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Preface

This book provides an introduction to discrete dynamical systems – a
framework of analysis that is commonly used in the fields of biology,
demography, ecology, economics, engineering, finance, and physics.

The book characterizes the fundamental factors that govern the
quantitative and qualitative trajectories of a variety of deterministic,
discrete dynamical systems, providing solution methods for systems
that can be solved analytically and methods of qualitative analysis for
those systems that do not permit or necessitate an explicit solution.

The analysis focuses initially on the characterization of the factors
that govern the evolution of state variables in the elementary context
of one-dimensional, first-order, linear, autonomous systems. The fun-
damental insights about the forces that affect the evolution of these el-
ementary systems are subsequently generalized, and the determinants
of the trajectories of multi-dimensional, nonlinear, higher-order, non-
autonomous dynamical systems are established.1

Chapter 1 focuses on the analysis of the evolution of state variables
in one-dimensional, first-order, autonomous systems. It introduces a
method of solution for these systems, and it characterizes the trajec-
tory of a state variable, in relation to a steady-state equilibrium of the
system, examining the local and global (asymptotic) stability of this
steady-state equilibrium. The first part of the chapter characterizes
the factors that determine the existence, uniqueness and stability of a
steady-state equilibrium in the elementary context of one-dimensional,
first-order, linear autonomous systems. Although linear dynamical
systems do not govern the evolution of the majority of the observed
dynamic phenomena, they serve as an important benchmark in the
analysis of the qualitative properties of the nonlinear systems in the

1 For continuous dynamical systems see Arnold (1973), Hirsch and Smale (1974),
and Hale (1980).
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proximity of steady-state equilibria. The second part of the chapter
examines the trajectories of nonlinear systems based on the character-
ization of the linearized system in the proximity of a steady-state equi-
librium. The basic propositions established in Chapter 1 provide the
conceptual foundations for the analysis of multi-dimensional, higher-
order, non-autonomous, dynamical systems.

Chapter 2 analyzes the evolution of a vector of interdependent state
variables in multi-dimensional, first-order dynamical systems. It devel-
ops a method of solution for these systems, based on the construc-
tion of a time-independent transformation that converts the dynami-
cal system into a new one that is characterized by either independent
state variables whose evolution can be determined based on the analy-
sis of the one-dimensional case, or partially dependent state variables
whose evolution are determined by the well established properties of
the Jordan matrix. The analysis of linear multi-dimensional dynami-
cal systems provides an important reference point in the analysis of
multi-dimensional nonlinear systems in the proximity of their steady-
state equilibrium. It provides the characterization of the linear approx-
imation of multi-dimensional nonlinear systems around steady-state
equilibria.

Chapter 3 characterizes the trajectory of a vector of state variables
in multi-dimensional, first-order, linear dynamical systems. It examines
the trajectories of these systems when the matrix of coefficients has real
eigenvalues and the vector of state variables converges or diverges in a
monotonic or oscillatory fashion towards or away from a steady-state
equilibrium that is characterized by either a saddle point or a stable
or unstable (improper) node. In addition, it examines the trajectories
of these linear dynamical systems when the matrix of coefficients has
complex eigenvalues and the system is therefore characterized by a
spiral sink, a spiral source, or a periodic orbit.

Chapter 4 analyzes the trajectory of a vector of state variables in
multi-dimensional, first-order, nonlinear systems. It utilizes the charac-
terization of linear multi-dimensional systems to examine the trajectory
of the nonlinear systems in light of the Stable Manifold Theorem. In
particular, the analysis examines the properties of the local stable and
unstable manifolds, and the corresponding global stable and unstable
manifolds.

Chapter 5 characterizes the evolution of a vector of state variables in
higher-order as well as non-autonomous systems. It establishes the so-
lution method for these higher-order and non-autonomous systems and
it analyzes the factors that determine the qualitative properties of these
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discrete dynamical systems in the linear and subsequently the nonlin-
ear case. The analysis is based upon the transformation of higher-order
and non-autonomous systems into a multi-dimensional first-order sys-
tems that can be examined based on the analysis in Chaps. 2–4. In
particular, a one-dimensional second-order system is converted into
a two-dimensional first-order system, a one-dimensional third-order
system is transformed into a three-dimensional first-order system, a
one-dimensional nth-order system is converted into an n-dimensional
first-order system, and an n- dimensional mth-order system is trans-
formed into an n × m- dimensional first-order system. Similarly, the
analysis of non-autonomous systems is based on their transformation
into higher-dimension, time-independent (autonomous) systems that
can be examined based on the analysis of multi-dimensional, first-order
systems in Chaps. 2–4.

Chapter 6 provides a complete characterization of several represen-
tative examples of two-dimensional dynamical systems. These examples
include a first-order linear system with real eigenvalues, a first-order lin-
ear system with complex eigenvalues that exhibits a periodic orbit, a
first-order linear system with complex eigenvalues that exhibits a spiral
sink, a first-order nonlinear system that is characterized by a oscillatory
convergence, and a second-order one-dimensional system converted into
a first-order, two-dimensional system characterized by a continuum of
equilibria and oscillatory divergence.

The book is designed for advanced undergraduate and graduate stu-
dents in the fields of demography, ecology, economics, engineering, evo-
lutionary biology, finance, mathematics, and physics, who are familiar
with differential calculus and linear algebra. Furthermore, it is a useful
reference for researchers of applied disciplines in which discrete dynam-
ical systems are commonly employed.

Providence, USA
September 2006 Oded Galor
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1

One-Dimensional, First-Order Systems

This chapter analyzes the evolution of a state variable in one-dimensio-
nal, first-order, discrete dynamical systems. It introduces a method of
solution for these systems, and it characterizes the trajectory of the
state variable, in relation to its steady-state equilibrium, examining the
local and global (asymptotic) stability of this steady-state equilibrium.

The first part of the chapter characterizes the factors determining
the existence, uniqueness and stability of a steady-state equilibrium
in the elementary context of one-dimensional, first-order, linear au-
tonomous systems. Although linear dynamical systems do not neces-
sarily govern the evolution of the majority of the observed dynamic
phenomena, they serve as an important benchmark in the analysis of
the qualitative properties of nonlinear systems, providing the character-
ization of the linear approximation of nonlinear systems in the proxim-
ity of steady-state equilibria. The second part of the chapter examines
the trajectories of nonlinear systems based on the characterization of
the linearized system in the proximity of a steady-state equilibrium.

The basic propositions derived in this chapter provide the conceptual
foundations for the generalization of the analysis and the characteri-
zation of multi-dimensional, higher-order, non-autonomous, dynamical
systems.

The qualitative analysis of these dynamical systems is based upon
the examination of the factors that determine the actual trajectory of
the state variable. However, as will become apparent, once the basic
propositions that characterize the properties of these systems are de-
rived, an explicit solution is no longer required in order to characterize
the nature of these dynamical systems.
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1.1 Linear Systems

Consider a one-dimensional, first-order, autonomous, linear difference
equation that governs the evolution of a state variable, yt, over time.

yt+1 = ayt + b, t = 0, 1, 2, 3, · · · , (1.1)

where the value of the state variable at time t, yt, is a real number,
i.e., yt ∈ �, the parameters a and b are constant real numbers, namely
a, b ∈ �, and the initial value of the state variable at time 0, y0, is
given.1

The system is defined as a one-dimensional, first-order, autonomous,
linear difference equation since it describes the evolution of a one-
dimensional state variable, yt+1, whose value depends in a linear and
time-independent (autonomous) fashion on its value in the pervious
period (first-order), yt.

1.1.1 Characterization of the Solution

A solution to the difference equation yt+1 = ayt + b is a trajectory
(or an orbit) of the state variable, {yt}∞t=0, that satisfies this law of
motion at any point in time. It relates the value of the state variable
at time t, yt, to its initial value, y0, and to the parameters a and b.

The derivation of a solution may follow several methods. In partic-
ular, the intuitive method of iterations generates a pattern that can be
easily generalized to a solution rule.

Given the value of the state variable at time 0, y0, the dynamical
system yt+1 = ayt + b implies that the value of the state variable at
time 1, y1, is

y1 = ay0 + b. (1.2)

Given the value of the state variable at time 1, y1, the value of the state
variable at time 2, y2, is uniquely determined.

y2 = ay1 + b = a(ay0 + b) + b = a2y0 + ab + b. (1.3)

1 Without loss of generality, the feasible domain of the time variable, t, is truncated
to be the set of non-negative integers. Moreover, the initial condition is defined
as the value of the state variable at time 0. In general, t can be defined to be
an element of any subset of the set of integers, and the initial value of the state
variable, y0, can be given at any point within this interval.
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Similarly, the value of the state variable at time 3, 4, ..., t, is

y3 = ay2 + b = a(a2y0 + ab + b) + b = a3y0 + a2b + ab + b

...
...

yt = aty0 + at−1b + at−2b + ... + ab + b.

(1.4)

Hence, for t = 1, 2, ...,

yt = aty0 + b

t−1∑

i=0

ai. (1.5)

Since
∑t−1

i=0 ai is the sum of the geometric series, {1, a, a2, a3, ..at−1},
whose factor is a, it follows that

t−1∑

i=0

ai =

⎧
⎨

⎩

1−at

1−a if a �= 1

t if a = 1,

(1.6)

and therefore

yt =

⎧
⎨

⎩

aty0 + b1−at

1−a if a �= 1

y0 + bt if a = 1.

(1.7)

Alternatively,

yt =

⎧
⎨

⎩

[y0 − b
1−a ]at + b

1−a if a �= 1

y0 + bt if a = 1.
(1.8)

Thus, as long as an initial condition of the state variable is given,
the entire trajectory of the state variable is uniquely determined.
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The trajectory derived in (1.8) reveals the qualitative role of the
parameter a, and to a lesser extent, b, in the evolution of the state
variable over time. These parameters determine whether the dynam-
ical system evolves monotonically or in oscillations, and whether the
state variable converges in the long run to a steady-state equilibrium,
diverges asymptotically to plus or minus infinity, or displays a two-
period cycle. Hence, a qualitative examination of a dynamical system
requires the analysis of the asymptotic behavior of the system as time
approaches infinity.

1.1.2 Existence of Steady-State Equilibria

Steady-state equilibria provide an essential reference point for a qual-
itative analysis of the behavior of dynamical systems. A steady-state
equilibrium (alternatively defined as a stationary equilibrium, a rest
point, an equilibrium point, or a fixed point) is a value of the state
variable yt that is invariant under the law of motion dictated by the
dynamical system.

Definition 1.1. (A Steady-State Equilibrium)
A steady-state equilibrium of the difference equation yt+1 = ayt + b is
y ∈ � such that

y = ay + b.

Thus, if the state variable is at a steady-state equilibrium, it will re-
main there in the absence of any perturbations of the dynamical system
due to either changes in the parameters a and b or direct perturbations
in the value of the state variable itself. Namely, if yt = ȳ then ys = ȳ
for all s > t.

As follows from Definition 1.1, as long as a �= 1, there exists a
unique steady-state equilibrium ȳ = b/(1−a) for the difference equation
yt+1 = ayt + b. However, given the linear structure of the dynamical
system, if a = 1 and b = 0 then in every time t, yt+1 = yt and the state
variable does not deviate from its initial condition. In particular, yt =
yt−1 = yt−2 = ... = y0 and the system is in a steady-state equilibrium
where ȳ = y0. In contrast, if a = 1 and b �= 0, a steady-state
equilibrium does not exist and the state variable increases indefinitely
if b > 0, or decreases indefinitely if b < 0.

Hence, following Definition 1.1,

y =

⎧
⎨

⎩

b
1−a if a �= 1

y0 if a = 1 and b = 0.
(1.9)
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Thus, the necessary and sufficient conditions for the existence of
a steady-state equilibrium are given by the values of the parameters a
and b, as stated in (1.9), that permits the system to have a steady-state
equilibrium.

Proposition 1.2. (Existence of Steady-State Equilibrium)
A steady-state equilibrium of the difference equation yt+1 = ayt + b
exists if and only if

{a �= 1} or {a = 1 and b = 0}.
Hence, given the steady-state level of the state variable, yt, as de-

rived in (1.9), the solution to the difference equation yt+1 = ayt + b
can be expressed in terms of the deviations of the initial value of the
state variable, y0, from its steady-state value, y. Namely, substituting
the value of ȳ into the solution given by (1.8), it follows that

yt =

⎧
⎨

⎩

(y0 − y)at + y if a �= 1

y0 + bt if a = 1.
(1.10)

1.1.3 Uniqueness of Steady-State Equilibria

A steady-state equilibrium of the linear dynamical system, yt+1 = ayt+
b, is not necessarily unique. As depicted in Figs. 1.1, 1.3, 1.7, 1.9 and
1.10 for a �= 1, the steady-state equilibrium is unique. However, as
depicted in Fig. 1.5, for a = 1 and b = 0, a continuum of steady-state
equilibria exists, reflecting the entire set of feasible initial conditions.

Necessary and sufficient conditions for the uniqueness of a steady-
state equilibrium are given by the values of the parameters a and b, as
stated in (1.9) that permits the system to have a distinct steady-state
equilibrium.

Proposition 1.3. (Uniqueness of Steady-State Equilibrium)
A steady-state equilibrium of the difference equation yt+1 = ayt + b is
unique if and only if

a �= 1.
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1.1.4 Stability of Steady-State Equilibria

The stability analysis of the system’s steady-state equilibria determines
whether a steady-state equilibrium is attractive or repulsive for all or
at least some set of initial conditions. It facilitates the study of the
local, and often the global, properties of a dynamical system, and it
permits the analysis of the implications of small, and sometimes large,
perturbations that occur once the system is in the vicinity of a steady-
state equilibrium.

A steady-state equilibrium is globally (asymptotically) stable if the
system converges to this steady-state equilibrium regardless of the level
of the initial condition, whereas a steady-state equilibrium is locally
(asymptotically) stable if there exists an ε- neighborhood of the steady-
state equilibrium such that from every initial condition within this
neighborhood the system converges to this steady-state equilibrium.
Formally the definition of local and global stability are as follows:2

Definition 1.4. (Local and Global Stability of a Steady-State Equilib-
rium)
A steady-state equilibrium, y, of the difference equation yt+1 = ayt + b
is:

• globally (asymptotically) stable, if

lim
t→∞ yt = y ∀y0 ∈ �;

• locally (asymptotically) stable, if

lim
t→∞ yt = y ∀y0 such that |y0 − y| < ε for some ε > 0.

Alternatively, if the state variable is in a steady-state equilibrium
and upon a sufficiently small perturbation it converges asymptotically
back to this steady-state equilibrium, then this equilibrium is locally
stable. However, if regardless of the magnitude of the perturbation the

2 The economic literature, to a large extent, refers to the stability concepts in
Definition 4.2 as global stability and local stability, respectively, whereas the
mathematical literature refers to them as global asymptotic stability and local
asymptotic stability, respectively. The concept of stability in the mathematical
literature is reserved to situations in which trajectories that are initiated from
an ε-neighborhood of a fixed point remain sufficiently close to this fixed point
thereafter.
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state variable converges asymptotically to this steady-state equilibrium,
then the equilibrium is globally stable.

Global stability of a steady-state equilibrium necessitates the global
uniqueness of the steady-state equilibrium. If there is more than one
steady-state equilibrium, none of the equilibria can be globally stable
since there exist at least two points in the relevant space from which
there is no escape and convergence from each of these steady-state
equilibria to the other steady-state equilibrium is therefore not feasible.

Proposition 1.5. (Necessary Condition for Global Stability of Steady-
State Equilibrium)
A steady-state equilibrium of the difference equation yt+1 = ayt + b
is globally (asymptotically) stable only if the steady-state equilibrium is
unique.

Local stability of a steady-state equilibrium necessitates the local
uniqueness of the steady-state equilibrium. Namely the absence of any
additional point in the neighborhood of the steady-state from which
there is no escape. If the system is characterized by a continuum of
equilibria none of these steady-state equilibria is locally stable. There
exists no neighborhood of a steady-state equilibrium that does not con-
tain additional steady-state equilibria, and hence there exist initial con-
ditions within an ε- neighborhood of a steady-state equilibrium that do
not lead to this steady-state equilibrium in the long run. Thus, local
stability of a steady-state equilibrium requires the local uniqueness of
this steady-state equilibrium.

If the system is linear there is either unique steady-state equilibrium
or continuum of (unstable) steady-state equilibria. Local uniqueness of
a steady-state equilibrium therefore implies global uniqueness, and local
stability therefore necessarily implies global stability.

As follows from the definitions of local and global stability, the sta-
bility of a steady-state equilibrium can be obtained by the examination
of the properties of the system as time approaches infinity.

As follows from the solution for the difference equation yt+1 = ayt +
b, given by (1.10),

lim
t→∞ yt =

⎧
⎨

⎩

[y0 − y] limt→∞ at + y if a �= 1

y0 + b limt→∞ t if a = 1,
(1.11)

and therefore the limit of the absolute value of the state variable, |yt|,
is
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lim
t→∞ |yt| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|y| if {|a| < 1} or
{|a| > 1 & y0 = y}

|y0| if a = 1 & b = 0

∣∣∣∣∣∣

|y0| for t = 0, 2, 4, ...

|b − y0| for t = 1, 3, 5, ...

⎫
⎬

⎭ if a = −1

∞ otherwise.
(1.12)

Thus, as follows from the property of the absolute value of the state
variable yt, as time approaches infinity, the absolute value of the pa-
rameter a and the value of b determines the long run value of the state
variable. Moreover, the absolute value of the parameter a determines
whether a steady-state equilibrium ȳ is globally stable.

In particular, in the feasible range of the parameter a and b, the
dynamical system exhibits five qualitatively different trajectories, char-
acterized by the existence of a unique and globally stable steady-state
equilibrium, a unique unstable, steady-state equilibrium, continuum of
steady-state equilibria, inexistence of steady-state equilibria, and two-
period cycles.

A. Unique Globally Stable Steady-State
Equilibrium (|a| < 1)

If the coefficient |a| < 1, then the system is globally (asymptoti-
cally) stable converging to the steady-state equilibrium y = b/(1− a),
regardless of the initial condition, y0. In particular, if 0 < a < 1 then
as depicted in the phase diagram in Fig. 1.1, the evolution of the state
variable is characterized by monotonic convergence towards the steady-
state equilibrium ȳ regardless of the initial level of the state variable, y0.

The steady state locus yt+1 = yt intersects with the linear difference
equation, yt+1 = ayt + b, at the steady-state equilibrium ȳ. Given y0,
the value of y1 = ay0 + b can be read from corresponding value along
the line yt+1 = ayt + b. This value of y1 can be mapped back to the
yt axis via the 450 line. Similarly, given y1, the value of y2 = ay1 + b
can be read from the corresponding value along the line yt+1 = ayt + b
and mapped back to the yt axis via the 450 line. Hence, as depicted in
Fig. 1.1, the state variable evolves along the depicted arrows of motion
and converges monotonically to the steady-state equilibrium ȳ.
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y0

yt+1

45°
y

yt+1 = ayt+b

yt+1 = yt

y1

y1

yt

Fig. 1.1. One-Dimensional, First-Order, Linear System
Unique, Globally Stable, Steady-State Equilibrium

Monotonic Convergence
0 < a < 1

The state variable yt converges monotonically from its initial level y0

to the steady-state level ȳ. If y0 > ȳ, then this monotonic convergence
represents a declining value of yt towards the steady-state level, y0,
If y0 < ȳ, as depicted in Fig. 1.2 then this monotonic convergence
represents an increasing value of yt towards the steady-state level, ȳ.

If, however, the coefficient −1 < a < 0, then as depicted in Fig. 1.3
and 1.4, the convergence of the state variable to its steady-state value
is oscillatory. The state variable, yt converges in oscillations from its
initial level y0 to the steady-state level ȳ.

The oscillations of the state variable yt subsides monotonically in the
convergence process to the steady-state value ȳ, as depicted in Fig. 1.4.

B. Continuum of Unstable Steady-State Equilibria
{a = 1 and b = 0}

If the coefficient a = 1 and the constant b = 0, the system, as
depicted in Fig. 1.5, is characterized by a continuum of steady-state
equilibria. Each steady-state equilibrium can be reached if and only if
the system starts at this equilibrium and it is therefore neither globally
nor locally stable. Any ε- neighborhood of a steady-state equilibrium
contains other steady state equilibria and thus there exist initial condi-
tions in any ε- neighborhood of a steady-state equilibrium that do not
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y

y0

yt

t

yt

0 1 2 3

Fig. 1.2. The Evolution of the State Variable
Monotonic Convergence

0 < a < 1

yt
y0

yt+1

45°
y

yt+1 = yt 

yt+1 = ayt+b

Fig. 1.3. One-Dimensional, First-Order, Linear System
Unique, Globally Stable, Steady-State Equilibrium

Oscillatory Convergence
−1 < a < 0
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y

y0

yt

yt

t0 1 2 3

Fig. 1.4. The Evolution of the State Variable
Oscillatory Convergence

−1 < a < 0

45°

yt+1 = yt

yt+1 = ayt+b

y0 = y

yt+1

yt

Fig. 1.5. One-Dimensional, First-Order, Linear System
Continuum of Unstable Steady-State Equilibria

a = 1 and b = 0
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lead to this steady-state equilibrium in the long run. Each steady-state
equilibrium is therefore unstable.

C. Non-Existence of a Steady-State Equilibrium
{a = 1 and b �= 0}

If the coefficient a = 1 and the constant b �= 0, the system is charac-
terized by the absence of a steady-state equilibrium and the state vari-
able diverges to either plus or minus infinity. As shown in Fig. 1.6, if
b > 0, then limt→∞ yt = +∞, i.e. the state variable increases monoton-
ically over time and approaches asymptotically +∞, whereas if b < 0,
the value of the state variable declines monotonically over time and
approaches asymptotically −∞, i.e., limt→∞ yt = −∞.

45°

b

yt+1 = yt

yt+1 = ayt+byt+1

yty0

Fig. 1.6. One-Dimensional, First-Order, Linear System
Non-Existence of a Steady-State Equilibrium

a = 1 and b �= 0

D. Two-Period Cycle (a = −1)

If the coefficient a = −1, then the system, as depicted in Fig. 1.7,
is characterized by a continuum of (unstable) two-period cycles,3 and

3 Note that definition of stability is perfectly applicable for periodic orbits, provided
that the dynamical system is redefined to be the nth iterate of the original one,
where n is the periodicity of the cycle.
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45°
y = b/2

b – y0

y0

yt+1

yt+1 = ayt+b

yt+1 = yt

ytb – y0

Fig. 1.7. One-Dimensional, First-Order, Linear System
Unstable Two-Period Cycle

a = −1

the unique steady-state equilibrium, y = b/2, is unstable. The initial
value of the state variable dictates the values of the two-period cycles.

Given the initial value of the state variable, y0, then as depicted
in Fig. 1.8, the state variable oscillates between y0 and b − y0 in a
two-period cycle.

y0

y

t

yt

yt

b – y0

0 1 2 3

Fig. 1.8. The Evolution of the State Variable
Two-Period cycle

a = −1
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There exists a continuum of two-period cycles that are determined
by the level of the state variable in period 0. Each of these two-period
cycles is unstable. Namely, unless the system originates in a given two-
period cycle, the system will not reach it. Moreover, in a linear system,
unless a two-period cycle exists at time 0, a two-period cycle will not
exist.

E. Unique Unstable Steady-State Equilibrium (|a| > 1)

If the coefficient |a| > 1 then the system, as depicted in Figs. 1.9
and 1.10, is unstable. For y0 �= b/(1 − a), limt→∞ |yt| = ∞, whereas
for y0 = b/(1 − a) the system starts at the steady-state equilibrium
where it remains thereafter. Every minor perturbation, however, causes
the system to step on a diverging path.

In particular, if the coefficient a > 1, then as depicted in Fig. 1.9,
the state variable yt diverges monotonically. If its initial condition is
larger than ȳ, then it diverges monotonically to +∞, whereas if the
initial condition is smaller than ȳ, it diverges monotonically to -∞.

However if the coefficient a < −1, then as depicted in Fig. 1.10,
the state variable yt diverges in oscillations. The oscillations of the state
variable yt are magnified monotonically in this process of divergence,
oscillating in the limit between +∞ and -∞.

45°
y yt

yt+1 = ayt+b
yt+1 = yt

yt+1

Fig. 1.9. One-Dimensional, First-Order, Linear System
Unstable Steady-State Equilibrium

Monotonic Divergence
a > 1
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45°

yt+1 = yt

yt+1 = ayt+b

yt+1

yty0 y 

Fig. 1.10. One-Dimensional, First-Order, Linear System
Unstable Steady-State Equilibrium

Oscillatory Divergence
a < −1

The characterization of the asymptotic properties of the state vari-
able yt as t → ∞, established in (1.12) and analyzed in Cases (A)–(E),
provides the necessary and sufficient conditions for global stability of
the linear system.

Proposition 1.6. (A Necessary and Sufficient Condition for Global
Stability of Steady-State Equilibrium)
A steady-state equilibrium of the difference equation yt+1 = ayt + b is
globally stable if and only if

|a| < 1.

Corollary 1.7. (Necessary and Sufficient Conditions for Monotonic
and Oscillatory Convergence)
For any y0 ∈ �,

lim
t→∞ yt = ȳ if |a| < 1,
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where
(a) convergence is monotonic if and only if

a ∈ [0, 1);

(b) convergence is oscillatory if and only if
a ∈ (−1, 0).

