(t j) is

periodic since the property f (θ + 1) = f (θ) + 1 leads to θ(t j + 1) = θ(t j) + 1). For

|K|< 1 and Ωn → Ω∞, the variable u(t) varies smoothly with t, but its behavior becomes

“bumpy” for |K| = 1, which signals the transition from quasiperiodicity to chaos.

d) The power spectrum

A(ω) =
1

Fn+1

Fn+1−1

∑
j=0

u(t j) e2πiωt j (7.32)

for ω = 0, . . . Fn+1 is shown for n → ∞ in Fig. 110e. It displays self-similarity (the major

structure between any two adjacent peaks is essentially the same), and the main peaks

occur at powers of the Fibonacci numbers reflecting the fact that the motion is almost

periodic after Fn iterations.
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Figure 110: a) u(t) for K = 0.5 (after Shenker, 1982); b) the map (6.57) at K = 0.5 and w = w∗ is a

diffeomorphism (after Jensen et al., 1983a); c) u(t) becomes bumpy for K = 1 (after Shenker, 1982);

d) the map (6.57) at K = 1 and w = w∗ becomes noninvertible f ′(0) = 0 (after Jensen et al., 1983a);

e) the power spectrum for K = 1 (after Rand et al., 1983). Note that indeed for n → ∞, u(t j) converges

to a function in 0 ≤ t ≤ 1 because the periodicity of u implies that its argument is taken mod 1 and j ·w∗
mod 1, j = 0, 1, 2, . . . n covers [0, 1].

These results [especially a) and b)] appear very similar to those found for the period-

doubling route, and it is therefore natural to attempt a renormalization-group treatment of this

transition which establishes its universal features. The formal parallels between the transitions

to chaos via period doubling and quasiperiodicity are summarized in Table 11. (Note, that

α̃ and δ̃ in eqs. (7.28–7.29) are different from the Feigenbaum constants.) To derive the

corresponding functional equations, we define [see eq. (7.29b)] the functions

fn(x) = α̃n f n(α̃−nx) where (7.33)

f n(x) = f Fn+1(x)−Fn (7.34)

such that eq. (7.29b) becomes

lim
n→∞

α̃ndn ∝ lim
n→∞

α̃n f n(0) = lim
n→∞

fn(0) = const . (7.35)
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Table 11: Parallels between the transitions to chaos via period doubling and quasiperiodicity.

Period Doubling Quasiperiodicity

Logistic map Circle map

xn+1 = fr(xn) = r(1− xn) θn+1 = fKΩ(θn)

≡ θn +Ω− K
2π

sin(2πθn)mod1

One control parameter r Two control parameters K, Ω

At r = Rn superstable cycle of length 2n At Ω = Ωn superstable cycle of length Fn+1

Rn is calculated from Ωn is calculated from

f 2n

Rn
(0) = 0 (cycle closes) f Fn+1

K,Ωn
(0)−Fn = 0

(
ensures wn = Fn

Fn+1

)
Parameter scaling

Rn+1 −Rn ∼ δ−n for n 	 1 Ωn+1 −Ωn ∼ δ̃−n for n 	 1

Scaling of distances between cycle elements

dn ≡ f 2n−1

Rn
(0) dn = f Fn

K,Ωn
(0)−Fn−1

(compare to f 2n−1

Rn
(0) = 0) (compare to f Fn+1

K,Ωn
(0)−Fn = 0)

dn

dn+1
= −α for n 	 1

dn

dn+1
= α̃ for n 	 1

As in the case of period doubling [see eq. (4.14)], this relation indicates that the sequence

{ fn(x)} converges towards a universal function

lim
n→∞

fn(x) = f ∗(x) (7.36)

where f ∗(x) is again the solution of a fixed-point equation which we shall now derive. More

precisely, we consider fn at Ω = Ω∞, which corresponds to i → ∞ in eq. (4.20).

The function f n+1 can be obtained from f n and f n−1 by a rule which is dictated by the

recursion of the Fibonacci numbers (7.24) and the property f (x+1) = f (x)+1:

f n+1(x) = f Fn+2(x)−Fn+1

= f Fn+1 [ f Fn(x)]− (Fn+1 +Fn) (7.37)

= f n[ f n−1(x)] .

Because the operation of iteration is commutative, we also have

f n+1(x) = f n−1[ f n(x)] . (7.38)
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According to eqs. (7.37–7.38), there are now two ways of calculating fn+1(x):

f n+1(x) = α̃ fn[α̃ fn−1(α̃−2x)] (7.39a)

and

fn+1(x) = α̃2 fn−1[α̃−1 fn(α̃−1x)] . (7.39b)

Both equations become equivalent for the initial conditions

f0[α̃−1 f1(α̃x)] = α̃−1 f1[α̃ f0(x)] . (7.40)

Taking the limit n → ∞ in (7.39a), we obtain for the fixed point function

f ∗(x) = α̃ f ∗[α̃ f ∗(α̃−2x)] . (7.41)

One can immediately verify that

f̄ ∗(x) = −1+ x (7.42)

is a rigorous solution to this equation. If we substitute f̄ ∗(x) into (7.41), we obtain

−1+ x = −α̃2 − α̃+ x → α̃ = −w∗−1 . (7.43)

This value for α̃ [which is equal to the second solution of eq. (7.27)] agrees with the numerical

result for |K| < 1 [see eq. (7.29c)].

For |K| = 1, we expect that (7.41) has a different solution because the linear term is then

absent in our model equation (7.13):

f (0) = Ω+θ3 · const. , for θ → 0 ; |K| = 1 . (7.44)

If for |K| = 1 we try the ansatz

f ∗(x) = 1+ax3 +bx6 . . . (7.45)

a value for α̃ is found which is consistent with eq. (7.29c). This establishes the universality of

the αs for |K| ≤ 1.

By analogy to period doubling, the δ̃s appear as eigenvalues of the linearized fixed-point

equation. These equations are somewhat more complicated than in the Feigenbaum route

because the recursion relations are of second order; that is, fn and fn−1 are required to produce

fn+1 (for more details see, e. g., the article of Feigenbaum, Kadanoff and Shenker, 1982).

7.2.3 Global Universality
Let us now consider the globally universal properties of the set of Ω values that is comple-

mentary to the Arnold tongues and corresponds to irrational winding numbers. The following

numerical results have been obtained by Jensen, P. Bak and T. Bohr (1984):

– For K → 0 (from below), the complement C of the total length of the steps in the (incom-

plete) devil’s staircase, i. e., C = 1−∑p,q ∆Ω(p/q, K), decreases to zero with a power

law

C ∝ (1−K)β

where the exponent β ∼= 0.34 is the same for all f (θ) in eq. (7.13) which have a cubic

inflection point at K = 1.
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Figure 111: a) Self-similarity of the bifurcation tree; b) stability intervals of 2n, 2n+1, and 2n+2 cycles

of gp(x) with n “arbitrarily high”. (After Cvitanovic, 1984.)

– At K = 1, the Ω values belonging to irrational winding numbers form a self-similar thin

cantor set (of zero measure) whose Hausdorff dimension D∗ = 0.87 is again universal.

Whereas there exists up to now no theoretical explanation for the value of β, we will

follow the work of Cvitanovich et al. (1985b) and calculate D∗ by introducing a whole family

of universal functions that maintains a dependence on Ω [which was lost in the previous R.G.

formulation where we put Ω = Ω∞ in eq. (7.36)]. For simplicity, we explain this method first

for the period-doubling route and transfer it then to the circle map. Figure 111 shows again

the self-similar structure of the bifurcation tree from Section 4.1.

In order to capture the change in x and r, we follow the procedure of Cvitanovic (1984)

and introduce the modified doubling operator T̂. It denotes the operation of iteration twice,

rescaling x by α, shifting r to the corresponding values (with the same slope at the cycle

points) at the next bifurcation, and rescaling it by δ:

T̂ fRn+p∆n(x) ≡ −α f n+1
Rn+1+p∆n+1

(−x/α (7.46)

= −α f (n)
Rn+∆n(1+p/δn)[ f (n)

Rn+∆n(1+p/δn)(−x/α)]

where

f (n)(x) = f 2n
(x) ∆n = Rn+1 −Rn , δn = ∆n/∆n+1 (7.47)

and 0 ≤ p ≤ 1 is a parameter which interpolates the rs between a 2n and a 2n+1 cycle. If we

call limn→∞ δn = δ and

lim
n→∞

T̂n fR0+p∆0
(x) ≡ gp(x) , (7.48)

we obtain from the definitions (7.46–7.48) an equation for the universal family of functions

gp(x):

gp(x) = T̂gp(x) = −αg1+p/δ[g1+p/δ(−x/α)] (7.49)

with boundary conditions:

g0(0) = 0 and g1(0) = 1 . (7.50)

The first condition means that the origin of p corresponds to the superstable fixed point. The

second condition sets the scale of x and p by the superstable two-cycle (see Fig. 112).
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Figure 112: Boundary conditions for the functions g(x) and g1(x) defined in the text (after Cvitanovic,

1984).

Note that our fixed-point equation (4.21) for the usual doubling operator can be obtained

by choosing p = p∗ such that gp∗ = g1+p∗/δ, i. e., p∗ = δ/(δ− 1). The family of universal

functions gp(x) in eq. (7.49) is called the unstable manifold (Vul and Khanin, 1982) because

operation with T̂ drives gp(x) away from the fixed-point values gp∗(x).
The advantage of eq. (7.49) with respect to the usual fixed-point equation (4.21) is twofold.

First, one could obtain both Feigenbaum constants α and δ from eq. (7.49) by expanding gp(x)
into a double power series in p and x and comparing the coefficients of equal powers, that is

one needs no linearization around the fixed point.

Since we have calculated their values already in Section 4.2, we now concentrate on the

second aspect of eq. (7.49), namely its stability interpretation. It follows from Fig. 111b

and eq. (7.49) that if gp(x) has a stable 2n cycle (with n “arbitrarily high”) in the interval

−p0 < p < p0, then g1+p/δ(x) has a stable 2n+1 cycle in the p-interval around 1 whose width

is reduced by a factor of 1/δ.

This somewhat trivial looking statement becomes rather powerful if we translate eqs.

(7.46–7.49) to the circle map where they will allow us to obtain some insight into the

self-similarity of the width of the mode-locking regions. The period-doubling operation

[eq. (4.21)] translates according to eqs. (7.37–7.39) into:

T[ f n−1, f n−2] = α̃ f n−1[ f n−2(x/α̃2)] (7.51)

where f n(x) ≡ f Fn+1(x)−Fn. Accordingly, the doubling plus x, r rescaling transformation T̂

from eq. (7.46) changes into:

T̃[ f n−1
Ωn−1+p∆n−1

(x), f n−2
Ωn−2+p∆n−2

(x)] ≡ α̃ f n−1
Ωn+p∆n

[α̃ f n−2
Ωn+p∆n

(x/α̃2)] (7.52)

= α̃ f n−1
Ωn−1+(1+p/δn)∆n−1

[α̃ f n−2
Ωn−2+(1+p/δn−1+p/δn−1δn)∆n−2

(x̃/α2)]

where

∆n = Ωn−1 −Ωn ; δ̃n = ∆n/∆n +1

and 0 ≤ p ≤ 1 interpolates the Ωs between an Fn and an Fn+1 cycle. Calling

lim
n→∞

T̂n[ fΩ0+p∆n−1
0

, f n−2
Ω−1+p∆−1

] = g̃p(x) (7.53)
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Figure 113: Three steps in the universal devil’s staircase as generated by the stability intervals of g̃p(x)
and eq. (7.54). The widths of the steps are p∗, p∗/δ̃ and p∗/δ̃2 for Fn/Fn+1, Fn+1/Fn+2, Fn+2/Fn+3,

respectively, where n is “arbitrarily high”. Also indicated are the widths of the “holes” used in eq. (7.55)

(after Cvitanovic et al., 1985).

eqs. (7.52–7.53) yield [in analogy to eq. (7.49)]:

g̃p(x) = α̃g̃1+p/δ̃[αg̃1+p/δ̃+p/δ̃2(x/α̃2)] (7.54)

where the normalization conditions are again g̃0(0) = 0, g̃1(0) = 1.

One could again determine from eq. (7.54) the parameters α and δ for the route from

quasiperiodicity to chaos. But we will use here the universal object g̃p(x) to investigate the

structure of mode lockings. For p = 0, g̃p(x) has, by construction, a superstable fixed point at

x = 0. Our arguments are now closely parallel to those which we used to interpret eq. (7.49) in

connection with Fig. 107. The range of p around zero, for which g̃p(x) still has a fixed point,

is the range of parameters for which the original map is locked (in some winding number wn
with “infinitely large” n (see Fig. 113). However, around p = 1, there is another locked state

which corresponds to the next locked region in the sequence, and the width of this region

is scaled down by a factor of 1/δ̃ compared to the first (note δ̃ < 0 for the transition from

quasiperiodicity to chaos). Around p = 1 + 1/δ̃, there is another mode-locked region scaled

down by 1/δ̃2 compared to the first, etc. Thus, by studying the stability of the fixed point of

g̃p(x), one can find an infinity of mode-locked states which are universally located. Although

these are not all mode-locked regions (see Cvitanovic et al., 1985b), they are sufficient to yield

an estimate for the Hausdorff Dimension D∗ of the “holes” in the devil’s staircase at K = 1.

Generally, the Hausdorff Dimension of a self-similar fractal can be computed from the

equation (Hentschel and Procaccia, 1983):

∑
i

( si

s̄

)D
= 1 (7.55)

where s̄ is the length of a box that covers the whole set of points and si are the linear dimension

of smaller boxes that also provide a complete coverage. Equation (7.55) can be derived by
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noting that the number N of points of a fractal, which can be partitioned into boxes of size si
containing Ni points, can be written as

N = ∑
i

Ni . (7.56)

Dividing this by N and using (Ni/N) = (si/s̄)D (which generalizes the formula that the number

of points in a ordinary cube of linear dimension l grows like l3), one obtains eq. (7.55). The

values si and s̄, which are needed to compute D∗, can be read from Fig. 113. The range of

parameter values, for which g̃p(x) has a stable fixed point, follows from g̃p∗(x∗) = x∗ and

|g̃′p∗(x∗)| = 1. Since g̃p(x) is universal, so is p∗ and, therefore, D∗, which is computed from

the universal quantities p∗ and δ̃. If we estimate p∗ crudely by p∗ = 1/2π [which is just the

width of the first Ω step in the circle map, see eq. (7.17)], we obtain from eq. (7.55) and

Fig. (113) the value D∗ ∼= 0.92 which is less than 10% off the numerical result D∗ = 0.87

found by Jensen et al. (1983b). More accurate theoretical values for D∗ can be obtained by

considering better approximations to g̃p(x) and p∗ (see Cvitanovic et al., 1985b).

7.3 Experiments and Circle Maps

There exists a large variety of real systems (see below) whose dynamical behavior can be

modeled by circle maps. Usually an analysis to detect circle-map behavior proceeds as fol-

lows:

– The power spectrum of the (Fourier transformed) measured signal shows two or three

incommensurate frequencies before the onset of broadband noise. This indicates a tran-

sition from quasiperiodicity to chaos.

– A reconstruction of the trajectory in phase space, from the measurement of a single vari-

able, shows the destruction of a torus in favour of a strange attractor. By choosing a

proper plane in phase space, the torus section appears (before the transition to chaos) as

a closed curve which can be parametrized by θn. A plot of θn+1 versus θn reveals the

existence (or nonexistence) of a circle map θn+1 = f (θn) with f (θ+1) = f (θ)+1.

• An analysis of the time series of the measured angles θn as a function of the exper-

imental control of parameters reveals universal properties near the transition such

as:

• Devil’s staircase for the mode-locking intervals which is ordered by the Farey tree.

• Hausdorff dimension D0 = 0.87 for the unlocked intervals at the critical line which

corresponds to K = 1 in the circle map.

• Nontrivial scaling (α̃ = −1.289) near the golden mean winding number.

In the following examples, we will show how this program actually works.
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7.3.1 Driven Pendulum

One of the simplest physical systems whose dynamical description has been reduced to a

circle map (Jensen et al., 1983a, 1984) is a periodically driven pendulum with an additional

constant external torque B which is described by the differential equation:

θ̈+ γθ̇+ sinθ = Acos(ωt)+B (7.57)

Naive discretization of the time derivative in eq. (7.57) yields for θn = θ(t = (2π/ω) ·n):

θn1+ −2θn +θn +(1−b)(θn −θn−1)+K sinθn = (1−b)Ω (7.58)

where

(1−b) = γ
2π
ω

; Ω =
2π
ω

(A+B)/γ ; K =
2π
ω

.

This is, for rn = θn −θn−1 +Ω, equivalent to the dissipative circle map:

θn+1 = θn +Ω−K sinθn +brn (7.59a)

rn+1 = brn −K sinθn . (7.59b)

Equations (7.58–7.59) make it plausible that the pendulum has something to do with the cir-

cle map, but they do not, of course, establish a rigorous connection. A numerical proof has

been given by Jensen et al. (1983a, 1984) who solved eq. (7.57) by using a computer. Fig-

ure 114 shows that subsequent values of the angles θn = θ(t = (2π/ω)n); n = 0, 1, 2 . . .
taken at integer multiples of the driving period 2π/ω yield, for special parameter values, a

one-dimensional circle map.

Let us briefly comment on how mode locking shows up in the solutions of eq. (7.57).

Mode locking implies:

θ(t0 +qT )−θ(t0) = 2π · p (7.60)

where T = 2π/ω. This yields

〈θ̇〉 ≡ 1

qT

t0+qTZ

t0

dt θ̇ =
p
q
·ω (7.61)

i. e., the mode locking state of the pendulum is characterized by the fact that its averaged

angular velocity 〈θ̇〉 is a rational multiple of the external driving frequency ω.

Furthermore, the universal Hausdorff dimension D = 0.87 of the Cantor set derived from

the space between mode-locked plateaus has also been measured directly in an electronic

simulation of a driven pendulum by Yeh et al. (1984). They evaluated the following quantities:

S(l) = total length of all mode-locking steps larger than l

[1−S(l)]/l = N(l) = number of intervals of size l needed to cover the unlocked holes.

From N(l) they obtained, via liml→0 N(l) ∝ l−D, the Hausdorff dimension D0 shown in Fig-

ure 115.
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Figure 114: Poincaré maps obtained by numerical integration of the pendulum equation (7.57), θn =
θ(t = (2π/ω)n). 25 000 consecutive points have been plotted; the first 1 000 points have been omitted.

Parameters: A = 1.0, ω = 1.76. a) γ = 1.576, Ω = 1.4, the function f (θn) increases monotonically,

and the inset is a magnification emphasizing the one dimensional character of the map. b) γ = 1.253,

Ω = 1.2, the map develops a cubic inflection point, indicating the transition to chaos. The inset shows

an enlargement around the inflection point. c) γ = 1.081, Ω = 1.094, the map develops a local minimum

and wiggles (insets) indicating chaotic behavior. (After Jensen et al., 1984.)

Figure 115: Plots of log{[1 − S(r)]/r)} versus log(1/r), the slopes give the fractal dimension D0.

a) ω = 2.9, A = 1.06, 1/8 < B < 1/5 yields D0 = 0.91 based on 91 steps. b) ω = 1.58, A = 0.63,

1/5 < B < 1/3 yields D0 = 0.92 based on 45 steps. (After Yeh et al., 1984.)
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Let us also call attention to the colored plates, XVI and XVII, at the beginning of this

book which show the parameter dependence of the largest Liapunov exponents of a driven

pendulum and the corresponding quantity for the circle map. One sees how, in both cases, the

Arnold tongues develop and finally merge together as the nonlinearity parameter is increased.

Since eq. (7.57) also describes externally driven Josephson junctions and charge-density

waves under the influence of a dc and ac electric field (Jensen et al., 1984), one expects that

the dynamical behavior of these systems can also be modeled by one-dimensional circle maps.

This has indeed been partly confirmed experimentally (see References to this section).

7.3.2 Electrical Conductivity in Barium Sodium Niobate
Another fine example, where the circle map and the devil’s staircase (associated to mode

locking) have been observed experimentally, is the Barium Sodium Niobate crystal that we

already described on page 132 (Martin and Martienssen, 1986). The voltage across the crystal

displays, under the influence of a constant dc current, spontaneous oscillations that can be

modulated by an additional ac current as shown in Fig. 116.

Figure 116: a) BSN crystal in humidified oxygen atmosphere at a temperature of 535 ◦C with an ac

current density jac superimposed onto a constant dc current density jdc. Also indicated are the “domains”

shown in plate V at the beginning of this book. b) Poincaré map constructed from the measured voltage

signal. c) and d): the circle map (c) constructed from the measured voltage (a) becomes nonlinear (d) if

the dc current density is increased. e) Mode-locked states, measured by varying the driving frequency,

display a devil’s-staircase behavior near the transition to chaos. (After Martin and Martienssen, 1986.)
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Figure 117: Influence of periodic stimulation as a function of the interstimulus interval ts: a) Stable

phase-locked pattern (i) 2:1 ts = 210 ms; (ii) 1:1 ts = 240 ms; (iii) 2:3 ts = 600 ms. b) Irregular dynamics

displaying the Wenckebach phenomenon, ts = 280 ms. (After Guevara et al., 1981; copyright 1981 by

the AAAS.)

Figure 118: Time course of the transmembrane electrical potential from an aggregate of embryonic

heart cells. Left: Spontaneous pulses. Right: After administration of a brief depolarizing stimulus (off-

scale response) which occurs 8 ms after the action potential upstroke. The graph sharply rises, and the

spontaneous-state period τ is shifted to a new value T . (From Guevara et al., 1981; copyright 1981 by

the AAAS.)

7.3.3 Dynamics of Cardiac Cells
It has been found by M. R. Guevara, L. Glass, and A. Shrier (1981) that circle maps are also

relevant for explaining the dynamics of cardiac cells. Figure 117 shows the temporal behavior

of the transmembrane electric potential from an aggregate of embryonic chick heart cells,

which beat spontaneously. If the system is periodically stimulated via a current pulse through

a microelectrode, the nature of the response depends on the interstimulus interval. The main

idea is to reduce this response to a single stimulus by constructing an appropriate circle map.

Figure 118 shows that the influence of a single pulse changes the period of the spontaneous

beats from τ to T . The assumption is now that their ratio T/τ depends only on the phase shift

θ = δ/τ of the stimulus with respect to the natural signal, that is,

T/τ = g(θ) . (7.62)

This assumption is supported by the experimentally determined function g(θ) displayed in

Fig. 119.

Next we consider a train of stimuli separated by a uniform time interval ts. Consultation

of Fig. 120 leads to the relation

δi+1 +Ti = δi + ts . (7.63)
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Figure 119: The function g(θ) defined in eq. (7.62), as experimentally determined for embryonic chick

heart cell aggregates (from Guevara et al., 1981; copyright 1981 by the AAAS).

Figure 120: Graphical demonstration of the relation Ti +δi+1 = δi + ts for Ti < δi + ts < Ti + τ.

Figure 121: Experimentally determined circle map that describes the dynamics of beating chicken heart

cell aggregates. This graph is obtained by using g(θ) from Fig. 119 in eq. (7.64). (From Guevara et al.,
1981; copyright 1981 by the AAAS.)

Division by τ, and assuming that the influence of a single stimulus decays sufficiently fast

such that eq. (7.62) holds for every i, yields the phase relationship:

θi+1 = θi +Ω−g(θi) ; Ω ≡ ts/τ (7.64)

which has the form of a circle map (see Fig. 121) where the rate of rotation Ω = ts/τ is set by

the interstimulus distance ts.
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Figure 122: Experimentally determined and theoretically computed responses to periodic stimulation

of period ts with the same pulse durations and amplitudes as in Fig. 117a). a) Experimentally deter-

mined dynamics: 2:1, 1:1, 2:3 mode-locking regions and three zones α, β, γ of complicated dynamics.

b) Theoretically predicted dynamics obtained via eq. (7.64). (After Guevara et al., 1981; copyright 1981

AAAS.)

Figure 123: Human electrocardiogram showing one 3:2 Wenckebach cycle followed by five 2:1 cycles

(after Glass et al., 1981).

Using g(θ) from Fig. 119, eq. (7.64) has been used to successfully predict the response to

a train of stimuli as a function of ts (see Fig. 122). The so-called Wenckebach phenomenon in

Fig. 117c (i. e., the gradual prolongation of the time between a stimulus and the subsequent ac-

tion potential until an active potential is skipped either irregularly or in a phase-locked pattern)

occurs also in human electrocardiograms (Fig. 123). There the external stimulus is replaced by

the stimulus provided by the sinoatrial node. It appears, therefore, from the results in Fig. 122

that circle maps provide a promising tool for the investigation of human cardiac dysrhythmia.

7.3.4 Forced Rayleigh–Bénard Experiment

Another example where the global metric properties of the attractor which occurs at the tran-

sition from quasiperiodicity to chaos at the golden mean winding number have been measured

in some detail is a forced Rayleigh–Bénard experiment by Jensen et al. (1985). One uses

mercury as a fluid in a small Rayleigh–Bénard cell that supports two convection rolls. The

Rayleigh number is chosen in a range where the convection is oscillatory in time. A second

frequency is introduced by passing an ac current through the fluid whose amplitude and fre-

quency serve as control parameters. Figure 124 a shows the reconstructed experimental orbit

obtained at the point of the breakdown of the torus, which has a golden mean winding number.

The dots in Fig. 124 b are the experimental points derived from the data shown in Fig. 124 a,

and the full line is the f (α) curve obtained from the time series of the circle map at K = 1,

w∗ = (
√

5−1)/2.
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Figure 124: a) The experiment attractor of a forced Rayleigh–Bénard system in two dimensions.

