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Preface to the Second English Edition

During about 10 years since the publication of the first edition, considerable progress
was made in different branches of stellar astrophysics. The physical background did
not change to visible extend, so only the second volume of the book, dealing with
stellar structure and stability needed serious updates. The main updates concern the
following topics.

1. The theory of line-driven stellar winds, where general relativistic effects, in par-
ticular, line red-shift in the gravitational field were included into consideration,
leading to important enhancement of the wind acceleration.

2. The influence of Urca shells on the convective presupernova model has been
under discussion for more than 30 years, with principally different answers. A
physically relevant approach to this problem is presented in more details in the
updated book.

3. Core-collapse supernovae explosion mechanisms. Several new mechanisms have
been suggested during last 10 years. Major progress in this field is connected
with the development of a magnetorotational mechanism of the explosion. Two
and three dimensional calculations are performed in many groups all over the
world. The review of all these mechanisms is included, with the discussion of
the development of the magnetorotational instability during a magnetorotational
explosion.

4. Strange quark stars. This topic was developing in last years in connection with
observational search of strange quark stars. The establishment of existence or
non-existence of quark stars would be very important for the study of the prop-
erties of superdense matter, and physics of strong interactions.

5. Theory of accretion disks around black holes. The progress here is connected
with construction of self-consistent models of advective accretion disks at large
luminosity, which do not exist in the frame of a standard model. The new so-
lutions represent disks with variable vertical optical depth, large far from the
black hole, and low inside. The high temperature region in the central part of the
disk may explain the observed hard tails in the luminous X-ray sources. Mag-
netic field generation by battery effects in accretion disks is analyzed, and a low
efficiency of this mechanism is shown. Another addition is connected with the
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viii Preface to the Second English Edition

consideration of a large scale magnetic field amplification in Keplerian accretion
disks, which is very important for modeling of a jet formation.

6. A discussion of jet formation and magnetic jet collimation is added, because jets
are closely connected with the accretion disks.

7. The most powerful explosions in the universe have now been related to gamma
ray bursts, for which the cosmological origin has been established. The review of
the observational properties and theoretical models for these mysterious objects
is added in the second edition. All models have a hypothetical character, because
the nature of the central machine, as well as radiation mechanism, remain unclear.
Therefore, the main attention is given to the analysis of the observational data.
Observationally similar objects, called soft gamma repeators (SGR), should have
quite different nature, and are related to neutron stars inside our galaxy. The
observational data and modeling of SGR is also added.

8. New results, obtained for stabilization of stellar collapse in non-spherical case,
have been included in this edition. It was shown that in Newtonian gravity an
unlimited collapse to a point may happen only in a spherically symmetric case.
Any deviations from the symmetry lead to formation of a dynamically stabilized
configuration, which does not collapse.

Many new references have been added. The total list now contains more than a
thousand items. Misprints found in the first edition have been corrected here.

Moscow, May 2010 G.S. Bisnovatyi-Kogan



Preface to the First English Edition

The development of the theory of stellar evolution has been relatively rapid since
1989, which is when the Russian edition of this book was published. Progress in
the field concerned mainly a better understanding of the physical background of
stellar processes, in particular the improvements made in calculating new opacity
tables. The latter led to a better description of some observational phenomena, such
as Cepheid oscillation models, but otherwise led mainly to quantitative corrections
of previously known results. The field that may be strongly influenced by the in-
crease of opacity according to the new tables is the mass loss from massive evolved
stars. This latter phenomenon has not yet been investigated, however. Many new
results have been obtained in helioseismology, the theory of supernova explosions,
accretion theory, and 2-D calculations of different phenomena, such as star forma-
tion, explosions of rotating magnetized stars and numerical simulations of stellar
convection.

This book has been updated and now includes over 150 new references. New ma-
terial has also been added to otherwise well established sections. This includes the
CAK theory of mass loss from hot luminous stars, the description of the Eggleton
method of stellar evolution, and a more detailed consideration of the accretion disk
structure around black holes.

The revisions and additions of new material substantially increased the number
of pages, making it desirable to produce two essentially self-contained volumes. The
first volume, “Fundamental concepts and stellar equilibrium,” contains the material
related to the first six chapters of the Russian edition. The second volume, “Stellar
evolution and stability,” includes the material of the other chapters of the Russian
edition. While both volumes retain the structure of the Russian edition, each of
these two volumes now has a self-contained character and could be interesting for
different kinds of readers. The first one contains a detailed description of physical
processes in stars and the mathematical methods of evolutionary calculations. Thus
this volume will be of interest for physicists and specialists in numerical mathemat-
ics regardless of the level of their actual involvement in the work on stellar evolution.
The second volume contains both the qualitative and the quantitative descriptions of
stellar evolution, explosions, stability and oscillations. This will be of interest for
the wider astronomical community, observers and theoreticians alike, working or
interested in astrophysical phenomena related to stellar formation and evolution.
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x Preface to the First English Edition

Finally, those who directly work in the theory of stellar evolution, or want to study
this field in depth, will find that both volumes provide them with a comprehensive
introduction to and survey of the present state of the art in this field.

I am very grateful to my colleagues from the Cambridge Institute of Astronomy,
D.O. Gough, P. Eggleton, and C. Tout, and from Queen Mary and Westfield College,
I.W. Roxburgh, A.G. Polnarev, and S.V. Vorontsov, for their hospitality during my
stay in these places, many discussions and help with the work on different parts
of the book, as well as improvements to the English. I am also grateful to M.M.
Romanova, A. Blinov, and S.V. Repin, who translated the Russian edition of the
book into English and prepared the TEX file of this translation.

Moscow, August 2000 G.S. Bisnovatyi-Kogan



Preface to the Russian Edition

The desire of astrophysicists to gain insights into the mysteries of the birth and death
of stars has required the application of almost all branches of modern physics. The
results of atomic physics are necessary for studies of stellar birth out of the inter-
stellar medium; and knowledge of the structure of white dwarfs and neutron stars
requires the use of liquid- and solid-state theory, and the theory of phase transitions,
superconductivity, and superfluidity. Between these extremes, in the area where stars
mostly exist, the laws of nuclear physics and weak interactions, and the theories of
matter and radiative transfer, are at work.

The equilibrium of a star is described by the equations of hydrodynamics sup-
plemented by general relativity and electromagnetic field theory. The problem
of turbulence and convection, not yet completely resolved in terrestrial applica-
tions, is even more important and difficult in problems of stellar evolution. This
book deals with many of these problems, trying to develop the theory of stellar
evolution from a physical standpoint. In this regard, I have followed D.S. Frank-
Kamenetski’s excellent Physical Processes in Stellar Interiors [375]; however,
spectacular achievements in the field during the last 25 years have considerably re-
duced the overlap with this book. An essential part of the items treated here has been
considered more qualitatively in Ya.B. Zel’dovich’s lectures published in Physical
Grounds of Stellar Structure and Evolution [1077].

The astrophysical results given in Part II have much of the descriptive character
typical of astronomy. The reason for this is that the major results are obtained here
through numerical experiments which, just as in a real astronomical situation, can
only be described rather than reproduced in a book. I have also tried to clarify,
whenever possible, the physical sense of the results.

The material in this book is to some extent presented according to my personal
preference, as particular attention is often paid to items connected to my scientific
interests. Nonetheless, I have tried to preserve a general understanding of the prob-
lems discussed and to give results which are basic, as I see them, to the theory of
stellar evolution.

I have tried to select from a large variety of papers those reviews and monographs
either representing an important advance in solving some astrophysical problem, or
dealing with interesting physical problems which are not necessarily important (or
are not regarded as such) for the development of the theory of stellar evolution.
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xii Preface to the Russian Edition

I have considerably softened the selection rules for my own results. Some problems
in the book remain unanswered; I have included them in the hope that some reader
will succeed in finding their solution.

The book is concerned only with the evolutionary paths of single stars. The
theory of stellar evolution for close binaries, in which there is a considerable in-
crease in the evolutionary paths, is treated in the recently published monograph
by A.G. Masevich and A.V. Tutukov Stellar Evolution: Theory and Observations
[673]. The relationship between theory and observations is also considered in
this book.

I gratefully acknowledge the assistance of and useful discussions with
S.I. Blinnikov, S.A. Lamzin and A.F. Illarionov, and express my particular thanks to
E.V. Bugaev and D.G. Yakovlev, who have read several chapters of the book and
made many helpful remarks.

Moscow, September 1989 G.S. Bisnovatyi-Kogan
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Chapter 7
Star Formation

7.1 Observations of the Regions of Star Formation

7.1.1 Introduction

The matter in the Universe (its barionic component) is concentrated mainly in
stars. Inside galaxies, stars contain more than 90% of the matter, and in galactic
clusters, due to the existence of intercluster gas, stars contain more than 70% of
the matter. The presence of heavy elements (heavier than carbon) in the intercluster
gas, with an abundance of the order of one third of solar gas, indicates that almost all
barionic matter in the Universe went through a stellar stage. According to modern
views, the enrichment of intercluster gas by heavy elements happens due to out-
flow of matter from galaxies, where the production of heavy elements takes place
due to stellar evolution. It follows from the cosmological models of a hot Universe
that only hydrogen and helium, with very small additions of lithium, beryllium and
boron, were produced in the Big Bang. All heavier elements, starting from carbon,
are produced as a result of stellar evolution (see Sect. 4.4, Vol. 1).

The gas inside galaxies is divided into three phases: hot with T � 106 � 107 K,
warm with T � 104 K, and cold with T � 100K. This division takes place because
the thermally stable conditions of the galactic gas, which is approximately in the
state of thermal equilibrium under actions of cooling and heating, correspond to
these particular temperature intervals. In the static equilibrium galactic gas has
an almost uniform pressure, and low temperature regions have larger densities.
According to the Jeans criterion of gravitational stability of a uniform gas cloud
with density �0, and temperature T0, masses exceeding Jeans massMJ are unstable
with respect to contraction, leading to star formation. We have [1082]

MJ D 4�3=2

3

�
�RT

G

�3=2

�
�1=2
0 � 104MˇT 3=2

100 n10000;

where T100 D T0=100K, n10000 D n0=10
4 g/cm 3, n0 � �0=mp. For n0 D 106,

T D 4K we obtainMJ D 8Mˇ. The limit of stable massesMJ in the cold phase is
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2 7 Star Formation

considerably less than the mass of the cold cloud. In this situation the development
of instability, accompanied by energy losses due to radiation, leads to a collapse of
parts of a gas cloud and the formation of new stars.

7.1.2 Observational Data

Observational surveys have been carried out in infrared (� D 1� 100�m) and sub-
millimeter (� D 0:1� 1�m) ranges which have made it possible to study regions of
star formation. According to theoretical concepts [1049], the star formation results
from instability (thermal or gravitational) development in a dense interstellar cloud
leading to hydrodynamical contraction of the cloud or its part, and to formation of a
relatively dense, optically thick core. A core surrounded by a dense gas-dust enve-
lope accreting or (and) outflowing outward is likely to have a large sizeR � 103Rˇ,
a low photosphere temperature T � 500K, and be available for surveys only at long
wavelengths (� � 2�m).

Ground-based observations in the 2.0–20 �m range of regions of the expected
star formation in Orion, Monoceros and other constellations have yielded signifi-
cant results. These regions include young star clusters (associations), HII regions,
dark clouds,1 central condensations of molecular clouds, maser and infrared sources.
Observations have provided data on 30 objects that exhibit properties similar to
those of a protostar after opaque core formation [1055]. The luminosity of these
protostars is �103Lˇ on average, and sometimes reaches 2 � 105Lˇ or 25Lˇ.
Most of the flux is radiated at wavelengths �>2 �m, and the optical flux observed
in a few cases has been well below the infrared one. The energy distribution of
one source (NGC 2264) is shown in Fig. 7.1 from [1055]. All these sources are as-
sociated with molecular clouds, most of them include H2O-masers. Some sources
are located within compact HII-zones, which, in turn, are embedded in molecular
clouds. Source sizes range from 103 to 105Rˇ. Dust and various molecules (CO and
others) are important contributors to the observed emission from these sources.

The available observational data suggest that the above 30 objects have character-
istics resulting from effects connected with current or recent accretion. These data,
however, are not sufficient for making a definite conclusion that the objects are in an
accretion stage (see Sect. 7.2) and have a gravitational, rather than thermonuclear,
inner energy source.

The observed outflow velocities achieving 10–100 km s�1 represent an impor-
tant and not fully understood property of these objects. These are far higher than
the characteristic free-fall velocities of �1 km s�1 in clouds, but well below the ob-
served outflow velocities of about 1;000 km s�1 in hot stars [711]. The mass flow
from these objects exceeds by far the observed flow from hot stars. It is possible that
such an outflow is typical for massive stars in the stage of transition from protostar

1 In dark gas-dust clouds the absorption in the optical range is � 10m.
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Fig. 7.1 The 1:6=1000�m
energy distribution of the
infrared source NGC 2264.
Solid line represents
spectrophotometry, dashed
segments are interpolations.
The thin dashed lines are
theoretical blackbody
emission from circular
sources with the indicated
temperature and angular
diameter

to the main sequence. It may be accounted for by a large optical thickness with
�c� 1 near the critical point. The photosphere radius exceeds here the critical radius
(rph > rc), contrary to the hot stars, where the acceleration of matter is associated
with the radiation pressure in lines while the mean optical thickness of the flow is
small (�c 	 1). The absence of any adequate theoretical explanation of this phe-
nomenon has given rise to a hypothesis on an essential role in matter outflow and
protostar formation [330] of some processes inside stars that are either unknown
to date or not addressed by current theoretical models. This hypothesis resembles
ideas suggested by Ambarzumian [22]. One of the possible reasons for the absence
of observed accretion in the above 30 sources is that they may be fairly massive,
�3 � 5Mˇ, so that the accretion stage with a gravitational energy source predomi-
nance is too short to be observable. However, less heavy stars of mass �1Mˇ with
a sufficiently long accretion stage may be cooler and emit mostly at wavelengths
� > 20 �m. Observational data providing evidence for this assumption have been
obtained in ground-based and airplane surveys in the far-infrared (� > 60 �m) and
submillimeter ranges [559], and in the infrared IRAS satellite surveys that allow us
to make measurements in the range of 10–100 �m.

Observations of the Bok globule B 335 in the range 0:06 � 1 mm have resulted
in the discovery at its centre of a very cold compact source with a total luminosity
of �5:3Lˇ.D=400 pc/2, which exceeds 70% of the total luminosity of the globule
[559]. The H2 density in the central peak is �106 cm�3.D=400 pc/2, the mass of
the central core is 6:5Mˇ.D=400 pc/2, and a star with a mass of less than 2Mˇ
in a stage of gravitational contraction may represent the embedded energy source.
Curiously, the central source has not been discovered either at radio or at near-
infrared wavelengths �� 10 �m. The spectrum of this source is given in Fig. 7.2
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Fig. 7.2 Spectrum of the
source in B335. On the
experimental dots are
superimposed the lines:
�2B� (15K) solid line,
�B�(18K) dashed line, ��2:5

for � < 110�m dotted line,
1 Jy D 10�26

Wt � m�2 � Hz�1, B�.T / is
the Planck energy distribution
(see Sect. 2.1, Vol. 1)

from [559]. The absence of emission in these ranges provides evidence for the exis-
tence of a very thick dust envelope. This source is the first example from a possibly
wide class of protostars of a low luminosity seen only in the far-infrared and sub-
millimeter ranges.

Radio observations of five rotational transition line profiles of H2CO and CS
in B335 provide direct, kinematic evidence of collapse [1083]. The best fit model
gave an age of 1:5 � 105 yr, corresponding to an infall radius of about 0:04 pc and
a total mass 0:4Mˇ for the central star and disc. Outside the infall radius there is a
static envelope with a r�2 density distribution, an average temperature of 13 K and
turbulent velocity of 0:13 km/s.

Forming stars of a mass of about the solar mass have been found in the IRAS
satellite surveys in Barnard 5 (B5) dark cloud [86], the Chameleon 1 dark cloud
[76] and also in the dust cloud L 1551 [356]. These papers report the discovery
of more than 10 sources of this type in all. The luminosity of most of them does
not exceed 10Lˇ and is, in a few cases, �1Lˇ. The observed dust temperature
is low, Td D 20�60K, in some sources, and the luminous region length approaches
1017 cm. The observed sources are likely to be at different stages of star formation,
including the onset of gravitational collapse (IRS2 from [86]). The spectra of the
sources IRS1 and IRS2 are shown in Fig. 7.3, see also [87].
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Fig. 7.3 Energy distribution
for two infrared sources in B5
dark cloud, the IRAS data
cover the frequency range
� < 3� 1013 Hz, filled circle
refers to the source IRS1,
encircled dot to the source
IRS2

7.2 Spherically Symmetric Collapse
of Interstellar Clouds

Consider physical processes in a cloud that contracts and transforms into a protostar.
At the initial stage, the cloud is transparent for radiation.

7.2.1 Heat Balance of an Optically Thin Cloud

Collisional excitations of the fine structure of CII ion and OI atom, the energy
transfer to the dust in its collisions with atoms and molecules are the principal mech-
anisms of gas cooling in a cloud of molecular hydrogen. CII ions in a molecular
cloud result from the action of cosmic rays and background ultraviolet radiation.
Defining �CR as the thickness for penetration of cosmic rays and hard radiation
inside the cloud, we have for the rates of molecular cloud cooling via various mech-
anisms [622]

	CII D 9:0 � 1019e��CR�e�92=T .erg g�1 s�1/; (7.1)

	OI D 2:5 � 1020�T 0:33e�228=T .erg g�1 s�1/; (7.2)

	d D 1:1 � 1014�T 1=2.T � Td / .erg g�1 s�1/: (7.3)
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Here T is measured in K, 1=10th of carbon is assumed to be in the gas phase, the
opacity corresponding to cosmic ray absorption and included in the �CR definition
is taken to be 
CR D 300 cm2 g�1, Td is the dust temperature determined by equi-
librium between dust heating by gas at the rate 	d from (7.3), and thermal cooling
of dust grains by the radiation flux

j D 2:3 � 10�4kPT
4
d .erg m�2 s�1/; (7.4)

from their surface. The dust grain radius is taken to be rd D 2 � 10�5 cm, and the
number of dust grains per gram of gas Nd D 2 � 1011. The mean Planck opacity
of the dust matter, calculated (see Sect. 2.2, Vol. 1) as an average of the spectral
absorption coefficient over the frequency, with a Planckian spectral distribution as
weight function, is

kP D 3 � 10�5 T 3
d .cm2 g�1/: (7.5)

The rate of the cloud heating by cosmic rays is

�CR D 2:5 � 10�3e��CR .erg g�1 s�1/ (7.6)

and by adiabatic contraction in free fall

�f D 3:8 � 104�1=2T .erg g�1 s�1/: (7.7)

Solving the balance equation

�CR C �f D 	CII C	OI C	d ; 	d D j (7.8)

gives the gas and dust temperature in the cloud. For a cloud of uniform density,
with �CR referring to the cloud center, we obtain equilibrium values for the gas
temperature of clouds of various masses and densities given in Table 7.1. We see
from Table 7.1 that in a wide range of densities the cloud temperature varies weakly,
remaining between 5 and 11 K at � D 10�19�10�13 g cmof dense interstellar clouds
are analyzed in [576] in more detail.

Table 7.1 Equilibrium
temperatures of dense gas
clouds

M D M
ˇ

M D 103 M
ˇ

lg �; g cm�3 �CR T;K �CR T;K

�22 4:2.�2/ 50.6 4:2.�1/ 48.1
�21 2:0.�1/ 25.4 2:0.0/ 24.6
�20 9:1.�1/ 15.6 9:1.0/ 16.3
�19 4:2.0/ 8.4 4:2.C1/ 6.6
�18 2:0.C2/ 5.1 2:0.C2/ 5.1
�17 9:1.C1/ 5.4 9:1.C2/ 5.4
�16 4:2.C2/ 6.3 4:2.C3/ 6.3
�15 2:0.C3/ 7.5 2:0.C4/ 7.5
�14 9:1.C3/ 9.1 9:1.C4/ 9.1
�13 4:2.C4/ 11.0 4:2.C5/ 11.0
�12 2:0.C5/ 13.3 2:0.C6/ 13.3
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7.2.2 Equations for Cloud Collapse

In a spherically symmetric approximation, with radiation and heat transfer pro-
cesses taken into account, the gas motion is described by a set of time-dependent
hydrodynamic equations in a Lagrangian system with the mass coordinate m,
radiative (Lrad) and convective (Lconv) heat transfer, and volume energy losses 	
(see Sect. 6.1, Vol. 1). The values r; �; P; T and v represent radius, density, pres-
sure, temperature, and radial velocity of the matter. We have the following equations

@2r

@t2
C 4�r2 @

@m
.P C˘/C Gm

r2
D 0 (the equation of motion), (7.9)

@r

@t
D v; (7.10)

@r

@m
D 1

4��r2
(the continuity equation), (7.11)

@E

@t
� P C˘

�2

@�

@t
C @Lr

@m
D �	 (the energy equation), (7.12)

Lrad
r D �

64�2acr4 T 3

3


@T

@m

�
1C 4

3

1


�T

@T

@r

��1

; (7.13)

Lconv
r D f�r2cp�

�
Gm

Tr2

�1=2

l2.�rT /3=2; (7.14)

	 D 	CII C	OI C	d � �CR: (7.15)

Here, P is the gas pressure Pg for an optically thin region, � 	 1, and a sum
of a gas and radiation pressure Pg C Pr for an optically thick region � � 1 (see
Sect. 1.1, Vol. 1)

Pg D �RT; Pr D aT 4

3
: (7.16)

Here, a is the constant of the radiation energy density, c is the light velocity, cp is a
heat capacity at constant pressure, R is the gas constant, � is an optical depth of a
corresponding mass layer, �rT is an excess of the temperature gradient over an
adiabatic one in a convectively unstable region, f is a parameter determined below.
At large heat flows the dynamical effect of radiation on matter may be important in
optically thin regions as well. To allow for this effect, the last term in the left-hand
side of (7.9) should be rewritten as

Gm

r2

�
1 � L

Lcr

�
; Lcr D 4�cGM



; (7.17)
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whereLcr is the critical Eddington luminosity. The form (7.17) is used in [910–912].
In [31,576–578,622,1037] the dynamical effect of the heat flow is ignored, and the
form (7.9) is used. The relation for the radiative energy flux Lrad

r (7.13) is such that
at 
�r � 1 it turns into the well-known relation (2.2.32) or (6.1.4a) relation from
Vol. 1

Lrad
r D �

4acT3

3
�

dT

dr
4�r2 (7.18)

for the radiative heat transfer and, for the case of a small optical thickness, 
�r 	 1,
will tend to the free radiation flux

Lrad
r D 4�acr2T 4

0 ; (7.19)

with a temperature T D T0 at � D 0 (see Sect. 2.2, Vol. 1). In [622] and [1037] the
relation (7.13) with 	 D 0 has been used for describing the heat transfer process
at all optical thicknesses. The condition 	 D 0 has been also used in [31] with,
however, the radiation heat transfer approximation (7.18) for Lrad

r , corresponding to

�r � 1. In [577, 578] the same relation with 	 D 0 has been applied to optically
thick layers, while for optically thin layers 	 6D 0 has been adopted and the term
@Lr=@m was omitted. Calculations in [31, 1037] take account of convection. The
coefficient f is taken there to be

f D
�
1C

ˇ̌
ˇ̌�rT
rT

ˇ̌
ˇ̌ f1

��1

; f1 D 103 (7.20)

in order to avoid an overestimate of Lconv
r for not very small values of j�rT=rT j.

The opacity 
d due to the scattering off dust has been studied at T � 2;000K in
[419, 560]:


d D Q
�r2

d
xd

md

D Q�r
2
d
˛d

Nmu
; (7.21)

where xd is the weight fraction of the dust, ˛d is the number of dust grains per gas
particle, N is the mean molecular weight of the gas

N D
 X

i

xi

Ai

!�1

; (7.22)

where xi is a weight concentration, and Ai is a mass number of the i -th element.
The sizes of dust grains are [577]

rd D 2 � 10�5 cm for ice;

rd D 6 � 10�6 cm for SiO2; (7.23)

rd D 6 � 10�6 cm for graphite:
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Fig. 7.4 The Rosseland
mean dust absorption
coefficient for diverse matter:
1,ice; 2, graphite; 3, SiO2

The Rosseland mean absorption coefficient Q D QR.T / is plotted in Fig. 7.4 from
[560]. In [577, 578] these values have been used in calculations with ˛d D 10�12,
xH D 0:7, xHe D 0:28 for T <1;500K. For T >1;700K, data from [316] (see
also Table 2.1, Vol. 1) have been used, the range of 1;500<T <1;700 was cov-
ered with the aid of interpolation. The ice component was assumed to sublimate
at T � 200K, the mineral components (C, SiO2) at T � 1;500K. In [1037] the value

d D 0:01 cm2 g�1 was specified at low temperatures, tables from [316] were used
for T >4;000K, tables from [55] were used at 2;000<T <4;000K, and calcula-
tion in the range between 
 (2,000 K) and 
 at a low temperature were made with the
aid of a smooth interpolation. In [31] tables from [316] were used for T >5;000K,
tables similar to [55] for 1;300<T <5;000, while for T <1;300K data were taken
from [410]. In calculations from [622] it was adopted that 
 D 
d D 0:15 cm2 g�1.

A term with artificial viscosity ˘ has been used in [31, 578, 1037] in a standard
form (see, for example, [861]) to produce the possibility for a through numerical
calculation of shocks

˘ D �
�
@.r2v/

@m

�2

; where  is a coefficient of artificial viscosity: (7.24)

A discussion on initial and boundary conditions needed for calculations is given in
[622]. As an initial condition, we can take either an equilibrium isothermal sphere
of radius

Rsph D 0:41GM
RT

; R is the gas constant , (7.25)

or a homogeneous cloud with a mass not less than the Jeans mass, unstable to
collapse. As noted in [622], an initial density distribution has almost no effect on
collapse process.
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The boundary conditions turn out to be more important. An isolated cloud is
surrounded by gas. If the surrounding gas pressure Ps is taken to be constant, the
cloud radius will then contract, and if we setPs D 0, the outer boundary will expand
despite a fast contraction in the center. In [31, 622] the outer boundary has been
fixed, and its temperature taken to be constant, while in [577,1037] constants are the
external pressure and temperature. In [134, 577] a Lagrangian calculation scheme
was adopted, and Eulerian scheme in [31, 622, 910–912, 931–933, 1061–1065]. In
[910–912, 1061–1064] the formulation of the problem differs somewhat from what
we have given above. Gas and dust were treated separately. Each component was
described by velocities ug , ud and densities �g , �d inserted into equations analogous
to (7.9) and (7.11) [910,1064]. The dust pressure was assumed to be zero. The gas–
dust interaction was allowed for by an additional term ˇ.ug � ud / in the equation
of gas motion (analogous to (7.9)) and additional term Œ�ˇ.ug � ud /�g=�d � in the
equation of dust motion. The quantity ˇ was estimated in [1064]. The dynamical
effect of radiation on dust was also taken into account in the form (7.17) with 
 D 
d

from (7.21). In order to determine temperatures at the stage of opaque core and
falling dusted envelope (cocoon), the following procedure was applied instead of
solving the energy equations for gas and dust. The luminosity at a given radius
r > rs was taken to be

L D Ls C PM
�

GMs

2rs
� GMs

r1
C u2

1

2
� �

�
; (7.26)

where Ls , Ms, rs are the luminosity, mass and radius of the central core, r1, u1 are
the radius and velocity at the shock, � is the H2 dissociation energy, PM is the mass
flow onto the central core. In considering massive objects the central core is, for
most of the time, a main-sequence star. On finding L, the radiation temperature Tr

is obtained from the radiative heat transfer equation (7.18). The dust temperature Td

is set equal to the gas temperature Tg . In the optically thick region Tr D Td , while
far from the core

T 5
d D

TrL

4�acr2
: (7.27)

This procedure has been applied only to investigations of the collapse of massive
clouds with M � 3Mˇ with use of Eulerian coordinates.

The results of all authors are qualitatively consistent with each other, neverthe-
less, quantitative discrepancies between them are fairly large.

7.2.3 Calculational Results

A contraction of an infinite homogeneous medium does not alter its homogene-
ity. The boundary conditions in all the above versions give rise to a rarefaction
wave travelling towards the centre with the sound velocity. As the matter velocity
does not exceeding the free-fall velocity, the rarefaction wave has time to reach the
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centre, while the density decreases outward. During further collapse the density con-
trast increases, the outer layers contract slowly, and a dense core forms inside. The
isothermal collapse of a cloud with a self-similar solution

� D 0:705RT

G
r�2; u D 3:28pRT ; (7.28)

is studied best of all. The numerical calculation of this problem [622] shows that
a self-similar regime sets in for the major part of the cloud mass even at a fixed
outer boundary. Calculations have been made with M D 1Mˇ, Ti D 10K, Ri D
1:63 � 1017 cm, �i D 1:1 � 10�19 g cm�3. In order for the collapse to proceed, the
initial radius must not exceed

Ri;m D 0:46GM
RT

: (7.29)

In all numerical calculations [31, 576–578, 622, 1037, 1061, 1063, 1064] the initial
stage of collapse is isothermal and tends to a self-similar regime. Because of a strong
non-homogeneity, with density increasing by six orders of magnitude a static opti-
cally thick core with hydrogen in the molecular phase forms at the centre. The initial
core mass is 10�3 � 10�2 of the cloud mass. The remaining matter of the cloud
keeps contracting hydrodynamically and, on passing through the shock front, joins
the static core. In a short time of several to several hundred years, when the temper-
ature in the core reaches�1;900K, the molecular hydrogen starts to dissociate. The
central part of the core undergoes the stage of hydrodynamical collapse again, and
its central density increases by an additional four or five orders of magnitude. Some
years later the dense secondary core grows to such an extent that all traces of the
primary core vanish, and its central temperature becomes about (1–2)� 104 K. This
core is a veritable stellar seed and, after the surrounding envelope vanishes upon
accreting onto the core or flying away, it transforms into a star.

The fate of the surrounding envelope depends on the relation between two time
scales: �ac, the time of accretion, and �KH, the Kelvin–Helmholtz time, determined
by the core contraction due to energy losses. For low-mass stars with M <� 3Mˇ,
�ac < �KH, and the protostar accretes all the surrounding envelope and appears in
the optical range before nuclear reactions ignite in the centre. The quasistatic con-
traction of the protostar (T Tauri stage, see Chap. 8) places it on the main sequence,
where hydrogen ignites.

For protostars withM >� 3Mˇ, �ac > �KH, and the core transforms into a main-
sequence star as early as at the stage of envelope accretion. A part of its lifetime on
the main sequence the star is completely closed by the envelope and seen only as
an infrared object. The luminosity of a central star with M �� 9Mˇ is insufficient
to eject the surrounding envelope, and the mass M� of the star arisen in the optical
range is of about the cloud massM . IfM >� 9Mˇ, a part of the envelope is swept
away by the stellar radiation so that

M� � 3M 1=2 at M >� 9Mˇ: (7.30)
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Fig. 7.5 The mass M
�

of an
optical star as a function of
the initial cloud mass M after
a spherical collapse. Data are
taken from [622] (filled
circle), [1037] (filled
diamond), [31] (open square),
[1064] (plus), [1061] (open
circle)

This M�.M/ dependence based on computations of various authors is shown in
Fig. 7.5 from [1063]. Stars with M >� 3Mˇ appear in the optical range immedi-
ately on the main sequence. Parameters of protostars with M < 3Mˇ appearing in
the optical range differ strongly in computations of different authors (see Table 7.2).
It is not quite understood now whether this is a consequence of differing initial con-
ditions or of a difference in applied numerical schemes.

In the accretion process the envelope contains several layers with different physi-
cal properties resulting from the dust presence [1063]. Around a static and optically
opaque central core of radius�1012 cm there is an accretion shock front, and above,
up to rR � 1014 cm, there is an optically transparent zone of matter fall, where dust
is entirely absent. The silicate dust sublimation due to the interaction with the core
radiation takes place near rR so that at r > rR the falling matter is essentially
opaque in the optical and ultraviolet ranges. There occurs in this range a conversion
of core radiation into an infrared one. On radius rp � 1015 cm the optical thickness
for the outgoing infrared radiation is of the order of unity, therefore rp is called, in
[1063], the artificial photosphere radius. Up to rv � 1016 the infrared radiation field
is strong enough to sublimate the ice dust which can exist at the surface of cold min-
eral dust grains with T � 150K. At r > rv the falling matter has unperturbed initial
composition incorporating ice dust which interacts with radiation more effectively
than the silicate dust (see (7.21) and (7.24)) and affects the spectrum emitted by
the infrared star (see Figs. 7.1–7.3). The structure of accreting gas–dust envelopes
(cocoons) has been also studied in [910–912, 1062, 1065].

As may be seen from Table 7.2, the properties of a new born optical star of
not large mass are not quite clear. According to [577, 1037], these stars have large
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radii and developed convective zones and so continue their way towards the main
sequence along the Hayashi convective track (see Chap. 8). The model with 1Mˇ
from [577] shown in Table 7.2 is radiative, nevertheless, a rapid convection develop-
ment in it leads to an increase in the luminosityL and temperature Tef, causing them
to approach the values from the model [1037]. On the contrary, the convection in
models from [622] is weaker, and they appear with small radii and luminosities. The
model with 1Mˇ from [622] has a radiative core, and half the mass belongs to the
convective zone. The convection is significantly weaker in the model with 1:5Mˇ,
so the star appears in the very end of the Hayashi track, whereas forM � 2Mˇ the
Hayashi track is absent since the star appears immediately in the radiative state.

Detailed calculations of formation of a protostar with M D 1Mˇ have been
carried out in [931–933]. The applied method was analogous to that in [622]
which included radiative transfer in moving matter to the Eddington approxima-
tion (see Sect. 2.5, Vol. 1), and deuterium burning as well. The opacity tables
from [19, 316, 419] were used. The initial and boundary conditions were similar
to those in [622]. The optical star appears with R D 4:69Rˇ, L D 6:20Lˇ. These
calculations underlie the birthline for low-mass stars with 0:2Mˇ�M � 1Mˇ ob-
tained in [930], where stars appear in the optical range and continue to evolve
towards the main sequence along the Hayashi track (Fig. 7.6a). The value of PM D
10�5Mˇ yr�1 obtained in [931–933] for 1Mˇ was used for all protostars in an ac-
cretion stage. As shown in [930], this stellar birthline is in a good agreement with
observations (Fig. 7.6b).

It was suggested in [788], that stars end their accretion phase more quickly,
through the action of a powerful wind. The estimated mass of the star, passing the
contraction pre-main-sequence phase as an optical object have been increased from
3Mˇ up to 8Mˇ. This conclusion was based on the existence of relatively massive
Herbig Ae and Be stars, which are supposed to have larger radii than main sequence
(MS) stars, indicating their pre-main-sequence nature, see also [854]. The line of
birth of stars with masses 0.6–6Mˇ and their evolutionary tracks to the MS are
given in Fig. 7.6b from [788].

7.3 Collapse of Rotating Clouds

Rotation of collapsing interstellar clouds requires two- and three-dimensional cal-
culations. Both Eulerian [197, 198, 218, 226–230, 732, 975, 986] and Lagrangian
[35, 42, 553, 754] difference schemes are used in studies of the hydrodynamic ax-
isymmetric contraction. Despite the resemblance of physical assumptions and initial
conditions, disagreement in the results of diverse authors is not only quantitative,
but also qualitative. The discrepancies are especially large for the case of a rapid
rotation. In Eulerian schemes the collapse of rapidly rotating clouds results in the
formation of a toroidal figure with a lack of density at the centre. Using Lagrangian
schemes always results in obtaining disk-like figures with a maximum central den-
sity. As noted in [553, 754], Eulerian schemes yield a large scheme displacement
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Fig. 7.6a The theoretical birthline heavy solid curve for stars with masses between 0:2M
ˇ

and
1M

ˇ

in the Hertzsprung–Russell diagram. Shown also are isochrones for quasistatic contraction
to the given state (Kelvin–Helmholtz age) dashed curves. Evolutionary tracks of motion towards
the main sequence for stars with various masses taken from [485, 930] are shown by solid curves.
The main-sequence line is hatched. Isochrones: 3�104 yr (A), 3�105 yr (B), 106 yr (C), 3�106 yr
(D), 107 yr (E), 2 � 107 yr (F). Chemical composition: XH D 0:708, X3He D 0:0, X4He D 0:272,
X12C D 0:00361, X14N D 0:00120, X16O D 0:00108. The mixing length is determined by the
density scale height: l D �=2jr�j (see Sect. 3.1, Vol. 1)

viscosity leading to an unphysical angular momentum inflow to the centre which re-
sults in torus formation. The results of Lagrangian calculations seem more reliable.
We present here the results obtained in [35, 42].

7.3.1 Set of Equations and Difference Scheme Properties

The set of equations used for the two-dimensional collapse investigations has the
form

dr
dt
D u; (7.31)

d�

dt
C �r 
 u D 0; (7.32)
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Fig. 7.6b Evolutionary tracks in the H-R diagram for masses between 0.6 and 6M
ˇ

. Each track is
labeled by the corresponding mass in solar units. Tick marks indicate evolutionary times, as given
in the table. Each track starts at the birthline (dotted curve) and ends at the zero age MS

�
du
dt
CrP C �r˚ D 0; (7.33)

�
dE

dt
C Pr 
 u D 0: (7.34)

Here .d=dt/ is the substantial (Lagrangian) time derivative related to the Eulerian
derivatives by

d

dt
D @

@t
C u 
 @

@r
; (7.35)

and ˚ is a solution of a Poisson’s equation

r2˚ D 4�G�: (7.36)

In all the reported two-dimensional calculations, except [197,198], the polytropic
equation of state

P D K�� ; E D 1

1 � �
P

�
(7.37)
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has been considered with a K related to the entropy and changing only in the
presence of shocks, in accordance with (7.34).2 In [197, 198], similarly to [622],
radiative heat transfer has been taken into account. In [35, 42], a solution of
(7.31–7.37) has been searched for in cylindrical coordinates .r; '; z/ with zero
density and pressure specified on the outer boundary, and a perfect gas equation
of state with

� D 5=3; P D �RT: (7.38)

The problem is solved in dimensionless variables with use of the scale factors

�0 D 1:492 � 10�17 g cm�3; r0 D z0 D 3:81 � 1016 cm;

t0 D 5 � 1011 s; P0 D �0r
2
0=t

2
0 ;

u0' D u0r D u0z D u0 D r0=t0; !0 D u0=r0 D 1=t0;
˚0 D 4�G�0r

2
0 ; T D u2

0=R; �0 D u2
0 D P0=�0: (7.39)

Here, R is the gas constant. The angular velocity of rotation is

! D u'=r: (7.40)

Using (7.39), we can rewrite (7.31–7.37) on substituting

F ) F 
 F0 (7.41)

in dimensionless variables. This leads to transformations only in the equation of mo-
tion (7.33), Poisson’s equation (7.36), and thermodynamic relations, which become

�
du
dt
CrP C q�r˚ D 0; (7.42)

P D �T; E D T

� � 1 ; (7.43)

r2˚ D �: (7.44)

The dimensionless parameter q is

q D 4�G�0t
2
0 D 3:127: (7.45)

A sphere of radius R characterized by dimensionless quantities

.1/ �.0/ D 1I P .0/ D 1=14I R.0/ D 1I !.0/ D 0:502 I
u.0/

' D r!.0/; u.0/
r D u.0/

z D 0 I (7.46)

2 For a polytrope with � D 1, P D K� (isotherm) we have E D K ln .�=�0/ for � > �0, �0 ! 0.
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Fig. 7.7 Computation region broken up into triangular cells at initial time. The number of knots
is 227, number of cells 396

.2/ �.0/ D 1I P .0/ D 1=560I R.0/ D 1I !.0/ D 1:004 I
u.0/

' D r!.0/; u.0/
r D u.0/

z D 0 (7.47)

has been taken in [35, 42] for the initial conditions. Similar initial conditions have
been adopted in [229]. A difference scheme on an irregular triangular grid of ar-
bitrary structure in a Lagrangian coordinate system was applied in calculations
[35,42] (Fig. 7.7). A completely conservative difference scheme of two-dimensional
hydrodynamics underlies the calculation techniques from [38]. The inclusion of
gravitation causes the numerical scheme as a whole to be no longer completely
conservative, but the angular momentum conservation does hold both locally and
globally. Theoretical studies of implicit difference schemes on triangular grids have
been carried out in [32, 33]. Stability of such a difference scheme is proved to the
linear approximation in [39] on an example of a model problem.

7.3.2 Calculational Results

We present calculational results in a dimensionless form. The boundary pressure
at the initial moment has been taken to be equal to P .0/, then to decrease linearly
in t to zero, and from t D 1 up to the calculation termination PsD 0. A smooth
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density decrease is adopted in order to eliminate the rarefaction wave otherwise
arising at initial time, which distorts boundary cells and reduces the calculation ac-
curacy. At the beginning, the cloud compression along the z axis is higher than in
the equatorial plane. In the first variant (7.46) from [35] the maximum compres-
sion is achieved at t D 1:3, when the central density �c D 45. A shock arises at this
moment, and its subsequent propagation causes the outer regions to expand. The
spheroid axis ratio is, at this moment, in good agreement with calculations in [229].
At t D 3 the cloud occupies a sphere of radiusRD 1:5, and the expansion turns into
a new contraction. The second contraction proceeds more smoothly than the first
one because of increasing internal energy of the cloud.

By the time t D 6:6 the cloud almost achieves an equilibrium state with weak
fluctuations around it. At the last time point of calculations the kinetic energy of
rotation is �1% of the total energy, the central density �c D 10, the outer size
R � 1:3. Changes in the cloud shape and velocity field during contraction are
shown in Fig. 7.8a–d, and the time evolution of the parameters ˛ D Einner=jEgravj
and ˇ D Erot=jEgravj in Fig. 7.9. The quantity ˛ C ˇ tends to an equilibrium value
of 1=2 according to the virial theorem [617].

In the second variant (7.47) the initial pressure has been reduced by a factor of
40, and the rotation velocity doubled as compared to the first version. Here, the
initial values of ˛ and ˇ are

˛0 D 0:00425; ˇ0 D 0:324: (7.48)

This variant was calculated in [42], where grid restructuring was utilized. Average
numbers of knots of about 6,000 and cells of about 12,000 were used. Maximum
contraction occurs at t D 1:2856 with �max

c � 195. Density contours and their
distributions along the rotational axis and the equatorial plane are given in Fig. 7.10.
At this moment the cloud has an oblate spheroid shape with an axis ratio�1 W 5. The
inner part of the cloud, containing �90% of its mass has a much flatter shape with
an axis ratio �1 W 100. At the time of maximum contraction the shock wave reflects
from the equatorial plane, propagates outwards, reaching the boundary of the cloud
at t D 1:3149, with the density in central cells at �c � 93. At this intermediate
stage, the maximum density is situated outside the centre of the cloud, resembling
the final density distribution of torus shape from Eulerian scheme calculations in
[229]. The Mach number of the shock at its beginning is about 30 near the centre,
and increases during the outward shock propagation. The shock disappears when it
reaches the outer boundary in the equatorial plane at t D 1:4046. The cloud pro-
ceeds to expand until t D 1:4992, when the central density �c � 10 is a maximal
one, and the central part of the cloud restores its disc-like shape. The second con-
traction begins at that time, with density slowly growing near the centre. The light
and very stretched envelope continues to expand, part of the matter (�5%) which
has kinetic energy exceeding the potential one, flies away to infinity. The calcula-
tions were finished at t D 1:77425with �c � 32, and the distribution of parameters
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Fig. 7.8 Changes in the cloud shape during collapse in the variant (7.46): (a) t D 1:0; (b) t D 1:2;
(c) t D 1:3; (d) t D 6:6. The numbers mark lines of equal density with �k D 3k, the arrows
determine a velocity field, their lengths are proportional to the velocities

Fig. 7.9 Time dependence of
˛; ˇ and ˛ C ˇ in the version
(7.46). At the last point at
t D 6:6 one has ˛ D 0:4048,
ˇ D 0:09451
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a

b c

Fig. 7.10 Density contours (a), density distributions along z-axis (b), and along r-axis (c) for
t D1.276856

presented in Fig. 7.11. The time dependence of the parameters ˛ and ˇ are given in
Fig. 7.11 g. The second contraction starts at ˛1 D 0:08, ˇ1 D 0:34, so the equilib-
rium figure will definitely have a disc-shaped form. This result differs from [229],
where a torus formation was obtained for higher initial pressures with ˛0 D 0:0085,
and the same rotational energy ˇ D 0:324 (see (7.48)). The star formation during
collapse of rotating clouds is strongly influenced by heat processes considered in
Sect. 7.2. Nonetheless, they have not been effectively included in rotational model
calculations.
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b

Fig. 7.11 a–b. Density contours (a), velocity field (b). For (c)–(g) see next page
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Fig. 7.11 c–g. Central part of the velocity field (c), density distributions along z-axis (d) and along
r-axis (e), and distribution of angular velocity along r axis (f) for t D 1.774253, Time variation of
parameters ˛DEinner=jEgravj, ˇ D Erot=jEgravj, and ˛ C ˇ (g)





Chapter 8
Pre-Main Sequence Evolution

As can be seen from the calculations of cloud collapse described in Sect. 7.2, stars
with mass M >3Mˇ appear in the optical range immediately near to the main se-
quence. Objects of lower mass exist for part of the time as optical stars with radiation
due to gravitational contraction energy. Consider evolution of a star from its ap-
pearance in the optical region until it reaches the main sequence, and its central
temperature becomes sufficiently high to initiate a nuclear reaction converting hy-
drogen into helium (see review [105]).

8.1 Hayashi Phase

The pre-main sequence evolution of stars takes place at not very high temperatures,
when a non-full ionization of matter and large opacity cause such stars to be almost
convective. This fact was first established by Hayashi [461, 462], who took into
account a convection in constructing evolutionary tracks for contracting stars in the
HR diagram (see Fig. 7.6 from [930] plotted with the aid of calculations from [485]).
Evolutionary calculations in the papers listed below have been made by the Henyey
method. This method is based on the division of the stellar mass into J intervals,
and writing the differential equations describing static equilibrium, mass conserva-
tion, and heat transfer in a difference form. The solution of linearized difference
equations is obtained by the “back substitution method”, which is very convenient
for numerical computations (see Sect. 6.1, Vol. 1).

8.1.1 Nuclear Reactions

Though reaction rates are insufficient for establishing a thermal equilibrium of the
star, some contribution into the heat balance of the star in the phase of gravitational
contraction to the main sequence can nevertheless be done by reactions with light
elements. Calculations in [462] include the burning of 2D, 7Li, 9Be, small amounts
of which were formed at the beginning of the Universe expansion. The rate of energy

G.S. Bisnovatyi-Kogan et al., Stellar Physics: 2: Stellar Evolution and Stability,
Astronomy and Astrophysics Library, DOI 10.1007/978-3-642-14734-0 2,
c� Springer-Verlag Berlin Heidelberg 2010
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release in the 2D.p; �/3He reaction is given in Sect. 4.2, Vol. 1. For the two other
reactions, we have from [258, 393]

7Li.p; ˛/4He; Q6 D 17:346;

NAh7Li pi˛ D 1:096 � 109 T
�2=3
9 exp

 
�8:472
T

1=3
9

!

� 4:830 � 108 T
5=6
9A T

�3=2
9 exp

 
�8:472
T

1=3
9A

!

C 1:06 � 1010 T
�3=2
9 exp

�
�30:442

T9

�
;

T9A D T9=.1C 0:759 T9/; (8.1)

�7Li p˛
D 2:391 � 1018x7Li xH �NAh7Li pi˛I

and
9Be.p; ˛/6Li; Q6 D 2:126;

NAh9Be pi˛ D 2:11 � 1011 T
�2=3
9 exp

"
�10:359
T

1=3
9

�
�

T9

0:520

�2
#

�
�
1C 0:040 T 1=3

9 C 1:09 T 2=3
9 C 0:307 T9

C3:21 T 4=3
9 C 2:30 T 5=3

9

�

C 4:51 � 108

T9

exp

�
�3:046

T9

�
C 6:70 � 108

T
3=4
9

exp

�
�5:160

T9

�
;

(8.2)

�9Be p˛
D 2:279 � 1017x9Be xH �NAh9Be pi˛:

Detailed calculations for the pre-main sequence evolution of stars with masses of
0.5, 1.0, 1.25, 1.5, 2.25, 3:0Mˇ have been performed in [485]. They include reac-
tions of the pp-cycle and the 12C, 14N, and 16O burning in the CNO cycle. The
corresponding reactions and the energy release per reactionQ6 (in MeV) are

p .p; eC ˚ /2D; with Q6 D 1:192I
3He .3He; 2p/4He; with Q6 D 12:860I
12C .p; �/13N; with Q6 D 1:944I
14N .p; �/15O; with Q6 D 7:297I
and 16O .p; �/17F; with Q6 D 0:600:



8.1 Hayashi Phase 27

The reaction rates and energy release rates of the above reactions are given in
Sect. 4.2, Vol.1. The notations used in (8.1)–(8.3) are: T9DT=109 K, h01i � h�vi01

(cm3 s�1) is the reaction rate, � is a cross-section of the reaction, v is a relative
velocity, hi denotes averaging of the corresponding values of reacting nuclei over
the energy distributions (Maxwellian), NA D 6:02252 � 1023 g�1 is the Avogadro
number. These notations are common in the literature, following [392], see also
Sect. 4.1, Vol. 1.

From [258, 459] one has the reaction rate

4He.3He; �/7Be; Q6 D 1:588;

NAh4He 3Hei� D 5:61 � 106 T
�3=2
9 T

5=6
9A exp

 
�12:826
T

1=3
9A

!
; (8.3)

T9A D T9=.1C 0:0495 T9/;

�4He 3He�
D 1:277 � 1017x4He x3He �NAh4He 3Hei� :

For other reactions of pp- and CNO-cycles, the heat release is taken into ac-
count in [485], but they are assumed to proceed instantaneously. For example, the
reaction p .p; eC�/2D is assumed to produce 3He yielded by the fast 2D(p,�/3 He
reaction with Q6 D 5:494, rather than 2D, while the 12C(p,�/13N reaction eventu-
ally produces 14N, because the reactions 13N!13C + eCC � withQ6 D 1:51, and
13C(p,�/14N with Q6 D 7:551 proceed more rapidly, (see Sect. 4.2, Vol. 1). The
6Li .p; ˛/3He, 10B .p; ˛/7Be and 11B .p; ˛/8Be, reactions, which are of little impor-
tance in the energy release, are also considered in [444]. All the reaction rates used
in the calculations have been multiplied by a screening factor increasing the reac-
tion rates due to a reduction in the electric repulsion between nuclei (see Sect. 4.5,
Vol. 1). The times of approach to the main sequence tms for stars of diverse masses
are [485]:

tms , yr 2.514(6) 5.855(6) 1.821(7) 2.954(7) 5.016(7) 1.550(8)

M=Mˇ 3.0 2.25 1.5 1.25 1.0 0.5

We now clarify the reasons for the appearance of extrema on evolutionary tracks
[485] (Fig. 7.6). The first minimum to the right is caused by the growth of the radia-
tive core. Further contraction of stars with M � 0:8Mˇ is accompanied by a rapid
accumulation of 3He produced in the H and 2D burning in the reactions p(p,eC�/2D,
2D(p,�/3He, and by a diminution of 12C in the reaction 12C(p,�/13N (see Sect. 4.2,
Vol. 1) that enhance the pressure gradient slowing the star contraction and lead to
convection development in the centre. As a result, the star passes over the peak of its
luminosity; a star withM �Mˇ reaches the main sequence after the disappearance
of the convective core.

For M D 1:5Mˇ, a decrease in the concentration of 12C reduces the frac-
tional contribution of the nuclear energy into the luminosity. The gravitational
energy begins to play a more important role when the star has not reached the main
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sequence, which causes the luminosity to reach a second minimum and to increase
subsequently. After the concentration of 12C has reached an equilibrium value, the
role of the nuclear energy becomes more important for the second time, the contrac-
tion slows down, the luminosity reaches a maximum once again, and the star reaches
the main sequence with a non-zero mass of its convective core. The appearance of
new extrema near the main sequence for M � 1:25Mˇ is due to an increased
role of the CNO-cycle of hydrogen burning in stars of large mass compared to the
pp-cycle.

Calculations of pre-main sequence evolution for masses M D (0.5–2.5)Mˇ for
two different metallicities (Z D 0:02 and 0.04) and different convection factors ˛p

from (8.6) have shown [390] a high sensitivity of results to the input parameters.
It was concluded that it is quite difficult to determine masses of T Tauri stars with
a precision of better than 0:3Mˇ. The same conclusion holds, to a lesser extent, for
age determination, especially if the metallicity of the observed star is not accurately
measured.

8.1.2 Non-Ideality of Matter

In studies of the evolution of low-mass stars, M � 0:2Mˇ, Coulomb corrections
to the equation of state and ionization by pressure have been taken into account
([479], see Sect. 1.4, Vol. 1). Simplified techniques have been used in [380, 443–
446] in order to include the ionization by pressure. The level shift had been taken
into account by using a factor �.r0/ D exp.rp=r0/3 in the Saha equation [617],
which is written in this case as

yi;j �1

yij

D ne
gi;j �1

2gij

�
2�„2

mekT

�3=2

eIij =kT e.rp=r0/3 � neK.T /: (8.4)

Here Iij D �i;j �1 � �ij is the ionizaton energy (potential) of the j -th electron,
and Ii0 D 0; yij is a fraction of a j -folded ionization of the i -th element; gij is a
statistical weight of the i -th element in the ionization state j . Moreover,

r0 D
�

3

4�ni

�1=3

is the mean interion separation, and

rp D � „
2

mee2

is the quantity close to the Bohr radius and given in Table 8.1 from [443].
The degeneracy of electrons has been included inK.T / in the right-hand side of

(8.4) by using, as in [479], the relevant expression for the chemical potential 	te of
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Table 8.1 Radii rp Element rp, A Element rp, A Element rp , A

H 0.795 N 0.53 Ni 1.07
H� 2.12 O 0.45 Ca 2.03
H2 1.18 C 0.66 Al 1.21
HC

2 1.30 S 0.82 Na 1.55
He 0.475 Si 1.06 K 2.06
HeC 0.400 Fe 1.22
Ne 0.32 Mg 1.32

electrons in the basic relation determining the ionization equilibrium

	t;i;j �1 D 	t;ij C 	te; (8.5)

where 	t;ij is the chemical potential of the i -th element in the ionization state j
(see also Sect. 1.2, Vol. 1).

8.1.3 Evolution of Low-Mass Stars, Minimum Mass of a Star
on the Main Sequence, Role of Various Factors

Evolutionary calculations of low-mass stars in approach to the main sequence have
been made by the Henyey method. Not only diverse methods of allowing for the
non-ideality have been used in these calculations but a variety of chemical composi-
tions and coefficients ˛ determining the mixing length l have also been considered.
Here, ˛ � ˛p is connecting the pressure scale heightHp with l , so that

l D ˛p Hp D ˛p

P

jdP=drj (8.6)

(see Sect. 3.1, Vol. 1). Evolutionary tracks as functions of ˛ have been studied
in [444]. The effect of specified boundary conditions, deuterium burning and an
applied method of allowing for the non-ideality on the evolutionary track of a star
contracting to the main sequence have been investigated in [445, 446].

The evolutionary tracks of stars calculated in [380] from the Hayashi bound-
ary are shown in Fig. 8.1. The chemical composition corresponds to xH D 0:7,
xHe D 0:27, xZ D 0:03. The atmosphere and envelope are calculated similarly to
[769] by solving equations for the static atmosphere with an approximate descrip-
tion of optically thin layers with 
 < 1. This description gives a smooth transition
to the equation for the radiative heat conductivity, valid for deep layers inside the
photosphere (see Sects. 2.2.3 and 6.1, Vol. 1). The envelope mass equals 3% of the
stellar mass. The convection is included according to the mixing length theory with
l D P=rP .˛ D 1/, the non-ideality similarly to [443], see (8.4); the hydrogen
burning reactions in the proton cycle with the inclusion of screening are also con-
sidered in this paper.
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Fig. 8.1 Tracks for
spherically symmetric stars
with masses of 0.07, 0.09 and
0.11 M

ˇ

in the HR diagram

Table 8.2 Parameters of stars with maximum central temperatures Tc
M
M

ˇ

t , yr lgTc lg �c .ˇ � ˛/c
Lgrav

L
lgTef lg L

L
ˇ

lg R
R

ˇ

0.07 2.2(8) 6.448 2.5 4.2 0.96 3.41 �3:27 �0:94
0.08 3.3(8) 6.524 2.62 4.2 0.78 3.42 �3:28 �0:96

Table 8.3 Parameters of stars on the main sequence
M
M

ˇ

t, yr lgTc lg�c .ˇ � ˛/c lgTef lg L
L

ˇ

lg R
R

ˇ

0.09 1.6(9) 6.596 2.74 4.41 3.42 �3:30 �0:27
0.10 8.9(8) 6.645 2.67 3.35 3.46 �3:07 �0:93
0.11 5.7(8) 6.684 2.59 2.57 3.49 �2:88 �0:89

According to the calculations, stars with masses of 0:09Mˇ, 0:1Mˇ and 0:11Mˇ
reach the main sequence, whereas stars with mass 0:08Mˇ and less reach a state
with a maximum central temperature Tc during contraction and subsequently cool,
transforming into degenerate hydrogen dwarfs.

Table 8.2, from [380], gives parameters of stars with maximum Tc, while
Table 8.3 presents parameters of stars on the main sequence, when Lgrav=L D 0:01.

The central values of

˛ D MeC
2

kT
ˇ D Mte

kT
(8.7)

are used to determine a level of electron degeneracy. Large positive values of .ˇ�˛/
correspond to highly degenerate, and large negative ones determine non-degenerate
electrons (see Sect. 1.2, Vol. 1).
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Fig. 8.2 lgTc as a function
of lg �c for a star with initial
mass 0:07M

ˇ

and the mass
increase rate 10�12M

ˇ

/yr
near the main sequence. The
dashed curves represent
spherically symmetric stars
with constant masses of 0.07,
0.08, 0.09, 0.10 and 0.11 M

ˇ

The minimum mass of a star on the main sequence is in the interval 0:08Mˇ �
M � 0:09Mˇ. The low-mass stars reaching the main sequence (Table 8.2) conserve
the full convectivity state. The line in the HR diagram along which a fully con-
vective star of a given mass evolves in the absence of degeneracy is obtained in
[461, 462] and is called the Hayashi boundary or Hayashi track. It is shown in
[461,462] that the presence of a radiative core shifts the star to the left of this bound-
ary (see Fig. 7.6). In the presence of accretion, a low-mass star with M <Mmin may
turn back to the main sequence upon going over the Tc minimum. A typical evo-
lutionary track is shown in Fig. 8.2 for the initial mass 0:07Mˇ and accretion rate
10�12Mˇ=yr.

Models for low-mass stars with a small-scale magnetic field included by adding
the magnetic pressure term

Pm D C�4=3 (8.8)

to the equation of state have been calculated in [379]. The magnetic pressure reduces
the temperature needed for equilibrium of a star of the same mass and its density and
increases the minimum mass of the star reaching the main sequence:M .H/

min > Mmin.

Calculations with C D 2:4� 1013 in (8.8) have yielded the valueM .H/
min D 0:12Mˇ

(see Table 8.4). Note that a star withM D 0:12Mˇ reaches the main sequence upon
going over the central temperature maximum. The rotation effect on Mmin is con-
sidered in Sect. 8.2.

8.1.4 Evolutionary Role of the Mass Loss

Observational evidence for the mass loss from T Tauri stars identified with young
contracting stars has been obtained by Kuhi [595], see also [297]. There are
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Table 8.4 Characteristics of stars at the time when Tc is maximum (two lines first) or upon
reaching the main sequence (last two lines), ˇ�˛ is defined in (8.6), ˇm D Pm=.P CPm/; P and
Pm are the matter and magnetic pressure, respectively
M
M

ˇ

t , yr EM
Egrav

.ˇm/c lgTef lg L
L

ˇ

lg R
R

ˇ

lgTc lg�c .ˇ � ˛/c lg
Lgrav

L

0.11 2.9(8) 0.28 0.22 3.41 �3:00 �0:80 6.454 2.52 4.2 0.96
0.12 3.8(8) 0.27 0.20 3.42 �3:01 �0:82 6.520 2.60 4.2 0.85
0.12 7.6(9) 0.27 0.20 3.30 �3:72 �0:94 6.457 2.94 8.43 0.01
0.13 2.9(9) 0.25 0.19 3.40 �3:20 �0:88 6.575 2.81 5.13 0.01

observational data (see, for example, [251]) providing evidence for the matter out-
flow from some young stars to have the form of bipolar flows (see reviews in [366]).
This may be due to the presence of protoplanetary disks [686, 972].

An empirical inclusion of mass loss in evolutionary calculations of stars contract-
ing to the main sequence has been made in [367]. The mass flux has been specified
in the form

dM

dt
D �˛R

3

M
: (8.9)

We measure the stellar mass M and radius R in solar units, time t in years, ˛ in
Mˇ=yr. For the solar wind ˛ D 3 � 10�14 Mˇ=yr. For T Tauri stars the mass
flux may be greater by several orders of magnitude. The evolutionary tracks of stars
with initial masses of 2.93 and 2.31Mˇ, various ˛, and with chemical composition
xH D 0:739, xHe D 0:24, xZ D 0:021 are shown in Fig. 8.3, from [367]. Contrary
to [485], where l D �=2jr�j, the mean free path of the convective element in the
mixing length theory is twice the pressure scale height: l D 2P=jrP j. Deuterium
burning is also examined, with initial concentration of deuterium taken to be equal
to the earth concentration: x2D=xH D 1:4�10�4 [575]. As shown in [367], the lines
of equal age (see Fig. 7.6) in the HR diagram are not very sensitive to the mass loss
rate determined by ˛.

8.2 Evolution of Rapidly Rotating Stars on Gravitational
Contraction Stages

The rotation velocities of T Tauri stars are difficult to determine by reason of en-
hanced broadening of emission lines. An estimate of rotation velocity for such stars
has been made from narrow absorption lines [468] and interpreting observations of
the FeI fluorescence line with �� 4063, 4132, [1039]. This estimate turned out to be
hv sin ii D 20� 65 km s�1.

The polytropic equation of state P D K�� with � D 4=3 for stars with mass
3–12 Mˇ in [216] and � D 5=3 for M � 1 Mˇ in [712] has been used in theo-
retical studies of the evolution of rapidly rotating stars at the stage of gravitational
contraction. A fixed distribution of angular momentum has been studied in [216],



8.2 Evolution of Rapidly Rotating Stars on Gravitational Contraction Stages 33

Fig. 8.3 Evolutionary track in the HR diagram for contracting stars with mass loss including
the deuterium burning. The initial masses are 2:93M

ˇ

and 2:31M
ˇ

. The dashed vertical line
indicates the point where the star stops having outer convection zone and continues to evolve with
a constant mass. The masses and ages of the models indicated by pointer are also given in the
figure. The pointers on the left of the figure (without mass indication) mark the zero-age main
sequence

while in [712] the rotation has been taken to be solid-body and critical1 through-
out the evolution. In this section we follow [167, 168], where an exact equation of
state for normal chemical composition is used with a full description of ionization
states and radiation pressure (see Sect. 1.1, Vol. 1). A distribution of the effective
temperature over the stellar surface is obtained by fitting a thin radiative envelope to
the convective core on the poles and at the equator separately. Evolutionary stages
of fully convective stars are considered, with entropy and angular velocity being
constant over the star. The total angular momentum is taken to be constant during
the evolution. A constant entropy under conditions of well-developed convection is
obvious, because convection in deep stellar layers is carrying heat very effectively.

1 For a critically rotating star, the centrifugal force at the equator counterbalances the surface
gravity.
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Thus, a very small excess of the temperature gradient over the isentropic state is
enough to carry almost all heat flux over the star (see Sect. 3.1, Vol. 1). The con-
stancy of the angular velocity remains to be proved.

8.2.1 On the Distribution of Angular Velocity of Rotation

During evolution, a star undergoes contraction, expansion and mixing due to the
meridional circulation and convection. In the presence of differential rotation a tur-
bulent instability may develop. All these phenomena result in a redistribution of
angular momentum in the star. The viscosity due to microscopic phenomena tends
to equalize the angular velocity, but its magnitude is usually small.

For the case of axial symmetry, the equation in spherical coordinates (r; 0; ')
describing changes in rotation velocity v� in the presence of isotropic viscosity have
the form [591]

@��

@t
C �r

@��

@r
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@��
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@
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��
: (8.10)

Here, �.�;T/ is the viscosity coefficient. For convenience, we shall write here-
inafter (8.10) in terms of specific angular momentum j and angular velocity ˝ ,

j D r�� sin ; ˝ D ��

r sin 
: (8.11)

Using (8.11), we rewrite (8.10) as

@j
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C �r

@j

@r
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@
D sin 

�r2

@

@r

�
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@˝
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�

C 1

� sin 

@

@

�
sin3  �

@˝

@

�
: (8.12)

The viscosity of matter is usually negligible, and at � D 0 the angular momentum
conservation follows from (8.12) for all fluid rings.

The physical picture is much more complicated in the convectively unstable
region. The laminar convection in a rotating fluid has been examined both theo-
retically and experimentally in many papers (see [429, 1035]). Various forms of
angular velocity distribution may correspond to the steady state in which a convec-
tively unstable rotating medium tends to settle down. As can be seen from (8.12),
the condition j D const: reduces the left side to zero, while ˝ D const: does the
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same for the right side. These conditions cannot be simultaneous at �r , �� ¤ 0 so
that the steady rotation law is intermediate between the conditions j D const: and
˝ D const. The greater the viscosity coefficient, the more solid-body the rotation.
The dimensionless parameter characterizing the rotation law,

˛ D �=�r�r (8.13)

is the inverse Reynolds number corresponding to the circular velocity (vr ; v� ). The
Reynolds number

Re D vLd

�
D �vLd

�
(8.14)

is a dimensionless parameter, determining the character of the hydrodynamic mo-
tion, which usually becomes turbulent at largeRe (see [591], and Sect. 3.1.3, Vol. 1);
� and � are coefficients of the dynamic and the kinematic viscosity, respectively,
related by � D ��. Ld is the characteristic scale of the flow. For a steady state, we
have ˝ D const: at ˛� 1, and we obtain j D const. at ˛ � 1. According to the
numerical calculations in [1035], the rotation is almost uniform at ˛ D 5, while at
˛ D 0:04 the angular momentum per unit mass is constant over almost the total
volume, except for a central region, where r ! 0, ˛!1 and˝ D const.

Convection is always turbulent in stars due to a low viscosity and large charac-
teristic scales (see Sect. 3.1.3, Vol. 1). Also, this scale is usually much smaller than
the characteristic core size. Application of numerical modeling is almost impossible
here because even for the case of a laminar convection, the computations can incor-
porate only a small number of convective cells. The microscopic viscosity in stars
is so small that a state with j D const: is likely to set in over one convective cell.
The averaged ˝ distribution over the convective core rather than the instantaneous
distribution of parameters inside the cell should nevertheless be taken into consid-
eration for a small-scale turbulent convection. The large-scale distribution results
from interactions between convective cells which take the form of convective, or
turbulent, viscosity.

With the turbulent viscosity coefficient

�T D ��Tl; (8.15)

where �T is the mean turbulent velocity, l is the turbulence length scale and ˛ from
(8.13) becomes

˛ D
�
�T

�r

�
l

r
: (8.16)

The r= l ratio is nearly equal to the number of convective cells over the length of
the convective zone in the star. In the convective core of a star with mass 30Mˇ
on the main sequence l=r 	 0:1, �T 	 2 � 105 cm s�1 [144, 724]. Estimates for
the circulation velocity obtained from similarity relations and the theory of solar
rotation [335] give �r < 10

3 cm s�1 for a rotation velocity below the rotation limit.
Hence, ˛ � 1, and in calculations ˝ D const: is adopted for the convective core.
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Note that the solid-body criterion ˛ � 1 holds only for l � r . The notion of
turbulent viscosity otherwise has no meaning, and several convective cells arise, all
of them having a steady rotation law close to j D const. Nonetheless, just as in a
convectively stable zone, a steady state may never be reached here so that evolu-
tionary calculations taking into account the secular change of the angular velocity
(see Sect. 6.3.2, Vol. 1) are needed for the determination of the angular velocity
distribution at each evolutionary step.

The above considerations hold only under simple assumptions on the axial
symmetry, isotropy of turbulent viscosity, absence of magnetic field. All these as-
sumptions may no longer be valid: instabilities break the axial symmetry [334], the
presence of a magnetic field gives rise to additional forces acting in the � direc-
tion and complicates (8.10) and (8.12). In several convection models an anisotropic
viscous-stress tensor arises, differing in principle from a normal viscosity tensor and
not becoming zero for the solid-body rotation [564]. All these complicated effects
have been studied with the aid of only simplified models [335,1010]. For ˛ � 1, the
condition˝ D const: seems to be the most reasonable in evolutionary calculations.

Observations of the Sun show a slight (15–20%) equatorial acceleration. This
property seems to be inherent in all rotating convective regions of stars and planets
and arises from interactions of convective vortices with the overall star rotation. The
buoyant force of a vortex with angular velocity! having a positive component in the
direction of the overall angular velocity� exceeds the same force of a vortex with a
negative component. This gives rise to a constant angular momentum flow outward.
In a stationary state a differential rotation sets in, when the angular velocity increases
outward (along the cylindrical radius) and the angular momentum flux outward is
balanced by the flux inward due to the turbulent viscosity effect (see Problem 1).
Other types of interaction between convection, rotation and circulation leading to
solar equatorial acceleration have been considered in [335, 851, 1011].

8.2.2 Method for Evolutionary Calculations

The star is divided into an isentropic core rotating as a solid body, and a thin en-
velope consisting of a radiative outermost region and an underlying non-adiabatic
convective zone. The equation of stateP.�; T / and isentropes T D TS .�/ have been
derived for the composition xH D 0:7, xHe D 0:28, xZ D 0:02 by use of the approx-
imate formulae for thermodynamic functions from [769]. An error in these formulae
approximating the tables [1025] has been corrected according to [1026].

The equations describing the equilibrium of a rigidly rotating (˝D const.) self-
gravitating stellar core with a barotropic equation of state P DP.�/ have been
solved using a variant of a self-consistent field method, described in [204]. This
method is based on an iterative procedure for finding the equilibrium solution by
subsequent use of the equilibrium equation in the integral form, and the integral
representation of the gravitational potential (see Sect. 6.2.3, Vol. 1). The equation
of state is determined by accepting a constant specific entropy S along the core
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P D PS .�/, and the total angular momentum of the core J was suggested to remain
constant during evolution, as well as its mass M . The mass and angular momentum
of the envelope had been taken as negligibly small. In order to find the luminos-
ity of the star and its location in the HR diagram, an envelope, taken to the plane
approximation with a thickness h well below the radius R, has been fitted to the
core. The envelope is taken to be in mechanic and heat equilibrium in the effective
gravitational field

gef D jr.� � �/j; where � D
Z r

0

˝2r 0dr0 (8.17)

is the centrifugal potential.
For a rigid rotation we have � D .˝2r2=2/. The envelope is described by

equations

dP

dx
D ��gef; F D Frad C Fconv; Frad D �4˛cT

3

3��

dT

dx
: (8.18)

Here, the convective heat flux is calculated according to the mixing length model
(see Sect. 3.1.3, Vol. 1),

Fconv D cp�

�
�
�
@�

@T

�
P

gef

�

�1=2
l2

4
.�rT /3=2; (8.19)

where the derivative at constant pressure .@�=@T /P takes account of the variable
ionization states. The variable molecular weight	.�; T / is found from the condition
of ionization equilibrium for an ideal non-degenerate gas (8.4) with rp D 0, x is the
coordinate in the envelope in the direction of r.� � �/. The calculations for the
envelope have been performed with l D P=jdP=dxj D HP . The core model has
been constructed for the outer boundary condition P D � D 0. The resulting error

h=R is small for a thin envelope. The opacity � for (8.18) has been taken from
the tables [316], while for 10�3 < 
 < 2=3 the second and third relations in (8.18)
have been replaced by the approximate relation from [769], obtained on the basis of
a solution of the radiative transfer equation in the Eddington approximation

dT

dr
D � 3��F

4acT3
� f
2
T0R

1=2
0 r�3=2;

f D 1 � 3
2

 for 
 < 2=3

D 0 for 
 � 2=3:

(8.20)

Here, T 4
0 D .F=ac/, and the calculations in [769] have shown that the distri-

bution in a stellar atmosphere depends only weakly on the choice of R0 and T0,
corresponding to zero optical depth 
 D 0 (see also Sect. 2.2.3, Vol. 1). The enve-
lope model is determined uniquely at known Tef and gef. All envelopes are radiative
at 
 D 2=3, T D Tef, but soon with increasing 
 the radiative gradient begins to
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exceed the adiabatic gradient, and convection breaks out. The density is small in the
outer layers of the convective envelope so that the heat transfer by convection has a
small efficiency, hence, there is a strong non-adiabaticity, and the entropy increases
from the surface inwards. On penetrating downwards from the surface, the con-
vective energy transfer grows increasingly effective, and the temperature gradient
approaches the adiabatic gradient. The adiabatic regime of the solution is assumed
to set in when the condition

jr � �2j � 10�3; r D d ln T=d lnP (8.21)

is satisfied, where

�2 D
�
@ ln T

@ lnP

�
S

D
"�
@ lnP

@ lnT

�
�

�
�
@ lnP

@ ln �

�
T

�
@S

@ ln T

�
�

��
@S

@ ln �

�
T

#�1

: (8.22)

The quantity Tef D .4 F=ac/1=4 has been selected in such a way as to make
the envelope entropy S0 at the point r 	 �2 equal to the core entropy S . First,
the dependence S0.gef; Tef/ has been tabulated, then the values of Tef.gef; S0/ have
been found by interpolation of these tables. Note that a similar method for fitting
envelopes has been applied to constructing models for non-rotating convective low-
mass stars [479]. The calculations reveal a weak dependence Tef.gef/ (Fig. 8.4) and
a fair accuracy of the relation Tef 
 g0:08

ef obtained in [653].
Using the distribution Tef./ over the stellar surface R D R./ allows as to find

the total luminosity

Fig. 8.4 Effective temperature Tef as a function of gravity gef along stellar surface for models
with 0:5M

ˇ

, J D 4 � 1050 g cm2 s�1 and with 1M
ˇ

, J D 14:2 � 1050 g cm2 s�1. Dashed
lines represent the slope for the dependence obtained in [653]. Each curve is labeled by a number
indicating the value of the corresponding parameter lg �0 (see Tables 8.5–8.7)
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sin  d: (8.23)

With the luminosity and model energy E , we are in a position to determine the age
difference between the two convective models

�t D 2 jE1 � E2j
L1 C L2

; (8.24)

which may be determined from the mean luminosity between two times “1” and “2”.
The total energy E is negative, incorporates thermal, rotational and gravitational en-
ergies and has been obtained from the core equilibrium computations (the envelope
energy being ignored),

E D �1
2

Z
�dmC 1

2
˝2

Z
r2 sin2 dmC

Z
E.�; S/dm

dm D 2��r2 sin  drd:

(8.25)

Relations for the specific internal energyE.�; T / for the mixture of an ideal gas with
radiation, taking into account incomplete ionization, are given in Sect. 1.1, Vol. 1.

8.2.3 Calculation Results

Calculation of non-rotating star models, comparison with the results [367,462,485]
together with a test by the Henyey method under the same physical assumptions,
reveals that the accuracy of the above method is within 5%, providing the envelope
thickness does not exceed 0:3R, and the radiative core mass is not above 25% of the
stellar mass. For stars with masses of 10, 2, 1, 0:5Mˇ, the envelopes are thin if L <
4 � 104, 2000, 100, 50Lˇ, respectively. The main calculational results are shown
in Figs. 8.5 and 8.6, and Tables 8.5–8.7 taken from [167]. For comparison, note that
the angular momentum of the Sun in solid-body rotation is 1:6 � 1048 g cm2 s�1

[15]. The entropy has been characterized by the matter density �0.lg �0/ at T D T0,
lgT0 D 3:3.

The results of evolutionary calculations for stars withM D 0:5, 1, 2Mˇ are given
in Tables 8.5–8.7, respectively. Tabulated are time dependences of the polarRp and
equatorial Re radii, central temperature Tc and central density �c , luminosity L,
effective temperature at the pole Tp and at the equator Te. Given also are equato-
rial rotation velocities �eq and relative envelope thicknesses h=Re . A rotating star
turns out to have a lower temperature and a higher luminosity than a non-rotating
star with the same entropy. For the last model in Table 8.5 with M D 0:5Mˇ and
the maximum oblateness Re=RpD 1:6 (compare Fig. 8.7 for 1Mˇ) the increase in
luminosity is 25%. The effective acceleration is, for this model, 
24 times lower



40 8 Pre-Main Sequence Evolution

Fig. 8.5 Evolutionary tracks for models of contracting stars with M D 0:5M
ˇ

and 1M
ˇ

at
diverse values of the angular momentum J50 (in 1050 g cm2 s�1) plotted for mean effective tem-
peratures of stars. The heavy line represents the results of the calculations obtained using the
Henyey method for non-rotating stars, the crosses correspond to models calculated by the de-
scribed method. The numbers indicate the values of lg �0 parameterizing the core entropy. The
dashed horizontal lines mark the effective temperature dispersion over the rotating star surface.
The line labeled IMS is the initial main sequence for a non-rotating star with XH D 0:70 and
XZ D 0:02

Fig. 8.6 Tracks for models
with 2M

ˇ

. The notation is
the same as in Fig. 8.5. The
radiative core formation
causes the star to pass onto
the horizontal branch of the
track
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Table 8.5 Results of evolutionary calculations for a star of 0.5 M
ˇ

lg �0
Re
R

ˇ

Rp

R
ˇ

Tc , K
�c ,
g cm�3 L

L
ˇ

Te , K Tp , K t , yr
veq ,
km s�1 h

Re

J

g cm2 s�1

�11.3 20.4 2.47(5) 1.16(�3) 53:8 3475 0 0 0.35
�11.0 9.03 4.87(5) 8.6(�3) 14:4 3750 8.06(3) 0 0.12
�10.7 4.44 9.35(5) 5.96(�2) 4:14 3920 6.0(4) 0 0.045 0
�10.4 2.36 1.72(6) 0.36 1:28 4020 3.70(5) 0 0.020
�10.2 1.62 2.50(6) 1.07 0:609 4020 1.10(6) 0 0.012

�11.3 21.8 20.3 2.4(5) 1.12(�3) 55:5 3400 3470 0 24:5 0.39
�11.0 9.86 8.94 4.66(5) 8.05(�3) 14:9 3640 3750 7.50(3) 41:6 0.16
�10.8 5.09 4.35 8.57(5) 0.0523 4:39 3740 3930 5.48(4) 72:9 0.068 4.10(50)
�10.4 2.97 2.28 1.49(6) 0.292 1:45 3720 4010 3.04(5) 127 0.045
�10.2 2.47 1.54 2.08(6) 0.832 0:773 3365 4040 8.13(5) 193 0.25a

ah is large only near equator owing to a decrease in gef .

at the equator than at the pole. The deviation of the evolutionary tracks to the left
(Figs. 8.5 and 8.6, see also Figs. 7.6a, 7.6b and 8.3) arises from the growth of the ra-
diative core and cannot be described by this method. A radiative core treatment
should include the non-adiabatically, non-stationary circulation, redistribution of
angular momentum and use of the full form of the evolutionary equations, where
changes in the distribution of circulation velocities and angular momentum distri-
bution are calculated at each evolutionary step in the same way as changes of the
chemical composition (see Sect. 6.3.2, Vol. 1).

The time for a rotating star to contract to the state with a given entropy somewhat
decreases because of increasing the luminosity of models with the same S . A rotat-
ing star, however, has a lower central temperature and density than a non-rotating
star with the same S , so it reaches the main sequence having less entropy and lu-
minosity than the non-rotating star. Approximate calculations of uniformly rotating
stars on the main sequence show that the difference in luminosity increases with
decreasing mass [370, 794]. If we extrapolate the results [794], we shall have for
M D 0:5Mˇ that a critically rotating star on the main sequence turns out to have
a luminosity of 1.6 times lower than the non-rotating star. In addition, a rotating
star radiates more heat in its pre-main-sequence phase, so the critical rotation nearly
doubles its time of approach to the main sequence.

8.3 Models for the Matter Outflow from Young Stars

The mechanisms of quasistationary matter outflow observed in various stars [289,
595] may be divided into four categories:

(1) Outflow under the effect of the light pressure at small and large optical thick-
nesses of the outflowing region of the envelope
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Fig. 8.7 The surface shape
for a contracting star with
1M

ˇ

and J50 D 14:2 at
various times of its evolution.
Indicated are lg �0 values (see
Table 8.6)

(2) Non-thermal heating and expansion of corona
(3) Rotation mechanism of outflow
(4) Outflow from stellar envelopes owing to the energy release in recombination of

atoms and molecules

The role of the rotational mechanism is far from clear because the observable
angular velocities are below their critical values. This mechanism seems to be the
most important in non-stationary stages of evolution (see Chap. 10). The first of
these four mechanisms is due to a large luminosity of the star and is important
for very bright blue massive stars and for giants or supergiants at late evolutionary
stages (see Chap. 9). Stars of low mass and luminosity, including young contracting
stars, have convective envelopes that give rise to non-thermal heating of corona
and to its solar wind-like outflow. Recombination effects reduce the adiabatic index
down to low values �1 < 4=3 because of transformations between the kinetic energy
of particles, and an energy of recombination and ionization, and may thus become
important for the mass loss during the earliest stages of star formation. The adiabatic
index �1 is defined as follows

�1 D
�
@ lnP

@ ln �

�
S

D
�
@ lnP

@ ln �

�
T

�
�
@ lnP

@ ln T

�
�

�
@S

@ ln �

�
T

��
@S

@ ln T

�
�

; (8.26)

see Sect. 1.1, Vol. 1. It should be noted that the mechanism of mass loss under the
effect the of the light pressure is very important for forming massive stars with
M >9Mˇ and leads to the dependence (7.30). Consider models of outflowing stars
losing mass via the second and fourth of the four mentioned mechanisms.
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8.3.1 Outflowing Bipolytropic Models [170]

Consider a star characterized by an equation of state of the form

P D K2�
1C1=n2 for � < �a, n2 � 1; (8.27)

P D K1�
1C1=n1 for � > �a, (8.28)

where
K1�

1=n1
a D K2�

1=n2
a :

A similar equation of state is determined by the gas properties including recombi-
nation. The specific thermal energy of this gas is

E D K2n2�
1=n2 for � < �a, (8.29)

E D K1.n2 � n1/�
1=n1
a CK1n1�

1=n1 for � > �a. (8.30)

Consider a star with mean density � such that �a � �. For a purely polytropic
star of mass M and radius R, characterized by the equation of state (8.28) for all
densities, the total energy � is determined by [617] (see Sect. 10.1)

� D �3 � n1

5 � n1

GM2

R
: (8.31)

Here, the zero energy corresponds to the stellar matter energy at zero density with
no gravitational interaction. If the mass of the envelope with � < �a is negligible,
then the total energy of the star characterized by the bipolytropic equation of the
state (8.27) and (8.28) will be written as

� D .n2 � n1/K1�
1=n1
a M � 3 � n1

5 � n1

GM2

R
: (8.32)

It can be seen from (8.32) that at a sufficiently high n2 the total energy becomes
positive, and a run-away to infinity becomes energetically allowable. If n1<3, then
most of the mass will be in stable equilibrium even at a positive total energy (see
Chap. 12), while for the matter at � < �a the outflow is still possible. When the ratio
�a=� is sufficiently small, the mass loss rate PM is so low that the major part of the
stellar mass is in static equilibrium, and the outflow proceeds in a quasistationary
regime with velocity distribution

u D �
PM

4��r2
: (8.33)

In a stellar envelope at � < �a with a stationary radial outflow the Bernoulli integral
holds [591]
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H D u2

2
C E C P

�
� GM

r
D u2

2
C .n2 C 1/K2�

1=n2 � GM

r
: (8.34)

In order for the condition � ! 0 as r ! 1 to be satisfied, the solution (8.33),
(8.34) has to go through a critical sonic point where the relations

u2
cr D u2

s; cr D
n2 C 1
n2

K2�
1=n2
cr ;

u2
cr D

GM

2rcr
; (8.35)

are valid. Here, the sound velocity us D .@P=@�/1=2
K2

. To construct a model of a static
star with envelope outflow, the solution for the core should be fitted to the solution
(8.33) and (8.34) for the envelope in such a way that the density � and pressure P
are continuous, and the velocity u is very low.

For the case of a barotropic equation of state P.�/, the equilibrium equation for
a static core has an integral yielded by the Bernoulli integral (8.34) with u! 0. The
integral H is to be evaluated on the boundary of the static core r D R, where we
set approximately � D �a, u� us, and

H D .n2 C 1/K2�
1=n2
a � GM

R
: (8.36)

Inserting (8.35) into (8.34), we expressH in terms of the critical point radius rcr:

H D 2n2 � 3
4

GM

rcr
: (8.37)

Combining (8.36) and (8.37) gives the radius rcr.M;R/ which, in turn, allows as to
find, using (8.35) and (8.33), the mass flux

PM D �4��crr
2
crucrD�4�r1:5�n2

cr

�
n2

2.1C n2/

�n2 .GM/n2C0:5

p
2K

n2

2

	 �4�
e
r1:5�n2

cr

�
GM

2K2

�n2C0:5p
K2; n2 � 1; (8.38)

rcr D 2n2 � 3
4

GM

�
.n2 C 1/K2�

1=n2
a � GM

R

��1

: (8.39)

From the theory of polytropic stars we have [269] (see Sect. 10.1)

R D
�
.n1 C 1/K1

4�G

�.n1=.3�n1//�
M

4�Mn1

�.1�n1/=.3�n1/

�n1
; (8.40)
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where �n, Mn are dimensionless quantities depending only on n. With (8.39) and
(8.40), the function PM.M;R/ becomes

PM D ��
 

e

K2�
1=n2
a

!3=2

� .GM/2�a

(
1 � G.4�Mn1

/.1�n1/=.3�n1/

n2K1�
1=n1
a �n1

�
�

4�G

.n1 C 1/K1

�n1=.3�n1/

M 2=.3�n1/

) n2�1:5

: (8.41)

The outflow from the stellar envelope requires that the condition H >0 must
be satisfied, which is equivalent to the condition .@�=@M/K � 0 at n2� 1, if
(8.40) and (8.42) are taken into account. At H D 0 the energy � is positive and
@�=@M D 0:

� D �0 D 2GM2

.5 � n1/R
at H D 0I M DM2: (8.42)

At fixed n1 < 3 and n2 � 1 bipolytropic models fall into three types depending on
the stellar mass M

.1/ M > M1; � < 0; @�=@M < 0; H < 0 (8.43)

are stable static models with negative total energy;

.2/ M2 < M < M1; 0 < � < �0;
@�

@M
< 0; H < 0 (8.44)

are static models with positive total energy. The run-away to infinity is energet-
ically allowable for the matter, but models are stable against small perturbations
(metastable as a whole), and the run-away implies penetrating through a potential
barrier;

.3/ M < M2; 0 < �0 < �;
@�

@M
> 0; H > 0 (8.45)

are quasisteadily outflowing models (there are no strictly static models here, but
most of the mass is in almost static equilibrium since PM is low at low �a).

The value ofM1 may be found from (8.32) with � D 0, andM2 from (8.36) with
H D 0, using (8.40). The condition that the critical radius rcr be outside the star

rcr=R > 1 (8.46)

is necessary for applying the approximate evaluation of PM in (8.41). It follows from
(8.39) and (8.40) that (8.46) is valid at

y D
�
M

M2

��

D GM=R

.n2 C 1/K2�
1=n2
a

>
2

n2 C 0:5 ; � D 2

3 � n1

: (8.47)
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With y from (8.47) and (8.36), we may rewrite (8.41) in the form

PM D �aM 2.1 � y/n2�1:5 D �aM 2
2 y

2=�.1 � y/n2�1:5;

a D �
 

e

K2�
1=n2
a

!3=2

G2�a;

aM 2
2 D �e3=2.n2 C 1/3=2�aR

2
2

s
GM2

R2

: (8.48)

Obviously, the maximum in PM from (8.48) occurs at

y D 2=�

n2 � 1:5C 2=� ;
�

with
dy

dM
D � y

M

�
: (8.49)

At � > 1 .n1 > 1/ the condition (8.47) stops being valid before PM reaches a maxi-
mum. On the boundary of the validity condition (8.47) the mean stellar density is of
order �a and so, as the adiabatic index �1 from (8.27) and (8.26), (�1 D 1C .1=n1/)
is close to unity, the star turns out to be unstable and runs away on the dynamical
time scale. This run-away takes place somewhat earlier than the equality in the con-
dition (8.47) is reached. For outflowing stars, just near the boundary @�=@M D 0,
y D 1, the value of PM is small but increasing as the outflow proceeds and M de-
creases. As the stellar mass reduces by a factor of .n2=2/

1=� , the outflow turns into
run-away of the whole star. Note that during the mass loss the outflow and run-away
velocities remain always of the order of the sound velocity us from (8.35) corre-
sponding to the density �a, with the exception of stars with masses M 	 M2, for
which outflowing velocities are small due to a large critical radius in (8.39).

For a star with mass M < M2 the dissipation time is, according to (8.48),


 	 M

PM 	 
h2

�2

�a

 
4

3e3=2n
3=2
2 y1=�.1 � y/n2�1:5

!
D

D 
h

�

�a

 
4

3e3=2n
3=2
2 y3=2.1 � y/n2�1:5

!
; (8.50)

where 
h2 D R2=
p

GM2=R2 is the time of hydrodynamical run-away of the core,
�2 D 3M2=4�R

3
2 is the mean density of a core with mass M2 and radius R2; 
h

and � are the same for M < M2. The minimum in the dimensionless quantity in
the latter parentheses (8.50) occurs at y D 3=2n2 and equals 8=9

p
2=3 	 0:73

for n2 � 1. The dissipation time of a bipolytopic star with n2 � 1 and �a � �

is thus always well above the hydrodynamical time of the core, and the applied
approximation is therefore correct.

A more complicated 3-polytropic model was used in [303] to mimic the disrup-
tion of the neutron star with mass slightly less than the minimal one (see Fig. 11.1).
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Note that the behaviour of a 3-polytropic star during this disruption, as well as of the
one with a more realistic equation of state, calculated in [303], is well reproduced
by the picture of disruption of bi-polytropic stars, described above [170].

8.3.2 Outflowing Models for Isentropic Hydrogen Stars [179]

In the ionization and dissociation region the equation of state P.�/ has �1 < 4=3

at a constant entropy and even �1<1 if the radiation is taken into account. This
makes possible the existence of steadily outflowing stable configurations similar to
the bipolytropic models (8.45) described above. Fully convective contracting stars
in the Hayashi stage are characterized by a constant entropy (Sect. 8.1).

Thermodynamic functions for hydrogen along isentropes are shown in Figs. 8.8–
8.11 according to calculations [179]. The entropy values are taken to be
S D 20; 24; 30; 36 in units

R D k=mp D 8:317 � 107 erg g�1 K�1: (8.51)

A gas has been considered in thermodynamic equilibrium with radiation (see
Sect. 1.1, Vol. 1), with ionized, atomic, molecular hydrogen in the ground state taken
into account, together with rotational and vibrational excitations of the molecular
fundamental term. According to the methods described in [426,617], a correction is

Fig. 8.8 P as a function of �
along the isentropes
S D 20; 30; 36
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Fig. 8.9 T as a function of � along the isentropes S D 20; 30; 36

Fig. 8.10 ˇg as a function of
� along the isentropes
S D 20; 30; 36

Fig. 8.11 �1 as a function of
� along the isentropes
S D 20; 30; 36

introduced for anharmonicity and interactions between rotational and vibrational
degrees of freedom. The ortho- and parahydrogen contents are assumed to be
equilibrium.2 The results of the equation of state calculations [179] are in good
numerical agreement with the results in [995, 1025, 1026].

2 In orthohydrogen, nuclear and electron spins are parallel, while in parahydrogen they are antipar-
allel. The orthohydrogen energetic state is slightly higher than the parahydrogen state; transitions
between these states give rise to an emission line of 21 cm in the radio range.
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Fig. 8.12 M as a function of
�c0 for static models with
S D 20; 30; 36. 1, stable
branches; 2, intervals with
one unstable mode; 3, two; 4,
three unstable modes

Taking the equilibrium radiation into account, we obtain �1 < 1 for the dissoci-
ation region (Fig. 8.11). For a perfect gas with no radiation always �1 > 1 since the
temperature increases along isentropes with increasing density.

Static models for hydrogen stars at S D const: and their stability have been
examined in [995] with the aid of numerical solution of the equilibrium equations
(1a) in Problem 1, Sect. 9.2, and (9.97). Similar calculations have also been made
in [179], from where Fig. 8.12 is taken, which represents the mass as a function of
central density M.�c0/. In addition to the stability and instability regions obtained
in [995], the number of unstable modes is found in [179] by applying the condi-
tion of extremal intersection [1075], see also Chap. 12. The function M.�c0/ has
a particularity consisting of the presence of a steep fall appearing at S > 14 in
the region where the major part of the star is in a partial ionization state. No static
model has been constructed in [179,995] for the fall interval. After the fall, the num-
ber of unstable modes either decreases by unity, and the model becomes stable (for
S D 20; 30; 36 in Fig. 8.12), or does not change, and the instability remains (for
S D 24).

Besides static models, models with stationary outflow analogous to (8.45) have
been constructed in [179] to the left of the fall, with a curve M.�c0/ for outflowing
models continuously fitted to the static curveM.�c0/ at the low endpoint of the fall
(Fig. 8.13). The techniques used for constructing models with outflow are the same
as for analogous bipolytropic models and require that the Bernoulli integralH from
(8.34) be positive if the zero-point energy is the energy of the molecular hydrogen
state. With the knownH , writing the relation (8.34) at the critical pont (8.35) where

u2
cr D .@P=@�/S D �cr

Pcr

�cr
D GM

2rcr
; (8.52)

we can find numerically the critical point parameters and the mass-loss rate PM
from (8.33).

For finding the integralH , the following procedure has been used in [179]. The
structure of static cores is calculated for a given entropy by integrating equations of
static equilibrium (1a) in Problem 1, Sect. 9.2, and mass conservation (9.97) from
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Fig. 8.13 M as a function of
�c0 for outflowing models.
The dashed line confines the
region of stationary outflow,
the isentropes S D 14; 50 are
taken from Fig. 1 in [995]

the centre outwards at a given central density �c0. The quantity H from (8.34) is
evaluated at each step. The possibility to construct a model with static core and
stationary envelope outflow analogous to (8.45) requires the following conditions:

1. There must be a shell extended along the radius and havingH 	 const: > 0 and
a mass much lower relative to the static core mass. The reason is that in a model
with outflow there is an intermediate region with u � us where hydrostatic
equations are valid with fair accuracy. The structure of the outflowing star must
not depend on the fitting point of two solutions. The constancy of H and a low
value of the shell mass will determine the outflowing model unambiguously at
given S and �c0.

2. The critical radius rcr from (8.52) must exceed the fitting point radius rb (see
(8.46)).

3. The mass ml of the layer rb < r < rcr must be much smaller than the core
massM . This allows use of the Bernoulli integral (8.34) without self-gravitation.
The same condition determines a quasistationary character of outflow with the
dissipation time of the star 
 � 
h (see (8.50)).

4. The velocity at the fitting point must be low, u2
b
=H � 1, which is analogous to

the condition 1.
5. Besides condition 3, neglecting the self-gravitation of matter in the flow requires

that the inequality

�H D G
Z rcr

rb

dm

r
� H (8.53)

be satisfied. The outflowing models presented in Fig. 8.13 satisfy all the above con-
ditions. The dependenceH.r/ for static models with various central densities rc0 at
S D 30 shown in Fig. 8.14 illustrates the outflowing model appearance. The curve
H.r/ has a plateau for models with

�c; min D 8:0 � 10�10 < �c0 < 3:4 � 10�5 g cm�3 D �c; max (8.54)

and the value �c0 D �c; max corresponds to the fall of the static curve M.�c0/.
Outflowing models do not exist to the right of this fall, while to the left an outflowing
solution exists together with much more massive static unstable solutions.
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Fig. 8.14 Successive shapes of the dependence of H D E C P=��Gm=r on the current radius
of static model along the isentrope S D 30 for various �c0 (qualitative picture). Shown are only
portions of H.r/ for which H > 0

Table 8.8 Models of stationary outflowing isentropic stars
S
<

�c0, g cm�3 M
M

ˇ

rb
r
ˇ

Hb
<

�b , g cm�3 Tb, K 	b

30 8.7(�6) 0.358 629 1:2.4/ 7.8(�12) 2100 1.13
30 2.7(�9) 1.594 3178 9300 7.2(�13) 1820 1.27
30 8.05(�10) 1.460 4227 1:3.4/ 1.0(�12) 1840 1.74
24 1.8(�6) 0.103 218 2503 9.5(�12) 1897 1.47
24 1.0(�6) 0.107 274 4000 6.6(�11) 1860 1.49
24 5.1(�7) 0.094 365 8800 2.6(�11) 1990 1.42

The subscript “b” denotes quantities at the fitting-point, 	 is the molecular
weight, ˇg D Pg=P (see (Sect. 1.1, Vol. 1)), �=M is the specific total energy
with respect to molecular hydrogen.

Table 8.8

ˇgb
rcr
R

ˇ

M
M

ˇ

=yr

103ml
M

103�H
H

103u2b
H

E=M

1012 erg g�1

0.963 1400 4.5(�5) 3 0.8 0.3 4.16
0.759 4720 3.8(�4) 6 1 5 1.50
0.770 6700 1.1(�3) 30 4 7 1.61
0.969 420 7.5(�6) 0:4 0.2 0.8 1.50
0.958 571 9.3(�6) 0:8 0.4 1 1.18
0.987 882 2.5(�4) 20 4 8 1.39

Parameters of some outflowing models for which conditions 1–5 hold are given
in Table 8.8. Minimizing the quantity

� D ml

M
C �H

H0

C u2
b

Hb

(8.55)
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yields the fitting point for models from Table 8.8 and Fig. 8.13, though the results
are not very sensitive to the fitting-point shift along the plateau portion of H.r/.
The dissociation energy is 2:15 � 1012 erg g�1 for hydrogen, the ionization energy
is 13 � 1012 erg g�1; all the models except the first in Table 8.8 have a negative
energy with respect to atomic hydrogen. Comparison reveals that the outflow region
along the �c0 axis in Fig. 8.13 is proportional to the height of the fall on the curve
M.�c0/ along the M axis (Fig. 8.12). The fall height is maximized at S D 30,
when the region of outflowing models is maximum. The disappearance of the fall
on the curves M.�c0/ from [995] determines the upper and lower boundaries for
outflowing models in Fig. 8.13.

The cores of stars with stationary outflow seem to be dynamically stable, though
rigorous methods for stability studies are not yet available. An outflowing star
may transform into a static one with a lower mass and higher density, contrary to
bipolytropic models where, for the case of a star with stationary outflow, � always
decreases in time (� 
 M=R3 
 M 2n1=.3�n1/; n1 < 3, see (8.40)), and the star
eventually dissipates.

The realization of such outflowing models in nature requires that the protostar
matter be additionally heated at sufficiently early phases of protostar formation by
cosmic rays or radiation emitted by hot stars forming in the neighbourhood.

8.3.3 Models for Outflowing Coronae of Young Stars

The observed shapes of emission linesH andK of ionized calcium and Balmer lines
of hydrogen from T Tauri stars correspond to outflow velocities above 100 km s�1.
These values exceed by far the thermal velocities at temperatures of possible for-
mation of these lines [594]. To account for this fact, together with other observable
properties of young stars, a model of outflowing corona where cold and dense con-
densations form owing to the thermal instability development has been examined in
[181]. After being formed, the condensations undergo a slowdown under the effect
of stellar gravity and produce the observed line emission.

It is assumed that the corona formation is due to the conversion into heat of the
mechanic energy flow from the convective envelope. The magnetic field plays an
important role in this conversion. In analogy with the most simple models for the
solar corona [798], we assume the corona of a young star to be isothermal inside
and adiabatic outside. The quantity

R
dP=� in the Bernoulli integral (8.34) has the

form [181, 617]

Z
dP

�
D E C P=� � TS at T D T0 D const:

D E C P=� at S D S1 D const: (8.56)
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Accordingly,

H D Hi D .u2=2/C E C .P=�/ � T0S � .GM=r/ at T D T0 (8.57)

D Ha D .u2=2/C E C .P=�/ � .GM=r/ at S D S1: (8.58)

The continuity condition for u, � and T at the point r D r1, where the transition
from isothermal flow to an adiabatic one occurs, yields the relation

Ha D Hi C T0S1: (8.59)

The critical point is assumed to be located in the isothermal region where, instead
of (8.52), we have

u2
cr D

�
@P

@�

�
T

D GM

2rcr
: (8.60)

With the temperature of the isothermal corona T0 and the integral Hi from (8.58),
using (8.60), we may find the critical point parameters ucr, �cr, rcr and the mass flow
PM from (8.33). In order to determine the matter velocity at infinity, the entropy S1

should be specified at the fitting point r D r1:

u21 D 2.Hi C T0S1/: (8.61)

The integral Hi is determined by the specified corona luminosity. To calculate the
luminosity when Hi is known, we have to specify a mechanism for corona acceler-
ation and find the temperature, density and velocity distribution in it.

The rapid conversion of the mechanical energy flow Q.erg s�1/ into heat is as-
sumed to take place at radius rb nearly equal to the stellar photosphere radius rph.
The plasma parameters are almost discontinuous at this point, and the temperature
is assumed to increase from the photosphere value Tph to the corona value T0. The
conservation laws hold at the heat-discontinuity point [151]:

�b�ub� D �bCubC; (8.62)

Pb� C �b�u2
b� D PbC C �bCu2

bC; (8.63)

u2
b�
2
C Eb� C Pb�

�b�
C Q

4�r2
b
�b�ub�

D u2
bC
2
C EbC C PbC

�bC
: (8.64)

The quantities to the left of the discontinuity point (closer to the star) are labeled
here by the subscript .b�/, to the right by .bC/. From (8.58) and (8.33) we have
two other equations:

�bCubC D
PM.Hi ; T0/

4�r2
b

; (8.65)

u2
bC
2
C EbC C PbC

�bC
D Hi C T0Sb C GM

rb
: (8.66)
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With the thermodynamic functions P.�; T /; E.�; T /; S.�; T / for the ideal gas in
equilibrium with radiation, taking into account the incomplete ionization states (see
Sect. 1.1, Vol. 1) and given values

Tb� D Tph; TbC D T0; rb D rph; Hi (8.67)

the relations (8.62–8.66) represent five equations for five unknowns

�b�; �bC; ubC; ub�; Q: (8.68)

The solutions to this system for hydrogen plasma transparent for radiation and char-
acterized by the above thermodynamic functions (see [179]) have been obtained in
[181, 182] for several sets of the parameters (8.67) and are given in Table 8.9.

A part (a half or less) of the corona X-ray emission Lcor strikes the stellar sur-
face and heats it, forming a hot chromosphere layer with Tch D (5–10) � 104 K in
addition to the “cold” chromosphere layer with Tch0 	 104 K owing its origin to
heat conducting effects. The hot chromosphere parameters: temperature Tch, density
�ch, luminosity Lch and thickness hch are calculated either from the energy balance
of a chromosphere layer with uniform density under the assumption of minimum
chromosphere density providing the given cooling rate ([162], first two lines in
Table 8.9), or from the condition of equilibrium between the chromosphere and
corona pressures ([163], the final three lines in Table 8.9).