1.2 Nonlinear Systems

This section analyzes the evolution of a state variable in a one-
dimensional, first-order, nonlinear discrete dynamical system. It charac-
terizes the evolution of the state variable in the proximity of a steady-
state equilibrium based on a linear approximation of this nonlinear
motion in the vicinity of a steady-state equilibrium. Subsequently, it
provides some restrictive sufficient conditions for global stability of a
nonlinear system.

Consider the one-dimensional autonomous, first-order, nonlinear dif-
ference equation that governs the evolution of a state variable, yt, over
time.

yt+1 = f(yt), t = 0, 1, 2, · · · , (1.13)

where f : � → � is a continuously differentiable single-valued func-
tion and the initial value of the state variable, y0, is given.4

1.2.1 The Solution

A solution to the difference equation yt+1 = f(yt), is a trajectory (or
an orbit) of the state variable, {yt}∞t=0, that satisfies this law of motion
at any point in time. It relates the value of the state variable at time
t, yt, to its initial value, y0, and to the function f.

4 For the local analysis, it is sufficient that the function f : � → � is continuously
differentiable only in some neighborhoods of the relevant steady-state equilibrium.
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Using the method of iterations, the trajectory of this nonlinear sys-
tem, {yt}∞t=0, can be written as follows:

y1 = f(y0)

y2 = f(y1) = f [f(y0)] ≡ f{2}(y0)

y3 = f(y2) = f [f(y1)] = f [f{2}(y0)] ≡ f{3}(y0)

...
...

yt ≡ f{t}(y0),

(1.14)

where f{t}(y0) is the outcome of t iterations of the function f over the
initial condition y0.

Unlike the solution to the linear system (1.1), the solution for the
nonlinear system (1.14) is not very informative about the factors that
determine its qualitative patterns and its tendency to converge to a
steady-state equilibrium, to diverge to plus or minus infinity or to dis-
play a periodic orbit.

Hence, additional methods of analysis are required in order to gain
an insight about the qualitative behavior of this nonlinear system. In
particular, a linear approximation of the nonlinear system in the vicin-
ity of a steady-state equilibrium is instrumental in the study of the
qualitative behavior of nonlinear dynamical systems.

1.2.2 Existence, Uniqueness and Multiplicity
of Steady-State Equilibria

Definition 1.8. (A Steady-State Equilibrium)
A steady-state equilibrium of the difference equation yt+1 = f(yt) is
a level y ∈ � such that

y = f(y).

Generically, a nonlinear system may be characterized by the exis-
tence of unique steady-state equilibrium, the existence of multiplicity
of (distinct) steady-state equilibria, the existence of chaotic behavior,
or the non-existence of a steady-state equilibrium. Furthermore, the
nonlinear system may converge to a steady-state equilibrium, may di-
verge to plus or minus infinity, may converge to a periodic orbit, and,
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y0

45°
y yt

yt+1
yt+1 = yt

yt+1 = f ( yt )

Fig. 1.11. One-Dimensional, First-Order, nonlinear System
Unique, Globally Stable, Steady-State Equilibrium: limt→∞ yt = ȳ

unlike a linear system, a nonlinear system may exhibit chaotic behav-
ior.5 Figures 1.11–1.13 depict these various configurations under the
assumption that f : �+ → �.

Figure 1.11 depicts a system with a globally stable unique steady-
state equilibrium. Given y0, the state variable evolves towards the
steady-state equilibrium and limt→∞ yt = ȳ.

Figure 1.12 depicts a system with multiple distinct steady-state
equilibria: ȳ1 and ȳ3 are locally stable, whereas ȳ2 is unstable. Namely,

lim
t→∞ yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȳ1 if y0 ∈ (0, ȳ2)

ȳ2 if y0 = ȳ2

ȳ3 if y0 ∈ (ȳ2,∞).

(1.15)

Figure 1.13 depicts the dynamical system in the absence of a steady-
state equilibrium. The state variable diverges monotonically to infinity
regardless of its initial value, i.e. limt→∞ yt = ∞, ∀y0 ∈ �+.

5 See Li and Yorke (1975).
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45°
y1 y2 y3 yt

yt+1 = f ( yt )

yt+1 = yt

yt+1

Fig. 1.12. One-Dimensional, First-Order, nonlinear System
Multiple Steady-State Equilibria

1.2.3 Linearization and Local Stability
of Steady-State Equilibria

The evolution of a nonlinear system in the proximity of a steady-state
equilibrium can be analyzed based on a linear approximation of this
nonlinear motion.

45°
y0

yt+1 = f ( yt )

yt+1 = yt

yt+1

yt

Fig. 1.13. One-Dimensional, First-Order, nonlinear System
Non-Existence of Steady-State Equilibria

limt→∞ yt = ∞, ∀y0 ∈ �+.
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Consider the Taylor expansion of yt+1 = f(yt) around the steady-
state level, y :

yt+1 = f(yt) = f(y)+f ′(y)(yt−y)+
f ′′(y)(yt − y)2

2!
+ · · ·+Rn, (1.16)

where Rn is the residual term.
The linearized system around the steady-state equilibrium y is

therefore

yt+1 = f(y) + f ′(y)(yt − y)

= f ′(y)yt + f(y) − f ′(y)y

= ayt + b,

(1.17)

where a ≡ f ′(y) and b ≡ f(y) − f ′(y)y are given constants.
Applying the stability results established for the linear system, the

linearized system is globally stable if |a| ≡ |f ′(y)| < 1. However, since
the linear system approximates the behavior of the nonlinear system
only in a sufficiently small neighborhood of a steady-state equilibrium,
the global analysis of the linearized system provides only a local analysis
of the nonlinear difference equation. Thus, the following proposition is
established:

Proposition 1.9. (Necessary and Sufficient Conditions for Local
Stability of Steady State Equilibrium)
The steady-state equilibrium y of the dynamical system yt+1 = f(yt)
is locally stable if and only if

∣∣∣∣
dyt+1

dyt

∣∣∣
y

∣∣∣∣ < 1.

For example, consider Fig. 1.12 where the dynamical system is char-
acterized by three steady-state equilibria. f ′(y1) < 1 and f ′(y3) < 1,
and consequently y1 and y3 are locally stable steady-state equilibria,
whereas f ′(y2) > 1 and consequently y2 is an unstable steady-state
equilibrium.
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Example 1.10.

Consider the nonlinear dynamical system

yt+1 = 0.5(y2
t − 3yt + 6) ≡ f(yt), (1.18)

where yt ∈ �+.
As follows from (1.18), and as depicted in Fig. 1.14, this system has

two steady-state equilibria. That is,

f(ȳ) = ȳ ⇐⇒ {ȳ = 2 or ȳ = 3}. (1.19)

The linearized system around a steady-state equilibrium ȳ, as fol-
lows from (1.17), is given by

yt+1 = f ′(y)yt + f(y) − f ′(y)y. (1.20)

The linearized system around ȳ = 2 is therefore

yt+1 = 0.5(yt + 2), (1.21)

where
∣∣∣∣∣
dyt+1

dyt

∣∣∣∣
y=2

∣∣∣∣∣ = 0.5. (1.22)

0

1

2

3

4

5

0

f ( yt )

locally stable
unstable

yt

yt+1

yt+1 = yt

1 2 3 4 5

Fig. 1.14. Example of a System with two Steady-State Equilibria
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The linearized system around ȳ = 3 is

yt+1 = 1.5(yt − 1), (1.23)

where
∣∣∣∣∣
dyt+1

dyt

∣∣∣∣
y=3

∣∣∣∣∣ = 1.5. (1.24)

Hence, as follows from Proposition 1.9, and as depicted in Fig. 1.14,
the dynamical system yt+1 = f(yt) is locally stable around ȳ = 2 and
unstable around ȳ = 3.

Remark. The evolution of the nonlinear system in the proximity of a
steady-state equilibrium, ȳ, cannot be examined based on the linearized
system if f ′(ȳ) = 1. This non-generic case represents a bifurcation
point of the dynamical system. Namely, an infinitesimal change in the
derivative at the point ȳ brings about a qualitative change in the nature
of the dynamical system (i.e., in the number of steady-state equilibria
and their stability).

As depicted in Fig. 1.15, if f ′(ȳ) = 1, then the steady-state equilib-
rium ȳ is neither locally stable nor locally unstable. The state variable
converges to the steady-state value, ȳ, if yt < ȳ, whereas it diverges
from ȳ if yt > ȳ. However, the linearized system would falsely sug-
gest that under no initial values the state variable will converge to its
steady-state ȳ.

Example 1.11.

Consider the nonlinear dynamical system

yt+1 = 0.5(y2
t + 1) ≡ f(yt), (1.25)

where yt ∈ �+.
As follows from (1.25), and as depicted in Fig. 1.15, this system has

a single steady-state equilibrium. Namely,

f(ȳ) = ȳ ⇐⇒ {ȳ = 1}, (1.26)

where ȳ = 1 is the value of the repeated root of the quadratic equation,
ȳ2 − 2ȳ + 1 = 0.
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0

1

2

0 2

f ( yt )

f '(  yt ) = 1

yt

yt+1 = yt

yt+1

1

Fig. 1.15. Misleading Linearization
f ′(ȳ) = 1

The linearized system around a steady-state equilibrium ȳ, as fol-
lows from (1.17), is given by

yt+1 = f ′(y)yt + f(y) − f ′(y)y, (1.27)

and since ȳ = 1, it is therefore

yt+1 = yt, (1.28)

where

∣∣∣∣∣
dyt+1

dyt

∣∣∣∣
y=1

∣∣∣∣∣ = 1. (1.29)

Hence, the linearized system is characterized by a continuum of
unstable equilibria and in particular, it suggests that the steady-state
equilibrium, ȳ = 1 is unstable, whereas as depicted in Fig. 1.15, the
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state variable converges to the steady-state value, ȳ = 1, if yt < ȳ, and
it diverges from ȳ if yt > ȳ.

Chapter 4 provides the conditions under which the linearized system
can be used in order to examine the properties of a nonlinear dynamical
system in the proximity of a steady-state equilibrium.

1.2.4 Global Stability

The Contraction Mapping Theorem provides useful sufficient conditions
for the existence of a unique steady-state equilibrium and its global
stability. These conditions, however, are overly restrictive.

Definition 1.12. (Contraction Mapping)
f(x) : � → � is a contraction mapping if for some β ∈ (0, 1)

ρ(f(x1), f(x2)) ≤ βρ(x1, x2), ∀x1, x2 ∈ �,

where ρ(c, d) ≡ |c − d| .

Theorem 1.13. (The Contraction Mapping Theorem)
If f : � → � is a contraction mapping then

• f(x) has a unique fixed point (steady-state equilibrium), i.e., there
exists an x̄ ∈ � such that

f(x̄) = x̄.

• ∀x0 ∈ � and for β ∈ (0, 1),

ρ(f{n}(x0), x̄) ≤ βnρ(x0, x̄) ∀n = 0, 1, 2, 3, · · · .
where f{n}(x0) is the nth iteration of f over x0.

Proof. See Stokey and Lucas (1989). �

Corollary 1.14. A steady-state equilibrium of the difference equation
yt+1 = f(yt) exists and is unique and globally (asymptotically) stable
if

f : � → � is a contraction mapping, i.e.

|f(yt+1) − f(yt)|
|yt+1 − yt| < 1 ∀t = 0, 1, 2, · · · ,∞,
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or if f is differentialble and
∣∣f ′(yt)

∣∣ < 1 ∀yt ∈ �.

Thus, as depicted in Fig. 1.16, if over the entire domain, the deriva-
tive of f(yt) is smaller than unity in absolute value, the map f(yt)
has a unique and globally stable steady-state equilibrium. The steady
state locus yt+1 = yt intersects with the nonlinear difference equation,
yt+1 = f(yt) at the steady-state equilibrium ȳ. Given y0, the value of
y1 = f(y0) can be read from the corresponding value along the curve
yt+1 = f(yt). This value of y1 can be mapped back to the yt axis via the
450 line. Similarly, given y1, the value of y2 = f(y1) can be read from
the corresponding value along the curve yt+1 = f(yt) and mapped back
to the yt axis via the 450 line. Hence, as depicted in Fig. 1.16, the state
variable evolves along the depicted arrows of motion and converges in
oscillations to the steady-state equilibrium ȳ.

For instance consider the one-dimensional, linear, first-order and
autonomous system

yt+1 = f(yt) = ayt + b |a| < 1. (1.30)

45°
yy0 yt

yt+1 = f ( yt )

yt+1 = yt

yt+1

Fig. 1.16. f(yt) is a Contraction Mapping
Global Stability

|f(y2) − f(y1)| < |y2 − y1| ∀(y1, y2) ∈ �+
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As established in Proposition 1.6, since |a| < 1, the system has a unique
and globally stable steady-state equilibrium. Similarly, based on the
Contraction Mapping Theorem, as established in Corollary 1.14, there
exists a unique and globally stable equilibrium since |f ′(yt)| = |a| < 1
∀yt ∈ �.



2

Multi-Dimensional, First-Order, Linear
Systems: Solution

This chapter characterizes the evolution of a vector of state variables in
multi-dimensional, first-order linear systems. It develops a method of
solution for these multi-dimensional systems, and it characterizes the
trajectory of the vector of state variables, in relation to the system’s
steady-state equilibrium, examining the local and global (asymptotic)
stability of this steady-state equilibrium.

Although linear dynamical systems do not necessarily govern the
evolution of most of the dynamic phenomena in the universe, they
serve as an important benchmark in the analysis of the qualitative
properties of nonlinear systems, providing the characterization of the
linear approximation of nonlinear systems in proximity of steady-state
equilibria.

The characterization of the time path of a multi-dimensional sys-
tem of interdependent state variables is based on the construction of a
time-independent transformation that converts the system into a new
dynamical system of either: (a) independent state variables whose evo-
lution can be derived based on the analysis of the one-dimensional
case, or (b) partially dependent state variables whose evolution are
determined based upon the well established properties of the Jordan
Matrix.

The characterization of the trajectories of state variables in multi-
dimensional, first-order, linear autonomous systems provides the con-
ceptual foundations for the generalization of the analysis for higher-
order, nonlinear, non-autonomous, dynamical systems.

Consider a system of autonomous, first-order, linear difference equa-
tions
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1t+1

x2t+1

x3t+1

...

xnt+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

an1 an2 an3 · · · ann

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1t

x2t

x3t

...

xnt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.1)

where the initial values of the vector of state variables, x0 = (x10, x20,
x30, ..., xn0), are given.

The evolution of the vector of state variables xt is governed, there-
fore, by the linear system

xt+1 = Axt + B, t = 0, 1, 2, 3, · · · (2.2)

where the vector of state variables xt is an n - dimensional real vec-
tor; xt ∈ �n, A is an n x n matrix of constant (time-independent)
coefficients with elements aij ∈ �, i, j = 1, 2, ..., n, and B is an n - di-
mensional time-independent vector with elements bi ∈ �, i = 1, 2, ..., n.

The system is defined as an n - dimensional, first-order, autonomous,
linear system of difference equations since it describes the evolution of
an n - dimensional vector of state variables, xt, whose value depends in
a linear and time-independent (autonomous) fashion only on the value
of the vector in the previous period (first-order).

2.1 Characterization of the Solution

A solution to a multi-dimensional linear system, xt+1 = Axt + B, is
a trajectory {xt}∞t=0 of the vector of state variables xt that satisfies
this linear relationship at any point in time. It relates the vector of the
state variables at time t, xt to the vector of initial conditions, x0, and
the set of coefficients embodied in the matrix A and the column vector
B. Similarly to the one-dimensional case, the method of iterations
generates a pattern that constitutes a general solution rule.

Given the value of the vector of state variables at time 0, x0, the
dynamical system xt+1 = Axt + B implies that the value of the vector
of state variables in subsequent time periods, 1, 2, 3, ... is
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x1 = Ax0 + B

x2 = Ax1 + B = A2x0 + AB + B

x3 = Ax2 + B = A3x0 + A2B + AB + B

...
...

xt = Atx0 + At−1B + At−2B + ... + AB + B.

(2.3)

The value of the vector of state variables in period t is therefore

xt = Atx0 +
t−1∑

i=0

AiB. (2.4)

It depends on the sum of a geometric series of matrices (rather than of
scalars in the one-dimensional case).

Lemma 2.1. The sum of a geometric series of matrices,
∑t−1

i=0 Ai,
whose factor is the matrix A, is

t−1∑

i=0

Ai = [I − At][I − A]−1 if |I − A| �= 0.

Proof.

t−1∑

i=0

Ai[I−A] = I +A+A2+ ...+At−1− [A+A2+A3+ ...+At] = I−At.

(2.5)
Hence, post-multiplication of both sides of the equation by the matrix
[I − A]−1 establishes the lemma, noting that [I − A]−1 exists if and
only if |I − A| �= 0. �

Using the result in Lemma 2.1, it follows that the solution to the
n- dimensional system of linear difference equations is

xt = At[x0 − [I − A]−1B] + [I − A]−1B if |I − A| �= 0, (2.6)

where |I − A| ≡ det[I − A].
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The value of the vector of state variables at time t, xt depends,
therefore, on the vector of initial conditions, x0, and the time-invariant
coefficients embodied in the matrix A and the column vector B.

In analogy to the one-dimensional case, the qualitative aspects of
the dynamical system are determined by the parameters of the ma-
trix A. These parameters determine whether the dynamical system
evolves monotonically or in oscillations, and whether the vector of
state variables converges in the long run to a stationary state, di-
verges asymptotically to plus or minus infinity, or evolves in a periodic
orbit.

As will become apparent, in a linear multi-dimensional system the
evolution of each state variable may differ qualitatively. Some of the
elements of the n - dimensional vector of state variables may converge
(monotonically or in oscillations) to a steady-state equilibrium, others
may diverge to plus or minus infinity, or may display a periodic orbit.
The qualitative examination of a dynamical system requires, there-
fore, the analysis of the asymptotic behavior of the system as time
approaches infinity.

2.2 Existence and Uniqueness of Steady-State Equilibria

Steady-state equilibria provide an essential reference point for a quali-
tative analysis of the behavior of dynamical systems as time approaches
infinity. The qualitative properties of the dynamical system could be
assessed based on the examination of the evolution of the vector of
state variables in relation to the steady-state equilibria (i.e. the fixed
points) of the system.

A steady-state equilibrium of this n-dimensional system is a value
of the n-dimensional vector of the state variables, xt that is invariant
under further iterations of the dynamical system. Thus, once each of
the elements of the vector of state variables is at its steady-state level,
the system will not evolve in the absence of exogenous perturbations
in the value of the state variable or in the parameters of the matrix A
and the vector B.

Definition 2.2. (A Steady-State Equilibrium)
A steady-state equilibrium of a linear system of difference equations
xt+1 = Axt + B is a vector x ∈ �n such that

x = Ax + B.
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Following the definition, and in analogy to the analysis of the one-
dimensional system, there exists a steady-state equilibrium:

x = [I − A]−1B if |I − A| �= 0. (2.7)

Moreover, in analogy to Proposition 1.3, a steady-state equilibrium
is unique if [I − A] is non-singular.

Proposition 2.3. (Uniqueness of Steady-State Equilibrium)
A steady-state equilibrium of the system xt+1 = Axt + B is unique if
and only if

|I − A| �= 0.

The necessary and sufficient condition for the uniqueness of the steady-
state equilibrium of the dynamical system is the non-singularity of the
matrix [I − A]; a condition that is analogous to the requirement that
a �= 1 in the one-dimensional case.

The Time Path of xt

Given the steady-state level of the state variable, xt, as derived in
(2.7), the solution to the difference equation, xt+1 = Axt + B, can be
expressed in terms of the deviations of the initial value of the vector of
state variables, x0, from its steady-state value, x. Substituting (2.7)
into (2.6), the solution to the system is

xt = At(x0 − x) + x if |I − A| �= 0. (2.8)

If the matrix A is a diagonal matrix, there exists no interdependence
between the different state variables. The matrix At is also a diagonal
matrix and the evolution of each of the state variables can be analyzed
separately according to the method developed for the one-dimensional
case in Sect. 1.1.

However, if the matrix A is not a diagonal matrix and there exists
interdependence in the evolution of the state variables, a more elab-
orate method of solution is required. This method generates a time-
independent transformation of the system of interdependent state vari-
ables into a new dynamical system of either (a) independent state vari-
ables that can be analyzed according to the method developed for the
one-dimensional case, or (b) interdependent state variables that are
governed by a matrix in the Jordan normal form and can be exam-
ined based on the known limiting properties of this matrix as time
approaches infinity.
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In particular, as will be elaborated in the next sections, this method
transforms a system of interdependent state variables, xt, into a new
system of state variables, yt, via a time-independent transformation,
Q. Namely, this method constructs (based on the eigenvectors of the
matrix A) an n x n non-singular matrix, Q, such that

xt = Qyt + x̄, (2.9)

and the evolution of the vector of state variables, yt, is

yt+1 = Dyt, (2.10)

where D is an n x n diagonal (or block diagonal) matrix in the Jordan
normal form. Hence

yt = Dty0, (2.11)

where, as follows from (2.9), y0 = Q−1(x0 − x̄).

Moreover, the value of the vector of the state variables, xt, is a linear,
time-independent, transformation of the evolution of yt, i.e. xt = Qyt +
x̄, whose qualitative behavior will be determined by the qualitative
behavior of the vector of state variables yt. In particular,

xt = QDty0 + x̄ = QDtQ−1(x0 − x̄) + x̄, (2.12)

where Q is a time-invariant matrix and Dt is the Jordan matrix raised
to the power t, whose properties are well established. Hence, as time
approaches infinity, the vector of state variables, xt, approaches its
steady-state level, x̄, if the matrix QDtQ−1 vanishes. Since Q and Q−1

are time-independent, it follows that as time approaches infinity, the
vector of state variables, xt, approaches its steady-state level, x̄, if Dt

vanishes.
If the matrix A has non-repeated (real or complex) eigenvalues, the

matrix D is a diagonal matrix and therefore the matrix Dt is a diagonal
matrix as well. The time path of each of the elements of the vector yt

is independent of the other and can be examined based on the analysis
developed for the one-dimensional case in Sect. 1.1. In particular, Dt

vanishes and the vector of state variables, xt, approaches its steady-
state level, x̄, if all n elements of the diagonal matrix D are smaller
than 1 in absolute value.

If the matrix A has repeated (real or complex) eigenvalues, the ma-
trix D is a block diagonal matrix, and the properties of limt→∞Dt are
well established, permitting a complete characterization of the solution
for xt.
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2.3 Examples of Two-Dimensional Systems

This section presents two simple examples of a two-dimensional, first-
order, linear, dynamical system that demonstrate the solution method
and the qualitative analysis that will be adopted in the case of multi-
dimensional, first-order, linear, dynamical systems. The first example
focuses on a discrete dynamical system in which the two state vari-
ables evolve independently of one another, demonstrating the direct
use of the analysis of the one-dimensional case for the characterization
of this system. The second example focuses on a system of interdepen-
dent state variables, demonstrating the construction of a time-invariant
transformation of this dynamical system into a new dynamical system
of independent state variables whose evolution, and therefore the evo-
lution of the original state variables, can be examined on the basis of
the insight of the one-dimensional case.

2.3.1 Explicit Solution and Stability Analysis

Consider a system of two-dimensional, first-order, homogeneous differ-
ence equations1

xt+1 = Axt, (2.13)

where the value of the vector of state variables in period 0, x0, is given.
As follows from (2.8), or as can be derived directly by the method of
iterations, the evolution of the vector of state variables is governed by

xt = Atx0. (2.14)

If the matrix A is a diagonal matrix as would be the case in Ex-
ample 2.4, there exists no interdependence between the different state
variables. The matrix At is also a diagonal matrix, and the evolution
of each of the state variables can be analyzed separately according to
the method developed for the unidimensional case in Sect. 1.1. A more
general form of the matrix A, which implies interdependence across
the state variables, would require, however, the construction of a time-
independent transformation of the system of interdependent state vari-
ables, xt, into a new dynamical system of independent state variables.
1 The homogeneity of the system is reflected by the fact that B = 0 in the gen-

eral linear system xt+1 = Axt + B, and the system’s steady-state equilibrium is
therefore the vector 0. As will be established in Sect. 2.5, a non-homogeneous
system can be transformed into a homogenous system by shifting the origin of
the non-homogeneous system to its steady-state equilibrium. Hence, the use of
examples of homogenous systems should be viewed only as a simplifying device.
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Example 2.4. (An Uncoupled System)

Consider a system of two-dimensional, first-order, homogeneous dif-
ference equations, xt+1 = Axt, such that

⎡

⎣
x1t+1

x2t+1

⎤

⎦ =

⎡

⎣
2 0

0 0.5

⎤

⎦

⎡

⎣
x1t

x2t

⎤

⎦ , (2.15)

where the initial conditions of the system, x0 ≡ [x10, x20], are given.
Since the matrix A is a diagonal matrix, the system is uncoupled

and the evolution of each of the state variables is independent of the
other, i.e. x1t+1 depends only on x1t, and x2t+1 depends only on x2t.

The solution to the system, xt = Atx0, as derived in (2.8), is there-
fore

[
x1t

x2t

]
=

[
2t 0

0 (0.5)t

][
x10

x20

]
. (2.16)

Since the matrix At is a diagonal matrix, the evolution of each state
variable is independent of the evolution of the other state variable, and
it can be examined in isolation analogously to the solution method
developed for the unidimensional case in Sect. 1.1.

