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Preface

David Nualart was born in Barcelona on March 21, 1951. After high school he
studied mathematics at the University of Barcelona, from which he obtained an
undergraduate degree in 1972 and a PhD in 1975. He was a full professor at the
University of Barcelona from 1984 to 2005. He moved to the University of Kansas
in 2005, as a Professor in the Department of Mathematics, and was appointed Black-
Babcock Distinguished Professor there in 2012.

David Nualart is among the world’s most prolific authors in probability theory,
with more than 200 research papers, many of which are considered pathbreaking,
and several influential monographs and lecture notes. His most famous book is
undoubtedly Malliavin Calculus and Related Topics (cited more than 530 times
on MathSciNet), which has been serving as an ultimate reference on the topic
since its publication. Its most recent edition contains two chapters which have
become standard references in their own right, on state-of-the-art applications of
the Malliavin calculus to quantitative finance and to fractional Brownian motion.

David Nualart has long influenced the general theory of stochastic analysis,
including martingale theory, stochastic calculus of variations, stochastic equations,
limit theorems, and mathematical finance. In the first part of his scientific life,
he contributed to the development of a stochastic calculus for two-parameter
martingales, setting the basis of stochastic integration in this context. Subsequently,
one of his major achievements in probability theory has been his ability to develop
and apply Malliavin calculus techniques to a wide range of concrete, interesting,
and intricate situations. For instance, he is at the inception and is recognized as the
leader in anticipating stochastic calculus, a genuine extension of the classical Itô
calculus to non-adapted integrands. His other contributions to stochastic analysis
include results related to integration-by-parts formulas, divergence and pathwise
integrals, regularity of the laws of random variables through Malliavin calculus, and
the study of various types of stochastic (partial) differential equations.

In the last decades, his research focused largely on the stochastic calculus with
respect to Gaussian processes, especially fractional Brownian motion, to which he
has become the main contributor. David Nualart’s most recent work also includes
important results on limit theorems in terms of Malliavin calculus.

v
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David Nualart’s prominent role in the stochastic analysis community and the
larger mathematics profession is obvious by many other metrics, including mem-
bership in the Royal Academy of Exact Physical and Natural Sciences of Madrid
since 2003, an invited lecture at the 2006 International Congress of Mathematicians,
continuous and vigorous service as editor or associate editor for all the main journals
in probability theory, and above all, the great number of Ph.D. students, postdoctoral
scholars, and collaborators he has trained and worked with around the world. By
being an open-minded, kind, generous, and enthusiastic colleague, mentor, and
person, he has fostered a good atmosphere in stochastic analysis. All those working
in this area have cause to be grateful and to celebrate the career of David Nualart.

In this context, the book you hold in your hands presents 25 research articles
on various topics in stochastic analysis and Malliavin calculus in which David
Nualart’s influence is evident, as a tribute to his lasting impact in these fields of
mathematics. Each article went through a rigorous peer-review process, led by this
volume’s four editors Jin Feng (Kansas), Yaozhong Hu (Kansas), Eulàlia Nualart
(Pompeu Fabra, Barcelona), and Frederi Viens (Purdue) and six associate members
of this volume’s Editorial Board, Laure Coutin (Toulouse), Ivan Nourdin (Nancy),
Giovanni Peccati (Luxembourg), Lluı́s Quer-Sardanyons (Autònoma, Barcelona),
Samy Tindel (Nancy), and Ciprian Tudor (Lille), with the invaluable assistance of
many anonymous referees.

The articles’ authors represent some of the top researchers in these fields, all of
whom are recognized internationally for their contributions to date; many of them
were also able to participate in a conference in honor of David Nualart held at the
University of Kansas on March 19–21, 2011, on Malliavin calculus and stochastic
analysis, with major support from the US National Science Foundation, with
additional support from the Department of Mathematics and the College of Liberal
Arts and Sciences at the University of Kansas, the Department of Mathematics and
the Department of Statistics at Purdue University, and the French National Agency
for Research.

As the title of this volume indicates and the topics of many of the articles within
emphasize, this Festschrift also serves as a tribute to the memory of Paul Malliavin
and his extraordinary influence on probability and stochastic analysis, through
the inception and subsequent constant development of the stochastic calculus of
variations, known today as the Malliavin calculus. Professor Malliavin passed away
in June 2010. He is dearly missed by many as a mathematician, colleague, mentor,
and friend. Dan Stroock initially coined the term “Malliavin calculus” around 1980
to describe the stochastic calculus of variations developed by Paul Malliavin, which
employs the Malliavin derivative operator. The term has been broadened to describe
any mathematical activity using this derivative and related operators on standard or
abstract Wiener space as well as, to some extent, calculus based on Wiener chaos
expansions. We consider the Malliavin calculus in this broadest sense.

The term “stochastic analysis” originated in its use as the title of the 1978
conference volume edited by Avner Friedman and Mark Pinsky. It described results
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on finite- and infinite-dimensional stochastic processes that employ probabilistic
tools as well as tools from classical and functional analysis. We understand
stochastic analysis as being broadly rooted and applied this way in probability
theory and stochastic processes, rather than a term to describe solely analysis results
with a probabilistic flavor or origin.

The topics in this volume are divided by theme into five parts, presented from
the more theoretical to the more applied. While these divisions are not fundamental
in nature and can be interpreted loosely, they crystallize some of the most active
areas in stochastic analysis today and should be helpful for readers to grasp the
motivations of some of the top researchers in the field.

• Part I covers Malliavin calculus and Wiener space theory, with topics which
advance the basic understanding of these tools and structures; these topics are
then used as tools throughout the rest of the volume.

• Part II develops the analysis of stochastic differential systems.
• Part III furthers this development by focusing on stochastic partial differential

equations and some of their fine properties.
• Part IV also deals largely with stochastic equations and now puts the emphasis on

noise terms with long-range dependence, particularly using fractional Brownian
motion as a building block.

• Part V closes the volume with articles whose motivations are solving specific
applied problems using tools of Malliavin calculus and stochastic analysis.

A number of stochastic analysis methods cut across all of the five parts listed
above. Some of these tools include:

• Analysis on Wiener space
• Regularity and estimation of probability laws
• Malliavin calculus in connection to Stein’s method
• Variations and limit theorems
• Statistical estimators
• Financial mathematics

As the readers will find out by perusing this volume, stochastic analysis can
be interpreted within several distinct fields of mathematics and has found many
applications, some reaching far beyond the core mathematical discipline. Many
researchers working in probability, often using tools of functional analysis, are still
heavily involved in discovering and developing new ways of using the Malliavin
calculus, making it one of the most active areas of stochastic analysis today and for
some time to come. We hope this Festschrift will serve to encourage researchers to
consider the Malliavin calculus and stochastic analysis as sources of new techniques
that can advance their research.

The four editors of this Festschrift are indebted to the members of the Editorial
Board, Laure Coutin, Ivan Nourdin, Giovanni Peccati, Lluı́s Quer-Sardanyons,
Samy Tindel, and Ciprian Tudor, for their tireless work in selecting and editing
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the articles herein, to the many anonymous referees for volunteering their time
to discern and help enforce the highest quality standards, and above all to David
Nualart, for inspiring all of us to develop our work in stochastic analysis and the
Malliavin calculus.

Thank you, David.

Lawrence, Kansas, USA Jin Feng and Yaozhong Hu
Barcelona, Spain Eulalia Nualart
West Lafayette, Indiana, USA Frederi Viens
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Aurélien Deya and Samy Tindel

17 Parameter Estimation for ˛-Fractional Bridges . . . . . . . . . . . . . . . . . . . . . . . . 385
Khalifa Es-Sebaiy and Ivan Nourdin

18 Gradient Bounds for Solutions of Stochastic Differential
Equations Driven by Fractional Brownian Motions . . . . . . . . . . . . . . . . . . . . 413
Fabrice Baudoin and Cheng Ouyang

19 Parameter Estimation for Fractional Ornstein–Uhlenbeck
Processes with Discrete Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Yaozhong Hu and Jian Song

Part V Applications of Stochastic Analysis

20 The Effect of Competition on the Height and Length of
the Forest of Genealogical Trees of a Large Population . . . . . . . . . . . . . . . . 445
Mamadou Ba and Etienne Pardoux



Contents xi

21 Linking Progressive and Initial Filtration Expansions . . . . . . . . . . . . . . . . . 469
Younes Kchia, Martin Larsson, and Philip Protter

22 A Malliavin Calculus Approach to General Stochastic
Differential Games with Partial Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
An Ta Thi Kieu, Bernt Øksendal, and Yeliz Yolcu Okur

23 Asymptotics for the Length of the Longest Increasing
Subsequence of a Binary Markov Random Word . . . . . . . . . . . . . . . . . . . . . . 511
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Chapter 1
An Application of Gaussian Measures
to Functional Analysis

Daniel W. Stroock

Abstract In a variety of settings, it is shown that all Borel measurable, linear maps
from one locally convex topological vector space to another must be continuous.
When the image space is Polish, this gives a proof of L. Schwartz’s Borel graph
theorem. The proof is based on a simple probabilistic argument and, except for the
application to Schwartz’s theorem, avoids the descriptive set theory used in previous
treatments of such results.

Received 6/14/2011; Accepted 11/22/2011; Final 11/22/2011

1 Introduction

This article is an expanded version of my note [6] dealing with Laurent Schwartz’s
Borel graph theorem. Schwartz’s theorem [5] shows that, under appropriate techni-
cal conditions, the classical closed graph theorem can be improved to the statement
that a linear map between topological vector spaces is continuous if its graph is
Borel measurable. That is, the condition in the classical statement that the graph be
closed can be replaced by the condition that it be Borel measurable. Schwartz’s
proof, as well as A. Martineu’s (cf. [3] and the appendix in [9]) simplification
of the original argument, is a tour de force in the use of descriptive set theory.
In this paper, it is shown (cf. Corollaries 2.1 and 3.3) that, in a wide variety of
circumstances, the same conclusion can be reached as an application of relatively
elementary probabilistic ideas.

D.W. Stroock (�)
M.I.T, 2-272, Cambridge, MA 02139, USA
e-mail: dws@math.mit.edu

F. Viens et al. (eds.), Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor
of David Nualart, Springer Proceedings in Mathematics & Statistics 34,
DOI 10.1007/978-1-4614-5906-4 1, © Springer Science+Business Media New York 2013
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4 D.W. Stroock

My formulation is somewhat different from Schwartz’s. Instead of assuming that
its graph is Borel measurable, I assume that the map itself is Borel measurable.
When the spaces are Polish (i.e., complete, separable metric spaces), there is no
difference between these two hypotheses. Indeed, if E and F are any pair of Polish
spaces and ˆ W E �! F , then the graph G.ˆ/ is Borel measurable if and only
if ˆ is Borel measurable. To check this, recall the fact (cf. [2] or [4]) that a one-
to-one, Borel measurable map from a Borel measurable subset of one Polish space
into a second Polish space takes Borel measurable sets to Borel measurable sets.
Applying this to the map x 2 E 7�! �

x; ˆ.x/
� 2 E � F , one sees that G.ˆ/ is a

Borel measurable subset of E � F if ˆ is Borel measurable. Conversely, if G.ˆ/ is
Borel measurable and �E and �F are the natural projection maps from E � F onto
E and F , respectively, then, because �E and �F are continuous and �E � G.ˆ/ is
one-to-one, ˆ D �F ı �

�E � G.ˆ/
��1

is Borel measurable. Further, as shown in
Corollaries 2.1 and 3.3, under reasonable conditions, it is possible to reduce some
non-separable situations to separable ones.

In order to simplify the presentation of the basic ideas, in Sect. 2 I restrict my
attention to Banach spaces, where my proof provides an independent proof of the
classical closed graph theorem in the case when the image space is separable. In
Sect. 3, I extend the result to more general settings, although my proof there relies
on the closed graph theorem.

2 Banach Space Setting

Throughout, for a topological space S , BS will denote the Borel �-algebra over S ,
and, in this section, E and F will be Banach spaces over R with norms k � kE and
k � kF .

Set � D R
Z

C

, give � the product topology, and set P D �Z
C

0;1 on .�; B�/,

where �0;1.d�/ D .2�/� 1
2 e� �2

2 d� is the standard Gauss distribution on R. Given a
sequence fxn W n � 1g � E set

Sn.!/ D
nX

mD1

!mxm for n 2 Z
C and ! 2 �;

A �
n
! W lim

n!1 Sn.!/ exists in E
o

and

S.!/ D
(

limn!1 Sn.!/ if ! 2 A

0 if ! … A:

Since

E
P

" 1X

mD1

j!mjkxmkE

#

D
r

2

�

1X

mD1

kxmkE;

P.A/ D 1 if
P1

mD1 kxmkE < 1.
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The following is a minor variation on the renowned theorem of X. Fernique
(cf. [1] or Theorem 8.2.1 in [7]).

Theorem 2.1. Let fxn W n � 1g � E , assume that
P1

nD1 kxnkE < 1, and define
! S.!/ accordingly. If ˆ W E �! F is a Borel measurable, linear map, then

kˆ.xm/k2
F � E

P
�
.ˆ ı S/2

�
< 1 for all m 2 Z

C:

Proof. Since, for every ! 2 �, S.!/ is an element of the closed linear span of
fxn W n � 1g, I will, without loss in generality, assume that E is separable and
therefore that BE2 D BE � BE . In particular, this means that the maps .x; y/ 2
E2 7�! x˙yp

2
2 E are BE � BE-measurable.

Next note that

ˆ ı S.!1/ ˙ ˆ ı S.!2/p
2

D ˆ ı S

�
!1 ˙ !2

p
2

�
for .!1; !2/ 2 A2:

Thus, since �
!1 C !2

p
2

;
!1 � !2

p
2

�

has the same distribution under P2 as
�
!1; !2

�
, we know that

�
ˆ ı S.!1/ C ˆ ı S.!2/p

2
;

ˆ ı S.!1/ � ˆ ı S.!2/p
2

�

has the same P
2-distribution as

�
ˆ ı S.!1/; ˆ ı S.!2/

�
.

Starting from the preceding, precisely the same argument as the one introduced
by Fernique shows that EP

�
e˛kˆıSk2

F

�
< 1 for some ˛ > 0, which certainly means

that EP
�kˆ ı Sk2

F

�
< 1.

To complete the proof, let m 2 Z
C be given and define !  S.m/.!/ relative

to the sequence f.1 � ım;n/xn W n � 1g. Then S.m/.!/ is P-independent of !m, and
S.!/ D !mxm C S.m/.!/ for ! 2 A. Hence, if y� 2 F � with ky�kF � � 1, then

E
P
�kˆıSk2

F

� � E
P
�hˆıS; y�i2

� D hxm; y�i2CE
P
�hˆıS.m/; y�i2

� � hxm; y�i2;

and so kˆ.xm/k2
F � E

P
�kˆ ı Sk2

F

�
. ut

Corollary 2.1. Let ˆ W E �! F be a linear map. If ˆ is Borel measurable or if F

is separable and the graph G.ˆ/ of ˆ is Borel measurable, then ˆ is continuous.

Proof. Assume that ˆ is Borel measurable and suppose that ˆ were not continuous.
Then we could find fxn W n � 1g � E such that kxnkE � n�2 and kˆ.xn/kF � n.
But then, if S.!/ is defined relative to fxn W n � 1g, we would have the
contradiction that

m2 � kˆ.xm/k2
F � E

P
�kˆ ı Sk2

F

�
< 1 for all m 2 Z

C:
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Now assume that F is separable and that G.ˆ/ is Borel measurable. If E is
separable as well, then, by the comments in the introduction, ˆ is Borel measurable
and therefore, by the preceding, continuous. To handle general E’s, suppose that
fxn W n � 1g � E and that xn �! x in E . To see that ˆ.xn/ �! ˆ.x/

in F , take E 0 to be the closed linear span of fxn W n � 1g in E . Then E 0 is
separable and if ˆ0 D ˆ � E 0, then G.ˆ0/ is a Borel measurable subset of E 0 � F .
Hence, ˆ0 is Borel measurable and therefore continuous. In particular, this means
that ˆ.xn/ �! ˆ.x/. ut

3 Some Generalizations

In this section, E will be a Fréchet space over R with a complete metric � having
the property that �.�x; 0/ � C.1 C j�j/�.x; 0/ for some C < 1 and all � 2 R and
x 2 E . In particular, this will be the case if there exists a sequence of seminorms
fpk W k � 1g for which �.x; 0/ D P1

kD1 2�k pk.x/

1Cpk.x/
.

Given a sequence fxn W n � 1g � E with
P1

nD1 �.xn; 0/ < 1, define the
random variables Sn as in Sect. 2. Then, without any substantive change in the
argument given earlier, one can show that P.A/ D 1 when A is the set of ! 2 �

for which limn!1 Sn.!/ exists in E . Finally, define S.!/ as before. Then, by the
same argument as was used to prove Theorem 2.1, we have the following.1

Lemma 3.1. If fxn W n � 1g � E satisfies
P1

nD1 �.xn; 0/ < 1 and ' W E �! R

is a Borel measurable linear function, then E
P
�
.' ı S/2

�
< 1.

Theorem 3.1. If ' W E �! R is a Borel measurable linear function, then ' is
continuous.

Proof. The proof is essentially the same as that for the first part of Corollary 2.1.
Namely, if ' were not continuous, then we could find a sequence fx0

n W n � 1g � E

such that �.x0
n; 0/ � n�3 and '.x0

n/ � 	 for some 	 > 0. Now set xn D nx0
n

and define S relative to fxn W n � 1g and, for each m 2 Z
C, S.m/ relative to

f.1 � ım;n/xn W n � 1g. Then, just as before, we get the contradiction 	m2 �
E
P
�
.' ı S/2

�
< 1 for all m 2 Z

C. ut
Given a locally convex, Hausdorff topological space F , say that a map ˆ W E �!

F is w-Borel measurable if hˆ. � /; y�i is Borel measurable from E to R for each
y� 2 F �. Equivalently, ˆ is w-Borel measurable if it is Borel measurable as a map
from E into F with the weak topology. Obviously, every Borel measurable map
is w-Borel measurable. Conversely, if F � is separable in the weak* topology, then
every w-Borel measurable map is Borel measurable.

1It should be observed that, because it deals with R-valued maps, the proof of Lemma 3.1 does not
require Fernique’s theorem. All that one needs is the fact that centered Gaussian measures are the
only probability measures 
 on R with the property that 
 is the distribution of .�1; �2/ 2 R

2 �!
�1C�2p

2
2 R under 
2. See, for example, Exercise 2.3.21 in [7].
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Corollary 3.1. Suppose that F is a locally convex, Hausdorff topological vector
space and that ˆ W E �! F is a w-Borel measurable linear map. Then ˆ is
continuous from E into the weak topology on F . In particular, G.ˆ/ is closed.

Proof. To see that ˆ is continuous into the weak topology on F , let y� 2 E� be
given and define ' W E �! R by '.x/ D hˆ.x/; y�i. Then, ' is Borel measurable
and linear, and therefore, by Theorem 3.1, it is continuous.

To show that G.ˆ/ is closed, suppose that fx˛g is a net such that .x˛; ˆ.x˛/
� �!

.x; y/ in E � F . Then, by the first part, hy; y�i D hˆ.x/; y�i for every y� 2 F �,
and so y D ˆ.x/. ut

Given a topological vector space F , say that the pair .E; F / has the closed graph
property if a linear map ˆ W E �! F is continuous whenever G.ˆ/ is closed. Since
E is a Fréchet space, .E; F / has the closed graph property for every Fréchet space
F (cf. Theorem 1 in Sect. 6 of Chap. II of [10]).

Corollary 3.2. Assume that F is a locally convex, Hausdorff topological space for
which .E; F / has the closed graph property. Then every w-Borel measurable linear
map ˆ W E �! F is continuous. Furthermore, if in addition, .F; E/ has the closed
graph property and ˆ is one-to-one and onto, then ˆ�1 is continuous.

Proof. The first assertion is an immediate consequence of Corollary 3.1. As for the
second, observe that, by the first assertion, G.ˆ/ and therefore G.ˆ�1/ are closed.
Hence, by the closed graph property for .F; E/, ˆ�1 is continuous. ut
Corollary 3.3. Assume that F is a separable Fréchet space. If ˆ W E �! F

is linear and G.ˆ/ is Borel measurable, then ˆ is continuous. Moreover, if, in
addition, ˆ is one-to-one and onto, then ˆ�1 is continuous.

Proof. The argument here is essentially the same as the one given in the proof of
Corollary 2.1. Namely, when E is separable and G.ˆ/ is Borel measurable, then ˆ

is Borel measurable and therefore continuous, and, in general, one can reduce to the
separable case by the same reasoning as was used in the proof of Corollary 2.1. As
for the case when ˆ is one-to-one and onto, note that, because G.ˆ/ is closed, so is
G.ˆ�1/. Hence, the continuity of ˆ�1 follows from the closed graph property for
.F; E/. ut

Finally, it may be of some interest to observe that the linearity assumption in
Corollaries 3.1, 3.2, and 3.3 can be replaced by additivity. Namely, assume that F

is a locally convex, Hausdorff topological vector space. A map ˆ W E �! F is
additive if it satisfies ˆ.x1 C x2/ D ˆ.x1/ C ˆ.x2/ for all .x1; x2/ 2 E2. Now
assume that ˆ is a w-Borel measurable, additive map. Then, for each x 2 E and
y� 2 F �, t 2 R �! hˆ.tx/; y�i 2 R is a Borel measurable, additive function.
Since every R-valued, Borel measurable function on R is linear (cf. Exercise 2.2.36
in [8]), it follows that ˆ is linear.
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3. Martineau, A.: Sur des théorèmes de S. Banach et L. Schwartz concernant le graphe fermé.
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1 Introduction

Let .Xt ; Px/ be the standard Brownian motion on a complete Riemannian manifold.
We investigate the asymptotic behavior of the moments of the exit time from a
geodesic ball when the radius tends to zero. This is combined with a “stochastic
Taylor formula” to obtain a new expansion for the mean value of a function on the
boundary of a geodesic ball.

Several authors [3–5] have considered mean value formulas on a Riemannian
manifold, using the exponential mapping and integration over the unit sphere
of the tangent space, at each point. In general the stochastic mean value is not
equal to the exponential mean value. If these coincide, the manifold must be
Einsteinian (constant Ricci curvature). Our expansions are used to answer some
inverse questions in stochastic Riemannian geometry. If the mean exit time from
every small ball is the same as for a flat manifold then the manifold is flat, in case
d D 2 or d D 3. Our method of proof begins with an expansion of the Laplacian in
a system of Riemannian normal coordinates [6]. The successive correction terms in
the expansion of the moments is obtained by a perturbation expansion, the rigorous
validity of which is established by systematic application of the stochastic Taylor
formula.
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10 M.A. Pinsky

We use the summation convention throughout. The notation jxj < � ! 0 means
that the indicated asymptotic estimate holds uniformly in the ball of radius �, when
� ! 0.

2 Stochastic Taylor Formula

For completeness we include the proof of this formula, which was previously treated
by several authors (Athreya-Kurtz, Airault-Follmer, and Van der Bei). Let .Xt ; Px/

be a diffusion process on a locally compact and separable space V . Let f be a
real-valued function such that

f 2 D.Ak/ k D 1; 2; : : : ; N C 1;

where A is the infinitesimal generator defined by

Af .x/ D lim
t!0

t�1ExŒf .Xt / � f .x/�:

Let T be a stopping time with

Ex.T N C1/ < 1:

Proposition 2.1. Under the above conditions we have for N � 1

Exf .XT / D f .x/ C
N �1X

kD1

.�1/kC1

kŠ
Ex

�
T kAkf .XT /

�
; C.�1/N �1RN �1; (2.1)

where

R D RN �1 D 1

.N � 1/Š
Ex

�Z T

0

uN �1AN f .Xu/ du

�
: (2.2)

The empty sum is defined to be zero.

Proof. For N D 1 we have an empty sum and Dynkin’s identity: Exf .XT / D
f .x/ C R1. In general for N � 1 we have

Akf .Xt / � Akf .X0/ D
Z t

0

AkC1f .Xu/ du C Mt; (2.3)

where Mt is a local martingale. From the stochastic product rule we have

d
�
tkAkf .Xt/

� D tk dMt C �
tkAkC1f .Xt / C ktk�1Akf .Xt /

�
dt: (2.4)

Integrating and taking the expectation, we have

Ex

�
T kAkf .XT /

� D Ex

Z T

0

tkAkC1f .Xt / dt C kEx

Z T

0

tk�1Akf .Xt/dt: (2.5)
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Dividing by kŠ, we have

1

kŠ
Ex

�
T kAkf .XT /

� D RkC1 C Rk: (2.6)

Multiplying by .�1/kC1 and summing for k D 1; : : : ; N gives the stated result. ut

2.1 Some Special Cases

The stochastic Taylor formula allows one to pass freely between classical solutions
of equations and moments of various functionals.

Example 2.1a. Let B be the unit ball of Rn centered at the origin and T be the first
exit time from B . If f D 0 on S D @B and solves Af D �1 in B , then we have

0 D Exf .XT / D f .x/ C Ex

Z T

0

Af .Xu/ du D f .x/ � Ex.T /:

Thus the mean exit time can be retrieved from the value at the starting point. Explicit
computation gives f .x/ D .1 � jxj2/=2n.

The stochastic Taylor formula can be used to give a probabilistic representation
of the solution of some higher-order elliptic boundary-value problems.

Example 2.1b. Let B be a bounded region of Euclidean space with boundary
hypersurface S D @B . Let u be the solution of the boundary-value problem

ujS D 0; : : : ; AN �1ujS D 0; AN ujB D g: (2.7)

We first note that the left side of Eq. (2.1) is 0 � u.x/ whereas all of the terms on the
right are zero, save the last term, which D 1=.N � 1/Š times

Ex

�Z T

0

sN �1AN f .Xs/ ds

�
D Ex

�Z T

0

sN �1g.Xs/ds

�
;

so that we have

u.x/ D 1

.N � 1/Š

�
Ex

Z T

0

sN �1g.Xs// ds

�
;

which is the desired probabilistic representation. In the special case g D 1 we can
perform the integration to obtain

u.x/ D Ex.T N /

N Š
:
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Stated otherwise, the higher moments of the exit time are obtained by solving a
higher-order boundary-value problem.

One can also make conclusions based on approximate solutions.

Example 2.1c. If f D 0 on S D @B and solves1 Af D �1 C �; then we have

0 D Exf .XT / D f .x/ C Ex

Z t

0

Af .Xu/ du D f .x/ � Ex.T /.1 ˙ �/I

hence Ex.T / D f .x/ � .1 ˙ �/: Thus the mean exit time can be retrieved with �

accuracy from the value at the starting point.

3 Expansion of the Laplacian

Now consider the case of an n-dimensional Riemannian manifold V . Let O 2 V

and consider the exponential mapping

expOVO ! V:

A choice of an orthonormal basis in VO gives rise to normal coordinates
.x1; : : : ; xn/.

Let � be the Laplacian in normal coordinates:

�f D 1p
g

@i

�p
ggij @j f

�
g WD det.gij /: (2.8)

From Eq. (2.8) it follows that � is self-adjoint with respect to the weight function
x ! p

g.
Let �� be the dilation operator, defined by

.��f /.x/ D f
�x

�

	
: (2.9)

Definition. A differential operator A is is said to be homogeneous of degree j if
and only if for every homogeneous polynomial Q of degree k, AQ is homogeneous
of degree k C j .

Proposition 3.1. For every integer N � 0, there exists a finite set of second-order
differential operators �0; : : : ; �N such that �j is homogeneous of degree j and we
have the asymptotic expansion

��1
� ı � ı ��f D ��2��2f C

NX

j D0

�j �j f C O.�N C1/; (2.10)

1This means that supx2B jAf .x/ C 1j � �.
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where

��2f D
nX

iD1

.@i @i /f

for any twice differentiable function f .

Proof. In normal coordinates we have the asymptotic expansion [5]

gij D ıij C aijkl x
kxl C terms of order 3 and higher (2.11)

with similar expressions for
p

g; gij . Substitution into Eq. (2.8) and collecting terms
give the formula

�f � ��2f D Pij @i @j f C Qi@i f; (2.12)

where Pij begins with the quadratic terms and Qi begins with linear terms. Now
replace f by ��f in Eq. (2.12). Clearly ��1

� ı.��2/ı��f D ��2��2f . On the other
hand when we apply the right side of Eq. (2.12) to ��f , we obtain an asymptotic
series in �. The coefficient of �0 is the quadratic term in Pij plus the linear terms in
Qi . Proceeding to the next stage, the coefficient of � consists of the cubic term in
Pij and the quadratic terms in Qj f . Continuing this to higher powers of � we can
compute the coefficient operators �0; �1; : : :; hence we have completed the proof
of Proposition 3.1. ut

3.1 Computation of �0

To compute �0f we begin with Cartan’s formula

gij D ıij C 1

3
Rijkl x

kxl C O.jxj3/; .x ! 0/; (2.13)

g˛ˇ D ı˛ˇ � 1

3
R˛ˇkl x

kxl C O.jxj3/; .x ! 0/: (2.14)

The Christoffel coefficients are computed from Eq. (2.13). We use the covariant
form of the Laplacian:

�f D gij
�
@i @j f � �k

ij @kf
	

: (2.15)

When we substitute these expansions and collect terms, there results

�f D @i @i f C
�

�1

3
Rijkl x

kxl C O.jxj3/

�
@i @j f

C
�

�2

3
Rikk0i x

k0

@i f C O.jxj2/

�
:
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Hence

�0f D �1

3
Rijklx

kxl @i @j f � 2

3
Rikk0i x

k0

@kf: (2.16)

Of particular interest is the case f D �.r/, where � 2 C 2Œ0; 1/. This yields

�0.� ı r/ D �1

3
�kl

xkxl

r
�0.r/;

where �kl is the Ricci tensor, defined by �kl D Rikil (sum on i ).

3.2 Computation of �k; k � 1

To compute the higher corrections �1; �2 : : :, we introduce polar coordinates in VO ;
letting x D r	 , we have

�k D bk.	/r1Ck @

@r
C rk Q�k; (2.17)

where Q�k are second-order differential operators in 	1; : : : ; 	n and bk is a homoge-
neous function of degree zero. By Gauss’ lemma, the terms with @2=@r2 or @2=@r@	i

are not present. To compute bk.	/, we recall the expansion of Gray–Vanhecke [4]
for the determinant of the exponential map of a Riemannian manifold:

! D 1 � 1

6
ˇ2r

2 � 1

12
ˇ3r

3 C 1

24
ˇ4r4 C O.r5/; .r ! 0/; (2.18)

where

ˇ2 D �ij 	i	j ; (2.19)

ˇ3 D ri �jk	i 	j 	k; (2.20)

ˇ4 D
�

1 � 3

5
r2

ij C 1

3
�ij �kl � 2

15
RiajkRkalb

�
	i 	j 	k	l : (2.21)

Performing the long division we have

!0

!
D b0r C b1r

2 C b2r
3 C O.r4/;

b0 D �1

3
�i �j 	i 	j ;

b1 D �1

4
�j �k@i @i @j 	j 	k;

b2 D �1

9
r2

ij �kl � 1

45
RiajbRkalb	i 	j 	k	l :



2 Stochastic Taylor Formulas and Riemannian Geometry 15

4 Estimate of the Moments Ex.T k
r /; r ! 0

Let V be an N -dimensional complete Riemannian manifold and .Xt ; Px/ be the
Brownian motion process on V; a diffusion process with infinitesimal generator �.
The exit time from a ball of radius R centered at O 2 V is defined by

TR WD infft W t > 0; d.Xt; O/ D Rg: (2.22)

We emphasize that the computations are made as a function of the unspecified
starting point p D X0 where we set p D O at the end. We will prove the following.

Proposition 4.1. For each k � 1; EO.T k
R/ � cnkR2k; R ! 0, where cnk are

positive constants. In case V D Rn we have for each k � 1; EO.T k
R/ D cnkR2k for

all R > 0.

Proof. Let B D fy W d.y; O/ � Rg and let f k
0 .r/ be the solution of

��2f
k

0 D �f k�1
0 ; f k

0 j@B D 0; f 0
0 � 1 .k � 1/: (2.23)

In case V D Rn f k
0 .r/ is a polynomial of degree 2k. The substitution r ! r=� with

subsequent normalization allows one to study the case R D 1. In detail, we have
f k

0 .r/ ! �2kf k
0 .r=�/:

By explicit computation, we have

�f 1
0 .r/ D r2 � 1

2n
; f 1

0 .0/ D 1

2n

�f 2
0 .r/ D r4

8n.n C 2/
� r2

4n2
C n C 4

8n2.n C 2/
; f 2

0 .0/ D n C 4

8n2.n C 2/
;

�f 3
0 .r/ D r6

48n.n C 2/.n C 4/
� r4

16n2.n C 2/

C r2.n C 4/

16n3.n C 2/
C n2 C 12n C 48

48n3.n C 2/.n C 4/
:

In general f k
0 is a polynomial of the form

�f k
0 .r/ D r2k

2k
kŠn.n C 2/ � � � .n C 2k � 2/ C

k�1X

j D0

.�1/j cknj r2k�2j :

ut
In order to confirm the polynomial character of f k

0 .r/, one can either use
mathematical induction or proceed directly, as follows: given functions g.x/; h.x/,
it is required to solve the differential equation f 00.x/ C .g0=g/f 0.x/ D �h on the
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interval 0 � x < R, with the boundary conditions that f .R/ D 0 and f remains
bounded when x ! 0. To do this, multiply the differential equation by g to obtain
.gf 0/0 D �gh, gf 0 D C � R 1

x
gh. Solving for f 0 and doing the integral, we obtain

the formula

f .x/ D
Z 1

x

1

g.t/

�Z t

0

h.u/g.u/du

�
dt; (2.24)

which can be directly checked as follows:

f 00 C .g0=g/f 0 D .1=g/.gf 0/0 D .1=g/.�gh/ D �h:

The boundary condition f .1/ D 0 follows from Eq. (2.24). The integral defining
f .0/ is absolutely convergent since f is displayed in terms of the ratio of two terms
each of which tends to zero. l’Hospital’s rule applies to the ratio of the derivatives,
namely

lim
t!0

R t

0
h.u/g.u/du

g.t/
D lim

t!0

h.t/g.t/

g0.t/
D h.0/ lim

t!0

g.t/

g0.t/
:

This shows that the integral in Eq. (2.24) is well defined whenever g=g0 is integrable;
in particular this is the case where g.x/ D xn�1 and g=g0 D x=.n � 1/.

In particular if g.x/ is a monomial—g.x/ D xn and h.x/ is a polynomial, then
f .x/ is also a polynomial.

From the stochastic Taylor formula we have

ExŒf .XT /� D f .x/ C
N �1X

kD1

.�1/kC1

kŠ
Ex

�
T kAkf .XT /

�C .�1/N �1RN �1; (2.25)

where

R D RN �1 D 1

.N � 1/Š
Ex

�Z T

0

uN �1AN f .Xu/ du

�
: (2.26)

By construction, f k
0 is identically zero on the sphere S when k < N . We can

write 0 � f .x/ D Ex.T N /=N Š which proves that EO.T N / D cN R2N . This proves
the proposition in case of Euclidean space.

In the general case, we can still use the stochastic Taylor formula with A D
�; T D TB; f D f k

0 . Then

f .XT / D O.�/; : : : ; AN �1f .XT / D O.�/; AN f .XT / D �1 C O.�/:

From the decomposition of the Laplacian of V we have �f � ��2f D O.�/

f N
0 .r/ D 1

N Š
Ex.T N /

�
1 C O.�2/

�
:
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Taking r D 0; R D � ! 0, we see that

lim sup
R!0

EO.TR/

RN
D 1:

To compute an explicit form, we specialize to Euclidean space, V D RN ; f .x/ D
e<˛;x>˛ 2 RN . The stochastic Taylor formula gives

E0e<˛;XTr > D
1X

kD0

j˛j2k

kŠ
E0.T

k
r /:

But the PO hitting measure of XT is uniform on the sphere jxj D r . Hence

E0e<˛;XTr > D
Z

Sn�1

exp.j˛jr cos 	/d	

D
1X

mD0

j˛jm
mŠ

:

Comparing the two expansions, we have

E.T k
r /

r2k
D kŠ

.2k/Š

Z

Sn�1

.cos 	/2k D �. n
2
/

�.k C n
2
/
2�2k:

Hence cnk D �. n
2 /

�.kC n
2 /

.

5 Refined Estimate of E.Tr/; r # 0

The mean exit time of Brownian motion is affected by the curvature 
 of the
manifold. When 
 is zero, we have the Euclidean space, which has been well
studied. If 
 > 0 a geodesic disk has smaller volume than the Euclidean counterpart
and the mean exit time is greater. Finally in the case of negative curvature the volume
is strictly smaller and the mean exit time is strictly larger than the corresponding disk
in Euclidean space. Here is a precise result.

Proposition 5.1.

E0.Tr/ D r2

2n
C 


r4

12n2.n C 2/
C O.r5/ .r # 0/: (2.27)

Proof. For this purpose, let

F D f 1
0 C �2f 1

2 C �3f 1
3 C �4f 1

4 ; (2.28)
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where

f 1
0 D .1 � r2/=2n; (2.29)

��2f
1

2 C �0f
1

0 D 0; in B; f2j@B D 0; (2.30)

��2f
1

3 C �0f
1

1 C �1f
1

0 D 0 in B; f3j@B D 0; (2.31)

��2f
1

4 C �0f
1

2 C �2f
1

0 D 0 in B; f4j@B D 0: (2.32)

Now we set f D �2��F . From Eq. (2.10) and Proposition 2.1 we have

�f D �1 C O.�5/; �2f D O.�3/; f j@B� D 0:

Therefore, from the stochastic Taylor formula with N D 2

0 D f .x/ C Ex.T�/.�1 C O.�5//;

Ex.T�/ D �2
�
f 1

0 .x/ C �2f 1
2 .x/ C �3f3.x/ C �4f4.x/

�C O.�7/; jxj < � ! 0:

In the previous section it was proved that f 1
0 .0/ D 1=2n. To compute f 1

2 .0/ we
first note that

��2f
1

2 D ��ij 	i 	j r2=2n D r2

2n
b.	/:

To compute f 1
2 .0/; f 1

4 .0/ we invoke the following lemma. Integration over S D
Sn�1 is taken with respect to the uniform probability measure d	 . ut
Lemma 5.1. Let j.	/; g.	/ be polynomials which satisfy the relation ��2j D
rkg.	/; gj@S D 0 where k is an integer. Then

j.0/ D 1

.n C k/.k C 2/

Z

S

g.	/:

Proof. We can write j in the form j D rkC2c.	/ C h where c is a homogeneous
polynomial and h is a harmonic function, solution of ��2h D 0. Then

Œ.k C 2/.n C 1/ C .n � 1/.k C 2/�c.	/���2c.	/ D �g.	/:

Integrating over S , we have .kC2/.nCk/
R

S
c.	/ D � R g.	/. But j.0/ D h.0/ D

� R
S

c.	/d	 D 1=.n C k/.k C 2/
R

S
g.	/:

Hence

f 1
2 .0/ D 1

4n.n C 2/

Z

S

b0.	/ D 


12n2.n C 2/
: (2.33)

To compute f 1
4 .0/, we have ��2f 1

4 D ��0f
1

2 � �2f
1

0 ; f4jS D 0. We treat the
two terms separately.
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Recalling that f 1
0 .r/ D .1�r2/=2n; �2 D r3b2.	/ @

@r
, it follows that �2f

1
0 .r/ D

�r4b2.	/d	: By Lemma 5.1, this term contributes to f4.0/ in the amount

1

6.n C 4/

Z

S

b2.	/d	:

To handle the second term, we use the fact that �0 C ˇ2��2 is self-adjoint with
respect to Lebesgue measure on B . Thus

Z

S

�0f2 D �
Z

S

ˇ2��2f2

D
Z

S

ˇ2f0

D 3

Z

S

b2
0.	/:

Thus the second term contributes to f 1
4 .0/ in the amount 1=2.n C 4/

R
S

b0.	/2.
Combining this with the previous computations, we have

f 1
4 .0/ D 1

6.n C 4/

Z

S

b2.	/ C 1

2.n C 4/

Z

S

b0.	/2:

Finally we note that f 1
3 .0/ D 0, since ��2f 1

3 D ��1f
1

0 D r3b1.	/=n which is
a cubic polynomial; hence the integral is zero. ut

6 Mean Value Formulas for General Manifolds

On Euclidean space one may define the mean value of a function on a sphere. This
can be effectively computed in terms of the radius of the sphere and the values of
�f; �2f; : : : at the center of the sphere. The resulting series expansion is known as
Pizetti’s theorem in classical differential geometry.

When we pass to manifolds of variable curvature, the corresponding series
expansion is much more complicated than for the Euclidean case, leading one to ask
for a simpler mean value. In the following sections we will explore the properties of
the stochastic mean value formula.

6.1 Stochastic Mean Value

The stochastic mean value of a continuous function f on a sphere is defined as the
following linear functional on continuous functions:

ˆ�
Of D EOŒf .XT� /� D

Z

S

f .y/dS�.y/;
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where the existence of the probability measure dS� is guaranteed by the Riesz
representation theorem. We propose to find a three-term asymptotic expansion of
the measure dS� when � ! 0. Equivalently we can find a three-term expansion
of the linear functional ˆ�

O when � ! 0: The key to success is through Dynkin’s
formula, which is transformed into the identity

ˆ�
Of D EOŒf .XT� /� D EOf C EO

�Z T�

0

�f .Xs/;ds

�
; � > 0; f 2 C.V /:

(2.34)
For any f 2 C 5.V /, we can write for jxj < � ! 0

�f D d0 C
nX

iD1

di xi C 1

2

nX

i;j D1

dij xi xj C O.jxj3/:

Equivalently

d0 D �f .O/; di D @i �f .O/; dij D @i @j �f .O/:

Therefore it is sufficient to consider test functions f which are either constant,
linear, or purely quadratic. From Dynkin’s formula, to study ˆ, it is equivalent to
study the integral (2.34). In the next section we study the equation

Ep

Z T�

0

�f .Xs/ ds D d0u�
0.x/ C

nX

iD1

di u
�
i .x/ C

nX

i;j D1

d �
ij u�

ij .x/ C O.�5/: (2.35)

6.2 Solution of Poisson’s Equation in a Geodesic Ball

In order to proceed further, we develop the properties of the mean value of three
functionals as follows: the result of these computations is that the Euclidean mean
value differs from the non-Euclidean mean value to within O.�5/ when � ! 0.

Lemma 6.1. For each � > 0, let B D B� denote the geodesic ball of radius � in the
tangent space. Functions u0; ui ; and uij are defined as the solutions of the following
boundary-value problems and respective stochastic representations:

�u�
0jB D �1; u�

0j@B D 0 ) u0 D Ep.T�/;

�u�
i jB D �xi ; u�

i j@B D 0; 1 � i � n; ) ui .p/ D Ep

�Z T�

0

Xi.s/ds

�
;

�u�
ij jB D �xi xj ; u�

ij j@B D 0; 1 � i; j � n ) uij .p/ D Ep

�Z T�

0

Xi .s/Xj .s/

�
ds:
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To see this, apply Dynkin’s formula successively to f D u�
0; f D u�

i ; f D u�
ij . We

have the asymptotic formulas when � ! 0:

u�
0.x/ D �2U0.x=�/ C �4V0.x=�/ C O.�5/; (2.36)

u�
i .x/ D �3Ui .x=�/ C O.�5/; (2.37)

u�
ij .x/ D �4Uij .x=�/ C CO.�5/; (2.38)

where

U0.x/ D 1 � jxj2
2n

; Ui .x/ D xi .1 � jxj2/

2n C 4
; Uij .x/ D xi xj .1 � jxj2/

2n C 8
;

.n C 4/V0.x/ D .1 � jxj2/
6n

 
nX

iD1

�i x
2
i

!
C 


.1 � jxj2/
6n2

� 

.1 � jxj4

12n.n C 2/
;

where .�i / are the eigenvalues of the Ricci tensor.

Proof. The stochastic representations follow immediately from Dynkin’s formula,
applied successively to u0; ui ; and uij .

In terms of the Euclidean Laplacian ��2, we verify that U0; Ui ; and Uij satisfy
the following identities:

��2U0 D �1;

��2.xi xj / D 2ıij ;

��2.x
2
i jxj2/ D 2jxj2 C .2n C 8/x2

i ;

��2jxj4 D .4n C 8/jxj2;
��2.xi xj jxj2/ D .2n C 8/xi xj ;

where we use the identities

��2.jxj2/ D 2n; etc; etc:

We combine this with Dynkin’s formula—the stochastic Taylor formula with N D 1

Epf .XT� / D f .p/ C Ep

�Z T�

0

�f .Xs/ ds

�
; p 2 B; f 2 C 2.V /: (2.39)

To prove Eq. (2.36) apply Dynkin’s formula with the choice
f D �2U0.x=�/ C �4V0.x=�/ for which f D 0 on S. Then we obtain
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�f D �1 C O.�3/ ) 0 D f .p/ C
Z T

0

��1 C O.�3/
�

ds;

which proves Eq. (2.36).
To prove Eq. (2.37), apply Dynkin’s formula with f D �2Ui.x=�/. Then �f D
�xi C O.�3/.
For Eq. (2.38), apply Dynkin to the choice f D �4Uij , for which �f D �xi xj C
O.�4/ 2 B; f D 0 on S: ut

7 Comparison with the Gray–Willmore Expansion

When we combine the results of Sects. 1–6, we find the following asymptotic
formula:

EOf .XT� / � f .O/ D �f .0/
�
�2U0.y/ C �4V0.y/

�C �3
Pn

iD1 @i .�f / C O.�5/;

EOf .XTr / D f .O/C r2

2n
�f .O/Cr4

h
�2f .O/

8n.nC2/
� 
�f .O/

12n2.nC2/

i
CO.r5/; r!0: (2.40)

It is interesting to compare this with the Gray–Willmore expansion as defined by
integration in the tangent space:

M.r; f / D f .O/ C r2

2n
�f .O/ C r4

24n.n C 2/
.3�2f .O/ � 2 < r2f; � >

�3 < rf; r
 > C4

n

�f .O// C O.r5/; r ! 0:

Proposition 7.1. Suppose that for all f 2 C 2.V /, M.r; f / D EOf .XTr / for all
r > 0. Then V is an Einstein manifold.

Proof. From the above formulas we have

lim
r!0

ŒEOf .XTr / � M.r; f /�

r4
D < r2f; � >

12n.n C 2/
C < rf; r
 >

8n.n C 2/
� < 
; �f >

12n2.n C 2/
:

(2.41)

If the right side is zero for all f 2 C 2.V /, we first take f to be linear in the normal
coordinates so that rf is perpendicular to r
 , from which we find r
 D 0: The
remaining term of Eq. (2.41) is

1

12n.n C 2/

h
< r2f; � > �


n
�f

i
:
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Take normal coordinates so that the Ricci tensor is diagonal at O; thus �ij 0 D 0 for
i ¤ j . Now choose f so that @i @j D 0 for i ¤ j from which we conclude that
�jj D 1

n
.�11 C � � � C �nn/: Hence the Ricci tensor is a multiple of the identity, i.e.,

V is an Einstein manifold. ut
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Chapter 3
Local Invertibility of Adapted Shifts on Wiener
Space and Related Topics

Rémi Lassalle and A.S. Üstünel

Abstract In this article we show that the invertibility of an adapted shift on the
Brownian sheet is a local property in the usual sense of stochastic calculus. Thanks
to this result we give a short proof of the invertibility for some processes which
occur in free euclidean quantum mechanics and we relate this result to optimal
transport. We also investigate some applications to information theory of a recent
criterion which relates the invertibility of a shift to an equality between the energy
of the signal and the relative entropy of the measure it induces. In particular, thanks
to a change of measure, we interpret Shannon’s inequality as a consequence of
information loss in Gaussian channels and we extend it to any abstract Wiener
space. Finally, we extend the criterion of invertibility to the case of some stochastic
differential equations with dispersion.
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1 Introduction

The invertibility of adapted perturbations of the identity on Wiener space may
be seen as an alternative approach to investigate the existence of a unique strong
solution to stochastic differential equations of the form

dXt D dBt � Pvt .X/dt I X0 D 0: (3.1)
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It has been developed in the last years (for instance see [17, 29–31, 35]) and offers
many advantages with respect to other approaches. In particular it involves compact
notations and it introduces a framework which enables to take a full advantage of
stochastic analysis. It also provides naturally some new connections between many
problems from filtering theory to optimal transport. In this paper we continue the
study of invertibility and we provide new applications. To be precise, let us introduce
some notations. In this introduction we note .W; H; �/ the classical Wiener space,
where W D C.Œ0; 1�;R/, where H is the associated Cameron–Martin space, and
where � is the Wiener measure which is such that the coordinate process t !
Wt .!/ WD !.t/ is a Wiener process on .W; �/. We also note L0

a.�; H/ the set of
the equivalence classes with respect to � of measurable mappings u W ! 2 W !R :

0
Pus.!/ds 2 H such that t ! Put is adapted to the filtration generated by the

coordinate process. The notion of invertibility is related to a v W W ! H which
satisfies the two following conditions:

v 2 L0
a.�; H/ (3.2)

and

E�

�

exp

�

�
Z 1

0

PvsdWs � 1

2

Z 1

0

Pv2
s ds

��

D 1: (3.3)

Such a v defines a perturbation of the identity V which is given by

V WD IW C v;

where IW W ! 2 W ! ! 2 W is the identity on W . Under Eqs. (3.2) and (3.3) a
notion of stochastic invertibility on Wiener space for V was introduced in [35] (see
also [30] and [17]). To define it, it is sufficient to note that for any U W W ! W such
that U� << � (i.e., absolutely continuous) the pullbacks V ı U and U ı V are well
defined �- almost surely [16]. In particular if U WD IW C u where u 2 L0

a.�; H/, it
is well known that U� << � so that both pullbacks are well defined. Hence, under
these hypothesis a notion of stochastic inverse for V D IW C v can be naturally
defined in the following way: V is said to be invertible if there is a mapping u 2
L0

a.�; H/ such that U WD IW C u satisfies � � a:s:

V ı U D IW

and
U ı V D IW :

As far as v satisfies the two hypothesis Eqs. (3.2) and (3.3), the relevance of this
notion comes from the equivalence of the invertibility of V D IW C v with the
existence of a unique strong solution to Eq. (3.1). In particular, the invertibility
is an original and useful tool to prove the pathwise uniqueness. Many sufficient
conditions of invertibility where given in [35] by means of Malliavin calculus, but
a necessary and sufficient condition was still to find. This task was achieved in
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[30] where a criterion of invertibility for adapted shifts was shown. This criterion
relates the invertibility of a shift to an equality between the entropy of the measure
it induces and the energy of the associated drift. More accurately, let V WD IW C v
where v satisfies the conditions (3.2) and (3.3). It was shown that for any u which
satisfies the same conditions and which is such that the density of U WD IW C u is
related to v by

dU�

d�
D exp

�

�
Z 1

0

PvsdWs � 1

2

Z 1

0

Pv2
s ds

�

we have

H.U�j�/ � E�

� juj2H
2

�

with equality if and only if V is invertible with inverse U . We recall that the relative
entropy H.U�j�/ is defined by

H.U�j�/ D E�

�
dU�

d�
ln

dU�

d�

�

In [17] we provided a general and simple proof of this criterion and we dropped
the hypothesis that u had to satisfy Eq. (3.3). The persistence of invertibility under
stopping was shown in [32] and an explicit formula for the stopped inverse was given
in [17]. The notion of local invertibility which will be recalled accurately below
was introduced in [17], and thanks to this last result, it was proved to be equivalent
to invertibility under a finite entropy condition. In this paper we first extend this
result to prove that the equivalence between invertibility and local invertibility
always holds for adapted shifts. In other words, we show that invertibility is a
local property in the usual sense of stochastic calculus. This result provides local
versions of results related to the pathwise uniqueness. Under mild conditions, we
illustrate the use of these local properties by showing that the pathwise uniqueness
holds for the stochastic description of the free euclidean quantum mechanics [39].
To motivate this kind of results, we recall here that from the origin, stochastic
mechanics provides a stochastic representation of physical phenomenons by means
of weak solutions of stochastic differential equations. However, the existence of a
unique strong solution may be seen as the stochastic counterpart of the classical
picture of the underlying determinism. Hence, it seemed relevant to investigate the
pathwise uniqueness for the related equations in great generality. In this paper, we
only investigated the case of euclidean quantum mechanics which is well known to
describe the continuous limit of thermodynamic systems. In that case the Brownian
motion represents the effects of the thermal energy, i.e., the shocks of many small
particles, and it is physically clear that pathwise uniqueness should hold. By using
the local properties of invertibility, we give a straightforward proof of this result for
the free particle, both in finite and infinite dimensions, and we also relate this result
to optimal transport. The rest of the paper is devoted to applications and extensions
of the criterion of [30]. We give some applications of this criterion to information
theory and we give an extension of this criterion to some stochastic differential
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equations with dispersion. In particular, thanks to a change of measure, we give
an abstract Wiener space version of the famous inequality of Shannon (see [1] and
references therein) with a proof which receives a nice interpretation in terms of
information loss in Gaussian channels. The structure of the paper is the following.
In Sect. 2 we state the main notations which will be used in the whole paper. We also
recall briefly the main tools of Malliavin calculus. In Sect. 3 we define the Girsanov
shift in the same way as in [17] and we give some of its main properties. We also
give some new results which rely on the main properties of the Girsanov shift. In
Sect. 4 we recall the notion of invertibility and we give some results of [17] which
will be used in the sequel. In Sect. 5 we recall the notion of local invertibility for
adapted shifts and we show that it is equivalent to invertibility. In Sects. 6 and 7 we
apply these notions to prove the invertibility of some Markovian shifts. Specifically
in Sect. 6 we consider the classical Wiener space W D C0.Œ0; 1�;Rd / and we show
a new sufficient condition for the invertibility of Markovian shifts on that space. In
Sect. 7 we use this result to show the invertibility for shifts associated with the free
euclidean quantum particle. Under mild conditions we also generalize this result
to the Brownian sheet by means of Malliavin calculus. In Sect. 8 we investigate
some applications of the criterion of [30] to information theory on Wiener space. In
particular, thanks to a change of measure, we show that this criterion may be written
in terms of variance. We then get easily a formulation of Shannon’s inequality
on abstract Wiener space as the consequence of the properties of variance and of
information loss in Gaussian channel. In Sect. 9 we give some other results related to
the invertibility of the processes we considered in Sect. 7: specifically we investigate
the connection with optimal transport. Finally in Sect. 10 we generalize the criterion
of [30] to some stochastic differential equations with dispersion.

2 Notations

Let .S; HS ; iS / be an abstract Wiener space [15] where S is a separable Banach
space, HS the associated Cameron–Martin space, and iS the injection of HS into
S which is dense and continuous. In this paper S will be the state space. Indeed
we will work on the space W WD C0.Œ0; 1�; S/ of the continuous paths vanishing
at 0 with states in S . We recall that W is also a separable Banach space with an
associated Cameron–Martin space H defined by

H D
�

� W Œ0; 1� ! HS ; �t D
Z t

0

P�sds;

Z 1

0

j P�sj2HS
ds < 1

�

:

Moreover the scalar product on H is given by

< h; k >H D
Z 1

0

< Phs; Pks >HS ds
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for any h; k 2 H . The injection i of H into W is also dense and continuous and (W ,
H , i) is also an abstract Wiener space. Let � be the Wiener measure on (W , B.W /)
and let F be the completion of the Borelian sigma-field B.W / with respect to �. We
still note � the unique extension of the Wiener measure on (W , F ) and we still call
it the Wiener measure. We also note IW W ! 2 W ! ! 2 W the identity map on W .
In the sequel IW will be seen as an equivalence class of M�..W; F/; .W; F//, where
M�..W; F/; .W; F// is the set of the �-equivalence classes of mappings from W

into itself, which are F=F measurable. To cope with adapted processes we need
to introduce not only the filtration .F0

t / generated by the coordinate process t !
Wt but also the filtration .Ft / which is the usual augmentation [3] of .F0

t / with
respect to the Wiener measure �. We note L0.�; H/ (resp. for a probability law �

equivalent to �, L2.�; H/) the set of the equivalence classes with respect to � of the
measurable H -valued mappings u W W ! H (resp. the subset of the u 2 L0.�; H/

such that E�Œjuj2H � < 1/. We also set L0
a.�; H/ (resp. L2

a.�; H/) the subset of the
u 2 L0.�; H/ (resp. of the u 2 L2.�; H/) such that t ! Put is adapted to .Ft /.
Let � be a probability equivalent to �, and t ! Bt be a .Ft /-Wiener process on
.W; F ; �/. The abstract stochastic integral [34] of a a 2 L0

a.�; H/ with respect to
B will be noted ıBa. In this context (W D C0.Œ0; 1�; S/) it can also be written

ıBa D
Z 1

0

PasdBs

For a shift U WD B C u where u 2 L0
a.�; H/ we set

ıU a WD ıBaC < u; a >H :

In particular for a u 2 L0
a.�; H/, ıW u D R 1

0
Put dWt . We recall that in the case where

W is the classical Wiener space, the abstract stochastic integral is nothing but the
usual stochastic integral. For convenience of notations, for any optional time � with
respect to .Ft / we note .��a/: D R :

0
1Œ0;��.s/ Pasds and a� WD �� a. In particular for

any t 2 Œ0; 1� .�t a/: D R :

0
1Œ0;t �.s/ Pasds. For a U 2 M�..W; F/; .W; F// and a

probability � equivalent to �, the image measure of � by U will be denoted by U�.
Moreover for any random variable L on .W; F/ such that E�ŒL� D 1 and � � a:s:

L � 0, we will note L:� the probability on .W; F/ whose density with respect to
the Wiener measure is L. To be consistent with [30] we set

�.�ıW u/ WD exp

�

�ıW u � juj2H
2

�

: (3.4)

For the sections below Sect. 5 we need to consider the Wiener measure on S : we
note it b� and we recall that we then have W1� D b�. We will also consider some
integrals over Borelian measures of S -valued or HS -valued elements: all these
integrals are Bochner integrals. Finally in the whole paper we adopt the convention
inf.;/ D 1. We now give the notations of Malliavin calculus and then we give a brief
reminder of it (see [19, 26, 28, 31], or [13] for more detail). We note fıh; h 2 H g
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(resp. f< :; h >; h 2 HS g) the isonormal Gaussian field which is the closure of
W ? (resp. of S?) in Lp.�/ (resp. in and Lp.b�/) and r (resp. D) will denote the
Malliavin derivative on W (resp. on S ). We also note Ds	 the density of r	, i.e.,
rh	 D R 1

0
< Ds	; Phs >HS ds for any h 2 H . We now recall the construction of

the derivative on W , but the construction on S is exactly the same (we don’t use
the time structure at this point). Let .ki /i2N � H be an orthonormal basis of H ,
let E be a separable Hilbert space, and let .ei /i2N � E be an orthonormal basis of
E . For every F 2 \p>1Lp.�; E/ we say that F is a cylindrical function and we
note F 2 S�.E/ � \p>1Lp.�; E/ if there exist a n 2 N, .l1; : : : ; ln/ 2 .N�/n,
.kl1 ; : : : ; kln/ � .ki /i2N and an f in the Schwartz space of the smooth rapidly
decreasing functions S.Rn/ such that � � a:s:

F D
mX

iD1

f i .ıkl1 ; : : : ; ıkln /ei :

If we set

rhF D d

d

F ı �
hj
D0;

where for any h 2 H

�h W ! 2 W ! �h.!/ WD ! C h 2 W;

we then have

rhF D
mX

iD1

nX

j D1

@j f i .ıkl1 ; : : : ; ıkln/ < h; klj >H ei :

By construction, up to a negligible set, for every ! 2 W the mapping defined
by .rF /.!/ W h 2 H ! .rhF /.!/ 2 E is linear and continuous and even
Hilbert–Schmidt with the property that rhF.!/ D .rF /.!/.h/. Therefore, by
using Hilbert–Schmidt tensor products, we have the explicit formula:

rF D
mX

iD1

nX

j D1

@j f i .ıkl1 ; : : : ; ıkln/klj ˝ ei

and we have defined a linear operator r W S�.E/ � Lp.�; E/ ! Lp.�; H ˝ E/

which is such that � � a:s:

dF.! C 
h/

d


ˇ
ˇ

D0

D rhF:

Thanks to the Cameron–Martin theorem, it is easy to see that although r is not
a closed operator, it is however closable. We still denote by r W Domp.r; E/ �
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Lp.�; E/ ! Lp.�; H ˝E/ the closure of r W S�.E/ � Lp.�; E/ ! Lp.�; H ˝
E/ which can be built explicitly in the following way. Let Domp.r; E/ be the set
of the F 2 Lp.�; E/ for which there is a sequence of cylindrical random variables
.Fn/n2N � S�.E/ with the property that limn!1 Fn D F in Lp.�; E/ and rFn is
Cauchy in Lp.�; H ˝ E/. Then for any F 2 Domp.r; E/ we can define rF D
limn!1 rFn which is unique since r is closable. By construction Domp.r; E/ is
the completion of S�.E/ with respect to the norm of the graph associated with r
which is defined by jjF jjp;1IE D jjF jjLp.�;E/ C jjrF jjLp.�;H˝E/. We note Dp;1.E/

the Banach space Domp.r; E/ endowed with the norm jjF jjp;1IE . Of course r is
nothing but the infinite-dimensional version of the Sobolev derivative with respect
to the Gaussian measure, and Dp;1.E/ is the Sobolev space associated with the
weak Gross–Sobolev derivative r. We define the higher-order derivatives and the
associated Sobolev spaces by iterating the same procedure. Thus, if rk�1F 2
Dp;1.E ˝H ˝.k�1//, we can define rkF WD r.rk�1F / and the associated Sobolev
space Dp;k.E/ as being the set of such F equipped with the norm jjF jjp;kIE D
Pk

iD0 jjr iF jjLp.�;E˝H ˝i /. In the sequel we will often deal with the case where
E D R. Note that in that case, because of the Riesz representation theorem,
H˝R ' H so that we can identify (with fixed !) rF.!/ with a vector of H and we
will write rhF D< h; rF >H . Still in that case we note Dp;1 instead of Dp;1.R/.
Finally we define the so-called divergence operator. By the monotone class theorem
and from the martingale convergence theorem it is easy to see that S�.E/ is dense in
every Lp.�; E/, p � 1. Since S�.E/ � Dp;1.E/, the operator r W Domp.r; E/ �
Lp.�; E/ ! Lp.�; H ˝ E/ has a dense support. Therefore there is an operator ı

which is the adjoint of r. The domain Domp.ı; E/ is defined classically as being the
set of the random variables � 2 Lp.�; H ˝E/ such that for any 	 2 Dq;1.E/ (where
1
p

C 1
q

D 1) E�Œ< r	; � >H˝E� � cp;q.j	jLq.�;E//. For any � 2 Domp.ı; E/

ı� is characterized by the relation E�Œ< 	; ı� >E� D E�Œ< r	; � >H˝E�

which holds for any 	 2 Domp.r; E/. Of course this relation is the infinite-
dimensional counterpart of the integration by part with respect to the Gaussian
measure. Note that the set of the constant H -valued random variables is a subset
of all the Domp.ı/ WD Domp.ı;R/ and that the Cameron–Martin theorem implies
E�Œ	ıh� D EŒ< r	; h >H � for any h 2 H . Hence it is clear that one may think to
this operator as an extension of ı W H ! Lp.�; H/, which justifies the notations.
The divergence of a u on S can be defined likewise and we note it < u; : >.

3 The Girsanov Shift

Let � be a probability which is equivalent to the Wiener measure �. Then it is
well known (see, for instance, Sect. 2.6 of [34] or [16]) that there is a unique v 2
L0

a.�; H/ such that t ! Wt C vt is a .Ft /-abstract Wiener process on .W; F ; �/

and � � a:s:

d�

d�
D �.�ıW v/:
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We say that v (resp. V WD IW C v) is the Girsanov drift (resp. shift) associated
with �. We also recall that when � � a:s: d�

d�
D 1 C ı˛ for an ˛ 2 L0

a.�; H/ we

have dt � d� � a:s: Pvt D � P̨t

E�Œ d�
d� jFt �

. If we further assume that d�
d�

2 D2;1 an easy

application of the Clark–Ocone formula [31] yields

Pvs D �E�

�

Ds ln
d�

d�

ˇ
ˇFs

�

:

An old result of Föllmer [7, 8] relates the integrability of the Girsanov drift to the
relative entropy. In the case of probabilities equivalent to �, a generalization of this
result is the Proposition 3.1 [to recover Föllmer result take e� D � in Eq. (3.5)]
which shows that the relative entropy of two probabilities equivalent to the Wiener
measure is related to a distance between their Girsanov drifts. In particular it shows
that the variance of the Girsanov drift may also be seen as an entropy. We recall
that the relative entropy of a probability � absolutely continuous with respect to a
probabilityb� is defined by

H.�jb�/ D E�

�

ln
d�

db�

�

:

Proposition 3.1. Let � ande� be two probabilities equivalent to the Wiener measure
�. Then we have

2H.�je�/ D E�

�jv �evj2H
	

; (3.5)

where v (resp.ev) is the Girsanov drift associated with � (resp. withe�). In particular
for any measure � equivalent to � with a Girsanov drift v, if we set

d��

d�
WD �.�ıW E�Œv�/ (3.6)

[see Eq. (3.4) for the definition of the right-hand term] we then have

2H.�j��/ D Var�.v/;

where Var�.v/ WD E�

�jv � E�Œv�j2H
	
.

