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To Professor Bernd Aulbach
and my parents



Preface

This book has been developed from my dissertation, which I wrote at the
University of Augsburg from 2002 to 2005. I first became acquainted with
several definitions of attractor for nonautonomous dynamical systems when I
was preparing my diploma thesis, and the question arose whether a nonau-
tonomous bifurcation theory can be founded based on suitable notions of
nonautonomous attractor (and repeller).

At the beginning of my time as a Ph. D. student, I developed local no-
tions of attractor and repeller for several time domains (the past, the future,
the whole time and finite time intervals), and I distinguished between two
bifurcation scenarios. The first scenario describes the loss of attractivity
and repulsivity, and the second one deals with transitions of attractors and
repellers. All definitions are introduced in Chapter 2 of this book. As a test
for the new definitions, I then considered asymptotically autonomous differen-
tial equations; these are systems whose behavior becomes autonomous when
time tends to the past or the future. I found conditions for the occurrence of a
nonautonomous bifurcation in case the underlying autonomous system admits
a bifurcation (see Chapter 7). Moreover, I developed nonautonomous counter-
parts for classical one-dimensional bifurcation patterns (see Chapter 6).

The remaining part of my work was focussed on the study of qualitative
properties of the local notions of attractivity and repulsivity. I showed that
these are suitable to describe the global asymptotic behavior via Morse
decompositions (see Chapter 3), and for linear systems, I introduced notions
of dichotomy and dichotomy spectra for the four different time domains (see
Chapter 4). Furthermore, I constructed invariant manifolds of nonlinear sys-
tems for the different time domains in order to obtain attractivity and repul-
sivity from the linearization (see Chapter 5).

Writing this book would not have been possible without the aid of many
people to whom I would like to express my gratitude. First of all, I would like
to thank my supervisor Professor Bernd Aulbach, who unfortunately suddenly
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and unexpectedly passed away on January 14, 2005, at the age of 57 years.
I am grateful for his longstanding support while writing my diploma thesis and
dissertation. I benefited from his great ability to explain complicated facts very
clearly and lucidly, and I am thankful to him for many fruitful discussions.
Moreover, I am greatly indebted to Professor Fritz Colonius who became
my advisor after the death of Professor Aulbach. He was very interested in
the details of my work, and I was very encouraged by his positive attitude
to my ideas and suggestions. Furthermore, I am grateful to Professor Lars
Grüne for his interest in my work and for being a referee for my dissertation.
I would also like to thank Dr. Stefan Siegmund for many useful discussions
and remarks, especially in the first year of my work. Special thanks go to
my friends and colleagues Dr. Christian Pötzsche and Dr. Ludwig Neidhart
for reading the manuscript and making useful comments. I also thank the
Deutsche Forschungsgemeinschaft for the financial support I received from
them, when I was a member of the Graduiertenkolleg “Nichtlineare Probleme
in Analysis, Geometrie und Physik” in the department for mathematics and
physics at the University of Augsburg. Finally, I would like to thank my
parents for making it possible for me to study mathematics and for their
support during all these years.

Augsburg, February 2007 Martin Rasmussen
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1

Introduction

The mathematical concept of dynamical system is founded on the fact that
motions of many application processes are subjected to certain rules. In New-
tonian mechanics, in other natural sciences and even in an economical and
social context, these laws are given implicitly by a relation that determines
the state of a system for all future times just by the knowledge of the present
state. A dynamical system therefore consists of the following two components:
the space of states and the rule which, given an initial state, allows the pro-
jection of the state of the system in the future.

Historically, the notion of dynamical system was derived as an abstraction and
generalization of ordinary differential equations. It was first used in 1927 by
the American mathematician George D. Birkhoff (1884–1944) in his homony-
mous book [31]. Birkhoff was strongly influenced by the French mathemati-
cian Henri Poincaré (1854–1912), who is regarded—together with the Russian
mathematician and engineer Aleksandr M. Lyapunov (1857–1918)—as the
father of the so-called qualitative theory of dynamical systems. The goal of
the qualitative theory is to understand the behavior of solutions from a more
geometrical and topological point of view. In this book, we mainly address
two aspects of this theory: the theory of attractivity and the theory of bifur-
cation. These fields are strongly related, since bifurcations from a dynamical
viewpoint are associated with loss or gain of attractivity.

The theory of attractivity has its origin in the thesis The General Problem
of the Stability of Motion [110, 112, 113], where Lyapunov introduced several
definitions and methods to analyze the dynamical behavior in the vicinity
of an equilibrium or—more generally—an arbitrary solution of an ordinary
differential equation. The term attractor was first used by Coddington and
Levinson [48] and Mendelson [119]. In the article Attractors in Dynamical
Systems [23], Auslander, Bhatia and Seibert considered attractors consisting
of more than one point. In 1967, Stephen Smale introduced in Differential
Dynamical Systems [175] a new type of attractor, the axiom A attractor.
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A new highlight in the theory of attractor was reached in 1971, when Ruelle
and Takens regarded so-called strange attractors as a reason for the turbulent
behavior in fluids (On the Nature of Turbulence [148]). This notion of attractor
allowed the connection of the attractor theory and the upcoming chaos theory.
Similar ideas have formerly been used by Edward N. Lorenz in Deterministic
Nonperiodic Flow [108]. In Isolated Invariant Sets and the Morse Index [53],
Charles C. Conley introduced in 1978 a very natural notion of local attractor
which allowed the construction of so-called attractor-repeller pairs and Morse
decompositions, and Ruelle modified this concept by considering so-called
pseudoorbits in Small Random Perturbations of Dynamical Systems and the
Definition of Attractors [147].

The fundamental ideas and elements of bifurcation theory go back to Poincaré
[137] and Lyapunov [111]. Poincaré first used the term bifurcation to describe
the splitting of asymptotic states of a dynamical system in his article Sur
l’equilibre d’une masse fluids animes d’un mouvement de rotation [135, §2
Equilibre de bifurcation, p. 261]. In 1937, a great step towards a formalization
of bifurcation theory was undertaken by the definition of structural stability
by Andronov and Pontryagin (Systemes grossiers [4]). Since the 1960s, the
bifurcation theory was fast-paced. One reason for this development was the
introduction of the center manifold theory by Pliss [132] and Kelley [92], which
allowed systems of high dimension amenable to a low-dimensional bifurcation
analysis. Moreover, the normal form theory, which dates back to the thesis of
Poincaré [134] and Birkhoff [31], became a field of intensive research.

In many cases, the notion of dynamical system is not general enough to model
real world phenomena, since it is often indicated to assume that the underlying
rules are time-dependent. For biological processes, for instance, it is more
realistic to take evolutionary adaptations into account, and sometimes it is
unavoidable to consider random perturbations such as white noise or to model
the control of a process by a human being. The appropriate class to treat
such problems are the so-called nonautonomous dynamical systems. Another
reason to consider nonautonomous dynamical systems is given by the fact
that the investigation of states of dynamical systems which are nonconstant
in time leads to nonautonomous problems in form of the equation of perturbed
motion. The notion of nonautonomous dynamical system was created in the
1990s from the studies of both topological skew product flows and random
dynamical systems. The theory of topological skew product flows was founded
in the late 1960s by George R. Sell and Richard K. Miller (see [120, 165, 166,
167]), and the notion of the random dynamical system is based on research by
Baxendale, Bismut, Elworthy, Ikeda, Kunita, Watanabe and many others (see
[25, 32, 65, 83, 100]). Further progress in this field was achieved by Ludwig
Arnold and his “Bremen Group”.

The nonautonomous theory of attractivity has been stimulated in the last
fifteen years by the introduction of the notions of pullback attractor, for-
ward attractor, random attractor and weak random attractor. In particular,
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questions of existence, uniqueness, perturbation and discretization have been
addressed. These contributions were made by Cheban, Crauel, Flandoli, Kloe-
den, Ochs, Schmalfuß and others (see [40, 41, 58, 96, 123]; cf. also Subsec-
tion 2.4.3). Nonautonomous bifurcation theory is a new branch which has been
developed quite independently for topological skew product flows (see Fabbri,
Johnson, Kloeden, Mantellini [67, 85, 86, 87]; cf. also Subsection 2.6.2) and
random dynamical systems (see Arnold, Sri Namachchivaya, Schenk-Hoppé
[6, 8, 156, 176]; cf. also Subsection 2.6.3) so far.

The philosophy behind the

α

x

A(α)

Fig. 1.1. Pitchfork bifurcation

present bifurcation theory of
nonautonomous dynamical sys-
tems is based on a given struc-
ture of nonautonomy such as
quasi-periodicity or the exis-
tence of an invariant measure,
and the question arises how to
describe bifurcations in a more
general nonautonomous con-
text. Recently, Langa, Robinson
and Suárez discussed an answer
to this question by defining a
bifurcation of a nonautonomous
differential equation as a merg-
ing process of two distinct so-
lutions with different stability
behavior (see [103, 105]; cf. also
Subsection 2.6.4). In this book, other possible approaches are pursued, which
are explained demonstratively in the following.

Since the basic understanding of nonautonomous bifurcations in this book
is based on phenomenological observations from the autonomous bifurcation
theory, it is useful to look exemplarily at an autonomous bifurcation. For a
real parameter α, consider the ordinary differential equation ẋ = x

(
α + x2

)
,

which is a prototype of a pitchfork bifurcation as indicated in Figure 1.1. For
α ≥ 0, there is only one equilibrium, which is given by zero and which is
repulsive. By letting the parameter α pass through zero in negative direction,
this equilibrium becomes attractive, and two other repulsive equilibria, given
by ±√−α, are bifurcating.

In order to establish a nonautonomous bifurcation theory, consider this sce-
nario in the following way: For α < 0, the trivial solution is attractive, and the
domain of attraction A(α) is given by the open interval between the two other
equilibria. Now, the main point is that this domain of attraction undergoes
a qualitative change from a nontrivial to a trivial object in the limit αր0.
Moreover, A(α) is also a repeller, and therefore, also a repeller changes qual-
itatively for αր0. We call the shrinking of a domain of attraction (repulsion,
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respectively) a bifurcation, whereas the case of a changing repeller (attractor,
respectively) is denoted as a transition.

To implement this idea in

all-time

finite-timepast future

Fig. 1.2. Time domains

the nonautonomous context,
locally defined notions of
attractive and repulsive solu-
tions, domains of attractiv-
ity and repulsivity, as well
as attractor and repeller are
needed. This book distin-
guishes between four points
of view concerning different

time domains. The new concepts are introduced for the past (past attrac-
tivity, repulsivity, bifurcation and transition), the future (future attractivity,
repulsivity, bifurcation and transition), the entire time (all-time attractivity,
repulsivity, bifurcation and transition) and compact time intervals (finite-time
attractivity, repulsivity, bifurcation and transition) (see Figure 1.2).

The second chapter of this book is devoted to notational preparations and
the introduction of nonautonomous dynamical systems, and it contains all
relevant notions of attractivity, repulsivity, bifurcation and transition. Sev-
eral examples illustrate these definitions, and fundamental questions such as
existence and uniqueness are discussed. Moreover, the relationship to other
notions of attractivity and bifurcation is examined.

Chapter 3 is devoted to Morse decompositions, which were introduced by
Charles C. Conley in 1978 to describe the global asymptotic behavior of
(autonomous) dynamical systems on compact metric spaces (see [53]). Their
components, the so-called Morse sets, are obtained as intersections of attrac-
tors and repellers. It is shown that the notions of past and future attractivity
and repulsivity are designed to establish nonautonomous generalizations of
the Morse decomposition. The dynamical properties of these decompositions
are discussed and nonautonomous Lyapunov functions which are constant on
the Morse sets are constructed explicitly. Moreover, Morse decompositions of
linear systems on the projective space are examined, and a nonautonomous
analogon to the Theorem of Selgrade (see [164]) is proved.

In Chapter 4, methods for the analysis of linear systems with respect to the
notions of attractivity and repulsivity are introduced. First, several notions
of dichotomy are defined, and it is shown that the ranges and null spaces
of the corresponding invariant projectors form repellers and attractors of the
linear system on the projective space. Furthermore, for the different time
domains, dichotomy spectra are introduced which are based on the analysis
of the entire time by Sacker and Sell (see [154]) and Siegmund and Aulbach
(see [172, 171, 19]). It is also shown that the so-called spectral manifolds
give rise to a Morse decomposition on the projective space. This chapter is
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concluded with a discussion of the relationship to the Lyapunov spectra and
some roughness results.

Chapter 5 is devoted to the development of the qualitative theory with respect
to the notions of attractivity and repulsivity for nonlinear systems. First,
nonautonomous invariant manifolds are constructed, and methods are derived
to obtain attractivity and repulsivity from the linearization. Moreover, as an
application to bifurcation theory, it is shown that the zero is contained in
the dichotomy spectrum of a bifurcating solution, and the relationship of
the concept of finite-time bifurcation to the bifurcation theory of adiabatic
systems is discussed.

The aim of Chapter 6 is to develop counterparts for the classical one-
dimensional transcritical and pitchfork bifurcation patterns in the context
of nonautonomous bifurcations and transitions. The sufficient conditions are
formulated in terms of Taylor coefficients for the right hand side of ordinary
differential equations. It is shown that the results are proper generalizations
of the autonomous bifurcation scenarios.

In the last chapter of this book, asymptotically autonomous systems are dis-
cussed. It is supposed that the underlying autonomous system admits a one-
dimensional bifurcation of saddle node, pitchfork or transcritical type or a
two-dimensional Hopf bifurcation. Sufficient conditions are obtained for the
transfer of this bifurcation behavior to the asymptotically autonomous system.

In order to keep this book self-contained, some basic facts about ordinary dif-
ferential equations and projective spaces are noted in the Appendix. Further-
more, the definitions and results are formulated—whenever it was possible—in
a very general form. However, to provide reading fluency, attention is restricted
to continuous time in Chapter 5, 6 and 7. Extensions for the discrete time can
be obtained similarly. Please note that for future reference, the definitions in
Chapter 2 are also formulated for noninvertible systems, although invertibility
is supposed in all other chapters.

Chapter 2 is necessary for the understanding of all the other chapters, since
it contains both basic facts and the notions of attractivity and bifurcation.
The other chapters can be read quite independently of each other. Please note
that in Chapter 4, the assertions concerning the Morse decomposition require
Chapter 3, and in Chapter 6, results concerning linearized attractivity and
repulsivity from Chapter 5 are used.

Finally, please note that—although the applications in this book are mainly
of low dimension—the concepts of bifurcation and transition also apply in a
higher dimensional setting, since the definitions of attractivity and repulsivity
are given in a very general form. The main tool for the analysis of such systems
is the method of center manifold reduction (cf. Example 7.14). The basic
idea is to detect a bifurcation of the system restricted to a center manifold.
For instance, consider again the motivating example ẋ = x

(
α + x2

)
with an

additional second equation, given by ẏ = λy. In case λ > 0, the trivial solution
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is not attractive for α < 0, in contrast to the one-dimensional system, and
therefore, we have no bifurcation of attraction areas but only a transition
of repellers. For λ < 0, the trivial solution is attractive, and thus the two-
dimensional system admits a bifurcation of attraction areas, but no longer a
repeller transition. Restricting the attention to the lower dimensional invariant
manifold R × {0}, however, yields the original one-dimensional system, and
for this system we obtain both a bifurcation and a transition.



2

Notions of Attractivity and Bifurcation

In this chapter, new concepts of (local) attractivity and repulsivity (in
Section 2.3) and bifurcation and transition (in Section 2.5) are introduced for
nonautonomous dynamical systems. By a bifurcation and transition, a qualita-
tive change of attractivity or repulsivity is meant. Due to the nonautonomous
framework, it is distinguished between four distinct points of view concern-
ing different time domains. The notions of attractivity and repulsivity—and
for this reason also the notions of bifurcation and transition—are introduced
for the past (past attractivity and repulsivity), the future (future attractivity
and repulsivity), the entire time (all-time attractivity and repulsivity) and the
present (finite-time attractivity and repulsivity) of the system.

Since the definitions in this chapter are new to a broad extent, the relationship
to well-known concepts is discussed in Section 2.4 (in case of attractivity and
repulsivity) and Section 2.6 (in case of bifurcation and transition).

Before introducing the concepts of attractivity and bifurcation, the first sec-
tion of this chapter is devoted to elementary definitions and notational prepa-
rations, and in Section 2.2, nonautonomous dynamical systems are treated.

2.1 Preliminary Definitions

As usual, we denote by Z and R the sets of all integers and reals, respectively,
and we define R := R∪{−∞,∞}. RM×N is the set of all real M×N matrices,
and we write 1 for the unit matrix and 0 for the zero matrix. Given an
arbitrary set A ⊂ R and κ ∈ R, we define A± :=

{
x ∈ R : x ∈ A or −x ∈ A

}
,

A+ := A∩(0,∞), A+
κ := A∩[κ,∞), A− := A∩(−∞, 0) and A−

κ := A∩(−∞, κ].
Moreover, we set N := Z+. For T = R or T = Z, a T-interval is given by the
intersection of a real interval with T.

Let f : X → Y be a function from a set X to a set Y . Then the graph of f is
defined by graph f :=

{
(x, y) ∈ X × Y : y = f(x)

}
.
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Given a metric space (X, d) and ε > 0, let Uε(x0) =
{
x ∈ X : d(x, x0) < ε

}
be

the ε-neighborhood of a point x0 ∈ X, and we write Uε(A) = ∪x∈AUε(x) for
the ε-neighborhood of a set A ⊂ X. The set of all inner points of a nonempty
set A ⊂ X is denoted by intA; we write cls A for the closure of A and ∂A for
the boundary of A. We define the distance of a point x ∈ X to a nonempty
set A ⊂ X by d(x,A) := infy∈A d(x, y) and the Hausdorff semi-distance of
two nonempty sets A,B ⊂ X by

d(A|B) := sup
x∈A

d(x,B).

In addition, if both A and B are empty, we set d(A|B) := 0. The Hausdorff
distance of A and B is defined by

dH(A,B) := max
{
d(A|B), d(B|A)

}
.

Moreover, for A,B ⊂ X with B ⊂ int A, we define

d̂(A|B) := sup
{
r > 0 : Ur(B) ⊂ A

}
.

By diam(A) := sup
{
d(x, y) : x, y ∈ A

}
, the diameter of a nonempty set

A ⊂ X is given, and additionally, we define diam(∅) := 0.

If X is a vector space, A,B ⊂ X and x ∈ X, the following notations will be
used:

x + A := {x + a : a ∈ A} and A + B := {a + b : a ∈ A, b ∈ B}.

With the Euclidean norm

‖(x1, . . . , xN )‖ :=

√
√
√
√

N∑

i=1

x2
i for all (x1, . . . , xN ) ∈ RN ,

induced by the Euclidean scalar product 〈·, ·〉, defined by

〈x, y〉 :=

N∑

i=1

xiyi for all x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN ,

the RN is a normed vector space.

Let I be a T-interval (T = R, Z) and γ ∈ R. We call a function g : I → RN

γ+-quasibounded if I is unbounded above and supt∈I+ ‖g(t)‖e−γt < ∞. Accor-
dingly, we say, a function g : I → RN is γ−-quasibounded if I is unbounded
below and supt∈I− ‖g(t)‖e−γt < ∞. The (N − 1)-sphere of the RN is defined
by SN−1 :=

{
x ∈ RN : ‖x‖ = 1

}
.

Given a differentiable function f : X ⊂ RN → RM , we write Df : X → RM×N

for its derivative and Dif : X → RM for its partial derivative with respect
to the i-th variable, i ∈ {1, . . . , N}. Higher order derivatives Dnf or Dn

i f are
defined inductively.
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2.2 Nonautonomous Dynamical Systems

The notion of nonautonomous dynamical system emerged in the late 1990s
as an abstraction of both continuous skew product flows (see, e.g., Miller

[120] and Sell [165, 166, 167]) and random dynamical systems (see, e.g.,
the monograph Arnold [5]). The definition is given as follows (see also the
conference proceedings Colonius & Kloeden & Siegmund [52]).

Definition 2.1 (Nonautonomous dynamical system). A (local) nonau-
tonomous dynamical system (NDS for short) on a metric space X with a time
T
(
=R, R+

0 , Z, Z+
0

)
and base set P is a pair of mappings

(
θ : T± × P → P, ϕ : D ⊂ T × P × X → X

)

with the following properties:

(i) The so-called base flow or driving system θ is a dynamical system, i.e.,
we have the relations

θ(0, p) = p and θ(t + s, p) = θ(t, θ(s, p)) for all p ∈ P and t, s ∈ T± .

(ii) The maximal interval of existence Dmax(p, x) :=
{
t ∈ T : (t, p, x) ∈ D

}

for p ∈ P and x ∈ X is either empty or an open T-interval which
contains 0 ∈ T.

(iii) ϕ is a cocycle over θ, i.e., for all t, s ∈ T and (p, x) ∈ P × X fulfill-
ing both s ∈ Dmax(p, x) and t + s ∈ Dmax(p, x), we have the relations
t ∈ Dmax(θ(s, p), ϕ(s, p, x)),

ϕ(0, p, x) = x and ϕ(t + s, p, x) = ϕ(t, θ(s, p), ϕ(s, p, x)) .

(iv) ϕ is continuous with respect to t ∈ T and x ∈ X.

X is called phase space, and P × X is called extended phase space. We say,
a NDS (θ, ϕ) is invertible if T = R or T = Z and t ∈ Dmax(p, x) for some
p ∈ P and x ∈ X implies −t ∈ Dmax(θ(t, p), ϕ(t, p, x)). Throughout this book,
we will only consider invertible nonautonomous dynamical systems, except in
Subsection 2.3.2, where the relevant definitions of attractivity and repulsivity
are stated for the noninvertible case.

For simplicity in notation, we also write θtp instead of θ(t, p) and ϕ(t, p)x for
ϕ(t, p, x).

A standard example of a nonautonomous dynamical system, which is of main
interest in this book, is provided by a nonautonomous ordinary differential
equation

ẋ = f(t, x) (2.1)

with f : D ⊂ R × RN → RN (see Appendix A.1). Here T = R, and the base
set P can simply be chosen to be R with base flow (t, s) 
→ t + s. In case
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x

{p} × X
{θsp} × X

{θt+sp} × X

ϕ(s, p) ϕ(t, θsp)

ϕ(t + s, p)

ϕ(s, p)x

p
θsp

θt+sp
P

ϕ(t + s, p)x =

ϕ(t, θsp)ϕ(s, p)x

Fig. 2.1. The cocycle property of Definition 2.1

the function f is fulfilling special conditions, the nonautonomous differential
equation (2.1) gives rise to a general solution λ : Ω ⊂ R×R×RN → RN (see
Proposition A.3), and ϕ can then be defined by

ϕ(t, s)x := λ(t+s, s, x) for all (t, s, x) ∈ R×R×RN such that (t+s, s, x) ∈ Ω .

Without further notice, we assume that all ordinary differential equations
considered in this book fulfill conditions of local existence and uniqueness of
solutions.

A similar construction is also possible for nonautonomous difference equations
of the form xn+1 = f(n, xn), T = P = Z.

In both cases above, however, P is noncompact, which may cause difficulties.
This can be avoided for a special class of right hand sides f by considering
the Bebutov flow on the hull of f (see, e.g., Bebutov [26] and Sell [167]).

Apart from deterministic also random and stochastic differential and differ-
ence equations (see, e.g., Arnold [5]) and some other types of equations such
as functional differential equations or nonautonomous evolutionary equations
generate nonautonomous dynamical systems.

Remark 2.2.

(i) Normally, one has additional structures concerning the driving system
θ. In the deterministic case, the base set P is a metric space and θ
is continuous; in case of random dynamical systems, θ represents an
ergodic dynamical system. For a discussion of the relationship of these
two concepts, see Berger & Siegmund [28].

(ii) In the literature, one usually considers global nonautonomous dynam-
ical systems, i.e., D = T × P × X. The above definition of a local
nonautonomous dynamical system stems from Aulbach & Siegmund
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& Rasmussen [16] (see also Rasmussen [144]; in case of random dy-
namical systems, see Arnold [5] and Arnold & Namachchivaya &

Schenk-Hoppé [8]).

Let θ be a base flow on P . For an element p ∈ P , we define the forward orbit of
p by O+(p) := {θtp : t ≥ 0}, the backward orbit of p by O−(p) :=

{
θtp : t ≤ 0

}
,

the T -orbit of p, T ∈ T+, by OT (p) :=
{
θtp : t ∈ [0, T ] ∩ T

}
and the orbit of

p by O(p) :=
{
θtp : t ∈ T±

}
. Two elements p1, p2 ∈ P are called equivalent

(p1 ∼ p2) if p1 ∈ O(p2). We denote the set of all equivalence classes [p] by
P/∼.

Definition 2.3 (Nonautonomous sets). We consider a nonautonomous
dynamical system (θ, ϕ) on a metric space X with a base set P . For an arbi-
trary set M ⊂ P × X, we define the so-called p-fibre of M by

M(p) :=
{
x ∈ X : (p, x) ∈ M

}
for all p ∈ P ,

and we denote by P ∗(M) :=
{
p ∈ P : M(p) �= ∅

}
the set of all base elements

leading to nonempty fibres. M is called

(i) past nonautonomous set if O−(p) ⊂ P ∗(M) for all p ∈ P ∗(M) ,

(ii) future nonautonomous set if O+(p) ⊂ P ∗(M) for all p ∈ P ∗(M) ,

(iii) all-time nonautonomous set if O(p) ⊂ P ∗(M) for all p ∈ P ∗(M) ,

(iv) (p, T )-nonautonomous set if OT (p) ⊂ P ∗(M) .

We say that M is

(i) invariant if ϕ(t, p)M(p) = M(θtp) for all p ∈ P ∗(M) and t ∈ T with
θtp ∈ P ∗(M) ,

(ii) closed if M(p) is closed for all p ∈ P ∗(M) ,

(iii) compact if M(p) is compact for all p ∈ P ∗(M) .

Remark 2.4.

(i) An all-time nonautonomous set is a past, as well as a future nonau-
tonomous set. The reversal is certainly not true.

(ii) In the literature, an all-time nonautonomous set M with P ∗(M) = P is
called nonautonomous set.

The following definition is adapted from Aubin & Frankowska [12] (see
also Akin [3, Exercise 1.5, p. 9] and Elstrodt [64, p. 9]).

Definition 2.5. For a past nonautonomous set M ⊂ P ×X and p ∈ P ∗(M),
we define

lim sup
t→∞

M(θ−tp) :=
⋂

τ≥0

⋃

t≥τ

M(θ−tp)



12 Chapter 2: Notions of Attractivity and Bifurcation

and
lim inf
t→∞

M(θ−tp) :=
⋃

τ≥0

⋂

t≥τ

M(θ−tp) .

Given a future nonautonomous set M ⊂ P × X and p ∈ P ∗(M), we define

lim sup
t→∞

M(θtp) :=
⋂

τ≥0

⋃

t≥τ

M(θtp)

and
lim inf
t→∞

M(θtp) :=
⋃

τ≥0

⋂

t≥τ

M(θtp) .

It is easy to show that the following characterizations hold:

• lim supt→∞ M(θ−tp) =
{
x ∈ X : ∀ τ ≥ 0 : ∃ t ≥ τ : x ∈ M(θ−tp)

}
,

• lim inft→∞ M(θ−tp) =
{
x ∈ X : ∃ τ ≥ 0 : ∀ t ≥ τ : x ∈ M(θ−tp)

}
,

• lim supt→∞ M(θtp) =
{
x ∈ X : ∀ τ ≥ 0 : ∃ t ≥ τ : x ∈ M(θtp)

}
,

• lim inft→∞ M(θtp) =
{
x ∈ X : ∃ τ ≥ 0 : ∀ t ≥ τ : x ∈ M(θtp)

}
.

2.3 Attractivity and Repulsivity

This section is divided into six subsections. First, several notions of attractor
and repeller are introduced for invertible (in Subsection 2.3.1) and non-
invertible (in Subsection 2.3.2) nonautonomous dynamical systems. In Sub-
section 2.3.3 and 2.3.4, the theoretical background to analyze the strength
of attractivity and repulsivity is established, and in Subsection 2.3.5, proper-
ties of the definitions under time reversal are studied. Finally, criteria for the
existence of attractors and repellers are formulated in the last subsection, and
the question of their uniqueness is discussed.

Throughout this section, let
(
θ : T × P → P,ϕ : D ⊂ T × P × X → X

)
be

an invertible nonautonomous dynamical system with an arbitrary base set P
and a metric space (X, d).

2.3.1 Definitions

We begin with the definitions concerning the past of the system. In addition to
the important notions of past attractor and past repeller, also M-past attrac-
tors and repellers are introduced, which are generalizations of past attractors
and repellers, respectively. Please note that past attractors are local forms of
pullback attractors (see also Subsection 2.4.3).
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Definition 2.6 (Past attractivity and repulsivity). Let A and R be
invariant and compact past nonautonomous sets and M be a collection of
past nonautonomous sets.

(i) A is called past attractor if there exists an η > 0 such that for all
p ∈ P ∗(A), there exists a p̂ ∈ [p] ∩ P ∗(A) with

lim
t→∞

d
(
ϕ(t, θ−τ−tp̂)Uη(A(θ−τ−tp̂))

∣
∣A(θ−τ p̂)

)
= 0 for all τ ≥ 0 .

(ii) R is called past repeller if there exists an η > 0 such that for all p ∈
P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) with

lim
t→∞

d
(
ϕ(−t, θ−τ p̂)Uη(R(θ−τ p̂))

∣
∣R(θ−τ−tp̂)

)
= 0 for all τ ≥ 0 .

(iii) A is called M-past attractor if for all M ∈ M, we have P ∗(M) ⊂ P ∗(A)
and

lim
t→∞

d
(
ϕ(t, θ−tp)M(θ−tp)

∣
∣A(p)

)
= 0 for all p ∈ P ∗(M) .

(iv) R is called M-past repeller if for all M ∈ M, we have P ∗(M) ⊂ P ∗(R)
and

lim
t→∞

d
(
ϕ(−t, p)M(p)

∣
∣R(θ−tp)

)
= 0 for all p ∈ P ∗(M) .

P

Xϕ(t, θ−τ−tp̂)

θ−τ p̂

{
η

θ−τ−tp̂
A

t→∞

t→∞

Fig. 2.2. Past attractor

It follows directly from the definitions that the empty set is both a past
attractor and a past repeller. If X is compact and D = T × P × X, then
P × X is also both a past attractor and a past repeller.
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P

X

θ−τ p̂

}
η

R

Fig. 2.3. Past repeller

Remark 2.7.

(i) The notions of Definition 2.6 represent the behavior of (θ, ϕ) in the
past. This can be seen by considering another nonautonomous dynamical
system (θ, ϕ̄ : D ⊂ T × P × X → X) with the following property: For
all p̄ ∈ P , there exists a p̂ ∈ [p̄] with

ϕ(t, p)x = ϕ̄(t, p)x for all (t, p, x) ∈ D fulfilling p, θtp ∈ O−(p̂) .

Then for any past attractor (repeller, respectively) A of (θ, ϕ), there
exists a past attractor (repeller, respectively) Ā of (θ, ϕ̄) such that for
all p̄ ∈ P , there exists a p̂ ∈ [p̄] with

A(p) = Ā(p) for all p ∈ O−(p̂) .

(ii) Let A be a past attractor with η given as in Definition 2.6 (i). Then for
all p ∈ P ∗(A), we have

A(p) = lim sup
t→∞

ϕ(t, θ−tp)Uη(A(θ−tp)) = lim inf
t→∞

ϕ(t, θ−tp)Uη(A(θ−tp)) .

(iii) The notions of M-past attractor and repeller are generalizations of past
attractors and repellers, since a past attractor A is an {M}-past attrac-
tor for some past nonautonomous set M fulfilling the following prop-
erty: There exists an η > 0 such that for all p ∈ P ∗(A), there exists a
p̂ ∈ [p] ∩ P ∗(A) with

Uη(A(θ−tp̂)) ⊂ M(θ−tp̂) for all t ≥ 0 .

Moreover, a past repeller R is an {M}-past repeller for some past non-
autonomous set M fulfilling the following property: There exists an η > 0
such that for all p ∈ P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) with

Uη(R(θ−tp̂)) ⊂ M(θ−tp̂) for all t ≥ 0 .
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(iv) Due to the continuity of ϕ, one can derive the following equivalent char-
acterization: An invariant and compact nonautonomous set A is a past
attractor if and only if there exists an η > 0 such that for all p ∈ P ∗(A),
we have

lim
t→∞

d
(
ϕ(t, θ−tp)Uη(A(θ−tp))

∣
∣A(p)

)
= 0 .

Such a reduction is not possible for past repellers.

Before proceeding with the case of future attractivity and repulsivity, the
definitions for the past are illustrated by means of the following two examples.

Example 2.8. We consider the linear nonautonomous differential equation

ẋ = a(t)x (2.2)

with a continuous function a : R → R, which generates a nonautonomous
dynamical system with T = P = R (see Section 2.2). It is easy to see that
every invariant and compact past nonautonomous set is a past attractor if
and only if

lim
t→−∞

∫ 0

t

a(s) ds = −∞

and a past repeller if and only if

lim
t→−∞

∫ 0

t

a(s) ds = ∞ .

Example 2.9. The nonautonomous differential equation

ẋ = a(t)x + b(t)x3 = x
(
a(t) + b(t)x2

)
(2.3)

with continuous functions a : R → R and b : R → R+
κ for some κ > 0 generates

a nonautonomous dynamical system with T = P = R (see Section 2.2). For
simplicity, we define

w(t) :=

√

−a(t)

b(t)
for all t ∈ R with a(t) < 0 .

Then, for fixed t ∈ R with a(t) < 0, the zero set of the right hand side is
{0,±w(t)}; for all t ∈ R with a(t) ≥ 0, this zero set is the singleton {0}. An
elementary discussion of the sign of the right hand side of (2.3) yields that
R×{0} is a past attractor if lim inft→−∞ −a(t)/b(t) > 0, and R×{0} is a past
repeller if lim supt→−∞ −a(t)/b(t) ≤ 0. These conditions are only sufficient for
attractivity or repulsivity of R × {0} but not necessary.

In the following definition, the notions of future attractivity and repulsivity
are explained. Please note that future attractors are local forms of forward
attractors (see Subsection 2.4.3 for further information).
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Definition 2.10 (Future attractivity and repulsivity). Let A and R be
invariant and compact future nonautonomous sets and M be a collection of
future nonautonomous sets.

(i) A is called future attractor if there exists an η > 0 such that for all
p ∈ P ∗(A), there exists a p̂ ∈ [p] ∩ P ∗(A) with

lim
t→∞

d
(
ϕ(t, θτ p̂)Uη(A(θτ p̂))

∣
∣A(θτ+tp̂)

)
= 0 for all τ ≥ 0 .

(ii) R is called future repeller if and only if there exists an η > 0 such that
for all p ∈ P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) with

lim
t→∞

d
(
ϕ(−t, θτ+tp̂)Uη(R(θτ+tp̂))

∣
∣R(θτ p̂)

)
= 0 for all τ ≥ 0 .

(iii) A is called M-future attractor if for all M ∈ M, we have P ∗(M) ⊂
P ∗(A) and

lim
t→∞

d
(
ϕ(t, p)M(p)

∣
∣A(θtp)

)
= 0 for all p ∈ P ∗(M) .

(iv) R is called M-future repeller if for all M ∈ M, we have P ∗(M) ⊂ P ∗(R)
and

lim
t→∞

d
(
ϕ(−t, θtp)M(θtp)

∣
∣R(p)

)
= 0 for all p ∈ P ∗(M) .

P

X

θτ p̂

{
η

A

Fig. 2.4. Future attractor

It follows directly from the definitions that the empty set is both a future
attractor and future repeller. If X is compact and D = T × P × X, then
P × X is also a future attractor and future repeller.
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P

X
ϕ(−t, θτ+tp̂)

θτ+tp̂

}
η

θτ p̂ R

t→∞

t→∞

Fig. 2.5. Future repeller

Remark 2.11.

(i) As seen in Remark 2.7 (i) in case of past attractivity and repulsivity, the
notions of Definition 2.10 represent the behavior of (θ, ϕ) in the future.

(ii) There are important analogies in the concepts of past and future
attractivity and repulsivity. This question is treated in Section 2.3.5.
It is shown that a past attractor corresponds to a future repeller, and a
past repeller is related to a future attractor.

(iii) Let R be a future repeller with η given as in Definition 2.10 (ii). Then
for all p ∈ P ∗(R), we have

R(p) = lim sup
t→∞

ϕ(−t, θtp)Uη(R(θtp)) = lim inf
t→∞

ϕ(−t, θtp)Uη(R(θtp)) .

(iv) The notions of M-future attractor and repeller are generalizations of
future attractors and repellers, since a future attractor A is an {M}-
future attractor for some future nonautonomous set M fulfilling the fol-
lowing property: There exists an η > 0 such that for all p ∈ P ∗(A), there
exists a p̂ ∈ [p] ∩ P ∗(A) with

Uη(A(θtp̂)) ⊂ M(θtp̂) for all t ≥ 0 .

Moreover, a future repeller R is an {M}-future repeller for some future
nonautonomous set M fulfilling the following property: There exists an
η > 0 such that for all p ∈ P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) with

Uη(R(θtp̂)) ⊂ M(θtp̂) for all t ≥ 0 .

(v) Due to the continuity of ϕ, one can derive the following equivalent char-
acterization: An invariant and compact nonautonomous set R is a future
repeller if and only if there exists an η > 0 such that for all p ∈ P ∗(R),
we have
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lim
t→∞

d
(
ϕ(−t, θtp)Uη(R(θtp))

∣
∣R(p)

)
= 0 .

Such a reduction is not possible for future attractors.

The following two examples illustrate the notions of future attractivity and
repulsivity.

Example 2.12. We consider again the linear nonautonomous differential equa-
tion (2.2) from Example 2.8. Then each invariant and compact future nonau-
tonomous set is a future attractor if and only if

lim
t→∞

∫ t

0

a(s) ds = −∞

and a future repeller if and only if

lim
t→∞

∫ t

0

a(s) ds = ∞ .

Example 2.13. Let (2.3) be the scalar nonautonomous differential equation
from Example 2.9. Analogously to the observations in this example, one can
see that R×{0} is a future attractor if lim inft→∞ −a(t)/b(t) > 0 and a future
repeller if lim supt→∞ −a(t)/b(t) ≤ 0.

In the following definition, the notions of all-time attractivity and repulsiv-
ity are explained. First, note that an all-time attractor is a local form of a
uniform attractor as discussed, e.g., in Chepyzhov & Vishik [44] (see also
Subsection 2.4.3).

Definition 2.14 (All-time attractivity and repulsivity). Let A and R
be invariant and compact all-time nonautonomous sets.

(i) A is called all-time attractor if there exists an η > 0 with

lim
t→∞

sup
p∈P∗(A)

d
(
ϕ(t, p)Uη(A(p))

∣
∣A(θtp)

)
= 0 .

(ii) R is called all-time repeller if there exists an η > 0 with

lim
t→∞

sup
p∈P∗(R)

d
(
ϕ(−t, p)Uη(R(p))

∣
∣R(θ−tp)

)
= 0 .

It follows directly from the definitions that the empty set is both an all-time
attractor and an all-time repeller. If X is compact and D = T× P ×X, then
P ×X is also an all-time attractor and all-time repeller. An all-time attractor
(all-time repeller, respectively) is also both a past attractor (past repeller,
respectively) and a future attractor (future repeller, respectively), since in
the above definition, p can be replaced by θ−tp.

We look again at the two examples for the attractivity and repulsivity of a
linear and nonlinear scalar differential equation.
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Example 2.15. Consider the nonautonomous differential equation (2.2) from
Example 2.8. Then each invariant and compact all-time nonautonomous set
is an all-time attractor if and only if

lim
t→∞

sup
τ∈R

∫ τ+t

τ

a(s) ds = −∞

and an all-time repeller if and only if

lim
t→∞

sup
τ∈R

∫ τ+t

τ

a(s) ds = ∞ .

Example 2.16. Consider the nonautonomous differential equation (2.3) from
Example 2.9. Analogously to the observations in this example, one can see
that R × {0} is an all-time attractor if inft∈R −a(t)/b(t) > 0 and an all-time
repeller if −a(t)/b(t) ≤ 0 for all t ∈ R.

Finally, the definitions of finite-time attractivity and repulsivity are intro-
duced.

Definition 2.17 (Finite-time attractivity and repulsivity). For p ∈ P
and T > 0, let A and R be invariant and compact (p, T )-nonautonomous
sets.

(i) A is called (p, T )-attractor if

lim sup
ηց0

1

η
d
(
ϕ(T, p)Uη(A(p))

∣
∣A(θT p)

)
< 1 .

(ii) R is called (p, T )-repeller if

lim sup
ηց0

1

η
d
(
ϕ(−T, θT p)Uη(R(θT p))

∣
∣R(p)

)
< 1 .

Remark 2.18. In contrast to the above definitions in case of past, future and
all-time attractivity and repulsivity, the notions of finite-time attractivity and
repulsivity are not invariant with respect to a change of the metric d to an
equivalent metric.

The following two examples illustrate the notions of finite-time attractivity
and repulsivity.

Example 2.19. Consider again the nonautonomous differential equation (2.2)
from Example 2.8, and let p ∈ R and T > 0. Then each invariant and compact
(p, T )-nonautonomous set is a (p, T )-attractor if and only if
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P

X

p θT p

{
η

}< η for η → 0

A

Fig. 2.6. (p, T )-attractor

P

X

p θT p

{η >
for η → 0

}
η

R

Fig. 2.7. (p, T )-repeller

∫ p+T

p

a(s) ds < 0

and a future repeller if and only if

∫ p+T

p

a(s) ds > 0 .

Example 2.20. Let (2.3) be the scalar nonautonomous differential equation
from Example 2.9, p ∈ R and T > 0. Analogously to the observations in this
example, one can see that R × {0} is a (p, T )-attractor if −a(t)/b(t) > 0 for
all t ∈ [p, p + T ] and a (p, T )-repeller if −a(t)/b(t) ≤ 0 for all t ∈ [p, p + T ].

We will often consider invariant nonautonomous sets which are solutions of
the nonautonomous dynamical system (θ, ϕ).
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Definition 2.21 (Solution). Let P̂ ⊂ P be nonempty with P̂ ⊂ O(p) for
some p ∈ P . A function µ : P̂ → X is called solution of (θ, ϕ) if graphµ is
invariant.

The attractivity and repulsivity of solutions are defined by considering the
graph of the solution as an invariant nonautonomous set.

Definition 2.22 (Attractivity and repulsivity of solutions). Let µ be a
solution of (θ, ϕ).

(i) µ is called past ( future, all-time, (p, T )-, respectively) attractive if
graph(µ) is a past (future, all-time, (p, T )-, respectively) attractor.

(ii) µ is called past ( future, all-time (p, T )-, respectively) repulsive if
graph(µ) is a past (future, all-time, (p, T )-, respectively) repeller.

Concluding this subsection, we state the following proposition, whose obvious
proof will be omitted.

Proposition 2.23. A past (future, all-time, (p, T )-, respectively) non-
autonomous set can never be both a past (future, all-time, (p, T )-, respectively)
attractor and a past (future, all-time, (p, T )-, respectively) repeller.

2.3.2 The Noninvertible Case

Although, noninvertible systems are not considered in this book, the notions
of repulsivity are introduced for not necessarily invertible nonautonomous
dynamical systems

(
θ : T±×P → P,ϕ : D ⊂ T×P ×X → X

)
in the following

definition. In case of invertible systems, these definitions are equivalent to
the definitions of the previous subsection.

Definition 2.24 (Repulsivity in the noninvertible case). Given p ∈ P
and T > 0, and let A and R be invariant and compact past (future, all-time,
(p, T )-, respectively) nonautonomous sets.

(i) R is called past repeller if there exists an η > 0 such that for all p ∈
P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) such that for all ε > 0 and τ ≥ 0,
we have a t∗ > 0 with

ϕ(t, θ−τ−tp̂)Uε(R(θ−τ−tp̂)) ⊃ Uη(R(θ−τ p̂)) for all t ≥ t∗ .

(ii) R is called M-past repeller if for all M ∈ M, we have P ∗(M) ⊂ P ∗(R),
and for all M ∈ M, p ∈ P ∗(M) and ε > 0, there exists a t∗ > 0 with

ϕ(t, θ−tp)Uε(R(θ−tp)) ⊃ M(p) for all t ≥ t∗ .
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(iii) R is called a future repeller if there exists an η > 0 such that for all
p ∈ P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) such that for all ε > 0 and
τ ≥ 0, we have a t∗ > 0 with

ϕ(t, θτ p̂)Uε(R(θτ p̂)) ⊃ Uη(R(θτ+tp̂)) for all t ≥ t∗ .

(iv) R is called M-future repeller if for all M ∈ M, we have P ∗(M) ⊂
P ∗(R), and for all M ∈ M, p ∈ P ∗(M) and ε > 0, there exists a t∗ > 0
with

ϕ(t, p)Uε(R(p)) ⊃ M(θtp) for all t ≥ t∗ .

(v) R is called all-time repeller if there exists an η > 0 such that for all
ε > 0, there exists a t∗ > 0 with

ϕ(t, p)Uε(R(p)) ⊃ Uη(R(θtp)) for all p ∈ P ∗(R) and t ≥ t∗ .

(vi) R is called (p, T )-repeller if

lim inf
ηց0

1

η
d̂
(
ϕ(T, p)Uη(R(p))

∣
∣R(θT p)

)
> 1 .

2.3.3 Radii of Attraction and Repulsion

Since the local dynamical behavior of nonautonomous sets is studied in the
definitions of the preceding subsections, it is useful to know something about
the range of attractivity or repulsivity. In this subsection, notions of radii of
attraction and repulsion are introduced.

Definition 2.25 (Radii of attraction and repulsion). We define the
radius of past attraction of a past attractor A by

A
←
A := sup

{

η > 0 : For all p ∈ P ∗(A), there exists a p̂ ∈ [p] ∩ P ∗(A) with

lim
t→∞

d
(
ϕ(t, θ−τ−tp̂)Uη(A(θ−τ−tp̂))

∣
∣A(θ−τ p̂)

)
= 0 for all τ ≥ 0

}

and the radius of past repulsion of a past repeller R by

R
←
R := sup

{

η > 0 : For all p ∈ P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) with

lim
t→∞

d
(
ϕ(−t, θ−τ p̂)Uη(R(θ−τ p̂))

∣
∣R(θ−τ−tp̂)

)
= 0 for all τ ≥ 0

}

.

The radius of future attraction of a future attractor A is defined by

R
→
A := sup

{

η > 0 : For all p ∈ P ∗(A), there exists a p̂ ∈ [p] ∩ P ∗(A) with

lim
t→∞

d
(
ϕ(t, θτ p̂)Uη(A(θτ p̂))

∣
∣A(θt+τ p̂)

)
= 0 for all τ ≥ 0

}

,

and the radius of future repulsion of a future repeller R is defined by
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R
→
R := sup

{

η > 0 : For all p ∈ P ∗(R), there exists a p̂ ∈ [p] ∩ P ∗(R) with

lim
t→∞

d
(
ϕ(−t, θτ+tp̂)Uη(R(θτ+tp̂))

∣
∣R(θτ p̂)

)
= 0 for all τ ≥ 0

}

.

The radius of all-time attraction of an all-time attractor A is defined by

R
↔
A := sup

{

η > 0 : lim
t→∞

sup
p∈P∗(A)

d
(
ϕ(t, p)Uη(A(p))

∣
∣A(θtp)

)
= 0
}

,

and the radius of all-time repulsion of an all-time repeller R is defined by

R
↔
R := sup

{

η > 0 : lim
t→∞

sup
p∈P∗(R)

d
(
ϕ(−t, p)Uη(R(p))

∣
∣R(θ−tp)

)
= 0
}

.

The radius of (p, T )-attraction of a (p, T )-attractor A is defined by

A
(p,T )
A := sup

{
η > 0 : d

(
ϕ(T, p)Uη̂(A(p))

∣
∣A(θT p)

)
< η̂ for all η̂ ∈ (0, η)

}
,

and the radius of (p, T )-repulsion of a (p, T )-repeller R is defined by

R
(p,T )
R := sup

{
η > 0 : d

(
ϕ(−T, θT p)Uη̂(R(θT p))

∣
∣R(p)

)
< η̂

for all η̂ ∈ (0, η)
}

.

When considering a solution µ of (θ, ϕ) which is either past (future, all-
time, (p, T )-, respectively) attractive or repulsive, one of the above definitions
applies for graphµ. We write Aµ := Agraph µ or Rµ := Rgraph µ and proceed
similarly with further notation (concerning, e.g., the domains of attraction
and repulsion introduced in the next subsection).

2.3.4 Domains of Attraction and Repulsion

The radii of attraction and repulsion defined in the last subsection are positive
real numbers. However, if X is a Banach space and in case of past, future and
all-time attractivity and repulsivity, we will, in addition to the radii of attrac-
tion and repulsion, consider domains of attraction and repulsion as subsets of
the phase space.

We begin with some auxiliary definitions for the extended phase space. Given
a past attractor A, we define for all p ∈ P ∗(A),

A←
A (p) :=

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

d
(
ϕ(t, θ−tp)(A(θ−tp) + U)

∣
∣A(p)

)
= 0
}

,

and for a past repeller R, we define for all p ∈ P ∗(R),
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R←
R (p) :=

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

d
(
ϕ(−t, p)(R(p) + U)

∣
∣R(θ−tp)

)
= 0
}

.

Given a future attractor A, we define for all p ∈ P ∗(A),

A→
A (p) :=

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

d
(
ϕ(t, p)(A(p) + U)

∣
∣A(θtp)

)
= 0
}

,

and for a future repeller R, we define for all p ∈ P ∗(R),

R→
R (p) :=

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

d
(
ϕ(−t, θtp)(R(θtp) + U)

∣
∣R(p)

)
= 0
}

.

Some properties of these sets are derived in the following proposition.

Proposition 2.26. The following statements are fulfilled:

(i) Given a past attractor A, the set A←
A (p) is open for all p ∈ P ∗(A), and

we have A←
A (p) = A←

A (p̂) for all p̂ ∈ [p] ∩ P ∗(A). Furthermore, for all
p ∈ P ∗(A) and compact sets C ⊂ A←

A (p), the relation

lim
t→∞

d
(
ϕ(t, θ−tp)(A(θ−tp) + C)

∣
∣A(p)

)
= 0

is fulfilled.

(ii) Given a past repeller R, the set R←
R (p) is open for all p ∈ P ∗(R). Fur-

thermore, for all p ∈ P ∗(R) and compact sets C ⊂ R←
R (p), the relation

lim
t→∞

d
(
ϕ(−t, p)(R(p) + C)

∣
∣R(θ−tp)

)
= 0

is fulfilled.

(iii) Given a future attractor A, the set A→
A (p) is open for all p ∈ P ∗(A).

Furthermore, for all p ∈ P ∗(A) and compact sets C ⊂ A→
A (p), the rela-

tion
lim

t→∞
d
(
ϕ(t, p)(A(p) + C)

∣
∣A(θtp)

)
= 0

is fulfilled.

(iv) Given a future repeller R, the set R→
R (p) is open for all p ∈ P ∗(R), and

we have R→
R (p) = R→

R (p̂) for all p̂ ∈ [p] ∩ P ∗(R). Furthermore, for all
p ∈ P ∗(R) and compact sets C ⊂ R→

R (p), the relation

lim
t→∞

d
(
ϕ(−t, θtp)(R(θtp) + C)

∣
∣R(p)

)
= 0

is fulfilled.
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Proof. (i) The openness of A←
A (p) is a direct consequence of its definition, and

the second assertion follows from Remark 2.7 (iv). Let us now assume that
there exist p ∈ P ∗(A), a compact set C ⊂ A←

A (p), an ε > 0 and sequences
{xn}n∈N in C and {tn}n∈N in T such that limn→∞ tn = ∞ and

d
(
ϕ(tn, θ−tn

p)(A(θ−tn
p) + xn)

∣
∣A(p)

)
≥ ε for all n ∈ N .

Since C is compact, we assume w.l.o.g. that {xn}n∈N is convergent with
limn→∞ xn = x0. Since x0 ∈ C ⊂ A←

A (p), there exists a neighborhood U
of x0 such that

lim
t→∞

d
(
ϕ(t, θ−tp)(A(θ−tp) + U)

∣
∣A(p)

)
= 0 .

This is a contradiction.
(ii) As in (i), the first assertion is clear. Suppose now, there exist a p ∈ P ∗(R),
a compact set C ⊂ R←

R (p), an ε > 0 and sequences {xn}n∈N in C and {tn}n∈N

in T such that limn→∞ tn = ∞ and

d
(
ϕ(−tn, p)(R(p) + xn)

∣
∣R(θ−tn

p)
)
≥ ε for all n ∈ N .

Since C is compact, we assume w.l.o.g. that {xn}n∈N is convergent with
limn→∞ xn = x0. Since x0 ∈ C ⊂ R←

R (p), there exists a neighborhood U
of x0 such that

lim
t→∞

d
(
ϕ(−t, p)(R(p) + U)

∣
∣R(θ−tp)

)
= 0 .

This is a contradiction and finishes the proof of (ii).
The proofs of (iii) and (iv) will be omitted, since they are similar to (i) and
(ii). ⊓⊔

For simplicity in description, it is our aim to characterize the strength of
attractivity or repulsivity not by the above defined fiber-wise sets, but by
subsets of the phase space. This reduction is done by the following definition.

Definition 2.27 (Domains of attraction and repulsion).

(i) The domain of past attraction of a past attractor A is defined by

A←
A := int

⋂

p∈P∗(A)

lim inf
t→∞

A←
A (θ−tp) .

(ii) The domain of past repulsion of a past repeller R is defined by

R←
R := int

⋂

p∈P∗(R)

lim inf
t→∞

R←
R (θ−tp) .

(iii) The domain of future attraction of a future attractor A is defined by

A→
A := int

⋂

p∈P∗(A)

lim inf
t→∞

A→
A (θtp) .
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(iv) The domain of future repulsion of a future repeller R is defined by

R→
R := int

⋂

p∈P∗(R)

lim inf
t→∞

R→
R (θtp) .

(v) The domain of all-time attraction of an all-time attractor A is defined
by

A↔
A :=

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

sup
p∈P∗(A)

d
(
ϕ(t, p)(A(p) + U)

∣
∣A(θtp)

)
= 0
}

.

(vi) The domain of all-time repulsion of an all-time repeller R is defined by

R↔
R :=

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

sup
p∈P∗(R)

d
(
ϕ(−t, p)(R(p) + U)

∣
∣R(θ−tp)

)
= 0
}

.

Remark 2.28.

(i) It can be seen immediately from the definitions that all above defined
domains of attraction and repulsion are open neighborhoods of zero.

(ii) The relations

A
←
A = d̂

(
A←

A

∣
∣{0}

)
, A

→
A = d̂

(
A→

A

∣
∣{0}

)
, R

→
R = d̂

(
R→

R

∣
∣{0}

)
and

R
←
R = d̂

(
R←

R

∣
∣{0}

)
, A

↔
A = d̂

(
A↔

A

∣
∣{0}

)
, R

↔
R = d̂

(
R↔

R

∣
∣{0}

)

are fulfilled.

(iii) Given a past attractor A, from Proposition 2.26 (i), the relation

A←
A = int

⋂

p∈P∗(A)

A←
A (p)

follows. Moreover, Proposition 2.26 (iv) implies for a future repeller R,

R→
R = int

⋂

p∈P∗(R)

R→
R (p) .

Example 2.29. We consider again the linear nonautonomous differential equa-
tion (2.2) from Example 2.8. We have already derived criteria for the attractiv-
ity and repulsivity of an invariant and compact nonautonomous set in several
examples in Subsection 2.3.1. An easy calculation yields that the correspond-
ing domains of attraction and repulsion are maximal for this example, more
precisely, an invariant and compact nonautonomous set M ⊂ R×R is a

• past attractor (A←
M = R) if and only if lim

t→−∞

∫ 0

t
a(s) ds = −∞ ,
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• past repeller (R←
M = R) if and only if lim

t→−∞

∫ 0

t
a(s) ds = ∞ ,

• future attractor (A→
M = R) if and only if lim

t→∞

∫ t

0
a(s) ds = −∞ ,

• future repeller (R→
M = R) if and only if lim

t→∞

∫ t

0
a(s) ds = ∞ ,

• all-time attractor (A↔
M = R) if and only if lim

t→∞
sup
τ∈R

∫ τ+t

τ
a(s) ds = −∞ ,

• all-time repeller (R↔
M = R) if and only if lim

t→∞
sup
τ∈R

∫ τ+t

τ
a(s) ds = ∞ ,

• (p, T )-attractor (A
(p,T )
M = ∞) if and only if

∫ p+T

p
a(s) ds < 0 ,

• (p, T )-repeller (R
(p,T )
M = ∞) if and only if

∫ p+T

p
a(s) ds > 0 .