The hot chromosphere of T Tauri stars examined in [181] has been discov-
ered by ultraviolet observations from the IUE satellite, and its luminosity has been
found to be 
0:3Lˇ in the 1,150–3,100 A range [408] for RU Lupi. Chromosphere
and corona parameters and the expected X-ray emission of this star have been eval-
uated in [182] (last three lines in Table 8.9). Observations in the soft X-ray range

Table 8.9 Model parameters of outflowing T Tauri stars

rb
R

ˇ

Tph,
103 K

T0,
106 K

�bC

; 10�13

g cm�3 ubC

, km s�1
rcr
R

ˇ

ucr , km s�1
�cr; 10

�14

g cm�3

PM; 10�8

M
ˇ

/yr

3.5 4.9 1.0 7 67 5.7 129 10 6
2.0 4.9 1.6 6 72 3.6 163 8 2
2.4 4.43 2 1 0.9
2.4 4.43 2.4 1.2 2
2.4 4.43 2.4 1.7 3

Lph is the photosphere luminosity, Mcor is the corona mass at rb < r < rc

Table 8.9

Lph

L
ˇ

Lcor
L

ˇ

Mcor
M

ˇ

Tch,
104 K

�ch; 10
�11

g cm�3
Lch
L

ˇ

hch,
km t1, s t2, s

6.36 108 3(�11) 8.9 2 54 1.6 41 9(4)
2.06 14:6 5(�12) 4.6 2 7:3 1.85 108 4(4)
2 0:6 6.0 0.33 0:3 10
2 2 5.8 0.5 0:7 10
2 4 6.0 0.67 1:0 6
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from the Einstein [381, 407] and ROSAT [739] satellites have revealed a moderate
luminosity LX � 1031 erg s�1 of T Tauri stars which is well below the values of
Lcor given in Table 8.9 (see reviews [692,789]). Observations from the Astron satel-
lite provide evidence for a strong RU Lupi variability in the X-ray range of 2–7 KeV
[420]. The weak observed values of the X-ray luminosity of young stars might be
due to the strong X-ray absorption in the envelope around them, and their real X-ray
luminosity Lcor might exceed by far the observed values so that Lcor � Lch, in
accordance with [182].

The heat discontinuity (8.62–8.64) for models from Table 8.9 occurs at den-
sities well below the photosphere density �b� � �ph and optical thicknesses

 D 10�2–10�3 [181]. In the temperature range of T D (1–3) � 106 K the cool-
ing function �.T / erg cm3 s�1 for transparent plasma with normal composition
decreases with temperature [313], giving rise to instability with respect to the for-
mation of condensations with lower temperature and higher density.3 The time for a
condensation to form is

t1 	 E

n2�.T /
: (8.69)

The minimum size of condensation is determined by the heat conductivity and
equals

lmin 	 1

n

q
1:8 � 10�6T 7=2=�.T / 	 4 � 107 cm

for n D 1011 cm�3; T D 106 K: (8.70)

Thermal instability in the solar corona does not develop because of a low density
and large value of lmin. The time of thermal instability development t1 is given in
Table 8.9 along with the time t2 for outflowing gas to travel through the characteris-
tic size of a corona [181]. The condition t2 � t1 means that the thermal instability
has the time to develop, and cold dense condensations emerge.

The existence of dense chromospheres and coronae in T Tauri stars requires a
theoretical explanation for formation in stars with large convective envelopes of
a powerful mechanical energy flow comparable with photosphere flow. This phe-
nomenon may have an explanation from the thermodynamical standpoint under the
assumption of a high temperature Tm in the region where the mechanical energy
flow forms. The efficiency of conversion of the heat flow into mechanical energy
flow in a star treated as a heat engine [105] does not exceed

� <
Tm � Tph

Tm

; (8.71)

and at Tm � Tph may be close to unity.

3 The quantity�.T /ne.ne CnH / erg cm�3 s�1 represents the energy amount emitted by 1 cm3 of
plasma in 1 s; �.T / is evaluated in [313].
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If the coronal emission of T Tauri stars is equal to or greater than the photosphere
luminosity, it may resolve, in part, a contradiction appearing in determining the age
of young stellar clusters [105, 167]. The age determined from the turning point of
massive stars off the main sequence (see Sects. 9.2 and 9.3) turns out to be less
than the age determined as the time of contraction of low-mass stars. These ages are
(4–8)�108 and 2�109 yr for Hyades; 6�106 and 2�107 yr for NGC 2264, respec-
tively [588]. When the total bolometric luminosity is several times greater than the
photospherical one, this must be taken into account in evolutionary calculations, and
the second quantity will then decrease in such a way as to weaken or even remove
this contradiction.

8.3.4 On the Phenomenon of Fuor

Several stars are known at present which rapidly increase their luminosity by about a
factor
100 and keep this high level for many years. FU Ori was the first star of this
kind and gave its name to the phenomenon of fuor [23]. The latter may be attributed
to the birth of a young star with sufficiently high massM > 3Mˇwhich completes
the accretion stage, evaporates its dust envelope after hydrogen ignition, and appears
immediately near the main sequence ([622,1063], see Sect. 7.2). This simple expla-
nation encounters difficulties when applying to the fuor of V1057 Cyg where a T
Tauri star had been observed before the outburst [469]. The masses of T Tauri stars
are well below the estimates of stellar masses for FU Ori and V1075 Cyg [800] after
outburst. To avoid these difficulties, one may assume that V1075 Cyg is a binary
containing a T Tauri star and a young star with significantly higher mass which pro-
duces the phenomenon of fuor [105,180]. At the stage of dust envelope the massive
star was emitting mostly in the infrared range, while in the optical range its emission
was weaker than that of the neighbouring T Tauri star. At present the T Tauri star
is essentially, by a factor 
100, weaker than its companion, but we may still expect
its discovery which is facilitated by strong emission lines, ultraviolet excesses and
other peculiarities of T Tauri stars [800]. With the aid of speckle-interferometry ob-
servations the T Tauri star has been found to be a binary itself, its companion being
an infrared star with insufficiently studied properties [337, 455].

Other fuor models are based on phenomena of non-stationary disc accretion,
strongly increasing the star luminosity. In this case, we may expect that the star
will return in reasonable time to its previous state.

Problem. Find the equatorial acceleration of a convective star due to buoyancy
of eddies.

Solution 8.1. [107, 332]. The eddies, whose projection !˝ D ! sin  on the di-
rection of angular velocity � k OZ is positive, are under the action of a larger
centrifugal force Fcf than those with negative projection
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Fcf 	 .˝r C ˝r0/
2

r
sin ; (8.72)

where r is a spherical radius, r0 is the radius of the eddy.
Larger Fcf require smaller pressure P inside the eddy as well as density in order

to be in equilibrium with the surrounding medium. Smaller density means larger
buoyancy force for rising and smaller sinking force for descending convective ed-
dies. All this leads to a net flux of angular momentum in the direction of entropy
decrease, i.e., to the surface of a star with a convective envelope. The part of the
pressure deficit inside the eddy, linear to !, is connected with the part of the cen-
trifugal potential��cf D ˝!r2

0 sin2  . The density difference in eddies rotating in
opposite directions is obtained from the Bernoulli integral taking into account the
enthalpy, the gravitational and centrifugal potentials (see Sect. 6.2.3, Vol. 1), and is
equal to

��

�
D 2��cf

v2
s

D 2 sin2 
˝!r2

0

v2
s

: (8.73)

The density is smaller for eddies with positive projection of rotational velocity
on the direction of stellar rotation velocity �, v2

s D 5P=3� is the sound velocity
squared. The difference of convective velocities v, corresponding to the eddies with
opposite rotation follows from (8.73), and the relations for a convective velocity,
taking into account the buoyancy acceleration (see Sect. 3.1, Vol. 1)

1

2
�v2 D 1

2
�r� dr2g C 1

2
g��dr; (8.74)

with dr D l=2, and is given by

2v�v D l Gm
r2

˝!r2
0

v2
s

sin2 : (8.75)

The velocity difference (8.75) corresponds to the projection on the equatorial plane
of the flux of angular momentum to stellar surface PJout through the area unit

PJout 	 �v�!r2
0 sin : (8.76)

Differential rotation produced by angular momentum flux (8.76) is smoothed by
convective viscosity leading to the angular momentum flux Jin inside

PJin 	 �convr
2 sin2  jr˝j: (8.77)

In the stationary state PJout D PJin. Supposing that the radiative core inside the star
(Sun) rotates rigidly with ˝ D ˝0 and jr˝j 	 �˝=h, where h is the thickness
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of the convective zone, we obtain the following estimation for the equatorial
acceleration of the star ı

ı D ˝eq �˝pole

˝
	
�
Gm

rv2
s

��r0
r

�2 h

r

�!r0
v

�2

: (8.78)

This estimation is sensitive to the choice of vs and gives, for the Sun [107],
ı D 2–20% for v2

s D 1014–1013 cm2/s2.



Chapter 9
Nuclear Evolution of Stars

After seminal studies [878], the calculations of stellar evolution have been
performed by various groups of researchers in a wide mass range with use of
increasingly more powerful computers. There is presently (2001) a general under-
standing of the nuclear evolution of a star from the main sequence (MS) to a white
dwarf, neutron star, or black hole formation. However, although much effort has
gone into solving these problems, we now have but a crude evolutionary scheme,
and many details are not sufficiently reliable. The results of calculations made by
diverse authors, though qualitatively similar, differ in detail. A major reason is the
uncertainty in most of the physical grounds of the stellar evolution theory, such as
convection, mixing, rates of nuclear reactions at low energies, and others. This might
also be due to computational difficulties arising from the accumulation of numerical
errors which cause different numerical schemes for solving equations of static equi-
librium, thermal evolution, and heat transfer (see Chap. 6, Vol. 1) to give different
results sometimes. With regard to this last point, the situation is less dramatic than
in the theory of two-dimensional collapse where the use of different numerical
schemes, e.g., Lagrangian or Eulerian, leads to qualitatively different results (see
Sect. 7.3).

Detailed evolutionary calculations have been made by Japanese researchers
[462], Schwarzschild and Harm [456–458,883–887], Iben [485–497,500–502,504–
508], Paczynski [769–776, 778–781], and Maeder with co-authors [276, 663–665,
867]. Important results have been also obtained by Kippenhahn et al., see review
[468], Stothers et al. [937–939], Soviet authors [134, 672, 724, 1004–1006, 1017,
1018], and others; see also [569, 870].

Observational data for stellar parameters come mainly from binary stars, where
absolute values of masses and radii can be determined [27].

G.S. Bisnovatyi-Kogan et al., Stellar Physics: 2: Stellar Evolution and Stability,
Astronomy and Astrophysics Library, DOI 10.1007/978-3-642-14734-0 3,
c� Springer-Verlag Berlin Heidelberg 2010
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9.1 Sources of Uncertainty in Evolutionary Calculations

9.1.1 Convection

Since there is no strict quantitative theory of convection (see Chap. 3, Vol. 1) to
date, a phenomenological description based on the mixing-length theory is usually
used in evolutionary calculations.1 Several authors specify differently the uncertain
parameter in this theory, the mixing length l . Iben [485, 492, 507, 943] defined the
mixing length by the scale of nonuniformity in the density distribution

l D ˛j�=r�j D ˛H�; ˛ D 1=2: (9.1)

In his later studies [85, 493, 495, 496, 608], he used the pressure scale height

l D ˛jP=rP j D ˛Hp; 0:4 < ˛ < 1:2: (9.2)

In [937], the relation (9.1) was used with various ˛. For some cases (low densi-
ties, high luminosity and opacity), using (9.1) overestimates the effectiveness of
convective transport. In [770, 773, 778], the relation (9.2) was used with ˛D 1. In
[134], the convection was described in the same way. If (9.2) is applied, an inverse
density gradient may arise in the outer envelopes of stars with Tef � 6;000K from a
limited capacity of the heat transfer by convection. The above methods for describ-
ing convection have been used only in convective envelopes of stars. In convective
cores, where densities are sufficiently high, the approximation of adiabatic convec-
tion has been used. As pointed out in [134], this approximation may be no longer
valid, for example, near the end of the hydrogen burning and formation of a radiative
helium core. The approximation of adiabatic convection is usually used for burning
shells (see below), where it is too crude because the energy flow may vary by or-
ders of magnitude within the limits of the pressure scale height. The effect of the
non-adiabaticity in this region on evolutionary tracks is not yet studied.

9.1.2 Semiconvection

A star’s departure from the MS, where it has been chemically homogeneous, results
for stars with M >10Mˇ in formation above the convective core of a zone char-
acterized by a very small excess of the temperature gradient �radD d lnT =d lnP
over the adiabatic gradient �2D .@ ln T =@ lnP /S (8.22). This zone is called the in-
termediate convective or semiconvective zone. The reason for its formation with
increasing stellar mass is a more important role of the radiation pressure which

1 The description of convection in [462] is even more simplified.
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lowers ra in comparison with what we see in the case of a gas without radiation.
The small difference between �2 and �rad and the proximity of this zone to the con-
vective core results in significant uncertainties in computations. Agreement is not
yet achieved on the criteria for convective stability in a chemically inhomogeneous
medium. Both criteria are used and considerably affect the mixing between the core
and semiconvective zone. For a better description of this zone, more complicated
models based on the consideration of physical processes inside the semiconvective
zone are probably needed [926] (see Sect. 3.1.3, Vol. 1). Calculations made in [942]
using both Schwarzschild and Ledoux criteria, and comparison with observations
including test for SN 1987 A, gave support for the better validity of Ledoux crite-
rion of convection, which takes into account a stabilizing influence of the gradient
of chemical composition, so that instability sets in when (see Sect. 3.1.2, Vol. 1)

dS

dr
�
�
@S

@�

�
�;P

d�

dr
< 0: (9.3)

For the case of the Ledoux criterion (9.3), a radiative shell that impedes the inflow
of additional matter into the convective core arises between this core and the semi-
convective zone [724]. The Schwarzschild criterion (9.2), which does not take into
account the stabilizing influence of the chemical gradients, and where the instability
sets in at (see Sect. 3.1.1, Vol. 1)

dS

dr
< 0; (9.4)

implies a contact between the semiconvective zone and convective core, but the full
mixing approximation cannot be applied, and a concentration gradient is supposed
to be established with �2 D �rad [672]. Calculations based on diverse criteria exhibit
uncertainties within�10% at the hydrogen-burning phase and essentially larger dif-
ferences on later evolutionary stages. This is true, in particular, with regard to the
position in the HR diagram of massive stars with 10 � M � 40Mˇ in the core
helium-burning phase: for the case of the criterion (9.3), the major part of helium is
consumed when the star is a red supergiant with Tef � 5000 K, while at (9.4) the
star spends most of the time of helium burning in the region of blue supergiants with
T � 104 K. Stars with mass M � 40Mˇ always exhaust their helium while in the
red supergiant region, and the choice of criterion turns out to be of little importance
here [672].2 The subsequent evolution of massive stars, from the carbon burning
onwards, continues in the red supergiant region and is independent of the choice of
convection criterion [672].

Chemical mixing in convective regions, including the semiconvective zone, may
be consistently treated by diffusive description (P. Eggleton, Programme STAR.
Private communication, 1994), [347], see also Chap. 6, Vol. 1.

2 See, however, [938], Fig. 9.18 and Table 9.8.
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9.1.3 Convective Non-Locality and Overshooting

The convective elements are produced in an unstable region, being accelerated by
the buoyancy force. They penetrate into the convectively stable region beyond (over-
shooting), thereby extending the mixing zone.

The overshooting length, however, depends strongly on how it has been de-
termined. Calculations have yielded d � 0:15Hp in [663, 901] (see also Chap. 3,
Vol. 1), whereas in [296], where a statistical model of turbulent diffusion is used,
d=Hp approaches 0.7. Diverse cases with 0 � d=Hp � 0:7 have been considered in
calculations [939] treating the evolution of massive stars with 15 � M=Mˇ � 120
before the exhaustion of hydrogen in the centre. The major effects of overshoot-
ing and additional mixing should be expected for the thin shell-burning phase. The
mixing-length theory is not good enough for a description of convective penetra-
tion and overshooting, and a nonlinear approach is needed [1067], see also Chap. 3,
Vol. 1.

9.1.4 Opacity and Nuclear Reactions

The development of atomic and nuclear physics has allowed both theoretical and
experimental determination of the opacity of matter, and nuclear reaction rates (see
Chaps. 2 and 4, Vol. 1). Contrary to convection, treating the opacity implies dealing
with fairly rigorous theories. The computations resulting from a large number of
lines are nevertheless so voluminous that corrections to opacity tables are regularly
published [19,254,312,315,316]. Revision of these tables [20,512–514,837] led to
a considerable increase of opacity in the regions of heavy element line formation.

Theoretical studies are of little help for accurate determination of nuclear reaction
rates, and the absence of strong interaction theory makes it necessary to use exper-
imental data. These are often difficult to obtain in the low-energy range which is of
interest for astrophysicists. Obtaining new data leads to changes in rates of many
reactions (see reviews [392,393,459]). Large uncertainties arise also in calculations
of nuclear reaction screening at high densities because of the necessity to solve a
many-body problem, for which there exist only approximate and not very accurate
approaches (see Chap. 4., Vol. 1). Such errors in combination with the very strong
dependence of the reaction rates on parameters may be the cause of the contradic-
tion between the theoretical and observational neutrino flux from the Sun, which as
claimed in [319, 320, 340] could be removed by improving the input nuclear data.

The choice of formulae and tables for opacity and also for nuclear reaction
rates has often to do with the individual approach of the researcher making the
evolutionary calculations.



9.1 Sources of Uncertainty in Evolutionary Calculations 65

9.1.5 Methods for Calculating Envelope

If the envelope is assumed to be in thermal equilibrium, it is usually calculated
separately from the core, and a fitting procedure is used to obtain a fully self-
consistent stellar model (see Chap. 6, Vol. 1). The envelope mass and fitting tech-
niques may be adopted in various ways. The static envelope is taken to be 3% of
the stellar mass in [134, 570], yet in [570] the envelope models are calculated be-
forehand and their parameters are obtained with the aid of interpolation, while in
[134] the envelope models are calculated for each stellar model separately. The en-
velope mass is 5% of the stellar mass in [1017, 1018], and 10% and even more in
[770, 771, 773, 778]. Calculations of ionization equilibrium differ in detail as well,
which results in differences in the equation of state even for the same chemical
compositions. All these details affect the evolutionary tracks.

9.1.6 Other Factors

Differences in initial chemical compositions and masses of stars in diverse models
create difficulties in comparing different authors’ results. In various papers, masses
are taken to be

M=Mˇ D 0:8; 1:5; 3; 7; 10; 15 in [770];
1:25; 1:5; 2:25; 3; 5; 9; 15 in [492];
16; 32; 64 in [1018];
30 in [724];
9; 30 in [134];
15; 30 in [937];
3; 5; 7 in [85];
15; 25 in [608];
0:8; 0:9; ; 1; 1:25; 1:5; 1:7; 2; 2:5; 3; 4; 5; 7;

9; 12; 15; 20; 25; 40; 60; 85; 120 in [276];
1; 2; 4; 8; 16; 32; 64 in [809];

(9.5)

and initial chemical compositions

.xH; xHe; xZ/ D .0:708; 0:272; 0:02/ in [486]–[492];
.0:602; 0:354; 0:044/ in [570];
.0:7; 0:27; 0:03/ in [770];
.0:75; 0:22; 0:03/ in [134, 724];
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.0:7; 0:28; 0:02/ in [608];

.0:68; 0:3; 0:02/ in [867];

.0:756; 0:243; 0:001/ in [867];
0:62 � xH � 0:739; 0:021 � xZ � 0:044 in [937];
0:71 � xH � 0:78; 0:001 � xZ � 0:02 in [85]:

(9.6)

The stellar rotation and magnetic field may significantly influence the nuclear
evolution, giving rise to meridional circulation and consequent additional mixing.
Calculations incorporating phases from the MS to the final evolutionary stages do
not deal with these factors, in general.

The discrepancies caused by using different calculation schemes (see Chap. 6,
Vol. 1) or versions of the same scheme may be small for chemically homogeneous
models on the MS. Accumulated numerical errors may become significant, and the
results become sensitive to the applied numerical scheme in late evolutionary stages,
when �1;000 evolutionary steps are required. This problem has not been studied so
far. The chaotic appearance of loops in the HR diagram for evolutionary tracks of
massive stars impose an element of stochasticity in the stellar evolution problem.

The mass loss is an important factor that influences the evolution of stars. In the
absence of well-developed theory for stellar outflow, the mass losses have been
included phenomenologically (with the exception of an attempt to obtain a self-
consistent solution in [134]) in evolutionary calculations for massive [276,664,665,
867, 938, 1021] and intermediate-mass stars [457, 501, 874, 876], giving rise to nu-
merous uncertainties.

9.2 Evolution of Stars in Quiescent Burning Phases

The results of evolutionary calculations are usually represented in the form of evo-
lutionary tracks in the Hertzsprung–Russell (HR) diagram where the logarithm of
the effective temperature lgTef is plotted on the abscissa, the luminosity logarithm
lgL on the ordinate. By definition, the effective temperature is connected with L
and the stellar radius R, corresponding to a total stellar mass M , as

L D �acR2T 4
ef : (9.7)

Stars with mass M >0:8Mˇ for which the nuclear evolution length does not
exceed the cosmological time of �2� 1010 years are not degenerated on the MS of
chemically homogeneous stars with normal composition, corresponding to the solar
surface (Table 1.1, Vol. 1), or depleted in heavy elements composition. The evolution
of a star is accompanied by an increase in its central density and approach to a state
of degeneracy. For the case of low-mass stars with M � 2:25Mˇ, the helium core,
which forms after hydrogen in the centre, has been exhausted and the star has left the
MS, turns out to be degenerate. For stars of intermediate mass 2:25 < M=Mˇ � 8,
the helium core is not degenerated, but a carbon core forming after helium has been
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exhausted becomes degenerated; for M D (8–10)Mˇ, the onset of degeneracy is
in the phase of oxygen–neon–magnesium core. In massive stars with M >13Mˇ,
the degeneracy arises about only at final evolutionary phases with a large neutrino
luminosity L��Lopt.� L/ [494, 1032, 1033].

After the degenerate core formation, thermal instabilities develop in stars, leading
to strong and rapid changes in energy release rates and to essential, though not very
pronounced, changes in Tef and L. These instabilities include helium outbursts in
the degenerate core of low-mass stars [458, 883, 887], outbursts in nondegenerate
helium shell source in the presence of degenerate carbon core in low- and middle-
mass stars [456, 884, 885, 1034]. A particular role belongs to outbursts in carbon-
degenerate cores that may result in supernova explosions. A variety of simplifying
conditions is often used in calculations of these evolutionary stages [772, 838, 953,
1004] because the conventional schemes which gave good results for early stages of
stellar evolution (see Chap. 6, Vol. 1) prove inefficient or very time-consuming.

An instability, probably of a thermal origin, manifested in a nonregular pattern of
loops in the HR diagram may occur in nondegenerate stars as well ([271, 522, 651];
see below). As the development times are essentially larger and overfalls in energy
release smaller in that case, this instability does not create any serious difficulties in
calculations.

9.2.1 Iben’s Calculations

The first large series of evolutionary calculations for stars with diverse masses was
published by Iben in 1964–1967 [486–492]. Calculations have been made by the
Henyey method with fitted envelope (see Chap. 6, Vol. 1), for initial chemical com-
position, xH D 0:708, xHe D 0:272, and xZ D 0:02. The convection in the envelope
has been calculated with a mixing length equal to half of the density scale height
l DH�=2. The Schwarzschild condition (3.1.3) that does not include the chemical
composition gradient has been adopted as the convection criterion. The main re-
sults of these calculations are given in Figs. 9.1–9.5 and Tables 9.1 and 9.2. Models
with M >3Mˇ have been calculated for stages preceding helium exhaustion in the
centre, and with M <3Mˇ for stages before to core helium ignition. Calculations
for the evolution of a 5Mˇ star are extended further along the shell helium-burning
phase. For stars withM � 9Mˇ, portions between dots in Figs. 9.1–9.4 correspond
to the following evolutionary phases:

1–3 Core hydrogen burning (MS)

3–4 Overall gravitational contraction; this phase is absent
for the star with M D 1Mˇ

4–5 Formation of hydrogen-burning shell

5–6 Hydrogen burning in a thick shell

6–9 The diminution of the hydrogen-burning shell thickness
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Fig. 9.1 Evolutionary tracks
for stars of mass 1, 1.25, 1.5
M

ˇ

and chemical
composition from (9.6).
Luminosity L is in L

ˇ

and
effective temperature is in K.
Each number represents
corresponding evolutionary
lifetime from Table 9.1. The
time t1 corresponds to the
stage of gravitational
contraction to the main
sequence (MS). The straight
line is that of constant radius
R, from [560]

Fig. 9.2 The same as in Fig. 9.1 for M D 2:25; 3M
ˇ

, from [486, 491]

9–10 Quick propagation of convection from the surface shells inward

10–13 Red-giant phase

13 Onset of the 34He! 12C reaction in the core

13–15 The first phase of core helium burning
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Fig. 9.3 The same as in Fig. 9.1 for M D 5M
ˇ

, from [487]

Fig. 9.4 The same as in
Fig. 9.4 for M D 9M

ˇ

,
from[488]

15–16 Disappearance of the deep convective envelope,
rapid contraction

16–18 Main core helium-burning phase

20–21 Overall contraction with helium exhaustion in the centre
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Fig. 9.5 The same as in Fig. 9.1 for M D 15M
ˇ

, from [489]

Table 9.1 Evolutionary lifetimes

1 M
ˇ

1.25 M
ˇ

1.5 M
ˇ

2.25 M
ˇ

3 M
ˇ

5M
ˇ

9 M
ˇ

15 M
ˇ

Point 109 yr 108 yr 107 yr

1 0:0506 0.02954 0.01821 0.058550 0.024586 0.15800 0.0232171 0.0138224
2 3:8209 1.4220 1.0277 2.7988965 1.38921 4.01899 1.435125 0.663253
3 6:7100 2.8320 1.5710 4.8502987 2.23669 6.60443 2.129274 1.024045
4 8:1719 3.1044 1.652 5.0150323 2.34089 6.82168 2.189700 1.046745
5 9:2012 3.5524 1.8261 5.2017959 2.40119 6.83608 2.193710 1.048983
6 9:9030 3.9213 1.9666 5.3846801 2.44420 6.95886 2.198813 1.050644
7 10:195 4.0597 2.0010 5.4459513 2.47004 7.00750 2.206125 1.054302
8 . . . 4.1204 2.0397 5.4736797 2.47865 7.02016 2.209479 1.113604
9 . . . 4.1593 2.0676 5.4947244 2.48429 7.02709 2.212819 1.154207
10 10:352 4.2060 2.1059 5.5157054 2.48925 7.03418 2.213585 1.192760
11 10:565 4.4347 2.1991 5.6167250 : : : : : : : : : 1.208043
12 10:750 4.4505 2.2628 5.7773918 2.50728 : : : 2.215236 1.210199
13 10:875 4.5349 : : : 5.8986139 2.53163 7.08275 2.220137 1.211368
14 . . . : : : : : : : : : 2.55850 : : : 2.243431 : : :

15 . . . : : : : : : : : : 2.78295 7.57595 2.267412 : : :

16 . . . : : : : : : : : : 2.94233 7.77057 2.273715 : : :

17 . . . : : : : : : : : : 3.06968 : : : 2.277173 : : :

18 . . . : : : : : : : : : 3.19043 8.68987 2.314993 : : :

19 . . . : : : : : : : : : 3.23566 : : : 2.567444 : : :

20 . . . : : : : : : : : : 3.26323 8.78291 2.623007 : : :

21 . . . : : : : : : : : : : : : 8.79060 2.625870 : : :

References [490] [490] [490] [491] [486] [487] [488] [489]

21–22 Helium burning in a thick shell

23 Neutrino emission out of the core, helium burning in a
thin shell
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The tracks between points 21 and 23 in Fig. 9.3 are topologically equivalent to those
obtained from similar calculations [565, 566].

Intervals 1–4 in Fig. 9.5 for M D 12Mˇ correspond to the same evolutionary
phases as for lower masses, other phases are:

4–7 Shell hydrogen burning
7–10 Helium burning in the core and hydrogen burning in

the shell
11–13 Indent rapid expansion of the envelope

The relevant evolutionary lifetimes are listed in Table 9.1. Point 1 is determined
by the time of gravitational contraction to the MS.

With stellar mass increasing from 1 to 1:25Mˇ, the radiative core with burning
hydrogen transforms into a convective core. This is caused by the transition from the
proton–proton reaction of hydrogen burning, to its burning in the carbon cycle (see
Chap. 4, Vol. 1), the latter having a steeper temperature dependence. In the presence
of a radiative core, the overall contraction phase is absent for M D 1Mˇ, and a
smooth transition from core H to shell H burning occurs.

As can be seen from Table 9.2, for M D 15Mˇ the convective core mass de-
creases monotonically with time and for lower masses passes through a maximum.
The 4He burning results in the formation of 12C and 16O in the core with almost
all 4He converted into 16O for M � 5Mˇ. This result, however, is not reliable by
reason of an uncertainty in the 12C(˛; � )16O reaction rate used in [486–491].

For stars withM � 2:25Mˇ, the helium core turns out to be degenerate, and the
subsequent evolution results in a helium flash in the core. In more massive stars the
helium burning begins smoothly, without flash. As pointed out in [492], an essential
contribution in the luminosity is made near point 11 by the nitrogen-burning reaction
14N(˛; � ) 18F(ˇC�) 18O.

A total of 320 mass shells have been used in calculations, each track covered by
500–660 models.

The loops on evolutionary tracks for stars with M D 3–9Mˇ arise from the
above-mentioned thermal-like instability. This also explains an ambiguity in cal-
culating stellar models with given masses and chemical composition distributions
found in [776, 838, 839]. The ambiguity arises beyond the point where the determi-
nants obtained from solving evolutionary equations by the Schwarzschild method
or, upon linearizing the system of difference equations appearing during solving dif-
ferential equations by the Henyey method (see Chap. 6, Vol. 1), become zero. In the
case of instability, small changes in initial data drastically distort evolutionary tracks
in the region of loops. Figure 9.6 from [85] shows a strong dependence of the loop
shapes on chemical composition. Also, essential differences of evolutionary life-
times may be seen from Table 9.3. As shown in [771], the loop shapes depend not
only on physical assumptions but also on the type of computer used for running the
same program, that is, on such particulars as the number of significant digits, round-
ing schemes and other details. All these facts provide evidence for the stochastic na-
ture of the loop shapes. For massive stars withM � 15Mˇ, the appearance of loops
is associated in [1086] with the hydrogen shell outgoing beyond the boundary of the
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Fig. 9.6 Evolutionary tracks for stars with mass 5M
ˇ

and various chemical compositions, from
[85] (see Table 9.3)

chemical composition jump resulting from the previous propagation of the outer
convection zone inward before the helium exhaustion in the centre. In the absence
of such outgoing, there are no loops on the tracks of stars with M D 15 and 30Mˇ.

9.2.2 Paczynski’s Calculations

In papers published in 1970–1971, Paczynski calculated the evolution of stars for the
mass range from 0.8 to 15Mˇ up to the formation of a degenerate carbon core. The
stars withM <� 8Mˇ are then assumed to lose a significant part of their mass, thus
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Table 9.3 Evolutionary times of stars with M D 5M
ˇ

on the tracks
in Fig. 9.6 for various chemical compositions (in 107 yr)
xH 0.719 0.71 0.62 0.78
xHe 0.28 0.28 0.36 0.20
xZ 0.001 0.01 0.02 0.02

1 0.02174 0.06008 0.07035 0.21501
2 6.26784 6.44761 4.55190 9.83129
3 : : : 6.63593 4.72257 10.22774
4 : : : 6.64071 4.72685 10.24225
5 6.44162 7.14636 5.28979 11.48509
6 : : : 7.35031 5.82833 11.88947
7 : : : 7.99281 5.98230 12.06863
8 7.59015 8.19118 6.09349 13.27731
9 7.60638 8.20386 6.20085 13.45606
10 7.65546 8.21476 : : : : : :

11 7.65730 8.24283 : : : : : :

12 : : : 8.27180 : : : : : :

13 : : : 8.27629 : : : : : :

14 : : : 8.31318 : : : 13.69765

forming a planetary nebula (PN). The evolution of the PN core transforming into a
white dwarf has been calculated. In more massive stars the core reaches �1:4Mˇ,
then a thermal instability starts to develop, leading to an explosive carbon burning.
The results are published in [770–774]. Calculations have been made by the Henyey
method, the static envelope contains 10% and more of the total mass, the initial
chemical composition is xH D 0:7, xHe D 0:27, and xZ D 0:03. The convection in
the envelope has been calculated with a mixing length equal to the pressure scale
height l D Hp, the Schwarzschild criterion for convective instability has been used,
though in the absence of mixing in the semiconvective zone. The results are shown in
Fig. 9.7 from [770] and Table 9.4. Obviously, the tracks near loops and characteristic
core masses differ greatly from Iben’s results. This difference is not only due to the
thermal instability effect, but also because of differing chemical compositions and
specified mixing lengths as well.

The tracks in Fig. 9.7 for stars of mass M � 3Mˇ are extended to the carbon
ignition, through the phase of helium and hydrogen shells, where flashes occur.
A method allowing suppression of flashes and approximate calculation of the aver-
aged evolution has been used in [770, 772].3 Helium flashes occur if a degenerate
carbon core is present and will be discussed in detail in the next section. As may be

3 A modified version of Paczynski’s program allowing stable running in rapid evolutionary phases,
based on a special choice of the calculation of the derivatives for different functions in difference
equations, has been used in [779], see also Chap. 6, Vol. 1; input into luminosity due to traversing of
the boundary of chemical composition jump by the convective zone is correctly calculated in [781].
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Fig. 9.7 Evolutionary tracks
for stars with initial
composition xH D 0:7,
xHe D 0:27, xZ D 0:03, from
the MS to helium flash for
M D 0:8M

ˇ

and 1:5M
ˇ

or
to carbon ignition for
M D 3–15M

ˇ

. The
numbers indicate stellar
masses in solar units, the dots
represent the MS and models
at times of helium or carbon
ignition in the core,
from [770]

Table 9.4 Core masses as a function of stellar masses at various evo-
lutionary phases [770]

M
M

ˇ

Mcore=Mˇ

(inside hydrogen burning shell)
Helium ignition Helium exhaustion in the core Carbon ignition

0:8 0.39 : : : : : :

1:5 0.40 : : : : : :

3:0 0.35 0.51 1.39
5:0 0.56 0.95 1.39
7:0 0.83 1.45(1.02) 1.39
10:0 1.35 2.32 2.32
15:0 2.54 3.89 3.91

seen from Table 9.4, after helium exhaustion in a star with M D 7Mˇ, the convec-
tive envelope penetrates the carbon core region, thereby reducing its mass from 1.45
to 1:02Mˇ.

An extended review of the evolution of single and binary stars is given in [503].

9.2.3 Evolution of Massive Stars

The core of a massive star with M � 13Mˇ remains non-degenerate up to the final
evolutionary stages, when considerable neutrino losses cause the central region of
the star to contract.
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Evolutionary tracks of stars with M D 15 and 30Mˇ are calculated in [937]
for diverse chemical compositions (see (9.6)), the Ledoux criterion for convection
(9.3) and a variety of mixing lengths l D ˛H� , 0:4 � ˛ � 10. The opacity and
nuclear reaction rates also vary. Many tracks have the same topology for stars of the
same mass. In most cases, a star of 15Mˇ spends 17–62% of the lifetime of helium
burning in the blue supergiant region owing to the loop formation. In a star of 30Mˇ,
in the absence of loops, all helium exhausts in the red supergiant phase. This is a
characteristic property of tracks calculated with use of the Ledoux criterion. Some
tracks from [937] are shown in Fig. 9.8. For stars with 15Mˇ, no loop occurs at
certain sets of input parameters, and almost all helium exhausts in the red supergiant
phase. This might be due to the fact that the outer convective zone does not penetrate
inside, and the chemical composition jump does not form [1086].

For the tracks in Fig. 9.8, the lifetimes of hydrogen burning are �HD 1:2� 107

and 6:1� 106 yr, helium burning �He=�HD 0:10 and 0:08, the lifetime of 4He burn-
ing in the region of blue supergiants with lgTe � 4:1 is �bl=�HeD 0:37 and 0.03 for
M D 15 and 30Mˇ, respectively.

Evolutionary calculations for stars with M D 15; 30; 60Mˇ have been per-
formed in [1086] for initial chemical composition xH D 0:7, xHe D 0:27, xZD 0:03,
mixing length l DHp and static envelope mass of 5–15% of the stellar mass. The
Schwarzschild criterion (9.4) for convection has been used, although the mixing in
the semiconvective zone has not been allowed. This treatment is argued in [1086]
to be equivalent to using the Ledoux criterion (9.3). The results of calculations
are given in Fig. 9.9 and Table 9.5. The presence of loops in the HR diagram
causes stars with M D 15 and 30Mˇ to spend most of the lifetime of core he-
lium burning in the blue supergiant region. Calculations have been performed until
the exhaustion of helium in the core. The fraction of oxygen relative to carbon

Fig. 9.8 Evolutionary tracks for stars of 15 and 30M
ˇ

from the MS to the end of core helium
burning for initial chemical composition xH D 0:739, xHe D 0:24, xZ D 0:021, the Ledoux
criterion for convection, and mixing length l D 0:4H� , from [937]
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Fig. 9.9 Evolutionary tracks for stars of 15, 30, and 60M
ˇ

from the MS to the carbon ignition
in the centre for initial chemical composition xH D 0:7, xHe D 0:27, and xZ D 0:03, the Ledoux
criterion and l D 0:4HP, from [1086]

increases with the increase of the stellar mass in the course of helium burning. For
M D 15; 30; and60Mˇ, after the exhaustion of helium in the core, the weight frac-
tion of carbon is x12C D 0:4; 0:3; and 0:2; respectively. A more accurate values for
the 12C.˛; �/16O reaction rate was used here in comparison with [486–490], where
x12C was considerably lower (further refinements for this reaction rate are given in
[393], see also Chap. 4, Vol. 1).

As the envelope expands and its matter is progressively penetrated by the convec-
tive zone moving inward, the latter passes over a chemical composition jump due to
the previous hydrogen burning in the convective core. Such a penetration leads to an
increase in luminosity accounted for by the gravitational energy release in the jump
[781, 1086]

�L D dMCE

dt

�
�E � P

�2
��

�
D dMCE

dt

kT

mp

�
4

ˇ
� 1:5

�
	

�
1

�

�
; (9.8)

where MCE is the core mass inside the jump, the molecular weight � is the number
of nucleons per gas particle and ˇ � ˇg is the ratio of the gas pressure to the total
pressure. The penetration of convection from the envelope into the burning zone has
been examined in [1006].

The evolutionary calculations of massive stars have been extended to a stage
where the star loses its hydrodynamical stability, that is, to the presupernova model,
primarily, in [1033] (see also [1032]). Stars with masses M D 15 and 25Mˇ, ini-
tial chemical composition xHD 0:7, xHeD 0:28, xZD 0:02 and l DHp have been



78 9 Nuclear Evolution of Stars

T
ab

le
9.

5
E

vo
lu

ti
on

ar
y

pa
ra

m
et

er
s

of
st

ar
s

in
Fi

g.
9.

9
ta

ke
n

fr
om

[1
08

6]

Po
in

t
T

c,
K

L
c

g
cm

�
3

L
op

t

L
ˇ

L
�

L
ˇ

L
H

L
ˇ

L
H

e
L

ˇ

L
C

L
ˇ

L
g

L
ˇ

T
ef

,K
R

ph

R
ˇ

M
co

nv
M

ˇ

x
H
;c
Œx

1
2
C
;c



t e
v

yr

3.
2(

7)
5.

3(
0)

1.
8(

4)
::
:

1.
8(

4)
0

0
0

2.
99

(4
)

5
:1

5
:8

0.
7

0
1

3.
6(

7)
3.

0(
0)

1.
1(

5)
::
:

1.
1(

5)
0

0
0

3.
92

(4
)

7
:2

1
5
:8

0.
7

0
3.

9(
7)

2.
0(

0)
4.

7(
5)

::
:

4.
7(

5)
0

0
0

4.
71

(4
)

1
0
:3

4
0
:1

0.
7

0

4.
1(

7)
9.

3(
0)

3.
4(

4)
::
:

3.
1(

4)
0

0
3
:8
.3
/

2.
46

(4
)

1
0
:2

2
:5

0.
03

4
9.

6(
6)

2
4.

6(
7)

5.
1(

0)
2.

0(
5)

::
:

1.
8(

5)
0

0
2
:4
.4
/

3.
06

(4
)

1
5
:9

8
:2

0.
03

0
4.

8(
6)

4.
9(

7)
3.

3(
0)

7.
7(

5)
::
:

6.
7(

5)
0

0
1
:0
.5
/

3.
43

(4
)

2
5
:0

2
1
:8

0.
02

4
3.

2(
6)

5.
4(

7)
2.

5(
1)

3.
8(

4)
::
:

3.
5(

4)
0

0
3
:5
.3
/

2.
70

(4
)

8
:9

1
:1

1.
2(

�5
)

2.
8(

5)
3

6.
7(

7)
1.

9(
1)

2.
2(

5)
::
:

1.
7(

5)
0

0
4
:3
.4
/

3.
43

(4
)

1
3
:3

4
:3

4(
�6

)
1.

4(
5)

7.
9(

7)
1.

6(
1)

8.
3(

5)
::
:

6.
2(

5)
0

0
2
:2
.5
/

3.
88

(4
)

2
0
:3

1
5
:2

::
:

7.
8(

4)

1.
6(

8)
2.

2(
3)

1.
5(

4)
::
:

3.
1(

4)
7.

5(
3)

0
�2
:4
.4
/

3.
73

(3
)

2
9
6

0
:7

[4
(�

3)
]

6.
6(

4)
6

1.
8(

8)
7.

0(
2)

1.
9(

5)
::
:

1.
6(

5)
9.

2(
4)

0
�5
:9
.4
/

1.
01

(4
)

1
4
5

3
:7

[0
.0

11
]

2.
2(

4)
2.

0(
8)

4.
0(

2)
8.

1(
5)

::
:

4.
2(

5)
4.

0(
5)

0
�1
:4
.4
/

1.
58

(4
)

1
2
0

9
:4

[0
.0

05
]

1.
2(

4)

1.
8(

8)
1.

5(
3)

2.
5(

4)
::
:

1.
1(

4)
1.

4(
4)

0
1
:0
.2
/

3.
52

(3
)

4
2
8

1
:7

[0
.3

7]
5.

8(
5)

1
0

1.
9(

8)
6.

2(
2)

1.
9(

5)
::
:

8.
2(

4)
1.

1(
5)

0
1
:5
.2
/

3.
24

(3
)

1
4
0
4

5
:6

[0
.1

3]
6.

6(
4)

2.
0(

8)
3.

7(
2)

7.
0(

5)
::
:

9.
5(

5)
6.

6(
5)

0
�5
:1
.4
/

3.
30

(3
)

2
5
7
9

1
4
:0

[0
.0

21
]

4.
5(

3)

2.
2(

8)
2.

3(
3)

4.
7(

4)
::
:

2.
7(

4)
2.

0(
4)

0
5
:5
.2
/

1.
59

(4
)

2
8
:7

1
:8

[0
.5

6]
5.

5(
5)

1
4

2.
0(

8)
6.

8(
2)

2.
6(

5)
::
:

4.
6(

4)
1.

4(
5)

0
7
:0
.4
/

1.
10

(4
)

1
4
0

6
:5

[0
.4

1]
1.

8(
5)

2.
1(

8)
3.

5(
2)

9.
9(

5)
::
:

2.
6(

5)
7.

2(
5)

0
4
:9
.3
/

3.
19

(3
)

3
2
6
7

1
6
:2

[0
.0

33
]

2.
3(

3)

6.
4(

8)
5.

0(
5)

5.
3(

4)
7.

2(
4)

0
5.

5(
4)

9.
0(

3)
6
:1
.4
/

3.
22

(3
)

7
4
2

3
:0
.�
4
/

[0
.4

1]
1.

2(
5)

1
7

3.
6(

8)
4.

0(
3)

2.
3(

5)
3.

5(
3)

8.
6(

4)
2.

4(
3)

0
1
:5
.5
/

1.
62

(4
)

6
1
:7

2
:7

[0
.3

0]
2.

2(
5)

3.
0(

8)
9.

1(
2)

8.
6(

5)
2.

1(
3)

3.
4(

4)
8.

0(
5)

0
3
:0
.4
/

3.
21

(3
)

3
0
0
4

2
0
:6

[0
.2

47
]

3.
2(

5)

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

..
.

::
:

::
:

::
:

1
9

8.
4(

8)
1.

2(
5)

2.
6(

5)
5.

9(
6)

0
7.

5(
5)

4.
5(

6)
8
:8
.5
/

3.
14

(3
)

1
7
4
2

0
:4
1

[0
.3

0]
1.

2(
4)

4.
2(

8)
2.

8(
3)

1.
0(

6)
2.

5(
4)

1.
6(

5)
1.

1(
4)

0
8
:7
.5
/

3.
18

(3
)

3
3
2
4

1
6
:8

[0
.1

94
]

1.
3(

4)

t e
v

is
th

e
li

fe
ti

m
e

of
th

e
ev

ol
ut

io
n

be
tw

ee
n

th
e

gi
ve

n
an

d
pr

ev
io

us
po

in
ts

in
Fi

g.
9.

9,
th

e
up

pe
r

li
ne

s
gi

ve
va

lu
es

fo
r
1
5
M

ˇ

,m
id

dl
e

li
ne

s
fo

r
3
0
M

ˇ

,l
ow

er
li

ne
s

fo
r
6
0
M

ˇ

,t
he

da
sh

es
in

di
ca

te
da

ta
ab

se
nc

e
in

[1
08

6]



9.2 Evolution of Stars in Quiescent Burning Phases 79

Fig. 9.10 Evolutionary tracks for 15, 25M
ˇ

models from [608], BB0 and BC are the paths dur-
ing the core helium-burning phase in the 15M

ˇ

and 25M
ˇ

case, respectively, CD is the path
during the double H–He shell burning, core carbon burning occurs between points D end E. Evolu-
tionary tracks from [1033] coincide for the major part with [608]. The triangles indicate the results
of evolutionary calculations from [1033], where a difference may be seen between these and the
results from [608]. The calculations in [1033] have been carried through to the onset of instability,
that is, the presupernova model (marked by the circled cross)

taken under consideration. The initial data coincide4 with [608], where evolutionary
calculations have been carried out through the stage of carbon exhaustion in the cen-
tre and formation of a carbon shell along with helium and hydrogen shells. Tracks
from [608] are given in Fig. 9.10, those of model stars from [1033] which have a
marked difference from [608] being shown by triangles. For the rest, these tracks
are indistinguishable. If convection arises according to the Schwarzschild criterion,
the helium burning occurs in the blue supergiant region, and no loops arise. After
the carbon-burning phase, the neutrino losses cause the core evolution to acceler-
ate to such a degree that the outer radius and optical luminosity of the star remain
almost unaltered up to the onset of collapse (see Table 9.6). The distribution of con-
centration of elements and parameters of star before collapse are given in Figs. 9.11
and 9.12 for 15Mˇ, while in Figs. 9.13 and 9.14 the same quantities are shown for
M D 25Mˇ. One may see in the centre the effect of the endothermic reaction of
neutron and alpha-particle detachment from iron peak elements. The tracks at late
evolutionary stages have been slightly changed in later calculations [1040, 1053].
More than 100 isotopes of a variety of elements have been taken into account in
these calculations.

4 It is asserted in [1033] that the calculations use the Ledoux criterion for convection. How-
ever, there is a good coincidence between evolutionary tracks from [1033] and [608], where the
Schwarzschild criterion has been used (see Fig. 9.10). In both calculations helium burning is in the
blue supergiant region.
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Table 9.6 Major phases of evolution of stars with M D 15 and 25M
ˇ

with initial composition
xH D 0:7; xHe D 0:28; xZ D 0:02 (from [1033])

Burning
phase Tc, K �c, g cm�3

Lopt

L
ˇ

L�
L

ˇ Tef, K
Rph

R
ˇ

tev yr

Hydrogen 3.4(7) 5.9(0) 2.1(4) : : : 3.26(4) 4:6 1:2.7/

3.7(7) 3.8(0) 8.1(4) : : : 3.98(4) 6:0 7:3.6/

Helium 1.6(8) 1.3(3) 6.0(4) 1.0(0) 1.59(4) 31:6 1:3.6/

1.8(8) 6.2(2) 2.5(5) 1.9(1) 1.58(4) 67:5 6:7.5/

Carbon 6.2(8) 1.7(5) 8.6(4) 8.9(4) 4.26(3) 532 6:3.3/

7.2(8) 6.4(5) 3.1(5) 2.6(6) 4.36(3) 963 165

Neon 1.3(9) 1.6(6) 9.7(4) 1.8(8) 4.28(3) 560 7:0

1.4(9) 3.7(6) 3.1(5) 2.0(9) 4.36(3) 963 1:2

Oxygen 1.9(9) 9.7(6) 9.7(4) 2.1(9) 4.28(3) 560 1:7

1.8(9) 1.3(7) 3.1(5) 6.0(9) 4.36(3) 963 0:51

Silicon 3.1(9) 2.3(8) 9.7(4) 8.9(10) 4.28(3) 560 1:6.�2/
3.4(9) 1.1(8) 3.1(5) 9.9(11) 4.36(3) 963 3:8.�3/

Collapse 8.3(9) 6.0(9) 9.7(4) 1.8(15) 4.28(3) 560 9:5.�9/
8.3(9) 3.5(9) 3.1(5) 2.1(15) 4.36(3) 963 1:1.�8/

All the parameters, with the exception of tev, define the conditions immediately after ignition of
each nuclear fuel, tev is the time until the ignition of the next fuel. The upper lines give values
for 15M

ˇ

, lower lines for 25M
ˇ

, the neutrino luminosity during hydrogen burning has not been
evaluated

Fig. 9.11 Weight concentrations of various elements in the 15M
ˇ

model star before core col-
lapse. The nuclear quasiequilibrium (NQE) has been used insideM D 1:56M

ˇ

. Weak interaction
reactions have been treated kinetically under condition of a full neutrino escape (see Sect. 1.3,
Vol. 1). In this region, the curve for 56Ni represents all iron peak elements with A D 2Z, for
54Fe all elements with A D 2.Z C 1/, and the curve labeled <<Fe>> represents all other NQE
elements with Z � 22, from [1033]
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Fig. 9.12 The distribution of parameters of 15M
ˇ

model before core collapse. Scales for density
� and temperature T are selected in such a way as to conserve the distance between the curves
at ��T 3. The quantity � PST gives the rate of the total energy loss due to neutrino emission and
heavy element photo-disintegration, PS� is the rate of total neutrino loss, PS�P is the rate of neutrino
losses due to emission of plasma neutrinos, from [82] (see Sect. 5.2, Vol. 1). The energy release
rates in nuclear burning are denoted by PSN with indication of the main nuclear fuel. All the quan-
tities PSi have the same scale PS . Zones of strong convection are represented by the hatched strip,
semiconvective zones by the blank strip. The quantities R, Tef, and L are the photosphere radius,
effective temperature and optical luminosity, respectively, from [1033]

Fig. 9.13 Composition of supernova with M D 25M
ˇ

. NQE has been adopted inside M D
1:61M

ˇ

, the other notation is the same as in Fig. 9.11 (from [1033])
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Fig. 9.14 Parameters of supernova with M D 25M
ˇ

. The same notation as in Fig. 9.12
(from [1033])

Fig. 9.15 Evolutionary
tracks for stars with constant
mass and initial chemical
composition xH D 0:7,
xZ D 0:03, Schwarzschild
criterion for convection, in
the HR diagram. The main
regions of slow H and 4He
burning are hatched. The
asterisk indicates the
presupernova model. The
onset of 12C burning is
indicated by the dash on the
track (case A from [665], see
Table 9.9)

The evolution of stars with masses of 9, 15, 30, 60, and 120Mˇ has been
investigated in [664, 665] through to the end of the core carbon-burning phase and
for various regimes of mass loss. The evolutionary tracks for stars of a constant mass
are shown in Fig. 9.15; the results of calculations are given in Table 9.9. The initial
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composition xH D 0:7, xHe D 0:27, xZ D 0:03 and Schwarzschild criterion for
convection have been adopted. Contrary to [608, 1048], the track of a 15Mˇ model
exhibits the presence of loops. The presupernova locations on tracks are indicated
by asterisks (Fig. 9.15) and agree with the results of [1033] (Fig. 9.10).

9.2.4 Evolution of Massive Stars with Mass Loss

Both direct observations [711] and the existence of single helium Wolf–Rayet stars
that have lost their envelope [829] provide evidence for mass outflow during evolu-
tion. The theory does not allow, in the general case, to find the dependence of the
mass flux PM on stellar parameters L, R, xi ; therefore empirical dependences ob-
tained from observations [610] are mostly used in evolutionary calculations. In the
stages leading to the Wolf–Rayet star formation, PM is so large that the flow may
accelerate in optically thick layers. A method for performing self-consistent evolu-
tionary calculations with theoretical derivation of PM.L;R; xi / has been developed
in [134, 185].

To describe a steady-state outflow of an optically thick atmosphere, we use the
hydrodynamic equations for spherically symmetric stationary flow of a perfect gas
in equilibrium with radiation [149, 185]

PM
�
E C P

�
� GM

r
C u2

2

�
C 4��r2 dT

dr
D �L; (9.9)

u
du

dr
D �1

�

dP

dr
� GM

r2
; (9.10)

4��ur2 D � PM; (9.11)

P D �RT C aT 4

3
; E D 3

2
RT C aT 4

�
C �i ;

� D 4acT 3

3�
; R D k

�mu
; � D �.�; T /; (9.12)

 D .�; T /; �i D �i .�; T /:

Here, � is the radiative heat transfer coefficient,  (cm2 g �1) is the opacity of
the matter, determining the absorption of photons (see Chap. 2, Vol. 1), � is the
molecular weight, �i is the specific internal energy, consisting of excitation and
ionization energies, and the dissociation energy of atoms and molecules. The first
term to the left in (9.9) represents the kinetic energy flux Lk, the second one is
the radiative energy flux Lth. To derive (9.9), the stationary energy equation in the
differential form [614] has been used
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and (9.10) in the form
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�

d
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�
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2
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r

�
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�

dP

dr

�
D 0:

Multiplying the former by 4�r2, using (9.11), combining with the second equation
and integrating gives [149] the energy equation in the integral form (9.9).

During the radial outflow, the matter passes through an isothermal critical point
where the relations are obtained by substituting (9.9) and (9.11) into (9.10) and
writing an explicit expression for the derivative d�=dr. We obtain

u2 D
�
@P

@�

�
T

D u2
T;

GM

r
D 2u2 C 1

4��r�

�
@P

@T

�
�

�
LC PM

�
E C P

�
� GM

r
C u2

2

��
: (9.13)

A theory of outflowing atmosphere with an arbitrary relation between Lth and Lk is
developed in [185]. The evolutionary calculations in [134] are based on the approx-
imation Lth � Lk, when the first term in (9.9) is neglected. Taking the values �cr,
Tcr, and rcr at the critical point (9.13) for a scale, we introduce dimensionless vari-
ables. We then obtain from (9.9–9.12) two equations for the dimensionless variables
T and � at Lth � Lk:

dT

dx
D A4

�

T 3
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; (9.14)
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Here,

x D rcr

r
; �� D 1 �

�
@ ln�

@ ln �

�
T

; �T D 1 �
�
@ ln�

@ ln T

�
�

(9.16)

and the dimensionless parameters

A1 D 4

3

aT 3
cr

3�cr.k=�crmu/
; A3 D GM

rcrTcr.k=�crmu/
;

A4 D L

4�

3cr�cr

4acT 4
crrcr
D L

Lc;cr

A3

A1

; LC D 4�cGM


;

(9.17)
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are used. The subscript ‘cr’ denotes values at the critical point characterized by the
condition (9.13) that yields the relation between the parameters (9.17)

L

Lc;cr

A3

A1

D A3 � 2��;cr

A1 C �T;cr
: (9.18)

It follows from (9.18) that L=Lc;cr < 1. At a given stellar mass M , an atmosphere
with steady-state outflow, similarly to a static one, is determined by two parameters
for which it is convenient to takeL and �cr. The equation for A4 in (9.17) combined
with (9.18) gives

rcr D L

4�

3cr�cr

4acT 4
cr

A1 C �T;cr

A3 � 2��;cr
: (9.19)

Using (9.19) and the expression for A1 and A3 from (9.17), we obtain

A3 D 2��;cr

�
1 � .A1 C �T;cr/

RcrTcr

GM

L

4�

3cr�cr

4acT 4
cr

��1

(9.20)

D f .�crTcr/:

Specifying Tcr at given �cr and L, we obtain all the parameters (9.17). Integrating
the system (9.14–9.15) outward for x < 1, we choose Tcr that will satisfy physical
conditions far from the star. We then find all the parameters, including PM , of the
model with steady-state outflow with the aid of the iteration scheme for evolutionary
calculations of the Henyey type, or any other (see Chap. 6, Vol. 1).

To leave the critical point when integrating (9.14) and (9.15), we have to use the
asymptotic relations [134, 185]
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The most complicated problem of all is that of the outer boundary conditions
determining Tcr.�cr; L/. Instead of the equations of radiation hydrodynamics
(9.9–9.12), one should use for outer shells at small optical thicknesses the hydro-
dynamic equations describing the gas component simultaneously with the radiation
transfer equation. All types of opacity should be taken into account in the flow
region. The major contribution to opacity belongs, at low temperatures, to the
molecules and dust.

The description must give a smooth transition from an optically thick case with
thermodynamic equilibrium between matter and radiation, to an optically thin one
where the gas may be considered to be in local thermodynamic equilibrium with a
temperature Tg, and radiation at small � is represented by free radial flow of quanta
whose energies approximately retain their values at � � 1. The simple Eddington
approximation with a constant ratio of radiation pressure Prad to the energy density
of radiation S , as Prad D S=3 at any optical depth, cannot be applied to the extended
outflow. The description similar to (8.20) may be used (see also Chap. 2, Vol. 1). The
best variant of such a description with a proper account of energy and momentum
exchange between gas and radiation, valid at all � , is not yet established, and the
problem is now under consideration.

The variant of approximate description of the flow with a smooth transition from
optically thin to optically thick layers has been suggested in [124]. The expressions
for radiation pressure, radiation energy density, and radiative heat flux have been
chosen in the form

Prad D aT 4

3
.1 � e�� /C Lth.r/

4�r2c
; �Erad D aT 4.1 � e�� /C Lth.r/

4�r2c
;

Lth D �4�cr2

�

�
dPrad

dr
� �Erad � 3Prad

r

�
; (9.22)

where

� D
Z 1

r

�dr: (9.23)

These expressions have been used in (9.9)–(9.12) instead of relative expressions
there, which are valid only for conditions of local thermodynamic equilibrium

P
eq
rad D

aT 4

3
; �E

eq
rad D aT 4; L

eq
th D �

16�acT 3r2

3�

dT

dr
: (9.24)

The expression forLth in (9.22) follows exactly from the radiative transfer equation.
The relations (9.22) give equilibrium equations in the optically thick limit � !1,
and in the optically thin limit � ! 0 describe a radial free photon flux with the
anisotropic pressure tensor with one non-zero component

Prr � Prad D Erad D Lth

4�cr2
: (9.25)
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The Euler equation (9.10) is used in the form

u
du

dr
D �1

�

dPg

dr
� GM

r2

�
1� Lth

Lc

�
; (9.26)

where

Lc D 4�cGM


(9.27)

is the critical Eddington luminosity, at which the radiation force balances the gravity,
Pg D �RT . Equations (9.26) and (9.10) are identical in the case of a local thermo-
dynamic equilibrium. While anisotropic terms in Prad andErad are important only at
� < 1, whereLth 	 L1

th D const:, the solution in [124] was looked for atLth D L1
th

in the expressions for Prad and Erad. Equations (9.9)–(9.12) with corrections from
(9.22)–(9.27) have been solved in [124], and parameters describing a solution which
satisfies the conditions � D T D 0 at infinity were found numerically for the sim-
plified case of constant  and �. This description gives a promising possibility to
calculate stellar evolution with self-consistent treatment of the mass loss.

To satisfy the outer boundary conditions for a gas temperature and density
TgD �D 0 at rD1, the set of equations must be integrated outside, and the value
of the temperature at the critical point Tcr, which at �cr � 1 is the same for the gas
and the radiation, must be adjusted at given L, M and �cr. This procedure replaces
the integration of (8.20) together with the corresponding equation for P ,

dP

d�
D Gm

r2

 
1C f 2aT 3r1=2T0R

1=2

3Gm�

!
(9.28)

with specified �.� D 0/ as suggested in [769] for the description of extended static
atmospheres (see also Sect. 6.1, Vol. 1). The solution of a full set of equations for
gas and radiation will, in principle, give the value of the optical depth � D R1

r
�dr

on the level of the photosphere where L D 4��R2T 4
ef . To avoid this complicated

procedure, two approaches have been used up to now.
If the optical thickness is sufficiently high in the critical point region, then the

transparent shells are of little importance for determining Tcr.�cr; L/. Under these
circumstances, the conditions T D �D 0 at r D1 and (9.9–9.12) have been used in
[134, 185] throughout all the regions.

To find the Tcr.�cr; L/ dependence, the approximate solution obtained in [172]
for D const and � D const in the supersonic region with L > Lc is used in
[134]. Equations (9.9–9.12) written for the variables u and T have at Lth � Lc and
u� uT the solution [172] satisfying, at r D 1, the conditions T D �D 0:
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(9.29)
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PM D �4��crr
2
crucr; u2

cr D
k

�crmu
Tcr D u2

T;cr:

Combining the three equations (9.29) in such a way as to eliminate PM , we obtain
the searching relationship Tcr.�cr; rcr; L/. It is convenient to write it in the form of
the relation between the dimensionless variables (9.17)

A1 D 64

15
p
2

p
A3

L

Lc

�
L

Lc
� 1

��1=2

: (9.30)

For the condition T D � D x D 0 to be valid at low A1, L and  D const, we must
take [149] A3 D 3. The relation Tcr.�cr; rcr; L/ is equivalent to a relation similar to
(9.30) between the dimensionless parameters (9.17). The following relations have
been used in [134] instead of (9.30) for the variable  and �:

A3 D .AC 3/ �0
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ˇ̌̌
ˇ
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for A > 7 or A > A1; (9.31)
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Here,
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Lm D 4�cGM

max .T /j�cr

at max .T /j�cr < 3
4�cGM

L
;

Lm D L

3
at max .T /j�cr > 3

4�cGM

L
;

where �0 D max.�/ corresponds to the neutral gas.
The procedure for determining the critical point is the following. On finding 0 D

4�cGM=L at given L and �cr, we obtain Tcr0 from tables .�; T / and obtain A1

andA3 from (9.17) and (9.2.17). Thermodynamic relations yield�, �� and �T. Then,
Lc;cr and 1 are determined from (9.18) to the next approximation, and the procedure
is iterated until the critical point parameters are obtained with some predetermined
accuracy. The next step is to find rcr from (9.19) or from the equation for A3 in
(9.17), and the values of ucr D .��;crkT=�crmu/

1=2 and PM D �4��crucrr
2
cr. Upon

leaving the critical point using the expansion (9.21), the integration inward of the
star of (9.14) and (9.15) in [134] includes 3% of the stellar mass. On the boundary of
the core which is calculated by the Henyey method, the velocity is so small .u
 uT/
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that the parameters are fitted in the same way as in the static case (see Chap. 6,
Vol. 1). In the region of incomplete H and He ionization, the relations for opacities
from [460] have been used in calculations [134].

The static evolution of stars with M D 9 and 30Mˇ has been calculated in [134]
to the onset of convective penetration inside the core (9Mˇ), or to the point where
the static models are no longer possible to construct by the adopted method (30Mˇ).
For 30Mˇ, this point is assumed to represent the onset of outflow with corre-
sponding evolutionary phase calculated in accordance with the above method. The
adopted initial composition is xHD 0:75, xHeD 0:22 and xZD 0:03. The convection
is calculated with the mixing length l DHp and the Ledoux criterion for convection;
therefore, mixing between the convective core and semiconvective zone is absent
owing to the presence of a radiative shell between them.

The results of calculations are given in Table 9.7 and Figs. 9.16 and 9.17. It has
not been possible to construct a static model under the adopted physical conditions
for the portion of the track with 30Mˇ beyond the point E; this point has therefore
been taken for the onset of outflow. The dashed line indicates an approximate track
for the outflow phase. Twenty-three outflowing models in all have been constructed
for a 15-year evolutionary period. The stellar mass has decreased over this period
down to 23Mˇ, thus yielding a huge mass flux PM 	 0:5Mˇ=year. Such a flux is
no doubt a result of an inadequate choice of the form of the relationship (9.2.17).
A real PM may be 2–4 orders of magnitude less. The ranges of parameter variations
of the critical point over the evolution time are:

PM D .0:5 � 0:4/Mˇ=yr; ucr D 18 km s�1;

Tcr D .2:5 � 2:4/ � 104 K; �cr D 8 � 10�10 g cm�3; (9.34)

Rcr D .610� 550/Rˇ:

Table 9.7 Evolutionary parameters of stars shown in Fig. 9.16

Point Model Tc, K �c, g�cm�3 L
L

ˇ

LH
L

ˇ

LHe
L

ˇ

A 0 3.1(7) 1.1(1) 3.5(3) 3.5(3) 0
0 3.8(7) 3.7(0) 1.1(5) 1.1(5) 0

B 20 4.0(7) 2.0(1) 6.6(3) 6.6(3) 0
133 5.1(7) 7.5(0) 2.2(5) 2.2(5) 0

C 28 4.5(7) 5.3(1) 7.5(3) 6.7(3) 0
244 8.2(7) 3.6(1) 2.5(5) 1.9(5) 0

D 64 7.8(7) 1.9(3) 8.1(3) 8.5(3) 0
342 1.8(8) 5.9(2) 2.4(5) 1.6(5) 1.3(5)

E 132 1.4(8) 5.1(3) 5.0(3) 6.7(3) 1.1(3)
452 1.8(8) 5.8(2) 2.3(5) 1.6(5) 1.3(5)

Here tev is the time of the evolution between the given and precedent points on tracks in
Fig. 9.16, the values for M D 9M

ˇ

are given in the upper lines, for M D 30M
ˇ

in the
lower lines, the number in parentheses in the column Rph=Rˇ

is the critical radius of the
first outflowing model
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Table 9.7 (end)

Point
Lg

L
ˇ

Tef, K
Rph

R
ˇ

Mconv
M xHŒx12C 
 tev, yr

A 0 2.43(4) 3.4 0.29 0.75 0
0 4.07(4) 6.7 0.54 0.75 0

B 2:3 2.08(4) 6.3 0.11 0.036 2.6(7)
4:5.2/ 3.10(4) 16.4 0.28 0.02 5.9(6)

C 7:5.2/ 2.24(4) 5.7 0.037 2:8.�4/ 5.6(5)
5:8.4/ 3.44(4) 14.0 0.12 0 8.0(4)

D �3:8.2/ 1.57(4) 12.2 0 0 9.3(4)
�5:1.4/ 1.54(4) 68.1 0.15 Œ6:8.�3/
 1.5(4)

E �2:8.3/ 5.16(3) 89.0 0.035 Œ4:4.�3/
 8.5(4)
�5:5.4/ 5.16(3) 607 0.18 Œ1:3.�2/
 3.0(3)

(611)

Fig. 9.16 Evolutionary tracks for stars with masses of 9 and 30M
ˇ

from the MS to the initial
phase of 4He burning in a core with initial composition xH D 0:75, xHe D 0:22, xZ D 0:03,
Ledoux criterion and l D HP, from [134]. The point E on the track with M D 30M

ˇ

is assumed
to represent the onset of strong outflow, the phase with outflow is indicated by a dashed line

The small change in critical parameters during the outflow shows that it will last
until the star loses its hydrogen envelope, and the residual helium core becomes a
Wolf–Rayet star. Such a mechanism for the Wolf–Rayet star formation has been
suggested in [134]. A check test is proposed there as well: a search for an extended
gas envelope with a mass comparable to the mass of a helium star.

Such envelopes have been found around many stars of this type that exhibit no ev-
ident indication of binaries [649]. As also noted in [134], at initial phases of outflow
the optical depth of the outflowing envelope may reach very large values, and all the
star emission will then be re-emitted in the infrared range, thereby giving a bright
infrared object. Objects of this type are likely to have been already observed from
the IRAS satellite [478]. The distribution of parameters in the envelope of the last
static model and the first outflowing model of the same mass is shown in Fig. 9.17.
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Fig. 9.17 The structure of static (solid line) and outflowing (dashed line) envelopes at the point
E for 30M

ˇ

. The outflowing envelope is calculated with the aid of the relation (9.2.17) instead
of the outer boundary condition. Shown are the distributions for density �, temperature T , opacity
 (the luminosity to critical luminosity ratio k D L=Lc), the flux fraction transferred by convec-
tion Fk=L, R0 is the radius of the static star. The asterisks label points with k D 1 ( D 0).
Shown are only parts of outflowing models adjacent to the static core. A close coincidence of
the curves �.r/ and T .r/ referring to static and outflowing models may be seen near the core,
0 D 4�cGM=LD 1:7

The outflowing model exhibits the absence of a density inversion, a more rapid �
decrease and a slower T reduction compared to the static envelope. The solution for
static and outflowing envelopes is in good consistency near the core, which proves
that the atmosphere processes have only a slight effect on the static core structure.
The results of evolutionary calculations with these boundary conditions [134] pro-
duced values for the mass-loss rate, which were too large what may be connected
with the crudeness of this approximation.

Another approximation used by several authors [557, 1087, 1088] was suggested
in [385]. Instead of integrating the equations in the region with � 
 1, the position
of the photosphere was specified by a relation [557] �ph � .�r/ph D 8=3, and it
was demanded that at this level the effective temperature Tef is reached. This is a
rather rough condition, because it ignores the distributions �.r/ and .r/ in the out-
flowing region and deals only with local values in the definition of the photosphere.
It is equivalent to applying this condition to the static atmosphere instead of solving
the equations (8.20) and (9.28) at 0 < � < 2=3 for finding the conditions at the
photosphere in the extended envelopes. The self-consistent models of Wolf–Rayet
stars have been constructed in such a way in [557], but with a somewhat artificial
enhancement of the opacity. At T > 2 � 105 K , the enhanced opacity coincides
with the value from new Livermore tables, and at lower temperatures the correction
coefficient is entirely arbitrary and may be as large as 7 compared to the old Los–
Alamos tables.
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The evolution of massive stars with outflow at an empirically specified flux
PM.L;R/ has been studied by several authors. Evolutionary calculations of stars

with initial mass 15, 30, and 60Mˇ have been performed in [938] through the he-
lium exhaustion in the centre. The results are given in Fig. 9.18 and Table 9.8. Tracks
with a constant mass differ essentially from tracks of the same mass obtained in
other studies with use of the same Ledoux criterion for convection (Fig. 9.8 [937]
and Fig. 9.9 [1086]) in that they have no loops at all. For M D 15 and 30Mˇ, al-
most all helium burns in the red supergiant region (see Table 9.8). The difference
from [937] is in the mixing length only: l D Hp instead of l D 0:4H� in [937].
The difference from [1086] is in chemical composition and some details of the cri-
terion for convection. Comparing these results suggests that some random elements

Fig. 9.18 Evolutionary tracks for stars with initial mass 15, 30 and 60M
ˇ

, initial composition
xH D 0:739, xHe D 0:24, xZ D 0:021, Ledoux criterion and l D HP, from the MS to the 4He
exhaustion in the center. Case A, dashed line, is the evolution with constant mass; C, dotted line,PM D �10�11.LR=M/, in M

ˇ

/yr at lgTef < 3:85; D, straight line, PM D �10�2 M
ˇ

/yr at
lgTef < 3:7; L;R; and M are given in solar units, the dots mark the onset and termination of slow
4He burning in the blue region for 60M

ˇ

, and cases with PM ¤ 0. The position of homogeneous
helium stars is shown on the left, from [938]

Table 9.8 Evolutionary parameters of stars in Fig. 9.18

Initial
mass, M

ˇ

Case lgTef, K �H, yr
�He

�H

�bl

�He

�y

�He

Finite
mass, M

ˇ

15 A : : : 1.2(7) 0.092 0.040 0.002 15

15 C 4.56 1.2(7) 0.092 0.760 0.009 4:4

30 A : : : 5.8(6) 0.082 0.034 0.005 30

30 C 4.67 5.8(6) 0.082 0.831 0.015 11:3

30 D 4.81 5.8(6) 0.082 1.000 : : : 11:6

60 A,C,D 4.22 3.7(6) 0.086 1.000 : : : 60

Tef is the maximum effective temperature during core 4He burning, �H the time of core H
burning, �He the time of core 4He burning, �bl the time of 4He burning in the blue phase,
�y the time of 4He burning in the yellow phase
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underlie the mechanism of loop formation. Including the mass losses into calcula-
tions (under the same physical assumptions) causes the track already in the core
helium-burning phase to turn back into the blue giant region, where the star spends
most of its lifetime in this phase (see Table 9.8). Both variants of mass-loss rate and
the rapid law PM D �10�2Mˇ=yr at lg Tef < 3:7 (case D), analogously to [134],
give qualitatively similar tracks (L, R, M are expressed in solar units).

PM D �LR
M
� 10�11Mˇ

yr

at lgTef < 3:85 (case C);

(9.35)

A variety of mass-loss laws have been studied in [664,665]. The adopted physical
conditions have been discussed above. The results are shown in Figs. 9.19 and 9.20a
and Table 9.9. The law used here differs from [938]: PM D �.NL=c2/Mˇ = yr,
N D 65–150. For the case C with a largest PM , the tracks coincide qualitatively with

Fig. 9.19 The same as in Fig. 9.15, with mass lossM D NL=c2,N D 65–80 (case B from [665],
see Table 9.9). For M D 9M

ˇ

, a track with no mass loss (A) is given for comparison
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Fig. 9.20 The same as in Fig. 9.19, for N D 135–150 (case C from [665], see Table 9.9)

[938]: in both cases they turn to the left towards the blue supergiant region. The
calculations are difficult to compare in detail as the criteria used for convection are
different, but the topological similarity is obvious.

Investigation of the mass-loss rates of 28 luminous galactic OB stars led to an
empirical fitting formula [611]

log PM D 1:738 logL � 1:352 logTef � 9:547: (9.36)

Here, PM is in Mˇ/yr, L is in Lˇ and Tef is in K . This relation is valid for
5:0< lgL<6:4, and 4:45< lgTef<4:70.

The problem of mass loss during the evolution of massive stars is of major im-
portance because there is a qualitative difference between evolutionary tracks and
observational properties of these stars at different PM . One possible explanation for
the blue supergiant, observed as a presupernova star in SN1987A, may be the in-
fluence of mass loss on its evolution. In that case, there was no extensive mass-loss
stage related to the red supergiant phase. This may be a reason for the absence of
strong radio emission from this supernova and the unusually large size of its radio
remnant [282].

9.2.5 CAK Theory

When a star does not have an extended envelope with high opacity, and everywhere
at � > 1 a luminosity does not exceed the critical Eddington value (9.27), the mass
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Table 9.9 Principal nuclear burning phases for evolution of the stars shown in Figs. 9.15, 9.19,
9.20 (from [664, 665])

Burning phase Case M
M

ˇ

PM;M
ˇ

/yr Tc, K �c, g�cm�3 L
L

ˇ

Tef, K tev, yr

Hydrogen A 9 0 2.9(7) 8.9(0) 3.9(3) 2.32(4) 2.3(7)
B 9 1.3(�8) 2.9(7) 8.9(0) 3.9(3) 2.32(4) 2.4(7)

Helium A 9 0 1.4(8) 4.3(3) 8.8(3) 4.04(3) 3.7(6)
B 8:55 6.8(�7) 1.4(8) 4.6(3) 8.3(3) 3.97(3) 3.8(6)

12C and 16O A 9 0 6.3(8) 3.5(5) 2.1(4) 3.77(3) 3.6(5)
B 6:2 1.9(�6) 6.1(8) 3.2(5) 1.8(4) 3.65(3) 6.4(5)

Hydrogen A 15 0 3.2(7) 5.2(0) 1.9(4) 3.00(4) 1.1(7)
B 15 7.1(�8) 3.2(7) 5.2(0) 1.9(4) 3.00(4) 1.2(7)
C 15 1.3(�7) 3.2(7) 5.2(0) 1.9(4) 3.00(4) 1.2(7)

Helium A 15 0 1.6(8) 1.5(3) 4.3(4) 3.82(3) 1.2(6)
B 13:7 2.2(�7) 1.5(8) 1.9(3) 2.8(4) 7.66(3) 1.2(6)
C 12:2 1.0(�5) 1.6(8) 1.8(3) 4.1(4) 3.76(3) 1.3(6)

12C and 16O A 15 0 7.3(8) 2.1(5) 6.1(4) 3.78(3) 7.6(4)
B 11:1 8.5(�6) 7.2(8) 2.2(5) 5.5(4) 3.72(3) 3.8(4)
C 3:5 4.2(�7) 7.1(8) 1.6(5) 5.2(4) 5.30(4) 9.6(4)

Hydrogen A 30 0 3.6(7) 2.9(0) 1.2(5) 3.93(4) 5.7(6)
B 30 5.1(�7) 3.6(7) 2.9(0) 1.2(5) 3.93(4) 6.8(6)
C 30 2.9(�6) 3.6(7) 2.9(0) 1.2(5) 3.94(4) 6.8(6)

Helium A 30 0 1.9(8) 5.6(2) 3.0(5) 1.76(4) 4.6(5)
B 24:8 3.1(�6) 1.8(8) 6.1(2) 2.5(5) 9.55(3) 5.0(5)
C 21:25 6.6(�5) 1.8(8) 6.7(2) 1.8(5) 3.94(3) 5.1(5)

12C and 16O A 30 0 9.1(8) 8.2(4) 3.5(5) 3.83(3) 7.9(3)
B 12:5 7.2(�5) 9.3(8) 1.2(5) 3.2(5) 4.06(3) 4.6(3)
C 10:15 2.9(�6) 9.7(8) 2.3(5) 3.0(5) 5.98(4) 8.3(3)

Hydrogen A 60 0 3.9(7) 1.9(0) 5.3(5) 4.72(4) 3.7(6)
B 60 2.7(�6) 3.9(7) 1.9(0) 5.3(5) 4.72(4) 4.2(6)
C 60 5.4(�6) 3.9(7) 1.9(0) 5.3(5) 4.72(4) 4.2(6)

Helium A 60 0 2.0(8) 3.2(2) 1.1(6) 1.02(4) 2.8(5)
B 45:2 2.6(�4) 1.9(8) 2.7(2) 8.8(5) 4.23(3) 3.1(5)
C 34:8 4.6(�4) 1.9(8) 3.4(2) 8.1(5) 4.43(3) 3.2(5)

12C and 16O A 60 0 9.4(8) 6.9(4) 1.1(6) 3.95(3) 1.3(2)
B 24:8 4.0(�5) 9.5(8) 6.8(4) 1.1(6) 2.16(5) 1.2(2)
C 14:6 1.0(�4) 2.1(8) 5.6(2) 3.4(5) 1.24(5) : : :

The parameters determine conditions near the onset of hydrogen and helium burning and at the end
of carbon burning, tev is the lifetime before ignition of the next element. The last line of the Table
gives the last model of the given case, where the carbon has not yet ignited

outflow may originate in the optically thin region due to large radiation pressure in
the spectral lines. The outflow of such a type is probably observed in the luminous
O and B stars. The self-consistent theory of radiation-driven winds in such stars was
developed in [256] and is called the CAK theory.
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The important starting point in this theory is the fact that in both static and rapidly
expanding atmospheres, the force due to an optically thick line is proportional to the
line strength, but inversely proportional, approximately, to the line optical depth,
and therefore independent of the line strength overall. For the prevalent ions of an
abundant element such as C, N and O, there are large numbers of lines that are
optically thick over most of the atmosphere of a hot star, and they all contribute
equally to the force, or, to be more accurate, in proportion to the continuum flux at
their respective frequencies.

The force due to a single line per unit mass of material is

frad;L D LFc��D

c
min.1; 1=�L/; (9.37)

where L is the monochromatic line absorption coefficient, per unit mass, divided
by the line profile factor, and the function is assumed to be normalized on a scale
of frequency expressed in thermal Doppler units. The line optical depth �L differs in
static and expanding cases and is given by

�L D
Z 1

r

L�dr (9.38)

in the static and

�L D L�vth

ˇ̌
ˇ̌dv

dr

ˇ̌
ˇ̌�1

(9.39)

in the expanding atmosphere (Sobolev approximation [920]). In the latter case, �L

counts only the absorbers in a section of the column across which the velocity
changes by vth, the random velocity of atoms. The factor Fc is the continuum flux
per interval of frequency at the frequency of the line. We introduce a variable t
which, in the static case, is an optical depth connected with the scattering by free
electrons (Thomson scattering) by

t D
Z C1

r

�T�dr .static/ D �T�vth

ˇ̌dv

dr

ˇ̌�1
.expanding/: (9.40)

Here, the Thomson opacity is given by

�T D 8�

3

�
e2

mec2

�2
1

�imu
.cm2 g�1/; (9.41)

wheremu is the atomic mass unit and �i is the number of nucleons per free electron.
The total radiation force due to an ensemble of lines is then simply the sum of (9.37)
over all the lines and may be expressed as (F is the total flux)

frad D �TF

c
M.t/; (9.42)
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where the force multiplier is given by

M.t/ D
X
lines

Fc��D

F
min

�
1

ˇ
;
1

t

�
: (9.43)

The quantity ˇD t=�L is related to the atomic populations and the oscillator
strength, and it is calculated in [256].

For t as large as unity, M.t/ is proportional to the fraction of the continuum
blocked by lines with thermal Doppler widths. This fraction is of the order of 1%,
so the line force is a small perturbation to the continuum flux force. In the limit
of small optical depth � 
 1, the value of M.t/ may become very large. For the
typical value of F=Fc' 2:5kTef=h (h is the Planck constant), the maximum value
of the force multiplier is

Mmax DM.0/ 	 0:7 � 108

�
104K

Tef

�
X; (9.44)

where X is the fraction of all atoms in the gas which are able to absorb effectively
in the spectral region where most of the flux is emerging. In O stars, X may be
about 10% of the abundance of C, N and O, so X is about 10�4 and Mmax� 103.
The radiation force for electron scattering is about 0.05–0.5 of the gravitational, so
at small optical depths the force exerted in the lines will exceed gravity by about
two orders of magnitude in an O star, making impossible the existence of the static
atmosphere of such a star. The dependenceM.t/ is calculated in [256] for different
Tef and may be expressed as

M.t/ D kt�˛ ; which reads as

0:0076 t�0:742I 0:0026 t�0:737I 0:0021 t�0:811 (9.45)

for Tef D 3 � 104I 4 � 104I 5 � 104; respectively:

This is valid for X D 10�4, and for other abundances of absorbing ions the value
M.t/ may be calculated from

M.X 0; v0
th; t/ D

X 0

X
M

�
X; vth;

X 0vth

Xv0
th

t

�
: (9.46)

About 10% of the total force (9.42) is given by resonance lines.
The equation of motion describing the optically thin winds from O stars is

written, for a given distribution T .r/, and contains only gas characteristics: u,
PgD �RT , and the radiation force, which substitute the radiation pressure gradi-
ent in (9.10). We have instead

v
dv

dr
D �1

�

dPg

dr
� GM

r2
C �TL

4�r2c
Œ1CM.t/
: (9.47)
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This is solved together with the continuity equation (9.11) at given M (mass) and
L. Combining (9.42)–(9.47) and (9.11), we obtain an equation

�
v � RT

v

�
dv

dr
D �GM

r2
.1 � � /C 2RT

r
�R

dT

dr

C � GMk

r2

�
4�

�Tvth.� PM/

�˛ �
r2v

dv

dr

�˛

; (9.48)

where � D L=LcT, and LcT D 4�cGM=�T is the Eddington luminosity in the
presence of Thomson scattering only (see (9.41)). Equation (9.48) is strongly non-
linear and has a singular point. Its solution has been investigated in [256] where it
has been used for constructing a model envelope for the O5f star (see also [654]).

Location of the singular point of (9.48) is determined by solution of three
equations

F.x;w;w0/ D 0 ; (9.49)

@F.x;w;w0/
@w0 D 0 ; (9.50)

@F

@x
C w0 @F

@w
D 0: (9.51)

Here, (9.49) represents (9.48) written in the coordinates

w D 1

2
v2; x D �1

r
; w0 � dw

dx
; (9.52)

where it reads

F.x;w;w0/ �
�
1 � RT

2w

�
w0 � h.x/ � C.w0/˛; (9.53)

with

h.x/ D �GM.1 � � /� 2RT

x
� R

x2

dT

dr
;

C D � GMk

�
4�

�Tvth.� PM/

�˛

: (9.54)

For isothermal flow with no line force T D const., C D 0, we obtain the singular
point from (9.1.32) to (9.1.37)

w D RT

2
; RT D �GM.1 � � /x

2
; w0 D �2w

x
: (9.55)
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The first two relations in (9.55) coincide with (9.13) at � D 1 and with a reduced
massM.1�� /. The third relation in (9.55) determines the first term in an expansion
of the equation of motion at the critical point.

The problem of stability of solutions in CAK theory has been investigated by
different methods [768, 805, 852]. The flow is unstable to formation of clumps and
shocks, producing a hot gas responsible for the observed soft X-ray emission from
blue luminous stars [768] with Lx ' 10�7Lbol.

9.2.6 Line-Driven Winds in the Presence of Strong
Gravitational Fields

An important generalization of the CAK model was done by Dorodnitsyn [326],
which includes the gravitational redshifts of lines. This generalized model could de-
scribe correctly the formation of fast outflows in the vicinity of strong gravitational
field sources. The gradient of the gravitational potential d�=dr plays the same role
as dv=dr plays in acceleration of line-driven winds from hot stars. It is shown that
due to the gravitational redshift of frequency, the gradient of the gravitational po-
tential allows a line to shift out from behind of its own shadow. The line is shifted
to the extent where the continuum flux is not reduced by absorption, hence d�=dr
exposes the line to powerful radiation.

Thus, in [326] the resultant wind is termed “Gravitationally Exposed Flow”
(GEF). In this chapter, the following toy model is adopted. Consider a wind accel-
erated by the radiation pressure in lines at the vicinity of BH. The wind is assumed
to be spherically symmetric, with a strongly simplified ionization problem. These
crude assumptions are accepted in [326] just to compare a solution for GEF with a
pure CAK solution.

If a wind is accelerated in a strong gravitational field, we may expect that a
photon emitted by the disc may become resonant with the opacity of some line not
only because of the Doppler effect but also because of the gravitational redshifting.
The redshifting of the photon’s frequency is the only effect of general relativity
(GR) taken into account in this approximate treatment. A photon with the frequency
�D, emitted at the point with the gravitational potential �1, will be registered at the
point where � D �2 (j �1 j>j �2 j, � < 0) reddened according to the well-known
approximate formulae [615]:

	� � �2 � �D D �1 � �2

c2
�D: (9.56)

If there is a velocity difference between these two points, the photon will be addi-
tionally red-shifted due to the Doppler effect. The resultant frequency, seen by the
absorber at his rest frame, reads:

� ' �D C �D

�
� v

c
C ��

c2

�
: (9.57)
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To derive a relation for the radiation force, we need to calculate the corresponding
Sobolev optical depth, but now taking into account the gravitational redshifting.
Assuming that absorption occurs in a line with the delta-function profile, for the
optical depth in a radial direction we obtain, instead of (9.39),

�L D
Z 1

r

L� dr ' �vthL

dv=dr C 1
c

d�=dr
: (9.58)

A characteristic length: ır � vth=.dv=dr C 1
c

d�=dr/ gives a thickness of a shell
where the absorption due to a single line take place. Introducing an optical depth
parameter, which is analogous to (9.40), we have:

t � �e�vth

dv=dr C 1
c

d�=dr
: (9.59)

It is assumed here that � must be calculated taking into account redshifting. No
assumptions about the particular physical mechanism that produces redshifting
are made. By substituting (9.59) into (9.42) and (9.45), the radiation force is
obtained as

fL D L�ek

4�r2c

�
4�

j PM j�vth

�˛ �
vr2

�
dv

dr
C 1

c

d�

dr

��˛

; (9.60)

where the radiation force was transformed using the continuity equation

j PM jD 4��vr2: (9.61)

Taking into account the gravitational line redshift, we obtain from (9.47) the
following equation of motion:

v
dv

dr
D �1

�

dPg

dr
� d�

dr
C L�

4�r2c
C L�ek

4�r2c

�
4�

j PM j�vth

�˛ �
vr2

�
dv

dr
C 1

c

d�

dr

��˛

:

(9.62)

As the equation of motion of CAK, equation (9.62) is nonlinear with respect to
the velocity gradient. Instead of .dv=dr/˛ term, equation (9.62) includes a combi-
nation: .dv=dr C 1

c
d�=dr/˛. This property changes the structure of the transonic

solution, going through the critical point, which differs from the sonic one. Both the
Newtonian potential and the potential of Paczynski and Wiita (PW) [785]

� D � GM

r � rg
: (9.63)

have been considered in [326]. For the Schwarzschild black hole, the PW potential
correctly reproduces the positions of both the last stable orbit and the marginally
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Fig. 9.21 Solution of the wind equation (9.62) for the Newtonian potential. Solid line – GEF
solution, dashed line – CAK solution. Crosses indicate GEF critical points, circles – CAK critical
points. Curves for r=rg D 8;000 are graphically indistinguishable, from [326]

bound orbit. The numerical solutions for the isothermal wind, in the GEF model in
comparison with CAK solutions, obtained in [326] are given in Figs. 9.21 and 9.22.

Exact general relativistic calculations in GR have been done in [327] for the
GEF model in the Schwarzschild metric, representing a spherically symmetric black
hole. A considerable gain was found in the wind velocity in comparison with both
the CAK solution and the semiclassical solution of [326]. The position of the GEF
critical point is found to be closer to the black hole than the CAK critical point. As
follows from [327], even when the solution originates sufficiently far from the black
hole (in fact, it is determined by the position of the critical point), there exists a large
gain in the flow velocity in GEF in comparison with the CAK case.

The shapes of spectral lines from a plasma that is rapidly moving in the vicinity
of a neutron star or a black hole have been studied in [328], taking into account
gravitational redshifting. In the well-studied case of winds from normal hot stars, a
rapidly moving wind interacts with the continuum radiation of a star and produces
a P Cygni profile. From the theory of stellar winds, it is known that in the case of
an arbitrary spherically symmetrical distribution of plasma that is moving with a
gradually increasing velocity, an absorption line that is blueshifted with respect to
the emission line is observed. This is widely interpreted as a fingerprint of moving
plasma in a variety of astrophysical situations.
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Fig. 9.22 Solid line indicates GEF solution for the Newtonian potential, dashed line GEF solution
for Paczynski – Wiita potential, from [326]

Strong gravitational redshifting helps the radiation to escape efficiently and to
interact with matter only locally. Gravitationally redshifted narrow absorption fea-
tures in many AGN spectra as well as gravitationally redshifted absorption lines
in the X-ray burst spectra of neutron stars have been observed, see observations
of the gravitationally redshifted absorption lines in the X-ray burst spectra of
EXO0748.676 [308]. If the interpretation is correct, these features are produced
close to the compact object, where extreme conditions are coupled with high ampli-
tude fluctuations of the radiation field and short dynamical time-scale. As a result,
these lines may be highly variable or/and transient.

The calculations are made for spherically symmetric outflow exposed by con-
tinuum radiation of a spherical core. The regions of the flow under consideration
were located at radii larger 10rg. In the calculations [328], the idea of equal fre-
quency surfaces (EFS) plays a major role. The strong gravitational field changes
the shape and locus of such surfaces. Their topology is complex; the gravitational
field strongly distorts the P Cygni profile. Some branches of the EFS in the red-
shifted part of the spectra are found to be in front of the core, meaning there is the
possibility for the absorption component to be observed as redshifted with respect
to the emission. From numerical calculations, which are second-order accurate in
v/c, it is established that a superposition of Doppler and gravitational shifting of
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Fig. 9.23 Line profiles for different absorption laws: �r � .1 � w/k (9.64) (left) and �r � wk

(9.65) (right). Profiles for R� D 10rg, V1 D 0:3 c and T0 D 4 and the linear velocity law (9.66).
Curves are labeled by the parameter k from absorption laws. Vertical axes: flux. Horizontal axes:
frequency shift, y1, from [328]

frequency can distort the P Cygni profile in such a way that blue- and redshifted ab-
sorption features are observed simultaneously. Often the redshifted absorption line
is superimposed on the emission wing. Profiles with more than one emission and
two absorption features are possible, (Fig. 9.23).

The radial optical depth �r D t.� D 1/ is parameterized, as a function of the
velocity. The following dependencies are considered:

�r.w/ D T0.k C 1/.1� w/k

.1 � wc/
; (9.64)

and

�r.w/ D T0.k C 1/ wk

.1 � wkC1
c /

; (9.65)

where w � v=V1 is the non-dimensional velocity, wc D v.R�/=V1 D 0:01 and k
is a free parameter. The parameter T0 is related to the total optical depth at the line
centre. The following velocity laws were adopted in [328]: the linear velocity law

u.x/ D U1.x � 1/=.xt � 1/; (9.66)

where U1 D V1=vth, V1 is a terminal velocity, xt D Rt=R
�, and Rt is the wind

terminating radius, Rt D 100R�. Another was the “stellar” type velocity law:

w D wc C .1 � wc/

�
1 � 1

x ˛1

�˛2

; (9.67)

where ˛1 and ˛2 determine the slope and shape of the velocity profile.
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The separation between red- and blueshifted absorption features is a function
only of the dynamics and relative importance of gravity in the line-forming region.
The particular shape and intensity of the emission component that separates the
absorption lines depend sensitively on the assumed parameters. Gravitationally red-
shifted absorption lines form in places close to the compact object. The emission
component is necessarily formed in plasma occupying a much larger volume. Thus,
these features are formed in places that are possibly strongly separated in space. It
is suggested in [328] that this property of line profiles to have complicated narrow
absorption and emission components in the presence of strong gravity may help
researchers to study spectroscopically the innermost parts of an outflow.

9.2.7 Calculations with New Opacity Tables

New calculations of evolutionary tracks for a wide range of masses have been per-
formed using new estimations of the input physics: opacities [512–514], nuclear
reactions [258] and new neutrino losses from plasma processes [231]. Of these, the
most important are changes in opacities. The new ones (see Vol. 1) typically amount
to a factor of 3 at 300,000 K for Solar metallicity with respect to the Los Alamos
[312] values. Extensive and detailed calculations have been performed in [276,867].

The masses in the range (0.8–120)Mˇ (21 values) have been investigated. The
metallicity composition varied fromZ D 0:001 toZ D 0:02. The change of opacity
leads from XHe D 0:279 and XZ D 0:0195 to revision of the initial helium content
of the Sun to XHe D 0:299 and XZ D 0:0188. The mixing length theory of convec-
tion with pressure gradient height Hp and ˛p D 1:6 was used; the overshoot length
dover was taken to be equal to 0:2Hp. These choices have been made on the basis of
a best fit on Tef of the Sun and red giants, and also on the basis of investigations into
different parameters of 65 stellar clusters. The calculations have been performed for
constant mass evolution, and for the case with a mass loss. The standard mass-loss
rates according to the semi-empirical formulae

log.� PMŒMˇ=yr
/ D �7:93C 1:64 log.L=Lˇ/C 0:16 log.M=Mˇ/

� 1:61 logTefŒK
 (9.68)

have been taken throughout the HR diagram until the formation of the Wolf–Rayet
(WR) stars. The scaling of mass-loss rate with metallicity, PM �Z0:5, was adopted.
For WNL stars (WR stars with surface hydrogen abundance XHe � 0:4 and a blue
location in the HR diagram, lg Tef � 4), the mass-loss rate PM D �4�10�5Mˇ=yr
was adopted, and for two types of WR stars, WNE (no hydrogen and still no traces
of products of He burning) and WC (no hydrogen, and show these products) the
dependence was assumed to be

PM D �(0.6–1.0)10�7.M=Mˇ/2:5 Mˇ=yr : (9.69)
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To strengthen the effect of mass loss on the evolution, calculations with mass-
loss rate increased by a factor of 2 in post-MS stages have been performed for
M in the range (20–120)Mˇ. Calculational results for ZD 0:02 are presented in
Figs. 9.24–9.26.

Fig. 9.24 The evolutionary tracks for constant mass evolution with initial composition xH D 0:68,
xZ D 0:02 and Schwarzschild criterion of convection. The slow phases of nuclear burning are
indicated by hatched areas. At 1:25M

ˇ

, the model without overshooting is shown [867]
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Fig. 9.25 The HR diagram for massive stars with the same initial composition and convection
criterion, as in Fig. 9.24, and standard mass loss rate. The locations of WNL, WNE and WC stars
are indicated, as well as the values of the central helium content. XHe during the He-burning phase;
the values 0.97, 0.90, 0.80, 0.70, 0.60,... 0.10, 0 are indicated by small bar on the track [867]

The dependence of the models on Z content consists mainly in the following:

1. The zero-age main sequence (ZAMS) is shifted to the blue at low Z D 0:001

with respect to solar Z D 0:02 by an amount (0.04–0.1) dex in lg Tef. The maxi-
mum deviation occurs at about lgL=Lˇ D 2.

2. For low masses, the stars on ZAMS have much higher Tef and L at low Z. For
example, for M D 1:5Mˇ the difference amounts to 0.13 dex in lgTef and to
0.24 dex in lgL=Lˇ, compared to the solar metallicity case.

3. A lower Z produces more extendable loops, especially in the lower part of the
mass range, where blue loops occur (M D 2–5Mˇ).

The difference between new models and the ones with the old opacity for solar
metallicity consists mainly in the following:

1. The changes in the position of the ZAMS are about 0.015 dex in lgTef to the red
side for M � 2:5Mˇ, and to the blue side for the lower mass stars with about
0.02 dex in lg Tef forMbol D C 4.

2. The width of MS remains the same and fits the observations with a proper
choice of overshoot parameters: 0.2 for the new and 0.25 for the old Los Alamos
opacities.

3. With increasing opacities in the new tables, the blueward extension of loops on
the helium burning phase is a little shorter for initial masses between 2 and 12
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Fig. 9.26 The HR diagram for massive stars with same input parameters as in Fig. 9.24, and mass
loss rates increased by a factor of 2 in post-MS phases. Same remarks as in the Fig. 9.25 are
used [867]

Mˇ. The largest difference occurs for M D 5Mˇ, for which the extension has
been reduced by a factor of two.

4. The position of the RGB and asymptotic giant branch (AGB) (see Sect. 9.3)
presents no particular discrepancies. The position of the Core Helium Flashes
(CHFs) are bluer in new models by about 0.04–0.07 dex in lg Tef. The Tef of
red supergiants (RSG) is greater by about 0.04 dex in lgTef for 15Mˇ and the
difference increases up to 25Mˇ.

Hence, the differences between the models with the old and new opacities are
rather modest, and there is great similarity between the internal structures of the
two sets of models. Larger changes occur with the ratios between 12C and 16O
at the end of the helium-burning phase. These ratios change from the interval
12C=16O D 0.015–0.14 in old to 12C=16O D 0.13–0.46 in the new models.
We may summarize that the differences between evolutionary tracks for different
Z D .0:02; 0:004 and 0:001/ are substantially larger than the differences between
models with the old and new opacities and the same Z.

Evolutionary calculations with the new opacities, investigating the dependence of
evolutionary tracks on XZ and on iron abundance, have been made in [941]. Masses
in the range 1.5–60Mˇ have been calculated. A mixing length theory with ˛p D 1:4
was used. Convective core overshooting and semiconvection above the hydrogen-
burning layers have been ignored, being unimportant in these stars. The evolutionary
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Fig. 9.27 Evolutionary
tracks running from ZAMS to
the end of helium burning for
initial compositions
xH D 0:7, xZ D 0:02 (solid
lines), xZ D 0:03

(dash-dotted lines) and high
iron composition [941]

tracks run from ZAMS to the end of the core helium burning in the case of stellar
masses 3, 5, 7, 10 and 15 Mˇ. Otherwise, only the MS phase was covered. The
results of calculations for high iron abundance 0:1XZ (compared to the normal
0:007XZ) are presented in Fig. 9.27.

New opacity tables have been used in [351] in an attempt to construct a model and
an evolutionary status of P Cygni star, which is one of the brightest in the Galaxy
with lgL=Lˇ D 5:86 ˙ 0:1 and Tef D 19300 ˙ 700K. Archival data have
shown that lgTef changes by �0:027 ˙ 0:004 per century at constant luminosity.
Evolutionary calculations made in [351] lead to the conclusion that P Cygni has
already terminated core hydrogen burning. Its luminosity is provided by hydrogen
burning in the shell, and the star is on its way to ignite core helium burning.

The relaxation code [353] has been used, which takes into account the inertia
terms. Mixing length theory with ˛p D 1:6 for a convection in the envelope and the
Schwarzschild criterion were used, while overshooting has not been included. The
mass-loss rate according to (9.68) has been used. The mass-loss rates following from
the theory of radiation driven winds, which are lower by a factor of two, were also
used to study the sensitivity of the results to the details of mass-loss prescription.
The evolution of stars with six initial masses between 30 and 70Mˇ was calculated.
Models with TefD 20;000K were compared to observations of luminosity and evo-
lutionary speed. The observations (within the error bars) may be fitted by stars with
initial masses between 55 and 65 Mˇ, which have final masses between 47 and
53 Mˇ. Calculations using the Ledoux criterion and with the semiconvective zone
taken according to [1033], which is the most efficient of all descriptions of semicon-
vection, have shown much worse agreement with the observations. This favours the
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use of the Schwarzschild criterion for convection in massive stars; see, however, the
opinion expressed in [942]. Mass loss strongly affects the results. The observations
seem to suggest that P Cygni has lost �10Mˇ during its hydrogen-burning period
in accordance with (9.68).

Similar calculations for 60Mˇ using another prescription for the mass-loss rate
have been carried out in [621]. Instead of (9.68), the relation (9.36) was used during
the O star phase. For luminous blue giants (LBG) which are more pulsationally
unstable with new opacity tables, the enhanced mass-loss rate

PM D 3:358 � 10�4f .4:63 � logTef=K/Mˇ=yr

for 4:63 > logTef=K > 4:535 (9.70)

PM D 1:636 � 10�4f .logTef=K � 4:34/ Mˇ=yr

for 4:535 > logTef=K > 4:34

was used, essentially with f D 1, which is proportional to the pulsational instability
increment (see Sect. 14.3). As a result, a lower mass for P Cygni star was obtained,
and some changes in the evolutionary scenario of very massive stars were suggested.