Proof. By definition we have

E�

�

ln
d�

de�

�

D E�

�

ln
d�

d�

�

� E�

�

ln
de�

d�

�

D E�

�

�ıW v � jvj2H
2

�

� E�

�

�ıWev � jevj2H
2

�
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D E�

�

�ıV v C jvj2H
2

�

� E�

�

�ıVevC < v;ev >H �jevj2H
2

�

D E�

�

�ıV .v �ev/ C jv �evj2H
2

�

:

If v � ev 2 L2
a.�; H/ we have E�Œ�ıV .v � ev/� D 0 so that equality (3.5)

holds. Conversely we assume that H.�je�/ < 1 and for each n 2 N we set
�n D inf .ft 2 Œ0; 1� W j�t .v �ev/jH > ng/ with the convention inf.;/ D 1. Since
v �ev 2 L0

a.�; H/ we have � � a:s: �n " 1. Therefore the monotone convergence
theorem implies

E�

�jv �evj2H
	 D E�

h
lim

n!1 j��n.v �ev/j2H
i

D lim
n!1 E�

�j��n .v �ev/j2H
	

D lim
n!1 H.�jF�n

je�jF�n
/

� H.�je�/;

wheree�jF�n
(resp. �jF�n

) is the measure induced by e� (resp. by �) on F�n . Hence
we proved that v �ev 2 L2

a.�; H/ if and only if H.�je�/ < 1, and that we always
have Eq. (3.5). ut
Remark 3.1. Consider the function g
.�/ WD H.�j
/ where � is any Borelian
probability on R

d which is equivalent to Lebesgue measure 
 on R
d . For any

h 2 R
d the translation Th W x 2 R

d ! x C h 2 R
d is invertible and 
 is invariant

under the action of Th (i.e., Th
 D 
). Thus for any such � and any h 2 R
d ,

g
.Th�/ D H.Th�j
/ D H.Th�jTh
/ D H.�j
/ D g
.�/. On the path space
the Lebesgue measure is no more defined and one often consider g�.�/ WD H.�j�/

where � is a Borelian measure. For any h 2 H let �h W ! 2 W ! ! Ch 2 W . Since
�h� ¤ � for any h ¤ 0, we generally don’t have g�.�/ WD g�.�h�/. However the
function f .�/ WD H.�j��/ has the nice property to be invariant under translations
along H (just as g
 was on R

d ). Indeed an easy application of the Cameron–Martin
theorem shows that for any h 2 H

d��h�

d�
D �.�ıW .��h.E�Œv�//; (3.7)

where v is the Girsanov drift associated with � and that

�h�� D ��h�:
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Hence for any h 2 H we have

f .�h�/ D H.�h�j��h�/

D H.�h�j�h��/

D H.�j��/

D f .�/;

where the last equalities hold since �h is invertible.

Let � be a probability equivalent to � and let V WD IW C v be its Girsanov shift.
Since V is a .Ft /-Wiener process on .W; F ; �/ we know that .IW ; V / is a weak
solution of Eq. (3.8) with law �. However, the uniqueness in law may not hold
for Eq. (3.8) and some weak solutions of Eq. (3.8) may exist with a law on W which
is not equal to �. Proposition 3.2 shows that when the uniqueness in law does not
hold for Eq. (3.8) there exists a weak solution whose law on W is not equivalent to �.

Proposition 3.2. Let v 2 L0
a.�; H/ be such that E�Œ�.�ıW v/� D 1 and consider

the following stochastic differential equation:

dXt D dBt � Pvt ı Xdt I X0 D 0: (3.8)

The uniqueness in the sense of probability law does not hold for Eq. (3.8) [i.e., there
exist two weak solutions of Eq. (3.8) whose laws on W are not equal] if and only if
there exist two weak solutions of Eq. (3.8) whose laws on W are not equivalent.

Proof. The sufficiency is obvious. Hence we just have to prove that if the uniqueness
in the sense of probability law does not hold for Eq. (3.8) there exist two weak
solutions of Eq. (3.8) whose laws on W are not equivalent. We set � WD �.�ıW v/:�.
Since .IW ; V WD IW Cv/ is a weak solution on .W; F ; �/, � is the law of a solution.
Thus it suffices to prove that if there is a weak solution of Eq. (3.8) whose law is not
equal to �, it is not equivalent to � neither. Let .�; G;P/ be a complete probability
space and .Gt /t2Œ0;1� a complete and continuous filtration on it. Further assume that
.U; B/ is a weak solution of Eq. (3.8) on that space with that filtration and note
u WD U � B . If P.jujH D 1/ > 0 then UP is not absolutely continuous with
respect to � (see Theorem 2.4.1 of [34]) and in particular UP is not equivalent to
�. We still have to prove that if P.jujH D 1/ D 0, then UP ¤ � implies that �

is not equivalent to UP. By contraposition we suppose that P.jujH D 1/ D 0 and
� � UP, and we have to show that it implies UP D �. The hypothesis � � UP

yields the existence of a vi 2 L0
a.�; H/ such that V i WD IW C vi is a .Ft /-Wiener

process on .W; F ; UP/ and � � a:s:

dUP

d�
D �.�ıW vi /:
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On the other hand .U; B/ is a weak solution. Hence for any l 2 W ? and for any

 2 C b.W / which is Fs measurable we have:

EUPŒ.ıV �t l � ıV �sl/
� D EPŒ.ıB�t l � ıB�sl/
 ı U �

D 0;

where the last equality holds since Us � Gs where .Us/ is the filtration generated by
t ! Ut . From Paul Levy’s criterion it implies that t ! Vt is an abstract .Ft /-Wiener
process on .W; F ; UP/. Hence for any l 2 W ? t ! ıV i �V �t l D< �t l; vi � v >H

is a continuous martingale with finite variations. Therefore � � a:s: v D vi , and
UP D �.�ıW v/ D �. This achieves the proof. ut

Two straightforward consequences of Proposition 3.1 which we will use in the
sequel are the following path space version of two inequalities: the Talagrand
inequality (see [27, 31], and references therein) and the Sobolev inequality [11, 31].
The associated proofs are well known and can be found in [30,31]. However, before
we do this we have to recall the definition of the Wasserstein distance.

Definition 3.1. Let � and � be two probabilities on a Wiener space eW (in the sequel
we shall consider eW D S or eW D W ). We then note †.�; �/ be the set of the
measures on .eW � eW ; B.eW � eW // whose first (resp. second) marginal is � (resp. �).
A measure � 2 †.�; �/ is said to be the solution of the Monge–Kantorovitch
problem if

J.�/ D
Z

W �W

jx�yj2H d�.x; y/ D inf

��Z

W �W

jx�yj2H dˇ.x; y/ W ˇ 2 †.�; �/

��

:

Let d.e; v/ WD J.�/, the wasserstein distance between e and v is
p

d.e; v/.

Proposition 3.3. For any probability � equivalent to � we have

d.�; �/ � 2H.�j�/: (3.9)

Proposition 3.4. For any probability � equivalent to � which is such that d�
d�

2
D2;1, we have

H.�j�/ � J.�j�/;

where

J.�j�/ WD E�

"ˇ
ˇ
ˇ
ˇr ln

d�

d�

ˇ
ˇ
ˇ
ˇ

2

H

#

:
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4 Invertibility of Adapted Shifts

In this section we first recall our definition of invertibility for adapted shifts on W .
Then we recall two propositions which we already proved elsewhere [17] and which
we shall use in the sequel.

Definition 4.1. Let v 2 L0
a.�; H/ be such that E�

�
�.�ıW v/

	 D 1. Then V WD
IW Cv is said to be (globally) invertible with (a global) inverse U WD IW Cu where
u 2 L0

a.�; H/, if and only if � � a:s:

V ı U D IW

and
U ı V D IW :

The next proposition, which was proved in [17], enlighten the hypothesis of [30]
and is also very useful to get the invertibility from the right invertibility.

Proposition 4.1. Let � be a probability equivalent to �, and let V D IW C v be the
Girsanov shift associated with �. Further assume that there is a u 2 L0

a.�; H/ such
that U WD IW C u is the right inverse of V , i.e., � � a:s: V ı U D IW . Then the
following assertions are equivalent:

1. E�Œ�.�ıW u/� D 1.
2. U� � �.
3. V is invertible with inverse U (see Definition 4.1).
4. U� D �.

Proposition 4.2 was proved in [17]. It is an improvement of Theorem 3.1 of [32].
Contrary to the latter, Proposition 4.2 provides an explicit formula for the inverse of
the stopped shift.

Proposition 4.2. Let v 2 L0
a.�; H/ be such that E�

�
�.�ıW v/

	 D 1 and let �

and � be two .Ft /-optional times such that � � a:s: � � � . Further assume that
V � WD IW C v� is invertible with inverse U D IW C u (see Definition 4.1) where
u 2 L0

a.�; H/. Then V � WD IW C v� is invertible with inverse

eU WD IW C ��ıU u:

Moreover, we have � � a:s:

v� ı U D v� ı eU :
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5 Local Invertibility: General Case

We introduced explicitly the notion of local invertibility of adapted shifts in [17]
for a v 2 L0

a.�; H/ such that E�Œ�.�ıW v/� D 1. We showed that under a finite
energy condition (i.e., v 2 L2

a.�; H/ where � D �.�ıW v/:�), it was equivalent
to the invertibility. As a matter of fact it seems that this notion already existed
implicitly in the literature [35] and that the equivalence between invertibility and
local invertibility was known under the condition v 2 L2

a.�; H/. These two results
suggest that the equivalence between invertibility and local invertibility may be
more general. Theorem 5.1 completely solves this problem and shows that this
equivalence holds in full generality.

Definition 5.1. Let v 2 L0
a.�; H/ be such that E�Œ�.�ıW v/� D 1 and let V WD

IW C v. V is said to be locally invertible if there is a sequence .un/n2N � L0
a.�; H/

and a sequence .�n/n2N of .Ft /-optional times such that � � a:s: �n " 1 and for
each n 2 N, V n WD IW C ��n v is invertible (see Definition 4.1) with inverse U n WD
IW C un.

Lemma 5.1. Let v 2 L0
a.�; H/ be such that E�

�
�.�ıW v/

	 D 1, and let .�n/n2N
be a sequence of optional times such that ��a:s: �n " 1. Further assume that there
is a sequence .un/ � L0

a.�; H/ such that for each n 2 N V n WD IW C ��n v is
invertible with inverse U n WD IW C un. Then .un/ converges in L0

a.�; H/.

Proof. For convenience of notations we note vn WD ��n v. By definition and by
Proposition 4.2, for each n � m we have � � a:s:

vm ı U m D vm ı U n:

This yields

� .jun � umjH > �/ D E �

�
1jun�umjH >�

	

D E �

�
1jvnıU n�vmıU mjH >�

	

D E �

�
1jvnıU n�vmıU njH >�

	

D E �

�
1jvnıU nıV n�vmıU nıV njH >��.�ıW vn/

	

D E �

�
1jvn�vmjH >��.�ıW vn/

	
:

On the other hand .�.�ıW vn//n2N (resp. .vn/n2N) converges almost surely to
�.�ıW v/ (resp. to v). Since .�.�ıW vn//n2N is uniformly integrable, the dominated
convergence theorem implies that .un/ converges in L0.�; H/. ut
Remark 5.1. Of course since the norm j:jW is weaker than j:jH the convergence of
.un/ in L0

a.�; H/ to a u 2 L0
a.�; H/ also implies the convergence in probability of

.U n/ to U WD IW C u.
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The next theorem completely solves the problem of the equivalence between
invertibility and local invertibility.

Theorem 5.1. Let v 2 L0
a.�; H/ be such that E�

�
�.�ıW v/

	 D 1. Then V WD
IW C v is locally invertible if and only if it is invertible.

Proof. The sufficiency is obvious by taking .�n WD 1 � 1=n/ and applying
Proposition 4.2. Conversely we henceforth assume that V is locally invertible.
By hypothesis there is a sequence .�n/ of optional times and a sequence .un/ �
L0

a.�; H/ such that for each n 2 N V n WD IW C ��n v is invertible with inverse
U n WD IW C un and � � a:s: �n " 1. By Lemma 5.1 .un/ converges in L0

a.�; H/.
We note u 2 L0

a.�; H/ this limit and U WD IW C u. We will show that V

is invertible with inverse U . For convenience of notations we set vn WD ��n v,
Ln WD �.�ıW vn/, L WD �.�ıW v/, and � WD L:�. From Doob’s optional stopping
theorem Ln WD E�ŒLjF�n � so that .Ln/ is uniformly integrable and converges to L

in L1.�/. On the other hand (see Remark 5.1), U n converges to U in probability.
Therefore the dominated convergence theorem yields

E�

�
eil
	 D E�

�
Leil

	

D lim
n!1 E�

�
Lneil

	

D lim
n!1 E�

h
eilıU n

i

D E�

�
eilıU

	

for any l 2 W ?, i.e., U� D �. Thus from Proposition 4.1 we know that V is
invertible with inverse U if and only if U is the almost sure right inverse of V (i.e.,
� � a:s: V ı U D IW or equivalently � � a:s: u C v ı U D 0). As we shall see we
can show this last result thanks to Lusin’s theorem. Let c > 0; we have

� .jv ı U C unjW > c/ D � .jv ı U � vn ı U njW > c/

� �


jv ı U � v ı U njH >

c

2

�
C E�

h
Ln1jv �vnjH > c

2

i
:

Let ˛ > 0; the dominated convergence theorem implies the existence of
a N1 such that for any n > N1, E�ŒLn1jv �vnjH > c

2
� < ˛=2. To control

�
�jv ı U � v ı U njH > c

2



we use Lusin’s theorem from which we know the

existence of a compact set K˛ � W such that �.K˛/ � 1 � ˛=8, and v is uniformly
continuous on K˛. By setting

�n D
n
! W jv ı U � v ı U njH >

c

2
; .U; U n/ 2 K˛ � K˛

o
;
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we then have

�


jv ı U � v ı U njH >

c

2

�
� �.�n/ C �.U … K˛/ C �.U n … K˛/

D �.�n/ C �.! … K˛/ C E�

�
�.�ıvn/1!…K˛

	
:

Moreover the very definition of K˛ yields

�.! … K˛/ < ˛=8

and the dominated convergence theorem implies

lim
n!1 E�Œ�.�ıvn/1!…K˛

� D �.! … K˛/ <
˛

8
:

Thus there is an N2 such that for any n > N2, E�Œ�.�ıvn/1!…K˛
� < ˛=4. We then

have for any n > sup.fN1; N2g/

�.jv ı U C unjW > c/ � 7˛

8
C �.�n/: (3.10)

On the other hand, the uniform continuity of v on K˛ yields the existence of a ˇ˛;c

such that jun � ujH < ˇ˛;c and .U n; U / 2 K˛ � K˛ imply jv ı U � v ı U njH < c
2
.

To control the last term of Eq. (3.10) we then set

e�n D f! 2 W W jun � uj < ˇ˛;cg :

In particular �n \ e�n D ; so that we get

�.�n/ � �.�n \ e�n/ C �.�n \ .e�c
n//

D �.�n \ .e�c
n//

� �.e�c
n/

D �.jun � uj > ˇ˛;c/:

Since un ! u in L0
a.�; H/ there is an N3 such that for any n > N3, �.�n/ < ˛=8.

Therefore for any n > sup.fN1; N2; N3g/ we have

�.jv ı U C unjW > c/ < ˛

This proves that un ! �v ı U in L0.�; H/. By uniqueness of the limit u C v ı
U D0, i.e., U is the right inverse of V . But we already showed that this implies the
invertibility of V which is the result. ut
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We now state the result which will be used in the applications:

Corollary 5.1. Let v 2 L0
a.�; H/ be such that E�Œ�.�ıW v/� D 1. Assume that

there is a sequence .vn/ � L0
a.�; H/ with the property that for each n 2 N

E�Œ�.�ıW vn/� D 1

and such that V n WD IW C vn is invertible. Further assume that there is a sequence
of .Ft /-stopping times .�n/ such that � � a:s: �n " 1 and such that for each n 2 N

we have � � a:s:

��n v D ��n vn:

Then V WD IW C v is invertible.

Proof. By Proposition 4.2 for each n 2 N the shift defined by eV n WD IW C ��n vn

is invertible. Therefore V is locally invertible, and its invertibility follows from
Theorem 5.1. ut

6 A Sufficient Condition for the Invertibility of Markovian
Shifts with States in R

d

In this section we will only consider the case where S D R
d for a d 2 N. The main

result of this section is Theorem 6.1 which is a sufficient condition of invertibility
for Markovian shifts. From the main result of [36] any shift which is both Markovian
and bounded is invertible. Here we give a local version of this fact. Note that this
extension is different from those of [14].

Definition 6.1. A v WD R :

0
Pvsds 2 L0

a.�; H/ is said to be locally bounded if there is
a sequence of .Ft /-stopping times .�n/ such that � � a:s:, �n " 1 and such that for
each n 2 N we have � � a:s:

sup
s��n

jPvsjHS < 1:

Proposition 6.1 will enable us to use the notion of Definition 6.1.

Proposition 6.1. Let v 2 L0
a.�; H/ and �n WD inf.ft W sups2Œ0;t � jPvsj > ng/ ^ 1.

Then v is locally bounded (see Definition 6.1) if and only if � � a:s: �n " 1.

Proof. If �n " 1 ��a:s: the sequence .�n/ satisfies the hypothesis of Definition 6.1.
Conversely we assume that v is locally bounded, and we define � to be the set of
the ! 2 W such that �n.!/ " 1 and such that for all n 2 N, sups��n.!/ jPvs.!/j < 1.
From the hypothesis �.�/ D 1. Given ! 2 � and � 2 Œ0; 1/ there is an n0 2 N and
a K > 0 such that �n0.!/ > � and sups2Œ0;�n0 .!/� jPvsj < K . Let m0 2 N be such that
m0 > K . Then sups2Œ0;�n0 .!// jPvsj < K < m0 so that �m0.!/ � �n0.!/ > �. Since
�n.!/ increases, this implies that �n.!/ " 1. ut
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Under a mild condition, the next proposition shows that a Markovian shift which
is locally bounded in the sense of Definition 6.1 is invertible.

Theorem 6.1. Let v 2 L0
a.�; H/ be such that E�Œ�.�ıW v/� D 1. Further assume

that there is a measurable b W Œ0; 1/�R
d ! R

d such that ��a:s: for each t 2 Œ0; 1/

vt D
Z t

0

b.s; Ws/ds

and that v is locally bounded in the sense of Definition 6.1. Then V WD IW C v is
invertible.

Proof. Let .�n/ be as in Proposition 6.1. Since v is locally bounded � � a:s: �n " 1.
For each T 2 Œ0; 1/ and n 2 N we set

vT WD
Z :

0

b.t; Wt/1t�T dt

and

vn;T WD
Z :

0

bn;T .t; Wt /dt;

where
bn;T .t; x/ WD b.t; x/1jb.t;x/j<n1t�T :

Since bn;T .t; x/ is both measurable and bounded the main result of [36] yields the
existence of a strong solution for the equation

dXt D dBt � bn;T .t; Wt /dt: (3.11)

Thus V n;T WD IW C vn;T is right invertible with an inverse U n;T WD IW C
un;T (note that since bn;T is bounded the condition un;T 2 L0

a.�; H/ is filled).
Moreover the fact that bn;T is bounded, together with the Novikov criterion, yields
E�Œ�.�ıW un;T /� D 1. From Proposition 4.1 it yields the invertibility of each V n;T .
On the other hand from the hypothesis we obviously have ��n vT D ��n vn;T . Hence
Corollary 5.1 implies the invertibility of V T WD IW C vT for each T < 1. In
particular V is locally invertible (take �n D 1 � 1=n) and therefore invertible
(Theorem 5.1). ut

7 Invertibility of Free Schrödinger Shifts

Letb� be a probability equivalent to b�, it is well known [9] that

H.b�jb�/ D inf .fH.�j�/ W W1� Db�g/ (3.12)
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and that the optimum is attained by the probability � which is defined by

d�

d�
D db�

db�
ı W1:

Moreover � is an h-path process in the sense of Doob (see [9] and the references
therein) so that the Girsanov drift associated with the optimal � is Markovian. Such
a process may be seen as a particular Schrödinger bridge (see [9] and alternatively
[39] and references therein). Thus it is connected to stochastic mechanics [23–
25] and to stochastic control problems (see [20–22] and references therein). The
connection of Schrödinger bridges with stochastic mechanics was clearly shown in
[39, 40], and is trivial to see in the special case of h-path processes. Moreover it
is known for a long time that such mechanics are related to stochastic control both
through Yasue’s approach [38] and through the Guerra–Morato(–Nelson) approach
[12, 24]. Consider now the equation

dUt D dWt � Pvt ı U dt I U0 D 0; (3.13)

where v is the Girsanov drift associated with the optimal probability �. As
it appears clearly from [10, 39] a solution of Eq. (3.13) may been interpreted
physically as a free euclidean quantum (time imaginary) particle starting from
the origin whose final marginal is empirically estimated by b�. In this context the
equivalences investigated in [10] show that the relative entropy H.�j�/ is the
analogous of the Guerra–Morato action associated with the free euclidean particle
(or field). Furthermore as it is stressed in [9, 10] the formula (3.12) is also related
to the large deviation theory through Sanov’s theorem which yields a very concrete
intuition of the experiment. Since the reader may be not familiar with these notions,
it seems necessary to recall here briefly and formally the main lines of this stochastic
picture of euclidean quantum mechanics. Let V W S ! R be a smooth potential
which is such that

d�V
d�

WD e� R 1
0 V.Ws/ds

defines a probability equivalent to �. Jensen’s inequality easily implies that the
infimum of

fH.�j�V/jW1� Db�g
is attained by the probability � defined by

d�

d�V
D 1

E�Œ
d�V
d�

j�.W1/�

db�

db�
ı W1:

Let

H D ��

2
C V :
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Then at least formally in the case dim S < 1, by noting 
 the Lebesgue measure
on S , it is straightforward to check that we have

dWt�

d

D 
.t; x/
?.t; x/; (3.14)

where 
 solves
@t 
 D H


and where 
? is the fundamental solution of the time-reversed equation

�@t 

? D H
?:

By substituting formally t ! i t (this procedure is usually called the rotation of
Wick) we would have density �.t; x/ with the shape

�.t; x/ D ‰.t; x/‰?.t; x/;

where ‰ (resp. ‰?) solves the Schrödinger equation (its conjugate). For that
reason � is said to model imaginary–time quantum mechanics. By considering the
associated space-time metric, it is also called euclidean quantum mechanics. Note
that within this framework, � is the law of a solution to

dXt D dWt � Pvt ı Xdt I X0 D 0;

where v is the Girsanov drift associated with �. The possibility to deal with
euclidean quantum mechanics through stochastic mechanics in such a way was
first showed in [39]. For that reason it seems relevant to call the Girsanov shift
V WD IW Cv associated with the above measure �, the Schrödinger shifts associated
with b� under the potential V . Although our results and methods may extend to
the case of potentials, we preferred to focus on the free case (i.e., V D 0) and
to treat both the finite- and the infinite-dimensional cases. Henceforth we allow S

to be of infinite dimensions, unless otherwise stated. In the next section we will
also see that these processes are also involved in information theory. Hence these
processes are involved in several fields in which it would be relevant to prove the
pathwise uniqueness. For instance, in the point of view of stochastic mechanics,
the pathwise uniqueness for Eq. (3.13) means that the stochastic description of free
euclidean quantum mechanics fits with the classical picture of determinism. This is
the main motivation of this section in which we give some (very large) sufficient
conditions for the Girsanov shift associated with such probabilities to be invertible.
This motivates the following definition:

Definition 7.1. Let b� be a probability such that b� << b�. Further note � the
probability on W which is defined by

d�

d�
D db�

db�
ı W1
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and note v the Girsanov drift associated with �. We say that � is the (optimal)
measure associated withb� (on the space on the path) and that V WD IW C v (resp.
v) is the (free) Schrödinger shift (resp. drift) associated with the final marginalb�.

We will show below that when dim S < 1 (resp. dim S D 1) free Schrödinger
shifts with a final marginal of finite entropy (resp. with a bounded density with
respect to the Wiener measure on S ) are always invertible. In particular we don’t
assume any regularity conditions on the density.

Theorem 7.1. Let S D R
d and letb� be a probability equivalent to the Gaussian

measure b� on R
d with finite entropy (H.b�jb�/ < 1). Then the free Schrödinger

shift with final marginalb� is invertible.

Proof. Let � be the optimal measure associated withb� by Definition 7.1 and let v
be the Girsanov drift associated with � so that V WD IW C v is the Schrödinger shift
associated withb�. It is well known [9] and straightforward to see that the Itô formula
yields the following expression for the Schrödinger drift v. For each t 2 Œ0; 1/

Pvt .!/ WD b.t; Wt /; (3.15)

where b W .t; x/ 2 Œ0; 1/�R
d ! �D ln P1�t

db�
db�

.x/ and where .t; x/ 2 Œ0; 1/�R
d !

P1�t
db�
db�

.x/ is the heat kernel defined by

P1�t

db�

db�
.x/ D

Z

W

d�.!/
db�

db�
.W1�t C x/:

We will show that the finite entropy condition implies that v is locally bounded (see
Definition 6.1) so that the shift V will be invertible. First note that for each integer
i 2 Œ1; d � .Pvi

s ; s 2 Œ0; 1// is a .Ft /t2Œ0;1/ martingale on .W; F ; �/. Indeed for each
t < 1 and s � t , let 
s 2 Cb.W / be Fs measurable. We then have

E�

��Pvi
t 
s

	 D E�

�

Di ln P1�t

db�

db�
.Wt /
s

�

D E�

�
d�

d�
Di ln P1�t

db�

db�
.Wt /
s

�

D E�

�

E�

�
d�

d�
jFt

�

Di ln P1�t

db�

db�
.Wt /
s

�

D E�

�

P1�t

db�

db�
.Wt /D

i ln P1�t

db�

db�
.Wt/
s

�

D E�

�

Di P1�t

db�

db�
.Wt /
s

�
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D E�

�

Pt�sD
i P1�s

db�

db�
.Ws/
s

�

D E�

�

Di P1�s

db�

db�
.Ws/
s

�

D E�

�

Di ln P1�s

db�

db�
.Ws/
s

�

D E�

��Pvi
s
s

	
:

Hence t 2 Œ0; 1/ ! E�Œ.Pvi
t /

2� is increasing. Together with the finite energy
condition v 2 L2

a.�; H/ it yields Pvi
t 2 L2.�/ for each t 2 Œ0; 1/. Therefore by

Doob’s inequality we get that for each t 2 Œ0; 1/

sup
s2Œ0;t �

jPvsj2Rd 2 L1.�/: (3.16)

Since � � � Eq. (3.16) implies that the hypothesis of Theorem 6.1 is satisfied with
�n WD 1 � 1=n. Therefore V is invertible. ut

In the case where dim S D 1 it is harder to get a clean expression of the
Schrödinger shift since we need an Itô formula. To avoid the use of such a formula
we give an elementary proof in Proposition 7.1 which is in the spirit of the proof of
the Clark–Ocone formula.

Proposition 7.1. Let b� be a probability such that b� � b� and db�
db�

2 L2.b�/. We

further note v the free Schrödinger drift associated withb� (see Definition 7.1). We
then have for each t 2 Œ0; 1/

Pvt D b.t; Wt/ (3.17)

d� � dt a.s. where

b.t; x/ WD �D ln Q1�t

db�

db�
.x/

and where Qt is the heat kernel on S , i.e., Qt
db�
db�

.x/ D E�Œ db�
db�

.x C Wt /� for each

x 2 S .

Proof. Let � be the measure associated with b� by Definition 7.1 and let v be the
Girsanov drift associated with � which is also the Schrödinger drift of b�. When
db�
db�

2 L2.b�/ the same proof as Lemma 3.3.2 of [34] applies and we know that for

each t < 1 there is a modification of Q1�t
db�
db�

such that for each ! 2 S the map

h 2 HS ! Q1�t
db�
db�

.! Ch/ is real analytic on HS . We then chose this modification.

Hence, it is straightforward to check that for any k 2 HS Qt DkQs D DkQtQs D
DkQtCs and that E�Œ db�

db�
ı W1jFt � D Q1�t

db�
db�

.Wt /. In order to avoid the use of the
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theory of Watanabe distributions, or of an Itô formula on abstract Wiener space,
we give an elementary proof. For any t < 1 let L2

a.�; H; t/ be the subset of the
u 2 L2

a.�; H/ for which the support of s 2 Œ0; 1� ! Pus 2 HS is in Œ0; t � �
Œ0; 1/. We recall that from the martingale representation theorem which holds on
W (see [34] Chap. 2), fıW ˛; ˛ 2 L2

a.�; H; t/g is dense in fX � E�ŒX� W X 2
L2.�/ ; X is Ft measurableg. Then we have for each h 2 L2

a.�; H; t/

E�

�
d�

d�
ı �h�.�ıh/

�

D E�

�

E�

�
d�

d�
ı �hjFt

�

�.�ıh/

�

D E�

�

E�

�
db�

db�
ı .W1 C ht/jFt

�

�.�ıh/

�

D E�

�

.Q1�t

db�

db�
/.Wt C ht /�.�ıh/

�

:

Hence

d

d

E�

��
d�

d�
ı �
h � 1

�

�.�ı
h/

� ˇ
ˇ

D0

D d

d

E�

���

Q1�t

db�

db�

�

.Wt C 
ht / � 1

�

�.�ı
h/

� ˇ
ˇ

D0

D E�

�

Dht Q1�t

db�

db�
ı .Wt /

�

� E�

��

Q1�t

db�

db�
.Wt / � 1

�

ıh

�

:

On the other hand the Cameron–Martin theorem yields E�

hh
d�
d�

ı�
h�1
i
�.�ı
h/

i
D

0. By setting ˛t
: D R :

0 1s�tDQ1�s

h
db�
db�

i
.Ws/ds we get

E�

��

E�

�
d�

d�
jFt

�

� 1

�

ıh

�

D E�

��

Q1�t

db�

db�
.Wt / � 1

�

ıh

�

D E�

�

< DQ1�t

db�

db�
.Wt /; ht >HS

�

D
Z t

0

E�

�

< DQ1�t

db�

db�
.Wt /; Phs >HS

�

ds

D
Z t

0

E�

�

D Phs
Q1�t

db�

db�
.Wt /

�

ds

D
Z t

0

E�

�

E�

�

D Phs
Q1�t

db�

db�
.Wt /jFs

��

ds

D
Z t

0

E�

�

Qt�sD Phs
Q1�t

db�

db�
.Ws/

�

ds
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D
Z t

0

E�

�

D Phs
Q1�s

db�

db�
.Ws/

�

ds

D
Z t

0

E�

�

< DQ1�s

db�

db�
ı .Ws/; Phs >HS

�

ds

D E�

�
< ˛t ; h >H

	

D E�

�
ıW ˛t ıW h

	

which means that E�

h
d�
d�

jFt

i
� 1 D ıW ˛t , i.e.,

E�

�
d�

d�
jFt

�

D 1 C
Z t

0

DQ1�s

db�

db�
ı .Ws/dWs

By construction of v (see Sect. 3) it yields Eq. (3.17). ut
Lemma 7.1. Let L 2 L1.b�/, � 2 .0; 1/ and T 2 Œ0; 1/. Let b W Œ0; 1� � S ! HS

be the mapping defined by

b.t; x/ WD �D ln P1�t L.x/1t<T 1P1�t L.x/>�

and let v be defined by

v WD
Z :

0

b.s; Ws/ds:

Then V WD IW C v is invertible.

Proof. For any h 2 HS , x 2 S , and t < 1, we have [15]

jDh ln Q1�t L.x/j D
ˇ
ˇ
ˇ
ˇ
ˇ

1p
1 � t

R
S
.< h; y >/L.x C p

1 � ty/b�.dy/
R

S L.x C p
1 � ty/b�.dy/

ˇ
ˇ
ˇ
ˇ
ˇ

� jhjH Kp
1 � tP1�t L.x/

;

where K is the essential supremum of L. Therefore jD ln Q1�t L.x/jH �
Kp

1�tP1�t L.x/
and

jb.t; x/j D jD ln P1�t L.x/1t<T 1P1�t L.x/>�j � K

�
p

1 � T
:

In particular v 2 L0
a.�; H/ and together with Novikov’s criterion it yields

E�

�
�.�ıW v/

	 D 1. Moreover if we assume that V is right invertible with an
inverse U WD IW C u, the boundedness of b will imply E�

�
�.�ıW u/

	 D 1 so
that the invertibility will automatically follow from Proposition 4.1. Hence, to get



48 R. Lassalle and A.S. Üstünel

the invertibility of V , it suffices to prove that V is right invertible. Specifically, since
b is bounded it suffices to prove that

dXt D dBt � Pvt ı Xdt (3.18)

has a unique strong solution. Since S is a Polish space the Yamada–Watanabe
criterion [13] also applies for Eq. (3.18). Therefore to prove the existence of a strong
solution it suffices to check that a weak solution of Eq. (3.18) exists, and that the
pathwise uniqueness holds. Since b is bounded, we already have the existence of
a weak solution and the uniqueness in law for Eq. (3.18) by transformation of the
drift [13]. Hence we only have to prove the pathwise uniqueness. Before we do this,
we have made some preparations and to prove that � � a:s: for any t < 1 and
.h; k/ 2 Ht;! � Ht;! we have

jD ln P1�t L.Wt C h/ � D ln P1�t L.Wt C k/jHS � C jh � kjHS (3.19)

for a C > 0 which depends on T . For any .t; !/ 2 Œ0; 1/ � W we set

Ht;! WD fh 2 HS W P1�t L.Wt C h/ > �g:

Since x ! P1�t L.x/ is HS -continuous (and even HS � C 1; see [15]) Ht;! is an
open set. On the other hand we have for any h; k 2 HS , and x 2 S

D2
h;k ln Q1�t L.x/ D DhDkQ1�t L

Q1�tL
� .DhQ1�t L/.DkQ1�t L/

.Q1�tL/2

and

ˇ
ˇD2

h;kQ1�tL.x/
ˇ
ˇ D 1

1 � t

ˇ
ˇ
ˇ
ˇ

Z
.<h; y >< k; y>�<h; k>HS /L.xCp

1�ty/b�.dy/

ˇ
ˇ
ˇ
ˇ

� K

1 � t
jhjHS jkjHS ;

where the last inequality follows from

Z
.< h; y >< k; y > � < h; k >HS /2b�.dy/ D jhj2HS

jkj2HS
:

Hence, by taking C WD K
.1�T /�

C. Kp
1�T �

/2, we get Eq. (3.19). We can now begin the

proof of pathwise uniqueness. Let U and eU be two solutions with initial distribution
˛, which are defined on the same space .�; G;P/, with the same filtration .Gt /

defined on it, and with the same .Gt /-Brownian motion.Bt/. We define two .Gt /-
optional times:

� WD inf .ft W jut �eut jHS > 0g/ ^ 1 (3.20)
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and

� WD inf.ft W .P1�t L ı Ut � �/.P1�t L ı eU t � �/ < 0g/ ^ 1: (3.21)

Let e� be the set of the ! 2 � for which both t ! Ut and t ! eU t are continuous.
By construction it is such that P.e�/ D 1. Moreover for any ! 2 e� the continuity
implies that we have �.!/ � �.!/ if and only if �.!/ D 1. Therefore, to prove
pathwise uniqueness, it suffices to prove that � � a:s: supt2Œ0;�.!/� jut �eut jHS D 0.
For any t 2 Œ0; �.!/� the definition of � implies:

jut �eut jHS �
Z t

0

jb.s; Us/ � b.s; eU s/jds

� A C B;

where

A WD
Z t

0

jb.s; Us/ � b.s; eU s/j1Hs;!�Hs;! .us;eus/

and

B WD
Z t

0

jb.s; Us/ � b.s;eU s/j1.Hs;!/c�.Hs;! /c .us;eus/

and where .Hs;!/c is the complement of Hs;! in HS . From the definitions of Ht;!

and of b.t; x/ � � a:s: B D 0. On the other hand Eq. (3.19) implies

A � C

Z t

0

jus �eusjHS 1Hs;!�Hs;! .us;eus/

� C

Z t

0

jus �eusjHS :

Hence, up to a negligible set, Gronwall’s lemma implies that ut .!/ Deut .!/ for
every t < �.!/. This proves that ��a:s: � � � , from which we know that ��a:s:

� D 1. ut
Theorem 7.2. Lete� be a probability equivalent to b� such that db�

db�
2 L1.�/. Then

the free Schrödinger shift with final marginalb� is invertible.

Proof. Let v be the Girsanov drift associated with the probability � WD db�
db�

ı W1.

From Definition 7.1 V WD IW C v is the free Schrödinger shift associated withb�.
For any .n; T / 2 N � Œ0; 1/ we set

vn;T WD
Z :

0

bn;T .s; Ws/ds;
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where

bn;T .t; x/ D �D ln P1�t

db�

db�
.x/1t�T 1

P1�t
db�
db�

.x/> 1
n

and

vT WD �
Z :

0

D ln P1�t

db�

db�
.x/1t�T dt:

By Lemma 7.1 all the V n;T WD IW C vn;T are invertible. Let �n WD inf.ft W
P1�t L.Wt / < 1

n
g ^ 1. Since b� � b� we have � � a:s: .�n/ " 1. On the other

hand from the definitions ��n vT D ��n vn;T . From Corollary 5.1 it implies that V T

is invertible for any T < 1. Taking �n WD 1 � 1
n

yields the local invertibility of V

which is therefore invertible (Theorem 5.1). ut

8 Information Loss on the Path Space and Shannon’s
Inequality

The idea to use h-path processes in information theory is not new and we found it
implicitly in an original but somehow misleading unpublished paper [18] in the case
of the classical Wiener space. We generalized and clarified some of these results.
By completing that work we were acquainted that the author of [18] also took the
same way. Nevertheless our results are still more general and we find it interesting
enough to be presented here. Although the essential ideas of the proofs are not so
new there are several original contributions in this section. First we give a version
of a Brascamp–Lieb inequality which holds on any abstract Wiener space. Then we
give an abstract Wiener space version of Shannon’s inequality which holds on any
abstract Wiener space. Since the Lebesgue measure is no more well defined when
dim S D 1 we had to write it in terms of Gaussian measure. We succeeded in this
task by making a change of measure from which we get a formulation of Shannon’s
inequality which seems to be new. By making an analogous change of measure
on the path space W we show that Üstünel’s criterion (the main result of [30]) of
which we present a generalization here (Theorem 8.2) may be written in terms of
variance. This generalization was first given in Theorem 6 of [16] in the case where
the underlying probability space was the Wiener space, and it stresses the connection
between information loss and invertibility. Its interpretation in terms of variance is
new. Within this framework we reduce the proof of [18] as a consequence of the
additive properties of variance. Moreover our precise results shows that Shannon’s
inequality as well as the Brascamp–Lieb inequality may be seen as the result of
information loss in a Gaussian channel.
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8.1 Talagrand’s Inequality and Sobolev’s Inequality on Any
Abstract Wiener Space

The Monge–Kantorovich problem on abstract Wiener space has been investigated
for instance in [5] or [6] (see also [37] for a general overview on this topic). The
results of this section are almost trivial and may be well known. However it seems
relevant to give it here for pedagogical reasons. As a matter of fact here are the
two simplest cases in which h-path processes can be used to yield inequalities on
any abstract Wiener space from inequalities on the path space. We first recall the
following result which is a particular case of Theorem 3.2 of [6] in order to achieve
the proof of Proposition 8.1.

Theorem 8.1. Let b� be a probability such thatb� << b� (i.e., absolutely continu-
ous). Assume that d.b�;b�/ < 1. Then there is a measurable mapping T S W S ! S

which is solution to the original Monge problem. Moreover its graph supports the
unique solution of the Monge–Kantorovitch problem � , i.e.,

.IS � T S /b� D �

In particular T Sb� D b�, T S � IS 2 L2.b�; H/, and there is a mapping eSS WD
.T S /�1 such that

�
�˚

!jeSS ı T S D IS

�
 D �
�˚

!jT S ıeSS D IS

�
 D 1:

The next proposition sums up basic properties of the optimal measure associated
with a marginal.

Proposition 8.1. Letb� be a probability such thatb� � b� with H.b�jb�/ < 1. Let �

be the measure associated withb� by Definition 7.1. We then have

• H.b�jb�/ D H.�j�/.
• d.b�;b�/ � d.�; �/.

where d.�; �/ is given by Definition 3.1. If we further assume that db�
db�

2 D2;1.b�/ we

have
J.b�;b�/ D J.�; �/;

where

J.b�;b�/ WD Eb�

"ˇ
ˇ
ˇ
ˇD ln

db�

db�

ˇ
ˇ
ˇ
ˇ

2

HS

#

and where J.�; �/ is defined in Proposition 3.4.

Proof. Let v be the Girsanov drift associated with �. The fact that H.b�jb�/ D
H.�j�/ is obvious. Let s ! Ts WD Ws C R s

0
Ptsds be the optimum given by The-

orem 8.1 which attains d.�; �/. By definition we have d.�; �/ D E�Œ
R 1

0 jPts j2HS
ds�.



52 R. Lassalle and A.S. Üstünel

On the other hand T1� D W1T� D W1� Db� and W1� D b� so that:

d.b�;b�/ � E�ŒjT1 � W1j2HS
�

Hence Jensen’s inequality implies

d.b�;b�/ � E�ŒjT1 � W1j2HS
�

� E�

"ˇ
ˇ
ˇ
ˇ

Z 1

0

Ptsds

ˇ
ˇ
ˇ
ˇ

2

HS

#

� E�

�Z 1

0

jPtsj2HS
ds

�

D d.�; �/:

We now state the last part of the claim. From Proposition 3.1 we have

rh

d�

d�
D rh

db�

db�
ı W1

D < h1; D
db�

db�
ı W1 >HS

D
Z 1

0

< Phs; D
db�

db�
ı W1 >HS ds

so that Ds ln d�
d�

D D ln db�
db�

ıW1. In Sect. 3 we recalled that the Clark–Ocone formula

yields Pv1 D D1 ln d�
d�

. However in that case it can also be seen directly with the same
proof as Proposition 7.1, but in that case with t D 1. Since W1� Db� we get

J.�; �/ D E�

"ˇ
ˇ
ˇ
ˇr ln

d�

d�

ˇ
ˇ
ˇ
ˇ

2

H

#

D
Z 1

0

E�

"ˇ
ˇ
ˇ
ˇDs ln

d�

d�

ˇ
ˇ
ˇ
ˇ

2

HS

#

ds

D
Z 1

0

E�

"ˇ
ˇ
ˇ
ˇD ln

db�

db�
ı W1

ˇ
ˇ
ˇ
ˇ

2

HS

#

ds

D E�

"ˇ
ˇ
ˇ
ˇD ln

db�

db�
ı W1

ˇ
ˇ
ˇ
ˇ

2

HS

#
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D Eb�

"ˇ
ˇ
ˇ
ˇD ln

db�

db�

ˇ
ˇ
ˇ
ˇ

2

HS

#

D J.b�;b�/:

ut
Proposition 8.2 shows how we can use h-path processes to get inequalities on S

from inequalities on the path space W .

Proposition 8.2. Let b� be a probability equivalent to b� with H.b�jb�/ < 1. Letp
d.b�;b�/ be the Wasserstein distance, then we have

d.b�;b�/ � 2H.b�jb�/:

Assume henceforth that db�
db�

2 D2;1.b�/ and let J.b�jb�/ be the Fisher information,

which is defined by

J.b�jb�/ D Eb�

"ˇ
ˇ
ˇ
ˇD ln

db�

db�

ˇ
ˇ
ˇ
ˇ

2

HS

#

:

Then we have

J.b�jb�/ D Eb�

" jPv1j2HS

2

#

;

where v is the Schrödinger drift associated with �. In particular we get the
logarithmic Sobolev inequality

H.b�jb�/ � J.b�jb�/:

Proof. Let � be the probability associated with b� by Definition 7.1 and v be the
Girsanov drift of � which is the free Schrödinger drift associated with b�. Then
Propositions 8.1 and 3.4 yield

H.b�jb�/ D H.�j�/ � J.�j�/ � J.b�jb�/:

Furthermore Propositions 8.1 and 3.3 directly imply

d.b�;b�/ � d.�; �/ � 2H.�j�/ D 2H.b�jb�/:

ut
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8.2 Information Loss on the Path Space

Let .�; FP;P/ be a complete probability space, and let .FP

t /t2Œ0;1� be a continuous
filtration which satisfies the usual conditions. On this space let .Bt /t2Œ0;1� be a
.FP

t /t2Œ0;1� and S -valued Brownian motion starting from the origin. In the point of
view of information theory one may think of B as a Gaussian noise in a transmission
channel. Assume now that one sends a signal u through this channel and that the
receptor observes U D B C u but not u. Let .Fu

t / be the augmentation with respect
to P of the filtration generated by the observed signal t ! Ut . If the receptor tries
to estimate dynamically u, his best estimation will be

but D
Z t

0

EPŒPusjFu
s �ds

which is usually called the causal estimate of u. Hence the estimated signal will
bebu, while the emitted signal is u. Sincebu is a projection of u, the energy of u is
always bigger that the energy ofbu . In other words, some energy will dissipate in
the channel, and the value of this dissipated energy is

EP

� juj2H
2

�

� EP

� jbuj2H
2

�

:

As a matter of fact the value of this dissipated energy may be seen equivalently as
an error or a loss of information. Indeed

EP

� juj2H
2

�

� EP

� jbuj2H
2

�

D 1

2
EP

�ju �buj2H
	

is equal to (half) the error of the causal estimate. Theorem 8.2 (which was first
proved in [16] in the case of the Wiener space) states that the dissipated energy
(or information) only depends on two parameters: the energy of the signal and the
law of the observed signal through its relative entropy. This loss of information
relies on the fact that the observer only gets the information of the filtration .Fu

t /

generated by t ! Ut 2 S which is smaller than .FP

t /t2Œ0;1�. Moreover one expects
the equality to occur if and only if one can reconstruct the Brownian path until t

from Fu
t . This is exactly what shows the equality case in Theorem 8.2. Before going

further we have to set some notations. We note L2..�; FP;P/; H// or when there
are no ambiguity on the underlying filtered space L2.P; H/ the set of the measurable
mapping u W � ! H , such that EPŒjuj2H � < 1. We also define L2

a.P; H/ the subset
of the u 2 L2.P; H/ such that the mapping t ! Put is adapted to .FP

t /t2Œ0;1�. We
recall that we defined F (resp. (Ft /) as the completion of the sigma field B.W / with
respect to � (resp. the augmentation with respect to � of the sigma field generated
by the coordinate process t ! Wt ).



3 Local Invertibility of Adapted Shifts on Wiener Space and Related Topics 55

Definition 8.1. Let .Bt /t2Œ0;1� be an S -valued .FP

t /t2Œ0;1� Brownian motion starting
from the origin on a complete probability space .�; FP;P/ with a continuous
filtration .FP

t /t2Œ0;1� which satisfies the usual conditions. Given a u 2 L2
a.P; H/

such that UP � � where U WD IW C u, we define .Fu
t / as being the filtration

.�.Us; s � t//t2Œ0;1� augmented with respect to P. We also note L2
u.P; H/ the subset

of theeu 2 L2
a.P; H/ such that t ! Peut is adapted to .Fu

t /. Moreoverbu will denote
the projection of u on L2

u.P; H/ which is a closed subspace of L2
a.P; H/.

As a matter of factbu is the dual predicable projection of u [4] on the augmentation
with respect to P of the filtration generated by t ! Ut D Bt C ut . We recall that
physicallybu may be seen as the causal estimator of a signal u and is written:

but D
Z t

0

EPŒPusjFu
s �ds:

Lemma 8.1. Let .�; FP;P/ be a complete probability space with a continuous
filtration .FP

t /t2Œ0;1� on it which satisfies the usual conditions. Let .Bt /t2Œ0;1� be an
S -valued FP

t -Brownian motion on .�; FP;P/ and U W t 2 Œ0; 1� ! Ut 2 S be
any .Ft /-adapted, continuous process. Further assume that UP � �. Then we have
P � a:s:

bu C v ı U D 0; (3.22)

where v is the Girsanov drift associated with UP.

Proof. Since t ! Vt is an abstract Wiener process on .W; F ; UP/, for any

�L2

a.UP; H/ we have.

EP Œ< 
 ı U; u >H � D EP

"Z 1

0
< P
s ı U; Pus >HS ds

#

D EP

"Z 1

0

P
s ı U dBs C
Z 1

0
< P
s ı U; Pus >HS ds �

Z 1

0

P
s ı U dBs

#

D EP

" Z 1

0

P
sdWs

!

ı U �
Z 1

0

P
s ı U dBs

#

D EP

" Z 1

0

P
sdWs

!

ı U

#

D EUP

"Z 1

0

P
sdWs

#

D EUP

"Z 1

0

P
sdWs C
Z 1

0
< P
; Pvs >HS ds �

Z 1

0
< P
s; Pvs >HS ds

#

D EUP

"Z 1

0

P
sdVs �
Z 1

0
< P
; Pvs >HS ds

#



56 R. Lassalle and A.S. Üstünel

D �EUP

"Z 1

0
< P
; Pvs >HS ds

#

D �EP Œ< v ı U; 
 ı U >H � :

This shows Eq. (3.22). ut
Theorem 8.2. Let .�; FP;P/ be a complete probability space with a continuous
filtration .FP

t /t2Œ0;1� which satisfies the usual conditions. Let .Bt /t2Œ0;1� be an S -
valued .FP

t /-Brownian motion on .�; FP;P/ and U W Œ0; 1� ! S be any .FP
t /-

adapted, continuous process such that UP � �. Then

2H.UPjBP/ � EPŒjU � Bj2H �: (3.23)

We further note u WD U � B and henceforth assume that u 2 L2.P; H/. If we note
bu the dual predicable projection of u on .Fu

t / which is the filtration �.Us; s � t/

augmented with respect to P, we then have

2H.UPj�/ D EPŒjU � Bj2H � � �2
U ; (3.24)

where

�U D
q

EPŒju �buj2H �

Moreover the following assertions are equivalent:

• �U D 0.
• V ı U D B on .�; FP;P/ where V D IW C v is the Girsanov shift associated

with the measure UP on the Wiener space.

Finally for any probability � which is equivalent to the Wiener measure �

2H.�j�/ D inf
�˚

EPŒjU � Bj2H �
�


; (3.25)

where the infimum is taken on all the .�; FP; .FP

t /t2Œ0;1�;P/ and all the .U; B/

defined on it as above and such that UP D �. Moreover, we can always find (at
least) one space .�; FP; .FP

t /t2Œ0;1�;P/ and a .U; B/ defined on it with the same
properties as in the first part of the claim, which attains the infimum.

Proof. If U � B … L2.P; H/ then Eq. (3.23) holds. Otherwise let u WD U � IW

and let v be the Girsanov shift associated to UP. By Proposition 3.1 and Lemma 8.1
we have:

2H.UPj�/ D EUPŒjvj2H �

D EPŒjv ı U j2H �

D EPŒjbuj2H �

D EPŒjuj2H � � EPŒju �buj2H �;
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where the last line follows from the fact that bu is an orthogonal projection
of u. This clearly yields Eq. (3.24) and the equivalences in case of equality.
The inequality (3.23) clearly yields the inequality of Eq. (3.25). By taking
.�; FP; .FP

t /t2Œ0;1�;P/ D .W; F ; .Ft /t2Œ0;1�; �/ and .U; B/ D .IW ; V /, where
V D IW C v is the Girsanov shift associated with �, we know (see Proposition 3.1)
that the optimum is attained in Eq. (3.25). ut
Remark 8.1. In Theorem 8.2 we wanted to stress that the physical origin of the
inequality in Eq. (3.23) is the information loss. This is the reason why we need
Lemma 8.1. We already showed this result in [16] (the underlying space was the
Wiener space but the proof is the same). However the inequality (3.23) as well as
the fact that the equality in Eq. (3.23) occurs if and only if V ı U D B may be
showed directly. Indeed these results follow easily from Proposition 3.1 and the
Cauchy–Schwarz inequality as we showed it in [17]. Henceforth, let us assume that
the underlying probability space is the Wiener space W . As we seen, under the
condition E�Œ�.�ıW u/� D 1, U WD IW Cu is the inverse of V if and only if it is the
right inverse of V . Hence the equality in Eq. (3.23) is equivalent to the invertibility
and we recover the main result of [30]. For that reason we refer to this result as
Üstünel’s criterion.

Proposition 8.3 is a path space version of the Brascamp–Lieb inequality. In
Proposition 8.4 we apply it to an h-path process, so that we get a Brascamp–
Lieb inequality which holds on any abstract Wiener space. The proof of it is a
generalization of the one given in [18]; however the ideas are essentially the same.
As Theorem 8.2 enlightens it the next inequalities are involved by information loss
in the Gaussian channel.

Proposition 8.3. Let .e�i / be a family of projections on HS . Further assume that
for any i , there is an .ei

j /1
j D1 which is an Hilbert basis of HS and an .Ii / � N such

thate�i D P
j 2Ii

< x; ei
j >HS ei

j and that

X

i

˛ie�i D IHS

for a sequence of positive numbers .˛i / � R
C. We then set

eT ix D
X

j 2Ii

< ei
j ; x > ei

j

which is well defined as a measurable mapping from L0.b�; S/ ! L0.b�; S/. We
also note �i W H ! H the mapping such that .�i h/.t/ D e�i .ht / for any .h; t/ 2
H � Œ0; 1� and Ti W ! 2 W ! Ti .!/ 2 W the mapping defined pathwise by Ti .!/ W
t 2 Œ0; 1� ! eT i .Wt/. Then for any measure � equivalent to � with H.�j�/ < 1
we have

H.�j�/ �
X

i

˛i H.Ti�jTi�/: (3.26)
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In particular for every t 2 Œ0; 1� we have

H.�j�/ �
X

i

˛i H.eT i �t jeT i �t /; (3.27)

where �t WD Wt � (resp. �t WD Wt �) is the marginal at t .

Proof. From the definitions it is straightforward to check that .�i / is a family of
projections on H such that

P
i ˛i �

i D IH . Let .U; B/ be the pair defined on a
space .�; FP;P/ which attains the optimum in the variational problem given in
Theorem 8.2, and set u WD U � B . Theorem 8.2 yields

2H.�j�/ D EPŒjuj2H �

D EP

"

<
X

i

˛i �i u; u >H

#

D
X

i

˛i EPŒj�i uj2H �

D
X

i

˛i EPŒjB C �i u � Bj2H �

�
X

i

˛i H..B C �i u/Pj�/

�
X

i

˛i H.Ti .B C �i u/PjTi�/;

where the last equality comes from the fact that H.�j�/ � H.X�jX�/ for any
measurable X W W ! E where E is a Polish space. By definition, we also have
T i ı �ih D �i h for any h 2 H so that H.Ti.B C �i u/PjTi�/ D H.Ti UPjTi�/ D
H.Ti �jTi�/. Therefore we have Eq. (3.26). Since by definition for any t 2 Œ0; 1�

� � a:s: Wt ı T i D eT i .Wt /, we also have

H.Ti�jTi�/ � H.Wt Ti �jWtTi �/ D H.eT i �t jeTi�t /:

ut
Proposition 8.4. Let .b�i / be a family of projections on HS . Further assume that
for any i there is a .ei

j /1
j D1 which is an Hilbert basis of HS and a .Ii / � N such

thatb�i D P
j 2Ii

< x; ei
j > ei

j and that

X

i

˛ib�i D IHS :
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For a sequence of positive numbers .˛i / � R
C. We define

bT ix D
X

j 2Ii

< ei
j ; x > ei

j

which is well defined as a mapping from L0.b�; S/ ! L0.b�; S/. Then for any
measureb� equivalent tob� such that H.b�jb�/ < 1 we have

H.b�jb�/ �
X

i

˛i H.bT ib�jbT ib�/:

Proof. Let � be the measure associated withb� by Definition 7.1 so that W1� D b�.
By Proposition 8.1 H.b�jb�/ D H.�j�/. Hence Proposition 8.3 with t D 1 implies

H.b�jb�/ D H.�j�/ �
X

i

˛i H.bT ib�jbT ib�/:
ut

Remark 8.2. Note that in the case S D R
d we have b�i D bT i and if we note 
 the

Lebesgue measure and if we assume thatb� D X
 for an X , we have H.X
jb�/ �P
i ˛i H..b�i X/
jb�ib�/ where b�ib� is the law of a standard Gaussian vector with

range inb�.HS /. The relationship of this equality with the Brascamp–Lieb inequality
was shown in [2] as it is also recalled in [18].

8.3 Üstünel’s Criterion in Terms of Variance and Shannon’s
Inequality

In finite dimension, Shannon’s inequality involves some entropies with respect of
the Lebesgue measure. When we seek to write it in terms of Gaussian measures
some correlation terms appear since we then lose the invariance under translations.
Here we use a trick to recover the property of invariance under translation by
performing a change of measure. Under this change of measure Theorem 8.2 takes
the form of Corollary 8.1. The variational formulation of the entropy is then written
in terms of variance instead of in terms of energy. In Theorem 8.3 we get the abstract
Wiener space version of the Shannon inequality as a consequence of two facts: the
information loss on the path space and the addition property of the variances of
independent random variables.

Corollary 8.1. Let .�; FP;P/ be a complete probability space with a continuous
filtration .FP

t /t2Œ0;1� which satisfies the usual conditions. Let .Bt /t2Œ0;1� be a FP
t S -

valued Brownian motion on that space, and U W Œ0; 1� ! S be any .Ft /-adapted
continuous process such that UP � �. Further assume that U is of the form U WD
B C u where u 2 L2

a.P; H/, and let �U be the probability defined by

d�U

d�
WD �.ıW mU /;
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where mU .t/ D R t

0
EPŒPus�ds. Then

2H.UPj�U / � VarP.u/;

where
VarP.u/ D EPŒju � mU j2H �:

Letbu be the dual predicable projection of u WD U �B on .Fu
t / which is the filtration

�.Us; s � t/ augmented with respect to P. Then we have

2H.UPj�U / D VarP.u/ � �2
U ;

where

�U D .EPŒju �buj2H �/
1
2 :

Moreover, the following assertions are equivalent:

• u Dbu.
• V ı U D B where V D IW C v is the Girsanov shift associated with UP.
• 2H.UPj�U / D VarP.u/.
• 2H.UPj�/ D EPŒjU � Bj2H �.

Finally, for any probability � which is equivalent to the Wiener measure �,

d��

d�
WD �.ıW m�/;

where m�.t/ D � R t

0
E�ŒPvs �ds D �E�Œvt �. Then

2H.�j��/ D inf .fVarP.U � B/g/ ;

where the infimum is taken on all the .�; FP; .FP

t /t2Œ0;1�;P/ and all the .U; B/

defined on it as above and such that UP D �. Moreover, we can always find (at
least) one space .�; FP; .FP

t /t2Œ0;1�;P/ and a .U; B/ defined on it with the same
properties as in the first part of the claim, which attains the infimum. Finally the
optimum is attained by the same shifts as the variational problem of Theorem 8.2.

Proof. From the definitions and Theorem 8.2, we have

H.UPj�U / D H.UPj�/ � EP

�

ln
d�U

dP
ı U

�

D H.UPj�/ � jmU j2H
2
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D EP

� jbuj2H
2

�

� jmU j2H
2

D EP

� jbuj2H
2

�

� EP

� juj2H
2

�

�
�

EP

� juj2H
2

�

� jmU j2H
2

�

which is the main part of the result. Note that if UP D � we have

mU D
Z :

0

EPŒPus�ds

D
Z :

0

EPŒPbus�ds

D �
Z :

0

EPŒPvs ı U �ds

D �
Z :

0

E�ŒPvs ı U �ds

D m�

so that �� D �U . By taking .�; FP; .FP

t /t2Œ0;1�;P/ D .W; F ; .Ft /t2Œ0;1�; �/, and
.U; B/ D .IW ; V /, where V D IW C v is the Girsanov shift associated with �, we
know (see Proposition 3.1) that the optimum is attained. ut

The next lemma is the price to pay for working with Gaussian measures instead
of the Lebesgue measure (which is not defined when dim S D 1).

Lemma 8.2. Let � be a probability equivalent to � such that H.�j�/ < 1, and let
b� a probability equivalent to b�. Further assume that

W1� Db�

and let
d��

d�
WD �.ıW m�/;

where m�.t/ D � R t

0
E�ŒPvs�ds D �E�Œvt � where v is the Girsanov drift associated

with �, �t D Wt� and

db�b�
db�

.x/ WD exp

 

< x; mb� > �jmb�j2HS

2

!

;

where mb� is the mean ofb�i . Then

H.b�jb�b�/ � H.�j��/ (3.28)
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Moreover, if � is the measure associated with b� by Definition 7.1, the inequality
(3.28) is an equality.

Proof. Since b� is centered V1� D b� and W1� D b� we have m�.1/ D �E�Œv1� DR
db�.x/x D mb� . Hence by applying two times the Cameron–Martin theorem [15]

once on W , once on S , W1�� D .W1 C m�.1//� D .W1 C mb�/� D .IS C mb�/b� D
b�b� . Since we also have W1� D b�, we then get H.b�jb�b�/ D H.W1�jW1��/ �
H.�j��/. Moreover if � is the measure associated with b� by Definition 7.1 it is
straightforward to check that we have an equality. ut

We now give an abstract Wiener space version of Shannon’s inequality.

Theorem 8.3. Let .b�i / be a sequence of probabilities equivalent to b� such that
H.b�i jb�/ < 1. For a sequence .pi / of positive reals such that

X

i

pi D 1;

we setb�† WD .
P

i

p
pi �i / ˝i b�i where �i is the projection on the i th coordinate of

the product space SN. We further define a family of measure .b�i / by

db�i

db�
D exp

 

< x;bmi > �jbmi j2HS

2

!

;

where bmi is the mean ofb�i and we set

db�†

db�
D exp

 

< x;
X

i

p
pibmi > �jPi

p
pibmi j2HS

2

!

:

Then we have

H.b�†jb�†/ �
X

i

pi H.b�i jb�i/:

Proof. For any i 2 N let �i be the optimal measure associated with b�i by
Definition 7.1, and let V i be the Girsanov shift associated with �i . For any i we also
note �i the measure associated with �i on W by Lemma 8.2. From Corollary 8.1
we have

H.�i j�i / D Var�i Œ.V i � IW /�:

Thus Lemma 8.2 yields

H.b�i jb�i / D Var�i Œ.V i � IW /�: (3.29)

We set �† D W N, P† WD ˝i �
i , and we define the filtration .G†

t / by G†
t D

�.ffV i
s ı P rigi2N; s � tg/ for any t 2 Œ0; 1�, where P ri is the projection on the
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i th coordinate of W N. We also set G† WD G†
1 . Then from Paul Levy’s theorem,

B† WD P
i

p
piV

i ı P ri is a .G†
t /-Brownian motion on .�†; G†;P†/. On the

other hand U † WD P
i

p
pi P ri is adapted to .G†

t /. Hence Corollary 8.1 applies and
we get

H.U †
P

†j�†/ � VarP†.U † � B†/; (3.30)

where �† is the measure defined in Corollary 8.1. Since W1.U
†
P

†/ D
W1

P
i

p
pi P riP

† Db�† Lemma 8.2 yields

H.b�†jb�†/ � VarP†.U † � B†/: (3.31)

The property of the variance of a sum of independent variables writes

VarP†.U † � B†/ D
X

i

piVar�i .V i � IW /: (3.32)

By gathering Eqs. (3.29), (3.31), and (3.32) we get the result. ut
Remark 8.3. In the finite-dimensional case S D R

n with the Lebesgue measure 


on it, let .Xi/ be a sequence of independent random elements with values in R
n

defined on a space .�; F ;P/ such that H.XiPj
/ < 1. Shannon’s inequality can
be written:

X

i

pi H.Xi
Pj
/ � H

 
X

i

p
pi XiPj


!

; (3.33)

where .pi / is a sequence of positive numbers such that
P

i pi D 1: However,
the Lebesgue measure is not defined in infinite dimensions and we had to write
it in terms of Gaussian measure (which still makes sense in infinite dimension as a
Wiener measure). Let � be the standard Gaussian measure on R

n. The trick to keep
a formula as simple as possible is then to introduce the following measures: for any
i we set

d�i

d

.x/ WD 1

.2�/
n
2

exp

�

� .x � EŒXi �/
2

2

�

and
d�†

d

.x/ WD 1

.2�/
n
2

exp

�

� .x �P
i

p
pi EŒXi �/

2

2

�

:

We then have

H.Xi
Pj�i / D EXiP

�

ln
dXi

P

d


�

� EXiP

�

ln
d�i

d


�

D H.Xi
Pj
/ � EXiP

�

ln
d�i

d


�
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D H.Xi
Pj
/ �

Z
d
.x/

.Xi.x/ � EŒXi �/2

2
� n

2
ln.2�/

D H.Xi
Pj
/ � VarP.Xi / � n

2
ln.2�/:

Since the Xi are independent we have VarP.
P

i

p
pi X

i / D P
i piVarP.Xi /.

