ADAPTIVE OPTICSINASTRONOMY

Adaptive optics is a powerful new technique used to sharpen telescope images
blurred by the Earth’s atmosphere. This authoritative book is the first dedicated
to the use of adaptive optics in astronomy.

Mainly developed for defense applications, the technique of adaptive optics has
only recently been introduced to astronomy. Already it has allowed ground-
based telescopes to produce images with sharpness rivalling those from the
Hubble Space Telescope. The technique is expected to revolutionize the future
of ground-based optical astronomy.

Written by an international team of experts who have pioneered the develop-
ment of the field, this timely volume provides both a rigorous introduction to
the technique and a comprehensive review of current and future systems. It is
set to become the standard reference for graduate students, researchers and
optical engineers in astronomy and other areas of science where adaptive optics
is finding exciting new applications.
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Introductory background
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Historical context

FRANCOIS RODDIER
Institute for Astronomy, University of Hawaii, USA

Turbulence in the Earth’s atmosphere produces inhomogeneities in the air
refractive index, which affect the image quality of ground-based telescopes.
Adaptive optics (AO) is a means for real time compensation of the image
degradation. The technique was first proposed by Babcock (1953) and later
independently by Linnick (1957) to improve astronomical images. It consists
of using an active optical element such as a deformable mirror to correct the
instantaneous wave-front distortions. These are measured by a device called a
wave-front sensor which delivers the signals necessary to drive the correcting
element. Although both Babcock and Linnick described methods that could be
employed to achieve this goal, development cost was too prohibitive at that
time to allow the construction of an AO system for astronomy:.

The invention of the laser soon triggered both experimental and theoretical
work on optical propagation through the turbulent atmosphere. Studies on laser
speckle led Labeyrie (1970) to propose speckle interferometry as a means to
reconstruct turbulence degraded images. Following Labeyrie, astronomers
focused their efforts on developing ‘post-detection’ image processing techni-
ques to improve the resolution of astronomical images. Meanwhile, defense-
oriented research started to use segmented mirrors to compensate the effect of
the atmosphere in attempts to concentrate laser beams on remote targets. This
was done by trial-and-error (multidither technique). As artificial satellites were
sent on orbit, the need came to make images of these objects for surveillance,
and attempts were made to use similar techniques for imaging (Buffington et
al. 1977). The first adaptive optics system able to sharpen two-dimensional
images was built at Itek by Hardy and his coworkers (Hardy et al. 1977). A
larger version was installed in 1982 at the Air-Force Maui Optical Site (AMOS)
on Haleakala. By the end of the 1970s AO systems were widely developed by
industry for defense applications (Pearson et al. 1979). AO systems with more
than a thousand degrees-of-freedom have now been built (Cuellar ef al. 1991).
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4 1. Historical context

Owing to this success, astronomers became interested in applying AO to
astronomy. Unfortunately, most interesting astronomical sources are much
dimmer than artificial satellites. Astronomers are used to expressing the bright-
ness of a star in terms of magnitudes, a logarithmic scale in which an increase
of five magnitudes describes a decrease in brightness by a factor 100. On a
clear dark night, stars up to magnitude 6 are visible to the naked eye. The
AMOS adaptive-optics system goes barely beyond. Astronomers often observe
objects as faint as mag 20 or fainter. Therefore, they need more sensitive
systems. They soon realized that compensation requirements are less severe for
infrared imaging, in which case one can use a fainter ‘guide’ source to sense
the wave front. In the 1980s, great progress was being made in developing InSb
and HgCdTe detector arrays for imaging in the near infrared, and infrared
astronomy was blooming. Therefore two important astronomical institutions
decided to sponsor a development program on AO for infrared astronomy: the
European Southern Observatory (ESO) and the US National Optical Astron-
omy Observatories (NOAO).

The ESO effort, involved astronomers, defense research experts, and indus-
try, and led to the construction of a prototype instrument called ‘COME-ON’
(Rousset et al. 1990; Rigaut et al. 1991). An upgraded version of COME-ON
called ‘COME-ON-PLUS’ has since been regularly used for astronomical
observations at the ESO 3.6-m telescope in Chile (Rousset et al. 1993). A new
version called ADONIS is now a user instrument facility. These developments
are described in Chapter 8. The technology is basically the same as that
developed for defense applications (Shack—Hartmann wave front sensor and
thin-plate piezo-stacks deformable mirror), but the number of different aberra-
tions that can be corrected (number of degrees-of-freedom) is smaller than that
of defense systems. It allows these systems to sense the wave front with fainter
‘guide’ sources (up to mag 14 on a 3.6-m telescope), but limits their application
to the near infrared.

The NOAO effort was discontinued after 4 years, but work soon started at
the Institute for Astronomy of the University of Hawaii (UH) on a novel
technique that had been conceived at NOAO. It involved the development of a
new type of wave front sensor called a ‘curvature sensor’, and a new type of
deformable mirror called ‘bimorph’ (Roddier 1988; Roddier et al. 1991). The
technique was believed to be better adapted to astronomical observations. An
experimental instrument was built and successfully tested at the coudé¢ focus of
the Canada—France—Hawaii telescope (CFHT) on Mauna Kea. The first astro-
nomical observations were made in December 1993 (Roddier ef al. 1995). A
Cassegrain-focus visitor instrument was then built and first used in December
1994 at the CFHT f/35 focus. It has since been widely used for astronomical
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observations. Compared with the European AO systems, the UH system uses
an array of high performance detectors called avalanche photo-diodes (APDs),
which allows the sensing of the wave front to be performed on fainter guide
sources (up to magnitude 17 on a 3.6-m telescope). A consequence is that a
larger number of objects is accessible to wave front compensation. A user AO
system based on this technique has now been built for the 3.6-m CFHT.
Another one is under construction for the Japanese 8-m Subaru Telescope
(Takami et al. 1996). Several other institutions are also considering the use of
this type of system. These developments are described in Chapter 9.

Because the brightness of the source severely limits the sensing of the wave
front, Foy and Labeyrie (1985) proposed the use of laser beacons to create
artificial sources with light back-scattered by the atmosphere. We now know
that the same idea had been independently proposed earlier by US defense
researchers, and was already being developed as classified research (McCall
and Passner 1978, Benedict et al. 1994). In 1991, after the political changes in
Russia, the US National Science Foundation (NSF) convinced government
authorities of the importance of the technique to astronomy, and obtained its
declassification. The current state of US defense technology was presented in
an open meeting held in Albuquerque in March 1992 (Fugate 1992). As a
result, many US groups joined the effort and pursued the development of
artificial laser guide sources for astronomical applications (see the January and
February 1994 issues of J. Opt. Soc. Am.). Although the technique has not yet
matched astronomers’ expectations, encouraging results have been obtained.
These are presented in Chapters 11 to 13 together with a description of the
difficulties encountered.

At the time of writing, a growing number of observatories are becoming
equipped with AO systems to be used with or without laser beacons. The
purpose of this book is to describe the current state of the art with its potential
and limitations. We hope it will be useful to both engineers in charge of
designing and building astronomical instrumentation, and to astronomers
whose observations will benefit from it. Chapter 2 describes the statistical
properties of the turbulence-induced wave front distortions to be compensated,
and their deleterious effects on images. Part II (Chapter 3 to 7) gives perform-
ance goals that a theoretically ideal AO system would achieve, describes
practical means which have been developed to approach these goals, and shows
how to estimate their real performance. Concepts discussed in part II are
illustrated in part III by a description of the COME-ON/ADONIS systems
(Chapter 8), and of the UH/CFHT systems (Chapter 9). It has not been possible
to do justice here to all the work done with natural guide sources at other
astronomical institutions such as Durham University or Mt Wilson Observa-
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tory. However, we have included a section on solar astronomy (Chapter 10).
Part IV (Chapters 11-13) introduces laser beacons and their application to
astronomy. Part V (Chapters 14—16) discusses the practical aspects of astro-
nomical observations with AO, shows examples taken from among the wealth
of successful results that have now been obtained, and discusses the impact of
AO on future observations and instrumentation.
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2
Imaging through the atmosphere

FRANCOIS RODDIER
Institute for Astronomy, University of Hawaii, USA

The designing of an AO system requires a good appreciation of the character-
istics of the wave-front aberrations that need to be compensated, and of their
effect on image quality. Since these aberrations are random, they can only be
described statistically, using statistical estimates such as variances, or covar-
iances. These estimates define the so-called seeing conditions. We are dealing
here with a non-stationary random process. Seeing conditions evolve with time.
Therefore, one also needs to know the statistics of their evolution, mean value
and standard deviation for a given telescope. A good knowledge of the seeing
conditions during the observations is also important for the observing strategy.
This chapter summarizes our knowledge on the statistics of the air refractive
index fluctuations. From these, are derived the statistics of the wave-front
distortions one seeks to compensate, and their effect on the intensity distribu-
tion in the image plane. A more detailed description of this material can be
found in several review papers (Roddier 1981; Roddier 1989; Fried 1994).

2.1 Air refractive index fluctuations

Fluctuations in the air refractive index are essentially proportional to fluctua-
tions in the air temperature. These are found at the interface between different
air layers. Wind shears produce turbulence which mixes layers at different
temperature, and therefore produces temperature inhomogeneities. The statis-
tics of refractive index inhomogeneities follows that of temperature inhomo-
geneities, which are governed by the Kolmogorov—Obukhov law of turbulence.
We are not interested in the absolute value of the refractive index, but mainly
in the difference between its value n(r) at a point r, and its value n(r + p) at a
nearby point some distance p = |p| apart. Vectors r and p represent three-
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dimensional positions and separations. The variance of the difference between
the two values of the refractive index is given by

Dy(p) = (|n(x) = n(r + p)I*) = C3p*", 2.1)

where the brackets () represent an ensemble average. Dn(p) is called the
index structure function. To a first approximation, it depends only upon the
separation p but not the position r, that is the random process is considered as
homogeneous (at least locally). Moreover, it depends only on the modulus of
the vector p independently of its direction, that is the process is isotropic. The
quantity C%V is called the index structure coefficient. It is a measure of the local
amount of inhomogeneities. It does vary over distances much larger than the
scale of the inhomogeneities. Its integral along the light propagation path gives
a measure of the total amount of wave-front degradation or ‘seeing’.

Equation (2.1) is an approximation only valid as long as p is smaller than
some value called the turbulence outerscale. Indeed at long distances the
fluctuations n(r) and n(r 4 p) are expected to become eventually uncorrelated,
in which case the structure function becomes independent of p and equal to
twice the variance of n. According to Eq. (2.1), the variance of » would be
infinite which is unphysical. The value of the outerscale has been highly
debated. Values in the literature span from a few tens of centimeters to
kilometers. Experimentally, the power law in Eq. (2.1) has been found to be
quite accurate over distances less than 1 meter. Beyond that, evidence of
deviations have often been found. It means that Eq. (2.1) is certainly valid for
small telescopes. For large telescopes it is likely to be inaccurate.

Equation (2.1) statistically describes the spatial distribution of the inhomo-
geneities at a given time 7. We also need to know how fast the index fluctuates
with time, at a fixed point r along the line of sight. The temporal evolution can
be similarly described by a temporal structure function defined as the variance
of the difference between the index at time ¢ and the index at a later time ¢ + t:

D(2) = (|n(x, 1) = n(r, t + D). (2.2)

Experience shows that the lifetimes of air temperature inhomogeneities are

much longer than the time it takes for a wind-driven inhomogeneity to cross

the line of sight. This is true for open air turbulence under most wind
conditions. If v is the wind velocity, then

n(r, t + 1) = n(r — v, 1). (2.3)

This approximation is called the Taylor approximation. Putting Eq. (2.3) into
Eq. (2.2) gives the following expression for the temporal structure function

Dy(7) = (|n(r, 1) — n(r — vz, H?) = C%,.|vt|*>. (2.4)
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Hence, the temporal structure function is simply obtained by substituting |vz]|
for p in the spatial structure function (Eq. (2.1)).

Within our wavelength range of interest, which extends from the red to the
thermal infrared, the air refractive index is fairly wavelength independent.
Therefore, in the following we will assume that the structure functions defined
by Eq. (2.1) and Eq. (2.4) are wavelength independent quantities.

2.2 Wave-front phase distortions

Waves are best described by means of a complex number W, called the wave
complex amplitude. It is defined as

W = Aexp(ip), (2.5)
where 4 and ¢ are real numbers representing respectively the amplitude and
the phase of the field fluctuation. A surface over which ¢ takes the same value
is called a wave-front surface. Before entering the atmosphere, light from very
far away sources such as stars forms plane waves (flat wave-front surfaces).
However, inside the atmosphere the speed of light will vary as the inverse of
the refractive index. Light propagating through regions of high index will be
delayed compared to light propagating through other regions. The resulting
wave-front surface is no longer flat but corrugated. The deformation of the
wave-front surface is given by the optical path fluctuation

6= Jn(z) dz, (2.6)

where n(z) is the refractive index fluctuation along the beam. To a first
approximation called the near-field approximation, the integral in Eq. (2.6) can
be simply taken along the line of sight. It is important to note that, since n(z) is
fairly independent of wavelength, the deformation of the wave-front surface
(generally expressed in microns, or nanometers) is also a wavelength indepen-
dent quantity. Hence, it can be compensated at all wavelengths, by means of a
deformable mirror having the same deformation as the incoming wave-front
surface but with only half the amplitude. Beam areas which have been most
delayed by the atmosphere have less distance to travel before being reflected.
Other beam areas have further to travel. They are delayed by an amount equal
to the time necessary for the light to travel twice (back and forth) across the
depth of the mirror deformation.

The wave-front phase fluctuation is related to the wave-front surface de-
formation by the following relation:

Q= kjn(z) dz, 2.7)
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where £ is the wave number. It varies as the inverse of the wavelength 4
k=2m/A. (2.8)

Hence, the wave-front phase fluctuation is not achromatic. At long wave-
lengths, fluctuations are smaller and, as we shall see, less detrimental to image
quality. Again, we are not interested in any absolute wave-front phase, but
rather in the difference between the phase ¢(x) at a point x on the telescope
entrance aperture and the phase ¢(x 4 &) at a nearby point a distance & = |&|
apart. The variance of the difference is the structure function of the phase

Dy(8) = (Jo(x) — p(x + ). 2.9)
It should be noted that x and § are now two-dimensional vectors. Putting Eq.
(2.7) into Eq. (2.9) makes it possible after some manipulation to express the
phase structure function in terms of index structure functions integrated along
the line of sight. Using Eq. (2.1) for the index structure function and per-
forming the integration yields

D,(§) = 2.91k2Jc2N(z) dz £33, (2.10)

The remaining integral in Eq. (2.10) is along the line of sight. Because of the
integration, the 2/3 power in Eq. (2.1) has now become a 5/3 power. The
atmosphere is generally considered to be stratified in plane parallel layers, that
is C?V depends only on the height /# above the ground. In this case, Eq. (2.10)
can be rewritten

D,(€) = 2.91k*(cos y)ljciv(h) dh &3, (2.11)

where 7y is the angular distance of the source from zenith. The quantity
(cosy)~! is called the air mass.
Eq. (2.11) is often found in the literature under a slightly different form

Dy(E) = 6.88(5/r0)*, (2.12)

where
~3/5
ro = {0.423162(005 y)‘ljcfv(h)dh} (2.13)

is a length called the Fried parameter (Fried 1965). It characterizes the effect of
seeing at a particular wavelength. According to Eq. (2.13), ry increases as the
6/5 power of wavelength, and decreases as the —3/5 power of the air mass.
Additional properties of 7y will be given below.

Equation (2.10) or (2.12) allows us to calculate quantities such as the mean
square wave-front phase distortion over a circular area of diameter d, defined as
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4
O-% N <ﬂ—épjjarea’¢(X) - QDO(X)F dx>’ -

where
4
Po = ) areaQD(X) dx (2.15)

is the wave-front phase averaged over the area. According to Fried (1965) and
Noll (1976)

02 = 1.03(d/r)*>. (2.16)

Hence, an interesting property of 7y is that the root mean square (rms) phase
distortion over a circular area of diameter 7y is about 1 radian.

Let us again consider a wave front over a circular area of diameter d. If a
plane wave is fitted to the wave front over this area, and its phase is subtracted
from the wave-front phase (wave-front tip and tilt removal), then the mean
square phase distortion reduces to

02 = 0.134(d/ ro)*>. (2.17)

Subscript 3 is used here for consistency with the notations used in Section
3.2.1 (Eq. (3.20)). Let us assume that a segmented mirror is used to compensate
the wave front, and let us approximate each segment as a circular flat mirror of
diameter d. Each segment will do its best to compensate the wave front. A
‘piston’ motion of the segment will compensate the mean value of the phase
distortion averaged over the segment area. Tilting the segment will also
compensate the mean wave-front slope. Such a compensation is said to be
‘zonal’. The residual mean square phase error, also called wave-front fitting
error, is given by Eq. (2.17). Such a compensation requires the control of three
parameters (piston, tip and tilt), that is at least three actuators per mirror
segment. The mean actuator spacing is therefore 7, = d/+/3, and the fitting
error can be written

02, = 0.335(rs/r0)>. (2.18)

Equation (2.18) shows that the variance of the wave-front fitting error decreases
as the 5/3 power of the actuator spacing. This is a general characteristic of
zonal compensation. Equation (2.18) also applies to continuous facesheet
mirrors (see Chapter 4) with a coefficient in the 0.3—0.4 range, depending on
the exact shape of the actuator influence function (Hudgin 1977). The total
number N of independently controlled parameters is about N = (D/r)?.
Expressed as a function of A, the fitting error becomes

02 ~0.335(D/rp)° PN, (2.19)

Equation (2.19) shows that for a zonal compensation, the mean square residual
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error decreases as the —5/6 power of the number of controlled parameters
inside a given aperture. In Section 3.1, it will be shown that a slightly steeper
decrease can be obtained by controlling global wave-front modes rather than
local zones (modal compensation).

Equation (2.12) describes the spatial distribution of wave-front distortions. It
allows us to determine the number of parameters we need to control the wave-
front surface and the amplitude of the correction to be applied, but it does not
tell us how fast this must be done. To do this, we need an expression for the
temporal structure function of the wave-front phase

Dy(7) = (|p(x, ) — @(x, t + D)|?). (2.20)

In Section 2.1, we saw that air refractive index inhomogeneities are essentially
wind driven. If the whole turbulent atmosphere were propagating at the same
velocity, then the wave-front phase distortion would also propagate at that
velocity without noticable deformation while crossing the telescope aperture.
However, most of the time wave fronts are affected by more than one turbulent
layer, and these propagate at different speeds in different directions. As a result,
the wave-front phase still propagates with a velocity U which is a weighted
average of the layers’ velocities, but also deforms very rapidly. This rapid
deformation of the wave front is sometimes referred to as wave-front ‘boiling’.
Wave-front boiling time dictates the time evolution of the intensity distribution
in the image plane, but propagation still dictates the response time for adaptive
optics (Roddier et al. 1982b). Hence, when dealing with adaptive optics, one
often assumes propagation with a single velocity v. This rather rough approx-
imation is often also called a ‘Taylor’ approximation. It should be clearly
distinguished from the more accurate approximation described by Eq. (2.3).
Assuming a mean propagation velocity with modulus U, the temporal structure
function of the wave-front phase is simply obtained by substituting vt for & in
Eq. (2.12), that is

D,(7) = 6.88(07/rp)*/>. (2.21)

This expression can be used to calculate the effect of the finite response time of
an AO system. As seen from Eq. (2.20), it gives the mean square phase error
0% . associated with a pure delay 7 in which the phase is measured at time ¢
but the correction is applied at time ¢ 4 7,

o2 (1) = 6.88(0r/ o). (2.22)

It should be noted that whereas the fitting error 0%, depends on the single
atmospheric parameter 7y (Eq. (2.18)), the time delay error o2 . depends on

two parameters U and 7. Both vary with time independently of each other (U is
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an instantaneous spatial average not a time average). The knowledge of 7
alone is insufficient to determine the characteristics of an AO system.

2.3 Image formation

When designing an AO system, it is important to understand the relationship
between the wave-front phase in the telescope aperture plane, and the distribu-
tion of intensity in the telescope focal plane. As we shall see, the relation is
non-linear. Phase perturbations with an amplitude below a threshold of about 1
radian have little effect on image quality and therefore seldom need to be
compensated. However, a linear increase in the amplitude of the perturbation
produces exponential effects on image quality. We have already seen that rms
phase distortions are equal to about 1 radian over a circular area of diameter 7
(Eq. (2.16)). Hence, there is little need to correct wave-front perturbations at a
smaller scale. On a telescope aperture of diameter D, the number of such areas
is (D/r9)*. This is an order of magnitude for the number of parameters one
needs to control. For instance, if a segmented mirror is used to compensate the
wave front, the residual mean square phase error is given by Eq. (2.19). To
bring this value below 1 radian requires the control of a number N of actuators
at least equal to

No = 0.27(D/ ro)*. (2.23)

Since r increases as 1% (see Eq. (2.13)), the number of actuators one needs to
control decreases as A~'2/°. This makes AO much easier at longer wavelengths.
Using the above definition of Ny, one can rewrite Eq. (2.19) in the form

0%, = (No/NY/°. (2.24)

At the end of Section 2.2, we saw that a pure time delay 7 in the control loop
produces a mean square wave-front error given by Eq. (2.22). In a similar way,
one can use this expression to determine an acceptable time delay 7, for the
control loop. For the mean square phase error to be less than 1 radian, the delay
must be less than

To = (6.88)*3/5% - 0.314%. (2.25)

This delay has been called the Greenwood time delay (Fried 1990). The
required frequency bandwidth of the control system is called the Greenwood
frequency (Greenwood 1977). Since r, increases as 1%, the control bandwidth
decreases as A~%/°. This again makes AO easier at longer wavelengths. Using
the above definition of 7, Eq. (2.22) can be rewritten

O™ = (T/70)°°. (2.26)
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In practice, the required frequency bandwidth also depends on the number of
controlled parameters. A more thorough analysis of the effect of the finite
bandwidth in an AO system will be presented in Chapter 3.

To get more physical insight into the relationship between the wave front and
the image, we will consider first a particular set-up, called a Fizeau interfero-
meter, in which the telescope aperture is masked except for two small circular
subapertures a distance & apart. The diameter of each subaperture is taken to be
small compared to 7y, so that turbulence does not substantially affect the
intensity distribution in the diffracted beam. Assuming a monochromatic point
source, the superposition of the two diffracted beams produces interference
fringes. Let W, and W, be the complex amplitudes produced by each subaper-
ture in the image plane. The resulting complex amplitude is

Y= +¥, (2.27)
and the intensity is
[=[WP =W, + U, = W+ [P, + 2Re (W, P)), (2.28)

where * denotes a complex conjugate. The first two terms on the right hand
side of Eq. (2.28) are the intensities that each subaperture would produce alone.
The last term describes the interference pattern. The fringe amplitude is given
by the modulus of lpllli;k , the fringe phase by its argument. Because in
astronomy the image plane is conjugate to the sky, and sky coordinates are
angles, in all that follows we will use angles as coordinates in the image plane.
Expressed as an angle, the fringe spacing is 4/& in radians. The fringe spatial
frequency is £/ in radian™!.

A wave-front phase perturbation simply adds a random phase term ¢, to the
argument of Wy, and a random phase term ¢, to the argument of W,. That is
the complex quantity IPIIPj is multiplied by exp(¢; — ¢2). The fringes are
randomly shifted with a phase shift ¢;—@;, but their instantaneous amplitude
is not affected. According to Eq. (2.12), the variance of the fringe phase shift is

(lpr — @2*) = 6.88(5/ro)*/>. (2.29)

However, if we record the fringes with a long exposure time compared with the
characteristic time of the fringe motion, the recorded fringes will be blurred. In
a very long exposure, the fringe pattern is described by the ensemble average
‘IH‘P;k (exp(¢1 — ¢2)). Assuming phase perturbations with Gaussian statistics,

{exp(@1 — @2)) = exp(—X| @1 — @2[*)). (2.30)

The long exposure fringes are no longer shifted, but their amplitude is
attenuated. Putting Eq. (2.29) into Eq. (2.30) gives the following attenuation
coefficient for the fringe amplitude
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(exp(p1 — 92)) = exp[~3.44(§/r0)*°]. (2.31)

If the two subapertures are separated by a distance equal to 7, the long
exposure fringe amplitude is only 3.2 X 1072 times that of the instantaneous
fringes. In other words 7y is a typical subaperture separation beyond which
long exposure fringes disappear. Since, in optics, fringe visibility is a measure
of coherence, Eq. (2.31) is often called the coherence function. It describes the
loss of fringe visibility in long exposures taken through atmospheric turbu-
lence.

One can think of a full aperture as an array of N small subapertures each
producing a complex amplitude W, in the telescope focal plane. The resulting
amplitude is

N
w=) vy, (2.32)
k=1
and the resulting intensity is
N
T=WP =) W+ ) W (2.33)
k=1 k#j 7

Hence the intensity in the image plane is the sum of the intensities produced by
each subaperture plus the sum of the interference terms produced by each pair
of subapertures (each pair being counted twice). It shows that the intensity in
the image plane can be synthesized by measuring the interference terms with a
pair of movable subapertures. This is the basis of aperture synthesis in radio-
astronomy. Each interference term describes a fringe pattern, that is a sinu-
soidal function. Hence Eq. (2.33) describes the intensity as a sum of sinusoidal
terms, also called Fourier components, with spatial frequency f =§/1 in
radian~'. Assuming no turbulence, each Fourier component is weighted by a
coefficient equal to the number of identical subaperture vector separations &
inside the telescope aperture. This number is easily shown to be proportional to
the overlap area between two shifted apertures. In other words the weights are
given by the autocorrelation of the aperture transmission, where distances are
measured in wavelength units. The weighting function of the Fourier compo-
nents is called the optical transfer function T'(f). Its spatial frequency cut-off is
fe = D/A. Its Fourier transform is the intensity distribution in a point source
image, also called the point-spread function. The Fourier transform of the
aperture autocorrelation function describes the image of a point source pro-
duced by a perfect diffraction-limited telescope, or Airy disk. Its angular width
is about A/ D.

In the presence of turbulence, the Fourier components of a long exposure
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image suffer from an additional attenuation described by the fringe attenuation
coefficient (Eq. (2.31)). The optical transfer function, we now call G(f), is the
product of two factors, the autocorrelation of the aperture transmission, or
telescope transfer function 7'(f), and an atmospheric transfer function A4(f)

G(f) = T(HA(L). (2.34)
The atmospheric transfer function is obtained by replacing & by Af in Eq.
(2.31) (with f = |f]),
A(f) = exp[—3.44(Af /ro)*/3]. (2.35)
For large astronomical telescopes at visible wavelengths, A(f) decreases much
faster than 7'(f). The angular resolution of the telescope is essentially turbu-
lence limited. To a good approximation, the point-spread function of a
turbulence degraded image is simply the Fourier transform of A(f). Since A(f)
is almost a Gaussian (Eq. (2.35)), its Fourier transform is also almost a
Gaussian, only the wings fall off less steeply. Its angular width is about A/r.
Since 7y varies as A9°, this width decreases as A1~!/5, that is the telescope
angular resolution increases at longer wavelengths, until 7y becomes of the
order of D. At this point, the maximum resolution is achieved. Beyond that the
telescope angular resolution is essentially diffraction-limited. The image width
increases again as 4/ D and the angular resolution decreases.
When the atmospheric phase distortion is partially compensated by an AO
system, Eq. (2.34) remains valid with A(f) given by Eq. (2.30), that is
A(f) = exp[—3D,(AD)], (2.36)

but the phase structure function D, is no longer given by Eq. (2.29). AO
systems mostly compensate the large scale wave-front distortions, which have
the largest amplitude. This has the effect of levelling off the structure function
at some level 202, where o? is the variance of the remaining (uncorrelated)
small scale wave-front distortions. The better the compensation, the smaller is
0?. At low frequencies A(f) decreases as without compensation but instead of
rapidly converging toward zero, it converges toward a constant

A(c0) = exp(—0?). (2.37)
Hence, A(f) can be described as the sum of the above constant term plus a low
frequency term. As a consequence, the point-spread function, which is the
Fourier transform of Eq. (2.34), is also the sum of two terms, an Airy disk plus
a halo due to light diffracted by the remaining small scale wave-front phase
errors. Equation (2.37) represents the fraction of light in the Airy disk. It is a
good measure of the quality of the compensation. In optics, a traditional
criterion of image quality is the Strehl ratio R, which is the ratio of the
maximum intensity in the point spread to that in a theoretically perfect point
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source image (Airy disk). For a large telescope, with a diameter D much larger
than 7y, and under good compensation conditions (R > 0.2) the contribution of
the halo to the central intensity is small. Hence, to a good approximation,
R ~ exp(—0?). (2.38)

As stated at the begining of this section, image quality degrades exponentially
with the variance of the wave-front distortion. The threshold of 1 radian we
considered corresponds to R = 1/e = 0.37. Experience shows that images with
a higher Strehl ratio look fairly good, whereas images with a lower Strehl ratio
look poor.

Putting Eq. (2.24) into Eq. (2.38) shows how the Strehl ratio increases with
the number N of controlled actuators

R ~ exp[—(No/N)>/°]. (2.39)
Hence N is the number of actuators needed to obtain a Strehl ratio of the order
of 0.37 (assuming no other source of errors). Similarly, putting Eq. (2.26) into

Eq. (2.38) gives the decrease of the Strehl ratio as a function of the time delay
in the servo loop

R o exp[—(7/70)*"?]. (2.40)

It shows that 7 is the delay over which the Strehl ratio of a compensated image
is divided by a factor e.

2.4 Non-isoplanicity and other effects

From the previous sections, it should be clear that the optical quality of an AO-
compensated image is necessarily limited. The two main limitations are the
finite number of parameters one can control, and the finite speed at which one
can control them. In this section, we discuss a few additional limitations. These
are related to the fact that current AO systems compensate wave-front phase
distortions in the telescope aperture plane, whereas some turbulence layers
occur well above in the atmosphere.

In Section 2.2, we have neglected propagation effects by integrating the
refractive index fluctuations along the line of sight (near-field approximation).
However, index inhomogeneities both refract and diffract light. This has two
types of effects. A first effect is that after propagation over some distance,
illumination is no longer uniform. It is this variation of illumination which
causes the eye to see a star twinkling. The phenomenon is called scintillation.
In this case, the atmospheric transfer function is still given by Eq. (2.31), but it
now takes the form

A(f) = exp[—LD(AD)], (2.41)
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where D(Af), called the wave structure function, is the sum of two terms
D(Af) = D, (Af) + D, (Af). (2.42)

D, (Af) is the structure function of the phase defined by Eq. (2.9), and D,(Af) is
the structure function of the log amplitude y in the pupil plane

D, (Af) = ([x(r) — x(r + AD)?). (2.43)

When f increases, D,(Af) quickly saturates at values of the order of unity,
whereas D, (Af) keeps growing and becomes the most important term. For this
reason, fluctuations of the wave-front amplitude contribute much less to image
degradation than the wave-front phase. However, if the wave-front phase is
compensated by an AO system, there will be a residual image degradation due
to the fluctuations of the wave-front amplitude. The loss in Strehl ratio is only a
few percent in the infrared but may reach 10—15% at visible wavelengths
(Roddier and Roddier 1986).

A second effect is due to the fact that refraction and diffraction are both
wavelength dependent. It occurs when one tries to compensate images at one
wavelength while sensing the wave front at another wavelength. Although we
assume that refractive index fluctuations are wavelength independent, the
diffraction of light by high altitude layers produces wavelength-dependent
effects on the wave front. Again the effect is small. If we assume that sensing is
done in the visible, the effect is curiously maximum in the very near infrared (I
and J band), where the loss of Strehl ratio is a few percent, and decreases at
longer wavelengths. Refraction effects occur only away from the zenith.
Because of refraction, light rays follow different paths at different wavelengths.
Assuming again that the sensing is done in the visible, the effect is also
maximum in the near infrared (I and J band), but should become noticeable
only 60° or more from zenith (Roddier and Roddier 1986).

The most important limitation related to the height of turbulence layers, is a
limitation in the compensated field-of-view. It occurs because of differences
between wave fronts coming from different directions. This effect is called
anisoplanicity. If a particular source called a ‘guide’ source is used to sense the
wave front, the compensation will be good only for objects close enough to the
guide source. As the angular distance 6 between the object and the guide
source increases, image quality decreases. For a single turbulent layer at a
distance /cos y, the mean square error o2 .. on the wave front is obtained by
simply replacing & with 8//cosy in Eq. (2.12). In practice, several turbulence
layers contribute to image degradation. In Eq. (2.22) we used a weighted
average U of the layer velocities to calculate the time delay error. We can
similarly use a weighted average / of the layer altitudes to calculate the
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Table 2.1. Wavelength and zenith angle dependence of turbulence-related AO

parameters

Parameter Wavelength Zenith angle
Fried’s parameter () 2075 (cos y)*/?
Seeing angle (1/70) ys (cosy) /3
Number of control parameters (Ny) A12/5 (cos )~/
Actuator distance (7y) 2005 (cosy)*/°
Greenwood time delay (7o) 203 (cos y)*/?
Isoplanatic angle (6p) A0/5 (cosy)}/3

anisoplanicity error o2 (Fried 1982; Roddier et al. 1982a; Roddier and

aniso

Roddier 1986). This gives

g\
agmso(e):ass( ) . (2.44)

7 COS Y

Like the time delay error o2, . (Eq. (2.22)), the anisoplanicity error o2

depends on two atmospheric independent parameters /4 and ry. Again, the
knowledge of 7y alone is insufficient to estimate the isoplanicity error. One can
use Eq. (2.44) to calculate an acceptable angular distance 6. For the rms error
to be less than 1 radian, the angular distance must be less than

0 = (6.88) 35 VY _ 3140 c%osy‘ (2.45)

This angular distance is called the isoplanatic angle. Like 7y, it increases as the
6/5 power of the wavelength, which again makes AO easier at longer wave-
lengths. It also decreases as the —8/5 power of the air mass. In practice, the
acceptable angular distance also depends on the number of controlled para-
meters. A more thorough analysis of the effect of anisoplanicity in an AO
system will be presented in Chapter 3.

Using the above definition of 6, one can rewrite Eq. (2.44) in the form

a(0) = (8/6p)°. (2.46)

Putting Eq. (2.46) into Eq. (2.38) gives the decrease of the Strehl ratio as a
function of 6

R o exp[—(8/6p)°"3]. (2.47)

Hence 0, is the angular distance from the guide source over which the Strehl
ratio of a compensated image is divided by a factor e.

The dependence of turbulence-related parameters on wavelength 4 and
zenith angle y is summarized in Table 2.1 for convenience.
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The design of an adaptive optics system






3

Theoretical aspects

FRANCOIS RODDIER
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3.1 The principles of adaptive optics

In this chapter, we consider AO systems in general, mostly regardless of any
practical implementation. An AO system basically consists of three main
components, a wave-front corrector, a wave-front sensor, and a control system.
They operate in a closed feedback loop. The wave-front corrector first compen-
sates for the distortions of the incoming wave fronts. Then part of the light is
diverted toward the wave-front sensor to estimate the residual aberrations
which remain to be compensated. The control system uses the wave-front
sensor signals to update the control signals applied to the wave-front corrector.
As the incoming wave-front evolves, these operations are repeated indefinitely.

A key aspect of adaptive optics is the need for a ‘guide’ source to sense the
wave front. Bright point sources work best. Fortunately, nature provides astro-
nomers with many point sources in the sky, in the form of stars. However, they
are quite faint. With current systems, observations are limited to the vicinity of
the brightest stars, that is a few percent of the sky. Wave-front sensing is also
possible with extended, but preferably small sources, provided they are bright
enough. This includes not only solar system objects such as asteroids, or
satellites of the main planets, but also a few galaxy cores, and small
nebulosities. A whole chapter of this book is devoted to the problem of solar
observations (Chapter 10). Another to the creation of artificial guide sources
with laser beacons (Chapter 12).

Let us consider the wave-front corrector. It has a finite number P of parame-
ters, or actuators one can control. Similarly, the wave-front sensor provides only
a finite number M of measurements. For AO systems operating with bright
sources, M can be large, and is always taken larger than P. The system is said to
be overdetermined, and a least square solution is chosen for the control
parameters. In this case, the accuracy of the compensation is mainly limited by
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the mirror. For astronomical observations with faint natural guide stars, where
only a few photons are available, M is necessarily limited. Taking M = P
obviously requires a careful match of the wave-front sensor sensitivity to the
particular aberrations the wave-front corrector can compensate. One could even
envisage underdetermined systems for which M < P, and choose the control
parameters that minimize the correction (minimum norm solution). In this case,
the accuracy of the compensation would be essentially limited by the sensor. In
practice wave-front correctors are not perfect. Actuators often introduce wave-
front distortions which have to be corrected. To sense these distortions, one
needs to have at least as many measurements as actuators, that is M = P.

In general, there is no one-to-one relationship between the sensor signals and
the actuators. Acting on one actuator modifies all the sensor signals. In a closed
feedback loop, the signals are small, and the wave-front sensor response can be
considered as linear. The response of the sensor to each actuator is then
described by a P X M matrix called the interaction matrix. A singular value
decomposition of the interaction matrix gives a set of singular values. The
number N of non-zero singular values is called the number of degrees of
freedom of the system. It is the number of linearly independent parameters one
can control to compensate the wave-front distortions. This number largely
determines the compensation performance of an AO system. In this chapter, we
determine what is the best possible performance that a theoretically ideal AO
system with N degrees of freedom can achieve. One can then define the ef-
ficiency of a real system by comparison with this theoretical model.

3.2 Modal wave-front representation

Atmospheric turbulence produces randomly distorted wave fronts. The wave-
front corrector attempts to compensate the distortions with an N-parameter fit.
In some cases a good fit may be obtained. In other cases the fit will be poorer.
The residual wave-front error is clearly random. The most efficient AO system
is the one which on the average produces the smallest error. The solution to
this optimization problem can be found by expanding the atmospheric wave
fronts in a series of orthogonal functions. Optical physicists usually expand
wave-front distortions in terms of functions called Zernike modes. Because of
their simple analytic expressions, we will also use Zernike expansions. How-
ever, there is an infinite number of other possible expansions. Only one has
statistically independent coefficients. It is called a Karhunen—Loéve expansion.
At the end of this section, we show that among all possible AO systems with N
degrees of freedom, the most efficient one is the one which fully compensates
the first N Karhunen—Loéve modes.
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3.2.1 Zernike expansion

A review of the properties of the Zernike modes relevant to the description of
atmospherically distorted wave-fronts can be found in a paper by Noll (1976).
For a circular aperture without obstruction, using polar coordinates (7, ), the
Zernike modes are defined by

V2 cos(ma)
Z"(r, @) = Vn+ 1R"{ /2sin(ma) (3.1
1 (m=0)
where
(n—m)/2 s
Rm — (_1) (l’l - S)‘ rn72s (32)

" — sl[(n+m)/2 = s]![(n — m)/2 — s]!

are the Zernike polynomials. The index 7 is called the radial degree, the index
m the azimuthal frequency. Table 3.1 shows the first 15 Zernike modes
Z(r, a), where j is a usual ordering number. Note that even j values corres-
pond to cosine terms.

The Zernike modes are orthogonal over a circle of unit radius. Expressing Z
as a function of the vector r(r», a),

JW(r)Zj(r) Zi(r)dr =0y, (3.3)
where 0 j is the Kronecker symbol equal to one if j = &, and equal to zero if

Jj # k. The weighting function W (r) is given by

W(r) = { 1{)“ E:f 11)? (3.4)

Any wave-front phase distortion ¢(r) over a circular aperture of unit radius can
be expanded as a sum of Zernike modes

o(r) = a;Zr). (3.5)
J

The sum is over an infinite number of terms. The coefficients a; of the ex-
pansion are given by

a; = J W(r)Z(r)o(r)dr. (3.6)

Here we are dealing with random wave-front aberrations. The coefficients a;
are random and we are interested in their statistical properties. Their covariance
is given by

(ajaz) = <JW(r)Z,~(r><p<r) er W(r')zk<r')<p<r'>dr'> 3.7)



Table 3.1. Expression of the first 15 Zernike modes

m—
0 1 2 3 4
Zy=1
Piston
Zy, =2rcos@
Z3 =2rsinf
Tip/tilt
Zy =V32rr =1 Zs = v/6r2sin26
Zo = V612 cos26
Defocus Astigmatism (3rd order)
Z7 =/8(3r —2r)sinf Zo = /8r3sin360
Zs = /831> — 2r)cos Z1o = V87 cos 360
Coma Trefoil
Zi = V5(6r* —6r2 4+ 1) Z1y = V/10(107* — 37%) cos 20 Z14 = V107r* cos 40
Zi3 = V/10(107* — 37%)sin 20 Z1s = V107* sin 40

Spherical Astigmatism (5th order) Ashtray
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which can be rewritten as a double integral
(aja) = [ [FOZi0WE Zie ooy drar 8)
or, withr' =r+ p,
(aax) = (oot + ) WO Z@W @ + P2ite + p)drdp. (39

This integral is best calculated by using Parseval’s theorem. Assuming station-
arity, the covariance (@(r)o(r+ p)) is a function of p only. Its Fourier
transform is the power spectrum ®(x) of the random wave-front phase ¢(r).
The second integral is a convolution. Its Fourier transform is the product of the
Fourier transforms of the convolution factors. Let Q;(x) be the Fourier trans-
form of W(r)Z,(r). Eq. (3.9) can be written

(ajar) = JCI)(K)QJ-(K)Qk(K) dxk. (3.10)

The power spectrum ®(x) of the wave-front phase can be obtained from its
structure function (Tatarski 1961). With the above notations (Roddier 1981)
D(k) = 7.2 X 1073(D/ o) |x| 113, (3.11)
The functions Q;(x) are given by (Noll 1976)
—_ (n*rn)/Z\/i
J (27 (-1 cos ma.
0, (f,a)=vn+ 1—+;1(K ) (—D)(=m/21/2 sin ma (3.12)
(=D"* (m=0),
where x and a are the modulus and argument of k. The function J,, is a Bessel
function of order n. Putting Eq. (3.11) and Eq. (3.12) into Eq. (3.10), shows
that only Zernike terms with the same azimuthal frequency m are correlated.

Moreover, cosine terms are uncorrelated with sine terms. The covariance takes
the form

(ajay) = cj(D/r0)*"3. (3.13)
The coefficients cj; are functions of the radial degrees n and n’ of the two

Zernike terms, and of their common azimuthal frequency m. An analytic
expression for the cj; was first derived by Noll (1976). For n or n" # 0,

cip = 7.2 X 1073/ (n+ 1)(n' + 1)(= 1) =2m/28/3 (3.14)

y I'4/3)[(n+n"—5/3)/2]
Il(n—n'"+17/3)/2IT(n" — n+17/3)/2]T[(n + n' +23/3/2]’
where I' is Euler’s Gamma function. For n = n' = 0, the integral in Eq. (3.10)
diverges. The variance of the piston term is infinite because Eq. (3.11) assumes
turbulence with an infinite outerscale. Values for the first ¢ have been
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published by Wang and Markey (1978), and N. Roddier (1990). For j > 1, the
cjj are all finite and positive. They decrease monotonically as j increases. For
the cross terms, tip and tilt are anticorrelated with their corresponding coma
terms; the coefficients are ¢35 = c37 = —1.41 X 10~2. Defocus is anticorre-
lated with spherical aberration, and third order astigmatism with fifth order; the
coefficients are c411 = ¢5,13 = c612 = —3.87 X 103,

The mean square wave-front phase fluctuation is defined as

o’ = <JW(r)(p2(r) dr>. (3.15)
Putting Eq. (3.5) into Eq. (3.15) and rearranging the order of summation gives
0% = ZZ(ajak>JW(r)Zj(r)Zk(r)dr (3.16)
ik
or, taking Eq. (3.3) into account,

0’ => (a)). (3.17)

If we include the j = 1 piston term, this quantity is infinite. However, we are
only interested in the deviation from the mean surface. The mean square
deviation, as defined by Eq. (2.14), is given by
o0
ol = (a§> (3.18)
=2

which is finite. Taking Eq. (3.13) into account, gives

o1 =Y c;i(D/r)’". (3.19)
Jj=2
One can now imagine a theoretical AO system that would compensate Zernike
modes. Since the low order terms have the highest variance, one wants to
compensate them first. Hence, a system with N degrees-of-freedom would do
best by compensating the first N modes (other than piston). The variance of the
residual wave-front distortion will simply be
o
oy = Y ci(D/r)P. (3.20)
j=N+2
A table giving the sum of the c¢; from N + 2 to infinity can be found in the
paper by Noll (1976), for N ranging from 0 to 20. In Fig. 3.1, we have
plotted as a function of N + 1 the variance of the compensated wave front as
a fraction of the variance of the uncompensated wave front, that is the ratio
0%.1/0%. It shows the number of parameters one has to control to reduce
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the rms amplitude of the wave-front distortion by a given amount. For
instance, a perfect compensation of the first 50 Zernike terms divides the
wave-front rms amplitude by about a factor 10. According to Noll (1976),
the variance decreases as N~ V3/2 = N-087 for large N values. This is
slightly faster than the N—3/¢ = N=083 decrease law for zonal compensation
(see Section 2.2).

3.2.2 Karhunen—Loéve expansion

An even faster decrease can be obtained if our theoretical AO system com-
pensates for statistically independent modes, that is Karhunen—Loéve (K-L)
modes. K—L modes can be expressed in terms of the Zernike modes by
diagonalization of the Zernike covariance matrix. Let us consider the infinite
column vector

ai

az

A=, (3.21)
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The covariance matrix of the coefficients a; can be written

4 E(aia1) E(ajaz)

E(AAY) = E Zj [ayaras] | = | E(@a)  E(aa) ... (3.22)

where FE() denotes ensemble averages. Since the covariance matrix is
hermitian, it can be diagonalized. That is there is always a unitary matrix U
such that UE(AA")U' is diagonal. The coefficients b; of the K—L expansion
are the components of the column vector B = UA. Indeed, their covariance
matrix is

E(BB') = E(UAA'U") = UE(AAYHU". (3.23)
Since this matrix is diagonal, the coefficients b; are statistically independent.

The coefficients a; can be expressed as a function of the coefficients b; by the
inverse relation A = U'B, or

aj = upby. (3.24)
k

Putting Eq. (3.24) into Eq. (3.5) gives

o(r) = Z Z upbr Zi(r) = Z by Z uji Z;(r) (3.25)
7 3 '

J

which is a development of the wave-front phase distortion ¢(r) in terms of the
K-L modes

Ki(®) = upZ(r). (3.26)

J

Equation (3.26) expresses the K—L modes as a development in terms of
Zernike modes. Since U is a unitary matrix, the scalar products are conserved
and the K—L modes are orthogonal. The first coefficients u of the develop-
ment are given by Wang and Markey (1978). Each K-L function is a linear
combination of Zernike modes with the same azimuthal frequency m. One can
therefore also characterize a K—L mode by its azimuthal frequency. The radial
degree of a K—L mode can be defined as the degree of the lowest order Zernike
term in the expansion. By doing so, one produces a one-to-one relationship
between K—L and Zernike modes. Low order K—L modes are very similar to
the related Zernike modes. For instance K—L ‘tip/tilt’ is a tip/tilt with 3% of
negative coma, plus 0.2% of the fifth degree term, and so on. K—L ‘defocus’
has 18% of negative spherical aberration, plus 2% of the sixth degree term, and
so on. As the order increases the difference between a Zernike mode and its
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related K—L mode becomes more and more pronounced. All the above sum-
mations are over an infinite number of terms. In practice a good approximation
is obtained by summing over a large number of terms. Equation (3.25) can be
used to simulate an atmospherically distorted wave front on a computer (see
Section 7.5.2).