Example 2.30. In Subsection 2.3.1, we have also analyzed the attractivity and
repulsivity of the nonlinear differential equation (2.3). By elementary discus-
sions of the sign of the right hand side of this equation, we are also able to
give estimates for the corresponding domains of attraction and repulsion. The
trivial solution of (2.3) is

• past attractive with

(

− lim inf
t→−∞

w(t) , lim inf
t→−∞

w(t)
)

⊂ A←
0 ⊂

(

− lim sup
t→−∞

w(t) , lim sup
t→−∞

w(t)
)

if lim inft→−∞ −a(t)/b(t) > 0 ,

• past repulsive with R←
0 = R if lim supt→−∞ −a(t)/b(t) ≤ 0 ,

• future attractive with
(

− lim inf
t→∞

w(t) , lim inf
t→∞

w(t)
)

⊂ A→
0 ⊂

(

− lim sup
t→∞

w(t) , lim sup
t→∞

w(t)
)

if lim inft→∞ −a(t)/b(t) > 0 ,

• future repulsive with R→
0 = R if lim supt→∞ −a(t)/b(t) ≤ 0 ,

• all-time attractive with
(

− inf
t∈R

w(t) , inf
t∈R

w(t)
)

⊂ A↔
0 ⊂

(

− sup
t∈R

w(t) , sup
t∈R

w(t)
)

if inft∈R −a(t)/b(t) > 0 ,

• all-time repulsive with R↔
0 = R if −a(t)/b(t) ≤ 0 for all t ∈ R ,

• (p, T )-attractive with

inf
t∈[p,p+T ]

w(t) ≤ A
(p,T )
0 ≤ sup

t∈[p,p+T ]

w(t)

if −a(t)/b(t) > 0 for all t ∈ [p, p + T ] ,
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• (p, T )-repulsive with R
(p,T )
0 = ∞ if −a(t)/b(t) ≤ 0 for all t ∈ [p, p + T ] .

These conditions are only sufficient for attractivity or repulsivity of the trivial
solution but not necessary.

Proposition 2.31. The following statements are fulfilled:

(i) Let µ : O−(p) → X be a past repulsive solution. Then the past non-
autonomous set with the θ−tp-fibres R←

µ (θ−tp) + µ(θ−tp), t ≥ 0, is in-
variant.

(ii) Let µ : O+(p) → X be a future attractive solution. Then the future
nonautonomous set with the θtp-fibres A→

µ (θtp) + µ(θtp), t ≥ 0, is
invariant.

Proof. (i) We choose τ ∈ T+
0 , τ̂ ∈ T ∩ (−∞, τ ] and x ∈ R←

µ (θ−τp) + µ(θ−τp).
Let U be a neighborhood of x − µ(θ−τp) such that

lim
t→∞

d
(
ϕ(−t, θ−τp)(µ(θ−τp) + U)

∣
∣{µ(θ−τ−tp)}

)
= 0 . (2.4)

Then the set ϕ(τ̂ , θ−τp)(µ(θ−τp) + U) is a neighborhood of ϕ(τ̂ , θ−τp)x, and
we have

lim
t→∞

d
(
ϕ(−t, θτ̂−τp)ϕ(τ̂ , θ−τp)(µ(θ−τp) + U))

∣
∣{µ(θτ̂−τ−tp)}

)

= lim
t→∞

d
(
ϕ(−t, θ−τp)(µ(θ−τp) + U)

∣
∣{µ(θ−τ−t)}

) (2.4)
= 0 .

This means that ϕ(τ̂ , θ−τp)x − µ(θτ̂−τ ) ∈ R←
µ (θτ̂−τp).

The assertion (ii) can be proved analogously. ⊓⊔

2.3.5 Properties of Time Reversal

As the reader may have observed, there are important analogies in the
concepts of, say, past repulsivity and future attractivity. The aim of this sub-
section is to study these relationships.

In addition to the nonautonomous dynamical system (θ, ϕ), we also consider
the system under time reversal, denoted by

(
θ−1, ϕ−1

)
and defined by the

relations

θ−1(t, p) := θ(−t, p) for all (t, p) ∈ T × P ,

ϕ−1(t, p, x) := ϕ(−t, p, x) for all (t, p, x) with (−t, p, x) ∈ D .

The pair (θ, ϕ)−1 :=
(
θ−1, ϕ−1

)
is indeed a nonautonomous dynamical system,

since we have

ϕ−1(t + s, p, x) = ϕ(−t − s, p, x) = ϕ
(
−t, θ(−s, p), ϕ(−s, p, x)

)

= ϕ−1
(
t, θ−1(s, p), ϕ−1(s, p, x)

)

for all t, s ∈ T, (p, x) ∈ P ×X with −s ∈ Dmax(p, x) and −t−s ∈ Dmax(p, x).
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Proposition 2.32 (Properties of time reversal). Let M be a subset of
P × X. Then the following statements are fulfilled:

(i) M is a past attractor of (θ, ϕ) if and only if M is a future repeller of
(θ, ϕ)−1. We have A

←
M = R

→
M . If, in addition, X is a Banach space, then

also A←
M = R→

M is fulfilled.

(ii) M is a past repeller of (θ, ϕ) if and only if M is a future attractor of
(θ, ϕ)−1. We have R

←
M = A

→
M . If, in addition, X is a Banach space, then

also R←
M = A→

M is fulfilled.

(iii) M is an all-time attractor of (θ, ϕ) if and only if M is an all-time repeller
of (θ, ϕ)−1. We have R

↔
M = A

↔
M . If, in addition, X is a Banach space,

then also R↔
M = A↔

M is fulfilled.

(iv) M is a (p, T )-attractor of (θ, ϕ) if and only if M is a (θT p, T )-repeller

of (θ, ϕ)−1. We have A
(p,T )
M = R

(θT p,T )
M .

Proof. (i) Let M be a past attractor of (θ, ϕ), i.e., there exists an η > 0 such
that for all p ∈ P ∗(M), there exists a p̂ ∈ [p] ∩ P ∗(M) with

lim
t→∞

d
(
ϕ(t, θ−τ−tp̂)Uη(M(θ−τ−tp̂))

∣
∣M(θ−τ p̂)

)
= 0 for all τ ≥ 0 .

This is equivalent to

lim
t→∞

d
(

ϕ−1
(
−t, θ−1(τ + t, p̂)

)
Uη

(
M
(
θ−1(τ + t, p̂)

))
∣
∣
∣M
(
θ−1(τ, p̂)

))

= 0

for all τ ≥ 0, and this means that M is a future repeller of (θ, ϕ)−1. In case
X is a Banach space, the relation A←

M = R→
M follows from

A←
M (p) =

{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

d
(
ϕ(t, θ−tp)(M(θ−tp) + U)

∣
∣M(p)

)
= 0
}

=
{

x ∈ X : There exists a neighborhood U of x such that

lim
t→∞

d
(

ϕ−1
(
−t, θ−1(t, p)

)(
M
(
θ−1(t, p)

)
+ U

)
∣
∣
∣M(p)

)

= 0
}

= R→
M (p)

for all p ∈ P ∗(M). The relation A
←
M = R

→
M follows analogously.

The proofs of (ii), (iii) and (iv) are similar to that of (i); we therefore omit
them. ⊓⊔

2.3.6 Existence and Uniqueness

In this subsection, criteria for the existence of attractors and repellers are
formulated, and the question of their uniqueness is discussed.
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First, the notions of past absorbing and future rejecting sets are introduced
(these definitions are derived from Flandoli & Schmalfuß [68] and Kloe-

den [94, 95]).

Definition 2.33 (Past absorbing and future rejecting sets).

(i) Let B be a past nonautonomous set and M be a collection of past non-
autonomous sets. Then B is called past absorbing with respect to M if
for all M ∈ M, we have P ∗(M) ⊂ P ∗(B), and for all M ∈ M and
p ∈ P ∗(M), there exists a t∗ > 0 such that

ϕ(t, θ−tp)M(θ−tp) ⊂ B(p) for all t ≥ t∗ . (2.5)

(ii) Let B be a future nonautonomous set and M be a collection of future
nonautonomous sets. Then B is called future rejecting with respect to
M if for all M ∈ M, we have P ∗(M) ⊂ P ∗(B), and for all M ∈ M
and p ∈ P ∗(M), there exists a t∗ > 0 such that

ϕ(−t, θtp)M(θtp) ⊂ B(p) for all t ≥ t∗ .

Remark 2.34. In case the past absorbing set is compact (which is a hypothesis
of the next theorem), Definition 2.33 (i) is a nonautonomous generalization of
the notion of a dissipative dynamical system (see, e.g., Hale [77]).

The following existence result is adapted from Flandoli & Schmalfuß

[68] (for related results in the context of random attractors, see also Crauel

& Flandoli [58, Theorem 3.11], Schenk-Hoppé [159, Theorem 4.2] and
Schmalfuß [160, 161]).

Theorem 2.35 (Existence of M-past attractors and M-future
repellers). The following statements are fulfilled:

(i) Let M be a collection of past nonautonomous sets and B be a com-
pact past absorbing set with respect to M. Then there exists an M-past
attractor A fulfilling the representation

A(p) =
⋂

τ≥0

cls
⋃

t≥τ

ϕ(t, θ−tp)B(θ−tp) for all p ∈ P ∗(B) .

If, in addition, A ∈ M, then A is uniquely determined. In case B ∈ M,
the relation A ⊂ B is fulfilled.

(ii) Let M be a collection of future nonautonomous sets and B be a compact
future rejecting set with respect to M. Then there exists an M-future
repeller R fulfilling the representation

R(p) =
⋂

τ≥0

cls
⋃

t≥τ

ϕ(−t, θtp)B(θtp) for all p ∈ P ∗(B) .

If, in addition, R ∈ M, then R is uniquely determined. In case B ∈ M,
the relation R ⊂ B is fulfilled.
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Proof. For assertion (i), see Flandoli & Schmalfuß [68, Theorem 3.5], (ii)
follows from (i) using Proposition 2.32. ⊓⊔

In case the collection M of the above theorem contains a neighborhood of the
set B, existence results for past attractors and future repellers follow directly.

Corollary 2.36 (Existence of past attractors and future repellers).
The following statements are fulfilled:

(i) Let M be a collection of past nonautonomous sets, B be a compact past
absorbing set with respect to M and η > 0 such that the past non-
autonomous set B̄, defined by

B̄(p) := Uη(B(p)) for all p ∈ P ∗(B)

lies in M. Then the M-past attractor of Theorem 2.35 (i) is also a past
attractor.

(ii) Let M be a collection of future nonautonomous sets, B be a compact
future rejecting set with respect to M and η > 0 such that the future
nonautonomous set B̄, defined by

B̄(p) := Uη(B(p)) for all p ∈ P ∗(B)

lies in M. Then the M-future repeller of Theorem 2.35 (ii) is also a
future repeller.

Proof. The assertions follow directly from the definitions (cf. also
Remark 2.7 (iii) and Remark 2.11 (iii)). ⊓⊔

In the following proposition, the question of local uniqueness and nonunique-
ness for nonautonomous attractors and repellers is discussed.

Proposition 2.37 (Local uniqueness and nonuniqueness). The follow-
ing statements are fulfilled:

(i) Let A1 and A2 be past attractors such that A1(p) �= A2(p) for all p ∈ P .
Then we have

lim inf
t→∞

dH

(
A1(θ−tp), A2(θ−tp)

)
≥ min

{
A

←
A1

,A←
A2

}
for all p ∈ P .

(ii) Let R1 and R2 be future repellers such that R1(p) �= R2(p) for all p ∈ P .
Then we have

lim inf
t→∞

dH

(
R1(θtp), R2(θtp)

)
≥ min

{
R

→
R1

,R→
R2

}
for all p ∈ P.
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(iii) Let R1 be a past repeller. Then, for all p ∈ P ∗(R1) and δ ∈
(
0,R←

R1

)
,

there exists a p̂ ∈ [p] ∩ P ∗(R1) such that for all τ ≥ 0 and compact sets
R2(θ−τ p̂) ⊂ X with

R1(θ−τ p̂) ⊂ R2(θ−τ p̂) ⊂ cls Uδ(R1(θ−τ p̂)),

the past nonautonomous set R2, defined by

R2(p̄) :=

{
ϕ(−t, θ−τ p̂)R2(θ−τ p̂) : p̄ = θ−τ−tp̂ for some t ∈ T+

0

R1(p̄) : p̄ ∈ P ∗(R1) \ [p]
,

is also a past repeller with R
←
R1

= R
←
R2

.

(iv) Let A1 be a future attractor. Then, for all p ∈ P ∗(A1) and δ ∈
(
0,A→

A1

)
,

there exists a p̂ ∈ [p] ∩ P ∗(A1) such that for all τ ≥ 0 and compact sets
A2(θτ p̂) ⊂ X with

A1(θτ p̂) ⊂ A2(θτ p̂) ⊂ cls Uδ(A1(θτ p̂)),

the future nonautonomous set A2, defined by

A2(p̄) :=

{
ϕ(t, θτ p̂)A2(θτ p̂) : p̄ = θτ+tp̂ for some t ∈ T+

0

A1(p̄) : p̄ ∈ P ∗(A1) \ [p]
,

is also a future attractor with A
→
A1

= A
→
A2

.

Remark 2.38.

(i) The form of (local) nonuniqueness of past repellers and future attractors
is weak in the sense that, for instance, the past repellers R1 and R2 from
(iii) fulfill

lim
t→∞

dH

(
R1(θ−tp), R2(θ−tp)

)
= 0 for all p ∈ P .

(ii) Since all-time attractors (repellers, respectively) are past attractors
(future repellers, respectively) (cf. remark after Definition 2.14), they
also fulfill a uniqueness result similar to (i) ((ii), respectively).

(iii) Concerning finite-time attractors and repellers, it is not possible to
show uniqueness and nonuniqueness results. More precisely, the situa-
tion that in every neighborhood of a (p, T )-attractor lies another (p, T )-
attractor and an invariant (p, T )-nonautonomous set which is not a
(p, T )-attractor can occur.

(iv) In case X is a Banach space, in (iii) ((iv), respectively), not only the
relation R

←
R1

= R
←
R2

(A→
A1

= A
→
A2

, respectively) but also R←
R1

= R←
R2

(A→
A1

= A→
A2

, respectively) holds.

Proof (Proposition 2.37). We will only prove the statements (i) and (iii), since
the proofs of (ii) and (iv) are similar.
(i) Assume to the contrary that there exists a p ∈ P with



2.3 Attractivity and Repulsivity 33

lim inf
t→∞

dH

(
A1(θ−tp), A2(θ−tp)

)
< min

{
A

←
A1

,A←
A2

}
.

Hence, there exist a β < min
{
A

←
A1

,A←
A2

}
and a sequence {tn}n∈N such that

limn→∞ tn = ∞ and

A2(θ−tn
p) ⊂ Uβ(A1(θ−tn

p)) for all n ∈ N .

Due to Definition 2.25, this implies the existence of a τ ≥ 0 with

lim
n→∞

d
(
ϕ(tn − τ, θ−tn

p)A2(θ−tn
p)

︸ ︷︷ ︸

= A2(θ−τp)

∣
∣A1(θ−τp)

)
= 0 .

This means that d
(
A2(θ−τp)

∣
∣A1(θ−τp)

)
= 0, and hence, d

(
A2(p)

∣
∣A1(p)

)
= 0.

Analogously, one can show d
(
A1(p)

∣
∣A2(p)

)
= 0. This implies A1(p) = A2(p),

since A1(p) and A2(p) are compact, and this contradiction finishes the proof
of (i).
(iii) We choose p ∈ P ∗(R1) and δ, η ∈

(
0,R←

R1

)
arbitrarily and define

β :=
1

2

(
max {δ, η} + R

←
R1

)
∈
(
max {δ, η},R←

R1

)
.

Due to Definition 2.25, there exists a p̂ ∈ [p] ∩ P ∗(R1) such that

lim
t→∞

d
(
ϕ(−t, θ−τ p̂)Uβ(R1(θ−τ p̂))

∣
∣R1(θ−τ−tp̂)

)
= 0 for all τ ≥ 0 . (2.6)

We choose τ ≥ 0 and a compact set R2(θ−τ p̂) ⊂ X with

R1(θ−τ p̂) ⊂ R2(θ−τ p̂) ⊂ cls Uδ(R1(θ−τ p̂))

and define the nonautonomous set R2 as stated in the proposition. Because
of (2.6), there exists a t∗ ≥ 0 such that

d
(
ϕ(−t, θ−τ p̂)R2(θ−τ p̂)
︸ ︷︷ ︸

= R2(θ−τ−tp̂)

∣
∣R1(θ−τ−tp̂)

)
<

R
←
R1

− β

2
for all t ≥ t∗ .

Since 1
2

(
R

←
R1

− β
)

+ η < β, this implies using (2.6) the relation

lim
t→∞

d
(
ϕ(−t, θ−τ−sp̂)Uη(R2(θ−τ−sp̂))

∣
∣R1(θ−τ−s−tp̂)

)
= 0 for all s ≥ t∗ .

Because of R1 ⊂ R2, we obtain

lim
t→∞

d
(
ϕ(−t, θ−τ−sp̂)Uη(R2(θ−τ−sp̂))

∣
∣R2(θ−τ−s−tp̂)

)
= 0 for all s ≥ t∗ ,

and this means that R2 is a past repeller with R
←
R2

≥ η (please note that
R1(p̄) = R2(p̄) for all p̄ ∈ P ∗(R1) \ [p]). Hence, R

←
R2

≥ R
←
R1

(η has been
chosen arbitrarily). The relation R

←
R2

≤ R
←
R1

can be obtained from

lim
t→∞

d
(
R2(θ−tp)

∣
∣R1(θ−tp)

)
= 0 .

This finishes the proof of this proposition. ⊓⊔
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In the following lemma, domains of attraction (repulsion, respectively) of
attractive (repulsive, respectively) solutions lying in repellers (attractors,
respectively) are analyzed.

Lemma 2.39. We suppose that X is a Banach space. Then the following
statements are fulfilled:

(i) Let R be a past repeller and µ : O−(p) → X be a past attractive solution
with

µ(θ−tp) ∈ int R(θ−tp) for all t ≥ 0 .

Then we have

lim inf
t→∞

(
R(θ−tp) − µ(θ−tp)

)
⊃ A←

µ .

(ii) Let A be a past attractor and µ : O−(p) → X be a past repulsive solution
with

µ(θ−tp) ∈ A(θ−tp) for all t ≥ 0 .

Then the relation A(θ−tp) − µ(θ−tp) ⊃ R←
µ (θ−tp) holds for all t ≥ 0,

and we thus have

lim inf
t→∞

(
A(θ−tp) − µ(θ−tp)

)
⊃ R←

µ .

(iii) Let A be a future attractor and µ : O+(p) → X be a future repulsive
solution with

µ(θtp) ∈ int A(θtp) for all t ≥ 0 .

Then we have
lim inf
t→∞

(
A(θtp) − µ(θtp)

)
⊃ R→

µ .

(iv) Let R be a future repeller and µ : O+(p) → X be a future attractive
solution with

µ(θtp) ∈ R(θtp) for all t ≥ 0 .

Then the relation R(θtp)−µ(θtp) ⊃ A→
µ (θtp) holds for all t ≥ 0, and we

thus have
lim inf
t→∞

(
R(θtp) − µ(θtp)

)
⊃ A→

µ .

Remark 2.40.

(i) This lemma implies that (past and future) attractors or repellers con-
taining repulsive or attractive solutions, respectively, are nontrivial, i.e.,
their fibers are not singletons.

(ii) Since the notions of all-time attractivity and repulsivity are stronger
than those of past and future attractivity and repulsivity (cf. remark
after Definition 2.14), the assertions of the above lemma are also ap-
plicable for all-time attractors and repellers.
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Proof (Lemma 2.39). Because of Proposition 2.32, it is sufficient to show the
statements (i) and (ii).
(i) We choose x ∈ A←

µ . Due to the hypotheses, there exists an η > 0 such that

ϕ(−t, p)Uη(µ(p)) ⊂ R(θ−tp) for all t ≥ 0 .

Since x ∈ A←
µ , there exists a τ > 0 with

ϕ(t, θ−tp)(µ(θ−tp) + x) ∈ Uη(µ(p)) for all t ≥ τ .

Hence, we have

µ(θ−tp) + x = ϕ(−t, p)ϕ(t, θ−tp)(µ(θ−tp) + x) ∈ R(θ−tp) for all t ≥ τ .

Therefore, x ∈ lim inft→∞

(
R(θ−tp) − µ(θ−tp)

)
.

(ii) We choose x ∈ R←
µ (p) and δ > 0 arbitrarily. Since µ lies in A, there exist

η > 0 and τ > 0 such that

ϕ(t, θ−tp)Uη(µ(θ−tp)) ⊂ Uδ(A(p)) for all t ≥ τ .

Since x ∈ R←
µ (p), there exists a τ̂ > 0 with

ϕ(−t, p)(µ(p) + x) ∈ Uη(µ(θ−tp)) for all t ≥ τ̂ .

Hence, with t := max {τ, τ̂}, the relation

µ(p) + x = ϕ(t, θ−tp)ϕ(−t, p)(µ(p) + x) ∈ Uδ(A(p))

holds. Since δ has been chosen arbitrarily and A(p) is compact, we have µ(p)+
x ∈ A(p), and therefore, µ(p)+R←

µ (p) ⊂ A(p) is fulfilled. The assertion follows
directly from Proposition 2.31 (i). ⊓⊔

In the following theorem, sufficient conditions are derived to guarantee the
existence of a nonautonomous attractor (repeller, respectively) which contains
a nonautonomous repulsive (attractive, respectively) solution.

Theorem 2.41 (Existence of nonautonomous attractors and
repellers). Assume, X is a Banach space. Then the following statements
are fulfilled:

(i) We suppose that µ : O−(p) → X is a past attractive solution such that
A←

µ is bounded and there exist ε > 0 and s > 0 such that for all τ ≥ s,

lim
t→∞

d
(
ϕ(−t, θ−τp)Uε

(
µ(θ−τp) + A←

µ

)∣
∣µ(θ−τ−tp) + A←

µ

)
= 0 . (2.7)

Then there exists a β > 0 such that the invariant and compact past
nonautonomous set R, defined by

R(θ−t−sp) := ϕ(−t, θ−sp) cls Uβ(µ(θ−sp)) for all t ≥ 0 ,
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is a past repeller fulfilling

A←
µ ⊂ lim inf

t→∞

(
R(θ−tp) − µ(θ−tp)

)

⊂ lim sup
t→∞

(
R(θ−tp) − µ(θ−tp)

)
⊂ clsA←

µ .

(ii) We suppose that µ : O−(p) → X is a past repulsive solution such that
R←

µ is bounded and there exists an η > 0 such that for all ε > 0, there
exists an s > 0 such that for all τ ≥ s, there is a T > 0 with

ϕ(t, θ−τ−tp)Uη

(
µ(θ−τ−tp)+R←

µ

)
⊂ Uε

(
µ(θ−τp)+R←

µ

)
for all t ≥ T .

Then there exists a past attractor A ⊂ O−(p) × X fulfilling

R←
µ ⊂ lim inf

t→∞

(
A(θ−tp) − µ(θ−tp)

)

⊂ lim sup
t→∞

(
A(θ−tp) − µ(θ−tp)

)
⊂ clsR←

µ .

(iii) We suppose that µ : O+(p) → X is a future repulsive solution such that
R→

µ is bounded and there exist ε > 0 and s > 0 with

lim
t→∞

d
(
ϕ(t, θτp)Uε

(
µ(θτp) + R→

µ

)∣
∣µ(θt+τp) + R→

µ

)
= 0 for all τ ≥ s .

Then there exists a β > 0 such that the invariant and compact future
nonautonomous set A, defined by

A(θt+sp) := ϕ(t, θsp) cls Uβ(µ(θsp)) for all t ≥ 0 ,

is a future attractor fulfilling

R→
µ ⊂ lim inf

t→∞

(
A(θtp) − µ(θtp)

)

⊂ lim sup
t→∞

(
A(θtp) − µ(θtp)

)
⊂ clsR→

µ .

(iv) We suppose that µ : O+(p) → X is a future attractive solution such that
A→

µ is bounded and there exists an η > 0 such that for all ε > 0, there
exists an s > 0 such that for all τ ≥ s, there is a T > 0 with

ϕ(−t, θτ+tp)Uη

(
µ(θτ+tp) + A→

µ

)
⊂ Uε

(
µ(θτp) + A→

µ

)
for all t ≥ T .

Then there exists a future repeller R ⊂ O+(p) × X fulfilling

A→
µ ⊂ lim inf

t→∞

(
R(θtp) − µ(θtp)

)

⊂ lim sup
t→∞

(
R(θtp) − µ(θtp)

)
⊂ clsA→

µ .
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Proof. Due to Proposition 2.32, it is sufficient to show the statements (i) and
(ii).
(i) We choose a β > 0 with cls Uβ(0) ⊂ Uε

(
A←

µ

)
and define

R(θ−s−tp) := ϕ(−t, θ−sp) cls Uβ(µ(θ−sp)) for all t ≥ 0 .

This means that

R(θ−s−tp) ⊂ ϕ(−t, θ−sp)Uε

(
µ(θ−sp) + A←

µ

)
for all t ≥ 0 . (2.8)

Moreover,

lim
t→∞

d
(
R(θ−tp)

∣
∣µ(θ−tp) + A←

µ

)

(2.8)

≤ lim
t→∞

d
(
ϕ(−t, θ−sp)Uε

(
µ(θ−sp) + A←

µ

)∣
∣µ(θ−s−tp) + A←

µ

) (2.7)
= 0

is fulfilled, and therefore,

lim sup
t→∞

(
R(θ−tp) − µ(θ−tp)

)
⊂ clsA←

µ

holds. Next, we show that R is a past repeller. Suppose that

δ := lim inf
t→∞

d
(
µ(θ−tp) + A←

µ

∣
∣R(θ−tp)

)
> 0 (2.9)

is fulfilled. Since clsA←
µ is compact, there exist an n ∈ N and elements

x1, . . . , xn ∈ clsA←
µ such that

clsA←
µ ⊂

n⋃

i=1

Uδ/4(xi) .

For all i ∈ {1, . . . , n}, we choose arbitrary elements

yi ∈ Uδ/4(xi) ∩ A←
µ .

Then the set C := {y1, . . . , yn} is a compact subset of A←
µ which fulfills

d
(
A←

µ

∣
∣C
)
≤ δ

2
. (2.10)

It follows from Proposition 2.26 (i) that there exists a t̃ ≥ 0 such that

ϕ(t, θ−s−tp)
(
µ(θ−s−tp) + C

)
⊂ Uβ(µ(θ−sp)) ⊂ R(θ−sp) for all t ≥ t̃ .

Hence, due to the invariance of R, we obtain

lim
t→∞

d
(
µ(θ−tp) + C

∣
∣R(θ−tp)

)
= 0 .

Using Lemma A.9, this implies
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lim inf
t→∞

d
(
µ(θ−tp) + A←

µ

∣
∣R(θ−tp)

)

≤ lim inf
t→∞

(

d
(
µ(θ−tp) + A←

µ

∣
∣µ(θ−tp) + C

)
+ d
(
µ(θ−tp) + C

∣
∣R(θ−tp)

))

(2.10)

≤ δ

2
.

This is a contradiction to (2.9). Therefore,

lim
t→∞

d
(
µ(θ−tp) + A←

µ

∣
∣R(θ−tp)

)
= 0 (2.11)

is fulfilled. Furthermore, there exists a t̂ ≥ 0 with

d
(
R(θ−s−τp)

∣
∣µ(θ−s−τp) + A←

µ

)

(2.8)

≤ d
(
ϕ(−τ, θ−sp)Uε

(
µ(θ−sp) + A←

µ

)∣
∣µ(θ−s−τp) + A←

µ

) (2.7)
<

ε

2

for all τ ≥ t̂. Hence, we have

Uε

(
µ(θ−s−τp) + A←

µ

)
⊃ Uε/2

(
Uε/2(µ(θ−s−τp) + A←

µ )
)

⊃ Uε/2

(
R(θ−s−τp)

)
for all τ ≥ t̂ . (2.12)

For all τ ≥ t̂, the inequality

lim
t→∞

d
(
ϕ(−t, θ−s−τp)Uε/2(R(θ−s−τp))

∣
∣R(θ−s−τ−tp)

)

(2.12)

≤ lim
t→∞

d
(
ϕ(−t, θ−s−τp)Uε

(
µ(θ−s−τp) + A←

µ

)∣
∣R(θ−s−τ−tp)

)

Lemma A.9
≤ lim

t→∞
d
(
ϕ(−t, θ−s−τp)Uε

(
µ(θ−s−τp) + A←

µ

)∣
∣µ(θ−s−τ−tp) + A←

µ

)

+ lim
t→∞

d
(
µ(θ−s−τ−tp) + A←

µ

∣
∣R(θ−s−τ−tp)

)

(2.7), (2.11)
= 0

holds, and this means that R is a past repeller. The relation

lim inf
t→∞

(
R(θ−tp) − µ(θ−tp)

)
⊃ A←

µ

follows from Lemma 2.39 (i).
(ii) We define the past nonautonomous set M by its fibers

M(θ−tp) := Uη

(
µ(t) + R←

µ

)
for all t ≥ 0 .

Due to the hypotheses, the fibers of a compact past absorbing set B with
respect to {M} can be defined with the following property: For all ε > 0,
there exists a τ ≥ 0 such that

R←
µ + µ(θ−tp) ⊂ B(θ−tp) ⊂ Uε

(
R←

µ + µ(θ−tp)
)

for all t ≥ τ . (2.13)
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Therefore, Theorem 2.35 yields the existence of an {M}-past attractor A ⊂ B
fulfilling

lim sup
t→∞

(
A(θ−tp) − µ(θ−tp)

)
⊂ lim sup

t→∞

(
B(θ−tp) − µ(θ−tp)

) (2.13)
⊂ clsR←

µ .

Due to Corollary 2.36, A is also a past attractor. The relation

lim inf
t→∞

(
A(θ−tp) − µ(θ−tp)

)
⊃ R←

µ

follows from Lemma 2.39 (ii). ⊓⊔

2.4 Other Notions of Attractivity and Repulsivity

In this section, other notions of attractivity and repulsivity from the litera-
ture are discussed with respect to their relationship to the definitions of the
previous section. In the first subsection, the well-known theory of stability in
the sense of Lyapunov is treated, and in Subsection 2.4.2, it is indicated that
the notions of past (future, all-time, respectively) attractor and repeller are
generalizations of the concept of attractor and repeller introduced in Conley

[53]. Finally, the last subsection is devoted to the theory of nonautonomous
attractors.

2.4.1 Stability in the Sense of Lyapunov

Several different forms of stability are examined in the literature. Most arti-
cles in this area, however, deal with the concept of stability in the sense of
Lyapunov, which has been introduced by Lyapunov in his thesis [110] (see
[112, 113] for translations into French and English). We shortly review the
basic definitions of this theory in the context of nonautonomous differential
equations (see also the classical books from Cesari [39] and Hahn [74]).
An analogous theory exists for nonautonomous difference equations (see, e.g.,
Agarwal [2]). Let

ẋ = f(t, x) (2.14)

be a nonautonomous differential equation with a function f : D ⊂ R×RN →
RN satisfying conditions guaranteeing local existence and uniqueness of solu-
tions (see Appendix A.1). The general solution of (2.14) is denoted by λ. A
solution µ : (τ,∞) → RN is called Lyapunov-stable if for all t0 > τ and ε > 0,
there exists a δ = δ(t0, ε) > 0 with

λ
(
t, t0, Uδ(µ(t0))

)
⊂ Uε(µ(t)) for all t ≥ t0 .

Furthermore, a solution µ : (τ,∞) → RN is called Lyapunov-attractive if for
all t0 > τ , there exists an η = η(t0) > 0 such that
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lim
t→∞

‖λ(t, t0, x) − µ(t)‖ = 0 for all x ∈ Uη(µ(t0)) .

There exist counterexamples in dimensions greater than one which show
that not every Lyapunov-attractive solution is Lyapunov-stable (see, e.g.,
Aulbach [14, Beispiel 7.4.16, p. 325] and Bhatia & Szegö [30, p. 59]).
However, if a solution is both Lyapunov-stable and Lyapunov-attractive, we
call this solution Lyapunov-asymptotically stable. If in the definition of the
Lyapunov-stable solution, δ is independent of t0, we call this solution uni-
formly Lyapunov-stable. In case η is independent of t0 in the definition of
the Lyapunov-attractive solution, we call this solution uniformly Lyapunov-
attractive. A solution which is both uniformly Lyapunov-stable and uniformly
Lyapunov-attractive is called uniformly Lyapunov-asymptotically stable (see,
e.g., Sell [167, p. 130]).

The concept of uniform asymptotically stability is a very strong form of sta-
bility in the sense of Lyapunov. It is easy to prove that any future attractive
solution of (2.14) is uniformly Lyapunov-asymptotically stable.

2.4.2 Autonomous Attractors and Repellers

There are many different notions of attractor and repeller for (autonomous)
dynamical systems (see Sienz [174] for a summary). Many authors use various
properties such as irreducibility, topological transitivity or connectivity in
their definitions. As stated below, the concept of nonautonomous attractor
and repeller in this book is closely related to the autonomous definitions used
in Conley [53]. There, the main building blocks of attractor and repeller
are invariance, compactness and local attractivity and repulsivity. We shortly
review the definitions. Let φ : T × X → X be a discrete (i.e., T = Z) or
continuous (i.e., T = R) dynamical system on a metric space (X, d). A compact
set A ⊂ X is called attractor of φ if A is invariant, i.e.,

φ(t, A) = A for all t ∈ T ,

and if A is the ω-limit set of some neighborhood V of A, i.e.,

A = ω(V ) :=
⋂

t≥0

φ
(
[t,∞), V

)
.

An invariant and compact set R ⊂ X is called repeller if it is the α-limit set
of some neighborhood W of R, i.e.,

R = α(W ) :=
⋂

t≤0

φ
(
(−∞, t],W

)
.

One easily verifies that the definitions of past (future, all-time, respectively)
attractor and repeller are indeed proper generalizations of this concept of at-
tractor and repeller. In case of finite-time attractors and repellers, the situa-
tion is more subtle, since, given T > 0, not every attractor is a (0, T )-attractor.
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However, given an attractor A, there exists a τ > 0 such that for all T ≥ τ ,
A is a (0, T )-attractor.

2.4.3 Nonautonomous Attractors

Since the 1990s, the attractivity of nonautonomous sets is intensively dis-
cussed. In particular, the notions of pullback attractor and forward attrac-
tor have been introduced (see, e.g., Cheban & Kloeden & Schmalfuß

[40, 41] or Kloeden & Keller & Schmalfuß [98]). Pullback and for-
ward attractors whose attraction rate is uniform with respect to the time
are called uniform attractors (such attractors are discussed in the monograph
Chepyzhov & Vishik [44]). Closely related to pullback attractors are the
so-called random attractors (see, e.g., Arnold [5], Crauel & Debussche &

Flandoli [56], Crauel & Flandoli [58] and Schenk-Hoppé [159]). The
most general form of a pullback attractor (see, e.g., Arnold [5, Definition
9.3.1, p. 483]) coincides basically with the notion of the M-past attractor as
introduced in Definition 2.6 (iii). In the literature, M is called the attraction
universe. Global pullback attractors are considered often, e.g., in Cheban &

Kloeden & Schmalfuß [41, Definition 2.4]. In this case, the universe M
is supposed to contain all fiber-wise constant and compact nonautonomous
sets. The past attractor as introduced in Definition 2.6 (i), however, is a local
form of a pullback attractor. Here, the universe contains a neighborhood of
the attractor itself. Another form of a local pullback attractor is introduced
in Langa & Robinson & Suárez [103, 105].

In contrast to pullback attractors, forward attractors play a minor role in
the literature. Usually, only global forward attractors are considered (for an
exception, see Aulbach & Rasmussen & Siegmund [16, Definition 3.4]).
The M-future attractor of Definition 2.10 (iii) provides a very general form
of a forward attractor. By choosing M as the set of all fiber-wise constant
and compact nonautonomous sets, one obtains the usual definition of a global
forward attractor. A local form of a forward attractor, however, is provided
by the future attractor as introduced in Definition 2.10 (i).

Apart from these classes of attractors, pullback and forward attractors which
are allowed to be noncompact are introduced in Aulbach & Rasmussen &

Siegmund [16, Definition 3.4]. Instead to be compact, attractors of this type
are supposed to be “compactly generated”. This notion includes some classes
of noncompact nonautonomous invariant manifolds (see Aulbach & Ras-

mussen & Siegmund [17, 18]), but is no proper generalization of a compact
attractor, since a compact attractor is not compactly generated in general.
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2.5 Bifurcation and Transition

This section is devoted to the introduction of various nonautonomous
concepts of bifurcation and transition based on the notions of attractivity
and repulsivity from Section 2.3.

Throughout this section, let
(
θ : T × P → P , ϕα : Dα ⊂ T × P × X → X

)
,

α ∈
(
α−, α+

)
, be a family of nonautonomous dynamical systems with a base

set P and a metric space (X, d).

2.5.1 Definitions

In addition to the four different time domains (past, future, all-time and
finite-time), we also distinguish between bifurcations of radii of attraction and
repulsion and transitions of attractors and repellers. Attractor transitions are
studied in, e.g., Ma & Wang [114], or see Kloeden & Siegmund [99], where
also nonautonomous attractors are considered.

We begin with the definitions concerning the past of the system.

Definition 2.42 (Past bifurcation and transition). Let α0 ∈ (α−, α+).
We say, (θ, ϕα) admits a supercritical past bifurcation at α0 if there exist an
α̂ > α0 and a continuous function µ : D ⊂ O(p)× (α0, α̂) → X such that one
of the following two statements is fulfilled:

(i) µ(·, α) is a past attractive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

A
←
µ(·,α) = 0

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim
αցα0

d
(
A←

µ(·,α)

∣
∣{0}

)
= 0

holds, otherwise, we call this bifurcation partial.

(ii) µ(·, α) is a past repulsive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

R
←
µ(·,α) = 0

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim
αցα0

d
(
R←

µ(·,α)

∣
∣{0}

)
= 0

holds, otherwise, we call this bifurcation partial.

We say, (θ, ϕα) admits a supercritical past attractor (past repeller, respec-
tively) transition at α0 if there exist an α̂ > α0 and past attractors (past
repellers, respectively) Mα of (θ, ϕα) for α ∈ (α0, α̂) with



2.5 Bifurcation and Transition 43

lim
αցα0

lim sup
t→∞

diam Mα(θ−tp) = 0 for all p ∈ P .

Accordingly, subcritical past bifurcations and past attractor (past repeller,
respectively) transitions are defined by considering the limit αրα0.

The following definition is devoted to the introduction of future bifurcations
and transitions.

Definition 2.43 (Future bifurcation and transition). Let α0 ∈ (α−, α+).
We say, (θ, ϕα) admits a supercritical future bifurcation at α0 if there exist
an α̂ > α0 and a continuous function µ : D ⊂ O(p) × (α0, α̂) → X such that
one of the following two statements is fulfilled:

(i) µ(·, α) is a future attractive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

A
→
µ(·,α) = 0

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim
αցα0

d
(
A→

µ(·,α)

∣
∣{0}

)
= 0

holds, otherwise, we call this bifurcation partial.

(ii) µ(·, α) is a future repulsive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

R
→
µ(·,α) = 0

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim
αցα0

d
(
R→

µ(·,α)

∣
∣{0}

)
= 0

holds, otherwise, we call this bifurcation partial.

We say, (θ, ϕα) admits a supercritical future attractor (future repeller,
respectively) transition at α0 if there exist an α̂ > α0 and future attractors
(future repellers, respectively) Mα of (θ, ϕα) for α ∈ (α0, α̂) with

lim
αցα0

lim sup
t→∞

diam Mα(θtp) = 0 for all p ∈ P .

Accordingly, subcritical future bifurcations and future attractor (future
repeller, respectively) transitions are defined by considering the limit αրα0.

In the next definition, the notions of all-time bifurcation and transition are
explained.

Definition 2.44 (All-time bifurcation and transition). For a given
α0 ∈ (α−, α+), we say, (θ, ϕα) admits a supercritical all-time bifurcation at
α0 if there exist an α̂ > α0 and a continuous function µ : O(p)× (α0, α̂) → X
such that one of the following two statements is fulfilled:
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(i) µ(·, α) is an all-time attractive solution of (θ, ϕα) for all α ∈ (α0, α̂),
and

lim
αցα0

A
↔
µ(·,α) = 0

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim
αցα0

d
(
A↔

µ(·,α)

∣
∣{0}

)
= 0

holds, otherwise, we call this bifurcation partial.

(ii) µ(·, α) is an all-time repulsive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

R
↔
µ(·,α) = 0

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim
αցα0

d
(
R↔

µ(·,α)

∣
∣{0}

)
= 0

holds, otherwise, we call this bifurcation partial.

We say, (θ, ϕα) admits a supercritical all-time attractor (all-time repeller,
respectively) transition at α0 if there exist an α̂ > α0 and all-time attractors
(all-time repellers, respectively) Mα of (θ, ϕα) for α ∈ (α0, α̂) with

lim
αցα0

sup
p∈P

diam Mα(p) = 0 .

Accordingly, subcritical all-time bifurcations and all-time attractor (all-time
repeller, respectively) transitions are defined by considering the limit αրα0.

Finally, the following definition treats the concept of finite-time bifurcation
and transition.

Definition 2.45 (Finite-time bifurcation and transition). For a given
α0 ∈ (α−, α+), we say, (θ, ϕα) admits a supercritical (p, T )-bifurcation at α0

if there exist an α̂ > α0 and a continuous function µ : OT (p) × (α0, α̂) → X
such that one of the following two statements is fulfilled:

(i) µ(·, α) is a (p, T )-attractive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

A
(p,T )
µ(·,α) = 0

is fulfilled.

(ii) µ(·, α) is a (p, T )-repulsive solution of (θ, ϕα) for all α ∈ (α0, α̂), and

lim
αցα0

R
(p,T )
µ(·,α) = 0

holds.
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We say, (θ, ϕα) admits a supercritical (p, T )-attractor ((p, T )-repeller, respec-
tively) transition at α0 ∈

(
α−, α+

)
if there exist an α̂ > α0 and (p, T )-

attractors ((p, T )-repellers, respectively) Mα of (θ, ϕα) for α ∈ (α0, α̂) with

lim
αցα0

diam Mα(p) = 0 .

Accordingly, subcritical (p, T )-bifurcations and (p, T )-attractor ((p, T )-
repeller, respectively) transitions are defined by considering the limit αրα0.

2.5.2 Examples

In this subsection, two nonautonomous differential equations are discussed
which are closely related to standard examples of equations admitting an
autonomous bifurcation. The first example is of pitchfork type and leads to a
total nonautonomous bifurcation; the second one is of transcritical type and
gives rise to a partial nonautonomous bifurcation.

Example 2.46 (Nonautonomous pitchfork bifurcation). We consider the non-
autonomous differential equation

ẋ = αa(t)x + b(t)x3 = x
(
αa(t) + b(t)x2

)
(2.15)

depending on a real parameter α with continuous functions a : R → R and
b : R → R+

κ for some κ > 0. The equation (2.15) is a nonautonomous version
of the well-known autonomous differential equation

ẋ = αx + x3 = x
(
α + x2

)
,

which admits a pitchfork bifurcation (see, e.g., Guckenheimer & Holmes

[72, p. 150]). For fixed α ∈ R, (2.15) has already been discussed in Exam-
ple 2.30, where we have derived sufficient conditions concerning the attractiv-
ity and repulsivity of the trivial solution. The following statements are direct
consequences of these observations. The above nonautonomous differential
equation admits a

• total supercritical past bifurcation at α = 0 if

lim inf
t→−∞

−a(t)

b(t)
> 0 and lim sup

t→−∞
−a(t)

b(t)
< ∞ ,

• total subcritical past bifurcation at α = 0 if

lim inf
t→−∞

a(t)

b(t)
> 0 and lim sup

t→−∞

a(t)

b(t)
< ∞ ,

• total supercritical future bifurcation at α = 0 if

lim inf
t→∞

−a(t)

b(t)
> 0 and lim sup

t→∞
−a(t)

b(t)
< ∞ ,
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• total subcritical future bifurcation at α = 0 if

lim inf
t→∞

a(t)

b(t)
> 0 and lim sup

t→∞

a(t)

b(t)
< ∞ ,

• total supercritical all-time bifurcation at α = 0 if

inf
t∈R

−a(t)

b(t)
> 0 and sup

t∈R

−a(t)

b(t)
< ∞ ,

• total subcritical all-time bifurcation at α = 0 if

inf
t∈R

a(t)

b(t)
> 0 and sup

t∈R

a(t)

b(t)
< ∞ ,

• total supercritical (τ, T )-bifurcation at α = 0 if

−a(t)

b(t)
> 0 for all t ∈ [τ, τ + T ] ,

• total subcritical (τ, T )-bifurcation at α = 0 if

a(t)

b(t)
> 0 for all t ∈ [τ, τ + T ] .

A generalization of this equation is discussed in Section 6.2. It is also shown
there that this example admits attractor and repeller transitions.

Remark 2.47. A special form of the above example (for constant functions a)
is discussed in Langa & Robinson & Suárez [103, Proposition 3.1] and
Caraballo & Langa [37, Subsection 4.1].

Example 2.48 (Nonautonomous transcritical bifurcation). We consider the
nonautonomous differential equation

ẋ = αa(t)x + b(t)x2 = x
(
αa(t) + b(t)x

)

depending on a real parameter α with continuous functions a : R → R and
b : R → R+

κ for some κ > 0. This equation is a nonautonomous version of the
well-known autonomous differential equation

ẋ = αx + x2 = x(α + x) ,

which admits a transcritical bifurcation (see Hale & Koçak [78, Exam-
ple 2.3, p. 28]). Analogously to Example 2.46, we see that the above non-
autonomous differential equation admits a
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• partial supercritical and subcritical past bifurcation at α = 0 if

lim inf
t→−∞

∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
> 0 and lim sup

t→−∞

∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
< ∞ ,

• partial supercritical and subcritical future bifurcation at α = 0 if

lim inf
t→∞

∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
> 0 and lim sup

t→∞

∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
< ∞ ,

• partial supercritical and subcritical all-time bifurcation at α = 0 if

inf
t∈R

∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
> 0 and sup

t∈R

∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
< ∞ ,

• partial supercritical and subcritical (τ, T )-bifurcation at α = 0 if
∣
∣
∣
∣

a(t)

b(t)

∣
∣
∣
∣
> 0 for all t ∈ [τ, τ + T ] .

A generalization of this nonautonomous differential equation is discussed in
Section 6.1.

2.6 Other Notions of Bifurcation and Transition

In this section, several notions of bifurcation for (nonautonomous) dynamical
systems are discussed with respect to their relationship to the concept of
bifurcation and transition introduced in the previous section.

In the first subsection of this section, the autonomous bifurcation theory is
treated. As mentioned in Section 2.2, the notion of the nonautonomous dy-
namical system is an abstraction of both topological skew product flows and
random dynamical systems. In the recent studies of bifurcations of nonau-
tonomous dynamical systems, one should also distinguish between topologi-
cal skew product flows (cf. Subsection 2.6.2) and random dynamical systems
(cf. Subsection 2.6.3). So far, there are only few approaches to the non-
autonomous bifurcation theory without imposing special hypotheses on the
base set P such as compactness or existence of an invariant measure (cf. Sub-
section 2.6.4).

Please note that in Section 5.4, a relationship between the concept of finite-
time bifurcation and the bifurcation theory of adiabatic systems is pointed
out.

2.6.1 The Autonomous Case

As mentioned in Chow & Hale [46] and Marsden & Hughes [116], there
are two distinct aspects of autonomous bifurcation theory: static and dy-
namic. The static point of view is concentrated on the qualitative changes in
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the structure of the set of zeros of a function as parameters are varied. The
dynamic bifurcation theory, however, is concerned with dynamical changes
that occur in invariant sets (such as equilibria, periodic orbits, heteroclinic
orbits and invariant tori).

Since the concept of bifurcation and transition used in this book is based on
notions of attractivity and repulsivity, the static approach is too narrow in
our situation, and we hope that the center manifold theory, which had been so
fruitful in dynamic bifurcation theory, will be a method for future research in
a higher dimensional nonautonomous bifurcation theory (cf. Example 7.14).
It is not clear a priori to what extent the method of Lyapunov-Schmidt (see,
e.g., Hale [76, Section 1]) is able to give a contribution in the nonautonomous
context.

In the Introduction (Chapter 1), an easy example already indicated that
autonomous bifurcation phenomena can be described in terms of the con-
cepts of nonautonomous bifurcation and transition. Please note also that
in Chapter 6, one-dimensional nonautonomous bifurcations are studied, and
Example 6.3 shows that the nonautonomous patterns are applicable also in
the autonomous context. Moreover, it is shown in Chapter 7 that the classi-
cal bifurcation scenarios of saddle node, pitchfork, transcritical or Hopf type
can be transferred to asymptotically autonomous equations. By regarding an
autonomous system which admits a bifurcation of this type as an asymptoti-
cally autonomous system, one sees that the autonomous situation fits well
into our context.

Interesting books on the topic of autonomous bifurcation theory are Chow &

Hale [46], Guckenheimer & Holmes [72], Hale & Koçak [78], Kuznet-

sow [101] and Luo & Wang & Zhu & Han [109]. For a brief introduction,
see also Crawford [60].

2.6.2 Topological Skew Product Flows

In the bifurcation theory of nonautonomous dynamical systems where the
base set is supposed to have a certain topological structure, one distinguishes
between attractor-repeller bifurcations and bifurcations of solutions.

An attractor-repeller bifurcation either occurs if a nontrivial attractor or
repeller, respectively, shrinks down to a trivial object by variation of the
parameter (this corresponds to the notion of transition), or if an attractor
bifurcates from a repeller in the sense of Hausdorff distance. Please note that
the attractors and repellers under consideration are autonomous objects of
the skew product flow.

In Johnson & Mantellini [86], Fabbri & Johnson & Mantellini [67]
and Fabbri & Johnson [66], for one-dimensional nonautonomous differential
equations with strictly ergodic time dependence (e.g., quasi-periodic equations
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are of this type), attractor-repeller bifurcations are considered. Bifurcations
of attractors and repellers are also studied in Johnson & Kloeden &

Pavani [85] and Johnson [84] for deterministic counterparts of the Two-Step-
Bifurcation-Pattern. These considerations are based on the studies of Ludwig
Arnold and his coworkers in the context of stochastic differential equations
(see Arnold [5]). In Glendinning [70], a bifurcation of nonchaotic strange
attractors of a quasi-periodic differential equation is verified, both numerically
and analytically.

A bifurcation (of pitchfork and transcritical type) of almost periodic solutions
of an almost periodic ordinary differential equation is examined in Kloeden

[97].

We also mention autonomous bifurcations of invariant sets on which the
dynamics of the system is nonperiodic, because the analysis requires—by
means of the equation of perturbed motion—nonautonomous techniques. In
Johnson [84] and Johnson & Yi [87], former studies concerning the bi-
furcation of invariant tori (see, e.g., Sell [169] and Chenciner & Iooss

[42, 43]) are continued. The authors consider for an autonomous differential
equation the loss of stability of an invariant set (which is, for instance, the
closure of a nonperiodic and bounded trajectory). The bifurcation theory of
tori with quasi-periodic flows whose frequencies satisfy the Diophantine con-
dition is well-developed (see Broer & Huitema & Takens & Braaksma

[36], Broer [35] and Braaksma & Broer [33]).

2.6.3 Random Dynamical Systems

To study bifurcation phenomena of random dynamical systems, two different
concepts have been pursued so far: the so-called phenomenological approach
(P-bifurcation) and the dynamical approach (D-bifurcation). For fundamental
explanations and comparisons, we refer to Arnold & Namachchivaya &

Schenk-Hoppé [8], Arnold [5, 6] and Schenk-Hoppé [156, 157] (see also
Schenk-Hoppé [158, 159]).

P-bifurcations describe changes in stationary probability densities in special
families of random dynamical systems. For instance, these densities exhibit
transitions from one-peak to two-peak or crater-like structures. The concept
of P-bifurcation can be formalized using the notion of equivalent probabil-
ity densities, introduced by Zeeman [185, 186], which gives rise to a notion
of structural stability. There are many drawbacks to this phenomenological
approach, which are mentioned, e.g., in Arnold [5, Subsection 9.2.2]. Since
P-bifurcations are static in the sense that there is no connection to stability
properties obtained by Lyapunov exponents, we cannot expect a relationship
to the concept of bifurcation introduced in this chapter.

Recently, the study of random bifurcation phenomena concentrated on
D-bifurcations. A D-bifurcation occurs if from an invariant reference measure,
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another invariant measure bifurcates in the sense of weak convergence. It has
been shown that this concept links the local bifurcation of invariant measures
with the stability determined by the Lyapunov exponents.

2.6.4 General Nonautonomous Dynamical Systems

So far, there have been two approaches in the study of bifurcation phenomena
of nonautonomous dynamical systems where no special hypotheses concerning
the base set are made.

In Kloeden & Siegmund [99], a nonautonomous bifurcation is understood as
a (continuous or discontinuous) transition from a nontrivial (global) pullback
attractor to a trivial pullback attractor.

In Langa & Robinson & Suárez [103], for nonautonomous differen-
tial equations, notions of Lyapunov pullback-stable and Lyapunov pullback-
unstable solutions are introduced, and bifurcations in form of merging
processes of two distinct solutions with different stability behavior are studied
by means of relatively simple examples. In their recent paper [105], the three
authors found sufficient conditions for the Taylor coefficients of the right hand
side of one-dimensional differential equations which guarantee the existence
of such bifurcations. These conditions, however, are of a quite different form
than the results obtained in Chapter 6 (cf. also the introduction of Chapter 6).
Note that in Crauel & Imkeller & Steinkamp [59], also one-dimensional
bifurcation patterns are studied, but in the context of random dynamical sys-
tems. Necessary and sufficient conditions are obtained for stochastic pitchfork
and transcritical bifurcations.
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Nonautonomous Morse Decompositions

The global asymptotic behavior of dynamical systems on compact metric
spaces can be described via Morse decompositions. Their components, the
so-called Morse sets, are obtained as intersections of attractors and repellers.
In this chapter, nonautonomous generalizations of the Morse decomposition
are established with respect to the notions of past and future attractivity
and repulsivity. The dynamical properties of these decompositions are dis-
cussed, and nonautonomous Lyapunov functions which are constant on the
Morse sets are constructed explicitly. Furthermore, Morse decompositions of
one-dimensional and linear systems are analyzed.

For a discussion of elementary properties of Morse decompositions, we refer to
the original work of Conley [53] and to Rybakowski [149, Chapter 3] (see
also Colonius & Kliemann [50, Appendix B2], Robinson [146], Akin [3]
and Schmidt [162]). Recently, Ochs [123] used the notion of weak attractor
to construct Morse decompositions for random dynamical systems (see also
Crauel & Duc & Siegmund [57]).

In this chapter, we suppose that (θ : T × P → P , ϕ : T × P × X → X) is an
invertible nonautonomous dynamical system with an arbitrary base set P and
a compact metric space (X, d). Note that invertibility implies that T = R or
T = Z. Moreover, we assume that all (past or future) attractors and repellers
M under consideration fulfill either P ∗(M) = P or M = ∅.
Since Morse decompositions for the future are obtained via time reversal from
Morse decompositions for the past, only the results concerning past Morse
decompositions are proved in this chapter.

3.1 Attractor-Repeller Pairs

In this section, it is analyzed if for a given nonautonomous attractor, there
exists a corresponding nonautonomous repeller and vice versa.
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Due to the Axiom of Choice, there exists a set P ∗ ⊂ P such that [p] ∩ P ∗

is a singleton for all p ∈ P . We write P ∗ = P ∗
p ∪ P ∗

n with P ∗
p containing all

periodic points in P ∗, i.e., p∗ ∈ P ∗
p if and only if there exists a τ ∈ T+ with

p∗ = θτp∗, and P ∗
n := P ∗ \ P ∗

p .

Let R be a past repeller, i.e., there exists an η > 0 such that for all p∗ ∈ P ∗,
there exists a t∗(p∗) > 0 with

lim
t→∞

d
(
ϕ(−t, θ−τp∗)Uη(R(θ−τp∗))

∣
∣R(θ−τ−tp

∗)
)

= 0 for all τ ≥ t∗(p∗) .

(3.1)
For ζ ∈ (0, η], we define the compact nonautonomous set Bζ by

Bζ(θ−tp
∗) :=

{
X \ Uζ(R(θ−tp

∗)) : t ≥ t∗(p∗)
X : t < t∗(p∗)

for all p∗ ∈ P ∗
n and t ∈ T

and
Bζ(θ−tp

∗) := X \ Uζ(R(θ−tp
∗)) for all p∗ ∈ P ∗

p and t ∈ T .

Theorem 3.1 (Existence of a past attractor-repeller pair). Let R be
a past repeller, and set M := {Bζ : ζ ∈ (0, η]} with Bζ defined as above.
Then there exists a uniquely determined M-past attractor R∗ ⊂ Bη, which is
also a past attractor. Furthermore, R∗ is the maximal past attractor outside
of R in the following sense: Any other past attractor A � R∗ has nonempty
intersection with R. We call (R∗, R) a past attractor-repeller pair.

P

X

η
{ R

R∗

Fig. 3.1. Past attractor-repeller pair

Proof. We show that the hypotheses of Theorem 2.35 (i) are fulfilled by setting
B := Bη. Thereto, let ζ ∈ (0, η] and p ∈ P . In case B(p) = X, the condition
(2.5) certainly holds, otherwise, there exist p∗ ∈ P ∗ and τ ≥ t∗(p∗) with
θ−τp∗ = p. Due to (3.1), there exists a t̂ ≥ 0 with
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d
(
ϕ(−t, p)Uη(R(p))

∣
∣R(θ−tp)

)
<

ζ

2
for all t ≥ t̂ .