Analysis of red–blue loop formation and its dependence on the semiconvective
mixing and overshooting was done with new opacities in [350], by evolutionary
calculations of stars in mass range 1.5–20Mˇ. The same code as in [351, 353],
with various criteria for convective instability, mixing prescription in semiconvec-
tive zone and core overshooting length was used. Using the Schwarzschild criterion,
loops become more extended with increasing stellar mass and disappear abruptly at
M D 13Mˇ. An intermediate convection zone is formed here, and the convective
envelope is prevented from downward penetration into a hydrogen-burning shell.
When using the Ledoux criterion, the blue loops exist till M D 19Mˇ and are
absent at 20Mˇ. Their shape is very sensitive to the details of the semiconvective
mixing, probably due to instability action. It is found that semiconvective mixing
promotes the formation of the loops, but core overshooting strongly inhibits their
extension.

Extended evolutionary calculations of helium stars have been performed in
[1052] for the mass range 4–20Mˇ with account of mass loss. As a result, the
final masses converge to a narrow range of small values 2.26–3.55Mˇ for all stars
under consideration. The formation of helium stars is related in [1052] to belonging
to binary systems, and products of their evolution were considered as progenitors of
Type Ib and Ic supernovae.

Evolutionary calculations with new opacities using an updated variant of the
Eggleton method have been performed in [809]. The results of these calculations
are presented in Fig. 9.28.

Problem 1. Given the opacity

 D 0 for T > Tc;

 D 1

�
T

Tc

�n

; n > 0; for T < Tc; 1 � 0; (9.71)
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Fig. 9.28 HR diagram of ZAMS and evolutionary tracks, calculated in [809]. The masses of the
models are indicated at the starts of the tracks, in solar units. The solid portions of the tracks indi-
cate where evolution is on a relatively slow nuclear time-scale, the dotted parts show evolution on
a thermal time-scale and the dashed parts show an intermediate time-scale. The different symbols
indicate the positions of binary components with well-determined masses, radii and luminosities.
The position of the Sun is indicated by a solar symbol ˇ. The crosses (C) show the position of
the giant branches of 1-, 2- and 4-M

ˇ

models, where the binding energy of the envelope becomes
positive

find the boundary between static and outflowing models in the absence of
convection.

Solution. [899]. Taking the equilibrium equation

dP

dr
D ��Gm

r2
(9.72)



9.2 Evolution of Stars in Quiescent Burning Phases 111

at m D M Dconst., and the radiative heat conductivity equation

Lr D Lrad
r D �

4acT 3

3�
4�r2 dT

dr
(9.73)

atLr Dconst., divide (9.72) by (9.73) and, usingP.�; T / from (9.12) and the bound-
ary condition P D 0, � D 0 at T D 0, obtain the solution in the form

P D Lc0

L

a.T 4 � T 4
c /

3
C aT 4

c

3

Lc1

L

4

4 � n for T > Tc; (9.74)

P D Lc1

L

aT 4

3

4

4 � n
�
Tc

T

�n

for T < Tc;

�.T / D
�
P � aT

4

3

�,
RT; (9.75)

Lc0 D 4�cGM

0

; Lc1 D 4�cGM

1

: (9.76)

For T and P from (9.74) to become simultaneously zero, we must have

n < 4 : (9.77)

For T , � and P from (9.75) to become simultaneously zero, we must have

n < 3;
Lc1

L

4

4 � n > 1: (9.78)

On substituting (9.74), (9.75) into (9.73), the solution reads

1

r

GM

4R
C C1 D

Z "
1 � L

Lc0

C
�
Tc

T

�4 �
4

4 � n
0

1

� 1
�#�1

dT;

for T > Tc; (9.79)

1

r

GM

4R
C C2 D

Z �
4

4 � n � ˛
�
T

Tc

�n��1

dT:

for T < Tc, where ˛ D L=Lc1:

The constants C1 and C2 are to be found from the condition T D Tc at r D Rc.
For n D 1, we have

T D Tc

˛

�
4

3
�
�
4

3
� ˛

�
exp

�
˛

Tc

GM

4R

�
1

Rc
� 1
r

���
; (9.80)

T < Tc:
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Reducing T to zero at a finite radius R requires that

GM

4RRc
> �Tc

˛
ln

�
1 � 3˛

4

�
; ˛ <

4

3
: (9.81)

The conditions (9.78) with n D 1 and (9.81) are required for the static envelope of
the star to exist. When the inequality (9.81) no longer holds, the radiative envelope
must be outflowing.

Problem 2. Show that when conditions (9.78) and (9.81) are no longer valid, there
is a region with simultaneous existence of a static solution for convective, and an
outflowing solution for radiative envelopes.

Solution. As the convection (say, according to the mixing-length theory) effectively
reduces ˛, the static solution still exists at formal breaking of condition (9.81) or
analogous to it at n 6D 1. Simultaneously, when these conditions are broken, we have
for the case of a radiative envelope a solution outflowing to infinity and obtained
numerically in [899] from (9.9 to 9.12) with the use of (9.71) for n D 1, ˛ D 5,
L=Lc0 D 1=2, and n D 1, ˛ D 2, L=Lc0 D 1=2.

9.3 Evolution with Degeneracy, Thermal Flashes

In low-mass stars with M � 2:25Mˇ, there forms a degenerate helium core where
the onset of helium burning is accompanied by a thermal flash. This flash results
from a thermal instability due to the fact that an increase in temperature in degen-
erate matter leads to almost no increase in pressure. The heat capacity of the star is
positive in this process, and contrary to ordinary stars with a negative heat capacity,
no stabilizing feedback is present here.

The thermal flash makes the helium core non-degenerate, and a quiet evo-
lutionary phase with further core helium burning returns. This phase proceeds
qualitatively in the same way as in the case of intermediate-mass stars with 2:25 �
M=Mˇ � � 8, where the degeneracy occurs primarily after formation of a carbon
core and two shell sources: helium and hydrogen.

The evolution of low- and intermediate-mass stars (LI-stars) in the shell-burning
phase proves surprisingly similar. In this phase, the observed properties of a star – its
position in the HR diagram – only slightly depend on the total stellar mass and are
mainly determined by the carbon core mass. All stars on average follow the same
track, called convergent. The stars reaching this track are also referred to as the AGB
stars. The motion along the convergent track is accompanied by thermal flashes
in helium shells, the number of flashes increasing with stellar mass. Their nature
differs from that of CHFs since the matter in the helium shell is non-degenerate.
A positive heat capacity is a common property for both these kinds of flash, but in
the latter case it is due to the form of the thin-shell energy source. The evolution
along the convergent track is accompanied by a mass loss leading eventually to
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the white dwarf formation out of the degenerate carbon core. Immediately before
this formation, the star rapidly ejects the residual envelope which is subsequently
observed as a nebula illuminated by the radiation of a hot central star PN. The carbon
core of the most massive LI-stars may approach the mass M D 1:39Mˇ by the
time a thermal instability, which is usually thought to result in observable Type
I supernova explosion, develops in its interiors. Consider the above evolutionary
phases of LI-stars in more detail.

9.3.1 Core Helium Flash

The thermal instability development in a degenerate core was predicted by Mestel
[689] and first calculated by Schwarzschild and others [456, 458, 883, 887]. A pop-
ulation II star (depleted in metals) with M D 1Mˇ, initial chemical composition
xH D 0:9, xHe D 0:099, xZ D 0:001 and Schwarzschild criterion for convection has
been examined in [456]. The core convection has been taken to be adiabatic at any
time, including the flash peak. The maximum central temperature during the flash
is 2 � 108 K, and the maximum helium burning rate �1011Lˇ. The luminosity of
the star experiences little changes during the flash: from 2720Lˇ before the onset
to 2740Lˇ in the peak, and in 3:5�105 yr falls off to 170Lˇ. The respective values
of the effective temperature are 4500, 4060 and 4610 K, and of the radius 105, 106
and 20 Rˇ. The last numbers correspond to a model with helium burning in a non-
degenerate core. During the flash peak, xZ approaches 0:0077 in the centre; hence,
0.7% of the helium in the core centre burns out. The energy release rate is such that
the core remains in a state close to the static equilibrium. The convection that devel-
ops in the core cannot reach the hydrogen-burning shell having two pressure scale
heights of separation from it.

From that time onward, the helium flash has been repeatedly calculated (see
review [866]), and never in these calculations could the core convection reach
the hydrogen-burning shell. The non-stationary character of convection during the
flash has been a major and nonetheless non-calculated factor. A stabilizing role of
the chemical composition gradient r� is also unclear under these conditions. The
second type of mixing which may occur during the flash is due to the penetration of
the outer convective envelope inside the core. The results of various authors are con-
tradictory on this point, being strongly dependent on the adopted form of neutrino
losses due to plasma neutrinos which differ from each other (see [82, 866]). The
major result common for all calculations is that the flash is followed by the appear-
ance of a star having a non-degenerate core with helium burning, and the amount
of helium burnt out over the flash does not exceed 1%. The duration of the flash is
5 � 104 yr, and the location of the star in the HR diagram does not undergo signif-
icant changes during this time. Interpolation formulae for the mass of the helium
core MC He before the flash (in Mˇ) have been obtained in [494] using numerical
calculations:
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MC He D 0:475C 0:23.0:3� xHe/

� 0:01.lgxZ C 3/C 0:035.0:8�M/: (9.82)

These calculations also give the lifetime tRG of the red giant phase of stellar evolu-
tion from the time of luminosity LRG to CHF:

lg.tRG=10
7 yr/ D 2:351� 0:84 lg.LRG=Lˇ/

� 0:04.lgxZ C 3/C 1:36 lg.1 � xHe/� 0:27 lgM; (9.83)

where M is the stellar mass in Mˇ, and xHe and xZ are the initial concentrations.
Write out also the relation determining the lifetime of the star tt before the turning
point of the MS (see Fig. 9.7) as a function of luminosityLt at the turning point and
initial concentrations xHe and xZ:

lg

�
tt

1010 yr

�
D 0:42� 1:1 lgLt C 0:59.0:3� xHe/

�0:14.lgxZ C 3/; �4 � lg xZ � �3:
(9.84)

This relation is useful to estimate the age of clusters from their HR diagram.

9.3.2 Horizontal Branch

Low-mass stars with a non-degenerate helium core and a hydrogen envelope, result-
ing from a helium flash, are located near the line in the HR diagram which is called
the horizontal giant branch (HB). As the mass of the helium core MC He during the
flash depends slightly on stellar mass, the models of stars on the horizontal branch
represent helium cores of almost equal masses which are surrounded by hydrogen
envelopes of different masses. Evolution of models withMC HeD 0:475Mˇ and var-
ious hydrogen envelopes is calculated in [943]. The results are given in Fig. 9.29.
The initial models are located on the zero-age horizontal branch (ZAHB). These
models burn helium in the core and hydrogen in the shell. As helium burns out, the
models evolve off the ZAHB and are situated on the HB. After the helium has been
exhausted, the phase of rapid core contraction starts (dashed portions in Fig. 9.29)
and lasts until helium shell ignition. Subsequently, the stars take positions in the
HR diagram that correspond to what is called the upper horizontal branch (UHB).
The motion along the UHB is accompanied by an increase in the hydrogen shell im-
portance, an decrease in the separation of one shell from another, a increase in the
model luminosity, and results in arriving on the AGB. Almost all stars from the HB
reach the AGB, with the exception of stars with a small hydrogen envelope, located
on the left edge adjacent to the helium MS. These stars transform into white dwarfs
without visiting the AGB. Stars with M �Mˇ do not leave, after the helium flash,
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Fig. 9.29 Evolutionary tracks for the core helium burning and double shell source phases of mod-
els with two envelopes chemical compositions. ZAHB is the zero-age horizontal branch, total
model masses are indicated below it, the helium core has a constant mass of 0:475M

ˇ

. The solid
curves represent the HB, horizontal branch departing from the ZAHB, and UHB, the upper hor-
izontal branch. Rapid phases of evolution are represented by dashed portions. The time interval
between neighbouring tick marks is 5 � 106 yr. After UHB, the stars move to a position on the
AGB, asymptotic giant branch, from [943]

the red giant branch (RGB) from which they get onto AGB almost continuously, as
is the case of intermediate-mass stars.

The location of stars at various evolutionary stages mentioned above is indicated
in a colour .B � V / versus luminosity .mph/

5 diagram for the globular cluster M13
(Fig. 9.30 from [943]), which is similar to the HR diagram. The time of evolution of
a star on the HB is approximately given by the expression [494]

lg.tHB=10
7 yr/ D 0:74� 2:2.MC He � 0:5/; (9.85)

where the dependenceMC He.M; xHe; xZ/ is determined by (9.82).

5 The stellar magnitudeM is defined as a logarithm of the stellar luminosity. The bolometric (total)
absolute magnitudeMbol D 4:74�2:5 lg.L=L

ˇ

/. The visual magnitude (interstellar absorption is
not taken into account) is m D M � 5C 5 lg dpc, dpc being the distance to the star in parsecs. For
crude estimates of the spectrum, stellar magnitudes in separate spectral ranges are used; the latter
are determined by the following optical filters: mU around � D 3650A, mB around � D 4400A,
mV around � D 5500A with 	� 	 800A. Photo-visual magnitude is mph 	 mV . The colour
index B � V .
 mB � mV / does not depend on the distance to the star and corresponds to its
temperature, B � V 	 .7300 K=Tef/ � 0:60. More accurate definitions of stellar magnitudes
taking into account the transparency curves for filters, energy distributions in the stellar spectrum
and interstellar absorption are given in [15].



116 9 Nuclear Evolution of Stars

Fig. 9.30 Colour (B–V) –
luminosity (mpV ) diagram
(sketch) for the globular
cluster M13. Marked are the
following groups of stars:
RGB, red giant branch; HB,
horizontal branch; UHB,
upper horizontal branch;
AGB, asymptotic giant
branch (from [943])

9.3.3 Asymptotic Giant Branch

For stars with a degenerate carbon core and two very close helium- and hydrogen-
burning shells, their location in the HR diagram is nearly independent of the total
stellar mass and is determined mainly by the carbon core mass. The AGB represents
a convergent track on which all LI-stars arrive. The existence of a convergent track
has been established by Paczynski [770, 772] and Uus [1004, 1005]. The conver-
gence of all stars towards this track may be seen, for example, in Fig. 9.7 from
[770]. The presence of two thin, closely located shells causes serious computa-
tional difficulties in calculations of the AGB evolution by conventional methods
like Schwarzschild or Henyey (see Chap. 6, Vol. 1). The situation is still more com-
plicated because the helium-burning shell is unstable on the major part of the AGB
and gives rise to thermal flashes (ThF). During ThF, as in the case of CHF, the star
remains in static equilibrium. The calculation of one flash requires several thousand
models, while the number of flashes for intermediate-mass stars is of the order of
1,000; so direct evolutionary calculations become very time-consuming.

For calculations of AGB evolution, several methods have been suggested which
allow suppression of ThF and an averaged evolutionary track to be obtained. The
method used by Paczynski and Uus in the discovery of the convergent track con-
sists in adopting a quasistationary approximation for the material flow through the
two thin shells. The approximation was first applied in [343] to compute a thin
hydrogen-burning shell. It is based on a small magnitude of Eulerian .@=@t/r rela-
tive to Lagrangian .@=@t/m time derivatives. The reason for this is that all parameters
change drastically when passing through the burning shell, but time changes for all
parameters are small on both sides of the shell. We have [772]

�
@

@t

�
m

D
�
@

@t

�
r

C
�
@r

@t

�
m

�
@

@r

�
t

D
�
@

@t

�
r

�
�
@m

@t

�
r

�
@

@m

�
t

: (9.86)



9.3 Evolution with Degeneracy, Thermal Flashes 117

On the core boundary6 .@m=@t/r 	 dMc=dt D PMc; so, using the small value of
.@=@t/r , we obtain from (9.86)
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: (9.87)
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have been used to derive (9.86). The relation (9.87) allows us to reduce the stellar
evolution equations with partial derivatives in equations for chemical composition
and gravitational energy, given in Chap. 6, Vol. 1, to ordinary differential equations.
The chemical evolution equations are represented by [1004]

dxH

dm
D 4mp

�CNO

QCN0

1

PMc
;

dxHe

dm
D �dxH

dm
;

dxC

dm
D 0 (9.89)

in the hydrogen-burning zone and by

xH D 0; d

dm
.xHe C x12C C x16O C x20Ne/ D 0 ;

dxHe

dm
D
�
3m˛�3˛

Q3˛

C m˛�12C˛

Q12C˛

C m˛�16O˛

Q16O˛

�
1

PMc
; (9.90)
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in the helium-burning zone. The pp-cycle reaction is omitted in (9.89), the
16O.˛; �/20Ne reaction is taken into account in (9.90), which is not important
at earlier evolutionary stages. The term with gravitational energy is written as

�gr D �@E
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�
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dm
C @E

@T

dT
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�
PMc: (9.91)

6 The core mass Mc is defined as if the core boundary is in the middle of the hydrogen-burning
shell [770].
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Models with double-burning shells have been calculated in [1005] with no inclusion
of gravitational energy, at �gr D 0. Write the first equation (9.89) and the third (9.90)
in the form

dxH

dm
D �H

EH

1

PMc
; (9.92)

dxHe

dm
D �He

EHe

1

PMc
: (9.93)

Here, �H D �CNO, EH D QCNO=4mp, �He D �3˛ , and EHe D Q3˛=3m˛; the latter
quantity determines the energy released by conversion of 1 g of helium into carbon.
From the energy equation

dLr

dr
D 4��r2

�
�n � �� � @E

@t
C P

�2

@�

@t

�
; (9.94)

neglecting neutrino emission and production of gravitational energy, that is �� D
�gr D 0, and using (9.3.11), we have upon integrating

xH D xH0 C L.m/� L
EH PMc

; LHe D L � xH0EH PMc ;

xHe D xH0 C xHe0 C L.m/�LHe

EHe PMc
; (9.95)

Li D LHe � .xH0 C xHe0/ EHe PMc:

Here, LHe is the luminosity on the boundary between the shell sources, L is the
outer luminosity and Li is the luminosity of the carbon core. We obtain from (9.95)
the relationship between L, Li and PMc

PMc D L �Li

xH0EH C .xH0 C xHe0/ EHe
: (9.96)

Using (9.96) and (9.95) gives the xH and xHe distribution in shells as a func-
tion of luminosity L.m/ with total luminosity L as a parameter. The procedure for
constructing an equilibrium model with two quasistationary shells with �gr D 0 is
as follows [1005]. First, we choose a fitting point inside the carbon core such that
m D mf. For a given L and effective temperature Tef, the equations of stellar struc-
ture (9.94), (9.72), and (9.73) in Problem 1 after Sect. 9.2, with continuity equation

dm

dr
D 4��r2; (9.97)

the relation for the total heat flux (including the convective one from (8.19)),

Lr D Lrad
r C 4�r2Fconv; (9.98)
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Fig. 9.31 The AGB tracks
for intermediate-mass stars,
from [1005]. For comparison,
the dashed lines represent
tracks from [770]

and combined with (9.95) and (9.96) are integrated inward to m D mf, where
� D �f, T D Tf and r D rf. Taking the carbon core isothermal with zero luminosity
Li D 0, we perform the integration from the centre with given �c and Tc D Tf. We
then obtain the mismatch with respect to � and r at the fitting point mf. Construct-
ing a model with given L and M reduces to a search of Tef and �c satisfying the
fitting conditions for � and r . The method for finding Tef and �c is similar to the
Schwarzschild method, but only two parameters are to be found here instead of four
in the Schwarzschild method (see Chap. 6, Vol. 1).

The initial composition adopted in [1005] is xH0 D 0:7, xHe0D 0:26,
xZ0 D 0:04, the mixing length l DHp. Evolutionary tracks are shown in Fig. 9.31.
The obtained models have a strongly rarefied, almost totally convective envelope
with a large region of inverse gradient of density. All evolutionary tracks turn to the
left at a high luminosity, and Tef;min D 2;300 � 2;400K. A definite linear depen-
dence of the stellar luminosity on the carbon–oxygen core mass MCO, obtained in
[1005] in the form

L=Lˇ D 59100 .MCO=Mˇ � 0:51/; (9.99)

is a remarkable peculiarity of these models. Substituting the numerical values of
constants into (9.96) gives

PMc D 0:47 � 1020.MCO=Mˇ � 0:51/ g cm�1

D 0:71 � 10�6.MCO=Mˇ � 0:51/Mˇ= yr: (9.100)

The core mass and stellar luminosity increase exponentially with time, the dura-
tion of the core growth phase before 12C ignition being several million years. The
mass of the matter between shells decreases on the AGB with time from 0:015Mˇ
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at MCOD 0:6Mˇ to 5 � 10�6Mˇ at MCOD 1:39Mˇ. A calculation scheme for
evolution at the AGB phase with suppression of thermal flashes, based on neglecting
the gravitational energy, has been considered in [953].

The AGB evolution has been calculated in [770, 772] using the Henyey method.
For an envelope with Tm � 106–107 K, the system of equations of stellar structure
(9.94), (9.97), (9.98), (9.72), and (9.73) in Problem 1 after Sect. 9.2 has been inte-
grated inward to T D Tm for L D const: and �gr D 0 similar to [1005]. At T D Tm,
this system has been supplemented with (9.89) and (9.90). Contrary to [1005], �gr

has been taken here from (9.91). In such a more complete form, the system is in-
tegrated further to the fitting point in the core at m D mf. The quantity PMc here is
not a one-to-one function of L, as is the case in (9.96), and has to be obtained from
fitting to the core which is not treated as isothermal. The core temperature at the
fitting point is found as a result of this procedure as well. The results of envelope
integrations have been taken as boundary conditions in determining the core struc-
ture by the Henyey method. Another simplification based on a weak dependence of
parameters on the effective temperature in the range T > Tm has been introduced
in [772] because of a large luminosity of AGB stars. The results of calculations of
tracks for initial composition xH0 D 0:7, xHe0 D 0:27, xZ0 D 0:03 at l D Hp are
given in Fig. 9.7 [770], compare with Fig. 9.31 [1005]. The difference in tracks is
likely to be due to the difference in initial compositions, because the computational
accuracy is nearly the same in both cases. The dependence of the luminosity on the
core mass is determined by the relation [770]

L=Lˇ 	 59250 .Mc=Mˇ � 0:52/: (9.101)

It does not depend on the total mass M and is very close to (9.99) from [1005].
For intermediate-mass stars with M � 2:25Mˇ, the gravitational energy release
becomes important, and the luminosity between flashes is given by the relation [505]
(M in Mˇ)

L 	 .LH CLg/ D 6:34 � 104.Mc � 0:44/.M=7/0:19; (9.102)

where a weak dependence on the total mass M (in Mˇ) is taken into account. The
averaged change of the radius of AGB star is given by the approximate formula
[501]

R D 312.L=104Lˇ/0:68

�
1:175

M

�0:31S � xZ

0:001

	0:088

.l=Hp/
�0:52; (9.103)

where

S D 0 forM � 1:175
1 forM > 1:175: (9.104)
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9.3.4 Thermal Flashes in Helium-Burning Shell

Consecutive evolutionary computations for a star with M D 1Mˇ without
simplifications introduced in the preceding subsection have resulted [884] in the
discovery of the thermal instability of a helium-burning shell with no degeneracy.
The presence of this instability is a common property for stars on the major part
of the AGB. A detailed theoretical explanation for this phenomenon is given in
[884] (see also Sect. 13.2). The possibility for thermal instabilities to develop in
thin degenerate burning shells was first predicted by Gurevitch and Lebedinski as
early as 1947 (see [440])7.

A detailed investigation of 13 ThF in evolutionary calculations of an AGB star
of 1Mˇ with initial composition xH D 0:9, xHe D 0:099, xZ D 0:001, the Ledoux
criterion for convection, l D Hp in the envelope and the adiabatic convection ap-
proximation in the region of nuclear burning has been made in [885]. More than
25,000 equilibrium models have been constructed to cover 4 � 106 yr of the evo-
lution of the star. The first flash occurred when the middle of the helium shell was
at mHe D 0:465Mˇ, and the last of all calculated flashes at mHe D 0:539Mˇ.
The respective masses for the middle Mc of the hydrogen shell have been 0.55 and
0:60Mˇ. The subsequent evolution may comprise a significantly larger number of
flashes.

The major role in luminosity at quiet evolutionary phases belongs to hydro-
gen burning because of its high caloricity. The energy release in flashes due
to helium burning may be five orders of magnitude higher than the hydrogen
burning. The overall characteristics of thermal flashes are as follows. The cen-
tral temperatures at quiet evolutionary phases are (1.92–2.14) � 108 K, in flash
peaks (1.84–2.04)� 108 K; the central densities are (4.35–7.08)� 105 g cm�3 and
(4.11–6.64)�105 g cm�3 respectively, so the core expands and cools slightly during
ThF. In the middle of the helium shell, the temperatures are (1.26–1.29) � 108 K
during quiet phases, and (1.69–2.54)�108 K during flashes, the respective densities
are (1.38–3.46)� 104 g cm�3 and (4.06–4.88)� 103 g cm�3. Variations of helium-
burning rate LHe during the first nine flashes are shown in Fig. 9.32; LHe, LH and
stellar luminosity L during the ninth flash are given in Fig. 9.33 from [885].

Each flash comprises two or three peaks with time intervals between them vary-
ing from 30,000 yr for the first flash to 1,000 yr for the 13th flash. The time width
of the main peak decreases from 300 to 1 yr, and the height of the peak, LHe, varies
from�105 to�107Lˇ. It should be noted that the intensity of flashes increases with
time, the convection in the burning zone grows stronger and, from the ninth flash
on, the convection reaches hydrogen-rich regions, leading to substantial changes in
chemical composition that result from participation of free neutrons produced in the
reaction 12C.p; �/13N.ˇC�/13C.˛; n/16O.

7 In some papers (e.g., [885]), the term “flash” denotes what we call here “flash peak”, while the
“relaxation cycle” is identical to our “flash”. Other terms may also be encountered in texts.
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Fig. 9.32 Helium-burning
rate LHe as a function of time
during the first nine flashes
caused by the thermal
instability of helium-burning
shell in a population II star of
M D M

ˇ

(xH D 0:9,
xHe D 0:099, xZ D 0:001).
The mass of the core with
exhausted hydrogen varies
from the first to the 13th flash
from 0.554 to 0:6M

ˇ

, from
[885]

Fig. 9.33 The helium, LHe,
and hydrogen, LH, burning
rates and surface luminosity
of star during the ninth flash,
see Fig. 9.32. The instability
regions are labeled by j—j,
from [570]

The evolution of population II stars with initial xH D 0:732, xHe D 0:266, xZ D
0:001 and massesM D 0:6 andM D 0:8Mˇ has been calculated in [954] up to the
AGB, where few ThF have been studied in detail. The results for variations ofL,LH

and LHe coincide qualitatively with [885]. It was first pointed out that the effective
temperature did not vary significantly over the flash:	 lgTe � 10�2, so that the star
moves nearly vertically in the HR diagram (see Fig. 9.35 from [500]). ThF occurs
only in stars with M � 0.52–0.53Mˇ, and the total number of flashes increases
with increasing stellar mass. The evolution of a model with M D 0:6Mˇ has been
calculated in [500]. Following the AGB, this model has experienced only ten flashes,
shown in Fig. 9.34, before leaving the AGB and moving towards the white dwarf
region (for more detail, see Sect. 9.3.6). Between the first and tenth flashes, for flash
maxima, the core mass changes from 0.5272 to 0:5901Mˇ, and the helium-burning
rate LHe increases from 3:3 � 104 to 2:9 � 107Lˇ. The corresponding luminosity
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Fig. 9.34 Time dependence of luminosity and bolometric stellar magnitude during the thermally
flashing phase for a model of M D 0:6M

ˇ

and initial composition xH D 0:749, xHe D 0:25,
xZ D 0:001. The numbers above the horizontal arrows indicate the time that elapses between
flashes in years, the mixing length is taken to be l D 1:5Hp, Mbol D �2:5 lg.L=L

ˇ

/ C 4:77,
from [500]

changes are significantly less steep (see Fig. 9.34). The time structure of flashes for
a model withM D 0:6Mˇ is qualitatively the same as for 1Mˇ (compare Figs. 9.33
and 9.34), but from the sixth flash onwards, the subsequent flashes become single-
peaked, which might be due to the low mass of the envelope surroundingMc.
E – AGB is the early asymptotic giant branch (without flashes) where the star arrives
after the core helium has been exhausted. Hatched are the regions MS, the MS, and
CHB, core helium burning, where are given approximate evolutionary tracks for
stars with M D 3; 5; 7Mˇ and xH D 0:719, xHe D 0:28, xZ D 0:001. ZAHB
is the zero-age horizontal branch corresponding to the onset of the helium burning
in static core. The dashed line on the left represents a star of the constant radius
R D 0:0285Rˇ (hot white dwarf), from [500, 502].

The dependence of the time interval between flashes 	tThF on the core mass Mc

has been studied in [779, 780]. The following approximate dependence is obtained
in [780] (for xH D 0:7, xHe D 0:27, xZ D 0:03):

lg	tThF 	 3:06� 4:5
�
Mc

Mˇ
� 1

�
: (9.105)

Here, tThF is measured in years.
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Fig. 9.35 Evolutionary track of a star of mass M D 0:6M
ˇ

transforming into white dwarf, from
E – AGB on; the initial composition is xH D 0:749, xHe D 0:25, xZ D 0:001. The location of
the star before the pulse with indicated number is marked by dots. The dashed line OM contours
the extended dips in luminosity during flashes ( Fig. 9.34); shown are the tracks for flashes no. 7,
9 and 10. Evolution times t1 at tips and corresponding masses in hydrogen-rich envelopes are in
Table 9.10

Table 9.10 Table to Fig. 9.35

i 1 2 3 4 5 6 7 8 9

ti (104 yr) �3:0 �2:0 �1:0 0.5 0 0.5 1.0 1.5 1.86
Me;H (10�3 M

ˇ

) 3:15 2:53 1:84 1.47 1.13 0.80 0.49 0.27 0.27

The dependence of the stellar luminosity in flash peak Lm on the core mass Mc

obtained from numerical calculations is given in [1048]:

Lm

Lˇ
D 97; 000

�
Mc

Mˇ
� 0:52

�
: (9.106)

9.3.5 The Mass Loss in AGB Stars

An overwhelming evidence for mass losses in low- and intermediate-mass (LI) stars
in the evolutionary process is provided by observations of clusters that comprise
stars of nearly equal age. The turning point off the MS for the Pleiades cluster cor-
responds to M D Mt > 6Mˇ. On the other hand, this cluster has been found
to contain single white dwarfs which clearly originate from stars with initial mass
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M > Mt and, consequently, lose most of their mass during the evolution [1038].
All single LI-stars with M <� 8Mˇ thus transform into white dwarfs losing up to
7Mˇ during the evolution. The major loss occurs during the AGB-phase. When the
envelope is ejected from the star, a core remains in the form of a hot star which
heats the escaping matter so as to make it observable in the form of a PN. After
cooling, the core transforms into a white dwarf. The evolutionary scheme red giant
– PN – white dwarf was first suggested by Shklovski in 1956 [904] on the basis of
observational data studies.

Several mechanisms for mass loss by LI-stars have been proposed so far, but
the problem is not completely resolved as yet. The possibility for an extended red-
giant envelope to be ejected owing to a release of hydrogen ionization energy that
makes it possible for the envelope to escape to infinity has been considered in [652,
786]. The role of this mechanism cannot be estimated rigorously without dynamical
calculations of such an ejection.

Nevertheless, investigation with the help of the conventional static code led to
important results [1027]. It was etablished, probably for the first time in evolutionary
calculations, that ThF on AGB leads to the development of an instability resulting
in a thermal run-away and loss of the hydrogen envelope. This instability is acting
in stars whose initial masses are in the range 0.8–5Mˇ, which coincides with the
results of the stability analysis made in [786]. This instability is attributed to the
energy of the hydrogen recombination, which makes positive the total energy of the
envelope

�W D
Z M

Mc

�
�GM

r
C E

�
dm � 0 (9.107)

and makes it energetically preferable for a loss of the hydrogen envelope to infinity.
In [453], the relation (9.107) with �W D 0 was used for estimation of the mass of
the white dwarf remaining after the loss of its envelope. In [1027] this instability,
leading to the mass loss, was obtained in the calculations. It is interesting to mention
possible reasons, why this instability had not been realized in previous numerous
evolutionary calculations of AGB stars [1027].

1. Use of the old opacities.
2. Neglecting the energy production in the outermost layers, leading to loss of the

energy of the hydrogen recombination in these layers.
3. Crude resolution in time, which smears the released recombination energy and

makes it ineffective.
4. Attributing of such an instability to the instability of the numerical scheme, in-

stead of having a physical basis, which is connected with numerical difficulties
at the evolutionary calculations of the AGB stars.

The matter outflow under the action of light pressure at a large opacity in the
envelope may represent another mass-loss mechanism [385, 599, 600]. This mecha-
nism is similar to that examined in [172] for the case of giants (see Sect. 9.2.4, also
[171]). Note that equations in [599] remain valid even when the critical point is at
an optical thickness � < 1.
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A mechanism for mass loss arising from pulsation instability and shock gen-
eration which leads to an occasional ejection of matter is now believed to be
very plausible. Numerical calculations of such an ejection have been made in
[368, 981, 1046, 1047] on the basis of one-dimensional non-stationary equations of
hydrodynamics. Calculations carried out for fairly realistic conditions have revealed
a sufficient efficiency of this mechanism. An additional mass loss produced by the
pressure on dust grains is included in calculations in [368, 981]. Observational ar-
guments for the scheme proposed by Shklovski [904] are given in [601].

The above mechanisms of mass loss have not been included so far as a component
in the evolutionary calculation scheme. Contrary to the first group of quasistation-
ary mechanisms for which a scheme similar to Sect. 9.2.4, or code based on the
relaxation Henyey-type method with inclusion of the dynamical terms (see Chap. 6,
Vol. 1) could be used, in the case of the third mechanism the principles of its
self-consistent inclusion in the evolutionary scheme are obscure. Lamers [610] has
obtained the empirical dependence of PM on stellar parameters:

lgFm D �5:23.˙0:06/C 4:60.˙0:45/ lg.Tef=3 � 104 K/

� 0:48.˙0:11/ lg.gef=10
3/ g cm�2 s�1; (9.108)

lg PM D �4:83.˙0:28/C 1:42.˙0:40/ lg.L=.106Lˇ//

� 0:99.˙0:47/ lg.M=30Mˇ/

C 0:61.˙0:13/ lg.R=30Rˇ/Mˇ=yr: (9.109)

Another relation is given by Reimers (see [505], for observational data see in [826]):

PM D �4 � 10�13�

�
L

Lˇ
gˇ
g

Rˇ
R

�
Mˇ

yr
; � � 1: (9.110)

9.3.6 Evolution with Mass Loss: From AGB to White Dwarf State

The evolutionary track of a star with mass M D 0:6Mˇ evolving from AGB to
white dwarf state is represented in Fig. 9.35 from [500,502]. A low mass has allowed
accurate calculation of the evolution, and calculations being carried through for ten
helium-shell flashes. The 11th and last flash occurs when the star is already moving
at Mc D 0:5997Mˇ towards the white dwarf region. As the position of a star on
the AGB is determined mainly by the mass Mc, this track, with the exception of the
number and some properties of flashes, may serve to describe the evolution of a star
with a larger initial mass.

Analyzing observational data of AGB stars, planetary nebulae and their cores
gave rise to the conception of two types of mass loss on the AGB: a quiescent stellar
wind with a rate given by the empirical relations (9.109) or (9.110), and the rapid
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ejection phase (superwind) occurring immediately before the departure of the star
from the AGB [505]. Observations have yielded the formula (see [505]) relating the
mass of a PN MPN with that of its nucleus (PNN) MPNN:

MPN 	 b.1:69� 8:09MPNN C 11:69M 2
PNN � 4:34M 3

PNN/: (9.111)

Here, b D 0.5–1 is an empirical coefficient. During the evolution of a star along
the AGB with quiescent mass loss, Mc increases while the hydrogen envelope mass
Me decreases. A rapid envelope ejection is assumed to take place when the equality
Me D MPN becomes valid; this envelope, after being illuminated by a hot central
star with mass MPNN, will transform later into PN. Using (9.110) for finding PM and
applying (9.111) enables us to obtain the dependence of the maximum value of PM
during the evolution on initial stellar massMi for the case of quiescent outflow. This
dependence is given in Fig. 9.36 from [505]. For masses Mi preceding the peak in
Fig. 9.36, when Mi < MW, the quiescent outflow ends with a superwind starting
at Me D MPN from (9.111). At a peak value Mi D MW, the core has time at the
point of rapid ejection to attain mass MCh D 1:39Mˇ corresponding to the onset
of explosive carbon burning. For larger masses,Mi > MW, the equalityMc DMCh

is reached earlier than Me D MPN. In this case, the quiescent outflow phase is
followed by the carbon ignition, the maximum quiescent outflow rate PM decreases
with increasingMi by reason of gR growth in (9.110) at the same L.

Fig. 9.36 The maximum quiescent mass loss rate PM for a model with initial composition xH D
0:7, xHe D 0:28, xZ D 0:02 on the AGB, reached before the carbon ignition and explosion at
Mc D MCh for Mi > MW (MW is the mass corresponding to peak), or before the rapid envelope
ejection and white dwarf formation for Mi < MW; PM has been evaluated from (9.110), the rapid
envelope ejection occurs when the envelope mass falls down to Me D MPN from (9.111). The
quantity MW depends on initial composition, uncertainties in the relation (9.110) and (9.111) forPM and MPN and other factors pointed out in Sect. 9.1, from [505]
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Mass losses taken into account, and the track in Fig. 9.35 corresponds to a model
of mass �2Mˇ. The star loses �1:2Mˇ during the quiet phase, whereupon on
reaching Me D MPN, it ejects rapidly �0:2Mˇ. The lifetime of the star from the
onset of rapid ejection to its appearance on the horizontal portion of the track may
be well below the time indicated in Fig. 9.35, which is determined by the hydrogen-
burning rate.

The evolution of a star with Mi > MW is likely to end with the thermal insta-
bility development and an explosive process (probably, supernova explosion); white
dwarfs arise most probably forMi < MW. The dependence of the mass of the white
dwarf mf on initial stellar mass Mi and parameter � from (9.110) for xHe D 0:28,
xZ D 0:02 is given in [505]:

mf 	 0:53 ��0:082C 0:15 ��0:35.Mi � 1/: (9.112)

The value MW equals the value of Mi from (9.112) at mfDMChD 1:39Mˇ and is
determined (with the inclusion of the dependence on b) by [505]

MW D 1:0C 9:33 �0:35 � 3:53 �0:27C 0:8.b � 1:0/ :

It then follows that MW=Mˇ D 4:7, 4.3, 8 for .�; b/ D .1=3; 1/, .1=3; 1=2/, .2; 1/.
The value MW D 8Mˇ (see Sect. 9.3.5) fits observations better, but at � D 2 gi-
ants are not present for Mi � 1:15Mˇ; therefore, this value is not consistent with
observations. Such a discrepancy seems to originate from insufficient accuracy of
the relation (9.110) with � D const: during the evolution. Including variability of �
or using other, more accurate and complicated formulae for PM is likely to yield a
consistent value of MW D 8Mˇ.

One of the first evolutionary calculations from AGB to the white dwarf state has
been made in [838], where the evolution of a model with constant massM DMi D
0:85Mˇ; xH D 0:7, xHe D 0:29, xZ D 0:01, l D 0:7Hp has been studied. The ThF
have been suppressed by neglecting helium burning in the shell.

A more realistic investigation with the inclusion of precedent mass loss has been
made by Paczynski in [770, 774]. This deals with evolutionary calculations of stars
with Mc D 0:6, 0.8 and 1:2Mˇ surrounded by hydrogen envelopes with Me D
1:2� 10�3, 1:4� 10�4 and 4� 10�6Mˇ, respectively, that is, of almost completely
stripped cores. Calculations have been performed by the ordinary Henyey method
without requirement of stationarity (Sect. 9.3.3) and for initial composition xH D
0:7, xHe D 0:27 xZ D 0:03 at l D Hp. The logarithms of effective temperature of
initial models have been arbitrarily taken to be 4.191, 4.202 and 4.728, respectively.
According to [786], where the role of ionization energy in the envelope ejection
has been studied, the masses of initial models are assumed to be 0.8, 1.5, and 3.0,
respectively, but this relationship is uncertain. The calculated evolutionary tracks
are shown in Fig. 9.37 from [774]. The selected envelope masses are so low that the
models start moving immediately towards the white dwarf region with, however,
one helium-shell flash experienced by all of them during this period. This final flash
discovered in [770, 774] is accompanied by a quick loop-like motion of the model
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Fig. 9.37 Evolutionary
tracks for models with masses
of 0.6, 0.8 and 1:2M

ˇ

in PN
phase, from [774]

in the HR diagram, particularly marked on the 0:6Mˇ model track. The phase of
expansion lasts several hundred years from the left to the right end of the loop,
while returning takes �103 yr. The quick changes (decreasing Tef) observed in FG
Sagittae have been associated in [770, 774] with the effect of this flash.

Following Paczinski’s calculations, the final flash on the model path from AGB to
the white dwarf sequence has been studied by many authors [504,874,876,955]. An
example of a track with indication of time intervals is given in Fig. 9.38 from [504].
The dependence of the final flash shape on the point on the evolutionary track (ejec-
tion phase) corresponding to the onset of the rapid envelope ejection (superwind)
generating a PN, and on the mass of the hydrogen envelope left behind by the su-
perwind has been studied in detail in [501,1048]. As pointed out also in [874], these
tracks are very different from each other. The expected uncertainty in the distribu-
tion of models over ejection phases and residual envelope masses makes plausible
all evolutionary tracks obtained in [501, 1048] for the final flash.

Evolutionary calculations including an empirical dependence for PM , similar to
analogous calculations for massive stars (see Sect. 9.2.4), was first performed in
[457]. This investigation deals with the effect produced on the evolution by a rapid
mass loss �10�3Mˇ= yr starting at a peak of one ThF. Over a short period of
time a star with 1Mˇ leaves behind a core of mass 0:65Mˇ. During the subse-
quent evolution, this core remains very bright (�103Lˇ) over a time substantially
exceeding the lifetime of the known planetary nebulae. Evolutionary calculations
for more realistic laws of mass loss occurring in the transition from AGB to the
white dwarf state have been made in [874, 876]. Calculations have been compared
in [875, 877] with observations of PN nuclei. The evolution of stars with M D 0:8

and 1Mˇ and initial composition xH D 0:739, xHe D 0:240, xZ D 0:021 from
AGB to the white dwarf configuration has been calculated in [876] with the inclu-
sion of the quiescent and rapid phases of mass loss. To obtain remnants with mass
M < 0:6Mˇ, the onset of a rapid mass loss has been specified at sufficiently early
time: before the onset of ThF at L D 1400Lˇ for M D 0:8Mˇ and after the
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Fig. 9.38 The final helium flash in a star of massM D 0:6M
ˇ

represented by the loop in the HR
diagram, the onset of the flash corresponds to the time t D �637 yr. Shown also is a track before
the flash, starting from E – AGB (Fig. 9.35). Times ti on this track are the same as in Fig. 9.35,
from [504]

Fig. 9.39 Mass loss rate j PM j
adopted in calculations [876]
versus Tef (solid lines) the
increase of core mass, PMc,
due to hydrogen burning, is
given for comparison (dashed
lines)

fifth ThF at L D 4500Lˇ for M D 1Mˇ. Figure 9.39 shows the dependence
PM.Tef/ adopted in the computations and the rate of increase of the core mass PMc.

The value PM D (2–4) � 10�4Mˇ= yr has been adopted for Tef < 103:7 K, while
for larger Tef Reimers’ law (9.110) with � D 1 has been used. The results of cal-
culations are presented in Fig. 9.40. The rapid mass loss causes the models to move
rapidly to the left in the HR diagram. Small departures from thermal equilibrium
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Fig. 9.40 Evolutionary tracks for stars moving from the AGB to a white dwarf state, from [876].
The numbers indicate the model age in 103 yr, zero age is assumed to be at T D 5;000K. The thick
portions of the tracks represent phases of rapid mass loss. Indicated also are the initial (on the right)
and final model masses

give rise to a moderate fall in luminosity (�20% for 0:8Mˇ ). The rapid mass loss
lasts �103 yr, whereupon the models of 0.8 and 1Mˇ leave stars with masses 0.546
and 0:565Mˇ, respectively, that is, almost completely stripped cores evolving to a
white dwarf configuration. Comparing times of cooling for two models in Fig. 9.40
yields a very steep dependence on final mass. Increasing the mass by 0:019Mˇ
leads to a decrease in the cooling time by �20 times (see also [774,874], Figs. 9.35
and 9.38).

The linear relations (9.99) or (9.101) betweenL andMc are not relevant forMc <

0:6Mˇ because the contribution of helium burning to luminosity is substantial for
this range:�30% for 0:546Mˇ. In addition, the relation (9.105) for	tThF does not
hold for small cores. The time interval between flashes is �7 � 104 yr for Mc D
0:56Mˇ and increases to �105 yr for McD 0:57� 0:58Mˇ. Only for larger Mc

does the time 	tThF decrease with increasingMc in accordance with (9.105).
Besides the tracks shown in Fig. 9.40, a track with a final ThF providing a loop

in the HR diagram has been obtained in [876] by means of a slight change in initial
conditions. This track, given in Fig. 9.41, arises when a 0:553Mˇ remnant results
from the superwind action during the evolution of a star with M D 1Mˇ. The ap-
pearance of the loop in the HR diagram depends on the phase of the time interval
between two successive ThF when the star starts moving away from the AGB. If
the onset of this motion occurs soon after the last ThF, then the star has a sufficient
time up to the next ThF for the hydrogen envelope to pass through the shell into the
core so that the next flash does not occur. If, on the contrary, the departure from the
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Fig. 9.41 The same as in Fig. 9.40 but now for a final mass 0:553M
ˇ

, when the final helium flash
occurs far from the AGB (see Fig. 9.38). The peak helium-burning rate with LHe D 6:3� 104 L

ˇ

occurs at filled circle. Visible also is a very small loop at Tef D 5 � 104 K caused by a second,
minor helium flash with LHe � 1:8 � 103 L

ˇ

, from [876]

AGB is not far from the next ThF, then the hydrogen envelope has no time to pass
quiescently into the core, and the phenomenon of final flash arises. The probability
for a post-AGB model to experience a final flash is estimated to be some 20% [876].
Besides a possible explanation provided by the final flash for phenomena observed
in FG Sge, it may give rise to additional mixing due to convection development
and enrichment of surface layers with helium, which was observed in nuclei of the
planetary nebulae A30 and A78 [501,504,876], and may also take off the star in the
region of low Tef and cause an ejection of the second envelope of lower mass in the
regime of superwind [501].

9.3.7 On Mixing on the AGB and in Neighbourhoods

The problem of convection, and the mixing it leads to, is one of the most diffi-
cult and obscure items in the theory of stellar evolution. The reason for this is the
absence of a reliable theory of convection and far-reaching simplifications in the
description of convection in evolutionary problems. The approximation of adiabatic
convection is usually used for stellar interiors including shells, and the effects of
non-adiabaticity, in addition to those of non-stationarity and overshooting, are not
considered. Conclusions based on mixing and convection development are usually
tested against observations and taken as satisfactory only if corroborated by some
observational fact referring mostly to chemical composition of stellar atmospheres.
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The results below are satisfactory from this standpoint but one should bear in
mind that the theory underlying them is not really reliable, and attempts to explain
the same observational data from other theoretical models are not rare.

The transfer of convection from the envelope into deep regions of star is the main
mechanism of mixing leading to enrichment of outer shells with heavy elements.
The first mixing occurs when hydrogen has been exhausted in the central core and
the star has evolved into the red-giant region, and involves stars with initial masses
Mi [505]

Mi < M
max
i D 8:95C 69:4.xZ � 0:02/� 31:3.xHe � 0:28/.Mˇ/: (9.113)

The second mixing takes place after helium has exhausted in the centre, when the
star arrives on the AGB, and involves stars with initial masses Mi [505]

Mi > M
min
i D 4:59C 82:5.xZ � 0:02/� 6:88.xHe � 0:28/.Mˇ/: (9.114)

For stars with Mi < Mmin
i arriving on the AGB, the second mixing does not occur.

According to calculations in [84], the core massMc before the second mixing is (for
xHe D 0:28, xZ D 0:02)

M .1/
c D 0:2954Mi � 0:5 .Mˇ/ (9.115)

and after it

M .2/
c D 0:0526Mi C 0:59 .Mˇ/: (9.116)

For Mi D 5Mˇ and the other chemical compositions

.xHeI xZ/ D .0:2I 0:02/I .0:36I 0:02/I .0:2I 0:001/
.0:28I 0:01/I .0:28I 0:001/I .0:28I 0:02/ (9.117)

these masses are, respectively, (in Mˇ)

.M .1/
c IM .2/

c / D .0:86I 0:855/I .1:176I 0:900/I .1:129I 0:906/
.1:18I 0:967/I .1:283I 0:930/I .0:977I 0:853/ : (9.118)

The last values in (9.118) are obtained from (9.115) and (9.116). Thermal flashes on
the AGB start soon after the second mixing. They lead, in turn, to the third mixing.

During ThF there occurs a formation in a helium shell of a convective layer with
mass 	Mcsh and maximum temperature T max

csh such that [505]

lg	Mcsh D �1:835C 1:73Mc � 2:67M 2
c ;

T max
csh D Œ3:1C 2:85.Mc � 0:96/
 � 108 K; (9.119)

for Mc > 0:9, all M are in Mˇ:
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The mixing during ThF may be due to both the penetration of convection from
the helium shell into the hydrogen envelope, as is the case after the ninth flash in
calculations [885], and its penetration from the envelope into deep regions. The
peculiarity of this kind of mixing is that the convective envelope and convective
helium-burning shell never come into contact. During the evolution, they penetrate
the same shell of matter alternately, thus giving rise to substantial changes in com-
position. This may be seen from Fig. 9.42 from [497] for 7Mˇ, where the convective
envelope penetrates the region occupied previously by the convective shell to a depth
	dD 3:9� 10�4Mˇ. Variations of parameters during a ThF with mixing of this
kind are given in Fig. 9.43 from [495] for a star of M D 7Mˇ.

It should be noted that at various evolutionary phases, the occurrence of mixing
and its quantitative characteristics are strongly dependent on the adopted param-
eters, such as mixing length l , opacity and reaction rates. The inclusion of non-
adiabatic convection inside the shell, non-locality and overshooting of convection
into the stable region may have a significant effect on the results. Discrepancies
arise also in describing the convective zone passing through the discontinuity in
chemical composition [866]. The variant of mixing we give here is thought to be
satisfactory since its consequences fit observations well [505].

Fig. 9.42 Convective regions (hatched) during the 15th and 16th flashes on the AGB in a model
of M D 7M

ˇ

and initial composition xH D 0:7, xHe D 0:28, xZ D 0:02. The convective shell
in the helium-burning shell has a maximum mass 	Mcsh D 1:98 � 10�3 M

ˇ

, its outer boundary
does not touch the inner boundary of the convective envelope, but the latter does penetrate the
region occupied before by the convective shell to a depth 	d D 3:9 � 10�4 M

ˇ

, thus causing an
enrichment of the surface with heavy elements (dredge-up), 	Mce D 1:13�10�3 M

ˇ

is the mass
shell penetrated by the hydrogen-burning shell during the time interval between two flashes, the
dashed lines indicate the boundary of the core containing no hydrogen before “dredge-up” begins,
from [418,423]
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Fig. 9.43 Time variations of several characteristics in a model with M D 7M
ˇ

and initial com-
position xH D 0:7, xHe D 0:28, xZ D 0:02 between its seventh and eighth thermal flashes as in as
AGB star (TF–AGB); LH and LHe are the helium- and hydrogen-burning rates, Ls and RS are the
model luminosity and radius, Tef is the effective temperature, MXY is the mass in the core contain-
ing no hydrogen, MCE is the mass inside the convective envelope, C -discontinuity determined the
mass in the core containing no helium, from [495, 505]

9.3.8 Thermal Instability in Degenerate Carbon Core

If the carbon core of an AGB star reaches the Chandrasekhar limit �1:39Mˇ (see
Sect. 11.2), then the equilibrium is no longer supported by the degenerate electron
pressure. The core starts contracting, the temperature rises to the carbon ignition
point, and degeneracy gives rise to a thermal flash that may release, under certain
conditions, an energy of the order of supernova energy. The time of carbon ignition
is then determined by the counterwork of the heat release in the 12C.12C; �/24Mg
reaction and energy losses due to neutrino, mainly plasma neutrino, emission. Evo-
lutionary changes in models with no mass loss before 12C ignition are given in
Figs. 9.44–9.47 from [773] for masses M D 3; 5; 7Mˇ. For all these models, the
line �� D �CC with neutrino losses by URCA processes, plasma neutrino, etc. (see
Sects. 4.3, 5.2, Vol. 1), which is natural to be taken for the onset of thermal instabil-
ity, is first crossed in the centre of the star, though for the 7Mˇ model the regions
far from the centre have been close to this line (Fig. 9.47). The core structure at the
onset of instability is nearly the same for all the models and is given in Table 9.11
from [773].
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Fig. 9.44 Evolution of the carbon–oxygen core of a star with M D 3M
ˇ

on the (lgT � lg �)
plane. Each model is represented by a curve labeled by its number, the circles separate mass shells
with 0:1M

ˇ

. The location of the helium-burning shell is shown as a heavy portion of the curve.
Shown also are the lines of a constant ratio ��=�CC, �� is the rate of neutrino losses, �CC is the
12C burning rate for x12C D 0:5. Carbon ignites when the model line crosses the line �� D �CC,
from [773]

Fig. 9.45 The same as in Fig. 9.44 for M D 5M
ˇ

, from [773]

9.3.9 Convective URCA Shells

The increase in neutrino luminosity due to URCA shells may significantly change
the character of instability development. Supernova explosions of a type Ia are
believed to happen due to the carbon ignition in a highly degenerate matter of a
medium mass star, leading to a rapid carbon burning, and total disruption of the star
[47]. It was suggested in [775] that cooling of the matter in a convective region may
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Fig. 9.46 The same as in Fig. 9.44 for M D 5M
ˇ

, from [773]

Fig. 9.47 The same as in Fig. 9.44 for M D 7M
ˇ

, from [773]

be enhanced in the presence of URCA shells, first considered in [980]. The URCA
shell appears when the matter contains an isotope with a threshold Fermi energy for
an electron capture, corresponding to a density less than the central one.

In the presence of convection or oscillatory motion of matter in the star, e�-
capture occurs at densities higher than at the boundary �Fe D 	Z�1;Z � mec

2, and
e�-decay at lower densities. Hence, the neutrino losses result from beta reactions
on both sides of the boundary �Fe D 	Z�1;Z � mec

2. In [980], the shell of the
star at �Fe D 	Z�1;Z � mec

2 has been called the URCA shell. The URCA shells
consisting of elements with oddA and a low threshold for electron capture have been
examined in [980]: 35Cl$35S with 	 D mec

2C0.168 MeV, 31P$31Si with 	 D
mec

2C1.48 MeV. The elements 21Ne, 23Na, 25Mg, and 55Mn have a thresholds for
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Table 9.11 Models of 1.4M
ˇ

carbon–oxygen cores for stars with 3, 5, 7M
ˇ

at the
time of carbon ignition, from [773]

Number of zone Mr
M

ˇ

r
0:001R

ˇ

Lr
L

ˇ

lgT lg �

Center 0.0 0.0 0:0 8.443 9:428

2 0.0017 0.097 1:05 8.438 9:420

11 0.0065 0.152 1:86 8.431 9:408

18 0.0181 0.216 0:23 8.418 9:388

25 0.0489 0.306 0:26 8.405 9:348

31 0.110 0.414 0:47 8.390 9:285

36 0.208 0.531 0:80 8.372 9:199

39 0.295 0.617 1:13 8.357 9:125

42 0.408 0.717 1:49 8.338 9:031

44 0.498 0.792 1:72 8.323 8:953

46 0.598 0.876 2:04 8.306 8:863

48 0.706 0.968 2:20 8.287 8:759

50 0.818 1.070 2:51 8.265 8:638

52 0.923 1.175 2:51 8.243 8:507

54 1.014 1.277 2:55 8.222 8:377

56 1.089 1.376 2:47 8.204 8:247

57 1.123 1.424 2:29 8.195 8:182

60 1.205 1.566 1:67 8.175 7:987

63 1.265 1.702 0:32 8.165 7:792

66 1.307 1.831 �2:26 8.172 7:597

72 1.3513 2.032 �13:72 8.240 7:269

76 1.3620 2.105 �21:97 8.288 7:140

81 1.3705 2.179 �32:40 8.348 6:999

86 1.3793 2.285 �42:16 8.436 6:777

94 1.3849 2.393 �29:35 8.496 6:517

106 1.3872 2.460 �6:80 8.511 6:327

1.3903 3.4 200 8.40 4:95

H- and He-burning shells
1.3904 8.4 5:21.4/ 7.0 �3:5

the electron capture	 D mec
2C.5:19; 3:89; 3:25; 1:99/MeV, which correspond to

densities .3:44; 1:68; 1:17; 0:42/ in the units of 109 g/cm3 relatively, for a number
of electrons per one electron �e D 2. In conditions when the central density in the
pre-supernova may be close to 1010 g/cm3 (see [499]) the presence of such isotope
leads to the existence of a jump in the composition at a density, corresponding to a
threshold energy.

The physical processes accompanying the eddies motion around the URCA shell
are rather complicated. Different interpretations had been suggested, with different
conclusions about the direction of influence: stabilizing or destabilizing the car-
bon burning in the convective degenerate core [67,233,310,358,498,499,626,706,
777, 935]. It was concluded in [67] that non-equilibrium heating is balanced by
the change in the convective flow, leading to the net cooling due to the convec-
tive URCA shell. Nine years later, the same authors (Stein, Barkat, Wheeler, 1999)
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changed their mind, concluding that ”convective URCA process can reduce the rate
of heating by nuclear reactions but cannot result in a net decrease in entropy, and
hence in temperature, for a constant or increasing density.” This conclusion, as well
as the opposite one, made using thermodynamic relations only, seems to be uncon-
vincing. Following this line, let us present two plausible scenarios, leading to two
opposite conclusions.

A. Due to an action of a nonlinear bulk viscosity [114], the convection is damp-
ing in the vicinity of the URCA shell, decreasing the convective heat flux from
the central part of the star8. In the general heat balance of the star it means that
cooling become less effective, and nuclear reactions become thermally unstable
and lead to a nuclear explosion earlier, than without the presence of the URCA
shell. Non-equilibrium heating gives additional heating, supporting the earlier nu-
clear explosion.

B. Due to an action of a nonlinear bulk viscosity [114], the convection is damping
in the vicinity of the URCA shell, decreasing the convective heat flux from the
central part of the star. Due to a local decrease in the heat flux from the core, the
average temperature gradient increases, leading finally to increase in the convective
flux soon after entering the URCA shell into the convective zone. If the increase
in the convective flux prevails the non-equilibrium heating in the URCA shell, the
general heat balance would be shifted to a larger temperature with more effective
cooling, and the boundary of the thermal explosion would be postponed in time, if
not eliminated.

In such a highly nonlinear system, as a star with nuclear reactions, neutrino
losses, degeneracy, convection and many feedback influences the numerical sim-
ulations are needed, because it seems to be impossible to make a conclusion about
the direction of the process under the action of an additional URCA shell, basing
only on the thermodynamical ground.

The main difference between the dissipation of pulsations due to nonlinear bulk
viscosity and dissipation of a convective motion is connected with the role of the
excitation of the sound waves. Such excitation is of the most importance for dis-
sipation of plane parallel oscillations of the slab, which are analogous to radial
oscillations of a star, both belonging to the p-mode family of oscillations [317]. In
contrast to them, the convective modes belong to another family of perturbations, re-
lated to stellar g-modes, in which the local pressure perturbations are much smaller
and could be neglected when the convective velocity is much less than the velocity
of the sound. In this situation, the sound wave dissipation of the convective modes
imposed by the URCA shell is much less important than in the case of p-modes.
The convective URCA shell may only change the convective velocity, and dissipa-
tion of the convection connected with the wave excitation by the convective motion,
which is neglected in the standard mixing length model. Therefore, the dynamical
dissipation of the convective motion in the model of the convection, where the
URCA shell influence is taken into account, is not taken into account in [114].

8 Nonlinear character of the bulk viscosity in the highly degenerate matter is due to nonlinear
dependence of the reaction rate of the electron capture on the matter density, see Sect. 5.1.4, Vol.1.
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The equations of stellar evolution in the presence of the URCA shell should take
into account the following physical processes:

1. A loss of the energy due to neutrino emission in the URCA shell
2. Heating of the matter in the convective region around the URCA shell due to the

non-equilibrium beta processes
3. Decrease in the convective velocity in the layer around the URCA shell due to

the energy dissipation connected with the non-equilibrium beta processes. The
kinetic energy of the convection is the source of the energy for neutrino losses
and non-equilibrium heating of the matter

9.3.9.1 Energy Equation in Presence of the Convective URCA Shell

In the condition of a static equilibrium, only the energy and heat transfer equations
should be modified. In the energy equation

T
dS

dt
D dE

dt
� P

�2

d�

dt
D �n � �� C �CU

� � 1

4��r2

dLr

dr
; (9.120)

in addition to the conventional neutrino cooling processes �� , the new term �CU
� is

connected with heating due to the non-equilibrium beta processes around the URCA
shell, having in mind the strong degeneracy of electrons in this region. The neutrino
emission in the non-equilibrium URCA processes is accompanied by heating at high
degeneracy, because the positive term

P
�i dn exceeds the energy carried away

by the neutrinos [189]. The convective motion, consisting of convective vortexes
around the URCA shell, is a source of additional neutrino energy losses and of
heating of the matter. This dissipation of the convective energy may be described
in the same way, as corresponding dissipation and heating during stellar pulsations.
The formulae for a description of these processes are obtained in [114].

PQ� D QRMec
2

Amp

ı8˛5
p

g 210 � 75� ; (9.121)

where

QR D ln 2
.ı2 � 1/1=2ı

12.F t1=2/Z�1

M 4
e c

5

12�2„3

�
1C gZ�1

gZ

�
: (9.122)

The equation (9.121) is related to energy losses averaged over the whole convective
motion layer around the URCA shell radius r�

r� C lconv < r < r� � lconv; lconv D ˛p
P

rP ; ı D 	

Mec2
; (9.123)

here lconv is taken from the mean free path model. The local rate is obtained from
(9.121), if we take into account that the whole heating is concentrated inside the
layer (9.123). We then get
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�CU
� D

PQ�

2�lconv
: (9.124)

9.3.9.2 Convective Flux

The heat flux consists of the radiative and convective parts LrDLrad
r C Lconv

r . The
convective partLconv

r should be modified with the account of damping of the convec-
tive motion in the layer around the URCA shell. The convective heat flux density
Fconv D Lconv

r
4�r2 is written in the mean free path model of the convection as (see

(3.1.13), Vol. 1)
Fconv D .�rT / dr cp � vconv: (9.125)

Here, �rT D dT
dr

ˇ̌
ad
� dT

dr
is the difference between the adiabatic temperature gra-

dient and the actual one, cp is the heat capacity at a constant pressure, vconv is the
convective velocity and dr is the length which the convective element crosses before
its merging with the background. In the conventional mixing length theory, the con-
vective velocity is a result of an action of the buoyancy force on the length dr . While
neutrino energy losses and non-equilibrium beta heating have the kinetic energy of
a convective motion as a source, we should also add explicitly the corresponding
terms to the equation determining the convective velocity. With account of this, we
write the equation for the convective velocity in a form

1

2
�v2

conv D
1

2
.�r�/dr2 g �

PE.ˇ/
conv

vconv
: (9.126)

Here the difference between the actual density gradient and the adiabatic one �r�
is written as

�r� D d�

dr
� d�

dr

ˇ̌̌
ˇ
ad

D ��rT
�
@�

@T

�ˇ̌̌
ˇ
P

: (9.127)

The average value of the convective element path dr is connected with the mixing
length l as Ndr D l

2
, in the approximation of small density variations, accepted here

we have the relation (see Sect. 5.3.1, Vol. 1) PE.ˇ/
convD 4 PQ� . We get a more compli-

cated relations for the convective energy flux density, than in the standard mixing
length model, because the convective velocity is not expressed explicitly, but should
be found from the third-order algebraic equation. Finally, the temperature gradi-
ent dT

dr
and the total radial heat flux Lr are connected by the following system of

algebraic equations in the region (9.123) around the URCA shell

Lr D 4�r2

�
4acT 3

3�

dT

dr
C Fconv

�
; (9.128)

Fconv D 1

2
.�rT / l cp � vconv; (9.129)
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1

2
�v2

conv D �
1

8
.�rT /l2

�
@�

@T

�ˇ̌ˇ̌
P

g �
PE.ˇ/

conv

vconv
; (9.130)

ırT D
�
@T

@P

�ˇ̌ˇ̌
S

dP

dr
� dT

dr
; (9.131)

where PE.ˇ/
conv D 4 PQ� is found from (9.121),  is the Rosseland matter opacity and

the pressure gradient is determined by the equation of static equilibrium of the star.
These relations may be applied for a description of the URCA shell convection
only for sufficiently rapid convective motion, when the first term in (9.126) exceeds

Fig. 9.48 Coarse evolutionary tracks for stars with Mi D 1; 5; 25M
ˇ

. Heavy portions represent
principal burning phases in the core. For Mi < 2:3M

ˇ

, CHF occurs after which quiescent 4He
burning begins. After 4He has been exhausted in the core, the star arrives on the AGB. When the
core with no helium in it reaches the mass �0:53M

ˇ

, TF (thermal flashes in 4He shell) start. An
AGB star loses mass, and this process terminates with a rapid ejection of the residual hydrogen
envelope in the form of PN. C–O core with mf 	 0:6M

ˇ

transforms into a white dwarf. More
massive AGB and post-AGB stars with Mi � 9M

ˇ

evolve in a similar way, mf increases with
increasing Mi and equals 1:08M

ˇ

at Mi D 8:8M
ˇ

. The symbol indicates the onset of PN
luminescence, when Tef of the star reaches 3�104 K and the gas ionization in PN begins, from [502]



9.3 Evolution with Degeneracy, Thermal Flashes 143

considerably the second one. For a slow convective motion, this model cannot be
applied, because it was suggested that the change in the initial composition by beta
processes in the URCA shell is small during the period of damping of oscillations.
For the case of a convective URCA shell where the convection is excited by the
external source, this condition may be softened and reduced to the demand that the
changes of composition are small during one rotation of the convective vortex. The
equation (9.130) has roots only when

PE.ˇ/
conv <

1

8
p
�

�
�1
3
.�rT /l2

�
@�

@T

�ˇ̌ˇ̌
P

g

�3=2

: (9.132)

The violation of this inequality may result in an abrupt termination of the convection
in the layer (9.123) around the URCA shell.

When analyzing the URCA shell convection in a star, it would be premature to
predict the results of the evolutionary calculations with the account of a convective
URCA shell according to (9.128)–(9.131), before such calculations are done. But
there may be expected two possibilities. One possibility is connected with obtaining
of a definite result which has a little sensitivity to the input parameters of the prob-
lem, such as ˛p, F t1=2, accepted rates of nuclear reactions and neutrino losses.
Another possibility could be a great sensitivity of the result to the same input pa-
rameters. If the second possibility would be realized, we could still remain in the
situation of an ambiguity, because the set of the input parameters for pre-supernova
model cannot be established with a sufficient precision.

Numerical two-dimensional simulations of the URCA shell convection could be
useful for further clarifying the problem. Nevertheless, numerical problems con-
nected with a simulation of the convective motion seems to remain severe enough;
therefore, we should first obtain some understanding from the simplified one-
dimensional model of the convective URCA shell, generalizing the mixing length
model, the variant of which is presented in this chapter.

To conclude this chapter, we reproduce Fig. 9.48 from [502] sketching out the
evolution of stars of diverse masses from the MS to the white dwarf formation or
supernova explosion.





Chapter 10
Collapse and Supernovae

Supernova explosions are the most spectacular events in the universe of stars. The
major part of the energy releases in a time interval (<1 s) is relatively small not only
to stellar but also to human lifetime, whereas its quantity exceeds by an order of
magnitude and more the energy emitted by the star over its total lifetime reaching
�1010 yr for Sun-like stars. During the neutron-star formation, most of the energy
releases are in the form of scarcely observable neutrinos.

A supernova explosion is the end of the life of most massive stars withM >8Mˇ.
The flash itself results either from the thermal instability development in the degen-
erate core or from gravitational and partly nuclear energy release during collapse
which leads to neutron-star formation. The rotation and magnetic field may play an
important role in conversion of gravitational energy into the energy of the observ-
able flash. A small number of stars (the most massive ones) seem to end their life
with collapse and black hole formation. The collapse in this case may be “silent”
and not lead to supernova explosion.

A wealth of texts that we are unable to include in this book are concerned
with both observational and theoretical studies of supernovae. From an observa-
tional standpoint, they fall into Type I supernovae (SN I) with no hydrogen lines in
their emission spectrum and numerous absorption lines of various heavy elements
instead, and Type II supernovae (SN II) with much hydrogen and nearly normal
chemical composition. Type I SN are divided into three groups, two of which, SN
Ib, c are substantially different from SN Ia. SN II have been established to be a result
of the evolution of massive stars, while SN I have less massive stars for progenitors;
many SN I are likely to occur in binaries.

The pulsars are thought to be produced by SN II explosions. The common fea-
ture between SN II and SN Ib, c is a non-thermal radio emission visible for several
years after the explosion. This is a real indication that SN Ib, c also give birth to
pulsars. On the contrary, SN Ia never show such a radio emission; hence, it is sug-
gested that they are produced by nuclear explosions, leading to total disruption of
the star, while other types of SN result from hydrodynamical collapse, leading to
formation of a neutron star. In SN II, the collapsing core is surrounded by a large
hydrogen envelope, while in SN Ib, c the collapsing core is almost naked, pre-
sumably originated from less massive stars, which have lost their hydrogen-rich

G.S. Bisnovatyi-Kogan et al., Stellar Physics: 2: Stellar Evolution and Stability,
Astronomy and Astrophysics Library, DOI 10.1007/978-3-642-14734-0 4,
c� Springer-Verlag Berlin Heidelberg 2010
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envelope in their preceding evolution, may be in a binary. There are some spectral
differences between the three types of SN I, while they all do not show hydrogen
lines. The main difference appears after �250 days from the explosion. In SN Ia the
strongest emission lines are represented by FeII and FeIII ions, and in SN Ib, c the
main emission is determined by O I lines. The difference between SN Ib and SN
Ic is the absence of helium lines in SN Ic, which may be called helium-poor SN Ib
[207, 384, 719, 748].

The presence of hydrogen in the SN II spectra provides evidence that the explo-
sion occurred before the star has lost its hydrogen envelope. The shape of the light
curve shows that before the explosion, this envelope could be extremely extended
.103–104/Rˇ [525]. Observations in the Large Magellanic Cloud of SN1987A,
the first supernova visible to the naked eye for more than 300 years, provide evi-
dence for a SN II explosion in a fairly compact blue supergiant. The SN1987A light
curve may be reproduced only in the case of a prolonged energy release after the
main explosion. The variety of SN II light curves is substantially larger than those of
SN I [950].

The absence of hydrogen in the SN I spectra leads to the conclusion that the star
loses its hydrogen envelope during its pre-explosion evolution, and that the presu-
pernova is compact. The shape of a SN I light curve can be explained if the emitted
energy is accounted for by the radioactive decay 56

28Ni !56
27 Co !56

26 Fe; to main-
tain the luminescence energetically, it must be in this case M56Ni D 0.3–1.1Mˇ
[1053]. The slow energy release during 2–20 days makes the maximum light phase
prolonged (10–20 days) for a compact stellar model [525]. The same radioactive
decay accounts for the character of the SN1987A light curve at t � 120 days after
the explosion; here it is necessary to have initially 0:078Mˇ of 56Ni [526].

The exact relationship between SN I and SN II, on the one hand, and the initial
stellar masses, mechanisms of explosion and resulting remnants, on the otherhand,
is not reliably established. New observational data may change some of our present
model conceptions. Various aspects of the supernova problem arising from observa-
tions and their interpretation are given in the book [905].

The items of this chapter are concerned with the author’s special interests, and
their selection is therefore somewhat subjective.

The physical processes treated in Vol. 1: nuclear reactions, neutrino processes
and so on, proceed during supernova explosions and collapse in the same way as in
quiet evolutionary phases. The supernova theory differs from the theory of evolu-
tion using non-stationary hydrodynamic equations instead of hydrostatic equations,
by involving regions of higher temperature and density, and the predominant role
played by neutrino processes. Despite much effort, the supernova theory is far from
complete even in the spherically symmetrical approximation by reason of serious
numeric and fundamental difficulties related to non-stationary convection, neutrino
transport and the equation of state for matter of a density above the nuclear.
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10.1 Presupernova Models

As pointed out above, a supernova is a result of hydrodynamical or thermal instabil-
ity development.

10.1.1 Stellar Cores at Threshold of Hydrodynamical Stability:
Energetic Method

Consider polytropes with P D K�� . Combining the equilibrium and continuity
equations,

dP

dr
D ��Gm

r2
; (10.1)

and (33.13a), we have the equation for �.r/

d

dr

�
K�r2���2 d�

dr

�
D �4�G�r2: (10.2)

Transforming to dimensionless quantities � and �, defined as

� D �c�
n; r D ˛�; ˛ D

�
.nC 1/K
4�G

�
1
n

�1
c

�1=2

;

� D 1C 1

n
;

(10.3)

gives the equilibrium Lane–Emden equation (see [269])

1

�2

d

d�

�
�2 d�

d�

�
D ��n (10.4)

with the boundary conditions

� D 1; d�

d�
D 0 at � D 0: (10.5)

The stellar boundary corresponds to � D �1 so that �.�1/ D 0. The stellar mass
M expressed in terms of variables (10.3) becomes

M D 4�
Z R

0

�r2dr D 4��c˛
3

Z �1

0

�n�2d�

D 4�
�
.nC 1/K
4�G

�3=2

�
3

2n � 1
2

c

Z �1

0

�n�2d�; (10.6)
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and hence from (10.4),

Z �

0

�n�2d� D ��2 d�

d�
; ��2 d�

d�

ˇ̌
ˇ̌̌
�D�1

DMn: (10.7)

Obviously, at n D 3, � D 4=3, the stellar mass is independent of �c and is exactly
determined by the constantK in the equation of state. The stellar mass increases at
� > 4=3 with increasing �c, and at � < 4=3 decreases. If the polytropic power
coincides with the adiabatic power, � D �ad, then the star is stable at � > 4=3 and
unstable at � < 4=3, and � D 4=3 corresponds to the boundary case and represents
the indifferent equilibrium.

Real stars are not polytropes, but the condition � D 4=3 is approximately valid
at the boundary of stability if � is treated as an adiabatic power properly averaged
over the star.

A strict derivation of stability conditions is made in Chap. 12 using the variational
method. Equating the first variation to zero yields the equilibrium equation, while
the stability condition requires the second variation to be positive. For an isentropic
polytrope with � D 4=3, �c is arbitrary, whereas the density distribution �.�/ is
invariant against homologous contraction or expansion. Let us treat these proper-
ties as valid also for the case where � D 4=3 only on average. We then derive the
equilibrium and stability conditions using the simplified variational method based
on the assumption of homology and conservation of stellar structure at density vari-
ations [1080], usually called the energetic method. We write down the total energy
of an instantaneously static star analogous to the potential energy of conservative
mechanical system:

� D
Z M

0

E.�; T / dm �
Z M

0

Gm dm

r
� 5:06 G

2M 3

R2c2
;

dm D 4��r2dr: (10.8)

The first term here represents the internal energy �i, the second the Newtonian
gravitational energy �G and the third, �GR, a small general-relativity correction�
rg=r D 2Gm=c2r � 1 is the small parameter

�
evaluated in [1080] for the matter

distribution over a n D 3 polytrope (see Sect. 12.2).
The term containing the Newtonian gravitational energy of an equilibrium star

may be explicitly evaluated for an arbitrary polytropic equation of state [617]. The
equilibrium equation (10.1) gives

�G D �G
Z M

0

m dm

r
D 4�

Z 0

Pc

r3dP

D �12�
Z R

0

P r2dr D �3
Z M

0

P

�
dm: (10.9)
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A formal integration of the equilibrium equation

1

�

dP

dr
C d'G

dr
D 0 (10.10)

yields the integral relation

.nC 1/P
�
C 'G D �GM

R
: (10.11)

The constant on the right follows from P=� D 0 on the boundary of the star and
the normalization condition ' D 0 at r D1. We evaluate �G in another way, using
(10.9–10.11):

�G D 1

2

Z M

0

'G dm D �GM
2

2R
� nC 1

2

Z M

0
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�
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D �GM
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2R
C nC 1

6
�G; (10.12)

and so from (10.12)

�G D � 3

5 � n
GM 2

R
: (10.13)

We then have E D nP=� for an adiabat with � D �ad, and (10.9–10.13) give, for a
star in equilibrium,

�i D �n
3
�G D n

5 � n
GM 2

R
;

�N D �i C �G D n � 3
5 � n

GM 2

3
;

(10.14)

where �N is the total energy of a Newtonian star. The total energy of a stable star is
negative, and therefore the stability requires that n < 3, � > 4=3. The radius of a
polytrope is, using (10.3), (10.6) and (10.7),

R D ˛�1 D
�
.nC 1/
4�G

K

�1=2

�.1�n/=2n
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D
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�3
1

4�Mn
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�1=3
c

0:426
: (10.15)

Here, the values for a polytrope of n D 3 are used (see [269] and the Problem in
this section): �1 D 6:89685, M3 D 2:01824. The ratio of �c to the average density
�
�
M D 4��R3=3

�
is

�c

�
D 4�

3

1

.0:426/3
D 54:18 :
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From (10.15) and (10.13), we have [1080]

�G D �0:639GM 5=3 �1=3
c ; (10.16)

and from (10.8), we have

�GR D �0:918 GM
7=3

c2
�2=3

c : (10.17)

Only one parameter, �1=3
c or R, varies with homologous variations:

� D �c'
� m
M

	
; '

� m
M

	
(10.18)

is an invariant function and hence, the energy variations reduce to ordinary deriva-
tives. Using (10.16–10.18) and taking the entropy to be constant at variations, we
obtain from (10.8) the equilibrium condition
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The second derivative of the energy at S D const: becomes zero on the boundary of
stability:
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We use here the thermodynamic relations
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Equations (10.19) and (10.20) have been obtained in [148] and used for determining
the boundary of stability for various stellar models.

The critical mass reaches its minimum for cold stars. At low temperatures, the
electrons in a star near the critical point are close to degeneracy and ultrarelativism.
The nuclei may be taken as non-degenerate. The temperature is nearly constant
over the star by virtue of the large thermal conductivity of degenerate electrons (see
Chap. 2, Vol. 1). Such stars are called white dwarfs (see Sect. 11.2). The equation of
state of matter in white dwarfs with a mass close to the critical one, at finite temper-
ature, should include the pressure of cold almost ultrarelativistic degenerate (URD)
electrons, taking into account, to first order, the deviation from the pressure of UR
electrons, the thermal correction to the pressure of URD electrons and the pressure
of non-relativistic, non-degenerate nuclei (see Chap. 1, Vol. 1). Ignoring Coulomb
corrections, this equation of state may be written in the form

P D m4
e c

5

12�2„3
y4

�
1 � 1

y2
C 2�2

3˛2y2
C 4

Z˛y

�
;

y D
�
3�2�

�Zmu

�1=3 „
mec

; ˛ D mec
2

kT
: (10.22)

This relation includes the pressure of non-degenerate nuclei. If the star consists
of iron 56Fe at �c D 1:15 � 109 g cm�3 .1:24 � 109 g cm�3 for a capture on the
excited state of 56Mn), the neutronization (capture of electrons by nuclei) breaks
out, because the Fermi energy of electrons starts to exceed the difference of energies
between nuclei of 56Fe and 56Mn (Chap. 1, Vol. 1). Neutronization proceeds initially
at A D const:; leading to an increase in the number of nucleons per electron

�Z D
 X

i

Zixi

Ai

!�1

: (10.23)

Taking into account successive electron captures during the equilibrium neutroniza-
tion of iron 56Fe, we obtain approximately [188, 1014]

�Z D 56

26
.1C 	y/; 	 D 6 � 10�3: (10.24)

Evaluating � (� �1 from (10.21)) gives [148, 188, 1014]
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Only the first, leading term of the pressure in (10.22) allows for �Z changes here.
Since the leading term of the pressure at �Z D const: corresponds to � D 4=3, find-
ing the critical parameters from (10.19) and (10.20) is in this case an asymptotically
exact procedure. The evolutionary sequence T .�c/ for radiating contracting isother-
mal stars with a given mass M may be found from (10.19) using (10.22), while
obtaining the critical parameters requires additional use of (10.20) and (10.25). A
solution to these equations without neutronization .	 D 0/ is obtained in [148]. The
relevant evolutionary curves and critical curve are shown in Fig. 10.1. The neutron-
ization is included in calculations in [188, 1014]. The equilibrium neutronization
causes the star to lose its stability at densities less by an order of magnitude with
respect to the GR case, and is therefore the principal reason for the loss of stability.
In reality, the electron capture rate is fairly low, while the course of neutronization
is non-equilibrium, and the Fermi energy of electrons may considerably exceed the
energy difference between subsequent nuclei (see Chap. 5, Vol. 1). The timescale of
neutronization is well above the hydrodynamical time scale near the boundary of
stability and determines the contraction rate (see Sect. 10.3 for more detail). The
instability due to GR effects leads to hydrodynamical collapse. For sufficiently cold
stars �2Z=6˛y � 1, (10.19) and (10.20) with 	 D 0 have the approximate analyt-
ical solution to �1% of accuracy [148, 189]

Fig. 10.1 Evolutionary
curves and critical states on
the (�1=3c0 ; lgT8) plane with
GR effects, without
neutronization, from [148];
1, 2 and 3 are the evolutionary
curves for M D 1:19; 1:20

and 1:36M
ˇ

, respectively.
The dashed lines 10, 20, 30

represent the unstable
equilibrium states of these
stars, 4 represents the critical
states, its endpoint
corresponds toM D 1:7M

ˇ
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Table 10.1 The densities �n corresponding to the onset of neutronization of
various nuclei, and critical densities �c;GR of cold stars due to GR effects
[1081]

Element �ˇ D �Fe, MeV �n; 10
9 g cm�3 �c;GR; 10

9 g cm�3

56Fe ! 56Mn 3.7 (3.81) 1.15 (1.24) 31
32S ! 32P 1.7 0.15 27
28Si ! 28Al 4.64 1.97 27
24Mg ! 24Na 5.5 3.2 27
20Ne ! 20F 7.03 6.2 27
16O ! 16N 10.4 19 27
12C ! 12B 13.4 39 27
4He ! 3H C n 20.6 137 27

Given in parentheses for 56Fe are values of �ˇ and �n corresponding to the
capture onto the first excitation level 109 KeV of the final nucleus, since the
capture onto the ground level is strongly forbidden by selection rules

�c;cr D 6:7 � 109�2
Z

 
1C 17 �

4=3
Z

˛A

!
g cm�3;

Mcr=Mˇ D 5:83
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Z
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Z
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2=3
Z
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;

˛	 0:087Z�
1=3
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(10.26)

The critical mass of iron stars at T D 0 due to GR effects is somewhat higher
(1:222Mˇ) than in the case of neutronization (1:16Mˇ).1 Comparing densities cor-
responding to the onset of neutronization of various nuclei with the density (10.26)
shows (Table 10.1) that carbon and helium white dwarfs lose their stability owing
to GR effects. The GR influence on the white dwarf stability was first investigated
by Kaplan [554].

Increasing the temperature causes Mcr and �c;cr to increase because of the stabi-
lizing effect of non-relativistic nuclei. At T D 1:4�1010 K we haveMcr D 1:4Mˇ
for 56Fe in GR, the quantity �c;cr reaches the maximum �5:2 � 1010 g cm�3 and
decreases with further increase in the critical mass (Fig. 10.1) [148].

When a star becomes non-degenerate, we may take an adiabatic star rather than
an isothermal one for our considerations, which is possible because of the convec-
tion effect. With increasing mass the critical entropy of the star Scr increases, but
the central temperature falls. The numerical computations of critical parameters of
isentropic stars are made in [174] by solving (10.19) and (10.20). For the ranges

1 This value is obtained from (10.57) by the energetic method at T D 0, �c D 1:24� 109 g cm�3.
An exact calculation in [189] without Coulomb corrections yields for a cold white dwarf of iron
56Fe a critical mass of 1:181M

ˇ

for the onset of instability at �c D 1:15 � 109 g cm�3. The new
phase core has a finite mass mc D 1:4 � 10�3M . Increasing the mass of the new phase core from
zero to mc leads to an increase in stellar mass 
M D 0:15mc (see (11.12))
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105 
 � 
 1010 g cm�3, 109 
 T 
 2 � 1010 K, thermodynamic functions are
taken from [523], where the nuclear equilibrium is examined, taking into account
of 56Fe, ˛, n, p and the approximation ��e D 0 for the chemical potential of the
electronic neutrino. To the left and downwards from this region the thermodynamic
functions are evaluated in [174] by numerical computation of integrals, determining
thermodynamic functions of semidegenerate, semirelativistic electrons in iron 56Fe
(see Chap. 1, Vol. 1). Approximate parameters of isentropic stars of various masses
in the critical state are given in Table 10.2 and in Fig. 10.2 from [174]. The total
energy of an equilibrium star, according to (10.16–10.19), is

�eq D
Z M

0

�
E � 3P

�

�
dmC 0:918 G

2M 7=3

c2
�2=3

c (10.27)

Table 10.2 Core parameters of stars in critical state
M
M

ˇ

�c, g cm�3 Tc, K S , erg g�1 K�1 �, erg �
M

, erg s�1

5 1.0(8) 6.7(9) 2.1(8) �1:3.51/ �1:3.17/
10 4.2(7) 6.4(9) 3.2(8) �1:9.51/ �9:4.16/
50 1.0(7) 6.0(9) 6.8(8) – –
100 9.4(6) 6.4(9) 9.9(8) – –
500 3.1(6) 6.0(9) 2.1(9) – –
1000 6.3(3) 1.1(9) 2.8(9) �3:7.51/ �1:8.15/

Fig. 10.2 Central density as
a function of stellar mass for
the critical state of a star with
M � 5M

ˇ

, from [174], with
the inclusion of
neutronization for low
masses, from [188]
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and is calculated in [174]. The specific binding energies of stars from Table 10.2 in
the critical state are substantially less than the energy released by burning of 1 g of
hydrogen (�6 � 1018 erg g�1), helium (�5:8 � 1017 erg g�1) and carbon (�5:6 �
1017 erg g�1).

The critical parameters for M D 1:5Mˇ calculated from (10.19–10.25) exhibit
a satisfactory agreement with the corresponding parameters at the starting point of
collapse for stars withM D 15 and 25Mˇ from Table 9.6. The iron core masses for
these stars in the critical state are 1:56Mˇ for 15Mˇ and 1:61Mˇ for 25Mˇ (see
Figs. 9.11 and 9.13).

Iron cores of different masses lose their stability for different reasons. For
M > 1:2Mˇ, neutronization as a reason for instability is gradually substituted by
dissociation of iron which remains the main reason of instability up to�500Mˇ. For
M D 500 � 104Mˇ, the instability is due to pair creation, while for M > 104Mˇ
the predominant role belongs to GR effects. The entropy of such supermassive stars
in a critical state is so large that the pressure is determined mainly by the radiation
with a small admixture of plasma, important for stability. According to [1080], the
dependence �c;cr.M/ due to GR effects is determined by

�c;cr.M/ D 2:4 � 1017 1

�3

�
Mˇ
M

�7=2

g cm�3; (10.28)

where � is the molecular weight.
Evolutionary calculations performed to date for single stars with constant masses

[1033,1040,1053] give the iron core masses at the stability thresholdM Fe;cr not ex-
ceeding 2:45Mˇ. By reason of uncertainties in these calculations2 and the necessity
to include the mass loss and various types of mixing (convection overlap, meridional
circulation), their results are not quite reliable, and it is not to be ruled out that in
reality the values of MFe;cr may be significantly larger.

10.1.2 Stellar Cores at Thermal Instability Threshold

Hoyle and Fowler [480] first assumed that the thermal instability development in a
degenerate carbon core of mass 1:4Mˇ would lead to a supernova explosion, and
Arnett [47] performed model computations for such an explosion. The presupernova
model was obtained from a crude evolutionary calculation giving the C–O core pa-
rameters for the boundary of stability: Mcore D 1:37Mˇ, �c D 1:7 � 109 g cm�3.

2 Cf. Figs. 9.11–9.14 from [1033] and the results of subsequent calculations [1040, 1053]. A more
accurate inclusion of neutrino processes on nuclei [402–405], revision of the 12C.˛; �/16O reac-
tion rate giving a value for physical conditions in massive stars approximately three times larger
compared to the rate from [393], other corrections have resulted in changes in iron core masses
before stability loss from 1.56 to 1:33M

ˇ

for 15M
ˇ

and from 1.61 to 2:22M
ˇ

for 25M
ˇ

. Also,
the central entropy has decreased for 15M

ˇ

and increased for 25M
ˇ

models.
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The initial temperature for hydrodynamical calculations Tc D 3:5 � 108 K was
only slightly greater than the threshold temperature for the onset of thermal in-
stability development, when �� D �CC (see Sect. 9.3) but, by reason of a very
steep dependence of the rate of the nuclear reaction on T , following an exponential
law, the perturbation turned out to be important, leading immediately to detona-
tion and complete run-away. For further calculations of supernova models based
on this mechanism, see Sect. 10.2. More accurate evolutionary calculations in [773]
have given the following critical parameters for the C–O core: Mcore D 1:39Mˇ,
�c D 2:68 � 109 g cm�3, Tc D 2:77 � 108 K (Table 9.11). A universal character of
the critical model for a wide range of masses (3–8Mˇ in [773]) is a characteristic
feature of this type of presupernova. Only the most massive stars of this range may
produce supernova explosions, since, for smaller masses, the C–O core never attains
the mass threshold because of mass loss and remains in the form of a white dwarf.

Evolution in binaries may give rise to models at thermal stability threshold, which
differ from the model in Table 9.11. Simplified evolutionary calculations for C–O
core growth due to accretion in binaries have been made in [359]. Besides PMc, the
critical model is substantially dependent on the shape of the curve �� D �CC which
is determined in the region of high densities by screening effects and the neutrino-
loss function. It has been pointed out in [946] that the inclusion of neutral currents
into the cooling function [324, 720] changes it slightly compared to the function
[82] for charged currents (see Chap. 5, Vol. 1). Changes due to various screening
modifications are substantially more important. Figure 10.3 from [946] shows evo-
lutionary tracks for C–O cores on the AGB and for the case of accretion in a binary

Fig. 10.3 Evolution of degenerate C–O cores on the (lgTc � lg �c) plane, RG is the evolution of
the AGB giant core with PMc D 6� 10�7 M

ˇ

/yr, the numbers on evolutionary tracks indicate PMc

in M
ˇ

/yr; 1 are the curves �	 D �CC; 1a for the screening according to [537, 538]; 1b according
to [859]; 2 are the curves �	 D �CC for the pycnonuclear regime; 2a for the static approximation;
2b for the approximation of complete lattice relaxation from [859], see Sect. 4.5.4, Vol. 1); 3 are
the critical states for dynamical stability loss due to oxygen neutronization; 4 is the same due to
GR effects, from [946]
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according to [359]. Shown are critical curves �� D �CC for screening according
to [859] and [537, 538]. As may be seen from Fig. 10.3, the critical density de-
creases with increasing PMc and reaches a maximum in the pycnonuclear limit with
�c;max D .0:7 � 1/ � 1010 g cm�3 for PMc 
 10�9Mˇ=yr. So, in the case of ac-
cretion in binaries, the critical density for low PMc could thus be three to four times
larger than in the single star. It has been shown in [746] that the equality �� D �CC

may be first achieved out of the centre thereby leading to a non-central explosion.
Evolution of a close binary with two C–O white dwarf may be ended by merging of
this binary because of a loss of the orbital angular momentum due to gravitational
radiation. After merging, a thermally unstable core with a mass exceeding the chan-
drasekhar limit is formed, giving a strong thermonuclear explosion. In the “scenario
machine” calculations, the frequency of such explosive events may be higher than
the frequency of explosions, resulting from the accretion [551].

The carbon ignition in stars with M > 8Mˇ takes place in the absence of de-
generacy, but the resulting core of 16O, 20Ne and 24Mg turns out to be completely or
partially degenerate for M < 13Mˇ [740]. For stars with 8 � 10Mˇ a degenerate
16O C 20Ne C 24Mg core forms with a temperature insufficient for 20Ne ignition.
When the core mass reaches 1:37Mˇ, the neutronization begins (see Table 10.1),
determining the initial contraction rate [189, 473]. The oxygen O C O flash occurs
in the contraction phase, when �c approaches�2 � 1010 g cm�3 [473, 946].

Burning in stars of mass 10–13Mˇ leads to formation of an 16OC20Ne core with
mass 1:37�1:5Mˇ. As the rate of plasma neutrino losses increases with increasing
density due to the increase of the plasmon energy „!p with !2

p D 4�nee2=me (see
Chap. 5, Vol. 1), the central regions cool to lower temperatures, and the temperature
attains a maximum outside the centre, at a mass coordinatem < 0:8Mˇ decreasing
with increasing mass. The temperature inversion vanishes at M D 13Mˇ. The in-
version leads to a non-central neon-oxygen flash.3 The burning zone extends inward
and outward and reaches the centre. The flash results in the formation of a non-
degenerate core which evolves quietly until iron peak elements form. The dynamical
effect of the flash is essential only for M D 10–11Mˇ, when the helium shell ejec-
tion is possible. For M D 11Mˇ, we have MHe D 2:8Mˇ, MONe D 1:42Mˇ,
whereMHe is the mass of the core inside the helium shell.

Evolutionary calculations for helium stars with masses MHe D 8; 3:3; 3:0;

2:8; 2:2Mˇ are presented in Fig. 10.4 from [747]. The initial stellar masses were
25; 13; 12; 11; 9Mˇ, respectively. Figure 10.4 shows that a star withMHe D 2:2Mˇ
traverses the density of 24Mg and 20Ne neutronization before the neon and oxygen
flashes, stars with MHe D 3Mˇ ignite 16O and 20Ne on the boundary of strong de-
generation, giving a weak flash removing the degeneracy, while forMHe D 3:3 and
8Mˇ neon and oxygen ignite at a weak degeneracy.

Note that the area with � < 4=3 in Fig. 10.4 is different from the calculations
made in [174, 523] and presented in Fig. 1.6, Vol. 1, where the region with � < 4=3

3 The neon burning begins by photodetachment of an ˛-particle which is subsequently captured.
The neon burning increases the concentration of 16O, and the formation of 24Mg and 28Si takes
place.
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Fig. 10.4 Evolutionary curves for helium stars with M˛ D 8, 3.3, 3.0, 2.8, 2:2M
ˇ

in the
(lgTc; lg�c) diagram. The masses equal 25, 13, 12, 11, 9M

ˇ

, respectively. Given are approximate
lines of 12C, 20Ne, 16O, 28Si ignition, for which burning rates are equal to rates of neutrino losses.
To the right and underneath are marked the densities of the onset of 24Mg and 20Ne neutronization,
while in the upper left corner is the area marked with �1 < 4=3 (�1 from (8.26)) resulting from the
pair creation (eCe�) and photodissociation of iron peak elements (Fe–ph). The dot–dashed line
 D �te=kT D 10 (�te is the electron chemical potential) indicates a strong-degeneration region
(on the right), from [747]

was found for iron dissociation with the formation of ˛-particles, protons and neu-
trons, taking into account electron degeneracy, relativism, pair formation and zero
neutrino chemical potential. This might be due to the difference in the choice of iron
photodissociation products in thermodynamic calculations.

Problem 1. For a polytrope n D 3, evaluate integrals of the form

Ilk D 1

M

Z M

0

'l.m=M/�k.m=M/ dm (10.29)

resulting from the substitution of (10.22–10.25) into (10.19) and (10.20).

Solution. Using (10.7), we have

dm=M D �3�2d�=M3: (10.30)

Substituting (2) into (1) and, bearing in mind that ' .m=M/ � �3.�/ in conformity
with (10.18) and (10.3), we obtain

Ilk D 1

M3

Z �1

0

�3lC3�kC2d� D Jpr

M3

D Jpr

J32

;

p D 3l C 3; r D k C 2: (10.31)
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Table 10.3 Integrals Jpr
p

r 1 2 3 4 5 6 7 8

1 4:848 2:132 1:293 0:9144 0:7043 0:5718 0:4809 0:4148

2 14:19 4:327 2:018 1:181 0:7881 0:5709 0:4372 0:3482

3 52:47 11:67 4:224 2:037 1:170 0:7517 0:5216 0:3823

4 222:8 37:94 10:85 4:318 2:127 1:207 0:7559 0:5080

The integrals

Jpr D
Z �1

0

�p�r d�; �1 D 6:897 (10.32)

are evaluated by integrating (10.4) numerically and finding �.�/. The results of the
numerical evaluation of the integrals are given in Table 10.3.

Addendum.
The energetic method for investigation of stability of rotating stars in GR implies

double integrals [138] of the type

Imn;pq D
Z �1

0

�m�nd�
Z �

0

�p�qd�;

Imn;.pq/2 D
Z �1

0

�m�nd�

 Z �

0

�p�qd�

!2

;

equal for values occurring in [138] to

I3�1;12 D 0:4745 I31;74 D 0:4117
I31;34 D 2:096 I4�4;.12/2 D 0:08089
I31;42 D 0:6609 I5�1;12 D 0:2139
I31;52 D 0:5161 I71;52 D 0:09474

Problem 2. Find analytical solutions of the Lane–Emden equation (10.4).

Solution [269]. Analytical solutions exist for n D 0; 1; 5: The case of n D 0

corresponds to an incompressible fluid, and the solution with boundary conditions
(10.5) is

�0 D 1 � �
2

6
; � � �n D const:; P � �1Cn � �: (10.33)

Solution (1) represents the first two terms in the expansion of the solution near the
centre for arbitrary n.
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For n D 1; (10.4) becomes linear. Substitution of y D �� leads to the oscillator
equation y00 C y D 0. The solution satisfying the boundary conditions (10.5) reads

�1 D sin �

�
: (10.34)

Looking for algebraic solutions of (10.4) in the form

�n D .1C a �l /�k (10.35)

we obtain, using expansion (1), that l = 2, a D 1=6k, so �n D
�
1C .�2=6k/

��k
.

Substituting into (10.4) gives

�
1C �2

6k

��k�2 �
1C 1 � 2k

18k
�2

�
D
�
1C �2

6k

��kn

: (10.36)

This equality may hold only at k D 1=2, n D 5, so that

�5 D 1p
1C .�2=3/

: (10.37)

10.2 Explosions Resulting from the Thermal Instability
Development in Degenerate Carbon Cores

10.2.1 Basic Equations

In the case of spherical symmetry the equations of stellar hydrodynamics in La-
grangian coordinates, including thermal processes, have the form (see Sect. 7.2.2)

@r

@t
D v;

@v

@t
D �4�r2 @P

@m
� Gm
r2

;
@r3

@m
D 3

4��
; (10.38)

@E

@t
C P @

@t
.1=�/ D �n � �� C ��d � @Lconv

@m
; (10.39)

@xi

@t
D �

X
j

�n;ij

Eij

; Eij D Qj

aijAimu
: (10.40)

Here, in the energy equation (10.39) �n is the nuclear energy release rate, �� is
the rate of neutrino losses and ��d is the rate of heating due to interactions with
neutrinos propagating from stellar interiors. In primary calculations of hydrodynam-
ical collapse of an iron core, the latter phenomenon was called deposition [302].
In calculations of thermal explosions [277], this heating, promoting the nuclear



10.2 Explosions Resulting from Degenerate Carbon Cores 161

fuel ignition, was called ignition. Only the convective heat flux Lconv .erg s�1/ is
included in (10.39) since the heat transfer caused by heat conduction is usually neg-
ligible. In (10.40), i stands for elements involved in burning; the sum is taken over
j reactions involving these elements; Qj is the energy release in the j -th reaction;
aij is the number of nuclei of the i -th element involved in the j -th reaction, aij < 0

for resulting nuclei.
Equations (10.38–10.40) have been solved in all studies of thermal flash, from

[47]. In addition to differences in computational schemes, these studies vary in the
adopted initial central densities, temperature profiles and methods for calculations
of convective heat transfer. Let us now discuss briefly the results and group them by
burning regimes.

10.2.2 Detonation

It has been assumed in [47] that after having begun in the centre, the burning will
propagate over the star in the form of a detonation wave satisfying the Chapmen–
Jouguet condition, i.e., travelling through the hot gas at the sound velocity of this
gas. Subsequent calculations (see review in [946]) have shown that the detonation
regime is self-maintaining. The explosion with detonation of the star on the bound-
ary of thermal stability results in its complete run-away. Such a result follows from
simple energetic estimations. As the density distribution over the star before ex-
plosion is nearly polytropic with n D 3 since degenerate electrons are the main
contributors to the pressure, the binding energy �b D 5 � 1050 erg is therefore well
below the gravitational stellar energy �g D 3:1 � 1051 erg. The carbon completely
burnt out up to the iron peak elements with Q D 7:7 � 1017 erg g�1 releases for
M D 1:4Mˇ the energy �n D 2:2 � 1051 erg by far exceeding �b and the neutrino
losses �� D 6 � 1049 erg. Detailed numerical investigation of the propagation of a
detonation wave in the degenerate core has related an oscillatory instability of the
front, leading to its decay into the hydrodynamical shock wave, and slow burning
(deflagration) front [520, 579].

10.2.3 Deflagration

The thermal instability development in a degenerate carbon core has been studied
numerically in [541]. It has been found that the detonation does not set in, and the
burning front travels at subsonic velocity in the deflagration regime. As the burn-
ing front propagates outward, pulsations develop and eventually bring about the
run-away of the entire star. Subsequent calculations by the same group [277] have
included the neutrino ignition caused by heating due to neutrino scattering off elec-
trons. The calculations have been performed for several initial central densities and
are reviewed in [525]. At �c0 D 5:03 � 109 g cm�3, the small pulsation is followed
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by strong expansion and contraction resulting in the formation of a powerful shock
and a complete run-away of the star. At the very end, carbon burns in the detonation
regime. Diverse cases of such a “delayed” detonation have been investigated later in
more detail in [562,563]. The kinetic energy of the run-away is sufficient to account
for the supernova energetics. In the variant with �c0 D 9:22� 109 g cm�3 the burn-
ing wave, before entering the envelope, becomes detonational as well, but results
in a weak ejection only: �10�2Mˇ with �kin D 1:4 � 1049 erg. The major part,
�1:4Mˇ, collapses to form a neutron star. To account for the observed energetics
of supernova explosions with remnants in the form of a neutron star, it is assumed
that a magnetorotational mechanism acts subsequently [155], see Sect. 10.5. The
central density �c0 D ��

c D 9 � 109 g cm�3 is assumed in [277] to be the boundary
between models with complete run-away and a large energy release (�c0 < ��

c ),
and collapsing models with a weak ejection and low energy release. As is visible
from Fig. 10.3, the variant with �c0 > ��

c may occur only at a low accretion rate in
the binary if the pycnonuclear reaction can be described using the approximation of
complete relaxation (see Chap. 5, Vol. 1).

