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Preface

This book is about time-homogeneous Markov chains that evolve with discrete
time steps on a countable state space. This theory was born more than 100 years
ago, and its beauty stems from the simplicity of the basic concept of these random
processes: “given the present, the future does not depend on the past”. While of
course a theory that builds upon this axiom cannot explain all the weird problems of
life in our complicated world, it is coupled with an ample range of applications as
well as the development of a widely ramified and fascinating mathematical theory.
Markov chains provide one of the most basic models of stochastic processes that
can be understood at a very elementary level, while at the same time there is an
amazing amount of ongoing, new and deep research work on that subject.

The present textbook is based on my Italian lecture notes Catene di Markov
e teoria del potenziale nel discreto from 1996 [W1]. I thank Unione Matematica
Italiana for authorizing me to publish such a translation. However, this is not just a
one-to-one translation. My view on the subject has widened, part of the old material
has been rearranged or completely modified, and a considerable amount of material
has been added. Only Chapters 1, 2, 6, 7 and 8 and a smaller portion of Chapter 3
follow closely the original, so that the material has almost doubled.

As one will see from summary (page ix) and table of contents, this is not about
applied mathematics but rather tries to develop the “pure” mathematical theory,
starting at a very introductory level and then displaying several of the many fasci-
nating features of that theory.

Prerequisites are, besides the standard first year linear algebra and calculus
(including power series), an understanding of and – most important – interest in
probability theory, possibly including measure theory, even though a good part of
the material can be digested even if measure theory is avoided. A small amount
of complex function theory, in connection with the study of generating functions,
is needed a few times, but only at a very light level: it is useful to know what a
singularity is and that for a power series with non-negative coefficients the radius
of convergence is a singularity. At some points, some elementary combinatorics is
involved. For example, it will be good to know how one solves a linear recursion
with constant coefficients. Besides this, very basic Hilbert space theory is needed
in §C of Chapter 4, and basic topology is needed when dealing with the Martin
boundary in Chapter 7. Here it is, in principle, enough to understand the topology
of metric spaces.

One cannot claim that every chapter is on the same level. Some, specifically at
the beginning, are more elementary, but the road is mostly uphill. I myself have
used different parts of the material that is included here in courses of different levels.



vi Preface

The writing of the Italian lecture notes, seen a posteriori, was sort of a “warm up”
before my monograph Random walks on infinite graphs and groups [W2]. Markov
chain basics are treated in a rather condensed way there, and the understanding of
a good part of what is expanded here in detail is what I would hope a reader could
bring along for digesting that monograph.

I thank Donald I. Cartwright, Rudolf Grübel, Vadim A. Kaimanovich, Adam
Kinnison, Steve Lalley, Peter Mörters, Sebastian Müller, Marc Peigné, Ecaterina
Sava and Florian Sobieczky very warmly for proofreading, useful hints and some
additional material.

Graz, July 2009 Wolfgang Woess
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Introduction

Summary

Chapter 1 starts with elementary examples (§A), the first being the one that is
depicted on the cover of the book of Kemeny and Snell [K-S]. This is followed
by an informal description (“What is a Markov chain?”, “The graph of a Markov
chain”) and then (§B) the axiomatic definition as well as the construction of the
trajectory space as the standard model for a probability space on which a Markov
chain can be defined. This quite immediate first impact of measure theory might be
skipped at first reading or when teaching at an elementary level. After that we are
back to basic transition probabilities and passage times (§C). In the last section (§D),
the first encounter with generating functions takes place, and their basic properties
are derived. There is also a short explanation of transition probabilities and the
associated generating functions in purely combinatorial terms of paths and their
weights.

Chapter 2 contains basic material regarding irreducible classes (§A) and periodicity
(§B), interwoven with examples. It ends with a brief section (§C) on the spectral
radius, which is the inverse of the radius of convergence of the Green function (the
generating function of n-step transition probabilities).

Chapter 3 deals with recurrence vs. transience (§A & §B) and the fundamental
convergence theorem for positive recurrent chains (§C & §E). In the study of posi-
tive recurrence and existence and uniqueness of stationary probability distributions
(§B), a mild use of generating functions and de l’Hospital’s rule as the most “dif-
ficult” tools turn out to be quite efficient. The convergence theorem for positive
recurrent, aperiodic chains appears so important to me that I give two different
proofs. The first (§C) applies primarily (but not only) to finite Markov chains and
uses Doeblin’s condition and the associated contraction coefficient. This is pure
matrix analysis which leads to crucial probabilistic interpretations. In this context,
one can understand the convergence theorem for finite Markov chains as a special
case of the famous Perron–Frobenius theorem for non-negative matrices. Here
(§D), I make an additional detour into matrix analysis by reversing this viewpoint:
the convergence theorem is considered as a main first step towards the proof of the
Perron–Frobenius theorem, which is then deduced. I do not claim that this proof
is overall shorter than the typical one that one finds in books such as the one of
Seneta [Se]; the main point is that I want to work out how one can proceed by
extending the lines of thought of the preceding section. What follows (§E) is an-
other, elegant and much more probabilistic proof of the convergence theorem for
general positive recurrent, aperiodic Markov chains. It uses the coupling method,
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see Lindvall [Li]. In the original Italian text, I had instead presented the proof
of the convergence theorem that is due to Erdös, Feller and Pollard [20], a
breathtaking piece of “elementary” analysis of sequences; see e.g, [Se, §5.2]. It is
certainly not obsolete, but I do not think I should have included a third proof here,
too. The second important convergence theorem, namely, the ergodic theorem for
Markov chains, is featured in §F. The chapter ends with a short section (§G) about
�-recurrence.

Chapter 4. The chapter (most of whose material is not contained in [W1]) starts
with the network interpretation of a reversible Markov chain (§A). Then (§B) the
interplay between the spectrum of the transition matrix and the speed of convergence
to equilibrium (D the stationary probability) for finite reversible chains is studied,
with some specific emphasis on the special case of symmetric random walks on
finite groups. This is followed by a very small introductory glimpse (§C) at the
very impressive work on geometric eigenvalue bounds that has been promoted in
the last two decades via the work of Diaconis, Saloff-Coste and others; see [SC]
and the references therein, in particular, the basic paper by Diaconis and Stroock
[15] on which the material here is based. Then I consider recurrence and transience
criteria for infinite reversible chains, featuring in particular the flow criterion (§D).
Some very basic knowledge of Hilbert spaces is required here. While being close
to [W2, §2.B], the presentation is slightly different and “slower”. The last section
(§E) is about recurrence and transience of random walks on integer lattices. Those
Markov chains are not always reversible, but I figured this was the best place to
include that material, since it starts by applying the flow criterion to symmetric
random walks. It should be clear that this is just a very small set of examples from
the huge world of random walks on lattices, where the classical source is Spitzer’s
famous book [Sp]; see also (for example) Révész [Ré], Lawler [La] and Fayolle,
Malyshev and Men’shikov [F-M-M], as well as of course the basic material in
Feller’s books [F1], [F2].

Chapter 5 first deals with two specific classes of examples, starting with birth-
and-death chains on the non-negative integers or a finite interval of integers (§A).
The Markov chains are nearest neighbour random walks on the underlying graph,
which is a half-line or line segment. Amongst other things, the link with analytic
continued fractions is explained. Then (§B) the classical analysis of the Galton–
Watson process is presented. This serves also as a prelude of the next section (§C),
which is devoted to an outline of some basic features of branching Markov chains
(BMCs, §C). The latter combine Markov chains with the evolution of a “population”
according to a Galton–Watson process. BMCs themselves go beyond the theme of
this book, Markov chains. One of their nice properties is that certain probabilistic
quantities associated with BMC are expressed in terms of the generating functions
of the underlying Markov chain. In particular, �-recurrence of the chain has such an
interpretation via criticality of an embedded Galton–Watson process. In view of my
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insisting on the utility of generating functions, this is a very appealing propaganda
instrument regarding their probabilistic nature.

In the sections on the Galton–Watson process and BMC, I pay some extra
attention to the rigorous construction of a probability space on which the processes
can be defined completely and with all their features; see my remarks about a
certain nonchalance regarding the existence of the “probabilistic heaven” further
below which appear to be particularly appropriate here. (I do not claim that the
proposed model probability spaces are the only good ones.)

Of this material, only the part of §A dealing with continued fractions was already
present in [W1].

Chapter 6 displays basic notions, terminology and results of potential theory in the
discrete context of transient Markov chains. The discrete Laplacian isP �I , where
P is the transition matrix and I the identity matrix. The starting point (§A) is the
finite case, where we declare a part of the state space to be the boundary and its
complement to be the interior. We look for functions that have preassigned value
on the boundary and are harmonic in the interior. This discrete Dirichlet problem
is solved in probabilistic terms.

We then move on to the infinite, transient case and (in §B) consider basic features
of harmonic and superharmonic functions and their duals in terms of measures on
the state space. Here, functions are thought of as column vectors on which the
transition matrix acts from the left, while measures are row vectors on which the
matrix acts from the right. In particular, transience is linked with the existence
of non-constant positive superharmonic functions. Then (§C) induced Markov
chains and their interplay with superharmonic functions and excessive measures
are displayed, after which (§D) classical results such as the Riesz decomposition
theorem and the approximation theorem for positive superharmonic functions are
proved. The chapter ends (§E) with an explanation of “balayage” in terms of first
entrance and last exit probabilities, concluding with the domination principle for
superharmonic functions.

Chapter 7 is an attempt to give a careful exposition of Martin boundary theory
for transient Markov chains. I do not aim at the highest level of sophistication but
at the broadest level of comprehensibility. As a mild but natural restriction, only
irreducible chains are considered (i.e., all states communicate), but substochastic
transition matrices are admitted since this is needed anyway in some of the proofs.
The starting point (§A) is the definition and first study of the extreme elements
in the convex cone of positive superharmonic functions, in particular, the minimal
harmonic functions. The construction/definition of the Martin boundary (§B) is pre-
ceded by a preamble on compactifications in general. This section concludes with
the statement of one of the two main theorems of that theory, namely convergence to
the boundary. Before the proof, martingale theory is needed (§C), and we examine
the relation of supermartingales with superharmonic functions and, more subtle and
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important here, with excessive measures. Then (§D) we derive the Poisson–Martin
integral representation of positive harmonic functions and show that it is unique
over the minimal boundary. Finally (§E) we study the integral representation of
bounded harmonic functions (the Poisson boundary), its interpretation via termi-
nal random variables, and the probabilistic Fatou convergence theorem. At the
end, the alternative approach to the Poisson–Martin integral representation via the
approximation theorem is outlined.

Chapter 8 is very short and explains the rather algebraic procedure of finding all
minimal harmonic functions for random walks on integer grids.

Chapter 9, on the contrary, is the longest one and dedicated to nearest neighbour
random walks on trees (mostly infinite). Here we can harvest in a concrete class
of examples from the seed of methods and results of the preceding chapters. First
(§A), the fundamental equations for first passage time generating functions on trees
are exhibited, and some basic methods for finite trees are outlined. Then we turn to
infinite trees and their boundary. The geometric boundary is described via the end
compactification (§B), convergence to the boundary of transient random walks is
proved directly, and the Martin boundary is shown to coincide with the space of ends
(§C). This is also the minimal boundary, and the limit distribution on the boundary
is computed. The structural simplicity of trees allows us to provide also an integral
representation of all harmonic functions, not only positive ones (§D). Next (§E) we
examine in detail the Dirichlet problem at infinity and the regular boundary points,
as well as a simple variant of the radial Fatou convergence theorem. A good part
of these first sections owes much to the seminal long paper by Cartier [Ca], but
one of the innovations is that many results do not require local finiteness of the
tree. There is a short intermezzo (§F) about how a transient random walk on a tree
approaches its limiting boundary point. After that, we go back to transience/recur-
rence and consider a few criteria that are specific to trees, with a special eye on
trees with finitely many cone types (§G). Finally (§H), we study in some detail two
intertwined subjects: rate of escape (i.e., variants of the law of large numbers for the
distance to the starting point) and spectral radius. Throughout the chapter, explicit
computations are carried out for various examples via different methods.

Examples are present throughout all chapters.

Exercises are not accumulated at the end of each section or chapter but “built in”
the text, of which they are considered an integral part. Quite often they are used in
the subsequent text and proofs. The imaginary ideal reader is one who solves those
exercises in real time while reading.

Solutions of all exercises are given after the last chapter.

The bibliography is subdivided into two parts, the first containing textbooks and
other general references, which are recognizable by citations in letters. These are
also intended for further reading. The second part consists of research-specific
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references, cited by numbers, and I do not pretend that these are complete. I tried
to have them reasonably complete as far as material is concerned that is relatively
recent, but going back in time, I rely more on the belief that what I’m using has
already reached a confirmed status of public knowledge.

Raison d’être

Why another book about Markov chains? As a matter of fact, there is a great
number and variety of textbooks on Markov chains on the market, and the older ones
have by no means lost their validity just because so many new ones have appeared
in the last decade. So rather than just praising in detail my own opus, let me display
an incomplete subset of the mentioned variety.

For me, the all-time classic is Chung’s Markov chains with stationary transition
probabilities [Ch], along with Kemeny and Snell, Finite Markov chains [K-S],
whose first editions are both from 1960. My own learning of the subject, years
ago, owes most to Denumerable Markov chains by Kemeny, Snell and Knapp
[K-S-K], for which the title of this book is thought as an expression of reverence
(without claiming to reach a comparable amplitude). Besides this, I have a very high
esteem of Seneta’s Non-negative matrices and Markov chains [Se] (first edition
from 1973), where of course a reader who is looking for stochastic adventures will
need previous motivation to appreciate the matrix theory view.

Among the older books, one definitely should not forget Freedman [Fr]; the
one of Isaacson and Madsen [I-M] has been very useful for preparing some of
my lectures (in particular on non time-homogeneous chains, which are not featured
here), and Revuz’ [Re] profound French style treatment is an important source
permanently present on my shelf.

Coming back to the last 10–12 years, my personal favourites are the monograph
by Brémaud [Br] which displays a very broad range of topics with a permanent eye
on applications in all areas (this is the book that I suggest to young mathematicians
who want to use Markov chains in their future work), and in particular the very
nicely written textbook by Norris [No], which provides a delightful itinerary into
the world of stochastics for a probabilist-to-be. Quite recently, D. Stroock enriched
the selection of introductory texts on Markov processes by [St2], written in his
masterly style.

Other recent, maybe more focused texts are due to Behrends [Be] and Hägg-
ström [Hä], as well as the St. Flour lecture notes by Saloff-Coste [SC]. All
this is complemented by the high level exercise selection of Baldi, Mazliak and
Priouret [B-M-P].

In Italy, my lecture notes (the first in Italian dedicated exclusively to this topic)
were followed by the densely written paperback by Pintacuda [Pi]. In this short
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review, I have omitted most of the monographs about Markov chains on non-discrete
state spaces, such as Nummelin [Nu] or Hernández-Lerma and Lasserre [H-L]
(to name just two besides [Re]) as well as continuous-time processes.

So in view of all this, this text needs indeed some additional reason of being.
This lies in the three subtitle topics generating functions, boundary theory, random
walks on trees, which are featured with some extra emphasis among all the material.

Generating functions. Some decades ago, as an apprentice of mathematics, I learnt
from my PhD advisor Peter Gerl at Salzburg how useful it was to use generating
functions for analyzing random walks. Already a small amount of basic knowl-
edge about power series with non-negative coefficients, as it is taught in first or
second year calculus, can be used efficiently in the basic analysis of Markov chains,
such as irreducible classes, transience, null and positive recurrence, existence and
uniqueness of stationary measures, and so on. Beyond that, more subtle methods
from complex analysis can be used to derive refined asymptotics of transition prob-
abilities and other limit theorems. (See [53] for a partial overview.) However, in
most texts on Markov chains, generating functions play a marginal role or no role
at all. I have the impression that quite a few of nowadays’ probabilists consider
this too analytically-combinatorially flavoured. As a matter of fact, the three Italian
reviewers of [W1] criticised the use of generating functions as being too heavy to
be introduced at such an early stage in those lecture notes. With all my students
throughout different courses on Markov chains and random walks, I never noticed
any such difficulties.

With humble admiration, I sympathise very much with the vibrant preface of
D. Stroock’s masterpiece Probability theory: an analytic view [St1]: (quote) “I
have never been able to develop sufficient sensitivity to the distinction between
a proof and a probabilistic proof ”. So, confirming hereby that I’m not a (quote)
“dyed-in-the-wool probabilist”, I’m stubborn enough to insist that the systematic use
of generating functions at an early stage of developing Markov chain basics is very
useful. This is one of the specific raisons d’être of this book. In any case, their use
here is very very mild. My original intention was to include a whole chapter on the
application of tools from complex analysis to generating functions associated with
Markov chains, but as the material grew under my hands, this had to be abandoned
in order to limit the size of the book. The masters of these methods come from
analytic combinatorics; see the very comprehensive monograph by Flajolet and
Sedgewick [F-S].

Boundary theory and elements of discrete potential theory. These topics are
elaborated at a high level of sophistication by Kemeny, Snell and Knapp [K-S-K]
and Revuz [Re], besides the literature from the 1960s and ’70s in the spirit of
abstract potential theory. While [K-S-K] gives a very complete account, it is not
at all easy reading. My aim here is to give an introduction to the language and
basics of the potential theory of (transient) denumerable Markov chains, and, in
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particular, a rather complete picture of the associated topological boundary theory
that may be accessible for good students as well as interested colleagues coming
from other fields of mathematics. As a matter of fact, even advanced non-experts
have been tending to mix up the concepts of Poisson and Martin boundaries as well
as the Dirichlet problem at infinity (whose solution with respect to some geometric
boundary does not imply that one has identified the Martin boundary, as one finds
stated). In the exposition of this material, my most important source was a rather
old one, which still is, according to my opinion, the best readable presentation of
Martin boundary theory of Markov chains: the expository article by Dynkin [Dy]
from 1969.

Potential and boundary theory is a point of encounter between probability and
analysis. While classical potential theory was already well established when its
intrinsic connection with Brownian motion was revealed, the probabilistic theory
of denumerable Markov chains and the associated potential theory were developed
hand in hand by the same protagonists: to their mutual benefit, the two sides
were never really separated. This is worth mentioning, because there are not only
probabilists but also analysts who distinguish between a proof and a probabilistic
proof – in a different spirit, however, which may suggest that if an analytic result
(such as the solution of the Dirichlet problem at infinity) is deduced by probabilistic
reasoning, then that result is true only almost surely before an analytic proof has
been found.

What is not included here is the potential and boundary theory of recurrent
chains. The former plays a prominent role mainly in relation with random walks
on two-dimensional grids, and Spitzer’s classic [Sp] is still a prominent source on
this; I also like to look up some of those things in Lawler [La]. Also, not much
is included here about the `2-potential theory associated with reversible Markov
chains (networks); the reader can consult the delightful little book by Doyle and
Snell [D-S] and the lecture notes volume by Soardi [So].

Nearest neighbour random walk on trees is the third item in the subtitle. Trees
provide an excellent playground for working out the potential and boundary theory
associated with Markov chains. Although the relation with the classical theory is
not touched here, the analogy with potential theory and Brownian motion on the
open unit disk, or rather, on the hyperbolic plane, is striking and obvious. The com-
binatorial structure of trees is simple enough to allow a presentation of a selection of
methods and results which are well accessible for a sufficiently ambitious beginner.
The resulting, rather long final chapter takes up and elaborates upon various topics
from the preceding chapters. It can serve as a link with [W2], where not as much
space has been dedicated to this specific theme, and, in particular, the basics are not
developed as broadly as here.

In order to avoid the impact of additional structure-theoretic subtleties, I insist
on dealing only with nearest neighbour random walks. Also, this chapter is certainly



xvi Introduction

far from being comprehensive. Nevertheless, I think that a good part of this material
appears here in book form for the first time. There are also a few new results and/or
proofs.

Additional material can be found in [W2], and also in the ever forthcoming,
quite differently flavoured wonderful book by Lyons with Peres [L-P].

At last, I want to say a few words about

the role of measure theory. If one wants to avoid measure theory, and in particular
the extension machinery in the construction of the trajectory space of a Markov
chain, then one can carry out a good amount of the theory by considering the Markov
chain in a finite time interval f0; : : : ; ng. The trajectory space is then countable and
the underlying probability measure is atomic. For deriving limit theorems, one may
first consider that time interval and then let n ! 1. In this spirit, one can use a
rather large part of the initial material in this book for teaching Markov chains at
an elementary level, and I have done so on various occasions.

However, it is my opinion that it has been a great achievement that probability has
been put on the solid theoretical fundament of measure theory, and that students of
mathematics (as well as physics) should be exposed to that theoretical fundament,
as opposed to fake attempts to make their curricula more “soft” or “applied” by
giving up an important part of the mathematical edifice.

Furthermore, advanced probabilists are quite often – and with very good reason –
somewhat nonchalant when referring to the spaces on which their random processes
are defined. The attitude often becomes one where we are confident that there always
is some big probability space somewhere up in the clouds, a kind of probabilistic
heaven, on which all the random variables and processes that we are working with
are defined and comply with all the properties that we postulate, but we do not
always care to see what makes it sure that this probabilistic heaven is solid. Apart
from the suspicion that this attitude may be one of the causes of the vague distrust
of some analysts to which I alluded above, this is fine with me. But I believe this
should not be a guideline of the education of master or PhD students; they should
first see how to set up the edifice rigorously before passing to nonchalance that is
based on firm knowledge.

What is not contained about Markov chains is of course much more than what is
contained in this book. I could have easily doubled its size, thereby also changing its
scope and intentions. I already mentioned recurrent potential and boundary theory,
there is a lot more that one could have said about recurrence and transience, one
could have included more details about geometric eigenvalue bounds, the Galton–
Watson process, and so on. I have not included any hint at continuous-time Markov
processes, and there is no random environment, in spite of the fact that this is
currently very much en vogue and may have a much more probabilistic taste than
Markov chains that evolve on a deterministic space. (Again, I’m stubborn enough
to believe that there is a lot of interesting things to do and to say about the situation



Raison d’être xvii

where randomness is restricted to the transition probabilities themselves.) So, as I
also said elsewhere, I’m sure that every reader will be able to single out her or his
favourite among those topics that are not included here. In any case, I do hope that
the selected material and presentation may provide some stimulus and usefulness.





Chapter 1

Preliminaries and basic facts

A Preliminaries, examples

The following introductory example is taken from the classical book by Kemeny
and Snell [K-S], where it is called “the weather in the land of OZ”.

1.1 Example (The weather in Salzburg). [The author studied and worked in the
beautiful city of Salzburg from 1979 to 1981. He hopes that Salzburg tourism
authorities won’t take offense from the following over-simplified “meteorological”
model.] Italian tourists are very fond of Salzburg, the “Rome of the North”. Arriving
there, they discover rapidly that the weather is not as stable as in the South. There
are never two consecutive days of bright weather. If one day is bright, then the
next day it rains or snows with equal probability. A rainy or snowy day is followed
with equal probability by a day with the same weather or by a change; in case of a
change of the weather, it improves only in one half of the cases.

Let us denote the three possible states of the weather in Salzburg by (bright),
(rainy) and (snowy). The following table and figure illustrate the situation.0
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Figure 1

The table (matrix) tells us, for example, in the first row and second column that
after a bright day comes a rainy day with probability 1=2, or in the third row and
first column that snowy weather is followed by a bright day with probability 1=4.
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Questions:
a) It rains today. What is the probability that two weeks from now the weather

will be bright?
b) How many rainy days do we expect (on the average) during the next month?
c) What is the mean duration of a bad weather period?

1.2 Example ( The drunkard’s walk [folklore, also under the name of “gambler’s
ruin”]). A drunkard wants to return home from a pub. The pub is situated on a
straight road. On the left, after 100 steps, it ends at a lake, while the drunkard’s
home is on the right at a distance of 200 steps from the pub, see Figure 2. In each
step, the drunkard walks towards his house (with probability 2=3) or towards the
lake (with probability 1=3). If he reaches the lake, he drowns. If he returns home,
he stays and goes to sleep.
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Figure 2

Questions:
a) What is the probability that the drunkard will drown? What is the probability

that he will return home?
b) Supposing that he manages to return home, how much time (� how many

steps) does it take him on the average?

1.3 Example (P. Gerl). A cat climbs a tree (Figure 3).
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Figure 3

At each ramification point it decides by chance, typically with equal probability
among all possibilities, to climb back down to the previous ramification point or to
advance to one of the neighbouring higher points. If the cat arrives at the top (at
a “leaf”) then at the next step it will return to the preceding ramification point and
continue as before.



A. Preliminaries, examples 3

Questions:
a) What is the probability that the cat will ever return to the ground? What is

the probability that it will return at the n-th step?
b) How much time does it take on the average to return?
c) What is the probability that the cat will return to the ground before visiting

any (or a specific given) leaf of the tree?
d) How often will the cat visit, on the average, a given “leaf” y before returning

to the ground?

1.4 Example. Same as Example 1.3, but on another planet, where trees have infinite
height (or an infinite number of branchings).

Further examples will be given later on.

What is a Markov chain?

We need the following ingredients.

(1) A state spaceX , finite or countably infinite (with elements u; v; w; x; y; etc.,
or other notation which is suitable in the respective context). In Example 1.1,
X D f ; ; g, the three possible states of the weather. In Example 1.2,
X D f0; 1; 2; : : : ; 300g, all possible distances (in steps) from the lake. In
Examples 1.3 and 1.4,X is the set of all nodes (vertices) of the tree: the root,
the ramification points, and the leaves.

(2) A matrix (table) of one-step transition probabilities

P D �p.x; y/�
x;y2X

:

Our random process consists of performing steps in the state space from
one point to next one, and so on. The steps are random, that is, subject to
a probability law. The latter is described by the transition matrix P : if at
some instant, we are at some state (point) x 2 X , the number p.x; y/ is
the probability that the next step will take us to y, independently of how we
arrived at x. Hence, we must have

p.x; y/ � 0 and
X
y2X

p.x; y/ D 1 for all x 2 X:

In other words, P is a stochastic matrix.

(3) An initial distribution �. This is a probability measure on X , and �.x/ is the
probability that the random process starts at x.
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Time is discrete, the steps are labelled by N0, the set of non-negative integers.
At time 0 we start at a point u 2 X . One after the other, we perform random steps:
the position at time n is random and denoted by Zn. Thus, Zn, n D 0; 1; : : : , is
a sequence of X -valued random variables, called a Markov chain. Denote by Pru

the probability of events concerning the Markov chain starting at u. We hence have

PruŒZnC1 D y j Zn D x� D p.x; y/; n 2 N0

(provided PruŒZn D x� > 0, since the definition Pr.A j B/ D Pr.A \ B/=Pr.B/
of conditional probability requires that the condition B has positive probability).
In particular, the step which is performed at time n depends only on the current
position (state), and not on the past history of how that position was reached, nor
on the specific instant n: if PruŒZn D x;Zn�1 D xn�1; : : : ; Z1 D x1� > 0 and
PruŒZm D x� > 0 then

PruŒZnC1 D y j Zn D x;Zn�1 D xn�1; : : : ; Z1 D x1�

D PruŒZnC1 D y j Zn D x� D PruŒZmC1 D y j Zm D x�
D p.x; y/:

(1.5)

The graph of a Markov chain

A graph � consists of a denumerable, finite or infinite vertex set V.�/ and an edge
setE.�/ � V.�/�V.�/; the edges are oriented: the edge Œx; y� goes from x to y.
(Graph theorists would use the term “digraph”, reserving “graph” to the situation
where edges are non-oriented.) We also admit loops, that is, edges of the form

Œx; x�. If Œx; y� 2 E.�/, we shall also write x
1�! y.

1.6 Definition. Let Zn, n D 0; 1; : : : , be a Markov chain with state space X and
transition matrix P D �

p.x; y/
�

x;y2X
. The vertex set of the graph � D �.P /

of the Markov chain is V.�/ D X , and Œx; y� is an edge in E.�/ if and only if
p.x; y/ > 0.

We can also associate weights to the oriented edges: the edge Œx; y� is weighted
with p.x; y/. Seen in this way, a Markov chain is a denumerable, oriented graph
with weighted edges. The weights are positive and satisfyX

yWx 1�!y

p.x; y/ D 1 for all x 2 V.�/:

As a matter of fact, in Examples 1.1–1.3, we have already used those graphs for
illustrating the respective Markov chains. We have followed the habit of drawing
one non-oriented edge instead of a pair of oppositely oriented edges with the same
endpoints.
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B Axiomatic definition of a Markov chain

In order to give a precise definition of a Markov chain in the language of probability
theory, we start with a probability space 1 .��;A�;Pr�/ and a denumerable set X ,
the state space. With the latter, we implicitly associate the � -algebra of all subsets
of X .

1.7 Definition. A Markov chain is a sequence Z�
n , n D 0; 1; 2; : : : , of random

variables (measurable functions) Z�
n W �� ! X with the following properties.

(i) Markov property. For all elements x0; x1; : : : ; xn and xnC1 2 X which
satisfy Pr�ŒZ�

n D xn; Z
�
n�1 D xn�1; : : : ; Z

�
0 D x0� > 0, one has

Pr�ŒZ�
nC1 D xnC1 j Z�

n D xn; Z
�
n�1 D xn�1; : : : ; Z

�
0 D x0�

D Pr�ŒZ�
nC1 D xnC1 j Z�

n D xn�:

(ii) Time homogeneity. For all elements x; y 2 X and m; n 2 N0 which satisfy
Pr�ŒZ�

m D x� > 0 and Pr�ŒZ�
n D x� > 0, one has

Pr�ŒZ�
mC1 D y j Z�

m D x� D Pr�ŒZ�
nC1 D y j Z�

n D x�:

Here, ŒZ�
m D x� is the set (“event”) f!� 2 �� j Z�

m.!
�/ D xg 2 A�, and

Pr�Œ 	 j Z�
m D x� is probability conditioned by that event, and so on. In the sequel,

the notation for an event [logic expression] will always refer to the set of all elements
in the underlying probability space for which the logic expression is true.

If we write
p.x; y/ D Pr�ŒZ�

nC1 D y j Z�
n D x�

(which is independent of n as long as Pr�ŒZ�
n D x� > 0), we obtain the transi-

tion matrix P D �
p.x; y/

�
x;y2X

of .Z�
n/. The initial distribution of .Z�

n/ is the
probability measure � on X defined by

�.x/ D Pr�ŒZ�
0 D x�:

(We shall always write �.x/ instead of �.fxg/, and �.A/ DPx2A �.x/. The initial
distribution represents an initial experiment, as in a board game where the initial
position of a figure is chosen by throwing a dice. In case � D ıu, the point mass at
u 2 X , we say that the Markov chain starts at u.

More generally, one speaks of a Markov chain when just the Markov property (i)
holds. Its fundamental significance is the absence of memory: the future (time
nC 1) depends only on the present (time n) and not on the past (the time instants

1That is, a set �� with a � -algebra A� of subsets of �� and a � -additive probability measure Pr�

on A�. The � superscript is used because later on, we shall usually reserve the notation .�; A; Pr/ for
a specific probability space.
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0; : : : ; n � 1). If one does not have property (ii), time homogeneity, this means
that pnC1.x; y/ D Pr�ŒZ�

nC1 D y j Z�
n D x� depends also on the instant n

besides x and y. In this case, the Markov chain is governed by a sequence Pn

(n � 1) of stochastic matrices. In the present text, we shall limit ourselves to
the study of time-homogeneous chains. We observe, though, that also non-time-
homogeneous Markov chains are of considerable interest in various contexts, see
e.g. the corresponding chapters in the books by Isaacson and Madsen [I-M],
Seneta [Se] and Brémaud [Br].

In the introductory paragraph, we spoke about Markov chains starting directly
with the state space X , the transition matrix P and the initial point u 2 X , and the
sequence of “random variables” .Zn/ was introduced heuristically. Thus, we now
pose the question whether, with the ingredientsX andP and a starting point u 2 X
(or more generally, an initial distribution � onX ), one can always find a probability
space on which the random position aftern steps can be described as then-th random
variable of a Markov chain in the sense of the axiomatic Definition 1.7. This is
indeed possible: that probability space, called the trajectory space, is constructed
in the following, natural way.

We set

� D XN0 D f! D .x0; x1; x2; : : : / j xn 2 X for all n � 0g: (1.8)

An element ! D .x0; x1; x2; : : : / represents a possible evolution (trajectory), that
is, a possible sequence of points visited one after the other by the Markov chain.
The probability that this single ! will indeed be the actual evolution should be the
infinite product �.x0/p.x0; x1/p.x1; x2/ : : : , which however will usually converge
to 0: as in the case of Lebesgue measure, it is in general not possible to construct
the probability measure by assigning values to single elements (“atoms”) of �.

Let a0; a1; : : : ; ak 2 X . The cylinder with base a D .a0; a1; : : : ; ak/ is the set

C.a/ D C.a0; a1; : : : ; ak/

D f! D .x0; x1; x2; : : : / 2 � W xi D ai ; i D 0; : : : ; kg: (1.9)

This is the set of all possible ways how the evolution of the Markov chain may
continue after the initial steps through a0; a1; : : : ; ak . With this set we associate
the probability

Pr�

�
C.a0; a1; : : : ; ak/

� D �.a0/p.a0; a1/p.a1; a2/ 	 	 	p.ak�1; ak/: (1.10)

We also consider � as a cylinder (with “empty base”) with Pr�.�/ D 1.
For n 2 N0, let An be the � -algebra generated by the collection of all cylinders

C.a/ with a 2 XkC1, k 
 n. Thus, An is in one-to-one correspondence with the
collection of all subsets of XnC1. Furthermore, An � AnC1, and

F D
[
n

An
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is an algebra of subsets of �: it contains � and is closed with respect to taking
complements and finite unions. We denote by A the � -algebra generated by F .

Finally, we define the projections Zn, n � 0: for ! D .x0; x1; x2; : : : / 2 �,

Zn.!/ D xn: (1.11)

1.12Theorem. (a) The measure Pr� has a unique extension to a probability measure
on A, also denoted Pr� .

(b) On the probability space .�;A;Pr�/, the projections Zn, n D 0; 1; 2; : : : ,
define a Markov chain with state space X , initial distribution � and transition
matrix P .

Proof. By (1.10), Pr� is defined on cylinder sets. Let A 2 An. We can write A as
a finite disjoint union of cylinders of the form C.a0; a1; : : : ; an/. Thus, we can use
(1.10) to define a � -additive probability measure �n on An by

�n.A/ D
X

a2XnC1 W C.a/�A

P r�
�
C.a/

�
:

We prove that �n coincides with Pr� on the cylinder sets, that is,

�n

�
C.a0; a1; : : : ; ak/

� D Pr�

�
C.a0; a1; : : : ; ak/

�
; if k 
 n: (1.13)

We proceed by “reversed” induction on k. By (1.10), the identity (1.13) is valid for
k D n. Now assume that for some k with 0 < k 
 n, the identity (1.13) is valid for
every cylinder C.a0; a1; : : : ; ak/. Consider a cylinder C.a0; a1; : : : ; ak�1/. Then

C.a0; a1; : : : ; ak�1/ D
[

ak2X

C.a0; a1; : : : ; ak/;

a disjoint union. By the induction hypothesis,

�n

�
C.a0; a1; : : : ; ak�1/

� D X
ak2X

Pr�

�
C.a0; a1; : : : ; ak/

�
:

But from the definition of Pr� and stochasticity of the matrix P , we getX
ak2X

Pr�

�
C.a0; a1; : : : ; ak/

� D X
ak2X

Pr�

�
C.a0; a1; : : : ; ak�1/

�
p.ak�1; ak/

D Pr�

�
C.a0; a1; : : : ; ak�1/

�
;

which proves (1.13).

(1.13) tells us that for n � k and A 2 Ak � An, we have �n.A/ D �k.A/.
Therefore, we can extend Pr� from the collection of all cylinder sets to F by setting

Pr�.A/ D �n.A/; if A 2 An:
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We see that Pr� is a finitely additive measure with total mass 1 on the algebra F ,
and it is � -additive on each An. In order to prove that Pr� is � -additive on F , on
the basis of a standard theorem from measure theory (see e.g. Halmos [Hal]), it is
sufficient to verify continuity of Pr� at ;: if .An/ is a decreasing sequence of sets
in F with

T
nAn D ;, then limn Pr�.An/ D 0.

Let us now suppose that .An/ is a decreasing sequence of sets in F , and that
limn Pr�.An/ > 0. Since the � -algebras An increase with n, there are numbers
k.n/ such that An 2 Ak.n/ and 0 
 k.n/ < k.n C 1/. We claim that there is a
sequence of cylinders Cn D C.an/ with an 2 Xk.n/C1 such that for every n

(i) CnC1 � Cn,

(ii) Cn � An, and

(iii) limm Pr�.Am \ Cn/ > 0.

Proof. The � -additivity of Pr� on Ak.m/ implies

0 < lim
m

Pr�.Am/ D lim
m

X
a2Xk.0/C1

Pr�

�
Am \ C.a/

�
D

X
a2Xk.0/C1

lim
m

Pr�

�
Am \ C.a/

�
:

(1.14)

It is legitimate to exchange sum and limit in (1.14). Indeed,

Pr�

�
Am \C.a/

� 
 Pr�

�
A0 \C.a/

�
;

X
a2Xk.0/C1

Pr�

�
A0 \C.a/

� D Pr�.A0/ <1;

and considering the sum as a discrete integral with respect to the variable a 2
Xk.0/C1, Lebesgue’s dominated convergence theorem justifies (1.14).

From (1.14) it follows that there is a0 2 Xk.0/C1 such that for C0 D C.a0/ one
has

lim
m

Pr�.Am \ C0/ > 0: (1.15)

A0 is a disjoint union of cylinders C.b/ with b 2 Xk.0/C1. In particular, either
C0 \ A0 D ; or C0 � A0. The first case is impossible, since Pr�.A0 \ C0/ > 0.
Therefore C0 satisfies (ii) and (iii).

Now let us suppose to have already constructed C0; : : : ; Cr�1 such that (i), (ii)
and (iii) hold for all indices n < r . We define a sequence of sets

A0
n D AnCr \ Cr�1; n � 0:

By our hypotheses, the sequence .A0
n/ is decreasing, limn Pr�.A

0
n/ > 0, and A0

n 2
Ak0.n/, where k0.n/ D k.n C r/. Hence, the reasoning that we have applied
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above to the sequence .An/ can now be applied to .A0
n/, and we obtain a cylinder

Cr D C.ar/ with ar 2 Xk0.0/C1 D Xk.n/C1, such that

lim
m

Pr�.A
0
m \ Cr/ > 0 and Cr � A0

0:

From the definition of A0
n, we see that also

lim
m

Pr�.Am \ Cr/ > 0 and Cr � Ar \ Cr�1:

Summarizing, (i), (ii) and (iii) are valid for C0 : : :Cr , and the existence of the
proposed sequence .Cn/ follows by induction.

Since Cn D C.an/, where an 2 Xk.n/C1, it follows from (i) that the initial piece
of anC1 up to the indexk.n/must be an. Thus, there is a trajectory! D .a0; a1; : : : /

such that an D .a0; : : : ; ak.n// for each n. Consequently, ! 2 Cn for each n, and

\
n

An �
\

Cn ¤ ;:

We have proved that Pr� is continuous at ;, and consequently � -additive on F . As
mentioned above, now one of the fundamental theorems of measure theory (see e.g.
[Hal, §13]) asserts that Pr� extends in a unique way to a probability measure on the
� -algebra A generated by F : statement (a) of the theorem is proved.

For verifying (b), consider x0; x1; : : : ; x D xn; y D xnC1 2 X such that
Pr� ŒZ0 D x0; : : : ; Zn D xn� > 0. Then

Pr� ŒZnC1 D y j Zn D x;Zi D xi for all i < n� D Pr�

�
C.x0; : : : ; xnC1/

�
Pr�

�
C.x0; : : : ; xn/

�
D p.x; y/:

(1.16)

On the other hand, consider the events A D ŒZnC1 D y� and B D ŒZn D x� in A.
We can write B DSfC.a/ j a 2 XnC1; an D xg. Using (1.16), we get

Pr� ŒZnC1 D y j Zn D x� D Pr�.A \ B/
Pr�.B/

D
X

a2XnC1 W anDx;
Pr�.C.a//>0

Pr�

�
A \ C.a/

�
Pr�.B/

D
X

a2XnC1 W anDx;
Pr�.C.a//>0

Pr�

�
A j C.a/� Pr�

�
C.a/

�
Pr�.B/

D
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D
X

a2XnC1 W anDx;
Pr�.C.a//>0

p.x; y/
Pr�

�
C.a/

�
Pr�.B/

D p.x; y/:
Thus, .Zn/ is a Markov chain on X with transition matrix P . Finally, for x 2 X ,

Pr� ŒZ0 D x� D Pr�

�
C.x/

� D �.x/;
so that the distribution of Z0 is �. �

We observe that beginning with the point (1.13) regarding the measures �n, the
last theorem can be deduced from Kolmogorov’s theorem on the construction of
probability measures on infinite products of Polish spaces. As a matter of fact,
the proof given here is basically the one of Kolmogorov’s theorem adapted to
our special case. For a general and advanced treatment of that theorem, see e.g.
Parthasarathy [Pa, Chapter V].

The following theorem tells us that (1) the “generic” probability space of the
axiomatic Definition 1.7 on which the Markov chain .Z�

n/ is defined is always
“larger” (in a probabilistic sense) than the associated trajectory space, and that (2)
the trajectory space contains already all the information on the individual Markov
chain under consideration.

1.17 Theorem. Let .��;A�;Pr�/ be a probability space and .Z�
n/ a Markov chain

defined on ��, with state space X , initial distribution � and transition matrix P .
Equip the trajectory space .�;A/with the probability measure Pr� defined in (1.10)
and Theorem 1.12, and with the sequence of projections .Zn/ of (1.11). Then the
function

� W �� ! �; !� 7! ! D�Z�
0 .!

�/; Z�
1 .!

�/; Z�
2 .!

�/; : : :
�

is measurable, Z�
n.!

�/ D Zn

�
�.!�/

�
, and

Pr�.A/ D Pr����1.A/
�

for all A 2 A:

Proof. A is the � -algebra generated by all cylinders. By virtue of the extension
theorems of measure theory, for the proof it is sufficient to verify that ��1.C/ 2 A�
and Pr�.C/ D Pr����1.C/

�
for each cylinder C. Thus, let C D C.a0; : : : ; ak/with

ai 2 X . Then

��1.C/ D f!� 2 �� j Z�
i .!

�/ D ai ; i D 0; : : : kg

D
k\

iD0

f!� 2 �� j Z�
i .!

�/ D aig 2 A�;
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and by the Markov property,

Pr����1.C/
� D Pr�ŒZ�

k D ak; Z
�
k�1 D ak�1; : : : Z

�
0 D a0�

D Pr�ŒZ�
0 D a0�

kY
iD1

Pr�ŒZ�
i D ai j Z�

i�1 D ai�1; : : : Z
�
0 D a0�

D �.a0/

kY
iD1

p.ai�1; ai / D Pr�.C/: �

From now on, given the state space X and the transition matrix P , we shall
(almost) always consider the trajectory space .�;A/with the family of probability
measures Pr� , corresponding to all the initial distributions � on X . Thus, our usual
model for the Markov chain on X with initial distribution � and transition matrix
P will always be the sequence .Zn/ of the projections defined on the trajectory
space .�;A;Pr�/. Typically, we shall have � D ıu, a point mass at u 2 X . In
this case, we shall write Pr� D Pru. Sometimes, we shall omit to specify the initial
distribution and call Markov chain the pair .X; P /.

1.18 Remarks. (a) The fact that on the trajectory space one has a whole family
of different probability measures that describe the same Markov chain, but with
different initial distributions, seems to create every now and then some confusion
at an initial level. This can be overcome by choosing and fixing one specific initial
distribution �0 which is supported by the whole of X . If X is finite, this may be
equidistribution. If X is infinite, one can enumerate X D fxk W k 2 Ng and set
�0.xk/ D 2�k . Then we can assign one “global” probability measure on .�;A/
by Pr D Pr�0

. With this choice, we get

Pru D PrŒ 	 j Z0 D u� and Pr� D
X
u2X

PrŒ 	 j Z0 D u� �.u/;

if � is another initial distribution.

(b) As mentioned in the Preface, if one wants to avoid measure theory, and in
particular the extension machinery of Theorem 1.12, then one can carry out most
of the theory by considering the Markov chain in a finite time interval Œ0; n�. The
trajectory space is then XnC1 (starting with index 0), the � -algebra consists of all
subsets of XnC1 and is in one-to-one correspondence with An, and the probability
measure Pr� D Prn

� is atomic with

Prn
�.a/ D �.a0/p.a0; a1/ 	 	 	p.an�1; an/; if a D .a0; : : : ; an/:

For deriving limit theorems, one may first consider that time interval and then let
n!1.
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C Transition probabilities in n steps

Let .X; P / be a Markov chain. What is the probability to be at y at the n-th step,
starting from x (n � 0, x; y 2 X )? We are interested in the number

p.n/.x; y/ D PrxŒZn D y�:
Intuitively the following is already clear (and will be proved in a moment): if � is
an initial distribution and k 2 N0 is such that Pr� ŒZk D x� > 0, then

Pr� ŒZkCn D y j Zk D x� D p.n/.x; y/: (1.19)

We have

p.0/.x; x/ D 1; p.0/.x; y/ D 0 if x 6D y; and p.1/.x; y/ D p.x; y/:
We can compute p.nC1/.x; y/ starting from the values of p.n/. 	; 	/ as follows, by
decomposing with respect to the first step: the first step goes from x to somew 2 X ,
with probability p.x;w/. The remaining n steps have to take us from w to y, with
probability p.n/.w; y/ not depending on the past history. We have to sum over all
possible points w:

p.nC1/.x; y/ D
X
w2X

p.x;w/ p.n/.w; y/: (1.20)

Let us verify the formulas (1.19) and (1.20) rigorously. For n D 0 and n D 1,
they are true. Suppose that they both hold for n � 1, and that Pr� ŒZk D x� > 0.
Recall the following elementary rules for conditional probability. If A;B;C 2 A,
then

Pr�.A j C/ D
´

Pr�.A \ C/=Pr�.C /; if Pr�.C / > 0;

0; if Pr�.C / D 0I
Pr�.A \ B j C/ D Pr�.B j C/ Pr�.A j B \ C/I
Pr�.A [ B j C/ D Pr�.A j C/C Pr�.B j C/; if A \ B D ;:

Hence we deduce via 1.7 that

Pr� ŒZkCnC1 D y j Zk D x�
D Pr� Œ 9 w 2 X W .ZkCnC1 D y and ZkC1 D w/ j Zk D x�
D
X
w2X

Pr� ŒZkCnC1 D y and ZkC1 D w j Zk D x�

D
X
w2X

Pr� ŒZkC1 D w j Zk D x� Pr� ŒZkCnC1 D y j ZkC1 D w and Zk D x�

(note that Pr� ŒZkC1 D w and Zk D x� > 0 if Pr� ŒZkC1 D w j Zk D x� > 0)
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D
X
w2X

Pr� ŒZkC1 D w j Zk D x� Pr� ŒZkCnC1 D y j ZkC1 D w�

D
X
w2X

p.x;w/ p.n/.w; y/:

Since the last sum does not depend on � or k, it must be equal to

PrxŒZnC1 D y� D p.nC1/.x; y/:

Therefore, we have the following.

1.21 Lemma. (a) The number p.n/.x; y/ is the element at position .x; y/ in the
n-th power P n of the transition matrix,

(b) p.mCn/.x; y/ DPw2X p
.m/.x; w/ p.n/.w; y/,

(c) P n is a stochastic matrix.

Proof. (a) follows directly from the identity (1.20).
(b) follows from the identity PmCn D PmP n for the matrix powers of P .
(c) is best understood by the probabilistic interpretation: starting at x 2 X , it is

certain that after n steps one reaches some element of X , that is

1 D PrxŒZn 2 X� D
X
y2X

PrxŒZn D y� D
X
y2X

p.n/.x; y/: �

1.22 Exercise. Let .Zn/ be a Markov chain on the state space X , and let 0 

n1 < n2 < 	 	 	 < nkC1. Show that for 0 < m < n, x; y 2 X and A 2 Am with
Pr�.A/ > 0,

if Zm.!/ D x for all ! 2 A; then Pr� ŒZn D y jA� D p.n�m/.x; y/:

Deduce that if x1; : : : ; xkC1 2 X are such that Pr� ŒZnk
D xk; : : : ; Zn1

D x1� > 0,
then

Pr� ŒZnkC1
DxkC1 jZnk

Dxk; : : : ; Zn1
Dx1� D Pr� ŒZnkC1

DxkC1 jZnk
Dxk�:

�

A real random variable is a measurable function f W .�;A/! .xR; xB/, where
xR D R[f�1;C1g and xB is the � -algebra of extended Borel sets. If the integral
of f with respect to Pr� exists, we denote it by

E�.f / D
Z

�

f d Pr� :

This is the expectation or expected value of f ; if � D ıx , we write Ex.f /.
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An example is the number of visits of the Markov chain to a set W � X . We
define

vW
n .!/ D 1W

�
Zn.!/

�
; where 1W .x/ D

´
1; if x 2 W;
0; otherwise

is the indicator function of the set W . If W D fxg, we write vW
n D vx

n .2 The
random variable

vW
Œk; n� D vW

k C vW
kC1 C 	 	 	 C vW

n .k 
 n/
is the number of visits ofZn in the setW during the time period from step k to step
n. It is often called the local time spent inW by the Markov chain during that time
interval. We write

vW D
1X

nD0

vW
n

for the total number of visits (total local time) in W . We have

E�.v
W
Œk; n�/ D

X
x2X

nX
j Dk

X
y2W

�.x/ p.j /.x; y/: (1.23)

1.24 Definition. A stopping time is a random variable t taking its values in N0 [
f1g, such that

Œt 
 n� D f! 2 � j t.!/ 
 ng 2 An for all n 2 N0:

That is, the property that a trajectory ! D .x0; x1; : : : / satisfies t.!/ 
 n

depends only on .x0; : : : ; xn/. In still other words, this means that one can decide
whether t 
 n or not by observing only Z0; : : : ; Zn.

1.25 Exercise (Strong Markov property). Let .Zn/n�0 be a Markov chain with
initial distribution � and transition matrix P on the state space X , and let t be a
stopping time with Pr� Œt <1� D 1. Show that .ZtCn/n�0, defined by

ZtCn.!/ D Zt.!/Cn.!/; ! 2 �;
is again a Markov chain with transition matrix P and initial distribution

N�.x/ D Pr� ŒZt D x� D
1X

kD0

Pr� ŒZk D x; t D k�:

[Hint: decompose according to the values of t and apply Exercise 1.22.] �
2We shall try to distinguish between the measure ıx and the function 1x .
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For W � X , two important examples of – not necessarily a.s. finite – stopping
times are the hitting times, also called first passage times:

sW D inffn � 0 W Zn 2 W g and tW D inffn � 1 W Zn 2 W g: (1.26)

Observe that, for example, the definition of sW should be read as sW .!/ D inffn �
0 j Zn.!/ 2 W g and the infimum over the empty set is to be taken as C1. Thus,
sW is the instant of the first visit of Zn in W , while tW is the instant of the first
visit in W after starting. Again, we write sx and tx if W D fxg.

The following quantities play a crucial role in the study of Markov chains.

G.x; y/ D Ex.v
y/;

F .x; y/ D PrxŒs
y <1�; and

U.x; y/ D PrxŒt
y <1�; x; y 2 X:

(1.27)

G.x; y/ is the expected number of visits of .Zn/ in y, starting at x, while F.x; y/
is the probability to ever visit y starting at x, and U.x; y/ is the probability to visit
y after starting at x. In particular, U.x; x/ is the probability to ever return to x,
while F.x; x/ D 1. Also, F.x; y/ D U.x; y/ when y ¤ x, since the two stopping
times sy and ty coincide when the starting point differs from the target point y.
Furthermore, if we write

f .n/.x; y/ D PrxŒs
y D n� D PrxŒZn D y; Zi ¤ y for 0 
 i < n� and

u.n/.x; y/ D PrxŒt
y D n� D PrxŒZn D y; Zi ¤ y for 1 
 i < n�;

(1.28)
then f .0/.x; x/ D 1, f .0/.x; y/ D 0 if y ¤ x, u.0/.x; y/ D 0 for all x; y, and
f .n/.x; y/ D u.n/.x; y/ for all n, if y ¤ x. We get

G.x; y/ D
1X

nD0

p.n/.x; y/; F.x; y/ D
1X

nD0

f .n/.x; y/;

U.x; y/ D
1X

nD0

u.n/.x; y/:

We can now give first answers to the questions of Example 1.1.

a) If it rains today then the probability to have bright weather two weeks from
now is

p.14/. ; /:

This is number obtained by computing the 14-th power of the transition matrix.
One of the methods to compute this power in practice is to try to diagonalize
the transition matrix via its eigenvalues. In the sequel, we shall also study other
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methods of explicit computation and compute the numerical values for the solutions
that answer this and the next question.

b) If it rains today, then the expected number of rainy days during the next month
(thirty-one days, starting today) is

E
�
vŒ0; 30�

� D 30X
nD0

p.n/. ; /:

c) A bad weather period begins after a bright day. It lasts for exactly n days
with probability

Pr ŒZ1; Z2; : : : Zn 2 f ; g; ZnC1 D � D Pr Œt D nC 1� D u.nC1/. ; /:

We shall see below that the bad weather does not continue forever, that is, Pr Œt D
1� D 0. Hence, the expected duration (in days) of a bad weather period is

1X
nD1

nu.nC1/. ; /:

In order to compute this number, we can simplify the Markov chain. We have
p. ; / D p. ; / D 1=4, so bad weather today ( ) is followed by a bright
day tomorrow ( ) with probability 1=4, and again by bad weather tomorrow ( )
with probability 3=4, independently of the particular type ( or ) of today’s bad
weather. Bright weather today ( ) is followed with probability 1 by bad weather
tomorrow ( ). Thus, we can combine the two states and into a single, new
state “bad weather”, denoted , and we obtain a new state space xX D f ; g with
a new transition matrix xP :

Np. ; / D 0; Np. ; / D 1;
Np. ; / D 1=4; Np. ; / D 3=4:

For the computation of probabilities of events which do not distinguish between the
different types of bad weather, we can use the new Markov chain . xX; xP /, with the
associated probability measures Pr , 2 xX . We obtain

Pr Œt D nC 1� D Pr Œt D nC 1�
D Np. ; /

�
Np. ; /

�n�1 Np. ; /

D .3=4/n�1 	 .1=4/:
In particular, we verify

Pr Œt D1� D 1 �
1X

nD0

Pr Œt D nC 1� D 0:
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Using
1X

nD1

n zn�1 D
� 1X

nD0

zn
�0 D

� 1

1 � z
�0 D 1

.1 � z/2 ;

we now find that the mean duration of a bad weather period is

1

4

1X
nD1

n
�3
4

�n�1 D 1

4
	 1

.1 � 3
4
/2
D 4: �

In the last example, we have applied a useful method for simplifying a Markov
chain .X; P /, namely factorization. Suppose that we have a partition xX of the state
space X with the following property.

For all Nx; Ny 2 xX; p.x; Ny/ D
X
y2 Ny

p.x; y/ is constant for x 2 Nx: (1.29)

If this holds, we can consider xX as a new state space with transition matrix xP ,
where

Np. Nx; Ny/ D p.x; Ny/; with arbitrary x 2 Nx: (1.30)

The new Markov chain is the factor chain with respect to the given partition.
More precisely, let 	 be the natural projection X ! xX . Choose an initial

distribution � on X and let N� D 	.�/, that is, N�. Nx/ D P
x2 Nx �.x/. Consider the

associated trajectory spaces .�;A;Pr�/ and .S�; NA;Pr N�/ and the natural extension
	 W �! S�, namely 	.x0; x1; : : : / D

�
	.x0/; 	.x1/; : : :

�
. Then we obtain for the

Markov chains .Zn/ on X and . xZn/ on xX
xZn D 	.Zn/ and Pr�

�
	�1. NA/� D Pr N�. NA/ for all NA 2 NA:

We leave the verification as an exercise to the reader.

1.31 Exercise. Let .Zn/ be a Markov chain on the state space X with transition
matrix P , and let xX be a partition of X with the natural projection 	 W X ! xX .
Show that

�
	.Zn/

�
is (for every starting point in X ) a Markov chain on xX if and

only if (1.29) holds. �

D Generating functions of transition probabilities

If .an/ is a sequence of real or complex numbers then the complex power seriesP1
nD0 anz

n; z 2 C; is called the generating function of .an/. From the study
of the generating function one can very often deduce useful information about the
sequence. In particular, let .X; P / be a Markov chain. Its Green function or Green
kernel is

G.x; yjz/ D
1X

nD0

p.n/.x; y/ zn; x; y 2 X; z 2 C: (1.32)
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Its radius of convergence is

r.x; y/ D 1ı lim sup
n

�
p.n/.x; y/

�1=n � 1: (1.33)

If z D r.x; y/, the series may converge or diverge toC1. In both cases, we write
G
�
x; yjr.x; y/� for the corresponding value. Observe that the number G.x; y/

defined in (1.27) coincides with G.x; yj1/.
Now let r D inffr.x; y/ j x; y 2 Xg and jzj < r . We can form the matrix

G .z/ D �G.x; yjz/�
x;y2X

:

We have seen that p.n/.x; y/ is the element at position .x; y/ of the matrix P n, and
that P 0 D I is the identity matrix over X . We may therefore write

G .z/ D
1X

nD0

znP n;

where convergence of matrices is intended pointwise in each pair .x; y/ 2 X2. The
series converges, since jzj < r. We have

G .z/ D I C
1X

nD1

znP n D I C zP
1X

nD0

znP n D I C zP G .z/:

In fact, by (1.20)

G.x; yjz/ D p.0/.x; y/C
1X

nD1

X
w2X

p.x;w/ p.n�1/.w; y/ zn

.�/D p.0/.x; y/C
X
w2X

z p.x;w/

1X
nD1

p.n�1/.w; y/ zn�1

D p.0/.x; y/C
X
w2X

z p.x;w/G.w; yjz/I

the exchange of the sums in .�/ is legitimate because of the absolute convergence.
Hence

.I � zP /G .z/ D I; (1.34)

and we may formally write G .z/ D .I�zP /�1. IfX is finite, the involved matrices
are finite dimensional, and this is the usual inverse matrix when det.I � zP / ¤ 0.
Formal inversion is however not always justified. If X is infinite, one first has
to specify on which (normed) linear space these matrices act and then to verify
invertibility on that space.
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In Example 1.1 we get

G .z/ D
0
@ 1 �z=2 �z=2
�z=4 1 � z=2 �z=4
�z=4 �z=4 1 � z=2

1
A�1

D 1

.1 � z/.16 � z2/

0
@.4 � 3z/.4 � z/ 2z.4 � z/ 2z.4 � z/

z.4 � z/ 2.8 � 4z � z2/ 2z.2C z/
z.4 � z/ 2z.2C z/ 2.8 � 4z � z2/

1
A:

We can now complete the answers to questions a) and b): regarding a),

G. ; jz/ D z

.1 � z/.4C z/ D
z

5

�
1

1 � z C
1

4C z
�

D
1X

nD1

1

5

�
1 � .�1/

n

4n

�
zn:

In particular,

p.14/. ; / D 1

5

�
1 � .�1/

14

414

�
:

Analogously, to obtain b),

G. ; jz/ D 2.8 � 4z � z2/

.1 � z/.4 � z/.4C z/
has to be expanded in a power series. The sum of the coefficients of zn, n D
0; : : : ; 30, gives the requested expected value.

1.35 Theorem. If X is finite then G.x; yjz/ is a rational function in z.

Proof. Recall that for a finite, invertible matrix A D �ai;j

�
,

A�1 D 1

det.A/

� Oai;j

�
with Oai;j D .�1/i�j det.A j j; i/;

where det.A j j; i/ is the determinant of the matrix obtained from A by deleting
the j -th row and the i -th column. Hence

G.x; yjz/ D ˙det.I � zP j y; x/
det.I � zP / (1.36)

(with sign to be specified) is the quotient of two polynomials. �
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Next, we consider the generating functions

F.x; yjz/ D
1X

nD0

f .n/.x; y/ zn and U.x; yjz/ D
1X

nD0

u.n/.x; y/ zn: (1.37)

For z D 1, we obtain the probabilities F.x; yj1/ D F.x; y/ and U.x; yj1/ D
U.x; y/ introduced in the previous paragraph in (1.27). Note that F.x; xjz/ D
F.x; xj0/D 1 and U.x; yj0/ D 0, and that U.x; yjz/D F.x; yjz/, if x ¤ y. In-
deed, among theU -functions we shall only needU.x; xjz/, which is the probability
generating function of the first return time to x.

We denote by s.x; y/ the radius of convergence ofU.x; yjz/. Sinceu.n/.x; y/ 

p.n/.x; y/ 
 1, we must have

s.x; y/ � r.x; y/ � 1:
The following theorem will be useful on many occasions.

1.38 Theorem. (a) G.x; xjz/ D 1

1 � U.x; xjz/ , jzj < r.x; x/.

(b) G.x; yjz/ D F.x; yjz/G.y; yjz/, jzj < r.x; y/.

(c) U.x; xjz/ DPy p.x; y/z F.y; xjz/, jzj < s.x; x/.

(d) If y ¤ x then F.x; yjz/ DPw p.x;w/z F.w; yjz/, jzj < s.x; y/.

Proof. (a) Let n � 1. If Z0 D x and Zn D x, then there must be an instant
k 2 f1; : : : ; ng such that Zk D x, but Zj ¤ x for j D 1; : : : ; k � 1, that is,
tx D k. The events

Œtx D k� D ŒZk D x; Zj ¤ x for j D 1; : : : ; k � 1�; k D 1; : : : ; n;
are pairwise disjoint. Hence, using the Markov property (in its more general form
of Exercise 1.22) and (1.19),

p.n/.x; x/ D
nX

kD1

PrxŒZn D x; tx D k�

D
nX

kD1

PrxŒZn D x j Zk D x; Zj 6D x

for j D 1; : : : ; k � 1� PrxŒt
x D k�

.�/D
nX

kD1

PrxŒZn D x j Zk D x� PrxŒt
x D k�

D
nX

kD1

p.n�k/.x; x/ u.k/.x; x/:
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In .�/, the careful observer may note that one could have PrxŒZn D x j tx D
k� ¤ PrxŒZn D x j Zk D x�, but this can happen only when PrxŒt

x D k� D
u.k/.x; x/ D 0, so that possibly different first factors in those sums are compensated
by multiplication with 0. Since u.0/.x; x/ D 0, we obtain

p.n/.x; x/ D
nX

kD0

u.k/.x; x/ p.n�k/.x; x/ for n � 1: (1.39)

For n D 0 we have p.0/.x; x/ D 1, while
Pn

kD0 u
.k/.x; x/ p.n�k/.x; x/ D 0. It

follows that

G.x; xjz/ D
1X

nD0

p.n/.x; x/ zn D 1C
1X

nD1

nX
kD0

u.k/.x; x/ p.n�k/.x; x/ zn

D 1C
1X

nD0

nX
kD0

u.k/.x; x/ p.n�k/.x; x/ zn

D 1C U.x; xjz/G.x; xjz/
by Cauchy’s product formula (Mertens’ theorem) for the product of two series, as
long as jzj < r.x; x/, in which case both involved power series converge absolutely.

(b) If x ¤ y, then p.0/.x; y/ D 0. Recall that u.k/.x; y/ D f .k/.x; y/ in this
case. Exactly as in (a), we obtain

p.n/.x; y/ D
nX

kD1

f .k/.x; y/ p.n�k/.y; y/ D
nX

kD0

f .k/.x; y/ p.n�k/.y; y/

(1.40)
for all n � 0 (no exception when n D 0), and (b) follows again from the product
formula for power series.

(d) Recall that f .0/.x; y/ D 0, since y ¤ x. If n � 1 then the events

Œsy D n; Z1 D w�; w 2 X;
are pairwise disjoint with union Œsy D n�, whence

f .n/.x; y/ D
X
w2X

PrxŒs
y D n; Z1 D w�

D
X
w2X

PrxŒZ1 D w� PrxŒs
y D n j Z1 D w�

D
X
w2X

PrxŒZ1 D w� Prw Œs
y D n � 1�

D
X
w2X

p.x;w/ f .n�1/.w; y/:



22 Chapter 1. Preliminaries and basic facts

(Note that in the last sum, we may get a contribution fromw D y only when n D 1,
since otherwise f .n�1/.y; y/ D 0.) It follows that s.w; y/ � s.x; y/ whenever
w ¤ y and p.x;w/ > 0. Therefore,

F.x; yjz/ D
1X

nD1

f .n/.x; y/ zn

D
X
w2X

p.x;w/ z

1X
nD1

f .n�1/.w; y/ zn�1

D
X
w2X

p.x;w/ z F.w; yjz/:

holds for jzj < s.x; y/. �

1.41 Exercise. Prove formula (c) of Theorem 1.38. �
1.42 Definition. Let � be an oriented graph with vertex setX . For x; y 2 X , a cut
point between x and y (in this order!) is a vertex w 2 X such that every path in �
from x to y must pass through w.

The following proposition will be useful on several occasions. Recall that
s.x; y/ is the radius of convergence of the power series F.x; yjz/.
1.43 Proposition. (a) For all x;w; y 2 X and for real z with 0 
 z 
 s.x; y/ one
has

F.x; yjz/ � F.x;wjz/ F.w; yjz/:
(b) Suppose that in the graph �.P / of the Markov chain .X; P /, the state w is

a cut point between x and y 2 X . Then

F.x; yjz/ D F.x;wjz/ F.w; yjz/
for all z 2 C with jzj < s.x; y/ and for z D s.x; y/.

Proof. (a) We have

f .n/.x; y/ D PrxŒs
y D n�

� PrxŒs
y D n; sw 
 n�

D
nX

kD0

PrxŒs
y D n; sw D k�

D
nX

kD0

PrxŒs
w D k� PrxŒs

y D n j sw D k�

D
nX

kD0

f .k/.x; w/ f .n�k/.w; y/:
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The inequality of statement (a) is true when F.x;wj 	/ � 0 or F.w; yj 	/ � 0.
So let us suppose that there is k such that f .k/.x; w/ > 0. Then f .n�k/.w; y/ 

f .n/.x; y/=f .k/.x; w/ for all n � k, whence s.w; y/ � s.x; y/. In the same way,
we may suppose that f .l/.w; y/ > 0 for some l , which implies s.x; w/ � s.x; y/.
Then

f .n/.x; y/ zn �
nX

kD0

f .k/.x; w/ zk f .n�k/.w; y/ zn�k

for all real z with 0 
 z 
 s.x; y/, and the product formula for power series implies
the result for all those z with z < s.x; y/. Since we have power series with non-
negative coefficients, we can let z ! s.x; y/ from below to see that statement (a)
also holds for z D s.x; y/, regardless of whether the series converge or diverge at
that point.

(b) If w is a cut point between x and y, then the Markov chain must visit w
before it can reach y. That is, sw 
 sy , given that Z0 D x. Therefore the strong
Markov property yields

f .n/.x; y/ D PrxŒs
y D n� D PrxŒs

y D n; sw 
 n�

D
nX

kD0

f .k/.x; w/ f .n/.w; y/:

We can now argue precisely as in the proof of (a), and the product formula for
power series yields statement (b) for all z 2 C with jzj < s.x; y/ as well as for
z D s.x; y/. �

1.44 Exercise. Show that for distinct x; y 2 X and for real z with 0 
 z 
 s.x; x/
one has

U.x; xjz/ � F.x; yjz/ F.y; xjz/: �

1.45 Exercise. Suppose that w is a cut point between x and y. Show that the
expected time to reach y starting from x (given that y is reached) satisfies

Ex.s
y j sy <1/ D Ex.s

w j sw <1/C Ew.s
y j sy <1/:

[Hint: check first that Ex.s
y j sy < 1/ D F 0.x; yj1�/=F.x; yj1/, and apply

Proposition 1.43 (b).] �

We can now answer the questions of Example 1.2. The latter is a specific case
of the following type of Markov chain.

1.46 Example. The random walk with two absorbing barriers is the Markov chain
with state space

X D f0; 1; : : : ; N g; N 2 N
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and transition probabilities

p.0; 0/ D p.N;N / D 1;
p.i; i C 1/ D p; p.i; i � 1/ D q for i D 1; : : : ; N � 1; and

p.i; j / D 0 in all other cases.

Here 0 < p < 1 and q D 1 � p. This example is also well known as the model of
the gambler’s ruin.

The probabilities to reach 0 and N starting from the point j are F.j; 0/ and
F.j;N /, respectively. The expected number of steps needed for reachingN from j ,
under the condition that N is indeed reached, is

Ej .s
N j sN <1/ D

1X
nD1

n Prj Œs
N D n j sN <1�F

0.j;N j1�/
F.j;N j1/ :

where F 0.j;N jz/ denotes the derivative of F.j;N jz/ with respect to z, compare
with Exercise 1.45.

For the random walk with two absorbing barriers, we have

F.0;N jz/ D 0; F.N;N jz/ D 1; and

F.j;N jz/ D qz F.j � 1;N jz/C pz F.j C 1;N jz/; j D 1; : : : ; N � 1:
The last identity follows from Theorem 1.38 (d). For determining F.j;N jz/ as a
function of j , we are thus lead to a linear difference equation of second order with
constant coefficients. The associated characteristic polynomial

pz 
2 � 
C qz
has roots


1.z/ D 1

2pz

�
1 �

p
1 � 4pqz2

�
and 
2.z/ D 1

2pz

�
1C

p
1 � 4pqz2

�
:

We study the case jzj < 1ı2ppq: the roots are distinct, and

F.j;N jz/ D a 	 
1.z/
j C b 	 
2.z/

j :

The constants a D a.z/ and b D b.z/ are found by inserting the boundary values
at j D 0 and j D N :

aC b D 0 and a 	 
1.z/
N C b 	 
2.z/

N D 1:
The result is

F.j;N jz/ D 
2.z/
j � 
1.z/

j


2.z/N � 
1.z/N
; jzj < 1

2
p
pq
:
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With some effort, one computes for jzj < 1ı2ppq
F 0.j;N jz/
F.j;N jz/ D

1

z
p
1 � 4pqz2

�
N
˛.z/N C 1
˛.z/N � 1 � j

˛.z/j C 1
˛.z/j � 1

�
;

where

˛.z/ D 
1.z/=
2.z/:

We have ˛.1/ D maxfp=q; q=pg. Hence, if p ¤ 1=2, then 1 < 1
ı
.2
p
pq/, and

Ej .s
N j sN <1/ D 1

q � p
�
N
.q=p/N C 1
.q=p/N � 1 � j

.q=p/j C 1

.q=p/j � 1
�
:

When p D 1=2, one easily verifies that

F.j;N j1/ D j=N:

Instead of F 0.j;N j1/=F.j;N j1/ one has to compute

lim
z!1�F

0.j;N jz/=F.j;N jz/

in this case. We leave the corresponding calculations as an exercise.

In Example 1.2 we have N D 300, p D 2=3, q D 1=3, ˛ D 1=2 and j D 200.
We obtain

Pr100Œs
300 <1� D 1 � 2�200

1 � 2�300
 1 and

E100.s
300 j s300 <1/  600:

The probability that the drunkard does not return home is practically 0. For returning
home, it takes him 600 steps on the average, that is, 3 times as many as necessary.

�

1.47 Exercise. (a) If p D 1=2 instead of p D 2=3, compute the expected time
(number of steps) that the drunkard needs to return home, supposing that he does
return.

(b) Modify the model: if the drunkard falls into the lake, he does not drown, but
goes back to the previous point on the road at the next step. That is, the lake has
become a reflecting barrier, and p.0; 0/ D 0, p.0; 1/ D 1, while all other transition
probabilities remain unchanged. (In particular, the house remains an absorbing
state with p.N;N / D 1.) Redo the computations in this case. �
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1.48 Exercise. Let .X; P / be an arbitrary Markov chain, and define a new transition
matrix Pa D a 	 I C .1 � a/ 	 P , where 0 < a < 1. Let G. 	; 	jz/ and Ga. 	; 	jz/
denote the Green functions of P and Pa, respectively. Show that for all x; y 2 X

Ga.x; yjz/ D 1

1 � az G
�
x; y

ˇ̌̌z � az
1 � az

�
: �

Further examples that illustrate the use of generating functions will follow later
on.

Paths and their weights

We conclude this section with a purely combinatorial description of several of the
probabilities and generating functions that we have considered so far. Recall the
Definition 1.6 of the (oriented) graph �.P / of the Markov chain .X; P /. A (finite)
path is a sequence 	 D Œx0; x1; : : : ; xn� of vertices (states) such that Œxi�1; xi � is
an edge, that is, p.xi�1; xi / > 0 for i D 1; : : : ; n. Here, n � 0 is the length of 	 ,
and 	 is a path from x0 to xn. If n D 0 then 	 D Œx0� consists of a single point.
The weight of 	 with respect to z 2 C is

w.	jz/ D
´
1; if n D 0;
p.x0; x1/p.x1; x2/ 	 	 	p.xn�1; xn/ z

n; if n � 1;
and

w.	/ D w.	j1/:
If… is a set of paths, then….n/ denotes the set of all 	 2 … with length n. We can
consider w. 	jz/ as a complex-valued measure on the set of all paths. The weight of
… is

w.…jz/ D
X
�2…

w.	jz/; and w.…/ D w.…j1/; (1.49)

given that the involved sum converges absolutely. Thus,

w.…jz/ D
1X

nD0

w.….n// zn:

Now let ….x; y/ be the set of all paths from x to y. Then

p.n/.x; y/ D w
�
….n/.x; y/

�
and G.x; yjz/ D w

�
….x; y/jz�: (1.50)

Next, let …B.x; y/ be the set of paths from x to y which contain y only as their
final point. Then

f .n/.x; y/ D w
�
….n/B .x; y/

�
and F.x; yjz/ D w

�
…B.x; y/jz

�
: (1.51)
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Similarly, let …�.x; y/ be the set of all paths Œx D x0; x1; : : : ; xn D y� for which
n � 1 and xi ¤ y for i D 1; : : : ; n� 1. Thus,…�.x; y/ D …B.x; y/ when x ¤ y,
and …�.x; x/ is the set of all paths that return to the initial point x only at the end.
We get

u.n/.x; y/ D w
�
….n/� .x; y/

�
and U.x; yjz/ D w

�
…�.x; y/jz

�
: (1.52)

If 	1 D Œx0; : : : ; xm� and 	2 D Œy0; : : : ; yn� are two paths with xm D y0, then we
can define their concatenation as

	1 B 	2 D Œx0; : : : ; xm D y0; : : : ; yn�:

We then have
w.	1 B 	2jz/ D w.	1jz/w.	2jz/: (1.53)

If …1.x; w/ is a set of paths from x to w and …2.w; y/ is a set of paths from w

to y, then we set

…1.x; w/ B…2.w; y/ D f	1 B 	2 W 	1 2 …1.x; w/; 	2 2 …2.w; y/g:
Thus

w
�
…1.x; w/ B…2.w; y/

ˇ̌
z
� D w

�
…1.x; w/

ˇ̌
z
�

w
�
…2.w; y/

ˇ̌
z
�
: (1.54)

Many of the identities for transition probabilities and generating functions can be
derived in terms of weights of paths and their concatenation. For example, the
obvious relation

….mCn/.x; y/ D
]
w

….m/.x; w/ B….n/.w; y/

(disjoint union) leads to

p.mCn/.x; y/ D w
�
….mCn/.x; y/

�
D
X

w

w
�
….m/.x; w/ B….n/.w; y/

� DX
w

p.m/.x; w/ p.n/.w; y/:

1.55 Exercise. Show that

….x; x/ D fŒx�g ] �
…�.x; x/ B….x; x/

�
and ….x; y/ D …o.x; y/ B….y; y/;

and deduce statements (a) and (b) of Theorem 1.38.
Find analogous proofs in terms of concatenation and weights of paths for state-

ments (c) and (d) of Theorem 1.38. �
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Irreducible classes

A Irreducible and essential classes

In the sequel, .X; P / will be a Markov chain. For x; y 2 X we write

a) x
n�! y; if p.n/.x; y/ > 0,

b) x ! y; if there is n � 0 such that x
n�! y,

c) x 6! y; if there is no n � 0 such that x
n�! y,

d) x $ y; if x ! y and y ! x.

These are all properties of the graph �.P / of the Markov chain that do not

depend on the specific values of the weights p.x; y/ > 0. In the graph, x
n�! y

means that there is a path (walk) of length n from x to y. If x $ y, we say that
the states x and y communicate.

The relation! is reflexive and transitive. In fact p.0/.x; x/ D 1 by definition,

and if x
m�! w andw

n�! y then x
mCn���! y. This can be seen by concatenating paths

in the graph of the Markov chain, or directly by the inequality p.mCn/.x; y/ �
p.m/.x; w/p.n/.w; y/ > 0. Therefore, we have the following.

2.1 Lemma. $ is an equivalence relation on X .

2.2 Definition. An irreducible class is an equivalence class with respect to$.

In graph theoretical terminology, one also speaks of a strongly connected com-
ponent.

In Examples 1.1, 1.3 and 1.4, all elements communicate, and there is a unique
irreducible class. In this case, the Markov chain itself is called irreducible.

In Example 1.46 (and its specific case 1.2), there are 3 irreducible classes: f0g,
f1; : : : ; N � 1g and fN g.
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2.3 Example. Let X D f1; 2; ; : : : ; 13g and the graph �.P / be as in Figure 4.
(The oriented edges correspond to non-zero one-step transition probabilities.) The
irreducible classes are C.1/ D f1; 2g, C.3/ D f3g, C.4/ D f4; 5; 6g, C.7/ D
f7; 8; 9; 10g, C.11/ D f11; 12g and C.13/ D f13g.
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Figure 4

On the irreducible classes, the relation! becomes a (partial) order: we define

C.x/! C.y/ if and only if x ! y.

It is easy to verify that this order is well defined, that is, independent of the
specific choice of representatives of the single irreducible classes.

2.4 Lemma. The relation! is a partial order on the collection of all irreducible
classes of .X; P /.

Proof. Reflexivity: since x
0�! x, we have C.x/! C.x/.

Transitivity: if C.x/! C.w/! C.y/ then x ! w ! y. Hence x ! y, and
C.x/! C.y/.

Anti-symmetry: if C.x/! C.y/! C.x/ then x ! y ! x and thus x $ y,
so that C.x/ D C.y/. �
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In Figure 5, we illustrate the partial ordering of the irreducible classes of Ex-
ample 2.3:
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Figure 5

The graph associated with the partial order as in Figure 5 is in general not the graph
of a (factor) Markov chain obtained from .X; P /. Figure 5 tells us, for example,
that from any point in the class C.7/ it is possible to reach C.4/ with positive
probability, but not conversely.

2.5 Definition. The maximal elements (if they exist) of the partial order ! on
the collection of the irreducible classes of .X; P / are called essential classes (or
absorbing classes).1

A state x is called essential, if C.x/ is an essential class.

In Example 2.3, the essential classes are f11; 12g and f13g.
Once it has entered an essential class, the Markov chain .Zn/ cannot exit from

it:

2.6 Exercise. Let C � X be an irreducible class. Prove that the following state-
ments are equivalent.

(a) C is essential.

(b) If x 2 C and x ! y then y 2 C .

(c) If x 2 C and x ! y then y ! x. �

If X is finite then there are only finitely many irreducible classes, so that in
their partial order, there must be maximal elements. Thus, from each element

1In the literature, one sometimes finds the expressions “recurrent” or “ergodic” in the place of
“essential”, and “transient” in the place of “non-essential”. This is justified when the state space is
finite. We shall avoid these identifications, since in general, “recurrent” and “transient” have another
meaning, see Chapter 3.
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it is possible to reach an essential class. If X is infinite, this is no longer true.
Figure 6 shows the graph of a Markov chain on X D N has no essential classes;
the irreducible classes are f1; 2g; f3; 4g; : : : .
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If an essential class contains exactly one point x (which happens if and only if
p.x; x/ D 1), then x is called an absorbing state. In Example 1.2, the lake and the
drunkard’s house are absorbing states.

We call a set B � X convex, if x; y 2 B and x ! w ! y implies w 2 B .
Thus, if x 2 B and w $ x, then also w 2 B . In particular, B is a union of
irreducible classes.

2.7 Theorem. Let B � X be a finite, convex set that does not contain essential
elements. Then there is " > 0 such that for each x 2 B and all but finitely many
n 2 N, X

y2B

p.n/.x; y/ 
 .1 � "/n:

Proof. By assumption, B is a disjoint union of finite, non-essential irreducible
classes C.x1/; : : : ; C.xk/. Let C.x1/; : : : ; C.xj / be the maximal elements in the
partial order !, restricted to fC.x1/; : : : ; C.xk/g, and let i 2 f1; : : : ; j g. Since
C.xi / is non-essential, there is vi 2 X such that xi ! vi but vi 6! xi . By the
maximality of C.xi /, we must have vi 2 X n B . If x 2 B then x ! xi for some
i 2 f1; : : : j g, and hence also x ! vi , while vi 6! x. Therefore there is mx 2 N
such that X

y2B

p.mx/.x; y/ < 1:

Letm D maxfmx W x 2 Bg. Choose x 2 B . Writem D mxC`x , where `x 2 N0.
We obtain X

y2B

p.m/.x; y/ D
X
y2B

X
w2X

p.mx/.x; w/ p.`x/.w; y/„ ƒ‚ …
> 0 only if w 2 B

(by convexity of B)

D
X
w2B

p.mx/.x; w/
X
y2B

p.`x/.w; y/

„ ƒ‚ …

 1



X
w2B

p.mx/.x; w/ < 1:
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Since B is finite, there is � > 0 such thatX
y2B

p.m/.x; y/ 
 1 � � for all x 2 B:

Let n 2 N, n � 2. Write n D kmC r with 0 
 r < m, and assume that k � 1
(that is, n � m). For x 2 B ,X

y2B

p.n/.x; y/ D
X
y2B

X
w2X

p.km/.x; w/ p.r/.w; y/„ ƒ‚ …
> 0 only if w 2 B

D
X
w2B

p.km/.x; w/
X
y2B

p.r/.w; y/

„ ƒ‚ …

 1



X
w2B

p.km/.x; w/ (as above)

D
X
y2B

p..k�1/m/.x; y/
X
w2B

p.m/.y; w/

„ ƒ‚ …

 1 � �


 .1 � �/
X
y2B

p..k�1/m/.x; y/ (inductively)


 .1 � �/k D �.1 � �/k=n
�n

.since k=n � 1=.2m//

 �.1 � �/1=2m

�n D .1 � "/n;
where " D 1 � .1 � �/1=2m. �

In particular, let C be a finite, non-essential irreducible class. The theorem says
that for the Markov chain starting at x 2 C , the probability to remain in C for n
steps decreases exponentially as n ! 1. In particular, the expected number of
visits in C starting from x 2 C is finite. Indeed, this number is computed as

Ex.v
C / D

1X
nD0

X
y2C

p.n/.x; y/ 
 1=";

see (1.23). We deduce that vC <1 almost surely.

2.8 Corollary. If C is a finite, non-essential irreducible class then

PrxŒ9 k W Zn … C for all n > k� D 1:
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2.9 Corollary. If the set of all non-essential states in X is finite, then the Markov
chain reaches some essential class with probability one:

PrxŒs
Xess <1� D 1;

where Xess is the union of all essential classes.

Proof. The setB D X nXess is a finite union of finite, non-essential classes (indeed,
a convex set of non-essential elements). Therefore

PrxŒs
Xess <1� D PrxŒ9 k W Zn … B for all n > k� D 1

by the same argument that lead to Corollary 2.8. �

The last corollary does not remain valid whenXnXess is infinite, as the following
example shows.

2.10 Example (Infinite drunkard’s walk with one absorbing barrier). The state
space is X D N0. We choose parameters p; q > 0, p C q D 1, and set

p.0; 0/ D 1; p.k; k C 1/ D p; p.k; k � 1/ D q .k > 0/;

while p.k; `/ D 0 in all other cases.
The state 0 is absorbing, while all other states belong to one non-essential,

infinite irreducible class C D N. We observe that

F.k C 1; kjz/ D F.1; 0jz/ for each k � 0: (2.11)

This can be justified formally by (1.51), since the mapping n 7! nCk induces a bi-
jection from…B.1; 0/ to…B.kC1; k/: a path Œ1 D x0; x1; : : : ; xl D 0� in…B.1; 0/
is mapped to the path Œk C 1 D x0 C k; x1 C k; : : : ; xl C k D k�. The bijec-
tion preserves all single weights (transition probabilities), so that w

�
…B.1; 0/jz

� D
w
�
…B.k C 1; k/jz

�
. Note that this is true because the parts of the graph of our

Markov chain that are “on the right” of k and “on the right” of 0 are isomorphic as
weighted graphs. (Here we cannot apply the same argument to ….k C 1; k/ in the
place of …B.k C 1; k/ !)

2.12 Exercise. Formulate criteria of “isomorphism”, resp. “restricted isomorphism”
that guarantee G.x; yjz/ D G.x0; y0jz/, resp. F.x; yjz/ D F.x0; y0jz/ for a gen-
eral Markov chain .X; P / and points x; y; x0; y0 2 X . �

Returning to the drunkard’s fate, by Theorem 1.38 (c)

F.1; 0jz/ D qz C pz F.2; 0jz/: (2.13)
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In order to reach state 0 starting from state 2, the random walk must necessarily pass
through state 1: the latter is a cut point between 2 and 0, and Proposition 1.43 (b)
together with (2.11) yields

F.2; 0jz/ D F.2; 1jz/ F.1; 0jz/ D F.1; 0jz/2:
We substitute this identity in (2.13) and obtain

pz F.1; 0jz/2 � F.1; 0jz/C qz D 0:
The two solutions of this equation are

1

2pz

�
1˙

p
1 � 4pqz2

�
:

We must have F.1; 0j0/ D 0, and in the interior of the circle of convergence of this
power series, the function must be continuous. It follows that of the two solutions,
the correct one is

F.1; 0jz/ D 1

2pz

�
1 �

p
1 � 4pqz2

�
;

whence F.1; 0/ D minf1; q=pg. In particular, if p > q then F.1; 0/ < 1: starting
at state 1, the probability that .Zn/ never reaches the unique absorbing state 0 is
1 � F.1; 0/ > 0.

We can reformulate Theorem 2.7 in another way:

2.14 Definition. For any subsetA ofX , we denote by PA the restriction of P toA:

pA.x; y/ D p.x; y/; if x; y 2 A, and pA.x; y/ D 0; otherwise.

We consider PA as a matrix over the whole of X , but the same notation will be
used for the truncated matrix over the set A. It is not necessarily stochastic, but
always substochastic: all row sums are 
 1.

The matrixPA describes the evolution of the Markov chain constrained to staying
in A, and the .x; y/-element of the matrix power P n

A is

p
.n/
A .x; y/ D PrxŒZn D y; Zk 2 A .0 
 k 
 n/�: (2.15)

In particular,P 0
A D IA, the restriction of the identity matrix toA. For the associated

Green function we write

GA.x; yjz/ D
1X

nD0

p
.n/
A .x; y/ zn; GA.x; y/ D GA.x; yj1/: (2.16)
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(Caution: this is not the restriction ofG. 	; 	jz/ to A !) Let rA.x; y/ be the radius of
convergence of this power series, and rA D inffrA.x; y/ W x; y 2 Ag. If we write
GA.z/ D

�
GA.x; yjz/

�
x;y2A

then

.IA � zPA/GA.z/ D IA for all z 2 C with jzj < rA. (2.17)

2.18 Lemma. Suppose that A � X is finite and that for each x 2 A there is
w 2 X n A such that x ! w. Then rA > 1. In particular, GA.x; y/ < 1 for all
x; y 2 A.

Proof. We introduce a new state � and equip the state space A [ f�g with the
transition matrix Q given by

q.x; y/ D p.x; y/; q.x; �/ D 1 � p.x;A/;
q.�; �/ D 1; and q.�; x/ D 0; if x; y 2 A:

Then QA D PA, the only essential state of the Markov chain .A [ f�g;Q/ is
�, and A is convex. We can apply Theorem 2.7 and get rA � 1=.1 � "/, whereP

y2A p
.n/
A .x; y/ 
 .1 � "/n for all x 2 A. �

B The period of an irreducible class

In this section we consider an irreducible class C of a Markov chain .X; P /. We
exclude the trivial case when C consists of a single point x with p.x; x/ D 0 (in
this case, we say that x is a ephemeral state). In order to study the behaviour of
.Zn/ inside C , it is sufficient to consider the restriction PC to the set C of the
transition matrix according to Definition 2.14,

PC D
�
pC .x; y/

�
x;y2C

; where pC .x; y/ D
´
p.x; y/; if x; y 2 C;
0; otherwise.

Indeed, forx; y 2C the probabilityp.n/.x; y/ coincides with the elementp.n/
C .x; y/

of the n-th matrix power of PC : this assertion is true for n D 1, and inductively

p.nC1/.x; y/ D
X
w2X

p.x;w/ p.n/.w; y/„ ƒ‚ …
D 0 if w … C

D
X
w2C

p.x;w/ p.n/.w; y/

D
X
w2C

pC .x; w/ p
.n/
C .w; y/ D p.nC1/

C .x; y/:

Obviously, PC is stochastic if and only if the irreducible class C is essential.
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By definition, C has the following property.

For each x; y 2 C there is k D k.x; y/ such that p.k/.x; y/ > 0.

2.19 Definition. The period of C is the number

d D d.C / D gcd.fn > 0 W p.n/.x; x/ > 0g/;
where x 2 C .

Here, gcd is of course the greatest common divisor. We have to check that d.C /
is well defined.

2.20 Lemma. The number d.C / does not depend on the specific choice of x 2 C .

Proof. Let x; y 2 C , x 6D y. We write d.x/ D gcd.Nx/, where

Nx D fn > 0 W p.n/.x; x/ > 0g (2.21)

and analogously Ny and d.y/. By irreducibility of C there are k; ` > 0 such that
p.k/.x; y/ > 0 and p.`/.y; x/ > 0. We have p.kC`/.x; x/ > 0, and hence d.x/
divides k C `.

Let n 2 Ny . Then p.kCnC`/.x; x/ � p.k/.x; y/ p.n/.y; y/ p.`/.y; x/ > 0,
whence d.x/ divides k C nC `.

Combining these observations, we see that d.x/ divides each n 2 Ny . We
conclude that d.x/ divides d.y/. By symmetry of the roles of x and y, also d.y/
divides d.x/, and thus d.x/ D d.y/. �

In Example 1.1, C D X D f ; ; g is one irreducible class, p. ; / > 0,
and hence d.C / D d.X/ D 1.

In Example 1.46 (random walk with two absorbing barriers), the set C D
f1; 2; : : : ; N � 1g is an irreducible class with period d.C / D 2.

In Example 2.3, the state 3 is ephemeral, and the periods of the other classes
are d.f1; 2g/ D 2, d.f4; 5; 6g/ D 1, d.f7; 8; 9; 10g/ D 4, d.f11; 12g/ D 2 and
d.f13g/ D 1.

If d.C / D 1 then C is called an aperiodic class. In particular, C is aperiodic
when p.x; x/ > 0 for some x 2 C .

2.22 Lemma. Let C be an irreducible class and d D d.C /. For each x 2 C there
is mx 2 N such that p.md/.x; x/ > 0 for all m � mx .