This means that ϕ(−t, p)Uη(R(p)) ⊂ Uζ/2(R(θ−tp)) for all t ≥ t̂. Thus, we
have

ϕ(−t, p)Bη(p) = X \ ϕ(−t, p)Uη(R(p)) ⊃ Bζ(θ−tp) for all t ≥ t̂ .

This implies the desired relation ϕ(t, θ−tp)Bζ(θ−tp) ⊂ B(p) for all t ≥ t̂.
Therefore, Theorem 2.35 (i) guarantees the existence of an M-past attractor
R∗ ⊂ Bη. Due to Corollary 2.36, R∗ is also a past attractor. Let A � R∗ be
another past attractor. Then there exists a p ∈ P with A(p) � R∗(p). We
choose an x ∈ A(p) \ R∗(p). Since A ∋ (p, x) is a past attractor, there exists
an η̃ > 0 with

lim
t→∞

d
(
ϕ(t, θ−tp)Uη̃(ϕ(−t, p)x)

∣
∣A(p)

)
= 0 .

Due to limt→∞ d
(
ϕ(−t, p)x,R(θ−tp)

)
= 0 (we will see this in Theorem 3.5

(ii)), there exists a sequence {yn}n∈N in R(p) with

lim
n→∞

d
(
yn, A(p)

)
= 0 .

Since R(p) and A(p) are compact, this implies that their intersection is non-
empty. ⊓⊔

Based on Proposition 2.32, the construction of a future attractor-repeller pair
is not difficult.

Corollary 3.2 (Existence of a future attractor-repeller pair). Let A
be a future attractor. Then there exists a uniquely determined future repeller
A∗ ⊂ (P × X) \ A, which is the maximal future repeller outside of A in the
following sense: Any future repeller R � A∗ has nonempty intersection with
A. We call (A,A∗) a future attractor-repeller pair.

Proof. Because of Proposition 2.32, A is a past repeller of (θ, ϕ)−1. Due to
Theorem 3.1, there exists a corresponding past attractor A∗ of (θ, ϕ)−1. Then
A∗ is a future repeller of (θ, ϕ). The property that A∗ is the maximal future
repeller outside of A follows easily from Theorem 3.1. ⊓⊔

It is natural to ask if a past attractor implies the existence of a past repeller
and, equivalently, if a future repeller implies the existence of a future attractor.
The following example shows that this does not follow.

Example 3.3. The nonautonomous differential equation

ẋ = f(t, x) (3.2)
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f(t, ·) f(t, ·) f(t, ·)

111
t ≥ 0 t < 0 t → −∞

Fig. 3.2. The right hand side of (3.2)

with the function f : R × [0, 1] → R, defined by

f(t, x) :=

⎧

⎪⎪⎨

⎪⎪⎩

|2x − 1| − 1 : t ≥ 0 and x ∈ [0, 1]

|2x − 1| − 1 : t < 0 and x ∈
[
0, 1

2

]

(2 − 2t)
(
x − 1

2

)
− 1 : t < 0 and x ∈

[
1
2 , 2−t

2−2t

]

0 : t < 0 and x ∈
(

2−t
2−2t , 1

]

,

generates a nonautonomous dynamical system with P = R and X = [0, 1].
The invariant nonautonomous set A := R × {0} is a past (as well as a future
and an all-time) attractor. Assume, there exists a past repeller A∗ ⊂ R×(0, 1].
Due to the invariance of A∗, the form of the right hand side implies that there
exist γ > 1

2 and τ1 < 0 with

A∗(t) ⊂ (γ, 1] for all t ≤ τ1 .

Thus, there exists a τ2 < τ1 with

A∗(s) = A∗(t) and f(t, [γ, 1]) = {0} for all t, s ≤ τ2 .

This contradicts the fact that A∗ is a past repeller.

Remark 3.4. This example shows that there is no possibility to construct
an all-time attractor-repeller pair : The past attractor A is also an all-time
attractor, and no corresponding all-time repeller exists, since this would be
also a past repeller. Furthermore, A is an all-time repeller for the system under
time reversal (see Proposition 2.32), and there is no corresponding all-time
attractor, since this would be an all-time repeller for the original system.

Now, some properties of nonautonomous attractor-repeller pairs are derived.

Theorem 3.5 (Properties of nonautonomous attractor-repeller
pairs). Let (R∗, R) be a past attractor-repeller pair. Then the following
statements are fulfilled:
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(i) Past isolation. There exists a β > 0 such that for all p ∈ P , there exists
a τ > 0 with

Uβ(R∗(θ−tp)) ∩ Uβ(R(θ−tp)) = ∅ for all t ≥ τ .

(ii) Backward convergence. Let p ∈ P and C ⊂ X \ R∗(p) be a compact set.
Then we have

lim
t→∞

d
(
ϕ(−t, p)C

∣
∣R(θ−tp)

)
= 0 .

(iii) Pullback convergence. For all p ∈ P and all functions γ : T+ → X with

lim inf
t→∞

d
(
γ(t), R(θ−tp)

)
> 0 ,

we have
lim

t→∞
d
(
ϕ(t, θ−tp)γ(t), R∗(p)

)
= 0 .

Let (A,A∗) be a future attractor-repeller pair. Then the following statements
are fulfilled:

(i) Future isolation. There exists a β > 0 such that for all p ∈ P , there
exists a τ > 0 with

Uβ(A(θtp)) ∩ Uβ(A∗(θtp)) = ∅ for all t ≥ τ .

(ii) Forward convergence. Let p ∈ P and C ⊂ X \ A∗(p) be a compact set.
Then we have

lim
t→∞

d
(
ϕ(t, p)C

∣
∣A(θtp)

)
= 0 .

(iii) Pushforward convergence. For all p ∈ P and all functions γ : T+ → X
with

lim inf
t→∞

d
(
γ(t), A(θtp)

)
> 0 ,

we have
lim

t→∞
d
(
ϕ(−t, θtp)γ(t), A∗(p)

)
= 0 .

Proof. Let (R∗, R) be a past attractor-repeller pair with η and M defined as
in the introduction of this section.
(i) Theorem 3.1 implies R∗ ⊂ Bη. The assertion follows by choosing β := η/2.
(ii) Let p ∈ P and C ⊂ X \ R∗(p) be a compact set. Since R∗ is an M-past
attractor and thus a {Bη}-past attractor, there exists a τ > 0 such that

C ∩ ϕ(t, θ−tp)Bη(θ−tp) = ∅ for all t ≥ τ .

Hence, for all t ≥ τ , the relation ϕ(−t, p)C ∩ Bη(θ−tp) = ∅ is fulfilled, and
therefore, we have limt→∞ d

(
ϕ(−t, p)C,R(θ−tp)

)
= 0.

(iii) We set ζ := 1
2 min

{
η, lim inft→∞ d

(
γ(t), R(θ−tp)

)}
and see that there

exists a τ > 0 with

γ(t) ∈ Bζ(θ−tp) for all t ≥ τ .

This finishes the proof, since Bζ ∈ M and R∗ is a M-past attractor. ⊓⊔
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P

X

R

R∗

C

p

Fig. 3.3. Backward convergence

P

X

R

R∗

γ

R∗(p)

Fig. 3.4. Pullback convergence

Theorem 3.1 implies that, given a past repeller R, the set R∗ is the uniquely
determined past attractor outside of R with the property of pullback conver-
gence as described in Theorem 3.5 (iii). It is easy to see that such a uniqueness
result is not valid for past repellers, i.e., it is possible that (A,R1) and (A,R2)
are past attractor-repeller pairs with R1 �= R2. The following proposition says
that in this case, R1 and R2 are converging to each other when time tends to
the past.

Proposition 3.6 (Form of nonuniqueness of nonautonomous
attractor-repeller pairs). Let R1 and R2 be past repellers with R∗

1 = R∗
2.

Then we have

lim
t→∞

dH

(
R1(θ−tp), R2(θ−tp)

)
= 0 for all p ∈ P .

Let A1 and A2 be future attractors with A∗
1 = A∗

2. Then we have

lim
t→∞

dH

(
A1(θtp), A2(θtp)

)
= 0 for all p ∈ P .
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Proof. Suppose, there exist a p ∈ P and sequences {tn}n∈N in T and {γn}n∈N

in X with limn→∞ tn = ∞ and γn ∈ R1(θ−tn
p) such that

lim inf
n→∞

d
(
γn, R2(θ−tn

p)
)

> 0 .

Hence, Theorem 3.5 (iii), applied to the attractor-repeller pair (R∗
2, R2),

implies that
lim

n→∞
d
(
ϕ(tn, θ−tn

p)γn, R∗
2(p)
)

= 0 .

Since ϕ(tn, θ−tn
p)γn ∈ R1(p) and R1 and R∗

1 = R∗
2 are compact non-

autonomous sets, we obtain R1(p) ∩ R∗
1(p) �= ∅. This is a contradiction. ⊓⊔

3.2 Morse Decompositions

In this section, the notion of the attractor-repeller pair is generalized by con-
sidering Morse decompositions.

Definition 3.7 (Nonautonomous Morse decompositions). A family
{M1,M2, . . . , Mn} of nonautonomous sets, the so-called Morse sets, is called
past Morse decomposition if the representation

Mi = R∗
i ∩ Ri−1 for all i ∈ {1, . . . , n}

holds with past repellers

P × X = R0 � R1 � · · · � Rn = ∅

fulfilling ∅ = R∗
0 � R∗

1 � · · · � R∗
n = P × X.

A family {M1,M2, . . . , Mn} of nonautonomous sets, the so-called Morse sets,
is called future Morse decomposition if the representation

Mi = Ai ∩ A∗
i−1 for all i ∈ {1, . . . , n}

holds with future attractors

∅ = A0 � A1 � · · · � An = P × X

fulfilling P × X = A∗
0 � A∗

1 � · · · � A∗
n = ∅.

Remark 3.8. Let (A,R) be a past (future, respectively) attractor-repeller pair
such that the relation ∅ � A � P × X is fulfilled. Then {A,R} is a past
(future, respectively) Morse decomposition.
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Proposition 3.9 (Basic properties of nonautonomous Morse
decompositions). The Morse sets of a past Morse decomposition
{M1, . . . , Mn} are nonempty, invariant, pairwise disjoint and past isolated,
i.e., there exists a β > 0 such that for all 1 ≤ i < j ≤ n and p ∈ P , there
exists a τ > 0 with

Uβ(Mi(θ−tp)) ∩ Uβ(Mj(θ−tp)) = ∅ for all t ≥ τ .

The Morse sets of a future Morse decomposition {M1, . . . , Mn} are nonempty,
invariant, pairwise disjoint and future isolated, i.e., there exists a β > 0 such
that for all 1 ≤ i < j ≤ n and p ∈ P , there exists a τ > 0 with

Uβ(Mi(θtp)) ∩ Uβ(Mj(θtp)) = ∅ for all t ≥ τ .

Proof. Let Mi = R∗
i ∩Ri−1 be a Morse set. Since R∗

i−1 � R∗
i , we can choose a

p ∈ P and an x ∈ R∗
i (p) \R∗

i−1(p). Since R∗
i ∋ (p, x) is a past attractor, there

exists an η > 0 with

lim
t→∞

d
(
ϕ(t, θ−tp)Uη(ϕ(−t, p)x)

∣
∣R∗

i (p)
)

= 0 .

Due to limt→∞ d
(
ϕ(−t, p)x,Ri−1(θ−tp)

)
= 0 (cf. Theorem 3.5 (ii)), this means

that there exists a sequence {yn}n∈N in Ri−1(p) with

lim
n→∞

d
(
yn, R∗

i (p)
)

= 0 .

Since Ri−1(p) and R∗
i (p) are compact, this implies Mi = R∗

i ∩ Ri−1 �= ∅.
Furthermore, Mi is the intersection of two invariant nonautonomous sets and
thus invariant. Choose another Morse set Mj = R∗

j ∩Rj−1. W.l.o.g, we assume
j > i. Then we get

Mi ∩ Mj = R∗
i ∩ Ri−1 ∩ R∗

j ∩ Rj−1 = R∗
i−1 ∩ Rj−1 ⊂ R∗

j−1 ∩ Rj−1 = ∅ .

The fact that the Morse sets are past isolated is an easy consequence of
Theorem 3.5 (i). ⊓⊔

As in the autonomous case, nonautonomous Morse decompositions are not
uniquely determined.

Definition 3.10. We say, the past Morse decomposition {M1, . . . , Mn} is
finer than the past Morse decomposition

{
M̃1, . . . , M̃m

}
if

lim
t→∞

d

(
n⋃

i=1

Mi(θ−tp)

∣
∣
∣
∣
∣

m⋃

i=1

M̃i(θ−tp)

)

= 0 for all p ∈ P

is fulfilled.
We say, the future Morse decomposition {M1, . . . , Mn} is finer than the future
Morse decomposition

{
M̃1, . . . , M̃m

}
if
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lim
t→∞

d

(
n⋃

i=1

Mi(θtp)

∣
∣
∣
∣
∣

m⋃

i=1

M̃i(θtp)

)

= 0 for all p ∈ P

is fulfilled.

Remark 3.11.

(i) The above definition is a generalization of the notion of a finer (auto-
nomous) Morse decomposition. In the autonomous case, a Morse decom-
position {M1, . . . , Mn} is called finer than the Morse decomposition
{
M̃1, . . . , M̃m

}
if for all j ∈ {1, . . . , m}, there exists an i ∈ {1, . . . , n}

such that Mi ⊂ M̃j (see, e.g., Colonius & Kliemann [50, p. 542]). It
is easy to see that this is equivalent to

d

(
n⋃

i=1

Mi

∣
∣
∣
∣
∣

m⋃

i=1

M̃i

)

= 0 .

The additional limit in our nonautonomous context is motivated by
Proposition 3.6.

(ii) There are different forms of nonuniqueness for the Morse sets. As seen
in Proposition 3.6, two past attractor-repeller pairs are converging to
each other in case the past attractors are equal. One can find exam-
ples to show that such a (weak) form of nonuniqueness is not valid for
arbitrary Morse decompositions (i.e., those consisting of more than two
sets). However, in the special cases of one-dimensional and linear systems
(cf. Section 3.4 and 3.5), one obtains similar results as in Proposition 3.6
(cf. Proposition 3.18 and 3.23).

The following theorem shows that Morse sets are important for the asymptotic
behavior of nonautonomous dynamical systems.

Theorem 3.12 (Dynamical properties of nonautonomous Morse
decompositions). Pullback convergence. Let {M1, . . . , Mn} be a past Morse
decomposition obtained by the finite sequence of past repellers R0 ⊃ · · · ⊃ Rn.
Then, for all p ∈ P and all functions γ : T+ → X with

lim inf
t→∞

d

⎛

⎝γ(t) ,

n⋃

j=1

∂Rj(θ−tp)

⎞

⎠ > 0 ,

we have

lim
t→∞

d

⎛

⎝ϕ(t, θ−tp)γ(t) ,
n⋃

j=1

Mj(p)

⎞

⎠ = 0 .

Pushforward convergence. Let {M1, . . . , Mn} be a future Morse decomposition
obtained by the finite sequence of future attractors A0 ⊂ · · · ⊂ An. Then, for
all p ∈ P and all functions γ : T+ → X with



60 Chapter 3: Nonautonomous Morse Decompositions

lim inf
t→∞

d

⎛

⎝γ(t) ,

n⋃

j=1

∂Aj(θtp)

⎞

⎠ > 0 ,

we have

lim
t→∞

d

⎛

⎝ϕ(−t, θtp)γ(t) ,

n⋃

j=1

Mj(p)

⎞

⎠ = 0 .

Proof. We assume w.l.o.g. that there exists an i ∈ {1, . . . , n} with

γ(t) ∈ Ri−1(θ−tp) and γ(t) /∈ Ri(θ−tp) for all t > 0 .

Then lim inft→∞ d
(
γ(t), ∂Ri(θ−tp)

)
> 0 yields

lim inf
t→∞

d
(
γ(t), Ri(θ−tp)

)
> 0 .

Therefore, Theorem 3.5 implies that

lim
t→∞

d
(
ϕ(t, θ−tp)γ(t), R∗

i (p)
)

= 0 . (3.3)

Assume, there exist ε > 0 and a sequence {tn}n∈N in T+ with limn→∞ tn = ∞
and

d
(
ϕ(tn, θ−tn

p)γ(tn),Mi(p)
)
≥ ε for all n ∈ N . (3.4)

W.l.o.g., the sequence
{
ϕ(tn, θ−tn

p)γ(tn)
}

n∈N
in Ri−1(p) is convergent with

limit x0 ∈ Ri−1(p) (Ri−1(p) is compact). Moreover, x0 ∈ R∗
i (p), since (3.3)

holds and R∗
i (p) is compact. Thus, x0 ∈ Mi(p) = R∗

i (p) ∩ Ri−1(p). This
contradicts (3.4) and finishes the proof of this theorem. ⊓⊔

Remark 3.13. In contrast to attractor-repeller pairs, backward and forward
convergence conditions as described in Theorem 3.5 do not hold for arbi-
trary Morse decompositions. However, in the special cases of one-dimensional
and linear systems (cf. Section 3.4 and 3.5), one obtains similar results as in
Theorem 3.5 (cf. Theorem 3.17 and 3.22).

If the backward (in case of a past Morse decomposition) or forward (in case
of a future Morse decomposition) convergence holds, the following unique-
ness result concerning the past attractors or future repellers, respectively, is
fulfilled.

Proposition 3.14. Let {M1, . . . , Mn} be a past Morse decomposition
obtained by the finite sequence of past repellers R0 ⊃ · · · ⊃ Rn. We assume
that the backward convergence holds, i.e., for all (p, x) ∈ P × X, there exists
an i ∈ {1, . . . , n} with

lim
t→∞

d
(
ϕ(−t, p)x,Mi(θ−tp)

)
= 0 .
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Then the representation

R∗
i =

⎧

⎨

⎩
(p, x) ∈ P × X : lim

t→∞
d

⎛

⎝ϕ(−t, p)x ,
i⋃

j=1

Mj(θ−tp)

⎞

⎠ = 0

⎫

⎬

⎭

holds for all i ∈ {1, . . . , n}, i.e., the past attractors of the past Morse decom-
position are uniquely determined.
Let {M1, . . . , Mn} be a future Morse decomposition obtained by the finite
sequence of future attractors A0 ⊂ · · · ⊂ An. We assume that the forward
convergence holds, i.e., for all (p, x) ∈ P × X, there exists an i ∈ {1, . . . , n}
with

lim
t→∞

d
(
ϕ(t, p)x,Mi(θtp)

)
= 0 .

Then the representation

A∗
i =

⎧

⎨

⎩
(p, x) ∈ P × X : lim

t→∞
d

⎛

⎝ϕ(t, p)x ,

n⋃

j=i+1

Mj(θtp)

⎞

⎠ = 0

⎫

⎬

⎭

holds for all i ∈ {1, . . . , n}, i.e., the future repellers of the future Morse
decomposition are uniquely determined.

Proof. (⊆) Let (p, x) ∈ R∗
i . We choose j ∈ {1, . . . , n} such that

0 = lim
t→∞

d
(
ϕ(−t, p)x,Mj(θ−tp)

)
= lim

t→∞
d
(
ϕ(−t, p)x,Rj−1(θ−tp)

)
.

The assumption j > i leads to

lim
t→∞

d
(
ϕ(−t, p)x,Ri(θ−tp)

)
= 0 .

This contradicts Theorem 3.5 (i), since ϕ(−t, p)x ∈ R∗
i (θ−tp) for all t ∈ T.

(⊇) Let (p, x) ∈ (P × X) \ R∗
i . Then Theorem 3.5 (ii) implies

lim
t→∞

d
(
ϕ(−t, p)x,Ri(θ−tp)

)
= 0 . (3.5)

The assumption

lim
t→∞

d

⎛

⎝ϕ(−t, p)x ,

i⋃

j=1

Mj(θ−tp)

⎞

⎠ = 0

leads to
lim

t→∞
d
(
ϕ(−t, p)x,R∗

i (θ−tp)
)

= 0 ,

since Mj ⊂ R∗
i for j ∈ {1, . . . , i}. Because of Theorem 3.5 (i), this is a contra-

diction to (3.5). ⊓⊔
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3.3 Lyapunov Functions

In this section, nonautonomous Lyapunov functions which are constant on the
Morse sets and which strictly decrease outside them are obtained explicitly.
A similar construction is used in Conley [53, §5 and §6 of Chapter II] (see
also Franks [69, §1], Robinson [146, Chapter X] and Norton [122]), and
this technique has also been adapted in Kloeden [94, 95] and Arnold &

Schmalfuß [7] in the nonautonomous setting.

First, the case that the nonautonomous Morse decomposition is given by a
nonautonomous attractor-repeller pair is treated.

Lemma 3.15. Let (A,R) be a past (future, respectively) attractor-repeller
pair. Then there exists a function L : P × X → [0, 1] which is continuous
with respect to x ∈ X such that L|A ≡ 0, L|R ≡ 1 and

L
(
θtp, ϕ(t, p)x

)
< L(p, x) for all t > 0 and (p, x) ∈ (P × X) \ (A ∪ R)

is satisfied.

Proof. In case of a past attractor-repeller pair, R∗ = A is fulfilled, and we
define the function V : P × X → [0, 1] by

V (p, x) :=
d(x,R∗(p))

d(x,R∗(p)) + d(x,R(p))
for all (p, x) ∈ P × X .

This function is continuous with respect to x ∈ X and fulfills V |R∗ ≡ 0,
V |R ≡ 1, but is not necessarily decreasing along solutions. Therefore, we
define by

V ∗(p, x) := inf
s≥0

V
(
θ−sp, ϕ(−s, p)x

)
for all (p, x) ∈ P × X

a function V ∗ : P ×X → [0, 1], which obviously satisfies V ∗|R∗ ≡ 0, V ∗|R ≡ 1
and V ∗

(
θtp, ϕ(t, p)x

)
≤ V ∗(p, x) for all t ≥ 0 and (p, x) ∈ P × X. To prove

that V ∗(p, ·) is continuous for all p ∈ P , we first choose ξ ∈ X \ R∗(p) and

ε > 0. Then there exists a δ̂ > 0 such that C := cls Uδ̂(ξ) ⊂ X \ R∗(p). It
follows that

lim
s→∞

inf
x∈C

V
(
θ−sp, ϕ(−s, p)x

)
= 1 ,

since lims→∞ d
(
ϕ(−s, p)C,R(θ−sp)

)
= 0 (cf. Theorem 3.5 (ii)) and there exist

a β > 0 and an ŝ > 0 such that d
(
ϕ(−s, p)C,R∗(θ−sp)

)
≥ β/2 for all s ≥ ŝ

(cf. Theorem 3.5 (i), (ii)). Thus, there exists an s0 > 0 such that

inf
x∈C

V
(
θ−sp, ϕ(−s, p)x

)
> 1 − ε for all s ≥ s0 .

Due to the continuity of V
(
θ(·, p), ϕ(·, p, ·)

)
: T × X → R, there exists a

δ ∈
(
0, δ̂
)

such that
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∣
∣V
(
θ−sp, ϕ(−s, p)ξ

)
− V

(
θ−sp, ϕ(−s, p)x

)∣
∣ < ε

for all x ∈ Uδ(ξ) and 0 ≤ s ≤ s0. This implies that V ∗(p, ·) is continuous in
ξ /∈ R∗(p). The continuity of V ∗(p, ·) in ξ ∈ R∗(p) follows directly from the
continuity of V . Please note that V is not strictly decreasing along solutions
in (P ×X) \ (R∗ ∪R). Therefore, we define L to be a weighted average of V ∗

over the backward solution:

L(p, x) :=

∫ ∞

0

e−sV ∗
(
θ−sp, ϕ(−s, p)x

)
ds for all (p, x) ∈ P × X .

This function is obviously continuous with respect to x ∈ X, and we have

L
(
θtp, ϕ(t, p, x)

)
=

∫ ∞

0

e−sV ∗
(
θ−sθtp, ϕ(−s, θtp)ϕ(t, p)x

)
ds

=

∫ ∞

0

e−sV ∗
(
θtθ−sp, ϕ(t, θ−sp)ϕ(−s, p)x

)
ds

≤
∫ ∞

0

e−sV ∗
(
θ−sp, ϕ(−s, p)x

)
ds = L(p, x) .

To prove that this function is also strictly decreasing along solutions in the
set (P × X) \ (R∗ ∪ R), we assume that L

(
θtp, ϕ(t, p)x

)
= L(p, x) for some

t > 0 and x ∈ (P × X) \ (R∗ ∪ R). Then we have

V ∗
(
θ−sp, ϕ(−s, p)x

)
= V ∗

(
θt−sp, ϕ(t − s, p)x

)
for all s ≥ 0 .

This is impossible, since we have both lims→∞ V ∗
(
θ−sp, ϕ(−s, p, x)

)
= 0 and

V ∗(p, x) ∈ (0, 1). ⊓⊔

In the following theorem, the above Lyapunov function for attractor-repeller
pairs is extended to Morse decompositions.

Theorem 3.16 (Lyapunov functions for nonautonomous Morse
decompositions). Let {M1, . . . , Mn} be a past (future, respectively) Morse
decomposition. Then there exists a function L : P × X → [0, 1] which is con-
tinuous with respect to x ∈ X such that L|Mi

≡ i−1
n−1 for i ∈ {1, . . . , n} and

L
(
θtp, ϕ(t, p)x

)
< L(p, x) for all t > 0 and (p, x) ∈ (P × X) \ ∪n

i=1Mi

is satisfied.

Proof. Let P ×X = R0 � R1 � · · · � Rn = ∅ be the sequence of past repellers
leading to the given past Morse decomposition, i.e.,

Mi = R∗
i ∩ Ri−1 for all i ∈ {1, . . . , n} .

Furthermore, let Li, i ∈ {1, . . . , n−1}, be the Lyapunov function correspond-
ing to the past attractor-repeller pair (R∗

i , Ri) as introduced in Lemma 3.15.
We define
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L(p, x) :=
1

n − 1

n−1∑

i=1

Li(p, x) for all (p, x) ∈ P × X .

Choose (p, x) ∈ Mi arbitrarily, and let j ∈ {1, . . . , n − 1}. Then (p, x) ∈ Rj if
and only if j ∈ {1, . . . , i− 1}, and (p, x) ∈ R∗

j if and only if j ∈ {i, . . . , n− 1}.
This implies L|Mi

≡ i−1
n−1 for all i ∈ {1, . . . , n}. Now choose (p, x) ∈ (P ×X) \

(M1∪· · ·∪Mn). Then there exists a j ∈ {1, . . . , n} with (p, x) /∈ R∗
j ∪Rj . This

means that Lj

(
θtp, ϕ(t, p)x

)
< Lj(p, x) for all t > 0 and finishes the proof of

this theorem. ⊓⊔

3.4 Morse Decompositions in Dimension One

In this section, Morse decompositions of nonautonomous dynamical systems
whose phase space is a compact interval are studied. In this special case,
stronger results concerning the convergence behavior of the system and the
nonuniqueness of the Morse sets are obtained.

Let I ⊂ R be a compact interval and
(
θ : T×P → P, ϕ : T×P × I → I

)
be a

nonautonomous dynamical system.

Theorem 3.17 (Dynamical properties of nonautonomous Morse
decompositions in dimension one). Let {M1, . . . , Mn} be a past Morse
decomposition obtained by the finite sequence of past repellers R0 ⊃ · · · ⊃ Rn.
Then the following statements are fulfilled:

(i) Pullback convergence. For all p ∈ P and all functions γ : T+ → I with

lim inf
t→∞

d

⎛

⎝γ(t) ,
n⋃

j=1

∂Rj(θ−tp)

⎞

⎠ > 0 ,

we have

lim
t→∞

d

⎛

⎝ϕ(t, θ−tp)γ(t) ,

n⋃

j=1

Mj(p)

⎞

⎠ = 0 .

(ii) Backward convergence. For all (p, x) ∈ P × I, there exists an i ∈
{1, . . . , n} with

lim
t→∞

d
(
ϕ(−t, p)x,Mi(θ−tp)

)
= 0 .

Let {M1, . . . , Mn} be a future Morse decomposition obtained by the finite
sequence of future attractors A0 ⊂ · · · ⊂ An. Then the following statements
are fulfilled:
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(i) Forward convergence. For all (p, x) ∈ P×I, there exists an i ∈ {1, . . . , n}
with

lim
t→∞

d
(
ϕ(t, p)x,Mi(θtp)

)
= 0 .

(ii) Pushforward convergence. For all p ∈ P and all functions γ : T+ → I

with

lim inf
t→∞

d

⎛

⎝γ(t) ,

n⋃

j=1

∂Aj(θtp)

⎞

⎠ > 0 ,

we have

lim
t→∞

d

⎛

⎝ϕ(−t, θtp)γ(t) ,
n⋃

j=1

Mj(p)

⎞

⎠ = 0 .

Proof. (i) This assertion is also valid for general Morse decompositions and
was proved in Theorem 3.12.
(ii) Choose (p, x) ∈ P × I arbitrarily. Then there exists an i ∈ {1, . . . , n} such
that

x ∈ R∗
i (p) and x /∈ R∗

i−1(p) .

In case x ∈ Ri−1(p), the asserted limit relation follows, since then x ∈ Mi(p)
and Mi is invariant. We therefore assume x /∈ Ri−1(p) from now on. Due to
the topology of I, ϕ is order preserving in the following sense: For fixed t ∈ T,
exactly one of the following two statements is fulfilled:

• y1 < y2 implies ϕ(t, p)y1 < ϕ(t, p)y2 ,

• y1 < y2 implies ϕ(t, p)y1 > ϕ(t, p)y2 .

Since limt→∞ d
(
ϕ(−t, p)x,Ri−1(θ−tp)

)
= 0 (cf. Theorem 3.5 (ii)), this implies

that there exists a y ∈ Ri−1(p) such that

lim
t→∞

∣
∣ϕ(−t, p)x − ϕ(−t, p)y

∣
∣ = 0 . (3.6)

Because R∗
i is a past attractor, there exists an η > 0 such that

R∗
i (p) = lim sup

t→∞
ϕ(t, θ−tp)Uη(R∗

i (θ−tp))

(cf. Remark 2.7 (ii)). This implies lim supt→∞ ϕ(t, θ−tp)Uη(ϕ(−t, p)x) ⊂
R∗

i (p). Due to (3.6), this leads to y ∈ R∗
i (p). Hence, y ∈ M∗

i (p), and this
finishes the proof of this theorem. ⊓⊔

In our special situation, Proposition 3.6 can be generalized.

Proposition 3.18 (Form of nonuniqueness of the Morse sets). Let
{M1, . . . , Mn} and

{
M̂1, . . . , M̂n

}
be past Morse decompositions obtained by

the finite sequences of past repellers R0 ⊃ · · · ⊃ Rn and R̂0 ⊃ · · · ⊃ R̂n. We
assume that
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R∗
i = R̂∗

i for all i ∈ {1, . . . , n − 1} .

Then the relation

lim
t→∞

dH

(
Mi(θ−tp), M̂i(θ−tp)

)
= 0 for all i ∈ {1, . . . , n} and p ∈ P

is fulfilled.
Let {M1, . . . , Mn} and

{
M̂1, . . . , M̂n

}
be future Morse decompositions

obtained by the finite sequences of future attractors A0 ⊂ · · · ⊂ An and
Â0 ⊂ · · · ⊂ Ân. We assume that

A∗
i = Â∗

i for all i ∈ {1, . . . , n − 1} .

Then the relation

lim
t→∞

dH

(
Mi(θtp), M̂i(θtp)

)
= 0 for all i ∈ {1, . . . , n} and p ∈ P

is fulfilled.

Proof. Choose i ∈ {1, . . . , n} and p ∈ P arbitrarily. W.l.o.g., we only show
the relation

lim
t→∞

d
(
Mi(θ−tp)

∣
∣M̂i(θ−tp)

)
= 0 .

The proof is divided into three steps.
Step 1. There exists a past repeller R̄i−1 ⊃ Ri−1 with R̄∗

i−1 = R∗
i−1 such that

M̄i(p̄) := R∗
i (p̄) ∩ R̄i−1(p̄) for all p̄ ∈ [p]

has only finitely many connected components.
Since R∗

i is a past attractor, there exists an η > 0 such that

R∗
i (p) = lim sup

t→∞
ϕ(t, θ−tp)Uη(R∗

i (θ−tp))

(cf. Remark 2.7 (ii)). Since ϕ is continuous and Uη(R∗
i (θ−tp)) has only finitely

many connected components for t ∈ T, this implies that R∗
i (p) has only finitely

many connected components. Because Ri−1 is a past repeller, there exists a
β > 0 such that

lim
t→∞

d
(
ϕ(−t, p)Uβ(Ri−1(p))

∣
∣Ri−1(θ−tp)

)
= 0 .

Hence, the nonautonomous set R̄i−1, defined by

R̄i−1(p̄) :=

{
ϕ(t, p) cls Uβ/2(Ri−1(p)) : p̄ = θtp for some t ∈ T

Ri−1(p̄) : p̄ /∈ [p]

is also a past repeller fulfilling R̄∗
i−1 = R∗

i−1 (cf. Proposition 2.37 (iii)). More-
over, for all p̄ ∈ [p], the set R̄i−1(p̄) has only finitely many connected com-
ponents, since ϕ is continuous and clsUβ/2(Ri−1(p)) has only finitely many
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connected components. This implies the assertion.
Step 2. For all connected components C of M̄i(p), we have

lim
t→∞

d
(
ϕ(−t, p)C

∣
∣M̂i(θ−tp)

)
= 0 .

Let C = [c1, c2] be a connected component of M̄i(p), and choose ε > 0 arbit-
rarily. Due to Theorem 3.17 (ii), there exists a τ1 ≥ 0 such that we have

d
(
ϕ(−t, p)cj , M̂i(θ−tp)

)
≤ ε

2
for all t ≥ τ1 and j ∈ {1, 2} . (3.7)

Furthermore, because of Proposition 3.6, there exists a τ2 ≥ τ1 with

dH

(
R̄i−1(θ−tp), R̂i−1(θ−tp)

)
≤ ε

2
for all t ≥ τ2 . (3.8)

Let t ≥ τ2 and x ∈ ϕ(−t, p)C. In case

min
{
|x − ϕ(−t, p)c1|, |x − ϕ(−t, p)c2|

}
≤ ε

2
,

the inequality (3.7) implies that d
(
x, M̂i(θ−tp)

)
≤ ε. Otherwise, since we

have x ∈ R̄i−1(θ−tp) and due to (3.8), there exists a y ∈ R̂i−1(θ−tp) with
|x − y| ≤ ε/2. Obviously,

y ∈ ϕ(−t, p)C ⊂ ϕ(−t, p)M̄i(p) ⊂ R∗
i (θ−tp)

is fulfilled. Hence, y ∈ M̂i(θ−tp), and thus, d
(
x, M̂i(θ−tp)

)
≤ ε. This finishes

the proof of this step.
Step 3. The relation

lim
t→∞

d
(
Mi(θ−tp)

∣
∣M̂i(θ−tp)

)
= 0

is fulfilled.
Since M̄i(p) has only finitely many connected components, this assertion
follows from Step 2 and the fact that M̄i ⊃ Mi. ⊓⊔

3.5 Morse Decompositions of Linear Systems

In this section, Morse decompositions of linear nonautonomous dynamical
systems are analyzed. Under the assumption that the base space is chain
recurrent, such (autonomous) Morse decompositions of the corresponding
skew product flow have been studied in Selgrade [164], Salamon & Zehn-

der [155] and Colonius & Kliemann [50, Chapter 5] (see also Colonius

& Kliemann [49, 51] and Braga Barros & San Martin [34]).
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Given N ∈ N, and let
(
θ : T × P → P, ϕ : T × P × RN → RN

)
be a linear

nonautonomous dynamical system, i.e., for all α, β ∈ R, t ∈ T, p ∈ P and
x, y ∈ RN , we have

ϕ(t, p, αx + βy) = αϕ(t, p, x) + βϕ(t, p, y).

Thus, there exists a function Φ : T × P → RN×N with Φ(t, p)x = ϕ(t, p, x)
for all t ∈ T, p ∈ P and x ∈ RN . We suppose that (θ, ϕ) is invertible, which
implies T = R or T = Z.

For our purpose, RN is equipped with the Euclidean norm ‖ · ‖, induced by
the Euclidean scalar product (see Section 2.1). The NDS (θ, ϕ) canonically
induces a nonautonomous dynamical system (θ, PΦ) on the real projective
space PN−1 of the vector space RN by defining

PΦ(t, p)Px := P(Φ(t, p)x) for all t ∈ T, p ∈ P and x ∈ RN

(see Colonius & Kliemann [50, Lemma 5.2.1, p. 149]). For basic properties
of the projective space and notation, we refer to Appendix A.3.

The main observation of the following lemma is that past attractors and fu-
ture repellers in PN−1 are linear nonautonomous invariant manifolds in RN (cf.
Definition 4.1). For a similar result, see Salamon & Zehnder [155, Propo-
sition 2.9] and Colonius & Kliemann [50, Lemma 5.2.2., p. 149].

Proposition 3.19 (Past attractors and future repellers in PN−1). Let
A be a past attractor of (θ, PΦ). Then, for all p ∈ P and all compact sets
C ⊂ SN−1 \ P−1A(p), we have

lim
t→∞

supv∈SN−1∩P−1A(p) ‖Φ(−t, p)v‖
infw∈C ‖Φ(−t, p)w‖ = 0 .

Moreover, P−1A is a linear nonautonomous invariant manifold in RN , i.e.,
P−1A is an invariant nonautonomous set and for all p ∈ P , the set P−1A(p)
is a linear subspace of the RN .
Let R be a future repeller of (θ, PΦ). Then, for all p ∈ P and all compact sets
C ⊂ SN−1 \ P−1R(p), we have

lim
t→∞

supv∈SN−1∩P−1R(p) ‖Φ(t, p)v‖
infw∈C ‖Φ(t, p)w‖ = 0 .

Moreover, P−1R is a linear nonautonomous invariant manifold in RN .

Proof. Let A be a past attractor of (θ, PΦ), and choose a p ∈ P and a compact
set C ⊂ SN−1 \P−1A(p) arbitrarily. First, we define for 0 �= v ∈ P−1A(p) and
w ∈ C the two-dimensional linear subspace Lv,w ⊂ RN by

Lv,w :=
{
rv + sw : r, s ∈ R

}
.
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The proof of this proposition is divided into five steps.
Step 1. For all 0 �= v ∈ P−1A(p) and w ∈ C such that Pv is a boundary point
of A(p) ∩ PLv,w relative to PLv,w, we have

lim
t→∞

‖Φ(−t, p)v‖
‖Φ(−t, p)w‖ = 0 .

Since A is a past attractor, there exists an η > 0 such that

lim
t→∞

d
(
PΦ(t, θ−tp)U2η(A(θ−tp))

∣
∣A(p)

)
= 0 . (3.9)

Due to Lemma A.11, there exists a δ ∈ (0, 1) such that for all 0 �= u1, u2 ∈ RN

with
〈u1, u2〉2

‖u1‖2‖u2‖2
≥ 1 − δ ,

we have
dP(Pu1, Pu2) ≤ η .

We argue negatively and suppose that there exist a γ > 0 and a sequence
{tn}n∈N with limn→∞ tn = −∞ such that

‖Φ(tn, p)w‖
‖Φ(tn, p)v‖ ≤ γ for all n ∈ N .

For nonzero c ∈ R with |c| sufficiently small, this implies that for all n ∈ N,

〈Φ(tn,p)(cw+v),Φ(tn,p)v〉2

‖Φ(tn,p)(cw+v)‖2‖Φ(tn,p)v‖2

= c2〈Φ(tn,p)w,Φ(tn,p)v〉2+2c‖Φ(tn,p)v‖2〈Φ(tn,p)w,Φ(tn,p)v〉+‖Φ(tn,p)v‖4

c2‖Φ(tn,p)w‖2‖Φ(tn,p)v‖2+2c‖Φ(tn,p)v‖2〈Φ(tn,p)w,Φ(tn,p)v〉+‖Φ(tn,p)v‖4

≥ 1 − δ

holds. Hence, for |c| > 0 sufficiently small, we have

dP

(
PΦ(tn, p)P(cw + v), A(θtn

p)
)
≤ η for all n ∈ N .

This implies

dP

(
P(cw + v), A(p)

)
= lim

n→∞
dP

(
P(cw + v), A(p)

)

= lim
n→∞

dP

(
PΦ(−tn, θtn

p) PΦ(tn, p)P(cw + v)
︸ ︷︷ ︸

∈U2η(A(θtnp))

, A(p)
)

(3.9)
= 0 .

This is a contradiction, since Pv is a boundary point of A(p)∩PLv,w in PLv,w,
and thus, the first step of this proof is finished.
Step 2. For all nonzero v ∈ P−1A(p) and w ∈ C, the set A(p) ∩ PLv,w is a
singleton.
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Please note that any point in PLv,w \ {Pv} is given by P(w + cv) for some
c ∈ R. It follows from Step 1 that

limt→−∞
〈Φ(t,p)(w+cv),Φ(t,p)w〉2

‖Φ(t,p)(w+cv)‖2‖Φ(t,p)w‖2

= limt→−∞
‖Φ(t,p)w‖4+2c‖Φ(t,p)w‖2〈Φ(t,p)v,Φ(t,p)w〉+c2〈Φ(t,p)v,Φ(t,p)w〉2

‖Φ(t,p)w‖4+2c‖Φ(t,p)w‖2〈Φ(t,p)v,Φ(t,p)w〉+c2‖Φ(t,p)v‖2‖Φ(t,p)w‖2

= 1

in case Pv is a boundary point of A(p)∩PLv,w relative to PLv,w. This implies
with Lemma A.11 that

lim
t→∞

dP

(
PΦ(−t, p)P(w + cv), PΦ(−t, p)Pw

)
= 0 ,

and hence, P(w + cv) /∈ A(p). Therefore, A(p) ∩ PLv,w consists of a single
point.
Step 3. For all nonzero v ∈ P−1A(p) and w ∈ C, we have

lim
t→∞

‖Φ(−t, p)v‖
‖Φ(−t, p)w‖ = 0 .

This follows directly from Step 1 and Step 2.
Step 4. P−1A(p) is a linear subspace of RN .
We have shown that for any two-dimensional linear subspace Lv,w, the set
A(p) ∩ PLv,w is either empty, equals PLv,w or consists of a single point. This
implies that P−1A intersects each fiber in a linear subspace.
Step 5. We have

lim
t→∞

supv∈SN−1∩P−1A(p) ‖Φ(−t, p)v‖
infw∈C ‖Φ(−t, p)w‖ = 0 .

We assume to the contrary that there exist sequences {tn}n∈N in R, {vn}n∈N in
SN−1 ∩P−1A(p) and {wn}n∈N in C such that limn→∞ tn = −∞ and, w.l.o.g.,
limn→∞ vn = v and limn→∞ wn = w for some v ∈ P−1A(p)∩SN−1 and w ∈ C,
and the following property is fulfilled: There exists a γ > 0 such that

‖Φ(tn, p)wn‖
‖Φ(tn, p)vn‖

≤ γ for all n ∈ N .

We write Φn := Φ(tn, p). Similarly to Step 1, for nonzero c ∈ R with |c|
sufficiently small, this implies that for all n ∈ N,

〈
Φn(cwn + vn), Φnvn

〉2

‖Φn(cwn + vn)‖2‖Φnvn‖2

=
c2
〈
Φnwn, Φnvn

〉2
+ 2c‖Φnvn‖2

〈
Φnwn, Φnvn

〉
+ ‖Φnvn‖4

c2‖Φnwn‖2‖Φnvn‖2 + 2c‖Φnvn‖2
〈
Φnwn, Φnvn

〉
+ ‖Φnvn‖4

≥ 1 − δ
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holds, with δ ∈ (0, 1) chosen as in Step 1. Hence, for |c| > 0 sufficiently small,
we have

dP

(
PΦ(tn, p)P(cwn + vn), A(θtn

p)
)
≤ η for all n ∈ N .

Since P(cw + v) /∈ A(p) (due to Step 2, A(p) ∩ PLv,w is a singleton), there
exist an n0 ∈ N and a β > 0 such that cwn +vn /∈ P−1Uβ(A(p)) for all n ≥ n0.
Similarly to Step 1, using (3.9), this implies a contradiction. ⊓⊔

Concerning past repellers and future attractors, we can not expect that their
fibers give rise to linear subspaces, since they are intrinsically nonunique
(cf. Proposition 2.37). The following lemma, however, says that for any past
attractor or future repeller, a linear counterpart in form of a past repeller or
future attractor, respectively, can be found easily.

Proposition 3.20 (Past repellers and future attractors in PN−1). Let
A be a past attractor of (θ, PΦ) and R ⊂ P × PN−1 be an invariant nonau-
tonomous set such that P−1R(p) is a linear subspace of the RN and

P−1A(p) ⊕ P−1R(p) = RN for all p ∈ P .

Then R is a past repeller, and the relation A = R∗ is fulfilled.
Let R be a future repeller of (θ, PΦ) and A ⊂ P × PN−1 be an invariant
nonautonomous set such that P−1A(p) is linear subspace of the RN and

P−1A(p) ⊕ P−1R(p) = RN for all p ∈ P .

Then A is a future attractor, and the relation R = A∗ is fulfilled.

Proof. The proof of this proposition is divided into five steps.
Step 1. For all p ∈ P and compact sets C ⊂ PN−1 with C ∩A(p) = ∅, we have

lim
t→∞

inf
0 �=v∈P−1C

‖Φ(−t, p)vr‖
‖Φ(−t, p)v‖ = lim

t→∞
sup

0 �=v∈P−1C

‖Φ(−t, p)vr‖
‖Φ(−t, p)v‖ = 1 ,

where v = va + vr with va ∈ P−1A(p) and vr ∈ P−1R(p).
The first assertion follows from

lim
t→∞

inf
0 �=v∈P−1C

‖Φ(−t, p)vr‖
‖Φ(−t, p)v‖

≥
(

lim
t→∞

sup
0 �=v∈P−1C

∥
∥Φ(−t, p)va

∥
∥

∥
∥Φ(−t, p)vr

∥
∥

+ 1

)−1

=

(

lim
t→∞

sup
v∈P−1C, va �=0

‖va‖
∥
∥Φ(−t, p) va

‖va‖

∥
∥

‖vr‖
∥
∥Φ(−t, p) vr

‖vr‖

∥
∥

+ 1

)−1

Prop. 3.19
= 1
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and

lim
t→∞

inf
0 �=v∈P−1C

‖Φ(−t, p)vr‖
‖Φ(−t, p)v‖

≤
(

lim
t→∞

sup
0 �=v∈P−1C

∣
∣
∣
∣
∣
1 −

∥
∥Φ(−t, p)va

∥
∥

∥
∥Φ(−t, p)vr

∥
∥

∣
∣
∣
∣
∣

)−1

=

(

lim
t→∞

sup
v∈P−1C, va �=0

∣
∣
∣
∣
∣
1 −

‖va‖
∥
∥Φ(−t, p) va

‖va‖

∥
∥

‖vr‖
∥
∥Φ(−t, p) vr

‖vr‖

∥
∥

∣
∣
∣
∣
∣

)−1

Prop. 3.19
= 1 .

Proposition 3.19 is applicable, because the set
{
va : v ∈ P−1C ∩ SN−1

}
is

compact and the set
{
vr : v ∈ P−1C ∩ SN−1

}
is bounded away from zero.

This is due to the fact that the projector Q ∈ RN×N with range P−1A(p) and
null space P−1R(p) satisfies

{
va : v ∈ P−1C ∩ SN−1

}
= Q

(
P−1C ∩ SN−1

)
and

{
vr : v ∈ P−1C ∩ SN−1

}
= (1 − Q)

(
P−1C ∩ SN−1

)

(cf. also Step 3 of the proof of Lemma 4.14). The assertion

lim
t→∞

sup
0 �=v∈P−1C

‖Φ(−t, p)vr‖
‖Φ(−t, p)v‖ = 1

follows analogously.
Step 2. For all p ∈ P and compact sets C ⊂ PN−1 with C ∩A(p) = ∅, we have

lim
t→∞

dP

(
PΦ(−t, p)C

∣
∣R(θ−tp)

)
= 0 .

With va and vr defined as in Step 1, for all t ≥ 0 and v ∈ SN−1 ∩ P−1C, we
consider the expression

〈Φ(−t,p)v,Φ(−t,p)vr〉
2

‖Φ(−t,p)v‖2‖Φ(−t,p)vr‖2 = (〈Φ(−t,p)va,Φ(−t,p)vr〉+〈Φ(−t,p)vr,Φ(−t,p)vr〉)
2

‖Φ(−t,p)v‖2‖Φ(−t,p)vr‖2

= 〈Φ(−t,p)va,Φ(−t,p)vr〉
2+‖Φ(−t,p)vr‖

4+2〈Φ(−t,p)va,Φ(−t,p)vr〉‖Φ(−t,p)vr‖
2

‖Φ(−t,p)v‖2‖Φ(−t,p)vr‖2

= 〈Φ(−t,p)va,Φ(−t,p)vr〉
2

‖Φ(−t,p)v‖2‖Φ(−t,p)vr‖2 + ‖Φ(−t,p)vr‖
2

‖Φ(−t,p)v‖2 + 2〈Φ(−t,p)va,Φ(−t,p)vr〉
‖Φ(−t,p)v‖2 .

Using the Cauchy-Schwartz inequality, we obtain the following relations:

0 ≤ lim
t→∞

sup
v∈SN−1∩P−1C

〈
Φ(−t, p)va, Φ(−t, p)vr

〉2

‖Φ(−t, p)v‖2‖Φ(−t, p)vr‖2
≤

lim
t→∞

sup
v∈SN−1∩P−1C

‖Φ(−t, p)va‖2

‖Φ(−t, p)v‖2

Proposition 3.19
= 0
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and

0 ≤ lim
t→∞

sup
v∈SN−1∩P−1C

2
∣
∣
〈
Φ(−t, p)va, Φ(−t, p)vr

〉∣
∣

‖Φ(−t, p)v‖2

≤ lim
t→∞

sup
v∈SN−1∩P−1C

2
‖Φ(−t, p)va‖
‖Φ(−t, p)v‖

‖Φ(−t, p)vr‖
‖Φ(−t, p)v‖

Step 1
= lim

t→∞
sup

v∈SN−1∩P−1C

2‖Φ(−t, p)va‖
‖Φ(−t, p)v‖

Proposition 3.19
= 0 .

Hence, we obtain

lim
t→∞

inf
v∈SN−1∩P−1C

〈
Φ(−t, p)v, Φ(−t, p)vr

〉2

‖Φ(−t, p)v‖2‖Φ(−t, p)vr‖2

= lim
t→∞

inf
v∈SN−1∩P−1C

( 〈
Φ(−t, p)va, Φ(−t, p)vr

〉2

‖Φ(−t, p)v‖2‖Φ(−t, p)vr‖2
+

‖Φ(−t, p)vr‖2

‖Φ(−t, p)v‖2

+
2
〈
Φ(−t, p)va, Φ(−t, p)vr

〉

‖Φ(−t, p)v‖2

)

Step 1
= 1 .

Using Lemma A.11, this implies the assertion.
Step 3. A and R are past isolated, i.e., there exists a β > 0 such that for all
p ∈ P , there exists a τ > 0 with

Uβ(A(θ−tp)) ∩ Uβ(R(θ−tp)) = ∅ for all t ≥ τ .

Since A is a past attractor, there exists an η > 0 such that for all p ∈ P , we
have

lim
t→∞

dP

(
PΦ(t, θ−tp)Uη(A(θ−tp))

∣
∣A(p)

)
= 0

(cf. Remark 2.7 (iv)). Defining β := η/2 and using the invariance of R, this
implies the assertion.
Step 4. R is a past repeller.
This is a direct consequence of Step 2 and Step 3.
Step 5. The relation A = R∗ is fulfilled.
We define η > 0, P ∗ and Bζ for ζ ∈ (0, η] as in the introduction of Section 3.1.
We also consider the collection M :=

{
Bζ : ζ ∈ (0, η]

}
. Due to Theorem 3.1, it

is sufficient to show that A is an M-past attractor. Thereto, we fix an element
ζ ∈ (0, η] and p ∈ P ∗. Furthermore, we choose ε > 0 arbitrarily and consider
the compact set C := PN−1 \ Uε(A(p)). Due to Step 2, we have

lim
t→∞

d
(
PΦ(−t, p)C

∣
∣R(θ−tp)

)
= 0 .
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This implies that there exists a τ > 0 such that PΦ(−t, p)C ∩ Bζ(θ−tp) = ∅
for all t ≥ τ . Thus,

dP

(
PΦ(t, θ−tp)Bζ(θ−tp)

∣
∣A(p)

)
≤ ε for all t ≥ τ,

and hence, A is an M-past attractor. This finishes the proof of this proposi-
tion. ⊓⊔

Lemma 3.21. For all n ∈ N, let {0} � Wn � Vn � RN be nontrivial
linear subspaces. Furthermore, let {xn}n∈N be a sequence in RN such that
the following hypotheses are fulfilled:

(i) xn /∈ Vn for all n ∈ N ,

(ii) limn→∞ dP(Pxn, PVn) = 0 ,

(iii) there exists an ε > 0 such that dP(Pxn, PWn) ≥ ε for all n ∈ N .

For all n ∈ N, we define Cn := Wn ⊕ {λxn : λ ∈ R}. Then the limit relation

lim
n→∞

dP(PCn|PVn) = 0

is fulfilled.

Proof. W.l.o.g., we assume that ‖xn‖ = 1 for all n ∈ N. Due to Hypothesis
(ii), there exists a sequence {vn}n∈N with vn ∈ Vn and ‖vn‖ = 1 for all
n ∈ N such that limn→∞ ‖xn − vn‖ = 0. Since PCn is a compact subset of
PN−1, there exists a sequence {cn}n∈N with cn ∈ Cn for all n ∈ N such that
dP(PCn|PVn) = dP(Pcn, PVn). W.l.o.g., we assume that cn is of the form

cn = xn + wn for all n ∈ N ,

where {wn}n∈N is a sequence with wn ∈ Wn for all n ∈ N, and we define

rn := vn + wn for all n ∈ N

and βn := 〈xn, wn〉, δn := 〈vn, wn〉 and γn := 〈xn, vn〉 for all n ∈ N. Then, for
all n ∈ N, we have

〈cn, rn〉2
‖cn‖2‖rn‖2

=
γ2

n +

=: ξn
︷ ︸︸ ︷

β2
n + δ2

n + ‖wn‖4 + 2γn‖xn‖2 + 2βnδn +

=: ηn
︷ ︸︸ ︷

2(βn + δn)
(
‖wn‖2 + γn

)

1 + 2‖wn‖2 + ‖wn‖4 + 4βnδn
︸ ︷︷ ︸

=: ξ̄n

+ 2(βn + δn)
(
‖wn‖2 + 1

)

︸ ︷︷ ︸

=: η̄n

,

and it is easy to see that we have limn→∞ γn = 1, limn→∞ ξn/ξ̄n = 1 and
limn→∞ ηn/η̄n = 1. This implies that
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lim
n→∞

〈cn, rn〉2
‖cn‖2‖rn‖2

= 1

under the condition that ‖cn‖‖rn‖ is bounded away from 0 in the limit n → ∞.
To see that this is fulfilled, we need Hypothesis (iii), which says that there
exists a δ ∈ (0, 1) with

〈xn, w〉
‖w‖ ≤ δ for all n ∈ N and w ∈ Wn

(cf. Lemma A.11). This means that for all n ∈ N and w ∈ Wn, we have

‖xn − w‖2 = 1 − 2〈xn, w〉 + ‖w‖2 ≥ 1 − 2δ‖w‖ + ‖w‖2 ≥ γ

for some γ > 0, and using limn→∞ ‖xn − vn‖ = 0, this finishes the proof of
this lemma. ⊓⊔

In our special situation, convergence in both directions to the Morse sets is
satisfied.

Theorem 3.22 (Dynamical properties of nonautonomous Morse
decompositions of linear systems). Let {M1, . . . , Mn} be a past Morse
decomposition obtained by the finite sequence of past repellers R0 ⊃ · · · ⊃ Rn

such that P−1Ri(p) is a linear subspace of RN for i ∈ {1, . . . , n−1} and p ∈ P .
Then the following statements are fulfilled:

(i) Pullback convergence. For all p ∈ P and all functions γ : T+ → PN−1

with

lim inf
t→∞

dP

⎛

⎝γ(t) ,

n⋃

j=1

∂Rj(θ−tp)

⎞

⎠ > 0 ,

we have

lim
t→∞

dP

⎛

⎝PΦ(t, θ−tp)γ(t) ,

n⋃

j=1

Mj(p)

⎞

⎠ = 0 .

(ii) Backward convergence. For all (p, x) ∈ P × PN−1, there exists an i ∈
{1, . . . , n} with

lim
t→∞

dP

(
PΦ(−t, p)x,Mi(θ−tp)

)
= 0 .

Let {M1, . . . , Mn} be a future Morse decomposition obtained by the finite se-
quence of future attractors A0 ⊂ · · · ⊂ An such that P−1Ai(p) is a linear
subspace of RN for i ∈ {1, . . . , n − 1} and p ∈ P . Then the following state-
ments are fulfilled:

(i) Forward convergence. For all (p, x) ∈ P × PN−1, there exists an i ∈
{1, . . . , n} with

lim
t→∞

dP

(
PΦ(t, p)x,Mi(θtp)

)
= 0 .
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(ii) Pushforward convergence. For all p ∈ P and all functions γ : T+ →
PN−1 with

lim inf
t→∞

dP

⎛

⎝γ(t) ,

n⋃

j=1

∂Aj(θtp)

⎞

⎠ > 0 ,

we have

lim
t→∞

dP

⎛

⎝PΦ(−t, θtp)γ(t) ,

n⋃

j=1

Mj(p)

⎞

⎠ = 0 .