In particular,

x1t = 2tx10

x2t = (0.5)tx20.
(2.17)

The steady-state equilibrium of the entire system is therefore

(x1, x2) = (0, 0). (2.18)

The evolution of each of the state variables as time approaches in-
finity differs qualitatively. The second state variable, x2t, converges to
its steady-state level x2 = 0 regardless of its initial value x20. Namely,

lim
t→∞x2t = x2 = 0, ∀x20 ∈ �. (2.19)

If x20 > 0, the value of x2t approaches zero monotonically from
the positive quadrants of x2t, whereas if x20 < 0, it approaches zero
monotonically from the negative quadrants of x2t.
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In contrast, the first state variable, x1t, diverges to plus or minus
infinity, unless the initial position of this state variable is at its steady-
state level, x1 = 0. Namely, it diverges monotonically to −∞, if x10 < 0,
or to +∞ if x10 > 0. Namely,

lim
t→∞x1t =

⎧
⎪⎪⎨

⎪⎪⎩

−∞ if x10 < 0

x1 = 0 if x10 = 0

∞ if x10 > 0.

(2.20)

As depicted in Fig. 2.1, the steady-state equilibrium, (x̄1, x̄2) =
(0, 0), is a saddle point.2 Unless x10 = 0, the steady-state equilibrium
will not be reached, and the system will diverge in its x1t dimension to
−∞ or +∞. Namely,

lim
t→∞xt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−∞, 0) if x10 < 0

x̄ = (0, 0) if x10 = 0

(∞, 0) if x10 > 0.

(2.21)

Example 2.5. (A Coupled System)

Consider a coupled system of two-dimensional, first-order, homoge-
neous difference equations

⎡

⎣
x1t+1

x2t+1

⎤

⎦ =

⎡

⎣
1 0.5

1 1.5

⎤

⎦

⎡

⎣
x1t

x2t

⎤

⎦ , (2.22)

where the initial levels of the vector of state variables, x0 ≡ [x10, x20],
is given.

The steady-state equilibrium of this homogeneous system is
therefore

2 For the ease of visualization, a single trajectory was drawn in each quadrant. In
fact, for each level of x1t there is a continuum of trajectories corresponding to
each level of x2t. Moreover, each trajectory is drawn in a continuous manner.
The actual trajectories, however, are sequences of discrete points that lie on this
continuous trajectory.
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x2t

x1t
x

Fig. 2.1. An Uncoupled System
A Saddle

(x1, x2) = (0, 0). (2.23)

The system cannot be directly uncoupled since the two variables,
x1t and x2t, are interdependent. Thus a different solution method
is required. The solution technique converts the coupled system (via
a time-invariant matrix) into a new system of coordinates in which
the dynamical system is uncoupled and is therefore solvable with the
method of analysis described for the one-dimensional case in Sect. 1.1.

As is established formally in the next sections, the new system of
coordinates is formed by the lines spanned by each of the eigenvectors
of the matrix A. Moreover, the time-invariant transformation of the
vector of state variables, xt, into the new system of coordinates, is
based on a matrix whose columns are the eigenvectors of the matrix A.
Hence the solution method involves the derivation of the eigenvalues
and the eigenvectors of the matrix A.

The Eigenvalues of the Matrix A

The eigenvalues of the matrix A are obtained as a solution to the
equation

|A − λI| = 0, (2.24)
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where |A − λI| is the determinant of the matrix [A − λI] and I is the
identity matrix. In the two-dimensional case, the eigenvalues, λ1 and
λ2, are therefore obtained as a solution to the equation

∣∣∣∣∣∣

a11 − λ a21

a12 a22 − λ

∣∣∣∣∣∣
= 0. (2.25)

The implied characteristic polynomial is

c(λ) ≡ λ2 − trAλ + detA = 0, (2.26)

and the eigenvalues are determined by the solution to
⎧
⎨

⎩

λ1 + λ2 = trA

λ1λ2 = det A.
(2.27)

In light of (2.22), it follows that

{
λ1 + λ2 = 2.5

λ1λ2 = 1,
(2.28)

and therefore λ1 = 2 and λ2 = 0.5.

The Eigenvectors of the Matrix A

f1 and f2, the eigenvectors of the matrix A, that are associated with
the eigenvalues λ1 and λ2, are obtained as a solution to the equations

[A − λI]f1 = 0 for f1 �= 0

[A − λI]f2 = 0 for f2 �= 0,
(2.29)

where fi = (fi1, fi2)′ for i = 1, 2. Hence, it follows from (2.22) that the
eigenvector associated with the eigenvalue λ1 = 2 is determined by
the solution to the system of equations

[−1 0.5

1 −0.5

][
f11

f12

]
=

[
0

0

]
, (2.30)
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whereas that associated with λ2 = 0.5 is determined by the solution
to the system of equations

[
0.5 0.5

1 1

][
f22

f21

]
=

[
0

0

]
. (2.31)

Thus, the first eigenvector is determined by the equation

f12 = 2f11, (2.32)

whereas the second eigenvector is given by the equation

f22 = −f21. (2.33)

The eigenvectors f1 and f2 are therefore

f1 =
[

1
2

]

f2 =
[

1
−1

]
,

(2.34)

or any scalar multiplication of these vectors.

The Construction of a New System of Coordinates
that Spans �2

Since f1 and f2 are linearly independent, they span �2. Namely,
for all xt ∈ �2 there exists yt ≡ (y1t, y2t) ∈ �2 such that

xt = f1y1t + f2y2t. (2.35)

Hence, as follows from the values of the eigenvectors given in (2.34)

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 1

2 −1

⎤

⎦

⎡

⎣
y1t

y2t

⎤

⎦ . (2.36)

Namely, every xt = (x1t, x2t)′ ∈ �2 can be expressed in terms of the
new system of coordinates, (y1t, y2t) ∈ �2.
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In particular, there exists a time-independent matrix Q such that

xt = Qyt. (2.37)

Since f1 and f2 are linearly independent, Q is a non-singular matrix,
Q−1 therefore exists, and yt can be expressed in terms of the original
system of coordinates (x1t, x2t). That is,

yt = Q−1xt. (2.38)

In particular,

⎡

⎣
y1t

y2t

⎤

⎦ = −1
3

⎡

⎣
−1 −1

−2 1

⎤

⎦

⎡

⎣
x1t

x2t

⎤

⎦ , (2.39)

and therefore,

y1t = 1
3(x1t + x2t)

y2t = 1
3(2x1t − x2t).

(2.40)

Thus,

y1t = 0 ⇔ x2t = −x1t

y2t = 0 ⇔ x2t = 2x1t.
(2.41)

The geometric place of the new system of coordinates is given there-
fore by (2.41).

As depicted in Fig. 2.2, the geometric place of all pairs (x1t, x2t)
such that x2t = −x1t, is the y2t axis (along which y1t = 0) and the
geometric place of all pairs (x1t, x2t) such that x2t = 2x1t is the y1t axis
(along which y2t = 0).

The axes of the new system of coordinates (y1t, y2t) are therefore the
lines spanned by the eigenvectors f1 and f2, respectively, as depicted
in Fig. 2.2.



40 2 Multi-Dimensional, First-Order, Linear Systems: Solution

(x2t = 2x1t )

(x2t = −x1t)

y1t

y2t

x2t

x1t

(x1t,  x2t)f1

f2
•

•

Fig. 2.2. The New System of Coordinates
The Representation of (x1t, x2t) in the (y1t, y2t) space

The Independence of the Evolution of the State Variables
y1t and y2t

As follows from (2.38), the value of the vector of state variables yt+1

can be expressed as a time-invariant function of the value of the vector
of state variables xt+1. In particular,

yt+1 = Q−1xt+1. (2.42)

Hence, since the evolution of the vector of state variables xt+1 is given
by xt+1 = Axt, it follows that

yt+1 = Q−1Axt. (2.43)

Moreover, as established in (2.37), the value of the vector of state vari-
ables, xt, can be expressed in terms of the new system of coordinates,
(y1t, y2t). In particular, xt = Qyt, and therefore

yt+1 = Q−1AQyt. (2.44)
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Thus,

yt+1 ≡ Dyt, (2.45)

where D ≡ Q−1AQ.
As follows from (2.36) and (2.39),

D = Q−1AQ = −1
3

⎡

⎣
−1 −1

−2 1

⎤

⎦

⎡

⎣
1 0.5

1 1.5

⎤

⎦

⎡

⎣
1 1

2 −1

⎤

⎦

=

⎡

⎣
2 0

0 0.5

⎤

⎦ . (2.46)

Namely, the matrix D is a diagonal matrix.
As is evident, the eigenvalues of the matrix A, λ1 = 2 and λ2 = 0.5

are the diagonal elements of the matrix D, i.e.

D =

⎡

⎣
λ1 0

0 λ2

⎤

⎦ . (2.47)

Thus, the evolution of each of the elements of the vector of state
variables, yt, is independent of the evolution of the other state vari-
able, and its time path can be determined by the method of solution
developed for the unidimensional case in Sect. 1.1.

The Solution for yt

The evolution of the vector of new state variables, yt, is given by

yt+1 =

⎡

⎣
2 0

0 0.5

⎤

⎦ yt. (2.48)

Since the system is uncoupled, it follows from the methods of iterations
that

yt = Dty0, (2.49)
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namely,

y1t = 2t y10

y2t = (0.5)t y20.
(2.50)

The value of the vector of new state variables in period 0, y0, is not
given. Nevertheless, it is determined uniquely by the values of the orig-
inal vector state variables in period 0, x0. In particular, as follows from
(2.38), y0 = Q−1x0.

The steady-state equilibrium of the system yt+1 = Dyt is a vector
ȳ ∈ �2 such that ȳ = Dȳ. The steady-state equilibrium of the new
system is therefore

ȳ ≡ (y1, y2)
′ = (0, 0)′. (2.51)

The steady-state equilibrium ȳ = (0, 0) is unique since [I − D] is non-
singular, i.e.

|I − D| =

∣∣∣∣∣∣

−1 0

0 0.5

∣∣∣∣∣∣
= −0.5 �= 0. (2.52)

The second state variable, y2t, converges to its steady-state level
y2 = 0, regardless of its initial value of y20. Namely,

lim
t→∞ y2t = y2 = 0, ∀y20 ∈ �. (2.53)

The first state variable, y1t, diverges to plus or minus infinity, unless the
initial position of this state variable is at its steady-state level, y1 = 0.
That is,

lim
t→∞ y1t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞ if y10 < 0

y1 = 0 if y10 = 0

+∞ if y10 > 0.

(2.54)

As depicted in Fig. 2.3, the steady-state equilibrium (ȳ1, ȳ2) = (0, 0)
is a saddle point. Namely, unless y10 = 0, the steady-state equilibrium
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y2t

y
y1t

Fig. 2.3. The Evolution of yt

will not be reached, and the system will diverge in one of its dimensions
to either plus or minus infinity. Thus,

lim
t→∞ yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−∞, 0) if y10 < 0

(0, 0) if y10 = 0

(∞, 0) if y10 > 0.

(2.55)

The Solution for xt

The position of the vector of state variables, xt, can be expressed
in term of the new system of coordinates, (y1t, y2t). In particular, as
established in (2.37), xt = Qyt, i.e.

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 1

2 −1

⎤

⎦

⎡

⎣
y1t

y2t

⎤

⎦ . (2.56)
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Hence, a time-invariant transformation of the explicit solution for the
time path of the vector of new state variables, yt, provides an explicit
solution for the time path of the original vector of state variables, xt.

As follows from (2.50),

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 1

2 −1

⎤

⎦

⎡

⎣
2ty10

(0.5)ty20

⎤

⎦ =

⎡

⎣
2ty10 + (0.5)ty20

2t+1y10 − (0.5)ty20

⎤

⎦ , (2.57)

where the initial value y0 = Q−1x0. Hence, it follows from (2.40) that

⎡

⎣
y10

y20

⎤

⎦ = −1
3

⎡

⎣
−1 −1

−2 1

⎤

⎦

⎡

⎣
x10

x20

⎤

⎦ , (2.58)

and therefore,

y10 = 1
3(x10 + x20)

y20 = 1
3(2x10 − x20).

(2.59)

The time path of xt and its qualitative properties are therefore
uniquely determined by the system’s initial conditions, (x10, x20), and
the eigenvalues of the matrix A.

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
2t

3 (x10 + x20) + (0.5)t

3 (2x10 − x20)

2t+1

3 (x10 + x20) − (0.5)t

3 (2x10 − x20)

⎤

⎦ . (2.60)

The phase diagram of the original system is obtained by placing
the phase diagram that describes the evolution of yt, relative to the
new system of coordinates (y1, y2), in the plane (x1, x2), as depicted in
Fig. 2.4.
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Es( x )

(x2t = 2x1t)

(x2t = −x1t)

y1t

y2t

x2t

x1t
x

E 

u( x )

Fig. 2.4. The Evolution of xt

A Saddle

Stability of the Steady-State Equilibrium x̄

A steady-state equilibrium of the system xt+1 = Axt is a vector
x̄ ∈ �2 such that x = Ax̄. Hence, it follows from (2.60) that x̄ exists
and is given by x̄ = (0, 0). Moreover, x̄ = (0, 0) is unique since the
matrix [I − A] is non-singular, i.e.

|I − A| =

∣∣∣∣∣∣

0 −0.5

−1 −0.5

∣∣∣∣∣∣
= −0.5 �= 0. (2.61)

As follows from (2.60), and as depicted in Fig. 2.4,

lim
t→∞xt = x ⇔ x20 = −x10, (2.62)

and the steady-state equilibrium x = 0 is a saddle point. Namely, the
vector of the original state variables, xt, converges to its steady-state
value x̄ if and only if the initial values of this vector are placed on the
y2t axis, i.e. along the geometric place of all pairs of (x1t, x2t) such that
x20 = −x10.
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2.3.2 Stability Analysis Without an Explicit Solution

A. Construction of Phase Diagrams Without an Explicit
Solution

The derivation of a phase diagram for a two-dimensional, first-order
linear system does not require an explicit characterization of the evolu-
tion of the vector of state variables. The phase diagram can be derived
via a characterization of the map of forces that operate on the vector
of state variables in any position in the two-dimensional plane.

The construction of the phase diagram requires the identification of
the geometric place under which a given state variable is in a steady
state, as well as the characterization of the forces that operate on this
state variable once it deviates from its steady-state value.

Consider Example 2.5 where
⎡

⎣
x1t+1

x2t+1

⎤

⎦ =

⎡

⎣
1 0.5

1 1.5

⎤

⎦

⎡

⎣
x1t

x2t

⎤

⎦ . (2.63)

The system can be rewritten in a slightly different manner, in terms of
changes in the values of each of the state variables between time t and
time t+1. Let Δxit be the change in the value of the ith state variable,
i = 1, 2, from period t to period t + 1.

Δx1t ≡ x1t+1 − x1t = 0.5x2t

Δx2t ≡ x2t+1 − x2t = x1t + 0.5x2t.
(2.64)

Clearly, at a steady-state equilibrium, neither x1t nor x2t changes over
time and therefore Δx1t = Δx2t = 0.

Let ‘Δx1t = 0’ be the geometric place of all pairs of (x1t, x2t) such
that x1t is in a steady state, and let ‘Δx2t = 0’ be the geometric
place of all pairs (x1t, x2t) such that x2t is in a steady state. Namely,

‘Δx1t = 0’ ≡ {(x1t, x2t)| x1t+1 − x1t = 0}

‘Δx2t = 0’ ≡ {(x1t, x2t)| x2t+1 − x2t = 0}.
(2.65)
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It follows from (2.64) and (2.65) that

Δx1t = 0 ⇔ x2t = 0

Δx2t = 0 ⇔ x2t = −2x1t.
(2.66)

Thus, as depicted in Fig. 2.5, the geometric locus of all pairs of
(x1t, x2t) such that ‘Δx1t = 0’ is the entire x1t axis, whereas the
geometric place of all pairs of (x1t, x2t) such that ‘Δx2t = 0’ is given
by the equation x2t = −2x1t.

The geometric place under which the two loci, ‘Δx1t = 0’ and
‘Δx2t = 0,’ intersect is the steady state equilibrium of the system. As
follows from (2.66) and as depicted in Fig. 2.5, the two loci intersect at
the point (0, 0) and this is the unique steady-state equilibrium of the
entire system.

The forces that operate on each of the state variables out of its
steady-state equilibrium provide the necessary elements for the deriva-
tion of the phase diagram.

As follows from (2.64), as long as x2t > 0, the system increases the
value of the first state variable, x1t, in the transition from time t to
time t + 1, whereas if x2t < 0 the system tends to decrease the value of

x2t

x1t
x

Δx2t = 0

Δ x1t = 0

Fig. 2.5. The Construction of a Phase Diagram without Reference to an
Explicit Solution
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x1t in the transition from time t to time t + 1. Hence,

Δx1t

⎧
⎨

⎩

> 0 if x2t > 0

< 0 if x2t < 0.
(2.67)

Consequently, as depicted in Fig. 2.5, above the x1t axis, the arrows
that depict the motion of the first state variable, x1t, are directed right-
ward, whereas below the x1t axis, the arrows that depict the motion of
x1t are directed leftward.

Similarly, if x2t > −2x1t, the system tends to increase value of the
second state variable, x2t, in the transition from time t to time t + 1,
whereas if x2t < −2x1t, the system tends to decrease the value of x2t.
Hence,

Δx2t

⎧
⎨

⎩

> 0 if x2t > −2x1t

< 0 if x2t < −2x1t.
(2.68)

Consequently, as depicted in Fig. 2.5, above the geometric locus
x2t = −2x1t (i.e. for pairs of (x1t, x2t) such that x2t > −2x1t), the
arrows that depict the motion of the second state variable, x2t, are
directed upward, whereas below the geometric locus x2t = −2x1t (i.e.
for pairs of (x1t, x2t) such that x2t < −2x1t), the arrows that depict
the motion of x2t are directed downward.

Remark. The motion of state variables in discrete dynamical systems
could not be inferred from the arrows of motion relative to the steady-
state loci unless the nature of the eigenvalues that characterize the
matrix of coefficients of the vector of state variables is verified. In par-
ticular, if both eigenvalues are real and positive, each state variable
converges or diverges monotonically and the arrows of motion properly
describe the motion of the state variables. However, if an eigenvalue is
negative, then the dynamical system displays an oscillatory behavior
and the motion of the system exhibits oscillations around its corre-
sponding steady-state locus. Similarly, if the eigenvalues are complex,
then the dynamical system exhibits a cyclical motion. Hence, in the
case of negative or complex eigenvalues, the arrows of motion simply
indicate the direction of the oscillations, or the cyclical motion, from
each region of the phase diagram.

Since both eigenvalues in Example 2.5 are real and positive, con-
vergence and divergence are monotonic and the arrows of motion
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approximate the actual motion of the system. The phase diagram is
depicted in Fig. 2.5 according to the location of the loci ‘Δx1t = 0’
and ‘Δx2t = 0,’ as well as the corresponding arrows of motion.

B. Derivation of a New System of Coordinates Without an
Explicit Solution

The derivation of the new system of coordinates is feasible in some
cases without an explicit derivation of the solution for the dynamical
system.

In particular, if the steady-state equilibrium is a saddle, as is the case
in Example 2.5, since the system is linear, convergence to the steady-
state equilibrium is along a linear segment that represents the axis of
the new system. Moreover, since the system is homogeneous, it follows
that the ratio between the two state variables along the convergence
path is identical at any point in time. Thus,

x2t+1

x1t+1
=

x2t

x1t
, (2.69)

along the axis of the new system of coordinates (i.e. along the geo-
metric place from which the vector of state variables converges to the
steady-state equilibrium), as well as along the other axis of the new
system of coordinates (i.e. along the geometric place from which the
vector of state variables converges to the steady-state equilibrium upon
backward iterations under the system’s law of motion).

Given the structure of the dynamical system in (2.63), it follows
that

x1t + 1.5x2t

x1t + 0.5x2t
=

x2t

x1t
. (2.70)

Hence, the ratio between x2t and x1t along the new system of coordi-
nates (y1t, y2t) is given by the quadratic equation

( x2t

x1t

)2 − ( x2t

x1t

)− 2 = 0. (2.71)

Based on the solution to this quadratic equation, it follows that the
ratios between the two state variables along the new system of coordi-
nates is

x2t

x1t
= {2, −1}. (2.72)
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These two solutions for this quadratic equation provide the equa-
tions of the dashed lines depicted in Fig. 2.5 – lines that are spanned
by each eigenvector of the matrix A. They are the two constant ratios
that lead into the steady-state equilibrium upon a sufficient number of
either forward or backward iterations.

C. Stable and Unstable Eigenspace

Examples 2.4 and 2.5 provide an ideal setting for the introduction of
the concepts of a stable eigenspace and an unstable eigenspace, setting
the stage for the introduction of the concepts of stable and unstable
manifolds of nonlinear dynamical systems.

The stable eigenspace, relative to the steady-state equilibrium x,
is defined as the plane spanned by the eigenvectors associated with
eigenvalues of modulus smaller than one. Namely,

Es(x) = span {eigenvectors associated with eigenvalues

of modulus < 1}.
In a homogenous two-dimensional autonomous linear system, xt+1 =

Axt, the stable eigenspace, Es(x), relative to the steady-state equilib-
rium x, is

Es(x) = {(x1t, x2t)| lim
n→∞An

(
x1t

x2t

)
= x}. (2.73)

Namely, the stable eigenspace, is the geometric locus of all pairs
(x1t, x2t) that upon a sufficient number of forward iterations are
mapped in the limit towards the steady-state equilibrium, x. The sta-
ble eigenspace in Example 2.5 is one-dimensional. It is the line given
by the equation x2t = −x1t, as depicted in Fig. 2.4.

The unstable eigenspace, relative to the steady-state equilibrium
x, is defined as

Eu(x) = span {eigenvectors associated with eigenvalues

of modulus > 1}.
In a homogeneous two-dimensional linear system, xt+1 = Axt, the

unstable eigenspace, Eu(x), is

Eu(x) = {(x1t, x2t)| lim
n→∞A−n

(
x1t

x2t

)
= x}. (2.74)
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Namely, the unstable eigenspace is the geometric locus of all pairs
(x1t, x2t) that upon a sufficient number of backward iterations are
mapped in the limit towards the steady-state equilibrium x̄. The un-
stable eigenspace in Example 2.5 is one-dimensional as well. It is the
line given by the equation x2t = 2x1t, as depicted in Fig. 2.4.

2.4 Properties of the Jordan Matrix

This section summarizes fundamental propositions from the field of
Linear Algebra used in the derivation and qualitative analysis of the
evolution of multidimensional discrete dynamical systems.

Consider the multidimensional first-order linear system, xt+1 =
Axt + B. If the matrix A is a diagonal matrix, there exists no in-
terdependence between the different state variables. The matrix At is
also a diagonal matrix, and the evolution of each of the state variables
can be analyzed separately according to the method developed for the
one-dimensional case in Sect. 1.1.

However, if the matrix A is not a diagonal matrix and there exists in-
terdependence in the evolution of state variables, the characterization
of the evolution of this multi-dimensional interdependent dynamical
system necessitates a time-independent transformation of the system
into either: (a) a new dynamical system of independent state variables
that can be analyzed according to the method developed for the one-
dimensional case, or (b) a new interdependent system whose interde-
pendence is represented by a matrix in the Jordan normal form, and
thus can be analyzed on the basis of the well established properties
of the nth iteration of the Jordan matrix as n approaches infinity. In
particular, this requires the transformation of a system of interdepen-
dent state variables, xt, into a new dynamical system of state variables,
yt, via a time-independent transformation, Q, such that xt = Qyt + x̄,
where yt+1 = Dyt, and D is the Jordan matrix, as described below.

Established results in Linear Algebra provide the properties of the
matrix of coefficients A that permit the time-invariant transformation
into a dynamical system of: (a) independent state variables whose evo-
lution can be characterized based on the unidimensional case examined
in Sect. 1.1, or (b) an interdependent system whose evolution is gov-
erned by the Jordan matrix.

Lemma 2.6 provides the conditions on the matrix of coefficients A
under which it is diagonalizable.
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Lemma 2.6. Let A = (aij) be an n×n matrix where aij ∈ �, i, j =
1, 2, · · · , n.

• If the matrix A has n distinct real eigenvalues {λ1, λ2, λ3, · · · , λn},
then there exists a nonsingular n × n matrix, Q, such that

A = QDQ−1,

where D is a diagonalized matrix

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 ... 0

0 λ2 0 ... 0

0 0 λ3 ... 0

: : :
. . .

0 0 0 ... λn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and Q is an invertible n × n matrix whose columns are the eigen-
vectors of the matrix A, {f1, f2, f3, ...fn}, i.e.

Q = [f1, f2, f3, ...fn].

• If the matrix A has n repeated real eigenvalues {λ, λ, λ, λ, · · · , λ},
then there exists a nonsingular n × n matrix, Q, such that

A = QDQ−1,

where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 . . . 0

1 λ 0 0
. . . 0

0 1 λ 0
. . . 0

0 0 1
. . . . . . 0

0 0 0
. . . λ 0

0 0 0 . . . 1 λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Proof. See Hirsch and Smale (1974). �

Lemma 2.7. If the matrix A has n/2 pairs of distinct complex eigen-
values,

{μ1, μ1, μ2, μ2, · · · , μn/2, μn/2}, where

μj ≡ αj + βji,

μj ≡ αj − βji,

and i ≡ √−1, then there exists a nonsingular n×n matrix, V, such
that

A = V DV −1,

where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 −β1 0 0 ... ... 0 0

β1 α1 0 0 ... ... 0 0

0 0 α2 −β2
. . . . . . 0 0

0 0 β2 α2
. . . 0 0

...
...