2500 points are plotted. Note the variation in the density of points on the attractor. Part of this vari-

ation is, however, due to the projection of the attractor onto the plane. The attractor is nonintersecting in

three dimensions, in which it was embedded for the numerical analysis. In the absence of experimental

noise, the points should fall on a single curve. The smearing of the observed data set is mostly due to the

slow drift in the experimental system during the run over about 2 hours. b) full line: f (α) curve obtained

from the iterates of the circle map eq. (7.13) at K = 1 and the golden mean winding number; dots: f (α)
values obtained from the experimental data in a). (After Jensen et al., 1985.)

The agreement between both sets of data is rather obvious and leads to the conclusion that

the experimental data in Fig. 124 a, which look not at all like a smooth circle, and the iterates

of the circle map (7.13) belong, from the metric point of view, to the same universality class.

We note that this experiment yields also via D−∞ the first measurement of the nontrivial

scaling parameter α̃ of the circle map. D−∞ has, at the transition from quasiperiodicity to

chaos, the value

D−∞ = − logw∗

log α̃
= 1.8980 . . . (7.65)

which is obtained for circle maps, in analogy to eq. (6.81), by replacing the ratio in the number

of subsequent cycles (which is 2 for period doubling) by Fn+1/Fn = 1/w∗ and using α̃ instead

of α.

7.4 Routes to Chaos
Table 12 summarizes the three different routes to chaos which we have discussed up to now.

But this table should only be considered as a first approximation to the true variety of transition

scenarios. (Let us only recall that we have already discussed three types of intermittency).

While it is natural to focus on common features, it would be premature to make sweeping

generalizations about routes to chaos, and it should be emphasized that the range of dynamical

behavior observed is quite large.

This situation arises, on the one hand, because experiments on hydrodynamic systems

(Bénard and Taylor instability) depend sensitively on the aspect ratios (i. e., the ratio of the

cell dimensions in the Bénard experiment, and the ratio of the width between the inner and

outer cylinder and the height of the cylinder in the Taylor experiment) such that, for a given set

of control parameters, one can have more than one stable state. On the other hand, new types

of transitions are possible when one has more than one control parameter (Swinney, 1983).

Let us finally present a transition to chaos not mentioned above.
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Table 12: Summary of three main routes to chaos.

Feigenbaum Manneville–Pomeau Ruelle–Takens–Newhouse

Pitchfork bifurcation Tangent bifurcation Hopf bifurcation

Bifurcation diagrams

Main phenomena
Infinite cascade of period

doublings with universal

scaling parameters

Intermittent transition to

chaos. The laminar phase

has a duration (r− rc)−1/2

After three bifurcations,

strange attractor “probable”.

Experiments
Bénard experiment Bénard experiment Bénard experiment

Taylor experiment Josephson junction Taylor experiment

Driven nonlinear oscillator Chemical reactions Nonlin. conductors

Chemical reactions Lasers

Optical instabilities

7.4.1 Crises
Crises are collisions between a chaotic attractor and a coexisting unstable fixed point or peri-

odic orbit. Grebogi, Ott and York (1983b) were the first to observe that such collisions lead to

sudden changes in the chaotic attractor. A simple example occurs in the period-three window

of the logistic map in Fig. 51, where three stable and three unstable fixed points are generated

by tangent bifurcations. Figure 125 shows that the unstable fixed points, having entered the

chaotic regions, immediately repel the trajectory out of the sub-band in such a way that the

regions between the bands are also filled chaotically. Similar crises also occur in two- and

three-dimensional maps and in three-dimensional flows.

As the discontinuity is approached, one often finds transient chaos, i. e., seemingly chaotic

orbits which decay exponentially towards periodic orbits with a decay rate that follows a

power law of the distance (in parameter space) from the discontinuity. It has been conjectured

by Grebogi et al. (1983b) that “almost all” sudden changes in chaotic attractors are due to

crises.
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Figure 125: Detail of the bifurcation diagram in the region of the period-three tangent bifurcation. The

dashed curves denote the unstable period-three orbit created at the tangent bifurcation; the crises occur

at r∗ (schematic, after Grebogi et al., 1983 b).



8 Regular and Irregular Motion in Conservative Systems

Up to now we have exclusively studied dissipative systems for which volume elements in

phase space shrink with increasing time. Although there are many physical realizations of dis-

sipative systems, which range from the onset of turbulence in fluids to electronic circuits, there

exists another large class of physical systems for which chaotic motion has been found (by

Poincaré, 1982) before the discovery of the strange attractor for dissipative systems (Lorenz,

1963): These are the conservative systems which encompass all dynamical systems of classi-

cal mechanics.

Because there already exist excellent review articles by Berry (1978) and Helleman (1980)

and a recent book by Lichtenberg and Liebermann (1982) on this subject, our presentation will

be rather brief (as compared with six chapters on dissipative systems).

In the following, conservative systems are considered to be either systems that follow

Hamilton’s equations of motion,

�̇q =
∂H
∂�p

, �̇p = −∂H
∂�q

(8.1)

and for which, volume elements in phase space are conserved because of Liouville’s theorem,

div�j = div(�̇q, �̇p) = ∑
i

(
∂2H
∂qi pi

− ∂2H
∂piqi

)
= 0 (8.2)

or, in a more general sense, volume preserving, discrete maps.

The fact that volumes do not change in conservative systems implies immediately that

they display (in contrast to dissipative systems) no attracting regions in phase space, i. e., no

attracting fixed points, no attracting limit cycles, and no strange attractors (see Fig. 126 and

Appendix G). Nevertheless, in conservative systems one also finds chaos with a positive K-

entropy, i. e., there are “strange” or “chaotic” regions in phase space, but they are not attractive

and can be densely interweaved with regular regions.

We now present some motivation for the study of conservative systems and then give an

overview of the rest of this chapter.

For some time, attention has shifted from the calculation of individual orbits to consider-

ation of the qualitative properties of families of orbits, as shown in Fig. 127. Today, we are

mainly interested in the long-time behavior of conservative systems. There are several reasons

for this:

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Figure 126: a) In dissipative systems trajectories are attracted to a fixed point, and the volume shrinks.

b) In conservative systems the points rotate around an elliptic fixed point, and the volume is conserved.

Figure 127: Problems of increasing globality in classical mechanics. I. Step by step integration of

the equations of motion. II. a) Local stability; b) local instability. III. Topological nature of complete

trajectories: a) periodic motion on a torus; b) motion on a torus with irrational frequency ratios. IV.

Types of flow in phase space: a) non mixing; b) mixing. (After Balescu, 1975.)

a) We should, for example, be able to answer the question whether the solar systems and

the galaxy are stable under mutual perturbations of their constituents, or whether they

will eventually collapse or disperse to infinity. The long-time limit involved here is of

the order of the age of the universe. But “long” times are much shorter in the storage

rings used for high-energy physics or in fusion experiments, where the particles make

many revolutions in fractions of a second. In such systems irregular or chaotic motion

is to be avoided at all costs, and this is only possible if the long-time behavior of these

(conservative) systems is known.

b) Another point concerns the foundations of statistical mechanics, where no attempt is

made to follow the detailed motion of all constituents of a complicated many-body prob-

lem. Instead, the ergodic hypothesis is made, i. e., one assumes that in the course of time

the system explores the entire region of phase space allowed (the energy surface) and

eventually covers this region uniformly. Time averages can then be replaced by simpler

phase-space averages. But is the ergodic hypothesis correct? To answer this question,

the long-time behavior of Hamiltonian systems with N degrees of freedom in the limit

N → ∞ (and N/volume = constant) must be known.
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In the first part of this section, we consider the classical mechanics of simple Hamiltonian

systems with a few degrees of freedom and show that in most cases their motion in phase

space is extremely complicated and neither regular nor simply ergodic. In other words, it

will be shown that the regular motion treated in most textbooks on classical mechanics is an

exception and rather uncommon.

In the second part, we discuss some simple model systems which behave ergodically al-

though they have only a few degrees of freedom. Finally, a classification scheme for chaotic

behavior in conservative systems is described.

8.1 Coexistence of Regular and Irregular Motion
In the following, we investigate the stability of the trajectories of a nonintegrable Hamiltonian

system in the long-time limit. For this purpose, we start from an integrable Hamiltonian and

consider the effect of a small nonintegrable perturbation.

8.1.1 Integrable Systems
A Hamiltonian H ′

0(�p,�q) is called integrable if one can find a canonical transformation S(�q, �J)
to new variables�θ, �J:

�q, �p =
∂S(�q, �J)

∂�q
↔ �J, �θ =

∂S(�q, �J)
∂�J

(8.3)

such that in the new coordinates the Hamiltonian depends only on the new momenta �J, i. e.,

S(�q, �J) is a solution of the Hamilton–Jacobi equation (see, e. g., Arnold, 1978):

H ′
0 =

[
�q,

∂S(�q, �J)
∂�q

]
= H0(�J) (8.4)

and the equations of motion in the action-angle variables �J and�θ

�̇J = −∂H0

∂�θ
= 0 (8.5)

�̇θ = −∂H0

∂�J
=�ω(�J) (8.6)

can easily be integrated to

�J = const.

�θ =�ω · t +�δ . (8.7)

One of the simplest examples for an integrable system is a harmonic oscillator that has

the Hamiltonian

H ′
0 =

1

2
(p2 +ω2q2) . (8.8)
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The Hamilton–Jacobi equation (8.4) then becomes

1

2

[(
∂S
∂q

)2

+ω2q2

]
= H0(J) (8.9)

→ ∂S
∂q

=
√

2H0 −ω2q2 (8.10)

and J is determined by

J =
1

2π

I ∂S
∂q

dq =
H0(J)

ω
(8.11)

→ H0(J) = Jω (8.12)

where the integral has been taken over one cycle of q.

The equations of motion in the action-angle variables are

J̇ =
∂H0

∂θ
= 0 → J = const. (8.13a)

θ̇ =
∂H0

∂J
= ω → θ = ωt +δ . (8.13b)

The motion in the variables p and q is obtained from

θ =
∂S
∂J

=
∂
∂J

Z
dq

√
2H0 −ω2q2 = arccos

(
q
√

ω
2J

)
(8.14)

→ q =

√
2J
ω

cosθ (8.15)

and

p =
∂S
∂q

= −
√

2Jωsinθ . (8.16)

The corresponding trajectory in phase space is an ellipse that becomes a circle with polar

coordinates
√

J and θ after proper rescaling. Comparing eqs. (8.7) and (8.13) one sees that

the equations of motion (in action-angle variables) of any integrable system with n degrees of

freedom are practically the same as those of a set of n uncoupled harmonic oscillators. The

only difference is that in a general integrable system the frequencies ωi are still functions of

the actions Ji whereas they are independent of Ji for harmonic oscillators. The existence of n
integrals of the motion (J1, . . . Jn) confines the trajectory in the 2n-dimensional phase space

(q1 . . . qn, p1 . . . pn) of an integrable system to an n-dimensional manifold which has – in

analogy to a circle for a harmonic oscillator with n = 1 and a torus for two harmonic oscillators

with n = 2 – the topology of an n-torus.

In the following, we will confine ourselves to n = 2, but most results can be extended

to more degrees of freedom. Figure 128 shows the motion of an integrable system with two

degrees of freedom (i. e., with a four-dimensional phase space) on a torus. Closed orbits occur

only if

n∆θ2 = 2π ·m , i. e.,
ω2

ω1
=

m
n

= rational ; m, n = 1, 2, 3 . . . (8.17)
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Figure 128: Torus in phase space.

For irrational frequency ratios, the orbit never repeats itself but approaches every point on

the two-dimensional manifold infinitesimally close in the course of time. In other words, the

motion is ergodic on the torus. (Note that the dimension 2 of the torus is different from the

dimension 3 of the manifold defined by H(�p,�q) = E = const.)

8.1.2 Perturbation Theory and Vanishing Denominators

Let us now add to H0 a perturbation εH1 and see how it affects the previously regular motion;

that is, we consider the Hamiltonian

H(�J, �θ) = H0(�J)+ εH1(�J, �θ) (8.18)

(where we expressed H1 in the action-angle variables �J = (J1, J2),�θ = (θ1, θ2) of the unper-

turbed system), and we try to solve the Hamilton–Jacobi equation

H
[

∂S

∂�θ
, �θ

]
= H00(�J′) . (8.19)

Writing the generating function S as

S(�J′, �θ) =�θ · �J′ + εS1(�J′, �θ) (8.20)

and expanding M to order ε, we obtain

H0(�J′)+ ε
∂H0

∂�J
· ∂S1(�J′, �θ)

∂�θ
+ εH1(�j′, �θ)+O(ε2) = H00(�J′) (8.21)

S1 is determined by requiring that the left-hand side in (8.21) is independent of θ, i. e.,

�ω · ∂S1(�J′, �θ)

∂�θ
= −H1(�J′, �θ) (8.22)
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where �ω = ∂H0/∂�J′ are the frequencies of the unperturbed system. Equation (8.21) can be

solved by expanding S1 and H1 (both being periodic in the components of �θ) into Fourier

series:

S1(�J′, �θ) = ∑
k �=0

S1,�K(�J′) ei�K·�θ (8.23a)

H1(�J′, �θ) = ∑
k �=0

H1,�K(�J′) ei�K·�θ (8.23b)

with �K = 2π(n1, n2); n1, n2 integers.

Using both expressions in (8.22) and comparing equal Fourier components, finally yields

S(�J′, �θ) =�θ · �J′ + iε ∑
�K �=0

H1,�K(�J′)
�K ·ω(�J′)

ei�K·�θ . (8.24)

Equation (8.24) shows that S diverges for

ω1n1 +ω2n2 = 0 , i. e.,
ω1

ω2
= −n2

n1
= rational . (8.25)

This is the famous problem of vanishing denominators. It shows that the system cannot be

integrated by perturbation theory for rational frequency ratios because of strong resonances,

and it seems that it can at most be integrated for irrational values of ω1/ω2 if the perturbation

series in ε converges.

In the following we consider two problems:

– What happens if an integrable system with ω1/ω2 close to an irrational value is perturbed

by εH1?

– What happens under a perturbation εH1 to the tori of a system for which ω1/ω2 has a

rational value?

8.1.3 Stable Tori and KAM Theorem
The first question is answered by a celebrated theorem of Kolmogorov (1954), Arnold (1963),

and Moser (1967), the so-called KAM theorem which we quote here for n = 2, without proof.

(The theorem holds for an arbitrary number n of degrees of freedom and proofs can be found

in the quoted references.) The theorem states that if, among other technical conditions, the

Jacobian of the frequencies is nonzero, i. e.,∣∣∣∣∂ωi

∂Jj

∣∣∣∣ �= 0 (8.26)

then those tori, whose frequency ratio ω2/Ω1 is sufficiently irrational such that∣∣∣∣ω1

ω2
− m

s

∣∣∣∣ >
k(ε)
s2.5

(k(ε → 0) → 0) (8.27)

holds (m and s are mutually prime integers), are stable under the perturbation εH1 in the limit

ε � 1.
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Figure 129: Intervals of lengths k(ε)/s2.5 contributing to L.

It is important to note that the set of frequency ratios, for which (8.27) holds and for which

the motion is therefore regular, even after the perturbation, has a nonzero measure. This

follows because the total length L of all intervals in 0 ≤ ω1/ω2 ≤ 1, for which (8.27) does not
hold can be estimated as

L <
∞

∑
s=1

k(ε)
s2.5

· s = k(ε)
∞

∑
s=1

s−1.5 = const. · k(ε) → 0 for ε → 0 . (8.28)

Here k(ε)/s2.5 is the length of an interval around the rational m/s where (8.27) does not apply,

and s is the number of m values with m/s ≤ 1 (see Fig. 129).

Equation (8.28) means that the set of frequency ratios, for which (under a perturbation by

εH1) the original motion on the torus is only slightly disturbed into the motion of a deformed

torus, has the finite measure 1−const. ·k(ε). But, on the ω1/ω2 axis, this set has holes around

every rational ω1/ω2.

For large enough ε the perturbation εH1 destroys all tori. The last KAM torus which will

be destroyed is the one for which the frequency ratio is the “worst irrational number“ ω1/ω2 =
(
√

5− 1)/2 (see Section 7.2). The destruction of this KAM torus shows some similarity to

the Ruelle–Takens route to chaos in dissipative systems. It has indeed been found by Shenker

and Kadanoff (1982) and McKay (1983) who studied the conservative version (b = 1) of the

map (7.12) of the annulus onto itself that the decay of the last KAM trajectory shows scaling

behavior and universal features.

8.1.4 Unstable Tori and Poincaré–Birkhoff Theorem
Let us now discuss the situation when ω1/ω2 is rational. We will show that in this case the

original torus decomposes into smaller and smaller tori. Some of these newly created tori

are again stable according to the KAM theorem. But, between the stable tori, the motion is

completely irregular.

It is convenient to visualize what happens (to H0 under a perturbation εH1) in a Poincaré

map that is, in general, defined by the intersection points of the orbit with a hyperplane in

phase space. For the case in hand, we consider the intersections with the q1, p1 plane S shown

in Fig. 130, which define an area-preserving two-dimensional map

ri+1 = ri ; ri = r
(

t = i · 2π
ω2

)
(8.29)

θi+1 = θi +2π
ω1

ω2

since the point in phase space hits S after a period 2π/ω2 during which θ changes by 2πω1/ω2.
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Figure 130: Poincaré map of orbits on the torus in the plane (q1, p1).

The frequency ratio ω1/ω2 depends only on the radius r because

ω1

ω2
=

∂H0(J1, J2)
∂J1

∂H0(J1, J2)
∂J2

= f (J1, J2)

H0(J1, J2) = E → J2 = J2(J1)

J1 =
1

2π

I
p1 dq1 =

r2

2




ω1

ω2
= a(r) (8.30)

Equation (8.30) can therefore be written as

r′ = r
θ′ = θ+2πa(r)

}
≡ T

(
r
θ

)
. (8.31)

This is Moser’s twist map (Moser, 1973).

We note that for a rational frequency ratio r/s = a(r0) every point on the circle r0, θ0 is a

fixed point of T s since

T s
(

r0

θ0

)
=

{
r0

θ0 +2π
r
s
· s = θ0 +2πr .

(8.32)

If we now perturb H0 by εH1, the twist map becomes

ri+1 = ri + ε f (ri, θi)
θi+1 = θi +2πa(ri)+ εg(ri, θi)

}
≡ Tε

(
ri

θi

)
(8.33)

where f and g depend on H1. As a consequence of Liouville’s theorem (which also holds for

the Hamiltonian H0 + εH1), the map Tε is area-preserving.

What can we say now about the fixed points of Tε? Consider two circles C+ and C−
between which lies the circle C on which a = r/s. On C+, a > s and on C−, a < r/s. T s

therefore maps C+ anti-clockwise, C− clockwise, and C not at all (see Fig. 131).

Under the perturbed map T s
ε these relative twists are preserved if ε is small enough. Thus,

on any radius from 0 there must be one point whose angular coordinate is unchanged by T s
ε .

These radially mapped points make up a curve Rε close to C.



8.1 Coexistence of Regular and Irregular Motion 169

Figure 131: Action of T s and T s
ε on C+ and C−.

Figure 132 shows the curve Rε formed by these points, and its image T s
ε (Rε) which cuts

Rε in an even number of points because the area enclosed by Rε and T s
ε (Rε) must be the same.

The points common to Rε and T s
ε (Rε) are the fixed points of T s

ε and we can see in Fig. 133

that an alternating sequence of elliptic and hyperbolic fixed points emerges. This means

that the original torus with rational frequency ratio is not completely destroyed under a per-

turbation, but there remains an even number of fixed points. This is the “Poincaré–Birkhoff

theorem” (Birkhoff, 1935).

Figure 132: The curve of radially mapped points Rε, and its image T s
ε (Rε).

Figure 133: Alternating hyperbolic and elliptic fixed points of T s
ε .
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Figure 134: Tori with rational frequency ratio decay into smaller and smaller tori, and the pattern of

newly created elliptic and hyperbolic fixed points shows self-similarity.

Let us first consider the elliptic fixed points which are surrounded by rotating points (see

Figs. 126, 133). The corresponding orbits are the Poincaré sections of smaller tori for which

all our arguments can be repeated; that is, some of these smaller tori are again stable according

to the KAM theorem and other tori decompose into smaller ones according to the Poincaré–

Birkhoff theorem. This gives rise to the self-similar structure in Fig. 134.

8.1.5 Homoclinic Points and Chaos
Which role do the hyperbolic fixed points play? Fig. 135 shows that, near a hyperbolic fixed

point H, the motion becomes unstable, and orbits are driven away from it, in contrast to the

stable rotational motion around an elliptic fixed point.

The stable (Ws) and unstable (Wu) lines which lead to or emanate from H behave highly

irregularly since:

a) They cannot intersect themselves (otherwise the motion on a trajectory in phase space

would not be unique for a given set of initial conditions),

b) but Wu can intersect Ws at a so-called homoclinic point (see Fig. 136).

Because the map T s
ε is continuous, and a homoclinic point is not a fixed point, repeated

application of T s
ε produces new homoclinic points. Furthermore, T s

ε must be applied an infinite

number of times to approach the hyperbolic fixed point H along Ws (Appendix G). Between

each homoclinic point H0 and H1 there is, therefore, an infinite number of other homoclinic

points; that is, the curves Wu and Ws form an extremely complex network.

Figure 135: Hyperbolic fixed point H with stable (Ws) and unstable (Wu) lines.
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Figure 136: Homoclinic points H0 are the intersections of Wu and Ws.

Figure 137: Regular and irregular motion in the phase space of a nonintegrable system.

Summarizing: If we disturb the regular orbits of an integrable system on a torus in phase

space by adding a nonintegrable perturbation, then, depending on the different initial condi-

tions [different �J, �δ in (7.7) imply different ω1/ω2, since �ω = �ω(�J)], regular or completely

irregular motion results. Although the measure of initial conditions, which lead to regular

motion, is nonzero due to the KAM theorem, for every rational frequency ratio (which are

densely distributed along the real axis) one obtains smaller and smaller stable tori and irreg-

ular orbits due to the hyperbolic fixed points. Thus, an arbitrarily small change in the initial

conditions leads to a completely different long-time behavior; and for the motion in phase

space, one obtains the complicated pattern in Fig. 137. It shows that in conservative systems

regular and irregular motion are densely interweaved.

Finally, we also mention that for area-preserving maps one finds “period doubling”, i. e., a

successive creation of new pairs of elliptic fixed points (Greene et al., 1981). We shall discuss

this scenario in Appendix G and show that the corresponding Feigenbaum constants are larger

than in the dissipative case.

8.1.6 Arnold Diffusion
So far in this section we have only dealt with systems having two degrees of freedom for which

the two-dimensional tori stratify the three-dimensional energy surface SE . The irregular orbits

which traverse regions where rational tori have been destroyed are therefore trapped between

irrational tori. They can only explore a region of the energy surface which, while three-

dimensional, is nevertheless restricted and, in particular, disconnected from other irregular

regions, as shown in Fig. 138.
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Figure 138: Trapping of irregular orbits between stable KAM tori for a system with two degrees of

freedom.

Figure 139: Arnold diffusion for Hamiltonian systems with more than two degrees of freedom (schemat-

ically).

For more degrees of freedom, however, the tori do not stratify SE (e. g., for three degrees

of freedom the tori are three-dimensional, and the energy surface is five-dimensional). The

gaps then form one single connected region. This offers the possibility of so-called “Arnold

diffusion“ of irregular trajectories (Arnold, 1964). The existence of invariant tori for perturbed

motion is, therefore, not a guarantee of stability of motion for systems with more than two

degrees of freedom because irregular wandering orbits that are not trapped exist arbitrarily

close to the tori (cf. Fig. 139).

8.1.7 Examples of Classical Chaos
Finally, we present some experimental evidence for the coexistence of regular and irregular

motion. Figure 140 shows the Poincaré map in S for the nonintegrable Hénon–Heiles system,

H =
1

2
p2

1 +q2
1 + p2

2 +q2
2 +

[
q2

1q2 − q3
2

3

]
(8.34)

which consists of an integrable pair of harmonic oscillators coupled by nonintegrable cubic

terms (Hénon, Heiles, 1964). The left-hand column shows the surfaces of section generated

by eighth-order perturbation theory for various energies (after Gustavson, 1966). The right-

hand side are the computed intersections of the trajectory with S. For E = 1/24 and E =
1/12, the mapping plane is covered with the intersections of (somewhat deformed) tori which

signal regular motion and which are identical with those given by perturbation theory. Above

E = 1/9, however, most, but not all, tori are destroyed, and all the dots which appear to be
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Figure 140: Poincaré maps for the Hénon–Heiles system (after Berry, 1978).

Figure 141: Perturbation of an asteroid’s motion by Jupiter.

random are generated by one trajectory as it crosses S. The figure for E = 1/8 clearly shows

the coexistence of regular and irregular motion. As a further example, we consider the motion

of an asteroid around the sun, perturbed by the motion of Jupiter, as shown in Fig. 141.

This three-body problem is nonintegrable, and according to eqs. (8.24–8.25) we expect

that the asteroid motion becomes unstable if the ratio of the unperturbed frequency of the
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Figure 142: Fraction f of asteroids in the belt between Mars and Jupiter as a function of ω/ω j (after

Berry, 1978).

asteroid motion ω and the angular frequency of Jupiter ω j becomes rational. Figure 142

illustrates that, in fact, gaps occur in the asteroid distribution for rational ω/ω j. On the other

hand, the existence of stable asteroid orbits ( f �= 0) can be considered as a confirmation of the

KAM theorem.