Hence if we set �† D P
i

p
pi XiP we get

X

i

pi H.Xi
Pj�i/ � H.�†j�†/ D

X

i

pi H.Xi
Pj
/ � H.�†j
/:

Hence Shannon’s inequality may be written H.�†j�†/ � P
i piH.Xi

Pj�i /. This
is exactly what we proved in this proposition.

9 Invertibility of the Free Schrödinger Shifts
in the Perspective of Optimal Transport

In this section we will handle the following sets.

Definition 9.1. Letb� be a probability equivalent to b� then we set

R.�;b�/ WD ˚
u 2 L0.�; H/ W U1� Db� where U WD IW C u

�
:

and
Ra.�;b�/ WD L0

a.�; H/ \ R.�;b�/:

In Sect. 7 we have given mild sufficient conditions for the invertibility of free
Schrödinger shifts. It also involves a generalization for the representation formula
of [18] which is given in Proposition 9.1. We recall that in [18] Proposition 9.1 is

proved on the classical Wiener space under the condition that db�
db�

D ef where f is

C 2 with all its derivatives bounded. Moreover the latter does not relate the equality
case to invertibility but rather to right invertibility.

Proposition 9.1. Let b� be a probability equivalent to b� with finite entropy, i.e.,

H.b�jb�/ < 1. If dim S D 1 further assume that db�
db�

2 L1.b�/. Then we have

2H.b�jb�/ D min
�˚

E�Œjuj2H � W u 2 Ra.�;b�/
�


: (3.34)

Moreover the infimum is attained by a U WD IW C u which is the inverse of the
Schrödinger shift (see Definition 7.1) associated withb�.
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Proof. Letb� be a probability equivalent to b�. From Eq. (3.12) for any u 2 R.�;b�/

we have
H.b�jb�/ � H.U�j�/: (3.35)

Then Theorem 8.2 implies that

2H.U�j�/ � E�Œjuj2H �: (3.36)

Together with Eq. (3.35) it yields the inequality in Eq. (3.34). Moreover from
formula (3.12) the equality in Eq. (3.35) is attained by the optimal measure
associated with �. By applying Theorem 7.1 (or Theorem 7.2 if dim S D 1) we get
the existence of a u which attains the equality in Eq. (3.36). Hence the inverse of the
free Schrödinger shift associated withb� attains the optimum in Eq. (3.34). ut

Naturally related questions are whether a similar representation formula holds
for d.b�;b�/ (see definition 3.1) and whether the infimum is also attained by an
invertible shift T with a given marginalb�. The answer is given by Proposition 9.2.
Also note that the law of the nonadapted shift T which appears in the statement
of Proposition 9.2 is the analogous in the nonadapted case to the optimal law

� WD db�
db�

ı W1.

Proposition 9.2. Let b� be a probability equivalent to b� of finite Wasserstein
distance with respect to b�. Then d.b�;b�/ is given by

d.b�;b�/ D inf
�˚

E�Œjuj2H � W u 2 R.�;b�/
�


(3.37)

and the infimum is attained by an invertible shift T such that

W1 ı T D T S ı W1: (3.38)

Moreover, leteS be the inverse of T , i.e., � � a:s: T ı S D IW and S ı T D IW . We
also have

W1 ıeS D eSS ı W1; (3.39)

where T S and eSS are the solutions of the Monge problem (resp. its inverse) on S

defined in Theorem 8.1.

Proof. We recall that IS denotes the identity map on S . We note R.b�;b�/ the set of
the mappings uS 2 L2.b�; HS / such that U Sb� Db� where U S D IS C uS . It may be
seen as a subset of R.�;b�/. Indeed for any such uS we can set i.uS/: D R :

0
uSıW1ds.

Obviously i.us/ 2 R.�;b�/ so that i.R.b�;b�// � R.�;b�/ and

inf
�˚

E�Œji.uS/j2H W uS 2 R.b�;b�/
�
 D inf

�˚
E�Œjuj2H W u 2 i.R.b�;b�//

�


� inf
�˚

E�Œjuj2H W u 2 R.�;b�/
�


:
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Of course we have
E�

hˇ
ˇi.uS/

ˇ
ˇ2
H

i
D Eb�

hˇ
ˇuS
ˇ
ˇ2
HS

i
(3.40)

and

d.b�;b�/ D inf

n

Eb�ŒjuS j2HS
W uS 2 R.b�;b�/

o�

D inf
�˚

E�Œji.uS/j2H W uS 2 R.b�;b�/
�


:

Hence we get
d.b�;b�/ � inf

�˚
E�Œjuj2H � W u 2 R.�;b�/

�

: (3.41)

On the other hand for any u 2 R.�;b�/ Jensen’s inequality yields

E�

�ju1j2HS

	 � E�

�juj2H
	

(3.42)

and since .U1 � W1/� 2 †.b�;b�/ we have

d.b�;b�/ � E�

" ju1j2HS

2

#

: (3.43)

The inequalities (3.42) and (3.43) clearly yield

d.b�;b�/ � inf

��

E�

� juj2H
2

�

W u 2 R.�;b�/

��

: (3.44)

Together with Eq. (3.41) the inequality (3.44) yields Eq. (3.37). Now we set T WD
IW C i.tS / where tS WD T S � IS , i.e.,

T W .�; !/ 2 Œ0; 1� � W ! T� WD W� C �tS ı W1

and we want to show that it attains the infimum of Eq. (3.37). Indeed by hypothesis
we have Eq. (3.38) so that T1� D T Sb� Db�. Hence

t WD T � IW 2 R.�;b�/

On the other hand Eq. (3.40) yields

E�ŒjT � IW j2H � D Eb�ŒjT S � IS j2HS
�

D d.b�;b�/:

Hence t attains the infimum of Eq. (3.37). We now prove the last part of the claim.
It is easy to see that if we set eS� WD W� C �esS ı W1 whereesS WD eSS � IS we
then have
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.T ıeS/� D W� C �esS ı W1 C �T S ı .W1 CesS ı W1/

D W� C �.T S ıeSS � IS / ı W1

D W�

which shows that T WD IW C t is invertible with inverseeS . ut
Under the hypothesis of Proposition 9.1, we then have

d.b�;b�/ D inf
�˚

E�Œjuj2H � W u 2 R.�;b�/
�


and
2H.b�;b�/ D inf

�˚
E�Œjuj2H � W u 2 Ra.�;b�/

�

:

Since
Ra.�;b�/ � R.�;b�/

we get again the Talagrand inequality. Moreover in the proof of Proposition 9.2
the existence of T clearly follows from the existence of an invertible shift on
S which solves the Monge problem. This suggests to investigate the connection
between the invertibility of the Schrödinger shifts and the problem of invertibility
on S . For that reason henceforth and until the end of this section we assume that
S D C0.Œ0; 1�;Rd / (however our results extend to the case where S is an abstract
Wiener space with a time structure as in [33]). Letb� be a probability equivalent to
b�, we then have the existence of a Girsanov shift V S WD IS C vS such thatb� � a:s:

db�

db�
D exp

�

�ıW S

vS � jvS jHS

2

�

and such that t ! V S
t is a Wiener process underb� on S . We recall that in that case

ıW S
vS denotes the stochastic integral of vS with respect to the coordinate process

t ! W S
t on S . L0

a.b�; HS / is the subset of the elements of L0.b�; HS / which are
adapted to the filtration generated by the coordinate process on S . We call vS (resp.
V S WD IS C vS where IS is the identity map on S ) the S -Girsanov drift (resp. shift)
associated withb�. In this case we also define

R.b�;b�/ WD ˚
u 2 L0.�; HS / W Ub� Db� where U WD IS C u

�

and Ra.b�;b�/ D R.b�;b�/ \ L0
a.b�; H/. Propositions 9.3 and 9.4 complete the

analogy between Eqs. (3.34) and (3.37): in particular Eq. (3.48) has to be compared
with Eq. (3.38).

Proposition 9.3. Let b� be a probability equivalent to b� on S D C0.Œ0; 1�;Rd /

which is such that db�
db�

2 L1.b�/, and let V WD IW C v be the Schrödinger shift

associated withb� (see Definition 7.1). Then we have

W1 ı V D V S ı W1; (3.45)
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where V S WD IS C vS is the S -Girsanov shift associated with b�. If we denote by
U WD IW C u the inverse of the Schrödinger shift we also have equivalently

V S ı U1 D W1 (3.46)

and
E�Œju1j2HS

� D E�Œjuj2H �:

In particular the following variational formula holds:

H.b�jb�/ D E�

" jv1j2HS

2

#

D inf

 (

E�

" ja1j2HS

2

#

W a 2 Ra.�;b�/

)!

:

Proof. Let a 2 Ra.�;b�/ and let ba1
A1 be the projection of a1 on the closed subspace

˚

 ı A1 W 
 2 L2

a.b�; HS /
�

:

Since
.ıW S


/ ı A1 � ıW1.
 ı A1/ D< 
 ı A1; a1 >HS ;

we get

E� Œ< a1; 
 ı A1 >HS � D E�

h
.ıW S


/ ı A1

i
� E�

�
ıW1.
 ı A1/

	

D Eb�

h
ıW S



i

D Eb�

h
ıV S



i

� Eb�
�
< vS ; 
 >HS

	

D �E�

�
< vS ı A1; 
 ı A1 >HS

	
:

Hence
ba1

A1 C vS ı A1 D 0

b� � a:s. In particular together with Proposition 3.1 it yields

2H.b�jb�/ D Eb�
�jvS j2HS

	

D E�

�jvS ı A1j2HS

	

D E�

�jba1
A1 j2HS

�
	

� E�

�ja1j2HS

	
:
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Then Jensen’s inequality implies

2H.b�jb�/ � E�Œjaj2H � (3.47)

for any a 2 Ra.�;b�/. If we apply this result to the optimal shift U WD IW C u
which is the inverse of V and Theorem 8.2 we get

2H.b�jb�/ � E�Œjuj2H � D 2H.�j�/ D 2H.b�jb�/;

where the last equality is a consequence of Proposition 8.1 and where � is the
optimal probability associated with b� by Definition 7.1. Hence in that case the
inequalities are equalities and bu1

U1 D u1 so that u1 D �vS ı U1 and Eq. (3.46)
is proved. By applying V to both terms of Eq. (3.46) we get Eq. (3.45). From this
the result comes easily. ut
Proposition 9.4. With the same hypothesis and notations as in Proposition 9.3, let

b� be a probability equivalent to b� such that db�
db�

2 L1.b�/. Moreover, let U be the

optimal shift given by Proposition 9.1 which is the inverse of the Schrödinger shift
associated withb�. Then the following assertions are equivalent:

• There is a measurable mapping U S W S ! S such that � � a:s:

W1 ı U D U S ı W1: (3.48)

• There is a uS 2 Ra.b�;b�/ such that U S D IS CuS is the both sidedb� almost sure
inverse of V S WD IS C vS where vS is the S -Girsanov drift associated withb�.

Moreover, in that case, both the U S are the same and

2H.b�jb�/ D Eb�ŒjuS j2HS
�:

Proof. Assume that there is a mapping U S such that Eq. (3.48) holds. We have

U Sb� D U S ı W1� D U1� Db�:

Moreover, by Eq. (3.46) of Proposition 9.3, we get

b�
�˚

! 2 S W V S ı U S D IS

�
 D �
�˚

! 2 W W V S ı U S ı W1 D W1

�


D �
�˚

! 2 W W V S ı U1 D W1

�


D 1:

Hence V S ı U S D IS b� � a:s: Since U Sb� D b� � b� Proposition 4.1 also implies
that b� � a:s: we have U S ı V S D IS . Hence U S is the both sided inverse of V S .
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This implies that t ! U S
t generates the same filtration as the coordinate process

on S . Let uS D U S � IS . Since uS D �vS ı U S , Eb�ŒjuS j2HS
� D E�ŒjvS j2H � D

H.b�jb�/. Moreover, since vS 2 L0
a.b�; HS / is adapted to the filtration generated

by the coordinate process on S , uS is also adapted to the filtration generated by
U S and hence to the filtration generated by the coordinate process on S , i.e.,
uS 2 L0

a.b�; HS /. Conversely assume that U S D IW C uS where uS 2 Ra.b�;b�/

is the inverse of V S . By applying U S to both terms of formula Eq. (3.46) in
Proposition 9.3 we finally get Eq. (3.48). ut

10 An Extension of Üstünel’s Criterion for Some Stochastic
Differential Equation with Dispersion

We adopt special notations throughout this last section. We note Ad;r the set of
the progressively measurable processes (with respect to the canonical filtrations)
.˛s; s 2 Œ0; 1�/ with values in R

d ˝R
r . Let .�s; s 2 Œ0; 1�/ 2 Ad;d . We first consider

the following stochastic differential equation:

dXt D �t .X/dBt I X0 D 0: (3.49)

We further assume that .�s; s 2 Œ0; 1�/ 2 Ad;d satisfies the following condition:

(H1) � is such that Eq. (3.49) has a unique solution � in the sense of the
probability law.

Let P 2 P.W / be any Borelian probability on W . We note FP be the completion
of B.W / with respect to P. We recall that P has a unique extension on FP which we
still note P. We also note .FP

t / the usual augmentation [3] with respect to P of the
filtration generated by the coordinate process t ! Wt . We now focus on equations
of the form

dXt D �t .X/.dBt � P̌
t ı Xdt/I X0 D 0: (3.50)

Without loss of generality we may always assume that there is a predicable . P�s; s 2
Œ0; 1�/ 2 Ad;1 such that P̌

t D �?
t

P�t , where �?
t is the transpose of �t . We have to in-

troduce some other notations in order to set our second hypothesis. For a P 2 P.W /

Mc
2.P/ (resp. Mc;loc

2 .P/) will denote the set of the continuous square integrable
.FP

t /-martingale (resp. continuous locally square integrable .FP

t /-martingale) on
.W; FP;P/, vanishing at zero. For any N 2 Mc

2.P/ (resp.in Mc;loc
2 .P/) we set

L2.P; < N >/ WD f. Pas; s 2 Œ0; 1�/ 2 A1;1 W E�Œ
R 1

0
Pa2

s d < N; N >s� < 1g (resp.

L2
loc.P; < N >/ WD f. Pas; s 2 Œ0; 1�/ 2 A1;1 W P � a:s:

R 1

0
Pa2

s d < N; N >s< 1g).
Let t ! Mt 2 R

d and .Pus; s 2 Œ0; 1�jPus 2 R
d / be such that for any i 2 R

d

M i 2 Mc;loc
2 .P/ and .Pui

s/ 2 L2
loc.P; < M i >/ and let t ! At 2 R

d be a
continuous and adapted process such that for any i , t ! Ai

t is of finite variation.
For U WD M C A, we set the following notation of the stochastic integral:
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ıU u WD
X

i

Z 1

0

Pui
sdM i

s C
X

i

Z 1

0

Pui
sdAi

s:

In particular on .W; F�; �/ the coordinate process is a semimartingale which enables
us to set

��.�ıW �/ WD exp

�

�ıW � � < ıW �; ıW � >1

2

�

:

Note that it is straightforward to check that < ıW �; ıW � >1D jˇj2H . With this
notation our second hypothesis will be:

(H2) The uniqueness in law holds for Eq. (3.50); ˇ 2 L0
a.�; H/ and

E�

�
�� .�ıW �/

	 D 1:

We recall that by the Girsanov theorem (H1) and (H2) imply the existence of a weak
solution for Eq. (3.50) [13]. We note � the law of this solution which is unique by
.H2/. Proposition 10.1 is nothing but an extension of the old result of Föllmer we
recalled in Sect. 3. It is probably well known, but we prefer to recall the proof for
the sake of completeness.

Proposition 10.1. Assume that .H1/ and .H2/ hold and that � (resp. �) still
denotes the law of the unique solution to Eq. (3.50) (resp. to Eq. (3.49)). Then we
have � � a:s:

d�

d�
D �� .�ıW �/ (3.51)

(in particular � � �) and
2H.�j�/ D E�Œjˇj2H �: (3.52)

Proof. We set
de�

d�
WD �� .�ıW �/:

Since for any i 2 Œ1; d � t ! W i
t is a continuous local martingale N WD �ıW �:� 2

Mc;loc
2 and < N; N >1D jˇj2H . By applying the Girsanov theorem for any f 2

C 2
b .Rd / we have

f .Wt / � f .W0/ �
Z t

0

.Af /.s; !/ds 2 Mc;loc
2 .e�/;

where (repeated indices are implicitly summed over)

.Af /.t; !/ WD .�s.!/�?
s .!//i;j

2
@i;j f .Wt / � .�s.!/ˇs.!//i @i f .Wt /:

Hence e� is the law of a solution to Eq. (3.50) and from the uniqueness � D e�
which implies Eq. (3.51). We now turn to the proof of Eq. (3.52). First assume that
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H.�j�/ < 1. Then we set for any n 2 N �n D inf.ft W< N; N >t> ng ^ 1. By
the Girsanov theorem, t ! N

�n
t C < N �n; N �n >t is a martingale under � so that

E�ŒN�nC < N �n; N �n >� D 0. Therefore

E� Œ< N; N >1� D E�

h
lim

n!1 < N; N >�n

i

� lim inf
n!1 E� Œ< N; N >�n�

D lim inf
n!1 E� Œ�2N�n � 2 < N; N >�n C < N; N >�n�

D 2 lim inf
n!1 E�

�

�N�n � < N; N >�n

2

�

D 2 lim inf
n!1 E�

�

E�Œ
d�

d�
jF�n �

�

D 2 lim inf
n!1 E�

�

E�Œ
d�

d�
jF�n � ln E�Œ

d�

d�
jF�n �

�

� 2H.�j�/;

where the last line follows from Jensen’s inequality. Hence H.�j�/ < 1 implies
E�Œ< N; N >1� < 1. Conversely, if E�Œ< N; N >1� < 1 t ! Nt is a martingale
under � for the filtration .F�

t /. Hence the Girsanov theorem implies E�ŒeN 1� D 0,
where eN : WD N:C < N; N >:. We then get

H.�j�/ D E�

�

�eN 1 C < N; N >1

2

�

D E�

�
< N; N >1

2

�

:

Hence H.�j�/ < 1 if and only if E�Œ< N; N >1� < 1, and we always have

2H.�j�/ D E�Œ< N; N >1�

which is Eq. (3.52). ut
We still assume that .H1/ and .H2/ hold and recall that � (resp. �) denotes the

law of the unique solution to Eq. (3.49) [resp. Eq. (3.50)]. We further assume that
the drift term ˇ satisfies the following finite energy condition.

(H3) E�Œjˇj2H � < 1.

The next theorem provides an entropy-based criterion for strong solutions. The
notion of perturbation of the identity (cf. [30]) has to be generalized by some U

of the form
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U: WD
Z :

0

�t .U /.dWt C P̌u
t dt/:

Theorem 10.1 is a generalization of Theorem 7 of [30] (take �t D ıi;j for any
t 2 Œ0; 1�).

Theorem 10.1. Assume that .H1/,.H2/, and .H3/ hold. Let U W W ! W be such
that

U� D � (3.53)

and t ! Ut is adapted to .F�
t / which is the usual augmentation of the coordinate

process t ! Wt with respect to the Wiener measure �. Further assume that U

solves

U: D
Z :

0

�s.U /.dWs C P̌u
s ds/: (3.54)

Then we have

2H.�j�/ � E�Œjˇuj2H � (3.55)

with equality if and only if dt � d� � a:s: ˇu C P̌
t ı U D 0, i.e., if and only if

U is a strong solution of Eq. (3.50) on .W; F�; �/ with the filtration .F�
t /, and the

Brownian motion t ! Wt , i.e.,

U: D
Z :

0

�t ı U.dWt � P̌
t ı U dt/:

Proof. We set N WD R :

0
�s.U /dWs and u D R :

0
�s.U / P̌u

s ds so that from the
hypothesis U: WD N C u. Note that for any i 2 Œ1; d � M i

: WD W i
: � R :

0 Œ�t
P̌
t �

i dt 2
Mc;loc

2 .�/. We then have by definition

< ıM �; ıM � >1D< ıW �; ıW � >1D jˇj2H : (3.56)

Together with .H3/, Eq. (3.56) yields

E�ŒıM �� D 0: (3.57)

Moreover, from Eq. (3.53) we also have

< ıN .� ı U /; ıN .� ı U / >1D< ıW �; ıW � >1 ıU D jˇ ı U j2H : (3.58)

Since the finite energy condition also reads E�Œj� ı U j2H � < 1, together
with Eq. (3.58) it yields

E�ŒıN .� ı U /� D 0: (3.59)

We then have
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E�

�jˇj2H
	 D E� Œ< ˇ; ˇ >H �

D E�

�Z 1

0

< �?
s

P�s; P̌
s >Rd ds

�

D E�

�Z 1

0

< P�s; �s
P̌
s >Rd ds

�

D �E�

�
ıW �

	 � E�

�
ıM �

	

D �E�

�
ıW �

	
;

where the last equality follows from Eq. (3.57). On the other hand Eqs. (3.53)
and (3.54) yield

E�

�jˇj2H
	 D �E�

�
ıU .� ı U /

	

D �E�

�
ıN .� ı U /

	 � E� Œ< u; � ı U >H �

D �E�

�
ıN .� ı U /

	 � E�

�Z 1

0

< �s ı U P̌u
s ; P�s ı U >Rd ds

�

:

Finally Eq. (3.59) yields

E�Œjˇj2H � D �E�

�Z 1

0

< �s ı U P̌u
s ; P�s ı U >Rd ds

�

D �E�

�Z 1

0

< P̌u
s ; .�?

s
P�s/ ı U >Rd ds

�

D �E�

�Z 1

0

< P̌u
s ; P̌

s ı U >Rd ds

�

D �E� Œ< ˇu; ˇ ı U >H � :

Proposition 10.1 then implies

2H.�j�/ D E�Œjˇj2H � D �E�Œ< ˇu; ˇ ı U >H �: (3.60)

The result follows directly from Eq. (3.60). Indeed the Cauchy–Schwarz inequality
yields

2H.�j�/ D �E�Œ< ˇu; ˇ ı U >H �

�
q

E�Œjˇuj2H �

q
E�Œjˇ ı U j2H �

�
q

E�Œjˇuj2H �

q
E�Œjˇj2H �

D
q

E�Œjˇuj2H �
p

2H.�j�/
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which implies inequality Eq. (3.55). Moreover, from the case of equality in the
Cauchy–Schwarz inequality, we have an equality in Eq. (3.55) if and only if ��a:s:

ˇu C ˇ ı U D 0. ut
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Chapter 4
Dilation Vector Field on Wiener Space�

Hélène Airault

Abstract We consider the heat operator �H , heat equation, and heat kernel
measures .�t /t�0 on Wiener space � as explained in Driver (Contemp. Math.
338:101–141, 2003). We define the notion of heat dilation vector field associated
to a family of probability measures .�t /t�0 on �. Let ! 2 �. The vector
field V on � is expressed for F.!/ D f .!.t1/; !.t2/; : : : ; !.tn// as VF.!/ D
.vf /.!.t1/; !.t2/; : : : ; !.tn// where vf D Pn

kD1 xk @
@xk

. The vector field V is
shown to be a heat vector field for the heat kernel measures .�t /t�0. We project
down “through a nondegenerate mapZ”, Ornstein–Uhlenbeck operators defined on
� by Lt F D t�HF � VF . We obtain a first-order partial differential equation for
the density of the random vector Z. We compare this differential equation to the
heat equation and to Stein’s equation for the density.
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1 Introduction

On the path space of a Riemannian manifold, see [2], different Wiener type measures
.�t / exist corresponding to the variance t. A heat operator .At / associated to .�t / is
a family .At /jt2�0IC1Œ of elliptic operators on functions � defined on the path space
and such that

Z

At �d�t D d

dt

Z

�d�t (4.1)

whenever the integrals in Eq. (4.1) exist. A dilation vector field associated to .�t / is
a vector field V defined on the path space such that

t
d

dt

Z

�d�t D
Z

.V�/ d�t : (4.2)

In [2], a dilatation vector field on the path space is obtained by constructing a
Laplacian on the path space and integrating by parts. This shows a rescaling of
Wiener measure under dilations. In [9], heat dilation vector fields have been defined
on loop groups. For the space R

n, let x D .x1; x2; : : : ; xn/ 2 R
n, we define

Yf .x/ D 1

2
x � .grad f /.x/ D 1

2

nX

jD1
xj

@

@xj
f: (4.3)

Then Y is a dilation vector field for the gaussian measures

�t D .2�t/�n=2 exp.�.x21 C x22 C � � � C x2n/=2t/dx1dx2 � � � dxn: (4.4)

Of course, it is not the only one. Moreover, fixing t1, t2, : : : positive real numbers, it
can be proved by integrating by parts that Y is a dilation vector field for the measures
.�t /t�0 on R

n,
�t D Rt.x1; x2; : : : ; xn/dx1dx2 � � � dxn; (4.5)

where

Rt.x1; x2; : : : ; xn/ D 1p
2�t1t

exp

�

� x21
2t1t

�

� 1
p
2�.t2 � t1/t

exp

�

� .x2 � x1/2
2.t2 � t1/t

�

� � � �

� 1
p
2�.tn � tn�1/t

exp

�

� .xn � xn�1/2

2.tn � tn�1/t

�

: (4.6)

The objective of this work is to relate Laplace operator on Wiener space, via a
dilation map, to a system of PDEs given in [1] for the density of a smooth random
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vector on Wiener space. This system of PDEs has been inspired by the analysis
of Nourdin and Peccati, [10]. While the system of PDEs in [1] may not determine
the density of a smooth vector on Wiener space, by using the device of dilation,
interpreting the dilation parameter t as a time parameter, we establish in the present
work that a time-dependent version of this system of PDEs, coupled with a single
dilation PDE whose coefficients are determined by the dilation vector field on
Wiener space, takes to the heat equation on Wiener space which was defined by
Driver and whose solution is known to be unique. This situation is in stark contrast
with the uniqueness obtained by Nourdin and Viens in [11], for a density equation
for Malliavin differentiable scalar random variables on Wiener space. Our point of
view can be observed in finite-dimensional space by the following considerations.
The gaussian density on the real line,

pt t1.x/ D 1p
2�t t1

exp

�

� x2

2 t t1

�

(4.7)

is solution of any of the three differential equations

d

dt
pt t1 .x/ D t1

2

d2

dx2
ptt1 .x/; (4.8)

d

dt
pt t1 .x/ D � 1

2t

d

dx
.x ptt1.x//; (4.9)

d

dx
.t t1 pt t1 .x// D �x ptt1.x/: (4.10)

These three equations are related: Consider a differentiable function f .t; x/ defined
for t > 0, x 2 R and such that @

@x jxD0f .t; x/ D 0. If f .t; x/ satisfies two of
the three Eqs. (4.8)–(4.10) then it satisfies the third one. For example, if f .t; x/ is
solution of Eqs. (4.9) and (4.10), we replace the right hand side of Eq. (4.10) into
the right hand side of Eq. (4.9), then we find Eq. (4.8).

Similarly, in dimension n, let t1, t2, : : :, tn, and t be positive real numbers. We
put x D .x1; x2; : : : ; xn/. The function defined on R

n by Eq. (4.6) is solution of the
heat equation

d

dt
Rt.x/ D 1

2

nX

j;kD1
tj ^ tk

�
@2

@xj @xk
Rt

�

.x/: (4.11)

On the other hand, Rt.x/ is also solution of

d

dt
Rt .x/ D � 1

2t

�
@

@x1
.x1 Rt /C @

@x2
.x2 Rt /C � � � C @

@xn
.xn Rt /

�

(4.12)

just as well as a solution of the first-order system:

t1
@R

@x1
C t1 ^ t2 @R

@x2
C t1 ^ t3 @R

@x3
C � � � D �x1 R � 1

t
;
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t1 ^ t2 @R
@x1

C t2
@R

@x2
C t2 ^ t3 @R

@x3
C � � � D �x2 R � 1

t
;

t1 ^ t3 @R
@x1

C t2 ^ t3 @R
@x2

C t3
@R

@x3
C � � � D �x3 R � 1

t
;

� � � : (4.13)

Moreover, if we carry in Eq. (4.12), the xjR � 1
t

given by the right hand side of
Eq. (4.13), we find Eq. (4.11). Consider a differentiable function f .t; x/ defined on
�0;C1Œ�Rn. If f .t; x/ satisfies Eqs. (4.12) and (4.13), then it satisfies Eq. (4.11). In
the same way, if f .t; x/ satisfies Eqs. (4.11)–(4.13), then it satisfies Eq. (4.12). Our
purpose is to use Malliavin’s projecting down and lifting up through a nondegenerate
map, see [6], p. 75, to analyze the differential equations giving the density of a
random variable. We shall lift Eqs. (4.8)–(4.10) and (4.11)–(4.13) to Wiener space
�. Let t 2 Œ0; 1�. Let F D fF.!/ W ! 2 �g be a smooth random variable on�. Let
� be the Wiener measure on �. We define the dilated Wiener measure �t on � by

Z

F.!/d�t .!/ D
Z

F.
p
t !/d�.!/: (4.14)

The dilation vector field V on � extends the formula

VF.!/ D
nX

jD1
!.tj /

@f

@xj
.!.t1/; !.t2/; : : : ; !.tn// (4.15)

for simple random variables F.!/ D f .!.t1/; !.t2/; : : : ; !.tn//, where f is a
bounded differentiable function on R

n. On Wiener space, the dilation vector field
is solution of

t
d

dt
�t .F / D 1

2
�t .VF /: (4.16)

The Laplacian (or heat) operator on Wiener space is defined by

�HF.!/ D
X

h2B
D2
hF.!/; (4.17)

where B is an orthonormal system in L2.Œ0; 1�/ and Dh is Malliavin derivative. By
[4], we have

d

dt
�t .F / D 1

2
�t .�HF / with lim

t!0
�t .F / D F.0/: (4.18)

Let L be the classical Ornstein–Uhlenbeck operator on Wiener space. We define the
dilated Lt by

.LtF /.!/ D .LFt /
�
!p
t

�

and Ft .!/ D F.
p
t!/: (4.19)
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We prove (Proposition 2.3) that

Lt D t�H � V: (4.20)

Let Z D .Z1; : : : ; Zn/ be a smooth nondegenerate random variable on Wiener
space. The conditional expectation (relative to �t ) of a random vector U with
respect to the random variable Z taking the value x is denoted E�t ŒU j Z D x�.
In Sects. 3 and 4, following [1], taking conditional expectations, we project on R

n,
the differential operators on Wiener space given in Eqs. (4.16), (4.20), (4.18). For
that purpose, we define the conditional expectations

˛j .t; x/ D E�t ŒVZj j Z D x�; 	j .t; x/ D E�t ŒLtZj j Z D x�

ˇkj .t; x/ D E�t Œ.DZj jDZk/L2.Œ0;1�/ j Z D x�; 
j .t; x/ D E�t Œ�HZj j Z D x�;

(4.21)

where x 2 R
n. From Eq. (4.20), we deduce for j D 1; : : : ; n,

	j .t; x/ D t
j .t; x/ � ˛j .t; x/: (4.22)

For fixed t , the density of the vector Z under �t is denoted by �t . As a function of
.t; x/ 2 Œ0; 1��R

n, the density � D f�t.x/g satisfies the dilation PDE (projection of
the differential equation (4.16) solved by the dilation vector field on Wiener space):

d

dt
�t D � 1

2t

nX

jD1

@

@xj
.˛j .t; x/ � �t .x/ /: (4.23)

See Proposition 3.3. As a function of x 2 R
n, for every fixed t , �t satisfies the

dilated version of the system of PDEs in [1]: for all j D 1; : : : ; n, and every fixed t ,

nX

kD1

@

@xk
.ˇ

j

k .t; x/�t .x// D 1

t
�t .x/E�t ŒLtZj j Z D x�: (4.24)

From Eq. (4.20), we prove that this system of nC 1 PDEs given by Eqs. (4.23) and
(4.24) implies that � as a function of .t; x/ 2 Œ0; 1� � R

n, also solves the equation
which is obtained as projection of the heat equation (4.18) on Wiener space through
the random vector Z, namely,

d

dt
�t .x/ D �1

2

nX

jD1

@

@xj
.
j .t; x/�t .x//C 1

2

X

j;k

@2

@xj @xk
.ˇkj .t; x/�t .x//: (4.25)

See Proposition 3.2. If Z.!/ D .!.t1/; !.t2/; : : : ; !.tn//, then ˛j .t; x/ D xj ,
ˇjk.t; x/ D tj ^ tk , 
j .t; x/ D 0, we find that Eq. (4.25) becomes Eqs. (4.11) and
(4.23) becomes Eq. (4.12).
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2 Heat Measures and Laplacian, Dilation Vector Field,
Ornstein–Uhlenbeck Operators on the Wiener Space

We consider vector fields and differential operators on Wiener space. We recall
some definitions relative to Malliavin calculus, see [12]. To be self-contained and
harmonize the notations, we write identities like Eq. (4.45) that can be found in
[12], but we give a different proof. The reason is that in this work, we do not
develop the Wiener chaos approach and we restrict mainly to integrations by parts
for Wiener integrals. In Lemma 3.1, for example, we again keep the point of view of
integration by parts. Likewise, we restrict to the infinitesimal version of Cameron–
Martin formula, see [3,4], p. 124. Our only account to chaos will be as a complement
in Sect. 5 to relate them to the dilated Ornstein–Uhlenbeck operator Lt .

Let � be the Wiener space of continuous real valued maps ! defined on Œ0; 1�
and such that !.0/ D 0. It is a Banach space with the norm jj!jj D supt2Œ0;1� j!.t/j.
LetH be the Cameron–Martin space of continuous, real valued differentiable maps
defined on Œ0; 1�. The space H is a Hilbert space with the scalar product

.h1jh2/ D
Z 1

0

h0
1.s/h

0
2.s/ds: (4.26)

Let B be an orthonormal basis ofH , then
P

h2B h.t1/h.t2/ D t1 ^ t2. The Malliavin
differentiation operator, see [5], is given for F W � ! R by

DhF.!/ D lim
�!0

1

�
ŒF.! C �h/ � F.!/�: (4.27)

The differentiation operatorsDs on Wiener space, see [12], p. 24, satisfy

DhF.!/ D
Z 1

0

DsF.!/ h
0.s/ ds 8h 2 H: (4.28)

We define DF.!/ as element of the Cameron–Martin space such that for any
h 2 H ,

.DF.!/jh/ D DhF.!/: (4.29)

See [12]. Then the inner product of two Malliavin derivatives DF and DG is
expressed as

.DF jDG/ D
Z 1

0

DsF.!/DsG.!/ ds: (4.30)

Consider the evaluation functions �t1;t2;:::;tn W � ! R
n, defined by

�t1;t2;:::;tn .!/ D .!.t1/; !.t2/; : : : ; !.tn//: (4.31)
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If F D f o �t1;t2;:::;tn where f W Rn ! R is differentiable, then by composition of
differentiation,

DhF.!/ D
nX

jD1

�
@

@xj
f

�

.!.t1/; !.t2/; : : : ; !.tn// � h.tj /; (4.32)

D2
hF.!/ D

nX

j;kD1

�
@2

@xj @xk
f

�

.!.t1/; !.t2/; : : : ; !.tn// � h.tj / h.tk/: (4.33)

2.1 Laplacian and Heat Kernel Measures

The Laplacian or heat operator �H on Wiener space is defined by Eq. (4.17). We
have

X

h2B
h.tj /h.tk/ D tj ^ tk: (4.34)

Thus, if F D f o �t1;t2;:::;tn , we deduce

�HF.!/ D
nX

j;kD1
tj ^ tk

�
@2

@xj @xk
f

�

.!.t1/; !.t2/; : : : ; !.tn//: (4.35)

Let � be Wiener measure on� and let F be a measurable function on�. For t > 0,
we define the measures �t with Eq. (4.14). We have

Z

f .!t1/d�t .!/ D
Z

f .x/ ptt1 .x/ dx; (4.36)

where ptt1 is given by Eq. (4.7), see [13] p. 135 for the physical interpretation of the
parameter t . If F1.!/ D F.

p
t !/, then

DsF1.!/ D p
t DsF.

p
t !/: (4.37)

Proposition 2.1. The measures �t defined by Eq. (4.14) satisfy the heat equa-
tion (4.18). Such measures �t on the Wiener space � are uniquely determined by
Eq. (4.18) and �1 is the Wiener measure. See, for example, [4] p. 125.

2.2 Dilation Vector Field on Wiener Space �

Definition 2.1. We define the dilation vector field on � by
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.VF /.!/ D
X

h2B

Z 1

0

h0.s/ d!.s/ :DhF.!/: (4.38)

If F.!/ D f .!.t1/; !.t2/; : : : ; !.tn//, we have

VF.!/ D .Vnf /.!.t1/; !.t2/; : : : ; !.tn// (4.39)

with

.Vnf /.x1; x2; : : : ; xn/ D
nX

jD1
xj

@

@xj
f: (4.40)

Proposition 2.2. The vector field V is a dilation vector field associated to .�t /. For
any function F W � ! R, we have Eq. (4.16).

Proof. We prove Eq. (4.16) when F D fo�t1;t2;:::;tn . ut

2.3 Ornstein–Uhlenbeck Operators Lt

Let ı the adjoint of D with respect to the scalar product on the Cameron–
Martin space, see [12] p. 35. Let � be the Wiener measure. We denote E�Œˆ� DR
ˆ.!/d�.!/. For a real valued functional u defined on Œ0; 1� � �, such that

R
d�.!/

R 1
0 u2.s; !/ds < C1 and u is adapted, we have

E�

�Z 1

0

u.s; !/DsG.!/ds

�

D E�Œı.u/.!/G.!/� (4.41)

for any measurable functionalG such that the integrals in Eq. (4.41) exist. We define
the Ornstein–Uhlenbeck L on � by

L D �ıD: (4.42)

See Proposition 1.4.3 p. 54 in [12]. From Eq. (4.42), we deduce that for real valued
functionals F , G defined on �,

� E�ŒLF.!/ :G.!/� D E�

�Z 1

0

DsF.!/ :DsG.!/ ds

�

: (4.43)

If F.!/ D !.
/, then LF.!/ D �!.
/ and a particular case of this last equation is
the “energy identity” E�Œ!s :!
 � D s ^ 
 . From Eq. (4.43), we deduce that

Z

.LF /.!/ d�.!/ D 0: (4.44)
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Lemma 2.1 (See Proposition 1.4.5 in [12]). LetZ D .Z1;Z2; : : : ; Zn/ W � ! R
n

be a nondegenerate map and � W Rn ! R. Assume that F D � oZ, then

.LF /.!/ D
nX

jD1
.LZj /.!/ @�

@xj
.Z.!//C

X

j;k

.DZj jDZk/ @2�

@xj @xk
.Z.!//: (4.45)

Proof. For G W � ! R,

J D
Z

G.!/.L.� oZ//.!/d�.!/

D �
Z

.DGjD.� oZ//d�.!/

D �
X

k

Z
@�

@�k
.Z.!//.DGjDZk/d�.!/:

Thus J D J1 C J2 with

J1 D �
X

k

Z

.D.G
@�

@�k
.Z.!///jDZk/d�.!/

D
X

k

Z

LZk �G.!/ @�
@�k

.Z.!//d�.!/;

J2 D
X

k

Z

G.!/ .D.
@�

@�k
.Z.!//jDZk / d�.!/

D
X

j;k

Z

G.!/
@2�

@�k@�j
.Z.!//.DZj jDZk/ / d�.!/:

ut

Proposition 2.3. Let F W � ! R. We define LtF by Eq. (4.19). For t > 0, we have
Eq. (4.20).

Proof. Assume that F.!/ D f .!.t1/; !.t2/; : : : ; !.tn//, we shall prove that

.LtF /.!/ D t .�HF /.!/ � .VF /:

Let F1.!/ D f .
p
t!.t1/;

p
t!.t2/; : : : ;

p
t!.tn//. By Lemma 2.1,

.LF1/.!/ D
nX

jD1
.�!.tj //

p
t
@ f

@xj
.
p
t!.t1/;

p
t!.t2/; : : : ;

p
t!.tn//

Ct .tj ^ tk/
X

j;k

@2 f

@xj @xk
.
p
t!.t1/;

p
t!.t2/; : : : ;

p
t!.tn//
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and

.LF1/
�
!p
t

�

D
nX

jD1
.�!.tj // @ f

@xj
.!.t1/; !.t2/; : : : ; !.tn//

Ct .tj ^ tk/
X

j;k

@2 f

@xj @xk
.!.t1/; !.t2/; : : : ; !.tn//:

ut
Remark 2.1. If t D 1, L1 is the operator L; see [5–8, 12]. In Sect. 5, we calculate
LtF for various functionals F . From Eq. (4.20), we see that our choice for
the operators Lt differs up to multiplication by t from the Ornstein–Uhlenbeck
operators�H�.1=t/V , see [8] p. 168. LetL D d2

dx2 �x d
dx be the classical Ornstein–

Uhlenbeck operator on R. For a differentiable function f W R ! R, similarly to
Eq. (4.19), we put ft .x/ D f .

p
t x/ and we define .Ltf /.x/ D .Lft /.x=

p
t/. We

have .Ltf /.x/ D tf 00.x/ � xf 0.x/ which is in accordance with Eq. (4.20). On the
other hand,

R
.Ltf /.x/ exp.�.x2=2t// .1=p2� t/ dx D 0 is the one-dimensional

analogue of Eq. (4.44).

The next proposition extends Eq. (4.43) to the measure �t and to the operator Lt .
This is also a consequence of Proposition 1.4.5 p. 55 in [12].

Proposition 2.4. We have

� 1

t
E�t Œ.LtF /.!/ :G.!/� D E�t

�Z 1

0

DsF.!/ :DsG.!/ ds

�

: (4.46)

Proof. By Eq. (4.14),

J D E�t

�Z 1

0

DsF.!/ :DsG.!/ ds

�

D E�1

�Z 1

0

DsF.
p
t !/ :DsG.

p
t !/ ds

�

:

We put F1.!/ D F.
p
t !/ and G1.!/ D G.

p
t !/. Then by Eq. (4.37),

.DsF /.
p
t !/ : .DsG/.

p
t !/ D 1

t
.DsF1/.!/ : .DsG1/.!/:

This gives using Eq. (4.43),

J D 1

t
E�1

�Z 1

0

.DsF1/.!/ : .DsG1/.!/ ds

�

D �1
t
E�1Œ.LF1/.!/ :G1.!/ �

D �1
t
E�t

�

.LF1/
�
!p
t

�

: G.!/

�

:
ut
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3 Taking Conditional Expectation and Projecting Down

Given a measure � on the Wiener space and a differentiable map Z W � ! Rn, we
denote Z � � the image measure on R

n through the map Z, or equivalently the law
of Z. For � W Rn ! R, we have

Z

�.Z.!//d�.!/ D
Z

�.x/ d.Z � �/.x/ for x D .x1; x2; : : : ; xn/: (4.47)

Assume that � is the Wiener measure on �. If the map Z is nondegenerate, see
[6], p. 77, then Z � �, the law of Z, is absolutely continuous with respect to
the n-dimensional Lebesgue measure. On the other hand, let G W � ! R be a
nondegenerate map; we denote G� the measure on � which has density G with
respect to �:

Z

F.!/d.G�/.!/ D
Z

F.!/G.!/d�.!/: (4.48)

The conditional expectation of G conditioned with Z.!/ D x is defined as the ratio
of the two densities of the measures Z � .G �/ and Z � �:

E�ŒG jZ D x� D d.Z � .G �//
d.Z � �/ .x/: (4.49)

Let m D Z � � the law of Z; then for  W Rn ! R and F W � ! R, there holds

Z

E�ŒF j Z D x�  .x/ dm.x/ D
Z

F.!/ .Z.!//d�.!/: (4.50)

3.1 Stein Equation (4.59)

Following [6], Sect 2.4 p. 70, we project vector fields and operators with conditional
expectations. The Nourdin–Peccati analysis [10] and [1] is obtained by projection of
vector fields from Wiener space toRn by the conditional expectationE�ŒU jZ D x�

where � is Wiener measure and U is a random vector. This extends to the projection
by conditional expectation E�t Œ U jZ D x� where we take the measure �t instead
of Wiener measure �.

Proposition 3.1. Let F W � ! R and let Z D .Z1;Z2; : : : ; Zn/ W � ! R
n.

Assume that Z is nondegenerate so that the law of Z is absolutely continuous with
respect to the n-dimensional Lebesgue measure dx. Let �t .x/ be the density ofZ��t
with respect to dx. We consider the conditional expectation

ft .x/ D �E�t Œ.Lt F /.!/ j Z D x�: (4.51)
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On R
n, we define the vector field vt by

vt .�/.x/ D E�t Œ .DF jD.� oZ// j Z D x�

D
nX

kD1
E�t Œ.DF jDZk/ j Z D x�

@�

@xk
.x/; where � W Rn ! R:

(4.52)

We have

E�t Œ.DF jD.� oZ//� D E�t Œ.vt �/.Z.!//�: (4.53)

Moreover, there holds “Stein equation”

div�t .x/dx .vt / D .1=t/ ft .x/: (4.54)

or equivalently,

1

t

Z

ft .x/�.x/�t .x/ dx D
Z

.vt �/.x/�t .x/ dx: (4.55)

Proof. Equation (4.53) is a consequence of Eq. (4.50). To prove Eq. (4.55), we
verify that

� 1

t
E�t Œ.LtF /.!/�.Z.!//� D E�t Œ.DF jD.� oZ//�: (4.56)

This last identity comes from Eq. (4.46). ut
In the case of nonrandom elements h in Cameron–Martin space, we can

formulate Proposition 3.1 as follows.

Lemma 3.1. Let h be in Cameron–Martin space and put

ıh.!/ D
Z 1

0

h0.s/d!.s/; (4.57)

where Eq. (4.57) is a classical Ito stochastic integral (see, for example, [12], p. 14);
in particular since h is not random, ıh D I1.h/ is in the first Wiener chaos. We have

1

t
E�t Œıh j Z D x� D div�t .x/dx v.t; x/; (4.58)

where v.t; x/ is the vector field

v.t; x/ D
nX

kD1
E�t ŒDhZk j Z D x�

@

@xk
: (4.59)
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Proof. We verify Eq. (4.55) with ft .x/ D E�t Œıh j Z D x�. ut

3.2 Projection of the Heat Equation Through
a Nondegenerate Map

LetZ D .Z1;Z2; : : : ; Zn/ W � ! R
n. If F.!/ D .� oZ/.!/, then by composition

of differentiations

.�HF /.!/ D
X

h2B
D2
hF.!/

D
nX

jD1
.�HZj /.!/

@�

@xj
.Z.!//

C
X

j;k

.DZj jDZk/ @2�

@xj @xk
.Z.!//: (4.60)

When Z is an evaluation function, Eq. (4.35) is deduced from Eq. (4.60). For x D
.x1; x2; : : : ; xn/ in R

n, consider the conditional expectation

.�Z
t �/.x/ D E�t Œ.�HF /.!/ j Z D x� (4.61)

We have

.�Z
t �/.x/ D

nX

jD1
E�t Œ�HZj .!/ j Z D x�

@�

@xj
.x/

C
X

j;k

E�t Œ.DZj jDZk/ j Z D x�
@2�

@xj @xk
.x/: (4.62)

Proposition 3.2. Let �t .x/ be the density of the law Z � �t with respect to the
Lebesgue measure. Then �t .x/ is the unique solution of

d

dt
�t .x/ D �1

2

nX

jD1

@

@xj
.E�t Œ�HZj .!/ j Z D x� �t .x//

C 1

2

X

j;k

@2

@xj @xk
.E�t Œ.DZj jDZk/ j Z D x� �t .x// (4.63)

satisfying the condition limt!0

R
�t .u/�.u/ du D �.0/ for any integrable function

� W Rn ! R.
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Proof. From the heat equation (4.18), we have

d

dt

Z

�.x/�t .x/dx D 1

2

Z

.�Z
t �/.x/ �t .x/dx:

Integrating by parts, the density �t .x/ satisfies Eq. (4.63). ut

3.3 Image of the Dilation Vector Field V Through
a Nondegenerate Map

Proposition 3.3. Let V be the dilation vector field Eq. (4.38).
The density �t .x/ for the law of Z satisfies

d

dt
�t D � 1

2t

nX

jD1

@

@xj
.E�t ŒVZj j Z D x� � �t .x//: (4.64)

Proof. For any differentiable function � W Rn ! R, we have

V.� oZ/.!/ D
nX

jD1

@�

@xj
.Z.!// .VZj /.!/: (4.65)

The relation (4.65) comes from the differentiation for composition of functions.
From Eq. (4.16), there holds

d

dt
�t .� oZ/ D 1

2t
�t . V .� oZ/ /: (4.66)

We replace Eq. (4.65) into Eq. (4.66). This gives

d

dt
�t .� oZ/ D 1

2t

nX

jD1
E�t

�
@�

@xj
.Z.!// .VZj /.!/

�

D 1

2t

nX

jD1

Z
@�

@xj
.x/E�t ŒVZj j Z D x� �t .x/dx:

We obtain Eq. (4.64) after integration by parts. ut
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4 From Stein’s Equation to Heat Equation: Density
of a Random Variable

We assume that Z D .Z1;Z2; : : : ; Zn/ W � ! R
n is nondegenerate. Let �t .x/ be

the density of Z � �t with respect to the n-dimensional Lebesgue measure:

Z � �t D �t .x/ dx: (4.67)

Let ˛j .t; x/, 	j .t; x/, ˇkj .t; x/, and 
j .t; x/ as in Eq. (4.21). By Proposition 2.3,
we have Eq. (4.22). By Propositions 3.2 and 3.3, the density �t .x/ satisfies each one
of Eqs. (4.23)–(4.25).

Lemma 4.1. Let

wj .t; x/ D 	j .t; x/�t .x/ �
nX

kD1

@

@xk
.ˇjk.t; x/�t .x// (4.68)

then
nX

jD1

@

@xj
wj .t; x/ D 0: (4.69)

Proof. We eliminate @
@t
�t between Eqs. (4.25) and (4.23) ut

Proposition 4.1 (n-dimensional Stein’s equation). As in Eq. (4.21), for j D
1; : : : ; n and k D 1; : : : ; n, let

ˇ
j

k .t; x/ D E�t Œ.DZj jDZk/ j Z D x�:

Then the density �t .x/ of the random vector Z satisfies the system of n Eq. (4.24).

Proof. We apply Proposition 3.1 taking F D Zj . As in Eq. (4.51), we put

f
j
t .x/ D �E�t ŒLtZj j Z D x�:

Integrating by parts the right hand side of Eq. (4.55), we obtain Eq. (4.24). ut
Remark 4.1. With Proposition 4.1, we show that taking F D Zj , j D 1; : : : ; n in
Proposition 3.1, then all functions wj .t; x/, j D 1; : : : ; n in Eq. (4.68) are equal to
zero. This gives a n-dimensional system. If Z.!/ D .!.t1/; !.t2/; : : : ; !.tn//, we
find the system (4.13).

Main Theorem 4.1. If �t .x/ is solution of the system (4.24) as well as solution of
the dilation equation (4.23), then �t .x/ is solution of the heat equation (4.25).
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Proof. In Eq. (4.24), we have

1

t
�t .x/E�t ŒLtZj j Z D x� (i)

and in Eq. (4.23), we have

�1
t
�t .x/E�t ŒVZj j Z D x�: (ii)

Since [see Eqs. (4.20)–(4.22)]

E�t ŒVZj j Z D x� D �E�t ŒLtZj j Z D x�C t E�t Œ�HZj j Z D x�: (iii)

We replaceE�t ŒVZj j Z D x� by this expression in Eq. (4.23). We obtain that �t .x/
satisfies

d

dt
�t D 1

2t

nX

jD1

@

@xj
.E�t ŒLtZj j Z D x� � �t .x/ /

�1
2

nX

jD1

@

@xj
.E�t Œ�HZj j Z D x� � �t .x/ /: (iv)

In this expression, we replace 1
t
�t .x/E�t ŒLtZj j Z D x� by its expression given in

the system (4.24). We obtain that �t .x/ satisfies the heat equation (4.25). ut

5 Hermite Polynomials and Lt

We have defined Lt with Eq. (4.19). In this section, t > 0 is fixed and we calculate
Lt on Hermite polynomials. Our Hermite polynomialsHt

n.x; 
/ depend on t . Given
x 2 R and 
 > 0, we consider the Hermite polynomial of two variables

Ht
n.x; 
/ D .�1/n .t
/n exp

�
x2

2t


�
dn

dxn
exp

�

� x2

2t


�

: (4.70)

See, for example, [12] p. 22. It is classical thatHt
1.x; 
/ D x, Ht

2.x; 
/ D x2 � t
 ,
Ht
3.x; 
/ D x3 � 3t
 x, Ht

4.x; 
/ D x4 � 6t
 x2 C 3t2
2, : : :.

1X

nD0
H t
n.x; 
/

zn

nŠ
D exp

�

� t

2

z2 C xz

�

; (4.71)

t 

d2

dx2
H t
n.x; 
/ � x d

dx
Ht
n.x; 
/ D �nHt

n.x; 
/; (4.72)
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d

dx
Ht
n.x; 
/ D nHt

n�1.x; 
/: (4.73)

Proposition 5.1.
Lt ŒH t

n.!.
/; 
/� D �nHt
n.!.
/; 
/ (4.74)

Proof. We put Fn.x; 
/ D Ht
n.

p
tx; 
/. According to Eq. (4.45),

LŒH t
n.

p
t!.
/; 
/� D �p

t!.
/

�
d

dx
Ht
n

�

.
p
t!.
/; 
/Ct


�
d2

dx2
H t
n

�

.
p
t!.
/; 
/:

From Eq. (4.19),

Lt ŒH t
n.!.
/; 
/� D �!.
/

�
d

dx
Ht
n

�

.!.
/; 
/C t


�
d2

dx2
H t
n

�

.!.
/; 
/:

Then we use Eq. (4.72). ut
Corollary 5.1. For the following conditional expectations, there holds

E�t Œ!.t1/ j !.t2/ D x� D x
t1 ^ t2

t2
;

E�t Œ!.t1/
2 � t t1 j !.t2/ D x� D

�
t1 ^ t2

t2

�2
.x2 � t t2/;

E�t ŒH
t
n.w.t1/; t1/ j !.t2/ D x� D

�
t1 ^ t2

t2

�n
H t
n.x; t2/: (4.75)

Proof. From Eq. (4.74),

J D E�t ŒH
t
n.w.t1/; t1/ .w.t2//� D �1

n
E�t ŒLt ŒH t

n.w.t1/; t1/� .w.t2//�:

Then from Eq. (4.56),

J D t.t1 ^ t2/
n

E�t

� �
d

dx
Ht
n

�

.w.t1/; t1/ 
0.w.t2//

�

:

With Eq. (4.73), this gives

E�t ŒH
t
n.w.t1/; t1/ .w.t2//� D t.t1 ^ t2/E�t ŒH t

n�1.w.t1/; t1/ 0.w.t2//�:

Writing this last identity with Ht
n�1, then Ht

n�2, : : :, we obtain

E�t ŒH
t
n.w.t1/; t1/ .w.t2//� D tn.t1 ^ t2/nE�t Œ .n/.w.t2//�:
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By Eq. (4.36)

E�t Œ 
.n/.w.t2//� D

Z �
dn

dxn
 

�

.x/pt t2 .x/dx: (4.76)

We integrate by parts the right hand side of Eq. (4.76). With Eq. (4.63), we obtain

E�t Œ 
.n/.w.t2//� D 1

tn tn2
E�t ŒH

t
n.w.t2/; t2/ .w.t2//�:

This gives Eq. (4.75). ut
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Chapter 5
The Calculus of Differentials for the Weak
Stratonovich Integral

Jason Swanson

Abstract The weak Stratonovich integral is defined as the limit, in law, of
Stratonovich-type symmetric Riemann sums. We derive an explicit expression for
the weak Stratonovich integral of f .B/with respect to g.B/, whereB is a fractional
Brownian motion with Hurst parameter 1/6, and f and g are smooth functions.
We use this expression to derive an Itô-type formula for this integral. As in the
case where g is the identity, the Itô-type formula has a correction term which is a
classical Itô integral and which is related to the so-called signed cubic variation of
g.B/. Finally, we derive a surprising formula for calculating with differentials. We
show that if dM D X dN; thenZ dM can be written as ZX dN minus a stochastic
correction term which is again related to the signed cubic variation.

Keywords Stochastic integration • Stratonovich integral • Fractional Brownian
motion • Weak convergence
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1 Introduction

IfX and Y are stochastic processes, then the Stratonovich integral ofX with respect
to Y can be defined as the ucp (uniformly on compacts in probability) limit, if it
exists, of the process
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t 7!
X

tj�t

X.tj�1/CX.tj /

2
.Y.tj / � Y.tj�1//;

as the mesh of the partition ftj g goes to zero. If we specialize to the uniformly
spaced partition, tjDj=n, then we are interested in the Stratonovich-type symmetric
Riemann sums,

bntcX

jD1

X.tj�1/CX.tj /

2
.Y.tj / � Y.tj�1//; (5.1)

where bxc denotes the greatest integer less than or equal to x.
It is well-known (see [2, 4]) that if Y D BH , a fractional Brownian motion with

Hurst parameter H , and X D f .BH / for a sufficiently differentiable function f ,
then the Stratonovich integral of X with respect to Y exists for all H > 1=6 but
does not exist for H D 1=6. Moreover, if H > 1=6, then the Stratonovich integral
satisfies the classical Stratonovich change-of-variable formula, which corresponds
to the usual fundamental theorem of calculus.

In [6], we studied the case H D 1=6. There we showed that if Y D B D B1=6

and X D f .B/, where f 2 C1.R/, then the sequence of processes Eq. (5.1)
converges in law. We let

R t
0 f .B.s// dB.s/ denote a process with this limiting law,

and we referred to this as the weak Stratonovich integral. We also showed that
the weak Stratonovich integral with respect to B does not satisfy the classical
Stratonovich change-of-variable formula. Rather, it satisfies an Itô-type formula
with a correction term that is a classical Itô integral. Namely,

f .B.t// D f .B.0//C
Z t

0

f 0.B.s// dB.s/ � 1

12

Z t

0

f 000.B.s// dŒŒB��s ; (5.2)

where ŒŒB�� is what we called the signed cubic variation of B . That is, ŒŒB�� is the
limit in law of the sequence of processes

Pbntc
jD1.B.tj / � B.tj�1//3. It is shown

in [7] that ŒŒB�� D �W , where W is a standard Brownian motion, independent of
B , and � is an explicitly defined constant whose approximate numerical value is
� ' 2:322 [see Eq. (5.7) for the precise definition of �.]. The correction term above
is a standard Itô integral with respect to Brownian motion. Similar Itô-type formulas
with an Itô integral correction term were developed in [1, 5]. There, the focus
was on quartic variation processes and midpoint-style Riemann sums. A formula
similar to Eq. (5.2), but with an ordinary integral correction term, was established
in [3] for the Russo–Vallois symmetric integral with respect to finite cubic variation
processes.

The precise results in [1, 6], as well as in this paper, involve demonstrating the
joint convergence of all of the processes involved, with the type of convergence
being weak convergence as processes in the Skorohod space of càdlàg functions.
In Sect. 2, we establish the formal definition of the weak Stratonovich integral as
an equivalence class of sequences of càdlàg step functions, and we demonstrate in
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Theorem 2.1 the joint convergence in law of such sequences. For simplicity, we
omit discussion of these details in this introduction and only summarize the results
of Sect. 3, in which we derive our various change-of-variable formulas.

In Sect. 3, we extend the Itô-type formula (5.2) to the case Y D g.B/. We show
that the sequence of processes (5.1) converges in law to an integral satisfying the
Itô-type formula

'.Y.t// D '.Y.0//C
Z t

0

' 0.Y.s// dY.s/ � 1

12

Z t

0

' 000.Y.s// dŒŒY ��s ; (5.3)

where

ŒŒY ��t D
Z t

0

.g0.B.s///3 dŒŒB��s

is the limit, in law, of
Pbntc

jD1.Y.tj / � Y.tj�1//3. That is, ŒŒY �� is the signed cubic
variation of Y .

This result is actually just one of the two main corollaries of our central result (see
Corollary 3.1). To motivate the other results, consider the following. Formulas such
as Eqs. (5.2) and (5.3) are typically referred to as change-of-variable formulas. They
have the same structure as Itô’s rule, which is also generally referred to as a change-
of-variable formula. In elementary calculus, we perform a change-of-variable when
we convert an integral with respect to one variable into an integral with respect to
another. In Itô’s stochastic calculus, we may wish to convert an integral with respect
to one semimartingale into an integral with respect to another. Strictly speaking,
Itô’s rule is not sufficient for this purpose. Itô’s rule simply tells us how to expand a
function of a semimartingale into a sum of integrals. In order to convert one integral
into another, we must combine Itô’s rule with a theorem that says

if M D
Z
X dY , then

Z
Z dM D

Z
ZX dY .

Or, in differential form,

if dM D X dY , then Z dM D ZX dY . (5.4)

For Itô integrals, this theorem is usually proved very early on in the construction of
the integral. It is also true for the classical Stratonovich integral for semimartingales
as well as for ordinary Lebesgue–Stieltjes integrals. In fact, in the theory of
Lebesgue–Stieltjes integration, it is often this result which is called the change-
of-variable formula.

In terms of the calculus of differentials, Itô’s rule tells us that ifM D f .Y /, then
dM D f 0.Y / dY C 1

2
f 00.Y / d hY i, where hY i is the quadratic variation of Y , and

Eq. (5.4) tells us that it is permissible to substitute this expression into Z dM , so
that Z dM D Zf 0.Y / dY C 1

2
Zf 00.Y / d hY i.

In this paper, we will show that Eq. (5.4) is not true for the weak Stratonovich
integral. A very simple example which illustrates this is the following. First, let
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us note that when the integral is defined as a limit of Stratonovich-type symmetric
Riemann sums, it is always the case that

R
� d� D 1

2
�2, for any process � . Let us

therefore define M D 1
2
B2, so that dM D B dB . On the other hand,

Z
M dM D 1

2
M2 D 1

8
B4:

Using Eq. (5.2), we have

1

8
B4 D

Z
1

2
B3 dB � 1

12

Z
3B dŒŒB�� D

Z
MB dB � 1

4

Z
B dŒŒB��:

It follows that, in this example, Eq. (5.4) does not hold for the weak Stratonovich
integral. Instead, we have that dM D B dB , whereas M dM D MB dB �
1
4
B dŒŒB��.

The second main corollary of our central result is that the weak Stratonovich
integral satisfies a rule analogous to Eq. (5.4) but with a correction term (see
Corollary 3.2). Namely, suppose X D f .B/, Y D g.B/, and Z D h.B/, where
f; g; h 2 C1.R/. Then the weak Stratonovich integral satisfies the following
rule for calculating with differentials:

If dM D X dY , then Z dM D ZX dY � 1

4
.f 0g0h0/.B/ dŒŒB��. (5.5)

We actually prove a slightly more general rule; see Eq. (5.18).
Both Eqs. (5.3) and (5.5) will be demonstrated as corollaries of the following

general result. With X and Y as above,

Z t

0

X.s/ dY.s/ D ˆ.B.t//�ˆ.B.0//C 1

12

Z t

0

.f 00g0�f 0g00/.B.s// dŒŒB��s ; (5.6)

where ˆ 2 C1.R/ is chosen to satisfy ˆ0 D fg0. See Theorem 3.1 for the precise
statement. Theorem 3.1 is actually formulated more generally for integrators of
the form Y CV , where V D R

�.B/ dŒŒB��. This generalization is necessary to make
sense of

R
Z dM in Eq. (5.5), since if M D R

X dY , then according to Eq. (5.6),
M is not a function of B but is rather the sum of a function of B and a process V
which is in an integral against ŒŒB��.

2 Notation and Definitions

2.1 Basic Notation

Let B D B1=6 be a fractional Brownian motion with Hurst parameter H D 1=6.
That is, B is a centered Gaussian process, indexed by t � 0, such that
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EŒB.s/B.t/� D 1

2
.t1=3 C s1=3 � jt � sj1=3/:

For compactness of notation, we will sometimes write Bt instead of B.t/ and
similarly for other processes. Given a positive integer n, let tj D tj;n D j=n. We
shall frequently have occasion to deal with the quantity

ˇj D ˇj;n D B.tj�1/C B.tj /

2
:

Let �Bj;n D B.tj / � B.tj�1/ and B�.T / D sup0�t�T jB.t/j.
Let � > 0 be defined by

�2 D 3

4

X

r2Z
.jr C 1j1=3 C jr � 1j1=3 � 2jr j1=3/3: (5.7)

Let D
Rd Œ0;1/ denote the Skorohod space of càdlàg functions from Œ0;1/ to R

d .
Throughout the paper, “)” will denote convergence in law. The phrase “uniformly
on compacts in probability” will be abbreviated “ucp.” If Xn and Yn are càdlàg
processes, we shall writeXn � Yn orXn.t/ � Yn.t/ to mean thatXn�Yn ! 0 ucp.