Let us now consider a theoretical AO system that would perfectly compen-
sate the N first K—L terms and nothing beyond. The residual mean square
wave-front distortion will be

oo

o= Y (bY). (3.27)

j=N+2

Figure 3.1 shows 0]’\,2+1 /o? as a function of N + 1. Note that it decreases faster
than o;\,2+1 /o%. Hence, for a given number N of degrees of freedom, it is more
efficient to compensate K—L modes than Zernike modes. It can be shown that
a perfect compensation of the first N K—L modes is the best compensation one
can possibly achieve with N degrees of freedom. Indeed, for a linear system,
the residual wave-front distortion e(r) is a weighted sum of the residual distor-
tions e;(r) that the system would leave for each K—~L mode

e(r) = Z bjej(r) (3.28)
J
and the mean square residual wave-front variance is
o~ JW(r)<e2(r)> dr. (3.29)
Putting Eq. (3.28) into Eq. (3.29) gives
02 = JW(r) D) (bjbr)ej(r)e(r)dr (3.30)
j ok
or, the coefficients b; being uncorrelated,

o2 = Z<b§>JW(r)e§(r) dr. (3.31)
J
Since all the terms in this sum are positive, it can only be minimized by
minimizing each term. With N degrees of freedom, the minimum error is
obtained by cancelling the N terms which have the largest weight, that is the
first N K—-L terms.

3.3 Ideal compensation performance

We now know how to best reduce the mean square wave-front distortion with
a given number N of degrees of freedom. How well do we improve the
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image? To answer this question, one must first define some criterion of
image quality. Astronomers are used to defining image quality in terms of
the full width at half maximum (fwhm) of a point source image. This is an
acceptable criterion as long as the image profile is independent of seeing
quality. In Chapter 2 we saw that the profile of an uncompensated, seeing-
limited point source image is nearly Gaussian and indeed independent of
seeing conditions. Only the width of the profile changes. However, we have
also seen that a compensated image consists of a narrow diffraction-limited
core surrounded by a halo of light scattered by the uncompensated residual
wave-front errors. The ratio of the amount of light in the core to that in the
halo varies with the degree of compensation. Depending on this ratio, the
image fwhm may fall in the narrow core, or in halo. Hence, the criterion
loses its significance.

A good criterion would be, of course, the ratio of the light in the core to that
in the halo. For historical reasons, one instead uses a directly related criterion
called the Strehl ratio, which is the ratio of the maximum intensity in the
compensated image to that in a perfect diffraction-limited image (see Section
2.3). Compared to the image fwhm, the Strehl ratio is more sensitive to residual
wave-fronts errors. It is therefore a better test of image quality. If one insists on
measuring image quality in terms of a width, one can also define an equivalent
width as the width of a uniformly illuminated disk with the same flux, and the
same central intensity. This quantity has sometimes been referred to as the
Strehl width (Roddier, et al. 1991). Depending on the application, other criteria
could be used. Examples are the diameter of the circle which contains 50% of
the energy, or — for spectroscopy — the width of a slit that would let through
this amount. Here, we will mainly discuss image quality in terms of the Strehl
ratio, the most widely used criterion.

As shown in Section 2.3, and with the definition Eq. (3.4) of the weighting
function W, the optical transfer function for long exposures images can be
written as

G(f) = nJ W(r)W(r + 24f/D)
X exp{—3{[o(r) — @(r + 2Af/D)]*)} dr
= nJ W)W (r + 2Af/ D)

X exp{(@()e(r + 226/ D)) — (p(r))} dr. (3.32)
Putting a K—L expansion of ¢(r) into Eq. (3.32) gives
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G(f) = nJ W(r)W(x + 2Af/ D)

j=N+2

X exp{ > (b P)K K (r + 228/ D) — \K](r)rz]} dr  (3.33)

Here we assume that the first N K—L modes (other than piston) are perfectly
compensated, and the sum is extended over the uncompensated K—L modes.
These can be estimated numerically using truncated series of Zernike modes.
One can then estimate G(f) with a truncated series of K—L modes (Wang and
Markey 1978). Another possibility is to estimate Eq. (3.32) directly by averag-
ing randomly drawn phase terms (N. Roddier 1990). The Strehl ratio is
obtained by integrating G(f) over all frequencies

JG(f) df
R="—— (3.34)
JT(f) df
where
T(f) = JTJ W)W (r + 2Af/ D) dr (3.35)

is the transfer function of the diffraction-limited telescope. A drawback of the
Strehl ratio is that it is relative to a given telescope. Instead of using the
telescope transfer function 7'(f) for normalization, one can use the atmospheric
transfer function A(f) (Chapter 2, Eq. (2.35)). This was done by Fried (1966)
and Wang and Markey (1978), who calculate the ratio

JG(f) df
B = (3.36)

72 is the gain in resolution over that of a pure seeing-limited image (no
diffraction), and is referred to as Fried’s normalized resolution. The width of a
point source image varies as the inverse square root of it.

Figure 3.2 shows a log—log plot of this normalized resolution as a function
of D/ry for different degrees of compensation. Under given seeing conditions,
it gives the normalized resolution as a function of the telescope diameter. For a
given telescope, it gives the normalized resolution as a function of seeing, the
largest D/ry values corresponding to the worst seeing. For a given telescope
under given seeing conditions, it also gives the normalized resolution as a
function of wavelength (see arrows on top of the figure). Each curve is drawn
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Fig. 3.2. Fried’s normalized resolution as a function of D/ry. Curve number # is for a
perfect compensation of the first N = (n + 1)(n + 2)/2 K—L modes. Dashed lines are
lines of equal Strehl ratio. Arrows on the top point to typical D/ry values for I-, J-, H-,
and K-band observations with the CFH telescope.

for a perfect compensation of the first N K—L modes, where N is the number
of the equivalent Zernike modes up to the polynomial degree indicated on the
curve. Curve 0 shows the normalized resolution of uncompensated images.
When D/ry is small, it is limited by diffraction. As D/ry increases, it tends
asymptotically toward the seeing limit which has been set equal to unity. The
normalized resolution of fully compensated images (Strehl ratio equal to unity)
is represented by a straight line of slope 2. It grows as the square of the
telescope diameter (the width of a diffraction-limited image decreases as the
inverse of the telescope diameter). Curve 1 is for a perfect compensation of the
K-L tip/tilt modes which we have seen to be quite close to pure tip/tilt modes.
Curve 2 includes compensation of the K—L ‘defocus’ and ‘astigmatism’
modes, and so on.

Except for curve 0, all the curves go to a maximum at which the normalized
resolution is the highest. The maximum occurs at D/ry = 2.7+/N. At this point
a Strehl ratio of R ~ 0.3 is obtained. The gain in angular resolution brought
about by the compensation also goes to a maximum at about the same point. At
this point the AO system is the most effective. Although Fig. 3.2 applies to K—
L modes, similar curves can be drawn for Zernike-mode or zonal correction. In
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all cases a maximum gain is observed at which the compensated image has a
Strehl ratio of ~ 0.3. For perfect zonal correction, the maximum occurs at
D/ry = 2.3v/N and the gain on the central intensity is by a factor 1.6 N
(Roddier 1998).

With a given system under given seeing conditions, one can always choose
the operating point by choosing the wavelength. Although the best possible
image (highest Strehl ratio) will always be obtained at the longest wavelength,
one will often select a shorter wavelength, and operate close to the maximum
efficiency point, because at this point the larger gain in resolution brings a
larger amount of new information. One can also change the operating point by
changing the size of the telescope aperture. The existence of a maximum
implies that the resolution can be actually increased by stopping down the
telescope aperture. Although this may sound awkward to most astronomers,
solar astronomers are familiar with it. This is because they use short exposures
which are not affected by wave-front tip/tilt errors. In this case the resolution is
given by curve 1 which does go to a maximum. The best images of the solar
granulation have often been obtained with a reduced aperture. With adaptive
optics, one might also occasionally wish to stop down the aperture, or use the
same AO system on a smaller telescope. This is the case if one wants to
observe at shorter wavelengths. On stellar sources, the gain in central intensity
can be sufficient to balance the loss of photons to the point where the exposure
time does not have to be increased.

One may note the high gain in resolution brought about by a simple tip/tilt
compensation. For a stellar image, the gain in central intensity reaches a factor
5 at D/ry = 4. It has motivated the development of simple image stabilizers on
many telescopes. For various reasons, the actual gain has often been much
lower. In the visible, even under exceptional seeing conditions (7o = 20 cm),
the maximum gain can only be achieved with small telescopes (D <1 m). In
the infrared, where 7y easily reaches one meter, the maximum gain can be
obtained with a 4-m telescope. However, at these wavelengths thermal back-
ground becomes important. One often takes only short exposures that can be
easily recentered and co-added without requiring adaptive compensation. Also
the gain brought about by image stabilization can be lower than that indicated
in Fig. 3.2, because the outerscale may no longer be much larger than the
telescope diameter (in Fig. 3.2 it is supposed to be infinite). In addition, the
poor optical quality of many infrared telescopes has been a limiting factor. To
date, the best results have been obtained with 2-m class optical telescopes used
in the very near infrared (I, J, and H bands). A gain of 4.7 has been experi-
mentally demonstrated with the CFH telescope stopped down to 1 meter
(Graves et al. 1992a; Graves ef al. 1992b).
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The performance of actual adaptive optics systems follow curves similar to
that in Fig. 3.2, albeit with smaller gains. Therefore, one can express their
performance in terms of the number N(K—L) of K—L modes one must com-
pensate to produce similar results. This number has been referred to as the
‘order of compensation’, and the highest degree # of the corresponding Zernike
terms as the ‘degree of compensation’ (Roddier 1994). The ratio of the order of
compensation N(K—L) to the actual number N(actual) of degrees of freedom
of the system is a measure of the compensation efficiency

_ N(K-L)

~ N(actual)’ (3-37)

C

By definition of the K—L modes, this number is necessarily below unity. A
more practical definition of the efficiency of an AO system can be given in
terms of the number N(zonal) of degrees of freedom of a perfect zonal
compensation system which has the same performance, that is

~ N(zonal)
e = N(actual)

As indicated above, perfect zonal correction yields a maximum gain of
1.6 N(zonal). Therefore the efficiency g, of a real system is simply

(3.38)

(Maximum gain in central intensity)

ge = 0.63 (3.39)

(Actual number of degrees of freedom)

Eq. (3.39) provides a practical means to estimate the efficiency of an AO
system, by simply measuring the maximum gain one can possibly achieve
when operating at various wavelengths (various ry values). To do this, long
exposure images must be recorded first with the feedback loop open, while
static voltages are applied to the deformable mirror to compensate any static
aberration in the system. Telescope jitter must also be avoided, otherwise the
gain observed when closing the loop will be overestimated. Curvature-based
AO systems (Chapter 9) have a typical efficiency ¢, ~ 50%. Shack—Hartmann
systems built for the European Southern Observatory (Chapter 8) have a lower
efficiency (approx 30%). Other higher order systems have even lower efficien-
cies (see Roddier 1998).

Aliasing errors due to coarse wave-front sampling, and matching errors
between the sensor and the deformable mirror are the main causes of efficiency
reduction. During the design process, the efficiency of a system can be
estimated from computer simulations (see Chapter 7). Once the efficiency is
known, Fig. 3.2 can be used to estimate the system performance. For instance,
to obtain a Strehl ratio of 0.8, the number of degrees of freedom required is
17.1(D/r)*. A Strehl ratio of 0.3 requires seven times less degrees of freedom.
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It gives a maximum gain in resolution and will often be acceptable. The closer
one wants to approach the diffraction limit, the costlier it becomes not only in
terms of hardware, but also in terms of number of photons required to sense the
wave front. To express this more quantitatively, it requires seven times the
number of subapertures to improve the Strehl ratio from 0.3 to 0.8. As we shall
see, one also has to run the feedback loop /7 faster. Hence 7v/7 = 18.5 times
more photons are needed from the reference source which must be 3 magni-
tudes brighter. When natural guide stars are used, this is a high penalty. It
shows the importance of developing high efficiency systems for astronomy.

By taking the Fourier transform of Eq. (3.33), one obtains a theoretical
image profile. Such a profile is shown in Fig. 3.3. The calculation was done
assuming a perfect compensation of the Zernike modes of degree three or less.
The ratio D/ ry was taken to be eight, which gives the maximum gain in central
intensity. The horizontal scale is in arcseconds for a 3.6-m aperture at
A = 1.2 pm. At this wavelength, ry = 45 cm. It corresponds to rp = 15.7 cm at

Intensity

(arcseconds)

Fig. 3.3. Theoretical stellar image profiles for D/ry = 8. Solid line: diffraction-limited
image. Dotted line: uncompensated image. Dashed line: with perfect compensation of
all the Zernike modes of degree 3 or less. The horizontal scale is for a 3.6-m telescope
observing at A = 1.2 pm.



40 3. Theoretical aspects

A = 0.5 pm, that is a 0.64” uncompensated image fwhm, which is typical for a
good astronomical site. The intensity scale is normalized to unity at the
maximum of the diffraction-limited image (upper solid line). The dashed line
is the partially compensated image. It is worth noting that, although the Strehl
ratio of this partially compensated image is only 0.3, its fwhm is very close to
the diffraction limit. Only the wings are higher. Such images can easily be
further improved by deconvolution.

3.4 Temporal and angular dependence of the Zernike modes

So far we have described the performance of an ideal AO system with an
infinite bandwidth, observing in the direction of the guide source. We have
determined the minimum number of degrees of freedom required to achieve a
given Strehl ratio in that direction. We now need to determine the bandwidth
requirements for the AO system, and to estimate how the compensation
performance degrades when observing away from the the guide source. To do
this, we consider again an AO system in which a finite number of Zernike
modes are compensated. To determine how fast the Zernike coefficients
evolve with time, we derive an analytic expression for the temporal power
spectrum of each Zernike term, and then compute a time delay error. The
same formalism is then used to estimate how fast the Zernike coefficients
vary with the distance to the guide source, and to determine the size of the
isoplanatic area.

3.4.1 Temporal power spectra

We consider first a single atmospheric layer with frozen-in turbulence propa-
gating at the wind velocity v. The phase distortion at time ¢ is @(r — v¥).
According to Eq. (3.6), the value of the Zernike coefficient a; at time 7 is

aj(vt) = JW(r)Zj(r)go(r — vit)dr. (3.40)
In other words a(r) is given by a convolution product
a;j(r) = @(r) * W(r)Z(r). (3.41)

Hence, the spatial power spectrum @ ;(x) of a;(r) is related to the power
spectrum ®(x) of ¢(r) by

D;(x) = P(x)| ()P, (3.42)
where |Q_,-(lc)\2 is the square modulus of the Fourier transform of W(r)Z;(r).
Putting Eq. (3.11) and Eq. (3.12) into Eq. (3.42) gives
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2 cos?(ma)
D (k) = 7.2 X 1037 2(D/ro)**(n + D "B Q) 2sin?(ma) -
1 (m=0)
(3.43)
The spatial covariance B;(p) of a;(r) is defined as the ensemble average
Bj(p) = (a;(r)a;(r + p)). (3.44)

According to the Wiener—Kinchin theorem, it is the inverse Fourier transform
of the power spectrum @ ;(x). Let & and # be the components of the vector p.
The Wiener—Kinchin theorem states that

Bi(& n) = Jq)j(icx, Ky)exp[2im(Exy + nK,)] diy di, (3.45)

where x, and k, are the components of the vector k conjugate to § and 7.
Let s;(¢) = a;(vt) describe the time evolution of the Zernike coefficient a;.
The temporal covariance C(7) of s5,(?) is given by

Ci(r) = (sj(D)s;(t + 1))
= (aj(vt)aj(vt + V‘L')>
— B,(v0). (3.46)

Let us choose the & component in the direction of propagation of the wind.
Putting Eq. (3.45) into Eq. (3.46) gives

Ci(r)= JJq)j(Kx, K,)exp(2itvK, 7) dx, dk ),

= Jexp(ZiﬂUrcﬂ)de@ (16, Ky) dicy, (3.47)

where v = |v| is the wind speed. Introducing the temporal frequency v = vk,
gives

Ci(v) = %Jexp(Zim/r)JCD ; <£ Ky> dic, dv. (3.48)

The temporal frequency spectrum of s;(f) is the one-dimensional Fourier
transform of the temporal covariance C;(7). According to Eq. (3.48), it is
simply given by

1
Fi(v) = chp ; <g Ky> dc,. (3.49)



0.5

S
o
1

Normalized power

0.1

—15

-1
log(vR/v)

—0.5

0

0.5

0.9 1

0.6

0.3 5

T
-1.5 -1

log(vR/v)



2.5+ 2

§

Normalized power

0.5

-3 —-25 -2 —15 —1 =05 0 05 1 -3 =25 -2 -15 -1 =05 0 0.5 1
log(vR/v) log(vR/v)
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2 [ 2 cos?(ma)

Putting Eq. (3.43) into Eq. (3.49) gives
2sin’(ma) .
1 (m=0)

| 5 ~17/6 5
v v
F,(v)= EJde [(;) + sz Jn1 |27 (E) + 2
(3.50)

If the wind propagates along a direction making an angle a, with the axes, one
simply replaces a by a — a in Eq. (3.50). Figure 3.4 shows normalized spectra
vF;(v)/ [F;(v)dv as a function of log(v) for a few Zernike terms. This display
has the advantage that a change in the wind speed amounts to a simple
translation of the curves along a horizontal axis, whereas the area under the
curve still represents the total energy or variance (here normalized to unity). In
Fig. 3.4, the frequency v is expressed in v/R units, where R is the aperture
radius. It is a non-dimensional quantity. By adding the sine and cosine spectra
one obtains the total power associated with a given type of aberration. Equation
(3.50) shows that it is independent of the wind direction.

Let us now consider the case where several turbulent layers contribute to
image degradation. The total wave-front distortion is the sum of the distortions
produced by each layer. Since these distortions are statistically independent,
the spectrum of the sum is the sum of the spectra. In a log(v) plot, the
normalized spectrum is a sum of normalized spectra each shifted by an amount
proportional to the log of the layer wind speed, and weighted by the layer
contribution. In other words, for each type of aberration, the normalized
spectrum is that of a single layer convolved with the distribution of turbulence
expressed as a function of the log of the wind speed. Experimentally observed
spectra are consistent with theoretical ones. Attempts to deconvolve them with
the theoretical spectrum for a single layer have produced information on the
distribution of turbulence in the atmosphere (Roddier et al. 1993).

3.4.2 Time delay error

Knowing how fast the Zernike coefficients change with time, one can now
estimate the bandwidth requirements for the control system. To do this we need
a model describing how the control system works. Since the wave-front sensor
operates in a close loop, it sees only the residual wave-front error after a
correction has been applied by the wave-front compensator. Using the wave-
front sensor signals the control system computes how the voltages currently
applied to the compensator must be modified to provide an improved compen-
sation. New corrections are applied at each iteration. In other words, the
currently applied compensation is a sum of all the corrections applied during
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all the previous iterations. Such a control system is called an integrator. Since
we have decided to discuss here only a theoretically ideal system, we will
assume that the delay between the read-out of the sensor signals and the
application of the correction is negligibly small, that is we will model the
control system as a pure integrator.

The control system is schematically described in Fig. 3.5. The input x(¢) is
any Zernike coefficient of the uncompensated wave front. The wave-front
compensator subtracts a quantity y(¢) from it, so that the residual error e(¢) is

e(t) = x(t) — y(1). (3.51)
Using capital letters for the Laplace transform, one has
Y(p) = E(p)G(p), (3.52)

where G(p) is the transfer function of the control system, also called open loop
transfer function. Putting Eq. (3.52) into the Laplace transform of Eq. (3.51)
gives

E(p) = X(p) — E(p)G(p)- (3.53)
The ratio of the error term E(p) over the input term X(p) is called the closed
loop error transfer function. It is given by

Ep) 1
X(p) 1+G(p)

It should not be confused with the closed loop output transfer function, which
is the ratio of the output term Y(p) over the input term X(p) and is given by

Y(p) _ G
X(p) 1+G(p)

The open loop transfer function of a pure integrator varies as 1/ p, hence

G(p) =2 (3.56)
p

(3.54)

(3.55)

where g is the loop gain. Putting Eq. (3.56) into Eq. (3.54) and replacing p
with 2izv gives the closed-loop error transfer function as a function of the time
frequency v

Y(p)

Fig. 3.5. Schematic diagram of the control system. X(p), Y(p), and E(p) are the
Laplace transforms of the control system input x(#), output y(z), and residual error
e(?). G(p) is the open loop transfer function.
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T(w) = v

— (3.57)

where v, = g/2m. The power spectrum of the residual error e(?) is simply the
power spectrum of the input wave front x(¢) (discussed in the last section)

multiplied by the squared modulus of the error transfer function:

1T = 2

IREE (3.58)
The quantity v, is the frequency at which the variance of the residual wave-
front error is half the variance of the input wave front. It is called the 3 dB
closed-loop bandwidth of the control system. On a log—log scale, | T(v)|* grows
linearly with a slope of 6 dB/octave until v becomes of the order of v.. Then it
saturates to a value equal to unity. In real systems there is often an overshoot
due to the delay in the computation that we have neglected here.

The variance of the residual error due to the finite system bandwidth is
obtained by integrating the error power spectrum over all frequencies. Figure
3.6 shows this residual variance as a function of the degree of the Zernike
polynomial, for a system with a 3 dB closed loop bandwidth equal to v, =
U/R. The residual variance is that of the sum of all the Zernike terms with the

10

0.1 -

Residual power

0.01 -

0.001

Fig. 3.6. Variance of the residual error as a function of polynomial degree n. The
variance is that of the sum of all the Zernike terms of the same degree n. It is
expressed as a fraction of the total variance of the uncompensated wave front. Full
circles: before compensation. Open circles: after compensation with a system band-
width v. = v/R.
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same polynomial degree . It is expressed as a fraction of the total variance of
the uncompensated wave-front. Although the tip/tilt terms are the slowest
modes (Fig. 3.4), their amplitude is so large that they still contribute the most
to image degradation. This was first emphasized by Conan et al. (1995).

Figure 3.7 shows the variance of the residual error as a function of the
system bandwidth v, expressed in v/ R units. The variance is that of the sum of
all the compensated terms. These go up to a maximum degree » ranging from
1 to 5. The variance of the sum of the remaining uncompensated terms is
shown as horizontal lines. It allows one to give specifications for the bandwidth
requirement. Clearly, one wants the residual error variance to be smaller than
or at most equal to that of the uncompensated wave fronts. The point at which
they are equal is indicated by a full circle on Fig. 3.7. The abcissa of these
points gives a minimum allowable bandwidth vy. To express this quantity in
Hertz one needs an estimate of the wind velocities in turbulent layers. These
fluctuate randomly with statistitics depending on the site being considered.
Mean values are of the order of 10 m/s with variations typically ranging from
3 m/s up to 30 m/s or more. Since one wants the system bandwidth to exceed

Residual power

Fig. 3.7. Variance of the residual error of the compensated terms as a function of the
system bandwidth v, expressed in v/ R units. Lines with decreasing dash length are for
a compensation of all the Zernike terms up to degree 1 (full line), 2, 3, 4, and 5.
Horizontal lines show the residual errors due to the uncompensated terms. The
abscissa of the cross over points (black circles) gives the minimum allowable band-
width v,. Variances are expressed as a fraction of the uncompensated wave-front total
variance.
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Table 3.2. Minimum allowable bandwidth v,

n 1 2 3 4 5
VoR /v 0.11 0.34 0.54 0.75 0.99
vo (Hz)? 1.9 5.4 8.7 12.4 16.7
7o (ms) 84 30 18 13 9.5

¢ For a 3.6-m telescope with a maximum wind speed of 30 m/s.

the minimum allowable bandwidth in most weather conditions, we take here
30 m/s as a high wind speed value. The minimum bandwidths associated with
each degree of compensation (up to n = 5) are shown in Table 3.2, together
with the characteristic integration time 79 = 1/(27v). The reader should be
reminded that these are for the integrator only. For the approximation of a pure
integrator to be valid, the bandwidth of any other part of the control system
should be at least an order of magnitude larger. Significantly higher bandwidths
may also be necessary to allow for the hysteresis of piezoelectric actuators.

3.4.3 Isoplanatic patch size

Let us consider first a single atmospheric turbulent layer at an altitude 4 above
ground. We assume that observations are made at a zenith distance y with a
guide source at an angular distance 0 from the object. The two light beams will
cross the turbulent layer at a distance p = @%/Rcos(y) expressed in pupil
radius units. The mean square difference between the Zernike coefficients is

€3(0) = (|a,(r) — a;(r + Oh/Rcos(y)[*). (3.59)
It depends only on the modulus 0 of the vector #. Expanding the above
expression, and introducing the covariance B(p) of a,(r) defined by Eq. (3.44)
gives
e3(0) = 2[B;(0) — Bj(Oh/R cos(y))]. (3.60)
The covariance Bj(p) can be calculated from Eq. (3.43) and Eq. (3.45).
It is convenient to normalize the mean square error by dividing it with the
variance <a§) = B;(0) of the Zernike coefficient. One obtains
(a3)
where I';(p) = B;(p)/B;(0) is the correlation coefficient of the Zernike terms

for the two beams. Note that if the correlation coefficient becomes less than
0.5, then the normalized error becomes larger than unity and the AO system

=2[1 —T'{(@h/R cos(y))] (3.61)
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Fig. 3.8. Mean square error on a Zernike coefficient as a function of the angular
distance 0 expressed in R cos(y)/h units (cosine and sine terms have been added). The
error depends only on the degree n of the Zernike polynomial, indicated near each
curve. The error is normalized as a fraction of the Zernike coefficient variance.

degrades the wave front instead of improving it. Figure 3.8 shows the
normalized mean square error e?(@) /<af) for Zernike terms of degree n = 1
to n =15, as a function of the angular distance 6. For small values of 6, the
error grows approximately as 62, not as 6°/3 as one would expect from Eq.
(2.46). However, the 5/3 power law becomes valid as n — oo (Roddier et al.
1993). When several atmospheric layers are present, these power laws are still
valid, but the altitude # must be replaced by an effective altitude # (Roddier
et al. 1993).

Figure 3.9 shows the total mean square error for all the compensated terms
up to a polynomial degree () ranging from 1 to 5. The variance of the sum of
the remaining uncompensated terms is shown as a horizontal line for each .
Again, the system performance will not be significantly degraded if the residual
error on the compensated terms is much smaller than or at most equal to that
due to the uncompensated wave-front modes. The point at which they are equal
is indicated by a full circle on Fig. 3.9. The abcissa of these points gives a
maximum angular distance 6, we can use as a measure of the isoplanatic patch
size. To express this quantity in arcseconds, one needs to know the effective
altitude of the turbulent layers. Measurements of the isoplanatic patch size have
recently been made at the Mauna Kea Observatory, both with the University of
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Table 3.3. Isoplanatic angle 0,

n 1 2 3 4 5
6oh/ R cos(y) 0.56 0.28 0.17 0.13 0.10
6y (arcsec)” 208 104 64 48 36

¢ For observations at zenith with a 3.6-m telescope and an effective turbulence height
of 1 km.
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Fig. 3.9. Total mean square error on the compensated terms as a function of the
angular distance 6 expressed in Rcos(y)/h units. Lines with decreasing dash length
are for a compensation of all the Zernike terms up to degree 1 (full line), 2, 3, 4, and 5.
Horizontal lines shows the residual error due to the uncompensated terms. The
abscissa of the cross over points (black circles) gives the isoplanatic patch size 6.
Error is expressed as a fraction of the uncompensated wave-front total variance.

Hawaii AO system and with the AO bonette of the Canada—France—Hawaii
telescope. Results show that it is larger than originally expected, and typically
represented by taking 4 = 1 km. The corresponding isoplanatic angles asso-
ciated with each degree of compensation (up to » = 5) are shown in Table 3.3.

3.5 Sensor noise limitation

As for any measurement, the wave-front sensor measurements are affected by
sensor noise which produces errors in the wave-front estimation. The noise
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properties of sensors and light detectors used for adaptive optics are discussed
in Chapter 5. Here we limit ourselves to a general discussion of the effect of
sensor noise on the residual wave-front error, and establish a minimum bright-
ness requirement — or limiting magnitude — for a stellar type guide source. To
do this, we will use again the criterion that the error on the wave-front
estimation due to sensor noise should not exceed the error due to the uncom-
pensated wave-front modes.

Since sensor noise depends on the particular sensor choice, it is difficult to
establish general results, which are independent of the implementation. Instead,
we consider a particular system, chosen for its simplicity, and discuss the
general implications of the result. Our chosen system consists of a segmented
mirror controlled by a Shack—Hartmann sensor. In such a system, an image of
the telescope entrance aperture is formed on a lenslet array. Each lenslet forms
an image of the guide source on a detector array. A distorted wave front will
shift the position of these images, compared to that of an undistorted wave
front. Each shift gives a measure of the local wave-front slope averaged over
the lenslet area. Signals from the detector array are used to estimate these
slopes. If each lenslet is optically conjugate to a segment of the mirror, one can
tilt the conjugated mirror segment to compensate the wave-front slope. Piston
motions must be calculated and applied to maintain continuity of the wave
front. The number M of measurements (two per subaperture) being less than
the number P of actuators (three per subaperture), one has indeed to use of a
minimum norm (smoothest) solution (see Section 3.1). Although such systems
have been built, it is not advisable to build them because of the sensitivity of
these systems to uncontrolled imperfections in the deformable mirror. How-
ever, their properties can be easily derived analytically, and used as an example
of the general behavior of AO systems.

Since this chapter is about theoretically ideal systems, we consider here an
ideal detector array, able to detect each photon impact and measure its position
with a perfect accuracy, that is we consider only the fundamental source of
noise produced by the quantum nature of photodetection. The probability of
finding a photon at a given location is proportional to the intensity at that
location. Hence, the probability distribution of photon impacts is the intensity
distribution in the image. The sensor seeks to determine the center of the
intensity distribution produced by each subaperture. A single photon event
gives the center location with a mean square error equal to the variance of the
intensity distribution, that is the width 6, of a subimage. For a single photon
event, the mean square angular error (6?) on local wave-front slopes is of
the order of Hﬁ. If the guide source provides n,, independent photon events
the mean square error is n,, times smaller, that is (6%) = 6} /ny. Over the
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subaperture size d, an error 0 on the slope angle produces an error 6 = 6d on
the optical path, with variance

Oz d?

nph

(6%) = (3.62)
If we assume that each subaperture is larger than ry (at the sensor wavelength
1), then each subimage is blurred and has an angular width 6, ~ 1/r; (see
Section 2.3). Assuming that the guide source provides p photons per unit area
on the telescope aperture, then n,, = pd?, and Eq. (3.62) becomes
12

Pl

Although Eqgs. (3.62) and (3.63) have been established for a particular sensor
(Shack—Hartmann), they also apply to other sensors, albeit with different
numerical coefficients all of the order of unity (see Chapter 5). They are
therefore quite general.

The ratio of the mean square error on the reconstructed wave-front surface
over (8?) is called the error gain. Detailed calculations (Fried 1977; Hudgin
1977; Noll 1978) show that the error gain for a Shack—Hartmann sensor grows
only slowly, as the logarithm of the number of subapertures, and is typically of
the order of unity. For the purposes of our calculation we will assume that (6?),
as given by Eq. (3.63), also represents the mean square wave-front error. This
error should not exceed the so-called fitting error due to the finite number of
actively controlled elements. For a segmented mirror, the fitting error is given
by Eq. (2.17), or in terms of optical path fluctuations,

<52> = (3.63)

2
(02) = 0.134 (%) (d/ro)’3. (3.64)

Note that, since ry varies as 1%, this expression is wavelength independent.
Hence both 7 and 4 can be evaluated at the sensor wavelength. The minimum
number p of photons per cm? is obtained by equating Eq. (3.63) and Eq.
(3.64). This gives
2
»= Oﬁ%dmml/% (3.65)

where ry is estimated at the sensor wavelength.

Astronomers express the brightness of a star in stellar magnitudes. For a
given wavelength 4, the magnitude m is defined as

F
m=—2.5log (F) (3.66)
0

where F/F, is the ratio of the observed stellar flux over the flux given by a
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magnitude zero star with spectral type AO. For the sensor wavelength we take
A = 0.63 um, the value at which silicon detectors have a maximum sensitivity.
At this wavelength, the flux of a magnitude zero AO star is 2.5 X 10712
Wem™2 per micron bandwidth (Johnson 1966), and the photon energy is
he/A = 3.15 X 107! joules. The corresponding photon flux is therefore

2.5x 10712 IR _
0 =35 x10m N 8% 10° photons s~ cm ™ um ™. (3.67)
Putting this value into Eq. (3.66) gives a photon flux
F =8x10°Xx107%" photonss~' cm ™2 pm . (3.68)

The number p of photons detected per cm? is
p=8X 103—0-4mqu(,1)d,1 (3.69)

where 7 is the integration time in seconds, # is the transmission coefficient of
the system, and ¢(A) is the detector quantum efficiency. The integral is over the
detector bandwidth, and is now expressed in nanometers. Equating Eq. (3.65)
and Eq. (3.69) gives

3.68X 1072 o0 s

10704m — ro /3. (3.70)

) [ q(A) dA
For the integration time, we take the characteristic integration time for tip/tilt
correction over a subaperture of diameter d as given by Table 3.2, that is
1/7 = 1.382(v/d). This gives

L0—04m _ 5.1 X1072

n [ q(d)da

For a numerical application, we assume the use of the best photon counting
detectors now available, avalanche photodiodes (APDs) with a maximum
quantum efficiency of 70% at 0.63 pm, and [¢g(1)dA =300 nm. We take
n = 0.4, a typical value for actual AO systems. We assume v =3 X 103
cm/sec, and ry = 20 cm (at 0.63 um), values that are typical for the Mauna
Kea Observatory. These give

10704 = 0.4747%/3 (3.72)

vd 83y, (3.71)

or
m = 0.82 + 6.67 log(dem) (3.73)

where d., is d expressed in centimeters. Expression (3.73) is particularly
simple because the result depends only on the size d of a subaperture, and is
independent of the telescope size. In Section 2.3, we saw that a Strehl ratio of
0.37 can be achieved with a segment size d = 3.3ry. This corresponds to a 1
radian rms error on the wave front. Assuming ry = 20 cm at 0.63 pm, gives
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ry = 20(/1/0.63)6/ > cm at wavelength A, hence a corresponding subaperture
size

d = 66(1/0.63)°° cm. (3.74)

Putting Eq. (3.74) into Eq. (3.73) gives a limiting magnitude as a function of
wavelength

m = 14.6 + 8102(Aum)- (3.75)

Table 3.4 gives this maximum magnitude for a number of standard spectral
bands. These are limiting magnitudes that a high performance system can
practically reach today. It should be emphasized that it is not an absolute limit.
For instance, the use of detectors more sensitive than silicon at longer wave-
lengths could still increase these numbers.

Adaptive optics systems based on natural guide stars are only effective
within an isoplanatic patch distance of a suitable guide source. In general, this
represents only a fraction of the sky. This fraction has sometimes been taken as
a measure of the system effectiveness. It represents the probability of finding a
guide star brighter than the limiting magnitude within an isoplanatic patch
distance of an arbitrary object. This probability can be estimated from star
counts (see for instance Bahcall and Soneira 1981). Figure 3.10 shows equal
probability contours in a magnitude versus distance plot. Contours are for a 30°
Galactic longitude. A 50% probability contour is also given for the Galactic
pole.

For the maximum distance we take again a 1 radian rms error criterion, and
use the isoplanatic angle given by Eq. (2.45) of Section 2.4. For actual systems,
more accurate values are given in Table 3.3. However, Eq. (2.45) has the
advantage of being system independent, and will give us smaller, conservative
values. We take again ry = 20(4/0.63)%/° cm, & = 1 km, and assume observa-
tions at zenith (y = 0). The corresponding angular distance 6, is given in
arcseconds by

0o = 22.5"23/) (3.76)

This is the maximum distance over which the compensation is still considered
acceptable. For each spectral band, Table 3.4 shows both the maximum guide
star magnitude, and the maximum distance to the guide star. Figure 3.10 shows
the corresponding operating points having these two values as coordinates. At
these points, the isoplanicity and sensor noise errors add quadratically each
contributing to one square radian. The result is a loss by a factor e> = 7.4 in
Strehl ratio compared to the performance with a bright on-axis star. Taking this
as the limit beyond which image improvement is no longer significant, Figure
3.10 shows that one can still observe a significant image improvement over
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Table 3.4. Guide star maximum magnitude and angular distance

Image spectral band R I J H K
Wavelength (for imaging) 0.65 0.85 1.22 1.65 22
Maximum guide star mag (at 0.63 pm) 13.1 14.0 15.2 16.3 17.3
Maximum angular distance (arcsec) 13.4 18.6 28.6 41.1 58.1
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Fig. 3.10. Probability of finding a guide source brighter than a given magnitude within
a given distance. Contours are for a 30° Galactic longitude. A 50% probability contour
is given for the Galactic pole. Black dots indicate the guide star maximum distance
and magnitude for the standard spectral bands R, I, J, H, and K.

almost the full sky in the K band, and over more than 10% of the sky in the J
band. Only down to the visible, the sky coverage becomes quite low. This result
is roughly independent of the size of the telescope being used. Methods to
improve the sky coverage at shorter wavelengths are discussed in Part 4.

References

Bahcall, J. N. and Soneira, R. M. (1981) The distribution of stars to V = 16th
magnitude near the north galactic pole: normalization, clustering properties and
counts in various bands. Astrophys. J. 246, 122-35.



56 3. Theoretical aspects

Conan, J.-M., Rousset, G. and Madec P-Y. (1995) Wave-front temporal spectra in high
resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559-70.

Fried, D. L. (1966) Optical resolution through a randomly inhomogeneous medium for
very long and very short exposures. J. Opt. Soc. Am 56, 1372-9.

Fried, D. L. (1977) Least-square fitting a wave-front distortion estimate to an array of
phase difference measurements. J. Opt. Soc. Am. 67,370-5.

Graves, J. E., Roddier, F., MacKenna, D. and Northcott, M. (1992a) Latest results from
the University of Hawaii Prototype Adaptive Optics System. In: Proc. Laser
Guide Star Adaptive Optics Workshop, ed. R. Q. Fugate, Vol. 2, pp. 511-21.
SOR, Phillips Lab/LITE, Kirtland AFB, New Mexico.

Graves, J. E., MacKenna, D., Northcott, M. and Roddier, F. (1992b) Recent results of
the UH Adaptive Optics System. In: Adaptive Optics for Large telescopes, Tech.
Digest OSA/AF Conf., Lahaina (Maui), August 17-21, 1992.

Hudgin, R. H. (1977) Wave-front reconstruction for compensated imaging. J. Opt.
Soc. Am. 67,375-8.

Johnson, H. L. (1966) Astronomical measurements in the infrared. Ann. Rev. Astron.
Astrophys. 4,201.

Noll, R. J. (1976) Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am.
66,207-11.

Noll, R. J. (1978) Phase estimates from slope-type wave-front sensors. J. Opt. Soc. Am.
68, 139—-40.

Roddier, F. (1981) The effects of atmospheric turbulence in optical astronomy.
Progress in Optics 19, 281-376.

Roddier, F. (1994) The problematic of adaptive optics design. In: Adaptive Optics for
Astronomy, eds D. M. Alloin, J.-M. Mariotti, (NATO-ASI Series), 423, pp.
89—111. Kluwer Academic Publ., Dordrecht.

Roddier, F. (1998) Maximum gain and efficiency of adaptive optics systems. Pub. Astr.
Soc. Pac. 110, 837-40.

Roddier, F., Northcott, M. and Graves, J. E. (1991) A simple low-order adaptive optics
system for near-infrared applications. Pub. Astr. Soc. Pac. 103, 131-49.

Roddier, F., Northcott, M. J., Graves, J. E., McKenna, D. L. and Roddier, D. (1993)
One-dimensional spectra of turbulence-induced Zernike aberrations: time-delay
and isoplanicity error in partial adaptive compensation. J. Opt. Soc. Am. 10,
957-65.

Roddier, N. (1990) Atmospheric wave-front simulation using Zernike polynomials.
Opt. Eng. 29, 1174-80.

Tatarski, V. L. (1961) Wave Propagation in a Turbulent Medium. Dover, New York.

Wang, J. Y. and Markey, J. K. (1978) Modal compensation of atmospheric turbulence
phase distortion. J. Opt. Soc. Am. 68, 78—87.

Further references

Chassat, F. (1989) Calcul du domaine d’isoplanétisme d’un systeme d’optique
adaptative fonctionnant a travers la turbulence atmosphérique. J. Optics (Paris)
20, 13-23.

Valley, G. C. and Wandzura, S. M. (1979) Spatial correlation of phase-expansion
coefficients for propagation through atmospheric turbulence. J. Opt. Soc. Am. 69,
712-7.



4

Wave-front compensation devices

MARC SECHAUD
Office National d’Etudes et de Recherches Aérospatiales (ONERA) Chatillon, France

4.1 Introduction

Image quality can be degraded by both phase and amplitude distortions of the
optical wavefront across a telescope aperture. However, as shown in Chapter 2,
the effect of phase fluctuations is predominant. AO systems are designed to
provide a real time compensation of these fluctuations by means of phase
correctors. Such devices introduce an optical phase shift ¢ by producing an
optical path difference 0. The phase shift is

s,

¢ = (4.

The quantity O is the variation of the optical path ne
8 = A(ne), (4.2)

where n and e are respectively the refractive index and the geometrical path
spatial distribution of the corrector. Geometrical path differences Ae can be
introduced by deforming a mirror surface. Index spatial differences An can
be produced by birefringent electro-optical materials. To date, deformable
mirrors are preferably used because they are well suited to astronomical
adaptive optics. They provide short response times, large wavelength-indepen-
dent optical path differences, with a high uniform reflectivity that is insensi-
tive to polarization, properties that are not commonly shared by birefringent
materials.

Since the early 1970s, and with the initial impetus given by defense-oriented
research, a wide variety of deformable mirrors have been developed. The
performance requirements of deformable mirrors vary according to applica-
tions which include high energy laser focusing, compensated imagery through
atmospheric turbulence, and laser cavity control. Compared with astronomical
applications, requirements related to defense applications are often more

57
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demanding, such as the need for a cooled reflective surface to support a high
energy laser or the need for a larger number of actuators and a faster response
time for high resolution imaging in the visible. On the other hand some
requirements can be relaxed for systems operating at longer wavelengths, or
with monochromatic light.

The characteristics for a deformable mirror are dictated by the statistical
spatial and temporal properties of the phase fluctuations and the required
degree of correction. For astronomical applications they are given in Chapter
3. The number of actuators is proportional (D/ry)?, where D is the telescope
diameter, and ry is Fried’s diameter. It ranges from at least 2 (tip/tilt
correction) to several hundreds, depending on the wavelength of the observa-
tions and the brightness of the available wave-front reference sources. The
required stroke is proportional to A(D/ r0)>/®. Tt is practically wavelength
independent, and of the order of at least several microns. The required optical
quality (root mean square surface error) varies in proportion to the wave-
length of observations. It is of the order of a few tens of nanometers. The
required actuator response time is proportional to the ratio 7/, and is of the
order of at least a few milliseconds (see Chapter 3). It increases as the degree
of correction decreases.

Several types of deformable mirrors have been studied. A wide variety of
effects have been proposed to deform the mirror, such as the magnetostrictive,
electromagnetic, hydraulic effects (Hansen 1975; Pearson 1976; Freeman and
Pearson 1982; Eitel and Thompson 1986; Neal et al. 1991; Tyson 1991; Ribak
1994). In most operational deformable mirrors, the actuators use the ferro-
electric effect, in the piezoelectric or electrostrictive form. These actuators are
described in Section 4.2.1. The decisive advantages of ferroelectric actuators
are high packing density, efficient electro-mechanical interaction with the
face-plate, low power dissipation, fast response time, high accuracy, and high
stability. Ferroelectric actuators have been used to build both segmented or
continuous facesheet deformable mirrors such as monolithic, discrete actu-
ators, and bimorph mirrors, presented in Sections 4.2.2—4.2.5. Other deform-
able mirrors, like electrostatic actuator membranes, adaptive secondaries, and
liquid crystal mirrors, have been studied but have not yet been used in
operational systems. They are presented in Section 4.3.

Section 4.4 deals with the spatial correction efficiency which ultimately
limits the performance of deformable mirrors for adaptive optics. Beam
steering mirrors used to achieve full tip/tilt corrections are presented in Section
4.5. Section 4.6 addresses the intensity fluctuation compensation issue. Finally,
Section 4.7 is dedicated to customer users who have to choose a deformable
mirror and specify its characteristics.



4.2 Ferroelectric actuators 59

4.2 Deformable mirrors with ferroelectric actuators
4.2.1 Ferroelectric actuators

4.2.1.1 The piezoelectric effect

An electric field applied to a permanently polarized piezoelectric ceramic
induces a deformation of the crystal lattice and produces a strain proportional
to the electric field (Herbert 1982). Lead zirconate titanate Pb(Zr, Ti)Os,
commonly referred to as PZT, exhibits the strongest piezoelectric effect. The
poling is created by applying an intense field to the ceramic, aligning the
previously randomly oriented dipoles parallel to the field. In the case of a disk
actuator, the effect of a longitudinal electric field £ is to change the relative

thickness Ae/e to (see Fig. 4.1)
A
2 4sE, (4.3)
e

where d33, the longitudinal piezoelectric coefficient, refers to a field parallel to
the poling axis P which is the axis of deformation. Introducing the voltage
V = Ee

Ae = d33 V, (44)

showing that the change in thickness is thickness independent. Values of d33

(a) Disk

(b) Stacked disks (¢) Tubular

Fig. 4.1. PZT actuators (a) disk, (b) stacked disks, (c) tubular.
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are typically between 0.3 and 0.8 um/kV. To obtain a stroke of several microns
with voltages of a few hundred volts, (compatible with solid state electronics)
N disks can be stacked and electrically connected in parallel dividing the
voltage by N (see Fig. 4.1).

Tubular actuators are used as well. The electric field is transversally and
radially applied. As shown in Fig. 4.1 the axial relative deformation is

M =dy E, (4.5)
h
so that
Ah = dj; Vi, (4.6)
Ar

where d3; is a transverse piezoelectric coefficient which refers to a voltage
perpendicular to the poling axis P. The value of d3; is roughly 3/8 of d33 and
of opposite sign, Ar is the thickness of the shell and # its height.

For a given voltage, the maximum electric field Ey,.x which can be applied is
theoretically limited to the depolarization field of the material, but practically
limited to a lower value to reduce hysteresis. The minimum thickness e or Ar
is equal to V'/ Eqax. Finally, the maximum displacements produced by stacked
actuators and a cylindrical actuator of the same height / are respectively

Ae = hEmaxd33, (47)
and

Ae = hEmaXd31, (48)

showing that stacked actuators provide the larger stroke for a given height.

Initially, stacked actuator generation was mechanically preloaded to avoid
any interface-breaking element. Improvement of the technological bonding
techniques allowed suppression of the preload, decreasing the aging and sim-
plifying the actuator realization. PZT wafers are now bonded to form a block
which is diced to make the actuators (Aldrich 1980).