. . . . . . . . . . . . 0 0

...
...

. . . . . . . . . . . . 0 0

0 0 0 0 ... ... αn/2 −βn/2

0 0 0 0 ... ... βn/2 αn/2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

• If a matrix A has n/2 pairs of repeated complex eigenvalues,
{μ, μ, μ, μ, · · · , μ, μ}, where

μ ≡ α + βi,

μ ≡ α − βi,

and i ≡ √−1, then there exists a nonsingular n × n matrix V
such that A = V DV −1, where
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D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −β 0 0 0 0 0 0

β α 0 0 0 0 0 0

1 0 α −β 0 0 0 0

0 1 β α 0 0 0 0

...
...

. . . . . . . . . . . .
...

...

...
...

. . . . . . . . . . . .
...

...

0 0 0 0 1 0 α −β

0 0 0 0 0 1 β α

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. See Hirsch and Smale (1974). �

The following lemma generalizes the results of the pervious one,
for the case in which the matrix A may have a mixture of real
distinct eigenvalues, repeated real eigenvalues, distinct complex eigen-
values, and repeated complex eigenvalues.

Lemma 2.8. Let A be an n × n matrix where aij ∈ �, i, j =
1, 2, · · · , n. Then, there exists an n × n nonsingular matrix V such
that

A = V DV −1,

and D is the Jordan normal form that corresponds to the matrix A, i.e.

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 0 0 0 ... 0

0 D2 0 0
. . . 0

0 0
. . . 0

. . . 0

0 0 0 Dh
. . . 0

...
. . . . . . . . . . . .

0 0 0 0 ... Dm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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• For each distinct real eigenvalue, λh, of the matrix A

Dh = λh.

• For repeated real eigenvalues {λ, λ, ...λ} of the matrix A

Dh =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 ... 0

1 λ 0
. . . 0

0 1 λ
. . . 0

...
. . . . . . . . . 0

0 0 0 ... λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

• For a distinct pair of complex eigenvalues, {μh, μh}, of the matrix
A, where μh ≡ αh + βhi and μh ≡ αh − βhi,

Dh =

⎡

⎣
αh −βh

βh αh

⎤

⎦ .

• For pairs of repeated complex eigenvalues, {μ, μ, μ, μ, · · · , μ, μ}, of
the matrix A, where μ ≡ α + βi, and μ ≡ α − βi,

Dh =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −β 0 0 0 0 0 0

β α 0 0 0 0 0 0

1 0 α −β 0 0 0 0

0 1 β α 0 0 0 0

...
...

. . . . . . . . . . . .
...

...

...
...

. . . . . . . . . . . .
...

...

0 0 0 0 1 0 α −β

0 0 0 0 0 1 β α

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. See Hirsch and Smale (1974). �
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2.5 Representation of the System
in the Jordan Normal Form

The characterization of the evolution of a multidimensional system of
interdependent state variables necessitates the construction of a time-
independent transformation of the system into a new dynamical system
of either (a) independent state variables whose evolution can be derived
based on the analysis of the unidimensional case, or (b) partially depen-
dent state variables whose evolution is determined by well established
properties of the Jordan matrix.

This section presents the solution to a multidimensional first-order
linear discrete system in terms of the Jordan normal form, D. It trans-
forms in a time-independent fashion the original dynamical system into
a new one whose evolution is governed by the Jordan matrix. Based
upon the well established properties of the Jordan matrix, this repre-
sentation permits the examination of the properties of the system as
time approaches infinity.

Consider a system of autonomous, first-order, linear difference equa-
tions

xt+1 = Axt + B, t = 0, 1, 2, 3, · · · (2.75)

The transformation of a system of interdependent state variables, xt,
into a new system of independent state variables, yt, whose evolution
is governed by the Jordan matrix, D, requires the construction of two
matrices: a time-invariant matrix, Q, based upon the eigenvectors of
the matrix A, and the Jordan normal form D, using the eigenvalues of
the matrix A.

2.5.1 Transformation of Non-Homogeneous Systems
into Homogeneous Ones

A non-homogeneous dynamical system can be transformed into a ho-
mogenous dynamical system by re-positioning the origin of the axis of
the non-homogeneous system at its steady-state equilibrium.

Proposition 2.9. (Transformation of Non-Homogeneous Systems into
Homogeneous Ones)
A non-homogeneous system of first-order linear difference equations

xt+1 = Axt + B,
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can be transformed into a homogeneous system of first-order linear
difference equations

zt+1 = Azt,

where zt ≡ xt − x is a state variable that characterizes the evolution of
the deviation of xt from its steady state value x = [I − A]−1B.

Proof: Let

zt ≡ xt − x. (2.76)

It follows that

zt+1 = xt+1 − x̄. (2.77)

Since xt+1 = Axt + B,

zt+1 = Axt + B − x̄ (2.78)
= A(zt + x) + B − x

= Azt − [I − A]x + B.

Hence, since x = [I − A]−1B,

zt+1 = Azt. (2.79)

�

2.5.2 The Solution in Terms of the Jordan Normal Form

Proposition 2.10. (Solution in Term of the Jordan Normal Form)
The evolution of the vector of state variables, xt, in a system of non-
homogeneous first-order linear difference equations

xt+1 = Axt + B,

is given by

xt = QDtQ−1(x0 − x) + x,

where D is a matrix in the Jordan normal form that corresponds
to A, x0 is the system’s initial condition, and x = [I − A]−1B is the
steady-state equilibrium of the system.
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Proof: Let zt ≡ xt − x. It follows from Proposition 2.9 that

zt+1 = Azt. (2.80)

As follows from Lemma 2.8 there exists a non-singular matrix Q such
that

A = QDQ−1, (2.81)

where D is the Jordan matrix . Thus,

zt+1 = QDQ−1zt. (2.82)

Let

yt ≡ Q−1zt. (2.83)

Pre-multiplying both sides of (2.82) by Q−1, it follows that

yt+1 = Dyt. (2.84)

Using the method of iterations, the evolution of the new state variable,
yt is given by

yt = Dty0. (2.85)

Hence, since y0 ≡ Q−1z0 and z0 = x0 − x, it follows that

yt = DtQ−1(x0 − x). (2.86)

Furthermore, since Q−1zt = yt, it follows that zt = Qyt, and therefore
zt ≡ xt − x = Qyt. Hence,

xt = Qyt + x, (2.87)

and therefore

xt = QDtQ−1(x0 − x) + x. (2.88)

�

Hence the evolution of the system depends on the properties of the
Jordan matrix, D. These properties, in turn, depend on the eigenvalues
of the matrix A.



3

Multi-Dimensional, First-Order, Linear
Systems: Characterization

This chapter characterizes the trajectory of a vector of state variables
in multi-dimensional, first-order, linear dynamical systems. It examines
the trajectories of these systems when the matrix of coefficients has real
eigenvalues and the vector of state variables converges or diverges in a
monotonic or oscillatory fashion towards or away from a steady-state
equilibrium that is characterized by either a saddle point or a stable
or unstable (improper) node. In addition, it examines the trajectories
of these linear dynamical systems when the matrix of coefficients has
complex eigenvalues and the system is therefore characterized by a
spiral sink, a spiral source, or a periodic orbit.

The qualitative pattern of a multi-dimensional, linear dynamical
system, xt+1 = Axt + B , depends upon the nature of the matrix of
coefficients A. The trajectory of the system depends on whether the
matrix of coefficients A has: (a) distinct real eigenvalues, (b) repeated
real eigenvalues, (c) distinct complex eigenvalues, or (d) repeated com-
plex eigenvalues. As established in Sect. 2.4, the Jordan matrix has a
different representation under each of these categories, and the evolu-
tion of the system is affected accordingly.

3.1 Distinct Real Eigenvalues

3.1.1 Characterization of the Solution

Consider the multi-dimensional, linear dynamical system

xt+1 = Axt + B, t = 0, 1, 2, 3, · · · (3.1)

where the vector of state variables, xt, is an n - dimensional real vec-
tor; xt ∈ �n, A is an n x n matrix of constant (time-independent)
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coefficients with elements, aij ∈ �, i, j = 1, 2, ..., n, and B is an n - di-
mensional time-independent vector with elements bi ∈ �, i = 1, 2, ..., n.

Suppose that the n x n matrix of coefficients, A, has n distinct
real eigenvalues {λ1, λ2, · · · , λn}. Suppose further that |I − A| �= 0.
As established in Lemma 2.6 and (2.88), there exists a time-invariant
transformation of the vector of state variables, xt, into a dynamical
system of independent state variables, yt, whose evolution can be char-
acterized based on the analysis of the one-dimensional case examined
in Sect. 1.1.

In particular, there exists a nonsingular n x n matrix, Q, whose
columns are the eigenvectors of the matrix A, {f1, f2, · · · , fn}, such
that

xt = Qyt + x, (3.2)

where x = [I − A]−1B is the steady-state equilibrium of the system.
Moreover,

yt+1 = Dyt, (3.3)

where the matrix D is a diagonal matrix whose diagonal elements are
the eigenvalues of the matrix A.

D =

⎡

⎢⎢⎢⎢⎢⎣

λ1 0 ... 0

0 λ2 ... 0
...

...
. . .

...

0 0 λn

⎤

⎥⎥⎥⎥⎥⎦
. (3.4)

Following the method of iterations yt = Dty0, i.e.

⎡

⎢⎢⎢⎢⎢⎣

y1t

y2t

...

ynt

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

λt
1 0 ... 0

0 λt
2 ... 0

...
...

. . .
...

0 0 λt
n

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

y10

y20

...

yn0

⎤

⎥⎥⎥⎥⎥⎦
, (3.5)
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and the evolution of each element of the state variables yit is therefore
governed by

yit = λt
iyi0 for i = 1, 2, ...n. (3.6)

Since the vector of state variables, xt, can be expressed as a function
of yt, namely, xt = Qyt + x, it follows that the evolution of the vector
of state variables, xt, is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1t

x2t

...

xnt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

. . .
...

Qn1 Qn2 · · · Qnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λt
1y10

λt
2y20

...

λt
nyn0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Hence,

xit =
n∑

j=1

Qijyj0λ
t
j + xi, for i = 1, 2, · · · , n, (3.8)

where

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y10

y20

...

yn0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

. . .
...

Qn1 Qn2 · · · Qnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x10 − x1

x20 − x2

...

xn0 − xn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.9)

Equations (3.8) and (3.9) provide the general solution for the evo-
lution of the ith state variable, xit, in terms of the eigenvalues of the
matrix A, {λ1, λ2, · · ·λn}, the initial conditions of the entire vector of
state variables, {x10, x20, · · ·xn0}, and the ith state variable’s steady-
state equilibrium, xi. It sets the stage for the stability results stated
in the following theorem.



62 3 Multi-Dimensional, First-Order, Linear Systems: Characterization

Theorem 3.1. (Necessary and Sufficient Conditions for Global Stabil-
ity: Distinct Real Eigenvalues)
Consider the system xt+1 = Axt + B, where xt ∈ �n and x0 is
given. Suppose that |I−A| �= 0 and A has n distinct real eigenvalues
{λ1, λ2, · · · , λn}.
• a. The steady-state equilibrium x = [I − A]−1B is globally stable

if and only if

|λj | < 1, ∀j = 1, 2, · · · , n.

b. limt→∞ xt = x if and only if ∀j = 1, 2, · · ·n
{|λj | < 1 or yj0 = 0},

where y0 = Q−1(x0 − x), and Q is a nonsingular n × n
matrix whose columns are the eigenvectors, {f1, f2, · · · , fn}, of
the matrix A.

Proof:
(a) The steady-state equilibrium, x̄, is globally stable if for all x0 ∈
�n limt→∞ xit = xi for all i = 1, 2, · · · , n. Thus it follows from
(3.8) that global stability is satisfied if and only if ∀Kij ≡ Qijyj0 ∈
� limt→∞

∑
j Kijλ

t
j = 0. Namely, if and only if |λj | < 1, ∀j =

1, 2, · · · , n,
(b) As follows from (3.8), limt→∞ xit = xi if and only if either |λj | < 1
or [|λj | ≥ 1 and yj0 = 0], ∀j = 1, 2, · · ·n. �

3.1.2 Phase Diagrams of Two-Dimensional Uncoupled
Systems

This subsection presents the various types of phase diagrams that char-
acterizes the evolution of the vector of new state variables, yt, in the
two-dimensional case when the original system is characterized by a
matrix of coefficients, A, that has distinct real eigenvalues. In particu-
lar, yt+1 = Dyt, where D is a diagonal matrix with the eigenvalues
of the matrix A, λ1 and λ2, as its diagonal elements.

As follows from the solution for the evolution of yt given in (3.5),

y1t = λt
1y10

y2t = λt
2y20,

(3.10)
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and the steady-state equilibrium of the system is

y = (y1, y2) = (0, 0). (3.11)

Hence,

lim
t→∞ yt = ȳ if {|λj | < 1} or {yj0 = 0} for all j = 1, 2. (3.12)

The phase diagrams of the dynamical systems that are governed by
distinct real eigenvalues depend upon the sign of each of the eigenvalues,
their absolute value relative to unity, and their relative magnitude in
comparison to each other.

(a) Positive Eigenvalues

If both eigenvalues are positive, then the evolution of the two state vari-
ables is necessarily monotonic. As long as the eigenvalues differ from 1,
the system may converge monotonically to its steady-state equilibrium
or diverge monotonically to +∞ or −∞ depending on the size of the
eigenvalues relative to one.

• Stable Node: 0 < λ2 < λ1 < 1

If both eigenvalues are positive and smaller than one, then the steady-
state equilibrium, y = (y1, y2) = (0, 0), is globally stable. Namely,
limt→∞ y1t = 0 and limt→∞ y2t = 0, ∀(y10, y20) ∈ �2.

As depicted in Fig. 3.1, the state variables monotonically converge
to the steady-state equilibrium, (0, 0), as time approaches infinity. How-
ever, since λ2 < λ1 the convergence of y2t to 0 is faster than the
convergence of y1t to 0.

• Saddle: 0 < λ2 < 1 < λ1

The steady-state equilibrium is a saddle. Namely, limt→∞ y2t =
0 ∀y20 ∈ �, whereas limt→∞ y1t = 0 if and only if y10 = 0. As
depicted in Fig. 3.2, the convergence to the steady-state equilibrium
ȳ along the saddle path (i.e. along the stable eigenspace, or alterna-
tively, the stable manifold) is monotonic, and the diverging paths are
monotonic as well.



64 3 Multi-Dimensional, First-Order, Linear Systems: Characterization

y2t

y1t

Fig. 3.1. Stable Node
0 < λ2 < λ1 < 1

• Focus: 0 < λ1 = λ2 < 1

The steady-state equilibrium is globally stable. Namely, limt→∞
y1t = 0 and limt→∞ y2t = 0, ∀(y10, y20) ∈ �2. As depicted in Fig. 3.3
convergence to the steady-state equilibrium, (0, 0), is monotonic. The
speed of convergence is the same for each state variable, and the tra-
jectory of the system from any initial condition to the steady-state
equilibrium is linear.

y2t

y1t

Fig. 3.2. A Saddle
0 < λ2 < 1 < λ1
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y2t

y1t

Fig. 3.3. Focus
0 < λ1 = λ2 < 1

• Source: 1 < λ1 < λ2

The steady-state equilibrium, (0, 0), is unstable. Namely, limt→∞
y1t = ±∞ and limt→∞ y2t = ±∞, ∀(y10, y20) ∈ �2 − {0} (i.e., as
long as the initial conditions are different from zero). As depicted in
Fig. 3.4, the divergence of the two state variables is monotonic. How-
ever, since λ2 > λ1 the divergence of y2t is faster than the divergence
of y1t.

y2t

y1t

Fig. 3.4. A Source
1 < λ1 < λ2.
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(b) Negative Eigenvalues

The evolution of each of the two state variables is determined by their
associated eigenvalues. If one of the eigenvalues is positive and the
other is negative, then the variable associated with the positive eigen-
value converges or diverges monotonically while the variable associated
with the negative eigenvalue is characterized by oscillatory convergence
or divergence. The evolution of the two state variables is therefore re-
flected around one of the axes. However, if both eigenvalues are neg-
ative, each of the state variables evolves in oscillations between nega-
tive and positive values. The evolution of the system is therefore re-
flected around two axes. In both cases the system, may converge to its
steady-state level, or diverge, depending on the absolute value of the
eigenvalues relative to one.

• Stable Node (oscillatory convergence of one state variable): [−1 <
λi < 0 < λj < 1, for i, j = 1, 2]

Since the absolute value of both eigenvalues is smaller than one, the
system converges globally towards the steady-state equilibrium y =
(y1, y2) = (0, 0).

As depicted in Fig. 3.5, y1t converges monotonically whereas y2t

converges in oscillations, reflected around the y1t axis. Additionally, if

y1t

y2t

y0

y1

y2

y3

y4

Fig. 3.5. Stable Node: Oscillatory Convergence of one State Variable
−1 < λ2 < 0 < λ1 < 1
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|λ1| > |λ2|, the convergence of y2t is faster towards its steady-state
level.

• Stable Node (oscillatory convergence of both state variables)
[−1 < λi < λj < 0 for i, j = 1, 2]

The steady-state equilibrium is globally stable. As depicted in Fig. 3.6,
the convergence of both variables towards the steady-state equilibrium
is oscillatory. Moreover, if |λ1| > |λ2| the convergence of y2t is faster
towards its steady-state level.

• Saddle (oscillatory convergence and divergence)[{λi < −1 < λj <
0}, {λi < −1 and 0 < λj < 1}, or {λi > 1 and −1 < λj < 0} for
i, j = 1, 2]

If both eigenvalues are negative, one variable converges in an oscillatory
manner while the other diverges in an oscillatory manner, whereas if
one is negative and one is positive, one variable converges monotonically
while the other diverges in an oscillatory manner. Figure 3.7 depicts
the dynamical system for the case in which λ1 > 1 and −1 < λ2 < 0.
Convergence to the steady-state equilibrium y = (y1, y2) = (0, 0) occurs
in oscillations along the vertical axis, and divergence in oscillations
takes place as long as y1t �= 0.

y2t

y1t

y0

y1

y2

y3

Fig. 3.6. Stable Node: Oscillatory Convergence of Both State Variables
−1 < λ1 < λ2 < 0
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y2t

y1t

y2

y3

y4

y

y1

y0

Fig. 3.7. Saddle: Oscillatory Convergence and Divergence
−1 < λ2 < 0 and λ1 > 1

• Focus (oscillatory convergence): −1 < λ1 = λ2 < 0

The steady-state equilibrium is globally stable. Convergence of both
state variables is oscillatory.

• Source (oscillatory divergence): [{λi < λj < −1} or {λi < −1 and
λj > 1} for i, j = 1, 2]

The steady-state equilibrium is unstable. Divergence of negative eigen-
values is oscillatory whereas divergence of positive eigenvalues is mono-
tonic.

3.2 Repeated Real Eigenvalues

3.2.1 Characterization of the Solution

Consider the multi-dimensional, linear dynamical system

xt+1 = Axt + B, (3.13)

where the n x n matrix of coefficients, A, has n repeated real eigen-
values, {λ, λ, · · · , λ}. Suppose further that |I − A| �= 0.

As was established in Lemma 2.6 and (2.88), there exists a time-
invariant transformation of the vector of state variables xt into a dy-
namical system of interdependent state variables yt, whose evolution
can be characterized based on the properties of the Jordan matrix.
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In particular, there exists a nonsingular n x n matrix, Q, such that,

xt = Qyt + x, (3.14)

where x = [I − A]−1B is the steady-state equilibrium of the system.

Moreover,

yt+1 = Dyt, (3.15)

where the matrix D is

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 . . . 0

1 λ 0 0
. . . 0

0 1 λ 0
. . . 0

0 0 1
. . . . . . 0

0 0 0
. . . λ 0

0 0 0 . . . 1 λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.16)

Hence, the evolution of the first new state variable y1t is independent
of all other state variables except the first, the evolution of the second
state variable depends on the evolution of the first and the second state
variable, the evolution of the third state variable depends directly only
on the second and the third, and so forth.

The evolution of the vector of state variables yt is therefore given
by

yt = Dty0, (3.17)

where for t > n,

Dt =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λt 0 0 . . . 0

tλt−1 λt 0
. . . 0

t(t − 1)λt−2

2!
tλt−1 λt . . . 0

...
. . . . . . 0

t(t − 1) · · · (t − n + 2)λt−n+1

(n − 1)!
. . . . . . tλt−1 λt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.18)
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Hence, the value of the vector of state variables yt for t > n is

y1t = λty10

y2t = tλt−1y10 + λty20

y3t =
t(t − 1)λt−2

2!
y10 + tλt−1y20 + λty30

...
...

ynt =
t(t − 1) · · · (t − n + 2)λt−n+1

(n − 1)!
y10 + · · · + λtyn0.

. (3.19)

For all i = 1, 2, · · · , n, it therefore follows that

yit =
i−1∑

k=0

(
t
k

)
λt−kyi−k,0, (3.20)

where
(

t
k

)
=

t!
k!(t − k)!

. (3.21)

Since the vector of state variables xt can be expressed as a function
of yt, namely, xt = Qyt + x, it follows that the evolution of the vector
of state variables xt is

⎡

⎢⎢⎢⎣

x1t

x2t

...
xnt

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

...
Qn1 Qn2 · · · Qnn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

λt
1y10

tλt−1y10 + λty20

...
t(t − 1) · · · (t − n + 2)λt−n+1

(n − 1)!
y10+ · · · + λtyn0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

x1

x2

...
xn

⎤

⎥⎥⎥⎦ . (3.22)

Hence, ∀i = 1, 2, · · · , n,

xit =
n−1∑

m=0

(
t
m

)
λt−mKi,m+1 + xi, (3.23)
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where Ki,m+1 are constants that reflect the product of the ith row of
matrix Q and the initial conditions (y10, y20, · · · , yn0).

Hence the evolution of the vector of the original state variables, xt,
is governed by the value of the repeated eigenvalue, λ, and the initial
conditions. This solution sets the stage for the stability result stated in
the following theorem.

Theorem 3.2. (Necessary and Sufficient Conditions for Global Stabil-
ity: Repeated Real Eigenvalues)
Consider the system xt+1 = Axt +B, where xt ∈ �n and x0 is given.
Suppose that |I − A| �= 0 and A has n repeated real eigenvalues
{λ, λ, · · · , λ}. Then, the steady-state equilibrium, x = [I −A]−1B, is
globally stable if and only if

|λ| < 1.

Proof: Follows from (3.23). �

It should be noted that if |λ| ≥ 1 the system does not converge to
its steady-state equilibrium unless it starts at this equilibrium point. If
|λ| ≥ 1 then limt→∞ xt = x̄ only if yi0 = 0, ∀i = 1, 2, · · · , n, and thus,
since y0 = Q−1(x0 − x̄), only if xi0 = x̄i, ∀i = 1, 2, · · · , n.

3.2.2 Phase Diagram of the Two-Dimensional Case

This subsection presents the phase diagrams that characterize the evo-
lution of the vector of new state variables, yt, in the two-dimensional
case, when the original system is characterized by a matrix of coeffi-
cients, A, that has repeated real eigenvalues.

The evolution of the vector of the new state variables, yt, from time
t to time t + 1, is given by

[
y1t+1

y2t+1

]
=

[
λ 0

1 λ

] [
y1t

y2t

]
. (3.24)

Hence, following the method of iterations,

yt = Dty0, (3.25)

where

Dt =

[
λt 0

tλt−1 λt

]
. (3.26)
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The trajectory of the two state variables is given therefore by

y1t = λty10

y2t = tλt−1y10 + λty20.
(3.27)

The derivation of the phase diagram of this uncoupled system is
simpler in the context of the derivation of the forces that operate on
the system when it is not in a steady-state equilibrium . The system
takes the form of

y1t+1 = λy1t

y2t+1 = y1t + λy2t,
(3.28)

and therefore the changes in the value of each of the new state variables
from period t to period t + 1, Δyit, i = 1, 2, is

Δy1t ≡ y1t+1 − y1t = −(1 − λ)y1t

Δy2t ≡ y2t+1 − y2t = y1t − (1 − λ)y2t.
(3.29)

Consequently,

Δy1t = 0 ⇔ {y1t = 0 or λ = 1}
Δy2t = 0 ⇔ {(y2t = y1t

1−λ and λ �= 1) or (y1t = 0 and λ = 1)}. (3.30)

The phase diagram of the dynamical system depends upon the ab-
solute magnitude of the eigenvalue relative to unity and on its sign.

(a) Positive Eigenvalues

If the repeated eigenvalue is positive, then the evolution of the two
state variables is not oscillatory, but nevertheless it is not necessarily
monotonic. As long as the eigenvalues differ from 1, the system may
converge to its steady-state equilibrium, or diverge monotonically to
±∞ depending upon the size of the eigenvalues relative to one.