Proof. First observe that the set Nx of (2.21) has the following property.

n1; n2 2 Nx H) n1 C n2 2 Nx : (2.23)
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(It is a semigroup.) It is well known from elementary number theory (and easy to
prove) that the greatest common divisor of a set of positive integers can always be
written as a finite linear combination of elements of the set with integer coefficients.
Thus, there are n1; : : : ; n` 2 Nx and a1; : : : ; a` 2 Z such that

d D
X̀
iD1

ai ni :

Let
nC D

X
i Wai >0

ai ni and n� D
X

i Wai <0

.�ai / ni :

Now nC; n� 2 Nx by (2.23), and d D nC � n�. We set kC D nC=d and
k� D n�=d . Then kC � k� D 1. We define

mx D k�.k� � 1/:
Letm � mx . We can writem D q k�C r , where q � k�� 1 and 0 
 r 
 k�� 1.
Hence,m D q k�C r.kC� k�/ D .q� r/k�C r kC with .q� r/ � 0 and r � 0,
and by (2.23)

md D .q � r/m� C r mC 2 Nx : �

Before stating the main result of this section, we observe that the relation !
on the elements of X and the definition of irreducible classes do not depend on the
fact that the matrix P is stochastic: more generally, the states can be classified with
respect to an arbitrary non-negative matrix P and the associated graph, where an
oriented edge is drawn from x to y when p.x; y/ > 0.

2.24 Theorem. With respect to the matrix P d
C , the irreducible class C decomposes

into d D d.C / irreducible, aperiodic classes C0; C1; : : : ; Cd�1, which are visited
in cyclic order by the original Markov chain: if u 2 Ci , v 2 C and p.u; v/ > 0

then v 2 CiC1, where i C 1 is computed modulo d .
Schematically,

C0
1�! C1

1�! 	 	 	 1�! Cd�1

1�! C0; and

x; y belong to the same Ci () p.md/.x; y/ > 0 for some m � 0:
Proof. Let x0 2 C . Since p.m0d/.x0; x0/ > 0 for some m0 > 0, there are
x1; : : : ; xd�1; xd 2 C such that

x0
1�! x1

1�! 	 	 	 1�! xd�1

1�! xd

.m0�1/d������! x0:

Define

Ci D fx 2 C W xi
md��! x for some m � 0g; i D 0; 1; : : : ; d � 1; d:



38 Chapter 2. Irreducible classes

(1) Ci is the irreducible class of xi with respect to P d
C :

(a) We have xi 2 Ci .

(b) If x 2 Ci then x 2 C and x
n�! xi for some n � 0. Thus xi

mdCn����! xi , and

d must divide md C n. Consequently, d divides n, and x
kd��! xi for some k � 0.

It follows that x
P d

C !xi , i.e., x is in the class of xi with respect to P d
C .

(c) Conversely, if x
P d

C !xi then there ism � 0 such that xi
md��! x, and x 2 Ci .

(d) By Lemma 2.22, Ci is aperiodic with respect to P d
C .

(2) Cd D C0: indeed, x0
d�! xd implies xd 2 C0 . By (1), Cd D C0.

(3) C D Sd�1
iD0 Ci : if x 2 C then x0

kdCr����! x, where k � 0 and 0 
 r <
d � 1. By (1) and (2) there is ` � 0 such that xr

d�r���! xd

`d�! x0
kdCr����! x, that is,

xr
md��! x with m D k C `C 1. Therefore x 2 Cr .

(4) If x 2 Ci , y 2 C and x
1�! y then y 2 CiC1 (i D 0; 1; : : : d � 1): there

is n with y
n�! x. Hence x

nC1���! x, and d must divide nC 1. On the other hand,

x
`d�! xi (` � 0) by (1), and xi

1�! xiC1. We get y
nC`dC1������! xiC1. Now let k � 0

be such that xiC1
k�! y. (Such a k exists by the irreducibility of C with respect

to P .) We obtain that y
kC`dC.nC1/���������! y, and d divides k C `d C .n C 1/. But

then d divides k, and k D md withm � 0, so that xiC1
md��! y, which implies that

y 2 CiC1. �

2.25 Example. Consider a Markov chain with the following graph.
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Figure 7

There is a unique irreducible class C D X D f1; 2; 3; 4; 5; 6g, the period is d D 3.
Choosing x0 D 1, x1 D 2 and x2 D 3, one obtains C0 D f1g, C1 D f2; 4; 5g and
C2 D f3; 6g, which are visited in cyclic order.
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2.26 Exercise. Show that if .X; P / is irreducible and aperiodic, then also .X; Pm/

has these properties for each m 2 N. �

C The spectral radius of an irreducible class

For x; y 2 X , consider the number

r.x; y/ D 1ı lim sup
n

�
p.n/.x; y/

�1=n
;

already defined in (1.33) as the radius of convergence of the power seriesG.x; yjz/.
Its inverse 1=r.x; y/ describes the exponential decay of the sequence

�
p.n/.x; y/

�
,

as n!1.

2.27 Lemma. If x ! w ! y then r.x; y/ 
 minfr.x; w/; r.w; y/g. In particular,
x ! y implies r.x; y/ 
 minfr.x; x/; r.y; y/g.

If C is an irreducible class which does not consist of a single, ephemeral state
then r.x; y/ DW r.C / is the same for all x; y 2 C .

Proof. By assumption, there are numbers k; ` � 0 such that p.k/.x; w/ > 0 and
p.`/.w; y/ > 0. The inequality p.nC`/.x; y/ � p.n/.x; w/ p.`/.w; y/ yields�

p.nC`/.x; y/1=.nC`/
�.nC`/=n � p.n/.x; w/1=np.`/.w; y/1=n:

As n ! 1, the second factor on the right hand side tends to 1, and 1=r.x; y/ �
1=r.x; w/.

Analogously, from the inequality p.nCk/.x; y/ � p.k/.x; w/ p.n/.w; y/ one
obtains 1=r.x; y/ � 1=r.w; y/.

If x ! y, we can write x ! x ! y, and r.x; y/ 
 r.x; x/ (setting w D x).
Analogously, x ! y ! y implies r.x; y/ 
 r.y; y/ (setting w D y).

To see the last statement, let x; y; v; w 2 C . Then v ! x ! y ! w, which
yields r.v; w/ 
 r.v; y/ 
 r.x; y/. Analogously, x ! v ! w ! y implies
r.x; y/ 
 r.v; w/. �

Here is a characterization of r.C / in terms of U.x; xjz/ DPn u
.n/.x; x/ zn.

2.28 Proposition. For any x in the irreducible class C ,

r.C / D maxfz > 0 W U.x; xjz/ 
 1g:
Proof. Write r D r.x; x/ and s D s.x; x/ for the respective radii of convergence
of the power series G.x; xjz/ and U.x; xjz/. Both functions are strictly increasing
in z > 0. We know that s � r. Also, U.x; xjz/ D 1 for real z > s. From the
equation

G.x; xjz/ D 1

1 � U.x; xjz/
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we read thatU.x; xjz/ < 1 for all positive z < r. We can let tend z ! r from below
and infer that U.x; xjr/ 
 1. The proof will be concluded when we can show that
for our power series, U.x; xjz/ > 1 whenever z > r.

This is clear when U.x; xjr/ D 1. So consider the case when U.x; xjr/ < 1.
Then we claim that s D r, whence U.x; xjz/ D 1 > 1 whenever z > r. Suppose
by contradiction that s > r. Then there is a real z0 with r < z0 < s such that we
haveU.x; xjz0/ 
 1. Set un D u.n/.x; x/ zn

0 and pn D p.n/.x; x/ zn
0 . Then (1.39)

leads to the (renewal) recursion2

p0 D 1; pn D
nX

kD1

uk pn�k .n � 1/:

Since
P

k uk 
 1, induction on n yields pn 
 1 for all n. Therefore

G.x; xjz/ D
1X

nD0

pn.z=z0/
n

converges for all z 2 C with jzj < z0. But then r � z0, a contradiction. �

The number

�.PC / D 1=r.C / D lim sup
n

�
p.n/.x; y/

�1=n
; x; y 2 C; (2.29)

is called the spectral radius of PC , resp. C . If the Markov chain .X; P / is irre-
ducible, then �.P / is the spectral radius of P . The terminology is in part justified
by the following (which is not essential for the rest of this chapter).

2.30 Proposition. If the irreducible class C is finite then �.PC / is an eigenvalue
of PC , and every other eigenvalue 
 satisfies j
j 
 �.PC /.

We won’t prove this proposition right now. It is a consequence of the famous
Perron–Frobenius theorem, which is of utmost importance in Markov chain theory,
see Seneta [Se]. We shall give a detailed proof of that theorem in Section 3.D.

Let us also remark that in the case whenC is infinite, the name “spectral radius”
for �.PC / may be misleading, since it does in general not refer to an action of PC

as a bounded linear operator on a suitable space. On the other hand, later on we
shall encounter reversible irreducible Markov chains, and in this situation �.P / is
a “true” spectral radius.

The following is a corollary of Theorem 2.7.

2In the literature, what is denoted uk here is usually called fk , and what is denoted pn here is often
called un. Our choice of the notation is caused by the necessity to distinguish between the generating
F .x; yjz/ and U.x; yjz/ of the stopping time sy and ty , respectively, which are both needed at
different instances in this book.
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2.31 Proposition. Let C be a finite irreducible class. Then �.PC / D 1 if and only
if C is essential.

In other words, if P is a finite, irreducible, substochastic matrix then �.P / D 1
if and only if P is stochastic.

Proof. If C is non-essential then Theorem 2.7 shows that �.PC / < 1. Conversely,
ifC is essential then all the matrix powersP n

C are stochastic. Thus, we cannot have
�.PC / < 1, since in that case we would have

P
y2C p

.n/.x; y/ ! 0 as n ! 1:
�

In the following, the class C need not be finite.

2.32 Theorem. Let C be an irreducible class which does not consist of a single,
ephemeral state, and let d D d.C /. If x; y 2 C and p.k/.x; y/ > 0 (such k must
exist) then p.m/.x; y/ D 0 for all m 6� k mod d , and

lim
n!1p.ndCk/.x; y/1=.ndCk/ D �.PC / > 0:

In particular,

lim
n!1p.nd/.x; x/1=.nd/ D �.PC / and p.n/.x; x/ 
 �.PC /

n for all n 2 N:

For the proof, we need the following.

2.33 Proposition. Let .an/ be a sequence of non-negative real numbers such that
an > 0 for all n � n0 and aman 
 amCn for all m; n 2 N. Then

9 lim
n!1 a1=n

n D � > 0 and an 
 �n for all n 2 N:

Proof. Let n;m � n0. For the moment, consider n fixed. We can writem D qmnC
rm with qm � 0 and n0 
 rm < n0Cn. In particular, arm

> 0, we have qm !1 if
and only ifm!1, and in this casem=qm ! n. Let " D "n D minfarm

W m 2 Ng.
Then by assumption,

am � aqmnarm
� aqm

n "n; and a1=m
m � aqm=m

n "1=m
n :

As m!1, we get aqm=m
n ! a

1=n
n and "1=m

n ! 1. It follows that

� WD lim inf
m!1 a1=m

m � a1=n
n for each n 2 N:

If now also n!1, then this implies

lim inf
m!1 a1=m

m � lim sup
n!1

a1=n
n ;

and limn!1 a
1=n
n exists and is equal to lim infm!1 a

1=m
m D �. �
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Proof of Theorem 2.32. By Lemma 2.22, the sequence .an/ D
�
p.nd/.x; x/

�
fulfills

the hypotheses of Proposition 2.33, and a1=n
n ! �.PC / > 0.

We have p.ndCk/.x; y/ � p.nd/.x; x/ p.k/.x; y/, and

p.ndCk/.x; y/1=.ndCk/ � �p.nd/.x; x/1=nd
�nd=.ndCk/

p.k/.x; y/1=.ndCk/:

As p.k/.x; y/ > 0, the last factor tends to 1 as n ! 1, while by the above�
p.nd/.x; x/1=.nd/

�nd=.ndCk/ ! �.PC /. We conclude that

�.PC / 
 lim inf
n!1 p.ndCk/.x; y/1=.ndCk/


 lim sup
n!1

p.ndCk/.x; y/1=.ndCk/ D lim sup
n!1

p.n/.x; y/1=n D �.PC /: �

2.34 Exercise. Modify Example 1.1 by making the rainy state absorbing: set
p. ; / D 1, p. ; / D p. ; / D 0. The other transition probabilities remain
unchanged. Compute the spectral radius of the class f ; g. �



Chapter 3

Recurrence and transience, convergence, and the
ergodic theorem

A Recurrent classes

The following concept is of central importance in Markov chain theory.

3.1 Definition. Consider a Markov chain .X; P /. A state x 2 X is called recurrent,
if

U.x; x/ D PrxŒ9 n > 0 W Zn D x� D 1;
and transient, otherwise.

In words, x is recurrent if it is certain that the Markov chain starting at x will
return to x.

We also define the probabilities

H.x; y/ D PrxŒZn D y for infinitely many n 2 N�; x; y 2 X:

If it is certain that .Zn/ returns to x at least once, then it will return to x infinitely
often with probability 1. If the probability to return at least once is strictly less than
1, then it is unlikely (probability 0) that .Zn/ will return to x infinitely often. In
other words, H.x; x/ cannot assume any values besides 0 or 1, as we shall prove
in the next theorem. Such a statement is called a zero-one law.

3.2 Theorem. (a) The state x is recurrent if and only if H.x; x/ D 1.

(b) The state x is transient if and only if H.x; x/ D 0.

(c) We have H.x; y/ D U.x; y/H.y; y/.

Proof. We define

H .m/.x; y/ D PrxŒZn D y for at least m time instants n > 0�: (3.3)

Then

H .1/.x; y/ D U.x; y/ and H.x; y/ D lim
m!1H .m/.x; y/;
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and

H .mC1/.x; y/ D
1X

kD1

PrxŒt
y D k and Zn D y for at least m instants n > k�

(using once more the rule Pr.A \ B/ D Pr.A/ Pr.B j A/, if Pr.A/ > 0)

D
X

kWu.k/.x;y/>0

f .k/.x; y/ Prx

�
Zn D y for at least

m time instants n > k

ˇ̌̌
ˇ Zk D y; Zi 6D y

for i D 1; : : : ; k � 1
	

(using the Markov property (1.5))

D
X

kWu.k/.x;y/>0

f .k/.x; y/ PrxŒZn D y for at least m instants n > k j Zk D y�

D
1X

kD1

u.k/.x; y/H .m/.y; y/ D U.x; y/H .m/.y; y/:

Therefore H .m/.x; x/ D U.x; x/m. As m ! 1, we get (a) and (b). Further-
more, H.x; y/ D limm!1 U.x; y/H .m/.y; y/ D U.x; y/H.y; y/, and we have
proved (c). �

We now list a few properties of recurrent states.

3.4 Theorem. (a) The state x is recurrent if and only if G.x; x/ D1.

(b) Ifx is recurrent andx ! y thenU.y; x/ D H.y; x/ D 1, andy is recurrent.
In particular, x is essential.

(c) If C is a finite essential class then all elements of C are recurrent.

Proof. (a) Observe that, by monotone convergence1,

U.x; x/ D lim
z!1�U.x; xjz/ and G.x; x/ D lim

z!1�G.x; xjz/:

Therefore Theorem 1.38 implies

G.x; x/ D lim
z!1�

1

1 � U.x; xjz/ D

8̂<
:̂
1; if U.x; x/ D 1;

1

1 � U.x; x/ ; if U.x; x/ < 1:

1We can interpret a power series
P

n anzn with an; z � 0 as an integral
R

fz.n/ d�.n/, where �
is the counting measure on N0 and fz.n/ D anzn. Then fz.n/ ! fr.n/ as z ! r� (monotone limit
from below), whence

R
fz.n/ d�.n/ ! R

fr.n/ d�.n/, so that this elementary fact from calculus is
indeed a basic variant of the monotone convergence theorem of integration theory.
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(b) We proceed by induction: if x
n�! y then U.y; x/ D 1.

By assumption, U.x; x/ D 1, and the statement is true for n D 0. Suppose that

it holds for n and that x
nC1���! y. Then there is w 2 X such that x

n�! w
1�! y. By

the induction hypothesis U.w; x/ D 1. By Theorem 1.38 (c) (with z D 1),

1 D U.w; x/ D p.w; x/C
X
v 6Dx

p.w; v/U.v; x/:

Stochasticity of P implies

0 D
X
v 6Dx

p.w; v/
�
1 � U.v; x/� � p.w; y/�1 � U.y; x/� � 0:

Since p.w; y/ > 0, we must have U.y; x/ D 1.
HenceH.y; x/ D U.y; x/H.x; x/ D U.y; x/ D 1 for everyy withx ! y. By

Exercise 2.6 (c), x is essential. We now show that also y is recurrent if x is recurrent
and y $ x: there are k; ` � 0 such that p.k/.x; y/ > 0 and p.`/.y; x/ > 0.
Consequently, by (a)

G.y; y/ �
1X

nDkC`

p.n/.y; y/ � p.`/.y; x/

1X
mD0

p.m/.x; x/ p.k/.x; y/ D1:

(c) Since C is essential, when starting in x 2 C , the Markov chain cannot exit
from C :

PrxŒZn 2 C for all n 2 N� D 1:
Let ! 2 � be such that Zn.!/ 2 C for all n. Since C is finite, there is at least one
y 2 C (depending on !) such that Zn.!/ D y for infinitely many instants n. In
other terms,

f! 2 � j Zn.!/ 2 C for all n 2 Ng
� f! 2 � j 9 y 2 C W Zn.!/ D y for infinitely many ng

and
1 D PrxŒ9 y 2 C W Zn D y for infinitely many n�



X
y2C

PrxŒZn D y for infinitely many n� D
X
y2C

H.x; y/:

In particular there must be y 2 C such that 0 < H.x; y/ D U.x; y/H.y; y/, and
Theorem 3.2 yieldsH.y; y/ D 1: the state y is recurrent, and by (b) every element
of C is recurrent. �

Recurrence is thus a property of irreducible classes: if C is irreducible then
either all elements of C are recurrent or all are transient. Furthermore a recurrent
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irreducible class must always be essential. In a Markov chain with finite state space,
all essential classes are recurrent. If X is infinite, this is no longer true, as the next
example shows.

3.5 Example (Infinite drunkard’s walk). The state space is X D Z, and the tran-
sition probabilities are defined in terms of the two parameters p and q (p; q > 0,
p C q D 1), as follows.

p.k; k C 1/ D p; p.k; k � 1/ D q; p.k; `/ D 0 if jk � `j 6D 1:

This Markov chain (“random walk”) can also be interpreted as a coin tossing game:
if “heads” comes up then we win one Euro, and if “tails” comes up we lose one
Euro. The coin is not necessarily fair; “heads” comes up with probability p and
“tails” with probability q. The state k 2 Z represents the possible (positive or
negative) capital gain in Euros after some repeated coin tosses. If the single tosses
are mutually independent, then one passes in a single step (toss) from capital k to
k C 1 with probability p, and to k � 1 with probability q.

Observe that in this example, we have translation invariance: F.k; `jz/ D
F.k � `; 0jz/ D F.0; ` � kjz/, and the same holds for G. 	; 	jz/. We compute
U.0; 0jz/.

Reasoning precisely as in Example 2.10, we obtain

F.1; 0jz/ D 1

2pz

�
1 �

p
1 � 4pqz2

�
:

By symmetry, exchanging the roles of p and q,

F.�1; 0jz/ D 1

2qz

�
1 �

p
1 � 4pqz2

�
:

Now, by Theorem 1.38 (c)

U.0; 0jz/ D pz F.1; 0jz/C qz F.�1; 0jz/ D 1 �
p
1 � 4pqz2; (3.6)

whence
U.0; 0/ D U.0; 0j1/ D 1 �

p
.p � q/2 D 1 � jp � qj:

There is a single irreducible (whence essential) class, but the random walk is recur-
rent only when p D q D 1=2.

3.7 Exercise. Show that if � is an arbitrary starting distribution and y is a transient
state, then

lim
n!1 Pr� ŒZn D y� D 0: �
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B Return times, positive recurrence, and stationary
probability measures

Let x be a recurrent state of the Markov chain .X; P /. Then it is certain that .Zn/,
after starting in x, will return to x. That is, the return time tx is Prx-almost surely
finite. The expected return time (D number of steps) is

ExŒt
x� D

1X
nD1

nu.n/.x; x/ D U 0.x; xj1/;

or more precisely, ExŒt
x� D U 0.x; xj1�/ D limz!1� U 0.x; xjz/ by monotone

convergence. This limit may be infinite.

3.8 Definition. A recurrent state x is called

positive recurrent, if ExŒt
x� <1; and

null recurrent, if ExŒt
x� D1.

In Example 3.5, the infinite drunkard’s random walk is recurrent if and only if
p D q D 1=2. In this caseU.0; 0jz/ D 1�p1 � z2 andU 0.0; 0jz/ D zıp1 � z2

for jzj < 1 , so that U 0.0; 0j1�/ D1: the state 0 is null recurrent.

The next theorem shows that positive and null recurrence are class properties of
(recurrent, essential) irreducible classes.

3.9 Theorem. Suppose that x is positive recurrent and that y $ x. Then also y
is positive recurrent. Furthermore, Ey Œt

x� <1.

Proof. We know from Theorem 3.4 (b) that y is recurrent. In particular, the Green
function has convergence radii r.x; x/ D r.y; y/ D 1, and by Theorem 1.38 (a)

1 � U.x; xjz/
1 � U.y; yjz/ D

G.y; yjz/
G.x; xjz/ for 0 < z < 1:

As z ! 1�, the right hand side becomes an expression of type 1
1 . Since 0 <

U 0.y; yj1�/ 
 1, an application of de l’Hospital’s rule yields

Ex.t
x/

Ey.ty/
D U 0.x; xj1�/
U 0.y; yj1�/ D lim

z!1�
G.y; yjz/
G.x; xjz/ :

There are k; l > 0 such that p.k/.x; y/ > 0 and p.l/.y; x/ > 0. Therefore, if
0 < z < 1,

G.y; yjz/ �
kCl�1X

nD0

p.n/.y; y/ zn C p.l/.y; x/G.x; xjz/ p.k/.x; y/ zkCl :
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We obtain

lim
z!1�

G.y; yjz/
G.x; xjz/ � p

.l/.y; x/ p.k/.x; y/ > 0:

In particular, we must have Ey.t
y/ <1.

To see that also Ey.t
x/ D U 0.y; xj1�/ <1, suppose that x

n�! y. We proceed
by induction on n as in the proof of Theorem 3.4 (b). If n D 0 then y D x and the

statement is true. Suppose that it holds for n and that x
nC1���! y. Let w 2 X be

such that x
n�! w

1�! y. By Theorem 1.38 (c), for 0 < z 
 1,

U.w; xjz/ D p.w; x/z C
X
v 6Dx

p.w; v/z U.v; xjz/:

Differentiating on both sides and letting z ! 1 from below, we see that finiteness
of U 0.w; xj1�/ (which holds by the induction hypothesis) implies finiteness of
U 0.v; xj1�/ for all v with p.w; v/ > 0, and in particular for v D y. �

An irreducible (essential) class is called positive or null recurrent, if all its
elements have the respective property.

3.10 Theorem. Let C be a finite essential class of .X; P /. Then C is positive
recurrent.

Proof. Since the matrix P n is stochastic, we have for each x 2 X
X
y2X

G.x; yjz/ D
1X

nD0

X
y2X

p.n/.x; y/ zn D 1

1 � z ; 0 
 z < 1:

Using Theorem 1.38, we can writeG.x; yjz/ D F.x; yjz/ı�1�U.y; yjz/�. Thus,
we obtain the following important identity (that will be used again later on)X

y2X

F.x; yjz/ 1 � z
1 � U.y; yjz/ D 1 for each x 2 X and 0 
 z < 1: (3.11)

Now suppose that x belongs to the finite essential class C . Then a non-zero contri-
bution to the sum in (3.11) can come only from elements y 2 C . We know already
(Theorem 3.4) that C is recurrent. Therefore F.x; yj1�/ D U.y; yj1�/ D 1 for
all x; y 2 C . Since C is finite, we can exchange sum and limit and apply de
l’Hospital’s rule:

1 D lim
z!1�

X
y2C

F.x; yjz/ 1 � z
1 � U.y; yjz/ D

X
y2C

1

U 0.y; yj1�/ : (3.12)

Therefore there must be y 2 C such that U 0.y; yj1�/ <1, so that y, and thus the
class C , is positive recurrent. �
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3.13 Exercise. Use (3.11) to give a “generating function” proof of Theorem 3.4 (c).
�

3.14 Exercise. Let . xX; xP / be a factor chain of .X; P /; see (1.30).
Show that if x is a recurrent state of .X; P /, then its projection 	.x/ D Nx is

a recurrent state of . xX; xP /. Also show that if x is positive recurrent, then so is Nx.
�

It is convenient to think of measures � on X as row vectors
�
�.x/

�
x2X

; so that
�P is the product of the row vector � with the matrix P ,

�P.y/ D
X

x

�.x/ p.x; y/: (3.15)

Here, we do not necessarily suppose that �.X/ is finite, so that the last sum might
diverge.

In the same way, we consider real or complex functions f on X as column
vectors, whence Pf is the function

Pf .y/ D
X

y

p.x; y/f .y/; (3.16)

as long as this sum is defined (it might be a divergent series).

3.17 Definition. A (non-negative) measure � onX is called invariant or stationary,
if �P D �. It is called excessive, if �P 
 � pointwise.

3.18 Exercise. Suppose that � is an excessive measure and that �.X/ <1. Show
that � is stationary. �

We say that a set A � X carries the measure � on X , if the support of �,
supp.�/ D fx 2 X W �.x/ ¤ 0g, is contained in A.

In the next theorem, the class C is not necessarily assumed to be finite.

3.19 Theorem. Let C be an essential class of .X; P /. Then C is positive recurrent
if and only if it carries a stationary probability measure mC . In this case, the latter
is unique and given by

mC .x/ D
´
1=Ex.t

x/; if x 2 C;
0; otherwise.

Proof. We first show that in the positive recurrent case, mC is a stationary proba-
bility measure. When C is infinite, we cannot apply (3.11) directly to show that
mC .C / D 1, because a priori we are not allowed to exchange limit and sum in
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(3.12). However, if A � C is an arbitrary finite subset, then (3.11) implies that for
0 < z < 1 and x 2 C ,

X
y2A

F.x; yjz/ 1 � z
1 � U.y; yjz/ 
 1:

If we now let z ! 1 from below and proceed as in (3.12), we find mC .A/ 
 1.
Therefore the total mass of mC is mC .X/ D mC .C / 
 1.

Next, recall the identity (1.34). We do not only have G .z/ D I C zP G .z/ but
also, in the same way,

G .z/ D I C G .z/ zP:

Thus, for y 2 C ,

G.y; yjz/ D 1C
X
x2X

G.y; xjz/ p.x; y/z: (3.20)

We use Theorem 1.38 and multiply once more both sides by 1 � z. Since only
elements x 2 C contribute to the last sum,

1 � z
1 � U.y; yjz/ D 1 � z C

X
x2C

F.y; xjz/ 1 � z
1 � U.x; xjz/ p.x; y/z: (3.21)

Again, by recurrence, F.y; xj1/ D U.x; xj1/ D 1. As above, we restrict the last
sum to an arbitrary finite A � C and then let z ! 1�. De l’Hospital’s rule yields

1

U 0.y; yj1�/ �
X
x2A

1

U 0.x; xj1�/ p.x; y/:

Since this inequality holds for every finite A � C , it also holds with C itself 2

in the place of A. Thus, mC is an excessive measure, and by Exercise 3.18, it is
stationary. By positive recurrence, supp.mC / D C , and we can normalize it so that
it becomes a stationary probability measure. This proves the “only if”-part.

To show the “if” part, suppose that � is a stationary probability measure with
supp.�/ � C .

Let y 2 C . Given " > 0, since �.C / D 1, there is a finite set A" � C such that
�.C n A"/ < ". Stationarity implies that �P n D � for each n 2 N0, and

�.y/ D
X
x2C

�.x/ p.n/.x; y/ 

X

x2A"

�.x/ p.n/.x; y/C ":

2As a matter of fact, this argument, as well as the one used above to show that mC .C / � 1, amounts
to applying Fatou’s lemma of integration theory to the sum in (3.21), which once more is interpeted as
an integral with respect to the counting measure on C .
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Once again, we multiply both sides by .1 � z/zn (0 < z < 1) and sum over n:

�.y/ 

X

x2A"

�.x/ F.x; yjz/ 1 � z
1 � U.y; yjz/ C ":

Suppose first that C is transient. Then U.y; yj1�/ < 1 for each y 2 C by
Theorem 3.4 (b), and when z ! 1 from below, the last sum tends to 0. That is,
�.y/ D 0 for each y 2 C , a contradiction. Therefore C is recurrent, and we can
apply once more de l’Hospital’s rule, when z ! 1�:

�.y/ � " 

X

x2A"

�.x/mC .y/ D �.A"/mC .y/ 
 mC .y/

for each " > 0. Therefore �.y/ 
 mC .y/ for each y 2 X . Thus mC .y/ > 0 for
at least one y 2 C . This means that Ey.t

y/ D 1=mC .y/ < 1, and C must be
positive recurrent.

Finally, since �.X/ D 1 and mC .X/ 
 1, we infer that mC is indeed a proba-
bility measure, and � D mC . In particular, the stationary probability measure mC

carried by C is unique. �

3.22 Exercise. Reformulate the method of the second part of the proof of Theo-
rem 3.19 to show the following.

If .X; P / is an arbitrary Markov chain and � a stationary probability measure,
then �.y/ > 0 implies that y is a positive recurrent state. �

3.23 Corollary. The Markov chain .X; P / admits stationary probability measures
if and only if there are positive recurrent states.

In this case, letCi , i 2 I , be those essential classes which are positive recurrent
(with I D N or I D f1; : : : ; kg, k 2 N). For i 2 I , let mi D mCi

be the stationary
probability measure of .Ci ; PCi

/ according to Theorem 3.19. Consider mi as a
measure on X with mi .x/ D 0 for x 2 X n Ci .

Then the stationary probability measures of .X; P / are precisely the convex
combinations

� D
X
i2I

ci 	mi ; where ci � 0 and
X
i2I

ci D 1:

Proof. Let � be a stationary probability measure. By Exercise 3.22, every x with
�.x/ > 0 must be positive recurrent. Therefore there must be positive recurrent
essential classes Ci , i 2 I . By Theorem 3.19, the restriction of � to any of the Ci

must be a non-negative multiple of mi . Therefore � must have the proposed form.
Conversely, it is clear that any convex combination of the mi is a stationary

probability measure. �
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3.24 Exercise. Let C be a positive recurrent essential class, d D d.C / its period,
and C0; : : : ; Cd�1 its periodic classes (the irreducible classes of P d

C ) according
to Theorem 2.24. Determine the stationary probability measure of P d

C on Ci in
terms of the stationary probability mC of P on d . Compute first mC .Ci / for
i D 0; : : : ; d � 1. �

C The convergence theorem for finite Markov chains

We shall now study the question of whether the transition probabilities p.n/.x; y/

converge to a limit as n ! 1. If y is a transient state then we know from Theo-
rem 3.4 (a) that G.x; y/ D F.x; y/G.y; y/ < 1, so that p.n/.x; y/ ! 0. Thus,
the question is of interest when y is essential. For the moment, we restrict attention
to the case when x and y belong to the same essential class. Since .Zn/ cannot
exit from that class, we may assume without loss of generality that this class is the
whole ofX . That is, we assume to have an irreducible Markov chain (X,P). Before
stating results, let us see what we expect in the specific case when X is finite.

Suppose that X is finite and that p.n/.x; y/ converges for all x; y as n ! 1.
The Markov property (“absence of memory”) suggests that on the long run (as
n ! 1), the starting point should be “forgotten”, that is, the limit should not
depend on x. Thus, suppose that limn p

.n/.x; y/ D m.y/ for all y, where m is a
measure onX . Then – sinceX is finite and P n is stochastic for each n – we should
have m.X/ D 1, whence m.x/ > 0 for some x. But then p.n/.x; x/ > 0 for all
but finitely many n, so that P should be aperiodic. Also, if we let n ! 1 in the
relation

p.nC1/.x; y/ D
X
w2X

p.n/.x; w/ p.w; y/;

we find that m should be the stationary probability measure.
We now know what we are looking for and which hypotheses we need, and can

start to work, without supposing right away that X is finite.
Consider the set of all probability distributions on X ,

M.X/ D f� W X ! R j �.x/ � 0 for all x 2 X and
P

x2X �.x/ D 1g:

We considerM.X/ as a subset of `1.X/. In particular,M.X/ is closed in the metric

k�1 � �2k1 D
X
x2X

j�1.x/ � �2.x/j:

(The number k�1 � �2k1=2 is usually called the total variation norm of the signed
measure �1 � �2.) The transition matrix P acts on M.X/, according to (3.15), by
� 7! �P , which is inM.X/ by stochasticity of P . Our goal is to apply the Banach
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fixed point theorem to this contraction, if possible. For y 2 X , we define

a.y/ D a.y; P / D inf
x2X

p.x; y/ and � D �.P / D 1 �
X
y2X

a.y/:

Thus, a.y/ is the infimum of the y-column of P , and 0 
 � 
 1. Indeed, if x 2 X
then p.x; y/ � a.y/ for each y, and

1 D
X
y2X

p.x; y/ �
X
y2X

a.y/:

We remark that �.P / is a so-called ergodic coefficient, and that the methods that we
are going to use are a particular instance of the theory of those coefficients, see e.g.
Seneta [Se, §4.3] or Isaacson and Madsen [I-M, Ch. V]. We have �.P / < 1 if
and only ifP has a column where all elements are strictly positive. Also, �.P / D 0
if and only if all rows of P coincide (i.e., they coincide with a single probability
measure on X ).

3.25 Lemma. For all �1; �2 2M.X/,
k�1P � �2P k1 
 �.P / k�1 � �2k1 :

Proof. For each y 2 X we have

�1P.y/��2P.y/ D
X
x2X

�
�1.x/��2.x/

�
p.x; y/

D
X
x2X

j�1.x/��2.x/jp.x; y/ �
X
x2X

�
j�1.x/��2.x/j�

�
�1.x/��2.x/

��
p.x; y/



X
x2X

j�1.x/��2.x/jp.x; y/ �
X
x2X

�
j�1.x/��2.x/j�

�
�1.x/��2.x/

��
a.y/

D
X
x2X

j�1.x/ � �2.x/j
�
p.x; y/ � a.y/�:

By symmetry,

j�1P.y/ � �2P.y/j 

X
x2X

j�1.x/ � �2.x/j
�
p.x; y/ � a.y/�:

Therefore,

k�1P � �2P k1 

X
y2X

X
x2X

j�1.x/ � �2.x/j
�
p.x; y/ � a.y/�

D
X
x2X

j�1.x/ � �2.x/j
X
y2Y

�
p.x; y/ � a.y/�

D �.P / k�1 � �2k1 :
This proves the lemma. �
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The following theorem does not (yet) assume finiteness of X .

3.26 Theorem. Suppose that .X; P / is irreducible and such that �.P k/ < 1 for
some k 2 N. Then P is aperiodic, (positive) recurrent, and there is N� < 1 such
that for each � 2M.X/,

k�P n �mk
1

 2 N�n for all n � k;

where m is the unique stationary probability distribution of P .

Proof. The inequality �.P k/ < 1 implies that a.y; P k/ > 0 for some y 2 X . For
this y there is at least one x 2 X with p.y; x/ > 0. We have p.k/.y; y/ > 0 and
p.k/.x; y/ > 0, and also p.kC1/.y; y/ � p.y; x/ p.k/.x; y/ > 0. For the period d
of P we thus have d jk and d jk C 1. Consequently d D 1.

Set � D �.P k/. By Lemma 3.25, the mapping � 7! �P k is a contraction
of M.X/. It follows from Banach’s fixed point theorem that there is a unique
m 2M.X/ with m D mP k , and

k�P kl �mk
1

 � lk� �mk

1

 2� l :

In particular, for � D mP 2M.X/ we obtain

mP D .mP kl/P D .mP /P kl ! m; as l !1;
whence mP D m. Theorem 3.19 implies positive recurrence, and m.x/ D
1=Ex.t

x/. [Note: it is only for this last conclusion that we use Theorem 3.19
here, while for the rest, the latter theorem and its proof are not essential in the
present section.]

If n 2 N, write n D kl C r , where r 2 f0; : : : ; k � 1g. Then, for � 2M.X/,
k�P n �mk

1
D k.�P r/P kl �mk 
 2� l 
 2 N�n;

where N� D �1=.kC1/. �

We can apply this theorem to Example 1.1. We have

P D
0
@ 0 1=2 1=2

1=4 1=2 1=4

1=4 1=4 1=2

1
A ;

and �.P / D 1=2. Therefore, with � D ıx , x 2 X ,X
y2X

jp.n/.x; y/ �m.y/j 
 2�nC1;

where �
m. /;m. /;m. /

� D �1
5
; 2

5
; 2

5

�
:
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One of the important features of Theorem 3.26 is that it provides an estimate for
the speed of convergence of p.n/.x; 	/ to m, and that convergence is exponentially
fast.

3.27 Exercise. Let X D N and p.k; k C 1/ D p.k; 1/ D 1=2 for all k 2 N,
while all other transition probabilities are 0. (Draw the graph of this Markov chain.)
Compute the stationary probability measure and estimate the speed of convergence.

�

Let us now see how Theorem 3.26 can be applied to Markov chains with finite
state space.

3.28 Theorem. Let .X; P / be an irreducible, aperiodic Markov chain with finite
state space. Then there are k 2 N and N� < 1 such that for the stationary probability
measure m.y/ D 1=Ey.t

y/ one hasX
y2X

jp.n/.x; y/ �m.y/j 
 2 N�n

for every x 2 X and n � k.

Proof. We show that �.P k/ < 1 for some k 2 N.
Given x; y 2 X , by irreducibility we can find m D mx;y 2 N such that

p.m/.x; y/ > 0. Finiteness of X allows us to define

k1 D maxfmx;y W x; y 2 Xg:
By Lemma 2.22, for each x 2 X there is ` D `x such that p.q/.x; x/ > 0 for all
q � `x . Define

k2 D maxf`x W x 2 Xg:
Let k D k1 C k2. If x; y 2 X and n � k then n D mC q, where m D mx;y and
q � k2 � `y . Consequently,

p.n/.x; y/ � p.m/.x; y/ p.q/.y; y/ > 0:

We have proved that for each n � k, all matrix elements of P n are strictly positive.
In particular, �.P k/ < 1, and Theorem 3.26 applies. �

A more precise estimate of the rate of convergence to 0 of k�P n � mk
1

, for
finiteX and irreducible, aperiodicP is provided by the Perron–Frobenius theorem:
k�P n � mk

1
can be compared with 
n�, where 
� D fmax j
i j W 
i < 1g and

the 
i are the eigenvalues of the matrix P . We shall come back to this topic for
specific classes of Markov chains in a later chapter, and conclude this section with
an important consequence of the preceding results, regarding the spectrum of P .
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3.29 Theorem. (1) If X is finite and P is irreducible, then 
 D 1 is an eigenvalue
of P . The left eigenspace consists of all constant multiples of the unique stationary
probability measure m, while the right eigenspace consists of all constant functions
on X .

(2) If d D d.P / is the period of P , then the (complex) eigenvalues 
 of P with
j
j D 1 are precisely the d -th roots of unity 
j D e2�ij=d , j D 0; : : : ; d � 1. All
other eigenvalues satisfy j
j < 1.

Proof. (1) We start with the right eigenspace and use a tool that we shall re-prove in
more generality later on under the name of the maximum principle. Let f W X ! C
be a function such that Pf D f in the notation of (3.16) – a harmonic function.
Since both P and 
 D 1 are real, the real and imaginary parts of f must also be
harmonic. That is, we may assume that f is real-valued. We also have P nf D f
for each n.

Since X is finite, there is x such that f .x/ � f .y/ for all y 2 X . We haveX
y2X

p.n/.x; y/
�
f .x/ � f .y/�„ ƒ‚ …

� 0
D f .x/ � P nf .x/ D 0:

Therefore f .y/ D f .x/ for each y with p.n/.x; y/ > 0. By irreducibility, we can
find such an n for every y 2 X , so that f must be constant.

Regarding the left eigenspace, we know already from Theorem 3.26 that all
non-negative left eigenvectors must be constant multiples of the unique stationary
probability measure m. In order to show that there may be no other ones, we use
a method that we shall also elaborate in more detail in a later chapter, namely time
reversal. We define the m-reverse yP of P by

Op.x; y/ D m.y/p.y; x/=m.x/: (3.30)

It is well-defined since m.x/ > 0, and stochastic since m is stationary. Also, it
inherits irreducibility from P . Indeed, the graph �. yP / is obtained from �.P / by
inverting the orientation of each edge. This operation preserves strong connect-
edness. Thus, we can apply the above to yP : every right eigenfunction of yP is
constant. The following is easy.

A (complex) measure � on X satisfies �P D � if and only if its
density f .x/ D �.x/=m.x/ with respect to m satisfies yPf D f .

(3.31)

Therefore f must be constant, and � D c 	m.
(2) First, suppose that .X; P / is aperiodic. Let 
 2 C be an eigenvalue of P

with j
j D 1, and let f W X ! C be an associated eigenfunction. Then jf j D
jPf j 
 P jf j 
 P njf j for each n 2 N. Finiteness of X and the convergence
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theorem imply that

jf .x/j 
 lim
n!1P njf j.x/ D

X
y2X

jf .y/jm.y/

for each x 2 X . If we choose x such that jf .x/j is maximal, then we obtainX
y2X

�jf .x/j � jf .y/j�m.y/ D 0;

and we see that jf j is constant, without loss of generality jf j � 1. There is n such
p.n/.x; y/ > 0 for all x, y. Therefore


nf .x/ D
X
y2X

p.n/.x; y/ f .y/

is a strict convex combination of the numbers f .y/ 2 C, y 2 X , which all lie on
the unit circle. If these numbers did not all coincide then 
nf .x/ would have to lie
in the interior of the circle, a contradiction. Therefore f is constant, and 
 D 1.

Now let d D d.P / be arbitrary, and let C0; : : : ; Cd�1 be the periodic classes
according to Theorem 2.24. Then we know that the restriction Qk of P d to Ck is
stochastic, irreducible and aperiodic for each k. If Pf D 
f onX , where j
j D 1,
then the restriction fk of f to Ck satisfies Qkfk D 
dfk . By the above, we
conclude that 
d D 1. Conversely, if we define f on X by f � 
k

j on Ck , where


j D e2�ij=d , then Pf D 
jf , and 
j is an eigenvalue of P .
Stochasticity implies that all other eigenvalues satisfy j
j < 1. �

3.32 Exercise. Prove (3.31). �

D The Perron–Frobenius theorem

We now make a small detour into more general matrix analysis. Theorems 3.28 and
3.29 are often presented as special cases of the Perron–Frobenius theorem, which is
a landmark of matrix analysis; see Seneta [Se]. Here we take a reversed viewpoint
and regard those theorems as the first part of its proof.

We consider a non-negative, finite square matrix A, which we write A D�
a.x; y/

�
x;y2X

(instead of .aij /i;j D1;:::;N ) in order to stay close to our usual no-
tation. The set X is assumed finite. The n-th matrix power is written An D�
a.n/.x; y/

�
x;y2X

. As usual, we think of column vectors as functions and of row
vectors as measures on X . The definition of irreducibility remains the same as for
stochastic matrices.



58 Chapter 3. Recurrence and transience, convergence, and the ergodic theorem

3.33 Theorem. A D �
a.x; y/

�
x;y2X

be a finite, irreducible, non-negative matrix,
and let

�.A/ D lim sup
n!1

a.n/.x; y/1=n

Then �.A/ > 0 is independent of x and y, and

�.A/ D minft > 0 j there is g W X ! .0; 1/ with Ag 
 t 	 gg:
Proof. The property that lim supn!1 a.n/.x; y/1=n is the same for all x; y 2 X
follows from irreducibility exactly as for Markov chains. Choose x and y inX . By
irreducibility, a.k/.x; y/ > 0 and a.l/.y; x/ > 0 for some k; l > 0. Therefore ˛ D
a.kCl/.x; x/ > 0, and a.n.kCl//.x; x/ � ˛n. We deduce that �.A/ � ˛1=.kCl/ > 0.

In order to prove the “variational characterization” of �.A/, let

t0 D infft > 0 j there is g W X ! .0; 1/ with Ag 
 t 	 gg:
If Ag 
 t 	 g, where g is a positive function on X , then also Ang 
 tn 	 g. Thus
a.n/.x; y/ g.y/ 
 tng.x/, whence

a.n/.x; y/1=n 
 t �g.x/=g.y/�1=n

for each n. This implies �.A/ 
 t , and therefore �.A/ 
 t0.
Next, let G.x; yjz/ D P1

nD0 a
.n/.x; y/ zn: This power series has radius of

convergence 1=�.A/, and

G.x; yjz/ D ıx.y/C
X

w

a.x;w/ z G.w; yjz/:

Now let t > �.A/, fix y 2 X and set

gt .x/ D G.x; yj1=t/
ı
G.y; yj1=t/:

Then we see that gt .x/ > 0 andAgt .x/ 
 t 	gt .x/ for all x. Therefore t0 D �.A/.
We still need to show that the infimum is a minimum. Note that gt .y/ D 1 for

our fixed y. We choose a strictly decreasing sequence .tk/k�1 with limit �.A/ and
set gk D gtk . Then, for each n 2 N and x 2 X ,

tn1 � tnk D tnk 	 gk.y/ � Angk.y/ � a.n/.y; x/gk.x/:

For each x there is nx such that a.nx/.y; x/ > 0. Therefore

gk.x/ 
 Cx D tnx

1 =a.nx/.y; x/ <1 for all k:

By the Heine–Borel theorem, there must be a subsequence
�
gk.m/

�
m�1

that con-
verges pointwise to a limit function h. We have for each x 2 XX

w2X

a.x;w/ gk.m/.w/ 
 tk.m/ gk.m/.x/:



D. The Perron–Frobenius theorem 59

We can pass to the limit as m ! 1 and obtain Ah 
 �.A/ 	 h. Furthermore,
h � 0 and h.y/ D 1. Therefore �.A/nh.x/ � a.n/.x; y/h.y/ > 0 if n is such that
a.n/.x; y/ > 0. Thus, the infimum is indeed a minimum. �

3.34 Definition. The matrix A is called primitive if there exists an n0 such that
a.n0/.x; y/ > 0 for all x; y 2 X .

Since X is finite, this amounts to “irreducible & aperiodic” for stochastic ma-
trices (finite Markov chains), compare with the proof of Theorem 3.28.

3.35 Perron–Frobenius theorem. LetA D �a.x; y/�
x;y2X

be a finite, irreducible,
non-negative matrix. Then

(a) �.A/ is an eigenvalue of A, and j
j 
 �.A/ for every eigenvalue 
 of A.

(b) There is a strictly positive function h on X that spans the right eigenspace of
A with respect to the eigenvalue �.A/. Furthermore, if a function f W X !
Œ0; 1/ satisfies Af 
 �.A/ 	 f then f D c 	 h for some constant c.

(c) There is a strictly positive measure � onX that spans the left eigenspace ofA
with respect to the eigenvalue �.A/. Furthermore, if a non-negative measure
� on X satisfies A 
 �.A/ 	  then  D c 	 � for some constant c.

(d) If in addition A is primitive, and � and h are normalized such thatP
x h.x/ �.x/ D 1 then j
j < �.A/ for every 
 2 spec.A/ n f�.A/g, and

lim
n!1 a.n/.x; y/=�.A/n D h.x/ �.y/ for all x; y 2 X:

Proof. We know from Theorem 3.33 that there is a positive function h on X that
satisfies Ah 
 �.A/ 	 h. We define a new matrix P over X by

p.x; y/ D a.x; y/ h.y/

�.A/ h.x/
: (3.36)

This matrix is substochastic. Furthermore, it inherits irreducibility from A. If
D D Dh is the diagonal matrix with diagonal entries h.x/, x 2 X , then

P D 1

�.A/
D�1AD; whence P n D 1

�.A/n
D�1AnD for every n 2 N:

That is,

p.n/.x; y/ D a.n/.x; y/ h.y/

�.A/n h.x/
: (3.37)

Taking n-th roots and the lim sup as n ! 1, we see that �.P / D 1. Now
Proposition 2.31 tells us that P must be stochastic. But this is equivalent with
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Ah D �.A/ 	 h. Therefore �.A/ is an eigenvalue of A, and h belongs to the right
eigenspace. Now, similarly to (3.31),

A (complex) function g on X satisfies Ag D 
 	 g if and only if

f .x/ D g.x/=h.x/ satisfies Pf D 


�.A/
	 f .

(3.38)

Since P is stochastic, j
=�.A/j 
 1. Thus, we have proved (a).
Furthermore, if 
 D �.A/ in (3.38) then Pf D f , and Theorem 3.29 implies

that f is constant, f � c. Therefore g D c 	 h, which shows that the right
eigenspace of A with respect to the eigenvalue �.A/ is spanned by h. Next, let
g ¤ 0 be a non-negative function with Ag 
 �.A/ 	 g. Then Ang 
 �.A/n 	 g for
each n, and irreducibility of A implies that g > 0. We can replace h with g in our
initial argument, and obtain that Ag D �.A/ 	 g. But this yields that g is a multiple
of h. We have completed the proof of (b).

Statement (c) follows by replacing A with the transposed matrix At .
Finally, we prove (d). Since A is primitive, P is irreducible and aperiodic. The

fact that j
j < �.A/ for each eigenvalue 
 ¤ �.A/ ofA follows from Theorem 3.29
via the arguments used to prove (b): namely, 
 is an eigenvalue of A if and only if

=�.A/ is an eigenvalue of P .

Suppose that � and h are normalized as proposed. Then m.x/ D �.x/h.x/ is a
probability measure on X , and we can write m D �D. Therefore

mP D 1

�.A/
�DD�1AD D 1

�.A/
�AD D �D D m:

We see that m is the unique stationary probability measure for P . Theorem 3.28
implies that p.n/.x; y/! m.y/ D h.y/�.y/. Combining this with (3.37), we get
the proposed asymptotic formula. �

The following is usually also considered as part of the Perron–Frobenius theo-
rem.

3.39 Proposition. Under the assumptions of Theorem 3.35, �.A/ is a simple root
of the characteristic polynomial of the matrix A.

Proof. Recall the definition and properties of the adjunct matrix OA of a square
matrix (not to be confused with the adjoint matrix NA t ). Its elements have the form

Oa.x; y/ D .�1/� det.A j y; x/;
where .A j y; x/ is obtained from A by deleting the row of y and the column of
x, and � D 0 or D 1 according to the parity of the position of .x; y/; in particular
� D 0 when y D x. For 
 2 C, let A� D 
 I � A and OA� its adjunct. Then

A�
OA� D OA�A� D �A.
/ I; (3.40)
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where �A.
/ is the characteristic polynomial of A. If we set 
 D � D �.A/,
then we see that each column of OA	 is a right �-eigenvector of A, and each row
is a left �-eigenvector of A. Let h and �, respectively, be the (positive) right and
left eigenvectors of A that we have found in Theorem 3.35, normalized such thatP

x h.x/�.x/ D 1.

3.41 Exercise. Deduce that Oa	.x; y/ D ˛ 	 h.x/ �.y/, where ˛ 2 R, whence
OA	h D ˛ 	 h. �

We continue the proof of the proposition by showing that ˛ > 0. Consider
the matrix Ax over X obtained from A by replacing all elements in the row and
the column of x with 0. Then Ax 
 A elementwise, and the two matrices do not
coincide. Exercise 3.43 implies that � > j
j for every eigenvalue 
 of Ax , that is,
det.� I � Ax/ > 0. (This is because the leading coefficient of the characteristic
polynomial is 1, so that the polynomial is positive for real arguments that are bigger
than its biggest real root.) Since det.� I � Ax/ D � Oa	.x; x/, we see indeed that
˛ > 0.

We now differentiate (3.40) with respect to 
 and set 
 D �: writing OA0
	 for that

elementwise derivative, since A0
	 D I , the product rule yields

OA0
	 A	 C OA	 D �0

A.�/ 	 I:
We get

�0
A.�/ 	 h D OA0

	 A	h„ƒ‚…
D 0

C OA	h D ˛ 	 h:

Therefore �0
A.�/ D ˛ > 0, and � is a simple root of �A. 	/. �

3.42 Proposition. Let X be finite and A, B be two non-negative matrices over X .
Suppose that A is irreducible and that b.x; y/ 
 a.x; y/ for all x; y. Then

maxfj
j W 
 2 spec.B/g 
 �.A/:

Proof. Let 
 2 spec.B/ and f W X ! C an associated eigenfunction (right eigen-
vector). Then

j
j 	 jf j D jBf j 
 Bjf j 
 A jf j:
Now let � be as in Theorem 3.35 (c). Then

j
j
X
x2X

�.x/jf .x/j 
 �A jf j D �.A/
X
x2X

�.x/jf .x/j:

Therefore j
j 
 �.A/. �
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3.43 Exercise. Show that in the situation of Proposition 3.42, one has that maxfj
j W

 2 spec.B/g D �.A/ if and only if B D A.

[Hint: define P as in (3.36), where Ah D �.A/ 	 h, and let

q.x; y/ D b.x; y/h.y/

�.A/h.x/
:

Show that A D B if and only ifQ is stochastic. Then assume that B ¤ A and that
B is irreducible, and show that �.B/ < �.A/ in this case. Finally, when B is not
irreducible, replace B by a slightly bigger matrix that is irreducible and dominated
by A.] �

There is a weak form of the Perron–Frobenius theorem for general non-negative
matrices.

3.44 Proposition. Let A D �
a.x; y/

�
x;y2X

be a finite, non-zero, non-negative
matrix. Then A has a positive eigenvalue � D �.A/ with non-negative (non-
zero) left and right eigenvectors � and h, respectively, such that j
j 
 � for every
eigenvalue of A.

Furthermore, � D maxC �.AC /, where C ranges over all irreducible classes
with respect to A, the matrix AC is the restriction of A to C , and �.AC / is the
Perron–Frobenius eigenvalue of the irreducible matrix AC .

Proof. LetE be the matrix with all entriesD 1. LetAn D AC 1
n
E, a non-negative,

irreducible matrix. Let hn > 0 and �n > 0 be such that Anhn D �.An/ 	 hn and
�nAn D �.An/ 	 �n. Normalize hn and �n such that

P
x hn.x/ DP

x �n.x/ D 1.
By compactness, there are a subsequence .n0/ and a function (column vector) h, as
well as a measure (row vector) � such that hn0 ! h and �n0 ! �. We have h � 0,
� � 0, and

P
x h.x/ D

P
x �.x/ D 1, so that h; � ¤ 0.

By Proposition 3.42, the sequence
�
�.An/

�
is decreasing. Let � be its limit.

Then Ah D � 	 h and �A D � 	 �. Also by Proposition 3.42, every 
 2 spec.A/
satisfies j
j 
 �.An/. Therefore

maxfj
j W 
 2 spec.A/g 
 �;
as proposed.

If h.y/ > 0 and a.x; y/ > 0 then h.x/ � � a.x; y/ h.y/ > 0. Therefore
h.x/ > 0 for all x 2 C.y/, the irreducible class of y with respect to the matrix A.
We see that the set fx 2 X W h.x/ > 0g is the union of irreducible classes. Let
C0 be such an irreducible class on which h > 0, and which is maximal with this
property in the partial order on the collection of irreducible classes. Let hC0

be
the restriction of h to C0. Then AC0

hC0
D � 	 hC0

. This implies (why?) that
� D �.AC0

/.
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Finally, if C is any irreducible class, then consider the truncated matrix AC as
a matrix on the whole of X . It is dominated by A, whence by An, which implies
via Proposition 3.42 that �.AC / 
 �.An/ for each n, and in the limit, �.AC / 
 �.

�

3.45 Exercise. Verify that the “variational characterization” of Theorem 3.33 for
�.A/ also holds when A is an infinite non-negative irreducible matrix, as long as
�.A/ is finite. (The latter is true, e.g., when A has bounded row sums or bounded
column sums, and in particular, when A is substochastic.) �

E The convergence theorem for positive recurrent
Markov chains

Here, we shall (re)prove the analogue of Theorem 3.28 for an arbitrary Markov
chain .X; P / that is irreducible, aperiodic and positive recurrent, when X is not
necessarily finite, nor �.P k/ < 1 for some k. The “price” that we have to pay
is that we shall not get exponential decay in the approximation of the stationary
probability by �P n. Except for this last fact, we could of course have omitted the
extra Section C regarding the finite case and appeal directly to the main theorem
that we are going to prove. However, the method used in Section C is interesting
on its own right, which is another reason for having chosen this slight redundancy
in the presentation of the material.

We shall also determine the convergence behaviour of n-step transition proba-
bilities when .X; P / is null recurrent.

The clue for dealing with the positive recurrent case is the following: we consider
two independent versions .Z1

n/ and .Z2
n/ of the Markov chain, one with arbitrary

initial distribution �, and the other with initial distribution m, the stationary proba-
bility measure ofP . Thus,Z2

n will have distribution m for each n. We then consider
the stopping time tD when the two chains first meet. On the event ŒtD 
 n�, it will
be easily seen that Z1

n and Z2
n have the same distribution. The method also adapts

to the null recurrent case.
What we are doing here is to apply the so-called coupling method: we construct

a larger probability space on which both processes can be defined in such a way
that they can be compared in a suitable way. This type of idea has many fruitful
applications in probability theory, see the book by Lindvall [Li].

We now elaborate the details of that plan. We consider the new state space
X �X with transition matrix Q D P ˝ P given by

q
�
.x1; x2/; .y1; y2/

� D p.x1; y1/ p.x2; y2/:

3.46 Lemma. If .X; P / is irreducible and aperiodic, then the same holds for the
Markov chain .X �X;P ˝P /. Furthermore, if .X; P / is positive recurrent, then
so is .X �X;P ˝ P /.



64 Chapter 3. Recurrence and transience, convergence, and the ergodic theorem

Proof. We have

q.n/
�
.x1; x2/; .y1; y2/

� D p.n/.x1; y1/ p
.n/.x2; y2/:

By irreducibility and aperiodicity, Lemma 2.22 implies that there are indices ni D
n.xi ; yi / such that p.n/.xi ; yi / > 0 for all n � ni , i D 1; 2. Therefore also Q is
irreducible and aperiodic.

If .X; P / is positive recurrent and m is the unique invariant probability measure
of P , then m �m is an invariant probability measure for Q. By Theorem 3.19, Q
is positive recurrent. �

Let �1 and �2 be probability measures on X . If we write .Z1
n; Z

2
n/ for the

Markov chain with initial distribution �1 � �2 and transition matrix Q on X � X ,
then for i D 1; 2, .Zi

n/ is the Markov chain on X with initial distribution �i and
transition matrix P .

Now letD D f.x; x/ W x 2 Xg be the diagonal ofX �X , and tD the associated
stopping time with respect to Q. This is the time when .Z1

n/ and .Z2
n/ first meet

(after starting).

3.47 Lemma. For every x 2 X and n 2 N,

Pr�1��2
ŒZ1

n D x; tD 
 n� D Pr�1��2
ŒZ2

n D x; tD 
 n�:
Proof. This is a consequence of the Strong Markov Property of Exercise 1.25. In
detail, if k 
 n, then

Pr�1��2
ŒZ1

n D x; tD D k� D
X
w2X

Pr�1��2
ŒZ1

n D x; Z1
k D w; tD D k�

D
X
w2X

p.n�k/.w; x/ Pr�1��2
ŒZ1

k D w; tD D k�

D Pr�1��2
ŒZ2

n D x; tD D k�;
since by definition, Z1

k
D Z2

k
, if tD D k. Summing over all k 
 n, we get the

proposed identity. �

3.48 Theorem. Suppose that .X; P / is irreducible and aperiodic.

(a) If .X; P / is positive recurrent, then for any initial distribution � on X ,

lim
n!1 k�P

n �mk
1
D 0;

and in particular

lim
n!1 Pr� ŒZn D x� D m.x/ for every x 2 X;

where m.x/ D 1=Ex.t
x/ is the stationary probability distribution.
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(b) If .X; P / is null recurrent or transient, then for any initial distribution � onX ,

lim
n!1 Pr� ŒZn D x� D 0 for every x 2 X:

Proof. (a) In the positive recurrent case, we set �1 D � and �2 D m for defining the
initial measure of .Z1

n; Z
2
n/ onX�X in the above construction. Since tD 
 t.x;x/,

Lemma 3.46 implies that

tD <1 Pr�1��2
-almost surely. (3.49)

(This probability measure lives on the trajectory space associated with Q over
X �X !)

We have k�P n � mk
1
D k�1P

n � �2P
nk

1
. Abbreviating Pr�1��2

D Pr and
using Lemma 3.47, we get

k�1P
n � �2P

nk
1
D
X
y2X

ˇ̌
PrŒZ1

n D y� � PrŒZ2
n D y�

ˇ̌
D
X
y2X

ˇ̌
PrŒZ1

n D y; tD 
 n�C PrŒZ1
n D y; tD > n�

� PrŒZ2
n D y; tD 
 n� � PrŒZ2

n D y; tD > n�
ˇ̌



X
y2X

�
PrŒZ1

n D y; tD > n�C PrŒZ2
n D y; tD > n�

�

 2 PrŒtD > n�:

(3.50)

By (3.49), we have that PrŒtD > n�! PrŒtD D1� D 0 as n!1.
(b) If .X; P / is transient then statement (b) is immediate, see Exercise 3.7.

So let us suppose that .X; P / is null recurrent. In this case, it may happen that
.X �X;Q/ becomes transient. [Example: take for .X; P / the simple random walk
on Z2; see (4.64) in Section 4.E.] Then, setting �1 D �2 D �, we get that�

Pr� ŒZn D x�
�2 D Pr�1��2

Œ.Z1
n; Z

2
n/ D .x; x/�! 0 as n!1;

once more by Exercise 3.7. (Note again that Pr� and Pr�1��2
live on different

trajectory spaces !)

Since .X; P / is a factor chain of .X � X;Q/, the latter cannot be positive
recurrent when .X; P / is null recurrent; see Exercise 3.14. Therefore the remaining
case that we have to consider is the one where both .X; P / and the product chain
.X � X;Q/ are null recurrent. Then we first claim that for any choice of initial
probability distributions �1 and �2 on X ,

lim
n!1

�
Pr�1

ŒZn D x� � Pr�2
ŒZn D x�

� D 0 for every x 2 X:
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Indeed, (3.49) is valid in this case, and we can use once more (3.50) to find that

k�1P
n � �2P

nk
1

 2 PrŒtD > n�! 0:

Setting �1 D � and �2 D �Pm and replacing nwith n�m, this implies in particular
that

lim
n!1

�
Pr� ŒZn D x� � Pr� ŒZn�m D x�

� D 0 for every x 2 X; m � 0: (3.51)

The remaining arguments involve only the basic trajectory space associated with
.X; P /. Let " > 0. We use the “null” of null recurrence, namely, that

Ex.t
x/ D

1X
mD0

PrxŒt
x > m� D1:

Hence there is M DM" such that

MX
mD0

PrxŒt
x > m� > 1=":

For n � M , the events Am D ŒZn�m D x; Zn�mCk ¤ x for 1 
 k 
 m� are
pairwise disjoint for m D 0; : : : ;M . Thus, using the Markov property,

1 �
MX

mD0

Pr�.Am/

D
MX

mD0

Pr� ŒZn�mCk ¤ x for 1 
 k 
 m j Zn�m D x� Pr� ŒZn�m D x�

D
MX

mD0

PrxŒt
x > m� Pr� ŒZn�m D x�:

Therefore, for each n � M there must be m D m.n/ 2 f0; : : : ;M g such that
Pr� ŒZn�m.n/ D x� < ". But Pr� ŒZn D x��Pr� ŒZn�m.n/ D x�! 0 by (3.51) and
boundedness of m.n/. Thus

lim sup
n!1

Pr� ŒZn D x� 
 "

for every " > 0, proving that Pr� ŒZn D x�! 0. �

3.52 Exercise. Let .X; P / be a recurrent irreducible Markov chain .X; P /, d its
period, and C0; : : : ; Cd�1 its periodic classes according to Theorem 2.24.
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(1) Show that .X; P / is positive recurrent if and only if the restriction of P d to
Ci is positive recurrent for some (() all) i 2 f0; : : : ; d � 1g.

(2) Show that for x; y 2 Ci ,

lim
n!1p.nd/.x; y/ D d 	m.y/ with m.y/ D 1=Ey.t

y/:

(3) Determine the limiting behaviour of p.n/.x; y/ for x 2 Ci ; y 2 Cj . �

In the hope that the reader will have solved this exercise before proceeding,
we now consider the general situation. Theorem 3.48 was formulated for an irre-
ducible, positive recurrent Markov chain .X; P /. It applies without any change to
the restriction of a general Markov chain to any of its essential classes, if the latter
is positive recurrent and aperiodic. We now want to find the limiting behaviour
of n-step transition probabilities in the case when there may be several essential
irreducible classes, as well as non-essential ones.

For x; y 2 X and d D d.y/, the period of (the irreducible class of) y, we define

F r.x; y/ D PrxŒs
y <1 and sy � r mod d�

D
1X

nD0

f .ndCr/.x; y/; r D 0; : : : ; d � 1: (3.53)

We make the following observations.

(i) F.x; y/ D F 0.x; y/C F 1.x; y/C 	 	 	 C F d�1.x; y/.

(ii) If x $ y then by Theorem 2.24 there is a unique r such that F.x; y/ D
F r.x; y/, while F j .x; y/ D 0 for all other j 2 f0; 1; : : : ; d � 1g.

(iii) If furthermore y is a recurrent state then Theorem 3.4 (b) implies that
F r.x; y/ D F.x; y/ D U.x; y/ D 1 for the index r that we found above in
(ii).

(iv) If x and y belong to different classes and x ! y, then it may well be that
F r.x; y/ > 0 for different indices r 2 f0; 1; : : : ; d � 1g. (Construct examples !)

3.54 Theorem. (a) Let y 2 X be a positive recurrent state and d D d.y/ its
period. Then for each x 2 X and r 2 f0; 1; : : : ; d � 1g,

lim
n!1p.ndCr/.x; y/ D F r.x; y/ 	 d=Ey.t

y/:

(b) Let y 2 X be a transient or null recurrent state. Then

lim
n!1p.n/.x; y/ D 0:
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Proof. (a) By Exercise 3.52, for " > 0 there is N" > 0 such that for every n � N",
we have jp.nd/.y; y/ � d 	 m.y/j < ", where m.y/ D 1=Ey.t

y/. For such n,
applying Theorem 1.38 (b) and equation (1.40),

p.ndCr/.x; y/ D
ndCrX
`D0

f .`/.x; y/ p.ndCr�`/.y; y/„ ƒ‚ …
> 0 only if

` � r � 0 mod d

D
nX

kD0

f .kdCr/.x; y/ p..n�k/d/.y; y/



n�N"X
kD0

f .kdCr/.x; y/
�
d 	m.y/C "�C X

k>n�N"

f .kdCr/.x; y/:

Since
P

k>n�N"
f .kdCr/.x; y/ is a remainder term of a convergent series, it tends

to 0, as n!1. Hence

lim sup
n!1

p.ndCr/.x; y/ 
 F r.x; y/
�
d 	m.y/C "� for each " > 0:

Therefore
lim sup

n!1
p.ndCr/.x; y/ 
 F r.x; y/ 	 d 	m.y/:

Analogously, the inequality

p.ndCr/.x; y/ �
n�N"X
kD0

f .kdCr/.x; y/
�
d 	m.y/ � "�

yields
lim inf
n!1 p.ndCr/.x; y/ � F r.x; y/ 	 d 	m.y/:

This concludes the proof in the positive recurrent case.
(b) If y is transient then G.x; y/ < 1, whence p.n/.x; y/ ! 0. If y is null

recurrent then we can apply part (1) of Exercise 3.52 to the restriction of P d to Ci ,
the periodic class to which y belongs according to Theorem 2.24. It is again null
recurrent, so that p.nd/.y; y/! 0 as n!1. The proof now continues precisely
as in case (a), replacing the number m.y/ with 0. �

F The ergodic theorem for positive recurrent Markov chains

The purpose of this section is to derive the second important Markov chain limit
theorem.
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3.55 Ergodic theorem. Let .X; P / be a positive recurrent, irreducible Markov
chain with stationary probability measure m. 	/. If f W X ! R is m-integrable,
that is

R jf j dm DPx jf .x/jm.x/ <1, then for any starting distribution,

lim
N !1

1

N

N �1X
nD0

f .Zn/ D
Z

X

f dm almost surely.

As a matter of fact, this is a special case of the general ergodic theorem of
Birkhoff and von Neumann, see e.g. Petersen [Pe]. Before the proof, we need
some preparation. We introduce new probabilities that are “dual” to the f .n/.x; y/

which were defined in (1.28):

`.n/.x; y/ D PrxŒZn D y; Zk ¤ x for k 2 f1; : : : ; ng� (3.56)

is the probability that the Markov chain starting at x is in y at the n-th step before
returning to x. In particular, `.0/.x; x/ D 1 and `.0/.x; y/ D 0 if x ¤ y. We can
define the associated generating function

L.x; yjz/ D
1X

nD0

`.n/.x; y/ zn; L.x; y/ D L.x; yj1/: (3.57)

We have L.x; xjz/ D 1 for all z. Note that while the quantities f .n/.x; y/, n 2 N,
are probabilities of disjoint events, this is not the case for `.n/.x; y/, n 2 N.
Therefore, unlike F.x; y/, the quantity L.x; y/ is not a probability. Indeed, it is
the expected number of visits in y before returning to the starting point x.

3.58 Lemma. If y ! x, or if y is a transient state, then L.x; y/ <1.

Proof. The statement is clear when x D y. Since `.n/.x; y/ 
 p.n/.x; y/, it is also
obvious when y is a transient state.

We now assume that y ! x. When x 6! y, we have L.x; y/ D 0.
So we consider the case whenx $ y andy is recurrent. LetC be the irreducible

class of y. It must be essential. Recall the Definition 2.14 of the restriction PC nfxg
of P to C n fxg. Factorizing with respect to the first step, we have for n � 1

`.n/.x; y/ D
X

w2C nfxg
p.x;w/ p

.n�1/

C nfxg.w; y/;

because the Markov chain starting in x cannot exit fromC . Now the Green function
of the restriction satisfies

GC nfxg.w; y/ D FC nfxg.w; y/GC nfxg.y; y/ 
 GC nfxg.y; y/ <1:
Indeed, those quantities can be interpreted in terms of the modified Markov chain
where the state x is made absorbing, so that C n fxg contains no essential state for
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the modified chain. Therefore the associated Green function must be finite. We
deduce

L.x; y/ D
X

w2C nfxg
p.x;w/GC nfxg.w; y/ 
 GC nfxg.y; y/ <1;

as proposed. �

3.59 Exercise. Prove the following in analogy with Theorem 1.38 (b), (c), (d).

G.x; yjz/ D G.x; xjz/L.x; yjz/ for all x; y;

U.x; xjz/ D
X

y

L.x; yjz/ p.y; x/z; and

L.x; yjz/ D
X

w

L.x;wjz/ p.w; y/z; if y ¤ x

for all z in the common domain of convergence of the power series involved. �

3.60 Exercise. Derive a different proof of Lemma 3.58 in the case when x $ y:
show that for jzj < 1,

L.x; yjz/L.y; xjz/ D F.x; yjz/F.y; xjz/;
and let z ! 1�.

[Hint: multiply both sides by G.x; xjz/G.y; yjz/.] �

3.61 Exercise. Show that when x is a recurrent state,X
y2X

L.x; y/ D Ex.t
x/:

[Hint: use again that
P

y G.x; yjz/ D 1=.1 � z/ and apply the first formula of
Exercise 3.59 in the same way as Theorem 1.38 (b) was used in (3.11) and (3.12).]

�

Thus, for a positive recurrent chain, L.x; y/ has a particularly simple form.

3.62 Corollary. Let .X; P / be a positive recurrent, irreducible Markov chain with
stationary probability measure m. 	/. Then for all x; y 2 X ,

L.x; y/ D m.y/=m.x/ D Ex.t
x/=Ey.t

y/:

Proof. We have L.x; x/ D 1 D U.x; x/ by recurrence. Therefore the second and
the third formula of Exercise 3.59 show that for any fixed x, the measure �.y/ D
L.x; y/ is stationary. Exercise 3.61 shows that �.X/ D Ex.t

x/ D 1=m.x/ < 1
in the positive recurrent case. By Theorem 3.19, � D 1

m.x/
	m. �
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After these preparatory exercises, we define a sequence .tx
k
/k�0 of stopping

times by
tx
0 D 0 and tx

k D inffn > tx
k�1 W Zn D xg;

so that tx
1 D tx , as defined in (1.26). Thus, tx

k
is the random instant of the k-th

visit in x after starting.
The following is an immediate consequence of the strong Markov property, see

Exercise 1.25. For safety’s sake, we outline the proof.

3.63 Lemma. In the recurrent case, all tx
k

are a.s. finite and are indeed stopping
times. Furthermore, the random vectors with random length

.tx
k � tx

k�1 I Zi ; i D tx
k�1; : : : ; t

x
k � 1/; k � 1;

are independent and identically distributed.

Proof. We abbreviate tx
k
D tk .

First of all, we can decide whether Œtk 
 n� by looking only at the initial
trajectory .Z0; Z1; : : : ; Zn/. Indeed, we only have to check whether x occurs at
least k times in .Z1; : : : ; Zn/. Thus, tk is a stopping time for each k.

By recurrence, t1 D tx is a.s. finite. We can now proceed by induction on k.
If tk is a.s. finite, then by the strong Markov property, .ZtkCn/n�0 is a Markov
chain with the same transition matrix P and starting point x. For this new chain,
tkC1 � tk plays the same role as tx for the original chain. In particular, tkC1 � tk

is a.s. finite.
This proves the first statement. For the second statement, we have to show the

following: for any choice of k; l; r; s 2 N0 with k < l and all points x1; : : : ; xr�1;

y1; : : : ; ys�1 2 X , the events

A D Œtk � tk�1 D r; Ztk�1CiDxi
; i D 1; : : : ; r � 1�

and

B D Œtl � tl�1 D s; Ztl�1Cj Dyj
; j D 1; : : : ; s � 1�

are independent. Now, in the time interval Œtk C 1; tl �, the chain .Zn/ visits x
precisely l � k times. That is, for the Markov chain .ZtkCn/n�0, the stopping time
tl plays the same role as the stopping time tl�k plays for the original chain .Zn/n�0

starting at x.3 In particular, Prx.B/ is the same for each l 2 N. Furthermore,

3More precisely: in terms of Theorem 1.17, we consider .��; A�; Pr�/ D .�; A; Prx/, the
trajectory space, but Z�

n D Ztk Cn. Let t�
m be the stopping time of the m-th return to x of .Z�

n/.
Then, under the mapping 
 of that theorem,

t�
m.!/ D tkCm

�

.!/

�
:
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Am D A \ Œtk�1 D m� 2 AmCr and ZmCr.!/ D x for all ! 2 Am. Thus,

Prx.A \ B/ D
X

m

Prx.BjAm/Prx.Am/

D
X

m

PrxŒtl�k � tl�k�1 D s; Ztl�k�1Cj Dyj
; j D 0; : : : ; s � 1� Prx.Am/

D Prx.B/
X

x

Prx.Am/ D Prx.B/ Prx.A/;

as proposed. �

Proof of the ergodic theorem. We suppose that the Markov chain starts at x. We
write t1 D t and, as above, tx

k
D tk . Also, we let

SN .f / D
N �1X
nD0

f .Zn/:

Assume first that f � 0, and consider the non-negative random variables

Yk D
nDtk�1X
nDtk�1

f .Zn/; k � 1:

By Lemma 3.63, they are independent and identically distributed. We compute,
using Lemma 3.62 in the last step,

Ex.Yk/ D Ex.Y1/

D Ex

� t�1X
nD0

f .Zn/
�

D Ex

� 1X
nD0

f .Zn/ 1Œt>n�

�

D
1X

nD0

X
y2X

f .y/ PrxŒZn D y; t > n�

D
X
y2X

f .y/L.x; y/ D 1

m.x/

Z
X

f dm;

which is finite by assumption. The strong law of large numbers implies that

1

k

kX
j D1

Yj D 1

k
Stk
.f /! 1

m.x/

Z
X

f dm Prx -almost surely, as k !1:
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In the same way, setting f � 1,

1

k
tk ! 1

m.x/
Prx -almost surely, as k !1:

In particular, tkC1=tk ! 1 almost surely. Now, for N 2 N, let k.N / be the
(random and a.s. defined) index such that

tk.N / 
 N < tk.N /C1:

As N ! 1, also k.N / ! 1 almost surely. Dividing all terms in this double
inequality by tk.N /, we find

1 
 N

tk.N /


 tk.N /C1

tk.N /

:

We deduce that tk.N /=N ! 1 almost surely. Since f � 0, we have

1

N
Stk.N /

.f / 
 1

N
SN .f / 
 1

N
Stk.N /C1

.f /:

Now,

1

N
Stk.N /

.f / D tk.N /

N„ƒ‚…
! 1

k.N /

tk.N /„ƒ‚…
! m.x/

1

k.N /
Stk.N /

.f /!
Z

X

f dm Pr
x

-almost surely.

In the same way,

1

N
Stk.N /C1.f /!

Z
X

f dm Prx -almost surely.

Thus, SN .f /=N !
R
X
f dm when f � 0.

If f is arbitrary, then we can decompose f D f C � f � and see that

1

N
SN .f / D 1

N
SN .f

C/� 1

N
SN .f

�/!
Z

X

f C dm�
Z

X

f � dm D
Z

X

f dm

Prx-almost surely. �

3.64 Exercise. Above, we have proved the ergodic theorem only for a determin-
istic starting point. Complete the proof by showing that it is valid for any initial
distribution.

[Hint: replace tx
0 D 0 with sx , as defined in (1.26), which is almost surely finite.]

�
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The ergodic theorem for Markov chains has many applications. One of them
concerns the statistical estimation of the transition probabilities on the basis of
observing the evolution of the chain, which is assumed to be positive recurrent.
Recall the random variable vx

n D 1x.Zn/. Given the observation of the chain in a
time interval Œ0; N �, the natural estimate of p.x; y/ appears to be the number of
times that the chain jumps from x to y relative to the number of visits in x. That
is, our estimator for p.x; y/ is the statistic

TN D
N �1X
nD0

vx
n 	 vy

nC1

.N �1X
nD0

vx
n :

Indeed, when Z0 D o, the expected value of the denominator is
PN �1

nD0 p
.n/.o; x/,

while the expected value of the denumerator is
PN �1

nD0 p
.n/.o; x/ p.x; y/. (As a

matter of fact, TN is the maximum likelihood estimator of p.x; y/.) By the ergodic
theorem, with f D 1x ,

1

N

N �1X
nD0

vx
n ! m.x/ Pro -almost surely:

3.65 Exercise. Show that

1

N

N �1X
nD0

vx
nv

y
nC1 ! m.x/p.x; y/ Pro -almost surely:

[Hint: show that .Zn; ZnC1/ is an irreducible, positive recurrent Markov chain on
the state space f.x; y/ W p.x; y/ > 0g. Compute its stationary distribution.] �

Combining those facts, we get that

TN ! p.x; y/ as N !1:
That is, the estimator is consistent.

G �-recurrence

In this short section we suppose again that .X; P / is an irreducible Markov chain.
From §2.C we know that the radius of convergence r D 1=�.P / of the power series
G.x; yjz/ does not depend on x; y 2 X . In fact, more is true:

3.66 Lemma. One of the following holds for r D 1=�.P /, where �.P / is the
spectral radius of .X; P /.

(a) G.x; yjr/ D1 for all x; y 2 X , or
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(b) G.x; yjr/ <1 for all x; y 2 X .

In both cases, F.x; yjr/ <1 for all x; y 2 X .

Proof. Let x; y; x0; y0 2 X . By irreducibility, there are k; ` � 0 such that
p.k/.x; x0/ > 0 and p.`/.y0; y/ > 0. Therefore

1X
nDkC`

p.n/.x; y/ rn � p.k/.x; x0/ p.`/.y0; y/ rkC`

1X
nD0

p.n/.x0; y0/ rn:

Thus, if G.x0; y0jr/ D 1 then also G.x; yjr/ D 1. Exchanging the roles of x; y
and x0; y0, we also get the converse implication.

Finally, ifm is such that p.m/.y; x/ > 0, then we have in the same way as above
that for each z 2 .0; r/

G.y; yjz/ � p.m/.y; x/ zmG.x; yjz/ D p.m/.y; x/ zm F.x; yjz/G.y; yjz/
by Theorem 1.38 (b). Letting z ! r from below, we find that

F.x; yjr/ 
 1ı�p.m/.y; x/ rm
�
: �

3.67 Definition. In case (a) of Lemma 3.66, the Markov chain is called �-recurrent,
in case (b) it is called �-transient.

This definition and various results are due to Vere-Jones [49], see also Seneta
[Se]. This is a formal analogue of usual recurrence, where one studies G.x; yj1/
instead of G.x; yjr/. While in the previous (1996) Italian version of this chapter, I
wrote “there is no analogous probabilistic interpretation of �-recurrence”, I learnt
in the meantime that there is indeed an interpretation in terms of branching Markov
chains. This will be explained in Chapter 5. Very often, one finds “r-recurrent”
in the place of “�-recurrent”, where � D 1=r. There are good reasons for either
terminology.

3.68 Remarks. (a) The Markov chain is �-recurrent if and only if U.x; xjr/ D 1

for some (() all) x 2 X . The chain is �-transient if and only if U.x; xjr/ < 1 for
some (() all) x 2 X . (Recall that the radius of convergence of U.x; xj 	 / is � r,
and compare with Proposition 2.28.)

(b) If the Markov chain is recurrent in the usual sense, G.x; xj1/ D 1, then
�.P / D r D 1 and the chain is �-recurrent.

(c) If the Markov chain is transient in the usual sense, G.x; xj1/ < 1, then
each of the following cases can occur. (We shall see Example 5.24 in Chapter 5,
Section A.)

• r D 1, and the chain is �-transient,
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• r > 1, and the chain is �-recurrent,

• r > 1, and the chain is �-transient.

(d) If r > 1 (i.e., �.P / < 1) then in any case the Markov chain is transient in the
usual sense.

In analogy with Definition 3.8, �-recurrence is subdivided in two cases.

3.69 Definition. In the �-recurrent case, the Markov chain is called

�-positive-recurrent, if U 0.x; xjr�/ D P1
nD1 n rn�1u.n/.x; x/ < 1 for

some (() every) x 2 X , and

�-null-recurrent, if U 0.x; xjr�/ D1 for some (() every) x 2 X .

3.70 Exercise. Prove that in the (irreducible) �-recurrent case it is indeed true that
when U 0.x; xjr�/ <1 for some x then this holds for all x 2 X . �

3.71 Exercise. Fix x 2 X and let s D s.x; x/ be the radius of convergence of
U.x; xjz/. Show that if U.x; xjs�/ > 1 then the Markov chain is �-positive
recurrent. Deduce that when .X; P / is not �-positive-recurrent then s.x; x/ D r
for all x 2 X . �

3.72 Theorem. (a) If .X; P / is an irreducible, �-positive-recurrent Markov chain
then for x; y 2 X

lim
n!1 rndC`p.ndC`/.x; y/ D d F.x; yjr�/

rU 0.y; yjr�/ ;

where d is the period and ` 2 f0; : : : ; d � 1g is such that x
kdC`����! y for some

k � 0.

(b) If .X; P / is �-null-recurrent or �-transient then for x; y 2 X

lim
n!1 rnp.n/.x; y/ D 0:

Proof. We first consider the case x D y. In the �-recurrent case we construct the
following auxiliary Markov chain on N with transition matrix zP given by

Qp.1; n/ D u.nd/.y; y/ rnd ; Qp.nC 1; n/ D 1;

while p.m; n/ D 0 in all other cases. See Figure 8.
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The transition matrix zP is stochastic as .X; P / is �-recurrent; see Remark 3.68 (a).
The construction is such that the first return probabilities of this chain to the state 1
are Qu.n/.1; 1/ D u.nd/.y; y/ rnd . Applying (1.39) both to .X; P / and to .N; zP /,
we see that p.nd/.y; y/ rnd D Qp.n/.1; 1/. Thus, .N; zP / is aperiodic and recurrent,
and Theorem 3.48 implies that

lim
n!1p.nd/.y; y/ rnd D lim

n!1 Qp
.n/.1; 1/ D 1P1

kD1 k Qu.k/.1; 1/
D d

rU 0.y; yjr�/ :

This also applies to the �-null-recurrent case, where the limit is 0.
In the �-transient case, it is clear that p.nd/.y; y/ rnd ! 0.

Now suppose that x ¤ y. We know from Lemma 3.66 that F.x; yjr/ < 1.
Thus, the proof can be completed in the same way as in Theorem 3.54. �



Chapter 4

Reversible Markov chains

A The network model

4.1 Definition. An irreducible Markov chain .X; P / is called reversible if there is
a positive measure m on X such that

m.x/ p.x; y/ D m.y/ p.y; x/ for all x; y 2 X:
We then call m a reversing measure for P .

This symmetry condition allows the development of a rich theory which com-
prises many important classes of examples and models, such as simple random
walk on graphs, nearest neighbour random walks on trees, and symmetric random
walks on groups. Reversible Markov chains are well documented in the literature.
We refer first of all to the beautiful little book of Doyle and Snell [D-S], which
lead to a breakthrough of the popularity of random walks. Further valid sources
are, among others Saloff-Coste [SC], several parts of my monograph [W2], and
in particular the (ever forthcoming) perfect book of Lyons with Peres [L-P]. Here
we shall only touch a small part of the vast interesting material, and encourage the
reader to consult those books.

If .X; P / is reversible, then we call a.x; y/ D m.x/p.x; y/ D a.y; x/ the
conductance between x and y, and m.x/ the total conductance at x.

Conversely, we can also start with a symmetric function a W X � X ! Œ0; 1/
such that 0 < m.x/ D P

y a.x; y/ < 1 for every x 2 X . Then p.x; y/ D
a.x; y/=m.x/ defines a reversible Markov chain (random walk).

Reversibility implies thatX is the union of essential classes that do not commu-
nicate among each other. Therefore, it is no restriction that we shall always assume
irreducibility of .X; P /.

4.2 Lemma. (1) If .X; P / is reversible then m. 	/ is an invariant measure for P
with total mass

m.X/ D
X

x;y2X

a.x; y/:

(2) In particular, .X; P / is positive recurrent if and only if m.X/ <1, and in
this case,

Ex.t
x/ D m.X/=m.x/:

(3) Furthermore, also P n is reversible with respect to m.
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Proof. We have X
x

m.x/ p.x; y/ D
X

x

m.y/ p.y; x/ D m.y/:

The statement about positive recurrence follows from Theorem 3.19, since the
stationary probability measure is 1

m.X/
m. 	/ when m.X/ < 1, while otherwise m

is an invariant measure with infinite total mass.
Finally, reversibility of P is equivalent with symmetry of the matrix DPD�1,

where D is the diagonal matrix over X with diagonal entries
p

m.x/, x 2 X .
Taking the n-th power, we see that also DP nD�1 is symmetric. �

4.3 Example. Let� D .X;E/be a symmetric (or non-oriented) graph withV.�/ D
X and non-empty, symmetric edge setE D E.�/, that is, we have Œx; y� 2 E ()
Œy; x� 2 E. (Attention: here we distinguish between the two oriented edges Œx; y�
and Œy; x�, when x ¤ y. In classical graph theory, such a pair of edges is usually
considered and drawn as one non-oriented edge.)

We assume that � is locally finite, that is,

deg.x/ D jfy W Œx; y� 2 Egj <1 for all x 2 X;
and connected. Simple random walk (SRW ) on � is the Markov chain with state
space X and transition probabilities

p.x; y/ D
´
1= deg.x/; if Œx; y� 2 E;
0; otherwise.

Connectedness is equivalent with irreducibility of SRW, and the random walk is
reversible with respect to m.x/ D deg.x/. Thus, a.x; y/ D 1 if Œx; y� 2 E, and
a.x; y/ D 0, otherwise. The resulting matrix A D �

a.x; y/
�

x;y2X
is called the

adjacency matrix of the graph.
In particular, SRW on the graph � is positive recurrent if and only if � is finite,

and in this case,
Ex.t

x/ D jEj= deg.x/:

(Attention: jEj counts all oriented edges. If instead we count undirected edges,
then jEj has to be replaced with 2� the number of edges with distinct endpoints
plus 1� the number of loops.)

For a general, irreducible Markov chain .X; P /which is reversible with respect
to the measure m, we also consider the associated graph �.P / according to Defini-
tion 1.6. By reversibility, it is again non-oriented (its edge set is symmetric). The
graph is not necessarily locally finite.

The period of P is d D 1 or d D 2. The latter holds if and only if the graph
�.P / is bipartite: the vertex set has a partition X D X1 [X2 such that each edge
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has one endpoint in X1 and the other in X2. Equivalently, every closed path in
�.P / has an even number of edges.

For an edge e D Œx; y� 2 E D E.P /, we denote Le D Œy; x�, and write e� D x
and eC D y for its initial and terminal vertex, respectively. Thus, e 2 E if and
only if a.x; y/ > 0. We call the number r.e/ D 1=a.x; y/ D r. Le/ the resistance
of e, or rather, the resistance of the non-oriented edge that is given by the pair of
oriented edges e and Le.

The triple N D .X;E; r/ is called a network, where we imagine each edge e
as a wire with resistance r.e/, and several wires are linked at each node (vertex).
Equivalently, we may think of a system of tubes e with cross-section 1 and length
r.e/, connected at the vertices. If we start with X , E and r then the requirements
are that .X;E/ is a countable, connected, symmetric graph, and that

0 < m.x/ D
X

e2E We�Dx

1=r.e/ <1 for each x 2 X;

and then p.x; y/ D 1ı�m.x/r.Œx; y�/� whenever r.Œx; y�/ > 0, as above.
The electric network interpretation leads to nice explanations of various results,

see in particular [D-S] and [L-P]. We will come back to part of it at a later stage.
It will be convenient to introduce a potential theoretic setup, and to involve some

basic functional analysis, as follows. The (real) Hilbert space `2.X;m/ consists of
all functions f W X ! R with kf k2 D .f; f / < 1, where the inner product of
two such functions f1, f2 is

.f1; f2/ D
X
x2X

f1.x/f2.x/m.x/: (4.4)

Reversibility is the same as saying that the transition matrix P acts on `2.X;m/ as
a self-adjoint operator, that is, .Pf1; f2/ D .f1; Pf2/ for all f1; f2 2 `2.X;m/.
The action of P is of course given by (3.16), Pf .x/ DPy p.x; y/f .y/.

The Hilbert space `2
]
.E; r/ consists of all functions � W E ! R which are anti-

symmetric: �. Le/ D ��.e/ for each e 2 E, and such that h�; �i < 1, where the
inner product of two such functions �1, �2 is

h�1; �2i D 1

2

X
e2E

�1.e/�2.e/ r.e/: (4.5)

We imagine that such a function � represents a “flow”, and if �.e/ � 0 then this
is the amount per time unit that flows from e� to eC, while if �.e/ < 0 then
��.e/ D �. Le/ flows from eC to e�. Note that �.e/ D 0 when e is a loop.

We introduce the difference operator

r W `2.X;m/! `2
] .E; r/; rf .e/ D

f .eC/ � f .e�/
r.e/

: (4.6)
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If we interpret f as a potential (voltage) on the set of nodes (vertices) X , then
r�.e/ represents the electric current along the edge e, and the defining equation
for r is just Ohm’s law.

Recall that the adjoint operator r� W `2
]
.E; r/ ! `2.X;m/ is defined by the

equation

.f;r��/ D hrf; �i for all f 2 `2.X;m/; � 2 `2
] .E; r/:

4.7 Exercise. Prove that the operator r has norm krk 
 p2, that is, hrf;rf i 

2 .f; f /.