A second sort of solar-system gap occurs in the rings of Saturn. In this system Saturn is the

attractor; the perturber is any of the inner satellites, and the rest masses are the ring particles.

One major resonance occurs within the “Cassini division” shown on Plate VII at the beginning

of the book.

8.2 Strongly Irregular Motion and Ergodicity
In the previous section, we linked the origin of irregular motion in Hamiltonian systems to

hyperbolic fixed points in the associated area-preserving maps. If we, therefore, want to con-

struct models for strongly irregular motion, it is natural to search for maps for which all fixed

points are hyperbolic.

8.2.1 Cat Map
One example of such a system is Arnold’s cat map on a torus which is defined by

xn+1 = xn + yn mod1

yn+1 = xn +2yn mod1

}
≡ T

(
xn

yn

)
(8.35)

This map is area-preserving because the Jacobian of T is unity, and it has the eigenvalues

λ1 = (3+
√

5)/2 > 1 and λ2 = λ−1
1 < 1 (8.36)

so that all fixed points of T n (n = 1, 2, 3 . . .) are hyperbolic. Any point on the torus for which

x0 and y0 are rational fractions is a fixed point of T n for some n (e. g., (0, 0) is a fixed point of

T , and (2/5, 1/5) and (3/5, 4/5) are fixed points of T 2, etc.), and these are the only fixed points

because T has integral coefficients. The action of the cat map is illustrated in Fig. 143. After

just one iteration the cat is wound around the torus in complicated filaments; its dissociation

arises from the hyperbolic nature of T which causes initially close points to map far apart.



8.2 Strongly Irregular Motion and Ergodicity 175

Figure 143: Action of the map T on a cat on a torus. The torus a) is transposed into the unit square of

b). T̂ is the map T without restriction to the torus. (After Arnold and Avez, 1968.)

Figure 144: Motion of Wu and Ws under the cat map.

The axes of stretch (Wu) and compression (Ws) from (0, 0) lie along irrational directions

and so wrap densely around the torus, never intersecting themselves but intersecting one an-

other infinitely often, as shown in Fig. 144.

Since any set of iterates [which starts from a point (x0, y0) with x0/y0 = irrational] eventu-

ally covers the torus, “time” averages over the iterates are equal to “space” averages over the

torus, and the motion generated by the cat map is ergodic.

However, the cat map has even a stronger property – mixing. In other words, the map

distorts any area element so strongly, that it is eventually spread over the whole torus, just as

a drop of ink (its volume corresponds to an area element in the cat map) is homogeneously

distributed throughout a glass of water after it has been stirred (see Fig. 145).
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Figure 145: a) Behavior of a volume element for nonmixing and for mixing transformations. b) Mixing

of a drop of ink in a glass of water. (After Arnold and Avez, 1968.)

8.2.2 Hierarchy of Classical Chaos

Table 13 gives an overview of the hierarchy of properties which indicates increasingly chaotic

motion.

The first entry in Table 13 contains the well-known Poincaré recurrence theorem for

Hamiltonian systems. It is simply a consequence of area-preserving motion in a finite re-

gion. We can draw an analogy to what happens if we take a walk in a snow-covered finite

square: eventually the area will be covered with footprints; and after some time, one is forced

to walk on one’s own prints (again and again).

Recurrence does not imply ergodicity because the allowed areas need not be connected

(there could be two squares). If the phase space is divided, the trajectory is confined to the

region in which it started and does not cover the whole phase space.

More formally, a map f is called mixing, if

lim
n→∞

ρ[ f n(A)∩B] = ρ(A)ρ(B) (8.37)

for every pair of measurable sets A and B. Here ρ is the invariant measure of f . We used the

abbreviation

ρ(A) ≡
Z

A
dx ρ(x) (8.38)

and assumed that the measure of the allowed phase space Γ, on which f acts, is normalized to

unity, i. e.,
R

Γ dx ρ(x) = 1.



8.2 Strongly Irregular Motion and Ergodicity 177

Table 13: Hierarchy of classical chaos.

Property Definition Example

Recurrent The trajectory returns to a given

neighborhood of a point an infinite

number of times

Any Hamiltonian system (or

area-preserving map) which maps a

finite region of phase space onto

itself

Ergodic Time averages can be replaced by

averages over phase space ↔ Zero is

a simple eigenvalue of the Liouville

operator L.

xn+1 = xn +bmod1 b = irrational

Mixing Correlation functions decay to zero

in the infinite time limit ↔ L has one

simple eigenvalue 0 and the rest of

the spectrum is continuous.

Cat map

K-system The map has a positive K-entropy,

i. e., close orbits separate

exponentially ↔ L has a Lebesque

spectrum with denumerably infinite

multiplicity.

Cat map

If A and B correspond to the same point, eq. (8.37) reduces to

lim
n→∞

Z
Γ

dx ρ(x) f n(x)x ≡ 〈xnx0〉 =
[Z

Γ
dx ρ(x)x

]2

= 〈x0〉2 (8.39)

i. e., mixing means that the autocorrelation function 〈(xn −〈x0〉)(x0 −〈x0〉)〉 = 〈xnx0〉−〈x0〉2

decays to zero and “the system relaxes to thermal equilibrium”. (The general proof can be

found in the book by Arnold and Avez (1968) who actually show that a system is mixing

if, and only if, limn→∞〈F∗[ f n(x)]G(x)〉 = 〈F∗(x)〉〈G(x)〉 for any square integrable complex-

valued functions F and G.)

Although ergodicity (of course) implies recurrence, it does not imply mixing. Consider,

for example, the map

xn+1 = xn +bmod1 ≡ f (xn) (8.40)

which shifts a point x0 on a unit circle by b.

The map is ergodic for irrational values of b, because then a given starting point x0 never

returns to itself, as it does for rational b = p/q, (p, q integers) after q steps, and the images of

x0 cover the circle uniformly. The Liapunov exponent for this map is

λ = lim
n→∞

1

n
log

∣∣∣∣ dxn

dx0

∣∣∣∣ = 0 (8.41)

i. e., (8.40) is an example that shows a) ergodicity without sensitive dependence on the initial

conditions, and b) ergodicity without mixing. The last statement follows because the overlap
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Figure 146: Translations on a circle show ergodicity but they are not mixing.

of the images f n(A) of a line element A with another (line) element B is either finite or zero

(according to the number of iterations) and never reaches a finite equilibrium value as required

by eq. (8.37) (see Fig. 146). (Note that for simplicity we have replaced in this example “area”

elements by “line” elements.)

Typical systems that show mixing are the cat map (Fig. 143) and the baker’s transforma-

tion (Fig. 70a). In both cases a given volume element becomes distorted into finer and finer

filaments that eventually cover the whole phase space uniformly. But, the rate at which volume

elements become stretched need not be exponential (as in the examples quoted above), i. e., a

system that shows mixing need not be a K-system. These examples show that the properties

in Table 13 indeed characterize increasingly chaotic motion.

We have also indicated in this table that the hierarchy of classical chaos is mirrored by

the spectrum of eigenvalues of the Liouville operator. Let us briefly explain this fundamen-

tal relation which allows a characterization of classical chaos without considering individual

trajectories.

The Liouville operator L determines the time evolution of the density ρ(�p, �q) in phase

space:

d

dt
ρ(�p, �q) = �̇q

∂ρ
∂g�̇q

+ �̇p
∂ρ
∂�̇p

= (8.42)

=
[

∂H
∂�p

∂
∂�q

− ∂H
∂�q

∂
∂�p

]
ρ ≡−iLρ (8.43)

→ ρ(t) = e−itLρ(0) . (8.44)

Here we used Hamiltons’s equations, and (8.43) defines L. It is useful to introduce the eigen-

values λ of L via

e−iLϕ(�x) = eiλϕ(�x) ; �x = (�p, �q) (8.45)

where ϕ(�x) is a complex, square integrable function in phase space. According to Table 13,

different degrees of classical chaos correspond to different spectra of λ (the arrows indicate

the direction of the statement). We explain this correspondence by two examples and refer to

the cited literature for the general proofs.
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First we consider two uncoupled harmonic oscillators whose Hamiltonian reads in action-

angle variables:

Hosc = ω1J1 +ω2J2 (8.46)

where ω1, ω2 are the oscillator frequencies. Equations (8.43–8.45) then become

−iLoscρ =
[

ω1
∂

∂θ1
+

∂
∂θ2

]
ρ (8.47)

e−iLosc ϕ(θ,
1 θ2) = eiλϕ(θ1, θ2) (8.48)

where ϕ is periodic in the angles θ1 and θ2. These equations have the obvious solutions

ϕ(θ1, θ2) ∝ e2πi(n1θ1+n2θ2) (8.49)

→ λ = 2π(n1θ1 +n2θ2) (8.50)

where n1 and n2 are integers.

The motion of the two oscillators on the torus (see Fig. 128) is only ergodic if ω1/ω2 is

irrational, i. e., λ ∝ n1ω1 + n2ω2 = 0 only for n1 = n2 = 0, and λ = 0 is a simple eigenvalue.

For nonergodic motion ω1/ω2 =rational, and λ = 0 is degenerate. It is quite plausible that

ergodicity and a nondegenerate eigenvalue λ = 0 correspond to each other because only then

the equation for the time invariant density ρ,

e−iLρ = ρ (8.51)

has a unique solution. Equation (8.44) can be extended to maps�xn+1 = �G(xn) by

e−iLϕ(�x) ≡ ϕ[�G−1(�x)] = eiλϕ(�x) . (8.52)

As a further example, we consider the cat map (8.35) which acts on a torus so that we can

expand ϕ as

ϕ(�x) = ∑
�m

e2πi�m·�xϕ̃(�m) (8.53)

where �m = (m1, m2); m1, m2 integers. Using the fact that the transformation matrix T is

symmetric, we obtain from (8.52–8.53) after straightforward manipulations

ϕ̃(T�m) = eiλϕ̃(�m) . (8.54)

The point m = 0 yields the only fixed point in (8.54), i. e., λ = 0 is again a simple eigenvalue

that corresponds to a constant invariant density. The action of T on the other �m-values is

explained in Fig. 147. If we relabel the ms according to their hyperbolas (α) and their place

on it ( j), i. e., �m=̂(α, j), then eq. (7.54) can be written as

e−iLϕ̃(α, j) ≡ ϕ̃(α, j +1) = eiλϕ̃(α, j) (8.55)

i. e., e−iL is a translation operator in the variable j. The corresponding spectrum of L is

continuous (note that the js are not limited) and denumerably infinite degenerate (via the α’s).

A spectrum λ, which contains every real number with the same multiplicity and for which the

spectral weight is just dλ, is called the Lebesque spectrum. The cat map is an example for a

K-system. These systems have (also in general) Lebesque spectra with denumerably infinite

multiplicity.
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Figure 147: Except for the origin, all points is the �m-plane are mapped under the action of the matrix T

along hyperbolas because the eigenvalues of T are λ1 = (3+
√

5)/2 > 1 and λ2 = 1/λ2 < 1.

8.2.3 Three Classical K-Systems

Let us now present some physical examples of K-systems that exhibit ergodic and mixing

behavior.

First, we consider the famous hard-sphere fluid whose mixing was rigorously established

by Sinai (1970). Because of the infinite contact potential, this is clearly not a perturbation

to a simple system (e. g., of noninteracting particles). Figure 148 a shows how exponential

separation of the trajectories results from collisions between the spheres’ convex surfaces. It

is worth emphasizing that Sinai’s proof is valid for two discs moving on a torus, i. e., it does

not require the thermodynamic limit of infinitely many particles.

Figure 148: Separation of trajectories for three chaotic systems: a) Sinai’s billiards, b) a free particle in

a stadium, c) a free particle on a surface with negative curvature.
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Another system, which has only a few degrees of freedom, but which nevertheless exhibits

ergodicity and mixing, is a free particle in a stadium, as shown in Fig. 148b. The exponential

separation of trajectories is generated by the particular form of the boundary (Bunimovich,

1979).

Finally, we mention that the geodesic motion of a mass point on a compact surface with

overall negative Gaussian curvature is also mixing and ergodic (Anosov, 1969). It can be

already seen from the saddle-shaped surface in Fig. 148c (which has a negative curvature at

one point P) how nearby trajectories separate along geodesics.



9 Chaos in Quantum Systems?

The existence of chaotic motion in classical conservative systems naturally leads to the ques-

tion of how this irregularity manifests itself in the corresponding quantum systems. In a

broader context, one might inquire about the nature of the solutions to the wave equations

that arise, e. g., in plasma physics, optics, or acoustics, whose ray trajectories (WKB solution,

geometric optics) are stochastic.

The question about the behavior of quantum systems whose classical limit exhibits chaos

has been posed since the early days of quantum mechanics (Einstein, 1917) because it raises

the problem of how to quantize a system which executes nonperiodic motion (at that time, pe-

riodic system were quantized via the Bohr–Sommerfeld quantization rule
H

p dq = nh, where

h is Planck’s constant). Since the discovery and the establishment of wave mechanics, we

know how to proceed if we wish to learn about the time evolution of any quantum system:

solve the time-dependent Schrödinger equation

ĤΨ = −h
i

∂
∂t

Ψ (9.1)

where Ĥ is the Hamiltonian of the system, Ψ is its wave function, and h̄ = h/2π. In order to

develop some intuition for the changes which will arise if we pass from a classically chaotic

system to its quantum mechanical version, we recall several major differences between clas-

sical and quantum systems:

– In contrast to classical mechanics (where a statistical description is only necessary if the

system becomes chaotic in time), quantum mechanics allows only statistical predictions.

Although the Schrödinger equation is linear in Ψ and can, e. g., be solved exactly for

a harmonic oscillator with the result that Ψ depends regularly on time (i. e., there is no

chaotic time behavior), this does not mean that the motion is completely deterministic,

since |Ψ(�x, t)|2 is only the probability density to find an electron at a space-time point

(�x, t).

– Because of Heisenberg’s uncertainty principle

∆p∆q > h̄/2 (9.2)

there are no trajectories in quantum mechanics [if one measures q with precision ∆q, one

disturbs the momentum p by ∆p according to (9.2)]. Therefore, the characterization of

chaos based on the exponentially fast separation of nearby trajectories becomes useless

for quantum systems.

– The uncertainty principle (9.2) implies also that points in 2n-dimensional phase space

within a volume h̄n cannot be distinguished, i. e., the phase space becomes coarse grained.

This means that regions in phase space in which the motion is classically chaotic (see

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Fig. 140), but which have volumes smaller than h̄n, are not “seen” in quantum mechanics;

and for the corresponding quantum system, we expect a regular behavior in time. Thus

the finite value of Planck’s constant tends to suppress chaos. On the other hand, the limit

h → 0 becomes difficult (for quantum systems which have a classical counterpart which

displays chaos) because if h becomes smaller, more and more irregular structures will

appear.

In the following, we distinguish between (time-independent) stationary Hamiltonians and

time-dependent Hamiltonians, which appear, for example, in the quantum version of the

kicked rotator.

For systems with stationary Hamiltonians Ĥ, the Schrödinger equation (9.1) can be re-

duced [with Ψ = Ψ0 exp(−iEt/h̄)] to a linear eigenvalue problem for the energy levels E:

ĤΨ0 = EΨ0 . (9.3)

As long as the levels are discrete, Ψ behaves regularly in time and there is no chaos. But, there

remain the fundamental questions: under what circumstances will this be the case and are there

still differences between the energy spectra of a quantum system with a regular classical limit

and a quantum system whose classical version displays chaos?

Information about the behavior of systems with time-dependent Hamiltonians are, for ex-

ample, relevant for the problem of how energy is distributed in the energy ladder of a molecule

excited by a laser beam, i. e., they are related to the practical problem of laser photochemistry.

More specifically, the answers to the following questions are sought: Does quantum chaos

exist? How can one characterize it? Is there an equivalent to the hierarchy shown in Table 13

in quantum mechanics? What happens to the KAM-theorem for quantized motion, etc.? Up

to now there are more questions than answers.

To get at least some insight into these problems, we consider several model systems. In

Section 9.1 we investigate the quantized version of the cat map (whose classical motion is

purely chaotic) and show that it displays no chaos because the finite value of Planck’s constant,

together with the doubly periodic boundary conditions, restrict the eigenvalues of the time-

evolution operator to a discrete set, such that the motion becomes completely periodic.

In the subsequent section we describe a calculation by McDonald and Kaufmann (1979),

which shows that the energy spectrum of a free quantum particle in a stadium (for which the

classical motion is chaotic) differs drastically from that of a free (quantum) particle in a circle

(for which the classical motion is regular).

Finally, in the last section we demonstrate (by mapping the system to an electron lo-

calization problem) that a kicked quantum rotator shows no diffusion, whereas its classical

counterpart displays deterministic diffusion above a certain threshold.

9.1 The Quantum Cat Map
To see how a conservative system, which classically behaves completely chaotically, changes

its behavior for nonzero values of Planck’s constant, we quantize a modification of Arnold’s

cat map. (The familiar cat map (8.35) cannot be quantized because the corresponding time-

evolution operator does not preserve the periodicity of the wave function of the torus, see

Hannay and Berry, 1980.)
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Figure 149: Allowed phase points for the quantized version of a cat map (schematic).

Let us recall that the allowed phase space of a classical cat map is the unit torus. In this

example, the phase points develop according to the dynamical law(
pn+1

qn+1

)
=

(
1 2

2 3

)(
pn

qn

)
. (9.4)

In quantum mechanics, eq. (9.4) becomes the Heisenberg equation of motion for the coordi-

nate and momentum operators q̂n, p̂n at time n, and the restriction of the classical phase space

to a torus implies periodic boundary conditions for the quantum-mechanical wave function in

coordinate and momentum space. In other words, the eigenvalues of both operators p̂ and q̂

only have discrete values which cover the torus by a lattice of allowed phase points, as shown

in Fig. 149.

We will now show that the unit cell of this lattice is a square with a lattice constant, which

is just Planck’s quantum of the action h.

If the eigenvalues of q̂ have a spacing ∆q = 1
N i. e.,

q = 0,
1

N
, . . . 1 where N = integer (9.5)

this implies (via the double periodicity of the wave function) the maximum momentum eigen-

value

pmax = h̄2π/

(
1

N

)
= Nh (9.6)

and a spacing ∆p = h, i. e., the eigenvalues of p̂ are

p = 0, h, 2h, . . . , Nh . (9.7)

Because the allowed phase space has unit area, we have

1 = qmax pmax = Nh (9.8)

i. e., h =
1

N
→ ∆p = ∆q = h . (9.9)

This requirement makes the quantum version of the cat map somewhat unrealistic. But if we

assume for a moment that Planck’s constant h is a free parameter and the quantum case is

only defined by h �= 0 such that eq. (9.9) makes sense, then it follows from (9.5) and (9.7) that
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in quantum mechanics only phase points with a rational ratio p/q are allowed. This means

that the points with irrational ratios, which were the only ones in the classical cat maps which

lead to chaotic trajectories, are forbidden in quantum mechanics. It is therefore reasonable to

expect that the quantum version of the cat map will not exhibit chaos.

It has indeed been found by Hannay and Berry (1980) that the time-evolution operator Û

for the quantum cat map is periodic (i. e., for every N there exists an n(N) such that Ûn = 1)

and has a discrete spectrum of eigenvalues. This implies that all expectation values for the cat

map are periodic in time. In other words, the finite values of Planck’s constant and the doubly

periodic boundary conditions restrict the eigenvalues (of the time-evolution operator) in the

quantum version of Arnold’s cat map such that chaotic motion becomes impossible.

9.2 A Quantum Particle in a Stadium
Although we have seen in the previous section that a quantum system with a chaotic classical

limit does not necessarily also behave chaotically, one nevertheless expects some difference

between a quantum system having a classical counterpart, which shows irregular motion, and

a quantum version of an integrable classical system having regular trajectories. To cast some

light on this problem, McDonald and Kaufmann (1979) calculated numerically the wave func-

tions and spectra of a free particle in a stadium and in a circular disc by solving the Schrödinger

equation for a free particle in two dimensions

�∇2ψ = Eψ (9.10)

with the boundary condition ψ(x, y) = 0 at the “walls”.

Their results are summarized in Fig. 150:

1. The eigenfunctions of the stadium problem show irregular nodal curves (where ψ(x, y) =
0) in contrast to the regular curves for the circle.

2. The distribution N(∆E) of the eigenvalue spacings DeltaE for the circle shows a max-

imum at ∆E = 0, i. e., there is a high probability of level degeneracies, and one finds

level clustering. It has been proved by Berry and Tabor (1977) that for integrable sys-

tems N(∆E) ∝ exp(−∆E · const). (An exception is a quantum mechanical oscillator for

which N(∆E) is a delta function at ∆E = h̄ω0.) For the stadium N(∆E) has a maximum

at ∆E �= 0, i. e., there is level repulsion.

This level repulsion has also been found for the quantum version of Sinai’s billiard (Berry,

1983, Bohigas et al., 1984), and it seems to be a characteristic feature of a quantum sys-

tem, whose classical limit shows chaos. It is related to the fact that no symmetries exist in

these systems, i. e., there are no degeneracies (and no selection rules which prevent mutual

interaction of the levels) such that lim∆E→0 N(∆E) = 0. Several theoretical explanations for

this phenomenon have been offered, and an interesting connection to random matrix theory

(which is used to explain level repulsion in nuclear spectra) has been suggested (Zaslavski,

1981, Berry, 1983, Bohigas et al., 1984). Note that the distribution of level spacings is re-

lated to the eigenvalue spectrum of the quantum version of the Liouville operator L̂ because

L̂|n >∝ 〈m| ∝ [Ĥ, |n〉〈m|] = (En −Em)|n〉〈m|, where Ĥ is the Hamiltonian, and |n〉, |m〉 are its

eigenfunctions.
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Figure 150: Nodal curves [ψ(x, y) = 0] for one quadrant of the (odd-odd parity) eigenfunctions in a

disc (a) and in a stadium (with dimensions R = a) (b). Distribution N(∆E) of (odd–odd parity) energy

level spacings for a circular boundary (c) and for a stadium boundary (d). (After McDonald and Kauf-

mann, 1979.) Note that ∆E = E j+1 −E j is the spacing between neighboring levels, and j increases with

energy.

9.3 The Kicked Quantum Rotator

We have already seen in Chapter 3 that deterministic diffusion serves as an indicator of chaos.

It is, therefore, interesting to see whether this phenomenon also exists in quantum systems.

(If the answer is yes, then we know that there is chaos in the quantum system). We show first

that a classical kicked rotator, without damping, displays (for strong enough kicking forces)

deterministic diffusion, and subsequently investigate its quantum version.

According to eq. (2.26), the equations of motion for the angle θ and the angular momentum

p of a classical kicked rotator are

pn+1 = pn −V ′(θn) n = 0, 1, 2 . . . (9.11a)



188 9 Chaos in Quantum Systems?

Figure 151: A phase portrait of a classical kicked rotator with a potential function K cosθ, obtained by

iterating eq. (8.11) and plotting successive points. a) For K = 0.96 different orbits in the shaded regions

are still separated. b) For K = 1.13 the islands overlap and the angular momentum can diffuse. (After

Chirikov, 1979.)

θn+1 = θn + pn+1 = θn −V ′(θn)+ pn (9.11b)

where V (θ) = V (θ+2π) is the potential function of the kicking force.

Summation of (9.11a) over n yields

〈(pn+1 − p0)2〉 =
n

∑
i, j
〈V ′(θi)V ′(θ j)〉 (9.12)

where 〈. . .〉 denotes the average over all initial points θ0. If the correlations between the V ′(θi)
are short-ranged (with range n0), eq. (9.12) becomes

〈(pn+1 − p0)2〉 = n
n0

∑
j
〈V ′(θ j)V ′(θ0)〉 ∝ n for n � 1 (9.13)

i. e., the angular momentum of the kicked rotator diffuses.

It has, for example, been found numerically that a kicking potential of the form V (θ) =
K ·cosθ generates deterministic diffusion (of the angular momentum) above a threshold Kc �
0.972 (see Fig. 151).

Another example is the “open cat map” in which the restriction of periodicity of the pn
is lifted. This can be viewed as a kicked rotator with a potential function V (θ) = −(K/2) ·
(θmod2π)2 and has the equations of motion

pn+1 = pn +Kθn (9.14a)

θn+1 = θn(1+K)+ pn (9.14b)

where θn is always modulo 2π. Including the modulo restriction, eq. (9.14b) appears (apart

from pn, which does not seriously disturb our argument, and after division by 2π, which

changes mod2π to mod 1) similar to the map (3.1) that produced the Bernoulli shift. This

means that for K > 0, eq. (9.14b) generates chaotic motion of the angles which leads via

(9.12) to deterministic diffusion.
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We now show that the quantum version of the kicked rotator does not diffuse. Instead, one

finds either quantum resonance, i. e., the square of the angular momentum increases quadrat-

ically in time, or almost periodicity, thus the angular momentum is limited and recurs repeat-

edly arbitrarily close to its original value.

To understand this result, we use the idea of Fishman, Grempel, and Prange (1982) and

map the kicked quantum rotator into a one-dimensional electron localization problem (about

which several results are known). [The following derivation is due to V. Emery (private com-

munication).] The time-dependent Hamiltonian of a kicked rotator can be written as

Ĥ =




V̂(θ)
1− γ

for 0 < t < 1− γ

T̂

γ
for 1− γ < t < 1 , with T̂ = −τ

∂2

∂θ2

(9.15)

where we have ignored the kinetic energy T̂ during the delta kick which corresponds to the

limit y → 1 in (9.15).