4.2.1.2 Electrostrictive effect

The electrostrictive effect generates a relative deformation Ae/e which is
proportional to the square of the applied electric field £ (Uchino et al. 1980;
Uchino ef al. 1981; Uchino 1986; Eyraud ef al. 1988) so that

2
Ae/e = aE* = a<K> , 4.9)

e

where a is the electrostriction coefficient. Note that with electrostrictive
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material, the change in thickness is thickness dependent. For a given applied
electric field, the lower the value of V] the thinner e. In piezoelectric ceramics
the deformation induced by an electric field is due to the superposition of
both electrostrictive and piezoelectric effects. Lead magnesium niobate
Pb(Mg;3Nb,/3)O3, commonly referred to as PMN, is a pure electrostrictive
material which has been extensively studied. Other compositions have been
studied, such as PMN:PT with substitution of PbTiO3, and Ba:PZT with
partial substitution of Pb by Sr — Ba (Eyraud et al. 1988; Galvagni 1990;
Galvagni and Rawal 1991; Blackwood ef al. 1991). The electrostrictive effect
does not require a remanent polarization in the ceramic, and it produces a more
stable device with less aging compared with PZT. But a major drawback is that
the response depends on the temperature, due to a Curie point around 0 °C
(Ealey 1991). Hysteresis and strain sensitivities to field increase as the tem-
perature decreases from 25 °C to the Curie point. The strain may decrease by a
factor 2 at —5 °C. Hysteresis may be negligible at 25 °C but is about 10% at
8 °C (Blackwood et al. 1991). However, the electrostrictive effect allows
processes to be used such as coating, that would depole PZT material if
performed above its Curie point of about 200 °C.

A polarization field may linearize the response of electrostrictive materials
and increase their deformation: local sensitivities as high as 2 um/kV have
been obtained, with a polarization electric field of the order of 750 V/mm. With
non-polarized material, the non-linear response limits the voltage range to only
positive or only negative values.

4.2.1.3 Fabrication processes

Ferroelectric materials are produced by sintering, generally through solid
processing, or liquid processing by coprecipitation to get a higher density and
improved piezoelectric coefficients (Eyraud et al. 1988). Classical stacked
actuators consist of adhesive bounded disks of about 1 mm thickness, leading
to actuators of several centimeters. But actuators could also be developed with
techniques currently used for capacitor fabrication (Ealey and Davis 1990;
Galvagni and Rawal 1991), leading to multilayer cofired actuators with a
structure consisting of multiple thin layers (125 to 250 um stroke). Strokes
larger than 10 um for an applied voltage of 150 V are only limited by the
interlaminar shear strength of the multilayer structure. However this delicate
fabrication process requires specific plants. Note that it is well suited to provide
the thin wafers needed to produce electrostrictive actuators. The electric field
required being typically 600 V/mm, this leads to a thickness as small as
250 pm for a 150 V applied voltage.
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4.2.1.4 Hysteresis

Piezoelectric materials generally exhibit hysteresis which increases as the
applied electric field approaches the depolarization field (typically 2 kV/mm).
From a physical standpoint, an hysteresis cycle characterizes the behavior of
polarization and strain versus electric field. From an experimental standpoint, it
can be shown that the relation between strain and polarization or charge is
more linear, suggesting that charge (i.e. current) should be used to drive
ferroelectric actuators, instead of voltage (Newcomb and Flinn 1982; Eyraud et
al. 1988). From a control standpoint, hysteresis is a phase lag which does not
depend on the frequency (Madec, personal communication; Kibblewhite et al.
1994). The hysteresis cycle is characterized by the response stroke versus
alternating applied voltage. During the cycle, the strokes for the zero voltages
differ. The ratio of the stroke difference for zero voltage AS over the difference
between the maximum and the minimum strokes (Syax — Smin) gives the
amount of relative hysteresis H;.. The phase lag A¢ can be expressed as

AS
A(P = Sin(Hrel) = Sin (m) . (410)

Typical values of H,. range from less than 1% to more than 10%. It increases
with the sensitivity (stroke/voltage) for PZT materials. It depends on the
temperature for electrostrictive materials. Phase lag lower than 5° for a 10%
full stroke at the temporal sampling frequency is considered negligible (Madec,
personal communication).

A wide variety of materials has been studied and used to date. The perform-
ance of available actuators satisfy AO requirements. But in the future, new
materials may be found to make their use still easier with a linear and non-
hysteretic higher sensitivity (Eyraud ez al. 1996).

4.2.1.5 Power supply

The function of the power supply is to deliver output analog high voltage
signals to the actuators from the input digital low voltage signals delivered by
the control computer. The power supply comprises a stabilized high voltage
generator and high voltage amplifiers. The value of the required voltage is
deduced from the sensitivity of the mirror multiplied by the required stroke.
The voltage applied to contiguous actuators is always limited to less than the
maximum voltage by a protection control because in the long term it would
endanger the actuators coupled by high stresses through the coupling by face-
plate, especially during the test phase of the adaptive optics system. The high
voltage generator is characterized by the maximum delivered current, which
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depends on the spectral characteristics of the required correction. Below we
estimate the variance of this current.
The current required to control a piezoelectric actuator is given by

i=C.dv/de, 4.11)

where C is the capacitance of the actuator plus that of its connection wire.
Although the power dissipation may be low, the capacitive load results in a
high instantaneous current at a high frequencies which, with the high voltage,
produces large reactive power. The capacitance C, of the free actuator is

C, = ¢oS/e, (4.12)

where S is the surface of the electrodes (half the sum of the electrodes plus the
ground electrode for a monolithic piezoelectric mirror, or the total electrode
surface for a stacked actuators mirror), e is the thickness of the capacitance, ¢
and ¢ are the relative and vacuum permittivity respectively. Typically, ¢ is
about 1300 for PZT and 12 000 for PMN; ¢ is equal to 8.85 X 10~!2 F/m. The
capacitance of the connection wire, typically 100 pF/m, is generally negligible.

The control voltage V' is proportional to the stroke, that is the optical path
difference 0. The temporal Fourier spectrum of the current i is proportional to
the product of the temporal frequency v and the temporal Fourier spectrum of
0. The spectral density of the current ®; is therefore proportional to v>®g,
where @ is the spectral density of 0. For atmospheric compensation the
spectral density of 0 is given by Kolmogorov’s law (see Chapter 2). Finally, the
current fluctuation variance required for the actuator is given by

2 G,
o7 = ?;JV Ds(v)dv, (4.13)
where K is the sensitivity (stroke/voltage) of the actuator. K lies from a few
um/kV to a few tens of um/kV.

4.2.2 Segmented mirrors

Segmented mirrors consist of a juxtaposition of elementary mirrors which are
individually controlled as depicted in Fig. 4.2. A typical segmented mirror is
shown in Fig. 4.3. In the early deformable mirror developments, segmented
mirrors were considered as a simple and low risk concept (Smith 1977,
Freeman and Pearson 1982). Segmented mirrors equip the AO system of the
Sac Peak Solar Telescope (Acton 1992) and the AO prototype system devel-
oped by Durham University for the 4.2-m William Herschel Telescope (Busher
et al. 1995). Their scalable structures are well suited to provide a large number
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Piston only Piston + tilt

Fig. 4.2. Segmented mirror.

Fig. 4.3. A 512-element segmented mirror from ThermoTrex Corporation. (Courtesy
D. Sandler.)

of actuators, and mirrors with up to 1500 actuators have been built (Hardy
1989; Hulburd and Sandler 1990; Hulburd ez al. 1991).

The main advantage of segmented mirrors is that they use a set of identical
and easily repairable elementary mirrors distributed over a square or hexagonal
array (Malakhov er al. 1984). Elementary mirrors being quite mechanically
independent, the mechanical design study is minimized. But low weight, stiff
segments are needed to reduce the accelerated mirror mass, to increase the
bounce frequency of the mass/actuator spring system, and to avoid wing
beating effect.

The main drawback of segmented mirrors is their high fitting error compared
with a continuous facesheet deformable mirror with the same number of
actuators. If the elementary mirror is activated by a sole actuator, the motion is
limited to piston. To get the same mirror fitting error as a continuous surface
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deformable mirror, roughly four to eight times more piston mirrors are needed
(Hudgin 1977). An additional drawback is the edge diffraction effect induced
by gaps between segments.

To avoid having an excessive number of elementary mirrors to control (the
computing power being proportional to the square of the number of degrees-of-
freedom) the solution is to use piston tip/tilt elementary mirrors. A tubular PZT
actuator (see Fig. 4.1) is activated by three independent electrodes deposited on
the external surface of the tube, the interior electrode being grounded. Then the
problem turns out to be the control of the piston mode of each mirror to insure
the wavefront continuity from an elementary mirror to its neighbors for white
light operation. This could be done with an additional internal servo-loop,
using dedicated sensors, but with an increase of the complexity (Hulburd et al.
1991). With piston and tip/tilt control over each segment, the fitting error is the
same as that of a continuous facesheet mirror with 2/3 as many actuators
(Sandler ef al. 1994).

To minimize the fitting error, continuous facesheet deformable mirrors are
the most widely used and many different structures have been developed.

4.2.3 Monolithic piezoelectric mirrors

Developed in the mid-1970s, the monolithic piezoelectric mirror (MPM) was
the first deformable mirror installed on a ground-based telescope in 1982, and
used for operational space surveys with the Compensated Imaging System of
the Air Force AMOS station located in Maui, on top of Mt Haleakala (Hardy et
al. 1977; Greenwood and Primmerman 1992).

MPM structure is shown in Fig. 4.4. Figure 4.5 shows a 345-actuator MPM.
A thin reflecting glass plate is bonded to the upper face of a monolithic
piezoelectric disk. A set of actuators is defined on the upper surface by an
electrode network. The electrical addressing leads go through holes drilled into
the disk (Feinleib et al. 1974; Hudgin and Lipson 1975), or are deposited on
the upper face of the disk to increase the stroke (Séchaud et al. 1987; Séchaud
and Madec 1987; Madec et al. 1989), the lower face forming the common
ground electrode. A voltage applied to an electrode induces a local smooth
deformation at the mirror surface and none at the bottom surface if the block
thickness is greater than the spacing between electrodes.

Compared with discrete actuator deformable mirrors, the structure of a
MPM is very compact and exhibits good optical flatness due to very small
mechanical strains between the PZT disk and the glass face-plate. Analytical
models of the mirror provide a coarse optimization of the main parameters, that
is the face-plate thickness, of the order of 1 mm, the disk thickness, of the order
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Bimorph

Fig. 4.4. Continuous facesheet piezoelectric deformable mirrors.

Fig. 4.5. A 345-actuator monolithic piezoelectric mirror (MPM) from ITEK (Courtesy
M. Ealey).
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of 15 mm, and the electrode size going from 3 mm to 1 cm. Fine structural
analysis of the mirror requires a 3-D modeling coupling the mechanical and
piezoelectric equations (Favre 1989). Simulations show that the sensitivity of a
MPM is about 70% that of a free piezoelectric actuator displacement, due to
the opposite piezoelectric transverse effect. The maximum voltages being
settled by interelectrode breakdown voltage, the main drawback of a MPM is a
small stroke lower than 2 um. This value limits the application of MPMs to the
compensation of turbulence on small size telescopes, typically 1-m class.

4.2.4 Deformable mirrors with discrete actuators

4.2.4.1 Principle

Deformable mirrors (DM) with discrete actuators have been the most widely
used. Particularly, they were used on the first operational astronomical AO
systems, COME-ON and COME-ON PLUS, on the 3.6-m ESO telescope at La
Silla, Chile (see Chapter 8, Rousset ef al. 1990; Rousset ef al. 1993). DMs with
discrete actuators are now also used in astronomical AO systems at Mount
Wilson, Lick, Keck, Calar Alto, and Palomar observatories (Shelton and
Baliunas 1993; Olivier 1994; Wizinovitch et al. 1994; Wirth et al. 1995;
Dekany 1996). They have long been used in systems developed for defense
applications at AMOS by ITEK and MIT Lincoln Laboratory, and at the
Starfire Optical Range by the Phillips Laboratory (Primmerman et al. 1991;
Fugate et al. 1991; Hardy 1993).

Their structure consists of a reflective glass facesheet deformed by an array of
discrete axial push—pull actuators mounted on a rigid support (see Fig. 4.4). A
large variety of mirrors have been developed to date. The main characteristiscs
are the number of actuators, the spacing between them, their stroke and voltage.
The first deformable mirrors with continuous facesheets developed for turbu-
lence compensation were dedicated to focus high energy infrared lasers
(10.6 pm COy, 3.8 um DF or 1.3 um iodine lasers). The second generation
consisted of uncooled mirrors with improved optical quality for near-infrared
and visible wavelengths, to be used in astronomical and defense-related com-
pensated imaging. Such mirrors are now referred to as ‘stacked actuator mirrors’
or ‘SAMs’. SAMs of the first generation had a few tens of actuators with
actuator spacing of 20—30 mm, and withstanding voltages higher than 1.5 kV.
They were followed by high packing density, low voltage actuators (Everson et
al. 1981), PZT or PMN, typically 250, with 7—8 mm actuator spacing and low
voltages, typically 400 V driving signals. SAMs with several thousands of PMN
actuators were then built (Ealey 1993). The piezoelectric actuators are no longer
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discrete and individually assembled, which requires many adjustments, but
ferroelectric wafers are bonded together and treated to isolate the different
actuators (Ealey and Wheeler 1989; Jagourel and Gaffard 1989; Ealey and Davis
1990; Lillard and Schell 1994) (see Fig. 4.6 and Fig. 4.7).

4.2.4.2 Dynamic behavior

Facesheet deformable mirrors mainly consist of two parts which are mechani-
cally in series: a plate and an array of actuators. The fundamental resonant
frequency of the mirror is given by the lowest resonant frequency of the plate
and of the actuators.

The dynamic equation of the deformation W of a plate is

2
SoV2W — pot (%) W =0, (4.14)

where Sp, pp, t, and v, are respectively the stiffness, the mass density, the

thickness, and the characteristic frequency of the plate and where V2 denotes

the two-dimensional Laplacian. The stiffness of a clamped plate of radius R
with a central load is given by (Timoshenko and Woinowsky-Krieger 1959)

3

g Ept

=—2r (4.15)
P T 12R(1 - 02)

Fig. 4.6. A 341-actuator deformable mirror (SELECT) from LITTON-ITEK (Courtesy
M. Ealey).
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Fig.4.7. A 249-actuator deformable mirror (SAM) from CILAS (Courtesy P.
Jagourel).

where E, and o, are the Young modulus and the Poisson coefficient of the
plate material. This leads to a resonant frequency for part of the plate clamped
to a distance of the order of the actuator spacing r given by

t E,
Vp=C—y | —, (4.16)
P V§ pp(l — 0%)

where c is a constant nearly equal to 1.6 (Taranenko 1981).
The stiffness of the actuators S, depends on the Young modulus FE,, the
surface S of a section and the height /4 of the actuator

_E,S
==
The lowest compression resonant frequency for a clamped-free actuator is

1 /S, 1 E,
— A A 4.18
Vac 4\ ' m  4h \/ Pa’ ( )

where m is the mass of the actuator and p, is the actuator mass density,

S, (4.17)
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showing that the resonant frequency is inversely proportional to the height of
the actuator.

The ratio v, /v, is typically equal to 4¢,h/r2 (Ealey 1991). For large h, the
lowest resonant frequency is that of the actuators. As /4 decreases, it increases
to that of the plate (as far as beam and shear effects can be neglected). Typical
values are generally higher than several tens of kHz.

The lowest bending resonant frequency is related to the compression
frequency

s

Vab = Vac%: (419)

where s is the lateral size of the actuator. The theoretical lowest resonant
frequency of the mirror is generally the bending frequency, but it is experimen-
tally found that the lowest resonant frequency is the axial frequency because
the bending modes are not excited. It should be noted that if the stiffness of the
actuator is larger than the stiffness of the plate, the deformation of the plate
may be 20—-30% smaller than the free deformation of the actuator because of
high mechanical coupling.

4.2.5 Bimorph mirrors

4.2.5.1 Principle

Although bimorph mirrors were envisaged a long time ago (Kokorowski 1979;
Steinhaus and Lipson 1979), the actual use of a bimorph mirror in adaptive
optics was first demonstrated in 1994 in a system developed at the University
of Hawaii for astronomical applications (Roddier et al. 1994). A bimorph
mirror now equips the PUEO user AO system of the Canada—France—Hawaii
Telescope (Lai et al. 1995). Bimorph mirrors are also under test for the
SUBARU AO system (Takami et al. 1995) and for the Anglo-Australian
Telescope AO system (Bryant et al. 1995).

A bimorph mirror consists of two piezoelectric ceramic wafers which are
bonded together and oppositely polarized, parallel to their axis. An array of
electrodes is deposited between the two wafers. The front and bottom surfaces
are grounded (see Figs 4.4 and 4.8), (Kokorowski 1979; Steinhaus and Lipson
1979; Roddier 1988; Vorontsov et al. 1989; Jagourel et al. 1990). When a
voltage is applied to an electrode, a wafer contracts locally and laterally as the
other wafer expands, inducing a bending. It is difficult to find high density PZT
materials providing a surface roughness appropriate for direct coating to form
the reflective surface. One solution is to cover the front of the wafer by an
optically polished thin glass plate (Lipson et al. 1994). A drawback of this
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Fig. 4.8. A 36-actuator bimorph mirror (BIM) from CILAS. Left: front. Right: back
(Courtesy P. Jagourel).

solution is a sensitivity to temperature changes. It could be reduced by covering
the back of the wafer with a symmetrical plate, but at the expense of a reduced
stroke. A very efficient solution is to cover the face of the bimorph with a
mirror replica (Jagourel et al. 1990).
The relative change in length induced on an electrode of size / is given by
Al Vds
N
where d3, is the transverse piezoelectric coefficient and ¢ is the thickness of the
wafer. Neglecting the stiffness of the wafers and three-dimensional effects, the
radius of curvature becomes

(4.20)

gt 1

2A1 2Vdy
For a spherical deformation over the diameter d, the bimorph sensitivity Sy
expressed as the ratio stroke/voltage is

d? d?

= SRV a2 dsi.
Taking typical values d = 40 mm, t = 1 mm, d3; = 0.2 pm/kV, it is found that
St = 80 pm/kV. This should be compared with the longitudinal sensitivity of a

4.21)

Sb (4.22)
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free piezoelectric actuator which is around 0.3 um/kV and that of a stacked
actuator which is multiplied by the number of its elements.

The static equation of state for an ideal bimorph mirror has the form
(Kokorowski 1979; Roddier 1988)

VA(V2W 4 AV) =0, (4.23)
where V2 denotes the two-dimensional Laplacian, W (x, y) is the mirror surface
deformation, ¥ (x, y) is the voltage distribution on the wafer, and 4 = 8d3;/ 12

It should be pointed out that the equilibrium is reached when the mirror
surface is the solution of a Poisson equation with appropriate boundary
conditions. Radial tilts at the edge provide the boundary conditions required to
solve the Poisson equation. A simple way to control these tilts is to use an extra
ring of electrodes and to limit the pupil to the inner part of their surfaces
(Jagourel et al. 1990).

The expression of the spatial spectrum of the displacement W(k) is related
to the spatial spectrum of the voltage ¥ (k) (Kokorowski 1979)

W(k) = V(k) [% - bd31] , (4.24)
where b is a coefficient which depends on the material and lies between 0.4
and 0.6 (Jagourel et al. 1990). This expression shows that the spectrum of the
bending deformation decreases as k2, which is very close to the &k—'1/°
decrease of the Kolmogorov spectrum of the phase fluctuations (Roddier
1992).

Besides this displacement, the applied voltage also causes opposite changes
of the thickness of each wafer (Kokorowski 1979). Even if this effect cancels
for the entire bimorph, it still produces a displacement of the top and bottom
surfaces, which is added to the displacement caused by bending. From Eq.
(4.23) the deformation due to thickness changes over an electrode may be
written Wi(x, y) = —bV(x, y)ds;. This effect can be compared with the pure
bending deformation W}, over an electrode of diameter d given by Eq. (4.22).
These effects are opposite and the resulting displacement is locally zero when
the wafer diameter d becomes of the order the thickness 7. To have a good
bimorph efficiency, that is W}, > W,, a good criterion is to have an electrode
diameter ¢ at least four times larger than the wafer thickness. Since the ratio of
the diameter of the whole wafer to its thickness is limited by polishing
considerations, the number of electrodes is limited by the bimorph diameter-to-
thickness ratio. Typically a few tens of electrodes are used. Hence, bimorph
mirrors are best suited for low-order compensation systems.

It should be pointed out that, owing to the k=2 spectrum dependence,
bimorph mirrors have a sufficient stroke at low spatial frequencies to compen-
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sate for turbulence induced tip/tilt errors. Thanks to their light weight, larger
but slower telescope tracking errors can be compensated by mounting them on
a tip/tilt platform. This avoids the use of a separate tip/tilt mirror and reduces
the number of reflective surfaces.

4.2.5.2 Dynamic behavior

The resonant frequency of a free supported circular plate is of the same form as
Eq. (4.16), with ¢ of the order of 0.8 instead of 1.6 for a clamped plate. The
main resonant frequency is typically of the order of several kHz, which is lower
than that of a deformable mirror with displacement actuators. For a given #,/7;
ratio, the resonant frequency varies as 1/7;. For a large number of actuators, it
may be lower than the required AO bandwidth, and the deformation may be in
a dynamic regime where control is more complex. Faint modes have been
observed at frequencies as low as a few hundreds of Hertz due to the support.

4.3 Deformable mirrors with non-ferroelectric actuators
4.3.1 Membrane mirrors

4.3.1.1 Principle

A membrane mirror consists of a reflective membrane, stretched over a ring
and deformed by means of electrostatic forces in a partial vacuum chamber, as
depicted in Fig. 4.9 (Yellin 1976; Grosso and Yellin 1977; Merkle et al. 1982;
Centamore and Wirth 1991; Bonaccini et al. 1991; Takami and Iye 1994).
Compared to a continuous facesheet deformable mirror, a membrane mirror
has no inertia and no hysteresis.

The local curvature is proportional to the square of the voltage, which is
applied between a network of conducting pads and the membrane. To linearize
the response, a bias voltage V) is added to the signal voltage Vs. This voltage
may be applied to a window coated with a transparent electrode, with the

Transparent

electrode v
Partial
vacuum
Membrane T T T T T
| l | V + AV

Fig. 4.9. Membrane mirror.
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membrane grounded and the pads containing the voltage Vs + Vy. With no
signal Vg, the membrane stays flat. Possible drawbacks of the coated window
are ghost reflections and a limitation of the spectral range. Another solution is
to apply the bias voltage to the membrane and to compensate for the bias
curvature of the membrane with a concave anti-reflection coated lens window.
With an external pressure P(x, y) applied to the circular membrane and with
no viscous damping, the static equation of state of an ideal membrane is (Morse
1948)
_ P(x, y)
T(x, y)’
where W is the deformation of the membrane and 7 is the stress/length ratio.
This ideal model assumes a perfect elastic membrane, a linear behavior and
neglects the boundary effects. As for bimorph mirrors, the equilibrium is
reached when the membrane surface is the solution of a Poisson equation with
appropriate boundary conditions. In other words, the effect of applying a local
pressure is to change the local curvature of the membrane. The stress applied
with an electrostatic deflector is (Morse 1948)

AEO V2
2 2

V2W(x, y) = (4.25)

F=A4P =

where A4 is the active area, ¢y = 8.85 X 107!2 F/m, Vand [, are the voltage and
the distance between an electrode and the membrane. If the bias voltage is
applied to the membrane, the peak deflection inside the pad radius is (Morse
1948)

Wy

€0 {M] } (4.27)

Tar | 1

If the bias voltage is applied to the window, the peak deflection becomes

(Vo + Vs)? Vg]

€0
Wp T 2
L L

=17 (4.28)

where [, 1s the distance between the window and the membrane. The
membrane is typically a 0.5-2.5 um thick metallic or polymer foil. The higher
value of V' /1 is limited by electric discharge threshold. Typical values are some
200 V for Vand 100 pm for /.

In vacuum, the membrane surface is unstable, whereas at ambient air
pressure the damping significantly reduces the stroke. It is also sensitive to
environmental acoustic perturbations. To control the membrane transient
behavior and its acoustical sensitivity, the air damping must be optimized. The
interior of the membrane assembly is evacuated to about several torrs. Stable
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linear response with a 25 mm active diameter membrane leads to a sensitivity
of the order 10—-20 pm/kV.

4.3.1.2 Dynamic behavior

The lowest characteristic frequency of a membrane is given approximately by
(Grosso and Yellin 1977)

0.76 |T
=\ (4.29)
where D is the membrane diameter, 7 is the membrane tension, o is the mass/
area ratio. It is interesting to note that the fundamental resonant frequency is
independent of the thickness of the membrane.

From experimental results (Grosso and Yellin 1977), it appears that at low
pressure, the response of the membrane is undamped, while at higher pressure
it is overdamped. A typical optimized pressure cavity is of the order of few
torrs with an operating frequency higher than 5 kHz for a 50 mm diameter
membrane and a gap of about 60 pm (Grosso and Yellin 1977).

Y0

4.3.2 Deformable secondary mirrors

An adaptive secondary mirror is a concept recently proposed to both eliminate
the optical components required to conjugate a deformable mirror at a
reimaged pupil and minimize thermal emission (Salinari et al. 1993; Martin
and Anderson 1995; Bruns et al. 1996). When compared to a deformable
mirror, the major difference is that the resonant frequency of an adaptive
secondary mirror may be lower than the AOs bandwidth. This is due to a
larger interactuator spacing (see Eq. (4.16)). The deformations of the mirror,
which are no longer in a quasi-static regime, should be described in a
dynamic one. From a control standpoint (see Section 6.4.1.6) the mirror
transfer function cannot be considered as constant since it exhibits an over-
shoot at the resonant frequency. Although the system is still linear, the control
matrix is a function of the frequency, thus inducing a more complex control.
Such a wave-front corrector is under development for the 6.5-m MMT (see
Section 13.5.1.2). It consists of a 2-mm thick convex mirror, 640 mm in
diameter, supported on 320 force actuators (voice coil), about 25 mm apart,
mounted in a rigid glass substrate. The mirror deformation is controlled with
a wave-front sensor. Capacitive position sensors control the complex dy-
namics through a 10 kHz internal feedback loop. Adaptive secondary mirrors
are also envisaged to equip the 6.5-m Magellan telescopes and the 8.4 m
Large Binocular Telescope.
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4.3.3 Liquid crystal devices

Several emerging technologies developed for display components offer alter-
natives to deformable mirrors. Among them, liquid crystal devices (LCDs) are
particularly attractive because of their low cost, large number of correcting
elements, low power consumption, and compact size with no moving parts.

Liquid crystals (LC) refer to a state of matter intermediate between solid and
liquid (De Gennes 1975). The fundamental optical property of LCs is their
birefringence. It is higher than that of electro-optical crystals, due to the
process of orientation of anisotropic molecules (e.g. long thin ones) and is of
the order of 0.2 for a refractive index of 1.5. This process also explains their
relatively long response time.

LCs are classified in nematic and smectic crystals, depending on the long-
distance ordering of the centers of gravity of their molecules. Nematic and
smectic crystals differ in their electrical behavior. Ferroelectricity is the most
interesting phenomenon for a variety of smectic crystals. Nematic and ferro-
electric LCs have been studied for adaptive optics applications (Riehl et al.
1988; Vorontsov et al. 1989; Bonaccini ef al. 1991). Only nematic crystals
provide continuous index control, compared with the binary modulation given
by ferroelectric crystals. However, the response time of nematic crystals is
longer than that of ferroelectric crystals. Their rise time is related to the forced
alignment of molecules by the applied electric field, and it is of the order of
10 ms. The relaxation time is longer, of the order of 100 ms. But the decay time
may be forced to reach the rise time. One solution is to use two excitation
frequencies (Wu 1985).

Nematic LCs are uniaxial. In the so-called electrically controlled birefrin-
gence configuration, the extraordinary index of a thin LC film can be modu-
lated, producing an optical path variation with polarized light (Soref and
Rafuse 1972). Modified devices which can operate with non-polarized beams
have been proposed (Bonaccini et al. 1994; Love et al. 1996a). The liquid
crystal film, of the order of 5—10 um, is sandwiched between two pieces of
optical quality glass to ensure uniform cell thickness. A crucial part of the
fabrication is to fix the orientation of the molecules by a proper hooking of the
LCs to the cell surfaces.

The typical elementary active area, of the order of 1 mm, is significantly
smaller than mechanical actuator spacing. Each pixel has its own individual
electrode and is controlled via silicon integrated circuit chips. The typical
control voltage is of the order of 1 V. It introduces a piston-like correction
and the fitting error is similar to that of a segmented mirror. But compared
with a segmented mirror, it is easier to use the larger number of pixels
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required to achieve the same fitting error as a continuous facesheet deform-
able mirror.

Demonstration of phase correction has been achieved (Love et al. 1994;
Love and Restaino 1995). Response frequency for a stroke of 1 um is about
10 Hz, and is far from the AO requirements for turbulence effects to be fully
compensated. It is mandatory to overcome the actual bandwidth limitation
before LCDs can replace deformable mirrors. Another drawback is the poten-
tially limited spectral range. But LCDs seem particularly well suited for high
spatial resolution compensation of slowly evolving wave fronts like instrument
aberrations in the so-called active optics systems.

4.4 Spatial correction efficiency

A main feature of a deformable mirror is its mechanical efficiency to fit the
wave-front perturbations with the best accuracy. Karhunen—Loeve polyno-
mials are the eigenmodes of turbulent wavefronts. If a low order mode like
tip/tilt is perfectly compensated from a spatial point of view with a plano
mirror, residual errors occur in compensation of higher order modes because
actual deformable mirrors’ eigenmodes are not Karhunen—Loéve modes (see
Chapter 3).

To first order, the deformable mirror filters frequencies higher than the cut-
off Nyquist frequency are equal to the ratio 1/(2r) where 7y is the actuator
spacing. A more accurate estimation requires a more precise description of the
mirror spatial mechanical response: for instance, a point-like shape will be less
efficient than the one of a continuous facesheet deformable mirror with a
smoothed profile. In a preliminary design phase, analytical computations give a
good estimate of the mechanical mirror behavior (Timoshenko and Woinow-
ski-Krieger 1959; Roarke and Young 1982). Finite element analysis is only
useful in the design phase to determine detailed specifications and to optimize
the spatial mirror mechanical response.

4.4.1 Optimization of the mirror influence function

The lowest mechanical resonant frequency of a deformable mirror has to be
sufficiently higher than the sampling frequency to introduce a tolerable
phase lag in the AO servo loop. In other words, the mechanical deformations
are in a quasi-static regime and the deformations of the mirrors are small
enough to assume the linearity of the deformation. The elementary deforma-
tion produced by one activated actuator, the others only acting as springs, is
called the influence function D;(x, y). When all the actuators are activated
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with an amplitude A4;, the resulting deformation D(x, y) is therefore given
by

N
D(x, y) = > A:iDy(x, y). (4.30)
i=1

Some authors have proposed a model of a Gaussian-like shape influence
function (Hudgin 1977; Garcia and Brooks 1978; Taranenko et al. 1981). This
shape may approximately fit the experimental data between two actuators, but
it has no physical origin. Beyond some distance, of the order of twice 7 the
Gaussian shape does not represent actual profiles which can take negative
values beyond the location of the first ring of actuators. Approximate formulas
giving the influence function can be found (Roarke and Young 1982; Ealey
1991). They are close to the simple expression of the normalized deformation
W(r/R) of a clamped circular face-plate of radius R under the force applied by
a point-like central actuator (Roarke and Young 1982)

()G ) m) e

From a mechanical standpoint, the fundamental parameter is the mechanical
coupling, that is the value of the normalized deformation at the location of the
nearest actuator. The influence function is generally nearly axisymmetrical and
independent of the actuator position. The influence function of a central load
supported by four points in a square pattern is nearly the same as that of a load
applied to a circular area encircling the same square. This is even truer with an
hexagonal array. Beyond the first ring, asymmetry may arise due to a low
mechanical coupling, square arrays being more sensitive than hexagonal arrays.
Concentric cylindrical sections are also used with bimorph mirrors: this
structure matches the structure of Zernike polynomials more closely (Centa-
more and Wirth 1991).

It should be noted that the face-plate may be free, i.e. only supported by the
array of actuators, or it may be clamped on an external ring. The advantage of
a free face-plate is that the deformation at the edge is controlled in a better way
than with a clamped face-plate. The drawback is that an additional ring of
actuators outside the pupil must be controlled. This requires a larger computing
power, the number of operations to perform varying as the square of the
number of actuators. With a clamped plate, the external actuators have a non-
symmetrical influence function and the pupil has to be limited to the center of
the external actuators to minimize the mirror fitting error. The distance between
these actuators and the edge of the plate has to be at least 1.5 g (Madec 1989).
However the support acts as a reference to control the polishing, making it
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easier. For a clamped plate, even if all the actuators provide the same
displacement, the surface is not perfectly flat but rippled. The amplitude of the
ripples depends on the stiffness of the plate and decreases with higher mech-
anical coupling.

More generally, the mirror fitting error depends on the mechanical spatial
response of the mirror and on the shape of the wave front to be corrected.
Using the same formalism as that of Section 6.3, the mechanical response of
the mirror is determined by the mechanical interaction matrix denoted Dyec. If
| V) is the control voltage vector, the corresponding wave-front correction |¢)
introduced by the deformable mirror is

|(P> = Dmec| V> (4.32)

A column vector of the matrix Dy, is the correction vector corresponding to a

unity voltage applied to one of the deformable mirror actuators, that is the

influence function of this actuator. These influence functions can be theoreti-

cally estimated by finite element analysis or experimentally measured (Garcia
and Brooks 1978).

For a given correction vector |¢), the control vector minimizing the norm of

the mirror fitting error is D" |¢p) where
D = (D}yecDmec) ' Dl (4.33)
Superscript t denotes the transposition operator.
The mirror fitting error vector is given by
€} = (I = Danee D)l 0) (4.34)
where I is the identity matrix. The squared norm of the error may be written
lle||l* = trace|e)(e| = trace M|@)(¢p|M" (4.35)

where M = I — Dy D ... The instantaneous turbulent phase to be compen-
sated may be expanded in a series of Zernike polynomials, and the turbulent

phase vector may be written
|0(Dr) = Zla(1)) (4.36)
where Z is the column matrix of Zernike polynomials and |a(#)) the vector of

the expansion coefficients. It is then straightforward to show that the variance
of the mirror fitting error in compensating for turbulent wave fronts is

lewl* = [l (V)| = trace MZCy e Z' M" (4.37)
where the overline ( ) denotes the mean value with respect to time and
C z.ur 18 the covariance matrix of the Zernike polynomials

Czur = |a(t)){a(?)]. (4.38)

If a Karhunen—Loéve expansion is used instead of a Zernike one, then the
covariance matrix becomes diagonal, and Eq. (4.35) becomes a sum of
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independent terms, the fitting errors associated to each Karhunen—Loéve mode
[see Eq. (3.31)].

Several authors have proposed expressions for the fitting error as a function
of the Fried diameter ¢ and the actuator spacing rs of the form (Hudgin 1977;
Pearson and Hansen 1977; Greenwood 1979; Tyson and Byrne 1980; Winocur
1982; Belsher and Fried 1983; Sandler et al. 1984)

N\ 53

Jol? = (%) (439)
ro

The value of u depends on the influence functions and ranges from 0.15

(piston) to 1.26 (Gaussian).

4.4.2 Optical quality

To achieve a sufficient mirror optical quality, accurate mechanical modelling is
required but the experience of mechanical and optical engineers is also crucial.
For instance, with SAMs, the thermal effects due to the mismatch of thermal
coefficients between the actuator materials, the plate and the support have to be
minimized by a good choice of materials but also by design tricks. After
building, any deformation with typical size smaller than the actuator spacing
has to be avoided because it cannot be compensated by the mirror itself.
Changes in the sensitivity of the actuators due to aging are compensated in
closed-loop operation. The deformation, mainly defocus, due to thermal effects
resulting from a difference between the operating temperature and the tempera-
ture during the polishing may be compensated as well. Furthermore, during the
polishing a high mechanical coupling minimizes the ripples.

In a SAM, the actuator forces must be applied normally to the mirror surface,
otherwise moments are introduced in the mirror. The locally induced deforma-
tion cannot be compensated. Furthermore, if the stiffness of the actuators is not
sufficiently high, bending frequencies significantly lower than axial frequencies
may be excited in discrete actuator deformable mirrors (see Section 4.2.4.2). In
practice, the design of the mechanical interface between the actuator and the
plate is a key point to reduce print-through effects and to obtain a high optical
quality. These problems are avoided with bimorph mirrors.

4.5 Tip/tilt mirrors

As shown in Chapter 3, tip and tilt corrections require the largest stroke to be
corrected, typically a few tens of microns peak-to-peak. Residual telescope
tracking error also needs to be compensated.
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It is difficult to obtain such strokes with deformable mirrors because they
require high voltages. But they are easily produced by dedicated flat steering
mirrors, or possibly by a two-axis tilt secondary mirror. Ferroelectric, electro-
magnetic and linear voice coil type actuators have been used, generally
arranged in push—pull pairs (Germann and Braccio 1990; Loney 1990, Marth
et al. 1991; Gaffard et al. 1994; Bruns et al. 1996). The mechanical mounting
design has to minimize the piston excitation, especially for mirrors used in
interferometry. The only limitation of steering mirrors comes from the require-
ment of an accurate correction at high temporal frequencies which increases
with the number of spatial corrected modes (see Chapter 3). Tip/tilt mirrors
generally provide a medium or low bandwidth pointing and deformable mirrors
compensate for the residual high bandwidth pointing and also for the dynamic
deformations of the steering mirror.

4.6 Intensity fluctuation compensation

Amplitude fluctuations are generally small and their effect on image degrada-
tion remains limited (see Chapter 2). Their correction is not crucial, except for
detection of exo-solar planets (Angel 1994; Stahl and Sandler 1995; Love and
Gourlay 1996b). Nevertheless, spatial intensity compensator concepts have
been proposed (Casasent 1977; Fisher and Warde 1983; Fisher 1985). Any
simple passive spatial intensity corrector, e.g. with a liquid crystal device, dims
the light and is not generally well suited for astronomical applications. Active
correctors, which amplify light using non-linear optical processes are still
under study (Yariv 1978; Yariv and Koch 1982; Tkeda et al. 1984; Reintjes
1988). Passive correctors using phase compensators like deformable mirrors
may be considered as well. The basic idea is that intensity fluctuations result
from the propagation of phase fluctuations induced by high altitude layers (see
Chapter 2) and may be compensated by appropriate phase correctors conjugate
with these layers. Because high altitude layers are also at the origin of the
anisoplanatism, such correctors may increase the field of correction of adaptive
optics system as well (Mc Call and Passner 1978).

4.7 How to specify a deformable mirror

From a user standpoint, the practical question is how to specify a deformable
mirror. Table 4.1 summarizes the characteristics of a deformable mirror
which have to be addressed, with a few comments. For astronomical
applications, aperture size and optical quality are important considerations.
The aperture diameter determines the size of the instrument and should be
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Table 4.1. Required characteristics for a deformable mirror

Actuator characteristics

Number
of actuators

Actuator
spacing

Actuator
geometry

Depends on wavelength of observations, desired Strehl ratio,
availability of suitable guide sources, and cost. Free face-plate
mirrors and bimorph mirrors require a ring of actuators outside the
pupil area.

= 6 mm for mirrors commercially available to date. Ultimately
limited by the stroke. The smaller the spacing, the more compact the
optical system will be.

Should match the sensor sampling geometry: square or hexagonal
(SH sensors); annular (curvature sensors).

Mechanical characteristics

Actuator
stroke

Fitting
error

Actuator
mechanical
coupling

Lowest
mechanical

frequency
Phase lag
Actuator

hysteresis

Probability
of failure

Depends on the telescope diameter and the worse seeing one expects
to compensate. Should include typically 10% additional stroke to
correct for the deformable mirror static aberrations.

Stacked actuator mirrors: expressed in microns, and independent of
aberration mode.

Bimorph mirrors: depends on aberration mode. Given by the
minimum radius of curvature. See Eq. (9.4)

Average accuracy with which random atmospheric wave-fronts are
compensated. Depends on the number of actuators, and the mirror
ability to fit the atmospheric Karhunen—Loéve modes. Calculated

from the mirror influence functions (Eq. (4.37)).

For stacked actuator mirrors only. Typically 15%. Trade-off between
stroke and influence function.

Typically a few kHz. Should be much larger than the servo
bandwidth. The effect should be estimated from a servo model (see
Chapter 6).

Typically < 5% at 1 kHz depending on sampling frequency. The
effect should be estimated from a servo model (see Chapter 6).

Typically < 5% (full stroke). The effect should be estimated from
computer simulations (see Chapter 7).

Stacked actuators: typically < 0.01 X actuator number/year.
Inquire about actuator replacement possibility (cost/delay).

Optical characteristics

Pupil
diameter

Depends on the number of actuators or the actuator spacing.
Should be as small as possible since it determines the overall
system size.

continues
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Table 4.1. (cont.)

Optical characteristics (cont.)
Optical Static aberrations: should typically require < 10% of the mirror
quality stroke to be compensated.
Closed-loop residuals. should not significantly affect the closed loop
point spread function. Typically 0.03 pm rms.
Surface roughness, scratches and digs: as for other optical
components. Typical roughness: 1 nm rms.

Spectral As high as possible over both sensing and imaging bandwidths.
reflectivity Protected silver coating recommended for usual applications.
Power supply

Number Equal to the number of controlled actuators.

of channels

Input signal Typically £10 V from digital-to-analog converter.

Cut-off Typically > 1 kHz (first order filter). The effect should be estimated

frequency from a servo model (see Chapter 6).

Phase shift Typically > 5° at 100 Hz. The effect should be estimated from a
servo model (see Chapter 6).

Signal-to- Typically > 1000. Effect on Strehl ratio should be negligible.

noise ratio

Controls Amplifier offset and gain adjustments.

Output Typically 10% of the output signal for each channel.

monitoring

Thermal To be minimized (typically < 100 W).

dissipation

Environmental conditions
Temperature Functional: Typically —10 to 25 °C.
range (air) Operational: Typically 0—15 °C.

Temperature Typically 0.4—0.7 °C/h.
gradient (air)

minimized. The level and the structure of the light scattered around a star
affects the detection of nearby faint objects. When comparing the different
available mirror structures, the other question is how to choose a well-
adapted technology. Owing to its mechanical structure, the bimorph mirror
presently seems to be the cheapest wave-front corrector device, providing the
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best optical quality, allowing compensation of turbulence tip/tilt wave-front
disturbances and thus avoiding the use of a dedicated additional mirror. It
seems only limited by its maximum number of actuators, which means it is
best suited to low order compensation. For high order compensation a SAM
may be the most efficient solution.

4.8 Conclusion

Wave-front compensation through deformable mirrors is now an operational
reality. Certainly, the technology is mature. Future trends may be to have
cheaper, perhaps non-mechanical, and smaller components to reduce the size
of the optical system, using the benefit of developments non-specific to
adaptive optics. Long-term perspective may arise from non-linear optics ap-
proaches to overcome the key issue of anisoplanatism and the present wide
angle field of view limitation.
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Wave-front sensors

GERARD ROUSSET
Office National d’Etudes et de Recherches Aérospatiales (ONERA), France

5.1 Introduction

The wave-front sensor (WFS) is one of the basic elements of an adaptive optics
system. The requirements are to sense the wave front (WF) with enough spatial
resolution and enough speed for real time compensation of atmospheric seeing.
The importance of WF sensing is better understood by considering the image
formation theory (see Chapter 2). The optical transfer function (OTF) can be
derived from the knowledge of the WF in the pupil plane of the instrument. For
incoherent light, the OTF S(r/l) is given by the autocorrelation of the field in
the pupil

S(r/A) = P(rjexplip(r)] = P(rjexplip(r)], (5.1)
where r is the position vector in the pupil plane, A the observing wavelength,
r/A the angular spatial frequency and P(r) the pupil transmission function
(1 inside the aperture, 0 outside). The quantity ¢(r) is the WF phase and
represents the phase shift at wavelength A introduced by refractive index
fluctuations in the atmosphere and by telescope aberrations. Writing the
complex field in Eq. (5.1) as exp[ip(r)] is called the near-field approximation,
as it neglects amplitude fluctuations produced by Fresnel diffraction in the
upper layers of the atmosphere (Roddier 1981) (see also Chapter 2). Therefore,
the OTF can be fully characterized by the measurement of ¢. This is of great
value when imaging objects through the atmosphere using real time compensa-
tion by AO or by post facto compensation as in speckle interferometry. The
possibility of coupling a WFS to a speckle camera was pointed out by
Fontanella (1985).

What are the first requirements a WFS must fulfil in astronomy?

e Measurement quality: the sensitivity and the accuracy are usually specified in terms
of fractions of waves 1/X where X may be between 10 and 20 for high image
quality (Maréchal and Francon 1970).
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e Limiting magnitude: the sensor must work on faint objects. It requires the use of
detectors with high quantum efficiency and low noise.
e Incoherent sources: it must work with white light and on extended sources.

5.2 How can the wave front be sensed at optical wavelengths?

It is not possible to directly measure the WF phase at optical wavelengths, as
today no existing detector responds at the temporal frequencies involved. In
fact, the available optical detectors measure the intensity of the light. Generally,
indirect methods must be used to translate information related to the phase into
intensity signals to be processed, a well-known technique in optics is inter-
ferometry.

5.2.1 Focal plane techniques

A first technique which seems obvious is to derive the phase from the intensity
distribution in the focal plane. Indeed, this distribution for a point source and a
monochromatric beam is the point-spread function (PSF) which is the Fourier
transform of the OTF directly related to ¢ by Eq. (5.1). For an extended object,
it is the convolution of the object by the PSE. The phase estimation is an inverse
problem, so-called ‘phase retrieval’ (Fienup 1982), which is not at all obvious.
In general, there is not a unique solution, but multiple measurements and/or a
priori constraints can be used to ensure the uniqueness. The Gershberg—Saxton
iterative algorithm is the basic principle of the inversion, using the relations
between PSF, OTF and ¢ (Gonsalves 1976). New developments have been
recently made in order to use a number of intensity distributions encoded by
known aberrations: the so-called ‘phase diversity’ technique (Paxman and
Fienup 1988; Paxman et al. 1992). The method is illustrated in Fig. 5.1. The
phase aberrations are estimated from two simultaneously recorded images. One
image is the conventional focal plane image degraded by the unknown WF
phase disturbances. The additional image of the same object (diversity image)
is formed after reflexion by a beam splitter on a second detector array
defocused by a known small amount. The goal of the inversion algorithm is to
identify the combination of object and WF phase which are consistent with the
data, using the relations between images, PSFs, the known defocus (phase
diversity), ¢, and the object. This technique has proved to work for extended
objects (Paxman and Fienup 1988; Restaino 1992; Kendrick et al. 1994). The
main drawbacks of the method, when applied in AO for astronomy, are the
requirement of a narrow spectral band and the computing burden to reach the
convergence of the solution (Kendrick ez al. 1994).
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Fig. 5.1. Principle of the phase diversity technique. Adapted from Paxman et al.
(1992).