Proof. (i) This assertion is also valid for general Morse decompositions and
was proved in Theorem 3.12.
(ii) Choose (p, x) ∈ P × PN−1 arbitrarily. Then there exists an i ∈ {1, . . . , n}
such that

x ∈ R∗
i (p) and x /∈ R∗

i−1(p) .

In case x ∈ Ri−1(p), the above limit relation follows, since then x ∈ Mi(p) and
Mi is invariant. We therefore assume x /∈ Ri−1(p) from now on. To obtain a
contradiction, we also assume that there exist an ε > 0 and a sequence {tn}n∈N

in R with limn→∞ tn = ∞ such that

dP

(
PΦ(−tn, p)x,Mi(θ−tn

p)
)
≥ ε for all n ∈ N .

We define C := P−1Mi(p) ⊕ P−1{x}. Since

lim
t→∞

dP

(
PΦ(−t, p)x,Ri−1(θ−tp)

)
= 0

(cf. Theorem 3.5), Lemma 3.21 implies

lim
n→∞

dP

(
PΦ(−tn, p)PC

∣
∣Ri−1(θ−tn

p)
)

= 0 . (3.10)

We define C̄ := P−1Ri−1(p) ⊕ P−1{x}. Then

dim
(
C̄ ∩ P−1R∗

i−1(p)
)

= dim C̄ + dim P−1R∗
i−1(p) − dim

(
C̄ + P−1R∗

i−1(p)
)

= N + 1 − N = 1 .

Let y = v + w be a nonzero element of C̄ ∩ P−1R∗
i−1(p) with v ∈ P−1{x}

and w ∈ P−1Ri−1(p). Since y and v are in P−1R∗
i (p), w is also an element of

P−1R∗
i (p). Hence, w ∈ P−1Mi(p). This implies y ∈ C, and hence, we get from

(3.10) the relation

lim
n→∞

dP

(
PΦ(−tn, p)Py,Ri−1(θ−tn

p)
)

= 0 .

This is a contradiction, since Py ∈ R∗
i−1(p) and Ri−1 and R∗

i−1 are past
isolated (cf. Theorem 3.5 (i)). ⊓⊔

In our special situation, Proposition 3.6 can be generalized.
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Proposition 3.23 (Form of nonuniqueness of the Morse sets). Let
{M1, . . . , Mn} and

{
M̂1, . . . , M̂n

}
be past Morse decompositions obtained by

the finite sequences of past repellers R0 ⊃ · · · ⊃ Rn and R̂0 ⊃ · · · ⊃ R̂n such
that P−1Ri(p) and P−1R̂i(p) are linear subspaces of RN for i ∈ {1, . . . , n− 1}
and p ∈ P . We assume that

R∗
i = R̂∗

i for all i ∈ {1, . . . , n − 1} .

Then the relation

lim
t→∞

dPH

(
Mi(θ−tp), M̂i(θ−tp)

)
= 0 for all i ∈ {1, . . . , n} and p ∈ P

is fulfilled.
Let {M1, . . . , Mn} and

{
M̂1, . . . , M̂n

}
be future Morse decompositions

obtained by the finite sequences of future attractors A0 ⊂ · · · ⊂ An and
Â0 ⊂ · · · ⊂ Ân such that P−1Ai(p) and P−1Âi(p) are linear subspaces of
RN for i ∈ {1, . . . , n − 1} and p ∈ P . We assume that

A∗
i = Â∗

i for all i ∈ {1, . . . , n − 1} .

Then the relation

lim
t→∞

dPH

(
Mi(θtp), M̂i(θtp)

)
= 0 for all i ∈ {1, . . . , n} and p ∈ P

is fulfilled.

Proof. For i ∈ {1, n}, the above limit relation follows from M1 = R∗
1 = R̂∗

1 =
M̂1 and from Proposition 3.6, since Mn = Rn−1 and M̂n = R̂n−1. We argue
negatively and assume w.l.o.g. that there exist an i ∈ {2, . . . , n − 1} and a
p ∈ P such that

lim sup
t→∞

dP

(
M̂i(θ−tp)

∣
∣Mi(θ−tp)

)
> 0 .

Since Proposition 3.6 implies that

lim
t→∞

dPH

(
Ri−1(θ−tp), R̂i−1(θ−tp)

)
= 0 ,

and R̂i−1 ⊃ M̂i, this means that there exist a γ > 0 and sequences {tn}n∈N

(with limn→∞ tn = ∞) and {xn}n∈N (with xn ∈ Ri−1(θ−tn
p) \ Mi(θ−tn

p))
such that

dP

(
xn,Mi(θ−tn

p)
)
≥ γ for all n ∈ N

and
lim

n→∞
dP

(
xn, M̂i(θ−tn

p)
)

= 0 .

The last formula implies limn→∞ dP

(
xn, R∗

i (θ−tn
p)
)

= 0. We define
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Cn := P−1Mi(θ−tn
p) ⊕ P−1{xn} for all n ∈ N .

Due to Lemma 3.21, the relation

lim
n→∞

dP

(
PCn

∣
∣R∗

i (θ−tn
p)
)

= 0

holds. Since R∗
i is a past attractor, we thus get

lim
n→∞

dP

(
PΦ(tn, θ−tn

p)PCn

∣
∣R∗

i (p)
)

= 0 . (3.11)

Due to Lemma A.12, we have dP

(
PΦ(tn, θ−tn

p)PCn

∣
∣Mi(p)

)
=

√
2 for all n ∈

N, since P−1PΦ(tn, θ−tn
p)PCn has a higher dimension than P−1Mi(p). This

means that there exists a sequence {yn}n∈N with

yn ∈ PΦ(tn, θ−tn
p)PCn and dP

(
yn,Mi(p)

)
≥ 1 for all n ∈ N . (3.12)

Since yn ∈ Ri−1(p) for all n ∈ N, we assume w.l.o.g. that this sequence is
convergent with limit y ∈ Ri−1(p). Due to (3.11), we also have y ∈ R∗

i (p).
Hence, y ∈ Mi(p), and this contradicts (3.12). ⊓⊔

For the rest of this chapter, attention is restricted to the situation P = T

and θ(t, s) = t + s for all t, s ∈ T. As described in Section 2.2, this setting
includes arbitrary nonautonomous differential and difference equations. Under
this assumption, an analogon to the Theorem of Selgrade (see Selgrade

[164, Theorem 9.7] and Colonius & Kliemann [50, Theorem 5.2.5]) can be
proved.

Theorem 3.24 (Finest nonautonomous Morse decomposition). We
suppose that P = T and θ(t, s) = t + s for all t, s ∈ T. Then the follow-
ing statements are fulfilled:

(i) There exists a finest past Morse decomposition {M1, . . . , Mn}, i.e., any
other past Morse decomposition

{
M̃1, . . . , M̃m

}
fulfills

lim
t→∞

dP

(
n⋃

i=1

Mi(−t)

∣
∣
∣
∣
∣

m⋃

i=1

M̃i(−t)

)

= 0 .

Moreover, we have n ≤ N , and the following decomposition in a Whitney
sum holds (cf. the definition on p. 82):

P−1M1 ⊕ · · · ⊕ P−1Mn = T × RN .

(ii) There exists a finest future Morse decomposition {M1, . . . , Mn}, i.e.,
any other future Morse decomposition

{
M̃1, . . . , M̃m

}
fulfills

lim
t→∞

dP

(
n⋃

i=1

Mi(t)

∣
∣
∣
∣
∣

m⋃

i=1

M̃i(t)

)

= 0 .
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Moreover, we have n ≤ N , and the following decomposition in a Whitney
sum holds:

P−1M1 ⊕ · · · ⊕ P−1Mn = T × RN .

Proof. First, we prove that any past attractors A and Â either fulfill

A ⊂ Â or A ⊃ Â .

Supposing the contrary, due to P = T, there exist a τ ∈ T and elements

x ∈ SN−1 ∩
(
P−1A(τ) \ P−1Â(τ)

)
and x̂ ∈ SN−1 ∩

(
P−1Â(τ) \ P−1A(τ)

)
.

Because of Proposition 3.19, we obtain

lim
t→∞

‖Φ(−t, τ)x‖
‖Φ(−t, τ)x̂‖ = 0 and lim

t→∞

‖Φ(−t, τ)x̂‖
‖Φ(−t, τ)x‖ = 0 .

This is a contradiction. Proposition 3.19 also implies that the fibers of past
attractors correspond to linear subspaces. Thus, there are at most N +1 past
attractors of (θ, PΦ), namely

∅ = A0 � A1 � · · · � An = T × PN−1

with n ≤ N . Due to Proposition 3.20, it is possible to choose a sequence of
past repellers T × PN−1 = R0 � R1 � · · · � Rn = ∅ such that R∗

i = Ai for
i ∈ {0, . . . , n}. We denote by {M1, . . . , Mn} the corresponding past Morse
decomposition. Let

{
M̃1, . . . , M̃m

}
be another past Morse decomposition,

obtained by the sequence T × PN−1 = R̃0 � R̃1 � · · · � R̃m = ∅ of past
repellers. Then, for each i ∈ {0, . . . , m}, there exists an ni ∈ {0, . . . , n} such
that R̃∗

i = Ani
. We consider now the past Morse decomposition

{
M̂1, . . . , M̂n

}

which is obtained by the past repellers Rn0
, . . . , Rnm

. Due to Proposition 3.23,
we have

lim
t→∞

dPH

(
m⋃

i=1

M̂i(−t) ,

m⋃

i=1

M̃i(−t)

)

= 0 .

Moreover, it is easy to see that ∪n
i=1Mi ⊂ ∪m

i=1M̂i holds, and this finishes the
proof of the first assertion of this theorem. To show

P−1M1 ⊕ · · · ⊕ P−1Mn = T × RN ,

we first note that for 1 ≤ i < j ≤ n, we have P−1Mi ∩ P−1Mj = T × {0}
(cf. Proposition 3.9). Furthermore, Proposition 3.20 and Lemma A.10 implies

T × RN = P−1R∗
1 + P−1R1

= P−1M1 +
(
P−1R1 ∩ (P−1R∗

2 + P−1R2)
)

= P−1M1 +
(
P−1R1 ∩ P−1R∗

2

)
+ P−1R2

= P−1M1 + P−1M2 + P−1R2 .



80 Chapter 3: Nonautonomous Morse Decompositions

It follows inductively that

T × RN = P−1M1 + · · · + P−1Mn + P−1Rn = P−1M1 + · · · + P−1Mn .

This finishes the proof of this theorem. ⊓⊔

Remark 3.25. A finest past Morse decomposition {M1, . . . , Mn} is not
uniquely determined, but it follows directly from the above theorem that any
other finest Morse decomposition

{
M̃1, . . . , M̃m

}
satisfies

lim
t→∞

dPH

(
n⋃

i=1

Mi(−t) ,

m⋃

i=1

M̃i(−t)

)

= 0 .

Moreover, the relation n = m is fulfilled. A similar statement holds for finest
future Morse decompositions.



4

Linear Systems

In the qualitative theory, the study of linear systems is very important, since
a comprehensive analysis of nonlinear systems via perturbation techniques
requires linear theory. This is due to the fact that in many cases, stability
properties of solutions can be derived from the linearization along the solution,
the so-called variational equation. In this chapter, methods are provided for
the analysis of linear systems with respect to the notions of attractivity and
repulsivity which have been introduced in Chapter 2.

Throughout this chapter, let
(
θ : T × P → P, ϕ : T × P × RN → RN

)
be a

linear nonautonomous dynamical system, i.e., for all α, β ∈ R, t ∈ T, p ∈ P
and x, y ∈ RN , we have

ϕ(t, p)(αx + βy) = αϕ(t, p)x + βϕ(t, p)y .

We suppose that (θ, ϕ) is invertible, which implies T = R or T = Z. Moreover,
let Φ : T × P → RN×N be the matrix function with Φ(t, p)x = ϕ(t, p, x) for
all t ∈ T, p ∈ P and x ∈ RN .

4.1 Notions of Dichotomy

In this section, several notions of dichotomy are introduced for the diff-
erent time domains. The classical concept of exponential dichotomy for
nonautonomous linear differential equations has been established by Perron

[130, 131] in the late 1920s. In the sequel, many authors developed the the-
ory; for fundamental work on this topic, we refer to Coppel [55], Daleckĭi

& Krein [61], Massera & Schäffer [118], Palmer [125, 126, 127] and
Sacker & Sell [151, 152, 153, 150] (see also Papaschinopoulos [129] for
difference equations). The noninvertible case is treated in Henry [79, Section
7.6], Kalkbrenner [89], Aulbach & Kalkbrenner [15] and Aulbach &

Siegmund [20].
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Definition 4.1 (Linear nonautonomous invariant manifold). An in-
variant nonautonomous set M ⊂ P × RN is called linear nonautonomous
invariant manifold of (θ, ϕ) if M(p) is a linear subspace of RN for all p ∈ P .

Given linear nonautonomous invariant manifolds M1,M2 of (θ, ϕ), the sets

M1 ∩ M2 :=
{
(p, ξ) ∈ P × RN : ξ ∈ M1(p) ∩ M2(p)

}
and

M1 + M2 :=
{
(p, ξ) ∈ P × RN : ξ ∈ M1(p) + M2(p)

}

are also linear nonautonomous invariant manifolds of (θ, ϕ). A finite sum
M1 + · · ·+Mn of linear nonautonomous invariant manifolds is called Whitney
sum M1 ⊕ · · · ⊕ Mn if the relation Mi ∩ Mj = P × {0} is satisfied for i �= j.

Linear nonautonomous invariant manifolds can be described via invariant pro-
jectors.

Definition 4.2 (Invariant projector). An invariant projector of (θ, ϕ) is
a function Q : P → RN×N with

Q(p) = Q(p)2 for all p ∈ P ,

Q(θtp)Φ(t, p) = Φ(t, p)Q(p) for all p ∈ P and t ∈ T .

Remark 4.3. In case the nonautonomous dynamical system (θ, ϕ) is a topo-
logical skew product flow, i.e., P is a topological space, one usually supposes
additionally that an invariant projector is continuous (see, e.g., Sacker &

Sell [151]).

The range
R(Q) :=

{
(p, ξ) ∈ P × RN : ξ ∈ R(Q(p))

}

and the null space

N (Q) :=
{
(p, ξ) ∈ P × RN : ξ ∈ N (Q(p))

}

of an invariant projector Q are linear nonautonomous invariant manifolds of
(θ, ϕ) such that R(Q) ⊕N (Q) = P × RN .

Next, several notions of dichotomy are introduced for the linear system (θ, ϕ).

Definition 4.4 (Notions of dichotomy). Let Q : P → RN×N be an invari-
ant projector of (θ, ϕ).

(i) We say that (θ, ϕ) admits a past exponential dichotomy with constants
α > 0,K ≥ 1 and projector Q if for all p ∈ P , there exists a p̂ ∈ [p] with

‖Φ(t, θ−τ p̂)Q(θ−τ p̂)‖ ≤ Ke−αt for all τ ≥ t ≥ 0 ,
∥
∥Φ(−t, θ−τ p̂)(1 − Q(θ−τ p̂))

∥
∥ ≤ Ke−αt for all τ, t ≥ 0 .
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(ii) We say that (θ, ϕ) admits a future exponential dichotomy with constants
α > 0,K ≥ 1 and projector Q if for all p ∈ P , there exists a p̂ ∈ [p] with

‖Φ(t, θτ p̂)Q(θτ p̂)‖ ≤ Ke−αt for all τ, t ≥ 0 ,
∥
∥Φ(−t, θτ p̂)(1 − Q(θτ p̂))

∥
∥ ≤ Ke−αt for all τ ≥ t ≥ 0 .

(iii) We say that (θ, ϕ) admits an all-time exponential dichotomy with con-
stants α > 0, K ≥ 1 and projector Q if for all p ∈ P , we have

‖Φ(t, p)Q(p)‖ ≤ Ke−αt for all t ≥ 0 ,
∥
∥Φ(−t, p)(1 − Q(p))

∥
∥ ≤ Ke−αt for all t ≥ 0 .

(iv) Given p ∈ P and T ∈ T+, we say that (θ, ϕ) admits a (p, T )-dichotomy
with projector Q if we have

‖Φ(T, p)ξ‖ < ‖ξ‖ for all 0 �= ξ ∈ R(Q(p)) ,

‖Φ(−T, θT p)ξ‖ < ‖ξ‖ for all 0 �= ξ ∈ N (Q(θT p)) .

Having these definitions at hand, some remarks are in order.

Remark 4.5.

(i) In the literature (see the references cited in the introduction of this
section), an all-time exponential dichotomy is simply called exponential
dichotomy.

(ii) In case the nonautonomous dynamical system (θ, ϕ) is generated by a
nonautonomous differential or difference equation, i.e., P = T, a past
or future exponential dichotomy is called exponential dichotomy on half
line R−

0 , Z−
0 or R+

0 , Z+
0 , respectively (see, e.g., Coppel [55] and Propo-

sition 4.16).

(iii) In contrast to past, future or all-time exponential dichotomies, the notion
of (p, T )-dichotomy is not invariant with respect to a change of the norm
to an equivalent norm (cf. also Remark 2.18).

(iv) In the scalar case (N = 1), (θ, ϕ) admits a (p, T )-dichotomy if and only
if |Φ(T, p)| �= 1.

In the following proposition, the relationship between the above introduced
notions of dichotomies is examined.

Proposition 4.6. The following statements are fulfilled:

(i) If (θ, ϕ) admits an all-time exponential dichotomy, then it also admits a
past exponential dichotomy and a future exponential dichotomy.

(ii) Suppose, (θ, ϕ) is generated by a nonautonomous differential or differ-
ence equation, i.e., P = T, and (θ, ϕ) admits a past exponential di-
chotomy and a future exponential dichotomy with the same invariant
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projector Q : T → RN×N . Then (θ, ϕ) also admits an all-time exponen-
tial dichotomy.

Proof. Statement (i) is obvious; for (ii), see Coppel [55, p. 19]. ⊓⊔

Definition 4.7 (Nonhyperbolic dichotomies). Let γ ∈ R, and consider
the linear nonautonomous dynamical system (θ, ϕγ), defined by

ϕγ(t, p, x) := e−γtϕ(t, p, x) for all t ∈ T, p ∈ P and x ∈ RN .

We say that (θ, ϕ) admits a nonhyperbolic past exponential (future exponen-
tial, all-time exponential, (p, T )-, respectively) dichotomy with growth rate γ,
constants α > 0,K ≥ 1 and projector Q if (θ, ϕγ) admits a past exponential
(future exponential, all-time exponential, (p, T )-, respectively) dichotomy with
constants α > 0,K ≥ 1 and projector Q.

Remark 4.8. The nonautonomous dynamical system (θ, ϕ) admits a non-
hyperbolic past exponential (future exponential, all-time exponential, (p, T )-,
respectively) dichotomy with growth rate γ = 0 if and only if it admits a past
exponential (future exponential, all-time exponential, (p, T )-, respectively)
dichotomy.

Lemma 4.9 (Criteria for nonhyperbolic dichotomies). Suppose, (θ, ϕ)
admits a nonhyperbolic past exponential (future exponential, all-time expo-
nential, (p, T )-, respectively) dichotomy with growth rate γ and projector Qγ .
Then the following statements are fulfilled:

(i) If Qγ ≡ 1, then (θ, ϕ) admits a nonhyperbolic past exponential (future
exponential, all-time exponential, (p, T )-, respectively) dichotomy with
growth rate ζ and projector Qζ ≡ 1 for all ζ > γ.

(ii) If Qγ ≡ 0, then (θ, ϕ) admits a nonhyperbolic past exponential (future
exponential, all-time exponential, (p, T )-, respectively) dichotomy with
growth rate ζ and projector Qζ ≡ 0 for all ζ < γ.

Proof. The assertions follow directly from the monotonicity of the exponential
function. ⊓⊔

We make use of the following equivalent characterizations of nonhyperbolic
dichotomies.

Proposition 4.10 (Equivalent characterizations of nonhyperbolic
dichotomies). Let Q : P → RN×N be an invariant projector of (θ, ϕ). Then
the following statements are fulfilled:
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(i) (θ, ϕ) admits a nonhyperbolic past exponential dichotomy with growth
rate γ ∈ R, constants α > 0,K ≥ 1 and projector Q if and only if for
all p ∈ P , there exists a p̂ ∈ [p] with

‖Φ(t, θ−τ p̂)Q(θ−τ p̂)‖ ≤ Ke(γ−α)t for all τ ≥ t ≥ 0 ,
∥
∥Φ(−t, θ−τ p̂)(1 − Q(θ−τ p̂))

∥
∥ ≤ Ke−(γ+α)t for all τ, t ≥ 0 .

(ii) (θ, ϕ) admits a nonhyperbolic future exponential dichotomy with growth
rate γ ∈ R, constants α > 0,K ≥ 1 and projector Q if and only if for
all p ∈ P , there exists a p̂ ∈ [p] with

‖Φ(t, θτ p̂)Q(θτ p̂)‖ ≤ Ke(γ−α)t for all τ, t ≥ 0 ,
∥
∥Φ(−t, θτ p̂)(1 − Q(θτ p̂))

∥
∥ ≤ Ke−(γ+α)t for all τ ≥ t ≥ 0 .

(iii) (θ, ϕ) admits a nonhyperbolic all-time exponential dichotomy with growth
rate γ ∈ R, constants α > 0, K ≥ 1 and projector Q if and only if for
all p ∈ P , we have

‖Φ(t, p)Q(p)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,
∥
∥Φ(−t, p)(1 − Q(p))

∥
∥ ≤ Ke−(γ+α)t for all t ≥ 0 .

(iv) Given p ∈ P and T ∈ T+, (θ, ϕ) admits a nonhyperbolic (p, T )-dichotomy
with growth rate γ ∈ R and projector Q if and only if we have

‖ϕ(T, p)ξ‖ < eγT ‖ξ‖ for all 0 �= ξ ∈ R(Q(p)) ,

‖ϕ(−T, θT p)ξ‖ < e−γT ‖ξ‖ for all 0 �= ξ ∈ N (Q(θT p)) .

For γ ∈ R, we define

Sγ :=
{
(p, ξ) ∈ P × RN : Φ(·, p)ξ is γ+-quasibounded

}

and
Uγ :=

{
(p, ξ) ∈ P × RN : Φ(·, p)ξ is γ−-quasibounded

}
.

It is obvious that Sγ and Uγ are linear nonautonomous invariant manifolds of
(θ, ϕ). Given γ ≤ ζ, the relations Sγ ⊂ Sζ and Uγ ⊃ Uζ are fulfilled.

We now discuss the important relationship between the projectors of non-
hyperbolic exponential dichotomies with growth rate γ and the sets Sγ and
Uγ .

Proposition 4.11 (Dynamical properties). If (θ, ϕ) admits a nonhyper-
bolic past exponential dichotomy with growth rate γ, constants α > 0,K ≥ 1
and projector Q, then we have N (Q) = Uγ , and for all p ∈ P , there exists a
p̂ ∈ [p] with

‖Φ(t, θ−τ p̂)ξ‖ ≤ K‖ξ‖eγt for all 0 ≤ t ≤ τ and ξ ∈ R(Q(θ−τ p̂)) . (4.1)
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If (θ, ϕ) admits a nonhyperbolic future exponential dichotomy with growth rate
γ, constants α > 0,K ≥ 1 and projector Q, then we have R(Q) = Sγ , and for
all p ∈ P , there exists a p̂ ∈ [p] with

‖Φ(−t, θτ p̂)ξ‖ ≤ K‖ξ‖e−γt for all 0 ≤ t ≤ τ and ξ ∈ N (Q(θτ p̂)) .

If (θ, ϕ) admits a nonhyperbolic all-time exponential dichotomy with growth
rate γ and projector Q, then N (Q) = Uγ and R(Q) = Sγ are fulfilled.

Proof. Suppose, (θ, ϕ) admits a nonhyperbolic past exponential dichotomy
with growth rate γ, constants α > 0,K ≥ 1 and projector Q. Due to Propo-
sition 4.10, for given p ∈ P , there exists a p̂ ∈ [p] with

‖Φ(t, θ−τ p̂)Q(θ−τ p̂)‖ ≤ Ke(γ−α)t for all τ ≥ t ≥ 0 ,
∥
∥Φ(−t, θ−τ p̂)(1 − Q(θ−τ p̂))

∥
∥ ≤ Ke−(γ+α)t for all τ, t ≥ 0 .

The first inequality implies (4.1). Choose t̂ ∈ T such that θt̂p = p̂. We now
prove the relation N (Q) = Uγ .
(⊇) We choose (p, ξ) ∈ Uγ arbitrarily. This implies

∥
∥Φ(−t, θt̂p)Φ(t̂, p)ξ

∥
∥ ≤

Ce−γt for all t ≥ 0 with some real constant C > 0. We write Φ
(
t̂, p
)
ξ = ξ1 +ξ2

with ξ1 ∈ R(Q(p̂)) and ξ2 ∈ N (Q(p̂)). Hence, for all t ≥ 0, we get

‖ξ1‖ =
∥
∥Φ(t, θ−tp̂)Φ(−t, p̂)Q(p̂)Φ(t̂, p)ξ

∥
∥

=
∥
∥Φ(t, θ−tp̂)Q(θ−tp̂)Φ(−t, p̂)Φ(t̂, p)ξ

∥
∥

≤ Ke(γ−α)t
∥
∥Φ(−t, p̂)Φ(t̂, p)ξ

∥
∥ ≤ CKe(γ−α)te−γt = CKe−αt .

The right hand side of this inequality converges to zero in the limit t → ∞.
Therefore, ξ1 = 0, and Φ(t̂, p)ξ ∈ N (Q(p̂)). Due to the invariance of N (Q),
we finally obtain (p, ξ) ∈ N (Q).
(⊆) We choose (p, ξ) ∈ N (Q). Thus, for all t ≥ 0, the relation
∥
∥Φ(−t, p̂)Φ(t̂, p)ξ

∥
∥ =

∥
∥Φ(−t, p̂)(1 − Q(p̂))Φ(t̂, p)ξ

∥
∥ ≤ Ke−(γ+α)t

∥
∥Φ(t̂, p)ξ

∥
∥

is fulfilled. This means that Φ(·, p)ξ is γ−-quasibounded, i.e., (p, ξ) ∈ Uγ .
The assertions concerning the future exponential dichotomy are treated anal-
ogously. In case (θ, ϕ) admits an all-time exponential dichotomy, Proposi-
tion 4.6 (i) yields that (θ, ϕ) also admits a past exponential dichotomy and a
future exponential dichotomy. Hence, we obtain N (Q) = Uγ and R(Q) = Sγ .

⊓⊔

Remark 4.12. According to this proposition, an invariant projector is uniquely
determined only in case of a nonhyperbolic all-time exponential dichotomy.
In addition, the null space of a projector of a past exponential dichotomy
and the range of a projector of a future exponential dichotomy are uniquely
determined. For further information about the kind of nonuniqueness of ranges
of projectors of past exponential dichotomies and null spaces of projectors of
future exponential dichotomies, we refer to Lemma 4.19.
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This section is concluded by pointing out several evidences that the notions
of dichotomy are consistent to the concepts of attractivity and repulsivity.

Theorem 4.13 (Nonhyperbolic dichotomies and the notions of
attractivity and repulsivity). Suppose, (θ, ϕ) admits a nonhyperbolic past
exponential (future exponential, all-time exponential, (p, T )-, respectively) di-
chotomy with growth rate γ and invariant projector Q. Then the following
statements are fulfilled:

(i) If γ ≤ 0 and rkQ(p̂) ≥ 1 for all p̂ ∈ P , then every trivial solution of
(θ, ϕ) is not past (future, all-time, (p, T )-, respectively) repulsive.

(ii) If γ ≥ 0 and rkQ(p̂) ≤ N − 1 for all p̂ ∈ P , then every trivial solution
of (θ, ϕ) is not past (future, all-time, (p, T )-, respectively) attractive.

(iii) If γ ≤ 0 and Q ≡ 1, then every trivial solution of (θ, ϕ) is past (future,
all-time, (p, T )-, respectively) attractive with A0 = ∞.

(iv) If γ ≥ 0 and Q ≡ 0, then every trivial solution of (θ, ϕ) is past (future,
all-time, (p, T )-, respectively) repulsive with R0 = ∞.

Proof. These assertions are direct consequences of Proposition 4.10 and 4.11.
⊓⊔

For the rest of this section, the studies are concentrated on the induced
nonautonomous dynamical system (θ, PΦ) on the real projective space PN−1

(cf. Section 3.5).

Lemma 4.14. The following statements are fulfilled:

(i) We suppose that (θ, ϕ) admits a nonhyperbolic past exponential
dichotomy with invariant projector Q. Then there exists a β > 0 such
that for all p ∈ P , there exists a p̂ ∈ [p] with

Uβ

(
PR(Q(θ−tp̂))

)
∩ Uβ

(
PN (Q(θ−tp̂))

)
= ∅ for all t ≥ 0

(i.e., PR(Q) and PN (Q) are past isolated). Moreover, for all p ∈ P and
compact sets C ⊂ SN−1 \ N (Q(p)), we have

lim
t→∞

supv∈SN−1∩N (Q(p)) ‖Φ(−t, p)v‖
infw∈C ‖Φ(−t, p)w‖ = 0 .

(ii) We suppose that (θ, ϕ) admits a nonhyperbolic future exponential
dichotomy with invariant projector Q. Then there exists a β > 0 such
that for all p ∈ P , there exists a p̂ ∈ [p] with

Uβ

(
PR(Q(θtp̂))

)
∩ Uβ

(
PN (Q(θtp̂))

)
= ∅ for all t ≥ 0

(i.e., PR(Q) and PN (Q) are future isolated). Moreover, for all p ∈ P
and compact sets C ⊂ SN−1 \ R(Q(p)), we have
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lim
t→∞

supv∈SN−1∩R(Q(p)) ‖Φ(t, p)v‖
infw∈C ‖Φ(t, p)w‖ = 0 .

(iii) We suppose that (θ, ϕ) admits a nonhyperbolic all-time exponential
dichotomy with invariant projector Q. Then there exists a β > 0 with

Uβ

(
PR(Q(p))

)
∩ Uβ

(
PN (Q(p))

)
= ∅ for all p ∈ P

(i.e., PR(Q) and PN (Q) are all-time isolated),

lim
t→∞

sup
p∈P

supv∈SN−1∩N (Q(p)) ‖Φ(−t, p)v‖
infw∈SN−1∩P−1Uβ(PR(Q(p))) ‖Φ(−t, p)w‖ = 0

and

lim
t→∞

sup
p∈P

supv∈SN−1∩R(Q(p)) ‖Φ(t, p)v‖
infw∈SN−1∩P−1Uβ(PN (Q(p))) ‖Φ(t, p)w‖ = 0 .

Proof. (i) Suppose that (θ, ϕ) admits a nonhyperbolic past exponential
dichotomy with growth rate γ, constants α > 0,K ≥ 1 and projector Q.
We define β := 1/(3K), fix an arbitrary p ∈ P and choose p̂ ∈ [p] as in Defi-
nition 4.4 (i). The remaining proof of (i) is divided into four steps.
Step 1. The sets PR(Q) and PN (Q) are past isolated.
Assume, for some t ≥ 0, we have Uβ

(
PR(Q(θ−tp̂))

)
∩Uβ

(
PN (Q(θ−tp̂))

)
�= ∅.

Hence, there exist x ∈ PR(Q(θ−tp̂)) and y ∈ PN (Q(θ−tp̂)) with dP(x, y) ≤ 2β.
Due to the definition of dP (cf. Appendix A.3), there exist x̃ ∈ SN−1∩P−1{x}
and ỹ ∈ SN−1 ∩ P−1{y} such that ‖x̃ − ỹ‖ ≤ 2β. This yields

‖Q(θ−tp̂)(x̃ − ỹ)‖
‖x̃ − ỹ‖ =

‖x̃‖
‖x̃ − ỹ‖ ≥ 1

2β
=

3K

2
,

and this is a contradiction, since Definition 4.4 (i) implies ‖Q(θ−tp̂)‖ ≤ K.
Step 2. We have

‖Φ(−t, θ−τ p̂)x‖ ≥ 1

K
e−(γ−α)t‖x‖ for all τ, t ≥ 0 and x ∈ R(Q(θ−τ p̂)) .

The assertion follows from

‖x‖ = ‖Φ(t, θ−τ−tp̂)Φ(−t, θ−τ p̂)Q(θ−τ p̂)x‖
Def. 4.4 (i)

≤ Ke(γ−α)t‖Φ(−t, θ−τ p̂)x‖ .

Step 3. Let M ⊂ SN−1 \ N (Q(p̂)) be a compact set. For w ∈ M , we write
w = wr + wn with wr ∈ R(Q(p̂)) and wn ∈ N (Q(p̂)). Then

Wr(M) := {wr : w ∈ M} = Q(p̂)M

is bounded away from zero, and the set
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Wn(M) := {wn : w ∈ M} = (1 − Q(p̂))M

is bounded.
Assume, the set Wr(M) = Q(p̂)M is not bounded away from zero. Then it
contains 0, since it is compact, and thus, there exists a w ∈ M with w ∈
N (Q(p̂)). This is a contradiction. Moreover, the set Wn(M) = (1 − Q(p̂))M
is bounded, since it is compact.
Step 4. For all compact sets C ⊂ SN−1 \ N (Q(p)), we have

lim
t→∞

supv∈SN−1∩N (Q(p)) ‖Φ(−t, p)v‖
infw∈C ‖Φ(−t, p)w‖ = 0 .

Choose τ ∈ T such that p̂ = θτp. Defining Ĉ := ϕ(τ, p)C, it is sufficient to
show

lim
t→∞

supv∈SN−1∩N (Q(p̂)) ‖Φ(−t, p̂)v‖
infw∈Ĉ ‖Φ(−t, p̂)w‖ = 0 .

We have

supv∈SN−1∩N (Q(p̂)) ‖Φ(−t, p̂)v‖
infw∈Ĉ ‖Φ(−t, p̂)w‖

Def. 4.4 (i)

≤
supv∈SN−1∩N (Q(p̂)) Ke−(γ+α)t‖v‖
infw∈Ĉ ‖Φ(−t, p̂)wr + Φ(−t, p̂)wn‖

≤ sup
w∈Ĉ

Ke−(γ+α)t

‖Φ(−t,p̂)wr‖
∣
∣
∣1 − ‖Φ(−t,p̂)wn‖

‖Φ(−t,p̂)wr‖

∣
∣
∣

.

Please note that for the last inequality, we require wr �= 0 for all w ∈ Ĉ. This
is fulfilled, since Wr

(
Ĉ
)

is bounded away from zero (cf. Step 3). Furthermore,
using

Ke−(γ+α)t

‖Φ(−t, p̂)wr‖
Step 2

≤ Ke−(γ+α)t

1
K e−(γ−α)t‖wr‖

=
K2e−2αt

‖wr‖
,

we obtain

lim
t→∞

sup
w∈Ĉ

Ke−(γ+α)t

‖Φ(−t, p̂)wr‖
= 0 ,

since Wr

(
Ĉ
)

is bounded away from zero. Moreover, due to

‖Φ(−t, p̂)wn‖
‖Φ(−t, p̂)wr‖

Def. 4.4 (i), Step 2

≤ Ke−(γ+α)t‖wn‖
1
K e−(γ−α)t‖wr‖

=
K2e−2αt‖wn‖

‖wr‖
,

we get

lim
t→∞

sup
w∈Ĉ

‖Φ(−t, p̂)wn‖
‖Φ(−t, p̂)wr‖

= 0

(please note that Step 3 says that Wn

(
Ĉ
)

is bounded and Wr

(
Ĉ
)

is bounded
away from zero). This implies the assertion.
(ii) can be proved similarly to (i).



90 Chapter 4: Linear Systems

(iii) Suppose that (θ, ϕ) admits a nonhyperbolic all-time exponential di-
chotomy with constants α > 0,K ≥ 1 and projector Q. We define β :=
1/(3K). The remaining proof of (iii) is divided into five steps.
Step 1. The sets PR(Q) and PN (Q) are all-time isolated.
Assume, there exists a p ∈ P such that Uβ

(
PR(Q(p))

)
∩ Uβ

(
PN (Q(p))

)
�= ∅.

Hence, there exist x ∈ PR(Q(p)) and y ∈ PN (Q(p)) with dP(x, y) ≤ 2β. Due
to the definition of dP (cf. Appendix A.3), there exist x̃ ∈ SN−1 ∩P−1{x} and
ỹ ∈ SN−1 ∩ P−1{y} with ‖x̃ − ỹ‖ ≤ 2β. This yields

‖Q(p)(x̃ − ỹ)‖
‖x̃ − ỹ‖ =

‖x̃‖
‖x̃ − ỹ‖ ≥ 1

2β
=

3K

2
.

This is a contradiction, since Definition 4.4 (iii) implies ‖Q(p)‖ ≤ K.
Step 2. We have

‖Φ(−t, p)x‖ ≥ 1

K
e−(γ−α)t‖x‖ for all p ∈ P, t ≥ 0 and x ∈ R(Q(p)) .

The assertion follows from

‖x‖ = ‖Φ(t, θ−tp)Φ(−t, p)Q(p)x‖
Def. 4.4 (iii)

≤ Ke(γ−α)t‖Φ(−t, p)x‖ .

Step 3. For p ∈ P and w ∈ SN−1 ∩P−1Uβ

(
PR(Q(p))

)
, we write w = wp

r +wp
n

with wp
r ∈ R(Q(p)) and wp

n ∈ N (Q(p)). Then

Wr :=
{
wp

r : p ∈ P, w ∈ SN−1 ∩ P−1Uβ

(
PR(Q(p))

)}

is bounded away from zero, and

Wn :=
{
wp

n : p ∈ P, w ∈ SN−1 ∩ P−1Uβ

(
PR(Q(p))

)}

is bounded.
To show that Wr is bounded away from zero, assume for contradiction, there
exist sequences {pn}n∈N in P and

{
w(n)

}

n∈N
in SN−1 such that

w(n) ∈ SN−1 ∩ P−1Uβ

(
PR(Q(pn))

)
for all n ∈ N

and limn→∞ w
(n)pn
r = 0. Hence, we have limn→∞ dP

(
w(n), PN (Q(pn))

)
= 0,

and this is a contradiction to Step 1. Furthermore, because we have for all
p ∈ P and w ∈ SN−1 ∩ P−1Uβ

(
PR(Q(p))

)
the relation

∥
∥wp

n

∥
∥ =

∥
∥(1 − Q(p))w

∥
∥

Def. 4.4 (iii)

≤ K ,

the set Wn is bounded.
Step 4. The relation

lim
t→∞

sup
p∈P

supv∈SN−1∩N (Q(p)) ‖Φ(−t, p)v‖
infw∈SN−1∩P−1Uβ(PR(Q(p))) ‖Φ(−t, p)w‖ = 0
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is fulfilled.
For p ∈ P , we have

supv∈SN−1∩N (Q(p)) ‖Φ(−t, p)v‖
infw∈SN−1∩P−1Uβ(PR(Q(p))) ‖Φ(−t, p)w‖

Def. 4.4 (iii)

≤
supv∈SN−1∩N (Q(p)) Ke−(γ+α)t‖v‖

infw∈SN−1∩P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)wp

r + Φ(−t, p)wp
n

∥
∥

≤ sup
w∈SN−1∩P−1Uβ(PR(Q(p)))

Ke−(γ+α)t

‖Φ(−t,p)wp
r‖∣

∣
∣1 − ‖Φ(−t,p)wp

n‖
‖Φ(−t,p)wp

r‖

∣
∣
∣

.

Please note that for the last inequality, we require that wp
r �= 0 holds for all

w ∈ SN−1 ∩ P−1Uβ

(
PR(Q(p))

)
. This is fulfilled, since Wr is bounded away

from zero (cf. Step 3). Furthermore, using

Ke−(γ+α)t

∥
∥Φ(−t, p)wp

r

∥
∥

Step 2

≤ Ke−(γ+α)t

1
K e−(γ−α)t

∥
∥wp

r

∥
∥

=
K2e−2αt

∥
∥wp

r

∥
∥

,

we obtain

lim
t→∞

sup
p∈P

sup
w∈SN−1∩P−1Uβ(PR(Q(p)))

Ke−(γ+α)t

∥
∥Φ(−t, p)wp

r

∥
∥

= 0 ,

since Wr is bounded away from zero. Moreover, due to

∥
∥Φ(−t, p)wp

n

∥
∥

∥
∥Φ(−t, p)wp

r

∥
∥

Def. 4.4 (iii), Step 2

≤ Ke−(γ+α)t
∥
∥wp

n

∥
∥

1
K e−(γ−α)t

∥
∥wp

r

∥
∥

=
K2e−2αt

∥
∥wp

n

∥
∥

∥
∥wp

r

∥
∥

,

we get

lim
t→∞

sup
p∈P

sup
w∈SN−1∩P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)wp

n

∥
∥

∥
∥Φ(−t, p)wp

r

∥
∥

= 0

(please note that Step 3 says that Wn is bounded and Wr is bounded away
from zero). This implies the assertion.
Step 5. The relation

lim
t→∞

sup
p∈P

supv∈SN−1∩R(Q(p)) ‖Φ(t, p)v‖
infw∈SN−1∩P−1Uβ(PN (Q(p))) ‖Φ(t, p)w‖ = 0

is fulfilled.
See proof of Step 4. ⊓⊔

The following theorem says that ranges and null spaces of invariant projec-
tors give rise to nonautonomous repellers and attractors. Similar questions
are treated in Palmer & Siegmund [128, Proposition 3.1], where so-called
generalized attractor-repeller pairs on the projective space are examined.
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Theorem 4.15 (Ranges and null spaces of invariant projectors as
nonautonomous repellers and attractors). We suppose that (θ, ϕ) admits
a nonhyperbolic past (future, all-time, respectively) exponential dichotomy with
projector Q and consider the nonautonomous dynamical system (θ, PΦ) on the
real projective space PN−1. Then the following statements are fulfilled:

(i) PR(Q) is a past (future, all-time, respectively) repeller,

(ii) PN (Q) is a past (future, all-time, respectively) attractor,

(iii) in case of a nonhyperbolic past exponential dichotomy, we have PN (Q) =
PR(Q)∗, and in case of a nonhyperbolic future exponential dichotomy,
PR(Q) = PN (Q)∗ is fulfilled.

Proof. In case of a nonhyperbolic past exponential dichotomy, the fact that
PR(Q) is a past repeller can be proved as in Proposition 3.20 (Step 1
to Step 4), where instead of Proposition 3.19 and Step 3 one should use
Lemma 4.14 (i). Moreover, the proof that PN (Q) is a past attractor and
PN (Q) = PR(Q)∗ is analogous to Step 5 of the proof of Proposition 3.20.
The assertions concerning the case of a nonhyperbolic future exponential
dichotomy are now easily obtained by using Proposition 2.32.
In case (θ, ϕ) admits a nonhyperbolic all-time exponential dichotomy, we
now prove that PR(Q) is an all-time repeller. First, we choose β > 0 from
Lemma 4.14 (iii). The remaining proof is divided into two steps.
Step 1. We have

1 = lim
t→∞

inf
p∈P

inf
0 �=v∈P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

r

∥
∥

‖Φ(−t, p)v‖

= lim
t→∞

sup
p∈P

sup
0 �=v∈P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

r

∥
∥

‖Φ(−t, p)v‖ ,

where v = vp
r + vp

n with vp
r ∈ R(Q(p)) and vp

n ∈ N (Q(p)).
The first assertion follows from

lim
t→∞

inf
p∈P

inf
0 �=v∈P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

r

∥
∥

‖Φ(−t, p)v‖

≥
(

lim
t→∞

sup
p∈P

sup
0 �=v∈P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

n

∥
∥

∥
∥Φ(−t, p)vp

r

∥
∥

+ 1

)−1

=

⎛

⎜
⎜
⎝

lim
t→∞

sup
p∈P

sup
v∈P−1Uβ(PR(Q(p))),vp

n �=0

∥
∥vp

n

∥
∥

∥
∥
∥
∥
Φ(−t, p)

vp
n∥

∥vp
n

∥
∥

∥
∥
∥
∥

∥
∥vp

r

∥
∥

∥
∥
∥
∥
Φ(−t, p) vp

r∥
∥vp

r

∥
∥

∥
∥
∥
∥

+ 1

⎞

⎟
⎟
⎠

−1

L. 4.14(iii)
= 1

and
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lim
t→∞

inf
p∈P

inf
0 �=v∈P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

r

∥
∥

‖Φ(−t, p)v‖

≤
(

lim
t→∞

sup
p∈P

sup
0 �=v∈P−1Uβ(PR(Q(p)))

∣
∣
∣
∣
∣
1 −

∥
∥Φ(−t, p)vp

n

∥
∥

∥
∥Φ(−t, p)vp

r

∥
∥

∣
∣
∣
∣
∣

)−1

=

⎛

⎜
⎜
⎝

lim
t→∞

sup
p∈P

sup
v∈P−1Uβ(PR(Q(p))),vp

n �=0

∣
∣
∣
∣
∣
∣
∣
∣

1 −

∥
∥vp

n

∥
∥

∥
∥
∥
∥
Φ(−t, p)

vp
n∥

∥vp
n

∥
∥

∥
∥
∥
∥

∥
∥vp

r

∥
∥

∥
∥
∥
∥
Φ(−t, p) vp

r∥
∥vp

r

∥
∥

∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎠

−1

L. 4.14(iii)
= 1 .

In both relations, the last equality holds, because the sets

{
vp

n : v ∈ P−1Uβ

(
PR(Q(p))

)}
for all p ∈ P

are compact and the sets

{
vp

r : v ∈ P−1Uβ

(
PR(Q(p))

)}
for all p ∈ P

are bounded away from zero (cf. also Step 3 of Lemma 4.14 and Step 1 of
Proposition 3.20). The assertion

1 = lim
t→∞

sup
p∈P

sup
0 �=v∈P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

r

∥
∥

‖Φ(−t, p)v‖

follows analogously.
Step 2. We have

lim
t→∞

sup
p∈P

dP

(
PΦ(−t, p)Uβ

(
PR(Q(p))

)∣
∣PR(Q(θ−tp))

)
= 0 ,

i.e., PR(Q) is an all-time repeller.
With vp

r and vp
n defined as in Step 1, the relation

〈
Φ(−t, p)v, Φ(−t, p)vp

r

〉2

‖Φ(−t, p)v‖2
∥
∥Φ(−t, p)vp

r

∥
∥

2

=

〈
Φ(−t, p)vp

n, Φ(−t, p)vp
r

〉2

‖Φ(−t, p)v‖2
∥
∥Φ(−t, p)vp

r

∥
∥

2 +

∥
∥Φ(−t, p)vp

r

∥
∥

2

‖Φ(−t, p)v‖2
+

2
〈
Φ(−t, p)vp

n, Φ(−t, p)vp
r

〉

‖Φ(−t, p)v‖2

holds for all t ≥ 0, p ∈ P and v ∈ SN−1 ∩P−1Uβ

(
PR(Q(p))

)
(cf. Step 2 of the

proof of Proposition 3.20). Using the Cauchy-Schwartz inequality, we obtain
the following relations:
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0 ≤ lim
t→∞

sup
p∈P

sup
v∈SN−1∩P−1Uβ(PR(Q(p)))

〈
Φ(−t, p)vp

n, Φ(−t, p)vp
r

〉2

‖Φ(−t, p)v‖2
∥
∥Φ(−t, p)vp

r

∥
∥

2

≤ lim
t→∞

sup
p∈P

sup
v∈SN−1∩P−1Uβ(PR(Q(p)))

∥
∥Φ(−t, p)vp

n

∥
∥

2

‖Φ(−t, p)v‖2

L. 4.14(iii)
= 0

and

0 ≤ lim
t→∞

sup
p∈P

sup
v∈SN−1∩P−1Uβ(PR(Q(p)))

2
∣
∣
〈
Φ(−t, p)vp

n, Φ(−t, p)vp
r

〉∣
∣

‖Φ(−t, p)v‖2

≤ lim
t→∞

sup
p∈P

sup
v∈SN−1∩P−1Uβ(PR(Q(p)))

2

∥
∥Φ(−t, p)vp

n

∥
∥

‖Φ(−t, p)v‖

∥
∥Φ(−t, p)vp

r

∥
∥

‖Φ(−t, p)v‖
Step 1

= lim
t→∞

sup
p∈P

sup
v∈SN−1∩P−1Uβ(PR(Q(p)))

2
∥
∥Φ(−t, p)vp

n

∥
∥

‖Φ(−t, p)v‖
L. 4.14(iii)

= 0 .

Hence, due to Step 1, we have

lim
t→∞

inf
p∈P

inf
v∈SN−1∩P−1Uβ(PR(Q(p)))

〈
Φ(−t, p)v, Φ(−t, p)vp

r

〉2

‖Φ(−t, p)v‖2
∥
∥Φ(−t, p)vp

r

∥
∥

2

= lim
t→∞

inf
p∈P

inf
v∈SN−1∩P−1Uβ(PR(Q(p)))

( 〈
Φ(−t, p)vp

n, Φ(−t, p)vp
r

〉2

‖Φ(−t, p)v‖2
∥
∥Φ(−t, p)vp

r

∥
∥

2 +

+

∥
∥Φ(−t, p)vp

r

∥
∥

2

‖Φ(−t, p)v‖2
+

2
〈
Φ(−t, p)vp

n, Φ(−t, p)vp
r

〉

‖Φ(−t, p)v‖2

)

= 1 .

Using Lemma A.11, this implies that PR(Q) is an all-time repeller.
Moreover, with Proposition 2.32, it is easy to show that PN (Q) is an all-time
attractor. This finishes the proof of this theorem. ⊓⊔

4.2 Dichotomy Spectra

In the previous section, notions of dichotomy have been introduced by localiz-
ing attractive and repulsive directions. To classify the strength of attractivity
and repulsivity of linear systems, the concept of the dichotomy spectrum is
essential. For linear skew product flows with compact base sets, the so-called
Sacker-Sell spectrum (see Sacker & Sell [154]) has become widely accepted.
In Siegmund [172] and Aulbach & Siegmund [19], this spectrum has been
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adapted for arbitrary classes of linear differential and difference equations,
respectively (for the noninvertible case, see Aulbach & Siegmund [20]). In
addition to this dichotomy spectrum, in this section, three other kinds of spec-
tra are introduced with respect to the notions of past, future and finite-time
attractivity and repulsivity. Thereby, attention is restricted to the following
situation.

Standing Hypothesis. We suppose that (θ, ϕ) is generated by the non-
autonomous differential equation

ẋ = A(t)x , (4.2)

P = T = R, or the nonautonomous difference equation

xn+1 = A(n)xn , (4.3)

P = T = Z, where A : T → RN×N is a continuous function. The base flow
fulfills the relation θ(t, τ) = t + τ for all t, τ ∈ T (cf. Section 2.2).

This restriction is necessary, since we do not want to make assumptions con-
cerning the structure of the base flow θ and the base set P such as compact-
ness, minimality, chain recurrence or invariant connectedness.

We consider unbounded and closed T-intervals I, i.e., I is of the form T−
κ ,

T+
κ or T for some κ ∈ T. We say, (θ, ϕ) admits a nonhyperbolic exponential

dichotomy on I with growth rate γ ∈ R, constants α > 0,K ≥ 1 and invariant
projector Q if

‖Φ(t, τ)Q(τ)‖ ≤ Ke(γ−α)t for all τ ∈ I, t ≥ 0 with τ + t ∈ I ,
∥
∥Φ(−t, τ)(1 − Q(τ))

∥
∥ ≤ Ke−(γ+α)t for all τ ∈ I, t ≥ 0 with τ − t ∈ I .

The following proposition says that this definition coincides with the notions
of nonhyperbolic exponential dichotomy from in the previous section.

Proposition 4.16. Let κ ∈ T and γ ∈ R. Then the following statements are
fulfilled:

(i) (θ, ϕ) admits a nonhyperbolic exponential dichotomy on T−
κ with growth

rate γ if and only if (θ, ϕ) admits a nonhyperbolic past exponential
dichotomy with growth rate γ,

(ii) (θ, ϕ) admits a nonhyperbolic exponential dichotomy on T+
κ with growth

rate γ if and only if (θ, ϕ) admits a nonhyperbolic future exponential
dichotomy with growth rate γ,

(iii) (θ, ϕ) admits a nonhyperbolic exponential dichotomy on T with growth
rate γ if and only if (θ, ϕ) admits a nonhyperbolic all-time exponential
dichotomy with growth rate γ.
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Proof. (i) (⇒) The conditions of Proposition 4.10 (i) are fulfilled by choosing
p̂ := κ.
(⇐) Suppose, (θ, ϕ) admits a nonhyperbolic past exponential dichotomy with
growth rate γ, constants α,K and projector Q. Thus, there exists a p̂ ∈ T

such that the two conditions in Proposition 4.10 (i) are fulfilled. In case p̂ ≥ κ,
the assertion follows immediately. Otherwise, we define

K̃ := max
{

max
{
‖Φ(t, τ)Q(τ)‖ : t, τ ∈ [p̂, κ] ∩ T with t ≥ τ

}
,

max
{∥
∥Φ(t, τ)(1 − Q(τ))

∥
∥ : t, τ ∈ [p̂, κ] ∩ T with t ≤ τ

}}

.

Then (θ, ϕ) admits a nonhyperbolic exponential dichotomy on T−
κ with growth

rate γ and constants α,KK̃.
(ii) can be shown analogously to (i), and (iii) is obviously fulfilled. ⊓⊔

In this section, we make use of these alternative characterizations instead of
Definition 4.7.

Remark 4.17. In case the function A of the differential equation (4.2) or diffe-
rence equation (4.3) is only defined on an interval of the form T−

κ or T+
κ for

some κ ∈ T, respectively, the nonautonomous dynamical system generated by
this equation does not fulfill the hypotheses of this chapter. Due to Proposi-
tion 4.16, however, we are able to use the notions of past or future exponential
dichotomy and the notions of past and future dichotomy spectrum (see Defi-
nition 4.20 below) also for these types of equations.

Given an invariant projector Q, the fibres of R(Q) and N (Q), respectively,
have the same dimension, since the base set P is a trajectory of base flow θ.
We therefore define the rank of Q by

rkQ := dimR(Q) := dimR(Q(t)) for all t ∈ T ,

and we set
dimN (Q) := dimN (Q(t)) for all t ∈ T .

Proposition 4.18. Suppose, both Q and Q̂ are invariant projectors of a non-
hyperbolic past exponential (future exponential, all-time exponential, (τ, T )-,
respectively) dichotomy with growth rate γ. Then rkQ = rk Q̂ is fulfilled.

Proof. In case of a nonhyperbolic past (future, all-time, respectively) ex-
ponential dichotomy, the assertion follows directly from Proposition 4.11.
Arguing negatively, we suppose that (θ, ϕ) admits a (τ, T )-dichotomy with
two invariant projectors Q and Q̂ such that rkQ < rk Q̂. Thus,

dim
(
N (Q) ∩R

(
Q̂
))

= dimN (Q) + dimR
(
Q̂
)
− dim

(
N (Q) + R

(
Q̂
))

> dimN (Q) + dimR(Q) − dim
(
N (Q) + R(Q̂)

)
≥ 0 .
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Hence, there exists a nonzero element ξ ∈ N (Q(τ)) ∩R
(
Q̂(τ)

)
. We obtain

‖Φ(T, τ)ξ‖ < ‖ξ‖ =
∥
∥Φ(−T, τ + T )Φ(T, τ)ξ

∥
∥ < ‖Φ(T, τ)ξ‖ ,

since 0 �= ξ ∈ R
(
Q̂(τ)

)
and 0 �= Φ(T, τ)ξ ∈ N (Q(τ + T )). This contradiction

finishes the proof of this proposition. ⊓⊔

As indicated in Remark 4.12, an invariant projector is uniquely determined
only in case of a nonhyperbolic all-time exponential dichotomy. The degree
of nonuniqueness of projectors of past and future exponential dichotomies is
described in the following lemma, which is adapted from Aulbach & Sieg-

mund [20, Lemma 2.4].

Lemma 4.19. The following statements are fulfilled:

(i) We assume that (θ, ϕ) admits a nonhyperbolic past exponential
dichotomy with growth rate γ and projector Q, and Q̂ is another in-
variant projector with

sup
t∈T

−
0

∥
∥Q̂(t)

∥
∥ < ∞ and N (Q) = N

(
Q̂
)
.

Then (θ, ϕ) also admits a nonhyperbolic past exponential dichotomy with
growth rate γ and projector Q̂.

(ii) We assume that (θ, ϕ) admits a nonhyperbolic future exponential
dichotomy with growth rate γ and projector Q, and Q̂ is another in-
variant projector with

sup
t∈T

+
0

∥
∥Q̂(t)

∥
∥ < ∞ and R(Q) = R

(
Q̂
)
.

Then (θ, ϕ) also admits a nonhyperbolic future exponential dichotomy
with growth rate γ and projector Q̂.

Proof. (i) Suppose, (θ, ϕ) admits a nonhyperbolic exponential dichotomy on
T−

0 with growth rate γ, constants α > 0, K ≥ 1 and projector Q, and let Q̂
be given as above. First, we observe that supt∈T

−
0
‖Q(t)‖ ≤ K, and we define

M := sup
t∈T

−
0

∥
∥Q̂(t)

∥
∥ .