The convection is ignored in the above calculations, and all dissipative processes
arise from the scheme viscosity due to the crudeness of the calculation grid. Calcu-
lations based on the mixing-length theory and using diverse convection parameters
exhibit a high sensitivity of the results to the mixing length (see reviews [207,946]).
The thermonuclear explosion theory cannot be regarded as complete because of the
crudeness of calculation grids arising from limited capacities of even the most pow-
erful computers, and by reason also of the absence of a rigorous convection theory.
Various restrictions to the thermonuclear explosion models may be derived from
comparing these explosions to observations of Type I supernovae (SN I) they are as-
sociated with, and from calculations of nucleosynthesis in degenerate matter [207]:

– The “radioactive” model of the light curve due to the decay chain 56Ni !
56Co ! 56Fe requires production of a large amount of 56Ni in the ejected matter.
Such an amount is produced in both the deflagration and detonation models, though
the latter fits the light curve somewhat worse than the former. The half-lives in this
chain are 6.1 and 77 days, and positronic ˇ-decay energies are �ˇC = 2.133 and
4:568 MeV, respectively [590]. The energy �ˇC produced in positronic ˇ-decay
includes the energy of subsequent annihilation and equals

�ˇC.A;Z/ D .mA;Z �mA;Z�1/ c
2 Cmec

2

D BA;Z�1 � BA;Z � .mn �mp/c
2 Cmec

2 D ��ˇ .A;Z/:

Here, the nucleus .A;Z � 1/ has a larger binding energy than the unstable nucleus
.A;Z/, leading to positronic beta decay of the latter. Stable nuclei .A;Z/ are bound
more strongly than nuclei .A;Z � 1/ with BA;Z > BA;Z�1, like 56Fe and 56Mn,
and electron capture occurs when �Fe > �ˇ .A;Z/ > 0, from the above definition.

– In the deflagration model, the outer regions of a star have the time to expand
considerably before the burning front approaches them. This causes the nuclear
static equilibrium to have no time to set in, and the ejected matter to contain con-
siderable amounts, �0:3Mˇ, of the intermediate elements 28Si, 32S, 36Ar, 40Ca
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observed in SN I near the light maximum. The detonation model would supply
intermediate elements only under conditions of a lowered density, as is the case at a
rapid rotation, for instance.

– In the deflagration model, substantial discrepancies with observations arise for
an isotropic composition of iron peak elements. Because of a slow burning in the
deflagration regime, a large number of electron captures have time to occur at in-
creased temperature, thus raising the degree of neutronization, or the Nn=Np ratio.
The 54Fe=56Fe ratio in the ejected matter turns out to be three to five times the
observed ratio equal to 0.061 for the solar system, the Ni/Fe ratio over all stable
isotopes is approximately five times larger as well, and the 58Fe=56Fe ratio for
�c0 D 2:5 � 109 g cm�3 proves to be �40 times the solar ratio.4 Such a strong
discrepancy makes doubtful the deflagration model arising in most calculations of
carbon explosion.

10.2.4 Spontaneous Burning and Detonation

In the absence of satisfactorily reliable calculations, a natural initial temperature
profile is adiabatic. The possibility for such a profile to be adopted is provided by
the convection action at the beginning of carbon burning at T � 3 � 108 K. The
temperature distribution near the centre then has the form

T D Tc

�
1 �

�
2

3
�G�2

cP
�1
c �2c

�
r2

�
: (10.41)

Here, �2 D .@ ln T=@ lnP/S (see (8.22)). The expansion (10.41) follows from
(10.1) and (9.97) which, for a region near the centre, give

m D 4�

3
�cr

3; P D Pc � 2�G
3

�2
c r

2; (10.42)

and from the expansion of T for the adiabatic case

T D Tc C 1

2

d2T

dr2
r2 D Tc C 1

2

Tc

Pc
�2c

d2P

dr2
r2: (10.43)

In the case of smooth variations of T , the burning rate depends weakly on radius,
so the burning front travels with a velocity determined by the initial temperature
profile, and it is not excluded that vf 	 vs. The velocity vf ! 1 at T ! const.,
i.e., the exhaustion may occur simultaneously throughout the region. When vf > vs,
the regime of front propagation is called spontaneous [1076]. The possibility for

4 Note that 56Fe results mainly from the 56Ni ! 56Co ! 56Fe decay so that .N=Z/56Ni D 1 <

.N=Z/54Fe D 14=13; stable isotopes of Ni have A D 58, 60, 61, 62 and 64.
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such a regime to set in during carbon flashes is pointed out in [213], where a model
is examined with �c0 D 3 � 109 g cm�3 and containing equal amounts of 12C and
16O. The time �e for 12C to be exhausted is determined for 0:6 < T9 < 0:9 by

�e D 10�3T �20
9 s: (10.44)

Evaluating the coefficient in (10.41), we have

T D Tc.1� 2:0 � 10�16r2/: (10.45)

The velocity at which the front of spontaneous burning propagates is given by

Dsp D
�

d�e

dr

��1

D 1:2 � 1017 T 20
c9 r

�1

� .1 � 2:0 � 10�16r2/21 cm s�1: (10.46)

At

r > rs D 105

�e
cm; (10.47)

where �e D 10, 1, 0.1 for Tc9 D 0:63, 0.71, 0.80, respectively, the velocity Dsp

becomes lower than the sound velocity vs, and the regime of spontaneous burning
comes to an end. All the above estimates refer to a constant density. The numeri-
cal calculations for the propagation of a burning wave, performed in [213] by the
method of characteristics, show that after the end of the spontaneous burning regime
a shock forms and the detonation regime may set in. As the detonation front enters
the regions of sufficiently low densities, the burning front broadens and the det-
onation breaking becomes possible with subsequent transition to the deflagration
regime. It is pointed out in [213] that numerous calculations of thermal explosions
involving the artificial viscosity method are too crude and can barely resolve the
picture of hydrodynamic flow during carbon explosion. The emergence of the defla-
gration or detonation in these calculations is due to the numerical scheme properties
and may not fit the reality. Further progress in the field seems to be possible as a re-
sult of applying other numerical schemes, say, the method of characteristics without
artificial broadening of the shock front.

10.2.5 Instabilities of Nuclear Flames

To fit observational constraints, the speed of the flame in the deflagration model must
be larger than in the simple laminar model. Such acceleration occurs if the surface
of the flame front is unstable, and its wrinkling leads to an increase in the effective
burning surface, which in turn increases the effective speed of the flame propagation.
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Two types of instabilities, Rayleigh–Taylor (RT) and Landau–Darrieus (LD), are
considered in this relation. RT instability is developed due to accelerating propaga-
tion of the flame front and has a hydrodynamical origin. In the non-linear regime,
the turbulent scale cascade is formed with a Kolmogorov spectrum of the turbulent
velocities v.l/ and energy per unit of the wave vector ".k/ of fluctuations [614]

v.l/ D v.L/

�
l

L

�1=3

; " � k�5=3; l D 2�

k
: (10.48)

In [744], the cut-off scale of hydrodynamic instability of the flame front was taken at
the level where the turbulent velocity (10.48) is equal to the laminar flame velocity
vlf, which is highly subsonic. This minimal value lmin, called the Gibson-scale Gibs,
is defined by the relation

v.Gibs/ D vlf: (10.49)

LD instability [614] is connected with the flame propagation process and has a uni-
versal character. Its minimal length is defined by dissipative effects (like thermal
conductivity) which smear out small-scale perturbations with l < Mark, where
Mark is a so-called Markstein scale. In the numerical experiment [743], the LD in-
stability was detected on scales of the order of several Mark. The Markstein scale is
about an order of magnitude larger than the flame front thickness fl ' 10�5–10�2

cm [744], so that
Mark � 10 lf: (10.50)

In the absence of the flame, the cascade of the hydrodynamical turbulence is devel-
oped on the Reynolds scale

Re D LRe�3=4; (10.51)

where Reynolds number Re � 1014 in a typical white dwarf with L ' 108 cm, so
Re ' 10�3 cm. This is of the order of the laminar front width lf. The influence of
LD instability may change the spectrum (10.48) in the region l < Gibs, where
burning effects could be more important than the hydrodynamical ones. If we take
into account that [203] the speed of the laminar flame is about a few per cent of
the sound speed vs

vlf ' 0:02 vs (10.52)

and the maximal turbulent velocity v.L/ is of the order of vs, we arrive using (10.48),
(10.49) and (10.52) to the value Gibs D L.vlf=vs/

3 � 10�5L D 103 cm.
Another scale that has a pure numerical origin is a length of the grid�. The num-

ber of grids usually does not exceed a few tens of thousands, so in 2D simulations
� � 5 � 10�3L ' 5 � 105 cm. We see that � in all simulations strongly exceeds
all the above values of the scales connected with the instabilities.

In the calculations of a SN Ia explosion, instabilities on the scales of several
� are suppressed due to damping, having a pure numerical origin. For the case
of RT instability, this means only an account of modes with wavelengths of a few
� <  < L, and LD instability operating on smaller scales cannot be detected in
such a grid.
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Understanding that small-scale instabilities are very important for increasing the
effective burning surface and the effective burning speed leads to their account in
the frame of a statistical model, called subgrid (SG), because it deals with scales that
are less than the size of the grid�. In [744], the SG model was used for description
of a turbulent flame propagation, and it was suggested that the energy spectrum
of perturbations is the Kolmogorov one at all scales. The input of the turbulence
was considered by adding terms into equations of motion and energy, representing
the turbulent stresses and dissipation on SG scales. The energy generation rate was
given indirectly by prescription of the speed of the flame propagation vt , using the
power dependence

vt .�/ D vlf

�
�

Gibs

�DF �2

; (10.53)

which may be connected with a fractal structure of the flame due to RT instability.
A preliminary set of calculations made for DF in the interval 2.17–2.33 and
Gibs D 0:123� and 0:051� shows that the model is insufficient to explain the
flame acceleration needed to reproduce observational data.

In [203], the fractal behaviour of the effective surface of burning Sef was consid-
ered, which depends on the radiusR as

Sef � RDF (10.54)

with the fractal dimension DF > 2 due to development of LD instabilities in the
region lmin < l < lmax. Here, lmin is of the order of Mark. With (10.54), the effective
speed of the flame propagation would be similar to (10.53)

vt D vlf

�
lmax

Mark

�DF �2

: (10.55)

To estimate DF for LD instability, an integro-differential equation, describing non-
linear cascades was solved. The value ofDF depends on � D 1�.�b=�u/, where �b

and �u are densities before and after the density jump on the flame front. The depen-
dences which were used for modeling of the flame propagation in SN Ia, accounting
for LD instability, are

DF .�/ D 2C 0:6�2; and DF .�/ D 2C �2: (10.56)

In the laboratory flames there is � ' 0:8, and in SN explosions the density jump is
suppressed due to degeneracy of the matter, and � 
 0:4. Model calculations have
been performed in [203] for a SN Ia explosion with account of both RT and LD
instabilities. RT instability was supposed to be acting on scales larger than a few tens
of Gibs, having fractal dimension 2.50. Values smaller than about 2.4 do not give
acceptable explosions, even with account of LD instability. LD formalism is applied
to all shorter wavelengths down to ten times the flame thickness lf. Calculations
have shown that account of LD instability helps, making robust explosions out of
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what would have been weak ones. However, the complete solution depends heavily
on what one does outside the LD domain, where RT instability prevails.

The problems of turbulent flame acceleration and the possibility of transition
from the deflagration to the detonation regime have been considered in [745].
Additional diffficulties in the realization of this transition have been revealed and
analyzed.

10.3 Collapse of Low-Mass Stellar Cores

After quiescent 12C burning in stars with initial mass 8 � 10Mˇ, a degenerate
O+Ne+Mg core forms and then loses its stability owing to 24Mg and 24Ne neutron-
ization. According to calculations, the nuclear fuel effect consists in slowing to some
extent the contraction relative to iron core collapse, but no ejection occurs [747].

The neutronization may be the reason for the onset of collapse of accreting an
iron white dwarf in a binary when its mass exceedsMcn D 1:18Mˇ (see Sect. 10.1).

If a single star with initial mass M > 10Mˇ rapidly loses its envelope after
the iron core formation, and the remnant mass slightly exceeds the Chandrasekhar
limit (see Sect. 11.1)Mch, then after cooling, when �c approaches 1:15�109.1:24�
109/ g cm�3, the star will start to lose its stability owing to 56Fe neutronization. For
M �Mch � Mch, the cooling time may be sufficiently large, thus being consistent
with the observed Type I supernova explosions in elliptic galaxies, when massive
stars are rare or completely absent [188]. A slow accretion in a binary may cause
a similar loss. Note that the same statement remains qualitatively valid for cooling
or accreting white dwarfs that consist of 24Mg, 40Ca or another heavy element. The
energy released by the 56Fe formation after the onset of collapse is even less efficient
here than during the O+Ne+Mg core collapse. Neglecting the terms �T 2 and GR
effects, the dependenceM.�c; T / becomes, on substituting (10.22) without the third
term in parentheses into (10.19) without the last term [189],

M D 5:83

�2
Z

 
1 � 5:4 � 104 �

2=3
Z

�
2=3
c

C 1:7 10
�7

A
�

4=3
Z

T

�
1=3
c

!
: (10.57)

At temperature T and the same central density, the stellar mass exceeds the mass of
the cold star by 
M :


M

M
D 1:7 � 10�3

A
�

4=3
Z

T7

�
1=3
c9

; T7 D T

107 K
;

�9 D �=109 g cm�3: (10.58)

The stability loss will occur at the stage of the finite size core of the new phase,
when �c exceeds the neutronization density �n by a small but finite value [189], see
Sects. 11.1 and 12.4. To obtain an estimate for 
M , it is sufficient to substitute the
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initial neutronization density from Table 10.1 into (10.58). Combining (10.58) with
the cooling curve for white dwarfs (Sect. 11.1) gives the dependence �.
M/, i.e.,
the delay of collapse as a function of mass excess
M 5

� D 2:18 � 108
.�Z=2/

16=3
�
M=103
M

�
.�=2/.A=12/7=2�

5=6
c9

yr

for xZ D 1; �Z D A=Z; � D A=.Z C 1/: (10.59)

The Debye temperature � is defined as

� D 0:775„!i

k
D 3:5 � 103p�

�Z
K; !2

i D
4�e2ne

�Zmu
; (10.60)

(see also Chap. 1, Vol. 1).
A qualitative picture of the instability development due to neutronization is given

in [189]. When the central density exceeds the initial neutronization density �n,
the star becomes unstable for an equilibrium composition, that is, for a very high
neutronization rate. However, it remains stable with respect to a frozen composition,
that is, in the absence of neutronization at a constant �Z. At a small �c � �n, the
neutronization (ˇ-process) rate is low, and it is only this rate that determines the
initial rate of star contraction. With increasing density

– The ˇ-process rate increases
– GR effects become more important
– Heating of the star occurs owing to adiabatic contraction and non-equilibrium
ˇ-reactions. The last type of heating occurs when the Fermi energy of electrons
in strongly degenerate matter considerably exceeds the value of the binding en-
ergy difference between successive nuclei equal to the Fermi energy of electrons
at which neutronization starts. Under such conditions, neutronization is accom-
panied by simultaneous energy losses due to outflowing neutrinos, and heating
due to entropy increase (see Chap. 5, Vol. 1). The heating results eventually in the
dissociation of iron and decreases the value of � < 4=3 in frozen ˇ-processes.

All these phenomena lead to hydrodynamical collapse at a rate close to the free-fall
velocity. Calculations of contraction caused by neutronization require simultaneous
solution of the hydrodynamical equations (10.38–10.40) and equations of neutron-
ization kinetics, describing time variations of chemical composition due to beta
capture and decay reactions in nuclei (see Chap. 5, Vol. 1), which determine the
contraction rate at this stage. The non-equilibrium heating leads to an appreciable
temperature increase and makes the “cold” collapse impossible.

5 The relation (10.59) is valid for 
M=M > 6 � 10�5.�
1=6
c �

1=3
z =A/, when the temperature at

the point of stability loss Tcr is above 0:1 � < Tcr, where � is the Debye temperature of crystal
degeneration, at which the thermal energy of the ion is of the order of the lowest oscillation energy
of the Coulomb crystal lattice „!i .
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Calculations of the collapse of low-mass stellar cores in the approximation of
homologous contraction at a given density profile [150] have been performed in
[72, 73]. In [210] the gasodynamic equations (10.38–10.40) have been solved si-
multaneously with kinetic equations of neutronization for the case of collapse of a
low-mass iron core. A hydrostatically equilibrium star of 56Fe with M D 1:2Mˇ,
�c D 1:78�109 g cm�3, Tc D 108 K and temperature distribution T D Tc.�=�c/

0:1

has been taken for the initial model. The equation of state allows for the degeneracy
and relativism of electrons and for a perfect nuclear gas. The stellar mass exceeds the
mass limit (Sect. 10.1), and accordingly, the initial central density exceeds the neu-
tronization density �n D 1:15� 109 g cm�3 by a finite magnitude. The difference
�c��n determines the initial neutronization and star contraction rates. An approach
based on solving the time differential equations yielded by dividing the star into
Lagrangian zones by an implicit method has been worked out in [210] for thorough
calculation of slow initial and rapid hydrodynamic stages. The artificial viscosity has
been used, neutrino cooling completely taken into account (i.e. electron and positron
captures and decays (URCA processes), plasma neutrinos, etc.), while convection
and heat conduction have been ignored. The conditions for velocity, v D 0 at the
centre, and pressure, P D 0 at the outer boundary, have been taken for boundary
conditions. Equations of neutronization kinetics are solved at T < 3� 109 K for all
the reactions of the chain 56Fe! 56Mn! 56Cr! 56V! 56Ti. At T > 3� 109 K,
the transition to the nuclear statistic equilibrium was switched on. To obtain a
smooth description of this transition, a kinetic equation is introduced for quantity f ,
the weight fraction of matter in statistic equilibrium. The variation rate for f is cho-
sen according to the .�; p/ reaction on iron, which depends exponentially on T . The
fraction .1�f / is still described by a set of equations of neutronization kinetics. At
f > 0:99, the equilibrium concentration of nuclei with only one kinetic equation,
describing the change of the total number of protons and neutrons (free and bound
ones) with time is adopted (Chap. 1, Vol. 1).

The distribution of parameters in the initial model is given in Fig. 10.5.
Figure 10.6 shows temperature T , entropy S and �Z in the centre of the star

Fig. 10.5 The distributions
of density �, temperature T
and entropy S over the initial
hydrostatic model
(T9 D T=109 K), from [210]
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Fig. 10.6 T9, S (in units of
k=mu), and

�Z D 
P
i

.Zi x1=Ai /
�

�1
, the

number of nucleons per
electron, versus central
density �c. Solid lines do not
take into account of the
Gamov–Teller resonance,
dotted lines do it. For
10 � lg�c � 10:3, curves are
shown smoothed over
pulsations (from [210])

Fig. 10.7 Total neutrino
luminosity J	;tot, luminosity
due to ˇ-processes on
nucleons J	;nuc, and �c versus
time t . The time
t D t1 D 5098 s corresponds
to lg �c D 11:96 (from [210])

versus central density �c. The dotted line represents the results of more accurate
calculations of neutrino emission including electron captures through the giant
Gamov–Teller resonance, from [402–405]. The efficiency of non-equilibrium heat-
ing increases here, being partially due to the high excitation energy of nuclei
involved in Gamov–Teller transitions in which the spins of the leptons (e	) flying
away are parallel, and the parity of a nucleus does not change (see Chap. 5, Vol. 1).
The time dependence of �c and neutrino luminosity J� are given in Fig. 10.7. From
the onset of contraction to �c D 1010 g cm�3, T D 3 � 109 K, the temperature
increase is caused mainly by the non-equilibrium heating through ˇ-processes.
It may be seen from Fig. 10.6 that the transition to static equilibrium at T9 > 3,
�c � 1010 g cm�3 is accompanied by a strong heating, like a thermal flash. The
energy for this flash to occur has been accumulated during the preceding neutron-
ization process, when the nuclear composition has been increasingly departing from
the equilibrium one, in analogy with the cool neutronization, which is accompa-
nied by the decrease of a nuclear charge at constant nuclear mass [122] (see also
Chap. 1, Vol. 1).

As a result of neutronization, the specific binding energy equals 8:72 MeV
nucleon�1 (for 56Cr), while for a statistically equilibrium state at the same den-
sity �c D 1010 g cm�3, Eb D 8:74 MeV nucleon�1. An excess in binding energy
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Fig. 10.8 Profiles of velocity
u versus radius R at
lg �c D 9:96 (a), 10.00 (b),
10.07 (c), 10.18 (d),
10.52 (e), 11.96 (f), from
[210]. The real velocities are
multiplied by numbers that
mark the curves

of 0:02 MeV nucleon�1 converts into heat during the transition to equilibrium and
increases the central temperature Tc from 3 � 109 to 4:7 � 109 K. The velocity dis-
tribution along a radius for different central densities is presented in Fig. 10.8. The
thermal flash gives rise to a sound wave (curve .b/ in Fig. 10.8) which turns into
almost homologous pulsation of the star as a whole. After several tens of pulsations,
they decay at �c � 2 � 1010 g cm�3 by being damped by neutrino radiation flow.
At �c � 1012 g cm�3, the collapse becomes non-homologous, and the central stellar
regions become non-transparent for neutrino radiation. Further calculations in [210]
have been performed with the adiabatic approximation and resulted in the formation
of a homologous core with mass 1:1Mˇ, reflecting the shock wave (bounce) (see
also [473]). A correct inclusion of neutrino processes may substantially decrease the
power of the bounce, as in the case of collapse of more massive stars discussed in
Sect. 10.4.

10.4 Hydrodynamical Collapse of Stellar Cores

Iron cores with mass MFe � 1:4Mˇ lose their stability through the iron disso-
ciation which directly leads to a rapid collapse. The neutronization role and time
interval in which the contraction proceeds with ˇ-decay rate increase with de-
creasing mass. As noted in Sect. 10.1.2, the iron core forms in stars with initial
mass Mi > 10Mˇ, while for M > 13Mˇ all stages of nuclear burning proceed
smoothly. As all evolutionary calculations yield significant uncertainty in the rela-
tionship MFe.Mi/, the stability loss due to the iron dissociation is certain for single
stars with Mi > 13˙ 3Mˇ.

Hydrodynamical calculations of iron core collapse were first performed in [302],
and soon after in [46, 540]. A solution has been searched for the hydrodynamical
equations (10.38–10.40), and massive stellar cores (M � 2Mˇ) on the boundary
of hydrodynamical stability have been taken for initial conditions. These studies
concern the effect of electron and muon neutrinos on collapse, the role of neutrino
deposition leading to the envelope heating and probable ejection, and the effect of
burning of thermonuclear fuel 12C and 16O remaining around the iron core. It has
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been noted in [136] that the reflection of infalling matter from the surface of a stable
neutron star and formation of a shock wave (bounce) may also be important for
producing a supernova explosion.

Numerous calculations (see reviews [207, 472, 525, 1040, 1053]) have revealed
the sensitivity of the results to the equation of state of nuclear matter, quantity of
remaining thermonuclear fuel and probable convection. The results are strongly
influenced by the methods adopted for including neutrinos at the transparent and
opaque stages. A strong explosion is obtained by many authors under opposite phys-
ical assumptions: adiabatic collapse with a density-dependent adiabatic index � and
approximation of completely transparent neutrinos. The former yields the explosion
as a result of the bounce of incident matter from the surface of the forming neutron
star and formation of a powerful shock wave propagating outward. In the approxi-
mation of completely transparent neutrinos the mean neutrino energy, 30–50 MeV,
proves sufficient for a strong deposition leading to explosion.

Calculations including neutrino processes in a self-consistent way over the entire
star were first performed by Nadyozhin [711,729]. These calculations yield the for-
mation of a core opaque for neutrinos. For such a core, the energy equation (10.39)
was completed by the neutrino heat transfer term, and the equation for diffusion of a
lepton charge in the neutrino opaque core was added [728] (see also Chap. 5, Vol. 1).
These calculations take into account both the emission of neutrinos outside the core
which is opaque for neutrinos (neutrinosphere) and absorption of neutrinos outgoing
of this core with heating of matter by them (deposition). The absorption is calculated
from the diluted Fermi spectrum of neutrinos propagating from the neutrinosphere
[525, 728]. The calculations [729] show that promoting the conversion of kinetic
energy into heat and eliminating the bounce almost completely are the major effects
of neutrinos. The maximum velocity of fall obtained in [729] for collapse of a 2Mˇ
core took place for 0.12 s after the onset of collapse and was equal to 3700 km s�1.
This velocity is 1.5 times less than the free-fall velocity. The temperature in the post-
shock region increases to .4� 5/� 1010 K and the matter there becomes opaque for
neutrinos. The shock boundary almost coincides with the neutrinosphere and neu-
trino core boundary. The growth of the neutrino core is caused by conversion of the
kinetic energy of matter into heat energy when this matter traverses the shock front.
The mass of the hot neutron core grows rapidly (in �0:04 s) to �0:8M D 1:6Mˇ,
the radius to �80 km. After that, there occurs a long stage of residual envelope
accretion onto a neutrino core which loses energy and gradually contracts. Four
seconds later, the neutrino star turns into a hydrostatically equilibrium hot neutron
star with R � 15:5 km that keeps cooling. Most of the energy radiated in the form
of neutrinos, �5 � 1053 erg � 0:15 Mc2 � 0:3 Mˇc2, is lost during cooling of the
hot neutron star, over a time t � 20 s. The mean energies of neutrinos arising in col-
lapse are�10MeV,6 and their deposition is insufficient to reverse envelope collapse
and to obtain a powerful explosion. Inclusion of thermonuclear burning of oxygen

6 In [679], the mean energies of electron neutrinos equals 14 MeV, electron antineutrinos, 15 MeV,
other neutrino species (	�, Q	�, 	� , Q	� ), 32 MeV. The total energy of emitted neutrinos �6�1053 erg
is distributed almost equally between these six types of particles.
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in the envelope, muon- and tau-neutrinos, momentum transfer from neutrinos to
nuclei caused by coherent scattering due to neutral currents in the weak interaction
Lagrangian does not significantly alter the results. A number of studies published
after [711, 729] still use the bounce mechanism to obtain a powerful explosion in a
crude description of neutrino processes. The inclusion of neutrinos becomes more
accurate in later studies, so that obtaining an explosion becomes difficult.

Studies reviewed in [207, 472, 1040, 1053] give more exact descriptions of neu-
tronization kinetics, describe neutrinos with use of a transfer equation and include
non-ideal effects in the equation of state at near-nuclear densities. Under conditions
of high neutrino concentration, heavy nuclei exist up to almost nuclear densities
because of suppression of electron captures. This makes leptons with � D 4=3

predominate in pressure at the stage of an opaque neutrino core. At � D 4=3,
the homologous contraction of matter with �� > 1 accounts for the name of ho-
mologous core given to central regions with �� > 1. On approaching the density
� D 2:5 � 1014 g cm�3, the nuclei dissociate, and the contribution of non-
relativistic nucleons to pressure grows drastically, resulting in � > 4=3 and the
non-homologeneity of the collapse. A strong shock with specific entropy increased
by six or seven times arises on the boundary of the homologous core but well in-
side the neutrinosphere. This shock loses an important part of its energy via the
dissociation of heavy nuclei and, on reaching the neutrinosphere boundary, emits
the residual energy in the form of a neutrino pulse with L� � 1054 erg s�1. Conse-
quently, the shock decays and outburst does not occur during the collapse of a star
with Mcore � 1:5Mˇ.

Another attempt to obtain a powerful outburst during iron core collapse has
been made in [95]. This study deals with the cooling stage of a neutrino star with
luminosity L�e D LQ�e D 4 � 1052 erg s�1, the mean energy of emitted neutri-
nos �5 MeV, neutrinosphere radius R� � 30 km. The mass of the collapsing
core is 1:64 � 1:69Mˇ. A small part of the neutrino flux (�0:1%) is absorbed
in outer layers, causing their appreciable heating. According to calculations [95] for
t D 0:1 � 0:8 s, the neutrino heating results in an increase in pressure and the for-
mation of a shock which propagates outward to give an outburst of �4 � 1050 erg,
insufficient to account for the energy of the most powerful supernovae. The fall
velocity of the material before the shock is .2 � 3/ � 109 cm s�1, and the velocity
of the shock front motion outward is �5� 108 cm s�1 for a time t > 0:5 s from the
onset of collapse. Calculations in [723] use a description of neutrino transfer which
is more accurate compared to [95] and give no explosion or outburst at all. Another
possibility for an explosion has been considered in [436].

According to estimations, the reaction of the neutrino–antineutrino annihilation

	 C Q	 ! eC C e�; (10.61)

opposite to the reaction of neutrino creation due to pair annihilation is likely to be
important for the shock formation and supernova explosion. The results [436] based
on neutrino fluxes and spectra from [679] show that more than 1051 erg can be con-
verted through the .	 Q	/ annihilation into .eCe�/-pair energy and subsequently into
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heat above the neutrinosphere. The contribution of all the three species of neutrinos
to the pair formation is equal. For the same energy, the cross-section for .	e Q	e/ anni-
hilation caused by charged and neutral currents is larger than .	� Q	�/ and .	� Q	� / an-
nihilation cross-section caused only by neutral currents, but the average �- and
�-neutrino energy is more than twice the e-neutrino energy, so that their contri-
butions become nearly equal.

The neutrino fireball is enhanced by increasing neutrino flux outward due to con-
vection, and neutrino production in the process of run-away accretion of the residual
matter into the neuron star [183, 1079]. The possibilities for obtaining a robust
supernova explosion due to neutrino energy deposition from this fireball were ana-
lyzed in [298, 301]. Next, we discuss some interesting physical effects arising from
hydrodynamical collapse.

10.4.1 Low-Energy Window for Neutrinos

As the cross-section for interaction of neutrinos with matter increases with energy
approximately as�E2

� , the interaction depth decreases with decreasing neutrino en-
ergy, and they escape more freely. The escape of such neutrinos becomes still easier
because their mean free path is further increased by electron and neutrino degen-
eracy, due to the occupation of a larger number of quantum states, and only a few
free states remain for particles which appear as a result of interactions. It has been
assumed in [684] that a low-energy window would increase the outward neutrino
energy flux and promotes the supernova explosion during collapse.

The calculations [604] have shown that the neutrino degeneracy reduces only
the .	 e/-scattering, but does not noticeably alter the scattering from nucleons and
coherent scattering from nuclei. The reason for this is that the energy transfer is very
small for collisions of neutrinos with heavy nuclei and nucleons, and changes occur
only in momentum, while collisions with electrons lead to comparable magnitudes
of energy and momentum transfer. It follows from the collision integral for fermions
that when the energy exchange is negligible and � D �0, the terms representing
degeneracy cancel out. Very much in the same way, the induced processes acting for
bosons (instead of the degeneracy of fermions) give no contribution to the collosion
integral in the case of Thomson scattering with negligible energy transfer by the
photon (see Chaps. 2 and 5, Vol. 1). The scattering on nucleons and nuclei is the
major source of neutrino opacity. Calculations of neutrino scattering due to neutral
currents [324, 604] have given for the mean free path el with respect to scattering
from nucleons and coherent scattering from nuclei

el � 1:0 � 106

�
�

1012 g cm�3

��1
 
xZA

12
C xn

!�1

; (10.62)

where xZ and xn are the weight concentrations of heavy nuclei and free neutrons.
An analogous calculation of the mean free path e with respect to neutrino scattering
from electrons has given [604]
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��Z
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!� �Fe
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	2
�

kT

3 MeV

��2

; (10.63)

where the kinetic Fermi energy of electrons is

�Fe D .mec
4 C p2

Fec
2/1=2 �mec

2;

pFe D „
�
3�2�

�Zmu

�1=3

D
�
1:027�

106�Z

�1=3

mec: (10.64)

Here, T is the temperature in the scattering region, and�Z is the number of nucleons
per electron from (10.23). We may see from (10.63) that for the characteristic values
�Z D 2, xZA � 12, �Fe � 30 MeV and kT 
 3 MeV, the inequality e 	 el

holds at any degree of neutrino degeneracy, and from (10.62), that the path el is less
than the neutrinosphere radius R� . The neutrino degeneracy thus has no effect on
the low-energy window which has a small aperture and does not insure any consid-
erable increase in neutrino flux density that would remove difficulties encountered
in obtaining a supernova explosion during collapse.

10.4.2 Asymmetric Neutrino Emission During Collapse
of a Star with a Strong Magnetic Field

In a strong magnetic field, the electron energy depends on its spin orientation [616]

E D
�
nC 1

2
C �e

� jej„
mec

B C p2
z

2
: (10.65)

Here, n D 0; 1 : : : is the number of the Landau level and �e D ˙1=2 is the electron
spin component along the B direction. The state with �e D �1=2, n D 0 has a
minimum energy so that electrons in a strong magnetic field are polarized. The state
with �e D 1=2, n D 0 is energetically preferable for positrons owing to the charge
of opposite sign. The degree of the electron polarization depends on the parameter
p determined by relations [294, 329]:

(a) p D „!B

kT
for non-degenerate, non-relativistic gas,

(b) p D „!B

�Fe
for degenerate, non-relativistic gas,

(c) p D
p„!Bmec

2

�Fe
for degenerate, relativistic gas;

(d) p D
p„!Bmec

2

kT
for non-degenerate, relativistic gas:

(10.66)
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Here, �Fe is given in (10.64), and

!B D eB

mec
(10.67)

is the Larmor frequency.
The degree of polarization is close to unity at p > 1. The existence of strong

magnetic fields, B D 1012 � 1013 G, at the surface of neutron stars follows from
pulsar observations [670]. Fields in stellar interiors may be even stronger than this.
As neutrinos have left-handed helicity, they have a preferred escape orientation
after being produced in reactions with polarized e˙. Owing to magnetic anisotropy,
the angular dependence for the intensity of neutrino emission is determined by the
function

g.�/ D 1

4�
.1C a cos �/; (10.68)

where � is the angle at which neutrinos escape with respect to the magnetic field.
Evaluating the energy density E� and the radial neutrino energy flux F� averaged
over the solid angle,

E� D 1

c

Z
˝

I� d˝; F� D
Z

˝

I� cos � d˝; (10.69)

and using the intensity of neutrino emission I� � g.�/, we obtain for the distribu-
tion (10.68)

F�B D acE�

3
erg cm�2 s�1; (10.70)

where F�B is that part of the neutrino flux due to magnetic anisotropy. If the total
momentum of directed neutrino emission of a neutron star is

P� D f Q�

c
; (10.71)

where Q� D 0:1Mc2 is the total emitted energy which is nearly equal to the bind-
ing energy of the neutron star, and the neutron star acquires the velocity

vn D 0:1 cf: (10.72)

The asymmetry factor f is obtained by averaging (10.70) over the neutrinosphere
surface, and the value of a is proportional to the factorp from (10.66). If the poloidal
component of the neutron star field has the dipole (case D) form

Bz D d .3 cos2 � � 1/; B D d
p
3 cos2 � C 1 (10.73)

and a � Bz, from (10.66a,b), then for E� D const: integrating over the neutri-
nosphere gives P� D 0. For a � Bz=

p
B from (10.4.4c, d), we obtain
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f D 4a0

3
p
2

Z 1

0

3x2 � 1
.3x2 C 1/1=4

dx � �0:0776 a0; (10.74)

where a0 is the value of a for � D 0 at the pole, and

Z 1

0

3x2 � 1
.3x2 C 1/1=4

dx D �0:0823:

In this case, the mean neutrino momentum is opposite to its directions at the poles.
If the field inside the star is uniform and directed along the z axis (case P), then

a D const: and

P� D 4a

3c
Q� ; i.e., f D 4a

3
: (10.75)

Note that the main flux on the neutrinosphere is F� D cE�=4. The URCA process
on nucleons

(a) pC e� ! nC 	;

(b) nC eC ! pC Q	;
(10.76)

is the major source of opacity for neutrinos in neutron stars in the phase of emis-
sion of the main neutrino pulse. Nucleons are usually in a non-polarized state for
their large masses. The probability of the reaction (10.76) in a strong magnetic field
with non-polarized nucleons has been calculated in [329]. An asymmetry in neu-
trino escape arises only when electrons are captured from the low Landau level
(�e D �1=2, n D 0), the maximum asymmetry corresponding to

amax D 1 � ˛2

1C 3˛2
; ˛ D GA=GV � 1:25: (10.77)

This asymmetry is solely due to a difference in vector and axial coupling constants.
For small values of B , we have approximately

a D amaxp
2 D 0:099 p2; p � 1: (10.78)

Substituting f from (10.74) and (10.75) into (10.72) and using (10.78), and
(10.4.4c, d) gives

vn D 4c

A

B

Bc

�
mec

2

�Fe

�2

; �Fe 	 kT

D 4c

A

B

Bc

�
mec

2

kT

�2

; �Fe � kT

Bc D m2
e c

3

e„ D 4:414 � 10
13 G

A D 303 .P /I A D �5:21 � 103 .D/: (10.79)
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A negative value of vn implies a neutron star velocity opposite to the magnetic field
at the poles. For strongly degenerate electrons with �Fe D 60mec

2, we have the
neutron star velocity due to neutrino emission in the reaction (10.4.13a)

v.�/
n � 1:2.B=Bc/ km s�1 .P / (10.80)

� �0:064.B=Bc/ km s�1 .D/:

When electrons are strongly degenerate, positrons have a small density and are
weakly degenerate with a mean energy �kT . Under these conditions, the param-
eter p is determined from (10.4.4d), and the degree of asymmetry of antineutrinos
resulting from the reaction (10.4.13b) is .�Fe=kT /

2 times the degree of asymmetry
of neutrinos in the reaction (10.4.13a). For a steady-state composition, the numbers
of escaping neutrinos and antineutrinos are equal: �� D �Fe, � Q� � kT . As noted
by Voloshin (private communication), the momentum transferred from antineutri-
nos to the neutron star is ��Fe=kT times the momentum transferred from neutrinos
under the same conditions and has the same direction. At �Fe D 10 kT , the velocity
acquired by the neutron star is

vn D v.�/
n C v.Q�/

n � 13:2.B=Bc/ km s�1 .P /

� �0:072.B=Bc/ km s�1 .D/: (10.81)

These velocities are too low to break a close binary by explosion or to account for
the large velocities of radio pulsars.

10.4.3 Neutrino Oscillations in Matter

Differences in interactions of various neutrino species with matter change possible
neutrino oscillations in matter in comparison with vacuum [697]. The reason for
these differences is that the interactions of electron neutrinos with matter are due to
charged and neutral currents, while �- and �- neutrino interactions are almost solely
due to neutral currents because of large muon and tau-lepton masses. The effect
of the medium reduces to altering the oscillation depth (the mixing angle �m) and
oscillation length lm, in which case the interactions may both damp (�m < �) and en-
hance (�m > �) oscillations (� , l refer to vacuum). The enhancement of oscillations
may occur either for neutrinos (then the antineutrino oscillations are damped) or for
antineutrinos. A medium of varying density may produce a resonant enhancement of
oscillations when neutrinos of a given energy become mixed in a thin layer at [810]:
� D �0 D .�.m2/=��/ .�Z=0:65 � 10�7/ cos 2� g cm�3, sin 2�m D sin 2�=A,

lm D l=A, A D
h
cos2 2� .1 � �=�0/

2 C sin2 2�
i1=2

, l D 2:5 ��=�.m
2/(m); the

resonance width is ��=�0 D tan 2� ; here, �� is the neutrino energy (MeV),
�m2/ is the difference in squares of neutrino masses (e�) or (e�) in eV2.
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Calculations show that the resonant matter-induced oscillations (	e	�) and (	e	� )
on the Sun may considerably reduce the neutrino flux from it [93, 697]. This may
account for the very small value of the measured fluxes of neutrino 	e radiation
from the Sun [61].

The same mechanism is applied in [698] to neutrinos emitted during collapse.
As the sign of this effect is different for interactions with electrons and neutrons,
the oscillations in the core and envelope may be partially compensated. In the ab-
sence of oscillations, the mean energies of emitted neutrinos are lower, and their
neutrinospheres are larger for 	e and Q	e than for 	�, Q	�, 	� , Q	� , so that equipartition
is nearly achieved between energies of all the six neutrino species emitted during
collapse [679]. The oscillation action outside the neutrinospheres may give rise to
significant departures from this equipartition. Either neutrinos or antineutrinos are
subject to oscillations, so one of these species goes out almost without oscillational
distortions, and the other changes significantly. Removal of equipartition between
different neutrino species arises because of the large difference between energies of
(e) and (�; �) neutrino, and energy dependence of the resonant mixing. Since detec-
tion methods are substantially different for 	e and Q	e, for observational predictions
to be correct it is important to know for what particles, 	e or Q	e, oscillations become
enhanced in matter. Experimental hints to the existence of neutrino oscillations (also
from solar neutrino experiment) emerge from anomalous cosmic ray data [880], and
from Los Alamos experiments with a neutrino beam [881].

10.4.4 Convective Instability in Collapsing Stellar Cores

To maintain the neutrino energy flux out of the core, the concentration of leptons
in the region of the neutrinosphere falls abruptly outward, following the drop in
pressure. This leads to the convective instability development [357] since the ele-
ment motion inward is related to an excess of the element density over that of the
surroundings for the pressure to be compensated, and vice versa. Convective mo-
tions in the neutrinosphere might bring hot material outward and increase the mean
energy and flux of escaping neutrinos whose deposition could initiate an explosion.

The possibility for such an instability to develop and its consequences have been
analyzed in [623,625]. An equilibrium equation of state of a hot dense matter [605]
with neutrinos in thermodynamical equilibrium has been used. The convective in-
stability investigations have led to the conclusion that within the neutrinosphere, at
dxl=dr < 0 (xl is the fractional concentration of leptons), the convection develop-
ment is possible only at �l D .@S=@xl /�;P < 0. Studying the shock motion inside
the neutrinosphere reveals that the entropy in the post-shock region really increases
with decreasing density. Calculating �l from the equation of state in [605] shows
that at high T and � insuring a purely nucleon composition, the value �l > 0, so
the convection development is hardly possible at � > 1014 g cm�3. In the region
transparent to neutrinos at � < 1012 g cm�3, the lepton fractional concentration in-
creases outside due to increases in electron fraction, and lepton gradient will tend to
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stabilize these regions against convective overturn. Thus, lepton-driven overturn is
possible only at densities 1012 < � < 1014 g cm�3, where neutrino trapping occurs,
and �l < 0. Account of convection in the local approximation in hydrodynamic cal-
culations has shown that the degree of enhancement of neutrino flux is ambiguous
and the possibilities for obtaining an explosion remain doubtful [623].

If neutronization and dissociation of nuclei occur simultaneously in the region
of the shock dissipation near 1Mˇ (enclosed mass), the entropy gradient becomes
negative and entropy-driven convection is developed. The evolution of a new-born
neutron star with account of this convection was studied in [246] on the basis of gen-
eral relativistic “Henyey-like” code [245] with inclusion of a mixing-length scheme
for convective energy and lepton transport. It was found that such convection can
enhance the neutrino luminosity in the quasistatic post-collapse stage of the core of
a massive star by at times an order of magnitude, and neutrinospheric temperature
and the energy of the emitted neutrinos are increased by up to �50%. This helps in
obtaining the supernova explosion, but is not enough to solve all the problems [247].

It was suggested in [299] that in the presence of sufficiently large destabiliz-
ing lepton gradients, the core may become unstable to a large-scale overturn that
dredges up neutrinos from the very centre of the core. This can increase dramati-
cally the neutrinos flux through the infalling envelope, which together with the large
kinetic energy of the convective plumes may lead to explosion. 3D calculations of
large-scale overturn in protoneutron stars have been performed in [288, 1003].

10.4.5 Two-Dimensional and Three-Dimensional
Calculations of Neutrino Convection

An unstable lepton and entropy profiles formed after �10ms of the creation of
a shock wave and bounce of the core, can drive a violent Rayleigh–Taylor-like
overturn as studied in [247]. Combination of 2D hydrodynamics treated by the
piecewise-parabolic method (PPM), with independent 1D neutrino transport were
used. The explosion was obtained in this model, while without neutrino transport,
or with account of convection in the 1D hydrodynamical model, the explosion did
not happen. Extended calculations in a similar model with 2D neutrino transport
have been presented in [248]. Here, convection becomes so violent that spherical
and even plane symmetry of the core are strongly broken, neutrino emission and
mass ejection proceed anisotropically, inducing the explosion with ejection of a few
tens of high entropy clumps, and giving a kick to a neutron star, which by estima-
tions can reach a speed of �500 km/s.

3D simulations of convection in the shocked matter of the supernova core have
been performed in [908], assuming that the neutrino radiation from the protoneutron
star is radial, but axisymmetric. The asphericity of the neutrino flux was connected
with rapid rotation of the protoneutron star. The formation of high-entropy hot bub-
bles and a jet-like explosion was obtained as a result, but the explosion energy
problem was not considered.
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The PPM method was used in 2D calculations [546, 547] of neutrino-driven su-
pernova with convective overturn and accretion. The effects of convection obtained
here are less pronounced than in [248], while a powerful explosion is obtained in a
certain, although rather narrow, window of core 	 fluxes in which 1D models do not
explode. The maximum attainable velocities of the kick are estimated to be around
200 km/s.

Extensive 2D studies of a supernova explosion following the collapse of cores of
two massive stars (15 and 25Mˇ) have been performed in [467]. The calculations
begin at the onset of core collapse and stop several hundred milliseconds after the
bounce, at which time successful explosions of appropriate magnitudes have been
obtained. The explosion is powered by the heating of the envelope due to neutrinos
emitted by the protoneutron star. This heating generates strong convection outside
the neutrinosphere which was demonstrated to be critical to the explosion. Convec-
tion leads to violation of the radiative equilibrium between neutrino emission and
absorption. Thus, explosions become quite insensitive to the physical input param-
eters, such as neutrino cross-section or the nuclear equation of state parameter.

A smooth particle hydrodynamics (SPH) code was used for 2D calculations with
spherically symmetric gravity and a realistic equation of state. A 2D explicit code
for neutrino transport was developed with account of the most important processes
of neutrino emission, absorption and scattering. A peculiar characteristic of neu-
trino processes in supernova is that the dominant process which leads to neutrino
trapping does not affect the neutrino spectrum, because elastic scattering between
nucleons and neutrinos happens almost without the energy exchange. This leads to
the situation where the optical depth can be large without thermalizing the fields. As
a result, local thermodynamic equilibrium cannot be assumed.

The main features common to all 2D simulations made in [467] are the follow-
ing. After an initial period of dynamical infall lasting a few hundred milliseconds,
the central density becomes supernuclear, the core hardens and a bounce shock is
launched. Within a few milliseconds, this shock stalls due to energy losses at a
radius�150 km. At this point, 2D calculations begin to differ greatly from 1D com-
putations because of the onset of hydrodynamical instabilities. Most important to
the supernova is the neutrino-driven convection that lasts for over 100 ms until a
successful explosion is achieved.

We can distinguish between lepton- and entropy-driven mechanisms of convec-
tive instability. The lepton instability develops over a time scale of 15 ms after the
bounce (Fig. 10.9) in the region around the neutrinosphere of the protoneutron star,
situated at r � 40 km. Maximum turnover velocities are about 4000 km s�1, while
at other times the velocity can decrease below 1000 km s�1. The width of the unsta-
ble region is about 15 km.

The entropy instability develops farther out (r � 50–150 km) and is driven by
a negative entropy gradient. At first, this negative gradient is due to the stall of the
bounce shock and becomes smaller as the shock weakens. Subsequently, this unsta-
ble entropy gradient is maintained by neutrinos, emerging from the hot protoneutron
star heating the matter preferentially at smaller radii. The entropy instability is fully
developed 20–25 ms after the bounce. Figure 10.9 illustrates the convective patterns
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Fig. 10.9 (a) Lepton-driven convection in the 25M
ˇ

progenitor 15 ms after the bounce

Fig. 10.9 (b) Entropy-driven convection in the 25M
ˇ

progenitor 25 ms after the bounce
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Fig. 10.9 (c) Exploding 25M
ˇ

progenitor 200 ms after the bounce. Postshock velocities are
�15;000 km s�1

present in the supernova at 25 ms after the bounce. Note the two distinct regions
of instability, the lepton-driven instability at 40 km and the entropy instability at
100 km. The convective velocities in the entropy instability region are much larger
than in the lepton-driven case and sometimes exceed 10,000 km/s�1.

After an amount of time, which varies depending on the progenitors and the de-
tails of the physics, but which is always of the order of 50–100 ms after the bounce,
the energy build up in the convective region and the thinning of the infalling en-
velope allow the shock to move forward decisively. Adiabatic expansion cools the
material behind the shock and allows the free nucleons to recombine. In particular,
the reconstruction of alpha particles liberates �7 MeV/nucleon of energy.

By 100 ms after the bounce, the shock is located about 1,000 km above the neu-
tron star and is able to impact significant velocities (comparable to or larger than the
escape velocity) to the infalling matter. At a time�200ms after the bounce, the en-
tropy of the region above the protoneutron star reaches about�20 k/nucleon due to
heating by the electron neutrinos which is faster than its replacement by an infall of
cold matter, and the density is only�3� 109 g/cm3. By that time, the energy of the
explosion is larger than one foe (1051 ergs), producing a supernova, independently
of future events in the neighbourhood of the protoneutron star. The beginning of the
propagation of the successful explosion shock through the envelope of the progeni-
tor is shown in Fig. 10.9.

Investigations of collapse and explosion of rotating cores have shown that the
explosion proceeds in the same manner as in the non-rotating case, except the ro-
tation has a strong influence on the shape of the convective patterns that develop
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above the protoneutron star. As was pointed in [467], the most wanting aspect of
the calculations remains in neutrino physics, because of the obvious difficulties of
radiation transport in multidimensions. The basic flux-limited approximation leaves
much to be desired in nearly optically thin regions, and also inelastic neutrino nu-
cleus interactions have been ignored, which could play an important role in the
explosion. As was indicated in [467], at a time �200ms the SPH model ceased to
adequately resolve the atmosphere above the neutron star and simulations had to be
stopped. The fact that this time is close to the time of the formation of the success-
ful explosion shock makes it desirable to check more carefully the role of numerical
effects in these calculations.

The same 2D SPH code was used in [466] for investigation of mixing in the
expanding envelope of SN 1987A due to hydrodynamical instabilities. The necessity
of mixing in the ejecta of SN 1987A follows from observations of X-rays at early
stages, expansion velocities seen in line widths of different infrared lines and in
gamma-ray lines of 56Co, and in the form of the optical light curve.

Numerical results of [467] have been reproduced by an analytical description,
presented in [96]. There, preference has been given to these results leading to a
powerful supernova explosion, but not to results obtained by other authors [704] in
2D simulations with similar input physics, but different numerical scheme and initial
conditions, where no explosion was obtained in the presence of the neutrino-driven
convection.

10.4.6 Explosion of Rapidly Rotating Star

The model of the core-collapse supernova produced by rapidly rotating star was
considered in [518]. A scenario is advanced of the formation of a binary system
of neutron stars as a result of fragmentation of a neutron protostar almost in static
equilibrium, formed after the stage of collapse. In the formation of the binary sys-
tem, the redistribution of mass and angular momentum between its components is
presumed, suggesting the orbit of the binary system to be circular and the axial ro-
tation of the components to be negligible. The subsequent fate of the binary system
follows the way described in [208, 209] where the idea is developed of the explo-
sion of a low-mass neutron star as a component of a binary system of neutron stars.
This alternative scenario can be treated basically as a supplement to those papers,
considering the formation of such a binary system during the collapse of a massive
stellar core that initially was rotating fairly rapidly at the end of the evolution in
static equilibrium of a massive enough star. Such stars are often considered to be the
progenitors of type II supernovae, including the remarkable explosion of SN 1987A
in the LMC. As shown in [518], the lifetime of a binary system of neutron stars deep
inside the envelope of a progenitor is brief, because of energy and angular momen-
tum losses due to gravitational radiation, especially if the masses of the components
are comparable to each other. Limiting that time to about 1 h, compatible with data
on SN 1987A, it was found that the ratio of the masses 0:3 � 0:4 . .M2=M1/ . 1,
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where M2 is related to the low-mass component, and Ml is a mass of the more
massive component. After the components converge, the low-mass neutron star fills
its Roche lobe, and its mass is then transferred rapidly to the more massive neutron
star. When its mass has decreased to its critical value M2cr ' 0:1Mˇ, an explo-
sion happens with an energy release �1051 erg, typical of supernova explosions,
according to [208, 209]. It is undoubtedly that the convergence of neutron stars in
a close binary system does not lead to a trivial finale – their coalescence – since it
is forestalled by the explosive instability of the low-mass neutron star. In the case
of coalescence, everything would end in silent collapse due to the transformation of
angular momentum into gravitational radiation, but an explosion would not ensue.
The key problems with the present scenario – the fragmentation of a rotating stellar
core and mass transfer in a close binary system of neutron stars – need further study
and resolution, by numerical modeling, in particular. Further development of this
model is presented in [519].

10.4.7 Standing Accretion Induced Instability

The mechanism of instability in shocked converging flows, considered in [388], is
based on the cycle of entropic and acoustic waves in the subsonic region of the
flow between the shock and the sonic surface surrounding the accretor. The advec-
tion of entropy perturbations towards the accretor produces outgoing acoustic waves
which propagate towards the shock. Perturbed by these acoustic waves, the shock
produces new entropy perturbations, thus closing the entropic–acoustic cycle. This
cycle is unstable (i.e. the amplitude of the new entropy perturbation exceeds the ini-
tial one) if the sound speed at the sonic point is much larger than the sound speed at
the shock. This mechanism might play a destabilizing role in various astrophysical
environments such as wind accretion or disc accretion.

Standing accretion induced instability (SASI) is widely considered as one of the
candidates to solve the problem of the explosion of core-collapse supernova, without
including magnetic field action. In [761], this phenomenon was studied by 2D sim-
ulations with including neutrino heating and realistic EOS. It was found that SASI
may enhance neutrino heating. Although g-mode of proto-neutron star may enhance
the SASI growth, the simulations just including the pressure perturbation as a mimic
of g-mode induced sound wave reveal no significant effect on the shock dynamics.
Similar results have been obtained in 3D simulations of this problem in [542].

By performing axisymmetric hydrodynamic simulations of core-collapse su-
pernovae with spectral neutrino transport based on the isotropic diffusion source
approximation scheme, support of the assumption was obtained in [952] that the
neutrino-heating mechanism aided by the standing accretion shock instability and
convection can initiate an explosion of a 13 Mˇ star. These results show that bipo-
lar and unipolar explosions are likely to be associated with models that do or do
not include rotation. Models that include rotation form a north-south symmetric
bipolar explosion that leads to a larger enclosed mass behind the shock than in the
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corresponding unipolar explosions. For the relatively low mass progenitor chosen
in this study, the results suggest that rotation significantly aids the occurrence of a
neutrino driven explosion. The explosion energies at the termination of the simula-
tion were less than 1050 erg for all the models, which seems to be not enough for
these type of supernovae.

10.4.8 Acoustic Explosion Model

A mechanism for core-collapse supernova explosions was considered in [249] which
relies upon acoustic power generated in the inner core as the driver. In the simulation
using an 11Mˇ progenitor, an SASI-type oscillation with a period of �25 � 30
milliseconds (ms) arises �200 ms after bounce. However, this instability is not the
primary agent of explosion. Rather, it is the acoustic power generated early on in
the inner turbulent region, and most importantly, but later on, by the excitation and
sonic damping of core g-mode oscillations, see Sect. 14.1.3. An l D 1 mode with a
period of �3 ms grows at late times to be prominent around�500 ms after bounce.
The accreting protoneutron star is a self-excited oscillator, “tuned” to the most easily
excited core g-mode. It was claimed in [249] that the acoustic power seen in 11Mˇ
simulation is sufficient to drive the explosion>550 milliseconds after bounce.

In simulations [707], the acoustic oscillations also have been generated in the
neutron core, and in Fig. 10.10, the kinetic energy of these oscillations is repre-
sented. This plot was made by subtracting the kinetic energy of the matter expanding
by the supernova shock from the total kinetic energy of the star. The amplitude of
the kinetic energy of the core oscillations is 1:3 � 1048 erg. The simulations in [707]

Fig. 10.10 The time
evolution of the kinetic
energy of the core only during
the MR explosion, from [707] time,s
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have shown that the amount of acoustic energy generated in the collapsing core is
much less than the expected energy of core-collapse supernova, contrary to the re-
sults obtained in [249]. Note that the explosion in [249] happens only after about
200 oscillation periods, and the numerical scheme should be checked for its stability
during a large number of time steps.

10.5 Magnetorotational Model of Supernova Explosion

The 1D spherically symmetrical simulations of the core collapsed supernova do not
lead to the explosion, see [243, 248]. The 2D and 3D simulations of the neutrino
driven supernova mechanism do not give supernova explosions with the sufficient
level of confidence. The recent improved models of the core collapse where the
neutrino transport was simulated by solving the Bolzmann equation do not ex-
plode [243]. When all the above mechanisms of explosion prove inefficient, the
magnetic field may convert the rotational energy of a neutron star resulting from
collapse into kinetic energy of the envelope and thus ensure a supernova explosion.
A magnetorotational model of explosion has been suggested in [155].7 First numer-
ical calculations for this model have been made to the cylindrical approximation in
[34, 136], the spherically symmetric approximation in [718] and in a simplified 2D
formulation in [760]. The results of these calculations are in qualitative agreement
and give a conversion of �3% of the rotational energy into kinetic energy of the
outburst. For Erot D 1053 erg, we have the energyEkin D 3 � 1051 erg sufficient to
account for a supernova explosion.

10.5.1 Mechanism of Magnetorotational Explosion

When a rapidly rotating presupernova collapses, it leads to formation of a rapidly
rotating neutron star surrounded by a differentially rotating envelope in which the
centrifugal forces are comparable with gravitational ones. The differential rotation
twists the lines of magnetic force, thereby causing the magnetic field with initial
energy �M � �G to increase linearly in time. When the energy of the field in the
envelope approaches �M � �G, the magnetic pressure pushes the material outward.
The arising wave of compression propagates over the medium with falling density,
becomes enhanced and transforms into a shock to result in a powerful explosion.
As the compression wave and subsequent shock move outward, their energy keeps

7 Observations of radio emission at a relatively early period of the flash, roughly 1 year after the
light peak, provide indirect evidence for an essential role played by the magnetic field in a su-
pernova explosion [1022]. A radio emission has been detected in SN II, where a pulsar birth is
assumed, and in those types of SN I (SN Ib, c) where a neutron star birth is suspected as well [929].
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increasing, maintained by rotational energy supplied by magnetic field. The mag-
netic field serves also to transfer to outer layers an essential part of the total angular
momentum. A qualitative picture of explosion is given in [104, 136, 155, 598], and
some analytical estimations are given in [693]. Twisting of magnetic lines has been
used earlier [558] to account for the energy transfer from the neutron star to the
Crab nebula and maintaining its luminescence. Mention also should be made of the
paper [629] that provides a numerical calculation of collapse for a rotating star with
a strong initial magnetic field see also [957]. The obtained picture of an explosion
in the form of outbursts lined up along the dipole axis (see also [300]) differs from
the magnetorotational explosion where the major part of the outburst occurs in the
equatorial plane. Such geometry of the outburst in [629] was the result of a specific,
rather unrealistic choice of the magnetic field configuration, which was produced by
a current ring, at the equator, out of the stellar centre at a radius where the matter
density was an order of magnitude less than the central one. The magnetic field of
this ring had a zero radial component in the equatorial plane, and a magnetic pres-
sure gradient was formed in the Z-direction due to the differential rotation, having
zero toroidal component in the equatorial plane, due to the choice of the initial
configuration. Such a magnetic field structure had led to a matter stream pattern
appearing preferentially along the symmetry axis of the magnetic field.

10.5.2 Basic Equations

The equations of magnetohydrodynamics (MHD) with gravitation in the cylindrical
Eulerian system .r; '; z/, at an infinite conductivity and axial symmetry @=@' D 0

read [618]
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(see Chap. 1 and Sect. 5.2, Vol. 1).
Here, (10.82–10.84) are the equations of motion with magnetic fields, (10.85) is

the continuity equation, (10.86–10.88) are the “frozen-in” field equations (@B=@t D
rot.v�B/), (10.89) is the equation for a field with no divergence (divB D 0), (10.90–
10.92) are the equations for field generation by electric currents (with no term for
displacement currents, rotB D ..4�=c/j), (10.93) is Poisson’s equation, (10.94) is
the energy equation, v.vr; v' ; vz/ is the velocity, B.Br ; B' ; Bz/ is the magnetic field
strength, j.jr ; j' ; jz/ is the current density, c is the velocity of light and 'G is the
gravitational potential.

Under the assumption of a plane symmetry, the set of equations (10.82–10.85) is
solved for a star of mass M with the following boundary conditions:

(a) P D � D T D B' D 0 on the outer boundary;

(b) vr D jr D Br D 0 at rD 0;

(c) v' D j' D B' D 0 at r D 0;

(d) vz D 0; @jz

@z
: or jz D 0; @Bz

@z
or Bz D 0 at z D 0: (10.96)

Conditions @Bz=@z D 0 and Bz D 0 at z D 0 correspond to dipole-like and
quadrupole-like magnetic fields, respectively. Condition @jz=@z D 0 at z D 0
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corresponds to a plane symmetric azimuthal magnetic field B' , while the condition
jz D 0 with @jz=@z ¤ 0 at z D 0 corresponds to plane antisymmetric magnetic field
B' . The dissipative processes are neglected in calculations, the neutrino emission
is allowed for by f� , and an artificial viscosity is used for shock calculations. The
introduction of artificial viscosity in [35], where a Lagrangian coordinate system
is used, implies replacing P in the equations of motion (10.82–10.84) and energy
(10.94) by
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�
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where 	 is the viscosity coefficient. The distributions �.r/, T .r/ and B.r/ are spec-
ified at some initial time, and the last of them should satisfy the condition of
the absence of magnetic charges (10.89) and yield finite values of j.r/ through-
out the star, in accordance with (10.90–10.92). Surface and linear currents arising
from singularities in j.r/ are usually not considered in calculations. If the equality
(10.89) does hold at the beginning, it will remain valid with time provided that only
(10.86–10.88) are used to determine the field.

10.5.3 Cylindrical Approximation

A cylinder uniform along the z-axis with vz D Bz D jr D j' D 0 is considered
in a 1D formulation. This means that in a real star, the motion along the z-axis is
neglected. The basic equations with the Lagrangian independent variable
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Here,M0 is the mass per radian of a unit length of a core with a uniform rigid-body
rotation and g is a gravitational acceleration. An approximate equation of state in
the form

P D 3:09 � 1012�5=3
�
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has been used in [34, 136]. The equation allows, approximately, for the transition
from non-relativistic to relativistic electrons occurring at strong degeneracy. The
electron pressure has been taken as constant after the onset of neutronization. The
function of neutrino losses due to URCA processes has been taken from [540] in
the form
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In addition to the artificial viscosity (10.97), another type of viscosity has been
examined in [34, 136] for describing rotational discontinuities:
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so that the term @!2=@s is added to the right side of (10.101), and the term
!2.@=@s/ .v'=r/ to the right side of the energy equation (10.103); � is an artifi-
cial viscosity coefficient for !2.

At initial time t D 0, T D 0, has been adopted, and the density distribution has
been specified in the form [34]

�.s; 0/ D a exp

�b.r � R0/

2
� I a; b D const: (10.110)

Here, R0 D R.0; t/ is the core radius; M is the envelope mass per unit length per
radian. It is adopted that vr.s; 0/ D 0, B'.s; 0/ D 0, and the boundary conditions
10.96a. Also specified are the constant A from (10.102) and the initial distribution
v'.s; 0/ from the radial equilibrium equation (10.100) with @vr=@t D 0

v2
'.s; 0/

r.s; 0/
� r.s; 0/ @

@s
P.s; 0/C g.s/ D 0: (10.111)

The angular momentum of the system core+envelope is assumed to be conserved
throughout the calculations; the relation for this conservation, owing to the conti-
nuity of v' on the core boundary, is written in the form of the boundary condition

M0

2

@h

@s
� h D 0 at s D 0; h D rB' : (10.112)

10.5.4 Calculational Results

The problem was calculated numerically in the region

t > 0; 0 < s < M .R0 < r < R.t// : (10.113)

As rotational discontinuities are absent in [34], it has been possible to use only the
artificial viscosity !1 from (10.97), while the coefficient 	 is chosen in such a way
as to make the effective broadening of the shock equal to a few intervals of the mass
grid. The basic dimensionless parameters of the problem are

˛ D A2

4�MV 2
0

;
�
V0 D

p
2�GM0;

	
; ˇ D M0

M
: (10.114)

The solution in [34] was obtained for ˇ D 1, ˛ D 10�2; 10�4; 10�8. To introduce
dimensionless quantities, all the variables are taken in the form F D F0

QF with the
following scale variables F0:
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v0 D V0; r0 D R0; t0 D R0=V0; h0 D A; �0 DM=R2
0;

P0 D MV 2
0 =R

2
0; E0 D V 2

0 ; ˝0 D V0=R0 .˝ D v'=r/;

s0 D M; T0DV 2
0 =10

3R; f�0 D V 3
0 =R0I

with R0 D 106 cm; 2�M0 D 0:5 � 10�6Mˇ: (10.115)

Decreasing the parameter ˛ causes the time scales of processes to increase as ˛�1=2.
As ˛ ! 0, it is convenient to introduce the dimensionless functions

t˛D t˛1=2; vr˛Dvr˛
�1=2; h˛Dh˛1=2; f�˛Df�˛

�1=2; (10.116)

having the same relationships between them for all small ˛. For other functions
F˛ D F . The results of numerical calculations are presented in Figs. 10.11–10.15
from [34]. Propagation of a slow (v < vA D B

p
4��) MHD shock over the enve-

lope may be seen in Figs. 10.11 and 10.12. The region of the sharp temperature peak
beyond the discontinuity front is the major source of neutrino emission (Fig. 10.14).
It is clear from Figs. 10.11, 10.14 and 10.15 that the relationships between the
variables (10.116) are only slightly sensitive to decreasing ˛. The characteristic
time scale proportionality to ˛�1=2 is caused by an increase �˛�1=2 in the num-
ber of turns of magnetic lines required for achieving the condition for the onset of

Fig. 10.11 (a), the distribution over the dimensionless parameter s of the functions �, T , r , ˝,
vr˛ , h˛ for ˛ D 0:01 (solid line), functions �, vr˛ , h˛ , ˝ for ˛ D 10�4 (dashed line), functions �,
vr˛ , h˛ for ˛ D 10�8 (dot-dashed line) at time t˛ D 2. All the quantities are normalized to their
maximum values, in dimensionless units equal to: �� D 1:2; T � D 60; r� D 11:6; ˝� D 0:772;
v�

r˛ D 6:04; jh˛ j� D 0:513. (b) The same as for (a) but now for ˛ D 10�2 at time t˛ D 10

(�� D 2:11; T � D 42:1; r� D 114; ˝� D 0:332; v�

r˛ D 15:6; jh˛ j� D 0:42) (from [34])
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Fig. 10.12 The distribution over the dimensionless parameter s of the temperature T and angular
velocity˝ normalized to their maximum dimensionless values T � D 64:6 and˝� D 1 at various
times for ˛ D 0:01. All curves are labeled by corresponding times t˛ , from [34]

run-away �M � �G. Figure 10.13 illustrates an increase in the number of turns with
decreasing ˛ for the same time t˛ . Figure 10.15 demonstrates the conversion of the
rotational energy into other energy forms.

Estimates based on the inclusion of the spherical gravitation potential of a real
star and results of numerical computations give, for the mass and energy of the shed
material,

Msh � 0:13Mˇ; �sh � 0:035 �rot ; (10.117)

which is valid only for small ˛; for ˛ D 10�2, we have �sh � 0:08 �rot. The major
part of the envelope joins the core and rotates as a rigid body together with it. The
angular velocity of the resulting model is �0:1 V0=R0, i.e. decreases by approxi-
mately ten times relative to the initial velocity. Most of the initial rotational energy
escapes in the form of neutrino emission, while most of the angular momentum is
carried out by the ejected envelope. The parameter ˛ has little effect on the integral
neutrino flux Q� D

R t

0

RM

0
f�ds dt D R t˛

0

RM

0
f�˛ds dt˛ .
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Fig. 10.13 The shape of lines of magnetic force in a region nearby the core at time t˛ D 7 for
˛ D 0:01 (dashed line) and ˛ D 10�4 (solid line) (from [34])

Fig. 10.14 Neutrino
luminosity q˛ D R 1

0 f	˛ ds as
a function of time t˛ ,
normalized to the maximum
dimensionless value
q�

˛ D 1:4 for ˛ D 0:01

(dashed line) and ˛ D 10�4

(solid line) (from [34])

An interesting result of calculations is a possible stage of magnetorotational os-
cillations of the core-envelope system, during which the angular velocity changes
its sign. The angular velocity of the resulting core may be opposite to the initial
angular velocity.

The envelope ejection leaves behind a young pulsar that keeps supporting
the envelope acceleration by the pressure of its radiation in the form of high-
energy particles and dipole electromagnetic radiation [217, 766]. The action of the
magnetohydrodynamical rotational mechanism of envelope ejection and subsequent
activity of the young pulsar could affect the explosion and light curve formation of
the supernova SN 1987A [950].
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Fig. 10.15 Variations with t˛
of the rotational E� , radial
kinetic Er , internal thermal
E� , magnetic EM energies, of
the total neutrino energy
losses E	 for ˛ D 0:01 (solid
line) and ˛ D 10�4 (dashed
line). All the quantities are
normalized to the maximum
rotational energy
E�

� D 1047 erg/cm per unit
cylinder length, from [34]

10.5.5 Two-Dimensional Numerical Method in MHD

The implicit operator-difference completely conservative scheme on the triangular
grid of variable structure is applied for the numerical modelling of the problem
of the magnetorotational explosion. The scheme was suggested and investigated in
[32, 33, 40, 41].

The solution of the problem is a sequence of time-steps. Calculation of every
time-step can be divided into two parts. The first part is the calculation of the val-
ues of the functions on the next time level using implicit completely conservative
operator-difference scheme on the triangular grid in lagrangian variables [40, 41].
The coordinates of grid knots are changing at this stage.

The second part is an analysis of the quality of the grid, its improvement and
adaptation (grid reconstruction). The improvement of the quality of the grid is nec-
essary because of the appearance of “poor” cells, i.e. triangles that strongly deviate
from the equilateral triangles. The dynamical adaptation of the grid allows to con-
centrate the grid in the regions of the computational domain where spatial resolution
need to be increased and rarefy the grid in the regions where the flow is smooth. It
allows to reduce significantly the dimensionality of the grid and hence strongly re-
duce the computation time.

The grid reconstruction procedure itself consists of the following two stages.
The first stage is a local correction of the structure of the grid. The second stage is a
calculation of the values of the functions defined in cells and knots in the regions of
corrected structure.

The local correction of the structure of the grid can be done using the following
three local operations (see Fig. 10.16, and details in [42]):

1. Replacement of the diagonal of quadrangle formed by two triangles by another
diagonal

2. Joining up of two neighboring grid knots
3. Addition of the knot at the middle of the cell which connects two knots
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Fig. 10.16 Elementary reconstructions: (Left up) BD connection is introduced instead of AC con-
nection. The total number of knots and cells in the grid is not changed. (Right up) Adding a knot
at the middle of the connection: the knot E is added to the existing knots ABCD in the middle of
BD connection, two connections AE and EC appear, and the total number of cells is increased by
two cells. (Down) Removing a knot: the knot E is removed from the grid, and the total number of
cells is decreased by two cells, from [42]

The improvement of the grid structure is made using the first two operations. The
grid adaptation is made by application of the local operations (II) and (III).

The values of functions defined in cells and knots involved in grid structure mod-
ification are calculated at the second stage of the grid reconstruction.

The application of simple interpolation for the calculations of the new values
of grid function leads to the violation of the conservation laws and adds significant
errors in the regions with high gradients (e.g. at shock waves). The goal of the calcu-
lation of the new values of functions is to minimize numerical errors introduced by
this procedure. To achieve the goal the error not only in the values of the functions
but also on their gradients has to be minimized. It is important to fulfill conserva-
tion laws (mass, momentum, energy, magnetic flux) in the vicinity of the local grid
reconstruction. The method for the calculation of these new values of grid functions
is based on minimization of the functionals containing the values of the functions,
its gradients and grid analogs of the conservation laws [40].

The method of the conditional minimization of the functionals is used for the
solution, guaranteeing exact fulfilment of the conservation laws. It is important to
fulfill conservation laws for the solution of the collapse and magnetorotational ex-
plosions problems, because a large number of the time-steps need to be made. In
such a situation, even slight violation of the conservation laws at a time-step could
lead to a significant growth in the errors and hence to qualitative distortion of the
results.

The method of calculating hydrodynamical values � and P during grid re-
construction is taken from [40]. In [44] for the calculations of the new values
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of the magnetic field components, the sum of the products of the magnetic field
components values and the volumes of the cells in the vicinity of the reconstruction
part of the grid were conserved. To obtain a better precision, in [45] the poloidal
magnetic field energy and the toroidal magnetic field flux in the vicinity of the re-
constructed part of the grid were conserved.

The grid reconstruction procedure not only allows to “correct” the Lagrangian
grid, but also dynamically adapt it using different criteria for the grid in different
parts of the computational domain. The grid can be refined in the regions where
it is necessary, and therefore the accuracy of the calculations can be increased. It is
possible to rarefy the grid in those parts of the computational domain where the flow
is ”smooth”. The procedure of the rarefying of the grid allows to significantly reduce
the dimension of the grid while preserving the same accuracy for the numerical
solution.

Geometrical criteria can be used for the grid adaptation (i.e. restrictions on the
length of the cell size, which are defined by the cell coordinates only), but such
adaptation criteria are suitable for the flows of simple or easily predictable structures
only.

For grid adaptation in the case of complicated flows or flows with unknown
structures, it is better to apply dynamical criteria which are defined by the solution
behavior. The dynamical criteria for the grid adaptation applied here were suggested
in [42].

The characteristic length of the cell side lk was chosen as a local criterion for the
grid reconstruction. As an example, consider the criterion where lk is a function of
� and grad�. Let us introduce the function

f .�; grad�/ D ˛

.�C "/�1
C ˇ

.jgrad�j C "/�2
; (10.118)

where 0 < " << 1; ˛ � 0; ˇ � 0; ˛Cˇ D 1. �1; �2 are power indexes and grad�
is the grid analogue of the density gradient. In limited cases, ˛ D 1; ˇ D 0; f

depends on the density only, and ˛ D 0; ˇ D 1; f depends on the gradient of the
density only.

Let N be the total number of the grid cells. The characteristic length of the side
lk of the cell with the number k will be calculated as a function of the density, the
gradient of the density and coordinates r; z (implicitly) by the following formula

lk D 2
r
sk

3
; sk D f .�k ; grad�k/

NP
nD1

f .�n; grad�n/

S: (10.119)

Here, S is a square of the computational domain, which consists of the triangular
cells. The summation in the denominator is made for all grid cells. Note that S D

NP
kD1

sk , where sk is equal to the square of the equilateral triangle with the length
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of the side lk . The function f in equation (10.118) was used in the following form
f .�k/ D 1=.�k C "/0:5.

The criterion described was applied in the following way. When the length of the
side of the cell i is larger than 2lk , a new knot is added to the middle of this side of
the cell. When the length of the side of the cell i is less than 0:7lk , the operation of
the joining up of these knots is applied. The application of the dynamical adaptation
criterion allowed us not only to adapt the grid to the specialities of the solution, but
also to provide an acceptable accuracy of the calculations with a small fluctuation of
the total number of grid knots and cells. In the calculations [45, 133, 707], the total
number of knots (5,000) and cells (10,000) was violated not more than 5%.

At the moment of the maximal compression (for the collapse problem) the min-
imal size of the cell side is so small that application of the uniform grid with the
same spatial resolution would require a grid with the dimensions �1;000 � 1;000

(!) cells.
The calculation of the gravitational potential, in the frames of the applied numeri-

cal method, is made on the basis of the finite element method of higher order [1070].
This procedure allowed to increase the accuracy of the calculations and eliminate
the loss of approximation near z axis. The linear artificial viscosity (e.g. [862]) was
introduced into the numerical scheme for the shock capturing .

10.5.6 Magnetorotational Explosion of the Initially
Uniform Cloud

The attempt to obtain a magnetorotational explosion (MRE) in a realistic 2D scheme
has been carried out in [43]. The simplified problem was solved for an initially uni-
form and rigidly rotating gas cloud with the equation of state (7.43), initial density
and size as in (7.46), and initial values of internal, rotational and magnetic energies
taken as

Ein0

jEgr0j D 0:1;
Erot0

jEgr0j D 0:04;
Emag1

jEin1j D 0:05 : (10.120)

Here, the index “0” is related to the initial state of the collapse, index “1” is related
to the quasistationary state, which the rotating cloud without magnetic field reaches
in the process of collapse. The magnetic field was included in calculations in the
point “1”. This simplifies the calculations of the collapse and may be justified for a
realistic case of the neutron star with Emag1=Ein1 � 1, where it does not influence
the process of the collapse. The dynamical action of the magnetic field begins to
be important only after its considerable amplification in the process of twisting,
which takes a much longer time than the time of the collapse and establishing of the
quasistationary state. The quadrupole component of the magnetic field is expected
to be the most important for MRE, because it has a large radial component near
the equator, which is amplified by the field twisting. To avoid a central singularity,
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a regular field of similar topology was chosen instead of the quadrupole in the form
(in non-dimensional variables)

Br1 D Fr .0:5 r; 0:5 z� 2:5/� Fr.0:5 r; 0:5 zC 2:5/;
B�1 D 0;
Bz1 D Fz.0:5 r; 0:5 z� 2:5/� Fz.0:5 r; 0:5 zC 2:5/;

Fr .r; z/ D k
�

2rz

.z2 C 1/3 �
2r3z

.z2 C 1/5
�
;

Fz.r; z/ D k
�

1

.z2 C 1/2 �
r2

.z2C 1/4
�
: (10.121)

In the transition to non-dimensional variables in (10.82–10.95), the scaling (7.39)
was used for hydrodynamical variables, and the factor

B0 D
p
P0 D �1=2

0 r0=t0 (10.122)

was used for the magnetic field components. The value k D 0:43 adjusts the energy
relation (10.120). The numerical method is based on the generalization of the im-
plicit Lagrangian code described above. On the outer boundary, a non-zero value of
the pressure Pout D 10�3P0 was kept, which did not influence the MRE process,
but solved some numerical problems. At r D 0, it was assumed that

vr D v� D Br D B� D .r � B/r D .r � B/� D 0; (10.123)

and at z D 0
vz D Bz D @.r � B/z

@z
D 0 (10.124)

was taken. The results of computations are presented in Figs. 10.17a–i. The quasista-
tionary state in Figs. 10.17a,b is presented at the moment very close to t1 D 23:920,
when the magnetic field (10.121) was included in the computations. The mag-
netic field configuration (practically initial) at almost the same time is presented
in Fig. 10.17c. The azimuthal component of the magnetic field increases until it
becomes important for a dynamical influence. Magnetic pressure pushes out the
matter, mainly in the equatorial plane, which expands and part of it (about 2.4%) flys
away to infinity, carrying away about 0.5% of the rotational energy of the configura-
tion, formed after the collapse. Growth of the toroidal magnetic field during twisting
is seen in Fig. 10.17d, and its decrease in the process of the matter outburst is shown
in Fig. 10.17e. Density contours and velocity fields in subsequent moments of time
showing the development of the outburst are given in Figs. 10.17f–i. Calculations of
MRE have been performed in [44] on the refined grid with 2200 nodes (4400 cells),
instead of 1000 nodes (2000 cells) in [43]. More realistic choices of the initial mag-
netic field have been made, which were produced by a toroidal electrical current in
the central part of the star at

p
r2 C z2 < 1=3 (in non-dimensional variables (7.39))
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a

Fig. 10.17 (a) Triangular grid at t D 23:929313. For (b)–(i)

The current was taken as plane anti-symmetric to obtain the quadrupole-like field
with large equatorial Br .Bz D 0/. Calculations in [44] have been performed for the
same initial value of rotational energy, and ten times smaller internal energy than
in (10.120). The initial values of the magnetic energy have been considered to be
5, 500 and 5 � 104 times smaller than in (10.120). It was shown that the scaling
(10.116) obtained in 1D calculations is valid also in the 2D case. The qualitative
picture of MRE in [44] is similar to that in [43], but the explosion is much stronger.
In the refined calculations [44], the amount of the ejected matter was about 7% of
the total mass, carrying away approximately 14% of the rotational energy of the
collapsed configuration.

10.5.7 Magnetorotational Supernova: Quadruple and Dipole
Magnetic Configurations

Calculations of the magnetorotational processes in the strongly magnetized col-
lapsed core were performed in [584] and [1060]. They assumed that the initial
poloidal magnetic field is uniform and parallel to the rotation axis. The initial strong
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Fig. 10.17 (b) Distribution of the temperature T .r/, velocity vr.r/, density �.r/ and pressure P.r/
along r-axis at the same time, as in Fig. 10.14a

toroidal magnetic field was also used as the initial condition. The values of the mag-
netic fields used by them are usual for “magnetars” (see Sect. 11.40), but too large
for the ordinary core collapsed supernova, see review [583]. Calculations of magne-
torotational supernova with realistic values of magnetic fields of different topology
have been made in [45, 133, 707]. Results of these calculations are described in this
section. Two-dimensional magnetorotational core-collapse simulations of massive
Pop III stars, leading to the black hole formation, have been performed in [951].
Relativistic effects in magnetorotational supernova explosion have been investigated
in [757]. They do not introduce big changes in the model of explosion. Simulations
of supernova core collapse, bounce, and explosion by method of multi-group, ra-
diation magnetohydrodynamics were done in [250]. All calculations show that the
presence of realistic magnetic field in the new-born differentially rotating neutron
star produces a strong explosion with a kinetic energy output comparable with val-
ues, observed in the core-collapse supernovae.

One of the main problems for the numerical simulation of the magnetorotational
supernova is the smallness of the initial magnetic fields. The ratio of the initial
magnetic and gravitational energies is in the range of 10�6 � 10�10. This value
characterizes the stiffness of the set of MHD equations. There is a problem with
strongly varying characteristic time-scales. A small time-scale is defined by a high
sound speed in the center of the core and a large time-scale is a characteristic time of
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Fig. 10.17 (c) Magnetic field patterns at t D 23:937901

the evolution of the magnetic field. In such situation, the explicit numerical methods
that are widely used in astrophysical hydro-simulations require an enormously large
number of time-steps and a possible loss of accuracy due to the large numerical
errors. The implicit approach should be used in that case. It is well known that
implicit schemes are free from the Courant time-step limitation, which is too strong
for such problems.

At the initial stages of the process, the toroidal magnetic field is produced by a
twisting of the radial component due to differential rotation and is growing linearly.

B� � @!

@r
rt: (10.125)

The linear growth is terminated when the toroidal component becomes so strong that
magnetohydrodynamic instability starts to develop. This instability leads to poloidal
motion of the matter that increases the radial component, which in turn strongly am-
plifies the growth of the toroidal field. As a result, both components, toroidal and
poloidal, start to grow almost exponentially, shortening greatly the time between the
collapse and magnetorotational explosion. The equation of state used in the calcu-
lations [37, 45, 133, 707] is

P � P.�; T / D P0.�/C �<T C �T 4

3
; (10.126)
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d

Fig. 10.17 (d) Distribution of the toroidal magnetic field B� at different time moments during its
amplification. 1 - t D 23:937, 2 - t D 24:952, 3 - t D 26:917, 4 - t D 31:548

where P0.�/ was taken from the problem to the Sect. 1.4.7, Vol. 1. The specific
energy (per mass unit) was defined thermodynamically as

" D "0.�/C 3

2
<T C �T 4

�
C "Fe.�; T /: (10.127)

The value "0.�/ is defined by the relation

"0.�/ D
�Z

0

P0. Q�/
Q�2

d Q� (10.128)

The term "Fe is responsible for iron dissociation. It was used in the following form:

"Fe.�; T / D Eb;Fe

Amp

�
T � T0Fe

T1Fe � T0Fe

�
: (10.129)

It was supposed that in the region of the iron dissociation the iron amount was about
50% of the mass, Eb;Fe D 8 � 10�4erg is the iron-binding energy,A D 56 is the iron
atomic weight, mp is the proton mass, T0Fe D 0:9 � 1010K and T1Fe D 1:1 � 1010 K.
For the numerical calculations, (10.129) has been slightly modified (smoothed):

"Fe.�; T / D 1

2

Eb;Fe

Amp

�
1C sin

�
�

�
T � T0Fe

T1Fe � T0Fe

�
� �
2

�
: (10.130)
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e

Fig. 10.17 (e) Same as in Fig. 102.3 during the matter ejection. 1 - t D 34:875, 2 - t D 39:78,
3 - t D 46:114

f

Fig. 10.17 (f ) Density contours and velocity field at t D 23:929313
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g

Fig. 10.17 (g) Density contours and velocity field at t D 31:548249

h

Fig. 10.17 (h) Density contours and velocity field at t D 39:779979
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i

Fig. 10.17 (i) Density contours and velocity field at t D 46:113653

Neutrino losses were taken into account, which included Urca processes (QURCA),
according to (10.107), (10.108); losses due to pair, photo and plasma neutrino pro-
duction (Qtot), described in Sect. 5.2.4, Vol. 1. A dense core of the neutron star
becomes opaque to neutrino, decreasing neutrino losses. It was taken into account
approximately by multiplying the losses from a transparent medium by the factor
exp .� ��

10
/, where the neutrino optical depth is connected with a number density

of weakly interacting particles n, neutrino cross-section �� (see Sects. 5.1 and 5.2,
Vol. 1) and characteristic length l� . The formula for neutrino losses F.�; T / was
used as

F.�; T / D .QURCA CQtot/e� ��
10 ;

�� D ��nl� ; �� D 10�44T 2

.0:5965 � 1010/2
; n D �

mp
; (10.131)

where
l� D �

jr�j D
�

..@�=@r/2 C .@�=@z/2/1=2
: (10.132)

Here, l� monotonically decreases towards the surface, having its maximum at the
center; it is approximately equal to the thickness of the neutrino absorbing matter.
The factor 1/10 in the expression exp .� ��

10
/ is used because only about 1/10 of the

nucleons with energies near the Fermi energy interact with neutrinos in the degen-
erate matter of a hot neutron star.

The modeling of an MR supernova explosion consists of two subsequent stages.
The first one is simulating the collapse of the iron core [37]. As the initial conditions
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for collapse calculations, a spherically symmetrical model of a star with a central
density of �c D 4:5 � 109 g/cm3 was used. This corresponds to the maximum mass
of an iron star on the curve M.�c/, for T D 0. For the approximate equation of
state from the problem to the Sect. 1.4.7, Vol.1 used here, the maximum mass of a
spherical star is equal to 1:0042Mˇ. At the beginning of the collapse, the density
at each point of the star (and consequently the mass of the star) was increased by a
constant factor , which specifies the mass of the collapsing core. The temperature
of the star was taken as is T D ı�2=3, with ı D 1 K �cm2� g�2=3. At the initial time
t D 0, the star undergoes rigid-body rotation with the angular velocity ! D !0 (the
rotational period of the star is � D 2�=!). It was assumed also that there are no
poloidal motions in the star at time t = 0 (vr D vz D 0), and rotational energy in [37]
was defined as

Erot

Egrav
D 0:0057; Eint

Egrav
D 0:727; !0 D 2:52s�1;

which corresponds to the rotational period 2.496 s. The values of  D 1.2, 1.3, 1.4,
1.5, and 1.7 have been used in the calculations. Since the selected initial model is
not in equilibrium, a rapid collapse occurs at the beginning of the calculations.After
the contraction of the star, at time t D 0:1377 s; a recoil shock originates at a dis-
tance of 6 � 105 cm. Directly behind the shock front, the temperature of the matter
rapidly increases and the radiation of neutrinos and dissociation of iron are switched
on. The matter of the star outside the shock continues to collapse towards the centre
of the star. The collapse is finished by the formation of a stable rotating neutron star,
in which the poloidal motion is damped rapidly, without producing any substan-
tial explosion. The collapsed core rotates differentially. The central portion, with a
radius of 10 km, rotates almost rigidly with a rotation period of 0.0015 s. With in-
creasing distance from the centre the angular velocity falls off rapidly. Particles of
matter located at the outer boundary near the equator rotate with a period of 0.3 s.
The distributions of the rotation period and angular velocity in the equatorial plane
are shown in Fig. 10.18.

At the second stage, the poloidal magnetic field is switched on, which is specified
by the shape of the toroidal current j� in the form

j' D
8<
:
j u

' for z � 0; r2 C z2 
 0:0252;

j d
' for z 
 0; r2 C z2 
 0:0252;

0 for r2 C z2 � 0:0252;

(10.133)

where

j u
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10.5 Magnetorotational Model of Supernova Explosion 209

200

150

100

A
n

g
u

la
r 

ve
lo

ci
ty

50

0.1 0.2
R
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Fig. 10.19 Initial poloidal (Bpol;inr) quadrupole (left) and dipole (right) magnetic field con-
figurations

Here, Aj is a coefficient that is used to calibrate the initial toroidal current and,
consequently, the initial magnetic field. The indices “u” and “d” refer to the upper
and lower hemispheres of the star. The initial configurations of the magnetic field
are presented in Fig. 10.19.

The second stage is finished by the MR supernova explosion. The length of this
stage is determined by the initial magnetic field. The weaker the initial poloidal
magnetic field, the longer the stage of the strengthening of the toroidal field com-
ponent before the explosion. In the 1D model, the time for the development of the
MR explosion from the beginning of the magnetic field evolution is proportional
to � 1p

˛
� B�1

pol;in, see (10.114), and growing inversely proportional to the initial
magnetic field strength. In 2D calculations, the time of the growth of the magnetic
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field increases much slower (logarithmically, �j log˛j) than in 1D case. due to
development of magnetorotational instability (MRI) [10] and rapid (exponential) in-
crease of the strength of the magnetic field, both toroidal and poloidal components.

The differential rotation and amplification of the toroidal component of the mag-
netic field, and also of the poloidal component during the development of MRI,
lead to the formation of the MHD compression wave moving from the centre of
the star. This compression wave goes along steeply decreasing density profile and
soon transforms into the MHD shock wave. This MHD shock is supported by the
flux of the matter from the central parts of the star. This matter flux works like a
piston increasing the velocity and the strength of the shock. When the MHD shock
reaches the outer boundary of the collapsed iron core, the kinetic energy of the radial
motion (supernova explosion energy) is between .0:5� 2:6/�1051ergs, according to
the calculations [133], and the amount of the mass ejected by the shock is between
.0:09 � 0:22/ �Mˇ, for the total masses of the core between .1:2 � 1:7/ �Mˇ, and
specific rotation energy changing by the coefficient 2, see Table 10.4.

In the case of quadrupolar symmetry of the poloidal magnetic field, the generated
toroidal field H� displays two local extremum points, at the initial stage of the
evolution of H� , before the development of MRI instability begins. The first is in
the equatorial plane at a distance of� 15 km from the center of the star. The second
one is close to the rotational axis z at a distance � 10 km from the centre of the
star. These two extremum points have different signs of H� . The extremum points
of the generated toroidal magnetic field correspond approximately to the extrema
of the term rHr.V�=r/ in the equation for the evolution of the toroidal field H�

[44], since the star is in a steady state and only this term specifies the evolution
of H� . The maximum value of H� during the calculations is 8:9 � 1016 G and is
reached in the equatorial plane at a distance of 1:3 � 106 cm from the centre of the
star at timeD 0.02 s. Due to the quadrupolar symmetry of the initial magnetic field,
the MHD shock has a larger amplitude and moves faster near the equatorial plane,
z D 0. Accordingly, the matter of the stars envelope is mainly ejected in the vicinity
of the equatorial plane in an MR explosion.

In contrast to the explosion with quadrupolar symmetry, where matter was
ejected mainly near the equatorial plane, the supernova explosion for an initial
dipolar field develops mainly along the rotational axis. Estimates show that the

Table 10.4 Results of MR-supernova simulations, from [133]

Core
mass M=M

ˇ

Specific rotational energy
when magnetic field is
switched on Erot=Mcore,
1019 erg/g

Energy of
explosion Eexpl,
1051 erg

Ejected
mass, M

ˇ

Final central
density
�c 	 .1014/g/cm3

1.3 0:19 0:5 0.087 3.7
1.5 0:21 0:7 0.091 3.8
1.7 0:23 1:1 0.095 3.9

1.2 0:39 1:8 0.160 2.4
1.4 0:40 2:6 0.220 2.5
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characteristic time for reconnection of the magnetic field substantially exceeds the
time for the development of MRI. The energy and ejected mass for an MR super-
nova with an initial dipolar field differ only slightly from the corresponding values
for the quadrupolar field. The basic qualitative distinguishing feature of the dipolar
case, in comparison with the quadrupolar one, is that the compression wave, and
later the MHD shock, propagates mainly along the rotation axis. Further propaga-
tion of the shock in the supernova results in the formation of a weakly collimated
directed jet.

10.5.8 Development of the Magnetorotational Instability
in 2D Simulations

MRI in the magnetized star with differential rotation was analyzed in [927], where
dynamo action accompanied the development of such instability. In our axially sym-
metric 2D simulations, dynamo action is prohibited [314]. The possibility of the
appearance of 2D instability was mentioned in [300], in application to the SN1987a.
This type of MPI was investigated earlier in [965, 1009], without any connection
with a supernova explosion. The qualitative picture of the MRI in 2D is the fol-
lowing. At the initial stages, the differential rotation leads to a linear growth of the
toroidal field described qualitatively as

dH'

dt
D Hr

�
r

d˝

dr

�
: (10.134)

The right-hand side is almost constant at the initial stage of the process. After
about 100 rotational periods of the central core, the MRI instability starts to de-
velop. The appearance of MRI is characterized by the formation of multiple poloidal
differentially rotating vortexes, which twist the initial poloidal field, leading to its
amplification according to

dHr

dt
D Hr0

�
d!v

dl
l

�
; (10.135)

where l is the coordinate, directed along the vortex radius, and !v is the angular
velocity of the poloidal vortex. Qualitatively the poloidal field amplification due to
the vortexes induced by MRI is shown in Fig. 10.20.

The enhanced poloidal field immediately starts to take part in the toroidal field
amplification according to equation (10.134). With further growth of H� ., the
poloidal vortex speed increases. The calculations [45] give the values of !v D
0:0132 s�1 at jH� j D 2:46 � 1015 G corresponding to t D 0:041 s, and ! D 0:052

s�1 at jH� j D 4:25�1015 G corresponding to t D 0:052 s�1 for the same Lagrangian
particle. In general, we may approximate the value in brackets in equation (10.135)
by a linear function on the value .H� �H�

� / as
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Fig. 10.20 Qualitative
picture of the development
of the magnetorotational
instability, from [45]

z z

�
d!v

dl
l

�
D ˛.H' �H�

' /: (10.136)

Hr(or Hpoloidal in general case) in equation (10.134) is no longer constant after the
onset of MRI, but described by equations (10.135) and (10.136). Assuming, for
simplicity, that Œr.d˝=dr/� D A is constant during the first stages of MRI, and
takingH�

� as constant, we obtain to the following equation:

d2

dt2
�
H' �H�

'

� D AHr0˛.H' �H�
' /; (10.137)

This gives the exponential growth of magnetic field components

H' D H�
' CHr0e

p
A˛Hr0.t�t�/;

Hr D Hr0 C H
3=2
r0 ˛1=2

p
A

�
e

p
A˛Hr0.t�t�/ � 1

	
;

taking Hr0 as the seed field for the development of MRI. The above model shows
the way of development of MRI instability in the 2D case. In this case, there is no
direct influence of toroidal field on to a poloidal field, and therefore there is no dy-
namo action. Nevertheless, both components grow exponentially chaotically for the
poloidal field and both chaotically and regularly for the toroidal one. Magnetorota-
tional explosion is produced by both regular and chaotic magnetic fields. After rapid
neutrino cooling and damping of the hydrodynamic motion, the chaotic component
remains frozen into the matter due to high electric conductivity, and the chaotic
magnetic field could be the source of magnetar activity in soft gamma repeaters.
Exponential growth of the magnetic field in MRI determines logarithmical growth
of the explosion time, because the explosion takes place at approximately same den-
sity of the magnetic energy, independently on the initial magnetic field strength.

It is known from the observations that the shapes of core-collapse supernovae
are different. From our simulations, it follows that the MR core-collapse explosion
model arises after the development of the MRI. The development of the MRI is a
stochastic process, and hence the resulting shape of the supernova can vary. We may
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conclude that the MRE mechanism can lead to a different shape of the supernova.
It is important to point out that the MR mechanism of the supernova explosion leads
always to asymmetrical outbursts.

10.5.9 Symmetry Breaking Of the Magnetic Field, Anisotropic
Neutrino Emission and High Velocity Neutron Star
Formation

Observations of the pulsars moving at velocities up to 500 km s�1 [659] is a chal-
lenge to the theory of neutron-star formation, and the large neutron-star velocities
should be taken into account for the determination of pulsar radiation properties
from observational data [137]. The plausible explanation for the birth of rapidly
moving pulsars seems to be the suggestion of the kick at the birth from the asym-
metric explosion. We now make estimations for the strength of the kick, produced by
the asymmetric neutrino emission during the collapse. The asymmetry of the neu-
trino pulse is produced by the asymmetry of the magnetic field distribution, formed
during the collapse and differential rotation.

Consider a rapidly and differentially rotating new-born neutron star with the
dipole poloidal and symmetric toroidal fields. A field amplification during the differ-
ential rotation leads to the formation of an additional toroidal field from the poloidal
one. This field, made from the dipole poloidal one by twisting, is antisymmetric with
respect to the symmetry plane. The sum of the initial symmetric with the induced
antisymmetric toroidal fields has no plane symmetry.

In the absence of dissipative processes, the neutron star returns to the state of rigid
rotation, losing the induced toroidal field and restoring mirror symmetry of the mat-
ter distribution. Formation of the asymmetric toroidal field distribution is followed
by a magnetorotational explosion, which is asymmetric, leading to neutron star re-
coil and star acceleration [184]. The neutron star acceleration occurs also [110] due
to the dependence of the cross-section of weak interactions on the magnetic field
[758] (see also Chap. 5, Vol. 1).

After a collapse of a rapidly rotating star, the neutron star rotates at a period P
about 1 ms. Differential rotation leads to the linear amplification of the toroidal field

B� D B�0 CBp.t=P /: (10.138)

The time of the neutrino emission is several tens of seconds [730]. After 20 s,
the induced toroidal magnetic field will be about 2 � 104Bp, corresponding to
1015–1017 Gs for Bp D 1011–1013 Gs, observed in the pulsars. Adopting the initial
toroidal field B�0 D .10–103/Bp D 1012–1016, we may estimate an asymmetry of
the neutrino pulse. For symmetricB�;0 and dipole poloidal field, the difference�B�

between the magnetic field’s absolute values in two hemispheres increases, until it
reaches the value 2B�0. It remains constant later, while the relative difference
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ıB D �B�

B�C CB��
(10.139)

decreases. The main neutrino flux is formed in the region where the mean free path
of the neutrino is smaller than the stellar radius. The neutrino luminosity is L� D
4� r2H� , whereH� is connected with a temperature gradient as

H� D �7
8

4acT 3

3
4�r2�lT

@T

@m
: (10.140)

Here, the part ofH� connected with a gradient of a lepton charge is omitted (see
Sect. 5.4, Vol. 1). The quantity lT, having the meaning of the neutrino mean free
path, is connected with the neutrino opacity �� by

�� D 1=.lT�/: (10.141)

Calculations of the spherically symmetrical collapse [730] have shown that during
the phase of the main neutrino emission, a hot neutron star consists of a quasiuni-
form, quasi-isothermal core with temperature Ti , whose mass increases with time,
and the region between the neutrinosphere and the isothermal core, where the tem-
perature decreases smoothly by about ten times while the density, which finally
drops about six times decreases non-monotonically. A neutrino flux is forming in
this region, containing about one half of the neutron star mass. We suggest, for sim-
plicity, power–law dependences for the temperature and lT:

T D Ti

�ri
r

	m

; lT D 1

��
D lT i

�
r

ri

�n

: (10.142)

The neutrinosphere with the radius r� is determined approximately by the relation

Z 1

r�

���dr D
Z 1

r�

dr

lT
D 1: (10.143)

Using (10.142) outside the neutrinosphere, we obtain from (10.143) the relation

r� D ri
�

ri

.n � 1/lT i

�1=.n�1/

: (10.144)

Finally, we obtain the temperature of the neutrinosphere T� and the neutrino lumi-
nosity L�

T� D Ti

�
.n � 1/lT i

ri

�m=.n�1/

; (10.145)

L� D 4�r2
�B� D 7

8
m
16�acT 4

i

3
.n � 1/.4m�nC1/=.n�1/r2

i

�
lT i

ri

�.4m�2/=.n�1/

: (10.146)
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To estimate the anisotropy of the neutrino flux, we compare two stars with the same
radius and temperature of the core ri and Ti and different opacities. Assume lT i is
different and constant in two hemispheres, and each one is radiating according to
(10.146). The anisotropy of the flux is

ıL D LC �L�
LC C L�

; (10.147)

where LC and L� are luminosities in the different hemispheres, calculated using
(10.146). For a small difference between the hemispheres

ıL D �L

L
D 4m� 2

n � 1
�lT i

lT i

: (10.148)

Here, n > 1, when m D 1=2 the neutrino fluxes in both hemispheres are equal
because the smaller opacity and larger neutrinosphere temperature T� from (10.145)
are compensated by a smaller neutrinosphere radius r� from (10.144). The equation
of motion of the neutron star with mass Mn

Mn

dvn

dt
D LC �L�

c
; LC C L� D 2

�
L�.t/: (10.149)

For the power distributions, it follows from (10.146) that

L˙ D Al .4m�2/=.n�1/
T i˙ : (10.150)

In general, lT i is determined by various neutrino processes and depends on B . As
an example, consider the dependence on B in the form

WnB D Wn

"
1C 0:17

�
B

Bcr

�2

C :::
#

for B � Bcr; (10.151)

and

WnB D Wn 0:77

�
B

Bcr

�
for B > 2:7Bcr: (10.152)

In a strongly relativistic (EFe >> mec
2/ or very hot (kT >> mec

2) plasma the
value

Bc D Bcr;  D EFe

mec2
; or  D �T

mec2
; (10.153)

with maximal value of  should be used in (10.151 and 10.152) instead of Bcr. At
large values of the energy of beta decay � >> mec

2, also  D �=mec
2 should

be added to (10.153). Making the interpolation between two asymptotic forms, we
obtain
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lT i˙� 1
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D lT 0

1C.B=Bc/
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1C 0:17.B=Bc/
2C0:77

�
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Bc

	4
� lT 0F

.n�1/=.4m�2/.B/

(10.154)

The time dependence of the average value of B in each hemisphere can be found
from (10.138) using

BpC D �Bp�; B�0C D B�0�: (10.155)

By Bp, we mean the average radial component of the poloidal field taking part in
the amplification of B� . The time dependence of L� is taken from the spherically
symmetric calculations of the collapse.

For .4m � 2/=.n� 1/ D 1 and in the condition when the neutron star is acceler-
ated at B 	 Bc, we have F˙ D Bc=0:77B˙. The equation of motion (10.149) may
be written as

Mn

dvn

dt
D 2

�

L�

c

jBCj � jB�j
jBCj C jB�j ; (10.156)

with the linear functions for B˙. Take the constant L� D 0:1Mnc
2=20 s. With

these simplifications, the final velocity of the neutron star vnf follows as a result of
the solution of (10.156) in the form

vnf D 2

�

L�

Mnc

PB�0

jBpj

"
0:5C ln

�
20 s

P

jBpj
B�0

�#
: (10.157)

For P D 10�3 s we obtain

vnf D 2

�
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�#
� 1km

s
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"
0:5Cln

�
2 � 104

x

�#
: (10.158)

For the value x D B�0=jBpj ranging between 20 and 103, we have vnf between 140
and 3,000 km/s�1, which can explain the nature of the most rapidly moving pulsars.
Formula (10.158) can be applied when B�0 	 Bc and x 	 1.