2.2 The Space ŒS�

Recall that for fixed n, we defined tk D k=n. Let Sn denote the vector space of
stochastic processes fL.t/ W t � 0g of the form L D P1

kD0 �k1Œtk ;tkC1/, where each
�k 2 FB1. Note that �k D L.tk/. Given L 2 Sn, let ıj .L/ D L.tj / � L.tj�1/, for
j � 1. Since t 2 Œtk ; tkC1/ if and only if bntc D k, we may write

L.t/ D L.0/C
bntcX

jD1
ıj .L/:

Definition 2.1. Let S denote the vector space of sequences ƒ D fƒng1
nD1

such that:

(i) ƒn 2 Sn.
(ii) ƒn.0/ converges in probability.

(iii) There exist '1; '3; '5 2 C1.R/ such that

ıj .ƒn/ D '1.ˇj /�Bj;n C '3.ˇj /�B
3
j;n C '5.ˇj /�B

5
j;n CRj;n; (5.8)

where for each T;K > 0, there exists a finite constant CT;K such that

jRj;nj1fB�.T /�Kg � CT;K j�Bj;nj7;
whenever j=n � T .
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If X D f .B/, where f 2 C1.R/, then we define

ƒX
n D

1X

kD0
X.tk/1Œtk ;tkC1/;

andƒX D fƒX
n g1

nD1. Note that the map X 7! ƒX is linear.

Lemma 2.1. If X D f .B/, where f 2 C1.R/, then ƒX 2 S and ƒX
n ! X

uniformly on compacts a.s.

Proof. Since X is continuous a.s., we have that ƒX
n ! X uniformly on compacts

a.s. Clearly,ƒX
n 2 Sn and ƒX

n .0/ D X.0/ for all n, so that Definition 2.1(i) and (ii)
hold. For a; b 2 R, we use the Taylor expansion

f .b/� f .a/ D f 0.x/.b�a/C 1

24
f 000.x/.b�a/3C 1

5Š24
f .5/.x/.b�a/5 C h.a; b/.b � a/7;

where x D .a C b/=2 and jh.a; b/j � M.a; b/ D supx2Œa^b;a_b� jg.7/.x/j. For a
derivation of this Taylor expansion, see the proof of Lemma 5.2 in [6].

Taking a D B.tj�1/ and b D B.tj / gives

ıj .ƒ
X
n / D f .B.tj // � f .B.tj�1//

D f 0.ˇj /�Bj;n C 1

24
f 000.ˇj /�B3

j;n C 1

5Š24
f .5/.ˇj /�B

5
j;n CRj;n;

(5.9)

where jRj;nj � M.B.tj�1/; B.tj //j�Bj;nj7. If j=n � T and B�.T /�K ,
then B.tj�1/; B.tj / 2 Œ�K;K�, which implies M.B.tj�1/; B.tj // � supx2Œ�K;K�
jg.7/.x/j < 1, and this verifies Definition 2.1 (iii) showing that ƒX 2 S. ut

We may now identify X D f .B/ with ƒX 2 S and will sometimes abuse
notation by writing X 2 S. In this way, we identify the space of smooth functions
of B with a space of sequences in such a way that each sequence converges a.s. to
its corresponding process. What we see next is that every sequence in S converges
to a stochastic process, at least in law.

Theorem 2.1. Let ƒ.1/; : : : ; ƒ.m/ 2 S. For 1 � k � m, choose '1;k; '3;k; '5;k 2
C1.R/ satisfying Eq. (5.8) for ƒ.k/ and let I.k/.0/ be the limit in probability of
ƒ
.k/
n .0/ as n ! 1. Let ˆk 2 C1.R/ satisfy ˆ0

k D '1;k and ˆk.0/ D 0. Let W be
a Brownian motion independent of B , and let � > 0 be given by Eq. (5.7). Define

I.k/.t/ D I.k/.0/Cˆk.B.t//C �

Z t

0

�
'3;k � 1

24
' 00
1;k

�
.B.s// dW.s/;

where this last integral is an Itô integral. Then .B;ƒ
.1/
n ; : : : ; ƒ

.m/
n / )

.B; I.1/; : : : ; I.m// in D
RmC1 Œ0;1/ as n ! 1.
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Proof. By Definition 2.1, we may write

ƒ
.k/
n .t/ D ƒ

.k/
n .0/C

bntcX

jD1
'1;k.ˇj /�Bj;nC

bntcX

jD1
'3;k.ˇj /�B

3
j;nC

bntcX

jD1
'5;k.ˇj /�B

5
j;nCRn.t/;

where Rn.t/ D Pbntc
jD1 Rj;n. Let R�

n .T / D sup0�t�T jRn.t/j � PbnT c
jD1 jRj;nj. Let

" > 0 and chooseK such that P.B�.T / > K/ < ". Then

P.R�
n .T / > "/ � P.B�.T / > K/C P

�
CT;K

bnT cX

jD1
j�Bj;nj7 > "

�
:

Since B has a nontrivial 6-variation (see Theorem 2.11 in [6]), we havePbnT c
jD1 j�Bj;nj7 ! 0 a.s. Hence, for n sufficiently large, we have P.R�

n .T / >

"/ < 2", which gives Rn ! 0 ucp.
As in the proof of Theorem 2.13 in [6], we may assume without loss of generality

that each 'i;k has compact support. By Lemma 5.1 in [6], if ' 2 C1.R/ has compact
support, then

Pbntc
jD1 '.ˇj /�B5

j;n ! 0 ucp. Thus,

ƒ.k/
n .t/ � I.k/.0/C

bntcX

jD1
'1;k.ˇj /�Bj;n C

bntcX

jD1
'3;k.ˇj /�B

3
j;n:

Similarly, by Eq. (5.9),

ˆk.B.t// �
bntcX

jD1
.ˆk.B.tj //�ˆk.B.tj�1///

�
bntcX

jD1
'1;k.ˇj /�Bj;n C 1

24

bntcX

jD1
' 00
1;k.ˇj /�B

3
j;n:

Therefore,

ƒ.k/
n .t/ � I.k/.0/Cˆk.B.t//C

bntcX

jD1
 k.ˇj /�B

3
j;n;

where  k D '3;k � 1
24
' 00
1;k . Let Vn. ; t/ D Pbntc

jD1  .ˇj /�B3
j;n and Jk.t/ D

�
R t
0  k.B.s// dW.s/. By Lemma 5.2 and Theorem 2.13 in [6], we have

.B; Vn. 1/; : : : ; Vn. m// ) .B; J1; : : : ; Jm/, in D
RmC1 Œ0;1/ as n ! 1, which

implies .B;ƒ.1/
n ; : : : ; ƒ

.m/
n / ) .B; I.1/; : : : ; I.m//. ut

We now define an equivalence relation on S byƒ � ‚ if and only ifƒn�‚n !
0 ucp.
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Lemma 2.2. If ƒ 2 S, then there exist unique functions '1; '3 which satisfy
Eq. (5.8). If we denote these unique functions by '1;ƒ and '3;ƒ, then ƒ � ‚ and
only if both of the following conditions hold:

(i) ƒn.0/�‚n.0/ ! 0 in probability.
(ii) '1;ƒ D '1;‚ and '3;ƒ D '3;‚.

Proof. Let ƒ 2 S. Let f'1; '3; '5g and fe'1;e'3;e'5g be two sets of functions, each
of which satisfies Eq. (5.8). Let I.0/ be the limit in probability ofƒn.0/ as n ! 1.
Let ˆ; ê 2 C1.R/ satisfy ˆ0 D '1, ê0 D e'1, and ˆ.0/ D ê.0/ D 0. Then, by
Theorem 2.1, ƒn converges in law in DRŒ0;1/ to

I.t/ D I.0/Cˆ.B.t//C �

Z t

0

�
'3 � 1

24
' 00
1

�
.B.s// dW.s/

D I.0/C ê.B.t//C �

Z t

0

�
e'3 � 1

24
e' 00
1

�
.B.s// dW.s/:

Hence, EŒI.t/ � I.0/ j FB1� D ˆ.B.t// D ê.B.t// a.s. for all t � 0, which
implies ˆ D ê, and hence, '1 D e'1. It follows that

M.t/ D
Z t

0

.'3 � e'3/.B.s// dW.s/ D 0:

Hence, EŒM.t/2 j FB1� D R t
0

j.'3 � e'3/.B.s//j2 ds D 0 a.s. for all t � 0, which
implies '3 D e'3. This shows that there exist unique functions '1;ƒ; '3;ƒ which
satisfy Eq. (5.8).

Let ƒ;‚ 2 S and define � D ƒ�‚. Note that ƒn �‚n ! 0 ucp if and only if
�n ) 0 in DRŒ0;1/.

First assume (i) and (ii) hold. Then �n.0/ ! 0 in probability, so by Theorem 2.1,
�n converges in law in DRŒ0;1/ to

ˆ�.B.t//C �

Z t

0

�
'3;� � 1

24
' 00
1;�

�
.B.s// dW.s/;

where ˆ0
� D '1;� and ˆ�.0/ D 0. But from Eq. (5.8), we see that '1;� D '1;ƒ �

'1;‚ D 0 and '3;� D '3;ƒ � '3;‚ D 0. Hence, �n ) 0 andƒ � ‚.
Now assume ƒ � ‚. Then �n ! 0 ucp, so by Theorem 2.1, for all t � 0,

I.t/ D I.0/Cˆ�.B.t//C �

Z t

0

�
'3;� � 1

24
' 00
1;�

�
.B.s// dW.s/ D 0;

where I.0/ is the limit in probability of ƒn.0/�‚n.0/ as n ! 1 and ˆ0
� D '1;�

with ˆ�.0/ D 0. Thus, I.0/ D 0, which shows that (i) holds. And as above, we
obtain '1;� D '3;� D 0, which shows that (ii) holds. ut
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Let Œƒ� denote the equivalence class of ƒ under this relation, and let ŒS� denote
the set of equivalence classes. If N D Œƒ� 2 ŒS�, then we define '1;N D '1;ƒ,
'3;N D '3;ƒ, IN .0/ D limƒn.0/, and

IN .t/ D IN .0/CˆN.B.t//C �

Z t

0

�
'3;N � 1

24
' 00
1;N

�
.B.s// dW.s/; (5.10)

where ˆ0
N D '1;N and ˆN .0/ D 0. Notice that by Theorem 2.1, if N1; : : : ; Nm 2

ŒS� and ƒ.k/ 2 Nk are arbitrary, then .B;ƒ.1/
n ; : : : ; ƒ

.m/
n / ) .B; IN1 ; : : : ; INm/ in

D
RmC1 Œ0;1/.
It is easily verified that ŒS� is a vector space under the operations cŒN � D ŒcN �

and ŒM �C ŒN � D ŒM CN� and that N 7! IN is linear and injective. This gives us
a one-to-one correspondence between ŒS� and processes of the form Eq. (5.10).

If X D f .B/, where f 2 C1.R/, then we define NX D ŒƒX � 2 ŒS�. We may
now identify X with NX and will sometimes abuse notation by writing X 2 ŒS�. It
may therefore be necessary to deduce from context whether X refers to the process
f .B/, the sequence ƒX D fƒX

n g, or the equivalence class NX D ŒƒX �. Typically,
there will be only one sensible interpretation, but when ambiguity is possible, we
will be specific.

Note that, using Eq. (5.9), we obtain '1;X D f 0, '3;X D 1
24
f 000, IX.0/ D X.0/ D

f .0/, and ˆX D f � f .0/. Hence, by Eq. (5.10), we have IX.t/ D X.t/. Because
of this and because of the one-to-one correspondence between N 2 ŒS� and the
process IN .t/ in Eq. (5.10), we will sometimes abuse notation and write N.t/ D
Nt D IN .t/. Again, when there is a possible ambiguity as to whether N refers to
an element of ŒS� or to the process IN , we will be specific.

2.3 The Signed Cubic Variation

If ƒ 2 S, we define V ƒ
n .t/ D Pbntc

jD1.ıj .ƒn//
3 and V ƒ D fV ƒ

n g. Since ıj .V ƒ
n / D

.ıj .ƒn//
3, it is easy to see from Eq. (5.8) that V ƒ 2 S, '1;V ƒ D 0 and '3;V ƒ D '31;ƒ.

Hence, if ƒ � ‚, then V ƒ � V ‚. We may therefore define the signed cubic
variation of N D Œƒ� 2 ŒS� to be ŒV ƒ� 2 ŒS�. We denote the signed cubic variation
of N by ŒŒN ��. We then have '1;ŒŒN �� D 0, '3;ŒŒN �� D '31;N , and IŒŒN ��.0/ D 0, so that by
Eq. (5.10),

ŒŒN ��t D IŒŒN ��.t/ D �

Z t

0

.'1;N .B.s///
3 dW.s/:

For example, suppose X D f .B/, where f 2 C1.R/. Then ŒŒX�� D ŒŒNX ��. Since
NX D ŒƒX �, we have ŒŒNX �� D ŒV ƒX �. Note that V ƒX D fV ƒX

n g and

V ƒX

n .t/ D
bntcX

jD1
.ıj .ƒ

X
n //

3 D
bntcX

jD1
.X.tj / �X.tj�1//3:
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In other words, ŒŒX�� is the equivalence class in S of the above sequence of sums of
cubes of increments ofX . By Theorem 2.1, ŒŒX��t D IŒŒX��.t/ is the stochastic process
which is the limit in law of this sequence. Since '1;X D f 0, we have '1;ŒŒX�� D 0 and
'3;ŒŒX�� D .f 0/3, so that

ŒŒX��t D IŒŒX��.t/ D �

Z t

0

.f 0.B.s///3 dW.s/:

In particular, taking f .x/ D x gives ŒŒB��t D �W .

2.4 The Weak Stratonovich Integral

If ƒn;‚n 2 Sn, then we define

.ƒn ı‚n/.t/ D
bntcX

jD1

ƒn.tj�1/Cƒn.tj /

2
ıj .‚n/:

If ƒ;‚ 2 S, then we define ƒ ı‚ D fƒn ı‚ng1
nD1.

Lemma 2.3. If X D f .B/, where f 2 C1.R/ and ƒ 2 S, then ƒX ı ƒ 2 S.
Moreover, if ƒ � ‚, then ƒX ıƒ � ƒX ı‚.

Proof. Clearly,ƒX
n ıƒn 2 Sn andƒX

n ıƒn.0/ D 0 for all n, so that Definition 2.1(i)
and (ii) hold. For a; b 2 R, we use the Taylor expansion

f .b/C f .a/

2
D f .x/C 1

8
f 00.x/.b�a/2C 1

4Š24
f .4/.x/.b�a/4Ch.a; b/.b�a/6;

where x D .a C b/=2 and jh.a; b/j � M.a; b/ D supx2Œa^b;a_b� jg.6/.x/j. For a
derivation of this Taylor expansion, see the proof of Lemma 5.2 in [6].

Taking a D B.tj�1/ and b D B.tj / gives

ƒX
n .tj�1/CƒX

n .tj /

2
D f .B.tj�1//C f .B.tj //

2

D f .ˇj /C 1

8
f 00.ˇj /�B2

j;n C 1

4Š24
f .4/.ˇj /�B

4
j;n CRj;n;

where for each T;K > 0, there exists a finite constant CT;K such that

jRj;nj1fB�.T /�Kg � CT;K j�Bj;nj6;

whenever j=n � T . Choose '5 2 C1.R/ such that

ıj .ƒn/ D '1;ƒ.ˇj /�Bj;n C '3;ƒ.ˇj /�B
3
j;n C '5.ˇj /�B

5
j;n C eRj;n;
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where for each T;K > 0, there exists a finite constant eCT;K such that

jeRj;nj1fB�.T /�Kg � eCT;K j�Bj;nj7;

whenever j=n � T . Then

ıj .ƒ
X
n ıƒn/ D ƒX

n .tj�1/CƒX
n .tj /

2
ıj .ƒn/

D .f '1;ƒ/.ˇj /�Bj;n C
�
1

8
f 00'1;ƒ C f '3;ƒ

�
.ˇj /�B

3
j;n

C h.ˇj /�B
5
j;n C bRj;n;

for an appropriately chosen smooth function h, and with bRj;n satisfying Defini-
tion 2.1(iii).

It follows thatƒX ıƒ 2 S and that '1;ƒX ıƒ D f '1;ƒ and '3;ƒXıƒ D 1
8
f 00'1;ƒC

f '3;ƒ. This implies that if ƒ � ‚, then ƒX ıƒ � ƒX ı‚. ut
If X D f .B/, where f 2 C1.R/, and N D Œƒ� 2 ŒS�, we may now define

X ı N D ŒƒX ı ƒ�. Note that if Y D g.B/, where g 2 C1, and M 2 ŒS�, then
.X C Y / ıN D X ıN C Y ıN and X ı .N CM/ D X ıN CX ıM . From the
proof of Lemma 2.3, we have

IXıN .0/ D 0; (5.11)

'1;XıN D f '1;N ; (5.12)

'3;XıN D 1

8
f 00'1;N C f '3;N : (5.13)

We may use these formulas, together with Eq. (5.10), to calculate IXıN , given f ,
'1;N , and '3;N .

We now adopt some more traditional notation. If X D f .B/, where f 2 C1,
and N 2 ŒS�, then

Z
X dN D X ıN 2 ŒS�;

and
Z t

0

X.s/ dN.s/ D .X ıN/t D IXıN .t/:

As we noted earlier, there is a one-to-one correspondence between ŒS� and processes
of the form Eq. (5.10). We may therefore go back and forth between the above two
objects according to what is more convenient at the time. We will use the shorthand
notation dM D X dN to denote the equalityM D R

X dN .
Before investigating our change-of-variable formulas, let us first consider some

examples.
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Example 2.1. Let X D f .B/ and Y D g.B/, where f; g 2 C1.R/. Then
Z
X dY D X ı Y D X ıNY D ŒƒX ıƒY �;

andƒX ıƒY D fƒX
n ıƒY

n g, where

.ƒX
n ıƒY

n /.t/ D
bntcX

jD1

ƒX
n .tj�1/CƒX

n .tj /

2
ıj .ƒ

Y
n /

D
bntcX

jD1

X.tj�1/CX.tj /

2
.Y.tj /� Y.tj�1//:

In other words,
R
X dY is the equivalence class in S of the above sequence of

Stratonovich-type symmetric Riemann sums. Also,
R t
0
X.s/ dY.s/ D IXıY .t/, so

that by Theorem 2.1,
R t
0 X.s/ dY.s/ is the stochastic process which is the limit in

law of this sequence.

Example 2.2. Again let X D f .B/ and Y D g.B/, where f; g 2 C1.R/. Then
Z
X dŒŒY �� D X ı ŒŒY �� D ŒƒX ı V ƒY �

andƒX ı V ƒY D fƒX
n ı V ƒY

n g, where

.ƒX
n ı V ƒY

n /.t/ D
bntcX

jD1

ƒX
n .tj�1/CƒX

n .tj /

2
ıj .V

ƒY

n /

D
bntcX

jD1

X.tj�1/CX.tj /

2
.Y.tj /� Y.tj�1//3:

In other words,
R
X dŒŒY �� is the equivalence class in S of the above sequence of

sums, and
R t
0
X.s/ dŒŒY ��s D IXıŒŒY ��.t/ is the limit in law of this sequence. Recall

that '1;ŒŒY �� D 0 and '3;ŒŒY �� D .g0/3. Hence, by Eqs. (5.12) and (5.13), we have
'1;XıŒŒY �� D f '1;ŒŒY �� D 0 and '3;XıŒŒY �� D 1

8
f 00'1;ŒŒY �� C f '3;ŒŒY �� D f .g0/3, so that by

Eq. (5.10), we have

Z t

0

X.s/ dŒŒY ��s D �

Z t

0

f .B.s//.g0.B.s///3 dW.s/: (5.14)

Example 2.3. For one last example, let X D f .B/, Y D g.B/, and Z D h.B/,
where f; g; h 2 C1.R/, and let N D R

Y dZ. Then

Z
X dN D X ıN D X ı ŒƒY ıƒZ� D ŒƒX ı .ƒY ıƒZ/�;
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and

.ƒX
n ı .ƒY ıƒZ/n/.t/ D .ƒX

n ı .ƒY
n ıƒZ

n //.t/

D
bntcX

jD1

X.tj�1/CX.tj /

2

Y.tj�1/CY.tj /
2

.Z.tj /�Z.tj�1//:

Hence,
R
X dN is the equivalence class in S of the above sequence of sums, andR t

0
X.s/ dN.s/ is the limit in law of this sequence.

3 Change-of-Variable Formulas

We have already identified smooth functions of B with their corresponding se-
quences in S, as well as with their equivalence classes in ŒS�. In this section, it will
be helpful to do the same for FB1-measurable random variables, which can serve as
initial values for the stochastic processes we are considering.

Let � be an FB1-measurable random variable, let ƒ�
n.t/ D � for all t � 0, and

let ƒ� D fƒ�
ng. Since ıj .ƒ

�
n/ D 0 for all j and n, we have that ƒ� 2 S. We may

therefore identify � with ƒ� 2 S and also with N� D Œƒ�� 2 ŒS�. Note, then, that
'1;� D '3;� D 0 and �.t/ D N�.t/ D IN�.t/ D � for all t � 0. Note also thatR
X d� D 0.
We begin with the following result, which tells us that every element of ŒS� has

a unique decomposition into the sum of a smooth function of B and an integral
against ŒŒB��.

Lemma 3.1. Each N 2 ŒS� can be written as N D � C Y C V , where � is an
FB1-measurable random variable, Y D g.B/ for some g 2 C1.R/, and V DR
�.B/ dŒŒB�� for some � 2 C1.R/.
Suppose N D e� C eY C eV is another such representation, with eY D eg.B/ and

eV D R e�.B/ dŒŒB��. Let c D g.0/ � eg.0/. Then e� D �C c, eg D g � c, and e� D � .
In particular, there is a unique such representation with g.0/ D 0.

An explicit representation is given by � D N.0/ D IN .0/, � D '3;N � 1
24
' 00
1;N

and g chosen so that g0 D '1;N and g.0/ D 0.

Proof. Let N 2 ŒS�. Let � D N.0/ and � D '3;N � 1
24
' 00
1;N and choose g so that

g0 D '1;N and g.0/ D 0. Let Y D g.B/ and V D R
�.B/ dŒŒB��. To prove that

N D �C Y C V , it will suffice to show that

N.t/ D �.t/C Y.t/C V.t/

D N.0/C g.B.t//C
Z t

0

�.B.s// dŒŒB��s :

But this follows immediately from Eqs. (5.10) and (5.14).
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Now suppose N.t/ D e�Ceg.B.t//C R t
0

e�.B.s// dŒŒB��s . Then EŒN.t/ j FB1� D
�C g.B.t// D e�C eg.B.t// a.s., which gives � �e� C .g � eg/.B.t// D 0 a.s. for
all t � 0. Hence, there exists a constant c 2 R such that g � eg D c, and it follows
that e� D � C c. We then have M.t/ D R t

0
.� � e�/.B.s// dW.s/ D 0 a.s., so that

EŒM.t/2 j FB1� D R t
0 j.� � e�/.B.s//j2 ds D 0 a.s. for all t � 0, which implies

� D e� . ut
We next verify that processes of the form V D R

�.B/ dŒŒB�� behave as we would
expect them to in regards to integration.

Lemma 3.2. Let X D f .B/, where f 2 C1.R/, and let � 2 C1.R/. If dV D
�.B/ dŒŒB��, then X dV D X�.B/ dŒŒB��.

Proof. Let V D R
�.B/ dŒŒB��, U D R

X�.B/ dŒŒB��, and N D R
X dV . Since

N.0/ D U.0/ D 0, it will suffice to show that '1;U D '1;N and '3;U D '3;N . By
Example 2.2, '1;V D '1;U D 0, '3;V D � , and '3;U D f � . On the other hand,
by Eqs. (5.12) and (5.13), we have '1;N D f '1;V D 0 and '3;N D 1

8
f 00'1;V C

f '3;V Df � . ut
We finally present our main result for doing calculations with the weak

Stratonovich integral.

Theorem 3.1. Let N 2 ŒS� and write N D � C Y C V , where � is an
FB1-measurable random variable, Y D g.B/, and V D R

�.B/ dŒŒB�� for some
g; � 2 C1.R/. Let X D f .B/, where f 2 C1.R/. Then

Z
X dN D ˆ.B/C 1

12

Z
.f 00g0 � f 0g00/.B/ dŒŒB�� C

Z
X dV; (5.15)

where ˆ 2 C1.R/ is chosen so that ˆ0 D fg0 and ˆ.0/ D 0.

Remark 3.1. Since M D R
X dN 2 ŒS�, Lemma 3.1 tells us that M has a unique

decomposition into the sum of a smooth function of B and an integral against ŒŒB��.
Theorem 3.1 gives us a convenient formula for this decomposition.

Remark 3.2. Theorem 3.1 and the corollaries that are to follow express equalities
in the space ŒS�. Each side of Eq. (5.15) is an equivalence class of sequences of
Riemann sums that converge in law. The equivalence relation is such that if we
choose any sequence from the class on the left and any sequence from the class on
the right, then their difference will converge to zero ucp. Note that this is a stronger
statement than simply asserting that the two sequences have the same limiting law.

Proof of Theorem 3.1. Since
R
X dN D R

X d�CR
X dY CR

X dV and
R
X d� D

0, it follows from Eq. (5.14) that we need only show

Z t

0

X.s/ dY.s/ D ˆ.B.t//C �

12

Z t

0

.f 00g0 � f 0g00/.B.s// dW.s/: (5.16)
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By Eq. (5.10), we have

Z t

0

X.s/ dY.s/ D ˆM.B.t//C �

Z t

0

�
'3;M � 1

24
' 00
1;M

�
.B.s// dW.s/;

where M D X ı Y . Recall that '1;Y D g0 and '3;Y D 1
24
g000. By Eqs. (5.12) and

(5.13), we have '1;M D fg0 and '3;M D 1
8
f 00g0 C 1

24
fg000. Since ˆM.0/ D 0 and

ˆ0
M D '1;M D fg0, we have ˆM D ˆ, and we also have

'3;M � 1

24
' 00
1;M D 1

8
f 00g0 C 1

24
fg000 � 1

24
.fg0/00

D 1

8
f 00g0 C 1

24
fg000 � 1

24
f 00g0 � 1

12
f 0g00 � 1

24
fg000

D 1

12
.f 00g0 � f 0g00/;

and this verifies Eq. (5.16). ut
Corollary 3.1. Let Y D g.B/, where g 2 C1.R/, and let ' 2 C1. Then

'.Y.t// D '.Y.0//C
Z t

0

' 0.Y.s// dY.s/� 1

12

Z t

0

' 000.Y.s// dŒŒY ��s : (5.17)

Proof. Let X D ' 0.Y / D f .B/, where f D ' 0 ı g. By Theorem 3.1,

Z
X dY D ˆ.B/C 1

12

Z
.f 00g0 � f 0g00/.B/ dŒŒB��;

whereˆ 2 C1.R/ is chosen so thatˆ0 D fg0 andˆ.0/ D 0. Since .' ıg/0 D fg0,
we have ˆ D .' ı g/ � .' ı g/.0/. Also,

f 00g0 � f 0g00 D ..' 000 ı g/.g0/2 C .' 00 ı g/g00/g0 � .' 00 ı g/g0g00 D .' 000 ı g/.g0/3:

Thus,

Z t

0

' 0.Y.s// dY.s/ D
Z t

0

X.s/ dY.s/

D .' ı g/.B.t// � .' ı g/.0/

C 1

12

Z t

0

.' 000 ı g/.B.s//.g0.B.s///3 dŒŒB��s

D '.Y.t// � '.Y.0//C �

12

Z t

0

' 000.Y.s//.g0.B.s///3 dW.s/:
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By Eq. (5.14), this gives

Z t

0

' 0.Y.s// dY.s/ D '.Y.t// � '.Y.0//C 1

12

Z t

0

' 000.Y.s// dŒŒY ��s ;

which is Eq. (5.17). ut
Corollary 3.2. Let N 2 ŒS� and write N D � C Y C V , where � is an FB1-
measurable random variable, Y D g.B/, and V D R

�.B/ dŒŒB�� for some g; � 2
C1.R/. Let X D f .B/ and Z D h.B/, where f; h 2 C1.R/. Then

if dM D X dN , then Z dM D ZX dN � 1

4
.f 0g0h0/.B/ dŒŒB��. (5.18)

Moreover, the above correction term is a “weak triple covariation” in the following
sense: If V D fVng, where

Vn.t/ D
bntcX

jD1
.X.tj /� X.tj�1//.Y.tj / � Y.tj�1//.Z.tj / �Z.tj�1//;

then V 2 S and ŒV � D R
.f 0g0h0/.B/ dŒŒB��.

Proof. Let N , X , and Z be as in the hypotheses, and let M D R
X dN . By

Theorem 3.1,

M D ˆ.B/C 1

12

Z
.f 00g0 � f 0g00/.B/ dŒŒB�� C

Z
X dV;

where ˆ 2 C1.R/ is chosen so that ˆ0 D fg0 and ˆ.0/ D 0. Hence, by
Lemma 3.2,

Z
Z dM D

Z
Z dˆ.B/C 1

12

Z
.f 00g0h�f 0g00h/.B/ dŒŒB��C

Z
ZX dV: (5.19)

By Theorem 3.1,

Z
Z dˆ.B/ D ‰.B/C 1

12

Z
.h00ˆ0 � h0ˆ00/.B/ dŒŒB��;

where ‰ 2 C1.R/ is chosen so that ‰0 D hˆ0 and ‰.0/ D 0. Theorem 3.1 also
gives

Z
ZX dY D e‰.B/C 1

12

Z
..f h/00g0 � .f h/0g00/.B/ dŒŒB��;
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where e‰ 2 C1.R/ is chosen so that e‰0 D f hg0 and e‰.0/ D 0. Note, however,
that this implies ‰ D e‰, which gives
Z
Z dˆ.B/ D

Z
ZX dY C 1

12

Z
.h00ˆ0 � h0ˆ00 � .f h/00g0 C .f h/0g00/.B/ dŒŒB��:

Substituting ˆ0 D fg0 into the above and simplifying gives

Z
Z dˆ.B/ D

Z
ZX dY C 1

12

Z
.f 0g00h� f 00g0h� 3f 0g0h0/.B/ dŒŒB��:

Substituting this into Eq. (5.19) gives

Z
Z dM D

Z
ZX dY � 1

4

Z
.f 0g0h0/.B/ dŒŒB��C

Z
ZX dV

D
Z
ZX dN � 1

4

Z
.f 0g0h0/.B/ dŒŒB��;

and this verifies Eq. (5.18).
Finally, if V D fVng, then ıj .Vn/ D ıj .ƒ

X
n /ıj .ƒ

Y
n /ıj .ƒ

Z
n /. From Eq. (5.8), we

see that V 2 S, '1;V D 0, and '3;V D '1;X'1;Y '1;Z D f 0g0h0. Since ŒV �0 D 0, it
follows from Example 2.2 that ŒV � D R

.f 0g0h0/.B/ dŒŒB��. ut
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Abstract Ciesielski’s isomorphism between the space of ˛-Hölder continuous
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1 Introduction

The large deviation principle (LDP) for Brownian motion ˇ on Œ0; 1�—contained in
Schilder’s theorem [11]—describes the exponential decay of the probabilities with
which

p
"ˇ takes values in closed or open subsets of the path space of continuous

functions in which the trajectories of ˇ live. The path space is equipped with the
topology generated by the uniform norm. The decay is dominated by a rate function
capturing the “energy” 1

2

R 1

0 . Pf .t//2dt of functions f on the Cameron–Martin space
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for which a square-integrable derivative exists. Schilder’s theorem is of central
importance to the theory of large deviations for randomly perturbed dynamical
systems or diffusions taking their values in spaces of continuous functions (see
[6,9], and references therein, [10]). A version of Schilder’s theorem for a Q-Wiener
processes W taking values in a separable Hilbert space H is well known (see [5];
Theorem 12.7 gives an LDP for Gaussian laws on Banach spaces). Here Q is a self-
adjoint positive trace-class operator on H . If .�i /i�0 are its summable eigenvalues
with respect to an eigenbasis .ek/k�0 in H , W may be represented with respect to
a sequence of one-dimensional Wiener processes .ˇk/k�0 by W D P1

kD0 �kˇk ek .
The LDP in this framework can be derived by means of techniques of reproducing
kernel Hilbert spaces (see [5], Chap. 12.1). The rate function is then given by an
analogous energy functional for which Pf 2 is replaced by kQ� 1

2 PF k2 for continuous
functions F possessing square-integrable derivatives PF on Œ0; 1�.

Schilder’s theorem for ˇ may for instance be derived via approximation of ˇ

by random walks from LDP principles for discrete processes (see [6]). Baldi and
Roynette [1] give a very elegant alternative proof of Schilder’s theorem, the starting
point of which is a Fourier decomposition of ˇ by a complete orthonormal system
(CONS) in L2.Œ0; 1�/. The rate function for ˇ is then simply calculated by the
rate functions of one-dimensional Gaussian unit variables. In this approach, the
LDP is first proved for balls of the topology, and then generalized by means of
exponential tightness to open and closed sets of the topology. As a special feature
of the approach, Schilder’s theorem is obtained in a stricter sense on all spaces
of Hölder continuous functions of order ˛ < 1

2
. This enhancement results quite

naturally from a characterization of the Hölder topologies on function spaces by
appropriate infinite sequence spaces (see [4]). Representing the one-dimensional
Brownian motions ˇk for instance by the CONS of Haar functions on Œ0; 1�, we
obtain a description of the Hilbert space valued Wiener process W in which a double
sequence of independent standard normal variables describes randomness. Starting
with this observation, in this paper we extend the direct proof of Schilder’s theorem
by [1] to Q-Wiener spaces W with values on H . On the way, we also retrieve the
enhancement of the LDP to spaces of Hölder continuous functions on Œ0; 1� of order
˛ < 1

2
. The idea of approaching problems related to stochastic processes with values

in function spaces by sequence space methods via Ciesielski’s isomorphism is not
new: it has been employed in [2] to give an alternative treatment of the support
theorem for Brownian motion, in [3] to enhance the Freidlin–Wentzell theory from
the uniform to Hölder norms, and in [7, 8] further to Besov–Orlicz spaces.

In Sect. 2 we first give a generalization of Ciesielski’s isomorphism of spaces
of Hölder continuous functions and sequence spaces to functions with values on
Hilbert spaces. We briefly recall the basic notions of Gaussian measures and Wiener
processes on Hilbert spaces. Using Ciesielski’s isomorphism we give a Schauder
representation of Wiener processes with values in H . Additionally we give a short
overview of concepts and results from the theory of LDP needed in the derivation
of Schilder’s theorem for W . In main Sect. 3 the alternative proof of the LDP for
W is given. We first introduce a new norm on the space of Hölder continuous
functions C˛.Œ0; 1�; H/ with values in H which is motivated by the sequence
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space representation in Ciesielski’s isomorphism and generates a coarser topology.
We adapt the description of the rate function to the Schauder series setting and then
prove the LDP for a basis of the coarser topology using Ciesielski’s isomorphism.
We finally establish the last ingredient, the crucial property of exponential tightness,
by construction of appropriate compact sets in sequence space.

2 Preliminaries

In this section we collect some ingredients needed for the proof of a LDP for Hilbert
space valued Wiener processes. We first prove Ciesielski’s theorem for Hilbert
space valued functions which translates properties of functions into properties of
the sequences of their Fourier coefficients with respect to complete orthonormal
systems in L2.Œ0; 1�/. We summarize some basic properties of Wiener processes W

with values in a separable Hilbert space H . We then discuss Fourier decompositions
of W , prove that its trajectories lie almost surely in C 0

˛ .Œ0; 1�; H/, and describe its
image under the Ciesielski isomorphism. We will always denote by H a separable
Hilbert space equipped with a symmetric inner product h�; �i that induces the norm
k�kH and a countable CONS .ek/ k 2 N.

2.1 Ciesielski’s Isomorphism

The Haar functions .�n; n � 0/ are defined as �0 � 1:

�2kCl .t/ WD

8
ˆ̂
<

ˆ̂
:

p
2k; 2l

2kC1 � t < 2lC1

2kC1 ;

�p
2k; 2lC1

2kC1 � t � 2lC2

2kC1 ;

0; otherwise.

(6.1)

The Haar functions form a CONS of L2.Œ0; 1�; dx/. Note that because of their
wavelet structure, the integral

R
Œ0;1� �ndf is well defined for all functions f . For

n D 2k C l where k 2 N and 0 � l � 2k � 1 we have
R

Œ0;1�
�ndF Dp

2kŒ2F. 2lC1

2kC1 / � F. 2lC2

2kC1 / � F. 2l

2kC1 /�, and it does not matter whether F is a real or
Hilbert space valued function.

The primitives of the Haar functions are called Schauder functions, and they are
given by

�n.t/ D
Z t

0

�n.s/ds, t 2 Œ0; 1�; n � 0:

Slightly abusing notation, we denote the ˛-Hölder seminorms on C˛.Œ0; 1�I H/

and on C˛.Œ0; 1�IR/ by the same symbols
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kF k˛ WD sup
0�s<t�1

kF.t/ � F.s/kH

jt � sj˛ ; F 2 C˛.Œ0; 1�I H/;

kf k˛ WD sup
0�s<t�1

jf .t/ � f .s/j
jt � sj˛ ; f 2 C˛.Œ0; 1�IR/:

C˛.Œ0; 1�I H/ is of course the space of all functions F W Œ0; 1� ! H such that
kF k˛ < 1 and similarly for C˛.Œ0; 1�IR/. We also denote the supremum norm on
C.Œ0; 1�I H/ and C.Œ0; 1�IR/ by the same symbol k�k1.

Denote in the sequel for an H -valued function F its orthogonal component
with respect to ek by Fk D hF; eki; k � 0: Further denote by Pk (resp. Rk) the
orthogonal projectors on span.e1; : : : ; ek/ (resp. its orthogonal complement), k � 0:

For every F 2 C˛.Œ0; 1�I H/ and every k � 0; s; t 2 Œ0; 1� we have

jhF.t/; eki � hF.s/; ekij � kF.t/ � F.s/kH :

More generally, for any k � 0; s; t 2 Œ0; 1�, we have

kPkF.t/�PkF.s/kH �kF.t/�F.s/kH ; kRkF.t/�RkF.s/kH �kF.t/�F.s/kH :

Our approach starts with the observation that we may decompose functions F 2
C˛.Œ0; 1�I H/ by double series with respect to the system .�n ek W n; k � 0/.

Lemma 2.1. Let ˛ 2 .0; 1/ and F 2 C˛.Œ0; 1�I H/. Then we have

F D
X

n

Z

Œ0;1�

�ndF�n D
1X

nD0

1X

kD0

Z

Œ0;1�

�ndFkek�n

with convergence in the uniform norm on C.Œ0; 1�I H/.

Proof. For the real-valued functions Fk; k � 0; the representation

Fk D
1X

nD0

Z

Œ0;1�

�ndFk �n

is well known from [4]. Therefore we may write for F 2 C˛.Œ0; 1�I H/

F D
1X

kD0

Fkek

D
1X

kD0

ek

1X

nD0

Z

Œ0;1�

�ndFk�n
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D
1X

nD0

1X

kD0

Z

Œ0;1�

�ndFkek�n

D
1X

nD0

Z

Œ0;1�

�ndF�n:

To justify the exchange in the order of summation and the convergence in the
uniform norm, we have to show

lim
N;m!1

�
�
�
�
�
�

X

n�N

Z

Œ0;1�

�ndRmF�n

�
�
�
�
�
�1

D 0:

For this purpose, note first that by definition of the Haar system for any n; m �
0; n D 2k C l , where 0 � l � 2k � 1

�
�
�
�

Z

Œ0;1�

�ndRmF

�
�
�
�

H

D
p

2k

�
�
�
�2RmF

�
2lC1

2kC1

�

�RmF

�
2l C 2

2kC1

�

�RmF

�
2l

2kC1

���
�
�

H

� 2kRmF k˛2�˛.kC1/2
1
2 k

D kRmF k˛2�˛.kC1/C 1
2 kC1:

Therefore, for K � 0 such that 2K � N � 2KC1, using the fact that �2kCl ; 0 � l �
2k � 1 have disjoint support and that k�2kClk1 � 2� k

2 �1, we obtain

�
�
�
�
�
�

X

n�N

Z

Œ0;1�

�ndRmF�n

�
�
�
�
�
�1

�
X

k�K

�
�
�
�
�
�

X

0�l�2k�1

Z

Œ0;1�

�2kCldF�2kCl

�
�
�
�
�
�1

�
X

k�K

sup
0�l�2k�1

�
�
�
�

Z

Œ0;1�

�2kCldRmF

�
�
�
�

1
2� k

2 �1

�
X

k�K

kRmF k˛2�˛.kC1/

� kRmF k˛

X

k�K

.2˛/�k �����!
K;m!1 0:

Here we use kRmF k˛ � kF k˛ < 1 for all m � 0, the fact that limm!1 RmF.t/ D
0 for any t 2 Œ0; 1�, and dominated convergence to obtain limm!1kRmF k˛ D 0.

ut
A closer inspection of the coefficients in the decomposition of Lemma 2.1 leads

us to the following isomorphism, described by [4] in the one-dimensional case. To
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formulate it, denote by CH
0 the space of H -valued sequences .�n/n2N such that

limn!1k�nkH D 0. If we equip CH
0 with the supremum norm (using again the

symbol k�k1), it becomes a Banach space.

Theorem 2.1 (Ciesielski’s isomorphism for Hilbert spaces). Let 0 < ˛ < 1. Let
.�n/ denote the Haar functions and .�n/ denote the for Schauder functions. Let for
0 � n D 2k C l � 0, where 0 � l � 2k � 1

c0.˛/ WD 1; cn.˛/ WD 2k.˛�1=2/C˛�1:

Define

T H
˛ W C 0

˛ .Œ0; 1�I H/ ! CH
0 F 7!

�

cn.˛/

Z

Œ0;1�

�ndF

�

n2N
:

Then T H
˛ is continuous and bijective, its operator norm is 1, and its inverse is

given by

.T H
˛ /�1 W CH

0 ! C 0
˛ .Œ0; 1�I H/; .�n/ 7!

1X

nD0

�n

cn.˛/
�n:

The norm of .T H
˛ /�1 is bounded by

�
�.T H

˛ /�1
�
� � 2

.2˛ � 1/.21�˛ � 1/
:

Proof. Observe that for n 2 N with n D 2k C l , 0 � l � 2k � 1

�
�
�
�

Z

Œ0;1�

�ndF

�
�
�
�

H

D
p

2k

�
�
�
�2F

�
2l C 1

2kC1

�

� F

�
2l C 2

2kC1

�

� F

�
2l

2kC1

���
�
�

H

� 1

2c˛.n/

0

@

�
�
�F. 2lC2

2kC1 / � F. 2lC1

2kC1 /
�
�
�

H

2�˛.kC1/
C
�
�
�F. 2lC1

2kC1 / � F. 2l

2kC1 /
�
�
�

H

2�˛.kC1/

1

A

� 1

c˛.n/
sup

t;s2Œ0;1�; jt�sj�2�k�1

kF.t/ � F.s/kH

jt � sj˛

� 1

c˛.n/
kF k˛:
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This gives the desired bound on the norm. Moreover, since F 2 C 0
˛ .Œ0; 1�; H/ we

have

lim
n!1 c˛.n/

�
�
�
�

Z

Œ0;1�

�ndF

�
�
�
�

H

� lim
n!1 sup

t;s2Œ0;1�; jt�sj�2�k�1

kF.t/ � F.s/kH

jt � sj˛ D 0:

Thus the range of T H
˛ is indeed contained in CH

0 . Taking F W Œ0; 1� ! H with
F.s/ D se1 for s 2 Œ0; 1� we find that T H

˛ .F / D .e1; 0; 0; : : :/; thus kF k˛ D
kT H

˛ .F /k1. Therefore kT H
˛ k D 1. Clearly T H

˛ is injective.
To see that T H

˛ is bijective and that the inverse is bounded as claimed, define

A W CH
0 ! C 0

˛ .Œ0; 1�I H/; .�n/ 7!
1X

nD0

�n

cn.˛/
�n:

Now a straightforward calculation using the orthogonality of the .�n/n�0 gives for
any .�n/n�0 � CH

0

T H
˛ ı A..�n/n�0/ D T H

˛

 1X

nD0

�n

cn.˛/
�n

!

D
 1X

n;mD0

�n

Z

Œ0;1�

�md�n

!

m2N

D
 1X

n;mD0

�n

Z
�n.t/�m.t/dt

!

m2N
D .�m/m�0:

Consequently we can infer that A D .T H
˛ /�1.

We still have to show that .T H
˛ /�1 satisfies the claimed norm inequality and maps

every sequence .�n/n�0 2 CH
0 to an element of C 0

˛ .Œ0; 1�; H/. For this purpose let
.�n/n�0 2 CH

0 , set F D .T H
˛ /�1..�n// and let s; t 2 Œ0; 1� be given. Then we have

kF.t/ � F.s/kH � k.�n/n�0k1

0

@jt � sj C
1X

kD0

2k�1X

lD0

j�2kCl .t/ � �2kCl .s/j
c2k .˛/

1

A :

The term in brackets on the right-hand side is exactly the one appearing in the real-
valued case [4]. Consequently we have the same bound, given by

k.T H
˛ /�1k � 1

.2˛ � 1/.2˛�1 � 1/
:
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A more careful estimation yields

kF.t/ � F.s/kH � k�0kjt � sj C
1X

kD0

2k�1X

lD0

1

c2k .˛/
k�2kClkj�2kCl .t/ � �2kCl .s/j:

This is the same expression as in the real-valued case. Its well-known treatment
implies

lim
jt�sj!0

kF.t/ � F.s/kH

jt � sj˛ D 0:

This finishes the proof. ut

2.2 Wiener Processes on Hilbert Spaces

We recall some basic concepts of Gaussian random variables and Wiener processes
with values in a separable Hilbert space H . Especially we will derive a Fourier
sequence decomposition of Wiener processes. Our presentation follows [5].

Definition 2.1. Let .�; F ;P/ be a probability space, m 2 H and Q W H ! H a
positive self-adjoint operator. An H -valued random variable X such that for every
h 2 H

EŒexp.ihh; Xi/� D exp

�

ihh; mi � 1

2
hQh; hi

�

is called Gaussian with covariance operator Q and mean m 2 H . We denote the
law of X by N .m; Q/.

By Proposition 2.15 of [5], Q has to be a positive, self-adjoint trace-class
operator, i.e., a bounded operator from H to H that satisfies:

1. hQx; xi � 0 for every x 2 H

2. hQx; xi D hx; Qxi for every x 2 H

3.
P1

kD0hQek; eki < 1 for every CONS .ek/k�0

If Q is a positive, self-adjoint trace-class operator on H , then there exists a CONS
.ek/k�0 such that Qek D �kek, where �k � 0 for all k and

P1
kD0 �k < 1. Note that

for such a Q, an operator Q1=2 can be defined by setting Q1=2ek WD p
�kek; k 2 N0.

Then Q1=2Q1=2 D Q.

Definition 2.2. Let Q be a positive, self-adjoint trace-class operator on H . A Q-
Wiener process .W.t/ W t 2 Œ0; 1�/ is a stochastic process with values in H such
that:

1. W.0/ D 0.
2. W has continuous trajectories.
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3. W has independent increments.
4. L.W.t/ � W.s// D N .0; .t � s/Q/.

In this case .W.t1/; : : : ; W.tn// is H n-valued Gaussian for all t1; : : : ; tn 2
Œ0; 1�. By Proposition 4.2 of [5] we know that such a process exists for every
positive, self-adjoint trace-class operator Q on H. To get the Fourier decomposition
of a Q-Wiener process along the Schauder basis we use a different standard
characterization.

Lemma 2.2. A stochastic process Z on .H; B.H// is a Q-Wiener process if and
only if:

• Z0 D 0 P-a.s..
• Z has continuous trajectories.
• cov.hv; Zt ihw; Zsi/ D .t ^ s/hv; Qwi 8v; w 2 H , 80 � s � t < 1.
• 8.v1; : : : ; vn/ 2 H n .hv1; Zi; : : : ; hvn; Zi/ is an R

n-valued Gaussian process.

Independent Gaussian random variables with values in a Hilbert space asymptot-
ically allow the following bounds.

Lemma 2.3. Let Zn � N .0; Q/, n 2 N, be independent. Then there exists an a.s.
finite real-valued random variable C such that

kZnkH � C
p

log n P a:s::

Proof. By using the exponential integrability of �kZnk2
H for small enough � and

Markov’s inequality, we obtain that there exist �; c 2 RC such that for any a > 0

P.kZkH > a/ � ce��a2

:

Thus for ˛ > 1 and n big enough

P

�
kZnkH �

p
��1˛ log n

�
� cn�˛:

We set An D
n
kZnkH � p

��1˛ log n
o

and have

1X

nD0

P.An/ < 1:

Hence the lemma of Borel–Cantelli gives that P.lim supn An/ D 0, i.e., P � a:s: for
almost all n 2 N we have kZnkH � p

��1˛ log n. In other words

C WD sup
n�0

kZnkHp
log n

< 1 P � a:s:

ut
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Using Lemma 2.3 and the characterization of Q-Wiener processes of Lemma 2.2,
we now obtain its Schauder decomposition which can be seen as a Gaussian version
of Lemma 2.1.

Proposition 2.1. Let ˛ 2 .0; 1=2/; let .�n/n�0 be the Schauder functions and
.Zn/n�0 a sequence of independent, N .0; Q/-distributed Gaussian variables, where
Q is a positive self-adjoint trace-class operator on H . The series-defined process

Wt D
1X

nD0

�n.t/Zn; t 2 Œ0; 1�;

converges P-a.s. with respect to the k�k˛-norm on Œ0; 1� and is an H -valued Q-
Wiener process.

Proof. We have to show that the process defined by the series satisfies the conditions
given in Lemma 2.2. The first and the two last conditions concerning the covariance
structure and Gaussianity of scalar products have standard verifications. Let us
just argue for absolute and k�k˛-convergence of the series, thus proving Hölder
continuity of the trajectories.

Since T H
˛ is an isomorphism and since any single term of the series is even

Lipschitz continuous, it suffices to show that

 

T H
˛

 
mX

nD0

�nZn

!

W m 2 N

!

is a Cauchy sequence in CH
0 . Let us first calculate the image of term N under T H

˛ .
We have

.T H
˛ �nZn/N D 1fnDN gcN .˛/ZN :

Therefore for m1; m2 � 0; m1 � m2

m2X

nDm1

.T H
˛ �nZn/N D 1fm1�N �m2gcN .˛/ZN D

 

T H
˛

 
m2X

nDm1

�nZn

!!

N

:

So if we can prove that cN .˛/ZN a.s. converges to 0 in H as N ! 1, the
proof is complete. But this follows immediately from Lemma 2.3: cN .˛/ decays
exponentially fast, and kZN kH � C

p
log N . ut

In particular we showed that for ˛ < 1=2 W a.s. takes its trajectories in

C 0
˛ .Œ0; 1�I H/ WD

8
<̂

:̂
F W Œ0; 1� ! H; F.0/ D 0; lim

ı!0
sup
t¤s;

jt�sj<ı

kF.t/ � F.s/kH

jt � sj˛ D 0

9
>=

>;
:
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By Lipschitz continuity of the scalar product, we also have hF; eki 2 C 0
˛ .Œ0; 1�IR/.

Since Pk and Rk are orthogonal projectors and therefore Lipschitz continuous,
we obtain that for F 2 C 0

˛ .Œ0; 1�I H/,

sup
k�0

khF; ekik˛ � kF k˛:

We also saw that T H
˛ .W / is well defined almost surely. As a special case this is also

true for the real-valued Brownian motion. We have by Proposition 2.1

T H
˛ .W / D .cn.˛/Zn/

where .Zn/n�0 is a sequence of i.i.d. N .0; Q/-variables.
Plainly, the representation of the preceding lemma can be used to prove

the representation formula for Q-Wiener processes by scalar Brownian motions
according to [5], Theorem 4.3.

Proposition 2.2. Let W be a Q-Wiener process. Then

W.t/ D
1X

kD0

p
�kˇk.t/ek , t 2 Œ0; 1�;

where the series on the right-hand side P-a.s. converges uniformly on Œ0; 1� and
.ˇk/k�0 is a sequence of independent real-valued Brownian motions.

Proof. Using arguments as in the proof of Theorem 2.1 and Lemma 2.3 to justify
changes in the order of summation we get

W D
1X

nD0

�nZn D
X

k�0

X

n�0

�nhZn; ekiek D
X

k�0

p
�k

X

n�0

�nNn;kek D
X

k�0

p
�kˇkek;

where the equivalences are P-a.s. and .Nn;k/n;k�0; .ˇk/k�0 are real-valued iid
N .0; 1/ random variables, resp., Brownian motions. For the last step we applied
Proposition 2.1 for the one-dimensional case. ut

2.3 Large Deviations

Let us recall some basic notions of the theory of large deviations that will suffice to
prove the LDP for Hilbert space valued Wiener processes. We follow [6]. Let X be
a topological Hausdorff space. Denote its Borel �-algebra by B.

Definition 2.3 (Rate function). A function I W X ! Œ0; 1� is called a rate func-
tion if it is lower semi-continuous, i.e., if for every C � 0 the set

‰I .C / WD fx 2 X W I.x/ � C g
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is closed. It is called a good rate function, if ‰I .C / is compact. For A 2 B we define
I.A/ WD infx2A I.x/.

Definition 2.4 (LDP). Let I be a rate function. A family of probability measures
.	"/">0 on .X; B/ is said to satisfy the LDP with rate function I if for any closed
set F � X and any open set G � X we have

lim sup
"!0

" log 	".F / � �I.F / and

lim inf
"!0

" log 	".G/ � �I.G/:

Definition 2.5 (Exponential tightness). A family of probability measures .	"/">0

is said to be exponentially tight if for every a > 0 there exists a compact set Ka � X

such that
lim sup

"!0

" log 	".K
c
a/ < �a:

In our approach to Schilder’s theorem for Hilbert space valued Wiener processes
we shall mainly use the following proposition which basically states that the rate
function has to be known for elements of a subbasis of the topology.

Proposition 2.3. Let G0 be a collection of open sets in the topology of X such that
for every open set G � X and for every x 2 G there exists G0 2 G0 such that
x 2 G0 � G. Let I be a rate function and let .	"/">0 be an exponentially tight
family of probability measures. Assume that for every G 2 G0 we have

� inf
x2G

I.x/ D lim
"!0

" log 	".G/:

Then I is a good rate function, and .	"/" satisfies an LDP with rate function I .

Proof. Let us first establish the lower bound. In fact, let G be an open set. Choose
x 2 G and a basis set G0 such that x 2 G0 � G: Then evidently

lim inf
"!0

" ln 	".G/ � lim inf
"!0

" ln 	".G0/ D � inf
y2G0

I.y/ � �I.x/:

Now the lower bound follows readily by taking the sup of �I.x/; x 2 G; on the
right-hand side, the left-hand side not depending on x.

For the upper bound, fix a compact subset K of X: For ı > 0 denote

I ı.x/ D .I.x/ � ı/ ^ 1

ı
; x 2 X:

For any x 2 K , use the lower semicontinuity of I , more precisely that fy 2 X W
I.y/ > I ı.x/g is open to choose a set Gx 2 G0 such that

�I ı.x/ � lim sup
"!0

" ln 	".Gx/:
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Use compactness of K to extract from the open cover K � [x2KGx a finite
subcover K � [n

iD1Gxi . Then with a standard argument we obtain

lim sup
"!0

" ln 	".K/ � max
1�i�n

lim sup
"!0

" ln 	".Gxi / � � min
1�i�n

I ı.xi / � � inf
x2K

I ı.x/:

Now let ı ! 0: Finally use exponential tightness to show that I is a good rate
function (see [6], Sect. 4.1). ut

The following propositions show how LDPs are transferred between different
topologies on a space, or via continuous maps to other topological spaces.

Proposition 2.4 (Contraction principle). Let X and Y be topological Hausdorff
spaces, and let I W X ! Œ0; 1� be a good rate function. Let f W X ! Y be a
continuous mapping. Then

I 0 W Y ! Œ0; 1�; I 0.y/ D inffI.x/ W f .x/ D yg

is a good rate function, and if .	"/">0 satisfies an LDP with rate function I on X ,
then .	" ı f �1/">0 satisfies an LDP with rate function I 0 on Y .

Proposition 2.5. Let .	"/">0 be an exponentially tight family of probability mea-
sures on .X; B
2/ where B
2 are the Borel sets of 
2. Assume .	"/ satisfies an LDP
with rate function I with respect to some Hausdorff topology 
1 on X which is
coarser than 
2, i.e., 
2 � 
1. Then .	"/">0 satisfies the LDP with respect to 
2, with
good rate function I .

The main idea of our sequence space approach to Schilder’s theorem for Hilbert
space valued Wiener processes will just extend the following LDP for a standard
normal variable with values in R to sequences of i.i.d. variables of this kind.

Proposition 2.6. Let Z be a standard normal variable with values in R,

I W R ! Œ0; 1/; x 7! x2

2
;

and for Borel sets B in R let 	".B/ WD P.
p

"Z 2 B/. Then .	"/">0 satisfies an
LDP with good rate function I .

3 Large Deviations for Hilbert Space Valued Wiener
Processes

Ciesielski’s isomorphism and the Schauder representation of Brownian motion yield
a very elegant and simple method of proving LDPs for the Brownian motion. This
was first noticed by [1] who gave an alternative proof of Schilder’s theorem based
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on this isomorphism. We follow their approach and extend it to Wiener processes
with values on Hilbert spaces. In this entire section we always assume 0 < ˛ <

1=2. By further decomposing the orthogonal one-dimensional Brownian motions in
the representation of an H -valued Wiener process by its Fourier coefficients with
respect to the Schauder functions, we describe it by double sequences of real-valued
normal variables.

3.1 Appropriate Norms

We work with new norms on the spaces of ˛-Hölder continuous functions given by

kF k0̨ WD kT H
˛ F k1 D sup

k;n

ˇ
ˇ
ˇ
ˇcn.˛/

Z

Œ0;1�

�n.s/dhF; eki.s/

ˇ
ˇ
ˇ
ˇ ; F 2 C 0

˛ .Œ0; 1�I H/;

kf k0̨ WD kT˛f k1 D sup
n

ˇ
ˇ
ˇ
ˇcn.˛/

Z

Œ0;1�

�n.s/df .s/

ˇ
ˇ
ˇ
ˇ ; f 2 C 0

˛ .Œ0; 1�IR/:

Since T H
˛ is one-to-one, k:k0̨ is indeed a norm. Also, we have k:k0̨ � k:k˛ . Hence

the topology generated by k:k0̨ is coarser than the usual topology on C 0
˛ .Œ0; 1�; H/.

Balls with respect to the new norms U ı
˛ .F / WD fG 2 C 0

˛ .Œ0; 1�I H/ W
kG � F k0̨ < ıg for F 2 C 0

˛ .Œ0; 1�I H/; ı > 0, have a simpler form for our
reasoning, since the condition that for ı > 0 a function G 2 C 0

˛ .Œ0; 1�; H/

lies in U ı
˛ .F / translates into the countable set of one-dimensional conditions

jhT H
˛ .F /n � T H

˛ .G/n; ekij < ı for all n; k � 0: This will facilitate the proof of
the LDP for the basis of open balls of the topology generated by k:k0̨ . We will first
prove the LDP in the topologies generated by these norms and then transfer the
result to the finer sequence space topologies using Proposition 2.5 and finally to the
original function space using Ciesielski’s isomorphism and Proposition 2.4.

3.2 The Rate Function

Recall that Q is supposed to be a positive self-adjoint trace-class operator on H. Let
H0 WD .Q1=2H; k�k0/, equipped with the inner product

hx; yiH0 WD hQ�1=2x; Q�1=2yiH ;

that induces the norm k�k0 on H0. We define the Cameron–Martin space of the Q-
Wiener process W by

H WD
�

F 2 C.Œ0; 1�I H/ W F.�/ D
Z �

0

U.s/ds for some U 2 L2.Œ0; 1�I H0/

�

:
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Here L2.Œ0; 1�I H0/ is the space of measurable functions U from Œ0; 1� to H0 such
that

R 1

0
kU k2

H0
dx < 1. Define the function I via

I W C.Œ0; 1�I H/ ! Œ0; 1�;

F 7! inf

�
1

2

Z 1

0

kU.s/k2
H0

ds W U 2 L2.Œ0; 1�I H0/; F.�/ D
Z �

0

U.s/ds

�

;

where by convention inf ; D 1. In the following we will denote any restriction of
I to a subspace of C.Œ0; 1�I H/ (e.g., to .C˛.Œ0; 1�I H/) by I as well. We will use
the structure of H to simplify our problem. It allows us to compute the rate function
I from the rate function of the one-dimensional Brownian by the following lemma.

Lemma 3.1. Let QI W C.Œ0; 1�IR/ be the rate function of the Brownian motion, i.e.,

QI .f / WD
( R 1

0 j Pf .s/j2ds; f .�/ D R �
0

Pf .s/ds for a square-integrable function Pf ;

1; otherwise:

Let .�k/k�0 be the sequence of eigenvalues of Q. Then for all F 2 C.Œ0; 1�I H/ we
have

I.F / D
1X

kD0

1

�k

QI .hF; eki/

where we convene that c=0 D 1 for c > 0 and 0=0 D 0.

Proof. Let F 2 C.Œ0; 1�I H/.

1. First assume I.F / < 1. Then there exists U 2 L2.Œ0; 1�I H0/ such that F DR �
0

U.s/ds and thus hF; eki D R �
0
hU.s/; ekids for k � 0. Consequently we have

by monotone convergence

1

2

Z 1

0

kU.s/k2
H0

ds D 1

2

Z 1

0

�
�
�
�
�

1X

kD0

hU.s/; ekiek

�
�
�
�
�

H0

ds

D 1

2

Z 1

0

1X

kD0

hU.s/; eki2hQ� 1
2 ek; Q� 1

2 ekids

D 1

2

Z 1

0

1X

kD0

1

�k

hU.s/; eki2ds

D
1X

kD0

1

�k

QI .hF; eki/:

The last expression does not depend on the choice of U . Hence we get that
I.F / < 1 implies I.F / D P1

kD0
1

�k

QI .hF; eki/.
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2. Conversely assume
P1

kD0
1

�k

QI .hF; eki/ < 1. Since QI .hF; eki/ < 1 for all
k � 0, we know that there exists a sequence .Uk/k�0 of square-integrable real-
valued functions such that hF; eki D R �

0
Uk.s/ds. Further, those functions Uk

satisfy by monotone convergence

Z 1

0

1X

kD0

1

�k

jUk.s/j2ds D
1X

kD0

1

�k

Z 1

0

jUk.s/j2ds D
1X

kD0

2

�k

QI .hF; eki/ < 1:

So if we define U.s/ WD P1
kD0 Uk.s/ek; s 2 Œ0; 1�, then U 2 L2.Œ0; 1�I H0/. This

follows from

U 2 L2.Œ0; 1�I H0/ iff
Z 1

0

kU.s/k2
H0

ds D
Z 1

0

1X

kD0

1

�k

jUk.s/j2ds < 1:

Finally we obtain by dominated convergence (kF.t/kH < 1)

F.t/ D
1X

kD0

hF.t/; ekiek D
1X

kD0

ek

Z t

0

Uk.s/ds D
Z t

0

U.s/ds;

such that

I.F / � 1

2

Z 1

0

kU.s/k2
H0

ds D 1

2

Z 1

0

1X

kD0

1

�k

jUk.s/j2ds < 1:

Combining the two steps we obtain I.F / < 1 iff
P1

kD0
1

�k

QI .hF; eki/ < 1 and
in this case

I.F / D
1X

kD0

1

�k

QI .hF; eki/:

This completes the proof. ut
Lemma 3.1 allows us to show that I is a rate function.

Lemma 3.2. I is a rate function on .C 0
˛ .Œ0; 1�I H/; k:k0̨ /.

Proof. For a constant C � 0 we have to prove that if .Fn/n�0 � ‰I .C / \
C 0

˛ .Œ0; 1�I H/ converges in C 0
˛ .Œ0; 1�I H/ to F , then F is also in ‰I .C /.

It was observed in [1] that QI is a rate function for the k:k0̨ -topology on
C ˛

0 .Œ0; 1jIR/. By our assumption we know that for every k 2 N, .hFn; eki/n�0

converges in .C ˛
0 .Œ0; 1jIR/; k:k0̨ / to hF; eki. Therefore

QI .hF; eki/ � lim inf
n!1

QI .hFn; eki/;

so by Lemma 3.1 and by Fatou’s lemma,
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C � lim inf
n!1 I.Fn/ D lim inf

n!1

1X

kD0

1

�k

QI .hFn; eki/ �
1X

kD0

1

�k

lim inf
n!1

QI .hFn; eki/

�
1X

kD0

1

�k

QI .hF; eki/ D I.F /:

Hence F 2 ‰I .C /. ut

3.3 LDP for a Subbasis of the Coarse Topology

To show that the Q-Wiener process .W.t/ W t 2 Œ0; 1�/ satisfies an LDP on
.C˛.Œ0; 1�I H/; k:k˛/ with good rate function I as defined in the last section we
now show that the LDP holds for open balls in our coarse topology induced by k:k0̨ .
The proof is an extension of the version of [1] for the real-valued Wiener process.

For " > 0 denote by 	" the law of
p

"W , i.e., 	".A/ D P.
p

"W 2 A/, A 2
B.H/.