Another related method is the pioneering multidither technique which
consists in modulating the corrective phase at frequencies much higher than
the turbulence frequencies and in finding after synchronous demodulation the
phase that maximizes an intensity criterion, e.g. the on-axis intensity. An
example is the so-called coherent optical adaptive technique (COAT), devel-
oped for atmospheric turbulence compensation in laser beam propagation in
the 1970s (O’Meara 1977). The main drawbacks of this method are the need
for bright sources (Von der Luhe 1987) and the limited number of channels that
can be implemented within the finite bandwidth of a multidither mirror.
Therefore, this technique does not seem to be applicable to astronomy.

The major advantage of the focal plane techniques is the direct access to the
WF phase from the intensity distribution instead of the phase derivatives, as
with the methods presented below. Therefore, no phase reconstruction is
required (see Section 5.4). Many developments are still needed to implement
such focal plane techiques in AO. Today, phase diversity has been applied to
experimental data using only a limited number of degrees of freedom in the
WF (Paxman and Fienup 1988; Kendrick et al. 1994; Lloyd-Hart et al. 1992).
No detailed analysis of the noise is available. In particular, the noise limitation
in terms of the WF spatial resolution which can be achieved by this technique
is not known.

5.2.2 Pupil plane techniques

The most popular techniques of WF sensing in AO are derived from the
methods used in optical testing. There are two classes of methods based on
either interferometry or geometrical optics concepts. Techniques of the first
class use the principle of light beam superposition to form interference fringes
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coding the phase differences between the two beams, while techniques of the
second class use the property that light rays are orthogonal to the WF (Born
and Wolf 1980).

In the optical shop, the interferometer is a well-known instrument. The
Twyman—Green and Mach—Zehnder interferometers, for instance, are used to
measure the aberrations of mirrors or transmissive optical elements (Born and
Wolf 1980). The principle is to form an interference pattern between the beam
coming from the test object and the beam coming from the reference mirror. In
AO, a plane wave reference beam is not available, therefore the beam has to be
self-referenced. This is the case for the Smartt point-diffraction interferometer:
the reference is generated from a spatially filtered sample of the object beam
(Underwood et al. 1982). The spatial filtering is made by a transmissive or a
reflective pinhole. The main disadvantages of this scheme are the need for a
large spatial coherence in the incoming beam and the unequal intensities
between the test beam and the reference (only a small part of the incoming
light is diffracted by the pinhole) limiting the sensitivity of the method. Angel
(1994) proposed a similar scheme with a Mach—Zehnder interferometer in
which the spatial filter is progressively reduced in diameter as the loop is
closed. With all these interferometers, the phase can be directly determined
from the recorded fringe patterns. As for the focal plane technique, this can be
an advantage when compared to the devices usually used in AO.

A very powerful approach is the shearing interferometer which makes use of
the principle of self-referencing. In a shearing interferometer, the beam is
amplitude-divided into two beams which are mutually displaced and super-
imposed to produce an interference pattern. An important property of these
interferometers is their ability to work with partially coherent light. Several
methods for producing sheared WFs are known: rotational shearing, radial
shearing and lateral shearing (Armitage and Lohmann 1965; Wyant 1974). We
will restrict our discussion to the lateral shearing interferometer (see Section
5.3.1), the most widely used WFSs in AO 15 years ago.

The second class of methods based on geometrical optics concepts are also
well known for optical testing. The Foucault test uses a knife edge near focus
blocking half the return beam. Any deviation of the light rays from their
undisturbed path results in a fluctuation of the amount of light crossing the
focal plane (Born and Wolf 1980). The aberrations of the test object are
analyzed by recording the intensity distribution in a conjugate pupil plane after
the focus. This method has been adapted for fluid flow visualization and is the
so-called Schlieren technique. Adapted spatial filters have been proposed
instead of the knife edge using the variable transparencies of liquid crystals
(Von der Luhe 1988). The main drawbacks are the loss of half of the light and
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non-linearity problems. But there is no requirement about coherence. Another
technique is the Hartmann test. This technique, used for testing telescope
mirrors, employs an opaque mask with holes, in front of the optical element
under test. Each hole defines a light ray. The analysis is made after the focal
plane of the tested mirror in order to record an array of spots. With a proper
calibration, the position of each spot is a direct measurement of the local WF
tilt experienced by each ray. This technique has been modified by Shack who
placed lenses in place of the holes (Shack and Platt 1971). Later, it was adapted
to AO by using lenslet arrays allowing 100% light efficiency (Schmutz et al.
1979; Fontanella 1985). This technique is widely used today. It is discussed in
Section 5.3.2.

The above-mentioned methods (shearing interferometer, Shack—Hartmann
sensor) lead to the determination of the angle of arrival of the rays, i.e. the local
slope of the WF, that is to say its spatial first derivative (the gradient). Another
technique, recently developed, measures the second derivative of the phase, or
more precisely its Laplacian (Roddier 1988). This technique is called curvature
sensing and is presented in Section 5.3.3. To summarize, the WFSs used in AO
do not measure the WF directly, but its gradient or Laplacian. It is therefore
necessary to ‘reconstruct’” the WF from the measurements by appropriate
algorithms, i.e. a kind of spatial integration (see Section 5.4). A matrix
multiplication must be performed in real time. On the contrary, for the
techniques estimating the phase directly, e.g. Smartt interferometer or phase
diversity, no matrix multiplication is required in principle and each phase pixel
may correspond to a deformable mirror or liquid crystal device actuator. In
practice, a matrix multiplication is usually helpful in managing the coupling
effects between neighboring actuators.

5.3 The three main wave-front sensors in adaptive optics
5.3.1 The lateral shearing interferometer

5.3.1.1 Principle and signal analysis

The lateral shearing interferometer (LSI) is the most commonly-used inter-
ferometer in AO (Hardy et al. 1977; Greenwood and Primmerman 1992;
Sandler et al. 1994). The LSI combines the WF with a shifted version of itself
to form interferences. As shown in Fig. 5.2, a shearing device splits the
incoming WF into two components and shifts one of them. The two WFs are
mutually displaced by a distance s, the so-called shear. They interfere in their
overlap area. By their position, the interference fringes are a measurement of
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Fig. 5.2. Principle of the lateral shearing interferometer.

the phase difference over the shear distance in the shear direction. In a pupil
image plane, the resulting intensity is simply given by

1(r) = Yexplip(r)] + expligp(r + s)]|?

=1+ cos[p(r) — ¢(r + s)]. (5.2)

In principle, the LSI measures the phase differences for a shear s in the
pupil. Let us notice that Eq. (5.2) is a chromatic expression since the phase is
inversely proportional to the wavelength. Indeed, the phase is given by

2
o(r) = =2O(n), (5.3)

where O(r) is the optical path difference (OPD) induced by the atmospheric
turbulence, nearly independent of 4 (see Chapter 2). If the shear distance is
reduced and the WF deformation is small, the phase difference can be ex-
panded in a Taylor series (Wyant 1974; Koliopoulos 1980), e.g. for a shear
along the x-direction, we have

o) — o +9) = 592 (0) + (), (54

where ¢(s) represents the higher order terms of the expansion. In first ap-
proximation for signal analysis e(s) is neglected. Considering now lateral
shearing interferometers which use gratings to produce shear, we obtain nearly
achromatic fringes for small shears (Wyant 1974) since the shear is propor-
tional to wavelength 4 (one beam experiences an angular deviation of 1/p
where p is the grating period). The conditions to obtain nearly achromatic
properties for these LSIs, are detailed by Wyant (1974) and Koliopoulos
(1980). In general, broadband white light results in a contrast reduction of the
fringe pattern. In practical applications for turbulence compensation, Eq. (5.4)
requires a shear less than 7y (for the definition of 7y, see Chapter 2). In the
same way, the 2;r ambiguity in Eq. (5.2) must be removed by the proper choice
of s. For an extended source, the fringe contrast is reduced uniformly across



5.3 Three main AO wave-front sensors 97

the superimposed images of the pupil as stated by the Van Cittert—Zernike
theorem (Wyant 1974; Koliopoulos 1980). This accordingly degrades the
sensitivity of the LSI. In fact, an optimization of the shear distance s is required
once again, depending on the spatial coherence factor of the object u1,. Using
the Van Cittert—Zernike theorem we have

u12(s) = [0(s)|/]00), (5.5)
where O is the Fourier transform of the brightness distribution in the object O.
The quantity u;, is the term reducing the fringe visibility and therefore the
signal-to-noise ratio (SNR) of the phase measurement (see Section 5.5). The
smaller the value of s, the larger the fringe visibility.

5.3.1.2 Implementation

In order to determine completely the WF, two interferograms having shear in
orthogonal directions (x and y) are required. At the entrance of the sensor, the
WEF is usually beamsplit into two similar channels, one with a x-shear device
and the other with a y-shear device. Each channel is equipped with a detector
array to measure a map of the WF gradient. Each detector corresponds to an
area in the telescope pupil called a subaperture. The two detector planes must
be divided into contiguous subapertures for maximum light efficiency. There-
fore, the detector array directly determines the spatial sampling of the WF. The
area of one detector also provides a spatial filtering of the phase gradients.
Finally, we can say that the measurement represents the average slope of the
OPD in the shear direction, over each subaperture. To eliminate the need for
detector calibration, a classical technique is to use heterodyne modulation
(Koliopoulos 1980). For instance, the OPD can be modulated on one ‘arm’ of
the interferometer at a higher frequency than the required control bandwidth.
The interference pattern is then modulated and the phase lag of the signal of
each detector directly represents the WF slope expressed by Eq. (5.4). A
convenient system, developed by ITEK for AO, is the Ronchi grating LSI
(Hardy et al. 1977; Koliopoulos 1980). It makes use of a rotating radial Ronchi
(square-wave) grating placed in a focal plane and diffracting the incoming
light. The multiple orders are interfered. The grating rotation generates the
fringe modulation at a number of temporal frequencies depending on the order.
The fundamental frequency corresponds to the interference between the +1
and 0 diffraction orders and is separated out by synchronous detection (Hardy
et al. 1977). A good feature of this device is its capability to range the shear by
changing the grating period p, from a small shear at the outer radius of the disk
to a larger shear toward the inner radius. As previously pointed out, optimiza-
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tion of shear with observing conditions is very important in order to obtain the
best performance of the LSI. Note that this device was used by the Lincoln
Laboratory in the early developments of AO (Greenwood and Primmerman
1992). It has also equipped the compensating imaging system at Air Force
Maui Optical Station since 1982 (Hardy, 1993).

Since two channels are required for x-slope and y-slope measurements, the
LSI has at least two detectors per subaperture. But for maximum light
efficiency, it requires four detectors as indicated by Hardy et al. (1977).
Moreover, the efficiency is limited to about 70% owing to light losses in higher
diffracted orders. The LSI also leads to relatively complex hardware and
implementation difficulties. For these reasons the LSI is not used for astronom-
ical applications but is replaced by the Shack—Hartmann WFS.

5.3.2 The Shack—Hartmann wave-front sensor

5.3.2.1 Principle and signal analysis

The principle of the Shack—Hartmann (SH) WEFS is presented in Fig. 5.3. A
lenslet array is placed in a conjugate pupil plane in order to sample the
incoming WEF. If the WF is plane, each lenslet forms an image of the source at
its focus (Fig. 5.3(a)). If the WF is disturbed, to a first approximation each
lenslet receives a tilted WF and forms an off-axis image in its focal plane (Fig.
5.3(b)). The measurement of the image position gives a direct estimate of the
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Fig. 5.3. Principle of the Shack—Hartmann wave-front sensor: (a) plane wave, (b)
disturbed wave.
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angle of arrival of the wave over each lenslet. As for the LSI, a map of WF
slopes is obtained on an array of subapertures, here defined by the lenslets.
Note that the SH WEFS usually requires a reference plane wave generated from
a reference source in the instrument, in order to calibrate precisely the focus
positions of the lenslet array.

The positions of the SH images formed by the lenslet array can be
measured by a number of methods. The simplest technique is to use a four
quadrant detector (quad-cell) for each subaperture (Schmutz et al. 1979).
Another solution is to use a charged-coupled device (CCD) to record all the
images simultaneously. The good features of a CCD are that it determines
pixel positions perfectly and has a 100% fill-factor. CCDs allow calculation
of the center of gravity of the spot for the price of a larger number of
pixels per subaperture than quad-cells, but remove the drawbacks of the
latter (see below). It is even possible to use CCDs as an array of quad-cells
if required.

A number of position-estimators have been studied in the literature for
tracking systems (see for instance: Winick 1986; Gerson and Rue 1989). A
simple estimation of the center of gravity position (cy, c,) is
_ il g ¢y = Ll (5.6)

2iilij 2 iili

where /;; and (x; ;, y; ;) are the signal and the position coordinates of the CCD
pixel (i, j). The sum is made on all the pixels devoted to a lenslet field. Because
of the normalization by ) _; ;/; , the sensor is relatively insensitive to scintilla-
tion. It is possible to show that by replacing the discrete sum by a continuous
integral and neglecting the scintillation, Eq. (5.6) exactly determines the
average WF slope over the subaperture of area . Z,, i.e. the angle of arrival a,
(on the sky)

Cx

A
O J 99 4rdy (5.7)

CELN T 2wty

subaperture Ox

where f is the lenslet focal length and .7 the magnification between the
lenslet plane and the telescope entrance plane. The same equation can be
written for the y-axis. This interpretation is very useful for the design of a
WFS because the angle of arrival variance due to turbulence is well known (see
Chapter 2). For a circular subaperture of diameter d, the variance is given by
Tatarskii (1971)

6.88
42
Note that (a2) does not depend on the wavelength because y is proportional to

(a2) = 0.98—A2d ' Pry3. (5.8)
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A%/5. The dynamics or field of view (FOV) of the subapertures required to
measure the turbulence fluctuations can be derived from Eq. (5.8). For a given
sampling of the pupil, it determines the lenslet focal length.

For the case of quad-cell detectors assuming small image displacement and
image size smaller than quadrant size, it can be shown that the measured angle
of arrival a, is expressed by:

_@11—1—12—13—14
2 h+ L+ 1+ 14

x (5.9)
where 6, is the spot size (angular size on the sky) and 7, I, I3, and I, the
intensities detected by the four quadrants. Let us underline that to convert
position measurement made by the quad-cell into an angle, the image size must
be known. It is the case for point sources if the images formed by the lenslet
array are diffraction-limited: 6, = 1/d. But when the images are seeing-
limited, 6, ~ 1/ry, the spot size depends on the seeing conditions and is
unknown. For extended sources, the spot size may also be unkown. Hence the
quad-cell response is not calibrated which results in an uncertainty in the loop
gain of the AO system, for instance. Therefore, the quad-cell response (or the
loop gain) has to be calibrated on the source images themselves during
observation. Another way is to defocus the star images on the quad-cells in
order to keep a constant known spot size but this reduces the SNR (see Section
5.5). In addition to the spot-size dependent response, the main drawbacks of
quad-cell detectors are generally a limited dynamic range and a non-linear
response (Ma et al. 1989; Gerson and Rue 1989).

An important consequence of Egs. (5.6) to (5.8) is that the SH sensor is
achromatic because the OPD in the turbulence is achromatic: it works perfectly
well with broadband white light. This is an important feature of the sensor. A
second consequence is that they work with extended sources. Since this sensor
is in fact a multiple imaging system, it can operate with an extended source if
the FOV is adapted to the source size (Fontanella 1985; Rousset et al. 1987).
Very extended sources, like the solar surface, have already been used for SH
WF measurement and turbulence compensation (Title et al. 1987; Acton and
Smithson 1992) (see also Chapter 10). It requires the use of a field stop and a
correlation-based position estimator (Rousset et al. 1987; Title et al. 1987,
Michau et al. 1992). A minimum contrast in the scene is needed to allow the
measurement (Michau et al. 1992). As for phase diversity, since the SH CCD
works in the image plane (lenslet focal plane), all the parameters of this plane
can be obtained (Fontanella 1985; Rousset et al. 1987). In particular, field
dependent WF estimates can be made in principle in the case of anisoplanatic
imaging sytems. The field of the subapertures can be divided in subfields of the
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isoplanatic patch size and one WF can be determined within each subfield
using all the subapertures (Rousset ez al. 1987).

Recently, Roddier has discussed a general approach to the Hartmann sensor,
which has led to consideration of this sensor as being an achromatic shearing
interferometer (Roddier 1990a,b). He has proposed the use of the Fourier
transform to process the array of images extending the spatial resolution and
the dynamics of the method. Based on these principles, new WFES concepts are
under investigation (Roddier and Roddier 1991a; Primot 1993; Cannon 1995).

5.3.2.2 Implementation

A good feature of the SH sensor is the simultaneous determination of the x-
and y-slopes by the measurement of the image position x- and y-coordinates
(cf. Eq. (5.6)). Only one channel per subaperture is required a priori. The
drawbacks of the SH are possible misalignment problems and the calibration
precision. Since there is no modulation, it could also be drift sensitive. These
drawbacks are usually overcome by the sensor itself being very compact and
also by the use of a sufficiently accurate plane wave reference calibration. The
lenslet array can be made small enough to fit exactly the CCD size with no
relay optics. The optical elements in front of the CCD can be as compact as a
classical camera objective, e.g. as in the design proposed by Fontanella (1985).
A field stop at the telescope focus, matching the CCD non-overlapping area
allotted to each lenslet, is required for sky background reduction and for
extended source imaging. This design is used in the COME ON systems
(Rousset et al. 1990) and works well on extended astronomical sources, like
Eta Carinae for instance (Rigaut et al. 1991). Different types of design can be
found in the literature (Noethe et al. 1984; Allen et al. 1987, Acton and
Smithson 1992; Barclay et al. 1992).

How many pixels are needed in a lenslet FOV and in the formed image? It
depends on the observing conditions! A very few pixels are often enough in the
image size, and a few more for the dynamics (FOV). Let us recall that the
number of pixels and the lenslet focal length are parameters linked to
subaperture diameter and wavelength. The key issue is often the SNR to
achieve (see Section 5.5). Finally, centroiding algorithms usually use threshold-
ing and/or windowing to process only the useful pixels. A drawback of the SH
sensor could be the computing burden for centroiding when using a large
number of pixels per subaperture. It is now easily overcome with the fast
processors available on the market. In addition, for systems with a large
number of degrees of freedom, this problem is less constraining than that of the
command computer. Indeed, the computing power increases as N for the
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centroiding, where N is the number of subapertures (or degrees of freedom),
while for the command computer, it increases as N2.

To sum up, since the SH sensor directly measures the angles of arrival, it
works very well with incoherent white light extended sources. The required
number of detectors is a minimum of four per subaperture. In principle, it can
work on anisoplanatic fields of view, as needed in the multi laser guide star
scheme for instance (see Part 4). SH sensors have already been used in AO
systems that have a large number of degrees of freedom (Fugate et al. 1991,
Primmerman et al. 1991; Rousset et al. 1994).

5.3.3 The curvature sensor

5.3.3.1 Principle and signal analysis

The curvature sensor (CS) has been proposed and developed by Roddier (1988)
to make WF curvature measurements instead of WF slope measurements. The
Laplacian of the WE, together with WF radial tilts at the aperture edge, are
measured, providing data to reconstruct the WF by solving the Poisson equation
with the Neumann boundary conditions. An interesting feature of this approach
is that a membrane or a bimorph mirror can be used directly to solve the
differential equation, because of their mechanical behaviour, a priori removing
any matrix multiplication in the feedback loop (Roddier 1988). The principle
of this sensor is presented in Fig. 5.4. The telescope of focal length f images
the source in its focal plane. The CS consists of two detector arrays placed out
of focus. The first detector array records the irradiance distribution in plane P,
at a distance [/ before the focal plane. The second records the irradiance
distribution in plane P, at the same distance / behind the focus. A local WF
curvature in the pupil produces an excess of illumination in one plane, for
instance and a lack of illumination in the other (Fig. 5.4). A field lens is used
for symmetry in order to reimage the pupil. The planes P; and P, can also be

Telescope Plane P, Plane P,

Excess of Lack of
illumination  Field lens  illumination

Incoming
wavefront

¢ (r)

v

&
<

Fig. 5.4. Principle of the curvature sensor (adapted from Roddier (1988)).
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seen as two defocused pupil planes. It can be shown that in the geometrical
optics approximation, the difference between the two plane irradiance distribu-
tions is a measurement of the local WF curvature inside the beam and of the
WF radial first derivative at the edge of the beam (Roddier 1987). The
measured signal is the normalized difference between the illuminations 7,(r)
and /,(—r) in planes P; and P», and is related to the WF phase ¢ in the pupil
plane by

Li(r) — I(—r) _Af(f =D [0 [ fr ) .
Li(r) + L(-r)  2ml L’)n< )6 -V ( )} (5.10)

where the quantity O¢/0n is the radial first derivative of the WF at the edge, O
a linear impulse distribution around the pupil edge, and V? the Laplacian
operator. In fact, Eq. (5.10) is the irradiance transport equation valid for
paraxial beam propagation (Teague 1983; Streibl 1984). This equation provides
a general description of the incoherent WF sensing methods (Roddier 1990b).
Note that phase retrieval has been demonstrated using the irradiance transport
equation (Teague 1983; Streibl 1984; Ichikawa er al. 1988). Let us remark that
in Eq. (5.10) the normalization by /(r) + I>(—r) yields to a sensor relatively
insensitive to scintillation. In principle, the sensor is achromatic and, as we
shall see, works with extended sources.

In order to understand the different conditions of use of the CS, we now
discuss the choice of /. The distance / must be such that the validity of Eq.
(5.10), i.e. the validity of the geometrical optics approximation, is ensured. The
condition to be verified requires that the blur produced at the position of the
defocused pupil image (in P; and P;) must be small compared to the size of
the WF fluctuations we want to measure, to avoid any smearing of the intensity
variations. The size of the WF fluctuations is the subaperture size. For
turbulence, the subaperture size may be of the order of ry. Here, as for LSI, the
subaperture array is directly defined by the detector array. Let d be the
subaperture size. The detector size in Py and P, is then equal to Id/f (see Fig.
5.4). Denoting the blur angle 6,, the geometrical optics approximation can be
expressed by the following condition:

(f—D6,<1d/f. (5.11)
The distance / is then given by
1= fI1+d/(fo,)]". (5.12)

For a very large blur angle, / tends to f and the measurement must be made
in the pupil plane. However, the blur angle is generally small when compared
to the inverse of the f-ratio of a subaperture outgoing beam d/f and [ is
given by



104 5. Wave-front sensors

2
[ = eb%. (5.13)

Let us now consider some typical cases.

e Point source, subaperture size d > ry:
Here, only the low order aberrations are measured. The blur angle is given by the
turbulence: 1/7y. Using Eq. (5.13), the condition is

=M

. 14
Fod (5 )

¢ Point source, subaperture size d < ry:
High order aberrations of spatial scale d must be measured. These aberrations
diffract light over an angle A/d. The blur angle to consider is no longer equal to
A/ ry. The condition is

Af2
&

= (5.15)
Let us note that this condition is very similar to the near-field approximation
condition. For broadband white light, such condition defines the domain of
validity of geometrical optics: L < d?/A (in parallel beam), where L is the so-
called Fresnel distance along the optical axis from the diffracting plane and A a
mean wavelength. Equation (5.11) is very similar but for a converging beam.
Here the distance L is equal to (f — [)f/I, the distance of the pupil plane to the
conjugate measurement planes on the incoming beam. We conclude that Eq.
(5.11) is a near-field approximation condition and the diffraction effects can be
neglected.

e Extended source of angular size 6 > 1/ry:

Here, the blur is given by the size of the source. We obtain

2

I=0—. 5.16
y (5.16)

What can be derived from Egs. (5.14) to (5.16)? First for high order aberration
measurements, the distance / to focus must be larger than that for only low
order aberration measurements. For extended sources, / must also be larger
than for point sources. An increase of / means a decrease of the sensitivity (but
an increase of the dynamics) of the CS as expressed by Eq. (5.10). The CS
signal is proportional to /~!. The distance / of the CS is very similar to the
lenslet focal length of the SH sensor. Let us notice that when the distance / is
decreased to the minimum, the CS is only able to measure tilts and can be
reduced to a quad-cell. In this limiting case, the CS provides four edge
measurements and no curvature.
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Let us discuss the operation of CS in AO. Consider the case where
d > 1y, as is most commonly encountered in astronomy. Before closing the
loop, the distance / is imposed by condition (5.14) because of the large WF
disturbances. But once the loop is closed, all low order aberrations are
corrected. Therefore, the blur angle is then smaller and / can be reduced
(Equation (5.15)), increasing the sensitivity of the sensor (Roddier 1995).
To summarize, increasing the distance [ increases spatial resolution on the
WF measurement but decreases sensitivity. On the contrary, a smaller
distance yields a higher sensitivity to low order aberrations. Note also that a
smaller distance reduces the aliasing of the high order aberrations on the
low order ones because of the diffraction effect. The use of CS for very
extended sources, like the sun, is questionable when looking at Eq. (5.16).
However, new data analysis is under investigation for such applications
(Kupke et al. 1994). Then, the technique becomes similar to the phase
retrieval.

5.3.3.2 Implementation

The setup proposed by Roddier ef al. (1991) uses a variable curvature mirror
placed at the focus of the telescope as a field lens. The inside and outside
focus blurred pupil images can be reimaged on the same detector array by its
concave or convex deformation. This produces a modulation of the illumina-
tion on the detector array. The signals are recovered by synchronous detec-
tion. The pixels inside the beam measure the local curvatures, the pixels on
the edge of the beam the local WF slopes. The modulation frequency
corresponds to the temporal sampling frequency of the WF and the deforma-
tion amplitude of the variable curvature mirror directly determines the
distance /. A good feature of this device is its capability to modify the
sensitivity of the sensor easily by changing the amplitude of the mirror
vibration (i.e. /). This can be done in closed loop. Other set-ups have been
proposed by Mertz (1990) and Forbes and Roddier (1991). Because of the
low number of subapertures (and detectors) in their sensor, Roddier and his
coworkers use photon-counting avalanche photodiodes (APD) as detectors,
taking advantage of their high quantum efficiency and negligible electronic
noise. For other applications such as testing of a ground-based optical
telescope, CCD cameras are used to provide enough spatial resolution in the
WF (Roddier and Roddier 1993).

To sum up, the CS works very well with incoherent white light. In principle,
for curvature sensing only two detectors, one per measurement plane, are
required per subaperture. Even if only one detector is used in practice, the light
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is split by the temporal modulation between the two measurement planes. For
the SNR conditions, this is equivalent to splitting the light between two detec-
tors. Finally, sensitivity and dynamics are easily adjusted by the distance /.

5.3.4 Comparison of slope and curvature sensors

In summary, two classes of WFS are available for AO: the slope sensors and
the CS. As shown in Sections 5.3.1.1 and 5.3.2.1, both LSI and SH measure
the WF slopes. Table 5.1 summarizes the characteristics of these two classes.
A k=3 spatial power spectrum of the phase in the turbulence is assumed.
Note that all measurements are averaged over the subaperture area, this
additional filtering is not taken into account in Table 5.1. A first important
difference is related to the spatial spectrum of the measured quantities. The
slope measurements with a power spectrum in k>3 have a relatively large
correlation length over the pupil. The slope sensors are more sensitive to low
spatial frequencies. The power law also induces low aliasing. On the contrary,
the curvature measurements with a power spectrum in k'/3 are mainly
decorrelated at two different points in the pupil (Roddier 1988). The CS has
an equal sensitivity to all spatial frequencies. The power law induces aliasing
of the high spatial frequencies but partly attenuated by the diffraction blur. As
already underlined, the distance / must be adjusted to select the spatial
resolution of interest. But also it may limit the aliasing effect. A decrease of /
increases the blur by diffraction and reduces the aliasing of the high spatial
frequencies. The variance of the slope is slowly varying with the subaperture
diameter (d~'/?) and is attenuated by the outer-scale of the turbulence L
(Fante 1975). On the contrary, the variance of the curvature strongly depends
on the subaperture diameter (d~7/3) (Roddier et al. 1990) and the effect of
outer-scale is negligible. Because of the sensitivity of the CS to high spatial
frequencies, the variance of the curvature could be affected by the inner-scale
of the turbulence for small subapertures.

The temporal behaviour of the measured quantities is also very different.
Once again, because of the importance of low temporal frequencies on the
slope (spectrum in £ ~%/3), its measurement presents a large correlation time
and a low aliasing (spectrum in £ ~''/3 at high frequency (Hogge and Butts
1976)). For curvature, the correlation time is much smaller and the aliasing
is slightly higher: power spectrum in f° at low frequency and in f /3 at
high frequency (Conan et al. 1995). To sum up, it is clear that slope
measurements are well adapted to the measurement of low spatial frequen-
cies, with large correlation and low aliasing effects. On the contrary,
curvature measurements are less redundant (small correlation) but present
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Table 5.1. Characteristics of slope and curvature sensor measurements: over-
line denotes spatially average quantity, k spatial frequency, f temporal

frequency
Wave-front sensor LSI and SH CS
Measurements o /0x, 0p /Dy V2, 0¢p/0n
Detectors per subaperture 4 or more 2 or less
Spatial Turbulence spectrum £ ~3/3 k'3
behaviour Correlation relatively large decorrelated
Aliasing low relatively high
Sensitivity low spatial frequencies  all frequencies
Variance d '3 — /L)' a7
Temporal Low frequency -2/3 1
behaviour ~ High frequency fous [
Correlation large small
Aliasing low slightly higher

higher aliasing. However, the aliasing effects can be reduced using a small
distance / which attenuates high spatial frequencies by blurring. Computer
simulations are necessary to find the proper specifications of a CS (Rigaut
1992; Rigaut et al. 1997). The comparison of these sensors in terms of SNR
will be discussed in Section 5.5.

5.4 Wave-front reconstruction

For the three WFSs presented in the previous section, a reconstruction of the
WF from the measurements is required. The general problem is the determina-
tion of the WF phase from a map of its gradient or Laplacian. It consists of the
calculation of a surface by an integration-like algorithm. Even if in AO systems
the WF phase itself is not explicitly sought, the same kind of problem must be
solved for the derivation of the commands to be applied to the deformable
mirror. The reconstruction problem can be expressed in a matrix-algebra
framework. The unknowns, a vector ¢ of N commands or of N phase values
over a grid, must be calculated from the data, a measurement vector S of M
elements of slopes in two directions or Laplacians and edge slopes. The
following general linear relation must be obtained:

¢ = BS, (5.17)
where B is the so-called reconstruction matrix (or command matrix). The
subject of this section is how to derive the matrix B. In AO systems, S is the
error signal and ¢ is an increment of commands which slightly modifies the
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previous actuator state: this is the closed-loop operation (see Chapter 6). The
determination of the phase is also of interest in open-loop, as for turbulence
characterization or post-processing techniques (Primot et al. 1990). ¢ is then
the total phase. A number of techniques are available to derive B. Two classes
are well identified in the literature: the zonal methods and the modal methods
(Southwell 1980). The matrix B is also dependent on the chosen minimization
criterion. Usually, there are more measurements than unknowns, i.e. M > N,
and a least-square fit is performed. More generally, the WF reconstruction
problem is an inverse problem: how to estimate the WF phase (or commands)
from the set of measured data? Firstly, linear relations can be written between
data and unknown phases: the sensor model. Secondly, statistical properties of
phase and measured data can be theoretically known or experimentally
assessed. However, although turbulence can be considered as stationary in the
short term (a few minutes), it is not true in the longer term: this brings
additional difficulties.

5.4.1 Zonal and modal approaches
5.4.1.1 The zonal methods

In the zonal methods, the phase is determined on a discrete set of points (which
can be the actuators themselves) distributed over the telescope aperture. A
linear model of the WFS allows the linking of the measurements S to the
incoming phase. The matrix equation between S and ¢ reads as

S = Ag. (5.18)

What is the matrix A of N X M elements? For a given sensor discretization,
the finite difference form can be used to express the slopes (the gradients) or
Laplacians in terms of discrete phase values on a grid. Considering the SH with
square subapertures for instance, Fried (1977) has proposed this model:

S = [@iv1jr1 + Piv1) — (@i + Pij+1)]/2d (5.19)

;i = [(@i1j01 + Pijr1) = (Pij + Pir1,)]/2d, (5.20)

where the ¢; ;s are the phase values at the four corners of the subaperture and
Sx. and S) the measured slopes. The elements of A are +(2d)~! or 0. A
s1m11ar model has been proposed by Hudgin (1977) for the LSI. In the case of a
deformable mirror, the matrix A can be simply measured. The columns of A
are the measurement vectors associated with each actuator when applying an
unitary voltage to it and keeping all the others to zero. A is called the
interaction matrix (see Chapter 6).
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5.4.1.2 The least-square solution

This technique consists of the minimization of the measurement error ¢ and it
is well adapted for a closed-loop operation. The measurement error is given by:

e =[S — Ao’ (5.21)
where || || is the norm of a vector. The WF phase ¢ is estimated so that it
minimizes ¢;. The least-square solution verifies

(A'A)p — A'S, (5.22)

where A' is the transpose of A. Often, the standard solution cannot be used
because A'A is singular. This is a consequence of the fact that the phase is
determined only up to a constant by its derivatives. The WFS is unsensitive to a
WF constant over the aperture, the so-called piston mode.

e [terative methods have been proposed to solve Eq. (5.22). The solution is obtained
to within an additive constant (Fried 1977; Hudgin 1977; Southwell 1980).

e Herrmann (1980) has shown that the best solution is the one with minimum norm,
which has zero mean. The zero mean condition can be applied in different ways and
yields a non-singular matrix (Ben-Israel and Greville 1980; Boyer et al. 1990) (see
also Chapter 6).

It has been shown by Noll (1978) and Herrmann (1980) that Eq. (5.22) is in
fact a discrete expression of the Poisson equation with the Neumann boundary
conditions, even for the slope sensors. Therefore, all numerical techniques
available for solving the Poisson equation can be used. Note that in the zonal
approach, the WF phase itself is never derived, only discrete values are
calculated. For instance, as the influence functions of the deformable mirror
actuators are not explicitly used in the derivation of the command matrix B,
they may be unknown. But they are fully taken into account by the measured
interaction matrix A. The deformable mirror itself actually synthesizes the
correction WF phase.

5.4.1.3 The modal methods

In the modal methods, the phase is represented by the coefficients of expansion
in a set of basis functions Z;, called modes. The reconstruction first calculates
a vector of coefficients ¢ = {¢,} using a relation similar to Eq. (5.17). Then
the phase can be computed anywhere in the aperture by

o) =D i Zir), (5.23)

where the sum is made from i = 1 to N where N is the number of modes in the
expansion. Different sets of basis functions can be selected according to the
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need. For example, the deformable mirror influence functions or the system
modes are commonly-used sets (see Chapter 6). In the modal approach, the
interaction matrix A is usually calculated using the analytic expression of the
modes Z;(r). For example, the two elements of A for the subaperture j and the
mode i for a SH WFS are given by

1 0Z(r 1 0Z(r
A% = — J ’()drandAZ-: — J {(r)
q/ésa subaperture j X ~"Csa Jsubaperture j Y

dr. (5.24)

As for the zonal approach Eq. (5.17) can be derived using the least-square
technique. It is generally possible to avoid the singularity of A'A in Eq. (5.22).
Indeed, the piston mode is always part of the basis (i = 1). It can be simply
discarded in the expansion, only considering a subspace of the solution space.
Therefore in matrix A, the index i only varies from 2 to N. A number of sets of
basis functions have been proposed in the literature. The Zernike polynomials
are a well-known basis (Noll 1976), but the Karhunen—Loéve modes are
theoretically the optimum set of functions considering the turbulence statistics
(Wang and Markey 1978) (see Chapter 2). From a practical point of view, it is
not usually possible to generate these modes (Zernike or Karhunen—Loeve)
with the deformable mirror. Therefore, the mechanical mirror modes are of
interest and must be orthogonalized through phase variance minimization
within the aperture (Gaffard and Ledanois 1991). Diagonalizing their turbu-
lence covariance matrix allows us to work with modified Karhunen—Loéve-
type mirror modes (Gendron 1993). In case of a square sampling of the
telescope aperture, it may be useful to work with the complex exponentials as a
set of basis functions (Freishlad and Koliopoulos 1986) and a Fast Fourier
transform can be applied (Roddier and Roddier 1991b; Marais ef al., 1991).
How many modes can we determine with a given WFS? First note that the
array of M, subapertures defines a spatial sampling of the WF phase and by
Fourier transform, any spectrum is expanded in a set of Mg complex exponen-
tials. For slope WFS: M measurements are obtained from Mg = M /2 sub-
apertures. The phase spectrum must be estimated from the two spectra of
slopes in x- and y-directions which are redundant in fact. Indeed, the spectrum
of the slopes in x- (or y-) direction is only k, (or k,) times the phase spectrum
(spatial frequency k = (ky, k)). In slope WFS with twice as many measure-
ments as subapertures, there is a priori just redundant information. In CS, the
number of measurements M is equal to the number of subapertures M.
Therefore whatever the WFS, the maximum number of modes N,x which can
be determined from the measurements is of the order of the number of
subapertures M, i.e. the number of degrees of freedom of the AO system.



5.4 Wave-front reconstruction 111

5.4.2 Wave-front reconstruction as an inverse problem

5.4.2.1 The inverse problem

Such an approach has already been considered by several authors (Wallner
1983; Sasiela and Mooney 1985; Cho and Petersen 1989; Downie and Good-
man 1989; Fried 1993; Bakut et al. 1994). A synthetic view of the problem is
proposed here. The basic relation between the measured data S and the
unknowns ¢ is given by

S=A¢+n, (5.25)
where n is an additive noise vector of zero mean. The problem can be stated as
follows: given the set of data S, estimate the unknowns ¢, but here considering
a priori knowledges about S and ¢. Note that ¢ may be the vector of actuator
commands, or the zonal values of the phase, or the modal expansion coeffi-
cients.

o Firstly, the noise can be assumed to be uncorrelated with the unknowns and to have
Gaussian statistics. In fact, this statistic results from the complex combination of a
number of random variables representing the detection noise which is Gaussian in
case of electronic noise and/or Poissonian in case of signal and background photon
noise. The noise statistics can be quantified from theoretical derivations (see Section
5.5), or better, for practical systems directly from the data set.

¢ Secondly, the statistics of the vector ¢ is Gaussian and has a zero mean. It can also
be quantified theoretically from well-known turbulence properties (see Chapter 2) or
even experimentally when necessary.

To derive the ‘best’ estimation of the phase, the theory of the inverse problems
provides us with two points of view: the maximum likelihood technique and
the maximum a posteriori technique (Katsaggelos 1991).

The essence of the maximum likelihood technique is to determine the set of
unknown parameters that maximizes the probability of producing the measure-
ments. The likelihood function is directly given by the probability function
P(S|®) governing data S given the phase ¢:

_ 1 (S — AMC-1(S
P(S|¢) = 20IC) exp(—(S — AG)'C,, (S — A9)/2), (5.26)

where C,, is the covariance matrix of the noise n and |C,| its determinant.
Maximizing the likelihood function is the same as maximizing its logarithm:
0
%
It yields to the generalized least-square solution first given by Sasiela and
Mooney (1985):

In(P(S|¢)) = 0. (5.27)
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o =(A'C,'A)'A'C,'S (5.28)
where the inversibility of A‘C;lA must be checked in any case. The covariance
matrix C, can be diagonal if there is no correlation between the subaperture
measurements. In addition if we assume that the noise variance is uniform on
all the subapertures, Eq. (5.28) reduces to Eq. (5.22) already discussed. In
practical systems, the correlated noise must be analyzed carefully when using
photodiode arrays or CCDs because it may significantly degrade the perform-
ance. The uniform variance of the noise is not always observed since the pupil
boundary subapertures are often truncated and therefore collect less photons.
For a large system, the number of truncated subapertures is usually small.

Let us now consider the second point of view. The maximum a posteriori
technique consists in the determination of the set of unknowns that maximizes
the a posteriori probability of the unknowns P(¢|S) given both the measured
data and a priori background knowledge about ¢. From the Bayes’ theorem we
can write

S
Piols) = O,

where the a priori knowledge is the statistics of ¢. Note that since the data are
known P(S) = 1. Therefore, we have

P(9[S) = exp(—(¢'C,, ¢ + (S — A9)'C,'(S — A9))/2),

(5.29)

JemNic,lc,)
(5.30)

where C,; is the covariance matrix of the vector ¢ given by the statistics of the
turbulence. Minimizing the logarithm of the a posteriori probability P(¢|S), it
yields to (Sasiela and Mooney 1985; Fried 1993)

¢ =(A'C,'A+C,)'A'C,'S, (5.31)
which is a Wiener-type solution (Rousset 1993). Let us note that if the unknowns
are the Karhunen—Loéve coefficients, the covariance matrix Cy is diagonal.
Moreover, the coefficient variances (diagonal elements) decrease with the order
of the modes following the turbulence power spectrum in k~!'/3. For the actuator
commands, the variances are generally uniform but the covariance matrix is no
longer diagonal because of the spatial correlation of the WFE. If C,, is assumed to
be diagonal and equal to oI where I is the matrix identity and o? the noise
variance in S (see Section 5.5), Eq. (5.31) can be rewritten

o =(A'A+0;C,")'A'S (5.32)
Observe that Eq. (5.32) reduces to Eq. (5.22) if 02 is very small compared to
the turbulent variances of ¢, i.e. in the case of high SNR. Let us note that with
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such techniques, it is possible to consider larger vector ¢, i.e. N> M, by
computing from a priori knowledge the matrices A and Cy. The limit value for
N is given by the non-inversibility of A‘C;lA + C;l. In closed-loop mode,
note that the matrices C,, and Cy4 can not be calculated theoretically with the
conventional statistical properties of the noise and the turbulence valid only in
open loop. Finally in practical systems, the main problem encountered is the
difficulty in obtaining reliable knowledge of the statistics of both noise and
turbulence, in particular the non-stationarity of the turbulence.

5.4.2.2 Wave-front residual variance minimization
In optics, there is a well-known optimization criterion: the WF error spatial
variance minimization. Indeed, minimizing the WF error is maximizing the
Strehl ratio in the images (Born and Wolf 1980). Noting ¢ the WF correction
produced by the deformable mirror (or the estimated WF), we want to mini-
mize in a statistical average the residual WF error variance €, over the tele-
scope aperture (of area . 7Z,,) (Wallner 1983):

— 1 - 2
= mee«cp(r) ¢(r))°) dr, (5.33)

where () denotes the ensemble average. Consider the influence functions £;(r)
of the actuators as the basis functions (any other set of modes could be
considered). The estimated phase is given by the linear combination

o) =D pifir), (5:34)

where the vector ¢ = {¢;} is given by Eq. (5.17). The minimization, first done
by Wallner (1983), consists of the determination of the matrix coefficients B;;
which minimize ¢,, taking into account the statistics of noise and turbulence.
Using the already defined matrices, it leads to

B = C;'C,AYAC A + Cy) 7!, (5.35)

where Cy is the N X N matrix of the scalar products of the actuator influence
functions over the aperture. We would like here to underline the similitude
between the result of Eq. (5.35) and the result given by Eq. (5.31). It was first
done for the Zernike polynomials by Law and Lane (1996). For an orthonormal
function basis, the matrix Cy reduces to I. In addition it can be shown Eq.
(5.35) is identical to Eq. (5.31). That demonstrates the similarity of the two
points of view given by the inverse problem theory and the WF variance
criterion. This criterion has also been used to determine the optimal influence
functions of the mirror, or more generally the optimal set of modes to
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reconstruct the phase (Cho and Petersen 1989). It was also applied to a
segmented mirror control in closed-loop, using Zernike polynomials as a set of
basis functions (Downie and Goodman 1989).

5.5 Wave-front errors
5.5.1 Measurement noise

Two kinds of fundamental noise can be considered: the signal photon noise and
the sky background photon noise. In addition, the detector may bring some
supplementary noise due to the dark current and the read-out electronics, called
hereafter the electronic noise. From the literature (Wyant 1975; Fontanella
1985; Roddier et al. 1988), one can see that all WFSs have similar behaviour in
terms of signal photon noise (Rousset 1993). In this chapter for any WFS type,
the measurement noise variance is denoted 02 and expressed in WF error units
(radians of phase). The general form of o2 due to signal photon noise is (see
Eq. (3.60)):

2
02 1 <%> (radian?), (5.36)
Nph A
where npy, is the number of photoelectrons per subaperture and exposure time,
0, the angular size of the source image, and d the subaperture diameter. The
SNR in the subaperture is given by nrl)l/lz. Let us underline that o2 is pro-
portional to the inverse of the square of the SNR and to the ratio of two angles:
the blur angle 6, and the subaperture diffraction angle A/d. 6, characterizes
the observing conditions of the WFS, it is equal to A/d for the diffraction-
limited case and 4/ for the seeing-limited case for an unresolved source, or

to 6 the angular size of a resolved source.

5.5.1.1 Noise in LSI
Wyant (1975) derived this expression:

, 1 dN L,
o, < — | —— | (radian®), (5.37)
Nph \SHU12

where u; is the fringe visibility determined by the coherence of the source
(Eq. (5.5)). For an extended object, the visibility varies as A/(s6), which leads
to d/(su12) = 6d/A. For a point source u;, = 1, the shear s is of the order of
ro, therefore d/(su12) ~ d/ry. Finally for high order measurement (d < ry), s
is of the order of d and d/(su12) = 1.
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5.5.1.2 Noise in SH

The centroid variance is given from Eq. (5.6) by

1 2
Var(cy) = nﬁh ZJ: x;; Var(l;,), (5.38)
where the pixel coordinates (x;;, y; ;) are centered and normalized by the pixel
pitch. For signal photon noise, the Poisson statistics leads to Var(/; ;) = (/; ;).
Therefore, the variance of the center of gravity is related to the size of the
image in a subaperture determined by » _; jxf’ ij. The measurement error is
given by (Rousset ef al. 1987)

2 2
o2 = ”7 niph (%) (radian?), (5.39)
where Nt is the image full width at half maximum (fwhm) and Np is the fwhm
of the diffraction pattern of a subaperture. In the following both Nt and Np, are
expressed in terms of the number of pixels. This expression holds if threshold-
ing or windowing is used to eliminate the background around the central core
of the image. Note that the undersampling of the image introduces a limitation
of the accuracy which is not taken into account in Eq. (5.39) (see Goad et al.
1986). For comparison with Eq. (5.36), let us point out that the ratio Nt/Np
represents the term 6yd/A. For an extended source, Nt/Np = 6d/A. For a
point source, Table 5.2 summarizes the dependence of o, for the two limit
cases where the subapertures are either diffraction-limited (d << ry) or seeing-
limited (d > 7). In the seeing-limited case, the measurement error depends on
ro. The seeing enlargement of the image degrades the system performance
(Rousset et al. 1987, Welsh and Gardner, 1989; Séchaud et al. 1991). For
d < ry, np, = 50 is required to achieve a Strehl ratio (SR) of 90%.