• Improper (Stable) Node: λ ∈ (0, 1)

Since the repeated eigenvalue is smaller than 1, the steady-state
equilibrium, (0, 0), is globally stable. However, although the eigenvalue
is positive, convergence to the steady-state equilibrium is not mono-
tonic.
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As follows from (3.30)

Δy1t = 0 ⇔ y1t = 0. (3.31)

Namely, as depicted in Fig. 3.8, the y2t axis is the geometric place of
all pairs (y1t, y2t) such that Δy1t = 0. Furthermore,

Δy1t

⎧
⎨

⎩

> 0 if y1t < 0

< 0 if y1t > 0
. (3.32)

Similarly,

Δy2t = 0 ⇔ y2t =
y1t

(1 − λ)
. (3.33)

Namely, the ‘Δy2t = 0’ locus is a line with a slope greater than unity
and

Δy2t

⎧
⎨

⎩

< 0 if y2t > y1t

1−λ

> 0 if y2t < y1t

1−λ .
(3.34)

y2t

y1t
y

Δy1t 
= 0

Δy2t 
= 0

Fig. 3.8. Improper Stable Node
λ ∈ (0, 1)
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As follows directly from (3.27), noting that 0 < λ < 1, or indi-
rectly from (3.32), the state variable y1t converges monotonically to
the steady-state equilibrium, y = 0. In contrast, the second state vari-
able y2t converges to the steady-state in a non-monotonic fashion.

As depicted in Figs. 3.8 and 3.9, if y2t < 0 and y1t > 0, then y2t

increases monotonically, crossing to the positive quadrant and peaking
when it meets the ‘Δy2t = 0’ locus. Afterwards it decreases monoton-
ically and converges to the steady-state equilibrium y = 0.

Remark. The trajectories in Fig. 3.8 are drawn based on additional
necessary information. In particular, it should be noted that if the
system is in quadrants I or IV it cannot cross into quadrants II or
III, and vice versa. This is the case since, as follows from (3.24), if
y1t > 0 then y1t+1 > 0 whereas if y1t < 0 then y1t+1 < 0. The
system, therefore never crosses the y2 - axis. Furthermore, as follows
from (3.24), if the system enters quadrant I or III, it never leaves them.
This is the case since if y1t > 0 and y2t > 0 then y1t+1 > 0 and
y2t+1 > 0 whereas if y1t < 0 and y2t < 0 then y1t+1 < 0 and
y2t+1 < 0.

• Improper Source: λ ∈ (1,∞)

Since the repeated eigenvalue is larger than 1, the steady-state equi-
librium is globally unstable. However, although the eigenvalue is posi-
tive, divergence is not monotonic.

y0

y

y1t

t
y1t

y0

y

y2t

t

y2t

Fig. 3.9. Monotonic Evolution of y1t and Non-Monotonic evolution of y2t

λ ∈ (0, 1)
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As follows from (3.29) and (3.30),

Δy1t

⎧
⎪⎪⎨

⎪⎪⎩

> 0 ⇔ y1t > 0

= 0 ⇔ y1t = 0

< 0 ⇔ y1t < 0

, (3.35)

whereas

Δy2t

⎧
⎪⎪⎨

⎪⎪⎩

> 0 ⇔ y2t > y1t

1−λ

= 0 ⇔ y2t = y1t

1−λ

< 0 ⇔ y2t < y1t

1−λ

. (3.36)

Hence, as depicted in Fig. 3.10, the geometric locus ‘Δy1t = 0’
coincides with the y2t axis, as was the case when λ ∈ (0, 1), whereas
the geometric locus ‘Δy2t = 0’ is a line with negative slope 1/(1−λ).

As follows directly from (3.27), noting that λ > 1, or indirectly
from (3.32), the state variable y1t diverges monotonically to either
+∞ or −∞. In contrast, the second state variable, y2t, diverges non-
montonically to either +∞ or −∞. As depicted in Fig. 3.10, if y2t < 0
and y1t > 0, then y2t decreases monotonically and starts increasing
indefinitely when it crosses the ‘Δy2t = 0’ locus.

y

y2t

y1t

Δy2t = 0

Δy1t = 0

Fig. 3.10. Improper Source
λ ∈ (1,∞)
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(b) Negative Eigenvalues

The evolution of the two state variables is characterized by oscillations
reflected around the two axes. The state variables may converge to their
steady-state level, or diverge, depending on the absolute value of the
eigenvalues relative to one.

• Improper Stable Node: λ ∈ (−1, 0) (Oscillatory Convergence)

If the repeated eigenvalue is negative but smaller than one in abso-
lute value, then the system converges to the steady-state equilibrium,
(0, 0). Depending on the initial conditions, the system oscillates be-
tween either quadrants IV and II or I and III.

• Improper Source: λ ∈ (−∞, 1) (Oscillatory Divergence)

If the repeated eigenvalue is negative but greater than one in abso-
lute value, then the system diverges to +∞ or −∞. Depending on the
system’s initial conditions, the system oscillates between either quad-
rants IV and II or I and III.

(c) Eigenvalue of Modulus One

If the repeated eigenvalue is in absolute value equal to 1, then the
system is characterized by a continuum of unstable equilibria. This non-
generic case represents the bifurcation point of the dynamical system.
Namely, an infinitesimal change in the value of λ brings about a
qualitative change in the nature of the dynamical system. In particular,
if λ declines continuously from a value greater than 1 to a value below
1, the set of steady-state equilibria changes from a unique unstable
steady-state equilibrium to a continuum of unstable equilibria and then
to a unique globally stable steady-state equilibrium.

• Continuum of Unstable Steady-State Equilibria: λ = 1

As follows from (3.29) and (3.30),

Δy1t = 0 for all (xit, x2t) ∈ �2, (3.37)
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( y1, y2)

y1t

y2t

Δy2t 
= 0

Fig. 3.11. Continuum of Unstable Steady-State Equilibria
λ = 1

whereas

Δy2t

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 ⇔ y1t > 0

= 0 ⇔ y1t = 0

< 0 ⇔ y1t < 0.

(3.38)

Thus the geometric place under which the first state variable, y1t, is in
a steady-state equilibrium is the entire �2 plane, whereas the geometric
place under which the second state variable, y2t, is in steady-state equi-
librium is the y2t axis. The set of steady-state equilibria for the system
is therefore the entire y2t axis. However, as depicted in Fig. 3.11, none
of these equilibria is stable.

3.3 Distinct Pairs of Complex Eigenvalues

3.3.1 Characterization of the Solution

Consider the multi-dimensional, linear dynamical system

xt+1 = Axt + B. (3.39)
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Suppose that the n x n matrix of coefficients, A, has n/2 pairs of
distinct complex eigenvalues {μ1, μ1, μ2, μ2, · · · , μn/2, μn/2}, where

μj ≡ αj + βji,

μ̄j ≡ αj − βji,
(3.40)

and i ≡ √−1. Suppose further that |I − A| �= 0.1

As was established in Lemma 2.7 and (2.88), there exists a time-
invariant transformation of the vector of state variables, xt, into a dy-
namical system of interdependent state variables, yt, whose evolution
can be characterized based on the properties of a matrix in the Jordan
normal form.

In particular, there exists a nonsingular n x n matrix, Q, such that

xt = Qyt + x, (3.41)

where x = [I − A]−1B is the steady-state equilibrium of the system,
and

yt+1 = Dyt, (3.42)

where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 −β1 0 0 ... ... 0 0

β1 α1 0 0 ... ... 0 0

0 0 α2 −β2 ... ... 0 0

0 0 β2 α2 ... ... 0 0

0 0 0 0
. . . . . . 0 0

0 0 0 0
. . . . . . 0 0

0 0 0 0 ... ... αn/2 −βn/2

0 0 0 0 ... ... βn/2 αn/2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.43)

1 If n were odd, then the additional eigenvalue would necessarily be real.
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Thus, each pair of state variables, {y2j−1,t, y2j,t}, evolves indepen-
dently of all other pairs. In particular, for all j = 1, 2, · · · , n/2,

⎡

⎣
y2j−1,t+1

y2j,t+1

⎤

⎦ =

⎡

⎣
αj −βj

βj αj

⎤

⎦

⎡

⎣
y2j−1,t

y2j,t

⎤

⎦ . (3.44)

Following the method of iterations, the trajectory of the evolution of
each pair of state variables {y2j−1,t, y2j,t}∞0 , j = 1, 2, · · · , n/2, satisfies
the equation

⎡

⎣
y2j−1,t

y2j,t

⎤

⎦ =

⎡

⎣
αj −βj

βj αj

⎤

⎦
t ⎡

⎣
y2j−1,0

y2j,0

⎤

⎦ . (3.45)

This formulation, however, is not very informative about the quali-
tative behavior of the dynamical system. In particular, it is not appar-
ent what the necessary restrictions on the values of αj and βj are,
such that each pair j of state variables will converge to its steady-state
value.

However, the evolution of each pair of state variables can be ex-
pressed in terms of the “polar coordinates” of (αj , βj), and then the
necessary restrictions on the values of αj and βj that assure the
stability of the dynamical system becomes apparent.

Consider the geometrical representation of the complex pair of eigen-
values, μj ≡ αj +βji and μj ≡ αj −βji, in the complex Cartesian space
as depicted in Fig. 3.12.

Let

rj ≡
√

(α2
j + β2

j ). (3.46)

Namely, rj is the modulus of the jth eigenvalue. It follows that

αj = rj cos θj ,

βj = rj sin θj ,
(3.47)
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Real Axis

Imaginary Axis

αj

βj

θj

θj

μj = αj + βji

rj

rj

μj = αj – βji–βj

Fig. 3.12. The Complex Cartesian Space

and therefore
⎡

⎣
αj −βj

βj αj

⎤

⎦ = rj

⎡

⎣
cos θj − sin θj

sin θj cos θj

⎤

⎦ . (3.48)

Hence, as follows from (3.45) and (3.48), the evolution of each pair
of state variables {y2j−1,t, y2j,t} can be determined by well-established
trigonometric properties.

Lemma 3.3.

⎧
⎨

⎩rj

⎡

⎣
cos θj −sin θj

sin θj cos θj

⎤

⎦

⎫
⎬

⎭

t

= rt
j

⎡

⎣
cos tθj −sin tθj

sin tθj cos tθj

⎤

⎦ .

Proof: The lemma follows from the trigonometric identities:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2.
(3.49)

�
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The evolution of each pair of state variables {y2j−1,t, y2j,t} is there-
fore given by

[
y2j−1,t

y2j,t

]
= rt

j

[
cot sθj − sin tθj

sin tθj cos tθj

][
y2j−1,0

y2j,0

]
. (3.50)

Since the vector of the original state variables, xt, can be expressed as
a function of yt, namely, xt = Qyt + x, it follows that the evolution of
the vector of state variables xt is

⎡

⎢⎢⎢⎢⎣

x1t

x2t

...
xnt

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

...

Qn1 Qn2 Qnn

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

rt
1(cos tθ1y10 − sin tθ1y20)

rt
1(sin tθ1y10 + cos tθ1y20)

...

...

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤

⎥⎥⎥⎥⎥⎦
.

(3.51)

The evolution of each of the original state variables, xit, i = 1, 2, ..., n,
is therefore given by

xit =
∑

j

rt
j [Kij cos tθj + K̃ij sin tθj ] + xi, (3.52)

where Kij ≡ Qi,2j−1y2j−1,0 + Qi,2jy2j,0 and K̃ij ≡ Qi,2jy2j−1,0 −
Qi,2j−1y2j,0, for all j = 1, 2, · · · , n/2.

Theorem 3.4. (Necessary and Sufficient Conditions for Global Stabil-
ity: Distinct Complex Eigenvalues)
Consider the dynamical system xt+1 = Axt + B, where xt ∈ �n.
Suppose that |I − A| �= 0 and suppose that A has n/2 pairs
of distinct complex eigenvalues {μ1, μ1, μ2, μ2, · · · , μn/2, μn/2}, where
μj ≡ αj + βji, μj = αj − βji, and i ≡ √−1, j = 1, 2, · · · , n/2.
Then the steady-state equilibrium of the dynamical system, x̄, is glob-
ally (asymptotically) stable if and only if the modulus of each eigenvalue
of the matrix A is smaller than 1, i.e. if

rj ≡
√

(α2
j + β2

j ) < 1, ∀j = 1, 2, · · · , n/2.

Proof: Since for all t, 0 ≤ | cos tθj | ≤ 1 and 0 ≤ | sin tθj | ≤ 1, it
follows from (3.52) that limt→∞ xit = xi if and only if rj < 1 ∀j =
1, 2, · · · , n/2. �
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3.3.2 Phase Diagram of a Two-Dimensional System

This subsection presents the phase diagrams that characterize the evo-
lution of the vector of new state variables, yt, in the two-dimensional
case when the original system is characterized by a matrix of coeffi-
cients, A, that has a distinct pair of complex eigenvalues.

The evolution of vector of the state variables, yt, from time t to time
t + 1 is given by

[
y1t+1

y2t+1

]
=
[

α −β

β α

] [
y1t

y2t

]
. (3.53)

The asymptotic behavior of the dynamical system will be determined
by the modulus of the eigenvalue, r, and the values of α and β. As
established in Theorem 3.4, the value of r determines whether the
steady-state equilibrium is globally stable or whether the system is
characterized by divergence or periodic orbit. Moreover, the motion of
the system is spiral, with orientation that is determined by the sign of
β and pace that is determined by the value of α and β.

(a) Periodic Orbit: r = 1

• Counter-Clockwise Periodic Orbit: β > 0

The dynamical system, as depicted in Fig. 3.13(a), exhibits a counter-
clockwise periodic orbit. Since r = 1, it follows that (α2

j + β2
j ) = 1.

For the sake of exposition, suppose that β = 1 and consequently
α = 0. Suppose further that the initial condition is (y10, y20) =

(a) Counter-Clockwise Orientation (b) Clockwise Orientation

β < 0

y2t y2t

y1t y1t

β > 0

Fig. 3.13. Period Orbit
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(1, 0). It follows from (3.53) that (y11, y21) = (0, 1), (y12, y22) =
(−1, 0), (y13, y23) = (0,−1), and (y14, y24) = (1, 0). Thus the system
is characterized in this example by a four-period cycle with counter-
clockwise orientation. Similarly, if β = α = 1/

√
2 then (y11, y21) =

(1/
√

2, 1/
√

2), (y12, y22) = (0, 1), ..., and the system is characterized by
an eight-period cycle with a counter-clockwise orientation.

• Clockwise Periodic Orbit: β < 0

The dynamical system, as depicted in Fig. 3.13(b), exhibits a clock-
wise periodic orbit. Since r = 1, it follows that (α2

j +β2
j ) = 1. For the

sake of exposition, suppose that β = −1 and consequently α = 0. Sup-
pose further that the initial condition is (y10, y20) = (1, 0). The system
exhibits again a four-period cycle, {(1, 0), (0,−1), (−1, 0), (0, 1)}, but
with clockwise orientation.

(b) Spiral Sink: r < 1

The dynamical system, as depicted in Fig. 3.14, is characterized by
spiral convergence towards the steady-state equilibrium, (0, 0). If β > 0
the motion is counter-clockwise whereas if β < 0 the motion is clock-
wise.

(c) Spiral Source: r > 1

The system, as depicted in Fig. 3.15, exhibits spiral divergence from its
steady-state equilibrium, (0, 0), with either counter-clockwise motion
(β > 0) or clockwise motion (β < 0).

(a) Counter-Clockwise Orientation (b) Clockwise Orientation
y2t

β < 0

y2t

y1t y1t

β > 0

Fig. 3.14. Spiral Sink
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(a) Counter-Clockwise Orientation (b) Clockwise Orientation

y2t

β < 0

y2t

y1t y1t

β > 0

Fig. 3.15. Spiral Source

3.4 Repeated Pairs of Complex Eigenvalues

Consider the multi-dimensional, linear dynamical system

xt+1 = Axt + B. (3.54)

Suppose that the n x n matrix of coefficients, A, has n/2 pairs of
repeated complex eigenvalues {μ, μ, μ, μ, · · ·μ, μ}, where

μ ≡ α + βi,

μ̄ ≡ α − βi,
(3.55)

and i ≡ √−1. Suppose further that |I − A| �= 0.2

As established in Lemma 2.7 and (2.88), there exists a time-invariant
transformation of the vector of original state variables, xt, into a
dynamical system of interdependent state variables, yt, whose evo-
lution can be characterized based on the properties of the Jordan
matrix.

In particular, there exists a nonsingular n x n matrix, Q, such that

xt = Qyt + x, (3.56)

where x = [I − A]−1B is the steady-state equilibrium of the system,
and

yt+1 = Dyt, (3.57)

2 If n were odd, then the additional eigenvalue would necessarily be real.
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where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −β 0 0 0 0 0 0

β α 0 0 0 0 0 0

1 0 α −β 0 0 0 0

0 1 β α 0 0 0 0

...
...

. . . . . . . . . . . .
...

...

...
...

. . . . . . . . . . . .
...

...

0 0 0 0 1 0 α −β

0 0 0 0 0 1 β α

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.58)

Hence,

yt = Dty0. (3.59)

Thus, for j = 1, 2, · · · , n/2,

y2j−1,t =
∑j−1

k=0 rt−k

(
t
k

)
[cos(t − k)θy2(j−k)−1,0

− sin(t − k)θy2(j−k),0]

y2j,t =
∑j−1

k=0 rt−k

(
t
k

)
[sin(t − k)θy2(j−k)−1,0

+ cos(t − k)θy2(j−k),0].

(3.60)

Since xt = Qyt+x, the evolution of each of the original state variables,
xit, i = 1, 2, ..., n, is given by

xit =
(n/2)−1∑

m=0

rt−m

(
t
m

)
[Kim cos(t−m)θ+K̃im sin(t−m)θ]+xi, (3.61)

where Kim and K̃im are constants.
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Theorem 3.5. (Necessary and Sufficient Conditions for Global Stabil-
ity: Repeated Complex Eigenvalues)
Consider the system xt+1 = Axt + B, wherext ∈ �n, Suppose that
|I − A| �= 0 and suppose that A has n/2 pairs of repeated complex
eigenvalues {μ, μ, μ, μ, · · ·}, where μ ≡ α + βi, μ ≡ α − βi, and
i ≡ √−1. Then the steady-state equilibrium x = [I −A]−1B is globally
stable if and only if

r ≡
√

(α2 + β2) < 1.

Proof: Since for all t − m, 0 ≤ | cos(t − m)θ| ≤ 1 and 0 ≤ | sin(t −
m)θ| ≤ 1, it follows from (3.52) that limt→∞ xit = xi if and only if
r < 1. �

3.5 The General Case

The analysis in Sects. 3.1–3.4 analyzes the trajectories of dynamical
systems in which the matrix of coefficients A has: (a) distinct real
eigenvalues, (b) repeated real eigenvalues, (c) distinct complex eigen-
values, and (d) repeated complex eigenvalues. This analysis could be
generalized and conditions could be placed on the modulus of the eigen-
values so as to assure that the system is globally stable regardless of
the type of eigenvalues that characterize the matrix of coefficients A.

Corollary 3.6. Consider the system xt+1 = Axt + B,where xt ∈ �n,
and suppose that |I − A| �= 0. Then, the steady-state equilibrium
x = [I − A]−1B is globally (asymptotically) stable if and only if the
modulus of each eigenvalue of the matrix A is smaller than 1.

In the two-dimensional case, as depicted in Fig. 3.16, a steady-state
equilibrium of a two-dimensional linear system is globally (asymptoti-
cally) stable if the eigenvalues of the matrix of coefficients A are within
the interior of the unit disk.

In particular, if the eigenvalues are real, then they ought to be in the
open interval (−1, 1) along the real axis, whereas if they are complex,
their modulus, [α2 + β2]1/2, ought to be smaller than 1, namely (α, β)
is within the unit disk.
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Real Axis 

Imaginary Axis

–1 1

1

α

α + βiβ

–1

Fig. 3.16. Necessary and Sufficient Conditions for Global(Asymptotic)
Stability of a Linear System: Eigenvalues within the Interior of the Unit Disk

3.6 Characterization of Two-Dimensional Systems
in Terms of trA and det A

The qualitative properties of a two-dimensional dynamical system can
be classified according to the relative values of the trace of the matrix
of coefficients, tr A, and its determinant, detA.

The eigenvalues of the matrix A are obtained as a solution to the
equation

|A − λI| = 0, (3.62)

where |A − λI| is the determinant of the matrix [A − λI] and I is the
identity matrix.

In the two-dimensional case, the eigenvalues, λ1 and λ2, are therefore
obtained as a solution to the equation

∣∣∣∣∣∣

a11 − λ a21

a12 a22 − λ

∣∣∣∣∣∣
= 0. (3.63)

The implied characteristic polynomial is therefore

c(λ) ≡ λ2 − trAλ + detA = 0, (3.64)
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and the eigenvalues, λ1 and λ2, are

λ1,2 =
trA ±√(trA)2 − 4 detA

2
. (3.65)

Hence, the eigenvalues are real or complex depending on the relative
value of tr A and detA.

λ1,2

⎧
⎨

⎩

complex if (trA)2 < 4 detA

real if (trA)2 ≥ 4 detA.
(3.66)

Proposition 3.7. In a two-dimensional, first-order, linear system
xt+1 = Axt + B, where xt ∈ �2, if the eigenvalues are real and dis-
tinct, i.e. if

(trA)2 > 4 detA,

and thus λ1 > λ2, then a steady-state equilibrium is a:

• Saddle (i.e. {λ1 > 1 and |λ2| < 1} or {|λ1| < 1 and λ2 < −1})

if and only if (as depicted in Fig. 3.17)

{c(1) < 0 and c(−1) > 0}

or

{c(1) > 0 and c(−1) < 0},
i.e.

if and only if (as depicted in Fig. 3.19)

−trA − 1 < det A < trA − 1

or

{trA − 1 < det A < −trA − 1}.
• Stable Node (i.e. |λi| < 1, i = 1, 2)

if and only if (as depicted in Fig. 3.18)

{c(1) > 0 and c(−1) > 0},
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λ

c(λ) c(λ)

c(λ)

−1 1
λ

c(λ)

−1 1

Fig. 3.17. The Characteristic Polynomial, c(λ)
A Saddle

i.e.

if and only if (as depicted in Fig. 3.19)

{det A > trA − 1 and det A > −trA − 1}.
• Unstable Node (i.e. |λi| > 1, i = 1, 2)

if and only if (as depicted in Fig. 3.18)

{c(1) < 0 and c(−1) < 0},

Stable Node Unstable Node

1

c(λ)

c(λ)

c(λ)

c(λ)

–1
λ λ

−1 1

Fig. 3.18. The Characteristic Polynomial, c(λ)
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det A

trA

1

det A = trA–1 det A = trA–1

det A = (trA)2
 /4

spiral  sink

spiral source

saddle saddle

unstable  node

stable  node

–1

saddle saddle

stable
node

stable
node

spiral source

spiral  sink

unstable  node

Fig. 3.19. Characterization of Steady-State Equilibria of Two-Dimensional Sys-
tems in Terms of the Trace, trA, and the Determinant, det A, of the Matrix of
Coefficients A

i.e.

if and only if (as depicted in Fig. 3.19)

{det A < trA − 1 and det A < −trA − 1}.
Proof: Follows from Figs. 3.17–3.19 and the evaluation of the charac-
teristic polynomial c(λ) at 1 and −1. �

Proposition 3.8. In a two-dimensional linear first-order system xt+1 =
Axt + B, where xt ∈ �2, if the eigenvalues are complex, i.e. if

(trA)2 < 4 detA,

then the dynamical system is characterized by:

• Spiral Sink
if and only if (as depicted in Fig. 3.19)

det A < 1.
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• Spiral Source
if and only if (as depicted in Fig. 3.19)

det A > 1.

Proof: Since the eigenvalues are complex and thus (tr A)2 < 4 detA,
it follows that

μ1 =
trA

2
+

√
4 detA − (trA)2

2
i (3.67)

μ̄1 =
trA

2
−
√

4 detA − (trA)2

2
i.

Hence, the modulus of the eigenvalue, r, is

r =
(

trA

2

)2

+

(√
4 detA − (trA)2

2

)2

= det A. (3.68)

Thus, the steady-state equilibrium is globally stable and conver-
gence is spiral if and only if detA < 1, whereas the steady-state equi-
librium is unstable and divergence is spiral if and only if detA > 1.

�



4

Multi-Dimensional, First-Order, Nonlinear
Systems

This chapter characterizes the evolution of a vector of state variables
in multi-dimensional, first-order, nonlinear systems of difference equa-
tions. It utilizes the analysis of linear, multi-dimensional, first-order
systems to characterize the trajectory of nonlinear systems via their
linearization in the proximity of a steady-state equilibrium, and the
examination of the local and the global properties of these systems,
based on the Stable Manifold Theorem.

The analysis examines the properties of the locally stable and un-
stable manifolds and the corresponding globally stable and unstable
manifolds, and it analyzes the stability of the system based on the
characterization of the linear case in Chaps. 2 and 3.