The time-evolution operator from time t = n to time t = n + 1, i. e., before and after one

kick, therefore becomes

Û = e−iT̂ e−iV̂ (9.16)

and its eigenstates |ψλ〉 are determined by

Û|ψλ〉 = e−iλ|ψλ〉 (9.17)

where λ is the eigenvalue. This equation governs the time dependence of any state |ϕ〉 that

develops with Û, because

|ϕ(n)〉 = Ûn|ϕ〉 = ∑
λ

e−inλcλ|ψλ〉 ; cλ = 〈ψλ|ϕ〉 . (9.18)

We rewrite (9.17) now in the form of a Schrödinger equation for an electron in a one-dimen-

sional random chain. By using the explicit expression (9.16) for Û, (9.17) reads

e−iT̂ e−iV̂|ψλ〉 = e−iλ|ψλ〉 (9.19)

which for Ê ≡ λ1̂− T̂ becomes

e−iÊ e−iV̂|ψλ〉 = |ψλ〉 . (9.20)

With |ψλ〉 ≡ ei(V̂/2|ω〉 this can be rewritten as:

ei(V̂/2)|ω〉 = eiÊ e−i(V̂/2)|ω〉 = 0 (9.21)

or [
(1− eiÊ)cos

V̂

2
+ i(1+ eiÊ)sin

V̂

2

]
|ω〉 = 0 (9.22)

from which we obtain

i(1+ eiÊ)

[
1

i
1− eiÊ

1+ eiÊ
+

sin(V̂/2)
cos(V̂/2)

]
cos

(
V̂

2

)
|ω〉 = 0 . (9.23)
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Figure 152: Numerically determined quantum resonance for a kicked rotator at τ = 8π/5 (after Izraelev

and Shepelyanskii, 1980).

We, therefore, have to find the solutions of[
tan

Ê

2
− tan

V̂

2

]
|u〉 = 0 when |u〉 = cos

V̂

2
|ω〉 . (9.24)

The periodic boundary conditions ψλ(θ+2π) = ψλ(θ) yield u(θ+2π) = u(θ), i. e., u(θ) can

be expanded in a Fourier series:

u(θ) = ∑
m

u(m) eimθ . (9.25)

Note that eimθ is simply the eigenfunction of the angular momentum operator. Thus, (9.24)

can be written as

Tmum + ∑
r �=0

Wrum+r = εum ; ε = W0 (9.26)

where

Tm ≡ tan

[
1

2
(λ− τm2)

]
and Wr =

1

2π

πZ

−π

dθ eirθ tan

[
V̂(θ)

2

]
.

Equation (9.26) is the Schrödinger equation for an electron on a chain with on-site potentials

Tm and hopping matrix elements Wr. The integer eigenvalues m of the angular momentum of

the kicked rotator correspond to the lattice sites in the conduction problem. Two cases must

be distinguished:

a) For rational values of τ/(2π) = p/q, where p and q are both mutually prime integers,

the electrons described by (9.26) move freely in a periodic potential and are completely

delocalized. For the rotator problem this means that its angular momentum is unbounded

in time, i. e., all eigenvalues m can be achieved. In fact the square of the angular momen-

tum increases quadratically in time (see Fig. 152). This phenomenon is termed quantum

resonance and occurs for all rational values of τ/(2π). We will explain this phenomenon



9.3 The Kicked Quantum Rotator 191

for the simplest case p/q = 1. The effect of the time-evolution operator on any periodic

wave function ψ then becomes

Û|ψ〉=̂ e2πi(∂2/∂θ2) e−iV (θ)ψ(θ) = e−iV (θ)ψ(θ) (9.27)

since we can expand e−iV in a Fourier series:

e−iV (θ)ψ(θ) =
∞

∑
m=−∞

Am eimθ (9.28)

and

( e−2πi(∂2/∂θ2)) eimθ = e−2πim2
eimθ = eimθ . (9.29)

For the expectation value of the square of the angular momentum with any periodic wave

function after n kicks, we therefore find:

〈p2〉 ∝ 〈ψ|(Û+)n ∂2

∂θ2
Ûn|ψ〉 ∝

πZ

−π

dθ ψ∗(θ) einV (θ) ∂2

∂θ2
e−inV (θ)ψ(θ)

∝ n2〈ψ|
(

∂V
∂θ

)2

|ψ〉+O(n) . (9.30)

This quadratic increase in time is clearly a quantum effect because (9.27) holds only for

integer values of m, i. e., for a quantized angular momentum.

b) Next we consider the case where τ/(2π) is irrational. The potential Tm = tan[(λ−m2τ)/2]
then becomes random instead of periodic because [(λ−m2τ)/2]modπ behaves like a

random number generator. (Note that tanx is periodic with period π and its argument can,

after division by π, be written as xm = [λ/(2π)−m2τ/(π)]mod1. If τ/(2π) is expressed

in binary representation and one considers, for example, values m2 = 2n, then it is seen

that the xm=2n are generated by a Bernoulli shift from a irrational number and are, hence,

truly random.)

Intuitively, one expects that an electron in a one-dimensional random potential has a strong

tendency to localize since there is (in contrast to higher dimensions) only one way to move

from one point to the next, and this could be easily blocked by a potential barrier. It is in fact

well known from the work of Anderson (1958) and Ishii (1973) (but by no means trivial to

prove) that all electrons in a one-dimensional random potential are localized (for short-ranged

hopping matrix elements). The physical reason for this is that, in the one-dimensional case,

the random potential changes the phase of the wave function at every site, and this random

dephasing eventually leads to localization.

The electron is, therefore, confined to a finite range of ms, i. e., the angular momentum

of the rotator is bounded and does not increase in time; in other words, there is no diffusion

of momentum in contrast to the classical case. Figure 153 shows the time dependence of the

energy of a periodically kicked rotator, numerically calculated for an irrational value of τ/2π.

It can be seen that the oscillations in energy are not only bounded but recur many times.
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Figure 153: Numerical result for the expectation value of the energy E ∝ 〈p2〉 (of a kicked quantum rota-

tor) as a function of the number n of pulses for an irrational value of τ/(2π) (after Hogg and Hubermann,

1982).

It has been proved by Hogg and Hubermann (1982) that if the wave function can be nor-

malized (i. e., if we know that the angular momentum does not diffuse) then both the wave

function and the energy return arbitrarily close to their initial values arbitrarily often. This

time dependence is called almost periodic in contrast to the quasiperiodic motion mentioned

in Chapter 7. (For almost periodic functions f (t) there exists a relatively dense set {τε} such

that | f (t + τε)− f (t)| < ε for any ε > 0. {τε} is relatively dense if there exists a Tε such that

each interval of length Tε on the real axis contains at least one τε.)

We have seen, above, that up to now no quantum system seems to exist which exhibits

deterministic chaos (indicated either by a continuous power spectrum or deterministic diffu-

sion). Nevertheless, there is a difference in the behavior of quantum systems with a chaotic

classical counterpart and those (quantum systems) with a regular classical limit.

Let us finally mention an interesting calculation of Gutzwiller (1983) for an electron which

is scattered from a non-compact surface with negative curvature. It shows that the phase shift

as a function of momentum is essentially given by the phase angles of the Riemann zeta

function on the imaginary axis, at a distance 0.5 from the famous critical line. This phase shift

displays features of chaos because it is able to mimic any given smooth function. It, therefore,

seems that the chaotic nature of quantum systems which are described by wave mechanics is

of a rather subtle and “softer” kind than the chaos in classical mechanics.

These comments indicate that the question of stochasticity in quantum mechanics is still

far from being solved.
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Around 1950, the famous mathematician and father of the computer John v. Neumann had

already remarked (cited after Dyson, 1988) that dynamical systems can be divided into two

classes: stable systems whose behavior can be predicted by computers, and unstable systems

which display a sensitive dependence on initial conditions and therefore can be easily stabi-

lized and controlled by computers. He proposed the control of local weather by distributing

chemicals from airplanes. Therefore the idea of controlling chaotic systems by small time-

dependent perturbations is not completely new.

In 1987 the space agency NASA (Farquhar et al., 1985) made use of the sensitive de-

pendence on initial conditions in the classical three-body problem to manœvre a space-craft

towards a comet by means of small corrections which required only a small amount of fuel

(see Fig. 154). This would never have been possible for a non-chaotic system where one needs

large forces to bring the space-craft into a new orbit.

Figure 154: The trajectory of the space-ship ISEE 3 (International Sun Earth Explorer 3) was changed

in order to leave the earth–moon system in the direction of the comet Giacobini–Zinner. On October 10,

1983, the velocity of the space-ship was changed by the tiny amount of 6.5 m s−1. By exploiting the

gravitation of the moon in a clever fashion, this small change was sufficient to send the space-ship in the

direction of the comet (after Farquhar et al., 1985).

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Then in 1990 the seminal article of Ott, Grebogi and Yorke was puslished in which they

demonstrated that small time-dependent changes in the control parameter of a system can

change the chaotic motion on the strange attractor into periodic motion.

The chaotic motion on a strange attractor can be viewed as a dance of the trajectory be-

tween different unstable periodic orbits. This can easily be seen when we recall the period-

doubling route. In this route, cycles of different lengths become unstable one after the other

if the control parameter r is increased. At the culmination point r∞ one has an infinitely long

cycle, and in the chaotic regime r > r∞ the trajectory moves between unstable cycles (see

Fig. 155). During this movement the trajectories become repelled from the cycles; otherwise

the motion would again be periodic (see Appendix H).

10.1 Stabilization of Unstable Orbits

In 1990 Grebogi, Ott and Yorke showed that small variations in the control parameter can

change unstable cycles into stable cycles in such a way that the chaotic trajectory becomes

periodic.

In the following we will demonstrate this for the simple example of the logistic map.

Figure 156 shows that the fixed point x∗ becomes unstable for r > r∞ because | f ′(x∗)| > 1.

This means that a starting point x0 will move away from x∗ (see Fig. 156 a). But if we change

the parameter r for a moment by an amount δr, in such a way that the parabola is shifted

upwards, we could choose δr such that x0 falls after one iteration onto the unstable fixed point

x∗ (Fig. 156b). Since we also have, for an unstable fixed point, the equation x∗ = f (x∗), the

trajectory remains located on x∗ if we put δr = 0. Therefore, the system becomes trapped on

an unstable fixed point and shows no longer any chaos.

Figure 155: The period doubling route generates unstable periodic orbits (schematically).
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Figure 156: Stabilization of a fixed point by a change in the control parameter. (a) The fixed point x∗ of

the logistic map at r = 3.78 is unstable, and the trajectory which starts at x0 becomes repelled from it.

(b) Small changes in the control parameter r lead to the dotted map, which drives x0, after the next time

step, back to the fixed point.

To compute the change in the control parameter that is needed to stabilize the fixed point,

we linearize the map fr(x) in the vicinity of x∗. With δxt = xt − x∗ one obtains:

xt+1 = fr(xt) = fr(x∗ + xt − x∗∗)
= fr(x∗)+ f ′r(x

∗)δxt +O((δxt)2) . (10.1)

By changing r → r +δrt we get an additional term

xt+1 = fr(x∗)+ f ′r(x
∗)δxt +

∂ f
∂r

(x∗)δrt , (10.2)

and we have neglected contributions of order (δxt)2, (δrt)2 and δxtδrt .

With fr(x∗) = x∗ we can write equation (10.2) as

δxt+1 = f ′r(x
∗)δxt +

∂ f
∂r

(x∗)δrt . (10.3)

Since we require that the system ends up at time t +1 on the unstable fixed point x∗, this means

δxt+1 = 0, we obtain according to eq. (10.3)

δrt = − f ′r(x∗)
∂ f
∂r

(x∗)
δxt . (10.4)

This means that, to stabilize the fixed point, the change in the control parameter must be

proportional to the distance δxt between the fixed point and the trajectory. The change in the

control parameter becomes small if the initial distance between the trajectory and the fixed

point, i. e., (x∗ − x0) is small. This condition can always be fulfilled: Since the motion of the

trajectory on the strange attractor is ergodic, the trajectory in the course of time approaches

every unstable fixed point arbitrarily closely. Therefore, one has to wait until the trajectory

comes very close to x∗. A change in control parameter δrt ∝ δxt which is needed to stabilize
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the fixed point can then be made arbitrarily small. The whole procedure recalls somehow the

Japanese art of self-defense where one uses the motion of the opponent in a clever way to send

him to the floor with a tiny twist.

To floor the chaotic motion on a strange attractor onto a fixed point we have to do the

following:

1. Localize the fixed point.

2. Wait until the trajectory comes close to the fixed point (this can take some time).

3. Change the control parameter in proportion to the distance between the trajectory and the

fixed point.

We can already see at this stage that one has some freedom in the choice of the proportion-

ality factor ε between δrt and δxt , which has in eq. (10.4) the form ε = − f ′r(x∗)/(∂ f (x∗)/∂r).
With δrt = εδxt , eq. (10.3) becomes

δxt+1 = ( f ′r(x
∗)+ ε)δxt . (10.5)

If we require only that the system becomes attracted to the fixed point after a long time,

i. e., limt→∞ δxt → 0, any ε which ensures

| f ′(x∗)+ ε| < 1 (10.6)

will do (see eq. (3.17) on page 24). This means that one has for fixed f ′(x∗) a whole range

of ε values for which the system converges to the fixed point (Schuster et al., 1996), cf.

Fig. 157. Since one needs only very little information about the nonlinear system to stabilize

a fixed point it becomes understandable that this type of chaos control has been performed

successfully in many experimental systems (Shinbrot et al., 1993). One has only to wait

until the trajectory comes into the vicinity of a fixed point and then switch on the change in

the control parameter which is proportional to the distance between the fixed point and the

trajectory. Figure 158 shows how this procedure works for a Belousov–Zhabotinsky reaction

(introduced on page 11), whose nonlinear dynamics can be reduced to a one-dimensional map.

The ideas which have been outlined for a fixed point in the previous paragraph can be

generalized in a straightforward fashion to longer unstable cycles. For example, if we want

to stabilize a cycle of period 2 for the logistic map, we have only to replace f (x) by f 2(x) in

eq. (10.1) and linearize around one of the two fixed points f 2(x∗1,2) = x∗1,2. Everything runs

through as for a simple fixed point, one must only check that the control parameter is switched

on in even time steps in order to stabilize the correct fixed point x∗1 or x∗2.

The ideas described so far are quite well known to engineers and applied mathematicians,

as these concepts are at the heart of control theory (Chen, 1999; Slotine and Li, 1991). In fact,

quite elaborate approaches have been developed but, from the point of view of applications,

most ideas are confined to the linearized regime as, e. g., sketched above. It is the essentially

new idea of chaos control that the nonlinear dynamical system provides a huge number of

unstable periodic orbits. Each of them can be stabilized with tiny control forces. In the wake

of these observations control of chaos became one of the most popular branches in applied

nonlinear science. Meanwhile reviews are available in the literature (Schuster, 1999). Here

we focus on a more detailed description of two quite popular and important control schemes.
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Figure 157: Stabilization of the unstable fixed point x∗ = (r − 1)/r of the logistic map for r > r∞
by a change in the control parameter as δrt = ε(∂ f (x∗)/∂r) · (x∗ − x). This change is only switched

on if |x∗ − x| < 10−2 for ε = 2. (a) Normal bifurcation diagram (compare with Fig. 36 on page 53),

(b) bifurcation diagram when the time-dependent parameter change has been switched on.

10.2 The OGY Method

For higher-dimensional maps one has only to stabilize the unstable directions (which are given

by the eigenvectors of the local Jacobi matrix which belong to eigenvalues with modulus > 1).

Thus the number of parameters needed to adjust the phase space point properly are given by

the dimension of the unstable manifold. Figure 159 shows how the trajectory is driven onto a

stable manifold by a small change in the control parameter. Once it is on the stable manifold,

no more changes in the control parameter are needed and the trajectory is pulled onto the fixed

point.
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Figure 158: Cycles of period 1 and 2, which have been stabilized in a Belousov–Zhabotinsky reaction by

changing the flow rate in the previously chaotic region. The figure shows the phase portraits, which have

been obtained by reconstructing phase space via time delay from the measured potential of a bromide

electrode (the potential is proportional to the concentration of BrO−
3 , see also page 11, after Petrov et

al., 1993).

Figure 159: Stabilization of a previously unstable fixed point in two dimensions. (a) The fixed point

Z∗(p0) and its stable and unstable manifolds can be shifted along the dotted line by a change in the

control parameter p0. (b) p0 is changed by δp, the point Zn moves in the following time step onto the

stable manifold on which Zn+1 becomes attracted to the fixed point (after Shinbrot et al., 1993).
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This method for controlling chaos has been applied to many systems, especially to lasers,

hydrodynamic systems and coupled cardiac cells (compare Table 2 on page 10). Since chaotic

systems contain an infinite number of periodic orbits, they offer the possibility to stabilize

completely different types of dynamical behavior. If one wants to stabilize a technical system

it would therefore be advantageous to drive it into the chaotic region in order to control it with

tiny variations in the control parameter. To perform this control it is not necessary to know the

equation of motion of the system in explicit form. It is sufficient to know the location of the

fixed points and the local Jacobian. This information could be extracted from measured data,

for example, by the method of delay coordinates (see Chapter 6, eq. (6.44) and Shinbrot et
al., 1993; Hubinger, Doerner and Martienssen, 1993). Since one just needs to obtain the local

phase-space structure in a neighborhood of the unstable orbit, the requirements concerning

the amount of data are less severe than for the global reconstruction of the whole attractor.

10.3 Time-Delayed Feedback Control
As pointed out in the preceding sections, control is achieved by a suitable time-dependent

change in a system parameter r → r + δrt . With an appropriate choice of δrt the target state,

e. g., an unstable fixed point x∗, becomes stable. The simple scheme introduced at the be-

ginning of this chapter, δrt = xt − x∗, requires the a priori knowledge of the target state x∗.

Following an idea of Pyragas (1992) one may obtain a crude estimate by replacing the un-

known fixed point by a previous iterate, i. e., by deriving the control force from a time-delayed

difference δrt = K(xt −xt−1) = K(δxt −δxt−1). It is often convenient to introduce a linear am-

plification factor K as well. In order to figure out whether such a simple control scheme works

one considers the motion in a neighborhood of the target state. Using eq. (10.3) the dynamics

is governed by the higher order difference equation

δxt+1 = f ′r(x
∗)δxt +

∂ f
∂r

(x∗)K(δxt −δxt−1) . (10.7)

As usual the time evolution follows the typical exponential law δxt = γtδx0 where the so-called

Floquet multiplier γ obeys

γ2 =
(

f ′r(x
∗)+K

∂ f
∂r

(x∗)
)

γ−K
∂ f
∂r

(x∗) . (10.8)

Stabilization is achieved for those values of K where eq. (10.8) yields only solutions with

modulus lower than one, |γ| < 1.

Conditions for successful control may be either derived from the explicit solution for γ or

through conditions which do not require the computation of the roots of eq. (10.8) (the Schur–

Cohn–Jury criterion). Finally we obtain three constraints for the stability of the controlled

fixed point

0 < 1− f ′r(x
∗) (10.9a)

0 < 2

(
1+K

∂ f
∂r

(x∗)
)
−1+ f ′r(x

∗) (10.9b)

1 >

∣∣∣∣K ∂ f
∂r

(x∗)
∣∣∣∣ . (10.9c)
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Figure 160: Successive iterates in the neighborhood of the unstable fixed point for negative (left) and

positive (right) Floquet multiplier. The size of the time-delayed difference xt − xt−1 from which the

control force is derived is also indicated.

Condition (10.9a) does not involve the control amplitude K. It just poses a constraint on

the unstable fixed point. Since unstable fixed points obey | f ′r(x∗)| > 1 we recognize that

only unstable orbits with negative Floquet multipliers, i. e., f ′r(x∗) < −1, are accessible for

time-delayed feedback control. Such a constraint has a simple geometric meaning. When

f ′r(x∗) < −1 the dynamics oscillates in a neighborhood of the fixed point. Actually such a

type of motion is generated in period-doubling bifurcations (cf. Fig. 155). The control force is

derived from a time-delayed difference xt − xt−1. To keep this force finite when stabilization

sets in, one needs a finite difference between successive iterates as otherwise the control force

will vanish. Thus, as sketched in Fig. 160, the oscillatory part of the motion is required. Only

target states with oscillating dynamics, i. e., with negative (or complex) Floquet multipliers

are accessible for time-delayed feedback control.

Conditions (10.9b) and (10.9c) yield constraints for the control amplitude. In fact,

eq. (10.9c) tells us that control fails for large values of the amplification K. In view of

eq. (10.9a) it is quite straightforward to work out that conditions (10.9b) and (10.9c) yield

a finite interval of K values for successful control provided f ′r(x∗) > −3. No such control

interval is obtained if f ′r(x∗) < −3. Thus time-delayed feedback control fails for strongly

unstable orbits.

10.3.1 Rhythmic Control
The original Pyragas scheme suffers from the constraint that only orbits with oscillating dy-

namics in their neighborhood, i. e., complex Floquet exponents, are accessible. To overcome

such a severe limitation, modifications have been proposed which essentially result in an effec-

tive enlargement of the phase space (Schuster and Stemmler, 1997). A simple implementation

consists of a time-dependent modulation of the control amplitude. Consider a period-two

modulation of the control amplitude, i. e., K takes the value K0 on even time steps and K1 on

odd time steps. Then condition (10.7) determining the stability reads

δx2t+1 = f ′r(x
∗)δx2t +

∂ f
∂r

(x∗)K0(δx2t −δx2t−1) (10.10a)

δx2t+2 = f ′r(x
∗)δx2t+1 +

∂ f
∂r

(x∗)K1(δx2t+1 −δx2t) . (10.10b)

Since the time evolution at even and odd time steps is governed by different control ampli-

tudes, one effectively ends up with a higher-dimensional dynamics, eqs. (10.10). With the

usual exponential law, δx2t = γ2tδx0, δx2t+1 = γ2t+1δx1 one obtains for the multiplier γ the
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characteristic equation(
γ2 +

∂ f
∂r

(x∗)K0

)(
γ2 +

∂ f
∂r

(x∗)K1

)
(10.11)

= γ2

(
f ′r(x

∗)+
∂ f
∂r

(x∗)K0

)(
f ′r(x

∗)+
∂ f
∂r

(x∗)K1

)
. (10.12)

Of course, eq. (10.11) without modulation, K0 = K1 = K, is nothing else but the original

characteristic equation (10.8) squared in a suitable way. Evaluation of the stability criteria

results now in the three constraints

0 < (1− f ′r(x
∗))

(
1+ f ′r(x

∗)+
∂ f
∂r

(x∗)K0 +
∂ f
∂r

(x∗)K1

)
(10.13a)

0 <

(
1− ∂ f

∂r
(x∗)K0

)(
1− ∂ f

∂r
(x∗)K1

)

+
(

f ′r(x
∗)+

∂ f
∂r

(x∗)K0

)(
f ′r(x

∗)+
∂ f
∂r

(x∗)K1

)
(10.13b)

1 >

∣∣∣∣K0
∂ f
∂r

(x∗)K1
∂ f
∂r

(x∗)
∣∣∣∣ . (10.13c)

Now, even in the case f ′r(x∗) > 1, i. e., without oscillating motion in the vicinity of the target

state, these three conditions can be satisfied thanks to the second factor in eq. (10.13a) (cf.

eq. (10.9a). One just takes an appropriate negative value for, say, K1∂ f /∂r and chooses K0

so small that the condition (10.13c) is still valid. For instance the choice K0 = 0, K1∂ f /∂r �
−(1+ f ′r) works nicely.

Apart from rhythmic control there exist alternatives to increase the effective phase space

dimension and to stabilize orbits with positive Floquet multipliers, e. g., by directly adding

unstable degrees of freedom to the control loop (Pyragas, 2001).

10.3.2 Extended Time-Delayed Feedback Control

To overcome the second limitation of the original Pyragas scheme mentioned above, namely

the inability to stabilize strongly unstable periodic orbits, an extended version of time-delayed

feedback control has been proposed (Socolar et al., 1994) using multiple time delay. Within

the framework of the previous paragraphs such an approach amounts to a parameter modula-

tion according to

δrt = K
∞

∑
τ=0

Rτ(xt−τ − xt−τ−1) = K(xt − xt−1)+Rδrt−1 . (10.14)

Here the filter parameter R, |R| < 1, determines how sensitively the control depends on the

history of time-delayed differences. Using δxt = γtδx0 and δrt = γtδr0 stability is determined

through the condition [cf. eqs. (10.3) and (10.14)]

γ2 = γ
(

f ′r(x
∗)+

∂ f
∂r

(x∗)K +R
)
− ∂ f

∂r
(x∗)K −R f ′r(x

∗) (10.15)
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Figure 161: Control domain for extended time-delayed feedback control according to the conditions

(10.16) for f ′r(x∗) = −4 and ∂ f /∂r = 1. K: control amplitude, R: filter parameter.

which of course in the limit R = 0 reduces to eq. (10.8). Stability conditions result in

0 < (1− f ′r(x
∗))(1−R) (10.16a)

0 < 2

(
1+K

∂ f
∂r

(x∗)+R f ′r(x
∗)

)
− (1− f ′r(x

∗))(1−R) (10.16b)

1 >

∣∣∣∣K ∂ f
∂r

(x∗)+R f ′r(x
∗)

∣∣∣∣ . (10.16c)

Thanks to the factor 1−R in condition (10.16b), stabilization can be achieved even if the

orbit is strongly unstable, f ′r(x∗) < −3, by taking positive values for the filter parameter. Fig-

ure 161 shows the typical triangular shape of the control domain in the K-R control parameter

space. Even when the original Pyragas scheme R = 0 fails to produce a finite control interval,

successful stabilization can be achieved by choosing positive values for the filter parameter.