Lemma 3.3. For every ı > 0 and every F 2 C 0
˛ .Œ0; 1�I H/ we have

lim
"!0

" log 	".U
ı
˛ .F // D � inf

G2U ı
˛ .F /

I.G/:

Proof. 1. Write T H
˛ F D .

P1
kD0 Fn;kek/n2N. Then

p
"W is in U ı

˛ .F / if and only if

sup
k;n�0

ˇ
ˇ
ˇ
ˇ
p

"cn.˛/

Z 1

0

�ndhW; eki � Fk;n

ˇ
ˇ
ˇ
ˇ < ı:

Now for k � 0 we recall hW; eki D p
�kˇk , where .ˇk/k�0 is a sequence of

independent standard Brownian motions. Therefore for n; k � 0

ˇ
ˇ
ˇ
ˇ

Z 1

0

�ndhW; eki
ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
p

�kZk;n

ˇ
ˇ
ˇ ;

where .Zk;n/k;n�0 is a double sequence of independent standard normal vari-
ables. Therefore by independence

	".U
ı
˛ .F // D P

0

@
\

k;n2N0

ˇ
ˇ
ˇcn.˛/

p
"�kZk;n � Fk;n

ˇ
ˇ
ˇ < ı

1

A

D
1Y

kD0

1Y

nD0

P

�
cn.˛/

p
"�kZk;n 2 .Fk;n � ı; Fk;n C ı/

�
:
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To abbreviate, we introduce the notation

Pk;n."/ D P

�
cn.˛/

p
"�kZk;n 2 .Fk;n � ı; Fk;n C ı/

�
, " > 0; n; k 2 N0:

For every k � 0 we split N0 into subsets ƒk
i ; i D 1; 2; 3; 4, for each of which we

will calculate
Q1

kD0

Q
n2ƒk

i
Pn;k."/ separately. Let

ƒk
1 D fn � 0 W 0 … ŒFk;n � ı; Fk;n C ı�g

ƒk
2 D fn � 0 W Fk;n D ˙ıg

ƒk
3 D fn � 0 W Œ�ı=2; ı=2� � ŒFk;n � ı; Fk;n C ı�g

ƒk
4 D .ƒk

1 [ ƒk
2 [ ƒk

3/c:

By applying Ciesielski’s isomorphism to the real-valued functions hF; eki, we
see that for every fixed k, ƒk

3 contains nearly all n. Since .T H
˛ F /n converges to

zero in H , in particular supk�0 jFk;nj converges to zero as n ! 1. But for every
fixed n, .Fk;n/k is in l2 and therefore converges to zero. This shows that for large
enough k we must have ƒk

3 D N0, and therefore [k.ƒk
3/c is finite.

2. First we examine
Q1

kD0

Q
n2ƒk

3
Pk;n."/. Note that for n 2 ƒk

3 we have

Œ�ı=2; ı=2� � ŒFk;n � ı; Fk;n C ı�;

and therefore

1Y

kD0

Y

n2ƒk
3

Pk;n."/ �
1Y

kD0

Y

n2ƒk
3

P

�

Zk;n 2
�

� ı

2cn.˛/
p

"�k

;
ı

2cn.˛/
p

"�k

��

D
1Y

kD0

Y

n2ƒk
3

 

1 �
r

2

�

Z 1

ı=.2cn.˛/
p

"�k/

e�u2=2du

!

:

For a > 1 we have
R1

a e�x2=2dx � e�a2=2. Thus for small enough ":

1Y

kD0

Y

n2ƒk
3

Pk;n."/ �
1Y

kD0

Y

n2ƒk
3

 

1 �
r

2

�
exp

�

� ı2

8c2
n.˛/"�k

�!

:

This amount will tend to 1 if and only if its logarithm tends to 0 as " ! 0. Since
log.1 � x/ � �x for x 2 .0; 1/, it suffices to prove that

lim
"!0

1X

kD0

X

n�0

exp

�

� ı2

8c2
n.˛/"�k

�

D 0: (6.2)
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This is true by dominated convergence, because cn.˛/ D 2n.˛�1=2/C˛�1, and
since .�k/ 2 l1.

We will make this more precise. First observe that for a > 0

e�a � 1

a
e�1

if log.a/ � a � �1:

For k; n � 0 we write �n;k D ı2

8c2
n.˛/"�k

. Clearly there exists a finite set T � N
2
0

such that log.�n;k/ � �n;k � �1 for all .n; k/ 2 T c . We set C D P
.n;k/2T e��n;k

and get

1X

kD0

1X

nD0

exp

�

� ı2

8c2
n.˛/"�k

�

D C C
1X

.n;k/2T c

e��n;k

� C C
1X

.n;k/2T c

1

�n;k

e�1

� C C 8"e�1

ı2

X

k�0

�k

X

n�0

cn.˛/2 < 1:

3. Since [k�0ƒ
k
4 is finite and since for every n in ƒk

4 the interval .Fk;n�ı; Fk;nCı/

contains a small neighborhood of 0, we have

lim
"!0

1Y

kD0

Y

n2ƒk
4

Pk;n."/ D 1: (6.3)

4. Again because [k�0ƒ
k
2 is finite, we obtain from its definition that

lim
"!0

1Y

kD0

Y

n2ƒk
2

Pk;n."/ D 2�j[kƒk
2 j: (6.4)

5. Finally we calculate lim"!0

Q1
kD0

Q
n2ƒk

1
Pk;n."/. For given k; n define

NFk;n D
�

Fk;n � ı; Fk;n > ı;

Fk;n C ı; Fk;n < �ı:

We know that Zk;n is standard normal, so that by Proposition 2.6 for n 2 ƒk
1

lim
"!0

" logP0
k;n."/ D �

NF 2
k;n

2c2
n.˛/�k

;
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and therefore again by the finiteness of [kƒk
1

lim
"!0

" log
1Y

kD0

Y

n2ƒk
1

P
0
k;n."/ D �

1X

kD0

X

n2ƒk
1

NF 2
k;n

2c2
n.˛/�k

: (6.5)

6. Combining Eqs. (6.2)–(6.5) we obtain

lim
"!0

" log 	".U
ı
˛ .F // D �

1X

kD0

1

�k

X

n2ƒk
1

NF 2
k;n

2c2
n.˛/

:

So if we manage to show

�
1X

kD0

1

�k

X

n2ƒk
1

NF 2
k;n

2c2
n.˛/

D � inf
G2U ı

˛ .F /
I.G/;

the proof is complete. By Ciesielski’s isomorphism, every G 2 C 0
˛ .Œ0; 1�I H/ has

the representation

G D
1X

kD0

ek

1X

nD0

Gk;n

cn.˛/
�n:

Its derivative fulfills (if it exists) for any k � 0

h PG; eki D
1X

nD0

Gk;n

cn.˛/
�n:

Since the Haar functions .�n/n�0 are a CONS for L2.Œ0; 1�/, we see that
QI .hG; eki/ < 1 if and only if .Gk;n=cn.˛// 2 l2, and in this case

QI .hG; eki/ D 1

2

Z 1

0

h PG.s/; eki2ds D
1X

nD0

G2
k;n

2c2
n.˛/

:

So we finally obtain with Lemma 3.1 the desired equality

inf
G2U ı

˛ .F /
I.G/ D inf

G2U ı
˛ .F /

1X

kD0

1

�k

QI .hG; eki/ D inf
G2U ı

˛ .F /

1X

kD0

1

�k

1X

nD0

G2
k;n

2c2
n.˛/

D
1X

kD0

1

�k

X

n2ƒk
1

NF 2
k;n

2c2
n.˛/

:

ut
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3.4 Exponential Tightness

The final ingredient needed in the proof of the LDP for Hilbert space valued Wiener
processes is exponential tightness. It will be established in two steps. The first step
claims exponential tightness for the family of laws of

p
"Z; " > 0, where Z is an

H -valued N .0; Q/-variable.

Lemma 3.4. Let " > 0 and �" D P ı .
p

"Z/�1 for a centered Gaussian random
variable Z with values in the separable Hilbert space H and covariance operator
Q. Then .�"/"2.0;1� is exponentially tight. More precisely for every a > 0 there exists
a compact subset Ka of H , such that for every " 2 .0; 1�

�".K
c
a/ � e�a="

Proof. We know that for a sequence .bk/k�0 converging to 0, the operator T.bk/ WDP1
kD0 bkh�; ekiek is compact. That is, for bounded sets A � H , the set T.bk/.A/ is

precompact in H . Since H is complete, this means that cl.T.bk/.A// is compact.
Let a0 > 0 to be specified later. Denote by B.0;

p
a0/ � H the ball of radius

p
a0

in H . We will show that there exists a zero sequence .bk/k�0, such that the compact
set Ka0 D cl.T.bk/.B.0;

p
a0/// satisfies for all " 2 .0; 1�:

P.
p

"Z 2 .Ka0/c/ � ce�a0=" (6.6)

with a constant c > 0 that does not depend on a0. Thus, for given a, we can choose
a0 > a such that for every " 2 .0; 1�

c � e.a0�a/="

and therefore the proof is complete once we proved Eq. (6.6).
Since Z is Gaussian, e�kZkH is integrable for small �, and we can apply Markov’s

inequality to obtain constants �.Q/; c.Q/ > 0 such that P.kZkH � p
a0/ �

c.Q/e��.Q/a0

.
Note that if .�k/k�0 2 l1, we can always find a sequence .ck/k�0 such that

limk!1 ck D 1 and
P

k�0 ck�k < 1. For ˇ > 0 that will be specified later, we

set bk D
q

ˇ

ck
for all k � 0. We can define .T.bk//

�1 D P1
kD0

1
bk

h�; ekiek. This
gives

P.
p

"Z 2 .Ka0/c/ � P.
p

".T.bk//
�1.Z/ … B.0;

p
a0//

D P.k.T.bk//
�1.Z/k2

H � a0

"
/

D P

 1X

kD0

ckjhZ; ekij2 � ˇa0

"

!

D P

 

k QZkH �
r

ˇa0
"

!

;
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where QZ is a centered Gaussian random variable with trace-class covariance
operator

QQ D
1X

kD0

ck�kh�; ekiek:

Consequently we obtain

P.
p

"Z 2 .Ka0/c/ � c. QQ/e� �. QQ/ˇa0

" :

Choosing ˇ D 1

�. QQ/
proves the claim (6.6). ut

With the help of Lemma 3.4 we are now in a position to prove exponential
tightness for the family .	"/"2.0;1�.

Lemma 3.5. .	"/"2.0;1� is an exponentially tight family of probability measures on
.C 0

˛ .Œ0; 1�I H/, k:k˛/.

Proof. Let a > 0. We will construct a suitable set of the form

QKa D
1Y

nD0

Ka
n

such that
lim sup

"!0

" log 	"

h�	
T H

˛


�1 QKa
�ci � �a:

Here each Ka
n is a compact subset of H , such that the diameter of Ka

n tends to
0 as n tends to 1. Then QKa will be sequentially compact in CH

0 by a diagonal
sequence argument. Since CH

0 is a metric space, QKa will be compact. As we saw in
Theorem 2.1, .T H

˛ /�1 is continuous, so that then Ka WD .T H
˛ /�1. QKa/ is compact in

.C 0
˛ .Œ0; 1�; H/; k�k˛/.
Let �" D P ı .

p
"Z/�1 for a random variable Z on H with Z � N .0; Q/. By

Lemma 3.4, we can find a sequence of compact sets .Ka
n/n2N � H such that for all

" 2 .0; 1�,

�"..K
a
n/c/ � exp

��.n C 1/a

"

�

:

To guarantee that the diameter of Ka
n converges to zero, denoting by B.0; d/ the

closed ball of radius d around 0, we set

QKa WD
1Y

nD0

cn.˛/

 

B

 

0;

r
a.n C 1/

�

!

\ Ka
n

!

:

Since cn.˛/
p

a.n C 1/=� ! 0 as n ! 1, this is a compact set in CH
0 . Thus

Ka WD .T H
˛ /�1. QKa/ is compact in .C 0

˛ .Œ0; 1�; H/; k�k˛/.
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Remember that by Lemma 2.1 we have W D P1
nD0 �nZn, where .Zn/n�0 is an

i.i.d. sequence of N .0; Q/� variables. This implies T H
˛ .W / D .cn.˛/Zn/n�0 and

thus for any " 2 .0; 1�

	"..K
a/c/ DP

"

[n2N0

(

cn.˛/
p

"Zn 2
 

cn.˛/

 

B

 

0;

r
a.n C 1/

�

!

\ Ka
n

!!c)#

�
1X

nD0

 

�"..K
a
n/c/ C P

 

kZnk �
r

a.n C 1/

"�

!!

�
1X

nD0

�
e

�.nC1/a
" C ce

�a.nC1/
"

�

D .1 C c/
e

�a
"

1 � e
�a
"

:

So we have
lim sup

"!0

" log 	"..K
a/c/ � �a:

ut
We now combine the arguments given so far to obtain an LDP in the Hölder

spaces.

Lemma 3.6. .	"/"2.0;1� satisfies an LDP on .C 0
˛ .Œ0; 1�I H/; k:k˛/ with good rate

function I .

Proof. We know k:k0

˛ � k:k˛ . Therefore the k:k0

˛-topology is coarser, which in turn
implies that every compact set in the k:k˛-topology is also a compact set in the k:k0

˛-
topology. From Lemma 3.5 we thus obtain that .	"/"2.0;1� is also exponentially tight
on .C 0

˛ .Œ0; 1�I H/; k:k0
˛/.

Proposition 2.3 implies that .	"/"2.0;1� satisfies an LDP with good rate function
I on .C 0

˛ .Œ0; 1�I H/, k:k0
˛/.

Finally we obtain from Proposition 2.5 and from Lemma 3.5 that .	"/"2.0;1�

satisfies an LDP with good rate function I on .C 0
˛ .Œ0; 1�I H/; k:k˛/. ut

We may now extend the LDP from .C 0
˛ .Œ0; 1�I H/; k:k˛/ to .C˛.Œ0; 1�I H/; k:k˛/.

This is an immediate consequence of the contraction principle (Proposition 2.4),
since the inclusion map from C 0

˛ .Œ0; 1�I H/ to C˛.Œ0; 1�I H/ is continuous. Similarly
we can transfer the LDP from C 0

˛ .Œ0; 1�I H/ to C.Œ0; 1�I H/, the space of continuous
functions on Œ0; 1� with values in H , equipped with the uniform norm.

Theorem 3.1. Let .W.t/ W t 2 Œ0; 1�/ be a Q-Wiener process and for " 2 .0; 1�, let
	" be the law of

p
"W . Then .	"/"2.0;1� satisfies an LDP on .C.Œ0; 1�I H/; k:k1/

with rate function I .
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Proof. First we can transfer the LDP from .C 0
˛ .Œ0; 1�I H/; k:k˛/ to .C 0

˛ .Œ0; 1�I H/,
k:k1/. This is because on C 0

˛ .Œ0; 1�I H/, k:k1� k:k˛ , whence the k:k1-topology
is coarser. Therefore I is a good rate function for the k:k1-topology as well, and
.	"/"2.0;1� satisfies an LDP on .C 0

˛ .Œ0; 1�I H/, k:k1/ with good rate function I .
The inclusion map from .C 0

˛ .Œ0; 1�I H/, k:k1/ to .C.Œ0; 1�I H/, k:k1/ is contin-
uous, so that an application of the contraction principle (Proposition 2.4) finishes
the proof. ut
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Probab. Theory Relat. Fields 93, 457–484 (1992)
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Chapter 7
Stationary Distributions for Jump Processes
with Inert Drift

K. Burdzy, T. Kulczycki, and R.L. Schilling

Dedicated to David Nualart

Abstract We analyze jump processes Z with “inert drift” determined by a
“memory” process S . The state space of .Z; S/ is the Cartesian product of the unit
circle and the real line. We prove that the stationary distribution of .Z; S/ is the
product of the uniform probability measure and a Gaussian distribution.
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We are going to find stationary distributions for jump processes with inert drift. We
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results. Then we will discuss some technical aspects of the paper that may have
independent interest.

This paper is concerned with the following system of stochastic differential
equations (the precise statement is in the next section):

dYt D dXt CW.Yt/St dt; (7.1)

dSt D W 0.Yt / dt; (7.2)

where X is a stable Lévy process and W is a C4 function. This equation is
similar to equation [1, (4.1)], driven by Brownian motion, but in Eq. (7.1) the term
1
2
.ArV /.Xt / dt from the first line of [1, (4.1)] is missing. An explanation for this

can be found in heuristic calculations in [7, Example 3.7]. The paper [7] deals with
Markov processes with finite state spaces and (continuous-space) inert drifts. This
class of processes is relatively easy to analyze from the technical point of view.
It can be used to generate conjectures, for example, [7, Example 3.7] contains a
conjecture about the process defined by Eqs. (7.1) and (7.2). We want to point out
that the function W used in the present paper corresponds to W 0 in [7, Example
3.7]. This means that the assumptions made in the present article are weaker than
those in [7] and hence our result is stronger than that conjectured in [7].

The main result of this paper, that is, Theorem 2.2, is concerned with the
stationary distribution of a transformation of .Y; S/. In order to obtain non-trivial
results, we “wrap” Y on the unit circle, so that the state space for the transformed
process Y is compact. In other words, we consider .Zt ; St / D .eiYt ; St /. The
stationary distribution for .Zt ; St / is the product of the uniform distribution on the
circle and the normal distribution.

The product form of the stationary distribution for a two-component Markov
process is obvious if the two components are independent Markov processes. The
product form is far from obvious if the components are not independent, but it does
appear in a number of contexts, from queuing theory to mathematical physics. The
paper [7] was an attempt to understand this phenomenon for a class of models.

One expects to encounter a Gaussian distribution as (a part of) the stationary
distribution in some well-understood situations. First, Gaussian distributions arise
in the context of the central limit theorem (CLT) and continuous limits of CLT-
based models. Another class of examples of processes with Gaussian stationary
measures comes from mathematical physics. The Gibbs measure is given by
c1 exp.�c2Pi;j .xi � xj /

2/ in some models, such as the Gaussian free field; see
[17]. In such models, the Gaussian nature of the stationary measure arises because
the strength of the potential between two elements of the system is proportional to
their “distance” (as in Hooke’s law for springs) and, therefore, the potential energy
is proportional to the square of the distance between two elements. Our model
is different in that the square in the exponential function represents the “kinetic
energy” (square of the drift magnitude) and not potential energy of a force. The
unexpected appearance of the Gaussian distribution in some stationary measures
was noticed in [6] before it was explored more deeply in [1, 7].
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This paper has a companion [8] in which we analyze a related jump process with
“memory.” In that model, the memory process affects the rate of jumps but it does
not add a drift to the jump process. The stationary distribution for that model is also
the product of uniform probability measure and a Gaussian distribution.

An ongoing research project of one of the authors is concerned with Markov
processes with inert drift when the noise [represented by X in Eq. (7.1)] goes to 0.
In other words, one can regard the process .Y; S/ as a trajectory of a dynamical
system perturbed by a small noise. No matter how small the noise is, the second
component of the stationary measure will always be Gaussian. Although we do
not study small noise asymptotics in this paper, it is clear from our results that the
Gaussian character of the stationary distribution for the perturbed dynamical system
does not depend on the Gaussian character of the noise—it holds for the stable noise.

Models of Markov processes with inert drift can represent the motion of an inert
particle in a potential, with small noise perturbing the motion. Although such models
are related to the Langevin equation [13], they are different. There are several recent
papers devoted to similar models; see, e.g., [2–5].

We turn to the technical aspects of the paper. The biggest effort is directed at
determining a core of the generator of the process. This is done by showing that
the semigroup Tt of the process .Yt ; St / preserves C2

b ; see Theorem 3.1. The main
idea is based on an estimate of the smoothness of the stochastic flow of solutions
to Eqs. (7.1) and (7.2). This result, proved in greater generality than that needed
for our main results, is presented in Sect. 3; see Proposition 3.1. This proposition
actually makes an assertion on the pathwise smoothness of the flow. It seems that
Theorem 3.1 and Proposition 3.1 are of independent interest.

We are grateful to the referee for very helpful suggestions.

1.1 Notation

Since the paper uses a large amount of notation, we collect most frequently used
symbols in Table 7.1, for easy reference.

2 A Jump Process with a Smooth Drift

Let S D fz 2 C W jzj D 1g be the unit circle in C. Consider a C4 function
V W S ! R which is not identically constant and put W.x/ D V.eix/, x 2 R.
Let Xt be a symmetric ˛-stable Lévy process on R which has the jump density
A˛ jx � yj�1�˛ , ˛ 2 .0; 2/. Let .Y; S/ be a Markov process with the state space R2

satisfying the following SDE:

(
dYt D dXt CW.Yt/St dt;

dSt D W 0.Yt / dt:
(7.3)
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Table 7.1 Frequently used notation

a _ b, a^ b max.a; b/, min.a; b/
aC, a� max.a; 0/, � min.a; 0/

jxj`1
mX

jD1

jxj j where x D .x1; : : : ; xm/ 2 Rm

c generic constant (without sub- or superscript) which may
change its value from line to line

ek The kth unit base vector in the usual orthonormal basis for Rn

A˛ ˛�

�
1C ˛

2

�
2˛�1

p
� �

�
1� ˛

2

� , ˛ 2 .0; 2/

D˛
@j˛j

@x
˛1
1 � � � @x˛dd , ˛ D .˛1; : : : ; ˛d / 2 Nd

0

C k k-times continuously differentiable functions
Ck
b , Ck

c , Ck
0 Functions in Ck which, together with all their derivatives up

to order k, are “bounded,” are “compactly supported,” and
“vanish at infinity,” respectively

kf k1;B sup
x2B

jf .x/j for f W Rn ! R

kD.j/f k1;B

X

j˛jDj

kD˛f k1;B

kf k.j /;B , kf k.j /
X

j˛j�j

sup
x2B

jD˛f .x/j, resp.,
X

j˛j�j

kD˛f k1

kD.j/V k1;B , kD.j/V k1

X

j˛jDj

nX

kD1

sup
x2B

jD˛Vk.x/j, resp.,
X

j˛jDj

nX

kD1

jjD˛Vkjj1 for any

function V W Rn ! Rn

kV k.j /;B , kV k.j /
jX

iD0

kD.i/V k1;B , resp.,
jX

iD0

kD.i/V k1

S fz 2 C W jzj D 1g unit circle in C

Lemma 2.1. The SDE (7.3) has a unique strong solution which is a strong Markov
process with càdlàg paths.

Proof. For every n 2 N define the function fn W R ! R by fn.s/ WD .�n/_ s ^ n.
We consider for fixed n 2 N the following SDE:

(
dY .n/t D dXt CW.Y

.n/
t /fn.S

.n/
t / dt;

dS.n/t D W 0.Y .n/t / dt:
(7.4)

Note that R2 3 .y; s/ 7! W.y/fn.s/ is a Lipschitz function. By [14, Theorem V.7]
and [14, Theorems V.31, V.32] the SDE (7.4) has a unique strong solution which
has the strong Markov property and càdlàg paths for every fixed n 2 N.

Now fix t0 < 1 and a starting point R2 3 .y; s/ D .Y
.n/
0 ; S

.n/
0 /. Note that for

any t � t0 we have

ˇ
ˇ
ˇS

.n/
t

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇS

.n/
0 C

Z t

0

W 0.Y .n/s / ds

ˇ
ˇ
ˇ
ˇ � jsj C t0kW 0k1:
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Pick n > jsj C t0kW 0k1, n 2 N. For such n and any t � t0, the process defined
by .Yt ; St / WD .Y

.n/
t ; S

.n/
t / is a solution to Eq. (7.3) with starting point .y; s/. This

shows that for any fixed starting point .y; s/ D .Y0; S0/ and fixed t0 < 1 the
SDE (7.3) has a unique strong solution up to time t0. The solution is strong Markov
and has càdlàg paths. Since t0 < 1 and the starting point .y; s/ are arbitrary, the
lemma follows. ut

We will now introduce some notation. Let N be the positive integers and denote
by N0 D N [ f0g. For any f W S ! R we set

Qf .x/ WD f .eix/; x 2 R:

We say that f W S ! R is differentiable at z D eix , x 2 R, if and only if Qf is
differentiable at x and we put

f 0.z/ WD . Qf /0.x/; where z D eix; x 2 R:

Analogously, we say that f W S ! R is n times differentiable at z D eix , x 2 R, if
and only if Qf is n times differentiable at x and we write

f .n/.z/ D . Qf /.n/.x/; where z D eix; x 2 R:

In a similar way we define for f W S � R ! R

Qf .y; s/ D f .eiy ; s/; y; s 2 R: (7.5)

We say that D˛f .z; s/, z D eiy , y; s 2 R, ˛ 2 N2
0, exists if and only if D˛ Qf .y; s/

exists and we set

D˛f .z; s/ D D˛ Qf .y; s/; where z D eiy ; y; s 2 R:

When writing C2.S/, C2
c .S � R/, etc., we are referring to the derivatives defined

above.
Let

Zt D eiYt : (7.6)

Then .Z; S/ is “a symmetric ˛-stable process with inert drift wrapped on the unit
circle.” In general, a function of a (strong) Markov process is not any longer a
Markov process. We will show that the “wrapped” process .Zt ; St / D .eiYt ; St /
is a strong Markov process because the functionW.x/ D V.eix/ is periodic.

Lemma 2.2. Let .Yt ; St / be the solution of the SDE (7.3). Then

P.yC2�;s/.Yt 2 AC 2�; St 2 B/ D P.y;s/.Yt 2 A; St 2 B/

holds for all .y; s/ 2 R2 and all Borel sets A;B � R.
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Proof. Denote by .Y yt ; S
s
t / the unique solution of the SDE (7.3) with initial value

.Y
y
0 ; S

s
0/ D .y; s/. We assume without loss of generality thatX0 � 0. By definition,

the process .Y yC2�
t ; Sst / solves

8
ˆ̂
<

ˆ̂
:

OYt D y C 2� CXt C
Z t

0

W. OYr/ OSr dr;

OSt D s C
Z t

0

W 0. OYr/ dr:

Since the function W is periodic with period 2� , we have W. OYr/ D W. OYr � 2�/

andW 0. OYr/ D W 0. OYr � 2�/. Therefore, .Y yC2�
t ; Sst / solves the system

8
ˆ̂
<

ˆ̂
:

OYt D y C 2� CXt C
Z t

0

W. OYr � 2�/ OSr dr;

OSt D s C
Z t

0

W 0. OYr � 2�/ dr:

By subtracting 2� from both sides of the first equation we get

8
ˆ̂
<

ˆ̂
:

OYt � 2� D y CXt C
Z t

0

W. OYr � 2�/ OSr dr;

OSt D s C
Z t

0

W 0. OYr � 2�/ dr:

Since the solutions are unique, this shows that .Y yC2�
t ; St / D .Y

y
t C 2�; St / from

which the claim follows. ut
We can now use a rather general result on transformations of the state space due to
Dynkin [9, 10.25, Theorem 10.13]; see also Glover [11] and Sharpe [16, Sect. 13].

Corollary 2.1. Let � W R2 ! S � R, �.y; s/ WD .eiy ; s/ and .Yt ; St / be the unique,
càdlàg strong Markov solution of the SDE (7.3). Then .Zt ; St / D .eiYt ; St / is also
a strong Markov process. Let Pt..y; s/; A � B/ denote the transition function of
.Y; S/ and P S

t ..y; s/; A � B/ the transition function of .Z; S/. Then for y; s 2 R

and Borel sets A;B � R,

P S
t .�.y; s/; A � B/ D Pt..y; s/; �

�1.A � B//:

Proof. All we have to do is to verify Dynkin’s condition [9, 10.25.A] saying that

Pt..y; s/; �
�1.A � B// D Pt..y

0; s0/; ��1.A �B//

holds for all Borel sets A � S, B � R and all points .y; s/; .y0; s0/ 2 R2 such that
�.y; s/ D �.y0; s0/. Clearly, s D s0 and y � y0 D 2j� for some j 2 Z. Denote
f .y/ D eiy . Applying Lemma 2.2 repeatedly we find
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P.y;s/
�
.Yt ; St / 2 ��1.A � B/� D P.y;s/

�
Yt 2 f �1.A/; St 2 B�

D P.yC2�j;s/ �Yt 2 f �1.A/C 2�j; St 2 B�

D P.yC2�j;s/ �Yt 2 f �1.A/; St 2 B�

D P.yC2�j;s/ �.Yt ; St / 2 ��1.A � B/�: ut

We are going to calculate the generators of the processes Xt , .Yt ; St / and
.Zt ; St /.

By GX let us denote the generator of the semigroup, defined on the Banach space
.Cb.R/; k�k1/, of the processXt . By D.GX/ we denote the domain of GX . It is well
known that C2

b .R/ � D.GX/ and for f 2 C2
b .R/ we have GXf D �.��/˛=2f ,

where

�.��/˛=2f .x/ D A˛ lim
"!0C

Z

jy�xj>"
f .y/ � f .x/
jx � yj1C˛ dy; x 2 R:

If f 2 C2
b .R/ is periodic with period 2� then we have

�.��/˛=2f .x/ D A˛ lim
"!0C

Z

�>jy�xj>"
f .y/ � f .x/
jx � yj1C˛ dy

C A˛

X

n2Znf0g

Z

�>jy�xj
f .y/ � f .x/

jx � y C 2n�j1C˛ dy:
(7.7)

In the sequel we will need the following auxiliary notation:

Definition 2.1.

C�.R2/ WD ˚
f W R2 ! R W 9N > 0 supp.f / � R � Œ�N;N �;

f is bounded and uniformly continuous on R2
�
;

C 2�.R2/ WD C�.R2/\ C2
b .R

2/:

Let us define the transition semigroup fTtgt�0 of the process .Yt ; St / by

Ttf .y; s/ D E.y;s/ f .Yt ; St /; y; s 2 R; (7.8)

for functions f 2 Cb.R
2/. Let G.Y;S/ be the generator of fTtgt�0 and let D.G.Y;S//

be the domain of G.Y;S/.
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Lemma 2.3. We have C2�.R2/ � D.G.Y;S// and for f 2 C2�.R2/, and y; s 2 R

G.Y;S/f .y; s/ D �.��y/
˛=2f .y; s/CW.y/sfy.y; s/CW 0.y/fs.y; s/; (7.9)

Proof. Let f 2 C�.R2/. Throughout we assume that supp.f / � R � .�M0;M0/

for some M0 > 0. Note that for any starting point .Y0; S0/ D .y; s/ 2 R �
Œ�M0;M0� and all 0 � t � 1,

jSt j D
ˇ
ˇ
ˇ
ˇS0 C

Z t

0

W 0.Yr / dr

ˇ
ˇ
ˇ
ˇ � M0 C kW 0k1:

Put

M1 D M0 C kW 0k1:

Note that if .y; s/ … R � Œ�M1;M1� and .Y0; S0/ D .y; s/ then for any 0 � t � 1

we have

jSt j D
ˇ
ˇ
ˇ
ˇS0 C

Z t

0

W 0.Yr/ dr

ˇ
ˇ
ˇ
ˇ > M1 � kW 0k1 D M0;

and, therefore, f .Yt ; St / D 0. It follows that for any .y; s/ … R � Œ�M1;M1� and
0 < h � 1 we have

E.y;s/ f .Yh; Sh/� f .y; s/

h
D 0:

We may, therefore, assume that .y; s/ 2 R � Œ�M1;M1�. We will also assume
that 0 < h � 1.

As above we see that for any starting point .Y0; S0/ D .y; s/ 2 R � Œ�M1;M1�

and all 0 � t � 1 we have jSt j � M1 C kW 0k1. Set M2 WD M1 C kW 0k1. We
assume without loss of generality that X0 � 0. Then

Yt D y CXt C
Z t

0

W.Yr/Sr dr;

St D s C
Z t

0

W 0.Yr / dr:

It follows that

Thf .y; s/ � f .y; s/

h
D E.y;s/ f .Yh; Sh/ � f .y; s/

h

D 1

h
E.y;s/Œf .Yh; Sh/�f .Yh; s/�C 1

h
E.y;s/Œf .Yh; s/�f .y; s/�

D I C II:
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Using Taylor’s theorem we find

I D E.y;s/

2

4 1

h

@f

@s
.Yh; s/

Z h

0

W 0.Yr/ dr C 1

2h

@2f

@s2
.Yh; �/

 Z h

0

W 0.Yr/ dr

!2
3

5

D E.y;s/

"
1

h

@f

@s
.Yh; s/

Z h

0

W 0.y/ dr C 1

h

@f

@s
.Yh; s/

Z h

0

.W 0.Yr /�W 0.y// dr

C 1

2h

@2f

@s2
.Yh; �/

 Z h

0

W 0.Yr / dr

!2 #

;

where � is a point between s and Sh. Note that

E.y;s/

"ˇ
ˇ
ˇ
ˇ
ˇ

1

h

@f

@s
.Yh; s/

Z h

0

�
W 0.Yr /�W 0.y/

�
dr

ˇ
ˇ
ˇ
ˇ
ˇ

#

�E.y;s/

"
1

h

�
�
�
�
@f

@s

�
�
�
�1

Z h

0

��

kW 00k1
ˇ
ˇ
ˇ
ˇXr C

Z r

0

W.Yt/St dt

ˇ
ˇ
ˇ
ˇ

�

^ 2kW 0k1
	

dr

#

�
�
�
�
�
@f

@s

�
�
�
�1

E.y;s/

"(

kW 00k1

 

sup
0�r�h

jXr j C hkW k1M2

!)

^ 2kW 0k1

#

����!
h!0C

0;

uniformly for all .y; s/ 2 R � Œ�M1;M1�. The convergence follows from the right
continuity of Xt and our assumption that X0 D 0. We also have

E.y;s/

2

4

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

2h

@2f

@s2
.Yh; �/

 Z h

0

W 0.Yr/ dr

!2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

3

5 �
�
�
�
�
@2f

@s2

�
�
�
�1

h

2
kW 0k21 ����!

h!0C
0;

uniformly for all .y; s/ 2 R � Œ�M1;M1�. Because Yh is right continuous it is easy
to see that

E.y;s/

"
1

h

@f

@s
.Yh; s/

Z h

0

W 0.y/ dr

#

����!
h!0C

@f

@s
.y; s/W 0.y/;

uniformly for all .y; s/ 2 R � Œ�M1;M1�. It follows that

I ����!
h!0C

@f

@s
.y; s/W 0.y/;

uniformly for all .y; s/ 2 R � Œ�M1;M1�.
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Now let us consider II. We have

II D 1

h
E.y;s/Œf .y CXh; s/� f .y; s/�C 1

h
E.y;s/Œf .Yh; s/ � f .y CXh; s/�

D II1 C II2:

It is well known that
II1 ����!

h!0C
�.��y/

˛=2f .y; s/;

uniformly for all .y; s/. We also have

II2 D E.y;s/

2

4 1

h

@f

@y
.yCXh; s/

Z h

0

W.Yr/Sr drC 1

2h

@2f

@y2
.�; s/

 Z h

0

W.Yr/Sr dr

!2
3

5

D E.y;s/

"
1

h

@f

@y
.y CXh; s/

 Z h

0

W.y/s dr C
Z h

0

W.Yr/.Sr � s/ dr

C
Z h

0

.W.Yr/ �W.y//s dr

!

C 1

2h

@2f

@y2
.�; s/

 Z h

0

W.Yr/Sr dr

!2#

;

where � is a point between y C Xh and Yh. Using similar arguments as above we
obtain

II2 ����!
h!0C

@f

@y
.y; s/W.y/s;

uniformly for all .y; s/ 2 R � Œ�M1;M1�.
It follows that

Thf .y; s/�f .y; s/
h

����!
h!0C

�.��y/
˛=2f .y; s/CW.y/s @f

@y
.y; s/CW 0.y/

@f

@s
.y; s/;

uniformly for all .y; s/ 2 R � Œ�M1;M1�. This means that f 2 D.G.Y;S// and
Eq. (7.9) holds. ut
Remark 2.1. A weaker version of Lemma 2.3 can be proved as follows. If we
rewrite the SDE (7.3) in the form

d

�
Yt

St

�

D
�
1 W.Yt/St

0 W 0.Yt /

�

d

�
Xt

t

�

D ˆ.Yt ; St / d

�
Xt

t

�

and notice that .Xt ; t/> is a two-dimensional Lévy process with characteristic
exponent .�; �/ D j�j˛ C i� , we can use [15, Theorem 3.5, Remark 3.6] to deduce
thatC1

c .R
2/ � D.G.Y;S//. This argument uses the fact that the SDE has only jumps

in the direction of the ˛-stable process, while it is local in the other direction.
Theorem 3.1 of [15] now applies and shows that G.Y;S/ is a pseudo-differential
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operator GY;Su.x; s/ D .2�/�2
R
R2 p.x; sI �; �/Fu.�; �/ eix�Cis� d� d� , where F

denotes the Fourier transform, with symbol

p.x; sI �; �/ D  .ˆ.y; s/>.�; �/>/ D j�j˛ C i�W.x/s:

A Fourier inversion argument now shows that Eq. (7.9) holds for f 2 C1
c .R

2/ and
by a standard closure argument we deduce from this that Eq. (7.9) also holds for
f 2 C2

0 .R
2/.

We say that f 2 C0.S � R/ if and only if for every " > 0 there exists a compact
set K � S � R such that jf .u/j < " for u 2 Kc. Let us define the semigroup
fT S

t gt�0 of the process .Zt ; St / by

T S
t f .z; s/ D E.z;s/ f .Zt ; St /; z 2 S; s 2 R; (7.10)

for f belonging to C0.S�R/. Let z D eiy , y 2 R. For future reference, we note the
following consequences of Corollary 2.1:

T S
t f .z; s/ D E.z;s/ f .Zt ; St / D E.y;s/ f .eiYt ; St / D E.y;s/ Qf .Yt ; St /

D Tt Qf .y; s/; (7.11)

and

eT S
t f .y; s/ D Tt Qf .y; s/: (7.12)

By Arg.z/we denote the argument of z 2 C contained in .��; ��. For g 2 C2.S/

let us put

Lg.z/ D A˛ lim
"!0C

Z

S\fj Arg.w=z/j>"g
g.w/ � g.z/

j Arg.w=z/j1C˛ dw

C A˛

X

n2Znf0g

Z

S

g.w/ � g.z/

j Arg.w=z/C 2n�j1C˛ dw;
(7.13)

where A˛ is the constant appearing in Eq. (7.7) and dw denotes the arc length
measure on S; note that

R
S

dw D 2� .
Let G be the generator of the semigroup fT S

t gt�0 and let D.G/ be its domain.

Lemma 2.4. We have C2
c .S � R/ � D.G/, and for f 2 C2

c .S � R/,

Gf .z; s/ D Lzf .z; s/C V.z/sfz.z; s/C V 0.z/fs.z; s/; z 2 S; s 2 R:

Proof. Let f 2 C2
c .S � R/. Note that Qf 2 C2�.R2/. We obtain from Eq. (7.9), for

z D eiy , y; s 2 R,
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lim
t!0C

T S
t f .z; s/ � f .z; s/

t
D lim

t!0C

Tt Qf .y; s/ � Qf .y; s/
t

D �.��/˛=2 Qf .y; s/CW.y/s Qfy.y; s/CW 0.y/ Qfs.y; s/:
(7.14)

By Lemma 2.3 this limit exists uniformly in z and s, that is, f 2 D.G/.
We get from Eq. (7.7)

� .��y/
˛=2 Qf .y; s/ D Lzf .z; s/: (7.15)

Recall that we have W.y/ D V.eiy/, y 2 R. Using our definitions we get V 0.z/ D
W 0.y/ for z D eiy , y 2 R. Hence Eq. (7.14) equals

Lzf .z; s/C V.z/sfz.z; s/C V 0.z/fs.z; s/;

which gives the assertion of the lemma. ut
We will need the following auxiliary lemma.

Lemma 2.5. For any f 2 C2.S/ we have

Z

S

Lf .z/ dz D 0:

Proof. Recall that Arg.z/ denotes the argument of z 2 C belonging to .��; ��. First
we will show that

“

S�S

1fw W j Arg.w=z/j>"g.w/
f .w/ � f .z/

j Arg.w=z/j1C˛ dw dz D 0: (7.16)

We interchange the integration variables z and w, use Fubini’s theorem, and observe
that j Arg.z=w/j D j Arg.w=z/j,

“

S�S

1fw W j Arg.w=z/j>"g.w/
f .w/ � f .z/

j Arg.w=z/j1C˛ dw dz

D
“

S�S

1fz W j Arg.z=w/j>"g.z/
f .z/ � f .w/

j Arg.z=w/j1C˛ dz dw

D
“

S�S

1fz W j Arg.z=w/j>"g.z/
f .z/ � f .w/

j Arg.z=w/j1C˛ dw dz

D �
“

S�S

1fw W j Arg.w=z/j>"g.w/
f .w/ � f .z/

j Arg.w=z/j1C˛ dw dz;

which proves Eq. (7.16).
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By interchanging z and w we also get that

X

n2Znf0g

Z

S

Z

S

f .w/ � f .z/

j Arg.w=z/C 2n�j1C˛ dw dz

D
X

n2Znf0g

Z

S

Z

S

f .z/ � f .w/

j Arg.z=w/C 2n�j1C˛ dz dw:

(7.17)

Note that for Arg.w=z/ ¤ � we have j Arg.z=w/ C 2n�j D j Arg.w=z/ � 2n�j.
Hence the expression in Eq. (7.17) equals 0.

Set

L"f .z/ WD
Z

S\fj Arg.w=z/j>"g
f .w/ � f .z/

j Arg.w=z/j1C˛ dw:

What is left is to show that
Z

S

lim
"!0C

L"f .z/ dz D lim
"!0C

Z

S

L"f .z/ dz: (7.18)

By the Taylor expansion we have for f 2 C2.S/

f .w/ � f .z/ D Arg.w=z/f 0.z/C Arg2.w=z/r.w; z/; w; z 2 S;

where jr.w; z/j � c.f /. Hence,

jL"f .z/j D
ˇ
ˇ
ˇ
ˇ

Z

S\fj Arg.w=z/j>"g
r.w; z/Arg1�˛.w=z/ dw

ˇ
ˇ
ˇ
ˇ

� c.f /

Z

S

j Arg1�˛.w=z/j dw D c.f; ˛/:

Therefore, we get Eq. (7.18) by the bounded convergence theorem. ut
We will identify the stationary measure for .Zt ; St /.

Proposition 2.1. For z 2 S and s 2 R let

	1.z/ � 1

2�
; 	2.s/ D 1p

2�
e�s2=2; �.d z; ds/ D 	1.z/	2.s/ d zds:

Then for any f 2 C2
c .S � R/ we have

Z

S

Z

R

Gf .z; s/ �.dz; ds/ D 0:
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Proof. We have

Z

S

Z

R

Gf .z; s/ �.dz; ds/

D 1

2�

Z

S

Z

R

�
Lzf .z; s/C V.z/sfz.z; s/C V 0.z/fs.z; s/

�
	2.s/ ds dz:

Integrating by parts, we see that this is equal to

1

2�

Z

S

Z

R

Lzf .z; s/	2.s/ ds dz � 1

2�

Z

S

Z

R

V 0.z/sf .z; s/	2.s/ ds dz

� 1

2�

Z

S

Z

R

V 0.z/f .z; s/	2 0.s/ ds dz D I C II C III:

Since 	20.s/ D �s	2.s/ we find that II C III D 0, while I D 0 by Lemma 2.5. The
claim follows. ut
Proposition 2.2. For any t � 0 we have

T S
t W C2

c .S � R/ ! C2
c .S � R/:

The proof of this proposition is quite difficult. It is deferred to the next section in
which we prove this result in much greater generality for solutions of SDEs driven
by Lévy processes.

Theorem 2.1. Let

�.d z; ds/ D 1

.2�/3=2
e�s2=2 d zds; z 2 S; s 2 R: (7.19)

Then � is a stationary distribution of the process .Zt ; St /.

Proof. Let .Yt ; St / be a Markov process satisfying the SDE (7.3) and denote by
.Zt ; St / D .eiYt ; St /. Recall that fT S

t gt�0 is the semigroup on C0.S � R/ defined
by Eq. (7.10) and G is its generator. Let P.R � R/ and P.S � R/ denote the sets
of all probability measures on R � R and S � R, respectively. In this proof, for any
Q
 2 P.S � R/, we define 
 2 P.R � R/ by 
.Œ0; 2�/ � R/ D 1 and 
.A �B/ D
Q
.eiA �B/ for Borel sets A � Œ0; 2�/, B � R.

Consider any Q
 2 P.S � R/ and the corresponding 
 2 P.R � R/.
For this 
 there exists a Markov process .Yt ; St / given by Eq. (7.3) such that

.Y0; S0/ has the distribution 
. It follows that for any e
 2 P.S � R/ there
exists a Markov process .Zt ; St / given by Eq. (7.3) and Zt D eiYt such that
.Z0; S0/ has the distribution e
. By Proposition 4.1.7 [10], .Zt ; St / is a solution
of the martingale problem for .G;e
/. The Hille–Yosida theorem shows that the
assumptions of Theorem 4.4.1 [10] are satisfied if we take A D A0 D G. Thus
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Theorem 4.4.1 [10] implies that for any e
 2 P.S � R/, uniqueness holds for the
martingale problem for .G;e
/. Hence the martingale problem for G is well posed.

Note that C2
c .S � R/ is dense in C0.S � R/, that is, in the set on which the

semigroup fT S
t gt�0 is defined. It follows from Proposition 2.2 and Proposition 1.3.3

from [10] that C2
c .S � R/ is a core for G. Now using Proposition 2.1 and

Proposition 4.9.2 from [10] we get that � is a stationary measure for G. This means
that .Zt ; St / has a stationary distribution � . ut
Theorem 2.2. The measure � defined in Eq. (7.19) is the unique stationary
distribution of the process .Zt ; St /.

Proof. Step 1. Suppose that for some càdlàg processes X1 and X2, processes
.Y 1t ; S

1
t / and .Y 2t ; S

2
t / satisfy

Y 1t D y CX1
t C

Z t

0

W.Y 1r /S
1
r dr; (7.20)

S1t D s C
Z t

0

W 0.Y 1r / dr; (7.21)

Y 2t D y CX2
t C

Z t

0

W.Y 2r /S
2
r dr; (7.22)

S2t D s C
Z t

0

W 0.Y 2r / dr: (7.23)

Then

jS1t � S2t j �
Z t

0

jW 0.Y 1r / �W 0.Y 2r /j dr � kW 00k1
Z t

0

jY 1r � Y 2r j dr; (7.24)

and, therefore, for t � 1,

jY 1t � Y 2t j � jX1
t � X2

t j C
Z t

0

jW.Y 1r /S1r �W.Y 2r /S2r j dr

� jX1
t �X2

t j C
Z t

0

jW.Y 1r /.S1r � S2r /j dr C
Z t

0

j.W.Y 1r /�W.Y 2r //S
2
r j dr

� jX1
t �X2

t j C kW k1 sup
0�r�t

jS1r � S2r j t C kW 0k1 sup
0�r�t

jS2r j
Z t

0

jY 1r � Y 2r j dr

� jX1
t �X2

t j C kW k1 t kW 00k1
Z t

0

jY 1r � Y 2r j dr

C kW 0k1
�jsj C kW 0k1t

�
Z t

0

jY 1r � Y 2r j dr
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� jX1
t �X2

t j C .c1t C c2jsj/
Z t

0

jY 1r � Y 2r j dr

� jX1
t �X2

t j C .c1 C c2jsj/
Z t

0

jY 1r � Y 2r j dr:

By Gronwall’s inequality,

sup
0�r�t

jY 1r �Y 2r j � sup
0�r�t

jX1
r �X2

r jC
Z t

0

jX1
r �X2

r j.c1Cc2jsj/ exp
˚
.c1 C c2jsj/ t

�
dr

� sup
0�r�t

jX1
r �X2

r j�1C t.c1 C c2jsj/ exp
˚
.c1 C c2jsj/t

��
:

For t D 1, the inequality becomes

sup
0�r�1

jY 1r � Y 2r j � sup
0�r�1

jX1
r � X2

r j�1C .c1 C c2jsj/ exp
˚
.c1 C c2jsj/

��
: (7.25)

We substitute Eq. (7.21) into Eq. (7.20) and rearrange terms to obtain

X1
t D �y C Y 1t �

Z t

0

W.Y 1r /

�

s C
Z r

0

W 0.Y 1u / du

�

dr:

We substitute the (non-random) number y for Y 1t in the above formula to obtain

X1
t D �y C y �

Z t

0

W.y/

�

s C
Z r

0

W 0.y/ du

�

dr

D �W.y/.ts C t2W 0.y/=2/: (7.26)

From now on, X1 will denote the process defined in Eq. (7.26). It is easy to see that
X1
t is well defined for all t � 0. If we substitute this X1 into Eqs. (7.20) and (7.21)

then Yt � y.
It follows from [18, Theorem II, p. 9] that every continuous function is in the

support of the distribution of the symmetric ˛-stable Lévy process on R. We will
briefly outline how to derive the last claim from the much more general result in
[18, Theorem II, p. 9]. One should take a. � / � 0 and b. � ; z/ � z. Note that the
“skeleton” functions in [18, (5), p. 9] can have jumps at any times and of any sizes
so the closure of the collection of all such functions in the Skorokhod topology
contains the set of all continuous functions. Standard arguments then show that
every continuous function is in the support of the distribution of the stable process
also in the topology of uniform convergence on compact time intervals. We see that
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if X1 is the continuous function defined in Eq. (7.26) and X2
t is a stable process as

in Eq. (7.3) then for every " > 0 there exists ı > 0 such that

P

 

sup
0�r�1

jX1
r � X2

r j � "

!

� ı:

This and Eq. (7.25) show that for any y; s 2 R and " > 0 there exists ı > 0 such that

Py;s

 

sup
0�r�1

jX1
r � X2

r j � "; sup
0�r�1

jY 2r � yj � "

!

� ı:

Note that S can change by at most kW 0k1 on any interval of length 1. This, the
Markov property, and induction show that for any " > 0 there exist ık > 0, k � 1,
such that

Py;s

 

sup
k�r�kC1

jX1
r � X2

r j � 2�k"; sup
k�r�kC1

jY 2r � Y 2k j � 2�k"
!

� ık;

where X1 is defined in Eq. (7.26). This implies that for any � < 1, y; s 2 R and
" > 0 there exists ı0 > 0 such that

Py;s

 

sup
0�r��

jX1
r � X2

r j � 2"; sup
0�r��

jY 2r � yj � 2"

!

� ı0: (7.27)

Step 2. Recall that V is not identically constant. This and the fact that V 2 C4 easily
imply thatW 0 is strictly positive on some interval and it is strictly negative on some
other interval. We fix some a1; a2 2 .��; �/, b1 > 0, b2 < 0, and "0 2 .0; �=100/,
such that V 0.z/ > b1 for z 2 S, Arg.z/ 2 Œa1 � 4"0; a1 C 4"0�, and V 0.z/ < b2 for
z 2 S, Arg.z/ 2 Œa2 � 4"0; a2 C 4"0�.

Suppose that there exist two stationary probability distributions � and b� for
.Z; S/. Let ..Zt ; St //t�0 and ..bZt;bSt //t�0 be processes with .Z0; S0/ and .bZ0;bS0/
distributed according to � andb� , respectively. The transition probabilities for these
processes are the same as for the processes defined by Eqs. (7.3) and (7.6). Let X
denote the driving stable Lévy process for Z.

Let A be an open set such that W 0.y/ > c > 0 for all y 2 A. In view of the
relationship between V and W , we can assume that A is periodic, that is, y 2 A

if and only if y C 2� 2 A. It follows easily from Eq. (7.3) that there exist q1 > 0

and s1 < 1 such that for any .Y0; S0/, the process Y enters A at some random time
T1 � s1 with probability greater than q1. Since Y is right continuous, if YT1 2 A,
then Yt stays in A for all t in some interval .T1; T2/, with T2 � 2s1. Then Eq. (7.3)
implies that St ¤ 0 for some t 2 .T1; T2/. A repeated application of the Markov
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property at the times 2s1; 4s1; 6s1; : : : shows that the probability that St D 0 for
all t � 2ks1 is less than .1 � q1/

k . Letting k ! 1, we see that St ¤ 0 for some
t > 0, a.s.

Suppose without loss of generality that there exist "1 > 0, t2 > 0, and p1 > 0

such that P�.St2 > "1/ > p1. Let F1 D fSt2 > "1g and t3 D "1=.2kW 0k1/. It is
easy to see that for some p2 > 0,

P�
�9 t 2 Œt2; t2 C t3� W Arg.Zt / 2 Œa2 � "0; a2 C "0�

ˇ
ˇ F1

�
> p2:

This implies that there exist "1 > 0, t2 > 0, t4 2 Œt2; t2C t3�, and p3 > 0 such that

P�.St2 > "1;Arg.Zt4 / 2 Œa2 � 2"0; a2 C 2"0�/ > p3:

Note that jSt4 � St2 j � kW 0k1t3 < "1=2. Hence,

P�.St4 > "1=2;Arg.Zt4 / 2 Œa2 � 2"0; a2 C 2"0�/ > p3:

Let "2 2 ."1=2;1/ be such that

P�.St4 2 Œ"1=2; "2�;Arg.Zt4/ 2 Œa2 � 2"0; a2 C 2"0�/ > p3=2:

Let t5 D 2"2=jb2j and t6 D t4 C t5. By Eq. (7.27), for any "3 > 0 and some p4 > 0,

P�



sup
t4�r�t6

jX1
r � Xr j � "3; St4 2 Œ"1=2; "2�;

Arg.Zt / 2 Œa2 � 3"0; a2 C 3"0� for all t 2 Œt4; t6�
�
> p4;

where X1 is the function defined in Eq. (7.26). Observe that V 0.z/ < b2 < 0 for
Arg z 2 Œa2 � 3"0; a2 C 3"0�, if the event in the last formula holds, then

St6 D St4 C
Z t6

t4

V 0.Zs/ ds � "2 C b2t5 � �"2:

This implies that

P�



sup
t4�r�t6

jX1
r �Xr j � "3; St4 � "1=2; St6 � �"2

�
> p4: (7.28)

Step 3. By the Lévy–Itô representation we can write the stable Lévy process X in
the form Xt D Jt C eXt , where J is a compound Poisson process comprising all
jumps of X which are greater than "0 and eX D X � J is an independent Lévy
process (accounting for all small jumps of X ). Denote � D �.˛; "0/ the rate of the
compound Poisson process J .
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Let .eY ;eS/ be the solution to Eq. (7.3), with Xt replaced by eXt for t � t4. Take
"3 < "0=2. Then supt4�r�t6 jX1

r � eXr j � "3 entails that supt4�r�t6 jJt4 � Jr j D 0.
Thus, Eq. (7.28) becomes

P�



sup
t4�r�t6

jX1
r � eXr j � "3; eSt4 � "1

2
; eSt6 � �"2

�

� P�



sup
t4�r�t6

jX1
r � eXr j � "3; sup

t4�r�t6
jJt4 � Jr j D 0; eSt4 � "1

2
; eSt6 � �"2

�

> p4 > 0:

Let � be the time of the first jump of J in the interval Œt4; t6�; we set � D t6 if
there is no such jump. We can represent f.Yt ; St /; 0 � t � �g in the following way:
.Yt ; St / D .eY t ;eSt / for 0 � t < � , S� D eS� , and Y� D eY � C J� � J��.

We say that a non-negative measure
1 is a component of a non-negative measure

2 if 
2 D 
1 C
3 for some non-negative measure 
3. Let 
.d z; ds/ D P�.Z� 2
d z; S� 2 ds/. We will argue that
.d z; ds/ has a component with a density bounded
below by c2 > 0 on S� .�"2; "1=2/. We find for every Borel set A � S of arc length
jAj and every interval .s1; s2/ � .�"2; "1=2/


.A � .s1; s2//
D P� .Z� 2 A; S� 2 .s1; s2//

� P�


Z� 2 A; S� 2 .s1; s2/; sup

t4�r�t6
jX1

r � eXr j � "3; eSt4 � "1
2
; eSt6 � �"2

�

� P�



ei.J��J��/ 2 e�ieX��A; eS� 2 .s1; s2/;

sup
t4�r�t6

jX1
r � eXr j � "3;eSt4 � "1=2; eSt6 � �"2; N J D 1

�
:

HereNJ counts the number of jumps of the process J occurring during the interval
Œt4; t6�. Without loss of generality we can assume that "0 < 2� . In this case the
density of the jump measure of J is bounded below by c3 > 0 on .2�; 4�/. Observe
that the processes .eX;eS/ and J are independent. Conditional on fNJ D 1g, �
is uniformly distributed on Œt4; t6�, and the probability of the event fNJ D 1g is
�.t6 � t4/e��.t6�t4/. Thus,


.A � .s1; s2//
� c3jAjP�



eS� 2 .s1; s2/

ˇ
ˇ
ˇ sup
t4�r�t6

jX1
r � eXr j � "3;eSt4 � "1=2;eSt6 � �"2;N JD1

�

� p4 � �.t6 � t4/e
��.t6�t4/:
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Since the process eS spends at least .s2 � s1/=kW 0k1 units of time in .s1; s2/ we
finally arrive at


.A; .s1; s2// � p4�e��.t6�t4/c3jAj.s2 � s1/=kW 0k1:

This proves that 
.d z; ds/ has a component with a density bounded below by the
constant c2 D p4�e��.t6�t4/c3=kW 0k1 on S � .�"2; "1=2/.
Step 4. Let "4 D "1=2 ^ "2 > 0. We have shown that for some stopping time � ,
P�.Z� 2 d z; S� 2 ds/ has a component with a density bounded below by c2 > 0

on S � .�"4; "4/. We can prove in an analogous way that for some stopping timeb�

andb"4 > 0, Pb�.bZb� 2 d z;bSb� 2 ds/ has a component with a density bounded below
bybc2 > 0 on S � .�b"4;b"4/.

Since � ¤ b� , there is a Borel set A � S�R such that �.A/ ¤ b�.A/. Moreover,
since any two stationary probability measures are either mutually singular or
identical (cf. [19, Chap. 2, Theorem 4]), we have �.A/ > 0 and b�.A/ D 0 for
some A. By the strong Markov property applied at � and the ergodic theorem (see
[19, Chap. 1, p. 12]), we have P� -a.s.

lim
t!1.1=t/

Z t

�

1f.Zs;Ss/2Ag ds D �.A/ > 0:

Similarly, we see that Pb� -a.s.

lim
t!1.1=t/

Z t

b�
1f.bZs;bSs/2Ag ds D b�.A/ D 0:

Since the distributions of .Z� ; S� / and .bZb� ;
bSb� / have mutually absolutely continu-

ous components, the last two statements contradict each other. This shows that we
must have � D b� . ut
Remark 2.2. It is not hard to show that Theorem 2.1 holds even if we take
˛ D 2 in Eq. (7.3), that is, if Xt is Brownian motion. It seems that for ˛ D 2

uniqueness of the stationary distribution can be proved using techniques employed
in Proposition 4.8 in [1]. A close inspection of the proofs in this section reveals that
our results remain also valid if Xt is a symmetric Lévy process with jump measure
having full support.

3 Smoothness of Ttf

In this section, we will show that if f 2 C2
b then Ttf 2 C2

b where fTtgt�0 is
the semigroup of a process defined by a stochastic differential equation driven by
a Lévy process. We use this result to show Proposition 2.2, but it may well be
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of independent interest. We found some related results in the literature, but none
of them was sufficiently strong for our purposes. The key element of the proof is
explicit bounds for derivatives of the flow of solutions to the SDE. This is done in
Proposition 3.1. We provide a direct and elementary proof of this proposition. Note
that our bounds are non-random and do not depend on the sample path. This is a new
feature in this type of analysis since usually (see, e.g., Kunita [12]), the constants
are random since they are derived with the Kolmogorov–Chentsov–Totoki lemma
or a Borel–Cantelli argument. Let us, however, point out that there is an alternative
way of proving Proposition 3.1. It is possible to use [14, Theorems V.39, V.40] and
[14, formula (D), p. 305] to obtain bounds for derivatives of the flow. Since this
alternative approach demands similar arguments and is not shorter than our proof of
Proposition 3.1, we decided to prove Proposition 3.1 directly.

Consider the following system of stochastic differential equations in Rn:
8
ˆ̂
<

ˆ̂
:

dY1.t/ D dX1.t/C V1.Y.t// dt;
:::

dYn.t/ D dXn.t/C Vn.Y.t// dt;

(7.29)

where Y.t/ D .Y1.t/; : : : ; Yn.t// 2 Rn, X.t/ D .X1.t/; : : : ; Xn.t// 2 Rn. We
assume that X.0/ D 0, X1; : : : ; Xn are Lévy processes on R and Vi W Rn ! R are
locally Lipschitz. We allowX1; : : : ; Xn to be degenerate, that is, some or allXi may
be identically equal to 0.

By [14, Theorem V.38] it follows that if Y.0/ D x then there exists a stopping
time �.x; !/ W Rn�
 ! Œ0;1� and there exists a unique solution of Eq. (7.29) with
Y.0/ D x with lim supt!�.x;�/ jY.t/j D 1 a.s. on � < 1; � is called the explosion
time. In order to apply [14, Theorem V.38] we take in the equations marked .˝/
in [14, p. 302] m D n C 1, Xi

t D Yi.t/, xi D Yi .0/, Z˛
t D X˛.t/ for ˛ 2

f1; : : : ; ng, ZnC1
t D t , and f i

˛ D ı˛i for ˛; i 2 f1; : : : ; ng and f i
nC1.x/ D Vi .x/ for

i 2 f1; : : : ; ng.
By Y x.t/ we denote the process with starting point Y x.0/ D x. In the rest of this

section, we will assume that Eq. (7.29) holds not only a.s. but for all ! 2 
. More
precisely, we can and will assume that the solution to Eq. (7.29) is constructed on a
probability space 
 such that X.0/ D 0 and

Y x.t/ D x CX.t/C
Z t

0

V.Y.s// ds;

for all t � 0 and all ! 2 
.
Set

kxk D maxfjx1j; : : : ; jxnjg; x D .x1; : : : ; xn/;

and

B�.x; r/ D fy 2 Rn W ky � xk < rg; x 2 Rn; r > 0:

For f W Rn ! R and A � Rn we write D.1/f D rf ,
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kf k1;A D sup
x2A

jf .x/j; kD.j /f k1;A D
X

j˛jDj
sup
x2A

jD˛f .x/j;

kf k.j /;A D kf k1;A C kD.1/f k1;A C : : :C kD.j /f k1;A:

When A D Rn we dropA from this notation. For V D .V1; : : : ;Vn/ from Eq. (7.29)
and A � Rn we put

kVk1;A D
nX

iD1
kVik1;A; kD.j /Vk1;A D

nX

iD1
kD.j /Vik1;A;

kVk.j /;A D kVk1;A C kD.1/Vk1;A C : : :C kD.j /Vk1;A:

For f W Rn ! R, x 2 Rn and 0 � t < 1 we define the operator Tt by

Ttf .x/ D E
�
f .Y x.t//I t < �.x/
: (7.30)

Before formulating the results for the process Y.t/ let us go back for a moment
to the original problem (7.3), that is,

(
dYt D dXt CW.Yt/St dt;

dSt D W 0.Yt / dt:

This SDE is of type Eq. (7.29) because we can rewrite it as

(
dY1.t/ D dX1.t/C V1.Y.t// dt;

dY2.t/ D dX2.t/C V2.Y.t// dt;
(7.31)

where X1.t/ D Xt is a symmetric ˛-stable Lévy process on R, with index
˛ 2 .0; 2/, X2.t/ � 0, V1.y1; y2/ D W.y1/y2, V2.y1; y2/ D W 0.y1/. By
Lemma 2.1 there exists a unique solution to this SDE and the explosion time for
this process is infinite a.s. We want to show that Ttf 2 C2

b whenever f 2 C2
b . Our

proof of Theorem 3.1 requires that Vi and its derivatives up to order 3 are bounded.
However, V1.y1; y2/ D W.y1/y2 is not bounded on R2. We will circumvent this
difficulty by proving in Proposition 3.2 that Ttf 2 C2�.R2/ whenever f 2 C2�.R2/,
where C2�.R2/ is given by Definition 2.1.

Let us briefly discuss the reasons that made us choose this particular set of
functions, C2�.R2/. This discussion gives also an explanation for the specific
assumptions in the main result of this section, Theorem 3.1.

Assume that f 2 C2.R2/ and suppf � K0 D R � Œ�r; r�, r > 0. Fix t0 < 1.
If jsj D jS0j > r C t0kW 0k1 then for t � t0,

ˇ
ˇ
ˇS

.y;s/
t

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇs C

Z t

0

W 0.Y .y;s/u / du

ˇ
ˇ
ˇ
ˇ > r
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and, therefore,

Ttf .y; s/ D Ef
�
Y
.y;s/
t ; S

.y;s/
t

� D 0:

It follows that if t � t0 then

supp.Ttf / � K D R � � � r � t0kW 0k1; r C t0kW 0k1


: (7.32)

For technical reasons, we enlargeK as follows:

K3 D R � � � r � t0kW 0k1 � 3; r C t0kW 0k1 C 3
�
:

In view of Eq. (7.32), we have to consider only starting points .y; s/ 2 K in order
to prove that Ttf 2 C2�.R2/. Note that for the starting point .y; s/ 2 K3 and t � t0
we have

ˇ
ˇ
ˇS

.y;s/
t

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇs C

Z t

0

W 0.Y .y;s/u / du

ˇ
ˇ
ˇ
ˇ � r C 2t0kW 0k1 C 3:

Thus, for all starting points .y; s/ 2 K3 and t � t0,

�
Y
.y;s/
t ; S

.y;s/
t

� 2 M WD R � �� r � 2t0kW 0k1 � 3; r C 2t0kW 0k1 C 3


: (7.33)

But the function V1.y1; y2/ D W.y1/y2 is bounded on M . Using our assumptions
onW , namely, periodicity ofW andW 2 C4, we obtain also that the derivatives of
V1.y1; y2/ D W.y1/y2 up to order 3 are bounded on M .