Consider the system of autonomous nonlinear first-order difference
equations, where the evolution of the vector of state variables, xt, is
governed by the nonlinear system

xt+1 = φ(xt), t = 0, 1, 2, · · · , (4.1)

where φ : �n → �n. Namely,

x1t+1 = φ1(x1t, x2t, · · · , xnt)

x2t+1 = φ2(x1t, x2t, · · · , xnt)

...
...

xnt+1 = φn(x1t, x2t, · · · , xnt),

(4.2)
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where φi : �n → �, i = 1, 2, ..., n, is a continuously differentiable single-
value function, and the initial value of the vector of state variables,
x0 = (x10, x20, ..., xn0), is given.1

A solution to the difference equation xt+1 = φ(xt) is a trajectory
(or an orbit) of the vector of state variables, {xt}∞t=0, that satisfies this
law of motion at any point in time. It relates the value of the vector
of state variables at time t, xt, to its initial value, x0, based on the
function φ(xt).

Steady-state equilibria provide essential reference points for the
characterization of nonlinear dynamical systems. A steady-state equi-
librium (alternatively defined as a stationary equilibrium, a rest point,
an equilibrium point, or a fixed point) is a value of the vector of state
variables, xt, that is invariant under the law of motion dictated by the
dynamical system.

Definition 4.1. (A Steady-State Equilibrium)
A steady-state equilibrium of the nonlinear system of difference equa-
tions xt+1 = φ(xt) is a vector x ∈ �n such that

x̄ = φ(x̄).

Generically, a nonlinear system may be characterized by the exis-
tence of a unique steady-state equilibrium, the existence of multiplicity
of (distinct) steady-state equilibria, the existence of chaotic behavior, or
the non-existence of a steady-state equilibrium. Furthermore, the non-
linear system may converge to a steady-state equilibrium, may diverge
to plus or minus infinity, may converge to a periodic orbit, and, unlike
a linear system, a nonlinear system may exhibit a chaotic behavior.
Hence, a qualitative examination of a dynamical system requires the
analysis of the asymptotic behavior of the system as time approaches
infinity.

The characterization of the qualitative behavior of this nonlinear
dynamical system requires its linear approximation in the vicinity of
its steady-state equilibrium, x̄. In particular, the stability analysis of
the system’s steady-state equilibria determines whether a steady-state
equilibrium is attractive or repulsive for all or at least some set of
initial conditions. It facilitates the study of the local, and often the
global, properties of a dynamical system, and it permits analysis of the
implications of small, and sometimes large, perturbations that occur
once the system is in the vicinity of a steady-state equilibrium.

1 For local analysis, it is sufficient that the function φi : �n → � be continuously
differentiable only in some neighborhood of the relevant steady-state equilibrium.
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If for a sufficiently small perturbation the dynamical system con-
verges asymptotically to the original equilibrium, the system is locally
stable, whereas if regardless of the magnitude of the perturbation the
system converges asymptotically to the original equilibrium, the system
is globally stable. Formally, the definitions of local and global stability
are as follows:2

Definition 4.2. (Local and Global Stability of a Steady-State Equilib-
rium)
A steady-state equilibrium, x, of the nonlinear system xt+1 = φ(xt) is:

• globally (asymptotically) stable, if

lim
t→∞xt = x ∀x0 ∈ �n

• locally (asymptotically) stable, if

∃ε > 0 such that lim
t→∞xt = x ∀x0 ∈ Bε(x),

where Bε(x) ≡ {x ∈ �n : |xi − x̄i| < ε ∀i = 1, 2, 3, ...n}.
Thus, a steady-state equilibrium is globally (asymptotically) stable

if the system converges to this steady-state equilibrium regardless of the
initial condition, whereas a steady-state equilibrium is locally (asymp-
totically) stable if there exists an ε- neighborhood of the steady-state
equilibrium such that from every initial condition within this neighbor-
hood the system converges to this steady-state equilibrium.

Global stability of a steady-state equilibrium necessitates global
uniqueness of the steady-state equilibrium. Clearly, if there is more
than one steady-state equilibrium, none of the equilibria can be glob-
ally stable since if the systems is in one steady state equilibrium other
steady-state equilibria will never be reached.

Local stability of a steady-state equilibrium necessitates local unique-
ness of the steady-state equilibrium. Namely, it requires the absence of
any additional point in a close neighborhood of the steady-state from
which there is no escape. Clearly, if the system is characterized by a

2 The economic literature, to a large extent, refers to the stability concepts in
Definition 4.2 as global stability and local stability, respectively, whereas the
mathematical literature refers to them as global asymptotic stability and local
asymptotic stability, respectively. The concept of stability in the mathematical
literature is reserved to situations in which trajectories that are initiated from
an ε−neighborhood of a fixed point remain sufficiently close to this fixed point
thereafter.



96 4 Multi-Dimensional, First-Order, Nonlinear Systems

continuum of equilibria, none of these steady-state equilibria is locally
stable. There exists no neighborhood of a steady-state equilibrium that
does not contain additional steady-state equilibria, and hence there ex-
ist initial conditions within an ε- neighborhood of a steady-state equi-
librium that do not lead to this steady-state equilibrium in the long
run. Thus, local stability of a steady-state equilibrium requires that
this equilibrium be locally unique.

4.1 Local Analysis

The dynamical system is characterized initially in the proximity of a
steady-state equilibrium.

4.1.1 Linearization

Suppose that the dynamical system has a steady-state equilibrium, x.
Namely ∃x ∈ �n such that x = φ(x).

The function xt+1 = φ(xt) can be approximated around the steady-
state value, x. In particular, a Taylor expansion of xit+1 = φi(xt),
i = 1, 2, ..., n, around the steady-state value, x, yields

xit+1 = φi(xt) = φi(x) +
n∑

j=1

∂φi(x̄)
∂xjt

(xjt − xj) + · · · + Rn, (4.3)

where Rn is a residual term.
Thus, the linearized equation around the steady-state, x, is defined

by3

xit+1 =
∂φi(x̄)
∂x1t

x1t +
∂φi(x̄)
∂x2t

x2t + · · · + ∂φi(x̄)
∂xnt

xnt

+ φi(x) −
n∑

j=1

∂φi(x̄)
∂xjt

xj . (4.4)

The linearized system is therefore

3 Since higher order terms (i.e., (xjt − xj)
k for k ≥ 2) are ignored, this approx-

imation becomes increasingly less accurate the further the systems is from the
steady-state equilibrium, x̄.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1t+1

x2t+1

...

xnt+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1(x)
∂x1t

∂φ1(x)
∂x2t

· · · ∂φ1(x)
∂xnt

∂φ2(x)
∂x1t

∂φ2(x)
∂x2t

· · · ∂φ2(x)
∂xnt

...
...

...

∂φn(x)
∂x1t

∂φn(x)
∂x2t

· · · ∂φn(x)
∂xnt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1t

x2t

...

xnt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x) −∑n
j=1

∂φ1(x̄)
∂xjt

xj

φ2(x) −∑n
j=1

∂φ2(x̄)
∂xjt

xj

...

φn(x) −∑n
j=1

∂φn(x̄)
∂xjt

xj

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.5)

Thus, the nonlinear system is approximated locally (around a
steady-state equilibrium) by a linear system,

xt+1 = Axt + B, (4.6)

where

A ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1(x)
∂x1t

∂φ1(x)
∂x2t

· · · ∂φ1(x)
∂xnt

∂φ2(x)
∂x1t

∂φ2(x)
∂x2t

· · · ∂φ2(x)
∂xnt

...
...

∂φn(x)
∂x1t

∂φn(x)
∂x2t

· · · ∂φn(x)
∂xnt

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

≡ Dφ(x), (4.7)

is the Jacobian matrix of φ(xt) evaluated at x, and

B ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x) −∑n
j=1

∂φ1(x̄)
∂xjt

xj

φ2(x) −∑n
j=1

∂φ2(x̄)
∂xjt

xj

...

φn(x) −∑n
j=1

∂φn(x̄)
∂xjt

xj

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (4.8)

is a constant column vector.
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As established in the theorem below, the local behavior of the non-
linear dynamical system in the proximity of a steady-state equilibrium,
x̄, can be assessed on the basis of the behavior of the linear system
that approximates the nonlinear one in the vicinity of this steady-state
equilibrium. Hence, the eigenvalues of the Jacobian matrix Dφ(x) de-
termine the local behavior of the nonlinear system according to the
results stated in Theorems 3.1–3.2 and Corollary 3.6.

4.1.2 Stable, Unstable, and Center Eigenspaces

The stable and unstable eigenspaces provide an essential reference point
to the local characterization of a nonlinear dynamical system in the
proximity of a steady-state equilibrium.

Definition 4.3. (Stable, Unstable, and Center Eigenspaces)
Let φ(x) : �n → �n be a continuously differentiable single-value func-
tion, and let Dφ(x) be the Jacobian matrix of φ(x) evaluated at a
steady-state equilibrium, x, i.e.

Dφ(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1(x)
∂x1t

∂φ1(x)
∂x2t

· · · ∂φ1(x)
∂xnt

∂φ2(x)
∂x1t

∂φ2(x)
∂x2t

... ∂φ2(x)
∂xnt

...
...

...

∂φn(x)
∂x1t

∂φn(x)
∂x2t

∂φn(x)
∂xnt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

• The stable eigenspace, Es(x), of the steady-state equilibrium, x, is

Es(x) = span{eigenvectors of Dφ(x) whose eigenvalues

have modulus < 1}.
• The unstable eigenspace, Eu(x), of the steady-state equilibrium, x,

is

Eu(x) = span{eigenvectors of Dφ(x) whose eigenvalues

have modulus > 1}.
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• The center eigenspace, Ec(x), of the steady-state equilibrium, x,
is

Ec(x) = span{eigenvectors of Dφ(x) whose eigenvalues

have modulus = 1}.
Since the n eigenvectors of the n x n Jacobian matrix Dφ(x) span

�n, then as stated in the following corollary, the sum of the dimen-
sions of the stable, unstable, and center eigenspaces is equal to the
dimensionality of �n.

Corollary 4.4. Let Dφ(x) be the Jacobian matrix of φ(x) evaluated
at a steady-state equilibrium x.

dim Es(x) + dimEu(x) + dimEc(x) = n.

The stable eigenspace relative to the steady-state equilibrium, x,
is defined as the space spanned by the eigenvectors of Dφ(x) associ-
ated with eigenvalues of modulus smaller than one. Namely, the stable
eigenspace is the geometric locus of all vectors, xt, that upon a suffi-
cient number of forward iterations under the map φ are mapped in the
limit towards the steady-state equilibrium, x.

The unstable eigenspace relative to the steady-state equilibrium, x,
is defined as the space spanned by the eigenvectors of Dφ(x) associated
with eigenvalues of modulus larger than one. That is, the unstable
eigenspace is the geometric locus of all vectors, xt, that upon a sufficient
number of backward iterations under the map φ are mapped in the limit
to the steady-state equilibrium, x̄.

The center eigenspace is the space spanned by the eigenvectors as-
sociated with eigenvalues of modulus equal to one. Namely, the center
eigenspace is the geometric locus of all vectors, xt, that are invariant
under forward or backward iterations of the map φ.

As depicted in Fig. 4.1, if the nonlinear dynamical system is two-
dimensional and the steady-state equilibrium is a saddle, then the sta-
ble eigenspace is one-dimensional and the unstable eigenspace is one-
dimensional.

If the steady-state equilibrium is a stable node, then the sta-
ble eigenspace is two-dimensional and it consists of the entire two-
dimensional real plane (i.e. Es(x) = �2) and the dimensionality of the
unstable eigenspace is zero. In contrast, if the steady-state equilibrium
is an unstable node, then the unstable eigenspace is two-dimensional
and it consists of the entire two-dimensional real plane (i.e. Eu(x) =
�2). The dimensionality of the stable eigenspace is therefore zero.



100 4 Multi-Dimensional, First-Order, Nonlinear Systems

Es
 (x)

Eu
 (x)

x2t

x1t
x

Fig. 4.1. Stable and Unstable Eigenspace
x̄ is a Saddle Point

If the nonlinear dynamical system is two-dimensional and one of
the eigenvalues is equal to one, then the system is characterized by
a one-dimensional continuum of steady-state equilibria. If the second
eigenvalue is of modulus less than one, then, as depicted in Fig. 4.2 the

x2t

x1t

Es(x3)

E 
c(x)

Es(x1)

Es(x2)

x1

x2

x3

continuum of steady-state
equilibria

Fig. 4.2. A Center and a Stable Eigenspace
Continuum of Equilibria, x̄
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following holds: the stable eigenspace with respect to a given steady-
state (e.g. x̄1) is one-dimensional, the center eigenspace is the one-
dimensional continuum of steady-state equilibria, and the dimension-
ality of the unstable eigenspace is zero. If the second eigenvalue is of
modulus greater than one, then the unstable eigenspace and the cen-
ter eigenspace are each one-dimensional and the dimensionality of the
stable eigenspace is zero.

In the subsequent analysis, it is assumed that all eigenvalues are of
modulus different than one, and thus the center eigenspace is empty.4

Definition 4.5. (Hyperbolic Fixed Point)
Consider the map φ : �n → �n and let Dφ(x) be the Jacobian matrix
of φ(x), evaluated at a steady-state equilibrium x. The steady-state
equilibrium, x, is a hyperbolic fixed point if Dφ(x) has no eigenvalues
of modulus one.

4.1.3 Local Stable and Unstable Manifolds

The stable and unstable manifolds provide the nonlinear counterparts
for the stable and unstable eigenspaces.5

Definition 4.6. (Local Stable and Unstable Manifolds)
Consider the nonlinear dynamical system

xt+1 = φ(xt).

• A local stable manifold, W s
loc(x), of a steady-state equilibrium, x,

is

W s
loc(x) = {x ∈ U | limn→+∞ φ{n}(x)

= x and φ{n}(x) ∈ U ∀n ∈ N}.
• A local unstable manifold, W u

loc(x), of a steady-state equilibrium,
x, is

W u
loc(x) = {x ∈ U | limn→+∞ φ−{n}(x)

= x and φ{n}(x) ∈ U ∀n ∈ N},

4 For a comprehensive exploration of the properties of the center manifold and its
implications in the continuous time case, see Guckenheimer and Holms (1990).

5 An n-dimensional manifold M ⊂ �N is a set such that ∀x ∈ M there exists a
neighborhood U for which there is a smooth invertible mapping (deffeomorphisim)
φ : �n → U (for n ≤ N).
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where U ≡ Bε(x) for some ε > 0, and φ{n}(x) is the nth iteration
over x under the map φ.

Thus, a local stable manifold is the geometric place of all vectors
x ∈ �n in some ball of radius ε, around the steady-state equilibrium, x̄,
whose elements asymptotically approach the steady-state equilibrium,
x, as the number of iterations under the map φ approaches infinity.
Similarly, a local unstable manifold is the geometric place of all vectors
x ∈ �n in some ball of radius ε around the steady-state equilibrium, x̄,
whose elements approach asymptotically the steady-state equilibrium,
x, as the number of backward iterations under the map φ approaches
infinity.

4.1.4 The Stable Manifold Theorem

The Stable Manifold Theorem establishes the relationship between the
stable and unstable eigenspaces and local stable and unstable manifolds
in the proximity of a steady-state equilibrium.

Theorem 4.7. (The Stable Manifold Theorem)
Let φ : �n → �n be a C1 diffeomorphism6 with a hyperbolic fixed
point x. Then there exist locally stable and unstable manifolds, W s

loc(x)
and W u

loc(x), that are tangent, respectively, to the eigenspaces Es(x)
and Eu(x) of the Jacobian matrix, Dφ(x), at x̄. Furthermore,

dimW s
loc(x) = dimEs(x)

dimW u
loc(x) = dimEu(x).

Proof. See Nitecki (1971).

Figure 4.3 depicts local stable and unstable manifolds, W s
loc(x) and

W u
loc(x), and the stable and unstable eigenspaces, Es(x) and Eu(x),

in the vicinity of a steady-state equilibrium, x̄, for the two-dimensional
case in which the steady-state equilibrium is a saddle point. As estab-
lished in the Stable Manifold Theorem, W s

loc(x) is tangent to Es(x) at
the steady-state equilibrium, x, and both are one-dimensional. Simi-
larly, W u

loc(x) is tangent to Eu(x) at the steady-state equilibrium, x,
and both are one-dimensional.

6 A one to one mapping φ from �n onto itself, is a C1 diffeomorphism if φ and φ−1

are continuously differentiable (Munkres (1999)).
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u (x)
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s (x)
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Wloc(x)
u

s

Fig. 4.3. The Local Stable and Unstable Manifolds, W s
loc(x) and W u

loc (x),
in relation to the Stable and Unstable Eigenspaces, Es(x) and Eu(x)

x is a Saddle Point.

Hence Theorem 4.8 follows from Corollary 3.6 and the Stable Man-
ifold Theorem.

Theorem 4.8. (Sufficient Conditions for Local Stability of a Nonlinear
System)
Let φ : �n → �n be a C1 diffeomorphism with a hyperbolic fixed
point, x. Then a steady-state equilibrium, x, is locally (asymptotically)
stable if and only if the moduli of all eigenvalues of the Jacobian matrix,
Dφ(x), are smaller than 1.

Remark. The evolution of the nonlinear system in the proximity of a
steady-state equilibrium, x̄, cannot be examined based on the linearized
system, Dφ(x), if the steady-state equilibrium is non-hyperbolic (i.e. if
the modulus of one of the eigenvalues is equal to 1). The examination of
this system would be based on the properties of the center manifold.7

7 See Gukenhiemer and Holmes (1990) and Hale and Kocak (1991).
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4.2 Global Analysis

Global analysis of a multi-dimensional nonlinear system can be ad-
vanced using the concepts of the global stable manifold and the global
unstable manifold.

Definition 4.9. (Globally Stable and Unstable Manifolds)
Consider the nonlinear dynamical system

xt+1 = φ(xt),

and let x be the steady-state equilibrium of the system.

• The global stable manifold, W s(x), of a steady-state equilibrium,
x, is

W s(x) = ∪n∈N{φ−{n}(W s
loc(x))}.

• The global unstable manifold, W u(x), of a steady-state equilibrium,
x, is

W u(x) = ∪n∈N{φ{n}(W u
loc(x))}.

Thus, the global stable manifold is obtained by the union of all backward
iteration under the map φ over the local stable manifold, and the global
unstable manifold is obtained by the union of all forward iterations
under the map φ over the local unstable manifold.

In the context of a two-dimensional dynamical system the tracing
of the global stable and unstable manifolds based upon the properties
of the local stable and unstable manifolds permits a global character-
ization of the dynamical system based on the local behavior of the
system. In particular, the global properties of the dynamical system
can be inferred from the properties of the local stable and unstable
manifolds.

Figure 4.4 depicts the global stable and unstable manifolds, W s(x)
and W u(x), in relation to the local stable and unstable manifolds,
W s

loc(x) and W u
loc(x), and the stable and unstable eigenspaces, Es(x)

and Eu(x), in the vicinity of the steady-state equilibrium, x̄, for the
two-dimensional case in which the steady-state equilibrium is a saddle
point.
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Fig. 4.4. The Global Stable and Unstable Manifolds, W s(x) and W u(x), in
relation to the Local Stable and Unstable Manifolds, W s

loc(x) and W u
loc(x), and

the Stable and Unstable Eigenspaces, Es(x) and Eu(x)
x is a Saddle Point

Theorem 4.11 provides a very restrictive sufficient condition for
global stability that is unlikely to be satisfied by a conventional eco-
nomic system. In light of the Contraction Mapping Theorem, the suffi-
cient conditions for global stability in the one-dimensional case (Corol-
lary 1.14) can be generalized for multi-dimensional dynamical systems.
Analogously to the one-dimensional case, a contraction mapping in the
n-dimensional case is defined as follows:

Definition 4.10. (Contraction Mapping)
Let (�n, ρ) be a metric space. Then φ(x) : �n → �n is a contraction
mapping if for some β ∈ (0, 1),

ρ(φ(x1), φ(x2)) ≤ βρ(x1, x2) ∀x1, x2 ∈ �n,

where ρ(c, d) ≡ |c − d| .

Theorem 4.11. (Sufficient Conditions for Global Stability of a Non-
linear System)
A stationary equilibrium of the multi-dimensional, autonomous, first-
order difference equation, xt+1 = φ(xt) exists, is unique, and is glob-
ally stable if φ : �n → �n is a contraction mapping.
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Higher-Order and Non-Autonomous Systems

5.1 Higher-Order Systems

This chapter characterizes the evolution of a vector of state variables in
higher-order systems as well as non-autonomous systems. It establishes
the solution method for these higher-order and non-autonomous sys-
tems and, it analyzes the factors that determine the qualitative proper-
ties of these discrete dynamical systems in the linear and subsequently
the nonlinear case.

The analysis is based upon the transformation of higher-order sys-
tems and non-autonomous systems into a multi-dimensional first-order
system that can be examined based on the analysis in Chaps. 2–4. In
particular, a one-dimensional second-order system is converted into a
two-dimensional first-order system, a one-dimensional third-order sys-
tem is transformed into a three-dimensional first-order system, a one-
dimensional nth-order system is converted into an n-dimensional first-
order system, and an n-dimensional mth-order system is transformed
into an n x m-dimensional first-order system. Similarly, the analy-
sis of non-autonomous systems is based on their transformation into
higher-order, time-independent (autonomous) systems that can be ex-
amined based on the analysis of multi-dimensional first-order systems
in Chaps. 2–4.

5.1.1 Linear Systems

Second-Order Systems

Consider a one-dimensional, second-order, autonomous, linear differ-
ence equation that governs the evolution of a one-dimensional state
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variable, xt, over time. Unlike the first-order case, the value of the
state variable at time t + 2 depends upon its value at time t + 1 and at
time t. In particular, consider the difference equation

xt+2 + a1xt+1 + a0xt + b = 0, (5.1)

where the value of the state variable at time t, xt, is a real number,
i.e., xt ∈ �, the constant parameters a0, a1, and b are real numbers,
i.e., a0, a1, b ∈ �, and the initial values of the state variable at time
0, x0, and time 1, x1, are given.

In order to examine this difference equation in a familiar man-
ner, using the basic propositions established in Chaps. 2–4, this one-
dimensional second-order difference equation is converted into a two-
dimensional first-order system.

Define a new state variable, yt, such that,

xt+1 ≡ yt, (5.2)

and therefore

xt+2 = yt+1. (5.3)

Substituting (5.2) and (5.3) into (5.1), the one-dimensional,
second-order difference equation can be transformed into the two-
dimensional first-order system,

{
yt+1 + a1yt + a0xt + b = 0
xt+1 = yt,

(5.4)

or
{

yt+1 = −a1yt − a0xt − b

xt+1 = yt.
(5.5)

Hence, the one-dimensional, second-order difference equation is con-
verted into a two-dimensional first order system that characterizes the
evolution of two state variables, {yt, xt}, over time.

[
yt+1

xt+1

]
=
[−a1 −a0

1 0

] [
yt

xt

]
+
[−b

0

]
, (5.6)

where the initial conditions of the two state variables, (y0, x0), are given
since (x0, x1) are given, and as follow from (5.2), y0 = x1.

Thus, the characterization of a one-dimensional, second-order linear
difference equation can be obtained based on the methods developed
in Chaps. 2 and 3, and in particular the results stated in Theorems
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3.1–3.2 and Corollary 3.6, once the difference equation is transformed
into a two-dimensional, first-order, linear system, as analyzed above.

Third-Order Systems

Consider a one-dimensional, third-order, autonomous, linear difference
equation that governs the evolution of a one-dimensional state variable,
xt, over time. The value of the state variable at time t + 3 depends on
its value at time t+2, t+1, and t. In particular, consider the difference
equation

xt+3 + a2xt+2 + a1xt+1 + a0xt + b = 0, (5.7)

where the value of the state variable at time t, xt, is a real number,
i.e. xt ∈ �, the constant parameters a0, a1, a2, b ∈ �, and the initial
conditions of the system, (x0, x1, x2), are given.

Define a new state variable, yt, such that

xt+1 ≡ yt, (5.8)

and similarly, define an additional state variable zt, such that

xt+2 = yt+1 ≡ zt. (5.9)

Then the third-order difference equation can be transformed into a
three-dimensional, first-order system. In particular, since xt+2 =
yt+1 = zt, it follows that

xt+3 = yt+2 = zt+1. (5.10)

Substituting (5.8)–(5.10) into (5.7), the one-dimensional, third-order
difference equation can be transformed into the three-
dimensional first-order linear system,

⎧
⎪⎨

⎪⎩

zt+1 + a2zt + a1yt + a0xt + b = 0
yt+1 = zt

xt+1 = yt,

(5.11)

or
⎧
⎪⎨

⎪⎩

zt+1 = −a2zt − a1yt − a0xt − b

yt+1 = zt

xt+1 = yt.

(5.12)
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Thus, the one-dimensional, third-order difference equation is con-
verted into a three-dimensional, first-order system that describes the
evolution of three state variables, {yt, zt, xt}, over time:

⎡

⎢⎢⎢⎢⎣

zt+1

yt+1

xt+1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

−a2 −a1 −a0

1 0 0

0 1 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

zt

yt

xt

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

−b

0

0

⎤

⎥⎥⎥⎥⎦
. (5.13)

where the initial conditions of the three state variables, (z0,y0,x0), are
given, noting that as follows from (5.8) and (5.9), y0 = x1 and z0 = x2.

Thus, the characterization of a one-dimensional, third-order linear
system can be obtained based on the methods developed in Chaps.
2 and 3 and in particular the results stated in Theorems 3.1–3.2 and
Corollary 3.6, once the system is transformed into a three-dimensional,
first-order, linear system, as analyzed above.