For electronic noise (or detector noise), Var(/;) = ag, 0. is the rms number
of noise electrons per pixel and per frame. This noise is due to the read-out and
the dark current of the detector. The measurement error is given by (Rousset et
al. 1987)

2 2 a4
2T 9. i2S(radian2), (5.40)

o =
s 2
3 Noh Np

where N3 is the total number of pixels used in the center-of-gravity calculation.
Here the SNR in a subaperture is given by 7n,,/(0¢Ns). In the case of threshold-
ing or windowing, Ng may be reduced down to the order of 2 Nt. The two limit
cases are summarized in Table 5.2. Let us underline that Np is an instrumental
parameter which has to be chosen by the designer of the sensor. Np depends on
the lenslet focal length. In the case d > ry, the seeing enlargement of the image



116 5. Wave-front sensors

Table 5.2. Noise behaviour for the Shack—Hartmann

Photon noise Electronic noise

Diffraction- Seeing-limited Diffraction- Seeing-limited

limited limited

-1/2 -1/2 d N -1 N -1 d 2
o Mo ny'“(d/ ro) oeNpny, 0eNpny, (d/ro)

degrades significantly the performance of the SH (Rousset ez al. 1987; Séchaud
et al. 1991). For an intensified CCD, 0. must be replaced by o./G in Eq.
(5.40) where G is the effective gain in CCD electron/photoelectron (usually
G ~ 1000). For sky background photon noise, the expression is similar to Eq.
(5.40) where 02 is equal to the average number of photoelectrons per pixel
from the background (Rigaut 1993). Let n,, be the total number of photo-
electrons from the sky background distributed over N3 pixels, we have
npg = 02N3Z. If we assume N3 ~ 4N7, we finally obtain

47% mog [N\ ..
05 =5 n—gi <N—]§> (radian?). (5.41)
Here the SNR is given by ny/,/7ibg. Equation (5.41) is very similar to Eq.
(5.39) and shows a higher sensitivity to sky background noise than to signal
photon noise. To reduce sky background and/or electronic noise limitations, it
is very important in SH to numerically window the FOV of each subaperture
around the image current position in order to minimize the number of pixels
N é in Eq. (5.40). Indeed, the total FOV is only necessary in open loop.

For the case of quad-cell detectors assuming signal photon noise and using
Eq. (5.9), the measurement error is given by:

) 2
T d )
05 =— <0b;) (radian?), (5.42)
Nph A
where 6, is the spot size. Now assuming detector noise, the measurement error
is:

2
nph

2 (Byd\’

o =472 %e <%> (radian?), (5.43)
where 0. is the number of noise electrons per quadrant. For sky background
noise, 40§ is replaced by ny,, in Eq. (5.43). Equations (5.42) and (5.43) are in
good agreement with other expressions in the literature (Tyler and Fried 1982;
Parenti and Sasiela 1994). Slightly different numerical coefficients may be

found depending on the expression of the spot size derived from the irradiance
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distribution of the image in a subaperture. Let us notice also that these
equations are relatively similar to the ones obtained from the centroid variance
(Egs. (5.39) and (5.41)). However, the quad-cell presents a larger error due to
photon noise than the center of gravity approach, a similar sensitivity to the sky
background noise and generally a smaller error due to detector noise.

5.5.1.3 Noise in CS
The variance of the phase Laplacian is evaluated in terms of the number of
photoelectrons. From Eq. (5.10), it is possible to derive (Roddier ef al. 1988)
4?12 1
(f — 12222 l’l_ph.
Because f'is large in comparison to /, Var(V?¢) is directly proportional to /2.

Therefore, the reduction of the distance [ reduces the measurement noise.
Expressing Eq. (5.44) in terms of phase error and using Eq. (5.11), we obtain

Var(V2p) = (5.44)

2
o= ﬂzi (@> (radian?), (5.45)
s Nph A
where 6, = A/d for d <ry, 6, = 1/ry for d > ry, and 6, = 6 for an extended
source. This demonstrates the equivalence of slope and curvature sensors for
the photon noise behaviour. Let us now consider the case of sky background
photon noise. In Eq. (5.45), the subaperture SNR /7y, is replaced by
Npnh/ \/Tiog Where nyg is the number of sky photons collected in the FOV of the
CS. We obtain
2
o2 = 72 2ot (M> (radian?). (5.46)
no, A

This result also is very similar to that of the SH sensor (Eq. (5.41)).

Roddier (1995) has pointed out the possibility of reducing the distance /,
once the loop is closed on a point source. Doing so further decreases the
amount of noise in the loop (and the aliasing effect) but produces a reduced
range of linearity to the disturbances. This capability is not available in a SH
since the focal length of a lenslet array cannot be changed during closed loop
operation.

5.5.1.4 WFS noise in AO for IR imaging on large telescopes

There is a specific application which needs to be underlined: AO for IR
imaging on large telescopes. Generally, the WF sensing is made in the visible
taking advantage of the high detectivity of the available detectors, the low sky
background level and the achromatic optical path difference induced by
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turbulence. Because imaging is made at the wavelength Ay, the phase meas-
urement error 0'2,,; must be expressed as

02m = 0 Awrs(Awrs/Av)* (radian®) (5.47)

where 02 is given by Egs. (5.39) to (5.41) and (5.45) to (5.46), and Awgs is
the WFS working wavelength. Such systems are scaled for IR imaging with
only a reduced number of subapertures. This leads to the use of the WFS in the
regime d > ry(Awrs). Looking at Table 5.2, we see that o depends on the ratio
d/ry, for both photon and electronic noise. For electronic noise it depends on
d/ry because we assume that the number of pixels used for the calculation of
the center-of-gravity is directly related to the size of the image by thresholding
or windowing. Using Table 5.2, the limiting magnitude m can be given for a
specified WF error o by

photon noise m = —2.5logo[- - - Agyps/ (A0 e (GwrsTAL)]
(5.48)
electronic noise m = —2.5logo[- - - OCNDAWFS/(J.IMOMMr%(iWFs)nrAi)],

where 7 is the product of optical throughput and quantum efficiency, 7 is the
WES exposure time, and A4 the spectral bandwidth. Note that these limiting
magnitudes do not depend on either the telescope or subaperture diameter but
only on ro(Awrs). Note also that increasing the imaging wavelength Apy
allows higher magnitudes to be reached. For photon noise, m depends only
slightly on Awrs: /1;\/2}:/85 . For electronic noise, the magnitude depends on Np,
which is the only parameter scaling the design of the sensor.

5.5.2 Noise propagation in the reconstruction process

Noise is propagated from the measurements to the commands in the recon-
struction process. From Eq. (5.17) considering the noise covariance matrix C,,
the mean WF error 02 over the aperture after reconstruction is

1 1
ol = NZ Var(¢,) = Ntrace(BCnBt), (5.49)

where BC,B' is the noise covariance matrix of ¢. Assuming the ideal case
C, = 051, we obtain the classical result (Southwell 1980)

1
ol = Ntrace(BBt)Ug. (5.50)

As emphasized by Fried (1977), Hudgin (1977), and Southwell (1980) for slope
sensors, the error propagator coefficient trace(BB')/ N is usually of the order of
or lower than 1. This demonstrates the efficiency of the reconstruction tech-
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niques, a result mainly due to the uncorrelated noise assumption. Note that for
modes which are already normalized over the aperture, 02 is the sum of the
mode variances (no division by N) and the error propagator coefficient is only
given by trace(BB'). For slope sensors, it has been pointed out by Herrmann
(1980) that the noise can be decomposed into an irrotational and solenoidal
part. Only the irrotational part is propagated on the command vector whereas
the solenoidal part is eliminated by Eq. (5.22), the Poisson equation. The curl
operator is a way to estimate the noise present in the slope measurements
(Herrmann 1980). A comparison of the noise propagation for CS and the slope
sensor can be found in Roddier ef al. (1988). For CS, the error propagation
coefficient increases as N while for the slope sensor it is well known that it
increases as In(N) (Fried 1977; Hudgin 1977; Noll 1978). Until recently, the
error propagation as N was considered to be the main drawback of the CS,
limiting its use to relatively low degree-of-correction systems (Roddier et al.
1991). However, Roddier (1995) has shown that this limitation is more than
compensated by the possible reduction of the distance / once the loop is closed.
Compared to SH systems, no decrease with N is observed in the performance
of CS systems, as determined by computer simulations (Rigaut 1992; Rigaut
etal. 1997).

For a slope sensor, if white noise is measured on the slopes, the reconstruc-
tion multiplies the white noise spectrum by k=2 to find a phase spectrum in
k=2. The phase variance being the two-dimensional integral of the phase
spectrum, a In(V) dependence is obtained (Noll 1978). For CS, if white noise is
measured on the Laplacians, the reconstruction multiplies the white noise
spectrum by k~* to find a phase spectrum in k~*. Therefore, the noise is
essentially propagated on the low order aberrations. After integration, an N
dependence is obtained for the phase variance. These In(N) and N behaviors
are very general and do not depend on the reconstruction algorithm. It has been
shown that for Zernike polynomials the noise propagation depends on
(n + 1)72 for SH (Rigaut and Gendron 1992), n being the radial degree of the
polynomial. A (n + 1)~* dependence has also been observed for CS (Rigaut
1992). Noting that # is a kind of characteristic spatial frequency for the Zernike
polynomials, these dependences are in perfect agreement with the results of the
above spectral analysis.

Note that in the first approximation, the level of the noise spectrum in a set
of modes does not depend on the number of subapertures, i.e. the spatial
sampling frequency. For example, it intrinsically varies as k=2 for SH. As a
consequence in a given AO system for IR imaging, there is no advantage in
the first approximation, in reducing the number of subapertures to adapt the
system for low light level conditions (see Eq. (5.49)). In principle, the best
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way to reduce the amount of noise on the commands is to reduce the number
of modes, or better, to use an optimized modal control (Gendron and Léna
1994) (see Chapter 6). But for practical reasons, at very low light level it is
sometimes advantageous to increase the subaperture area in addition to the
exposure time.

5.5.3 The other wave-front errors

The other sources of errors on the WF are of different kinds: spatial,
temporal, and angular. In the spatial errors the dominant term is the fitting
error (see Chapter 2), the other smaller term is related to the aliasing effect.
Because the measurements are evaluated on a finite grid, in all the above-
mentioned reconstruction techniques aliasing of high order aberrations occurs
(sampling theorem). This aliasing happens during the measurement by the
WES. It will therefore influence the choice of the subaperture configuration.
Let us note that the spatial integration by subaperture area contributes to the
reduction of the aliasing (Goad et al. 1986). For CS aliasing effects are
important, so when the distance / can not be shortened, it could be very
helpful to average neighbour subapertures in order to increase the spatial
filtering but keeping the same sampling frequency. In addition the measure-
ment vector does not estimate perfectly the incoming WF because of temporal
delays and filtering in the closed-loop operation (see Chapter 6). Finally,
because the WF to be corrected may come off-axis from the guide star
direction, the estimated WF correction does not properly fit that WF due to
the limited angular correlation of the turbulent WF (see Chapter 2).

5.6 Detectors for wave-front sensing

This section is dedicated to a brief presentation of the detectors which may be
implemented in the WFSs previously described. The WFS performance
strongly depends on the characteristics of the detector, it is the key element.
The detector parameters to consider can be deduced from the WF measurement
error analysis stressed in Section 5.5, that is:

e the spectral bandwidth,

e the quantum efficiency which determines, with the spectral bandwidth, the number
of photons detected for WF sensing,

e the detector noise including dark current, read-out, and amplifier noises,

o the time lag due to the read-out of the detector,

e the array size and the spatial resolution.
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5.6.1 Photoelectric detectors

In the photoelectric effect, the photon energy is used to extract an electron by
an electric field from a photocathode in vacuum. The measurement of the
current produces the signal needed for the photon detection. In the case of low
light level devices, the electron is multiplied so that the photon noise remains
predominant compared to the other sources of signal fluctuations. Nevertheless,
the gain variations of the electron multiplier amplify the photon noise (Lemon-
ier et al. 1988). The ultimate sensitivity of the photoelectric effect detectors is
fixed by the available photocathode properties: a poor quantum efficiency
compared to solid-state detectors and a spectral bandwidth limited to the UV
and visible spectra.

5.6.1.1 Photomultiplier tubes

Photomultiplier tubes (PMT) were developed for low light level detection. A
photocathode is coupled to a high gain electron multiplier. The detector noise
remains negligible compared to the photon noise. For that reason, PMTs were
used in the early developments of adaptive optics system (Hardy et al. 1977,
Hardy 1993). However, these detectors are no longer attractive for low light
level WF sensing as they combine poor quantum efficiency and low spatial
resolution although small integrated arrays of PMTs are now available.

5.6.1.2 MAMA Camera

The multi anode microchannel array (MAMA) consists of a photocathode, a
microchannel plate (MCP) for electron multiplication, and an anode array for
event detection (Timothy 1993). Basically, this camera is dedicated to photon
counting with a limitation of 10° counts per second for the total array. The
available anode array may reach 1024 X 1024 pixels.

5.6.1.3 ICCD

The intensified CCD camera (ICCD) consists of an image intensifier coupled to
a CCD camera (Lemonier ef al. 1988). Due to the spatial properties of CCDs
(geometry, number of pixels) and to their ability to work in analog mode rather
than in photon counting mode, this device has been extensively used for low
light level WF sensing, especially for SH sensors. However, the charge transfer
in the CCD and the intensifier phosphor persistence may be a limitation for
high frame rate systems.

Derived from ICCD, the electron bombarded CCD (EBCCD) consists of a
first generation image intensifier where the phosphor screen is replaced by a



122 5. Wave-front sensors

thinned backside bombarded CCD. Compared to ICCD, this device presents
some advantages for low light level WF sensing: the photon noise amplification
due to the electron multiplier gain dispersion and the temporal problems related
to phosphor persistence become negligible because of the electron bombard-
ment approach (Cuby et al. 1990), for an example see Chapter 8.

5.6.2 Solid-state detectors

In recent years, rapid advances have been made in solid-state detector tech-
nology. These devices present high quantum efficiency. They offer different
spectral bandwidths. Moreover, a read-out noise of a few electrons may be
obtained with the arrays.

5.6.2.1 Avalanche photodiodes

In the avalanche photo-diode (APD), the classical photodiode high quantum
efficiency is combined with an internal gain by operating the photodiode in a
Geiger mode. Single element photon counting devices are now available using
various semiconductors operating in the visible or in the near infrared spectrum
(Zappa et al. 1996). Single element APD assemblies are used in the existing
curvature sensors because of the required small number of detectors (see
Chapter 9). The implementation of large assemblies are complex and APD
arrays are under development.

5.6.2.2 Back-illuminated bare CCD

The back illumination of thinned CCD combined with backside coatings has
dramatically improved the CCD quantum efficiency and the spectral band-
width. The CCD technology is well suited to large array integration and low
noise. CCDs with low detector noise, high frame rate, and a typical size of
64 X 64 pixels have recently been developed specifically for adaptive optics
(Twichell et al. 1990). At 500 kpixel/s, a detector noise of the order of 3e
rms have been measured with such devices (Beletic 1996). They are multi-
output. Therefore, the pixel rate per output is reduced and consequently the
read-out noise. Moreover, the CCD read-out time lag may be also reduced.

5.6.2.3 Infrared photodiode arrays

Although they exhibit a high quantum efficiency, the use of IR photodiode
arrays with faint sources was questionable for WF sensing due to their read-
out noise (Rigaut er al. 1992). Nevertheless, significant improvements have
been made today and different arrays are available with less than 10e noise
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but at low read-out frequency. Basically, the available photodiodes are made
with InSb which has a spectral bandwidth of 1 to 5 um and a quantum
efficiency of 90% or with HgCdTe which exhibits a spectral bandwidth of 1
to 2.5 um and a quantum efficiency of 50%. Beyond the spectral bandwidths
which are different from CCDs, the read-out mode of these arrays using
CMOS chips is very powerful compared to CCD. In fact, only the photo-
diodes useful for the measurements may be read, reducing the read-out time
lag.

5.6.3 Comparison between bare CCD and intensified CCD

Using Eq. (5.49), the choice between low noise back-illuminated bare CCD
and intensified CCD can be studied (Séchaud et al. 1991). Considering a given
system and a required accuracy ogqy = 277/ X, it is possible to evaluate the
maximum electronic noise admitted on a bare CCD (being electronic-noise
limited) to be equivalent to an intensified CCD (being photon-noise limited):
i.e. reaching the same limiting magnitude. We have

_ V3 nccoAeep X Awrs
16 npkAdpk Np Am

where the ‘CCD’ subscript is for the bare CCD and ‘PK’ for the intensified
CCD photocathode. For Awrs = A, Np = 2, ﬁCCDAiCCD/ﬂpKAlpK = 20 and
X =20 (a very good accuracy), the required maximum electronic noise is
0. < 20e. But for an IR system dedicated to astronomy, we may have
Awrs = Amm/4, Np =1 and X =4 (partial correction regime) keeping the
other parameters unchanged, then o, < 2e. This specification is very difficult
to achieve and requires specific developments to be fulfilled today (see Section
5.6.2). To sum up, for AO systems requiring high WF accuracy, the high
efficiency bare CCD is well suited. But for partial correction (i.e. low accuracy
at high magnitude), photon counting detectors may still provide good perform-
ance even with low quantum efficiency.

Oe

(5.51)

5.6.4 Discussion

First note that all of the presented detectors must generally be cooled to limit
their dark current to the order of a few hundreds of electrons per pixel per
second. Hence reducing the contribution of the dark current to the detector
noise.

In order to achieve the ultimate performance of an AO system in terms of
limiting magnitude, the WFS detector must be quasi-noiseless, i.e. only limited
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by the signal photon noise. Therefore today, the APDs are the best detectors.
Because of their high quantum efficiency, they are better than PMTs and
intensified CCDs. A dedicated optics is required to couple the incoming
photons to the sensitive area of each APD. In addition, each APD requires its
own electronics and connection to the real-time computer. Such detector
configuration is tractable for relatively low order AO systems where small
numbers of detectors are needed, such as the systems developed by the
University of Hawaii and the Canada—France—Hawaii Telescope (Chapter 9).
With these systems stable closed-loop operation has been demonstrated on
my ~ 18 guide stars, although with little gain in Strehl.

The read-out noise is the main drawback of the back-illuminated bare
CCDs, still limiting their application to brighter objects my < 16. However,
they can have very high quantum efficiency and very large spectral band-
width, in fact a better efficiency than APDs. In addition for high order AO
systems, CCD provides the required multiplexing of the pixel read-out,
significantly reducing the cost of the WFS. On-chip binning of pixels is also
very efficient to adapt the number of pixels to read, the read-out noise being
incurred only once per binned group of pixels. This is a useful tool to
accomodate the WFS camera to the various observing conditions. The draw-
back of the CCD read-out mode in AO is the time lag. Indeed, the time lag
limits the bandwidth of the servo-loop when observing bright objects (Chapter
6). This is especially true for frame transfer CCDs. After exposure, the image
is rapidly transferred into the on-chip memory area which is generally read
during the next exposure. The time lag is then equal to the time needed to
read-out the memory. On the contrary for discrete detectors (as APDs), there
is no time lag problem a priori. The time lag for self-scanned solid-state
detector arrays can be limited when using line transfer or random access
read-out (cf. IR photodiode arrays). But such read-out modes are not available
on the high performance CCDs. Another way is the use of multioutput CCDs.
Note that to achieve 1 or 2e noise, the CCD must be read at low pixel rate (a
few tens of kHz), also increasing the required number of outputs to keep a
sufficiently high frame rate for WF sensing. Therefore for bright objects using
higher pixel rates, the time lag of such types of CCDs may be significantly
reduced.

To sum up, the low noise back-illuminated bare CCD is the best choice for
high order AO systems but with limitations toward the highest magnitude and
in servo-loop bandwidth. An associated low order WFS equipped with APDs
can be helpful to complement the CCD performance for the access to the
highest magnitude range. For low order AO systems, APDs are the best
detectors.
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Control techniques

PIERRE-YVES MADEC
Office National d’Etudes et de Recherches Aérospatiales (ONERA) Chatillon, France

An adaptive optics system (AOS) can be defined as a multi-variable servo-
loop system. Like classical servos, it is made of a sensor, the wave-front
sensor (WEFS), a control device, the real time computer (RTC), and a
compensating device, the deformable mirror (DM). The goal of this servo is
to compensate for an incoming optical wavefront distorted by atmospheric
turbulence. It is designed to minimize the residual phase variance in the
imaging path, i.e. to improve the overall telescope point-spread function
(PSF). The input and the output of this servo are respectively the wave front
phase perturbations and the residual phase after correction.

The design and the optimization of an AOS is a complex problem. It involves
many scientific and engineering topics, such as understanding of atmospheric
turbulence, image formation through turbulence, optics, mechanics, electro-
nics, real time computers, and control theory. The goal of this chapter is to
provide the basis of spatial and temporal controls. The reader will not find a
tutorial on control theory but its application to an AOS. So the reader is
assumed to be familiar with classical control theory (see for instance Franklin
et al. 1990).

In the following, no restriction is made about the WFS or DM used. The
principles are kept unchanged in the case of Shack—Hartmann, curvature
sensor, or other WFS, and stacked array, bimorph, segmented DMs, or other
wave front compensation devices.

In a first part, the control matrix determination and the modal control
analysis of an AOS are described. Then the AOS temporal behavior is
described by means of a transfer function representation. The AOS closed-loop
optimization is discussed for the cases of a bright star and a faint star reference
source. Finally, general considerations on the RTC are given.
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6.1 Adaptive optics system: a servo-loop

Figure 6.1 gives a schematic view of an AOS, using classical block diagram
representation, with the control computer (CC), the digital to analog converters
(DAC), and the high voltage amplifiers (HVA). As shown, the input of this
servo is the uncompensated wave front, whose value at a point (x, y) and at a
time ¢ is denoted by ¢@u.(x, y, f). The correction introduced by the DM is
denoted by @cor(X, v, t). @res(x, v, t) is the value of the residual phase after
correction, so that

Pres(X, Y5 1) = Qur(X, ¥, 1) — Peorr(X, p, ). (6.1)

In closed-loop operation, the AOS minimizes @.s(x, y, {) with the finite
spatial and temporal resolution given by the local measurements of the wave
front. To achieve this minimization, the WFS must be placed in the optical path
after the DM in such a way it measures @.s(x, y, f). The WFS spatial
resolution is given by its number of useful subapertures. Its temporal resolution
is determined by the sampling frequency of its detector, which is generally set
by the exposure time 7.

In the following, bracket notations refer to vectors. | ) represents a column
vector and ( | a row vector. Matrices are represented in italic capital fonts. With
these notations, the WFS measurements ¢, is represented by |P) which is
called the measurement vector. This is an m-dimensional vector where m is the
number of WFS measurements. The control voltages to be applied to the DM
are deduced from |P). They can be described by a vector called the control
vector, and denoted by |V). This is an n-dimensional vector, where 7 is the
number of DM actuators. When applied to the DM, these voltages control the
shape of its reflecting surface, described by the corrected phase @cor. One
should notice that the control of the DM from the WFS measurements is a
physical way to reconstruct a wave front.

In an AOS, the control voltages are determined from the WFS measurements
through a control law which can be split into two parts: a static part, which
mainly deals with the reconstruction of the WFS measurements on the basis of

(‘pres

(ptur +
wrs —"— cc |"— DaC HVA DM

(pCOIT

Fig. 6.1. Block-diagram representation of an AOS.
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the DM actuators, and a dynamic part which ensures the stability and the
accuracy of the closed loop. The first part, the static part, estimates the control
vector |v) containing the control voltages that, if they were sent to the DM,
would give the best fit of the WFS measurements |P). This estimation is
performed through the multiplication of |P) by a control matrix denoted by
D*. This matrix is deduced from the calibration of the AOS. This is the topic
of Section 6.2. Since in closed loop |P) is a measurement of the residual phase
eITor (res, |U) is a correction increment and cannot compensate for the
turbulent phase ¢g,. A second part, the dynamic part, is therefore required to
determine the effective voltages | V).

The dynamic part evaluates the control vector |V') which will correct for
¢r- It is deduced from the time sequence of the correction increments |v) and
of the effective voltages | V) through a control algorithm which may be defined
in a general manner by:

/ P

|V>k:—Zai|V>k,i+ij|U>k,j (62)
Jj=0

i=1

The values of a; and b; determine the closed-loop performance, i.e. the
trade-off between its stability and its accuracy. This is the topic of Section 6.5.

6.2 Control matrix determination

The control matrix D* is used in closed-loop to compute the control vector |v)
from the measurement vector |P). The determination of this control matrix
assumes that the AOS is a linear system, at least for small values of |P) in
closed-loop. Its behavior is fully described by the knowledge of the optical
interaction matrix (Boyer 1990). This matrix, denoted by D, defines the
sensitivity of the WFES to the DM deformations. This is a m X n matrix, where
n is the number of actuators and m is the number of WFS measurements. The
nth column is the measurement vector corresponding to a unit voltage applied
to the nth DM actuator, that is to the nth actuator influence function (see
Section 4.4). Let |V) be any control vector (static or dynamic) and |P) the
corresponding measurement vector. We have

|P) = D|V). (6.3)

The problem of the control matrix determination is the inversion of Eq.
(6.3). Since the matrix D is rectangular (in the general case, there are less
actuators than measurements), Eq. (6.3) cannot be inverted. This means that a

criterion must be defined to compute the pseudo-inverse control matrix D™,
Let us define a norm in the vector space of the WFS measurements as
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m
IIP)I? = (PIP) =D P (6:4)
i=1

where P; is the ith component of | P).

A common choice for this criterion is the following: for a given measure-
ment vector | P), D™ must lead to a control vector | V') minimizing the norm of
the residual measurement vector. The best estimate of | V') is therefore

|[Vest) = D¥|P), (6.5)
and the residual measurement vector is given by
|6> = |V> - ’Vbest> = (I - DD*)|P>, (66)

where [ is the identity matrix.

The minimization of |||¢)||> with respect to the coefficients of the control
matrix gives a set of linear equations (known as the normal equation), from
which the classical least square solution is obtained

*=(D'D)' D, (6.7)

where ! is the transposition operator. Eq. (6.7) shows that the control matrix D*
exists only if the square symetric matrix D'D is invertible. (D'D) is a
covariance matrix characterizing the coupling between the DM actuators
through the WFS measurements. The diagonalization of this matrix provides a
set of independent modes in the WFS space. They define an orthonormalized
basis for the vector space of the DM actuators. If £ is the matrix of the n
eigenmodes of (D'D) (each eigenmode is a column vector), and A is the
diagonal matrix of the corresponding eigenvalues, we have

D'D = EAE". (6.8)

Let us give some physical properties of these modes. Each of them can be
represented as a particular shape of the DM reflecting plate. The norm of the
WFS measurement vector | P,) associated with the gth eigenmode |E,) can be
deduced from Eq. (6.3) and Eq. (6.4).

1P)I? = (E,|D'DIE,). (6.9)
which yields, using the orthonormalized properties of the eigenmodes
PP = g, (6.10)
where 4, is the eigenvalue associated with the eigenmode |E,).
Each eigenvalue thus represents the WFS sensitivity to the corresponding
eigenmode. The assumption that D'D is invertible is equivalent to the absence

of zeros in its set of eigenvalues. Unfortunately, there is generally at least one
null eigenvalue. This value corresponds to the so-called piston mode. This
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mode is a translation of the DM reflecting surface. It is optically of no interest,
except in the case of interferometry, and cannot be detected by the WFS.

The singularity of the D'D matrix means that some modes of the DM are not
detected by the WFS: the inversion of Eq. (6.3) leads to an infinity of solutions
minimizing the norm of the residual measurement vector. Considering |V) a
control vector and |Epison) the piston eigenmode, Eq. (6.3) can be written as

’P> = D(’ V> + a|Episton>): (6~11)
where |P) is independent of the value of a. There is an infinity of control
vectors giving rise to the same WFS measurements. To determine a control
matrix uniquely, a choice has to be made between all the possible solutions. A
reasonable choice is to cancel the unseen DM modes which is equivalent to
taking the control vector of minimal norm. In operator theory terms, this choice
corresponds to the generalized inverse of D. As a consequence, D* is still
given by Eq. (6.7) with the following definition for the pseudo-inverse of D'D

(D'D)"' = EN''E (6.12)
where A’~! is a diagonal matrix whose elements are equal to 1/4, if 4, is not
null, and 0 otherwise. This is an example of modal filtering, since it removes
the eigenmodes with a zero eigenvalue from the control of the AOS. Finally,
the control matrix D* is given by

D* = EA''E'D), (6.13)
which can be rewritten as

D* = EAN'"Y(DE), (6.14)

It is worth noting that the measurement of the optical interaction matrix D,
i.e. the calibration of the system, must be carefully performed but cannot be
perfect. The effect of the error in its determination is reduced in closed-loop
operation. The corresponding error in the correction at step k is taken into
account in further steps forward. As a matter of fact, it is experimentally found
to be small. But the precise analysis of the effect of the calibration error still
remains an open issue which is, to our knowledge, not yet addressed in the
open literature.

6.3 Modal control analysis

Modal analysis usually refers to the control of specific overall mirror deforma-
tions, the modes, whereas the so-called zonal analysis refers to the control of
local deformations at specific locations, e.g. at the actuator locations. In fact,
zonal control may be considered as a particular case of modal control. The
advantage of modal analysis is shown in the following sections.
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6.3.1 Filtering of low WFS sensitivity modes

A first advantage of modal analysis is to offer the possibility of filtering modes
sensitive to the measurement noise. Let |n) be a measurement noise vector, and
|b) the associated control coefficients. We have

|b) = D*|n). (6.15)
If the measurement noise level is assumed to be the same in each subaperture
and if the noise level is uncorrelated from one subaperture to the other, the

covariance matrix of |») due to the measurement noise denoted by Cp can be
easily derived

Cy, = 0°D* D™, (6.16)
where o2 is the variance of the measurement noise.

The ratio of the noise variance propagated on the control modes (diagonal
elements of Cp) over the measurement noise variance o2 are the so-called
noise propagation coefficients. From Eq. (6.16) these coefficients can be shown
to be equal to the sum of the squares of the corresponding D™ row of
coefficients.

If £ is chosen as the control mode basis, it can be shown from
Egs.(6.8), (6.13) and (6.16) that the noise propagation coefficient on a
control mode is proportional to the inverse of the corresponding eigenvalue:
the lower this eigenvalue, the greater the control noise. A very efficient use
of modal analysis consists in filtering modes presenting a low WFS sen-
sitivity, i.e. a high sensitivity to the noise. In the previous section, it was
shown that filtering of the piston mode, insensitive to the WFS, is required
to determine the control matrix. It represents the extreme case of low WFS
sensitivity.

6.3.2 Control of several wave front correction devices

Another advantage of modal analysis is that it allows control of several wave
front correction devices. Generally, their related control vector spaces are not
independent: these phase correctors are coupled. In order to control them with
good stability, it is important to use a control mode basis where some modes
fully define the coupling between the various devices. It is then possible to filter
these coupled modes from all the wave front correction device controls but
one, or to share the control of the coupled modes between two (or more) phase
correctors by means of a temporal frequency filtering.

As an example, consider the case of tip/tilt correction. The major part of the
turbulent wave front fluctuations are tip and tilt. To reduce the mechanical
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stroke required for the DM actuators, a steering mirror is generally used. If the
bandwidth of the steering mirror is sufficiently high (see Section 4.5), there is
no need for the DM to correct for tip and tilt. Otherwise it is useful to
compensate for high stroke slowly evolving tip and tilt with the steering mirror,
and for small stroke quickly evolving tip and tilt with the DM. In both cases,
one must determine a set of control modes containing at least tip and tilt to
filter them from the DM control (first case), or to control them at high
frequency (second case).

6.3.3 Multi-input/multi-output servo decoupling

An AOS is a multi-input/multi-output servo-system. Since the inputs are the
DM control voltages, and the outputs the WFS measurements, it appears that
both inputs and outputs are spatially coupled. The study of the temporal
behavior of the AOS is then quite complex. A classical way to make this
analysis easier is to find a new set of inputs and outputs which are independent
(O’Meara 1977; Winocur 1982; Gaffard and Ledanois 1991). The control
modes studied in Section 6.2 define such a set of independent inputs. It is also
easy to show that the WFS measurements corresponding to these modes realize
a set of independent outputs. So, the AOS control loop can be split into »
independent single-input/single-output servos working in parallel. The tempor-
al behavior of each channel can be analyzed independently. This topic will be
addressed in Section 6.4.

6.4 Adaptive optics temporal behavior

Figure 6.1 gives a classical block-diagram representation of an AOS control-
loop. The WFS gives measurements of the residual optical phase. Whatever the
principle of the WFS, the associated detector integrates the photons coming
from the guide star during a time 7, then delivers an intensity measurement.
The WFS measurements, derived from this analog signal, are then available
only at sampling times whose period is 7. Consequently an AOS is a servo
using both continuous and sampled data.

The wave-front computer (WFC) derives the WFS measurements from the
analog signal of the detector. The CC calculates the DM control voltages from
the WFS measurements and DACs are used to drive the DM HVAs.

In the following, the transfer function of each element is discussed (Gaffard
and Boyer 1990; Boyer and Gaffard 1991; Demerlé et al. 1993). Then a
general expression of the overall open-loop transfer function is established.
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Finally, all the transfer functions defining the temporal behavior of this servo
are studied.

6.4.1 Transfer function of adaptive optics system elements

6.4.1.1 Wave-front sensor transfer function

From a temporal standpoint, the main characteristic of the WES is the integra-
tion time 7 of the detector. The output of the sensor, denoted by WFS(¢) is the
average of | P) from fto t + T,

WES(t) = lr | P)(¢)dt. (6.17)
T)ir
Eq. (6.17) can also be written as
1~ I
WES(t) = TJz—T|P>(t)dt — TJ; | P)(¢)dt, (6.18)

showing that the temporal behavior of the detector is the difference between an
infinite integral of |P)(7) and the same integral but with a pure time delay T.
Since the Laplace transform of an integrator is 1/s, and the Laplace transform
of a pure time delay 7 is exp(—7s), with s = jo (j* = —1 and w = 27 f, where
£ is the temporal frequency), WFS(s), the transfer function of the WFS, is then

e—Ts

1 —
WFS(s) = 7
s

Note that both the input and the output signals of the WFS are continuous.

(6.19)

6.4.1.2 Wave-front computer transfer function

The WFC is a real time computer which reads and digitizes the detector
signals, and applies specific algorithms to derive the wave-front measurements.
The main temporal characteristic of this device is a pure time delay due to the
read-out of the detector and the computation. Let 7 be this delay, and WFC(s)
the transfer function of the WFC. We have

WFC(s) = e ™. (6.20)

In the case of a Shack—Hartmann WFS, 7 is dictated by the read-out time of
the CCD sensor. Generally T = T (in case of a frame transfer read-out), but it
can be reduced by using parallel and fast read-out electronics and powerful
computers. In the case of a curvature WFS, 7 depends on the computing time.

In the following, it will be shown that this time delay is a major limitation
for the AOS performance.

One important feature of the WFC is that its input signals are continuous,
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and its output signals are sampled, at a frequency defined by the WFS detector
integration time 7.

6.4.1.3 Control computer transfer function

The main task of the CC is to perform a matrix multiplication so that the DM
control voltages can be derived from the WFS measurements delivered by the
WEC. The CC also applies the temporal controller to optimize the AOS closed-
loop response. To reduce the control voltage computing time, the matrix
multiplication can be performed during the read-out time of the detector, as
soon as any WFS measurement is available. In this case, there is no significant
additional time delay, and the main temporal characteristics of this computer
are determined by the implemented temporal controller, whose effect will be
studied in the next sections. Following Eq. (6.2) this controller is defined by the
recurrent formula

!

P
O(nT)=> bIl((n—HT) = > a;0(n—iT), (6.21)
=0

i=1

where O(kT) and [(kT) are respectively the output and the input of the
controller at the kth control step, and a; and b; the coefficients of the
controller.

The temporal characteristics of the controller depend on the values of a; and
b;. Since the controller works in the sampled time domain, its transfer function
is defined by its Z-transform.

Let us recall that

Z(O((n — k)T)) = z~* Z(O(nT)), (6.22)

where Z(O(nT)) is the Z-transform of O.
From Eqgs. (6.21) and (6.22) the transfer function of the CC can be written as

p .
o
bjz
0

CCzy=—" (6.23)

!
l + Z aiz*"
i=1

6.4.1.4 Digital analog converter transfer function

DAC:s are synchronized by the integration time of the WFS detector. They hold
the control voltages of the DM constant during 7, until the next voltages are
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available from the CC. The transfer function of this device called a zero-order

holder, denoted by DAC(s) is

efTs

1 —
DAC(s) = ————

(s) Ts
It is physically different from the integration process of the WFS, though the
transfer function is the same. Input signals are sampled, but output signals are

continuous.

(6.24)

6.4.1.5 High voltage amplifier transfer function

The HVAs amplify the low voltage outputs of the DACs to drive the
actuators of the DM. They are characterized by their temporal bandwidth,
and can be considered as first or second order analog filters. Generally, the
bandwidth of the HVAs is adjusted so that it is greater than the frequency
domain of interest of the AOS. Within this domain, their transfer function,
denoted by HVA(s), is close to unity. Both input and output signals are
continuous.

6.4.1.6 Deformable mirror transfer function

The DM temporal behavior is given by its mechanical response, characterized
by resonance frequencies and damping factors. Usually, it is a second order
filter. Typically, the first resonance frequency of DMs is greater than a few
kHz, and is damped by the HVA. In the following, its transfer function
denoted by DM (s) will be considered equal to one over the frequency domain
of interest. This assumption does not reduce the generality of the results,
and simplifies the following analysis. Both input and output signals are
continuous.

6.4.2 Overall adaptive optics system transfer function

6.4.2.1 Open-loop transfer function

Assuming the linearity of the system, its open-loop transfer function can be
written as the overall product of the previously defined transfer functions
(Demerl¢ et al. 1993). But one major problem is the mixing of continuous and
sampled elements. From a physical standpoint, the input and the output of
the AOS servo are respectively the turbulent wave front fluctuations and the
residual phase errors after correction by the DM. Both these signals are
continuous: so in the following this servo will be studied by means of the so-
called Laplace variable s.
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In the expression of the AOS open-loop transfer function, the Laplace
transform and the Z-transform are both needed. Nevertheless it can be assumed
that, since the Z-transform is the expression of the transfer function of a
process taking place in the sampled time domain, it can be studied in the
continuous time domain using the classical transformation z = e’s. This
assumption is valid within the low frequency domain, which is of interest for
an AOS. As shown in Section 6.5.1.2, this domain is restricted to one-quarter
of the sampling frequency. Finally, the overall open-loop transfer function of an
AOS, denoted by G(s), can generally be written as
e—‘[S(l _ e—Ts)z

T2s2
which is a good approximation for many systems. This analysis has given a
good estimation of many AOS transfer function, such as the COME-ON
(Rousset et al. 1990; Rigaut et al. 1991) and the COME-ON PLUS systems
(Rousset et al. 1993), the IfA AOS (Roddier et al. 1991), but it can also be
applied to the fringe tracker of the ASSI experiment (Robbe et al. 1997) and
the granulation tracker of the THEMIS telescope (Molodij et al. 1996).

The expression of G(s) consists of two parts:

G(s) = CC(z =eT), (6.25)

e (C(C(z) which defines the controller. It will be optimized by the AOS servo engineer
to reach the best possible correction efficiency within the limit of the overall system
stability. This optimization is discussed in section 6.5.

e ¢ (1 — e )2 /(T?s?) which represents the transfer functions of the basic compo-
nents required to realize an AOS. In opposition to CC(z), this transfer function
cannot be optimized, except during the preliminary design phase of the system.

Considering this second part, it is straightforward to show that the gain of
(1 — e ) /(Ts) is equal to sin(wT/2)/(wT/2) and its phase to —wT /2. In the
low frequency domain sin(w7/2)/(wT/2) ~ 1 and

Ts

l—e” ~Ts/2
— e 7 2
Ts e 7, (6.26)

which represents a pure time delay of 7'/2.

From this result, it can be seen that all the components of an AOS but the
controller exhibit an overall behavior which can be represented as a pure time
delay T + 7. The one frame time delay 7 is due to the exposure time of the
detector, and to the DAC: it cannot be reduced. In the following, T will be
referred to as the AOS time delay. It will be shown that the correction
efficiency of an AOS is highly dependent on the value of 7.

Consider the example of the COME-ON system (see Chapter 8). The control
frequency is 100 Hz and the time delay is about 10 ms, mainly due to the CCD
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read-out. Figure 6.2 shows the gain and the phase of its theoretical open-loop
transfer function considering a simple pure integrator. In this case the general
expression of the transfer function CC(z) reduces to K;/(1 —z~'), and the
theoretical expression of G(s) becomes

e—rs(l _ e—TS)

Gs) = Kim—5 53— (6.27)

where K; is the integrator gain.

6.4.2.2 Closed-loop transfer function

Let H(s) = @corr(s)/pur(s) be the closed-loop output transfer function. We
have
G(s)

HS) =176
Figure 6.3 represents the gain of the COME-ON theoretical closed-loop
transfer function. In this example, it exhibits an overshoot which is a general
feature of closed-loop responses. To ensure good stability, one usually limits
this overshoot to a maximum value of 2.3 dB.

(6.28)
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Fig. 6.2. Bode diagram of the open-loop transfer function.
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Fig. 6.3. Bode diagram of the closed-loop transfer function.

6.4.2.3 Closed-loop error transfer function

This function, denoted by ¢(s), is defined as the transfer function between the
residual phase and the turbulent wave front fluctuations. It represents the ability
of the AOS to compensate for phase perturbations as a function of frequency. It
is the most important feature of such a servo since it characterizes its correction
efficiency. It is related to the open-loop transfer function G(s) by
1
e(s) = 15 G0s)°
Figure 6.4 represents the gain of the COME-ON theoretical closed-loop error
transfer function.

(6.29)

6.4.2.4 Noise propagation transfer function

A fundamental limitation of an AOS is the WFS measurement noise, whatever
its physical origin, i.e. photon noise, sky background, or electronic read-out
detector noise. From a servo standpoint, it can be represented by an additive
white spectrum signal introduced after the WFS (see Fig. 6.5).

To characterize its effect on the residual phase after correction, the noise
transfer function is defined as the ratio between the residual phase due to noise
propagation and the measurement noise. Let N(s) be this transfer function.
Figure 6.5 shows that it can be written as
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Fig. 6.5. Block-diagram of an AOS including noise representation.

G(s)
WES(s)(1 + G(s))
It can be seen from Egs. (6.19) and (6.26) that

N(s) ~ H(s)e T2, (6.31)
As a consequence, the gain of N(s) is equal to the gain of the closed-loop
transfer function at low frequencies.

N(s) = (6.30)

6.4.3 Adaptive optics system bandwidth definition

Bandwidth values can be found in many papers describing AOSs and their
performance, but only a few papers give a precise definition of the bandwidth
being used.
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Three different AOS bandwidths can be considered:

e The first one is the classical —3 dB closed-loop cut-off frequency. This definition is
well suited to a classical servo where the output is the main parameter. In the case of
an AOS, such a bandwidth is of little interest, except from a commercial standpoint;
this is the highest bandwidth which can be defined.

e The second one is the 0 dB open-loop cut-off frequency. For frequencies lower than
this bandwidth, the AOS is able to apply a gain in the loop, i.e. to compensate for
perturbations. For higher frequencies, the AOS attenuates the signals in the loop: no
more correction can be obtained. This bandwidth gives a first idea of the frequency
domain where the AOS is efficient: it is useful to compare the intrinsic capability of
different AOSs. A more precise estimation of the AOS efficiency is given by the
following bandwidth definition.

e The third one is the 0 dB closed-loop error cut-off frequency. This definition is of
great interest since it is related to the residual optical phase after correction. For
frequencies lower than this bandwidth, the AOS attenuates the turbulent perturba-
tions. For higher frequencies, the AOS first amplifies the turbulent wave front
perturbations, and then has simply no effect. The knowledge of this bandwidth gives
the frequency domain where the AOS is efficient.

Considering the COME-ON system example, the —3 dB closed-loop band-
width is found to be equal to 18 Hz, the 0 dB open-loop bandwidth is equal to
7.7 Hz, and the 0 dB closed-loop error bandwidth is equal to 6.7 Hz. There is
almost a factor of three between the bandwidth defining the real performances
of the system, and the highest bandwidth definition. It is worth noting that the
0 dB open-loop and closed-loop error bandwidths have roughly the same value,
and the same meaning. When using a pure integrator as a corrector, these two
bandwidths can be considered equivalent.

6.5 Optimization of the adaptive optics closed-loop performance

In the previous section, the temporal behavior of an open loop AOS was
described. This knowledge can now be used to optimize the closed-loop
response of the servo. In the following, the control optimization in the case of a
bright or a faint reference source is considered. The difference is given by the
measurement noise level.

6.5.1 Control optimization with a bright reference source

Over recent years, many authors have studied this topic (Greenwood and Fried
1976; Greenwood 1977; Tyler 1994). In this case, the measurement noise is
neglected. At first, an expression for the considered optimization criterion is
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given. Then the effect of a pure time delay on the AOS performance is studied,
and finally some examples of the optimization of CC(z) are given.

6.5.1.1 Optimization criterion

As previously discussed, the output of interest of an AOS is the residual phase
after correction. It defines the quality of the AOS PSF, which is characterized
by its full width half maximum (fwhm) or its Strehl ratio (SR). The smaller the
fwhm; the higher the SR; the better the AOS response. These parameters are
both related to the variance of the residual phase after correction, denoted by
U(sz'CS'

Because an AOS is designed to attenuate the turbulent phase variance and to
minimize the residual phase variance, the criterion chosen for an AOS opti-
mization is the relative residual phase variance, i.e. the ratio between these two
variances. The value of this criterion depends both on the AOS correction
efficiency and on the speed of the turbulence.

From the knowledge of the temporal behavior of wave front fluctuations
(Conan et al. 1995), and of the AOS transfer functions, the residual phase

variance, denoted by aéresrel can be deduced. Parseval’s theorem yields

+00
| mpiorar

O‘?[)I‘CSI‘CI = J+OO ’ (632)

RLGRY

where |W(f)[? is the power spectral density (PSD) of the wave front phase
fluctuations. The temporal behavior of Zernike polynomials can be split into
two frequency domains. For frequencies lower than a given cut-off frequency,
|W(f)[? is characterized by a f 21 law in case of tip or tilt, and a £ law in
other cases. For frequencies higher than the cut-off frequency, |W(f)|* is
characterized by a f~'7/3 law. The cut-off frequency is related to the wind
velocity v averaged along the optical path

fcut-off(n) ~ 03(1’1 + 1)

v
Dtel ’
where Dy is the telescope pupil diameter and n is the radial degree of the
Zernike polynomial. Equations 6.29 and 6.27 allow the optimization of the

digital controller transfer function CC(z) to minimize Ofores-

(6.33)

6.5.1.2 Time delay effect on the adaptive optics system correction efficiency

It is a well-known result that time delay dramatically reduces AOS performance
(Fried 1990; Roddier et al. 1993). The time delay is defined here by Eq. (6.20).
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To illustrate its effect on the AOS bandwidth, the case of a pure integrator is
considered. The bandwidth is here defined as the 0 dB open-loop cut-off
frequency. The gain is adjusted in such a way that the closed-loop overshoot is
lower than 2.3 dB. Figure 6.6 gives the relative bandwidth, defined as the ratio
between the AOS bandwidth and the control sampling frequency, as a function
of the relative time delay, defined as the ratio between the AOS time delay 7z,
and the control period 7. This figure shows that a reduction in time delay
brings a significant gain in bandwidth. The highest obtainable bandwidth is
equal to one-quarter of the control frequency. If there is no time delay in the
AOS, for example with a curvature WFS or with a Shack—Hartmann WFS
using a very short read-out time CCD, the bandwidth is very sensitive to the
computation time needed to compute the DM control voltages from the WFS
measurements.