Show that r� is given by

r��.x/ D 1

m.x/

X
e2E W eCDx

�.e/: (4.8)

[Hint: it is sufficient to check the defining equation for the adjoint operator only
for finitely supported functions f . Use anti-symmetry of �.] �

In our interpretation in terms of flows,X
eCDx; �.e/>0

�.e/ and �
X

eCDx; �.e/<0

�.e/

are the amounts flowing into node x resp. out of node x, and m.x/r��.x/ is the
difference of those two quantities. Thus, if r��.x/ D 0 then this means that the
flow has no source or sink at x. This is known as Kirchhoff’s node law. Later, we
shall give a more precise definition of flows. The Laplacian is the operator

L D �r�r D P � I; (4.9)

where I is the identity matrix over X and P is the transition matrix of our random
walk, both viewed as operators on functions X ! R.

4.10 Exercise. Verify the equation r�r f D .I � P /f for f 2 `2.X;m/. �

For reversible Markov chains, the name “spectral radius” for the number �.P /
is justified in the operator theoretic sense by the following.

4.11 Proposition. If .X; P / is reversible then

�.P / D kP k;
the norm of P as an operator on `2.X;m/.
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Proof. First of all,

p.n/.x; x/m.x/ D .P n1x; 1x/ 
 kP kn.1x; 1x/ D kP kn m.x/:

Taking n-th roots and letting n!1, we see that �.P / 
 kP k.
For showing the (more interesting) reversed inequality, we use the fact that the

linear space `0.X/ of finitely supported real functions on X is dense in `2.X;m/.
Thus, it is sufficient to show that .Pf; Pf / 
 �.P /2 .f; f / for every non-zero
finitely supported function f on X . We first assume that f is non-negative. By
self-adjointness of P and a standard use of the Cauchy–Schwarz inequality,

.P nC1f; P nC1f /2 D .P nf; P nC2f /2 
 .P nf; P nf /.P nC2f; P nC2f /:

We see that the sequence
�
.P nC1f; P nC1f /=.P nf; P nf /

�
n�0

is increasing. A
basic lemma of elementary calculus says that when a sequence .an/ of positive
numbers is such that anC1=an converges, then also a1=n

n converges, and the two
limits coincide. We claim that

lim
n!1.P

nf; P nf /1=n D �.P /2:

Choose x0 2 supp.f /. Then, since f � 0,

.P nf; P nf / D
X

x2supp.f /

m.x/
� X

y2supp.f /

p.n/.x; y/f .y/
�2

� m.x0/ p
.n/.x0; x0/

2f .x0/
2:

Therefore the above limit is � �.P /2: Conversely, given " > 0, there is n" such
that

p.n/.x; y/ 
 ��.P /C "�n for all n � n"; x; y 2 supp.f /:

We infer that

.P nf; P nf / 
 C ��.P /C "�2n
; where C D

X
x2supp.f /

m.x/
� X

y2supp.f /

f .y/
�2

:

Taking n-th roots and letting n!1, we see that the claim is true. Consequently

.Pf; Pf /

.f; f /

 .P nC1f; P nC1f /

.P nf; P nf /

 �.P /2

for every non-negative function in `0.X/. If f 2 `0.X/ is arbitrary, then

.Pf; Pf / 
 .P jf j; P jf j/ 
 �.P /2 .jf j; jf j/ D �.P /2 .f; f /;
whence kP k 
 �.P /. �
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B Speed of convergence of finite reversible Markov chains

In this section, we always assume that X is finite and that .X; P / is irreducible
and reversible with respect to the measure m. Since m.X/ < 1, we may assume
without loss of generality that m is a probability measure:X

x2X

m.x/ D 1:

If the period of P is d D 1, then we know from Theorem 3.28 that the difference
kp.n/.x; 	/ �mk

1
tends to 0 exponentially fast.

This fact has an algorithmic use: if X is a very large finite set, and the values
m.x/ are very small, then we cannot use a random number generator to simulate
the probability measure m. Indeed, such a generator simulates the continuous
equidistribution on the interval Œ0; 1�. For simulating m, we should partition Œ0; 1�
into jX j intervals Ix of length m.x/, x 2 X . If our generator provides a number � ,
then the output of our simulation of m should be the point x, when � 2 Ix . However,
if the numbers m.x/ are below the machine’s precision, then they will all be rounded
to 0, and the simulation cannot work. An alternative is to run a Markov chain whose
stationary probability distribution is m. It is chosen such that at each step, there are
only relatively few possible transitions which all have relatively large probabilities,
so that they can be efficiently simulated by the above method. If we start at x
and make n steps then the distribution p.n/.x; 	/ of Zn is very close to m. Thus,
the “random” element of X that we find after the simulation of n successive steps
of the Markov chain is “almost” distributed as m. (“Random” is in quotation
marks because the random number generator is based on a clever, but deterministic
algorithm whose output is “almost” equidistributed on Œ0; 1�.) The basic question is
now: how many steps of the Markov chain should we perform so that the distribution
p.n/.x; 	/ is sufficiently close (for our purposes) to m? That is, given a small " > 0,
we want to know how large we have to choose n such that

kp.n/.x; 	/ �mk
1
< ":

This is a mathematical analysis that we should best perform before starting our
algorithm. The estimate of the speed of convergence, i.e., the parameter N� found in
Theorem 3.28, is in general rather crude, and we need better methods of estimation.

Here we shall present only a small glimpse of some basic methods of this type.
There is a vast literature, mostly of the last 20–25 years. Good parts of it are
documented in the book of Diaconis [Di] and the long and detailed exposition of
Saloff-Coste [SC].

The following lemma does not require finiteness of X , but we need positive
recurrence, that is, we need that m is a probability measure.
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4.12 Lemma. kp.n/.x; 	/ �mk2
1

 p.2n/.x; x/

m.x/
� 1:

Proof. We use the Cauchy–Schwarz inequality.

kp.n/.x; 	/ �mk2
1
D
�X

y2X

jp.n/.x; y/ �m.y/jp
m.y/

	
p

m.y/
�2



X
y2X

�
p.n/.x; y/ �m.y/

�2
m.y/

	
X
y2X

m.y/

„ ƒ‚ …
D 1

D
X
y2X

p.n/.x; y/2

m.y/
� 2

X
y2X

p.n/.x; y/C
X
y2X

m.y/

D
X
y2X

p.n/.x; y/ p.n/.y; x/

m.x/
� 1 D 1

m.x/
p.2n/.x; x/ � 1;

as proposed. �

Since X is finite and P is self-adjoint on `2.X;m/ � RX , the spectrum of P is
real. If .X; P /, besides being irreducible, is also aperiodic, then �1 < 
 < 1 for
all eigenvalues of P with the exception of 
 D 1; see Theorem 3.29. We define


� D 
�.P / D maxfj
j W 
 2 spec.P /; 
 ¤ 1g: (4.13)

4.14 Lemma. jp.n/.x; x/ �m.x/j 
 �1 �m.x/
�

n�.

Proof. This is deduced by diagonalizing the self-adjoint operator P on `2.X;m/.
We give the details, using only elementary facts from basic linear algebra.

For our notation, it will be convenient to index the eigenvalues with the elements
of X , as 
x , x 2 X , including possible multiplicities. We also choose a “root”
o 2 X and let the maximal eigenvalue correspond to o, that is, 
o D 1 and 
x < 1

for all x ¤ o. Recall that DPD�1 is symmetric, where D D diag
�p

m.x/
�

x2X
.

There is a real matrix V D �v.x; y/�
x;y2X

such that

DPD�1 D V �1ƒV; where ƒ D diag.
x/x2X ;

and V is orthogonal, V �1 D V t . The row vectors of the matrix VD are left
eigenvectors of P . In particular, recall that 
o D 1 is a simple eigenvalue, so that
each associated left eigenvector is a multiple of the unique stationary probability
measure m. Therefore there is C ¤ 0 such that v.o; x/

p
m.x/ D C 	 m.x/ for

each x. Since
P

x v.o; x/
2 D 1 by orthogonality of V , we find C 2 D 1. Therefore

v.o; x/2 D m.x/:
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We have P n D .D�1V t /ƒn.VD/, that is

p.n/.x; x0/ D
X
y2X

m.x/�1=2 v.y; x/ 
n
y v.y; x

0/m.x0/1=2:

Thereforeˇ̌
p.n/.x; x/ �m.x/

ˇ̌ D ˇ̌̌ X
y2X

v.y; x/2 
n
y � v.o; x/2

ˇ̌̌
D
ˇ̌̌ X

y¤o

v.y; x/2 
n
x

ˇ̌̌



� X

y2X

v.y; x/2 � v.o; x/2
�

n� D

�
1 �m.x/

�

n�: �

As a corollary, we obtain the following important estimate.

4.15 Theorem. If X is finite, P irreducible and aperiodic, and reversible with
respect to the probability measure m on X , then

kp.n/.x; 	/ �mk
1


q�
1 �m.x/

�ı
m.x/ 
n�:

We remark that aperiodicity is not needed for the proof of the last theorem, but
without it, the result is not useful. The proof of Lemma 4.14 also leads to the better
estimate

kp.n/.x; 	/ �mk2
1

 1

m.x/

X
y¤o

v.y; x/2 
2n
x (4.16)

in the notation of that proof.
If we want to use Theorem 4.15 for bounding the speed of convergence to

the stationary distribution, then we need an upper bound for the second largest
eigenvalue 
1 D max

�
spec.P / n f1g�, and a lower bound for 
min D min spec.P /

[since 
� D maxf
1;�
ming�, unless we can compute these numbers explicitly. In
many cases, reasonable lower bounds on 
min are easy to obtain.

4.17 Exercise. Let .X; P / be irreducible, with finite state space X . Suppose that
one can write P D a 	 I C .1� a/ 	Q, where I is the identity matrix,Q is another
stochastic matrix, and 0 < a < 1. Show that 
min.P / � �1C 2a, with equality
when 
min.Q/ D �1.

More generally, suppose that there is an odd k � 1 such that P k � a 	 I
elementwise, where a > 0. Deduce that 
min.P / � .�1C 2a/1=k . �

Random walks on groups

A simplification arises in the case of random walks on groups. Let G be a finite or
countable group, in general written multiplicatively (unless the group is Abelian,
in which case often “C” is preferred for the group operation). By slightly unusual
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notation, we write o for its unit element. (The symbol e is used for edges of graphs
here.) Also, let  be a probability measure on G. The (right) random walk on G
with law  is the Markov chain with state space G and transition probabilities

p.x; y/ D .x�1y/; x; y 2 G: (4.18)

The random walk is called symmetric, if p.x; y/ D p.y; x/ for all x; y, or equiv-
alently, .x�1/ D .x/ for all x 2 G. Then P is reversible with respect to the
counting measure (or any multiple thereof).

Instead of the trajectory space, another natural probability space can be used
to model the random walk with law  on G. We can equip �� D GN with the
product � -algebra A� of the discrete one on G (the family of all subsets of G). As
in the case of the trajectory space, it is generated by the family of all “cylinder”
sets, which are of the form

Q
nAn, where An � G and An ¤ G for only finitely

many n. Then GN is equipped with the product measure Pr� D N, which is the
unique measure on A� that satisfies Pr� �Q

nAn

� DQn .An/ for every cylinder
set as above. Now let Yn W GN ! G be the n-th projection. Then the Yn are i.i.d.
G-valued random variables with common distribution . The random walk (4.18)
starting at x0 2 G is then modeled as

Z�
0 D x0; Z�

n D x0Y1 	 	 	Yn; n � 1:
Indeed, YnC1 is independent of Z0; : : : ; Zn, whence

Pr�ŒZ�
nC1 D y j Z�

n D x; Z�
k D xk .k < n/�

D Pr�ŒY �
nC1 D x�1y j Z�

n D x; Z�
k D xk .k < n/�

D Pr�ŒY �
nC1 D x�1y� D .x�1y/

(as long as the conditioning event has non-zero probability). According to Theo-
rem 1.17, the natural measure preserving mapping � from the probability space
.��;A�;Pr�/ to the trajectory space equipped with the measure Prx0

is given by

.yn/n�1 7! .zn/n�0; where zn D x0y1 	 	 	yn:

In order to describe the transition probabilities in n steps, we need the definition of
the convolution 1 � 2 of two measures 1; 2 on the group G:

1 � 2.x/ D
X
y2G

1.y/2.y
�1x/: (4.19)

4.20 Exercise. Suppose that Y1 and Y2 are two independent, G-valued random
variables with respective distributions 1 and 2. Show that the product Y1Y2 has
distribution 1 � 2. �
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We write .n/ D � 	 	 	 � (n times) for the n-th convolution power of , with
.0/ D ıo, the point mass at the group identity. We observe that

supp..n// D fx1 	 	 	 xn j xi 2 supp./g:
4.21 Lemma. For the random walk on G with law , the transition probabilities
in n steps are

p.n/.x; y/ D .n/.x�1y/:

The random walk is irreducible if and only if

1[
nD1

supp..n// D G:

Proof. For n D 1, the first assertion coincides with the definition of P . If it is true
for n, then

p.nC1/.x; y/ D
X
w2X

p.x;w/ p.n/.w; y/

D
X
w2X

.x�1w/.n/.w�1y/ Œsetting v D x�1w�

D
X
v2X

.v/.n/.v�1x�1y/ Œsince w�1 D v�1x�1�

D  � .n/.x�1y/:

To verify the second assertion, it is sufficient to observe that o
n�! x if and only if

x 2 supp..n//, and that x
n�! y if and only if o

n�! x�1y. �

Let us now suppose that our group G is finite and that the random walk on G is
irreducible, and therefore recurrent. The stationary probability measure is uniform
distribution on G, that is, m.x/ D 1=jGj for every x 2 G. Indeed,

X
x2X

1

jGj p.x; y/ D
1

jGj
X
x2X

.x�1y/ D 1

jGj ;

the transition matrix is doubly stochastic (both row and column sums are equal to 1).
If in addition the random walk is also symmetric, then the distinct eigenvalues of P

1 D 
0 > 
1 > 	 	 	 > 
q � �1
are all real, with multiplicities mult.
i / and

Pq
iD0 mult.
i / D jGj. By Theo-

rem 3.29, we have mult.
0/ D 1, while 
q D �1 if and only if the random walk
has period 2.
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4.22 Lemma. For a symmetric, irreducible random walk on the finite group G, one
has

p.n/.x; x/ D 1

jGj
qX

iD0

mult.
i / 

n
i :

Proof. We have p.n/.x; x/ D .n/.o/ D p.n/.y; y/ for all x; y 2 G. Therefore

p.n/.x; x/ D 1

jGj
X
y2X

p.n/.y; y/ D 1

jGj tr.P
n/;

where tr.P n/ is the trace (sum of the diagonal elements) of the matrix P n, which
coincides with the sum of the eigenvalues (taking their multiplicities into account).

�

In this specific case, the inequalities of Lemmas 4.12 and 4.14 become

kp.n/.x; 	/ �mk
1


q
jGjp.2n/.x; x/ � 1 D

qPq
iD1 mult.
i / 


2n
i



p
jGj � 1 
n�;

(4.23)

where the measure m is equidistribution on G, that is, m.x/ D 1=jGj; and 
� D
maxf
1;�
qg:
4.24 Example (Random walk on the hypercube). The hypercube is the (additively
written) Abelian group G D Zd

2 , where Z2 D f0; 1g is the group with two elements
and addition modulo 2. We can view it as a (non-oriented) graph with vertex set Zd

2 ,
and with edges between every pair of points which differ in exactly one component.
This graph has the form of a hypercube in d dimensions. Every point has d
neighbours. According to Example 4.3, simple random walk is the Markov chain
which moves from a point to any of its neighbours with equal probability 1=d . This
is the symmetric random walk on the group Zd

2 whose law  is the equidistribution
on the points (vectors) ei D

�
ıi .j /

�
j D1;:::;d

. The associated transition matrix is
irreducible, but its period is 2.

In order to compute the eigenvalues ofP , we introduce the set Ed D f�1; 1gd �
Rd , and define for " D ."1; : : : ; "d / 2 Ed the function (column vector) f" W Zd

2 !
R as follows. For x D .x1; : : : ; xn/ 2 Zd

2 ,

f".x/ D "x1

1 "
x2

2 	 	 	 "xd

d
;

where of course .˙1/0 D 1 and .˙1/1 D ˙1. It is immediate that

f".x C y/ D f".x/f".y/ for all x;y 2 Zd
2 :
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Multiplying the matrix P by the vector f",

Pf".x/ D 1

d

dX
iD1

f".x C ei / D
�
1

d

dX
iD1

f".ei /

�
f".x/ D d � 2k."/

d
f".x/;

where k."/ D jfi W "i D �1gj, and thus
P

i "i D d � 2k."/.
4.25 Exercise. Show that the functions f", where " 2 Ed , are linearly independent.

�

Now, P is a .2d � 2d /-matrix, and we have found 2d linearly independent
eigenfunctions (eigenvectors). For each k 2 f0; : : : ; dg, there are

�
d
k

�
elements

" 2 Ed such that k."/ D k. We conclude that we have found all eigenvalues of P ,
and they are


k D 1 � 2k
d

with multiplicity mult.
k/ D
�
d

k

�
; k D 0; : : : ; d:

By Lemma 4.22,

p.n/.x; x/ D 1

2d

dX
kD0

�
d

k

��
1 � 2k

d

�n

:

SinceP is periodic, we cannot use this random walk for approximating the equidis-
tribution in Zd

2 . We modify P , defining

Q D 1

d C 1 I C
d

d C 1 P:

This describes simple random walk on the graph which is obtained from the hyper-
cube by adding to the edge set a loop at each vertex. Now every point has d C 1
neighbours, including the point itself. The new random walk has law Q given by
Q.0/ D Q.ei / D 1=.d C 1/, i D 1; : : : ; d . It is irreducible and aperiodic. We find
Qf" D 
0

k."/
f", where


0
k D 1 �

2k

d C 1 with multiplicity mult.
k/ D
�
d

k

�
:

Therefore

q.n/.x; x/ D 1

2d

dX
kD0

�
d

k

��
1 � 2k

d C 1
�n

: (4.26)

Furthermore, 
1 D �
d D d�1
dC1
D 
�. Applying (4.23), we obtain

kq.n/.x; 	/ �mk
1


p
2d � 1

�
d � 1
d C 1

�n

:
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We can use this upper bound in order to estimate the necessary number of steps after
which the random walk .Zd ;Q/ approximates the uniform distribution m with an
error smaller than e�C (where C > 0): we have to solve the inequality

p
2d � 1

�
d � 1
d C 1

�n


 e�C ;

and find

n � C C log
p
2d � 1

log
�
1C 2

d�1

� ;

which is asymptotically (as d ! 1) of the order of
�

1
4

log 2
�
d2 C C

2
d . We see

that for large d , the contribution coming from C is negligible in comparison with
the first, quadratic term.

Observe however that the upper bound on q.2n/.x; x/ that has lead us to this
estimate can be improved by performing an asymptotic evaluation (for d !1) of
the right hand term in (4.26), a nice combinatorial-analytic exercise.

4.27 Example (The Ehrenfest model). In relation with the discussion of Boltz-
mann’s Theorem H of statistical mechanics, P. and T. Ehrenfest have proposed
the following model in 1911. An urn (or box) contains N molecules. Further-
more, the box is separated in two halves (sides) A and B by a “wall” with a small
membrane, see Figure 9. In each of the successive time instants, a single molecule
chosen randomly among all N molecules crosses the membrane to the other half
of the box.
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Figure 9

We ask the following two questions. (1) How can one describe the equilibrium, that
is, the state of the box after a long time period: what is the approximate probability
that side A of the box contains precisely k of the N molecules? (2) If initially side
A is empty, how long does one have two wait for reaching the equilibrium, that is,
how long does it take until the approximation of the equilibrium is good?

As a Markov chain, the Ehrenfest model is described on the state space
X D f0; 1; : : : ; N g, where the states represent the number of molecules in side A.
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The transition matrix, denoted xP for a reason that will become apparent immedi-
ately, is given by

Np.j; j � 1/ D j

N
.j D 1; : : : ; N /

and

Np.j; j C 1/ D N � j
N

.j D 0; : : : ; N � 1/;

where Np.j; j � 1/ is the probability, given j particles in side A, that the randomly
chosen molecule belongs to side A and moves to side B . Analogously, Np.j; j C 1/
corresponds to the passage of a molecule from side B to side A.

This Markov chain cannot be described as a random walk on some group.
However, let us reconsider SRW P on the hypercube ZN

2 . We can subdivide the
points of the hypercube into the classes

Cj D fx 2 ZN
2 W x has N � j zeros g; j D 0; : : : ; N:

If i; j 2 f0; : : : ; N g and x 2 Ci then p.x; Cj / D Np.i; j /. This means that our
partition satisfies the condition (1.29), so that one can construct the factor chain.
The transition matrix of the latter is xP .

Starting with the Ehrenfest model, we can obtain the finer hypercube model
by imagining that the molecules have labels 1 through N , and that the state x D
.x1; : : : ; xN / 2 ZN

2 indicates that the molecules labeled i with xi D 0 are currently
on (or in) side A, while the others are on side B . Thus, passing from the hypercube
to the Ehrenfest model means that we forget about the labels and just count the
number of molecules in A (resp. B).

4.28 Exercise. Suppose that .X; P / is reversible with respect to the measure m. 	/,
and let . xX; xP / be a factor chain of .X; P / such that m. Nx/ <1 for each class Nx in
the partition xX of X . Show that . xX; xP / is reversible. �

We get that xP is reversible with respect to the measure on f0; : : : ; N g given by

xm.j / D m.Cj / D 1

2N

�
N

j

�
:

This answers question (1).
The matrix xP has period 2, and Theorem 3.28 cannot be applied. In this sense,

question (2) is not well-posed. As in the case of the hypercube, we can modify the
transition probabilities, considering the factor chain ofQ, given by xQ D 1

N C1
I C

N
N C1

xP . (Here, I is the identity matrix over f0; : : : ; N g.) This means that at each
step, no molecule crosses the membrane (with probability 1

N C1
), or one random
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molecule crosses (with probability 1
N C1

for each molecule). We obtain

Nq.j; j � 1/ D j

N C 1 .j D 1; : : : ; N /;

Np.j; j C 1/ D N � j
N C 1 .j D 0; : : : ; N � 1/

and

Nq.j; j / D 1

N C 1 .j D 0; : : : ; N /:

Then xQ is again reversible with respect to the probability measure xm. Since
C0 D f0g, we have Nq.n/.0; 0/ D q.n/.0; 0/. Therefore the bound of Lemma 4.12,
applied to xQ, becomes

k Nq.n/.0; 	/ � xmk
1

 2N q.2n/.0; 0/ � 1;

which leads to the same estimate of the number of steps to reach stationarity as in
the case of the hypercube: the approximation error is smaller than e�C , if

n � C C log
p
2N � 1

log
�
1C 2

N �1

� �
�1
4

log 2
�
N 2 as N !1:

This holds when the starting point is 0 (orN ), which means that at the beginning of
the process, side A (or side B , respectively) is empty. The reason is that the classes
C0 and CN consist of single elements. For a general starting point j 2 f0; : : : ; N g,
we can use the estimate of Theorem 4.15 with 
� D N �1

N C1
, so that

k Nq.n/.j; 	/ � xmk
1


vuut 2N�

N
j

� � 1 �N � 1
N C 1

�n

:

Thus, the approximation error is smaller than e�C , if

n �
C C log

s�
2N
ı�

N
j

�� � 1
log
�
1C 2

N �1

� � N

4
log

2N�
N
j

� as N !1: (4.29)

4.30 Exercise. Use Stirling’s formula to show that when N is even and j D N=2,
the asymptotic behaviour of the error estimate in (4.29) is

N

4
log

2N�
N

N=2

� � N logN

8
as N !1: �
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Thus, a good approximation of the equilibrium is obtained after a number of
steps of orderN logN , when at the beginning both sidesA andB contain the same
number of molecules, while our estimate gives a number of steps of orderN 2, if at
the beginning all molecules stay in one of the two sides.

C The Poincaré inequality

In many cases, 
1 and 
min cannot be computed explicitly. Then one needs methods
for estimating these numbers. The first main task is to find good upper bounds for
1.
A range of methods uses the geometry of the graph of the Markov chain in order to
find such bounds. Here we present only the most basic method of this type, taken
from the seminal paper by Diaconis and Stroock [15].

As above, we assume that X is finite and that P is reversible with invariant
probability measure m. We can consider the discrete probability space .X;m/. For
any function f W X ! R, its mean and variance with respect to m are

Em.f / D
X

x

f .x/m.x/ D .f; 1X / and

Varm.f / D Em

�
f � Em.f /

�2 D .f; f / � .f; 1X /
2;

with the inner product . 	; 	/ as in (4.4).

4.31 Exercise. Verify that

Varm.f / D 1

2

X
x;y2X

�
f .y/ � f .x/�2 m.x/m.y/: �

The Dirichlet norm or Dirichlet sum of a function f W X ! R is

D.f / D hrf;rf i D 1

2

X
e2E

�
f .eC/ � f .e�/

�2
r.e/

D 1

2

X
x;y2X

�
f .x/ � f .y/�2m.x/ p.x; y/:

(4.32)

The following is well known matrix analysis.

4.33 Proposition.

1 � 
1 D min

²
D.f /

Varm.f /

ˇ̌̌
f W X ! R non-constant

³
:



94 Chapter 4. Reversible Markov chains

Proof. First of all, it is well known that


1 D max

²
.Pf; f /

.f; f /
W f ¤ 0; f ?1X

³
: (4.34)

Indeed, the eigenspace with respect to the largest eigenvalue 
o D 1 is spanned by
the function (column vector) 1X , so that 
1 is the largest eigenvector of P acting
on the orthogonal complement of 1X : we have an orthonormal basis fx , x 2 X , of
`2.X;m/ consisting of eigenfunctions of P with associated eigenvalues 
x , such
that fo D 1X , 
o D 1, and 
x < 1 for all x ¤ o. If f ?1X then f is a linear
combination f DPx¤o.f; fx/ 	 fx , and

.Pf; f / D
X
x¤o

.f; fx/ 	 .Pfx; f / D
X
x¤o


x .f; fx/
2 
 
1

X
x¤o

.f; fx/
2 D .f; f /:

The maximum in (4.34) is attained for any 
1-eigenfunction.
Since D.f / D .r�rf; f / D .f � Pf; f / by Exercise 4.10, we can rewrite

(4.34) as

1 � 
1 D min

²
D.f /

.f; f /
W f ¤ 0; f ?1X

³
:

Now, if f is non-constant, then we can write the orthogonal decomposition

f D .f; 1X / 	 1X C g D Em.f / 	 1X C g; where g?1X :

We then have D.f / D D.g/ for the Dirichlet norm, and Varm.f / D Varm.g/.
Therefore the set of values over which the minimum is taken does not change when
we replace the condition “f ?1X ” with “f non-constant”. �

We now consider paths in the oriented graph �.P / with edge setE. We choose
a length element l W E ! .0; 1/ with l. Le/ D l.e/ for each e 2 E. If 	 D
Œx0; x1; : : : ; xn� is such a path andE.	/ D fŒx0; x1�; : : : ; Œxn�1; xn�g stands for the
set of (oriented) edges of X on that path, then we write

j	jl D
X

e2E.�/

l.e/

for its length with respect to l. 	/. For l. 	/ � 1, we obtain the ordinary length
(number of edges) j	j1 D n. The other typical choice is l.e/ D r.e/, in which
case we get the resistance length j	jr of 	 .

We select for any ordered pair of points x; y 2 X , x ¤ y, a path 	x;y from x

to y. The following definition relies on the choice of all those 	x;y and the length
element l. 	/.
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4.35 Definition. The Poincaré constant of the finite network N D .X;E; r/ (with
normalized resistances such that

P
e2E 1=r.e/ D 1) is

�l D max
e2E

�l.e/; where �l.e/ D r.e/

l.e/

X
x;y W e2E.�x;y/

j	x;y jl m.x/m.y/:

For simple random walk on a finite graph, we have �1 D �r .

4.36 Theorem (Poincaré inequality). The second largest eigenvalue of the re-
versible Markov chain .X; P /, resp. the associated network N D .X;E; r/, satis-
fies


1 
 1 � 1

�l

:

with respect to any length element l. 	/ on E.

Proof. Let f W X ! R be any function, and let x ¤ y and 	x;y D Œx0; x1; : : : ; xn�.
Then by the Cauchy–Schwarz inequality

�
f .y/ � f .x/�2 D � nX

iD1

p
l.Œxi�1; xi �/ 	 f .xi / � f .xi�1/p

l.Œxi�1; xi �/

�2



nX

iD1

l.Œxi�1; xi �/ 	
nX

iD1

�
f .xi / � f .xi�1/

�2
l.Œxi�1; xi �/

D j	x;y jl
X

e2E.�x;y/

�rf .e/ r.e/�2
l.e/

:

(4.37)

Therefore, using the formula of Exercise 4.31,

Varm.f / 
 1

2

X
x;y2X;x¤y

j	x;y jl m.x/m.y/
X

e2E.�x;y/

�rf .e/ r.e/�2
l.e/

D 1

2

X
e2E

�rf .e/�2 r.e/ X
x;y2X W

e2E.�x;y/

r.e/

l.e/
j	x;y jl m.x/m.y/

„ ƒ‚ …
�l .e/


 �l 	D.f /:

Together with Proposition 4.33, this proves the inequality. �

The applications of this inequality require a careful choice of the paths 	x;y ,
x; y 2 X .
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For simple random walk on a finite graph� D .X;E/, we have for the stationary
probability and the associated resistances

m.x/ D deg.x/=jEj and r.e/ D jEj:
(Recall that m and thus also r. 	/ have to be normalized such that m.X/ D 1.) In
particular, �r D �1, and

�1.e/ D 1

jEj
X

x;y W e2E.�x;y/

j	x;y j1 deg.x/ deg.y/


 �� D 1

jEj max
x;y2X

j	x;y j1
�
max
x2X

deg.x/
�2

max
e2E

�.e/; where

�.e/ D ˇ̌f.x; y/ 2 X2 W e 2 	x;yg
ˇ̌
;

(4.38)

Thus, 
1 
 1� 1=�� for SRW. It is natural to use shortest paths, that is, j	x;y j1 D
d.x; y/. In this case, maxx;y2X j	x;y j1 D diam.�/ is the diameter of the graph � .
If the graph is regular, i.e., deg.x/ D deg is constant, then jEj D jX j 	 deg, and

�1.e/ D deg

jX j
diam.�/X

kD1

k 	 �k.e/; where

�k.e/ D
ˇ̌f.x; y/ 2 X2 W j	x;y j1 D k; e 2 	x;yg

ˇ̌
:

(4.39)

4.40 Example (Random walk on the hypercube). We refer to Example 4.24, and
start with SRW on Zd

2 , as in that example. We have X D Zd
2 and

E D fŒx;x C ei � W x 2 Zd
2 ; i D 1; : : : ; dg:

Thus, jX j D 2d ; jEj D d 2d ; diam.�/ D d , and deg.x/ D d for all x.
We now describe a natural shortest path 	x;y from x D .x1; : : : ; xd / to y D

.y1; : : : ; yd / ¤ x. Let 1 
 i.1/ < i.2/ < 	 	 	 < i.k/ 
 d be the coordinates
where yi ¤ xi , that is, yi D xi C 1 modulo 2. Then d.x; y/ D k. We let

	x;y D Œx D x0;x1; : : : ;xk D y�; where

xj D xj �1 C ei.j /; j D 1; : : : ; k:
We first compute the number �.e/ of (4.38) for e D Œu;u C ei � with u D
.u1; : : : ; ud / 2 Zd

2 . We have e 2 E.	x;y/ precisely when xj D uj for j D
i; : : : ; d , yi D ui C 1 mod 2 and and yj D uj for j D 1; : : : ; i � 1. There are
2d�i free choices for the last d � i coordinates of x and 2i�1 free choices for the
first i coordinates of y . Thus, �.e/ D 2d�1 for every edge e. We get

�� D 1

d 2d
d 	 d2 	 2d�1 D d2

2
; whence 
1 
 1 � 2

d2
:
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Our estimate of the spectral gap 1�
1 � 2=d2 misses the true value 1�
1 D 2=d
by the factor of 1=d .

Next, we can improve this crude bound by computing �1.e/ precisely. We need
the numbers �k.e/ of (4.39). With e D Œu;u C ei �, x and y as above such that
e 2 E.	x;y/, we must have (mod 2)

x D .x1; : : : ; xi�1; ui ; uiC1; : : : ; ud /

and

y D .u1; : : : ; ui�1; ui C 1; yiC1; : : : ; yd /:

If d.x;y/ D k then x and y differ in precisely k coordinates. One of them is the
i -th coordinate. There remain precisely

�
d�1
k�1

�
free choices for the other coordinates

where x and y differ. This number of choices is �k.e/. We get

�1 D �1.e/ D d

2d

dX
kD1

k

�
d � 1
k � 1

�
D d

2d
.d C 1/2d�2 D d.d C 1/

4
;

and the new estimate 1 � 
1 � 4=
�
d.d C 1/� is only slightly better, missing the

true value by the factor of 2=.d C 1/.
4.41 Exercise. Compute the Poincaré constant �1 for the Ehrenfest model of Ex-
ample 4.27, and compare the resulting estimate with the true value of 
1, as above.

[Hint: it will turn out after some combinatorial efforts that �1.e/ is constant over
all edges.] �

4.42 Example (Card shuffling via random transpositions). What is the purpose of
shuffling a deck of N cards? We want to simulate the equidistribution on all NŠ
permutations of the cards. We might imagine an urn containing NŠ decks of cards,
each in a different order, and pick one of those decks at random. This is of course
not possible in practice, among other becauseNŠ is too big. A reasonable algorithm
is to first pick at random one among theN cards (with probability 1=N each), then
to pick at random one among the remaining N � 1 cards (with probability N � 1
each), and so on. We will indeed end up with a random permutation of the cards,
such that each permutation occurs with the same probability 1=N Š .

Card shuffling can be formalized as a random walk on the symmetric group
SN of all permutations of the set f1; : : : ; N g (an enumeration of the cards). The
n-th shuffle corresponds to a random permutation Yn (n D 1; 2; : : : ) in SN , and
a fair shuffler will perform the single shuffles such that they are independent. The
random permutation obtained after n shuffles will be the product Y1 : : : Yn. Thus,
if the law  of Yn is such that the resulting random walk is irreducible (compare
with Lemma 4.21), then we have a Markov chain whose stationary distribution is
equidistribution on SN . If, in addition, this random walk is also aperiodic, then the
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convergence theorem tells us that for large n, the distribution of Y1 	 	 	Yn will be
a good approximation of that uniform distribution. This explains the true purpose
of card shuffling, although one may guess that most card shufflers are not aware of
such a justification of their activity.

One of the most common method of shuffling, the riffle shuffle, has been analyzed
by Bayer and Diaconis [4] in a piece of work that has become very popular, see
also Mann [43] for a nice exposition. Here, we consider another shuffling model,
or random walk on SN , generated by random transpositions.

Throughout this example, we shall write x; y; : : : for permutations of the set
f1; : : : ; N g, and id for the identity. Also, we write the composition of permutations
from left to right, that is, .xy/.i/ D y

�
x.i/

�
. The transposition of the (distinct)

elements i; j is denoted ti;j . The law  of our random walk is equidistribution on
the set T of all transpositions. Thus,

p.x; y/ D
8<
:

2

N.N � 1/ ; if y D x t for some t 2 T;

0; otherwise.

(Note that if y D x t then x D y t .) The stationary probability measure and the
resistances of the edges are given by

m.x/ D 1

N Š
and r.e/ D N.N � 1/

2
N Š; where e D Œx; x t �; x 2 SN ; t 2 T:

For m < N , we consider Sm as a subgroup of SN via the identification

Sm D fx 2 SN W x.i/ D i for i D mC 1; : : : ; N g:
Claim 1. Every x 2 SN nSN �1 has a unique decomposition

x D y t; where y 2 SN �1 and t 2 TN D ftj;N W j D 1; : : : ; N � 1g:
Proof. Since x … SN �1, we must have x.N / D j 2 f1; : : : ; N � 1g: Set y D
x tj;N : Then y.N / D tj;N

�
x.N /

� D N . Therefore y 2 SN �1 and x D y tj;N .
If there is another decomposition x D y0 tj 0;N then tj;N tj 0;N D y�1y0 2 SN �1,
whence j D j 0 and y D y0. �

Thus, every x 2 SN has a unique decomposition

x D tj.1/;m.1/ 	 	 	 tj.k/;m.k/ (4.43)

with 0 
 k 
 N �1, 2 
 m.1/ < 	 	 	 < m.k/ 
 N and 1 
 j.i/ < m.i/ for all i .
In the graph �.P /, we can consider only those edges Œx; x t � and Œx t; x�,

where x 2 Sm and t 2 Tm0 with m0 > m. Then we obtain a spanning tree
of �.P /, that is, a subgraph that contains all vertices but no cycle (A cycle is a
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sequence Œx0; x1; : : : xk�1; xk D x0� such that k � 3, x0; : : : ; xk�1 are distinct,
and Œxi�1; xi � 2 E for i D 1; : : : ; k.) The tree is rooted; the root vertex is id.
In Figure 10, this tree is shown for S4. Since the graph is symmetric, we have
drawn non-oriented edges. Each edge Œx; x t � is labelled with the transposition
t D ti;j D .i; j /; written in cycle notation. The permutations corresponding to
the vertices are obtained by multiplying the transpositions along the edges on the
shortest path (“geodesic”) from id to the respective vertex. Those permutations are
again written in cycle notation in Figure 10.
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.12/

Figure 10. The spanning tree of S4.
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If x 2 SN nfid g is decomposed into transpositions as in (4.43), then we choose
	id;x D Œx0 D id; x1; : : : ; xk D x� with xi D tj.1/;M.1/ : : : tj.i/;M.i/. This is the
shortest path from id to x in the spanning tree. Then we let 	x;y D x 	 	id;x�1y .

For a transposition t D tj;m, where j < m, we say that an edge e of �.P / is
of type t , if it has the form e D Œu; u t � with u 2 SN . We want to determine the
number �� of (4.38).

Claim 2. If e D Œu; u t � is an edge of type t then

�.e/ D ˇ̌˚x 2 Sn n fid g W 	id;x contains an edge of type t

ˇ̌
:

Proof. Let �.e/ D ˚.x; y/ 2 SN W x ¤ y; e 2 E.	x;y/



and

….t/ D ˚x 2 SN n fid g W 	id;x contains an edge of type t


:

Then �.e/ D j�.e/j by definition. We show that the mapping .x; y/ 7! x�1y is a
bijection from �.e/ to ….t/.

First of all, if .x; y/ 2 �.e/ then by definition of 	x;y , the edge Œx�1u; x�1ut�

belongs to 	id;x�1y . Therefore x�1y 2 ….t/.
Second, if w 2 …k.t/ then the decomposition (4.43) of w (in the place of x)

contains t . We can write this decomposition as w D w1 t w2. Then the unique
edge of type t on 	id;w is Œw1; w1 t �. We set x D uw�1

1 and y D u t w2. Then
x�1y D w, so that 	x;y D x 		id;w contains the edge Œx w1; x w1t � D e. Thus, the
mapping is surjective, and since the edge of type t on 	id;w is unique, the mapping
is also one-to-one (injective). �

So we next have to compute the cardinality of ….t/. Let t D .j;m/ with
j < m. By (4.43), every x 2 ….t/ can be written uniquely as x D u t y, where
u 2 Sm�1 (and any such u may occur) and y is any element of the form y D
tj.1/;m.1/ 	 	 	 tj.k/;m.k/ with m < m.1/ < m.k/ 
 N and j.i/ < m.i/ for all i .
(This includes the case k D 0, y D id.) Thus, we have precisely .m � 1/Š choices
for u. On the other hand, since every element of SN can be written uniquely as
v y where v 2 Sm and y has the same form as above, we conclude that the set of
all valid elements y forms a set of representatives of the right cosets of Sm in SN :

SN D
]
y

Sm y:

The number of those cosets is NŠ=mŠ, and this is also the number of choices for y
in the decomposition x D u t y. Therefore, if e is an edge of type t D .j;m/ then

�.e/ D j….t/j D .m � 1/Š N Š
mŠ
D NŠ

m
:
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The maximum is obtained when m D 2, that is, when t D .1; 2/. We compute

�� D 1

N Š
	 .N � 1/ 	 N.N � 1/

2
	 NŠ
2
D N.N � 1/2

4
; and


1 D 
1.P / 
 1 � 4

N.N � 1/2 :

Again, this random walk has period 2, while we need an aperiodic one in order
to approximate the equidistribution on SN . Therefore we modify the random
transposition of each single shuffle as follows: we select independently and at
random (with probability 1=N Š each) two indices i; j 2 f1; : : : ; N g and exchange
the corresponding cards, when i ¤ j . When i D j , no card is moved. The
transition probabilities of the resulting random walk of SN are

q.x; y/ D

8̂<
:̂
1=N; if y D x;
1=N 2; if y D x t with t 2 T;

0; in all other cases.

In terms of transition matrices, Q D 1
N
I C N �1

N
P . Therefore


1.Q/ D 1

N
C N � 1

N

1.P / 
 1 � 4

N 2.N � 1/ :

By Exercise 4.17, 
min D �1C 2
N

. Therefore


�.Q/ 
 1 � 4

N 2.N � 1/ :

Equation 4.23 leads to

kp.n/.x; 	/ �mk
1

 pNŠ � 1

�
1 � 4

N 2.N � 1/
�n

:

Thus, if we want to be sure that kp.n/.x; 	/ �mk
1
< e�C then we can choose

n � �C C 1
2

log.N Š � 1/�ı� � log
�
1 � 4

N 2.N �1/

��
� N 3

4
C C N 4

8
logN:

The above bound for 
�.Q/ can be improved by additional combinatorial efforts.
However, also in this case the true value is known: 
�.Q/ D 1� 2

N
, see Diaconis

and Shahshahani [14].
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D Recurrence of infinite networks

In this section, we assume that N D .X;E; r/ is an infinite network associated
with a reversible, irreducible Markov chain .X; P /. We want to establish a set
of recurrence (resp. transience) criteria that can actually be applied in a variety of
cases. The network is called recurrent (resp. transient), if .X; P / has the respective
property.

We shall need very basic properties of Hilbert spaces, namely the Cauchy–
Schwarz inequality and the fact that any non-empty closed convex set in a Hilbert
space has a unique element with minimal norm.

The Dirichlet space D.N / associated with the network consists of all functions
f on X (not necessarily in `2.X;m/) such that rf 2 `2

]
.E; r/. The Dirichlet

normD.f / of such a function was defined in (4.32). The kernel of this quasi-norm
consists of the constant functions on X . On the space D.N /, we define an inner
product with respect to a reference point o 2 X :

.f; g/D D .f; g/D;o D hrf;rgi C f .o/g.o/:
4.44 Lemma. (a) D.N / is a Hilbert space.

(b) For each x 2 X , there is a constant Cx > 0 such that

C�1
x .f; f /D;o 
 .f; f /D;x 
 Cx .f; f /D;o

for allf 2 D.N /. That is, changing the reference pointogives rise to an equivalent
Hilbert space norm.

(c) Convergence of a sequence of functions in D.N / implies their pointwise
convergence.

Proof. Let x 2 X n fog. By connectedness of the graph �.P /, there is a path
	o;x D Œo D x0; x1; : : : ; xk D x� with edges ei D Œxi�1; xi � 2 E. Then for
f 2 D.N /, using the Cauchy–Schwarz inequality as in Theorem 4.36,

�
f .x/ � f .o/�2 D � kX

iD1

f .xi / � f .xi�1/p
r.ei /

p
r.ei /

�2 
 cx D.f /;

where cx DPk
iD1 r.ei / D j	o;xjr . Therefore

f .x/2 
 2�f .x/ � f .o/�2 C 2f .o/2 
 2cx D.f /C 2f .o/2;
and

.f; f /D;x D D.f /C f .x/2 
 .2cx C 1/D.f /C 2f .o/2 
 Cx.f; f /D;o;
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whereCx D maxf2cxC1; 2g. Exchanging the roles of o and x, we get .f; f /D;o 

Cx.f; f /D;x with the same constant Cx . This proves (b).

We next show that D.N / is complete. Let .fn/ be a Cauchy sequence in D.N /,
and let x 2 X . Then, by (b),

�
fn.x/ � fm.x/

�2 
 .fn � fm; fn � fm/D;x ! 0 as m; n!1:

Therefore there is a function f on X such that fn ! f pointwise. On the other
hand, as m; n!1,

hr.fn � fm/;r.fn � fm/i D D.fn � fm/ 
 .fn � fm; fn � fm/D;o ! 0:

Thus .rfn/ is a Cauchy sequence in the Hilbert space `2
]
.E; r/. Hence, there is

� 2 `2
]
.E; r/ such that rfn ! � in that Hilbert space. Convergence of a sequence

of functions in the latter implies pointwise convergence. Thus

�.e/ D lim
n!1

fn.e
C/ � fn.e

�/
r.e/

D rf .e/

for each edge e 2 E. We obtain D.f / D h�; �i < 1, so that f 2 D.N /. To
conclude the proof of (a), we must show that .fn � f; fn � f /D;o ! 0 as n!1.

But this is true, since bothD.fn�f / D hrfn��;rfn��i and
�
fn.o/�f .o/

�2
tend to 0, as we have just seen.

The proof of (c) is contained in what we have proved above. �

4.45 Exercise. Extension of Exercise 4.10. Show that r�.rf / D �Lf for every
f 2 D.N /, even when the graph �.P / is not locally finite.

[Hint: use the Cauchy–Schwarz inequality once more to check that for each x, the
sum

P
yWŒx;y�2E jf .x/ � f .y/j a.x; y/ is finite.] �

We denote by D0.N / the closure in D.N / of the linear space `0.X/ of all
finitely supported real functions on X . Since r is a bounded operator, `2.X;m/ �
D0.N / as sets, but in general the Hilbert space norms are not comparable, and
equality in the place of “�” does in general not hold.

Recall the definitions (2.15) and (2.16) of the restriction of P to a subset A of
X and the associated Green kernel GA. 	; 	/, which is finite by Lemma 2.18.

4.46 Lemma. Suppose that A � X is finite, x 2 A, and let f 2 `0.X/ be such
that supp.f / � A. Then

hrf;rGA. 	; x/i D m.x/f .x/:
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Proof. The functions f andGA. 	; x/ are 0 outsideA, and we can use Exercise 4.45 :

hrf;rGA. 	; x/i D
�
f; .I � P /GA. 	; x/

�
D
X
y2A

f .y/
�
GA.y; x/ �

X
w2X

p.y;w/GA.w; x/„ ƒ‚ …
D 0; if w … A

�

D �f; .IA � PA/GA. 	; x/
� D .f; 1x/:

In the last step, we have used (2.17) with z D 1. �

4.47 Lemma. If .X; P / is transient, then G. 	; x/ 2 D0.N / for every x 2 X .

Proof. Let A � B be two finite subsets of X containing x. Setting f D GA. 	; x/,
Lemma 4.46 yields

hrGA. 	; x/;rGA. 	; x/i D hrGA. 	; x/;rGB. 	; x/i D m.x/GA.x; x/:

Analogously, setting f D GB. 	; x/,
hrGB. 	; x/;rGB. 	; x/i D m.x/GB.x; x/:

Therefore

D
�
GB. 	; x/ �GA. 	; x/

�
D hrGB. 	; x/;rGB. 	; x/i
� 2hrGA. 	; x/;rGB. 	; x/i C hrGA. 	; x/;rGA. 	; x/i

D m.x/
�
GB.x; x/ �GA.x; x/

�
:

Now let .Ak/k�1 be an increasing sequence of finite subsets of X with union X .

Using (2.15), we see that p.n/
Ak
.x; y/ ! p.n/.x; y/ monotonically from below as

k !1, for each fixed n. Therefore, by monotone convergence,GAk
.x; x/ tends to

G.x; x/monotonically from below. Hence, by the above, the sequence of functions�
GAk

. 	; x/�
k�1

is a Cauchy sequence in D.N /. By Lemma 4.44, it converges in
D.N / to its pointwise limit, which is G. 	; x/. Thus, G. 	; x/ is the limit in D.N /

of a sequence of finitely supported functions. �

4.48 Definition. Let x 2 X and i0 2 R. A flow with finite power from x to 1
with input i0 (also called unit flow when i0 D 1) in the network N is a function
� 2 `2

]
.E; r/ such that

r��.y/ D � i0

m.x/
1x.y/ for all y 2 X:

Its power is h�; �i.1
1Many authors call h�; �i the energy of �, but in the correct physical interpretation, this should be

the power.
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The condition means that Kirchhoff’s node law is satisfied at every point ex-
cept x, X

e2E WeCDy

�.e/ D
´
0; y ¤ x;
�i0; y D x:

As explained at the beginning of this chapter, we may think of the network as a
system of tubes; each edge e is a tube with length r.e/ cm and cross-section 1 cm2,
and the tubes are connected at their endpoints (vertices) according to the given graph
structure. The network is filled with (incompressible) liquid, and at the source x,
liquid is injected at a constant rate of i0 liters per second. Requiring that this be
possible with finite power (“effort”) h�; �i is absurd if the network is finite (unless
i0 D 0). The main purpose of this section is to show that the existence of such
flows characterizes transient networks: even though the network is filled, it is so
“big at infinity”, that the permanently injected liquid can flow off towards infinity
at the cost of a finite effort. With this interpretation, recurrent networks correspond
more to our intuition of the “real world”. An analogous interpretation can of course
be given in terms of voltages and electric current.b

4.49 Definition. The capacity of a point x 2 X is

cap.x/ D inffD.f / W f 2 `0.X/; f .x/ D 1g:
4.50 Lemma. It holds that cap.x/ D minfD.f / W f 2 D0.N /; f .x/ D 1g, and
the minimum is attained by a unique function in this set.

Proof. First of all, consider the closure C� of C D ff 2 `0.X/ W f .x/ D 1g
in D.N /. Every function in C� must be in D0.N /, and (since convergence in
D.N / implies pointwise convergence) has value 1 in x. We see that the inclusion
C� � ff 2 D0.N / W f .x/ D 1g holds. Conversely, let f 2 D0.N / with
f .x/ D 1. By definition of D0.N / there is a sequence of functions fn in `0.X/

such that fn ! f in D.N /, and in particular 
�1
n D fn.x/ ! f .x/ D 1. But

then 
n 	 fn 2 C and 
n 	 fn ! f in D.N /, since in addition to convergence in
the point x we have D.
n 	 fn � fn/ D .
n � 1/2D.fn/! 0 	D.f / D 0, that is,
fn and 
n 	 fn have the same limit in D.N /. We conclude that

C� D ff 2 D0.N / W f .x/ D 1g:
This is a closed convex set in the Hilbert space. It is a basic theorem in Hilbert
space theory that such a set possesses a unique element with minimal norm; see
e.g. Rudin [Ru, Theorem 4.10]. Thus, if this element is f0 then

D.f0/ D minfD.f / W f 2 C�g D inffD.f / W f 2 Cg D cap.x/;

since f 7! D.f / is continuous. �
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The flow criterion is now part (b) of the following useful set of necessary and
sufficient transience criteria.

4.51 Theorem. For the network N associated with a reversible Markov chain
.X; P /, the following statements are equivalent.

(a) The network is transient.

(b) For some (() every) x 2 X , there is a flow from x to1 with non-zero input
and finite power.

(c) For some (() every) x 2 X , one has cap.x/ > 0.

(d) The constant function 1 does not belong to D0.N /.

Proof. (a) H) (b). If the network is transient, then G. 	; x/ 2 D0.N / by Lem-
ma 4.47. We define � D � i0

m.x/
rG. 	; x/. Then � 2 `2

]
.E; r/, and by Exercise 4.45

r�� D i0

m.x/
LG. 	; x/ D � i0

m.x/
1x :

Thus, � is a flow from x to1 with input i0 and finite power.

(b) H) (c). Suppose that there is a flow � from x to1 with input i0 ¤ 0 and
finite power. We may normalize � such that i0 D �1. Now let f 2 `0.X/ with
f .x/ D 1. Then

hrf; �i D .f;r��/ D
�
f;

1

m.x/
1x

�
D f .x/ D 1:

Hence, by the Cauchy–Schwarz inequality,

1 D jhrf; �ij2 
 hrf;rf i h�; �i D D.f / h�; �i:
We obtain cap.x/ � 1=h�; �i > 0.

(c)() (d). This follows from Lemma 4.50 : we have cap.x/ D 0 if and only
if there is f 2 D0.N / with f .x/ D 1 andD.f / D 0, that is, f D 1 is in D0.N /.
Indeed, connectedness of the network implies that a function withD.f / D 0must
be constant.

(c) H) (a). Let A � X be finite, with x 2 A. Set f D GA. 	; x/=GA.x; x/.
Then f 2 `0.X/ and f .x/ D 1. We use Lemma 4.46 and get

cap.x/ 
 D.f / D 1

GA.x; x/2
hrGA. 	; x/;rGA. 	; x/i D m.x/

GA.x; x/
:

We obtain that GA.x; x/ 
 m.x/= cap.x/ for every finite A � X containing x.
Now take an increasing sequence .Ak/k�1 of finite sets containing x, whose union
is X . Then, by monotone convergence,

G.x; x/ D lim
k!1

GAk
.x; x/ 
 m.x/= cap.x/ <1: �
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4.52 Exercise. Prove the following in the transient case. The flow from x to 1
with input 1 and minimal power is given by � D �rG. 	; x/=m.x/, its power (the
resistance between x and1) isG.x; x/=m.x/, and cap.x/ D m.x/=G.x; x/. �

The flow criterion became popular through the work of T. Lyons [42]. A few
years earlier, Yamasaki [50] had proved the equivalence of the statements of Theo-
rem 4.51 for locally finite networks in a less common terminology of potential theory
on networks. The interpretation in terms of Markov chains is not present in [50];
instead, finiteness of the Green kernel G.x; y/ is formulated in a non-probabilistic
spirit. For non locally finite networks, see Soardi and Yamasaki [48].

If A � X then we write EA for the set of edges with both endpoints in A, and
@A for all edges e with e� 2 A and eC 2 X n A (the edge boundary of A). Below
in Example 4.63 we shall need the following.

4.53 Lemma. Let � be a flow from x to1 with input i0, and let A � X be finite
with x 2 A. Then X

e2@A

�.e/ D i0:

Proof. Recall that �. Le/ D ��.e/ for each edge. Thus,
P

e2E W e�Dy �.e/ D i0 	
1x.y/ for each y 2 X , and X

y2A

X
e2E W e�Dy

�.e/ D i0:

If e 2 EA then both e and Le appear precisely once in the above sum, and the two
of them contribute to the sum by �. Le/C �.e/ D 0. Thus, the sum reduces to all
those edges e which have only one endpoint in E, that isX

y2A

X
e2E W e�Dy

�.e/ D
X
e2@A

�.e/: �

Before using this, we consider a corollary of Theorem 4.51:

4.54 Exercise (Definition). A subnetwork N 0 D .X 0; E 0; r 0/ of N D .X;E; r/ is
a connected graph with vertex set X 0 and symmetric edge set E 0 � EX 0 such that
r 0.e/ � r.e/ for each e 2 E 0. (That is, a0.x; y/ 
 a.x; y/ for all x; y 2 X 0.) We
call it an induced subnetwork, if r 0.e/ D r.e/ for each e 2 E 0.

Use the flow criterion to show that transience of a subnetwork N 0 implies
transience of N . �

Thus, if simple random walk on some infinite, connected, locally finite graph is
recurrent, then SRW on any subgraph is also recurrent.

The other criteria in Theorem 4.51 are also very useful. The next corollary
generalizes Exercise 4.54.
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4.55 Corollary. Let P and Q be the transition matrices of two irreducible, re-
versible Markov chains on the same state space X , and let DP and DQ be the
associated Dirichlet norms. Suppose that there is a constant " > 0 such that

" 	DQ.f / 
 DP .f / for each f 2 `0.X/:

Then transience of .X;Q/ implies transience of .X; P /.

Proof. The inequality implies that for the capacities associated with P and Q
(respectively), one has

capP .x/ � " 	 capQ.x/:

The statement now follows from criterion (c) of Theorem 4.51. �

We remark here that the notation DP . 	/ is slightly ambiguous, since the resis-
tances of the edges in the network depend on the choice of the reversing measure
mP for P : if we multiply the latter by a constant, then the Dirichlet norm divides
by that constant. However, none of the properties that we are studying change, and
in the above inequality one only has to adjust the value of " > 0.

Now let � D .X;E/ be an arbitrary connected, locally finite, symmetric graph,
and let d. 	; 	/ be the graph distance, that is, d.x; y/ is the minimal length (number
of edges) of a path from x to y. For k 2 N, we define the k-fuzz �.k/ of � as the
graph with the same vertex set X , where two points x, y are connected by an edge
if and only if 1 
 d.x; y/ 
 k.

4.56 Proposition. Let � be a connected graph with uniformly bounded vertex
degrees. Then SRW on � is recurrent if and only if SRW on the k-fuzz �.k/ is
recurrent.

Proof. Recurrence or transience of SRW on � do not depend on the presence of
loops (they have no effects on flows). Therefore we may assume that � has no
loops. Then, as a network, � is a subnetwork of �.k/. Thus, recurrence of SRW on
�.k/ implies recurrence of SRW on � .

Conversely, let x; y 2 X with 1 
 d D d.x; y/ 
 k. Choose a path 	x;y D
Œx D x0; x1; : : : ; xd D y� in X . Then for any function f on X ,

�
f .y/�f .x/�2 D � dX

iD1

1	�f .xi /�f .xi�1/
��2 
 d 	

X
e2E.�x;y/

1	�f .eC/�f .e�/
�2

by the Cauchy–Schwarz inequality. Here, E.	x;y/ D fŒx0; x1�; : : : ; Œxd�1; xd �g
stands for the set of edges of X on that path.

We write … D f	x;y W x; y 2 X; 1 
 d D d.x; y/ 
 kg. Since the graph X
has uniformly bounded vertex degrees, there is a bound M D Mk such that any
edge e of X lies on at most M paths in X with length at most k. (Exercise: verify
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this fact !) We obtain for f 2 `0.X/ and the Dirichlet forms associated with SRW
on � and �.k/ (respectively)

D�.k/.f / D 1

2

X
.x;y/W1�d.x;y/�k

�
f .y/ � f .x/�2


 1

2

X
.x;y/W1�d.x;y/�k

d.x; y/
X

e2E.�x;y/

�
f .eC/ � f .e�/

�2
D k

2

X
�2…

X
e2E.�/

�
f .eC/ � f .e�/

�2
D k

2

X
e2E

X
�2…We2E.�/

�
f .eC/ � f .e�/

�2

 k

2

X
e2E

M 	 �f .eC/ � f .e�/
�2 D kM 	D�.f /:

Thus, we can apply Corollary 4.55 with " D 1=.kM/, and find that recurrence of
SRW on � implies recurrence of SRW on �.k/. �

E Random walks on integer lattices

When we speak of Zd as a graph, we have in mind the d -dimensional lattice whose
vertex set is Zd , and two points are neighbours if their Euclidean distance is 1, that
is, they differ by 1 in precisely one coordinate. In particular, Z will stand for the
graph which is a two-way infinite path. We shall now discuss recurrence of SRW
in Zd .

Simple random walk on Zd

Since Zd is an Abelian group, SRW is the random walk on this group in the sense
of (4.18) (written additively) whose law is the equidistribution on the set of integer
unit vectors f˙e1; : : : ;˙ed g.
4.57 Example (Dimension d D 1). We first propose different ways for showing
that SRW on Z is recurrent. This is the infinite drunkard’s walk of Example 3.5
with p D q D 1=2.

4.58 Exercise. (a) Use the flow criterion for proving recurrence of SRW on Z.
(b) Use (1.50) to compute p.2n/.0; 0/ explicitly: show that

p.2n/.0; 0/ D 1

22n

ˇ̌
….2n/.0; 0/

ˇ̌ D 1

22n

�
2n

n

�
:
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(c) Use generating functions, and in particular (3.6), to verify that G.0; 0jz/ D
1
ıp

1 � z2, and deduce the above formula for p.2n/.0; 0/ by writing down the
power series expansion of that function.

(d) Use Stirling’s formula to obtain the asymptotic evaluation

p.2n/.0; 0/ � 1p
	n

: (4.59)

Deduce recurrence from this formula. �
Before passing to dimension 2, we consider the following variantQ of SRW P

on Z:

q.k; k˙ 1/ D 1=4; q.k; k/ D 1=2; and q.k; l/ D 0 if jk� l j � 2: (4.60)

Then Q D 1
2
I C 1

2
P , and Exercise 1.48 yields

GQ.0; 0/.z/ D 1
ıp

1 � z: (4.61)

This can also be computed directly, as in Examples 2.10 and 3.5. Therefore

q.n/.0; 0/ D 1

4n

�
2n

n

�
� 1p

	n
as n!1: (4.62)

This return probability can also be determined by combinatorial arguments: of the
n steps, a certain number k will go by 1 unit to the left, and then the same number
of steps must go by one unit to the left, each of those steps with probability 1=4.
There are

�
n
k

� 	 �n�k
k

�
distinct possibilities to select those k steps to the right and k

steps to the left. The remaining n � 2k steps must correspond to loops (where the
current position in Z remains unchanged), each one with probability 1=2 D 2=4.
Thus

q.n/.0; 0/ D 1

4n

bn=2cX
kD0

�
n

k

�
	
�
n � k
k

�
	 2n�2k :

The resulting identity, namely that the last sum over k equals
�

2n
n

�
, is a priori not

completely obvious.2

4.63 Example (Dimension d D 2). (a) We first show how one can use the flow
criterion for proving recurrence of SRW on Z2. Recall that all edges have conduc-
tance 1. Let � be a flow from 0 D .0; 0/ to 1 with input i0 > 0. Consider the
box An D f.k; l/ 2 Z2 W jkj; jl j 
 ng, where n � 1. Then Lemma 4.53 and the
Cauchy–Schwarz inequality yield

i0 D
X

e2@An

�.e/ 	 1 
 j@Anj
X

e2@An

�.e/2:

2The author acknowledges an email exchange with Ch. Krattenthaler on this point.
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The sets @An are disjoint subsets of the edge set E. Therefore

h�; �i � 1

2

1X
nD1

X
e2@An

�.e/2 �
1X

nD1

i0

2j@Anj D 1;

since j@Anj D 8nC 4. Thus, every flow from the origin to1 with non-zero input
has infinite power: the random walk is recurrent.

(b) Another argument is the following. Let two walkers perform the one-di-
mensional SRW simultaneously and independently, each one with starting point 0.
Their joint trajectory, viewed in Z2, visits only the set of points .k; l/ with k C l
even. The resulting Markov chain on this state space moves from .k; l/ to any of
the four points .k ˙ 1; l ˙ 1/ with probability p1.k; k ˙ 1/ 	 p1.l; l ˙ 1/ D 1=4,
where p1. 	; 	/ now stands for the transition probabilities of SRW on Z. The graph
of this “doubled” Markov chain is the one with the dotted edges in Figure 11. It is
isomorphic with the lattice Z2, and the transition probabilities are preserved under
this isomorphism. Hence SRW on Z2 satisfies

p.2n/.0; 0/ D
�
1

22n

�
2n

n

��2

� 1

	 n
: (4.64)

Thus G.0; 0/ D1.

Figure 11. The grids Z and Z2.
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4.65 Example (Dimension d D 3). Consider the random walk on Z with transition
matrixQ given by 4.60. Again, we let three independent walkers start at 0 and move
according to Q. Their joint trajectory is a random walk on the Abelian group Z3

with law  given by

.˙e1/ D .˙e2/ D .˙e3/ D 1=16;
.˙e1 ˙ e2/ D .˙e1 ˙ e3/ D .˙e2 ˙ e3/ D 1=32;

and .˙e1 ˙ e2 ˙ e3/ D 1=64:
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We writeQ3 for its transition matrix. It is symmetric (reversible with respect to the
counting measure) and transient, since its n-step return probabilities to the origin
are

q
.n/
3 .0; 0/ D

�
1

4n

�
2n

n

��3

� 1

.	 n/3=2
;

whence G.0; 0/ <1 for the associated Green function.
If we think of Z3 made up by cubes then the edges of the associated network plus

corresponding resistances are as follows: each side of any cube has resistance 16,
each diagonal of each face (square) of any cube has resistance 32, and each diag-
onal of any cube has resistance 64. In particular, the corresponding network is a
subnetwork of the one of SRW on the 3-fuzz of the lattice, if we put resistance 64
on all edges of the latter. Thus, SRW on the 3-fuzz is transient by Exercise 4.54,
and Proposition 4.56 implies that also SRW on Z3 is transient.

4.66 Example (Dimension d > 3). Since Zd for d > 3 contains Z3 as a subgraph,
transience of SRW on Zd now follows from Exercise 4.54.

We remark that these are just a few among many different ways for showing
recurrence of SRW on Z and Z2 and transience of SRW on Zd for d � 3. The most
typical and powerful method is to use characteristic functions (Fourier transform),
see the historical paper of Pólya [47].

General random walks on the group Zd are classical sums of i.i.d. Z-valued
random variablesZn D Y1C	 	 	CYn, where the distribution of theYk is a probability
measure  on Zd and the starting point is 0. We now want to state criteria for
recurrence/transience without necessarily assuming reversibility (symmetry of ).
First, we introduce the (absolute) moment of order k associated with :

jjk D
X

x2Zd

jxjk .x/:

(jxj is the Euclidean length of the vector x.) If jj1 is finite, the mean vector

N D
X

x2Zd

x.x/

describes the average displacement in a single step of the random walk with law .

4.67 Theorem. In arbitrary dimension d , if jj1 <1 and N ¤ 0, then the random
walk with law  is transient.

Proof. We use the strong law of large numbers (in the multidimensional version).
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Let .Yn/n�1 be a sequence of independent Rd -valued random variables with
common distribution . If jj1 <1 then

lim
n!1

1
n
.Y1 C 	 	 	 C Yn/ D N

with probability 1.

In our particular case, given that N ¤ 0, the set of trajectories

A D ˚! 2 � W there is n0 such that
ˇ̌

1
n
Zn.!/ � N

ˇ̌
< j Nj for all n � n0



contains the eventŒlimnZn=n D N� and has probability 1. (Standard exercise:
verify that the latter event as well as A belong to the � -algebra generated by the
cylinder sets.) But for every ! 2 A, one may have Zn.!/ D 0 only for finitely
many n. In other words, with probability 1, the random walk .Zn/ returns to the
origin no more than finitely many times. Therefore H.0; 0/ D 0, and we have
transience by Theorem 3.2. �

In the one-dimensional case, the most general recurrence criterion is due to
Chung and Ornstein [12].

4.68 Theorem. Let be a probability distribution on Z with jj1 <1 and N D 0.
Then every state of the random walk with law  is recurrent.

In other words, Z decomposes into essential classes, on each of which the
random walk with law  is recurrent.

4.69 Exercise. Show that since N D 0, the number of those essential classes is
finite except when  is the point mass in 0. �

For the proof of Theorem 4.68, we need the following auxiliary lemma.

4.70 Lemma. Let .X; P / be an arbitrary Markov chain. For all x; y 2 X and
N 2 N,

NX
nD0

p.n/.x; y/ 
 U.x; y/
NX

nD0

p.n/.y; y/:

Proof.

NX
nD0

p.n/.x; y/ D
NX

nD0

nX
kD0

u.n�k/.x; y/ p.k/.y; y/

D
NX

kD0

p.k/.y; y/

N �kX
mD0

u.m/.x; y/: �
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Proof of Theorem 4.68. We use once more the law of large numbers, but this time
the weak version is sufficient.

Let .Yn/n�1 be a sequence of independent real valued random variables with
common distribution . If jj1 <1 then

lim
n!1 Pr

� ˇ̌
1
n
.Y1 C 	 	 	 C Yn/ � N

ˇ̌
> "

� D 0
for every " > 0.

Since in our case N D 0, this means in terms of the transition probabilities that

lim
n!1˛n D 1; where ˛n D

X
k2ZWjkj�n"

p.n/.0; k/:

Let M;N 2 N and " D 1=M . (We also assume that N" 2 N.) Then, by
Lemma 4.70,

NX
nD0

p.n/.0; k/ 

NX

nD0

p.n/.k; k/ D
NX

nD0

p.n/.0; 0/ for all k 2 Z:

Therefore we also have

NX
nD0

p.n/.0; 0/ � 1

2N"C 1
X

kWjkj�N"

NX
nD0

p.n/.0; k/

D 1

2N"C 1
NX

nD0

X
kWjkj�N"

p.n/.0; k/

� 1

2N"C 1
NX

nD0

˛n;

where in the last step we have replaced N" with n". Since ˛n ! 1,

lim
N !1

1

2N"C 1
NX

nD0

˛n D lim
N !1

N

2N"C 1
1

N

NX
nD0

˛n D 1

2"
D M

2
:

We infer that G.0; 0/ �M=2 for every M 2 N. �

Combining the last two theorems, we obtain the following.

4.71 Corollary. Let  be a probability measure on Z with finite first moment and
.0/ < 1. Then the random walk with law  is recurrent if and only if N D 0.
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Compare with Example 3.5 (infinite drunkard’s walk): in this case,  D p 	
ı1 C q 	 ı1, and N D p � q; as we know, one has recurrence if and only if p D q

(D 1=2).
What happens when jj1 D1? We present a class of examples.

4.72 Proposition. Let be a symmetric probability distribution on Z such that for
some real exponent ˛ > 0,

0 < lim
k!1

k˛.k/ <1:

Then the random walk with law  is recurrent if ˛ � 1, and transient if ˛ < 1.

Observe that for ˛ > 1 recurrence follows from Theorem 4.68.
In dimension 2, there is an analogue of Corollary 4.71 in presence of finite

second moment.

4.73 Theorem. Let  be a probability distribution on Z2 with jj2 < 1. Then
the random walk with law  is recurrent if and only if N D 0.

(The “only if” follows from Theorem 4.67.)
Finally, the behaviour of the simple random walk on Z3 generalizes as follows,

without any moment condition.

4.74 Theorem. Let  be a probability distribution on Zd whose support generates
a subgroup that is at least 3-dimensional. Then each state of the random walk with
law  is transient.

The subgroup generated by supp./ consists of all elements of Zd which can
be written as a sum of finitely many elements of � supp./[ supp./. It is known
from the structure theory of Abelian groups that any subgroup of Zd is isomorphic
with Zd 0

for some d 0 
 d . The number d 0 is the dimension (often called the rank)
of the subgroup to which the theorem refers. In particular, every irreducible random
walk on Zd , d � 3, is transient.

We omit the proofs of Proposition 4.72 and of Theorems 4.73 and 4.74. They
rely on the use of characteristic functions, that is, harmonic analysis. For a detailed
treatment, see the monograph by Spitzer [Sp, §8]. A very nice and accessible
account of recurrence of random walks on Zd is given by Lesigne [Le].



Chapter 5

Models of population evolution

In this chapter, we shall study three classes of processes that can be interpreted as
theoretical models for the random evolution of populations. While in this book we
maintain discrete time and discrete state space, the second and the third of those
models will go slightly beyond ordinary Markov chains (although they may of
course be interpreted as Markov chains on more complicated state spaces).

A Birth-and-death Markov chains

In this section we consider Markov chains whose state space is X D f0; 1; : : : ; N g
with N 2 N, or X D N0 (in which case we write N D 1). We assume that
there are non-negative parameters pk , qk and rk (0 
 k 
 N ) with q0 D 0

and (if N < 1) pN D 0 that satisfy pk C qk C rk D 1, such that whenever
k � 1; k; k C 1 2 X (respectively) one has

p.k; k C 1/ D pk; p.k; k � 1/ D qk and p.k; k/ D rk;
while p.k; l/ D 0 if jk � l j > 1. See Figure 12. The finite and infinite drunkard’s
walk and the Ehrenfest urn model are all of this type.

........
..........

...........................................................................................
.........
...0

................................................

...................................................................... .................... ........

r0

............................................................ ............ ................................................
p0

........................................................................................................................
q1

........
..........

...........................................................................................
.........
...1

................................................

...................................................................... .................... ........

r1

............................................................ ............ ................................................
p1

........................................................................................................................
q2

........
..........

...........................................................................................
.........
...2

................................................

...................................................................... .................... ........

r2

............................................................ ............ ................................................
p2

........................................................................................................................
q3

........
..........

...........................................................................................
.........
...3

................................................

...................................................................... ............ ................

r3

............................................................ ............ ....................
p3

............................................................................................
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Figure 12

Such a chain is called random walk on N0, or on f0; 1; : : : ; N g, respectively. It
is also called a birth-and-death Markov chain. This latter name comes from the
following interpretation. Consider a population which can have any number k of
members, where k 2 N0. These numbers are the states of the process, and we
consider the evolution of the size of the population in discrete time steps n D
0; 1; 2; : : : (e.g., year by year), so that Zn D k means that at time n the population
has k members. If at some time it has k members then in the next step it can
increase by one (with probability pk – the birth rate), maintain the same size (with
probability rk) or, if k > 0, decrease by one individual (with probability qk – the
death rate). The Markov chain describes the random evolution of the population
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size. In general, the state space for this model is N0, but when the population size
cannot exceed N , one takes X D f0; 1; : : : ; N g.

Finite birth-and-death chains

We first consider the case when N <1, and limit ourselves to the following three
cases.

(a) Reflecting boundaries: pk > 0 for each k with 0 
 k < N and qk > 0 for
every k with 0 < k 
 N .

(b) Absorbing boundaries: pk; qk > 0 for 0 < k < N , while p0 D qN D 0

and r0 D rN D 1.

(c) Mixed case (state 0 is absorbing and state N is reflecting): pk; qk > 0 for
0 < k < N , and also qN > 0, while p0 D 0 and r0 D 1.

In the reflecting case, we do not necessarily require that r0 D rN D 0; the main
point is that the Markov chain is irreducible. In case (b), the states 0 and N are
absorbing, and the irreducible class f1; : : : ; N � 1g is non-essential. In case (c),
only the state 0 is absorbing, while f1; : : : ; N g is a non-essential irreducible class.

For the birth-and-death model, the last case is the most natural one: if in some
generation the population dies out, then it remains extinct. Starting with k � 1

individuals, the quantity F.k; 0/ is then the probability of extinction, while 1 �
F.k; 0/ is the survival probability.

We now want to compute the generating functions F.k;mjz/. We start with the
case when k < m and state 0 is reflecting. As in the specific case of Example 1.46,
Theorem 1.38 (d) leads to a linear recursion in k:

F.0;mjz/ D r0z F.0;mjz/C p0z F.1;mjz/ and

F.k;mjz/ D qkz F.k � 1;mjz/C rkz F.k;mjz/C pkz F.k C 1;mjz/
for k D 1; : : : ; m � 1. We write for z ¤ 0

F.k;mjz/ D Qk.1=z/ F.0;mjz/; k D 0; : : : ; m:
With the change of variable t D 1=z, we find that the Qk.t/ are polynomials with
degree k which satisfy the recursion

Q0.t/ D 1; p0Q1.t/ D t � r0; and

pk QkC1.t/ D .t � rk/Qk.t/ � qk Qk�1.t/; k � 1: (5.1)

It does not matter here whether state N is absorbing or reflecting.
Analogously, if k > m and state N is reflecting then we write for z ¤ 0

F.k;mjz/ D Q�
k.1=z/ F.N;mjz/; k D m; : : : ; N:
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Again with t D 1=z, we obtain the downward recursion

Q�
N .t/ D 1; qN Q

�
N �1.t/ D t � rN ; and

qk Q
�
k�1.t/ D .t � rk/Q�

k.t/ � pk Q
�
kC1.t/; k 
 N � 1: (5.2)

The last equation is the same as in (5.1), but with different initial values and working
downwards instead of upwards.

Now recall that F.m;mjz/ D 1. We get the following.

5.3 Lemma. If the state 0 is reflecting and 0 
 k 
 m, then

F.k;mjz/ D Qk.1=z/

Qm.1=z/
:

If the state N is reflecting and m 
 k 
 N , then

F.k;mjz/ D Q�
k
.1=z/

Q�
m.1=z/

:

Let us now consider the case when state 0 is absorbing. Again, we want to
compute F.k;mjz/ for 1 
 k 
 m 
 N . Once more, this does not depend on
whether the stateN is absorbing or reflecting, or evenN D1. This time, we write
for z ¤ 0

F.k;mjz/ D Rk.1=z/ F.1;mjz/; k D 1; : : : ; m:
With t D 1=z, the polynomials Rk.z/ have degree k � 1 and satisfy the recursion

R1.t/ D 1; p1R2.t/ D t � r1; and

pk RkC1.t/ D .t � rk/Rk.t/ � qk Rk�1.t/; k � 1; (5.4)

which is basically the same as (5.1) with different initial terms. We get the following.

5.5 Lemma. If the state 0 is absorbing and 1 
 k 
 m, then

F.k;mjz/ D Rk.1=z/

Rm.1=z/
:

We omit the analogous case when state N is absorbing andm 
 k < N . From
those formulas, most of the interesting functions and quantities for our Markov
chain can be derived.

5.6 Example. We consider simple random walk on f0; : : : ; N g with state 0 reflect-
ing and state N absorbing. That is, rk D 0 for all k < N , p0 D rN D 1 and
pk D qk D 1=2 for k D 1; : : : ; N � 1. We want to compute F.k;N jz/ and
F.k; 0jz/ for k < N .
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The recursion (5.1) becomes

Q0.t/ D 1; Q1.t/ D t; and QkC1.t/ D 2t Qk.t/ �Qk�1.t/ for k � 1:
This is the well known formula for the Chebyshev polynomials of the first kind, that
is, the polynomials that are defined by

Qk.cos'/ D cos k':

For real z � 1, we can set 1=z D cos'. Thus, ' 7! z is strictly increasing from
Œ0; 	=2/ to Œ1; 1/, and

F

�
k;N

ˇ̌̌ 1

cos'

�
D cos k'

cosN'
:

We remark that we can determine the (common) radius of convergence s of the
power series F.k;N jz/ for k < N , which are rational functions. We know that
s > 1 and that it is the smallest positive pole of F.k;N jz/. Thus, s D 1= cos �

2N
.

F.k; 0jz/ is the same as the function F.N � k;N jz/ in the reversed situation
where state 0 is absorbing and state N is reflecting. Therefore, in our example,

F.k; 0jz/ D RN �k�1.1=z/

RN �1.1=z/
;

where

R0.t/ D 1; R1.t/ D 2t; and RkC1.t/ D 2t Rk.t/ �Rk�1.t/ for k � 1:
We recognize these as the Chebyshev polynomials of the second kind, which are
defined by

Rk.cos'/ D sin.k C 1/'
sin '

:

We conclude that for our random walk with 0 reflecting and N absorbing,

F

�
k; 0

ˇ̌̌ 1

cos'

�
D sin.N � k/'

sinN'
;

and that the (common) radius of convergence of the power series F.k; 0jz/ (1 

k < N ) is s0 D 1= cos �

N
. We can also compute G.0; 0jz/ D 1ı�1 � z F.1; 0jz/�

in these terms:

G

�
0; 0

ˇ̌̌ 1

cos'

�
D tanN'

tan '
; and G.0; 0jz/ D .1=z/RN �1.1=z/

QN .1=z/
:

In particular,G.0; 0jz/ has radius of convergence r D s D 1= cos �
2N

. The values at
z D 1 of our functions are obtained by letting ' ! 0 from the right. For example,
the expected number of visits in the starting point 0 before absorption in the state
N is G.0; 0j1/ D N .
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We return to general finite birth-and-death chains. If both 0 andN are reflecting,
then the chain is irreducible. It is also reversible. Indeed, reversibility with respect
to a measure m on f0; 1; : : : ; N g just means that m.k/ pk D m.kC 1/ qkC1 for all
k < N . Up to the choice of the value of m.0/, this recursion has just one solution.
We set

m.0/ D 1 and m.k/ D p0 	 	 	pk�1

q1 	 	 	 qk

; k � 1: (5.7)

Then the unique stationary probability measure is m0.k/ D m.k/
ıPN

j D0 m.j /. In
particular, in view of Theorem 3.19, the expected return time to the origin is

E0.t
0/ D

NX
j D0

m.j /:

We now want to compute the expected time to reach 0, starting from any state
k > 0. This is Ek.s

0/ D F 0.k; 0j1/. However, we shall not use the formula of
Lemma 5.3 for this computation. Since k � 1 is a cut point between k and 0, we
have by Exercise 1.45 that

Ek.s
0/ D Ek.s

k�1/C Ek�1.s
0/ D 	 	 	 D

k�1X
iD0

EiC1.s
i /:

Now U.0; 0jz/ D r0z C p0z F.1; 0jz/. We derive with respect to z and take into
account that both r0 C p0 D 1 and F.1; 0j1/ D 1:

E1.s
0/ D F 0.1; 0j1/ D U 0.0; 0j1/ � 1

p0

D E0.t
0/ � 1
p0

D
NX

j D1

p1 	 	 	pj �1

q1 	 	 	 qj

:

We note that this number does not depend on p0. Indeed, the stopping time s0

depends only on what happens until the first visit in state 0 and not on the “outgoing”
probabilities at 0. In particular, if we consider the mixed case of birth-and-death
chain where the state 0 is absorbing and the state N reflecting, then F.1; 0jz/ and
F 0.1; 0j1/ are the same as above. We can use the same argument in order to compute
F 0.i C 1; i j1/, by making the state i absorbing and considering our chain on the
set fi; : : : ; N g. Therefore

EiC1.s
i / D

NX
j DiC1

piC1 	 	 	pj �1

qiC1 	 	 	 qj

:

We subsume our computations, which in particular give the expected time until
extinction for the “true” birth-and-death chain of the mixed model (c).
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5.8 Proposition. Consider a birth-and-death chain on f0; : : : ; N g, where N is
reflecting. Starting at k > 0, the expected time until first reaching state 0 is

Ek.s
0/ D

k�1X
iD0

NX
j DiC1

piC1 	 	 	pj �1

qiC1 	 	 	 qj

:

Infinite birth-and-death chains

We now turn our attention to birth-and-death chains on N0, again limiting ourselves
to two natural cases:

(a) The state 0 is reflecting: pk > 0 for every k � 0 and qk > 0 for every k � 1.

(b) The state 0 is absorbing: pk; qk > 0 for all k � 1, while p0 D 0 and r0 D 1.

Most answers to questions regarding case (b) will be contained in what we shall
find out about the irreducible case, so we first concentrate on (a). Then the Markov
chain is again reversible with respect to the same measure m as in (5.7), this time
defined on the whole of N0. We first address the question of recurrence/transience.

5.9 Theorem. Suppose that the random walk on N0 is irreducible (state 0 is re-
flecting). Set

S D
1X

mD1

q1 	 	 	 qm

p1 	 	 	pm

and T D
1X

mD1

p0 	 	 	pm�1

q1 	 	 	 qm

:

Then

(i) the random walk is transient if S <1,

(ii) the random walk is null-recurrent if S D1 and T D1, and

(iii) the random walk is positive recurrent if S D1 and T <1.

Proof. We use the flow criterion of Theorem 4.51. Our network has vertex set N0

and two oppositely oriented edges between m � 1 and m for each m 2 N, plus
possibly additional loops Œm;m� at some or all m. The loops play no role for the
flow criterion, since every flow � must have value 0 on each of them. With m as in
(5.7), the conductance of the edge Œm;mC 1� is

a.m;mC 1/ D p0

p1 	 	 	pm

q1 	 	 	 qm

I a.0; 1/ D p0:

There is only one flow with input i0 D 1 from 0 to 1, namely the one where
�.Œm � 1;m�/ D 1 and �.Œm;m � 1�/ D �1 along the two oppositely oriented
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edges between m � 1 and m. Its power is

h�; �i D
1X

mD1

1

a.m � 1;m/ D
S C 1
p0

:

Thus, there is a flow from 0 to1with finite power if and only if S <1: recurrence
holds if and only if S D 1. In that case, we have positive recurrence if and only
if the total mass of the invariant measure is finite. The latter holds precisely when
T <1. �

5.10 Examples. (a) The simplest example to illustrate the last theorem is the
one-sided drunkard’s walk, whose absorbing variant has been considered in Ex-
ample 2.10. Here we consider the reflecting version, where p0 D 1, pk D p,
qk D q D 1 � p for k � 1, and rk D 0 for all k.
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Figure 13

Theorem 5.9 implies that this random walk is transient whenp > 1=2, null recurrent
when p D 1=2, and positive recurrent when p < 1=2.

More generally, suppose that we have p0 D 1; rk D 0 for all k � 0, and
pk � 1=2 C " for all k � 1, where " > 0. Then it is again straightforward that
the random walk is transient, since S < 1. If on the other hand pk 
 1=2 for
all k � 1, then the random walk is recurrent, and positive recurrent if in addition
pk 
 1=2 � " for all k.

(b) In view of the last example, we now ask if we can still have recurrence when
all “outgoing” probabilities satisfy pk > 1=2. We consider the example where
p0 D 1; rk D 0 for all k � 0, and

pk D 1

2
C c

k
; where c > 0: (5.11)
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We start by observing that the inequality log.1C t /� log.1� t / � 2t holds for all
real t 2 Œ0; 1/. Therefore

log
pk

qk

D log

�
1C 2c

k

�
� log

�
1 � 2c

k

�
� 4c

k
;
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whence

log
p1 	 	 	pm

q1 	 	 	 qm

� 4c
mX

kD1

1

k
� 4c logm:

We get

S 

1X

mD1

1

m4c
;

and see that S <1 if c > 1=4.
On the other hand, when c 
 1=4 then qk=pk � .2k � 1/=.2k C 1/, and

q1 	 	 	 qm

p1 	 	 	pm

� 1

2mC 1;

so that S D1.
We have shown that the random walk of (5.11) is recurrent if c 
 1=4, and

transient if c > 1=4. Recurrence must be null recurrence, since clearly T D1.

Our next computations will lead to another, direct and more elementary proof
of Theorem 5.9, that does not involve the flow criterion.

Theorem 1.38 (d) and Proposition 1.43 (b) imply that for k � 1
F.k; k � 1jz/ D qkz C rkz F.k; k � 1jz/C pkz F.k C 1; k � 1jz/ and

F.k C 1; k � 1jz/ D F.k C 1; kjz/ F.k; k � 1jz/:
Therefore

F.k; k � 1jz/ D qkz

1 � rkz � pkz F.k C 1; kjz/ : (5.12)

This will allow us to express F.k; k � 1jz/, as well as U.0; 0jz/ and G.0; 0jz/ as a
continued fraction. First, we define a new stopping time:

sk
i D minfn � 0 j Zn D k; jZm � kj 
 i for all m 
 ng:

Setting

f
.n/

i .l; k/ D Prl Œs
k
i D n� and Fi .l; kjz/ D

1X
nD0

f
.n/

i .l; k/ zn;

the number Fi .l; k/ D Fi .l; kj1/ is the probability, starting at l , to reach k before
leaving the interval Œk � i; k C i �.
5.13 Lemma. If jzj 
 r, where r D r.P / is the radius of convergence ofG.l; kjz/,
then

lim
i!1Fi .l; kjz/ D F.l; kjz/:
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Proof. It is clear that the radius of convergence of the power series Fi .l; kjz/ is at
least s.l; k/ � r. We know from Lemma 3.66 that F.l; kjr/ <1.

For fixed n, the sequence
�
f

.n/
i .l; k/

�
is monotone increasing in i , with limit

f .n/.l; k/ as i ! 1. In particular, f .n/
i .l; k/ jznj 
 f .n/.l; k/ rn: Therefore we

can use dominated convergence (the integral being summation over n in our power
series) to conclude. �

5.14 Exercise. Prove that for i � 1,

Fi .k C 1; k � 1jz/ D Fi�1.k C 1; kjz/ Fi .k; k � 1jz/: �

In analogy with (5.12), we can compute the functionsFi .k; k�1jz/ recursively.

F0.k; k � 1jz/ D 0; and

Fi .k; k � 1jz/ D qkz

1 � rkz � pkz Fi�1.k C 1; kjz/ for i � 1: (5.15)

Note that the denominator of the last fraction cannot have any zero in the domain
of convergence of the power seriesFi .k; k�1jz/. We use (5.15) in order to compute
the probability F.k C 1; k/.
5.16 Theorem. We have

F.k C 1; k/ D 1 � 1

1C S.k/ ; where S.k/ D
1X

mD1

qkC1 	 	 	 qkCm

pkC1 	 	 	pkCm

:

Proof. We prove by induction on i that for all k; i 2 N0,

Fi .k C 1; k/ D 1 � 1

1C Si .k/
; where Si .k/ D

iX
mD1

qkC1 	 	 	 qkCm

pkC1 	 	 	pkCm

:

Since S0.k/ D 0, the statement is true for i D 0. Suppose that it is true for i � 1
(for every k � 0). Then by (5.15)

Fi .k C 1; k/ D qkC1

1 � rkC1 � pkC1 Fi�1.k C 2; k C 1/

D 1 � pkC1

�
1 � Fi�1.k C 2; k C 1/

�
pkC1

�
1 � Fi�1.k C 2; k C 1/

�C qkC1

D 1 � 1

1C qkC1

pkC1

1

1 � Fi�1.k C 2; k C 1/

D 1 � 1

1C qkC1

pkC1

�
1C Si�1.k C 1/

� ;
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which implies the proposed formula for i (and all k).
Letting i !1, the theorem now follows from Lemma 5.13. �

We deduce that

F.l; k/ D F.l; l � 1/ 	 	 	F.k C 1; k/ D
l�1Y
j Dk

S.j /

1C S.j / ; if l > k; (5.17)

while we always have F.l; k/ D 1 when l < k, since the Markov chain must exit
the finite set f0; : : : ; k � 1g with probability 1. We can also compute

U.k; k/ D pk F.k C 1; k/C qk F.k � 1; k/C rk D 1 � pk

1C S.k/ :

Since S D S.0/ for the number defined in Theorem 5.9, we recover the recurrence
criterion from above. Furthermore, we obtain formulas for the Green function at
z D 1:

5.18 Corollary. When state 0 is reflecting, then in the transient case,

G.l; k/ D

8̂̂̂
<
ˆ̂̂:
1C S.k/
pk

; if l 
 k;

S.k/
pk

l�1Y
j DkC1

S.j /

1C S.j / ; if l > k:

When state 0 is absorbing, that is, for the “true” birth-and-death chain, the for-
mula of (5.17) gives the probability of extinctionF.k; 0/, when the initial population
size is k � 1.

5.19 Corollary. For the birth-and-death chain on N0 with absorbing state 0, ex-
tinction occurs almost surely whenS D1, while the survival probability is positive
when S <1.

5.20 Exercise. Suppose that S D 1. In analogy with Proposition 5.8, derive a
formula for the expected time Ek.s

0/ until extinction, when the initial population
size is k � 1. �

Let us next return briefly to the computation of the generating functions
F.k; k � 1jz/ and Fi .k; k � 1jz/ via (5.12) and the finite recursion (5.15), re-
spectively. Precisely in the same way, one finds an analogous finite recursion for
computing F.k; k C 1jz/, namely

F.0; 1jz/ D p0z

1 � r0z ; and

F.k; k C 1jz/ D pkz

1 � rkz � qkz F.k � 1; kjz/ :
(5.21)

We summarize.
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5.22 Proposition. For k � 1, the functions F.k; k C 1jz/ and F.k; k � 1jz/ can
be expressed as finite and infinite continued fractions, respectively. For z 2 C with
jzj 
 r.P /,

F.k; k C 1jz/ D pkz

1 � rkz �
qkpk�1z

2

1 � rk�1z � :::
�q1p0z

2

1 � r0z

; and

F.k; k � 1jz/ D qkz

1 � rkz �
pkqkC1z

2

1 � rkC1z �
pkC1qkC2z

2

1 � rkC1z � :::
The last infinite continued fraction is of course intended as the limit of the

finite continued fractions Fi .k; k � 1jz/ – the approximants – that are obtained by
stopping after the i -th division, i.e., with 1 � rk�1Ci z as the last denominator.