10.3.3 Experimental Realization of Time-Delayed Feedback Control
While the OGY scheme requires some data processing like, e. g., determination of the periodic

target state, analysis of invariant manifolds, or the construction of a Poincaré cross-section

time-delayed feedback control can be implemented with less effort. One just needs to measure

a signal s(t) and modulate one of the accessible systems parameters, e. g., the amplitude of a

driving field, according to the time-delayed difference, s(t)− s(t − τ). A typical experimental

setup is sketched in Fig. 162. In order to keep the scheme non-invasive, the delay time τ is

chosen to be an integer multiple of the period of the target state (cf., e. g., Kittel et al., 1995

for suitable schemes to adapt the delay time properly). But one has to pay a price, namely that

no a priori estimate is available as to whether the control will work and what the appropriate

parameter values could be.

As pointed out in the previous paragraphs, the simple time-delayed feedback scheme suf-

fers from constraints, in particular:

1. Torsion in the phase space is a necessary condition for the control to work, i. e., only

orbits with complex Floquet exponents are accessible for time-delayed feedback control.

2. Orbits with a large Liapunov exponents, i. e., strongly unstable orbits, cannot be stabi-

lized by the Pyragas scheme.
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h(t) s(t)=g[x(t)]

x(t)

s(t _τ )
s(t)∆

K

Figure 162: Diagrammatic view of an experimental setup for time-delayed feedback control: x(t),
internal degrees of freedom; h(t), system parameter; s(t), signal. The control loop with time-delayed

feedback device is displayed in grey. The control force is derived from a time-delayed difference and a

linear amplification, K[s(t)− s(t − τ)]. The force is used to modulate a system parameter.

These constraints are not confined to simple one-dimensional maps but apply to the general

case as well and thus constitute a universal feature of time-delayed feedback control (Just et
al., 2003). Fortunately, one may overcome these limitations either by rhythmic control, i. e.,

periodic modulation of the control amplitude and by extended control schemes employing

multiple delays. One should mention that for the implementation of the latter scheme no

additional delay device is required.

Since time-delayed feedback schemes are extremely simple to implement they have been

successfully applied in quite diverse experimental contexts, e. g., in laser systems (Bielawski

et al., 1994), discharge gas tubes (Pierre et al., 1996), Taylor–Couette flows (Lüthje, 2001),

electrochemical reactions (Parmananda et al., 1999) , high-power ferromagnetic resonance

experiments (Benner and Just, 2002), and even for arrhythmic cardiac control (Hall et al.,
1997). Rhythmic control has been employed in a laser experiment (Bielawski et al., 1993).

The success of extended time-delayed feedback has been demonstrated in fast diode resonator

experiments (Gauthier et al., 1994).

10.4 Parametric Resonance from Unstable Periodic Orbits
The very existence of unstable periodic orbits in chaotic systems leads to resonances, from

which one can determine the location of the cycles on the attractor and their local stability

(Schuster et al., 1996).

Figure 163 shows the lifetime τ of a trajectory of the logistic map within the interval x0±δ
(where x0 is a freely chosen point on the attractor) for the case when the control parameter r
has been modulated as δrt = ε(xt − x0). The inverse lifetime τ−1 displays as a function for ε
a minimum, this means that the lifetime of the most stable unstable cycle, which has a point

within the interval x0 ±δ, diverges.

In order to understand this phenomenon we compute as an example the lifetime of the

unstable fixed point x∗ of the logistic map as a function of ε. The linearized equation of

motion (10.3) becomes, with γ = ∂ f
∂x (x∗)+ ε ∂ f

∂r (x∗):

δxt = γδxt−1 = γtδx0 . (10.17)
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Figure 163: The inverse lifetime τ−1 of the trajectory of the logistic map with r = 3.79 in the interval

x∗ + δ (x∗ = 0.6, δ = 0.03) as a function of the control parameter ε. For 2.32 ≤ ε ≤ 2.76 an unstable

cycle with period 4 becomes stabilized. The dotted line shows τ−1 for the same parameter values for

the case when white noise with amplitude 10−2 has been added to the logistic map, i. e., the observed

resonance phenomenon is stable against noise (Schuster et al., 1996).

The lifetime τ is determined by the requirement that the trajectory leaves the interval at x0±δ,

i. e.,

δxτ = γτδx0 = δ . (10.18)

This yields

τ−1 ∝ log |γ| = log

∣∣∣∣∂ f
∂x

(x∗)+ ε
∂ f
∂r

(x∗)
∣∣∣∣ . (10.19)

The lifetime τ diverges in the interval ε− ≤ ε ≤ ε+, where

ε± = [ f ′(x∗0)±1]/
∂ f
∂r

(x∗) . (10.20)

Since ε± can be measured, one can compute via eq. (10.20) the unknown
∂ f
∂x (x∗) and

∂ f
∂r (x∗),

i. e., the local Liapunov exponents λ(x∗) = log
∣∣∣ ∂ f

∂x (x∗)
∣∣∣.

Parametric resonances of unstable periodic orbits can also be observed for higher-

dimensional maps. As an example we consider the Hénon map

xt+1 = r +0.3yt − (xt)2 (10.21a)

yt+1 = xt , (10.21b)

whose control parameter is modulated as δrt = ε1(x∗ − xt)+ ε2(y∗ − yt) (where x∗ = y∗ is the

fixed point of the Hénon map [10.21 a–b)].
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Figure 164: The lifetime of the fixed point of the Hénon map (10.21 a–b) for r = 1.4 in the (ε1, ε2)-

plane of control parameters for δ = 10−3, −2.5 ≤ ε1 ≤ 2.5 and −1 ≤ ε2 ≤ 5. Within the white triangle,

τ becomes infinite, and the fixed point becomes completely stabilized. The white line is determined by

those (ε1, ε2)-values for which τ remains unchanged (Schuster et al., 1996).

Figure 164 shows the region in parameter space (�ε-space), where the lifetime of the stabi-

lized fixed point diverges (white region). Outside of this region τ becomes gradually smaller

(grey shades). The white line in Fig. 164 characterizes the ε1, ε2-values, for which τ does not

change. From the corners of the white triangle one can again determine the local instability

rates of the fixed point (Schuster et al., 1996). This leads to the conclusion that parametric

resonance in chaotic systems allows for a new means of attractor spectroscopy, whereby one

can determine the location length and stability of unstable periodic orbits on a strange attractor

by measuring the lifetime of the cycle (e. g., via the power spectrum or the invariant density)

as a function of the parametric feedback parameter ε.



11 Synchronization of Chaotic Systems

Synchronization is a common phenomenon in nature, e. g., in coupled nonlinear oscillator

systems. The first empirical report dates back to the seventeenth century where Christiaan

Huygens observed that clocks hanging from the same wooden rod tend to synchronize their

motion. An excellent recent review of various synchronization phenomena is contained in the

book of Pikovsky et al. (1993). Here we address particular synchronization phenomena for

coupled chaotic systems. Systems with symmetric coupling show a novel type of intermit-

tency as a precursor of the synchronization whereby one has to distinguish between weak and

strong synchronization. In addition, these models emphasize that a proper notion of a chaotic

attractor might be quite subtle. Apart from complete synchronization notions like generalized

and phase synchronization are also discussed. In particular, we will demonstrate that certain

unidirectionally coupled models display strange nonchaotic motion.

11.1 Identical Systems with Symmetric Coupling

In 1985 Fujisaka and Yamada discovered an unusual type of intermittent behavior when two

identical chaotic systems are coupled. This observation gives rise to phenomena which are

nowadays called on–off intermittency and blowout bifurcation. In addition, it illustrates why

the concept of a chaotic attractor might be quite subtle.

For pedagogical purpose let us consider a simple model (Pikovsky and Grassberger, 1991;

Glendinning, 2001) consisting of two one-dimensional maps coupled in symmetric way

xn+1 = (1− ε) f (xn)+ ε f (yn) (11.1a)

yn+1 = (1− ε) f (yn)+ ε f (xn) . (11.1b)

Here ε denotes the coupling constant. For the map f we take a skewed tent map (cf. eq. (6.89)

and Fig. 165)

f (x) =
{

ax if 0 ≤ x ≤ 1/a
a(1− x)/(a−1) if 1/a < x ≤ 1

(11.2)

with slope 1 < a < 2. The coupled system (11.1) admits a chaotic synchronized solution

xn = yn ≡ zn, where the dynamics of the synchronized state is given by the map (11.2), zn+1 =
f (zn). In the two-dimensional x–y plane the synchronized state is confined to the diagonal. It

is natural to ask for which values of the coupling strength ε the synchronized state is stable.

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5
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Figure 165: The skewed tent map, eq. (11.2), for 1 < a < 2.

The stability of the synchronized state is investigated by observing transverse fluctuations

through the variable ∆n = yn − xn. Using xn = zn −∆n/2 and yn = zn + ∆/2 where the mean

zn = (xn + yn)/2 describes the motion on the synchronized manifold we obtain in linear order

from eq. (11.1)

∆n+1 = (1−2ε) f ′(zn)∆n . (11.3)

Thus the transverse coordinate obeys

∆n = (1−2ε)n
n−1

∏
k=0

f ′(zk)∆0 . (11.4)

If we take the definition of the Liapunov exponent of the map f into account [cf. eq. (3.9)] we

obtain an exponential growth for the product in eq. (11.4) if a typical orbit of the synchronized

state is considered∣∣∣∣∣
n−1

∏
k=0

f ′(zk)

∣∣∣∣∣ � exp(nλ) . (11.5)

Thus, the modulus of the transverse fluctuation obeys

|∆n| � (1−2ε)n exp(nλ)|∆0| . (11.6)

Fluctuations decay if the coupling exceeds a threshold value

ε > εbo = (1− exp(−λ))/2 . (11.7)

For the simple piecewise linear model, the Liapunov exponent can be calculated quite easily

since the corresponding invariant density is constant, ρ(x) = 1 (cf. Section 3.2)

λ =
Z 1

0
ln | f ′(x)|ρ(x)dx = lna− (1−1/a) ln(a−1) (11.8)

11.1.1 On–Off Intermittency
If the coupling falls short of the critical value εbo, the synchronized state xn = yn becomes

unstable and a characteristic intermittent dynamics is observed. Figure 166 shows the dy-

namics close to the threshold. While for ε > εbo the motion settles on the diagonal, i. e., on

the synchronized state, one observes a blow-up of the attractor when the coupling crosses the
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Figure 166: Left: Attractor of the coupled system (11.1) for a = 1.5 and ε = 0.23 in the supercritical

regime (ε < εbo = 0.235 . . .). Right: Time evolution of the transverse coordinate ∆n = yn − xn.

critical value (left in Fig. 166). This type of transition is called, for obvious reason, a blow-

out bifurcation. In the supercritical regime, i. e., just below the transition point, intermittent

motion of ∆n is observed (right in Fig. 166). This type of intermittency is quite different from

the classical scenarios introduced in Chapter 5. Laminar phases |∆n| � 1 are interrupted by

chaotic bursts |∆n| ∼ 1, and the temporal series shows a spiky characteristic. This type of in-

termittency has been termed on–off intermittency. Its statistical properties have been studied

in detail (Yamada and Fujisaka, 1986). The main mechanism causing intermittency is already

visible in eq. (11.3) which governs the dynamics of the transverse dynamics. While on av-

erage the factor | f ′(zk)| is larger than one (for ε < εbo) its chaotic fluctuations determine the

distribution and correlations of the transverse coordinate ∆n. The basic intermittency mech-

anism comes from the competition between the trajectory instability of chaotic elements and

the synchronization tendency due to the diffusion-type coupling.

In particular, Heagy et al. (1994) have investigated the statistical properties of the length �
of the laminar phases. In view of eq. (11.4) the length of a laminar phase is determined by the

condition |∏�−1
k=0 f ′(zk)| ∼ 1. Reformulating this condition as an exit-time problem, a scaling

law for the distribution of laminar phases has been obtained

P(�) � �−3/2 exp(−α�) (11.9)

where the exponential cutoff scales linearly with the coupling strength α ∼ 1− ε/εbo. Close

to the blow-out bifurcation one observes a power law with exponent 3/2.

11.1.2 Strong vs. Weak Synchronization
On–off intermittency and blow-out bifurcations are closely linked phenomena and are both

caused by the peculiar stability properties of the synchronized state. Actually the crucial

relation (11.5) is valid for typical orbits only. For instance, its is quite simple to check that

the “nontrivial” synchronized fixed point x = y = a/(2a− 1) is transversally stable for ε >
ε+ = (1− exp(−λ+))/2 [cf. eq. (11.7)] while the trivial synchronized fixed point is stable if

ε > ε− = (1−exp(−λ−))/2 where λ± just denotes the stability exponent of the corresponding
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boε < ε boε > ε

Figure 167: Diagrammatic view of the synchronized state and its local stability properties in the vicinity

of the blow-out bifurcation: unstable weakly synchronized state (left), stable weakly synchronized state

(right).

fixed point. Since λ− < λ < λ+ holds, the former fixed point is unstable throughout the blow-

out transition, while the latter fixed point is transversally stable. Similar arguments apply to

all the other unstable periodic states. Roughly speaking, synchronization sets in when the

majority of synchronized periodic states becomes transversally stable leaving a minority (i. e.,

a set of measure zero) transversally unstable, as sketched in Fig. 167. The values ε± mark the

limiting values where all synchronized orbits become stable or unstable, respectively. Thus

one refers to these thresholds sometimes as the onset of strong synchronization or strong

desynchronization, respectively, while the onset of synchronization according to the condition

(11.7) is called weak synchronization.

In the regime of weak synchronization, ε > εbo, there are still (infinitely many) initial

conditions which are arbitrarily close to the synchronized state, but which do not converge

towards this stable solution (Glendinning, 2001). These initial conditions are just related to

those unstable orbits which are still transversally unstable. Thus when dealing with chaotic

dynamics, the notion of an attractor becomes quite subtle. In addition, the just mentioned

mechanism can cause basins of a particularly wired shape, so-called riddled basins (Ott et al.,
1994). Such basins do not contain any open disk, i. e., if one considers any point in the basin

then arbitrarily close there are points which do not belong to the basin.

All the features which we have reported in this section for the simple model (11.1) have a

quite generic character. Thus it is not surprising that topics in synchronization recently became

one of the most active branches in nonlinear dynamics.

11.2 Master–Slave Configurations

Despite the fact that chaotic systems display sensitive dependence on the initial condition,

synchronization can be achieved without great effort. A particularly simple demonstration

of this feature can be achieved in the so-called master–slave configuration where a systems

output, the drive, drives an identical copy, the response system (Pecora and Carroll, 1990).

The setup is easily demonstrated by considering, e. g., a two-dimensional map as the driving
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system

xn+1 = f (xn,yn) (11.10a)

yn+1 = g(xn,yn) . (11.10b)

The output yn of the second equation is used to drive an identical copy of eq. (11.10b)

ξn+1 = f (ξn,yn) . (11.11)

The question arises whether the response system (11.11) synchronizes with the drive,

eq. (11.10), i. e., whether ξn tends towards xn, even if the drive shows chaotic motion. The

problem is easily addressed by considering the Liapunov exponent of the response. In linear

order one obtains for the difference δxn = xn − ξn between the master and the slave from

eqs. 11.10) and (11.11)

δxn+1 =
∂ f (xn,yn)

∂xn
δxn . (11.12)

The deviation obeys as usual an exponential law, δxn ∼ exp(λ⊥n), where the so-called condi-

tional Liapunov exponent of the response system is determined by [cf. eq. (3.9)]

λ⊥ = lim
N→∞

N−1

∑
k=0

ln

∣∣∣∣∂ f (xk,yk)
∂xk

∣∣∣∣ . (11.13)

Synchronization occurs if λ⊥ is negative.

There is in general no simple relation between the quantity (11.13) and the Liapunov

exponents of the master system (11.10). Synchronization may occur even if the dynamics of

the drive system is chaotic. For the purpose of illustration let us consider as a trivial example

the dissipative baker’s transformation [cf. eq. (6.7)]

xn+1 = f (xn,yn) =
{

axn if 0 ≤ yn < 1/2

1/2+axn if 1/2 ≤ yn ≤ 1
(11.14a)

yn+1 = g(xn,yn) = 2yn mod 1 (11.14b)

where 0 < a < 1. For the response system we take the x-subsystem eq. (11.11). Since the

derivative ∂ f (x,y)/∂x = a is constant one obtains from eq. (11.12) for the conditional Lia-

punov exponent λ⊥ = ln |a| < 0. Thus synchronization works successfully, ξn → xn, despite

the chaotic dynamics of the drive. This simple example shows clearly the underlying mecha-

nism. Because of the special choice of the response system, the dynamics of ξ is essentially

governed by the stable manifold, i. e., by the contraction of the baker’s transformation (cf.

Fig. 70, recall that the coordinate axis have been interchanged in the present example). The

expanding part of the master’s motion, i. e., those directions corresponding to the positive Li-

apunov exponent, are entirely contained in the output used for driving the response system.

In fact, using the y-system as a response system does not result in synchronization, as can be

checked easily. In general master–slave configurations the situation might be more involved

since drive and response systems do not decompose nicely in terms of stable and unstable

directions. But the essential mechanism for synchronization is the same as in this simple ex-

ample. Master–slave configurations and the corresponding synchronization features have been

proposed as a method for secure communication (Cuomo and Oppenheim, 1993).
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11.3 Generalized Synchronization
So far we have considered synchronization where coordinates of the different subsystems

coincide, e. g., xn = ξn in the previous setup. This type of behavior can only be expected when

identical copies of the subsystems are involved. Already a the use of different physical units in

the drive and the response systems will prohibit the just-mentioned complete synchronization

in a strict sense. Thus the notion of generalized synchronization has been introduced (Rulkov

et al., 1995) which can even cope with nonidentical subsystems. For the purpose of illustration

consider a drive system given in terms of a map f , which drives a different response system

xn+1 = f (xn) (11.15a)

yn+1 = g(xn,yn) . (11.15b)

Generalized synchronization between the systems (11.15a) and (11.15b) is said to prevail if

there is a functional relation between both variables, x and y, i. e., yn = h(xn) holds for all times

and some function h. Unlike for the case of complete synchronization, the function entering

this relation is in general not the identity h(x) = x. The concept of generalized synchronization

is indeed quite general. Our setup just states that the dynamics of the unidirectionally coupled

system (11.15) settles onto a smaller set given by the condition y = h(x). Provided the syn-

chronization manifold y = h(x) is known, the stability of the synchronized state is again given

in terms of the appropriate conditional Liapunov exponent [cf. eq. (11.13)].

11.3.1 Strange Nonchaotic Attractors
A very important example of generalized synchronization, which by the way demonstrates the

flexibility of this notion, is given in terms of quasiperiodically forced systems. Such systems

can be described in terms of appropriate Poincaré maps. A prototype is the quasiperiodically

forced logistic equation (cf. Prasad et al., 1998)

xn+1 = xn +ω mod 1 (11.16a)

yn+1 = a− y2
n + εcos(2πxn) . (11.16b)

Here the variable x, with trivial dynamics, describes the drive and the variable y the response

system. Quasiperiodic forcing is expressed by the choice that the frequency ω is irrational

(cf. Section 7.2). Obviously the model (11.16) fits in the general scheme (11.15). Figure 168

shows the attractor of the mapping (11.16) for small and large coupling ε while the parameter

value a corresponds to nonchaotic behavior of the logistic map. In both cases generalized

synchronization is observed, y = h(x). While for small coupling (Fig. 168 a) the function

y = h(x) results in a “smooth” dependence a much more intricate behavior is observed for

larger coupling strength (Fig. 168 b). Actually the dependence results in a fractal function

where the graph has a nontrivial Hausdorff dimension. The dynamics on this type of strange

attractor is however still nonchaotic since the Liapunov exponents are nonpositive, as can be

already inspected from the value of the parameter a. Such behavior, which is quite typical

for quasiperiodically force systems, has been termed strange nonchaotic motion (Grebogi et
al., 1984). Observations of such strange nonchaotic attractors have been reported in different

types of experiment (Ditto et al., 1990, Ding et al., 1997)
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Figure 168: Attractor of the quasiperiodically forced logistic map (11.16) for ω = (
√

5−1)/2 and (a):

a = 0.8, ε = 0.3, (b): a = 0.8, ε = 0.45 (after Pikovsky et al., 2001).

11.4 Phase Synchronization of Chaotic Systems
For the investigation of synchronization phenomena in oscillatory systems, the notion of a

phase variable plays a crucial role. While the phase is well defined in regular, nonchaotic

systems (cf. the action-angle variables introduced in Section 8.1) the concept requires some

additional comments for chaotic motion. As a paradigm for a chaotic oscillator let us consider

the Rössler model

ẋ = −y− z (11.17a)

ẏ = x+ay (11.17b)

ż = b+ z(x− c) (11.17c)

originally introduced as a toy model describing a simple chemical reaction. For a wide range

of parameter values, chaotic behavior is observed. Phase-space plots and the time evolution is

displayed in Fig. 169.
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Figure 169: Dynamics of the Rössler model, eq. (11.17), for a = b = 0.2, c = 5.7. Left: Projection of

the phase space trajectory onto the x–y subspace. Right: Time trace of the three coordinates.
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As a characteristic feature the solutions display oscillatory behavior but with time-

dependent and chaotic amplitudes. Inspecting the x–y projection of the phase-space plot

(Fig. 169 a) several definitions of a chaotic phase seem to be promising (Pikovsky et al.,
2001). One may, e. g., take the corresponding angle in the phase plane, tanθ = y/x, where

of course the angle is lifted by 2π each time a revolution is completed. As an alternative

definition we may use the recurrence time with respect to a Poincaré surface of section and

interpolate the phase continuously between successive hits. Finally a very elegant and univer-

sal way of introducing a phase is based on the Hilbert transform of a real-valued signal s(t),
say a component of the Rössler model (11.17). One constructs from the real-valued signal a

complex process ζ(t) according to

ζ(t) = A(t)exp(iφ(t)) = lim
ε→0+

i
π

Z ∞

−∞

s(τ)
t − τ+ iε

dτ

= s(t)+
i
π
−
Z ∞

−∞

s(τ)
t − τ

dτ (11.18)

where the last integral denotes the principal value. Thus converting the real-valued signal

into a complex number, the complex phase φ(t) is taken to be the phase of the signal s(t).
Definition (11.18) is motivated by the observation that it just generalizes the notion of the

phase for a purely periodic signal. Considering, e. g., a harmonic signal s(t) = acos(ωt +ϕ).
Then by contour integration we have

i
π

Z ∞

−∞

acos(ωτ+ϕ)
t − τ+ iε

dτ =
i

2π

Z
C+

aei(ωz+ϕ)

t − z+ iε
dz+

i
2π

Z
C−

ae−i(ωz+ϕ)

t − z+ iε
dz

= aei(ωt+ϕ)−εt +0 (11.19)

where C± denotes the contour in the complex plane consisting of the real axis and the semi-

circle (with infinite radius) in the upper/lower half-plane. Thus eq. (11.18) yields, for the

complex phase, the usual result φ(t) = ωt + ϕ. Altogether, eq. (11.18) generalizes the phase

to cases where the amplitudes are fluctuating, e. g., chaotically. But one should keep in mind

that these definitions require a signal with nice oscillatory features such as those displayed in

Fig. 169.

The just-mentioned three definitions of the phase are not identical but qualitatively similar.

In fact, the fine structure of the phase is not really relevant. On may instead concentrate on the

mean frequency (or the winding number, cf. Section 7.2)

Ω = lim
t→∞

φ(t)
t

. (11.20)

Such a characteristic is independent of the particular definition of the phase and may serve as

a quantifier for the chaotic oscillatory motion. Mean frequencies are useful to characterize the

phase synchronization of chaotic oscillators. A nice demonstrative example is given by two

nonidentical coupled Rössler models (Pikovsky et al., 2001)

ẋ1 = −(1+ν)y1 − z1

+ε(x2 − x1)
ẏ1 = (1+ν)x1 +ay1

ż1 = b+ z1(x1 − c)

ẋ2 = −(1−ν)y2 − z2

+ε(x1 − x2)
ẏ2 = (1−ν)x2 +ay2

ż2 = b+ z2(x2 − c)

(11.21)
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Figure 170: (a) Phase difference of the coupled Rössler system (11.21) in dependence on the coupling

strength. (b) Corresponding Liapunov exponents (after Pikovski et al., 2001).

where ε denotes the coupling parameter and ν takes a parameter mismatch into account, re-

sulting in a frequency mismatch of the uncoupled model. The analysis of coupled oscillator

systems suggests (cf. Section 7.3) that, for finite coupling, a synchronized regime exists, i. e.,

that the mean frequencies of the two subsystems become identical, Ω1 = Ω2. Indeed such

a transition is observed for finite coupling strength (cf. Fig. 170 a). The nature of such a

phase synchronization transition can be easily understood when looking at the corresponding

Liapunov spectrum, Fig. 170 b. For weak coupling two positive Liapunov exponents exist,

corresponding to the chaotic fluctuations of each amplitude. In addition two zero exponents

are visible, reflecting the phase dynamics of each chaotic oscillator. These exponents are

just caused by the two Goldstone modes of the uncoupled model. When the critical coupling

strength is crossed, the two independent phases are locked and only one Goldstone mode

survives, turning the second vanishing Liapunov exponent negative.

Apart from the just-mentioned 1:1 resonance higher order resonances may take place as

well. The interaction between the heart beat and the respiration cycles provides a nice experi-

mental demonstration of such a feature (see Pikovsky et al., 2001 for details).
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While there is nowadays a quite concise description of chaos in systems with few degrees

of freedom, the problem of adequate approaches for complex dynamics in high-dimensional

chaotic systems is still unsolved. For each experimental problem one may of course tailor ap-

propriate tools, but a concise pattern is still missing. We are trying to describe some common

features, concerning model systems, characteristic quantities, and paradigmatic experiments.