Nth-Order System

Consider a one-dimensional, nth-order, autonomous, linear difference
equation that governs the evolution of a one-dimensional state variable,
xt, over time. The value of the state variable at time t+n depends upon
its value at time t+n−1, t+n−2, ..., t+2, t+1 and t. In particular,
consider the difference equation

xt+n + an−1xt+n−1 + · · · + a1xt+1 + a0xt + b = 0, (5.14)

where the value of the state variable at time t, xt ∈ �, the con-
stant parameters a0, a1, a2, ...an−1, b ∈ �, and the initial conditions
(x0, x1, x2, ..., xn−1) are given.

Define n − 1 new state variables, such that

xt+1 ≡ y1,t

xt+2 = y1,t+1 ≡ y2,t

xt+3 = y1,t+2 = y2,t+1 ≡ y3,t

...
...

xt+n−1 = y1,t+n−2 = y2,t+n−3 = · · · = yn−2,t+1 ≡ yn−1,t.

(5.15)
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It follows that

xt+n = yn−1,t+1. (5.16)

Substituting (5.15) and (5.16) into (5.14), the one-dimensional, nth-
order difference equation can be transformed into the n-dimensional,
first-order system
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn−1,t+1

yn−2,t+1

yn−3,t+1

...
y1,t+1

xt+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 . . −a2 −a1 −a0

1 0 0 0 0 0
0 1 0 0 0 0
...

. . . . . . . . . . . .
...

0 0 0 1 0 0
0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn−1,t

yn−2,t

yn−3,t

...
y1,t

xt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b

0
0
...
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.17)

where the initial conditions of the n state variables, x0, y1,0 = x1,
y2,0 = x2, ..., = yn−1,t = xn−1, are given, noting (5.15).

Thus, the characterization of a one-dimensional, nth-order linear
system can be obtained based on the methods developed in Chaps. 2
and 3, and in particular the results stated in Theorems 3.1–3.2 and
Corollary 3.6, once the difference equation is transformed into an n-
dimensional, first-order, linear system, as analyzed above.

More generally an n-dimensional mth-order system can be converted
into a m x n dimensional first-order system and analyzed according to
the methods developed in Chaps. 2 and 3.

5.1.2 Nonlinear Systems

Consider a one-dimensional, nth-order, autonomous, nonlinear system
that governs the evolution of a one-dimensional state variable, xt, over
time. The value of the state variable at time t+n depends on its value
in time t+n−1, t+n− 2, ..., t+2, t+1, and t. In particular, consider
the system

xt+n = φ(xt+n−1, xt+n−2, xt+n−3, · · · , xt+1, xt), (5.18)

where φ : �n → � is a single-valued function, the value of the state
variable at any time t, xt, is a real number, i.e. xt ∈ �, and the initial
conditions of the system, (x0, x1, x2, ..., xn−1), are given.
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Let
xt+1 ≡ y1,t

xt+2 = y1,t+1 ≡ y2,t

xt+3 = y1,t+2 = y2,t+1 ≡ y3,t

...
...

xt+n−1 = y1,t+n−2 = y2,t+n−3 = · · · = yn−2,t+1 ≡ yn−1,t.

(5.19)

Substituting (5.19) into (5.18), the one-dimensional, nth-order nonlin-
ear difference equation can be transformed into the n-dimensional, first-
order, nonlinear system

yn−1,t+1 = φ(yn−1,t, yn−2,t, yn−3,t, · · · , xt)
yn−2,t+1 = yn−1,t

...
...

y1,t+1 = y1,t,

(5.20)

where the initial conditions of the n state variables, x0, y1,0 = x1,
y2,0 = x2, ... yn−1,t = xn−1, are given.

Thus, the nth-order nonlinear difference equation can be represented
as an n - dimensional, first-order nonlinear system that can be analyzed
according to the methods developed in Chap. 4.

5.2 Non-Autonomous Systems

The characterization of non-autonomous systems (i.e. systems in which
the functional relationship between the state variables changes over
time) requires the transformation of the time-dependant system into a
higher order time-independent system.

Consider a system of non-autonomous, first-order, linear difference
equations

xt+1 = A(t)xt + B(t), (5.21)

and a non-autonomous nonlinear system

xt+1 = f(xt, t), (5.22)

where the vector of state variables, xt ∈ �n, A(t) is an n x n matrix of
time dependent coefficients of real numbers, aij(t) ∈ �, i, j = 1, 2, ..., n,
and B(t) is an n - dimensional time dependent vector with elements
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bi(t) ∈ �, i = 1, 2, ..., n. The initial value of the vector of state
variables, x0 = (x10, x20, x30, ..., xn0), is given.

A non-autonomous system can be converted into an autonomous
one. Let yt ≡ t. Then yt+1 = t + 1 = yt + 1. Thus the linear system is
transformed into

xt+1 = A(yt)xt + B(yt)
yt+1 = yt + 1,

(5.23)

and the nonlinear system is converted to

xt+1 = f(xt, yt)
yt+1 = yt + 1.

(5.24)

Namely, the non-autonomous system is converted into a higher-
dimensional autonomous system.

However, these systems have no steady-state equilibrium. There ex-
ists no y ∈ � such that y = y + 1, and thus neither the linear system
nor the nonlinear system has a steady-state equilibrium.

The qualitative analysis provided by Chaps. 2–4, which is based on
the behavior of the system in the vicinity of a steady-state equilibrium,
is therefore not applicable for this dynamical system.

The characterization of these systems necessitates a redefinition of
the state variables, so as to assure the existence of steady-state equilib-
ria and thus to assure that the analysis of the previous chapters could
be fully utilized. This transformation, however, would depend on the
particular form of the dynamical system.



6

Examples of Two-Dimensional Systems

This chapter provides a complete characterization of several representa-
tive examples of two-dimensional dynamical systems. These examples
include a first-order linear system with real eigenvalues, a first-order
linear system with complex eigenvalues that exhibits periodic orbit, a
first-order linear system with complex eigenvalues that exhibits a spiral
sink, a first-order nonlinear system characterized by oscillatory conver-
gence, and a second-order one-dimensional system that is converted into
a first-order, two-dimensional system characterized by a continuum of
equilibria and oscillatory divergence.

6.1 First-Order Linear Systems

6.1.1 Real, Distinct, Positive Eigenvalues

Consider the two-dimensional system of first-order homogenous linear
difference equations

xt+1 ≡
[

x1t+1

x2t+1

]
=
[

4 1
7 2.5

] [
x1t

x2t

]
≡ Axt, (6.1)

where x0 ≡ [x10,x20] is given.
The characterization of the time path of this two-dimensional sys-

tem of interdependent state variables is based on the construction of a
time-independent transformation that converts the system into a new
dynamical system of independent state variables whose evolution can
be derived based on the analysis of the one-dimensional case. Alter-
natively, the qualitative aspects of the trajectory of this system can
be examined based on the derivation of the system’s phase diagram
without an explicit solution.
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A. Derivation of an Explicit Solution

The Eigenvalues λ1 and λ2 of the Matrix A

The eigenvalues of the matrix A are obtained as a solution to the
equation

|A − λI| = 0, (6.2)

where |A − λI| is the determinant of the matrix [A − λI] and I is the
identity matrix. In the two-dimensional case, the eigenvalues, λ1 and
λ2, are therefore obtained as a solution to the equation

∣∣∣∣
a11 − λ a21

a12 a22 − λ

∣∣∣∣ = 0. (6.3)

The implied characteristic polynomial is

c(λ) ≡ λ2 − trAλ + detA = 0, (6.4)

and the eigenvalues are therefore determined by the solution to
{

λ1 + λ2 = trA

λ1λ2 = det A.
(6.5)

Given the matrix of coefficients, A, in (6.1), it follows that
{

λ1 + λ2 = 6.5
λ1λ2 = 3,

(6.6)

and therefore λ1 = 6 and λ2 = 0.5.

The Eigenvectors f1 and f2 of the Matrix A

The eigenvectors of the matrix A, f1 and f2, associated with the
eigenvalues, λ1 and λ2, are obtained as solutions to the equations

[A − λI]f1 = 0 for f1 �= 0
[A − λI]f2 = 0 for f2 �= 0,

(6.7)

where fi = (fi1, fi2)′ for i = 1, 2. Hence, it follows from (6.1) that the
eigenvector associated with the eigenvalue λ1 = 6 is determined by
the solution to the system of equations

[−2 1
7 −3.5

] [
f11

f12

]
=
[

0
0

]
, (6.8)
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whereas that associated with λ2 = 0.5 is determined by the solution
to the system of equations

[
3.5 1
7 2

] [
f21

f22

]
=
[

0
0

]
. (6.9)

Thus, the first eigenvector is determined by the equation

f12 = 2f11, (6.10)

whereas the second eigenvector is given by the equation

f21 = −3.5f22. (6.11)

The eigenvectors f1 and f2 are therefore

f1 =
[

1
2

]

f2 =
[

1
−3.5

]
,

(6.12)

or any scalar multiple of these vectors.

The Use of the Eigenvectors f1 and f2 in the Construction
of a New System of Coordinates that Spans �2

Since f1 and f2 are linearly independent, they span �2. Namely,
for all xt ∈ �2, there exists yt ≡ (y1t, y2t) ∈ �2 such that

xt = f1y1t + f2y2t. (6.13)

In other words, every xt ∈ �2 can be expressed in terms of the new
system of coordinates (y1t, y2t). Hence, as follows from the values of the
eigenvectors given in (6.12),

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 1

2 −3.5

⎤

⎦

⎡

⎣
y1t

y2t

⎤

⎦ . (6.14)

Since, every xt = (x1t, x2t)′ ∈ �2 can be expressed in terms of the new
system of coordinates, (y1t, y2t) ∈ �2, there exists a time-independent
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matrix Q such that

xt = Qyt, (6.15)

where

Q =

⎡

⎣
1 1

2 −3.5

⎤

⎦ . (6.16)

Since f1 and f2 are linearly independent, Q is a non-singular matrix,
Q−1 therefore exists, and yt can be expressed in terms of the original
system of coordinates, (x1t, x2t). That is,

yt = Q−1xt. (6.17)

In particular,
[

y1t

y2t

]
= − 1

5.5

[
−3.5 −1

−2 1

][
x1t

x2t

]
, (6.18)

and therefore,

y1t = 1
5.5(3.5x1t + x2t)

y2t = 1
5.5(2x1t − x2t).

(6.19)

Thus,

y1t = 0 ⇔ x2t = −3.5x1t

y2t = 0 ⇔ x2t = 2x1t.
(6.20)

The geometric place of the new system of coordinates is given by
the set of two eqs. (6.20). As depicted in Fig. 6.1, the geometric place
of all pairs (x1t, x2t) such that x2t = −3.5x1t is the y2t axis (along
which y1t = 0), and the geometric place of all pairs (x1t, x2t) such that
x2t = 2x1t is the y1t axis (along which y2t = 0).

The axes of the new system of coordinates (y1t, y2t) are therefore the
lines spanned by the eigenvectors f1 and f2, respectively, as depicted
in Fig. 6.1.
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(x2t = 2 x1t)
y1t

y2t

x2t

x1t

f1 (x1t , x2t)

(x2t = –3.5 x1t)

f2

Fig. 6.1. The New System of Coordinates
The Representation of (x1t, x2t) in the (y1t, y2t) Space

The Time Path of the State Variables y1t and y2t

As follows from (6.17), the value of the vector of the new state
variables, yt+1, can be expressed as a time-invariant function of the
value of the original vector of state variables, xt+1. In particular,

yt+1 = Q−1xt+1. (6.21)

Hence, since the evolution of the original vector of state variables xt+1

is given by xt+1 = Axt, it follows that

yt+1 = Q−1Axt. (6.22)

Moreover, as established in (6.15), the value of the original vector of
state variables, xt, can be expressed in terms of the new system of
coordinates, (y1t, y2t). In particular, xt = Qyt, and therefore

yt+1 = Q−1AQyt. (6.23)

Thus,

yt+1 ≡ Dyt, (6.24)

where D ≡ Q−1AQ.



120 6 Examples of Two-Dimensional Systems

As follows from (6.15) and (6.18),

D = Q−1AQ = − 1
5.5

⎡

⎣
−3.5 −1

−2 1

⎤

⎦

⎡

⎣
4 1

7 2.5

⎤

⎦

⎡

⎣
1 1

2 −3.5

⎤

⎦

=

⎡

⎣
6 0

0 0.5

⎤

⎦ . (6.25)

Namely, the matrix D is a diagonal matrix whose elements are the
eigenvalues of the matrix A, λ1 = 6 and λ2 = 0.5.

Thus, the evolution of each of the elements of the vector of the
new state variables, yt, is independent of the evolution of the other
state variables, and its time path can be determined by the method of
solution developed for the one-dimensional case in Sect. 1.1, as outlined
below.

The evolution of the vector of state variables, yt, is given therefore by

yt = Dty0. (6.26)

Namely,

y1t = 6t y10

y2t = 0.5t y20,
(6.27)

where the initial value of the vector of new state variables, y0, is deter-
mined uniquely by the values of the vector of state variables in period
0, x0. In particular, as follows from (6.17), y0 = Q−1x0, i.e.

y10 = 1
5.5 (3.5x10 + x20)

y20 = 1
5.5 (2x10 − x20) .

(6.28)

The Stability of the Steady-State Equilibrium
of the System yt+1 = Dyt

The steady-state equilibrium of the system yt+1 = Dyt is a vector
ȳ ∈ �2 such that ȳ = Dȳ. The steady-state equilibrium of the new
system is therefore

ȳ ≡ (y1, y2)
′ = (0, 0)′. (6.29)
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The steady-state equilibrium ȳ = (0, 0)′ is unique since [I − D] is non-
singular, i.e.

|I − D| =
∣∣∣∣
−5 0
0 0.5

∣∣∣∣ = −2.5 �= 0. (6.30)

The second state variable, y2t, converges to its steady-state level,
y2 = 0, regardless of its initial value, y20. Namely,

lim
t→∞ y2t = lim

t→∞(0.5)t y20 = y2 = 0, ∀y20 ∈ �. (6.31)

The first state variable, y1t, diverges to plus or minus infinity,
unless the initial position of this state variable is at its steady-state
level, y1 = 0, i.e.

lim
t→∞ y1t = lim

t→∞ 6t y10 =

⎧
⎪⎨

⎪⎩

−∞ if y10 < 0
y1 = 0 if y10 = 0
∞ if y10 > 0.

(6.32)

As depicted in Fig. 6.2, the steady-state equilibrium (ȳ1, ȳ2) = (0, 0)
is a saddle point. Namely, unless y10 = 0, the steady-state equilibrium
will not be reached and the system will diverge in one of its dimensions
to either plus or minus infinity:

lim
t→∞ yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−∞, 0) if y10 < 0

(0, 0) if y10 = 0

(∞, 0) if y10 > 0.

(6.33)

The Solution for xt

The trajectory of the vector of original state variables, xt, can be
expressed in terms of the new system of coordinates, (y1t, y2t). In par-
ticular, as established in (6.15), xt = Qyt, i.e.,

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 1

2 −3.5

⎤

⎦

⎡

⎣
y1t

y2t

⎤

⎦ . (6.34)
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y2t

y1t
y

Fig. 6.2. The Evolution of yt

Hence, a time-invariant transformation of the explicit solution for the
time path of the vector of new state variables, yt, provides an explicit
solution for the time path of the original vector of state variables, xt.

As follows from (6.27),
[

x1t

x2t

]
=

[
1 1

2 −3.5

][
6ty10

(0.5)ty20

]
=

[
6ty10 + (0.5)ty20

2(6t)y10 − 3.5(0.5)ty20

]
. (6.35)

The time path of xt and its qualitative properties are therefore
uniquely determined by the system’s initial conditions, (x10, x20), and
the eigenvalues of the matrix A. As follows from (6.35), noting (6.28),

[
x1t

x2t

]
=

⎡

⎣
1

5.5 [6t (3.5x10 + x20) + (0.5)t (2x10 − x20)]

1
5.5 [2(6t) (3.5x10 + x20) − 3.5(0.5)t (2x10 − x20)]

⎤

⎦ . (6.36)

The phase diagram of the original system is obtained by placing
the phase diagram that describes the evolution of yt relative to the
new system of coordinates (y1, y2), in the plane (x1, x2), as depicted in
Fig. 6.3.

The Stability of the Steady-State Equilibrium
of the System xt+1 = Axt

A steady-state equilibrium of the system xt+1 = Axt is a vector
x̄ ∈ �2 such that x = Ax̄. Hence, it follows from (6.1) that x̄ exists and
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( x2t = – 3.5x1t )

( x2t = 2 x1t )
y1t

y2t

x2t

x1t

Fig. 6.3. The Evolution of xt

A Saddle

is given by x̄ = (0, 0). Moreover, x̄ = (0, 0) is unique since the matrix
[I − A] is non-singular, i.e.

|I − A| =
∣∣∣∣
−3 −1
−7 −1.5

∣∣∣∣ = −2.5 �= 0. (6.37)

As follows from (6.36), and as depicted in Fig. 6.3,1

lim
t→∞xt = x ⇔ x20 = −3.5x10, (6.38)

and the steady-state equilibrium x = 0 is a saddle point. Namely,
the vector of state variables xt converges to its steady-state value x̄ if
and only if the initial values of this vector are placed on the y2t axis,
i.e. if x20 = −3.5x10.

B. Construction of a Phase Diagram Without an Explicit
Solution

The derivation of a phase diagram for this two-dimensional, first-
order linear system does not require an explicitcharacterization of the
1 Since both eigenvalues are real and positive, convergence and divergence are

monotonic and the arrows of motion approximate the actual motion of the system.
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evolution of the vector of state variables. The phase diagram can be
derived via a characterization of the map of forces that operate on the
vector of state variables.

The construction of the phase diagram requires the identification
of the geometric place under which each of the state variables is in a
steady state and the characterization of the forces that operate on this
state variable once it deviates from its steady-state value.

Let Δxit be the change in the value of the ith state variable, i = 1, 2,
from period t to period t + 1 :

Δx1t ≡ x1t+1 − x1t = 3x1t + x2t

Δx2t ≡ x2t+1 − x2t = 7x1t + 1.5x2t.
(6.39)

Clearly, at a steady-state equilibrium, neither x1t nor x2t changes over
time and therefore Δx1t = Δx2t = 0.

Let ‘Δx1t = 0’ be the geometric place of all pairs of (x1t, x2t) such
that x1t is in a steady state, and let ‘Δx2t = 0’ be the geometric
place of all pairs (x1t, x2t) such that x2t is in a steady state. Namely,

‘Δx1t = 0’ ≡ {(x1t, x2t)| x1t+1 − x1t = 0}
‘Δx2t = 0’ ≡ {(x1t, x2t)| x2t+1 − x2t = 0}.

(6.40)

It follows from (6.39) and (6.40) that

Δx1t = 0 ⇔ x2t = −3x1t

Δx2t = 0 ⇔ x2t = −(14/3)x1t.
(6.41)

Thus, as depicted in Fig. 6.4, the geometric locus ‘Δx1t = 0’ is given
by the equation x2t = −3x1t, whereas the geometric locus ‘Δx2t = 0’
is given by the equation x2t = −(14/3)x1t. The geometric place under
which the two loci, ‘Δx1t = 0’ and ‘Δx2t = 0,’ intersect is the steady-
state equilibrium of the system. As follows from (6.41), and as depicted
in Fig. 6.4, the two loci intersect at the point (0, 0) and this is the unique
steady-state equilibrium of the entire system.

The forces that operate on each of the state variables away from its
steady-state equilibrium provide the necessary elements for the deriva-
tion of the phase diagram.

As follows from (6.39), as long as x2t > −3x1t, the system increases
the value of the first state variable, x1t, in the transition from time t
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x2t

x1t

Δ x2t 
 = 0 Δ x1t = 0

Fig. 6.4. The Phase Diagram without an Explicit Solution

to time t + 1, whereas if x2t < −3x1t, the system decreases the value
of x1t in the transition from time t to time t + 1. Hence,

Δx1t

⎧
⎨

⎩

> 0 if x2t > −3x1t

< 0 if x2t < −3x1t.
(6.42)

Consequently, as depicted in Fig. 6.4, above the line x2t = −3x1t (i.e.
for pairs (x1t, x2t) such that x2t > −3x1t), the arrows that depict the
motion of the first state variable, x1t, are directed rightward, whereas
below the line (i.e. for pairs (x1t, x2t) such that x2t < −3x1t), the arrows
that depict the motion of x1t are directed leftward.

Similarly, if x2t > −(14/3)x1t, the system increases the value of the
second state variable, x2t, in the transition from time t to time t + 1,
whereas if x2t < −(14/3)x1t, the system decreases the value of x2t.
Hence,

Δx2t

⎧
⎨

⎩

> 0 if x2t > −(14/3)x1t

< 0 if x2t < −(14/3)x1t.
(6.43)

Consequently, as depicted in Fig. 6.4, above the geometric locus
x2t = −(14/3)x1t (i.e. for pairs (x1t, x2t) such that x2t > −(14/3)x1t),
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the arrows that depict the motion of the second state variable, x2t, are
directed upward, whereas below the geometric locus x2t = −(14/3)x1t

(i.e. for pairs (x1t, x2t) such that x2t < −(14/3)x1t), the arrows that
depict the motion of x2t are directed downward.

6.1.2 Complex Eigenvalues - Periodic Orbit

Consider the two-dimensional system of first-order homogenous linear
difference equations

xt+1 =

⎡

⎣
x1t+1

x2t+1

⎤

⎦ =

⎡

⎣

√
2 −1

1 0

⎤

⎦

⎡

⎣
x1t

x1t

⎤

⎦ ≡ Axt, (6.44)

where x0 ≡ [x10, x20] is given.
The characterization of the time path of this two-dimensional sys-

tem of interdependent state variables is based on the construction of a
time-independent transformation that converts the system into a new
dynamical system whose evolution is governed by a matrix in the Jor-
dan normal form.

The Eigenvalues μ and μ̄ of the Matrix of Coefficients A

The eigenvalues of the matrix A are obtained as a solution to the
equation

|A − μI| = 0, (6.45)

where |A − μI| is the determinant of the matrix [A − μI] and I is the
identity matrix. The implied characteristic polynomial is therefore

c(μ) ≡ μ2 −
√

2μ + 1 = 0. (6.46)

The eigenvalues of the coefficient matrix A are complex, taking the
form μ ≡ α + βi and μ ≡ α − βi, where

μ =
√

2
2 +

√
2

2 i

μ̄ =
√

2
2 −

√
2

2 i,

(6.47)

and i ≡ √−1.
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The Eigenvectors v and v̄ of the Matrix of Coefficients A

The eigenvectors of the matrix A, v and v̄, are obtained as a solution
to the equations

[A − μI]v = 0 for μ �= 0

[A − μ̄I]v̄ = 0 for μ̄ �= 0.
(6.48)

Hence, the eigenvector v associated with the eigenvalue μ is determined
by the solution to the system of equations

[ √
2

2 −
√

2
2 i −1

1 −
√

2
2 −

√
2

2 i

][
v1

v2

]
=

[
0

0

]
, (6.49)

and the eigenvector v̄ associated with the eigenvalue μ̄ is determined
by the solution to the system of equations

[ √
2

2 +
√

2
2 i −1

1 −
√

2
2 +

√
2

2 i

][
v̄1

v̄2

]
=

[
0

0

]
. (6.50)

Thus, the eigenvector v is determined by the equation

v2 =

(√
2

2
−

√
2

2
i

)
v1, (6.51)

and the eigenvector v̄ is determined by the equation

v̄2 =

(√
2

2
+

√
2

2
i

)
v̄1. (6.52)

The eigenvectors v and v̄ are therefore

v =

[
1

√
2

2 −
√

2
2 i

]

v̄ =

[
1

√
2

2 +
√

2
2 i

]
,

(6.53)

or any scalar multiple of these vectors.
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In particular, v and v̄ can be decomposed into a real and complex
part:

v ≡ u + wi =
[

u1

u2

]
+
[

w1

w2

]
i =
[

1√
2

2

]
+
[

0
−

√
2

2

]
i

v̄ ≡ u − wi =
[

u1

u2

]
−
[

w1

w2

]
i =
[

1√
2

2

]
−
[

0
−

√
2

2

]
i.

(6.54)

This decomposition is useful in the establishment of a new system of
coordinates that spans �2 and permits the transformation of the orig-
inal system into a new one characterized by the Jordan normal form
representation.

The Use of the Vectors u and w in the Construction of a New
System of Coordinates that Spans �2

Since u and w are linearly independent, they span �2. Namely, for
all xt ∈ �2 there exists yt ≡ (y1t, y2t) ∈ �2 such that

xt = uy1t − wy2t. (6.55)

In other words, every xt ∈ �2 can be expressed in terms of the new
system of coordinates (y1t, y2t). As follows from the values of the eigen-
vectors given in (6.54),

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 0

√
2

2

√
2

2

⎤

⎦

⎡

⎣
y1t

y2t

⎤

⎦ . (6.56)

Namely, for all xt ∈ �2 there exists yt ≡ (y1t, y2t) ∈ �2 and a time-
independent matrix V such that

xt = V yt. (6.57)

Since u and w are linearly independent, V is a non-singular matrix,
V −1 therefore exists, and yt can be expressed in terms of the original
system of coordinates (x1t, x2t). Namely,

yt = V −1xt, (6.58)
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i.e.
⎡

⎣
y1t

y2t

⎤

⎦ =

⎡

⎣
1 0

−1
√

2

⎤

⎦

⎡

⎣
x1t

x2t

⎤

⎦ , (6.59)

and therefore,

y1t = x1t

y2t =
√

2x2t − x1t.
(6.60)

Thus,

y1t = 0 ⇔ x1t = 0

y2t = 0 ⇔ x2t = (1/
√

2)x1t.
(6.61)

The geometric place of the new system of coordinates is given by
(6.61). As depicted in Fig. 6.6, the geometric place of all pairs (x1t, x2t)
such that x1t = 0 is the y2t axis (along which y1t = 0), and the geo-
metric place of all pairs (x1t, x2t) such that x2t = (1/

√
2)x1t is the y1t

axis (along which y2t = 0).