The relation N (Q) = N
(
Q̂
)

implies the two equations

(
1 − Q̂

)
= (1 − Q)

(
1 − Q̂

)
and Q̂ =

(
1 − Q + Q̂

)
Q .

The first equation yields for all τ ∈ T−
0 and t ≥ 0,
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∥
∥Φ(−t, τ)

(
1 − Q̂(τ)

)∥
∥ =

∥
∥Φ(−t, τ)(1 − Q(τ))

(
1 − Q̂(τ)

)∥
∥

≤
∥
∥Φ(−t, τ)(1 − Q(τ))

∥
∥
∥
∥1 − Q̂(τ)

∥
∥

≤ K(1 + M)e−(γ+α)t .

Using the invariance of Q and Q̂, the second equation implies
∥
∥Φ(t, τ)Q̂(τ)

∥
∥ =

∥
∥Φ(t, τ)

(
1 − Q(τ) + Q̂(τ)

)
Q(τ)

∥
∥

≤
∥
∥
(
1 − Q(τ + t) + Q̂(τ + t)

)∥
∥ ‖Φ(t, τ)Q(τ)‖

≤ K(1 + K + M)e(γ−α)t

for all τ ∈ T−
0 and t ≥ 0 with τ + t ∈ T−

0 .
The assertion (ii) can be proved similarly. ⊓⊔

It is crucial for the definition of the dichotomy spectra, for which growth
rates, the linear nonautonomous dynamical systems (θ, ϕ) admits a nonhyper-
bolic dichotomy. In case of a past (future, all-time, respectively) exponential
dichotomy, we will not exclude growth rates γ = ±∞ from our considerations.
We say, (θ, ϕ) admits a nonhyperbolic dichotomy with growth rate ∞ if there
exists a γ ∈ R such that (θ, ϕ) admits a nonhyperbolic dichotomy with growth
rate γ and projector Pγ ≡ 1. Accordingly, we say that (θ, ϕ) admits a non-
hyperbolic dichotomy with growth rate −∞ if there exists a γ ∈ R such that
(θ, ϕ) admits a nonhyperbolic dichotomy with growth rate γ and projector
Pγ ≡ 0.

Definition 4.20 (Dichotomy spectra).

(i) The past dichotomy spectrum of (θ, ϕ) is defined by

Σ←
Φ :=

{
γ ∈ R : (θ, ϕ) does not admit a nonhyperbolic past

exponential dichotomy with growth rate γ
}

.

(ii) The future dichotomy spectrum of (θ, ϕ) is defined by

Σ→
Φ :=

{
γ ∈ R : (θ, ϕ) does not admit a nonhyperbolic future

exponential dichotomy with growth rate γ
}

.

(iii) The all-time dichotomy spectrum of (θ, ϕ) is defined by

Σ↔
Φ :=

{
γ ∈ R : (θ, ϕ) does not admit a nonhyperbolic all-time

exponential dichotomy with growth rate γ
}

.

(iv) Given τ ∈ T and T ∈ T+, the (τ, T )-dichotomy spectrum of (θ, ϕ) is
defined by

Σ
(τ,T )
Φ :=

{
γ ∈ R : (θ, ϕ) does not admit a nonhyperbolic

(τ, T )-dichotomy with growth rate γ
}

.
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The corresponding resolvent sets are defined as follows:

ρ←Φ := R \ Σ←
Φ , ρ→Φ := R \ Σ→

Φ ,

ρ↔Φ := R \ Σ↔
Φ and ρ

(τ,T )
Φ := R \ Σ

(p,T )
Φ .

In regard to the Standing Hypothesis, also the notation ΣA and ρA is used for
the dichotomy spectra and resolvent sets of ẋ = A(t)x and xn+1 = A(n)xn,
respectively.

Remark 4.21.

(i) The all-time dichotomy spectrum without {−∞,∞}, i.e., Σ↔
Φ ∩R, coin-

cides with the dichotomy spectrum for differential equations introduced
in Siegmund [172] (see also Siegmund [171]). In case of linear differ-
ence equations, exp

(
Σ↔

Φ ∩ R
)

is the dichotomy spectrum introduced in
Aulbach & Siegmund [19].

(ii) In contrast to the past, future or all-time dichotomy spectrum, the
notion of (τ, T )-dichotomy spectrum is not invariant with respect to
a change of the norm to an equivalent norm (cf. also Remark 4.5 (iii)
and Remark 2.18).

(iii) From Proposition 4.6, we obtain directly Σ←
Φ ⊂ Σ↔

Φ and Σ→
Φ ⊂ Σ↔

Φ .

The aim of the following lemma is to analyze the topological structure of the
resolvent sets.

Lemma 4.22. We suppose that ρΦ := ρ←Φ , ρ→Φ , ρ↔Φ , ρ
(τ,T )
Φ , respectively. Then

ρΦ ∩ R is open, more precisely, for all γ ∈ ρΦ ∩ R, there exists an ε > 0
such that Uε(γ) ⊂ ρΦ. Furthermore, the relation rkQζ = rkQγ is fulfilled for
all ζ ∈ Uε(γ) and every invariant projector Qγ and Qζ of the nonhyperbolic
dichotomies of (θ, ϕ) with growth rates γ and ζ, respectively.

Proof. We first treat the case ρΦ = ρ←Φ , ρ→Φ , ρ↔Φ and choose γ ∈ ρΦ arbitrarily.
Since (θ, ϕ) admits a nonhyperbolic exponential dichotomy on I = T−

0 , T+
0 , T

with growth rate γ, respectively, there exists an invariant projector Qγ and
constants α > 0, K ≥ 1 such that

‖Φ(t, τ)Qγ(τ)‖ ≤ Ke(γ−α)t for all τ ∈ I, t ≥ 0 with τ + t ∈ I ,
∥
∥Φ(−t, τ)(1 − Qγ(τ))

∥
∥ ≤ Ke−(γ+α)t for all τ ∈ I, t ≥ 0 with τ − t ∈ I .

We set ε := α/2 and choose ζ ∈ Uε(γ). Thus,

‖Φ(t, τ)Qγ(τ)‖ ≤ Ke(ζ−α/2)t for all τ ∈ I, t ≥ 0 with τ + t ∈ I ,
∥
∥Φ(−t, τ)(1 − Qγ(τ))

∥
∥ ≤ Ke−(ζ+α/2)t for all τ ∈ I, t ≥ 0 with τ − t ∈ I .
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This yields ζ ∈ ρΦ. Since Proposition 4.18 says that the ranks of the projectors
of nonhyperbolic exponential dichotomies on I with the same growth rate are
equal, we have rkQζ = rkQγ for any projector Qζ of the nonhyperbolic
exponential dichotomy on I with growth rate ζ. In case of finite-time intervals
and γ ∈ ρΦ, there exists an invariant projector Qγ such that

‖Φ(T, τ)ξ‖ < eγT ‖ξ‖ for all 0 �= ξ ∈ R(Qγ(τ)) ,

‖Φ(−T, τ + T )ξ‖ < e−γT ‖ξ‖ for all 0 �= ξ ∈ N (Qγ(τ + T )) .

We define

β := max

{

max
0 �=ξ∈R(Qγ(τ))

‖Φ(T, τ)ξ‖
eγT ‖ξ‖ , max

0 �=ξ∈N (Qγ(τ+T ))

‖Φ(T, τ)ξ‖
eγT ‖ξ‖

}

< 1

and set ε := lnβ/(2T ). Thus, for all ζ ∈ Uε(γ), we have

‖Φ(T, τ)ξ‖ < eζT ‖ξ‖ for all 0 �= ξ ∈ R(Qγ(τ)) ,

‖Φ(−T, τ + T )ξ‖ < e−ζT ‖ξ‖ for all 0 �= ξ ∈ N (Qγ(τ + T )) .

This implies ζ ∈ ρΦ. The equality of the ranks of the invariant projectors
follows from Proposition 4.18. ⊓⊔

Lemma 4.23. Assume, the resolvent is of the form ρΦ := ρ←Φ , ρ→Φ , ρ↔Φ , ρ
(τ,T )
Φ ,

respectively, let γ1, γ2 ∈ ρΦ ∩ R with γ1 < γ2, and choose invariant projectors
Qγ1

and Qγ2
for the corresponding nonhyperbolic dichotomies with growth

rates γ1 and γ2. Then we have rkQγ1
≤ rkQγ2

. Moreover, [γ1, γ2] ⊂ ρΦ is
fulfilled if and only if rkQγ1

= rkQγ2
.

Proof. We first prove the relation rkQγ1
≤ rkQγ2

. In case ρΦ = ρ←Φ , ρ→Φ , ρ↔Φ ,
respectively, this is a direct consequence of Proposition 4.11, since Sγ1

⊂ Sγ2

and Uγ1
⊃ Uγ2

. In case of finite time intervals, we observe that the relation
R(Qγ1

) ∩ N (Qγ2
) = T × {0} holds, because 0 �= ξ ∈ R(Qγ1

(τ)) ∩ N (Qγ2
(τ))

would satisfy

‖ξ‖ = ‖Φ(−T, τ + T )Φ(T, τ)ξ‖ < e−γ2T ‖Φ(T, τ)ξ‖ < e−γ2T e+γ1T ‖ξ‖ < ‖ξ‖ .

This yields

0 = dim
(
R(Qγ1

) ∩N (Qγ2
)
)

= rkQγ1
+ dimN (Qγ2

) − dim
(
R(Qγ1

) + N (Qγ2
)
)
,

and therefore,

rkQγ2
= rkQγ1

+ N − dim
(
R(Qγ1

) + N (Qγ2
)
)
≥ rkQγ1

.

Assume that [γ1, γ2] ⊂ ρΦ. Arguing negatively, suppose that rkQγ1
�= rkQγ2

.
We choose invariant projectors Qγ for the nonhyperbolic dichotomies of (θ, ϕ)
with growth rate γ for all γ ∈ (γ1, γ2) and define
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ζ0 := sup
{
ζ ∈ [γ1, γ2] : rkQζ �= rkQγ2

}
.

Due to Lemma 4.22, there exists an ε > 0 such that rkQζ0
= rkQζ for all

ζ ∈ Uε(ζ0). This is a contradiction to the definition of ζ0. Conversely, let
rkQγ1

= rkQγ2
. We first treat the case ρΦ = ρ←Φ . Because of rk Qγ1

= rkQγ2
,

Proposition 4.11 yields that N (Qγ1
) = N (Qγ2

). Due to Lemma 4.19, Qγ2
is

an invariant projector of the nonhyperbolic past exponential dichotomy with
growth rate γ1. Thus, we have

‖Φ(t, τ)Qγ2
(τ)‖ ≤ K1e

(γ1−α1)t for all t ≥ 0, τ ≤ 0 with t + τ ≤ 0

for some K1 ≥ 1 and α1 > 0. Qγ2
is also projector of the nonhyperbolic past

exponential dichotomy with growth rate γ2. Hence,
∥
∥Φ(−t, τ)(1 − Qγ2

(τ))
∥
∥ ≤ K2e

−(γ2+α2)t for all t ≥ 0, τ ≤ 0

is fulfilled for some K2 ≥ 1 and α2 > 0. For all γ ∈ [γ1, γ2], these two
inequalities imply by setting K := max {K1,K2} and α := min {α1, α2} that

‖Φ(t, τ)Qγ2
(τ)‖ ≤ Ke(γ−α)t for all t ≥ 0, τ ≤ 0 with t + τ ≤ 0 ,

∥
∥Φ(−t, τ)(1 − Qγ2

(τ))
∥
∥ ≤ Ke−(γ+α)t for all t ≥ 0, τ ≤ 0 .

This means γ ∈ ρΦ, and therefore, [γ1, γ2] ⊂ ρΦ. The case ρΦ = ρ→Φ , ρ↔Φ
is treated analogously. It remains to show the implication for the (τ, T )-
resolvent set. We have already seen at the beginning of this proof that
R(Qγ1

) ∩ N (Qγ2
) = T × {0}. Since rkQγ1

= rkQγ2
, this implies the exis-

tence of an invariant projector Q with N (Q) = N (Qγ2
) and R(Q) = R(Qγ1

).
Thus, for all γ ∈ [γ1, γ2], we have

‖Φ(T, τ)ξ‖ < eγT ‖ξ‖ for all 0 �= ξ ∈ R(Q(γ1)(τ)) ,

‖Φ(−T, τ + T )ξ‖ < e−γT ‖ξ‖ for all 0 �= ξ ∈ N (Q(γ2)(τ + T )) .

This implies [γ1, γ2] ⊂ ρΦ and finishes the proof of this lemma. ⊓⊔

For arbitrarily chosen a ∈ R, we define

[−∞, a] := (−∞, a] ∪ {−∞} , [a,∞] := [a,∞) ∪ {∞} ,

[−∞,−∞] := {−∞} [∞,∞] := {∞} ,

and [−∞,∞] = R .

We now state the main result of this section.

Theorem 4.24 (Spectral Theorem). We consider dichotomy spectra of the

form ΣΦ := Σ←
Φ , Σ→

Φ , Σ↔
Φ , Σ

(τ,T )
Φ . Then there exists an n ∈ {1, . . . , N} such

that
ΣΦ = [a1, b1] ∪ · · · ∪ [an, bn]

with −∞ ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn ≤ ∞. In case ΣΦ = Σ
(τ,T )
Φ ,

we have −∞ < a1 and bn < ∞.
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Proof. Due to Lemma 4.22, the set ρΦ ∩ R is open. Therefore, ΣΦ ∩ R is

the disjoint union of closed intervals. In case ΣΦ = Σ
(τ,T )
Φ , the boundedness

of ΣΦ is obvious, and if ΣΦ = Σ←
Φ , Σ→

Φ , Σ↔
Φ , respectively, then the rela-

tion (−∞, b1] ⊂ ΣΦ implies [−∞, b1] ⊂ ΣΦ, because the assumption of the
existence of a γ ∈ R such that (θ, ϕ) admits a nonhyperbolic dichotomy with
growth rate γ and projector Qγ ≡ 0 leads to (−∞, γ] ⊂ ρΦ using Lemma 4.9.
This is a contradiction. Analogously, it follows from [an,∞) ⊂ ΣΦ that
[an,∞] ⊂ ΣΦ. To show the relation n ≤ N , we assume that n ≥ N + 1.
Thus, there exist

ζ1 < ζ2 < · · · < ζN ∈ ρΦ

such that the N + 1 intervals

(−∞, ζ1) , (ζ1, ζ2) , . . . , (ζN ,∞)

have nonempty intersection with the spectrum ΣΦ. It follows from Lemma 4.23
that

0 ≤ rkQζ1
< rkQζ2

< · · · < rkQζN
≤ N

is fulfilled for invariant projectors Qζi
of the nonhyperbolic dichotomy with

growth rate ζi, i ∈ {1, . . . , n}. This implies either rkQζ1
= 0 or rkQζN

= N .
Thus,

[−∞, ζ1] ∩ ΣΦ = ∅ or [ζN ,∞] ∩ ΣΦ = ∅ ,

and this is a contradiction. To show n ≥ 1, we assume that ΣΦ = ∅. This
implies {−∞,∞} ⊂ ρΦ. Thus, there exist ζ1, ζ2 ∈ R such that (θ, ϕ) ad-
mits a nonhyperbolic dichotomy with growth rate ζ1 and projector Qζ1

≡ 0
and a nonhyperbolic dichotomy with growth rate ζ2 and projector Qζ2

≡ 1.
Applying Lemma 4.23, we get (ζ1, ζ2) ∩ ΣΦ �= ∅. This contradiction yields
n ≥ 1 and finishes the proof of this theorem. ⊓⊔

In the following example, spectra of scalar linear differential equations are
studied.

Example 4.25. We consider scalar differential equations of the form

ẋ = a(t)x ,

where a : R → R is a continuous function. We have

Φ(t, τ) = exp

(∫ τ+t

τ

a(s) ds

)

for all t, τ ∈ R .

The Spectral Theorem says that the past, future, all-time and (τ, T )-
dichotomy spectra consist of exactly one closed interval. Furthermore, due
to Remark 4.5 (iv), the (τ, T )-dichotomy spectrum fulfills

Σ
(τ,T )
Φ =

{
|Φ(T, τ)|

}
.

The following examples show that the past, future and all-time dichotomy
spectra can be more complicated.
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(i) Σ←
Φ = Σ→

Φ = Σ↔
Φ = {∞} for a(t) := |t| for all t ∈ R.

Proof. For γ ∈ R, we have

Φγ(t, τ) = exp

(∫ τ+t

τ

(|s| − γ) ds

)

for all t, τ ∈ R .

Since for all s ∈ R with |s| ≥ γ + 1, the relation |s| − γ ≥ 1
is fulfilled, (θ, Φγ) admits a nonhyperbolic exponential dichotomy on
R−

−|γ|−1 and R+
|γ|+1 with growth rate 0, constants α = 1, K = 1 and

invariant projector 0. Moreover, Proposition 4.16 (i), (ii) implies that
Σ←

Φ = Σ→
Φ = {∞}. The remaining assertion Σ↔

Φ = {∞} is a conse-
quence of Proposition 4.6 (ii).

(ii) Σ←
Φ = {−∞}, Σ→

Φ = {∞} and Σ↔
Φ = R for a(t) := t for all t ∈ R.

Proof. The assertions concerning the past and future dichotomy spec-
trum are proved analogously to (i). Concerning the all-time dichotomy
spectrum, we assume to the contrary that there exists a γ ∈ R such
that Φγ admits an all-time exponential dichotomy. Please note that the
relation

Φγ(t, τ) = exp

(
1

2
t2 + τt + γt

)

for all t, τ ∈ R

holds. For the corresponding invariant projector Qγ , there are only the
possibilities Qγ ≡ 0 or Qγ ≡ 1. In case Qγ ≡ 1, the dichotomy estimate

Φγ(t, 0) = exp

(
1

2
t2 + γt

)

≤ Ke−αt for all t ≥ 0

yields a contradiction in the limit t → ∞. Analogously, the case Qγ ≡ 0
is treated.

(iii) Σ←
Φ = [−∞, β], Σ→

Φ = {β} and Σ↔
Φ = [−∞, β] for

a(t) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β : t ≥ −1

β − n + n
(
t + 22n + 1

)
: t ∈

[
− 22n − 1,−22n

]

β − n : t ∈
[
− 22n+1,−22n − 1

]

β − n
(
t + 22n+1 + 1

)
: t ∈

[
− 22n+1 − 1,−22n+1

]

β : t ∈
[
− 22(n+1),−22n+1 − 1

]

.

In all cases above, n ∈ N0.
Proof. The statement concerning Σ→

Φ is clear. To compute Σ←
Φ , assume

to the contrary that for some γ ≤ β, the linear nonautonomous dynam-
ical system (θ, Φγ) admits a past exponential dichotomy with projec-
tor Qγ . In the one-dimensional context, there are only the possibilities
Qγ ≡ 0 or Qγ ≡ 1. In case Qγ ≡ 1, we have the dichotomy estimate

Φγ(t, τ) = exp

(∫ τ+t

τ

(a(s) − γ) ds

)

≤ Ke−αt for all 0 ≤ t ≤ −τ
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for some K ≥ 1 and α > 0. Let n ∈ N0 with K exp
(
−α
(
22n+1−1

))
< 1.

Then

Φγ

(

22n+1 − 1,−22(n+1)
)

= exp

⎛

⎜
⎝

∫ −22n+1−1

−22(n+1)

(β − γ
︸ ︷︷ ︸

≥0

) ds

⎞

⎟
⎠ ≥ 1 .

This is a contradiction. In case Qγ ≡ 0, we have the dichotomy estimate

Φγ(−t, τ) = exp

(∫ τ−t

τ

(a(s) − γ) ds

)

≤ Ke−αt for all τ ≤ 0, t ≥ 0

for some K ≥ 1 and α > 0. We choose an integer n ∈ N0 such that
K exp

(
−α
(
22n − 1

))
< 1 and β − n − γ ≤ 0. Then

Φγ

(
−22n+1,−22n − 1

)
= exp

⎛

⎜
⎝

∫ −22n+1

−22n−1

(β − n − γ
︸ ︷︷ ︸

≤0

) ds

⎞

⎟
⎠ ≥ 1 .

This is also a contradiction. It is easy to see that for γ > β, the lin-
ear nonautonomous dynamical system (θ, Φγ) admits a past exponential
dichotomy with projector Qγ ≡ 1. Hence, we have Σ←

Φ = [−∞, β]. Due
to Remark 4.21 (iii), Σ↔

Φ ⊃ Σ←
Φ ∪ Σ→

Φ = [−∞, β] is fulfilled. It is also
easily shown that for γ > β, (θ, Φγ) admits an all-time exponential di-
chotomy with projector Qγ ≡ 1. Thus, we obtain Σ↔

Φ = [−∞, β].

(iv) Σ←
Φ = {β}, Σ→

Φ = [β,∞] and Σ↔
Φ = [β,∞] for

a(t) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β : t ≤ 1

β + n
(
t − 22n

)
: t ∈

[
22n, 22n + 1

]

β + n : t ∈
[
22n + 1, 22n+1

]

β + n − n
(
t − 22n+1

)
: t ∈

[
22n+1, 22n+1 + 1

]

β : t ∈
[
22n+1 + 1, 22(n+1)

]

.

In all cases above, n ∈ N0.
Proof. See proof of (iii).

(v) Σ←
Φ = {β}, Σ→

Φ = [β, δ] and Σ↔
Φ = [β, δ] for

a(t) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β : t ≤ 1

β +
(
t − 22n

)
(δ − β) : t ∈

[
22n, 22n + 1

]

δ : t ∈
[
22n + 1, 22n+1

]

δ +
(
t − 22n+1

)
(β − δ) : t ∈

[
22n+1, 22n+1 + 1

]

β : t ∈
[
22n+1 + 1, 22(n+1)

]

.

In all cases above, n ∈ N0.
Proof. See proof of (iii).
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The following theorem says that each interval of the past (future, all-time,
respectively) dichotomy spectrum corresponds to a linear nonautonomous in-
variant manifold.

Theorem 4.26 (Spectral manifolds). Let

ΣΦ := Σ←
Φ , Σ→

Φ , Σ↔
Φ = [a1, b1] ∪ · · · ∪ [an, bn] ,

respectively, define the invariant projectors Qγ0
:= 0, Qγn

:= 1, and for
integers i ∈ {1, . . . , n − 1}, choose γi ∈ (bi, ai+1) and projectors Qγi

of the
nonhyperbolic dichotomy of (θ, ϕ) with growth rate γi. Then the sets

Wi := R(Qγi
) ∩N (Qγi−1

) for all i ∈ {1, . . . , n}

are linear nonautonomous invariant manifolds, the so-called spectral mani-
folds, such that

W1 ⊕ · · · ⊕Wn = T × RN

and Wi �= T × {0} for i ∈ {1, . . . , n}.

Proof. The sets W1, . . . ,Wn are obviously linear nonautonomous invariant
manifolds. We suppose that there exists an i ∈ {1, . . . , n} with Wi = T×{0}.
In case i = 1 or i = n, Lemma 4.9 implies either [−∞, γ1] ∩ ΣΦ = ∅ or
[γn−1,∞] ∩ ΣΦ = ∅, and this is a contradiction. In case 1 < i < n, due to
Lemma 4.23, we obtain

dimWi = dim
(
R(Qγi

) ∩N (Qγi−1
)
)

= rkQγi
+ N − rkQγi−1

− dim
(
R(Qγi

) + N (Qγi−1
)
)
≥ 1 ,

and this is also a contradiction. We now prove W1 ⊕ · · · ⊕ Wn = T × RN .
W.l.o.g., we assume ΣΦ = Σ←

Φ , Σ↔
Φ . For 1 ≤ i < j ≤ n, due to Proposi-

tion 4.11, the relations Wi ⊂ R(Qγi
) and Wj ⊂ N (Qγj−1

) ⊂ N (Qγi
) are

fulfilled. This yields

Wi ∩Wj ⊂ R(Qγi
) ∩N (Qγi

) = T × {0} .

Moreover, Lemma A.10 implies that

T × RN = W1 + N (Qγ1
) = W1 + N (Qγ1

) ∩
(
R(Qγ2

) + N (Qγ2
)
)

= W1 + N (Qγ1
) ∩R(Qγ2

) + N (Qγ2
) = W1 + W2 + N (Qγ2

)

holds. It follows inductively that

T × RN = W1 + · · · + Wn + N (Qγn
) = W1 + · · · + Wn .

This finishes the proof of this theorem. ⊓⊔
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In case of the past and future dichotomy spectrum, the spectral manifolds
give rise to a Morse decomposition on the projective space.

Theorem 4.27 (Spectral manifolds and Morse decompositions). Let

ΣΦ = Σ←
Φ , Σ→

Φ = [a1, b1] ∪ · · · ∪ [an, bn] ,

respectively, define the invariant projectors Qγ0
:= 0, Qγn

:= 1, and for
integers i ∈ {1, . . . , n − 1}, choose γi ∈ (bi, ai+1) and projectors Qγi

of the
nonhyperbolic dichotomy of (θ, ϕ) with growth rate γi. Then the sets

Mi := P
(
R(Qγi

) ∩N (Qγi−1
)
)

for all i ∈ {1, . . . , n}

are the Morse sets of a past (future, respectively) Morse decomposition of
(θ, Pϕ).

Proof. This is a direct consequence of Theorem 4.15. ⊓⊔

Remark 4.28. It is possible that the above Morse decomposition defined by
the spectral intervals is coarser than the finest Morse decomposition of The-
orem 3.24 (see also Colonius & Kliemann [49]).

4.3 Lyapunov Spectra

In this section, the so-called Lyapunov spectra are introduced, and their
relationship to the past and future dichotomy spectrum is examined. As in
the previous section, we restrict to the case that (θ, ϕ) is generated by a
nonautonomous differential or difference equation, i.e., P = T = R, Z and
θ(t, τ) = t + τ for all t, τ ∈ T.

Definition 4.29 (Lyapunov exponents and spectra). For 0 �= ξ ∈ RN ,
the numbers

λ←
+ (ξ) = lim sup

t→∞

1

t
ln ‖Φ(−t, 0)ξ‖ and λ←

− (ξ) = lim inf
t→∞

1

t
ln ‖Φ(−t, 0)ξ‖

are called upper and lower Lyapunov exponent for t → −∞. Considering the
future, the numbers

λ→
+ (ξ) = lim sup

t→∞

1

t
ln ‖Φ(t, 0)ξ‖ and λ→

− (ξ) = lim inf
t→∞

1

t
ln ‖Φ(t, 0)ξ‖

are called upper and lower Lyapunov exponent for t → ∞. The Lyapunov
spectrum for t → −∞ is defined by
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σ←
Φ :=

⋃

0 �=ξ∈RN

[
λ←
− (ξ), λ←

+ (ξ)
]
,

and the Lyapunov spectrum for t → ∞ is defined by

σ→
Φ :=

⋃

0 �=ξ∈RN

[
λ→
− (ξ), λ→

+ (ξ)
]
.

It is well-known that there exist numbers n−, n+ ∈ {1, . . . , N} and
ξ−1 , . . . , ξ−n− , ξ+

1 , . . . , ξ+
n+ ∈ RN such that

σ←
Φ =

[
λ←
− (ξ1), λ

←
+ (ξ1)

]
∪ · · · ∪

[
λ←
− (ξn−), λ←

+ (ξn−)
]

and
σ→

Φ =
[
λ→
− (ξ1), λ

→
+ (ξ1)

]
∪ · · · ∪

[
λ→
− (ξn+), λ→

+ (ξn+)
]

(see, e.g., Barreira & Pesin [24] and Dieci & Van Vleck [62, 63]).

In the following, the relationship between the dichotomy spectra and the Lya-
punov spectra is discussed.

Theorem 4.30 (Relationship to the past and future dichotomy
spectrum). The relations −σ←

Φ ⊂ Σ←
Φ and σ→

Φ ⊂ Σ→
Φ hold.

Proof. Let λ ∈ −σ←
Φ . Thus, there exists a ξ ∈ RN with −λ ∈

[
λ←
− (ξ), λ←

+ (ξ)
]
.

Initially, we suppose that λ ∈ R. Arguing negatively, we assume, (θ, ϕ) ad-
mits a nonhyperbolic past exponential dichotomy with growth rate γ := λ,
constants K ≥ 1, α > 0 and invariant projector Qγ , i.e.,

‖Φ(t, τ)Qγ(τ)‖ ≤ Ke(γ−α)t for all τ ≤ 0 ≤ t with τ + t ≤ 0 ,
∥
∥Φ(−t, τ)(1 − Qγ(τ))

∥
∥ ≤ Ke−(γ+α)t for all τ ≤ 0 ≤ t .

We write ξ = ξ1 + ξ2 with ξ1 ∈ R(Qγ(0)) and ξ2 ∈ N (Qγ(0)). In case ξ1 = 0,
we have

λ←
+ (ξ) = lim sup

t→∞

1

t
ln ‖Φ(−t, 0)ξ‖ ≤ lim sup

t→∞

1

t
ln
(
Ke−(γ+α)t

)

= − γ − α = −λ − α ≤ λ←
+ (ξ) − α .

This is a contradiction. Otherwise (ξ1 �= 0), we observe that for all t ≥ 0,

‖ξ1‖ = ‖Qγ(0)ξ‖ =
∥
∥Φ(t,−t)Φ(−t, 0)Qγ(0)ξ

∥
∥ =

∥
∥Φ(t,−t)Qγ(−t)Φ(−t, 0)ξ

∥
∥

≤ Ke(γ−α)t‖Φ(−t, 0)ξ‖

is fulfilled. Thus, ‖Φ(−t, 0)ξ‖ ≥ K−1e−(γ−α)t‖ξ1‖ for all t ≥ 0, and therefore,

λ←
− (ξ) = lim inf

t→∞

1

t
ln ‖Φ(−t, 0)ξ‖ ≥ lim inf

t→∞

1

t
ln
(
K−1e−(γ−α)t‖ξ1‖

)

= α − γ = α − λ ≥ α + λ←
− (ξ) .
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This is also a contradiction, and hence, λ ∈ Σ←
Φ . We now treat the case λ /∈ R,

w.l.o.g., λ = ∞. Assume that −∞ /∈ Σ←
Φ . Thus, there exist γ ∈ R, K ≥ 1 and

α > 0 with
‖Φ(−t, 0)‖ ≤ Ke−(γ+α)t for all t ≥ 0 ,

and this relation implies the contradiction

lim sup
t→∞

1

t
ln
(
‖Φ(−t, 0)‖

)
≤ −γ − α < ∞ .

Hence, λ ∈ Σ←
Φ . The remaining assertion σ→

Φ ⊂ Σ→
Φ can be proved analo-

gously. ⊓⊔

The following example shows that the Lyapunov spectra do not coincide with
the dichotomy spectra.

Example 4.31. We consider the scalar linear nonautonomous differential equa-
tion

ẋ =
(
t sin(t) − cos(t)

)
x ,

which generates a linear nonautonomous dynamical system with P = R. We
have

Φ(t, τ) = exp
(
−(t + τ) cos(t + τ) + τ cos(τ)

)
for all t, τ ∈ R .

An easy calculation yields σ←
Φ = σ→

Φ = [−1, 1]. Choosing

t1 :=
π

2
, t2 := −π

2
, τ1 := 2kπ − π

2
, τ2 := 2kπ +

π

2
for all k ∈ Z ,

we obtain
Φ(t1, τ1) = Φ(t2, τ2) = exp(2kπ) .

Hence, for any γ ∈ R, this system does not admit a nonhyperbolic past
exponential dichotomy with growth rate γ. This implies Σ←

Φ = R. Analo-
gously, one can show that Σ→

Φ = R is fulfilled.

4.4 Spectra of Autonomous Linear Systems

It is well-known that an autonomous linear differential equation

ẋ = Ax (4.4)

with a matrix A ∈ RN×N admits an exponential dichotomy on I = R−
0 , R+

0 ,
R, respectively, if and only if the real part of every eigenvalue of A is unequal
to zero (see, e.g., Kalkbrenner [88, Satz 1.1.3.2, p. 24] and Sacker &
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Sell [151, p. 430(1)]). Therefore, the corresponding past, future and all-time
dichotomy spectra satisfy

Σ←
A = Σ→

A = Σ↔
A =

{
Re λ : λ is an eigenvalue of A

}
.

A relation of this kind does not hold for the (τ, T )-dichotomy spectrum. Never-
theless, by letting T tend to ∞, we obtain the following statement.

Theorem 4.32 (Spectra of autonomous linear systems). Consider the
linear system (4.4). Then the limit relation

lim
T→∞

Σ
(0,T )
A =

{
Re λ : λ is an eigenvalue of A

}

holds with respect to the Hausdorff distance.

Proof. There exist n ∈ {1, . . . , N} and reals λ1 < λ2 < · · · < λn with

{
Re λ : λ is an eigenvalue of A

}
= {λ1, . . . , λn} .

It is sufficient to show that for all ε > 0, there exists a τ > 0 with

{λ1, . . . , λn} ⊂ Uε

(

Σ
(0,T )
A

)

and Σ
(0,T )
A ⊂

n⋃

i=1

Uε(λi) for all T ≥ τ . (4.5)

Let ε > 0. It is an elementary result in the theory of linear differential equa-
tions (see, e.g., Coppel [54, p. 56]) that there exist nontrivial linear subspaces
U1, . . . , Un ⊂ RN with U1 ⊕ · · · ⊕ Un = RN and a real constant K ≥ 1 such
that for all i ∈ {1, . . . , n},
∥
∥eAtξ

∥
∥ ≤ K exp

((

λi +
ε

4

)

t
)

‖ξ‖ for all ξ ∈ U1 ⊕ · · · ⊕ Ui and t ≥ 0 ,

(4.6)
∥
∥eAtξ

∥
∥ ≥ 1

K
exp
((

λi −
ε

4

)

t
)

‖ξ‖ for all ξ ∈ Ui ⊕ · · · ⊕ Un and t ≥ 0

(4.7)

is fulfilled. We choose τ > 0 and T ≥ τ with K exp(−ετ/4) < 1.
To prove the first condition of (4.5), we choose an i ∈ {1, . . . , n} and assume

to the contrary that Uε(λi) ∩ Σ
(0,T )
A = ∅. Thus, there exists an invariant

projector Q(λi−ε/2) with

∥
∥eAT ξ

∥
∥ < e(λi−ε/2)T ‖ξ‖ for all 0 �= ξ ∈ R

(
Q(λi−ε/2)(0)

)
(4.8)

and an invariant projector Q(λi+ε/2) with

∥
∥e−AT ξ

∥
∥ < e−(λi+ε/2)T ‖ξ‖ for all 0 �= ξ ∈ N

(
Q(λi+ε/2)(T )

)
. (4.9)
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Because of Lemma 4.23, we have rk Q(λi−ε/2) = rkQ(λi+ε/2) =: r. In the case

r ≥ dim U1+· · ·+dimUi, we have dim
(
R(Q(λi−ε/2)(0))∩(Ui⊕· · ·⊕Un)

)
≥ 1.

Then there exists a nonzero element ξ ∈ R
(
Q(λi−ε/2)(0)

)
∩ (Ui ⊕ · · · ⊕ Un),

and this leads to the contradiction

‖ξ‖ = e−(λi−ε/2)T e(λi−ε/2)T ‖ξ‖
(4.8)
> e−(λi−ε/2)T

∥
∥eAT ξ

∥
∥

(4.7)

≥ e−(λi−ε/2)T 1

K
e(λi−ε/4)T ‖ξ‖ =

(
Ke−εT/4

)−1‖ξ‖ > ‖ξ‖ .

If r < dim U1 + · · ·+dimUi, then dim
(
N (Q(λi+ε/2)(0))∩ (U1⊕· · ·⊕Ui)

)
≥ 1.

Thus, there exists a nontrivial element ξ ∈ N
(
Q(λi+ε/2)(0)

)
∩ (U1 ⊕ · · · ⊕Ui),

and this also yields the contradiction

‖ξ‖ =
∥
∥e−AT eAT ξ

∥
∥

(4.9)
< e−(λi+ε/2)T

∥
∥eAT ξ

∥
∥

(4.6)

≤ e−(λi+ε/2)T Ke(λi+ε/4)T ‖ξ‖
= Ke−εT/4‖ξ‖ < ‖ξ‖ .

To prove the second condition of (4.5), let λ /∈ ∪n
i=1Uε(λi). We set λ0 := −∞

and λn+1 := ∞. There exists a i ∈ {0, . . . , n} such that

λ ≥ λi + ε and λ ≤ λi+1 − ε .

Now, we define the invariant projector Q by

R(Q(0)) = U1 ⊕ · · · ⊕ Ui and N (Q(0)) = Ui+1 ⊕ · · · ⊕ Un .

Thus, for all nonzero ξ ∈ R(Q(0)), we have

∥
∥eAT ξ

∥
∥

(4.6)

≤ Ke(λi+ε/4)T ‖ξ‖ ≤ Ke(λ−3ε/4)T ‖ξ‖ < eλT ‖ξ‖ ,

and for all nonzero ξ ∈ N (Q(T )),

∥
∥e−AT ξ

∥
∥

(4.7)

≤ Ke−(λi+1−ε/4)T ‖ξ‖ ≤ Ke−(λ+3ε/4)T ‖ξ‖ < e−λT ‖ξ‖

is fulfilled. Hence, λ /∈ Σ
(0,T )
A , and this finishes the proof of this theorem. ⊓⊔

Remark 4.33. Using Floquet Theory (see, e.g., Coddington & Levinson

[48, pp. 78–80] or Chicone [45, Section 2.4, pp. 162–197]), one can extend
the above theorem to periodic linear differential systems of the form

ẋ = A(t)x , (4.10)

where A : R → RN×N fulfills A(t) = A(t + ω) for all t ∈ R with some
ω > 0. We denote the transition operator of (4.10) by Λ. For the past (future,
all-time, respectively) dichotomy spectrum, we obtain
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Σ←
A = Σ→

A = Σ↔
A =

{
ln |λ| : λ is an eigenvalue of Λ(ω, 0)

}
.

The matrix Λ(ω, 0) is called monodromy matrix of (4.10). The (0, T )-
dichotomy spectrum fulfills the limit relation

lim
T→∞

Σ
(0,T )
A =

{
ln |λ| : λ is an eigenvalue of Λ(ω, 0)

}

in the sense of Hausdorff distance.

Example 4.34. For fixed T > 0, we want to compute the (0, T )-dichotomy

spectrum Σ
(0,T )
A of system (4.4), where

A :=

(
1 1
0 1

)

.

Specifically, in this example, we use the norm ‖ · ‖1 : R2 → R+
0 , defined by

‖(x1, x2)‖1 := |x1| + |x2|. Please note that, for γ ∈ R, the relation

e(A−γ1)T =

(
e(1−γ)T Te(1−γ)T

0 e(1−γ)T

)

is fulfilled (see, e.g., Aulbach [14]). Hence, for all ξ = (ξ1, ξ2) ∈ R2 with
‖ξ‖1 = 1, we have

∥
∥
∥
∥
e(A−γ1)T

(
1
0

)∥
∥
∥
∥

1
︸ ︷︷ ︸

= e(1−γ)T

≤
∥
∥
∥
∥
e(A−γ1)T

(
ξ1

ξ2

)∥
∥
∥
∥

1

≤
∥
∥
∥
∥
e(A−γ1)T

(
0
1

)∥
∥
∥
∥

1
︸ ︷︷ ︸

= Te(1−γ)T + e(1−γ)T

.

The term Te(1−γ)T + e(1−γ)T is strictly monotone decreasing in γ ∈ R, and
therefore, there exists a uniquely determined γ∗ = γ∗(T ) > 1 such that
Te(1−γ∗)T + e(1−γ∗)T = 1.
Using these observations, it is easy to see that Σ

(0,T )
A = {1, γ∗}, since

• for γ < 1, the linear system (4.4) admits a nonhyperbolic (0, T )-dichotomy
with growth rate γ and invariant projector Qγ ≡ 0,

• for γ ∈ (1, γ∗), the linear system (4.4) admits a nonhyperbolic (0, T )-
dichotomy with growth rate γ and invariant projector Qγ , determined by
R
(
Qγ(0)

)
= {β(1, 0) : β ∈ R} and N

(
Qγ(0)

)
= {β(0, 1) : β ∈ R}.

• for γ > γ∗, the linear system (4.4) admits a nonhyperbolic (0, T )-
dichotomy with growth rate γ and invariant projector Qγ ≡ 1,

• for γ ∈ {1, γ∗}, the linear system (4.4) admits no nonhyperbolic (0, T )-
dichotomy with growth rate γ.

Please note that Theorem 4.32 implies that limT→∞ γ∗(T ) = 1.
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4.5 Roughness

We consider the nonautonomous linear differential equation

ẋ = A(t)x (4.11)

with a continuous function A : R → RN×N and a perturbed system

ẋ = (A(t) + B(t))x (4.12)

with a continuous function B : R → RN×N . The transition operators of (4.11)
and (4.12) are denoted by Λ and Λ∗, respectively.

Theorem 4.35 (Roughness Theorem for nonhyperbolic exponential
dichotomies on I). Let I be an unbounded and closed interval, and suppose,
(4.11) admits a nonhyperbolic exponential dichotomy on I with growth rate γ,
constants α, K and invariant projector Q. If the relation

δ := sup
t∈i

‖B(t)‖ <
α

4K2

is fulfilled, then also the perturbed system (4.12) admits a nonhyperbolic expo-
nential dichotomy on I with growth rate γ, constants (α − 2Kδ), 5K2/2 and
an invariant projector Q̂, more precisely, we have

∥
∥Λ∗(t, s)Q̂(s)

∥
∥ ≤ 5K2

2
e(γ−(α−2Kδ))(t−s) for all t, s ∈ I with t ≥ s ,

∥
∥Λ∗(t, s)

(
1 − Q̂(s)

)∥
∥ ≤ 5K2

2
e(γ+α−2Kδ)(t−s) for all t, s ∈ I with t ≤ s .

In case I = R−
κ , the invariant projector Q̂ has the same range as Q, and if

I = R+
κ holds, then Q̂ has the same null space as Q. Finally, if I = R is

fulfilled, we get rk Q̂ = rkQ.

Proof. See Coppel [55, Proposition 1, p. 34] or Coppel [54]. ⊓⊔

Remark 4.36. The perturbations considered in this theorem are perturbations
with respect to the uniform topology, generated by the norm

‖A‖∞ := sup
t∈I

‖A(t)‖ for all A ∈ C
(
I, RN×N

)
,

where C
(
I, RN×N

)
:=
{
X : I → RN×N : X is continuous

}
. It is possible to

weaken this condition on the perturbation (see, e.g., Pötzsche [139] or Pliss

& Sell [133]). For instance, considering the topology of uniform convergence
on compact sets, i.e., limn→∞ An = A0 if and only if

lim
n→∞

sup
t∈J

‖An(t) − A0(t)‖ = 0 for all compact sets J ⊂ I ,

one can derive a similar but more stronger perturbation result as Theorem 4.35
(see also Sacker & Sell [154, Section 5, Remark on p. 346]).
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Theorem 4.37 (Roughness Theorem for nonhyperbolic (τ, T )
-dichotomies). Suppose, (4.11) admits a nonhyperbolic (τ, T )-dichotomy
with growth rate γ and projector Q. Then there exists an ε > 0 with the
following property: If

sup
t∈[τ,τ+T ]

‖B(t)‖ < ε ,

then also the perturbed system (4.12) admits a nonhyperbolic (τ, T )-dichotomy
with growth rate γ and projector Q.

Proof. This statement follows directly from the continuity of the general
solution (cf. Proposition A.3). ⊓⊔





5

Nonlinear Systems

In the study of nonlinear systems, invariant manifolds play a central role,
since they help to understand the often complicated dynamical behavior near
an equilibrium, a periodic solution or—in the nonautonomous context—an
arbitrary solution. The construction of stable and unstable invariant manifolds
goes back to Poincaré [136] and Hadamard [73]. In the sequel, the theory
was extended from hyperbolic to nonhyperbolic systems, from finite to infinite
dimension and from time-independent to time-dependent equations.

To mention only few references of the comprehensive amount of literature
for autonomous differential equations, we refer to Carr [38], Chow & Li &

Wang [47], Hirsch & Pugh & Shub [80], Kelley [91, 92], Kirchgraber

& Palmer [93], Pliss [132], Shub [170], Vanderbauwhede [180] and Wig-

gins [183]. In the nonautonomous context, see Aulbach [13], Aulbach &

Wanner [21], Sell [168], Wanner [181] and Yi [184].

In the first section of this chapter, invariant manifolds are constructed which
apply to different time domains. It suffices to extend the results of Aulbach

& Wanner [21] and Siegmund [171] slightly. Also, the relationship to the
notions of attractivity and repulsivity is discussed. In Section 5.2, these results
are applied in the context of nonautonomous bifurcation theory. It is shown
that under special assumptions, zero is contained in the dichotomy spectrum
of the linearization of a bifurcating solution. In Section 5.3, properties of
attraction and repulsion for nonlinear systems are derived from the study
of the linearization, and finally, Section 5.4 is devoted to the relationship
between the bifurcation theory of adiabatic systems and the concept of finite-
time bifurcation.
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5.1 Invariant Manifolds

Let I be an unbounded interval of the form R, R−
κ or R+

κ , respectively. In this
section, we consider a nonlinear differential equation

ẋ = A(t)x + F (t, x) (5.1)

with a continuous function A : I → RN×N and a C1-function F : I×U → RN ,
where U is an open neighborhood of 0 and F (t, 0) = 0 for all t ∈ I. The general
solution of (5.1) will be denoted by λ. In addition to (5.1), we consider the
corresponding linear differential equation

ẋ = A(t)x (5.2)

with transition operator Λ : I × I → RN×N . Let Q+ : I → RN×N be an
invariant projector of (5.2). Then Q− : I → RN×N , Q−(t) := 1 − Q+(t) for
all t ∈ I, is also an invariant projector.

Please note that in the following, the symbol Q± simultaneously stands for
Q+ and Q−, respectively. We proceed similarly with our further notation in
this section.

Next, we introduce a nonautonomous counterpart of an invariant manifold for
(5.1).

Definition 5.1 (Nonautonomous invariant manifolds). Assume that for
an interval I ⊂ R and a neighborhood V of 0, C1-functions s± : I × V → RN

satisfy

(i) s±(t, 0) = 0 for all t ∈ I ,

(ii) limx→0
s±(t,x)
‖x‖ = 0 uniformly in t ∈ I ,

(iii) s±(t, x) = s±
(
t,Q±(t)x

)
∈ R(Q∓(t)) for all t ∈ I and x ∈ V .

Then the graphs

S± :=
{(

τ, ξ + s±(τ, ξ)
)
∈ I × RN : ξ ∈ R(Q±(τ)) ∩ V

}

are called (local) nonautonomous invariant manifolds of (5.1) if

(
t, λ(t, τ, ξ)

)
∈ S± for all (τ, ξ) ∈ S± and t ∈ I such that

λ
(
τ + c(t − τ), τ, ξ

)
∈ V for all c ∈ [0, 1] .

We call S± global nonautonomous invariant manifolds if V = RN .

Now, existence results for nonautonomous manifolds of (5.1) are proved and
applications are discussed with respect to the notions of attractivity and
repulsivity introduced in Chapter 2. Before doing so, some hypotheses on
the linear part and the nonlinearity are needed.

We assume, the following hypotheses hold:
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• Hypothesis on linear part. The linear system (5.2) admits a nonhyperbolic
all-time (past, future, respectively) exponential dichotomy, more precisely,
there exists an invariant projector Q+ : I → RN×N such that the inequal-
ities

‖Λ(t, s)Q+(s)‖ ≤ Keα(t−s) for all t ≥ s ,

‖Λ(t, s)Q−(s)‖ ≤ Keβ(t−s) for all t ≤ s

hold with real constants K ≥ 1 and α < β.

• Hypothesis on nonlinearity. There exists a monotone increasing function

Γ : (0, 1) → R
+

with limsց0 Γ (s) = 0 and

sup
x∈U, ‖x‖≤s

sup
t∈I

‖D2F (t, x)‖ ≤ Γ (s) for all s ∈ (0, 1) .

Remark 5.2. The hypothesis on the nonlinear part of (5.1) is equivalent to
limx→0 supt∈I ‖D2F (t, x)‖ = 0. In the above description, the function Γ is
needed to explain the dependence of some constants in the next theorems
concerning the rate of this limit process.

First, the case of all-time invariant manifolds of (5.1) is treated.

Theorem 5.3 (All-time invariant manifolds). In case I = R, there exist
ρ > 0 and C1-functions s± : R × Uρ(0) → RN such that the graphs

S± :=
{(

τ, ξ + s±(τ, ξ)
)
∈ R × RN : ξ ∈ R(Q±(τ)) ∩ Uρ(0)

}

are local nonautonomous invariant manifolds. Furthermore, the following
statements are fulfilled:

(i) Case α < 0 and rkQ+ ≥ 1 (Trivial solution is not all-time repulsive).
For all ε > 0, there exists an r > 0 such that for all (τ, ξ) ∈ S+ with
‖ξ‖ < r, the solution λ(·, τ, ξ) is (α + ε)+-quasibounded and we have
λ(t, τ, ξ) ∈ Uρ(0) for all t ≥ τ .

(ii) Case β > 0 and rkQ− ≥ 1 (Trivial solution is not all-time attractive).
For all ε > 0, there exists an r > 0 such that for all (τ, ξ) ∈ S− with
‖ξ‖ < r, the solution λ(·, τ, ξ) is (β − ε)−-quasibounded and we have
λ(t, τ, ξ) ∈ Uρ(0) for all t ≤ τ .

(iii) Case α < 0 and Q+ ≡ 1 (Trivial solution is all-time attractive).
There exists an r = r(α,K, Γ ) > 0 with

lim
t→∞

sup
τ∈R

d
(
λ
(
τ + t, τ, Ur(0)

)∣
∣{0}

)
= 0 .

(iv) Case β > 0 and Q− ≡ 1 (Trivial solution is all-time repulsive).
There exists an r = r(β,K, Γ ) > 0 with

lim
t→∞

sup
τ∈R

d
(
λ
(
τ − t, τ, Ur(0)

)∣
∣{0}

)
= 0 .
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Proof. The proof is divided into two steps.
Step 1. Existence of S±.
In case Q+ ≡ 0 or Q+ ≡ 1, the manifolds S± are trivial, and nothing has
to be shown. Therefore, we assume Q+ �= 0 and Q+ �= 1. In Aulbach &

Rasmussen & Siegmund [18, Lemma 6.1] (see also Rasmussen [144, Lemma
6.3.7], Coppel [55, Chapter 5] and Siegmund [173, Lemma 2.3]), it is shown
that there exists a function T : R → RN×N of invertible matrices such that
the so-called Lyapunov transformation y = T (t)x of system (5.1) leads to the
following system with decoupled linearization:

ẏ =

(
B+(t) 0

0 B−(t)

)

︸ ︷︷ ︸

=:B(t)

y + T (t)F
(
t, T (t)−1y

)

︸ ︷︷ ︸

=:G(t,y)

,

where B+ : R → RN+×N+

and B− : R → RN−×N−

with N+ := rkQ+ and
N− := rkQ−. The transition operators Ψ+ and Ψ− of the linear differential
equations ẏ+ = B+(t)y+ and ẏ− = B−(t)y−, respectively, fulfill

‖Ψ+(t, s)‖ ≤ 2K2eα(t−s) for all t ≥ s and

‖Ψ−(t, s)‖ ≤ 2K2eβ(t−s) for all t ≤ s .

It is also shown that

‖T (t)‖ ≤
√

2 K and
∥
∥T−1(t)

∥
∥ ≤

√
2 for all t ∈ R . (5.3)

Thus, the hypothesis on nonlinearity implies the limit relation

lim
y→0

sup
t∈R

‖D2G(t, y)‖ = 0 . (5.4)

We fix a smooth cut-off function χ : RN → [0, 1] (see, e.g., Abraham &

Marsden & Ratiu [1, Lemma 4.2.13]) such that

χ(x) = 1 for all x with ‖x‖ ≤ 1 and χ(x) = 0 for all x with ‖x‖ ≥ 2 .

For any σ > 0 with U2σ(0) ⊂ U , we define the function Gσ : R × RN → RN

by

Gσ(t, x) :=

{
χ
(

x
σ

)
G(t, x) for all t ∈ R and x ∈ U
0 for all t ∈ R and x /∈ U

.

Due to the mean value inequality (see, e.g., Lang [102, Corollary 4.3, p. 342]),
the relation G(·, 0) ≡ 0 leads to

‖G(t, x)‖ ≤ ‖x‖ sup
s∈[0,1]

‖D2G(t, sx)‖ for all x ∈ RN and t ∈ R .

Since D2Gσ(t, x) = χ
(

x
σ

)
D2G(t, x) + 1

σ Dχ
(

x
σ

)
G(t, x), for all t ∈ R, we have
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sup
x∈RN

‖D2Gσ(t, x)‖

≤ sup
‖x‖≤2σ

‖D2G(t, x)‖ +
1

σ
sup

‖x‖≤2

Dχ(x) sup
‖x‖≤2σ

(

‖x‖ sup
s∈[0,1]

‖D2G(t, sx)‖
)

.

Hence,

sup
(t,x)∈R×RN

‖D2Gσ(t, x)‖ ≤
(

1 + 2 sup
x∈RN

Dχ(x)

)

sup
‖x‖≤2σ,t∈R

‖D2G(t, x)‖.

Due to (5.4), this implies

lim
σ→0

sup
(t,x)∈R×RN

‖D2Gσ(t, x)‖ = 0 ,

and thus, there exists a ρ̃ > 0 such that

ẏ = B(t)y + Gρ̃(t, y) (5.5)

fulfills the (global) hypotheses of Siegmund [171, Satz 4.16 and Satz 4.30].
Denoting the general solution of (5.5) by λ̃, this means that there exist C1-
functions s̃± : R × RN → RN fulfilling

s̃+(t, ξ) = s̃+
(
t, (ξ1, . . . , ξN+ , 0, . . . , 0)

)
∈
{
(0, . . . , 0)

}
× RN− ⊂ RN

and

s̃−(t, ξ) = s̃−
(
t, (0, . . . , 0, ξN++1, . . . , ξN )

)
∈ RN+ ×

{
(0, . . . , 0)

}
⊂ RN

for all t ∈ R and ξ ∈ RN such that the graphs

S̃+ :=
{(

τ, ξ + s̃+(τ, ξ)
)
∈ R × RN : ξi = 0 for i > N+

}

and
S̃− :=

{(
τ, ξ + s̃−(τ, ξ)

)
∈ R × RN : ξi = 0 for i ≤ N+

}

are global nonautonomous invariant manifolds with

S̃± :=

{

(τ, ξ) ∈ R × RN : λ̃(·, τ, ξ) is

(
α + β

2

)±

-quasibounded

}

.

We define ŝ± : R × RN → RN by

ŝ±(t, x) := T (t)−1s̃±(t, T (t)x) for all t ∈ R and x ∈ RN .

Then ŝ± leads to the nonautonomous sets Ŝ±, which also can be defined by

Ŝ±(t) := T (t)−1S̃±(t) for all t ∈ R . (5.6)
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Let λ̂ denote the general solution of the system

ẋ = A(t)x + T (t)−1Gσ(t, T (t)x) , (5.7)

which is obtained via the transformation x = T (t)−1y from system (5.5). Then
the representation

Ŝ± :=

{

(τ, ξ) ∈ R × RN : λ̂(·, τ, ξ) is

(
α + β

2

)±

-quasibounded

}

is fulfilled (see Rasmussen [144, Satz 6.3.8] or Aulbach & Rasmussen &

Siegmund [18]), and due to Aulbach & Wanner [21, p. 83–84, formulae
(69), (70)] and (5.3), there exists an M1 ≥ 1 with

∥
∥λ̂(t, τ, ξ)

∥
∥ ≤ M1‖ξ‖e

α+β
2 (t−τ) for all t ≥ τ and ξ ∈ Ŝ+(τ) (5.8)

and

∥
∥λ̂(t, τ, ξ)

∥
∥ ≤ M1‖ξ‖e

α+β
2 (t−τ) for all t ≤ τ and ξ ∈ Ŝ−(τ) .

Because of (5.3),

there exists a ρ̂ > 0 such that the systems (5.7) and (5.1)
coincide on t ∈ R and x ∈ Uρ̂(0) .

(5.9)

Moreover, there exists an M2 > 0 such that
∥
∥ŝ±(t, x)

∥
∥ ≤ M2‖x‖ for all t ∈ R

and x ∈ RN (see the definition of ŝ±, (5.3) and Siegmund [171, Satz 4.16 (c)]).
This implies the existence of a ρ > 0 such that with the functions

s± : R × Uρ(0) → RN , s±(t, x) := ŝ±(t, x) for all t ∈ R and x ∈ Uρ(0) ,

the sets

S± :=
{(

τ, ξ + s±(τ, ξ)
)
∈ R × RN : ξ ∈ R(Q±(τ)) ∩ Uρ(0)

}

are subsets of R×Uρ̂(0). Furthermore, S± are local nonautonomous invariant

manifolds of (5.1), since the conditions of Definition 5.1 are easily verified (S̃±

are global nonautonomous invariant manifolds, and (5.9), (5.6) and (5.3) are
fulfilled). For further reference, please note that (5.8) and (5.9) imply

‖λ(t, τ, ξ)‖ ≤ M1‖ξ‖e
α+β

2 (t−τ)
for all t ≥ τ and ξ ∈ S+(τ) with
λ
(
τ + c(t − τ), τ, ξ

)
∈ Uρ̂(0)

for all c ∈ [0, 1] .
(5.10)

Step 2. The statements (i)–(iv) are fulfilled.
(i) Suppose that α < 0, and choose ε > 0 arbitrarily. W.l.o.g., assume that
α + ε < 0. By applying Step 1 with the constants α and min {β, α + 2ε}
instead of α and β, we get another local nonautonomous invariant manifold
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S̄+, obtained as graph of a function s̄+ : R × Uρ̄(0) → RN with 0 < ρ̄ < ρ.
Then, because of (α + α + 2ε)/2 = α + ε, (5.10) reads as

‖λ(t, τ, ξ)‖ ≤ M1‖ξ‖emin{α+β
2 ,α+ε}(t−τ)

for all t ≥ τ and ξ ∈ S̄+(τ) with
λ
(
τ + c(t − τ), τ, ξ

)
∈ Uρ̂(0)

for all c ∈ [0, 1] .