The analysis of the spatial structure of pulsar emission sources using interstel-
lar scintillation had shown [919] that the velocity vector of the pulsar motion in
space is close to the orientation of the rotation axis of the pulsar, in accordance with
prediction made in [110].

The observational analysis permitted [474] to make a catalogue of 233 pulsars
with proper motion measurements. The sample contains a wide variety of pulsars
including recycled objects and those associated with globular clusters or supernova
remnants. After taking the most precise proper motions for those pulsars for which
multiple measurements are available, the majority of the proper motions (58%) are
derived from pulsar timing methods, 41% using interferometers and the remaining
1% using optical telescopes. Many of the 1D and 2D speeds (referring to speeds
measured in one coordinate only and the magnitudes of the transverse velocities
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respectively) derived from these measurements are somewhat lower than earlier
estimates because of the use of the most recent electron density model in deter-
mining pulsar distances. The mean 1D speeds for the normal and recycled pulsars
are 152˙ 10 and 54˙ 6 km/s respectively. The corresponding mean 2D speeds are
246˙ 22 and 87˙ 13 km/s. The observed 1D and 2D speeds clearly demonstrate
that the 3D velocity vector is isotropic. PSRs B2011C 38 and B2224C 64 have
the highest inferred 2D speeds of 1,600 km/s. Applying a novel deconvolution tech-
nique to the sample of 73 pulsars with characteristic ages less than 3Myr, the mean
1D and 2D speeds for pulsars with characteristic ages less than 3Myr are 192˙ 20
and 307˙ 47 km/s, indicating to the mean 3D pulsar birth velocity to be 400˙ 40
km/s. The distribution of velocities is well described by a Maxwellian distribution
with 1D rmsD 265 km/s. There is no evidence for a bimodal velocity distribution.
Most pulsars within supernova remnants are found to have lower velocities than
other pulsars. This is most likely due to selection effects where fast moving pul-
sars leave the supernova shell within a relatively short period of time. The proper
motions for PSRs B1830-08 and B2334C 61 are consistent with their proposed as-
sociations with the supernova remnants W41 and G114.3C 0.3 respectively. Large
values of the proper motion velocities are �1;600 km/s in 2D, which corresponds
to �2;100 km/s for 3D velocity, assuming equipartition of the kinetic energy of the
pulsar in 3 axis (isotropic distribution). It looks out that the largest values of the
proper motion velocities could be gained only in the presence of anisotropic neu-
trino emission, which carries away more than 15% of the rest mass energy of the
neutron star.

The simulations of the MR core-collapse explosion model for the initial
quadrupole-like magnetic field described in [45], and the MR core-collapse ex-
plosion model with the dipole field [707] are restricted by the symmetry to the
equatorial plane. While in reality this symmetry can be violated due to the MRI,
the simultaneous presence of the initial dipole and quadrupole-like magnetic field
[1031] and the initial toroidal magnetic field [184]. The violation of the mirror
symmetry of the magnetic field in rotating stars can lead to the kick effect and
formation of rapidly moving radio pulsars. When rotational and magnetic axes
do not coincide, the whole picture of the explosion process is 3D. Nevertheless,
the magnetic field twisting happens always around the rotational axis; so, we may
expect the kick velocity of the neutron star to be strongly correlated with its spin
direction, also due to the anisotropy of the neutrino flux [110]. Simultaneously,
because of the stochastic nature of the MRI, the level of the anisotropy should be
strongly variable, leading to a large spreading in the neutron star velocities. This
prediction of the MRE differs from the models with powerful neutrino convection,
where the arbitrary direction of the kick velocity is expected [248].

Three-dimensional magnetohydrodynamical simulations of a core-collapse su-
pernova in which the progenitor has magnetic fields inclined to the rotation axis
have been made in [703]. The simulations used a simple empirical equation of state
in which the pressure of degenerate gas is approximated by piecewise polytropes
for simplicity. Energy loss due to neutrinos is not taken into account for simplic-
ity as well. The simulations start from the stage of dynamical collapse of an iron
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core. The dynamical collapse halts at t D189 ms by the pressure of high-density
gas, and a proto-neutron star (PNS) forms. The evolution of the PNS was followed
for about 40 ms in typical models. When the initial rotation is mildly fast and the
initial magnetic fields are mildly strong, bipolar jets are launched from the upper
atmosphere (r 60 km) of the PNS. The jets are accelerated to�3 �104 km/s, which is
comparable to the escape velocity at the footpoint. The jets are parallel to the initial
rotation axis. Before the launch of the jets, magnetic fields are twisted by rotation
of the PNS. The twisted magnetic fields form torus-shaped multilayers in which the
azimuthal component changes alternately. The formation of magnetic multilayers is
due to the initial condition in which the magnetic fields are inclined with respect to
the rotation axis. The energy of the jet depends only weakly on the initial magnetic
field assumed. When the initial magnetic fields are weaker, the time lag is longer
between the PNS formation and jet ejection. It is also shown that the time lag is
related to the Alfvén transit time. The morphology of twisted magnetic field and as-
sociate jet ejection is not affected by the simplification of the equation of state and
neutrino treatment. We may expect from the simulations [703], that the jet forma-
tion along the rotational axis will be accompanied by the same type of anisotropy
of the neutrino emission due to the mirror symmetry violation relative to the plane
perpendicular to the rotational axis.

Recent analysis of observations of pulsars [549, 550] had confirmed the result
of [919] that rotation and velocity vectors of pulsars are aligned, as is predicted
by the MR supernova mechanism. Strong observational evidence for a relationship
between the direction of a pulsar’s motion and its rotation axis have been presented
in [549]. Carefully calibrated polarization data for 25 pulsars have been shown, 20
of which display linearly polarized emission from the pulse longitude at closest
approach to the magnetic pole. Such data allow determination of the position angle
of the linear polarization which in turn reflects the position angle of the rotation
axis. Of these 20 pulsars, 10 show an offset between the velocity vector and the
polarization position angle which is either less than 10ı or more than 80ı, a fraction
which is very unlikely by random chance. It was concluded that the bimodal nature
of the distribution arises from the presence of orthogonal polarization modes in
the pulsar radio emission. In some cases, this orthogonal ambiguity is resolved by
observations at other wavelengths so that the velocity vector and the rotation axis
are aligned at birth. Strengthening the case is the fact that four of the five youngest
pulsars in the sample with ages less than 3 Myr, which suffer from the smallest
unknown errors, show the best alignment including the Vela pulsar. The observer
sees a projection of the direction of the rotation axis, PAr , and the velocity vector,
PAv, onto the plane-of-the sky, and it is concluded in [549] that PAv and PAr

are parallel in all cases. It is pointed out that if the kicks impart both linear and
angular momentum to the new-born neutron star, the information about the stellar
axis before the supernova explosion is lost. Observations of double neutron star
systems cannot therefore rule out aligned kicks, contrary to claims in the literature.

The results of observations of 22 pulsars at frequencies of 0.7, 1.4 and 3.1 GHz
and their polarization profiles are presented in [550]. The orientation of the spin
and velocity vectors have been compared to verify the proposed alignment of these
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vectors in [549]. It was found that for the 14 pulsars for which it was possible to
determine both vectors, 7 are plausibly aligned, a fraction which is lower than, but
consistent with, earlier measurements. There appears to be no obvious correlation
between a pulsar’s velocity and its alignment angle. The correlation between the
velocity and rotation vectors therefore appears less strong than in [549]. However,
the pulsars in the current sample are both older and more distant than the earlier
sample. Both these parameters make it more likely that the gravitational pull of
the Galaxy has altered the pulsar’s proper motion vector from its birth direction.
Although the numbers are small and the uncertainties large, the results do not ob-
viously follow the prediction [741] where it is postulated that only the fast moving
pulsars should show a correlation between their velocity and rotation vectors.

The acceleration of the collapsing star by anisotropic neutrino emission can
happen even when the star collapses into a black hole, and the efficiency of accel-
eration decreases with increasing mass. We may expect black holes of stellar origin
to move rapidly, like radio pulsars, and they may be found well above the galactic
disk. This is observed among the soft X-ray novae – the most probable candidates
for black holes in the Galaxy.

10.5.10 A Kick Due to Hydrodynamic Instabilities

Hydrodynamic instabilities during the first seconds of core-collapse supernovae has
been studied in [871] by means of 2D simulations with approximative neutrino
transport and boundary conditions that parameterize the effects of the contracting
neutron star and allow to obtain sufficiently strong neutrino heating and, hence,
neutrino-driven explosions. Confirming more idealized studies, as well as supernova
simulations with spectral transport, it was found that random seed perturbations can
grow by hydrodynamic instabilities to a globally asymmetric mass distribution in
the region between the nascent neutron star and the accretion shock, leading to a
dominance of dipole (l D 1) and quadrupole (l D 2) modes in the explosion ejecta,
provided the onset of the supernova explosion is sufficiently slower than the growth
time scale of the low-mode instability. It was obtained that by gravitational and hy-
drodynamic forces, the anisotropic mass distribution causes an acceleration of the
nascent neutron star, which lasts for several seconds and can propel the neutron
star to velocities of more than 1,000 km/s. Because the explosion anisotropies de-
velop chaotically and change by small differences in the fluid flow, the magnitude
of the kick varies stochastically. No systematic dependence of the average neutron
star velocity on the explosion energy or the properties of the considered progeni-
tors is found. Instead, the anisotropy of the mass ejection, and hence of the kick,
seems to increase when the nascent neutron star contracts more quickly, and thus
low-mode instabilities can grow more rapidly. More than 70 models have been con-
structed, which separate into two groups, one with high and the other with low
neutron star velocities and accelerations after 1 s of post-bounce evolution, depend-
ing on whether the l D 1 mode is dominant in the ejecta or not. This leads to
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a bimodality of the distribution when the neutron star velocities are extrapolated
to their terminal values. Establishing a link to the measured distribution of pulsar
velocities, however, requires a much larger set of calculations and ultimately 3D
modelling. Note that in the observational analysis of the pulsar velocities in [474],
no evidence for a bimodal velocity distribution was found.

The growth of the instabilities proceeds extremely nonlinearly and chaotically
such that the final ejecta anisotropy turns out to be sensitive to the initial random
pattern of the seed perturbations, as well as to small differences between numerical
runs (connected, e.g., to small changes in the grid zoning, machine roundoff errors,
or small differences of the input physics). Despite the different ejecta geometry,
however, integral parameters of the models, such as the neutron star mass, explosion
time scale, or explosion energy, show little variability.

The proposed hydrodynamic kick mechanism, however, leads to an unambigu-
ous prediction, which might be tested by future detailed observations of supernova
remnants: the measured neutron star velocity should be directed against the mo-
mentum of the gaseous supernova ejecta. It is claimed in [871] that this is different
from theories that explain pulsar kicks by anisotropic neutrino emission from the
nascent neutron star, because in that case the direction of the acceleration can be
independent of ejecta asymmetries. Actually this statement is not consistent with
the anisotropic neutrino emission in the magnetorotational explosion, where both
neutrino and hydrodynamic anisotropies are elongated by the same rotational axis.

The deficiency in the analysis of [871] is that it is based on simulations that
assume axial symmetry with the polar axis being a coordinate singularity that is im-
penetrable for the fluid flow. Currently, it is neither clear to what degree pronounced
l D 1 modes of the ejecta distribution and long-lasting downflows of matter to the
neutron star can develop in the 3D environment, and how common they are, although
first 3D simulations with the setup and input physics described here are promis-
ing, see [548], nor is it clear what the distribution of neutron star recoil velocities
from 3D models will be. The large number of long-time simulations required by the
stochastic nature and long duration of the proposed hydrodynamic kick mechanism,
is currently out of reach due to its enormous demand in computer time. The results
in [871] must therefore be considered as indicative, but they are far from providing
definitive answers.

After a magnetorotational explosion, we may expect periods of the order of tens
of ms for a neutron star rotation. When a neutron star is formed in a binary system,
it either accelerates its rotation in low mass X-ray binaries (LMXB) or decelerates
it in high mass XB. The former are transformed into recycled (ms, binary) pul-
sars, and the latter (after explosion of the massive component and disruption of the
binary) may form a group of very slowly rotating neutron stars, one of which was
observed in the strongest gamma ray burst of 5 March 1979, now related to soft
gamma repeater family, and containing about ten objects.



Chapter 11
Final Stages of Stellar Evolution

During the final evolutionary stages, the nuclear fuel is consumed, and the star emits
radiation owing to cooling. It is relatively cold and has a very high density, while
the pressure arises mainly from the matter degeneracy. Chandrasekhar [264] in 1931
obtained the fundamental result that a star where the pressure is due to degenerate
electrons has a maximum mass. At � > 1:15 � 109 g cm�3 (for 56Fe, for other
nuclei see Table 10.1) the neutronization begins, and stars become unstable. Stable
(neutron) stars reappear only at �c � 1:5 � 1014 g cm�3 and exist to densities
�c � 1:15 � 1015 g cm�3, where instability arises from general relativity (GR)
effects. Oppenheimer and Volkov established in 1939 the existence of a mass limit
for neutron stars [765], but its value has been recalculated many times for various
equations of state. Solving the equilibrium equations for cold stars in Newtonian
theory (9.97) and (10.1) and in GR (11.62) and (11.63) at a given equation of state,
P.�/ has allowed derivation of the curveM.�c/ demonstrating the existence of two
maximum masses and an instability region (falling M.�c/). Figure 11.1 represents
the curve M.�c/ from [80] for the equation of state corresponding to a minimum
energy of matter in full thermodynamic equilibrium.

White dwarfs preceding the first maximum in M.�c/ originate from stars with
initial masses Mi � 8Mˇ, neutron stars (between the minimum and second max-
imum) from stars with initial masses Mi D 8–Mlim, where Mlim D .20–50/Mˇ.
If Mi > Mlim, the collapse may result in black hole formation.

The evolutionary path determines the real masses of white dwarfs and neutron
stars. From observations, the masses of single white dwarfs are�0:6Mˇ [656,877]
and may be substantially less in binaries (see, for example, [160]). Observational
estimates for neutron star masses are �1:4Mˇ [969] and some of them are known
with a high accuracy [966, 968].

G.S. Bisnovatyi-Kogan et al., Stellar Physics: 2: Stellar Evolution and Stability,
Astronomy and Astrophysics Library, DOI 10.1007/978-3-642-14734-0 5,
c� Springer-Verlag Berlin Heidelberg 2010
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Fig. 11.1 Mass versus central density for zero-temperature non-rotating stars in complete nuclear
equilibrium. Stars to the left of the maximum (Chandrasekhar limit) at �c D 1:4 � 109 g cm�3

are stable white dwarfs, while stars to the right of the minimum at �c D 1:55 � 1014 g cm�3 are
neutron stars. The dashed curves are constructed from Pandharipande’s hyperonic equation of state
(lower curve) and Pandharipande’s equation of state for pure neutrons (upper curve). Neutron stars
beyond the second maximum are unstable

11.1 White Dwarfs

11.1.1 Case T D 0

When the pressure is determined by the fully degenerate electrons with con-
stant �Z from (10.23), the equilibrium equations (9.97) and (10.1) reduce to one
equation [269]

1

r2

d

dr

 
r2 d

p
y2 C 1
dr

!
D �y

3

l21
;

l1 D 1

2�Zmume

�
3�„3

cG

�1=2

D 7:77 � 108

�Z
cm; (11.1)

where
y D pFe

mec
: (11.2)

Using (10.64) we obtain

� D By3; B D m3
e c

3�Zmu

3�2„3
D 9:74 � 105�Z: (11.3)

The solution of (11.1) enables us to find the functionsM.�c/, R.�c/ for cold white
dwarfs [269]. For high (y� 1) and small (y	 1) densities, the equation of state
for fully degenerate electrons in the ultrarelativistic and non-relativistic limits re-
duces to polytropes. From the exact formulae and expansions (see Chap. 1, Vol. 1),
we obtain
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P D m4
e c

5

15�2„3
y5 D
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3�2

�2=3

5

„2

me.�Zmu/5=3
�5=3

D 1:0036� 1013

�
5=3
Z

�5=3 for y 	 1; (11.4)

P D m4
e c

5

12�2„3
y4 D

�
3�2

�1=3

4

„c
.�Zmu/4=3

�4=3

D 1:2435� 1015

�
4=3
Z

�4=3 for y � 1: (11.5)

From (11.4), (10.3) and (10.6), we obtain the relations for non-relativistic white
dwarfs

M D 3�3=2

2.�Zmu/5=2

� „2

2Gme

�3=2

M1:5�
1=2
c D 2:81Mˇ

�2
Z

�
�c6

�Z

�1=2

; (11.6)

where [269] Mn D 2:71406 for n D 1:5, �c6 D �c � 10�6 g cm�3 < 0:3�Z,

R D .9�/1=6

2
p
2

„�1��1=6
c

.Gme/1=2.�Zmu/5=6
D 2:00 � 109

�Z

�
�Z

�c6

�1=6

cm; (11.7)

where [269] �1 D 3:65375 for n D 1:5. From (11.6) and (11.7), the dependence
R.M/ becomes

R D 2:82 � 109

�
5=3
Z

�
Mˇ
M

�1=3

cm: (11.8)

For ultrarelativistic electrons with � D 4=3, n D 3, there is only a single value of
equilibrium mass from (11.5) and (10.7)

MCh D
p
3�

2

�„c
G

�3=2
1

.�Zmu/2
M3 D 5:83

�2
Z

Mˇ; (11.9)

(see M3 in (10.15)) called the Chandrasekhar limit and obtained in [264], [265].
A simple derivation of the formula (11.9), similar to [265], was performed indepen-
dently by Landau [613]. The radius of a n D 3 polytrope may be arbitrary since
the polytrope is in equilibrium at any central density (see (10.6)). AsM approaches
MCh and n! 3, the white dwarf radius decreases rapidly and depends only on �c.
In this limit

R D 5:31 � 108�
�1=3
c9 �

�2=3
Z cm for �c9 D �c

109 g cm�3
� 0:3�Z: (11.10)
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The inclusion of a Coulomb interaction decreases the pressure at the same density
and, correspondingly, decreasesM in comparison with [269]. In the ultrarelativistic
limit, the pressure is reduced by a constant multiplier, independently of the den-
sity. The limiting mass is reduced proportionally to this multiplier to the power
(3/2). Using pressure calculations from [857] (see also Chap. 1, Vol. 1) in (10.6)
and (11.9), the Chandrasekhar limit MCh;q, with the Coulomb interaction taken into
account, is

MCh;q D 5:83

�2
Z

�
1 � 4:56 � 10�3Z2=3 � 1:78 � 10�5Z4=3 C 1:16 � 10�3

�3=2
Mˇ:

(11.11)

At Z D 2; 6; 12; 26, we have

MCh;q=MCh D 0:991; 0:979; 0:965; 0:940;
MCh;q D 1:44; 1:43; 1:41; 1:18

for 4He; 12C; 24Mg; 56Fe; respectively:

Decreasing the density leads to more important Coulomb corrections. The neu-
tronization slows down the pressure growth and brings about white dwarf instability
which occurs at a peak on the curve M.�c/ at a density slightly above the neutron-
ization density given in Table 10.1 (see Fig. 11.1 and Chap. 12). Models for white
dwarfs including Coulomb corrections and neutronization are investigated in [452]
using the equation of state of cold matter with account of Coulomb interaction in
Thomas–Fermi approximation (see Sect. 1.4, Vol. 1), and are given in Table 11.1
Analyzing the stability of a star with a phase transition (see Sect. 12.4) shows that for
equilibrium neutronization the loss of stability occurs at the finite new-phase core.1

For the chain 56Fe! 56Mn! 56Cr, we have at the point of stability loss [189]

Mnc

M
D 1:4 � 10�3;

�M

M
D 2:1 � 10�4;

��c

�c1

D 0:022; (11.12)

where Mnc is the mass of the new-phase core, �M is the increase in mass from
the onset of neutronization to the loss of stability, and ��c is the corresponding
increase in central density. In [189], the onset of neutronization was assumed to
occur at �c0 D 1:15�109 g cm�3 (the capture onto the ground level, see Table 10.1),
Coulomb corrections have been ignored. On the boundary of the new-phase core,
the density makes a jump of 26/24 times and attains �c1 D 1:25 � 109 g cm�3.
Small changes in � and M will result in changes in the relative quantities (11.12)
which are small as well. The structure and stability of rotating white dwarfs will be
discussed in Sect. 12.3. Decreasing the mass leads to lower stellar densities making

1 Stable models for white dwarfs with finite new-phase core have been omitted in [452].



11.1 White Dwarfs 225

Table 11.1 Masses M and radii R of white dwarfs of 4He, 12C, 24Mg and 54Fe.
Given also are MCh and RCh for �Z D 2I 56=26 without Coulomb interaction and
neutronization. The values of .MCh�

2
Z/ and .RCh�Z/ are the same for all �Z at the

same .�c=�Z/ (from [384])

�c/cm3 3.16(3) 7.08(3) 8.71(3) 1.23(4)

�Z D 2
n
RCh; cm
MCh;Mˇ

RHe, cm
MHe;Mˇ

RC, cm
MC;Mˇ

RMg, cm
MMg;Mˇ

�Z D 56

26

n
RCh; cm
MCh;Mˇ

RFe, cm 1.402(9) 1.463(9) 1.465(9) 1.459(9)
MFe;Mˇ

7.0(�3) 1.5(�2) 1.8(�2) 2.4(�2)

�c/cm3 1.95(6) 3.58(6) 6.95(6) 1.56(7)

�Z D 2
n
RCh; cm
MCh;Mˇ

9:702.8/

0:512

8:658.8/

0:622

7:614.8/

0:748

6:47.8/

0:899

RHe, cm 9.521(8) 8.519(8) 7.510(8) 6.40(8)
MHe;Mˇ

0.499 0.609 0.734 0.885
RC, cm 9.382(8) 8.408(8) 7.426(8) 6.33(8)
MC;Mˇ

0.488 0.597 0.722 0.872
RMg, cm 9.222(8) 8.289(8) 7.336(8) 6.26(8)
MMg;Mˇ

0.476 0.584 0.708 0.857

�Z D 56

26

n
RCh; cm
MCh;Mˇ

9:138.8/

0:430

8:150.8/

0:525

7:176.8/

0:633

6:10.8/

0:765

RFe, cm 8.394(8) 7.579(8) 6.74(8) 5.78(8)
MFe;Mˇ

0.380 0.471 0.576 0.703

�c/cm3 1.95(9) 3.16(9) 6.00(9) 7.67(9)

�Z D 2
n
RCh; cm
MCh;Mˇ

1:82.8/

1:411

1:52.8/

1:426

RHe, cm
MHe;Mˇ

RC, cm 1.80(8) 1.50(8)
MC;Mˇ

1.381 1.396
RMg, cm 1.79(8) 1.69(8)
MMg;Mˇ

1.363 1.282

�Z D 56

26

n
RCh; cm
MCh;Mˇ

RFe, cm 1.99(8) 1.37(8)
MFe;Mˇ

1.093 1.028
(continued)
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Table 11.1 Masses M and radii R of white dwarfs of 4He, 12C,
24Mg and 54Fe. Given also are MCh and RCh for �Z D 2I 56=26
without Coulomb interaction and neutronization. The values of
.MCh�

2
Z/ and .RCh�Z/ are the same for all �Z at the same

.�c=�Z/ (from [384])

3.16(4) 1.22(5) 2.44(5) 5.47(5) 1.06(6)
1.582(9) 1.405(9) 1.220(9) 1.084(9)
0.164 0.204 0.316 0.411
1.518(9) 1.359(9) 1.189(9) 1.061(9)
0.154 0.213 0.305 0.399
1.469(9) : : : : : : : : :

0.147 : : : : : : : : :

1.414(9) 1.283(9) 1.136(9) 1.022(9)
0.139 0.196 0.286 0.378
1.488(9) 1.322(9) 1.148(9) 1.020(9)
0.136 0.187 0.265 0.345

1.395(9) 1.233(9) 1.136(9) 1.019(9) 9.243(8)
4.6(�2) 0.103 0.149 0.222 0.298

1.61(8) 6.68(8) 1.15(9) 1.92(9)
5.00(8) 3.87(8) 2.74(8) 2.08(8)
1.097 1.235 1.347 1.396

4.91(8) 3.81(8) 2.70(8) 2.06(8)
1.070 1.206 1.318 1.366
4.86(8) 3.79(8) 2.69(8) 2.05(8)
1.053 1.190 1.300 1.348

4.51(8) 3.52(8) 2.50(8) 2.19(8)
0.872 0.991 1.088 1.112

2.45(10) 2.51(10) 3.61(10)
1.32(8) 1.01(8)
1.434 1.444

1.45(8) 1.18(8)
1.349 1.174
1.50(8)
1.205

9.60(7) 8.84(7)
1.014 0.990

the Coulmb corrections that render the equation of state stiffer (reduce n, increase � )
more important. This causes departures from (11.8) such that the radius reaches
its maximum value and falls with further decrease in M (Table 11.1). Equilibrium
states of cold low-mass stars are constructed in [1069] using a more precise equation
of state which allows large deviations from an ideal one. The results of calculations
are approximated by
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Table 11.2 Maximum Rcr and corresponding masses Mcr for various compositions
(from [1069])

Element
Mcr
M

ˇ

Rcr, cm Element
Mcr
M

ˇ

Rcr, cm
H 3:16.�3/ 8.15(9) 12C 2:24.�3/ 2.74(9)
xH D 0:75 2:63.�3/ 6.99(9) 24Mg 3:89.�3/ 2.28(9)
xHe D 0:25 56Fe 5:89.�3/ 1.70(9)
4He 1:12.�3/ 3.57(9)

0:424

�
M

M0

�1=3
R

R0

D
�
1 � R

3

R3
0

M0

M
�

�5

; (11.13)

where

M0 D
�
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G

�3=2

��2
0 D

�
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Z � 3:58 � 1030 g;

R0 D
�
P0

G

�1=2

��1
0 D

Z

A
Z�1=3 � 9:73 � 109 cm:

Here,

�0 D 3:88ZA g cm�3; P0 D 9:52 � 1013Z10=3dyn cm�2;

' D 1

20
31=3 C 1

8

�
3

4
��2Z�2

�1=3

; (11.14)

see also Sect. 1.4, Vol. 1. At R3M0�=R
3
0M 	 1 the relation, (11.13) reduces to

(11.8). The former implies the existence of a peak on the curve R.M/. The max-
imum radii Rcr and corresponding Mcr obtained from numerical calculations are
given in Table 11.2 from [1069] for various chemical compositions. The values of
Rcr andMcr following from (11.13) have uncertanties of�1% forRcr and�25% for
Mcr. The errors yielded by (11.13) increase with decreasingM . Stars withM �Mcr

have their matter in the liquid state and are true Jupiter-like planets. The relation
R.M/ from Table 11.1 is in good agreement with observed values for three white
dwarfs in binaries [656].

11.1.2 Account for a Finite Value of T and Cooling

An approximate theory for the cooling of a white dwarf has been created by Kaplan
[555] and Mestel [688] independently and is given in [878]. A white dwarf is di-
vided into a non-degenerate radiative envelope and degenerate isothermal core. The
pressures of degenerate (Pd) and non-degenerate (Pnd D k�T=�Zmu) electrons are
assumed to be equal on the boundary between these regions, resulting, for the non-
relativistic case of Pd from (11.4), in the relation between the boundary values ��
and T�
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�� D
�
5me

„2

�3=2
�Zmu

3�2
.kT�/3=2 D 2:38 � 10�8�ZT

3=2� g cm�3: (11.15)

Solving, in the radiative envelope, the equation of heat conductivity

dT

dr
D � 3

4ac

	�

T 3

L

4�r2
(11.16)

and the equilibrium equation (10.1) at m D M D const:

dP

dr
D �GM�

r2
; (11.17)

for Krammers’ law of opacity due to free-bound transitions at t=gbf D 10 (see
Chap. 1, Vol. 1)

	 D 	0�T
�3:5; 	0 D 4:34 � 1024xZ.1C xH/; (11.18)

we obtain at L D const: the equation

dP

dT
D 4ac

3

4�GM

	0L

T 6:5

�
; � D �muP

kT
; (11.19)

with a solution in the form

� D
�
8ac

3 
 8:5
4�GM

	0L

�mu

k

�1=2

T 3:25: (11.20)

Assuming (11.20) to be valid on the boundary between the core and envelope and
using (11.15), we obtain finally

L D 8�6

8:5 � 625
4�cGM

	0

„3

m3
emuc3

�T 3:5�
�2

Z

D 5:75 � 105 �T
3:5�

�2
Z

M=Mˇ
xZ.1C xH/

erg s�1: (11.21)

The temperature in the degenerate core is almost constant owing to the high thermal
conductivity of degenerate electrons at high densities (see also Chap. 2, Vol. 1) and
is equal to T�, hence (11.21) gives the white dwarf luminosity as a function of the
core temperature.

The available thermal energyQT of an isothermal white dwarf with temperature
T is provided mainly by non-degenerate nuclei:

QT D 3

2

kT

Amu
: (11.22)
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Solving the energy equation
PQ D �L; (11.23)

whereQ D QT , we obtain the time 
 of cooling from the core temperature T0 to T


 D 3 � 8:5 � 625
16�6 � 2:5

k

A

	0

4�cG

�mec

„
�3 �2

Z

�

�
T �2:5 � T �2:5

0

�

D 1:72 � 1035 xZ.1C xH/

A

�2
Z

�

�
T �2:5 � T �2:5

0

�
s

D 1:72 � 1010 xZ.1C xH/

A

�2
Z

�

�
T �2:5

7 � T �2:5
7;0

�
yr

T7 D T � 10�7 K: (11.24)

With (11.21) and (11.24), the dependenceL.t/ for T0 � T is given by

L D 1:0 � 10�3

t
7=5
10

M

Mˇ
x

2=5
Z .1C xH/

2=5

A7=5

�
4=5
Z

�2=5
Lˇ; (11.25)

t10 D t � 10�10 yr

For white dwarf envelopes, it is usual to take [878, 899] xZ D 0:1 and xH D 0, and
hence, �Z D 2, � D 1:38, �=

�
�2

ZxZ.1C xH/
	 D 3:45. As the cooling proceeds

and the white dwarf temperature falls below

T D Tg � 150Tm � 2 � 107Z5=3Œ�=.�Z10
6/�1=3K; (11.26)

the perfect gas approximation is no longer valid and we cannot use (11.19). Further
cooling causes the matter to crystallize at

T D Tm D 1:3 � 105Z5=3

�
�

�Z106

�1=3

K; (11.27)

while at T < � from (10.60), the crystal becomes quantum-like. The phase transi-
tion into the crystalline state is likely to be accompanied by heat release

ıUCoul � �3
4
kTm: (11.28)

The thermal energy of the crystal is given by the Debye formula

EiT D 3kT

Amu
D

�
�

T

�
;
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where D.x/ is the Debye function

D.x/ D 3

x3

Z x

0

z3dz

ez � 1 D .�
4=5x3/� 3e�x for x � 1

D 1 � .3=8/x C .x2=20/ for x 	 1: (11.29)

For Tm < T < Tg D 150 Tm, we may use an interpolation between the perfect gas

Ei D 3kT

2Amu
; (11.30)

and a classical crystal from (11.29) at x 	 1, see Chap. 1, Vol. 1. The inclusion
of non-ideality effects first decelerates cooling owing to the increased heat capacity
of a classical crystal and a possible heat release during phase transition, and after
the quantum crystal has formed, the cooling accelerates because of a reduction in
heat capacity �.T=�/3 from (11.29). These factors, together with Coulomb cor-
rections to the equation of state, neutrino cooling, partial ionization, electron heat
conductivity in non-isothermal core and convection have been taken into account in
[606], where the cooling of a carbon white dwarf of mass 1Mˇ has been numeri-
cally explored on the basis of stellar evolution equations (see Chap. 6, Vol. 1). The
calculation results [606] are given in Figs. 11.2, 11.3 and Table 11.3. Figure 11.2
shows a slight deceleration of cooling between models 6 and 10 from Table 11.3
caused by the increased heat capacity of a classical crystal and crystallization heat
and subsequent rapid cooling of the degenerate crystalline core. The crystalliza-
tion is assumed in calculations to occur at T D .15=16/Tm from (11.27). The Debye

Fig. 11.2 The cooling curve, luminosity L versus age 
 , for a 1M
ˇ

white dwarf. The numbers
correspond to models from Table 11.3: 2 is the model withL D L, 3 is the model where electron
heat capacity cve;1=2 is equal to ionic cvi;1=2, 6 is the onset of crystallization, 7 is the model where
�1=2 D T1=2, 8 is the model of the contact of the convective region with the degenerate core,
10 is the model where the crystalline core reaches q D 0:99. The dashed line shows the cooling
curve obeying the power law (from [606])
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Fig. 11.3 Crystalline core
growth (thick hatch) and
behaviour of the outer
convective zone (thin hatch)
during white-dwarf cooling,
shown is also the degeneracy
curve  D 0. Epochs 2–10
correspond to models listed in
Table 11.3 (see caption to
Fig. 11.2); q D m=M is the
interior mass fraction
(from [606])

temperature � is taken in [606], analogously to (10.60), to be � D 0:444„!pi=k,
and the thermodynamic functions are taken from numerical calculations. As may be
seen from Fig. 11.3 and Table 11.3, a crystalline core arises originally at luminosity
L D 1:6 � 10�3Lˇ and age 
 D 9:2 � 108 yr. The boundary of crystal degeneracy
T D � reaches the middle of the star q D m=M D 1=2 at L D 1:1 � 10�3Lˇ and

 D 1:3� 109 yr. Figure 11.3 represents the crystalline core growth, the convection
development in the outer envelope of the star and the motion of the degenerate core
boundary  D 0, where  D �

�et �mec
2
�
=kT (see Sect. 1.2, Vol. 1). A possi-

ble hydrogen or helium burning in the envelope during cooling of a carbon–oxygen
0:6Mˇ white dwarf is calculated in [508]. The contribution of hydrogen burning is
important up to the age of 
 D 2 � 109 yr, and the subsequent cooling proceeds
analogously to the calculations [606] for 1Mˇ (see Table 11.3).

11.1.3 Cooling of White Dwarfs Near the Stability Limit
with the Inclusion of Heating by Non-Equilibrium
ˇ-Processes [34]

The cooling of a star with mass close to MCh leads to the formation of a new-
phase core and heating by the non-equilibrium two-step beta capture. This happens
because the energy of the electron which may be captured by even–even nuclei is
substantially larger than the corresponding energy for odd–odd nuclei [189] (see
also Chap. 5, Vol. 1). An amount of q D 200 � 500 KeV per nucleus is converted
into heat in this reaction. Consider the cooling of an iron white dwarf with q D
476 KeV=nucleus.2 If Tf is the temperature of the star by the onset of the phase

2 Including the excitation energy, equal to 109 keV, of the excited nucleus 56Mn produced during
the first electron capture.
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transition at �c D �c0, then its equilibrium mass exceeds the cold star mass M0 at
this density by a quantity ıM related to Tf by (see (10.58))

Tf D A

�
4=3
Z

�
1=3
c0

1:7 � 10�7

ıM

M0

D 1:24 � 1011 ıM

M0

D ˇ ıM
M0

: (11.31)

Near the mass maximum on the curve MT .�c/ and temperature minimum on
TM .�c/ the following square dependences are valid:

M �MT .�c/ D Mmax � ˛.�c � �cm/
2;

T � TM .�c/ D Tmin C �.�c � �cm/
2: (11.32)

Take, approximately, the parameters ˛, � and �cm D �c1C��c to be constant,��c

is given in (11.12). For the phase transition point with T D Tf, �c D �c1, we have
from (11.32)3

Tf D Tmin C �.�c1 � �cm/
2: (11.33)

From (11.31) to (11.33), we obtain for a star of mass M

T D Tf C �
�
.�c � �cm/

2 � .�c1 � �cm/
2
	

D ˇ ıM
M0

C � �.��c � ı�c/
2 ���2

c

	
; (11.34)

ı�c D �c � �c1:

The constant � may be obtained from the condition that at ıM D �M and T D 0,
the equality ı�c D ��c from (11.12) is valid. We then have

T D ˇ �M
M0

"
ıM

�M
C
�
1 � ı�c

��c

�2

� 1
#
: (11.35)

The central density �c1 C ı�c, for the growing stable branch of white dwarfs to the
left of the maximum (see Fig. 11.1), is determined by

ı�c D ��c

"
1 �

�
1C T

ˇ

M0

�M
� ıM

�M

�1=2
#
: (11.36)

The density near the centre varies as a square radius. For a polytrope, this is easily
seen from the expansion (10.4) near the centre

� D 1 � �
2

6
; � D �c�

n D �c

�
1 � n

6
�2
�
: (11.37)

3 For stars with mass below the mass limit, we may have formally in (11.32) and (11.33) Tmin < 0.
Of course, only �c for which T > 0 in (11.34) have a physical sense.
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The mass of the chromium coremnc is related here with �c D �c1 C ı�c by

mnc

M0

D Mnc

M0

�
ı�c

��c

�3=2

� 1:1 � 10�14.ı�c/
3=2: (11.38)

Due to the increase in the mass of the chromium core, the heat is produced due to
non-equilibrium beta capture, which is emitted at the rate

PQ� D �.476 KeV/
Pmnc

Amu
: (11.39)

From (11.22) and (11.39), using (11.36) and (11.38), we have for the total losses

PQ D PQT C PQ� D 3

2

kM

Amu

�

8̂<
:̂1C 3:9 � 10

6

h
1 � .1C .TM0=ˇ�M/� .ıM=�M//1=2

i1=2

.1C .TM0=ˇ�M/� .ıM=�M//1=2

M0

ˇ�M

9>=
>; PT :

(11.40)

For 56Fe and (�=Œ�2
ZxZ.1 C xH/� D 3:45), (11.23) combined with (11.21) and

(11.40) becomes

0:7 � 1016

8̂
<
:̂1C 0:15

h
1 � .1C .T7=2:6/� .ıM=�M//1=2

i1=2

.1C T7=2:6� ıM=�M/1=2

9>=
>;

dT7

dt
D �T 3:5

7 :

(11.41)

The equality ˇ�M=M0 D 2:6 � 107 K is taken into account here according to
(11.31) and (11.12). For the critical mass M D M0 C �M , ıM D �M we have
from (11.41) the equation

0:7 � 1016

"
1C 0:24

T
1=2
7

�
1 �pT7=2:6

�1=2
#

dT7

dt
D �T 3:5

7 : (11.42)

Solving (11.42) for T7 	 2:6, we obtain the cooling time in the form4


 D 2:8 � 1015
�
T �2:5

7 � T �2:5
7;0 C 0:2 �T �3

7 � T �3
7;0

�	
s: (11.43)

4 Analogous estimates for the cooling time have been made in [894].



11.1 White Dwarfs 235

When there is T � 0:1 �c (see (10.60)), the heat capacity of a degenerate crystal

QD D 4�4

5

kMT

Amu

�
T

�c

�3

; (11.44)

should be used instead of (11.22). The coefficient in (11.44) is taken from [899] and
is 4=3 times larger than the value following from the expansion of the Debye func-
tion for x � 1 in (11.29), Substituting (11.44) for (11.22) gives, in lieu of (11.43)


 D 2:8 � 1015

( �
T0

0:1 �c

�3

T �2:5
7;0 �

�
T0

0:1 �c

�3

T �2:5
7 C 0:2 �T �3

7 � T �3
7;0

�)
s:

(11.45)

It follows from (11.43) that the inclusion of non-equilibrium heating increases the
time of cooling to T D 0:1 �c D 5:5 � 106 K for 56Fe by �27%. According
to (11.45), the non-equilibrium heating becomes very important for T < 0:1 �c.
Without it, an almost complete cooling of the white dwarf, according to (11.45),
requires 8 � 108 yr, (4 � 108 yr from T0 D 5:5 � 106 K), while in the presence
of non-equilibrium heating a white dwarf of critical mass cools to �106 K over a
cosmological time of 2 � 1010 yr. An accurate calculation of a 1Mˇ carbon white
dwarf cooling with a gradual growth of a degenerate crystal core, but without a new-
phase core gives after 9� 109 yr a core temperature of 1:7� 105 K (see Table 11.3).
It may be seen from comparison of (11.45) with Fig. 11.2 and Table 11.3 that for
T < 3:6 � 106 K, the non-equilibrium heating will become predominant.

11.1.4 On the Evolution of Magnetic Fields in White Dwarfs

Over 10% of the known white dwarfs have strong magnetic fields ranging from 106

to 108 G, detected by polarization of optical radiation in single stars and binaries.
The latter are coupled with red dwarfs and belong to cataclysmic variables, where
flashes with �mV D 4–5m are observed several times a year. They are also X-ray
sources, and the degree of polarization of optical radiation is a few tens of per cent,
giving a reason for calling them polars. So far, it is unclear whether magnetic fields
are left behind by a prior phase of stellar evolution or generated by the dynamo
mechanism in late evolutionary phases characterized by a strong convection (see
Sect. 9.3.7).

The problem of the magnetic field decay in white dwarfs may have a more
reliable solution. Observations of strong magnetic fields in relatively cold white
dwarfs with Tef� 6;000 K suggest that the decay timescale is comparable to or ex-
ceeds the cosmological time (see (11.24) and Table 11.3). In [1036], calculations
have been performed for the decay of poloidal magnetic fields of various shapes
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with the inclusion of material motion. A solution is sought for the equation reading
in the vector form

@B
@t
D �r �

�
c2

4��
r � B� v � B

�
: (11.46)

Equation (11.46) with conductivity � ! 1 and axial symmetry @=@' D 0 yields
(10.86)–(10.88). For poloidal fields, the vector equation (11.46) reduces to a scalar
equation on defining the vector potential

A D �0; 0; A'.r; �; t/
�
; B D r �A; S D �r sin �A' ;

@S

@t
C v 
 rS D c2

4��



@2S

@r2
C sin �

r2

@

@�

�
1

sin �

@S

@�

��
: (11.47)

The solution for the function S is looked for at a spherically symmetric distribu-
tion of density and radial velocity v D .vr.r/; 0; 0/, in the case of validity of the
expansion

S.r; �; t/ D
X
l�1

Rl.r; t/ sin � P 1
l .cos �/; (11.48)

where P 1
l .cos �/ are the associated first-order Legendre functions [428], while for

Rl we have the equation

@2Rl

@x2
� l.l C 1/

x2
Rl D 4�R2��

c2

�
@Rl

@t
C vr

R�
@Rl

@x

�
; (11.49)

where x D r=R�,R�.t/ is the stellar radius. For the expansion (11.48), the magnetic
field B, according to (11.47), has the form

B.x; �; t/ D 1

R2�

2
4�X

l�1

l.l C 1/
x2

Pl.cos �/Rl.x; t/ ;

X
l�1

P 1
l .cos �/

1

x

@Rl

@x
; 0

3
5; (11.50)

where Pl.cos �/ are the Legendre polynomials, l D 1 corresponds to dipole, l D 2

to quadrupole and so forth. Solutions to (11.49) looked for in [1036] are limited in
the centre and continuous on the boundary with vacuum. The electronic current ji

is determined in the form
ji D �enehvi i; (11.51)
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where e > 0, and hvi i is the electron diffusive velocity in the presence of electric
and magnetic fields. Large differences in ion and electron accelerations ae;i under
the action of the electromagnetic force

ae;i D Fe;i

me;i
D e

me;i

�
EC 1

c
v � B

�
(11.52)

lead to a strong enhancement of the diffusion, thereby producing the electrical cur-
rent ji which is mainly due to the motion of the electrons. The conductivity � is
defined as the coefficient of proportionality between ji and Ei at B D 0:

ji D �Ei : (11.53)

The calculations of the electrical conductivity of electrons �e are performed in the
same way as those of the heat conductivity of electrons �e. One should also take into
account the electromagnetic acceleration (11.52) in the original Boltzmann equa-
tion. The same Coulomb logarithm

� D ln

 
bmax
Nv2me

Ze2

!
; (11.54)

appears in the resulting expression. Calculations of �e, bmax (related to Debye
screening radii) and Nv2 for the electrons based on a solution of the Boltzmann equa-
tion are given in Chap. 2, Vol. 1, for various cases. The conductivity � is given in
[1036] for a wide range of parameters in the form

� D �E

2.2kT /3=2

�3=2m
1=2
e Ze2�

� 3:31 � 107 T
3=2

�
s�1 (for 12C)

for lg � < 4 lgT � 29:825;

D �e

T

3

�2

� e

k

�2

for higher � with (11.55)

�e D 16
p
2

�3=2�
k
ne

nN

�
kT

e2Z

�2 �
kT

me

�1=2

.ND/

D 1

32�

k2T n2
eh

3

m2
enNZ2e4

.D/ (11.56)

for non-reativistic electrons, and

�e D 4:11 � 1015.�6=�Z/T6

Œ1C .�6=�Z/2=3�1=2

�
1016 s�1

�e

�
ergs cm�1 K�1;

�6 D �=106 g cm�3; T6 D T=106 K; (11.57)
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Fig. 11.4 The time scale for
decay of a large-scale
magnetic field 
11 versus
white-dwarf age t ; obviously,

11 > t . The dashed line
represents the conductivity ıe

in the centre of the star
(from [1036])

for relativistic degenerate electrons. Here �e is the total frequency of electron col-
lisions in the medium (see Sect. 2.4.4, Vol. 1), the coefficient �E D 0:582; 0:683

and 0:838 for H, 4He and 12C, respectively. The second equality in (11.55) is deter-
mined from the Wiedemann–Franz relation. The relations (11.55) have been fitted to
one another using a smooth interpolation. The time scale for field decay is obtained
from (11.49) for � D const:, vr D 0, l D 1 in the form


ln � 4�R2��
c2�2n2

; integer n � 1I Bln � exp.�t=
ln/: (11.58)

A numerical solution to an eigenvalue problem for (11.49) with � from (11.55) is
found in [1036] for a 0:6Mˇ carbon white dwarf along its evolutionary track. The
calculation results for a maximum-scale field (l D 1, nD 1) are given in Fig. 11.4,
from which it is clear that the decay time scale 
11 is always larger than the
cooling time 
 , so the large-scale field of a white dwarf experiences almost no decay
with time.

11.1.5 Nova Outbursts

Single white dwarfs are quiet objects, but exhibit a high activity when they are in
close binaries. These violent activities are caused by the accretion of matter from
the neighbour star, a low-mass hydrogen dwarf, leading to instability development.
During accretion, hydrogen-rich material is accumulated in the envelope of the
white dwarf. After the envelope mass has reached 10�6–10�4Mˇ and the hydrogen
electrons have become degenerate, a thermal instability develops resulting in a ther-
monuclear explosion. The explosion power depends on the mass of the exploding
envelope which, in turn, depends on the accretion rate PM and the white dwarf mass
MWD. This dependence is inverse: the higher the accretion rate, the higher the mat-
ter temperature in the envelope, the easier the ignition, the lower the envelope mass
before the explosion and, ultimately, the lower the explosion power. Any further in-
crease in PM makes the degeneracy insufficient, and the explosion does not occur.
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The critical values of PMcr and corresponding Lcr have been found theoretically in
[661] as functions of white dwarf mass MWD and chemical composition:

for xZ D 0:02 W

lg PMcr D �8:775� 15:088 .MWD=Mˇ � 1:459/2;
lg.Lcr=Lˇ/ D �0:629� 5:923 � .MWD=Mˇ � 1:766/2I

for xZ D 0:51 W

lg PMcr D �8:632� 4:596 .MWD=Mˇ � 1:334/2; (11.59)

lg.Lcr=Lˇ/ D �1:375� 7:027 � .MWD=Mˇ � 1:308/2:
Here, PM is in Mˇ=yr. Envelope ejections are absent for PM > Mcr, and the hy-
drogen burning becomes stationary. Observations of novae give substantially higher
values for PM : up to �10�8� 10�7 Mˇ=yr after the explosion. This might be due to
relaxation processes, and later the accretion rate may become lower than PMcr from
(11.59), but it is not excluded that the theoretical estimates are not sufficiently accu-
rate. The increase in luminosity during nova outburst may reach �mV D 10–15m

and even 19m for nova Cygni 1975 [813]. The larger the value of PM and the weaker
the outburst, the more often it occurs. In reality, all the novae are recurrent but the
brightest of them have a time interval between outbursts �tB which is too large for
astronomical observations to be possible. The outburst amplitude Am versus�tB is
given in Fig. 11.5 from [813]. The nova outbursts are calculated from the hydrody-
namical equations (10.38)–(10.40), analogously to supernova calculations, but the
region of Lagrangian calculations is spatially restricted by the envelope. The rele-
vant studies are reviewed in [363].

The nova outbursts occur in close binaries, where the companion – a hydrogen
star – fills the Roche lobe, therefore, the matter accreting onto the white dwarf has
the shape of a disk (see Sect. 11.3). A stationary disk accretion in low-mass close
binaries is possible only in the case of a turbulent accretion disk. In a laminar case,
the material remains in the disk because of a low viscosity and does not accrete onto

Fig. 11.5 Outburst amplitude
�m versus time interval
between outbursts �tO for
recurrent novae, from [813]
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the white dwarf. When the accretion rate is small ( PM < 10�9Mˇ=yr), the disk tur-
bulization is likely to be impeded, and additional forms of activity emerge owing to
the instability of the disk accretion leading to sporadic disk turbulization. Just these
forms of activity account for the dwarf nova outbursts, also referred to as nova-like
or cataclysmic variables. To interpret observational properties of the light curve of
dwarf novae, one usually presumes the existence of a hot spot originating from a
shock of accretion flow against the disk. Another interpretation, based on 3-D nu-
merical simulations [145], which does not include the hot spot was considered in
[146]. A small accretion rate thus causes the disk to remain laminar for a part of
the time, the viscosity to be low and the material to accumulate in the outer parts of
the disk. When the disk mass begins to exceed a certain critical value, an instability
develops in it to result in turbulization, viscosity growth and a steep increase in the
mass flow onto the white dwarf. An outburst then occurs. After the disk mass has
reduced, it becomes laminar again until the next outburst. Such a model has been
developed in [784, 915, 916]. The time interval between two successive outbursts
ranges for various stars from days to several hundred days, with corresponding out-
burst amplitudes ranging from 2m to 5 � 6m [813]. For some stars, the intervals
between outbursts and their shapes vary appreciably, while for others the occur-
rence of outbursts is more or less regular. In [916], the relatively regular outbursts
are incorporated in type A outbursts with the onset of instability in the outer parts
of the disk, while the irregular outbursts belong to the type B, where the instability
starts to develop in the innermost parts of the disk. It is noted that the type A is
characterized by higher values of PM at the same stellar massesM1 andM2. Type A
outbursts occur in U Gem and SS Aur stars, whereas type B outbursts are detected
in SS Cyg and AH Her stars. Observations and theoretical models for cataclysmic
variables are reviewed in [799].

As the accretion rate is very low in cataclysmic variables, the hydrogen accumu-
lation rate in the white dwarf envelope is also very low, but the amount accumulated
over a period of 104 � 105 yr is sufficient for the instability of thermonuclear burn-
ing to develop and a nova to outburst. It follows from the empirical dependence in
Fig. 11.5 that these stars are characterized by the most powerful and rare nova out-
bursts. The search of cataclysmic phenomena is likely to have a sense in outburst
remnants of the most bright novae Cygni 1975, Puppis 1942 and Cygni 1920.

11.2 Neutron Stars

The possibility for neutron stars to exist was first suggested by Landau in 1932,
soon after the discovery of the neutron (see [836]). The modern conception treating
the neutron star as an object formed in a supernova explosion during gravitational
collapse, with gravitational energy release, is based on the idea proposed by Baade
and Zwicky in 1934 [56]. The discovery of pulsars and X-ray sources, and their re-
lationship with supernova remnants have conclusively corroborated this prediction.
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The first neutron star model was calculated by Oppenheimer and Volkov [765].
They used the equation of state of a perfect degenerate neutron gas written in a way
similar to the degenerate electron gas (see Chap. 1, Vol. 1) in the form

En D 6:860 � 1035

�0

g.yn/ Pn D 6:860 � 1035f .yn/

f .y/ D y.2y2 � 3/
p
y2 C 1C 3 sinh�1 y;

g.y/ D 3y.2y2 C 1/
p
y2 C 1 � 3 sinh�1 y;

yn D pn;Fe

mnc
; pn;Fe D „

�
3�2�0

mn

�1=3

„ D
�
1:638�0

1016

�1=3

mnc: (11.60)

Studies of such compact objects as neutron stars must be based on general relativity.
The ratio of gravitational radius

Rg D 2GM

c2
� 2:95 � 105 M

Mˇ
cm (11.61)

to stellar radius is the relativistic parameter in gravitation theory [615]. For a white
dwarf of 56Fe, at the point of stability loss due to neutronization, according to
(11.10), (11.12) and (11.61), the ratio Rg=R � 1:00 � 10�3. For neutron stars
Rg=R > 0:1 (see [80] and Fig. 11.1), and the inclusion of general relativity is
customarily accurate. Applications of general relativity are usually much more com-
plicated than Newtonian gravitation theory, but the equations obtained in [765] for
spherically symmetric stars do not exceed much in complexity the Newtonian equa-
tions (9.97) and (10.1):

dP

dr
D �G.�C P=c

2/.mC 4�r3P=c2/

r2.1 � 2Gm=rc2/
; (11.62)

dm

dr
D 4��r2: (11.63)

Contrary to (9.97) and (10.1), where � has been taken to equal the rest-mass density
�0 because of E 	 �0c

2, the density in (11.62) and (11.63) is

� D �0

�
1C E

c2

�
: (11.64)

Besides the total stellar mass M D m.R/ in (11.62) and (11.63), determining the
gravitational field, general relativity also treats the rest mass M0 which for a spher-
ically symmetric neutron star will be written as

m0 D 4�
Z r

0

�0r
02dr 0

.1 � 2Gm0=r 0c2/
1=2
; M0 D m0.R/; Nb D M0

mn
; (11.65)
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whereNb is the total number of baryons in the neutron star. The quantityM includes
the positive contribution of the energy weight and negative gravitational energy. For
stable starsM < M0 usually, but for neutron stars with a mass close to the minimum
(Fig. 11.1), the inequality changes sign [24, 1081].

11.2.1 Cold Neutron Stars

The perfect gas does not fit well the equation of state of a neutron gas, for which
at densities above the nuclear density a predominant role belongs to interactions,
so that we should speak of a neutron liquid rather than a neutron gas (see Chap. 1,
Vol. 1). Models for cold neutron stars are usually obtained by solving (11.62) and
(11.63) for equilibrium matter. The dependencesM.�c/ for the equation of state for
different models of nuclear interaction are given in Fig. 11.6 [668]. Properties of var-
ious models for maximum masses are given in Table 11.4a [668]. Table 11.4a gives
masses and radii of white dwarfs and neutron stars from [80] versus total stellar den-
sity for the lower curve in Fig. 11.1. The matter in a neutron star has a large variety of
properties arising from the diversity in chemical compositions, varying state of ag-
gregation, possible presence of nucleon superfluidity and proton superconductivity.

Fig. 11.6 Total mass of neutron star MG versus rest-mass central density �c0 for various nuclear
interaction models [94]: double-dot–dashed line (1) represents the extremely stiff equation of state
P D P� C .� � ��/ which can be fitted at �0 D 5:02 � 1014 g cm�3 to models (3) and (5),
coinciding at this density (from [668]); (2) is the model based on the Reid potential equal for all
baryons; long dashes (3) represents a model for nucleon interaction based on the experimental
data on the !-meson formation at high energies; short dashed (4) the same as (2) but with a more
plausible potential for (np)-interaction; the solid line (5) the same as (3) but including the hyperon
generation (see Sect. 1.4, Vol. 1)
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Table 11.4 a. Properties of neutron stars in maximum mass for different nuclear
models

No. in Fig. 11.6 M
M

ˇ

M0

M
ˇ

�c0, g cm�3 Pc , dyn cm�2 R, km M0�M

M
ˇ

2 1.85 2.15 2.28(15) 1.26(36) 9.73 0.294
4 1.73 2.02 2.69(15) 1.58(36) 8.88 0.292
3 1.76 2.06 2.49(15) 1.33(36) 9.18 0.301
5 1.65 1.91 2.47(15) 1.00(36) 9.38 0.256
1 3.02 3.92 1.13(15) 1.00(36) 12.9 0.901

Table 11.4 b. Masses and radii of cold neutron stars as

functions of total central density �c D �0c

�
1CEc
c2

�
,

from [80]

�c, g cm�3 M=M
ˇ

R (km)

4.33 (6) 0.502 7380

2.97 (7) 0.759 5110

1.38 (9) 1.00 2140

3.01 (10) u 0.845 944

1.00 (14) u 0.612 2620

1.55 (14) 0.0925 164

2.00 (14) 0.100 56:5

2.30 (14) 0.105 40:9

2.60 (14) 0.111 32:9

2.90 (14) 0.117 27:7

3.20 (14) 0.124 24:2

3.60 (14) 0.132 20:9

4.00 (14) 0.142 18:6

4.50 (14) 0.154 16:5

5.00 (14) 0.167 15:0

6.00 (14) 0.244 11:5

8.00 (14) 0.424 10:1

1.00 (15) 0.516 9:8

3.00 (15) 1.25 8:1

6.20 (15) 1.41 7:0

1.00 (16) u 1.37 6:4

Letter “u” denotes instability of the star to collapse

The envelope may undergo departures from equilibrium composition, connected
with non-equilibrium neutronization and the absence of nuclear reactions between
charged particles at lower temperatures due to high Coulomb barriers.

A neutron star with equilibrium composition comprises the following layers
[899],

1. The surface layer (� � 106 g cm�3), a region in which the temperature and
magnetic field can affect the equation of state and envelope structure, equilib-
rium composition is the iron 56Fe.
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2. The outer crust (106 � � � 4:3 � 1011 g cm�3), a region in which a Coulomb
crystal of nuclei exists and where the A=Z ratio increases with increasing �.

3. The inner crust (4:3 � 1011 � � � .2–2:4/ � 1014 g cm�3), a region in which
a crystalline lattice of nuclei near the neutron drip coexists with free neutrons
that may be superfluid.

4. The neutron liquid (.2–2:4/ � 1014 g cm�3 < � < �b ), which contains super-
fluid neutrons and protons and normal electrons.

5. A core region (� > �b), a hypothetical region where pion condensation may oc-
cur, or neutron solid matter, quark generation or some other extraordinary phase
physically distinct from the neutron liquid. The value of �b � 6�1014 g cm�3.

The neutron star mass is measured with the best accuracy in binary pulsars PSR
1913C16 with orbital period Porb D 7:75 h, and eccentricity e D 0:617 [670].
In the case of an elliptical orbit, relativistic effects cause the apsid line, or major axis
of the orbit, to move with angular velocity! D 4:2 degree=yr, and the orbital period
to reduce owing to emission of gravitational waves so that PPorb D �2:3 � 10�12,
according to observations. The Doppler shift of the pulsar period Pp D 0:059 s is
used to determine the amplitude of the neutron star orbital velocity vp and the mass
function

f .Mp;M2; i / D
Ppv3

p

2�G
D .M2 sin i/3

.Mp CM2/2
� 0:1312Mˇ: (11.66)

The known values PPorb, ! and f allow determination of unambiguous Mp D
1:4411˙0:0007Mˇ,M2 D 1:3874˙0:0007Mˇ and the angle between the normal
to the plane of the orbit and the direction to the observer i � 46ı [966, 969, 970].
Stellar masses in another four binary radiopulsars with neutron star or white dwarf
companions have also been obtained from observations of GR effects. The best data
in this group are obtained for PSR 1543C 16, giving Mp D 1:34 ˙ 0:07Mˇ and
M2 D 1:34 ˙ 0:07Mˇ [966, 1045]. It is obvious that all measured masses of neu-
tron stars are lower than the mass limit of neutron stars for any equation of state
from Table 11.4. The error in measurement of neutron star masses in binary X-ray
sources and X-ray bursters is more than 100 times larger than for PSR 1913 C 16
(see [899]).

The most accurately measured parameters of neutron stars are obtained from
observations of the most close binary, consisting of two pulsars, one of which is
a “normal pulsar”, similar to single objects, and another is a “recycled” pulsar,
going through the accretion phase, when it increases is rotational frequency and de-
creases the magnetic field. This unique system PSR J0737 – 3039a,b discovered in
2003–2004 [244, 660] is the best laboratory for checking the gravitational theory,
which is represented by GR within 0.1% of precision. This unique system has the
following parameters: orbital period Porb D 2:45 h, low eccentricity e D 0:088,
periods of the pulsars Pp(a)D 22.7 ms (recycled pulsar, age �210 
 106 years) and
Pp(b)D 2.77 s (“normal” pulsar, age �50 
 106 years). The masses of the neu-
tron stars in this system are less than in other known systems, and are equal to
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Ma� 1:338 ˙ 0:001Mˇ and Mb � 1:249˙ 0:001Mˇ. The error boxes of these
numbers are decreasing with time due to accumulation of observational data, and
the indicated numbers are related to year 2005, see review [161].

The rotation increases the maximum mass of the neutron star, reducing the cen-
tral density and increasing the radius for the same mass. For neutron stars with the
equation of state (determining the curve 2) from Fig. 11.6, uniformly rotating at a
limiting velocity that corresponds to the onset of outflow from the equator, the maxi-
mum in mass occurs at [399]˝ D 1:11�104 s�1,M D 2:16Mˇ,M0 D 2:47Mˇ,
ReD 13:0 km (equator), T=jW j D 0:11, where T and W are the rotational and
the gravitational energies. For most equations of state treated in [399], the quan-
tity T=jW j does not exceed 0.12 for uniform rotation, thereby giving evidence for
stability to transformation into triaxial figures. Calculation of exact models for ro-
tating stars in the framework of general relativity performed in [399] represents a
much more serious problem than in Newtonian theory. The maximum mass of a uni-
formly rotating neutron star for all the equations of state in [399, 856] is not more
than 20% larger than the same value for the non-rotating star.

11.2.2 Hot Neutron Stars

When a neutron star results from a collapse, the matter there achieves enormous
temperatures of 1011–1012 K. The mass limit of a hot star is higher than that of a
cold star and increases with increasing temperature. Hot neutron star models have
been calculated and their stability studied in [152] by solving equations (11.62) and
(11.63) and using the stability criterion

I D ı2�

,"
4�˛2 exp

 
�
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0

QEnC P
1 � 2Gm=c2r
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Here, QEn includes the rest energy �0c
2.5 The criterion (11.67) follows from

(10.47) and from the general relation (10.48) for the quantity ı2� of spherically
symmetric stars in general relativity with a linear trial function ır D ˛r . In the
Newtonian limit, QEn D �0c

2, P 	 QEn, c ! 1, and the criterion (11.67) gives
the stability condition � > 4=3. The post-Newtonian approximation with the inclu-
sion of terms� P=�0c

2, . QEn=�0c
2�1/ and terms� G2 for the density distribution

over the polytrope n D 3, applied to (11.67), leads to the stability condition (10.20).
For the Oppenheimer–Volkoff curve [765], the criterion (11.67) yields the stability
loss for the density differing from the maximum-mass density by�� < 10�5�, thus
proving fairly accurate.

The equation of state allows for the presence of non-degenerate protons p, neu-
trons n and nuclei of iron 56Fe in nuclear equilibrium with respect to each other.
Neutrinos are assumed to escape freely with �� D 0; hence, the equilibrium com-
position is found from equations for chemical potentials

�56;26 D 26�p C 30�n;

�n D �p C �e� : (11.68)

The radiation and e˙-pairs in the ultrarelativistic approximation are taken into
account. The entropy is assumed to be constant over the star. Thermodynamic func-
tions in the presence of nuclear and pair equilibrium are described in Chap. 1, Vol. 1.
The nuclear interaction has been included using a model with extremely stiff equa-
tions of state [1073] with the coefficient from [552]

Pni D Eni�0 D 6� „
3

m4
pc
�2

0: (11.69)

The integration of the system (11.62) and (11.63) has been performed with the aid
of the Runge–Kutta scheme. For the entropy to hold constant along the star, the
temperature at the subsequent step Tn is expressed in terms of Tn�1 and densities
�n and �n�1:

Tn D Tn�1

�
�n

�n � 1
��3

(11.70)

with �3 defined as

�3 D
�
@ ln T

@ ln �

�
S

D �
�
@S

@ ln �

�
T

��
@S

@ lnT

�
�

: (11.71)

This ensures the constancy of S with an uncertainty within 2%. Also, the stellar
rest mass M0 D m0.R/ has been evaluated using the relation (11.65). The results
of calculations are given in Fig. 11.7 and Table 11.5 from [152]. Models for cold

5 QE is the energy per baryon, n is the concentration of baryons.
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Fig. 11.7 Equilibrium stable
configurations on the mass
M , central rest-mass density
�c diagram for superdense
isentropic stars (hatched).
The curve of secondary
maxima cd and part of
minima curve df are plotted
according to Table 11.5, f b is
an approximate interpolation.
The curve for cold neutron
stars is taken from [552]
(from [152])

Table 11.5 Characteristics of hot neutron stars [152]
Model

Characteristic 1 2 3 4 5

�c, g cm�3 2.93(14) 2.93(14) 4.40(13) 4.40(13) 1.47(13)
Tc , K 9.31(11) 9.65(11) 6.23(11) 6.52(11) 4.80(11)
S=S0 4.82 4.99 7.12 7.47 8.54
�1c 1.60 1.59 1.49 1.48 1.46
M=M

ˇ

2.91 3.03 5.68 6.18 8.49
M0=Mˇ

2.97 3.09 5.75 6.24 8.57
R, km 38.6 40.2 120.7 103 215
I=�0 7:7.�5/ �5:2.�6/ 4:6.�5/ �9:0.�5/ 2:0.�5/
Qne;c 0.226 0.239 0.331 0.358 0.399

Model

Characteristic 6 7 8 9 10

�c, g cm�3 1.47(13) 2.93(12) 2.93(12) 2.93(11) 2.93(11)
Tc , K 4.86(11) 3.20(11) 3.26(11) 7.89(10) 1.48(11)
S=S0 8.66 10.8 11.0 7.62 11.9
�1c 1.45 1.43 1.43 1.52 1.43
M=M

ˇ

8.72 15.0 15.8 4.76 19.5
M0=Mˇ

8.80 15.1 15.9 4.87 19.6
R, km 193 408 364 1070 1090
I=�0 �2:1.�5/ 1:3.�5/ �4:1.�5/ 1:0.�6/ 3:1.�4/
Qne;c 0.407 0.508 0.525 0.184 0.512

(continued)

neutron stars with the equation of state (11.69) have been calculated in [552], giving
Mmax D 1:60Mˇ and M0;max D 1:71Mˇ as a result.

With increasing stellar entropy, the curvesMS .�c/ are located above one another,
and the minimum approaches the second maximum until they merge at the point
.�cc;Mcc/ at S D Scc. This point corresponds to the mass limit
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Table 11.5 (continued)

Model

Characteristic 11 12 13 14 15 16

�c, g cm�3 2.93(11) 2.93(10) 2.93(10) 2.93(10) 1.47(10) 1.47(10)
Tc , K 1.75(11) 6.61(10) 8.60(10) 9.13(10) 6.02(10) 6.82(10)
S=S0 14.5 12.6 16.9 18.4 14.8 17.3
�1c 1.40 1.43 1.39 1.39 1.41 1.39
M=M

ˇ

33.2 22.2 51.6 64.8 35.7 54.8
M0=Mˇ

33.4 22.3 51.7 65.0 35.8 55.0
R, km 1250 3070 4820 3550 3910 4190
I=�0 1:4.�5/ 6:0.�6/ 2:0.�4/ 1:4.�5/ 1:5.�5/ 1:1.�4/
Qne;c 0.705 0.491 0.807 0.918 0.636 0.812

Model

Characteristic 17 18 19 20 21

�c, g cm�3 1.47(10) 8.8(9) 8.8(9) 5.9(9) 5.9(9)
Tc , K 7.23(10) 5.93(10) 5.98(10) 4.74(10) 5.17(10)
S=S0 18.7 18.3 18.5 16.5 18.4
�1c 1.39 1.39 1.39 1.40 1.39
M=M

ˇ

68.7 64.5 66.7 48.6 66.7
M0=Mˇ

68.9 64.7 66.9 48.7 66.9
R, km 4610 5090 5100 4860 5690
I=�0 4:3.�5/ 1:1.�5/ 2:3.�5/ �1:0.�4/ �3:1.�5/
Qne;c 0.920 0.871 0.887 0.735 0.873

Here S0 D k=mp D 0:831�108 erg g�1 K�1, �0 D p
�=4 .„3c7=G3.100me/

4/1=2 �
556M

ˇ

c2, I from (11.67); Qne D nemu=�0.

of a “neutron star”6 because the minimum and second maximum are not present
for S > Scc, the curve M.�c/ falls off monotonically after the first maximum, and
stable states do not emerge. The maximum mass of a hot “neutron star” is closest to
model 17 from Table 11.8 with

�cc D 1:5 � 1010 g cm�3 Tcc D 7:2 � 1010 K;

Mcc D 68:7Mˇ M0;cc D 68:9Mˇ:
(11.72)

There is no iron in the centre of all the models from Table 11.5. while xn;c changes
from 0.794 for model #1 to 0.553 for model #21; accordingly, xp;c changes from
0.206 to 0.467.

The maximum mass of a cold neutron star is determined by general relativity
effects. The closer to the point d , the greater the role of the iron dissociation in

6 Stars near the mergence point contain nearly equal numbers of neutrons and protons and are re-
ferred to as “neutron” conventionally for their topological similarity to cold neutron stars presented
in Fig. 11.7.
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stability loss, and appearance of � < 4=3 in the outer layers of the star. The return
of stability on the line of minima bfd is related to the formation of a dense neutron
core with � > 4=3. General relativity effects are of little importance for low-mass
cold neutron stars, and their role nevertheless increases when approaching the point
d (see Fig. 11.7).

Comparing binding energies .M0 �M/c2 from Table 11.5 with the binding en-
ergy in critical states from (10.27) given in Table 10.2, we see that the binding
energy is larger in a superdense state than in the critical state (curve of first max-
ima) forM0 < 15Mˇ. This means that the star can (but need not) stop on the curve
of second maxima during collapse only if M0 � 15Mˇ.

11.2.3 Cooling of Neutron Stars

Neutrino losses represent the main mechanism for cooling of neutron stars at Tc �
4 � 108 K. As the cross-section for neutrino interaction with matter increases with
energy approximately �E2

� , hot neutron stars are opaque for neutrinos. Estimates
in [152] show that this happens for all models from Table 11.5. Using the neutrino
losses due to URCA processes (10.107) and (10.108), with ˚ D 1 and � D 664:31,
and the available energy of non-degenerate nucleons, gives the cooling time 
�f for
the case of freely escaping neutrinos7

t�f D ET

QURCA
� 3 � 105T �5

9 s: (11.73)

To estimate neutrino thickness 
�e we use the cross-section for interactions aver-
aged over the energy

��e D 2 � 10�44

�
��e

mec
2

�2

� 2 � 10�44

�
5kT

mec
2

�2

cm2; (11.74)

and then


�e �
�

mu
��eRef � 4 � 10�15�Ref

�
kT

100mec
2

�2

: (11.75)

7 The cross-section for neutrino capture �cap
e

is twice � cap
e (see Problem 2, Chap. 5, Vol. 1) if �e is

substituted for �e in the expression for ue: ue D �e=mec
2. A factor 2 is due to the summation

over electron spins for e-capture instead of averaging for e-capture. The pressure of equilibrium
neutrinos Pe is equal to one half of the pressure of ultrarelativistic e˙ pairs and does not exceed
7=26 � 27% of the total pressure of pairs and radiation. The inclusion of Pe in models from
Table 11.5 does not change them by more than 27%. The effect of � and 
 on these models
is substantially less because of a smaller cross-section for their interactions. Some models from
Table 11.5, like model 1, are also opaque for � and 
 owing to interactions of neutral currents.
This removes thresholds and makes possible interactions of � and 
 with matter without creating
heavy leptons.
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For all models in Table 11.5, the cooling time under opaque conditions (for not
very large t�),

t� D e��e t�f ;

exceeds a few seconds for Ref D 1=10R, whereas 
�e varies from 
�e D 106 for
model #1 to 
�e D 7 for model #21 from Table 11.5.

Numerical calculations for the early phases of neutron-star cooling have been
made simultaneously with collapse calculations in the framework of Newtonian
theory in [730], and with evolutionary calculations in the framework of general rel-
ativity in [245] using an equation of state analogous to [152], with the inclusion of
neutrino pressure. In both cases, the time of cooling to the formation of a neutron
star with Tc � 1010 K is � 20 s. Figures 11.8–11.10 from [245] depict temper-
ature, density and radius evolution over the first 20 s of cooling of a neutron star
with a baryon rest mass 1:4Mˇ. The temperature maximum of the initial model
lies far from the centre at m0 � 1:15Mˇ and is related to heating and entropy in-
crease occurring at the break of contraction. The adiabatic contraction brings about
an increase in the neutron star temperature at early evolutionary phases (Fig. 11.8).
The heating of central regions is stronger because of heat conductivity and the non-
equilibrium character of ˇ-processes (see also Chap. 5, Vol. 1). We may see from
Figs. 11.8–11.10 that the radius and density distributions in the neutron star become
steady state in 20 s because of decreasing temperature and a strong degeneration of
matter, while the temperature distribution acquires a monotonic character.

Decreasing the temperature renders the neutron star transparent with respect
to neutrino absorption and scattering, so 
�e <1. Evolutionary calculations for
these conditions in the framework of general relativity have been carried out in
[752]. All available mechanisms of neutrino cooling have been taken into account.

Fig. 11.8 Evolution of neutron star temperature distributions over enclosed baryon rest mass.
Distribution are taken every 0.5 s for t > 5 s and every 5 s for t > 5 s (from [245])
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Fig. 11.9 Evolution of rest-mass density distribution in neutron star. Distributions are taken every
250 ms for t � 1 s (from [245])

Fig. 11.10 Evolution of neutron-star radius distribution over enclosed baryon rest mass, distribu-
tions are taken every 250 ms for t < 1 s (from [245])

As in [245], the neutron star rest mass has been taken to be 1:4Mˇ, with, however,
other equations of state. Heat transfer in a neutron star has been considered with the
inclusion of radiative and electron heat conductivity. The effect of superfluidity on
the heat capacity of matter has been included as well. The results of calculations
for the equation of state from [398] are given in Figs. 11.11 and 11.12. The effect
of magnetic field on the cooling of a neutron star of the same mass has been stud-
ied in [751]. This study uses the equation of state from [791] with tensor forces of
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Fig. 11.11 Central
temperature Tc of a neutron
star with rest mass
M0 D 1:4M

ˇ

, solid line,
and neutrino luminosity L ,
dashed line, decreasing with
time t , with the inclusion of
superfluidity .S/ and in the
absence of a magnetic field
(from [752])

Fig. 11.12 Surface temperature T .1/
s of a neutron star with rest mass M0 D 1:4M

ˇ

observed

at infinity and photon luminosity L.1/
� decreasing with time t in the absence of superfluidity (N)

and for two cases of inclusion of superfluidity (S) and (SX). The dashed line represents the cooling
curve in the absence of superfluidity in the isothermal core approximation (NI). No magnetic field
is assumed to be present (from [752])

interaction between nucleons that is thought to be the stiffest of all realistic models
with a maximum mass of the neutron star of 2:28Mˇ. We see from Fig. 11.13 that
eventually the magnetic field B enhances the neutron-star cooling. This is caused by
decreasing the Krammers mean opacity of matter in a magnetic field due to a fall
�1=B2 of the cross-section for scattering of quanta with ! < !B D eB=mec and
circular polarization corresponding to counterrotation of the photon field vector to
the electron rotation in magnetic field.

Account of pion condensation in the neutron star cores implies a rapid drop in
luminosity within 101:5–103 yr, depending on the physical conditions used in cal-
culations [990].
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Fig. 11.13 Surface temperature T .1/
s of a neutron star with rest mass M0 D 1:4M

ˇ

observed at

infinity and photon luminosity L.1/
� as functions of time t . Letters stand for: (N) no superfluidity,

zero magnetic field, (S) superfluidity included, without magnetic field, (MN) and (MS) the same
as (N) and (S) but in the presence of a uniform magnetic field of strength B D 4:4� 1012 g (from
[751])

11.2.4 Magnetic Field Decay in Neutron Stars

Theoretical studies of magnetic field decay in neutron stars are impeded by incom-
plete knowledge as to the origins of these fields, mechanisms of their generation and
the physical properties of matter. The fields are usually generated by ohmic currents
which decay owing to a finite conductivity and do not decay at all under conditions
of superconductivity. It is shown in [891] that the neutron magnetic alignment may
generate a magnetic momentum of a star of 1027 � 1030 G cm�3, while the field
must not decay in this case.

Statistical analysis of observational data on pulsars suggests that the mean time
for field decay is 
m � 2�106 yr [819], but the same data could be compatible with
no field decay hypothesis [100], see review [99]. Optical observations of pulsars in
the binaries PSR 0655C 64 (P D 0:196 s) and PSR 0820C 02 (P D 0:865 s) led
to the discovery of the optical companions of these pulsars which turned out to be
white dwarfs. Lower estimates of their ages, as obtained from the cooling curve of
Sect. 11.1, are 
e D 2 � 109 and 107 yr, respectively. Evidently the same estimates
are applicable to the pulsars themselves. The magnetic fields of these pulsars es-
timated from the time of deceleration P= PP and the relation for a dipole emission
[615] are B D 1010 G for PSR 0655C 64 and B D 3� 1011 G for PSR 0820C 02.
We thus see from observations that even in 2 � 109 yr the magnetic field does not
decay completely. It is assumed in [596], where the results of optical observations
are listed, that the magnetic field of a neutron star may comprise two components,
one of them being large and having a short lifetime � 
m, while the other is small
and does not decay appreciably. The component might be due to currents in the
superconductive component of the matter and/or to baryon magnetic alignment.
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More complicated scenarios of the magnetic field evolution in binary neutron stars,
passing the stage of accretion, are considered in [177, 178, 416, 721, 1066]. Transi-
tions between ejecting radiopulsars and accreting neutron stars in low mass X-ray
binaries were considered in [108, 160].

11.2.5 Stars with Neutron Cores

When the material ejected during supernova explosions has a velocity lower than
the parabolic velocity, it returns to give rise to accretion under conditions of a fairly
high density of the surroundings. Non-stationary hydrodynamical calculations of
accretion onto a neutron star from a massive gaseous cloud have been performed
in [1079]. The accretion rate turns out to be extremely high, corresponding to
�107Lcr, where Lcr is the critical Eddington luminosity from (9.27). The accre-
tion is nevertheless almost stationary, because most of the energy flux is carried
away by neutrinos (only e, Qe have been included), and the photon luminosity does
not exceed Lcr.

Another approach to this problem has been used in [974], where an equilibrium
stellar model with a neutron core inside it has been calculated. The adopted con-
ditions have allowed a low neutrino luminosity stationary model (LNLSM) with
critical photon luminosity: Lph ' Lcr, L� 	 Lph to be obtained. The formation
of stars with neutron cores could occur in close binaries, where the dragging of the
neutron star orbital motion in a dense envelope of a giant or supergiant leads to
the neutron star spiraling towards the centre of its companion [191]. The low neu-
trino luminosity model can live for a long time, � 5 � 107 yr, and have a very high
luminosity,� 4 � 104Lˇ.

An attempt to construct LNLSM without the restrictions used in [974] has been
undertaken in [183], where the inner boundary of the model is shifted towards a
deeper layer of the neutron star. This attempt has failed, so the LNLSM has been
supposed to be thermally unstable and, even if appearing, to transform into models
with high neutrino luminosity similar to those calculated in [1079] (neutrino run-
away model). The lifetime of such a model does not exceed a few tens of years, and
the existence of long-lived very luminous stars is impossible. Arguments in favour
of LNLSM have been discussed in [253, 349]. Neutrino run-away phenomena were
considered in [808].

11.2.6 Quark stars

The inner cores of neutron stars are the only known sites where one could expect
degenerate quark matter in nature [539]. Figure 11.14 shows the cross section of
a neutron star interior. The crust is typically �1 km thick, and consists of a lat-
tice of bare nuclei immersed in a sea of degenerate electrons, as in a normal metal.
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Nuclei and electrons
Nuclei, electrons and free neutrons

Pasta nuclei

OUTER CORE

Free neutrons, protons and electrons

INNER CORE
hyperons

meson condensates
quark droplets

quark-gluon plasma
??

CRUST

~10km

Fig. 11.14 Schematic cross section of a neutron star (from [77]). Pasta nuclei denotes the state of
the matter, where drops of a lower density are surrounded by a higher density nuclear see [516]

The matter becomes more neutron rich with increasing density, a result of the in-
creasing electron Fermi energy favoring electron capture on protons, e� C p !
nCe . Beyond the neutron drip point, �drip ' 3 
1011g/cm3.' 2�10�4 fm�3), the
matter becomes so neutron rich that the continuum neutron states begin to be filled,
and the still solid matter becomes permeated by a sea of free neutrons in addition
to the electron sea. At a density of order of nuclear matter density, �0 ' 2:7 
 1014

g/cm3 (n0 ' 0:16 fm�3), the matter dissolves into a uniform liquid composed pri-
marily of neutrons, plus �5% protons and electrons, and a sprinkle of muons [77].

The nature of the extremely dense matter in the cores of neutron stars, while
determining the gross structure of neutron stars, e.g., density profiles �.r/, radii R,
moments of inertia, and the maximum neutron star mass, Mmax, remains uncertain.
Scenarios, from nuclear and hadronic matter, to exotic states involving pionic [700]
or kaonic [556] Bose–Einstein condensation, to bulk quark matter and quark matter
in droplets, including superconducting states, as well as strange quark matter, have
been proposed. The uncertainies in the properties of matter at densities much greater
than �0 are reflected in uncertainties in Mmax, important in distinguishing possible
black holes from a neutron stars by measurement of their masses, and in inferring
whether an independent family of denser quark stars, composed essentially of quark
matter, can exist.



256 11 Final Stages of Stellar Evolution

The properties of the liquid near �0 can be readily determined by extrapolation
from laboratory nuclear physics. Two-body potentials predict a reasonable bind-
ing energy of nuclear matter; however, the calculated equilibrium density is too
high. Similarly, two-body potentials fail to produce sufficient binding of light nu-
clei [802]. The three-body forces must increase the binding in the neighborhood of
n0, but, to avoid overbinding nuclear matter, they must become repulsive at higher
densities. This repulsion leads to a stiffening of the equation of state of neutron star
matter at higher densities over that computed from two-body forces alone.

Figure 11.15 shows the energy per baryon of neutron matter as a function of
baryon density [11]. One sees here the stiffening of the equation of state from in-
clusion of three-body forces, slightly mitigated by relativistic effects. Figure 11.16a
shows the gravitational mass vs. central density for families of stars calculated by in-
tegrating the Tolman–Oppenheimer–Volkoff equation for the same equation of state
as in Fig. 11.15, with beta equilibrium of the nucleons included. The maximum mass
for the nucleonic equation of state, A18C ıvCUIX, is' 2.2Mˇ, marginally con-
sistent with observed neutron star masses. By contrast, without three-body forces,
the maximum mass is � 1:6Mˇ, below some observed masses. The corresponding
mass vs. radius of the families of models is shown in Fig. 11.16b; the radii of these
models vary little with mass, and are in the range of 10–12 km.
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0.0

100.0

200.0

300.0

400.0

E
/
A
 
[
M
e
V
]

A18+UIX

Fermi gas

A18

A18+dv+UIX

A18+dv

0.0

Fig. 11.15 Energy per baryon of pure neutron matter as a function of baryon density, n, calculated
with the A18 two-body potential with and without the Urbana IX (UIX) three-body potential, and
lowest order relativistic corrections, ıv. From [77]
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Fig. 11.16 (a) Neutron star mass vs. central baryon density for the equations of state shown in
Fig. 11.15, including beta equilibrium. The curves labelled QM show the effect of allowing for a
transition to quark matter described in the simple MIT bag model, with bag constants B D 122

and 200 MeV/fm3. (b) Mass vs. radius of neutron stars for the same models. From [77]

An equation of state based on nucleon interactions alone, while accurately
describing neutron star matter in the neighborhood of �0, has several fundamental
limitations. One should not expect beyond a few times �0 that the forces between
particles can be described in terms of static few-body potentials. The nucleonic
equation of state furthermore does not take into account the rich variety of hadronic
(�, hyperonic, mesonic, etc.) and quark degrees of freedom in the nuclear system
which become important with increasing density. Nor can one continue to assume
at higher densities that the system can even be described in terms of well-defined
“asymptotic” laboratory particles. As one sees in Fig. 11.16a, the density in the cen-
tral cores rises well above �0; equations of state and neutron star models based on
consideration of nuclear matter alone should not be regarded as definitive.

Nuclear matter is expected to turn into a quark-gluon plasma at sufficiently
high baryon density. Figure 11.16a shows effects of including quark matter cores,
naively calculated in the simple MIT bag model, with bag parameter B D 122 and
200 MeV/fm3. Because of the well-known technical problems in implementing lat-
tice gauge theory calculations at non-zero baryon density, to date there is no reliable
estimate of the transition density at zero temperature or even a compelling answer
as to whether there is a sharp phase transition or a crossover. Although estimates of
the density range of the transition,� 5�10n0, are possibly above the central density
found in neutron stars models based on nuclear equations of state, the question of
whether the dominant degrees of freedom of the matter in the deep cores of neutron
stars are quark-like remains open. In the absence of information about the equation
of state at very high densities, the issue of whether a distinct family of quark stars
with higher central densities than neutron stars can exist also remains open.

If pure neutron matter and quark matter are distinct phases with a first order
transition between them, the transition occurs at nucleonic density nq where the
energy per baryon of quark matter crosses below that in neutron matter. However,
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the transition in neutron matter with a small admixture of protons and electrons in
beta equilibrium must proceed through a mixed phase [423] starting at density below
nq . The mixed phase should consist of large droplets of quark matter immersed in a
sea of hadronic matter [464]. Formation of droplets is favored because the presence
of s and d quarks allows reduction of the electron density, and hence electron Fermi
energy, and because it consequently permits an increase in the proton concentration
in the hadronic phase. The onset of the droplet phase could, for favorable model
parameters of the quark phase, be at a density as low as � 2n0. A typical droplet
is estimated to have a radius of �5 fm and contain �100 u (qu D 2

3
e), and �300

d (qd D �1
3
e, the electron charge is �e, the proton structure is uud ) as well as s

quarks (qs D �1
3
e), and thus having a net negative charge�130, but the results are

very model dependent [77].
Observations of neutron star masses constrain the equation of state in the cores

of neutron stars. The general rule obeyed by families of neutron stars generated
at various central densities from a given equation of state is that the stiffer the
equation of state, the higher is the maximum mass that a neutron star can have,
but the lower is the central mass density, �c at the maximum mass. Lower central
density means that there is less room for exotic matter in the interior including �
and K meson condensates, as well as quark matter. Observations of millisecond bi-
nary radio pulsars, consisting of two orbiting neutron stars, have permitted accurate
determinations of their neutron star masses, as well as confirmed the existence of
gravitational radiation; the well-measured masses lie in the interval,�1:35˙0:1Mˇ
[161]. Were the maximum neutron star mass of order 1:4Mˇ, the central densities
could be sufficiently large to allow substantial exotica in the interior. Even though
the range of measured masses of neutron stars in binary neutron-star systems is
tightly constricted, not all neutron stars must have such small masses. Nice et al.
[742] have reported mass determination of the neutron star in the 3.4 ms pulsar PSR
J0751C 1807 in a close circular (6 h) binary orbit about a helium white dwarf. The
measured neutron star mass is 2.1˙0:2Mˇ, almost at the limit of compatibility with
the nucleonic equation of state. The companion mass is 0.191˙0:015Mˇ.

Observations of masses close to the maximum, ' 2:2Mˇ, predicted by the
nucleonic equation of state challenge our knowledge of the physics of neutron star
interiors. The existence of high mass neutron stars immediately indicates that the
equation of state must be very stiff, whether produced by interacting nucleons or
other physics. Nonetheless, quarks degrees of freedom – not accounted for by in-
teracting nucleons interacting via static potential – are expected to play a role in
neutron stars. As nucleons begin to overlap, quark degrees of freedom should be-
come more important. Indeed, once nucleons overlap considerably the matter should
percolate, opening the possibility of their quark constituents propagating through-
out the system. A firm assessment of the role of quarks in neutron stars must await a
better understanding of mechanisms of quark deconfinement with increasing baryon
density [77].
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11.2.6.1 Strange Quark Matter

Strange quark matter (SQM) is an infinite deconfined mixture of u; d and s quarks
in a colour singlet state (colourless), together with an appropriate number of elec-
trons to guarantee electrical neutrality (see review [221]). According to the so-called
strange matter hypothesis [1043], SQM is the true ground state of matter. The en-
ergy per baryon of SQM, at the baryon density where the pressure is equal to zero, is
supposed to be less than the lowest energy per baryon found in atomic nuclei, which,
with account of the rest energy, is about 930.4 MeV for the most bound nuclei (62Ni,
58Fe, 56Fe).

If the strange matter hypothesis is true, then a nucleus with A nucleons could
in principle lower its energy by converting to a strangelet. However, this process
requires the simultaneous weak decay of about a number A of u and d quarks of
the nucleus into strange quarks. The probability for such a process is extremely low,
and the mean life time for an atomic nucleus to decay to a strangelet is much higher
than the age of the Universe. In addition, finite size effects (surface, coulomb and
shell effects) place a lower limit (Amin � 10 � 103, depending on the values of the
model parameters) on the baryon number of a stable strangelet even if in bulk SQM
is stable.

The quarks in a nucleus are confined within protons and neutrons. Thus, the
energy per baryon for a droplet of u; d quark matter (the so-called nonstrange quark
matter in the bulk limit) must be higher than the energy per baryon of a nucleus with
the same baryon number. These conditions may be used to constrain the values of
the parameters entering in models for the equation of state of SQM and to find the
region in the parameter space where the strange matter hypothesis is fulfilled and
nonstrange quark matter is unstable. Our present understanding of the properties of
ultra-dense hadronic matter does not allow us to exclude or to accept a priori the
validity of the strange matter hypothesis.

A schematic model [81] for the equation of state of SQM is inspired to the
MIT bag model for hadron. Despite this model is applicable at asymptotic densi-
ties (where perturbative QCD is valid), it has become very popular in the study of
SQM in astrophysics [425]. The basic idea of the model is to suppose that quarks
are confined within a spherical region (the bag) of the QCD vacuum. Inside the bag,
quarks interact very weakly (perturbatively) with each other. The vacuum inside the
bag (perturbative vacuum) is considered as an excited state of the true QCD vacuum
outside the bag. Perturbative vacuum is characterized by a constant energy density
B , the bag constant, which accounts in a phenomenological way of nonperturbative
aspects of QCD. This gives rise to an inward pressure PB D �B on the surface
of the bag, which balances the outward pressure originating from the Fermi mo-
tion of quarks and from their perturbative interactions. Thus, in the MIT bag model
for SQM, the essential phenomenological features of QCD, i.e. quark confinement
and asymptotic freedom, are postulated from the beginning. The short range qq in-
teraction can be introduced in terms of a perturbative expansion in powers of the
QCD structure constant ˛c . The up and down quarks are assumed to be massless
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(mu D md D 0), and the strange quark to have a finite mass, ms , which is taken as
a free parameter.8

Let us consider [221] for simplicity the limiting case of massless non-interacting
quarks (ms D 0, ˛c D 0). In this case, SQM is composed of an equal number of
u,d , s quarks with no electrons (i.e. ne D 0, nu D nd D ns;) and the EOS takes the
following simple form:

" D Kn4=3 C B; P D 1

3
Kn4=3 � B; K D 9

4
�2=3„c: (11.76)

Eliminating the total baryon number density, one has:

P D 1

3
." � 4B/: (11.77)

The properties of SQM, within this model, depend on the values of the three param-
eters B , ms and ˛c . The EOS, in the form P D P.�/, is essentially determined by
the value of the bag constant B . The net fraction of leptons (e�, eC), which neutral-
ize the electric charge of the quark component of SQM, will mainly depend on the
values of ms and ˛c . For the most plausible values of the model parameters[369],
the quark component has a positive electric charge, thus, electrons will be present
in SQM to neutralize it. 9

11.2.6.2 Strange Stars

One of the most important and fascinating consequences of the strange matter hy-
pothesis is the possible existence of strange stars, that is, compact stars which are
completely (or almost completely) made of SQM.10 These stars have bulk proper-
ties (mass and radius) very similar to those of neutron stars (hadronic stars). Thus,
pulsars could be strange stars.

The structural properties of non-rotating compact stars are obtained integrating
numerically the Tolman–Oppenheimer-Volkoff (TOV) equations 11.62,11.63. The
basic input to solve these equations is the stellar matter EOS. In the case of strange
stars, one has to use one of the various models for SQM.

The properties of the maximum mass configuration for strange star sequences
obtained using a few models for the SQM equation of state are reported in Table
11.6 from [221]. In this table, the EOS labeled as B600 refer to the bag model EOS

8 The value of the current quark mass, as reported by the Particle Data Group (http://pdg.lbl.gov/),
are the following: mu D 1–3 MeV, md D 3–7 MeV, ms D 95˙ 25MeV.
9 For small values of ms and large values of ˛c , the quark component of SQM has a negative
charge[369], and thus positrons will be present to guarantee global charge neutrality.
10 When the values of the EOS parameters are such that the strange matter hypothesis is not ful-
filled, the possible compact stars containing deconfined quark matter are the hybrid stars.
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Table 11.6 Properties of the maximum mass configuration for strange stars obtained
from different equations of state of SQM (see text for details). M is the gravitational
stellar (maximum) mass in unit of the solar mass M

ˇ

, R is the corresponding radius,
�c the central density, nc the central number density in unit of the saturation density
(n0 D 0:16 fm�3) of nuclear matter, Pc is the central pressure
EOS M=M

ˇ

R (km) �c (g/cm3) nc=n0 Pc (dyne/cm2/

B600 1.964 10.71 2.06 �1015 6.94 0.49 �1036
B60200 1.751 9.83 2.44 �1015 7.63 0.54 �1036
B900 1.603 8.75 3.09 �1015 9.41 0.73 �1036
SS1 1.438 7.09 4.65 �1015 14.49 1.40 �1036
SS2 1.324 6.53 5.60 �1015 16.34 1.64 �1036
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Fig. 11.17 The mass–radius relation for different theoretical models of compact stars. Black
curves refer to hadronic stars and red curves to strange stars. The dashed curve gives the upper limit,
extracted from observational data in [633], for the radius of the compact star in SAX J1808.4-3658.
The dashed straight line labeled RSch gives the Schwarzschild radius as a function of the stellar
mass

with B D 60MeV/fm3 andms D 0; model B60200 is for the same value of the bag
constant but takingms D 200MeV; modelB900 refer to the caseB D 90MeV/fm3

and ms D 0 (˛c D 0 in all the three cases). The models denoted as SS1 and SS2
refer to stellar sequences obtained with the equation of state for SQM from [323]

In Fig. 11.17 from [221], the mass–radius (MR) relation is plotted for strange
stars (left bundle of curves) obtained using different model for SQM. For compari-
son, in the same figure, the MR relations for hadronic stars are plotted (right bundle
of curves). The curves labeled withBBB1,BBB2 [64],WFF [1042] andKS [589]
are for neutron stars having a ˇ-stable nuclear matter core, the curve labeled hyp
refers to an hyperon star [425]. As we can see, there is a striking qualitative dif-
ference between the mass–radius relation of strange stars with respect to that of
neutron stars. For strange stars with “small” (i.e. M not to close to Mmax) mass,
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M is proportional to R3. In contrast, neutron stars (hadronic stars) have radii that
decrease with increasing mass. This difference in the MR relation is a consequence
of the differences in the underlying interactions between the stellar constituents for
the two types of compact stars. In fact, “low” mass strange stars are bound by the
strong interaction, contrary to the case of neutron stars, which are bound by gravity.

As it is well known, there is a minimum mass for a neutron star (Mmin � 0:1Mˇ).
In the case of a strange star, there is essentially non-minimum mass. As the stellar
central density �c ! �surf (surface density) a strange star (or better to say a lump of
SQM for low value of the baryon number) is a self-bound system, until the baryon
number becomes so low that finite size effects destabilize it. Review of the properties
of strange stars is given in [1015].

11.2.6.3 The Surface: Bare or Crusted Strange Stars?

According to the standard view [18,424], a strange star has a very sharp boundary. In
fact, the density drops abruptly from �surf � 4–10 � 1014 g/cm3 to zero on a length
scale typical of strong interactions, which means that the thickness of the stellar
“quark surface” is of a few fermis (1 fmD 10�15 m). This is of the same order of
the thickness of the surface of an atomic nucleus. The density at the surface of a
strange star can be immediately calculated (in the limit ms ! 0) using the simple
EOS given in (11.76) and (11.77), and it is given by

�surf D 4B

c2
; nsurf D

�
3B

K

�3=4

: (11.78)

Strange stars with this sort of exposed quark matter surface are known as bare
strange stars.

Electrons are bound to the star by the electromagnetic force; thus, they can extend
for several hundreds of fermis above the “quark surface”. This thin layer is usually
referred to as the electrosphere. As a consequence of this charge distribution, a very
strong electric field is established at the stellar surface. This field has been estimated
to be of about 1017 V cm�1 and directed outward [18]. Such a huge electric field
is expected to produce an intense emission of eCe� pairs [999] and a subsequent
hard X-ray spectrum, at luminosities well above the Eddington limit,11 as long as
the stellar surface temperature is above [1000] �5 � 108 K. Thus, a bare strange
star should produce a striking characteristic signal, which differs both qualitatively
and quantitatively from the thermal emission from a neutron star (hadronic star),
and which could provide an observational signature for their existence [13,544,999,
1000]. These special conditions (i.e. bare quark surface and high temperature) are
realized in the case of “young” strange stars [787, 1001].

11 A super-Eddington luminosity (L > LEdd) is allowed for a bare strange star, because at its
surface SQM is bound by strong interaction rather than gravity [18, 999].
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Older and “cold” (T < 5 � 108 K) strange stars will likely form a crust of
“normal” (nuclei and electrons) matter via mass accretion onto the star from the
interstellar medium or from a companion star, or from the matter left in the super-
nova explosion which could have formed the strange star. In fact, the strong electric
field at the stellar surface will produce a huge outward-directed force on any single
positive ion (nucleus) of normal matter which is accreted onto the star. This force
greatly overwhelms the force of gravity acting on the incoming positive ion. This
accreted material will start to accumulate on the top of the electrosphere. Thus a
strange star will form a crust of normal matter [18], which is suspended above the
quark surface by the tiny (� 102–103 fm) electrostatic gap, and will completely ob-
scure the “quark surface”. This crust is similar in composition to the outer crust of
a neutron star (i.e. a Coulomb lattice of heavy neutron rich nuclei plus an electron
gas) In fact, when the density of matter at the base of this crust will reach the neu-
tron drip density (�drip

n ' 4:3 1011 � g=cm3), the neutrons could freely enter in the
SQM stellar core, and there they will be dissolved (their constituent quarks will be
deconfined) due to the assumed absolute stability of SQM. Thus, the density at the
base of the crust cannot exceed the value of the neutron drip density. This condition
sets an upper limit for the mass of the stellar crust. For a strange star with a mass of
1.4 Mˇ, the mass of its crust is of the order of Mcrust � 10�5Mˇ and its thickness
of the order of a few hundreds of meters [18, 424].

11.3 Black Holes and Accretion

If the mass of a collapsing core exceeds the mass limit of the neutron star, a black
hole emerges, that is, an object with a very strong gravitational field 'G � c2, the
existence of which is connected to general relativity. The black hole properties are
described in a series of monographs (see, for instance, [272, 756, 1081]). The most
important observational property of a black hole is that it does not let any light es-
cape, so that in vacuum it can be detected only by making some known light source
invisible. The space between stars and galaxies is, however, filled with a gas that
falls into the black hole, becomes heated and emits radiation, making, in princi-
ple, the black hole observable. The most powerful accretion and best observational
conditions occur when the black hole is incorporated in a binary, and the material
flows from the neighbouring star onto the black hole. Such are X-ray sources in
binaries—candidates for black holes are: CygX-1, LMCX-1, A0620-00, 4U1658-
48(GX339-4) and others [283–285, 667].

The temperature of Hawking radiation TM ' 1026=M.g/ � 10�8K for M D
5Mˇ. This radiation is completely negligible for stellar mass black holes.

We discuss below various models for accretion onto black holes. All of them
are hydrodynamical, i.e., the mean free path of particles is assumed to be less than
the binary size. For strong ionization in the interstellar medium, this is accounted
for by entanglement of electron and ion trajectories by the magnetic field, while in
binaries, where the density is high, the mean free path is determined by Coulomb
collisions and is also short.
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11.3.1 Spherically Symmetric Accretion

In the case of a spherically symmetric accretion, the flow passes through the sound-
velocity point at a saddle-like singularity of the system of hydrodynamical equations
[224]. The condition for the flow to pass through the sound-velocity point deter-
mines unambiguously the mass flux PM and all the flow properties for given T1
and �1. An adiabatic flow in the point-mass gravitational field can pass through
the sound-velocity point only if the adiabatic index � < 5=3. The theory of adia-
batic accretion is given in [899, 1081], and is similar to the stellar wind theory (see
Sect. 8.3.1). We discuss hereafter the flows passing through the sound-velocity point
and supersonic near the centre of gravity.

Studies of spherically symmetric accretion of interstellar gas onto black holes
have shown that in the presence of a magnetic field frozen in plasma, the effectivity
of the kinetic energy conversion into heat approaches � � 10% [913], while in the
absence of a field the bremsstrahlung causes � � 10�8. When the gas falls radially,
the lines of magnetic force stretch along a radius, Br � r�2, and the magnetic
energy per unit volume EM � B2 � r�4 increases more rapidly than the kinetic
energy Ekin � �v2 � PM v=r2 � r�5=2 ( PM D 4��vr2 is the stationary mass flux,
free-fall velocity v � r�1=2). Since the energyEM cannot physically exceedEkin, it
is assumed in [913] that an equipartition of energy EM � Ekin is supported by the
dissipation of magnetic energy, the excess of which is consumed by plasma heating.
This heating is taken into account in [139] and leads to an increase in effectivity �
to 30% that may be considered under these assumptions as a realistic estimate.