Now we return to the general process Y.t/. Let us formulate the main result for
this process.

Theorem 3.1. Let f W Rn ! R be a function in C2
b . Fix 0 < t0 < 1. Let Y x.t/

be a solution of Eq. (7.29). Assume that the explosion time �.x; !/ � 1 for all
x 2 Rn and all ! 2 
. Let Ttf be defined by Eq. (7.30). Assume that K � Rn, for
every t � t0 supp.Ttf / � K , and that there exists a convex set M � Rn such that
Y x.t; !/ 2 M for all x 2 K3 WD S

x2K B�.x; 3/, t � t0, and ! 2 
. Assume that
kVk1;M < 1 and kD.j /Vk1;M < 1 for j D 1; 2; 3. Then we have

Ttf 2 C2
b for all t � t0:

Remark 3.1. When kVk.3/ < 1 (i.e., when the assumptions of Theorem 3.1 hold
with K D M D Rn) then the above theorem implies that we have for any f 2 C2

b

Ttf 2 C2
b for all t > 0:

The first step in proving Theorem 3.1 will be the following proposition.

Proposition 3.1. Fix 0 < t0 < 1. Let Y x.t/ be a solution of Eq. (7.29). Assume
that the explosion time �.x; !/ � 1 for all x 2 Rn and all ! 2 
. Let K � Rn.
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Assume that there exists a convex set M � Rn such that Y x.t; !/ 2 M for all
x 2 K3 WD S

x2K B�.x; 3/, t � t0, and ! 2 
. Assume that kVk.3/;M < 1. Put

� WD 1

2 kD.1/Vk1;M

^ t0;

1

0
WD 1

�
: (7.34)

For every ! 2 
 we have the following:

(i) For all 0 < t � � , x 2 K2 D S
x2K B�.x; 2/, h 2 Rn, khk < 1,

kY xCh.t; !/ � Y x.t; !/k � 2khk: (7.35)

(ii) Recall that ei is the i th unit vector in the usual orthonormal basis for Rn. For
all 0 < t � � , x 2 K2, i 2 f1; : : : ; ng,

DiY
x.t; !/ WD lim

u!0

Y xCuei .t; !/� Y x.t; !/

u

exists and

kDiY
x.t; !/k � 2: (7.36)

We will write DiY
x.t; !/ D .DiY

x
1 .t; !/; : : : ;DiY

x
n .t; !//.

(iii) For all 0 < t � � , x 2 K1 D S
x2K B�.x; 1/, h 2 Rn, khk < 1, and any

i 2 f1; : : : ; ng,

kDiY
xCh.t; !/�DiY

x.t; !/k � 8 kD.2/Vk1;M � khk: (7.37)

(iv) For all 0 < t � � , x 2 K1, i; k 2 f1; : : : ; ng,

DikY
x.t; !/ WD lim

u!0

DiY
xCuek .t; !/ �DiY

x.t; !/

u

exists and

kDikY
x.t; !/k � 8 kD.2/Vk1;M �: (7.38)

We will write DikY
x.t; !/ D .DikY

x
1 .t; !/; : : : ;DikY

x
n .t; !//.

(v) For all 0 < t � � , x 2 K , h 2 Rn, khk < 1, i; k 2 f1; : : : ; ng,

kDikY
xCh.t; !/ �DikY

x.t; !/k
� 96 kD.2/Vk21;M �

2 khk C 16 kD.3/Vk1;M � khk:

Remark 3.2. The existence of DiY
x.t/ and DikY

x.t/ follows from [14, Theorem
V.40]. What is new here are the explicit bounds for DiY

x.t/ and DikY
x.t/ which
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are needed in the proof of Theorem 3.1; see Lemma 3.1. The proof of Proposition 3.1
is self-contained. We do not use [14, Theorem V.40].

Proof of Proposition 3.1. The proof has a structure that might be amenable to
presentation as a case of mathematical induction. After careful consideration we
came to the conclusion that setting up an inductive argument would not shorten the
proof.

Recall that we assume that Eq. (7.29) holds for all ! 2 
, not only a.s.
Throughout this proof we fix one path ! 2 
.

(i) Let x 2 K2, h 2 Rn, khk < 1, and 0 < t � � . Recall that X.0/ D 0. For any
1 � j � n we have

Y xCh
j .t/ � Y xj .t/ D hj C

Z t

0

�Vj .Y xCh.s//� Vj .Y x.s//



ds: (7.39)

Let

c1 WD c1.x; h/ WD sup
0<t��

kY xCh.t/ � Y x.t/k:

Note that for 0 < t � � we have Y x.t/ 2 M and Y xCh.t/ 2 M . By Eq. (7.39)
and kVk1;M < 1 we get that c1 is finite. Moreover,

kY xCh
j .t/ � Y xj .t/k � khk C

Z t

0

kD.1/Vj k1;M kY xCh.s/ � Y x.s/k ds

� khk C � kD.1/Vjk1;M c1:

Hence,

c1 � khk C � kD.1/Vk1;M c1;

which, when combined with Eq. (7.34), gives

sup
0<t��

kY xCh.t/ � Y x.t/k D c1 � khk
1 � � kD.1/Vk1;M

� 2khk:

(ii) Denote

R
x;h
j .t/ D Y xCh

j .t/ � Y xj .t/
and Rx;h.t/ D .R

x;h
1 .t/; : : : ; Rx;hn .t//. Using the Taylor expansion we get

from Eq. (7.39),

R
x;h
j .t/ D hj C

Z t

0

D.1/Vj .Y x.s// �Rx;h.s/ ds CO.khk2/: (7.40)

For i 2 f1; : : : ; ng and h D uei , let
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c2 D c2.x; i/ D max
1�j�n sup

0<t��

 

lim sup
u!0

Rx;hj .t/

u
� lim inf

u!0

Rx;hj .t/

u

!

:

Note that c2 is finite because for u 2 .�1; 1/ we have jRx;hj .t/j � 2u,
by Eq. (7.35). Consider 0 < t � � , x 2 K2, i; j 2 f1; : : : ; ng. From Eq. (7.40)
we obtain for u; u0 2 .�1; 1/ n f0g, h D uei , and h0 D u0ei ,

Rx;hj .t/

u
� Rx;h

0

j .t/

u0 D
Z t

0

nX

kD1
DkVj .Y x.s//

 
R
x;h
k .s/

u
� R

x;h0

k .s/

u0

!

ds

CO.u/CO.u0/:

Letting u; u0 ! 0 leads to

lim sup
u!0

R
x;h
j .t/

u
� lim inf

u0!0

R
x;h0

j .t/

u0 � � kD.1/Vk1;M � c2;

and since 0 < t � � and j 2 f1; : : : ; ng are arbitrary, we get

c2 � � kD.1/Vk1;M � c2:

So c2 D 0 which means that DiY
x.t/ exists. Estimate (7.36) is now an easy

consequence of Eq. (7.35).
(iii) From Eq. (7.40) and the bounded convergence theorem, we obtain

DiY
x
j .t/ D ıij C

Z t

0

D.1/Vj .Y x.s// �DiY
x.s/ ds: (7.41)

Let x 2 K1, h 2 Rn, khk < 1, and i 2 f1; : : : ; ng. Set

c3 WD c3.x; h; i/ WD sup
0<t��

kDiY
xCh.t/ �DiY

x.t/k:

Because of Eq. (7.36), c3 is finite. For any 0 < t � � we have

DiY
xCh
j .t/ �DiY

x
j .t/

D
Z t

0

�
D.1/Vj .Y xCh.s// �DiY

xCh.s/ �D.1/Vj .Y x.s// �DiY
x.s/



ds

D
Z t

0


 �
D.1/Vj .Y xCh.s//�D.1/Vj .Y x.s//


 �DiY
xCh.s/

CD.1/Vj .Y x.s// � �DiY
xCh.s/�DiY

x.s/

 �

ds; (7.42)
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so

ˇ
ˇ
ˇDiY

xCh
j .t/ �DiY xj .t/

ˇ
ˇ
ˇ�
Z t

0

"
nX

kD1
jDkVj .Y xCh.s//�DkVj .Y x.s//j jDiY xCh

k
.s/j

C
nX

kD1
jDkVj .Y x.s//j jDiY xCh

k
.s/�DiY xk .s/j

#

ds:

In view of Eqs. (7.35) and (7.36), we have for 0 < s � � ,

nX

kD1
jDkVj .Y xCh.s//�DkVj .Y x.s//j � kD.2/Vk1;M kY xCh.s/ � Y x.s/k

� 2 kD.2/Vk1;M khk;

kDiY
xCh.s/k � 2;

nX

kD1
jDkVj .Y x.s//j � kD.1/Vk1;M :

It follows that

jDiY
xCh
j .t/ �DiY

x
j .t/j � 4 kD.2/Vk1;M � khk C � kD.1/Vk1;M � c3;

so,

c3 � 4 kD.2/Vk1;M � khk C � kD.1/Vk1;M � c3:
By definition, � � 1=.2kD.1/Vk1;M /, so

c3 � 4 kD.2/Vk1;M � khk C c3=2:

This gives

sup
0<t��

kDiY
xCh.t/ �DiY

x.t/k D c3 � 8 kD.2/Vk1;M � khk:

(iv) Set

Qx;h
i;j .t/ WD DiY

xCh
j .t/ �DiY

x
j .t/

and Qx;h
i .t/ D .Q

x;h
i;1 .t/; : : : ;Q

x;h
i;n .t//. Using the Taylor expansion we get

from Eq. (7.42),

Qx;h
i;j .t/ D

Z t

0

nX

lD1
DiY

xCh
l .s/

nX

mD1
DlmVj .Y x.s//Rx;hm .s/ ds CO.khk2/

C
Z t

0

D.1/Vj .Y x.s// �Qx;h
i .s/ ds
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D
Z t

0

nX

lD1
DiY

xCh
l .s/D.1/DlVj .Y x.s// �Rx;h.s/ ds CO.khk2/

C
Z t

0

D.1/Vj .Y x.s// �Qx;h
i .s/ ds: (7.43)

Consider k 2 f1; : : : ; ng and let h D uek. Define

c4 WD c4.x; i; k/ WD max
1�j�n sup

0<t��

 

lim sup
u!0

Q
x;h
i;j .t/

u
� lim inf

u!0

Q
x;h
i;j .t/

u

!

:

Note that c4 is finite because we have jQx;h
i;j .t/j � 8 kD.2/Vk1;M � u for

u 2 .�1; 1/, by Eq. (7.37). For u; u0 2 .�1; 1/ n f0g, h D uek , and
h0 D u0ek , Eq. (7.43) implies that

Qx;h
i;j .t/

u
� Qx;h0

i;j .t/

u0

D
Z t

0

nX

lD1
DiY

xCh
l .s/D.1/DlVj .Y x.s// � R

x;h.s/

u
ds CO.u/

�
Z t

0

nX

lD1
DiY

xCh0

l .s/D.1/DlVj .Y x.s// � R
x;h0

.s/

u0 ds CO.u0/

C
Z t

0

D.1/Vj .Y x.s//
 
Q
x;h
i .s/

u
� Q

x;h0

i .s/

u0

!

ds:

The first two integrals cancel in the limit as u; u0 ! 0. To see that we can
pass to the limit, we use the bounded convergence theorem. This theorem is
applicable because Eq. (7.35) provides a bound for u�1 Rx;h.s/, Eq. (7.36)
provides a bound for DiY

xCh
l .s/, and we also have kD.2/Vk1;M < 1, by

assumption. Letting u; u0 ! 0 we get

lim sup
u!0

Q
x;h
i;j .t/

u
� lim inf

u0!0

Q
x;h0

i;j .t/

u0 � � kD.1/Vk1;M � c4:

Since 0 < t � � and j 2 f1; : : : ; ng are arbitrary we see that

c4 � � kD.1/Vk1;M � c4;
so c4 D 0; this proves that DikY

x.t/ exists. The estimate (7.38) follows now
from Eq. (7.37).

(v) By Eq. (7.43) we get for h D uek
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DikY
x
j .t/ D lim

u!0

Qx;h
i;j .t/

khk D
Z t

0

nX

lD1
DiY

x
l .s/D

.1/DlVj .Y x.s// �DkY
x.s/ ds

C
Z t

0

D.1/Vj .Y x.s//DikY
x.s/ ds:

Let x 2 K , h 2 Rn, khk < 1, and i; k 2 f1; : : : ; ng. Put

c5 WD c5.x; h; i; k/ WD sup
0<t��

kDikY
xCh.t/ �DikY

x.t/k:

Because of Eq. (7.38), c5 is finite. For any 0 < t � � and j 2 f1; : : : ; ng
we have

DikY
xCh
j .t/ �DikY

x
j .t/

D
Z t

0

nX

lD1

nX

mD1

h
DiY

xCh
l .s/DlmVj .Y xCh.s//DkY

xCh
m .s/

�DiY
x
l .s/DlmVj .Y x.s//DkY

x
m.s/

i
ds

C
Z t

0

nX

lD1

h
DlVj .Y xCh.s//DikY

xCh
l .s/ �DlVj .Y x.s//DikY

x
l .s/

i
ds

D I C II:

We obtain from Eqs. (7.36)–(7.38)

jIj �
Z t

0

nX

lD1

nX

mD1

h ˇ
ˇ
ˇDlmVj .Y xCh.s//DiY

xCh
l .s/

�
DkY

xCh
m .s/ �DkY

x
m.s/


ˇˇ
ˇ

C
ˇ
ˇ
ˇDlmVj .Y xCh.s//DkY

x
m.s/

h
DiY

xCh
l .s/ �DiY

x
l .s/

iˇ
ˇ
ˇ

C ˇ
ˇDiY

x
l .s/DkY

x
m.s/

�
DlmVj .Y xCh.s//�DlmVj .Y x.s//


ˇ
ˇ
i
ds

� �
h
kD.2/Vk21;M 32 � khk C 8 kD.3/Vk1;M khk

i

as well as

jIIj �
Z t

0

nX

lD1

h ˇ
ˇ
ˇDlVj .Y xCh.s//

h
DikY

xCh
l .s/�DikY

x
l .s/

iˇ
ˇ
ˇ

C ˇ
ˇDikY

x
l .s/

�
DlVj .Y xCh.s//�DlVj .Y x.s//


ˇ
ˇ
i
ds

� �
h
kD.1/Vk1;M � c5 C 16 kD.2/Vk21;M � khk

i
:
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Combining these two estimates we find for all 0 < t � � and 1 � j � n,

jDikY
xCh
j .t/ �DikY

x
j .t/j

� 48 kD.2/Vk21;M �
2khk C 8 kD.3/Vk1;M � khk C � kD.1/Vk1;M � c5:

Hence,

c5 � 48 kD.2/Vk21;M �
2 khk C 8 kD.3/Vk1;M � khk C � kD.1/Vk1;M � c5;

so, recalling Eq. (7.34),

c5 � 96 kD.2/Vk21;M �
2 khk C 16 kD.3/Vk1;M � khk;

which finishes the proof. ut
The next step in proving Theorem 3.1 is the following lemma.

Lemma 3.1. Let g W Rn ! R be a function in C2
b . Fix 0 < t1 < 1 and let Y x.t/

be the solution of Eq. (7.29). Assume that the explosion time �.x; !/ � 1 for all
x 2 Rn and all ! 2 
. Let Ttg be defined by Eq. (7.30). Assume that K � Rn,
for every t � t1 suppTtg � K , and there exists a convex set M � Rn such that
Y x.t; !/ 2 M for all x 2 K3 WD S

x2K B�.x; 3/, t � t1, and ! 2 
. Assume that
kVk.3/;M < 1 and let

Q� D 1

2 kD.1/Vk1;M

^ t1

1

0
WD 1

�
:

Then we have

(i) For all 0 < t � Q� , x 2 K , and i 2 f1; : : : ; ng, the derivative DiTtg.x/ exists
and

DiTtg.x/ D E
�
D.1/g.Y x.t//DiY

x.t/
�
: (7.44)

(ii) For all 0 < t � Q� , x 2 K and i; k 2 f1; : : : ; ng, the derivative DikTtg.x/

exists and

DikTtg.x/ D E

 

D.1/g.Y x.t// � DikY
x.t/

C
nX

jD1
DiY

x
j .t/D

.1/.Dj g/.Y
x.t// � DkY

x.t/

!

: (7.45)

(iii) For all 0 < t � Q� and i; k 2 f1; : : : ; ng, the derivative DikTtg.x/ is
continuous for x 2 K .

Proof. (i) Let 0 < t � Q� , x 2 K , fix i 2 f1; : : : ; ng and let h D uei . By Taylor’s
theorem and Eq. (7.35), we get
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DiTtg.x/ D lim
u!0

Ttg.x C h/ � Ttg.x/

u

D lim
u!0

E

 
g.Y xCh.t//� g.Y x.t//

u

!

D lim
u!0

E

 
D.1/g.Y x.t// � .Y xCh.t/ � Y x.t//

u

!

C lim
u!0

E

 P
1�l;m�n Dlmg.�/.Y xCh

l
.t/ � Y x

l
.t//.Y xCh

m .t/ � Y xm.t//

2u

!

D E


D.1/g.Y x.t// �DiY x.t/

�
C lim

u!0
E

 

O

 
kY xCh.t/� Y x.t/k2

u

!!

D E


D.1/g.Y x.t// �DiY x.t/

�
;

where � D �x;h;t;l;m is an intermediate point between Y x.t/ and Y xCh.t/. This
yields Eq. (7.44).

(ii) Fix i; k 2 f1; : : : ; ng and let h D uek. We have, using (i),

DikTtg.x/ D lim
u!0

DiTtg.x C h/�DiTtg.x/

u

D lim
u!0

E

�
D.1/g.Y xCh.t// �DiY

xCh.t/�D.1/g.Y x.t// �DiY
x.t/

u

�

D lim
u!0

E

�
D.1/g.Y xCh.t// � .DiY

xCh.t/ �DiY
x.t//

u

�

C lim
u!0

E

�
DiY

x.t/ � .D.1/g.Y xCh.t// �D.1/g.Y x.t///

u

�

D I C II:

By Eq. (7.37) and bounded convergence theorem,

I D E
�
D.1/g.Y x.t// �DikY

x.t/
�
:

We apply the Taylor theorem Eq. (7.35) and the bounded convergence theorem
to see that

II D lim
u!0

E

 Pn
jD1 DiY

x
j .t/.Dj g.Y

xCh.t// �Djg.Y
x.t///

u

!

D lim
u!0

E

 Pn
jD1 DiY

x
j .t/D

.1/.Dj g/.Y
x.t// � .Y xCh.t/ � Y x.t//

u

!
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C lim
u!0

E

�

O

�kY xCh.t/ � Y x.t/k2
u

��

D E

0

@
nX

jD1
DiY

x
j .t/D

.1/.Dj g/.Y
x.t// �DkY

x.t/

1

A :

This proves Eq. (7.45).
(iii) By Proposition 3.1, all derivatives on the right-hand side of Eq. (7.45) are

continuous. Thus the functions DikTtg.x/, i; k 2 f1; : : : ; ng are continuous
for x 2 K , and each 0 < t � Q� . This proves (iii). ut

Proof of Theorem 3.1. We set

� WD 1

2 kD.1/Vk1;M

^ t0:

We will use induction. The induction step is the following. Assume that Tsf 2 C2
b

for some s 2 Œ0; t0�. We will show that for all r � � such that s C r � t0 we have
TsCrf 2 C2 and kTsCrf k.2/ < 1. To show this we use Lemma 3.1. Put g D Tsf

and t1 D t0 � s. Note that r � � ^ t1 D Q� and g D Tsf satisfy the assumptions
of Lemma 3.1. Hence we obtain that TrCsf D Trg 2 C2. A combination of the
estimates (7.44) and (7.45), the fact that suppTrg � K , and the estimates from
Proposition 3.1 yield kTrgk.2/ < 1.

An assumption of Theorem 3.1 states that f 2 C2
b . Hence, T0f D f 2 C2

b .
The induction step shows that Tsf 2 C2

b for all s � � ^ t0. Subsequent induction
steps extend this claim to Tsf 2 C2

b for all s � j� ^ t0, j D 2; 3; : : : . Therefore,
Tsf 2 C2

b for all s � t0. ut
Proposition 3.2. Let fTtgt�0 be the semigroup given by Eq. (7.8) of the process
.Yt ; St / defined by Eq. (7.3). Let C2�.R2/ be the class of functions given by
Definition 2.1. We have

Tt W C2�.R2/ ! C2�.R2/:

Proof. We will repeat some of the arguments given before the statement of
Theorem 3.1. Note that the SDE (7.3) is of the form Eq. (7.29). By Lemma 2.1
there exists a unique solution of Eq. (7.3) with explosion time �..y; s/; !/ � 1 for
all .y; s/ 2 R2 and ! 2 
. Suppose that f 2 C2�.R2/. Then suppf � R � Œ�r; r�,
for some r > 0. Fix t0 > 0. By Eq. (7.32), for any t � t0, we have

suppTtf � K WD R � � � r � t0kW 0k1; r C t0kW 0k1


: (7.46)

We have

K3 D
[

.y;s/2K
B�..y; s/; 3/ D R � �� r � t0kW 0k1 � 3; r C t0kW 0k1 C 3

�
:
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Let

M D R � � � r � 2t0kW 0k1 � 3; r C 2t0kW 0k1 C 3


:

By Eq. (7.33) we have .Y .y;s/t ; S
.y;s/
t / 2 M for all .y; s/ 2 K3. Rewriting Eq. (7.3)

as Eq. (7.31) we have V1.y1; y2/ D W.y1/y2, V2.y1; y2/ D W 0.y1/. SinceW 2 C4

and since it is periodic, we get kVk.3/;M < 1. Therefore, the solution of Eq. (7.31)
satisfies the assumptions of Theorem 3.1. It follows that for any t � t0 we have

Ttf 2 C2 and kTtf k.2/ < 1:

This and Eq. (7.46) yield Ttf 2 C2�.R2/. ut
Proof of Proposition 2.2 Suppose that f 2 C2

c .S�R/. Then Qf 2 C2�.R2/ where Qf
is given by Eq. (7.5). By Proposition 3.2, Tt Qf 2 C2�.R2/. Using this and Eq. (7.12)
we get T S

t f 2 C2
c .S � R/. ut
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Chapter 8
An Ornstein-Uhlenbeck-Type Process
Which Satisfies Sufficient Conditions
for a Simulation-Based Filtering Procedure

Arturo Kohatsu-Higa and Kazuhiro Yasuda

Abstract In this article, we verify all the conditions stated in [8] in order for
a filtering/estimation procedure based on Monte Carlo simulations of unknown
densities of diffusion processes to converge to its theoretical values. In order to
verify these hypotheses one needs to use extensively various properties of the
diffusion processes and its Euler–Maruyama approximation. In particular, we need
to study flow properties, upper and lower bounds for densities and existence of
invariant measures and ˛-mixing properties.

As a consequence one obtains that there is a tuning procedure which chooses
the number of steps in the Euler–Maruyama scheme, the window size of the kernel
estimation method and the Monte Carlo simulation size in function of the number
of available data.
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1 Introduction

In many statistical estimation/filtering problems one needs to estimate quantities of
the following type:
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EN Œf � WD E� Œf jY0; : : : ; YN � WD
R

f .�/�� .Y N
0 /�.�/d�

R
�� .Y N

0 /�.�/d�
; (8.1)

where fYi I i D 0; : : : ; N g are observed data at times fi�I i D 0; : : : ; N g
from a process which has the same law as the solution to the following stochastic
differential equation:

Yt D Y0 C
Z t

0

b.�0; Ys/ds C
Z t

0

�.Ys/dWs; t � 0: (8.2)

Here in order to simplify the situation, we consider the case where the prior
density, � , is concentrated in a one-dimensional compact interval Œ� l ; �u� � R.
Furthermore, b W Œ� l ; �u� � R ! R and � W R ! R are smooth functions with
bounded derivatives. � is also bounded and uniformly elliptic. Suppose that the
diffusion possesses an invariant measure �� such that

R
ec1y2

�� .dy/ < 1 for some
positive constant c1 (see, e.g., [4] for a much more general situation) and that it
is ˛-mixing. We furthermore assume that Y forms a stationary ˛-mixing Markov
chain.

Furthermore, �� .Y N
0 / D ��.Y0; : : : ; YN / D �� .Y0/

QN
j D1 p� .Yj �1; Yj / denotes

the joint density of .Y0; Y1; : : : ; YN / where p� denotes the transition density for Y�.
Clearly as the transition density and the invariant measure of Y are unknown the

above estimation procedure is at best a theoretical formula. In general, one has to
resort to simulation procedures in order to approximate the filtering formula (8.1). In
this article, we assume that the transition density is approximated using an Euler–
Maruyama scheme with n partition points and h is the window size in the kernel
density estimation method.

In this setting we have that there are three parameters (N , n, h) which need to be
tuned in order for the overall estimation procedure to work well.

In a recent article (see [8]), we have discussed a theoretical framework where one
can study such estimation procedure and provided a proof which clearly states that
a correct tuning is needed. Due to the lack of space, we have not considered explicit
examples and the objective of this paper together with another explicit example (see
[9]) is to provide the reader with explicit cases where the theory is applicable.

The list of conditions in order to achieve the correct tuning is long, albeit every
condition being natural. For briefness, we refer the reader to [8] for exact statements.
In this article, we explain the meaning of each condition and prove that in the case of
one-dimensional diffusions with Ornstein–Uhlenbeck type behavior all the required
conditions are satisfied.

The way we verify the requirements follows a different order than in [8]. This
is done for pedagogical reasons. While in [8] the conditions are introduced as one
deepens into the tuning problem. Here the order of exposition is in the order of easy
verification.

Our final goal in this article, is to show the reader an application area where the
full strength of Malliavin calculus is needed in order to verify various conditions
so as to obtain a practical result. The order of exposition will take us first into
the verification of the ergodic property and the ˛-strongly mixing condition. Then
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we will proceed verifying various flow properties. After this, we will quote and
deduce results about the upper and lower bounds for densities. Finally, we will verify
the identifiability conditions and at the end we state our main theorem.

2 Framework

We will verify that all hypotheses related to the approximation process in [8] are
satisfied by the Euler–Maruyama scheme under enough regularity conditions. So in
our present example, Yi is the random variable associated with Xi�, where X is
a one-dimensional diffusion process with regular drift b.�; �/. � takes values in a
compact set ‚ D Œ� l ; �u� and regular diffusion coefficient �.�/ (independent of �).
We assume that the diffusion coefficient is uniformly elliptic which guarantees the
existence of a smooth strictly positive density. A copy of X starting at y is denoted
by Xy.�/. Furthermore X

y

.m/.�/ denotes the Euler–Maruyama scheme of step size
�
m

with m � m.N / 2 N. Then QpN
� .y; z/ denotes the density of X

y

.m/.�/ which is
regular and strictly positive given the uniformly elliptic condition.

Let K W R ! RC be a twice continuously differentiable kernel which satisfiesR
K.x/dx D 1. Denote by OpN

� .y; zI O!/, O! 2 O	, where O	 denotes the sample space
where simulations are carried out. The kernel density estimate of QpN

� .y; z/ based on
n simulated i.i.d. copies of X

y

.m/.�/ which are defined on . O	; OF ; OP� / and denoted

by X
y;.k/

.m/ .�; �/, k D 1; : : : ; n; for h 2 .0; 1/, is given by

OpN
� .y; zI O!/ WD OpN

� .y; zI O!I m.N /; h.N /; n.N //

WD 1

n.N /h.N /

n.N /X

kD1

K

 
X

y;.k/

.m.N //.�; O!/ � z

h.N /

!

:

For given m, we introduce the “average” approximative transition density over all
trajectories with respect to the kernel K as

NpN
� .y; z/ WD NpN

� .y; zI m.N /; h.N // WD OE � OpN
� .y; zI �/�

D OE
"

1

h.N /
K

 
X

y;.1/

.m.N //.�; �/ � z

h.N /

!#

;

where OE means the expectation with respect to OP .
Then we consider the following approximation of Eq. (8.1);

OEn
N;mŒf � D

R
f .�/ O�N

� .Y N
0 /�.�/d�

R O�N
� .Y N

0 /�.�/d�
;
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where set O�N
� .Y N

0 / D �� .Y0/
QN

j D1 OpN
� .Yj �1; Yj /. Strong convergence of OEn

N;mŒf �

to EN Œf � and the rate of convergence with respect to the number of data N under a
general diffusion case has been studied in Kohatsu-Higa et al. [8].

3 Invariant Measure and ˛-Mixing Condition
w.r.t. Diffusion Processes

In this section we give sufficient conditions for a one-dimensional diffusion of the
type (8.2) to have an invariant measure which satisfies the ˛-mixing condition.

In fact, from pp.213 in Bibby, Jacobsen, and Sorensen [3], we give sufficient
conditions for the existence of an invariant measure of a one-dimensional stochastic
differential equation. We define the density function of the scale measure for
Xy.�/ as

s.xI �/ D exp

�

�2

Z x

x]

b.�; y/

�.y/2
dy

�

;

where x] is an arbitrary point in .�1; 1/.

Assumption 3.1. The following holds for all � 2 ‚:

Z 1

x]

s.xI �/dx D
Z x]

�1
s.xI �/dx D 1

and

A.�/ WD
Z 1

�1
1

s.xI �/�.x/2
dx < 1:

Under Assumption 3.1, the process X
y
t .�/ is ergodic with an invariant probability

measure that has density

�� .x/ D 1

A.�/s.xI �/�.x/2
; x 2 .�1; 1/: (8.3)

Example 3.1. Set b.�; x/ D �x C � and �.x/ D � > 0 (constant). Then we have

s.xI �/ D exp

�

2

Z x

x]

y � �

�2
dy

�

D exp

�
2

�2

�
1

2
x2 � �x C C

��

;

where C is a constant. Obviously we have, for all � 2 ‚,

Z 1

x]

s.xI �/dx D
Z x]

�1
s.xI �/dx D 1
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and

A.�/ D
Z 1

�1
1

s.xI �/�2
dx D 1

�
exp

�

� 2

�2
C C �2

�2

�

< 1:

And the invariant measure is given as

�� .x/ D 1

A.�/s.xI �/�2
D 1

�
exp

�

� .x � �/2

�2

�

:

Next, from Corollary 2.1 in Genon-Catalot, Jeantheau, and Larédo [5], for fixed
� , we give some sufficient conditions so that Xy.�/ is ˛-mixing.

Assumption 3.2. For fixed � 2 ‚,

(i) The function b is continuously differentiable with respect to x and � is twice
continuously differentiable with respect to x, �.x/ > 0 for all x 2 .�1; 1/.
We also assume that there exists constants C �

1 ; C2 > 0 such that

jb.�; x/j � C �
1 .1 Cjxj/ and �.x/2 � C2.1 Cx2/ for al l x 2 .�1; 1/:

(ii) �.x/�� .x/ ! 0 as x # �1 and x " 1.
(iii) 1


.�;x/
has a finite limit as x # �1 and x " 1, where


.� I x/ WD @

@x
�.x/ � 2b.�; x/

�.x/
:

Under Assumptions 3.1 and 3.2, for fixed � 2 ‚, the process Xy.�/ is
geometrically ˛-mixing, i.e., ˛-mixing with mixing coefficients that tend to zero ge-
ometrically fast. Therefore our data fYig, which is in the case � D �0, is
geometrically ˛-mixing.

Example 3.2 (cont. of Example 3.1). For b.�; x/ D �x C � and �.x/ D � , (i) and
(ii) clearly hold since � takes values in a compact set ‚ D Œ� l ; �u� and the diffusion
coefficient � is constant. For (iii), now


.� I x/ D 2

�
.x � �/

and for all � 2 ‚, 1

.�;x/

converges to 0 as x ! ˙1.

Assumption 3.3. We assume that the invariant measure �� satisfies the following
integrability condition for some strictly positive constant c1

EŒec1Y 2
1 � D

Z
ec1y2

�� .dy/ < 1:



178 A. Kohatsu-Higa and K. Yasuda

Note that if we assume that b.�; x/ is a function with linear growth with respect to
x uniformly in � and continuity in � and �.x/ is a bounded and continuous function
with uniformly ellipticity, then the invariant measure �� .x/, which is defined in
Eq. (8.3), is continuous and bounded and for all x 2 R and � 2 ‚, �� .x/ > 0 holds.

4 Flow-Related Properties

In this section we verify some of the conditions given in Sect. 6.5 in [8] that are
related with the explicit tuning procedure. These conditions appear when one has
to determine the uniform (wrt parameter and space values in compact sets, see the
definition of BN below) rates of convergence of the Monte Carlo simulation of the
approximative density. In particular, the conditions required follow from arguments
that rely on the Borel–Cantelli lemma.

For this, consider c2 > 2
c1

, n D C1N
˛1 for ˛1; C1 > 0, and h D C2N

�˛2 for

˛2; C2 > 0. Furthermore, let BN WD ˚
.x; �/ D .x; y; �/ 2 R

2 � ‚I kxk < aN WDp
c2 ln N

�
, where we assume aN � 1. Then, we define

Z
.k/
3;N .!/ WD a�2

N

 

sup
.x;�/2BN

ˇ
ˇ
ˇX

y;.k/

.m/ .�; !/
ˇ
ˇ
ˇC 1

!

sup
.x;�/2BN

ˇ
ˇ
ˇ@� X

y;.k/

.m/ .�; !/
ˇ
ˇ
ˇ ; (8.4)

Z
.k/
4;N .!/ WD a�1

N

 

sup
.x;�/2BN

ˇ
ˇ
ˇ@yX

y;.k/

.m/ .� I !/
ˇ
ˇ
ˇC sup

.x;`/2BN

ˇ
ˇ
ˇ@� X

y;.k/

.m/ .� I !/
ˇ
ˇ
ˇ

!

;

PZ.k/
4;N .!/ WD a�1

N

 

h sup
.x;�/2BN

ˇ
ˇ
ˇ@y@� X

y;.k/

.m/ .� I !/
ˇ
ˇ
ˇC h sup

.x;�/2BN

ˇ
ˇ
ˇ@� @� X

y;.k/

.m/ .� I !/
ˇ
ˇ
ˇ

C
�
Z

.k/
4;N C 1

�
sup

.x;�/2BN

ˇ
ˇ
ˇ@� X

y;.k/

.m/ .� I !/
ˇ
ˇ
ˇ

!

;

PZ.j /
6;N .!/ WD a�1

N sup
.x;�/2BN

nˇˇ
ˇ@� X

y;.j /

.m/ .� I !/
ˇ
ˇ
ˇC E

hˇˇ
ˇ@� X

y;.1/

.m/ .� I �/
ˇ
ˇ
ˇ
io

: (8.5)

Then the goal in this section is to prove that the conditions below are satisfied.

(iii) (Borel–Cantelli for Z
.k/
3;N .!/, (H3)) For some r3 > 0 and b3;N WD

C3.N 
3 n/
1
r3 c2 ln N

h2 : � 1,

1X

N D1

na
2r3

N

.h2b3;N /r3
< C1 and sup

N 2N
E
�jZ3;N .�/jr3

�
< C1:

(iv) (Borel–Cantelli for Z
.k/
4;N .!/, (H4)) For some r4 > 0 and b4;N � 1,
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1X

N D1

n

.b4;N /r4
< C1 and sup

N 2N
E
�jZ4;N .�/jr4

�
< C1:

(vi) (Borel–Cantelli for PZ.k/
4;N .!/, (H4’)) For some Pr4 > 0 and Pb4;N � 1,

1X

N D1

n

. Pb4;N /Pr4

< C1 and sup
N 2N

E
hˇ
ˇ PZ4;N .�/ˇˇPr4

i
< C1:

(viii) (Borel–Cantelli for PZ.k/
6;N .!/, (H6a’)) For some Pr6 > 0 and Pb6;N D

	 PC6nN P
6

 1

Pr6 � 1,

1X

N D1

n

. Pb6;N /Pr6

< C1 and sup
N

E
hˇ
ˇ PZ6;N .�/ˇˇPr6

i
< C1:

Remark 4.1. The summability conditions and the other conditions not quoted here
(i.e., (i), (ii), (v), and (vii) in [8]) are finally simplified by requesting that the
inequalities (8.7) and (8.8) which appear below, be satisfied.

The conditions that remain are the above finite moment conditions in the
conditions above. These conditions are satisfied due to the regularity conditions on
the coefficients b and � and flow properties. The proofs are tedious but the essential
technique already exists so we will only sketch the result in the following lemma.

Lemma 4.1. Assume that b and � are smooth and at most linear growth in x with
all derivatives bounded by constants which are independent of � . Then the moment
conditions stated in (iii), (iv), (vi), and (viii) are satisfied.

Proof. For the proof, we will only indicate how to prove that the uniform moments
are finite for one of the terms of Eq. (8.4). This should point to reader how to proceed
in the other cases in a similar fashion.

We can estimate sup.x;�/2BN
jXy

.m/.�/j as follows. Let .y0; �0/ be a point in

.�aN ; aN / � ‚, where set ‚ D Œ� l ; �u�, then we have

sup
.x;�/2BN

ˇ
ˇ
ˇX

y

.m/.�/
ˇ
ˇ
ˇ

� sup
.x;�/2BN

ˇ
ˇ
ˇX

y

.m/.�/ � X
y

.m/.�0/
ˇ
ˇ
ˇC sup

.x;�/2BN

ˇ
ˇ
ˇX

y

.m/.�0/ � X
y0

.m/.�0/
ˇ
ˇ
ˇC

ˇ
ˇ
ˇX

y0

.m/.�0/
ˇ
ˇ
ˇ

D sup
.x;�/2BN

ˇ
ˇ
ˇ
ˇ
ˇ

Z �

�0

@� X
y

.m/.�/d�

ˇ
ˇ
ˇ
ˇ
ˇ
C sup

.x;�/2BN

ˇ
ˇ
ˇ
ˇ

Z y

y0

@yX
Qy

.m/.�0/d Qy
ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇXy0

.m/.�0/
ˇ
ˇ
ˇ

�
Z �u

�l

sup
y2.�aN ;aN /

ˇ
ˇ
ˇ@� X

y

.m/.�/ � @� X
y0

.m/.�/
ˇ
ˇ
ˇ d� C

Z �u

�l

ˇ
ˇ
ˇ@� X

y0

.m/.�/
ˇ
ˇ
ˇ d�
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C
Z aN

�aN

ˇ
ˇ
ˇ@yX

Qy
.m/.�0/

ˇ
ˇ
ˇ d Qy C

ˇ
ˇ
ˇX

y0

.m/.�0/
ˇ
ˇ
ˇ

�
Z �u

�l

Z aN

�aN

ˇ
ˇ
ˇ@2

�yX
Qy

.m/.�/
ˇ
ˇ
ˇ d Qyd� C

Z �u

�l

ˇ
ˇ
ˇ@� X

y0

.m/.�/
ˇ
ˇ
ˇ d�

C
Z aN

�aN

ˇ
ˇ
ˇ@yX

Qy
.m/.�0/

ˇ
ˇ
ˇ d Qy C

ˇ
ˇ
ˇX

y0

.m/.�0/
ˇ
ˇ
ˇ : (8.6)

From this calculation, we see that we need to find uniform Lp.	/ estimates in �

and y of the above derivatives. These estimates are essentially quoted in Lemma 4.3
in [1] which uses the same method as in the proof of Lemma 2.2 in the same paper
for the derivatives wrt y. The proof is based in general derivative formula for the
composition of functions (Faà di Bruno formula). ut
(ix). ((H6b’)) For some Pq6 > 1,

 
�N h2

.kK 0k1. Pb6;N /2aN

exp

 

� .�N /2

2. kK0k
1

h2
Pb6;N aN /2

!! Pq6

�
PC6

n1C P̨6

and sup
N 2N

E
hˇ
ˇ PZ6;N .�/ˇˇ Pq6

i
< C1;

where PC6 and P̨6 are the same as (vii) of Sect. 6.5 in [8].

In order for the above condition to be satisfied, we choose �N W D
CK;�;‚h2

N
'2c2

� C

1
2 .N 
3 n/

1
r3 c2 ln N

with

�

4˛2 C 2
˛1 C P
6

Pr6

C '2c2

�
C 1

2
C 
3

r3

C ˛1

r3

�

Pq6 > ˛1; (8.7)

which has to be satisfied together with

˛1

�

1 � 2

r3

� 2

Pr6

�

> 8˛2 C 1 C 2'2c2

�
C 2
3

r3

C 2
P
6

Pr6

: (8.8)

All the above constants have been already defined with the exception of '2 (which
appears in (H1)).

5 Regularity of the Densities

In this section, we discuss conditions (H5) and (H5’) in [8] which are related with
conditions on the density of the approximation processes. This is the section where
the core of Malliavin calculus has to be used in order to obtain uniform regularity
of the density of the Euler–Maruyama scheme with upper and lower bounds.
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(H5) Assume that there exists some positive constant C5 > 0 such that for all
y; z 2 R; m 2 N, and � 2 ‚,

ˇ
ˇ@y NpN

� .y; z/
ˇ
ˇ ;
ˇ
ˇ@z NpN

� .y; z/
ˇ
ˇ ;
ˇ
ˇ@� NpN

� .x; y/
ˇ
ˇ � C5 < C1:

(H5’) Assume that there exists some positive constant PC5 > 0 such that for all
y; z 2 R; m 2 N, and � 2 ‚,

ˇ
ˇ@y@� NpN

� .y; z/
ˇ
ˇ ;
ˇ
ˇ@z@� NpN

� .y; z/
ˇ
ˇ ;
ˇ
ˇ@2

� NpN
� .y; z/

ˇ
ˇ � PC5 < C1:

All the above conditions are regularity properties of the Euler scheme which are
well known and are proved using Malliavin calculus techniques.

For example, in [7], Lemma 3.3, it is proved that the process X
y

.m/ C hZ

where Z is a standard Gaussian random variable has a Malliavin covariance matrix
whose inverse determinant belong to all the spaces Lp.	/ if h D m�1=2. It is
also mentioned (see equation 3.1) and the comments thereafter) that the process
X

y

.m/.�/ C hZ belongs uniformly (in m) to all the spaces D
k;p. Therefore all the

necessary integration by parts formulas can be carried out in order to obtain that
the above hypotheses (H5) and (H5’) are satisfied. Therefore, from now on, we will
take h D m�1=2.

We remark here that the derivatives with respect to the starting point and the
parameter � of the flow defined by the Euler–Maruyama scheme are differentiable
in the stochastic sense as they can be rewritten as solutions of linear equations with
random bounded coefficients.

One can also explicitly write the above upper bounds as Gaussian type upper
bounds by using the technique in section A of [6]. We will do this without further
mentioning it.

In the next results, we need to prove upper and lower bounds of Gaussian type.
In fact, we verify the following hypotheses (H1) and (H2).

(H1) Assume that there exist some positive constants '1; '2, where '1 is indepen-
dent of N and '2 is independent of N and �, such that the following holds:

inf
.x;�/2BN

NpN
� .y; z/ � '1 exp

�

�'2a
2
N

�

�

:

(H2) Assume that the kernel K is the Gaussian kernel:

K.z/ WD 1p
2�

exp

�

�1

2
z2

�

:

Recall that QpN
� .y; z/ denotes the transition density function of X

y

.m/.�/.

Lemma 5.1. Assume hypothesis (H2). Let X denote a standard normal random
variable, then we have

NpN
� .y; z/ D E

� QpN
� .y; hX C z/

�
:
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Proof. Note that K is the density function of the random variable X . By using a
change of variables .u D x�z

h
/,

NpN
� .y; z/ D E

"
1

h
K

 
X

y

.m/.�/ � z

h

!#

D
Z 1

�1
1

h
K
�x � z

h

�
QpN
� .y; x/dx

D
Z 1

�1
K .u/ QpN

� .y; hu C z/du D E
� QpN

� .y; hX C z/
�

:

ut
Now we consider the lower bound (H1).

Proposition 5.1. Assume that � is a uniformly elliptic, bounded, and smooth
function with bounded derivatives. Similarly assume that b is a smooth function
with at most linear growth in x uniformly in � and bounded derivatives. Then under
the hypothesis (H2), (H1) is satisfied.

Proof. First, we obtain a lower bound for QpN
� .y; z/. We somewhat abuse the notation

using the delta distribution function ız.x/. The formal argument can be obtained
by proper approximation arguments which are left to the reader. If we denote by
tj D �j

m
; j D 1; � � � ; m the partition points of the Euler–Maruyama scheme, sj D

�j

Rm
; j D 1; � � � ; Rm, R 2 N the partition points that will be used in the argument

for the proof of the lower bound. We denote by X
y
m.t; �/, its corresponding Euler–

Maruyama scheme with Rm time steps in Œ0; �� at time t which starts from y at
time 0, and by ' W R ! Œ0; 1� a smooth function such that it takes the value 1 in the
interval Œ�2aN � 1; 2aN C 1� and 0 in the complement of Œ�2aN � 2; 2aN C 2�.
Then, we have by the Chapman–Kolmogorov equation and the fact that the range of
' is Œ0; 1� that

QpN
� .y; z/ D

Z

RRm�1

E

2

4

0

@
Rm�1Y

j D1

ıxj

	
Xy

m.sj ; �/


1

A ız
	
Xy

m.sRm; �/


3

5

� dx1 � � � dxRm�1

�
Z

RRm�1

E

2

4

0

@
Rm�1Y

j D1

ıxj

	
Xy

m.sj ; �/



'
	
Xy

m.sj ; �/


1

A ız
	
Xy

m.sRm; �/


3

5

� dx1 � � � dxRm�1:

Next we use the Markov property so that (from now on, we let x0 D y and xRm D z,
in order to simplify the notation)
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QpN
� .y; z/ �

Z

RRm�1

E

2

4

0

@
Rm�1Y

j D1

ıxj

	
X

sj �1;xj �1
m .sj ; �/



'
	
X

sj �1;xj �1
m .sj ; �/



1

A

� ız
	
XsRm�1;xRm�1

m .sRm; �/


3

5 dx1 � � � dxRm�1:

Then we can evaluate the expectations by conditioning obtaining

QpN
� .y; z/

�
Z

RRm�1

0

B
@

RY

iD1

mY

j D1

exp
�
� .xR.j �1/Ci �xR.j �1/Ci�1�b.�;xR.j �1/Ci�1/�.Rm/�1/2

2�2.xR.j �1/Ci�1/�.Rm/�1

�

p
2��2.xR.j �1/ C i � 1/�.Rm/�1

� '.xR.j �1/Ci /

1

C
A dx1 � � � dxRm�1: (8.9)

Next we restrict the integration regions using for each integral above a “tube” that
will go from y to z as follows. Define zi D y C .z � y/ i

Rm
; i D 0; � � � ; Rm.

Then around each of these points, we consider the regions of integration A D fx D
.x1; � � � ; xRm�1/ 2 R

Rm�1j xi 2 Ai for all i D 1; 2; � � � ; Rm � 1g, where we let
Ai WD .zi�1 � M

p
�.Rm/�1; zi�1 C M

p
�.Rm/�1/; i D 1; � � � ; Rm � 1. Here

M is a positive constant, chosen so that M
p

�.Rm/�1 � 1. If we restrict the above
Rm�1 integrals to these regions, we will obtain a lower bound. On these regions, we
have that the following inequalities are satisfied for j D 1; � � � ; R; i D 1; � � � ; m,
and '.xR.j �1// > 0:

ˇ
ˇxR.j �1/Ci � xR.j �1/Ci�1 � b.�; xR.j �1/Ci�1/�.Rm/�1

ˇ
ˇ

� ˇ
ˇxR.j �1/Ci � zR.j �1/Ci�1

ˇ
ˇC ˇ

ˇzR.j �1/Ci�1 � zR.j �1/Ci�2

ˇ
ˇ

C ˇ
ˇzR.j �1/Ci�2 � xR.j �1/Ci�1

ˇ
ˇC ˇ

ˇb.�; xR.j �1/Ci�1/
ˇ
ˇ�.Rm/�1

� 2M
p

�.Rm/�1 C jy � zj.Rm/�1 C C0.1 C 2aN /�.Rm/�1:

We now choose R D j2aN j2
m�

. Using that jy � zjj2aN j�1 � 1, we have that

ˇ
ˇxR.j �1/Ci � xR.j �1/Ci�1 � b.�; xR.j �1/Ci�1/�.Rm/�1

ˇ
ˇ

� .2M C 1/
p

�.Rm/�1 C C0.1 C .2aN /�1/�
3
2 .Rm/� 1

2 :
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Assuming without loss of generality that � � 1, we have that

exp

�

� .xR.j �1/Ci � xR.j �1/Ci�1 � b.�; xR.j �1/Ci�1/�.Rm/�1/2

2�2.xR.j �1/Ci�1/�.Rm/�1

�

� exp

�

�2.M C C0/ C 1

2c2
0

�

:

Here c0 is the constant of uniform ellipticity of � . Replacing this in Eq. (8.9), we
obtain for a new constant K > 1 that

NpN
� .y; z/ �

Z

A

0

B
@

RY

iD1

mY

j D1

K�1

q
2�C 2

0 �.Rm/�1

'.xR.j �1/Ci /

1

C
A dx1 � � � dxRm�1:

Next we remark that for any x D .x1; � � � ; xRm�1/ 2 A, the .R.j � 1/ C i/-th
element of x satisfies '.xR.j �1/Ci / D 1 for all j D 1; : : : ; R; i D 1; : : : ; m and
therefore as the integrands will be constants, we obtain for some constant K1 > 0

that

QpN
� .y; z/ � .2M

p
�.Rm/�1/Rm�1

0

B
@

K�1

q
2�C 2

0 �.Rm/�1

1

C
A

Rm

D c1p
�

exp

�

�Rm log K1 � 1

2
log.Rm/

�

:

where c1 is a suitable positive constant. Therefore using that Rm D j2aN j2
�

and as

�Rm log K1 � 1

2
log.Rm/ � �K2

jaN j2
�

:

for an appropriately chosen positive constant K2 which is independent of aN and �,
finally we obtain

inf
jyj;jzj�2aN

QpN
� .y; z/ � c1p

�
exp

�

�K2a
2
N

�

�

: (8.10)

Next we consider the lower bound of QpN
� .y; z/. From 0 < h < 1, for all z such

that jzj � aN , we have

�

u

ˇ
ˇ
ˇ
ˇ

�2aN � z

h
� u � 2aN � z

h

�

	 f u j � aN � u � aN g:
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And from aN � 1 and the Chernoff bound , we have

Z aN

�aN

1p
2�

e� u2

2 du D 2

�
1

2
�
Z 1

aN

1p
2�

e� u2

2 du

�

� 2

�
1

2
� 1

2
e� a2

N
2

�

� 1 � e� 1
2 :

From Lemma 5.1, Eq. (8.10), and the above results, we have

inf
.x;�/2BN

NpN
� .y; z/ D E

� QpN
� .y; hX C z/1.jhX C zj � 2aN /

C QpN
� .y; hX C z/1.jhX C zj > 2aN /

�

�
Z 1

�1
1p
2�

e� u2

2 QpN
� .y; hu C z/1Œ�2aN ;2aN �.hu C z/du

�
Z aN

�aN

1p
2�

e� u2

2 du
c1p
�

e�K2
a2
N
�

�
�
1 � e� 1

2

� c1p
�

e�K2
a2
N
� :

ut
Remark 5.1. A similar lower estimation of the density is given in [2]. Here we
give a simpler proof in our settings and as pointed out in [2], the uniformly elliptic
condition can be weakened with an elliptic condition around a “tube.”

We now discuss condition 5 of Assumption 2.2 in Kohatsu-Higa et al. [8] on
the regularity of the log density. The technical problem in these estimates is that
derivatives of the logarithm will make appear the density in the denominator of
various expressions. One may control these by using the Gaussian lower bounds
obtained in Proposition 5.1.

Lemma 5.2 (Regularity of the log density). Let b.�; x/ be a smooth function with
at most linear growth in x uniformly in � and bounded derivatives, and also �.x/

be a uniformly elliptic, bounded, and smooth function with bounded derivatives.
For q� D p� , NpN

� and � small enough, we have

sup
N

sup
�2‚

“ �
@i

@�i
ln q� .y; z/

�12

p�0.y; z/��0 .y/dydz < C1; for i D 0; 1; 2;

sup
N

sup
�2‚

ˇ
ˇ
ˇ
ˇ

@2

@�2

“
.ln q� .y; z// NpN

�0
.y; z/��0 .y/dydz

ˇ
ˇ
ˇ
ˇ < C1;

sup
N

sup
�2‚

“ ˇ
ˇ
ˇ
ˇ

@i

@�i
ln q� .y; z/

ˇ
ˇ
ˇ
ˇ NpN

�0
.y; z/��0 .y/dydz < C1; for i D 0; 1;

where @0

@�0 q� D q� .
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Proof. We will give the ideas in order to prove one of these inequalities and leave
the others for the reader as they are all similar. Consider the last one: first note
that in the case i D 0 one only uses the upper bounds for densities result either
for the diffusion and its approximation which can be obtained in a variety of ways,
e.g., using Malliavin calculus (see, e.g, section A in [6]). Also note that the lower
bound is obtained here for the approximation in Proposition 5.1. In fact, applying
(with a slight modification to the formula of H ) Theorem 2.1.4 in [10] we have the
following expression for the density of Xx

�.�/:

p� .x; y/ D E
�
1
	
Xx

�.�/ � y



H
	
Xx

�.�/I 1

�

;

where for any p > 1 there exists positive constants (which can be made explicit) C ,
k1, and p1 so that

H
	
Xx

�.�/I 1

 D

Z �

0

A�

As�.Xx
s /

dWs;

DsX
x
�.�/ D �

	
Xx

s .�/



exp

�Z �

s

�

@xb
	
�; Xx

t .�/

 � @x�.Xx

t .�//2

2

�

dt

C
Z �

s

@x�
	
Xx

t .�/



dWt

�

DW �
	
Xx

s .�/



A�A�1
s ;

kH
	
Xx

�.�/I 1

 kp � C kXx

�.�/kk1;p1 :

For i D 1, we proceed in a similar fashion (using the integration by parts formula
of Malliavin calculus) with the addition of the following extra ingredient:

ˇ
ˇ
ˇ
ˇ

@

@�
ln p� .y; z/

ˇ
ˇ
ˇ
ˇ D jE ŒH.Xy.�/; @� Xy.�//= Xy.�/ D z�j

� E Œ jH.Xy.�/; @� Xy.�//j= Xy.�/ D z� :

Then for ˛ 2 .0; 1/ and p�1 C q�1 D 1 we have

Z ˇ
ˇ
ˇ
ˇ

@

@�
ln p�.y; z/

ˇ
ˇ
ˇ
ˇ NpN

�0
.y; z/dz

�
Z

E
� ˇˇH.X

y
�.�/; @� X

y
�.�//

ˇ
ˇıX

y
�.�/ D z

� NpN
�0

.y; z/dz

�
�Z

E
� ˇˇH.X

y
�.�/; @� X

y
�.�//

ˇ
ˇpıX

y
�.�/ D z

� NpN
�0

.y; z/˛pdz

�1=p

�
�Z

NpN
�0

.y; z/.1�˛/qdz

�1=q

:
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Note that as we have upper Gaussian estimates for NpN
�0

.y; z/ then the second term
above is finite. Furthermore for the first term we have that

Z
E
� ˇˇH.X

y
�.�/; @� X

y
�.�//

ˇ
ˇpıX

y
�.�/ D z

� NpN
�0

.y; z/˛pdz

D
Z

E
�ˇˇH.X

y
�.�/; @� X

y
�.�//

ˇ
ˇp ız

	
X

y
�.�/


�
p� .y; z/�1 NpN

�0
.y; z/˛pdz:

Therefore by choosing p big enough, we will have that p�.y; z/�1 NpN
�0

.y; z/˛p is
bounded by a Gaussian term and then the finiteness will follow from estimates
for H . ut

Next we will verify Assumption 2.2 6-(b) of Kohatsu-Higa et al. [8] leaving 6-(a)
for the end as this requires various conditions as explained in the paper.

Lemma 5.3. Let b.�; x/ be a smooth function with at most linear growth in x

uniformly in � and bounded derivatives and also �.x/ be a uniformly elliptic,
bounded, and smooth function with bounded derivatives. Then for each y; z 2 R

and � small enough, there exist factors C N
1 .y; z/ and c1.y; z/ such that

ˇ
ˇp�0.y; z/ � NpN

�0
.y; z/

ˇ
ˇ � C N

1 .y; z/a1.N /;

where supN C N
1 .y; z/ < C1 and a1.N / WD m.N /�1 C h.N /2 ! 0 as N ! 1,

and

C N
1 .y; z/a1.N /

p
N < c1.y; z/; (8.11)

where c1 satisfies

sup
N

sup
�2‚

“ ˇ
ˇ
ˇ
ˇ

@

@�
ln NpN

� .y; z/

ˇ
ˇ
ˇ
ˇ c1.y; z/��0 .y/dydz < C1: (8.12)

Proof. It is well known that the rate of convergence of the Euler scheme with the
kernel modification is of the order m�1 C h2 DW a1.N / (see, e.g., [7]). Therefore
the idea to prove the bound (8.12) is similar as in the proof of Lemma 5.2. In fact,

C N
1 .y; z/ WD a1.N /�1

ˇ
ˇp�0.y; z/ � NpN

�0
.y; z/

ˇ
ˇ :

As before, we consider

Z ˇ
ˇ
ˇ
ˇ

@

@�
ln NpN

� .y; z/

ˇ
ˇ
ˇ
ˇ sup

N

C N
1 .y; z/dz

�
�Z

E
hˇˇ
ˇH.X

y

.m/.�/; @� X
y

.m/.�//
ˇ
ˇ
ˇ
p

ız

�
X

y

.m/.�/
�i

NpN
� .y; z/�1 sup

N

C N
1 .y; z/p˛dz

�1=p

�
�Z

sup
N

C N
1 .y; z/q.1�˛/dz

�1=q

:
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The above quantity will be finite by using upper Gaussian estimates for
supN C N

1 .y; z/ with appropriate values for p and ˛ as shown in, e.g., [7]. ut
Now we verify Assumption 2.2 6-(c) of Kohatsu-Higa et al. [8].

Lemma 5.4. Let b.�; x/ be a smooth function with at most linear growth in x

uniformly in � and bounded derivatives and also �.x/ be a uniformly elliptic,
bounded, and smooth function with bounded derivatives. And K.x/ is in C 2.R/.
Then for � small enough, there exist some function gN W R

2 ! R and constant
a2.N /, which depends on N , such that for all y; z 2 R

sup
�2‚

ˇ
ˇ
ˇ
ˇ

@

@�
ln NpN

� .y; z/ � @

@�
ln p� .y; z/

ˇ
ˇ
ˇ
ˇ � jgN .y; z/ja2.N /;

where supN E�0ŒjgN .Y0; Y1/j4� < C1 and a2.N / ! 0 as N ! 1.

Proof. This condition is similar to Lemma 5.3 with the exception that the approxi-
mation is of the logarithmic derivative. Again, one can also prove alternatively

a2.N /�4

Z Z
sup
�2‚

ˇ
ˇ
ˇ
ˇ

@

@�
ln NpN

� .y; z/ � @

@�
ln p� .y; z/

ˇ
ˇ
ˇ
ˇ

4

p�0.y; z/��0 .y/dydz < 1:

Using a Sobolev embedding inequality (or a simple argument like in the beginning
of the proof of Lemma 4.1) to deal with the supremum by requiring higher
derivatives with respect to � . The arguments closes as in the proof of the previous
lemmas. ut

5.1 Identifiability Conditions

We verify now that the following identifiability condition is satisfied.

Lemma 5.5. (i) Assume that there exists some x 2 R such that for all � 6D �0,
there exists some y 2 R such that p� .x; y/ 6D p�0.x; y/ and @� p�0.x; y/ 6D 0.
Then there exist c1 W R ! .0; 1/ such that for all � 2 ‚,

Z
jp� .y; z/ � p�0.y; z/j dz � c1.y/j� � �0j;

and C1.�0/ WD R
c1.y/2��0.y/dy 2 .0; C1/.

(ii) Let b.�; x/ be a smooth function with at most linear growth in x uniformly in �

and bounded derivatives, and also �.x/ be a uniformly elliptic, bounded, and
smooth function with bounded derivatives. Assume the same hypotheses as in
(i). Furthermore we assume that there exists some N0 such that for all N � N0,
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the same conditions as in (i) are satisfied with p replaced by NpN . Then there
exist c2 W R ! .0; 1/ and N0 2 N such that for all � 2 ‚,

inf
N �N0

Z ˇ
ˇ NpN

� .x; y/ � NpN
�0

.x; y/
ˇ
ˇ dy � c2.x/j� � �0j;

and C2.�0/ WD R
c2.x/2��0 .x/dx 2 .0; C1/ with N big enough.

Proof of (i). First note that the identifiability condition for p is equivalent to

1 >

Z �

inf
�2‚

Z jp� .x; y/ � p�0.x; y/j
j� � �0j dy

�2

��0.x/dx �
Z

c.x/2��0 .x/dx > 0:

By using the fundamental theorem of calculus and changing variables, set

ˇ D ˛� C .1 � ˛/�0;

we have

1 >

Z �

inf
�2‚

Z ˇ
ˇ
ˇ
ˇ

Z 1

0

@� p˛�C.1�˛/�0.x; y/d˛

ˇ
ˇ
ˇ
ˇ dy

�2

��0.x/dx

�
Z

c.x/2��0 .x/dx > 0:

The integrability (upper estimation) is easily obtained from Gaussian upper
estimates of derivatives of densities of uniformly elliptic diffusions. One may
alternatively use the method of proof in the proof of Lemma 5.2.

Now ��0.x/ > 0 for all x 2 R. Therefore it is enough to prove that

inf
�2‚

Z ˇ
ˇ
ˇ
ˇ

Z 1

0

@� p˛�C.1�˛/�0.x; y/d˛

ˇ
ˇ
ˇ
ˇ dy > 0;

for x in a set of positive measure. We will prove this statement by contradiction.
Therefore, we assume that for almost all x

inf
�2‚

Z ˇ
ˇ
ˇ
ˇ

Z 1

0

@� p˛�C.1�˛/�0.x; y/d˛

ˇ
ˇ
ˇ
ˇ dy D 0:

Due to the continuity of @� p we have that for almost all x 2 R, there exists some
�� D ��.x/ such that

Z ˇ
ˇ
ˇ
ˇ

Z 1

0

@� p˛��C.1�˛/�0.x; y/d˛

ˇ
ˇ
ˇ
ˇ dy D 0:
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As �� D �0 contradicts the assumption we have that for all x 2 R, there exists some
�� D ��.x/ 6D �0 such that for all y 2 R,

.�� � �/

Z 1

0

@� p˛��C.1�˛/�0.x; y/d˛ D p��.x; y/ � p�0.x; y/ D 0; (8.13)

which also contradicts the assumption.

(Proof of (ii)) By using a similar argument, we obtain the identifiability condition

for NpN . Set B WD R finf� infN �N0

R j NpN
� .x;y/� NpN

�0
.x;y/j

j���0j dyg2��0 .x/dx 2 Œ0; C1/. As
before, it is easy to prove B < C1.

Here we also use proof by contradiction. If B D 0, then from the assumption of
the coefficients, we have �� .x/ > 0 for all x 2 R and � 2 ‚. So that we have, for
all N0 2 N and almost all x 2 R,

inf
�

inf
N �N0

Z j NpN
� .x; y/ � NpN

�0
.x; y/j

j� � �0j dy D 0:

Then for all N0 2 N and all x 2 R, there exists some sequence �n D �n.x; N0/

such that

lim
n!1 inf

N �N0

Z j NpN
�n

.x; y/ � NpN
�0

.x; y/j
j�n � �0j dy D 0:

And also, for all x 2 R, there exists some sequence �n D �n.x; N0/ such that there
exists some sequence Nn D Nn.x; �n/ � N0 such that

lim
n!1

Z j NpNn

�n
.x; y/ � NpNn

�0
.x; y/j

j�n � �0j dy D 0:

By using the mean value theorem, we consider the following: for all x 2 R,
there exists some sequence �n D �n.x; N0/ such that there exists some sequence
Nn D Nn.x; �n/ such that

lim
n!1

Z ˇ
ˇ
ˇ
ˇ

Z 1

0

@� NpNn

˛�nC.1�˛/�0
.x; y/d˛

ˇ
ˇ
ˇ
ˇ dy D 0: (8.14)

If Nn has a subsequence converging to infinity then as �n is a sequence in a compact
set there is also an accumulation point. In that case, the proof finishes as in the proof
of (i) by taking limits in n.