Due to α + ε < 0, this means that there exists an r > 0 such that

λ(t, τ, ξ) ∈ Uρ(0) and ‖λ(t, τ, ξ)‖ ≤ M1‖ξ‖emin{α+β
2 ,α+ε}(t−τ)

for all (τ, ξ) ∈ S̄+ ∩ (R × Ur(0)) and t ≥ τ .

Thus, for (τ, ξ) ∈ S̄+ ∩ (R × Ur(0)), λ(·, τ, ξ) is ((α + β)/2)+-quasibounded
and (α+ε)+-quasibounded. From the ((α+β)/2)+-quasiboundedness, we get

S̄+ ∩ (R × Ur(0)) = S+ ∩ (R × Ur(0))

from the dynamic characterization (of the global manifolds) in Step 1. Thus,
the proof of (i) is finished.
(ii) can be shown analogously to (i).
(iii) We choose an L > 0 such that α + KL < 0. Let χ denote the cut-off
function from Step 1. Then we define for any σ > 0 with U2σ(0) ⊂ U the
function Fσ : R × RN → RN by

Fσ(t, x) :=

{
χ
(

x
σ

)
F (t, x) for all t ∈ R and x ∈ U
0 for all t ∈ R and x /∈ U

.

Analogously to Step 1, the relation

lim
σ→0

sup
(t,x)∈R×RN

‖D2Fσ(t, x)‖ = 0

follows, and the limit behavior only depends on Γ and χ. This means that
there exists an r̃ = r̃(α,K, Γ, χ) > 0 such that

ẏ = A(t)y + Fr̃(t, y) (5.11)

fulfills the hypotheses of Aulbach & Wanner [21, Lemma 3.4, p. 70] with
the constants α, K and L. We denote the general solution of (5.11) by λ̃.
Then, due to [21, Lemma 3.4, p. 70], we obtain

∥
∥λ̃(t, τ, ξ)

∥
∥ ≤ K‖ξ‖eα+KL

2 (t−τ) for all t ≥ τ and ξ ∈ RN .

We define r := r̃
K . Since (5.11) coincides with (5.1) on R × Ur̃(0), we get

‖λ(t, τ, ξ)‖ ≤ K‖ξ‖eα+KL
2 (t−τ) for all t ≥ τ and ξ ∈ Ur(0) .

This implies the assertion.
(iv) can be proved similarly to (iii) using Lemma 3.7 of Aulbach & Wanner

[21] instead of Lemma 3.4. ⊓⊔
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Remark 5.4. An alternative way for the construction of nonautonomous
invariant manifolds for the ODE (5.1) without applying the Lyapunov trans-
formation as in Step 1 of the preceding proof can be found in Pötzsche

[138].

By applying the preceding theorem, in the next two theorems, the existence
of past and future invariant manifolds is proved.

Theorem 5.5 (Past invariant manifolds). In case I = R−
κ , there exist

ρ > 0 and C1-functions s± : I × Uρ(0) → RN such that the graphs

S± :=
{(

τ, ξ + s±(τ, ξ)
)
∈ I × RN : ξ ∈ R(Q±(τ)) ∩ Uρ(0)

}

are local nonautonomous invariant manifolds. Furthermore, the following
statements are fulfilled:

(i) Case α < 0 and rkQ+ ≥ 1 (Trivial solution is not past repulsive).
For all ε > 0, there exist r > 0 and M ≥ 1 such that for all (τ, ξ) ∈ S+

with ‖ξ‖ < r and for all κ ≥ t ≥ τ , we have λ(t, τ, ξ) ∈ Uρ(0) and

‖λ(t, τ, ξ)‖ ≤ Me(α+ε)(t−τ)‖ξ‖ .

(ii) Case β > 0 and rkQ− ≥ 1 (Trivial solution is not past attractive).
For all ε > 0, there exists an r > 0 such that for all (τ, ξ) ∈ S− with
‖ξ‖ < r, the solution λ(·, τ, ξ) is (β − ε)−-quasibounded and we have
λ(t, τ, ξ) ∈ Uρ(0) for all t ≤ τ ≤ κ.

(iii) Case α < 0 and Q+ ≡ 1 (Trivial solution is past attractive).
There exists an r = r(α,K, Γ ) > 0 with

lim
t→∞

sup
τ∈I

d
(
λ
(
τ, τ − t, Ur(0)

)∣
∣{0}

)
= 0 .

(iv) Case β > 0 and Q− ≡ 1 (Trivial solution is past repulsive).
There exists an r = r(β,K, Γ ) > 0 with

lim
t→∞

sup
τ∈I

d
(
λ
(
τ − t, τ, Ur(0)

)∣
∣{0}

)
= 0 .

Proof. We first observe that all assertions of Theorem 5.3 also hold in case
(5.1) is a differential equation of Carathéodory type, since equations of this
form are treated in Siegmund [171] and Aulbach & Wanner [22]. This
is important, because we want to apply this theorem to the Carathéodory
differential equation

ẋ = B(t)x + G(t, x) (5.12)

with functions B : R → RN×N and G : R × U → RN defined as follows. Let
C ∈ RN×N be the matrix fulfilling

Cx = αx for all x ∈ R(Q+(κ)) and Cx = βx for all x ∈ R(Q−(κ)) .
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Then we define the functions B and G by

B(t) :=

{
A(t) : t ≤ κ
C : t > κ

and G(t, x) :=

{
F (t, x) : t ≤ κ, x ∈ U

0 : t > κ, x ∈ U
.

It is easy to see that equation (5.12) fulfills the hypotheses of Theorem 5.3
with the invariant projector Q̂+ : R → RN×N defined by

Q̂+ :=

{
Q+(t) : t ≤ κ
Q+(κ) : t > κ

.

Then there exist nonautonomous invariant manifolds of (5.12) which, by re-
striction to R−

κ × RN , are nonautonomous invariant manifolds of (5.1). The
statements (i)–(iv) follow directly. ⊓⊔

An analogous statement is fulfilled by considering R+
κ instead of R−

κ .

Theorem 5.6 (Future invariant manifolds). In case I = R+
κ , there exist

ρ > 0 and C1-functions s± : I × Uρ(0) → RN such that the graphs

S± :=
{(

τ, ξ + s±(τ, ξ)
)
∈ I × RN : ξ ∈ R(Q±(τ)) ∩ Uρ(0)

}

are local nonautonomous invariant manifolds. Furthermore, the following
statements are fulfilled:

(i) Case α < 0 and rkQ+ ≥ 1 (Trivial solution is not future repulsive).
For all ε > 0, there exists an r > 0 such that for all (τ, ξ) ∈ S+ with
‖ξ‖ < r, the solution λ(·, τ, ξ) is (α + ε)+-quasibounded and we have
λ(t, τ, ξ) ∈ Uρ(0) for all t ≥ τ ≥ κ.

(ii) Case β > 0 and rkQ− ≥ 1 (Trivial solution is not future attractive).
For all ε > 0, there exist r > 0 and M ≥ 1 such that for all (τ, ξ) ∈ S−

with ‖ξ‖ < r and for all κ ≤ t ≤ τ , we have λ(t, τ, ξ) ∈ Uρ(0) and

‖λ(t, τ, ξ)‖ ≤ Me(β−ε)(t−τ)‖ξ‖ .

(iii) Case α < 0 and Q+ ≡ 1 (Trivial solution is future attractive).
There exists an r = r(α,K, Γ ) > 0 with

lim
t→∞

sup
τ∈I

d
(
λ
(
τ + t, τ, Ur(0)

)∣
∣{0}

)
= 0 .

(iv) Case β > 0 and Q− ≡ 1 (Trivial solution is future repulsive).
There exists an r = r(β,K, Γ ) > 0 with

lim
t→∞

sup
τ∈I

d
(
λ
(
τ, τ + t, Ur(0)

)∣
∣{0}

)
= 0 .

Proof. See proof of Theorem 5.5. ⊓⊔
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Remark 5.7.

(i) The sets S+ and S− of the above theorems are also denoted as all-time
(past, future, respectively) pseudo-stable and pseudo-unstable invariant
manifolds of (5.1), respectively. To be more specific, S+ describes an
all-time (past, future, respectively)

center-stable
stable

strongly stable

⎫

⎬

⎭
invariant manifold in case

⎧

⎨

⎩

β > 0
α < 0 < β

β < 0
.

Accordingly, S− describes an all-time (past, future, respectively)

center-unstable
unstable

strongly unstable

⎫

⎬

⎭
invariant manifold in case

⎧

⎨

⎩

α < 0
α < 0 < β

α > 0
.

This terminology corresponds to the autonomous situation of invariant
manifolds considered, e.g., in Chow & Li & Wang [47]. Center mani-
folds are obtained as intersections of center-stable and center-unstable
invariant manifolds.

(ii) In the hyperbolic situation (α < 0 < β), the all-time invariant mani-
folds S± of Theorem 5.3 are uniquely determined. Easy examples (see,
e.g., Hale & Koçak [78, Example 10.13, p. 322]), however, show that
center-stable, center-unstable or center manifolds are nonunique in gen-
eral. Since global invariant manifolds are uniquely determined, different
cut-off-techniques (as used in the proof of Theorem 5.3) lead to differ-
ent manifolds. In the situation of Theorem 5.5 and Theorem 5.6, the
question of nonuniqueness is more subtle. In the hyperbolic case, only
the pseudo-unstable manifold S− of Theorem 5.5 and the pseudo-stable
manifold S+ of Theorem 5.6 are uniquely determined. This corresponds
to Remark 4.12 in the linear situation.

5.2 An Application to Bifurcation Theory

In autonomous bifurcation theory, it is necessary that at least one eigenvalue
of the linearization in a bifurcating equilibrium crosses the imaginary axis.
In this section, this fact is generalized with respect to the notions of past,
future and all-time bifurcation. For a similar result in the context of random
dynamical systems (concerning the Lyapunov exponents of ergodic invariant
measures), we refer to Arnold & Xu [9] and Arnold [5, Theorem 9.2.3,
p. 471].

Let I be an unbounded interval of the form R−
κ , R+

κ or R, respectively. In this
section, we consider a nonlinear differential equation
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ẋ = A(t, α)x + F (t, x, α) (5.13)α

with a continuous matrix-valued function A : I×(α−, α+) → RN×N and a C1-
function F : I×U×(α−, α+) → RN , where U is supposed to be a neighborhood
of 0. Furthermore, we assume that F (t, 0, α) = 0 for all α ∈ (α−, α+) and t ∈ I.

Theorem 5.8 (Linearization and bifurcation). We suppose that the triv-
ial solution of (5.13)α admits a past (future, all-time, respectively) supercritical
bifurcation at the parameter value α0 ∈ (α−, α+) and there exists an α̂ > α0

with
lim
x→0

sup
t∈I, α∈[α0,α̂]

‖D2F (t, x, α)‖ = 0 (5.14)

and
lim

αցα0

sup
t∈I

‖A(t, α) − A(t, α0)‖ = 0 . (5.15)

Then we have

0 ∈ Σ←
A(·,α0)

, Σ→
A(·,α0)

, Σ↔
A(·,α0)

, respectively .

An analogous statement is fulfilled in case of a subcritical bifurcation.

Proof. We only treat the case of an all-time bifurcation, since the other proofs
are similar. Arguing negatively, we suppose that zero is not contained in
Σ↔

A(·,α0)
. We distinguish the following two cases.

Case 1. There exists an α̃ ∈ (α0, α̂) such that the trivial solution of (5.13)α is
all-time attractive for all α ∈ (α0, α̃).
First, assume that Σ↔

A(·,α0)
∩ (0,∞] �= ∅. Since 0 /∈ Σ↔

A(·,α0)
, this means that

the linear differential equation ẋ = A(t, α0)x admits a nonhyperbolic all-time
exponential dichotomy with growth rate γ > 0 and an invariant projector
Qα0

such that rkQα0
< N (please note that due to Theorem 4.24, the all-

time spectrum is closed). Due to Theorem 4.35 and (5.15), there exists an
α1 > α0 such that for all α ∈ (α0, α1), the linear differential equation

ẋ = A(t, α)x

admits a nonhyperbolic all-time exponential dichotomy with growth rate γ
and an invariant projector Qα such that rkQα < N . Hence,

Σ↔
A(·,α) ∩ (γ,∞] �= ∅ for all α ∈ (α0, α1) .

This means that at least one spectral interval of Σ↔
A(·,α), α ∈ (α0, α1), lies

in (γ,∞], and hence, Theorem 5.3 (ii) is applicable with β = γ > 0 and
rkQ− = N − rkQα ≥ 1. This implies that the trivial solution of (5.13)α is
not all-time attractive, which is a contradiction to the hypothesis of Case 1,
and thus, there exists a δ < 0 with
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Σ↔
A(·,α0)

⊂ [−∞, δ)

(again, we use the fact that all-time dichotomy spectra are closed). Because
of Theorem 4.35 and (5.15) (cf. the argumentation above), there exists an
α2 ∈ (α0, α1) with

Σ↔
A(·,α) ⊂ [−∞, δ] for all α ∈ [α0, α2] .

We apply Theorem 5.3 (iii) and obtain that, since due to (5.14), the function

Γ : (0, 1) → R
+

can be chosen independently of α, the lower bound r of this
theorem for the radius of all-time attraction A

↔
0 is also independent of α.

Hence, A
↔
0 does not converge to zero in the limit αցα0. This contradiction

finishes the proof of this case.
Case 2. There exists an α̃ ∈ (α0, α̂) such that the trivial solution of (5.13)α is
all-time repulsive for all α ∈ (α0, α̃).
This case is treated analogously to Case 1. ⊓⊔

5.3 Linearized Attractivity and Repulsivity

In Section 5.1, properties of attractivity and repulsivity for a nonlinear system
have been derived already by studying the linearization. In contrast to these
considerations, in this section, more quantitative results are obtained, and
furthermore, C1-differentiability is not assumed but only continuity.

We first concentrate on the notions of past, future and all-time attractivity
and repulsivity.

Theorem 5.9 (Linearized attractivity and repulsivity, part I). Con-
sider an unbounded interval I of the form R−

κ , R+
κ or R, respectively, and

let
ẋ = A(t)x + F (t, x) (5.16)

be a nonautonomous differential equation with continuous functions A : I →
RN×N and F : I×U → RN , U ⊂ RN a neighborhood of 0, such that F (t, 0) = 0
for all t ∈ I. Let λ denote the general solution of (5.16) and Λ : I×I → RN×N

denote the transition operator of the linearized equation ẋ = A(t)x. Then the
following statements are fulfilled:

(i) In case there exist β < 0, K ≥ 1 and δ > 0 such that

‖Λ(t, s)‖ ≤ Keβ(t−s) for all t ≥ s

and

‖F (t, x)‖ ≤ −β

2K
‖x‖ for all t ∈ I and x ∈ Uδ(0) , (5.17)
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we have

d
(
λ
(
t, τ, Uδ/K(0)

)∣
∣{0}

)
≤ δ e(β/2)(t−τ) for all τ, t ∈ I with τ ≤ t ,

i.e., the trivial solution of (5.16) is past (future, all-time, respectively)
attractive.

(ii) In case there exist β > 0, K ≥ 1 and δ > 0 such that

‖Λ(t, s)‖ ≤ Keβ(t−s) for all t ≤ s

and

‖F (t, x)‖ ≤ β

2K
‖x‖ for all t ∈ I and x ∈ Uδ(0) , (5.18)

we have

d
(
λ
(
t, τ, Uδ/K(0)

)∣
∣{0}

)
≤ δ e(β/2)(t−τ) for all τ, t ∈ I with t ≤ τ ,

i.e., the trivial solution of (5.16) is past (future, all-time, respectively)
repulsive.

Proof. We only prove (i), since (ii) can be shown analogously. Given τ ∈ I

and ξ ∈ Uδ(0), we now prove an estimate for the general solution under the
additional assumption

λ(t, τ, ξ) ∈ Uδ(0) for all t ≥ τ . (5.19)

The solution λ(·, τ, ξ) of (5.16) is also a solution of the inhomogeneous linear
differential equation

ẋ = A(t)x + F (t, λ(t, τ, ξ)) .

Thus, the variation of constants formula (Proposition A.6) implies

λ(t, τ, ξ) = Λ(t, τ)ξ +

∫ t

τ

Λ(t, s)F (s, λ(s, τ, ξ)) ds for all t ≥ τ ,

and hence,

‖λ(t, τ, ξ)‖ ≤ ‖Λ(t, τ)‖ ‖ξ‖ +

∫ t

τ

‖Λ(t, s)‖
∥
∥F (s, λ(s, τ, ξ))

∥
∥ ds

(5.17)

≤ Keβ(t−τ)‖ξ‖ +

∫ t

τ

Keβ(t−s)−β

2K
‖λ(s, τ, ξ)‖ds for all t ≥ τ

is fulfilled. This implies

e−βt‖λ(t, τ, ξ)‖ ≤ Ke−βτ‖ξ‖ +
−β

2

∫ t

τ

e−βs‖λ(s, τ, ξ)‖ds for all t ≥ τ .
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Hence, Gronwall’s inequality (cf. Lemma A.8) yields the estimate

‖λ(t, τ, ξ)‖ ≤ Ke(β/2)(t−τ)‖ξ‖ for all t ≥ τ . (5.20)

We define η := δ/K. Since β/2 < 0, for all τ ∈ I and ξ ∈ Uη(0), the assumption
(5.19) is fulfilled, therefore, (5.20) holds for such τ and ξ. This implies

d
(
λ(t, τ, Uη(0))

∣
∣{0}

)
≤ Kη e(β/2)(t−τ) for all τ, t ∈ I with τ ≤ t .

From this inequality, the required conditions for the past (future, all-time,
respectively) attractivity are easily obtained. ⊓⊔

In case of finite-time attractivity and repulsivity, the following result is
obtained.

Theorem 5.10 (Linearized attractivity and repulsivity, part II). Con-
sider a compact interval I := [τ, τ + T ] for some τ ∈ R and T > 0, and let

ẋ = A(t)x + F (t, x) (5.21)

be a nonautonomous differential equation with continuous functions A : I →
RN×N and F : I×U → RN , U ⊂ RN a neighborhood of 0, such that F (t, 0) = 0
for all t ∈ I. Let λ denote the general solution of (5.21) and Λ : I×I → RN×N

denote the transition operator of the linearized equation ẋ = A(t)x, and define

K+ := sup
{
‖Λ(t, s)‖ : τ ≤ s ≤ t ≤ τ + T

}

and
K− := sup

{
‖Λ(t, s)‖ : τ ≤ t ≤ s ≤ τ + T

}
.

Then the following statements are fulfilled:

(i) In case
‖Λ(τ + T, τ)‖ < 1

and there exist δ > 0 and β > 1 with

‖F (t, x)‖ ≤ − ln
(
β ‖Λ(τ + T, τ)‖

)

TK+
‖x‖ for all t ∈ I and x ∈ Uδ(0) ,

(5.22)
there exists an η > 0 such that

‖λ(τ + T, τ, ξ)‖ ≤ β−1 ‖ξ‖ for all ξ ∈ Uη(0) ,

i.e., the trivial solution of (5.21) is (τ, T )-attractive.

(ii) In case
‖Λ(τ, τ + T )‖ < 1

and there exist δ > 0 and β > 1 with
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‖F (t, x)‖ ≤ − ln
(
β ‖Λ(τ, τ + T )‖

)

TK−
‖x‖ for all t ∈ I and x ∈ Uδ(0) ,

(5.23)
there exists an η > 0 such that

‖λ(τ, τ + T, ξ)‖ ≤ β−1 ‖ξ‖ for all ξ ∈ Uη(0) ,

i.e., the trivial solution of (5.21) is (τ, T )-repulsive.

Proof. We only prove (i), since (ii) can be shown analogously. Due to the
continuity of the general solution (cf. Proposition A.3), there exists an η < δ
with

‖λ(t, τ, ξ)‖ < δ for all t ∈ I and ξ ∈ Uη(0) .

We choose ξ ∈ Uη(0) arbitrarily. Then the solution λ(·, τ, ξ) of (5.21) is also
a solution of the linear differential equation

ẋ = A(t)x + F (t, λ(t, τ, ξ)) .

Thus, the variation of the constants formula (cf. Proposition A.6) implies

λ(t, τ, ξ) = Λ(t, τ)ξ +

∫ t

τ

Λ(t, s)F (s, λ(s, τ, ξ)) ds for all t ∈ I .

Hence, for all t ∈ I, the relation

‖λ(t, τ, ξ)‖ ≤ ‖Λ(t, τ)ξ‖ +

∫ t

τ

‖Λ(t, s)‖
∥
∥F (s, λ(s, τ, ξ))

∥
∥ ds

≤ ‖Λ(t, τ)‖ ‖ξ‖ − K+

ln
(
β ‖Λ(τ + T, τ)‖

)

TK+

∫ t

τ

‖λ(s, τ, ξ)‖ds

= ‖Λ(t, τ)‖ ‖ξ‖ − ln
(
β ‖Λ(τ + T, τ)‖

)

T

∫ t

τ

‖λ(s, τ, ξ)‖ds .

We apply Gronwall’s inequality (cf. Lemma A.8) and obtain for all ξ ∈ Uη(0),

‖λ(τ + T, τ, ξ)‖ ≤ ‖Λ(τ + T, τ)‖ ‖ξ‖ exp
(
−ln

(
β ‖Λ(τ + T, τ)‖

))

= β−1 ‖ξ‖ .

This finishes the proof of this theorem. ⊓⊔

Remark 5.11.

(i) Concerning Theorem 5.9 and Theorem 5.10, the past (future, all-time,
(τ, T )-, respectively) dichotomy spectrum of the linearization ẋ = A(t)x
is a subset of R−.
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(ii) The conditions (5.17), (5.18) of Theorem 5.9 and (5.22), (5.23) of
Theorem 5.10 are fulfilled if we have

lim
x→0

sup
t∈I

‖F (t, x)‖
‖x‖ = 0 .

This limit relation is only sufficient but not necessary for the above
mentioned conditions.

5.4 Bifurcation Theory of Adiabatic Systems

In this section, a relationship between the bifurcation theory of adiabatic
systems (see, e.g., Benôıt [27], Berglund [29] or Lebovitz & Schaar

[106, 107]) and the concept of finite-time bifurcation is pointed out.

The bifurcation theory of adiabatic systems is usually called dynamic bifur-
cation theory (see title of Benôıt [27]). We will not employ this term here,
since it is unfortunately used in a different sense both in autonomous bifur-
cation theory (as opposed to static bifurcation theory, cf. Subsection 2.6.1)
and random bifurcation theory (as opposed to phenomenological bifurcation
theory, cf. Subsection 2.6.3).

Let I be an open interval and D ⊂ RN be an open set, and consider an
autonomous differential equation

ẋ = f(α, x) , (5.24)α

depending on a parameter α with a C1-function f : I × D → RN . To mimic
the situation of a slowly varying parameter, for ε > 0, we also look at the
system

ẋ = f(εt, x) ,

which can be transformed via the slow time t 
→ εt into the so-called adiabatic
or singularly-perturbed system

ẋ =
1

ε
f(t, x) . (5.25)ε

The central question of the bifurcation theory of adiabatic systems is: How
do solutions of (5.25)ε behave in the limit εց0 in case (5.24)α admits an
autonomous bifurcation?

We assume that (5.24)α admits a bifurcation of the following type.

Standing Hypothesis. For fixed α− < α+ ∈ I, we consider two different
continuous functions s1, s2 : [α−, α+] → D such that

s1(α−) = s2(α−) and f(α, s1(α)) = f(α, s2(α)) = 0 for all α ∈ [α−, α+] .

We suppose that
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• s1 describes attractive equilibria of (5.24)α, i.e., for all α ∈ (α−, α+], the
eigenvalues of D2f(α, s1(α)) have a negative real part,

• s2 describes hyperbolic equilibria of (5.24)α, i.e., for all α ∈ (α−, α+], the
eigenvalues of D2f(α, s2(α)) have a non-vanishing real part.

The existence of such a bifurcation implies that D2f(α−, s1(α−)) has an eigen-
value with vanishing real part.

In the bifurcation theory of adiabatic systems, the occurrence of the following
two possibilities is discussed:

(a) There exists a family of solutions νε : [α−, α+] → D of (5.25)ε, ε > 0
small, which converge to the attractive equilibrium branch in the limit
ε → 0.

(b) There exists a family of solutions νε : [α−, α+] → D of (5.25)ε, ε > 0
small, which follow for some time interval (which does not depend on ε)
the equilibrium branch s2 and then jump to the stable branch s1.

The phenomenon (b) is called bifurcation delay or delayed exchange of stabili-
ties. The corresponding solutions are said to be canard solutions. The property
(a), which we will discuss in this section, is generalized by the following defi-
nition.

Definition 5.12 (Adiabatic solutions). Let α0 < α1 ∈ I. A continuous
function s : [α0, α1] → D with

f(α, s(α)) = 0 for all α ∈ [α0, α1]

is called equilibrium branch which admits adiabatic solutions if there exist
ε̃ > 0 and a function ν : [α0, α1]× (0, ε̃) → D such that ν(·, ε) is a solution of
(5.25)ε and

lim
εց0

sup
α∈[α0,α1]

‖ν(α, ε) − s(α)‖ = 0 .

In case the equilibria of (5.24)α described by the function s are hyperbolic, the
existence of adiabatic solutions follows from the following theorem. A proof
can be found, e.g., in Berglund [29, Theorem 5.1, p. 140].

Theorem 5.13 (Existence of adiabatic solutions). Let α0 < α1 ∈ I, and
consider a continuous function s : [α0, α1] → D such that

f(α, s(α)) = 0 and D2f(α, s(α)) is hyperbolic for all α ∈ [α0, α1] .

Then the equilibrium branch s admits adiabatic solutions.

In the next lemma, linearizations near a branch of stable equilibria are
examined.
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Lemma 5.14. Given α0 < α1 ∈ I, let s : [α0, α1] → D be a continuous
function such that f(α, s(α)) = 0 and D2f(α, s(α)) has only eigenvalues with
negative real part for all α ∈ [α0, α1]. Then there exist constants δ > 0, K ≥ 1
and γ < 0 such that for all continuous functions h : [α0, α1] → RN with

‖h(α) − s(α)‖ < δ for all α ∈ [α0, α1] ,

the transition operator Λε of the linear system

ẋ =
1

ε
D2f(t, h(t))x

fulfills

‖Λε(α1, α0)‖ ≤ K exp
(γ

ε
(α1 − α0)

)

.

Proof. We define A(α) := D2f(α, s(α)) for all α ∈ [α0, α1]. Since A(·) is
continuous on the compact interval [α0, α1] and all eigenvalues of A(α) for
α ∈ [α0, α1] have negative real part, there exist K̃ ≥ 1 and γ̃ < 0 with

∥
∥eA(α)t

∥
∥ ≤ K̃ eγ̃t for all t ≥ 0 and α ∈ [α0, α1] .

Due to the uniform continuity of D2f(·, ·) on compact sets, there exists a
δ > 0 such that for all α ∈ [α0, α1] and x ∈ Uδ(s(α)), we have

‖D2f(α, x) − D2f(α, s(α))
︸ ︷︷ ︸

A(α)

‖ < − γ̃

16K̃2
. (5.26)

Since A(·) is uniform continuous on [α0, α1], there exist n ∈ N and constants
βi ∈ [α0, α1], i ∈ {0, . . . , n}, with α0 = β0 < β1 < · · · < βn = α1 such that for
all i ∈ {1, . . . , n}, we have

‖A(βi−1) − A(α)‖ < − γ̃

16K̃2
for all α ∈ [βi−1, βi] . (5.27)

Let h : [α0, α1] → RN be a continuous function fulfilling

‖h(α) − s(α)‖ < δ for all α ∈ [α0, α1] ,

and consider the linear system

ẋ = D2f(εt, h(εt))x (5.28)

for fixed ε > 0. The transition operator of (5.28) is denoted by Ψε. Due to
(5.26) and (5.27), for fixed i ∈ {1, . . . , n},

∥
∥D2f(εt, h(εt)) − A(βi−1)

∥
∥ < − γ̃

8K̃2
for all t ∈

[
βi−1

ε
,
βi

ε

]
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is fulfilled. Therefore, Theorem 4.35 implies

∥
∥
∥
∥
Ψε

(
βi

ε
,
βi−1

ε

)∥
∥
∥
∥
≤ 5K̃2

2
exp

((

γ̃ − γ̃

2K

)βi − βi−1

ε

)

.

Hence, the relation

∥
∥
∥Ψε

(α1

ε
,
α0

ε

)∥
∥
∥ ≤

(

5K̃2

2

)n

exp

((

γ̃ − γ̃

2K

)α1 − α0

ε

)

=: K exp
(γ

ε
(α1 − α0)

)

holds. This implies the assertion, since Λε(α1, α0) = Ψε

(
α1/ε, α0/ε

)
. ⊓⊔

Using the preceding lemma, we are able to prove the following relationship
between adiabatic solutions of attractive equilibrium branches and the concept
of finite-time attractivity.

Corollary 5.15. Let α0 < α1 ∈ I, and consider an equilibrium branch
s : [α0, α1] → D which admits adiabatic solutions such that all eigen-
values of D2f(α, s(α)) have negative real part for α ∈ [α0, α1]. Moreover,
let µ : [α0, α1]× (0, ε̃) → RN be a function describing corresponding adiabatic
solutions. Then there exists an ε̂ > 0 such that for all ε ∈ (0, ε̂), the solution
µ(·, ε) is (α0, α1 − α0)-attractive.

Proof. Lemma 5.14 implies the existence of δ > 0, K ≥ 1 and γ < 0 with the
properties mentioned in the lemma. We choose ε∗ > 0 such that

sup
α∈[α0,α1]

‖µ(α, ε) − s(α)‖ < δ for all ε ∈ (0, ε∗)

and
K exp

(γ

ε̂
(α1 − α0)

)

< 1 .

By applying Lemma 5.14, we obtain that the transition operator Λε of the
variational equation

ẋ =
1

ε
D2f(t, µ(t, ε))x

satisfies ‖Λε(α1, α0)‖ < 1. Hence, Theorem 5.10 implies that there exists
an ε̂ ∈ (0, ε∗) such that for all ε ∈ (0, ε̂), the solution µ(·, ε) is (α0, α1 − α0)-
attractive (due to Remark 5.11 (ii), the condition on the nonlinearity is fulfilled
for small ε). ⊓⊔

For the main result of this section, recall the Standing Hypothesis from the
beginning of this section.
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Theorem 5.16 (Relationship to the concept of finite-time
bifurcation). We assume that the equilibrium branch s1 admits adia-
batic solutions, i.e., there exists a function µ : [α−, α+] × (0, ε̃) → RN such
that µ(·, ε) is a solution of (5.25)ε and we have

lim
εց0

sup
α∈[α−,α+]

‖µ(α, ε) − s1(α)‖ = 0 .

Then, for sufficiently small α > α− and ε > 0, µ(·, ε) is (α, α+−α)-attractive,
and the limit relation

lim
αցα−

lim sup
εց0

A
(α,α+−α)
µ(·,ε) = 0

is satisfied.

Proof. Since limα→α− s1(α) = limα→α− s2(α), there exists an α̂ ∈
(
α−, α+

)

with

‖s1(α) − s2(α)‖ <
1

3
‖s1(α+) − s2(α+)‖ for all α ∈ [α−, α̂] . (5.29)

Now, we prove the following statement which is obviously sufficient for the
assertion: For all α ∈ (α−, α̂], there exists an ε̂ > 0 such that for all ε ∈ (0, ε̂),
the solution µ(·, ε) is (α, α+ − α)-attractive and

A
(α,α+−α)
µ(·,ε) ≤ 3

2
‖s1(α) − s2(α)‖

is fulfilled. We choose α ∈ (α−, α̂] arbitrarily. It follows from Theorem 5.13
that there exists a function ν : [α, α+] × (0, ε̃) → RN such that ν(·, ε) is a
solution of (5.25)ε and

lim
εց0

sup
α̃∈[α,α+]

‖ν(α̃, ε) − s2(α̃)‖ = 0 .

Thus, there exists an ε̂ > 0 such that for all ε ∈ (0, ε̂), we have

sup
α̃∈[α,α+]

‖ν(α̃, ε) − s2(α̃)‖ <
1

4
‖s1(α) − s2(α)‖ ,

sup
α̃∈[α,α+]

‖µ(α̃, ε) − s1(α̃)‖ <
1

4
‖s1(α) − s2(α)‖

and µ(·, ε) is (α, α+ −α)-attractive (cf. Corollary 5.15). For all ε ∈ (0, ε̂), this
implies the relations

∥
∥ν(α, ε) − µ(α, ε)

∥
∥

= ‖ν(α, ε) − s2(α) + s2(α) − s1(α) + s1(α) − µ(α, ε)‖
≤ ‖ν(α, ε) − s2(α)‖ + ‖s2(α) − s1(α)‖ + ‖s1(α) − µ(α, ε)‖

<
3

2
‖s1(α) − s2(α)‖
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and

∥
∥λε(α+, α, ν(α, ε))
︸ ︷︷ ︸

ν(α+,ε)

−µ(α+, ε)
∥
∥ >

1

2
‖s1(α+) − s2(α+)‖

(5.29)
>

3

2
‖s1(α) − s2(α)‖ ,

where λε denotes the general solution of (5.25)ε. This finishes the proof of this
theorem. ⊓⊔





6

Bifurcations in Dimension One

The aim of this chapter is to develop nonautonomous counterparts for the
classical one-dimensional bifurcation patterns such as the transcritical and
pitchfork bifurcation, both for nonautonomous bifurcations and transitions.

In this chapter, only the continuous case of ordinary differential equations
is treated. For analogous results in the context of difference equations, see
Rasmussen [145].

Recently, Langa & Robinson & Suárez [105] also studied the occurrence
of one-dimensional nonautonomous bifurcations, which they understand as
merging processes of two distinct solutions with different stability behavior.
As in this chapter, their theorems are formulated in terms of Taylor coefficients
for the right hand side of an ordinary differential equation. These conditions,
however, are of a quite different form than the results obtained in this chapter.
This difference is due to fact that, in [105], explicitly solvable models are used
to formulate these conditions.

Stochastic versions (in the sense of a D-bifurcation, cf. Subsection 2.6.3)
of the transcritical and pitchfork bifurcation are examined in the thesis of
Steinkamp [177] (see also Crauel & Imkeller & Steinkamp [59]).

6.1 Nonautonomous Transcritical Bifurcation

In this section, nonautonomous generalizations of the classical transcritical
bifurcation are derived. First, the case of unbounded time domains is treated.

Theorem 6.1 (Nonautonomous transcritical bifurcation, part I). Let
x− < 0 < x+ and α− < α+ be in R and I be an unbounded interval of the
form R−

κ , R+
κ or R, respectively, and consider the nonautonomous differential

equation
ẋ = a(t, α)x + b(t, α)x2 + r(t, x, α) (6.1)α
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with continuous functions a : I × (α−, α+) → R, b : I × (α−, α+) → R and
r : I×(x−, x+)×(α−, α+) → R fulfilling r(·, 0, ·) ≡ 0. Let Λα : I×I → R denote
the transition operator of the linearized equation ẋ = a(t, α)x, and assume,
there exists an α0 ∈ (α−, α+) such that the following hypotheses hold:

• Hypothesis on linear part. There exist two functions β1, β2 : (α−, α+) → R

which are either both monotone increasing or both monotone decreasing
and K ≥ 1 such that limα→α0

β1(α) = limα→α0
β2(α) = 0 and

Λα(t, s) ≤ Keβ1(α)(t−s) for all α ∈ (α−, α+) and t, s ∈ I with t ≥ s ,

Λα(t, s) ≤ Keβ2(α)(t−s) for all α ∈ (α−, α+) and t, s ∈ I with t ≤ s .

• Hypothesis on nonlinearity. The quadratic term either fulfills

0 < lim inf
α→α0

inf
t∈I

b(t, α) ≤ lim sup
α→α0

sup
t∈I

b(t, α) < ∞ (6.2)

or
−∞ < lim inf

α→α0

inf
t∈I

b(t, α) ≤ lim sup
α→α0

sup
t∈I

b(t, α) < 0 , (6.3)

and the remainder satisfies

lim
x→0

sup
α∈(α0−|x|,α0+|x|)

sup
t∈I

|r(t, x, α)|
|x|2 = 0 (6.4)

and

lim sup
α→α0

lim sup
x→0

sup
t∈I

2K|r(t, x, α)|
|x|max

{
−β1(α), β2(α)

} < 1 . (6.5)

Then there exist α̂− < 0 < α̂+ such that the following statements are ful-
filled:

(i) In case the functions β1 and β2 are monotone increasing, the trivial
solution is past (future, all-time, respectively) attractive for α ∈ (α̂−, α0)
and past (future, all-time, respectively) repulsive for α ∈ (α0, α̂+). The
differential equation (6.1)α admits a past (future, all-time, respectively)
bifurcation, since the corresponding radii of past (future, all-time, respec-
tively) attraction and repulsion satisfy

lim
αրα0

A
α
0 = 0 and lim

αցα0

R
α
0 = 0 .

(ii) In case the functions β1 and β2 are monotone decreasing, the trivial
solution is past (future, all-time, respectively) repulsive for α ∈ (α̂−, α0)
and past (future, all-time, respectively) attractive for α ∈ (α0, α̂+). The
differential equation (6.1)α admits a past (future, all-time, respectively)
bifurcation, since the corresponding radii of past (future, all-time, respec-
tively) repulsion and attraction satisfy

lim
αրα0

R
α
0 = 0 and lim

αցα0

A
α
0 = 0 .
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Proof. First of all, we assume w.l.o.g. that K > 1. Let λα denote the general
solution of (6.1)α. We will only prove assertion (i), since the proof of (ii) is
similar. The functions β1 and β2 are therefore monotone increasing. W.l.o.g.,
we only treat the case (6.2). We choose α̂− < α0 < α̂+ such that

0 < inf
α∈(α̂−,α̂+), t∈I

b(t, α) ≤ sup
α∈(α̂−,α̂+), t∈I

b(t, α) < ∞ (6.6)

(cf. (6.2)) and

lim sup
x→0

sup
t∈I

|r(t, x, α)|
|x| <

−min
{
β1(α),−β2(α)

}

2K
for all α ∈ (α̂−, α̂+)

(cf. (6.5)). Because of these two relations, Theorem 5.9 can be applied, and
the attractivity and repulsivity of the trivial solutions as stated in the theorem
follows. Assume to the contrary that

η := lim sup
αրα0

A
α
0 > 0

holds. Due to (6.6) and (6.4), there exist α̃− ∈ (α̂−, α0), ξ ∈ (0, η) and
L ∈

(
0, ξ/(4K)

)
with

b(t, α)x2 + r(t, x, α) > L for all t ∈ I, α ∈ (α̃−, α0) and x ∈
[

ξ

2K2
, ξ

]

.

(6.7)
We fix α̂ ∈ (α̃−, α0) such that A

α̂
0 > ξ and β2(α̂) ≥ β := −2KL/ξ > −1/2.

For arbitrary τ ∈ I, the solution µτ (·) := λα̂(·, τ, ξ) of (6.1)α̂ is also a solution
of the inhomogeneous linear differential equation

ẋ = a(t, α̂)x + b(t, α̂)(µτ (t))2 + r(t, µτ (t), α̂) . (6.8)

Since A
α̂
0 > ξ = µt(t) for all t ∈ I, there exist τ, τ2 ∈ I, τ < τ2, such that

µτ (τ2) ≤ ξ/(2K2). We choose τ2 minimal with this property, i.e., we have
µτ (t) ≥ ξ/(2K2) for all t ∈ [τ, τ2]. Furthermore, we choose τ1 ∈ [τ, τ2] such
that

µτ (τ1) =
ξ

2K
and µτ (t) ∈

[
ξ

2K2
, ξ

]

for all t ∈ [τ1, τ2] .

Therefore, and due to (6.7) and the variation of constants formula (cf. Propo-
sition A.6), applied to (6.8), the relation

µτ (τ2) = Λα̂(τ2, τ1)µτ (τ1) +

∫ τ2

τ1

Λα̂(τ2, t)
(
b(t, α̂)(µτ (t))2 + r(t, µτ (t), α̂)

)
dt

>
ξ

2K2
eβ(τ2−τ1) +

L

K

∫ τ2

τ1

eβ(τ2−t) dt

= eβ(τ2−τ1)

(
ξ

2K2
+

L

Kβ

)

︸ ︷︷ ︸

=0

− L

Kβ
=

ξ

2K2
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holds (K > 1 implies τ1 < τ2). This is a contradiction and proves
limαրα0

A
α
0 = 0. Analogously, one can show limαցα0

R
α
0 = 0 and treat the

case (6.3). ⊓⊔

Remark 6.2.

(i) In the limit α → α0, the attractivity or repulsivity of the trivial solu-
tion is only lost in one direction, i.e., nonautonomous transcritical bifur-
cations are partial bifurcations. For instance, in case the functions β1, β2

are monotone increasing and (6.2) is satisfied, there exists a γ < 0 such
that (γ, 0] is attracted by the trivial solution of (6.4)α for α ∈ (α̂−, α0)
in the sense of past, future or all-time attractivity, respectively.

(ii) The hypothesis on the linear part implies that the past (future, all-
time, respectively) dichotomy spectrum of the linearization ẋ = a(t, α)x
converges to {0} in Hausdorff distance in the limit α → α0.

(iii) Condition (6.5) is only used to obtain the attractivity or repulsivity
of the trivial solution by applying Theorem 5.9. Alternatively, one can
directly postulate that the trivial solution changes the stability at the
parameter value α0 from, say, attractivity to repulsivity.

(iv) Please note that the above bifurcation result is essentially the combina-
tion of two scenarios which are independent of each other. This means
that it is possible to consider (6.1)α only for α > α0 or α < α0, respec-
tively, in order to obtain the results which apply for these parameter
values.

The following example shows that Theorem 6.1 is indeed a nonautonomous
generalization of the well-known autonomous result.

Example 6.3. Let x− < 0 < x+ and α− < 0 < α+ be in R, and consider the
autonomous differential equation

ẋ = f(x, α) , (6.9)

where the C4-function f : (x−, x+) × (α−, α+) → R satisfies the following
assumptions:

(i) f(0, α) = 0 for all α ∈ (α−, α+) ,

(ii) D1f(0, 0) = 0 ,

(iii) D1D2f(0, 0) �= 0 ,

(iv) D2
1f(0, 0) �= 0 .

Please note that (i) implies Dn
2 f(0, α) = 0 for all α ∈ (α−, α+) and n ∈ N.

Then (6.9) admits an autonomous transcritical bifurcation (see, e.g., Wiggins

[182, p. 265 f.] and Aulbach [14, Satz 7.10.6]), i.e., there exist a neighborhood
U × V of (0, 0) in R2 and a C1-function h : U → V with h(0) = 0 and
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f(x, h(x)) = 0 for all x ∈ U.

Except the trivial equilibria and the equilibria described by h, there are no
other equilibria in U × V . Now, we will show that this example fulfills the
hypotheses of Theorem 6.1. Thereto, we write the second order Taylor expan-
sion of f (see, e.g., Lang [102, p. 349]):

f(x, α) = D1D2f(0, 0)α
︸ ︷︷ ︸

=:ā(α)

x +
1

2
D2

1f(0, 0)
︸ ︷︷ ︸

=:b̄(α)

x2 + r(x, α) ,

where

r(x, α) =

∫ 1

0

(1 − t)2

2

(
D3

1f(tx, tα)x3 + 3D2
1D2f(tx, tα)x2α+

3D1D
2
2f(tx, tα)xα2 + D3

2f(tx, tα)α3
)
dt .

The hypothesis on the linear part is fulfilled (with β1(α) := β2(α) := ā(α)
and K := 1), and (6.2) or (6.3) holds, since the above defined function b̄ is
constant. Furthermore, the representation for the remainder implies that

lim
x→0

sup
α∈(−|x|,|x|)

|r(x, α)|
|x|2 = 0

and

lim sup
x→0

|r(x, α)|
|x| ≤ α2

∫ 1

0

(1 − t)2

2

(
|3D1D

2
2f(0, tα)| + t|D1D

3
2f(0, tα)α|

)
dt.

This means that (6.5) holds, since max
{
−β1(α), β2(α)

}
depends linearly

in α. Therefore, all hypotheses of Theorem 6.1 are fulfilled, and thus, this
example shows that Theorem 6.1 is a proper generalization of the well-known
autonomous transcritical bifurcation pattern.

In case of compact time domains, the following result is obtained.

Theorem 6.4 (Nonautonomous transcritical bifurcation, part II). Let
x− < 0 < x+ and α− < α+ be in R and I := [τ, τ + T ], and consider the
nonautonomous differential equation

ẋ = a(t, α)x + b(t, α)x2 + r(t, x, α) (6.10)α

with continuous functions a : I × (α−, α+) → R, b : I × (α−, α+) → R and
r : I × (x−, x+) × (α−, α+) → R fulfilling r(·, 0, ·) ≡ 0. Let Λα : I × I → R

denote the transition operator of the linearized equation ẋ = a(t, α)x. We
define

K(α) := sup
{
Λα(t, s) : t, s ∈ I

}
for all α ∈ (α−, α+)

and assume, there exists an α0 ∈ (α−, α+) such that the following hypotheses
hold:
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• Hypothesis on linear part. We either have

Λα(τ + T, τ) < 1 for all α ∈ (α−, α0) and
Λα(τ + T, τ) > 1 for all α ∈ (α0, α+)

(6.11)

or
Λα(τ + T, τ) > 1 for all α ∈ (α−, α0) and
Λα(τ + T, τ) < 1 for all α ∈ (α0, α+) .

(6.12)

• Hypothesis on nonlinearity. The quadratic term either fulfills

lim inf
α→α0

inf
t∈I

b(t, α) > 0 (6.13)

or
lim sup
α→α0

sup
t∈I

b(t, α) < 0 , (6.14)

and the remainder satisfies

lim
x→0

sup
α∈(α0−|x|,α0+|x|)

sup
t∈I

|r(t, x, α)|
|x|2 = 0 (6.15)

and

lim sup
α→α0

lim sup
x→0

sup
t∈I

− TK(α)|r(t, x, α)|
|x| ln

(
min

{
Λα(τ + T, τ), Λα(τ, τ + T )

}) < 1 .

(6.16)

Then there exist α̂− < 0 < α̂+ such that the following statements are ful-
filled:

(i) In case (6.11), the trivial solution is (τ, T )-attractive for α ∈ (α̂−, α0)
and (τ, T )-repulsive for α ∈ (α0, α̂+). The differential equation (6.10)α

admits a (τ, T )-bifurcation, since the corresponding radii of (τ, T )-
attraction and repulsion satisfy

lim
αրα0

A
α
0 = 0 and lim

αցα0

R
α
0 = 0 .

(ii) In case (6.11), the trivial solution is (τ, T )-repulsive for α ∈ (α̂−, α0)
and (τ, T )-attractive for α ∈ (α0, α̂+). The differential equation (6.10)α

admits a (τ, T )-bifurcation, since the corresponding radii of (τ, T )-
repulsion and attraction satisfy

lim
αրα0

R
α
0 = 0 and lim

αցα0

A
α
0 = 0 .

Proof. Let λα denote the general solution of (6.10)α. We will only prove asser-
tion (i), since the proof of (ii) is similar. Therefore, (6.11) is fulfilled. W.l.o.g.,
we only treat the case (6.13). We choose α̂− < 0 < α̂+ such that

inf
α∈(α̂−,α̂+), t∈I

b(t, α) > 0 (6.17)
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and for all α ∈ (α̂−, α̂+), we have

lim sup
x→0

sup
t∈I

|r(t, x, α)|
|x| ≤ −γ

ln
(
min

{
Λα(τ + T, τ), Λα(τ, τ + T )

})

TK(α)

for some γ ∈ (0, 1). Because of these two relations, Theorem 5.10 can be
applied, and the attractivity and repulsivity of the trivial solutions as stated
in the theorem follows. We define

K− := inf
{
Λα(t, s) : t, s ∈ I, α ∈ [α̂−, α0]

}
∈ (0, 1) .

Assume to the contrary that

η := lim sup
αրα0

A
α
0 > 0

holds. Due to (6.17) and (6.15), there exist α̃− ∈ (α̂−, α0), ξ ∈ (0,K−η) and
L > 0 with

b(t, α)x2 + r(t, x, α) > L for all t ∈ I, α ∈ (α̃−, α0) and x ∈
[

K−ξ,
ξ

K−

]

.

(6.18)
We fix α̂ ∈ (α̃−, α0) such that A

α̂
0 > ξ and

Λα̂(τ + T, τ) ≥ 1 − K−LT

ξ
. (6.19)

For arbitrary τ ∈ I, the solution µτ (·) := λα̂(·, τ, ξ) of (6.10)α̂ is also a solution
of the inhomogeneous linear differential equation

ẋ = a(t, α̂)x + b(t, α̂)(µτ (t))2 + r(t, µτ (t), α̂) . (6.20)

Since A
α̂
0 > ξ, we have

µτ (τ + T ) < ξ . (6.21)

Moreover, from the definition of K− and (6.18), we directly get

µτ (τ + t) ≥ K−ξ for all t ∈ [0, T ] . (6.22)

We distinguish two cases.
Case 1. There exists a t̄ ∈ (0, T ] such that

µτ (τ + t̄) =
ξ

K−
.

We choose t̄ maximal with this property. Due to (6.21), this means that
µ(τ + t) ≤ ξ/K− for all t ∈ [t̄, T ]. Then the variation of constants formula
(cf. Proposition A.6), applied to (6.20), implies the relation
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µτ (τ + T )

= Λα̂(τ + T, τ + t̄)
ξ

K−
+

+

∫ τ+T

τ+t̄

Λα̂(τ + T, t)
(
b(t, α̂)(µτ (t))2 + r(t, µτ (t), α̂)

)
dt

(6.18)

≥ ξ + K−L(T − t̄) > ξ .

This contradicts (6.21).
Case 2. For all t ∈ (0, T ], we have

µτ (τ + t̄) <
ξ

K−
.

In this case, the variation of constants formula, applied to (6.20), yields

µτ (τ + T )

= Λα̂(τ + T, τ)ξ +

+

∫ τ+T

τ

Λα̂(τ + T, t)
(
b(t, α̂)(µτ (t))2 + r(t, µτ (t), α̂)

)
dt

(6.18), (6.19)

≥
(

1 − K−LT

ξ

)

ξ + K−LT = ξ .

This contradicts (6.21) also, and thus, limαրα0
A

α
0 = 0 is proved. Analogously,

one can show limαցα0
R

α
0 = 0 and treat the case (6.14). ⊓⊔

Remark 6.5.

(i) The hypothesis on the linear part implies that the (τ, T )-dichotomy spec-
trum of the linearization ẋ = a(t, α)x converges to {0} in Hausdorff
distance in the limit α → α0.

(ii) Condition (6.16) is only used to obtain the attractivity or repulsivity
of the trivial solution by applying Theorem 5.10. Alternatively, one can
directly postulate that the trivial solution changes their stability at the
parameter value α0 from, say, attractivity to repulsivity.

6.2 Nonautonomous Pitchfork Bifurcation

In this section, nonautonomous generalizations of the classical pitchfork
bifurcation are derived. First, the case of unbounded time domains is treated.

Theorem 6.6 (Nonautonomous pitchfork bifurcation, part I). Let
x− < 0 < x+ and α− < α+ be in R and I be an unbounded interval of the
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form R−
κ , R+

κ or R, respectively, and consider the nonautonomous differential
equation

ẋ = a(t, α)x + b(t, α)x3 + r(t, x, α) (6.23)α

with continuous functions a : I × (α−, α+) → R, b : I × (α−, α+) → R and
r : I × (x−, x+) × (α−, α+) → R fulfilling r(·, 0, ·) ≡ 0. Let Λα : I × I → R

be the transition operator of the linearized equation ẋ = a(t, α)x, and assume,
there exists an α0 ∈ (α−, α+) such that the following hypotheses hold:

• Hypothesis on linear part. There exist two functions β1, β2 : (α−, α+) → R

which are either both monotone increasing or both monotone decreasing
and K ≥ 1 such that limα→α0

β1(α) = limα→α0
β2(α) = 0 and

Λα(t, s) ≤ Keβ1(α)(t−s) for all α ∈ (α−, α+) and t, s ∈ I with t ≥ s ,

Λα(t, s) ≤ Keβ2(α)(t−s) for all α ∈ (α−, α+) and t, s ∈ I with t ≤ s .

• Hypothesis on nonlinearity. The cubic term either fulfills

0 < lim inf
α→α0

inf
t∈I

b(t, α) ≤ lim sup
α→α0

sup
t∈I

b(t, α) < ∞ (6.24)

or
−∞ < lim inf

α→α0

inf
t∈I

b(t, α) ≤ lim sup
α→α0

sup
t∈I

b(t, α) < 0 , (6.25)

and the remainder satisfies

lim
x→0

sup
α∈(α0−x2,α0+x2)

sup
t∈I

|r(t, x, α)|
|x|3 = 0 (6.26)

and

lim sup
α→α0

lim sup
x→0

sup
t∈I

2K|r(t, x, α)|
|x|max

{
−β1(α), β2(α)

} < 1 .

Then there exist α̂− < 0 < α̂+ such that the following statements are ful-
filled:

(i) In case (6.24) and the functions β1 and β2 are monotone increas-
ing, the trivial solution is past (future, all-time, respectively) attractive
for α ∈ (α̂−, α0) and past (future, all-time, respectively) repulsive for
α ∈ (α0, α̂+). The differential equation (6.23)α admits a past (future,
all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) attraction satisfy

lim
αրα0

A
α
0 = 0 .

If, in addition, I = R+
κ , then, for α ∈ (α̂−, α0), there exists a nontrivial

future repeller Rα ⊂ I×R, and we have a future repeller transition, since

lim
αրα0

dH

(
Rα(t), {0}

)
= 0 for all t ∈ I .
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(ii) In case (6.25) and the functions β1 and β2 are monotone increasing,
the trivial solution is all-time (past, future, respectively) attractive for
α ∈ (α̂−, α0) and past (future, all-time, respectively) repulsive for
α ∈ (α0, α̂+). The differential equation (6.23)α admits a past (future,
all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) repulsion satisfy

lim
αցα0

R
α
0 = 0 .

If, in addition, I = R−
κ , then, for α ∈ (α0, α̂+), there exists a nontrivial

past attractor Aα ⊂ I×R, and we have a past attractor transition, since

lim
αցα0

dH

(
Aα(t), {0}

)
= 0 for all t ∈ I .

(iii) In case (6.24) and the functions β1 and β2 are monotone decreasing,
the trivial solution is past (future, all-time, respectively) repulsive for
α ∈ (α̂−, α0) and past (future, all-time, respectively) attractive for
α ∈ (α0, α̂+). The differential equation (6.23)α admits a past (future,
all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) attraction satisfy

lim
αցα0

A
α
0 = 0 .

If, in addition, I = R+, then, for α ∈ (α0, α̂+), there exists a nontrivial
future repeller Rα ⊂ I×R, and we have a future repeller transition, since

lim
αցα0

dH

(
Rα(t), {0}

)
= 0 for all t ∈ I .

(iv) In case (6.25) and the functions β1 and β2 are monotone decreasing,
the trivial solution is past (future, all-time, respectively) repulsive for
α ∈ (α̂−, α0) and past (future, all-time, respectively) attractive for
α ∈ (α0, α̂+). The differential equation (6.23)α admits a past (future,
all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) repulsion satisfy

lim
αրα0

R
α
0 = 0 .

If, in addition, I = R−, then, for α ∈ (α̂−, α0), there exists a nontrivial
past attractor Aα ⊂ I×R, and we have a past attractor transition, since

lim
αրα0

dH

(
Aα(t), {0}

)
= 0 for all t ∈ I .

Proof. The first part of this theorem concerning the bifurcation of the attrac-
tion or repulsion areas, respectively, can be proved using the same methods
as in the proof of Theorem 6.1. We write α̃− and α̃+ for the constants α̂− and
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α̂+ used in this proof. For the proof of the attractor and repeller transitions,
w.l.o.g., we only consider the case (ii), i.e., I = R−

κ , condition (6.25) holds
and the functions β1 and β2 are monotone increasing. We denote the general
solution of (6.23)α by λα and define

b+ :=
1

2
sup

t∈I, α∈(α̃−,α̃+)

b(t, α) < 0 .

Due to (6.26), there exists a ρ > 0 such that

|r(t, x, α)| ≤ −b+|x|3 for all x ∈ [−ρ, ρ], α ∈
(
α0 − x2, α0 + x2

)
and t ∈ I .