There are well-known recursion formulas for writing the i -th approximant as a
quotient of two polynomials. For example,

Fi .1; 0jz/ D Ai .z/

Bi .z/
;

where

A0.z/ D 0; B0.z/ D 1; A1.z/ D q1z; B1.z/ D 1 � r1z;

and, for i � 1,

AiC1.z/ D .1 � riC1z/Ai .z/ � piqiC1z
2Ai�1.z/;

BiC1.z/ D .1 � riC1z/Bi .z/ � piqiC1z
2 Bi�1.z/:

To get the analogous formulas for Fi .k; k � 1jz/ and F.k; k C 1jz/, one just has
to adapt the indices accordingly. This opens the door between birth-and-death
Markov chains and the classical theory of analytic continued fractions, which is in
turn closely linked with orthogonal polynomials. A few references for that theory
are the books by Wall [Wa] and Jones and Thron [J-T], and the memoir by Askey
and Ismail [2]. Its application to birth-and-death chains appears, for example, in
the work of Good [28], Karlin and McGregor [34] (implicitly), Gerl [24] and
Woess [52].
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More examples

Birth-and-death Markov chains on N0 provide a wealth of simple examples. In
concluding this section, we consider a few of them.

5.23 Example. It may be of interest to compare some of the features of the infinite
drunkard’s walk on Z of Example 3.5 and of its reflecting version on N0 of Exam-
ple 5.10 (a) with the same parameters p and q D 1 � p, see Figure 13. We shall
use the indices Z and N to distinguish between the two examples.

First of all, we know that the random walk on Z is transient when p ¤ 1=2 and
null recurrent when p D 1=2, while the walk on N0 is transient when p > 1=2,
null recurrent when p D 1=2, and positive recurrent when p < 1=2.

Next, note that for l > k � 0, then the generating function F.l; kjz/ D
F.1; 0jz/l�k is the same for both examples, and

F.1; 0jz/ D 1

2pz

�
1 �

p
1 � 4pqz2

�
:

We have already computed UZ.0; 0jz/ in (3.6), and UN.0; 0jz/ D zF.1; 0jz/. We
obtain

GZ.0; 0jz/ D 1p
1 � 4pqz2

and GN.0; 0jz/ D 2p

2p � 1Cp1 � 4pqz2
:

We compute the asymptotic behaviour of the 2n-step return probabilities to the
origin, as n!1. For the random walk on Z, this can be done as in Example 4.58:

p
.2n/
Z .0; 0/ D pnqn

�
2n

n

�
� .4pq/np

	n
:

For the random walk on N0, we first consider p < 1=2 (positive recurrence).
The period is d D 2, and E0t0 D U 0

N.0; 0j1/ D 2q=.q � p/. Therefore, using
Exercise 3.52,

p
.2n/
N .0; 0/! 4q

q � p ; if p < 1=2:

If p D 1=2, then GN.0; 0jz/ D GZ.0; 0jz/. Indeed, if .Sn/ is the random walk
on Z, then

�jSnj
�

is a Markov chain with the same transition probabilities as the
random walk on N0. It is the factor chain as described in (1.29), where the partition
of Z has the blocks fk;�kg, k 2 N0. Therefore

p
.2n/
N .0; 0/ D p.2n/

Z .0; 0/ � 1p
	n

; if p D 1=2:

If p > 1=2, then we use the fact that p.2n/
N .0; 0/ is the coefficient of z2n in the

Taylor series expansion at 0 of GN.0; 0jz/, or (since that function depends only
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on z2) equivalently, the coefficient of zn in the Taylor series expansion at 0 of the
function

zG.z/ D 2p

2p � 1Cp1 � 4pqz D
1

z � 1
�
.p � q/ �p1 � 4pqz�:

This function is analytic in the open disk fz 2 C W jzj < z0g where z0 D 1=.4pq/.
Standard methods in complex analysis (Darboux’ method, based on the Riemann–
Lebesgue lemma; see Olver [Ol, p. 310]) yield that the Taylor series coefficients
behave like those of the function

zH.z/ D 1

z0 � 1
�
.p � q/ �p1 � 4pqz�:

The n-th coefficient (n � 1) of the latter is

� 1

z0 � 1.�4pq/
n

�
1=2

n

�
D 2

z0 � 1
.4pq/n

n 22n�2

�
2n � 2
n � 1

�
:

Therefore, with a use of Stirling’s formula,

p
.2n/
N .0; 0/ � 8pq

1 � 4pq
.4pq/n

n
p
	n

; if p > 1=2:

The spectral radii are

�.PZ/ D 2ppq and �.PN/ D
´
1; if p 
 1=2;
2
p
pq; if p > 1=2:

After these calculations, we turn to issues with a less combinatorial-analytic flavour.
We can realize our random walks on Z and on N0 on one probability space, so
that they can be compared (a coupling). For this purpose, start with a probability
space .�;A;Pr/ on which one can define a sequence of i.i.d. f˙1g-valued random
variables .Yn/n�1 with distribution  D pı1 C qı�1. This probability space may

be, for example, the product space
�f�1; 1g; �N, where A is the product � -algebra

of the discrete one on f�1; 1g. In this case, Yn is the n-th projection�! f�1; 1g.
Now define

Sn D k0 C Y1 C 	 	 	 C Yn D Sn�1 C Yn:

This is the infinite drunkard’s walk on Z withpZ.k; kC1/ D p andpZ.kC1; k/ D
q, starting at k0 2 Z. Analogously, let k0 2 N0 and define

Z0 D k0 and Zn D jZn�1 C Ynj D
´
1; if Zn�1 D 0;
Zn�1 C Yn; if Zn�1 > 0:
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This is just the reflecting random walk on N0 of Figure 13. We now suppose that
for both walks, the starting point is k0 � 0. It is clear that Zn � Sn, and we are
interested in their difference. We say that a reflection occurs at time n, ifZn�1 D 0
and Yn D �1. At each reflection, the difference increases by 2 and then remains
unchanged until the next reflection. Thus, for arbitrary n, we haveZn�Sn D 2Rn,
where Rn is the (random) number of reflections that occur up to (and including)
time n.

Now suppose that p > 1=2. Then the reflecting walk is transient: with proba-
bility 1, it visits 0 only finitely many times, so that there can only be finitely many
reflections. That is, Rn remains constant from a (random) index onwards, which
can also be expressed by saying thatR1 D limnRn is almost surely finite, whence
Rn=
p
n ! 0 almost surely. By the law of large numbers, Sn=n ! p � q almost

surely, and
�
Sn�n.p�q/

�ı
2
p
pqn is asymptotically standard normalN.0; 1/ by

the central limit theorem. Therefore

Zn

n
! p� q almost surely, and

Zn � n.p � q/
2
p
pqn

! N.0; 1/ in law, if p > 1=2:

In particular, p � q D 2p � 1 is the linear speed or rate of escape, as the random
walk tends toC1.

If p D 1=2 then the law of large numbers tells us that Sn=n! 0 almost surely
and Sn=.2

p
n/ is asymptotically normal. We know that the sequence

�jSnj
�

is a
model of .Zn/, i.e., it is a Markov chain with the same transition probabilities as
.Zn/. Therefore

Zn

n
! 0 almost surely, and

Zn

2
p
n
! jN j.0; 1/ in law, if p D 1=2;

where jN j.0; 1/ is the distribution of the absolute value of a normal random variable;

the density is f .t/ D
q

2
�
e�t2

1Œ0; 1/.t/.

Finally, if p < 1=2 then for each ˛ > 0, the function f .k/ D k1=˛ on N0

is integrable with respect to the stationary probability measure, which is given by
m.0/ D c D .q � p/=.2q/ and m.k/ D c pk�1=qk for k � 1. Therefore the
Ergodic Theorem 3.55 implies that

1

n

n�1X
kD0

Z1=˛
n !

1X
kD1

k1=˛ m.k/ almost surely.

It follows that
Zn

n˛
! 0 almost surely for every ˛ > 0:

Our next example is concerned with �-recurrence.



130 Chapter 5. Models of population evolution

5.24 Example. We let p > 1=2 and consider the following slight modification
of the reflecting random walk of the last example and Example 5.10 (a): p0 D 1,
p1 D q1 D 1=2, and pk D p, qk D q D 1 � p for k � 2, while rk D 0 for all k.
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The function F.2; 1jz/ is the same as in the preceding example,

F.2; 1jz/ D 1

2pz

�
1 �

p
1 � 4pqz2

�
:

By (5.12),

F.1; 0jz/ D
1
2
z

1 � 1
2
z F.2; 1jz/ ;

and U.0; 0jz/ D z F.1; 0jz/. We compute

U.0; 0jz/ D 2pz2

4p � 1Cp1 � 4pqz2
:

We use a basic result from Complex Analysis, Pringsheim’s theorem, see e.g.
Hille [Hi, p. 133]: for a power series with non-negative coefficients, its radius
of convergence is a singularity; see e.g. Hille [Hi, p. 133]. Therefore the radius of
convergence s of U.0; 0jz/ is the smallest positive singularity of that function, that
is, the zero s D 1=p4pq of the square root expression. We compute for p > 1=2

U.0; 0js/ D 1

.4p � 1/.2p � 2/

8̂<
:̂
D 1; if p D 3

4
;

< 1; if 1
2
< p < 3

4
;

> 1; if 3
4
< p < 1:

Next, we recall Proposition 2.28: the radius of convergence r D 1=�.P / of the
Green function is the largest positive real number for which the power series
U.0; 0jr/ converges and has a value 
 1. Thus, when p > 3

4
then r must be

the unique solution of the equation U.0; 0jz/ D 1 in the real interval .0; s/, which
turns out to be r D p

.4p � 2/=p. We have U 0.0; 0jr/ < 1 in this case. When
1
2
< p 
 3

4
, we conclude that r D s, and compute U 0.0; 0js/ <1. Therefore we

have the following:

• If 1
2
< p < 3

4
then �.P / D 2ppq, and the random walk is �-transient.
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• If p D 3
4

then �.P / D
p

3
2

, and the random walk is �-null-recurrent.

• If 3
4
< p < 1 then �.P / D

q
p

4p�2
, and the random walk is �-positive-

recurrent.

B The Galton–Watson process

Citing from Norris [No, p. 171], “the original branching process was considered
by Galton and Watson in the 1870s while seeking a quantitative explanation for the
phenomenon of the disappearance of family names, even in a growing population.”
Their model is based on the concept that family names are passed on from fathers
to sons. (We shall use gender-neutral terminology.)

In general, a Galton–Watson process describes the evolution of successive gen-
erations of a “population” under the following assumptions.

• The initial generation number 0 has one member, the ancestor.

• The number of children (offspring) of any member of the population (in any
generation) is random and follows the offspring distribution .

• The -distributed random variables that represent the number of children of
each of the members of the population in all the generations are independent.

Thus,  is a probability distribution on N0, the non-negative integers: .k/
is the probability to have k children. We exclude the degenerate cases where
 D ı1, that is, where every member of the population has precisely one offspring
deterministically, or where  D ı0 and there is no offspring at all.

The basic question is: what is the probability that the population will survive
forever, and what is the probability of extinction?

To answer this question, we set up a simple Markov chain model: let N .n/
j ,

j � 1, n � 0, be a double sequence of independent random variables with iden-
tical distribution . We write Mn for the random number of members in the n-th
generation. The sequence .Mn/ is the Galton–Watson process. IfMn D k then we
can label the members of that generation by j D 1; : : : ; k. For each j , the j -th
member has N .n/

j children, so that MnC1 D N .n/
1 C 	 	 	 CN .n/

k
. We see that

MnC1 D
MnX
j D1

N
.n/

j : (5.25)

Since this is a sum of i.i.d. random variables, its distribution depends only on the
value of Mn and not on past values. This is the Markov property of .Mn/n�0, and
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the transition probabilities are

p.k; l/ D PrŒMnC1 D l jMn D k� D Pr
h kX

j D1

N
.n/

j D l
i

D .k/.l/; k; l 2 N0;

(5.26)

where .k/ is the k-th convolution power of , see (4.19) (but note that the group
operation is addition here):

.k/.l/ D
lX

j D0

.k�1/.l � j /.j /; .0/.l/ D ı0.l/:

In particular, 0 is an absorbing state for the Markov chain .Mn/ on N0, and the
initial state is M0 D 1. We are interested in the probability of absorption, which is
nothing but the number

F.1; 0/ D PrŒ9 n � 1 WMn D 0� D lim
n!1 PrŒMn D 0�:

The last identity holds because the events ŒMn D 0� D Œ9 k 
 n W Mk D 0�

are increasing with limit (union) Œ9 n � 1 W Mn D 0�. Let us now consider the
probability generating functions of  and of Mn,

f .z/ D
1X

lD0

.l/ zl and gn.z/ D
1X

kD0

PrŒMn D k� zk D E.zMn/; (5.27)

where 0 
 z 
 1. Each of these functions is non-negative and monotone increasing
on the interval Œ0; 1� and has value 1 at z D 1. We have gn.0/ D PrŒMn D 0�.
Using (5.26), we now derive a recursion formula for gn.z/. We have g0.z/ D z

and g1.z/ D f .z/, since the distribution of M1 is . For n � 1,

gn.z/ D
1X

k;lD0

PrŒMn D l jMn�1 D k� PrŒMn�1 D k� zl

D
1X

kD0

PrŒMn�1 D k� fk.z/; where fk.z/ D
1X

lD0

.k/.l/ zl :

We have f0.z/ D 1 and f1.z/ D f .z/. For k � 1, we can use the product formula
for power series and compute

fk.z/ D
1X

lD0

lX
j D0

�
.k�1/.l � j / zl�j

��
.j / zj

�

D
� 1X

mD0

.k�1/.m/ zm
�� 1X

j D0

.j / zj
�
D fk�1.z/ f .z/:
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Therefore fk.z/ D f .z/k , and we have obtained the following.

5.28 Lemma. For 0 
 z 
 1,

gn.z/ D
1X

kD0

PrŒMn�1 D k� f .z/k

D gn�1

�
f .z/

� D f B f B : : : B f„ ƒ‚ …
n times

.z/ D f �gn�1.z/
�
:

In particular, we see that

g1.0/ D .0/ and gn.0/ D f
�
gn�1.0/

�
: (5.29)

Letting n ! 1, continuity of the function f .z/ implies that the extinction prob-
ability F.1; 0/ must be a fixed point of f , that is, a point where f .z/ D z. To
understand the location of the fixed point(s) of f in the interval Œ0; 1�, note that f is
a convex function on that interval with f .0/ D .0/ and f .1/ D 1. We do not have
f .z/ D z, since ¤ ı1. Also, unless f .z/ D .0/C.1/z with.1/ D 1�.0/,
we have f 00.z/ > 0 on .0; 1/. Therefore there are at most two fixed points, and one
of them is z D 1. When is there a second one? This depends on the slope of the
graph of f .z/ at z D 1, that is, on the left-sided derivative f 0.1�/ DP1

nD1 n.n/:

This is the expected offspring number. (It may be infinite.)
If f 0.1�/ 
 1, then f .z/ > z for all z < 1, and we must have F.1; 0/ D 1.

See Figure 16 a.
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If 1 < f 0.1�/ 
 1 then besides z D 1, there is a second fixed point 
 < 1, and
convexity implies f 0.
/ < 1. See Figure 16 b. Since f 0.z/ is increasing in z, we
get that f 0.z/ 
 f 0.
/ on Œ0; 
�. Therefore 
 is an attracting fixed point of f on
Œ0; 
�, and (5.29) implies that gn.0/! 
.

We subsume the results.
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5.30 Theorem. Let  be the non-degenerate offspring distribution of a Galton–
Watson process and

N D
1X

nD1

n.n/

be the expected offspring number.

If N 
 1, then extinction occurs almost surely.

If 1 < N 
 1 then the extinction probability is the unique non-negative number

 < 1 such that 1X

kD0

.k/ 
k D 
;

and the probability that the population survives forever is 1 � 
 > 0.

If N D 1, the Galton–Watson process is called critical, if N < 1, it is called
subcritical, and if N > 1, the process is called supercritical.

5.31 Exercise. Let t be the time until extinction of the Galton–Watson process with
offspring distribution . Show that E.t/ <1 if N < 1.

[Hint: use E.t/ DPn PrŒt > n� and relate PrŒt > n� with the functions of (5.27).]
�

The Galton–Watson process as the basic example of a branching process is very
well described in the literature. Standard monographs are the ones of Harris [Har]
and Athreya and Ney [A-N], but the topic is also presented on different levels
in various books on Markov chains and stochastic processes. For example, a nice
treatment is given by Lyons with Peres [L-P]. Here, we shall not further develop
the detailed study of the behaviour of .Mn/.

However, we make one step backwards and have a look beyond counting the
numberMn of members in the n-th generation. Instead, we look at the complete in-
formation about the generation tree of the population. LetN D supfn W .n/ > 0g,
and write

† D
´
¹1; : : : ; N º; if N <1;
N; if N D1;

Any member v of the population will have a certain number k of children, which we
denote by v1; v2; : : : ; vk. If v itself is not the ancestor � of the population, then it
is an offspring of some member u of the population, that is, v D uj , where j 2 N.
Thus, we can encode v by a sequence (“word”) j1 	 	 	 jn with length jvj D n � 0
and j1; : : : ; jn 2 †. The set of all such sequences is denoted†�. This includes the
empty sequence or word �, which stands for the ancestor. If v has the form v D uj ,
then the predecessor of v is v� D u. We can draw an edge from u to v in this case.
Thus,†� becomes an infiniteN -ary tree with root �, where in the caseN D1 this
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means that every vertex u has countably many forward neighbours (namely those
v with v� D u), while the number of forward neighbours is N when N <1. For
u; v 2 †�, we shall write

u 4 v; if v D uj1 	 	 	 jl with j1; : : : ; jl 2 † .l � 0/:
This means that u lies on the shortest path in †� from � to v.

A full genealogical tree is a finite or infinite subtree T of†� which contains the
root and has the property

uk 2 T H) uj 2 T; j D 1; : : : ; k � 1: (5.32)

(We use the word “full” because the tree is thought to describe the generations
throughout all times, while later on, we shall consider initial pieces of such trees
up to some generation.) Note that in this way, our tree is what is often called a
“rooted plane tree” or “planted plane tree”. Here, “rooted” refers to the fact that
it is equipped with a distinguished root, and “plane” means that isomorphisms of
such objects do not only have to preserve the root, but also the drawing of the tree
in the plane. For example, the two trees in Figure 17 are isomorphic as usual rooted
graphs, but not as planted plane trees.
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Figure 17

A full genealogical tree T represents a possible genealogical tree of our population
throughout all lifetimes. If it has finite height, then this means that the population
dies out, and if it has infinite height, the population survives forever. The n-th
generation consists of all vertices of T at distance n from the root, and the height
of T is the supremum over all n for which the n-th generation is non-empty.

We can now construct a probability space on which one can define a denumerable
collection of random variables Nu, u 2 †�, which are i.i.d. with distribution .
This is just the infinite product space

.�GW ;AGW ;PrGW / D
Y

u2†
�

�
S;

�
;

where S D supp./ D fk 2 N0 W .k/ > 0g and the � -algebra on S is of course
the family of all subsets of S . Thus, AGW is the � -algebra generated by all sets of
the form

Bv;k D
˚
.ku/u2†

� 2 S†� W kv D k


; v 2 †�; k 2 S;
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and if v1; : : : ; vr are distinct and k1; : : : ; kr 2 S then

PrGW .Bv1;k1
\ 	 	 	 \Bvr ;kr

/ D .k1/ 	 	 	.kr/:

The random variable Nu is just the projection

Nu.!/ D ku; if ! D .ku/u2†� :

What is then the (random) Galton–Watson tree, i.e., the full genealogical tree T.!/
associated with !? We can build it up recursively. The root � belongs to T.!/.
If u 2 †� belongs to T.!/, then among its successors, precisely those points uj
belong to T.!/ for which 1 
 j 
 Nu.!/.

Thus, we can also interpret T.!/ as the connected component of the root � in a
percolation process. We start with the tree structure on the whole of†� and decide
at random to keep or delete edges: the edge from any u 2 †� to uj is kept when
j 
 Nu.!/, and deleted when j > Nu.!/. Thus, we obtain several connected
components, each of which is a tree; we have a random forest. Our Galton–Watson
tree is T.!/ D T�.!/, the component of �. Every other connected component in
that forest is also a Galton–Watson tree with another root. As a matter of fact, if we
only look at forward edges, then every u 2 †� can thus be considered as the root
of a Galton–Watson tree Tu whose distribution is the same for all u. Furthermore,
Tu and Tv are independent unless u 4 v or v 4 u.

Coming back to the original Galton–Watson process, Mn.!/ is now of course
the number of elements of T.!/ which have length (height) n.

5.33 Exercise. Consider the Galton–Watson process with non-degenerate offspring
distribution . Assume that N 
 1. Let T be the resulting random tree, and let

jTj D
1X

nD0

Mn

be its size (number of vertices). This is the total number of the population, which
is almost surely finite.

(a) Show that the probability generating function

g.z/ D
1X

kD1

PrŒ jTj D k� zk D E.zjTj/

satisfies the functional equation

g.z/ D z f �g.z/�;
where f is the probability generating function of  as in (5.27).
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(b) Compute the distribution of the population size jTj, when the offspring
distribution is

 D q 	 ı0 C p 	 ı2; 0 < p 
 1=2; q D 1 � p:
(c) Compute the distribution of the population size jTj, when the offspring

distribution is the geometric distribution

.k/ D q pk; k 2 N0; 0 < p 
 1=2; q D 1 � p: (5.34)

One may observe that while the construction of our probability space is simple,
it is quite abundant. We start with a very big tree but keep only a part of it as T.!/.
There are, of course, other possible models which are not such that large parts of
the space � may remain “unused”; see the literature, and also the next section.

In our model, the offspring distribution  is a probability measure on N0, and
the number of children of any member of the population is always finite, so that the
Galton–Watson tree is always locally finite. We can also admit the case where the
number of children may be infinite (countable), that is, .1/ > 0. Then † D N,
and if u 2 †� is a member of our population which has infinitely many children,
then this means that uj 2 T for every j 2 †. The construction of the underlying
probability space remains the same. In this case, we speak of an extended Galton–
Watson process in order to distinguish it from the usual case.

5.35 Exercise. Show that when the offspring distribution satisfies .1/ > 0, then
the population survives with positive probability. �

5.36 Example. We conclude with an example that will link this section with
the one-sided infinite drunkard’s walk on N0 which is reflecting at 0, that is,
p.0; 1/ D 1. See Example 5.10 (a) and Figure 13. We consider the recurrent case,
where p.k; k C 1/ D p 
 1=2 and p.k; k � 1/ D q D 1 � p for k � 1. Then t0,
the return time to 0, is almost surely finite. We let

Mk D
t0X

nD1

1ŒZn�1Dk; ZnDkC1�

be the number of upward crossings of the edge from k to k C 1. We shall work
out that this is a Galton–Watson process. We have M0 D 1, and a member of the
k-th generation is just a single crossing of Œk; k C 1�. Its offspring consists of all
crossings of Œk C 1; k C 2� that occur before the next crossing of Œk; k C 1�.

That is, we suppose that .Zn�1; Zn/ D .k; k C 1/. Since the drunkard will
almost surely return to state k with probability 1 after time n, we have to consider
the number of times when he makes a step from kC1 to kC2 before the next return
from k C 1 to k. The steps which the drunkard makes right after those successive
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returns to state k C 1 and before tk are independent, and will lead to k C 2 with
probability p each time, and at last from kC 1 to k with probability q. This is just
the scheme of subsequent Bernoulli trials until the first “failure” (D step to the left),
where the failure probability is q. Therefore we see that the offspring distribution
is indeed the same for each crossing of an edge, and it is the geometric distribution
of (5.34).

This alone does not yet prove rigorously that .Mk/ is a Galton–Watson process
with offspring distribution . To verify this, we provide an additional explanation
of the genealogical tree that corresponds to the above interpretation of offspring
of an individual as the upcrossings of Œk C 1; k C 2� in between two subsequent
upcrossings of Œk; k C 1�.

Consider any possible finite trajectory of the random walk that returns to 0 in
the last step and not earlier.

This is a sequence k D .k0; k1; : : : ; kN / in N0 such that k0 D kN D 0, k1 D 1,
knC1 D kn ˙ 1 and kn ¤ 0 for 0 < n < N . The number N must be even, and
kN �1 D 1.

Which such a sequence, we associate a rooted plane tree T.k/ that is constructed
in recursive steps n D 1; : : : ; N � 1 as follows. We start with the root �, which is
the current vertex of the tree at step 1. At step n, we suppose to have already drawn
the part of the tree that corresponds to .k0; : : : ; kn/, and we have marked a current
vertex, say u, of that current part of the tree. If n D N �1, we are done. Otherwise,
there are two cases. (1) If knC1 D kn � 1, then the tree remains unchanged, but
we mark the predecessor of x as the new current vertex. (2) If knC1 D knC 1 then
we introduce a new vertex, say v, that is connected to u by an edge in the tree and
becomes the new current vertex. When the procedure ends, we are back to � as the
current vertex.

Another way is to say that the vertex set of T.k/ consists of all those initial
subsequences .k0; : : : ; kn/ of k, where 0 < n < N and kn D kn�1 C 1. The
predecessor of the vertex corresponding to .k0; : : : ; kn/ with n > 1 is the shortest
initial subsequence of .k0; : : : ; kn/ that ends at kn�1. The root corresponds to
.k0; k1/ D .0; 1/.

This is the walk-to-tree coding with depth-first traversal. For example, the
trajectory .0; 1; 2; 3; 2; 3; 4; 3; 4; 3; 2; 1; 2; 3; 2; 3; 2; 3; 2; 1; 0/ induces the first of
the two trees in Figure 17. (The initial and final 0 are there “automatically”. We
might as well consider only sequences in N that start and end at 1.)

Conversely, when we start with a rooted plane tree, we can read its contour,
which is a trajectory k as above (with the initial and final 0 added). We leave it to
the reader to describe how this trajectory is obtained by a recursive algorithm.

The number of vertices of T.k/ is jT.k/j D N=2. Any vertex at level (D distance
from the root) k corresponds to precisely one step from k � 1 to k within the
trajectory k. (It also encodes the next occurring step from k to k � 1.) Thus, each
vertex encodes an upward crossing, and T.k/ is the genealogical tree that we have
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described at the beginning, of which we want to prove that it is a Galton–Watson
tree with offspring distribution .

The correspondence between k and T D T.k/ is one-to-one. The probability
that our random walk trajectory until the first return to 0 induces T is

PrRW.T/ D ProŒZ0 D k0; : : : ; ZN D kN � D q.pq/N=2�1 D qjTjpjTj�1;

where the superscript RW means “random walk”. Now, further above a general
construction of a probability space was given on which one can realize a Galton–
Watson tree with general offspring distribution . For our specific example where
 is as in (5.34), we can also use a simpler model.

Namely, it is sufficient to have a sequence .Xn/n�1 of i.i.d.˙1-valued random
variables with PrGWŒXn D 1� D p and PrGWŒXn D �1� D q. The superscript
GW refers to the Galton–Watson tree that we are going to construct. We consider
the value C1 as “success” and �1 as “failure”. With probability one, both values
C1 and �1 occur infinitely often. With .Xn/ we can build up recursively a random
genealogical tree T, based on the breadth-first order of any rooted plane tree. This
is the linear order where for vertices u, v we have u < v if either the distances to
the root satisfy juj < jvj, or juj D jvj and u is further to the left than v.

At the beginning, the only vertex of the tree is the root �. For each success
before the first failure, we draw one offspring of the root. At the first failure, �
is declared processed. At each subsequent step, we consider the next unprocessed
vertex of the current tree in the breadth-first order, and we give it one offspring
for each success before the next failure. When that failure occurs, that vertex is
processed, and we turn to the next vertex in the list. The process ends when no
more unprocessed vertex is available; it continues, otherwise. By construction,
the offspring numbers of different vertices are i.i.d. and geometrically distributed.
Thus, we obtain a Galton–Watson tree as proposed. Since

N 
 1() p 
 1=2;
that tree is a.s. finite in our case. The probability that it will be a given finite
rooted plane tree T is obtained as follows: each edge of T must correspond to a
success, and for each vertex, there must be one failure (when that vertex stops to
create offspring). Thus, the first 2jTj � 1 members of .Xn/ must consist of jTj � 1
successes and jTj failures. Therefore

PrGW.T/ D qjTjpjTj�1 D PrRW.T/:

We have obtained a one-to-one correspondence between random walk trajectories
until the first return to 0 and Galton–Watson trees with geometric offspring distri-
bution, and that correspondence preserves the probability measure.

This proves that the random tree created from the upcrossings of the drunkard’s
walk with p 
 1=2 is indeed the proposed Galton–Watson tree.
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We remark that the above correspondence between drunkard’s walks and Galton–
Watson trees was first described by Harris [30].

5.37 Exercise. Show that when p > 1=2 in Example 5.36, then .Mk/ is not a
Galton–Watson process.

C Branching Markov chains

We now combine the two models: Markov chain and Galton–Watson process.
We imagine that at a given time n, the members of the n-th generation of a finite
population occupy various points (sites) of the state space of a Markov chain .X; P /.
Multiple occupancies are allowed, and the initial generation has only one member
(the ancestor). The population evolves according to a Galton–Watson process with
offspring distribution , and at the same time performs random moves according
to the underlying Markov chain. In order to create the members of next generation
plus the sites that they occupy, each member of the n-th generation produces its k
children, according to the underlying Galton–Watson process, with probability.k/
and then dies (or we may say that it splits into k new members of the population).
Each of those new members which are thus “born” at a site x 2 X then moves
instantly to a random new site y with probability p.x; y/, independently of all
others and independently of the past. In this way, we get the next generation and
the positions of its members. Here, we always suppose that the offspring distribution
lives on N0 (that is, .1/ D 0) and is non-degenerate (we do not have .0/ D 1
or .1/ D 1). We do allow that .0/ > 0, in which case the process may die out
with positive probability.

The construction of a probability space on which this model may be realized
can be elaborated at various levels of rigour. One that comprises all the available
information is the following.

A single “trajectory” should consist of a full generation tree T, where to each
vertex u of T (D element of the population) we attach an element x 2 X , which
is the position of u. If uj is a successor of u in T, then uj occupies site y with
probability p.x; y/, given that u occupies x. This has to be independent of all the
other members of the population.

Thus (recalling that S is the support of ), our space is

�BMC D .S �X/†� D ˚! D .ku; xu/u2†
� W ku 2 S; xu 2 X



:

It is once more equipped with the product � -algebra ABMC of the discrete one
on S � X . For ! 2 �BMC, let N! D .ku/u2†

� be its projection onto �GW .
The associated Galton–Watson tree is T.!/ D T. N!/, defined as at the end of the
preceding section.
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Now let � be any finite subtree of†� containing the root, and choose an element
au 2 X for every u 2 �. For every u 2 �, we let

�.u/ D ��.u/ D maxfj 2 † W uj 2 �g;
in particular �.u/ D 0 if u has no successor in �. With these data, we associate the
basic event (analogous to the cylinder sets of Section 1.B)

D.� I au; u 2 �/ D ˚! D .ku; xu/u2†
� W xu D au

and ku � �.u/ for all u 2 �


:

Since ku D Nu.!/ is the number of children of u in the Galton–Watson process, the
condition ku � �.u/ means that whenever uj 2 � then this is one of the children
of u. Thus, D.�I au; u 2 �/ is the event that � is part of T.!/ and that each member
u 2 � of the population occupies the site au of X .

Given a starting point x 2 X , the probability measure governing the branching
Markov chain is now the unique measure on ABMC with

PrBMC
x

�
D.�I au; u 2 �/

�
D ıx.a�/ 

�
�.�/;1� Y

u2�nf�g

�
�.u/;1�p.au� ; au/;

(5.38)

where Œj;1/ D �fk W k � j g�.
We can now introduce the random variables that describe the branching Markov

chain BMC.X; P; / starting at x 2 X , where  is the offspring distribution. If
! D .ku; xu/u2†

� then for u 2 †�, we write

Zu.!/ D xu

for the site occupied by the element u. Of course, we are only interested in Zu.!/

when u 2 T.!/, that is, when u belongs to the population that descends from the
ancestor �. The branching Markov chain is then the (random) Galton–Watson tree
T together with the family of random variables .Zu/u2T indexed by the Galton–
Watson tree T. The Markov property extended to this setting says the following.

5.39 Facts. (1) For j 2 † � †� and x; y 2 X ,

PrBMC
x Œj 2 T; Zj D y� D Œj;1/ p.x; y/:

(2) If u; u0 2 †� are such that neither u 4 v nor v 4 u then the families�
Tu I .Zv/v2Tu

�
and

�
T0

u I .Zv0/v02Tu0

�
are independent.

(3) Given that Zu D y, the family .Zv/v2Tu
is BMC.X; P; / starting at y.

(4) In particular, if T contains a ray fun D j1 	 	 	 jn W n � 0g (infinite path
starting at �) then .Zun

/n�0 is a Markov chain on X with transition matrix P .
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Property (3) also comprises the generalization of time-homogeneity. The num-
ber of members of the n-th generation that occupy the site y 2 X is

M y
n .!/ D

ˇ̌fu 2 T.!/ W juj D n; Zu.!/ D yg
ˇ̌
:

Thus, the underlying Galton–Watson process (number of members of the n-th gen-
eration) is

Mn D
X
y2X

M y
n ;

while

M y D
1X

nD0

M y
n

is the total number of occupancies of the site y 2 X during the whole lifetime of
the BMC. The random variable M y takes its values in N [ f1g. The following
may be quite clear.

5.40 Lemma. Let u D j1 	 	 	 jn 2 †� and x; y 2 X . Then

PrBMC
x Œu 2 T; Zu D y� D p.n/.x; y/

nY
iD1

Œji ;1/:

Proof. We use induction on n. If n D 1 and u D j 2 † then this is (5.39.1). Now
suppose the statement is true for u D j1 	 	 	 jn and let v D ujnC1 2 †�. Then
v 2 T implies u 2 T. Using this and (5.39.3),

PrBMC
x Œv 2 T; Zv D y�
D
X
w2X

PrBMC
x Œv 2 T; Zv D y j u 2 T; Zu D w� PrBMC

x Œu 2 T; Zu D w�

D
X
w2X

PrBMC
x ŒujnC1 2 T; ZujnC1

D y j u2 T; ZuDw�p.n/.x; w/

nY
iD1

Œji ;1/

D
X
w2X

PrBMC
w ŒjnC1 2 T; ZjnC1

D y� p.n/.x; w/

nY
iD1

Œji ;1/

D
X
w2X

p.n/.x; w/p.w; y/

nC1Y
iD1

Œji ;1/:

This leads to the proposed statement. �

5.41 Exercise. (a) Deduce the following from Lemma 5.40. When the initial site
is x, then the expected number of members of the n-th generation that occupy the
site y is

EBMC
x .M y

n / D p.n/.x; y/ Nn;
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where (recall) N is the expected offspring number.

[Hint: writeM y
n as a sum of indicator functions of events as those in Lemma 5.40.]

(b) Let x; y 2 X and p.k/.x; y/ > 0. Show that PrBMC
x ŒM

y

k
� 1� > 0. �

The question of recurrence or transience becomes more subtle for BMC than for
ordinary Markov chains. We ask for the probability that throughout the lifetime of
the process, some site y is occupied by infinitely many members in the successive
generations of the population. In analogy with § 3.A, we define the quantities

HBMC.x; y/ D PrBMC
x ŒM y D1�; x; y 2 X:

5.42 Theorem. One either has (a) HBMC.x; y/ D 1 for all x; y 2 X , or (b)
0 < HBMC.x; y/ < 1 for all x; y 2 X , or (c) HBMC.x; y/ D 0 for all x; y 2 X .

Before the proof, we need the following.

5.43 Lemma. For all x; y; y0 2 X , one has PrBMC
x ŒM y D1; M y0

<1� D 0:
Proof. Let k be such that p.k/.y; y0/ > 0. First of all, using continuity of the
probability of increasing sequences,

PrBMC
x ŒM y D1; M y0

<1� D lim
m!1 PrBMC

x

�
ŒM y D1� \ Bm

�
;

where Bm D ŒM
y0

n D 0 for all n � m�. Now, ŒM y D 1� \ Bm is the limit
(intersection) of the decreasing sequence of the events Am;r , where

Am;r D
"

There are n.1/; : : : ; n.r/ � m with n.j / > n.j � 1/C k
such that M y

n.j /
� 1 for all j

#
\ Bm

� Bm;r D
"

There are n.1/; : : : ; n.r/ � m with n.j / > n.j � 1/C k
such that M y

n.j /
� 1 and M y0

n.j /Ck
D 0 for all j

#
:

If ! 2 Bm;r then there are (random) elements u.j / 2 T.!/ with ju.j /j D n.j /

such that Zu.j /.!/ D x. Since n.j / > n.j � 1/ C k, the initial parts with
height k of the generation trees rooted at the u.j / are independent. None of the
descendants of the u.j / after k generations occupies site y0. Therefore, if we let
ı D PrBMC

y ŒM
y0

k
D 0� then ı < 1 by Exercise 5.41 (b), and

PrBMC
x .Am;r/ 
 PrBMC

x .Bm;r/ 
 ır :

Letting r !1, we obtain PrBMC
x

�
ŒM y D1� \ Bm

� D 0, as required. �
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Proof of Theorem 5.42. We first fix y. Let x; x0 2 X be such that p.x0; x/ > 0.
Choose k � 1 be such that .k/ > 0. The probability that the BMC starting at
x0 produces .k/ children, which all move to x, is PrBMC

x0

�
N� D k D M x

1

� D
.k/ p.x0; x/k . Therefore

HBMC.x0; y/ � PrBMC
x0

�
N� D k DM x

1 ; M
y D1�

D .k/ p.x0; x/k PrBMC
x0

�
M y D1 j N� D k DM x

1

�
:

The last factor coincides with the probability that BMC with k particles (instead
of one) starting at x evolves such that M y D 1. That is, we have independent
replicas M y;1; : : : ;M y;k of M y descending from each of the k children of � that
are now occupying site x, and

HBMC.x0; y/
ı�
.k/ p.x0; x/k

� � PrBMC
x ŒM y;1 C 	 	 	 CM y;k D1�

D �1 � PrBMC
x ŒM y;1 <1; : : : ;M y;k <1��

D �1 � �1 �HBMC.x; y/
�k� � HBMC.x; y/:

Irreducibility now implies that wheneverHBMC.x; y/ > 0 for some x, then we have
HBMC.x0; y/ > 0 for all x0 2 X . In the same way,

1 �HBMC.x0; y/ D PrBMC
x0 ŒM y <1�

� .k/ p.x0; x/k PrBMC
x ŒM y;1 C 	 	 	 CM y;k <1�

D .k/ p.x0; x/k
�
1 �HBMC.x; y/

�k
:

Again, irreducibility implies that whenever HBMC.x; y/ < 1 for some x then
HBMC.x0; y/ < 1 for all x0 2 X . Now Lemma 5.43 implies that when we have
HBMC.x; y/ D 1 for some x; y then this holds for all x; y 2 X , see the next
exercise. �

5.44 Exercise. Show that indeed Lemma 5.43 together with the preceding argu-
ments yields the final part of the proof of the theorem. �

The last theorem justifies the following definition.

5.45 Definition. The branching Markov chain .X; P; / is called strongly recurrent
if HBMC.x; y/ D 1, weakly recurrent if 0 < HBMC.x; y/ < 1, and transient if
HBMC.x; y/ D 0 for some (equivalently, all) x; y 2 X .

Contrary to ordinary Markov chains, we do not have a zero-one law here as in
Theorem 3.2: we shall see examples for each of the three regimes of Definition 5.45.
Before this, we shall undertake some additional efforts in order to establish a general
transience criterion.
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Embedded process

We introduce a new, embedded Galton–Watson process whose population is just
the set of elements of the original Galton–Watson tree T that occupy the starting
point x 2 X of BMC.X; P; /. We define a sequence .Wx

n/n�0 of subsets of T:
we start with Wx

0 D f�g, and for n � 1,

Wx
n D

˚
v 2 T W Zv D x; jfu 2 T W � ¤ u 4 v; Zu D xgj D n



:

Thus, v 2 Wn means that if � D u0; u1; : : : ; ur D v are the successive points on
the shortest path in T from � to v, then Zuk

(k D 0; : : : ; r) starts at x and returns
to x precisely n times. In particular, the definition of W1 should remind the reader
of the “first return” stopping time tx defined for ordinary Markov chains in (1.26).
We set Y x

n D jWx
n j.

5.46 Lemma. The sequence .Y x
n /n�0 is an extended Galton–Watson process with

non-degenerate offspring distribution

�x.m/ D PrBMC
x ŒY x

1 D m�; m 2 N0 [ f1g:
Its expected offspring number is

�x D U.x; xj N/ D
1X

nD1

u.n/.x; x/ Nn;

where N is the expected offspring number in BMC.X; P; /, and U.x; xj 	 / is the
generating function of the first return probabilities tox for the Markov chain .X; P /,
as defined in (1.37).

Proof. We know from (5.39.3) that for distinct elements u 2 Wx
n , the families

.Zv/v2Tu
are independent copies of BMC.X; P; / starting at x. Therefore the

random numbers jfv 2 Wx
nC1 W u 4 vgj, where u 2 Wx

n , are independent and have
all the same distribution as Y x

1 . Now,

Wx
nC1 D

[
u2Wx

n

fv 2 Wx
nC1 W u 4 vg;

a disjoint union. This makes it clear that .Y x
n /n�0 is a (possibly extended) Galton–

Watson process with offspring distribution �x . The sets Wx
n , n 2 N, are its succes-

sive generations. In order to describe �x , we consider the events Œv 2 Wx
1 �.

5.47 Exercise. Prove that if v D j1 	 	 	 jn 2 †C then

PrBMC
x Œv 2 Wx

1 � D u.n/.x; x/

nY
iD1

Œji ;1/: �
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We resume the proof of Lemma 5.46 by observing that

Y x
1 D

X
v2†C

1Œv2Wx
1

� D
1X

nD1

X
v2†n

1Œv2Wx
1

�:

Now

EBMC
x

� X
v2†n

1Œv2Wx
1

�

�
D

X
vDj1			jn2†n

PrBMC
x Œv 2 Wx

1 �

D
X

j1;:::;jn2N

u.n/.x; x/

nY
iD1

Œji ;1/

D u.n/.x; x/

nY
iD1

�X
ji 2N

Œji ;1/
�

D u.n/.x; x/ Nn:

(5.48)

This leads to the proposed formula for �x D EBMC
x .Y x

1 /. At last, we show that �x

is non-degenerate, that is, PrBMC
x ŒY x

1 D 1� < 1, since clearly �x.0/ < 1 (e.g., by
Exercise 5.47). By assumption, .1/ < 1. If the population dies out at the first
step then also Y x

1 D 0. That is, PrBMC
x ŒY x

1 D 0� � .0/, and if .0/ > 0 then
PrBMC

x ŒY x
1 D 1� < 1. So assume that .0/ D 0. Then there is m � 2 such that

.m/ > 0. By irreducibility, there is n � 1 such that u.n/.x; x/ > 0. In particular,
there are x0; x1; : : : ; xn in X with x0 D xn D x and xk ¤ x for 1 
 k 
 n � 1
such that p.xk�1; xk/ > 0. We can consider the subtree � of†� with height n that
consists of all elements u 2 f1; : : : ; mg� � †� with juj 
 m. Then (5.38) yields

PrBMC
x ŒY x

1 � mn� � PrBMC
x Œ� � T; Zu D xk for all u 2 � with juj D k�

D Œm;1/1CmC			Cmn�1
nY

kD1

p.xk�1; xk/
mk

> 0;

and �x is non-degenerate. �

5.49 Theorem. For an irreducible Markov chain .X; P /, BMC.X; P; / is tran-
sient if and only if N 
 1=�.P /.
Proof. For BMC starting at x, the total number of occupancies of x is

M x D
1X

nD0

Y x
n :

We can apply Theorem 5.30 to the embedded Galton–Watson process .Y x
n /n�0,

taking into account Exercise 5.35 in the case when PrBMC
x ŒY x

1 D1� > 0. Namely,
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PrBMC
x ŒM x <1� D 1 precisely when the embedded process has average offspring

 1, that is, when U.x; xj N/ 
 1. By Proposition 2.28, the latter holds if and only
if N 
 1=�.P /. �

Regarding the last theorem, it was observed by Benjamini and Peres [6]
that BMC.X; P; / is transient when N < 1=�.P / and recurrent when N >

1=�.P /. Transience in the critical case N D 1=�.P / was settled by Gantert
and Müller [23].1

While the last theorem provides a good tool to distinguish between the transient
and the recurrent regime, at the moment (2009) no general criterion of compara-
ble simplicity is known to distinguish between weak and strong recurrence. The
following is quite obvious.

5.50 Lemma. Let x 2 X . BMC.X; P; / is strongly recurrent if and only if

PrBMC
x ŒZu D x for some u 2 T n f�g� D 1;

or equivalently (when jX j � 2), for all y 2 X n fxg,
PrBMC

y ŒZu D x for some u 2 T n f�g� D 1:
For this it is necessary that .0/ D 0.

Proof. We have strong recurrence if and only if the extinction probability for the
embedded Galton–Watson process .Y x

n / is 0. A quick look at Theorem 5.30 and
Figures 16 a, b convinces us that this is true if and only if �x > 1 and �x.0/ D 0.
Since �x is non-degenerate, �x.0/ D 0 implies �x > 1. Therefore we have strong
recurrence if and only if �x.0/ D PrBMC

x ŒY x
1 D 0� D 0. Since PrBMC

x ŒY x
1 D 0� D

1 � PrBMC
x ŒZu D x for some u 2 T n f�g�, the proposed criterion follows.

If .0/ > 0 then with positive probability, the underlying Galton–Watson tree
T consists only of �, in which case Y x

1 D 0. Therefore PrBMC
x ŒM y D 1� 


PrBMC
x ŒY x

1 > 0� < 1, and recurrence cannot be strong. This proves the first criterion.
It is clear that the second criterion is necessary for strong recurrence: if infinitely

members of the population occupy site x, when the starting point is y ¤ x, then
at least one member distinct from � must occupy x. Conversely, suppose that the
criterion is satisfied. Then necessarily .0/ D 0, and each member of the non-
empty first generation moves to some y 2 X . If one of them stays at x (when
p.x; x/ > 0) then we have an element u 2 T n f�g such that Zu D x. If one of
them has moved to y ¤ x, then our criterion guarantees that one of its descendants
will come back to x with probability 1. Therefore the first criterion is satisfied, and
we have strong recurrence. �

1The above short proof of Theorem 5.49 is the outcome of a discussion between Nina Gantert and
the author.
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5.51 Exercise. Elaborate the details of the last argument rigorously. �

We remark that in our definition of strong recurrence we mainly have in mind
the case when .0/ D 0: there is always at least one offspring. In the case when
.0/ > 0, we have the obvious inequality 0 
 HBMC.x; y/ 
 1 � 
, where

 is the extinction probability of the underlying Galton–Watson process. One
then may strengthen Theorem 5.42 by showing that one of HBMC.x; y/ D 1 � 
,
0 < HBMC.x; y/ < 1 � 
 or HBMC.x; y/ D 0 holds for all x; y 2 X . Then one
may redefine strong recurrence by HBMC.x; y/ D 1 � 
. We leave the details of
the modified proof of Theorem 5.42 to the interested reader.

We note the following consequence of (5.39.4) and Lemma 5.50.

5.52 Exercise. Show that if the irreducible Markov chain .X; P / is recurrent and the
offspring distribution satisfies .0/ D 0 then BMC.X; P; / is strongly recurrent.

�

There is one class of Markov chains where a complete description of strong
recurrence is available, namely random walks on groups as considered in (4.18).
Here we run into a small conflict of notation, since in the present chapter,  stands
for the offspring distribution of a Galton–Watson process and not for the law of a
random walk on a group. Therefore we just write P for the (irreducible) transition
matrix of our random walk on X D G and recall that it satisfies

p.n/.x; y/ D p.n/.gx; gy/ for all x; y; g 2 G and n 2 N0:

An obvious, but important consequence is the following.

5.53 Lemma. If .Zu/u2T is BMC.G; P; / starting at x 2 G and g 2 G then
.gZu/u2T is (a realization of ) BMC.G; P; / starting at y D gx.

(By “a realization of” we mean the following: we have chosen a concrete
construction of a probability space and associated family of random variables that
are our model of BMC. The family .gZu/u2T is not exactly the one of this model,
but it has the same distribution.)

5.54 Theorem. Let .G; P / be an irreducible random walk on the group G. Then
BMC.G; P; / is strongly recurrent if and only if the offspring distribution  sat-
isfies .0/ D 0 and N > 1=�.P /.
Proof. We know that transience holds precisely when N 
 1=�.P /. So we assume
that .0/ D 0 and N > 1=�.P /. Then there is k 2 N such that

˛ D p.k/.x; x/ Nk > 1;
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which is independent of x by group invariance. We fix this k and construct another
family of embedded Galton–Watson processes of the BMC. Suppose that u 2 T.
We define recursively a sequence of subsets Vu

n of T (as long as they are non-empty):

Vu
0 D fug; Vu

1 D fv 2 Tu W jvj D juj C k; Zv D Zug; and Vu
nC1 D

[
w2Vu

n

Vw
1 :

In words, if juj D n0 then Vu
1 consists of all descendants of u in generation number

n0 C k that occupy the same site as u, and Vu
nC1 consists of all descendants of the

elements in Vu
n that belong to generation number n0 C .nC 1/k and occupy again

the same site. Then
�jVu

nj
�

n�0
is a Galton–Watson process, which we call shortly

the .u; k/-process. By Lemma 5.53, all the .u; k/-processes, where u 2 T (and
k is fixed), have the same offspring distribution. Suppose that Zu D y. Then,
by Exercise 5.41 (a), the average of this offspring distribution is p.k/.y; y/ Nk D
˛ > 1. By Theorem 5.30, we have 
 < 1 for the extinction probability of the
.u; k/-process, and 
 does not depend on y D Zu.

Now recall that we assume .0/ D 0 and that .1/ ¤ 1, so that Œ2;1/ > 0.
We set u.m/ D 0 	 	 	 01 2 †C, the word starting with .m� 1/ letters 0 and the last
letter 1, where m 2 N. Then the predecessor of u.m/ (the word 0 	 	 	 0 with length
m� 1) is in T almost surely, so that PrŒu.m/ 2 T� D Œ2;1/ > 0. For m1 ¤ m2,
none of u.m1/ or u.m2/ is a predecessor of the other. Therefore (5.39.2) implies
that all the

�
u.m/; k

�
-processes are mutually independent, and so are the events

Bm D
�
u.m/ 2 T; the

�
u.m/; k

�
-process survives�:

Since Pr.Bm/ D .1�
/Œ2;1/ > 0 is constant, the complements of theBm satisfy
Pr
�T

m B
c
m

� D 0. On
S

m Bm, at least one of the
�
u.n/; k

�
-processes survives, and

all of its members belong to T. Therefore

PrxŒM
y D1 for some y 2 X� D 1:

On the other hand, by Lemma 5.43,

PrxŒM
x <1; M y D1 for some y 2X� 


X
y2X

PrxŒM
x <1; M y D1� D 0:

Thus PrxŒM
x <1� D 0, as proposed. �

We see that in the group invariant case, weak recurrence never occurs. Now we
construct examples where one can observe the phase transition from transience via
weak recurrence to strong recurrence, as the average offspring number N increases.

We start with two irreducible Markov chains .X1; P1/ and .X2; P2/ and connect
the two state spaces at a single “root” o. That is, we assume that X1 \ X2 D fog.
(Or, in other words, we identify “roots” oi 2 Xi , i D 1; 2, to become one common
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point o, while keeping the rest of the Xi disjoint.) Then we choose parameters
˛1; ˛2 D 1�˛1 > 0 and define a new Markov chain .X; P /, whereX D X1 [X2

and P is given as follows (where i D 1; 2):

p.x; y/ D

8̂̂̂
<
ˆ̂̂:
pi .x; y/; if x; y 2 Xi and x ¤ o;
˛i pi .o; y/; if x D o and y 2 Xi n ¹oº;
˛1 p1.o; o/C ˛2 p2.o; o/; if x D y D o; and

0; in all other cases.

(5.55)

In words, if the Markov chain at some time has its current state in Xi n fog, then it
evolves in the next step according to Pi , while if the current state is o, then a coin
is tossed (whose outcomes are 1 or 2 with probability ˛1 and ˛2, respectively) in
order to decide whether to proceed according to p1.o; 	/ or p2.o; 	/.

The new Markov chain is irreducible, and o is a cut point between X1 n fog
and X2 n fog (and vice versa) in the sense of Definition 1.42. It is immediate from
Theorem 1.38 that

U.o; ojz/ D ˛1 U1.o; ojz/C ˛2 U2.o; ojz/:
Let si and s be the radii of convergence of the power series Ui .o; ojz/ (i D 1; 2)
and U.o; ojz/, respectively. Then (since these power series have non-negative
coefficients) s D minfs1; s2g.
5.56 Lemma. minf�.P1/; �.P2/g 
 �.P / 
 maxf�.P1/; �.P2/g.

If .Xi ; Pi / is not �.Pi /-positive-recurrent for i D 1; 2 then

�.P / D maxf�.P1/; �.P2/g:
Proof. We use Proposition 2.28. Let ri D 1=�.Pi / and r D 1=�.P / be the radii of
convergence of the respective Green functions.

If z0 D minfr1; r2g then Ui .o; ojz0/ 
 1 for i D 1; 2, whence U.o; ojz0/ 
 1.
Therefore z0 
 r.

Conversely, if z > maxfr1; r2g then Ui .o; ojz/ > 1 for i D 1; 2, whence
U.o; ojz/ > 1. Therefore r < z.

Finally, if none .Xi ; Pi / is �.Pi /-positive-recurrent then we know from Ex-
ercise 3.71 that ri D si . With z0 as above, if z > z0 D minfs1; s2g, then at
least one of the power series U1.o; ojz/ and U2.o; ojz/ diverges, so that certainly
U.o; ojz/ > 1. Again by Proposition 2.28, r < z. Therefore r D z0, which proves
the last statement of the lemma. �

5.57 Proposition. If P on X1 [ X2 with X1 \ X2 D fog is defined as in (5.55),
then BMC.X; P; / is strongly recurrent if and only if BMC.Xi ; Pi ; / is strongly
recurrent for i D 1; 2.
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Proof. Suppose first that BMC.Xi ; Pi ; / is strongly recurrent for i D 1; 2. Then
PrBMC

y ŒZi
u D o for some u 2 T n f�g� D 1 for each y 2 Xi , where

�
Zi

u

�
u2T

is of
course BMC.Xi ; Pi ; /. Now, withinXinfog, BMC.X; P; / and BMC.Xi ; Pi ; /

evolve in the same way. Therefore

PrBMC
y ŒZi

u D o for some u 2 T n f�g� D PrBMC
y ŒZu D o for some u 2 T n f�g�

for all y 2 Xi n fog, i D 1; 2. That is, the second criterion of Lemma 5.50 is
satisfied for BMC.X; P; /.

Conversely, suppose that for at least one i 2 f1; 2g, BMC.Xi ; Pi ; / is not
strongly recurrent. Then, once more by Lemma 5.50, there is y 2 Xi n fog such
that PrBMC

y ŒZi
u ¤ o for all u 2 T� > 0. Again, this probability coincides with

PrBMC
y ŒZu ¤ o for all u 2 T�; and BMC.X; P; / cannot be strongly recurrent.

�

We now can construct a simple example where all three phases can occur.

5.58 Example. LetX1 andX2 be two copies of the additive group Z. LetP1 (onX1)
andP2 (onX2) be infinite drunkards’walks as in Example 3.5 with the parameterspi

andqi D 1�pi for i D 1; 2. We assume that 1
2
< p1 < p2. Thus�.Pi / D p4piqi ,

and �.P1/ > �.P2/. We can use (3.6) to see that these two random walks are
�-null-recurrent. We now connect the two walks at o D 0 as in (5.55). As above,
we write .X; P / for the resulting Markov chain. Its graph looks like an infinite
cross, that is, four half-lines emanating from o. The outgoing probabilities at o are
˛1p1 in direction East, ˛1q1 in direction West, ˛2p2 in direction North and ˛2q2

in direction South. Along the horizontal line of the cross, all other Eastbound tran-
sition probabilities (to the next neighbour) are p1 and all Westbound probabilities
are q1. Analogously, along the vertical line of the cross, all Northbound transition
probabilities (except those at o) are p2 and all Southbound transition probabilities
are q2. The reader is invited to draw a figure.

By Lemma 5.56, �.P / D �.P1/. We conclude: in our example, BMC.X; P; /
is

• transient if and only if N 
 1ıp4p1q1,

• recurrent if and only if N > 1ıp4p1q1,

• strongly recurrent if and only if .0/ D 0 and N > 1ıp4p2q2.

Further examples can be obtained from arbitrary random walks on countable
groups. One can proceed as in the last example, using the important fact that such
a random walk can never be �-positive recurrent. This goes back to a theorem of
Guivarc’h [29], compare with [W2, Theorem 7.8].
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The properties of the branching Markov chain .X; P; / give us the possibility to
give probabilistic interpretations of the Green function of the Markov chain .X; P /,
as well as of �-recurrence and -transience. We subsume.

For real z > 0, consider BMC.X; P; /with initial point x, where the offspring
distribution  has mean N D z. By Exercise 5.41, if z > 0, the Green function of
the Markov chain .X; P /,

G.x; yjz/ D
1X

nD0

EBMC
x .M y

n / D EBMC
x .M y/;

is the expected number of occupancies of the site y 2 X during the lifetime of the
branching Markov chain. Also, we know from Lemma 5.46 that

U.x; xjz/ D EBMC
x .Y x

1 /

is the average offspring number of in the embedded Galton–Watson process Y x
n D

jWx
n j, where (recall) Wx

n consists of all elements u in T with the property that along
the shortest path in the tree T from � to u, the n-th return to site x occurs at u.

Clearly r D 1=�.P / is the maximum value of z D N for which BMC.X; P; /
is transient, or, equivalently, the process .Y x

n / dies out almost surely.
Now consider in particular BMC.X; P; / with N D r. If the Markov chain

.X; P / is �-transient, then the embedded process .Y x
n / is sub-critical: its average

offspring number is < 1, and we do not only have PrBMC
x ŒM y <1� D 1, but also

EBMC
x .M y/ < 1 for all x; y 2 X . In the �-recurrent case, .Y x

n / is critical: its
average offspring number is D 1, and while PrBMC

x ŒM y < 1� D 1, the expected
number of occupancies of y is EBMC

x .M y/ D 1 for all x; y 2 X . We can also
consider the expected height in T of an element in the first generation Wx

1 of the
embedded process. By a straightforward adaptation of (5.48), this is

EBMC
x

�X
u2†�

juj 1Œu2Wx
1

�

�
D rU 0.x; xjr�/:

It is finite when .X; P / is �-positive recurrent, and infinite when .X; P / is �-null-
recurrent.



Chapter 6

Elements of the potential theory of transient
Markov chains

A Motivation. The finite case

At the centre of classical potential theory stands the Laplace equation

�f D 0 on O � Rd ; (6.1)

where� is the Laplace operator on Rd and O is a relatively compact open domain.
A typical problem is to find a functionf 2 C.O�/, twice differentiable and solution
of (6.1) in O, which satisfies

f j@O D g 2 C.@O/ (6.2)

(“Dirichlet problem”). The function g represents the boundary data.

Let us consider the simple example where the dimension is d D 2 and O is the
interior of the square whose vertices are the points .�1;�1/, .1;�1/, .1; 1/ and
.�1; 1/. A typical method for approximating the solution of the problem (6.1)–(6.2)
consists in subdividing the square by a partition of its sides in 2n pieces of length
� D 1=n; see Figure 18.

�

Figure 18

For the second order partial derivatives we then substitute the symmetric differences

@2f

@x2
.x; y/  f .x C �; y/ � 2f .x; y/C f .x � �; y/

�2
;

@2f

@y2
.x; y/  f .x; y C �/ � 2f .x; y/C f .x; y � �/

�2
:
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We then write down the difference equation obtained in this way from the Laplace
equation in the points

.x; y/ D .i�; j�/; i; j D �nC 1; : : : ; 0; : : : ; n � 1:

f
�
.i C 1/�; j�� � 2f �i�; j��C f �.i � 1/�; j��

�2

C f
�
i�; .j C 1/�� � 2f �i�; j��C f �i�; .j � 1/��

�2
D 0:

Setting h.i; j / D f .i�; j�/ and dividing by 4, we get

1

4

�
h.i C 1; j /C h.i � 1; j /C h.i; j C 1/C h.i; j � 1/� � h.i; j / D 0; (6.3)

that is, h.i; j / must coincide with the arithmetic average of the values of h at the
points which are neighbours of .i; j / in the square grid. As i and j vary, this
becomes a system of 4.n � 1/2 linear equations in the unknown variables h.i; j /,
i; j D �nC 1; : : : ; 0; : : : ; n� 1; the function g on @O yields the prescribed values

h.˙n; j / D g.˙1; j�/ and h.i;˙n/ D g.i�;˙1/: (6.4)

This system can be resolved by various methods (and of course, the original partial
differential equation can be solved by the classical method of separation of the
variables). The observation which is of interest for us is that our equations are
linked with simple random walk on Z2, see Example 4.63. Indeed, if P is the
transition matrix of the latter, then we can rewrite (6.3) as

h.i; j / D Ph.i; j /; i; j D �nC 1; : : : ; 0; : : : ; n � 1;
where the action of P on functions is defined by (3.16). This suggests a strong
link with Markov chain theory and, in particular, that the solution of the equations
(6.3)–(6.4) can be found as well as interpreted probabilistically.

Harmonic functions and Dirichlet problem for finite Markov chains

Let .X; P / be a finite, irreducible Markov chain (that is,X is finite). We choose and
fix a subsetXo � X , which we call the interior, and its complement #X D X nXo,
the boundary, both non-empty. We suppose thatXo is “connected” in the sense that
PXo D �p.x; y/�

x;y2Xo – the restriction ofP toXo in the sense of Definition 2.14 –

is irreducible. (This means that the subgraph of �.P / induced by Xo is strongly
connected; for any pair of points x; y 2 X0 there is an oriented path from x to y
whose points all lie in Xo.)

We call a function h W X ! R harmonic onXo, if h.x/ D Ph.x/ for every x 2
Xo, where (recall) Ph.x/ D P

y2X p.x; y/h.y/: As in Chapter 4, our “Laplace
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operator” is P � I , acting on functions as the product of a matrix with column
vectors. Harmonicity has become a mean value property: in each x 2 Xo, the
value h.x/ is the weighted mean of the values of h, computed with the weights
p.x; y/, y 2 X .

We denote by H .Xo/ D H .Xo; P / the linear space of all functions onX which
are harmonic on Xo. Later on, we shall encounter the following in a more general
context. We have already seen it in the proof of Theorem 3.29.

6.5 Lemma (Maximum principle). Let h 2 H .Xo/ and M D maxX h.x/. Then
there is y 2 #X such that h.y/ DM .

If h is non-constant then h.x/ < M for every x 2 Xo.

Proof. We modify the transition matrix P by setting

Qp.x; y/ D p.x; y/; if x 2 Xo; y 2 X;
Qp.x; x/ D 1; if x 2 #X;
Qp.x; y/ D 0; if x 2 #X and y ¤ x:

We obtain a new transition matrix zP , with one non-essential classXo and all points
in#X as absorbing states. (“We have made all elements of#X absorbing.”) Indeed,
by our assumptions, also with respect to zP

x ! y for all x 2 Xo; y 2 X:
We observe that h 2 H .Xo; P / if and only if h.x/ D zPh.x/ for all x 2 X (not
only those in #X ). In particular, zP nh.x/ D h.x/ for every x 2 X .

Suppose that there is x 2 Xo with h.x/ D M . Take any x0 2 X . Then
Qp.n/.x; x0/ > 0 for some n. We get

M D h.x/ D Qp.n/.x; x0/ h.x0/C
X

y¤x0

Qp.n/.x; y/ h.y/


 Qp.n/.x; x0/ h.x0/C
X

y¤x0

Qp.n/.x; y/M

D Qp.n/.x; x0/ h.x0/C �1 � Qp.n/.x; x0/
�
M;

whence h.x0/ � M . Since M is the maximum, h.x0/ D M . Thus, h must be
constant.

In particular, if h is non-constant, it cannot assume its maximum in Xo. �

Let s D s#X be the hitting time of #X , see (1.26):

s#X D inffn � 0 W Zn 2 #Xg;
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for the Markov chain .Zn/ associated with P , see (1.26). Note that substituting P
with zP , as defined in the preceding proof, does not change s. Corollary 2.9, applied
to zP , yields that PrxŒs

#X <1� D 1 for every x 2 X . We set

�x.y/ D PrxŒs <1; Zs D y�; y 2 #X: (6.6)

Then, for each x 2 X , the measure �x is a probability distribution on #X , called
the hitting distribution of #X .

6.7 Theorem (Solution of the Dirichlet problem). For every function g W #X ! R
there is a unique function h 2 H .Xo; P / such that h.y/ D g.y/ for all y 2 #X .
It is given by

h.x/ D
Z

#X

g d�x :

Proof. (1) For fixed y 2 #X ,

x 7! �x.y/ .x 2 X/
defines a harmonic function. Indeed, if x 2 Xo, we know that s � 1, and applying
the Markov property,

�x.y/ D
X
w2X

PrxŒZ1 D w; s <1; Zs D y�

D
X
w2X

p.x;w/ PrxŒs <1; Zs D y j Z1 D w�

D
X
w2X

p.x;w/ Prw Œs <1; Zs D y�

D
X
w2X

p.x;w/ �w.y/:

Thus,

h.x/ D
Z

#X

g d�x D
X

y2#X

g.y/ �x.y/

is a convex combination of harmonic functions. Therefore h 2 H .Xo; P /. Fur-
thermore, for y 2 #X

�y.y/ D 1 and �y.y
0/ D 0 for all y0 2 #X; y0 ¤ y:

We see that h.y/ D g.y/ for every y 2 #X .
(2) Having found the harmonic extension of g to Xo, we have to show its

uniqueness. Let h0 be another harmonic function which coincides with g on #X .
Then h0 � h is harmonic, and

h.y/ � h0.y/ D 0 for all y 2 #X:
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By the maximum principle, h� h0 
 0. Analogously h0 � h 
 0. Therefore h0 and
h coincide. �

From the last theorem, we see that the potential theoretic task to solve the
Dirichlet problem has a probabilistic solution in terms of the hitting distributions.
This will be the leading viewpoint in the present chapter, namely, to develop some
elements of the potential theory associated with a stochastic transition matrix P
and the associated Laplace operator P � I under the viewpoint of its probabilistic
interpretation.

We return to the Dirichlet problem for finite Markov chains, i.e., chains with
finite state space. Above, we have adopted our specific hypotheses on Xo and #X
only in order to clarify the analogy with the continuous setting. For a general finite
Markov chain, not necessarily irreducible, we define the linear space of harmonic
functions on X

H D H .X; P / D fh W X ! R j h.x/ D Ph.x/ for all x 2 Xg:
Then we have the following.

6.8 Theorem. Let .X; P / be a finite Markov chain, and denote its essential classes
by Ci , i 2 I D f1; : : : ; mg.

(a) If h is harmonic on X , then h is constant on each Ci .

(b) For each function g W I ! R there is a unique function h 2 H .X; P / such
that for all i 2 I and x 2 Ci one has h.x/ D g.i/.

Proof. (a) Let Mi D maxCi
h, and let x 2 Ci such that h.x/ D Mi . As in the

proof of Lemma 6.5, if x0 2 Ci , we choose n with p.n/.x; x0/ > 0. Then

Mi D h.x/ D P nh.x/ 
 �1 � p.n/.x; x0/
�
Mi C p.n/.x; x0/h.x0/;

and h.x0/ �Mi . Hence h.x0/ DMi .
(b) Let

s D sXess D inffn � 0 W Zn 2 Xessg;
where Xess D C1 [ 	 	 	 [ Cm. By Corollary 2.9, we have PrxŒs < 1� D 1 for
each x. Therefore

�x.i/ D PrxŒs <1; Zs 2 Ci � (6.9)

defines a probability distribution on I . As above,

h.x/ D
X
i2I

g.i/�x.i/

defines the unique harmonic function on X with value g.i/ on Ci , i 2 I . We leave
the details as an exercise to the reader. �
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Note, for the finite case, the analogy with Corollary 3.23 concerning the sta-
tionary probability measures.

6.10 Exercise. Elaborate the details from the end of the last proof, namely, that
h.x/ D P

i2I g.i/�x.i/ is the unique harmonic function on X with value g.i/
on Ci . �

B Harmonic and superharmonic functions. Invariant
and excessive measures

In Theorem 6.8 we have described completely the harmonic functions in the finite
case. From now on, our focus will be on the infinite case, but most of the results
will be valid also when X is finite. However, we shall work under the following
restriction.

We always assume that P is irreducible on X .1

We do not specify any subset ofX as a “boundary”: in the infinite case, the bound-
ary will be a set of new points, to be added to X “at infinity”. We shall also admit
the situation when P is a substochastic matrix. In this case, the measures Prx

(x 2 X ) on the trajectory space, as constructed in Section 1.B are no more prob-
ability measures. In order to correct this defect, we can add an absorbing state �
to X . We extend the transition probabilities to X [ f�g:

p.�; �/ D 1 and p.x; �/ D 1 �
X
y2X

p.x; y/; x 2 X: (6.11)

Now the measures on the trajectory space ofX [ f�g, which we still denote by Prx

(x 2 X ), become probability measures. We can think of � as a “tomb”: in any
state x, the Markov chain .Zn/ may “die” (� be absorbed by �) with probability
p.x; �/.

We add the state � to X only when the matrix P is strictly substochastic in
some x, that is,

P
y p.x; y/ < 1. From now on, speaking of the trajectory space

.�;A;Prx/, x 2 X , this will refer to .X; P /, when P is stochastic, and to .X [
f�g; P /, otherwise.

Harmonic and superharmonic functions

All functions f W X ! R considered in the sequel are supposed to beP -integrable:X
y2X

p.x; y/ jf .y/j <1 for all x 2 X: (6.12)

1Of course, potential and boundary theory of non-irreducible chains are also of interest. Here, we
restrict the exposition to the basic case.
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In particular, (6.12) holds for every function when P has finite range, that is, when
fy 2 X W p.x; y/ > 0g is finite for each x.

As previously, we define the transition operator f 7! Pf ,

Pf .x/ D
X
y2X

p.x; y/f .y/:

We repeat that our discrete analogue of the Laplace operator is P � I , where I is
the identity operator. We also repeat the definition of harmonic functions.

6.13 Definition. A real function h on X is called harmonic if h.x/ D Ph.x/, and
superharmonic if h.x/ � Ph.x/ for every x 2 X .

We denote by

H D H .X; P / D fh W X ! R j Ph D hg;
H C D fh 2 H j h.x/ � 0 for all x 2 Xg and

H 1 D fh 2 H j h is bounded on Xg
(6.14)

the linear space of all harmonic functions, the cone of the non-negative harmonic
functions and the space of bounded harmonic functions. Analogously, we define
� D �.X; P /, the space of all superharmonic functions, �C and �1. (Note that �

is not a linear space.)
The following is analogous to Lemma 6.5. We assume of course irreducibility

and that jX j > 1.

6.15 Lemma (Maximum principle). If h 2 H and there is x 2 X such that
h.x/ D M D maxX h, then h is constant. Furthermore, if M ¤ 0 , then P is
stochastic.

Proof. We use irreducibility. If x0 2 X and p.n/.x; x0/ > 0, then as in the proof of
Lemma 6.5,

M D h.x/ 

X

y¤x0

p.n/.x; y/M C p.n/.x; x0/ h.x0/


 �1 � p.n/.x; x0/
�
M C p.n/.x; x0/ h.x0/

where in the second inequality we have used substochasticity. As above it follows
that h.x0/ D M . In particular, the constant function h � M is harmonic. Thus, if
M ¤ 0, then the matrix P must be stochastic, since X has more than one element.

�

6.16 Exercise. Deduce the following in at least two different ways.
If X is finite and P is irreducible and strictly substochastic in some point, then
H D f0g. �
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We next exhibit two simple properties of superharmonic functions.

6.17 Lemma. (1) If h 2 �C then P nh 2 �C for each n, and either h � 0 or
h.x/ > 0 for every x.

(2) If hi , i 2 I , is a family of superharmonic functions and h.x/ D infI hi .x/

defines a P -integrable function, then also h is superharmonic.

Proof. (1) Since 0 
 Ph 
 h, the P -integrability of h implies that of Ph and,
inductively, also of P nh. Furthermore, the transition operator is monotone: if
f 
 g then Pf 
 Pg. In particular, P nh 
 h.

Suppose that h.x/ D 0 for some x. Then for each n,

0 D h.x/ �
X

y

p.n/.x; y/h.y/:

Since h � 0, we must have h.y/ D 0 for every y with x
n�! y. Irreducibility

implies h � 0.
(2) By monotonicity of P , we have Ph 
 Phi 
 hi for every i 2 I . Therefore

Ph 
 infI hi D h. �

6.18 Exercise. Show that in statement (2) of Lemma 6.17, P -integrability of h D
infI hi follows from P -integrability of the hi , if � the set I is finite, or if � the hi

are uniformly bounded below (e.g., non-negative). �

In the case when P is strictly substochastic in some state x, the elements of X
cannot be recurrent. Indeed, if we pass to the stochastic extension of P onX [f�g,
we know that the irreducible class X is non-essential, whence non-recurrent by
Theorem 3.4 (b).

In general, in the transient (irreducible) case, there is a fundamental family of
functions in �C:

6.19 Lemma. If .X; P / is transient, then for each y 2 X , the function G. 	; y/,
defined by x 7! G.x; y/, is superharmonic and positive. There is at most one
y 2 X for which G. 	; y/ is a constant function. If P is stochastic, then G. 	; y/ is
non-constant for every y.

Proof. We know from (1.34) that

PG. 	; y/ D G. 	; y/ � 1y :

Therefore G. 	; y/ 2 �C.
Suppose that there are y1; y2 2 X , y1 ¤ y2, such that the functions G. 	; yi /

are constant. Then, by Theorem 1.38 (b)

F.y1; y2/ D G.y1; y2/

G.y2; y2/
D 1 and F.y2; y1/ D G.y2; y1/

G.y1; y1/
D 1:
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Now Proposition 1.43 (a) implies F.y1; y1/ � F.y1; y2/F.y2; y1/ D 1, and y1 is
recurrent, a contradiction.

Finally, if P is stochastic, then every constant function is harmonic, while
G. 	; y/ is strictly subharmonic at y, so that it cannot be constant. �

6.20 Exercise. Show that G. 	; y/ is constant for the substochastic Markov chain
illustrated in Figure 19. �
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Figure 19

The following is the fundamental result in this section. (Recall our assumption
of irreducibility and that jX j > 1, while P may be substochastic.)

6.21 Theorem. .X; P / is recurrent if and only if every non-negative superharmonic
function is constant.

Proof. a) Suppose that .X; P / is recurrent.

First step. We show that �C D H C:
Let h 2 �C. We set g.x/ D h.x/ � Ph.x/. Then g is non-negative and

P -integrable. We have

nX
kD0

P kg.x/ D
nX

kD0

�
P kh.x/ � P kC1h.x/

� D h.x/ � P nC1h.x/:

Suppose that g.y/ > 0 for some y. Then

nX
kD0

p.k/.x; y/ g.y/ 

nX

kD0

P kg.x/ 
 h.x/

for each n, and
G.x; y/ 
 h.x/=g.y/ <1;

a contradiction. Thus g � 0, and h is harmonic. In particular, substochasticity
implies that the constant function 1 is superharmonic, whence harmonic, and P
must be stochastic. (We know this already from the fact that otherwise, X is a
non-essential class in X [ f�g.)
Second step. Let h 2 �C D H C, and let x1; x2 2 X . We setMi D h.xi /, i D 1; 2.
Then hi .x/ D minfh.x/;Mig is a superharmonic function by Lemma 6.17, hence
harmonic by the first step. But hi assumes its maximum Mi in xi and must be
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constant by the maximum principle (Lemma 6.15): minfh.x/;Mig DMi for all x.
This yields

h.x1/ D minfh.x1/; h.x2/g D h.x2/;

and h is constant.

b) Conversely, suppose that �C D fconstantsg. Then, by Lemma 6.19, .X; P /
cannot be transient: otherwise there is y 2 X for which G. 	; y/ 2 �C is non-
constant. �

6.22 Exercise. The definition of harmonic and superharmonic functions does of
course not require irreducibility.

(a) Show that when P is substochastic, not necessarily irreducible, then the
function F. 	; y/ is superharmonic for each y.

(b) Show that .X; P / is irreducible if and only if every non-negative, non-zero
superharmonic function is strictly positive in each point.

(c) Assume in addition that P is stochastic. Show the following. If a superhar-
monic function attains its minimum in some point x then it has the same value in
every y with x ! y.

(d) Show for stochastic P that irreducibility is equivalent with the minimum
principle for superharmonic functions: if a superharmonic function attains a mini-
mum in some point then it is constant. �

Invariant and excessive measures

As above, we suppose that .X; P / is irreducible, jX j � 2 and P substochastic. We
continue, with the proof of Theorem 6.26, the study of invariant measures initiated
in Section 3.B. Recall that a measure � on X is given as a row vector

�
�.x/

�
x2X

.
Here, we consider only non-negative measures. In analogy with P -integrability of
functions, we allow only measures which satisfy

�P.y/ D
X
x2X

�.x/p.x; y/ <1 for all y 2 X: (6.23)

The action of the transition operator is multiplication with P on the right: � 7!
�P . We recall from Definition 3.17 that a measure � on X is called invariant or
stationary, if � D �P . Furthermore, � is called excessive or superinvariant, if
�.y/ � �P.y/ for every y 2 X . We denote by �C D �C.X; P / and EC D
EC.X; P / the cones of all invariant and superinvariant measures, respectively.

Theorem 3.19 and Corollary 3.23 describe completely the invariant measures in
the case whenX is finite andP stochastic, not necessarily irreducible. On the other
hand, if X is finite and P irreducible, but strictly substochastic in some point, then
the unique invariant measure is � � 0. In fact, in this case, there are no harmonic
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functions ¤ 0 (see Exercise 6.16). In other words, the matrix P does not have

 D 1 as an eigenvalue.

The following is analogous to Lemmas 6.17 and 6.19.

6.24 Exercise. Prove the following.
(1) If � 2 EC then �P n 2 EC for each n, and either � � 0 or �.x/ > 0 for

every x.
(2) If �i , i 2 I , is a family of excessive measures, then also �.x/ D infI �i .x/

is excessive.
(3) If .X; P / is transient, then for each x 2 X , the measure G.x; 	/, defined by

y 7! G.x; y/, is excessive. �
Next, we want to know whether there also are excessive measures in the recurrent

case. To this purpose, we recall the “last exit” probabilities `.n/.x; y/ and the
associated generating function L.x; yjz/ defined in (3.56) and (3.57), respectively.
We know from Lemma 3.58 that

L.x; y/ D
1X

nD0

`.n/.x; y/ D L.x; yj1/;

the expected number of visits in y before returning to x, is finite. Setting z D 1 in
the second and third identities of Exercise 3.59, we get the following.

6.25 Corollary. In the recurrent as well as in the transient case, for each x 2 X ,
the measure L.x; 	/, defined by y 7! L.x; y/, is finite and excessive.

Indeed, in Section 3.F, we have already used the fact that L.x; 	/ is invariant in
the recurrent case.

6.26 Theorem. Let .X; P / be substochastic and irreducible. Then .X; P / is recur-
rent if and only if there is a non-zero invariant measure � such that each excessive
measure is a multiple of �, that is

EC.X; P / D fc 	 � W c � 0g:
In this case, P must be stochastic.

Proof. First, assume that P is recurrent. Then we know e.g. from Theorem 6.21
that P must be stochastic (since constant functions are harmonic). We also know,
from Corollary 6.25, that there is an excessive measure � satisfying �.y/ > 0 for
all y. (Take � D L.x; 	/ for some x.) We construct the �-reversal yP of P as in
(3.30) by

Op.x; y/ D �.y/p.y; x/=�.x/: (6.27)

Excessivity of � yields that yP is substochastic. Also, it is straightforward to prove
that

Op.n/.x; y/ D �.y/p.n/.y; x/=�.x/:
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Summing over n, we see that also yP is recurrent, whence stochastic. Thus, �
must be invariant. If � is any other excessive measure, and we define the function
h.x/ D �.x/=�.x/, then as in (3.31), we find that yPh 
 h. By Theorem 6.21, h
must be constant, that is, � D c 	 � for some c � 0.

To prove the converse implication, we just observe that in the transient case,
the measure � D G.x; 	/ satisfies � P D � � ıx . It is excessive, but not invariant.

�

C Induced Markov chains

We now introduce and study an important probabilistic notion for Markov chains,
whose relevance for potential theoretic issues will become apparent in the next
sections.

Suppose that .X; P / is irreducible and substochastic. Let A be an arbitrary
non-empty subset of X . The hitting time tA D inffn > 0 W Zn 2 Ag defined in
(1.26) is not necessarily a.s. finite. We define

pA.x; y/ D PrxŒt
A <1; ZtA D y�:

If y … A then pA.x; y/ D 0. If y 2 A,

pA.x; y/ D
1X

nD1

X
x1;:::;xn�12XnA

p.x; x1/p.x1; x2/ 	 	 	p.xn�1; y/: (6.28)

We observe that X
y2A

pA.x; y/ D PrxŒt
A <1� 
 1:

In other words, the matrix PA D �
pA.x; y/

�
x;y2A

is substochastic. The Markov

chain .A; PA/ is called the Markov chain induced by .X; P / on A.
We observe that irreducibility of .X; P / implies irreducibility of the induced

chain: for x; y 2 A (x ¤ y) there are n > 0 and x1; : : : ; xn�1 2 X such that
p.x; x1/p.x1; x2/ 	 	 	p.xn�1; y/ > 0. Let i1 < 	 	 	 < im�1 be the indices for

which xij 2 A. Then pA.x; xi1/p
A.xi1 ; xi2/ 	 	 	pA.xim�1

; y/ > 0, and x
m�! y

with respect to PA.
In general, the matrix PA is not stochastic. If it is stochastic, that is,

PrxŒt
A <1� D 1 for all x 2 A;

then we call the setA recurrent for .X; P /. If the Markov chain .X; P / is recurrent,
then every non-empty subset ofX is recurrent for .X; P /. Conversely, if there exists
a finite recurrent subset A of X , then .X; P / must be recurrent.
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6.29 Exercise. Prove the last statement as a reminder of the methods of Chapter 3.
�

On the other hand, even when .X; P / is transient, one can very well have
(infinite) proper subsets of X that are recurrent.

6.30 Example. Consider the random walk on the Abelian group Z2 whose law 

in the sense of (4.18) (additively written) is given by


�
.1; 0/

� D p1; 
�
.0; 1/

� D p2; 
�
.�1; 0/� D p3; 

�
.0;�1/� D p4;

and 
�
.k; l/

� D 0 in all other cases, where pi > 0 and p1 C p2 C p3 C p4 D 1.
Thus

p
�
.k; l/; .k C 1; l/� D p1; p

�
.k; l/; .k; l C 1/� D p2;

p
�
.k; l/; .k � 1; l/� D p3; p

�
.k; l/; .k; l � 1/� D p4;

.k; l/ 2 Z2.

6.31 Exercise. Show that this random walk is recurrent if and only if p1 D p3 and
p2 D p4. �

Setting
A D f.k; l/ 2 Z2 W k C ` is even g;

one sees immediately that A is a recurrent set for any choice of the pi . Indeed,
Pr.k;l/Œt

A D 2� D 1 for every .k; l/ 2 A. The induced chain is given by

pA
�
.k; l/; .k C 2; l/� D p2

1 ; pA
�
.k; l/; .k C 1; l C 1/� D 2p1p2;

pA
�
.k; `/; .k; `C 2/� D p2

2 ; pA
�
.k; l/; .k � 1; l C 1/� D 2p2p3;

pA
�
.k; l/; .k � 2; l/� D p2

3 ; pA
�
.k; l/; .k � 1; l � 1/� D 2p3p4;

pA
�
.k; l/; .k; l � 2/� D p2

4 ; pA
�
.k; l/; .k C 1; l � 1/� D 2p1p4;

pA
�
.k; l/; .k; l/

� D 2p1p3 C 2p2p4:

6.32 Example. Consider the infinite drunkard’s walk on Z (see Example 3.5)
with parameters p and q D 1 � p. The random walk is recurrent if and only if
p D q D 1=2.

(1) Set A D f0; 1; : : : ; N g. Being finite, the set A is recurrent if and only the
random walk itself is recurrent. The induced chain has the following non-zero
transition probabilities.

pA.k � 1; k/ D p; pA.k; k � 1/ D q .k D 1; : : : ; N /; and

pA.0; 0/ D pA.N;N / D minfp; qg:
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Indeed, if – starting at stateN – the first return toA occurs inN , the first step of .Zn/

has to go from N to N C 1, after which .Zn/ has to return to N . This means that
pA.N;N / D p F.N C 1;N /, and in Examples 2.10 and 3.5, we have computed
F.N C 1;N / D F.1; 0/ D .1� jp � qj/=2p, leading to pA.N;N / D minfp; qg.
By symmetry, pA.0; 0/ has the same value.

In particular, if p > q, the induced chain is strictly substochastic only at the
point N . Conversely, if p < q, the only point of strict substochasticity is 0.

(2) SetA D N0. The transition probabilities of the induced chain coincide with
those of the original random walk in each point k > 0. Reasoning as above in (1),
we find

pN0.0; 1/ D p and pN0.0; 0/ D minfp; qg:
We see that the set N0 is recurrent if and only if p � q. Otherwise, the only point
of strict substochasticity is 0.

6.33 Lemma. If the set A is recurrent for .X; P / then

PrxŒt
A <1� D 1 for all x 2 X:

Proof. Factoring with respect to the first step, one has – even when the set A is not
recurrent –

PrxŒt
A <1� D

X
y2A

p.x; y/C
X

y2XnA

p.x; y/ Pry Œt
A <1� for all x 2 X:

(Observe that in case y D Z1 2 A, one has tA D 1.) In particular, if we have
Pry ŒtA <1� D 1 for every y 2 A, then the function h.x/ D PrxŒt

A <1� is har-
monic and assumes its maximum value1. By the maximum principle (Lemma 6.15),
h � 1. �

Observe that the last lemma generalizes Theorem 3.4 (b) in the irreducible case.
Indeed, one may as well introduce the basic potential theoretic setup – in particular,
the maximum principle – at the initial stage of developing Markov chain theory and
thereby simplify a few of the proofs in the first chapters.

The following is intuitively obvious, but laborious to formalize.

6.34 Theorem. If A � B � X then .PB/A D PA.

Proof. Let .ZB
n / be the Markov chain relative to .B; PB/. It is a random subse-

quence of the original Markov chain .Zn/, which can be realized on the trajectory
space associated with .X; P / (which includes the “tomb” state �). We use the ran-
dom variable vB introduced in 1.C (number of visits inB), and define wB

n .!/ D k,
if n 
 vB.!/ and k is the instant of the n-th return visit to B . Then

ZB
n D

´
ZwB

n
; if n 
 vB ;

�; otherwise.
(6.35)
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Let tA
B be the stopping time of the first visit of .ZB

n / inA. SinceA � B , we have for
every trajectory ! 2 � that tA.!/ D 1 if and only if tA

B .!/ D 1. Furthermore,
tA.!/ � tB.!/. Hence, if tA.!/ <1, then (6.35) implies

ZB

tA
B

.!/
.!/ D ZtA.!/.!/;

that is, the first return visits in A of .ZB
n / and of .Zn/ take place at the same point.

Consequently, for x; y 2 A,

.pB/A.x; y/ D PrxŒt
A
B <1; ZB

tA
B

D y�
D PrxŒt

A <1; ZtA D y� D pA.x; y/: �

If A and B are two arbitrary non-empty subsets of X (not necessarily such that
one is contained in the other), we define the restriction of P to A � B by

PA;B D
�
p.x; y/

�
x2A;y2B

: (6.36)

In particular, if A D B , we have PA;A D PA, as defined in Definition 2.14. Recall
(2.15) and the associated Green function GA.x; y/ for x; y 2 A, which is finite by
Lemma 2.18.

6.37 Lemma. PA D PA C PA;XnAGXnA PXnA;A:

Proof. We use formula (6.28), factorizing with respect to the first step. If x; y 2 A,
then the induced chain starting at x and going to y either moves to y immediately,
or else exits A and re-enters into A only at the last step, and the re-entrance must
occur at y:

pA.x; y/ D p.x; y/C
X

v2XnA

p.x; v/ PrvŒt
A <1; ZtA D y�: (6.38)

We now factorize with respect to the last step, using the Markov property:

PrvŒt
A <1; ZtA D y� D

X
w2XnA

PrvŒt
A <1; ZtA�1 D w; ZtA D y�

D
X

w2XnA

1X
nD1

PrvŒt
A D n; Zn�1 D w; Zn D y�

D
X

w2XnA

1X
nD1

PrvŒZn D y; Zn�1 D w; Zi … A for all i < n�

D
X

w2XnA

1X
nD0

PrvŒZn D w; Zi … A for all i 
 n� p.w; y/

D
X

w2XnA

GXnA.v; w/ p.w; y/:
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[In the last step we have used (2.15).] Thus

pA.x; y/ D p.x; y/C
X

v2XnA

X
w2XnA

p.x; v/GXnA.v; w/ p.w; y/: �

6.39 Theorem. Let � 2 EC.X; P /, A � X and �A the restriction of � to A. Then

�A 2 EC.A; PA/:

Proof. Let x 2 A. Then

�A.x/ D �.x/ � �P.x/ D �A PA.x/C �XnA PXnA;A.x/:

Hence
�A � �A PA C �XnA PXnA;A;

and by symmetry
�XnA � �XnA PXnA C �A PA;XnA:

Applying
Pn�1

kD0 P
k

XnA
from the right, the last relation yields

�XnA � �XnA P
n

XnA C �A PA;XnA

�n�1X
kD0

P k
XnA

�
� �A PA;XnA

�n�1X
kD0

P k
XnA

�

for every n � 1. By monotone convergence,

�A PA;XnA

�n�1X
kD0

P k
XnA

�
! �A PA;XnAGXnA

pointwise, as n!1. Therefore

�XnA � �A PA;XnAGXnA:

Combining the inequalities and applying Lemma 6.37,

�A � �A PA C �A PA;XnAGXnA PXnA;A D �A PA;

as proposed �

6.40 Exercise. Prove the “dual” to the above result for superharmonic functions:
if h 2 �C.X; P / and A � X , then the restriction of h to the set A satisfies
hA 2 �C.A; PA/. �
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D Potentials, Riesz decomposition, approximation

With Theorems 6.21 and 6.26, we have completed the description of all positive
superharmonic functions and excessive measures in the recurrent case. Therefore,
in the rest of this chapter,

we assume that .X; P / is irreducible and transient.

This means that
0 < G.x; y/ <1 for all x; y 2 X:

6.41 Definition. A G-integrable function f W X ! R is one that satisfiesX
y

G.x; y/ jf .y/j <1

for each x 2 X . In this case,

g.x/ D Gf .x/ D
X
y2X

G.x; y/ f .y/

is called the potential of f , while f is called the charge of g.