The Time Path of the State Variables y1t and y2t

As follows from (6.58), the vector of state variables, yt+1, can be
expressed as a time-invariant function of the vector of state variables,
xt+1. In particular,

yt+1 = V −1xt+1. (6.62)

Hence, since the evolution of the vector of state variables, xt+1, is given
by xt+1 = Axt, it follows that

yt+1 = V −1Axt. (6.63)

Moreover, as established in (6.57), the vector of state variables, xt, can
be expressed in terms of the new system of coordinates, (y1t, y2t). In
particular, xt = V yt, and therefore

yt+1 = V −1AV yt. (6.64)
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Thus,

yt+1 ≡ Dyt, (6.65)

where as follows from the (6.44), (6.56), and (6.59),

D = V −1AV =

⎡

⎢⎣

√
2

2 −
√

2
2

√
2

2

√
2

2

⎤

⎥⎦ . (6.66)

Hence,

yt+1 =

[
y1t+1

y2t+1

]
=

⎡

⎣
√

2
2 −

√
2

2√
2

2

√
2

2

⎤

⎦
[

y1t

y2t

]
, (6.67)

where y0 ≡ (y10, y20)′ = v−1x0 is given.
Let ȳ be a steady-state equilibrium of the system, i.e.

ȳ = Dȳ. (6.68)

Since [I −D] is a non-singular matrix, the steady-state equilibrium, ȳ,
is unique.

ȳ = (ȳ1, ȳ2) = (0, 0). (6.69)

The trajectory {yt}∞t=0, satisfies (6.67) at all points in time and relates
the value of the new vector of state variables at time t, yt, to their initial
condition, y0, via the parameters embodied in the coefficient matrix A.

Following the method of iterations, the solution satisfies

[
y1t+1

y2t+1

]
=

⎡

⎣
√

2
2 −

√
2

2√
2

2

√
2

2

⎤

⎦
t [

y10

y20

]
. (6.70)

As discussed in Sect. 3.3, this formulation is not very informative about
the qualitative behavior of the dynamical system. In particular, it is
not apparent what the necessary restrictions on the values of α and
β are, such that the state variables will converge to their steady-state
value. However, the evolution of each pair of state variables can be
expressed in terms of the polar coordinates of (α, β).

Consider the geometrical representation of the complex pair of eigen-
values μ = α + βi =

√
2/2 +

√
2/2i and μ̄ = α − βi =

√
2/2 − √

2/2i
in the complex Cartesian space, as depicted in Fig. 3.12. Let r be the
modulus of the eigenvalues, namely,
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r ≡
√

α2 + β2 =

√√√√
(√

2
2

)2

+

(√
2

2

)2

= 1. (6.71)

It follows that

α = r cos θ

β = r sin θ,
(6.72)

and therefore

⎡

⎣
α −β

β α

⎤

⎦ = r

⎡

⎣
cos θ − sin θ

sin θ cos θ

⎤

⎦ . (6.73)

Hence, the analysis of the system in (6.70) can be expressed in terms
of polar coordinates.

⎡

⎣
y1t

y2t

⎤

⎦ =

⎡

⎣
cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

⎤

⎦
t ⎡

⎣
y10

y20

⎤

⎦ , (6.74)

and therefore, noting Lemma 3.3,

⎡

⎣
y1t

y2t

⎤

⎦ =

⎡

⎣
cos(tπ/4) − sin(tπ/4)

sin(tπ/4) cos(tπ/4)

⎤

⎦

⎡

⎣
y10

y20

⎤

⎦ . (6.75)

Hence the trajectory of yt is given by

y1t = y10 cos(tπ/4) − y20 sin(tπ/4)

y2t = y10 sin(tπ/4) + y20 cos(tπ/4),
(6.76)

where

lim
t→∞ yt = ȳ = 0 ⇔ y0 = ȳ = 0. (6.77)
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y2t

y1t

Fig. 6.5. The Evolution of yt

(Counter-Clockwise) Periodic Orbit

Thus, as follows from (6.76), all trajectories of yt initiated from any
non-zero initial condition exhibit counter-clockwise periodic orbits, as
depicted in Fig. 6.5. A full revolution of the orbit is completed every 8
periods.

The Time Path of xt

The trajectory of the vector of state variables, xt, can be expressed
in terms of the trajectory of yt. In particular, as established in (6.56),
xt = V yt, i.e.

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 0

√
2

2

√
2

2

⎤

⎦

⎡

⎣
y1t

y2t

⎤

⎦ . (6.78)

Hence, a time-invariant transformation of the explicit solution for the
time path of the vector of new state variables, yt, provides an explicit
solution for the time path of the original vector of state variables, xt.

The time path of xt and its qualitative properties are therefore
uniquely determined by the system’s initial conditions, (x10, x20), and
the modulus of the eigenvalues of the matrix A. As follows from (6.76)
and (6.78),
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⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎢⎣

1 0

√
2

2

√
2

2

⎤

⎥⎦

⎡

⎣
y10 cos(tπ/4) − y20 sin(tπ/4)

y10 sin(tπ/4) + y20 cos(tπ/4)

⎤

⎦ , (6.79)

and therefore

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎢⎣

y10 cos(tπ/4) − y20 sin(tπ/4)

√
2

2
[(y10 + y20) cos(tπ/4) + (y10 − y20) sin(tπ/4)]

⎤

⎥⎦ .

(6.80)

Noting that y0 = v−1x0, it follows from (6.60) that

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
x10 cos(tπ/4) − (

√
2x20 − x10) sin(tπ/4)

x20[cos(tπ/4) − sin(tπ/4)] +
√

2x10 sin(tπ/4)

⎤

⎦ . (6.81)

The phase diagram of the system is obtained by placing the phase
diagram that describes the evolution of yt relative to the new system of
coordinates (y1, y2), in the plane (x1, x2). As depicted in Fig. 6.6, the
trajectory of xt from any non-zero initial condition exhibits counter-
clockwise periodic orbits.

The qualitative trajectory of the state variables could be inferred
directly from the modulus, r, of these complex eigenvalues. As discussed
in Sect. 3.3 and defined in (6.71), the modulus, r, of the eigenvalues of
the coefficient matrix A is equal to one. Hence, as implied by Theorem
3.4, the system is characterized by a counter-clockwise (β > 0) periodic
orbit.

6.1.3 Complex Eigenvalues - Spiral Sink

Consider the two-dimensional system of first-order homogenous linear
difference equations.
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(x2t = 1/   2)x1t

y2t

y1t

x2t

x1t

Fig. 6.6. The Evolution of xt

(Counter-Clockwise) Periodic Orbit

yt+1 =

⎡

⎣
y1t+1

y2t+1

⎤

⎦ =

⎡

⎢⎢⎣

1
2

−1
2

1
2

1
2

⎤

⎥⎥⎦

⎡

⎣
y1t

y2t

⎤

⎦ ≡ Ayt, (6.82)

where y0 ≡ [y10, y20] is given.
The eigenvalues of the coefficient matrix A are complex, taking the

form μ ≡ α + βi and μ ≡ α − βi, where

μ =
1
2

+
1
2
i,

μ̄ =
1
2
− 1

2
i,

(6.83)

and the coefficient matrix A is therefore already in Jordan normal form.
Let ȳ be a steady-state equilibrium of the system, i.e.

ȳ = Aȳ. (6.84)

Since [I −A] is a non-singular matrix, the steady-state equilibrium, ȳ,
is unique.

ȳ = (ȳ1, ȳ2) = (0, 0). (6.85)
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The solution to this system is a trajectory, {yt}∞t=0, that satisfies (6.82)
at all points in time and relates the value of the vector of state variables
at time t, yt, to their initial condition, y0, via the parameters embodied
in the coefficient matrix A. Following the method of iterations, the
solution satisfies

⎡

⎣
y1t

y2t

⎤

⎦ =

⎡

⎣
1
2 −1

2

1
2

1
2

⎤

⎦
t ⎡

⎣
y10

y20

⎤

⎦ . (6.86)

As discussed in Sect. 3.3, this formulation is not very informative about
the qualitative behavior of the dynamical system. In particular, it is
not apparent what the necessary restrictions on the values of α and
β are, such that the state variables will converge to their steady-state
value. However, the evolution of each pair of state variables can be
expressed in terms of the polar coordinates of (α, β).

Consider the geometrical representation of the complex pair of eigen-
values, μ = α + βi = 0.5 + 0.5i and μ̄ = α − βi = 0.5 − 0.5i, in the
complex Cartesian space, as depicted in Fig. 3.12. Let r be the modulus
of the eigenvalues, namely,

r ≡
√

α2 + β2 =

√(
1
2

)2

+
(

1
2

)2

< 1. (6.87)

It follows that

α = r cos θ

β = r sin θ,
(6.88)

and therefore
[

α −β

β α

]
= r

[
cos θ − sin θ

sin θ cos θ

]
. (6.89)

Hence, the analysis of the system in (6.82) can be expressed in terms
of polar coordinates:

⎡

⎣
y1t

y2t

⎤

⎦ = rt

⎡

⎣
cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

⎤

⎦
t ⎡

⎣
y10

y20

⎤

⎦ , (6.90)

where r = 1/
√

2. Following Lemma 3.3,



136 6 Examples of Two-Dimensional Systems

⎡

⎣
y1t

y2t

⎤

⎦ =
[

1√
2

]t
⎡

⎣
cos(tπ/4) − sin(tπ/4)

sin(tπ/4) cos(tπ/4)

⎤

⎦

⎡

⎣
y10

y20

⎤

⎦ , (6.91)

and the trajectory of yt is given by

y1t =
[

1√
2

]t
[y10 cos(tπ/4) − y20 sin(tπ/4)]

y2t =
[

1√
2

]t
[y10 sin(tπ/4) + y20 cos(tπ/4)].

(6.92)

Since cos(tπ/4) and sin(tπ/4) are bounded by in the interval [−1, 1], it
follows that

lim
t→∞ yt = ȳ = 0 ∀y0 ∈ �2. (6.93)

The steady-state equilibrium, ȳ, is globally stable. All trajectories
that are initiated from a non-zero initial condition exhibit counter-
clockwise spiral sink, as depicted in Fig. 6.7.

The qualitative trajectory of the state variable could be inferred
directly from the modulus, r, of these complex eigenvalues. As discussed
in Sect. 3.3 and defined in (6.87), the modulus, r, of the eigenvalues
of the coefficient matrix A is smaller than one. Hence, as followed
from Theorem 3.4, the system is characterized by a counter-clockwise
(β > 0) spiral sink.

y1t

y2t

Fig. 6.7. (Counter-Clockwise) Spiral Sink
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6.2 Second-Order Linear Systems

Consider a one-dimensional, second-order, autonomous, linear differ-
ence equation that governs the evolution of a one-dimensional state
variable, x1t, over time. Unlike the first-order case, the value of the
state variable at time t + 2 depends on its value at time t + 1 and at
time t. In particular, consider the difference equation

x1t+2 = −0.5x1t+1 + 1.5x1t, (6.94)

where the initial value of the state variable at time 0, x10, and time
1, x11, are given.

In order to examine this difference equation in a familiar man-
ner, using the basic propositions established in Chaps. 2–4, this one-
dimensional second-order difference equation is converted into a two-
dimensional first-order system.

Define a new state variable, x2t, such that,

x1t+1 ≡ x2t, (6.95)

and therefore

x1t+2 = x2t+1. (6.96)

Substituting (6.95) and (6.96) into (6.94), the one-dimensional, second-
order difference equation can be transformed into the two-dimensional
first-order system,

x1t+1 = x2t

x2t+1 = 1.5x1t − 0.5x2t.
(6.97)

Hence, the one-dimensional, second-order difference equation is con-
verted into a two-dimensional first-order system that characterizes the
evolution of two state variables, {x2t, x1t}, over time:

[
x1t+1

x2t+1

]
=

[
0 1

1.5 −0.5

][
x1t

x2t

]
, (6.98)

where the initial conditions of the two state variables, (x10, x20), are
given since (x10, x11) are given, and as follow from (6.95), x20 = x11.

The characterization of the time path of this two-dimensional sys-
tem of interdependent state variables is based on the construction of a
time-independent transformation that converts the system into a new
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dynamical system of independent state variables whose evolution can
be derived based on the analysis of the one-dimensional case.

Steady-State Equilibria

Let (x̄1, x̄2) be a steady-state equilibrium of the system. It follows
from (6.98), or alternatively from (6.94), that there exists a continuum
of steady-state equilibria defined by the 450 line in the plane (x1t, x2t).
Namely,

{(x1t, x2t) ∈ �2 : (x1t, x2t)
= (x̄1, x̄2)} = {(x1t, x2t) ∈ �2 : x2t = x1t}. (6.99)

The Eigenvalues λ1 and λ2 of the Matrix A

As established in Sect. 6.1.1, the eigenvalues (λ1, λ2) of the coeffi-
cient matrix A are given by the solution to

⎧
⎨

⎩

λ1 + λ2 = trA = −0.5

λ1λ2 = det A = −1.5.
(6.100)

Hence,2

(λ1, λ2) = (1,−1.5).

The Eigenvectors f1 and f2 of the Matrix A

The eigenvector of the matrix A, f1 and f2, associated with the
eigenvalues λ1 and λ2, are obtained as a solution to the equations

[A − λI]f1 = 0 for f1 �= 0

[A − λI]f2 = 0 for f2 �= 0,
(6.101)

where fi = (fi1, fi2)′ for i = 1, 2. Hence, it follows from (6.98) that the
eigenvector associated with the eigenvalue λ1 = 1 is determined by
the solution to the system of equations

2 It should be noted that in other examples of second-order, one-dimensional sys-
tems, the eigenvalues of the matrix of coefficients of the two-dimensional, first-
order system, to which the second-order system was transformed, need not be
equal to one.
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⎡

⎣
−1 1

1.5 −1.5

⎤

⎦

⎡

⎣
f11

f12

⎤

⎦ =

⎡

⎣
0

0

⎤

⎦ , (6.102)

whereas that associated with λ2 = −1.5 is determined by the solution
to the system of equations

⎡

⎣
1.5 1

1.5 1

⎤

⎦

⎡

⎣
f21

f22

⎤

⎦ = 0. (6.103)

Thus, the first eigenvector is determined by the equation

f12 = f11, (6.104)

and the second eigenvector is determined by the equation

f21 = −1.5f22. (6.105)

The eigenvectors f1 and f2 are therefore

f1 =
[

1
1

]

f2 =
[

1
−1.5

]
,

(6.106)

or any scalar multiple of these vectors.

The Use of the Eigenvectors f1 and f2 in the Construction
of a New System of Coordinates that Spans �2

Since f1 and f2 are linearly independent, they span �2. Namely,
for every xt ∈ �2 there exists yt ≡ (y1t, y2t) ∈ �2 such that

xt = f1y1t + f2y2t. (6.107)

In other words, every xt ∈ �2 can be expressed in terms of the new
system of coordinates, (y1, y2). Hence, as follows from the values of the
eigenvectors given in (6.106),

[
x1t

x2t

]
=

[
1 1

1 −1.5

][
y1t

y2t

]
. (6.108)
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Namely, every xt = (x1t, x2t)′ ∈ �2 can be expressed in terms of
the new system of coordinates, (y1t, y2t) ∈ �2. Thus, there exists a
time-independent matrix Q such that

xt = Qyt. (6.109)

Since f1 and f2 are linearly independent, Q is a non-singular
matrix, Q−1 therefore exists, and yt can be expressed in terms of the
original system of coordinates, (x1t, x2t). That is,

yt = Q−1xt. (6.110)

In particular,
[

y1t

y2t

]
= −0.4

[−1.5 −1

−1 1

][
x1t

x2t

]
, (6.111)

and therefore,

y1t = 0.6x1t + 0.4x2t

y2t = 0.4(x1t − x2t).
(6.112)

Thus,

y1t = 0 ⇔ x2t = −1.5x1t

y2t = 0 ⇔ x2t = x1t.
(6.113)

The geometric place of the new system of coordinates is given by
(6.113). As depicted in Fig. 6.8, the geometric place of all pairs (x1t, x2t)
such that x2t = −1.5x1t is the y2t axis (along which y1t = 0), and the
geometric place of all pairs (x1t, x2t) such that x2t = x1t is the y1t

axis (along which y2t = 0). The axes of the new system of coordinates,
(y1t, y2t), are therefore the lines spanned by the eigenvectors f1 and f2,
respectively, as depicted in Fig. 6.8.

The Time Path of the State Variables y1t and y2t

As follows from (6.110), the value of the vector of state variables,
yt+1, can be expressed as a time-invariant function of the value of the
original vector of state variables, xt+1. In particular,

yt+1 = Q−1xt+1. (6.114)
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Hence, since the evolution of the vector of state variables, xt+1, is given
by xt+1 = Axt, it follows that

yt+1 = Q−1Axt. (6.115)

Moreover, as established in (6.109), the value of the vector of state
variables xt can be expressed in terms of the new system of coordinates,
(y1t, y2t). In particular, xt = Qyt, and therefore yt+1 = Q−1AQyt. Thus,

yt+1 ≡ Dyt, (6.116)

where

D = Q−1AQ =

[
1 0

0 −1.5

]
. (6.117)

Thus, the evolution of each of the elements of the new vector of
state variables, yt, is independent of the evolution of the other state
variable, and its time path can be determined by the method of solution
developed for the one-dimensional case in Sect. 1.1.

The evolution of the new vector of state variables, yt, is given by

yt = Dty0, (6.118)

and therefore

y1t = y10

y2t = (−1.5)t y20.
(6.119)

The value of the vector of new state variables in period 0, y0, is
determined uniquely by the values of the vector of the original state
variables in period 0, x0. In particular, as follows from (6.113),

y10 = 0.6x10 + 0.4x20

y20 = 0.4 (x10 − x20) .
(6.120)

Instability of the Steady-State Equilibrium of the System
yt+1 = Dyt

The steady-state equilibrium of the system yt+1 = Dyt is a vector
ȳ ∈ �2 such that ȳ = Dȳ. The steady-state equilibrium of the new
system is therefore

ȳ ≡ (y1, y2) = (0, 0). (6.121)

Moreover, ȳ = (0, 0) is unique since [I − D] is non-singular.
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y2t

y1t
y

y0

y1

y2

y3

Fig. 6.8. (Vertical) Oscillatory Divergence

As depicted in Fig. 6.8, the dynamical system is characterized by
(vertical) oscillatory divergence.

In particular, the second state variable, y2t, diverges in oscillations
as long as its initial value, y20, is different from ȳ2, i.e.

lim
t→∞ |y2t| = ∞, ∀y20 �= y2, (6.122)

whereas the first state variable, y1t, remains at its initial value, y10.

The Solution for xt

The trajectory of the original vector of state variables, xt, can be
expressed in terms, of the new system of coordinates, (y1t, y2t). In par-
ticular, as established in (6.109), xt = Qyt, and thus it follows from
(6.108) that

⎡

⎣
x1t

x2t

⎤

⎦ =

⎡

⎣
1 1

1 −1.5

⎤

⎦

⎡

⎣
y10

(−1.5)ty20

⎤

⎦ =

⎡

⎣
y10 + (−1.5)ty20

y10 + (−1.5)t+1y20

⎤

⎦ . (6.123)

The time path of xt and its qualitative properties are therefore
uniquely determined by the system’s initial conditions, (x10, x20), and
the eigenvalues of the matrix A. As follows from (6.120) and (6.123),
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[
x1t

x2t

]
=

[
0.6x10 + 0.4x20 + 0.4(−1.5)t (x10 − x20)

0.6x10 + 0.4x20 + 0.4(−1.5)t+1 (x10 − x20)

]
. (6.124)

The phase diagram of the original system is obtained by placing
the phase diagram that describes the evolution of yt relative to the
new system of coordinates (y1, y2), in the plane (x1, x2), as depicted in
Fig. 6.9.

The Instability of Steady-State Equilibria of the System
xt+1 = Axt

A steady-state equilibrium of the system xt+1 = Axt is a vector
x̄ ∈ �2 such that x = Ax̄. Hence, it follows from (6.98) that there
exists a continuum of steady-state equilibria defined by the 450 line
(i.e., x2t = x1t) in the plane (x1t, x2t).

As follows from (6.124), and as depicted in Fig. 6.9,

lim
t→∞xt = x ⇔ x20 = x10, (6.125)

and all steady-state equilibria are unstable.
Namely, the vector of the original state variables, xt, will be at

a steady-state value x̄ if and only if the initial values of this vector

x2t

x1t

continuum of steady-state
equilibria

y2t

y1t

x0

x2

x1

x3

x2t = x1t

x2t = –1.5x1t

Fig. 6.9. The Evolution of xt

Oscillatory Divergence
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are such that x20 = x10. Otherwise the state variable diverges in
oscillations, as depicted in Fig. 6.9.

6.3 Nonlinear Systems

Consider a two-dimensional system of nonlinear first-order difference
equations

x1t+1 = φ1(x1t, x2t) =
√

(2 − x1t)

x2t+1 = φ2(x1t, x2t) = 0.5(x1t +
√

x2t).
(6.126)

A steady-state equilibrium of the system, x̄ ≡ (x̄1, x̄2), requires that

x̄1 = φ1(x̄1, x̄2) =
√

(2 − x̄1)

x̄2 = φ2(x̄1, x̄2) = 0.5(x̄1 +
√

x̄2).
(6.127)

Hence (x̄1, x̄2) = (1, 1) is a steady-state equilibrium.
As established in (4.5), a nonlinear system can be approximated

locally around the steady-state equilibrium by the linear system. Thus,

⎡

⎣
x1t+1

x2t+1

⎤

⎦ =

⎡

⎢⎢⎢⎢⎣

∂φ1(x)
∂x1t

∂φ1(x)
∂x2t

∂φ2(x)
∂x1t

∂φ2(x)
∂x2t

⎤

⎥⎥⎥⎥⎦

⎡

⎣
x1t

x2t

⎤

⎦+

⎡

⎢⎢⎣

φ1(x) −∑2
j=1

∂φ1(x̄)
∂xjt

xj

φ2(x) −∑2
j=1

∂φ2(x̄)
∂xjt

xj

⎤

⎥⎥⎦ ,

(6.128)

where as follows from (6.126),
⎡

⎢⎢⎢⎢⎣

∂φ1(x)
∂x1t

∂φ1(x)
∂x2t

∂φ2(x)
∂x1t

∂φ2(x)
∂x2t

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

− 1
2
√

2 − x̄1
0

1
2

1
4
√

x̄2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣

−1
2

0

1
2

1
4

⎤

⎥⎥⎦ . (6.129)

The linearized system around (x̄1, x̄2) = (1, 1) is therefore



6.3 Nonlinear Systems 145

⎡

⎣
x1t+1

x2t+1

⎤

⎦ =

⎡

⎣
−1

2 0

1
2

1
4

⎤

⎦

⎡

⎣
x1t

x2t

⎤

⎦+

⎡

⎣
3
2

1
4

⎤

⎦ . (6.130)

The Jacobian matrix of coefficients is

J(1, 1) ≡
⎡

⎣
−1

2 0

1
2

1
4

⎤

⎦ , (6.131)

and the eigenvalues of J(1, 1) are therefore

λ1 = −1
2

λ2 = 1
4 .

(6.132)

Since both eigenvalues are smaller than 1 in absolute value and one
of them is negative, the nonlinear dynamical system is locally stable in
the neighborhood of the steady-state equilibrium (x̄1, x̄2) = (1, 1) and
convergence is oscillatory.



Glossary

N set of natural numbers

� set of real numbers

�+ set of non-negative real numbers

�n n-dimensional Euclidian space

x ∈ � x is a real number

x ∈ �n x is an n-dimensional real vector

∀x for all x

∃x for some x

|x| Euclidian norm of x

{xi}∞i=0 infinite sequence

trA trace of the matrix A

|A| determinant of the matrix A

det A determinant of the matrix A

A ⇔ B A if and only if B

λ real eigenvalue

μ complex eigenvalue

f real eigenvector

v complex eigenvector

c(λ) characteristic polynomial
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(a, b) open interval

[a, b] closed interval

(x, y) ordered pair

{x, y} unordered pair

Bε(x) open ball of radius ε around x

Dφ(x) total derivative of φ(x) with respect to x

∂φ(x)/∂xi partial derivative of φ(x) with respect to xi

φ{n}(x) nth forward iteration over x under the map φ

φ−{n}(x) nth backward iteration over x under the map φ

Es stable eigenspace

Eu unstable eigenspace

Ec center eigenspace

W s
loc local stable manifold

W u
loc local unstable manifold

W c
loc local center manifold

W s global stable manifold

W u global unstable manifold

W c global center manifold
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