The reduction of the time delay in an AOS is a very efficient way to increase
its bandwidth without changing the control frequency, i.e. the number of
photons detected by the WFS. This problem must be considered during the
preliminary design phase of the system, since it is related to the WFS detector
read-out mode and to the real time control design system.

With the same assumptions, Fig. 6.7 represents the relative residual phase
variance, as defined by Eq. (6.32), versus the atmospheric temporal cut-off
frequency as defined by Eq. (6.33). The PSD of the wave-front phase fluctua-
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Fig. 6.6. Effect of time delay on the AOS 0 dB open-loop bandwidth; the relative
bandwidth is the ratio of the bandwidth over the control sampling frequency;
the relative time delay is the ratio of the AOS time delay over the control
period.
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Fig. 6.7. Relative residual variance versus atmospheric temporal cut-off frequency for
various AOS time delays: one frame (solid line), one-quarter of a frame (dashed line),
and no delay (dash—dot line).

tions considered in this figure is the tip/tilt PSD. The solid line is plotted for a
one frame time delay. The dashed line corresponds to one-quarter of a frame
time delay. The dash—dot for no time delay. In all cases, it can be verified that
the higher the cut-off frequency, i.e. the speed of the turbulence, the poorer
the AOS correction quality. For a given cut-off frequency, the correction
quality is better in the case of a smaller time delay, i.e. in the case of a higher
AOS bandwidth. There is a residual phase variance reduction of more than a
factor 10 when reducing the time delay from one frame down to zero, and
this reduction is still of a factor 6 for a quarter of one frame time delay.

Figures 6.6 and 6.7 clearly illustrate the advantages of reducing the time
delay in an AOS. As previously pointed out, the reduction of this parameter
by careful design of the controller is crucial. The use of a predictive
controller is a promising way to solve this problem. It has been demonstrated
(Aitken and McGaughey 1995) that WFS measurements are predictable. The
idea is to use theoretical and experimental knowledge of the temporal
evolution of the wave-front phase fluctuations to compensate for the time
delay (Paschall and Anderson 1993; Wild 1996). Open-loop demonstrations
of the efficiency of such methods have been performed (Lloyd-Hart and
McGuire 1995; Jorgenson and Aitken 1992, 1993).

Recently, Dessenne has demonstrated theoretically and experimentally
closed-loop operation of predictive controllers for AOS control (Dessenne
1997).



6.5 Optimization of AO closed-loop performance 149

6.5.1.3 Temporal controller optimization

In this section, the optimization of CC(z) is studied, considering a one frame
time delay in the loop. In all cases considered, the controller parameters are
adjusted in such a way that the closed-loop overshoot is less than 2.3 dB.

In the previous section the time delay is shown to be the main limitation in
an AOS in the case of a bright reference source. This is due to the induced
phase lag whose effect is to reduce the frequency domain where the AOS is
efficient. The goal of the CC(z) optimization is to reduce this phase lag. In the
following, two examples of classical controllers which increase the AOS
performance are given.

A PID (proportional-integrator-derivative) controller is classically used to
reduce the phase lag. In fact, it can be shown that, since the phase lag is
proportional to the frequency, the derivative part of a PID is of no interest. So,
the first example is a proportional integrator (PI) whose Z-transform is

Ki
where K; is the integrator gain, and K, is the proportional gain.
On Fig. 6.8, the relative residual phase variance is plotted as a function of
the atmospheric cut-off frequency in the case of a pure integrator (solid line)

with K; = 0.5 and of a PI controller (dashed line) with K; = 0.5 and K, = 0.3.
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Fig. 6.8. Relative residual phase variance versus atmospheric cut-off frequency for a
one frame AOS time delay and for various temporal controllers; pure integrator with
K; = 0.5 (solid line); PI controller with K; = 0.5 and K, = 0.3 (dashed line); Smith
predictor with K; = 1.1 and Kg, = 0.7 (dash—dot line).
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Compared to a pure integrator, a PI can bring a 40% gain in AOS efficiency for
a 10 Hz cut-off frequency.

The second example is a Smith predictor, which is a controller especially
dedicated to servos exhibiting a time delay. It is designed to reduce the effect
of the time delay. One possible expression for its Z-transform is

K;
(1—-zH(a + Kspzfl)’

where K; is the integrator gain, and K, is the Smith predictor gain. One should
note that for a K, value greater than 1, this controller is unstable.

On Fig. 6.8 the relative residual phase variance is plotted as a function of the
atmospheric cut-off frequency in the case of a Smith predictor (dash—dot line)
with K; = 1.1 and Kg, = 0.7. Compared to a pure integrator, the use of a
Smith predictor can bring a 44% gain in AOS efficiency for a 10 Hz cut-off
frequency.

CC(z) = (6.35)

6.5.2 Control optimization with a faint reference source

The WFS measurement noise depends on the reference source magnitude. The
higher the magnitude, the higher the measurement noise. This noise is
propagated through the AOS control all the way to the residual wave front
fluctuations. In Section 6.4.1 this propagation was shown to be characterized
by a transfer function whose gain is almost equal to the closed-loop one. This
gain can be defined as 1 for frequencies lower than the closed-loop cut-off
frequency, and 0 in the high frequency domain. The closed-loop cut-off
frequency is roughly proportional to the AOS bandwidth, defined as the 0 dB
open-loop cut-off frequency.

A new optimization criterion in minimizing the residual phase variance is
defined, taking into account the noise propagation through the AOS control
loop. Considering a white spectrum measurement noise with a PSD value
denoted by PSD,ise, the total residual phase variance can be written as

+00 400

o= | VORI Af + | PSDwsclNOPAS. (636

where the first integral corresponds to the residual turbulent phase variance,
and the second one to the propagated noise variance.

It can be easily shown that the higher the AOS bandwidth, the lower the
residual turbulent phase variance but the higher the propagated noise vari-
ance. It is then possible to find an optimal AOS bandwidth minimizing
o2 i.e. roughly equalizing the two terms of Eq. (6.36). This optimal

Qres?
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bandwidth depends on both the WFS SNR and the temporal behavior of
turbulence. It should be noticed that, since neither the SNR nor the temporal
behavior of the turbulence are constant (due to 7y and wind speed fluctua-
tions), this optimal bandwidth evolves with time. From a practical stand-
point, the optimal bandwidth of the AOS needs to be regularly updated.

Considering the phase expansion on the Zernike polynomials (Noll 1976),
the modal SNR and the temporal behavior of turbulence depend on the radial
degree of each polynomial (Conan et al. 1995). For any other set of modes
defining an orthonormalized basis in the telescope pupil, it could be shown
similarly that both SNR and temporal behavior depend on the mode considered.
It means that the optimal bandwidth is different for each of these modes. This
is the so-called modal control optimization (Ellerbroek et al. 1994, Gendron
and Léna 1994, 1995).

6.6 Real time computers

A wide variety of real time computers (RTCs) have been realized. It must be
remembered that, in the early developments of AOSs, analog RTCs were used
to provide the short computing time required. This was the case in the first
operational system, the compensated imaging system installed at the Air Force
AMOS station on top of Mount Haleakala crater on Maui, Hawaii. The second
generation of computers were based on hybrid hard-wired/digital computers.
Digital RTCs have now replaced them, taking benefit from the exponential
increase in their computing power and allowing a large flexibility in the
software developments. In particular, digital RTCs allow one to update and
adapt the control laws in real time, according to the changes in the conditions
of observation.

The computing power CP is, at least, determined by the operation rate
required to compute the control vector from the WFS measurements. The
number of operations (multiplication + addition) per unit computing time is
of the order of n?, with n the number of DM actuators. The required
computing time is related to the relative time delay (see Section 6.5.1.2 and
Fig. 6.6). For a WFS with a negligible time delay, the computing time should
be =~ 0.1 T to limit the decrease of the relative bandwidth to about 20 % and
this yields

"2
CP =~ 107. (6.37)

In case of a WFS with a one frame time delay, due to the read-out of the
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detector for example, the computer can take advantage of this delay to begin

the matrix multiplication, and then

}’l2

CP~ T (6.38)
Taking typical values » = 200 and 7 = 2 ms yields CP = 200 M Flops in the
worst case. This computing power corresponds to the present state of the art of
processors.

If n and T are determined by 7y, i.e. are proportional to (D/ry)* and ry/T
respectively, it is worth noting that CP varies as 7;°.

But n and T may also be determined by the magnitude of the reference
source. The brighter the reference source, the higher n and 1/7, therefore the
higher CP. Besides, for very faint reference sources, a simple integrator may
be a satisfactory corrector. But for bright reference sources, the optimized
modal control and the use of complex correctors, and particularly predictive
correctors, should be efficient, increasing the computing power required. A
parallel architecture computer is needed to perform the matrix operations, with
a capability to provide scalable solutions able to evolve towards higher per-
formance. High speed multi-link processors are therefore well suited and
digital signal processors are currently used.
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Performance estimation and system modeling

MALCOLM J. NORTHCOTT
Institute for Astronomy, University of Hawaii, USA

7.1 Introduction

Adaptive optics systems are often expensive and complex instruments, which
need to work under a wide range of operating conditions. It therefore behooves
the designer of an adaptive optics system to develop a model of the systems in
order to best allocate the available resources to the project. The existence of an
accurate computer model of an AO system is probably crucial for commission-
ing a system. Such a model helps one diagnose problems and artifacts in the
system, and explore possible solutions. This chapter deals with methods for
simulating the optical performance of the adaptive optical components of the
system. Simulation of the mechanical aspects of the system design are not
covered in this chapter.

We start the chapter with a discussion of approximate methods that can be
used in the initial design phases of a project to constrain the parameters of the
AO system. We then move to slightly more complex techniques, which may be
used to verify results to greater accuracy. Next we discuss complete optical
simulations which may be used to model the interaction of various system
components, taking optical diffraction into account. Finally we discuss the
problem of comparing measured results with simulation results. Measuring the
performance of an AO system is a difficult undertaking, and is often poorly
done.

7.2 Linear error budget analysis

A simple error budget analysis serves to elucidate the first order performance
of an AO system on a given site and at a given telescope. In Table 7.1 we list
errors which affect an AO system. These errors and their magnitudes are
discussed in the indicated sections of this book. As one can see, there are a
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Table 7.1. Sources of wave-front error in an AO system

Error source Time scale Sections

Mirror fitting Fast 22-3,32-3,44

Mirror hysteresis Slow 4214

Mirror saturation Slow 4.7 (Table 4.1)

Time delay Fast 22-3,34.2,643,6.5.1.2
WFS noise Fast 3.5,5.5.1,65.2

WF reconstruction  Fast 55.2,64.2.4,65.1
Non-isoplanicity Fast 24,343

Scintillation Fast 2.4

Chromaticity () Fast/Slow 2.4

Cone effect (*) Fast 12.3

Mean focus (*) Slow 12.3

Atm. dispersion () Slow Can be compensated
Telescope optics Slow/Fixed To be measured or modeled

"

Instrument optics ~ Fixed
AO system optics  Fixed
Mechanical flexures Slow
Thermal expansion Slow
Calibration errors ~ Slow To be estimated

(1) if wave-front sensing and imaging are done at a different wavelength.
(1) for wide band imaging at short wavelength.
(*) for laser guide source systems only.

large number of sources of error in an AO system, and it is important not to
neglect any of them. Although the rms wave-front errors usually add as random
errors, the loss in Strehl due to the errors is multiplicative. Since the Strehl
ratio is usually the desired performance metric, even small sources of error
may be deemed important.

The time scales of the errors are important, since they affect the symmetry
of the PSFE. Errors which occur on a fast time scale will average over a typical
astronomical exposure to give a smooth halo to the AO PSFE. Slow or fixed
aberrations will not average, so will produce speckles in the PSE. For slowly
varying aberrations, the aberrations may vary quickly enough to change the
PSF over a series of exposures, which makes deconvolution difficult. If one is
not concerned with non-linearities in the optical and mechanical systems, a
straightforward linear systems model can be used to combine the above errors.
Such a model can be computed easily using a variety of shrink-wrapped
mathematical and engineering analysis tools, provided that expressions can be
computed for the most important sources of error (see Table 7.1. In this
approach, the feedback system is most easily modeled in frequency space,
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using standard transfer function techniques (see Chapter 6). As mentioned
later, the results from more complete AO simulations can be used to improve
the accuracy of a simple error analysis.

If a reasonably accurate model of the control system is included in this
analysis, the analysis can be used to compute the optimal feedback gains for
the system under a given set of observing conditions. This approach is
currently used by several groups with working AO systems.

The most immediate shortcoming of the simple error analysis, is that it does
not take into account the statistics of the wave-front errors. A more complete
linear analysis can be carried out by combining the theoretical expressions for
the wave-front covariance due to various system components. Given the wave-
front covariance, an accurate PSF can be computed for the AO system, rather
than just obtaining the Strehl ratio. The difficulty of carrying out this analysis
is quite considerable, since one has to compute the values of non-trivial multi-
dimensional integrals.

If non-linear effects are important, it is probably more straightforward to
build a complete non-linear system model. In these models it is most
convenient to simulate feedback in the time domain, since this simplifies the
task of incorporating the physics of the various non-linear effects into the
model.

7.3 Non-linear computer modeling

In order to properly understand the functioning of an AO system, a more
thorough performance analysis than an error budget analysis is required. The
most straightforward way to do this is to carry out a Monte Carlo simulation
of the system, using a simulated atmosphere as input to the model. Fortu-
nately modern workstations are fast enough to permit a very thorough analysis
of an AO system, including diffraction effects. The forgoing error budget
analysis was based upon the assumption that the various error sources are
independent. In practice there are interdependencies between the error meas-
urements. For instance telescope aberrations can reduce the SNR for atmo-
spheric wave-front measurements. Non-linearities, such as actuator saturation
and hysteresis may easily be modeled in the computer, but are otherwise
difficult to quantify.

The main difficulty in performing computer modeling is to simplify the
problem sufficiently to make it tractable, while incorporating all of the
important physics. A common choice amongst system modelers, has been to
break their system up into four components. The atmospheric simulation, the
deformable mirror simulation, the wave-front sensor simulation, and optical
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propagation code to tie the previous three components together. This splits the
problem into manageable sub-problems, and as a benefit allows one to
interchange various model components relatively easily. A typical flow chart is
shown in Fig. 7.1.

As in all numerical work it is a good idea to check the impact of various
approximations on the final result. This is particularly important in cases
where it is difficult to compute analytically the order of magnitude of the
error introduced by a particular approximation. For approximations which
involve coarseness of sampling, the impact should always be evaluated, by
checking that changing the resolution does not greatly alter the simulation
result.

For instance if a simulation is carried out with 128 square arrays using a 30-
pixel radius pupil, at least one run of the simulation, using a 256 square array
and a 60-pixel pupil should be carried out. The results of the two simulations
should then be compared, to estimate the size of the error introduced by
sampling.

Due to the slow speed at which these types of simulations run, it is often a
good idea to use the results from a complete simulation to augment a simpler
wave-front error analysis. A good example of this would be to use the
simulation to compute an on-axis PSF, and then obtain isoplanatic behavior by
degrading the Strehl ratio using the theoretical expressions for anisoplanatic
error.

Throughout the following discussions we will pay attention to the level of
approximation used, and the steps that could be taken to compute their impact.

7.4 Optical propagation

The central requirement of all of these simulations is optical propagation code.
This code is normally the most CPU intensive part of the simulation. The main
choice which must be made at this stage is to decide if it is important to model
diffraction effects. Modeling diffraction effects is absolutely essential for
correct modeling of the curvature wave-front sensor. For the shearing inter-

Telescope
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Fig. 7.1 Typical flow of control in an adaptive optics simulation.
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ferometer (SI) and the Shack—Hartmann (SH) type of wave-front sensors,
diffraction effects are less important.

7.4.1 Ray tracing

For SI and SH type wave-front sensors first order calculations can be carried
out using ray tracing techniques. For this a commercial ray tracing package
could be used. The main requirement is that an element can be inserted in the
telescope pupil plane to represent an atmospheric phase screen. Most modern
ray tracing packages have a facility for doing this.

An advantage to this technique is that every optical component in the AO
system can be included in the simulation. The primary disadvantage is a poor
simulation of diffraction effects in the PSF. Estimates of Strehl ratios from ray
tracing become increasingly poor, when the residual wave-front errors exceed 1
radian rms. A further advantage of ray tracing is that non-point sources can
also be simulated with ease.

7.4.2 Fresnel propagation

If diffraction effects must be taken into account, one needs in general to apply
a Fresnel propagation algorithm. For some simple systems one may be able to
make do with using a simple Fourier transform to propagate between the image
and pupil planes. For the more general case there are several techniques for
efficiently computing Fresnel propagation. The most straightforward is the
Fourier technique described below. Another popular technique which might be
used is propagation code based upon Gaussian beams, which offers greater
numerical stability than the Fourier technique. However in the case of AO
systems, we are usually dealing with relatively small Fresnel numbers, and a
small number of propagation steps, a regime in which the simple Fourier
technique works well. It is problematical to include every optical element in a
full diffraction calculation. Modeling the internal optics would dramatically
slow the simulation, and considerably increase the numerical error. If there are
significant internal aberrations in the optical systems, these should be deter-
mined using a ray tracing technique, and aberrations added to the propagated
wave front at an appropriate point. For instance, telescope aberrations can be
added to the wave front at the entrance pupil of the telescope. Diffraction
effects can be modeled only at a single wavelength. For many simulations the
monochromatic approximation is sufficient. A wide bandwidth model may be
approximated by combining the results from several monochromatic propaga-
tion computations.
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For the simplest SH systems, all that is required is to propagate from the
pupil plane to the image plane. This is easily accomplished using a Fourier
transform. For curvature AO systems, and for accurate multi-layer atmospheric
models, slightly more complex Fresnel propagation will be needed. The
Fresnel—Kirchoff diffraction formula assuming a system illuminated with a
plane wave is written as follows:

A(x, 7) = JOO (H;i;’s(")) W (w)exp(iks) du, 7.1)

where W(u) is the complex pupil function and A(Xx, z) is the complex
amplitude in a plane at distance z, & is the modulus of the optical wave-vector,
and the distance s = [|x — u|?> + z2]'/2. For our purposes the angles of propaga-
tion are normally small enough that the obliquity factor and path length
dependence of the amplitude can be ignored, namely set (1 + cos(y))/2s to a
constant. Assuming z>> |x —u|, the distance s can be written s~z +
|x — u|?/2z, ignoring terms in the expansion of order O[(x — u)*/z]. Substi-
tuting this expression for s in Eq. (7.1) gives

—00

A(X, z) exp(ikz)J W(w)exp(ik(x — u)? /2z) du. (7.2)
There are two ways to solve Eq. (7.2), the most obvious method is to expand
the square giving:
A(x, z) o exp(ikz)exp(ikx? /2Z)J W (w)exp(iku? /2z)exp(—ik(x — u)/z) du,

—00
(7.3)
which is simply a Fourier transform with a spherical phase factor (defocus)
added to the pupil phase. Since the Fourier transform of the complex pupil
function W (u) gives the complex amplitude in the image plane, one can think
of the above result as a defocused image. The second method is to realize that
Eq. (7.2) has the form of a Fourier convolution integral:

A(x, z) oc W(x) % exp(ik|x|*/2z), (7.4)
and can thus be solved using the convolution theorem which states that the

Fourier transform of A(x, z) is the product of the Fourier transform of W(x)
with the Fourier transform x(u) of exp(ik|x|? /2z). By definition

K(u) = J exp((ikx?/2z) — ix - u) dx. (7.5)
Completing the square gives:
K(u) = exp(—iuzz/Zk)J exp(ik(x — uz/k)?/2z) dx. (7.6)

o0
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The integral in Eq. (7.6) is the famous Fresnel, or Cornu spiral integral, which
asymptotes to the value 1 over an infinite range. Hence

K(u) = exp(—iu’z/2k), (7.7)

is also a spherical phase factor. Physically one can think of the convolution
approach, as first transforming to the image plane, then transforming back to a
defocussed pupil plane.

When implemented numerically these two methods have complementary
properties. Both techniques, due to the physical approximations inherent in
their derivation, fail for short propagation distances. The main numerical
limitation on both techniques is due to aliasing. Enough pixels must be placed
across the pupil to allow adequate sampling of the pupil wave front. The
spherical phase factor necessary for Fresnel propagation must also be ade-
quately sampled. Generally this means that we can allow a phase step of no
more than 1 radian between adjacent pixels, that contain significant amplitude.
The Fourier technique excels at modeling propagation very close to the image
plane. The convolution technique fills in the rest of the space between the pupil
to near the image plane. An advantage of the convolution technique, which is
particularly useful for modeling curvature AO systems or propagation through
a multi-layer atmosphere, is that size of the geometric pupil remains unchanged
by the convolution.

The only practical way to simulate wide band propagation is to compute the
propagation at several different wavelengths and combine them. This makes
wide optical bandwidth simulations of an AO system quite time consuming.
Simulating the effects of extended (incoherent) sources is problematical. If all
that is required is the illumination in the focal plane, then convolving a PSF
with the object brightness distribution is the correct approach. However for
Fresnel propagation the situation is more complex. If the Fresnel image is close
to the image plane, then convolution with the image brightness distribution will
produce a reasonable approximation.

7.4.3 Aliasing considerations

As with all Fourier techniques aliasing errors are a major concern with the
above method. Aliasing can occur in both the image plane or the pupil
plane. Unfortunately the atmospheric phase variations are not spatially band
limited, which makes it formally impossible to avoid introducing aliasing
when sampling the atmospheric phase. However the aliasing can be reduced
to any level desired by increasing the sampling. A rule of thumb that is
widely used and usually gives acceptable results, is that there should be no
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more than one 7, area per pixel at the sensor wavelength. This assumption
should always be checked by comparing calculations using different wave-
front sampling.

A second source of aliasing is due to the spherical phase factors which are
needed in the Fresnel propagation algorithm. The same rule of thumb also
applies to sampling the Fresnel phase factor, which limits the Fresnel number
that may be attained with a given array size. In the case of the convolution
Fresnel propagation, we may be able to relax the spherical phase factor
sampling requirement, by noting that it is applied to the system point-spread
function, which is spatially localized, even though it never becomes zero.
Again any decision regarding sampling in this domain, should be checked by
running simulations with different sampling.

It is normally the case that the image plane sampling in an AO system need
be no better than critically sampled. A notable exception is the case of
modeling a spectrograph, where fine sampling in the image plane may be
required to properly calculate the light distribution across the spectrograph slit.
In this case the Fourier technique is likely to require very large arrays in order
to avoid aliasing and a Gaussian beam propagation code may be more
appropriate.

7.5 Modeling the atmosphere

In this section we will discuss the problem of modeling the Kolmogorov
turbulence spectrum. We will restrict the discussion to the modeling of a single
turbulence layer moving at fixed velocity. Generalizing to a multi-layer model
can be achieved by combining an appropriate number of single layer models.
First order combination can be achieved simply by adding the path contribu-
tions from the various layers. A better approach is to use Fresnel propagation
code to propagate the complex amplitude between atmospheric layers.

We will also make the assumption of infinite outer scale. This is generally
not a concern for telescopes of 4-m or smaller. All of the methods discussed
can be modified to approximate the effects of a finite outer scale. We will
discuss three methods of modeling here, the spectral approach, a Karhunen—
Loéve polynomial model, and a fractal model.

7.5.1 Spectral method

The most straightforward way to model the atmosphere is to generate a phase
screen with the correct power spectrum
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D) = 20 ful P, 79)
Vo

by direct filtering of an array of uncorrelated Gaussian random numbers
(McGlamery 1976). When using this technique the piston term (zero fre-
quency) is set to zero, thus avoiding the singularity in the spectrum in Eq. (7.8)
at zero frequency.

There are several problems with this method. The most serious being that
low order terms are underestimated, and due to the repetitive nature of the FFT,
areas near opposite edges of the array will be correlated.

With modern fast computers one can simply use large arrays of data
alleviating the cyclical nature of the FFT by only using the central portion of
the resulting phase screens. The underestimation of low order terms can be
corrected by subtracting these terms, and then adding them back with the
correct statistical weight (Wampler et al. 1994). We can use the Karhunen—
Loéve model described next to carry out this correction.

With these two precautions taken data from this type of model can be very
good. It is difficult to use this method to produce a long time series of data,
since this would mandate a large Fourier transform.

The underlying computational efficiency of this scheme is dominated by the
Fourier transform time, provided an efficient random number generator is used,
and is thus of order N log(N). However if a continuous time series of data is
required, the arrays may need to be of substantial size.

7.5.2 Karhunen—Loéve model

The Karhunen—Loéve modes of a process are a unique set of orthogonal
functions, which have statistically independent weights. These modes are
interesting for many reasons, one being that the mode weights provide the most
compact description of the process. Fortuitously it turns out that the Karhu-
nen—Loeve modes for Kolmogorov turbulence over a circular aperture can be
expressed analytically in terms of the well-understood Zernike polynomials
(see Noll 1976; Roddier 1990; and Chapter 3 of this book). The first step in
this computation is to construct a Zernike covariance matrix over the atmos-
pheric turbulence. This matrix can then be diagonalized, the resulting eigen-
vectors being the Karhunen—Loeéve modes. An expression for the Zernike
covariance matrix is given in Chapter 3 [Eqgs. (3.13) and (3.14)]. The efficiency
of this scheme is of the order of N X Zi, where Z, is the maximum order of
Zernikes used. The coefficients of the Zernike terms grow very rapidly with
increasing order, making rounding error a significant concern, once more than
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about 50 orders are required. This technique is thus well suited to the
generation of wave fronts for simulating small telescopes.

The disadvantages of this approach, are that it is not completely straightfor-
ward to model time evolution, and there is a truncation error. The theoretical
time evolution of the various modes is known, so time evolution can be carried
out by constructing a random sequence of weights for each mode, with the
correct time spectrum. The truncation error is more difficult to deal with.
Although this is quite negligible for an uncorrected wave front, it can have a
large effect on the rms of the wave front after correction. A simple ad hoc
approach is to add delta-correlated random noise to the wave front to add in the
energy lost due to truncation error. A much better solution is to combine this
technique with the spectral method, using the Karhunen—Loéve method to
generate the low frequency components, and the spectral method to generate
the high frequency components. The combination of the two methods generates
very high fidelity wave fronts, in a fairly computationally efficient manner.

7.5.3 Fractal method

The fractal method is a very elegant method for generating atmospheric phase
screens. It relies upon the observation that the turbulence structure is fractal in
nature. This leads to a very computationally efficient procedure, which
typically involves of the order of N log(/NV) operations. However in this case no
over-sizing of the array is required (Lane 1992; Schwartz et al. 1994; Jaenisch
etal. 1994).

A nice advantage of this method is that it can be used to simulate turbulence
over dispersed arrays, since fine sampling need only be carried out on and
immediately around each aperture, coarser sampling sufficing to tie the
apertures together. This method is probably the only practical method for
simulating turbulence over a large array of telescopes.

It is possible to model the whole energy cascade of Kolmogorov turbulence
using this method, by allowing the node weights at different spatial sampling
levels to evolve with the appropriate statistics. At the time of writing the fractal
algorithm has not been widely studied or used.

7.5.4 Multi-layer models

Fortunately for those of us simulating AO systems, it is generally the case that
atmospheric turbulence occurs in discrete thin layers. This is fortuitous indeed,
since it means that a number of the preceding two-dimensional models can be
combined to produce a rather good model of the three-dimensional atmosphere.
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Typical turbulent layer thicknesses that have been reported in the literature are
on the order of 100 m or less. For a 100-m layer we do not need to worry about
diffraction within a layer for structure bigger than about 1 cm. For some non-
astronomical sites, boundary layer turbulence can be very deep, and thus
require more complex modeling. We will not discuss poor site modeling here.

A first order atmospheric model, will simply add up the phase contribution
from the various heights along the beam propagation direction. At this level we
accurately model isoplanatic effects, but neglect the effect of scintillation. It is
important to remember to include projection effects when looking off zenith.
For the typical field of view of an astronomical telescope, all field angles can
be considered to have the same projection angle. The correction factor there-
fore consists of multiplying the turbulence rms by cos(¢), where ¢ is the zenith
angle.

For high order AO systems, scintillation effects may well be important. To
model these it is necessary to propagate the optical complex amplitude between
turbulence layers and eventually to the telescope. This requires the use of
Fresnel propagation code, as discussed earlier. This additional level of com-
plexity will considerably slow the progress of simulations.

7.6 Wave-front sensor simulation

Although the wave-front sensor simulation is at the core of the AO simulation,
its actual implementation is relatively simple. We describe here the procedures
for simulating the most common wide bandwidth wave-front sensors. Other
types of sensors should be equally easy to simulate.

7.6.1 The Shack—Hartmann wave-front sensor

The most straight forward way to simulate a SH wave-front sensor is to extract
the piece of wave front feeding each SH lenslet, and independently propagate
each to the image plane using a Fourier transform. One could also apply
appropriate tilts to each of the subaperture regions and transform the complete
pupil to the image plane in a single large Fourier transform step.

The latter approach has the advantage of correctly accounting for the
diffraction interference between adjacent spots. Usually the spots in a SH
sensor are well enough separated that the diffraction effects between individual
spots are negligible. On some more recent SH systems, which use adjacent
2 X 2 CCD pixel groups for each spot, interference between spots may be a
significant source of error.
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7.6.2 The curvature wave-front sensor

The curvature wave-front simulation is slightly more complex, in that it
requires a Fresnel diffraction calculation to compute the illumination in two
defocused images. For this application the convolution Fresnel diffraction
approach has the great benefit that it does not change the size of the pupil,
which considerably eases the problem of dividing the pupil light into different
wave-front sensor bins.

It is interesting to note that the mathematical operations involved in the
convolution Fresnel calculation have a one to one correspondence to the optical
components in the curvature wave-front sensor subsystem. The first lens in the
system corresponds to the Fourier transform to the image plane. The membrane
mirror multiplies the PSF by a spherical phase factor, and the final lens
transforms back to the pupil plane.

7.6.3 The shearing interferometer

The shearing interferometer wave-front sensor can also be viewed as a variation
of the knife-edge test. Viewed this way, the reason for its achromaticity is clear.
This sensor is relatively easy to simulate, requiring a transform to the image
plane, multiplication by a mask function, and a transformation back to the
pupil plane.

7.7 The control loop

The whole of this discussion is predicated upon the assumption that the AO
control loop is most easily simulated using a discrete time-step approach. This
approach is generally more time consuming than a spectral approach, but it
allows for relatively easy incorporation of non-linearities such as hysteresis.

As with many other aspects of the simulation, aliasing is a potential problem
here. The simplest approach, is to compute the model at the natural feedback
rate of the system, and apply corrections at the beginning of the next cycle.
This approach approximates all of the phase lags in the servo system by a
single time delay equal to the feedback cycle time. Phase delays in a typical
system include the data processing delay, electrical and mechanical time
constants. To simulate these phase delays more accurately requires computing
multiple wave-front sensor signals over one integration period, while the signal
works its way to the ultimate deformation of the active mirror. It may be
important to simulate the phase delays more accurately for a system with a
slow feedback rate. This is another aspect of the simulation where the expected
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error should be estimated from theory, or computed by changing the time
resolution of the simulation.

There is no restriction to the complexity of the feedback algorithm that may
be applied in an AO system. However most commonly a pure integrator is used,
possibly with some small proportional term to roll off the d.c. gain. If
sophisticated feedback algorithms are going to be simulated, great care must
also be applied to the atmospheric simulation to ensure that it is delivering
realistic wave-front time sequences.

7.8 The active mirror

Fortunately for all currently available active mirrors, the material movement is
so small that we may accurately consider the influence function of individual
actuators to be independent. This leads to a pseudo-linear description of the
mirror surface generated by combining the influence functions for each
actuator. The main cases of non-linearity in a mirror model are actuator
saturation and hysteresis. Both of these sources of error have been reduced in
modern mirrors, with PMN materials giving quite high stroke and better
hysteresis behavior. However for some active mirrors the hysteresis is a strong
function of temperature, and may be a significant factor if the mirror runs near
0 °C. Even with modern mirrors, stroke saturation can be seen in the presence
of bad telescope aberrations, poor seeing, or incomplete tip/tilt correction.

Hysteresis is not generally an important effect unless the wave-front sensor
measurement space does not completely span the deformable mirror space. In
this case there will be modes of mirror deformation which are undetectable (in
the sensor’s null-space) by the wave-front sensor. In the presence of hysteresis,
these modes can grow uncontrolled. Unmeasurable mirror modes will always
occur if there are fewer detectors than actuators, which is a good reason for
avoiding this situation. Unfortunately most Shack—Hartmann systems have an
unmeasurable mirror mode known as the waffle or checkerboard mode in
which adjacent actuators are actuated with opposite sign. Simulations of these
must therefore include a mirror hysteresis simulation.

7.9 Including other effects

We have discussed only the most important aspects of an AO simulations.
There are many other aspects which may be important in a particular case. In
Table 7.2 we list the physical effects which may be important to consider in an
AO simulation. We have included an estimate of the importance of each effect
for a typical AO system, of ten to a few hundred actuators on a 4-m telescope.
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Table 7.2. Physical effects which may be important in the modeling of an

AO system

Physical effect Relative importance
Sky background high
Detector dark current high
Detector read noise high
Photon shot noise high
Electrical output bandwidth moderate
Computational time lag high
Detector read-out time high
Outer scale moderate
Atmospheric dispersion low
Scintillation low
Active mirror hysteresis moderate
Active mirror saturation moderate
Active mirror inertia low
Isoplanatic effects moderate

For more specialized AO systems the relative importance of the items will
change. For example if one is building a high order system specifically for
extra-solar planet detection, scintillation will become a dominant error.
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8.1 Introduction to the COME-ON program

In the mid 1980s several programs were undertaken in astronomy to implement
adaptive optics (AO) for visible (Doel er al. 1990; Acton and Smithson 1992)
and infrared (IR) (Merkle and Léna 1986; Beckers ef al. 1986) imaging. Those
were stimulated by the coming new generation of very large telescopes of
diameter D around 8 m (Barr 1986) and by the availability of AO components
developed by defense programs (see for instance: Hardy ef al. 1977; Pearson
1979; Gaffard et al. 1984; Fontanella 1985; Parenti 1988). Initiated by P. Léna,
F. Merkle, and J.-C. Fontanella on the basis of the existing competences in
France and at the European Southern Observatory (ESO), the COME-ON
project was started in 1986 with the aim of demonstrating the performance of
AO for astronomy. The consortium in charge of the project was initially made
of three French laboratories associated with ESO, COME-ON standing for:
CGE, a French company now CILAS (formerly LASERDOT), Observatoire de
Paris-Meudon, ESO and ONERA. The purpose of the project was initially to
build an AO-prototype system based on the available technologies and test it at
an astronomical site, in order to gather experience for the ESO Very Large
Telescope (VLT) program, including multi-telescope interferometry with the
VLT interferometer (VLTI). The main requirement was to achieve nearly
diffraction-limited imaging at the focus of a 4-m class telescope at near IR
wavelengths from 2 to 5 um, depending on the seeing conditions. With the
successful results obtained the project became a full development program
(Fontanella ef al. 1991) in order to turn the first prototype into a real
astronomical instrument through successive phases which will be presented
hereafter.

In October 1989, for the first time in ground-based astronomy, diffraction-
limited images at a wavelength of A = 2.2 um (K band) were obtained in real
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time with the 19-actuator COME-ON prototype system on the 1.52-m telescope
at the Observatoire de Haute-Provence (OHP) in France under average seeing
conditions (about 1”) (Rousset et al. 1990a). In April 1990, resolutions down to
0.17" and Strehl ratios up to 0.3 were achieved with this system at 2.2 um on
the ESO 3.6-m telescope at La Silla (Chile) under average seeing conditions
(about 0.8") (Rigaut et al. 1991a). During 1990 and 1991, a number of tests
were carried out to improve the system in preparation for the next phase. In
parallel, astronomical observations were performed demonstrating the great
value of AO (Rigaut et al. 1992a; Malbet ef al. 1993; Saint-Pé et al. 1993a,b).

The second generation of this system, so-called COME-ON-PLUS, was set
up on the ESO 3.6-m telescope in December 1992 (Rousset et al. 1993). The
first prototype was substantially modified with a 52-actuator deformable mirror,
a high sensitivity wave-front sensor (WFS), a higher temporal bandwidth, and
an optimized modal control (Rousset ef al. 1994). The system has been offered
on this telescope as a standard instrument to the European astronomical
community since mid-1993. Finally, the last phase was the upgrade of the
COME-ON-PLUS system into a common-user instrument, improving its scien-
tific versatility and operational efficiency (Beuzit et al. 1995). This instrument
is now called ADONIS (ADaptive Optics Near Infrared System). The imple-
mentation started in 1995 and was completed in 1996. Since 1993, a large
number of astrophysical results obtained with this system have been published
in the literature, see for instance the reviews made by Léna (1995a,b) and
Chapter 15 of this volume.

8.2 System description
8.2.1 COME-ON: an AO-prototype system

The COME-ON prototype system was initially designed with the limited
ambition to achieve diffraction-limited imaging at 3.8 um (L band) on the ESO
3.6-m telescope (Rousset ef al. 1990b). The number N of degrees of freedom
of the system was derived from N = (D/ro(3.8-um))? in order to achieve a
good correction of the turbulence, ry being the Fried diameter (Fried 1965).
For a seeing of 1, this leads to N = 11 at A = 3.8 pm. Then 19 actuators were
chosen for the deformable mirror and 20 subapertures for the WFS. The
required temporal bandwidth was derived from fi, = U/ry (Greenwood 1977).
For a mean wind speed 0 = 10 m/s, fu,w = 9 Hz at 3.8 um. A 100 Hz sam-
pling frequency was chosen for the closed-loop operation taking into account a
factor 10 between the sampling frequency and the resulting bandwidth for a
digital control.
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The system aims to correct the IR images by sensing the wave front (WF)
from a reference source observed at visible wavelengths taking advantage of
the achromatism of the WF distortions due to atmospheric turbulence. The
WFS may therefore benefit from the high sensitivity of the detectors in the
visible which can be photon-noise limited. But the subapertures are scaled by
ro(Amm) at the imaging IR wavelength Ay which is much larger than ry(Awes)
at the WFS visible wavelength Awgs. Then, the subaperture diameter is much
larger than ro(Awgs). It results in a signal-to-noise ratio (SNR) of the WF
sensing set by 79(Awrs) and not by the subaperture diameter: the measurement
is seeing-limited (see Chapter 5). Therefore, increasing the subaperture dia-
meter does not increase the SNR.

The philosophy of the design of COME-ON was to construct a test bench,
the main components of which could be exchangeable for future developments.
The optical layout is shown in Fig. 8.1 (Kern et al. 1988). The instrument is set
up at the Cassegrain f/8 focus of the ESO 3.6-m telescope. All the optical
paths were initially in a single plane. Only the imaging path has been modified
in a later stage (see Section 8.2.2).

The mirrors M2 and M5 are symmetric off-axis parabolas. M2 images the
telescope pupil onto the deformable mirror (M3). A tip/tilt plane mirror (M4)
compensates for the overall WF tilt fluctuations which are the largest disturb-
ances generated by the turbulence (Fried 1965). To avoid extra mirrors in the
optical set-up, the tip/tilt mirror is placed close to the deformable mirror but
out of a pupil conjugate plane. It results in a slight IR background modulation

Wave-front
sensor

f18
M1/ telescopic focus
‘Adaptive
mirror ]
E Dichroic MWS1 M2
=== Tilt
DA mirror
M4
Objective [ ]
MWS2
Reference
star selecting IR x
irror Camera
f135 M7
IR focus

Fig. 8.1. Optical layout of the COME-ON system. Reproduced from Kern er al.
(1988).
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whose effect was found to be negligible on IR imaging detector arrays. A
dichroic beam splitter reflects the IR part of the incoming light (wavelength
>0.95 wm) toward the imaging path while it transmits the visible counterpart
toward the WFS channel. MWS1 and MWS2 are two folding flat mirrors.
MWS?2 is conjugate with the telescope pupil and is used as a WEFS reference
star selecting mirror. This field selecting mirror allows the use of an off-axis
star in a 45" field for the WFS when the observed on-axis object is to faint at
visible wavelengths. The WFS is a Shack—Hartmann (SH) type, the lenslet
array of which is conjugated with the deformable mirror, i.e. the telescope
entrance aperture. On the imaging channel, the IR light is reflected by an off-
axis ellipse (M6) producing a f/35 IR focus. M6 is conjugated with both the
telescope pupil and the cold stop of the IR camera. It is used as a fast on—off
chopping mirror allowing the recording of sky background between the source
exposures without offsetting the telescope secondary mirror. Therefore, the AO
loop is continuously closed even on the off position looking at the blank sky.
All these schemes were defined during the first year of the system study and
are still of interest for the design of such a system except for the dichroic plate,
the best choice being today to transmit the IR light. A special set of mirrors
(not shown in Fig. 8.1) was used to adapt the optical bench at the Coudé focus
of the OHP 1.52-m telescope for the tests in 1989. The main characteristics of
the COME-ON system are summarized in Table 8.1 (Rousset et al. 1990b).
The deformable mirror manufactured by CGE is a continuous facesheet
mirror equipped with 19 piezoelectric actuators on an hexagonal pattern. Its
first mechanical resonance frequency is around 3.5 kHz, well above the control
loop sampling frequency. The tip/tilt mirror developed by Observatoire de
Paris-Meudon has a two-axis gimbal mount equipped with four piezoelectric
actuators working in push—pull (see Fig. 8.2). It has a first mechanical reso-
nance around 200 Hz which was partly compensated by an internal servo-loop.
The SH WFS uses 20 subapertures on a 5 X 5 square grid. Figure 8.3
presents an example of an SH image pattern recorded when observing a binary
star and the geometry of the pupil plane. Two lenslet arrays were provided by
ONERA with two focal lengths to match the seeing conditions. They are
directly mounted in front of the WFS camera without any additional optical
element. The superimposition of the sky background imaged by neighbor
lenslets on the camera is avoided by a field stop at the entrance of the WFS as
proposed by Fontanella (1985). For example, the maximum field-of-view
(FOV) alloted to each lenslet is 6” for the smallest focal length. The WFS
camera was initially a 100 X 100 pixel Reticon array equipped with two
intensifier stages: a Proxitronic proximity focus as the first stage and a Philips
Composants 1410 microchannel plate intensifier. The S25 type entrance photo-
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Table 8.1. Characteristics of the COME-ON AO-prototype system (1988—1992)

Deformable mirror Continuous facesheet
19 actuators, hexagonal array
65-mm pupil diameter
£7.5 um stroke for 1500 V
3.5 kHz first mechanical resonance

Tip/tilt mirror Two-axis gimbal mount
4 piezoelectric actuators
7" amplitude on the sky
6 milli-arcsec resolution
200 Hz first mechanical resonance

WF sensor Shack—Hartmann
20 subapertures, 5 X 5 square grid
6" maximum FOV per subaperture
Two stage intensified Reticon array
S25 photocathode
100 X 100 pixels
100 Hz frame rate
Read-out noise limited

Real time computer Centroid computation
WF computer Two interconnected computers
Dedicated hard wired

8-bit digitization

1.3 Mpixel/s maximum rate
Command computer Command vector computation

Motorola 68020 microprocessor

VME bus

12-bit digital-to-analog conversion

100 Hz command rate

9 Hz open loop bandwidth at 0 dB

cathode has a peak sensitivity at 0.5 um, a bandwidth of 0.3 pm and a mean
quantum efficiency of 7%. The frame rate of the camera which is the sampling
frequency of the turbulence disturbances was 100 Hz. During the first year on
the ESO 3.6-m telescope, this camera did not allow the loop to be closed on a
star of magnitude my >9. At low light level, this camera was read-out noise
limited because of the detector noise level of the Reticon array. In addition, two
other cameras for WF sensing were tested: an electron bombarded CCD
(EBCCD) in collaboration with the Laboratoire d’Electronique Philips (LEP)
and an IRCCD camera in collaboration with the Observatoire de Grenoble
(Rigaut et al. 1992b). Characteristics and performance of the EBCCD will be
given in Section 8.2.2. The IRCCD camera and the IR WFS path were far from
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Fig. 8.2. The tip/tilt mirror of the COME-ON system. Reproduced from Rousset et al.
(1990b).

being optimized but it was possible to obtain a stable closed-loop operation on
a star of magnitude myg = 1.6, hence demonstrating the feasibility of near-IR
wave-front sensing.

Both adaptive mirrors were driven by a digital control loop. Two intercon-
nected computers were used to process at a rate of 100 WF measurements per
second. The first stage was the WF computer. It was in charge of the digi-
tization and data reduction of the WFS camera signals in order to provide the
WF slope vector to the second stage. It was a programmable dedicated hard-
wired computer developed by ONERA. The second stage was the command
computer in charge of the calculation and the digital-to-analog conversion of
the command vector to apply to the two adaptive mirrors. The calculation is the
multiplication of the command matrix by the slope vector and the application
of the temporal controller (see Chapter 6). This computer was based on the
VME bus and the Motorola 68020 microprocessor and made of from-the-shelf
boards. The command algorithm was a modal control where the system
eigenmodes were used (see Chapter 6) (Boyer et al. 1990). The temporal
bandwidth of the system was measured to be 9 Hz for the open-loop transfer
function at 0 dB. The performance was limited by the important time lag in the
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Fig. 8.3. SH image pattern (50 X 50 pixels) of the COME-ON system observing a
binary star (separation 3”) with a field-of-view of 6” per subaperture. The geometries
of the subapertures (— — —) and of the deformable mirror actuators (O) are super-
imposed.

servo-loop due to the exposure and read-out times of the WFS camera (Boyer
et al. 1990). This bandwidth was then extended up to 25 Hz for bright stars by
the reduction of the time lag due to the pixel read-out (Rigaut et al. 1991b).

The COME-ON IR imaging camera was based on a 32 X 32 InSb charge
injected device (CID) array developed by Société Anonyme de Télécommuni-
cation (SAT) as the detector of the 1—5 um camera of the ISO satellite
(Lacombe et al. 1989). The camera was read-out noise limited. Images were
recorded using the standard photometric broad band filters at wavelengths of
1.2 um (J), 1.68 pm (H), 2.23 pum (K), 3.87 um (L"), and 4.75 um (M). This
camera was decommissioned at the beginning of 1993.

8.2.2 COME-ON-PLUS: an upgrade

The COME-ON-PLUS system is an upgraded version of the COME-ON
prototype system (Rousset et al. 1992). Significant improvements were brought
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into the spatial and temporal correction capabilities, the sensitivity of the WFS,
the throughput and the mechanical stability for long exposure on the imaging
camera. The main features of the system are a 52-actuator deformable mirror,
two selectable WFSs, one of which is dedicated to faint reference sources, and
an optimized modal control to manage the low SNR cases in the servo-loop for
such faint reference sources.