But our presentation is selective and far from being exhaustive. Even after 20 years of devel-

opment in Nonlinear Dynamics, a comprehensive presentation of spatiotemporal chaos has to

be postponed to the future.

12.1 Models for Space–Time Chaos
Within a physical description of dynamical systems, time is a continuous variable. The spatial

degree of freedom is either discrete or continuous depending on whether one deals with lat-

tice dynamics or an effective hydrodynamic description in terms of continuous fields. Thus,

depending on the properties of the variables, one may introduce the classification of dynami-

cal systems shown in Table 14 where, in addition, we have taken time discrete dynamics into

account. In each case one ends up with a different model class, either partial differential equa-

tions, systems of coupled differential equations, or coupled map lattices. For each class we

will discuss typical examples which have proven to be fruitful for investigating spatiotemporal

complex dynamics. But our discussion is far from being exhaustive and just focuses on some

selected features.

12.1.1 Coupled Map Lattices
As demonstrated in the previous chapters, time discrete dynamical systems, i. e., maps, have

proven to be fruitful for understanding features of low-dimensional dynamical systems. In

order to investigate fundamental aspects of the interaction between local chaotic motion and

spatial coupling, models of coupled maps have been proposed (cf. Kaneko, 1993, or Chazottes

Table 14: Classification of spatiotemporal chaotic models.

space time

discrete discrete coupled map lattice

discrete continuous system of differential equations

continuous continuous partial differential equation

Deterministic Chaos: An Introduction, Fourth Edition. H.-G. Schuster and W. Just
Copyright c©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40415-5



218 12 Spatiotemporal Chaos

and Fernandez, 2005, for recent overviews). A particularly simple example is given by a

spatially one-dimensional diffusively coupled map lattice

x(ν)
n+1 = (1− ε) f

(
x(ν)

n

)
+

ε
2

[
f
(

x(ν+1)
n

)
+ f

(
x(ν−1)

n

)]
(12.1)

where 0 ≤ ν ≤ L−1 denotes the lattice sites, n the discrete time, f (x) the single site map, and

ε the coupling constant. The coupling derives from a spatially discrete Laplace operator. But

one should not overestimate such an argument since no meaningful continuum limit exists.

Although no derivation of such models from first principles is available, coupled map lattices

have proven to be useful for modelling quite diverse dynamical phenomena (cf., e. g., Kaneko,

1989, for a detailed numerical study of coupled logistic maps or Yanagita and Kaneko, 1995,

for the modelling of a hydrodynamical problem). Thus, coupled map lattices are a testing

ground for approaches in studying spatiotemporal chaos mainly because the effort for numer-

ical simulations even on large lattices is quite small. Apart from plain numerical approaches

coupled map lattices are among those few spatially extended systems where even analytical

approaches in the space–time chaotic regime can be applied. Such studies mainly rely on sym-

bolic dynamics along the lines of Section 3.1 and link dynamical systems with models from

statistical mechanics, such as probabilistic cellular automata (Gielis and MacKay, 2000).

12.1.2 Coupled Oscillator Models
Systems of coupled differential equations, e. g., a lattice of nonlinear oscillators, are in partic-

ular used for testing hypothesis of extended nonlinear systems by numerical means. Following

an idea of Kuramoto (1984) one may concentrate on fundamental aspects by emphasizing the

general structure of such models. Assuming that the individual oscillators are described in

terms of a phase variable, one ends up with a kind of minimal model

φ̇ν(t) = ων −
N−1

∑
µ=0

Jνµ sin(φν(t)−φµ(t)) (12.2)

where φν denotes the 2π-periodic phase of the oscillator at lattice site ν, ων its free frequency,

and Jνµ the spatial coupling. The trigonometric coupling function takes the periodicity into

account. Models of this type may be derived from general arguments and thus possess some

degree of universality.

If one considers the simplest case of global coupling, Jνµ = J/N, J > 0 then even analyt-

ical solutions are available in the limit of large system size N → ∞. The essential idea uses

arguments borrowed from traditional mean-field theories. Introducing a complex valued order

parameter

Z = Rexp(iΨ) =
1

N

N−1

∑
µ=0

exp(iφµ) (12.3)

the coupled system (12.2) is written as an effective one-oscillator model

φ̇ν(t) = ων − JRsin(φν(t)−Ψ) (12.4)

which can be integrated without great effort. Actually just two types of solutions are possible.

If |ων|< JR then the phase locks onto a fixed point, while for |ων|> JR a continuous rotation
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Figure 171: Liapunov exponents of the Kuramoto model in the partially synchronized state, J = 1.75Σ.

Frequencies ων are distributed according to a Gaussian distribution of variance Σ. Full line: analytical

result; dots: numerical simulation of a system of size N = 100. (After Radons, 2004.)

prevails. The actual value of the order parameter may be worked out self-consistently. As

on average the rotating solutions do not contribute to eq. (12.3), only the oscillators locking

on the fixed points will determine Z for large system size N. Let us, e. g., assume that the

frequencies ων are distributed according to a symmetric single humped distribution g(ω) =
limN→∞ ∑ν δ(ω−ων)/N. If we recall that the stable fixed point of eq. (12.4) obeys sin(φµ −
Ψ) = ωµ/(JR) and cos(φµ −Ψ) =

√
1− sin2(φµ −Ψ) then, taking the sum over all lattice

sites which lock onto the fixed-point solution, the self-consistency condition reads

R =
1

N ∑
µ∈fix

exp(i(φµ −Ψ)) =
Z JR

−JR

(√
1−

( ω
JR

)2

+ i
ω
JR

)
g(ω)dω

= JR
Z 1

−1

√
1− x2g(JRx)dx . (12.5)

There are two different solutions of this self-consistency condition. If the coupling J is small

then only the trivial solution R = 0 exists, meaning that all oscillators rotate incoherently.

When the coupling exceeds a critical value J > Jc = 2/(πg(0)) then it is quite straightforward

to check that a nontrivial solution R > 0 is born. Thus there appears a transition towards a

partially synchronized state where a fraction of oscillators rotate coherently. The scenario is

similar to the synchronization phenomena described in Chapter 11.

The two different phases can be distinguished on the basis of their Liapunov exponents,

too. Since the Kuramoto model essentially boils down to a single oscillator dynamics,

eq. (12.4) the Liapunov exponents can even be computed analytically in the limit of large N
(Radons, 2004). Within the partially synchronized state, the negative Liapunov exponents re-

flect the dynamics of the synchronized oscillators, while the vanishing exponents correspond

to the nonsynchronized part of the system, cf. Fig. 171.

Generalizations of the approach, e. g., for other distributions of the frequencies and to

some extent even for nonglobal coupling, are available in the literature. But already the sim-

ple model described above shows rather subtle features if stability properties of the partially

synchronized phase are addressed (Strogatz, 2001). Above all, the observed phenomenon dis-

plays a phase-transition-like characteristic, in particular, since the limit of large system size is

involved.
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12.1.3 Complex Ginzburg–Landau Equation
The dynamics of complex patterns close to stability thresholds leads to features which can be

described by universal equations of motion. A particularly important example is the complex

Ginzburg–Landau equation (cf. Aranson and Kramer, 2002, for a recent review). In one spatial

dimension it takes the form, using dimensionless variables

∂A
∂t

= A+(1+ ib)
∂2A
∂x2

− (1+ ic)|A|2A . (12.6)

Here the complex field A(x, t) describes amplitude and phase modulations of an underlying

regular structure close to some stability threshold. The two real-valued parameters b and c
characterize the linear and nonlinear dispersion.

When starting from physical equations of motion, e. g., a reaction diffusion equation de-

scribing a concentration field c(x, t) an effective description in terms of the complex Ginzburg–

Landau equation can be obtained when a regular structure, e. g., a plane wave becomes un-

stable. The pattern in the neighborhood of the stability threshold is described by a modulated

structure

c(x, t) = A(x, t)exp(iωt + ikx)+ c.c. (12.7)

where the space–time dependence of the amplitude A is slow with respect to the underlying

regular structure. The amplitude equation (12.6) is derived by a formal perturbation scheme

(cf. Cross and Hohenberg, 1993). Its structure is essentially determined by symmetries of

the underlying dynamics. In that respect, equations like eq. (12.6) yield a quite universal

description of spatiotemporal dynamics close to instability thresholds. These concepts are the

generalizations of bifurcation analysis to spatially extended systems.

The dynamics of the complex Ginzburg–Landau equation is highly nontrivial. While the

investigation of different regular stationary and periodic structures can still be done by analyti-

cal tools, one relies on numerical simulations for studying spatiotemporal chaotic states. There

are at least two qualitatively different chaotic regimes. Whenever the amplitude A vanishes

a defect occurs since the complex phase is not well defined at such a point. Thus, dynamics

without defects can be described only in terms of the phase variable [cf. eq. (12.8)]. Chaotic

motion of the phase without defects is called phase turbulence, whereas defect chaos is gener-

ated by chaotic motion of point defects of a pattern. Occurrence and stability of the different

states depends of course on the choice of the two parameters b and c.

12.1.4 Kuramoto–Sivashinsky Equation
Phase turbulent dynamics can be described in terms of a the local phase φ(x, t) or the local

wave vector u(x, t) = ∂φ/∂x, which is just the spatial derivative of the phase. According to

Kuramoto and Tsuzuki (1976) an appropriate equation of motion can be derived from the

Ginzburg–Landau equation. In terms of dimensionless variables it reads

∂u
∂t

= −∂2u
∂x2

− ∂4u
∂x4

+u(x, t)
∂u
∂x

. (12.8)

Equation (12.8) contains no parameter, apart from the system size. Thus it may be considered

as a kind of universal model for space–time chaos. The spatiotemporal chaotic motion which
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Figure 172: Diagrammatic view of the energy transport in the Kuramoto–Sivashinsky equation, (12.10).

The dispersion relation λk = k2 −k4 and the logarithm of the temporal average of the Fourier amplitude,

ln〈|uk|2〉, show qualitatively similar dependence on the wavenumber k. Arrows indicate the transport

processes in the integral, inertial, and dissipation range, respectively.

appears in systems of sufficiently large size may be understood qualitatively by arguments

which originate from hydrodynamics (cf. Section 12.3.1). Rewriting the equation of motion

in terms of Fourier modes

uk(t) =
1

L

Z L

0
exp(ikx)u(x, t)dx (12.9)

one obtains

u̇k = (k2 − k4)uk − i∑
k′

k′uk−k′uk′ . (12.10)

This equation of motion contains linear contributions which are governed by the dispersion

relation λk = k2 − k4 and a coupling of Fourier modes stemming from the nonlinear part. De-

composition in terms of Fourier modes usually does not help to compute the solution. But on

that level one may understand qualitatively the mechanism for the generation of spatiotempo-

ral chaos. The linear contribution tends to amplify Fourier amplitudes in the large-wavelength

regime, k < 1, while modes with small wavelengths, k > 1 are damped. If only the nonlin-

ear part of the equation of motion were present then it is quite straightforward to check that

the total “energy”
R L

0 |u(x, t)|2dx/L = ∑k |uk|2 would be preserved. Thus the nonlinear part

just redistributes the “energies” of the modes, |uk|2. Such a mechanism is dominant in the

so-called “inertial range”, which is the wavenumber regime between the “dissipation range”

k � 1 and the “integral range” k � 1. Thus the whole dynamics may be viewed as an energy

transfer process from large to small scales while, on average, the individual energies 〈|uk|2〉
develop a k-dependence which is determined by the linear dispersion. Such arguments which

are summarized in Fig. 172 are at the heart of a phenomenological explanation of turbulence.

12.2 Characterization of Space–Time Chaos
Traditional characterization of spatiotemporal dynamics relies to some extent on spatiotem-

poral correlation functions and Fourier spectra. Different types of correlation function may

be introduced, depending on the space–time pattern under consideration (cf. e. g., Eckmann

and Ruelle, 1985, and Cross and Hohenberg, 1993). In addition quantities like dimensions,
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entropies, and Liapunov exponents which have been discussed in Sections 6.2 and 6.3 can

be applied as well. A formulation in terms of corresponding densities is more suitable when

extensive properties are considered. There is still no generally accepted characterization of

space–time chaos available. Here we focus on the question of how the concept of Liapunov

exponents can be generalized to take the particular aspect of spatial extension into account.

Similar ideas may be applied to other characteristic quantities as well.

12.2.1 Liapunov Spectrum
Liapunov exponents quantify the sensitivity of the motion with respect to changes of the initial

condition. When considering a spatially extended system, i. e., a system with many degrees

of freedom, then many exponents exist which measure the sensitivity with respect to different

modes. To be definite, when considering a coupled map lattice, eq. (12.1), then the equation of

motion for small disturbances δx(ν)
n is obtained by linearization with respect to the reference

trajectory x(ν)
n (cf. Section 6.2 for the case of multi-dimensional maps)

δx(ν)
n+1 = (1− ε) f ′

(
x(ν)

n

)
δx(ν)

n +
ε
2

[
f ′

(
x(ν+1)

n

)
δx(ν+1)

n

+ f ′
(

x(ν−1)
n

)
δx(ν−1)

n

]
. (12.11)

Exponential growth of these perturbations determines the different Liapunov exponents λσ,

0≤ σ≤ L−1. When considering the limit of large lattices L→∞ then these exponents behave

like intensive quantities and are described in terms of a smooth spectrum �(ρ), 0 ≤ ρ ≤ 1

λσ = �(σ/L), 0 ≤ σ ≤ L−1 . (12.12)

Such Liapunov spectra are cumbersome to compute because of the time-dependent fluc-

tuations, f ′
(

x(ν)
n

)
, appearing in eq. (12.11). But some of the essential features can already be

observed when considering the trivial example of generalized Bernoulli maps

f (x) = rx mod 1, r > 1 . (12.13)

Then the derivatives in eq. (12.11) are time independent and the solution for the perturbations

may be written in terms of plane waves

δx(ν)
n = exp(λσn)exp(ikσν) (12.14)

where the wavenumbers due to periodic boundary conditions obey kσ = 2πσ/L. The different

Liapunov exponents are obtained from eq. (12.11)

exp(λσ) = (1− ε)r + εr cos(kσ) . (12.15)

Strictly speaking, such an expression is only correct if ε ≤ 1/2, since Liapunov exponents are

by definition real-valued. For larger values of the coupling, the modulus of the right-hand side

of eq. (12.11) has to be considered. Finally, the Liapunov spectrum according to eq. (12.12)

reads

�(ρ) = lnr + ln |1− ε+ εcos(2πρ/L)| . (12.16)

Equation (12.14) tells us that a plane wave is related with each Liapunov exponent. Such

Liapunov modes describe the spatial pattern associated with the corresponding growth rate.

In general Liapunov modes are far more complicated and even their definition allows for some

degree of ambiguity.
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Figure 173: Propagation of a perturbation in a system of coupled Bernoulli maps, eqs. 12.1) and (12.13)

for ε = 0.1 and r = 2. Space–time plot of the difference ∆ = |y(ν)
n − x(ν)

n | of two replicas with initial

condition differing at site ν = 500 only.

12.2.2 Co-moving Liapunov Exponent

Propagation of signals is one of the ubiquitous features of spatially extended systems. Within

a spatiotemporal chaotic system, this property has been studied, e. g., by observing how lo-

calized structures of the initial condition propagate in the course of time. Figure 173 shows a

simple example generated from a coupled map lattice. The difference of two patterns, which

are obtained from two initial conditions differing at one lattice site only, is displayed. The

propagation of the error at a finite speed is clearly visible.

In order to quantify the propagation of disturbances, a velocity-dependent Liapunov ex-

ponent has been proposed by Deissler and Kaneko (1987). This exponent measures the ex-

ponential growth of perturbations in a co-moving reference frame. Starting from a localized

disturbance at one lattice site, say ν, δx(ν)
0 = δν,0 the exponential growth is observed in a

moving reference frame through the law

|δx(ν)
n | 	 exp(Λ(v)n) (12.17)

where the reference velocity v = ν/n determines the relative scaling between position ν and

time n. By definition Λ(v = 0) coincides with the maximal Liapunov exponent of the sys-

tem, while Λ(v) > 0 indicates that perturbations with velocity v tend to propagate. Thus the

maximal propagation speed obeys Λ(v) = 0.

While a numerical evaluation of this idea is fairly straightforward, a direct analytical com-

putation is quite difficult even for the simple model of coupled Bernoulli maps. Although

an analytical solution for Λ(v) is still available we refer to the next paragraph for a simpler

but indirect determination of the co-moving Liapunov exponent. Figure 174 summarizes the

result. As expected, the maximal propagation speed increases when the coupling strength is

increased. Because of the diffusive coupling, eq. (12.1), speeds are limited to the range v ≤ 1.
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Figure 174: Co-moving Liapunov exponent for a system of coupled Bernoulli maps, eqs. 12.1) and

(12.13), with r = 2 and different values of the coupling strength ε (after Kaneko, 1992).

12.2.3 Chronotopic Liapunov Analysis
Fronts, propagating in a chaotic medium as displayed in Fig. 173, may have an exponentially

decaying spatial profile. This property is already implicitly assumed in the definition of the

co-moving Liapunov exponent, eq. (12.17), when keeping the scaling n = ν/v in mind. Thus

propagation of signals may be analyzed from the very beginning by taking this profile into

account (Politi and Torcini, 1992). Using the ansatz

δx(ν)
n = exp(γν)δz(ν)

n (12.18)

the equation of motion (12.11) reads

δz(ν)
n+1 = (1− ε) f ′

(
x(ν)

n

)
δz(ν)

n +
ε
2

[
f ′

(
x(ν+1)

n

)
exp(γ)δz(ν+1)

n

+ f ′
(

x(ν−1)
n

)
exp(−γ)δz(ν−1)

n

]
. (12.19)

When analyzing the temporal evolution of eq. (12.19), we have essentially changed the bound-

ary conditions which originally apply to δx(ν)
n but which are now imposed on the new variables

δz(ν)
n . It is, in fact, this change which is the whole clue to the analysis.

Equation (12.19) describes the propagation of a spatially exponential profile where the

decay rate γ of the profile enters explicitly as a parameter. As in the previous sections we

may just compute the largest Liapunov exponent L(γ) of the equation of motion (12.19). It

depends, of course, on the shape of the profile, i. e., on γ.

For the purpose of illustration we again resort to the case of coupled Bernoulli maps,

eq. (12.13). As in the previous case the exponential growth rate is computed straightforwardly

from eq. (12.19) using δz(ν)
n = exp(L(γ)n), since the time-dependent derivatives turn out to be

constant, f ′(x(ν)
n ) = r

exp(L(γ)) = (1− ε)r + εr cosh(γ) . (12.20)

For γ = 0 we obtain of course the largest Liapunov exponent, λσ=0 [cf. eq. (12.15)].
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The growth rate L(γ) and the co-moving Liapunov exponent Λ(v) are related through a

Legendre transformation. If we evaluate the definition (12.17) of the co-moving Liapunov

exponent for a neighboring lattice site ν+∆ν, we have

δx(ν+∆ν)
n 	 exp[Λ(v+∆ν/n)n] 	 exp[Λ(v)n+Λ′(v)∆ν] (12.21)

where a Taylor series expansion has been employed. Thus the front has a spatial profile with

exponential decay rate

γ = Λ′(v) . (12.22)

On the other hand, eq. (12.18) in connection with the exponent L(γ) tells us that

δx(ν)
n 	 exp(γν)exp[L(γ)n] = exp([γv+L(γ)]n) (12.23)

where we used the scaling in terms of the front velocity, v = ν/n. Hence, comparison with the

definition (12.17) of the co-moving Liapunov exponent yields

Λ(v) = γv+L(γ) . (12.24)

Equations (12.22) and (12.24) constitute a Legendre transformation. Using the inverse trans-

formation L′(γ) = −v it is, in principle, straightforward to compute explicitly the co-moving

Liapunov exponent of the coupled Bernoulli maps from eq. (12.20)

One may develop a whole consistent theory for spatiotemporal exponents following the

ideas presented in this paragraph. Such an approach is sometimes called chronotopic analysis

(Lepri et al., 1997). To some extent it is based on the same formal concepts which we have

already described in Section 6.3 in the context of the multifractal analysis.

12.3 Nonlinear Nonequilibrium Space–Time Dynamics
Although high-dimensional chaotic behavior still poses one of the major challenges for Non-

linear Dynamics, it is quite well established that the understanding of spatiotemporal chaotic

motion is at the heart of several physical phenomena. We briefly describe here three illus-

trative examples, mainly from nonequilibrium physics, where application of such concepts is

potentially fruitful and experimentally relevant.

12.3.1 Fully Developed Turbulence
Hydrodynamic turbulence is the classical example of nonlinear complex dynamics. In its

simplest form the underlying physical equations of motion, i. e., the Navier–Stokes equation

and the continuity equation for a simple, incompressible, viscous fluid, are nonlinear partial

differential equations for the velocity field �u(�r, t). Written in dimensionless units the free

parameter, apart from the geometry of the boundary conditions and the driving force, is given

by the Reynolds number Re = LU/ν. Here L denotes the lateral extension of the system, e. g.,

the tube diameter, U the order of magnitude of the velocity field, e. g., the mean velocity or the

square-root of the second moment, and ν the kinematic viscosity. Due to scaling properties,

flows with the same Reynolds number and the same geometry of boundary conditions are

similar.
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Properties of the turbulent state may already be understood by simple dimension and sta-

tistical arguments (see, e. g., Frisch, 1995, for a comprehensive exposition). Energy is injected

into the flow on large length scales of order L, the integral scale, either due to boundary con-

ditions or stirring forces. Let ε denote the energy injection rate per unit mass and time. This

process induces the velocity of order U at the length scale L. As the physical dimension

of the energy rate is given by [ε] = m2/s3 these quantities are related by ε ∼ U3/L. In a

stationary turbulent state the same amount of energy is dissipated by viscosity at a length

scale η, the dissipation scale. As the only physical relevant parameters are the energy rate ε
and the viscosity ν with dimension [ν] = m2/s the unique way to obtain such a dissipation

scale is η ∼ (ν3/ε)1/4. Combining these expressions, the ratio of the two length scales obeys

L/η ∼ Re3/4. Thus the scales are well separated for high Reynolds number flows, i. e., in the

regime of fully developed turbulence. Energy is injected on the integral scale and dissipated

on the dissipation scale. In between, i. e., in the inertial range η � R � L, a ballistic trans-

port takes place. From a qualitative point of view the dynamics looks similar to that in the

Kuramoto–Sivashinsky equation (cf. Section 12.1.4), which sometimes serves as a toy model

for fully-developed turbulence.

Quantitative characterization of hydrodynamic turbulence is usually done by suitable cor-

relation functions of the velocity field. In order to get rid of large scale features like the mean

flow rate, which are nonuniversal and depend on the particular stirring mechanism, one con-

siders spatial velocity differences, �u(�r + �R, t)−�u(�r, t), with �R chosen in the inertial range.

The statistical characterization is done in terms of moments of such differences which in its

simplest form reads

Mq(R) = 〈|�u(�r +�R, t)−�u(�r, t)|q〉 . (12.25)

Within the inertial range the moment (12.25) shows a power-law dependence on R, due to the

energy transport process from large to small scale. The law can be obtained by an heuristic

dimensional argument which has been developed independently by Kolmogorov and Obukov,

Heisenberg and Weizsäcker, and Onsager. One assumes that, in the limit of large Reynolds

numbers, the energy transport at scale R, i. e., the statistical properties of Fourier modes of

wavenumber k ∼ 1/R, depends only on the energy transfer rate ε and on the local scale R.

Then, the only dimensionally correct expression for the moment (12.26) reads

Mq(R) ∼ εq/3Rq/3 . (12.26)

One obtains a power law with an exponent ζq = q/3 in the inertial range η � R � L. Such a

law can be derived even analytically from the Navier–Stokes equation for q = 3. It is also con-

firmed experimentally. But small deviations appear which are amplified when large exponents

q are considered. Such “intermittency corrections” are attributed to nonuniform features of

the dissipation process which have been implicitly neglected when deriving the result (12.26)

with the simple dimensional argument. Actually it is one of the main purposes of the mul-

tifractal approach introduced in Section 6.3 to model such deviations. But the derivation of

intermittency corrections from the full Navier–Stokes equation still poses one of the major

challenges of Nonlinear Dynamics.
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Figure 175: Single site map of the minimal spatiotemporal intermittent coupled map lattice (after Chaté

and Manneville, 1988).

12.3.2 Spatiotemporal Intermittency
Onset of turbulence is one of the most intense fields of research. A possible scenario based

on intermittency in spatially extended systems which goes beyond the investigation of low-

dimensional chaotic systems has been proposed by Kaneko (1985) on the basis of coupled

map lattices. Competition between local turbulent and laminar dynamics and spatial coupling

yields characteristic space–time patterns of turbulent and laminar phases.

A minimal model which captures all the essential ingredients has been introduced by Chaté

and Manneville (1988). The single site map (cf. Fig. 175)

f (x) =
{

r(1/2−|x−1/2|) if 0 ≤ x ≤ 1

x if x > 1
(12.27)

has a quite trivial dynamics. After a chaotic transient in the domain x < 1 the motion settles on

a “laminar” state in the range x > 1. Due to spatial diffusive coupling, eq. (12.1), the motion

becomes nontrivial. Below a critical coupling strength ε < εc typical initial conditions finally

settle in the laminar domain. But beyond that critical value a persistent space–time chaotic

motion is observed, while close to the threshold, intermittency characteristics appear in the

space–time pattern (cf. Fig. 176). Such space–time intermittent scenarios share some features

with phase transitions, e. g., if one considers the statistical properties of laminar and turbulent

sites. But the problem concerning universality, scaling behavior, and critical exponents is quite

subtle and still not completely settled (Bohr et al., 2001).