In the contrary if Nn is a bounded sequence then one obtains that there exists N 0
such that for all x; y 2 R,

NpN 0

��
.x; y/ D NpN 0

�0
.x; y/;

if �n ! �� 6D �0 or @� NpN 0

�0
.x; y/ D 0. ut



8 An Ornstein-Uhlenbeck-Type Process Which Satisfies Sufficient . . . 191

Example 5.1. (i). Here we give an example which satisfies the conditions in
Lemma 5.5 (i). If we assume that j@� b.�; x/j > c > 0 for all x 2 R and
@xb and @x� are bounded, then the assumption of Lemma 5.5 holds. In fact,
suppose without loss of generality that @� b�.x/ > c for all x 2 R, we have

@� Xx
t .�/ D "t

Z t

0

"�1
s @� b

	
�; Xx

s .�/



ds > c"t

Z t

0

"�1
s ds > 0 a:s:;

where set

"t D exp

� Z t

0

�

@xb
	
�; Xx

u .�/

�1

2
@x�

	
Xx

s .�/

2
�

du

C
Z t

0

@x�
	
Xx

u .�/



dWu

�

:

Therefore Xx
t .�/ is almost surely strictly increasing with respect to � .

Let Fx;� .y/ be the distribution function of Xx
�.�/:

Fx;� .y/ D
Z y

�1
p� .x; z/dz:

From the monotonicity of Xx
�.�/ and supp p� .x; �/ D R, we have Fx;� .y/ 6D

Fx;�0.y/ for all y 2 R and �.6D �0/. Therefore there exists some y 2 R such
that p� .x; y/ 6D p�0.x; y/.

(ii) Next we give an example which satisfies the conditions in Lemma 5.5(ii).
Here we consider the case �.x/ D � > 0 and assume that j@xb.�; x/j is
bounded by a positive constant M uniformly in � , and there exists some positive
constant c such that j@� b.�; x/j > c for all x 2 R. From Eq. (8.14), we have
limn!1

R 1

0 @� NpNn

˛�nC.1�˛/�0
.x; y/d˛ D 0 for all x; y 2 R. And we integrate

both sides from �1 to y with respect to the second variable to obtain

0 D
Z y

�1
lim

n!1

Z 1

0

@� NpNn

˛�nC.1�˛/�0
.x; z/d˛dz

D lim
n!1

Z 1

0

@�
NF Nn

x;˛�nC.1�˛/�0
.y/d˛; (8.15)

where set

NF N
x;� .y/ D

Z y

�1
NpN
� .x; z/dz:

Note that we have the following expression:

NF N
x;� .y/ D

Z y

�1
E
� QpN

� .x; hX C z/
�

dz D E
� QF N

x;� .hX C y/
�

D E
h
1
�
Xx

.m/.�/ � hX C y
�i

; (8.16)
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where X is a random variable with the standard normal distribution and QF N
x;� .y/ is

the distribution function for QpN
� .x; y/.

Set Xx
l .�/ D Xx

l
m

.�/ with the Euler–Maruyama approximation. From the above

assumptions (case @� b.�; x/ > c), we have

@� Xx
1 .�/ D @� b .�; x/ �t > c�t;

and if @� Xx
l .�/ > 0 and �t is small enough (e.g., 1 � @xb.�; Xx

l .�//�t > 0, i.e.,
1

M
> �t), then we have

@� Xx
lC1.�/ D @� Xx

l .�/ C ˚
@� b

	
�; Xx

l .�/

C @xb

	
�; Xx

l .�/



@� Xx
l .�/

�
�t > 0:

Finally by induction, we obtain @� Xx
.m/.�/ > 0.

From the expression of the distribution function and the above calculation, we
have, for all x; y 2 R and � 2 ‚,

@�
NF N
x;� .y/ D E

h
ıhXCy

�
Xx

.m/.�/
�

@� Xx
.m/.�/

i
> 0

Hence the conclusion follows as in (i).

6 Main Result

Finally by summing up all the hypotheses of the previous sections, and all the
verification of various hypotheses, we obtain the following consequence from
Theorem 3.1 in Kohatsu-Higa et al. [8].

Theorem 6.1. Assume hypothesis (H2), Assumptions 3.1, 3.2, and 3.3 with c1c2 >

2, and the assumptions in Lemma 5.5.
Let ˛1 > 0, ˛2 > 1

4
and m 2 N be such that ˛1 > 8˛2 C 1 C 4'2c2

�
and m �p

N , where number of the Monte–Carlo simulation n D C1N
˛1 and the bandwidth

size h D C2N
�˛2 , where C1 and C2 are positive constants. Assume that b.�; x/

is smooth and at most linear growth in x uniformly in � with bounded derivatives.
And assume that �.x/ is a smooth bounded function with bounded derivatives and
uniformly elliptic. Then for � small enough, there exist some positive finite random
variable „1 and „2 such that for f 2 C 1.‚/, we have

jEN Œf � � f .�0/j � „1p
N

a:s: and j OEn
N;mŒf � � f .�0/j � „2p

N
a:s:;

and therefore jEN Œf � � OEn
N;mŒf �j � „1C„2p

N
a.s.
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In fact, we remark that we are able to simplify the inequalities (8.7) and (8.8)
to the above ˛1 > 8˛2 C 1 C 4'2c2

�
since one can freely choose the constants

r3; r4; Pr4; Pr6, and Pq6 due to the existence of all moments associated with the
processes in the hypotheses (iii), (iv), (vi), (viii), and (ix). Remember that '2 is the
constant which was introduced in the lower bound of NpN

� in assumption (H1) and c1

is the constant related to the integrability condition in Assumption 3.3. Hence from
the assumptions c1c2 > 2 and ˛1 > 8˛2 C 1 C 4'2c2

�
, we can find that c1 and '2 are

connected through the parameter c2. Finally, the assumption ˛2 > 1
4

is needed as
the bandwidth h has to satisfy h2 < 1p

N
in Eq. (8.11) of Lemma 5.3.
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1 Introduction

Stochastic dynamical systems arise as mathematical models for complex phenom-
ena in biological, geophysical, physical, and chemical sciences, under random
fluctuations. A specific orbit (or trajectory) for such a system could vary wildly from
one realization to another, unlike the situation for deterministic dynamical systems.
It is desirable to have different concepts for quantifying stochastic dynamical
behaviors. The escape probability is such a concept.

Brownian motions are Gaussian stochastic processes and thus are appropriate
for modeling Gaussian random fluctuations. Almost all sample paths of Brownian
motions are continuous in time. For a dynamical system driven by Brownian
motions, almost all orbits (or paths or trajectories) are thus continuous in time. The
escape probability is the likelihood that an orbit, starting inside an open domainD,
exits this domain first through a specific part � of the boundary @D. This concept
helps understand various phenomena in sciences. One example is in molecular
genetics [23]. The frequency of collisions of two single strands of long helical
DNA molecules that leads to a double-stranded molecule is of interest and can
be computed by virtue of solving an escape probability problem. It turns out that
the escape probability satisfies an elliptic partial differential equation with properly
chosen boundary conditions [4, 16, 22, 23].

Non-Gaussian random fluctuations are widely observed in various areas such as
physics, biology, seismology, electrical engineering, and finance [14, 18, 26]. Lévy
motions are a large class of non-Gaussian stochastic processes whose sample paths
are discontinuous in time. For a dynamical system driven by Lévy motions, almost
all the orbits Xt are discontinuous in time. In fact, these orbits are càdlàg (right
continuous with left limit at each time instant), that is, each of these orbits has
countable jumps in time. Due to these jumps, an orbit could escape an open domain
without passing through its boundary. In this case, the escape probability is the
likelihood that an orbit, starting inside an open domainD, exits this domain first by
landing in a target domain U in Dc (the complement of domainD).

As we see, the escape probability is defined slightly differently for dynamical
systems driven by Gaussian or non-Gaussian processes. Although the escape
probability for the former has been investigated extensively, the characterization for
the escape probability for the latter has not been well documented as a dynamical
systems analysis tool for applied mathematics and science communities. See our
recent works [5,10] for numerical analysis of escape probability and mean exit time
for dynamical systems driven by symmetric ˛-stable Lévy motions.

In this paper, we carefully derive a partial differential–integral equation to be
satisfied by the escape probability for a class of dynamical systems driven by
Lévy motions, especially symmetric ˛-stable Lévy motions. Namely the escape
probability is a solution of a nonlocal differential equation. We highlight the
differences between escape probabilities for dynamical systems driven by Gaussian
and non-Gaussian processes. These are illustrated in a few examples.
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More precisely, let fXt; t > 0g be a R
d -valued Markov process defined on a

complete filtered probability space .�;F ; fFtgt>0;P/. LetD be an open domain in
R
d . Define the exit time

�Dc WD infft > 0 W Xt 2 Dcg;

where Dc is the complement of D in R
d . Namely, �Dc is the first time when Xt

hits Dc .
When Xt has almost surely continuous paths, that is, Xt is either a Brownian

motion or a solution process for a dynamical system driven by Brownian motions,
a path starting at x 2 D will hit Dc by hitting @D first (assume for the moment
that @D is smooth). Thus �Dc D �@D . Let � be a subset of the boundary @D. The
likelihood that Xt , starting at x, exits from D first through � is called the escape
probability fromD to � , denoted as p.x/. That is,

p.x/ D PfX�@D 2 �g:

We will verify that (Sect. 3.2) the escape probability p.x/ solves the following
Dirichlet boundary value problem:

� Lp D 0; x 2 D;
pj@D D  ;

(9.1)

where L is the infinitesimal generator of the process Xt and the boundary data  is
defined as follows:

 .x/ D
�
1; x 2 �;
0; x 2 @D n �:

When Xt has càdlàg paths which have countable jumps in time, that is, Xt could
be either a Lévy motion or a solution process of a dynamical system driven by Lévy
motions, the first hitting of Dc may occur somewhere in Dc . For this reason, we
take a subset U of Dc and define the likelihood that Xt exits firstly from D by
landing in the target set U as the escape probability from D to U , also denoted by
p.x/. That is,

p.x/ D PfX�Dc 2 U g:
We will demonstrate that (Sect. 3.4) the escape probability p.x/ solves the

following Balayage–Dirichlet boundary value problem:
�
Ap D 0; x 2 D;
pjDc D ';

(9.2)

where A is the characteristic operator of Xt and ' is defined as follows:

'.x/ D
�
1; x 2 U;
0; x 2 Dc n U:
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Therefore by solving a deterministic boundary value problem (9.1) or (9.2), we
obtain the escape probability p.x/.

This paper is arranged as follows. In Sect. 2, we introduce Balayage–Dirichlet
problem for discontinuous Markov processes and also define Lévy motions. The
main result is stated and proved in Sect. 3. In Sect. 4, we present analytic solutions
for escape probabilities in a few special cases.

2 Preliminaries

In this section, we recall basic concepts and results that will be needed throughout
the paper.

2.1 Balayage–Dirichlet Problem for Discontinuous
Markov Processes

The following materials are from [3, 6, 11, 15, 17, 24]. Let G be a locally compact
space with a countable base and G be the Borel �-field of G. Also, & is adjoined to
G as the point at infinity if G is noncompact and as an isolated point if G is compact.
Furthermore, let G& be the �-field of Borel sets of G& D G [ f&g.

Definition 2.1. A Markov process Y with state space .G;G / is called a Hunt
process provided:

(i) The path functions t ! Yt are right continuous on Œ0;1/ and have left-hand
limits on Œ0; �/ almost surely, where � WD infft W Yt D &g.

(ii) Y is strong Markov.
(iii) Y is quasi-left-continuous: whenever f�ng is an increasing sequence of Ft -

stopping times with limit � , then almost surely Y�n ! Y� on f� < 1g.

Definition 2.2. Let G be an open subset of G and Yt .x/ be a Hunt process starting
at x 2 G. A nonnegative function h defined on G is said to be harmonic with respect
to Yt in G if for every compact set K � G,

EŒh.Y�Kc .x//� D h.x/; x 2 G:

Definition 2.3. Let f be nonnegative on Gc . We say h defined on G solves the
Balayage–Dirichlet problem for G with “boundary value” f , denoted by .G; f /,
if h D f on Gc , h is harmonic with respect to Yt in G and further satisfies the
following boundary condition:

8z 2 @G; h.y/ ! f .z/; as y ! z from inside G:
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A point z 2 @G is called regular for Gc with respect to Yt.z/ if

Pf�Gc D 0g D 1:

Here G is said to be regular if any z 2 @G is regular for Gc .
Let � be a metric on G compatible with the given topology. Let IG be the family

of functions g > 0 bounded on G and lower semicontinuous inG such that 8x 2 G,
there is a number Ag.x/ satisfying

EŒg.Y�" .x//� � g.x/

EŒ�"�
! Ag.x/; as " # 0;

where �" WD infft > 0 W �.Yt.x/; x/ > "g. We call A with domain IG the
characteristic operator of Yt relative to G. If L with domain DG is the infinitesimal
generator of Yt relative to G, DG � IG , and

Af D Lf; f 2 DG:

(cf. [9])
We quote the following result about the existence and regularity of the solution

for the Balayage–Dirichlet problem.

Theorem 2.1 ([15]). Suppose that G is relatively compact and regular and f is
nonnegative and bounded on Gc . If f is continuous at any z 2 @G, then h.x/ D
EŒf .Y�Gc .x//� is the unique solution to the Balayage–Dirichlet problem .G; f /, and
Ah.x/ D 0 for h 2 IG .

2.2 Lévy Motions

Definition 2.4. A process Lt , with L0 D 0 a.s. is a d -dimensional Lévy process or
Lévy motion if:

(i) Lt has independent increments; that is, Lt � Ls is independent of Lv � Lu if
.u; v/\ .s; t/ D ;.

(ii) Lt has stationary increments; that is, Lt � Ls has the same distribution as
Lv � Lu if t � s D v � u > 0.

(iii) Lt is stochastically continuous.
(iv) Lt is right continuous with left limit.

The characteristic function for Lt is given by

E .expfihz; Lt ig/ D expft‰.z/g; z 2 R
d ;
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where h�; �i is the scalar product in R
d . The function ‰ W R

d ! C is called the
characteristic exponent of the Lévy process Lt . By the Lévy–Khintchine formula,
there exist a nonnegative definite d � d matrix Q, a measure 	 on R

d satisfying

	.f0g/ D 0 and
Z
Rd nf0g

.juj2 ^ 1/	.du/ < 1;

and 
 2 R
d such that

‰.z/ D ihz; 
i � 1

2
hz;Qzi C

Z
Rd nf0g

�
eihz;ui � 1 � ihz; ui1juj�1

�
	.du/: (9.3)

The measure 	 is called the Lévy measure of Lt ,Q is the diffusion matrix, and 
 is
the drift vector.

We now introduce a special class of Lévy motions, that is, the symmetric ˛-stable
Lévy motions L˛t .

Definition 2.5. For ˛ 2 .0; 2/, a d -dimensional symmetric ˛-stable Lévy motion
L˛t is a Lévy process with characteristic exponent

‰.z/ D �C jzj˛; z 2 R
d ; (9.4)

where

C D ��1=2 �..1C ˛/=2/�.d=2/

�..d C ˛/=2/
:

(cf. [21, p. 115] for the above formula of C .)

Thus, for a d -dimensional symmetric ˛-stable Lévy motion L˛t , the diffusion
matrixQ D 0, the drift vector 
 D 0, and the Lévy measure 	 is given by

	.du/ D Cd;˛

jujdC˛ du;

where

Cd;˛ D ˛�..d C ˛/=2/

21�˛�d=2�.1 � ˛=2/ :

(cf. [7, p. 1312] for the above formula of Cd;˛.) Moreover, comparing Eq. (9.4) with
Eq. (9.3), we obtain

�C jzj˛ D
Z
Rdnf0g

�
eihz;ui � 1 � ihz; ui1juj�1

� Cd;˛

jujdC˛ du:

Let C0.Rd / be the space of continuous functions f on R
d satisfying

lim
jxj!1

f .x/ D 0 with norm kf kC0.Rd / D sup
x2Rd

jf .x/j. Let C20.Rd / be the set of
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f 2 C0.Rd / such that f is two times differentiable and the first and second order
partial derivatives of f belong to C0.Rd /. Let C1

c .R
d / stand for the space of all

infinitely differentiable functions on R
d with compact supports. Define

.L˛f /.x/ WD
Z
Rd nf0g

�
f .x C u/� f .x/ � h@xf .x/; ui1juj�1

� Cd;˛

jujdC˛ du

on C20.Rd /. And then for � 2 R
d

.L˛eih�;�i/.x/ D eihx;�i
Z
Rd nf0g

�
eihu;�i � 1 � ih�; ui1juj�1

� Cd;˛

jujdC˛ du:

By Courrège’s second theorem [1, Theorem 3.5.5, p. 183], for every f 2 C1
c .R

d /

.L˛f /.x/

D 1

.2�/d=2

Z
Rd

eihz;xi h
e�ihx;zi.L˛eih�;zi/.x/

i Of .z/dz

D 1

.2�/d=2

Z
Rd

eihz;xi
�Z

Rdnf0g
�
eihu;zi � 1 � ihz; ui1juj�1

� Cd;˛

jujdC˛ du

�
Of .z/dz

D � C

.2�/d=2

Z
Rd

eihz;xijzj˛ Of .z/dz

D C � Œ�.�
/˛=2f �.x/:

Set pt WD Lt � Lt�. Then pt defines a stationary .Ft /-adapted Poisson point
process with values in R

d n f0g [12]. And the characteristic measure of p is the
Lévy measure 	. Let Np..0; t �; du/ be the counting measure of pt , that is, for B 2
B.Rd n f0g/

Np..0; t �; B/ WD #f0 < s � t W ps 2 Bg;
where # denotes the cardinality of a set. The compensator measure ofNp is given by

QNp..0; t �; du/ WD Np..0; t �; du/� t	.du/:

The Lévy–Itô theorem states that for a symmetric ˛-stable process Lt :

1. For 1 � ˛ < 2,

Lt D
Z t

0

Z
juj�1

u QNp.ds; du/C
Z t

0

Z
juj>1

uNp.ds; du/:

2. For 0 < ˛ < 1,

Lt D
Z t

0

Z
Rd nf0g

uNp.ds; du/:
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3 Boundary Value Problems for Escape Probability

In this section, we formulate boundary value problems for the escape probability
associated with Brownian motions, SDEs driven by Brownian motions, Lévy
motions, and SDEs driven by Lévy motions. For Lévy motions, in particular, we
consider symmetric ˛-stable Lévy motions. We will see that the escape probability
can be found by solving deterministic partial differential equations or partial
differential–integral equations, with properly chosen boundary conditions.

3.1 Boundary Value Problem for Escape Probability
of Brownian Motions

Suppose that a particle executes an unbiased random walk on a straight line. Let
D D .a; b/. Figure 9.1 shows the random walk scenario. That is, a particle moves
according to the following rules [16]:

1. During the passage of a certain fixed time interval, a particle takes 1 step of a
certain fixed length ı along the x axis.

2. It is equally probable that the step is to the right or to the left.

If the particle starting from x 2 D eventually escapes D by crossing the
boundary b, then it must have moved to one of the two points adjacent to x first
and then crossed the boundary. Thus

p.x/ D 1

2
Œp.x � ı/C p.x C ı/�;

for x 2 D. By Taylor expansion on the right-hand side to the second order, we have

1

2
p00.x/ D 0:

The boundary conditions are

lim
x!b

p.x/ D 1; lim
x!a

p.x/ D 0;

since the nearer the particle starts to b, the more likely it will first cross the boundary
through b.

a bD x − δ x x + δ

Fig. 9.1 A particle executing
unbiased random walk in a
bounded interval
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Note that the limit of the random walk is a standard Brownian motion Wt ,
that is:

1. W has independent increments.
2. For 0 < s < t , Wt � Ws is a Gaussian random variable with mean zero and

variance .t � s/.

Thus, the escape probability p.x/ of a standard Brownian motion from D through
the boundary b satisfies 8<

:
1
2

p.x/ D 0;

p.b/ D 1;

p.a/ D 0;

where 1
2

 D 1

2
@xx is the infinitesimal generator for a scalar standard Brownian

motionWt .

3.2 Boundary Value Problem for Escape Probability of SDEs
Driven by Brownian Motions

Some results in this section can be found in [19, Chap. 9].
Let fW.t/gt>0 be an m-dimensional standard Ft -adapted Brownian motion.

Consider the following stochastic differential equation (SDE) in R
d :

Xt.x/ D x C
Z t

0

b.Xs.x// ds C
Z t

0

�.Xs.x// dWs: (9.5)

We make the following assumptions about the drift b W Rd 7! R
d and the diffusion

coefficient � W Rd 7! R
d � R

m:

(H1
b;� )

jb.x/� b.y/j � �.jx � yj/;
j�.x/ � �.y/j � 
.jx � yj/:

Here � and 
 are increasing concave functions with the properties �.0/ D

.0/ D 0, and

R
0C

1
�.u/du D R

0C
1


2.u/
du D 1.

Under (H1
b;� ), it is well known that there exists a unique strong solution to

Eq. (9.5) ([27]). This solution is denoted by Xt.x/.
We also make the following assumption.

(H2
� ) There exists a � > 0 such that for any x; y 2 D

hy; ���.x/yi > �jyj2:
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x

Γ
D

Fig. 9.2 Escape probability
for SDEs driven by Brownian
motions: an annular open
domain D with a subset � of
its boundary @D

This condition guarantees that the infinitesimal generator

L WD
dX
iD1

bi .x/
@

@xi
C

dX
i;jD1

aij .x/
@2

@xi @xj

for Eq. (9.5) is uniformly elliptic in D, since then the eigenvalues of ��� are
away from 0 in D. Here the matrix Œaij � WD 1

2
�.x/��.x/.

Let D be an open annular domain as in Fig. 9.2. In one-dimensional case, it is
just an open interval. Let � be its inner (or outer) boundary. Taking

 .x/ D
�
1; x 2 �;
0; x 2 @D n �; (9.6)

we have

EŒ .X�@D .x//� D
Z

f!WX�@D .x/2�g
 .X�@D .x//dP.!/

C
Z

f!WX�@D .x/2@Dn�g
 .X�@D .x//dP.!/

D Pf! W X�@D .x/ 2 �g
D p.x/:

This means that, for this specific  , EŒ .X�@D .x//� is the escape probability p.x/,
which we are looking for.

We need to use [19, Theorem 9.2.14] or [8] in order to see that the escape
probability p.x/ is closely related to a harmonic function with respect to Xt . This
requires that the boundary data  to be bounded and continuous on @D. For the
domain D taken as in Fig. 9.2, with � the inner boundary (or outer) boundary, the
above chosen  in Eq. (9.6) is indeed bounded and continuous on @D. Thus, we
have the following result by [19, Theorem 9.2.14].
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xa bD x+y

Fig. 9.3 A particle executing
Lévy motion in a bounded
interval

Theorem 3.1. The escape probability p.x/ from an open annular domain D to its
inner (or outer) boundary � , for the dynamical system driven by Brownian motions
(9.5), is the solution to the following Dirichlet boundary value problem:

8<
:

Lp D 0;

pj� D 1;

pj@Dn� D 0:

3.3 Boundary Value Problem for Escape Probability
of Symmetric ˛-Stable Lévy Motions

Assume a particle is taking a one-dimensional Lévy flight, where the distribution of
step sizes is a symmetric ˛-stable distribution (Fig. 9.3). Let p.x/ denote the escape
probability of the particle starting at x in D D .a; b/ and then first escapes D over
the right boundary b. It could first move to somewhere inside D, say x C y 2 D,
and then achieve its goal by jumping over the right boundary b from the new starting
point x C y. More precisely,

p.x/ D
Z
Rnf0g

P fthe first step length is ygp.x C y/dy: (9.7)

According to [2], the symmetric ˛-stable probability density function is the
following:

f˛;0.y/ D
8<
:

� 1
�

P1
kD1

.�1/k
kŠ

�.˛kC1/
yjyj˛k sinŒk. ˛�

2
� ˛ argy/�; 0 < ˛ < 1;

1
�

P1
kD0.�1/k �.

kC1
˛ /

kŠ˛
yk cosŒk.�

2
/�; 1 < ˛ < 2;

where argy D � when y < 0.
For 0 < ˛ < 2, the asymptotic expansion has also been given by [2] as follows:

f˛;0.y/ D
8<
:

� 1
�

Pn
kD1

.�1/k
kŠ

�.˛kC1/
yjyj˛k sin

�
k. ˛�2 �˛ arg y/

� Co.jyj�˛.nC1/�1/; jyj!1;

1
�

Pn
kD0.�1/k �.

kC1
˛ /

kŠ˛
yk cos

�
k.�2 /

� C o.jyjnC1/; jyj ! 0;

D
(
C1.˛/=jyj1C˛ C o.jyj�2˛�1/; jyj ! 1;

C2.˛/C o.jyj2/; jyj ! 0;
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where C1.˛/ D 1
�

sin.�˛
2
/�.1 C ˛/ and C2.˛/ D 1

�

�.1=˛/

˛
. Take N > 0 large

enough and fix it. Thus,

0 D
Z
Rnf0g

f˛;0.y/Œp.x C y/� p.x/�dy

D
Z
.�N;N/nf0g

f˛;0.y/Œp.x C y/� p.x/�dy

C
Z
Rn.�N;N/

f˛;0.y/Œp.x C y/ � p.x/�dy

DW I1 C I2:

For I1, by self-affine property in [25], we obtain

I1 D
Z
.�N;N/nf0g

f˛;0

	
N � y

N



Œp.x C y/ � p.x/�dy

D
Z
.�N;N/nf0g

f˛;0.N /

.jyj=N/1C˛ Œp.x C y/ � p.x/�dy

D
Z
.�N;N/nf0g

C1.˛/

N 1C˛.jyj=N/1C˛ Œp.x C y/ � p.x/�dy

D
Z
.�N;N/nf0g

C1.˛/

jyj1C˛ Œp.x C y/ � p.x/�dy: (9.8)

For I2, we calculate

I2 D
Z 1

N

f˛;0.y/Œ1 � p.x/�dy C
Z �N

�1
f˛;0.y/Œ0 � p.x/�dy

D
Z 1

N

�
C1.˛/

y1C˛
C o

�
1

y1C2˛

��
Œ1 � p.x/�dy

�
Z �N

�1

�
C1.˛/

.�y/1C˛ C o

�
1

.�y/1C2˛
��
p.x/dy

D
Z 1

N

C1.˛/

y1C˛
dy �

Z
RnŒ�N;N �

C1.˛/

jyj1C˛ p.x/dy

D
Z
RnŒ�N;N �

C1.˛/p.x C y/

jyj1C˛ dy �
Z
RnŒ�N;N �

C1.˛/

jyj1C˛ p.x/dy: (9.9)

Note that for 0 < ˛ < 1, by the fact that the integral of an odd function on a
symmetric interval is zero, it holds that

Z
Rnf0g

p0.x/yIfjyj�1g
C1.˛/

jyj1C˛ dy D p0.x/C1.˛/
Z

fjyj�1gnf0g
y

jyj1C˛ dy D 0: (9.10)
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Thus, putting Eqs. (9.8), (9.9), and (9.10) together, we have for 0 < ˛ < 1

Z
Rnf0g

�
p.x C y/ � p.x/ � p0.x/yIfjyj�1g

� C1.˛/
jyj1C˛ dy D 0:

Moreover, C1.˛/ D C1;˛ .
For ˛ 2 Œ1; 2/, we only divide I1 into two parts I11 and I12, where

I11 WD
Z

fjyj�%gnf0g
f˛;0.y/Œp.x C y/� p.x/�dy;

I12 WD
Z
.�N;N/n.�%;%/

f˛;0.y/Œp.x C y/ � p.x/�dy;

and % > 0 is a small enough constant.
For I11, by Taylor expansion and self-affine property in [23], we get

Z
fjyj�%gnf0g

f˛;0.y/Œp.x C y/ � p.x/�dy

D
Z

fjyj�%gnf0g
f˛;0.

1

%
� %y/p0.x/ydy

D
Z

fjyj�%gnf0g

f˛;0.
1
%
/

.%jyj/1C˛ p
0.x/ydy

D
Z

fjyj�%gnf0g
C1.˛/

. 1
%
/1C˛ � .%jyj/1C˛ p

0.x/ydy

D
Z
Rnf0g

p0.x/yIfjyj�%g
C1.˛/

jyj1C˛ dy:

For I12, we apply the same technique as that in dealing with I1 for ˛ 2 .0; 1/.
Next, by the similar calculation to that for ˛ 2 .0; 1/, we obtain for ˛ 2 Œ1; 2/

Z
Rnf0g

�
p.x C y/� p.x/ � p0.x/yIfjyj�1g

� C1.˛/dy
jyj1C˛ D 0:

Since the limit of the Lévy flight is a symmetric ˛-stable Lévy motion L˛t , the
escape probability p.x/ of a symmetric ˛-stable Lévy motion, from D to Œb;1/

satisfies

8<
:

�.�
/˛2 p.x/ D 0;

p.x/jŒb;1/ D 1;

p.x/j.�1;a� D 0:
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Note that �.�
/˛2 is the infinitesimal generator for a scalar symmetric ˛-stable
Lévy motion L˛t .

3.4 Boundary Value Problem for Escape Probability of SDEs
Driven by General Lévy Motions

Let Lt be a Lévy process independent of Wt . Consider the following SDE in R
d :

Xt.x/ D x C
Z t

0

b.Xs.x// ds C
Z t

0

�.Xs.x// dWs C Lt : (9.11)

Assume that the drift b and the diffusion � satisfy the following conditions:

(Hb) There exists a constant Cb > 0 such that for x; y 2 R
d

jb.x/� b.y/j � Cbjx � yj � log.jx � yj�1 C e/:

(H� ) There exists a constant C� > 0 such that for x; y 2 R
d

j�.x/ � �.y/j2 � C� jx � yj2 � log.jx � yj�1 C e/:

Under (Hb) and (H� ), it is well known that there exists a unique strong solution
to Eq. (9.11) (see [20]). This solution will be denoted by Xt.x/. Moreover,Xt.x/ is
continuous in x.

Lemma 3.1. The solution process Xt.x/ of the SDE (9.11) is a strong Markov
process.

Proof. Let � be a .Ft /t>0-stopping time. Set

Gt WD �fW�Ct �W�;L�Ct � L�g [ N ; t > 0;

where N is of all P -zero sets. That is, Gt is a completed �-algebra generated by
W�Ct � W� and L�Ct � L�. Besides, Gt is independent of Ft . Let X.x; �; � C t/

denote the unique solution of the following SDE:

X.x; �; �Ct/ D xC
Z �Ct

�

b.X.x; �; s// dsC
Z �Ct

�

�.X.x; �; s// dWsCL�Ct �L�:
(9.12)

Moreover, X.x; �; � C t/ is Gt -measurable and X.x; 0; t/ D Xt.x/. By the
uniqueness of the solution to Eq. (9.12), we have

X.x; 0; �C t/ D X.X.x; 0; �/; �; �C t/; a:s::
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For any bounded measurable function g,

EŒg.X�Ct .x//jF�� D EŒg.X.x; 0; �C t//jF��

D EŒg.X.X.x; 0; �/; �; �C t//jF��

D EŒg.X.y; �; �C t//�jyDX.x;0;�/
D EŒg.X.y; 0; t//�jyDX.x;0;�/: (9.13)

Here the last equality holds because the distribution of X.y; �; �C t/ is the same to
that of X.y; 0; t/. The proof is completed since Eq. (9.13) implies that

EŒg.X�Ct .x//jF�� D EŒg.X�Ct .x//jX�.x/�: ut
Because Lt has càdlàg and quasi-left-continuous paths ([21]), Xt.x/ also has

càdlàg and quasi-left-continuous paths. Thus by Lemma 3.1 and Definition 2.1, we
see that Xt.x/ is a Hunt process. Let D be a relatively compact and regular open
domain (Fig. 9.4 or Fig. 9.5). Theorem 2.1 implies that EŒ'.X�Dc .x//� is the unique
solution to the Balayage–Dirichlet problem .D; '/, under the condition that ' is
nonnegative and bounded on Dc . Set

'.x/ D
�
1; x 2 U;
0; x 2 Dc n U:

Then ' is nonnegative and bounded onDc . We observe that

EŒ'.X�Dc .x//� D
Z

f!WX�Dc .x/2U g
'.X�Dc .x//dP.!/

C
Z

f!WX�Dc .x/2DcnU g
'.X�Dc .x//dP.!/

D Pf! W X�Dc .x/ 2 U g
D p.x/:

This means that, for this specific ', EŒ'.X�Dc .x//� is the escape probability p.x/
that we are looking for. By the definition of the characteristic operator, p 2 ID , and
by Theorem 2.1, Ap.x/ D 0. Thus we obtain the following theorem.

Theorem 3.2. Let D be a relatively compact and regular open domain, and let U
be a set in Dc . Then the escape probability p.x/, for the dynamical system driven
by Lévy motions (9.11), from D to U , is the solution of the following Balayage–
Dirichlet problem: 8<

:
Ap D 0;

pjU D 1;

pjDcnU D 0;
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D

x

U

Fig. 9.4 Escape probability
for SDEs driven by Lévy
motions: an open annular
domain D, with its inner part
U (which is in Dc) as a target
domain

D

x

U

Fig. 9.5 Escape probability
for SDEs driven by Lévy
motions: a general open
domain D, with a target
domain U in Dc

where A is the characteristic operator for this system.

Remark 3.1. Unlike the SDEs driven by Brownian motions, a typical open domain
D here could be a quite general open domain (Fig. 9.5), as well as an annular domain
(Fig. 9.4). This is due to the jumping properties of the solution paths. It is also due
to the fact that, in Theorem 2.1, the function f is only required to be continuous on
the boundary @D (not on the domainDc).

Finally we consider the representation of the characteristic operator A, for an
SDE driven by a symmetric ˛-stable Lévy process L˛t , with ˛ 2 .0; 2/:

Xt.x/ D x C
Z t

0

b.Xs.x// ds C
Z t

0

�.Xs.x// dWs C L˛t : (9.14)

Let us first consider the case of 1 � ˛ < 2. For f 2 C20.Rd /, applying the Itô
formula to f .X�".x//, we obtain
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f .X�".x// � f .x/ D
Z �"

0

h@yf .Xs/; b.Xs/ids C
Z �"

0

h@yf .Xs/; �.Xs/dWsi

C
Z �"

0

Z
juj�1

.f .Xs C u/� f .Xs// QNp.ds; du/

C
Z �"

0

Z
juj>1

.f .Xs C u/� f .Xs//Np.ds; du/

C1

2

Z �"

0

�
@2

@yi@yj
f .Xs/

�
�ik.Xs/�kj .Xs/ds

C
Z �"

0

Z
juj�1

�
f .Xs C u/� f .Xs/

�h@yf .Xs/; ui� Cd;˛

jujdC˛ duds:

Here and hereafter, we use the convention that repeated indices imply summation
from 1 to d . Taking expectation on both sides, we get

EŒf .X�" .x//� � f .x/

D E

Z �"

0

h@yf .Xs/; b.Xs/ids C 1

2
E

Z �"

0

�
@2

@yi@yj
f .Xs/

�
�ik.Xs/�kj .Xs/ds

CE

Z �"

0

Z
Rdnf0g

�
f .Xs C u/� f .Xs/� h@yf .Xs/; ui� Cd;˛

jujdC˛ duds:

The infinitesimal generator L of Eq. (9.11) is as follows [1]:

.Lf /.x/ D h@xf .x/; b.x/i C 1

2

�
@2

@xi@xj
f .x/

�
�ik.x/�kj .x/

C
Z
Rd nf0g

.f .x C u/� f .x/ � h@xf .x/; ui/ Cd;˛

jujdC˛ du:

So,

ˇ̌
ˇ̌EŒf .X�" .x//� � f .x/

EŒ�"�
� .Lf /.x/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌̌E R �"

0
.Lf /.Xs/ds
EŒ�"�

� E
R �"
0
.Lf /.x/ds
EŒ�"�

ˇ̌
ˇ̌̌

� E
R �"
0

j.Lf /.Xs/ � .Lf /.x/jds
EŒ�"�

� sup
jy�xj<"

j.Lf /.y/ � .Lf /.x/j:
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Because .Lf /.x/ is continuous in x,

Af .x/ D lim
"#0

EŒf .X�" .x//� � f .x/

EŒ�"�
D .Lf /.x/:

Similarly, we also have A D L for 0 < ˛ < 1.

Remark 3.2. The above deduction tells us Af D Lf for f 2 C20.Rd /. If the
considered driving process is not a symmetric ˛-stable Lévy motion, the domain
of L is unclear and thus A D L may not be true. The corresponding escape
probability p.x/ is the solution of the following Balayage–Dirichlet problem (in
terms of operator L, instead of A):

8<
:

Lp D 0;

pjU D 1;

pjDcnU D 0:

4 Examples

In this section we consider a few examples.

Example 4.1. In one-dimensional case, take D D .�r; r/ and � D frg. For each
x 2 D, the escape probability p.x/ of Xt D x C Wt from D to � satisfies the
following differential equation:

8<
:

1
2
p00.x/ D 0; x 2 .�r; r/;
p.r/ D 1;

p.�r/ D 0:

We obtain that p.x/ D xCr
2r

for x 2 Œ�r; r�. It is a straight line (see Fig. 9.6).
In two-dimensional case, take D D fx 2 R

2I r < jxj < Rg and � D fx 2
R
2I jxj D rg. For every x 2 D, the escape probability p.x/ of Xt D x CWt from

D to � satisfies the following elliptic partial differential equation:

8<
:

1
2

p.x/ D 0; x 2 D;
p.x/jjxjDr D 1;

p.x/jjxjDR D 0:

By solving this equation, we obtain that p.x/ D logR�log jxj
logR�log r . It is plotted in Fig. 9.7.

Example 4.2. Consider the following SDE driven by Brownian motions:

dXt D b.Xt/dt C �.Xt /dWt ;
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Fig. 9.6 Escape probability
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for two-dimensional
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where b and (nonzero) � are real functions. When b and � satisfy (H1
b;� ), the

equation has a unique solution which is denoted as Xt . We take D D .�r; r/ and
� D frg. For each x 2 D, under the condition (H2

� ), the escape probability p.x/
satisfies 8<

:
1
2
�2.x/p

00

.x/C b.x/p
0

.x/ D 0; x 2 .�r; r/;
p.r/ D 1;

p.�r/ D 0:
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Fig. 9.8 Escape probability
in Example 4.2:
b.x/ D �x; �.x/D 1; r D 2

The solution is

p.x/ D
R x

�r e
�2 R y

�r
b.z/
�2.z/

dz
dy

R r
�r e

�2 R y
�r

b.z/
�2.z/

dz
dy

for x 2 Œ�r; r�. See Fig. 9.8.

Example 4.3. In one-dimensional case, takeD D .�r; r/ andU D Œr;1/. For each
x 2 D and a symmetric ˛-stable Lévy process L˛t , the escape probability p.x/ of
Xt D x C L˛t from D to U satisfies the following differential–integral equation:

8<
:

�.�
/˛2 p.x/ D 0; x 2 .�r; r/;
p.x/jŒr;1/ D 1;

p.x/j.�1;�r� D 0:

It is difficult to deal with this equation because of the fractional Laplacian operator.
But we can solve it via Poisson kernel. From [13], for x 2 .�r; r/,

p.x/ D sin �˛
2

�

Z 1

r

.r2 � x2/˛=2

.y2 � r2/˛=2
1

.y � x/
dy:

Obviously, p.�r/ D 0. To justify p.r/ D 1, we apply the substitution y D
.r2 � xv/.x � v/�1 to obtain

p.r/ D sin �˛
2

�

Z r

�r
.r � v/˛�1.r2 � v2/�

˛
2 dv

D sin �˛
2

�

Z 1

0

.1 � v/
˛
2 �1v1�

˛
2 �1dv
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D sin �˛
2

�
B

	˛
2
; 1 � ˛

2




D sin �˛
2

�
�

	˛
2



�

	
1 � ˛

2




D 1;

where the beta and gamma functions and their properties are used in the last two
steps. The escape probability p.x/ is plotted in Fig. 9.9 for various ˛ values.

Acknowledgment We have benefited from our previous collaboration with Ting Gao, Xiaofan
Li, and Renming Song. We thank Ming Liao, Renming Song, and Zhen–Qing Chen for helpful
discussions. This work was done while Huijie Qiao was visiting the Institute for Pure and Applied
Mathematics (IPAM), Los Angeles. This work is partially supported by the NSF of China (No.
11001051 and No. 11028102) and the NSF grant DMS-1025422.

References
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H.: Lévy flights in random searches. Physica A 282, 1–12 (2000)
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Chapter 10
On the Stochastic Navier–Stokes Equation
Driven by Stationary White Noise

Chia Ying Lee and Boris Rozovskii

Abstract We consider an unbiased approximation of stochastic Navier–Stokes
equation driven by spatial white noise. This perturbation is unbiased in that the
expectation of a solution of the perturbed equation solves the deterministic Navier–
Stokes equation. The nonlinear term can be characterized as the highest stochastic
order approximation of the original nonlinear term uru. We investigate the analyt-
ical properties and long-time behavior of the solution. The perturbed equation is
solved in the space of generalized stochastic processes using the Cameron–Martin
version of the Wiener chaos expansion and generalized Malliavin calculus. We also
study the accuracy of the Galerkin approximation of the solutions of the unbiased
stochastic Navier–Stokes equations.

Received 12/12/2011; Accepted 5/10/2012; Final 5/26/2012

1 Introduction

Stochastic perturbations of the Navier–Stokes equation have received much at-
tention over the past few decades. Among the early studies of the stochastic
Navier–Stokes equations are those by Bensoussan and Temam [1], Foias et al.
[4–6], and Flandoli [7, 8]. Traditionally, the types of perturbations that were
proposed include stochastic forcing by a noise term such as a Gaussian random
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field or a cylindrical Wiener process and are broadly accepted as a natural way
to incorporate stochastic effects into the system. The stochastic Navier–Stokes
equation

ut C uiuxi C rP D ��u C f .t; x/C �
�i .t; x/uxi C g.t; x/

� PW .t; x/;
div u � 0;

u.0; x/ D w.x/; uj@D D 0 (10.1)

is underpinned by a familiar physical basis, because it can be derived from Newton’s
second law via the fluid flow map, using a particular assumption on the stochasticity
of the governing SODE of the flow map, known as the Kraichnan turbulence. (See
[12, 13] and the references therein.) However, due to the nonlinearity, stochastic
Navier–Stokes equation (10.1) is a biased perturbation of the underlying determin-
istic Navier–Stokes equation. That is, the mean of the solution of the stochastic
equation does not coincide with the solution of the underlying deterministic
Navier–Stokes equation. Of course, this observation is also true for other nonlinear
equations such as the stochastic Burgers equation and Ginzburg–Landau equation.
In fact, the mean of Eq. (10.1) solves the famous Reynolds equation.

An unbiased version of stochastic Navier–Stokes equation (10.1)

ut C ui ˘ uxi C rP D ��u C f .t; x/C �
�i .t; x/uxi C g.t; x/

� PW .t; x/;
div u � 0;

u.0; x/ D w.x/; uj@D D 0: (10.2)

has been introduced and studied in Eq.[14]. The unbiased version, Eq. (10.2) differs
from Eq. (10.1) by the nonlinear term: the product uiuxi is replaced by the Wick
product ui ˘ uxi . In fact, Wick product ui ˘ uxi can be interpreted as Malliavin
integral of uxi with respect to u (see [11]). An important property of Wick product
is that

EŒui ˘ uxi � D Eui Euxi : (10.3)

Due to this property, stochastic Navier–Stokes equation (10.2) with Wick nonlinear-
ity is an unbiased perturbation of stochastic Navier–Stokes equation (10.1). In the
future, we will refer to unbiased perturbations of stochastic Navier–Stokes equation
as unbiased stochastic Navier–Stokes equation.

In this paper we will study an unbiased stochastic Navier–Stokes equations on an
open bounded smooth domainD 2 R

d , d D 2; 3, driven by purely spatial noise. In
particular, we will study equation

ut C ui ˘ uxi C rP D ��u C f .t; x/C �
�i .x/uxi C g.t; x/

� ˘ PW .x/;
div u � 0;

u.0; x/ D w.x/; uj@D D 0; (10.4)

where the diffusivity constant is � > 0 and the functions f; g; � are given
deterministic Rd -valued functions. Here, the driving noise PW .x/ D P

k ul .x/�l is a
stationary Gaussian white noise on L2.D/, and we assume that supl kulkL1 < 1.
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We will also study the stationary (elliptic) version of Eq. (10.4)

Nui ˘ Nuxi C r NP D ��Nu C Nf .x/C � N�i .x/Nuxi C Ng.x/� ˘ PW .x/;
div Nu � 0;

Nuj@D D 0; (10.5)

where Nf .x/; Ng.x/; N�.x/ are given deterministic R
d -valued functions. It will be

shown that u .t; x/ ! Nu .x/ as t ! 1.
Solutions of Eqs. (10.4) and (10.5) will be defined by their respective Wiener

chaos expansions:

u .t; x/ D
X

˛

u˛ .t; x/ �˛ and Nu .x/ D
X

˛

Nu˛ .x/ �˛; (10.6)

where f�˛; ˛ 2 J g is the Cameron–Martin basis generated by PW .x/, v˛ WD E .v�˛/,
and J is the set of multi-indices ˛ D f˛k; k � 1g such that for every k; ˛k 2
N0.N0D f0; 1; 2; : : :g/ and j˛j D P

k ˛k < 1: It will be shown that Wiener chaos
coefficients u˛ .t; x/ and Nu˛ .x/ solve lower triangular systems of deterministic
equations. We will refer to these systems as propagators of u˛ .t; x/ and Nu˛ .x/,
respectively.

In fact, Eqs. (10.4) and (10.5) could be viewed as the highest stochastic order
approximations of similar equations with standard nonlinearities uiuxi and Nui Nuxi ,
respectively. Indeed, it was shown in [14] that under certain natural assumptions,
the following equality holds:

vrv D
1X

nD0

Dnv˙Dnrv

nŠ
(10.7)

where Dn is the nth power of Malliavin derivative D D D PW . Taking into account
expansion (10.7),

vrv�v˙rv: (10.8)

This approximation is the highest stochastic order approximation of vrv in that
v˙rv contains the highest-order Hermite polynomials of the driving noise, while
the remaining terms of the right hand side of Eq. (10.7) include only lower-
order elements of the Cameron–Martin basis. This fact could be illustrated by the
following simple fact:

�˛�ˇ D �˛Cˇ C
X

�<˛Cˇ
k��� ;

where k� are constants.
As a side note, we remark that in comparison, the usual stochastic Navier–

Stokes equation has a propagator system that is a full system of equations which,
comparatively, is a much tougher beast to tackle. Additionally, apart from the
zero-th chaos mode which, being the mean, solves the deterministic Navier–
Stokes equation, all higher modes in the propagator system solve a linearized
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Stokes equation. Thus, where a result is known for the deterministic Navier–Stokes
equation, it is sometimes the case that an analogous result may be shown for the
unbiased approximation of the stochastic Navier-Stokes equation. For instance, the
existence of a unique stationary solution of Eq. (10.5) requires the same condition
on the largeness of the viscosity � as does the existence of a unique steady solution
of the deterministic equation (10.13a).

There is substantial theory on the steady solutions of the deterministic Stokes and
Navier–Stokes equations, the long-time convergence of a time-dependent solution
to the steady solution, as well as other dynamical behavior of the solution. In
the subsequent sections, we begin to study some of these same questions for the
unbiased Navier–Stokes equation, focusing on the large viscosity case where the
uniqueness of steady solutions and long-time convergence has been established
in the deterministic setting. We will study the existence of a unique stationary
solution of Eq. (10.5) as well as the existence of a unique time-dependent solution of
Eq. (10.4) on a finite time interval. The Wiener chaos expansion and the propagator
system will be the central tool in obtaining a generalized solution, but to place
the solution in a Kondratiev space involves a useful result invoking the Catalan
numbers. The Catalan numbers arise naturally from the convolution of the Wiener
chaos modes in the nonlinear term. It was used to study the Wick versions of the
stochastic Burgers [10] and Navier–Stokes [14] equations.

2 Generalized Random Variables and Functional Analytic
Framework

To study Eqs. (10.4) and (10.5), we will give the basic definitions for the generalized
stochastic spaces that will be used. The definitions of the generalized solution will
be defined in the variational/weak sense such as described in [15, 16], and before
stating those definitions, we first state some standard notation and facts about the
vector spaces.

Let d D 2; 3 be the dimension. Denote the vector spaces L
2.D/ D .L2.D//d

with the norm j � j and H
m.D/ D .Hm.D//d with the norm k � kHm . Denote the

following spaces:

V WD fv 2 .C1
0 .D//

d W div v D 0g:
V WD closure of V in the H1

0.D/ norm � fu 2 H
1
0.D/ W div u D 0g:

H WD closure of V in the L2.D/ norm:

V 0 WD dual space of V w.r.t. inner product in H:

Also denote the norms in V and V 0 by k � kV and k � kV 0 , respectively. In particular,
we have k � kV WD jr � j.
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The operator1 �� onH , defined on the domain dom.��/, is symmetric positive
definite and thus defines a norm j � j2 via j � j2 D j� � j, which is equivalent to the
norm kwkH2 . For m > 0, the spaces Vm WD dom..��/m=2/ are closed subspaces of
H
m.D/ with the norms j � jm D j.��/m=2 � j. In this paper, we will commonly use

m D 1=2; 3=2, and 2. Note that j � j1 D k � kV and the norms j � jm and k � kHm are
equivalent. We thus have a constant c1 so that

c1kwk2
H1 � jwj21 � 1

c1
kwk2

H1 ; for all w 2 V:

Denote �1 > 0 to be the smallest eigenvalue of ��; then we have a Poincaré
inequality

�1jvj2 � kvk2V ; for v 2 V: (10.9)

Define the trilinear continuous form b on V � V � V by

b.u; v;w/ D
Z

D

uk@xkvjwj dx

and the mapping B W V � V ! V 0 by

hB.u; v/;wi D b.u; v;w/:

It is easy to check that

b.u; v;w/ D �b.u;w; v/ and b.u; v; v/ D 0

for all u; v;w 2 V . B and b have many useful properties that follow from the
following lemma.

Lemma 2.1 (Lemma 2.1 in [15]). The form b is defined and is trilinear continuous
on Hm1 �Hm2C1 �Hm3 , where mi � 0 and

m1 Cm2 Cm3 � d

2
if mi ¤ d

2
; i D 1; 2; 3;

m1 Cm2 Cm3 >
d

2
if mi D d

2
; some i: (10.10)

In view of Lemma 2.1, let cb be the constant in

jb.u; v;w/j � cbjujm1 jvjm2C1jwjm3;

wheremi satisfies (10.10). Also let cd , d D 2; 3, be the constants in

1Technically, the correct operator is Au WD �P�u, where P is the orthogonal projection onto H .
We abuse notation here and continue writing ��.
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jb.u; v;w/j � c2juj1=2kuk1=2V kvk1=2V j�vj1=2jwj if d D 2

jb.u; v;w/j � c3kukV kvk1=2V j�vj1=2jwj if d D 3

for all u 2 V , v 2 dom.��/, and w 2 H (Eqs. (2.31–32) in [15]). Other useful
consequences of Lemma 2.1 are that B.�; �/ is a bilinear continuous operator from
V �H2 ! L2 and also fromH2 � V ! L2.

Next, we introduce the basic notation that will be used to define the generalized
stochastic spaces and the generalized solution. Let .	;F ; P / be a probability space
where the �-algebra F is generated by f�k; k D 1; 2; : : : g, where �k are independent
and identically distributed N.0; 1/ random variables. Let U D L2.D/ and let
fuk.x/; k D 1; 2; : : : g be a complete orthonormal basis for U . Then the Gaussian
white noise on U is

PW .x/ D
X

k�1
uk.x/�k:

Let J D f˛ D .˛1; ˛2; : : : /; ˛k 2 N0g be the set of multi-indices of finite length.
Denote j˛j D P

k�1 ˛k < 1 and 
k is the unit multi-index with j
kj D 1 and kth
entry .
k/k D 1. For ˛; ˇ 2 J ,

˛ C ˇ D .˛1 C ˇ1; ˛2 C ˇ2; � � � /; and ˛Š D
Y

k�1
˛kŠ:

For a sequence � D .�1; �2; : : : /, set �˛ D Q
�
˛k
k .

For each ˛ 2 J , let

�˛ D
Y

k�1

H˛k .�k/p
˛k

where Hn is the nth Hermite polynomial given by Hn.x/ D .�1/n. dne�x2=2

dxn
ex

2=2/.
It is a well-known fact that the set „ D f�˛; ˛ 2 J g forms an orthonormal basis
in L2.	/ [2]. Thus, for a Hilbert space X , if f 2 L2.	IX/ and f˛ D EŒf �˛�,
then the Wiener chaos expansion of f is f D P

k�1 f˛�˛ , and moreoverEjf j2X DP
˛2J jf˛j2X . The set „ is the Cameron–Martin basis of L2.	/.
For a Hilbert space X , define the (stochastic) test function and distribution

spaces:

D.X/ D
(

v D
X

˛

v˛�˛ W v˛ 2 X and only finitely many v˛ are non-zero

)

;

D0.X 0/ D
(

All formal series u D
X

˛

u˛�˛ with u˛ 2 X 0
)

:

Random variables in D.X/ serve as test functions for the distributions in D0.X 0/.
If h�; �i is the duality pairing between X 0 and X , then the duality pairing between
u 2 D0.X 0/ and v 2 D.X/ is

hhu; vii D
X

˛

hu˛; v˛i:
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The space D0 is a very large space. To quantify the asymptotic growth of the
Wiener chaos coefficients, we introduce the Kondratiev spaces. For q > 0, denote
the sequence .2N/�q D ..2k/�q/kD1;2;:::, and let the weights r2˛ D .2N/�q˛=˛Š. The
Kondratiev space S�1;�q.X/ is

S�1;�q.X/ D
(

u D
X

˛

u˛�˛ W u˛ 2 X and
X

˛

ju˛j2Xr2˛ < 1
)

:

S�1;�q.X/ is a Hilbert space with the norm kuk2S�1;�q .X/
D P

˛ ju˛j2Xr2˛ .

Definition 2.1. For ˛; ˇ 2 J , the Wick product is defined as

�˛ ˘ �ˇ D
vu
u
t
 
˛ C ˇ

˛

!

�˛Cˇ:

Extending by linearity, for u; v 2 D0.R/, the Wick product u ˘ v is a D0.R/
element with

u ˘ v D
X

˛

0

@
X

0���˛

vuu
t
 
˛

�

!

u�v˛��

1

A �˛:

In particular, for G 2 S�1;�q.L2.D//,

.G.x/ ˘ PW .x//˛ D
X

k�1

p
˛kG˛�
k .x/uk.x/:

We now proceed to define the weak solution of Eq. (10.4). Recall that for a
smooth function p, .rp; v/ D 0 for all v 2 V . This leads us to define the weak
solution by taking the test function space V , so that the pressure term drops out.

Definition 2.2. Let T < 1. A generalized weak solution of Eq. (10.4) is a
generalized random element u 2 D0.L2.0; T IV // such that

hhut C ui ˘ uxi ; �ii D hh��u C f C �
�iuxi C g

� ˘ PW .x/; �ii (10.11)

for all test functions � 2 D.V /.
The pressure term can be recovered from the generalized weak solution in the

standard way.
Using the Wiener chaos expansion, we will study Eqs. (10.4) and (10.5) through

the analysis of the propagator system—an equivalent infinite system of deterministic
PDE that gives the coefficients u˛ of the solution, thereby equivalently character-
izing the solution u. Recalling the definition of the Wick product, the propagator
system of Eq. (10.4) is, for ˛ D .0/,
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@tu0 CB.u0; u0/ D ��u0 C f;

div u.0/ D 0;

u0.0; x/ D w.x/; u0j@D D 0 (10.12a)

and for j˛j � 1,

@tu˛ C B.u˛; u0/C B.u0; u˛/CP
0<�<˛

q�
˛
�

�
B.u� ; u˛�� /

D ��u˛ CP
l

p
˛lul .x/

�
�i@xi u˛�
l C 1˛D
l g

�
;

div u˛ D 0;

u˛.0; x/ D 0; u˛j@D D 0 (10.12b)

with equality holding in V 0. Note that each equation in the propagator system
involves only the divergence-free part; the pressure term P˛ can be recovered from
each equation by a standard technique (see, e.g., [16]). Hereon, we will focus only
on studying the velocity field u.

Similarly, the propagator system of Eq. (10.5) is

B.Nu0; Nu0/ D ��Nu0 C Nf ;
div Nu0 D 0; Nu0j@D D 0; (10.13a)

B.Nu˛; Nu0/C B.Nu0; Nu˛/CP
0<�<˛

q�
˛
�

�
B.Nu� ; Nu˛�� /

D ��u˛ CP
l

p
˛lul .x/

� N�i @xi Nu˛�
l C Ng˛�
l
�
;

div Nu˛ D 0; Nu˛j@D D 0 (10.13b)

with equality holding in V 0.
The zeroth mode u0 D Eu is the mean of Eq. (10.4) and solves the unperturbed

Navier–Stokes equations (10.12a).

3 The Stationary Unbiased Stochastic Navier–Stokes
Equation

Given deterministic functions Nf ; Ng; N� 2 L2.D/, we seek a weak/variational solution
Nu 2 D0.V / satisfying

��hh�Nu; 'ii C hhNui ˘ @xi Nu; 'ii D hh Nf ; 'ii C hh� N�i@xi Nu C Ng� ˘ PW .x/; 'ii

for all test random elements ' 2 D.V /.
We will first show the existence and uniqueness of a generalized strong solution.

Proposition 3.1. Assume the dimension d D 2; 3. Assume Nf ; Ng; N� are deterministic
functions satisfying
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Nf ; Ng; N� 2 H; (A.0)

�2 > cbk Nf kV 0 ; (A.1)

Ng 2 H
1.D/; N� 2 .W 1;1.D//d : (A.2)

Then there exists a unique generalized strong solution u 2 D0.H2.D// \ V of
Eq. (10.5).

Remark. It is interesting to note that condition (A.1) in Proposition 3.1, which
ensures the existence of a generalized strong solution, is the same condition that
ensures the uniqueness of the strong solution of the deterministic Navier–Stokes
equation. Thus, Proposition 3.1 generalizes the analogous result in the deterministic
Navier–Stokes theory, which is the subcase when Ng D N� D 0.

Proof. Solution for ˛ D .0/.
The equation for Nu0 is the deterministic stationary Navier–Stokes equation, for

which the existence and uniqueness of weak solutions is well known [15, 16].
From (A.1), there exists a unique weak solution Nu0 2 V of Eq. (10.13a) satisfying

kNu0kV � 1

�
k Nf kV 0 <

�

cb
: (10.14)

Moreover, since Nf 2 L2.D/, then Nu0 2 dom.��/, with

j�Nu0j � 2

�
j Nf j C c2d

�5�
3=2
1

j Nf j3:

THE BILINEAR FORM Na0.�; �/. Define the bilinear continuous form Na0 on V �V by

Na0.u; v/ D �.ru;rv/C b.u; Nu0; v/C b.Nu0; u; v/; (10.15)

where Nu0.x/ is the solution of the stationary (deterministic) Navier–Stokes equa-
tion (10.13a) just found. Also define the mapping NA0 W V ! V 0, by

h NA0.u/; vi D Na0.u; v/; for all v 2 V:

Then Eq. (10.13b) can be written as

NA0.Nu˛/ D �
X

0<�<˛

q�
˛
�

�
B.Nu� ; Nu˛�� /C

X

l

p
˛lul .x/

� N�i@xi Nu˛�
l C 1˛D
l Ng�

for j˛j � 1.
To obtain the existence and uniqueness of u˛, we intend to apply the Lax–

Milgram lemma to the bilinear form Na0.�; �/. To do this, we first check the coercivity
of Na0.�; �/ on V .
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Lemma 3.1. Assume (A.1), and assume u0 solves (10.13a) with f 2 V 0. Then
Na0.�; �/ defined in Eq. (10.15) is coercive and bounded on V .

Proof. Indeed, for any v 2 V ,

Na0.v; v/ D �jrvj2 C b.v; Nu0; v/C b.Nu0; v; v/
� �jrvj2 � cbkNu0kV kvk2V
D �

� � cbkNu0kV
�kvk2V D Ňkvk2V ;

where Ň WD � � cbkNu0kV > 0 by Eq. (10.14). Next, Na0.�; �/ is bounded, because

j Na0.v;w/j � �kvkV kwkV C jb.v; Nu0;w/j C jb.Nu0; v;w/j
� �

� C cbkNu0kV
�kvkV kwkV

for any v;w 2 V . ut
We continue with the proof of Proposition 3.1.

Solutions for ˛ D �l . Equation (10.13b) in variational form reduces to finding
Nu
l 2 V such that

Na0.Nu
l ; v/ D hul
� N�i@xi Nu0 C Ng�; vi DW hG
l ; vi

for all v 2 V . To apply the Lax–Milgram lemma to Eq. (10.13b), we check that the
term

G
l WD ul
� N�i@xi Nu0 C Ng�

belongs to V 0. In fact, we have that G
l belongs to L
2.D/. Indeed, due to

assumption (A.2), j N�i@xi Nu0j � k N�kL1 kNu0kV , and from Eq. (10.14),

jG
l j � CkulkL1

�
k N�kW 1;1kNu0kV C k NgkH1

�

� CkulkL1

� �
cb

k N�kW 1;1 C k NgkH1

�
:

By the Lax–Milgram lemma, there exists a unique variational solution Nu
l 2 V

with the estimate

kNu
l kV � 1

ŇCkulkL1

� �
cb

k N�kW 1;1 C k NgkH1

�
:

Additionally, by a standard technique in [16], there exists NP
l 2 L2.D/ such that
Eq. (10.13b) holds in V 0.
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Next, observe that by the continuity property of the bilinear form B W V�
H
2 ! L

2,

���Nu
l D G
l � B.Nu
l ; Nu0/� B.Nu0; Nu
l / 2 L2.D/:
Hence, Nu
l 2 dom.��/, and we have the estimate

j�Nu
l j � 1

�

�
jG
l j C jB.Nu
l ; Nu0/j C jB.Nu0; Nu
l /j

�

� 1

�

�jG
l j C 2cbj�Nu0j kNu
l kV
�

� C supl kulkL1

� Ň
�
�

cb
k N�kW 1;1 C k NgkH1

��
1C 2cb

Ň j�Nu0j
�

D NK;

and NK D NK.�; Nf ; Ng; N�/ does not depend on l .

Solutions for j˛j � 2. Denote

G˛ WD
X

l

p
˛l ul

� N�i @xi Nu˛�
l
�
;

F˛ WD �
X

0<�<˛

q�
˛

�

�
B.Nu� ; Nu˛�� /:

We first find Nu˛ 2 V such that

Na0.Nu˛; v/ D hF˛ CG˛; vi

for all v 2 V .
We prove by induction. In the above, we have shown the existence of a unique

solution Nu
l 2 dom.��/. Assume that for some ˛ with j˛j D n, we have shown the
existence of a unique solution Nu� 2 dom.��/ for all j� j � n � 1. We now show
that Nu˛ 2 dom.��/. By a similar argument as above, we have G˛ 2 L2.D/ with

jG˛j � C
X

l

p
˛lkulkL1 k N�kW 1;1kNu˛�
l kV < 1:

Also, since B.�; �/ is a bilinear continuous form H
2 � H

2 ! L
2, we deduce that

F˛ 2 L
2.D/ with

jF˛j � cb
X

0<�<˛

q�
˛
�

� j�Nu� j j�Nu˛�� j < 1:
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Applying the Lax–Milgram lemma, there exists a unique solution Nu˛ 2 V with
the estimates

kNu˛kV � 1

Ň .jG˛j C jF˛j/:

Finally, since

���Nu˛ D F˛ CG˛ � B.Nu˛; Nu0/� B.Nu0; Nu˛/ 2 L
2.D/;

we deduce that u˛ 2 dom.��/, with

j�Nu˛j � 1

�
.jF˛j C jG˛j C jB.Nu˛; Nu0/j C jB.Nu0; Nu˛/j/

� 1

�
.jF˛j C jG˛j C 2cbkNu˛kV j�Nu0j/

� 1

�
.jF˛j C jG˛j/

�
1C 2cb

Ň j�Nu0j
�
< 1:

Hence, we have found a solution Nu 2 D0.H2.D/\ V /. ut
Next, we find the appropriate Kondratiev space to which the solution u belongs.

As described previously, the estimation of the Kondratiev norm makes use of
the recursion properties of the Catalan numbers. The Catalan number rescaling
technique used in our estimates has been described in [10], and is detailed in
Appendix A.

Proposition 3.2. Assume (A.0–10.2) hold. Then there exists q0 > 2, depending
on �, Nf , Ng, N� such that Nu belongs to the Kondratiev space S�1;�q.H2.D/ \ V /, for
q > q0.