If we set f C.x/ D maxff .x/; 0g and f �.x/ D maxf�f .x/; 0g then f is G-
integrable if and onlyf C andf � have this property, andGf D Gf C�Gf �. In the
sequel, when studying potentialsGf , we shall always assume tacitlyG-integrability
of f . The support of f is, as usual, the set supp.f / D fx 2 X W f .x/ ¤ 0g.
6.42 Lemma. (a) If g is the potential of f , then f D .I � P /g. Furthermore,
P ng! 0 pointwise.

(b) If f is non-negative, then g D Gf 2 �C, and g is harmonic onX nsupp.f /,
that is, Pg.x/ D g.x/ for every x 2 X n supp.f /.

Proof. We may suppose that f � 0. (Otherwise, decomposing f D f C � f �,
the extension to the general case is immediate.)

Since all terms are non-negative, convergence of the involved series is absolute,
and

P Gf D G Pf D
1X

nD1

P nf D Gf � f:

This implies the first part of (a) as well as (b). Furthermore

P ng.x/ D GP nf .x/ D
1X

kDn

P kf .x/

is the n-th rest of a convergent series, so that it tends to 0. �
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Formally, one has G D P1
nD0 P

n D .I � G/�1 (geometric series), but – as
already mentioned in Section 1.D – one has to pay attention on which space of
functions (or measures) one considersG to act as an operator. For theG-integrable
functions we have seen that .I � P /Gf D G.I � P /f D f . But in general, it is
not true that G.I � P /f D f , even when .I � P /f is a G-integrable function.
For example, if P is stochastic and f .x/ D c > 0, then .I � P /f D 0 and
G.I � P /f D 0 ¤ f .

6.43 Riesz decomposition theorem. If u 2 �C then there are a potential g D Gf
and a function h 2 H C such that

u D Gf C h:
The decomposition is unique.

Proof. Since u � 0 and u � Pu, non-negativity of P implies that for every x 2 X
and every n � 0,

P nu.x/ � P nC1u.x/ � 0:
Therefore, there is the limit function

h.x/ D lim
n!1P nu.x/:

Since 0 
 h 
 u and u is P -integrable, Lebesgue’s theorem on dominated conver-
gence implies

Ph.x/ D P � lim
n!1P nu

�
.x/ D lim

n!1P n.Pu/.x/ D lim
n!1P nC1u.x/ D h.x/;

and h is harmonic. We set
f D u � Pu:

This function is non-negative, andP k-integrable along withu andPu. In particular,
P kf D P ku � P kC1u for every k � 0:

u � P nC1u D
nX

kD0

.P ku � P kC1u/ D
nX

kD0

P kf:

Letting n!1 we obtain

u � h D
1X

kD0

P kf D Gf D g:

This proves existence of the decomposition. Suppose now that u D g1C h1 is an-
other decomposition. We haveP nu D P ng1Ch1 for every n. By Lemma 6.42 (a),
P ng1 ! 0 pointwise. Hence P nu! h1, so that h1 D h. Therefore also g1 D g
and, again by Lemma 6.42 (a), f1 D .I � P /g1 D .I � P /g D f . �
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6.44 Corollary. (1) If g is a non-negative potential then the only function h 2 H C
with g � h is h � 0.

(2) If u 2 �C and there is a potential g D Gf with g � u, then u is the
potential of a non-negative function.

Proof. (1) By Lemma 6.42 (a), we have h D P nh 
 P ng ! 0 pointwise, as
n!1.

(2) We write u D Gf1C h1 with h1 2 H C and f1 � 0 (Riesz decomposition).
Then h1 
 g, and h1 � 0 by (1). �

We now illustrate what happens in the case when the state space is finite.

The finite case

(I) If X is finite and P is irreducible but strictly substochastic in some point, then
H D f0g, see Exercise 6.16. Consequently every positive superharmonic function
is a potential Gf , where f � 0. In particular, the constant function 1 is superhar-
monic, and there is a function ' � 0 such that G' � 1. Let u be a superharmonic
function that assumes negative values. Setting M D �minX u.x/ > 0, the func-
tion x 7! u.x/CM becomes a non-negative superharmonic function. Therefore
every superharmonic function (not necessarily positive) can be written in the form

u D G.f �M 	 '/;
where f � 0.

(II) Assume thatX is finite and P stochastic. If P is irreducible then .X; P / is
recurrent, and all superharmonic functions are constant: indeed, by Theorem 6.21,
this is true for non-negative superharmonic functions. On the other hand, the con-
stant functions are harmonic, and every superharmonic function can be written as
u �M , where M is constant and u 2 �C.

(III) Let us now assume that .X; P / is finite, stochastic, but not irreducible,
with the essential classes Ci , i 2 I D f1; : : : ; mg. Consider Xess, the union of the
essential classes, and the probability distributions �x on I as in (6.9). The set

Xo D X nXess

is assumed to be non-empty. (Otherwise, .X; P / decomposes into a finite number
of irreducible Markov chains – the restrictions to the essential classes – which do
not communicate among each other, and to each of them one can apply what has
been said in (II).)

Let u 2 �.X; P /. Then the restriction of u to Ci is superharmonic for PCi
.

The Markov chain .Ci ; PCi
/ is recurrent by Theorem 3.4 (c). If g.i/ D minCi

u,
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then ujCi
� g.i/ 2 �C.Ci ; PCi

/. Hence ujCi
is constant by Lemma 6.17 (1) or

Theorem 6.21,
ujCi
� g.i/:

We set

h.x/ D
Z

I

g d�x D
X
i2I

g.i/ �x.i/;

see Theorem 6.8 (b). Then h is the unique harmonic function on X which satisfies
h.x/ D g.i/ for each i 2 I; x 2 Ci , and so u�h 2 �.X; P / and u.y/�h.y/ D 0
for each y 2 Xess. Exercise 6.22 (c) implies that u � h � 0 on the whole of X .
(Indeed, if the minimum of u � h is attained at x then there is y 2 Xess such
that x ! y, and the minimum is also attained in y.) We infer that v � 0, and
.u � h/jXo 2 �C.Xo; PXo/.

6.45 Exercise. Deduce that there is a unique function f on Xo such that

.u � h/jXo D GXof D Gf;
and f � 0 with supp.f / � Xo. (Note here that .Xo; PXo/ is substochastic, but
not necessarily irreducible.) �

We continue by observing that G.x; y/ D 0 for every x 2 Xess and y 2 Xo, so
that we also have u�h D Gf on the whole ofX . We conclude that every function
u 2 �C.X; P / can be uniquely represented as

u.x/ D Gf .x/C
Z

I

g d�x;

where f and g are functions on X0 and I , respectively. �
Let us return to the study of positive superharmonic functions in the case where

.X; P / is irreducible, transient, not necessarily stochastic. The following theorem
will be of basic importance when X is infinite.

6.46 Approximation theorem. If h 2 �C.X; P / then there is a sequence of po-
tentials gn D Gfn, fn � 0, such that gn.x/ 
 gnC1.x/ for all x and n, and

lim
n!1gn.x/ D h.x/:

Proof. Let A be a finite subset ofX . We define the reduced function of h on A: for
x 2 X ,

RAŒh�.x/ D inf fu.x/ W u 2 �C; u.y/ � h.y/ for all y 2 Ag:
The reduced function is also defined when A is infinite, and – since h is superhar-
monic –

RAŒh� 
 h:
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In particular, we have

RAŒh�.x/ D h.x/ for all x 2 A:
Furthermore, RAŒh� 2 �C by Lemma 6.17(2). Let f0.x/ D h.x/, if x 2 A,
and f0.x/ D 0, otherwise. f0 is non-negative and finitely supported. (It is here
that we use the assumption of finiteness of A for the first time.) In particular, the
potential Gf0 exists and is finite on X . Also, Gf0 � f0. Thus Gf0 is a positive
superharmonic function that satisfies Gf0.y/ � h.y/ for all y 2 A. By definition
of the reduced function, we get RAŒh� 
 Gf0. Now we see that RAŒh� is a positive
superharmonic function majorized by a potential, and Corollary 6.44(2) implies
that there is a function f D fh;A � 0 such that

RAŒh� D Gf:
Let B be another finite subset of X , containing A. Then RB Œh� is a positive super-
harmonic function that majorizes h on the set A. Hence

RB Œh� � RAŒh�; if B � A:
Now we can conclude the proof of the theorem. Let .An/ be an increasing sequence
of finite subsets of X such that X DSnAn, and let

gn D RAn Œh�:

Then each gn is the potential of a non-negative function fn, we know that gn 

gnC1 
 h, and gn coincides with h on An. �

The approximation theorem applies in particular to positive harmonic functions.
In the Riesz decomposition of such a function h, the potential is 0. Nevertheless, h
can not only be approximated from below by potentials, but the latter can be chosen
such as to coincide with h on arbitrarily large finite subsets of X .

E “Balayage” and domination principle

For A � X and x; y 2 X we define

FA.x; y/ D
1X

nD0

PrxŒZn D y; Zj … A for 0 
 j < n� 	 1A.y/;

LA.x; y/ D
1X

nD0

PrxŒZn D y; Zj … A for 0 < j 
 n� 	 1A.x/:

(6.47)
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Thus, F A.x; y/ D PrxŒZsA D y� is the probability that the first visit in the set A
of the Markov chain starting at x occurs at y. On the other hand, LA.x; y/ is the
expected number of visits in the point y before re-entering A, where Z0 D x 2 A.

F fyg.x; y/ D F.x; y/ D G.x; y/=G.y; y/ coincides with the probability to
reachy starting from x, defined in (1.27). In the same wayLfxg.x; y/ D L.x; y/ D
G.x; y/=G.x; x/ is the quantity defined in (3.57). In particular, Lemma 3.58 implies
that LA.x; y/ 
 L.x; y/ is finite even when the Markov chain is recurrent.

Paths and their weights have been considered at the end of Chapter 1. In that
notation,

F A.x; y/ D w
�f	 2 ….x; y/ W 	 meetsA only in the terminal pointg�; and

LA.x; y/ D w
�f	 2 ….x; y/ W 	 meetsA only in the initial pointg�:

6.48 Exercise. Prove the following duality between F A and LA: let yP be the
reversal of P with respect to some excessive (positive) measure �, as defined in
(6.27), then

yLA.x; y/ D �.y/F A.y; x/

�.x/
and yF A.x; y/ D �.y/LA.y; x/

�.x/
;

where yFA.x; y/ and yLA.x; y/ are the quantities of (6.47) relative to yP . �

The following two identities are obvious.

x 2 A H) FA.x; 	/ D ıx; and y 2 A H) LA. 	; y/ D 1y : (6.49)

(It is always useful to think of functions as column vectors and of measures as row
vectors, whence the distinction between 1y and ıx .) We recall for the following that
we consider the restriction PXnA of P to X n A and the associated Green function
GXnA on the whole of X , taking values 0 if x 2 A or y 2 A.

6.50 Lemma. (a) G D GXnA C F AG; (b) G D GXnA CG LA:

Proof. We show only (a); statement (b) follows from (a) by duality (6.48). For
x; y 2 X ,

p.n/.x; y/ D PrxŒZn D y; sA > n�C PrxŒZn D y; sA 
 n�
D p.n/

XnA
.x; y/C

X
v2A

PrxŒZn D y; sA 
 n; ZsA D v�

D p.n/

XnA
.x; y/C

X
v2A

nX
kD0

PrxŒZn D y; sA D k; Zk D v�
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D p.n/

XnA
.x; y/C

X
v2A

nX
kD0

PrxŒs
A D k; Zk D v� PrxŒZn D y j Zk D v�

D p.n/

XnA
.x; y/C

X
v2A

nX
kD0

PrxŒs
A D k; Zk D v� p.n�k/.v; y/:

Summing over all n and applying (as so often) the Cauchy formula for the product
of two absolutely convergent series,

G.x; y/ D GXnA.x; y/C
X
v2A

� 1X
kD0

PrxŒs
A D k; Zk D v�

�� 1X
nD0

p.n/.v; y/
�

D GXnA.x; y/C
X
v2A

PrxŒs
A <1; ZsA D v�G.v; y/

D GXnA.x; y/C
X
v2X

F A.x; v/G.v; y/;

as proposed. �

The interpretation of statement (a) in terms of weights of paths is as follows.
Recall thatG.x; y/ is the weight of the set of all paths from x to y. It can be decom-
posed as follows: we have those paths that remain completely in the complement of
A – their contribution toG.x; y/ isGXnA.x; y/ – and every other path must posses
a first entrance time into A, and factorizing with respect to that time one obtains
that the overall weight of the latter set of paths is

P
v2A F

A.x; v/G.v; y/. The
interpretation of statement (b) is analogous, decomposing with respect to the last
visit in A.

6.51 Corollary. F AG D G LA:

There is also a link with the induced Markov chain, as follows.

6.52 Lemma. The matrix PA over A � A satisfies

PA D PA;X F
A D LA PX;A:

Proof. We can rewrite (6.38) with sA in the place of tA, since these two stopping
times coincide when the initial point is not in A:

pA.x; y/ D p.x; y/C
X

v2XnA

p.x; v/ PrvŒs
A <1; ZsA D y�

D
X
v2A

p.x; v/ ıv.y/C
X

v2XnA

p.x; v/ F A.v; y/

D
X
v2X

p.x; v/ F A.v; y/:
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Observing that (6.28) implies OpA.x; y/ D �.y/ pA.y; x/=�.x/ (where � is an
excessive measure for P ), the second identity follows by duality. �

6.53 Lemma. (1) If h 2 �C.X; P /, then F Ah.x/ DPy2A F
A.x; y/ h.y/ is finite

and
F Ah.x/ 
 h.x/ for all x 2 X:

(2) If � 2 EC.X; P /, then �LA.y/ DPx2A �.x/L
A.x; y/ is finite and

�LA.y/ 
 �.y/ for all y 2 X:
Proof. As usual, (2) follows from (1) by duality. We prove (1). By the approxima-
tion theorem (Theorem 6.46) we can find a sequence of potentials gn D Gfn with
fn � 0 and gn 
 gnC1, such that limn gn D h pointwise on X . The fn can be
chosen to have finite support. Lemma 6.50 implies

F A gn D F AG fn D Gfn �GXnA fn 
 gn 
 h:
By the monotone convergence theorem,

F A h D F A
�

lim
n!1gn

� D lim
n!1

�
F A gn

� 
 h;
which proves the claims. �

Recall the definition of the reduced function on A of a positive superharmonic
function h: for x 2 X ,

RAŒh�.x/ D inf fu.x/ W u 2 �C; u.y/ � h.y/ for all y 2 Ag:
Analogously one defines the reduced measure on A of an excessive measure �:

RAŒ��.x/ D inf f.x/ W  2 EC; .y/ � �.y/ for all y 2 Ag:
We are now able to describe the reduced functions and measures in terms of matrix
operators.

6.54 Theorem. (i) Ifh 2 �C thenRAŒh� D F A h. In particular,RAŒh� is harmonic
in every point of X n A, while RAŒh� � h on A.

(ii) If � 2 EC then RAŒ�� D �LA. In particular, RAŒ�� is invariant in every
point of X n A, while RAŒ�� � � on A.

Proof. Always by duality it is sufficient to prove (a).
1.) If x 2 X nA and y 2 A, we factorize with respect to the first step: by (6.49)

FA.x; y/ D p.x; y/C
X

v2XnA

p.x; v/ F A.v; y/ D
X
v2X

p.x; v/ F A.v; y/:
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In particular,
F A h.x/ D P.F A h/.x/; x 2 X n A:

2.) If x 2 A then by Lemma 6.52 and the “dual” of Theorem 6.39 (Exer-
cise 6.40),

P .FAh/.x/ D
X
y2A

P F A.x; y/ h.y/ D PAh.x/ 
 h.x/:

3.) Again by (6.49),

F Ah.x/ D h.x/ for all x 2 A:

Combining 1.), 2.) and 3.), we see that

FAh 2 fu 2 �C W u.y/ � h.y/ for all y 2 Ag:

Therefore RAŒh� 
 F Ah.
4.) Now let u 2 �C and u.y/ � h.y/ for every y 2 A. By Lemma 6.53, for

very x 2 X

u.x/ �
X
y2A

F A.x; y/ u.y/ �
X
y2A

F A.x; y/ h.y/ D F Ah.x/:

Therefore RAŒh� � F Ah. �

In particular, let f be a non-negativeG-integrable function and g D Gf its po-
tential. By Corollary 6.44(2),RAŒg�must be a potential. Indeed, by Corollary 6.51,

RAŒg� D F AG f D G LA f

is the potential of LAf .
Analogously, if  is a non-negative, G-integrable measure (that is, G.y/ DP

x .x/G.x; y/ < 1 for all y), then its potential is the excessive measure
� D G. In this case,

RAŒ�� D F AG

is the potential of the measure F A.

6.55 Definition. (1) If f is a non-negative G-integrable function on X , then the
balayée of f is the function f A D LAf .

(2) If  is a non-negative, G-integrable measure onX , then the balayée of  is
the measure A D F A.
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The meaning of “balayée” (French, balayer � sweep out) is the following: if
one considers the potential g D Gf only on the set A, the function f (the charge)
contains “superfluous information”. The latter can be eliminated by passing to the
charge LAf which has the same potential on the set A, while on the complement
of A that potential is as small as possible.

An important application of the preceding results is the following.

6.56 Theorem (Domination principle). Let f be a non-negative, G-integrable
function on X , with support A. If h 2 �C is such that h.x/ � Gf .x/ for every
x 2 A, then h � Gf on the whole of X .

Proof. By (6.49), f A D f . Lemma 6.53 and Corollary 6.51 imply

h.x/ � FAh.x/ D
X
y2A

F A.x; y/h.y/

�
X
y2A

F A.x; y/Gf .y/ D F AGf .x/ D Gf A.x/ D Gf .x/

for every x 2 X . �

6.57 Exercise. Give direct proofs of all statements of the last section, concerning
excessive and invariant measures, where we just relied on duality.

In particular, formulate and prove directly the dual domination principle for
excessive measures. �

6.58 Exercise. Use the domination principle to show that

G.x; y/ � F.x;w/G.w; y/:
Dividing by G.y; y/, this leads to Proposition 1.43 (a) for z D 1. �



Chapter 7

The Martin boundary of transient Markov chains

A Minimal harmonic functions

As in the preceding chapter, we always suppose that .X; P / is irreducible and
P substochastic. We want to undertake a more detailed study of harmonic and
superharmonic functions.

We know that �C D �C.X; P /, besides the 0 function, contains all non-nega-
tive constant functions. As we have already stated, �C is a cone with vertex 0: if
u 2 �Cnf0g, then the ray (half-line) fa 	u W a � 0g starting at 0 and passing through
u is entirely contained in �C. Furthermore, the cone �C is convex: if u1; u2 are
non-negative superharmonic functions and a1; a2 � 0 then a1 	 u1C a2 	 u2 2 �C.
(Since we have a cone with vertex 0, it is superfluous to require that a1C a2 D 1.)

A base of a cone with vertex Nv is a subset B such that each element of the cone
different from Nv can be uniquely written as NvC a 	 .u� Nv/ with a > 0 and u 2 B.
Let us fix a reference point (“origin”) o 2 X . Then the set

B D fu 2 �C W u.o/ D 1g (7.1)

is a base of the cone �C. Indeed, if v 2 �C and v ¤ 0, then v.x/ > 0 for each
x 2 X by Lemma 6.17. Hence u D 1

v.o/
v 2 B and we can write v D a 	 u with

a D v.o/.
Finally, we observe that �C, as a subset of the space of all functions X ! R,

carries the topology of pointwise convergence: a sequence of functions fn W X ! R
converges to the function f if and only if fn.x/! f .x/ for every x 2 X . This is
the product topology on RX .

We shall say that our Markov chain has finite range, if for every x 2 X there is
only a finite number of y 2 X with p.x; y/ > 0.

7.2 Theorem. (a) �C is closed and B is compact in the topology of pointwise
convergence.

(b) If P has finite range then H C is closed.

Proof. (a) In order to verify compactness of B, we observe first of all that B is
closed. Let .un/ be a sequence of functions in �C that converges pointwise to the
function u W X ! R. Then, by Fatou’s lemma (where the action of P represents
the integral),

Pu D P .lim inf un/ 
 lim inf Pun 
 lim inf un D u;
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and u is superharmonic. Let x 2 X . By irreducibility we can choose k D kx such
that p.k/.o; x/ > 0. Then for every u 2 B

1 D u.o/ � P ku.o/ � p.k/.o; x/u.x/;

and
u.x/ 
 Cx D 1=p.kx/.o; x/: (7.3)

Thus, B is contained in the compact set
Q

x2X Œ0; Cx�. Being closed, B is compact.
(b) If .hn/ is a sequence of non-negative harmonic functions that converges

pointwise to the function h, then h 2 �C by (a). Furthermore, for each x 2 X , the
summation in Phn.x/ DP

y p.x; y/hn.y/ is finite. Therefore we may exchange
summation and limit,

Ph D P .lim hn/ D limPhn D lim hn D h;
and h is harmonic. �

We see that �C is a convex cone with compact base B which contains H C
as a convex sub-cone. When P does not have finite range, that sub-cone is not
necessarily closed. It should be intuitively clear that in order to know �C (and
consequently also H C) it will be sufficient to understand dB, the set of extremal
points of the convex set B. Recall that an elementu of a convex set is called extremal
if it cannot be written as a convex combination a 	 u1C .1� a/ 	 u2 (0 < a < 1) of
distinct elements u1; u2 of the same set. Our next aim is to determine the elements
of dB.

In the transient case we know from Lemma 6.19 that for each y 2 X , the
function x 7! G.x; y/ belongs to �C and is strictly superharmonic in the point y.
However, it does not belong to B. Hence, we normalize by dividing by its value
in o, which is non-zero by irreducibility.

7.4 Definition. (i) The Martin kernel is

K.x; y/ D F.x; y/

F.o; y/
; x; y 2 X:

(ii) A function h 2 H C is called minimal, if

• h.o/ D 1, and

• if h1 2 H C and h � h1 in each point, then h1=h is constant.

Note that in the recurrent case, the Martin kernel is also defined and is constant
D 1, and �C D H C D fnon-negative constant functionsg by Theorem 6.21. Thus,
we may limit our attention to the transient case, in which

K.x; y/ D G.x; y/

G.o; y/
: (7.5)
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7.6 Theorem. If .X; P / is transient, then the extremal elements of B are the Martin
kernels and the minimal harmonic functions:

dB D fK. 	; y/ W y 2 Xg [ fh 2 H C W h is minimal g:

Proof. Let u be an extremal element of B. Write its Riesz decomposition (Theo-
rem 6.43): u D Gf C h with f � 0 and h 2 H C.

Suppose that both Gf and h are non-zero. By Lemma 6.17, the values of these
functions in o are (strictly) positive, and we can define

u1 D 1

Gf .o/
Gf; u2 D 1

h.o/
h 2 B:

Since Gf .o/ C h.o/ D u.o/ D 1, we can write u as a convex combination u D
a 	 u1 C .1 � a/ 	 u2 with 0 < a D Gf .o/ < 1. But u1 is strictly superharmonic
in at least one point, while u2 is harmonic, so that we must have u1 ¤ u2. This
contradicts extremality of u. Therefore u is a potential or a harmonic function.

Case 1. u D Gf , where f � 0. Let A D supp.f /. This set must have at least one
element y. Suppose that A has more than one element. Consider the restrictions
f1 and f2 of f to fyg and A n fyg, respectively. Then u D Gf1 C Gf2, and as
above, setting a D Gf1.o/, we can rewrite this identity as a convex combination,

u D a 	Gg1 C .1 � a/ 	Gg2; where g1 D 1
a
f1 and g2 D 1

1�a
f2:

By assumption, u is extremal. Hence we must have Gg1 D Gg2 and thus (by
Lemma 6.42) also g1 D g2, a contradiction.

Consequently A D fyg and f D a 	 1y with a > 0. Since a 	 G.o; y/ D
Gf .o/ D u.o/ D 1, we find

u D K. 	; y/;
as proposed.

Case 2. u D h 2 H C. We have to prove that h is minimal. By hypothesis,
h.o/ D 1. Suppose that h � h1 for a function h1 2 H C. If h1 D 0 or h1 D h, then
h1=h is constant. Otherwise, settingh2 D h�h1, bothh1 andh2 are strictly positive
harmonic functions (Lemma 6.17). As above, we obtain a convex combination

h D h1.o/ 	 h1

h1.o/
C h2.o/ 	 h2

h2.o/
:

But then we must have 1
hi .o/

hi D h. In particular, h1=h is constant.
Conversely, we must verify that the functionsK. 	; y/ and the minimal harmonic

functions are elements of dB.
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Consider first the functionK. 	; y/with y 2 X . It can be written as the potential
Gf , where f D 1

G.o;y/
1y . Suppose that

K. 	; y/ D a 	 u1 C .1 � a/ 	 u2

with 0 < a < 1 and ui 2 B. Then u1 
 G
�

1
a
f
�
, and u1 is dominated by a

potential. By Corollary 6.44, it must itself be a potential u1 D Gf1 with f1 � 0.
If supp.f1/ contained some w 2 X different from y, then u1, and therefore also
K. 	; y/, would be strictly superharmonic in w, a contradiction. We conclude that
supp.f1/ D fyg, and f1 D c 	G. 	; y/ for some constant c > 0. Since u1.o/ D 1,
we must have c D 1=G.o; y/, and u1 D K. 	; y/. It follows that also u2 D K. 	; y/.
This proves that K. 	; y/ 2 dB.

Now let h 2 H C be a minimal harmonic function. Suppose that

h D a 	 u1 C .1 � a/ 	 u2

with 0 < a < 1 and ui 2 B. None of the functions u1 and u2 can be strictly
subharmonic in some point (since otherwise also h would have this property). We
obtain a 	 u1 2 H C and h � a 	 u1. By minimality of h, the function u1=h is
constant. Since u1.o/ D 1 D h.o/, we must have u1 D h and thus also u2 D h.
This proves that h 2 dB. �

We shall now exhibit two general criteria that are useful for recognizing the
minimal harmonic functions. Lethbe an arbitrary positive, non-zero superharmonic
function. We use h to define a new transition matrix Ph D

�
ph.x; y/

�
x;y2X

:

ph.x; y/ D p.x; y/h.y/

h.x/
: (7.7)

The Markov chain with these transition probabilities is called the h-process, or also
Doob’s h-process, see his fundamental paper [17].

We observe that in the notation that we have introduced in §1.B, the random
variables of this chain remain always Zn, the projections of the trajectory space
onto X . What changes is the probability measure on � (and consequently also the
distributions of the Zn). We shall write Prh

x for the family of probability measures
on .�;A/ with starting point x 2 X which govern the h-process. If h is strictly
subharmonic in some point, then recall that we have to add the “tomb” state � as in
(6.11).

The construction of Ph is similar to that of the reversed chain with respect to an
excessive measure as in (6.27). In particular,

p
.n/

h
.x; y/ D p.n/.x; y/h.y/

h.x/
; and Gh.x; y/ D G.x; y/h.y/

h.x/
; (7.8)

where Gh denotes the Green function associated with Ph in the transient case.
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7.9 Exercise. Prove the following simple facts.

(1) The matrix Ph is stochastic if and only if h 2 H C.

(2) One has u 2 �.X; P / if and only if Nu D u=h 2 �.X; Ph/. Furthermore, u is
harmonic with respect to P if and only if Nu is harmonic with respect to Ph.

(3) A function u 2 H C.X; P / with u.o/ D 1 is minimal harmonic with respect
to P if and only if h.o/ 	 Nu 2 H C.X; Ph/ is minimal harmonic with respect
to Ph. �

We recall that H 1 D H 1.X; P / denotes the linear space of all bounded
harmonic functions.

7.10 Lemma. Let .X; P / be an irreducible Markov chain with stochastic transition
matrix P . Then H 1 D fconstantsg if and only if the constant harmonic function 1
is minimal.

Proof. Suppose that H 1 D fconstantsg. Let h1 be a positive harmonic function
with 1 � h1. Then h1 is bounded, whence constant by the assumption. Therefore
h1=1 is constant, and 1 is a minimal harmonic function.

Conversely, suppose that the harmonic function 1 is minimal. If h 2 H 1 then
there is a constant M such that h1 D h CM is a positive function. Since P is
stochastic, h1 is harmonic. But h1 is also bounded, so that 1 � c 	 h1 for some
c > 0. By minimality of 1, the ratio h1=1 must be constant. Therefore also h is
constant. �

Setting u D h in Exercise 7.9(3), we obtain the following corollary (valid also
when P is substochastic, since what matters is stochasticity of Ph).

7.11 Corollary. A function h 2 H C.X; P / is minimal if and only if one has
H 1.X; Ph/ D fconstantsg.

If C is a compact, convex set in the Euclidean space Rd , and if the set dC
of its extremal points is finite, then it is known that every element x 2 C can be
written as a weighted average x D P

c2dC �.c/ 	 c of the elements of dC . The
numbers �.c/ make up a probability measure on dC . (Note that in general, dC
is not the topological boundary of C .) If dC is infinite, the weighted sum has to
be replaced by an integral x D R

dC
c d�.c/, where � is a probability measure on

dC . In general, this integral representation is not unique: for example, the interior
points of a rectangle (or a disk) can be written in different ways as weighted averages
of the four vertices (or the points on the boundary circle of the disk, respectively).
However, the representation does become unique if the setC is a simplex: a triangle
in dimension 2, a tetrahedron in dimension 3, etc.; in dimension d , a simplex has
d C 1 extremal points.
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We use these observations as a motivation for the study of the compact convex
set B, base of the cone �C. We could appeal to Choquet’s representation theory of
convex cones in topological linear spaces, see for example Phelps [Ph]. However,
in our direct approach regarding the .X; P /, we shall obtain a more detailed specific
understanding. In the next sections, we shall prove (among other) the following
results:

• The base B is a simplex (usually infinite dimensional) in the sense that every
element of B can be written uniquely as the integral of the elements of dB

with respect to a suitable probability measure.

• Every minimal harmonic function can be approximated by a sequence of
functions K. 	; yn/, where yn 2 X .

We shall obtain these results via the construction of the Martin compactification, a
compactification of the state space X defined by the Martin kernel.

B The Martin compactification

Preamble on compactifications

Given the countably infinite set X , by a compactification of X we mean a compact
topological Hausdorff space yX containing X such that

• the set X is dense in yX , and

• in the induced topology, X � yX is discrete.

The set yX n X is called the boundary or ideal boundary of X in yX . We consider
two compactifications of X as “equal”, that is, equivalent, if the identity function
X ! X extends to a homeomorphism between the two. Also, we consider one
compactification bigger than a second one, if the identity X ! X extends to a
continuous surjection from the first onto the second. The following topological
exercise does not require Cantor–Bernstein or other deep theorems.

7.12 Exercise. Two compactifications of X are equivalent if and only if each of
them is bigger than the other one.

[Hint: use sequences in X .] �

Given a family F of real valued functions on X , there is a standard way to
associate with F a compactification (in general not necessarily Hausdorff) of X .
In the following theorem, we limit ourselves to those hypotheses that will be used
in the sequel.

7.13 Theorem. Let F be a denumerable family of bounded functions on X . Then
there exists a unique (up to equivalence) compactification yX D yXF of X such that
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(a) every function f 2 F extends to a continuous function on yX (which we still
denote by f ), and

(b) the family F separates the boundary points: if �; � 2 yX n X are distinct,
then there is f 2 F with f .�/ ¤ f .�/.

Proof. 1.) Existence (construction).
For x 2 X , we write 1x for the indicator function of the point x. We add all

those indicator functions to F , setting

F � D F [ f1x W x 2 Xg: (7.14)

For each f 2 F �, there is a constant Cf such that jf .x/j 
 Cf for all x 2 X .
Consider the topological product space

…F D
Y

f 2F �

Œ�Cf ; Cf � D f� W F � ! R j �.f / 2 Œ�Cf ; Cf � for all f 2 F �g:

The topology on …F is the one of pointwise convergence: �n ! � if and only if
�n.f / ! �.f / for every f 2 F �. A neighbourhood base at � 2 …F is given
by the finite intersections of sets of the form f 2 …F W j .f / � �.f /j < "g, as
f 2 F � and " > 0 vary.

We can embed X into …F via the map

� W X ,! …F ; �.x/ D �x; where �x.f / D f .x/ for f 2 F �:

If x; y are two distinct elements of X then �x.1x/ D 1 ¤ 0 D �y.1x/. Therefore
� is injective. Furthermore, the neighbourhood f 2 …F W j .1x/� �x.1x/j < 1g
of �.x/ D �x contains none of the functions �y with y 2 X n fxg. This means that
�.X/, with the induced topology, is a discrete subset of …F . Thus we can identify
X with �.X/. [Observe how the enlargement of F by the indicator functions has
been crucial for this reasoning.]

Now yX D yXF is defined as the closure of X in …F . It is clear that this is
a compactification of X in our sense. Each � 2 yX n X is a function F � ! R
with j�.f /j 
 Cf . By the construction of yX , there must be a sequence .xn/ of
distinct points inX that converges to �, that is, f .xn/ D �xn

.f /! �.f / for every
f 2 F �. We prefer to think of � as a limit point of X in a more “geometrical”
way, and define f .�/ D �.f / for f 2 F . Observe that since �xn

.1x/ D 0 when
xn ¤ x, we have 1x.�/ D �.1x/ D 0 for every x 2 X , as it should be.

If .xn/ is an arbitrary sequence inX which converges to � in the topology of yX ,
then for each f 2 F one has

f .xn/ D �xn
.f /! �.f / D f .�/:

Thus, f has become a continuous functions on yX . Finally, F separates the points
of yX n X : if �; � are two distinct boundary points, then they are also distinct in
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their original definition as functions on F �. Hence there is f 2 F � such that
�.f / ¤ �.f /. Since �.1x/ D �.1x/ D 0 for every x 2 X , we must have f 2 F .
With the “reversed” notation that we have introduced above, f .�/ ¤ f .�/.

2.) Uniqueness. To show uniqueness of yX up to homeomorphism, suppose
that zX is another compactification of X with properties (a) and (b). We only use
those defining properties in the proof, so that the roles of yX and zX can be exchanged
(“symmetry”). In order to distinguish the continuous extension of a functionf 2 F

to yX from the one to zX , in this proof we shall write Of for the former and Of for the
latter.

We construct a function � W zX ! yX : if x 2 X � zX then we set �.x/ D x (the
latter seen as an element of yX ).

If Q� 2 zX nX , then there must be a sequence .xn/ inX such that in the topology
of zX , one has xn ! Q�. We show that xn (D �.xn/) has a limit in yX nX : let O� 2 yX
be an accumulation point of .xn/ in the latter compact space. If O� 2 X then xn D O�
for infinitely many n, which contradicts the fact that xn ! Q� in zX . Therefore every
accumulation point of .xn/ in yX lies in the boundary yXnX . Suppose there is another
accumulation point O� 2 yX nX . Then there is f 2 F with Of . O�/ ¤ Of . O�/. As Of is
continuous, we find that the real sequence

�
f .xn/

�
possesses the two distinct real

accumulation points Of .�/ and Of .�/. But this is impossible, since with respect to
the compactification zX , we have that f .xn/! Qf . Q�/.

Therefore there is O� 2 yX nX such that xn ! O� in the topology of yX . We define
�. Q�/ D O�. This mapping is well defined: if .yn/ is another sequence that tends to Q�
in zX , then the union of the two sequences .xn/ and .yn/ also tends to Q� in zX , so that
the argument used a few lines above shows that the union of those two sequences
must also converge to O� in the topology of yX .

By construction, � is continuous. [Exercise: in case of doubts, prove this.]
Since X is dense in both compactifications, � is surjective.

In the same way (by symmetry), we can construct a continuous surjection yX !
zX which extends the identity mapping X ! X . It must be the inverse of � (by

continuity, since this is true on X ). We conclude that � is a homeomorphism. �

We indicate two further, equivalent ways to construct the compactification yX .

1.) Let us say that xn ! 1 for a sequence in X , if for every finite subset A
of X , there are only finitely many n with xn 2 A. Consider the set

X1 D f.xn/ 2 XN W xn !1 and
�
f .xn/

�
converges for every f 2 F g:

On X1, we consider the following equivalence relation:

.xn/ � .yn/() lim f .xn/ D lim f .yn/ for every f 2 F :
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The boundary of our compactification is X1= �, that is, yX D X [ .X1= �/.
The topology is defined via convergence: on X , it is discrete; a sequence .xn/ in
X converges to a boundary point � if .xn/ 2 X1 and .xn/ belongs to � as an
equivalence class under �.

2.) Consider the countable family of functions F � as in (7.14). Each f 2 F � is
bounded by a constantCf . We choose weightswf > 0 such that

P
F � wf Cf <1.

Then we define a metric on X :

�.x; y/ D
X

f 2F �

wf jf .x/ � f .y/j: (7.15)

In this metric, X is discrete, while a sequence .xn/ which tends to1 in the above
sense is a Cauchy sequence if and only if

�
f .xn/

�
converges in R for every f 2 F .

The completion of .X; �/ is (homeomorphic with) yX .
Observation: if F contains only constant functions, then yX is the one-point

compactification: yX D X [f1g, and convergence to1 is defined as in 1.) above.

7.16 Exercise. Elaborate the details regarding the constructions in 1.) and 2.) and
show that the compactifications obtained in this way are (equivalent with) yXF . �

After this preamble, we can now give the definition of the Martin compactifica-
tion.

7.17 Definition. Let .X; P / be an irreducible, (sub)stochastic Markov chain. The
Martin compactification of X with respect to P is defined as yX.P / D yXF , the
compactification in the sense of Theorem 7.13 with respect to the family of functions
F D fK.x; 	/ W x 2 Xg. The Martin boundary M D M.P / D yX.P / n X is the
ideal boundary of X in this compactification.

Note that all the functionsK.x; 	/ of Definition 7.4 are bounded. Indeed, Propo-
sition 1.43 (a) implies that

K.x; y/ D F.x; y/

F.o; y/

 1

F.o; x/
D Cx

for every y 2 X . By (7.15), the topology of yX.P / is induced by a metric (as it
has to be, since yX.P / is a compact separable Hausdorff space). If � 2M, then we
write of course K.x; �/ for the value of the extended function K.x; 	/ at � .

If .X; P / is recurrent, F D f1g, and the Martin boundary consists of one
element only. We note at this point that for recurrent Markov chains, another notion
of Martin compactification has been introduced, see Kemeny and Snell [35]. In
the transient case, we have the following, where (attention) we now considerK. 	; �/
as a function onX for every � 2 yX.P /. In our notation, when applied from the left
to the Martin kernel, the transition operator P acts on the first variable of K. 	; 	/.
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7.18 Lemma. If .X; P / is transient and � 2 M then K. 	; �/ is a positive super-
harmonic function. If P has finite range at x 2 X (that is, for the given x, the set
fy 2 X W p.x; y/ > 0g is finite), then the function K. 	; �/ is harmonic in x.

Proof. By construction of M, there is a sequence .yn/ in X , tending to1, such
thatK. 	; yn/! K. 	; �/ pointwise onX . ThusK. 	; �/ is the pointwise limit of the
superharmonic functions K. 	; yn/ and consequently a superharmonic function.

By (1.34) and (7.5),

PK.x; yn/ D
X

yWp.x;y/>0

p.x; y/K.y; yn/ D K.x; yn/ � ıx.yn/

K.o; yn/
:

If the summation is finite, it can be exchanged with the limit as n ! 1. Since
yn ¤ x for all but (at most) finitely many n, we have that ıx.yn/! 0. Therefore
PK.x; �/ D K.x; �/. �

In particular, if the Markov chain has finite range (at every point), then for every
� 2M, the function K. 	; �/ is positive harmonic with value 1 in o.

Another construction in case of finite range

The last observation allows us to describe a fourth, more specific construction of the
Martin compactification in the case when .X; P / is transient and has finite range.

Let B D fu 2 �C W u.o/ D 1g be the base of the cone �C, defined in
(7.1), with the topology of pointwise convergence. We can embed X into B via
the map y 7! K. 	; y/. Indeed, this map is injective (one-to-one): suppose that
K. 	; y1/ D K. 	; y2/ for two distinct elements y1; y2 2 X . Then

1

F.o; y1/
D K.y1; y1/ D K.y1; y2/ D F.y1; y2/

F.o; y2/
and

1

F.o; y2/
D K.y2; y2/ D K.y2; y1/ D F.y2; y1/

F.o; y1/
:

We deduce F.y1; y2/F.y2; y1/ D 1 which implies U.y1; y1/ D 1, see Exer-
cise 1.44.

Now we identify X with its image in B. The Martin compactification is then
the closure of X in B. Indeed, among the properties which characterize yX.P /
according to Theorem 7.13, the only one which is not immediate is that X �
fK. 	; y/ W y 2 Xg is discrete in B: let us suppose that .yn/ is a sequence of
distinct elements ofX such thatK. 	; yn/ converges pointwise. By finite range, the
limit function is harmonic. In particular, it cannot be one of the functions K. 	; y/,
where y 2 X , as the latter is strictly superharmonic at y. In other words, no element
of X can be an accumulation point of .yn/.
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We remark at this point that in the original article of Doob [17] and in the book
of Kemeny, Snell and Knapp [K-S-K] it is not required that X be discrete in
the Martin compactification. In their setting, the compactification can always be
described as the closure of (the embedding of) X in B. However, in the case when
P does not have finite range, the compact space thus obtained may be smaller than
in our construction, which follows the one of Hunt [32]. In fact, it can happen that
there are y 2 X and � 2M such that K. 	; y/ D K. 	; �/: in our construction, they
are considered distinct in any case (since � is a limit point of a sequence that tends
to1), while in the construction of [17] and [K-S-K], � and y would be identified.

A discussion, in the context of random walks of trees with infinite vertex degrees,
can be found in Section 9.E after Example 9.47. In few words, one can say that
for most probabilistic purposes the smaller compactification is sufficient, while for
more analytically flavoured issues it is necessary to maintain the original discrete
topology on X .

We now want to state a first fundamental theorem regarding the Martin com-
pactification. Let us first remark that yX.P /, as a compact metric space, carries a
natural � -algebra, namely the Borel � -algebra, which is generated by the collection
of all open sets. Speaking of a “random variable with values in yX.P /”, we intend
a function from the trajectory space .�;A/ to yX.P / which is measurable with
respect to that � -algebra.

7.19 Theorem (Convergence to the boundary). If .X; P / is stochastic and transient
then there is a random variableZ1 taking its values in M such that for each x 2 X ,

lim
n!1Zn D Z1 Prx -almost surely

in the topology of yX.P /.
In terms of the trajectory space, the meaning of this statement is the following.

Let

�1 D
²
! D .xn/ 2 � W there is x1 2M such that

xn ! x1 in the topology of yX.P /
³
: (7.20)

Then
�1 2 A and Prx.�1/ D 1 for every x 2 X:

Furthermore,
Z1.!/ D x1 .! 2 �1/

defines a random variable which is measurable with respect to the Borel � -algebra
on yX.P /.

WhenP is strictly substochastic in some point, we have to modify the statement
of the theorem. As we have seen in Section 7.B, in this case one introduces the
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absorbing (“tomb”) state � and extends P to X [ f�g. The construction of the
Martin boundary remains unchanged, and does not involve the additional point �.
However, the trajectory space .�;A/ with the probability measures Prx , x 2 X
now refers to X [ f�g. In reality, in order to construct it, we do not need all
sequences in X [ f�g: it is sufficient to consider

� D XN0 [�; where

� D
²
! D .xn/ W there is k � 1 with

° xn 2 X for all n 
 k;
xn D � for all n > k

³
:

(7.21)

Indeed, once the Markov chain has reached �, it has to stay there forever. We write
�.!/ D k for ! 2 �, with k as in the definition of �, and �.!/ D 1 for
! 2 � n�. Thus,

� D t � 1
is a stopping time, the exit time from X – the last instant when the Markov chain is
in X . With � and �1 as in (7.21) and (7.20), respectively, we now define

�� D � [�1; and

Z� W �� ! yX.P /; Z�.!/ D
´
Z�.!/.!/; ! 2 �;

Z1.!/; ! 2 �1:

In this setting, Theorem 7.19 reads as follows.

7.22 Theorem. If .X; P / is transient then for each x 2 X ,

lim
n!�

Zn D Z� Prx -almost surely

in the topology of yX.P /.
Theorem 7.19 arises as a special case. Note that Theorem 7.22 comprises the

following statements.

(a) �� belongs to the � -algebra A;

(b) Prx.��/ D 1 for every x 2 X ;

(c) Z� W �� ! yX.P / is measurable with respect to the Borel � -algebra of yX.P /.
The most difficult part is the proof of (b), which will be elaborated in the next
section. Thereafter, we shall deduce from Theorem 7.19 resp. 7.22 that

• every minimal harmonic function is a Martin kernel K. 	; �/, with � 2M;

• every positive harmonic function h has an integral representation h.x/ DR
M
K.x; 	/ d�h, where �h is a Borel measure on M.
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The construction of the Martin compactification is an abstract one. In the study
of specific classes of Markov chains, typically the state space carries an algebraic
or geometric structure, and the transition probabilities are in some sense adapted to
this structure; compare with the examples in earlier chapters. In this context, one
is searching for a concrete description of the Martin compactification in terms of
that underlying structure. In Chapters 8 and 9, we shall explain some examples;
various classes of examples are treated in detail in the book of Woess [W2]. We
observe at this point that in all cases where the Martin boundary is known explicitly
in this sense, one also knows a simpler and more direct (structure-specific) method
than that of the proof of Theorem 7.19 for showing almost sure convergence of the
Markov chain to the “geometric” boundary.

C Supermartingales, superharmonic functions, and excessive
measures

This section follows the exposition by Dynkin [Dy], which gives the clearest and
best readable account of Martin boundary theory for denumerable Markov chains so
far available in the literature (old and good, and certainly not obsolete). The method
for proving Theorem 7.22 presented here, which combines the study of non-negative
supermartingales with time reversal, goes back to the paper by Hunt [32].

Readers who are already familiar with martingale theory can skip the first part.
Also, since our state spaceX is countable, we can limit ourselves to a very elemen-
tary approach to this theory.

I. Non-negative supermartingales

Let� be as in (7.21), with the associated � -algebra A and the probability measure
Pr (one of the measures Prx; x 2 X ). Even when P is stochastic, we shall need
the additional absorbing state �.

Let Y0; Y1; : : : ; YN be a finite sequence of random variables�! X [f�g, and
let W0; W1; : : : ; WN be a sequence of real valued, composed random variables of
the form

Wn D fn.Y0; : : : ; Yn/; with fn W .X [ f�g/nC1 ! Œ0; 1/:
7.23 Definition. The sequence W0; : : : ; WN is called a supermartingale with re-
spect to Y0; : : : ; YN , if for each n 2 f1; : : : ; N g one has

E.Wn j Y0; : : : ; Yn�1/ 
 Wn�1 almost surely.

Here, E. 	 j Y0; : : : ; Yn�1/ denotes conditional expectation with respect to the
� -algebra generated by Y0; : : : ; Yn�1. On the practical level, the inequality means
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that for all x0; : : : ; xn�1 2 X [ f�g one hasX
y2X[fg

fn.x0; : : : ; xn�1; y/ PrŒY0 D x0; : : : ; Yn�1 D xn�1; Yn D y�


 fn�1.x0; : : : ; xn�1/ PrŒY0 D x0; : : : ; Yn�1 D xn�1�;

(7.24)

or, equivalently,

E
�
Wn g.Y0; : : : ; Yn�1/

� 
 E
�
Wn�1 g.Y0; : : : ; Yn�1/

�
(7.25)

for every function g W .X [ f�g/n ! Œ0; 1/.
7.26 Exercise. Verify the equivalence between (7.24) and (7.25). Refresh your
knowledge about conditional expectation by elaborating the equivalence of those
two conditions with the supermartingale property. �

Clearly, Definition 7.23 also makes sense when the sequences Yn and Wn are
infinite (N D 1). Setting g D 1, it follows from (7.25) that the expectations
E.Wn/ form a decreasing sequence. In particular, if W0 is integrable, then so are
all Wn.

Extending, or specifying, the definition given in Section 1.B, a random variable
t with values in N0 [ f1g is called a stopping time with respect to Y0; : : : ; YN (or
with respect to the infinite sequence Y0; Y1; : : : ), if for each integer n 
 N ,

Œt 
 n� 2 A.Y0; : : : ; Yn/;

the � -algebra generated by Y0; : : : ; Yn. As usual, Wt denotes the random variable
defined on the set f! 2 � W t.!/ < 1g by Wt.
/ D Wt.!/.!/. If t1 and t2 are
two stopping times with respect to the Yn, then so are t1 ^ t2 D infft1; t2g and
t1 _ t2 D supft1; t2g.
7.27 Lemma. Let s and t be two stopping times with respect to the sequence .Yn/

such that s 
 t. Then
E.Ws/ � E.Wt/:

Proof. Suppose first that W0 is integrable and N is finite, so that s 
 t 
 N . As
usual, we write 1A for the indicator function of an event A 2 A. We decompose

Ws D
NX

nD0

Wn 1ŒsDn� D Wn 1Œs�0� C
NX

nD1

Wn .1Œs�n� � 1Œs�n�1�/

D
NX

nD0

Wn 1Œs�n� �
N �1X
nD0

WnC1 1Œs�n�:
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We infer thatWs is integrable, since the sum is finite and theWn are integrable. We
decompose Wt in the same way and observe that Œs 
 N� D Œt 
 N� D �, so that
1Œs�N � D 1Œt�N �. We obtain

Ws �Wt D
N �1X
nD0

Wn.1Œs�n� � 1Œt�n�/ �
N �1X
nD0

WnC1.1Œs�n� � 1Œt�n�/:

For each n, the random variable 1Œs�n��1Œt�n� is non-negative and measurable with
respect to A.Y0; : : : ; Yn/. The latter � -algebra is generated by the disjoint events
(atoms) ŒY0 D x0; : : : ; Yn D xn� (x0; : : : ; xn 2 X ), and every A.Y0; : : : ; Yn/-
measurable function must be constant on each of those sets. (This fact also stands
behind the equivalence between (7.24) and (7.25).) Therefore we can write

1Œs�n� � 1Œt�n� D gn.Y0; : : : ; Yn/;

where gn is a non-negative function on .X [ f�g/nC1. Now (7.25) implies

E
�
WnC1.1Œs�n� � 1Œt�n�/

� 
 E
�
Wn.1Œs�n� � 1Œt�n�/

�
for every n, whence E.Ws �Wt/ � 0.

IfW0 does not have finite expectation, we can apply the preceding inequality to
the supermartingale .Wn ^ c/nD0;:::;N . By monotone convergence,

E.Ws/ D lim
c!1 E

�
.W ^ c/s

� 
 lim
c!1 E

�
.W ^ c/t

� D E.Wt/:

Finally, if the sequence is infinite, we may apply the inequality to the stopping times
.s ^N/ and .t ^N/ and use again monotone convergence, this time for N !1.

�

Let .rn/ be a finite or infinite sequence of real numbers, and let Œa; b� be an
interval. Then the number of downward crossings of the interval by the sequence
is

D#
�
.rn/

ˇ̌
Œa; b�

�
D sup

8<
:k � 0 W

there are n1 
 n2 
 	 	 	 
 n2k

with rni
� b for i D 1; 3; : : : ; 2k � 1

and rnj

 a for j D 2; 4; : : : ; 2k

9=
;:

In case the sequence is finite and terminates with rN , one must require that n2k 
 N
in this definition, and the supremum is a maximum. For an infinite sequence,

lim
n!1 rn 2 Œ�1; 1� exists ()

D#
�
.rn/

ˇ̌
Œa; b�

�
<1 for every interval Œa; b�:

(7.28)
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Indeed, if lim inf rn < a < b < lim sup rn then D#
�
.rn/

ˇ̌
Œa; b�

� D 1. Observe
that in this reasoning, it is sufficient to consider only the – countably many – intervals
with rational endpoints.

Analogously, one defines the number of upward crossings of an interval by a
sequence (notation: D").

7.29 Lemma. Let .Wn/ be a non-negative supermartingale with respect to the
sequence .Yn/. Then for every interval Œa; b� � RC

E
�
D#
�
.Wn/

ˇ̌
Œa; b�

�� 
 1

b � aE.W0/:

Proof. We suppose first to have a finite supermartingale W0; : : : ; WN (N < 1).
We define a sequence of stopping times relative to Y0; : : : ; YN , starting with t0 D 0.
If n is odd,

tn D
´

min¹i � tn�1 W Wi � bº; if such i exists;

N; otherwise.

If n > 0 is even,

tn D
´

min¹j � tn�1 W Wj 
 aº; if such j exists;

N; otherwise.

Setting d D D#
�
W0; : : : ; WN

ˇ̌
Œa; b�

�
, we get tn D N for n � 2d C 2. Further-

more, tn D N also for n � N . We choose an integer m � N=2 and consider

SW D Wt1
C

mX
j D1

.Wt2j C1
�Wt2j

/

„ ƒ‚ …
(1)

D
dX

iD1

.Wt2i�1
�Wt2i

/CWt2dC1„ ƒ‚ …
(2)

:

(We have used the fact thatWt2dC2
D Wt2dC3

D 	 	 	 D Wt2mC1
D WN .) Applying

Lemma 7.27 to term (1) gives

E.SW / D E.Wt1
/C

mX
j D1

�
E.Wt2j C1

/ � E.Wt2j
/
� 
 E.Wt1

/ 
 E.W0/:

The expression (2) leads to SW � .b � a/d and thus also to

E.SW / � .b � a/E.d/:
Combining these inequalities, we find that

E
�
D#.W0; : : : ; WN

ˇ̌
Œa; b�/

� 
 1

b � aE.W0/:

If the sequences .Yn/ and .Wn/ are infinite, we can let N tend to1 in the latter
inequality, and (always by monotone convergence) the proposed statement follows.

�
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II. Supermartingales and superharmonic functions

As an application of Lemma 7.29, we obtain the limit theorem for non-negative
supermartingales.

7.30 Theorem. Let .Wn/n�0 be a non-negative supermartingale with respect to
.Yn/n�0 such that E.W0/ <1. Then there is an integrable (whence almost surely
finite) random variable W1 such that

lim
n!1Wn D W1 almost surely.

Proof. Let Œai ; bi �, i 2 N, be an enumeration of all intervals with non-negative
rational endpoints. For each i , let

di D D#
�
.Wn/ j Œai ; bi �

�
:

By Lemma 7.29, each di is integrable and thus almost surely finite. Let

S� D
\
i2N

Œdi <1�:

Then Pr.S�/ D 1, and for every ! 2 S�, each interval Œai ; bi � is crossed downwards
only finitely many times by

�
Wn.!/

�
. By (7.28), there is W1 D limnWn 2

Œ0; 1� almost surely. By Fatou’s lemma, E.W1/ 
 limn E.Wn/ 
 E.W0/ < 1.
Consequently, W1 is a.s. finite. �

This theorem applies to positive superharmonic functions. Consider the Markov
chain .Zn/n�0. Recall that Pr D Prx some x 2 X . Let f W X ! R be a non-
negative function. We extend f to X [ f�g by setting f .�/ D 0. By (7.24), the
sequence of real-valued random variables

�
f .Zn/

�
n�0

is a supermartingale with
respect to .Zn/n�0 if and only if for every n and all x0; : : : ; xn�1X

y2X[fg
ıx.x0/ p.x0; x1/ 	 	 	p.xn�2; xn�1/ p.xn�1; y/ f .y/


 ıx.x0/ p.x0; x1/ 	 	 	p.xn�2; xn�1/ f .xn�1/;

that is, if and only if f is superharmonic.

7.31 Corollary. If f 2 �C.X; P / then limn!1 f .Zn/ exists and is Prx-almost
surely finite for every x 2 X .

If P is strictly substochastic in some point, then the probability that Zn “dies”
(becomes absorbed by �) is positive, and on the corresponding set� of trajectories,
f .Zn/ tends to 0. What is interesting for us is that in any case, the set of trajectories
in XN0 along which f .Zn/ does not converge has measure 0.

7.32 Exercise. Prove that for all x; y 2 X ,

lim
n!1G.Zn; y/ D 0 Prx -almost surely. �



196 Chapter 7. The Martin boundary of transient Markov chains

III. Supermartingales and excessive measures

A specific example of a positive superharmonic function is K. 	; y/, where y 2 X .
Therefore,K.Zn; y/ converges almost surely, the limit is 0 by Exercise 7.32. How-
ever, in order to prove Theorem 7.22, we must verify instead that Prx.��/ D 1,
or equivalently, that limn!� K.y;Zn/ exists Prx-almost surely for all x; y 2 X .
We shall first prove this with respect to Pro (where the starting point is the same
“origin” o as in the definition of the Martin kernel).

Recall that we are thinking of functions onX as column vectors and of measures
as row vectors. In particular, G.x; 	/ is a measure on X . Now let  be an arbitrary
probability measure on X . We observe that

G.y/ D
X

x

.x/G.x; y/ 

X

x

.x/G.y; y/ D G.y; y/

is finite for every y. Then � D G is an excessive measure by the dual of
Lemma 6.42 (b). Furthermore, we can write

G.y/ D f�.y/G.o; y/; where f�.y/ D
X

x

.x/K.x; y/: (7.33)

We may consider the function f� as the density of the excessive measure G with
respect to the measure G.o; 	/. We extend f� to X [ f�g by setting f�.�/ D 0.

We choose a finite subset V � X that contains the origin o. As above, we define
the exit time of V :

�V D supfn W Zn 2 V g: (7.34)

Contrary to � D t � 1, this is not a stopping time, as the property that �V D k

requires thatZn … V for all n > k. Since our Markov chain is transient and o 2 V ,

ProŒ0 
 �V <1� D 1;

that is, Pro.�V / D 1, where �V D f! 2 � W 0 
 �V .!/ <1g. Observe that for
x … V , it can occur with positive probability that .Zn/ never enters V , in which
case �V D 1, while �V is finite only for those trajectories starting from x that
visit V .

Given an arbitrary interval Œa; b�, we want to control the number of its upward
crossings by the sequence f�.Z0/; : : : ; f�.Z�V

/, where f� is as in (7.33). Note
that this sequence has a random length that is almost surely finite. For n � 0 and
! 2 �V we set

Z�V �n.!/ D
´
Z�V .!/�n.!/; n 
 �.!/I
�; n > �.!/:
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Then with probability 1 (that is, on the event Œ�V <1�)

D"�f�.Z0/; f�.Z1/; : : : ; f�.Z�V
/
ˇ̌
Œa; b�

�

D lim
N !1D#

�
f�.Z�V

/; f�.Z�V �1/; : : : ; f�.Z�V �N /
ˇ̌
Œa; b�

�
:

(7.35)

With these ingredients we obtain the following

7.36 Proposition. (1) Eo

�
f�.Z�V

/
� 
 1.

(2) f�.Z�V
/; f�.Z�V �1/; : : : ; f�.Z�V �N / is a supermartingale with respect

to Z�V
; Z�V �1; : : : ; Z�V �N and the measure Pro on the trajectory space.

Proof. First of all, we compute for x; y 2 V

PrxŒZ�V
D y� D

1X
nD0

PrxŒ�V D n; Zn D y�:

(Note that more precisely, we should write PrxŒ0 
 �V < 1; Z�V
D y� in

the place of PrxŒZ�V
D y�.) The event Œ�V D n� depends only on those

Zk with k � n (the future) , and not on Z0; : : : ; Zn�1 (the past). Therefore
PrxŒ�V D n; Zn D y� D p.n/.x; y/ Pry Œ�V D 0�, and

PrxŒZ�V
D y� D G.x; y/ Pry Œ�V D 0�: (7.37)

Taking into account that 0 
 �V <1 almost surely, we now get

Eo

�
f�.Z�V

/
� DX

y2V

f�.y/ ProŒZ�V
D y�

D
X
y2V

f�.y/G.o; y/ Pry Œ�V D 0�

D
X
y2V

G.y/ Pry Œ�V D 0�

D
X
x2X

.x/
X
y2V

G.x; y/ Pry Œ�V D 0�

D
X
x2X

.x/
X
y2V

PrxŒZ�V
D y� 
 1:
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This proves (1). To verify (2), we first compute for x0 2 V , x1 : : : ; xn 2 X
ProŒZ�V

D x0; Z�V �1 D x1; : : : ; Z�V �n D xn�

(since we have �V � n, if Z�V �n ¤ �)

D
1X

kDn

ProŒ�V D k; Zk D x0; Zk�1 D x1; : : : ; Zk�n D xn�

D
1X

kDn

p.k�n/.o; xn/ p.xn; xn�1/ 	 	 	p.x1; x0/ Prx0
Œ�V D 0�

D G.o; xn/ p.xn; xn�1/ 	 	 	p.x1; x0/ Prx0
Œ�V D 0�:

We now check (7.24) with fn.x0; : : : ; xn/ D f�.xn/. Since f�.�/ D 0, we only
have to sum over elements x 2 X . Furthermore, if Yn D Z�V �n 2 X then we must
have �V � n and Z�V �k 2 X for k D 0; : : : ; n. Hence it is sufficient to consider
only the case when x0; : : : ; xn�1 2 X :X

x2X

f�.x/ Pr0ŒZ�V
D x0; : : : ; Z�V �nC1 D xn�1; Z�V �n D x�

D
X
x2X

f�.x/G.o; x/ p.x; xn�1/ 	 	 	p.x1; x0/ Prx0
Œ�V D 0�

D
�X

x2X

G.x/ p.x; xn�1/
�
p.xn�1; xn�2/ 	 	 	p.x1; x0/ Prx0

Œ�V D 0�


 �G.xn�1/
�
p.xn�1; xn�2/ 	 	 	p.x1; x0/ Prx0

Œ�V D 0�
D f�.xn�1/ ProŒZ�V

D x0; : : : ; Z�V �nC1 D xn�1�:

In the inequality we have used that G is an excessive measure. �

This proposition provides the main tool for the proof of Theorem 7.22.

7.38 Corollary.

Eo

�
D"��f�.Zn/

�
n��

ˇ̌
Œa; b�

��

 1

b � a :

Proof. If V � X is finite, then (7.35), Lemma 7.29 and Proposition 7.36 imply, by
virtue of the monotone convergence theorem, that

Eo

�
D"�f�.Z0/; f�.Z1/; : : : ; f�.Z�V

/
ˇ̌
Œa; b�

�� 
 1

b � aEo

�
f�.Z�V

/
�


 1

b � a :
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We choose a sequence of finite subsets Vk of X containing o, such that Vk � VkC1

and
S

k Vk D X . Then limk!1 �Vk
D �, and

lim
k!1

D"��f�.Zn/
�

n��Vk

ˇ̌
Œa; b�

�
D D"��f�.Zn/

�
n��

ˇ̌
Œa; b�

�
:

Using monotone convergence once more, the result follows. �

IV. Proof of the boundary convergence theorem

Now we can finally prove Theorem 7.22. We have to prove the statements (a), (b),
(c) listed after the theorem. We start with (a), �� 2 A, whose proof is a standard
exercise in measure theory. (In fact, we have previously omitted such detailed
considerations on several occasions, but it is good to go through this explicitly on
at least one occasion.)

It is clear that� 2 A, since it is a countable union of basic cylinder sets. On the
other hand, we now prove that�1 can be obtained by countably many intersections
and unions, starting with cylinder sets in A. First of all �1 DTx �x , where

�x D
˚
! D .xn/ 2 XN0 W lim

n!1K.x; xn/ exists in R


:

Now
�
K.x; xn/

�
is a bounded sequence, whence by (7.28)

�x D
\

Œa; b� rational

Ax.Œa; b�/; where

Ax.Œa; b�/ D
n
.xn/ W D#

��
K.x; xn/

� ˇ̌
Œa; b�

�
<1

o
:

We show that �1 n Ax.Œa; b�/ 2 A for any fixed interval Œa; b�: this isn
.xn/ W D#

��
K.x; xn/

� ˇ̌
Œa; b�

�D1o
D
\
k

[
l;m�k

�f.xn/ W K.x; xl/ � bg \ f.xn/ W K.x; xm/ 
 ag
�
:

Each set f.xn/ W K.x; xl/ � bg depends only on the value K.x; xl/ and is the
union of all cylinder sets of the form C.y0; : : : ; yl/ with K.x; yl/ � b. Analo-
gously, f.xn/ W K.x; xm/ 
 ag is the union of all cylinder sets C.y0; : : : ; ym/ with
K.x; ym/ 
 a.

(b) We set  D ıx and apply Corollary 7.38: f�.y/ D K.x; y/, whence

lim
n!�

K.x;Zn/ exists Pro -almost surely for each x:
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Therefore, .Zn/ converges Pro-almost surely in the topology of yX.P /. In other
terms, Pro.��/ D 1. In order to see that the initial point o can be replaced with any
x0 2 X , we use irreducibility. There are k � 0 and y1; : : : ; yk�1 2 X such that

p.o; y1/p.y1; y2/ 	 	 	p.yk�1; x0/ > 0:

Therefore

p.o; y1/ p.y1; y2/ 	 	 	 p.yk�1; x0/ Prx0
.� n��/

D p.o; y1/ p.y1; y2/ 	 	 	p.yk�1; x0/ Prx0

�
C.x0/ \ .� n��/

�
D Pro

�
C.o; y1; : : : ; yk�1; x0/ \ .� n��/

� D 0:
We infer that Prx0

.� n��/ D 0.

(c) Since X is discrete in the topology of yX.P /, it is clear that the restriction
of Z� to � is measurable. We prove that also the restriction to �1 is measurable
with respect to the Borel � -algebra on M. In view of the construction of the Martin
boundary (see in particular the approach using the completion of the metric (7.15)
on X ), a base of the topology is given by the collection of all finite intersections of
sets of the form

Bx;�;" D
˚
� 2M W jK.x; �/ �K.x; �/j < "
;

where x 2 X , � 2M and " > 0 vary. We prove that ŒZ� 2 Bx;�;"� 2 A for each of
those sets. Write c D K.x; �/. Then

ŒZ� 2 Bx;�;"� D
˚
! D .xn/ 2 �1 W jK.x; x1/ � cj < "



D ˚! D .xn/ 2 �1 W

ˇ̌
lim

n!1K.x; xn/ � c
ˇ̌
< "



:

7.39 Exercise. Prove in analogy with (a) that the latter set belongs to the � -alge-
bra A. �

This concludes the proof of Theorem 7.22. �
Theorem 7.19 follows immediately from Theorem 7.22. Indeed, ifP is stochas-

tic then Prx.�/ D 0 for every x 2 X , and � D 1. In this case, adding � to the
state space is not needed and is just convenient for the technical details of the proofs.

D The Poisson–Martin integral representation theorem

Theorems 7.19 and 7.22 show that the Martin compactification yX D yX.P / provides
a “geometric” model for the limit points of the Markov chain (always considering
the transient case). With respect to each starting point x 2 X , we consider the
distribution �x of the random variable Z�: for a Borel set B � yX ,

�x.B/ D PrxŒZ� 2 B�:
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In particular, if y 2 X , then (7.37) (with V D X ) yields

�x.y/ D G.x; y/
�
1 �

X
w2X

p.y;w/
�
D G.x; y/ p.y; �/:1 (7.40)

If f W yX ! R is �x-integrable then

Ex

�
f .Z�/

� D Z
yX
f d�x : (7.41)

7.42 Theorem. The measure �x is absolutely continuous with respect to �o, and

(a realization of ) its Radon–Nikodym density is given by
d�x

d�o

D K.x; 	/. Namely,

if B � yX is a Borel set then

�x.B/ D
Z

B

K.x; 	/ d�o:

Proof. As above, let V be a finite subset of X and �V the exit time from V . We
assume that o; x 2 V . Applying formula (7.37) once with starting point x and once
with starting point o, we find

PrxŒZ�V
D y� D K.x; y/ ProŒZ�V

D y�
for every y 2 V . Let f W yX ! R be a continuous function. Then

Ex

�
f .Z�V

/
� DX

y2V

f .y/ PrxŒZ�V
D y�

D
X
y2V

f .y/K.x; y/ ProŒZ�V
D y� D Eo

�
f .Z�V

/K.x;Z�V
/
�
:

We now take, as above, an increasing sequence of finite sets Vk with limit (union)
X . Then limk Z�Vk

D Z� almost surely with respect to Prx and Pro. Since f

andK.x; 	/ are continuous functions on the compact set yX , Lebesgue’s dominated
convergence theorem implies that one can exchange limit and expectation. Thus

Ex

�
f .Z�/

� D Eo

�
f .Z�/K.x;Z�/

�
;

that is, Z
yX
f .�/ d�x.�/ D

Z
yX
f .�/K.x; �/ d�o.�/

for every continuous function f W yX ! R. Since the indicator functions of open
sets in yX can be approximated by continuous functions, it follows that

�x.B/ D
Z

B

K.x; 	/ d�o

1For any measure �, we always write �.w/ D �.fwg/ for the mass of a singleton.
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for every open set B . But the open sets generate the Borel � -algebra, and the result
follows.

(We can also use the following reasoning: two Borel measures on a compact
metric space coincide if and only if the integrals of all continuous functions coincide.
For more details regarding Borel measures on metric spaces, see for example the
book by Parthasarathy [Pa].) �

We observe that by irreducibility, also �o is absolutely continuous with respect
to �x , with Radon–Nikodym density 1=K.x; 	/. Thus, all the limit measures �x ,
x 2 X , are mutually absolutely continuous. We add another useful proposition
involving the measures �x .

7.43 Proposition. If f W yX ! R is a continuous function then

Ex

�
f .Z�/

� DX
y2X

f .y/ �x.y/C lim
n!1P nf .x/

D
X
y2X

f .y/G.x; y/ p.y; �/C lim
n!1P nf .x/:

Proof. We decompose

Ex

�
f .Z�/

� D Ex

�
f .Z�/ 1��

�C Ex

�
f .Z�/ 1�1

�
:

The first term can be rewritten as

Ex

�
f .Z�/ 1Œ�<1�

� DX
y2X

f .y/ PrxŒ� <1; Z� D y� D
X
y2X

f .y/ �x.y/:

Using continuity of f and dominated convergence, the second term can be written
as

lim
n!1 Ex

�
f .Zn/ 1Œ��n�

�
:

On the set Œ� � n� we have Zk 2 X for each k 
 n. Hence

Ex

�
f .Zn/ 1Œ��n�

� DX
y2X

f .y/ PrxŒZn D y� D P nf .x/:

Combining these relations, we obtain the first of the proposed identities. The second
one follows from (7.40). �

The support of a (non-negative) Borel measure � is the set

supp.�/ D f� W �.V / > 0 for every neighbourhood V of �g:
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If we set h D R yX K. 	; �/ d�.�/ then

Ph D
Z

yX
PK. 	; �/ d�.�/: (7.44)

Indeed, ifP has finite range atx 2 X thenPh.x/ DPy p.x; y/h.y/ is a finite sum
which can be exchanged with the integral. Otherwise, we choose an enumeration
yk , k D 1; 2; : : : ; of the y with p.x; y/ > 0. Then

nX
kD1

p.x; yk/h.yk/ D
Z

yX

nX
kD1

p.x; yk/K.yk; �/ d�.�/

for every n. Using monotone convergence as n!1, we get (7.44). In particular,
h is a superharmonic function.

We have now arrived at the point where we can prove the second main theorem
of Martin boundary theory, after the one concerning convergence to the boundary.

7.45 Theorem (Poisson–Martin integral representation). Let .X; P / be substochas-
tic, irreducible and transient, with Martin compactification yX and Martin bound-
ary M. Then for every function h 2 �C.X; P / there is a Borel measure �h on yX
such that

h.x/ D
Z

yX
K.x; 	/ d�h for every x 2 X:

If h is harmonic then supp.�h/ �M.

Proof. We exclude the trivial case h � 0. Then we know (from the minimum
principle) that h.x/ > 0 for every x, and we can consider the h-process (7.7). By
(7.8), the Martin kernel associated with Ph is Kh.x; y/ D K.x; y/h.o/=h.x/: In
view of the properties that characterize the Martin compactification, we see that
yX.Ph/ D yX.P /, and that for every x 2 X

Kh.x; 	/ D K.x; 	/ h.o/
h.x/

on yX: (7.46)

Let Q�x be the distribution of Z� with respect to the h-process with starting point x,
that is, Q�x.B/ D Prh

xŒZ� 2 B�. [At this point, we recall once more that when
working with the trajectory space, the mappingsZn andZ� defined on the latter do
not change when we consider a modified process; what changes is the probability
measure on the trajectory space.] We apply Theorem 7.42 to the h-process, setting
B D yX , and use the fact that Kh.x; 	/ D d Q�x=d Q�o:

1 D Q�x. yX/ D
Z

yX
Kh.x; 	/ d Q�o:
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We set �h D h.o/ Q�o and multiply by h.x/. Then (7.46) implies the proposed
integral representation h.x/ D R yX K.x; 	/ d�h.

Let now h be a harmonic function. Suppose that y 2 supp.�h/ for some
y 2 X . Since X is discrete in yX , we must have �h.y/ > 0. We can decompose
�h D a 	ıyC�0, where supp.�0/ � yX nfyg. Then we get h.x/ D aK.x; y/Ch0.x/,
where h0.x/ D R

yX K.x; 	/ d�0. But K. 	; y/ and h0 are superharmonic functions,
and the first of the two is strictly superharmonic in y. Therefore also h must be
strictly superharmonic in y, a contradiction. �

The proof has provided us with a natural choice for the measure �h in the integral
representation: for a Borel set B � yX

�h.B/ D h.o/ Prh
oŒZ� 2 B�: (7.47)

7.48 Lemma. Let h1; h2 be two strictly positive superharmonic functions, let
a1; a2 > 0 and h D a1 	 h1 C a2 	 h2. Then �h D a1 	 �h1 C a2 	 �h2 .

Proof. Let o D x0; x1; : : : ; xk 2 X [ f�g. Then, by construction of the h-process,

h.o/ Prh
oŒZ0 D x0; : : : ; Zk D xk�

D h.o/ p.x0; x1/h.x1/

h.x0/
	 	 	 p.xk�1; xk/h.xk/

h.xk�1/

D p.x0; x1/ 	 	 	p.xk�1; xk/ h.xk/

D a1 p.x0; x1/ 	 	 	p.xk�1; xk/ h1.xk/C a2 p.x0; x1/ 	 	 	p.xk�1; xk/ h2.xk/

D a1h1.o/ Prh1
o ŒZ0 D x0; : : : ; Zk D xk�

C a2h2.o/ Prh2
o ŒZ0 D xo; : : : ; Zk D xk�:

We see that the identity between measures

h.o/ Prh
o D a1 h1.o/ 	 Prh1

o Ca2 h2.o/ 	 Prh2
o

is valid on all cylinder sets, and therefore on the whole � -algebra A. IfB is a Borel
set in yX then we get

�h.B/ D h.o/ Prh
oŒZ� 2 B�

D a1h1.o/ Prh1
o ŒZ� 2 B�C a2h2.o/ Prh2

o ŒZ� 2 B�
D a1 �

h1.B/C a2 �
h2.B/;

as proposed. �

7.49 Exercise. Let h 2 �C.X; P /. Use (7.8), (7.40) and (7.47) to show that

�h.y/ D G.o; y/�h.y/ � Ph.y/�:
In particular, let y 2 X and h D K. 	; y/. Show that �h D ıy . �
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In general, the measure in the integral representation of a positive (super)harmo-
nic function is not necessarily unique. We still have to face the question under
which additional properties it does become unique. Prior to that, we show that
every minimal harmonic function is of the formK. 	; �/with � 2M – always under
the hypotheses of (sub)stochasticity, irreducibility and transience.

7.50 Theorem. Let h be a minimal harmonic function. Then there is a point � 2M

such that the unique measure � on yX which gives rise to an integral representation
h D R yX K. 	; �/ d�.�/ is the point mass � D ı� . In particular,

h D K. 	; �/:
Proof. Suppose that we have

h D
Z

yX
K. 	; �/ d�.�/:

By Theorem 7.45, such an integral representation does exist. We have �. yX/ D 1

because h.o/ D K.o; �/ D 1 for all � 2 yX . Suppose that B � yX is a Borel set
with 0 < �.B/ < 1. Set

hB.x/ D 1

�.B/

Z
B

K.x; �/ d�.�/

and

h yXnB
.x/ D 1

�. yX nB/
Z

yXnB

K.x; �/ d�.�/:

Then hB and h yXnB
are positive superharmonic with value 1 at o, and

h D �.B/ 	 hB C
�
.1 � �.B/� 	 h yXnB

is a convex combination of two functions in the base B of the cone �C. Therefore
we must have h D hB D h yXnB

. In particular,Z
B

h.x/ d�.�/ D �.B/ h.x/ D
Z

B

K.x; �/ d�.�/

for every x 2 X and every Borel set B � X (if �.B/ D 0 or �.B/ D 1, this is
trivially true). It follows that for each x 2 X , one hasK.x; �/ D h.x/ for �-almost
every �. Since X is countable, we also have �.A/ D 1, where

A D f� 2 yX W K.x; �/ D h.x/ for all x 2 Xg:
This set must be non-empty. Therefore there must be � 2 A such that h D K. 	; �/.
If � ¤ � thenK. 	; �/ ¤ K. 	; �/ by the construction of the Martin compactification.
In other words, A cannot contain more than the point � , and � D ı� . Since h is
harmonic, we must have � 2M. �
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We define the minimal Martin boundary Mmin as the set of all � 2 M such
thatK. 	; �/ is a minimal harmonic function. By now, we know that every minimal
harmonic function arises in this way.

7.51 Corollary. For a point � 2 M one has � 2 Mmin if and only if the limit
distribution of the associated h-process with h D K. 	; �/ is �K. 	;�/ D ı� .

Proof. The “only if” is contained in Theorem 7.50.
Conversely, let �K. 	;�/ D ı� . Suppose that K. 	; �/ D a1 	 h1 C a2 	 h2 for two

positive superharmonic functions h1; h2 with hi .o/ D 1 and constants a1; a2 > 0.
Since hi .o/ D 1, the �hi are probability measures. By Lemma 7.48

a1 	 �h1 C a2 	 �h2 D ı� :

This implies �h1 D �h2 D ı� , and K. 	; �/ 2 dB.
Now suppose that K. 	; �/ D K. 	; y/ for some y 2 X . (This can occur

only when P does not have finite range, since finite range implies that K. 	; �/
is harmonic, while K. 	; y/ is not.) But then we know from Exercise 7.49 that
�h D ıy ¤ ı� in contradiction with the initial assumption. By Theorem 7.6, it only
rests that h is a minimal harmonic function. �

Note a small subtlety in the last lines, where the proof relies on the fact that we
distinguish � 2 M from y 2 X even when K. 	; �/ D K. 	; y/. Recall that this is
because we wanted X to be discrete in the Martin compactification, following the
approach of Hunt [32]. It may be instructive to reflect about the necessary modifi-
cations in the original approach of Doob [17], where � would not be distinguished
from y.

We can combine the last characterization of Mmin with Proposition 7.43 to obtain
the following.

7.52 Lemma. Mmin is a Borel set in yX .

Proof. As we have seen in (7.15), the topology of yX is induced by a metric �. 	; 	/.
Let � 2 M. For a function h 2 �C with h.o/ D 1, we consider the h-process
and apply Proposition 7.43 to the starting point o and the continuous function
fm D e�m �. 	;�/:Z

yX
fm d�

hDEh
o

�
fm.Z�/

�DX
x2X

fm.x/ �
h.x/C lim

n!1
X
y2X

p.n/.o; y/ h.y/ fm.y/:

If m ! 1 then fm ! 1f�g, and by dominated convergence
P

x2X fm.x/ �
h.x/

tends to 0, while the integral on the left hand side tends to �h.�/. Therefore

lim
m!1 lim

n!1
X
y2X

p.n/.o; y/ h.y/ fm.y/ D �h.�/:
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Setting h D K. 	; �/ and applying Corollary 7.51, we see that

Mmin D
˚
� 2M W lim

m!1 lim
n!1

P
y2X p

.n/.o; y/K.y; �/ e�m �.y;�/ D 1
:
Thus we have characterized Mmin as the set of points � 2M in which the triple limit
(the third being summation over y) of a certain sequence of continuous functions
on the compact set M is equal to 1. Therefore, Mmin is a Borel set by standard
measure theory on metric spaces. �

We remark here that in general, Mmin can very well be a proper subset of M.
Examples where this occurs arise, among other, in the setting of Cartesian products
of Markov chains, see Picardello and Woess [46] and [W2, §28.B]. We can now
deduce the following result on uniqueness of the integral representation.

7.53 Theorem (Uniqueness of the representation). If h 2 �C then the unique
measure � on yX such that

�.M nMmin/ D 0
and

h.x/ D
Z

yX
K.x; 	/ d� for all x 2 X

is given by � D �h, defined in (7.47).

Proof. 1.) Let us first verify that �h.M n Mmin/ D 0. We may suppose that
h.o/ D 1. Let f; g W yX ! R be two continuous functions. Then

Eh
o

�
f .Zn/ g.ZnCm/ 1Œ��nCm�

� D X
x;y2X

p
.n/

h
.o; x/ f .x/ p

.m/

h
.x; y/ g.y/

D
X
x2X

p.n/.o; x/ h.x/ f .x/Eh
x

�
g.Zm/ 1Œ��m�

�
:

Letting m!1, by dominated convergence

Eh
o

�
f .Zn/ g.Z1/ 1�1

� DX
x2X

p.n/.o; x/ h.x/ f .x/Eh
x

�
g.Z1/ 1�1

�
; (7.54)

since on�1 we have � D1 andZ� D Z1. Now, on�1 we also haveZ1 2M.
Considering the restriction gjM of g to M, and applying (7.41) and Theorem 7.42
to the h-process, we see that

Eh
x

�
g.Z1/ 1�1

� D Eh
x

�
gjM.Z�/

� D Z
M

Kh.x; �/ g.�/ d�h.�/: (7.55)
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Hence we can rewrite the right hand side of (7.54) asZ
M

X
x2X

p.n/.o; x/ h.x/ f .x/Kh.x; �/ g.�/ d�h.�/

D
Z

M

X
x2X

p.n/.o; x/ f .x/K.x; �/ g.�/ d�h.�/

D
Z

M

X
x2X

p
.n/

K. 	;�/
.o; x/ f .x/ g.�/ d�h.�/

D
Z

M

EK. 	;�/
o

�
f .Zn/ 1Œ��n�

�
g.�/ d�h.�/:

If n!1 then – as in (7.55), with x D o and with K. 	; �/ in the place of h –

EK. 	;�/
o

�
f .Zn/ 1Œ��n�

�! EK. 	;�/
o

�
f
ˇ̌
M
.Z�/

� D Z
M

f .�/ d�K. 	;�/.�/:

In the same way,

Eh
o

�
f .Zn/ g.Z1/ 1�1

�! Eh
o

�
f .Z1/ g.Z1/ 1�1

� D Z
M

f .�/ g.�/ d�h.�/:

Combining these equations, we getZ
M

f .�/g.�/ d�h.�/ D
Z

M

�Z
M

f .�/ d�K. 	;�/.�/

�
g.�/ d�h.�/:

This is true for any choice of the continuous function g on yX . One deduces that

f .�/ D
Z

M

f .�/ d�K. 	;�/.�/ for �h-almost every � 2M: (7.56)

This is valid for every continuous function f on yX . The boundary M is a compact
space with the metric �. 	; 	/. It has a denumerable dense subset f�k W k 2 Ng. We
consider the countable family of continuous functions fk;m D e�m �. 	;�k/ on yX .
Then �h.Bk;m/ D 0, where Bk;m is the set of all � which do not satisfy (7.56) with
f D fk;m. Then also �h.B/ D 0, where B D S

k;m Bk;m. If � 2M n B then for
every m and k

e�m �.�;�k/ D
Z

M

e�m �.�;�k/ d�K. 	;�/.�/:

There is a subsequence of .�k/ which tends to � . Passing to the limit,

1 D
Z

M

e�m �.�;�/ d�K. 	;�/.�/:
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If now m ! 1, then the last right hand term tends to �K. 	;�/.�/. Therefore
�K. 	;�/ D ı� , and via Corollary 7.51 we deduce that � 2Mmin. Consequently

�h.M nMmin/ 
 �h.B/ D 0:
2.) We show uniqueness. Suppose that we have a measure � with the stated

properties. We can again suppose without loss of generality that h.o/ D 1. Then �
and �h are probability measures. Let f W yX ! R be continuous. Applying (7.41),
Proposition 7.43 and (7.40) to the h-process,Z

Mmin

f .�/ d�h.�/

D
X
y2X

f .y/Gh.o; y/
�
1 �

X
w2X

ph.y; w/
�
C lim

n!1P n
h f .o/

D
X
y2X

f .y/G.o; y/
�
h.y/ �

X
w2X

p.y;w/ h.w/
�

C lim
n!1

X
x2X

p.n/.o; x/ f .x/ h.x/:

(7.57)

Choose � 2 Mmin. Substitute h with K. 	; �/ in the last identity. Corollary 7.51
gives

f .�/ D
Z

Mmin

f .�/ d�K. 	;�/.�/

D
X
y2X

f .y/G.o; y/
�
K.y; �/ �

X
w2X

p.y;w/K.w; �/
�

C lim
n!1

X
x2X

p.n/.o; x/ f .x/K.x; �/:

Integrating the last expression with respect to � over Mmin, the sums and the limit
can exchanged with the integral (dominated convergence), and we obtain precisely
the last line of (7.57). ThusZ

Mmin

f .�/ d�.�/ D
Z

Mmin

f .�/ d�h.�/

for every continuous function f on yX : the measures � and �h coincide. �

E Poisson boundary. Alternative approach to the integral
representation

If � is a Borel measure on M then

h D
Z

Mmin

K. 	; �/ d�.�/
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defines a non-negative harmonic function. Indeed, by monotone convergence (ap-
plied to the summation occurring in Ph), one can exchange the integral and the
application of P , and each of the functions K. 	; �/ with � 2Mmin is harmonic. If
u 2 �C then by Theorem 7.45

u.x/ D
X
y2X

K.x; y/ �u.y/C
Z

Mmin

K.x; �/ d�u.�/:

Set g.x/ DPy2X K.x; y/ �
u.y/ and h.x/ D R

Mmin
K.x; �/ d�u.�/. Then, as we

just observed, h is harmonic, and �h D �ujM by Theorem 7.53.
In view of Exercise 7.49, we find that g D Gf , where f D u�Pu. In this way

we have re-derived the Riesz decomposition u D Gf C h of the superharmonic
function u, with more detailed information regarding the harmonic part.

The constant function 1 D 1X is harmonic precisely when P is stochastic, and
superharmonic in general. If we set B D yX in Theorem 7.42, then we see that the
measure on yX , which gives rise to the integral representation of 1X in the sense of
Theorem 7.53, is the measure �o. That is, for any Borel set B � yX ,

�1.B/ D �o.B/ D ProŒZ� 2 B�:
If P is stochastic then � D 1 and �o as well as all the other measures �x , x 2 X ,
are probability measures on Mmin. If P is strictly substochastic in some point, then
PrxŒ� <1� > 0 for every x.

7.58 Exercise. Construct examples where PrxŒ� <1� D 1 for every x, that is, the
Markov chain does not escape to infinity, but vanishes (is absorbed by �) almost
surely.

[Hint: modify an arbitrary recurrent Markov chain suitably.] �
In general, we can write the Riesz decomposition of the constant function 1

on X :
1 D h0 CGf0 with h0.x/ D �x.M/ for every x 2 X: (7.59)

Thus, h0 � 0() � <1 almost surely() 1X is a potential.

In the sequel, when we speak of a function ' on M, then we tacitly assume that '
is extended to the whole of yX by setting ' D 0 onX . Thus, a �o-integrable function
' on M is intended to be one that is integrable with respect to �ojM. (Again, these
subtleties do not have to be considered when P is stochastic.) The Poisson integral
of ' is the function

h.x/ D
Z

M

K.x; 	/ ' d�o D
Z

M

' d�x D Ex

�
'.Z1/ 1�1

�
; x 2 X: (7.60)

It defines a harmonic function (not necessarily positive). Indeed, we can decompose
' D 'C � '� and consider the non-negative measures d�˙.�/ D '˙.�/ d�o.�/.
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Since �o.M nMmin/ D 0 (Theorem 7.53), the functions h˙ D
R

M
K. 	; �/ d�˙.�/

are harmonic, and h D hC�h�. If ' is a bounded function then also h is bounded.
Conversely, the following holds.

7.61 Theorem. Every bounded harmonic function is the Poisson integral of a
bounded measurable function on M.

Proof. Claim. For every bounded harmonic function h on X there are constants
a; b 2 R such that a 	 h0 
 h 
 b 	 h0.

To see this, we start with b � 0 such that h.x/ 
 b for every x. That is,
u D b 	 1X � h is a non-negative superharmonic function. Then u D NhC b 	Gf0,
where Nh D b 	 h0 � h is harmonic. Therefore 0 
 P nu D NhC b 	 P nGf0 ! Nh as
n!1, whence Nh � 0.

For the lower bound, we apply this reasoning to �h.

The claim being verified, we now set c D b � a and write c 	 h0 D h1 C h2,
where h1 D b 	 h0 � h and h2 D h � a 	 h0. The hi are non-negative harmonic
functions. By Lemma 7.48,

�h1 C �h2 D c 	 �h0 D c 	 1M �o;

where 1M �o is the restriction of �o to M. In particular, both �hi are absolutely
continuous with respect to 1M �o and have non-negative Radon–Nikodym densities
'i supported on M with respect to �o. Thus, for i D 1; 2,

hi D
Z

M

K. 	; �/ 'i .�/ d�o.�/:

Adding the two integrals, we see that

'1 C '2 D c 	 1M

�o-almost everywhere, whence the 'i are �o-almost everywhere bounded. We now
get

h D h2 C a 	 h0 D
Z

M

K. 	; �/ '.�/ d�o.�/; where ' D '2 C a 	 1M:

This is the proposed Poisson integral. �

The last proof becomes simpler when P is stochastic.
We underline that by the uniqueness theorem (Theorem 7.42), the bounded

harmonic function h determines the function ' uniquely �o-almost everywhere.

For the following measure-theoretic considerations, we continue to use the es-
sential part of the trajectory space, namely � D XN0 [� as in (7.21). We write
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(by slight abuse of notation) A for the � -algebra restricted to that set, on which all
our probability measures Prx live. Let � be the shift operator on �, namely

� .x0; x1; x2; : : : / D .x1; x2; x3; : : : /:

Its action extends to any extended real random variableW defined on�by �W.!/ D
W.�!/

Following once more the lucid presentation of Dynkin [Dy], we say that such
a random variable is terminal or final, if �W D W and, in addition, W � 0

on �. Analogously, an event A 2 A is called terminal or final, if its indicator
function 1A has this property. The terminal events form a � -algebra of subsets of
the “ordinary” trajectory spaceXN0 . Every non-negative terminal random variable
can be approximated in the standard way by non-negative simple terminal random
variables (i.e., linear combinations of indicator functions of terminal events).

“Terminal” means that the value of W.!/ does not depend on the deletion,
insertion or modification of an initial (finite) piece of a trajectory within XN0 .
The basic example of a terminal random variable is as follows: let ' W Mmin !
Œ�1;C1� be measurable, and define

W.!/ D
´
'
�
Z1.!/

�
; if ! 2 �1;

0; otherwise.

There is a direct relation between terminal random variables and harmonic functions,
which will lead us to the conclusion that every terminal random variable has the
above form.

7.62 Proposition. Let W � 0 be a terminal random variable satisfying 0 <

Eo.W / <1. Then h.x/ D Ex.W / <1, and h is harmonic on X .

The probability measures with respect to the h-process are given by

Prh
x.A/ D

1

h.x/
Ex.1AW /; A 2 A; x 2 X:

Proof. (Note that in the last formula, expectation Ex always refers to the “ordinary”
probability measure Prx on the trajectory space.)