Spatiotemporal intermittency is apparently a common mechanism for the generation of

turbulence as it has been found in a wide class of dynamical models, such as the Ginzburg–

Landau equation, as well as in hydrodynamic experiments.

12.3.3 Molecular Dynamics
Concepts of Nonlinear Dynamics have been applied to investigate the motion of many-particle

systems, i. e., solids, fluids and gases, subjected to equilibrium and nonequilibrium condi-

tions. It is the main scope of such approaches to understand the fundamentals of Statistical

Physics from a dynamical point of view. In addition, the relation between quantifiers of chaotic

motion, like Liapunov exponents and fractal dimension spectra, and quantities of Statistical

Physics, like thermodynamical modules and transport coefficients, is of particular interest.
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Figure 176: Space–time plot of a spatiotemporal intermittent state of the Chaté–Manneville model for

r = 3 and ε = 0.361: black: turbulent sites x(ν)
n < 1; white: laminar sites x(ν)

n > 1.

As a prototype the equations of motion of classical mechanics are usually considered.

Without external driving forces, i. e., for the investigation of equilibrium states, they read

�̇qi = �pi/m (12.28a)

�̇pi = −
N

∑
j=1

�∇u(�qi −�q j) . (12.28b)

In particular, Liapunov spectra have been investigated recently. Because of the Hamilto-

nian structure of the equations of motion (12.28) the 6N Liapunov exponents obey a pairing

rule, λk + λ6N+1−k, since each expanding exponent possesses a contracting counterpart (cf.

Fig. 177).
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Figure 177: Liapunov spectrum of a two-dimensional hard disk system (cf. Posch and Forster, 2004, for

details).
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Such Liapunov spectra typically display exponents with small modulus. These exponents

are related to the slow dynamics of the system. This a part of the motion is typically attributed

to hydrodynamic behavior which can be described in terms of macroscopic densities and the

corresponding hydrodynamic equations of motion. In fact, the Liapunov vectors reflect this

behavior. While Liapunov vectors corresponding to large exponents are highly localized (i. e.,

only a small part of the components have appreciable size) the Liapunov vectors of the small

exponents show wave-like characteristics (Forster et al. 2004).

To investigate nonequilibrium features of the system (12.28), one applies driving forces

and appropriate damping terms to keep, e. g., the energy constant. The corresponding sta-

tionary states of the dynamical system can be linked with the nonequilibrium physics of the

corresponding many-particle system (cf., e. g., Ruelle, 1999). In particular, transport coeffi-

cients and entropy production can be related to properties of the Liapunov spectrum. But the

matter is currently not completely understood.



Outlook

Within this book we have tried to present a comprehensible introduction to deterministic chaos

from the theoretical as well as experimental point of view. In particular, we have stressed the

importance of self-similar structures, renormalization-group ideas, and universality. Several

aspects, which are still in their infancy and which have been barely touched in the last chapters

of the book, concern recent developments in that field.

First of all, even after several decades of research in nonlinear dynamics, the role of deter-

ministic chaos in systems with many degrees of freedom is not really understood. Such topics

are of utmost relevance when dealing, e. g., with interacting oscillator dynamics in biological

systems, nonequilibrium pattern formation in chemistry, or even the classical example of fully

developed turbulence and the significance of intermittency. There is still a considerable lack of

understanding of the fundamental aspects of the dynamics in high-dimensional phase spaces,

e. g., the concept of attractors and related ergodic properties. Furthermore proper tools for

analyzing high-dimensional motion are still missing since the standard concepts of nonlinear

data analysis are essentially confined to low-dimensional chaos.

Fundamental aspects of statistical physics, i. e., the foundations of nonequilibrium statis-

tical mechanics may benefit from recent developments in nonlinear dynamics. Some of these

ideas have been briefly sketched in the last chapters of the book. But there are still many

open questions. One puzzle, e. g., concerns the curious properties of heat transport in simple

nonlinear chains. Since quantum mechanics is at the heart of microscopic theories of many

particle systems, developments from quantum chaos are also expected to play a crucial role in

understanding nonlinear nonequilibrium physics properly.

Within the present book we focused entirely on deterministic dynamical systems. But the

interplay between stochastic forces and randomness with chaotic motion becomes increasingly

relevant. Nonlinear stochastic systems have been investigated for decades but the role of

chaotic motion is barely understood in this context. A prominent physical example are glass-

like phase transitions and aging which can be modelled by simple random chaotic systems.

The list is by no means complete. We have skipped all aspects related to mathemati-

cal approaches. While even low-dimensional chaotic motion still poses a considerable chal-

lenge from the rigorous point of view, the investigation of high-dimensional dynamics, i. e., on

infinite-dimensional phase spaces, is just beginning. Here, links between dynamical systems

and equilibrium statistical mechanics which are mediated by symbolic dynamics may give

new insight into the ergodic properties as qualitative changes of the motion can be mapped

onto equilibrium phase transitions.
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Above all, the major conclusion stays the same as we had already stated one decade ago

in the previous edition: Since nature is nonlinear, one has always to reckon with deterministic
chaos. This means, however, that predictions about future developments in the field of deter-

ministic chaos are as difficult or short-ranged as predictions of chaotic motion itself, i. e., there

is (fortunately) much scope for the unexpected. Interestingly enough, about 100 years ago,

James Clerk Maxwell (the founder of the theory of electromagnetism) wrote the following

far-sighted remark about the predictability of nonlinear, i. e., unstable, systems (quoted after

Berry, 1978): “If, therefore, those cultivators of the physical science from whom the intelligent
public deduce their conception of the physicist . . . are led in pursuit of the arcana of science
to the study of the singularities and instabilities, rather than the continuities and stabilities
of things, the promotion of natural knowledge may tend to remove that prejudice in favor of
determinism which seems to arise from assuming that the physical science of the future is a
mere magnified image of that of the past.”



Appendix

A Derivation of the Lorenz Model
For References see References to Chapter 2 on p. 260.

In the following we present a somewhat short derivation of the Lorenz model that should pro-

vide the reader with a feeling for the approximations involved. For a more rigorous treatment,

we refer the reader to the original articles by Saltzmann (1962) and Lorenz (1963) and the

monograph by Chandrasekhar (1961).

Consider the Rayleigh–Bénard experiment as depicted in Fig. 119. The liquid is described

by a velocity field�v(�x, t) and a temperature field T (�x, t). The basic equations which describe

our system are

a) the Navier–Stokes equations:

ρ
d�v
dt

= �F −�∇p+µ�∇2v (A.1)

b) the equation for heat conduction:

dT
dt

= κ�∇2T (A.2)

c) the continuity equation:

dρ
dt

+div(ρ�v) = 0 (A.3)

with the boundary conditions

T (x, y, z = O, t) = T0 +∆T
T (x, y, z = h, t) = T0 .

(A.4)

Here ρ is the density of the fluid, µ is its viscosity, p is the pressure, κ is the thermal

conductivity, and F = ρg�ez is the external force in the �ez-direction due to gravity. The

fundamental nonlinearity in hydrodynamics comes from the term �̇v = (�v ·�∇)�v + ∂�v/∂t
(which is quadratic in�v) in the Navier–Stokes equation (A.1).
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Figure 178: Convection rolls and geometry in the Bénard experiment.

To simplify the calculation, it is assumed a) that the system is translationally invariant in

the y-direction so that convection rolls extend to infinity as shown in Fig. 178, and b) that the

∆T -dependence of all coefficients – except in ρ = ρ̄(1−α∆T ) – can be neglected (Boussinesq

approximation). The continuity equation thus becomes

∂u
∂x

+
∂w
∂z

= 0 with u = vx and w = vz (A.5)

and, it is, therefore, convenient to introduce a function ψ(x, z, t) with

u = −∂ψ
∂z

and w =
∂ψ
∂x

(A.6)

such that (A.5) is automatically fulfilled.

As a next step we introduce the deviation θ(x, z, t) from the linear temperature profile via

T (x, z, t) = T0 +∆T − ∆T
h

z+θ(x, z, t) . (A.7)

Using (A.6) and (A.7) the basic equations can, according to Saltzmann, be written as

∂
∂t

�∇2ψ = −∂(ψ, �∇2ψ)
∂(x, z)

+ν�∇4ψ+gα
∂θ
∂x

(A.8)

∂
∂t

θ = −∂(ψ, θ)
∂(x, z)

+
∆T
h

∂ψ
∂x

+κ�∇2θ (A.9)

where

∂(a, b)
∂(x, z)

=
∂a
∂x

· ∂b
∂z

− ∂a
∂z

· ∂b
∂x

,

�∇4 =
∂4

∂x4
+

∂4

∂z4
(A.10)

ν = µ/ρ̄ is the kinematic viscosity, and the pressure term was eliminated by taking the curl in

the Navier–Stokes equations. In order to simplify (A.8) and (A.9), Lorenz used free boundary

conditions:

θ(0, 0, t) = θ(0, h, t) = ψ(0, 0, t) = ψ(0, h, t)

= �∇2ψ(0, 0, t) = �∇2ψ(0, h, t) = 0 (A.11)
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and retained only the lowest-order terms in the Fourier expansions of ψ and θ, and proposed

the following ansatz:

a
1+a2

1

κ
ψ =

√
2X(t)sin

(πa
h

x
)

sin

(
πh
z

)
(A.12)

=
√

2Y (t)cos
(πa

h
x
)

sin

(
πh
z

)

−Z(t)sin

(
2πz
h

)
(A.13)

where R ≡ (gαh3/χν)∆T is the Rayleigh number, a is the aspect ratio (see Fig. 178) and

Rc ≡ π4a−2(1 + a2)3. By inserting (A.12) and (A.13) into (A.8) and (A.9) and neglecting

higher harmonics, one finally obtains the Lorenz model:

Ẋ = −σX +σY (A.14a)

Ẏ = −XZ + rX −Y (A.14b)

Ż = XY −bZ (A.14c)

where the dot denotes the derivative with respect to the normalized time τ = π2h−2(1+a2)κt;
σ = ν/κ is the Prandtl number, b ≡ 4(1 + a2)−1, and r = R/Rc ∝ ∆T is the external control

parameter.

B Stability Analysis and the Onset of Convection and
Turbulence in the Lorenz Model

For References see References to Chapter 2 on p. 260.

Let us write the Lorenz equations (A.14) in the compact form

�̇X = �F(�X) (B.1)

and linearize around the fixed points

�X1 = 0 ; �X2 = (±
√

b(r−1) ; ±
√

b(r−1) ; r−1) , (B.2)

which are determined by

�F(�X1,2) = 0 . (B.3)

The first fixed point �X1 =�0 corresponds to thermal conductivity without motion of the liquid,

and its stability matrix

∂Fi

∂Xj

∣∣∣∣
�X1

=


 −σ σ 0

r −1 0

0 0 −b


 (B.4)

has the eigenvalues

λ1,2 = −σ+1

2
± 1

2

√
(σ+1)2 +4(r−1)σ ; λ3 = −b . (B.5)



236 Appendix

Figure 179: Qualitative behavior of the polynomial P(λ).

Thus, �X1 =�0 is stable, i. e., all eigenvalues are negative for 0 < r < 1. The Bénard convection

starts at r = 1 because then λ1 = 0, and this is just where the second fixed point �X2 (which

corresponds to moving rolls, as shown in Fig. 179) takes over. The stability matrix for �X2 is

∂Fi

∂Xj

∣∣∣∣
�X2

=


 −σ σ 0

1 −1 c
c c −b


 ;c ≡±

√
b(r−1) . (B.6)

Its eigenvalues are the roots of the polynomial

P(λ) = λ3 +(σ+b+1)λ2 +b(σ+ r)λ+2bσ(r−1) = 0 . (B.7)

One sees immediately that for r = 1 we have λ1 = 0, λ2 = −b, and λ3 = −(σ + 1), i. e., the

convection fixed point is marginally stable, and Fig. 179 shows that it is stable for 1 < r < r1.

At r1 < rc two of the eigenvalues become complex, i. e., two limit cycles result which are

stable so long as the real part of the complex eigenvalues is smaller than zero. For r = rc these

real parts become zero, i. e., we have two eigenvalues λ = ±iλ0, which lead via (B.7) to

rc = σ
σ+b+3

σ−b−1

(
= 24.7368 for a = 10, b =

8

3

)
.

Above rc the limit cycles become unstable (the complex eigenvalues have positive real parts),

and chaos sets in. This analysis is consistent with the numerical result obtained by Lorenz,

who found chaotic behavior for σ = 10, b = 8/3 above rc = 24.74.

C The Schwarzian Derivative
For References see References to Chapter 2 on p. 260.

Not all unimodal functions (i. e., continuously differentiable maps f that map the unit interval

[0, 1] onto itself with a single maximum at x = 1/2 and are monotonic for 0 ≤ x ≤ 1/2 and

1/2 < x ≤ 1) display an infinite sequence of pitchfork bifurcations.
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Figure 180: Behavior of f 2(x) = f 2′(x0)x+bx3, b ≡ f 2′′′(x0)/3! near x0 = 0 for a) S f < 0, i. e., b < 0,

and b) S f > 0, i. e., b > 0.

In addition to being unimodular, the Schwarzian derivative of f

S f ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

∝
d2

dx2
[ f ′(x)]−1/2 (C.1)

must be negative over the whole interval [0, 1]. This is, for example, true for the logistic map,

since f ′′′(x) = 0.

To make this requirement, which at first sight appears unusual, more plausible, we note

the important property that S f < 0 implies a negative Schwarzian derivative for all iterates of

f , i. e., S f n < 0. This can be verified by direct calculation. As a consequence, it is found that

at a fixed point x0 of f that just becomes unstable, i. e.,

f ′(x0) = −1 (C.2)

and

f 2′(x0) = [ f ′(x0)]2 = 1 (C.3)

f 2′′(x0) = f ′′(x0){[ f ′(x0)]2 + f ′(x0)} = 0

the third derivative of f 2(x0) becomes negative for S f < 0, and, near x0 = 0, f 2(x) behaves

as shown in Fig. 180, which can lead to a pitchfork bifurcation. The same figure shows that a

pitchfork bifurcation becomes impossible for S f > 0.

The importance of the Schwarzian derivative had first been noted by Singer, who showed

that unimodal maps with S f < 0 cannot have more than one periodic attractor. Later Gucken-

heirner and Misurewicz proved that, in this case, all points in [0, 1] (i. e., with the exception

of a set of measure zero) become attracted to it. The proofs and references can be found in the

monograph by Collet and Eckmann (1980).
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Figure 181: Renormalization-group steps for the one-dimensional Ising Model. Top: Spins with odd

indices are integrated out. Bottom: The correlation length in the renormalized system becomes smaller.

D Renormalization of the One-Dimensional Ising Model
For References see References to Chapter 2 on p. 260.

The functional renormalization group which is used in this book has been constructed in anal-

ogy to the renormalization-group method for critical phenomena. This section explains the

method for critical phenomena (which is simpler than the functional renormalization method)

for the example of the one-dimensional Ising model. Although the one-dimensional Ising

model has several strange features (its transition temperature is zero, etc., see below), these

are outweighed by the fact that every renormalization-group step can be performed explicitly.

It is assumed that the reader is familiar with the usual exact solution of this model that can be

found in most textbooks on statistical mechanics.

The partition function of the one-dimensional Ising model has the well-known form

Z = ∑
{σi}

e∑i σiσi+1 (D.1)

where β = J/T is the ratio of coupling constant J and temperature T ; the spin variables σi
take the values σi = ±1, and the sites are i = 0 . . . N. The renormalization-group steps are

visualized in Fig. 181: First, we sum in (D.1) over all spin variables σi with odd i. Then we

relabel the remaining variables with even i:

σ2i → σi/α (D.2)

(for our simple example, we have α = 1; but for the two-dimensional Ising model, one needs

α �= 1). Figure 181 shows that the system of residual spins exhibits the same pattern as be-

fore and only two factors have changed: all lengths are reduced by a factor of two and the

coupling between the residual spins becomes renormalized (β → β′). At the transition tem-

perature T = Tc = 0, the correlation length is infinite and the spin pattern is self-similar for all

length scales, i. e., repeated applications of the renormalization-group procedure always lead

to similar results.

To perform these steps explicitly, we consider a typical sum over an odd variable in (D.1):

Z3 = ∑
σ3

eβ(σ2σ3+σ3σ4) = 2[(coshβ)2 +σ2σ4(sinhβ)2] . (D.3)
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This can be written as

Z3 = c · eβ′σ2σ4 = c[coshβ+σ2σ4 sinhβ] (D.4)

with

tanhβ′ = (tanhβ)2 . (D.5)

Equation (D.5) is obtained by comparing the right-hand sides of (D.3) and (D.4), keeping in

mind that σ2 and σ4 have only the values ±1.

In the next step, we relabel the spins according to (D.2) and obtain the renormalized ver-

sion of Z:

Z(β) = Z(β′) = cN/2 ∑
{σi}

eβ′ ∑N/2
i σiσi+1 . (D.6)

(The constant c will not be further considered because it cancels in all thermodynamic aver-

ages). The renormalized coupling β′, between the residual spins is, according to (D.6):

β′ = artanh [(tanhβ)2] ≡ R2(β) . (D.7)

Iteration of the renormalization procedure yields

β′′ = R2[R2(β)] = R4(β) . (D.8)

The last equal sign means that two repeated renormalizations are equivalent to one renormal-

ization where only every fourth spin is retained, i. e., the renormalization-group operators R
form a semigroup (“semi” because no inverse element exists). The fixed points of (D.7) are

β∗ = ∞ and β∗ = 0 (D.9)

i. e., they occur at zero temperature (the transition temperature of the one-dimensional Ising

model) and at infinite temperature. In both limits, the spin pattern is self-similar (the spin

system is completely disordered at T = ∞, and at T = 0 all spins are aligned). For β > 0, the

system is always driven (by repeated applications of R2) to the stable fixed point β∗ = ∞.

Because the correlation length ξ is reduced by a factor of two, after one renormalization

step, we can immediately determine the temperature dependence of ξ via the following scaling

argument:

ξ(β) = 2ξ(β′) (D.10)

→ ξ(β) = 2{[artanh [(tanhβ)2]} = 2nξ{[artanh(tanhβ)2n]} . (D.11)

For β � 1, the variable n can be chosen such that

(tanhβ)2n = const. (D.12)

→ 2n ∝ 1/ log(tanhβ) (D.13)

→ ξ ∝ 1/ log(tanhβ) (D.14)

This last relation can be verified by direct computation of the correlation function:

〈σ j+rσ j〉 ≡ ∑
{σi}

eβ∑i σiσi+1 σ j+1σ j/

(
∑
{σi}

eβ∑i σiσi+1σ j+1σ j

)
(D.15)

= (tanhβ)r ≡ e−r/ξ (D.16)
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where we used

∑
σi+1

eβσiσi+1 = 2coshβ (D.17)

and

∑
σi+1

eβσiσi+1σi+1 = 2sinhβ . (D.18)

It should be noted that for more complicated systems (e. g., the two- or three-dimensional

Ising model), the elimination of spin variables in one renormalization step leads to next-

nearest-neighbor and higher-order couplings (between the spins), and it is part of the art of

renormalization to keep track of them.

E Decimation and Path Integrals for External Noise
For References see References to Chapter 2 on p. 260.

Here we present a derivation of the scaling form of the Liapunov exponent (4.90) that follows

an important article by Feigenbaum and Hasslacher (1982). Our main aim is to explain their

decimation method which has, on the one hand, a wide range of potential applications (for

example to the transition from quasi-periodicity to chaos in Chapter 7), and, on the other

hand, close parallels to the renormalization of the one-dimensional Ising model (explained in

Appendix D).

As a first step, we write the iterates of (4.86)

xn+1 = f (xn)+ξn (E.1)

as integrals over δ-functions:

x1 = f (x0)+ξ0 =
Z

dx1 x1δ[x1 − f (x0)−ξ0] (E.2a)

x2 = f [ f (x0)+ξ0]+ξ1 (E.2b)

=
Z

dx1 dx2 x2δ[x2 − f (x1)−ξ1]δ[x1 − f (x0)−ξ0]

...

xn =
Z n

∏
j=1

dx j xnδ[x j+1 − f (x j)−ξ j] (E.2c)

The ξ j are independent random variables with Gaussian probability distributions:

P0{ξ j} = ∏
j

P[ξ j; σ2] ≡ ∏
j

1√
2πσ

e
−ξ2

j/2σ2

. (E.3)

If we use eqs. (E.2c), (E.3) and integrate over {ξi}, the average of xn becomes

〈xn〉 =
Z

∏
j

dξ j P0{ξ j} xn (E.4)

=
Z n

∏
j=1

dx j xn

n−1

∏
i=0

P[xi+1 − f (xi); σ2] . (E.5)
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This average has the form of a path integral that is (if the time variable i is interpreted as a

site index) reminiscent of the thermodynamic average of a magnet and, therefore, well-suited

for a renormalization-group treatment. The idea is to perform the integration over the xi step
by step, i. e., the renormalization-group treatment consists of integrating out all xi with odd is
(this is called “decimation”) and rescaling the variables such that the whole operation can be

repeated.

Let us choose n = 2q, q integer, and separate variables with even and odd indices in (E.4):

〈xn〉 =
Z n/2

∏
1

dx2i xn

n/2

∏
1

dx2i−1

n/2−1

∏
0

P[x2i+2 − f (x2i+1); σ2]×

P[x2i+1 − f (x2i); σ2] .

The relevant integrals over the odd variables,

I =
Z

dx2i+1 exp{−[x2i+2 − f (x2i+1)]2/2σ2 − [x2i+1 − f (x2i)]2/2σ2}2 (E.6)

are evaluated using the saddle-point approximation that is valid for small noise amplitudes

σ � 1.

If we have an integral over a function which is sharply peaked at x∗, the simplest form of

the saddle-point approximation consists of replacing the integral by the integrand taken at x∗.

Consider, for example, for N � 1 the integral

I0 =
Z

dx e−NF(x) . (E.7)

Using the saddle-point approximation this becomes

I0 ≈
Z

dx exp

{
−N

[
F(x∗)+

1

2
F ′′(x∗)(x− x)2

]}

= e−NF(x∗) ·
√

2π
NF ′′(x∗)

(E.8)

where the “saddle point” x∗ is determined by the condition that e−NF(x) has a maximum at x∗,

i. e.,

F ′(x∗) = 0 . (E.9)

If we apply this approximation to (E.6), we obtain instead of (E.9):

−[x2i+2 − f (x∗2i+1)] f ′(x∗2i+1)+ x∗2i+1 − f (x2i) = 0 (E.10a)

→ (x∗2i+1) ≈ f (x2i)+ [x2i+2 − f 2(x2i)] f ′[ f (x2i)] (E.10b)

and

I ≈ exp{[x2i+2 − f 2(x2i)]2/2σ̄2} (E.11)

(where we have omitted all pre-exponential factors because they will cancel out in 〈xn〉) and

σ̄2 = σ2 +{ f ′[ f (x2i)]}2σ2 . (E.12)
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Thus, σ̄ depends on x2i after one integration, i. e., when we repeat this procedure (see below)

we will always encounter x-dependent σs and instead of (E.6), we should therefore consider

from the very beginning

I =
Z

dx2i+1 exp{−[x2i+2 − f (x2i+1)]2/2σ2(x2i+1)

−[x2i+1 − f (x2i)]2/2σ2(x2i)} . (E.13)

In analogy to our previous calculation, we also obtain eq. (E.11) for this I, but with (E.12)

replaced by

σ̄2(x2i) = σ2[ f (x2i]+{ f ′[ f (x2i)]}2 ·σ2[x2i] . (E.14)

If we combine eqs. (E.5), (E.11) and (E.14) and rescale and relabel the variables, i. e.,

x2i ≡ x̄i/a , (a = −|a|) (E.15)

we obtain

〈xn〉 ∝
Z n/2

∏
1

dx̄i x̄n/2

n/2−1

∏
0

P[x̄i+1 −T f (x̄i); σ̄2(σ̄i)] (E.16)

where T is again the doubling operator

T f (x) = a f
[

f
( x

a

)]
(E.17)

and

σ̄2(x) = a2

{
σ2

[
f
( x

a

)]
+

[
f ′

[
f
( x

a

)]]2 ·σ2
( x

a

)}
≡ L̂ f σ2(x) (E.18)

i. e., σ̄2(x) is obtained by acting on σ2(xn) with a linear operator L̂ f . We note that the rescaling

and relabeling were necessary to bring the expression (E.16) for 〈xn〉 (after the odd variables

had been integrated out) back into the old form (E.4) such that the whole renormalization-

group transformation can be iterated.

After m renormalization steps we obtain finally

〈xn〉 ∝
n/2m

∏
1

dx̄i x̄n/2m

n/2m−1

∏
0

P[x̄i+1 −Tm f (x̄i); L̂Tm−1 f . . . L̂T f · L̂ f σ2(x̄i)] . (E.19)

For m � 1 we have again [see (4.52)]

Tm fR(x) = g(x)+ rδmah(x) with r = R∞ −R (E.20)

and in analogy to (4.35)–(4.42)

L̂Tm−1 f · . . . L̂ f σ2(x) ∼= L̂m
g σ2(x) ∼= β̂2mσ̂2(x) (E.21)

where β̂2 and σ̂2 denote the largest eigenvalue and eigenfunction of L̂g, respectively.