If EM � r�4 is the energy of a magnetic field with no dissipation, and E 0
M D

Ekin � r�5=2 is the energy of the magnetic field in the flow, then the increase in
entropy per unit volume along a radius due to the field annihilation in stationary
flow is given by

QM D
�
�T

dS

dr

�
M

D
�

dEM

dr
� dE 0

M

dr

�
EM DE 0

M

D �4 EM

r
C 5

2

EM

r
D � 3

2r

B2

8�
: (11.79)

Consider separately the regions with non-relativistic electrons, having

kT 	 mec
2; �1 D 5=3

and relativistic electrons with12

kT � mec
2;

12 Protons are always non-relativistic.
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�E D 1

2

�
3P C 3

2
P

�
D 9

4
P D nP;

�1 D 1C 1

n
D 13=9: (11.80)

Here, Pe D Pp D P=2, �1 is given in (8.26), n is the adiabatic index, and for
simplicity we treat a hydrogen plasma. From the energy balance equation

dE

dr
� P

�2

d�

dr
D QM

�
� �B

vr
; (11.81)

where �B (erg g�1 s�1) is the rate of magneto-bremsstrahlung losses of the
Maxwellian plasma, with

B2

8�
D 1

2
�v2

r ; vr D ˛vff D ˛
r
2GM

r
; B2

? D
2

3
B2; (11.82)

and

�B D 2 e2

mpc

�
eB?
mec

�2

� kT

mec
2
� 0:46 TB2? erg g�1 s�1 for kT 	 mec

2 .NR/; (11.83)

�B D 8 e2
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�
eB?
mec

�2

�
�
kT

mec
2

�2

� 3:2 � 10�10 T 2B2? erg g�1 s�1 for kT � mec
2 .R/:

(11.84)

We obtain the equations for T .r/

3

2

dT

dr
C 3

2

T

r
C 3

4

˛22GM

Rgr2
� 1:5 T

PM
Rgr2

D 0 .NR/ (11.85)

9

4

dT

dr
C 3

2

T

r
C 3

4

˛22GM

Rgr2
� 2:2 � 10�10 T

2 PM
Rgr2

D 0: .R/ (11.86)

Here, Rg D 2k=mp is the gas constant for ionized hydrogen. For specified values
of �1, T1, M , the mass flux is determined by
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PM D 4��vrr
2 D 1032

c2

�
M

Mˇ

�2 �
�1

10�24 g cm�3

��
T1
104 K

��3=2

g s�1: (11.87)

Neglecting the radiation in (11.85) and adiabatic heating in (11.86), we find the
solution in the form

T D 2 � 1012x C 2:7 � 1012x˛2 ln

�
108x

T1=104 K

�
.NR/ (11.88)

T D mec
2

k
C T1

ea.x�x0/ � 1
ea.x�x0/ C 1 ; T1 � mec

2

k
.R/: (11.89)

Here,

x D rg=r D 2GM

rc2
< 1;

T1 D 2:8 � 1012˛

�
T1
104

�3=4

.M=Mˇ/�1=2
� �1
10�24

��1=2

;

a D 1:3 ˛

�
M

Mˇ

�1=2 �
T1
104 K

��3=4 �
�1

10�24 g cm�3

�
: (11.90)

The quantity x0 depends slightly on T1, �1, and for various values of ˛ is

˛2 1 1/3 1/10

x0 2 � 10�4 5 � 10�4 1:2 � 10�3

When x D x0, we have T D mec
2=k, and the solutions (11.88) and (11.89) be-

come fitted to one another. The luminosity and spectrum for this model have been
calculated in [139]. The luminosity due to magneto-bremsstrahlung is determined
mainly by relativistic electrons from (11.89) and equals

LB D 2:7 � 1031˛4.M=Mˇ/3.�1=10�24 g cm/�3.T1=104K/
�3
; a < 1

LB D 9 � 1031˛2.M=Mˇ/2.�1=10�24 g cm/�3.T1=104K/
�3=2

; a� 1

(11.91)

Comparing this expression with (11.87), we find that at a realistic value ˛2 D 1=3
the quantity � D LB= PMc2 � 30%. An approximate emission spectrum L! (LB DR1

0 L! d!) of a black hole with massM D 10Mˇ is given in Fig. 11.18 from [157].
The range with L! � !3=5 is related to the emission of non-relativistic electrons;
at kT � mec

2, „! 	 kT , L! � !1=3, while at „! � „!B;max.kT1=mec
2/2 �
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Fig. 11.18 Magneto-
bremsstrahlung spectrum of a
black hole of M D 10M

ˇ

for a spherically symmetric
accretion and random
magnetic field at
�

1

D 10�24 g 	 cm�3, at
T

1

D 104 K, ˛2 D 1=3. The
solid lines represent
asymptotic dependencies;
dashed lines show
extrapolation

10 eV for �1 D 10�24 g cm�3, T1 D 104 K, Bmax � 105 G an exponential cut-off
occurs.13

The visible magnitudemV for such a black hole under the assumption of a plane
spectrum is [139]

mV D 4:8 � 2:5 lgL=Lˇ C 5 ln.R=10 pc/ � 14:1 � 7:5 lgM=Mˇ

� 2:5 lg

"�
�1

10�24 g cm�3

�3=2 �
T1
104 K

��9=4
#
C 5 lg

�
R

10 pc

�
: (11.92)

At high luminosity and high density, the role of bremsstrahlung increases and the
interaction of the accretion flow with outgoing flow of radiation becomes essential,
thereby changing (11.85)–(11.92). Calculations of accretion onto a black hole in-
cluding the reciprocal effect of radiation have been performed in [795,796]. For the
case of a neutron star, this effect has been included in [121].

The above discussion assumes the equipartition to set in at any point in the flow.
In reality, the field annihilation may occur discontinuously and leads to the shock
formation [191]. This is why the emission spectrum may differ even at low lumi-
nosities from Fig. 11.18, which should be treated as a rough estimate.

13 The synchrotron radiation spectrum of a unit volume of relativistic Maxwellian plasma is [157]

I! D .
p
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11.3.2 Accretion at an Ordered Magnetic Field

If the characteristic scale of non-uniformity of magnetic field greatly exceeds the
accretion radius

ra D GM

v2
s
; where vs is the sound velocity in the gas; (11.93)

the flow is no longer spherically symmetric. In the case of a uniform magnetic field
the accretion symmetry is cylindrical. For a black hole at rest, a stationary pattern of
magnetic lines sets in, the material flows along them and forms a disk in the plane
of symmetry. A qualitative picture of the flow is shown in Fig. 11.19. At a large
but finite conductivity the disk material infiltrates slowly through lines of magnetic
force towards the black hole. The formation process has been studied, the structure
of a disk supported by a magnetic field and its radiation have been calculated in
[103, 143].

Consider, approximately, the stationary disk structure. Equilibrium of a non-
rotating disk is determined by the balance between magnetic forces and gravity:

GM˙

r2
D 1

c
B�I' � 2�

c2
I 2

' : (11.94)

Here,˙ D 2h� is the surface density, � is the mean matter density, I' is the circular
current propagating through an element of disk area with unit length along r and
height 2h. We have roughly [118]

B� � Br � 2�

c
I': (11.95)

Equilibrium along the vertical is supported by the pressure gradient

dP

dz
D ��GM

r2

z

r
; h �

�
r3

GM

P

�

�1=2

: (11.96)

Fig. 11.19 Schematic pattern
of magnetic field lines in the
matter around a black hole for
a field uniform at infinity,
with the inclusion of
distortions due to disk
currents. The arrows indicate
the direction of the gas flux,
hatched is the region filled in
by the dense disc
(from [139, 143])
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Taking into account the conversion into heat of the energy of material inflowing to
the disk at a velocity close to the free-fall velocity, we have for the energy flux from
unit disk surface

F D GM PM
4�r3



1C 1

2

� r
R

�3=2
�
: (11.97)

From the mass conservation, we have for the radial velocity

vr D �
PM

2�r˙



1 �

� r
R

�3=2
�
: (11.98)

Here PM is determined by the values at infinity in (11.87),R � ra from (11.93). The
disk undergoes an ohmic dissipation that causes the material to infiltrate through the
magnetic field and determines most of the released energy

GM PM
4�r3



1 �

� r
R

�3=2
�
D I 2

'

4��
; (11.99)

where � is the conductivity. If the disk is opaque to radiation, the energy is carried
to its surface by radiative heat conduction, so that we have roughly

acT4 D 	˙F; (11.100)

where T .r/ is the mean disk temperature. For a transparent disk, we have

2F D ˙.�ff C �B/: (11.101)

This relation includes plasma bremsstrahlung �ff and magneto-bremsstrahlung �B .
Equations (11.94–11.3.22) with known functions P , 	, � , �ff and �B give the struc-
ture of a non-rotating disk with magnetic field around the black hole.

In a laminar approximation, the disk is always optically thick, electrons are
non-degenerate and non-relativistic, and the pressure is determined mainly by the
ideal ionized gas P D �RT . The conductivity due to Coulomb collisions is given
in (11.55). Two regions may be discerned in such a disk: an outer region, where
bremsstrahlung and photo-ionization processes with

	ff C 	bf � 2 � 1024�T �7=2 (11.102)

predominate in the opacity, and an inner one, with predominance of the opacity due
to magneto-bremsstrahlung absorption of non-relativistic electrons with

	B � 40B2=T 3; (11.103)

see [143]. As the Coulomb conductivity is small, the material infiltrates slowly
through lines of magnetic force, and in a stationary case the disk mass turns out
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to be large: for a black hole of M D 100Mˇ, the mass of the stationary disk is
Md � 0:2Mˇ. Most of the disk mass is accumulated in its outer layers. The disk in-
teriors are the main source of radiation, the temperature in them attains 108�109 K,
the magnetic field 1010 � 1012 G. The disk thickness nowhere exceeds 0.01 of the
radius.

In the turbulent disk approximation, the dissipation proceeds far more rapidly
owing to entanglement of magnetic lines, and [143]

� � �T � c2

Q̨4�hpP=� ; Q̨ D 0:1 � 0:01: (11.104)

The outer regions of such a disk are transparent for radiation, electrons are
non-relativistic there, the gas pressure predominates, and the contributions of
bremsstrahlung and recombination radiation with

�ff C �f b � 2 � 1022�T 1=2; (11.105)

and magnetobremsstrahlung with �B from (11.3.5) losses are of the same order.
At .Mrg=Mˇr/ D mx � 100˛2 the electrons become relativistic and �B from
(11.84) greatly exceeds

�rel
ff � 2 � 1016�T ln

kT

mec2
; (11.106)

see [143]. Note the connection between opacity and emissivity � D A�T 4	, fol-
lowing from Kirchhoff’s law. The constant A D 170 was chosen in estimations of
	B , and the relativistic case of 	ff, in accordance with the corresponding constant
for non-relativistic Rosseland 	ff and �ff, calculated in textbooks (see, e.g., Chap. 2,
Vol. 1). The zone of relativistic electrons is narrow in radius because the optical
thickness increases rapidly and the disk becomes opaque with decreasing radius. In
disk interiors, the gas pressure and electron scattering due to opacity 	esr � �T from
(9.41) predominate for 10 < mx < 1000, while for mx > 1000 the predominant
role in pressure belongs to radiation. The mass of a turbulent disk always remains
small because of a large dissipation and rapid infiltration of material through the
magnetic field. Note again the non-monotonical character of the function T .r/ aris-
ing from the transformation of a transparent disk into an opaque one with decreasing
r . Relations describing the distribution of disk parameters are given in [143] for var-
ious disk regions.

As the gravitational energy always has time to convert into heat during stationary
disk accretion, the black-hole luminosity at a minimum radius of 1:5 rg is

L D 1

3
PMc2 (11.107)

with PM from (11.87).
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The emission spectrum of an opaque disk is related to its effective temperature
determined locally by

ac

4
T 4

ef D F (11.108)

at any point on the disk surface provided that the shock energy has been completely
thermalized. Hence, using (11.97), we have for the disk interiors with r 	 R, where
most of the energy is released,

Tef � r�3=4: (11.109)

The distribution (11.109), upon being integrated over the disk surface, yields the
spectrum

L.!/ � !1=3 (11.110)

with an exponential cut-off at „! � kTmax, Tmax � 7 � 105 K for M D 10Mˇ.
So, despite substantial differences in flow patterns for random and ordered mag-
netic fields, for the case of a laminar disk their emission spectra are similar, and the
relation (11.92) for mV is valid in such a case as well. A turbulent disk has a large
transparent region with magneto-bremsstrahlung in the infrared range that may be
comparable in power with the ultraviolet and soft X-ray emission of opaque disk
interiors.

If the accreting material has an intrinsic angular momentum, the magnetized disk
generates electric fields giving rise to the formation of relativistic particles [162].
Such a mechanism is likely to act in Cyg X-1, galactic nuclei [201,643], and is anal-
ogous to the unipolar mechanism proposed for explaining the pulsar radiation [431].

11.3.3 Conical Accretion on to a Rapidly Moving Black Hole

A rapidly moving black hole is streamlined by gas, thus causing formation of a con-
ical shock behind it. Passing through the shock, the material decelerates and falls
onto the black hole inside the cone. A qualitative picture of conical accretion, first
considered in [225], is given by Salpeter [858]. For a primarily cold gas falling onto
the gravitating centre along parabolic trajectories, a self-similar solution has been
obtained in [175] with properties substantially dependent on the adiabatic power �
and density distribution in the falling gas. A system of steady-state hydrodynam-
ical equations for gas motion in the field of central mass M reads, in a spherical
coordinate system with v' D @=@' D 0, as
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where QS is a function of entropy S .
A self-similar solution to the system (11.111) is looked for in the form
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For the pre-shock region, we have the solution
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A uniform density at infinity corresponds to ˛ D 1=2. The shock coincides with
a straight cone with apex angle � D �s , �s being an eigenvalue of this problem.
The solution to the system of ordinary equations for U.�/, V.�/, R.�/, P.�/ is
obtained numerically in [175] and has the following properties.

The solution, corresponding to the cone beyond the black hole filled in com-
pletely with material, exists for ˛ D 1=2 only at 1:31 � � � 5=3, and the apex
angle of the shock cone increases with � (Fig. 11.20 and Table 11.7 [175]). For
˛ > 1=2 the filled cone exists only at a single value of � for each ˛ (Table 11.8
[175]). For ˛ and � corresponding to the solution with a filled cone and for all other

Fig. 11.20 Flow pattern for a
gas filling in all the space, �s
is the slope angle of the
shock, from [175]
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Table 11.7 The dependence of the slope angle of the sock �s on adiabatic power �
for flows filling in all the space at ˛ D 1=2

Parameter Value

� 1.31 1.34 1.4 1.45 1.5 1.55 1.6
�s 1.298 1.426 1.679 1.905 2.131 2.375 2.651

Table 11.8 The dependence of the adiabatic power � corresponding to the flow with a
filled in cone and corresponding slope angle of the shock �s on index ˛

Parameter Value

˛ 0.6 0.8 1.0 1.2 1.3 1.34 1.4 1.45
� 1.008 1.02 1.08 1.18 1.26 1.24 1.15 1.05
�s 0.04 0.09 0.22 0.51 0.7 0.61 0.33 0.11

Fig. 11.21 Flow pattern in
the presence of an empty
cone with slope angle � D �c

beyond the moving center, �s
is the slope angle of the
shock, from [175]

˛ and � as well, there exist solutions with density going to infinity and v� to zero
at a finite apex angle � D �c, and the empty region inside �c (Fig. 11.21 [175]). For
given ˛ and � , a �s corresponds to each �c so that �1.�; ˛/ < �s < �2.�; ˛/. For
˛ D 1=2, �1.�; 1=2/ D �s from Table 11.7, that is, when a solution with a filled
cone exists, the slope angle of the corresponding shock is minimal. Complicated
properties of self-similar solutions arise from the presence of a singular line in a
self-similar set of ordinary equations and a varying number of intersections of the
integral curve with this line.

If the flow properties are such that the radiative losses in the shock are essential,
then the apex angle of the cone beyond the black hole may be substantially less than
in Table 11.7 at the given � . This corresponds effectively to � approaching 1.

The numerical solution of the problem of accretion onto a moving gravitating
centre requires knowledge of boundary conditions at a finite radius r that affect
the solution. For modeling a black hole, the condition of complete absorption of
material at a small finite radius r0 has been used in [483, 907]. 2D calculations
have been made for Mach numbers of inflowing material at infinity M D 0:6, 1.4,
2.4, 5.0 and adiabatic powers � D 1:1, 4/3, 5/3. It has been found in [907] that at
� D 5=3 and 4=3, the bow shock is formed in front of the centre, while the density
beyond the shock is well above the density on the cone axis beyond the black hole.
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At � D 1:1, the shock becomes adjacent to the absorbing sphere surface, and the
density contrast in the cone beyond the shock is not large.

This problem was computed with higher resolution in 2D and in 3D simulations.
It was found in 2D simulations [581] that the flow is not completely in the steady
state, but a dome-like shock is formed quasiperiodically in front of the compact
object for higher Mach cases. 2D and 3D simulations in [677] have shown that at
higher resolution the “flip-flop” instability is developed in the flow, which appears
to be stable at low resolution. This instability results in shock cone oscillations from
side to side, accompaned by brief periods of disk formation. It was suggested that
accretion flow instabilities are intrinsic to all accretion flows. Calculations of the
same problem made in [806] using another numerical method have led to construc-
tion of stationary solutions in the range of parameters, where instabilities have been
obtained in previous calculations. In the complicated numerical situation with a sin-
gular point in the centre, additional analysis is needed for studying the nature of
this instability and influence of the numerical effects. The luminosity in this case
depends on magnetic field and should be estimated analogously to the case of a
spherical accretion in Sect. 11.79.

11.3.4 Disk Accretion in Binaries

A large angular momentum in close binaries causes the accreting matter to take
the form of a disk, though at a high velocity of the stellar wind from the normal
star it is possible under certain conditions that the disk will not form and a conical
accretion will take place instead [517]. A theory of disk accretion has been proposed
in [657, 816, 897] and developed in [755, 898] under the assumption of a stationary
thin disk and in the presence of turbulent viscosity. General relativity equations
have been treated in [657, 755, 833], other studies use Newtonian theory. General
relativity can be included in a semi-quantitative way by adopting [785]

'G D GM

r � rg
; rg D 2GM

c2
: (11.114)

To model the boundary conditions on the inner edge of the disk, the advective terms,
representing the radial velocity terms, as well as derivatives of pressure and entropy
along the disk radius should be taken into account. For a low radial velocity vr, the
equations of stationary disk accretion will be written as ([783], see also [158])

�2�r˙vr D PM; for conservation of mass; (11.115)
PM.l � lin/ D 4�r2˛Ph; for conservation of angular momentum; (11.116)

PM


�.l � lin/ d˝

dr
C B1T

dS

dr

�
D B34�r

acT 4

3	�h
;

for conservation of energy; (11.117)

h2˝2
K D B4

P

�
for equilibrium along the disk depth; (11.118)
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1

�

dP

dr
D r �˝2 �˝2

K

�
for equilibrium along the radius: (11.119)

Here, �, T , P , h, ˙ , PM are defined above, and˝ , l D ˝r2 are the current angular
velocity and angular momentum, ˛ < 1 is the turbulent viscosity parameter,

˝K D
�
�1
r

d'G

dr

�1=2

D
�
GM

r3

�1=2
r

r � rg

is the Keplerian angular velocity; (11.120)

lin D
�
1

3
r4 d2'G

dr2
jrDrin

�1=2

D
�
2

3
GMrin

�1=2 �
rin

rin � rg

�3=2

: (11.121)

The value lin is the angular momentum at the innermost stable orbit, rin D 3rg for
the potential (11.114). This point simultaneously happens to be an extremum and
bending point of the total (gravitational plus centrifugal) potential. In the ˛-disk
approximation [897], the stress-tensor component tr' is supposed to be related to
pressure by (see also Problem 3)

tr' D �r d˝

dr
D �˛P: (11.122)

For a fully ionized opaque gas including radiation pressure, we have pressure, en-
tropy and molecular weight as

P D �kT

�mu
C 1

3
˛T 4; S D k

�mu
ln.T 3=2=�/C 4

3

aT 3

�
C const:

� '


2xH C 3

4
xHe C 1

2
xA

��1

; xA D
X
i�6

xi ; (11.123)

where xk are weight fractions of different elements. The opacity is determined by
the free–free and free–bound transitions, and electron scattering, and are given in
(11.102) and (9.41). The dimensionless constants Bi are determined by the density
distribution over the disk thickness. The following were obtained in [717, 783]

B1 D 0:5; B3 D B4 D 6: (11.124)

Far from the inner edge of the thin disk, the terms with dS=dr and dP=dr in
(11.117) and (11.119) are small and a standard theory of disk accretion [755,
897, 898] corrected for a potential implying general relativity properties follows
from (11.115)–(11.124), with the inner radius rin D 3rg, as in the Schwarzschild
metric [1081].
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When dP=dr is taken into account for equilibrium, we must add the term
R
dP=�

to the total potential. The inner edge corresponding to the last stable orbit neglecting
the radial motion is determined by

rin D 3rg � 3 .rin � rg/
3

GM


�
1

�

dP

dr

�
C r d

dr

�
1

�

dP

dr

��
in
: (11.125)

The choice of a pressure on the inner edge of the disk is somewhat arbitrary in the
given formulation of the problem, since with decreasing radius and approaching the
last stable orbit the velocity vr tends to the sound velocity vs, and the system of
equations becomes more complicated [476, 477, 716, 717]. The condition vr D vs

is adopted for the inner edge r D rin, rin may then be obtained as an eigenvalue
for a set of differential equation with respect to S , P and ˝ . For M D 10Mˇ,
PM D PMcr D 64�GM=c	es , xH D 0:7 and ˛ D 0:001, it has been found in [783]

that the ratio rin=rg D 2:885.
When a full system of equations is solved, including radial velocity terms, the

point where vr D vs is a critical point of the equations of a saddle type, and the
eigenvalue for rin is determined by the condition for the solution to pass this point.

As shown in [897,898], there are three characteristic zones in a thin accretion disk
without advection (Fig. 11.22). When PM > .1=20�1=50/ PMcr (1/20 corresponds to
convective, 1/50 to radiative energy transfer along z [120]), there exists a radiative
zone 1 with P D Pr � Pg and 	 D 	es. Zone 2 with P D Pg � Pr, 	 D 	es and
zone 3 with P D Pg � Pr, 	 D 	ffC	fb are located at larger radii. With decreasing
PM the radiative zone vanishes, and the boundary between the radiative zones 2 and

3 shifts towards the centre. If the term with dS=dr is neglected, all the gravitational
energy released in the disk is emitted from the surface. Taking the spectrum to be
locally black-body with effective temperature Tef, we obtain

�racT4
ef D � PM.l � lin/ d˝

dr
: (11.126)

Using (11.120) and (11.121), we have, putting˝ D ˝k [158]

Tef.r/ D 2:05 � 107

 PM
Mcr

Mˇ
M

!1=4 �
3rg

r

�3=4

'1=4
r;rin
; (11.127)

Fig. 11.22 Disk accretion onto black hole. 1 is the radiative zone with P D Pr , 	 D 	es, 2 is
the gas zone with scattering, P D Pg , 	 D 	es, 3 is the gas zone with bremsstrahlung processes,
P D Pg , 	 D 	ff C 	fb, 4 is the corona with T D 108–109 K (from [158])
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where

'r;rin D 1 �
q
3rg=r for the Newtonian potential

D
�
1 �

q
3rg=r

�2 �
1 � rg=3r

� �
1C 1

2

q
3rg=r

� �
1 � .rg=r/

��3

for the potential (11.114): (11.128)

The total disk spectrum has the power form F! � !1=3, similar to (11.110), with
an exponential cut-off at

! D kTef.ˇrin/

„ D 2:7 � 1018

 PM
Mcr

Mˇ
M

!1=4

ˇ�3=4'
1=4

ˇrin;rin
: (11.129)

Here, r D ˇrin corresponds to the maximum Tef, ˇD 49=36, 'ˇrin;rin D 1=7,
ˇ�3=4'1=4D 0:49 for a Newtonian potential; ˇD 1:59, 'ˇrin;rin D 0:113, ˇ�3=4

'1=4D 0:41 for the potential (11.114).
As shown in [120, 162], the innermost region of the disk (zone 1 in Fig. 11.22)

is unstable to convection. The mechanical transfer of the energy generated by con-
vection leads to the formation above the radiative zone of a hot (T D 108 � 109 K)
corona with n � 1015 cm�3, see also [634]. The inverse Compton interaction be-
tween thermal radiation of the disk and hot electrons of the corona leads to a power
form of dependence in the hard end of the spectrum [341,949] and may thus account
for the observable hard (up to � 150 KeV) portion of the CygX-1 spectrum.

It was shown in [900] that in addition to the solution for optically thick disk,
presented in the Problem 2, there is another solution, where disk is optically thin
and has much higher temperature. The viscous dissipation heats mainly protons,
and radiation is produced mainly by electrons. In the optically thin case, electrons
gain their energy from collisions with protons. At low density, the energy exchange
between them by binary collisions is slow, so protons could become much hotter
than electrons and carry into a black hole almost all the energy. This could de-
crease the efficiency of accretion up to �10�4, which is why this regime was called
[734] advection-dominated accretion flow (ADAF). The presence of a magnetic field
leading to both the heating of matter (electrons and protons) during its dissipation
(11.79) and the enhanced energy exchange between electrons and protons in a tur-
bulent plasma should substantially increase the efficiency of accretion and does not
let it become less than 1=4 of the corresponding value for an optically thick disk
[128, 129]. Far from the stellar surface or from the Alfven surface of radius rA,
where B2=8� D .1=2/�v2, the accretion onto a neutron star or white dwarf is not
distinct from that onto a black hole. Near the magnetosphere at the radius rA, or
at the stellar surface when the field is low, the accretion pattern becomes markedly
complicated because of the interaction of the accretion flow with the magnetosphere
[644] and/or the surface. Studies of accretion onto neutron stars are reviewed in
[158, 899], and onto white dwarfs in [17].
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When the magnetic field of a neutron star is strong, and rA > Rns (neutron star
radius), the matter halts at the Alfven surface and flows along magnetic lines towards
the magnetic poles. The emission of such a star is anisotropic, and its rotation gives
the observed pattern of an X-ray pulsar. When the field is weak and rA < Rns, no hot
spot forms at the poles and no X-ray pulsar emerges. The accretion disk approaches
the neutron star surface and makes it rotate rapidly, giving rise to a millisecond
radiopulsar after the accretion has ceased [21].

During the disk accretion into a slowly rotating star, a boundary layer (BL) is
formed with rapid transition from Keplerian to stellar angular velocity, where a sub-
stantial part of the energy is released. When the star accelerates its rotation the
energy release inside the BL decreases, and finally it disappears for critically rotat-
ing stars. The accretion disk around a critically rotating star increases its luminosity
several times, compared to the case of BL existence [110].

11.3.5 Accretion Disc Structure with Optically
Thin/Thick Transition

Equations describing accretion disks with continuous description of optically
thick/thin transition have been derived in [50]. To find a description valid in both
limiting cases and also between them, the Eddington approximation was used for
obtaining a formula for the heat flux which may be used instead of (11.256) which
is valid only for the optically thick case.

Suppose that the disc is geometrically thin and has a constant density along the
z-axis. Defining S as the energy density of the radiation, Frad as the radiation flux
in the z-direction and Prad as the radiation pressure, we write first two momentum
equations for radiative transfer for frequency-independent ˛a and �T in the form

dFrad

d z
D ��c˛aaT

4

�
S

aT 4
� 1

�
; (11.130)

c
dPrad

d z
D ��T �Frad: (11.131)

Consider the case when the scattering opacity �T is much larger than the absorption
opacity ˛a, and suggest that the heat production rate is proportional to the mass
density �. Then, neglecting the flux in the radial direction, we obtain

Frad D 2 F0

˙0

�z; (11.132)

where F0 is the flux from the unit surface of the disc at z D h, and surface density

˙0 D 2�h: (11.133)
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Substituting (11.132) into (11.130), we obtain

S D 3Prad D aT 4

�
1 � 2F0

c˛aaT 4˙0

�
: (11.134)

Using (11.132) in (11.131), we obtain

c
dPrad

dz
D �2�T

F0

˙0

�2z: (11.135)

Introducing the scattering optical depth


 D
Z 1

z
�T �dz D �T �.h� z/ D 
0 � �T �z;


0 D �T �h D 1

2
�T˙0; (11.136)

we rewrite (11.135) in the form

c
dPrad

d

D 2 F0

˙0


0 � 

�T

: (11.137)

Solving (11.137) with the following boundary condition

Fradj�D0 D F0 D cS j�D0

2
D 3cPradj�D0

2
; (11.138)

results in

cPrad D F0

�
2

3
C 
 � 
2

2
0

�
: (11.139)

In the symmetry plane of the disc at 
 D 
0, we have

cPrad;c D F0

�
2

3
C 
0

2

�
: (11.140)

Using (11.140) in (11.134), we obtain in the symmetry plane, where T D Tc

F0 D caT 4
c

�
2C 3
0

2
C 1


˛0

��1

; (11.141)

where the absorption optical depth


˛ D
Z 1

z
˛a�dz D ˛a�.h� z/ D 
˛0 � ˛a�z;


˛0 D ˛a�h D 1

2
˛a˙0: (11.142)
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Introducing the effective optical depth


� D .
0
˛0/
1=2 ; (11.143)

we finally obtain the expressions for the vertical energy flux from the disc F0 (anal-
ogous to Q� in (11.256)) and the radiation pressure in the symmetry plane as

F0 D 2acT 4
c

3
0

�
1C 4

3
0

C 2

3
2�

��1

; (11.144)

Prad;c D aT 4
c

3

1C .4=3
0/

1C .4=3
0/C .2=3
2�/
: (11.145)

At 
0 � 
� � 1, we have (11.256) from (11.144). In the optically thin limit

� 	 
0 	 1, we obtain

F0 D acT 4
c 
˛0; (11.146)

Prad;c D 2

3
acT 4

c 
˛0: (11.147)

Using F0 instead ofQ� and the equation of state P D �RT CPrad;c, the algebraic
equations (11.253), (11.255), (11.257) and (11.268), together with equation

QC D F0 (11.148)

with QC from (11.254), have been solved numerically in [50].14

It occurs that two solutions, optically thick and optically thin, exist separately
when luminosity is not very large. Two solutions intersect at Pm D Pmb and there is
no global solution for accretion disc at Pm > Pmb (see Fig. 11.23). It is concluded in
[50] that to obtain a global physically meaningful solution at Pm > Pmb, an advective
term in (11.148), as in (11.117), needs to be accounted for.

11.3.6 Black Hole Advective Accretion Disks
with Optical Depth Transition

In the widely used standard model of accretion disks around black holes [755, 897,
898] it is assumed that an accretion flow has a small radial velocity, and the disk
has a small geometrical, large optical thicknesses, and rotates with a nearly Keple-
rian angular velocity. The solution of the structure of the standard model accretion
disk is presented in Problem 2. For the optically thick and low accretion rate disks

14 Viscosity in ˛ presentation was used in [50] in the form (11.284) instead of the original (11.122)
from [897].
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Fig. 11.23 The dependence of the optical depth 
0 on the radius r
�

for the case of the black hole
mass MBH D 108 M

ˇ

, ˛ D 1 and various values of Pm. The curves are numbered in increasing
order Pm D 1:0, 3.0, 8.0, 9.35, 10.0, 11.0 and 15.0. The upper curves correspond to the optically
thick family, the lower curves correspond to the optically thin family. The non-dimensional radius
r

�

and mass flux Pm are defined in (11.267), r
�

� x, and 
0 is defined in (11.136)

with PM 	 PMEdd, where PMEdd D LEdd=c
2 is the Eddington accretion rate, these

assumptions are generally considered as being reasonable. At higher accretion rate
flows at PM & PMEdd, the advection should crucially modify the properties of the in-
nermost parts of the standard disks – the disks become hotter and thicker, and their
rotation laws deviate from the Keplerian law. The system of equations (11.115)–
(11.119) considered in [783] included only the effects of heat advection and the
radial pressure gradient. The importance of the transonic nature of accretion flows
was emphasized in [635]. It was shown in [678] that for ˛ & 0:2, and viscosity
prescription tr� D ˛P , the singular point, where the radial velocity approximately
equals the sound velocity, is changed from a saddle to a nodal type, with increase in
the accretion rate. Extensive investigation of accretion disk models with advection
for a wide range of the parameters PM and ˛ was conducted in [4]. The advection
problem was investigated in [263] involving shock waves near the innermost disk
region by considering accretion through saddle points.

As follows from the solution in the previous section, neglecting the advective
heat transport in the high- PM optically thick disks leads to qualitatively wrong con-
clusions about the topology of the family of solutions of the disk structure. Without
the advection terms, these equations give rise to two branches of solutions, opti-
cally thick and optically thin solutions, which do not intersect if PM < PMcr �
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.0:6 � 0:9/ PMEdd for ˛ D 1 and MBH D 108Mˇ [50], see Fig. 11.23. For larger
accretion rates, there are no solutions for these equations extending continuously
from large to small radii and having the Keplerian boundary conditions at the outer
boundary of the disk (see also [636, 655, 1030]). It was argued in [50] that for the
accretion rates larger than PMcr, advection becomes critically important and would
allow solutions that are extended all the way towards the inner disk edge to exist.
The transonic solutions for the optically thick advective accretion disks was con-
structed in [51]. However, for some choices of PM and ˛, these solutions were not
consistent in the respect that in spite of the large vertical Thomson (or scattering)
optical depths, the corresponding effective optical depths (11.143) become less than
unity in the inner disk regions. This effect leads to violation of the optically thick
disk approximation used in [51] and results in significant changes in the structure of
the inner regions.

Advective disk structure with a consistent treatment that correctly describes the
intermediate region between the effectively optically thick and thin disk from [50]
was constructed numerically in [52]. In this solution, at high accretion rates, the
inner parts of the accretion disk are optically thin, and the outer ones are optically
thick, with the solution close to the “standard model” [898].

In spite of a small effective optical depth in the inner region, the radiation pres-
sure (11.145), being considerably less than the thermodynamic equilibrium one,
nevertheless dominates over the gas pressure (Fig. 11.29). The solution with the op-
tically thick/thin transition is the only equilibrium solution for the high-luminosity
one-temperature advective disk. Therefore, it is stable to the global transitions, con-
trary to the stationary solution from [900], which is unstable, and exists at small
and moderate luminosities simultaneously with a stable optically thick model. The
considered models always have large Thomson optical depths (11.136), and all the
discussion [52] regarding the optical depth transitions deals with the effective opti-
cal depths. In the study of transonic models, the radial pressure gradient and radial
drift velocity were included, and a non-Keplerian rotation was allowed.

The geometrically thin disk approximation is used correctly, because the relative
thickness of the disk in the considered models is always less than unity. Using of
the one-temperature approximation for the accreting plasma is consistent with the
estimates of the short electron-ion Coulomb coupling time in comparison with the
long accretion timescale. Note that the real coupling time could be even shorter if
the relaxation due to plasma instabilities is more efficient than that due to Coulomb
collisions. Global solutions extending from large radii to the inner edge of the disk
are constructed for a wide range of accretion rates considerably larger than PMcr, and
the smooth transition between the optically thick and thin regions appears when the
mass accretion rate is close to PMcr. The temperature in the optically thin region can
be increased by up to a factor of 30 in comparison with the solutions obtained using
the optically thick approximation. This high-temperature inner disk region can ex-
plain the emission of the hard X-ray tails observed in spectra of bright X-ray sources
with black hole components such as CygX-1, LMCX-3 and LMCX-1 [284]. These
tails are interpreted in different models, such as the model of Comptonization in the
hot disk corona [162] or the (Thomson) optically thin disk [900]. Hot optically thin
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regions appear in the central parts of highly luminous accretion disks, and the hard
X-ray tails in such objects are an inevitable consequence of this disk equilibrium
state.

11.3.6.1 Basic Equations

The one-dimensional, height-averaged stationary accretion disk model, with ac-
count of the effect of advection, and arbitrary vertical optical depth that includes
optically thin, intermediate and optically thick accretion regimes, is described by
the following equations [52]:
The mass conservation equation is

PM D 4�rh�v; (11.149)

the radial and angular momentum equations are

v
dv

dr
D �1

�

dPtot

dr
C .˝2 �˝2

K/r; (11.150)

PM
2�

.l � lin/ D 2hr2˛Ptot; (11.151)

and the internal energy equation is

Qadv D QC �Q�; (11.152)

where

Qadv D �
PM

4�r



dE

dr
C P d

dr

�
1

�

��
; (11.153)

QC D �
PM
4�
r˝

d˝

dr

�
1 � lin

l

�
; (11.154)

Q� D 2aT 4c

3	�h

�
1C 4

3
0

C 2

3
2�

��1

; (11.155)

are the heat advection, viscous dissipation and radiative cooling rates per disk unit
surface, respectively. In equations (11.149)–(11.155), it is assumed that �, T , v, ˝ ,
Ptot and E are the midplane density, temperature, radial velocity, angular velocity,
total (gas plus radiation) pressure, and specific internal energy, respectively. Other
quantities have the following notations: 	 is the Thomson opacity, a is the radia-
tion constant, ˝K D

p
GM=r.r � 2rg/2 is the Keplerian angular velocity in the

framework of the pseudo-Newtonian approach (11.114),M is the black hole mass,
2rg D 2GM=c2 is the gravitational radius, ` D ˝r2 is the specific angular mo-
mentum, `in is a constant defined by the global solution, h D cs=˝K is the disk
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half-thickness and cs D
p
Ptot=� is the midplane ‘isothermal’ sound speed. The

accretion rate PM and velocity v are assumed to be positive in these equations. The
value of `in has an obvious physical meaning: it is an asymptotic angular momentum
of accretion matter at the black hole horizon [515]. In equation (3), following [897],
the viscosity prescription is used in which the main .r�/ component of the viscous
stress tensor tik is proportional to the total pressure,

tr� D ˛Ptot: (11.156)

where ˛ . 1 is a parameter. The radiative cooling term (11.155) can be applied to
optically thin and thick regimes, where 
0 D 	�h is the total Thomson scattering
depth of the disk, and


� D Œ.
0 C 
˛/
˛�
1=2 (11.157)

is the effective optical depth. Here, 
˛ is the optical depth with respect to
bremsstrahlung absorption,


˛ ' 5:2 
 1021 �
2T 1=2h

acT 4
: (11.158)

In the disk models considered below, the inequality 
0 � 
˛ is valid. The equation
of state of the accretion matter consisting of a gas and radiation mixture reads

Ptot D Pgas C Prad; (11.159)

where the gas pressure Pgas is as for an ideal gas with the gas constant R,

Pgas D �RT; (11.160)

and the radiation pressure Prad is represented by the bridging formula for the opti-
cally thick and thin regimes [50],

Prad D aT 4

3

�
1C 4

3
0

��
1C 4

3
0

C 2

3
2�

��1

: (11.161)

The internal energy density of the mixture takes the form,

�E D 3

2
Pgas C 3Prad: (11.162)

11.3.6.2 Singular Points and Uniqueness of Solutions

The system of equations (11.149)–(11.152) can be reduced to the following system
of two ordinary differential equations,
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x
Qv 0

Qv D
N

D
; (11.163)

x
Qcs

0

Qcs
D 1C x2

c2
s



Q̋ 2 � 1

x.x � 2/2
�
C 3x � 2
2.x � 2/ �

� Qv2

Qc2
s

� 1
�
N

D
; (11.164)

where the notations N and D are used to denote algebraical expressions, which
depend only on r , v, cs and `in. Explicit forms of N and D are given in [52]. All
quantities in equations (11.163) and (11.164) have been converted to the dimension-
less form, with variables

x D r

rg
; Qv D v

c
; Qcs D cs

c
; Q̋ D ˝rg

c
; Q̀ D `

rgc
; m D M

Mˇ
: (11.165)

Singular points of equations (11.163)-(11.163) are defined by the condition

D jrDrs
D 0; (11.166)

where rs is the location of the singular point. Continuous solutions, which smoothly
go through the singular points, also have to satisfy the regularity condition at these
points,

N jrDrs
D 0: (11.167)

The type of the singular points must be consistent with a transonic nature of the
global steady-state solutions. Typically, there is at least one ‘inner’ singular point
in the global accretion disk solutions, which is associated with the sonic point near
the black hole horizon at rs � 6rg (e.g., see [783]). This point can be a saddle or
nodal-type point [678]. Any global solution, which is subsonic at large radii and su-
personic near the black hole horizon, must go through the inner singular point. The
solutions, which have a saddle inner singular point, are obviously unique. Unique-
ness of the solutions with a nodal inner singular point requires an additional study.
Some formulations of the equations for the accretion disk structure, including our
formulation, result in appearance of the second ‘outer’ singular point located in the
subsonic region of the accretion disk solution at r � 6rg. It was found in [51] that
the outer singular points are always saddle points. Therefore, these global solutions
with two singular points are unique independently of the type, saddle or nodal, of the
inner singular point. For a given black hole mass, the global solution is determined
by the two parameters, PM and ˛. The parameter `in, implicitly present in equations
(11.163) and (11.164) via the expression for ˝ (see (11.151)

˝ D `in

r2
C ˛c

2
s

vr
; (11.168)

is not an independent parameter, but it is an eigenvalue of the problem, i.e. `in is
determined by the global solution.
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11.3.6.3 Method of Solution

A finite-difference method was used to solve equations (11.163) and (11.164). The
basic features of this method were outlined in [515] and [51]. The method uses
a standard numerical discretization technique to reduce the system of differential
equations to a system of nonlinear algebraic equations, which are then solved us-
ing the Newton–Raphson iteration scheme. Important ingredients of the method,
introduced in [51], are that it involves an expansion of a solution around the inner
singular point and uses lin as an independent variable in the iteration scheme.

The solutions do not explicitly depend on the outer and inner boundary condi-
tions. Formally, the numerical method requires specification of the outer boundary
values for v and cs. However, it was found that the specific values of v and cs are
not important, because the solution quickly settles down on the separatrix, which
behavior does not depend on the outer boundary values (see [51]). The behavior
of the solutions in the inner region is defined by the regularity conditions (11.166)
and (11.167) at the inner singular point, and therefore no explicit inner boundary
conditions are required. Note that the analytical forms of of the partial derivatives
of the numeratorN and denominatorD have been used to accurately treat the inner
singular point in the iteration procedure [51]. The Mathematica system [1044] was
used to perform the needed extended algebraic calculations.

11.3.6.4 Numerical Results and Physical Effects

Solutions of three types of accretion disk models have been computed : (1) non-
advective models with optical depth transition, (2) advective models with optical
depth transition and (3) advective models using the optically thick approximation
only. In the case of the small accretion rates, Pm . 0:1, where Pm D PMc2=LEdd,
the models of all types are very similar at all radial distances. When increasing
the accretion rates, the models of different types deviate significantly from each
other at the small radial distances, whereas they remain similar at the larger radial
distances. A comparative analysis of the obtained models is given below, focusing
on the models with large accretion rates, Pm & 10.

Solutions of equations (11.149)–(11.152) without the advection terms were ob-
tained in [50] (Sect. 11.3.5) using the Newtonian potential. Similar solutions are
reproduced below using the pseudo-Newtonian potential. The solutions of this type
are global, i.e. they exist for the all radial range, only if the accretion rates Pm < Pmcr,
where the critical accretion rate Pmcr depends on ˛ and the black hole mass. In par-
ticular, Pmcr D 36 in the case of ˛ D 0:5 and MBH D 10Mˇ, and Pmcr D 9 in
the case of ˛ D 1 and MBH D 108Mˇ. Figure 11.24 shows the radial depen-
dence of the Thomson scattering depth (left) and the effective optical depth (right)
for models with ˛ D 0:5, MBH D 10Mˇ, and different Pm. Dashed lines represent
two families of the global models with Pm < Pmcr, which will be called as the ‘op-
tically thick’ and ‘optically thin’ families. The three upper lines on the left panel
correspond to the optically thick family with Pm D 10; 20; 30 (from top to bottom).
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Fig. 11.24 Radial dependence of the Thomson scattering depth 
0 (left panel), and the effective
optical depth 


�

(right panel) for the models with ˛ D 0:5 and MBH D 10M
ˇ

constructed ne-
glecting the radial heat advection. Dashed lines correspond to the solutions with Pm < Pmcr D 36.
The three upper lines on the left panel correspond to the optically thick family of solutions with
Pm D 10; 20 and 30 (from top to bottom). The three lower lines correspond to the optically thin

family of solutions with the same Pm D 10; 20 and 30 (from bottom to top). On the right panel, the
two upper dashed lines correspond to the optically thick solutions with Pm D 20 and 30 (from top
to bottom) and the two lower lines correspond to the optically thin solutions with Pm D 20 and 30
(from bottom to top). Dotted lines on the left and right panels correspond to the unphysical solu-
tions with Pm D 36 (left and right inner lines) and Pm D 50 (left and right outer lines), from [52].

The three lower dashed lines correspond to the optically thin family and have the
same Pm D 10; 20; 30 ( from bottom to top). On the right panel, the two upper dashed
lines correspond to the optically thick family with Pm D 20; 30 ( from top to bottom),
and the two lower lines correspond to the optically thin family with Pm D 20; 30

( from bottom to top). Note that the effective optical depth of the optically thin fam-
ily of the solutions is always very small, whereas the optical depth of the optically
thick family is usually large and becomes less than unity only in the limited ranges
of radii' 10rg–40rg and accretion rates Pm ' 10–30. When Pm > Pmcr, there are no
global solutions. Dotted lines in Figure 11.24 (left and right panels) show solutions
for Pm D 36 (two inner left and right lines) and Pm D 50 (two outer left and right
lines). These solutions are clearly unphysical.

Solutions of equations (11.149)–(11.152) with the advection terms were obtained
only in the case of the optically thick family. These solutions coincide closely with
the non-advective solutions of the optically thick family at large radii, r & 102rg.
At smaller radii, however, there are significant deviations between the advective and
non-advective solutions. In Figures 11.25 and 11.26, one can compare the radial
profiles 
0 and 
� for the advective and non-advective solutions in the case when Pm
is close to Pmcr. Figure 11.25 (left and right panels) shows by dashed lines the same
non-advective global solutions with Pm D 30 < Pmcr that are shown in Fig. 11.24,
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Fig. 11.25 Radial dependence of the Thomson scattering depth 
0 (left panel) and the effective
optical depth 


�

(right panel) for the model with ˛ D 0:5, MBH D 10M
ˇ

, and Pm D 30. The
dashed lines correspond to the solutions without advection (see the caption of Fig. 1 for details of
notations). The solid lines correspond to the solution with advection and optical depth transition,
from [52]

Fig. 11.26 Radial dependence of the Thomson scattering depth 
0 (left panel) and the effective
optical depth 


�

(right panel) for the model with ˛ D 0:5, MBH D 10M
ˇ

, and Pm D 50. The
dotted lines correspond to the unphysical solutions without advection. The solid lines correspond
to the global solution with advection and optical depth transition, from [52]

and by solid lines the corresponding global advective solution. Note a significant
quantitative difference in the values of the effective optical depths inside 40rg in the
two solutions.

Figure 11.26 represents the case Pm D 50 > Pmcr. The dotted lines on the left and
right panels show the non-advective solutions (Fig. 1) with the gap at r � 10rg–20rg

where the solutions do not exist, and the solid lines are the corresponding global
advective solution. It was discussed above that there are no global and, therefore,
physical solutions without advection for the large Pm. The reason is that the local
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Fig. 11.27 Radial dependence of the effective optical depth 

�

(left panel) and the midplane tem-
perature T (right panel) for the models with MBH D 10M

ˇ

, ˛ D 0:5, and Pm D 48. The dashed
lines correspond to the advective optically thick solution and the solid lines correspond to the
advective solution with the optical depth transition, from [52]

thermal equilibrium without the advection term, QC D Q� (see (11.152)), cannot
be satisfied anymore for Pm > Pmcr in the case of the effectively optically thin plasma
that radiates inefficiently. Therefore, in the global solutions with the optical depth
transition, the advection cooling term Qadv is an essential and important ingredient
in equation (11.152) to balance the viscous energy release term QC.

The advective models constructed using the optically thick approximation can
significantly overestimate the effect of radiative cooling in the effectively opti-
cally thin regions of accretion disks. This results in the cooler interior of the disks,
which then produce a softer outgoing radiation. Figure 11.27 shows an example of
the radial dependence of the effective optical depth (left) and midplane tempera-
ture (right) for the advective models with and without the optical depth transition
(solid and dashed lines, respectively). These models are characterized by ˛ D 0:5,
MBH D 10Mˇ and Pm D 48. Note the significant increase of the temperature up to
6 � 108K and corresponing drop of the effective optical depth down to 10�3 inside
the radius � 20rg in the model with optical depth transition. This is an illustrative
example of the super-Eddington accretion, which can be discriminated in observa-
tions due to production of hard-X-rays excess.

In contrast, the models with the accretion rates smaller than the critical one,
Pm < Pmcr, do not show the prominent effectively optically thin regions and relative

temperature increase. As an example of the latter case, we show the model charac-
terized by ˛ D 0:1, MBH D 10Mˇ and Pm D 50 < Pmcr with the optical depth
transition (Fig. 11.28, solid lines), in which the central temperature is increased to
T D 4 � 107K – only a factor of 2 larger than the maximum temperature in the
optically thick counterpart of this model (Fig. 11.28, dashed lines).
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Fig. 11.28 Radial dependence of the effective optical depth 

�

(left panel) and the midplane tem-
perature T (right panel) for the models with MBH D 10M

ˇ

, ˛ D 0:1, and Pm D 50. The dashed
lines correspond to the advective optically thick solution and the solid lines correspond to the
advective solution with the optical depth transition

Using the analysis of singular points discussed in [51], the types of singular
points have been determined in the numerical solutions [52]. With the viscosity pre-
scription (11.156), the advective models with the optical depth transition have two
singular points, similar to optically thick models in [51]. The inner singular points,
.rs/in can be saddles or nodes depending on the values of ˛ and Pm. In the case of
the models with ˛ D 0:5 and MBH D 10Mˇ, the inner singular points are nodes
if Pm > 1 and saddles otherwise. Note that the change of the type from the saddle to
nodal one does not introduce any features in the solutions. The outer singular points,
.rs/out, are always saddle points in the studied models.

The difference between the advective models with and without the optical depth
transition can be investigated considering the ratio of the gas to total pressure at
this point, ˇs D Pg=Ptot, as functions of Pm in Fig. 11.29 for the case of the models
with ˛ D 0:5 and MBH D 10Mˇ. The solid line corresponds to the models with
the optical depth transition, and the dashed lines correspond to the optically thick
models. In spite of some quantitative changes, there are no changes in the qualitative
behaviour of the value ˇs with change of Pm in the considered advective models with
and without the optical depth transition, as well as in the behaviour of `in and rs
with change of Pm [52].

As was found in [52], the advective accretion disk models constructed using the
optically thick approximation for the vertical radiative transport significantly over-
estimate the effect of radiative cooling in the effectively optically thin regions. This
results in the cooler interior of the disks. The models with the correct account of the
optical depth transition show significant temperature increase (more than one order
of magnitude) in the disk interior at the inner radii. This increase result in harder
emitting spectra from the disks, and therefore such disks can be discriminated in
observations. The high temperatures in the inner parts of the accretion disk may
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Fig. 11.29 Ratio of the gas pressure to total pressure ˇs at the inner singular point, .rs/in, as a
function of the mass accretion rate PM . The models with ˛ D 0:5 and MBH D 10M

ˇ

are shown.
See the caption of Fig. 8 for other details of notations, from [52]

lead to electron–positron pair creation and modification of the energy spectrum of
the source in the high-energy region over 500 keV. The radiation energy density in
the inner regions is at least 4 orders of a magnitude less than the thermodynamic
equilibrium radiation energy. It follows from the comparison with optically thick
models that when increasing the temperature by 30 times and decreasing the den-
sity, the ratio of the gas pressure to the radiation pressure increases (Fig. 11.29).
Therefore, bremsstrahlung radiation is more efficient in this situation.

Accretion disks around rotating black holes can be situated closer to the centre,
until r D rg for the extreme Kerr metric. Therefore, the temperature in the inner
parts of such disks with optically thin/thick transition increases, leading to higher
importance of electron–positron pairs. It the temperature in the inner optically thin
disk parts exceeds the limiting temperature of about kT � 20 MeV, the unlimited
birth pairs start [173] producing a separate optically thick region around the inner
boundary. Another important changes in the structure of the advective disks with the
optically thin/thick transition should be introduced by the presence of the magnetic
field, regular as well as chaotic. Magnetodipole radiation and absorption in the pres-
ence of magnetic field may be more important than the bremstrahlung, increasing
the effective optical depth. Both effects should change considerably the values of
Pmcr and quantitive characteristics of the advective disks with the optically thin/thick

transition.
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A unified model of the advective accretion disks around black holes, using the
bridging formula for the optical depth transition from [1030], was constructed in
[279]. The models in [279] have Pm < Pmcr and therefore did not differ much from
the pure optically thick models, with the interior temperature not exceeding T �
6 � 107K , similar to Fig. 11.28.

11.3.7 Large-Scale Magnetic Fields Dragging in Accretion Disks

Early work on disk accretion to a black hole argued that a large-scale magnetic
field of, for example, the interstellar medium would be dragged inward and greatly
compressed by the accreting plasma [139, 143, 643]. Subsequently, analytic mod-
els of the field advection and diffusion in a turbulent rotating disk suggested that
the large-scale field diffuses outward rapidly [646, 651] and prevents a significant
amplification of the external poloidal field by electrical current in the accretion disk.

This has led to the suggestion that special conditions (non-axisymmetry) are
required for the field to be advected inward [928]. In accretion with nonuniform
vertical structure the high electrical conductivity of the surface layers of the disk,
where the turbulence is suppressed by the radiation flux and the relatively high mag-
netic field, prevents outward diffusion of the magnetic field. This leads in general
to a strong magnetic field in the inner parts of accretion disks around black holes
[131, 647].

Consider first the fully turbulent disks. There are two limiting accretion disk
models which have analytic solutions for a large-scale magnetic field structure.
The first was constructed in [143] for a stationary non-rotating accretion disk, (see
Sect. 11.3.2). A stationary state in this disk (with a constant mass flux onto a black
hole) is maintained by the balance between magnetic and gravitational forces, and
thermal balance (local) is maintained by Ohmic heating and radiative radiative con-
ductivity for an optically thick conditions. The mass flux to the black hole in the
accretion disk is determined by the finite conductivity of the disk matter and the
diffusion of matter across the large-scale magnetic field as sketched in Fig. 11.19.
The value of the large-scale magnetic field in stationary conditions is determined by
the accretion disk mass, which in turn is determined by the magnetic diffusivity of
the matter. For a laminar disk with Coulomb conductivity (which is very large), the
mass of the stationary disk is also very large. Correspondingly, the magnetic field
needed to support a mechanical equilibrium is also very large.

It is widely accepted that the laminar disk is unstable to different hydrodynamic,
magnetohydrodynamic and plasma instabilities, which implies that the disk is tur-
bulent. In X-ray binary systems, the assumption about turbulent accretion disk is
necessary for construction of a realistic models [898]. Therefore, the turbulent ac-
cretion disks had been constructed also for non-rotating models with a large-scale
magnetic field. A turbulent magnetic diffusivity was considered in [797] and [143],
where the turbulent diffusivity was scaled by the parameters of the turbulent motion
(11.104), similar to the scaling of the shear ˛-viscosity in turbulent accretion disk
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in binaries. In a consistent representation (first relation in (11.122)), the coefficient
of turbulent kinematic viscosity  D �=� in the Navier–Stokes equation is taken in
the form  D 2

3
˛vsh, where vs D

p
P=� is the isothermal sound speed and � is the

midplane density of the disk.
The evolution of a large-scale magnetic field threading a turbulent Keplerian disk

can be estimated easily. This field arises from two sources: external electrical cur-
rents and currents in the accretion disk. Evidently, the field generated by the currents
in the disk can be much larger than that due to the external currents. The magnetic
field may become dynamically important, influencing the accretion disk structure
and leading to powerful jet formation, only if it is strongly amplified during the
radial inflow of the disk matter. This amplification is possible only when the radial
accretion speed of matter in the disk is larger than the outward diffusion speed of the
poloidal magnetic field due to the turbulent diffusivity �t D c2=.4��t /. Estimates
in [651] have shown that for a turbulent conductivity (11.104), the outward diffusion
speed is larger than the accretion speed. Thus, it appears that there is no large-scale
magnetic field amplification during Keplerian disk accretion. This conclusion is dis-
couraging because the most plausible models of many phenomena observed in the
the systems with black holes inside the galaxy, as well as in the extragalactic su-
permassive black holes, are connected with a large values of a large-scale magnetic
fields. Nevertheless, this result directly follows from the equations of the standard
disk structure, with the turbulent electric conductivity (11.104), and was analytically
obtained in [131]. The standard accretion disk structure (see Sects. 11.3.4, 11.3.6)
can be written as

PM D 4��vrrh; h D vs

˝K

; vs D
s
P

�
; 4�r2h˛P D PM.j � jin/;

3

2
˝K˛Ph D 2aT 4c

3	�h
; (11.169)

where vK D r˝K is the Keplerian velocity (see e.g. [130]). For regions far from
the inner disk boundary, the specific angular momentum j � jin. The characteristic
time tvisc of the accretion disk matter advection due to the shear viscosity is tvisc D
r=vr. From the first three relations in equation (11.169), we obtain

tvisc D r

vr
D j

˛v2
s
: (11.170)

To estimate the time of the magnetic field diffusion, we use

tdiff D r2

�

h

r

Bz

Br

; (11.171)

[651], where Br and Bz are the large-scale field components evaluated at the top
surface of the disk. Here the coefficient of the magnetic turbulent diffusivity � is
obtained from (11.104)
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� D c2

4��t

D Q̨hvs: (11.172)

For stationary conditions, the large-scale magnetic field in the accretion disk is de-
termined by the equality tvisc D tdiff, which implies

Br

Bz
D ˛

Q̨
vs

vK

D ˛

Q̨
h

r
	 1: (11.173)

In contrast, the coronal poloidal field solution typically have Bzd � Brd � 1 at the
disk surface [118,1002] which implies that tvisc � tdiff. This inequality indicates that
the magnetic field is not amplified during accretion for these physical conditions.

11.3.7.1 Turbulent Disk with Radiative Outer Zones

Near the surface of the disk, in the region of low optical depth, the turbulent motion
is suppressed by the radiative flux, similar to the suppression of the convection over
the photospheres of stars with outer convective zones. The presence of the outer
radiative layer does not affect the estimate of the characteristic time tvisc of the mat-
ter advection in the accretion disk because it is determined by the main turbulent
part of the disk. The time of the field diffusion, on the contrary, is significantly
changed, because the electrical current is concentrated in the radiative highly con-
ductive regions, which generate the main part of the magnetic field. The structure of
the magnetic field with outer radiative layers is shown schematically in Fig. 11.30.

Inside the turbulent disk, the electrical current is negligibly small so that the
magnetic field there is almost fully vertical, with Br 	 Bz, according to (11.173).
In the outer radiative layer, the field diffusion is very small, so that matter advection
is leading to strong magnetic field amplification. The field amplification will last
until the magnetic forces in the region over the photosphere become of the order
of the gravitational ones and start to participate in the equilibrium balance. In such
conditions, the MHD and plasma instabilities are developed, decreasing the effective
electrical conductivity. In the stationary state, the magnetic forces could support the

Fig. 11.30 Sketch of the large-scale poloidal magnetic field threading a rotating turbulent accre-
tion disk with a radiative outer boundary layer. The toroidal current flows mainly in the highly
conductive radiative layers. The large-scale (average) field in the turbulent region is almost vertical
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optically thin regions against gravity. In the nonrotating magnetized disk, magnetic
forces support the whole disk against the gravity; so they should be much higher.
When the magnetic force balances the gravitational force on the outer optically thin
part of the disk of surface density ˙ph, one finds that the following relation takes
place [143]

GM˙ph

r2
' BzI�

2c
' B2

z

4�
; (11.174)

The surface density over the photosphere corresponds to a layer with effective opti-
cal depth close to 2=3 (e.g. [724]). The lower limit of the magnetic field strength is
obtained taking 	es (instead of the effective opacity 	eff D p	es	a). Writing

	es˙ph D 2=3; (11.175)

it follows ˙ph D 5=3 (g/cm2/ for the opacity of the Thomson scattering, 	esD 0:4
cm2/g. The absorption opacity 	a is much less than 	es in the inner regions of a lumi-
nous accretion disk. Thus, using ˙ph from equation (11.175) in equation (11.174),
the lower bound on the large-scale magnetic field of a Keplerian accretion disk is
estimated as

Bz D
r
5�

3

c2

p
GMˇ

1

x
p
m
' 108G

1

x
p
m
; (11.176)

where x D r
rg

andm D M
M

ˇ

. For comparison, the surface density˙d of the disk in
the inner radiation dominated region, where we may expect the largest values of the
magnetic fields, is (see Problem. 2, Sect. 11.3):

˙d D 80
p
2

9˛

x3=2

Pm

 
1 �

r
3

x

!�1

; (11.177)

Pm D
PMc2

Lc

; Lc D 4�cGM

	es
;

The maximum magnetic field is reached when the outward magnetic force balances
the gravitational force on the disk of surface mass density˙ph. In equilibrium,Bz �p
˙ph. We find that Bz in a Keplerian accretion disk is about 20 times less than its

maximum possible value for x D 10; ˛ D 0:1 and Pm D 10.
An important question is the energy density of the large-scale stationary magnetic

field in comparison with the rotational or gravitational energy density of the disk.
For a non-rotating magnetized accretion disk, the energy density of the field is of the
order of the gravitational one, so that the magnetic field strength is very large in
the vicinity of a black hole [143], and may be many order of magnitude larger than
the external seed field. In the case of the fully turbulent Keplerian disk, the poloidal
magnetic field tends to drift outward [646,651] so that its value cannot significantly
exceed the strength of the large-scale seed magnetic field.

The suggestion of a fully turbulent accretion disk with a small turbulent conduc-
tivity is violated in the outer surface layer of the accretion disk where the optical
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depth is small and the turbulence is suppressed by the strong radiative flux. This is
similar to the radiative layer above the main body of a convective star (similar to the
Sun; e.g., [878]). In the radiative layer, the magnetic field diffusion is much slower
than in the region of fully developed turbulence. In the radiative layer, the diffusion
is determined by the classical Coulomb conductivity which is very large. The dif-
fusion in this layer is practically negligible. The electric current is concentrated in
the radiative layer, and the main body of the turbulent disk is almost current-free
and thus force-free. The magnetic field lines in this region are almost straight as
shown in Fig. 11.30. Because of the negligible diffusion in the radiative layer, the
large-scale field drifts inward until the dynamical action of the magnetic field on the
photosphere becomes comparable with that of centrifugal and gravitational forces.
At this point, the inward drift of the field will be halted and the stationary state
formed where the magnetic, centrifugal and gravitational forces on the optically
thin region will be comparable, and deviations from the Keplerian angular velocity
will be significant. The strength of the magnetic field for such conditions is smaller
than in the nonrotating disk of [143], but still it is very large in the vicinity of the
black hole. In this situation, we may, expect a nonuniform distribution of the an-
gular velocity over the disk thickness: The main body of the turbulent disk rotates
with the velocity close to the Keplerian one, and outer optically thin layers rotate
substantially slower. The strong shear in the disk surface layers may be a source of
turbulence development in the whole body of the accretion disk.

11.3.8 Battery Effect in Accretion Disks

The classical battery mechanism of magnetic field generation is connected with a
non-coincidence of surfaces of constant pressure and constant density, where forces
connected with pressure gradients become nonpotential. In this situation no static
equilibrium in the gravitational field is possible. When considering separately the
motion of electrons and ions, there is always a difference in the velocities of elec-
trons and ions which creates electric currents and an associated magnetic field.
Self-induction is very important in the battery mechanism, determining the rate of
increase of the magnetic field.

Along with ion and electron pressure gradients, a nonpotential force field may
arise due to the radiation force which acts predominantly on the electrons. In a
spherically symmetric star, the radiation force has a potential so that no magnetic
field is generated: equilibrium in the two-fluid plasma results from a distribution
of an electric charge and a static radial electric field. It was shown in [120] that
in geometrically thin, optically thick accretion disks, the radiation force above the
disk has a nonpotential or vortex-like component. Under this condition, no electric
charge distribution can give a static equilibrium. Instead, electric currents and a cor-
responding magnetic field are generated. The radiation forces above a thin disk gives
rise to poloidal electrical current flow and a toroidal magnetic field. Self-consistent
solution for optically thin, geometrically thick accretion disk flow was obtained in
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[900]. At very low mass accretion rates, suggesting two-temperature plasma with
Ti ¤ Te, there is a solution where the ion temperature is close to the virial temper-
ature, and Te 	 Ti . In the absence of a magnetic field, and neglecting relaxation
processes between electrons and ions except for binary collisions, these flows are re-
ferred to as advection dominated accretion flows (ADAF) [509, 734]. In the ADAF
regime the radiative efficiency of accretion may be very low, �103 times less then
the standard value for a geometrically thin, optically thick accretion disk. Account
of processes connected with the presence of a magnetic field increases the efficiency
up to at least 1=3 of the standard value [128, 129].

It was proposed in [305] that a cosmic battery may operate in ADAF accretion
flows owing to the Poynting–Robertson (PR) effect. The PR effect acts to generate
a toroidal electrical current and poloidal magnetic field. The authors claimed that
the magnetic field may be amplified up to �107G in the vicinity of a black hole
of stellar mass. The PR mechanism of magnetic field generation is similar to the
mechanism in [120] based on the nonpotential radiative force, but the magnetic field
reached there only values of � 10 G for a stellar mass black hole. In an optically
thin disk both mechanisms act together leading to the generation of toroidal and
poloidal components of the magnetic field. The radiative force initially causes the
magnetic field to grow linearly with time. However, this linear growth holds for only
a restricted time interval which is of the order of the accretion time of the matter
[120], while in [305] the interval of linear growth is unrestricted.

11.3.8.1 Radiatively Induced Current and Toroidal Magnetic Field
Production in Accretion Disks

Above a geometrically thin accretion disk around a black hole, the electrons are
acted on by a nonpotential radiation force FL due to Thomson scattering which is
found in [120]

FL D �R cos � r�L D .FLR; FL� ; 0/; (11.178)

where a spherical coordinate system .R; �; �/ is used, and �L is the “pseudopoten-
tial” of the radiation force, which may be expressed as

�L D �T

c

Z 1

rin

H.r/ r dr

.R4 C r4 C 2R2r2 cos 2�/1=2
: (11.179)

Here, the disk thickness is neglected and the cylindrical radius is r D R cos � . The
function H.r/ is the radiative flux emitted per unit area from one side of the disk.
In the standard local accretion model,

H.r/ D 3

8�

GM PM
r3

J ; (11.180)



298 11 Final Stages of Stellar Evolution

where J � 1 � .rin=r/
1=2, and rin D 3rS D 6GM=c2 is the inner radius of the

disk for a non-rotating black hole of Schwarzschild radius rS . In the disk plane,
� D �=2, the radiative force is perpendicular to the disk,

FL� D ��T

c
H.r/ D 3GMmp

r2

rin

r

L

LEdd
J ; (11.181)

where

L D GM PM
2rin

; LEdd D 4�cGMmp

�T

; (11.182)

where �T is the Thomson cross-section. Due to the interaction of the radiation flux
mainly with the electrons, the accretion disk becomes positively charged up to a
value where the electrostatic attraction of the electrons balances the radiation force.
The vertical component of the electrical field strengthE� in the disk plane is written
as

E� .r/ D � �T

cjejH.r/ D �E0

L

LEdd

�rin

r

�3

J ; (11.183)

where

E0.M/ � mpc
4

12jejGM � 1:76
Mˇ
M

cgs � 528Mˇ
M

V

cm
(11.184)

Thus, the surface charge-density of the disk is

�e.r/ D E� .r/

2�
:

The influence of this charge on the structure and stability of the accretion disk is
negligible.

Both the gravitational and electrical forces have a potential, so that they cannot
balance the nonpotential radiation force. Due to the radiation and electric forces,
electrons move with respect to protons, which to a first approximation do not acquire
the poloidal motion. Thus, a poloidal electrical current is generated with an associ-
ated toroidal magnetic field. The finite disk thickness may create poloidal motion of
all of the matter of the accretion disk, similar to meridional circulation in rotating
stars [568]. To estimate the magnetic field strength, we write the electromotive force
(EMF) as

E D 1

e

I
FL � dl D 1

e

Z Z
dS 
 r � FL � E�h; (11.185)

where h is the half-thickness of the disk. Thus the stationary current-density is

Jst � �eE

r
� �eE�h

r
; (11.186)
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where �e is the conductivity of the disk plasma. The stationary toroidal magnetic
field is [120]

B�0 � 4�

c
Jsth � 4��e

c

E�h
2

r
: (11.187)

In the radiation-dominated inner region of the standard ˛-disk model, h can be writ-
ten as [898]

h D 3 L

LEdd
J rin; (11.188)

Finally, the stationary value of toroidal magnetic field in the disk is equal to

B�0 � 36��e
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�2 �rin

r

�4

J 2: (11.189)

For the plasma conductivity �Coul owing to binary collisions,

�e D �Coul � 3 � 106T 3=2s�1; (11.190)

and the conductivity �T in the presence of well-developed turbulence (11.104), the
stationary field from (11.189) is equal to B�0 � 1013G, and B�0 � 10 G (for
˛ D 0:1), respectively. The time-scale 
m for reaching the stationary field given by
(11.189) is determined by the self-induction of the disk. This is equivalent to the
“L over R time” of circuit with inductance L and resistance R. For the electrical
conductivity �e, this time-scale is equal to


m ' 4��ehr

c2
: (11.191)

The crossing time of matter passing through the radiation dominated region of the
disk is

tc � r

vr
: (11.192)

During the time tc , there is linear growth of the magnetic field after which the matter
falls into the black hole. The battery value of the large-scale toroidal magnetic field
is equal to

B� � B�0

tc


m

D 3 c
vr
E0

�
L

LEdd

�2 �rin

r

�4

J 2: (11.193)

For a turbulent conductivity (11.104), the growth time-scale of the magnetic field,
using equations (11.104) and (11.191), is equal to


 turb
m � r

˛cs
: (11.194)
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Taking into account, from (11.266), that vr D ˛cs.L=LEdd/.rin=r/ < ˛cs and t turb
m <

tc , we find

B� D B turb
�0 � 3

c

˛cs
E0

�
L

LEdd

��rin

r

�3

J 2; (11.195)

where

cs D 7 � 109 cm

s

�
L

LEdd

��rin

r

�3=2

J :

The strength of the stationary toroidal magnetic field produced by the battery effect
in the radiation-dominated region of an accretion disk with the turbulent or higher
conductivity from (11.190) is equal to

B� � 22

˛

�
Mˇ
M

��rin

r

�3=2

J : (11.196)

At a distance r D 3rin, we have

B� � 2

˛

�
Mˇ
M

�
G; (11.197)

in accordance with [120]. The corresponding magnetic energy-density is much less
than the energy-density associated with the turbulent motion in the disk �v2

t =2.

11.3.8.2 Production of a Poloidal Magnetic Field in Optically Thin
Accretion Flows by Poynting–Robertson Effect

In optically thin accretion flows, the radiation flux interacts with the inspiraling
matter by the Poynting–Robertson (PR) effect [834]. The PR effect was studied
in [292, 305, 306] as a mechanism for generating poloidal magnetic field in an
optically thin accretion flow, where it was obtained that dynamically important mag-
netic field strengths could result from this effect. The linear growth of the magnetic
field due to the radiative force on the electrons found in [305] is similar to that an-
alyzed in [120], but the PR effect implies an additional (small) numerator, .v�=c/.
Also, for a quasi-spherical optically thin accretion flow the characteristic scale is
r instead of h, and the quasi-spherical luminosity is L=.4�r2/ instead of H in
(11.180). Then, using equations (11.187), (11.191), (11.193), we obtain the rate of
growth the poloidal magnetic field due to the PR effect, as [305],

Bz � Bz0
t


m

D E0

3˛

�
L

LEdd

��rin

r

�2
�
tvr

r

�
: (11.198)

Here, E0 is defined in equation (11.183), and rin in equation (11.180).
It is essential to take into account that an element of matter with the induced mag-

netic field reaches the black hole in time tc � r=vr. This means that the magnetic
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field grows only during the time tc . Consequently, the magnetic field reaches a value

Bz � E0

3˛

L

LEdd

�rin

r

�2 � 0:7

˛

L

LEdd

Mˇ
M

�rin

r

�2

(11.199)

Taking into account that the luminosity is � 10�3LEdd for optically thin accretion,
and taking ˛ D 0:1, we get a maximum value of the magnetic field created by the
PR effect in an ADAF to a black hole [132],

Bz � 7 � 10�3

�
Mˇ
M

�
G: (11.200)

This estimate of the field is about 10 orders of magnitude less that the value ob-
tained in [305]. The difference in the estimates results from the fact that in [305] it
was assumed that magnetic flux accumulates continuously near the black hole dur-
ing a long time, reaching the equipartition with the kinetic energy. The accumulation
actually occurs only during the time the plasma (which carries the field or current
loops) takes to move inward to the black hole horizon. The current loops created by
the PR effect disappear as the matter approaches the horizon. In the case of accre-
tion onto a neutron star or a white dwarf, matter containing the current loops merges
with the stellar matter, which is typically much more strongly magnetized. Analysis
of the magnetic field generation in the vicinity of the horizon of the schwarzschild
black hole, made in [132], had shown that the magnetic field generated by the cur-
rent loops, for the distant observer, is tending to zero at approaching rg.

More complicated model with a specific inner boundary conditions was con-
structed in [292, 306], where it was claimed about a possibility of a strong PR
battery in the accretion disk. This boundary condition is equivalent to the sugges-
tion of non-penetration and stopping of the accreting matter at radius larger than the
horizon, which seems to be nonrealistic and artificial.

11.3.9 Screening of the Magnetic Field of Disk Accreting Stars

The first evidence for accretion-induced magnetic field decay was obtained from
observations of the first binary pulsar PSR 1913C 16 [481]. This pulsar rapidly ro-
tates with the period 0.059 s in an orbit with the period 7h45m and large eccentricity
" D 0 W 6171. Immediately after the discovery, this pulsar was interpreted to be an
old recycled pulsar with a weak magnetic field [156]. The subsequent measurements
[967] of the period derivative PP allowed estimating its age as 
 D P= PP � 108

years and magnetic field as B � 2 
 1010 G, which proved the proposed interpreta-
tion. In more than 100 recycled pulsars, the companion to the neutron star is usually
a low-mass degenerate dwarf. Binaries consisting of two neutron stars, like PSR
1913 C 16, are much less numerous, with about ten such systems known. All re-
cycled pulsars, irrespective of the nature of their companions, have magnetic fields
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108�1010 G, which fully confirms the hypothesis of the accretion-induced magnetic
field decay [177]. The discovery of the first binary system with two radio pulsars
[660] provided one more firm proof of this prediction. According to simple esti-
mates, we expect screening of the neutron star magnetic field by accretion. In [103],
it was shown that if instabilities causing penetration of the accreting plasma inside
the pulsar magnetosphere can be neglected, the pressure of the accreting plasma
overcomes the magnetic pressure of a dipole with the strength B D 1012 G in a
time interval as short as 1 day, assuming the subcritical accretion rate 10�9Mˇ/year.
The original magnetic dipole then turns out to be buried under a plasma layer in
which currents prevent the magnetic field of the star from emerging to the surface.
In reality, instabilities lead to the penetration of gas through the magnetosphere and
strongly slow down the process of magnetic field screening. During accretion, the
magnetic field value is determined by the balance between the screening action of
the accreting gas and turbulent field diffusion. As the accretion mass increases, the
thickness of the layer through which the field should diffuse increases and, corre-
spondingly, the external magnetic field decreases. Many papers (see the references
in [290]) considered the neutron star magnetic field decay due to the heating of the
crystal crust of the neutron star during accretion that decreases the matter conduc-
tivity and accelerates the Ohmic dissipation of the magnetic field. This mechanism
works, however, only if electric currents forming the pulsar magnetic field flow in
the layers of the neutron star that can be heated by accretion. Clearly, the strongly
degenerate neutron star core remains insensible to such a heating and preserves a
very high conductivity. Therefore, the magnetic field formed by deep electric cur-
rents can be decreased only by the accreting plasma screening [177]. Several models
of the accretion screening of the neutron star magnetic field have been studied in
[280, 281, 290, 291]. It is usually assumed that the infalling matter is canalized by
the magnetic field and flows along the field lines to the magnetic pole region of the
dipole [25,193]. As the magnetic field decays due to the screening, the canalization
of the accretion flux decreases and the polar cap area increases. It is easy to estimate
the polar cap angular width �P as a function of the neutron star surface magnetic
field Bs [899]. The magnetic force line that reaches the Alfvenic radius rA starts at
the angle �P on the surface of a neutron star of radius rs and is the last closed line
of the dipole field. It is easy to show that

sin �P D
�
rs

rA

�1=2

: (11.201)

Setting the dynamic pressure of freely falling gas equal to the magnetic pressure at
the Alfvenic surface, we find the Alfvenic radius value

rA D .2GM/�1=7r12=7
s B4=7

s
PM�2=7; (11.202)

where M is the neutron star mass and PM is the accretion rate. Equations (11.201)
and (11.202) imply that

sin �P / B�2=7
s : (11.203)
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Therefore, the polar cap size increases as the magnetic field decreases until �P

becomes equal to 90ı and (11.203) cannot be applied any more. For M D 3 
 1033

g, PM D 10�8Mˇ/year, rs D 10 km and Bs D 1012 G, we obtain from (11.202)
that rA � 260 km, and from (11.201), we find the initial angular size of the polar
cap of the order of 10ı. The accreting matter falls onto the polar caps and then
spreads over the stellar surface towards the equator. In the model considered in
[291,582], the matter that flows from both poles meet near the equator and go inside
the star. In a kinematical model calculated in [291], the matter that flows cover
the star magnetic field and effectively decrease its strength; the sizes of the polar
caps increase accordingly. When the polar cap size attains 90ı, the accretion flow
becomes spherical and radial and, as argued in [291], the magnetic field decay stops
due to the assumed low efficiency of the magnetic field screening by the radial flow.
If �P;i is the initial size of the polar cap, then according to (11.203) the magnetic
field decreases by sin 90ı= sin �P;i/

7=2 times during the accretion stage. Assuming
�P;i to be in the range 5ı � 10ı, we obtain the possibility of the accretion-induced
magnetic field decay by 103� 104 times, which is exactly the difference between the
magnetic fields of ordinary and recycled pulsars. Assuming that the magnetic field
during accretion reaches some stationary value when the Alfvenic radius equals the
neutron star radius, we obtain

Basymp D .2GM/1=4 PM 1=2r�5=4
s : (11.204)

from (11.202) with rA D rs. Using standard values of the parameters as discussed
above, we findBasymp � 108 G. After the accretion has stopped, a recycled millisec-
ond radio pulsar emerges with a magnetic field close to 108 G. The development
of magneto-hydrodynamic instabilities near the Alfvenic surface facilitates plasma
penetrating the magnetosphere and slows down the process of the magnetic field
screening by accretion, considered in [645]. It was noted in [178] that “neutron
star magnetic fields screened by intensive accretion can percolate outwards after
the accretion has stopped.” In this picture, the neutron star magnetic field value
should increase with time, which can increase the rotational energy loss rate PE with
time, in contrast to the usual decrease PE with time. By writing the field growth as
B � ˝�k , we obtain PE � ˝4�2k . Here the rotational energy losses are determined
by the magneto-dipole radiation and and pulsar wind [669, 670]

PE D �r
6
s B

2
p˝

4

6c3
; (11.205)

where rs is the neutron star radius, Bp is the magnetic pole field strength and ˝ is
the neutron star angular velocity. For k > 2, the rotational energy losses increase as
the pulsar rotation decelerates. Another characteristic of the pulsar parameters is the
braking index n D ˝ R̋ = P̋ (for the above relation, n D 3�2k). If observations yield
n < 3, this may be due to the neutron star magnetic field increase with time [699].
The estimates of the magnetic field percolation outward were obtained in [722]. The
authors considered the case of a very rapid percolation and the field growth over
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103 – 104 years until the original value before the accretion is recovered. Clearly,
this conclusion contradicts observations because all recycled pulsars, including very
old ones with the age up to 1010 years [161, 641, 642], have equally small magnetic
fields. Such a discrepancy is due to the artificial model considered in [722]. The per-
colation in that model started from depths smaller than 260 m, which corresponded
to the accreted mass smaller than 5 
 10�5Mˇ. The conductivity is not very high in
the outer layers of the neutron star, which allows rapid percolation of the field out-
ward. Actually, the accretion stage can last up to 107 to 108 years or more, and the
mass of the accreted matter can be several orders of magnitude higher. The magnetic
field is then buried in much deeper layers of the star with much higher conductivity.
Accordingly, in recycled pulsars, the magnetic field percolation outward becomes
much less effective. As noted in [699], the magnetic field percolation outward can
occur in young neutron stars, which accreted an insignificant amount of screening
matter after the supernova explosion. In these stars, a sufficiently rapid percolation
of the magnetic field and its growth on the surface are possible.

11.3.10 Jet Confinement by Magneto-Torsional Oscillations

Objects of very different sizes and natures, from young or very old stars to galactic
nuclei, are associated with the existence of collimated outbursts jets. The geomet-
rical size of these jets varies from parsecs to megaparsecs. The origin of jets is not
well understood: several qualitative mechanisms have been proposed, but these are
not justified by calculations. A theory of jets must give answers to three main ques-
tions. How are jets formed? How are they stabilized? How do they radiate? The
last question is related to the problem of the origin of relativistic particles in out-
bursts from active galactic nuclei (AGN), where synchrotron emission is observed.
Relativistic particles ejected from the central machine rapidly lose their energy, so
the problem of particle acceleration inside the jet arises (see the review [111]). It is
sometimes convenient to investigate jets by means of a simple model of an infinitely
long circular cylinder [266]. The magnetic field in the collimated jet determines the
direction of the jet, and the axial current may stabilize the elongated form of the
jet at large distances from the source (e.g. in AGNs) [92, 176, 533]. When observed
with high angular resolution, these jets show a structure of bright knots separated by
relatively dark regions [973]. High percentages of polarization, sometimes exceed-
ing 50%, indicate the non-thermal nature of the radiation, which is well explained
as synchrotron emission of the relativistic electrons in an ordered magnetic field.
Estimates of the lifetime of these electrons, based on the observed luminosities and
spectra, often give values much lower than the kinematic ages tk D d=c, where d is
the distance of the emitting point from the central source. An explanation of these
observations requires continuous re-acceleration of the electrons in the jets. The ac-
celeration mechanism for electrons in extragalactic jets proposed in [127] assumes
that intense long-wavelength electromagnetic oscillations accompany a relativistic
jet, and the electromagnetic wave amplitudes envisioned are sufficient to give in situ
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acceleration of electrons to the very high energies of >1013 eV that are observed.
The model assumes that jets are formed by a sequence of outbursts from the nucleus
with considerable charge separation at the moment of the outburst. The direction of
motion of the outbursts is determined by the large-scale magnetic field. When the
emitted wave is strong enough it washes out the surrounding medium and the density
can become very small, with the medium containing only the accelerated particles.
The action of the oscillating knot is similar to the action of a pulsar, considered as
an inclined magnetic rotator. Both emit strong electromagnetic waves, which could
accelerate particles effectively. The stabilization of a jet against its expansion, by a
pure magnetohydrodynamic mechanism associated with torsional oscillations, was
considered in [117]. Oscillations of this type occurring in neutron stars have been
considered in [74]. It is suggested in [117] that the matter in the jet is rotating, and
that different parts of the jet rotate in different directions. Such a distribution of
the rotational velocity produces an azimuthal magnetic field, which prevents a dis-
ruption of the jet. The jet is representing a periodical, or quasi-periodical structure
along the axis, and its radius oscillates with time all along the axis. The space and
time periods of oscillations depend on the conditions at jet formation: the length-
scale, the amplitude of the rotational velocity, and the strength of the magnetic field.
The time period of oscillations should be obtained during the construction of the
dynamical model, and the model should also show at what input parameters a long
jet stabilized by torsional oscillations could exist. Two-dimensional non-stationary
MHD calculations are needed to solve the problem numerically. A very simplified
model of this phenomenon was constructed in [117], which, nonetheless, permited
to confirm the reality of such stabilization, to estimate the range of parameters at
which it takes place and to establish the connection between the time and space
scales, the magnetic field strength and the amplitude of the rotational velocity.

Axially symmetric MHD equations at @
@�

, for the perfect gas with an infinite
conductivity, in cylindric coordinates .r; �; z/, are given in (10.82)–(10.95). Let us
consider a long cylinder with a magnetic field directed along its axis. This cylin-
der will expand without limit under the action of pressure and magnetic forces; so
no confinement will be reached. It is possible, however, that a limiting value of the
radius of the cylinder could be reached in a dynamic state, in which the whole cylin-
der undergoes magnetotorsional oscillations. Such oscillations produce a toroidal
field, which prevents radial expansion. There is therefore competition between the
induced toroidal field, compressing the cylinder in the radial direction, and gas pres-
sure, together with the field along the cylinder axis (poloidal), tending to increase
its radius. During magnetotorsional oscillations, there are phases when either the
compression or expansion force prevails, and, depending on the input parameters,
there are three possible kinds of behaviour of such a cylinder that has negligible
self-gravity.

1. The oscillation amplitude is low, so the cylinder suffers unlimited expansion (no
confinement).

2. The oscillation amplitude is too high, so the pinch action of the toroidal field
destroys the cylinder, and leads to formation of separated blobs.
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3. The oscillation amplitude is moderate, so the cylinder survives for a long time,
determined by electromagnetic losses, and its parameters (radius, density, mag-
netic field, etc.) change periodically or quasi-periodically in time.

Solution of MHD equations (10.82)–(10.95) could give, in principle, the answer
about a correctness of the above scenario. It is reasonable nevertheless to try to find
a simple approximate way for obtaining a qualitative answer, and to make a rough
estimation of parameters leading to different regimes.

11.3.10.1 Profiling in Axially Symmetric MHD Equations

Let us simplify the system of equations in such away that the resulting system
contains the most important property of the dynamical competition between the
different forces, to check for the possibility of dynamical confinement. For this pur-
pose, we use a profiling procedure. Let us neglect the gravity in the direction of
the cylinder axis (z), and approximate the density by a function �.t; z/, suggesting
a uniform density along the radius. The components of the velocity and magnetic
field are approximated as

vr D r a.t; z/; v' D r ˝.t; z/; vz D 0I (11.206)

Br D r hr .t; z/; B' D r h'.t; z/; Bz D Bz.t; z/: (11.207)

In this case, the current components (10.90)–(10.92) are written as

jr D � cr
4�

@h'

@z
; j' D cr

4�

@hr

@z
; jz D ch'

2�
: (11.208)

After neglecting velocity vz along the axis, we should omit the corresponding
Euler equation (10.84), and the radial pressure gradient is approximated by the lin-
ear function

@P

@r
D � P

R2
r; (11.209)

where the constant � � 1 is determined by the pressure dependence on the radius,
which is connected with the equation of state, P.t; z/ is the pressure, and R.t; z/ is
the radius of the cylinder. From here on, we consider the adiabatic case, in which
the polytropic equation of state P D K �� is considered instead of the energy
equation (10.94). Neglecting the z derivatives in the Poisson equation (10.93), we
obtain 'G D �G�r2. Substituting (11.206)–(11.209) into the original system of
equations, we obtain for the profiling functions the following equations

@a

@t
C a2 �˝2 D � P

�R2
� 2�G�C 1

4��

�
Bz
@hr

@z
� 2h2

'

�
; (11.210)
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@˝

@t
C 2a˝ D 1

4��

�
Bz
@h'

@z
C 2hrh'

�
; (11.211)

@hr

@t
D @.aBz/

@z
; (11.212)

@h'

@t
D @.˝Bz/

@z
� 2.ah' �˝hr /; (11.213)

@Bz

@t
D �2aBz; (11.214)

@�

@t
D �2a�; (11.215)

@R

@t
D aR: (11.216)

It follows from relationships (11.214)–(11.216), representing conservation of mass,
and the conservation of magnetic flux, equivalent to freezing condition, that

�R2 D Cm.z/; BzR
2 D Cb.z/; Bz D Cb.z/

Cm.z/
�: (11.217)

In the subsequent consideration, the arbitrary functions will be taken as constants:
Cm.z/ D Cm; Cb.z/ D Cb : The algebraic relationships (11.217) can be used in-
stead of any two equations from (11.214) to (11.216).

11.3.10.2 Further Simplification: Reducing the Problem
to an Ordinary Differential Equation

While in the relativistic jet the self-gravitating force is expected to be much lower
than the magnetic and pressure forces, let us neglect gravity in the subsequent con-
sideration. Without gravity, the equilibrium static state of the cylinder does not exist.
It is necessary to solve numerically the system of non-linear equations (11.210) –
(11.213), (11.216), (11.217) to check for the existence of a cylinder whose radius
remains finite as a result of torsional oscillations (dynamic confinement). Let us try
instead to reduce the system to ordinary differential equations by making additional
simplifications. Let us consider an axially symmetric jet moving along the z-axis
with a constant bulk motion velocity in the comoving coordinate frame. In a jet in
which confinement is reached as a result of standing magnetotorsional oscillations,
there are points along the z-axis where the rotational velocity always remains zero
in this frame. Let us take ˝ D 0 in the plane z D 0. Let us consider standing-wave
torsional oscillations with the space period along the z-axis equal to z0. Thus nodes
with ˝ D 0 are situated at z D ˙nz0=2, n D 0; 1; 2; :::. Let us write the equations
describing the behaviour of the cylinder in the plane z D 0, where ˝ D 0. Denote
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all values in this plane by a tilde. Let us take, for simplicity, � D 11. Then, equations
in the plane z D 0 are written as

d Qa
dt
C Qa2 D K

QR2
C Cb

4�Cm

�
@hr

@z

�
zD0

�
Qh2
'
QR2

2�Cm

; (11.218)

from equation (11.210);

Cb

4�Cm

�
@h'

@z

�
zD0

C
Qh'
Qhr
QR2

2�Cm

D 0; (11.219)

from equation (11.211);

d Qhr

dt
D Cb

�
@.a=R2/

@z

�
zD0

; (11.220)

from equation (11.212);

d Qh'

dt
D Cb

�
@.˝=R2/

@z

�
zD0

� 2 Qa Qh' ; (11.221)

from equation (11.213);
d QR
dt
D Qa QR: (11.222)

from equation (11.216). The integrals of motion (11.217) in the plane z D 0 are
written as

Q� QR2 D Cm; QBz QR2 D Cb; QBz D Cb

Cm

Q�: (11.223)

Initial conditions for the system (11.218)–(11.223) are

QR D R0; Q� D �0 D Cm

R2
0

; QBz D Cb

R2
0

; Qa D Qhr D Qh' D 0 at t D 0: (11.224)

In (11.218)–(11.223) were used relationships

Q� D �0

R2
0

QR2
; QBz D �0

Cb

Cm

R2
0

QR2
; (11.225)

valid for any time. If the rotational velocity of the cylinder is antisymmetrically
relative to the plane z D 0, ˝ D 0, and the density distribution of the cylinder
is symmetric relative to this plane, then we have an extremum (maximum) of the

azimuthal magnetic field h� , with
�

@h'

@z

�
zD0
D 0, and Qhr D 0 reaches an ex-

tremum (minimum) in this plane with
�

@hr

@z

�
zD0
D 0. The product a� also reaches
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an extremum in the plane z D 0, so that
�

@.a=R2/
@z

�
zD0
D 0. The term with the z

derivative in equation (11.221) is not equal to zero, and changes periodically during
the torsional oscillations. We approximate the derivative d=d z by the ratio 1=z0,
where z0 is the space period of the torsional oscillations along the z-axis. While
˝ D 0 in the plane z D 0, its derivative along z changes periodically with an ampli-
tude˝0 and frequency !, which should be found from the solution of the problem.
We therefore approximate

�
@.˝=R2/

@z

�
zD0

D ˝0

z0
QR2

cos!t: (11.226)

Finally, we have from (11.218),(11.221) and (11.222) the following approximate
system of equations, describing the non-linear torsional oscillations of the cylinder
at given z0 and˝0.

d Qa
dt
C Qa2 D K

QR2
�
Qh2
'
QR2

2�Cm

;

d Qh'

dt
D Cb

˝0

z0
QR2

cos!t � 2 Qa Qh' ;

d QR
dt
D Qa QR: (11.227)

Combining the last two equations gives

d. Qh'R
2/

dt
D Cb˝0

z0

cos!t; (11.228)

with the solution, satisfying initial condition (11.224), in the form

Qh'R
2 D Cb˝0

z0!
sin!t: (11.229)

Taking account of (11.229), the first and third equations in (11.227) give the
equation

QRd. QaR/
dt

D K �
�
Cb˝0

z0!

�2 sin2 !t

2�Cm

; (11.230)

Two differential equations, namely (11.230) and the third equation (11.227), deter-
mine the behaviour of the cylinder during magnetotorsional oscillations. Solutions
in which the radius does not go to infinity with time determine a dynamically con-
fined cylinder. The formation of blobs occurs, when the radius tends to zero. A long
dynamically confined cylinder exists when its radius changes with time between two
finite values.
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11.3.10.3 Numerical Solution

Let us introduce non-dimensional variables


 D !t; y D
QR
R0

; z D a QR
a0R0

; a0 D K

!R2
0

D !; R0 D
p
K

!
; (11.231)

in which the differential equations have the form

dy

d

D z;

d z

d

D 1

y
.1 �D sin2 
/I y.0/ D 1; z D 0 at 
 D 0: (11.232)

Therefore, the problem is reduced to a system (11.232) with only two non-

dimensional parameters D D 1
2�KCm

�
Cb˝0

z0!

�2

, and y.0/, and the second one

is taken equal to unity in further consideration. The solution of this nonlinear
system changes qualitatively with changes in the parameterD.

The solution of this system was obtained numerically in [117] for D D
2; 2:1; 2:11; 2:15; 2:2; 2:25; 2:28; 2:4; 2:5; 2:6; 2:9; 3:0. The results of the numer-
ical solution are represented in Figs. 11.31–11.42. Roughly the solutions may be
divided into three groups.

(1) At D � 2 there is no confinement, and radius grows to infinity after several
low-amplitude oscillations (Fig. 11.31).

(2) With increasingD the amplitude of oscillations increase, and atD D 2:1 radius
is not growing to infinity, but is oscillating around some average value, forming
rather complicated curve (Figs. 11.32, and 11.33).

(3) At D D 2:28 and larger the radius finally goes to zero with time, but in a man-
ner that depends on the value ofD. ForD between 2.28 and 2.9, the dependence
of the radius y with time may be very complicated, consisting of low-amplitude
and large-amplitude oscillations that finally go to zero. The time at which the
radius becomes zero depends on D in a somewhat peculiar way: it may occur
at 
 � 100, as it does for D D 2:4; 2:6 (Figs. 11.36 and 11.39); or it may go
through a very large radius and return to zero at a very large time, for example,

 � 107 for D D 2:5 (Figs. 11.37, and 11.38). For D D 3 and larger, the solu-
tion becomes very simple, and the radius goes to zero at 
 < 2:5 (Fig. 11.42),
before the right-hand side of the second equation (11.232) returns to a positive
value.

11.3.10.4 Restrictions of the Model

Let us consider a jet that has an equation of state of the form P D K� D v2
s �,

v2
s � c2=3, vs is the sound speed in the jet’s matter. For ultrarelativistic pair-plasma,

we have P D c2=3. The non-dimensional parameter D, as a function of the char-
acteristic radius R0, periodic length z0 along z-axis, initial density �0 and magnetic
field Bz0, ˝0 and ! is written in the form
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D D 1

2��0

B2
z0R

2
0˝

2
0

z2
0!

2v2
s

: (11.233)

The amplitude of oscillations ˝0, and ! should be found from the solution of the
non-linear system (11.210)–(11.216), together with determination of the interval of
values of D at which confinement occurs. To find approximately a self-consistent
model with ˝0; !.D/, we may use the solution of linearized equations (11.210)–
(11.216) with ! D kVA, with alfvenic velocity VA D Bz0=

p
4��. The frequency

of non-linear oscillations is smaller, and we can write

! D ˛n k VA; ˛n < 1; k D 2�

z0

; (11.234)

so that

!2 D ˛2
n k

2 V 2
A D ˛2

n

�B2
z0

�0z2
0

: (11.235)
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velocity z (lower curve), for D D 2:1 from [117]

Using it in (11.233), and taking into account of (11.231), we obtain

˝2R2
0 D 2�2D˛2

nv2
s < c

2; R2
0 D

K

!2
D z2

0

�0v2
s

˛2
n�B

2
z0

: (11.236)

On the edge of the cylinder, the rotational velocity cannot exceed the light velocity,
so the solution with initial conditions in (11.232), corresponding to y0 D 1, has
a physical sense only at v2

s <
c2

2�2D˛2
n

� c2

40˛2
n

. Taking ˛2
n D 0:1 for a strongly

non-linear oscillations, we obtain a very moderate restriction v2
s0 <

c2

4
. While in

the intermediate collimation regime, the amplitude of the outer tangential velocity
is not changing significantly; this restriction would hold also for the whole period
of the time. To have the sound velocity not exceeding c=2, the jet should contain
baryons. The density of the barions �0 must be above a certain value and must
contribute more than about 30% to the total density of the jet.
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Confinement by torsional oscillations starts at D D 2:1, and at D � 2:28 the
jet is divided into separate blobs according to Figs. 11.34–11.42. Confinement by
magnetotorsional oscillations is therefore physically realizable [117]. Extending the
choice of parameters outside the point y0 D 1, permits to construct all possible
kinds of restricted solutions of the system (11.232). There are chaotic and regular
solutions, depending on the combination of parametersD and y0. The regular solu-
tions exist forD in the interval 2.1 – 2.28, where jets with y0 D 1 remain finite with
non-zero radius, but also outside this interval for different y0. Varying the initial y0

for the same value of D, it is possible to find a pure periodic solution for a particu-
lar value of y0. It is interesting to follow the evolution of this periodic solution with
increasing D. The behaviour of this solution resembles the behaviour of solutions
of many different equations, where change of a parameter is accompanied by the
transition from the periodic solution into the chaotic one, via period doubling [382].
The sequence of values of corresponding period doublingDi may follow the low

lim ji!1
Di �Di�1

DiC1 �Di

D Const:
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There are several (at least two) different constants in this limit, which appear in a
wide family of different equations, describing different physical processes. One of
them is related to systems with dissipation [382] (Const � 2:412), and another one
appears in the conservative systems [441], (Const� 8:721). It is not yet clear which
value of the constant governs the approach of the system (11.232) to chaos; the work
is in progress [135].

11.4 Cosmic Gamma Ray Bursts: Observations and Modeling

Nowadays, it is commonly accepted that cosmic gamma-ray bursts (GRBs), the
discovery of which was reported in 1973 [574], are of cosmological origin. The
first cosmological model based on explosions in active galaxy nuclei (AGN) was
proposed in [815]. GRB formation near a collapsing object due to neutrino antineu-
trino annihilation was investigated in [90]. Previously, the model of GRB formation
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during collapses and explosions of supernovae was considered in [126], where the
following chain of reactions resulting in gamma-photon production was considered:

Q C p ! nC eC; (11.237)

eC C e� ! 2� .0:5 MeV/; (11.238)

nC p ! d C � .2:3 MeV/; (11.239)

d C p ! He3 C � .5:5 MeV/; (11.240)

He3 C He3 ! Be7 C � .1:6 MeV/: (11.241)

In brackets, we give photon energies. The reactions with heavy nuclei were also
considered in [126]:

 C .A;Z/! .A;Z C 1/C e�; (11.242)

Q C .A;Z/! .A;Z � 1/C eC: (11.243)

The starquake, the subsequent explosion and the ejection of matter from a nonequi-
librium layer in the neutron-star crust discovered in [122, 194] are accompanied
by the gamma rays induced by the fission of superheavy nuclei. This scenario was



316 11 Final Stages of Stellar Evolution

time

y,
z

0 10 20 30 40 50 60 70

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

Fig. 11.36 Time dependence of non-dimensional radius y (upper curve), and non-dimensional
velocity z (lower curve), for D D 2:4 from [117]

proposed in [126] as an alternative model of the galactic GRB origin. The total
number of various galactic models exceeds 100. Even now, after the discovery of
redshifts in optical afterglows, which became possible due to theX -ray observations
of GRB with the Beppo-SAX satellite and their subsequent optical identification,
the galactic models are of more than simply historical interest because the origin
of the activity of soft gamma repeaters (SGR) – neutron stars inside the Galaxy –
is not quite certain. In [90], it was obtained that the efficiency of transformation of
neutrino-flux energy W� � 6 
 1053 erg into the energy of the X and � -ray burst
amounts to a fraction ˛ � 6 
 10�6 with a total GRB energy releaseWX;� � 3 
 1048

erg. The 3D numerical simulation of two colliding neutron stars [848] and a hot
torus around a black hole [849] showed higher efficiency of X - and � -ray pro-
duction, reaching 0.5% in the first case and 1% in the second case. In part, the
distinction with [90] can be associated with the geometry more preferential for the
neutrino-flux outflow when the annihilation rate increases in comparison with that
estimated in the spherical geometry [90]. Nevertheless, even in such an optimistic
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variant, the GRB formation with a total energy yield in the X - and � -ray regions is
not exceeding 5 
 1050. This energy is insufficient for explaining the energy resource
of many GRBs because only the direct optical GRB radiation can attain 1051 erg,
and the isotropic flux in the gamma region reaches 2:3 
 1054 erg for GRB 990123
with the redshift z � 1:6 [8,597]. To explain such a high observable energy release,
it is necessary to have a strong collimation.

11.4.1 Central Engine of Cosmic Gamma-Ray Bursts

The following models of central engine as a source of the energy are worth to be
mentioned.

1. The coalescence of two neutron stars or a neutron star and a black hole of a
stellar mass. This mechanism was numerically investigated in [848,849]. The �
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rays are produced here due to the (; Q) annihilation, and the energy yield proves
to be insufficient for explaining the most powerful GRBs even assuming a strong
collimation of the GRB radiation. The energy emitted only in the GRB 990123
optical afterglow exceeds the total radiation energy yield in this model approxi-
mately by an order of magnitude.

2. Magnetorotational explosion. The 2D numerical calculations of a magnetoro-
tational supernova explosion in [45, 707] showed that the efficiency of trans-
formation of the rotation energy into explosive energy amounts to about 10%.
The released energy is sufficient for explaining the explosion of a collapsing
supernova but proves to be insufficient for cosmological GRB.

3. Hypernova (very powerful supernova). A very extensive radiation from a new
born pulsar, very rapid, with very high magnetic field, was suggested in [998].
W-R stars as GRB predecessors have been considered in [414,982]. The model,
based on a collapse of a very massive star, formation of a black hole (BH) with
a massive disk, with a rapid accretion into BH have been considered in [662].
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Accretion into BH from a magnetized disk was calculated in [68]. The models of
this type are the most popular now. SNe spectra are found in optical afterglows
of several GRB [923, 934].

4. Magnetized disk around a (Kerr) rotating black hole (RBH). This model is based
on extracting the RBH rotation energy for the GRB production due to mag-
netic coupling of the RBH and the surrounding accretion disk or torus [1024].
Magnetic extraction of energy from the rotating black hole (Blandford–Znajek
mechanism) is claimed to work also after the collapse of the magnetized disk
[68, 69, 971].

5. Dyadosphere. In the model [850], the GRB originates from an explosive for-
mation of electron–positron pairs and the electromagnetic pulse from a strongly
electrically charged black hole. The key problem here consists in the possibility
of formation of such a strongly charged BH.
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11.4.2 Optical Afterglows

The X-ray afterglow discovered by the Italian Beppo-SAX satellite made it possible
to identify GRBs optically and to obtain their spectra. These spectra showed the
presence of a large redshift z, reaching � 8 [961], which points to the cosmological
origin of GRBs and an enormous energy release. The comparison of redshifts and
total energy fluxes shows no correlation [116] between the distance and observable
flux (Fig. 11.43). This fact is usually explained by a strong collimation leading to a
wide spread in observed fluxes due to observations of a narrow beam under different
angles of view.