The optical layout was slightly modified (Hubin et al. 1992). A second WFS
was set up. A translatable mirror allowed the selection between the two WFSs.
The imaging channel was modified into a f/45 focus. The beam was folded
down to cross the bench, thus providing under the bench a standard interface
plate for visitor equipment. In April 1993, the SHARP II camera from the Max
Planck Institut fiir Extraterrestrische Physik (MPIE) in Garching (Hofmann et
al. 1995) was set up for the first time on COME-ON-PLUS using the new f'/45
imaging channel (Rousset ef al. 1993). A significant improvement in the optical
efficiency was made between COME-ON and COME-ON-PLUS by the use of
a new silver coating for all mirrors. The throughput was measured including all
the optical elements (around 10 surfaces): for the WFS channel 40% over the
0.45—0.75 pm spectral range and for the imaging channel 80% between 1 and
5 um. The main characteristics of the COME-ON-PLUS system are sum-
marized in Table 8.2 (Rousset et al. 1994). The other components of COME-
ON were not replaced.

The new continuous facesheet deformable mirror manufactured by LASER-
DOT (now CILAS) is equipped with 52 piezoelectric stacked actuators on an
8 X 8 square grid (see Fig. 8.4) (Jagourel and Gaffard 1991). Its first mechani-
cal resonance frequency is around 13 kHz.

The two SH WFSs work in the visible and use 32 subapertures on a 7 X 7
square grid. Figure 8.5 presents an example of SH image pattern recorded
when observing a binary star and the geometry of the pupil plane. The WFS
noise is still seeing-limited. The lenslet arrays were also provided by ONERA.
The maximum FOV is limited to 6”. The maximum frame rate of the WFSs is
200 Hz. The WFSs are selected depending on the magnitude of the natural
reference star. For relatively bright stars, the intensified Reticon array is used.
The range of magnitude my is between 6 and 10. Because of the limitations of
the Reticon based camera, a new WFS camera is provided to observe fainter
sources. It is equipped with an EBCCD manufactured by LEP (Richard et al.
1990). The EBCCD is based on a first generation single stage triode intensifier
tube. The standard output screen is here replaced by a thinned back-bombarded
CCD. Thus, the accelerated photoelectrons are directly detected by the CCD.
The photocathode is a S20R with a peak quantum efficiency of 10% at
0.55 pm. The electronic gain of the tube reaches 2000 for a 15 kV accelerating
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Table 8.2. Characteristics of the COME-ON-PLUS AQO system

Deformable mirror Continuous facesheet
52 actuators, square array
65-mm pupil diameter
£5 um stroke for £430 V
13.5 kHz first mechanical resonance

Tip/tilt mirror No change

WF sensor Two Shack—Hartmann WFSs
32 subapertures, 7 X 7 square grid
6" maximum FOV per subaperture
56 X 56 pixels

Bright object camera Two stage intensified Reticon array
200 Hz frame rate
6=my=<10

Faint object camera Electron bombarded CCD
S20R photocathode
25 to 200 Hz frame rate
Photon-noise limited
10=my <15

Real time computer Two interconnected computers
WF computer No change
Command computer Motorola 68040 microprocessor
+ Motorola 56000 DSP
VME bus

14-bit digital-to-analog conversion
200 Hz command rate

29 Hz maximum bandwidth
Optimized modal control

voltage. The CCD read-out noise is around 100 electrons/pixel per frame. As a
consequence, this camera is always photon-noise limited. Another key advan-
tage of this camera is the very high stability of the gain leading to a high
reliability on photo-event detection and count (Cuby et al. 1990). The read-out
frame rate is selectable between 25 and 200 Hz depending on the incoming
light level. In fact, 100 Hz is the maximum practical frame rate in order to
achieve a proper long term lifetime of the EBCCD. The working range of
magnitude my was found on the sky to be between 11 and 15 including all
system losses.

The command computer was upgraded in order to achieve the calculation of
the command for 52 actuators at a sampling frequency of 200 Hz. Note that the
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Fig. 8.4. The 52-actuator deformable mirror of the COME-ON-PLUS system (since
1992). Reproduced from CILAS.
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Fig. 8.5. SH image pattern (56 X 56 pixels) of the COME-ON-PLUS system observing
a binary star (separation 1.3") with a FOV of 6" per subaperture. The geometries of the
subapertures (— — —) and of the deformable mirror actuators (O) are superimposed.
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WF computer was not changed during this phase. The computing power of the
command computer was boosted by a dedicated Motorola 56000 DSP board
developed by LASERDOT (now CILAS). For bright stars, the servo-loop
performance is maximum. The temporal bandwidths of the system were meas-
ured to be for the open-loop transfer function at 0 dB: 29 Hz for the deformable
mirror and 23 Hz and 27 Hz for the two axes tip/tilt mirror (Rousset et al.
1994). The bandwidths for the tip/tilt mirror are primarily limited by its
mechanical response. For the deformable mirror, the limitations are due to both
its high voltage amplifiers and the phosphor screen of the Reticon camera.
With the EBCCD camera, the theoretical bandwidth i1s 11 Hz at a 100 Hz
frame rate (i.e. sampling frequency).

For the COME-ON-PLUS system, a new optimized modal control algorithm
has been developed to deal with low SNR in the WF measurements (Gendron
and Léna 1994). The initial goal was to push the limiting magnitude of the
system toward m =~ 16 for tip/tilt correction only (Gendron et al. 1991). The
main feature of this algorithm is the possibility to adapt the number of
corrected spatial modes and their gain in terms of turbulence and astronomical
conditions such as: the seeing, the atmospheric correlation time, the reference
source characteristics (brightness and size) and, in a future development, the
angular separation between the reference star and the observed object. The set
of modes must be chosen to deal with decoupled degrees of freedom. Possible
modes are the mirror Karhunen—Loéve modes (Gendron 1993). Each mode has
a different SNR. These SNRs depend on the conditions listed above. The mode
SNR is here the ratio of its turbulence variance to its noise variance. For
COME-ON-PLUS, the SNR varies by a factor 100 on the set of modes. The
lowest order, i.e. the two tilts, has the highest SNR while the highest order (i.e.
the highest spatial frequency generated by the deformable mirror) has the
lowest one. The command optimization consists in performing for each mode
the adjustment of the loop gain in order to find the optimum bandwidth taking
into account the SNR and the turbulence correlation time (Gendron and Léna
1994, 1995). Too high a bandwidth leads to an important propagation of the
noise on the command while too low a bandwidth does not properly compen-
sate for the turbulence. A new command matrix can be calculated for each new
set of modal gains, which are derived as often as necessary from an open-loop
measurement of the turbulence characteristics. This optimization is made oft-
line. Each new available command matrix is simply loaded in the real time
computer (Rousset et al. 1994).

A new imaging IR camera, SHARP II has been provided by the MPIE in
Garching (Hofmann et al. 1995) to replace the former 32 X 32 from April
1993 onwards. It has a 256 X 256 NICMOS3 HgCdTe detector array covering



182 8. The COME-ON/ADONIS system

the J, H, and K bands with very low dark current (~ 1 electron per pixel and
per second) and read-out noise (~ 40 electrons per read-out).

8.2.3 ADONIS: a user friendly system

The first observing results obtained with the COME-ON and COME-ON-PLUS
systems clearly demonstrated the impressive potential of this technique in
different fields of astrophysics (Rigaut et al. 1992a; Léna 1995a, and this
volume). Nevertheless, a fairly large team of qualified personnel was still
required to operate the system as several instrumental parameters had to be
optimized depending on a number of astronomical requirements such as the
magnitude, colour, and morphology of the reference source, the wavelength of
observations, the angular separation between the object and the reference
source, and depending also on atmospheric conditions, such as the atmospheric
turbulence amplitude and coherence time, etc. With COME-ON-PLUS this
optimization could not be carried out very easily and had given rise to a
somewhat inefficient use of telescope time (typically < 25%). The experience
gained with COME-ON and COME-ON-PLUS then led to the concept of
ADONIS, which was intended to improve the performance, versatility and
operational efficiency of the AO system, mainly by upgrading the real time
computer and adding a so-called master computer running artificial intelligence
software (AIS) to handle the overall instrument control and the interface with
the user (Beuzit et al. 1994). In addition, two dedicated IR imaging cameras
have been built to take full advantage of the high quality of the images
generated by the AO system. A mechanical and optical interface allows visitor
experiments like polarimeters, coronographs, spectrographs to benefit from the
AO correction (see Section 8.2.4). Another objective of ADONIS was to
develop operational procedures and test technical concepts that could be later
applied to the AO system under study for the ESO Very Large Telescope.

The optomechanical layout of ADONIS has not been substantially changed
from the one of COME-ON-PLUS. An infrared wave-front sensor channel has
been added to offer the possibility of wave-front sensing in the infrared when
neither a visible counterpart of the astrophyical target nor a reference star is
available. The IR wave-front sensor itself was not part of the ADONIS
instrument and is nowadays being developed by Observatoire de Paris. Its
implementation is foreseen for end-1998. Many subsystems of the bench have
to be set and modified according to the astronomical or atmospheric conditions.
The master computer has a direct control over all of these functions via a
80C32-based micro-controller. Typical remote controlled functions include the
WES selection (low flux, high flux or, eventually, infrared), the WFS frame
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frequency, gain, neutral density filter settings and the dichroic mirror choice
according to the reference star magnitude and spectral type. Other elements
such as the infrared chopping mirror offset are also remotely controlled.

A new real time computer (RTC) was implemented on ADONIS. It has
been developed specifically for AO applications by SHAKTI (France) and
ONERA. It integrates in one system all functions previously achieved by the
COME-ON-PLUS wave-front and command computers. Its modular architec-
ture relies on a VME motherboard and dedicated DSP C40 modules. A
remote rack enables the analog processing and digitization (12 bits/10 MHz
converter) of the video signal directly at the WFS camera output, thus
avoiding analog transmission noise. The RTC itself consists of: one interface
board dedicated to the WFS data reduction (windowing, flat-fielding, dead
pixel correction, thresholding); several C40 modules determining the WF x
and y slopes and computing the mirror commands; the 12-bit analog conver-
sion 64-output module needed to send the output voltages to both the
deformable and tip/tilt mirrors amplifiers; and finally the graphical display of
either the WFS images or the command vectors. The RTC carries out the
complete processing for each 7 X 7 Shack—Hartmann subaperture of 8 X 8
pixels in less than 100 ps after the end of the WFS integration. An additional
feature of this new RTC is the possibility of recording sets of WFS Shack—
Hartmann images, x and y slopes, and mirror commands with the servo-loop
either open or closed. This permits the correction to be optimized during
observations by changes in the modal control, thus saving telescope time, and
provides valuable real time assesment of the quality of the AO correction. It
will finally allow the use of off-line PSF reconstruction algorithms (Véran et
al. 1997, and Chapter 14 of this volume).

The overall control of the ADONIS instrument as well as the user’s interface
is managed by an Unix workstation (HP9000/720), called the master computer,
which incorporates artificial intelligence software (AIS). Figure 8.6 illustrates
the global architecture of the ADONIS control system and data flow (Demailly
et al. 1994). The master computer is interfaced to each element of the adaptive
optics system (optomechanical bench, micro-controller, RTC, IR camera) and
observatory environment (telescope control system, seeing and weather moni-
tors, etc.) by means of Ethernet or RS-232 links. Internally, a client/server
architecture allows the interactions between these subsystems and a user-
operated control panel (Demailly 1996). This panel provides an overview of the
system set-up and status parameters as well as relevant data for evaluating the
current performance of the instrument. The AIS performs most of the optimiza-
tion and control tasks, an important example of which being the modal control
optimization tool which evaluates the best modal control matrix in relation to
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Fig. 8.6. ADONIS control software architecture and data flow. Reproduced from
Demailly et al. (1994).

the prevailing atmospheric turbulence characteristics and the wave-front sen-
sing noise (Gendron and Léna 1994, 1995).

8.2.4 Focal plane instrumentation

Two dedicated infrared cameras are available to the astronomer at the ADONIS
/45 output focus in addition to the possibility of installing visitor equipment,
which could be either a different camera or a complementary observing mode
such as a coronograph, a polarimeter, a 3-D spectrograph, etc.

8.2.4.1 Infrared cameras

The first camera, an improved version of SHARP II, built by MPIE in Garching
(Hofmann et al. 1995; ESO Adaptive Optics Group et al. 1995), is based on a
256 X 256 NICMOS-3 HgCdTe detector array, sensitive to the 1—2.5 pm
spectral range. It features the standard J, H, K, and K’ photometric filters as
well as narrow band filters centered on the spectral lines of Fell, Hel, H,, OII,
PS, Py. A low spectral resolution imaging mode (R ~ 70) is also provided by a
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circular variable filter (CVF) in the 1.3—2.38 um range. A set of exchangeable
objectives provide three different image scales: 0.035, 0.05, and 0.1 arcsec/
pixel. The differential atmospheric dispersion preventing the achievement of
diffraction-limited observations at high zenithal distances in broad-band ima-
ging, especially in J and H bands, an Atmospheric Dispersion Corrector (ADC)
can be inserted in front of the camera in order to limit the wavelength
dependent elongation to a maximum value of 0.005".

The second camera, called COMIC (COME-ON-PLUS Infrared Camera),
based on a 128 X 128 HgCdTe/CCD focal plane array from the French CEA—
LETI/LIR manufacturer, was developed by Observatoire de Paris and Observa-
toire de Grenoble (Feautrier et al. 1994; Lacombe et al. 1997). The array
covers the 1-5 um spectral range but is particularly optimized for the 3—5 pm
region due to its very high storage capacity of 6 X 10° electrons for a total
read-out noise of about 1000 electrons. Two different image scales can be
selected, depending on the wavelength of observation: 0.035 arcsec/pixel for
the J, H, and K bands, leading to a 4.5 X 4.5 arcsec FOV, and 0.1 arcsec/pixel
for the L and M bands leading to a 12.8 X 12.8 arcsec FOV. Standard broad-
band photometric filters (J, H, K, short K, L, L', and M) are provided, as well
as exchangeable narrow-band and continuum filter doublets dedicated to
specific astronomical targets (spectral lines of Hel, Bry, H,O, PAH, H;, and
Bra). Two CVFs, covering the 1.34—4.52 um range, allow low spectral resolu-
tion imaging with R ~ 80—120.

8.2.4.2 Complementary modes

Two additional modes, provided by MPIE together with the SHARP II camera,
are already available and can be used with either IR camera (Hofmann et al.
1995): a wire grid polarizer unit working in the 1—5 pum range which allows
polarimetric measurements for any linear polarizer position angle and two
Fabry-Perot etalons covering the K band with typical respective spectral resolu-
tions of 1000 and 2200 and corresponding finesses of 42 and 46.

A stellar coronograph dedicated to the COME-ON-PLUS/ADONIS systems
has been developed in a collaboration between Observatoire de Paris and
Observatoire de Grenoble (Beuzit ef al. 1997). By using an occulting mask to
block the flux of a bright object, coronographic techniques allow exploration of
its close environment to search for faint sources such as stellar or substellar
companions or disks. The coupling with AO greatly improves the efficiency of
coronographic imaging: the AO system concentrates the flux from the bright
source and reduces the wings of the PSF, therefore allowing the use of smaller
occulting masks and consequently the exploration of a region very close to the
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central object. A first attempt to obtain coronographic observations with the
COME-ON prototype has been described by Malbet (1996). First astrophysical
results have been obtained with the ADONIS coronograph on the 8 Pictoris
circumstellar disk (Mouillet et al. 1997; see also Chapter 15 in this volume).
New fields will soon benefit from this coronographic mode: search for brown
dwarfs around nearby stars, study of AGB outflows, etc.

Furthermore, a dedicated integral field spectrometer called GraF has been
developed at Observatoire de Grenoble (Chalabaev and Le Coarer 1994).
Tested on the sky in 1997, regular observations began in May 1998. GraF
allows both the spectral distribution of energy as well as the spatial distribution
over the sky field to be recorded simultaneously for a given source therefore
providing a 3-D capability. This ensures that all monochromatic images are
recorded with the same PSF. It combines a grating spectrograph with a Fabry-
Perot interferometer. When used at 2.2 um with a plate scale of 50 milliarcsec/
pixel GraF will offer simutaneous imaging of a 1 X 12” field in 12 narrow-
band spectral channels. The resolution will range from 10 000 to 30 000.

8.3 System performance

The very first results obtained in 1989 on the OHP 1.52-m telescope were
reported by Rousset et al. (1990a), Kern et al. (1990), and Merkle et al. (1990)
and demonstrated the applicability of adaptive optics in astronomy. The obser-
vations performed showed two important features in the images:

e The gain in angular resolution leads to nearly diffraction-limited images made of a
central coherent core surrounded by a broad residual halo at and above a critical
imaging wavelength (2.2 um for COME-ON under the encountered seeing condi-
tions). The angular resolution is given by the full width at half-maximum (fwhm) of
the image, mainly enforced by the central core.

e For objects smaller than the seeing disk size, the gain in energy concentration in the
central core significantly improves the SNR of the IR images (whether it is
background- or detector-noise limited). The energy concentration is expressed by
the Strehl ratio R, that is the ratio of the peak intensity in the recorded long exposure
point-spread function (PSF) over that in the theoretical diffraction-limited PSF.

A large number of results obtained on the ESO 3.6-m telescope have been
reported with detailed analysis of the correction performance, firstly for
COME-ON by Rigaut et al. (1991a,b; 1992c), Fontanella et al. (1991) and
Rousset (1992) and secondly for COME-ON-PLUS by Rousset et al. (1993;
1994), Gendron and Léna (1995), and Beuzit (1995). The results presented
in the next two sections are mainly selected from these publications. The
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observations consisted of taking long exposure IR images with and without
AO compensation and simultaneously recording sets of WF measurements at
the WEFS frame rate and about one minute long. From the WFS data, WF
phases are computed and their spatial and temporal properties deduced.
Hence, observing conditions can be derived as values of ry(0.5 um), average
wind speed U, measurement noise, etc. The fwhm and R are obtained from
the IR images recorded at several wavelengths. Residual static aberrations,
like the triangular coma for instance, can also be identified in the images.

To illustrate the astronomical performance of AO, Fig. 8.7 presents images
of double stars taken with correction (top) and without correction (bottom).
Fig. 8.7(a) shows at A = 3.87 um (L' band) the double star HR 6658 with a
separation of 0.38". Broken diffraction rings are visible around each compo-
nent. Figure 8.7(b) shows at A =2.23 um (K band) another double star HR
5089 with a separation of 0.22". In spite of the halo around the central cores
due to the partial correction, the components are obviously resolved. A detailed
discussion of astronomical results is given in Chapter 15.

8.3.1 Wavefront residuals

The correction brought by the AO system can be directly analyzed on the
corrected WFs. Let us consider the WF residual error as measured by the WFS
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Fig. 8.7. Compensated (top) and uncompensated (bottom) images of double stars.
Contour levels are 1 to 90% of the maximum. (a) HR 6658 at 3.87 um, separation
0.38", 79(0.5 wm) = 15 cm. (b) HR 5089 at 2.23 um, separation 0.22", r(0.5 pm)
= 12 cm. COME-ON, fuw = 9 Hz. Reproduced from Rigaut ez al. (1991a).
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and compare it to the turbulence-induced distortion. The phase ¢(x, y) is
expanded on the Zernike polynomials Z;(x, y) as:
i=N
P(x, ) =Y aiZi(x, y) (8.1)
i=2
where the a;’s are the expansion coefficients.

Figure 8.8 displays the variance (a;?) of the coefficients of the first N = 21
Zernike polynomials (expressed at 0.5 pm) as observed in uncorrected and
corrected sets of WFs (observations made with the COME-ON system on a
bright star). Crosses are two samples of turbulent WFs. As theoretically
predicted (Noll 1976), the low order polynomials are dominant in the dis-
turbance, especially the two first polynomials: the tilts Z, and Z;. Closed
symbols (circle and square) are two samples of residual errors. The attenuation
brought by AO on the two tilt variances is about 200 to 400 and about 100 on
that of the three second-degree polynomials defocus and astigmatisms (Z4 to
Zs). The low orders are much more attenuated than the higher orders. These
residuals are due to the effect of the finite temporal bandwidth of the system
(here fnw = 25 Hz in open loop at 0 dB) being the same for all the modes. In
Fig. 8.8, the measured WF variance Z?;(aiz) is reduced from 450 and 230
rad® for the turbulence to a residual WF error of 4.5 rad? at 0.5 um. Note that
r9(0.5 um) is also deduced from the uncorrected measurements and allows the
evaluation of the fitting error >>°,,(a;?) given by Noll (1976): for Fig. 8.8,
about 8 rad? for 7(0.5 um) ~ 10 cm. The total residual error variance is then
about 13 rad.

The outer scale of turbulence Ly can also be deduced from the WF
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Fig. 8.8. Variance of the Zernike coefficients (a?) expressed at 0.5 um versus the

polynomial number i for uncorrected (+, X) and AO corrected (O, [J) sets of
measured wave fronts. COME-ON, April 1991, f,w =25 Hz open loop 0 dB,
79(0.5 um) ~ 10 cm, © = 5 m/s. Reproduced from Rigaut et al. (1991b).
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expansion. Indeed, both 7y and Ly can be estimated by fitting the coefficient
variances with theoretical values derived from a Kolmogorov spectrum mod-
ified by the outer-scale (Winker 1991). Ly is essentially determined by the
attenuation of the two tilt variances. We found L, varying between 10 m and
infinity depending on the observing conditions (Rigaut ef al. 1991a; Rousset et
al. 1991). These values may be affected by any problem of telescope tracking.

The compensation by an AO system can be understood as a filtering process
reducing the temporal power spectral density (PSD) of the turbulent WF (see
Chapter 6). The servo-loop bandwidth f;,, represents the maximum frequency
at which the AO system still compensates for the turbulence distortions. Figure
8.9 is an example of two measured PSDs of the defocus aberration term (Zy4)
without and with correction by COME-ON. Note that the turbulence knee
frequency is lower than 2 Hz and the system attenuates the turbulent PSD at
low frequencies up to 20 Hz. In fact, the corrected PSD is the product of the
uncorrected PSD by the error transfer function of the servo-loop. The corre-
sponding attenuation in variance is around 100 (same data as Fig. 8.8). Note
that a lower bandwidth f},, would increase the turbulence residuals as was the
case on COME-ON in 1990 (Rigaut et al. 1991a). The measurements of the
turbulence knee frequencies on the Zernike PSDs have been used to estimate
the average wind speed U from the expression derived by Conan et al. (1995).
With the data used in Figs. 8.8 and 8.9, U is estimated to be 5 m/s.
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Fig. 8.9. Measured power spectral densities of the Zernike coefficient a4 (defocus), (a)
from an uncorrected WF set, (b) from a corrected set. COME-ON, April 1991,
JSow = 25 Hz open loop 0dB, (0.5 pum) >~ 10 cm, U = 5 m/s. Reproduced from
Rigaut et al. (1991Db).
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The previous data were recorded on bright stars. For faint stars, the estima-
tion of the noise level in the WF measurement is of great importance in the
optimization of the correction. Figure 8.10 presents measured PSDs of Zernike
polynomials (tilt Z3 and 5th order Z,() without any correction for high or low
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Fig. 8.10. Measured power spectral densities of two Zernike polynomials, Z3 and Z»,.
(a) for a bright star: 7(0.5 um) ~ 9 cm, v = 4 m/s. (b) for a faint star: nine detected
photons per subaperture and per exposure time, 7(0.5 pm) ~ 12 cm. Reproduced
from Rousset (1992).
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light levels. At a low light level, an average of 9 photons per subaperture and
per exposure time were detected. The SNRs of the Zernike coefficients are 9
for the tilt and 0.5 for Z,y. The low order polynomials (or modes) have better
SNR than the higher orders, as already pointed out in Section 8.2.2. This shows
the importance of the optimized modal control developed for the COME-ON-
PLUS system. Indeed, the turbulence and noise contributions to the PSD are
not distinguishable for Z,( in Fig. 8.10. Therefore, the servo-loop bandwidth
for this mode must be much lower than for the tilt.

Depending on the seeing and the guide star magnitude, the mode SNRs can
significantly change. For SNR <1, the modes are not very efficient in the
correction. Hence, increasing the guide star magnitude limits the degree of
correction of the system. Figure 8.11 shows the number of corrected modes
versus the magnitude for the COME-ON-PLUS system. Here, a mode is
considered as corrected when the ratio of its corrected variance to its uncorrec-
ted one is below a threshold of 0.5. The points spread widely around the
average value. These deviations depend on the observed guide star character-
istics and the turbulence conditions. Figure 8.11 shows that the correction
steadily decreases as the magnitude my increases from 8 to 13.
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Fig. 8.11. Number of modes for which the corrected variance is less than 0.5 times the
uncorrected one, versus the magnitude of the guide star. Reproduced from Gendron
and Léna (1995).
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8.3.2 Image characteristics

We analyze here long exposure IR images of an unresolved star, i.e. the PSF of
the system. The exposure time ranges from a few seconds to several minutes.
The two parameters of interest are the R and the fwhm. As an example of an
image, Fig. 8.12 displays the compensated and uncompensated images of a star
at A =1.68 pum (H band) obtained with COME-ON. For the compensated
image R = 0.24 and fwhm = 0.12". For the uncompensated one R ~ 0.02 and
fwhm ~ 0.65", the telescope aberrations being removed by the deformable
mirror. The compensated image consists of a central core on top of a halo. The
gain in R is of the order of 10 and the core fwhm reaches the diffraction limit
of 0.096".

Figure 8.13 shows the IR image Strehl ratio R versus ry calculated at the
imaging wavelength A, for different observing conditions with COME-ON-
PLUS. Let us first consider the results for bright stars (6 < my =< 10) (square
and diamond). R values are measured in I, J, H, K, and L’ bands. 7y (0.5 um)
ranges from 11 to 15cm and U from 4 to 20m/s. At 2.23 um (K),
0.57 =< R = 0.8 with (2.23 pm) ~ 80 cm. At 1.68 um (H), 0.26 < R < 0.47
with 79(1.68 pm) ~ 50 cm. At 1.25 um (J), 0.1 = R < 0.17 with ry(1.25 pm)
~ 35 cm. The given R values are lower than the values expected from the WFS
data. We suspect a static aberration in the imaging path limiting the image
quality. A triangular pattern is clearly seen on the J and H images. Note that
the scatter of the results can be explained by the seeing variations and the
influence of the parameter v and of the SNR in the WF sensing. Theoretical

Fig. 8.12. Compensated (a) and uncompensated (b) images of an unresolved star at
A =1.68 um. COME-ON, fy =25Hz, 79(0.5 pm) ~ 12 cm, 0 =4 m/s. Repro-
duced from Rousset (1992).
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Fig. 8.13. Strehl ratio R versus ry(4) for the COME-ON-PLUS system. Bright stars
6 < my < 10: (<) values measured in J, H, K, and L' bands, ((J) in I band,
11 < (0.5 um) < 15cm, 4 <0 <20 m/s. Faint stars: (X) 11 < my <12, (4)
12 < my <14, (x) 14 < my, 6 < ry(0.5 um) < 10 cm, 4 < U < 25 m/s. Upper and
lower curves: 52 degrees of correction, respectively for an infinite and a 25 Hz
bandwidth. Reproduced from Rousset ez al. (1993).

behaviors are also reported in Fig. 8.13 for 52 degrees of correction at infinite
SNR with infinite and 25 Hz bandwidth.

Let us now consider the results for fainter stars (11 < my < 15) (X, + and
asterisk). Strehl ratios R are measured in K and L’ bands with 7y (0.5 pm)
ranging from 6 to 10 cm and U from 4 to 25 m/s. The results dispersion is
mainly due to very different turbulence conditions during the observations. For
the lowest magnitudes and under bad seeing conditions, the results follow
relatively well the behavior of the results obtained on bright stars. This is a
demonstration of the quality of the optimized modal control. Considering the
increase of the magnitude, a decrease of the correction quality is observed.

Figure 8.14 displays the fwhm measured on the same IR images as Fig. 8.13
versus the imaging wavelength A. For bright stars, the diffraction limit is
reached down to 1.68 um (H), i.e. 0.096". In the J band, fwhm is close to the
diffraction limit. Note that a 0.2" resolution is achieved in the I band. For faint
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Fig. 8.14. Image fwhm versus imaging wavelength for the COME-ON-PLUS system.
Same experimental data and symbols as in the previous figure. Lower curve: diffrac-
tion limit. Upper curve: seeing fwhm for 7(0.5 um) = 15 cm. Reproduced from
Rousset ef al. (1993).

stars, both the magnitude and the turbulence conditions affect the fwhm. In the
K band, fwhm ranges from 0.13 to 0.51".

Figure 8.15 presents the distribution of R versus fwhm for the calibration
PSFs recorded in one night at J, H, and K bands on the COME-ON-PLUS
system. The exposure time was 1 s in H and K, 20 s in J. The image in K is well
corrected, fwhm being around 0.15” and R mainly between 0.2 and 0.35. In H,
R drops below 10%, a key value below which the effects of the turbulence
induce large variations of fwhm between 0.13 and 0.25". It demonstrates a
sensitive threshold effect on the efficiency of AO. Note that for some images the
narrower diffraction core in H produces a smaller fwhm compared to K in spite
of a lower R. The distribution of the points in Fig. 8.15 illustrates how the PSF
varies as the turbulence conditions continuously change during the observa-
tions. When the fwhm is rescaled by the factor 4/ D, the diffraction limit points
clearly gather along a single curve. As underlined by this curve, R describes the
PSF quality very well when R is above 10%, but only poorly for the lower
values. In this latter case, fwhm is a better characteristic of the PSF quality.
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As an example, Fig. 8.16 shows a typical long exposure image profile taken
at A = 1.68 pm with the COME-ON system. A common feature observed in a
number of images is the presence of two components in the profile: namely a
sharp diffraction-limited core on top of a broad halo as foreseen by simulations
(Smithson et al. 1988). A fit of the halo is superimposed on the image profile.
The central core in the long exposure image is in fact fully coherent while the
halo is an incoherent superimposition of residual speckles. The fraction of
energy in the core is 16% while 84% is spread around in the halo. The fwhm of
the halo is 0.36” while fwhm of the uncompensated image is around 0.5”. Even
if the amount of energy concentrated in the central core is relatively small, the
available coherence is of paramount importance for the interferometric combi-
nation of large telescopes (Roddier and Léna 1984; Merkle and Léna 1986;
Chapter 14 in this volume).

Partial correction may range from quite poor correction (in the visible) to
very good correction (at L’ band) with large variation in R. The obtained image
profile, as in Fig. 8.16, results directly from how adaptive optics correct the
WF disturbances. A way to characterize this correction is the analysis of the
optical transfer function (OTF). In long exposures, the OTF after AO correction
can be expressed as the product of the aberration-free telescope OTF by the
term exp[—3D,(Af)] where f is the spatial frequency and Dy(p = Af) is the
structure function of the WF residual phase (Conan et al. 1992). This function
is wavelength independent when expressed in terms of the optical path
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Fig. 8.16. Dashed line: long exposure profile of a compensated image at 1 = 1.68 um
with the COME-ON system. Dotted line: the fitted halo. fyw = 25 Hz, r¢(0.5 pm)
~ 18 cm, U = 6 m/s. Reproduced from Rousset (1992).
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difference. Figure 8.17 shows examples of structure functions of the residual
WE, derived from a set of images at J, H, and K bands and illustrates the basic
effect of the correction on the WF. Because the deformable mirror compensates
for the low orders (low spatial frequencies) of the WF distortion, D, saturates
for large separations in the pupil (p > 0.9 m, the inter-actuator distance), i.e.
the high spatial frequencies of the image. Indeed for large separation, the phase
¢ is decorrelated and as a result D, 20 , where 0 is the variance of the
residual phase. The saturation of D, produces the central core of the image,and
the fraction of energy in this core is exp(—afp). Figure 8.17 shows that for
small separations in the pupil, D, increases with p producing the broad halo in
the image. The growth is slightly slower than the p>/3 law of turbulence. In Fig.
8.17 at the largest separations in the pupil, the saturation of D,, is disturbed by
the effects of the WF low order residuals due to the finite temporal bandwidth
of the system and to the measurement noise.

In Figure 8.18, the normalized profiles of two long exposure compensated
images obtained for the components of the double star D177 at A = 2.2 um
are plotted. Here, the maximum central intensities represent directly the Strehl
ratios. In this experiment with the COME-ON system, the WFS guide star
was the on-axis component of D177 and the IR images were recorded
sequentially on the on-axis and off-axis components. The companion separa-
tion is 27". These two profiles illustrate the anisoplanatism effect in the AO
compensation. Off-axis, we measure a loss in R of the order of 30%. Using
the structure functions derived from these images, an anisoplanatism WF
error of the order of 0.3 um (rms) is found. Images recorded at A = 1.68 um
during the same night lead also to a WF error of the order of 0.3 um. These
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Fig. 8.17. Structure function of the WF residual phase derived from the compensated
images at J, H, and K bands, versus the separation p in the pupil. COME-ON, April
1991. The Vert1cal dotted line marks the inter-actuator distance. The dashed line gives
the turbulence law in p°/3. O, J; [, H; A, K. Reproduced from Rigaut et al. (1992c).
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Fig. 8.18. Normalized long exposure compensated image profiles of the two compo-
nents of the double star D177 (separation: 27") at A = 2.2 um with the COME-ON
system. Continuous line: on-axis component, SR ~ 0.43. Dotted line: off-axis compo-
nent, SR ~ 0.3. fiw = 25 Hz, (0.5 um) ~ 12 cm, 0 = 3 m/s. Images produced by F.
Rigaut.

are relatively small decorrelations of the wave front for an angular distance of
27". Note also the reduction of the central core for the off-axis image while
its halo is smoothed. Indeed, the central core is much more sensitive to any
additional WF error. The observed low degradation of the off-axis images
when compared to conventional theoretical evaluation (Fried 1982), can be
explained by the presence of important turbulence close to the telescope
(dome seeing and boundary layer).

Although COME-ON was the first AO system in astronomy, since 1989 a
number of new systems have been built for the 2- to 4-m class telescopes. The
next step is a new generation of very large telescopes such as the VLT of ESO.
The experience gained on the smaller ones will be very helpful to properly
specify and design these systems in order to meet the requirements of the
astronomers. The application of the Laser Guide Star concept to astronomical
observations is the next challenge.
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9.1 The birth of a new concept

The astronomical AO system developed at the University of Hawaii (UH) and
its offspring, the AO user instrument of the Canada—France—Hawaii telescope
(CFHT) are members of a new breed of AO systems based on the concept of
wave-front curvature sensing and compensation (Roddier 1988). The concept
emerged in the late 1980s at the Advanced Development Program (ADP)
division of the US National Optical Astronomical Observatories (NOAO), as
an output of a research program led by J. Beckers on the application of adaptive
optics to astronomy.

Given the success of AO in defense applications, particularly surveillance
systems, it was natural to seek components developed by the defense industry.
The main difficulty was to obtain a good deformable mirror at a reasonable
price. The technology being classified, one had no access to the latest develop-
ments. Commercially available mirrors were either monolithic mirrors, or first
generation piezostack mirrors (see Chapter 4). Whereas monolithic mirrors of
good optical quality could be purchased, their stroke was insufficient for the
envisioned use on large astronomical telescopes. On the other hand, piezostack
mirrors had enough stroke but were of poor optical quality and aged poorly.
Most of all, the cost of a deformable mirror with suitable power supplies vastly
exceeded budgets normally available for astronomical instrumentation.

It soon became clear that for surveillance applications one of the cost drivers
was the high frequency response needed to follow the motion of satellites
through the atmosphere. For astronomical applications, the requirement could
be relaxed by roughly an order of magnitude. It was therefore worth looking
into other potentially less expensive technologies which had been proposed but
not developed owing to their lower frequency response. A particularly attrac-
tive approach was the use of bimorph mirrors as proposed by Steinhaus and

205



206 9. The UH-CFHT systems

Lipson (1979). Unlike the mirrors considered above, the stroke of a bimorph
mirror depends upon the scale of the deformation. It decreases as the square of
its spatial frequency. This was considered an additional drawback for defense
applications which require high spatial frequency corrections for observations
in the visible. On the other hand, their large stroke at low spatial frequencies
becomes an advantage for astronomical observations with large telescopes in
the infrared, where a large stroke is needed at low spatial frequency.

Another advantage of bimorph mirrors becomes apparent when the wave-
front sensor is considered. Ideally, a wave front sensor should be sensitive to
any possible deformation of the flexible mirror, otherwise deformations to
which the sensor is insensitive will occasionally occur and stay uncompensated,
degrading the final image quality (Roddier, 1991, 1994b). Conventional wave-
front slope sensors developed for defense applications are not particularly well
matched to sense the deformation of their associated mirrors. To compensate
for that, the number of wave-front measurements must significantly exceed the
number of degrees of freedom of the deformable mirror. Applying a voltage to
a bimorph electrode changes the total curvature (Laplacian) of the mirror
integrated over the electrode area. Hence the idea of sensing directly the wave-
front Laplacian (second order derivatives) rather than the wave-front slopes
(first order derivatives). It happens that this is not only feasible but quite easy.
The technique described in Chapter 5 consists of subtracting the illumination
of two oppositely defocused pupil images. By matching the subapertures areas
with that of the bimorph electrodes, one obtains a perfectly matched sensor
with a nearly one to one relationship between the sensor elements and the
bimorph actuators. The AO systems described in this chapter are based on this
concept.

9.2 The experimental UH system
9.2.1 Choice of the detector

In the early 1990s, conventional systems developed for defense applications
used either photomultipliers or intensified detector arrays to sense the wave
front. They used the observed object itself (or bright glints on the object) as
guide sources and were limited to point sources brighter than magnitude 10, or
even less depending on seeing conditions. Only the brightest astronomical
sources, or those that happened to be close enough to a bright star, could
potentially be observed with these systems. This lack of sensitivity was consid-
erably limiting their application to astronomy and the general consensus among
US researchers was that only laser guide source systems would be useful to
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astronomy. This led the National Science Foundation (NSF) to request and
obtain the declassification of defense research in this area and to finance the
development of laser aided systems (see Chapter 1).

Meanwhile, European researchers felt sufficiently confident they could
improve the sensitivity of conventional systems, to develop a natural guide star
system for ESO. The gain in sensitivity was obtained by limiting the observa-
tions to long wavelengths (mainly 2.2 um or longer) and by using a new type
of detector array the EBCCD (see Chapter 8). This brought the limiting
magnitude of the guide star to about 14, a significant improvement. Theoretical
considerations developed in Section 3.5, show that this is by no means an
ultimate limit set by the quantum nature of light, but rather a practical limit set
by the performance of the detector. The University of Hawaii (UH) team
therefore proposed to build a system based on a new type of detector that was
just becoming commercially available, the photon counting avalanche photo-
diode or APD (Roddier et al. 1991a,b). Compared to previously used detectors,
APDs have both a higher quantum efficiency and an extended sensitivity in the
red, hence a larger band width. One should note that these characteristics are
also shared by bare CCDs. However, until recently, the read-out noise of the
CCDs was too high at the operating speed of a wave front sensor. Even today,
this is a limitation of the CCDs. The drawback of APDs is that they do not
form arrays, and each piece is expensive. It was therefore important to build a
system that would efficiently use a minimum number of detectors. As we have
seen, the concept of curvature sensing and compensation is ideal for that
purpose. As currently implemented, it requires a single detector per subaperture
instead of at least four for a Shack—Hartmann sensor.

The UH team was the first to build an AO system based on this concept. The
number of subapertures was chosen to be only 13. This number was dictated by
the desire to build an experiment that would demonstrate the feasibility of the
proposed technique at minimum cost, but would also sufficiently improve
image quality to produce useful astronomical results. At that time, the CFHT
was already equipped with a fast tip/tilt compensation system (HR Cam).
Using four photomultipliers with S-20 photocathodes in a quadrant detector,
HR Cam was already producing a significant image improvement on objects
brighter than mag. 17. Replacing the photomultipliers with APDs brought the
limiting magnitude to 19. The UH proposal was to build an AO system that
would have a similar performance on faint sources, but would also further
improve image quality on brighter sources. The use of a deformable mirror
would also allow compensation for telescope aberrations which were found to
limit HR Cam performance under good seeing conditions. In retrospect, 15 or
16 subapertures would have been a better choice because 13 subapertures do
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not properly sample all the orientations of the triangular coma, an aberration
often produced by mirror and lens supports. The construction of the UH
instrument required the development of both a new sensor and a new mirror
technology.

9.2.2 A new type of wave-front sensor

As we have seen, curvature sensing is done by measuring the difference in
illumination between two oppositely defocused pupil images. Since APDs are
expensive, it is desirable to use the same detector for both measurements. This
has the additional advantage of avoiding the need for an accurate calibration of
the detector sensitivities. The problem was to find a means to defocus a pupil
image back and forth at a few kHz rate. The solution was found in the use of a
vibrating membrane. The membrane has a metal coating and acts as a mirror.
As it vibrates its shape alternates between a concave and a convex surface. To
avoid any change in magnification of the pupil image, the membrane must be
located on a guide star image. Beyond the membrane, a converging lens or a
concave mirror forms an image of the telescope pupil onto the detector array
which is described below. At rest the membrane is flat and the pupil image is
sharp. When the membrane vibrates, the pupil image is defocused back and
forth producing a modulation of the illumination related to local wave front
curvatures (Fig. 9.1).

/120 1165

transfer lens )
field lens vibrating membrane mirror

pupil image on the lenslet array
when the membrane is flat

\i

3 '

lenslet array
Spherical mirror

Fig. 9.1. Wave-front curvature sensing with a membrane modulator. As it vibrates the
membrane defocuses back and forth the pupil image on the detector array.
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The membrane modulator of the UH system was developed by J. E. Graves
(Graves et al, 1991, 1994). Nitrocellulose (collodion) membranes were found
to be very robust and of sufficient optical quality. Since the membrane is
located in the image plane it does not itself produce any wave-front aberration.
The membrane is driven by air pressure from an acoustic resonant cavity. It
must be small enough (a few millimeters) and sufficiently stretched for its own
resonance frequency to be higher than that of the cavity. As it vibrates, the
minimum radius of curvature of the membrane can be as small as 6 cm without
altering its optical quality. At maximum stroke it reimages to infinity a cross
section of the beam located at a minimum distance / = 3 cm from the star
image. As shown in Chapter 5 (Eq. (5.13)), the minimum useful value of / is
f2
E 9.1)
where 6, is the angular width of the source, f the focal length, and d the
subaperture diameter. Let Ny = (D/d)* be the total number of subapertures.
Equation (9.1) can be written

lmin = eb

2
hoin = 00/ N ©2)
which gives the required f-ratio as a function of /i,
2
f) lmin
= =——. 9.3
<D 6, D+/ Ny ©-3)

As an example, the first AO system of this type built at UH had Ny = 13
subapertures, and was used at the CFHT which has an aperture diameter
D =360 cm. Under exceptional seeing conditions a closed-loop star image
can be as small as 6, = 0.1” or 5 X 107 radian, even at the sensor wavelength.
With /i = 3 cm, Equation (9.3) gives f/D = 68. Hence to operate properly,
the membrane requires the use of a slow beam, that is a highly magnified
image. Equation (9.1) shows that the distance /., increases with the angular
width 6, of the source. An important advantage of the vibrating membrane is
the ease with which /i, can be adapted to the angular size of the guide source.
In practice, the membrane stroke can be modified during the observations until
optimum compensation is achieved.

To feed 100 or 200 wm size APDs, one has to build a lenslet array. The
subaperture geometry of the lenslet array and the electrode pattern of the
deformable mirror were both optimized by simulating the whole system on a
computer. The lenslet array forms a bull’s-eye pattern, with seven lenslets
inside the telescope aperture to sample the wave front Laplacian, and six
lenslets over the aperture edge to sample the edge slopes. The latter must be
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large enough to collect most of the light of a highly defocused pupil image.
The lenslet optics was designed by Guy Monnet, drawing from his experience
with imaging spectrographs. Each lenslet is a doublet made of a converging
PSK3 lens followed by a diverging LaSFN3 lens with a flat back surface. Each
lenslet is cut according to the subaperture geometry and its back surface glued
onto the flat front section of a LaSFN3 glass cylinder. The cylinder has a
18.5 mm diameter and a 26 mm length. All the lenslets must be made together
with exactly the same focal length. Once assembled and glued on the glass
cylinder, all the foci must fall on the flat rear section of the cylinder. Optical
fibers 100 um in diameter are centered with a 10um accuracy on each
individual sub-image and held in contact with the cylinder rear surface through
index-matching optical grease. Each fiber is coupled to an APD though a
graded index lens supplied by the manufacturer. This design has the advantage
of avoiding any loss of light due to reflections in optical interfaces except on
the lenslet entrance surface which has an anti-reflection (AR) coating. The total
transmission from the lenslet front surface to the fiber output was measured to
be 90%.

Compared to conventional wave-front sensors, the new wave-sensing tech-
nique described here has a number of advantages worth summarizing:

e it matches the deformations of a bimorph mirror,

e it has a continuously tunable sensitivity,

e it is self-referencing (no calibration is required with a plane wave),
e it utilizes a small array of high throughput detectors,

e it allows fast parallel read-out,

e data processing is reduced to a simple synchronous detection.

9.2.3 A new type of deformable mirror

The construction of the UH system also required the development of a new
deformable mirror technology. This was done in cooperation with LASERDOT
(now CILAS), a French company specializing in piezo-stack mirrors. UH was
in charge of designing the electrode pattern and testing the mirrors, whereas
LASERDOT was in charge of the actual bimorph fabrication. Following the
theoretical considerations of Chapter 3, the electrode pattern was optimized to
best compensate the low order Karhunen—Loeve modes. This led to a bull’s-
eye type of pattern with seven electrodes inside the telescope aperture area to
compensate the wave-front curvature errors, and six electrodes outside to
provide the proper edge slopes. Because of the edge electrodes, the total mirror
diameter is about twice the diameter of the telescope pupil image. Depending
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upon the availibility of piezoelectric material, a typical bimorph mirror consists
of two 1-mm thick and 60- to 75-mm diameter piezo-wafers glued together.
The diameter of the telescope pupil image is in the 30 to 40 mm range.
Compared to other deformable mirrors, it has a unique advantage of being able
to compensate atmospheric tip/tilt errors with a remarkably high frequency
response, but a limited amplitude. Additional tip/tilt correction is still needed
to compensate for telescope drive errors, but with a lower frequency response.
For that purpose, advantage was taken of the mirror’s light weight (50 g) by
supporting it on a tip/tilt platform, thus avoiding the use of an additional tip/tilt
mirror.

The mirror fabrication required the solution of a number of practical
problems. Double lap polishing of the two surfaces at the same time produced
satisfactory results. However, piezo-materials being porous, their polished
surfaces scatter light. A workable solution was found by epoxy replication of a
master plane surface onto the piezo-wafer. It is a difficult task, owing to the
high (35:1) aspect ratio of the wafer. When successfully accomplished, it
provides a highly reflective surface with an excellent optical quality, identical
to that of the master. Another problem was to connect wires to the electrode
pattern located between the two wafers. This was done by drilling holes through
the back wafer. Unfortunately it was found to degrade the mirror optical quality
significantly. A solution was found by moving the connections outside the
telescope pupil image. Laplacian Optics, a company founded by members of
the UH team, is now marketing deformable mirrors of a slightly different kind
with no holes at all. Proper mirror support was also found to be a problem. It
must be stiff enough to avoid spurious low frequency resonances, while still
allowing the mirror to deform freely. Satisfactory results were obtained by
supporting the mirror at the edge with three “V’ grooves at 120° from each
other.