If W is an arbitrary (not necessarily terminal) random variable on �, we can
write W.!/ D W

�
Z0.!/;Z1.!/; : : :

�
. Let y1; : : : ; yk 2 X (k � 1) and denote,

as usual, by Ex. 	 j Z1 D y1; : : : ; Zk D yk/ expectation with respect to the
probability measure Prx. 	 jZ1 D y1; : : : ; Zk D yk/. By the Markov property and
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time-homogeneity,

Ex

�
1ŒZ1Dy1;:::;ZkDyk �W.Zk; ZkC1; : : : /

�
D PrxŒZ1 D y1; : : : ; Zk D yk�	
	 Ex

�
W.Zk; ZkC1; : : : / j Z1 D y1; : : : ; Zk D yk

�
D p.x; y1/ 	 	 	p.yk�1; yk/Ex

�
W.Zk; ZkC1; : : : / j Zk D yk

�
D p.x; y1/ 	 	 	p.yk�1; yk/Ey

�
W.Z0; Z1; : : : /

�
(7.63)

In particular, ifW � 0 is terminal, that is,W.Z0; Z1; Z2; : : : / D W.Z1; Z2; : : : /,
then for arbitrary y,

Ex.1ŒZ1Dy�W / D p.x; y/Ey.W /:

Thus, if Ex.W / < 1 and p.x; y/ > 0 then Ey.W / < 1. Irreducibility now
implies that when Eo.W / <1 then Ex.W / <1 for all x. In this case, using the
fact that W � 0 on �,

Ex.W /DEx

� X
y2X[fg

1ŒZ1Dy�W
�
D
X
y2X

Ex.1ŒZ1Dy�W /D
X
y2X

p.x; y/Ey.W /I

the function h is harmonic.
In order to prove the proposed formula for Prh

x , we only need to verify it for an
arbitrary cylinder set A D C.a0; a1; : : : ; ak/, where a0; : : : ; ak 2 X . (We do not
need to consider aj D �, since the h-process does not visit � when it starts in X .)
For our cylinder set,

Prh
x.A/ D ıx.a0/ph.a0; a1/ 	 	 	ph.ak�1; ak/

D h.ak/

h.x/
ıx.a0/p.a0; a1/ 	 	 	p.ak�1; ak/:

On the other hand, we apply (7.63) and get, using that W is terminal,

1

h.x/
Ex.1AW / D 1

h.x/
ıx.a0/p.a0; a1/ 	 	 	p.ak�1; ak/Eak

.W /;

which coincides with Prh
x.A/ as claimed. �

The first part of the last proposition remains of course valid for any final random
variable W that is Eo-integrable: then it is Ex-integrable for every x 2 X , and
h.x/ D Ex.W / is harmonic. If W is (essentially) bounded then h is a bounded
harmonic function.
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7.64 Theorem. Let W be a bounded, terminal random variable, and let ' be the
bounded measurable function on M such that h.x/ D Ex.W / satisfies

h.x/ D
Z

M

' d�x :

Then
W D '.Z1/ 	 1�1

Prx-almost surely for every x 2 X .

Proof. As proposed, we let ' be the function on M that appears in the Poisson
integral representation of h. Then W 0 D '.Z1/ 	 1�1

is a bounded terminal
random variable that satisfies

Ex.W
0/ D h.x/ D Ex.W / for all x 2 X:

Therefore the second part of Proposition 7.62 implies thatZ
A

W d Prx D
Z

A

W 0 d Prx for every A 2 A:

The result follows. �

7.65 Corollary. Every terminal random variable W is of the form

W D '.Z1/ 	 1�1
Prx-almost surely for every x 2 X ,

where ' is a measurable function on M.

Proof. For bounded W , this follows from Theorems 7.61 and 7.64. If W is non-
negative, choose n 2 N and set Wn D minfn;W g (pointwise). This is a bounded,
non-negative terminal random variable, whence there is a bounded, non-negative
function 'n on M such that

Wn D 'n.Z1/ 	 1�1
Prx-almost surely for every x 2 X .

If we set ' D lim supn 'n (pointwise on M) then W D '.Z1/ 1�1
.

Finally, if W is arbitrary, then we decompose W D WC �W�. We get W˙ D
'˙.Z1/ 	1�1

. Then we can set ' D 'C�'� (choosing the value to be 0whenever
this is of the indefinite form1�1; note that WC D 0 where W� > 0 and vice
versa). �

For the following, we write � D 1M �o for the restriction of �o to M.
The pair .M; �/, as a measure space with the Borel � -algebra, is called the

Poisson boundary of .X; P /. It is a probability space if and only if the matrix P
is stochastic, in which case � D �o. Since �.M nMmin/ D 0, we can identify
.M; �/ with .Mmin; �/. Besides being large enough for providing a unique integral
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representation of all bounded harmonic functions, the Poisson boundary is also the
“right” model for the distinguishable limit points at infinity which the Markov chain
.Zn/ can attain. Note that for describing those limit points, we do not only need
the topological model (the Martin compactification), but also the distribution of the
limit random variable. Theorem 7.64 and Corollary 7.65 show that the Poisson
boundary is the finest model for distinguishing the behaviour of .Zn/ at infinity.

On the other hand, in many cases the Poisson boundary can be “smaller” than
Mmin in the sense that the support of � does not contain all points of Mmin. In
particular, we shall say that the Poisson boundary is trivial, if supp.�/ consists of
a single point. In formulating this, we primarily have in mind the case when P is
stochastic. In the stochastic case, triviality of the Poisson boundary amounts to the
(weak) Liouville property: all bounded harmonic functions are constant.

When P is strictly substochastic in some point, recall that it may also happen
that � < 1 almost surely, in which case �x.M/ D 0 for all x, and there are no
non-zero bounded harmonic functions. In this case, the Poisson boundary is empty
(to be distinguished from “trivial”).

7.66 Exercise. As in (7.59), let h0 be the harmonic part in the Riesz decomposition
of the superharmonic function 1 on X . Show that the following statements are
equivalent.

(a) The Poisson boundary of .X; P / is trivial.

(b) The function h0 of (7.59) is non-zero, and every bounded harmonic function
is a constant multiple of h0.

(c) One has h0.o/ ¤ 0, and 1
h0.o/

h0 is a minimal harmonic function. �

We next deduce the following theorem of convergence to the boundary.

7.67 Theorem (Probabilistic Fatou theorem). If ' is a �o-integrable function on M

and h its Poisson integral, then

lim
n!1 h.Zn/ D '.Z1/ �o-almost surely on �1:

Proof. Suppose first that ' is bounded. By Corollary 7.31, W D limn!1 h.Zn/

exists Prx-almost surely. This W is a terminal random variable. (From the lines
preceding the corollary, we see that W � 0 on �.) Since h is bounded, we can
use Lebesgue’s theorem (dominated convergence) to obtain

Ex.W / D lim
n!1 Ex

�
h.Zn/

� D lim
n!1P nh.x/ D h.x/

for every x 2 X . Now Theorem 7.64 implies thatW D '.Z1/ 	 1�1
, as claimed.

Next, suppose that ' is non-negative and �o-integrable. Let N 2 N and define
'N D ' 	1Œ'�N � and N D ' 	1Œ'>N �. Then 'NC N D '. Let gN and hN be the
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Poisson integrals of 'N and  N , respectively. These two functions are harmonic,
and gN .x/C hN .x/ D h.x/.

We can write

h.x/ D Ex.Y /; where Y D '.Z1/ 	 1�1
;

gN .x/ D Ex.VN /; where VN D 'N .Z1/ 	 1�1
;

and

hN .x/ D Ex.YN /; where YN D  N .Z1/ 	 1�1
:

Since 'N is bounded, we know from the first part of the proof that

lim
n!1gN .Zn/ D VN �o-almost surely on �1:

Furthermore, we know from Corollary 7.31 that W D limn!1 h.Zn/ and WN D
limn!1 hN .Zn/ exist and are terminal random variables.

We have W D VN CWN and Y D VN C YN and need to show that W D Y

almost surely. We cannot apply the dominated convergence theorem to hN .Zn/, as
n!1, but by Fatou’s lemma,

Ex.WN / 
 lim
n!1 Ex

�
hN .Zn/

� D hN .x/:

Therefore

Ex

�jW � Y j� D Ex

�jWN � YN j
� 
 Ex.WN /C Ex.YN / 
 2hN .x/:

Now by irreducibility, there is Cx > 0 such that hN .x/ 
 Cx hN .o/, see (7.3).
Since ' is �o-integrable, hN .o/ D �oŒ' > N � ! 0 as N ! 1. Therefore
W � Y D 0 Prx-almost surely, as proposed.

Finally, in general we can decompose ' D 'C � '� and apply what we just
proved to the positive and negative parts. �

Besides the Riesz decomposition (see above), also the approximation theo-
rem (Theorem 6.46) can be easily deduced by the methods developed in this section:
if h 2 �C and V � X is finite, then by transience of the h-process one has

X
y2V

Prh
xŒZ�V

D y�
´
D 1; if x 2 V;

 1; otherwise:

Applying (7.37) to the h-process, this relation can be rewritten as

X
y2V

G.x; y/ h.y/ Prh
y Œ�V D 0�

´
D h.x/; if x 2 V;

 h.x/; otherwise:

If we choose an increasing sequence of finite sets Vn with union X , we obtain h as
the pointwise limit from below of a sequence of potentials.
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Alternative approach to the Poisson–Martin integral representation

The above way of deducing the approximation theorem, involving Martin boundary
theory, is of course far more complicated than the one in Section 7.D. Conversely,
the integral representation can also be deduced directly from the approximation
theorem without prior use of the theorem on convergence to the boundary.

Alternative proof of the integral representation theorem. Let h 2 �C. By Theo-
rem 6.46, there is a sequence of non-negative functions fn onX such that gn.x/ D
Gfn.x/! h.x/ pointwise. We rewrite

Gfn.x/ D Gfn.o/
X
y2X

K.x; y/ �n.y/;

where

�n.y/ D G.o; y/ fn.y/

Gfn.o/
:

Then �n is a probability distribution on the set X , which is discrete in the topology
of yX . We can consider �n as a Borel measure on yX and rewrite

Gfn.x/ D Gfn.o/

Z
yX
K.x; 	/ d�n:

Now, the set of all Borel probability measures on a compact metric space is compact
in the topology of convergence in law (weak convergence), see for example [Pa].
This implies that there are a subsequence �nk

and a probability measure � on yX
such that Z

yX
f d�nk

!
Z

yX
f d�

for every continuous function f on yX . But the functions K.x; 	/ are continuous,
and in the limit we obtain

h.x/ D h.o/
Z

yX
K.x; 	/ d�:

This provides an integral representation of h with respect to the Borel measure
h.o/ 	 �. �

This proof appears simpler than the road we have taken in order to achieve the
integral representation. Indeed, this is the approach chosen in the original paper
by Doob [17]. It uses a fundamental and rather profound theorem, namely the
one on compactness of the set of Borel probability measures on a compact metric
space. (This can be seen as a general version of Helly’s principle, or as a special
case of Alaoglu’s theorem of functional analysis: the dual of the Banach space of
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all continuous functions on yX is the space of all signed Borel measures; in the
weak topology, the set of all probability measures is a closed subset of the unit
ball and thus compact.) After this proof of the integral representation, one still
needs to deduce from the latter the other theorems regarding convergence to the
boundary, minimal boundary, uniqueness of the representation. In conclusion, the
probabilistic approach presented here, which is due to Hunt [32], has the advantage
to be based only on a relatively elementary version of martingale theory.

Nevertheless, in lectures where time is short, it may be advantageous to deduce
the integral representation directly from the approximation theorem as above, and
then prove that all minimal harmonic functions are Martin kernels, precisely as
in Theorem 7.50. After this, one may state the theorems on convergence to the
boundary and uniqueness of the representation without proof.

This approach is supported by the observations at the end of Section B: in all
classes of specific examples of Markov chains where one is able to elaborate a con-
crete description of the Martin compactification, one also has at hand a direct proof
of convergence to the boundary that relies on the specific features of the respective
example, but is usually much simpler than the general proof of the convergence
theorem.

What we mean by “concrete description” is the following. Imagine to have a
class of Markov chains on some state space X which carries a certain geometric,
algebraic or combinatorial structure (e.g., a hyperbolic graph or group, an integer
lattice, an infinite tree, or a hyperbolic graph or group). Suppose also that the
transition probabilities of the Markov chain are adapted to that structure. Then we
are looking for a “natural” compactification of that structure, a priori defined in the
respective geometric, algebraic or combinatorial terms, maybe without thinking yet
about the probabilistic model (the Markov chain and its transition matrix). Then we
want to know if this model may also serve as a concrete description of the Martin
compactification.

In Chapter 9, we shall carry out this program in the class of examples which is
simplest for this purpose, namely for random walks on trees. Before that, we insert
a brief chapter on random walks on lattices.



Chapter 8

Minimal harmonic functions on Euclidean lattices

In this chapter, we consider irreducible random walks on the Abelian group Zd in
the sense of (4.18), but written additively. Thus,

p.n/.k; l/ D .n/.l � k/ for k; l 2 Zd ;

where  is a probability measure on Zd and .n/ its n-th convolution power given
by .1/ D  and

.n/.k/ D
X

k1C			CknDk

.k1/ 	 	 	.kn/ D
X

l2Zd

.n�1/.l/ .k � l/:

(Compare with simple random walk on Zd , where  is equidistribution on the
set of integer unit vectors.) Recall from Lemma 4.21 that irreducibility meansS

n supp..n// D Zd , with supp..n// D fk1 C 	 	 	 C kn W ki 2 supp./g: The
action of the transition matrix on functions f W Zd ! R is

Pf .k/ D
X

l2Zd

f .l/ .l � k/ D
X

m2Zd

f .kCm/ .m/: (8.1)

We first study the bounded harmonic functions, that is, the Poisson boundary. The
following theorem was first proved by Blackwell [8], while the proof given here
goes back to a paper by Dynkin and Malyutov [19], who attribute it to A. M.
Leonotovič.

8.2 Theorem. All bounded harmonic functions with respect to  are constant.

Proof. The proof is based on the following.
Let h 2 H 1 and l 2 supp./. Then we claim that

h.kC l/ 
 h.k/ for every k 2 Zd : (8.3)

Proof of the claim. Let c > 0 be a constant such that jh.k/j 
 c for all k. We set
g.k/ D h.kC l/ � h.k/. We have to verify that g 
 0. First of all,

Pg.k/ D
X

m2Zd

�
h.kC l Cm/ � h.kCm/

�
.m/ D g.k/:

(Note that we have used in a crucial way the fact that Zd is an Abelian group.)
Therefore g 2 H 1, and jg.k/j 
 2c for every k.
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Suppose by contradiction that

b D sup
k2Zd

g.k/ > 0:

We observe that for each N 2 N and every k 2 Zd ,

N �1X
nD0

g.kC nl/ D h.kCN l/ � h.k/ 
 2c:

We choose N sufficiently large so that N b
2
> 2c. We shall now find k 2 Zd such

that g.kC nl/ > b
2

for all n < N , thus contradicting the assumption that b > 0.

For arbitrary k 2 Zd and n < N ,

p.n/.k;kC nl/ D .n/.nl/ � �.l/�n � �.l/�N �1 D a;
where 0 < a < 1. Since b.1 � a

2
/ < b, there must be k 2 Zd with

g.k/ > b
�
1 � a

2

�
:

Observing that P ng D g, we obtain for this k and for 0 
 n < N

b

�
1 � 

.n/.nl/

2

�

 b

�
1 � a

2

�
< g.k/

D g.kC nl/ .n/.nl/C
X

m¤nl

g.kCm/ .n/.m/


 g.kC nl/ .n/.nl/C
X

m¤nl

b .n/.m/

D g.kC nl/ .n/.nl/C b�1 � .n/.nl/
�
:

Simplifying, we get g.kCnl/ > b
2

for every n < N , as proposed. This completes
the proof of (8.3).

If h 2 H 1 then we can apply (8.3) both to h and to �h and obtain

h.kC l/ D h.k/ for every k 2 Zd and every l 2 supp./:

Now let k 2 Zd be arbitrary. By irreducibility, we can find n > 0 and elements
l1; : : : ; ln 2 supp./ such that k D l1 C 	 	 	 C ln. Then by the above

h.0/ D h.l1/ D h.l1 C l2/ D 	 	 	 D h.l1 C 	 	 	 C ln�1/ D h.k/;
and h is constant. �
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Besides the constant functions, it is easy to spot another class of functions on
Zd that are harmonic for the transition operator (8.1). For c 2 Rd , let

fc.k/ D ec	k; k 2 Zd : (8.4)

(Here, c 	k denotes the standard scalar product in Rd .) Then fc.k/ is P -integrable
if and only if

'.c/ D
X

k2Zd

ec	k .k/ (8.5)

is finite, and in this case,

Pfc.k/ D
X

l2Zd

ec	k ec	.l�k/ .l � k/ D '.c/ fc.k/: (8.6)

Note that '.c/ D Pfc.0/. If '.c/ D 1 then fc is a positive harmonic function. For
the reference point o, our natural choice is the origin 0 of Zd , so that fc.o/ D 1.

8.7 Theorem. The minimal harmonic functions for the transition operator (8.1)
are precisely the functions fc with '.c/ D 1.

Proof. A. Let h be a minimal harmonic function. For l 2 Zd , set hl .k/ D
h.kC l/=h.l/. Then, as in the proof of Theorem 8.2,

Phl .k/ D 1

h.l/

X
m2Zd

h.kCmC l/ .m/ D hl .k/:

Hence hl 2 B. If n � 1, by iterating (8.1), we can write the identity P nh D h as

h.k/ D
X

l2Zd

hl .k/ h.l/ 
.n/.l/:

That is, h DP
l al 	 hl with al D h.l/ .n/.l/, and h is a convex combination of

the functions hl with al > 0 (which happens precisely when l 2 supp..n//). By
minimality of h we must have hl D h for each l 2 supp..n//. This is true for
every n, and hl D h for every l 2 Zd , that is,

h.kC l/ D h.k/ h.l/ for all k; l 2 Zd :

Now let ei be i -th unit vector in Zd (i D 1; : : : ; d ) and c 2 Rd the vector whose
i -th coordinate is ci D log h.ei /. Then

h.k/ D ec	k;

and harmonicity of h implies '.c/ D 1.
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B. Conversely, let c 2 Rd with '.c/ D 1. Consider the fc-process:

pfc
.k; l/ D p.k; l/ fc.l/

fc.k/
D ec	.l�k/ .l � k/:

These are the transition probabilities of the random walk on Zd whose law is the
probability distribution c , where

c.k/ D ec	k .k/; k 2 Zd :

We can apply Theorem 8.2 to c in the place of , and infer that all bounded
harmonic functions with respect to Pfc

are constant. Corollary 7.11 yields that fc

is minimal with respect to P . �

8.8 Exercise. Check carefully all steps of the proofs to show that the last two
theorems are also valid if instead of irreducibility, one only assumes that supp./
generates Zd as a group. �

Since we have developed Martin boundary theory only in the irreducible case,
we return to this assumption. We set

C D fc 2 Rd W '.c/ D 1g: (8.9)

This set is non-empty, since it contains 0. By Theorem 8.7, the minimal Martin
boundary is parametrised by C . For a sequence .cn/we have cn ! c if and only if
fcn
! fc pointwise on Zd . Now recall that the topology on the Martin boundary

is that of pointwise convergence of the Martin kernels K. 	; �/, � 2 M. Thus, the
bijection C ! Mmin induced by c 7! fc is a homeomorphism. Theorem 7.53
implies the following.

8.10 Corollary. For every positive function h on Zd which is harmonic with respect
to  there is a unique Borel measure � on C such that

h.k/ D
Z

C

ec	k d�.c/ for all k 2 Zd :

8.11 Exercise (Alternative proof of Theorems 8.2 and 8.7). A shorter proof of the
two theorems can be obtained as follows.

�Start with partA of the proof ofTheorem 8.7, showing that every minimal harmonic
function has the form fc with c 2 C .

�Arguing as before Corollary 8.10, infer that there is a subset C 0 of C such that the
mapping c 7! fc (c 2 C 0) induces a homeomorphism from C 0 to Mmin. It follows
that every positive harmonic function h has a unique integral representation as in
Corollary 8.10 with �.C n C 0/ D 0.
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Now consider a bounded harmonic function h. Show that the representing
measure must be � D c 	 ı0, a multiple of the point mass at 0.
[Hint: if supp � ¤ f0g, show that the function h cannot be bounded.]

Theorem 8.2 follows.

� Now conclude with part B of the proof of Theorem 8.7 without any change,
showing a posteriori that C 0 D C . �

We remark that the proof outlined in the last exercises is shorter than the road
taken above only because it uses the highly non-elementary integral representation
theorem. Thus, our completely elementary approach to the proofs of Theorems 8.2
and 8.7 is in reality more economic.

For the rest of this chapter, we assume in addition to irreducibility that P has
finite range, that is, supp./ is finite. We analyze the properties of the function '.

'.c/ D
X

k2supp.�/

ec	k .k/

is a finite sum of exponentials, hence a convex function, defined and differentiable
on the whole of Rd . (It is of course also convex on the set where it is finite when
 does not have finite support).

8.12 Lemma. lim
jcj!1

'.c/ D1:

Proof. (8.6) implies that P nfc D '.c/n fc . Hence, applying (8.5) and (8.6) to the
probability measure .n/,

'.c/n D
X

k2supp.�.n//

ec	k .n/.k/:

By irreducibility, we can find n 2 N and ˛ > 0 such that

nX
kD1

.k/.˙ei / � ˛

for i D 1; : : : ; d . Therefore

nX
kD1

'.c/k �
nX

kD1

dX
iD1

�
ec	ei.k/.ei /C e�c	ei.k/.�ei /

� � ˛ dX
iD1

.eci C e�ci /;

from which the lemma follows. �

8.13 Exercise. Deduce the following. The set fc 2 Rd W '.c/ 
 1g is compact
and convex, and its topological boundary is the set C of (8.9). Furthermore, the
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function ' assumes its absolute minimum in the unique point cmin which is the
solution of the equation X

k2supp.�/

ec	k .k/k D 0: �

In particular,

cmin D 0() N D 0; where N D
X

k2Zd

.k/k:

(The vector N is the average displacement of the random walk in one step.) Thus

C D f0g () N D 0:

Otherwise, cmin belongs to the interior of the set f' 
 1g, and the latter is homeo-
morphic to the closed unit ball in Rd , while the boundary C is homeomorphic to
the unit sphere Sd�1 D fu 2 Rd W juj D 1g in Rd .

8.14 Corollary. Let  be a probability measure on Zd that gives rise to an irre-
ducible random walk.

(1) If N D 0 then all positive-harmonic functions are constant, and the minimal
Martin boundary consists of a single point.

(2) Otherwise, the minimal Martin boundary Mmin is homeomorphic with the set
C and with the unit sphere Sd�1 in Rd .

So far, we have determined the minimal Martin boundary Mmin and its topol-
ogy, and we know how to describe all positive harmonic functions with respect
to . These results are due to Doob, Snell and Williamson [18], Choquet
and Deny [11] and Hennequin [31]. However, they do not provide the complete
knowledge of the full Martin compactification. We still have the following ques-
tions. (a) Do there exist non-minimal elements in the Martin boundary? (b) What
is the topology of the full Martin compactification of Zd with respect to ? This
includes, in particular, the problem of determining the “directions of convergence”
in Zd along which the functions fc (c 2 C ) arise as pointwise limits of Martin
kernels. The answers to these questions require very serious work. They are due to
Ney and Spitzer [45]. Here, we display the results without proof.

8.15 Theorem. Let  be a probability measure with finite support on Zd which
gives rise to an irreducible random walk which is transient (() N ¤ 0 or d � 3).

(a) If N D 0 then the Martin compactification coincides with the one-point-
compactification of Zd .
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(b) If N ¤ 0 then the Martin boundary is homeomorphic with the unit sphere
Sd�1. The topology of the Martin compactification is obtained as the closure
of the immersion of Zd into the unit ball via the mapping

k 7! k

1C jkj :

If .kn/ is a sequence in Zd such that kn=.1 C jknj/ ! u 2 Sd�1 then
K. 	;kn/ ! fc , where c is the unique vector in in Rd such that '.c/ D 1

and the gradient r'.c/ is collinear with u.

The proof of this theorem in the original paper of Ney and Spitzer [45] requires
a large amount of subtle use of characteristic function theory. A shorter proof, also
quite subtle (communicated to the author by M. Babillot), is presented in §25.B
of the monograph [W2].

In particular, we see from Theorem 8.15 that M D Mmin. From Theorem 8.2
we know that the Poisson boundary is always trivial. In the case N ¤ 0 it is easy
to find the boundary point to which .Zn/ converges almost surely in the topology
of the Martin compactification. Indeed, by the law of large numbers, 1

n
Zn ! N

almost surely. Therefore,

Zn

1C jZnj !
N
j Nj almost surely.

In the following figure, we illustrate the Martin compactification in the case d D 2
and N ¤ 0. It is a fish-eye’s view of the world, seen from the origin.
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Chapter 9

Nearest neighbour random walks on trees

In this chapter we shall study a large class of Markov chains for which many
computations are accessible: we assume that the transition matrix P is adapted
to a specific graph structure of the underlying state space X . Namely, the graph
�.P / of Definition 1.6 is supposed to be a tree, so that we speak of a random walk
on that tree. In general, the use of the term random walk refers to a Markov chain
whose transition probabilities are adapted in some way to a graph or group structure
that the state space carries. Compare with random walks on groups (4.18), where
adaptedness is expressed in terms of the group operation. If we start with a locally
finite graph, then simple random walk is the standard example of a Markov chain
adapted to the graph structure, see Example 4.3. More generally, we can consider
nearest neighbour random walks, such that

p.x; y/ > 0 if and only if x � y; (9.1)

where x � y means that the vertices x and y are neighbours.
Trees lend themselves particularly well to computations with generating func-

tions. At the basis stands Proposition 1.43 (b), concerning cut points. We shall be
mainly interested in infinite trees, but will also come back to finite ones.
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Figure 21

A Basic facts and computations

Recall that a tree T is a finite or infinite, symmetric graph that is connected and
contains no cycle. (A cycle in a graph is a sequence Œx0; x1; : : : ; xk�1; xk D x0�

such that k � 3, x0; : : : ; xk�1 are distinct, and xi�1 � xi for i D 1; : : : ; k.) All
our trees have to be finite or denumerable.
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We choose and fix a reference point (root) o 2 T . (Later, owill also serve as the
reference point in the construction of the Martin kernel). We write jxj D d.x; o/

for the length x 2 T . jxj � 1 then we define the predecessor x� of x to be the
unique neighbour of x which is closer to the root: jx�j D jxj � 1.

In a tree, a geodesic arc or path is a finite sequence 	 D Œx0; x1; : : : ; xk�1; xk�

of distinct vertices such that xj �1 � xj for j D 1; : : : ; k. A geodesic ray or just ray
is a one-sided infinite sequence 	 D Œx0; x1; x2; : : : � of distinct vertices such that
xj �1 � xj for all j 2 N. A 2-sided infinite geodesic or just geodesic is a sequence
	 D Œ: : : ; x�2; x�1; x0; x1; x2; : : : � of distinct vertices such that xj �1 � xj for all
j 2 Z. In each of those cases, we have d.xi ; xj / D jj � i j for the graph distance
in T . An infinite tree that is not locally finite may not possess any ray. (For example,
it can be an infinite star, where a root has infinitely many neighbours, all of which
have degree 1.)

A crucial property of a tree is that for every pair of vertices x; y, there is a unique
geodesic arc 	.x; y/ starting at x and ending at y.

If x; y 2 T are distinct then we define the associated cone of T as

Tx;y D fw 2 T W y 2 	.x;w/g:
(That is, w lies behind y when seen from x.) This is (or spans) a subtree of T . See
Figure 22. (The boundary @Tx;y appearing in that figure will be explained in the
next section.)
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On some occasions, it will be (technically) convenient to consider the following
variants of the cones. Let Œx; y� be an (oriented) edge of T . We augment Tx;y by
x and write BŒx;y� for the resulting subtree, which we call a branch of T . Given P
on T , we define PŒx;y� on BŒx;y� by

pŒx;y�.v; w/ D
´
p.v;w/; if v;w 2 BŒx;y�; v ¤ x;
1; if v D x; w D y: (9.2)
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Then F.y; xjz/ is the same for P on T and for PŒx;y� on BŒx;y�. Indeed, if the
random walk starts at y it cannot leave BŒx;y� before arriving at x. (Compare with
Exercise 2.12.)

The following is the basic ingredient for dealing with nearest neighbour random
walks on trees.

9.3 Proposition. (a) If x; y 2 T and w lies on the geodetic arc 	.x; y/ then

F.x; yjz/ D F.x;wjz/F.w; yjz/:
(b) If x � y then

F.y; xjz/ D p.y; x/ z C
X

wWw
y
w 6Dx

p.y;w/ z F.w; yjz/ F.y; xjz/

D p.y; x/ z

1 � P
wWw
y

w 6Dx

p.y;w/ z F.w; yjz/ :

Proof. Statement (a) follows from Proposition 1.43 (b), because w is a cut point
between x and y. Statement (b) follows from (a) and Theorem 1.38:

F.y; xjz/ D p.y; x/ z C
X

wWw
y
w 6Dx

p.y;w/ z F.w; xjz/;

and F.w; xjz/ D F.w; yjz/F.y; xjz/ by (a). �

9.4 Exercise. Deduce from Proposition 9.3 (b) that

F 0.y; xjz/ D F.y; xjz/2
p.y; x/ z2

C
X

wWw
y
w 6Dx

F.y; xjz/2 p.y;w/
p.y; x/

F 0.w; yjz/:

(This will be used in Section H). �
On the basis of these formulas, there is a simple algorithm to compute all the

generating functions on a finite tree T . They are determined by the functions
F.y; xjz/, where x and y run through all ordered pairs of neighbours in T .

If y is a leaf of T , that is, a vertex which has a unique neighbour x in T , then
F.y; xjz/ D p.y; x/ z. (In the stochastic case, we have p.y; x/ D 1, but below
we shall also refer to the case when P is substochastic.)

Otherwise, Proposition 9.3 (b) says that F.y; xjz/ is computed in terms of the
functions F.w; yjz/, where w varies among the neighbours of y that are distinct
from x. For the latter, one has to consider the sub-branches BŒy;w� of BŒx;y�. Their
sizes are all smaller than that ofBŒx;y�. In this way, the size of the branches reduces
step by step until one arrives at the leaves. We describe the algorithm, in which
every oriented edge Œx; y� is recursively labeled by F.x; yjz/.
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(1) For each leaf y and its unique neighbour x, label the oriented edge Œy; x�with
F.y; xjz/ D p.y; x/ z (D z when P is stochastic).

(2) Take any edge Œy; x� which has not yet been labeled, but such that all the
edges Œw; y� (wherew ¤ x) already carry their label F.w; yjz/. Label Œy; x�
with the rational function

F.y; xjz/ D p.y; x/ z

1 � P
wWw
y

w¤x

p.y;w/ z F.w; yjz/ :

Since the tree is finite, the algorithm terminates after jE.T /j steps, whereE.T /
is the set of oriented edges (two oppositely oriented edges between any pair of
neighbours). After that, one can use Lemma 9.3 (a) to compute F.x; yjz/ for
arbitrary x; y 2 T : if 	.x; y/ D Œx D x0; x1; : : : ; xk D y� then

F.x; yjz/ D F.x0; x1jz/F.x1; x2jz/ 	 	 	F.xk�1; xkjz/
is the product of the labels along the edges of 	.x; y/. Next, recall Theorem 1.38:

U.x; xjz/ D
X
y
x

p.x; y/ z F.y; xjz/

is obtained from the labels of the ingoing edges at x 2 T , and finally

G.x; yjz/ D F.x; yjz/
1 � U.y; yjz/ :

The reader is invited to carry out these computations for her/his favorite examples
of random walks on finite trees. The method can also be extended to certain classes
of infinite trees & random walks, see below. In a similar way, one can compute
the expected hitting times Ey.t

x/, where x; y 2 T . If x ¤ y, this is F 0.y; xj1�/.
However, here it is better to proceed differently, by first computing the stationary
measure. The following is true for any tree, finite or not.

9.5 Fact. P is reversible.

Indeed, for our “root” vertex o 2 T , we define m.o/ D 1. Then we can construct
the reversing measure m recursively:

m.x/ D m.x�/
p.x�; x/
p.x; x�/

:

That is, if 	.o; x/ D Œo D x0; x1; : : : ; xk�1; xk D x� then

m.x/ D p.x0; x1/p.x1; x2/ 	 	 	p.xk�1; xk/

p.x1; x0/p.x2; x1/ 	 	 	p.xk; xk�1/
: (9.6)
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9.7 Exercise. Change of base point: write mo for the measure of (9.6) with respect
to the root o. Verify that when we choose a different point y as the root, then

mo.x/ D mo.y/my.x/: �

The measure m of (9.6) is not a probability measure. We remark that one need
not always use (9.6) in order to compute m. Also, for reversibility, we are usually
only interested in that measure up to multiplication with a constant. For simple
random walk on a locally finite tree, we can always use m.x/ D deg.x/, and for a
symmetric random walk, we can also take m to be the counting measure.

9.8 Proposition. The random walk is positive recurrent if and only if the measure
m of (9.6) satisfies m.T / DPx2T m.x/ <1. In this case,

Ex.t
x/ D m.T /

m.x/
:

When y � x then

Ey.t
x/ D m.Tx;y/

m.y/p.y; x/
:

Proof. The criterion for positive recurrence and the formula for Ex.t
x/ are those

of Lemma 4.2.
For the last statement, we assume first that y D o and x � o. We mentioned

already that Eo.t
x/ D Eo.t

x
Œx;o�

/, where tx
Œx;o�

is the first passage time to the point
x for the random walk on the branch BŒx;o� with transition probabilities given by
(9.2). If the latter walk starts at x, then its first step goes to o. Therefore

Ex.t
x
Œx;o�/ D 1C Eo.t

x/:

Now the measure mŒx;o� with respect to base point o that makes the random walk
on the branch BŒx;o� reversible is given by

mŒx;o�.w/ D
´

m.w/; if w 2 BŒx;o� n ¹xº;
p.o; x/; if w D x:

Applying to the branch what we stated above for the random walk on the whole
tree, we have

Ex.t
x
Œx;o�/ D mŒx;o�.BŒx;o�/=mŒx;o�.x/ D

�
m.Tx;o/C p.o; x/

�
=p.o; x/:

Therefore
Eo.t

x/ D m.Tx;o/=p.o; x/:

Finally, if y is arbitrary and x � y then we can use Exercise 9.7 to see how the
formula has to be adapted when we change the base point from o to y. �
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Let x; y 2 T be distinct and 	.y; x/ D Œy D y0; y1; : : : ; yk D x�. By
Exercise 1.45

Ey.t
x/ D

kX
j D1

Eyj �1
.tyj /:

Thus, we have nice explicit formulas for all the expected first passage times in the
positive recurrent case, and in particular, when the tree is finite.

Let us now answer the questions of Example 1.3 (the cat), which concerns the
simple random walk on a finite tree.

a) The probability that the cat will ever return to the root vertex o is 1, since the
random walk is recurrent (as T is finite).

The probability that it will return at the n-th step (and not before) is u.n/.o; o/.
The explicit computation of that number may be tedious, depending on the struc-
ture of the tree. In principle, one can proceed by computing the rational function
U.o; ojz/ via the algorithm described above: start at the leaves and compute re-
cursively all functions F.x; x�jz/. Since deg.o/ D 1 in our example, we have
U.o; ojz/ D z F.v; ojz/ where v is the unique vertex with v� D o. Then one
expands that rational function as a power series and reads off the n-th coefficient.

b) The average time that the cat needs to return to o is Eo.t
o/. Since m.x/ D

deg.x/ and deg.o/ D 1, we get Eo.t
o/ D P

x2T deg.x/ D 2.jT j � 1/. Indeed,
the sum of the vertex degrees is the number of oriented edges, which is twice the
number of non-oriented edges. In a tree T , that last number is jT j � 1.

c) The probability that the cat returns to the root before visiting a certain subset
Y of the set of leaves of the tree can be computed as follows: cut off the leaves of
that set, and consider the resulting truncated Markov chain, which is substochastic
at the truncation points. For that new random walk on the truncated tree T � we have
to compute the functions F �.x; x�/ D F �.x; x�j1/ following the same algorithm
as above, but now starting with the leaves of T �. (The superscript refers of course
to the truncated random walk.) Then the probability that we are looking for is
U �.o; o/ D F �.v; o/, where v is the unique neighbour of o.

A different approach to the same question is as follows: the probability to
return to o before visiting the chosen set Y of leaves is the same as the probability
to reach o from v before visiting Y . The latter is related with the Dirichlet problem
for finite Markov chains, see Theorem 6.7. We have to set @T D fog [ L and
T o D T n @T . Then we look for the unique harmonic function h in H .T o; P /

that satisfies h.o/ D 1 and h.y/ D 0 for all y 2 Y . The value h.v/ is the required
probability. We remark that the same problem also has a nice interpretation in terms
of electric currents and voltages, see [D-S].

d)We ask for the expected number of visits to a given leafy before returning to o.
This is L.o; y/ D L.o; yj1/, as defined in (3.57). Always because p.o; v/ D 1,
this number is the same as the expected number of visits to y before visiting o,
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when the random walk starts at v. This time, we “chop off” the root o and consider
the resulting truncated random walk on the new tree T � D T nfog, which is strictly
substochastic at v. Then the number we are looking for is G�.v; y/ D G�.v; yj1/,
where G� is the Green function of the truncated walk. This can again be computed
via the algorithm described above. Note that U �.y; y/ D F �.y�; y/, since y� is
the only neighbour of the leaf y. ThereforeG�.v; y/ D F �.v; y/

ı�
1�F �.y�; y/

�
.

On can again relate this to the Dirichlet problem. This time, we have to set
@T D fv; yg. We look for the unique function h that is harmonic on T o D T n @T
which satisfies h.o/ D 0 and h.y/ D 1. Then h.x/ D F �.x; y/ for every x, so that
G�.v; y/ D h.v/ı�1 � h.y�/

�
.

B The geometric boundary of an infinite tree

After this prelude we shall now concentrate on infinite trees and transient nearest
neighbour random walks. We want to see how the boundary theory developed in
Chapter 7 can be implemented in this situation. For this purpose, we first describe
the natural geometric compactification of an infinite tree.

9.9 Exercise. Show that a locally finite, infinite tree possesses at least one ray. �

As mentioned above, an infinite tree that is not locally finite might not possess
any ray. In the sequel we assume to have a tree that does possess rays. We do
not assume local finiteness, but it may be good to keep in mind that case. A ray
describes a path from its starting point x0 to infinity. Thus, it is natural to use rays
in order to distinguish different directions of going to infinity. We have to clarify
when two rays define the same point at infinity.

9.10 Definition. Two rays 	 D Œx0; x1; x2; : : : � and 	 0 D Œy0; y1; y2; : : : � in the
tree T are called equivalent, if their symmetric difference is finite, or equivalently,
there are i; j 2 N0 such that xiCn D yj Cn for all n � 0.

An end of T is an equivalence class of rays.

9.11 Exercise. � Prove that equivalence of rays is indeed an equivalence relation.

� Show that for every point x 2 T and end � of T , there is a unique geodesic ray
	.x; �/ starting at x that is a representative of � (as an equivalence class).

� Show that for every pair of distinct ends �; � of T , there is a unique geodesic
	.�; �/ D Œ: : : ; x�2; x�1; x0; x1; x2; : : : � such that 	.x0; �/ D Œx0; x�1; x�2; : : : �

and 	.x0; �/ D Œx0; x1; x2; : : : �. �
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Figure 23. Two equivalent rays.

We write @T for the set of all ends of T . Analogously, when x; y 2 T are
distinct, we define

@Tx;y D f� 2 @T W y 2 	.x; �/g;
compare with Figure 22. This is the set of ends of T which have a representative
ray that lies in Tx;y . Equivalently, we may consider it as the set of ends of the tree
Tx;y . (Attention: work out why this identification is legitimate!)

When x D o, the “root”, then we just write Ty D To;y D Ty�;y and @Ty D
@To;y D @Ty�;y :

If �; � 2 T [@T are distinct, then their confluent �^� is the vertex with maximal
length on 	.o; �/\ 	.o; �/, see Figure 24. If on the other hand � D �, then we set
� ^ � D �. The only case in which � ^ � is not a vertex of T is when � D � 2 @T .
For vertices, we have

jx ^ yj D 1

2

�jxj C jyj � d.x; y/�; x; y 2 T:

..................................................................................................................................................................................� �o .....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
............... ............ �

.............................................................................................................................................................................................. ..........
..
�

� ^ �

Figure 24

9.12 Lemma. For all �; �; � 2 T [ @T ,

j� ^ �j � minfj� ^ �j; j� ^ �jg:
Proof. We assume without loss of generality that �; �; � are distinct and setx D �^�
and y D � ^ �. Then we either have y 2 	.o; x/ or y 2 	.x; �/ n fxg.

If y 2 	.o; x/ then

j� ^ �j D jxj � jyj D minfj� ^ �j„ƒ‚…
D jyj

; j� ^ �j„ƒ‚…
� jyj

g:
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If y 2 	.x; �/ n fxg then j� ^ �j D jxj, and the statement also holds. (The reader
is invited to visualize the two cases by figures.) �

We can use the confluents in order to define a new metric on T [ @T :

�.�; �/ D
´
e�j�^�j; if � ¤ �;
0; if � D �:

9.13 Proposition. � is an ultrametric on T [ @T , that is,

�.�; �/ 
 maxf�.�; �/; �.�; �/g for all �; �; � 2 T [ @T:
Convergence of a sequence .xn/ of vertices or ends in that metric is as follows.

• If x 2 T then xn ! x if and only if xn D x for all n � n0.

• If � 2 @T then xn ! � if and only if jxn ^ �j ! 1.

T is a discrete, dense subset of this metric space. The space is totally disconnected:
every point has a neighbourhood base consisting of open and closed sets. If the
tree T is locally finite, then T [ @T is compact.

Proof. The ultrametric inequality follows from Lemma 9.12, so that � is a metric.
Let x 2 T and jxj D k. Then jx ^ vj 
 k and consequently �.x; v/ � e�k for

every v 2 T [ @T . Therefore the open ball with radius e�k centred at x contains
only x. This means that T is discrete.

The two statements about convergence are now immediate, and the second
implies that T is dense.

A neighbourhood base of � 2 @T is given by the family of all sets

f� 2 T [ @T W �.�; �/ < e�kC1g D f� 2 T [ @T W j� ^ �j > k � 1g
D f� 2 T [ @T W j� ^ �j � kg
D f� 2 T [ @T W �.�; �/ 
 e�kg
D Txk

[ @Txk
;

where k 2 N and xk is the point on 	.o; �/ with jxkj D k. These sets are open as
well as closed balls.

Finally, assume that T is locally finite. Since T is dense, it is sufficient to show
that every sequence in T has a convergent subsequence in T [ @T . Let .xn/ be
such a sequence. If there is x 2 T such that xn D x for infinitely many n, then we
have a subsequence converging to x. We now exclude this case.

There are only finitely many cones Ty D To;y with y � o. Since xn ¤ o for all
but finitely many n, there must be y1 � o such that Ty1

contains infinitely many of
the xn. Again, there are only finitely many cones Tv with v� D y1, so that there
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must be y2 with y�
2 D y1 such that Ty2

contains infinitely many of the xn. We now
proceed inductively and construct a sequence .yk/ such that y�

kC1
D yk and each

cone Tyk
contains infinitely many of the xn. Then 	 D Œo; y1; y2; : : : � is a ray. If �

is the end represented by 	 , then it is clearly an accumulation point of .xn/. �

If T is locally finite, then we set

yT D T [ @T;
and this is a compactification of T in the sense of Section 7.B. The ideal boundary
of T is @T .

However, when T is not locally finite, T [ @T is not compact. Indeed, if y
is a vertex which has infinitely many neighbours xn, n 2 N, then .xn/ has no
convergent subsequence in T [ @T . This defect can be repaired as follows. Let

T1 D fy 2 T W deg.y/ D1g
be the set of all vertices with infinite degree. We introduce a new set

T � D fy� W y 2 T1g;
disjoint from T [ @T , such that the mapping y 7! y� is one-to-one on T1. We
call the elements of T � the improper vertices. Then we define

yT D T [ @�T; where @�T D T � [ @T: (9.14)

For distinct points x; y 2 T , we define yTx;y accordingly: it consists of all vertices
in Tx;y , of all improper vertices v� with v 2 Tx;y and of all ends � 2 @T which
have a representative ray that lies in that cone. The topology on yT is such that each
singleton fxg � T is open (so that T is discrete). A neighbourhood base of � 2 @T
is given by all yTx;y that contain �, and it is sufficient to take only the sets yTy D yTo;y ,
where y 2 	.o; �/ n fog. A neighbourhood base of y� 2 T � is given by the family
of all sets that are finite intersections of sets yTx;v that contain y, and it is sufficient
to take just all the finite intersections of sets of the form yTx;y , where x � y.

We explain what convergence of a sequence .wn/ of elements of T [@T means
in this topology.

• We have wn ! x 2 T precisely when wn D x for all but finitely many n.

• We have wn ! � 2 @T precisely when jwn ^ �j ! 1.

• We have wn ! y� 2 T � precisely when for every finite set A of neighbours
of y, one has 	.y;wn/ \ A D ; for all but finitely many n. (That is, wn

“rotates” around y.)

Convergence of a sequence .x�
n/ of improper vertices is as follows.
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• We have x�
n ! x� 2 T � or x�

n ! � 2 @T precisely when in the above sense,
xn ! x� or xn ! �, respectively.

9.15 Exercise. Verify in detail that this is indeed the convergence of sequences
induced by the topology introduced above. Prove that yT is compact. �

The following is a useful criterion for convergence of a sequence of vertices to
an end.

9.16 Lemma. A sequence .xn/ of vertices of T converges to an end if and only if

jxn ^ xnC1j ! 1:
Proof. The “only if” is straightforward and left to the reader.

For sufficiency of the criterion, we first observe that confluents can also be
defined when improper vertices are involved: for x�; w� 2 T �, y 2 T , and
� 2 @T ,

x� ^ y D x ^ y; x� ^ w� D x ^ w; and x� ^ � D x ^ �:
Let .xn/ satisfy jxn ^ xnC1j ! 1. By Lemma 9.12,

jxm ^ xnj � minfjxk ^ xkC1j W i D m; : : : ; n � 1g
which tends to 1 as m ! 1 and n > m. Suppose that .xn/ has two distinct
accumulation points �; � in yT . Let v D � ^ � , a vertex of T . Then there must be
infinitely many m and n > m such that xm ^ xn D v, a contradiction. Therefore
.xn/ must have a limit in yT . This cannot be a vertex. If it were an improper vertex
x� then again xm^xn D x for infinitely manym and n > m, another contradiction.
Therefore the limit must be an end. �

The reader may note that the difficulty that has lead us to introducing the im-
proper vertices arises because we insist that T has to be discrete in our compactifi-
cation. The following will also be needed later on for the study of random walks,
both in the case when the tree is locally finite or not.

A function f W T ! R is called locally constant, if the set of edges

fŒx; y� 2 E.T / W f .x/ ¤ f .y/g
is finite.

9.17 Exercise. Show that the locally constant functions constitute a linear space L

which is spanned by the set

L0 D f1Tx;y
W Œx; y� 2 E.T /g

of the indicator functions of all branches of T . (Once more, edges are oriented
here!) �
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We can now apply Theorem 7.13: there is a unique compactification of T which
contains T as a discrete, dense subset with the following properties: (a) every
function in L0, and therefore also every function in L, extends continuously, and
(b) for every pair of points �; � in the associated ideal boundary, there is an extended
function that assumes different values at � and �.

It is now obvious that this is just the compactification described above, yT D
T [T �[@T . Indeed, the continuous extension of 1Tx;y

is just 1 yTx;y
, and it is clear

that those functions separate the points of @�T .

C Convergence to ends and identification of the Martin
boundary

As one may expect in view of the efforts undertaken in the last section, we shall
show that for a transient nearest neighbour random walk on a tree T , the Martin
compactification coincides with the geometric compactification. At the end of
Section 7.B, we pointed out that in most known concrete examples where one is
able to achieve that goal, one can also give a direct proof of boundary convergence.
In the present case, this is particularly simple.

9.18 Theorem. Let .Zn/ be a transient nearest neighbour random walk with
stochastic transition matrix on the infinite tree T . ThenZn converges almost surely
to a random end of T : there is a @T -valued random variable Z1 such that in the
topology of the geometric compactification yT ,

lim
n!1Zn D Z1 Prx-almost surely for every starting point x 2 T:

Proof. Consider the following subset of the trajectory space � D TN0 :

�0 D
²
! D .xn/n�0 2 � W xn � xn�1;

j¹n 2 N0 W xn D yºj <1 for every y 2 T
³
:

Then Prx.�0/ D 1 for every starting point x, and of course Zn.!/ D xn. Now let
! D .xn/ 2 �0. We define recursively a subsequence .x�k

/, starting with

�0 D maxfn W xn D x0g; and �kC1 D maxfn W xn D x�kC1g: (9.19)

By construction of �0, �k is well defined for each k. The points x�k
, k 2 N0, are

all distinct, and x�kC1
� x�k

. Thus Œx�0
; x�1

; x�2
; : : : � is a ray and defines an end

� of T . Also by construction, xn 2 Tx0;x�k
for all k � 1 and all n � �k . Therefore

xn ! �. �

In probabilistic terminology, the exit times �k are non-negative random variables
(but not stopping times). If we recall the notation of (7.34), then �k D �B.x0;k/,
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the exit time from the ball B.x0; k/ D fy 2 T W d.y; x0/ 
 kg in the graph metric
of T . We see that by transience, those exit times are almost surely finite even in the
case when T is not locally finite and the balls may be infinite. The following is of
course quite obvious from the beginning.

9.20 Corollary. If the tree T contains no geodesic ray then every nearest neighbour
random walk on T is recurrent.

Note that when T is not locally finite, then it may well happen that its diameter
supfd.x; y/ W x; y 2 T g is infinite, while T possesses no ray.

Let us now study the Martin compactification. Setting z D 1 in Proposi-
tion 9.3 (a), we obtain for the Martin kernel with respect to the root o,

K.x; y/ D F.x; y/

F.o; y/
D F.x; x ^ y/F.x ^ y; y/
F.o; x ^ y/F.x ^ y; y/ D

F.x; x ^ y/
F.o; x ^ y/ D K.x; x ^ y/:

If we write 	.o; x/ D Œo D v0; v1; : : : ; vk D x� then

K.x; y/ D

8̂<
:̂
K.x; o/ D F.x; o/ for y 2 Tv1;o;

K.x; vj / for y 2 Tvj
n Tvj C1

.j D 1; : : : ; k � 1/;
K.x; x/ D 1=F.o; x/ for y 2 Tx :

This can be rewritten as

K.x; y/ D K.x; o/C
kX

j D1

�
K.x; vj / �K.x; vj �1/

�
1Tvj

.y/: (9.21)

We see that K.x; 	/ is a locally constant function, which leads us to the following.

9.22 Theorem. Let P be the stochastic transition matrix of a transient nearest
neighbour random walk on the infinite tree T . Then the Martin compactification of
.T; P / coincides with the geometric compactification yT . The continuous extension
of the Martin kernel to the Martin boundary @�T D T � [ @T is given by

K.x; y�/ D K.x; y/ for y� 2 T �; and K.x; �/ D K.x; x ^ �/ for � 2 @T:
Each function K. 	; �/, where � 2 @T , is harmonic. The minimal Martin boundary
is the space of ends @T of T .

Proof. We know from the preceding computation that for each x 2 T , the kernel
K.x; 	/ is locally constant on T . Therefore it has a continuous extension to yT . This
extension is the one stated in the theorem: when yn ! y� then x ^ yn D x ^ y
for all but finitely many n, and K.x; yn/ D K.x; x ^ y/ D K.x; y/ for those n.
Analogously, if yn ! � then x ^ yn D x ^ � and thusK.x; yn/ D K.x; x ^ �/ for
all but finitely many n.
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We next show that K. 	; �/ is harmonic when � 2 @T . (When T is locally
finite, this is clear, because all extended kernels are harmonic when P has finite
range.) Let x 2 T and let v be the point on 	.o; �/ with v� D x ^ � . Then
K.y; �/ D K.y; v/ for all y � x, and K.x; �/ D K.x; v/. Now the function
K. 	; v/ D G. 	; v/=G.o; v/ is harmonic in every point except v. In particular, it is
harmonic in x. Therefore K. 	; �/ is harmonic in every x.

The extended kernel separates the boundary points:
1.) If w�; y� 2 T � are distinct, then the functions K. 	; w�/ D K. 	; w/ and

K. 	; y�/ D K. 	; y/ are distinct, since the first is harmonic everywhere except at
w, while the second is not harmonic at y.

2.) If y� 2 T � and � 2 @T then K. 	; �/ is harmonic, while K. 	; y�/ is strictly
superharmonic at y. Therefore the two functions do not coincide.

3.) The interesting case is the one where �; � 2 @T are distinct. Let x D � ^ �
and let y be the neighbour of x on 	.x; �/, see Figure 25.
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Then, since F.o; y/ D F.o; x/F.x; y/,
K.y; �/

K.y; �/
D K.y; x/

K.y; y/
D F.o; y/F.y; x/

F.o; x/
D F.x; y/F.y; x/ 
 U.x; x/

by Exercise 1.44. Now U.x; x/ < 1 by transience, so that K. 	; �/ ¤ K. 	; �/.
We see that the Martin compactification is yT . The last step is to show that

K. 	; �/ is a minimal harmonic function for every end � 2 @T . Suppose that

K. 	; �/ D a 	 h1 C .1 � a/ 	 h2 .0 < a < 1/

for two positive harmonic functions with hi .o/ D 1.
Let x 2 T , and let y be an arbitrary point on the ray 	.x; �/. Lemma 6.53,

applied to A D fyg, implies that h.x/ � F.x; y/h.y/ for every positive harmonic
function. [This can be seen more directly: Gh.x; y/ D G.x; y/h.y/=h.x/ is the
Green kernel associated with the h-process, and Gh.x; y/ D Fh.x; y/Gh.y; y/ 

Gh.y; y/. Dividing by Gh.y; y/ and multiplying by h.x/, one gets the inequality.]
On the other hand, our choice of y implies – by Lemma 9.3 (a), as so often – that
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K.x; �/ D F.x; y/K.y; �/. Therefore

K.x; �/ D a 	 h1.x/C .1 � a/ 	 h2.x/

� a 	 F.x; y/h1.y/C .1 � a/ 	 F.x; y/h2.y/

D F.x; y/K.y; �/ D K.x; �/:
The inequality in the middle cannot be strict, and we deduce that

F.x; y/hi .y/ D hi .x/ .i D 1; 2/
for all x 2 T and all y 2 	.x; �/. In particular, choose y D x ^ � . Then, applying
the last formula to the points x and o (in the place of x),

hi .x/ D hi .x/

hi .o/
D F.x; y/hi .y/

F.o; y/hi .y/
D K.x; y/ D K.x; �/:

We conclude that K. 	; �/ is minimal. �

We now study the family of limit distributions .�x/x2T on the space of ends @T ,
given by

�x.B/ D PrxŒZ1 2 B�; B a Borel set in @T:

(We can also consider �x as a measure on the compact set @�T D T � [ @T that
does not charge T �.) For any fixed x, the Borel � -algebra of @T is generated by
the family of sets @Tx;y , where y varies in T n fxg. Therefore �x is determined by
the measures of those sets.

9.23 Proposition. Let x; y 2 T be distinct, and let w be the neighbour of y on the
arc 	.x; y/. Then

�x.@Tx;y/ D F.x; y/ 1 � F.y;w/
1 � F.w; y/F.y;w/ :

Proof. Note that @Tx;y D @Tw;y . If Z0 D x and Z1 2 @Tx;y then sy < 1,
the random walk has to pass through y, since y is a cut point between x and Tx;y .
Therefore, via the Markov property,

�x.@Tx;y/ D PrxŒZ1 2 @Tx;y ; sy <1�

D
1X

nD1

PrxŒZ1 2 @Tx;y j sy D n� PrxŒs
y D n�

D
1X

nD1

Pry ŒZ1 2 @Tx;y � PrxŒs
y D n�

D F.x; y/ �y.@Tw;y/ D F.x; y/
�
1 � �y.@Ty;w/

�
;
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since @Tw;y D @T n @Ty;w . In particular,

�w.@Tw;y/ D F.w; y/
�
1 � �y.@Ty;w/

�
and

�y.@Ty;w/ D F.y;w/
�
1 � �w.@Tw;y/

�
:

From these two equations, we compute

�w.@Tw;y/ D F.w; y/ 1 � F.y;w/
1 � F.w; y/F.y;w/ :

Finally, we have �x.@Tx;y/ D F.x;w/ �w.@Tw;y/, since the random walk start-
ing at x must pass through w when Z1 2 @Tx;y . Recalling that F.x; y/ D
F.x;w/F.w; y/, this leads to the proposed formula. �

The next formula follows from the fact that �x.@T / D 1.

X
y W y
x

F.x; y/
1 � F.y; x/

1 � F.x; y/F.y; x/ D 1 for every x 2 T: (9.24)

We are primarily interested in �o D �1, the probability measure on @T that
appears in the integral representation of the constant harmonic function 1. As
mentioned already, the sets @Tx D @To;x , where x ¤ o, are a base of the topology
on @T . By the above,

�o.@Tx/ D F.o; x/ 1 � F.x; x�/
1 � F.x�; x/F.x; x�/

; (9.25)

where (recall) x� is the predecessor of x on 	.o; x/. We see that the support of �o

is
supp.�o/ D f� 2 @T W �o.@Tx/ > 0 for all x 2 	.o; �/; x ¤ og

D f� 2 @T W F.x; x�/ < 1 for all x 2 	.o; �/; x ¤ og:
We call an end � of T transient ifF.x; x�/ < 1 for all x 2 	.o; �/nfog, and we call
it recurrent otherwise. This terminology is justified by the following observations:
if x � y then the function z F.y; xjz/ is the generating function associated with
the first return time tx

Œx;y�
to x for PŒx;y�. Thus, F.y; x/ D 1 if and only if PŒx;y�

on the branch BŒx;y� is recurrent. In this case we shall also say more sloppily that
the cone Tx;y is recurrent, and call it transient, otherwise. We see that an end � is
transient if and only if each cone Tx is transient, where x 2 	.o; �/ n fog.
9.26 Exercise. Show that when x � y and F.y; x/ D 1 then F.w; v/ D 1 for all
v;w 2 Tx;y with v � w and d.v; y/ < d.w; y/. Thus, when Tx;y is recurrent,
then all ends in @Tx;y are recurrent.

Conclude that transience of an end does not depend on the choice of the root o.
�
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We see that for a transient random walk on T , there must be at least one transient
end, and that all the measures �x , x 2 T , have the same support, which consists
precisely of all transient ends. This describes the Poisson boundary. Furthermore,
the transient ends together with the origin o span a subtree Ttr of T , the transient
skeleton of .T; P /. Namely, by the above,

Ttr D fog [ fx ¤ o W F.x; x�/ < 1g (9.27)

is such that when x 2 Ttr n fog then x� 2 Ttr, and x must have at least one
forward neighbour. Then, by construction @Ttr consists precisely of all transient
ends. Therefore Z1 2 @Ttr Prx-almost surely for every x. On its way to the limit
at infinity, the random walk .Zn/ can of course make substantial “detours” into
T n Ttr.

Note that Ttr depends on the choice of the root, Ttr D T o
tr . For x � o, we have

three cases.

(a) If F.x; o/ < 1 and F.o; x/ < 1, then T x
tr D T o

tr .

(b) If F.x; o/ < 1 but F.o; x/ D 1, then T x
tr D T o

tr n fog.
(c) If F.x; o/ D 1 but F.o; x/ < 1, then T x

tr D T o
tr [ fxg.

Proceeding by induction on the distance d.o; x/, we see that T x
tr and T o

tr only
differ by at most finitely many vertices from the geodesic segment 	.o; x/.

It may also be instructive to spend some thoughts on Ttr D T o
tr as an induced

subnetwork of T in the sense of Exercise 4.54;

a.x; y/ D m.x/p.x; y/; if x; y 2 Ttr; x � y:

With respect to those conductances, we get new transition probabilities that are
reversible with respect to a new measure mtr, namely

mtr.x/ D
X

y
x W y2Ttr

a.x; y/ D m.x/p.x; Ttr/ and

ptr.x; y/ D p.x; y/=p.x; Ttr/; if x; y 2 Ttr; x � y:
(9.28)

The resulting random walk is .Zn/, conditioned to stay in Ttr.
Let us now look at some examples.

9.29 Example (The homogeneous tree). This is the tree T D Tq where every
vertex has degree q C 1, with q � 2. (When q D 1 this is Z, visualized as the
two-way-infinite path.)
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Figure 26

We consider the simple random walk. There are many different ways to see that
it is transient. For example, one can use the flow criterion of Theorem 4.51. We
choose a root o and define the flow � by �.e/ D 1

ı�
.q C 1/qn�1

� D ��. Le/ if
e D Œx�; x� with jxj D n. Then it is straightforward that � is a flow from o to1
with input 1 and with finite power.

The hitting probability F.x; y/ must be the same for every pair of neighbours
x; y. Thus, formula (9.24) becomes .q C 1/F.x; y/ı�1C F.x; y/� D 1, whence
F.x; y/ D 1=q. For an arbitrary pair of vertices (not necessarily neighbours), we
get

F.x; y/ D q�d.x;y/; x; y 2 T:
We infer that the distribution of Z1, given that Z0 D o, is equidistribution on @T ,

�o.@Tx/ D 1

.q C 1/qn�1
; if jxj D n � 1:

We call it “equidistribution” because it is invariant under “rotations” of the tree
around o. (In graph theoretical terminology, it is invariant under the group of all
self-isometries of the tree that fix o.) Every end is transient, that is, the Poisson
boundary (as a set) is supp.�o/ D @T .

The Martin kernel at � 2 @T is given by

K.x; �/ D q� hor.x;�/; where hor.x; �/ D d.x; x ^ �/ � d.o; x ^ �/:

Below, we shall immediately come back to the function hor. The Poisson–Martin
integral representation theorem now says that for every positive harmonic function
h on T D Tq , there is a unique Borel measure �h on @T such that

h.x/ D
Z

@T

q� hor.x;�/ d�h.�/:
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Let us now give a geometric meaning to the function hor. In an arbitrary tree,
we can define for x 2 T and � 2 T [@T the Busemann function or horocycle index
of x with respect to � by

hor.x; �/ D d.x; x ^ �/ � d.o; x ^ �/: (9.30)

9.31 Exercise. Show that for x 2 X and � 2 @T ,

hor.x; �/ D lim
y!�

hor.x; y/ D lim
y!�

d.x; y/ � d.o; y/: �

The Busemann function should be seen in analogy with classical hyperbolic
geometry, where one starts with a geodesic ray 	 D �	.t/�

t�0
, that is, an isometric

embedding of the interval Œ0; 1/ into the hyperbolic plane (or another suitable
metric space), and considers the Busemann function

hor.x; 	/ D lim
t!1

�
d
�
x; 	.t/

� � d�o; 	.t/��:
A horocycle in a tree with respect to an end � is a level set of the Busemann function
hor. 	; �/:

Hork D Hork.�/ D fx 2 T W hor.x; �/ D kg; k 2 Z: (9.32)

This is the analogue of a horocycle in hyperbolic plane: in the Poincaré disk model
of the latter, a horocycle at a boundary point � on the unit circle (the boundary of
the hyperbolic disk) is a circle inside the disk that is tangent to the unit circle at � .

Let us consider another example.

9.33 Example. We now construct a new tree, here denoted again T , by attaching a
ray (“hair”) at each vertex of the homogeneous tree Tq , see Figure 27. Again, we
consider simple random walk on this tree. It is transient by Exercise 4.54, since the
Tq is a subgraph on which SRW is transient.
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The hair attached at x 2 Tq has one end, for which we write �x . Since simple
random walk on a single ray (a standard birth-and-death chain with forward and
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backward probabilities equal to 1=2) is recurrent, each of the ends �x , x 2 Tq , is
recurrent.

Let Nx be the neighbour of x on the hair at x. Then F. Nx; x/ D 1. Again, by
homogeneity of the structure, F.x; y/ is the same for all pairs x; y of neighbours in
T that belong both to Tq . We infer that Ttr D Tq , and formula (9.24) at x becomes

.q C 1/ F.x; y/

1C F.x; y/ C F.x; Nx/
1 � F. Nx; x/

1 � F.x; Nx/F. Nx; x/„ ƒ‚ …
D 0

D 1:

Again, F.x; y/ D 1=q for neighbours x; y 2 Tq � T . The limit distribution �o

on @T is again uniform distribution on @Tq � @T . What we mean here is that we
know already that �o.f�x W x 2 Tqg/ D 0, so that we can think of �o as a Borel
probability measure on the compact subset @Tq of @T , and �o is equidistributed on
that set in the above sense. (Of course, o is chosen to be in Tq .)

It may be noteworthy that in this example, the set f�x W x 2 Tqg of recurrent
ends is dense in @T in the topology of the geometric compactification of T . On the
other hand, each �x is isolated, in that the singleton f�xg is open and closed.

Note also that of course each of the recurrent as well as of the transient ends �
defines a minimal harmonic function K. 	; �/. However, since �x.�y/ D 0 for all
x; y, every bounded harmonic function is constant on each hair. (This can also be
easily verified directly via the linear recursion that a harmonic function satisfies on
each hair.) That is, it arises from a bounded harmonic function h for SRW on Tq

such that its value is h.x/ along the hair attached at x.
For computing the (extended) Martin kernel, we shall need F.x; Nx/. We know

that F.y; x/ D 1=q for all y � x, y 2 Tq . By Proposition 9.3 (b),

F.x; Nx/ D p.x; Nx/
1 � P

y
x;y2Tq

p.x; y/ F.y; x/
D

1
qC2

1 � qC1
.qC2/q

D q

q2 C q � 1:

Now let x; y 2 Tq be distinct (not necessarily neighbours),w 2 	.x; �x/ (a generic
point on the hair at x), and � 2 @Tq � @T . We need to computeK.w; �/,K.w; �y/

and K.w; �x/ in order to cover all possible cases.

(i) We have F.w; x/ D 1 by recurrence of the end �x . Therefore

K.w; �/ D F.w; x/K.x; �/ D K.x; �/ D q� hor.x;�/:

(ii) We have w ^ �y D w ^ y. Therefore

K.w; �y/DK.w;w^y/DK.w; y/D F.w; x/K.x; y/DK.x; y/D q� hor.x;y/:

(iii) We have w ^ �x D w for every w 2 	.x; �x/, so that K.w; �x/ D
K.w;w/ D 1=F.o;w/: In order to compute this explicitly, we use harmonicity of
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the function hx D K. 	; �x/. Write 	.x; �x/ D Œx D w0; w1 D Nx;w2; : : : �. Then

hx.w0/ D 1

F.o; x/
D qjxj and hx.w1/ D 1

F.o; x/F.x; Nx/ D
q2 C q � 1

q
qjxj;

and hx.wn/ D 1
2

�
hx.wn�1/C hx.wnC1/

�
for n � 1. This can be rewritten as

hx.wnC1/ � hx.wn/ D hx.wn/ � hx.wn�1/ D hx.w1/ � hx.w0/ D q2 � 1
q

qjxj:

We conclude that hx.wn/ D hx.w0/C n
�
hx.w1/ � hx.w0/

�
, and find K.w; �x/.

We also write the general formula for the kernel at �y (since w varies and �y is
fixed, we have to exchange the roles of x and y with respect to the above !):

K.w; �y/ D
´
qjyj

�
1C d.w; y/q2�1

q

�
; if w 2 	.y; �y/;

q� hor.x;y/; if w 2 	.x; �x/; x 2 Tq; x ¤ y:

Thus, for every positive harmonic function h on T there is a Borel measure �h on
@T such that

h.w/ D h1.w/C h2.w/; where for w 2 	.x; �x/; x 2 Tq;

h1.w/ D
Z

@Tq

q� hor.x;�/ d�h.�/ and

h2.w/ D qjxj�1C d.w; x/q2�1
q

�
�h.�x/C

X
y2Tq ; y¤x

q� hor.x;y/ �h.�y/:

The function h1 in this decomposition is constant on each hair.

D The integral representation of all harmonic functions

Before considering further examples, let us return to the general integral repre-
sentation of harmonic functions. If h is positive harmonic for a transient nearest
neighbour random walk on a tree T , then the measure �h on @T in the Poisson–
Martin integral representation of h is h.o/ � (the limit distribution of the h-process),
see (7.47). The Green function of the h-process isGh.x; y/ D G.x; y/h.y/=h.x/,
and Gh.x; x/ D G.x; x/. Furthermore, the associated hitting probabilities are
Fh.x; y/ D F.x; y/h.y/=h.x/. We can apply formula (9.25) to the h-process,
replacing F with Fh:

�h.@Tx/ D F.o; x/h.x/ � F.x; x
�/h.x�/

1 � F.x�; x/F.x; x�/
:
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Conversely, if we start with � on @T , then the associated harmonic function is
easily computed on the basis of (9.21). If x 2 T and the geodesic arc from o to x
is 	.o; x/ D Œo D v0; v1; : : : ; vk D x� then

h.x/ D
Z

@T

K.x; 	/ d�

D K.x; o/ �.@T /C
kX

j D1

�
K.x; vj / �K.x; vj �1/

�
�.@Tvj

/:

(9.34)

Note that K.x; vj / �K.x; vj �1/ D K.x; vj /
�
1 � F.vj ; vj �1/F.vj �1; vj /

�
.

We see that the integral in (9.34) takes a particularly simple form due to the fact
that the integrand is the extension to the boundary of a locally constant function, and
we do not need the full strength of Lebesgue’s integration theory here. This will al-
low us to extend the Poisson–Martin representation to get an integral representation
over the boundary of all (not necessarily positive) harmonic functions.

Before that, we need two further identities for generating functions that are
specific to trees.

9.35 Lemma. For a transient nearest neighbour random walk on a tree T ,

G.x; xjz/ p.x; y/z D F.x; yjz/
1 � F.x; yjz/F.y; xjz/ if y � x; and

G.x; xjz/ D 1C
X

yWy
x

F.x; yjz/F.y; xjz/
1 � F.x; yjz/F.y; xjz/

for all z with jzj < r.P /, and also for z D r.P /.

Proof. We use Proposition 9.3 (b) (exchanging x and y). It can be rewritten as

F.x; yjz/ D p.x; y/z C �U.x; xjz/ � p.x; y/z F.y; xjz/�F.x; yjz/:
Regrouping,

p.x; y/z
�
1 � F.x; yjz/F.y; xjz/� D F.x; yjz/�1 � U.x; xjz/�: (9.36)

Since G.x; xjz/ D 1
ı�
1 � U.x; xjz/�, the first identity follows. For the second

identity, we multiply the first one by F.y; xjz/ and sum over y � x to get

X
yWy
x

F.x; yjz/F.y; xjz/
1 � F.x; yjz/F.y; xjz/ D

X
yWy
x

p.x; y/z G.y; xjz/ D G.x; xjz/ � 1

by (1.34). �
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For the following, recall that Tx D To;x for x ¤ o. For convenience we write
To D T .

A signed measure � on the collection of all sets

Fo D f@Tx W x 2 T g
is a set function � W Fo ! R such that for every x

�.@Tx/ D
X

yWy�Dx

�.@Ty/:

When deg.x/ D1, the last series has to converge absolutely. Then we use formula
(9.34) in order to define

R
@T
K.x; 	/ d�. The resulting function of x is called the

Poisson transform of the measure �.

9.37 Theorem. Suppose thatP defines a transient nearest neighbour random walk
on the tree T .

A function h W T ! R is harmonic with respect to P if and only if it is of the
form

h.x/ D
Z

@T

K.x; 	/ d�;
where � is a signed measure on Fo: The measure � is determined by h, that is,
� D �h, where

�h.@T / D h.o/ and �h.@Tx/ D F.o; x/h.x/ � F.x; x
�/h.x�/

1 � F.x�; x/F.x; x�/
; x ¤ o:

Proof. We have to verify two principal facts.
First, we start with h and have to show that �h, as defined in the theorem, is a

signed measure on Fo, and that h is the Poisson transform of �h.
Second, we start with � and define h by (9.34). We have to show that h is

harmonic, and that � D �h.

1.) Given the harmonic function h, we claim that for any x 2 T ,

h.x/ D
X

y W y
x

F.x; y/
h.y/ � F.y; x/h.x/
1 � F.x; y/F.y; x/ : (9.38)

We can regroup the terms and see that this is equivalent with�
1C

X
y W y
x

F.x; y/F.y; x/

1 � F.x; yjz/F.y; xjz/
�
h.x/ D

X
y W y
x

F.x; y/

1 � F.x; y/F.y; x/ h.y/:

By Lemma 9.35, this reduces to

G.x; x/ h.x/ D
X
y
x

G.x; x/ p.x; y/ h.y/;
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which is true by harmonicity of h.
If we set x D o, then (9.38) says that �h.@T / DPy
o �

h.@Ty/. Suppose that
x ¤ o. Then by (9.38),

X
yWy�Dx

�h.@Ty/ D F.o; x/
X

y W y�Dx

F.x; y/
h.y/ � F.y; x/h.x/
1 � F.x; y/F.y; x/

D F.o; x/
�
h.x/ � F.x; x�/

h.x�/ � F.x�; x/h.x/
1 � F.x; x�/F.x�; x/

�

D F.o; x/h.x/ � F.x; x
�/h.x�/

1 � F.x; x�/F.x�; x/
D �h.@Tx/:

We have shown that �h is indeed a signed measure on Fo: Now we check thatR
@T
K.x; 	/ d�h D h.x/. For x D o this is true by definition. So let x ¤ o. Using

the same notation as in (9.34), we simplify�
K.x; vj / �K.x; vj �1/

�
�h.@Tvj

/ D F.x; vj /
�
h.vj / � F.vj ; vj �1/h.vj �1/

�
;

whence we obtain a “telescope sum”

Z
@T

K.x; 	/ d�h D K.x; o/h.o/C
kX

j D1

�
F.x; vj /h.vj / � F.x; vj �1/h.vj �1/

�
D F.x; x/h.x/ D h.x/:

2.) Given �, let h.x/ D R
@T
K.x; 	/ d�.

9.39 Exercise. Show that h is harmonic at o. �

Resuming the proof of Theorem 9.37, we suppose again that x ¤ o and use the
notation of (9.34). With the fixed index k D jxj, we consider the function

g.w/ D K.w; o/ �.@T /C
kX

j D1

�
K.w; vj / �K.w; vj �1/

�
�.@Tvj

/; w 2 T:

Since for i < j one has K.vi ; vj / D K.vi ; vi /, we have h.vj / D g.vj / for all
j 
 k. In particular, h.x/ D g.x/ and h.x�/ D g.x�/. Also,

h.y/ D g.y/C �K.y; y/ �K.y; x/� �.@Ty/; when y� D x:

Recalling that P K.x; v/ D K.x; v/ � 1
G.o;v/

1v.x/, we first compute

Pg.x/ D g.x/ � 1

G.o; x/
�.@Tx/:
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Now, using Lemma 9.35,

Ph.x/ D Pg.x/C
X

yWy�Dx

p.x; y/
1 � F.x; y/F.y; x/
F.o; x/F.x; y/

�.@Ty/

D h.x/ � 1

G.o; x/
�.@Tx/C 1

F.o; x/

X
yWy�Dx

1

G.x; x/
�.@Ty/

D h.x/ � 1

G.o; x/
�.@Tx/C 1

G.o; x/

X
yWy�Dx

�.@Ty/ D h.x/:

Finally, to show that �h.@Tx/ D �.@Tx/ for all x 2 T , we use induction on
k D jxj. The statement is trivially true for x D o. So let once more jxj D k � 1
and 	.o; x/ D Œv0 D o; v1; : : : ; vk D x�, and assume that �h.@Tvj

/ D �.@Tvj
/

for all j < k. Since we know that
R

@T
K.x; 	/ d�h D h.x/ D R

@T
K.x; 	/ d�, the

induction hypothesis and (9.34) yield that�
K.x; x/ �K.x; vj �1/

�
�h.@Tx/ D

�
K.x; x/ �K.x; vj �1/

�
�.@Tx/:

Therefore �h.@Tx/ D �.@Tx/. �

In the case when h is a positive harmonic function, the measure �h is a non-
negative measure on Fo. Since the sets in Fo generate the Borel � -algebra of @T ,
one can justify with a little additional effort that �h extends to a Borel measure
on @T . In this way, one can deduce the Poisson–Martin integral theorem directly,
without having to go through the whole machinery of Chapter 7.

Some references are due here. The results of this and the preceding section are
basically all contained in the seminal article of Cartier [Ca]. Previous results,
regarding the case of random walks on free groups (� homogeneous trees) can
be found in the note of Dynkin and Malyutov [19]. The part of the proof of
Theorem 9.22 regarding minimality of the extended kernels K. 	; �/, � 2 @T , is
based on an argument of Derriennic [13], once more in the context of free groups.
The integral representation of arbitrary harmonic functions is also contained in [Ca],
but was also proved more or less independently by various different methods in the
paper of Koranyi, Picardello and Taibleson [38] and by Steger, see [21], as
well as in some other work.

All those references concern only the locally finite case. The extension to
arbitrary countable trees goes back to an idea of Soardi, see [10].
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E Limits of harmonic functions at the boundary

The Dirichlet problem at infinity

We now consider another potential theoretic problem. In Chapter 6 we have studied
and solved the Dirichlet problem for finite Markov chains with respect to a subset
– the “boundary” – of the state space. Now let once more T be an infinite tree
and P the stochastic transition matrix of a nearest neighbour random walk on T .
The Dirichlet problem at infinity is the following. Given a continuous function '
on @�T D yT n T , is there a continuous extension of ' to zT that is harmonic on T ?

This problem is related with the limit distributions �x , x 2 T , of the random
walk. We have been slightly ambiguous when speaking about the (common) support
of these probability measures: since we know that Z1 2 @T almost surely, so far
we have considered them as measures on @T . In the spirit of the construction of
the geometric compactification (which coincides with the Martin compactification
here) and the general theorem of convergence to the boundary, the measures should
a priori be considered to live on the compact set @�T D yT nT D @T [T �. This is
the viewpoint that we adopt in the present section, which is more topology-oriented.
If T is locally finite, then of course there is no difference, and in general, none of
the two interpretations regarding where the limit distributions live is incorrect.

In any case, now supp.�o/ is the compact subset of @�T that consists of all
points � 2 @�T with the property that �x.V / > 0 for every neighbourhood V of
� in yT . We point out that supp.�x/ D supp.�o/ for every x 2 T , and that �x is
absolutely continuous with respect to �o with Radon–Nikodym density

d�x

d�o

D K.x; 	/;
see Theorem 7.42.

9.40 Proposition. If the Dirichlet problem at infinity admits a solution for every
continuous function ' on the boundary, then the solution is unique and given by the
harmonic function

h.x/ D
Z

@�T

' d�x D
Z

@�T

K.x; 	/ ' d�o:

Proof. If h is the solution with boundary data given by ', then h is a bounded
harmonic function. By Theorem 7.61, there is a bounded measurable function  
on the Martin boundary M D yT n T such that

h.x/ D
Z

@�T

 d�x :

By the probabilistic Fatou theorem 7.67,

h.Zn/!  .Z1/ Pro -almost surely.
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Since h provides the continuous harmonic extension of ', and since Zn ! Z1
Pro-almost surely,

h.Zn/! '.Z1/ Pro -almost surely.

We conclude that  and ' coincide �o-almost surely. This proves that the solution
of the Dirichlet problem is as stated, whence unique. �

Let us remark here that one can state the Dirichlet problem for an arbitrary
Markov chain and with respect to the ideal boundary in an arbitrary compactification
of the infinite state space. In particular, it can always be stated with respect to the
Martin boundary. In the latter context, Proposition 9.40 is correct in full generality.

There are some degenerate cases: if the random walk is recurrent and j@�T j � 2
then the Dirichlet problem does not admit solution, because there is some non-
constant continuous function on the boundary, while all bounded harmonic functions
are constant. On the other hand, when j@�T j D 1 then the constant functions provide
the trivial solutions to the Dirichlet problem.

The last proposition leads us to the following local version of the Dirichlet
problem.

9.41 Definition. (a) A point � 2 @�T is called regular for the Dirichlet problem if
for every continuous function ' on @�T , its Poisson integral h.x/ D R

@�T
' d�x

satisfies
lim
x!�

h.x/ D '.�/:

(b) We say that the Green kernel vanishes at � , if

lim
y!�

G.y; o/ D 0:

We remark that limy!� G.y; o/ D 0 if and only if limy!� G.y; x/ D 0 for
some (() every) x 2 T . Indeed, let k D d.x; o/. Then p.k/.x; o/ > 0, and
G.y; x/p.k/.x; o/ 
 G.x; o/.

Also, if x� 2 T � and fyk W k 2 Ng is an enumeration of the neighbours of x in
T , then the Green kernel vanishes at x� if and only if

lim
k!1

G.yk; x/ D 0:

This holds because if .wn/ is an arbitrary sequence in T that converges to x�,
then k.n/ ! 1, where k.n/ is the unique index such that wn 2 Tx;yk.n/

: then
G.wn; x/ D F.wn; yk.n//G.yk.n/; x/! 0.

Regularity of a point � 2 @�T means that

lim
y!�

�y D ı� weakly,
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where weak convergence of a sequence of finite measures means that the integrals
of any continuous function converge to its integral with respect to the limit measure.
The following is quite standard.

9.42 Lemma. A point � 2 @�T is regular for the Dirichlet problem if and only if
for every set @�Tv;w D yTv;w n Tv;w that contains � (v;w 2 T , w ¤ v),

lim
y!�

�y.@
�Tv;w/ D 1:

Proof. The indicator function 1@�Tv;w
is continuous. Therefore regularity implies

that the above limit is 1.
Conversely, assume that the limit is 1. Let ' be a continuous function on the

compact set @�T , and let M D max j'j. Write h for the Poisson integral of '.
We have '.�/ D R

@�T
'.�/ d�y.�/. Given " > 0, we first choose yTv;w such that

j'.�/ � '.�/j < " for all � 2 @�Tv;w . Then, if y 2 Tv;w is close enough to � , we
have �y.@

�Tw;v/ < ". For such y,

jh.y/ � '.�/j 

Z

@�Tv;w

j'.�/ � '.�/j d�y.�/C
Z

@�Tw;v

j'.�/ � '.�/j d�y.�/


 " �y.@
�Tv;w/C 2M �y.@

�Tw;v/ < .1C 2M/":

This concludes the proof. �

9.43 Theorem. Consider a transient nearest neighbour random walk on the tree T .

(a) A point � 2 @�T is regular for the Dirichlet problem if and only if the Green
kernel vanishes at �, and in this case, � 2 supp.�o/ � @�T .

(b) The regular points form a Borel set that has �x-measure 1.

Proof. Consider the set

B D ˚� 2 @�T W lim
y!�

G.y; x/ D 0
:
Since G.w; o/ 
 G.y; o/ for all w 2 Ty , we can write

B D
\
n2N

[
yWG.y;o/<1=n

@�Ty ;

so that B is a Borel set. We know that it is independent of the choice of x. Our
first claim is that �x.B/ D 1 for some and hence every x 2 T . We take x D o.
Consider the event

S� D
²
! 2 � W Z0.!/ D o; ZnC1.!/ � Zn.!/ for all n;

G
�
Zn.!/; o

�! 0; Zn.!/! Z1.!/ 2 @T
³
:
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Then Pro.S�/ D 1, see Exercise 7.32. For � 2 @T , let us write vk.�/ for the point
on 	.o; �/ at distance k from o. For ! 2 S�, the sequence

�
Zn.!/

�
visits every

point on the ray from o to Z1.!/. Recall the sequence of exit times �k.!/ D
max

˚
n W Zn.!/ D vk

�
Z1.!/

�

. Then �k.!/!1 and

G
�
vk

�
Z1.!/

�
; o
� D G�Z�k

.!/; o
�! 0:

We obtain

�o

�˚
� 2 @T W G�vk.�/; o

�! 0

�

D Pro

�
Z1 2

˚
� 2 @T W G�vk.�/; o

�! 0

� D 1:

If y ! � and G
�
vk.�/; o

�! 0 then y ^ � D vk.�/ with k D k.y/!1, and

G.y; o/ D F.y; y ^ �/G�vk.�/; o
� 
 G�vk.�/; o

�! 0:

This shows that �o.B/ D 1.

We now prove statement (a), and then statement (b) follows from the above.
Suppose that the Green kernel vanishes at � 2 @�T . Let yTv;w be a neighbour-

hood of �, where v � w. Its complement in yT is yTw;v . Let y 2 Tv;w . Then

�y. yTw;v/ D F.y;w/ �w. yTw;v/ 
 G.y;w/! 0; as y ! �:

Therefore any finite intersection U D Tm
j D1
yTvj ;wj

of such neighbourhoods of �
satisfies �y.U / ! 1 as y ! �. Lemma 9.42 yields that � is regular, and we also
conclude that �o.U / > 0 for every basic neighbourhood of � , whence � 2 supp.�o/.

Conversely, suppose that � is regular. If �o D ı� , then � must be an end, and
since �x.B/ D 1, the Green kernel vanishes at � . So suppose that supp.�o/ has at
least two elements. One of them must be �. There must be a basic neighbourhood
yTv;w (v � w) of � such that its complement contains some element of supp.�o/.
Let ' D 1@�Tw;v

and h its Poisson integral. By assumption,

0 D lim
y!�

h.y/ D lim
y!�

F.y;w/ �w.@
�Tw;v/„ ƒ‚ …
> 0

:

Therefore G.y;w/ D F.y;w/G.w;w/! 0 as y ! � . �

The proof of the following corollary is left as an exercise.

9.44 Corollary (Exercise). The Dirichlet problem at infinity admits solution if and
only if the Green kernel vanishes at infinity, that is, for every " > 0 there is a finite
subset A" � T such that

G.x; o/ < " for all x 2 T n A":

In this case, supp.�o/ D @�T , the full boundary.
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Let us next consider some examples.

9.45 Examples. (a) For simple random walk on the homogeneous tree of Exam-
ple 9.29 and Figure 26, we have F.x; y/ D q�d.x;y/. We see that the Green kernel
vanishes at infinity, and the Dirichlet problem is solvable.

(b) For simple random walk on the tree of Example 9.33 and Figure 27, all the
“hairs” give rise to recurrent ends �x , x 2 Tq . If w 2 	.x; �x/ then F.w; x/ D 1,
so that �x is not regular for the Dirichlet problem. On the other hand, the Green
kernel of simple random walk on T clearly vanishes at infinity on the subtree Tq ,
and all ends in @Tq � @T are regular for the Dirichlet problem. The set @Tq is
a closed subset of the boundary, and every continuous function ' on @Tq has a
continuous extension to yT which is harmonic on T . For the extended function,
the values at the ends �x , x 2 Tq , are forced by ', since the harmonic function is
constant on each hair.

As @Tq is dense in @T , in the spirit of this section we should consider the support
of the limit distribution to be supp.�o/ D @T , although the random walk does not
converge to one of the recurrent ends.

In this example, as well as in (a), the measure �o is continuous: �o.�/ D 0 for
every � 2 @T .

We also note that each non-regular (recurrent) end is itself an isolated point
in @T .

We now consider an example with a non-regular point that is not isolated.

9.46 Example. We construct a tree starting with the half-line N0, whose end is
$ D C1. At each point we attach a finite path of length f .k/ (a finite “hair”). At
the end of each of those “hairs”, we attach a copy of the binary tree by its root. (The
binary tree is the tree where the root, as well as any other vertex x, has precisely two
forward neighbours: the root has degree 2, while all other points have degree 3.)
See Figure 28. We write T for the resulting tree.

Figure 28
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Our root vertex is o D 0 on the “backbone” N0. We consider once more
simple random walk. If w is one of the vertices on one of the attached copies
of the binary tree, then F.w;w�/ is the same as on the homogeneous tree with
degree 3. (Compare with Exercise 2.12 and the considerations following (9.2).)
From Example 9.29, we know that F.w;w�/ D 1=2. Exercise 9.26 implies that
F.x; x�/ < 1 for every x ¤ o. All ends are transient, and supp.�o/ D @T , the full
boundary. The Green kernel vanishes at every end of each of the attached binary
trees. That is, every end in @T n f$g is regular for the Dirichlet problem. We now
show that with a suitable choice of the lengths f .k/ of the “hairs”, the end $ is
not regular. We suppose that f .k/!1 as k !1. Then it is easy to understand
that F.k; k � 1/! 1.

Indeed, consider first a tree zT similar to ours, but with f .k/ D 1 for each k,
that is, each of the “hairs” is an infinite ray (no binary tree). SRW on this tree is
recurrent (why?) so that zF .1; 0/ D 1 for the associated hitting probability. Then let
zFn.1; 0/ be the probability that SRW on zT starting at 1 reaches 0 before leaving the

ball zBn with radius n around 0 in the graph metric of zT . Then limn!1 zFn.1; 0/ DzF .1; 0/ D 1 by monotone convergence. On the other hand, in our tree T , consider
the cone Tk D T0;k . If n.k/ D infff .m/ W m � kg then the ball of radius n.k/
centred at the vertex k in Tk is isomorphic with the ball zBn.k/ in zT . Therefore
F.k; k � 1/ � zFn.k/.1; 0/! 1 as k !1.

Next, we write k0 for the neighbour of the vertex k 2 N that lies on the “hair”
attached at k. We have F.k0; k/ � �f .k/ � 1/�ıf .k/, since the latter quotient is
the probability that SRW on T starting at k0 reaches k before the root of the binary
tree attached at the k-th “hair”. (To see this, we only need to consider the drunkard’s
walk of Example 1.46 on f0; 1; : : : ; f .k/g with p D q D 1=2.)

Now Proposition 9.3 (b) yields for SRW on T

1 � F.k; k � 1/ D 1 � 1

3 � F.k C 1; k/ � F.k0; k/

D
�
1 � F.k C 1; k/�C �1 � F.k0; k/

�
1C �1 � F.k C 1; k/�C �1 � F.k0; k/

�

 �1 � F.k C 1; k/�C �1 � F.k0; k/

�
:

Recursively, we deduce that for each r � k,

1 � F.k; k � 1/ 
 �1 � F.r C 1; r/�C rX
mDk

�
1 � F. xm;m/�:

We let r !1 and get

1 � F.k; k � 1/ 

1X

mDk

�
1 � F. xm;m/�:
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Therefore
1X

kD1

�
1 � F.k; k � 1/� 
 1X

kD1

k
�
1 � F.k0; k/

� 
 1X
kD1

k

f .k/
:

If we choosef .k/ > k such that the last series converges (for example, f .k/ D k3),
then

F.n; 0/ D
nY

kD1

F.k; k � 1/!
1Y

kD1

F.k; k � 1/ > 0

(because for a sequence of numbers ak 2 .0; 1/, the infinite product
Q

k ak is > 0
if and only if

P
k.1 � ak/ <1), and the end $ D C1 is non-regular.

Next, we give an example of a non-simple random walk, also involving vertices
with infinite degree.

9.47 Example. Let again T D Ts�1 be the homogeneous tree with degree s � 3,
but this time we also allow that s D 1. We colour the non-oriented edges of T
by the numbers (“colours”) in the set �, where � D f1; : : : ; sg when s < 1, and
� D N when s D 1. This coloring is such that every vertex is incident with
precisely one edge of each colour. We choose probabilities pi > 0 (i 2 �) such
that

P
i2� pi D 1 and define the following symmetric nearest neighbour random

walk.
p.x; y/ D p.y; x/ D pi ; if the edge Œx; y� has colour i .