Thus, 〈xn〉 can be written as

〈xn〉 ∝
n/2m

∏
1

dx̄i x̄n/2m

n/2−1

∏
0

P[x̄i+1 −g(x̄i)− rδmah(x̄i); β̂2mσ̂2(x̄i)] . (E.22)
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For the Liapunov exponent λ, this yields

exp[nλ(r; σ)] =
∣∣∣∣ d

dx0
〈xn〉

∣∣∣∣ = exp[(n/2m)λ[rδm; σ · β̂m]] (E.23)

where σ denotes the initial noise amplitude. If we set β̂m ·σ = 1 and λ(x; 1) = L(x), we obtain

the desired scaling behavior for λ:

λ(r, σ) = σθL[rσ−γ] (E.24)

with

θ = log2/ log β̂ = 0.367 and γ = logδ/ log β̂ = 0.815 . (E.25)

Note that the numerical value for β̂ (β̂ = 6.618) that was obtained as the solution of the eigen-

value equation

L̂gσ̂2(x) = β̂2σ̂2(x) (E.26)

agrees closely with the best value for µ (µ = 6.557). This justifies our earlier treatment of

external noise.

F Shannon’s Measure of Information
For References see References to Chapter 6 on p. 266.

This short heuristic introduction into Shannon’s measure of information should enable the

reader to understand Chapters 3 and 6. For a more detailed treatment we recommend the book

by Shannon and Weaver (1949).

F.1 Information Capacity of a Store
Figure 182 a shows a system with two possible states. If the position of the points is unknown,

a priori, and we learn that it is in the left box, say, we gain by definition information amounting

to one bit. If we obtain this information, we save one question (with possible answer yes or

Figure 182: Information capacity of a store. a) A box with two states. b) It takes two questions (and

their answers) to locate a point in a system with four states: right or left? up or down? c) In order to

locate a point on a checkerboard with 64 = 26 states, one needs six questions.
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no, which we would have needed to locate the point). Thus, the maximum information content

of a system with two states is one bit.

For a box with four possible states, one needs two questions to locate the point, i. e., its

maximum information content I is

I = 2 (bits) (F.1)

(we will drop the unit “bit” in the following).

This can be written as the logarithm to the base two (ld) of the number of possible states:

I = ld4 . (F.2)

According to Fig. 182 c, this logarithmic relation between the maximum information content

I and the number of states N,

I = ldN (F.3)

is true in general.

F.2 Information Gain
Let us now calculate the average gain in information if one learns the outcome of statistical

events. Suppose we toss a coin such that heads or tails occur with equal probabilities

p1 = p2 =
1

2
. (F.4)

The information I acquired by learning that the outcome of this experiment is heads, say, is

I = 1 (F.5)

because there are two equally probable states, as in Fig. 182 a. This result can be expressed

via the {pi} as

I = −
(

1

2
ld

1

2
+

1

2
ld

1

2

)
(F.6)

or

I = −∑
i

pi ld pi . (F.7)

Equation (F.7) can be generalized to situations where the pis are different:

p1 �= p2 = 1− p1 . (F.8)

It then gives the average gain in information if we toss a deformed coin many times.

Let p1 = r/q, where r and q are mutually prime integers, and let us choose the number m
of events such that mr/q is again an integer. The total number of distinct states which occur if

one tosses a (deformed) coin m times is

N =
m!

(p1m)!(p2m)!
(F.9)

where we eliminated, by division, the permutations that correspond to a rearrangement of

equal events. The sequences hht and hht with h = head and t = tail, where the hs have been
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Figure 183: I(p) for an experiment with two possible outcomes. If p1 = 0, we are sure that the outcome

will be event 2, and we gain no information, The maximum information I is acquired for p1 = p2 = 1/2,

where the uncertainty of the outcome has its maximum and one learns most from the experiment.

interchanged, correspond to the same state. In the limit m → ∞ we can use Stirling’s formula,

and, for the average information gain, eq. (F.3) yields (cf. Fig. 183)

I =
1

m
ldN =

1

m
ld

[(m
e

)m
(

e

p1m

)p1m (
e

p2m

)p2m]
=

= −(p1 ld p1 + p2 ld p2) . (F.10)

This confirms eq. (F.7) and can be generalized to Shannon’s result: If we, a priori, know

only that 1 . . . n events (or states of a system) occur with probabilities {pi} (such that

∑n
i=1 pi = 1) and we learn by a measurement that a certain event j has taken place (or the

system actually occupies a certain state), then (if we repeat this measurement many times) we

gain the average information

I = −
n

∑
i=1

pi ld pi . (F.11)

G Period Doubling for the Conservative Hénon Map
For References see References to Chapter 7 on p. 269.

Let us consider the quadratic area-preserving Hénon map

xn+1 = 1−ax2
n − yn (G.1a)

yn+1 = xn (G.1b)

that describes (as we have seen in Chapter 2) a periodically kicked rotator for zero damping

and small amplitudes. We want to show that this map (which represents a whole class of two-
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dimensional maps with a quadratic maximum) also leads to a cascade of period doublings, but

with Feigenbaum constants that are larger than those for one-dimensional maps.

It is convenient to transform (G.1 a,b) using

xn = −2

a
x̄n +β ; aβ2 +2β−1 = 0 ; C = −aβ (G.2)

into the form

yn+1 = xn
xn+1 = 2Cxn +2x2

n − yn

}
≡ T

(
xn

yn

)
(G.3)

(where we have omitted the bar notation).

We will first discuss the fixed points of T and T 2 and their stability, and finally intro-

duce Helleman’s renormalization scheme (Helleman, 1980), which sheds some light on the

doubling mechanism and allows a convenient estimate of the relevant Feigenbaum constants.

The fixed points of T are

x∗1 = y∗1 = 0 and x∗2 = y∗2 = 1−C (G.4)

and those of the second iterate T 2 where

T 2

(
xn

yn

)
=

{
xn+2 = 2C[2Cxn +2x2

n − yn]+2[2Cxn +2x2
n − yn]2 − xn

yn+2 = 2Cxn +2x2
n − yn

(G.5)

are the solution of

(Cx+ x2)2 +C(Cx+ x2)− x = 0 . (G.6)

To solve this equation it is noted that the fixed points (G.4) of T are also fixed points of T 2,

i. e., (G.6) can be reduced to a quadratic equation with the solutions:

x∗3,4 = y∗3,4 =
1

2

[
−(C +1)±

√
(C +1)(C−3)

]
. (G.7)

The stability of the fixed points is (by analogy to the one-dimensional case) determined by the

eigenvalues λ1,2 of the matrix of derivatives

L(x∗, y∗) =




∂Tx

∂x
∂Tx

∂y
∂Ty

∂x
∂Ty

∂y




x∗,y∗

=
(

2C +4x∗ −1

1 0

)
(G.8)

which are

λ1,2 =
1

2

[
TrL±

√
(TrL)2 −4

]
, TrL = 2C +4x∗ . (G.9)

Since T is an area-preserving map, detL = 1, i. e., λ2 = 1/λ1. This leaves (apart from parabolic

fixed points that we do not consider here because they are not generic) only two essentially

different types of fixed point:

a) Hyperbolic fixed point: The λs are real and λ1 > 1 implies λ2 = 1/λ1 < 1, i. e., along

the directions of the eigenvectors e1, e,2 the behavior shown in Fig. 184 is found, which

can be described by
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Figure 184: Trajectories around a hyperbolic fixed point with eigenvectors e1 and e2.

Figure 185: Trajectories around an elliptic fixed point.

T
[

x
y

]
=

[
x∗

y∗

]
+L

[
∆x
∆y

]

L
[

∆x
∆y

]
=

[
λ1 ∆x

1/λ1 ∆y

] (G.10)

i. e., this fixed point is unstable since all points which are not on the stable manifold

along e2 are driven away from (x∗, y∗), and an infinite number of iterations is required to

approach the fixed point along e2:

lim
n→∞

Ln
[

0

∆y

]
= lim

n→∞
Ln

[
0

(1/λn
1∆y

]
=

[
0

0

]
(G.11)

b) Elliptic fixed point: The λ’s, as solutions of a quadratic equation, are complex conjugates

and can be written as

λ1,2 = e±iϕ because detL = λ∗
1λ1 = 1 . (G.12)

After an appropriate coordinate transformation, L can be written as a simple rotation:

L
[

∆x
∆y

]
=

[
cosϕ, −sinϕ
sinϕ, cosϕ

][
∆x
∆y

]
(G.13)

and the fixed point is stable as shown in Fig. 185 because every point in its close vicinity

remains there and is never driven away by applying L.
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Because, according to (G.9), the eigenvalues depend only on the trace of the linearized trans-

formation matrix, we obtain the following criterion for stability:

|TrL| < 2 → stable

|TrL| > 2 → unstable
fixed point. (G.14)

The stability of the fixed points (G.4) of T , therefore, becomes

x∗ = y∗ = 0 → |TrL| = |2C| → stable for |C| < 1 (G.15a)

x∗ = y∗ = 1−C → |TrL| = 2|2−C| → unstable for |C| > 1 (G.15b)

For T 2 we have by analogy to the chain rule d f 2(x)/dx = f ′[ f (x)] f ′(x) in the one-dimensional

case:

TrLT 2 = Tr[LT (x∗3, y∗3) ·LT (x∗4, y∗4)] (G.16)

= 2[−2(C +1)(C +3)+1] =
+1 for C = −1

−1 for C = 1−√
5

where we denoted the functional matrix of T 2 by LT 2 and used (x∗3, y∗3) = T (x∗4, y∗4).
Collecting (G.15)–G.16) together, we find: (x∗1, y∗1) is an attractor of period 1 and is stable

for −1 < C < 1, and (x∗3,4, y∗3,4) is an attractor of period 2 and stable for 1−√
5 < C < −1.

We therefore see the beginning of a bifurcation cascade.

Let us now demonstrate the self-similarity which leads to the whole sequence of period

doublings by introducing Hellemann’s renormalization scheme.

It starts from (G.3) which can be written as

xn+1 + xn−1 = 2Cxn +2x2
n . (G.17)

A linearization of this equation around the fixed points of period two,

x∗n =
1

2

[
−(C +1)+(−1)n

√
(C +1)(C−3)

]
; n = 0, 1, 2, 3 (G.18)

yields

∆xn+1 +∆xn−1 = (2C +4x∗n)∆xn −2(∆xn)2 . (G.19)

If we add (G.19), then for n = 2m+1 and n = 2m−1 we obtain

∆x2m+2 +∆x2m−2 = −2∆x2m +(2C +4x∗0)[∆x2m−1 +∆x2m−1]
+2[(∆x2m−1)2 +(∆x2m+1)2] . (G.20)

Now we take (G.19) at n = 2m,

∆x2m+1 + x2m+1 = (2C +4x∗1)∆x2m +2(∆x2m)2 (G.21)

and add it to (G.20):

∆x2m+2 +∆x2m−2 = 2C′∆x2m +2α(∆x2m)2 +O[(∆x)3] . (G.22)

This equation can be put into the same form as (G.17) by rescaling x′m ≡ α∆x2m:

x′m+1 + x′m−1 = 2C′x′m +2x′2m (G.23)

where

C′ = 2(C +2x∗1)(C +2x∗0)−1 = 2C2 +4C +7 (G.24)

α = 2(C +2x∗1)+2(C +2x∗0)
2 . (G.25)
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The meaning of eq. (G.23) is as follows: If the two-dimensional map is developed to second

order around the two-cycle and the result is rescaled, one obtains the old map, i. e., the stability

of x∗ = y∗ = 0 for |C|< 1 implies [because of the similarity of (G.17) and (G.23)] the stability

of x∗′ = y∗′ = ∆x = ∆y = 0, i. e., of the two-cycle for |C| = |−2C2 +4C +7| < 1 or 1−√
5 <

C < −1.

Repeating this argument we see that (G.23) also holds for the derivatives around a four-

cycle, etc. A cascade of bifurcations with cycles of period 2n is obtained which are stable for

Cn−1 < C < Cn where

Cn−1 = 2C2
n +4Cn +7 . (G.26)

The bifurcation points accumulate at C∞ which is determined by

C∞ = 2C∞ +4C∞ +7 →C∞ = −1.2656(1.266311 . . .) (G.27)

which yields

α = α(C∞) = −4.128(4.018077 . . .) (G.28)

and the Feigenbaum constant δ

Cn = C∞ +Aδ−n with δ = 9.06(8.72109 . . .) (G.29)

where the numbers in parentheses give the best current numerical values for the constants.

Fig. 186 shows the orbits of the Hénon map (G.1 a, b) near a stable fixed point and after

the first bifurcation.

H Unstable Periodic Orbits
For References see References to Chapter 10 on p. 275.

The simplest integrable conservative systems are harmonic oscillators, and the simplest

chaotic systems are described by piecewise linear maps (see Chapter 3). Harmonic oscillators

are the starting point for perturbation expansions in classical mechanics (see Chapter 8).

In the following we will show that, in an analogous fashion, the dynamics on strange

attractors can be successively approximated by the dynamics of piecewise linear maps. The

points on the attractor around which one linearizes are determined by the unstable periodic

cycles. If we describe the dynamics on the attractor by the map

�x t+1 = �f (�x t) , (H.1)

then the unstable cycles {�x∗} of order n are just the unstable fixed points of order n of �f (�x):

�x∗ = �f (n)(�x∗) . (H.2)

Here �f (n)(�x) is the nth iterate of the map and the cycle is unstable. This means that the

Jacobian Ji j = ∂ f (n)
i (�x∗)/∂x∗j has at least one eigenvalue with modulus larger than 1. If one

takes the points of all unstable periodic orbits, they cover the attractor with a dense set. The

trajectory on the attractor becomes repelled from these points (because they are unstable) and

dances between them. The rhythm of this dance is determined by the unstable periodic orbits.
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Figure 186: Orbits of the Hénon map. a) At a = 0.95; b) At a = 3.02 (after Bountis, 1981).

This metaphorical picture and the importance of unstable periodic orbits was already known

to Poincaré. In his book Statistical Mechanics, Thermodynamic formalism (1978) Ruelle had

already developed a method to expand physical averages in terms of unstable periodic orbits

for expanding maps. During recent years Cvitanovich and his co-workers (Cvitanovich et al.,
1990) have shown how averages on strange attractors (for example generalized dimensions

or generalized entropies) can be expanded in terms of unstable periodic orbits of increasing

order.

In the following we want to explain the importance of unstable periodic orbits for the

example of one-dimensional maps, further details and applications can be found in the cited

literature. In the first step we show that the eigenvalues of the Frobenius–Perron operator

(which determines the dynamics on the strange attractor) can be expanded in terms of unstable

periodic orbits. Next we explain how a nonlinear map can be approximated in a hierarchical

fashion by piecewise linear maps.

The linear Frobenius–Perron operator describes the time development of a dynamical sys-

tem. It has for a one-dimensional map

xt+1 = f (xt) (H.3)
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the form

K(x|y) = δ[x− f (y)] . (H.4)

The time development of an arbitrary function p(x) under the influence of the map f (x) is

determined by

pt+1(x) =
Z

dy K(x|y) pt(y) . (H.5)

Every linear operator (think of a matrix) can be written in terms of its left and right eigen-

functions (eigenvectors of the matrix) and its eigenvalues. Therefore, K(x|y) can be written

as:

K(x|y) = ∑
v

λvΦR
v (x) ΦL

v (y) . (H.6)

Here λv are the eigenvalues and ΦL
v (x), ΦR

v (y) are the left and right eigenfunctions of K(x|y),
which are defined by:Z

dy K(x|y)ΦR
v (y) = λvΦR

v (x) (H.7a)
Z

dx ΦL
v (x)K(x|y) = λvΦL

v (x) (H.7b)

and Z
dx ΦL

v (x)ΦR
µ (x) = δµν . (H.8)

Next we will show that the eigenvalues λv of K(x|y) can be written in terms of the unstable

periodic orbits of f (x). The eigenvalues of any linear operator are given by the zeros of the

characteristic polynomial

det[1− zK] = 0 , (H.9)

i. e., z = {λ−1
v }. Since we have for any nonsingular matrix M the relation logdetM = TrlogM

(in terms of the eigenvalues Γi one has detM = ∏i Γi and logdetM = ∑i logΓi = TrM). The

logarithm of the determinant in eq. (H.9) can be written as

logdet[1− zK] = Trlog[1− zK] . (H.10)

By expanding the logarithm (log(1− x) = −∑∞
n=1 xn/n), we obtain:

Tr log[1− zK] = −
∞

∑
n=1

zn

n
TrKn . (H.11)

Putting everything together we get:

det(1− zK) = exp

[
−

∞

∑
n=1

zn

n
TrKn

]
. (H.12)

The trace of Kn can be directly written in terms of unstable periodic orbits:

TrKn =
Z

dx δ[x− f n(x)] = ∑
fix

1

|1− f n′(x∗)| . (H.13)
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Figure 187: a) The Bernoulli shift σ(x) with two unstable fixed points. b) The second iterate σ2(x) with

four unstable fixed points.

The sum ∑fix in eq. (H.13) runs over all fixed points of f n(x), i. e., we have

x∗ = f n(x∗) . (H.14)

The solutions of eq. (H.14) are all one-cycles (= fixed points), two-cycles and cycles of higher

order (up to length n) of f (x) (see Chapter 4). Since the chaotic regime contains only unstable

periodic orbits, we have

| f (n)′(x∗)| > 1 . (H.15)

Let us now compute as a simple example the eigenvalues of the Frobenius–Perron operator of

the Bernoulli shift σ(x) = 2xmod1 (see Chapter 3). The nth iterate of σ(x) can be written as

σn(x) = (2nx)mod1 . (H.16)

Figure 187 shows that σn(x) has just 2n fixed points. Therefore we obtain

TrKn = ∑
fix

∣∣∣∣ 1

1− f n′(x∗)

∣∣∣∣ = 2n
∣∣∣∣ 1

1−2n

∣∣∣∣ =
1

1−2−n . (H.17)

If we use this result in eq. (H.12) for the characteristic polynomial, we get:

logdet(1− zK) = −
∞

∑
n=1

zn

n
1

1−2−n . (H.18)

Next we write (1−2−n)−1 as a geometric series and obtain

−
∞

∑
n=1

zn

n

∞

∑
m=0

(2−n)m = −
∞

∑
m=0

∞

∑
n=1

(z ·2−m)n

n
=

∞

∑
m=0

log(1− z ·2−m) . (H.19)

This yields

det(1− zK) =
∞

∏
m=0

(1− z ·2−m) , (H.20)
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Figure 188: a) The logistic map for r > 4. b) Set of points which remain in the interval [0, 1] after one

iteration of f (x). Each of the fixed points x∗1 = 0 and x∗2 of f (x) is an element of the remaining intervals.

c) The second iterate of the logistic map for r > 4. d) After two iterations of f (x) only four smaller

intervals remain. Again, the fixed points of f 2(x) are contained in these intervals.

which has the zeros zm = 2m, i. e., the eigenvalues of K have the form

λv = z−1
v = 2−v . (H.21)

We have shown that the eigenvalues of the Frobenius–Perron operator are uniquely determined

by unstable periodic orbits. What is needed to compute these eigenvalues are the positions of

the cycle elements and (because the chain rule allows us to express f n′ by f ′) the derivatives

of f (x) at these positions, i. e., to calculate λv, it is sufficient to know the piecewise linearized

map where the linearization has been performed around the cycle points (this yields { f ′(x∗)}
and {x∗]}.

To make this geometrical picture even clearer, we consider the logistic map for r > 4

(see Fig. 188 a) and ask which points will remain within the unit interval, if we start from a

homogeneous distribution of points within the interval [0, 1] and iterate the map. The first

iteration step eliminates all points with f (x) > 1 (Fig. 188 a–b). After the second iteration

step all points with f 2(x) > 1 have left the interval (Fig. 188 c–d). How could we estimate the

length of the remaining intervals?

First we note that all remaining intervals contain at least one point of an unstable periodic

orbit (see Fig. 188).

As a second step we approximate the logistic map successively by piecewise linear maps,

which touch the original map at the points which correspond to unstable periodic orbits (see

Fig. 189 a). Thereby we obtain, to first order, the estimate

l′1 ∼
∣∣∣∣ 1

f ′(x∗1)

∣∣∣∣ , l′2 ∼
∣∣∣∣ 1

f ′(x∗2)

∣∣∣∣ (H.22)
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Figure 189: Approximation of f (x) by piecewise linear maps (see Fig. 188). a) f (x) is approximated

by tangents to f (x) in the two fixed points of f (x). b) The next-order approximation of f (x) is given by

the tangents to f (x) in the four fixed points of f 2(x).

and to second order (see Fig. 189b):

l′1 ∼
∣∣∣∣ 1

f 2′(x∗1)

∣∣∣∣ , l′2 ∼
∣∣∣∣ 1

f 2′(x∗2)

∣∣∣∣ , l′3 ∼
∣∣∣∣ 1

f 2′(x∗3)

∣∣∣∣ , l′4 ∼
∣∣∣∣ 1

f 2′(x∗4)

∣∣∣∣ . (H.23)

After n iteration steps the remaining set of points has a measure Γn which is proportional to

Γn ∼ ∑
fix

∣∣∣∣ 1

f n′(x∗)

∣∣∣∣ . (H.24)

Here the sum runs again over all fixed points f n(x) = x∗, and eq. (H.24) is an estimate for

Γn, where we neglected factors of order 1 because f n′(x∗) diverges as | f n′(x∗)| ∝ en·const.. By

comparing eq. (H.24) with eq. (H.13), we see that Γn is just equal to the trace of Kn (note

f n′(x) � 1, i. e., |1− f n′(x∗)| ≈ f n′(x∗)| ):

Γn ∼ TrKn . (H.25)

Therefore a computation of the trace of Kn via unstable periodic orbits corresponds to an

approximation of the nonlinear map by piecewise linear maps which are located at the cycle

points.

Figure 190 shows that this geometrical picture can also be generalized to higher-dimensi-

onal maps and attractors, and it represents, from the conceptual point of view, the main result

of this chapter. Equation (H.25) can also be derived in a more direct fashion by writing Γn as:

Γn =
Z

dx′ dx δ[x′ − f n(x)] . (H.26)

Here we first summed over all points x within the unit interval and then considered only those

points x′ which remain after n iterations within the interval. To show that Γn ∝ TrKn, we note

that Kn can be written as

Kn(x|y) = ∑
v

λn
v ΦR

v (x) ΦL
v (y) = δ[x− f n(y)] . (H.27)
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Figure 190: Approximation of a dynamical system by unstable periodic orbits. A continuous flow is

approximated by piecewise linear maps (centered around the points that belong to the unstable periodic

orbits), after Artuso et al., (1990).

For n → ∞ the sum is dominated by the largest eigenvalue, i. e., we have

Kn(x|y) ∼ λn
max ΦR

max(x) ΦL
max(y) . (H.28)

Therefore

Γn ∼ λn
max , (H.29)

and λn
max = TrKn for n → ∞.

We have shown for the example of the Bernoulli shift σ(x) = 2xmod1, that the sum over

n in eq. (H.13) can be performed explicitly. This is of course not always possible. But it has

been shown by Artuso et al., (1990), that the sum over all fixed points in eq. (H.13) can be

replaced by a simpler sum over so-called primitive unstable cycles in such a way that one

obtains a systematic expansion of det(1− zK) in terms of primitive cycles. In the following

section we want to make this idea plausible (mathematical rigor is not intended) and we refer

for more details to the original article (Artuso et al., 1990).

The simplest primitive cycle is a fixed point for which we have f n′(x∗) = [ f ′(x∗)]n, i. e.,

for this cycle we can perform the sum over n in complete analogy to eq. (H.17). In a similar

fashion, cycles of higher order can be reduced to simpler cycles, and the corresponding n-sums

can be performed.
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With |1− f n′(x∗)|−1 = | f n′(x∗)|−1 ∑∞
m=0 | f n′(x∗)|, it follows from eq. (H.13):

TrKn =
∞

∑
m=0

∑
fix

∞

∑
n=0

zn

n
| f n′(x∗)|−(m+1) . (H.30)

If one reduces the sum over the fixed points ∑fix to the sum of the primitive fixed cycles ∑p
(we will refer for details to Artuso et al., 1990), it becomes plausible that TrKn can be written

as

TrKn =
∞

∑
m=0

∑
p

∞

∑
n=0

[znp | f ′(xp)|(m+1)]n/n

=
∞

∑
m=0

∑
p

log[1− znp | f ′(xp)|−(m+1)] . (H.31)

This yields:

det(1− zK) =
∞

∏
m=0

∏
p

1

1− znp | f ′(xp)|−(m+1) . (H.32)

Here np is an integer which determines the multiplicity of the corresponding cycle. The prod-

uct of the primitive cycles ∏p is the so-called Ruelle zeta function because it bears a formal

analogy to the Euler representation of the Riemann zeta function ζ(z) (see, e. g., Edwards,

1974):

ζ(z) =
∞

∑
m=0

1

nz = ∏
{pi}

1

1− p−z
i

. (H.33)

The last equality sign becomes plausible if we recall that each integer can be written as a

product of prime numbers pi with different multiplicity, i. e., n = ∏pi pmi
i , and the summation

over n corresponds to a summation over all mi, i. e.,

ζ(z) =
∞

∑
n=1

n−z = ∑
{mi}

∏
pi

(p−z
i )mi = ∏

pi

1

1− p−z
i

. (H.34)
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– Hübinger, B., Doerner, R., and Martienssen, W. (1993): “Local Control of Chaotic Motion”, Z.
Physik B 90, 103.

– Schuster, H. G., Niebur, E., Hunt, E. R., Johnson, G. A., and Löcher, M. (1996): “Parametric
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