As was noted in [803], the GRB-afterglow properties are better explained under
the assumption that GRB sources are located in the star-formation regions with a
high gas and dust density. The interaction of a powerful GRB pulse with the sur-
rounding gas of a density n D 104 � 105 cm�3 results in the occurrence of a
special-form optical afterglow, the duration of which can reach up to 10 years. The
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light curve and the spectrum of such an afterglow in the uniform cloud were calcu-
lated in [192] (Fig. 11.44). It was shown in [70] that the duration and spectrum of
the GRB optical afterglow depend on the GRB location with respect to the dense
cloud. In the case of an anisotropic GRB, they depend also on the orientation of the
observer and the cloud with respect to the GRB axis. The light curves presented
in Fig. 11.45 correspond to the anisotropic GRB beam in the anisotropic cloud,
with the explosion at the distance R0 D 1 pc from the center of the molecular
cloud. The angular distribution of the energy in the GRB impulse is specified as
E D E0 e

.��=�0/2
, where E0 D 1052 erg is the isotropic energy of the GRB, and

the density distribution as n D 105 e�.r=r0/2
cm�3, where r is the distance from the

center of the molecular cloud, and r0 is the radius of the quasi-homogeneous central
region of the molecular cloud. The GRB axis is directed from the cloud center.

Prompt optical emission was first observed in GRB990123. Its total duration is
about 100 s, T(50%)D 30 s, T(90%)D 63 s. Optical observations were started by
ROTSE, at t D 22.18 s after the beginning of GRB, and reached 8:95m at max-
imum. Observations on Keck revealed the redshift zD 1.61, which corresponds to
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the energy releaseQ� > 2:3 
1054 erg, andLopt > 2 
1016Lˇ D 8 
1049 erg/s. Light
curve of the prompt optical emission together with � is represented in Fig. 11.46,
due to courtesy of A. Pozanenko (2003, Private communication). The strategy of the
afterglow observations, based on continuous sky monitoring by wide-field camer-
aes, suggested in [811], led to discovery of the brightest optical afterglow with peak
brightness 5:3m, available to the naked eye. The first wild-field camera FAVOR
(Fig. 11.47) for observations of rapid transients was established in SAO, Cauca-
sus, Russia, in the year 2003. In the year 2006, working in combination with the
Italian telescope REM, the similar wide-field camera TORTORA, where the dis-
covery was done, was installed in La Silla, Chile (Fig. 11.48). In Fig. 11.49, the
gamma-ray light curve from KONUS, and in Fig. 11.50 the one from SWIFT, to-
gether with the simultaneous TORTORA optical light curve are presented [433],
[818]. It is clear from Figs. 11.49,11.50 that prompt optical emission is strongly
correlated with gamma ray pulse. May be it has the same collimation, as gamma ra-
diation. Optical afterglows at longer times should not be collimated in the same way,
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or be not collimated at all. If prompt optical and gamma ray radiation have the same
collimation angle, then the number of bright orphan optical flashes should be very
limited, or absent at all.

Infrared afterglow without any optics was observed in GRB041219 [708]. The
explanation of this unusual afterglow was done [70], based on the model of reradi-
ation by dust in the dense dust cloud, which is not evaporated by the GRB flash.

11.4.3 Short GRB and Giant SGR Bursts

Possibility to observe SGR giant bursts in the nearby galaxies was discussed in [681]
and [115]. First identification of the giant burst 1 February 2007 in Andromeda
galaxy M31 was done in [682]. It was observed as a short GRB070201, but the
detailed analysis of gamma-ray emission in the tail have indicated its origin as
SGR 0044C 42 (M31). The energy of the burst in M31 is about 1:5 
 1045 erg,
which is smaller than the energy of the giant burst of SGR1806-20, estimated as
2:3 
 1046 erg [377]. The giant burst in SGR1806-20 was the strongest among those
observed in other SGR and was the only one where reliable data about total energy
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release have been obtained, due to observation of the flux, reflected from the Moon.
Note [682], that we have only lower limits: 7 
 1044 erg in SGR 0526-66 (LMC)
and 4:3 
 1044 erg in SGR 1900C 14 because of the absence of data about max-
imum brightness in these 2 SGR. It is necessary also to have in mind that three
above estimations are based on the identification of SGR with SN remnants. If
these, rather questionable, identifications are not valid, then the energy estimations
become not valid too, because of very poor possibilities to estimate the distance
to these SGR by any other method. The strong burst in SGR 1627-41 was con-
siderably lower energetic (1 
 1043 erg). Short GRB 051103, interpreted as giant
bursts of SGR, was also observed on 3 November 2005 in M81 group of galaxies
[378]. Its energy release 7 
 1046 erg is the largest among SGR giant bursts. Only
the form of the short burst and its spectrum indicate to its possible origin as SGR
0952C 69 (M81).
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Fig. 11.45 Light curves for the parameters of the GRB and molecular cloud, indicated in the text,
for an observer located on the GRBcloud axis (curve A), at an angle of ˛ D 0:1 rad (curve B), at an
angle of ˛ D 0:2 rad (curve C), and at an angle of ˛ D �=2 rad (curve D). The time is measured
in days after the GRB, from [70]

11.4.4 High Energy Afterglows (30–10,000 MeV)

Observations in the EGRET experiment onboard of the orbital Compton � -ray ob-
servatory (CGRO) show that the GRBs radiate also in hard gamma regions up to an
energy of 20 GeV [386]. Hard � -rays were detected approximately for 10 GRBs by
EGRET, and this number is increasing due to observations from the LAT experiment
on the Fermi � -ray satellite. As a rule, the hard � rays last longer than the basic soft
GRB by up to 1.5 h in GRB 940217 (Fig. 11.51). The comparison of the angular
aperture in the experiments EGRET and BATSE, and the duration of their opera-
tion at the orbit, results in the conclusion that the hard � rays should be observed in
(1/3 – 1/2) of all GRB. If a GRB is associated with the supernova explosion and the
neutron-star birth, the neutron-star vibrations after the explosion can be responsible
for a afterglow in the hard gamma region [113].

Evidently, it is necessary to obtain optical GRB spectra at the earliest stages as
close as possible to the time of the � -ray burst itself. This problem is formulated for
wide-angle automatic telescopes [811]. The best would be to have a system of con-
tinuously operating wide-angle telescopes covering the entire sky, or a specialized
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Fig. 11.47 FAVOR (FAst Variability Optical Registrator) camera - SAO RAS, operating since
2003. Built in collaboration with IPI and IKI (Moscow), from [91]
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Fig. 11.48 Wide field camera for the search of GRB optical afterglows TORTORA in La Silla,
Chile, from [91], Credit ESO

satellite with an optical all-sky monitor. Simultaneous polarization measurements
of the prompt optical afterglow would be very important for the determination of
emission mechanism.

Problem 1. Find the stationary solution for spherically symmetric accretion of a
polytropic fluid into a gravitating centre.

Solution. [224] The equations describing the problem are

u
du

dr
C 1

�

dP

dr
C GM

r2
D 0;
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PM D �4��r2u; P D K �� ; � D 1C 1

n
: (11.244)

Excluding � from the first equation, we obtain

du

dr
D u

r

.GM=r/� 2a2

u2 � a2
; a2 D dP

d�
D �K ���1: (11.245)

A singular point in (11.245) is of a saddle-type and solution, describing the flow
from a region far outside must go through this point, where

a2
c D

GM

2RC
D u2

c ; �c D
�

n

nC 1
GM

2KRC

�n

: (11.246)

The system (11.244) has a Bernoulli integral (8.34)

u2

2
C .nC 1/K�1=n � GM

r
D H: (11.247)
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Using (11.246), we can expressH as

H D 2n � 3
4

GM

RC
: (11.248)

Taking the density at a faraway radius rout, where uout D 0 as �out and assuming the
gaseous equation of state P D �RT D K �� , we obtain

H D .nC 1/K�1=n
out �

GM

rout
D .nC 1/RTout � GM

rout
; (11.249)

RC D 2n � 3
4

GM

.nC 1/RTout � .GM=rout/
; K D ��1=n

out R Tout: (11.250)

It is clear from (11.250) that stationary continuous supersonic accretion occurs only
at H > 0, RC < rout, n > 3=2. We obtain also

PM D 23=2�n�

�
n

nC 1
�n

.GM/nC.1=2/

Kn
R

.3=2/�n
C

D �
�

n

nC 1
�n�

2n � 3
2

�.3=2/�n
.GM/2�out

.RTout/nŒ.nC 1/RTout � .GM=rout/�.3=2/�n
:

(11.251)
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Fig. 11.51 GRB flare of February 17, 1994, the gamma rays from which were observed in GeV-
energy region in the experiment EGRET within 1.5 h after the basic flare. The composite figure
includes the EGRET data and the data of observations of the basic flare in the BATSE experiment
and at the satellite Ulysses

When outer boundary conditions are given at infinity, we obtain

PM D �
�

n

nC 1
�n �

2n� 3
2nC 2

�.3=2/�n
.GM/2�out

.RTout/3=2
: (11.252)

Here, .n=.nC 1//n ..2n� 3/=.2nC 2//3=2�n D 1:089; 1:509; 1:831; 2:651; e3=2 D
4:482 for n D 2, 2.5, 3, 5, 1. The approximate relation (11.87) follows from
(11.252).

Problem 2. Find the solution for an optically thick accretion disc structure in
Newtonian gravity with a ˛-prescription for viscosity tr� D �˛P .

Solution. [755, 897, 898] Without terms with radial derivatives (advection), the
angular velocity is equal to the Keplerian one

˝ D ˝K D .GM=r3/1=2; (11.253)
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and the rate of heat production due to viscosityQC per unit area of the disc, and the
equation for angular momentum conservation (11.116) remain the same:

QC D 1

2
tr� r

d˝

dr
D 3

8�
PM GM

r3

�
1� lin

l

�
; (11.254)

PM˝

�
1 � lin

l

�
D 4�˛Ph: (11.255)

Suggesting that heat in the vertical direction is carried out mainly by radiation, we
use a connection between radiation flux Q� and temperature T in the plane of the
disc in the form

Q� D 4acT 4

3	˙
(11.256)

with a surface density
˙ D 2�h: (11.257)

Without advection, we haveQC D Q�

3

2
PM˝2

�
1 � lin

l

�
D 16�acT 4

3	˙
: (11.258)

This corresponds to B3 D 2 in (11.117). Equation (11.115) is used for obtaining the
radial velocity vr. To close the system of equations, we need an additional relation
between˙; � and h following from the equilibrium along the z-axis, like (11.118).

In the region I with P D aT 4=3; 	 D �T D 0:4 cm2/g, the equations of
equilibrium and heat transfer along the z-axis reduce to

dP

dz
D ��g D ��T �

c
Q; g D GM

r3
z; (11.259)

which corresponds to the local balance between radiation force and gravity. Using
(11.259) near the surface of the disc where z D h, Q D QC we obtain the expres-
sion for the disc thickness (all values here are given in CGS units)

h D �T

c

QCr3

GM
D 3

8�

�T

c
PM
�
1 � lin

l

�

D 3GMˇ
2c2

m Pm
�
1 � lin

l

�
D 7:41 � 104m Pm

�
1 � lin

l

�
: (11.260)

Substituting (11.260) into (11.255), we obtain for the pressure in the plane of
the disc

P D 2c˝

3˛�T

D 2

3

c4

˛�TGMˇ
1

mx3=2
D 1:01 � 1016

˛mx3=2
: (11.261)
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Substituting (11.260) and (11.261) into (11.258) gives

˙ D 64�

9˛

c2

�2
T

1

˝ PM
�
1 � lin

l

��1

D 16

9˛�T

x3=2

Pm
�
1 � lin

l

��1

D 40

9˛

x3=2

Pm
�
1 � lin

l

��1

: (11.262)

The density in the plane of the disc follows from (11.257), (11.260) and (11.262)

� D ˙

2h
D 256�2

27˛

c3

�3
T

1

˝ PM 2

�
1 � lin

l

��2

D 16

27˛

c2

�TGMˇ
x3=2

Pm2m

�
1 � lin

l

��2

D 10�5

˛

x3=2

Pm2m

�
1 � lin

l

��2

: (11.263)

From (11.115), we have

vr D �
PM

2�r˙
D � 9˛

128�2

�2
T

c2

˝

r
PM 2

�
1 � lin

l

�

D �9˛
8
c
Pm2

x5=2

�
1 � lin

l

�
: (11.264)

Write also

T D
�
3P

a

�1=4

D
�

2

˛�T aGMˇ

�1=4
c

m1=4x3=8
D 4:48 � 107

m1=4x3=8
K; (11.265)

j vr

vs
j D 3

p
2 ˛

16�

�T
PM

cr
D 3
p
2 ˛

4

Pm
x
: (11.266)

Here

m D M

Mˇ
; Pm D

PMc2

Lc

; Lc D 4�cGM

�T

; x D rc2

GM
: (11.267)

Also

v2
s D

P

�
; ˝ D c3

GM
x�3=2 D 2:02 � 105

mx3=2
:

It follows from (11.260), (11.264) and (11.266) that

h D p2 vs

˝
D
p
2

˝

s
P

�
: (11.268)
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Relation (11.268) is used in other regions instead of (11.260). In region II with
P D �RT , 	 D �T with R D 108, we obtain, using (11.244), (11.255), (11.257),
(11.258) and (11.268),

T D
 
9�T

64�2˛

PM 2˝3

acR

!1=5 �
1 � lin

l

�2=5

D
�
9c

4�T

1

aRGMˇ

�1=5
c Pm2=5

m1=5x9=10˛1=5

�
1 � lin

l

�2=5

D 5:22 � 108 Pm2=5

m1=5x9=10˛1=5

�
1 � lin

l

�2=5

K; (11.269)

� D 1

2�˛

�
2�2˛ac

9�T

�3=10 PM 2=5˝11=10

R6=5

�
1 � lin

l

�2=5

D 21=10

33=5

a3=10c16=5

R6=5�
7=10
T .GMˇ/7=10

Pm2=5

.˛m/7=10x33=20

�
1� lin

l

�2=5

D 26:6 Pm2=5

.˛m/7=10x33=20

�
1 � lin

l

�2=5

; (11.270)

h D p2
 
9�T

64�2˛

PM 2R4

ac˝7

!1=10 �
1 � lin

l

�1=5

D p2
�
3

2

�1=5
.GMˇ/9=10R2=5

c12=5.a˛�T /1=10
Pm1=5m9=10x21=20

�
1 � lin

l

�1=5

D 1:60 � 103 Pm1=5m9=10x21=20

˛1=10

�
1 � lin

l

�1=5

; (11.271)

˙ D
�
2

9�3

�1=5 �
ac

�T

�1=5 PM 3=5˝2=5

.˛R/4=5

�
1 � lin

l

�3=5

D 27=5

32=5

�
c

�T R

�4=5
.aGMˇ/1=5

˛4=5

Pm3=5m1=5

x3=5

�
1 � lin

l

�3=5

D 8:54 � 104 Pm3=5m1=5

˛4=5x3=5

�
1 � lin

l

�3=5

; (11.272)

vr D �
�

9

64�2

�1=5 ��T

ac

�1=5
 PM
˝

!2=5
.˛R/4=5

r

�
1 � lin

l

��3=5
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D �
�
3

2

�2=5 �
cR4

a�TGMˇ

�1=5
˛4=5 Pm2=5

m1=5x2=5

�
1 � lin

l

��3=5

D �1:76 � 106˛
4=5 Pm2=5

m1=5x2=5

�
1 � lin

l

��3=5

: (11.273)

In region III there is P D �RT , and 	 � 2 � 1024 � T �7=2D 	1� T
�7=2 cm2/g

is defined by free–free and free-bound processes. Here, we obtain from (11.253),
(11.255), (11.257), (11.258) and (11.268)

T D 31=5

29=10�3=10

	
1=10
1

PM 3=10˝1=2

˛1=5R1=4.ac/1=10

�
1 � lin

l

�3=10

D 31=5

23=10

	
1=10
1 c11=10

�
3=10
T R1=4a1=10.GMˇ/1=5

Pm3=10

.˛m/1=5x3=4

�
1 � lin

l

�3=10

D 1:85 � 108 Pm3=10

.˛m/1=5x3=4

�
1 � lin

l

�3=10

K; (11.274)

� D 1

223=2033=10�11=20

˝5=4 PM 11=20.ac/3=20

˛7=10	
3=20
1 R9=8

�
1 � lin

l

�11=20

D 1

21=2033=10

c67=20a3=20

.GMˇ/7=10�
11=20
T 	

3=20
1 R9=8

Pm11=20

.˛m/7=10x15=8

�
1 � lin

l

�11=20

D 1:28 � 102 Pm11=20

.˛m/7=10x15=8

�
1 � lin

l

�11=20

; (11.275)

h D
�
18

�3

�1=20
	

1=20
1 R3=8 PM 3=20

˝3=4˛1=10.ac/1=20

�
1 � lin

l

�3=20

D 27=2031=10 	
1=20
1 R3=8.GMˇ/9=10

�
3=20
T a1=20c49=20

Pm3=20m9=20x9=8

˛1=10

�
1 � lin

l

�3=20

D 1:21 � 103 Pm3=20m9=20x9=8

˛1=10

�
1 � lin

l

�3=20

; (11.276)

˙ D 1

21=1031=5�7=10

˝1=2 PM 7=10.ac/1=10

˛4=5	
1=10
1 R3=4

�
1 � lin

l

�7=10

D 23=10

31=5

.GMˇ/1=5c9=10a1=10

�
7=10
T 	

1=10
1 R3=4

Pm7=10m1=5

˛4=5x3=4

�
1 � lin

l

�7=10
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D 1:48 � 104 Pm7=10m1=5

˛4=5x3=4

�
1� lin

l

�7=10

; (11.277)

vr D � 31=5

29=10�3=10

˛4=5	
1=10
1 R3=4 PM 3=10

r˝1=2.ac/1=10

�
1 � lin

l

��7=10

D � 3
1=5

23=10

	
1=10
1 R3=4

�
3=10
T .GMˇ/1=5

� c
a

�1=10 ˛4=5 Pm3=10

x1=4m1=5

�
1 � lin

l

��7=10

D �6:16 � 105˛
4=5 Pm3=10

x1=4m1=5

�
1 � lin

l

��7=10

: (11.278)

The integration constant lin multiplied by PM represents the total flux of angular
momentum (advective plus viscous) flowing through the accretion disc. It may be
scaled by the angular momentum of matter on the inner Keplerian orbit

lin D �r2
in˝Kin D �

p
GMrin: (11.279)

In the case of accretion into a black hole or slowly rotating neutron star, where
d˝=dr D 0 on the inner edge of the disc, one usually takes � D 1.

Problem 3. Find the solution for an accretion disc structure with polytropic equa-
tion of state.

Solution. The hydrodynamical equations, describing the structure of a stationary
thin accretion disk in the usual notations, have the form (in cylindrical coordinates
r; �; z with @=@� D 0)

�d. PMur/

dr
� 2�˙r

�
˝2r � GM

r2

�
C 2�r dP

dr
D 0; (11.280)

PM
2�

dj

dr
D �˛ d

dr

�
˙us0z0r

3 d˝

dr

�
; (11.281)

�
GM z

r3
D �@P

@z
; (11.282)

d PM
dr
D 0: (11.283)

Following [897], we write the viscosity coefficient � in the ˛ approximation as

� D ˛�us0z0; (11.284)

where us0 is the sound velocity in the equatorial plane z D 0 and z0 is the semi-
thickness of the disk. The average values, surface density ˙ , mass flux over the
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disk PM , integrated pressure P and the values of angular velocity ˝ and specific
angular momentum j are determined as follows

˙ D
Z z0

�z0

�d z; PM D �2�r
Z z0

�z0

�urd z D �2�r˙ur ;

P D
Z z0

�z0

Pd z; ˝ D u�

r
; j D ru� : (11.285)

The equations (11.280)–(11.283) determine the variables (�; ˙; PM; j ), where
(ur ; ˝) are obtained from (11.285) with

ur < 0; PM > 0: (11.286)

The solution of the equation of vertical balance (11.282) gives the variables

us0 D
�

dP0

d�0

�1=2

; z0; P; ˙ (11.287)

as functions of (r; �0), when the equation of the state is given in the formP.�/ (e.g.,
a polytropic). Here, �0 and P0 are the density and the pressure in the equatorial
plane, respectively.

For a polytropic equation of state

P D K�1C.1=n/ (11.288)

we obtain [476] solving (11.282)

� D �0

�
1 � z2

z2
0

�n

; (11.289)

where the density in the equatorial plane �0 is connected with r and z0 by the
relation

�0 D



GM

2K.nC 1/
�n z2n

0

r3n
: (11.290)

Some physical quantities from (11.285) to (11.287) can be expressed in terms of r
and �0.

z0 D


2K.nC 1/
GM

�1=2

�
1=2n
0 r3=2 D ˇz0�

1=2n
0 r3=2;

˙ D p� � .nC 1/
� .nC .3=2//�0z0 D ˇ˙�

.2nC1/=2n
0 r3=2;
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P D p� � .nC 2/
� .nC .5=2//K�

1C.1=n/
0 z0 D ˇP�

.2nC3/=2n
0 r3=2;

us0 D
�
nC 1
n

K

�1=2

�
1=2n
0 D ˇs0�

1=2n
0 ; (11.291)

where

ˇ˙ D
p
�

� .nC 1/
� .nC .3=2//



2K.nC 1/
GM

�1=2

;

ˇP D
p
�

� .nC 2/
� .nC .5=2//K



2K.nC 1/
GM

�1=2

: (11.292)

For the isothermal case, corresponding to n D 1, P D K�, we have instead of
(11.289)

� D �0 exp

�
�GM z2

2Kr3

�
D �0 exp

�
� z2

z2
i

�
; zi D

�
2Kr3

GM

�1=2

: (11.293)

Formally an isothermal disk has infinite thickness z0, but the density falls exponen-
tially with the characteristic height zi from (11.293). Instead of (11.291), we have

˙ D
�
2�K

GM

�1=2

�0r
3=2; P D K

�
2�K

GM

�1=2

�0r
3=2; us0 D

p
K:

(11.294)
Equation (11.281) can be integrated, giving [897]

PM
2�
.j � j0/ D �˛˙us0z0r

3 d˝

dr
: (11.295)

The integration constant j0 after multiplication by PM gives the total (advective plus
viscous) flux of angular momentum within the accretion disk. A positive value of
j0 corresponds to a total flux directed to the centre, when the central body accretes
angular momentum. For a thin disk neglecting ur and P , we obtain from (11.280)

˝.0/ D
�
GM

r3

�1=2

D ˝K ; j .0/ D jK D .GMr/1=2: (11.296)

The solution (11.296) is used up to the inner boundary of the accretion disk at r D
rin. The integration constant j0 can be scaled by the Keplerian angular momentum
jK.rin/, so that

j0 D �jK.rin/ D �
p
GMrin: (11.297)

Substituting (11.297) into (11.295), we obtain with account of (11.292) and (11.296)
the relation for the density in the equatorial plane
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�
.0/
0 D b�0


 PM
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1 � �
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1
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p
n

.nC 1/3=2

� .nC .3=2//
� .nC 1/

GM

K3=2

�2n=.2nC3/

: (11.298)

Using (11.298) in (11.291), we obtain

z.0/
0 D bz0



PM
�
1 � �

r
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r

��1=.2nC3/

r3=2.2nC1/=.2nC3/;

˙ .0/ D b˙



PM
�
1 � �

r
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r

��.2nC1/=.2nC3/

r�3.2n�1/=2.2nC3/;

P .0/ D bP

PM
r3=2

�
1 � �

r
rin

r

�
;

u.0/
s0 D bs0


 PM
r3

�
1 � �

r
rin

r

��1=.2nC3/

; (11.299)

where

bz0 D Œ2.nC 1/�1=2



1

6�3=2˛

p
n

.nC 1/3=2

� .nC .3=2//
� .nC 1/

�1=.2nC3/

�Kn=.2nC3/.GM/�.2nC1/=2.2nC3/;

b˙ D Œ2�.nC 1/�1=2 � .nC 1/
� .nC .3=2//

�



1

6�3=2˛

p
n

.nC 1/3=2

� .nC .3=2//
� .nC 1/

�.2nC1/=.2nC3/

�K�2n=.2nC3/.GM/.2n�1/=2.2nC3/;

bP D
p
nGM

˛3�
p
2 .nC 3=2/ ; bs0 D b1=2n

�0 : (11.300)

In the formula for viscosity coefficient (11.284), z0 must be replaced by zi from
(11.293) in the isothermal case,

� D ˛�us0zi : (11.301)

Then, instead of (11.298)–(11.300), we obtain a solution

�
.0/
0 D

GM

6�3=2˛K3=2

PM
r3

�
1 � �

r
rin

r

�
;
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˙ .0/ D
p
GM

˛3�
p
2K

PM
r3=2

�
1 � �

r
rin

r

�
;

P.0/ D
p
GM

˛3�
p
2

PM
r3=2

�
1 � �

r
rin

r

�
: (11.302)

For accretion onto a slowly rotating star with angular velocity smaller than the Kep-
lerian velocity on the equator, the drop of the angular velocity from Keplerian in the
disk to stellar equatorial occurs in a thin boundary layer, which must be considered
separately with proper account of the pressure term in (11.280).

Problem 4. Find the structure of the boundary layer between an accretion disc and
a slowly rotating star with a polytropic equation of state.

Solution. [108,825] Inside the BL, variables change considerably over the small
thickness of the layer Hb 	 rin. The radial velocity term in (11.280) is negli-
gible for small ˛, but the pressure term is comparable with the gravitational and
centrifugal forces [825]. The thickness Hb of the BL is smaller than its vertical
size z0, which also remains small. The adopted inequalities for the boundary layer
parameters

Hb 	 z0 	 r� (11.303)

will be confirmed by the results. The radius of the star r� differs from the radius, at
which d˝=dr D 0, by the very small valueHb . In the asymptotic consideration of
the BL, we use r� as an inner boundary for the disk solution rin D r� The variable x

r D r� C ıx; ı D Hb

r�
	 1 (11.304)

is used inside BL instead of r . The inner solution within the BL is looked for in
the region 0 < x < 1, while the outer solution (11.296)–(11.299) of Problem 3 is
valid in r� < r < 1. According to the method of matched asymptotic expansion
(MAE) (see [735]) the inner and outer solutions are matched so that values for the
outer solution at r D r� are equal to the corresponding values of the inner solution
at x D 1. This condition is valid asymptotically at ı ! 0.

Consider a stationary accretion disk BL where equations (11.280), (11.283) and
(11.295) are valid with the integration constant �b instead of � in (11.297). The
thickness of the disk remains small in the boundary layer, so relations (11.288)–
(11.292) for the polytropic case and (11.293)–(11.294) for the isothermal case are
valid. Taking account of only the main terms in the asymptotic expansion inside the
BL, we obtain the equations from (11.280) and (11.295) [825]

dP

dx
D �˝2

K�Hb˙.1 � !2/; (11.305)

d!

dx
D

PMHb

2�˙br2�
.�b � !/: (11.306)
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Here,

! D ˝

˝K�
; ˝2

K� D
GM

r3�
: (11.307)

The viscosity coefficient� is expressed in BL through the coefficient of kinematical
viscosity b , so that� D �b . While the radial extent of the BLHb is much less than
its vertical size z0, the formula (11.284) cannot be used for a viscosity coefficient
approximation. Inside the BL, we thus use the ˛ approximation in the form

b D ˛bus0Hb : (11.308)

For the polytropic case, it is convenient to use the variables (˙;!) in (11.305) and
(11.306). We obtain from (11.291)

P D dP˙
.2nC3/=.2nC1/; us0 D ds0˙

1=.2nC1/; (11.309)
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n
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�1=.2nC1/

GM

r3�K.nC 1/
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;

dP D nC 1
nC 3=2K



1p
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� .nC 3=2/
� .nC 1/

�2=.2nC1/

�



GM

r3�K.nC 1/
�1=.2nC1/

D n

nC 3=2d
2
s0: (11.310)

From the matching conditions in MAE, we need to obtain Keplerian angular velocity
˝ D ˝K�, ! D 1 from the inner solution at x ! 1 to fit the outer solution
(11.296) at the inner boundary r D r�. This implies �b D 1 for the constant in
(11.306). We obtain after transition to the variable˙ in (11.305) and (11.306)

d˙

dx
D � 1

dP

2nC 1
2nC 3˝

2
K�Hb.1 � !2/˙ .2n�1/=.2nC1/; (11.311)

d!

dx
D

PM
2�˛br2�ds0

.1 � !/˙�2.nC1/=.2nC1/: (11.312)

Dividing (11.311) by (11.312), we obtain

Db

d˙

d!
D �.1C !/˙ .4nC1/=.2nC1/; Db D 2nC 3

2nC 1
dP

ds0

PM
2�˛bHb

1

r2�˝2
K�
:

(11.313)

The solution of (11.313) must fit the boundary condition on the stellar surface
˙ D ˙� at ! D !�. Taking into account that the surface density rapidly grows
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into the star, we may put, with sufficient accuracy,˙� D 1 and obtain the solution,
using (11.309) and (11.313), in the form

˙ D d˙

q
K˝

1=n
K�

.˝K�r�/.2nC1/=n

 PM
˛bHb

!.2nC1/=2n

�


.! � !�/

�
1C ! C !�

2

���.2nC1/=2n

;

d˙ D
p
nC 1n�.2nC1/=4n.2�/�.4nC3/=4n



� .nC 3=2/
� .nC 1/

�1=2n

: (11.314)

For fitting the inner BL solution and the outer solution for an accretion disk, we must
make the surface densities (11.314) at ! D 1 and (11.299) at r D rin equal. This
fitting uniquely determines the outer integration constant �. After some algebraic
calculations, we obtain

1� � D dn˛˛
�.2nC3/=2n

b

�
r�
Hb

�.2nC3/=2n 
 PMKn

r2�.˝K�r�/2nC1

�3=2n

� �.1� !�/.3C !�/
	�.2nC3/=2n

;

dn D 2.2nC3/=2n3
p
�.2�/�.2nC9/=4nn�.4nC3/=4n.nC 1/3=2



� .nC 3=2/
� .nC 1/

�3=2n

:

(11.315)

The value of Hb is still not determined. It must be found from (11.312), where ˙
is substituted from the solution (11.314). By order of magnitude, we have in the
accretion disc (Problem 3)

uK D ˝Kr;
us0

uK

� z0

r
;

ur

uK

� ˛
� z0

r

�2
�
1 � �

r
rin

r

��1

: (11.316)

Equation (11.312) contains a non-physical logarithmic divergency because of using
the MAE method. For an approximate estimation of the value of Hb , we use a
characteristic thickness over which the ! variation occurs, and for this, using the
definition (11.304), the following relation may be written

2�˛br�ds0

PM ˙2.nC1/=.2nC1/j!D1 D 1: (11.317)
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With the help of (11.309) and (11.314), we obtain from (11.317)

Hb

r�
� dH˛

�1=.nC1/

b


 PMKn

r2�.˝K�r�/2nC1

�1=.nC1/�
.1 � !�/.3C !�/

	�1
;

dH D 2.2�/�3=2.nC1/n�.2nC1/=2.nC1/.nC 1/n=.nC1/



� .nC 3=2/
� .nC 1/

�1=.nC1/

:

(11.318)

Using (11.318) in (11.315), we finally obtain the expression for .1 � �/

1 � � � dˇ˛˛
�.2nC3/=2.nC1/

b


 PMKn

r2�.˝K�r�/2nC1

�1=2.nC1/

;

dˇ D dnd
�.2nC3/=2n
H 3

p
�.2�/�.2nC5/=4.nC1/n1=4.nC1/.nC 1/n=2.nC1/

D


� .nC 3=2/
� .nC 1/

�1=2.nC1/

: (11.319)

By order of magnitude, taking into account (11.316), we obtain, combining (11.318)
and (11.319),

.1 � �/ � ˛

˛b

z0

r�
;

Hb

r�
� 1

1 � !�

�
z0

r�

�2

: (11.320)

Thus, we obtain a complete analytical solution of the problem. For an isothermal
disk with the same viscosity as in (11.308), we obtain, using (11.294), (11.305) and
(11.306),

P D K˙; d˙

dx
D �˝

2
K�
K

Hb˙.1 � !2/;
d!

dx
D

PM.1 � !/
2�˛b

p
K˙r2�

: (11.321)

Dividing the last two equations and using the approximate boundary condition
˙� D 1, we obtain the solution

˙ D
 PMpK
2�˛bHb

!
1

r2�˝2
K�



.! � !�/

�
1C ! C !�

2

���1

: (11.322)

From (11.321) and (11.322), we obtain the characteristic scale, which we identify
with Hb

Hb

r�
� 2K

r2�˝2
K�

�
.1 � !�/.3C !�/

	�1
: (11.323)

Matching (11.302) and (11.322) with account of (11.323), we obtain for the integra-
tion constant
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1 � � D 3p
2

p
K

r�˝K�
˛

˛b

: (11.324)

Comparing (11.323) and (11.324) with (11.320), we see that the order of magni-
tude estimates for the polytropic case become exact for the isothermal case apart
from numerical coefficients close to unity. In the isothermal case, there is a simple
solution of (11.321) when (11.322) is substituted for ˙ ,

.1 � !/�2.! � !�/.3C!
�

/=.1C!
�

/.2C ! C !�/�.1�!
�

/=.1C!
�

/

D exp



2
Hb

K
˝2

K�x.1 � !�/.3C !�/
�
: (11.325)

We can see from (11.325) that the scale (11.323) appears in the exponent. It is clear
that this solution has a physical sense only over several characteristic scales Hb .
It is proved [735] that the region of applicability of the inner and outer solutions,
obtained by the MAE method, do overlap, and the formula, constructed from inner
(i) and outer (e) solutions, gives good interpolation also for the intermediate region.
The formula, describing the function f in the whole region, has a structure

f D fi C fe � .fi /e: (11.326)

Here, .fi /e is the value of the inner solution on the outer edge (equal to the value of
the outer solution on the inner edge .fe/i ) with f D ˙; ˝; P . Using the relation
PM D �2�r�˙ur for the estimation of the radial velocity ur in the boundary layer,

we obtain ur=us0 � ˛b . This means that the solution obtained, where radial velocity
was neglected, is valid only for sufficiently small viscosity with ˛b 	 1.

Problem 5. Find the solution for an accretion disc structure around a rapidly
rotating star.

Solution. [110] Investigations of low-mass X-ray binaries (LMXB) containing a
neutron star have led to the conclusion that the accreting object can rotate rapidly
with a surface angular velocity close to the Keplerian value. The question of ac-
cretion onto a rapidly rotating star also arises in cataclysmic variables, in which
the primary is a white dwarf. The evolution of the star under mass accretion may
be characterized by the variations of two values: the mass M and the total angu-
lar momentum J and by one function, j.r/, determining the angular momentum
distribution within the star; j.r/ is determined by the viscosity law inside the star.
For a given mass flux PM , determined by conditions far away from the star, the star
gradually increase its mass and angular momentum. When the stellar rotation rate
is smaller than the Keplerian limit, the specific angular momentum of matter ac-
creting onto the star is approximately equal to PM vKeRse, (vK D .GM=r3/1=2 is the
Keplerian velocity, Rse- the stellar equatorial radius, index “e” referes to values at
the stellar equator). In this case, the angular velocity of the disk has a maximum
nearRse; at this point, the viscous flux is zero and the momentum flux is determined
only by the advective term PMje, j D v�r . The maximum of the rotational velocity
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disappears when the star rotates with the critical velocity and the (negative) viscous
momentum flux becomes important.

The demand of self-consistency during accretion onto a rapidly rotating star may
be formulated as the condition that the star absorb the accreted matter with a specific
angular momentum j0 such that the star remains in the state of critical rotation
j0 D ja D .dJ=dM/c. If viscosity inside the star is high (turbulent), the star
rotates rigidly with a high precision. When the star-disc system can be described by
a polytropic equation of state, there is a self-similar solution for such a system which
does not depend on mass. In this case the value of the specific angular momentum
of the accreted matter is obtained from the structure of the polytropic star. It is
convenient to solve the problem in non-dimensional polytropic variables [268]

Q� D r=r�; �n D �=�c; ! D ˝=˝�; (11.327)

where �c is the central density of the star, and r� and ˝� are given by

r� D
 
.nC 1/K�.1=n/�1

c

4�G

!1=2

; ˝� D
p
2�G�c: (11.328)

In the non-dimensional variables (11.327) and (11.328), the equation of stellar struc-
ture, obtained from equilibrium and the Poisson equation for ˝ D const: (see
Chap. 6, Vol. 1), can be written in the form

1

Q�2

@

@ Q�
�
Q�2 @�

@ Q�
�
C 1

Q�2

@

@�

�
.1 � �2/

@�

@�

�
C�n � !2 D 0; (11.329)

with � D cos � . The solution of (11.329) is completed by the boundary conditions
and fixed value of !.

For compressible matter with n > 0, a solution exists only if ! < !c; for ! D !c

the centrifugal force on the equatorial boundary of the star exactly balances gravity
(see the proof in [165]). Numerical calculations have been carried out which gave
the structure of rotating polytropic stars for different ! up to the critical value !c

[204, 532, 545], see also [964].
For a given n, the structure of a critically rotating star does not depend on its

mass. By definition, the mass M and the total angular momentum J are given by

M D 2��cr
3�
Z 1

�1

d�

Z Q	out.
/

0

�n. Q�; �/ Q�2d Q�; (11.330)

J D 2��cr
5�!
p
2�G�c

Z 1

�1

.1 � �2/d�

Z Q	out.
/

0

�n. Q�; �/ Q�4d Q�: (11.331)

Introducing non-dimensional values of the mass Mn and of the total angular mo-
mentum Jn, defined as
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Mn D 1

2

Z 1

�1

d�

Z Q	out.
/

0

�n. Q�; �/ Q�2d Q�; (11.332)

Jn D !

2

Z 1

�1

.1� �2/d�

Z Q	out.
/

0

�n. Q�; �/ Q�4d Q�; (11.333)

M and J may be written as

M D 4��cr
3�Mn; (11.334)

J D 4��cr
5�
p
2�G�cJn: (11.335)

The average specific angular momentum of the star js and the derivative along the
critical states ja D .dJ=dM/c are written, using (11.328) and (11.334), as

js D J=M D r2�
p
2�G�cJn=Mn ja D 5 � 2n

3 � n js: (11.336)

Using (11.334), one may write �c and r�, which appear in (11.328), as a function
of M

�c D
�

4�G

.nC 1/K
�3n=.3�n/ �

M

4�Mn

�2n=.3�n/

;

r� D
�

4�G

.nC 1/K
�n=.n�3/ �

M

4�Mn

�.1�n/=.3�n/

: (11.337)

The specific angular momentum of matter je at the stellar equator re may be
written as

je D ˝r2
e D r2�

p
2�G�c

Q�2
e !;

Q�e D re=r� D Q�out.�=2/: (11.338)

From a comparison of (11.336) and (11.338), it follows that the ratio

ja

je
D 5 � 2n

3 � n
js

je
D 5 � 2n

3 � n
Jn

Mn
Q�2
e !

(11.339)

does not depend on the stellar mass M and is a function of n and ! only. The
non-dimensional values of the angular velocity !c, the equatorial radius Q�out.� D
�=2/ D Q�e, the mass Mn, the momentum of inertia around the rotational axis In D
Jn=!c, the average specific angular momentum of the star �s , the non-dimensional
derivative �a

�s D js=.r
2�
p
2�G�c/ DJn=Mn; �a D 5 � 2n

3 � n �s; (11.340)
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and the angular momentum of matter on the stellar equator

�e D je=.r
2�
p
2�G�c/ D Q�2

e !c (11.341)

for several polytropic indices n in the state of critical rotation are given in Table 11.9,
which is based on calculations of [204, 532, 545]. The ratio of the equatorial and
polar radii Q�e= Q�p and the non-dimensional parameters for non-rotating polytropes
(outer radius Q�0n, mass M0n and momentum of inertia around the symmetry axis
I0n [204, 269, 545]) are also given.

The viscous flux of specific angular momentum in the accretion disk around a
critically rotating star, jv is therefore negative; near the surface of the star jv is
equal to

jv D ja � je (11.342)

as one requires that the total angular momentum flux into the star is equal to PMja

for self-consistency.
With account of thermal processes, the equations of viscous heat production

and heat transfer in the z direction must be added to equilibrium equations (see
Problem 2 for the complete system). The total luminosity of the accretion disc is
equal to (see (11.254) from Problem 2)

L D
Z 1

rin

4�QCdr D
�
3

2
� �

�
PM GM

rin
: (11.343)

When � D 1 the star accretes matter with Keplerian angular momentum, and only
half of the gravitational energy of the accreted matter is radiated from the disc,
according to the virial theorem. For a slowly rotating neutron star there are two
possibilities. If the radius of the neutron star rs is smaller than 3rg, then rin D 3rg

(3rg D 6GM=c2); the disk luminosity is the same as in the case of a black hole, and
the remaining gravitational energy, including the part gained during free-fall onto
the neutron star surface, is emitted close to the neutron star surface. If rs > 3rg, then
rin D rs, the disc luminosity is GM PM=2rs and an almost equal amount of energy
is emitted near the stellar surface, where the accreting matter converts its kinetic
energy into heat.

The situation changes gradually while the star absorbs angular momentum. Let
us consider only the case rs > 3rg. The luminosity of the disc decreases when
the stellar radius increases. The fraction of energy emitted by the neutron star also
decreases. It changes from GM PM=2rs in the case of a non-rotating star to the dif-
ference between the rotational energy of matter in the disc and at the stellar surface.

A rapid change in the efficiency of energy release and disc luminosity occurs
when the star rotation reaches its maximum value. The energy emitted near the
stellar surface tends towards zero, but the luminosity of the disc suffers a drastic
change. The star no longer absorbs all of the angular momentum coming from the
disc, but absorbs only the fraction required to maintain the star in a critically rotat-
ing state. The specific angular momentum of matter accreted by the star is equal to
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.dJ=dM/c, and the remaining part is carried away in the disc by viscous stresses.
Viscosity carries not only angular momentum, but also energy, so that the energy
production and luminosity of the disk rapidly increase, from the value correspond-
ing to � D 1 to the value corresponding to � D ja=je according to (11.343); for
polytropic stars, the values of � are given in the last column of Table 11.9. This
implies a rapid increase inthe total luminosity by a factor 2–3. This rapid increase is
easy to understand if one remembers that when a star accelerates its rotation, part of
the gravitational energy is converted into rotational energy without heat production.
When a star reaches the limiting rotation, the growth rate of its rotational energy
strongly diminishes and a correspondingly larger fraction of gravitational energy is
transformed into heat. The minimum of luminosity of an accreting neutron star is
reached when the stellar angular velocity is slightly below the critical value. A rapid
increase in luminosity must be accompanied by a corresponding hardening of the
emitted spectrum because the energy release is increased, raising the effective tem-
perature in the inner part of the disc. Such events may be expected in objects like
LMXB or cataclysmic variables. The young T Tauri stars are born rapidly rotat-
ing; so their value of � is small from the beginning and close to that of a polytrope
n D 1:5 with � D 0:176 given by Table 11.9.

To find the structure of the accretion disc around a rapidly rotating star, we can
use the solution in the Problem 2 with

� D ja

je
D 1

je

�
dJ

dM

�
c

;
lin

l
D �

r
rin

r
: (11.344)

The solution with � from (11.344) is valid with good precision up to the very surface
of the star, contrary to the case of a black hole, where � is close to unity, and the
advective term in (11.117) must be taken into account near r D rin.



Chapter 12
Dynamic Stability

12.1 Hierarchy of Time Scales

Processes underlying the stellar evolution are characterized by a wide variety of
time scales, such as hydrodynamical (�h), thermal (�th), and nuclear (�n) times,
and a time characterizing the weak interaction rate (�ˇ ). Throughout most of the
evolution, from the phase of the young contracting star to the late evolutionary
phases, �h remains the smallest of all the time scales. In massive presupernova mod-
els, under conditions of nuclear equilibrium, the time scale �n is the smallest one
(see Sect. 10.1). In an ordinary star there is a rough equilibrium with respect to rapid
processes (e.g., static equilibrium), while the evolutionary lifetime is determined by
one of the slower processes, as follows:

1. During the stage of gravitational contraction, we have:

�h � �th � �ˇ ; �n: (12.1)

The evolution is determined here by the thermal time �th, the star is almost in
static equilibrium, and the times �ˇ and �n are so large that the nuclear composi-
tion remains frozen (with the exception of the lightest nuclei).

2. The conditions (12.1) hold on the main sequence, but the evolution is determined
by the nuclear and weak times �n, �ˇ , and the star is in a state close to static and
thermal equilibrium.

3. After the helium core has formed, a stage of gravitational contraction of central
regions and envelope expansion occurs, analogous to stage 1. From the core he-
lium ignition to the final phases, the nuclear time scales remain comparable to
thermal ones,

�h � �th � �n � �ˇ ; (12.2)

and determine the stellar evolution rate.
The thermal time in the core is substantially less than the time in the enve-

lope � env
th , similarly for the nuclear time � core

n , which is minimal for the central
regions since in the envelope the nuclear reactions do not proceed at all. For quiet
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Astronomy and Astrophysics Library, DOI 10.1007/978-3-642-14734-0 6,
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post-main-sequence evolutionary phases of non-massive stars one has � env
th �

�core
n , that is, the minimum nuclear time of the star is of the same order as the

maximum thermal time. During violent events such as helium flashes in degen-
erate cores or flashes in a helium-burning shell (see Sect. 9.3), the nuclear time
in the central regions or in the helium shell reduces to a magnitude comparable
to that of the local thermal time. The hydrodynamical time remains minimal in
this case and the static equilibrium of the star is not broken.

4. In low- and intermediate-mass stars ofM � .6� 8/Mˇ with a core transforming
into a white dwarf, the condition of minimum �h is never broken. Weak interac-
tions cause the neutrino cooling of stars which dominates the photon cooling
during the stage of white dwarf formation and determines the thermal time
�h � �th� �ˇ � �n. At the end of white dwarf formation, after the envelope
ejection, the nuclear reactions cease in the central regions of the dwarf, and only
residual hydrogen and helium burning in the envelope is still possible.

5. In more massive stars with a core exceeding, after envelope ejection, the Chan-
drasekhar limit, a complicated instability develops, incorporating thermal, nu-
clear, and weak processes. In less massive stars of this range, �n falls off steeply
because of increasing temperature in the degenerate C–O core, so that the
condition

�n � �th � �h; �ˇ ; (12.3)

is reached, implying the onset of a thermal explosion (see Sect. 10.2).
6. For larger core mass stars, the condition (12.3) never arises, but a high Fermi

energy of electrons causes their rate of capture to accelerate until the condition

�ˇ � �h � �th; �n; (12.4)

becomes valid, leading to the onset of collapse due to neutronization (see
Sect. 10.3).

7. In the most massive stars, where the degeneracy does not occur, �n decreases
because of increasing temperature, falls below �h, and nuclear equilibrium sets
in. With further energy emission, the star enters a region of dynamical instability
which is principally distinct from the above instabilities.

When instabilities are related to thermal, nuclear, or weak processes, their devel-
opment is accompanied by a rapid decrease in correspondent time scales. If these
become of the order of or less than the hydrodynamical time scale, then the in-
stability ends with a thermal explosion or collapse. The dynamic instability arises
from changes in the structure of the equilibrium state rather than in the dynamic
time scale �h that vary slightly. Contrary to other types of instability, the dynamic
one lends itself to a treatment based on the theory of conservative mechanical sys-
tems. Two equivalent methods are basic in the field: the variational principle and the
method of small perturbations.
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12.2 Variational Principle and Small Perturbations

12.2.1 Variational Principle in General Relativity

We consider the equilibrium of spherically symmetric stars and their stability with
the aid of the variational principle. We shall discuss our treatment in the frame-
work of general relativity to have the possibility to apply the results to neutron and
supermassive stars. In a metric similar to the Schwarzschild metric [615]

ds2 D �g00 dt2 C g11 dr2 C r2.d�2 C sin2 � d'2/ (12.5)

for an arbitrary spherically symmetric distribution of matter, we may write the total
energy of the star " in the form [615]

e � e.r/ D 4�
Z r

0

QEnr2dr; " D e.R/; (12.6)

whereR is the Schwarzschild radius of the star, QE is the internal energy per baryon,
QE D .�0=n/ .E C c2/. A volume element of the spherical shell dv is

dv D 4�r2dr
p
g11 D 4�r2

�
1 � 2Ge

c4r

��1=2

dr: (12.7)

Similarly, we introduceN , the total number of baryons in the star, and �, the number
of baryons inside the given radius r

�.r/ D 4�
Z r

0

nr2

�
1 � 2Ge

c4r

��1=2

dr; N D �.R/: (12.8)

According to the variational principle [449, 1075], the total energy of the star "
has an extremum at the equilibrium point for a given total number of baryonsN and
fixed entropy distribution over baryons. The total energy " is, in this case, analogous
to the potential energy of a conservative system whose conservatism originates from
the invariant character of the entropy distribution. Introducing a Lagrangian coordi-
nate � from (12.8) so that

de

d�
D QE

�
1 � 2Ge

c4r

�1=2

; (12.9)

n D
�
1 � 2Ge

c4r

�1=2 �
4�r2 dr

d�

��1

: (12.10)

Next, we find the variation of the total energy " as a function of the radius variation
ır.�/. Varying (12.10), we obtain
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ın D Gen

c4r

ır=r � ıe=e
1 � 2Ge=c4r

� 2n ır
r
� 4�r2n2d.ır/=d�

.1 � 2Ge=c4r/
1=2
: (12.11)

Varying (12.9) using (12.11) and recalling the thermodynamic relation [617]
.@ QE=@n/S D P=n2 gives

d.ıe/

d�
D � P=nC QE

.1 � 2Ge=c4r/
1=2

Ge

c4r

�
ıe

e
� ır
r

�

� 2P
nr

�
1 � 2Ge

c4r

�1=2

ır � 4�r2P
d.ır/

d�
: (12.12)

Solving (12.12) for ıe as a linear inhomogeneous equation (see [917]) yields

ıe.�/ D exp

(
�
Z �

0

�
P

n
C QE

��
1 � 2Ge

c4r

��1=2
G d�

c4r

)

�
(Z �

0

exp

"Z �

0

�
P

n
C QE

��
1 � 2Ge

c4r

��1=2
G

c4r
d�

#

�
"�

P

n
C QE

��
1 � 2Ge

c4r

��1=2
G

c4r

�
e C 4�r3P

�

C 1

n

dP

dr

�
1 � 2Ge

c4r

�1=2
#
ır d�

)
� 4�r2Pır: (12.13)

Equating the variation of the total energy to zero, ı"D ıe.N /D 0, and using
P.N/ D 0, we have from (12.13) the equilibrium Oppenheimer–Volkov equation
(11.2.3) where �c2 D QEn, mc2 D e. Looking for an extremum of " from (12.6) at
fixed N from (12.8) reduces to an isoperimetric problem of the calculus of varia-
tions [918]. The reciprocity principle is valid for this problem, according to which
the function r.�/ determining the extremum of " at fixed N simultaneously deter-
mines the extremum of N at fixed ".

The stability of a star implies that the second variation of the energy be positive,

ı2" > 0; (12.14)

providing the minimum stellar energy for stable equilibrium. If during the evolution
ı2" becomes zero, changing sign from plus to minus, such a state will be critical
and correspond to the loss of stability. Deriving the stability condition yields ı2n

from (12.11) and d.ı2e/=d� from (12.12). The latter reduces to a differential equa-
tion with respect to ı2e that should be solved analogously to (12.12), giving the
following expression for the second variation of energy:
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ı2" D exp
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4

.P C QEn/.1C 4�r3P=e/2

.1 � 2Ge=c4r/
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2Ge

c4r
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.ır/2

� 2 P C QEn
1 � 2Ge=c4r

�
1C 1
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4�r3P

e

�
2Ge

c4r
.ır/2

)
dr; (12.15)

where � � �1 D .@ lnP=@ ln �/S . If tn;ˇ � th, the adiabatic index is evaluated at a
fixed chemical composition, if tn � th, at an equilibrium nuclear composition. The
case of tn � th or tˇ � th is the most difficult. While the relation tn � th can hold
only in a narrow range of parameters because of an exponential dependence of the
reaction rates on the temperature, the relation tˇ � th can hold for a sufficiently long
period at the beginning of low-mass star collapse (see Sect. 10.3). In such cases, a
kinetic description is needed for nuclear and weak reactions, a dissipation of second-
viscosity type arises, the entropy increases, and, ultimately, the conditions for using
the variational principle break. A phenomenological derivation of the equation of
motion has a wider range of applications than the variational one. Eulerian equations
in hydrodynamics, for instance, can be derived by either method, while the Navier–
Stokes equations including viscosity can be derived only phenomenologically in the
hydrodynamics, or from a more general kinetic theory [275]. For a static case at
vD 0 Eulerian and Navier–Stokes equations coincide. The reason for this is that at
vD 0 the viscous dissipation is not present. Using the variational principle requires
the absence of dissipation not only at vD 0 but also at small v 6 D 0, therefore at tˇ �
th, when the second viscosity (� divv) is at work, the variational principle cannot
be used to derive the stability condition. Rather, a perturbation method should be
used, which includes the effect of the kinetics of the processes on stability. Both
methods yield the same result for conservative systems. In particular, the condition
(12.15) has been derived by both the method of small perturbations in [267] and the
variational method in [449], see also [223].

12.2.2 Newtonian and Post-Newtonian Limits

We rewrite the variation of energy ı" in a form free from derivatives of thermody-
namic functions. Using (12.13) gives
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: (12.16)

In the Newtonian limit, since

�0 D nmu; m0 D �mu; M0 D Nmu;

QEn D �E C c2
�
�0;

d�=n D dm0=�0; (12.17)

from (12.6), (12.9), (12.16), and (12.15) we have

" D M0c
2 C
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�
dm0; (12.18)
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dm0: (12.20)

Here, we take eDm0c
2 and identify the Schwarzschild radius r with the Newtonian

radius rN. The Newtonian equilibrium equation (10.1) follows from the condition
ı" D 0 in (12.19) upon integrating by parts in the last term.

The post-Newtonian approximation may be obtained in a similar way on retain-
ing the terms � �Gm=rc2

�2
and P=�c2. Using (12.17), we therefore obtain from

(12.6) and (12.9)
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dm0: (12.21)
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In the two last terms, we set e D m0c
2. Relativistic corrections to e and r should

be included in the second term. Passing to Newtonian descriptions does not alter the
physical volume v determined in (12.7) and the Newtonian radius rN D .3v=4�/1=3.
From (12.9),

e1 D
Z m0

0

�
E C c2

� �
1 � Gm0

c2r

�
dm0

D m0c
2 C

Z m0

0

E dm0 �
Z m0

0

Gm0 dm0

r
: (12.22)

Equation (12.7) gives

4�

3
r3 D v �

Z v

0

Gm0

c2r
dv; r D rN

�
1 � 1

r3

Z r

0

Gm0

c2
r dr

�
: (12.23)

In the last two terms of (12.21) and in the second term (12.23), r and rN may be
taken as identical. Substituting (12.22) and (12.23) into (12.21), we find [1080],
omitting the index “N”

" D M0c
2 C

Z M0

0

�
E � Gm0

r

�
dm0 � G

c2

Z M0

0

Em0

r
dm0

� G2

2c2

Z M0

0

m2
0

r2
dm0 � G

c2

Z M0

0

dm0

r

�Z m0

0

E dm0

�

C G2

c2

Z M0

0

�Z m0

0

m0 dm0

r

�
dm0

r

� G
2

c2

Z M0

0

m0

r4

�Z r

0

m0r dr

�
dm0: (12.24)

Consider the post-Newtonian approximation for the case of a mass distribution
according to the adiabat n D 3 that remains in equilibrium during a uniform ex-
pansion or contraction. This corresponds to the linear eigenfunction ır D ˛r in the
variations ı" and ı2". Evaluating the last five integrals in (12.24) which are small
corrections accounting for general relativity, we have to take into account the equal-
ity E�0 D 3P and the Newtonian equilibrium equation (10.1).1 Integrating by parts
gives

Z M0

0

Em0

r
dm0 D 3
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�
;

1 Equation (10.1) implies m D m0 since only the rest mass is gravitating in Newtonian theory.
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Substituting (12.25) into (12.24) gives
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We shall drop hereafter the subscript “0” form0 andM0. The last term in (12.26) is
"GR from (10.1.7) and (10.1.16). Using (10.1.2) and (10.1.8), we have for n D 3

"GR D �G
2

c2
M 7=3�2=3
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"
.4�/2=3

M
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�7�4 d�
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D �0:9183 G
2

c2
M 7=3�2=3

c : (12.27)

We have used here the integrals J52 and J74 from the table to the problem from
Sect. 10.1. Equation (12.27) has been used in the energetic method in Sect. 10.1
for the treatment of stability to collapse. Using the sum of several profiling functions
in the energy functional, instead of just one function in the enegetic method, in-
creases the precision. The Gaterkin method for solving this problem was suggested
in [125]. It is equivalent to the spectral method of solving differential equations
as applied in [222] for problems related to general relativity. The subsequent post-
Newtonian correction to " has been found in [1011] for nonrotating stars and in
[138] for stars with rotation.
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12.2.3 Method of Small Perturbations in Newtonian Theory

Let us show the equivalence of the variational principle and the perturbation method
on an example of Newtonian theory. We use the equations of hydrodynamics (10.38)
and (10.39) for the case of adiabaticity and consider small deviations from the static
equilibrium state

r D r0 C r 0; � D �0 C �0; vr is small;

P D P0 C P 0 D P0 C �1

P0

�0

�0: (12.28)

From (10.38) and (10.39), using (12.28), we obtain
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Reducing the system (12.29) to the equation for r 0 gives
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Solutions to the linear equations with time-independent coefficients are sought in
the form �

r 0; �0; P 0� D �r; �; P ; � e�i!t : (12.31)

Substituting (12.31) into (12.30) and recalling (10.1), we have
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The regularity of the function r=r0 at r0 D 0 yields the boundary condition

d

dr0

�
r

r0

�
D 0 at r0 D 0; (12.33)
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while the regularity of the function P=P0 on the boundary r D R yields for equa-
tions of state with P0=�0 ! 0 as �0 ! 0 the condition [317]

d

dr0

 
P

P0

!
D 0 at r0 D R; (12.34)

which, on using (12.28) and (12.29), becomes

�
4 � 2�1 C !2r3

0

GM

�
r

r0
� �1

dr

dr0
D 0 at r0 D R: (12.35)

The Sturm–Liouville problem [918] for (12.32) at the boundary conditions (12.33)
and (12.35) has a finite, physically allowable solution to an arbitrary factor in the
form of eigenfunctions r i .r0/ only for eigenfrequencies ! D !i . Real eigenfre-
quencies (!2

i > 0) correspond to stability. All the eigenvalues of (12.32) are real
because the operator L .r/ is self-conjugate [317]. Consider the normalized eigen-
functions Z M

0

r2dm D 1: (12.36)

Multiplying (12.32) by r and integrating by parts over the star gives
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#

dm:

(12.37)

Obviously, the stability conditions !2 > 0 in (12.37) and ı2" > 0 in (12.20) are
equivalent if r is regarded both as an eigenfunction and arbitrary trial function ır .

Because of the Hermiticity of the operator L .r/ [317, 918], the minimum in !2

from (12.37) (or ı2" from (12.20)) occurs for the eigenfunction ır D r . This means
that if any trial function ır.r0/ yields a negative ı2" from (12.20), the corresponding
equilibrium state is undoubtedly unstable. On the contrary, a positive ı2" does not
imply the stability of the state for certain. Comparison with the exact static criterion
from Sect. 12.3 shows that the linear trial function ır D ˛r in (12.15) determines
almost exactly the point of stability loss for a neutron star in general relativity (see
Sect. 11.2).

Transforming the last term in (12.20) or (12.37) using the equilibrium equation
(10.1), we obtain

ı2" D
Z M0

0

P

�

(
�

�
2
ır

r
C d.ır/

dr

�2

� 4
�
ır

r

�2

� 8 ır
r

d.ır/

dr

)
dm0; (12.38)

and, with ır D ˛r , the relation

ı2" D 9˛2

Z M0

0

P

�
.� � 4=3/ dm (12.39)
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that coincides with the approximate relation (10.20) of the energetic method pro-
vided that general relativity effects are ignored and (10.18) is valid.

For highly inhomogeneous models, the eigenfunctions may have a substantially
nonlinear form. In the bypolytropic model from Sect. 8.3.1 with n2 � 1, for in-
stance, the instability of the static model sets in if the condition (8.45) is satisfied.
The eigenfunction r.r0/ in this model is close to zero in the core and increases
appreciably in the outer layers of the envelope, thereby ensuring a slow, “quasista-
tionary” character of the outflow.

Applying the approximate energetic method from (10.19) and (10.20) based on
the homologeneity of contraction leads, for this case, to a considerable error. In par-
ticular, at the point of stability loss (8.45) the quantity ı2" from (10.20) is essentially
positive and almost corresponds to � ' �1, �1 D 1C .1=n1/ from (8.28) since the
mass of the destabilizing envelope with n D n2 is small.

Problem. Derive the stability criterion for a spherical star from the variational
principle in Newtonian gravity.

Solution. [1075] The sum of internal and gravitational energies, analogous to the
potential energy of the conservative system from (10.8), is equal to
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0

Gmdm

r
: (12.40)

Make the first variation, taking into account
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: (12.41)

We then have, using relation .@E=@�/S D P=�2,
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It follows from (12.41)
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Taking into account (12.43) in (12.42), we obtain
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The second term in the first integral is reduced by partial integration to
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With account of (12.45), the first variation in (12.44) is reduced to
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ırdm; (12.46)

leading to the equilibrium equation (10.1). Variation of (3) with account of � � �1

gives (8.26)
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Variation of ı2� is obtained from (12.43) as
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Variation of the last term in (12.48) with account of (12.43) gives
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Finally, we obtain from (12.47) with account of (12.43), (12.48), and (12.49)
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The last term in (12.50) with account of the equilibrium equation (10.1) and after
partial integration is reduced to
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With account of (12.51), we can write (12.50) in three equivalent forms
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Gm.ır/2
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The last form in (12.52) coincides with (12.20), and the second one with (12.38).

12.3 Static Criteria for Stability

12.3.1 Non-Rotating Stars

For the case of a nonrotating cold star (T D 0, S D 0), the stability criterion may
be formulated as follows [1075]. Treating pulsations of a steady-state star, we may
assume the time dependence of the displacement � of a point with Lagrangian radius
r0 to be

�n .r0; t/ D r .r0; t/ � r0 (12.53)

for the n-th normal mode of radial oscillations to take the form

�n � e�i�nt ; (12.54)

where all 
2
n are real provided that there are no dissipative processes, so that the

stability of the n-th mode implies that 
2
n > 0, whereas instability of the n-th mode

implies that 
2
n < 0. We next calculate a series of models with a given equation of

state
P D P.�/ (12.55)

and diverse values of central density �c to obtain the dependence M.�c/. Suppose
that at �cD �c;cr � �cc, this dependence has an extremum M.�cc/ D M0. Two
solutions exist in this case for the mass M that does not differ greatly from M0.
One of these solutions can be obtained from the other by a slight time-independent
displacement. This means that the square of the eigenfrequency
2

n of a certain mode
passes through zero at �c D �cc:


2
n .�cc/ D 0: (12.56)

An extremum on the curve M.�c/ thus always corresponds to a critical point that
changes the stability of a certain stellar mode, the fundamental mode always losing
its stability at a maximum on the curve M.�c/ [1075]. Stable stars are represented
only by rising portions on the curve M.�c/. This criterion is still valid for isen-
tropic stars with an equal specific entropy S . The point of the loss of stability by
the fundamental mode corresponds in this case to a maximum on the curve MS.�c/

[1081]. A more detailed knowledge of the number and stability of unstable modes
can be extracted from considering the dependence M.R/, where R is the stellar
radius [449].
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Fig. 12.1 (a) The mass M as
a function of central density
�c, plotted schematically for
zero entropy S D 0; (b) the
dependence S.�c/ for the
mass M0 below the extrema
M1 and M2, from [119]

Similar considerations may prove the validity of another static criterion of hot
isentropic stars. We shall now fix the stellar mass and calculate models with diverse
values of specific entropy. This will give the dependence SM.�c/. It is clear that the
extremum in this dependence corresponds to a critical point as well, because the
presence of an extremum proves the existence of two close models with an equal
entropyS , i.e. 
2.�cc/ D 0 at the extremum. The loss of stability by the fundamental
mode now occurs at a minimum on the curve SM.�c/.

It should be noted that calculating a series of models may sometimes lead to an
entropy fall-off down to zero, so that in a certain range of �c there will be no static
solutions for the given mass. Dips will then be present on the curveS.�c/ (Fig. 12.1).
This case, nevertheless, does not produce difficulties since at S D 0 we can con-
clude on stability from another static criterion. The presence of a “dip”, and of an
extremum as well, implies a change of sign for the square of the eigenfrequency of
one of an oscillatory mode.

One may thus perceive a certain complementarity in the criteria. On one hand, an
extremum on the curve MS.�c/ corresponds to the point of stability change, on the
otherhand, an extremum in SM.�c/ does. This is a consequence of the conservation
of M and S during adiabatic pulsations. This effect seems to be trivial for spheri-
cally symmetric stars, but the situation changes if we proceed to a more interesting
case of rotating stars.

It is obvious that all quantities conserved throughout adiabatic pulsations have
to be constant near a critical model. This means that if any quantity A conserved
throughout pulsations varies along a series of models, the dependence A.�c/ has
then an extremum at the critical point. The total energy " of an equilibrium star
always increases with increase in its mass or entropy [1074]. As a result, the extrema
on the curves "S.�c/ and "M.�c/ coincide with the extrema on the curvesMS.�c/ and
SM.�c/ and may be used with a static criterion for stability, while the dependencies
"S.M/ and "M.S/ are not analytical and have cusps.

It should be noted that the static criterion may be applied not only to isen-
tropic stars. We can construct, for example, a series of models of variable mass
with specific entropy distribution fixed over the dimensionless Lagrangian coordi-
nate q D Mr=M , whereMr is the mass inside r . It is easy to show that the extremum
MS.q/.�c/ corresponds in this case to a critical point as well.
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12.3.2 Criteria for Rotating Stars

It follows from considerations in Sect. 12.3.1 that to formulate a static criterion for
stability, it is necessary to indicate quantities A, B , C; : : : ; conserved throughout
pulsations, chose one of them (say, A) as a varying parameter, and, upon fixing the
integral or specific values of the other parameters, independent of A, to construct
a series of models. An extremum on the curve AB;C :::.�c/ will then correspond to
the critical point. In the case of rotation under conditions of adiabatic pulsations
and zero viscosity, the entropy S , specific angular momentum j of each piece of
material, and stellar mass M are conserved. The static criterion for stability could
be derived most easily for the case of an isentropic isomomentum star, but for a
real case the validity of the condition j D const: is barely possible. A criterion for
real stars with rotation can be derived by calculating, as described above, a series of
non-isomomentum models analogous to non-isentropic models.

Consider isentropic models. As we have three conserved quantities, three static
criteria are possible. The extrema of the curves

1ı SM;j .�/I 2ı JM;S .�/I 3ıMS;j .�/; (12.57)

will be critical points.
According to Poincaré’s theorem, determining restrictions to the rotational law in

barotropic equilibrium rotating stars, the specific angular momentum j and angular
velocity˝ in equilibrium are constants at cylinders; therefore fixed are

j D j.m/; m D Mb

M
; (12.58)

whereMb is the mass inside cylinder of radius b, for criteria 1ı and 3ı and

j 0 D M

J
j.m/ (12.59)

for criterion 2ı.
It may be easily seen that for all three cases the extremum on the curve coincides

with a critical point, and we see a full analogy with calculating a series of non-
isentropic models.

It is often necessary to examine the stability of models with a solid-body rota-
tion. The specific momentum of each Lagrangian mass varies along a series of such
models; therefore, the static criterion should be applied as follows. Let there be a
series of models with solid-body rotation. Each model has its own distribution of
momentum j.m/. Fixing j.m/, we can calculate from any model a new “associ-
ated” series of models in accordance with (12.57). Critical will be the model with
extreme parameters in the associated series.

Fully convective stars, say, supermassive [1080], or cold stars with S D 0, may
be regarded as isentropic. Degenerate configurations, white dwarfs, and neutron
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stars may be treated as isothermal because of their high thermal conductivity. For
the distribution of angular velocity of a star, see Sect. 8.2. At dj=db > 0, the star is
stable to turbulence development, but only for axially symmetrical perturbations to
the linear approximation. For example, when coaxial cylinders with large Reynolds
numbers Re D �vR=� > 105 are rotating, turbulence may develop at dj=db >0
when the outer cylinder rotates more rapidly [614]. The Reynolds numbers are al-
ways very large in stars, therefore the possibility for differentially rotating stars
with a large velocity to exist is rather questionable. At a low viscosity that is neces-
sary to violate the Thomson conservation-of-circulation theorem, there always exist
perturbations sufficiently large to cause turbulence. Instability of non-axisymmetric
perturbations with large azimuthal number m� 1, at � � eim' , also becomes im-
portant at large Re.

12.3.3 Removal of Degeneracy of Neutral Oscillatory
Modes in Rotating Isentropic Stars

A detailed analysis of static criteria for the stability of rotating stars reveals a strong
connection between eigenfunctions corresponding to neutral convective motions of
a non-rotating star and neutral eigenfunctions in the presence of rotation, and it also
enables us to find a simple relationship between the convective stability of the star
and Poincaré’s theorem.

An eigenfunction of the neutral perturbation mode in a nonrotating star depends
in a critical state on the spherical radius � D �.r/. It represents the difference in radii
of two close equilibrium states of the same mass on both sides of the maximum

� D �.q/ D r1.q/ � r2.q/; r D r.q/; q D Mr

M
; (12.60)

in accordance with the static criterion of Sect. 12.3.1. On the other hand, in the case
of isentropic stars, for any, including the weakest, rotation

� D �.b/; b D b.m/: (12.61)

Indeed, as the specific angular momentum j.b/ D ˝b2 conserves, we have

	˝

˝
D �2	b

b
: (12.62)

Since˝ ,	˝ , and b are functions of b, then	b D �b.b/. A jump in the expression
for an eigenfunction of the critical state occurring when a weak rotation is added
will be easily explained if we recall that in a nonrotating isentropic star not only a
radial neutral mode, but also an infinite series of eigenfunctions representing con-
vective motion correspond to the eigenvalue ! D 0, because the whole volume
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of an isentropic star is in a neutral state relative to convective instability, accord-
ing to the Schwarzschild criterion (9.4). If several eigenfunctions correspond to the
state with a given eigenvalue !, this state is called degenerate. For an isentropic
star without rotation such as the oscillatory mode with ! D 0. The rotation causes
neutral convective modes to become either stable or unstable (when dj=db < 0); so
the degeneracy of the neutral mode is removed.

If a perturbation (small rotation) removes the degeneracy, then a nondegenerate
eigenfunction of a perturbed state with the same eigenfrequency will be close to one
“regular” superposition of degenerate unperturbed eigenfunctions. An eigenfunction
of the neutral mode of a weakly rotating star is represented by a superposition of
convective and one radial mode such that the eigenfunction itself depends only on
the cylindrical radius b. The angular parts of eigenfunctions of convective modes are
Legendre polynomials Pl.cos �/ for �r and their derivatives dPl=d� D P 1

l
.cos �/

for �� with even l [317]. Similar to determination of an eigenfunction of the neutral
radial mode for a nonrotating star using a static criterion, for a weakly rotating star,
the same procedure enables us to restore the radial parts of all the convective modes
[119]. For this purpose, we find the eigenfunction

� D .�b.b/; �z.b; z// ; b D r sin � (12.63)

in the form of a difference between two close equilibrium models of the same mass.
We then evaluate the displacements in a spherical coordinate system

�r .b:z/ D
q
�2

b
C �2

z ; �� .b:z/ D arctan
�z

�b

; (12.64)

and perform the relevant expansions:

�r .r; �/ D
1X

lD0

�rl .r/ Pl.cos �/;

�rl .r/ D .l C 1=2/
Z 1

�1

�r .r; �/ Pl.cos �/ d.cos �/;

�� .r; �/ D
1X

lD0

��l .r/ P
1
l .cos �/;

��l.r/ D .l C 1=2/
l.l C 1/

Z 1

�1

�� .r; �/ P
1
l .cos �/ d.cos �/: (12.65)

The functions �rl and ��l are the radial parts of convective modes of oscillations
in a neutral case. This method for calculation of eigenfunctions is much less diffi-
cult than the conventional method of small perturbations [317], although it can be
applied only to a neutral degenerate mode.
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In a star stable to convection, the neutral mode is nondegenerate and its radial
dependence remains invariant in slowly rotating stars. This is due to the violation
of Poincaré’s theorem together with conditions (12.58) and (12.61) for barotropic
stars with entropy varying with mass. For an isentrope with �1 D 4=3, the neutral
mode is homologous, and for stars with a slow solid-body rotation, a maximum on
the curveMS;J.�c/ coincides with the point of stability loss.

12.3.4 Numerical Examples [119]

Consider cold white dwarfs with rigid-body rotation determined by an equation of
state written with regard for neutronization in the form [853]

� D Ax3
�
2C a1x C a2x

2 C a3x
3
�
;

P D B
h
x
�
2x2 � 3� �x2 C 1�1=2 C 3 ln

�
x C

p
1C x2

	i
;

A D 9:82 � 105 g cm�3; B D 6:01 � 1022 erg cm�3;

a1 D 1:255 � 10�2; a2 D 1:755 � 10�5; a3 D 1:376 � 10�6: (12.66)

The stability is established according to the criterion MS;J.�c/ � M1.�c/. The
self-consistent field method (see Chap. 6, Vol. 1) is used to calculate equilibrium
rotating models. First, we calculate a series of models with solid-body rotation and
fixed angular momentum J0 and choose a model near an extremum of the given
dependence M1.�c/. This model determines a certain distribution of momentum
j.m/ for which we calculate an associated series of models M2.�c/ with the same
total momentum J0. The results of calculations are given in Table 12.1 [119] from
which we see that the critical model (an extremum on the curveM2.�c/) coincides
with an extremum on the curve M1.�c/ for models with solid-body rotation. The
reason for this is that the equation of state for a white dwarf in the critical state
has �1 very close to 4/3, and the neutral oscillatory mode is almost homologous.
Besides, for a solid-body rotation of a nD 3 polytrope, the rotational T to gravita-
tional W energy ratio cannot be large because centrifugal and gravitational forces
become rapidly equal at the equator. In the present case, the rotation parameter ˇ,
reflecting the relative role of centrifugal forces on the structure of the main body
of a star, is ˇD˝2=8�G�cD 6:82 � 10�4, which is almost 70% of the termi-
nal value ˇlimD 9:83 � 10�4 for the polytrope nD 3 [545]. For these models also
T=jW j D 5:78 � 10�3, and .T=jW j/limD 9:00 � 10�3. Such a small value of the
kinetic rotational energy shows that the homologous mode is only slightly perturbed,
thus ensuring the coincidence of maxima in the series of models with solid-body
and differential rotation. The maximum mass in a critical state is 3.5% larger for the
limiting rotation than for the nonrotational case. For models from Table 12.1, the
increase in mass limit is 	 1:5%.
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Table 12.1 The dependence of central density �c of the mass M1 of white dwarfs
with solid-body rotation at J D 1:88 � 1049 g cm2 s�1, and mass M2, polar Rp and
equatorial Re radii of differentially rotating white dwarfs with momentum distribution
corresponding to a model with solid-body rotation and xc D 10:5. The equation of state
is determined in (12.66) from [119]

xi �c, g cm�3
M1

M
ˇ

M2

M
ˇ

Rp, cm Re, cm
10.0 2.090(9) 1.28621 1.28618 2.0126(8) 2.1622(8)
10.5 2.427(9) 1.28654 1.28654 1.9339(8) 2.0864(8)
10.6 2.499(9) 1.28654 1.28655 1.9189(8) 2.0720(8)
10.7 2.572(9) 1.28653 1.28654 1.9042(8) 2.0578(8)
10.8 2.646(9) 1.28650 1.28651 1.8896(8) 2.0439(8)
10.9 2.722(9) 1.28644 1.28646 1.8753(8) 2.0302(8)
11.0 2.800(9) 1.28637 1.28640 1.8613(8) 2.0034(8)

If in a polytropic equation of state �1 differs sensitively from 4=3, then the differ-
ence between the critical state and the maximum mass on the curve for solid-body
rotation may become essential. The equation of state in a parametric form

�.H/ D 1

2
�1

"�
H

H1

�0:3

C
�
H

H1

�10
#
;

P.H/ D 1

2
�1H1

�
.H=H1/

1:3

1:3
C .H=H1/

11

11

�
; (12.67)

has been considered in [119]. The value �1 D 4:33 at � D �1 and falls off steeply
when � > �1. The results of calculations for a model with solid-body rotation and
three associated series of models are given in Fig. 12.2. The loss of stability occurs
at the point of intersection of the associated curve D with the solid-body one, this
point coinciding with the maximum on the curve D. It can be seen from Fig. 12.2
that the point of stability loss differs from the maximum on the solid-body curve by
almost 5% with respect to �c. An extension of the static criteria to general relativity
and toroidal magnetic fields is made in [119].

12.4 Star Stability in the Presence of a Phase Transition

Under conditions of strong degeneration, the stellar matter may undergo phase tran-
sitions of the first kind, i.e. in a certain density range Z�1 � � � �2 the pressure
remains constant, P D P� (Fig. 12.3). Since the pressure decreases monotonically
with radius at r�, so that P.r�/ D P�, a jump in density occurs from �2 to �1. This
situation was first encountered in studies of giant planets [5, 821]. Phase transitions
due to neutronization may occur in the centre of white dwarfs with a mass close to
the Chandrasekhar limit (see Sect. 11.1) and in neutron star envelopes [154]. Phase
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Fig. 12.2 Mass M versus central density �c for models with solid-body (curve A) and differen-
tial (curves B, C, and D) rotation with the equation of state (12.67). The distribution of angular
momentum over the curves B, C, and D corresponds to the model with solid-body rotation on the
curve A at the points of its intersection with curves B, C, and D. The curve C departures from the
maximum of the curve A, and the maximum of the curve D coincides with the intersection point
which represents just a critical point for models with solid-body rotation. The mass is given in
.4��1/

�1=2.H1=G/
3=2, �c in �1

Fig. 12.3 Pressure versus
density in the presence of a
phase transition of the first
kind

transitions in low-mass white dwarfs [573] due to ionization by pressure are also
possible.

A phase transition reduces the stability reserve of the star. At �2=�1 > 3=2, the
star loses stability immediately after the central pressure has attained P DP� for
any equation of state [638, 893]. The stability of isentropic polytropes with phase
transitions at the periphery2 has been studied in [204, 895] using a static criterion.

The variational method for stability studies presented below has been developed
in [169]. Arguments for the validity of the static criterion from Sect. 12.3 for stars
with a phase transition are given in [909].

12.4.1 Evaluation of Variations ı" and ı2"

We take for the starting point the Newtonian energy of the star (10.8) without the last
term. Let the density in the unperturbed equilibrium state undergo a jump from �2 to
�1 at m D m�. Suppose that during perturbation the jump conserves its magnitude

2 When S 6D 0, the phase transitions are assumed to occur at S D const. The validity of this
assumption is not obvious, it is only a rough method for describing a phase transition.
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Fig. 12.4 The density
profile: solid line in
equilibrium star, dashed line
in perturbed star, from [169]

and shifts into a point Qm� > m� (Fig. 12.4). The case of Qm� < m� should be treated
analogously. To evaluate the variation of ", we divide the integral in (10.8) into three
parts: "2 (0 � m � m�), "1 ( Qm� � m � M ), and "� (m� � m � Qm�). Variations
ı"1 and ı"2 are calculated similarly to Sect. 12.3. Introducing volume v variation
instead of radius r , we obtain:

"2 D
Z m

�

0

E dm � ˇ
Z m

�

0

m dm

v1=3
; ˇ D

�
4�

3

�1=3

G;

v D 4�

3
r3; dv=dm D 1=�I (12.68)

ı"2 D �
Z m

�

0

P
d.ıv/

dm
dmC 1

3
ˇ

Z m
�

0

mıv

v4=3
dm

D �P ıvjm
�

C
Z m

�

0

�
dP

dm
C ˇ

3

m

v4=3

�
ıv	m; (12.69)

with
P D �@E=@.1=�/; ı.1=�/ D d.ıv/=dm: (12.70)

The parenthesized expression in the integral (12.69) equals zero by virtue of the
equilibrium equation, therefore:

ı"2 D �P.m�/ıv.m�/: (12.71)

Similarly,
ı"1 D P. Qm�/ıv. Qm�/: (12.72)

Evaluating the second variations of the energy, we obtain (cf. (12.20))

ı2"2 D �4
9
ˇ

Z m
�

0

m.ıv/2dm

v7=3
C
Z m

�

0

�P�

�
d.ıv/

dm

�2

dm; (12.73)

ı2"1 D �4
9
ˇ

Z M

Qm
�

m.ıv/2dm

v7=3
C
Z M

Qm
�

�P�

�
d.ıv/

dm

�2

dm;

� � �1 from (1.1.11):

(12.74)
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Evaluate the variation of "� with accuracy .	m�/2, 	m� D Qm� �m�:

	"� D
Z Qm

�

m
�

� QE � E� dm � ˇ
Z Qm

�

m
�

�
Qv�1=3 � v�1=3

	
m dm: (12.75)

In an unperturbed state, the density in the interval m� < m < Qm� is close to �1, in
a perturbed state to �2, and �.m� C 0/ D �1, Q� . Qm� � 0/ D �2. So, we have

QE D E
�
1

Q�
�
D E

�
1

�2

�
� P�

�
1

Q� �
1

�2

�
C : : :

	 H� � P�
Q� CO



.	m/2

�
;

E D E
�
1

�

�
D E

�
1

�1

�
� P�

�
1

�
� 1

�1

�
C : : :

	 H� � P�
�
CO 
.	m/2� :

Here, the enthalpy H� D E .1=�1/C .P�=�1/ D E .1=�2/C .P�=�2/ is constant
in the interval �1 � � � �2. Hence, the first term in the right-hand side of (12.75)
is equal to

P�
Z Qm

�

m
�

�
1

�
� 1Q�

�
dmC : : : 	 P� Œv. Qm�/� v.m�/� Qv. Qm�/C Qv.m�/� :

Thus, Z Qm
�

m
�

� QE �E� dm 	 P� Œıv.m�/� ıv. Qm�/� : (12.76)

For the second term in (12.75) we use

v.m/ 	 v. Qm�/C 1

�1

.m � Qm�/;

Qv.m/ 	 Qv. Qm�/C 1

�2

.m � Qm�/: (12.77)

Now

Qv�1=3 � v�1=3 	 �1
3

v�4=3. Qm�/ .Qv � v/

	 �1
3

v�4=3. Qm�/
�
Qv. Qm�/ � v. Qm�/C .m � Qm�/

�
1

�2

� 1

�1

��
:

(12.78)
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We then obtain

ˇ

Z Qm
�

m
�

.Qv�1=3 � v�1=3/m dm 	 ˇm�
Z Qm

�

m
�

.Qv�1=3 � v�1=3/ dm

	 �ˇm�ıv. Qm�/
3v4=3.m�/

	m� C ˇm�
6v4=3.m�/

�
1

�2

� 1

�1

�
.	m�/2: (12.79)

We assume that the increment ıv.m/ for parts 1 and 2 have the same order of small-
ness as the magnitude of the jump shift	m� D Qm��m�. Also, we combine (12.71)
and (12.72) with the relation

P. Qm�/ 	 P.m�/ � ˇm�
3v4=3.m�/

	m�; (12.80)

following from the equilibrium equation. For the total perturbation	" D ı"C ı2",
using (12.71–12.74) and (12.76–12.80), we find

	" D 1

2

 Z m
�

0

C
Z M

Qm
�

!"
�P�

�
d ıv

dm

�2

� 4
9
ˇ
m.ıv/2

v7=3

#
dm

C ˇm�
6v4=3.m�/

�
1

�1

� 1

�2

�
. Qm� �m�/2 : (12.81)

Now, we express . Qm� �m�/ in terms of ıv. By virtue of (12.77)

ıv. Qm�/� ıv.m�/ 	 . Qm� �m�/
�
1

�2

� 1

�1

�
; (12.82)

therefore the non-integral term in (12.81) is

1

2
B Œıv. Qm�/ � ıv.m�/�2;

B D ˇm�
3v4=3�

�
1

�1

� 1

�2

��1

; v� D v.m�/: (12.83)

Take the trial function ıv in the form

ıv.m/ D '2.m/; 0 � m � m� .'2.0/ D 0/

D '1.m/; Qm� � m �M: (12.84)



372 12 Dynamic Stability

The condition of positivity of	" at small  will then be written as

	" D
Z M

0

�
�P�



'0.m/

�2 � 4
9

ˇm'2

v7=3


dm

CB Œ'1.m�/ � '2.m�/�2 > 0I (12.85)

' D '2 0 � m � m�

D '1 m� � m �M:

The trial function '.m/ may be discontinuous at m D m�, thereby yielding the
additional nonintegral term in the stability condition. When several phase transitions
occur in a single star, each of them has its own corresponding nonintegral term
similar to (12.83).

12.4.2 Other Forms of Stability Criterion

The trial function '.m/ in (12.86) is arbitrary, has an arbitrary jump at m D m�,
and must only be equal to zero atm D 0. We now fix values for the jump '2.m�/ D
'.m� � 0/, '1.m�/ D '.m� C 0/ and choose '.m/ in such a way as to minimize
the integral term in (12.86). Euler’s equation for such a variational problem with a
square functional is linear and coincides with the linearized equilibrium equation

d

dm



�P�'0.m/

�C 4

9
ˇ
m

v7=3
' D 0: (12.86)

Using (12.86), the integral in (12.86) may be expressed in terms of the values at the
jump '1 and '2. The condition (12.86) will then be replaced by

�P��2�2'
0
2.m�/'2.m�/CB Œ'1.m�/ � '2.m�/�2

CP��1�1'
0
1.m�/'1.m�/ 
 0;

�2 � �.m� � 0/; �1 � �.m�C 0/:

(12.87)

While the condition '.0/ � '2.0/ D 0 determines the solution of (12.86) only to a
factor, the ratios ' 0

2.m�/='2.m�/ and ' 0
1.m�/='1.m�/ are independent of '1.m�/,

'2.m�/ and are determined only by unperturbed functions. We define

A2 D �P��2�2

'0
2.m�/
'2.m�/

; A1 D P��1�1

' 0
1.m�/
'1.m�/

: (12.88)
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The condition (12.87) then takes the form

A2'
2
2� C B.'1� � '2�/2 C A1'

2
1� 
 0 (12.89)

for all '1� D '1.m�/ and '2� D '2.m�/. Satisfying (12.89) requires that

A1 C B 
 0; A2 C B 
 0; A1A2 C B.A1 C A2/ 
 0: (12.90)

The necessary condition for stability is sometimes useful to be written in the form
where only one integral is minimized. Eliminating the integral from 0 to m� and
minimizing with respect to '2� gives

D Œ'1.m�/�2 C
Z M

m
�

(
�P�



' 0

1.m/
�2 � 4

9
ˇ
Œ'1.m/�

2

v7=3

)
dm 
 0;

D D A2B= .A2 CB/ ; A2 C B 
 0: (12.91)

The condition (12.90) is local by form, but the evaluation of A1 and A2 requires
solving two Cauchy problems for (12.86): in the interval 0 � m � m� from the
pointmD 0, and in the intervalm� � m �M from the pointm DM . On obtaining
these solutions and finding A1 and A2 from (12.88), the stability is to be tested by
(12.90).

If the conditions (12.86) and (12.89) are taken only with continuous functions
'.m/, that is, '1.m�/ D '2.m�/, the condition (12.89) will give the requirement
A1CA2 
 0. The continuity of '.m/ implies perturbations that do not shift the den-
sity jump with respect to mass. The same stability condition is valid in the absence
of a phase transition and follows from (12.90) as �2 ! �1, B !1. In (12.91), we
can set directly �1 D �2 when a phase transition is absent, to obtainD D A2.

12.4.3 Rough Test for Stability

The variational principle (12.86) enables us to perform an approximate stability test
upon choosing an appropriate class of trial functions '.m/. This method is sub-
stantially simpler than solving the Cauchy problem for (12.86) with singularities at
m D 0 andm D M . In the absence of a phase transition, a good result is yielded by
applying the linear trial function '.m/ D v.m/ (see Sect. 11.2 and (11.67) for the
case of general relativity). In the presence of a phase transition, a satisfactory accu-
racy results from using a two-parametric family of trial functions. Replace '.m/ by
a trial function  .m/ reducing for the smooth case to .ır=r/ (see Sect. 12.2):

'.m/ D 3v.m/ .r.m//:



374 12 Dynamic Stability

The condition (12.86) then becomes

 Z r
�

0

C
Z R

r
�

!
P r2

"
�

�
3 C r d 

dr

�2

� 12 2 � 4r d 2

dr

#
dr

CK1. 1� �  2�/2 CK2

�
 2

2� �  2
1�
� 
 0;

K1 D Gm�r2�
�
1

�1

� 1

�2

��1

; K2 D 4P�r3� : (12.92)

The condition (12.92) reduces to (12.38) at  1� D  2�. An extension of the linear
trial function  D 1, ' � v to the case with a phase transition is given by the
function

 D ˛2; r < r�;
D ˛1; r > r�;

which regretfully does not yield a sufficient accuracy for the boundary of stability.
The accuracy of the variational criterion has been checked using a static criterion.
The choice of the two-parametric family

 .r/ D ˛1 r < r�;
D ˛2 C .˛3=r

2/; r > r�: (12.93)

has proved to be more successful. Substituting (12.93) into (12.92), we obtain the
quadric form F.˛1; ˛2; ˛3/ required to be positively definite for stability:

F.˛1; ˛2; ˛3/ D
3X

i;kD1

Aik˛i˛k ;

A11 D K1 CK2 C 3I1; A12 D A21 D �K1;

A13 D A31 D �K1=r
2� ;

A22 D K1 �K2 C 3I2; A23 D A32 D .K1 �K2/=r
2� C I3;

A33 D .K1 �K2/=r
4� C I4: (12.94)

Here, K1 and K2 are given in (12.92), integrals Ii are

I1 D
Z r

�

0

.3� � 4/P r2dr; I3 D
Z R

r
�

.3� � 4/P dr;

I2 D
Z R

r
�

.3� � 4/P r2dr; I4 D
Z R

r
�

.� C 4/ P
r2

dr: (12.95)
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Table 12.2 Approximate values of critical parameters for polytropes with
phase transitions according to the criterion (12.92)–(12.95) in comparison with
exact values according to the static criterion from Sect. 12.3; �a is the central
density at the point of stability loss, �b is the same for the point of stability
return (from[169])

�a=�2 �b=�2

Exact
value

Approximate
value

Exact
value

Approximate
valueq �

1.32 stable
1.33 1.15 � 1.25 � 5/3
1.34 1.10 1.28 1.35 1.35
1.38 1.03 1.14 1.60 1.6
1.60 1.00 * 2.63 2.6
2.00 1.00 * 4.30 4.2

stable
1.09 1.42 � 1.51 � 7/5
1.10 1.19 1.20 2.19 2.18
� At �a D �2 we have r

�

D 0 so that the integral I4 from (45.28) diverges.

Fig. 12.5 Qualitative dependences M.Pc/ for polytropes with phase transitions at � > 4=3 and
for diverse q: q > 3=2 (a), qc < q < 3=2 (b), q < qc < 3=2 (c)

The results of applying the criterion (12.86) in the form (12.92–12.95) to stars with
a phase jump of density q D �2=�1 and a polytrope with the same � for � < �1

and � > �2 are given in Table 12.2 from [169]. The exact values of critical densities
calculated from the static criterion in [204] are given for comparison.

Qualitative dependencies M.Pc/ in the neighborhood of the phase transition
point in the center of the star are sketched in Fig. 12.5 for diverse � and q (see [204,
893]). For q >3=2, the stability loss occurs at PcDP�, but with further increase
in Pc and �c for � >4=3 the stability returns at PcDPb (�cD �b) (Fig. 12.5a). For
q <3=2, the stability loss is also possible for a finite new-phase core with Pc D Pa,
�c D �a. For any � > 4=3, there exists qc such that at q < qc the star is always
stable. For � D 2, 5=3, 3=2, 7=5, 4=3 the approximate values qc D 1:46, 1:33, 1:20,
1:09, 1:00. It is obvious that the case � D 4=3 is degenerate (neutral equilibrium)
in Newtonian theory (see (12.39)); therefore, an arbitrary phase transition leads to
instability.
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12.4.4 Derivation of Stability Condition for a Phase
Transition in the Center of Star

Using the Eulerian coordinate v as an independent variable, we write the energy "
from (12.68) in the form

" D
Z 1

0

E� dv � ˇ
6

Z 1

0

m2dv

v4=3
: (12.96)

Let, in an unperturbed star, the central pressure Pc is equal to P�, and at the phase
transition point in the perturbed star v D v�. To evaluate the energy variation, break
the integrals in (12.96) into intervals 0 < v < v�, v� < v <1. We have

ı

�Z 1

v
�

E� dv

�
D
Z 1

v
�

Hı� dv D
Z 1

v
�

H
d	m

dv
dv

D H 	m

ˇ̌
ˇ̌̌1
v

�

�
Z 1

v
�

dH

dv
	m dv; (12.97)

H D E C P=�; ı

�
ˇ

6

Z 1

v
�

m2dv

v4=3

�
D ˇ

3

Z 1

v
�

m	m dv

v4=3
;

1

2
ı2

�
ˇ

6

Z 1

v
�

m2dv

v4=3

�
D ˇ

6

Z 1

v
�

.	m/2dv

v4=3
D ˇ

2

Œ	m.v�/�2

v1=3�
CO �v2�

�

D ˇv2�.�2 � �1/
2

2v1=3�
CO �v2�

�
: (12.98)

The second variation of the first integral in (12.96) is a quantity � v2� and may be
rejected here. For the inner interval, we have

Z v
�

0

� QE Q� � E�� dv D
Z v

�

0

H� . Q� � �/ dvCO �v2�
�

D H�	m.v�/CO
�
v2�
�
;

ˇ

6

Z v
�

0

dv

v4=3

� Qm2 �m2
� D ˇ

10

�
�2

2 � �2
1

�
v5=3� : (12.99)

Using the equilibrium equation, we obtain in the point v� of the unperturbed star

H.v�/ D H� � ˇ
2
�1v2=3� CO

�
v4=3�

	
: (12.100)

Summing the variations of the energy (12.97–12.99) using the equilibrium equation,
and relation (12.100) in the first term of the first relation (12.97), we find
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	" D �ˇv5=3�
10



5.�2 � �1/

2 � �2
2 C �2

1

�C ŒH� �H.v�/�	m.v�/

D ˇv5=3�
10


�5.�2 � �1/
2 C �2

2 � �2
1 C 5�1.�2 � �1/

�

D 3ˇv5=3�
5

.�2 � �1/

�
3

2
�1 � �2

�
: (12.101)

Since �2>�1, the stability condition 	">0 reduces to �2< .3=2/ �1. This con-
clusion was obtained in [638, 893] by a more complicated method. Note that the
derivation of the condition (12.101) by direct evaluation of the energy in Lagrangian
coordinates failed because the nonintegral terms in (12.86) become of a lower order
of smallness and thereby predominant for the result.

12.5 Dynamic Stabilization of NonSpherical Bodies
Against Unlimited Collapse

The dynamic stability of spherical stars is determined by an average adiabatic power

� D @ logP

@ log �
jS :

For a density distribution � D �0'.m=M/, the star in Newtonian gravity is stable
against dynamical collapse when

Z R

0

�
� � 4

3

�
P

dm

'.m=M/
> 0;

see (12.39). This approximate criterion becomes exact for adiabatic stars with con-
stant � . The collapse of a spherical star can be stopped only by a stiffening of the
equation of state, such as neutron star formation at the late stages of evolution, or
formation of a fully ionized stellar core with � D 5=3 at the collapse of clouds dur-
ing star formation. Without a stiffening, a spherical star in Newtonian theory would
collapse into a point with an infinite density (singularity).

In the presence of a rotation, a star becomes more dynamically stable against col-
lapse. Because of the more rapid increase of the centrifugal force during contraction,
in comparison with the Newtonian gravitational force, the collapse of a rotating star
will always be stopped at finite density by centrifugal forces. It is shown in [142]
that deviation from spherical symmetry in a nonrotating star with zero angular mo-
mentum leads to a similar stabilization, and a nonspherical star without dissipative
processes will never reach a singularity. Therefore, the collapse to a singularity is
connected with a secular type of instability, even without rotation. This conclusion
is based on calculations of the dynamical behaviour of a nonspherical, nonrotat-
ing star after its loss of linear stability, at the nonlinear stages. An approximate
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system of dynamic equations derived in [140,141] is used, describing three degrees
of freedom of a uniform self-gravitating compressible ellipsoidal body. The devel-
opment of instability leads to the formation of a regularly or chaotically oscillating
body, in which dynamical motion prevents the formation of the singularity. The re-
gions of chaotic and regular pulsations are found by constructing a Poincaré diagram
for different values of the initial eccentricity and initial entropy. The calculations
have been done for spheroidal figures with � D 4=3 and � D 6=5.

12.5.1 Equations of Motion

Let us consider 3-axis ellipsoid with semi-axes a ¤ b ¤ c:

x2

a2
C y2

b2
C z2

c2
D 1; (12.102)

and uniform density �. A mass m of the uniform ellipsoid is written as (V is the
volume of the ellipsoid)

m D � V D 4�

3
� abc: (12.103)

Let us assume a linear dependence of velocities on coordinates

�x D Pax
a
; �y D

Pby
b
; �z D Pcz

c
: (12.104)

The gravitational energy of the uniform ellipsoid is defined as [615]:

Ug D �3Gm
2

10

1Z
0

dup
.a2 C u/.b2 C u/.c2 C u/

: (12.105)

The equation of state P D K�� is considered here, with � D 4=3. A spherical
star with � D 4=3 collapses to singularity at small enough K , and deviations from
a spherical form prevent formation of any singularity. For � D 4=3, the thermal
energy of the ellipsoid is Eth � V �1=3 � .abc/�1=3, and the value

" D Eth.abc/
1=3 D 3

�
3m

4�

�1=3

K

remains constant in time. A Lagrange function of the ellipsoid is written as

L D Ukin � Upot; Upot D Ug C Eth; (12.106)

Ukin D 1

2
�

Z
V

�
�2

x C �2
y C �2

z

�
dv D m

10
. Pa2 C Pb2 C Pc2/; (12.107)

Eth D "

.abc/1=3
: (12.108)
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Equations of motion describing behavior of three semiaxes .a; b; c/ is obtained from
the Lagrange function (12.106) in the form

Ra D �3Gm
2

a

1Z
0

du

.a2 C u/�
C 5

3m

1

a

"

.abc/1=3
; (12.109)

Rb D �3Gm
2

b

1Z
0

du

.b2 C u/�
C 5

3m

1

b

"

.abc/1=3
; (12.110)

Rc D �3Gm
2

c

1Z
0

du

.c2 C u/�
C 5

3m

1

c

"

.abc/1=3
; (12.111)

�2 D .a2 C u/.b2 C u/.c2 C u/:

12.5.2 Dimensionless Equations

To obtain a numerical solution of equations, they are written in nondimensional
variables

Qt D t

t0
; Qa D a

a0

; Qb D b

a0

; Qc D c

a0

;

Qm D m

m0

; Q� D �

�0

; QU D U

U0

; QEth D Eth

U0

; Q" D "

"0

:

The scaling parameters t0; a0; m0; �0; U0; and"0 are connected by the follow-
ing relations:

t20 D
a3

0

Gm0

; U0 D Gm2
0

a0

; �0 D m0

a3
0

; "0 D U0a0: (12.112)

The system of non-dimensional equations is:

Ra D �3m
2
a

1Z
0

du

.a2 C u/�
C 5

3m

1

a

"

.abc/1=3
; (12.113)

Rb D �3m
2
b

1Z
0

du

.b2 C u/�
C 5

3m

1

b

"

.abc/1=3
; (12.114)
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Rc D �3m
2
c

1Z
0

du

.c2 C u/�
C 5

3m

1

c

"

.abc/1=3
;

�2 D .a2 C u/.b2 C u/.c2 C u/: (12.115)

In equations (12.113)–(12.115) only nondimensional variables are used, and
“tilde” sign is omitted for simplicity in this section. The nondimensional Hamil-
tonian (or nondimensional total energy) is:

H D Ukin C Ug C Eth D m

10
. Pa2 C Pb2 C Pc2/

� 3m
2

10

1Z
0

dup
.a2 C u/.b2 C u/.c2 C u/

C "

.abc/1=3
: (12.116)

In the case of a sphere (a D b D c, Pa D Pb D Pc), the nondimensional Hamiltonian
and nondimensional equations of motion reduce to:

H D 3

10
m Pa2 � 3

5a

�
m2 � 5

3
"

�
; (12.117)

Ra D � 1

ma2

�
m2 � 5

3
"

�
: (12.118)

As follows from (12.117) and (12.118) for the given mass, there is only one equi-
librium value of "

"eq D 3m2

5
; (12.119)

at which the spherical star has zero total energy, and it may have an arbitrary radius.
For smaller " < "eq, the sphere should contract to singularity, and for " > "eq there
will be a total disruption of the star with an expansion to infinity. The equations of
motion have been solved numerically in [142] for a spheroid with a D b ¤ c. Using
(12.113)–(12.115), these are written for the oblate spheroid with k D c=a < 1 as

Ra D 3

2

m

a2.1 � k2/

�
k � arccoskp

1 � k2

�
C 5

3m

1

a

"

.a2c/1=3
; (12.120)

Rc D �3 m

a2.1 � k2/

�
1 � k arccoskp

1 � k2

�
C 5

3m

1

c

"

.a2c/1=3
I (12.121)

and for the prolate spheroid with k D c=a > 1 as

Ra D �3
2

m

a2.k2 � 1/
�
k � cosh�1 kp

k2 � 1

�
C 5

3m

1

a

"

.a2c/1=3
; (12.122)
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Rc D 3 m

a2.k2 � 1/
�
1 � k cosh�1 kp

k2 � 1

�
C 5

3m

1

c

"

.a2c/1=3
: (12.123)

It is convenient to introduce variables

"� D 5

3

"

m2
; t� D t

p
m: (12.124)

In these variables, the (12.122)–(12.123), (12.118) are written as (omitting the
subscript “*”)

Ra D 3

2a2.1 � k2/

�
k � arccoskp

1 � k2

�
C 1

a

"

.a2c/1=3
; (12.125)

Rc D � 3

a2.1 � k2/

�
1 � k arccoskp

1 � k2

�
C 1

c

"

.a2c/1=3
(12.126)

for the oblate spheroid with k D c=a < 1, and as

Ra D � 3

2a2.k2 � 1/
�
k � cosh�1 kp

k2 � 1

�
C 1

a

"

.a2c/1=3
; (12.127)

Rc D 3

a2.k2 � 1/
�
1 � k cosh�1 kp

k2 � 1

�
C 1

c

"

.a2c/1=3
(12.128)

for the prolate spheroid with k D c=a > 1. For the sphere, where the equilibrium
corresponds to "eq D 1, the (12.122)–(12.123) and (12.118) are reduced to

Ra D �1 � "
a2

: (12.129)

Near the spherical shape, we should use expansions around k D 1, which leads to
equations of motion valid for both oblate and prolate cases

Ra D �1 � "
a2
C
�
"

3
C 3

5

�
1 � k
a2

;

Rc D �1 � "
a2
C
�
4"

3
� 4
5

�
1 � k
a2

: (12.130)

In these variables, the total energy is written as

H� D H

m2
; (12.131)
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and omitting “*”, we have

H D Pa
2

5
C Pc

2

10
� 3

5a

arccoskp
1 � k2

C 3

5

"

.a2c/1=3
; .oblate/

H D Pa
2

5
C Pc

2

10
� 3

5a

cosh�1 kp
k2 � 1 C

3

5

"

.a2c/1=3
; .prolate/

H D 3 Pa2

10
� 3

5a
.1 � "/; .sphere/

H D Pa
2

5
C Pc

2

10
� 3

5a

�
1C ı

3
C 2ı2

15

�
C 3"

5a

�
1C ı

3
C 2ı2

9

�
;

ı D 1 � k; .around the sphere/; jıj � 1: (12.132)

Solution of the system of (12.122)–(12.123) was performed in [142] for initial con-
ditions at t D 0: Pc0 D 0, different values of initial a0; Pa0; k0, and different values
of the constant parameter ". Evidently, at k0 D 1, Pa0 D 0, " < 1, we have the spher-
ical collapse to singularity. No singularity was reached at k0 ¤ 1, for any " > 0.
At " D 0, a weak singularity is reached during formation of a pancake with infinite
volume density and finite gravitational force. At " > 0, the behavior depends on the
value of the total energy H : at H > 0, we obtain a full disruption of the body, and
at H < 0 the oscillatory regime is established at any value of " < 1. At " 
 1,
the total energy of spheroid is positive,H > 0, determining the full disruption. The
case with H D 0 is described separately.