See Figure 29, where s D 3.
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Figure 29

We remark here that this is a random walk on the group with the presentation

G D hai ; i 2 � j a2
i D o for all i 2 �i;

where (recall) we denote by o the unit element of G. For readers who are not
familiar with group presentations, it is easy to describe G directly. It consists of all
words

x D ai1ai2 	 	 	 ain ; where n � 0; ij 2 �; ij C1 ¤ ij for all j:
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The number n is the length of the word, jxj D n. When n D 0, we obtain
the empty word o. The group operation is concatenation of words followed by
cancellations. Namely, if the last letter of x coincides with the first letter of y,
then both are cancelled in the product xy because of the relation a2

i D o. If in
the remaining word (after concatenation and cancellation) one still has an a2

j in the
middle, this also has to be cancelled, and so on until one gets a square-free word.
The latter is the product of x and y in G. In particular, for x as above, the inverse
is x�1 D ain 	 	 	 ai2ai1 . In the terminology of combinatorial group theory, G is the
free product over all i 2 � of the 2-element groups fo; aig with a2

i D o.
The tree is the Cayley graph of G with respect to the symmetric set of generators

S D fai W i 2 �g: the set of vertices of the graph is G, and two elements x, y are
neighbours in the graph if y D xai for some ai 2 S . Our random walk is a random
walk on that group. Its law  is supported by the set of generators, and .ai / D pi

for each i 2 �.
We now want to compute the Green function and the functions F.x; yjz/. We

observe that F.y; xjz/ D Fi .z/ is the same for all edges Œx; y� with colour i .
Furthermore, the function G.x; xjz/ D G.z/ is the same for all x 2 T . We know
from Theorem 1.38 and Proposition 9.3 that

G.z/ D 1

1 �Pi piz Fi .z/
and

Fi .z/ D piz

1 �Pj 6Di pj z Fj .z/
D piz

1

G.z/
C piz Fi .z/

:
(9.48)

We obtain a second order equation for the function Fi .z/, whose two solutions are�
1 ˙

q
1C 4p2

i z
2G.z/2 � 1

�ı�
2piz G.z/

�
: Since Fi .0/ D 0, while G.0/ D 1,

the right solution is

Fi .z/ D
q
1C 4p2

i z
2G.z/2 � 1

2piz G.z/
: (9.49)

Combining (9.48) and (9.49), we obtain an implicit equation for the functionG.z/:

G.z/ D ˆ�zG.z/�; where ˆ.t/ D 1C 1

2

X
i2�

�q
1C 4p2

i t
2 � 1

�
: (9.50)

We can analyze this formula by use of some basic facts from the theory of complex
functions. The function G.z/ is defined by a power series and is analytic in the
disk of convergence around the origin. (It can be extended analytically beyond that
disk.) Furthermore, the coefficients are non-negative, and by Pringsheim’s theorem
(which we have used already in Example 5.24), its radius of convergence must be
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a singularity. Thus, r D r.P / is the smallest positive singularity of G.z/. We are
lead to studying the equation (9.50) for z; t � 0.

For t � 0, the function t 7! ˆ.t/ is monotone increasing, convex, with
ˆ.0/ D 1 and ˆ0.0/ D 0. For t ! 1, it approaches the asymptote with equa-
tion y D t � s�2

2
in the .t; y/-plane. For 0 < z < r.P /, by (9.50), G.z/ is the

y-coordinate of a point where the curve y D ˆ.t/ intersects the line y D 1
z
t , see

Figures 30 and 31.

Case 1. s D 2. The asymptote is y D t , there is a unique intersection point of
y D ˆ.t/ and y D 1

z
t for each fixed z 2 .0; 1/, and the angle of intersection is

non-zero.
By the implicit function theorem, there is a unique analytic solution of the

equation (9.50) for G.z/ in some neighbourhood of z. This gives G.z/, which is
analytic in each real z 2 .0; 1/. On the other hand, if z > 1, the curve y D ˆ.t/

and the line y D 1
z
t do not intersect in any point with real coordinates : there

is no real solution of (9.50). It follows that r D 1. Furthermore, we see from
Figure 30 that G.z/!1 when z ! 1 from the left. Therefore the random walk
is recurrent. Our random walk is symmetric, whence reversible with respect to the
counting measure, which has infinite mass. We conclude that recurrence is null
recurrence.
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Figure 30

Case 2. 3 
 s 
 1. The asymptote intersects the y-axis at � s�2
2
< 0. By the

convexity of ˆ, there is a unique tangent line to the curve y D ˆ.t/ (t � 0) that
emanates from the origin, as one can see from Figure 31.

Let � be the slope of that tangent line. Its slope is smaller than that of the
asymptote, that is, � < 1. For 0 < z 
 1, the line y D 1

z
t intersects the curve

y D ˆ.t/ in a unique point with positive real coordinates, and the same argument
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as in Case 1 shows that G. 	/ is analytic at z. For 1 < z < 1=�, there are two
intersection points with non-zero angles of intersection. Therefore both give rise to
an analytic solution of the equation (9.50) forG.z/ in a complex neighbourhood of z.
Continuity ofG.z/ and analytic continuation imply thatG.z/ DPn p

.n/.x; x/ zn

is finite and coincides with the y-coordinate of the intersection point that is more
to the left.
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On the other hand, for z > 1=� there is no real solution of (9.50). We conclude
that the radius of convergence of G.z/ is r D 1=�. We also find a formula for
� D �.P /. Namely, � D ˆ.t0/, where t0 is the unique positive solution of the
equation ˆ0.t/ D ˆ.t/=t , which can be written as

1

2

X
i2�

0
B@1 � 1q

1C 4p2
i t

2

1
CA D 1:

We also have �.P / D minfˆ.t/=t W t > 0g.
In particular, G.1/ is finite, and the random walk is transient. (This can of

course be shown in various different ways, including the flow criterion.) Also,
G.r/ D limz!r�G.z/ D ˆ.t0/ is finite, so that the random walk is also �-transient.

Let us now consider the Dirichlet problem at infinity in Case 2. By equation
(9.49), we clearly have Fi D Fi .1/ < 1 for each i . If s D1, then we also observe
that by (9.48)

Fi 
 piG.1/! 0; as i !1:
Thus we always have xF D maxi2� Fi < 1. For arbitrary y,

G.y; o/ D xF .y; o/G.o; o/ 
 xF jyjG.o; o/:



E. Limits of harmonic functions at the boundary 261

Thus,
lim
y!�

G.y; o/ D 0 for every end � 2 @T:
When 3 
 s < 1, we see the Dirichlet problem admits a solution for every
continuous function on @T .

Now consider the case when s D1. Every vertex has infinite degree, and T � is
in one-to-one correspondence with T . We see from the above that the Green kernel
vanishes at every end. We still have to show that it vanishes at every improper
vertex; compare with the remarks after Definition 9.41. By the spatial homogeneity
of our random walk (i.e., because it is a random walk on a group), it is sufficient to
show that the Green kernel vanishes at o�. The neighbours of o are the points ai ,
i 2 I , where the colour of the edge Œo; ai � is i . We have G.ai ; o/ D Fi G.o; o/,
which tends to 0 when i ! 1. Now y ! o� means that i.y/ ! 1, where
i D i.y/ is such that y 2 To;ai

.
We have shown that the Green kernel vanishes at every boundary point, so that

the Dirichlet problem is solvable also when s D1.

At this point we can make some comments on why it has been preferable to
introduce the improper vertices. This is because we want for a general irreducible,
transient Markov chain .X; P / that the state spaceX remains discrete in the Martin
compactification. Recall what has been said in Section 7.B (before Theorem 7.19):
in the original article of Doob [17] it is not required that X be discrete in the
Martin compactification. In that setting, the compactification is the closure of (the
embedding of)X in B, the base of the cone of all positive superharmonic functions.
In the situation of the last example, this means that the compactification is T [ @T ,
but a sequence that converges to an improper vertex x� in our setting will then
converge to the “original” vertex x.

Now, for this smaller compactification of the tree with s D1 in the last example,
the Dirichlet problem cannot admit solution. Indeed, there every vertex is the limit
of a sequence of ends, so that a continuous function on @T forces the values of the
continuous extension (if it exists) at each vertex before we can even start to consider
the Poisson integral. For example, if x � y then the continuous extension of the
function 1@Tx;y

to T [ @T in the “wrong” compactification is 1Tx;y[@Tx;y
. It is not

harmonic at x and at y.
We see that for the Dirichlet problem it is really relevant to have a compactifi-

cation in which the state space remains discrete.
We remark here that Dirichlet regularity for points of the Martin boundary of

a Markov chain was first studied by Knapp [37]. Theorem 9.43 (a) and Corol-
lary 9.44 are due to Benjamini and Peres [5] and, for trees that are not necessarily
locally finite, Cartwright, Soardi and Woess [10]. Example 9.46, with a more
general and more complicated proof, is due to Amghibech [1]. The paper [5] also
contains an example with an uncountable set of non-regular points that is dense in
the boundary.
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A radial Fatou theorem

We conclude this section with some considerations on the Fatou theorem. Its classi-
cal versions are non-probabilistic and concern convergence of the Poisson integral
h.x/ of an integrable function ' on the boundary. Here, ' is not assumed to be
continuous, and the Dirichlet problem at infinity may not admit solution. We look
for a more restricted variant of convergence of h when approaching the boundary.
Typically, x ! � (a boundary point) in a specific way (“non-tangentially”, “radi-
ally”, etc.), and we want to know whether h.x/! '.�/. Since h does not change
when ' is modified on a set of �o-measure 0, such a result can in general only hold
�o-almost surely. This is of course similar to (but not identical with) the probabilis-
tic Fatou theorem 7.67, which states convergence along almost every trajectory of
the random walk. We prove the following Fatou theorem on radial convergence.

9.51 Theorem. Consider a transient nearest neighbour random walk on the count-
able tree T . Let ' be a �o-integrable function on the space of ends @T , and h.x/
its Poisson integral.

Then for �o-almost every � 2 @T ,

lim
k!1

h
�
vk.�/

� D '.�/;
where vk.�/ is the vertex on 	.o; �/ at distance k from o.

Proof. Similarly to the proof of Theorem 9.43, we define the event

�0 D
²
! 2 � W Z0.!/ D o; ZnC1.!/ � Zn.!/ for all n;

Zn.!/! Z1.!/ 2 @T; h
�
Zn.!/

�! '
�
Z1.!/

�³:
Then Pro.�

0/ D 1. Precisely as in the proof of Theorem 9.43, we consider the exit
times �k D �k.!/ D max

˚
n W Zn.!/ D vk

�
Z1.!/

�

for ! 2 �0. Then �k !1,

whence
h
�
vk.Z1/

� D h.Z�k
/! '.Z1/ on �0:

Therefore, setting
B D f� 2 @T W h�vk.�/

�! '.�/g;
we have �o.B/ D ProŒZ1 2 B� D 1, as proposed. �

9.52 Exercise. Verify that the set B defined at the end of the last proof is a Borel
subset of @T . �

Note that the improper vertices make no appearance in Theorem 9.51, since
�o.T

�/ D 0.
Theorem 9.51 is due to Cartier [Ca]. Much more work has been done regarding

Fatou theorems on trees, see e.g. the monograph by Di Biase [16].
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F The boundary process, and the deviation from the limit
geodesic

We know that a transient nearest neighbour random walk on a tree T converges
almost surely to a random end. We next want to study how and when the initial
pieces with lengths k 2 N0 of 	.Z0; Zn/ stabilize. Recall the exit times �k that
were introduced in the proof of Theorem 9.18: �k D n means that n is the last
instant when d.Z0; Zn/ D k. In this case,Zn D vk.Z1/, where (as above) for an
end �, we write vk.�/ for the k-th point on 	.o; �/.

9.53 Definition. For a transient nearest neighbour random walk on a tree T , the
boundary process is Wk D vk.Z1/ D Z�k

, and the extended boundary process is�
Wk; �k

�
, k � 0.

When studying the boundary process, we shall always assume that Z0 D o.
Then jWkj D k, and for x 2 T with jxj D k, we have ProŒWk D x� D �o.@Tx/.

9.54 Exercise. Setting z D 1, deduce the following from Proposition 9.3 (b). For
x 2 T n fog,

PrxŒZn 2 Tx n fxg for all n � 1� D p.x; x�/
1 � F.x; x�/
F.x; x�/

:

[Hint: decompose the probability on the left hand side into terms that correspond to
first moving from x to some forward neighbour y and then never going back to x.]

�

9.55 Proposition. The extended boundary process
�
Wk; �k

�
k�1

is a (non-irre-
ducible) Markov chain with state space Ttr �N0. Its transition probabilities are

ProŒWk D y; �k D n j Wk�1 D x; �k�1 D m�
D F.x; x�/

F.y; x/

1 � F.y; x/
1 � F.x; x�/

p.x; y/

p.x; x�/
f .n�m/.y; x/;

where y 2 Ttr with jyj D k; x D y�, and n �m 2 N is odd.

Proof. For the purpose of this proof, the quantity computed in Exercise 9.54 is
denoted

g.x/ D PrxŒZi 2 Tx n fxg for all i � 1�:
Let Œo D x0; x1; : : : ; xk� be any geodesic arc in Ttr that starts at o, and let m1 <

m2 < 	 	 	 < mk be positive integers such that mj � mj �1 2 Nodd for all j . (Of
course, Nodd denotes the odd positive integers.) We consider the following events
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in the trajectory space.

Ak D ŒWk D xk; �k D mk�;

Bk D ŒWk�1 D xk�1; �k�1 D mk�1; Wk D xk; �k D mk� D Ak�1 \ Ak;

Ck D ŒW1 D x1; �1 D m1; : : : ; Wk D xk; �k D mk�; and

Dk D Œ jZnj > k for all n > mk�:

We have to show that ProŒAk jCk�1� D ProŒAk jAk�1�, and we want to compute
this number. A difficulty arises because the two conditioning events depend on all
future times after �k�1 D mk�1. Therefore we also consider the events

A�
k D ŒZmk

D xk�;

B�
k D ŒZmk�1

D xk�1; Zmk
D xk; jZi j � k for i D mk�1 C 1; : : : ; mk�;

and

C �
k D

�
Zmj

D xj for j D 1; : : : ; k;
jZi j � j for i D mj �1 C 1; : : : ; mj ; j D 2; : : : ; k

	
:

Each of them depends only on Z0; : : : ; Zmk
. Now we can apply the Markov

property as follows.

Pro.Ak/ D Pro.Dk \ A�
k/ D Pro.Dk jA�

k/ Pro.A
�
k/ D g.xk/ Pro.A

�
k/;

and analogously

Pro.Bk/ D g.xk/ Pro.B
�
k / and Pro.Ck/ D g.xk/ Pro.C

�
k /:

Thus, noting that C �
k
D B�

k
\ C �

k�1
,

Pro.Ak jCk�1/ D Pro.Ck/

Pro.Ck�1/

D g.xk/

g.xk�1/

Pro.C
�
k
/

Pro.C
�
k�1

/

D g.xk/

g.xk�1/
Pro.B

�
k j C �

k�1/

D g.xk/

g.xk�1/
Pro.B

�
k j A�

k�1/

D g.xk/

g.xk�1/

Pro.B
�
k
/

Pro.A
�
k�1

/

D Pro.Bk/

Pro.Ak�1/

D Pro.Ak jAk�1/;
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as required. Now that we know that the process is Markovian, we assume that
xk�1 D x, xk D y, mk�1 D m and mk D n, and easily compute

Pro.B
�
k / D Pro.A

�
k�1/ PrxŒZn�m D y; Zi ¤ x for i D 1; : : : ; n �m�

D Pro.A
�
k�1/ `

.n�m/.x; y/;

where `.n�m/.x; y/ is the “last exit” probability of (3.56). By reversibility (9.5)
and Exercise 3.59, we have for the generating function L.x; yjz/ of the `.n/.x; y/

that

m.x/L.x; yjz/ D m.x/G.x; yjz/
G.x; xjz/ D m.y/G.y; xjz/

G.x; xjz/ D m.y/ F.y; xjz/:

Therefore, `.n�m/.x; y/ D m.y/ f .n�m/.y; x/=m.x/, and of course we also have
m.y/ p.y; x/=m.x/ D p.x; y/. Putting things together, the transition probability
from .x;m/ to .y; n/ is

Pro.Ak jAk�1/ D g.y/

g.x/
`.n�m/.x; y/;

which reduces to the stated formula. �

Note that the transition probabilities in Proposition 9.55 depend only on x, y
and the increment ıkC1 D �kC1 � �k . Thus, also the process

�
Wk; ık

�
k�1

is a
Markov chain, whose transition probabilities are

ProŒWkC1 D y; ıkC1 D n j Wk D x; ık D m�
D F.x; x�/

F.y; x/

1 � F.y; x/
1 � F.x; x�/

p.x; y/

p.x; x�/
f .n/.y; x/:

(9.56)

Here, n has to be odd, so that the state space is Ttr � Nodd. Also, the process
factorizes with respect to the projection .x; n/ 7! x.

9.57 Corollary. The boundary process .Wk/k�1 is also a Markov chain. If x; y 2
Ttr with jxj D k and y� D x then

ProŒWkC1 D y j Wk D x� D �o.@Ty/

�o.@Tx/
D F.x; x�/

1 � F.y; x/
1 � F.x; x�/

p.x; y/

p.x; x�/
:

We shall use these observations in the next sections.

9.58 Exercise. Compute the transition probabilities of the extended boundary pro-
cess in Example 9.29.

[Hint: note that the probabilities f .n/.x; x�/ can be obtained explicitly from the
closed formula for F.x; x�jz/, which we know from previous computations.] �
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Now that we have some idea how the boundary process evolves, we want to
know how far .Zn/ can deviate from the limit geodesic 	.o;Z1/ in between the
exit times. That is, we want to understand how d

�
Zn; 	.o;Z1/

�
behaves, where

.Zn/ is a transient nearest neighbour random walk on an infinite tree T . Here, we
just consider one basic result of this type that involves the limit distributions on @T .

9.59 Theorem. Suppose that there is a decreasing function � W RC ! RC with
limt!1 �.t/ D 0 such that

�x.@Tx;y/ 
 �
�
d.x; y/

�
for all x; y 2 T .x ¤ y/:

Then, whenever .rn/ is an increasing sequence in N such that
P

n �.rn/ <1, one
has

lim sup
n!1

d
�
Zn; 	.x;Z1/

�
rn


 1 Prx -almost surely

for every starting point x 2 T .
In particular, if

sup
˚
F.x; y/ W x; y 2 T; x � yg D 
 < 1

then

lim sup
n!1

d
�
Zn; 	.x;Z1/

�
logn


 log.1=
/ Prx -almost surely for every x:

Proof. The assumptions imply that each �x is a continuous measure, that is, �x.�/ D
0 for every end � of T . Therefore @T must be uncountable. We choose and fix an
end � 2 @T , and assume without loss of generality that the starting point isZ0 D o.
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From Figure 32 one sees the following: if jZn ^ Z1j > j� ^ Z1j then one
has d

�
Zn; 	.o;Z1/

� D d
�
Zn; 	.�;Z1/

�
. (Note that 	.�;Z1/ is a bi-infinite
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geodesic.) Therefore, if r > 0, then

Pro

�
d
�
Zn; 	.o;Z1/

� � r; jZn ^Z1j > j� ^Z1j
�


 Pro

�
d
�
Zn; 	.�;Z1/

� � r�
D
X
x2T

ProŒZn D x� Prx

�
d
�
x; 	.�;Z1/

� � r�


X
x2T

ProŒZn D x� �.r/ D �.r/;

since d
�
x; 	.�;Z1/

� � r implies thatZ1 2 @Tx;y , where y is the element on the
ray 	.x; �/ at distance r from x. Now consider the sequence of events

An D
�
d
�
Zn; 	.o;Z1/

� � rn; jZn ^Z1j > j� ^Z1j
�

in the trajectory space. Then by the above,
P

n Pro.An/ < 1 and, by the Borel–
Cantelli lemma, Pro.lim supnAn/ D 0. We know that ProŒZ1 ¤ �� D 1, since
�o is continuous. That is, j� ^ Z1j < 1 almost surely. On the other hand,
jZn ^Z1j ! 1. We see that

Pro

�
lim inf

n

� jZn ^Z1j > j� ^Z1j
�� � ProŒZ1 ¤ �� D 1:

Therefore Pro

�
lim supn

�
d
�
Zn; 	.o;Z1// � rn

�� D 0, which implies the proposed
general result.

In the specific case when 
 D sup
˚
F.x; y/ W x; y 2 T; x � yg < 1, we can

set �.t/ D 
t . If we choose rn D
˙
.1C ˛/ logn

ı
log.1=
/


, where ˛ > 0, then

we see that �.rn/ 
 1=n1C˛ , whence

lim sup
n!1

d
�
Zn; 	.x;Z1/

�
logn


 log.1=
/

1C ˛ Prx -almost surely,

and this holds for every ˛ > 0. �

The .logn/-estimate in the second part of the theorem was first proved for
random walks on free groups by Ledrappier [40]. A simplified generalization is
presented in [44], but it contains a trivial error at the end (the exponential function
does not vary regularly at infinity), which was observed by Gilch [26].

The boundary process was used by Lalley [39] in the context of finite range
random walks on free groups.

G Some recurrence/transience criteria

So far, we have always assumed transience. We now want to present a few (of the
many) criteria for transience and recurrence of a nearest neighbour random walk
with stochastic transition matrix P on a tree T .



268 Chapter 9. Nearest neighbour random walks on trees

In view of reversibility (9.5), we already have a criterion for positive recurrence,
see Proposition 9.8. We can use the flow criterion of Theorem 4.51 to study tran-
sience. If x ¤ o and 	.o; x/ D Œo D x0; x1; : : : ; xk�1; xk D x� then the resistance
of the edge e D Œx�; x� D Œxk�1; xk� is

r.e/ D 1

p.x0; x1/

k�1Y
iD1

p.xi ; xi�1/

p.xi ; xiC1/
:

There are various simple choices of unit flows from o to1 which we can use
to test for transience.

9.60 Example. The simple flow on a locally finite treeT with root o and deg.x/ � 2
for all x ¤ o is defined recursively as

�.o; x/ D 1

deg.x/
; if x� D o; and �.x; y/ D �.x�; x/

deg.x/ � 1; if y� D x ¤ o:

Of course �.x; x�/ D ��.x�; x/. With respect to simple random walk, its power
is just

h�; �i D
X

x2T nfog
�.x�; x/2:

This sum can be nicely interpreted as the total area of a square tiling that is filled
into the strip Œ0; 1�� Œ0; 1/ in the plane. Above the base segment we draw deg.o/
squares with side length 1= deg.o/. Each of them corresponds to one of the edges
Œo; x� with x� D o. If we already have drawn the square corresponding to an edge
Œx�; x�, then we subdivide its top side into deg.x/ � 1 segments of equal length.
Each of them becomes the base segment of a new square that corresponds to one of
the edges Œx; y� with y� D x. See Figure 33. If the total area of the tiling is finite
then the random walk is transient.
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Figure 33. A tree and the associated square tiling.



G. Some recurrence/transience criteria 269

This square tiling associated with SRW on a locally finite tree was first consid-
ered by Gerl [25]. More generally, square tilings associated with random walks
on planar graphs appear in the work of Benjamini and Schramm [7].

Another choice is to take an end � and send a unit flow �� from o to �: if
	.o; �/ D Œo D x0; x1; x2; : : : � then this flow is given by �.e/ D 1 and �. Le/ D �1
for the oriented edge e from xi�1 to xi , while �.e/ D 0 for all edges that do not
lie on the ray 	.o; �/. If � has finite power then the random walk is transient. We
obtain the following criterion.

9.61 Corollary. If T has an end � such that for the geodesic ray 	.o; �/ D Œo D
x0; x1; x2; : : : �,

1X
kD1

kY
iD1

p.xi ; xi�1/

p.xi ; xiC1/
<1;

then the random walk is transient.

9.62 Exercise. Is it true that any end � that satisfies the criterion of Corollary 9.61
is a transient end? �

When T itself is a half-line (ray), then the condition of Corollary 9.61 is the
necessary and sufficient criterion of Theorem 5.9 for birth-and-death chains. In
general, the criterion is far from being necessary, as shows for example simple
random walk on Tq .

In any case, the criterion says that the ingoing transition probabilities (towards
the root) are strongly dominated by the outgoing ones. We want to formulate a
more general result in the same spirit. Let f be any strictly positive function on T .
We define 
 D 
f W T n fog ! .0;1/ and g D gf W T ! Œ0;1/ by


.x/ D 1

p.x; x�/f .x/
X

y W y�Dx

p.x; y/f .y/;

g.o/ D 0; and if x ¤ o; 	.o; x/ D Œo D x0; x1; : : : ; xm D x�; then

g.x/ D f .x1/C
m�1X
kD1

f .xkC1/


.x1/ 	 	 	
.xk/
:

(9.63)

Admitting the valueC1, we can extend g D gf to @T by setting

g.�/ D f .x1/C
1X

kD1

f .xkC1/


.x1/ 	 	 	
.xk/
; if 	.o; �/ D Œo D x0; x1; : : : �: (9.64)

9.65 Lemma. Suppose that T is such that deg.x/ � 2 for all x 2 T n fog. Then
the function g D gf of (9.63) satisfies

Pg.x/ D g.x/ for all x ¤ o; and Pg.o/ D Pf .o/ > 0 D g.o/I
it is subharmonic: Pg � g.
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Proof. Since deg.x/ � 2, we have 
.x/ > 0 for all x 2 T n fog. Let us define
a.o/ D 1 and recursively for x ¤ o

a.x/ D a.x�/=
.x/:

Then g.x/ is also defined recursively by

g.o/ D 0 and g.x/ D g.x�/C a.x�/f .x/; x ¤ o:
Therefore, if x ¤ o then

Pg.x/ D p.x; x�/g.x�/C
X

yWy�Dx

p.x; y/
�
g.x/C a.x/f .y/�

D p.x; x�/
�
g.x/ � a.x�/f .x/

�
C �1 � p.x; x�/

�
g.x/C a.x/
.x/„ ƒ‚ …

a.x�/

p.x; x�/f .x/

D g.x/:
It is clear that Pg.o/ D Pf .o/ DPx p.o; x/f .x/. �

9.66 Corollary. If deg.x/ � 2 for all x 2 T n fog and g D gf is bounded then the
random walk is transient.

Proof. If g.x/ < M for all x, thenM � g.x/ is a non-constant, positive superhar-
monic function. Theorem 6.21 yields transience. �

We have defined the function gf D g
f
o with respect to the root o, and we can

also define an analogous function gv with respect to another reference vertex v.
(Predecessors have then to be considered with respect to v instead of o.) Then, with

.x/ defined with respect to o as above, we have the following.

If v � o then gf
o .x/ D f .v/C

1


.v/
gf

v .x/ for all x 2 To;v n fvg.

9.67 Corollary. If there is a cone Tv;w (v � w) of T such that deg.x/ � 2 for all
x 2 Tv;w , and the function g D gf of (9.63) is bounded on that cone, then the
random walk on T is transient, and every element of @Tv;w is a transient end.

Proof. By induction on d.o; v/, we infer from the above formula that g D go is
bounded onTv;w if and only ifgv is bounded onTv;w . Equivalently, it is bounded on
the branchBŒv;w� D Tv;w[fvg. OnBŒv;w�, we have the random walk with transition
matrix PŒv;w� which coincides with the restriction of P along each oriented edge of
that branch, with the only exception that pŒv;w�.v; w/ D 1. See (9.2). We can now
apply Corollary 9.66 to PŒv;w� on BŒv;w�, with gv in the place of g. It follows that
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PŒv;w� is transient on BŒv;w�. We know that this holds if and only if F.w; v/ < 1,
which implies transience of P on T .

Furthermore, If g is bounded on Tv;w , then it is bounded on every sub-cone
Tx;y , where x � y and x 2 	.w; y/. Therefore F.y; x/ < 1 for all those edges
Œx; y�. This says that all ends of Tv;w are transient. �

Another by-product of Corollaries 9.66 and 9.67 is the following criterion.

9.68 Corollary. Suppose that there are a bounded, strictly positive function f on
T n fog and a number 
 > 0 such thatX

y W y�Dx

p.x; y/f .y/ � 
p.x; x�/f .x/ for all x 2 T n fog:

If 
 > 1 then every end of T is transient.

Proof. We can choose f .o/ > 0 arbitrarily. Since f is bounded and 
.x/ � 
 > 1
for all x ¤ o, we have supgf 
 supf 	Pn 


�n <1: �

We remark that the criteria of the last corollaries can also be rewritten in terms
of the conductances a.x; y/ D m.x/p.x; y/. Therefore, if we find an arbitrary
subtree of T to which one of them applies with respect to a suitable root vertex,
then we get transience of that subtree as a subnetwork, and thus also of the random
walk on T itself. See Exercise 4.54.

We now consider the extension (9.64) of g D gf to the space of ends of T .

9.69 Theorem. Suppose that T is such that deg.x/ � 2 for all x 2 T n fog.
(a) If g.�/ <1 for all � 2 @T , then the random walk is transient.

(b) If the random walk is transient, then g.�/ <1 for �o-almost every � 2 T .

Proof. (a) Suppose that the random walk is recurrent. By Corollary 9.66, g cannot
be bounded. There is a vertexw.1/ ¤ o such thatg

�
w.1/

� � 1. Let v.1/ D w.1/�.
Then F

�
w.1/; v.1/

� D 1, the cone Tv.1/;w.1/ is recurrent. By Corollary 9.67, g
is unbounded on Tv.1/;w.1/, and we find w.2/ ¤ w.1/ in Tv.1/;w.1/ such that
g
�
w.2/

� � 2.
We now proceed inductively. Given w.n/ 2 Tv.n�1/;w.n�1/ n fw.n � 1/g

with g
�
w.n/

� � n, we set v.n/ D w.n/�. Recurrence of Tv.n/;w.n/ implies
via Corollary 9.67 that g is unbounded on that cone, and there must be w.nC 1/ 2
Tv.n/;w.n/ n fw.n/g with g

�
w.nC 1/� � nC 1.

The points w.n/ constructed in this way lie on an infinite ray. If � is the
corresponding end, then g.�/ � g�w.n/� ! 1. This contradicts the assumption
of finiteness of g on @T .
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(b) Suppose transience. Recall that P G.x; o/ D G.x; o/, when x ¤ o, while
P G.o; o/ D G.o; o/�1. Taking Lemma 9.65 into account, we see that the function
h.x/ D g.x/Cc G.x; o/ is positive harmonic, where c D Pf .o/ is chosen in order
to compensate the strict subharmonicity ofg ato. By Corollary 7.31 from the section
about martingales, we know that lim h.Zn/ exists and is Pro-almost surely finite.
Also, by Exercise 7.32, limG.Zn; o/ D 0 almost surely. Therefore

lim
n!1g.Zn/ exists and is Pro-almost surely finite.

Proceeding once more as in the proof of Theorem 9.43, we have �k !1 Pro-al-
most surely, where �k D maxfn W Zn D vk.Z1/g: Then

lim
k!1

g
�
vk.Z1/

�
<1 Pro -almost surely.

Therefore

�o

�˚
� 2 @T W g.�/ <1
� D Pro

�
Z1 2

˚
� 2 @T W lim

k!1
g
�
vk.�/

�
<1
� D 1;

as proposed. �

9.70 Exercise. Prove the following strengthening of Theorem 9.69 (a).

Suppose that there is a cone Tv;w (v � w) of T such that deg.x/ � 2 for all
x 2 Tv;w , and the extension (9.64) of g D gf to the boundary satisfies g.�/ <1
for every � 2 @Tv;w . Then the random walk is transient. Furthermore, every end
� 2 @Tv;w is transient. �

The simplest choice for f is f � 1. In this case, the function g D g1 has the
following form.

g.o/ D 0; g.v/ D 1 for v � o; and

g.x/ D 1C
m�1X
kD1

kY
iD1

p.xi ; xi�1/

1 � p.xi ; xi�1/
;

(9.71)

if 	.o; x/ D Œo D x0; x1; : : : ; xm D x� with m � 2.

9.72 Examples. In the following examples, we always choose f � 1, so that
g D g1 is as in (9.71).

(a) For simple random walk on the homogeneous tree with degree q C 1 of
Example 9.29 and Figure 26, we have for the function g D g1

g.x/ D 1C q�1 C 	 	 	 C q�jxjC1 for x ¤ o:
The function g is bounded, and SRW is transient, as we know.
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(b) Consider SRW on the tree of Example 9.33 and Figure 27. There, the
recurrent ends are dense in @T , and g.�x/ D 1 for each of them. Nevertheless,
the random walk is transient.

(c) Next, consider SRW on the tree T of Figure 28 in Example 9.46.
For the vertex k � 2 on the backbone, we have g.k/ D 2 � 2�kC2.
For its neighbour k0 on the finite hair with length f .k/ attached at k, the value

is g.k0/ D 2 � 2�kC1.
The function increases linearly along that hair, and for the root ok of the binary

tree attached at the endpoint of that hair, g.ok/ D g.k/C 2�kC1f .k/.
Finally, if x is a vertex on that binary tree and d.x; ok/ D m then g.x/ D

g.ok/C 2�kC1.1 � 2�m/.
We obtain the following values of g on @T .

g.$/ D 2 and g.�/ D 2 � 2�kC2 C 2�kC1
�
f .k/C 1�; if � 2 @Tk0 :

If we choose f .k/ big enough, e.g. f .k/ D k 2k , then the function g is everywhere
finite, but unbounded on @T .

(d) Finally, we give an example which shows that for the transience criterion of
Theorem 9.69 it is essential to have no vertices with degree 1 (at least in some cone
of the tree). Consider the half line N with root o D 1, and attach a “dangling edge”
at each k 2 N. See Figure 34. SRW on this tree is recurrent, but the function g is
bounded.

� � � � � � � �

� � � � � � � �

o 	 	 	

Figure 34

9.73 Exercise. Show that for the random walk of Example 9.47, when 3 
 s 
 1,
the function g is bounded.
[Hint: when maxi pi < 1=2 this is straightforward. For the general case show that
max

˚
pi

1�pi

pj

1�pj
W i; j 2 �; i ¤ j 
 < 1 and use this fact appropriately.] �

With respect to f � 1, the function g D g1 of (9.71) was introduced by
Bajunaid, Cohen, Colonna and Singman [3] (it is denotedH there). The proofs
of the related results have been generalized and simplified here. Corollary 9.68 is
part of a criterion of Gilch and Müller [27], who used a different method for the
proof.

Trees with finitely many cone types

We now introduce a class of infinite, locally finite trees & random walks which
comprise a variety of interesting examples and allow many computations. This
includes a practicable recurrence criterion that is both necessary and sufficient.
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We start with .T; P /, where P is a nearest neighbour transition matrix on the
locally finite tree T . As above, we fix an “origin” o 2 T . For x 2 T n fog, we
consider the cone Tx D Tx�;x of x as labelled tree with root x. The labels are the
probabilities p.v;w/, v;w 2 Tx (v � w).

9.74 Definition. Two cones are isomorphic, if there is a root-preserving bijection
between the two that also preserves neighbourhood as well as the labels of the edges.
A cone type is an isomorphism class of cones Tx , x ¤ o.

The pair .T; P / is called a tree with finitely many cone types if the number of
distinct cone types is finite.

We write � for the finite set of cone types. The type (in �) of x 2 T n fog is the
cone type of Tx and will be denoted by �.x/. Suppose that �.x/ D i . Let d.i; j / be
the number of neighbours of x in Tx that are of type j . We denote

p.i; j / D
X

y W y�Dx; �.y/Dj

p.x; y/; and p.i�/ D p.x; x�/ D 1 �
X
j 2�

p.i; j /:

As the notation indicates, those numbers depend only on i and j , resp. (for the
backward probability) only on i . In particular, we must have

P
j p.i; j / < 1. We

also admit leaves, that have no forward neighbour, in which case p.i�/ D 1.
We can encode this information in a labelled oriented graph with multiple edges

over the vertex set �. For i; j 2 �, there are d.i; j / edges from i to j , which carry
the labels p.x; y/, where x is any vertex with type i and y runs through all forward
neighbours with type j of x. This does not depend on the specific vertex x with
�.x/ D i .

Next, we augment the graph of cone types � by the vertex o (the root of T ). In
this new graph �o, we draw d.o; i/ edges from o to i , where d.o; i/ is the number
of neighbours x of o in T with �.x/ D i . Each of those edges carries one of the
labels p.o; x/, where x � o and �.x/ D i . As above, we write

p.o; i/ D
X

x W x
o; �.x/Di

p.o; x/:

Then
P

i p.o; i/ D 1. The original tree with its transition probabilities can be
recovered from the graph �o as the directed cover. It consists of all oriented paths
in �o that start at o. Since we have multiple edges, such a path is not described
fully by its sequence of vertices; a path is a finite sequence of oriented edges of
� with the property that the terminal vertex of one edge has to coincide with the
initial vertex of the next edge in the path. This includes the empty path without any
edge that starts and ends at o. (This path is denoted o.) Given two such paths in
�o, here denoted x; y, we have y� D x as vertices of the tree if y extends the path
x by one edge at the end. Then p.x; y/ is the label of that final edge from �o. The
backward probability is then p.y; x/ D p.j�/, if the path y terminates at j 2 �.
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9.75 Examples. (a) Consider simple random walk on the homogeneous tree with
degree q C 1 of Example 9.29 and Figure 26. There is one cone type, � D f1g,
we have d.1; 1/ D q, and each of the q loops at vertex (� type) 1 carries the label
(probability) 1=.qC1/. Furthermore, d.o; 1/ D qC1, and each of the qC1 edges
from o to 1 carries the label 1=.q C 1/.

(b) Consider simple random walk on the tree of Example 9.33 and Figure 27.
There are two cone types, � D f1; 2g, where 1 is the type of any vertex of the
homogeneous tree, and 2 is the type of any vertex on one of the hairs. We have
d.1; 1/ D q, and each of the q loops at vertex (� type) 1 carries the label 1=.qC2/,
while d.1; 2/ D d.2; 2/ D 1 with labels 1=.q C 2/ and 1=2, respectively.

Furthermore, d.o; 1/ D q C 1, and each of the q C 1 edges from o to 1 carries
the label (probability) 1=.q C 2/, while d.o; 2/ D 1 and p.o; 1/ D 1=.q C 2/.

Figure 35 refers to those two examples with q D 2.
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Figure 35. The graphs �o for SRW on T2 and on T2 with hairs.

(c) Consider the random walk of Example 9.47 in the case when s <1. Again,
we have finitely many cone types. As a set, � D f1; : : : ; sg. The graph structure is
that of a complete graph: there is an oriented edge Œi; j � for every pair of distinct
elements i; j 2 �. We have d.i; j / D 1 and p.i; j / D p.j�/ D pj . (As a
matter of fact, when some of the pj coincide, we have a smaller number of distinct
cone types and higher multiplicities d.i; j /, but we can as well maintain the same
model.)

In addition, in the augmented graph �o, there is an edge Œo; i � with d.o; i/ D 1
and p.o; i/ D pi for each i 2 �.

The reader is invited to draw a figure.
(d) Another interesting example is the following. Let 0 < ˛ < 1 and � D

f1;�1g. We let d.1; 1/ D 2, d.�1; 1/ D d.�1;�1/ D 1 and d.1;�1/ D 0. The
probability labels are ˛=2 at each of the loops at vertex (� type) 1 as well as at the
edge from �1 to 1. Furthermore, the label at the loop at vertex �1 is 1 � ˛.

For the augmented graph �o, we let d.o;�1/ D 1 with p.o;�1/ D 1 � ˛, and
d.o; 1/ D 2 with each of the resulting two edges having label ˛=2.
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The graph �o is shown in Figure 36. The reader is solicited to draw the resulting
tree and transition probabilities. We shall reconsider that example later on.
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Figure 36. Random walk on T2 in horocyclic layers.

We return to general trees with finitely many cone types. If �.x/ D i then
F.x; x�jz/ D Fi .z/ depends only on the type i of x. Proposition 9.3 (b) leads to
a finite system of algebraic equations of degree 
 2,

Fi .z/ D p.i�/z C
X
j 2�

p.i; j / z Fj .z/Fi .z/: (9.76)

(If x is a terminal vertex then Fi .z/ D z.) In Example 9.47, we have already
worked with these equations, and we shall return to them later on.

We now define the non-negative matrix

A D �a.i; j /�
i;j 2�

with a.i; j / D p.i; j /=p.i�/: (9.77)

Let �.A/ be its largest non-negative eigenvalue; compare with Proposition 3.44.
This number can be seen as an overall average or balance of quotients of forward
and backward probabilities.

9.78 Theorem. Let .T; P / be a random walk on a tree with finitely many cone
types, and let A be the associated matrix according to (9.77). Then the random
walk is

• positive recurrent if and only if �.A/ < 1,

• null recurrent if and only if �.A/ D 1, and

• transient if and only if �.A/ > 1.

Proof. First, we consider positive recurrence. We have to show that m.T / < 1
for the measure of (9.6) if and only if �.A/ < 1.



G. Some recurrence/transience criteria 277

Let Ti D Tx be a cone in T with type �.x/ D i . We define a measure mi on Ti

by

mi .x/ D 1 and mi .y/ D p.y�; y/
p.y; y�/

mi .y
�/ for y 2 Tx n fxg:

Then

m.T / D 1C
X
i2�

p.o; i/

p.i�/ mi .Ti /:

We need to show that mi .Ti / < 1 for all i . For n � 0, let T n
i D T n

x be the ball
of radius n centred at x in the cone Tx (all vertices at graph distance 
 n from x).
Then

mi .T
0
i / D 1 and m.T n

i / D 1C
X
j 2�

a.i; j /mj .T
n�1

j /; n � 1

for each i 2 �. Consider the column vectors m D �
m.Ti /

�
i2�

and m.n/ D�
m.T n

i /
�

i2�
, n � 1, as well as the vector 1 over � with all entries equal to 1. Then

we see that

m.n/ D 1C Am.n�1/ D 1C A 1C A2 1C 	 	 	 C An 1;

and m.n/ ! m as n ! 1. By Proposition 3.44, this limit is finite if and only if
�.A/ < 1.

Next, we show that transience holds if and only if �.A/ > 1.

We start with the “if” part. Assume that � D �.A/ > 1. Once more by
Proposition 3.44, there is an irreducible class J � � of the matrix A such that
�.A/ D �.AJ/, where AJ is the restriction of A to J. By the Perron–Frobenius
theorem, there is a column vector h D �h.i/�

i2J
with strictly positive entries such

that AJh D �.A/ 	 h.
We fix a vertex x0 of T with �.x0/ 2 J and consider the subtree TJ of Tx0

which is spanned by all vertices y 2 Tx0
which have the property that �.w/ 2 J for

all w 2 	.x0; y/. Note that TJ is infinite. Indeed, every vertex in TJ has at least
one successor in TJ , because the matrix AJ is non-zero and irreducible.

We define f .x/ D h
�
�.x/

�
for x 2 TJ . This is a bounded, strictly positive

function, andX
y2TJ ; y�Dx

p.x; y/f .y/ D � 	 p.x; x�/f .x/ for all x 2 TJ :

Therefore Corollary 9.68 applies with 
 D �.A/ > 1 to TJ as a subnetwork of T ,
and transience follows; compare with the remarks after the proof of that corollary.

Finally, we assume transience and have to show that �.A/ > 1.
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Consider the transient skeleton Ttr as a subnetwork, and the associated transition
probabilities of (9.28). Then .Ttr; Ptr/ is also a tree with finitely many cone types:
if x1; x2 2 Ttr have the same cone type in .T; P /, then they also have the same cone
type in .Ttr; Ptr/. These transient cone types are just

�tr D fi 2 � W Fi .1/ < 1g:
Furthermore, it follows from Exercise 9.26 that when i 2 �tr, j 2 � and j ! i

with respect to the non-negative matrix A (i.e., a.n/.j; i/ > 0 for some n), then
j 2 �tr. Therefore, �tr is a union of irreducible classes with respect to A. From
(9.28), we also see that the matrix Atr associated with Ptr according to (9.77) is just
the restriction of A to �tr. Proposition 3.44 implies �.A/ � �.Atr/. The proof will
be completed if we show that �.Atr/ > 1.

For this purpose, we may assume without loss of generality that T D Ttr,
P D Ptr and A D Atr. Consider the diagonal matrix

D.z/ D diag
�
Fi .z/

�
i2�
;

and let I be the identity matrix over �. For z D 1, we can rewrite (9.76) as

1 � Fi .1/ D
X

j

Fi .1/ a.i; j /
�
1 � Fj .1/

�
:

Equivalently, the non-negative, irreducible matrix

Q D �I �D.1/��1
D.1/A

�
I �D.1/� (9.79)

is stochastic. Thus, �.Q/ D 1, and therefore also �
�
D.1/A

� D 1. The .i; j /-
element of the last matrix is Fi .1/a.i; j /. It is 0 precisely when a.i; j / D 0, while
Fi .1/a.i; j / < a.i; j / strictly, when a.i; j / > 0. Therefore Proposition 3.44 in
combination with Exercise 3.43 (applying the latter to the irreducible classes of A)
yields �.A/ > �

�
D.1/A

� D 1. �

The above recurrence criterion extends the one for “homesick” random walk
of Lyons [41]; it was proved by Nagnibeda and Woess [44], and a similar result
in completely different terminology had been obtained by Gairat, Malyshev,
Men’shikov and Pelikh [22]. (In [44], the proof that 
.A/ D 1 implies null
recurrence is somewhat sloppy.)

9.80 Exercise. Compute the largest eigenvalue �.A/ of A for each of the random
walks of Example 9.75. �
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H Rate of escape and spectral radius

We now plan to give a small glimpse at some results concerning the asymptotic
behaviour of the graph distances d.Zn; o/, which will turn out to be related with
the spectral radius �.P /.

A sum Sn D X1 C 	 	 	 CXn of independent, integer (or real) random variables
defines a random walk on the additive group of integer (or real) numbers, compare
with (4.18). If the Xk are integrable then the law of large numbers implies that

1

n
d.Sn; 0/ D 1

n
jSnj ! ` almost surely, where ` D jE.X1/j:

We can ask whether analogous results hold for an arbitrary Markov chain with
respect to some metric on the underlying state space. A natural choice is of course
the graph metric, when the graph of the Markov chain is symmetric. Here, we shall
address this in the context of trees, but we mention that there is a wealth of results
for different types of Markov chains, and we shall only scratch the surface of this
topic.

Recall the definition (2.29) of the spectral radius of an irreducible Markov chain
(resp., an irreducible class). The following is true for arbitrary graphs in the place
of trees.

9.81 Theorem. LetX be a connected, symmetric graph andP the transition matrix
of a nearest neighbour random walk on X . Suppose that there is "0 > 0 such that
p.x; y/ � "0 whenever x � y, and that �.P / < 1. Then there is a constant ` > 0
such that

lim inf
n!1

1

n
d.Zn; Z0/ � ` Prx -almost surely for every x 2 X:

Proof. We set � D �.P / and claim that for all x; y 2 X and n � 0,

p.n/.x; y/ 
 .�="0/
d.x;y/ �n for all x; y 2 X and n � 0.

This is true when x D y by Theorem 2.32. In general, let d D d.x; y/. We have
by assumption p.d/.y; x/ � "d

0 , and therefore

p.n/.x; y/ "d
0 
 p.nCd/.x; x/ 
 �nCd :

The claimed inequality follows by dividing by "d
0 .

Note that we must have deg.x/ 
M D b1="0c for every x 2 X , whereM � 2.
This implies that for each x 2 X and k � 1,

jfy 2 X W d.x; y/ 
 kgj 
M.M � 1/k�1:
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Also, if x � y then �2 � p.2/.x; x/ � p.x; y/p.y; x/ � "2
0, so that "0 
 �. Since

� < 1, we can now choose a real number ` > 0 such that .�="2
0/

` < 1=�. Consider
the sets

An D Œd.Zn; Z0/ < ` n�

in the trajectory space. We have

Prx.An/ D
X

yWd.x;y/<` n

p.n/.x; y/



X

yWd.x;y/<` n

.�="0/
d.x;y/�n


 �n
�
1C

b ` ncX
kD1

X
yWd.x;y/Dk

.�="0/
k
�

D �n
�
1C

b ` ncX
kD1

M.M � 1/k�1.�="0/
k
�

D �n

�
1CM.�="0/

�
.M � 1/�="0

�b ` nc � 1�
.M � 1/�="0

� � 1
�


 C �.�="2
0/

` �
�n
;

where C D M	
.M�1/	�"0

> 0. Therefore
P

n Prx.An/ < 1, and by the Borel–
Cantelli lemma, Prx.lim supAn/ D 0, or equivalently,

Prx

h [
k�1

\
n�k

Ac
n

i
D 1

for the complements of the An. But this says that Prx-almost surely, one has
d.Zn; Z0/ � ` n for all but finitely many n. �

We see that a “reasonable” random walk with �.P / < 1 moves away from
the starting point at linear speed. (“Reasonable” means that p.x; y/ � "0 along
each edge). So we next ask when it is true that �.P / < 1. We start with simple
random walk. When � is an arbitrary symmetric, locally finite graph, then we write
�.�/ D �.P / for the spectral radius of the transition matrix P of SRW on � .

9.82 Exercise. Show that for simple random walk on the homogeneous tree Tq

with degree q C 1 � 2, the spectral radius is

�.Tq/ D 2
p
q

q C 1:
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[Hints. Variant 1: use the computations of Example 9.47. Variant 2: consider the
factor chain . xZn/ on N0 where xZn D jZnj D d.Zn; o/ for the simple random
walk .Zn/ on Tq starting at o. Then determine �. xP / from the computations in
Example 3.5.] �

For the following, T need not be locally finite.

9.83 Theorem. Let T be a tree with root o and P a nearest neighbour transition
matrix with the property that p.x; x�/ 
 1 � ˛ for each x 2 T n fog, where
1=2 < ˛ < 1. Then

�.P / 
 2
p
˛.1 � ˛/

and

lim inf
n!1

1

n
d.Zn; Z0/ � 2˛ � 1 Prx -almost surely for every x 2 T:

Furthermore,

F.x; x�/ 
 .1 � ˛/=˛ for every x 2 T n fog:
In particular, if T is locally finite then the Green kernel vanishes at infinity.

Proof. We define the function g D g˛ on N0 by

g˛.0/ D 1 and g˛.n/ D
�
1C .2˛ � 1/n� �1�˛

˛

�n=2
for n � 1:

Then g.1/ D 2p˛.1 � ˛/, and a straightforward computation shows that

.1 � ˛/ g.n � 1/C ˛ g.nC 1/ D 2
p
˛.1 � ˛/ g.n/ for n � 1:

Also, g is decreasing. On our tree T , we define the function f by f .x/ D g˛.jxj/,
where (recall) jxj D d.x; o/. Then we have for the transition matrix P of our
random walk

Pf .o/ D g˛.1/ D 2
p
˛.1 � ˛/ g˛.0/ D 2

p
˛.1 � ˛/ f .o/;

and for x ¤ o
Pf .x/�2

p
˛.1 � ˛/ f .x/ D �p.x; x�/� .1�˛/� �g˛.jxj � 1/ � g˛.jxj C 1/

�„ ƒ‚ …
> 0

:

We see that when p.x; x�/ 
 1 � ˛ for all x ¤ o then Pf 
 2p˛.1 � ˛/ f and

p.n/.o; o/ 
 P nf .o/ 

�
2
p
˛.1 � ˛/

�n

f .o/ D
�
2
p
˛.1 � ˛/

�n

for all n. The proposed inequality for �.P / follows.
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Next, we consider the rate of escape. For this purpose, we construct a coupling
of our random walk .Zn/ on T and the random walk (sum of i.i.d. random variables)
.Sn/ on Z with transition probabilities Np.k; k C 1/ D ˛ and Np.k; k � 1/ D 1 � ˛
for k 2 Z. Namely, on the state space X D T �Z, we consider the Markov chain
with transition matrix Q given by

q
�
.o; k/; .y; k C 1/� D p.o; y/ ˛ and

q
�
.o; k/; .y; k � 1/� D p.o; y/ .1 � ˛/; if y� D o;

q
�
.x; k/; .x�; k � 1/� D p.x; x�/; if x ¤ o;
q
�
.x; k/; .y; k C 1/� D p.x; y/ ˛

1 � p.x; x�/
and

q
�
.x; k/; .y; k � 1/� D p.x; y/1 � ˛ � p.x; x�/

1 � p.x; x�/
; if x ¤ o; y� D x:

All other transition probabilities areD 0. The two projections ofX onto T and onto
Z are compatible with these transition probabilities, that is, we can form the two
corresponding factor chains in the sense of (1.30). We get that the Markov chain
on X with transition matrix Q is .Zn; Sn/n�0. Now, our construction is such that
when Zn walks backwards then Sn moves to the left: if jZnC1j D jZnj � 1 then
SnC1 D Sn � 1. In the same way, when SnC1 D Sn C 1 then jZnC1j D jZnj C 1.
We conclude that

jZnj � Sn for all n, provided that jZ0j � S0.

In particular, we can start the coupled Markov chain at .x; jxj/. Then Sn can be
written asSn D jxjCX1C	 	 	CXn where theXn are i.i.d. integer random variables
with PrŒXk D 1� D ˛ and PrŒXk D �1� D 1 � ˛. By the law of large numbers,
Sn=n! 2˛ � 1 almost surely. This leads to the lower estimate for the velocity of
escape of .Zn/ on T .

With the same starting point .x; jxj/, we see that .Zn/ cannot reach x� before
.Sn/ reaches jxj � 1 for the first time. That is, in our coupling we have

t
jxj�1
Z 
 tx�

T Pr.x;jxj/ -almost surely,

where the two first passage times refer to the random walks on Z andT , respectively.
Therefore,

FT .x; x
�/ D Pr.x;jxj/

�
tx�

T <1� 
 Pr.x;jxj/
�
t

jxj�1
Z <1� D FZ.jxj; jxj � 1/:

We know from Examples 3.5 and 2.10 thatFZ.jxj; jxj�1/ D FZ.1; 0/ D .1�˛/=˛.
This concludes the proof. �

9.84 Exercise. Show that when p.x; x�/ D 1 � ˛ for each x 2 T n fog, where
1=2 < ˛ < 1, then the three inequalities of Theorem 9.83 become equalities.

[Hint: verify that .jZnj/n�0 is a Markov chain.] �
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9.85 Corollary. Let T be a locally finite tree with deg.x/ � q C 1 for all x 2 T .
Then the spectral radius of simple random walk on T satisfies �.T / 
 �.Tq/.

Indeed, in that case, Theorem 9.83 applies with ˛ D q=.q C 1/.
Thus, when deg.x/ � 3 for all x then �.T / < 1. We next ask what happens

with the spectral radius of SRW when there are vertices with degree 2.
We say that an unbranched path of length N in a symmetric graph � is a path

Œx0; x1; : : : ; xN � of distinct vertices such that deg.xk/ D 2 for k D 1; : : : ; N � 1.
The following is true in any graph (not necessarily a tree).

9.86 Lemma. Let � be a locally finite, connected symmetric graph. If � contains
unbranched paths of arbitrary length, then �.�/ D 1.

Proof. Write p.n/
Z .0; 0/ for the transition probabilities of SRW on Z that we have

computed in Exercise 4.58 (b). We know that �.Z/ D 1 in that example.
Given any n 2 N, there is an unbranched path in � with length 2nC 2. If x is

its midpoint, then we have for SRW on � that

p.2n/.x; x/ D p.2n/
Z .0; 0/;

since within the first 2n steps, our random walk cannot leave that unbranched path,
where it evolves like SRW on Z. We know from Theorem 2.32 that p.2n/.x; x/ 

�.�/2n. Therefore

�.�/ � p.2n/
Z .0; 0/1=.2n/ ! 1 as n!1:

Thus, �.�/ D 1. �

Now we want to know what happens when there is an upper bound on the
lengths of the unbranched paths. Again, our considerations are valid for an arbitrary
symmetric graph � D .X;E/. We can construct a new graph z� by replacing
each non-oriented edge of � (D pair of oppositely oriented edges with the same
endpoints) with an unbranched path of length k (depending on the edge). The vertex
set X of � is a subset of the vertex set of z� . We call z� a subdivision of � , and the
maximum of those numbers k is the maximal subdivision length of z� with respect
to � .

In particular, we write �.N / for the subdivision of � where each non-oriented
edge is replaced by a path of the same lengthN . Let .Zn/ be SRW on �.N /. Since
the vertex set X.N / of �.N / contains X as a subset, we can define the following
sequence of stopping times.

t0 D 0; tj D inffn > tj �1 W Zn 2 X; Zn ¤ Ztj �1
g for j � 1:

The set of those n is non-empty with probability 1, in which case the infimum is a
minimum.
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9.87 Lemma. (a) The increments tj �tj �1 (j � 1) are independent and identically
distributed with probability generating function

Ex0
.ztj �tj �1/ D

1X
nD1

PrxŒt1 D n� zn D �.z/ D 1=QN .1=z/; x0; x 2 X;

whereQN .t/ is the N -th Chebyshev polynomial of the first kind; see Example 5.6.

(b) If y is a neighbour of x in � then

1X
nD1

PrxŒt1 D n; Zt1
D y� zn D 1

deg.x/
�.z/:

(c) For any x 2 X ,

1X
nD0

PrxŒZn D x; t1 > n� z
n D  .z/ D .1=z/RN �1.z/

QN .1=z/
;

where RN �1.t/ is the .N � 1/-st Chebyshev polynomial of the second kind.

Proof. (a) LetZtj �1
D x 2 X � X.N /, and let S.x/ be the set consisting of x and

the neighbours of x in the original graph � . In �.N /, this set becomes a star-shaped
graph S.N /.x/ with centre x, where for each terminal vertex y 2 N.x/ n fxg there
is a path from x to y with length N . Up to the stopping time tj , .Zn/ is SRW
on S.N /.x/. But for the latter simple random walk, we can construct the factor
chain xZn D d.Zn; x/, with d. 	; 	/ being the graph distance in S.N /.x/. This is the
birth-and-death chain on f0; : : : ; N gwhich we have considered in Example 5.6. Its
transition probabilities are Np.0; 1/ D 1 and Np.k; k˙1/ D 1=2 fork D 1; : : : ; N�1.
Then tj is the first instant n after time tj �1 when xZn D N . But this just says that

Prx0
Œtj � tj �1 D k� D f .k/.0;N /;

the probability that . xZn/ starting at 0will first hit the stateN at time k. The associ-
ated generating function F.0;N jz/ D 1=QN .1=z/ was computed in Example 5.6.

Since this distribution does not depend on the specific starting point x0 nor on
x D Ztj �1

, the increments must be independent. The precise argument is left as
an exercise.

(b) In S.N /.x/ every terminal vertex y occurs as Ztj with the same probability
1= deg.x/. This proves statement (b).

(c) PrxŒZn D x; t1 > n� is the probability that SRW on S.N /.x/ returns to x at
time n before visiting any of the endpoints of that star. With the same factor chain
argument as above, this is the probability to return to 0 for the simple birth-and-
death Markov chain on f0; 1; : : : ; N g with state 0 reflecting and stateN absorbing.
Therefore  .z/ is the Green function at 0 for that chain, which was computed at
the end of Example 5.6. �
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9.88 Exercise. (1) Complete the proof of the fact that the increments tj � tj �1 are
independent. Does this remain true for an arbitrary subdivision of � in the place of
�.N /?

(2) Use Lemma 9.87 (b) and induction onk to show that for allx; y 2 X � X.N /,

1X
nD0

Prx

�
tk D n; Zn D y

�
zn D p.k/.x; y/ �.z/k;

where p.k/.x; y/ refers to SRW on � .

[Hint: Lemma 9.87 (b) is that statement for k D 1.] �

9.89 Theorem. Let � D .X;E/ be a connected, locally finite symmetric graph.

(a) The spectral radii of SRW on � and its subdivision �.N / are related by

�.�.N // D cos
arccos �.�/

N
:

(b) If z� is an arbitrary subdivision of � with maximal subdivision length N ,
then

�.�/ 
 �.z�/ 
 �.�.N //:

Proof. (a) We write G.x; yjz/ and G.N /.x; yjz/ for the Green functions of SRW
on �.N / and � , respectively. We claim that for x; y 2 X � X.N /,

G.N /.x; yjz/ D G
�
x; yj�.z/� .z/; (9.90)

where �.z/ and  .z/ are as in Lemma 9.87. Before proving this, we explain how
it implies the formula for �.�.N //.

All involved functions in (9.90) arise as power series with non-negative coeffi-
cients that are 
 1. Their radii of convergence are the respective smallest positive
singularities (by Pringsheim’s theorem, already used several times). Let r.�.N // be
the (common) radius of convergence of all the functions G.N /.x; yjz/. By (9.90),
it is the minimum of the radii of convergence of G

�
x; yj�.z/� and  .z/.

We know from Example 5.6 that the radii of convergence of �.z/ and  .z/
(which are the functions F.0;N jz/ and G.0; 0jz/ of that example, respectively)
coincide and are equal to s D 1= cos �

2N
. Therefore the functionG

�
x; yj�.z/� is fi-

nite and analytic for each z 2 .0; s/ that satisfies �.z/ < r.�/ D 1=�.�/, while the
function has a singularity at the point where�.z/ D r.�/, that is,QN .1=z/ D �.�/.
The unique solution of this last equation for z 2 .0; s/ is z D 1= cos arccos 	.�/

N
. This

must be r.�.N //, which yields the stated formula for �.�.N //.
So we now prove (9.90).
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We consider the random variables jn D maxfj W tj 
 ng and decompose, for
x; y 2 X � X.N /,

G.N /.x; yjz/ D
1X

kD0

1X
nD0

PrxŒZn D y; jn D k� zn

„ ƒ‚ …
Wk.x; yjz/

:

When Zn D y and jn D k then we cannot have Ztk
D y0 ¤ y, since the random

walk cannot visit any new point inX (i.e., other than y0) in the time interval Œtk; n�.
Therefore Ztk

D y and Zi … X n fyg when tk < i < n. Using Lemma 9.87 and
Exercise 9.88(2),

Wk.x; yjz/

D
1X

mD0

1X
nDm

Prx

�
tk D m; Zm D Zn D y; Zi … X nfyg .m < i < n/

�
zn

D
1X

mD0

Prx

�
tk D m; Zm D y

�
zm

�
1X

nDm

Prx

�
Zn D y; Zi … X n fyg .m < i < n/ j Zm D y

�
zn�m

D p.k/.x; y/ �.z/k
1X

nD0

Pry
�
Zn D y; Zi … X n fyg .0 < i < n/

�
zn

D p.k/.x; y/ �.z/k  .z/;

where p.k/.x; y/ refers to SRW on � . We conclude that

G.N /.x; yjz/ D
1X

kD0

p.k/.x; y/ �.z/k  .z/;

which is (9.90).

(b) The proof of the inequality uses the network setting of Section 4.A, and
in particular, Proposition 4.11. We write X and zX for the vertex sets, and P and
zP for the transition operators (matrices) of SRW on � and z� , respectively. We

distinguish the inner products on the associated `2-spaces as well as the Dirichlet
norms of (4.32) by a � , resp. z� in the index. Since P is self-adjoint, we have

kP k D sup

²
.Pf; f /�

.f; f /�
W f 2 `0.X/; f ¤ 0

³
:

Let zX be the vertex set of z� . We define a map g W zX ! X as follows. For
x 2 X � zX , we set g.x/ D x. If Qx 2 zX n X is one of the “new” vertices on
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one of the inserted paths of the subdivision, then g. Qx/ is the closer one among the
two endpoints in X of that path. When Qx is the midpoint of such an inserted path,
we have to choose one of the two endpoints as g.x/. Given f 2 `0.X/, we let
Qf D f B g 2 `0. zX/. The following is simple.

9.91 Exercise. Show that

. Qf ; Qf /z� � .f; f /� and Dz�. Qf / D D�.f /: �

Having done this exercise, we can resume the proof of the theorem. For arbitrary
f 2 `0.X/,

.f; f /� � .Pf; f /� D D�.f / D Dz�. Qf / D . Qf ; Qf /z� � . zP Qf ; Qf /z�
� .1 � k zP k/. Qf ; Qf /z� � .1 � k zP k/.f; f /� :

That is, for arbitrary f 2 `0.X/,

.Pf; f /� 
 k zP k.f; f /� :
We infer that �.�/ D kP k 
 k zP k D �.z�/.

Since �.N / is in turn a subdivision of z� , this also yields �.z�/ 
 �.�.N //. �

Combining the last theorem with Lemma 9.86 and Corollary 9.85 we get the
following.

9.92 Theorem. Let T be a locally finite tree without vertices of degree 1. Then
SRW on T satisfies �.T / < 1 if and only if there is a finite upper bound on the
lengths of all unbranched paths in T .

Another typical proof of the last theorem is via comparison of Dirichlet forms
and quasi-isometries (rough isometries), which is more elegant but also a bit less
elementary. Compare with Theorem 10.9 in [W2]. Here, we also get a numerical
bound. When deg.x/ � q C 1 for all vertices x with deg.x/ > 2 and the upper
bound on the lengths of unbranched paths is N , then

�.T / 
 cos
arccos �.Tq/

N
:

The following exercise takes us again into the use of the Dirichlet sum of a
reversible Markov chain, as at the end of the proof of Theorem 9.89. It provides a
tool for estimating �.P / for non-simple random walks.

9.93 Exercise. Let T be as in Corollary 9.92. Let P be the transition matrix of a
nearest neighbour random walk on the locally finite tree T with associated measure
m according to (9.6). Suppose the following holds.
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(i) There is " > 0 such that m.x/p.x; y/ � " for all x; y 2 T with x � y.

(ii) There is M <1 such that m.x/ 
M deg.x/ for every x 2 T .

Show that the spectral radii of P and of SRW on T are related by

1 � �.P / � "

M

�
1 � �.T /�:

In particular, �.P / < 1 when T is as in Theorem 9.92.

[Hint: establish inequalities between the `2 and Dirichlet norms of finitely supported
functions with respect to the two reversible Markov chains. Relate D.f /=.f; f /
with the spectral radius.] �

We next want to relate the rate of escape with natural projections of a tree onto
the integers. Recall the definition (9.30) of the horocycle function hor.x; �/ of a
vertex x with respect to the end � of a tree T with a chosen root o. As above, we
write vn.�/ for the n-th vertex on the geodesic ray 	.o; �/. Once more, we do not
require T to be locally finite.

9.94 Proposition. Let .xn/ be a sequence in a tree T with xn�1 � xn for all n.
Then the following statements are equivalent.

(i) There is a constant a � 0 (the rate of escape of the sequence) such that

lim
n!1

1

n
jxnj D a:

(ii) There is an end � 2 @T and a constant b � 0 such that

lim
n!1

1

n
d
�
xn; vbbnc.�/

� D 0:
(iii) For some (() every) end � 2 @T , there is a constant a� 2 R such that

lim
n!1

1

n
hor.xn; �/ D a� :

Furthermore, we have the following.

(1) The numbers a, b and a� of the three statements are related by a D b D ja� j.
(2) If b > 0 in statement (ii), then xn ! �.

(3) If a� < 0 in statement (iii), then xn ! � , while if a� > 0 then one has
lim xn 2 @T n f�g.
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Proof. (i) H) (ii). If a D 0 then we set b D 0 and see that (ii) holds for arbitrary
� 2 @T . So suppose a > 0. Then

jxn ^ xnC1j D 1

2

�jxnj C jxnC1j � d.xn; xnC1/
� D naC o.n/!1:

By Lemma 9.16, there is � 2 @T such that xn ! � . Thus,

jxn^�j D lim
m!1 jxn^xmj � lim

m!1 minfjxi^xiC1j W i D n; : : : ; m�1gD naCo.n/:

Since jxn ^ �j 
 jxnj D naC o.n/, we see that jxn ^ �j D naC o.n/. Therefore,
on one hand

d.xn; xn ^ �/ D jxnj � jxn ^ �j D o.n/;

while on the other hand xn ^ � and vbanc.�/ lie both on 	.o; �/, so that

d
�
xn ^ �; vbanc.�/

� D o.n/:

We conclude that d
�
xn; vbanc.�/

� D o.n/, as proposed. (The reader is invited to
visualize these arguments by a figure.)

(ii) H) (iii). Let � be the end specified in (ii). We have

d.xn; xn ^ �/ D d
�
xn; 	.o; �/

� 
 d�xn; vbbnc.�/
� D o.n/:

Also,
d
�
xn ^ �; vbbnc.�/

� 
 d�xn; vbbnc.�/
� D o.n/:

Therefore

jxn ^ �j D jvbbnc.�/j C o.n/ D bnC o.n/; and

hor.xn; �/ D d.xn; xn ^ �/ � jxn ^ �j D �bnC o.n/:

Thus, statement (iii) holds with respect to � with a� D �b. It is clear that xn ! �

when b > 0, and that we do not have to specify � when b D 0.
To complete this step of the proof, let � ¤ � be another end of T , and assume

b > 0. Let y D � ^ �. Then xn ^ � 2 	.y; �/ and xn ^ � D y for n sufficiently
large. For such n,

hor.xn; �/ D d.xn; xn ^ �/ � jxn ^ �j D d.xn; y/ � jyj
D d.xn; xn ^ �/C jxn ^ �j � 2jyj D bnC o.n/:

(The reader is again invited to draw a figure.) Thus, statement (iii) holds with
respect to � with a� D b.

(iii)H) (i). We suppose to have one end � such that h.xn; �/=n! a� . Without
loss of generality, we may assume that x0 D o. Since for any x,

jxj D d.x; x ^ �/C jx ^ �j and hor.x; �/ D d.x; x ^ �/ � jx ^ �j;



290 Chapter 9. Nearest neighbour random walks on trees

we have

lim inf
n!1

jxnj
n
� lim

n!1
j hor.xn; �/j

n
D ja� j:

Next, note that every point on 	.o; xn/ is some xk with k 
 n. In particular,
xn ^ � D xk.n/ with k.n/ 
 n.

Consider first the case when a� < 0. Then

jxk.n/j D d.xn; xk.n// � hor.xn; �/ � � hor.xn; �/!1;
so that k.n/!1,

jxnj
n
D hor.xn; �/C 2jxn ^ �j

n
D hor.xn; �/

n
C 2j hor.xk.n/; �/j

k.n/

k.n/

n„ƒ‚…

 1

;

which implies

lim sup
n!1

jxnj
n

 a� C 2ja� j D ja� j:

The same argument also applies when a� D 0, regardless of whether k.n/ ! 1
or not.

Finally, consider the case when a� > 0. We claim that k.n/ is bounded. In-
deed, if k.n/ had a subsequence k.n0/ tending to1, then along that subsequence
hor.xk.n0/; �/ D a� k.n

0/Co
�
k.n0/

�!1, while we must have hor.xk.n0/; �/ 
 0
for all n. Therefore

jxnj
n
D hor.xn; �/

n
C 2jxk.n/j

n„ ƒ‚ …
! 0

! a�

as n!1: �

Proposition 9.94 contains information about the rate of escape of a nearest
neighbour random walk on a tree T . Namely, lim jZnj=n exists a.s. if and only
if lim hor.Zn; �/=n exists a.s., and in that case, the former limit is the absolute
value of the latter. The process Sn D hor.Zn; �/ has the integer line Z as its state
space, but in general, it is not a Markov chain. We next consider a class of simple
examples where this “horocyclic projection” is Markovian.

9.95 Example. Choose and fix an end $ of the homogeneous tree Tq , and let
hor.x/ D hor.x;$/ be the Busemann function with respect to $ . Recall the
definition (9.32) of the horocycles Hork , k 2 Z, with respect to that end. Instead
of the “radial” picture of Tq of Figure 26, we can look at it in horocyclic layers
with each Hork on a horizontal line.
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This is the “upper half plane” drawing of the tree. We can think of Tq as an
infinite genealogical tree, where the horocycles are the successive, infinite genera-
tions and $ is the “mythical ancestor” from which all elements of the population
descend. For each k, every element in the k-th generation Hork has precisely one
predecessor x� 2 Hork�1 and q successors in HorkC1 (vertices y with y� D x).
Analogously to the notation for x� as the neighbour of x on	Œx; o�, the predecessor
x� is the neighbour of x on 	Œx;$�).
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Figure 37

We look at the simplest type of nearest neighbour transition probabilities on Tq that
are compatible with this generation structure. For a fixed parameter ˛ 2 .0; 1/,
define

p.x�; x/ D ˛

q
and p.x; x�/ D 1 � ˛; x 2 Tq :

For the resulting random walk .Zn/ on the tree, Xn D hor.Zn/ defines clearly a
factor chain in the sense of (1.29). Its state space is Z, and its (nearest neighbour)
transition probabilities are

Np.k � 1; k/ D ˛ and Np.k; k � 1/ D 1 � ˛; x 2 Tq :

This is the infinite drunkard’s walk on Z of Example 3.5 with p D ˛. (Attention:
our q here is not 1 � p, but the branching number of Tq !) If we have the starting
point Z0 D x and k D hor.x/, then we can represent Sn as a sum

Sn D k CX1 C 	 	 	 CXn;
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where the Xj are independent with PrŒXj D 1� D ˛ and PrŒXj D �1� D 1 � ˛.
The classical law of large numbers tells us that Sn=n ! 2˛ � 1 almost surely.
Proposition 9.94 implies immediately that on the tree,

lim
n!1

jZnj
n
D j2˛ � 1j Prx -almost surely for every x:

We next claim that Prx-almost surely for every starting point x 2 Tq ,

Zn ! Z1 2 @T n f$g; when ˛ > 1=2; and

Zn ! $; when ˛ 
 1=2:
In the first case, Z1 is a “true” random variable, while in the second case, the
limiting end is deterministic. In fact, when ˛ ¤ 1=2, this limiting behaviour
follows again from Proposition 9.94. The “drift-free” case ˛ D 1=2 requires some
additional reasoning.

9.96 Exercise. Show that for every ˛ 2 .0; 1/, the random walk is transient (even
for ˛ D 1=2).

[Hint: there are various possibilities to verify this. One is to compute the Green
function, another is to use the fact the we have finitely many cone types; see Fig-
ure 35.] �

Now we can show that Zn ! $ when ˛ D 1=2. In this case, Sn D hor.Zn/

is recurrent on Z. In terms of the tree, this means that Zn visits Hor0 infinitely
often; there is a random subsequence .nk/ such that Znk

2 Hor0. We know from
Theorem 9.18 that .Zn/ converges almost surely to a random end. This is also true
for the subsequence .Znk

/. Since hor.Znk
/ D 0 for all k, this random end cannot

be distinct from $ .

9.97 Exercise. Compute the Green and Martin kernels for the random walk of
Example 9.95. Show that the Dirichlet problem at infinity is solvable if and only if
˛ > 1=2. �

We mention that Example 9.95 can be interpreted in terms of products of random
affine transformations over a non-archimedean local field (such as the p-adic num-
bers), compare with Cartwright, Kaimanovich and Woess [9]. In that paper, a
more general version of Proposition 9.94 is proved. It goes back to previous work
of Kaimanovich [33].

Rate of escape on trees with finitely many cone types

We now consider .T; P / with finitely many cone types, as in Definition 9.74. Con-
sider the associated matrix A over the set of cone types �, as in (9.77).
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Here, we assume to have irreducible cone types, that is, the matrix A is irre-
ducible. In terms of the tree T , this means that for all i; j 2 �, every cone with
type i contains a sub-cone with type j . Recall the definition of the functions Fi .z/,
i 2 �, and the associated system (9.76) of algebraic equations.

9.98 Lemma. If .T; P / has finitely many, irreducible cone types and the random
walk is transient, then for every i 2 �,

Fi .1/ < 1 and F 0
i .1/ <1:

Proof. We always have Fi .1/ 
 1 for every i 2 �. If Fj .1/ < 1 for some j then
(9.76) yields Fi .1/ < 1 for every i with a.i; j / > 0. Now irreducibility yields that
Fi .1/ < 1 for all i .

Besides the diagonal matrix D.z/ D diag
�
Fi .z/

�
i2�

that we introduced in the
proof of Theorem 9.78, we consider

B D diag
�
p.i�/�

i2�
:

Then we can write the formula of Exercise 9.4 as

D0.z/ D 1

z2
D.z/2B�1 CD.z/2AD0.z/;

where D0.z/ refers to the elementwise derivative. We also know that �.Q/ D 1

for the matrix of (9.79), and also that �
�
D.1/A

� D 1. Proposition 3.42 and
Exercise 3.43 imply that �

�
D.z/2A

� 
 �
�
D.1/2A

�
< 1 for each z 2 Œ0; 1�.

Therefore the inverse matrix
�
I �D.z/2A��1

exists, is non-negative, and depends
continuously on z 2 Œ0; 1�. We deduce that

D0.z/ D 1

z2

�
I �D.z/2A��1

D.z/2B�1

is finite in each (diagonal) entry for every z 2 Œ0; 1�. �

The last lemma implies that the Dirichlet problem at infinity admits solution
(Corollary 9.44) and that lim supn d

�
Zn; 	.o;Z1/

�ı
logn 
 C < 1 almost

surely (Theorem 9.59).
Now recall the boundary process .Wk/k�1 of Definition 9.53, the increments

ıkC1 D �kC1��k of the exit times, and the associated Markov chain
�
Wk; ık

�
k�1

.
The formula of Corollary 9.57 shows that the transition probabilities of .Wk/ depend
only on the types of the points. That is, we can build the �-valued factor chain�
�.Wk/

�
k�1

, whose transition matrix is just the matrixQ D �q.i; j /�
i;j 2�

of (9.79).
It is irreducible and finite, so that it admits a unique stationary probability measure
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� on �. Note that �.i/ is the asymptotic frequency of cone type i in the boundary
process: by the ergodic theorem (Theorem 3.55),

lim
n!1

1

n

nX
kD1

1i

�
�.Wk/

� D �.i/ Pro -almost surely.

The sum appearing on the left hand side is the number of all vertices that have cone
type i among the first n points (after o) on the ray 	.o;Z1/. For the following, we
write

f.n/.j�/ D f .n/.y; y�/; where y 2 T n fog; �.y/ D j:
9.99 Lemma. If .T; P / has finitely many, irreducible cone types and the random
walk is transient, then the sequence

�
�.Wk/; ık

�
k�1

is a positive recurrent Markov
chain with state space � �Nodd. Its transition probabilities are

Qq�.i; m/; .j; n/� D q.i; j /f.n/.j�/=Fj .1/:

Its stationary probability measure is given by

Q�.j; n/ D
X
i2�

�.i/ Qq�.i; m/; .j; n/�
(independent of m).

Proof. We have that f.n/.j�/ > 0 for every odd n: if x has type j and y is a forward
neighbour of x, then f .2mC1/.x; x�/ � �p.x; y/p.y; x/�mp.x; x�/. We see that

irreducibility of Q implies irreducibility of zQ. It is a straightforward exercise to
compute that Q� is a probability measure and that Q� zQ D Q� . �

9.100 Theorem. If .T; P / has finitely many, irreducible cone types and the random
walk is transient, then

lim
n!1

jZnj
n
D ` Pro -almost surely, where ` D 1ıX

i2�

�.i/
F 0

i .1/

Fi .1/
:

Proof. Consider the projection g W � �Nodd ! N, .i; n/ 7! n. ThenZ
��Nodd

g d Q� D
X
j 2�

X
n2Nodd

n Q�.j; n/

D
X

i;j 2�

X
n2N

�.i/ q.i; j / n f.n/.j�/=Fj .1/

D
X
j 2�

�.j / F 0
j .1/=Fj .1/ D 1=`;
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where ` is defined by the first of the two formulas in the statement of the theorem.
The ergodic theorem implies that

lim
k!1

1

k

kX
mD1

g
�
�.Wm/; ım

� D 1=` Pro -almost surely:

The sum on the left hand side is �k � �0, and we get that k=�k ! ` Pro-almost
surely.

We now define the integer valued random variables

k.n/ D maxfk W �k 
 ng:
Then k.n/ ! 1 Pro-almost surely, Z�k.n/

D Wk.n/, and since Zn 2 TWk.n/
, the

cone rooted at the random vertex Wk.n/,

jZnj � k.n/ D jZnj � jWk.n/j D d.Zn; Wk.n//


 n � �k.n/ < �k.n/C1 � �k.n/ D ık.n/C1:

(The middle “
” follows from the nearest neighbour property.) Now

0<
�k.n/C1 � n

n

 �k.n/C1 � �k.n/

n

 �k.n/C1 � �k.n/

�k.n/

! 0 Pro -almost surely,

as n!1, because �kC1=�k ! 1 as k !1. Consequently,

jZnj � k.n/

n
! 0 and

�k.n/

n
! 1:

We conclude that

jZnj
n
D jZnj � k.n/

n
C k.n/

�k.n/

�k.n/

n
! ` Pro -almost surely,

as n!1. �

The last theorem is taken from [44].

9.101 Exercise. Show that the formula for the rate of escape in Theorem 9.100 can
be rewritten as

` D 1ıX
i2�

�.i/
Fi .1/

p.i�/�1 � Fi .1/
� : �

9.102 Example. As an application, let us compute the rate of escape for the ran-
dom walk of Example 9.47. When � is finite, there are finitely many cone types,
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d.i; j / D 1 and p.i; j / D pj when j ¤ i , and p.i�/ D pi . The numbers Fi .1/

are determined by (9.49), and

q.i; j / D Fi .1/
pj

pi

1 � Fj .1/

1 � Fi .1/
:

We compute the stationary probability measure � for Q. Introducing the auxiliary
term

H D
X
j 2�

�.j /

pj

Fj .1/

1 � Fj .1/
;

the equation � Q D � becomes�
H � �.i/

pi

Fi .1/

1 � Fi .1/

�
pi

�
1 � Fi .1/

� D �.i/; i 2 �:

Therefore

�.i/ D H pi

1 � Fi .1/

1C Fi .1/
D H

G.1/

Fi .1/�
1C Fi .1/

�2 :
The last identity holds because pi

�
1 � Fi .1/

2
� D Fi .1/=G.1/ by (9.48), which

also implies that

X
i2�

Fi .1/

1C Fi .1/
D G.1/ �

X
i2�

pi Fi .1/G.1/ D 1

by (1.34). Now, since � is a probability measure,

�.i/ D Fi .1/�
1C Fi .1/

�2.X
j 2�

Fj .1/�
1C Fj .1/

�2 :
Combining all those identities with the formula of Exercise 9.101, we compute with
some final effort that the rate of escape is

` D 1

G.1/

X
i2�

Fi .1/�
1C Fi .1/

�2 :
I first learnt this specific formula from T. Steger in the 1980s.



Solutions of all exercises

Exercises of Chapter 1

Exercise 1.22. This is straightforward, but formalizing it correctly needs some
work. Working with the trajectory space, we first assume that A is a cylinder
in Am, that is, A D C.a0; : : : ; am�1; x/ with a0; : : : ; am�1 2 X . Then, by the
Markov property as stated in Definition 1.7, combined with (1.19),

Pr� ŒZn D y j A�
D

X
xmC1;:::;xn�12X

Pr�

�
Zn D y;Zj D xj

.j D mC 1; : : : ; n � 1/
ˇ̌̌ Zm D x;Zi D ai

.i D 0; : : : ; m � 1/
	

D
X

xmC1;:::;xn�12X

PrxŒZn�m D y;Zj D xj .j D 1; : : : ; n �m � 1/�

D PrxŒZn�m D y� D p.n�m/.x; y/:

Next, a general set A 2 Am with the stated properties must be a finite or countable
disjoint union of cylinders Ci 2 Am, i 2 �, each of the form C.a0; : : : ; am�1; x/

with certain a0; : : : ; am�1 2 X . Therefore

Pr� ŒZn D y j Ci � D p.n�m/.x; y/ whenever Pr�.Ci / > 0:

So by the rules of conditional probability,

Pr� ŒZn D y j A� D 1

Pr�.A/

X
i

Pr�.ŒZn D y� \ Ci /

D 1

Pr�.A/

X
i

Pr� ŒZn D y j Ci � Pr�.Ci /

D 1

Pr�.A/

X
i

p.n�m/.x; y/Pr�.Ci / D p.n�m/.x; y/:

The last statement of the exercise is a special case of the first one. �

Exercise 1.25. Fix n 2 N0 and let x0; : : : ; xnC1 2 X . For any k 2 N0, the event
Ak D Œt D k;ZkCj D xj .j D 0; : : : ; n/� is in AkCn. Therefore we can apply
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Exercise 1.22:

Pr� ŒZtCnC1 D xnC1; ZtCj D xj .j D 0; : : : ; n/�

D
1X

kD0

Pr� ŒZkCnC1 D xnC1; ZkCj D xj .j D 0; : : : ; n/; t D k�

D
1X

kD0

Pr� ŒZkCnC1 D xnC1 j Ak� Pr�.Ak/

D
1X

kD0

p.xn; xnC1/ Pr�.Ak/

D p.xn; xnC1/ Pr� ŒZtCj D xj .j D 0; : : : ; n/�:
Dividing by Pr� ŒZtCj D xj .j D 0; : : : ; n/�, we see that the statements of the
exercise are true. (The computation of the initial distribution is straightforward.)

�
Exercise 1.31. We start with the “if” part, which has already been outlined. We
define Pr by Pr. NA/ D Pr�

�
	�1. NA/� for NA 2 NA and have to show that under this

probability measure, the sequence of n-th projections xZn W x� ! xX is a Markov
chain with the proposed transition probabilities Np. Nx; Ny/ and initial distribution N�.
For this, we only need to show that Pr D Pr N� , and equality has only to be checked
for cylinder sets because of the uniqueness of the extended measure. Thus, let
NA D C. Nx0; : : : ; Nxn/ 2 NA. Then

	�1. NA/ D
]

x02 Nx0;:::;xn2 Nxn

C.x0; : : : ; xn/;

and (inductively)

Pr. NA/ D
X

x02 Nx0;:::;xn2 Nxn

�.x0/ p.x0; x1/ 	 	 	p.xn�1; xn/

D
X

x02 Nx0

�.x0/
X

x12 Nx1

p.x0; x1/ 	 	 	
X

xn2 Nxn

p.xn�1; xn/

„ ƒ‚ …
Np. Nxn�1; Nxn/

D N�. Nx0/ Np. Nx0; Nx1/ 	 	 	 Np. Nxn�1; Nxn/ D Pr N�. NA/:
For the “only if”, suppose that

�
	.Zn/

�
is (for every starting point x 2 X ) a Markov

chain on xX with transition probabilities Np. Nx; Ny/. Then, given two classes Nx; Ny 2 xX ,
for every x0 2 Nx we have

Np. Nx; Ny/ D Prx0
Œ	.Z1/ D Nyj	.Z0/ D Nx� D Prx0

ŒZ1 2 Ny� D
X
y2 Ny

p.x0; y/;

as required. �
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Exercise 1.41. We decompose with respect to the first step. For n � 1
u.n/.x; x/ D

X
y2X

PrxŒt
x D n; Z1 D y� D

X
y2X

p.x; y/ PrxŒt
x D n j Z1 D y�

D
X
y2X

p.x; y/ Pry Œs
x D n � 1� D

X
y2X

p.x; y/ f .n�1/.y; x/:

Multiplying by zn and summing over all n, we get the formula of Theorem 1.38 (c).

Exercise 1.44. This works precisely as in the proof of Proposition 1.43.

u.n/.x; x/ D PrxŒt
x D n�

� PrxŒt
x D n; sy 
 n�

D
nX

kD0

PrxŒs
y D k� PrxŒt

x D n j sy D k�

D
nX

kD0

f .k/.x; y/ f .n�k/.y; x/;

since u.n�k/.y; x/ D f .n�k/.y; x/ when x ¤ y. �
Exercise 1.45. We have

Ex.s
y j sy <1/ D

1X
nD1

n PrxŒs
y D n j sy <1�

D
1X

nD1

n
PrxŒs

y D n�
P rxŒsy <1�

D
1X

nD1

nf .n/.x; y/

F.x; yj1/ D
F 0.x; yj1/
F.x; yj1/ :

More precisely, in the case when z D 1 is on the boundary of the disk of con-
vergence of F.x; yjz/, that is, when s.x; y/ D 1, we can apply the theorem of
Abel: F 0.j;N j1/ has to be replaced with F 0.j;N j1�/, the left limit along the
real line. (Actually, we just use the monotone convergence theorem, interpretingP

n nf
.n/.x; y/zn as an integral with respect to the counting measure and letting

z ! 1 from below.)
If w is a cut point between x and y, then Proposition 1.43 (b) implies

F 0.x; yjz/
F.x; yjz/ D

F 0.x; wjz/
F.x;wjz/ C

F 0.w; yjz/
F.x; yjz/ ;

and the formula follows by setting z D 1. �
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Exercise 1.47. (a) If p D q D 1=2 then we can rewrite the formula for

F 0.j;N jz/=F.j;N jz/
of Example 1.46 as

F 0.j;N jz/
F.j;N jz/ D

2

z2
1.z/

1

˛.z/ � 1
�
N
˛.z/N C 1
˛.z/N � 1 � j

˛.z/j C 1
˛.z/j � 1

�
:

We have 
1.1/ D ˛.1/ D 1. Letting z ! 1�, we see that

Ej .s
N j sN <1/ D lim

˛!1

2

˛ � 1
�
N
˛N C 1
˛N � 1 � j

˛j C 1
˛j � 1

�
:

This can be calculated in different ways. For example, using that

.˛N � 1/.˛j � 1/ � .˛ � 1/2 jN as ˛ ! 1;

we compute

2

˛ � 1
�
N
˛N C 1
˛N � 1 � j

˛j C 1
˛j � 1

�

� 2

.˛ � 1/3 jN
�
.N � j /.˛N Cj � 1/ � .N C j /.˛N � ˛j /

�

D 2

.˛ � 1/2 jN
�
.N � j /

N Cj �1X
kD0

˛k � .N C j /
N �1X
kDj

˛k

�

D 2

.˛ � 1/2 jN
�
.N � j /

N Cj �1X
kD1

.˛k � 1/ � .N C j /
N �1X
kDj

.˛k � 1/
�

D 2

.˛ � 1/ jN
�
.N � j /

N Cj �1X
kD1

k�1X
mD0

˛m � .N C j /
N �1X
kDj

k�1X
mD0

˛m

�

D 2

.˛ � 1/ jN
�
.N � j /

N Cj �1X
kD1

k�1X
mD1

.˛m � 1/ � .N C j /
N �1X
kDj

k�1X
mD1

.˛m � 1/
�

� 2

jN

�
.N � j /

N Cj �1X
kD1

k�1X
mD1

m � .N C j /
N �1X
kDj

k�1X
mD1

m

�

D N 2 � j 2

3
:

(b) If the state 0 is absorbing, then the linear recursion

F.j;N jz/ D qz F.j � 1;N jz/C pz F.j C 1;N jz/; j D 1; : : : ; N � 1;
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remains the same, as well as the boundary value F.N;N jz/ D 1. The boundary
value at 0 has to be replaced with the equation F.0;N jz/ D z F.1;N jz/. Again,
for jzj < 1ı2ppq, the solution has the form

F.j;N jz/ D a 	 
1.z/
j C b 	 
2.z/

j ;

but now

aC b D a 	 z 
1.z/C b 	 z 
2.z/ and a 	 
1.z/
N C b 	 
2.z/

N D 1:

Solving in a and b yields

F.j;N jz/ D
�
1 � z
1.z/

�

2.z/

j � �1 � z
2.z/
�

1.z/

j�
1 � z
1.z/

�

2.z/N �

�
1 � z
2.z/

�

1.z/N

:

In particular, Prj ŒsN <1� D F.j;N j1/ D 1, as it must be (why?), and Ej .s
N / D

F 0.j;N j1�/ is computed similarly as before. We omit those final details. �

Exercise 1.48 Formally, we have G .z/ D .I � zP /�1, and this is completely
justified when X is finite. Thus,

Ga.z/ D
�
I � z�aI C .1 � a/P ���1 D 1

1�az

�
I � z�az

1�az
P
��1 D 1

1�az
G
�

z�az
1�az

�
:

For general X , we can argue by approximation with respect to finite subsets, or as
follows:

Ga.x; yjz/ D
1X

nD0

zn

nX
kD0

�
n

k

�
an�k .1 � a/k p.k/.x; y/

D
1X

kD0

�
1 � a
a

�k

p.k/.x; y/

1X
nDk

�
n

k

�
.az/n:

Since
1X

nDk

�
n

k

�
.az/n D 1

1 � az
� az

1 � az
�k

for jazj < 1;

the formula follows. �

Exercise 1.55. Let 	 D Œx D x0; x1; : : : ; xn D x� be a path in ….x; x/ n fŒx�g.
Since xn D x, we have 1 
 k 
 n, where k D minfj � 1 W xj D xg. Then

	1 D Œx0; x1; : : : ; xk� 2 …�.x; x/; 	2 D Œxk; xkC1; : : : ; xn� 2 ….x; x/;
and 	 D 	1 B 	2:
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This decomposition is unique, which proves the first formula. We deduce

G.x; xjz/ D w
�
….x; x/jz�

D w
�
Œx�jz�C w

�
…�.x; x/ B….x; x/jz

�
D 1C w

�
…�.x; x/jz

�
w
�
….x; x/jz�

D 1C U.x; xjz/G.x; xjz/:
Analogously, if 	 D Œx D x0; x1; : : : ; xn D y� is a path in ….x; y/ then we let
m D minfj � 0 W xj D yg. We get

	1 D Œx0; x1; : : : ; xm� 2 …B.x; y/; 	2 D Œxm; xkC1; : : : ; xn� 2 ….y; y/;
and 	 D 	1 B 	2:

Once more, the decomposition is unique, and

G.x; yjz/ D w
�
….x; y/jz�

D w
�
…B.x; y/ B….y; y/jz

�
D F.x; yjz/G.y; yjz/:

Regarding Theorem 1.38 (c), every 	 2 …�.x; x/ has a unique decomposition
	 D Œx; y� B 	2, where Œx; y� 2 E��.P /� and 	2 2 …B.y; x/. That is,

…�.x; x/ D
]

yWŒx;y�2E
�

�.P /
�Œx; y� B…B.y; x/;

which yields the formula for U.x; xjz/. In the same way, let y ¤ x and 	 2
…B.x; y/. Then either 	 D Œx; y�, which is possible only when Œx; y� 2 E��.P /�,
or else 	 D Œx; w� B 	2, where Œx; w� 2 E��.P /� and 	2 2 …B.w; y/. Thus,
noting that …B.y; y/ D fŒy�g,

…B.x; y/ D
]

wWŒx;w�2E.�.P //

Œx; w� B…B.w; y/; y ¤ x;

which yields Theorem 1.38 (d) in terms of weights of paths. �

Exercises of Chapter 2

Exercise 2.6. (a)H) (b). If C is essential and x ! y then C D C.x/! C.y/ in
the partial order of irreducible classes. SinceC is maximal in that order,C.y/ D C ,
whence y 2 C .