Unlike monolithic or piezo-stack mirrors, the stroke of a bimorph mirror is
defined as the Laplacian V2, of the mirror surface when a maximum voltage
is applied. It is related to the minimum radius of curvature R.;, of the mirror
by the relation anax = 2/Rupin- It is easily determined by measuring the
minimum focal length Ryin/2 of the mirror and taking the inverse of it. Typical
values of V2 are of the order of 5 to 10 X 10~° per mm. Under a maximum
voltage of 400 volts. The following formula gives the worse seeing (expressed
as the full width at half-maximum of an uncompensated stellar image) that a
given bimorph can compensate:

Umax = 8.8 X 1042715 D71 @125 N=T/5(2 65 (9.4)

max

where A is the wavelength (in mm) at which the seeing angle is estimated, D is
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the telescope aperture diameter (in mm), @ is the diameter (in mm) of the pupil
image on the bimorph, and N is the number of electrodes along a pupil
diameter. Equation (9.4) assumes that saturation may occasionally occur when
the curvature of the random atmospheric wave front exceeds three times its
standard deviation. It should be noted that the saturation of a bimorph mirror is
often barely noticeable. This is because the high order aberration terms saturate
first. Hence saturation only lowers the degree of compensation. This is in sharp
contrast with the saturation of a piezo-stack mirror which affects the low order
terms first such as defocus and astigmatism, and immediately degrades the
quality of the compensation.

Compared with monolithic or piezo-stack mirrors, bimorph mirrors were
found to have a number of advantages worth listing here:

e Their large stroke at low spatial frequencies make them ideal for near-infrared
observations on large astronomical telescopes.

e The good match they provide with curvature sensors allows efficient compensation
to be obtained with a small number of high performance detectors.

e They can be fabricated at low cost using standard production techniques.

e Optical quality can be excellent. Epoxy replication provides a low scatter surface. In
general, open-loop aberrations can be compensated with a few percent of the total
stroke. The compensation of low order terms introduces a minimum of uncompen-
sated higher terms, that is, the compensation efficiency is high. The compensated
point-spread function is clean.

e The actuator spacing can be as small as a few millimeters, allowing the size of the
pupil image (that is the over all system size) to be small.

e The mirrors are robust and reliable: they are nearly insensitive to temperature
changes, and age well. Under poor seeing conditions, mirror saturation has only
minimal effects. In case of a connection failure the bimorph interpolates the wave
front with a zero-Laplacian surface, minimizing image degradation.

9.2.4 The development of the experimental system

A step by step approach was used to develop such an experimental system,
following the availability of components as they were developed. It started as
a laboratory set-up on an optical bench. The first wave-front sensor was
equipped with a small array of silicon diodes. This was deemed acceptable
for a proof-of-concept experiment. A custom-made array was used with a
bull’s-eye geometry as described above. It avoided the need for a lenslet array
as well as the expense of high cost APDs. Moreover, the sensitivity of the
array was found to be sufficient for the sensor to work on bright stars (up to
mag. 4) allowing measurements to be made at the telescope under various
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seeing conditions. Since bimorph mirrors were still in the development stage,
the wave-front sensor was first used to control a tip/tilt mirror. Having
successfully demonstrated the technique in the laboratory, telescope tests
started in April 1991 as a series of short observing runs (Graves et al. 1991).
Each time the optical bench was transported and installed at the coudé focus
of the CFH telescope. Tip/tilt compensation was done by stopping the
telescope aperture down to 1 m, for maximum Strehl ratio improvement. An
improvement by a factor of five was observed, which is close to the theor-
etical maximum limit for pure tip/tilt compensation, a performance that had
never been achieved before (Graves et al. 1992a,b; Roddier 1992). This is
because the 13-channel sensor was able to measure and reject any alias due to
random atmospheric coma components.

The control system also evolved step by step. Analog lock-in amplifiers
were first used to detect the sensor signals. Later voltage-to-frequency
converters were used to feed counters, and the synchronous demodulation
was performed digitally. An ordinary 386 PC-type computer was initially
used to control the feedback loop, but could not simultaneously provide real
time diagnostic information. However, open-loop wave-front errors were
recorded and statistically analyzed, providing invaluable information on the
characteristics of the aberrations that had to be compensated (Roddier et al.
1993). Meanwhile LASERDOT was trying to produce bimorph mirrors of
good optical quality. The first useful mirrors became available in 1992. They
were tested at the telescope on July 1992. Images were recorded at 0.85 um
with a CCD camera using the full telescope aperture. This run benefited
from excellent seeing conditions (0.4” uncompensated seeing) and compen-
sated images of Arcturus with a full width at half-maximum (fwhm) of
0.08" were recorded. At that time, it was the sharpest long exposure image
ever recorded on a ground-based telescope (Graves et al. 1993, Roddier
1994a).

The next step was to build a new detector array by coupling fiber-fed APDs
to a lenslet array. The same counters were used to count photon pulses, but a
new VME-based control system was built and later installed allowing real
time diagnostics to be made. These modifications were tested at the telescope
in a series of observing runs extending from March to December 1993. In
December, a new generation bimorph mirror was mounted on the bench, and
satisfactory results were finally obtained (Roddier ef al. 1994). Not only was
the theoretically expected performance achieved, but interesting science
results were obtained, such as the discovery of a binary core in the Frosty Leo
nebula (middle image on book cover). A description of these early results can
be found in Roddier et al. (1994, 1995).
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9.3 The first UH Cassegrain system

After a run at the United Kingdom Infrared Telescope (UKIRT) in January
1994, the experimental system was dismantled and the construction of a
Cassegrain focus system was undertaken. A sketch of this new system is shown
in Fig. 9.2. To enable the system to continue to evolve, a custom-made sturdy
optical board is used. A Serrurier-type mount is attached to the board at four
strong points, and serves as an interface to the telescope. The system is
designed to operate at an f/35 focus either on the CFHT or on the UH 88"
telescope. This choice has the advantage of simplifying the transfer optics. It is
a 1:1 transfer with two off-axis reflections on the same parabolic mirror as in a
classical Ebert—Fastie spectrograph, the grating being replaced with a bimorph
mirror. The 1024 X 1024 pixel HgCdTe infrared camera, newly built at the
Institute for Astronomy, can be attached on a focusing mechanism provided
under the board. It is fed through a hole in the bench. A dichroic beam splitter
transmits 85% of the light beyond 1 pum to the infrared camera and reflects
95% of the light below 1 um to the wave-front sensor. Part of the light sent to
the sensor can be diverted to feed a CCD camera. This is done by means of
additional beam splitters mounted on a wheel. The total system transmission is
about 70% for the infrared camera and 50% for the sensor.

A filter wheel is mounted in front of the CCD camera. Another filter wheel is
mounted before the wave-front sensor detector with various density filters to
avoid saturation of the APDs on bright guide sources. Although the IR camera

Telescope /35 focus
. [ I | T 1
Transfer optics:
1:1 off axis relay using a single parabola
CCD camera
D.M.
\
Steering mirro;
/
Custom optical Wave-front
bread board sensor
Translation stages
IR to focus cameras

camera

Fig. 9.2. Sketch of the UH experimental AO system. Some of the optical components
actually on the bread-board are shown above for clarity.
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has its own filter wheels inside the Dewar, an external filter slide is provided
for additional narrow band filters. The pixel size is chosen to provide Nyquist
sampling at the shortest wavelength. It gives a 36” X 36" field of view (FOV)
for the infrared camera, and a 25" X 25" FOV for the CCD camera. An offset
steering mirror allows the observer to pick up a guide source as far as 30" away
from the center of the field, and move the image on the cameras. Two calibra-
tion light sources are provided using a single mode fiber fed either with a laser
diode or a white light source. These sources are used for the internal focusing
of the cameras and for the calibration of the control matrix. A parallel glass
plate can be inserted in the beam, introducing a known defocus for wave-front
sensor calibration. An optional rotatable wave plate has been installed in front
of the system together with a polarizer in the IR camera for polarization
measurements. All the key elements are remotely controlled. This includes the
focusing of the cameras, the motion of all the filter wheels and filter slide, the
tilting of mirrors for pupil alignment and offset guiding, the introduction and
removal of the calibration light sources and glass plate, and the rotation of the
wave plate. Every time an exposure is taken, all the parameters are automati-
cally logged by the system.

The adaptive optics control system is basically that of the experimental
system in its latest version (Anuskiewicz et al. 1994). The main processor
consists of a VME backplane with two Force CPU-2CE SPARC single board
computers. One is used as a loop processor, the other as a control/status
processor. The loop processor is primarily dedicated to the feedback loop tasks
which include reading the wave-front signals from the counters, doing the
feedback loop calculations, and sending the output to the bimorph mirror (D/A
converters). The input and output signals are conveyed through a fiber-optics
interface. The control/status processor is used for managing control parameters
and system status data flow. The operating system is VxWorks. A 1 Mb section
of the loop processor memory is mapped onto the VME bus and is accessible
for reading or writing from the control/status processor. All communications
between the processors is accomplished through this shared memory. An
Ethernet link is used for communication between the control/status processor
and a workstation. The whole system (adaptive optics and cameras) is con-
trolled from the same workstation through a graphical user interface. The
architecture allows diagnostic data to be read while the loop is running. Several
diagnostic programs can be run simultaneously. These include a pupil monitor
for alignment, a sensor/drive monitor which displays the sensor a.c. or d.c.
signals, or the mirror drive signals, a power spectrum monitor which analyzes
and displays the power spectra of a variety of signals, and a seeing monitor
which estimates the seeing condition.
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The Cassegrain system was first operated in December 1994 at the CFHT,
and performed as expected. It has since been regularly scheduled for astronom-
ical observations both at the CFHT and the UH 88" telescope. Some of the
results are described in Chapter 15. At the time of writing it is being upgraded
to a 36-channel system (Graves 1996). In the next section, we describe the
simultaneous development of the CFHT f/8 user instrument which followed
closely the technical developments at UH. Since both systems have similar
performance, we only describe the performance of the CFHT user instrument
here.

9.4 The PUEOQ system

The construction of a user instrument for the CFHT was considered as early as
the fall of 1990, when a group was set up to advise the CFH Corporation on
adaptive optics. At that time, the first compensated images had just been
obtained at ESO with the COME-ON system (see Chapter 8). One possibility
was to use the same technical approach. However, the expected gain in
sensitivity brought by the use of APDs was sufficiently attractive for the group
to contemplate from the start the use of a wave-front curvature sensor. A
phase-A study ended in August 1992 with a project definition. It consisted of a
19-subaperture curvature sensor coupled to a 52-actuator piezo-stack mirror
from LASERDOT. Because aberrations in the deformable mirror at its actuator
spatial frequency could not be properly sampled by the curvature sensor,
provision was made for a higher order Shack—Hartmann sensor to sense the
mirror deformation and flatten it with an additional loop on an internal light
source. Such a provision significantly increased the cost of the system. In April
1993, as bimorph mirrors produced by LASERDOT were succesfully tested by
the UH team, the decision was taken to use instead a 19-actuator bimorph, and
the construction of the instrument was undertaken (Arsenault et al. 1994).

The CFHT Adaptive Optics Bonnette (AOB) is now a facility instrument
mounted at the f/8 Cassegrain focus of the 3.6-m CFH telescope. The
‘bonnette’ (adaptor in French), is also called PUEO after the sharp-sighted
Hawaiian owl and is meant to ‘Probe the Universe with Enhanced Optics’. It is
the result of a collaborative effort between several institutes: The CFHT
(managing the project and designing the general user interface); the Dominion
Astrophysical Observatory (DAO, Canada) who designed and fabricated the
opto-mechanical bench, the wave-front curvature sensor and its electronics; the
company CILAS (LASERDOT, France) who provided the deformable curva-
ture mirror and the Real Time Computer and software, including a high level
maintenance interface; the Observatoire de Paris-Meudon (OPM, France) who
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manufactured the separate tip/tilt mirror and was in charge of the final
integration, testing, and calibration of the instrument. The UH adaptive optics
team acted as consultants and provided guidance throughout the project. The
system was commissioned at CFHT during three runs in the first semester of
1996. In the following sections, the instrument is briefly described and its
performance is presented mostly in terms of image improvement. The proper-
ties of the compensated images are also discussed.

9.4.1 Instrument description and laboratory tests

The main characteristics of PUEO are summarized in Table 9.1. It has only a
few optical parts, mainly reflecting ones. Making use of off-axis parabolic
mirrors allows for a compact instrument with small optical components,
favoring reduced flexures (see Fig 9.3). The beam, which can pass straight
through the bonnette, is normally diverted by a flat mirror — on a moving slide
— to the AO system, allowing it to switch rapidly from the f/19.6 corrected
beam to the direct f//8 beam, if required.

The optical design (Richardson 1994) includes an f/8 off-axis parabola
that collimates the beam and reimage the telescope pupil on the 19 electrode
curvature mirror. A f/19.6 off-axis parabola, mounted on a fast tip/tilt
platform, directs the beam to the astronomical instrument at the ‘science
focus’. Prior to this focus, a beam splitter reflects part of the light to the
visible wave-front curvature sensor. Optionally, an atmospheric dispersion
compensator can be inserted in the collimated beam for observation at visible
wavelength.

The geometry (19 electrodes/subapertures divided up into two rings plus a
central electrode) is well suited to circular pupils; the inner ring and the central
electrode provide the wave curvature over the pupil while the outer ring
provides the boundary radial slopes (Roddier 1988, see Chapter 5). Such a
system, with few degrees of freedom but a high bandwidth, is particularly well
suited to the Mauna Kea seeing conditions where turbulence is usually weak
yet occasionally fast.

Modal control and mode gain optimization (Gendron & Léna 1994; Rigaut
et al. 1994) maximize the instrument performance according to the state of
turbulence and the guide star magnitude. Using the deformable mirror (DM)
command covariance and the wave-front sensor (WFS) measurement covar-
iance computed in closed-loop, the gains are optimized and updated during the
closed-loop operation, allowing the system to track seeing variations.

The system has been tested in the laboratory at 0 °C and 20 °C for flexures,
optical quality, and bandwidth (Lai 1996).
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Table 9.1. Characteristics of the CFHT Adaptive Optics Bonnette

Optomechanics

Total number of mirrors in science train
Total number of mirrors in WFS train

Transmission of science train

Input/output F-ratios
Overall Bonnette dimension
Flexures

Optical quality
Instrument clear field-of-view

Wave-front sensor

Type

Number of subapertures
Detectors

Field of view

Tip/tilt mirror
Type

Stroke
Resolution
Bandwidth

Phase shift at 100 Hz
Diameter

Deformable mirror

Type

Number of electrodes
Stroke

First mechanical resonance
Overall dimension
Conjugation

Pupil image size

Control

Sampling/command frequency
Max. bandwidth 0dB rejection
Max. bandwidth —3dB closed-loop
Control scheme

Tip/tilt control

Instrumentation
Visible and near-IR imagers
Integral field spectrograph (1997)

5 + 1 beam splitter (in transmission)

9 4 1 beam splitter (in reflection)

70% (V) excluding beam splitter

75% (H), 70% (K) including dichroic
8/19.6

Diameter 120 cm, thickness 28 cm
Approximately 15 pm/hour at the f/20
focal plane

A/20 rms at 0.5 um with DM flattened
90" diameter

Curvature

19

APDs (45% peak QE, ~ 20e-/s dark
current)

1-2" depending on optical gain

Voice coils

+4.6"

0.002" (on the sky)

>800 Hz for both axes
(closed loop at —3 db)

15° (see control below)
60-mm (55 mm clear aperture)

Bimorph

19

Approximately £ 10 um
> 2-kHz

80 mm

Telescope pupil

42 mm

Selectable (1000 Hz, 500 Hz, 250 Hz, .. .)
105 Hz

275 Hz

Modal, 18 mirror modes controlled.
Closed-loop mode gains optimization
Tip/tilt mirror operates in a nested loop.
High frequency tip/tilt errors are corrected
by the bimorph mirror.




9.4 The PUEO system 219

: FROM
:TELESCOPE;! 19
i AVALANCHE

| -PHOTODIODE
.| DETECTORS

[—————

TO 19
DETECTORS

PUPIL & OBJECT

VIEWER NN
« » WAVEFRONT

\ SENSOR

TIP/TILT
SIGNAL
CORRECTIONS

e o DEFORMABLE
s - / .I MIRROR

WAVEFRONT
SENSOR
SIGNALS ELECTRONICS

ATMOSPHERIC
DISPERSION
CORRECTOR

COLLIMATOR
MIRROR

Fig. 9.3. Optical path of the instrument. The central folding mirrors are on a movable
slide, so that the direct and the corrected focus are co-incident. The wave-front sensor
is remotely controlled along three axes and allows the selection of a reference star
different from the science object.

9.4.2 Performance on the sky

PUEO was extensively tested during three runs in the first half of 1996. The
performance was evaluated in both the visible and the near-infrared wavebands,
using a 2k X 2k CCD and a 256 X 256 Nicmos array (loaned from the
University of Montreal). The emphasis was put on the performance in the near
IR, where the instrument was expected to show its full potential. The
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commissioning included pure engineering tests, performance evaluation tests,
and scientific programs. The latter were intended to test in ‘real life’ what
could be achieved by the instrument, and to set up the data acquisition and
reduction procedures. The engineering tests were to check that all the functions
performed as expected and to make the necessary calibrations (wave-front
sensor motions, atmospheric dispersion compensator calibrations, etc). In this
section, we will report only on the results of the performance evaluation,
mostly in terms of image quality and characteristics.

9.4.2.1. System behavior

One of the main goals in designing this system was to make a user-friendly,
robust interface. The user is presented with a limited choice, simple interface.
Basically, a one-button ‘start/stop compensation’. This turned out to be achiev-
able, and efficient both in terms of system operation and performance. It covers
all cases, from the brightest to the dimmest objects (mr = 17), thanks to the
closed-loop optimized modal control. In turn, the overheads of the system are
very small: the set up on an object, including the mode gains optimization
automatic procedure, takes less than 1 min. Because the instrument focus is
taken care of by the adaptive compensation, the overhead is actually less than
for a standard, bare CCD imager.

9.4.2.2 Turbulence characterization and PSF files

In addition to the system capabilities described above, and directly associated
with the modal control, a tool has been implemented that allows one to
determine a posteriori the system state during a science exposure (Véran 1995,
1997): the wave-front sensor measurement covariance, the deformable mirror
command covariance, and other parameters are computed synchronously with
each exposure, and stored in PSF files. All kinds of diagnoses can be made
from these data. Particularly, one can estimate D/ry and the system PSF for the
exposure. A discussion of the method used to retrieve the PSF from the system
data is beyond the scope of this paper. We refer the reader to Véran (1996,
1997) for a detailed discussion. The usefulness of having a PSF synchronous
with — versus having to image a PSF calibrator after and/or before — the
science exposure is many-fold: the gain of time and the assurance that the
atmosphere has exactly the same behavior as during the science exposure (by
definition) are the two major advantages. The D/ry values derived from the
PSF files are the ones we use for all figures in the following discussion. D/ry
was determined by fitting the actual variance of the system modes (excluding
tip/tilt) with their theoretical Kolmogorov value, corrected for noise and spatial
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aliasing. The distribution of measured D/ry (750 measures in a dozen nights
spread over a period from March to September 1996) is well represented by a
log-normal distribution with a mean ry value of 15.5 cm at 500 nm. This
corresponds to a seeing disk of 0.67”. This determination includes both free
atmosphere seeing, dome seeing, and mirror seeing (although these last ones
have short to very short outer scales and may not be accounted for properly).
Because tip/tilt is excluded in the D/r, calculation, it excludes any telescope
jitter or free atmosphere outer scale effect. These values were computed for the
actual direction of observation and not corrected to the zenith. If we assume an
average zenith distance of 30 degrees, the median seeing at zenith becomes
0.58". This compares well with values derived from other data sets for the same
Mauna Kea site (Roddier et al. 1990). This ry determination was checked
against open loop exposures. The error on D/ry is a few percent (2—5%).
Something worth noting is that the atmosphere showed most of the time a very
good match with a Kolmogorov-type turbulence. On some occasions (15-20%
of the time), we have noted deviations that may be attributed to dome or mirror
seeing.

9.4.2.3 System performance

All images (IR and visible) were reduced following standard image reduction
procedures. All exposures for which Strehl and full width at half-maximum
(fwhm) were extracted are long exposure images. Most of the images have
integration times of 15 s or longer, to get statistically meaningful data.

Figure 9.4 is a plot of the Strehl ratio R versus Fried’s parameter 7, at the
image wavelength. In this plot only the Strehl ratios derived from images of
‘bright’ stars of R-magnitude lower than 13.5 are reported. The lower solid line
is the Strehl ratio of the seeing limited image. Strehl ratios in this plot, as well
as in the rest of this section, have been corrected from the system static
aberrations, i.e. actual images were compared not to fully diffraction limited
images, but to the images obtained using the optical bench artificial source
with no turbulence. The Strehl ratio of the later ‘static’ images are 0.50, 0.65,
0.75, 0.77, 0.84, 0.90, and 0.93 in V, R, I, J, H, H2, and K, respectively. The
cloud of points exhibits little scatter in this plot, owing mostly to the simultane-
ous estimation of the ry, as reported in Section 9.4.2.2 and to the fact that the
system bandwidth on bright guide stars is, in most cases, several times larger
than the Greenwood frequency. The points are aligned along a theoretical curve
(dotted line) which corresponds to the full compensation of eight Zernike
modes (in between the » = 2 and the n = 3 curves in Fig. 3.2). Note that it is
not very far from our expectation of ten Zernike modes fully compensated
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Fig. 9.4. Strehl ratio versus the Fried parameter 7y at the image wavelength. *, B and
V band; X, R and I band; +, J band; <, H band; /A, H2 band; [], K band.

(dotted line in Fig. 9.4), as derived from numerical simulations (Rigaut et al.
1994). The difference between ten modes (expected) and eight modes
(achieved) is most probably due to telescope vibrations, uncorrected high
spatial frequency aberrations of our mirror train (particularly the telescope
primary mirror), and mirror seeing, which is mostly made of local, high spatial
frequency aberrations at the primary mirror surface. Note that this performance
of eight Zernike modes fully compensated for 19 actuators is comparable,
although slightly better, to that derived for the COME-ON system, the earlier
version of the current ADONIS system which also had 19 actuators (see Rigaut
et al. 1991 and Chapter 8). The difference between the number 19 of modes
controllable by the system and the computed figure of 10 comes from (a) the
piston mode which is not measurable, and therefore not corrected; it has no
effect on image quality; (b) four of our modes which are higher order and
therefore not very efficient in terms of phase variance reduction; (c) spatial
aliasing, a feature intrinsic to any system (see Chapter 3); (d) finite temporal
bandwidth, and finally (e) noise which is always present.

By taking the ratio of the achieved Strehl ratio (corrected from the static
aberrations of the optical bench) to the uncompensated image Strehl ratio
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(theoretical expression, therefore also assuming no further degradation by
optical aberrations, telescope jitter, etc.), one gets the gain in peak intensity,
reported in Fig. 9.5, versus D/ry. This translates into a sensitivity gain on
unresolved source (up to 2.5 magnitude in J and H). The upper solid line in this
figure is the limit imposed by the diffraction: if the image is fully diffraction
limited, the Strehl ratio improvement is equal to one over the Strehl ratio of the
seeing-limited image.

Note that the Strehl improvement peaks at an ry of approximately 60 cm
(D/ry = 6). This is to be compared to the characteristics length associated to
the correction and resulting from the geometry of the system: our mirror has 19
electrodes and the average distance between two electrodes is approximatively
d = 90 cm, therefore D/d = 4.

In terms of fwhm, the images are basically diffraction limited in H and K for
median seeing conditions. A fwhm of around 0.10” is maintained down to the |
band in most of the seeing conditions encountered. The fwhms in the visible
region (B, V, and R) still show a substantial gain with respect to the
uncompensated image fwhms (see below). The properties of the corrected
images, in terms of morphology, are discussed in the next section.
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Figure 9.6 presents the fwhm improvement brought by the AO compensa-
tion. The gain is hereby defined as the ratio between the seeing limited image
fwhm, 1/ry, and the fwhm of the compensated image. In the figure, the solid
line is the maximum gain set by the diffraction limit (1/r9)/(A/D) = D/ry
against rp). To avoid mixing too many parameters in the analysis, these values
are reported for stars brighter than mg = 13.5.

The maximum gain in fwhm is obtained for an ry of approximately 40 cm
(D/ry = 9). It is worth noting that the maximum gain in Strehl takes place at
a larger ry value (60 cm or D/ry = 6), as mentioned above. The ry value at
which the maximum resolution in terms of fwhm is obtained has been called
the critical 7y value (Rousset et al. 1990), which, for median seeing conditions,
corresponds to a given wavelength that has been called the critical wavelength
of the system. For PUEQ, this critical wavelength is 1 um. Referring to Fig.
9.4, one can see that the largest gain in resolution is obtained for images with
Strehl between 10 and 15%. At ry = 20 cm (D/ry = 18), which corresponds
approximatively to the typical value of ry in the V band, the gain in fwhm is
still 2—-3.

A different way to present the same fwhm results, which is useful in practice,
is shown in Fig. 9.7. The normalized fwhm of the compensated images is

(\/ro)/ fwhm

D/r,

Fig. 9.6. Gain in fwhm versus ry at the image wavelength.
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plotted against 7y at the image wavelength, again for stars brighter than
mr = 13.5. The normalized fwhm is the fwhm of the image in units of 1/D at
the image wavelength. In turn, the normalized fwhm lower limit is 1. In the
plot, the upper solid line is the fwhm of the seeing limited image. As seen on
this figure, the normalized fwhm, as the Strehl ratio, is a characteristic of the
system which depends only upon D/ry and not upon the image wavelength
(other than the ry dependence). Two regimes, with a very clear cut-off, are
revealed in this plot. The first regime, up to D/ry = 7, is characterized by
high Strehl ratios (>20%) and diffraction limited images in terms of fwhm
(normalized fwhm = 1). Above D/ry =7 lies a regime of more partial
correction, with low Strehl ratio images (<20%) and fwhm strongly depen-
dent upon the turbulence conditions. However, as reported above, the fwhm’s
gain is still quite attractive in this domain. This is particularly true for
astronomical direct imaging. In the visible, compensated images with fwhm
0.1-0.2" are commonly obtained at CFHT. Even these modest resolution gains
can make a huge difference in the feasibility/efficiency of a lot of astronomical
programs.

Another key issue is how the performance degrades with the guide star
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magnitude mgs. This is shown Fig. 9.8, in terms of Strehl ratio attenuation
versus the guide star R magnitude. The Strehl ratio attenuation is merely the
attenuation with respect to Strehl ratio values obtained on bright guide stars, in
the same turbulence conditions. This curve was computed using the results
presented in Fig. 9.4: Strehl ratio at H band on dim guide stars were divided by
the expected Strehl value for bright guide stars in the given ry conditions,
binned by magnitude and plotted against mgs. These points were fitted with a
function of the form:
2 : 2 1
Satt = €Xp(—0 i) With 07 ;. 0¢ — 9.5
Npn

where Ny is the number of photons detected by the WFS. This function was
then extrapolated to other wavelengths using a dependence 02 . . oc A72. The
magnitude for which the Strehl ratio attenuation is 50% is 15.7 for K band
images, 15.0 for H, and 14.4 for J. A direct extrapolation to R, less meaningful
at this wavelength where low Strehl ratio are usually obtained, gives 13.0.
These values should not really be considered as limiting magnitudes, for which
there is no satisfactory or unambiguous definition. In a real life situation, the
actual limit depends more on the scientific goal one wants to achieve, coupled

1.2 T TT T Ty rToTT AR R L R R AR LR

Strehl attenuation

0.0_....l.........|l........|.........l.........l ..... el

10 11 12 13 14 15
Guide star magnitude

Fig. 9.8. Strehl attenuation with respect to the bright guide star case versus the guide
star magnitude.
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Table 9.2. Performance summary in median seeing conditions

Waveband \% R I J H K
Wavelength [pum] 0.54 0.65 0.83 1.25 1.65 223
Median ry(1) [cm] 17 21 28 46 65 93
D/ry 21.3 17.1 12.7 7.8 5.6 3.9
Strehl ratio (%) 1 2 5 21 41 61
fwhm (arcsec) 0.24 0.19 0.12 0.09 0.11 0.14
Gainggrep 4.0 5.0 7.0 12.5 11.6 9.5
Gainpwpm 2.6 32 4.8 5.9 5.0 3.6

with the turbulence conditions. As an illustration, we have achieved 0.17"
fwhm in the K band on a R magnitude 17 guide star, under good seeing
conditions (0.38" seeing).

In real observing situations, from the knowledge of 7y, one can determine
the performance (Strehl and fwhm) at any wavelength and any guide star
magnitude using Figs 9.4 to 9.8.

To conclude this section, Table 9.2 summarizes the compensated images
Strehl ratio and fwhm at various wavelengths for median seeing conditions.
Also reported are the gains in Strehl ratio and fwhm over the uncompensated
case, as defined above.

9.4.2.4 Image properties

We now discuss global properties of compensated images. Most of the material
in this section belongs as well to the previous section. However, the properties
we attempt to derive here are not only relevant to PUEO but also to any general
adaptive optics system.

The partial correction image profile, with a coherent core — broadened by
tip/tilt residuals — on top of a diffuse halo, is well known. Examples of such
point-spread functions can be found in other chapters. Here, we will go one
step further and explain why the PSF has such a shape.

A very educational and global way to understand the effect of the compensa-
tion by an AO system is to consider the phase itself. The phase structure
function D, is a powerful tool to investigate the phase properties and image
characteristics. With some limitations, it is possible to derive the phase
structure function from the point-spread function. In this work, we used the
following estimator based on Eq. (2.36) of Chapter 2:

D = 210 | FT(image)| — noise(| FT(image)|)
0= To08 | FT(psf_stat)| — noise(| FT(psf_stat)|)|’

(9.6)
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averaged azimuthally. Here FT stands for Fourier transform. The function
‘psf_stat’ is the point-spread function acquired on the internal artificial source
that includes all uncorrected non-common path aberration (mostly the imaging
camera). The average noise level is determined from the spatial frequency
domain lying outside the telescope cut-off frequency. The noise on the Fourier
transforms usually prevents an accurate determination of the structure func-
tions at separation greater than approximately 0.8D, corresponding to spatial
frequencies for which the amplitude of the TF drops down to the noise level,
i.e. close to the cut-off frequency D/A. Using 18 images recorded at different
wavelengths (J, H, H2), under various seeing conditions during two consecutive
nights, it was possible to compute a characteristic phase structure function of
the system, plotted in Fig. 9.9. This latter function, plotted as a solid line, is
the average of the structure functions obtained on the 18 images, normalized
by D/ry at the image wavelength. The error bars were computed simply as
the rms deviation of this ensemble of curves. The structure function for a
Kolmogorov-type turbulence is plotted as a dashed line for a D/ry = 1. The
dashed-dotted line is the phase structure function corresponding to a theoretic-
ally ideal correction of the PUEO mirror modes (i.e. where only the fitting
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Fig. 9.9. PUEO characteristic phase structure functions. Experimental (solid line +
error bars), turbulent (dashed line), and high order phase residual alone (dashed-dotted

line).



9.4 The PUEQO system 229

error is taken into account). We also call this latter function the ‘Noll structure
function’, by analogy with the Noll residual. It has been computed using
Monte-Carlo realizations of turbulent wave fronts, from which the contribution
of the system/mirror modes was removed. It is therefore the structure function
of the compensated phase in absence of any errors such as noise, spatial
aliasing, and servo-lag error.

This figure requires several remarks:

e Contrary to the uncompensated structure function, the Noll phase structure function
saturates and forms a ‘plateau’ over most of the separation domain. This ensures the
coherence — more precisely the partial coherence — over the whole telescope pupil,
allowing the formation of an image coherent core. The saturation takes place for
separations for which the phase becomes uncorrelated. Therefore the phase struc-
ture function at these separations can be expressed as

D, = {|o(r) — o(r + p)*) = 2((r)*) = 207, 9.7)

in other words, the structure function saturation value is twice the phase variance
over the pupil. In addition, we know that the Strehl ratio is approximately given by
exp(—aqzo) (see Section 2.3). Hence, the higher the ‘plateau’, the smaller the
coherence and the smaller the Strehl ratio (assuming we identify at first order the
coherent energy to the Strehl ratio).

e In the Noll structure function, the saturation takes place at a separation of
approximately 70 cm, which is roughly the ‘inter-actuator’ distance d. This is not a
coincidence: only the phase corrugations of scale larger than the distance between
two actuators can naturally be corrected.

e The phase structure function achieved by the system (solid line) is larger than the
Noll structure function at all separations. The ‘plateau’ is destroyed partially. The
rising of the function at scales larger than the inter-actuator distance can only be
explained by the presence of low-spatial frequency aberrations, such as tip/tilt,
defocus, etc., which have not been fully corrected by the system. A more detailed
analysis shows that, when using bright guide stars, these low order modes are
principally the result of spatial aliasing (noise and servo-lag errors are small because
of the large number of photons available on these particular examples and because
the system bandwidth (70—100 Hz) is several times larger than the Greenwood
frequency). Overall, both our numerical simulations and experimental results show
that for curvature systems, the spatial aliasing induce a phase error which is
comparable in amplitude to the mirror fitting error. As far as images are concerned,
the difference between the Noll structure function and the system structure function
means a smaller Strehl ratio, and a not-fully diffraction limited core, slightly larger
than the Airy pattern.

e The decorrelation at small scales in the system structure function is of the same type
(although quantitatively different, see below) as the loss of coherence induced by
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the seeing. This is what forms the compensated image ‘halo’. However, the system
structure function increases more slowly than the uncompensated one at a small
scale. The cause of this lies in the fact that large scale perturbations play a non-
negligible role in the phase decorrelation at small scales (especially because the
power in these large scale perturbations is so large), therefore, correction of
perturbations of scale >d affect the phase structure function at scale <d. The
consequence of this is that the coherence of the wave front is increased everywhere,
and in particular at small scales. The net effect is equivalent to having a larger rg
value for the behavior of the structure function at a small scale. The ‘halo’, directly
linked to the wave-front coherence at small scales, will therefore have properties
different than the long exposure image: it will be narrower (because the coherence
length is increased).

As shown above, all the observed properties of the AO compensated images
can be explained by the consideration of the phase structure function. In
addition the phase structure function expresses the correlation of the phase
independently from the image formation process. The knowledge of this
function characterizes entirely a given system performance (in the bright guide
star regime) and allows the computation of the image at any wavelength.

Figure 9.10 displays the image Strehl ratio versus the image normalized
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Fig. 9.10. Image Strehl ratio versus normalized fwhm for bright stars (crosses) and
dim stars (filled circles).
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fwhm, as defined earlier. In this figure, the crosses refer to guide stars brighter
than mg = 13.5 and the filled circles to guide stars fainter than mg = 13.5.
These curves show that for bright guide stars, there is a very tight relation
between the normalized fwhm and the Strehl ratio (Tessier 1995). To any given
Strehl ratio corresponds a well-defined normalized fwhm, therefore a given
image shape, whatever the wavelength and the atmospheric conditions. This is
a natural conclusion if one considers the interpretation of the AO compensation
in terms of structure function as described above.

Use of faint guide stars modifies the relationship between the Strehl ratio
and the normalized fwhm. In terms of modal decomposition, this can be easily
understood if one considers that the effect of noise propagation on the
corrected modes is different from that of errors when noise does not dominate.
For instance, it is known that noise propagates in a very large part on tip/tilt
(especially for curvature systems), and therefore the error on tip/tilt, propor-
tionally to the other modes, will be larger when dominated by noise measure-
ment error, broadening the image further, and modifying the Strehl/fwhm
relation.

As a conclusion for this section, we report in Fig. 9.11 some data on
anisoplanatism. The globular cluster M71 was observed at visible wave-
lengths (B, V, and I) with a field-of-view of 40 X 40" squared. Strehl ratios
are reported here against the distance off center. The angle for which the
Strehl ratio drops by a relative 30% is of the order of 12" in the I band,
which would translate in 18" in the J band, and 37" in the K band. Those are
typical values as quoted by other authors for Mauna Kea (Northcott ez al.
private communication).

9.4.2.5 Scientific programs

The exploitation of the AOB for regular scientific programs started in August
1996. It has already included a survey of multiple stars in the Pleiades, and
imaging of the comet Hale—Bopp, the nucleus of M31, the galactic center,
Seyfert galaxies, QSO hosts galaxies, and high redshift galaxies. Some of these
early results are presented in Chapter 15.
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Adaptive optics in solar astronomy

JACQUES M. BECKERS

National Solar Observatory/NOAO*
Tucson, AZ 85718

10.1 Introduction

Much of the early experimentation on astronomical adaptive optics was done in
the 1970s on the Vacuum Tower Telescope (VTT) at Sacramento Peak (Buf-
fington et al. 1977; Hardy 1981, 1987) either on stellar objects or on the sun
itself. That telescope, although only 76 cm in aperture, was ideally suited for
such experimentation because of its attractive environment for instrumentation.
Diffraction limited imaging at visible wavelengths on both stars and the sun
was achieved by Hardy. The solar results then clearly demonstrated the
limitations on adaptive-optics-aided solar research resulting from the small
isoplanatic patch size (a few arcseconds). Since then a few other efforts have
been mounted to achieve diffraction limited imaging in solar observations.

Solar adaptive optics systems differ in a number of significant aspects from
systems developed for night-time astronomy. Specifically:

(i) since the sun is an extended object, wave-front sensing on point-like objects as is
done mostly in night-time adaptive optics systems is not an option.

(i1) solar seeing is generally worse than night-time seeing because the zenith angle/air
mass at which the sun is being viewed is large in the early morning when night-
time seeing still prevails and because seeing caused by ground heating by sunlight
becomes severe later in the day when the sun is seen at greater elevations.

(iii) solar telescopes have generally much smaller apertures than night-time telescopes
none, except for the 150-cm aperture McMath—Pierce facility on Kitt Peak,
exceeding 1 meter in diameter.

(iv) wave-front sensing methods using solar surface structure are not photon starved
as is often the case for night-time adaptive optics.

¢ The National Optical Astronomy Observatories (NOAO) are operated by the Association of Universities
for Research in Astronomy (AURA) under a Cooperative Agreement with the National Science Foun-
dation.
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Emphasis for solar adaptive optics has so far been on visible light observa-
tions so that the complexity for the short wavelength (500 nm), poorer seeing,
r9(0.5 um) = 8 cm, solar adaptive optics systems for the 0.76-meter aperture
Sac Peak telescope is similar to, or worse than that of night-time systems where
the K spectral band is generally specified under better seeing conditions. For
example, for the 10-meter Keck telescope a typical r(2.2 pm) = 120 cm
requires as many adaptive elements but at a control time constant which is an
order of magnitude shorter because of the visible wavelengths used and
because of the poorer daytime seeing.

In contrast to the many efforts being pursued in the development of night-
time adaptive optics, the pursuit of solar adaptive optics is limited both because
of the smaller community, and hence smaller resources, involved and because
other methods have been very effective for diffraction limited imaging. The
sun, with its abundant photon flux, allows the very short exposure, relatively
low noise observations required for broadband imaging. Hence post-detection
image reconstruction and image selection techniques have been successfully
applied to solar observations. They will be described in the next section.
Nonetheless, narrow spectral bandwidths (0.01 nm) and high spectral resolu-
tions (> 10°) are often needed in solar observations. In those cases the use of
pre-detection image restoration with adaptive optics and high duty cycles
becomes especially attractive.

In the following section pre-detection and post-detection techniques will be
briefly reviewed to put the use of solar adaptive optics in a broader perspective.
Then the methods used for wave-front sensing in solar adaptive optics are
reviewed. They, and the higher control bandwidth, are the prime factors
distinguishing it from other systems described in this monograph. Finally a
description is given of the two solar adaptive optics systems currently under
development.

10.2 High-resolution imaging in solar research
10.2.1 Image selection techniques

Although ry results in a seeing angle for long exposure images of the order of
A/ ry, short exposure images vary greatly in quality because of the statistical
nature of the wave-front disturbances caused by atmospheric turbulence. The
time constant 7 involved could be as short as 7/ Vying Where Vying corresponds
to the typical wave-front translation velocity. With Vying = 10 m/s and
ro = 10 cm, T = 10 ms. Broadband observations of the solar disk indeed allow
exposures of this length. It is therefore possible to obtain images significantly
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Table 10.1. Gain in angular resolution for short exposure images using image

selection
D/ry 3 4 5 7 10 15 20 50 100
76 percentile 2 2 19 1.7 1.5 14 13 1.2 1.1
10 percentile 2.7 31 31 28 24 21 19 15 14
1 percentile 29 34 36 34 30 26 23 17 16
0.1 percentile 3.0 36 40 41 38 32 30 21 1.8

better (and also worse!) than 1/ry in quality by selecting the right moment.
Fried (1978) first calculated the probability of getting such a ‘lucky short
exposure image’. Hecquet and Coupinot (1985) further elaborated on this
concept. Table 10.1 is taken from their publication. It gives the gain in angular
resolution of short exposure images over that of a long exposure image for
images selected for different upper seeing percentiles.

Image selection thus results in major gains in angular resolution especially
in the D/ry = 3 to 30 range. Image selection is being used at a number of solar
observatories for solar surface structure imaging. On days of sub-arcsecond
seeing it has, for example, resulted in diffraction limited images at visible
wavelengths at the 50-cm aperture Swedish Solar Telescope on La Palma and
at the 76-cm aperture Vacuum Tower Telescope at Sacramento Peak (see Fig.
10.1). It is expected to give diffraction limited images at 1.6 um in the near
infrared with the 150-cm aperture McMath—Pierce Telescope on Kitt Peak if
the present efforts to improve the image quality at that telescope are successful.
As was pointed out by Beckers (1988b) image selection obviously only works
well if the telescope optical quality is significantly better than that of the
atmosphere above it. Because the atmospheric wave-front disturbances can
occasionally compensate the optical aberrations, it is, however, not necessary
that the telescope is fully diffraction limited!

Image selection techniques have an additional advantage over other techni-
ques, like adaptive optics, that the ‘lucky short exposure image’ not only has a
high angular resolution in the long exposure isoplanatic patch, but also that the
size of the isoplanatic patch is increased as well. Short exposure solar images
actually tend to have high image quality over areas well exceeding in size the
few arcseconds normally mentioned as isoplanatic areas for visible adaptive
optics. Part of that is undoubtedly due to the image selection technique, part
may be due to the fact that a relatively large percentage of the daytime seeing
occurs close to the telescope.

The use of image selection techniques to achieve diffraction limited imaging
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Fig. 10.1. Example of diffraction-limited image taken with the Sacramento Peak Vacu-
um Tower Telescope at 460 nm. Exposure time was 16 ms. (Courtesy T. Rimmele).

is of course limited to observations where photon fluxes are high and for D/r
smaller than about 5. For photon-starved narrow band filter imaging and high
resolution spectroscopy adaptive optics will be needed. Adaptive optics is also
desired for diffraction limited imaging in the future with very large aperture
solar telescopes (D > 5ry), although post-detection image restoration may
remain an option for broadband imaging. The combination of low order adaptive
optics with image selection is an interesting future possibility for broadband
imaging with very large solar telescopes. Not only would it decrease the
number of required adaptive subapertures by more than an order of magnitude,
it would also presumably benefit from the increased isoplanatic patch.

10.2.2 Post-detection image restoration techniques

Speckle image reconstruction methods have been used extensively in high
resolution solar imaging. As is the case for image selection techniques, it is not
within the context of this monograph to review their methodology and applica-
tion in detail. Instead we refer to other reviews like the one by von der Liihe
(1992) for a more detailed description. It is, however, of interest here to review
the relation of these techniques to the use of adaptive optics. Solar and night-
time applications both have used Knox—Thompson and Bispectrum/Triple
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Correlation/Speckle Masking techniques extensively to obtain close to diffrac-
tion limited images from many objects of interest. Recently phase-diversity
techniques have found interesting applications in solar astronomy (L6fdahl and
Scharmer 1993; Paxman et al. 1992; Seldin and Paxman, 1994). As shown in
Fig. 10.2, it generally uses two simultaneous, short exposure images taken at
different focus/defocus positions near the focal plane. The two images have a
known phase aberration difference in the incoming wave front referred to as
‘phase diversity’. In the case of different focus/defocus images it is quadratic
with the distance to pupil center. From this known phase diversity it is then
possible to recover both the unaberrated image as well as the aberrations of the
optical system, including the atmosphere. Following conventional speckle
imaging, the use of many such focus/defocus positions to enhance the quality
of the final image is referred to as phase-diverse speckle imaging.

In solar applications, problems associated with photon noise are minimized
again by using broadband imaging. Some degree of image selection is common
to minimize the degree of image restoration needed. Differential methods have
been used in which the image restoration function (or the atmosphere/telescope
aberration) is determined from low noise broadband observations and then
applied to the restoration of noisier narrow-band observations (Keller et al.
1991a; Keller et al. 1991b).

Post-detection image restoration techniques in solar astronomy presently
compete successfully with the gains anticipated from the use of adaptive optics.
They are, however, very computer intensive and are generally used only for
specific research programs. The introduction of adaptive optics in solar
astronomy will reduce the need for this. In addition adaptive optics will be
necessary for spectroscopy and probably for photon-starved imaging with very
large aperture solar telescopes in the future.

10.2.3 Adaptive optics techniques

As is evident from the discussions above, the implementation of adaptive optics
in solar astronomy is desirable for a number of reasons including:

(1) Spectroscopy, where the short exposure times and the one-dimensional spatial
coverage preclude the other methods for high resolution observations to achieve
the required sensitivities.

(i) Narrow-band imaging, where photon noise in the short exposures prevents image
selection techniques and where the sensitivities may be compromised in post-
detection image restoration techniques. Adaptive optics allows longer exposures
and full time coverage.

(i) Large aperture telescopes, where image selection techniques start breaking down
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Fig. 10.2. Schematic of conventional speckle image observations (a), phase diversity
imaging (b), and phase-diverse speckle imaging (c). Courtesy Seldin and Paxman
(1994).
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for D/ryp > 5 and where the speckle transfer functions become very small at high
spatial frequencies. In addition one expects the lifetime for the smallest solar
features to decrease more or less linearly with feature size and hence with the
angular resolution of the telescope (proportional to D~'). Since the light flux per
resolution element in a diffraction limited telescope is independent of its
diameter D, the required decrease of exposure times works against image
selection and reconstruction techniques.

(iv) Routine observing, where the observation of the highly time variable solar
atmosphere and the need to obtain maximum coverage of solar active regions
requires the best image all the time, and where routine computer intensive image
reconstructions are unacceptable.

(v) Coronal observing, where the absence of a sufficiently bright surface structure
requires the use of laser guide star technology.

As has already been pointed out for image selection techniques, a hybrid of
adaptive optics, image selection, and post-detection techniques will be very
useful in many cases. Image restoration techniques will enable the removal of
residual image deterioration effects resulting from, for example, a not fully
effective adaptive optics system and from anisoplanicity effects.

10.3 Wave-front sensing techniques on extended objects

Non-solar adaptive optics systems use point or point-like objects for wave-front
sensing. Solar adaptive optics differs from these primarily in the need to do
wave-front sensing on an extended, structured object (see Fig. 10.1). The solar
surface structure most suitable is the solar granulation which is present
anywhere on the solar disk, has a typical size of 1.5", is visible in broadband
images and has a (wavelength-dependent) contrast of 5—10%. In solar active
regions sunspots and their small scale, sub-arcsecond structure can be used as
well. Sometimes very small sunspots with sizes near one arcsecond are
available, so-called pores. In that limited case non-solar wave-front sensing
techniques can be us