The remaining proof is divided into two steps.
Step 1. For given x1, x2, x3 ≤ ρ such that 0 < x1 ≤ x2 ≤ x3/(2K), there exists
a uniquely determined constant

α∗ = α∗(x1, x2, x3) ∈
(
α0,min

{
α0 + x2

1, α̃+

}]

with the following properties:

• We have λα(t, τ, [−x2, x2]) ⊂ (−x3, x3) for all τ ≤ t ≤ κ and α ∈ (α0, α
∗),

• there exists a T ∗ > 0 such that for all α ∈ (α0, α
∗) and τ ≤ κ− T ∗, there

exist t+, t− ∈ [0, T ∗] with

λα(τ + t+, τ, x2) = x1 and λα(τ + t−, τ,−x2) = −x1 ,

• α∗ is chosen maximal, i.e., for all bigger α∗, one of the two above prop-
erties is violated.

We will only prove the existence of a constant α∗ such that

(a) for all τ ≤ t ≤ κ and α ∈ (α0, α
∗), we have λα(t, τ, x2) ≤ x3,

(b) there exists a T ∗ > 0 such that for all α ∈ (α0, α
∗) and τ ≤ κ − T ∗,

there exists a t+ ∈ [0, T ∗] with λα(τ + t+, τ, x2) = x1,

since the extension to the above assertion follows similarly and by taking the
supremum of all such α∗. We first note that for arbitrary τ ∈ I, the solution
µτ (·) := λα(·, τ, x2) of (6.23)α is also a solution of the inhomogeneous linear
differential equation

ẋ = a(t, α)x + b(t, α)(µτ (t))3 + r(t, µτ (t), α) . (6.27)

Concerning the expression

s(α, T ) := Keβ1(α)T x2 +
b+x3

1

K
T for all α ∈ (α0, α̃+) and T ≥ 0 ,

there exist α∗ ∈
(
α0,min

{
α0+x2

1, α̃+

}]
and T ∗ > 0 such that for α ∈ (α0, α

∗],
we have
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s(α, T ∗) < 0 and s(α, T ) ≤ 2Kx2 for all T ∈ [0, T ∗] .

This follows by choosing T ∗ such that (b+x3
1/K)T ∗ ≤ −2Kx2 and α∗ such that

exp
(
β1(α

∗)T ∗
)
≤ 2. Choose α ∈ (α0, α

∗] and τ, τ∗ ≤ κ with τ ≤ τ∗. Assume
that x1 ≤ µτ (t) ≤ x3 for all t ∈ [τ, τ∗]. Then the variation of constants formula
(cf. Proposition A.6), applied to (6.27), yields the relation

µτ (τ∗) = Λα(τ∗, τ)x2 +

+

∫ τ∗

τ

Λα(τ∗, s)
︸ ︷︷ ︸

≥ 1
K exp(β2(α)(τ∗−s))

(
b(s, α)(µτ (s))3 + r(s, µτ (s), α)
︸ ︷︷ ︸

≤b+x3
1<0

)
ds

≤ Keβ1(α)(τ∗−τ)x2 +

∫ τ∗

τ

1

K
eβ2(α)(τ∗−s)b+x3

1 ds

= Keβ1(α)(τ∗−τ)x2 +
b+x3

1

Kβ2(α)

(
eβ2(α)(τ∗−τ) − 1

)

≤ Keβ1(α)(τ∗−τ)x2 +
b+x3

1

K
(τ∗ − τ) = s(α, τ∗ − τ) .

Since s(α, T ) ≤ 2Kx2 ≤ x3 for all T ∈ [0, T ∗], the assumption µτ (t) ≤ x3 for
all t ∈ [τ, τ∗] is justified. This proves (a). Because of s(α, T ∗) < 0, also (b) is
fulfilled.
Step 2. There exists an α̂+ ∈ (α0, α̃+) such that for all α ∈ (α0, α̂+), there
exists a nontrivial past attractor Aα ⊂ I × R of (6.23)α which fulfills

lim
αցα0

dH

(
Aα(t), {0}

)
= 0 for all t ∈ I .

For x3 := ρ/K and x2 := x3/(2K), we consider γ : (0, x2) → (α0, α+), defined
by

γ(x1) := α∗(x1, x2, x3) for all x1 ∈ (0, x2) ,

where α∗ stems from Step 1. We set ᾱ := γ(x2/2) and define

δ(α) := inf
{
x1 ∈ (0, x2) : γ(x1) ≥ α

}
for all α ∈ (α0, ᾱ] .

Due to α0 < α∗(x1, x2, x3) ≤ α0 + x2
1, we have limx1→0 γ(x1) = α0, and since

γ is monotone increasing, this implies that δ is monotone increasing, δ(α) > 0
for all α ∈ (α0, ᾱ] and

lim
αցα0

δ(α) = 0 . (6.28)

We define

x̄3(α) := 3Kδ(α) and x̄2(α) := x̄1(α) :=
3

2
δ(α) for all α ∈ (α0, ᾱ]

and consider the function γ̄ : (α0, ᾱ] → (α0, α+), defined by

γ̄(α) := α∗
(
x̄1(α), x̄2(α), x̄3(α)

)
for all α ∈ (α0, ᾱ] ,
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where α∗ is taken from Step 1 again. Moreover, we define

M := [−x2, x2] and Bα := [−x̄3(α), x̄3(α)] for all α ∈ (α0, ᾱ]

and fix a β ∈ (α0, ᾱ] and an α ∈
(
α0,min {γ̄(β), β}

)
. Since α ≤ β and

x2 ≥ 3δ(β)/2 and due to the definition of δ, there exists a T ∗ > 0 such that
for all τ ≤ κ − T ∗, there exist t+, t− ∈ [0, T ∗] with

λα(t+, τ, x2) =
3

2
δ(β) = x̄2(β) and λα(t−, τ,−x2) = −3

2
δ(β) = −x̄2(β) .

Moreover, since α < γ̄(β), we have

λα

(
t, τ, [−x̄2(β), x̄2(β)]

)
⊂ (−x̄3(β), x̄3(β)) for all τ ≤ t ≤ κ .

This means that, considering equation (6.23)α, Bβ × I is past absorbing with
respect to {M×I}. Then, due to Theorem 2.35 (i), there exists a past attractor
Aα ⊂ Bβ × I. The past attractor is nontrivial due to Lemma 2.39. The limit
relation

lim
αրα0

dH

(
Aα(t), {0}

)
= 0 for all t ∈ I

follows from Aα ⊂ Bβ × I for all α < min {γ̄(β), β} and (6.28). By setting
α̂+ := γ̄(ᾱ), all assertions of this theorem are proved. ⊓⊔

Remark 6.7.

(i) In the limit α → α0, the attractivity or repulsivity of the trivial solution
is lost in both directions, i.e., no situation as described in Remark 6.2 (i)
can occur. This means that nonautonomous pitchfork bifurcations are
total bifurcations.

(ii) The hypothesis on the linear part implies that the past (future, all-
time, respectively) dichotomy spectrum of the linearization ẋ = a(t, α)x
converges to {0} in Hausdorff distance in the limit α → α0.

(iii) As in Example 6.3, one can show that Theorem 6.6 is a proper gener-
alization of the well-known autonomous pitchfork bifurcation (see, e.g.,
Wiggins [182, p. 267 f.] and Aulbach [14, Satz 7.10.8]).

(iv) Please note that the above bifurcation result is essentially the combina-
tion of two scenarios which are independent of each other. This means
that it is possible to consider (6.23)α only for α > α0 or α < α0, respec-
tively, in order to obtain the results which apply for these parameter
values.

We now compare case (i) of the above theorem with the equivalent
autonomous bifurcation.

Example 6.8. Let x− < 0 < x+ and α− < 0 < α+ be in R, and consider the
autonomous differential equation
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ẋ = f(x, α) , (6.29)

where the C4-function f : (x−, x+) × (α−, α+) → R satisfies the following
assumptions:

(i) f(0, α) = 0 for all α ∈ (α−, α+) ,

(ii) D1f(0, 0) = 0 ,

(iii) D1D2f(0, 0) > 0 ,

(iv) D2
1f(0, 0) = 0 ,

(v) D3
1f(0, 0) > 0 .

Then (6.29) admits an autonomous pitchfork bifurcation (see, e.g., Wiggins

[182, p. 268 f.], and see Figure 1.1 for the bifurcation diagram). There exist
a neighborhood U × V of (0, 0) in R2 and a C2-function h : U → V with
h(0) = 0 and

f(x, h(x)) = 0 for all x ∈ U.

Except the trivial equilibria and the equilibria described by h, there are no
other equilibria in U × V , and the function h is maximal at x = 0. It can be
verified that this situation fits into case (i) of Theorem 6.6: The functions β1

and β2 can be chosen to be increasing, since D1D2f(0, 0) > 0 by (iii), and
(6.24) holds, since D3

1f(0, 0) > 0 by (v). Due to (iii), the trivial equilibrium
of (6.29) is attractive for α < 0 and repulsive for α > 0, and this carries
over to nonautonomous notions of attractivity and repulsivity. The function h
describes repulsive equilibria of (6.29), and these equilibria are the boundary
of the domain of attraction of the trivial equilibria. Since limx→0 h(x) = 0, we
have a nonautonomous bifurcation in form of a shrinking domain of attraction.

The case of compact time intervals is treated in the last theorem of this
chapter.

Theorem 6.9 (Nonautonomous pitchfork bifurcation, part II). Let
x− < 0 < x+ and α− < α+ be in R and I := [τ, τ + T ], and consider the
nonautonomous differential equation

ẋ = a(t, α)x + b(t, α)x3 + r(t, x, α) (6.30)α

with continuous functions a : I × (α−, α+) → R, b : I × (α−, α+) → R and
r : I × (x−, x+) × (α−, α+) → R fulfilling r(·, 0, ·) ≡ 0. Let Λα : I × I → R

denote the transition operator of the linearized equation ẋ = a(t, α)x. We
define

K(α) := sup
{
Λα(t, s) : t, s ∈ I

}
for all α ∈ (α−, α+)

and assume, there exists an α0 ∈ (α−, α+) such that the following hypotheses
hold:
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• Hypothesis on linear part. We either have

Λα(τ + T, τ) < 1 for all α ∈ (α−, α0) and
Λα(τ + T, τ) > 1 for all α ∈ (α0, α+)

(6.31)

or
Λα(τ + T, τ) > 1 for all α ∈ (α−, α0) and
Λα(τ + T, τ) < 1 for all α ∈ (α0, α+) .

(6.32)

• Hypothesis on nonlinearity. The cubic term either fulfills

lim inf
α→α0

inf
t∈I

b(t, α) > 0 (6.33)

or
lim sup
α→α0

sup
t∈I

b(t, α) < 0 , (6.34)

and the remainder satisfies

lim
x→0

sup
α∈(α0−x2,α0+x2)

sup
t∈I

|r(t, x, α)|
|x|3 = 0 (6.35)

and

lim sup
α→α0

lim sup
x→0

sup
t∈I

− TK(α)|r(t, x, α)|
|x| ln

(
min

{
Λα(τ + T, τ), Λα(τ, τ + T )

}) < 1 .

(6.36)

Then there exist α̂− < 0 < α̂+ such that the following statements are ful-
filled:

(i) In case (6.31) and (6.33) is fulfilled, the trivial solution is (τ, T )-
attractive for α ∈ (α̂−, α0) and (τ, T )-repulsive for α ∈ (α0, α̂+). The
differential equation (6.30)α admits a (τ, T )-bifurcation, since the corre-
sponding radii of (τ, T )-attraction satisfy

lim
αրα0

A
α
0 = 0 .

(ii) In case (6.31) and (6.34) is fulfilled, the trivial solution is (τ, T )-
attractive for α ∈ (α̂−, α0) and (τ, T )-repulsive for α ∈ (α0, α̂+). The
differential equation (6.30)α admits a (τ, T )-bifurcation, since the corre-
sponding radii of (τ, T )-repulsion satisfy

lim
αցα0

R
α
0 = 0 .

(iii) In case (6.32) and (6.33) is fulfilled, the trivial solution is (τ, T )-repulsive
for α ∈ (α̂−, α0) and (τ, T )-attractive for α ∈ (α0, α̂+). The differen-
tial equation (6.30)α admits a (τ, T )-bifurcation, since the corresponding
radii of (τ, T )-attraction satisfy

lim
αցα0

A
α
0 = 0 .
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(iv) In case (6.32) and (6.34) is fulfilled, the trivial solution is (τ, T )-repulsive
for α ∈ (α̂−, α0) and (τ, T )-attractive for α ∈ (α0, α̂+). The differen-
tial equation (6.30)α admits a (τ, T )-bifurcation, since the corresponding
radii of (τ, T )-repulsion satisfy

lim
αրα0

R
α
0 = 0 .

Proof. This theorem can be proved using the same methods as in the proof
of Theorem 6.6. ⊓⊔

Remark 6.10.

(i) The hypothesis on the linear part implies that the (τ, T )-dichotomy spec-
trum of the linearization ẋ = a(t, α)x converges to {0} in Hausdorff
distance in the limit α → α0.

(ii) Condition (6.36) is only used to obtain the attractivity or repulsivity
of the trivial solution by applying Theorem 5.10. Alternatively, one can
directly postulate that the trivial solution changes the stability at the
parameter value α0 from, say, attractivity to repulsivity.
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Bifurcations of Asymptotically Autonomous

Systems

A nonautonomous differential equation

ẋ = f(t, x) (7.1)

is called past (future, respectively) asymptotically autonomous with limiting
equation

ẋ = g(x) (7.2)

if limt→−∞ f(t, x) = g(x) (limt→∞ f(t, x) = g(x), respectively) holds uni-
formly for every element x of the domain of the function g. This chapter deals
with the question of transferring bifurcation phenomena from the autonomous
differential equation (7.2) to the nonautonomous differential equation (7.1).

The study of asymptotically autonomous differential equations goes back to
Markus [115]. Markus discusses properties of nonautonomous ω-limit sets
and generalizes the Theorem of Poincaré & Bendixson (see, e.g., Palis &

de Melo [124] and Hirsch & Smale [81, Chapter 11]) to asymptotically
autonomous planar systems. His work has stimulated the qualitative theory of
nonautonomous differential equations (see, e.g., Sell [165, 166, 167]). Further
fundamental work on asymptotically autonomous systems was achieved by
Strauss & Yorke [178], Artstein [10, 11], Thieme [179] and Mischaikow

& Smith & Thieme [121] in the context of differential equations (see also
Kato & Martynyuk & Shestakov [90]); for difference equations, we refer
to Schönefuß [163].

It is not clear a priori under which assumptions certain behavior carries over
from the autonomous to the nonautonomous system. In fact, in Thieme [179],
several examples of asymptotically autonomous systems are studied that be-
have quite differently from the limiting equations. In Langa & Robinson &

Suárez [104], however, it is shown that the pullback and forward behavior of
a special asymptotically autonomous Lotka-Volterra system is consistent to
the underlying autonomous system.
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In the first section of this chapter, some basic properties of asymptotically
autonomous systems are prepared for later use. In Section 7.2, one-dimensional
bifurcations such as the pitchfork, transcritical and saddle node bifurcation
are discussed. Section 7.3 is devoted to study the Hopf bifurcation scenario.

Whenever considering a nonautonomous differential equation in this chapter,
its general solution is denoted by λ. For the flow of an autonomous differential
equation, we write φ.

7.1 Basic Properties of Asymptotically Autonomous

Systems

In this section, some useful lemmata are derived for asymptotically au-
tonomous differential equations. The first two lemmata deal with the question
of controlling the distances of the time evolutions of both systems on compact
time intervals.

Lemma 7.1. Consider an open set D ⊂ RN , a nonautonomous differential
equation

ẋ = f(t, x)

with a C1-function f : (−∞, 0) × D → RN and an autonomous differential
equation

ẋ = g(x)

with a C1-function g : D → RN . We assume that

lim
t→−∞

f(t, x) = g(x) uniformly for x ∈ D . (7.3)

Furthermore, let K ⊂ D be a compact and convex set. Then the following
statements are fulfilled:

(i) For all T > 0 and ε > 0, there exists a τ0 < −T such that for all T ′ ≤ T
and x ∈ K with

φ(t, x) ∈ K for all t ∈
[
0, T ′

]
,

the relation

‖λ(τ + t, τ, x) − φ(t, x)‖ ≤ ε for all τ ≤ τ0 and t ∈
[
0, T ′

]

is fulfilled.

(ii) For all T > 0 and ε > 0, there exists a τ0 < 0 such that for all T ′ ≤ T
and x ∈ K with

φ(−t, x) ∈ K for all t ∈
[
0, T ′

]
,
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the relation

‖λ(τ − t, τ, x) − φ(−t, x)‖ ≤ ε for all τ ≤ τ0 and t ∈
[
0, T ′

]

is fulfilled.

Proof. (i) Since D is open, there exist a compact and convex set K̃ and an
η > 0 such that Uη(K) ⊂ K̃. We choose T > 0 and ε > 0 arbitrarily and
define M := maxx∈K̃ ‖Dg(x)‖. Due to (7.3), there exists a τ0 < −T with

‖f(t + T, x) − g(x)‖ ≤ min {ε, η}
TeMT

for all t ≤ τ0 and x ∈ D .

For the rest of this proof, we fix arbitrary numbers τ ≤ τ0, T ′ ≤ T and x ∈ K
fulfilling

φ(t, x) ∈ K for all t ∈
[
0, T ′

]
.

Since for all t ∈
[
0, T ′

]
, we have

λ(t + τ, τ, x) − φ(t, x) =

∫ t

0

(
f(s + τ, λ(s + τ, τ, x)) − g(φ(s, x))

)
ds ,

it follows from the mean value inequality (see, e.g., Abraham & Marsden

& Ratiu [1, Theorem 2.4.8, p. 87]) that

‖λ(t + τ, τ, x) − φ(t, x)‖

≤
∫ t

0

∥
∥f(s + τ, λ(s + τ, τ, x)) − g(φ(s, x))

∥
∥ ds

≤
∫ t

0

(∥
∥f(s + τ, λ(s + τ, τ, x)) − g(λ(s + τ, τ, x))

∥
∥+

∥
∥g(λ(s + τ, τ, x)) − g(φ(s, x))

∥
∥

)

ds

≤ t min {ε, η}
TeMT

+ M

∫ t

0

‖λ(s + τ, τ, x) − φ(s, x)‖ds .

Assume, there exists a t ∈
(
0, T ′

)
with ‖λ(t + τ, τ, x) − φ(t, x)‖ ≥ min {ε, η}.

We define

T ∗ := min
{
t ∈
(
0, T ′

)
: ‖λ(t + τ, τ, x) − φ(t, x)‖ ≥ min {ε, η}

}
< T ′ .

Hence, from Gronwall’s inequality (Lemma A.8), we obtain

‖λ(T ∗ + τ, τ, x) − φ(T ∗, x)‖ ≤ T ∗ min {ε, η}
TeMT

eMT∗

< min {ε, η} .

This is a contradiction and finishes the proof of this lemma.
(ii) See proof of (i). ⊓⊔
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Lemma 7.2. Consider an open set D ⊂ RN , a nonautonomous differential
equation

ẋ = f(t, x)

with a C1-function f : (0,∞) × D → RN and an autonomous differential
equation

ẋ = g(x)

with a C1-function g : D → RN . We assume that

lim
t→∞

f(t, x) = g(x) uniformly for x ∈ D .

Furthermore, let K ⊂ D be a compact and convex set. Then the following
statements are fulfilled:

(i) For all T > 0 and ε > 0, there exists a τ0 > 0 such that for all T ′ ≤ T
and x ∈ K with

φ(t, x) ∈ K for all t ∈
[
0, T ′

]
,

the relation

‖λ(τ + t, τ, x) − φ(t, x)‖ ≤ ε for all τ ≥ τ0 and t ∈
[
0, T ′

]

is fulfilled.

(ii) For all T > 0 and ε > 0, there exists a τ0 > T such that for all T ′ ≤ T
and x ∈ K with

φ(−t, x) ∈ K for all t ∈
[
0, T ′

]
,

the relation

‖λ(τ − t, τ, x) − φ(t, x)‖ ≤ ε for all τ ≥ τ0 and t ∈
[
0, T ′

]

is fulfilled.

Proof. See proof of Lemma 7.1. ⊓⊔

In case of the classical autonomous bifurcations for ordinary differential equa-
tions (such as pitchfork, transcritical, saddle node and Hopf bifurcation), after
the bifurcation, the phase space can be separated into three invariant parts.
Therefore, we restrict attention to the following situation: Let D ⊂ RN be an
open and convex set and

ẋ = g(x)

be an autonomous differential equation with a C1-function g : D → RN . We
suppose that D is the disjoint union of

• a bounded and open set Si (inner area),
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x0

Si

(a)

x0

Si

(b) x0

Si

(c)

Fig. 7.1. The situation in case of a (a) pitchfork bifurcation, (b) transcritical or
saddle node bifurcation, (c) Hopf bifurcation.

• an open set So (outer area),

• a compact set S = ∂Si = ∂So with intS = ∅.
The occurrence of one of the above mentioned autonomous bifurcations means
that (exactly) one of the following two hypotheses holds:

• Hypothesis (H1). The following conditions are fulfilled:

(i) The inner area Si is forward invariant, i.e.,

φ(t, x) ∈ Si for all t ≥ 0 and x ∈ Si ,

and there exists an attractive equilibrium x0 ∈ Si such that for all
compact sets K ⊂ Si, we have

lim
t→∞

d
(
φ(t,K)

∣
∣{x0}

)
= 0 .

(ii) The outer area So is backward invariant, i.e.,

φ(t, x) ∈ So for all t ≤ 0 and x ∈ So ,

and S is a repeller, i.e., there exists an η > 0 with

lim
t→∞

d
(
φ(−t, Uη(S))

∣
∣S
)

= 0 .

(iii) S is invariant, i.e.,

φ(t, x) ∈ S for all t ∈ R and x ∈ S .

• Hypothesis (H2). The following conditions are fulfilled:

(i) The inner area Si is backward invariant, and there exists a repulsive
equilibrium x0 ∈ Si such that for all compact sets K ⊂ Si, we have

lim
t→∞

d
(
φ(−t,K)

∣
∣{x0}

)
= 0 .

(ii) The outer area So is forward invariant, and S is an attractor, i.e.,
there exists an η > 0 with

lim
t→∞

d
(
φ(t, Uη(S))

∣
∣S
)

= 0 .
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(iii) S is invariant.

Some easy consequences of Hypothesis (H1) are derived in the following
lemma.

Lemma 7.3. Under Hypothesis (H1), the following statements hold:

(i) For all δ > 0, there exists a T > 0 such that for x ∈ D with d(x, S) ≥ δ,
there exists a T̂ ∈ [0, T ] with

d
(
φ
(
T̂ , x
)
, S
)
≥ η .

(ii) For all γ > 0, there exists a δ > 0 with

φ
(
−t, Uδ

(
Si
))

⊂ Uγ

(
Si
)

for all t ≥ 0 .

Proof. (i) We choose δ > 0 arbitrarily. Due to the hypotheses, there exists a
T > 0 with

φ
(
−T,Uη(S)

)
⊂ Uδ/2(S) .

This implies the assertion.
(ii) We choose γ > 0 arbitrarily. Since S is repulsive and S = ∂Si, there exists
a T > 0 with

φ
(
−t, Uη

(
Si
))

⊂ Uγ

(
Si
)

for all t > T .

Arguing negatively, we assume that for all n ∈ N, there exist tn ∈ [0, T ] and
xn ∈ U1/n

(
Si
)

with

d
(
φ(−tn, xn), Si

)
= d
(
φ(−tn, xn), S

)
≥ γ .

Since S is compact, we assume w.l.o.g. that the sequence {xn}n∈N is conver-
gent with limit x ∈ S. Due to the continuity of the flow φ and the invariance
of S, there exists a β > 0 such that for all y ∈ Uβ(x) and t ∈ [0, T ], we have

d
(
φ(−t, y), S

)
<

γ

2
.

This is a contradiction and finishes the proof of this lemma. ⊓⊔

Remark 7.4. In case the outer area is forward invariant, statement (i) of the
above lemma can be simplified as follows: For all δ > 0, there exists a T > 0
such that for all x ∈ D with d(x, S) ≥ δ,

d
(
φ(T, x), S

)
≥ η

is fulfilled.

The following two lemmata deal with the question of determining past (fu-
ture, respectively) attraction areas of past (future, respectively) attractive
solutions.
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Lemma 7.5 (Attraction areas of past attractive solutions). We sup-
pose that Hypothesis (H1) is fulfilled and consider the nonautonomous differ-
ential equation

ẋ = f(t, x) (7.4)

with a C1-function f : (−∞, 0) × D → RN such that

lim
t→−∞

f(t, x) = g(x) uniformly for all x ∈ D .

Furthermore, for some τ < 0, let µ : (−∞, τ) → RN be a past attractive
solution of (7.4) with limt→−∞ µ(t) = x0. Then we have

A←
µ = Si − x0 .

If, in addition, Si is bounded, then there exist s < τ and a past repeller
R ⊂ (−∞, s) × D with

Si ⊂ lim inf
t→−∞

R(t) ⊂ lim sup
t→−∞

R(t) ⊂ cls Si .

Proof. The proof of this lemma is divided into four steps.
Step 1. A←

µ ⊃ Si − x0.
Since µ is past attractive, there exists a γ > 0 such that for all s < τ , we have

lim
t→−∞

d
(
λ
(
s, t, Uγ(µ(t))

)∣
∣µ(s)

)
= 0 . (7.5)

We choose y ∈ Si arbitrarily. Let C be a neighborhood of y such that there
exists a δ > 0 with cls Uδ(C) ⊂ Si. Since limt→−∞ µ(t) = x0, there exists a
t1 < τ such that

µ(t) ∈ Umin {γ/3,δ}(x0) for all t ≤ t1 .

Due to the attractivity of x0, there exists a T > 0 such that

d
(
φ(T,Uδ(C))

∣
∣{x0}

)
<

γ

3
.

Since it is possible to choose a compact and convex superset K ⊂ D of Si (D
is convex), Lemma 7.1 (i) implies that there exists a t2 < t1 − T with

‖λ(t + T, t, x) − φ(T, x)‖ ≤ γ

3
for all t ≤ t2 and x ∈ µ(t) + C − x0

︸ ︷︷ ︸

⊂Uδ(C)

.

Hence, for all t ≤ t2 and x ∈ µ(t) + C − x0, we have

‖λ(t + T, t, x) − µ(t + T )‖
≤ ‖λ(t + T, t, x) − φ(T, x)‖ + ‖φ(T, x) − x0‖ + ‖x0 − µ(t + T )‖
<

γ

3
+

γ

3
+

γ

3
= γ .
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Thus,

lim
t→−∞

d
(
λ
(
t2, t, µ(t) + C − x0

)∣
∣{µ(t2)}

)

= lim
t→−∞

d
(
λ
(
t2, t + T, λ(t + T, t, µ(t) + C − x0)

︸ ︷︷ ︸

⊂Uγ(µ(t+T ))

)∣
∣{µ(t2)}

) (7.5)
= 0 .

This implies y − x0 ∈ A←
µ , and since y ∈ Si has been chosen arbitrarily, we

have A←
µ ⊃ Si − x0.

Step 2. A←
µ ⊂ Si − x0.

We choose y ∈ So and β > 0 with Uβ(x0) ⊂ Si and define δ := d(y, S) > 0.
Due to Lemma 7.3 (i), there exists a T > 0 such that for all x ∈ So with
d(x, S) ≥ min

{
δ/2, η/3

}
, there exists a T̂ ∈ [0, T ] with

d
(
φ
(
T̂ , x
)
, S
)
≥ η and φ

(
T̂ , x
)
∈ So . (7.6)

Moreover, there exists a t1 < τ with

µ(t) ∈ Umin{δ/2,η/3,β/4}(x0) ⊂ Si for all t ≤ t1 .

Let K be a compact and convex superset of Uη(S). Then, because of

Lemma 7.1 (i), there exists a t2 < t1 such that for all T̃ ∈ [0, T ] and x ∈ K
with φ(t, x) ∈ K for all t ∈

[
0, T̃
]
, we have

∥
∥λ
(
t̂ + t, t̂, x

)
− φ(t, x)

∥
∥ ≤ min

{
β

2
,
η

3

}

for all t̂ ≤ t2 and t ∈
[
0, T̃
]
. (7.7)

We argue negatively and suppose that

lim
t→−∞

∥
∥λ
(
t2, t, y − x0 + µ(t)

)
− µ(t2)

∥
∥ = 0

holds. Therefore, since µ(t2) ∈ Uβ/4(x0), there exists a t3 < t2 with

λ
(
t2, t3, y − x0 + µ(t3)

)
∈ Uβ/2(x0) . (7.8)

We define

s := max

{

t ∈ [t3, t2] : d
(
λ
(
t, t3, y − x0 + µ(t3)

)
, S
)
≥ min

{
η

2
,
δ

2

}

and λ
(
t, t3, y − x0 + µ(t3)

)
∈ So

}

.

This implies the relations d
(
λ
(
s, t3, y − x0 + µ(t3)

)
, S
)

= min{η/2, δ/2} and

λ
(
s, t3, y − x0 + µ(t3)

)
∈ So.

We distinguish two cases.
Case 1. t2 − s ≤ T .
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Case 1.1. For all t ∈ [0, t2 − s], we have φ
(
t, λ
(
s, t3, y − x0 + µ(t3)

))
∈ K.

Due to (7.7), we have for all t ∈ [0, t2 − s],

∥
∥φ
(
t, λ
(
s, t3, y − x0 + µ(t3)

))
− λ
(
t + s, t3, y − x0 + µ(t3)

)∥
∥ ≤ β

2
.

Since φ
(
t, λ
(
s, t3, y − x0 + µ(t3)

))
∈ So for all t ∈ [0, t2 − s], this leads to

∥
∥λ
(
t2, t3, y − x0 + µ(t3)

)
− x0

∥
∥

≥
∥
∥φ
(
t2 − s, λ

(
s, t3, y − x0 + µ(t3)

))
− x0

∥
∥−

∥
∥λ
(
t2, t3, y − x0 + µ(t3)

)
− φ
(
t2 − s, λ

(
s, t3, y − x0 + µ(t3)

))∥
∥

≥ β − β

2
=

β

2
.

This is a contradiction to (7.8).
Case 1.2. There exists a t̃ ∈ [0, t2 − s] with φ

(
t̃, λ
(
s, t3, y − x0 + µ(t3)

))
/∈ K.

By defining

ŝ := inf
{
t ∈ [0, t2 − s] : φ

(
t, λ
(
s, t3, y − x0 + µ(t3)

))
/∈ K

}
> 0 ,

we obtain d
(
φ
(
ŝ, λ(s, t3, y − x0 + µ(t3))

)
, S
)
≥ η. Due to (7.7), the relation

∥
∥λ
(
ŝ + s, t3, y − x0 + µ(t3)

)
− φ
(
ŝ, λ
(
s, t3, y − x0 + µ(t3)

))∥
∥ ≤ η

3

holds, and hence, we have both d
(
λ
(
ŝ + s, t3, y − x0 + µ(t3)

)
, S
)
≥ 2η/3 and

λ
(
ŝ + s, t3, y − x0 + µ(t3)

)
∈ So. This is a contradiction to the definition of s.

Case 2. t2 − s > T .
Case 2.1. For all t ∈ [0, T ], we have φ

(
t, λ
(
s, t3, y − x0 + µ(t3)

))
∈ K.

Because of d
(
λ
(
s, t3, y−x0 +µ(t3)

)
, S
)

= min{δ/2, η/2} ≥ min{δ/2, η/3} and

(7.6), there exists a T̂ ∈ [0, T ] with

d
(
φ
(
T̂ , λ(s, t3, y − x0 + µ(t3))

)
, S
)
≥ η ,

and (7.7) yields

∥
∥φ
(
T̂ , λ

(
s, t3, y − x0 + µ(t3)

))
− λ
(
T̂ + s, t3, y − x0 + µ(t3)

)∥
∥ ≤ η

3
.

Together, this implies

d
(
λ
(
T̂ + s, t3, y − x0 + µ(t3)

)
, S
)
≥ 2

3
η

and
λ
(
T̂ + s, t3, y − x0 + µ(t3)

)
∈ So .

This is a contradiction to the definition of s.
Case 2.2. There exists a t̃ ∈ [0, T ] with φ

(
t̃, λ
(
s, t3, y − x0 + µ(t3)

))
/∈ K.
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This case is treated analogously to Case 1.2 (by writing T instead of t2 − s).
Consequently, we have y−x0 /∈ A←

µ . This leads to the assertion, since S = ∂Si,
int S = ∅ and A←

µ is open.
Step 3. For all κ ≤ η, there exist T > 0 and t1 < τ such that for all t2 < t1
and t > T , we have

λ
(
t2 − t, t2, U5κ/6

(
A←

µ + µ(t2)
))

⊂ U2κ/3

(
A←

µ + µ(t2 − t)
)
.

We choose κ ≤ η arbitrarily. By applying Lemma 7.3 (ii), there exists a δ > 0
with

φ
(
−t, Uδ

(
Si
))

⊂ Uκ/4

(
Si
)

for all t ≥ 0 . (7.9)

Due to the repulsivity of S, there exists a T > 0 with

φ
(
−t, Uκ

(
Si
))

⊂ Uδ/2

(
Si
)

for all t > T .

By choosing K as a convex and compact superset of ∪t∈[0,T ]φ
(
−t, Uκ

(
Si
))

, we
can apply Lemma 7.1 (ii), and we therefore get a t1 < τ with

‖λ(t2 − t, t2, x) − φ(−t, x)‖ ≤ δ

2
for all x ∈ Uκ

(
Si
)
, t2 < t1 and t ∈ [0, T ]

and ‖µ(t) − x0‖ ≤ κ

6
for all t < t1 . (7.10)

Thus,

λ
(
t2 − T, t2, Uκ

(
Si
))

⊂ Uδ

(
Si
)
⊂ Uκ/4

(
Si
)

for all t2 < t1 (7.11)

is fulfilled. Because of (7.9), this leads to

φ
(
−t, λ

(
t2 − T, t2, Uκ

(
Si
)))

⊂ Uκ/4

(
Si
)

for all t2 < t1 and t ≥ 0 .

Due to (7.10) and δ/2 < κ/4, we have

λ
(
t2 − t, t2, Uκ

(
Si
))

⊂ Uκ/2

(
Si
)

for all t2 < t1 and t ∈ [T, 2T ] .

Suppose now, there exist t̂ > 2T and t̂2 < t1 with

d
(
λ
(
t̂2 − t̂, t̂2, Uκ

(
Si
))∣
∣Si
)
≥ κ

2
.

We define

s := inf
{

t > 2T : d
(
λ
(
t̂2 − t, t̂2, Uκ

(
Si
))∣
∣Si
)
≥ κ

2

}

> 2T

and set t2 := t̂2 − s + T < t1. Consequently,

λ
(
t̂2 − s, t̂2, Uκ

(
Si
))

= λ
(
t2 − T, t2, λ

(
t2, t̂2, Uκ

(
Si
))

︸ ︷︷ ︸

⊂Uκ/2(Si)

) (7.11)
∈ Uκ/4

(
Si
)
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holds. This is a contradiction, i.e., for all t2 < t1 and t > T , we have

λ
(
t2 − t, t2, Uκ

(
Si
))

⊂ Uκ/2

(
Si
)
.

Since µ(t) ∈ Uκ/6(x0) for all t < t1, the relation

λ
(
t2 − t, t2, U5κ/6

(
A←

µ + µ(t2)
))

⊂ U2κ/3

(
A←

µ + µ(t2 − t)
)

is fulfilled for all t2 < t1 and t > T .
Step 4. Existence of the past repeller.
Repeated usage of Step 3 implies

lim
t→−∞

d
(

λ
(
t, τ, U5η/6

(
A←

µ + µ(τ)
))
∣
∣
∣A←

µ + µ(t)
)

= 0 for all τ < t1 .

Due to Theorem 2.41 (i), there exist s < τ and a past repeller R ⊂ (−∞, s)×D
with

A←
µ ⊂ lim inf

t→−∞

(
R(t) − µ(t)

)
⊂ lim sup

t→−∞

(
R(t) − µ(t)

)
⊂ clsA←

µ .

Since limt→−∞ µ(t) = x0, we have

Si ⊂ lim inf
t→−∞

R(t) ⊂ lim sup
t→−∞

R(t) ⊂ cls Si .

This finishes the proof of this lemma. ⊓⊔

Lemma 7.6 (Attraction areas of future attractive solutions). We sup-
pose that Hypothesis (H1) is fulfilled and consider the nonautonomous differ-
ential equation

ẋ = f(t, x) (7.12)

with a C1-function f : (0,∞) × D → RN such that

lim
t→∞

f(t, x) = g(x) uniformly for all x ∈ D .

Furthermore, for some τ > 0, let µ : (τ,∞) → RN be a future attractive
solution of (7.12) with limt→∞ µ(t) = x0. Then we have

A→
µ = Si − x0 .

If, in addition, Si is bounded, then there exist s > τ and a future repeller
R ⊂ (s,∞) × D with

Si ⊂ lim inf
t→∞

R(t) ⊂ lim sup
t→∞

R(t) ⊂ cls Si .
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Proof. The proof of this lemma is quite similar to that of Lemma 7.5, but this
is not clear a priori and there are important differences. In the following, the
entire proof is therefore written down.
Step 1. A→

µ ⊃ Si − x0.
Since µ is future attractive, there exists a γ > 0 such that for all s > τ , we
have

lim
t→∞

d
(
λ
(
t, s, Uγ(µ(s))

)∣
∣µ(t)

)
= 0 . (7.13)

We choose y ∈ Si arbitrarily. Let C be a neighborhood of y such that there
exists a δ > 0 with cls Uδ(C) ⊂ Si. Since limt→∞ µ(t) = x0, there exists a
t1 > τ such that

µ(t) ∈ Umin {γ/3,δ}(x0) for all t ≥ t1 .

Due to the attractivity of x0, there exists a T > 0 such that

d
(
φ(T,Uδ(C))

∣
∣{x0}

)
<

γ

3
.

Since it is possible to choose a compact and convex superset K ⊂ D of Si (D
is convex), Lemma 7.2 (i) implies that there exists a t2 > t1 with

‖λ(t + T, t, x) − φ(T, x)‖ ≤ γ

3
for all t ≥ t2 and x ∈ µ(t) + C − x0

︸ ︷︷ ︸

⊂Uδ(C)

.

Hence, for all t ≥ t2 and x ∈ µ(t) + C − x0, we have

‖λ(t + T, t, x) − µ(t + T )‖
≤ ‖λ(t + T, t, x) − φ(T, x)‖ + ‖φ(T, x) − x0‖ + ‖x0 − µ(t + T )‖
<

γ

3
+

γ

3
+

γ

3
= γ .

Thus, for all s ≥ t2, we have the relation

lim
t→∞

d
(
λ
(
t, s, µ(s) + C − x0

)∣
∣{µ(s)}

)

= lim
t→∞

d
(
λ
(
t, s + T, λ(s + T, t, µ(s) + C − x0)

︸ ︷︷ ︸

⊂Uγ(µ(s+T ))

)∣
∣{µ(t)}

) (7.13)
= 0 .

This implies y − x0 ∈ A→
µ , and since y ∈ Si has been chosen arbitrarily, we

have A→
µ ⊃ Si − x0.

Step 2. A→
µ ⊂ Si − x0.

We choose y ∈ So and β > 0 with Uβ(x0) ⊂ Si and define δ := d(y, S) > 0.
Due to Lemma 7.3 (i), there exists a T > 0 such that for all x ∈ So with
d(x, S) ≥ min{δ/2, η/3}, there exists a T̂ ∈ [0, T ] with
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d
(
φ
(
T̂ , x
)
, S
)
≥ η and φ

(
T̂ , x
)
∈ So . (7.14)

Moreover, there exists a t1 > τ with

µ(t) ∈ Umin{δ/2,η/3,β/4}(x0) ⊂ Si for all t ≥ t1 .

Let K be a compact and convex superset of Uη(S). Then, because of

Lemma 7.2 (i), there exists a t2 > t1 such that for all T̃ ∈ [0, T ] and x ∈ K
with φ(t, x) ∈ K for all t ∈

[
0, T̃
]
, we have

∥
∥λ
(
t̂+t, t̂, x

)
−φ(t, x)

∥
∥ ≤ min

{
β

2
,
η

3

}

for all t̂ ≥ t2 and t ∈
[
0, T̃
]
. (7.15)

We argue negatively and suppose, there exists a t3 ≥ t2 such that the relation

lim
t→∞

∥
∥λ
(
t, t3, y − x0 + µ(t3)

)
− µ(t)

∥
∥ = 0

holds. Therefore, since limt→∞ µ(t) = x0, there exists a t4 > t3 with

λ
(
t4, t3, y − x0 + µ(t3)

)
∈ Uβ/2(x0) . (7.16)

We define

s := max

{

t ∈ [t3, t4] : d
(
λ
(
t, t3, y − x0 + µ(t3)

)
, S
)
≥ min

{
η

2
,
δ

2

}

and λ(t, t3, y − x0 + µ(t3)) ∈ So

}

.

This implies the relations d
(
λ
(
s, t3, y − x0 + µ(t3)

)
, S
)

= min
{
η/2, δ/2

}
and

λ
(
s, t3, y − x0 + µ(t3)

)
∈ So.

We distinguish two cases.
Case 1. t4 − s ≤ T .
Case 1.1. For all t ∈ [0, t4 − s], we have φ

(
t, λ
(
s, t3, y − x0 + µ(t3)

))
∈ K.

Due to (7.15), we have for all t ∈ [0, t4 − s],

∥
∥φ
(
t, λ
(
s, t3, y − x0 + µ(t3)

))
− λ
(
t + s, t3, y − x0 + µ(t3)

)∥
∥ ≤ β

2
.

Since φ
(
t, λ
(
s, t3, y − x0 + µ(t3)

))
∈ So for all t ∈ [0, t4 − s], this leads to

∥
∥λ
(
t4, t3, y − x0 + µ(t3)

)
− x0

∥
∥

≥
∥
∥φ
(
t4 − s, λ

(
s, t3, y − x0 + µ(t3)

))
− x0

∥
∥−

∥
∥λ
(
t4, t3, y − x0 + µ(t3)

)
− φ
(
t4 − s, λ

(
s, t3, y − x0 + µ(t3)

))∥
∥

≥ β − β

2
=

β

2
.
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This is a contradiction to (7.16).
Case 1.2. There exists a t̃ ∈ [0, t4 − s] with φ

(
t̃, λ
(
s, t3, y − x0 + µ(t3)

))
/∈ K.

By defining

ŝ := inf
{
t ∈ [0, t4 − s] : φ

(
t, λ
(
s, t3, y − x0 + µ(t3)

))
/∈ K

}
> 0 ,

we have d
(
φ
(
ŝ, λ
(
s, t3, y − x0 + µ(t3)

))
, S
)
≥ η. Due to (7.15), the relation

∥
∥λ
(
ŝ + s, t3, y − x0 + µ(t3)

)
− φ
(
ŝ, λ
(
s, t3, y − x0 + µ(t3)

))∥
∥ ≤ η

3

holds. Hence, we have both d
(
λ
(
ŝ + s, t3, y − x0 + µ(t3)

)
, S
)
≥ 2η/3 and

λ
(
ŝ + s, t3, y − x0 + µ(t3)

)
∈ So. This is a contradiction to the definition of s.

Case 2. t4 − s > T .
Case 2.1. For all t ∈ [0, T ], we have φ

(
t, λ
(
s, t3, y − x0 + µ(t3)

))
∈ K.

Because of d
(
λ
(
s, t3, y−x0 +µ(t3)

)
, S
)

= min{δ/2, η/2} ≥ min{δ/2, η/3} and

(7.14), there exists a T̂ ∈ [0, T ] with

d
(
φ
(
T̂ , λ

(
s, t3, y − x0 + µ(t3)

))
, S
)
≥ η ,

and (7.15) yields

∥
∥φ
(
T̂ , λ

(
s, t3, y − x0 + µ(t3)

))
− λ
(
T̂ + s, t3, y − x0 + µ(t3)

)∥
∥ ≤ η

3
.

Together, this implies

d
(
λ
(
T̂ + s, t3, y − x0 + µ(t3)

)
, S
)
≥ 2

3
η

and
λ
(
T̂ + s, t3, y − x0 + µ(t3)

)
∈ So .

This is a contradiction to the definition of s.
Case 2.2. There exists a t̃ ∈ [0, T ] with φ

(
t̃, λ
(
s, t3, y − x0 + µ(t3)

))
/∈ K.

This case is treated analogously to Case 1.2 (by writing T instead of t4 − s).
Consequently, we have y−x0 /∈ A→

µ . This leads to the assertion, since S = ∂Si,
int S = ∅ and A→

µ is open.
Step 3. For all κ ≤ η, there exist T > 0 and t1 > 0 such that for all t2 > t1
and t > T , we have

λ
(
t2, t2 + t, U5κ/6

(
A→

µ + µ(t2 + t)
))

⊂ U2κ/3

(
A→

µ + µ(t2)
)
.

We choose κ ≤ η arbitrarily. By applying Lemma 7.3 (ii), there exists a δ > 0
with

φ
(
−t, Uδ

(
Si
))

⊂ Uκ/4

(
Si
)

for all t ≥ 0 . (7.17)

Due to the repulsivity of S, there exists a T > 0 with
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φ
(
−t, Uκ

(
Si
))

⊂ Uδ/2

(
Si
)

for all t > T .

By choosing K as a convex and compact superset of ∪t∈[0,T ]φ
(
−t, Uκ

(
Si
))

,
we can apply Lemma 7.2 (ii), and we therefore get a t1 > τ with

‖λ(t2, t2 + t, x) − φ(−t, x)‖ ≤ δ

2
for all x ∈ Uκ

(
Si
)
, t2 > t1 and t ∈ [0, T ]

and ‖µ(t) − x0‖ ≤ κ

6
for all t > t1 . (7.18)

Thus,

λ
(
t2, t2 + T,Uκ

(
Si
))

⊂ Uδ

(
Si
)
⊂ Uκ/4

(
Si
)

for all t2 > t1 (7.19)

is fulfilled. Because of (7.17), this leads to

φ
(
−t, λ

(
t2 − T, t2, Uκ

(
Si
)))

⊂ Uκ/4

(
Si
)

for all t2 > t1 and t ≥ 0 .

Due to (7.18) and δ/2 < κ/4, we have

λ
(
t2, t2 + t, Uκ

(
Si
))

⊂ Uκ/2

(
Si
)

for all t2 > t1 and t ∈ [T, 2T ] .

Suppose now that there exist t̂ > 2T and t̂2 < t1 with

d
(
λ
(
t̂2, t̂2 + t̂, Uκ

(
Si
))∣
∣Si
)
≥ κ

2
.

We define

s := inf
{

t > 2T : d
(
λ
(
t̂2, t̂2 + t, Uκ

(
Si
))∣
∣Si
)
≥ κ

2

}

> 2T

and set t2 := t̂2 + s − T > t1. Consequently,

λ
(
t̂2, t̂2 + s, Uκ

(
Si
))

= λ
(
t̂2, t2, λ

(
t2, t̂2 + s, Uκ

(
Si
))

︸ ︷︷ ︸

(7.19)

⊂ Uκ/2

(
Si
)

)
∈ Uκ/4

(
Si
)

holds. This is a contradiction, i.e., for all t2 < t1 and t > T , we have

λ
(
t2, t2 + t, Uκ

(
Si
))

⊂ Uκ/2

(
Si
)
.

Since µ(t) ∈ Uκ/6(x0) for all t > t1, the relation

λ
(
t2, t2 + t, U5κ/6

(
Si + µ(t2 + t)

))
⊂ U2κ/3

(
Si + µ(t2)

)

is fulfilled for all t2 > t1 and t > T .
Step 4. Existence of the future repeller.
Repeated usage of Step 3 implies that for all ε > 0, there exists an s > 0 such
that for all τ ≥ s, there exists a T > 0 with
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λ
(
τ, τ + t, Uη/2

(
A→

µ + µ(τ + t)
))

⊂ Uε

(
A→

µ + µ(τ)
)

for all t ≥ T .

Because of Theorem 2.41 (iv), there exists an s < τ and a future repeller
R ⊂ (s,∞) × D with

A→
µ ⊂ lim inf

t→∞

(
R(t) − µ(t)

)
⊂ lim sup

t→∞

(
R(t) − µ(t)

)
⊂ clsA→

µ .

Since limt→∞ µ(t) = x0, we have

Si ⊂ lim inf
t→∞

R(t) ⊂ lim sup
t→∞

R(t) ⊂ cls Si .

This finishes the proof of this lemma. ⊓⊔

Please note that similar lemmata can be derived for the determination of past
(future, respectively) repulsion areas of past (future, respectively) repulsive
solutions.

7.2 Bifurcations in Dimension One

In this section, one-dimensional differential equations are studied which ex-
hibit pitchfork, transcritical or saddle node bifurcations. It is shown that under
special assumptions, this bifurcation behavior is transferred to asymptotically
autonomous systems.

Let −∞ ≤ x− < x+ ≤ ∞ and α0 < α1, and consider an autonomous differ-
ential equation

ẋ = g(x, α) (7.20)α

depending on a parameter α with a C1-function g : (x−, x+) × (α0, α1] → R.
We assume that there exists an x0 ∈ (x−, x+) with

g(x0, α) = 0 and D1g(x0, α) �= 0 for all α ∈ (α0, α1] .

In the next four lemmata, conditions for the existence of nonautonomous
counterparts for the equilibrium x0 are studied. In a first instance, we restrict
the parameter area to compact subintervals of (α0, α1].

Lemma 7.7 (Existence of past attractive solutions). Let α− ≤ α+ be
in (α0, α1], and consider the nonautonomous differential equation

ẋ = f(t, x, α) (7.21)α

with a C1-function f : (−∞, 0) × (x−, x+) × [α−, α+] → R. We assume that

lim
t→−∞

f(t, x, α) = g(x, α) and lim
t→−∞

D2f(t, x, α) = D1g(x, α)
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hold uniformly for all x ∈ (x−, x+) and α ∈ [α−, α+]. Furthermore, we sup-
pose that

D1g(x0, α) < 0 for all α ∈ [α−, α+] .

Then there exist a τ < 0 and a continuous function µ : (−∞, τ ]×[α−, α+] → R

such that µ(·, α) is the uniquely determined past attractive solution of (7.21)α

which fulfills
lim

t→−∞
µ(t, α) = x0 .

In addition, for fixed α ∈ [α−, α+], the following statements are fulfilled:

(i) If there exist x−
0 < x0 and x+

0 > x0 with

g
(
x−

0 , α
)

= g
(
x+

0 , α
)

= 0 , D1g
(
x−

0 , α
)

> 0 and D1g
(
x+

0 , α
)

> 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x

+
0

)
, we have

A←
µ(·,α) =

(
x−

0 − x0, x
+
0 − x0

)
.

Furthermore, there exists a past repeller R(α) of (7.21)α with

(
x−

0 , x+
0

)
⊂ lim inf

t→−∞
R(α, t) ⊂ lim sup

t→−∞
R(α, t) ⊂

[
x−

0 , x+
0

]
.

(ii) If there exists an x−
0 < x0 with

g
(
x−

0 , α
)

= 0 and D1g
(
x−

0 , α
)

> 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x+

)
, we have

A←
µ(·,α) =

(
x−

0 − x0, x+ − x0

)
.

(iii) If there exists an x+
0 > x0 with

g
(
x+

0 , α
)

= 0 and D1g
(
x+

0 , α
)

> 0 ,

and g(x, α) �= 0 for all x ∈
(
x−, x0

)
∪
(
x0, x

+
0

)
, we have

A←
µ(·,α) =

(
x− − x0, x

+
0 − x0

)
.

Remark 7.8. The statement (i) of above lemma corresponds to the au-
tonomous pitchfork bifurcation, where after the bifurcation, there are three
equilibria, and (ii) and (iii) describe the situation after a transcritical or saddle
node bifurcation.

Proof (Lemma 7.7). The proof is divided into three steps.
Step 1. There exist a τ < 0 and a continuous function µ : (−∞, τ ]×[α−, α+] →
R such that µ(·, α) is the uniquely determined past attractive solution of
(7.21)α which fulfills limt→−∞ µ(t, α) = x0.
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Due to the hypotheses (please note that [α−, α+] is compact and g is uniformly
continuous on compact sets), there exist β > 0, γ < 0 and τ < 0 with

f(t, x0 − β, α) > 0 , f(t, x0 + β, α) < 0 and D2f(t, x, α) ≤ γ

for all x ∈ U2β(x0), t ≤ τ and α ∈ [α−, α+]. We fix an α ∈ [α−, α+] for the
rest of this step. The sets

M1 :=
{
x ∈ cls Uβ(x0) : There exists a t < τ with λ(t, τ, x, α) < x0 − β

}

and

M2 :=
{
x ∈ cls Uβ(x0) : There exists a t < τ with λ(t, τ, x, α) > x0 + β

}

are obviously nonempty and due to the continuity of the general solu-
tion (cf. Proposition A.3) relatively open in clsUβ(x0). Hence, we have
M1 ∪ M2 � cls Uβ(x0). Therefore, there exists a y ∈ Uβ(x0) such that
µ(t, α) := λ(t, τ, y, α) ∈ Uβ(x0) for all t ≤ τ . To show that this solution
is past attractive, we study the differential equation of the perturbed motion

ẋ = h(t, x, α) := f
(
t, x + µ(t, α), α

)
− f
(
t, µ(t, α), α

)
,

whose general solution will be denoted by λ̃. Due to the mean value theorem
(see, e.g., Lang [102, Theorem 4.2, p. 341]), we have

h(t, x, α) = x

∫ 1

0

D2h(t, θx, α) dθ = x

∫ 1

0

D2f
(
t, θx + µ(t, α), α

)
dθ .

This implies

h(t, x, α) ≥ γx for all t ≤ τ and x ∈ (−β, 0)

and h(t, x, α) ≤ γx for all t ≤ τ and x ∈ (0, β) .

We therefore obtain

lim
t→−∞

d
(
λ̃
(
τ, t, Uβ/2(0), α

)∣
∣{0}

)
= 0 ,

and consequently,

lim
t→−∞

d
(
λ
(
τ, t, Uβ/2(µ(t, α)), α

)∣
∣{µ(τ, α)}

)
= 0

holds (cf. Proposition A.7). Thus, the solution µ(·, α) is past attractive. More-
over, the limit relation limt→−∞ µ(t, α) = x0 is obviously fulfilled. The unique-
ness of µ(·, α) follows directly from Proposition 2.37 (i).
Step 2. µ is continuous.
First, we consider the function d : [α−, α+] → (x−, x+), defined by

d(α) := µ(τ, α) for all α ∈ [α−, α+] .
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We suppose that there exist a α̃ ∈ [α−, α+] and a sequence {α̃n}n∈N with
limn→∞ α̃n = α̃ such that {d(α̃n)}n∈N does not converge to d(α̃). Since this
sequence is bounded, we assume w.l.o.g. that it is convergent with the limit
x̃ ∈ cls Uβ(x0), x̃ �= d(α̃). Because of Step 1, there exists a t̃ < τ such that
λ
(
t̃, τ, x̃, α̃

)
/∈ cls Uβ(x0). The continuity of the general solution implies the

existence of a neighborhood V of (x̃, α̃) such that

λ
(
t̃, τ, x, α

)
/∈ cls Uβ(x0) for all (x, α) ∈ V .

In particular, there exists an n ∈ N with (d(α̃n), α̃n) ∈ V . This implies

µ
(
t̃, α̃n

)
= λ
(
t̃, τ, µ(τ, α̃n), α̃n

)
= λ
(
t̃, τ, d(α̃n), α̃n

)
/∈ cls Uβ(x0) .

This is a contradiction, and therefore, the function d is continuous. To prove
the continuity of µ, we choose a sequence

{(
t̂n, α̂n

)}

n∈N
in (−∞, τ ]× [α−, α+]

with limn→∞

(
t̂n, α̂n

)
=
(
t̂, α̂
)
. The continuity of µ follows from

lim
n→∞

µ
(
t̂n, α̂n

)
= lim

n→∞
λ
(
t̂n, τ, µ(τ, α̂n), α̂n

)

= lim
n→∞

λ
(
t̂n, τ, d(α̂n), α̂n

)

= λ
(
t̂, τ, d(α̂), α̂

)
= µ
(
t̂, α̂
)
.

Step 3. The statements (i), (ii) and (iii) are fulfilled.
The asserted relations for A←

µ(·,α) and the existence of a past repeller follow

directly from Lemma 7.5 if we define the repulsive set S as
{
x−

0 , x+
0

}
in case

(i),
{
x−

0

}
in case (ii) or

{
x+

0

}
in case (iii), respectively (cf. also Figure 7.1).

⊓⊔

Lemma 7.9 (Existence of future attractive solutions). Let α− ≤ α+ be
in (α0, α1], and consider the nonautonomous differential equation

ẋ = f(t, x, α) (7.22)α

with a C1-function f : (0,∞) × (x−, x+) × [α−, α+] → R. We assume that

lim
t→∞

f(t, x, α) = g(x, α) and lim
t→∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ [α−, α+]. Furthermore, we sup-
pose that

D1g(x0, α) < 0 for all α ∈ [α−, α+] .

Then there exist τ > 0 and β > 0 such that every solution λ(·, τ, x, α) for
x ∈ Uβ(x0) and α ∈ [α−, α+] is future attractive with

lim
t→∞

λ(t, τ, x, α) = x0 .

Let ν : [τ,∞) → R be such a solution of (7.22)α for fixed α ∈ [α−, α+]. Then
the following statements are fulfilled:
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(i) If there exist x−
0 < x0 and x+

0 > x0 with

g
(
x−

0 , α
)

= g
(
x+

0 , α
)

= 0 , D1g
(
x−

0 , α
)

> 0 and D1g
(
x+

0 , α
)

> 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x

+
0

)
, we have

A→
ν =

(
x−

0 − x0, x
+
0 − x0

)
.