At H < 0, the type of oscillatory regime depends on initial conditions and may
be represented either by regular periodic oscillations or by chaotic behavior. Exam-
ples of two types of such oscillations are represented in Figs. 12.6 and 12.7 (regular,
periodic), and in Fig. 12.8 (chaotic). For rigorous separation between these kinds of
oscillations, a method, developed by Poincaré [637], was used.

12.5.3 Numerical Results for the Case H D 0

In the case of a sphere with zero initial radial velocity, we have an equilibrium state
with " D "eq D 1. Let us consider the case of Pa ¤ 0 and " < 1. It follows from
(12.132) that for non-zero initial velocity Pa, entropy function " is strictly less than
unity. The fate of such sphere depends on the sigh of Pa. At Pa < 0, the star collapses
to singularity, and at Pa > 0 there total disruption happens, with zero velocity at in-
finity. For the initial spheroid with a D b ¤ c, and zero initial velocities Pa D Pc D 0,
the entropy function is also less than 1. In this case, the value of the entropy function
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Fig. 12.6 Example of regular motion of spheroid with � D 4=3, H D �1=5 and " D 2=3. This
motion corresponds to full line on the Poincaré map in Fig. 12.9, from [142]

Fig. 12.7 Example of regular motion of spheroid with � D 4=3, H D �1=5 and " D 2=3.
This motion corresponds to the point inside the regular region on the Poincaré map in Fig. 12.9,
from [142]

" is uniquely determined by the deformation ı D .a � c/=a. This dependence can
be found explicitly from (12.132); for small ı, we obtain

" D 1 � 4

45
ı2:
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Fig. 12.8 Example of chaotic motion of spheroid with � D 4=3, H D �1=5 and " D 2=3. This
motion corresponds to grey points on the Poincaré map in Fig. 12.9, from [142]

Thus, even in the case of zero initial velocities, " is less than unity for a spheroid and
reaches unity only for a sphere. For the same ", the deformation ı of a zero energy
body at rest has two states with

ı D ˙3
2

p
5.1� "/;

corresponding to oblate and prolate spheroids. If we set non-zero initial velocities
in the case of a spheroid, the entropy function will be even less. The calculation of
the motion in this case leads finally to the expansion of the body, with an oscillating
behaviour of ı around zero (oblateprolate oscillations). This takes place under the
conditions of both initial contraction or initial expansion (Fig. 12.8).

12.5.4 Poincaré Section

To investigate regular and chaotic dynamics, the method of Poincaré section was
used [637], and the Poincare map for different values of the total energy H were
obtained. Let us consider a spheroid with semi-axes a D b ¤ c. This system has two
degrees of freedom. Therefore, in this case the phase space is four-dimensional:a, Pa,
c, Pc. If we choose a value of the HamiltonianH0, we fix a three-dimensional energy
surfaceH.a; Pa; c; Pc/ D H0. During the integration of (12.122) and (12.123), which
preserve the constant H , we fix moments ti , when Pc D 0. At these moments, there
are only two independent values (i.e. a and Pa) because the value of c is determined
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uniquely from the relation for the Hamiltonian at constant H . At each moment ti ,
we put a dot on the plane .a; Pa/.

For the same values of H and ", we solve the equations of motion (12.122) and
(12.123) at initial Pc D 0, and different a and Pa. For each integration, we put the
points on the plane .a; Pa/ at the moments ti . These points are the intersection points
of the trajectories on the three-dimensional energy surface with a two-dimensional
plane Pc D 0, called the Poincaré section.

For each fixed combination of " andH , we obtain the Poincaré map, represented
in Figs. 12.9–12.13. The condition Pc D 0 splits into two cases, of a minimum and of
a maximum of c. The Poincaré maps are drawn separately, either for the minimum
or for the maximum of c, and both maps lead to identical results. The regular oscil-
lations are represented by closed lines on the Poincaré map, and chaotic behaviour
fills regions of finite square with dots. These regions are separated from the regions
of regular oscillations by a separatrix line.

Fig. 12.9 The Poincaré map
for five regular and two
chaotic trajectories in case of
� D 4=3, H D �1=5, and
" D 2=3. The .a; Pa/ values
are taken in the minimum of
c. Full black line is the
bounding curve. The point
inside the regular region
corresponds to coherent
oscillations with the same
period for a and c values,
represented in Fig. 12.7

Fig. 12.10 Zoom of Fig. dfig4
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Fig. 12.11 The Poincaré
map for five regular and two
chaotic trajectories in case of
� D 4=3, H D �1=5, and
" D 2=3. The .a; Pa/ values
are taken in the maximum
of c. Full black line is the
bounding curve. The point
inside the regular region
corresponds to coherent
oscillations with the same
period for a and c values,
represented in Fig. 12.7

Fig. 12.12 The Poincaré map for two chaotic trajectories in case of � D 4=3, H D �1=2,
" D 1=6. The .a; Pa/ values are taken in the minimum of c. Full black line is the bounding curve

12.5.4.1 The Bounding Curve

Actually, the variables a and Pa cannot occupy the whole plane .a; Pa/ W 0 < a <

1;�1 < Pa < C1. Let us obtain a curve bounding the area of the values a and Pa.
Let a function ˚.a; Pa; c/ in the variables (12.124) and (12.131) be:

˚.a; Pa; c/ D 1

10
. Pa2 C Pb2 C Pc2/�

� 3

10

1Z
0

dup
.a2 C u/.b2 C u/.c2 C u/

C 3"

5.abc/1=3
�H (12.133)
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Fig. 12.13 The Poincaré map for six regular trajectories in the case of � D 4=3, H D �3=50,
and " D 9=10. The .a; Pa/ values are taken in the minimum of c. Full black line is the bounding
curve. The point inside the regular region corresponds to coherent oscillations with the same period
for a and c values, similar to those represented in Fig. 12.7

at a D b, Pa D Pb, Pc D 0, and fixed value of " andH . The equation for the bounding
curve f .a; Pa/ D 0 at given " and H is determined from the following system of
equation:

˚.a; Pa; c/ D 0; @

@c
˚.a; Pa; c/ D 0: (12.134)

For c < a, this system of equations has the forms

1

5
Pa2 � 3

5

arccos.c=a/p
a2 � c2

C 3"

5.a2c/1=3
�H D 0; (12.135)

�3
5
c

arccos.c=a/

.a2 � c2/3=2
C 3

5

1

a2 � c2
� 1
3

1

c

3"

5.a2c/1=3
D 0: (12.136)

This system is solved numerically. The second equation does not depend on Pa. We
set a and obtain a corresponding value of c from the second equation. Then we
substitute a and c into the first equation and find Pa. Thus, we obtain the point .a; Pa/.
Changing a, we obtain numerically the curve f .a; Pa/ D 0. This bounding curve is
shown in Figs. 12.9–12.13 by a bold line.

12.6 General Picture

The main result following from above calculations is the indication of the degener-
ate nature of the formation of a singularity in unstable Newtonian self-gravitating
gaseous bodies. Only pure spherical models can collapse to singularity, but any kind
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Fig. 12.14 The Poincaré map for one chaotic and four regular trajectories in case of � D 6=5,
m D 1, QH D �3=50 and Q" D 27=50, see (12.137). The .a; Pa/ values are taken in the mini-
mum of c. Full black line is the bounding curve. The point inside the regular region corresponds
to coherent oscillations with the same period for a and c values, similar to those represented in
Fig. 12.7

of nonsphericity leads to nonlinear stabilization of the collapse by dynamic motion,
and formation of regularly or chaotically oscillating body. This conclusion is valid
for all unstable equations of state (i.e., adiabatic with � < 4=3). The calculations
of the dynamics of the model with � D 6=5 gave similar results. The Poincaré
map for this case is represented in Fig. 12.14. For � D 6=5, we have the entropy
function " D Eth.abc/

1=5, and the nondimensional entropy function Q"D "=U0a
3=5
0

[see (12.112)]. For a spherical star with � D 6=5, the nondimensional Hamiltonian
instead of (12.117) is:

QH D 3m

10
Pa2 � 3

5a
m2 C Q"

a3=5
: (12.137)

Note that region of chaotic behaviour on the Poincaré map gradually increases for
� D 4=3 with decreases in the entropy " and the total energy H . At " D 9=10 and
H D �3=50, only regular oscillations have been found (Fig. 12.13), at " D 2=3

and H D �1=5 both types of oscillations are present (Figs. 12.9–12.11), and only
chaotic behaviour is found at " D 1=6 and H D �1=2 (Fig. 12.12). According to
[141], this chaotic behavior is connected with development of anisotropic instability,
when radial velocities strongly exceed the transversal ones [26, 397].

In reality, the presence of dissipation leads to a damping of these oscillations,
and to the final collapse of the nonrotating model, when the total energy of the body
is negative. In the case of a core-collapse supernova, the main dissipation is a re-
sult of the emission of neutrinos. The time of the neutrino losses is much larger
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than the characteristic time of the collapse, so we can expect the collapse to lead
to the formation of a neutron star where nonspherical modes are excited and exist
for several seconds after the collapse. In addition to the damping because of neu-
trino emission, shock waves will be generated, determining highly variable energy
losses during the oscillations. Besides viscosity and radiation, which can damp the
ellipsoid-like motions and allow collapse, there is the possibility that inertial inter-
actions with higher-order modes, which must be present in real stratified bodies,
may cause an inertial cascade and drain the energy from the second-order modes
in a nonsecular way that does not depend on dissipative coefficients. It is tempting
to connect chaotic oscillations with the highly variable emission observed in the
prompt gamma-ray emission of cosmic gamma-ray bursts [683]. The presence of
rotation and a magnetic field greatly complicates the picture of the core-collapse su-
pernova explosion [45]. In reality, a spheroid will become a triaxial ellipsoid during
the motion. Variants with triaxial figures have been calculated in [141]. Qualita-
tively, the same results have been obtained, but a rigorous investigation of the regular
and chaotic types of motion by constructing a Poincaré map is impossible, because
of a large number of degrees of freedom.

Within the framework of general relativity, dynamic stabilization against col-
lapse by nonlinear nonspherical oscillations is not universal. When the size of the
body approaches gravitational radius, no stabilization is possible at any � . Never-
theless, the nonlinear stabilization may occur at larger radii; so after damping of
the oscillations the star would collapse to a black hole. Because of the development
of nonspherical oscillations, there is the possibility of the emission of gravitational
waves during the collapse of nonrotating stars with an intensity similar to rotating
bodies, or even larger.

An account of general relativity will introduce a new nondimensional parameter,
which can be written as:

pg D 2Gm0

c2a0

:

The fate of the gravitating body will depend on the value of this parameter, and we
can expect a direct relativistic collapse to a black hole at increasing pg, approaching
unity. It is known that a nonrotating black hole is characterized only by its mass
[1082]. In the absence of other dissipative processes, the excess of energy, connected
with a nonspherical motion, should be emitted by gravitational waves during the
formation of a black hole.





Chapter 13
Thermal Stability

13.1 Evolutionary Phases Exhibiting Thermal Instabilities

The development of a dynamical instability in the star causes its transition to a
compact state (neutron star or black hole), may sometimes be accompanied by a
supernova explosion, and represents the end of its nuclear evolution. Development
of thermal instability does not necessarily lead to such a catastrophic result. Some
displays of the thermal instability have been considered in Sects. 9.3 and 10.2.

13.1.1 Instability in Degenerate Regions

The instability development under conditions of matter degeneracy, predicted in
[689], may be explained quite simply. The temperature increase in this case has
almost no effect on pressure. The hydrodynamical mechanism of stabilization is
not at work. The nuclear-burning time decreases exponentially with increasing tem-
perature, and there occurs a thermonuclear explosion. In other terms, the thermal
instability is related to the positive heat capacity of a degenerate star differing from
normal stable stars with negative heat capacity. Such explosions have a large variety
of manifestations.

1. Helium flash. This takes place in degenerate helium cores which form in stars
with initial masses Mi <2:25Mˇ (Sect. 9.3) after hydrogen has been exhausted
in the centre. The helium flash results in removing the degeneracy in the core and
transferring the core in a quiescent-burning state (see Fig. 9.40). During helium
flash, �n > �h always, and static equilibrium is hardly broken.

2. Carbon flash. In stars with initial mass Mi D 2:25–8Mˇ the degenerate core
forms after helium is burnt out in it, and the mixture 12CC 16O is formed (Sects. 9.3,
10.2). The fate of such a star depends on the counterbalance between processes
of degenerate C–O core growth during helium shell burning and those of matter
outflow. As shown in Sect. 9.3, according to observational data, only the most mas-
sive stars of this interval succeed in increasing the mass of their cores to 1:39Mˇ
when a thermal instability develops in them to result in an explosion with �n < �h

G.S. Bisnovatyi-Kogan et al., Stellar Physics: 2: Stellar Evolution and Stability,
Astronomy and Astrophysics Library, DOI 10.1007/978-3-642-14734-0 7,
c� Springer-Verlag Berlin Heidelberg 2010
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(Sect. 9.3). Such an explosion causes either a complete run-away of the star, or the
transition to collapse with subsequent neutron star formation (Sect. 10.2).

3. Neon-oxygen flash. Stars with M D 8–13Mˇ burn carbon in the core in a
non-degenerate state, but the resulting O+Ne+Mg core turns out to be degenerate
(Sect. 10.1). For stars with M D 8–10Mˇ the dynamical instability development
results from neutronization of 24Mg leading to a collapse and starts before the ther-
mal instability development in the degenerate core. The oxygen thermal flash in
the contraction phase has almost no effect on the collapse. For stars with M D
10–13Mˇ, the thermal flash develops at the periphery of the degenerate core, re-
moves its degeneracy and leads to subsequent quiescent evolution. Here, as in the
helium flash, we have always �n > �h.

4. White dwarf envelopes. Degenerate hydrogen-helium shells in white dwarf
envelopes result from accretion in binaries. The development of thermal instability
of hydrogen thermonuclear burning is thought to be the reason for nova outbursts
(Sect. 11.1.5). The value of �n then becomes lower than �h.

5. Neutron star envelopes. The formation of degenerate hydrogen and helium
shells with subsequent thermonuclear explosion is a result of accretion as well.
Calculations show [362] that after ignition of hydrogen the neutron star envelopes
achieve such high temperatures that helium burning proceeds explosively. Thermal
explosions are also possible in a purely helium degenerate envelope. During an ex-
plosion, the static condition �n > �h holds. Such explosions are believed to produce
X-ray bursters, that is, bursting X-ray sources observed in the spherical component
of the Galaxy and in globular clusters in the energy range from tenths to a few tens
of keV. Observational data analysis suggests that bursters are very old neutron stars
with low magnetic fields incorporated in close binaries together with a low-mass red
or white dwarf. Due to a low magnetic field the neutron star may speed its rotation
up to very large angular velocities via accretion, transforming the neutron star into
a rapid millisecond pulsar.1

In calculations with a regular accretion [607], Fig. 13.1, thermal flashes also oc-
cur regularly with the time interval between flashes depending on accretion rate Pm.
Observations reveal a strong irregularity in the occurrence and properties of flashes
[958], Fig. 13.2, thus pointing to the possibility of chaotic effects. The emergence
of stochasticity in several models of X-ray bursters has been studied in [824].

6. Explosion in the neutron star envelope due to the reaction of fission of su-
perheavy nuclei. In the harder energy range from 20 keV to 20 MeV gamma-ray
bursters were detected. Their length, from tenths to tens of seconds, ranges them
close to X-ray bursters, but they exhibit a large variety of types (Fig. 13.3 [432]).
Contrary to X-ray busters visible on the same irregularly busting sources, gamma-
ray bursts are almost never recurrent. The nature of gammy-ray bursts is more
ambiguous than that of X-ray busters.

1 The discovery of the millisecond pulsar in the globular cluster M 28 [658] corroborated this
evolutionary scheme considered in [21,177,178]. Over forty radio pulsars with rapid rotation were
discovered by 2001 in globular clusters [252, 966], see review [641].
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Fig. 13.1 Time dependence
of the luminosity during a
flash due to hydrogen–helium
burning in the neutron star
envelope. Shown are effective
temperatures at the peak and
fall of luminosity
(from [607])

Fig. 13.2 Profiles of two bursts observed at GX 17 + 2 from the EXOSAT satellite 6. September
1984 (above) and 20. August 1985 (below). The time resolution is 0.63 and 10 s for the upper and
lower figures, respectively (from [958])

Some of them are now related to cosmological distances, based mainly on
discovery of X-ray and optical afterglows [257, 307, 597]. The necessary huge en-
ergy output is usually looked for in collisions between neutron stars, or a neutron
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Fig. 13.3 Time profiles of several gamma-ray bursts observed during the experiment “Konus.”
The dates of the bursts are given in the figures: (a) 04.01.78; (b) 10.01.79; (c) 13.01.79; from [432]

star with a black hole [691]. Small subclasses of gamma-ray bursts with observed,
recurrent activity (soft gamma repeators -SGR ) are usually connected with rela-
tively young galactic neutron stars with high magnetic fields. Among four known
SGR, periodic pulsations with P D 5 � 8 s have been observed in three of them,
including the most powerful burst that occurred March 5, 1979 [383,680]. The wide
variety of properties observed in gamma-ray bursts could be connected with their
different origin.

In our opinion, some gamma-ray bursts could occur on old cooled single neutron
stars since they have no connection with any stationary optical (or radio) object
which might be a normal companion of a neutron star or young neutron star– radio
pulsar itself.
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The model for gamma-ray burst proposed in [102, 126] and developed in [123,
196] is based on an instability leading to a nuclear explosion due to the reac-
tion of fission of superheavy nuclei in the outer envelope of the neutron star at
� � 109 g cm�3. Superheavy nuclei form during the neutron star formation and
are accumulated in the non-equilibrium layer (see Sects. 1.4.5 and 1.4.6, Vol. 1
[122, 194, 195]). Stable in the non-equilibrium layer at � D 1011 � 1012 g cm�3,
superheavy nuclei become unstable to ˇ-decay after having passed into less dense
layers with � � 109 g cm�3. Such a passage may be due to a starquake in the neu-
tron star similar to that causing periodic jumps (glitches) in radio pulsars [670]. An
increase in the number of protons in a nucleus makes it unstable to fission after ˇ-
decays. The emergence of fast neutrons in spontaneous fission initiates an induced
fission which results ultimately in a chain reaction [123] and explosive energy re-
lease over a time �n � 10�8 s well below the hydrodynamical time of the envelope
�h;env D R=v � 104=1010 � 10�6 s. The energy release Q D 1040 erg in the
neutron star envelope leads to the formation of a shock which, upon reaching the
surface, is thought to give the observable gamma-ray burst [166].

The instability resulting in a chain reaction of fission differs in nature from the
above effects of thermal instability due to the reduction of the burning time �n

caused by a temperature increase. The nuclear time of fission depends on the con-
centration of fast neutrons for a supercritical mass of nuclei undergoing fission,
rather than on temperature. A thermal character of this instability consists in that
on initial stages of the chain reaction development in degenerate matter the rela-
tive increase in pressure is slight, and hydrodynamical motions together with the
shock formation occur only after the release of all the fission energy of superheavy
nuclei. Such an instability may be called nuclear-thermal. A neutron star starquake
may lead to excitation of eigen-oscillations and formation of a high-frequency short-
lived radio and gamma pulsar [113].

13.1.2 Instabilities in the Absence of Degeneracy

7. Loops on evolutionary tracks of massive stars in the HR diagram. Evolution-
ary tracks of stars with M � 3Mˇ in the HR diagram turn out to be very sensitive
to initial values of parameters and even to the computational scheme (Sects. 9.2
and 2.3). Such an irregular behaviour provides evidence for the presence of a ther-
mal instability having a nature other than the above instabilities. The reduction of
�n due to temperature variations is of no importance here, moreover, the nuclear-
burning rate varies slightly in this case. This instability occurs in stars at the stage
of the evolution with core-helium and shell-hydrogen burning phase. From a math-
ematical standpoint, this means that the time-dependent solutions to the equations
of evolution turn out to be unstable, that is, arbitrary small differences in initial
conditions lead in time to large differences in solutions. As this instability devel-
ops, the relations between the time scales �h, �th, �n do not change by orders of
magnitude. The presence of an instability is a necessary condition for the develop-
ment of stochasticity exhibited by numerical computations.
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Although evolutionary calculations with loops are numerous, the physical nature
of this instability and the forces behind it are still obscure. In [1086], for stars with
M � 15Mˇ, this instability is attributed to outgoing of the hydrogen burning-shell
beyond the jump in chemical composition at the boundary of the maximum inward
penetration of the outer convective zone at previous evolutionary stages. However,
the possibility that this penetration itself is a result of this instability cannot be ruled
out. For stars of lower masses, there are no hypotheses on the physical nature of
their loops.

8. Flashes in non-degenerate helium shells. Instabilities of this type occur in stars
of 2:25–8Mˇ at the stage when a degenerate C–O core grows because of helium
burning in a shell (Sect. 9.3.4). From its effects, this instability is completely anal-
ogous to the instability of a nuclear burning under conditions of degeneracy. Here
also, the time scale of helium burning �He decreases strongly with temperature, al-
though never attains �h, therefore the static equilibrium is conserved as in cases
1, 3, 5. The dynamical reaction of the helium-burning shell to the temperature in-
crease inside it proves to be weak, but the reason for this is not that the pressure
depends weakly on the temperature as in the case of the degenerate matter. Rather,
it is related to the response of the star as a whole to the temperature increase in the
thin shall, and its positive heat capacity.

13.2 Thermal Instability Development in Non-Degenerate Shells

The prediction of the possibility for thermal instability to develop in thin non-
degenerate burning shells owing to peculiarities of the stellar response to pertur-
bations in the burning rate was made in [440]. A mathematical description of this
type of instability is given in [884]. We now consider dynamically stable stars.

13.2.1 Stability of a Burning Shell with Constant Thickness

Consider a thermal perturbation, without account of its effect on the shell equilib-
rium. Rewrite the thermal balance equations for the radiative case (9.24) and (9.94),
with the equation of state of a perfect gas in the form

Lr D �.4�r2/2
4ac

3

T 3

�

dT

dm
; (13.1)

" � dLr

dm
D 3

2

P

�

ds

dt
; (13.2)

s D 2

3

S

R
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P

�5=3
C const: R D k

�mu
; (13.3)
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Fig. 13.4 Idealized
temperature profile through
the burning shell, from [884]

Fig. 13.5 Idealized
temperature perturbation
profile through the burning
shell, from [884]

where S is the entropy of a perfect, fully ionized gas (11.123). Assume that all
energy sources are located in a shell of a mass�m, while the energy release outside
this shell is negligible. The idealized temperature distribution in the shell �m is
given in Fig. 13.4 from [884]. Equation (13.1) then gives

Lr D 0 for m D m0 (13.4)

Lr D L D
�
4�r2

�2 4acT 3

3�

�T

1=2�m
for m > m0 C �m

2
: (13.5)

Neglecting entropy variations with time gives, for the mean rate of the energy release
in the shell

" D L

�m
: (13.6)

Let us now perturb the thermal state within the shell [884] as shown in Fig. 13.5.
Neglecting the density and temperature perturbations and retaining only the
temperature-gradient ones, we have from (13.1)

ıLr D �
�
4�r2

�2 4ac
3

T 3

�

ıT

1=4�m
; (13.7)

where “�” refers to the inner, and “C” to the outer surfaces of the shell. The pertur-
bation of the flux divergence is then equal to

ı

�
dLr

dm

�
D 4 L

�m

T

�T

ıT

T
: (13.8)

If the energy release rate is written in the form

" � T � ; (13.9)
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neglecting its dependence on density, and only time derivatives of the entropy are
included (d=dt D @=@t), then from (13.2), using (13.6), (13.8), and (13.9), we have

�
� � 4 T

�T

�
ıT

T
D 3

2

�
P

�

�m

L

�
d.ıs/

dt
: (13.10)

The first left term in (13.10) represents the gain in heat release, while the second
gives the increased heat losses in the shell. A positive left-hand side means that a
small increase in shell entropy leads to an increase in the shell temperature, i.e.,
implies instability. The heat release thus exceeds the heat losses at

�T

T
>
4

�
; (13.11)

i.e., at a sufficiently large temperature difference�T in the shell. It is noted in [884]
that for the proton–proton hydrogen-burning cycle with � � 4 [878] the condition
(47.11) is not valid, while at � � 4 in the case of helium burning [878] (see also
Chap. 4, Vol. 1), relatively small temperature differences may lead to instability.
To answer definitively the question on the thermal instability of a burning shell, it is
necessary to include simultaneously in calculations temperature and density pertur-
bations arising from the hydrostatic adjustment of the whole star to the temperature
perturbation in the shell.

13.2.2 Calculations of Density Perturbations [884]

Write the linearized equilibrium equations (10.1) and (9.97) in the form

d.ır=r/

dm
D 1

4�r3�

�
�3 ır

r
� 3
5
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C 3
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�
; (13.12)

d.ıP=P /
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where
ı�

�
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5
ıs C 3

5

ıP

P
: (13.14)

We look for the solution to the inhomogeneous system of the linear equations
(13.12) and (13.13), finite over the whole star, by use of the method of variation
of constants. The corresponding homogeneous system (at ıs D 0) has two linearly
independent solutions. One of them with subscript “1” is finite in the centre, where
the expansions (with the normalization condition (ıP=P /1 D 1 at m D 0, r D 0)
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C : : : (13.15)

are valid, while the other, subscripted “2”, is finite on the edge of the star, where
(with the normalization condition (ıP=P /2 D 1 at m DM , r D R) the expansion
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is valid. The solution to the inhomogeneous system which is finite over the star is
looked for in the form

ır=r D C1.m/.ır=r/1 C C2.m/.ır=r/2;

ıP=P D C1.m/.ıP=P /1 C C2.m/.ıP=P /2: (13.17)

Solutions “1” diverge on the boundary, solutions “2” at the centre of the star because
everywhere finite non-zero solutions of the homogeneous system are absent. The
functions C1.m/ and C2.m/ then have to obey

C1.M/ D 0; C2.0/ D 0: (13.18)

Substituting (13.17) into (13.12) and (13.13) and solving this system for C1.m/ and
C2.m/ with use of (13.18), we obtain the solution to the inhomogeneous system in
the form
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The solution (13.19) is written analogously to the solution of the inhomogeneous
second-order equation .d=dx/ Œp.x/y0	�q.x/Cf .x/ D 0 in the interval Œa; b	with
the uniform boundary conditions ˛1y.a/ C ˛2y

0.a/ D 0, ˇ1y.b/ C ˇ2y
0.b/ D 0

by use of the Green function [918]

G.x; 
/ D y1.x/y2.
/ .x � 
/;
D y2.x/y1.
/ .x � 
/;

where y1 satisfies the first, y2 the second boundary condition. The functionG.x; 
/
is the solution to the second-order equation when f .x/ D ı.x � 
/, while the
solution with an arbitrary f .x/ has the form

y D
Z b

0

G.x; 
/ f .
/ d
:

For the perturbation ıs, localized in a thin shell, we obtain from (13.19) the pressure
perturbation in the shell in the form

ıP

P
� 3

5
Q
�r

r
ıs; Q D .ıP=P /1.ıP=P /2

�
: (13.21)

The quantity Q varies slightly throughout the star: from �4 to �8 for a red-giant
model with a degenerate carbon core and a helium-burning shell [884]. The nega-
tivity ofQ causes the entropy increase in the shell to reduce the pressure in it, while
the magnitude of the pressure perturbation drops as the shell thickness decreases.
From the equation of state for a perfect gas, relations (13.14) and (13.21), we have
the temperature perturbation in the shell in the form

ıT

T
D ıP

P
� ı�
�
D 2

5

ıP

P
C 3

5
ıs D 3

5

�
1C 2

5
Q
�r

r

�
ıs: (13.22)

For wide-burning regions �r=r � 1 and Q � �6, a negative heat capacity of the
star (ıT=T < 0 for ıs > 0) implying its thermal stability follows from this relation.
For sufficiently thin burning shells an increase in temperature with rising entropy is
possible if

�r

r
<
5

2

1

jQj : (13.23)

The thermal instability development in a burning shell requires that the conditions
(13.11) and (13.23) be satisfied. In real burning shells �T=T � �r=r , so

4

�
<
�r

r
<
5

2

1

jQj ; � >
8

5
jQj � 10: (13.24)
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Helium-burning shells, together with hydrogen shells, where the burning proceeds
through a carbon cycle (see Chap. 4, Vol. 1), may thus be thermally unstable. This
factor may influence the loop formation in massive star tracks.

13.2.3 A Strict Criterion for Thermal Stability

A strict treatment of the thermal stability of a star requires solving a linearized
system of evolution equations with a time dependence

ıL; ır; ıP; ıT � et=� : (13.25)

The system comprises (13.12) and (13.13), the linearized equation (13.1)

ıLr D �
�
4�r2

�2 4ac
3

T 3

�

�
dıT

dm
C dT

dm

�
4ır

r
C 3ıT

T
� ı�
�

��
(13.26)

and the linearized equation (13.2) which is the only one to contain a time derivative:

ı" � ı
�
dLr

dm

�
D 3

2
ı

�
P

�

�
ds

dt
C 3

2

P

�

ıs

�
: (13.27)

The linear homogeneous system of differential equations (13.12), (13.13), (13.26),
and (13.27) is solved by writing them in a finite difference form, as in the Henyey
method (see Sect. 6.1, Vol. 1). By virtue of the homogeneity of this system, satisfy-
ing corresponding linearized boundary conditions, a solution exists only for zero
determinant, which provides the single eigenvalue � . The investigation in [884]
of the thermal stability of evolutionary 1Mˇ models with low content in metals
(population II) has revealed the presence of positive eigenvalues: (1) at the phase
of the onset of helium flash in a core with LH� 2600Lˇ, LHe� 1Lˇ, where
� � 300;000 yr; and (2) at the phase of two non-degenerate burning shells (hydrogen
and helium), with a degenerate carbon core at LH� 122Lˇ, LHe � 118Lˇ, where
� � 106 yr. In the latter case the temperature and entropy perturbations have one
sign inside helium- and opposite signs inside hydrogen-burning shells, thus provid-
ing evidence for the instability of helium burning alone. Evolutionary calculations
(Sect. 9.3) show that as the helium flash develops in a burning shell in the non-linear
regime, � decreases rapidly. On the boundary of thermal stability � D1, while the
determinant of the above linearized system coincides with the Henyey determinant
(Sect. 6.1, Vol. 1), therefore its reducing to zero during the evolution implies the
onset of thermal instability.

Also, the determinants in the Henyey and Schwarzschild methods become zero
when a thermal instability arises, leading to the formation of loops on evolution-
ary tracks (see [771, 776, 839], Sect. 9.2.1). This also gives rise to an ambiguity
in construction of equilibrium stellar models with a fixed distribution of chemical
composition.





Chapter 14
Stellar Pulsations and Stability

Being a dynamical system, the star has diverse oscillatory eigenmodes. When one
takes thermal processes into account, some of these appear to be unstable. The in-
crement of such an instability � , equal to the inverse time scale of the amplitude
increase by a factor of e, is usually well below the pulsational frequency !. Other
modes can be unstable in the adiabatic approximation as well, as in the case of
convective instability (9.4), for dS=dr < 0.

Stellar pulsations are treated in books and reviews [317, 438, 630, 828, 994]. In
this chapter, we consider, in addition, radial oscillations of stars with phase tran-
sitions, and the important problem of pulsational stability of massive stars not
included in the monographs mentioned above. We will consider first briefly the fun-
damentals of the theory of stellar pulsation, following [317, 438, 630].

14.1 Eigenmodes

14.1.1 Equations for Small Oscillations

We derive a linearized system of equations of hydrodynamics describing small oscil-
lations of a star. The star is assumed to be non-rotating with uD 0. The Lagrangian
perturbations of displacement, velocity, density, pressure and potential are denoted
for the given element as

ır; ıu; ı�; ıP; ı˚; (14.1)

and Eulerian ones at a given point of space as

u0 �0; P 0; ˚ 0 : (14.2)

The relation between them has the form

ıf D f 0 C ır � .rf /: (14.3)

Specifying the time dependence� e�i!t , we have from (7.31)

u0 D ıu D �i! ır : (14.4)
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The continuity equation (7.32) gives:

ı� D �0 Cr� � ır D �� .r � ır/: (14.5)

The equation of motion (7.33) divided by �, upon being linearized becomes:

�!2ırC rP
0

�
� rP

�

�0

�
Cr˚ 0 D 0: (14.6)

The Lagrangian perturbations of entropy�S are related to ıP and ıp by:

ıP D
�
@lnP

@ln �

�
S

P

�
ı�C

�
@P

@S

�
�

�S D �1

P

�
ı�C �T �3�S: (14.7)

The thermodynamic relations:
�
@P

@S

�
�

D �T
�
@ln T

@ln �

�
S

D �T �3 (14.8)

are used in (14.7), the values �1 and �3 are given in (8.26) and (11.71). Writing
(14.6) in the form

�!2ırCr
�
P 0

�
C ˚ 0

�
C P 0

�2
r� � rP

�

�0

�
D 0: (14.9)

Using (14.3), we express P 0 in the third term of (14.9) in terms of ıP to obtain:

�!2ırCr
�
P 0

�
C ˚ 0

�
C ıP

�

r�
�
� .ır � rP/

�

r�
�

�rP
�

�0

�
D 0: (14.10)

Since, in a spherical star rp k r�, the two last terms with use of (14.5) can be
unified in a single one:

.ır � rP/
�

r�
�
C rP

�

�0

�
D ır � r�

�
� rP
�
C �0

�

rP
�

D ı�

�
� rP
�
: (14.11)

Substituting (14.7) into the third term of (14.10) and using (14.11) gives:

�!2ırCr
�
P 0

�
C ˚ 0

�
C �1

P

�

r�
�

ı�

�
� rP

�

ı�

�

CT �3

r�
�
�S D 0: (14.12)
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Introducing the quantity:

A D 1

�

dæ

dr
� 1

�1P

dP

dr
(14.13)

and expressing ı� in terms of ır from (14.5), we obtain from (14.12):

!2ır � r
�
˚ 0 C P 0

�

�
C �1

P

�
A .r � ır/ r

r
D T �3

r�
�
�S: (14.14)

In a thermally non-equilibrium star, changes in �S over the pulsational period may
be important. The energy equation (9.94) gives:

�i!T�S D � � 1

4��r2

dL

dr
: (14.15)

The sign of A from (14.13) is connected with convective stability: in a stable case
A < 0, in an unstable oneA>0. In an isentropic star, neutral with respect to convec-
tion, AD 0 (see (9.4)). The potential perturbation obeys Poisson’s equation (14.7):

r2˚ 0 D 4�G�0 : (14.16)

We consider adiabatic oscillations with �S D 0 and have in a spherical coordinate
system .r; �; '/:

ır D .ır; r sin �ı'; rı�/; (14.17)

r2˚ 0 D 1

r2

@

@r

�
r2 @˚

0

@r

�
C 1

r2 sin2 �

@2˚ 0

@'2

C 1

r2 sin �

@

@�

�
sin �

@˚ 0

@�

�
; (14.18)

r � ır D 1

r2

@

@r

�
r2ır

�C @ı'

@'
C 1

sin �

@

@�
.sin � ı�/: (14.19)

Writing (14.14) in spherical components:

!2ır � @

@r

�
˚ 0 C P 0

�

�
C �1

P

�
A .r � ır/ D 0; (14.20)

!2r ı� � 1
r

@

@�

�
˚ 0 C P 0

�

�
D 0; (14.21)

!2r sin � ı' � 1

r sin �

@

@'

�
˚ 0 C P 0

�

�
D 0: (14.22)
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Substituting (14.21) and (14.22) into (14.19) gives:

r � ır D 1

r2
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�
r2ır

�C 1

r2!2

8<
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1
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˚ 0 C P 0
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�	9=
; :

(14.23)

We look for the perturbation eigenfunctions in the form of expansion in spherical
harmonics:

f D flm.r/Ylm D flmP
m
l .cos �/eim' ; l D 0; 1; ::: ;

�l � m � l; f D ır; �0; P 0; ˚ 0 : (14.24)

Here, Pm
i .cos �/ are the associated Legendre functions, and spherical harmonics

Ylm satisfy the equation:

1

sin �
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@�

�
sin �

@Ylm

@�

�
C 1

sin2 �

@2Ylm

@'2
C l.l C 1/Ylm D 0: (14.25)

Substituting (14.24) into (14.55), (14.16), and (14.20), using (14.18) (14.23) and
(14.25), we obtain for adiabatic oscillations the system of equations for radial de-
pendences of eigenfunctions:

�0
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�
r2ırlm

�

� l.l C 1/
r2!2

�
˚ 0

lm C
P 0

lm

�

�
D 0; (14.26)
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(14.27)
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d˚ 0
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� l.l C 1/

r2
˚ 0

lm D 4�G�0
lm: (14.28)

Using (14.3), we obtain from (14.7) with �S D 0:

P 0
lm C ırlm

dP

dr
D �1

P

�

�
�0

lm C ırlm

d�

dr

�
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and hence, using (14.13) gives:

P 0
lm

P
D �1

�0
lm

�
C �1ırlmA : (14.29)

The displacement components ı�lm and ı'lm are obtained by substituting (14.24)
into (14.21) and (14.22). We have:

!2r2ı�lm D
�
˚ 0

lm C
P 0

lm

�

�
dPm

l

d�
eim' ; (14.30)

!2r2 sin2 � ı'lm D
�
˚ 0

lm C
P 0

lm

�

�
imPm

l eim' : (14.31)

In dimensionless variables [339]:

y1 D ır

r
; y2 D 1

gr

�
˚ 0 C P 0

�

�
; y3 D 1

gr
˚ 0; y4 D 1

g

d˚ 0

dr
; (14.32)

where g D Gm=r2 is the local gravity acceleration, (14.26–14.29) become (the
subscripts lm are omitted):

r
dy1

dr
D
�
g�r

�1P
� 3

�
y1 C

�
g
l.l C 1/
r!2

� g�r

�1P
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y2 C rAy3; (14.34)
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l.l C 1/� r

m

dm

dr

g�r

�1P

	
y3 � r

m

dm
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y4: (14.36)

The dimensionless equations (14.33–14.36) are suitable for numerical integration.

14.1.2 Boundary Conditions

Boundary conditions for the equations of small non-radial oscillations follow from
the requirement that the eigenfunctions be limited in the centre and at the stellar
surface. The requirement of finiteness for solutions in the centre yields the following
expansions:
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ır D r l�1

1X
�D0

U�r
� ; l � 1 ; (14.37)

P 0=� D r l

1X
�D0

Y�r
� ; (14.38)

˚ 0 D r l

1X
�D0

'�r
� ; (14.39)

where
!2U0 D l.Y0 C '0/ (14.40)

and two zero-order coefficients remain free. Recurrence relations for other co-
efficients are given by substituting the expansions into equations and equating
coefficients at equal powers of r [994]. Only coefficients at even powers of r then
remain non-zero. Radial adiabatic oscillations have been treated in Sect. 12.2.3. If,
in an equilibrium solution, P=�! 0 at the surface, then the outer boundary condi-
tions take the form [317]:

ıP

P
D
�
l.l C 1/ Gm

!2r3
� !

2r3

Gm
� 4

	
ır

r

C
�
l.l C 1/ Gm

!2r3
� l � 1

	
˚ 0
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; (14.41)

d˚ 0

dr
C .l C 1/ ˚

0

r
D �4�G� ır: (14.42)

One of the two free coefficients (14.40) is arbitrary by virtue of the arbitrariness
of the normalization condition; therefore, for the boundary conditions (14.41) and
(14.42) to be satisfied, the value of !2 must be equal to an eigenvalue.

In the case of an isothermal atmosphere with temperature T and sound speed
vs D

p
RT , there is a boundary frequency [438]:

!c0 ' vs

2H
; H�1 D �d ln�

dr
D g

RT
; g D GM

R2
; H � R; (14.43)

where R is the radius at the base of the isothermal atmosphere, and � � �1 from
(8.26). The waves with ! > !c0 penetrate into the atmosphere and low-frequency
long waves with ! < !c0 reflect from it, making a disturbance, exponentially damp-
ing with distance.

For long radial waves, the following boundary relation, following from the con-
tinuity of ır=r and ıP , is valid [438] at r D R:

d

dr

�
ır

r

�
C k

ır

r
D 0 ; (14.44)
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where:

k D 1

2H

�
1 �

�
1 � 4!

2H 2

v2
s

�1=2	
: (14.45)

The solution which decreases exponentially to infinity (casual) is chosen here. This
condition is used instead of (12.2.31) for a pure polytropic star. The same boundary
condition is valid for non-radial oscillations with

k D Qk D 1

2H



1 �

�
1C 4l.l C 1/H

2

R2

�
1 � N

2

!2

�
� 4!

2H 2

v2
s

	1=2�
; (14.46)

where, with account of (14.13) N D g=A. The potential perturbation ˚ 0 may be
approximately taken as zero on the boundary or found using (14.42).

For a sufficiently hot atmosphere with a temperature much higher than on the
boundary of the core (like a solar corona), there is an interval of frequencies:

g

2
p

RT
D !c0 < ! < !c1 D g

2
p

RT1

; T1 � T ; (14.47)

where the waves partly penetrate into the hot atmosphere and partly reflect from
it. Here, !c1 corresponds to the boundary frequency for the waves, propagating
through the isothermal atmosphere with temperature T1. For the waves from the
interval (14.47) with sufficiently small penetration, it is possible to consider ap-
proximately the core eigen-oscillations. The boundary condition must be chosen in
such a way that in the outer atmosphere with temperature T only the outgoing wave
is present [846].

The eigenvalues of the system (14.26–14.29) with the boundary conditions
(14.41) and (14.42) are real by virtue of the Hermiticity of the corresponding oper-
ator [994].

14.1.3 p-, g- and f -Modes

Solving equations for perturbations and finding eigenvalues and eigenfunctions in
simple models have allowed us to study analytically basic properties of stellar
oscillations and to establish their classification. In a homogeneous model of a com-
pressive gas, for n � 1, where n is the number of radial nodes of an eigenfunction,
two sets of eigenfrequencies will be written as [317]:

!2
nl D

GM

R3

�
2�1n

2 C l.l C 1/
2�1n2

	
(p-modes);

!2
nl D �

GM

R3

l.l C 1/
2�1n2

(g-modes): (14.48)
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Here,R is the radius of the homogeneous star1 related to the central pressure Pc by:

Pc D 2

3
�G�2R2; P D Pc

�
1 � r2=R2

�
: (14.49)

Oscillatory p-modes arise from the counteraction of pressure against inertia and
gravity. In the limit of large n they reduce to standing acoustic waves, while for
small n and l D 0 they represent large-scale radial oscillations of the star. Their
frequency �

!2
nl

�
p-mode !1 as n!1 (14.50)

just as for acoustic modes (! D 2�cs=�!1 as �! 0, cs is the sound velocity).
The eigenfunctions of displacements ır for p-modes grow slowly from zero at the
centre, oscillating at n 	 1, and rise sharply near the surface, reaching here their
maximum values.

In a homogeneous model squares of g-mode, eigenvalues are negative, and
hence, unstable. This is due to the convective instability of a homogeneous star,
while g-modes themselves represent convective motions in stars. They owe their
existence to the counteraction of gravity against buoyancy in matter in the presence
of non-uniformities in density. The g-mode frequencies tend to zero as n ! 1,
whereas the eigenfunctions of displacements ır grow rapidly from zero at the cen-
tre and then fall slowly (oscillating at n	 1) to a small but finite value at the surface
[630]. With increasing l and n, the maximum of the g-mode amplitude moves in-
creasingly closer to the centre, while the maximum of the p-mode moves to the
surface. In an adiabatic star, neutral to convection, the g-mode eigenfrequencies
become zero (see also Sect. 12.3).

A particular oscillation class is represented by the f -mode. It is the only oscil-
lation type remaining in a figure of a incompressible fluid. The f -mode arises from
the tendency of gravity to restore, in the absence of rotation, the spherical form of
the figure at any possible perturbation. This mode is absent at l D 0 and exists only
from l D 2 for an incompressible figure and from l D 1 for a compressible one.
The f -mode eigenfunction grows smoothly from the centre to the surface with no
sharp maxima.

Radial g-modes do not exist either since purely radial convective motions are
impossible. All radial stellar oscillations are related to p-modes. The value of n
for an f -mode in the homogeneous model is equal to zero, and in models of gen-
eral form they are unity. The f -mode eigenvalues are intermediate between g- and
p-modes. The dependence of eigenvalues for various oscillatory modes on n and l
is given schematically in Fig. 14.1 from [317].

1 The equilibrium value of rP is achieved owing to a rapid drop in temperature.
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Fig. 14.1 Eigenvalues 	2n D .2�=period/2 of linear adiabatic non-radial oscillations for various
n, the number of nodes along radius, versus l , the number of a spherical harmonic (schematically).
Shown are four types of spheroidal modes for non-radial oscillations (p; f; gC; g�), in accordance
with Cowling’s classification. The dots on the horizontal axes mark radial oscillations, pn-mode
numbers are equal to n � 1. Only gC-modes exist in convectively stable stars with A < 0, only
g�-modes in convectively unstable stars (see (14.13)), the simultaneous existence in a star gC–
and g�-modes is possible only when somewhere in the star A < 0, elsewhere A > 0, from [317]

14.1.4 Pulsational Instability

Because of the presence of heat release and heat losses, the pulsation amplitude,
constant in the adiabatic case, may increase or decrease according to the resultant
effect of heat processes. Consider the conditions for pulsation decay and excitation
in the general case, without the assumption of linearity [375]. Divide the total energy
of the star E into pulsation energyW and static energy of the starU . For any element
of mass dm, we define the pulsation energy as the value of the kinetic energy at the
time of passing through the oscillatory equilibrium state, while the static energy U
is the sum of the thermal and gravitational energies of the star in this state. The
change �W in the energy W over a cycle determines the decay of pulsations for
�W < 0 or their excitation for �W > 0. From the definition, we have:

�W D �E ��U: (14.51)
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The change in the total energy of the star is the difference between the release and
loss over a cycle, or

�E D
Z

dm
I �

� � 1
�
rF
�

dt: (14.52)

The internal integral here is taken over one oscillation cycle, the external integral
over the entire star, F is the heat flux vector (ergs cm�2 s�1). In a spherically sym-
metric star

F D
�

L

4�r2
; 0; 0

�
;

1

�
r � F D 1

�r2

d

dr

�
r2Fr

� D 1

4��r2

dL

dr
: (14.53)

The total energy E from (14.52) changes, and the state of oscillatory equilibrium
on which U depends shifts during the oscillation cycle. Let the state of oscillatory
equilibrium be achieved simultaneously through the star, so that any phase shift is
absent. Two paths are then possible for the transition from oscillatory equilibrium
state I to the same state II one oscillation cycle later: over the oscillation cycle and
quasistatically through successive states of oscillatory equilibrium.

In a quasistatic process, the system possesses only the static energy U which
changes by (with zero external work)

�U D
Z

dm
Z

dt T
dS

dt
: (14.54)

As the change in equilibrium location over one period can be taken to be small, the
increment � is much less than the oscillation frequency !, the relation (14.54) will
be written as:

�U D
Z

dm Te�S; (14.55)

where Te is the equilibrium temperature of the static star whose variations are ne-
glected. When the path between the same states goes through the oscillation cycle,
the change in entropy is:

�S D
I
� � .1=�/r � F

T
dt; (14.56)

and hence, from (14.55) we have:

�U D
Z

dm Te

I
� � .1=�/r � F

T
dt: (14.57)
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Substituting (14.52) and (14.57) into (14.51) gives the relation:

�W D
Z

dm
I �

1 � Te

T

��
� � 1

�
r � F

�
dt (14.58)

determining the pulsation behaviour in star. The condition (14.58) was first obtained
by Eddington in 1926 [317].

Regular brightness pulsations have been detected in many stars. Classical
cepheids with a period of 1–50 days and RR Lyrae stars with a period of 1.5–25 h
are the best known of them. Cepheids have masses 4–14Mˇ, luminosities
300–26;000Lˇ and radii 14–200Rˇ. RR Lyrae stars have lower masses, radii
and luminosities. Both these types of variables are in post-main-sequence and post-
core-hydrogen-burning phases. The mechanism of excitation of radial oscillations
in these stars is connected to zones of incomplete helium and, to a lesser extent, hy-
drogen ionization where the opacity increases with increasing temperature [1071].
Non-radial P -modes of oscillations with periods close to 5 min have been observed
on the Sun [260].

14.2 Pulsations in Stars with Phase Transition

The matter of neutron stars at densities close to nuclear may be unstable with respect
to �-meson generation [695]. This phenomenon, called �-condensation, results in
a van der Waals-like P.�/ dependence equivalent to a phase transition. The neu-
tronization provides another example of a phase transition. We shall treat pulsations
of stars in the presence of a phase transition in the incompressible liquid approxi-
mation [190]. Consider stable stars on the rising portion of the curve M.Pc/ (see
Sect. 11.2). The quantity Pc is convenient to use here as a variable instead of �c for
its continuity at jump-like changes of �c.

14.2.1 Equations of Motion in the Presence of a Phase Transition

Let the matter be incompressible everywhere, with the exception of the phase tran-
sition, i.e.,

� D �1 at P < P0; � D �2 at P > P0: (14.59)

From the continuity equation (7.3.2), we have

u D u1.t/

�
r2.t/

r

�2

at r > r2; u D 0 at r < r2: (14.60)

Here, r2.t/ is the radius of a new phase core with a higher density where matter
is at rest; u1.t/ is the matter velocity of the lower density matter at this radius.
Substituting (14.60) into the equation of motion (7.3.3) and integrating over radius
r from r2 to R (stellar radius) gives [190, 695]:
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2 C r3
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Rr2

R � r2 C
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2 C

�1

2
Rr2.RC r2/

i
D 0: (14.61)

To reduce (14.61) to a single function to be found, consider the physical conditions
on the discontinuity boundary at r D r2. From the requirement that the mass, mo-
mentum, and energy flows be continuous at the jump, similar to the conditions for
the shock front [614], we have

u1 D �.� � 1/Pr2; � D �2=�1; P2 � P1 D �2.� � 1/Pr2
2 ;

E2 �E1 D 1

2
.� � 1/2 Pr2

2 C
P1

�2

.� � 1/: (14.62)

Here, P1 and E1 are the pressure and specific energy on the inner boundary of
the old phase, P2 and E2 on the boundary of the new phase core. For adiabatic
compression:

.E2 � E1/ad D P0

�2

.� � 1/: (14.63)

It is obvious that P1 � P0, P2 � P0. Introducing a parameter ı such that

P2 D P0 C 1C ı
2

�2.� � 1/Pr2
2 ;

P1 D P0 � 1 � ı
2

�2.� � 1/Pr2
2 ; �1 � ı � 1; (14.64)

we have for the heat release at the phase jump during contraction

q D E2 � E1 � .E2 � E1/ad

D ı

2
.� � 1/2 Pr2

2 ; 0 � ı � 1; (14.65)

and during expansion

q D E1 �E2 � .E1 �E2/ad

D � ı
2
.� � 1/2 Pr2

2 ; �1 � ı � 0: (14.66)

The limitations to ı in (14.65) follow from the condition that the entropy at the jump
should not be decreasing. Substituting (14.62–14.65) into (14.61) gives the equation
for core radius variations
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�1r2.� � 1/ .1 � .r2=R// D 0: (14.67)

Using instead of P0, equilibrium values of radius R0 and core radius r2:0 for a star
of mass M0

M0 D 4�

3

�
�1R

3
0 C .�2 � �1/r

3
2:0

 D 4�

3

�
�1R

3 C .�2 � �1/r
3
2


; (14.68)

P0

�1

D 2�G�1

3

�
R2

0 C .2� � 3/r2
2:0 � 2.� � 1/

r3
2:0

R0

	
; (14.69)

it will be convenient to rewrite (14.67) in the form:
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(14.70)

Equation (14.70) is valid for pulsations of arbitrary amplitude. For stellar pulsations
with small amplitude jr2� r2:0j � r2, jR�R0j � r2, neglecting square-amplitude
terms in (14.70), we obtain the relation:

Rr2 C 4�G�1.r2:0 � r2/
3
�
1 � r2:0

R0

�
�
2� � 3
� � 1 � 4

r2:0

R0

� .� � 1/ r
4
2:0

R4
0

	
D0 (14.71)

that at !2 > 0 corresponds to harmonic oscillations at a frequency [430, 896]

!2 D � 4�G�1

3 .1 � .r2:0=R0//

�
4
r2:0

R0

C .� � 1/ r
4
2:0

R4
0

� 2� � 3
� � 1

	
: (14.72)

Obviously, when � > 3=2, pulsations are possible only in stars with a finite core
[896]. For a star with a small core, r2:0 � R0, the frequency of small pulsations is:
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!0 D
�
4�G�1

3

3 � 2�
� � 1

	1=2

: (14.73)

If the phase transition occurs in the envelope, r2:0 � R0, then:

!2 D 4�G�1

3

�2

� � 1
1

1� .r2:0=R0/
: (14.74)

The non-linear pulsations of a star with a small core (jr2 � r2:0j � r2:0, r2; r2:0 �
R0) are described by the equation:

Rr2 C Pr
2
2

2r2
.3C ı�/C !2

0

2r2

�
r2

2 � r2
2:0

� D 0: (14.75)

With ı D 1 and r2:0 D 0 we obtain the equation examined in [695].

14.2.2 Physical Processes at the Phase Jump

Non-linear decaying pulsations have been studied in [701], where it has been as-
sumed that ı D 1 in the contraction phase, while in the expansion phase there is
also dissipation and ı D �1. To substantiate the choice of ı, we shall treat the phase
transition as a limiting case of an equation of state where the pressure varies from
Pa to Pb with variation of � from �1 to �2. With Pb ! P0  Pa and constant �1

and �2, we thus obtain a phase transition.
In the matter of an intermediate layer, the sound velocity isas �

�
.Pa � Pb/=

.�2 � �1/
1=2

. If the pulsation amplitudes are so small that the motion velocity
v < as , then the oscillations will be adiabatic with ı D 0 at the jump. In the limit
Pb ! P0  Pa, we have as ! 0, hence, in any case there will be v > as , and the
motion in the intermediate layer will become supersonic. The encounter of a flow
with supersonic velocity against a wall in the form of a new phase core will lead to
the formation of a shock where the kinetic energy converts into heat. It is obvious
that the “phase dissipation” of kinetic energy during the star contraction and the
growth of the new phase core has the same nature as in the shock. In the limit
Pb ! P0  Pa, the value of ı in the condition for jump (14.64) may approach
unity, but while v < as the value of ı D 0.

The stage of expansion of the star is accompanied by diminishing the new phase
core, so it proceeds in another way. It is possible that the supersonic velocity will
not result in this case in the shock formation even at a perfectly thin phase jump,
since the envelope encounters no obstacle in its motion outward. The pressure on the
core boundary exceeds P0 because of the reaction to the envelope expansion. The
expansion phase may thus always remain adiabatic with ı D 0. The pulsation decay
in a star with a phase transition occurs in this case only on the stage of star contrac-
tion, while in the case of non-ideal, slightly broadened jump there is a possibility of
strictly adiabatic oscillations of small but finite amplitude.
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14.2.3 Adiabatic Oscillations of Finite Amplitude

The absence of decay at ı D 0 leads to the conservation of the total energy of a
pulsating star corresponding to the first integral of (14.67)

E D 2��1.� � 1/2 Pr2
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3
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2
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3
2

R3
C .� � 1/

�
� � 3

2

�
r5

2

R5

	
: (14.76)

From (14.76), using (14.68), we find the solution and a relation for the oscilla-
tion period in the non-linear case. To avoid cumbersome expressions, we consider
non-linear oscillations of a star with a small core, r2=R � 1, for which (14.76)
combined with (14.69) and (14.73) becomes

Px2 D !2
0

�
x�3 � x2

5
� x2

0

x�3 � 1
3

�
: (14.77)

Here, x D r2=r2;min, x0 D r2:0=r2;min, the initial condition r2 D r2;min with Pr2 D 0
is taken into account; r2;min is the minimum core radius. The non-linear adiabatic
oscillation period for the case of a small core is

Tad D 2

!0

Z x
�

0

�
x�3 � x2

5
� x2

0

x�3 � 1
3

	�1=2

dx: (14.78)

Here, x� > x0 > 1 corresponds to the maximum core radius x� D r2;max=r2;min

and is the root of the denominator in (14.78). The dependence of Tad!0=2� on x0

is given in Fig. 14.2. Oscillations of small amplitude x D 1 C ˛, x0 D 1 C 
,
˛;
� 1 are harmonic and (14.78) gives

T0 D 2

!0

Z ˛maxD2�

0

�
2
˛ � ˛2

��1=2
d˛ D 2�=!0;

in accordance with (14.73).

Fig. 14.2 Non-linear adiabatic oscillation period for a star with phase transition Tad versus ampli-
tude for the case of a small core. The abscissa is x0 D r2;0=r2;min, the ratio of the equilibrium core
radius r2;0 to the minimum one r2;min; ordinate is Tad=T0 D Tad!0=2� , where T0 and !0 are the
small harmonic oscillation period and frequency
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We now find an estimate for the maximum value of the amplitude of adiabatic
oscillations arising from the finite pressure of electrons during pionization. For the
two cases examined in [701], we have from (14.72):

.1/ � D 5; r2=R D 0:518; ! D 0:648 !00I

.2/ � D 1:2; r2=R D 0:295; ! D 1:4 !00; !00 D
p
4�G�1 :

(14.79)

The maximum velocity of the envelope matter motion relative to the jump is v D
�Pr2 D �!r2�, where � is the relative amplitude of oscillations of the core radius.
The sound velocity in the region of the phase transition is as � .Pe=�/

1=2, where
Pe is the electron pressure. For � D 2 
 1014 g cm�3, Pe D 1030 dyn, R D 10 km,
the condition v < as gives � � 0:003 and � � 0:01, respectively.

14.2.4 Decaying Finite-Amplitude Oscillations

At sufficiently large oscillation amplitude, or in the case of a perfect phase transition
at P D P0, i.e., as D 0, oscillations decay in the contraction phase and ı > 0. The
decay is absent in the expansion phase (when the core diminishes), so we put there
ı D 0. The integral of (14.75), similar to (14.77), with ı D const: 6D 0 becomes:

Px2 D !2
0

"
x�3�ı� � x2

5C ı� � x2
0

x�3�ı� � 1
3C ı�

#
: (14.80)

If, in the initial state, the minimum core radius is r .0/
2;min and Pr2 D 0, then over a time

interval

T D 1
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(14.81)

the minimum core radius will become r .1/
2;min > r

.0/
2;min. The first integral here corre-

sponds to the star contraction (core expansion), and the second to the star expansion.
The quantity x� > 1 is the root of the denominator in the first, x�� < 1 in the second
integral in (14.81). Here:

x0 D r2:0=r
.0/
2;min; x� D r2;max=r

.0/
2;min; x�� D r .1/

2;min=r2;max :
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Hence,
r

.1/
2;min D r.0/

2;minx�x��; where x�x�� > 1

by reason of the oscillation decay. We make an expansion in (14.81), setting in the
first integral x D 1C ˛, x0 D 1C 
 in the second x D 1 � ˇ, ˛; ˇ;
 � 1, and
retaining terms �˛3; ˇ3; 
3 to include the decay in the first non-vanishing term.
After simple manipulations, we find

x� D 1C 2
 � 5
3

2 � 2

3
ı
2�;

x�� D 1 � 2
C 17

3

2 C 4

3
ı
2�;

r
.1/
2;min

r
.0/
2;min

D 1C 2

3
ı
2�: (14.82)

Using the equality 
 D .r2:0=r2;min/ � 1 and the third relation (14.82), taking also
the period to be equal to 2�=!0, we obtain the equation for r2;min variations

d


dt
D �ı!0�

3�

2: (14.83)

When the initial condition is 
 D 
0, for t D 0 we have


0 �



0

D ı!0�

3�
t: (14.84)

For a perfect phase transition, we adopt ı D const: > 0 (or perhaps ı D 1, as
in [695, 701]). When the transition is broadened, ı smoothly becomes zero near the
onset and near the end of the contraction phase, as the ratio v=as varies with motion.
The qualitative dependence ı.t/ along the oscillation period is shown in Fig. 14.3.
In real objects phase transformation rates are finite, and the mechanism of second
viscosity is always at work. Quantitative estimates for this mechanism should be
made for each type of phase transition separately.

Fig. 14.3 Variations of
parameter ı during pulsation
(see the relations (14.64),
(14.65)), qualitatively: 1 for a
perfect phase transition, 2 for
a broadened phase transition
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14.3 Pulsational Stability of Massive Stars

The upper limit for stellar masses in the Galaxy is not known exactly today.
Following the investigation by Ledoux in 1941, several other studies have been
carried out, dealing with stability of massive stars to the growth of pulsations in
the radial fundamental mode [29, 30, 792, 793, 882, 959, 960, 1084] related to at-
tempts to find theoretically the maximum stellar mass. As the mass increases, the
role of radiative pressure becomes more important, and the mean adiabatic index
�a approaches 4=3. Since an adiabatic star with �1 D 4=3 is neutral with respect to
contraction or expansion (see Sect. 10.1), the effect of destabilizing factors increases
with increasing mass because of the reduction of an available pulsational stability
resource.

The study of this problem to the linear approximation [882] has shown that in
stars of M > 65Mˇ, the instability to pulsation growth develops quickly and the
star may disintegrate. Subsequent calculations have revealed a strong stabilization
of these pulsations in the non-linear regime. Stability analyses with new opacity
tables have been performed in [421, 422, 936, 940].

14.3.1 The Linear Analysis

Stars with masses 28.2, 62.7, 121.1, 218:3Mˇ and initial chemical composition
xH D 0:75, xHe D 0:22 have been considered in [882]. Equilibrium models have
been calculated by the Schwarzschild method (Sect. 6.1.1, Vol. 1). The radial pul-
sation period has been calculated by solving equation (12.2.26) with the boundary
conditions (12.2.29) and (12.2.31). The opacity was determined by electron scat-
tering (9.2.23a), and the equation of state was defined (11.123) by the sum of the
pressure of completely ionized gas and radiation, with �1 given in (8.26). Equilib-
rium model characteristics: the mass M , luminosity L, effective temperature Tef,
ages � , radial pulsation periods P calculated in the linear approximation for the
fundamental mode are given in Table 14.1 from [882].

Table 14.1 Equilibrium
models and their pulsational
characteristics (from [882])

M
M

ˇ

L
L

ˇ

R
R

ˇ

Tef, K � , 106, yr P , days 1=K , yr

218.3 4.36(6) 20.5 5.82(4) 0 0.546 930
121.1 1.80(6) 14.3 5.58(4) 0 0.383 1800

62.7 5.77(5) 9.71 5.09(4) 0 0.260 44000
28.2 1.08(5) 6.00 4.27(4) 0 0.157 �1400

121.1 2.21(6) 18.75 5.13(4) 1.39 0.502 �2200
62.7 7.93(5) 13.3 4.72(4) 2.08 0.356 �94
62.7 1.09(6) 27.6 3.55(4) 3.68 0.833 �3
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Since the characteristic lifetimes of convective elements on the convective core
boundary by far exceed the pulsation period P , the convection effect on stability
was ignored. The mixing length was assumed to be twice the pressure scale height,
˛P D 2 in (8.6).

The pulsational stability was tested by a method similar to Sect. 14.1.4 with the
inclusion of changes in luminosity, heat release in the core and acoustic wave gen-
eration. The following quantity was calculated:

K D 1

2

Lp

Ep

; Lp D LpN � LpH �Lps; (14.85)

where

Ep D
�
2�

P

�2 Z M

0

.ır/2 dm (14.86)

is the kinetic energy of the pulsations,

LpN D
Z M

0

ı�
ıT

T
dm (14.87)

is the rate of gain of pulsation energy due to nuclear reactions with energy release
rate �,

LpH D
Z M

0

d.ıL/

dm

ıT

T
dm (14.88)

is the rate of loss of pulsation energy due to emission from the surface,

Lps D 4�R2

"
1

2
�R

�
2�
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ˇ̌
ˇ̌
R

R

�2
#s

kTR

mu
(14.89)

is the rate of loss of pulsation energy due to acoustic wave generation. Here, the sub-
script “R” refers to the stellar surface. The term in parenthesis represents the density
of acoustic oscillation energy at the photosphere. Photospheric characteristics have
been approximately computed from the relations

TR D Tef; kR

PR

gR

D 2

3
; kR D 0:19 .1C xH /;

gR D GM

R2
; PR D aT 4

R

3
C kTef

mu
�R:

(14.90)

At a positive K , the star is pulsationally unstable, K representing the reciprocal of
the time in which the pulsation amplitude increases by a factor of e. A negative
value of K indicates the pulsational stability and jKj is then the inverse time of
the pulsation decay. The stability condition (14.85) in the absence of the last term
Lps from (14.89) follows from (14.58) if we introduce small sinusoidal oscillations
for all quantities in this equation and integrate it over the pulsation period. The
quantities ır , ıT and ıL, in (14.86–14.89) represent the oscillation amplitudes.
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The results of stability studies are given in the last column in Table 14.1 from
which we see that the star may restore its stability during the evolution. Stars with
M � 60Mˇ D Mc0 prove to be stable on the main sequence. According to [882],
this quantity depends on chemical composition so that:

2 Mc0

Mˇ
D const: � 20;  is a molecular weight : (14.91)

A special investigation of the dependence of Mc0 on chemical composition has
been performed in [1084]. The description of convection and, more importantly,
of opacity was different from [882], and the values of Mc0 turned out to be
higher for the same compositions. To calculate equilibrium models, the Henyey
method was applied in [1084] (see Sect. 6.1.2, Vol. 1). The values of 2Mc0=Mˇ
remain approximately constant (D34) for xHe varying from 0.28 to 0.4 and
the same content of heavy elements xZD 0:02. Variation of xZ including xCNO

leads to 2Mc0=MˇD 58 for xHeD 0:384, xZD 0:1 and xCNOD 0:06. The value
Mc0D 127Mˇ is obtained for xHeD 0:184, xZD 0:0201 and xCNOD 0:012.

If we normalize the pulsation amplitude by .ır=r/
ˇ̌
R
D 1, the results of the

calculation [882] can be represented as the interpolation formulae:

Lp

L
D 0:10

�
M

Mˇ
� 1

�
� 2 �

106
;

Ep

L
D 3750 yr � exp

�
�0:007

�
M

Mˇ
� 60

�
� 1:2 �

106

	
; (14.92)

where � is the evolutionary lifetime in years. The quantityK computed from (14.92)
is independent of the normalization condition. It follows from (14.92) that the time
�cr at whichK becomes zero is determined as follows:

�cr D 0:05
�
M

Mˇ
� 60

�

 106 yr (14.93)

the star will become pulsationally stable. The quantity �cr should be compared with
1=K from Table 14.1. The stability has time to restore if the gain of pulsation energy
is not significant over the time �cr. The quantity

N.�/ D
Z �

0

K d� (14.94)

has the sense of the number giving the rate of exponential pulsation energy increase.
If we assume that the stability restores whenN.�cr/ � 9, the estimate for stable star
mass will be Mcr D 65Mˇ. It was shown in [882] that N D 5:7 for M D 64Mˇ
and N D 13:7 forM D 66Mˇ.
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It was noted in [882] that the quantityMcr obtained by this method turns out to be
substantially less than the observed mass of certain stars which attains�95Mˇ (e.g.,
�1 Scorpii). To remove this discrepancy, it was suggested in [882] that in 65–95Mˇ
stars, the pulsational instability development does not lead to the complete disrup-
tion of the star, but results in an intensive outflow of matter from the surface, thereby
giving rise to the formation of stars having spectra of P Cyg type observed in very
massive stars.2 A suggestion is also made in [882] that with increasing pulsation
amplitude a non-linear stabilization of oscillations arises, limiting their amplitude
with some finite magnitude well before the disruption of the star. A star can lose its
mass in a state of quasi-stationary finite-amplitude pulsation.

Investigations of linear stability have been performed for new opacity tables in
[512, 513, 837]. Solution of the linearized equations for small radial perturbations
was obtained in a full non-adiabatic approach, and stability was determined by the
type of eigenvalues of the linearized system. The following values of the critical
massed were obtained in [936,940] for main sequence stars depending on the chem-
ical composition:

(Y, Z) D (0.27, 0.03) (0.28, 0.02) (0.24, 0.004) (0.24, 0.002)
M

M
ˇ

D 148 121 89 84 [936]

>150 >150 133 97 [940].
(14.95)

In a similar way, the following critical masses have been obtained for helium-
burning main-sequence stars:

M

Mˇ
D 20.1, 18.6, 14.5, 14.0 [936]

21.0, 18.3, 14.3, 13.0 [940]

for
Z D 0.03 0.02, 0.004 0.002 .

(14.96)

Calculations of the same problem also by solving non-adiabatic equations for linear
oscillations in [421] gave substantially different results. For main-sequence stars the
critical masses are:

M

Mˇ
D 79, 92

for

(Y, Z) D (0.27, 0.03), (0.28, 0.02) .
(14.97)

2 The spectrum of a star belongs to the type P Cyg if it has lines with absorption in their violet
portion, and emission on the red side symmetric with respect to their central frequencies. These
are characteristic of stars with a powerful outflow; a typical example for this kind of star is provided
by P Cygni [921].
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Stability of the evolved stars was investigated in [940]. It was shown that for initial
masses of 90–120Mˇ with normal metallic abundances, the instability in the enve-
lope is developed after the end of the central hydrogen burning, which may lead to
the strong mass loss and mimic the most basic observed properties of � Carinae and
other very luminous blue variables. It is connected with the iron bump in new opac-
ities and its development could lead to the formation of a star with a quasistationary
mass outflow, similar to ones considered in Sect. 9.2.4. Stability properties of the
evolved stars have been considered in [422].

14.3.2 Non-Linear Oscillations

To study non-linear oscillations of massive stars, the equations of hydrodynamics
(10.2.1) have been used in [1084] with an energy equation of the form

@E

@t
C P @.1=�/

@t
D F

�
� � @L

@m

�
: (14.98)

Since the pulsation period (P ) is much shorter than the pulsation e-folding time
(�1=K), it is necessary to get these two time scales close to one another with the
aid of some artificial techniques to make possible the numerical investigation of the
amplitude growth in the non-linear regime. The factor F in (14.98) is used for this
purpose and it must be approximately equal to the ratio .PK/�1. Introducing this
factor effectively reduces the specific heat of the stellar matter and, accordingly,
increases the thermal instability increment. Calculations of non-linear pulsations of
a star with mass 100Mˇ, xHe D 0:384, xZ D 0:20, unstable to linear approximation,
have been carried out for F D 4:133
105. It was shown that over some ten periods
the surface pulsation amplitude ır=r increase, from 0.1 to 4. The pulsations have
been stabilized at this amplitude. During the amplitude growth and in the phase
of constant-amplitude non-linear oscillations, no mass loss has been obtained. In
the non-linear regime, the relative oscillation amplitude decreases rapidly as one
moves inward towards the star. It is pointed out in [1084] that the inclusion of the
kinetic energy dissipation due to the shock formation in the stellar atmosphere may
substantially reduce the amplitude of non-linear oscillations. Using high F strongly
reduces the shock-wave dissipation of energy.

To investigate non-linear oscillations, an energy equation in the form (14.98)
with a large F has been applied in [959, 960] as well, but in addition to this, the
dependence of the stationary amplitude on F has been examined with a more real-
istic inclusion of the shock-wave dissipation of pulsation energy. Calculations have
been performed for 100, 1000 and 10 000Mˇ models. It has been obtained for all
cases that a finite-amplitude stability of a pulsational state of limit-cycle type sets
in, while the amplitude falls as F decreases. This is due to the increased role of the
shock-wave dissipation. For the realistic case of F D 1, the pulsation amplitude has
been estimated in [960] using the criterion (14.58) where the parameter variations
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over a non-linear cycle have been approximately specified with the aid of numeri-
cal computations. The dissipation due to the shock formation in the atmosphere has
been also taken into account. The amplitude of stationary pulsations at the surface
for F D 1 is ır=r jR D 0:085, 0.102 and 0.09 for M D 100, 1000 and 10000Mˇ,
respectively.

The computational technique used in [959,960,1084] has not allowed us to com-
pute the mass loss rate on the stage of non-linear pulsation. Instead, the upper limit
has been obtained PM < 0:03Mˇ= yr. Investigation of non-linear oscillations has
been made in [29, 30] by another method that allows us to include low mass losses.
Instead of using the coefficientF in (14.98), the computations have been accelerated
by an artificial increase of the oscillation energy at each computational time step,
achieved by multiplying the velocity v.m; t/ by a factor slightly exceeding unity.
The results have been checked by computing the true oscillation energy changes
over each period with the aid of a formula similar to (14.58). Physical properties of
matter have been adopted in these studies as in [882], and the values ofMc0 turn out
to be almost equal. Investigation of stellar pulsations for stars with masses from 60
to 6;000Mˇ has shown that forM < 100Mˇ the pulsations lead to almost no mass
loss. Stars with massesM D 100�200Mˇ do lose mass during pulsations, but this
loss is not essential over their lifetime on the main sequence (�3 
 10�5Mˇ=yr).
If, on the contrary, the stellar mass exceeds 300Mˇ, an essential part of the stellar
mass is lost in the hydrogen-burning phase.

In subsequent studies [792, 793], both analytical and direct numerical calcula-
tions have given the generation due to the instability of several radial oscillatory
modes, which causes the limiting curve u.t/ to be fairly complicated. These stud-
ies give no mass loss from the surface on the stage of non-linear pulsation for stars
with masses from 70 to 210Mˇ. It is noted in [793] that the absence of overtone
excitation in previous studies is likely to result from the far too large a value of F
chosen for numerical computations. There is no mass loss in [793]. The absence
of mass loss, similar to [960], seems to be due to the coarse spatial grid near the
stellar surface. Linear stability analysis of several radial pulsational modes has been
carried out in [421, 422].

14.4 On Variable Stars and Stellar Seismology

Observations show that fluxes from all stars are more or less variable; that is, all
stars are variables. The discovery of the solar pulsation in the range of periods
�5 min gave rise to a new field in astrophysics–helioseismology. Thousands of so-
lar eigenfrequencies have been observed, starting from the observational discovery
of these oscillations in 1975 [322]. The frequencies have been measured to four or
five decimal places [28, 1020]. They correspond to light variations of low ampli-
tudes
mV D 10�5� 10�6 and represent high acoustic p-modes with n D 11� 33
and different l varying from zero to a few hundreds. The progress in study of stellar
pulsations is connected with observations from satellites. It gave a possibility to
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observe numerous modes of low-amplitude regular pulsations not only from the
Sun, mission SOHO (launched on December 2, 1995), but also from nearby stars,
by missions CoRoT (launched on December 2006), and Kepler (launched on March
2009), see i.g. publications [274, 676]. Astero- and helioseismology are extensively
treated in the book [7].

For large n; l asymptotic expressions for eigenfrequencies obtained in the Cowl-
ing approximation when perturbations of the gravitational potential are neglected
may be written in the form [962, 1020]:

�nl D !nl

2�
�
�
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2
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are constants sensitive to stellar structure.
The eigenfrequencies of oscillations with the same n C l=2 coincide to a first

order. At a fixed l , the frequencies are equidistant along n with an interval��. The
departure from this degeneracy is represented by the second term in (14.99)

��nl D �nl � �n�1;lC2 � 2.2l C 3/
nC .l=2/C �p

Ap��: (14.101)

Determining from observations, the “large”�� and “small”��nl of frequency sep-
arations provide information about the internal structure of the Sun that can be
restored by solving the inverse problem [75, 585, 1020]. It occurs that for the Sun,
(14.100) and (14.101) do not give large deviations from the exact frequency values,
but for stars with convective cores the error is more considerable [53, 406]. More
accurate asymptotic expansions, where perturbations of the gravitational potential
are taken into account to higher orders, have been performed in [843–845].

The frequency splitting along an azimuthal numberm is due to the solar rotation
and magnetic field. Rotational splitting removes the degeneracy with respect to m,
making the difference between modes with .�m/ and .Cm/, which is mainly used
for reconstruction of the rotation law. The effect of the magnetic field starts from
terms�m2j with j � 1, so only degeneracy of modes with differentm2 is removed.
There is also an input of rotational terms�˝2j in them2j splitting which interferes
with the magnetic one, making reconstruction of the magnetic field structure even
more complicated than that of the rotation law. The angular velocity distribution
of solar interiors was reconstructed in different papers [355, 435, 976] and shows
a large discrepancy in results. For a detailed treatment of physics and evolution of
rotating stars see [666].

Apart from the Sun, cepheids and RR Lyrae stars, pulsations have been detected
in white dwarfs (ZZ Ceti stars) with periods P D 200–1; 000 s, ı Scuti variables
(P D 1–3 h), bright blue stars ˇ Cephei type (P D 4–6 h), W Virginis stars



14.4 On Variable Stars and Stellar Seismology 427

(P D 2–45 days) adjacent to the cepheids and RV Tauri stars (P D 20–150 days)
[317]. ı Scuti stars, or dwarf cepheids, are of the same spectral classes as RR Lyrae
stars (A2–F3) but of luminosity lower by 2 � 3m than these (MV;ı Scuti � 2 � 3m).
The amplitudes of their pulsations are 0:01� 0:1m, and the excitation mechanism is
related to incomplete ionization zones, as is the case of cepheids and RR Lyrae stars.
The excitation mechanism for pulsations in ˇ Cephei blue giants of spectral classes
B1–B2 near the main sequence with masses 10–20Mˇ and luminosities�103Lˇ
is not quite clear [672].

Discovery of multiple eigenmodes belonging to one star reveals a possibility
to restore their internal structure like that of the Sun, so that helioseismology is
extended to stellar seismology. Up to now not more�10 eigenmodes are known for
any particular star apart from the Sun [470], but future observations from space look
very promising.

In addition to regularly pulsating stars, there are several types of stars exhibiting
non-regular variability. UV Ceti red-bursting low-mass stars are the most numer-
ous among them [921]. A powerful convection in the envelope is the source of
their variability and that of more massive young T Tauri stars (see Chap. 8). Non-
regular variabilities with time scales 100–700 days are detected on red giants called
myrids (after Mira Ceti). Myrids lose mass at a rate 10�6 � 10�4Mˇ= yr; the out-
flow is attributed to shocks propagating in their envelopes [368, 981]. Phenomena
of non-regularity underlying the variable character of light curves are also detected
on RV Tauri stars that are giants less red than the myrids and are already influenced
by shock effects. Non-regular variabilities observed on stars of certain types seem
to be effects of instabilities that may bring about a chaotic behaviour of the star as a
dynamical system.
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List of Symbols and Abbreviations

Here, only global symbols used throughout the book are indicated. Some of the
notations may be used for other variables in different parts of the book, where they
are defined.

Latin Symbols

A;Ai : Atomic mass of a nucleus
A; Ai : Vector potential of electromagnetic field
a: Constant of radiation energy density
a: Average distance between ions
a0: Bohr radius
aZ : Atomic radius in the Thomas–Fermi model
B; Bi : Vector of the magnetic field strength
Bc D m2

e c
3=e„: Critical value of the magnetic field

BA;Z : Binding energy of a nucleus with atomic mass A and
chargeZ

Bn: Binding energy per nucleon
B.T /: Energy density of an equilibrium radiation
B	.T /: Spectral intensity of equilibrium Planck radiation
c: Speed of light in vacuum
cp ; Cp: Heat capacity at constant pressure
cv; Cv: Heat capacity at constant volume
d; dover: Overshooting length
dpc: Distance to a star in parsecs
ds: Interval of space-time
dV; dv: Element of a volume
d˝: Element of a solid angle
D.x/: Debye function
E: Specific energy of matter
Eb: Binding energy per nucleon
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474 List of Symbols and Abbreviations

Ee; Ee� : Specific energy of electrons in matter
EeC

: Specific energy of positrons in matter
En: Specific energy of neutrons in matter
EN: Specific energy of nuclei in matter
Econv: Specific energy of convective motion
Ezp: Zero-point energy of three-dimensional oscillator
E	e : Specific energy of electron neutrinos in thermodynamic

equilibrium
EQ	e : Specific energy of electron antineutrinos in thermody-

namic equilibrium
E; Ei : Electrical field strength
EM : Magnetic energy per unit volume
QE: Internal energy per baryon
e: Electrical charge of the electron
e � e.r/: Energy of a star within radius r
F : Specific free energy of matter
Fi : Vector of radiative energy flux density
Fconv: Convective energy flux density
Frad: Radiative energy flux density
F0.u/: Fermi function of beta decay
f : Particle distribution function
fe: Electron distribution function
f	 : Photon distribution function
f	 : Rate of neutrino emission losses per unit mass
G: Gravitational constant
GW : Coupling constant of the weak interaction
GV D GW : Constant of weak vector-type interaction
GA: Constant of weak axial-type interaction
gA D GV =GA: Relative constant of axial weak interaction
g: Gravitational acceleration
gˇ: Gravitational acceleration at the surface of the Sun
gef: Effective gravitational acceleration, including centrifu-

gal acceleration
gik: Metric tensor
gA;Z : Statistical weight of a nucleus with atomic mass number

A and charge Z
g0; g1: Statistical weights of nuclei entering a nuclear reaction
g2; g3: Statistical weights of nuclei resulting from a nuclear

reaction
gij : Statistical weight of an element i in the ionization

state j
gn: Statistical weight of a neutron
gp: Statistical weight of a proton
gbf : Gaunt factor for bound–free transitions
gff : Gaunt factor for free–free transitions
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H : Matrix element of nuclear transformation
H : Specific enthalpy of matter
Hˇ : Matrix element of beta reaction
H�: Matrix element of muon decay
Hn: Matrix element of a neutron decay
Hp : Pressure scale height
H�: Density scale height
„: Planck constant divided by 2�
h: Planck constant
h: Thickness of a layer; half-thickness of a disk
I : Nuclear spin
Iij : Ionization energy (potential) of the j -th electron of ele-

ment i
I	 : Spectral intensity of radiation
I	�: Spectral intensity of neutrino radiation
I� : Azimuthal component of a surface electric current den-

sity
J0: Total angular momentum of a star
j : Specific angular momentum of matter
ji : Vector of electrical current density
j	 : Spectral coefficient of emission per unit mass
K;K1; K2: Coefficients in a polytropic equation of state
k: Boltzmann’s constant
k: Wavenumber of a turbulent vortex
ks : Diffusion coefficient in an ion binary gas mixture
kT : Coefficient of temperature diffusion
L: Stellar luminosity
L: Maximal scale of a turbulent vortex
LB : Magneto-bremstrahlung luminosity
Lopt: Photon luminosity of a star
Lcr; Lc : Eddington critical stellar luminosity
LRG : Luminosity of a red giant star
Lr : Radial energy flux from a star
Lt : Stellar luminosity at the turning point off a main

sequence
Lk: Flux of kinetic energy from a star
Lm: Stellar luminosity in a peak of a helium shell flash
L	 : Neutrino luminosity of a star
Lrad

r : Radial heat flux due to radiation heat conductivity
Lth: Thermal heat flux due to heat conductivity
Lconv; L

conv
r : Radial energy flux due to convection

Lˇ: Luminosity of the Sun
LH: Stellar luminosity due to hydrogen burning
LHe: Stellar luminosity due to helium burning
Lg: Stellar luminosity due to gravitational energy production
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l : Mixing length of a convective element
l : Specific angular momentum of matter
l : Current scale of a turbulent vortex
li : Unit vector in the direction of photon motion
lin: Specific angular momentum on the inner boundary of

an accretion disk
lT : Mean free path of a neutrino
lW Z: Radius of a Wigner–Seitz spherical cell
M : Stellar mass
M : Absolute stellar magnitude
M0: Rest mass of a star
Mi : Initial mass of a star
Me: Mass of the hydrogen envelope of a star
Mn: Mass of a neutron star
Mn: Non-dimensional Lane–Emden stellar mass for poly-

tropic index n
Mˇ: Mass of the Sun
Mc;Mcore: Mass of the stellar core
MC He: Mass of the helium core of a star
MCO: Mass of the carbon–oxygen stellar core
MFe: Mass of the iron stellar core
MCh: Chandrasekhar limit of the stellar mass
PM : Mass loss rate from a star, or mass flux into a star
Mbol: Bolometric absolute stellar magnitude
M0;M1: Masses of nuclei entering a nuclear reaction
M2;M3: Masses of nuclei emerging from a nuclear reaction
Mn: Matrix element of neutron decay
MZ: Matrix element of beta decay of a nucleus (A,Z)
m: Lagrangian mass coordinate in a spherically symmetric

star
m D M=Mˇ: Non-dimensional stellar mass
m0: Rest mass of a star within radius r
m: Visual stellar magnitude
mph: Photo-visual stellar magnitude
mB : Visual stellar magnitude in a filter B
mU : Visual stellar magnitude in a filter U
mV : Visual stellar magnitude in a filter V
mA;Z: Mass of a nucleus with atomic number Z and atomic

mass A
me: Electron mass
mn: Neutron mass
mp: Proton mass
mi : Mass of an atomic nuclei with mass number Ai.�

Aimu/
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mu: Atomic mass unitD 1/12 times the mass of the isotope
12C

m�: Muon mass
m	e0; m	e : Rest mass of the electron neutrino
m	�0; m	�

: Rest mass of the muon neutrino
Pm D PMc2=Lc : Non-dimensional accretion mass flux
N : Number of baryons in a star
Nb: Total number of baryons in a neutron star
NA: Avogadro number
Nn: Total number density of neutrons (free and bound in nu-

clei)
Np: Total number density of protons (free and bound in nu-

clei)
n: Number density of baryons
n: Landau level
n; n1; n2: Polytropic indices
n0; n1: Number densities of nuclei entering a reaction
n2; n3: Number densities of nuclei emerging from a reaction
nA: Number density of atoms
nA;Z : Number density of nuclei with atomic number Z and

atomic mass A
nb: Number density of baryons
ne; ne� ; n�: Number density of electrons
neC

; nC: Number density of positrons
nij : Number density of ions of element i in ionization state

j

nn: Number density of neutrons
np: Number density of protons
P : Pressure of matter
Pe; Pe� : Electron pressure
PeC

: Positron pressure
Pn: Neutron pressure
Pg : Gas pressure
Pr : Radiation pressure
PN : Nucleus pressure
Pik: Pressure tensor of radiation field
P01: Reaction rate per unit volume
p: Electron momentum
pz: z Component of electron momentum
pei : Electron four-vector
p�i : Muon four-vector
pFe: Fermi momentum of electrons
pFn: Fermi momentum of neutrons
P: Pressure integrated over the accretion disk thickness
Q: Energy release per nuclear reaction
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Q6: Energy obtained as heat per nuclear reaction, expressed
in MeV

Qpair: Energy loss rate per unit volume by neutrino emission
produced due to electron–positron pair annihilation

Qtot: Energy release per nuclear reaction, including the en-
ergy of free outflowing neutrinos, expressed in MeV

Qn: Energy of a neutron strip from a nucleus
Qp: Energy of a proton strip from a nucleus
QCN,QCNO: Heat produced during the formation of a helium nucleus

in the CNO cycle of hydrogen burning
Q3˛: Heat produced during the formation of a 12C nucleus in

the 3˛ reaction of helium burning
Q12C˛: Heat produced during the formation of a 16O nucleus in

the ˛-capture reaction by 12C
Q16O˛ : Heat produced during the formation of a 20Mg nucleus

in the ˛-capture reaction by 16O
qi : Heat flux density
R: Radius of a star
Rg ; rg D 2GM=c2: Stellar gravitational radius
Rˇ: Radius of the Sun
Re: Non-dimensional Reynolds number
Rcr; rcr: Critical radius where the flow velocity equals the local

sound velocity
r : Radial coordinate
ri : Radius of an isothermal core
rin: Inner radius of an accretion disk
rDe: Debye radius for electron screening
rD i: Debye radius for ion screening
R: Gas constant
S : Specific entropy of matter
S : Total density of radiation energy
S	 : Spectral density of radiation energy
Se; Se� : Entropy of electrons
SeC

: Entropy of positrons
s D 2S=3R: Non-dimensional entropy
T : Thermodynamic temperature
T : Rotational energy of a star
Tc : Central temperature of a star
T9: Temperature expressed in 109 K
Ti : Temperature of an isothermal core
Tef; Te: Effective stellar temperature
Tcr: Critical temperature where the flow velocity equals the

local sound velocity
Tm: Temperature of crystal melting
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tms : Time needed for a contracting star to reach the main
sequence

tRG : Lifetime of a star during the red giant stage
tr� : r� component of the viscosity stress tensor
tt : Lifetime of a star prior to the turning point off the main

sequence
tn: Characteristic time of nuclear reactions
tˇ : Characteristic time of beta processes
u;u: Velocity
us: Sound velocity in a gas
ucr: Critical velocity of a flow, equal to the local sound ve-

locity
u D �=mec

2: Non-dimensional energy of beta decay
v; vi : Velocity
ve: Electron velocity
vn: Velocity of a neutron star
vs: Same as us

hvii: Average (diffusive) electron velocity
W : Gravitational energy of a star
Wn: Probability of neutron decay
We: Probability of electron capture by a nucleus
Wˇ ;WA;Z ;W

C
A;Z;W

�
A;Z: Probabilities of different beta reactions with nuclei

W�: Probability of muon decay
XH; xH: Mass abundance of hydrogen
X˛; xHe: Mass abundance of helium
x D pc=kT : Non-dimensional electron momentum
x D rc2=GM : Non-dimensional current radius of an accretion disk
xA; xZ : Mass abundance of an element heavier than He
xi : Mass abundance of an element with atomic number i
x12C: Mass abundance of carbon
x0; x1: Mass abundances of nuclei entering a reaction
x2; x3: Mass abundances of nuclei emerging from a reaction
Ye: Ratio of the total number of protons to the total number

of baryons in nuclear matter
Yl: Lepton charge per baryon in nuclear matter
y D pFe=mec: Non-dimensional Fermi momentum of electrons
yn D pFn=mnc: Non-dimensional Fermi momentum of neutrons
yij : Fraction of the i -th element ionized to the j -th state
Z: Electrical charge of a nucleus (nuclear number)

Greek Symbols

˛: Fine-structure constant
˛ D mec

2=kT : Non-dimensional inverse temperature
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˛: Coefficient connecting the r� components of the viscous
stress tensor with pressure

˛: Coefficient connecting the mixing length of a convective
element and the characteristic scale height

˛p ; ˛: Coefficient connecting the mixing length of a convective
element and the pressure scale height

˛P : Planck-averaged absorption coefficient per unit mass
˛T : Thermal expansion coefficient
˛	 : Spectral coefficient of absorption per unit mass
˛�

	 : Spectral coefficient of absorption per unit mass taking into
account stimulated transitions

˛
bf
	 : Spectral coefficient of bound–free absorption per unit mass

taking into account stimulated transitions
˛

ff
	 : Spectral coefficient of free–free absorption per unit mass

taking into account stimulated transitions
˛�; ˛: Coefficient connecting the mixing length of a convective

element and the density scale height
ˇ D te=kT : Non-dimensional chemical potential of electrons
ˇg : Ratio of gas pressure to total pressure
� : Relativistic adiabatic index
� D Z2e2=kT lW Z: Non-dimensional gas parameter
�Z D Z2e2=kT a: Non-dimensional gas parameter
� I�1; �2: Total and partial widths of a Breit–Wigner resonance
� : Polytropic or adiabatic power index
�1; �2; �3: Adiabatic power indices
�i : Dirac matrices, i D 1; 2; 3; 4; 5
�rad D d lnT=d lnP : Logarithmic derivative along the radius of a radiative star
�: Total energy of beta decay
�rT : Excess of a temperature gradient in star over the corre-

sponding adiabatic gradient
�r�: Excess of a density gradient in star over the corresponding

adiabatic gradient
�tThF: Duration of a thermal helium shell flash
ı D �=mec

2: Non-dimensional total energy of beta decay
ıij : Kronecker symbol
�: Total energy of a star (with or without its rest mass)
�; �e: Total energy of an electron
�G : Newtonian gravitational energy of a star
�GR: First-order correction to the energy of a star connected with

general relativity
�i : Internal energy of a star
�eq: Total energy of a star in static equilibrium (without rest

mass)
�M : Magnetic energy of a star
�N: Total energy of a Newtonian star (without rest mass)



List of Symbols and Abbreviations 481

�01: Energy per unit mass released in a reaction between nuclei
0 and 1

�2� : Energy produced during photo-disintegration of nucleus 2
�ff : Total free–free emission rate of electrons per unit mass
�B : Total emission rate of electron magneto-bremstrahlung per

unit mass
�Fe: Fermi energy of electrons
�Fn: Fermi energy of neutrons
�ˇ : Kinetic energy of particles produced in beta decay (ab-

sorbed in beta capture)
�	 : Energy loss by a star due to neutrino emission per unit mass
�n: Rate of nuclear energy production in a star per unit mass
�gr: Rate of gravitational energy production in a star per unit

mass
�CNO: Rate of heat production per unit mass in the CNO cycle of

hydrogen burning
�3˛ : Rate of heat production per unit mass in the 3˛ reaction of

helium burning
�12C˛: Rate of heat production per unit mass in the ˛-capture re-

action by 12C
�16O˛: Rate of heat production per unit mass in the ˛-capture re-

action by 16O
�: Coefficient of (dynamic) viscosity
�T : Coefficient of turbulent viscosity
� : Debye temperature of a Coulomb lattice
� : Lane–Emden function
� : Angle of e� or e� neutrino mixing in vacuum
�W : Weinberg angle
�m: Angle of e� or e� neutrino mixing in matter

: Rosseland opacity

bf : Rosseland opacity for bound–free absorption

e: Opacity connected with electron heat conductivity

ff : Rosseland opacity for free–free absorption

B : Rosseland opacity for magneto-bremsstrahlung absorption

r

se: Rosseland opacity for scattering on free relativistic elec-
trons


	 D ˛	 C �	 : Spectral coefficient of combined absorption and scattering

	 : Neutrino opacity

L: Normalized monochromatic line absorption coefficient

D : Reciprocal radius of Debye screening
	: Coulomb logarithm
�: Wavelength of a photon
�: Coefficient of heat conductivity
�e: Coefficient of electron heat conductivity
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�n: Coefficient of neutron heat conductivity in the presence of
nuclei

�nn: Coefficient of neutron heat conductivity of a pure neutron
gas

�1.0/: Probability of a nuclear reaction between nucleus 0 and nu-
cleus 1

: Molecular weight� number of nucleons per particle
A;Z : Chemical potential of nuclei with atomic number Z and

atomic mass A
N : Average number of nucleons per nucleus
Z : Number of nucleons per electron
n: Chemical potential of neutrons
p: Chemical potential of protons
te; te� : Chemical potential of electrons
teC

D �te� : Chemical potential of positrons
	e

: Chemical potential of electronic neutrinos
Q	e
D �	e

: Chemical potential of electronic antineutrinos
�: Photon frequency
�: Coefficient of kinematic viscosity
� � �.r/: Number of baryons within radius r
�e: Total frequency of electron collisions
�ee: Frequency of collisions between electrons
�ei : Frequency of collisions between electrons and ions
�: Non-dimensional Lane–Emden radius
˘ : Pressure term connected with artificial viscosity
�: Matter density
�c ; �c0: Central density of a star
�0: Rest mass density
�c;cr: Central density of a star at a point of loss of stability
N�: Average density of a star
�n: Density of neutrons
�nd: Neutron drip line density
�cr: Critical density, where the flow velocity equals the local

sound velocity
˙ : Surface matter density of a disk
� : Cross-section of a nuclear reaction
� : Coefficient of electro-conductivity
�eff : Cross-section of free–free emission
�aff: Cross-section of free–free absorption
�abf: Cross-section of bound–free absorption
�efb: Cross-section of free–bound emission (recombination

cross-section)
��

abf: Cross-section of bound–free absorption taking into account
stimulated transitions
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��
aff: cross-section of free–free absorption taking into account

stimulated transitions
�e : Total cross-section of scattering by free electrons (Thom-

son scattering)
�e : Electron spin
�er : Total cross-section of scattering by free relativistic elec-

trons
�T : Thomson coefficient of scattering by free electrons per unit

mass
�T : Coefficient of turbulent electro-conductivity
�	 : Spectral coefficient of scattering per unit mass
� : Vector of Pauli matrices
� : Optical depth
� : Decay time of a stellar magnetic field
�H: Characteristic time of hydrogen burning in a star
�He: Characteristic time of helium burning in a star
�h: Characteristic hydrodynamic time
�n: Characteristic time of nuclear reactions
�ph: Optical depth at the level of a photosphere
�th: Characteristic time of thermal processes
�ˇ : Characteristic time of beta processes
�	 : Cooling time of a star due to neutrino emission
�1=2: Half-life in beta decay
�1.0/: Average lifetime of nucleus 0 until a reaction with nucleus

1
�� .2/: Time of photo-disruption of nucleus 2
��: Lifetime of a muon
˚; �G : Gravitational potential
 : Particle psi-function (bispinor)
N : Dirac conjugate psi-function
 e: Electron psi-function
 n: Neutron psi-function
 p: Proton psi-function
 �: Muon psi-function
 	 : Neutrino psi-function
˝;!: Angular velocity of matter
˝K : Keplerian angular velocity
!: Circular frequency of a photon
!;!nl : Frequency of stellar oscillations
!1; !2: Terms with artificial viscosity
!B : Larmor frequency
!i: Circular frequency of ion oscillations in a crystal
!pi: Plasma frequency of ions
r D d lnT=d ln �: As �rad

h01i � h�vi01: Averaging over reacting nuclei, with relative velocity v
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List of Abbreviations

1-D: One-dimensional
2-D: Two-dimensional
AGB: Asymptotic giant branch
CAK: Castor–Abbott–Klein
CHF: Core helium flash
CP: Charge conjugation-spatial parity
CVC: Conservation of vector current
D: Degenerate
D: Dipole
DH: Debye–Hückel
GR: General relativity
HB: Horizontal branch
HR: Herzsprung–Russel
IMS: Initial main sequence
IRZ: Intermediate regime zone
LD: Landau–Darreus
LI: Low-intermediate(-mass stars)
LTE: Local thermodynamic equilibrium
MES: Minimum energy state
MHD: Magneto-hydrodynamical
MHD: Mihalas–Hummer–Däppen
MRE: Magneto-rotational explosion
MS: Main sequence
ND: Non-degenerate
NM: Nuclear matter
P: Pole
PCAC: Partial conservation of axial current
PN: Planetary nebula
PNN: Planetary nebula nuclei
PSR: Pulsar
RGB: Red giant branch
RT: Rayleigh–Taylor
SFC: Self-consistent
SN: Supernova
SNI: Supernova of type I
SN Ia,b,c: Supernova of types Ia, Ib, Ic
SNII, SN II: Supernova of type II
SNU: Aolar neutrino unit
SPH: Smooth particle hydrodynamics
TF: Thomas–Fermi
ThF: Thermal flash
TFDH: Thomas–Fermi Debye–Hückel
UHB: Upper horizontal branch
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UWI: Universal weak interaction
WD: White dwarf
WKB: Wentzel–Kramers–Brillouin
WR: Wolf–Rayet
WS: Wigner–Seitz
ZAMS: Zero-age main sequence
ZAHB: Zero-age horizontal branch





Some Important Constants

� D 3:1415926536
e D 2:7182818285
log e D 0:4342944819
1 radian D 57:2957795131ı

Physical Constants

Light velocity: c D 2:997925� 1010 cm
s�1

Gravitational constant: G D 6:67 � 10�8 dyn
 cm2
g�2

Plank constant divided by 2�: „ D 1:05459� 10�27 ergs
s
Electron charge: eD 4:80325� 10�10 CGSE units
Electron mass: meD 9:10956 � 10�28 g, mec

2 D
0:511003MeVD k 
 5:93013� 109K

Physical mass unit: mu D .1=12/m12C D 1:660531 � 10�24

g, muc
2 D 931:481MeV

Proton mass: mp D 1:672661� 10�24 g D 1:00727mu

Neutron mass: mn D 1:674911� 10�24 g
Muon mass: m� D 1:88357� 10�25 g
Boltzmann constant: k D 1:38062� 10�16 erg
K�1

Fine structure constant: ˛ D e2=„c D .137:036/�1

Classical electron radius: le D e2=mec
2 D 2:81794� 10�13 cm

Compton electron wavelength: �e D „=mec D 3:861592� 10�11 cm
Photon wavelength of the energy 1 eV: � (1 eV)D 12398:54� 10�8 cm
Photon frequency of the energy 1 eV: �(1 eV)D 2:417965� 1014 c�1

Energy corresponding to 1 eV: E0(1 eV)D 1:602192� 10�12 ergs
Temperature corresponding to 1 eV: T (1 eV)D 11604:8KDE0=k, .E0=k/

log e D 5:039:9K
Radiation energy density const.: a D �2k4

15c3„3 D 7:56464
� 10�15erg
cm�3
K�4

Stephan-Boltzmann const.: � D ac=4 D 5:66956 � 10�5erg

cm�2
K�4
c�1

487



488 Some Important Constants

Astronomical Constants

1 astronomical unit: a.u.D 1:495979� 1013cm
1 parsec: pcD 3:085678� 1018cm
1 light yearD 9:460530� 1017cm
Solar mass: Mˇ D 1:989 � 1033g
Solar radius: Rˇ D 6:9599 � 1010cm
Solar luminosity: Lˇ D 3:826 � 1033erg 
s�1

Earth mass: M˚ D 5:976 � 1027g
Earth equatorial radius: R˚;e D 6378:164km
Jupiter mass: MJup D 317:83M˚
Jupiter equatorial radius: RJup;e D 71300km
Tropical year (from equinox to equinox): 1 yearD 3:1556926� 107s
Connection between absolute bolometric

stellar magnitude and full luminosity: Mbol D 4:74� 2:5 log.L=Lˇ/
Connection between absolute .M/ and

visual .m/ stellar magnitudes: M D mC 5 logdpc � Aabsorption; dpc is
a distance to the star in parsec.
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