(b) H) (c). Let x 2 C and x ! y. By assumption, y 2 C , that is, x $ y.
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(c)H) (a). LetC.y/ be any irreducible class such thatC ! C.y/ in the partial
order of irreducible classes. Choose x 2 C . Then x ! y. By assumption, also
y ! x, whence C.y/ D C.x/ D C . Thus, C is maximal in the partial order. �

Exercise 2.12. Let .X1; P1/ and .X2; Y2/ be Markov chains.
An isomorphism between .X1; P1/ and .X2; P2/ is a bijection ' W X1 ! X2

such that
p2.'x1; 'y1/ D p1.x1; y1/ for all x1; y1 2 X1:

Note that this definition does not require that the matrix P is stochastic. An au-
tomorphism of .X; P / is an isomorphism of .X; P / onto itself. Then we have the
following obvious fact.

If there is an automorphism ' of .X; P / such that 'x D x0 and 'y D y0
then G.x; yjz/ D G.x0; y0jz/.

Next, let y ¤ x and define the branch

By;x D fw 2 X W x ! w ! yg:
We let Py;x be the restriction of the matrix P to that branch.

We say that the branches By;x and By0;x0 are isomorphic, if there is an iso-
morphism ' of .By;x; Py;x/ onto .By0;x0 ; Py0;x0/ such that 'x D x0 and 'y D y0.
Again, after formulating this definition, the following fact is obvious.

If By;x and By0;x0 are isomorphic, then F.x; yjz/ D F.x0; y0jz/.
Indeed, before reaching y for the first time, the Markov chain starting at x can never
leave By;x . �

Exercise 2.26. If .X; P / is irreducible and aperiodic and x; y 2 X , then there
is k D kx;y such that p.k/.x; y/ > 0. Also, By Lemma 2.22, there is mx such
that p.m/.x; x/ > 0 for all m � mx . Therefore p.qn/.x; y/ > 0 for all q with
qn � kx;y � mx . �

Exercise 2.34. For C D f ; g, the truncated transition matrix is

PC D
�
0 1=2

1=4 1=2

�
:

Therefore, using (1.36),

GC . ; jz/ D 1= det.I � zPC / D 8=.8 � 4z � z2/:

Its radius of convergence is the root of the denominator with smallest absolute value.
The spectral radius is the inverse of that root, that is, the largest eigenvalue. We get
�.PC / D .1C

p
3/=4. �
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Exercises of Chapter 3

Exercise 3.7. If y is transient, then

1X
nD0

Pr� ŒZn D y� D
X

x

�.x/G.x; y/

D
X

x

�.x/ F.x; y/„ ƒ‚ …

 1

G.y; y/ 
 G.y; y/ <1:

In particular, Pr� ŒZn D y�! 0. �
Exercise 3.13. If C is a finite, essential class and x 2 C , then by (3.11),X

y2C

F.x; yjz/ 1 � z
1 � U.y; yjz/ D 1:

Suppose that some and hence every element of C is transient. Then U.y; y/ < 1

for all y 2 C , so that finiteness of C yields

lim
z!1�

X
y2C

F.x; yjz/ 1 � z
1 � U.y; yjz/ D 0;

a contradiction. �
Exercise 3.14. We always think of xX as a partition of X . We realize the factor
chain . xZn/ on the trajectory space of .X; P / (instead of its own trajectory space),
which is legitimate by Exercise 1.31: xZn D 	.Zn/. Since x 2 Nx, the first visit of
Zn in the set Nx cannot occur after the first visit in the point x 2 Nx. That is, t Nx 
 tx .

Therefore, if x is recurrent, PrxŒt
x < 1� D 1, then also Pr NxŒt Nx < 1� D

PrxŒt
Nx <1� D 1. In the same way, if x is positive recurrent, then also

E Nx.t Nx/ D Ex.t
Nx/ 
 Ex.t

x/ <1: �

Exercise 3.18. We have

�.X/ �
X
y2X

�P.y/ D
X
x2X

X
y2X

�.x/p.x; y/ D �.X/:

Thus, we cannot have �P.y/ < �.y/ for any y 2 X . �
Exercise 3.22. Let " D �.y/=2. We can find a finite subset A" of X such that
�.X n A"/ < ". As in the proof of Theorem 3.19, for 0 < z < 1,

2" D �.y/ 

X

x2A"

�.x/ F.x; yjz/ 1 � z
1 � U.y; yjz/ C ":
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Therefore X
x2A"

�.x/ F.x; yjz/ 1 � z
1 � U.y; yjz/ � ":

Suppose first thatU.y; yj1/ < 1. Then the left hand side in the last inequality tends
to 0 as z ! 1�, a contradiction. Therefore y must be recurrent, and we can apply
de l’Hospital’s rule. We find

X
x2A"

�.x/ F.x; y/
1

U 0.y; yj1�/ � ":

Thus, U 0.y; yj1�/ <1, and y is positive recurrent. �
Exercise 3.24. We writeCd D C0. Let i 2 f1; : : : ; dg. If y 2 Ci and p.x; y/ > 0
then x 2 Ci�1. Therefore

mC .Ci / D
X

y2Ci

X
x2Ci�1

mC .x/p.x; y/ D
X

x2Ci�1

mC .x/
X

y2Ci

p.x; y/

„ ƒ‚ …
D 1

D m.Ci�1/:

Thus, mC .Ci / D 1=d . Now write mi for the stationary probability measure of P d
C

on Ci . We claim that

mi .x/ D
´
d 	mC .x/; if x 2 Ci ;

0; otherwise:

By the above, this is a probability measure on Ci . If y 2 Ci , then

mi .y/ D d
X
x2X

mC .x/ p
.d/.x; y/„ ƒ‚ …

> 0 only if x 2 Ci

D miP
d .y/;

as claimed. The same result can also be deduced by observing that

tx
P d D tx

P =d; if Z0 D x;

where the indices P d and P refer to the respective Markov chains. �
Exercise 3.27. (We omit the figure.) Since p.k; 1/ D 1=2 for all k, while ev-
ery other column of the transition matrix contains a 0, we have �.P / D 1=2.
Theorem 3.26 implies that the Markov chain is positive recurrent. The stationary
probability measure must satisfy

m.1/ D
X
k2N

m.k/ p.k; 1/ D 1=2 and m.kC1/ D m.k/ p.k; kC1/ D m.k/=2:



306 Solutions of all exercises

Thus, m.k/ D 2�k , and for every j 2 N,X
k2N

jp.n/.j; k/ � 2�kj 
 2�nC1: �

Exercise 3.32. Set f .x/ D �.x/=m.x/. Then

yPf .x/ D
X

y

m.y/p.y; x/

m.x/

�.y/

m.y/
D �P.x/

m.x/
:

Thus yPf D f if and only if �P D �. �
Exercise 3.41. In addition to the normalization

P
x h.x/�.x/ D 1 of the right and

left �-eigenvectors ofA, we can also normalize such that
P

x �.x/ D 1. With those
conditions, the eigenvectors are unique.

Consider first the y-column Oa	. 	; y/ of OA	. Since it is a right �-eigenvector of
A, there must be a constant c.y/ depending on y such that Oa	.x; y/ D c.y/h.x/.

On the other hand, the x-row Oa	.x; 	/ D c. 	/h.x/ is a left �-eigenvector of A,
and since h.x/ > 0, also c. 	/ is a left �-eigenvector. Therefore there is a constant
˛ such that c.y/ D ˛ 	 �.y/ for all y. �
Exercise 3.43. With

p.x; y/ D a.x; y/h.y/

�.A/h.x/
and q.x; y/ D b.x; y/h.y/

�.A/h.x/

we have that P is stochastic and q.x; y/ 
 p.x; y/ for all x; y 2 X . If Q is also
stochastic, then X

y

p.x; y/ � q.x; y/„ ƒ‚ …
� 0

D 0

for every x, whence P D Q.
Now suppose that B is irreducible and B ¤ A. Then Q is irreducible and

strictly substochastic in at least one row. By Proposition 2.31, �.Q/ < 1. But
�.B/ D �.Q/=�.A/, so that �.B/ < �.A/. Finally, if B is not irreducible and
dominated by A, let C D 1

2
.A C B/. Then C is irreducible, dominates B and

is dominated by A. Furthermore, there must be x; y 2 X such that a.x; y/ > 0

and b.x; y/ D 0, so that c.x; y/ < a.x; y/. By Proposition 3.42 we have that
maxfj
j W 
 2 spec.B/g 
 �.C /, and by the above, �.C / < �.A/ strictly. �
Exercise 3.45. We just have to check that every step of the proof that

�.A/ D minft > 0 j there is g W X ! .0; 1/ with Ag 
 t 	 gg
remains valid even whenX is an infinite (countable) set. This is indeed the case, with
some care where the Heine–Borel theorem is used. Here one can use the classical
diagonal method for extracting a subsequence .gk.m// that converges pointwise. �
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Exercise 3.52. (1) Let .Zn/n�0 be the Markov chain on X with transition matrix
P . We know from Theorem 2.24 thatZn can return to the starting point only when
n is a multiple of d . Thus,

tx
P d D tx

P =d; if Z0 D x;

where the indices P d and P refer to the respective Markov chains, as mentioned
above. Therefore Ex.t

x
P / <1 if and only if Ex.t

x
P d / <1.

(2) This follows by applying Theorem 3.48 to the irreducible, aperiodic Markov
chain .Ci ; P

d
Ci
/.

(3) Let r D j � i if j � i and r D j � i C d if j < i . Then we know from
Theorem 2.24 that for w 2 Cj we have p.m/.x; w/ > 0 only if d jm � r . We can
write

p.ndCr/.x; y/ D
X

w2Cj

p.r/.x; w/ p.nd/.w; y/:

By (2), p.nd/.w; y/ ! d 	 m.y/ for all w 2 Cj . Since
P

w2Cj
p.r/.x; w/ D 1,

we get (by dominated convergence) that for x 2 Ci and y 2 Cj ,

lim
n!1p.ndCj �i/.x; y/ D d 	m.y/: �

Exercise 3.59. The first identity is clear when x D y, since L.x; xjz/ D 1.
Suppose that x ¤ y. Then

p.n/.x; y/ D
n�1X
kD0

PrxŒZk D x; Zj ¤ x .j D k C 1; : : : ; n/; Zn D y�

D
n�1X
kD0

p.k/.x; x/ `.n�k/.x; y/ D
nX

kD0

p.k/.x; x/ `.n�k/.x; y/;

since `.0/.x; y/ D 0. The formula now follows once more from the product rule
for power series.

For the second formula, we decompose with respect to the last step: for n � 2,

PrxŒt
x D n� D

X
y¤x

PrxŒZj ¤ x .j D 1; : : : ; n � 1/; Zn�1 D y; Zn D x�

D
X
y¤x

`.n�1/.x; y/ p.y; x/ D
X

y

`.n�1/.x; y/ p.y; x/;

since `.n�1/.x; x/ D 0. The identity PrxŒt
x D n� DPy `

.n�1/.x; y/ p.y; x/ also
remains valid when n D 1. Multiplying by zn and summing over all n, we get the
proposed formula.
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The proof of the third formula is completely analogous to the previous one. �
Exercise 3.60. By Theorem 1.38 and Exercise 3.59,

G.x; yjz/G.y; xjz/ D
´
F.x; yjz/G.y; yjz/F.y; xjz/G.x; xjz/
G.x; xjz/L.x; yjz/G.y; yjz/L.y; xjz/:

For real z 2 .0; 1/, we can divide by G.x; xjz/G.y; yjz/ and get the proposed
identity

L.x; yjz/L.y; xjz/ D F.x; yjz/F.y; xjz/:
Since x $ y, we have L.x; yj1�/ > 0 and L.y; xj1�/ > 0. But

L.x; yj1�/L.y; xj1�/ D F.x; y/F.y; x/ 
 1;
so that we must have L.x; yj1�/ <1 and L.y; xj1�/ <1. �
Exercise 3.61. If x is a recurrent state and L.x; yjz/ > 0 for z > 0 then x $ y

(since x is essential). Using the suggestion and Exercise 3.59,

X
y2X

G.x; xjz/L.x; yjz/ D 1

1 � z ; or equivalently,

X
y2X

L.x; yjz/ D 1 � U.x; xjz/
1 � z :

Letting z ! 1�, the formula follows. �
Exercise 3.64. Following the suggestion, we consider an arbitrary initial distri-
bution � and choose a state x 2 X . Then we define t0 D sx and, as before,
tk D inffn > tk�1 W Zn D xg for k � 1. Then we let Y0 DPsx

nD0 f .Zn/, while
Yk for k � 1 remains as before. The Yk , k � 0, are independent, and for k � 1,
they all have the same distribution. In particular,

1

k
Stk
.f / D 1

k
Y0„ƒ‚…
! 0

C 1
k

kX
j D1

Yj ! 1

m.x/

Z
X

f dm:

The proof now proceeds precisely as before. �
Exercise 3.65. Let zZn D .Zn; ZnC1/. It is immediate that this is a Markov chain.
For .x; y/; .v; w/ 2 zX , write Qp�.x; y/; .v; w/� for its transition probabilities. Then

Qp�.x; y/; .v; w/� D
´
p.y;w/; if v D y;
0; otherwise.
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By induction (prove this in detail!),

Qp.n/..x; y/; .v; w/
� D p.n�1/.y; v/p.v;w/:

From this formula, it becomes apparent that the new Markov chain inherits irre-
ducibility and aperiodicity from the old one. The limit theorem for .X; P / implies
that

Qp.n/..x; y/; .v; w/
�! m.v/p.v;w/; as n!1:

Thus, the stationary probability distribution for the new chain is given by zm.x; y/ D
m.x/p.x; y/. We can apply the ergodic theorem with f D 1.x;y/ to . zZn/ and get

1

N

N �1X
nD0

vx
nv

y
nC1 D

1

N

N �1X
nD0

1.x;y/. zZn/! zm.x; y/ D m.x/p.x; y/

almost surely. �
Exercise 3.70. This is proved exactly as Theorem 3.9. For 0 < z < r,

1 � U.x; xjz/
1 � U.y; yjz/ D

G.y; yjz/
G.x; xjz/ � p

.l/.y; x/ p.k/.x; y/ zkCl ;

where k and l are chosen such that p.k/.x; y/ > 0 and p.l/.y; x/ > 0. Therefore,
in the �-recurrent case, once again via de l’Hospital’s rule,

U 0.x; xjr�/
U.y; yjr�/ D lim

z!1�
G.y; yjz/
G.x; xjz/ � p

.l/.y; x/ p.k/.x; y/ rkCl > 0: �

Exercise 3.71. The function z 7! U.x; xjz/ is monotone increasing and differ-
entiable for z 2 .0; s/. It follows from Proposition 2.28 that r must be the unique
solution in .0; s/of the equationU.x; xjz/ D 1. In particular,U 0.x; xjr/ <1. �

Exercises of Chapter 4

Exercise 4.7. For the norm of r,

hrf;rf i D 1

2

X
e2E

1

r.e/

�
f .eC/ � f .e�/

�2


X
e2E

1

r.e/

�
f .eC/2 C f .e�/2

�
D
X
x2X

� X
e W eCDx

1

r.e/
C

X
e W e�Dx

1

r.e/

�
f .x/2

D
X
x2X

2m.x/ f .x/2 D 2 .f; f /:
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Regarding the adjoint operator, we have for every finitely supported f W X ! R

hrf; �i D 1

2

X
e2E

�
f .eC/ � f .e�/

�
�.e/

D 1

2

X
x2X

� X
e W eCDx

f .x/�.e/ �
X

e W e�Dx

f .x/�.e/
�

D
X
x2X

f .x/
X

e W eCDx

�.e/
�
since � �.e/ D �. Le/�

D .f; g/; where g.x/ D 1

m.x/

X
e W eCDx

�.e/:

Therefore r�� D g. �
Exercise 4.10. It is again sufficient to verify this for finitely supported f . Since

1
m.x/r.e/

D p.x; y/ for e D Œx; y�, we have

r�.rf /.x/ D 1

m.x/

X
e W eCDx

f .eC/ � f .e�/
r.e/

D
X

y W Œx;y�2E

�
f .x/ � f .y/�p.x; y/ D f .x/ � Pf .x/;

as proposed. �
Exercise 4.17. If Qf D 
 	 f then Pf D �aC .1 � a/
� 	 f . Therefore


min.P / D aC .1 � a/
min.Q/ � a � .1 � a/;
with equality precisely when 
min.Q/ D �1.

IfP k � a	I then we can writeP k D a	IC.1�a/	Q, whereQ is stochastic. By

the first part, 
min.P
k/ � �1C 2a. When k is odd, 
min.P

k/ D �
min.P /
�k

. �
Exercise 4.20. We have

PrŒY1Y2 D x� D
X

y

PrŒY1 D y; Y1Y2 D x� D
X

y

PrŒY1 D y; Y2 D y�1x�

D
X

y

PrŒY1 D y� PrŒY2 D y�1x� D
X

y

1.y/ 2.y
�1x/:

This is 1 � 2.x/. �
Exercise 4.25. We use induction on d . Thus, we need to indicate the dimension
in the notation f" D f .d/

" :
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For d D 1, linear independence is immediate. Suppose linear independence
holds for d � 1. For " D ."1; : : : ; "d / 2 Ed we let "0 D ."1; : : : ; "d�1/ 2 Ed�1,
so that " D ."0; "d /. Analogously, if x D .x1; : : : ; xd / 2 Zd

2 ; then we write
x D .x0; xd /. Now suppose that for a set of real coefficients c", we haveX

"2Ed

c" 	 f .d/
" .x/ D 0 for all x 2 Zd

2 :

Since f .d/
" .x/ D "

xd

d
f

.d�1/
"0 .x0/, we can rewrite this asX

"02Ed�1

�
c."0;1/C.�1/xd c."0;�1/

� 	f .d�1/
"0 .x0/ D 0 for all x0 2 Zd�1

2 ; xd 2 Z2:

By the induction hypothesis, with xd D 0 andD 1, respectively,

c."0;1/ C c."0;�1/ D 0 and c."0;1/ � c."0;�1/ D 0 for all "0 2 Ed�1; xd 2 Z2:

Therefore c."0;1/ D c."0;�1/ D 0, that is c" D 0 for all " 2 Ed , completing the
induction argument. �
Exercise 4.28. We define the measure xm on xX by xm. Nx/ D m. Nx/ D P

x2 Nx m.x/.
Then

xm. Nx/ Np. Nx; Ny/ D
X
x2 Nx

m.x/
X
y2 Ny

p.x; y/ D
X
y2 Ny

X
x2 Nx

m.y/ p.y; x/ D xm. Ny/ Np. Ny; Nx/:
�

Exercise 4.30. Stirling’s formula says that

NŠ � .N=e/Np2N	; as N !1:
Therefore �

N

N=2

�
� .N=e/N

p
2N	�

N=.2e/
�N
N	
D 2N C 1

2

ıp
N	

and

N

4
log

2N�
N

N=2

� � N

4
log

r
N	

2
D N

8

�
logN C log.	=2/

� � N logN

8
;

as N !1. �
Exercise 4.41. In the Ehrenfest model, the state space is X D f0; : : : ; N g, the
edge set is E D fŒj � 1; j �; Œj; j � 1� W j D 1; : : : ; N g,

m.j / D
�

N
j

�
2N

; and r.Œj � 1; j �/ D 2N�
N �1
j �1

� :
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For i < k, we have the obvious choices 	i;k D Œi; i C 1; : : : ; k� and 	k;i D
Œk; k � 1; : : : ; i �. We get

�1.Œj; j � 1�/ D �1.Œj � 1; j �/

D 1

2N
�

N �1
j �1

� j �1X
iD0

NX
kDj

.k � i/
�
N

i

��
N

k

�
„ ƒ‚ …

D S1 � S2

:

We compute

S1 D
j �1X
iD0

�
N

i

� NX
kDj

k

�
N

k

�
D N

j �1X
iD0

�
N

i

� NX
kDj

�
N � 1
k � 1

�

D N
j �1X
iD0

�
N

i

� 
2N �1 �

j �2X
kD0

�
N � 1
k

�!

and

S2 D
j �1X
iD0

i

�
N

i

� NX
kDj

�
N

k

�
D N

j �1X
iD1

�
N � 1
i � 1

� NX
kDj

�
N

k

�

D N
j �2X
iD0

�
N � 1
i

� 
2N �

j �1X
kD0

�
N

k

�!
:

Therefore, using
�

N
i

� � �N �1
i

� D �N �1
i�1

�
,

S1 � S2 D N 2N �1

j �1X
iD0

�
N

i

�
�N 2N

j �2X
iD0

�
N � 1
i

�

D N 2N �1

j �1X
iD0

�
N

i

�
�N 2N �1

j �1X
iD0

�
N � 1
i

�

�N 2N �1

j �2X
iD0

�
N � 1
i

�
CN 2N �1

�
N � 1
j � 1

�

D N 2N �1

j �1X
iD1

�
N � 1
i � 1

�
�N 2N �1

j �2X
iD0

�
N � 1
i

�

CN 2N �1

�
N � 1
j � 1

�

D N 2N �1

�
N � 1
j � 1

�
:
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We conclude that �1.e/ D N=2 for each edge. Thus, our estimate for the spectral
gap becomes 1 � 
1 � 2=N , which misses the true value 2=.N C 1/ by the
(asymptotically as N !1) negligible factor N=.N C 1/. 1 �
Exercise 4.45. We have to take care of the case when deg.x/ D1. Following the
suggestion,X

yWŒx;y�2E

jf .x/ � f .y/j a.x; y/ D
X

yWŒx;y�2E

�jf .x/ � f .y/jpa.x; y/ �pa.x; y/



X
yWŒx;y�2E

�
f .x/ � f .y/�2 a.x; y/ X

yWŒx;y�2E

a.x; y/


 D.f /m.x/;

which is finite, since f 2 D.N /. Now both sumsX
yWŒx;y�2E

�
f .x/ � f .y/� a.x; y/ D m.x/r�.rf /.x/ and

X
yWŒx;y�2E

f .x/ a.x; y/ D m.x/ f .x/

are absolutely convergent. Therefore we may separate the differences:

m.x/r�.rf /.x/ D
X

yWŒx;y�2E

f .x/ a.x; y/ �
X

yWŒx;y�2E

f .y/ a.x; y/

D m.x/
�
f .x/ � Pf .x/�:

This is the proposed formula. �
Exercise 4.52. Let � D �rG. 	; x/=m.x/. Since G. 	; x/ 2 D.N /, we can apply
Exercise 4.45 to compute the power of �:

h�; �i D 1

m.x/2
�
G. 	; x/;r�rG. 	; x/�

D 1

m.x/2
�
G. 	; x/; .I � P /G. 	; x/„ ƒ‚ …

D 1x

� D G.x; x/

m.x/
:

From the proof of Theorem 4.51, we see that for finite A � X ,

m.x/

GA.x; x/
� cap.x/ � 1

h�; �i D
m.x/

G.x; x/
:

If we let A% X , we get the proposed formula for cap.x/.

1The author acknowledges input from Theresia Eisenkölbl regarding the computation of S1 � S2.



314 Solutions of all exercises

Finally, we justify writing “The flow from x to1 with...”: the set of all flows
from x to1 with input 1 is closed and convex in `2

]
.E; r/, so that it has indeed a

unique element with minimal norm. �
Exercise 4.54. Suppose that �0 is a flow from x 2 X 0 to1 with input 1 and finite
power in the subnetwork N 0 D .X 0; E 0; r 0/ of N D .X;E; r/. We can extend �0
to a function on E by setting

�0.e/ D
´
�0.e/; if e 2 E 0;
0; if e 2 E nE 0:

Then � is a flow from x 2 X to1 with input 1. Its power in `2
]
.E; r/ reduces toX

e2E 0

�0.e/2 r.e/ 

X
e2E 0

�0.e/2 r 0.e/;

which is finite by assumption. Thus, also N is transient. �
Exercise 4.58. (a) The edge set is fŒk; k ˙ 1� W k 2 Zg. All resistances are
D 1. Suppose that � is a flow with input 1 from state 0 to1. Let �.Œ0; 1�/ D ˛.
Then �.Œ0;�1�/ D 1 � ˛. Furthermore, we must have �.Œk; k C 1�/ D ˛ and
�.Œ�k;�k � 1�/ D 1 � ˛ for all k � 0. Therefore

h�; �i D �˛2 C .1 � ˛/2� 	 1:
Thus, every flow from 1 to 1 with input 1 has infinite power, so that SRW is
recurrent.

(b) We use the classical formula “number of favourable cases divided by the
number of possible cases”, which is justified when all cases are equally likely.
Here, a single case is a trajectory (path) of length 2n that starts at state 0. There are
22n such trajectories, each of which has probability 1=22n.

If the walker has to be back at state 0 at the 2n-th step, then of those 2n steps,
n must go right and the other n must go left. Thus, we have to select from the
time interval f1; : : : ; 2ng the subset of those n instants when the walker goes right.
We conclude that the number of favourable cases is

�
2n
n

�
. This yields the proposed

formula for p.2n/.0; 0/.
(c) We use (3.6) with p D q D 1=2 and get U.0; 0jz/ D 1 � p1 � z2. By

binomial expansion,

G.0; 0jz/ D 1p
1 � z2

D .1 � z2/�1=2 D
1X

nD0

.�1/n
��1=2

n

�
z2n:

The coefficient of z2n is

p.2n/.0; 0/ D .�1/n
��1=2

n

�
D 1

4n

�
2n

n

�
:
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(d) The asymptotic evaluation has already been carried out in Exercise 4.30. We
see that

P
n p

.n/.0; 0/ D1. �
Exercise 4.69. The irreducible class of 0 is the additive semigroup S generated by
supp./. Since it is essential, k ! 0 for every k 2 S . But this means that�k 2 S ,
so that S is a subgroup of Z. Under the stated assumptions, S ¤ f0g. But then
there must be k0 2 N such that S D fk0 n W n 2 Zg. In particular, S must have
finite index in Z. The irreducible (whence essential) classes are the cosets of S in
Z, so that there are only finitely many classes. �

Exercises of Chapter 5

Exercise 5.14. We modify the Markov chain by restricting the state space to
f0; 1; : : : ; k � 1 C ig. We make the point k � 1 C i absorbing, while all other
transition probabilities within that set remain the same. Then the generating func-
tions Fi .k C 1; k � 1jz/, Fi .k; k � 1jz/ and Fi�1.k C 1; kjz/ with respect to the
original chain coincide with the functions F.k C 1; k � 1jz/, F.k; k � 1jz/ and
F.k C 1; kjz/ of the modified chain. Since k is a cut point between k C 1 and
k � 1, the formula now follows from Proposition1.43 (b), applied to the modified
chain. �
Exercise 5.20. In the null-recurrent case (S D 1), we know that Ek.s

0/ D1.
Let us therefore suppose that our birth-and-death chain is positive recurrent. Then
E0.t

0/ D P1
j D0 m.j /. We can the proceed precisely as in the computations that

led to Proposition 5.8 to find that

Ek.s
0/ D

k�1X
iD0

1X
j DiC1

piC1 	 	 	pj �1

qiC1 	 	 	 qj

: �

Exercise 5.31. We have for n � 1
PrŒt > n� D 1 � PrŒMn D 0� D 1 � gn.0/:

Using the mean value theorem of differential calculus and monotonicity of f 0.z/,

1 � gn.0/ D f .1/ � f
�
gn�1.0/

� D �1 � gn�1.0/
�
f 0.�/ 
 �1 � gn�1.0/

� N;
where gn�1.0/ < � < 1. Inductively,

1 � gn.0/ 

�
1 � .0/� Nn�1:

Therefore

E.t/ D
1X

nD0

PrŒt > n� 
 1C �1 � .0/� 1X
nD1

Nn�1 D 1C 1 � .0/
1 � N : �
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Exercise 5.35. With probability .1/, the first generation is infinite, that is,
† � T. But then

PrŒNj <1 for all j 2 † j † � T� D 0I
at least one of the members of the first generation has infinitely many children.
Repeating the argument, at least one of the latter must have infinitely many children,
and so on (inductively). We conclude that conditionally upon the event Œ† � T�,
all generations are infinite:

PrŒMn D1 for all n � 1 jM1 D1� D 1: �

Exercise 5.33. (a) If the ancestor � has no offspring, M1 D 0, then jTj D 1.
Otherwise,

jTj D 1C jT1j C jT2j C 	 	 	 C jTM1
j;

where Tj is the subtree of T rooted at the j -th offspring of the ancestor, j 2 †.
Since these trees are i.i.d., we get

E.zjTj/ D .0/ z C
1X

kD1

PrŒM1 D k�E
�
z1CjT1jCjT2jC			CjTk j� D 1X

kD1

.k/ z g.z/k :

(b) We have f .z/ D q C p z2. We get a quadratic equation for g.z/. Among
the two solutions, the right one must be monotone increasing for z > 0 near 0.
Therefore

g.z/ D 1

2pz

�
1 �

p
1 � 4pqz2

�
:

It is now a straightforward task to use the binomial theorem to expand g.z/ into a
power series. The series’ coefficients are the desired probabilities.

(c) In this case, f .z/ D q=.1 � zp/, and

g.z/ D 1

2p

�
1 �p1 � 4pqz�:

The computation of the probabilities PrŒ jTj D k� is almost the same as in (b) and
also left to the reader. �
Exercise 5.37. When p > 1=2, the drunkard’s walk is transient. Therefore
Zn !1 almost surely. We infer that

Pr0Œt
0 D1; Zn !1� D Pr0Œt

0 D1� D 1 � F.1; 0/ > 0:
On the event Œt0 D1; Zn !1�, every edge is crossed. Therefore

PrŒMk > 0 for all k� > 0:
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If .Mk/ were a Galton–Watson process then it would be supercritical. But the
average number of upcrossings of ŒkC 1; kC 2� that take place after an upcrossing
of Œk; kC 1� and before another upcrossing of Œk; kC 1�may occur (i.e., before the
drunkard returns from state k C 1 to state k) coincides with

E0.M1/ D
1X

nD1

Pr0ŒZn�1 D 1; Zn D 2; n < t0�

D
1X

nD1

Pr1ŒZn�1 D 1; Zn D 2; Zi ¤ 0 .i < n/�

D
1X

nD1

p

q
Pr1ŒZn�1 D 1; Zn D 0; Zi ¤ 0 .i < n/�

D p

q
F.1; 0/ D 1:

But if the average offspring number is 1 (and the offspring distribution is non-
degenerate, which must be the case here) then the Galton–Watson process dies out
almost surely, a contradiction. �

Exercise 5.41. (a) Following the suggestion, we decompose

M y
n D

X
u2†n

1Œu2T; ZuDy�:

Therefore, using Lemma 5.40,

EBMC
x .M y

n / D
X

u2†n

PrBMC
x Œu 2 T; Zu D y�

D
X

j1;:::;jn2†

p.n/.x; y/

nY
iD1

Œji ;1/ D p.n/.x; y/

nY
iD1

X
ji 2†

Œji ;1/:

Since
P

j 2† Œj;1/ D N, the formula follows.

(b) By part (a), we have EBMC
x .M

y

k
/ > 0. Therefore PrBMC

x ŒM
y

k
¤ 0� > 0. �

Exercise 5.44. To conclude, we have to show that when there are x; y such that
HBMC.x; y/D 1 thenHBMC.x; y0/D 1 for every y0 2X . If PrBMC

x ŒM y D1�D 1,
then

PrBMC
x ŒM y0

<1� D PrBMC
x ŒM y D1; M y0

<1�;
which isD 0 by Lemma 5.43. �
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Exercise 5.47. Letu.0/ D �, u.i/ D j1 	 	 	 ji , i D 1; : : : ; n�1 be the predecessors
of u.n/ D v in †�, and let � be the subtree of †� spanned by the u.i/. Let
y1; : : : ; yn�1 2 X and setyn D x. Then we can consider the event D.�I au; u 2 �/,
where au.j / D yj , and (5.38) becomes

PrBMC
x Œv 2 T; Zv D x; Zui

D yk .i D 1; : : : ; n�1/� D
nY

kD1

Œji ;1/ p
�
yi�1; yi

�
:

Now we can compute

PrBMC
x Œv 2 Wx

1 � D
X

y1;:::;yn�12Xnfxg
PrBMC

x Œv 2 T; Zui
D yk .i D 1; : : : ; n/�

D
nY

kD1

Œji ; 1/
X

y1;:::;yn�12Xnfxg
p.x; y1/p.y1; y2/ 	 	 	p.yn�1; x/:

The last sum is u.n/.x; x/. �

Exercise 5.51. It is definitely left to the reader to formulate this with complete
rigour in terms of events in the underlying probability space and their probabilities.

�

Exercise 5.52. If .0/ D 0 then each of the elements un D 1n D 1 	 	 	 1 (n � 0
times) belongs to T with probability 1. We know from (5.39.4) that .Zun

/n�0 is
a Markov chain on X with transition matrix P . If .X; P / is recurrent then this
Markov chain returns to the starting point x infinitely often with probability 1. That
is, HBMC.x; x/ D 1. �
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Exercise 6.10. The function x 7! �x.i/ has the following properties: if x 2 Ci

then �x.i/ D P
y p.x; y/�y.i/ D 1, since y 2 Ci when p.x; y/ > 0. If x 2 Cj

withj ¤ i then�x.i/ D 0. Ifx … Ci then we can decompose with respect to the first
step and obtain also �x.i/ D P

y p.x; y/�y.i/. Therefore h.x/ D P
i g.i/ �x.i/

is harmonic, and has value g.i/ on Ci for each i .
If h0 is another harmonic function with value g.i/ on Ci for every i , then

g D h0 � h is harmonic with value 0 on Xess. By a straightforward adaptation of
the maximum principle (Lemma 6.5), g must assume its maximum onXess, and the
same holds for �g. Therefore g � 0. �

Exercise 6.16. Variant 1. If the matrix P is irreducible and strictly substochastic
in some row, then we know that it cannot have 1 as an eigenvalue.
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Variant 2. Let h 2 H . Let x0 be such that h.x0/ D max h. Then, repeating
the argument from the proof of the maximum principle, h.y/ D h.x0/ for every
y with p.x0; y/ > 0. By irreducibility, h � c is constant. If now v0 is such thatP

y p.v0; y/ < 1 then c DPy p.v0; y/ c, which is possible only when c D 0. �
Exercise 6.18. If I is finite then j infI hi j 
PI jhi j is P -integrable.

If hi .x/ � C for all x 2 X and all i 2 I then C 
 infI hi 
 h1, so that
j infI hi j 
 jC j C jh1j, a P -integrable upper bound. �
Exercise 6.20. We have

P D
�
0 1

1=2 0

�
and G D .I � P /�1 D

�
2 2

1 2

�
;

and G. 	; y/ � 2. �
Exercise 6.40. This can be done by a straightforward adaptation of the proof of
Theorem 6.39 and is left entirely to the reader.

Exercise 6.22. (a) By Theorem 1.38 (d), F. 	; y/ is harmonic at every point ex-
cept y. At y, we haveX

w

p.y;w/F.w; y/ D U.y; y/ 
 1 D F.y; y/:

(b) The “only if” is part of Lemma 6.17. Conversely, suppose that every non-
negative, non-zero superharmonic function is strictly positive. For any y 2 X , the
function F. 	; y/ is superharmonic and has value 1 at y. The assumption yields that
F.x; y/ > 0 for all x; y, which is the same as irreducibility.

(c) Suppose that u is superharmonic and that x is such that u.x/ 
 u.y/ for all
y 2 X . Since P is stochastic,X

y

p.x; y/
�
u.y/ � u.x/�„ ƒ‚ …
� 0

� 0:

Thus, u.y/ D u.x/ whenever x
1�! y, and consequently whenever x ! y.

(d) Assume first that .X; P / is irreducible. Let u be superharmonic, and let x0

be such that u.x0/ D minX u.x/. Since P is stochastic, the function u � u.x0/ is
again superharmonic, non-negative, and assumes the value 0. By Lemma 6.17(1),
u � u.x0/ � 0.

Conversely, assume that the minimum principle for superharmonic functions
is valid. If F.x; y/ D 0 for some x; y then the superharmonic function F. 	; y/
assumes 0 as its minimum. But this function cannot be constant, sinceF.y; y/ D 1.
Therefore we cannot have F.x; y/ D 0 for any x; y. �
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Exercise 6.24. (1) If 0 
 �P 
 � then inductively

�P n 
 �P n�1 
 	 	 	 
 �P 
 �:

(2) For every i 2 I , we have �P 
 �iP 
 �i . Thus, �P 
 infI �i D �.

(3) This is immediate from (3.20). �

Exercise 6.29. If PrxŒt
A <1� D 1 for every x 2 A, then the Markov chain must

return to A infinitely often with probability 1. Since A is finite, there must be at
least one y 2 A that is visited infinitely often:

1 D PrxŒ9y 2 A W Zn D y for infinitely many n� 

X
y2A

H.x; y/:

Thus there must be y 2 A such that H.x; y/ D U.x; y/H.y; y/ > 0. We see that
H.y; y/ > 0, which is equivalent with recurrence of the state y (Theorem 3.2). �

Exercise 6.31. We can compute the mean vector of the law of this random walk:
N D �p1�p3

p2�p4

�
, and appeal to Theorem 4.68.

Since that theorem was not proved here, we can also give a direct proof.
We first prove recurrence when p1 D p3 and p2 D p4. Then we have a

symmetric Markov chain with m.x/ D 1 and resistancesp1 on the horizontal edges
and p2 on the vertical edges of the square grid. Let N 0 be the resulting network,
and let N be the network with the same underlying graph but all resistances equal
to maxfp1; p2g. The Markov chain associated with N is simple random walk on
Z2, which we know to be recurrent from Example 4.63. By Exercise 4.54, also N 0
is recurrent.

If we do not have p1 D p3 and p2 D p4, then let c D .c1; c2/ 2 R2 and define
the function fc.x/ D ec1x1Cc2x2 for x D .x1; x2/ 2 Z2. The one verifies easily
that

Pfc D 
c 	 fc :

Then also P nfc D 
n
c 	fc , so that �.P / 
 
c for every c. By elementary calculus,

minf
c W c 2 R2g D 2pp1p3 C 2pp2p4 < 1:

Therefore �.P / < 1, and we have transience. �

Exercise 6.45. We know that g D u � h � 0 and gXess � 0. We can proceed as
in the proof of the Riesz decomposition: set f D g � Pg, which is � 0. Then
supp.f / � Xo, and

g � P nC1g D
nX

kD0

P kf:
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Nowp.nC1/.x; y/! 0 asn!1, whenevery 2 Xo. ThereforeP nC1g! 0, and
g D Gf . Uniqueness is immediate, as in the last line of the proof of Theorem 6.43.

�

Exercise 6.48. The notation y…will refer to sets of paths in �. yP /, and yw. 	/ to their
weights with respect to yP . Then it is clear that the mapping

	 D Œx0; x1; : : : ; xn� 7! O	 D Œxn; : : : ; x1; x0�

is a bijection between f	 2 ….x; y/ W 	 meets A only in the terminal pointg and
f O	 2 y….x; y/ W O	 meets A only in the initial pointg. It is also a bijection be-
tween f	 2 ….x; y/ W 	 meets A only in the initial pointg and f O	 2 y….x; y/ W
O	 meets A only in the terminal pointg.

By a straightforward computation, yw. O	/ D �.x0/w.	/=�.xn/ for any path
	 D Œx0; x1; : : : ; xn�. Summing over all paths in the respective sets, the formulas
follow. �

Exercise 6.57. This is left entirely to the reader.

Exercise 6.58. We fix w and y. Set h D G. 	; y/ and f D G.w;y/
G.w;w/

1w : Then

Gf .x/ D F.x;w/G.w; y/. We have h.w/ D Gf .w/. By the domination princi-
ple, h.x/ � Gf .x/ for all x. �

Exercises of Chapter 7

Exercise 7.9. (1) We have
P

y ph.x; y/ D 1
h.x/

Ph.x/, which is D 1 if and only
if Ph.x/ D h.x/.

(2) In the same way,

Ph Nu.x/ D
X

y

p.x; y/h.y/

h.x/

u.y/

h.y/
D 1

h.x/
Pu.x/;

which is 
 Nu.x/ if and only if Pu.x/ 
 u.x/.
(3) Suppose that u is minimal harmonic with respect to P . We know from (2)

that h.o/ 	 Nu is harmonic with respect to Ph. Suppose that h.o/ 	 Nu � Nh1, where
Nu D u=h as above, and Nh1 2 H C.X; Ph/. By (2), h1 D h Nh1 2 H C.X; P /. On
the other hand, u � 1

h.o/
h1: Since u is minimal, u=h1 is constant. But then also

h.o/ 	 Nu= Nh1 is constant. Thus, h.o/ 	 Nu is minimal harmonic with respect to Ph.
The converse is proved in the same way and is left entirely to the reader.

Exercise 7.12. We suppose to have two compactifications yX and zX of X and
continuous surjections � W yX ! zX and � W zX ! yX such that �.x/ D �.x/ D x for
all x 2 X .
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Let � 2 zX . There is a sequence .xn/ in X such that xn ! � in the topology
of zX . By continuity of � , xn D �.xn/ ! �.�/ in the topology of yX . But then
by continuity of � , xn D �.xn/ ! �

�
�.�/

�
in the topology of zX . Therefore

�
�
�.�/

� D �. Therefore � is injective, whence bijective, and � is the inverse
mapping. �

Exercise 7.16. We start with the second model, and will also see that it is equivalent
with the first one.

First of all, X is discrete because when x 2 X and y ¤ x then �.x; y/ �
w1x
j1x.x/ � 1x.y/j D w1x

, so that the open ball with centre x and radius w1x

consists only of x. Next, let .xn/ be a Cauchy sequence in the metric � . Then�
f .xn/

�
must be a Cauchy sequence in R and limn f .xn/ exists for every f 2 F �.

Conversely, suppose that
�
f .xn/

�
is a Cauchy sequence in R for every f 2 F �.

Given " > 0, there is a finite subset F" � F � such that
P

F �nF"
wf Cf < "=4.

Now let N" be such that jf .xn/ � f .xm/j < Cf "=.2S/ for all n;m � N" and all
f 2 F", where S DPF � wf Cf

�
. Then for such n;m

�.xn; xm/ <
X

F �nF"

wf

�jf .xn/j C jf .xm/j
�CX

F"

wf Cf "=.2S/ 
 ":

Thus, .xn/ is a Cauchy sequence in the metric �. 	; 	/.
Let .xn/ be such a sequence. If there is x 2 X such that xnk

D x for an
infinite subsequence .nk/, then 1x.xnk

/ D 1 for all k. Since
�
1x.xn/

�
converges,

the limit is 1. We see that every Cauchy sequence .xn/ is such that either xn D x

for some x 2 X and all but finitely many n, or else .xn/ tends to1 and
�
f .xn/

�
is a convergent sequence in R for every f 2 F .

At this point, recall the general construction of the completion of the metric space
.X; �/. The completion consists of all equivalence classes of Cauchy sequences,
where .xn/ � .yn/ if �.xn; yn/! 0. In our case, this means that either xn D yn D
x for some x 2 X and all but finitely many n, or – as above – that both sequences
tend to1 and lim f .xn/ D lim f .yn/ for every f 2 F . The embedding of X in
this space of equivalence classes is via the equivalence classes of constant sequences
inX , and the extended metric is �.�; �/ D limn �.xn; yn/, where .xn/ and .yn/ are
arbitrary representatives of the equivalence classes � and �, respectively.

At this point, we see that the completionX coincides with X1 of the first model,
including the notion of convergence in that model.

We now write zX for this completion. We show compactness. Since X is
dense in zX , it is sufficient to show that every sequence .xn/ in X has a convergent
subsequence. Now, the sequence

�
f .xn/

�
is bounded for every f 2 F �. Since F �

is countable, we can use the well-known diagonal argument to extract a subsequence
.xnk

/ such that
�
f .xnk

/
�

converges for every f 2 F �. We know that this is a

Cauchy sequence, whence it converges to some element of zX .
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By construction, every f 2 F extends to a continuous function on zX . Finally,
if �; � 2 zX nX are distinct, then let the sequences .xn/ and .yn/ be representatives
of those two respective equivalence classes. They are not equivalent, so that there
must be f 2 F such that limn f .xn/ ¤ limn f .yn/. That is, f .�/ ¤ f .�/. We
conclude that F separates the boundary points.

By Theorem 7.13, zX is (equivalent with) zXF . �
Exercise 7.26. Let us refresh our knowledge about conditional expectation: we
have the probability space .�;A;Pr/, and a sub-� -algebra An�1, which in our case
is the one generated by .Y0; : : : ; Yn�1/. We take a non-negative, real, A-measurable
random variable W , in our case W D Wn. We can define a measure QW on A

by QW .A/ D
R
A
W d Pr. Both Pr and QW are now considered as measures on

An�1, and QW is absolutely continuous with respect to Pr. Therefore, it has an
An�1-measurable Radon–Nikodym density, which is Pr-almost surely unique. By
definition, this is E.W jAn�1/. If W itself is An�1-measurable then it is itself that
density. In general, QW can also be defined on An�1 via integration: for every
non-negative An�1-measurable function (random variable) V on �,Z

�

V dQA D
Z

�

V 	W d Pr :

Thus, by the construction of the conditional expectation, the latter is characterized
as the a.s. unique An�1-measurable random variable E.W jAn�1/ that satisfiesZ

�

V 	 E.W jAn�1/ d Pr D
Z

�

V 	W d Pr;

that is,

E
�
V 	 E.W jAn�1/

� D E.V 	W /
for every V as above.

In our case, An�1 is generated by the atoms ŒY0 D x0; : : : ; Yn�1 D xn�1�,
where x0; : : : ; xn�1 2 X [ f�g. Every An�1-measurable function is constant
on each of those atoms. In other words, every such function has the form V D
g.Y0; : : : ; Yn�1/. We can reformulate: E.W jY0; : : : ; Yn/ is the a.s. unique An�1-
measurable random variable that satisfies

E
�
g.Y0; : : : ; Yn�1/ 	 E.W jAn�1/

� D E
�
g.Y0; : : : ; Yn�1/ 	W

�
for every function g W .X [ f�g/n ! Œ0; 1/.

If we now set W D Wn D fn.Y0; : : : ; Yn/, then the supermartingale property
E.Wn j Y0; : : : ; Yn�1/ 
 Wn�1 implies

E.g.Y0; : : : ; Yn�1/ 	Wn/ D E
�
g.Y0; : : : ; Yn�1/ 	 E.WnjAn�1/

�

 E

�
g.Y0; : : : ; Yn�1/ 	Wn�1

�
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for every g as above. Conversely, if the inequality between the second and the third
term holds for every such g, then the measures QWn

and QWn�1
on An�1 satisfy

QWn

 QWn�1

. But then their Radon–Nikodym derivatives with respect to Prx

also satisfy

E.Wn j Y0; : : : ; Yn�1/ D dQWn

d Pr

 dQWn�1

d Pr
D E.Wn�1 j Y0; : : : ; Yn�1/ D Wn�1

almost surely. (The last identity holds because Wn�1 is An�1-measurable.)
So now we see that (7.25) is equivalent with the supermartingale property. If we

take g D 1.x0;:::;xn�1/, where .x0; : : : ; xn�1/ 2 .X [f�g/n, then (7.25) specializes
to (7.24). Conversely, every function g W .X [ f�g/n ! Œ0; 1/ is a finite, non-
negative linear combination of such indicator functions. Therefore (7.24) implies
(7.25). �
Exercise 7.32. The function G. 	; y/ is superharmonic and bounded by G.y; y/.
Thus,

�
G.Zn; y/

�
is a bounded, positive supermartingale, and must converge almost

surely. LetW be the limit random variable. By dominated convergence, Ex.W / D
limn Ex

�
G.Zn; y/

�
. But

Ex

�
G.Zn; y/

� DX
v2X

p.n/.x; v/G.v; y/ D
1X

kDn

p.k/.x; y/;

which tends to 0 as n ! 1. Therefore Ex.W / D 0, so that (being non-negative)
W D 0 Prx-almost surely. �
Exercise 7.39. Let k; l; r 2 N and consider the set

Ak;l;r D
˚
! D .xn/ 2 XN0 W K.x; xr/ < c C " � 1

k
C 1

l



:

This set is a union of basic cylinder sets, since it depends only on the r-th projection
xr of !. We invite the reader to check that

1[
kD1

1\
lD1

1[
mD1

1\
rDm

Ak;l;r DAlim supD
˚
!D .xn/ 2XN0 W lim sup

n!1
K.x; xn/ < cC"



:

Therefore the latter set is in A.
We leave it entirely to the reader to work out that analogously,

Alim inf D
˚
! D .xn/ 2 XN0 W lim inf

n!1 K.x; xn/ > c � "

 2 A:

Then our set is
�1 \ Alim sup \ Alim inf 2 A: �
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Exercise 7.49. By (7.8), the Green function of the h-process is

Gh.x; y/ D G.x; y/h.y/=h.x/:
Therefore (7.47) and (7.40) yield

�h.v/ D h.o/Gh.o; v/
�
1 �

X
w2X

ph.v; w/
�

D G.o; v/ h.v/
�
1 �

X
w2X

p.v;w/
h.w/

h.v/

�

D G.o; v/
�
h.v/ �

X
w2X

p.v;w/h.w/
�
;

as proposed. Setting h D K. 	; y/, we get for v 2 X
�h.v/ D G.o; v/

�
K.v; y/ �

X
w2X

p.v;w/K.w; y/
�

D G.v; y/ � PG.v; y/ D ıy.v/: �

Exercise 7.58. Let .X;Q/ be irreducible and recurrent. In particular,Q is stochas-
tic. Choose w 2 X and define a transition matrix P by

p.x; y/ D
´
q.x; y/=2; if x D w;
q.x; y/; if x ¤ w:

Thus, p.w; �/ D 1=2 and p.x; �/ D 0 when x ¤ w. Then F.x;w/ is the same
for P andQ, because F.x;w/ does not depend on the outgoing probabilities at w;
compare with Exercise 2.12. ThusF.x;w/ D 1 for all x. For the chain extended to
X[f�g, the statew is a cut point between any x 2 X nfwg and �. Via Theorem 1.38
and Proposition 1.43,

F.w; �/ D 1

2
C
X
x2X

p.w; x/F.x;w/F.w; �/ D 1

2
C 1

2
F.w; �/:

We see that F.w; �/ D 1, and for x 2 X n fwg, we also have F.x; �/ D
F.x;w/F.w; �/ D 1. Thus, the Markov chain with transition matrix P is ab-
sorbed by � almost surely for every starting point. �
Exercise 7.66. (a) H) (b). Let supp.�/ D f�g. Then h0.x/ D �x.�/ D
K.x; �/ �.�/ is non-zero. If h is a bounded harmonic function then there is a
bounded measurable function ' on M such that

h.x/ D
Z

M

K.x; 	/ ' d� D K.x; �/ '.�/ �.�/ D '.�/ h0.x/:
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(b) H) (c). Let h1 be a non-negative harmonic function such that h0 � h1.
Then h1 is bounded, and by the hypothesis, h1=h0 is constant. That is, 1

h0.o/
h0 is

minimal.
(c) H) (a). If 1

h0.o/
h0 is minimal then it must be a Martin kernel K. 	; �/. Thus

h0.x/ D h0.o/

Z
Mmin

K.x; 	/ dı� D
Z

Mmin

K.x; 	/ d�:

By the uniqueness of the integral representation, � D h0.o/ 	 ı� . �
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Exercise 8.8. In the proof of Theorem 8.2, irreducibility is only used in the last 4
lines. Without any change, we have h.kC l/ D h.k/ for every k 2 Zd and every
l 2 supp./. But then alsoh.k�l/ D h.k/. Suppose that supp./ generates Zd as
a group, and let k 2 Zd . Then we can findn > 0 and elements l1; : : : ; ln 2 supp./
such that k D ˙l1 ˙ 	 	 	 ˙ ln. Again, we get h.0/ D h.k/.

In part A of the proof of Theorem 8.7, irreducibility is not used up to the point
where we obtained that hl D h for every l 2 supp..n/ and each n � 0. That is,
fur such l and every k 2 Zd , h.kC l/ D h.k/h.l/. But then also

h.k/ D h.k � l C l/ D h.k � l/h.l/:

With k D 0, we find h.�l/ D 1=h.l/, and then in general

h.k � l/ D h.k/=h.l/ D h.k/h.�l/:

Now, as above, if supp./ generates Zd as a group, then every l 2 Zd has the form
l D l1 � l2, where li 2 supp..ni // for some ni 2 N0 (i D 1; 2). But then

h.kC l/ D h.kC l1 � l2/ D h.k/h.l1/h.�l2/ D h.k/h.l/;
and this is true for all k; l 2 Zd .

In part B of the proof of Theorem 8.7, irreducibility is not used directly. We
should go back a little bit and see whether irreducibility is needed for Corollary 7.11,
or for Exercise 7.9 and Lemma 7.10 which lead to that corollary. There, the crucial
point is that we are allowed to define the h-process for h D fc , since that function
does not vanish at any point. �

Exercise 8.11. Part A of the proof of Theorem 8.7 remains unchanged: every
minimal harmonic function has the form fc with c 2 C . Pointwise convergence
within that set of functions is the same as usual convergence in the set C . The
topology on Mmin is the one of pointwise convergence. This yields that there is a
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subset C 0 of C such that the mapping c 7! fc (c 2 C 0) is a homeomorphism from
C 0 to Mmin. Therefore every positive harmonic function h has a unique integral
representation

h.k/ D
Z

C 0

ec	k d�.c/ for all k 2 Zd :

Suppose that there is c ¤ 0 in supp.�/. Let B be the open ball in Rd with centre c

and radius jcj=2. The cone ft 	 x W t � 0; x 2 Bg opens with the angle 	=3 at its
vertex 0. Therefore, if k 2 Zd n f0g is in that cone, then

jx 	 kj � cos.	=3/ jxj jkj � jkj jcj=4 for all x 2 B:
For such k, we get h.k/ � jkj �.B/ jcj=4, which is unbounded. We see that when h
is a bounded harmonic function, then supp.�/ contains no non-zero element. That
is, � is a multiple of the point mass at 0, and h is constant.

Theorem 8.2 follows.
As suggested, we now conclude our reasoning with part B of the proof of The-

orem 8.7 without any change. This shows also that C 0 cannot be a proper subset
of C . �
Exercise 8.13. Since the function ' is convex, the set fc 2 Rd W '.c/ 
 1g is
convex. Since ' is continuous, that set is closed, and by Lemma 8.12, it is bounded,
whence compact. Its interior is fc 2 Rd W '.c/ < 1g, so that its topological
boundary is C . As ' is strictly convex, it has a unique minimum, which is the point
where the gradient of ' is 0. This leads to the proposed equation for the point where
the minimum is attained. �
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Exercise 9.4. This is straightforward by the quotient rule. �
Exercise 9.7. We first show this when y � o. Then mo.y/ D p.o; y/=p.y; o/ D
1=my.o/. We have to distinguish two cases.
(1) If x 2 To;y then y D x1 in the formula (9.6) for mo.x/, and

mo.x/ D p.o; y/

p.y; o/

p.y; x2/ 	 	 	p.xk�1; xk/

p.x2; y/ 	 	 	p.xk; xk�1/
D mo.y/my.x/:

(2) If x 2 Ty;o then we can exchange the role of o and y in the first case and get
my.x/ D my.o/mo.x/ D mo.x/=mo.y/.

The rest of the proof is by induction on the distance d.y; o/ in T . We suppose
the statement is true for y�, that is, mo.x/ D mo.y�/my�

.x/ for all x. Applying
the initial argument to y� in the place of o, we get my�

.x/ D my�

.y/my.x/. Since
mo.y�/my�

.y/ D mo.y/, the argument is complete. �
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Exercise 9.9. Among the finitely many cones Tx , where x � o, at least one must
be infinite. Let this be Tx1

. We now proceed by induction. If we have already found
a geodesic arc Œo; x1; : : : ; xn� such that Txn

is infinite, then among the finitely many
Ty with y� D xn, at least one must be infinite. Let this be TxnC1

.
In this way, we get a ray Œo; x1; x2; : : : �. �

Exercise 9.11. Reflexivity and symmetry of the relation are clear. For transitivity,
let 	 D Œx0; x1; : : : �, 	 0 D Œy0; y1; : : : � and 	 00 D Œz0; z1; : : : � be rays such that 	
and 	 0 as well as 	 0 and 	 00 are equivalent. Then there are i; j and k; l such that
xiCn D yj Cn and ykCn D zlCn for all n. Then x.iCk/Cn D yj CkCn D z.j Cl/Cn

for all n, so that 	 and 	 00 are also equivalent.

For the second statement, let 	 D Œy0; y1; : : : � be a geodesic ray that represents
the end �. For x 2 X , consider 	.x; y0/ D Œx D x0; x1; : : : ; xm D y0�. Let j be
minimal in f0; : : : ; mg such that xj 2 	 . That is, xj D yk for some k. Then

	 0 D Œx D x0; x1; : : : ; xj D yk; ykC1; : : : �

is a geodesic ray equivalent with 	 that starts at x. Uniqueness follows from the
fact that a tree has no cycles.

For two ends �; �, let 	 D 	.o; �/ D Œo D w0; w1; : : : � and 	 0 D 	.o; �/ D
Œo D y0; y1; : : : �. These rays are not equivalent. Let k be minimal such that
wkC1 ¤ ykC1. Then k � 1, and the rays ŒwkC1; wkC2; : : : � and ŒykC1; ykC2; : : : �

must be disjoint, since otherwise there would be a cycle inT . We can setx0 D yk D
wk , xn D ykCn and x�n D wkCn for n > 0. Then Œ: : : ;�x2;�x1; x0; x1; x2; : : : �

is a geodesic with the required properties. Uniqueness follows again from the fact
that a tree has no cycles. �
Exercise 9.15. The first case (convergence to a vertex x) is clear, since the topology
is discrete on T .

By definition, wn ! � 2 @T if and only if for every y 2 	.o; �/, there is ny

such that wn 2 yTy for all n � ny . Now, if wn 2 yTy then 	.o; y/ is part of 	.o; �/
as well as of 	.o; �/. That is, wn ^ � 2 yTy , so that jwn ^ �j � jyj for all n � ny .
Therefore jwn ^ �j ! 1. Conversely, if jwn ^ �j ! 1 then for each y 2 	.o; �/
there is ny such that jwn ^ �j � jyj for all n � ny , and in this case, we must have
wn 2 yTy .

Again by definition of the topology, wn ! y� if and only if for every finite set
A of neighbours of y, there is nA such thatwn 2 yTx;y for all x 2 A and all n � nA.
But for x 2 A, one has wn 2 yTx;y if and only if x … 	.y;wn/.

Finally, since x�
n 2 yTw;y if and only if xn 2 yTw;y , and since all types of conver-

gence are based on inclusions of the latter type, the statement about convergence
of .x�

n/ follows.

We now prove compactness. Since the topology has a countable base, we just
show sequential compactness. By construction, T is dense in yT . Therefore it
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is enough to show that every sequence .xn/ of elements of T has a subsequence
that converges in yX . If there is x 2 T such that xn D x for infinitely many n,
then we have such a subsequence. So we may assume (passing to a subsequence,
if necessary) that all xn are distinct. We use an elementary inductive procedure,
similar to Exercise 9.9.

If for every y � o, the cone Ty contains only finitely many xn, then o 2 T1
and xn ! o�, and we are done.

Otherwise, there is y1 � o such that Ty1
contains infinitely many xn, and we

can pass to the next step.
If for every y with y� D y1, the cone Ty contains only finitely many xn, then

y1 2 T1 and xnk
! y�

1 for the subsequence of those xn that are in Ty1
, and we

are done.
Otherwise, there is y2 with y�

2 D y1 such that Ty2
contains infinitely many xn,

and we pass to the third step.
Inductively, we either find yk 2 T1 and a subsequence of .xn/ that converges

to y�
k

, or else we find a sequence o � y1; y2; y3; : : : such that y�
kC1
D yk for all k,

such that each Tyk
contains infinitely many xn. The ray Œo; y1; y2; : : : � represents

an end � of T , and it is immediate that .xn/ has a subsequence that converges to
that end. �
Exercise 9.17. If f1; f2 2 L and 
1; 
2 2 R then˚
Œx; y� 2 E.T / W 
1 f1.x/C 
2 f2.x/ ¤ 
1 f1.y/C 
2 f2.y/



� ˚Œx; y� 2 E.T / W f1.x/ ¤ f1.y/


 [ ˚Œx; y� 2 E.T / W f2.x/ ¤ f2.y/


;

which is finite.
Next, let f 2 L. In order to prove that f is in the linear span of L0, we proceed

by induction on the cardinality n of the set fe 2 E.T / W f .eC/ ¤ f .e�/g, which
has to be even in our setting, since we have oriented edges. If n D 0 then f � c,
and we can write f D c 	 1Tx;y

C c 	 1Ty;x
.

Now suppose the statement is true for n � 2. There must be an edge Œx; y� 2
fe 2 E.T / W f .eC/ ¤ f .e�/g such that f .u/ D f .v/ for all Œu; v� 2 E.Tx;y/.
That is, f � c is constant on Tx;y . Let g D f C �

f .x/ � c� 	 1Tx;y
. Then

g.x/ D g.y/, and the number of edges along which g differs is n � 2. By the
induction hypothesis, g is a linear combination of functions 1Tu;v

, where u � v.
Therefore also f has this property. �
Exercise 9.26. We use the first formula of Proposition 9.3 (b). If F.y; x/ D 1 then

p.y; x/C
X

w¤x W w
y

p.y;w/F.w; y/ D 1:

Since
P

w W w
y p.y;w/ D 1, this yields F.w; y/ D 1 for all w ¤ x with w � y.
The reader can now proceed by induction on the distance from y in an obvious
manner.
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Now let � be a transient end, and let x be a new base point. Write	 D 	.x; �/ D
Œx D x0; x1; x2; : : : �. Thenx^� D xk for somek, so that Œxk; xkC1; : : : � � 	.o; �/
and x�

nC1 D xn for all n � k. Therefore F.xnC1; xn/ < 1 for all n � k. The first
part of the exercise implies that this holds for all n � 0, which shows that � is also
a transient end with respect to the base point x. �

Exercise 9.31. Given x, let w D x ^ �. This is a point on 	.o; �/ as well as on
	.o; x/. If y 2 Tw then d.x; y/ D d.x;w/C d.w; y/ and d.o; y/ D d.o;w/C
d.w; y/, and x ^ y D w. We see that hor.x; �/ D hor.x; y/ D d.x; y/ � d.o; y/
is constant for all y 2 Tw , when x is given. �

Exercise 9.39. If x � o then

h.x/ D K.x; o/ �.@T /C �K.x; x/ �K.x; o/� �.@Tx/

D F.x; o/ �.@T /C 1 � F.o; x/F.x; o/
F.o; x/

�.@Tx/

D F.x; o/ �.@T /C 1 � U.o; o/
p.o; x/

�.@Tx/

by (9.36).Therefore

X
x
o

p.o; x/h.x/ D
�X

x
o

p.o; x/F.x; o/
�
�.@T /C �1 � U.o; o/�X

x
o

�.@Tx/

D �.@T / D h.o/;

as proposed.

Exercise (Corollary) 9.44. If the Green kernel vanishes at infinity then it vanishes
at every boundary point, and the Dirichlet problem at infinity admits a solution.

Conversely, if limx!� G.x; o/ D 0 for every � 2 @�T , then the function g on yT
is continuous, where g.x/ D G.x; o/ for x 2 T and g.�/ D 0 for every � 2 @�T .
Given " > 0, every � 2 @�T has an open neighbourhood V� in yT on which g < ".
Then V D S

�2@�T V� is open and contains @�T . Thus, the complement yT n V is
compact and contains no boundary point. Thus, it is a finite set of vertices, outside
of which g < ". �

Exercise 9.52. For k 2 N and any end � 2 @T , let 'k.�/ D h
�
vk.�/

�
. This is a

continuous function on @T . It is a standard fact that the set of all points where a
sequence of continuous functions converges to a given Borel measurable function
is a Borel set. �
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Exercise 9.54.

PrxŒZn 2 Tx n fxg for all n � 1� D
X

y W y�Dx

p.x; y/
�
1 � F.y; x/�

D 1 � p.x; x�/ �
X

y W y�Dx

p.x; y/F.y; x/

D �p.x; x�/C p.x; x�/
F.x; x�/

by Proposition 9.3 (b), and the formula follows. �
Exercise 9.58. We know that on Tq , the function F.y; xjz/ is the same for all
pairs of neighbours x; y. It coincides with the functionF.1; 0jz/ of the factor chain
.jZnj/n�0 on N0, which is the infinite drunkard’s walk with reflecting barrier at 0
and “forward” transition probability p D q=.q C 1/. Therefore

F.y; xjz/ D q C 1
2qz

�
1 �

p
1 � �2z2

�
; where � D 2

p
q

q C 1:

Using binomial expansion, we get

F.y; xjz/ D 1p
q

1X
nD1

.�1/n�1

�
1=2

n

�
.� z/2n�1:

Therefore

f .2n�1/.y; x/ D .�=2/2n�1

n
p
q

�
2n � 2
n � 1

�
:

With these values,

ProŒWkC1 D y; �kC1 D mC 2n � 1 j Wk D x; �k D m� D f .2n�1/.y; x/: �

Exercise 9.62. Let � be an end that satisfies the criterion of Corollary 9.61. Let
	.o; �/ D Œo D x0; x1; x2; : : : �. Suppose that � is recurrent. Then there is k such
that F.xnC1; xn/ D 1 for all n � 1. Since all involved properties are independent
of the base point, we may suppose without loss of generality that k D 0. Write
x1 D x. Then the random walk on the branch BŒo;x� with transition matrix PŒo;x�

is recurrent. By reversibility, we can view that branch as a recurrent network in
the sense of Section 4.D. It contains the ray 	.o; �/ as an induced subnetwork,
recurrent by Exercise 4.54. The latter inherits the conductances a.xi�1; xi / of its
edges from the branch, and the transition probabilities on the ray satisfy

pray.xi ; xi�1/

pray.xi ; xiC1/
D a.xi ; xi�1/

a.xi ; xiC1/
D p.xi ; xi�1/

p.xi ; xiC1/
:
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But since
1X

kD1

kY
iD1

pray.xi ; xi�1/

pray.xi ; xiC1/
<1;

this birth-and-death chain is transient by Theorem 5.9 (i), a contradiction. �
Exercise 9.70. We can consider the branchBŒv;w� and the associated random walk
PŒv;w�. We know that we can replace g D go with gv in the assumption of the
exercise. With v in the place of the root, we can apply Theorem 9.69 (a): finiteness
of gv on @Tv;w implies that PŒv;w� is transient. Therefore F.w; v/ < 1, so that also
P on T is transient.

Furthermore, we can apply the same argument to any sub-branch BŒx;y� of
BŒv;w�, where x is closer to v than y, and get F.y; x/ < 1. Thus, if � 2 @Tv;w and
	.v; �/ D Œv D x0; x1; x2; : : : � then F.xn; xn�1/ < 1 for all n � 1: the end � is
transient. �
Exercise 9.73. We can order the pi such that piC1 � pi for all i . Then also
pi=.1 � pi / � pj =.1 � pj / whenever i � j . In particular, we have


 D p1

1 � p1

p2

1 � p2

; where 
 D max
n pi

1 � pi

pj

1 � pj

W i; j 2 �; i ¤ j
o
:

Now the inequality p1 C p2 < 1 readily implies that 
 < 1. If x 2 T n fog and
	.0; x/ D Œo D x0; x1; : : : ; xn� then for i D 1; : : : ; n � 1,

p.xi ; xi�1/

1 � p.xi ; xi�1/

p.xiC1; xi /

1 � p.xiC1; xi /

 
;

so that
kY

iD1

p.xi ; xi�1/

1 � p.xi ; xi�1/


´

k=2; if k is even,

p1

1�p1

.k�1/=2; if k is odd.

It follows that g is bounded by M D 1ı�.1 � p1/.1 �
p

 /
�
. �

Exercise 9.80. This computation of the largest eigenvalue of 2� 2 matrices is left
entirely to the reader.

Exercise 9.82. Variant 1. In Example 9.47, we have s D qC1 andpi D 1=.qC1/.
The function ˆ.t/ becomes

ˆ.t/ D 1

2

�p
.q C 1/2 C 4t2 � .q � 1/

�
and the unique positive solution of the equationˆ0.t/ D ˆ.t/=t is easily computed:

�.P / D 2pqı.q C 1/:
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Variant 2. xZn D jZnj is the infinite drunkard’s walk on N0 (reflecting at state 0)
with “forward probability” p D q=.q C 1/, where q C 1 is the vertex degree.
In this example, G.o; ojz/ D xG.0; 0jz/, because in our factor chain, the class
corresponding to the state 0 has only the vertex o in its preimage under the natural
projection. But xG.0; 0jz/ is the function GN.0; 0jz/ computed in Example 5.23.
(Attention: the q of that example is 1 � p.) That is,

G.o; ojz/ D 2q

q � 1Cp.q C 1/2 � 4qz2
:

The smallest positive singularity of this function is r.P / D .q C 1/ı�2pq �, and
�.P / D 1=r.P /. �

Exercise 9.84. Let Cn D fx 2 T W jxj D ng, n � 0, be the classes corresponding
to the projection x 7! jxj. Then C0 D fog and Np.0; 1/ D p.o; C1/ D 1. For n � 1
and x 2 Cn, we have

Np.n; n � 1/ D p.x; x�/ D 1 � ˛
and

Np.n; nC 1/ D p.x; CnC1/ D 1 � p.x; x�/ D ˛:
These numbers are independent of the specific choice of x 2 Cn, so that we have
indeed a factor chain. The latter is the infinite drunkard’s walk on N0 (reflecting
at state 0) with “forward probability” p D ˛. The relevant computations can be
found in Example 5.23. �

Exercise 9.88. (1) We prove the following by induction on n.

� For all k1; : : : ; kn 2 N and x 2 X � X.N /,

PrxŒt1 D k1; t2 D k1 C k2; : : : ; tn D k1 C 	 	 	 C kn�

D f .k1/.0;N / f .k2/.0;N / 	 	 	f .kn/.0;N /;

where f .ki /.0;N / refers to SRW on the integer interval f0; : : : ; N g. This implies
immediately that the increments of the stopping times are i.i.d.

For n D 1, we have already proved that formula. Suppose that it is true for
n � 1. We have, using the strong Markov property,

PrxŒt1 D k1; t2 D k1 C k2; : : : ; tn D k1 C 	 	 	 C kn�

D
X
y2X

PrxŒt1 D k1; Zk1
D y��

� PrxŒt2 D k1 C k2; : : : ; tn D k1 C 	 	 	 C kn j t1 D k1; Zk1
D y� .�/D
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.�/D
X
y2X

PrxŒt1 D k1; Zk1
D y�

� Pry Œt1 D k2; t2 D k2 C k3; : : : ; tn�1 D k2 C 	 	 	 C kn�

D
X
y2X

PrxŒt1 D k1; Zk1
D y� f .k2/.0;N / 	 	 	f .kn/.0;N /

D PrxŒt1 D k1� f
.k2/.0;N / 	 	 	f .kn/.0;N /

D f .k1/.0;N / f .k2/.0;N / 	 	 	f .kn/.0;N /:

We remark that .�/ holds since tk is the stopping time of the .k � 1/-st visit in a
point in X distinct from the previous one after the time t1.

If the subdivision is arbitrary, then the distribution of t1 depends on the starting
point in X . Therefore the increments cannot be identically distributed. They also
cannot be independent, since in this situation, the distribution of t2 � t1 depends
on the point Zt1

.

(2) We know that the statement is true for k D 1. Suppose it holds for k� 1. Then,
again by the strong Markov property,

PrxŒtk D n; Zn D y� D
nX

mD0

X
v2X

PrxŒt1 D m; Zm D v; tk D n; Zn D y�

D
nX

mD0

X
v2X

PrxŒt1 D m; Zm D v� PrvŒtk�1 D n �m; Zn�m D y�:

(Note that in reality, we cannot have m D 0 or n D 0; the associated probabilities
are 0.) We deduce, using the product formula for power series,

1X
nD0

Prx

�
tk D n; Zn D y

�
zn

D
X
v2X

1X
nD0

nX
mD0

PrxŒt1 D m; Zm D v� PrvŒtk�1 D n �m; Zn�m D y� zn

D
X
v2X

� 1X
mD0

PrxŒt1 D m; Zm D v� zm
�� 1X

nD0

PrvŒtk�1 D n; Zn D y� zn
�

D
X
v2X

�
p.x; v/ �.z/

� �
p.k�1/.v; y/ �.z/k�1

�
;

which yields the stated formula. �
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Exercise 9.91. We notice that the reversing measure zm of SRW on zX satisfies
zmjX D m. The resistance of every edge isD 1. Therefore

. Qf ; Qf /z� D
X
Qx2 zX

Qf . Qx/2 zm. Qx/ �
X

x2X� zX
Qf . Qx/2 zm. Qx/ D .f; f /� :

Along any edge of the inserted path of the subdivision that replaces an original
edge Œx; y� of X , the difference of Qf is 0, with precisely one exception, where the
difference is f .y/ � f .x/. Thus, the contribution of that inserted path to Dz�. Qf /
is
�
f .y/ � f .x/�2. Therefore Dz�. Qf / D D�.f /. �

Exercise 9.93. Conditions (i) and (ii) imply yield that

DP .f / � " 	DT .f / and .f; f /P 
M 	 .f; f /T for every f 2 `0.X/:

Here, the index P obviously refers to the reversible Markov chain with transition
matrix P and associated reversing measure m, while the index T refers to SRW.
We have already seen that .f; f /P � .Pf; f /P D DP .f /. Therefore, since

�.P / D sup

²
.Pf; f /P

.f; f /P
W f 2 `0.X/; f ¤ 0

³
;

we get

1 � �.P / D inf

²
DP .f /

.f; f /P
W f 2 `0.X/; f ¤ 0

³

� "

M
inf

²
DT .f /

.f; f /T
W f 2 `0.X/; f ¤ 0

³
D "

M

�
1 � �.T /�;

as proposed. �
Exercise 9.96. We use the cone types. There are two of them. Type�1 corresponds
to Tx , where x 2 	.o;$/, x ¤ o. That is, @Tx contains$ . Type 1 corresponds to
any Ty that “looks downwards” in Figure 37, so that Ty is a q-ary tree rooted at x,
and $ … @Tx .

If x has type �1, then Tx contains precisely one neighbour of x with the same
type, namely x�, and p.x; x�/ D 1� ˛. Also, Tx contains q � 1 neighbours y of
x with type 1, and p.x; y/ D ˛=q for each of them.

If y has type 1, then all of its q neighbours w 2 Ty also have type one, and
p.y;w/ D ˛=q for each of them.

Therefore

A D
�
q 1�˛

˛
q � 1

0 ˛
1�˛

�
:

The two eigenvalues are the elements in the principal diagonal of A, and at least
one of them is > 1. This yields transience. �
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Exercise 9.97. The functions F�.z/ D F.x; x
jz/ and FC.z/ D F.x
; xjz/ are
independent of x, compare with Exercise 2.12. Proposition 9.3 leads to the two
quadratic equations

F�.z/ D .1 � ˛/ z C ˛ z F�.z/2 and

FC.z/ D ˛

q
z C .q � 1/ ˛

q
z F�.z/FC.z/C .1 � ˛/ z F C .z/2:

Since F�.0/ D 0, the right one of the two solutions of the quadratic equation for
F�.z/ is

F�.z/ D 1

2˛z

�
1 �

p
1 � 4˛.1 � ˛/z2

�
:

One next has to solve the quadratic equation for FC.z/. By the same argument,
the right solution is the one with the minus sign in front of the square root. We let
F� D F�.1/ and FC D FC.1/. In the end, we find after elementary computations

F� D

8̂<
:̂
1 � ˛
˛

if ˛ � 1

2
;

1 if ˛ 
 1

2
;

and FC D

8̂̂<
ˆ̂:
1

q
if ˛ � 1

2
;

˛

.1 � ˛/q if ˛ 
 1

2
:

We see that when ˛ > 1=2 then F�.1/ < 1 and FC.1/ < 1. Then the Green kernel
vanishes at infinity, and the Dirichlet problem is solvable. On the other hand, when
˛ 
 1=2 then the random walk converges almost surely to $ , so that supp �o does
not coincide with the full boundary: the Dirichlet problem at infinity does not admit
solution in this case.

We next compute

U.x; x/ D U D ˛ F� C .1 � ˛/FC D minf˛; 1 � ˛gq C 1
q

:

For x; y 2 Tq , let v D v.x; y/ be the point on 	.x; y/ which minimizes hor.v/ D
hor.v;$/. In other words, this is the first common point on the geodesic rays
	.x;$/ and 	.y;$/ – the confluent of x and y with respect to $ . (Recall that
x ^ y is the confluent with respect to o.) With this notation,

G.x; y/ D F d.x;v/� F
d.y;v/
C

1

1 � U :

We now compute the Martin kernel. It is immediate that

K.x;$/ D F�.1/hor.x/ D

8̂̂<
ˆ̂:
�
1 � ˛
˛

�hor.x/

if ˛ � 1

2
;

1 if ˛ 
 1

2
:
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We leave to the reader the geometric reasoning that leads to the formula for the
Martin kernel at � 2 @Tq n f$g: setting 
 D pF�FC,

K.x; �/ D K.x;$/ 
hor.x;�/�hor.x/;

where 
 D min
°

1�˛
˛q
; ˛

.1�˛/q

±1=2

�

Exercise 9.101. We can rewrite

D.1/�1D0.1/ D �I �D.1/AD.1/��1
DB�1

and, with a few transformations,�
I �D.1/��1�

I �D.1/AD.1/� D �I �QD.1/��I �D.1/��1
:

The last identity implies

�
�
I �D.1/��1�

I �D.1/AD.1/� D �:
Therefore, if 1 denotes the column vector over � with all entriesD 1, then

1

`
D � D.1/�1D0.1/ 1 D � �I �D.1/��1

DB�1 1;

which is the proposed formula. �
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List of symbols and notation

This list contains a selection of the most important symbols and notation.

Numbers

N D f1; 2; : : : g the natural numbers (positive integers)
N0 D f0; 1; 2; : : : g the non-negative integers
Nodd D f1; 3; 5; : : : g the odd natural numbers
Z the integers
R the real numbers
C the complex numbers

Markov chains

X typical symbol for the state space of a Markov chain
P , also Q typical symbols for transition matrices
C , C.x/ irreducible class (of state x)
G.x; yjz/ Green function (1.32)
F.x; yjz/, U.x; yjz/ first passage time generating functions (1.37)
L.x; yjz/ generating function of “last exit” probabilities (3.56)

Probability space ingredients

� trajectory space, see (1.8)
A � -algebra generated by all cylinder sets (1.9)
Prx and Pr� probability measure on the trajectory space with respect to

starting point x, resp. initial distribution �, see (1.10)
Pr. 	 / probability of a set in the � -algebra
PrŒ 	 � probability of an event described by a logical expression
PrŒ 	 j 	 � conditional probability
E expectation (expected value)

Random times

s, t typical symbols for stopping times (1.24)
sW , sx first passage time = time (� 0) of first visit to the set W , resp. the

point x (1.26)
tW , tx time (� 1) of first visit to the set W , resp. the point x after the start
�V , �k exit time from the set V , resp. (in a tree) from the ball with radius k

around the starting point (7.34), (9.19)
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Measures

, � typical symbols for measures on X , R, Zd , a group, etc.
N mean or mean vector of the probability measure  on Z or Zd

supp support of a measure or function
mC the stationary probability measure of a positive recurrent essential

class of a Markov chain (3.19)
m (a) the stationary probability measure of a positive recurrent,

irreducible Markov chain,
(b) the reversing measure of a reversible Markov chain,
not necessarily with finite mass (4.1)

Graphs, trees

� typical notation for a (usually directed) graph
V.�/ vertex set of �
E.�/ (oriented) edge set of �
�.P / graph of the Markov chain with transition matrix P (1.6)
T typical notation for a tree
Tq homogenous tree with degree q C 1
	 according to context, (a) path in a graph, (b) projection map, or

(c) 3:14159 : : :
… a set of paths
	Œ�; �� geodesic arc, ray or two-way infinite geodesic from � to � in a tree
yT end compactification of the tree T (9.14)
@T space of ends of the tree T
T1 set of vertices of the tree T with infinite degree
T � set of improper vertices
@�T boundary of the non locally finite tree T , consisting of ends

and improper vertices (9.14)

Reversible Markov chains

m reversing measure (4.1)
r difference operator associated with a Markov chain (4.6)
LD P � I Laplace operator associated with a Markov chain
spec.P / spectrum of P

 typical notation for an eigenvalue of P
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Groups, vectors, functions

G typical notation for a group
S permutation group (symmetric group)
ei unit vector in Zd

0 according to context (a) constant function with value 0,
(b) zero column vector in Zd

1 according to context (a) constant function with value 1,
(b) column vector in Zd with all coordinates equal to 1

1A indicator function of the set or event A
f .t0�/ limit of f .t/ as t ! t0 from below (t real)

Galton–Watson process and branching Markov chains

GW abbreviation for Galton–Watson
BMC abbreviation for branching Markov chain
BMC.X; P; / branching Markov chain with state space X ,

transition matrix P and offspring distribution 
†D f1; : : : ; N g or set of possible offspring numbers, interpreted
† D N as an alphabet
†� set of all words over †, viewed as the N -ary tree

(possibly with N D1)
T full genealogical tree, a random or deterministic

subtree of †� with property (5.32), typically
a GW tree

� deterministic finite subtree of †� containing
the root �

Potential and boundary theory

H space of harmonic functions
H C cone of non-negative harmonic functions
H 1 space of bounded harmonic functions
� set of superharmonic functions
�C cone of non-negative superharmonic functions
E cone of excessive measures
yX a compactification of the discrete set X
�, � typical notation for elements of the boundary yX nX

and for elements of the boundary of a tree
yX.P / the Martin compactification of .X; P /

M D yX.P / nX the Martin boundary





Index

balayée, 177
birth-and-death Markov chain, 116
Borel � -algebra, 189
boundary process, 263
branching Markov chain

strongly recurrent, 144
transient, 144
weakly recurrent, 144

Busemann function, 244

Chebyshev polynomials, 119
class

aperiodic, 36
essential, 30
irreducible, 28
null recurrent, 48
positive recurrent, 48
recurrent, 45
transient, 45

communicating states, 28
compactification

(general), 184
conductance, 78
cone

base of a —, 179
convex, 179

cone type, 274
confluent, 233
continued fraction, 123
convex set of states, 31
convolution, 86
coupling, 63, 128
cut point in a graph, 22

degree of a vertex, 79
directed cover, 274
Dirichlet norm, 93
Dirichlet problem

for finite Markov chains, 154
Dirichlet problem at infinity, 251
downward crossings, 193
drunkard’s walk

finite, 2
on N0, absorbing, 33
on N0, reflecting, 122, 137
on Z, 46

Ehrenfest model, 90
end of a tree, 232
ergodic coefficient, 53
exit time, 190, 196, 237
expectation, 13
expected value, 13
extremal element of a convex set, 180

factor chain, 17
Fatou theorem

probabilistic, 215
radial, 262

final
event, 212
random variable, 212

finite range, 159, 179
first passage times, 15
flow in a network, 104
function

G-integrable, 169
P -integrable, 158
harmonic, 154, 157, 159
superharmonic, 159

Galton–Watson process, 131
critical, 134
extended, 137
offspring distribution, 131
subcritical, 134
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supercritical, 134
Galton–Watson tree, 136
geodesic arc from x to y, 227
geodesic from � to �, 232
geodesic ray from x to �, 232
graph

adjacency matrix of a —, 79
bipartite, 79
distance in a —, 108
k-fuzz of a —, 108
locally finite, 79
of a Markov chain, 4
oriented, 4
regular —, 96
subdivision of a —, 283
symmetric, 79

Green function, 17

h-process, 182
harmonic function, 154, 157, 159
hitting times, 15
horocycle, 244
horocycle index, 244
hypercube

random walk on the —, 88

ideal boundary, 184
improper vertices, 235
initial distribution, 3, 5
irreducible cone types, 293

Kirchhoff’s node law, 81

Laplacian, 81
leaf of a tree, 228
Liouville property, 215
local time, 14
locally constant function, 236

Markov chain, 5
automorphism of a —, 303
birth-and-death, 116
induced, 164

irreducible, 28
isomorphism of a —, 303
reversible, 78
time homogeneous, 5

Markov property, 5
Martin boundary, 187
Martin compactification, 187
Martin kernel, 180
matrix

primitive, 59
stochastic, 3
substochastic, 34

maximum principle, 56, 155, 159
measure

excessive, 49
invariant, 49
reversing, 78
stationary, 49

minimal harmonic function, 180
minimal Martin boundary, 206
minimum principle, 162

network, 80
recurrent, 102
transient, 102

null class, 48
null recurrent

state, 47

offspring distribution, 131
non-degenerate, 131

path
finite, 26
length of a —, 26
resistance length of a —, 94
weight of a —, 26

period of an irreducible class, 36
Poincaré constant, 95
Poisson boundary, 214
Poisson integral, 210
Poisson transform, 248
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positive recurrent
class, 48
state, 47

potential
of a function, 169
of a measure, 177

predecessor of a vertex, 227
Pringsheim’s theorem, 130

random variable, 13
random walk

nearest neighbour, 226
on N0, 116
on a group, 86
simple, 79

recurrent
�-, 75
class, 45
network, 102
set, 164
state, 43

reduced
function, 172, 176
measure, 176

regular boundary point, 252
resistance, 80

simple random walk
on integer lattices, 109

simple random walk (SRW), 79
spectral radius of a Markov chain, 40
state

absorbing, 31
ephemeral, 35
essential, 30
null recurrent, 47
positive recurrent, 47
recurrent, 43
transient, 43

state space, 3
stochastic matrix, 3
stopping time, 14

strong Markov property, 14
subharmonic function, 269
subnetwork, 107
substochastic matrix, 34
superharmonic function, 159
supermartingale, 191
support of a Borel measure, 202

terminal
event, 212
random variable, 212

time reversal, 56
topology of pointwise convergence, 179
total variation, 52
trajectory space, 6
transient

�-, 75
class, 45
network, 102
skeleton, 242
state, 43

transition matrix, 3
transition operator, 159
tree

(2-sided infinite) geodesic in a —,
227

branch of a —, 227
cone of a —, 227
cone type of a —, 273
end of a —, 232
geodesic arc in a —, 227
geodesic ray in a —, 227
horocycle in a—, 244
leaf of a —, 228
recurrent end in a—, 241
transient end in a—, 241

ultrametric, 234
unbranched path, 283
unit flow, 104
upward crossings, 194

walk-to-tree coding, 138


	Preface
	Contents
	Introduction
	Summary
	Raison d'être

	1 Preliminaries and basic facts
	Preliminaries, examples
	Axiomatic definition of a Markov chain
	Transition probabilities in n steps
	Generating functions of transition probabilities

	2 Irreducible classes
	Irreducible and essential classes
	The period of an irreducible class
	The spectral radius of an irreducible class

	3 Recurrence and transience, convergence, and the ergodic theorem
	Recurrent classes
	Return times, positive recurrence, and stationary probability measures
	The convergence theorem for finite Markov chains
	The Perron–Frobenius theorem
	The convergence theorem for positive recurrent Markov chains
	The ergodic theorem for positive recurrent Markov chains
	-recurrence

	4 Reversible Markov chains
	The network model
	Speed of convergence of finite reversible Markov chains
	The Poincaré inequality
	Recurrence of infinite networks
	Random walks on integer lattices

	5 Models of population evolution
	Birth-and-death Markov chains
	The Galton–Watson process
	Branching Markov chains

	6 Elements of the potential theory of transient Markov chains
	Motivation. The finite case
	Harmonic and superharmonic functions. Invariant and excessive measures
	Induced Markov chains
	Potentials, Riesz decomposition, approximation
	``Balayage'' and domination principle

	7 The Martin boundary of transient Markov chains
	Minimal harmonic functions
	The Martin compactification
	Supermartingales, superharmonic functions, and excessive measures
	The Poisson–Martin integral representation theorem
	Poisson boundary. Alternative approach to the integral representation

	8 Minimal harmonic functions on Euclidean lattices
	9 Nearest neighbour random walks on trees
	Basic facts and computations
	The geometric boundary of an infinite tree
	Convergence to ends and identification of the Martin boundary
	The integral representation of all harmonic functions
	Limits of harmonic functions at the boundary
	The boundary process, and the deviation from the limit geodesic
	Some recurrence/transience criteria
	Rate of escape and spectral radius

	Solutions of all exercises
	Bibliography
	A   Textbooks and other general references
	B   Research-specific references

	List of symbols and notation
	Index