Furthermore, there exists a future repeller R(α) of (7.22)α with

(
x−

0 , x+
0

)
⊂ lim inf

t→∞
R(α, t) ⊂ lim sup

t→∞
R(α, t) ⊂

[
x−

0 , x+
0

]
.

(ii) If there exists an x−
0 < x0 with

g
(
x−

0 , α
)

= 0 and D1g
(
x−

0 , α
)

> 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x+

)
, we have

A→
ν =

(
x−

0 − x0, x+ − x0

)
.

(iii) If there exists an x+
0 > x0 with

g
(
x+

0 , α
)

= 0 and D1g
(
x+

0 , α
)

> 0 ,

and g(x, α) �= 0 for all x ∈
(
x−, x0

)
∪
(
x0, x

+
0

)
, we have

A→
ν =

(
x− − x0, x

+
0 − x0

)
.

Proof. Due to the hypotheses (please note that [α−, α+] is compact and g is
uniformly continuous on compact sets), there exist β > 0, γ < 0 and τ > 0
with

f(t, x0 − β, α) > 0 , f(t, x0 + β, α) < 0 and D2f(t, x, α) ≤ γ

for all x ∈ U2β(x0), t ≥ τ and α ∈ [α−, α+]. We fix x̂ ∈ Uβ(x0) and
α ∈ [α−, α+] and consider for the rest of the proof in particular the solution
ν(·) := λ(·, τ, x̂, α) of (7.22)α on the interval [τ,∞). Obviously, the relation
limt→∞ ν(t) = x0 holds. To show that this solution is future attractive, we
study the differential equation of the perturbed motion

ẋ = h(t, x, α) := f
(
t, x + ν(t), α

)
− f
(
t, ν(t), α

)
,

whose general solution will be denoted by λ̃. Due to the mean value theorem,
we have

h(t, x, α) = x

∫ 1

0

D2h(t, θx, α) dθ = x

∫ 1

0

D2f
(
t, θx + ν(t), α

)
dθ .



7.2 Bifurcations in Dimension One 173

This implies

h(t, x, α) ≥ γx for all t ≥ τ and x ∈ (−β, 0)

and h(t, x, α) ≤ γx for all t ≥ τ and x ∈ (0, β) .

We therefore obtain

lim
t→∞

d
(
λ̃
(
t, s, Uβ/2(0), α

)∣
∣{0}

)
= 0 for all s ≥ τ ,

and consequently,

lim
t→∞

d
(
λ
(
t, s, Uβ/2(ν(s)), α

)∣
∣{ν(t)}

)
= 0 for all s ≥ τ

holds (cf. Proposition A.7). Thus, the solution ν is future attractive. The
asserted relations for A→

ν and the existence of a future repeller follow directly
from Lemma 7.6 if we define the repulsive set S as

{
x−

0 , x+
0

}
in case (i),

{
x−

0

}

in case (ii) or
{
x+

0

}
in case (iii), respectively (cf. also Figure 7.1). ⊓⊔

Under the assumption D1g(x0, α) > 0 for all α ∈ [α−, α+], analogous state-
ments are obtained for past (future, respectively) repulsive solutions.

Lemma 7.10 (Existence of past repulsive solutions). Let α− ≤ α+ be
in (α0, α1], and consider the nonautonomous differential equation

ẋ = f(t, x, α) (7.23)α

with a C1-function f : (−∞, 0) × (x−, x+) × [α−, α+] → R. We assume that

lim
t→−∞

f(t, x, α) = g(x, α) and lim
t→−∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ [α−, α+]. Furthermore, we sup-
pose that

D1g(x0, α) > 0 for all α ∈ [α−, α+] .

Then there exist τ < 0 and β > 0 such that every solution λ(·, τ, x, α) for
x ∈ Uβ(x0) and α ∈ [α−, α+] is past repulsive with

lim
t→−∞

λ(t, τ, x, α) = x0 .

Let ν : (−∞, τ ] → R be such a solution of (7.23)α for fixed α ∈ [α−, α+].
Then the following statements are fulfilled:

(i) If there exist x−
0 < x0 and x+

0 > x0 with

g
(
x−

0 , α
)

= g
(
x+

0 , α
)

= 0 , D1g
(
x−

0 , α
)

< 0 and D1g
(
x+

0 , α
)

< 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x

+
0

)
, we have
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R←
ν =

(
x−

0 − x0, x
+
0 − x0

)
.

Furthermore, there exists a past attractor A(α) of (7.23)α with

(
x−

0 , x+
0

)
⊂ lim inf

t→−∞
A(α, t) ⊂ lim sup

t→−∞
A(α, t) ⊂

[
x−

0 , x+
0

]
.

(ii) If there exists an x−
0 < x0 with

g
(
x−

0 , α
)

= 0 and D1g
(
x−

0 , α
)

< 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x+

)
, we have

R←
ν =

(
x−

0 − x0, x+ − x0

)
.

(iii) If there exists an x+
0 > x0 with

g
(
x+

0 , α
)

= 0 and D1g
(
x+

0 , α
)

< 0 ,

and g(x, α) �= 0 for all x ∈
(
x−, x0

)
∪
(
x0, x

+
0

)
, we have

R←
ν =

(
x− − x0, x

+
0 − x0

)
.

Proof. The assertions follow from Proposition 2.32 and Lemma 7.9. ⊓⊔

Lemma 7.11 (Existence of future repulsive solutions). Let α− ≤ α+

be in (α0, α1], and consider the nonautonomous differential equation

ẋ = f(t, x, α) (7.24)α

with a C1-function f : (0,∞) × (x−, x+) × [α−, α+] → R. We assume that

lim
t→∞

f(t, x, α) = g(x, α) and lim
t→∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ [α−, α+]. Furthermore, we sup-
pose that

D1g(x0, α) > 0 for all α ∈ [α−, α+] .

Then there exist a τ > 0 and a continuous function µ : [τ,∞)× [α−, α+] → R

such that µ(·, α) is the uniquely determined future repulsive solution of (7.24)α

which fulfills
lim

t→∞
µ(t, α) = x0 .

In addition, for fixed α ∈ [α−, α+], the following statements are fulfilled:

(i) If there exist x−
0 < x0 and x+

0 > x0 with

g
(
x−

0 , α
)

= g
(
x+

0 , α
)

= 0 , D1g
(
x−

0 , α
)

< 0 and D1g
(
x+

0 , α
)

< 0 ,
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and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x

+
0

)
, we have

R→
µ(·,α) =

(
x−

0 − x0, x
+
0 − x0

)
.

Furthermore, there exists a future attractor A(α) of (7.24)α with

(
x−

0 , x+
0

)
⊂ lim inf

t→∞
A(α, t) ⊂ lim sup

t→∞
A(α, t) ⊂

[
x−

0 , x+
0

]
.

(ii) If there exists an x−
0 < x0 with

g
(
x−

0 , α
)

= 0 and D1g
(
x−

0 , α
)

< 0 ,

and g(x, α) �= 0 for all x ∈
(
x−

0 , x0

)
∪
(
x0, x+

)
, we have

R→
µ(·,α) =

(
x−

0 − x0, x+ − x0

)
.

(iii) If there exists an x+
0 > x0 with

g
(
x+

0 , α
)

= 0 and D1g
(
x+

0 , α
)

< 0 ,

and g(x, α) �= 0 for all x ∈
(
x−, x0

)
∪
(
x0, x

+
0

)
, we have

R→
µ(·,α) =

(
x− − x0, x

+
0 − x0

)
.

Proof. The assertions follow from Proposition 2.32 and Lemma 7.7. ⊓⊔

In the following, we observe that pitchfork bifurcations of (7.20)α give rise to
total nonautonomous bifurcations. Transcritical and saddle node bifurcations,
however, lead to partial nonautonomous bifurcations.

First, the attention is restricted to the situation that the autonomous dif-
ferential equation (7.20)α admits a supercritical pitchfork bifurcation at
(x0, α0). More precisely, there exist a monotone increasing continuous func-
tion h1 : (α0, α1] → (x−, x+) and a monotone decreasing continuous function
h2 : (α0, α1] → (x−, x+) such that for all α ∈ (α0, α1], we have

h1(α) < x0 < h2(α) ,

g(h1(α), α) = g(x0, α) = g(h2(α), α) = 0 ,

D1g(h1(α), α) �= 0 , D1g(x0, α) �= 0 , D1g(h2(α), α) �= 0 .

Moreover, for all α ∈ (α0, α1] and x ∈ (h1(α), x0) ∪ (x0, h2(α)), g(x, α) �= 0 is
satisfied, and we have limα→α0

h1(α) = limα→α0
h2(α) = x0.

Theorem 7.12 (Total past bifurcation). We suppose that (7.20)α admits
a pitchfork bifurcation as described above and consider the nonautonomous
differential equation

ẋ = f(t, x, α) (7.25)α
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with a C1-function f : (−∞, 0) × (x−, x+) × (α0, α1] → R. We assume that

lim
t→−∞

f(t, x, α) = g(x, α) and lim
t→−∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ (α0, α1]. Then the following
statements are fulfilled:

(i) If D1g(x0, α1) < 0 is satisfied, then there exists a continuous function
µ : D ⊂ R × (α0, α1] → R such that µ(·, α) is a past attractive solution
of (7.25)α. We have a total past bifurcation, since

lim
αցα0

d
(

A←
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a past repeller R(α). Due
to

lim
αցα0

d

(

lim sup
t→−∞

R(α, t)
∣
∣
∣{x0}

)

= 0 ,

we also have a past repeller transition.

(ii) If D1g(x0, α1) > 0 is satisfied, then there exists a continuous function
µ : D ⊂ R × (α0, α1] → R such that µ(·, α) is a past repulsive solution
of (7.25)α. We have a total past bifurcation, since

lim
αցα0

d
(

R←
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a past attractor A(α). Due
to

lim
αցα0

d

(

lim sup
t→−∞

A(α, t)
∣
∣
∣{x0}

)

= 0 ,

we also have a past attractor transition.

Proof. We define the compact intervals I0 :=
{
α ∈ (α0, α1] : h1(α) ≤ x0 − 1

}

and

In :=

{

α ∈ (α0, α1] : h1(α) ∈
[

x0 −
1

n
, x0 −

1

n + 1

]}

for all n ∈ N .

(i) For all n ∈ N0, we restrict (7.25)α to the parameter area In and apply
Lemma 7.7. Then there exists a continuous function µn : (−∞, τn] × In → R

which describes uniquely determined past attractive solutions. We define

µ(t, α) := µn(t, α) for all t < 0 and α ∈ (α0, α1] with α ∈ In and t ≤ τn .

Due to the uniqueness of the µn, the so-defined function µ : D → R for some
D ⊂ R × (α0, α1] is well defined, and the continuity of µ follows directly.
The existence of the past repellers and the limit relations are consequences of
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Lemma 7.7 (i).
(ii) For all n ∈ N0, we restrict (7.25)α to the parameter area In and ap-
ply Lemma 7.10. It is obvious that one can construct a continuous function
µ : D ⊂ R × (α0, α1) → R which describes past repulsive solutions. The
existence of the past attractors and the limit relations are consequences of
Lemma 7.10 (i). ⊓⊔

Theorem 7.13 (Total future bifurcation). We suppose that (7.20)α ad-
mits a pitchfork bifurcation as described above and consider the nonau-
tonomous differential equation

ẋ = f(t, x, α) (7.26)α

with a C1-function f : (0,∞) × (x−, x+) × (α0, α1] → R. We assume that

lim
t→∞

f(t, x, α) = g(x, α) and lim
t→∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ (α0, α1]. Then the following
statements are fulfilled:

(i) If D1g(x0, α1) < 0 is satisfied, then there exists a continuous function
µ : D ⊂ R× (α0, α1] → R such that µ(·, α) is a future attractive solution
of (7.26)α. We have a total future bifurcation, since

lim
αցα0

d
(

A→
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a future repeller R(α).
Due to

lim
αցα0

d

(

lim sup
t→∞

R(α, t)
∣
∣
∣{x0}

)

= 0 ,

we also have a future repeller transition.

(ii) If D1g(x0, α1) > 0 is satisfied, then there exists a continuous function
µ : D ⊂ R × (α0, α1] → R such that µ(·, α) is a future repulsive solution
of (7.26)α. We have a total future bifurcation, since

lim
αցα0

d
(

R→
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a future attractor A(α).
Due to

lim
αցα0

d

(

lim sup
t→∞

A(α, t)
∣
∣
∣{x0}

)

= 0 ,

we also have a future attractor transition.

Proof. See proof of Theorem 7.12. ⊓⊔
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In the following example, which is a special case of Pötzsche & Rasmussen

[142, Example 4.1], the center manifold reduction (see, e.g., Carr [38] and
Hale [75, Chapter 4] in the autonomous context) is used to verify past and
future bifurcations and transitions in an asymptotically autonomous version
of the Lorenz system.

Example 7.14. We consider a nonautonomous version of the famous Lorenz
equation (see, e.g., Lorenz [108] and Kuznetsow [101, pp. 166, 249]), given
by the three-dimensional system

ẋ1 = σα(t)(x2 − x1)

ẋ2 = ρα(t)x1 − x2 − x1x3

ẋ3 = −βα(t)x3 + x1x2

.

In our situation, σα, ρα, βα are perturbed nonautonomously, i.e., we assume
that the functions σα, ρα, βα : R → (0,∞) are given by

σα(t) := σ0 + ασ(t) , ρα(t) := 1 + ρ0 + αρ(t) , βα(t) := β0 + αβ(t)

with real constants σ0, ρ0, β0 > 0, bounded C3-functions σ, ρ, β and α ∈ R,
which will be the bifurcation parameter. It is our goal to study the stability
of the equilibrium x = 0 for different values of α. From the linearization of
the trivial equilibrium, which is given by

⎛

⎝

−σ0 σ0 0
ρ0 −1 0
0 0 −β0

⎞

⎠ ,

we see that in case α = 0 (i.e., in case of the autonomous Lorenz system),
the origin is attractive for ρ0 < 0 and repulsive for ρ0 > 0. More interesting
is the nonhyperbolic case ρ0 = 0, where an autonomous pitchfork bifurcation
occurs as ρ0 passes through 0 (see Kuznetsow [101, p. 249]). To mimic this
situation, we assume ρ0 = 0 from now on. Before proceeding, we formally
append the trivial equation α̇ = 0 and—to simplify our calculations—apply
the transformation

⎛

⎜
⎜
⎝

y1

y2

y3

y4

⎞

⎟
⎟
⎠

:=

⎛

⎜
⎜
⎝

−σ0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1

x2

x3

α

⎞

⎟
⎟
⎠

.

This implies the system
ẏ = Ay + F (t, y) (7.27)

with A := diag(−σ0 − 1,−β0, 0, 0) and the nonlinearity
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F (t, y) :=

⎛

⎜
⎜
⎜
⎜
⎝

σ0

σ0+1y1y2 − σ(t)+σ0(σ(t)+ρ(t))
σ0+1 y1y4 − 1

σ0+1y2y3 + ρ(t)
σ0+1y3y4

−σ0y
2
1 + (1 − σ0)y1y3 − β(t)y2y4 + y2

3 + 2y2
4

σ2
0

σ0+1y1y2 + σ(t)+σ0(σ(t)−σ0ρ(t))
σ0+1 y1y4 − σ0

σ0+1y2y3 + σ0ρ(t)
σ0+1 y3y4

0

⎞

⎟
⎟
⎟
⎟
⎠

.

Thus, we can apply Theorem 5.3 to (7.27) to show that there exists a local
two-dimensional all-time center-unstable manifold S−, given as graph of a
function s− : V × R → R2, where V ⊂ R2 is a neighborhood of 0. The ansatz

s−(y3, y4, t) =

2∑

i=0

y2−i
3 yi

4

(
s1
2−i,i(t)

s2
2−i,i(t)

)

+ O

(√

y2
3 + y2

4

3
)

yields that the equation reduced to the all-time center-unstable manifold S−

is given by

ẏ3 =
σ0

σ0 + 1
αρ(t)y3 − s2

2,0(t)y
3
3 + O

(
αy2

3 , α2y3, y
3
3

)
.

Using Pötzsche & Rasmussen [142, Theorem 3.1], we obtain s2
2,0(t) ≡ 1/β0,

and consequently, the one-dimensional bifurcation equation is given by

ẏ3 =
σ0

σ0 + 1
αρ(t)y3 − 1

β0
y3
3 + O

(
αy2

3 , α2y3, y
3
3

)
. (7.28)

We henceforth assume that our system is past (future, respectively) asymp-
totically autonomous, i.e., the limits t → ±∞ of the functions σ, ρ and β exist.
We define

σ± := lim
t→±∞

σ(t) , ρ± := lim
t→±∞

ρ(t) and β± := lim
t→±∞

β(t) .

The autonomous limiting equations of the bifurcation equation are then given
by

ẏ3 =
σ0

σ0 + 1
αρ±y3 − 1

β0
y3
3 + O

(
αy2

3 , α2y3, y
3
3

)
. (7.29)

It is easy to check that this equation admits a pitchfork bifurcation, i.e., the
equilibrium 0 is attractive for α < 0 and repulsive for α > 0. For small α > 0,
there are two additional attractive equilibria branching from the origin. One
can show that the convergence of the right hand side in (7.28) is uniform in
a neighborhood of 0, and also the derivative with respect to y3 of (7.28) con-
verges locally uniformly to the corresponding derivative in (7.29). Thus, The-
orem 7.12 or Theorem 7.13, respectively, is applicable, and therefore, system
(7.28) admits a total past or future bifurcation and a past or future attractor
transition, respectively. Please note that not only the reduced equation (7.28)
gives rise to a nonautonomous transition but also the nonautonomous Lorenz
equation itself. This is due to the fact that there exists an asymptotic phase for
the center manifold (see Aulbach & Wanner [22, Theorem 3.3]), i.e., every
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solution approaches a solution lying in the center manifold in forward time
exponentially. Therefore, for small α > 0, there also exists a past or future
attractor of the three-dimensional system, respectively, which shrinks down in
the limit αց0. However, the three-dimensional nonautonomous Lorenz equa-
tion does not admit a past or future bifurcation, since due to the asymptotic
phase, the trivial solution is not past repulsive for α > 0.

To obtain partial nonautonomous bifurcations, we assume that the differential
equation (7.20)α admits a supercritical transcritical or saddle node bifurcation
at (x0, α0). This means, there exists a strictly increasing continuous function
h : (α0, α1) → (x−, x+) such that for all α ∈ (α0, α1), we have

h(α) < x0 ,

g(h(α), α) = g(x0, α) = 0 ,

D1g(h(α), α) �= 0 , D1g(x0, α) �= 0 .

Moreover, for all α ∈ (α0, α1) and x ∈ (h(α), x0), the relation g(x, α) �= 0
is satisfied, and we have limα→α0

h(α) = x0. Please note that in case of a
saddle node bifurcation, one has to transform the greater equilibrium into x0.
In case of a transcritical bifurcation, we assume that the bigger equilibrium
equals x0. This can be also reached by a transformation.

Theorem 7.15 (Partial past bifurcation). We suppose that (7.20)α ad-
mits a transcritical or saddle node bifurcation as described above and consider
the nonautonomous differential equation

ẋ = f(t, x, α) (7.30)α

with a C1-function f : (−∞, 0) × (x−, x+) × (α0, α1] → R. We assume that

lim
t→−∞

f(t, x, α) = g(x, α) and lim
t→−∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ (α0, α1]. Then the following
statements are fulfilled:

(i) If D1g(x0, α1) < 0 is satisfied, then there exists a continuous function
µ : D ⊂ R × (α0, α1] → R such that µ(·, α) is a past attractive solution
of (7.30)α. We have a partial bifurcation, since

lim
αցα0

A
←
µ(·,α) = 0 .

(ii) If D1g(x0, α1) > 0 is satisfied, then there exists a continuous function
µ : D ⊂ R × (α0, α1] → R such that µ(·, α) is a past repulsive solution
of (7.30)α. We have a partial bifurcation, since

lim
αցα0

R
←
µ(·,α) = 0 .
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Proof. See proof of Theorem 7.12. ⊓⊔

Theorem 7.16 (Partial future bifurcation). We suppose that (7.20)α ad-
mits a transcritical or saddle node bifurcation as described above and consider
the nonautonomous differential equation

ẋ = f(t, x, α) (7.31)α

with a C1-function f : (0,∞) × (x−, x+) × (α0, α1] → R. We assume that

lim
t→∞

f(t, x, α) = g(x, α) and lim
t→∞

D2f(t, x, α) = D1g(x, α)

hold uniformly for all x ∈ (x−, x+) and α ∈ (α0, α1]. Then the following
statements are fulfilled:

(i) If D1g(x0, α1) < 0 is satisfied, then there exists a continuous function
µ : D ⊂ R× (α0, α1] → R such that µ(·, α) is a future attractive solution
of (7.31)α. We have a partial bifurcation, since

lim
αցα0

A
→
µ(·,α) = 0 .

(ii) If D1g(x0, α1) > 0 is satisfied, then there exists a continuous function
µ : D ⊂ R × (α0, α1] → R such that µ(·, α) is a future repulsive solution
of (7.31)α. We have a partial bifurcation, since

lim
αցα0

R
→
µ(·,α) = 0 .

Proof. See proof of Theorem 7.12. ⊓⊔

7.3 Bifurcations in Dimension Two

In this section, two-dimensional differential equations which exhibit Hopf bi-
furcations are studied (see, e.g., Marsden & McCracken [117]). As in the
previous section, this bifurcation behavior is transferred to asymptotically
autonomous systems.

More precisely, we consider the autonomous differential equation

ẋ = g1(x, y, α)

ẏ = g2(x, y, α)
(7.32)α

with a C1-function g : (x−, x+) × (y−, y+) × (α0, α1] → R2 which admits a
supercritical Hopf bifurcation at (x0, y0, α0), i.e., for all α ∈ (α0, α1], we have
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g(x0, y0, α) = 0 and D(1,2)g(x0, y0, α) =

(
a(α) −b(α)
b(α) a(α)

)

with continuous functions a : (α0, α1] → R and b : (α0, α1] → R which
fulfill a(α) �= 0 and b(α) �= 0. Furthermore, let S(α) be an attractive (in
case a(α) < 0) or a repulsive (in case a(α) > 0) periodic orbit of (7.32)α,
respectively, which depends continuously on α with respect to the Hausdorff
distance and converges to (x0, y0) in the limit α → α0. We denote the inner
area of S(α) by Si(α).

As in the previous section, in the next four lemmata, conditions for the exis-
tence of nonautonomous counterparts for the equilibrium (x0, y0) are studied.
In the first instance, the parameter area is restricted to compact subintervals
of (α0, α1].

Lemma 7.17 (Existence of past attractive solutions). Consider the
nonautonomous differential equation

ẋ = f1(t, x, y, α)

ẏ = f2(t, x, y, α)
(7.33)α

with a C1-function f : (−∞, 0) × (x−, x+) × (y−, y+) × [α−, α+] → R2. We
assume that

lim
t→−∞

f(t, x, y, α) = g(x, y, α) , lim
t→−∞

D(2,3)f(t, x, y, α) = D(1,2)g(x, y, α)

hold uniformly for all x ∈ (x−, x+), y ∈ (y−, y+) and α ∈ [α−, α+]. Further-
more, we suppose that

a(α) < 0 for all α ∈ [α−, α+] .

Then there exist τ < 0 and a continuous function µ : (−∞, τ ]×[α−, α+] → R2

such that µ(·, α) is the uniquely determined past attractive solution of (7.33)α

which fulfills
lim

t→−∞
µ(t, α) = (x0, y0) .

Moreover, we have

A←
µ(·,α) = Si(α) − (x0, y0) for all α ∈ [α−, α+] .

Furthermore, there exists a past repeller R(α) of (7.33)α with

Si(α) ⊂ lim inf
t→−∞

R(α, t) ⊂ lim sup
t→−∞

R(α, t) ⊂ cls Si(α) for all α ∈ [α−, α+] .

Proof. For simplicity, we assume w.l.o.g. that (x0, y0) = (0, 0) in this proof.
The proof is divided into three steps.
Step 1. There exist a τ < 0 and a continuous function µ : (−∞, τ ]×[α−, α+] →
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R2 such that µ(·, α) is the uniquely determined past attractive solution of
(7.33)α which fulfills limt→−∞ µ(t, α) = (0, 0).
Due to the compactness of [α−, α+] and the uniform continuity of g on com-
pact sets, there exist β > 0 and γ < 0 with

∂g1

∂x
(x, y, α) ≤ 2γ ,

∂g2

∂y
(x, y, α) ≤ 2γ ,

∣
∣
∣
∣

∂g1

∂y
(x, y, α) +

∂g2

∂x
(x, y, α)

∣
∣
∣
∣
≤ −γ

for all (x, y) ∈ cls U2β((0, 0)) and α ∈ [α−, α+]. This implies the existence of
a τ < 0 with

∂f1

∂x
(t, x, y, α) ≤ γ ,

∂f2

∂y
(t, x, y, α) ≤ γ

and
∣
∣
∣
∣

∂f1

∂y
(t, x, y, α) +

∂f2

∂x
(t, x, y, α)

∣
∣
∣
∣
≤ −γ

2

and

|f1(t, 0, 0, α)| + |f2(t, 0, 0, α)| ≤ −γβ

4

for all t ≤ τ , x, y ∈ cls U2β((0, 0)) and α ∈ [α−, α+]. For the rest of this step,
we fix an α ∈ [α−, α+]. For all t ≤ τ and x, y ∈ cls U2β((0, 0)), the mean value
theorem implies

f(t, x, y, α) = f(t, 0, 0, α) +

∫ 1

0

D(2,3)f(t, θx, θy, α) · (x, y) dθ .

It follows that for all t ≤ τ , α ∈ [α−, α+] and x, y with x2 + y2 = β2,

〈
f(t, x, y, α), (x, y)

〉
= f1(t, x, y, α)x + f2(t, x, y, α)y

= f1(t, 0, 0, α)x + f2(t, 0, 0, α)y +
∫ 1

0

(
∂f1

∂x
(t, θx, θy, α)x2 +

∂f2

∂y
(t, θx, θy, α)y2 +

∂f1

∂y
(t, θx, θy, α)xy +

∂f2

∂x
(t, θx, θy, α)xy

)

dθ

≤ − γβ2

4
+

∫ 1

0

(

γx2 + γy2 − γ

2
|xy|
)

dθ ≤ γβ2

4
< 0

holds. Therefore, the subset cls Uβ((0, 0)) of the phase space is forward in-
variant in the following sense: For all t− ≤ t+ ≤ τ and α ∈ [α−, α+], we
have

λ
(
t+, t−, cls Uβ((0, 0)), α

)
⊂ cls Uβ((0, 0)) .

Thus, the set
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M :=
{
(x, y) ∈ cls Uβ((0, 0)) : There exists a t ≤ τ such that

‖λ(t, τ, x, y, α)‖ = β and

λ(t, τ, x, y, α) �= (β, 0) and

λ(t, τ, x, y, α) �= (−β, 0)
}

is nonempty and due to the continuity of the general solution relatively open
in clsUβ((0, 0)). This means that M̃ := cls Uβ((0, 0)) \ M is closed. The sets

M1 :=
{
(x, y) ∈ M̃ : There exists a t ≤ τ such that

‖λ(t, τ, x, y, α)‖ = β and

λ(t, τ, x, y, α) = (β, 0)
}

and

M2 :=
{
(x, y) ∈ M̃ : There exists a t ≤ τ such that

‖λ(t, τ, x, y, α)‖ = β and

λ(t, τ, x, y, α) = (−β, 0)
}

are obviously nonempty and due to the continuity of the general solution
relatively open in M̃ . This implies that M1∪M2 � M̃ . Therefore, there exists
a (x̂, ŷ) ∈ Uβ(0, 0) with

µ(t, α) := λ(t, τ, x̂, ŷ, α) ∈ Uβ((0, 0)) for all t ≤ τ .

To show that µ is past attractive, we study the differential equation of the
perturbed motion

ẋ = h1(t, x, y, α) := f1

(
t, x + µ1(t, α), y + µ2(t, α), α

)
− f1

(
t, µ(t, α), α

)

ẏ = h2(t, x, y, α) := f2

(
t, x + µ1(t, α), y + µ2(t, α), α

)
− f2

(
t, µ(t, α), α

) .

Due to the mean value theorem, for all t ≤ τ and (x, y) ∈ Uβ((0, 0)),

h(t, x, y, α) =

∫ 1

0

D(2,3)h(t, θx, θy, α) · (x, y) dθ

=

∫ 1

0

D(2,3)f
(
t, θx + µ1(t, α), θy + µ2(t, α), α

)
· (x, y) dθ

is fulfilled. Thus, for all (r, φ) ∈ (0, β) × [0, 2π) and t ≤ τ , we have

h1(t, r cos φ, r sin φ, α) cos φ + h2(t, r cos φ, r sin φ, α) sin φ

=

∫ 1

0

(
∂f1

∂x

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r cos2 φ+

∂f2

∂y

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r sin2 φ +
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∂f1

∂y

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r cos φ sin φ +

∂f2

∂x

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r cos φ sin φ

)

dθ

≤
∫ 1

0

(

γr cos2 φ + γr sin2 φ − γ

2
r cos φ sin φ

)

dθ ≤ r
γ

2
.

Applying polar coordinates (see Aulbach [14, Satz 5.2.1, p. 192]), we see
that µ(·, α) is past attractive. Moreover, the relation limt→−∞ µ(t, α) =
(0, 0) is obviously satisfied. The uniqueness of µ(·, α) follows directly from
Proposition 2.37 (i).
Step 2. µ is continuous.
See Step 2 of the proof of Lemma 7.7.
Step 3. The assertions concerning A←

µ(·,α) and the past repellers are fulfilled.
This follows directly from Lemma 7.5. ⊓⊔

Lemma 7.18 (Existence of future attractive solutions). Consider the
nonautonomous differential equation

ẋ = f1(t, x, y, α)

ẏ = f2(t, x, y, α)
(7.34)α

with a C1-function f : (0,∞) × (x−, x+) × (y−, y+) × [α−, α+] → R2. We
assume that

lim
t→∞

f(t, x, y, α) = g(x, y, α) , lim
t→∞

D(2,3)f(t, x, y, α) = D(1,2)g(x, y, α)

hold uniformly for all x ∈ (x−, x+), y ∈ (y−, y+) and α ∈ [α−, α+]. Further-
more, we suppose that

a(α) < 0 for all α ∈ [α−, α+] .

Then there exist τ > 0 and β > 0 such that for (x, y) ∈ Uβ((x0, y0)) and
α ∈ [α−, α+], the solution λ(·, τ, x, y, α) of (7.34)α is future attractive with

lim
t→∞

λ(t, τ, x, y, α) = (x0, y0)

and
A→

λ(·,τ,x,y,α) = Si(α) − (x0, y0) .

Furthermore, there exists a future repeller R(α) of (7.34)α with

Si(α) ⊂ lim inf
t→∞

R(α, t) ⊂ lim sup
t→∞

R(α, t) ⊂ cls Si(α) for all α ∈ [α−, α+] .

Proof. For simplicity, we assume w.l.o.g. that (x0, y0) = (0, 0) in this proof.
Due to the compactness of [α−, α+] and the uniform continuity of g on com-
pact sets, there exist β > 0 and γ < 0 with
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∂g1

∂x
(x, y, α) ≤ 2γ ,

∂g2

∂y
(x, y, α) ≤ 2γ ,

∣
∣
∣
∣

∂g1

∂y
(x, y, α) +

∂g2

∂x
(x, y, α)

∣
∣
∣
∣
≤ −γ

for all (x, y) ∈ cls U2β((0, 0)) and α ∈ [α−, α+]. This implies the existence of
a τ < 0 with

∂f1

∂x
(t, x, y, α) ≤ γ ,

∂f2

∂y
(t, x, y, α) ≤ γ

and ∣
∣
∣
∣

∂f1

∂y
(t, x, y, α) +

∂f2

∂x
(t, x, y, α)

∣
∣
∣
∣
≤ −γ

2

and

|f1(t, 0, 0, α)| + |f2(t, 0, 0, α)| ≤ −γβ

4

for all t ≥ τ , x, y ∈ cls U2β((0, 0)) and α ∈ [α−, α+]. For the rest of this proof,
we fix an α ∈ [α−, α+]. For all t ≥ τ and x, y ∈ cls U2β((0, 0)), the mean value
theorem implies

f(t, x, y, α) = f(t, 0, 0, α) +

∫ 1

0

fx(t, θx, θy, α) · (x, y) dθ .

Thus, for all t ≥ τ and x, y with x2 + y2 = β2, we have

〈
f(t, x, y, α), (x, y)

〉
= f1(t, x, y, α)x + f2(t, x, y, α)y

= f1(t, 0, 0, α)x + f2(t, 0, 0, α)y +
∫ 1

0

(
∂f1

∂x
(t, θx, θy, α)x2 +

∂f2

∂y
(t, θx, θy, α)y2+

∂f1

∂y
(t, θx, θy, α)xy +

∂f2

∂x
(t, θx, θy, α)xy

)

dθ

≤ − γβ2

4
+

∫ 1

0

(

γx2 + γy2 − γ

2
|xy|
)

dθ ≤ γβ2

4
< 0 .

Therefore, the subset cls Uβ((0, 0)) of the phase space is forward invariant in
the following sense: For all t+ ≥ t− ≥ τ , we have

λ
(
t+, t−, cls Uβ((0, 0)), α

)
⊂ cls Uβ((0, 0)) .

We choose (x̂, ŷ) ∈ Uβ((0, 0)) arbitrarily and consider for the rest of this
proof in particular the solution ν(·) := λ(·, τ, x̂, ŷ, α) on the interval [τ,∞). It
is obvious that limt→∞ ν(t) = (0, 0) holds. To show that ν is future attractive,
we study the differential equation of the perturbed motion

ẋ = h1(t, x, y, α) := f1

(
t, x + ν1(t), y + ν2(t), α

)
− f1

(
t, ν(t), α

)

ẏ = h2(t, x, y, α) := f2

(
t, x + ν1(t), y + ν2(t), α

)
− f2

(
t, ν(t), α

) .

Due to the mean value theorem, we have for all t ≥ τ and (x, y) ∈ Uβ((0, 0)),
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h(t, x, y, α) =

∫ 1

0

D(2,3)h(t, θx, θy, α) · (x, y) dθ =

∫ 1

0

D(2,3)f
(
t, θx + µ1(t, α), θy + µ2(t, α), α

)
· (x, y) dθ .

Thus, for all (r, φ) ∈ (0, β) × [0, 2π) and t ≥ τ , we have

h1(t, r cos φ, r sin φ, α) cos φ + h2(t, r cos φ, r sin φ, α) sin φ

=

∫ 1

0

(
∂f1

∂x

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r cos2 φ+

∂f2

∂y

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r sin2 φ +

∂f1

∂y

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r cos φ sin φ +

∂f2

∂x

(
t, θr cos φ + µ1(t, α), θr sin φ + µ2(t, α), α

)
r cos φ sin φ

)

dθ

≤
∫ 1

0

(

γr cos2 φ + γr sin2 φ − γ

2
r cos φ sin φ

)

dθ ≤ r
γ

2
.

Applying polar coordinates, we see that ν is future attractive. The asserted
relations concerning A→

µ(·,α) and the existence of the future repellers follow
directly from Lemma 7.6. ⊓⊔

Lemma 7.19 (Existence of past repulsive solutions). Consider the
nonautonomous differential equation

ẋ = f1(t, x, y, α)

ẏ = f2(t, x, y, α)
(7.35)α

with a C1-function f : (−∞, 0) × (x−, x+) × (y−, y+) × [α−, α+] → R2. We
assume that

lim
t→−∞

f(t, x, y, α) = g(x, y, α) , lim
t→−∞

D(2,3)f(t, x, y, α) = D(1,2)g(x, y, α)

hold uniformly for all x ∈ (x−, x+), y ∈ (y−, y+) and α ∈ [α−, α+]. Further-
more, we suppose that

a(α) > 0 for all α ∈ [α−, α+] .

Then there exist τ < 0 and β > 0 such that for (x, y) ∈ Uβ((x0, y0)) and
α ∈ [α−, α+], the solution λ(·, τ, x, y, α) of (7.35)α is past repulsive with

lim
t→−∞

λ(t, τ, x, y, α) = (x0, y0)

and



188 Chapter 7: Bifurcations of Asymptotically Autonomous Systems

R←
λ(·,τ,x,y,α) = Si(α) − (x0, y0) .

Furthermore, there exists a past attractor A(α) of (7.35)α with

Si(α) ⊂ lim inf
t→−∞

A(α, t) ⊂ lim sup
t→−∞

A(α, t) ⊂ cls Si(α) for all α ∈ [α−, α+] .

Proof. The assertions follow directly from Proposition 2.32 and Lemma 7.18.
⊓⊔

Lemma 7.20 (Existence of future repulsive solutions). Consider the
nonautonomous differential equation

ẋ = f1(t, x, y, α)

ẏ = f2(t, x, y, α)
(7.36)α

with a C1-function f : (0,∞) × (x−, x+) × (y−, y+) × [α−, α+] → R2. We
assume that

lim
t→∞

f(t, x, y, α) = g(x, y, α) , lim
t→∞

D(2,3)f(t, x, y, α) = D(1,2)g(x, y, α)

hold uniformly for all x ∈ (x−, x+), y ∈ (y−, y+) and α ∈ [α−, α+]. Further-
more, we suppose that

a(α) > 0 for all α ∈ [α−, α+] .

Then there exist a τ > 0 and a continuous function µ : [τ,∞)× [α−, α+] → R2

such that µ(·, α) is the uniquely determined future repulsive solution of (7.36)α

which fulfills limt→∞ µ(t, α) = (x0, y0). Moreover, we have

R→
µ(·,α) = Si(α) − (x0, y0) for all α ∈ [α−, α+] .

Furthermore, there exists a future attractor A(α) of (7.36)α with

Si(α) ⊂ lim inf
t→∞

A(α, t) ⊂ lim sup
t→∞

A(α, t) ⊂ cls Si(α) for all α ∈ [α−, α+] .

Proof. The assertions follow directly from Proposition 2.32 and Lemma 7.17.
⊓⊔

As in the previous subsection, these four lemmata lead to the existence of
total nonautonomous bifurcations and transitions.

Theorem 7.21 (Past Hopf bifurcation). We suppose that (7.32)α admits
a Hopf bifurcation as described above and consider the nonautonomous differ-
ential equation

ẋ = f1(t, x, y, α)

ẏ = f2(t, x, y, α)
(7.37)α
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with a C1-function f : (−∞, 0) × (x−, x+) × (y−, y+) × (α0, α1] → R2. We
assume that

lim
t→−∞

f(t, x, y, α) = g(x, y, α) , lim
t→−∞

D(2,3)f(t, x, y, α) = D(1,2)g(x, y, α)

hold uniformly for all x ∈ (x−, x+), y ∈ (y−, y+) and α ∈ (α0, α1]. Then the
following statements are fulfilled:

(i) If a(α1) < 0, there exists a continuous function µ : D ⊂ R × (α0, α1] →
R2 such that µ(·, α) is a past attractive solution of (7.37)α. We have a
total past bifurcation, since

lim
αցα0

d
(

A←
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a past repeller R(α). We
also have a past repeller transition, since

lim
αցα0

d

(

lim sup
t→−∞

R(α, t)
∣
∣
∣{(x0, y0)}

)

= 0 .

(ii) If a(α1) > 0, there exists a continuous function µ : D ⊂ R × (α0, α1] →
R2 such that µ(·, α) is a past repulsive solution of (7.37)α. We have a
total past bifurcation, since

lim
αցα0

d
(

R←
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a past attractor A(α). We
also have a past attractor transition, since

lim
αցα0

d

(

lim sup
t→−∞

A(α, t)
∣
∣
∣{(x0, y0)}

)

= 0 .

Proof. See proof of Theorem 7.12. ⊓⊔

Theorem 7.22 (Future Hopf bifurcation). We suppose that (7.32)α ad-
mits a Hopf bifurcation as described above and consider the nonautonomous
differential equation

ẋ = f1(t, x, y, α)

ẏ = f2(t, x, y, α)
(7.38)α

with a C1-function f : (0,∞) × (x−, x+) × (y−, y+) × (α0, α1] → R2. We
assume that

lim
t→∞

f(t, x, y, α) = g(x, y, α) , lim
t→∞

D(2,3)f(t, x, y, α) = D(1,2)g(x, y, α)

hold uniformly for all x ∈ (x−, x+), y ∈ (y−, y+) and α ∈ (α0, α1]. Then the
following statements are fulfilled:
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(i) If a(α1) < 0, there exists a continuous function µ : D ⊂ R × (α0, α1] →
R2 such that µ(·, α) is a future attractive solution of (7.38)α. We have a
total future bifurcation, since

lim
αցα0

d
(

A→
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a future repeller R(α). We
also have a future repeller transition, since

lim
αցα0

d

(

lim sup
t→∞

R(α, t)
∣
∣
∣{(x0, y0)}

)

= 0 .

(ii) If a(α1) > 0, there exists a continuous function µ : D ⊂ R × (α0, α1] →
R2 such that µ(·, α) is a future repulsive solution of (7.38)α. We have a
total future bifurcation, since

lim
αցα0

d
(

R→
µ(·,α)

∣
∣{0}

)

= 0 .

Furthermore, for all α ∈ (α0, α1], there exists a future attractor A(α).
We also have a future attractor transition, since

lim
αցα0

d

(

lim sup
t→∞

A(α, t)
∣
∣
∣{(x0, y0)}

)

= 0 .

Proof. See proof of Theorem 7.12. ⊓⊔

This chapter is concluded with the following famous example.

Example 7.23. We consider a nonautonomous version of the unforced Duffing-
van der Pol equation

ẋ1 = x2

ẋ2 = −x1 + αβ(t)x2 − x2
1(x1 + x2)

depending on a real parameter α. We assume that β : R → R+ is a C1-
function. This differential equation describes a nonlinear oscillator. It is well-
known (see, e.g., Holmes & Rand [82] or Marsden & McCracken [117])
that in case the function β is constant and positive, i.e., the system is au-
tonomous, the equilibrium (0, 0) is attractive for α < 0. At α = 0, the system
undergoes a Hopf bifurcation: The equilibrium (0, 0) becomes repulsive and
an attractive periodic orbit appears. As a consequence, we also have a bifur-
cation of autonomous attractors (see Aulbach & Rasmussen & Siegmund

[16]): For values α ≤ 0, the singleton {(0, 0)} is an attractor. If α is small and
positive, then the interior of the bifurcating periodic orbit is an attractor of
the system.
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We assume that the nonautonomous system is past (future, respectively)
asymptotically autonomous, i.e., the function β fulfills

β̄ := lim
t→±∞

β(t) > 0 .

Then the differential equation fulfills the hypotheses of Theorem 7.21 or
Theorem 7.22 in some neighborhood of (0, 0), respectively, and we have a
nonautonomous bifurcation and transition as described in these theorems.





A

Appendix

This supplementary appendix contains well-known definitions and results used
in this book which—to provide reading fluency—are not stated before.

The first section of this appendix is devoted to fundamental facts about
ordinary differential equations. In Section A.2, some useful lemmata are
stated, and in the last section, basic properties of projective spaces are treated.

A.1 Ordinary Differential Equations

We begin with the definition of an ordinary differential equation in the Euclid-
ean space RN .

Definition A.1 (Ordinary differential equation). For given N,M ∈ N,
let D ⊂ R × RN × RM be an open set and f : D → RN be a function. Then
the equation

ẋ = f(t, x, α) (A.1)α

is called (nonautonomous) ordinary differential equation which depends on a
parameter α. For fixed α̂ ∈ RM , we say, a differentiable function µ : I → RN ,
I an open interval, is a solution of (A.1)α̂ if (t, µ(t), α̂) ∈ D for all t ∈ I and

µ̇(t) :=
dµ

dt
(t) = f(t, µ(t), α̂) for all t ∈ I

is fulfilled. The combination of the differential equation (A.1)α̂ and an initial
value condition x(τ) = ξ is called initial value problem. We say, a solution µ
of (A.1)α̂ solves this initial value problem if µ(τ) = ξ.

For the uniqueness of solutions of ordinary differential equations, the concept
of Lipschitz continuity is appropriate.
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Definition A.2 (Lipschitz continuous function). For given N,M ∈ N,
let D ⊂ R1+N+M and g : D → RN be a function. We say that g is (globally)
Lipschitz continuous if there exists a constant L ≥ 0 with

‖g(t, x, α) − g(t, y, α)‖ ≤ L‖x − y‖ for all (t, x, α), (t, y, α) ∈ D.

g is called locally Lipschitz continuous if for all (t, x, α) ∈ D, there exist
neighborhoods V of t and W of α such that the restriction of g to V ×W ×{α}
is globally Lipschitz continuous.

The proof of the following proposition can be found, e.g., in Aulbach [14,
Definition 2.6.2, Satz 7.2.2].

Proposition A.3 (General solution). Let N,M ∈ N, D ⊂ R×RN ×RM be
open and f : D → RN be a locally Lipschitz continuous function, and consider
the nonautonomous differential equation (A.1)α. Then there exist an open set
Ω ⊂ R × R × RN × RM and a continuous function λ : Ω → RN such that
for fixed (τ, ξ, α̂) ∈ D, the function λ(·, τ, ξ, α̂) is a non-continuable solution
of the initial value problem (A.1)α̂, x(τ) = ξ. The function λ is called the
general solution of (A.1)α.

Remark A.4. In case the differential equation (A.1)α does not depend on α,
the fourth argument of the general solution is omitted.

Definition A.5 (Transition operator). Let I ⊂ R be an interval, and con-
sider the nonautonomous linear differential equation

ẋ = A(t)x (A.2)

with a continuous function A : I → RN×N . The (uniquely determined) func-
tion Λ : I × I → RN×N with

Λ(t, τ)ξ = λ(t, τ, ξ) for all t, τ ∈ I and ξ ∈ RN ,

where λ denotes the general solution of (A.2), is called transition operator
of (A.2). In case (A.2) is autonomous, i.e., A = A(t) for all t ∈ I = R with
a matrix A ∈ RN×N , the matrix exponential function eA· : R → RN×N is
defined by

eAt := Λ(t, 0) for all t ∈ R .

Inhomogeneous linear differential equations are solved by the variation of con-
stants formula.

Proposition A.6 (Variation of constants formula). Let I ⊂ R be an
interval, and consider the nonautonomous inhomogeneous linear differential
equation
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ẋ = A(t)x + b(t) (A.3)

with continuous functions A : I → RN×N and b : I → RN . Let λ denote the
general solution of (A.3) and Λ denote the transition operator of ẋ = A(t)x.
Then we have the representation

λ(t, τ, ξ) = Λ(t, τ)ξ +

∫ t

τ

Λ(t, s)b(s) ds for all t, τ ∈ I and ξ ∈ RN .

This equation is called the variation of constants formula.

Proof. See, e.g., Coppel [54, p. 45]. ⊓⊔

For the analysis in the vicinity of a given reference solution, the differential
equation of perturbed motion is of great importance.

Proposition A.7 (Differential equation of perturbed motion). For
given D ⊂ R×RN , let f : D → RN be a locally Lipschitz continuous function,
and consider the nonautonomous differential equation

ẋ = f(t, x) (A.4)

with a solution λ : I → RN , I an interval. Then the so-called differential
equation of perturbed motion

ẋ = f
(
t, x + λ(t)

)
− f
(
t, λ(t)

)
(A.5)

has the following properties:

(i) If ν : J → RN is a solution of (A.4) and J ⊂ I, then µ := ν − λ is a
solution of (A.5) on J.

(ii) If µ : J → RN is a solution of (A.5) and J ⊂ I, then ν := µ + λ is a
solution of (A.4) on J.

A.2 Useful Lemmata

The following lemma, which goes back to Gronwall [71], plays a central role
in obtaining estimates for solutions of differential equations.

Lemma A.8 (Gronwall’s inequality). Let a ≥ 0 and u, b : [τ−, τ+] → R+
0

be continuous functions, and suppose that

u(t) ≤ a +

∫ t

τ−

b(s)u(s) ds for all t ∈ [τ−, τ+]

is fulfilled. Then

u(t) ≤ a exp

(
∫ t

τ−

b(s) ds

)

for all t ∈ [τ−, τ+] .
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Proof. See, e.g., Abraham & Marsden & Ratiu [1, Theorem 4.1.7, p. 242].
⊓⊔

The following lemma provides a triangle inequality for the Hausdorff-semi
distance, which has been introduced in Section 2.1.

Lemma A.9 (Triangle inequality for the Hausdorff semi-distance).
Let X be a metric space and d denote the Hausdorff semi-distance. Then, for
all nonempty sets A,B,C ⊂ X, the relation

d(A|C) ≤ d(A|B) + d(B|C)

is fulfilled.

Proof. Obviously, for all nonempty sets M1,M2 ⊂ X, the Hausdorff semi-
distance fulfills

d(M1|M2) = inf
{
δ > 0 : M1 ⊂ Uδ(M2)

}
.

Hence, for all ε > 0, we have

A ⊂ Ud(A|B)+ε/2(B) and B ⊂ Ud(B|C)+ε/2(C) .

This implies A ⊂ Ud(A|B)+d(B|C)+ε(C) and finishes the proof of this lemma.
⊓⊔

Lemma A.10. Let A,B,C be linear subspaces of the RN such that A ⊃ C.
Then the relation

A ∩ (B + C) = (A ∩ B) + C

is fulfilled.

Proof. See Siegmund [171, Hilfssatz 2.36, p. 58]. ⊓⊔

A.3 Projective Spaces

In this section, the real projective space PN−1 of the vector space RN is
introduced, and some basic properties are derived. Here, the RN is equipped
with the Euclidean norm ‖ · ‖ and the Euclidean scalar product 〈·, ·〉 (cf. Sec-
tion 2.1). We say, two nonzero elements x, y ∈ RN are equivalent if there
exists a real number c ∈ R such that x = cy. The equivalence class of x ∈ RN

is denoted by Px, and we call the set of all equivalence classes the projective
space PN−1. Equipped with the metric dP : PN−1 ×PN−1 →

[
0,
√

2
]
, given by

dP(Pv, Pw) = min

{∥
∥
∥
∥

v

‖v‖ − w

‖w‖

∥
∥
∥
∥

,

∥
∥
∥
∥

v

‖v‖ +
w

‖w‖

∥
∥
∥
∥

}

for all v, w ∈ RN ,
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the projective space is a compact metric space. For any v ∈ PN−1, we define

P−1v :=
{
x ∈ RN : Px = v

}
∪ {0}.

Lemma A.11. For all ε > 0, there exists a δ ∈ (0, 1) such that for all nonzero
v, w ∈ RN with

〈v, w〉2
‖v‖2‖w‖2

≥ 1 − δ ,

we have
dP(Pv, Pw) ≤ ε .

Proof. This is a direct consequence of Colonius & Kliemann [50, Lemma
B.1.17., p. 538]. ⊓⊔

Lemma A.12. Let V,W ⊂ RN be linear subspaces of the RN with V � W .
Then

dP(PW |PV ) =
√

2 .

Proof. The linear subspace V ⊥ ∩ W , where

V ⊥ :=
{
x ∈ RN : 〈x, v〉 = 0 for all v ∈ V

}
,

is obviously nontrivial. Let w be a nonzero element of V ⊥ ∩ W . Then, for all
v ∈ V , we have

dP(Pw, Pv) = min

{∥
∥
∥
∥

v

‖v‖ ± w

‖w‖

∥
∥
∥
∥

}

= min

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

√
√
√
√
√

〈
v

‖v‖ ,
v

‖v‖

〉

︸ ︷︷ ︸

=1

+

〈
w

‖w‖ ,
w

‖w‖

〉

︸ ︷︷ ︸

=1

±2

〈
v

‖v‖ ,
w

‖w‖

〉

︸ ︷︷ ︸

=0

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

=
√

2 .

Since dP(x, y) ≤
√

2 for all x, y ∈ PN−1, this implies the assertion. ⊓⊔
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Dynamical Systems (1988), vol. 81 of Contemporary Mathematics, pp. 111–117.

70. Glendinning, P. Non-Smooth Pitchfork Bifurcations. Discrete and Continu-
ous Dynamical Systems B 4, 2 (2004), 457–464.



References 203

71. Gronwall, T. H. Note on the Derivatives with respect to a Parameter of the
Solutions of a System of Differential Equations. Annals of Mathematics 20, 2
(1919), 292–296.

72. Guckenheimer, J., and Holmes, P. Nonlinear Oscillation, Dynamical Sys-
tems, and Bifurcations of Vector Fields. Springer, New York, 1983.
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138. Pötzsche, C. Extended Hierarchies of Invariant Fiber Bundles for Dynamic
Equations on Measure Chains. Preprint.
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159. Schenk-Hoppé, K. R. Random Attractors – General Properties, Existence
and Applications to Stochastic Bifurcation Theory. Discrete and Continuous
Dynamical Systems 4, 1 (1998), 99–130.

160. Schmalfuß, B. Backward Cocycles and Attractors of Stochastic Differential
Equations. In International Seminar on Applied Mathematics — Nonlinear Dy-
namics: Attractor Approximation and Global Behaviour (1992), V. Reitmann,
T. Riedrich, and N. Koksch, Eds., Technische Universität Dresden, pp. 185–
192.

161. Schmalfuß, B. The Random Attractor of the Stochastic Lorenz System.
Zeitschrift für Angewandte Mathematik und Physik 48, 6 (1997), 951–975.

162. Schmidt, U. Autonome und nichtautonome dynamische Systeme. Diploma
Thesis, University of Frankfurt, 2002. (in German).
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future Morse decomposition
definition, 57
finer, 58
finest, 78
forward convergence, 61, 65, 75
Lyapunov function, 63
nonuniqueness, 66, 77

pushforward convergence, 59, 65, 76
future rejecting, 30
future repeller

definition, 16, 22
example, 18
existence, 31, 36
uniqueness, 31

future repulsive
definition, 21
linearized repulsivity, 126

future transition
definition, 43
example, 144, 177, 189

general solution, 194

Hausdorff
distance, 8
semi-distance, 8

Hopf bifurcation
autonomous, 181
nonautonomous, 188, 189

invariant projector
definition, 82
null space, 82
range, 82

lim inf, 11
lim sup, 11
Lorenz equation, 178
Lyapunov exponent, 106
Lyapunov spectrum, 106
Lyapunov stability, 39
Lyapunov-Schmidt reduction, 48

Morse set, 57

nonautonomous dynamical system
definition, 9
examples, 9
linear, 81

nonautonomous invariant manifold
all-time, 117
center, 124
center-stable, 124
center-unstable, 124
definition, 116
future, 123
linear, 68, 81
past, 122
stable, 124
strongly stable, 124
strongly unstable, 124
uniqueness, 124
unstable, 124

nonautonomous set, 11

orbit, 11
ordinary differential equation, 193

(p, T )-attractive
definition, 21
linearized attractivity, 128

(p, T )-attractor
definition, 19
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(p, T )-bifurcation

adiabatic bifurcation theory, 133
definition, 44
example, 46, 47, 141, 150

(p, T )-dichotomy
definition, 83
nonhyperbolic, 84
Roughness Theorem, 113

(p, T )-dichotomy spectrum
definition, 98
of autonomous systems, 109

(p, T )-repeller
definition, 19, 22
example, 19, 20

(p, T )-repulsive
definition, 21
linearized repulsivity, 128

(p, T )-transition, 44
P-bifurcation, 49
past absorbing, 30
past asymptotically autonomous, 153
past attractive

definition, 21
linearized attractivity, 126

past attractor
definition, 13
example, 15
existence, 31, 36
uniqueness, 31

past attractor-repeller pair
backward convergence, 55
definition, 52
Lyapunov function, 62
nonuniqueness, 56
pullback convergence, 55

past bifurcation
definition, 42
dichotomy spectrum of linearization,
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example, 45, 47, 137, 144, 175, 180,
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past dichotomy spectrum

corresponding Morse decomposition,
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definition, 98
example, 102
Lyapunov spectrum, 107
spectral manifolds, 105

past exponential dichotomy
definition, 82
dynamical properties, 85
nonhyperbolic, 84
nonuniqueness of the invariant

projector, 86, 97
Roughness Theorem, 112

past Morse decomposition
backward convergence, 60, 64, 75
definition, 57
finer, 58
finest, 78
Lyapunov function, 63
nonuniqueness, 65, 77
pullback convergence, 59, 64, 75

past repeller
definition, 13, 21
example, 15
existence, 36
nonuniqueness, 32

past repulsive
definition, 21
linearized repulsivity, 126

past transition
definition, 42
example, 144, 175, 188

pitchfork bifurcation
autonomous, 149, 175
nonautonomous, 45, 144, 150, 175,

177
projective space, 68, 196
pullback attractor, 41

quasibounded, 8

radius of
(p, T )-attraction, 23
(p, T )-repulsion, 23
all-time attraction, 23
all-time repulsion, 23
future attraction, 22
future repulsion, 22
past attraction, 22
past repulsion, 22

repeller, 40
resolvent set, 99

saddle node bifurcation
autonomous, 180
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singularly-perturbed system, 130
solution, 21
Spectral Theorem, 101

Theorem of Selgrade, 78
time reversal, 28
transcritical bifurcation

autonomous, 140, 180
nonautonomous, 46, 137, 141, 180,
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transition operator, 194

uniform attractor, 41
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