Proof. For j˛j � 1, we have found in the proof of Proposition 3.1 estimates for
j�Nu˛j:

j�Nu
l j � NK

1p
˛Š

j�Nu˛j � NB0
0

@
X

0<�<˛

j�Nu� jp
�Š

j�Nu˛�� jp
.˛ � �/Š C 1�¤0

X

l

1˛l¤0
kNu˛�
l kVp
.˛ � 
l /Š

1

A ;

where NB0 depends on �; Nf ; N� . Also from the proof of Proposition 3.1, the same
bounds hold for kNu˛kV in the LHS of the above inequalities. Thus the above
inequalities can be rewritten as

OL
l � NK;

OL˛ � NB0

0

B
@
X

0<�<˛

OL� OL˛�� C 1�¤0
X

�<˛

j� jDj˛j�1

OL�

1

C
A ;
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where OL˛ D 1p
˛Š
.j�Nu˛jCkNu˛kV / for j˛j � 1. Now letL
l D 1C OL
l andL˛ D OL˛

for j˛j � 2. Then for j˛j � 2,

L˛ � NB0
 

X

0<�<˛
2�j� j�j˛j�1

L�L˛�� C
X

0<�<˛
j� jD1

.L� � 1/ OL˛�� C
X

0<�<˛
j� jDj˛j�1

OL�.L˛�� � 1/

C 1�¤0
X

�<˛
j� jDj˛j�1

OL�
!

D NB0
 
X

0<�<˛

L�L˛�� C
X

0<�<˛
j� jDj˛j�1

.�2C 1�¤0/ OL�
!

� NB0
 
X

0<�<˛

L�L˛��

!

:

By the Catalan numbers method in Appendix A

j�Nu˛j2 � ˛ŠC2j˛j�1

 
j˛j
˛

!

.2N/˛ NB2.j˛j�1/
0

NK2j˛j (10.16)

for j˛j � 1. The result holds with q0 satisfying

NB2
0

NK225�q0
1X

iD1
i1�q0 D 1: (10.17)

ut

4 The Time-Dependent Case

In this section, we consider for simplicity equation (10.4) with �.t; x/ D 0.
We will consider the time-dependent solution u.t/ of Eq. (10.4) on a finite time
interval Œ0; T � if d D 2; 3, and also study its uniform boundedness on Œ0;1/ for
dD2. The former result allows an arbitrarily large time interval, thereby ensuring a
global-in-time solution. On the other hand, the latter result will become useful for
showing the long-time convergence of the solution to a steady-state solution.

For any T < 1, it is known that a strong solution u0.t/ of the deterministic
Navier–Stokes equation (10.12a) exists on the finite interval Œ0; T � if d D 2, and
exists on Œ0; .T ^ T1/� for a specific T1 D T1.u0.0// depending on u0.0/ if d D 3.
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Without further conditions, we have the following result for a generalized strong
solution of the unbiased Navier–Stokes equation.

Lemma 4.1. For d D 2; 3, let T < 1 if d D 2 or T � T1 if d D 3. Assume the
forcing terms f; g and initial condition u.0/ are deterministic functions satisfying

f; g 2 L2.0; T IH/; u.0/ 2 V: (A00)

Then there exists a unique generalized strong solution u.t/ 2 D0.H2.D/ \ V / for
a.e. t 2 Œ0; T �. Moreover, u˛ 2 C.Œ0; T �; V / for all ˛.

Proof. For ˛ D .0/, it is well known (see, e.g., [15]) that Eq. (10.12a) has a unique
solution u0 and

u0 2 L2.Œ0; T �I dom.��//; u0 2 C.Œ0; T �IV /:

THE BILINEAR FORM a0.t/. For t 2 Œ0; T �, define the bilinear continuous form
a0.t/ on V � V by

a0.u; vI t/ D �.ru;rv/C b.u; u0.t/; v/C b.u0.t/; u; v/;

where u0.t; x/ is the solution of the time-dependent (deterministic) Navier–Stokes
equations given in Eq. (10.12a) just found. Also define the mapping A0.t/ W V !
V 0, for t 2 Œ0; T �, by

hA0.t/u; vi D a0.u; vI t/; for all v 2 V:

Then Eq. (10.12b) can be written as

@tu˛ CA0.t/u˛ C
X

0<�<˛

q�
˛
�

�
B.u� ; u˛�� / D

X

l

p
˛lul .x/

�
�i @xi u˛�
l C 1˛D
l g

�
:

This is a linear Stokes equation of the form

@tU C A0.t/U D F;

U j@D D 0; U.0/ D w:

Since u0 2 L2.0; T I dom.��//, it can be shown by standard compactness
techniques (see, e.g., [3]) that if F 2 L2.Œ0; T �IH/ and w 2 V , then there
exists a unique strong solution U 2 L2.Œ0; T �I dom.��// \ C.0; T IV / and Ut 2
L2.Œ0; T �IH/ with the estimates

sup
t�T

kU.t/kV CkU kL2.Œ0;T �Idom.��//CkUtkL2.Œ0;T �IH/�C
�kU.0/kV CkF kL2.Œ0;T �IH/

�
;

(10.18)
where the constant C depends only on T; �;D and ku0kL2.Œ0;T �Idom.��//.
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We prove the lemma by induction. We have earlier shown that u.0/ 2
L2.Œ0; T �I dom.��//\C.0; T IV /. Assume for some ˛ that u�2L2.Œ0; T �I
dom.��//\C.0; T IV / for all �<˛. We now show that u˛2L2.Œ0; T �I dom.��//\
C.0; T IV / also. We check for the RHS of Eq. (10.12b):

�
X

0<�<˛

q�
˛

�

�
B.u� ; u˛�� /C 1˛D
lul g 2L2.Œ0; T �IH/:

This follows from (A00) and the fact that jB.u� ; u˛�� /j � cbj�u� j ku˛��k.
It follows from Eq. (10.18) that there exists a unique solution u˛ of Eq. (10.12b)
with

u˛ 2 L2.Œ0; T �I dom.��//; @tu˛ 2 L2.Œ0; T �IH/; and u˛2C.Œ0; T �IV /:

ut
Remark. If � ¤ 0, then in addition to (A00), we must require that g 2
L2.Œ0; T �IH1.D// and � 2 L2.Œ0; T �I .W 1;1.D//d /. (Compare with (A.2).)

Next, we study ku.t/k�1;�qIH2 on a finite interval Œ0; T � as well as the uniform
boundedness of ku.t/k�1;�qIV for all time t 2 Œ0;1/. We recall the following
established result on the uniform bounds of u0 in the V and H

2.D/ norms.

Lemma 4.2 (Lemma 11.1 in [15]; see also [9]). Assume for the initial condition
that u0.0; �/ 2 V , and assume

f is continuous and bounded from Œ0;1/ into H;

@f

@t
is continuous and bounded from Œ0;1/ into V 0:

Let u0.t/ be the strong solution of the deterministic Navier–Stokes equa-
tions (10.12a), defined on Œ0;1/ if d D 2 or on Œ0; T1� if d D 3. Then

sup
t�0

ku0.t/kV � c0.ku.0/.0; �/kV ; �; f;D/; (10.19a)

sup
t�


j�u0.t/j � c00.
; ku.0/.0; �/kV ; �; f;D/; (10.19b)

for any 
 > 0. In the case of d D 3, the suprema are taken over 0 � t � T1 and
0 � 
 � t � T1, respectively.

Proposition 4.1. (i) For d D 2; 3, assume the same conditions as in Lemma 4.1.
Then there exists some q1 > 2 depending on �; c0; cb , and T , such that for
q > q1,

u 2 S�1;�q. L2.0; T I dom.��// / \ S�1;�q.L1.0; T IV //:
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(ii) For d D 2, assume the hypothesis of Lemma 4.2, and assume g is bounded
from Œ0;1/ into H . Also assume

�4 >
27c4bc

04

�1
(A10)

where c0 D c0.ku.0; �/kV ; �; Nf ;D/ in Eq. (10.19a).
Then there exists q2 > 2, depending on �, c0, and cb , such that for q > q2,

sup
t�0

ku.t/k�1;�qIV < 1 and sup
t�


ku.t/k�1;�qIdom.��/ < 1

for any 
 > 0, as in Eq. (10.19b). In fact,

u 2 S�1;�q.L1.Œ0;1/IV // and u 2 S�1;�q.L1.Œ
;1/IV //:

Remark. Part (ii) of the equation asserts a uniform-in-time bound of the S�1;�q.V /
norm of the solution on the infinite time interval. Unfortunately, this result does
not follow from part (i) because, under the present proof, the estimates for the
S�1;�q.H2.D/ \ V / norm of the solution on the finite time interval increase to
infinity as the terminal time T ! 1.

Proof. (i) The proof of this result is identical to the proof of Proposition 3.2,
by using the estimates (10.18). For ˛ D .0/, Eq. (10.19a) and the usual
deterministic theory imply that u0 2 L2.0; T I dom.��// \ L1.0; T IV /. Let
QL˛ D ku˛kL2.0;T IH2/ C ku˛kL2.0;T IV /, and let L˛ D 1p

˛Š
QL˛ for j˛j � 1. For

˛ D 
l , the estimates (10.18) yield

L
l � C sup
l

kulkL1.D/ jgj DW K1;

where K1 does not depend on l . For j˛j � 2,

QL˛ � C

0

@
X

0<�<˛

q�
˛
�

� ku�kL2.0;T IH2/ku˛��kL2.0;T IV /

1

A

� C
X

0<�<˛

q�
˛
�

� QL� QL˛�� :

Then for L˛ WD 1p
˛Š

QL˛

L˛ � B1
X

0<�<˛

L�L˛�� :
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By the Catalan numbers method as per Appendix A,

ku˛kL1.0;T IV / C k�u˛kL2.0;T IH/ � p
˛ŠCj˛j�1

 
j˛j
˛

!

B
j˛j�1
1 K

j˛j
1

and the statement of the proposition holds with q1 satisfying

B2
1K

2
12
5�q1

1X

iD1
i1�q1 D 1:

(ii) We now show the uniform boundedness of each mode u˛ on the infinite time
interval. For ˛ D .0/, this is shown in the estimates of Eqs. (10.19a) and
(10.19b). For j˛j D 1, ˛ D 
l , choose in Eq. (10.12b) the test function
v D .��/u˛:

1

2

d

dt
ku
lk2V C�j�u
l j2 � jb.u
l ; u0;�u
l /j C jb.u0; u
l ; �u
l /j C jhulg;�u
l ij

� 2cbku0kV ku
l k1=2V j�u
l j3=2 C julgj j�u
l j

� "

2
j�u
l j2 C 1

2"

�
2cbku0kV ku
l k1=2V j�u
l j1=2Cjulgj�2

� "

2
j�u
l j2 C 2c2bku0k2V

2"
ku
l kV j�u
l j C 1

"
julgj2

� "j�u
l j2 C 23c4bku0k4V
"3

ku
l k2V C 1

"
julgj2:

Taking " D �
2
,

d

dt
ku
l k2V C �j�u
l j2 � 27c4b

�3
ku0k2V ku
l k2V C 4

�
julgj2;

and from Eqs. (10.9) and (10.19a),

d

dt
ku
l k2V �

�
27c4bc

04

�3
� ��1

�
ku
lk2V C 4

�
julgj2

� �ˇku
l k2V C 4

�
julgj2;

where ˇ WD �� 27c4bc04

�3
� ��1

�
> 0 by (A10). By Gronwall’s inequality,

ku
l .T /k2V �
Z T

0

4

�
julgj2e�ˇ.T�s/ds � 4

�ˇ
kulk2L1 kgk2L1.0;1IH/

�
1 � e�ˇT �
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for any T > 0. Also,

j�u
l .t/j2 � 27c4bc
02

�4
ku
l .t/k2V C 4

�2
julg.t/j2:

It follows that

L
l WD sup
t�0

�ku
l .t/kV C j�u
l .t/j
� � K2;

for all l , where the constant K2 is independent of l and t . For j˛j � 2, let
L˛ WD 1p

˛Š
supt�0.ku˛.t/kV C j�u˛.t/j/. Then

1

2

d

dt
ku˛k2V C �j�u˛j2

� jb.u˛; u0;�u˛/j C jb.u0; u˛;�u˛/j C
X

0<�<˛

q�
˛
�

� jb.u� ; u˛�� ;�u˛/j

� 2cbku0kV ku˛k1=2V j�u˛j3=2 C
X

0<�<˛

q�
˛
�

�
cbku�kV j�u˛�� j j�u˛j:

By similar computations,

1

2

d

dt
ku˛k2V C �j�u˛j2

� 27c4b
�3

ku0k4V ku˛k2V C 4c2b
�

0

@
X

0<�<˛

q�
˛
�

� ku�kV j�u˛�� j
1

A

2

� 27c4b
�3

ku0k4V ku˛k2V

C 4c2b
�

0

@
X

0<�<˛

q�
˛
�

�
 

sup
s�0

ku� .s/kV
!  

sup
s�0

j�u˛�� .s/j
!1

A

2

and so

d

dt
ku˛k2V � �ˇku˛k2V C 4c2b

�

0

@
X

0<�<˛

p
˛ŠL�L˛��

1

A

2

:

By Gronwall’s inequality and triangle inequality,
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ku˛.T /k2V � 4c2b
�

Z T

0

0

@
X

0<�<˛

p
˛ŠL�L˛�� e�ˇ.T�s/=2

1

A

2

ds

� 4c2b
�

0

@
X

0<�<˛

p
˛ŠL�L˛��

� Z T

0

e�ˇ.T�s/ds
�1=2

1

A

2

so

1p
˛Š

sup
T�0

ku˛.T /kV � 2c2bp
�ˇ

X

0<�<˛

L�L˛�� :

We have also

j�u˛.t/j2 � 27c4bc
04

�4
ku˛.t/k2V C 4c2b

�2

0

@
X

0<�<˛

p
˛ŠL�L˛��

1

A

2

for any t � 0. Hence, it follows that

L˛ � B2
X

0<�<˛

L�L˛��

where B2 depends on �, c0, and cb but is independent of t . By the Catalan
method in Appendix A,

sup
t�0

.ku˛.t/kV C j�u˛.t/j/ � p
˛ŠCj˛j�1

 
j˛j
˛

!

B
j˛j�1
2 K

j˛j
2

for j˛j � 1, and the statement of the proposition holds with q2 satisfying

B2
2K

2
22
5�q2

1X

iD1
i1�q2 D 1:

ut

5 Long Time Convergence to the Stationary Solution

In this section, we study the solutions u.t; x/ of Eq. (10.4) and Nu.x/ of Eq. (10.5)
with �.t; x/ D N�.x/ D 0 and for simplicity consider the case with f .t; x/ D Nf .x/
and g.t; x/ D Ng.x/. We study the convergence of u.t; x/ to the stationary solution
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Nu.x/ as t ! 1, first in a weak sense (in the generalized space D0.H/ with some
exponential rate of convergence in each mode), then in a strong sense (in some
Kondratiev space S�1;�q.H/) using a compact embedding argument. The latter
proof, unfortunately, does not provide a rate of convergence. For time-dependent
f; g, similar results can be obtained under suitable assumptions, but the exponential
convergence of each mode is not guaranteed.

Let z.t/ WD u.t/ � Nu. The propagator system for z is

z0;t C B.u0; u0/ � B.Nu0; Nu0/ D ��z0; (10.20a)

z˛;t C A0.t I u˛/� NA0.Nu˛/ D �
X

0<�<˛

q�
˛
�

� �
B.u� ; u˛�� / � B.Nu� ; Nu˛�� /

�

(10.20b)

with z˛.0; x/ D u˛.0; x/� Nu˛.x/, zj@D D 0, and div z˛ � 0, for all ˛.

Proposition 5.1. Let d D 2. Assume (A.0), (A00) and (A.2), and assume

�

�
�1

c0
2

�3=4
>
2

�
j Nf j C c22

�5�
3=2
1

j Nf j3; (A3)

where c2; c0
2 are specific constants depending only on D.

Then the solution u.t/ of Eq. (10.4) converges in D0.H/ to the solution Nu of
Eq. (10.5):

u.t/
D0.H/�! Nu; as t ! 1:

Remark. In the following proof, all computations follow through even when d D 3.
So, a similar statement to Proposition 5.1 can be made for d D 3, provided a strong
solution u.t/ exists in D0.H2 \V / for all t > 0, and the zero-th mode u0.t/ satisfies
the energy inequality (cf. [15])

1

2

d

dt
ju0.t/j2 C �ku0.t/k2V � h Nf ; u0.t/i:

Remark. If f .t; x/ and g.t; x/ depend on time, then an additional condition for the
proposition to hold is that f .t/; g.t/ converge to Nf ; Ng in H .

Proof. For ˛ D .0/, the convergence for the deterministic Navier–Stokes equation
is well known due to [15], Theorem 10.2: if u0.t/ is any weak solution of
Eq. (10.12a) with initial condition u0.0/ 2 H , then u0.t/ �! Nu.0/ in H as t ! 1,
provided (A3) holds. Moreover, jz0.t/j decays exponentially:

jz0.t/j � jz0.0/j e�N�t ; (10.21)
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where N� WD ��1 � c0

2

�1=3
j�Nu0j4=3 > 0. (The positivity of N� follows from the fact that

j�Nu0j can be majorized by the RHS of (A3).)
For ˛ D 
l , choosing the test function v D z
l in the weak formulation of

Eq. (10.20b),

1

2

d

dt
jz
l j2 C �kz
l k2V

� jb.z
l ; Nu0; z
l /j C jb.z
l ; z0; z
l /j C jb.z0; Nu
l ; z
l /j C jb.Nu
l ; z0; z
l /j
� cbkNu0kV kz
l k2V C cbkz0kL1 jz
l j kz
l kV C 2cbj�Nu
l j jz0j kz
l kV

� cbkNu0kV kz
l k2V C c2b
2"

kz0k2L1 jz
l j2 C "kz
l k2V C 2c2b
"

j�Nu
l j2jz0j2;

where we have used the Young’s inequality in the last line with any 0 < " < Ň. So,

1

2

d

dt
jz
l j2 C . Ň � "/kz
l k2V � c2b

2"
kz0k2L1 jz
l j2 C 2c2b

"
j�Nu
l j2jz0j2: (10.22)

Using the Poincaré inequality (10.9) and taking " D Ň
2

,

d

dt
jz
l j2 C Ň�1jz
l j2 � 2c2b

Ň kz0k2L1 jz
l j2 C 8c2b
Ň j�Nu
l j2jz0j2:

For some appropriately chosen t02.0;1/ to be discussed next, we apply Gronwall’s
inequality:

jz
l .T /j2 � e
R T
t0
'.t/dt jz
l .t0/j2 C

Z T

t0

 l.s/e
R T
s '.t/dtds;

where

'.t/ D 4c2b
Ň kz0.t/k2L1 � Ň�1;

 l .t/ D 8c2b
Ň j�Nu
l j2jz0.t/j2:

The t0 is chosen large enough so that kz0.t/k2L1 <
Ň2�1
4c2b

whenever t � t0. Such

t0 exists, because by Eq. (10.19b) and the Sobolev embedding theorem (see, e.g.,
[3] Sect. 5.6.3 Theorem 6) for k D 2 D p D d , z0.t/ is Hölder continuous with
exponent � < 1 for each t � 
 and, moreover, supt�
 kz0.t/kC� � c00. The uniform
Hölder continuity of z0.t/ and Eq. (10.21) implies by Lemma B.1 z0.t; �/ �! 0

uniformly onD as t ! 1. Consequently, we have that supt�t0 '.t/ < 0. Set N' > 0
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satisfying

2 N' < min

�
� sup
t�t0

'.t/; 2 N�
	
:

Obviously, exp
˚ R T

t0
'.t/dt


 � exp
˚ � 2 N'.T � t0/



. Moreover, from Eq. (10.21),

j l.t/j � 8c2b
Ň j�Nu
l j2jz0.t0/j2e�2N�.t�t0/ DW C l e�2N�.t�t0/ �! 0

decays exponentially as t ! 1. Combining these results,

jz
l .T /j2 � e�2 N'.T�t0/jz
l .t0/j2 C
Z T

t0

C l e
�2N�.s�t0/e�2 N'.T�s/ds

� e�2 N'.T�t0/jz
l .t0/j2 C C l

2. N� � N'/
�

e�2 N�.T�t0/e�2N�.T�t0/
�

�! 0

as T ! 1. (In the first term, jz
l .t0/j2 has been shown to be finite for any finite t0.)
Since N' < N�,

jz
l .T /j2 �
�

jz
l .t0/j2 C C l
2. N� � N'/

�
e�2 N'.T�t0/ DW K2


l
e�2 N'.T�t0/ (10.23)

for T � t0. K
l does not depend on T . For j˛j � 2, we prove by induction. Fix ˛,
and assume the induction hypothesis that for each 0 < � < ˛, for T � t0,

jz� .T /j � K�e�21�j� j N'.T�t0/ �! 0 (10.24)

as T ! 1, whereK� does not depend on T . We want to show that Eq. (10.24) also
holds for ˛. From Eq. (10.20b) with test function v D z˛ ,

1

2

d

dt
jz˛j2 C �jrz˛j2

� jb.z˛; Nu0; z˛/j C jb.z˛; z0; z˛/j C jb.z0; Nu˛; z˛/j C jb.Nu˛; z0; z˛/j
C

X

0<�<˛

q�
˛
�

� �jb.z� ; z˛�� ; z˛/j C jb.z� ; Nu˛�� ; z˛/j C jb.Nu� ; z˛�� ; z˛/j
�
:

Similar to Eq. (10.22), using the "-inequality with any 0 < " < Ň=2,
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1

2

d

dt
jz˛j2 C . Ň � 2"/kz˛k2V � c2b

2"
kz0k2L1 jz˛j2 C 2c2b

"
j�Nu˛j2jz0j2

C c2b
4"

0

@
X

0<�<˛

q�
˛
�

� �kz˛��kV C 2kNu˛��kV
�jz� j1=2

1

A

2

:

Using the Poincaré inequality and taking " D Ň=4,

d

dt
jz˛.t/j2 �

�
4c2b

Ň kz0k2L1 � �1 Ň
�

jz˛j2 C 16c2b
Ň j�Nu˛j2jz0j2

C 2c2b
Ň

0

@
X

0<�<˛

q�
˛

�

� �kz˛��kV C 2kNu˛��kV
�jz� j1=2kz�k1=2V

1

A

2

� '.t/jz˛.t/j2 C  ˛.t/

where now

 ˛.t/ D 16c2b
Ň j�Nu˛j2jz0.t/j2

C 2c2b
Ň

0

@
X

0<�<˛

q�
˛
�

� �kz˛�� .t/kV C 2kNu˛��kV
�2kz� .t/kV

1

A

�
0

@
X

0<�<˛

q�
˛
�

� jz� .t/j
1

A :

From the hypothesis (10.24),

j ˛.t/j � C ˛e�2N�.t�t0/ C QC ˛
0

@
X

0<�<˛

q�
˛
�

�
K�e�2�j� j2 N'.t�t0/

1

A ;

where

C ˛ D 16c2b
Ň kNu˛k2H2 jz0.t0/j2;

QC ˛ D 2c2b
Ň

0

@
X

0<�<˛

q�
˛

�

� �
sup
s�0

kz˛�� .s/kV C 2kNu˛��kV
�2

sup
s�0

kz� .s/kV
1

A ;

and C�˛ ; QC�˛ do not depend on t . By Gronwall’s inequality,
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jz˛.T /j2 � e� N'.T�t0/jz˛.t0/j2 C
Z T

t0

 ˛.s/e� N'.T�s/ds

� e� N'.T�t0/jz˛.t0/j2 C C ˛

2. N� � N'/e�2 N'.T�t0/

C QC ˛
X

0<�<˛

q�
˛
�

�
K�

e�21�j� j N'.T�t0/

1 � 2�j� j

� K2
˛e�21�.j˛j�1/ N'.T�t0/;

whereK˛ does not depend on T . Hence,

jz˛.T /j � K˛e�21�j˛j N'.T�t0/ (10.25)

for all T � t0. It follows that Eq. (10.24) holds also for ˛, and the result follows. ut
We proceed to deduce the long-time convergence of u.t/ in some Kondratiev

space S�1;�q.H/. The manner of estimates in Proposition 5.1 is not directly
suited for applying the Catalan numbers method. Instead, we will use a compact
embedding-type argument in the following lemma to show the result.

Lemma 5.1. For q > 0, let the sequence r D .2N/�q . Let uk 2 S�1;�q.V / be a
sequence satisfying

X

˛

r˛

˛Š

�
sup
k

kuk˛k2V
�
< 1;

that is, satisfying fukg 2 S�1;�q.`1.V //.
Then there exists a subsequence QkN such that u QkN converges in D0.H/ to some

Nu 2 D0.H/. In fact, Nu 2 S�1;�q.V / and the convergence is in S�1;�q.H/.

Proof. The proof of convergence in D0.H/ will follow a diagonalization argument
and from the fact that V is compactly embedded in H . Let JN D f˛ 2 J W j˛j �
N; and ˛i D 0 for i > N g. Since supk kuk0kV < 1, there exists a subsequence

fk0j g1
jD1 such that ku

k0j
0 � Nu0kH ! 0 for some Nu0 2 H . Iteratively, for each N , there

exists further subsequences fkNj g1
jD1 	 fkN�1

j g1
jD1 such that for every ˛ 2 JN ,

ku
kNj
˛ � Nu˛kH ! 0

for some Nu˛ 2 H . In particular, for each N , we can find jN such that

ku
kNjN
˛ � Nu˛kH � N�1; for all ˛ 2 JN :
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Consequently, choose the subsequence QkN WD kNjN and we have found the limit

Nu D P
˛ Nu˛�˛ . It follows that u QkN ! Nu in D0.H/. By Fatou’s lemma,

X

˛

r˛

˛Š
jNu˛j2 � sup

k

X

˛

r˛

˛Š
juk˛j2 � sup

k

X

˛

r˛

˛Š
kuk˛k2V < 1;

and so Nu 2 S�1;�q.H/.
To prove the convergence in S�1;�q.H/, let " > 0 be arbitrary. For any N ,

ku
QkN � Nuk2�1;�qIH D

X

˛2JN

r˛

˛Š
ku

QkN � Nuk2H C
X

˛…JN

r˛

˛Š
ku

QkN � Nuk2H D .I /C .II /:

By our special choice of QkN , there exists NI such that

.I / �
X

˛2JN

r˛

˛Š
N�2 <

"

2
wheneverN > NI :

From the hypothesis of the lemma, there exists NII such that

.II / � 2
X

˛…JN

r˛

˛Š

�
sup
k

kukk2V
�

C 2
X

˛…JN

r˛

˛Š
kNuk2H <

"

2
wheneverN > NII :

Thus, ku QkN � Nuk2�1;�qIH < " wheneverN > maxfNI ;NII g. ut
The hypothesis in Lemma 5.1 is stronger than requiring uk 2 l1.S�1;�q.V //;

thus it is a weaker statement of what might be construed as a compact embedding
result for Kondratiev spaces. It is not shown whether S�1;�q.V / is compactly
embedded in S�1;�q.H/. Nonetheless, it is sufficient for our purposes.

Corollary 5.1. Let d D 2. Assume the hypotheses of Propositions 3.2 and 4.1(ii).
Then, for the solutions u.t/ and Nu of Eqs. (10.4) and (10.5), we have that

u.t/ �! Nu in S�1;�q.H/; as t ! 1;

for q > maxfq0; q2g, where q0; q2 are the numbers from Propositions 3.2 and 4.1.

Proof. In the proof of Proposition 4.1, we have in fact shown that u.t/ belongs
to the space S�1;�q.L1.Œ0;1/IV //. Taking any sequence of times, tk ! 1,
the sequence fu.tk/g satisfies the hypothesis of Lemma 5.1. So, there exists a
subsequence of u.tk/ converging in S�1;�q.H/ to Nu. This is true for any sequence
ftkg; hence u.t/ �! Nu in S�1;�q.H/ as t ! 1. ut
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6 Finite Approximation by Wiener Chaos Expansions

In this section, we study the accuracy of the Galerkin approximation of the solutions
of the unbiased stochastic Navier–Stokes equations. The goal is to quantify the
convergence rate of approximate solutions obtained from a finite truncation of the
Wiener chaos expansion, where the convergence is in a suitable Kondratiev space. In
relation to being a numerical approximation, quantifying the truncation error is the
first step towards understanding the error from the full discretization of the unbiased
stochastic Navier–Stokes equation.

In what follows, we will consider the truncation error estimates for the steady
solution Nu. Recall the estimate (10.16) for j�Nuj: for r2˛ D .2N/�q˛

˛Š
, with q > q0, we

have

r2˛ j�Nu˛j2 � C2j˛j�1

 
j˛j
˛

!

.2N/.1�q/˛ NB�2
0 . NB0 NK/2j˛j:

This estimate arose from the method of rescaling via Catalan numbers, and will be
the estimate we use for the convergence analysis. For the time-dependent equation,
similar analysis can be performed using the analogous Catalan rescaled estimate,
and will not be shown.

Let JM;P D f˛ W j˛j � P; dim.˛/ � M g, where M;P may take value 1. The
projection of Nu into spanf�˛; ˛ 2 JM;P g is NuM;P D P

˛2JM;P Nu˛�˛ .

Then the error e D Nu � NuM;P can be written as

j�ej2 D
X

˛2J nJM;P
r2˛j�Nu˛j2

D
1X

j˛jDPC1
r2˛j�Nu˛j2 C

X

fj˛j�P; j˛�M j<j˛jg
r2˛j�Nu˛j2

D
1X

j˛jDPC1
r2˛j�Nu˛j2

„ ƒ‚ …
.IV /

C
PX

j˛jD1

j˛j�1X

iD0

X

j˛�M jDi
r2˛ j�Nu˛j2;

„ ƒ‚ …
.I /

„ ƒ‚ …
.II /

„ ƒ‚ …
.III /

where ˛�M is the multi-index for which the kth entry .˛�M /k D ˛k if k � M and
.˛�M/k D 0 for k > M .
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We define the following values:

OQ WD 21�q NB2
0

NK2

1X

iD1
i1�q;

OQ�M WD 21�q NB0 NK2

MX

iD1
i1�q; OQ>M WD 21�q NB0 NK2

1X

iDMC1
i1�q:

In particular, the term OQ>M decays on the order of M2�q .
We proceed to estimate the terms (I)–(IV), by similar computations to Wan et al.

[17]. For fixed 1 � p � P , j˛j D p, and fixed i < p,

.I / � C2p�1 NB�2
0

X

j˛�M jDi; j˛>M jDp�i

 
j˛j
˛

!

.2N/.1�q/˛. NB0 NK/2p

D C2p�1 NB�2
0

 
p

i

!
OQi�M OQp�i

>M :

Then for fixed 1 � p � P , j˛j D p,

.II / D
p�1X

iD0
.I / � C2p�1 NB�2

0

p�1X

iD0

 
p

i

!
OQi�M OQp�i

>M

D C2p�1 NB�2
0 . OQp � OQp

�M/:

And finally,

.III / D
PX

j˛jD1
.II / �

PX

pD1
C2p�1 NB�2

0 . OQp � OQp
�M/

� 1

NB2
0

. OQ � OQ�M/C 1

16� NB2
0

PX

pD2

24p

.p � 1/3 .
OQp � OQp

�M/:

Since OQp � OQp
�M � p OQp�1. OQ � OQ�M/ by the mean value theorem for x 7! xp ,

.III / � 1

NB2
0

OQ>M C 1

16� NB2
0

OQ>M

PX

pD2

p24p OQp�1

.p � 1/3

� 1

NB2
0

OQ>M C 1

� NB2
0

OQ>M

PX

pD2

p.24 OQ/p�1

.p � 1/3
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� 1

NB2
0

OQ>M

P�1X

pD0
.24 OQ/p;

To estimate Term .IV /,

.IV / �
1X

pDPC1

X

j˛jDp
C2p�1 NB�2

0 .21�q NB2
0K

2/p

 
j˛j
˛

!

.N/.1�q/˛

D NB�2
0

1X

pDPC1
C2p�1.21�q NB2

0
NK2/p

�X

i�1
i1�q

�p

� NB�2
0

1X

pDPC1

24.p�1/

�.p � 1/3
OQp � 1

16� NB2
0

.24 OQ/PC1

1 � 24 OQ :

Putting the estimates together,

j�ej2 � C
�
.24 OQ/PC1 CM2�q�:

Notice the condition 24 OQ < 1 in Eq. (10.17), which ensured summability of
the weighted norm of the solution, is of course a required assumption for the
convergence of the error estimate.

A The Catalan Numbers Method

The Catalan numbers method was used in the preceding sections to derive estimates
for the norms in Kondratiev spaces. This method was previously described in [10,
14], but we restate it here just for the record.

Lemma A.1. Suppose L˛ are a collection of positive real numbers indexed by
˛2J , satisfying

L˛ � B
X

0<�<˛

L�L˛�� :

Then

L˛ � Cj˛j�1B j˛j�1
 

j˛j
˛

!
Y

i

L˛i
i

for all ˛, where Cn are the Catalan numbers.

Proof. The result is clearly true for ˛ D 
i . By induction, let j˛j � 2, and suppose
the result is true for all � < ˛. Then
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L˛ �
X

0<�<˛

Cj� j�1Cj˛�� j�1B j˛j�1
 

j� j
�

! 
j˛ � � j
˛ � �

!
�Y

i

L˛i
i

�

D
j˛j�1X

nD1

X

0<�<˛j� jDn

Cn�1Cj˛j�n�1
nŠ

�Š

.j˛j � n/Š
.˛ � �/Š

B j˛j�1
�Y

i

L˛i
i

�

D
j˛j�1X

nD1
Cn�1Cj˛j�n�1

X

0<�<˛j� jDn

 
j˛j
n

!�1 
˛

�

!

„ ƒ‚ …
.�/

j˛jŠ
˛Š
B j˛j�1�Y

i

L˛i
i

�
:

We claim that .
/ D 1, for any ˛ and any n < j˛j. Indeed, let K˛ D .k1 : : : ; kj˛j/
be the characteristic set of ˛. Each summand in .
/ is

� j˛jŠ
˛Š

��1
nŠ

�Š

.j˛j � n/Š
.˛ � �/Š

:

The term j˛jŠ
˛Š

is the number of distinct permutations of K˛, whereas the term
nŠ
�Š

.j˛j�n/Š
.˛��/Š is the number of distinct permutations of K˛ where only K�;K˛��

has been permuted within themselves. On the other hand, the latter term is the
number of distinct permutations of K˛ corresponding to a particular � , where the
correspondence of a permutation of K˛ to a � 2 f� W 0 < � < ˛; j� j D ng can
be made by taking K� to be the first n entries of that permutation of K˛. Thus,
each summand in .
/ is the relative frequency of � over all distinct permutations of
K˛, and hence their sum must equal 1. To complete the proof, using the recursion
property of the Catalan numbers,

L˛ �
j˛j�1X

nD1
Cn�1Cj˛j�n�1

 
j˛jŠ
˛Š

!

B j˛j�1Y

i

L˛i
i

D Cj˛j�1

 
j˛jŠ
˛Š

!

B j˛j�1Y

i

L˛i
i :

ut
If L˛ satisfies the hypothesis of Lemma A.1, and if L
i � K for all i , then for

r D .2N/�q ,

X

j˛jDn
r˛L2˛ �

X

j˛jDn
C2n�1B2.j˛j�1/K2j˛j

 
j˛j
˛

!

.2N/.1�q/˛
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D B�2C2n�1
�
B2K221�q

�n X

j˛jDn

 
j˛j
˛

!

N
.1�q/˛

D B�2C2n�1
�
B2K221�q

�n
 1X

iD1
i .1�q/

!n
:

For large n, the Catalan numbers behave asymptotically like Cn � 22np
�n3=2

. Hence,

the sum
P1

nD0
P

j˛jDn r˛L2˛ converges for any q > maxfq0; 2g, where q0 satisfies

B2K225�q0
1X

iD1
i .1�q0/ D 1:

B A Lemma

Lemma B.1. Let z.t/ 2 L2.D/ for all t � 
 and assume that z.t/ �! 0 in L2.
Also assume that supt�
 kz.t/kC� � C for some constant C and exponent � < 1.
Then supt�
 kz.t/kL1 �! 0 as t ! 1.

Proof. We prove by contradiction. Assume that there exists 
0 and a sequence tn !
1 such that supx2D jz.tn; x/j > 
0. Since z.tn/ is Hölder continuous, there exists

xn 2 D and a ball Bı.xn/ of radius ı D �

0
2C

�1=�
such that jz.tn; xn/ � z.tn; y/j �

Cı� for y 2 Bı.xn/. Hence jz.tn; y/j > 
0
2

for y 2 Bı.xn/. But since z.t/ �! 0

in L2,
R
D

jz.tn; y/j2dy < jBı.xn/j 

2
0

4
for some tn large enough. This contradicts

R
Bı.xn/

jz.tn; y/j2dy � jBı.xn/j 

2
0

4
. ut
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Chapter 11
Intermittency and Chaos for a Nonlinear
Stochastic Wave Equation in Dimension 1

Daniel Conus, Mathew Joseph, Davar Khoshnevisan,
and Shang-Yuan Shiu

This paper is dedicated to Professor David Nualart, whose
scientific innovations have influenced us greatly.

Abstract Consider a nonlinear stochastic wave equation driven by space-time
white noise in dimension one. We discuss the intermittency of the solution, and
then use those intermittency results in order to demonstrate that in many cases the
solution is chaotic. For the most part, the novel portion of our work is about the
two cases where (1) the initial conditions have compact support, where the global
maximum of the solution remains bounded, and (2) the initial conditions are positive
constants, where the global maximum is almost surely infinite. Bounds are also
provided on the behavior of the global maximum of the solution in Case (2).
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1 Introduction

Let us consider the following hyperbolic stochastic PDE of the wave type

.�u/.t ; x/ D �.u.t; x// PW .t; x/ .t > 0; x 2 R/: (11.1)

Here, � denotes the [massless] wave operator

� WD @2

@t2
� �2 @2

@x2
;

� W R ! R is a globally Lipschitz function with Lipschitz constant

Lip� WD sup
�1<x<y<1

j�.y/ � �.x/j
y � x

;

PW denotes space-time white noise, and � > 0 is a fixed constant. The initial function
and the initial velocity are denoted respectively by u0 W R ! R and v0 W R ! R, and
we might refer to the pair .u0; v0/ as the “initial conditions” of the stochastic wave
Eq. (11.1). [The terminology is standard in PDEs, and so we use it freely.] When the
initial value x 7! u0.x/ is assumed to be a constant, we write the constant as u0;
similar remarks apply to v0. In those cases, we state quite clearly that u0 and v0 are
constants in order to avoid ambiguities.

The stochastic wave Eq. (11.1) has been studied extensively by Carmona and
Nualart [9] and Walsh [26]. Among other things, these references contain the
theorem that the random wave Eq. (11.1) has a unique continuous solution u as
long as

u0 and v0 are bounded and measurable functions,

an assumption that is made tacitly throughout this paper. All of this is about the wave
equation in dimension 1 C 1 (that is one-dimensional time and one-dimensional
space). There are also some existence theorems in the more delicate dimensions
1 C d (that is one-dimensional time and d -dimensional space), where d > 1 and
the 1-D wave operator � is replaced by the d -dimensional wave operator @2

t t ��2�,
where � denotes the Laplacian on Rd ; see Conus and Dalang [10], Dalang [13],
Dalang and Frangos [14], and Dalang and Mueller [15].

Parabolic counterparts to the random hyperbolic Eq. (11.1) are well-studied
stochastic PDEs. For example, when �.u/ D u and the wave operator � is replaced
by the heat operator @t � �2@2

xx , the resulting stochastic PDE becomes a continuous
parabolic Anderson model [8] and has connections to the study of random polymer
measures and the KPZ equation [1–3, 19, 22–24] and numerous other problems of
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mathematical physics and theoretical chemistry [8, Introduction]. The mentioned
references contain a great deal of further information about these sorts of parabolic
SPDEs.

From a purely mathematical point of view, Eq. (11.1) is the hyperbolic counter-
part to the stochastic heat equation, and in particular �.u/ D const � u ought to be
a hyperbolic counterpart to the parabolic Anderson model. From a more pragmatic
point of view, we believe that the analysis of the present hyperbolic equations might
one day also lead to a better understanding of numerical analysis problems that arise
when trying to solve families of chaotic hyperbolic stochastic PDEs.

It is well known, and easy to verify directly, that the Green function for the wave
operator � is

�t .x/ WD 1

2
1Œ��t;�t �.x/ for t > 0 and x 2 R: (11.2)

According to general theory [9, 13, 26], the stochastic wave Eq. (11.1) has an
a.s.-unique continuous solution fu.t; x/gt>0;x2R which has the following mild
formulation:

u.t; x/ D U0.t; x/ C V0.t; x/ C
Z

.0;t /�R
�t�s.y � x/�.u.s; y// W.ds dy/: (11.3)

The integral is understood to be a stochastic integral in the sense of Walsh [26,
Chap. 2] and

U0.t; x/ WD u0.x C �t/ C u0.x � �t/

2
I V0.t; x/ WD 1

2

Z xC�t

x��t

v0.y/ dy:

(11.4)
In the special case that u0 and v0 are constants, the preceding simplifies to

u.t; x/ D u0 C v0�t C 1

2

Z
.0;t /�.x��t;xC�t/

�.u.s; y// W.ds dy/: (11.5)

Recall [8,19] that the process fu.t; x/gt>0;x2R is said to be weakly intermittent if
the upper moment Lyapunov exponents,

N�.p/ WD lim sup
t!1

1

t
sup
x2R

log E .ju.t; x/jp/ .1 � p < 1/; (11.6)

have the property that

N�.2/ > 0 and N�.p/ < 1 for every p 2 Œ2; l1/: (11.7)

Various questions from theoretical physics [24] have motivated the study of
intermittency for the stochastic heat equation. A paper [19] by Foondun and
Khoshnevisan introduces methods for the intermittency analysis of fully nonlinear
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parabolic stochastic PDEs. That paper also contains an extensive bibliography, with
pointers to the large literature on the subject.

As far as we know, far less is known about the intermittent structure of the
stochastic wave equation. In fact, we are aware only of two bodies of research:
There is the recent work of Dalang and Mueller [16] that establishes intermittency
for Eq. (11.1) in dimension 1 C 3 (1 for time and 3 for space), where (1) �.u/ D
�u (the hyperbolic Anderson model) for some � > 0; (2) PW is replaced by a
generalized Gaussian field that is white in its time and has correlations in its space
variable; and (3) the 1-D wave operator is replaced by the 3-D wave operator. We are
aware also of a recent paper by two of the present authors [11], where the solution
to Eq. (11.1) is shown to be intermittent in the case that the initial function u0 and
the initial velocity v0 are both sufficiently smooth functions of compact support and
PW is a space-time white noise. The latter paper contains also detailed results on the

geometry of the peaks of the solution.
The purpose of this paper is to study intermittency and chaotic properties of the

fully nonlinear stochastic wave Eq. (11.1). We follow mainly the exposition style of
Foondun and Khoshnevisan [19] for our results on weak intermittency: We will
show that Eq. (11.7) holds provided that � is a function of truly linear growth
(Theorems 3.1 and 3.2). We will also illustrate that this condition is somehow
necessary by proving that weak intermittency fails to hold when � is bounded
(Theorem 3.3).

Regarding the chaotic properties of the solution u to Eq. (11.1), we follow mainly
the exposition style of Conus, Joseph, and Khoshnevisan [12] who establish precise
estimates on the asymptotic behavior of supjxj�R u.t; x/, as R ! 1 for fixed
t>0, for the parabolic counterpart to Eq. (11.1). In the present hyperbolic case,
we first prove that the solution to Eq. (11.1) satisfies supx2R ju.t; x/j < 1 a.s. for
all t � 0, if the initial function and the initial velocity are functions of compact
support (Theorem 4.1). Then we return to the case of central importance to this
paper, and prove that supx2R ju.t; x/j D 1 a.s. for all t > 0 when u0 and v0

are positive constants. Also, we obtain some quantitative estimates on the behavior
of the supremum under varying assumptions on the nonlinearity � (Theorems 7.1
and 7.2).

When considered in conjunction, the results of this paper imply that the solution
to Eq. (11.1) is chaotic in the sense that slightly different initial conditions can lead
to drastically different qualitative behaviors for the solution. This phenomenon is
entirely due to the presence of noise in the system Eq. (11.1) and does not arise in
typical deterministic wave equations.

This paper might be of interest for two main reasons: First of all, we obtain
estimates on the supremum of the solution to hyperbolic stochastic PDEs and use
them to show that the solution can be chaotic. We believe that these estimates
might have other uses and are worthy of record in their own right. Secondly, we
shall see that the analysis of the 1-D wave equation is simplified by the fact that
the fundamental solution � of the wave operator �—see Eq. (11.2)—is a bounded
function of compact support. As such, one can also view this paper, in part, as a
gentle introduction to the methods of the more or less companion paper [12].
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Let us conclude the Introduction with an outline of the paper. Section 3 below
mainly recalls intermittency results for Eq. (11.1). These facts are mostly known in
the folklore, but we document them here, in a systematic manner, for what appears
to be the first time. The reader who is familiar with [19] will undoubtedly recognize
some of the arguments of Sect. 3.

Section 4 is devoted to the study of the case where the initial value and velocity
have compact support [and hence are not constants]. We will show that in such
cases, supx2R ju.t; x/j < 1 a.s. for all t > 0. Sections 5 and 6 contain novel
tail-probability estimates that depend on various forms of the nonlinearity � . These
estimates are of independent interest. Here, we use them in order to establish various
localization properties. Finally, in Sect. 7, we combine our earlier estimates and use
them to state and prove the main results of this paper about the asymptotic behavior
of supjxj�R ju.t; x/j as R ! 1. More specifically, we prove that if u0 is a positive
constant, v0 is a nonnegative constant, and infz2R j�.z/j > 0, then the peaks of the
solution in x 2 Œ�R; R� grow at least as .� log R/1=3. More precisely, we prove that
there exists an almost surely finite random variable R0 > 0 and a positive and finite
constant a such that

sup
jxj�R

ju.t; x/j3 � a� log R for all R > R0:

Furthermore, we will prove that a does not depend on �, as long as � is sufficiently
small; this assertion measures the effect of the noise on the intermittency properties
of u. If 0 < inf � � sup � < 1, then we prove that the preceding can be improved
to the existence of an a.s.-finite R1 together with positive and finite constants b and
c such that

b� log R � sup
jxj�R

ju.t; x/j2 � c� log R for all R > R1:

2 Preliminaries

In this section we introduce some notation and preliminary results that are
used throughout the paper. For a random variable Z, we denote by kZkp WD
fE.jZjp/g1=p the standard norm on Lp.	/ (1 � p < 1).

On several occasions we apply the following form of the Burkholder–Davis–
Gundy inequality [4–6] for continuous L2.	/ martingales: If fXtgt�0 is a continu-
ous L2.	/ martingale with running maximum X�

t WD sups2Œ0;t � jXsj and quadratic
variation process hXi, then for all p 2 Œ2; 1/ and t 2 .0; 1/,

kX�
t kp � .4p/1=2 � khXitk1=2

p=2 : (11.8)

The multiplicative prefactor 4p is the asymptotically optimal bound, due to Carlen
and Kree [7], for the sharp constant in the Burkholder–Davis–Gundy inequality that
was discovered by Davis [18].
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Given numbers p 2 Œ1; 1/ and ˇ 2 .0; 1/ and given a space-time random field
fZ.t; x/gt>0;x2R, let us recall the following norm [19]:

kZkp;ˇ WD
(

sup
t�0

sup
x2R

e�ˇt E .jZ.t; x/jp/

) 1=p

: (11.9)

We also use the following norm [12]:

Np;ˇ.Z/ WD
 

sup
t�0

sup
x2R

e�ˇt kZk2
p

!1=2

: (11.10)

Clearly, the two norms are related via the elementary relations

Np;ˇ.Z/ D kZkp;pˇ=2 and kZkp;ˇ D Np;2ˇ=p.Z/: (11.11)

However, the difference between the norms becomes relevant to us when we need
to keep track of some constants.

Finally, we mention the following elementary formulas about the fundamental
solution � to the wave operator �: For all t; ˇ > 0:

k�t k2
L2.R/

D �t

2
;

Z t

0

k�sk2
L2.R/

ds D �t2

4
;

Z 1

0

e�ˇsk�sk2
L2.R/

ds D �

2ˇ2
: (11.12)

3 Intermittency

We are ready to state and prove the intermittency of the solution to Eq. (11.1).
Our methods follow closely those of Foondun and Khoshnevisan [19], for the heat
equation, and Conus and Khoshnevisan [11], for the wave equation.

In order to establish weak intermittency for the solution to Eq. (11.1) we need to
obtain two different results: (1) We need to derive a finite upper bound for N�.p/ for
every p � 2; and (2) we need to establish a positive lower bound for N�.2/. It might
help to recall that the Lyapunov exponents N�.p/ were defined in Eq. (11.6).

Theorem 3.1. If u0 and v0 are both bounded and measurable functions, then

N�.p/ � p3=2Lip�

p
�=2 for all p 2 Œ2; 1/.

Remark 3.1. Since the optimal constant in the Burkholder–Davis–Gundy L2

inequality is 1, an inspection of the proof of Theorem 3.1 yields the improved
bound N�.2/ � Lip�

p
�=2 in the case that p D 2. ut

For our next result we define
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L� WD inf
x¤0

j�.x/=xj : (11.13)

Theorem 3.2. If u0 and v0 are bounded and measurable, infx2R u0.x/ > 0, v0 � 0

pointwise, and L� > 0, then N�.2/ � L�

p
�=2:

Theorems 3.1 and 3.2 are similar to Theorems 2.1 and 2.7 of [19] for the heat
equation. Together, they prove that the solution u is weakly intermittent provided
that u0 is bounded away from 0, v0 � 0 and � has linear growth. Intermittency in
the case where u0 and v0 have compact support has been proved in [11] (see also
Sect. 4). Theorems 3.1 and 3.2 illustrate that the wave equation exhibits a similar
qualitative behavior as the heat equation. However, the quantitative behavior is
different: Here, N�.p/ is of order p3=2, whereas it is of order p3 for the stochastic
heat equation.

The linear growth of � is somehow necessary for intermittency as the following
result suggests.

Theorem 3.3. If u0, v0, and � are all bounded and measurable functions, then

E .ju.t; x/jp/ D O.tp/ as t ! 1; for all p 2 Œ2; 1/:

This estimate is sharp when u0.x/ � 0 for all x 2 R and infz2R v0.z/ > 0.

The preceding should be compared to Theorem 2.3 of [19]. There it was shown
that if u were replaced by the solution to the stochastic heat equation, then there
is the much smaller bound E.ju.t; x/jp/ D o.tp=2/, valid under boundedness
assumptions on u0 and � .

Analogues of the preceding three theorems above are known in the parabolic
setting [11, 19]. Therefore, we will describe only outlines of their proof.

We will use a stochastic Young-type inequality for stochastic convolutions
(Proposition 3.1 below), which is a ready consequence of [11, Proposition 2.5].

For a random field fZ.t; x/gt>0;x2R, we denote by � � Z PW the random field
defined by

.� � Z PW /.t ; x/ D
Z

.0;t /�R
�t�s.y � x/Z.s; y/ W.ds dy/;

provided that the stochastic integral is well defined in the sense of Walsh [26].

Proposition 3.1. For all ˇ > 0 and p 2 .2; 1/,

k� � Z PW k2;ˇ � �1=2

ˇ
p

2
kZk2;ˇ and k� � Z PW kp;ˇ � p3=2�1=2

ˇ
p

2
kZkp;ˇ:

Proof. We appeal to Eq. (11.8) in order to deduce that

E
�j.� � Z PW /.t; x/jp�
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� .4p/p=2E

"�Z t

0

ds

Z 1

�1
dy �2

t�s.y � x/jZ.s; y/j2
�p=2

#

� .4p/p=2

�Z t

0

ds

Z 1

�1
dy �2

t�s.y � x/ fE .jZ.s; y/jp/g2=p

�p=2

I (11.14)

the last inequality is justified by Minkowski’s inequality. Next we raise both sides
of the preceding inequality to the power 2=p and then multiply both sides by e�ˇt

in order to obtain

�Np;ˇ.� � Z PW /
�2 � 4p

Z 1

0

ds

Z 1

�1
dy e�ˇ.t�s/�2

t�s.y�x/e�ˇs fE .jZ.s; y/jp/g2=p

� 4p
�Np;ˇ.Z/

�2 Z 1

0

ds

Z 1

�1
dy e�ˇsŒ�s.y/�2

D 2p�

ˇ2

�Np;ˇ.Z/
�2

;

thanks to Eq. (11.12). The relation (11.11) concludes the proof in the case that p >

2. When p D 2 is handled the same way, the prefactor .4p/p=2 D 8 of Eq. (11.14)
can be improved to one, owing to the L2.	/ isometry of Walsh integrals. ut
We are now ready to prove the main results of this section.

Proof of Theorem 3.1 Since u0 and v0 are bounded, we clearly have

sup
x2R

jU0.t; x/ C V0.t; x/j � const � .1 C t/ .t � 0/;

whence

kU0 C V0kp;ˇ D
 

sup
t�0

e�ˇt sup
x2R

jU0.t; x/ C V0.t; x/jp
!1=p

� K; (11.15)

where K WD Kp;ˇ is a positive and finite constant that depends only on p and ˇ.
We apply Eqs. (11.3), (11.15), and Proposition 3.1, together with the fact that

j�.u/j � j�.0/j C Lip� juj, in order to conclude that for all ˇ 2 .0; 1/ and p 2
Œ2; 1/,

kukp;ˇ � K C p3=2�1=2

ˇ
p

2

�j�.0/j C Lip� kukp;ˇ

�
: (11.16)

This inequality implies that kukp;ˇ < 1, provided that ˇ > p3=2Lip�

p
�=2; and

Theorem 3.1 follows. ut



11 Intermittency and Chaos: : : 259

Proof of Theorem 3.2 We need to follow the proof of Theorem 2.7 of [19] closely,
and so merely recall the necessary steps. It suffices to prove that

Z 1

0

e�ˇt E
�ju.t; x/j2� dt D 1 when ˇ � L�

p
�=2: (11.17)

Theorem 3.2 will follow from this. This can be seen as follows: By the very
definition of N�.2/, we know that for all fixed 
 > 0 there exists a finite constant
t
 > 1 such that E.ju.t; x/j2/ � t
 exp.. N�.2/ C 
/t/ whenever t > t
 . Consequently,

Z 1

t


e�ˇt E.ju.t; x/j2/ dt � t


Z 1

t


e�.ˇ� N�.2/�
/t dt:

We may conclude from this and Eq. (11.17) that N�.2/ � L�

p
�=2 � 
, and this

completes the proof because 
 > 0 were arbitrary. It remains to verify Eq. (11.17).
A direct computation, using the L2 isometry that defines Walsh’s stochastic

integrals, shows us that

E
�ju.t; x/j2�

D jU0.t; x/ C V0.t; x/j2 C
Z t

0

ds

Z 1

�1
dy �2

t�s.y � x/E
�j�.u.s; y/j2�

� C

ˇ
C L2

� �
Z t

0

ds

Z 1

�1
dy �2

t�s.y � x/E
�ju.s; y/j2� ; (11.18)

with C WD infz2RŒu0.z/�2. Define

Mˇ.x/ WD
Z 1

0

e�ˇt E
�ju.t; x/j2� dt; Hˇ.x/ WD

Z 1

0

e�ˇt Œ�t .x/�2 dt:

We can rewrite Eq. (11.18) in terms of Mˇ and Hˇ as follows:

Mˇ.t/ � C

ˇ
C L2

� .Mˇ � Hˇ/.x/;

where � denotes spatial convolution. The preceding is a renewal inequation, and can
be solved directly: We set

.Hf /.x/ WD L2
�.Hˇ � f /.x/ .x 2 R/;

for every nonnegative measurable function f W R ! RC, and deduce the functional
recursion Mˇ � C=ˇ C .H � Mˇ/, whence

Mˇ.x/ � ˇ�1

1X
nD0

.HnC /.x/;
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where we have identified the constant C with the function C.x/ WD C , as usual.
Now .HC /.x/ D C L2

�

R1
0

e�ˇt k�t k2
L2.R/

dt D C ŒL2
� �=.2ˇ2/�; see Eq. (11.12). We

can iterate this computation to see that .HnC /.x/ D C ŒL2
� �=.2ˇ2/�n for all n � 0,

and hence

Mˇ.x/ � Cˇ�1

1X
nD0

�
L2

� �

2ˇ2

�n

:

The preceding infinite series is equal to C1 if and only if ˇ � L�

p
�=2. This

establishes Eq. (11.17) and concludes the proof of Theorem 3.2. ut
Proof of Theorem 3.3 Because u0 and v0 are bounded, jU0.t; x/ C V0.t; x/j D
O.t/ as t ! 1, uniformly in x 2 R. Therefore, the boundedness of � ,
Eqs. (11.3), (11.8), (11.12), and (11.15) together imply that

ku.t; x/kp � O.t/ C sup
x2R

j�.x/j
�

4p

Z t

0

k�sk2
L2.R/

ds

�1=2

� O.t/ C p
p� sup

x2R
j�.x/jt D O.t/ .t ! 1/:

(11.19)

The main assertion of Theorem 3.3 follows. In order to establish the remaining claim
about the sharpness of the estimator, suppose u0.x/ � 0 and infz2R v0.y/ > 0, and
consider p D 2. Thanks to Eq. (11.18), ku.t; x/k2 � V0.t; x/ � infz2R v0.z/ � �t:

The claim follows from this and Jensen’s inequality. ut
There are many variations of the sharpness portion of Theorem 3.3. Let us

conclude this section with one such variation.

Lemma 3.1. If �.u/ D � is a constant and u0 and v0 are both constants, then

lim
t!1

1

t2
E
�ju.t; x/j2� D .v0�/2 C �2�

4
for all x 2 R:

Proof. In accord with Eq. (11.12), the second moment of
R

.0;t /�R �t�s.y�x/

W.ds dy/ is �t2=4. Therefore, Eq. (11.5) implies that

E
�ju.t; x/j2� D .u0 C v0�t/2 C �2�t2

4
D
�

.v0�/2 C �2�

4
C o.1/

	
t2;

as t ! 1. ut
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4 Compact-Support Initial Data

This section is devoted to the study of the behavior of the [spatial] supremum
supx2R ju.t; x/j of the solution to Eq. (11.1) when t is fixed. Throughout this section
we assume the following:

The initial function u0 and initial velocity v0 have compact support. (11.20)

We follow the ideas of Foondun and Khoshnevisan [20]. However, the present
hyperbolic setting lends itself to significant simplifications that arise mainly because
the Green function has the property that �t has compact support at every fixed time
t > 0.

Throughout this section, we assume also that

�.0/ D 0 and L� > 0; (11.21)

where L� was defined in Eq. (11.13). Since Eq. (11.1) has a unique solution, the
preceding conditions imply that if u0.x/ � 0, then ut .x/ � 0 for all t > 0.

The idea, borrowed from [20], is to compare supx2R ju.t; x/j with the L2.R/-
norm of the infinite-dimensional stochastic process fu.t; �/gt�0. This comparison
will lead to the result, since it turns out that the compact-support property of u0 and
v0 will lead us to show that u.t; �/ also has compact support. This compact-support
property does not hold for parabolic variants of Eq. (11.1); see Mueller [25].

Next is the main result of this section.

Theorem 4.1. Suppose L� > 0, �.0/ D 0, and u0 is Hölder continuous with
Hölder index � 1=2. Suppose also that u0 and v0 are nonnegative functions, both
supported compactly in Œ�K; K� for some K > 0. Then, u.t; �/ 2 L2.R/ a.s. for all
t � 0 and

L�

r
�

2
� lim sup

t!1
1

t
sup
x2R

log E
�ju.t; x/j2�

� lim sup
t!1

1

t
log E

�
sup
x2R

ju.t; x/j2
�

� Lip�

r
�

2
: (11.22)

Remark 4.1. Theorem 4.1 implies that supx2R ju.t; x/j < 1 a.s. for all t � 0

provided that the initial function and the initial velocity both have compact support
[and are mildly smooth]. We are going to show in Sect. 7 that supx2R ju.t; x/j D 1
a.s. if the initial function and velocity are nonzero constants, even if those constants
are quite close to zero. This discrepancy suggests strongly that the stochastic wave
Eq. (11.1) is chaotic [two mildly different initial conditions can lead to a drastically
different solution]. This form of chaos is due entirely to the presence of the noise PW
in Eq. (11.1). ut
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Before we turn to the proof of Theorem 4.1, we will need a few intermediary
results.

Proposition 4.1. Suppose that L� > 0, �.0/ D 0, and that u0 6� 0 and v0 are
nonnegative functions in L2.R/. Then, u.t; �/ 2 L2.R/ a.s for all t > 0, and

L�

r
�

2
� lim sup

t!1
1

t
log E



ku.t; �/k2

L2.R/

�
� Lip�

r
�

2
: (11.23)

Proof. The proof resembles that of Theorem 2.1 of [19]. The latter is valid for
parabolic equations; therefore, we show how one can adapt that argument to the
present hyperbolic setting.

Since u0 � 0, it follows that

1

2
ku0k2

L2.R/
� kU0.t; �/k2

L2.R/
� ku0k2

L2.R/
:

Moreover, since v0 � 0, we have

0 � kV0.t; �/k2
L2.R/

D
Z 1

�1
dx

�Z �t

��t

dy v0.y C x/

�2

� 4�2t2 kv0k2
L2.R/

;

thanks to the Cauchy–Schwarz inequality.
Now, we deduce from Eq. (11.3) that

E


ku.t; �/k2

L2.R/

�

� kU0.t; �/k2
L2.R/

C kV0.t; �/k2
L2.R/

C L2
�

Z t

0

ds E


ku.s; �/k2

L2.R/

�
k�t�sk2

L2.R/

� 1

2
ku0k2

L2.R/
C L2

�

Z t

0

ds E


ku.s; �/k2

L2.R/

�
k�t�sk2

L2.R/
: (11.24)

Define

U.�/ WD
Z 1

0

e��t E


ku.t; �/k2

L2.R/

�
dt: (11.25)

In this way, we can conclude from Eqs. (11.12) and (11.24) that the nonnegative
function U that was just defined satisfies the recursive inequality,

U.�/ �
ku0k2

L2.R/

2�
C �L2

�

2�2
U.�/: (11.26)

Since u0 6� 0, the first term on the right-hand side of Eq. (11.26) is strictly positive,
whence it follows that whenever � � L�

p
�=2 , we have U.�/ D 1. This proves

the first asserted inequality in Proposition 4.1.
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As regards the other bound, we consider the Picard iteration scheme that defines
u from Eq. (11.3). Namely, we set u0.t; x/ WD 0 and then define iteratively

unC1.t; x/ D U0.t; x/ C V0.t; x/ C
Z

.0;t /�R
�t�s.y � x/�.un.s; y// W.ds dy/:

(11.27)

Next we may proceed, as we did for Eq. (11.24) but develop upper bounds in place
of lower bounds, in order to deduce the following:

E


kunC1.t; �/k2

L2.R/

�
� 2kU0.t; �/k2

L2.R/
C 2kV0.t; �/k2

L2.R/

C Lip2
�

Z t

0

ds E


kun.s; �/k2

L2.R/

�
k�t�sk2

L2.R/

� 2ku0k2
L2.R/

C 8�2t2 kv0k2
L2.R/

C Lip2
�

Z t

0

ds E


kun.s; �/k2

L2.R/

�
k�t�sk2

L2.R/
: (11.28)

In order to analyze this inequality let us define

Mn.�/ WD sup
t�0

h
e��t E



kun.t; �/k2

L2.R/

�i
.� > 0; n D 1; 1; : : :/:

In accord with Eqs. (11.28) and (11.12), the Mj .�/’s satisfy the recursive inequality

MnC1.�/ � 2ku0k2
L2.R/

C 8�2

�2
kv0k2

L2.R/
C �Lip2

�

2�2
Mn.�/:

It follows readily from this recursion that if � > Lip�

p
�=2, then supn�0 Mn.�/<1.

Finally, we take the limit as n ! 1 in order to deduce the lower bound in
Proposition 4.1. ut

Among other things, Proposition 4.1 proves the first claim, made in Theorem 4.1,
that u.t; �/ 2 L2.R/ almost surely for every t � 0.

We plan to deduce Theorem 4.1 from Proposition 4.1 by showing that
ku.t; �/kL2.R/ and supx2R ju.t; x/j are “comparable.”

We start by a “compact-support property” of the solution u, which is associated
strictly to the hyperbolicity of the wave operator. As such, our next result should be
contrasted with Lemma 3.3 of [20], valid for parabolic stochastic partial differential
equations.

Proposition 4.2. Under the assumptions of Theorem 4.1, the random function x 7!
u.t; x/ is a.s. supported in Œ�K � �t; K C �t� for every t > 0.
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Proof. Let u0.t; x/ WD 0 and define iteratively unC1, in terms of un, as Picard
iterates; see (11.27). Note that �t�s is supported in Œ��.t � s/; �.t � s/� for
all s 2 .0; t/. Because U0.t; �/ and V0.t; �/ are both supported in the interval
Œ�K ��t; K C�t�, it follows from Eq. (11.27), the fact that �.0/ D 0, and induction
[on n � 0] that un.s; �/ is a.s. supported in Œ�K � �s; K C �s� for all s > 0 and
n � 0. Now we know from Dalang’s theory [13] that limn!1 un.t; x/ D u.t; x/ in
probability. Therefore, the result follows. ut
Remark 4.2. Proposition 4.2 improves some of the estimates that were obtained
previously in [11]. Namely that u.t; �/ does not have large peaks more than a distance
�t C o.t/ away from the origin as t ! 1. ut

In order to be able to prove Theorem 4.1, we need some continuity estimates for
the solution u. The continuity of the solution itself has been known for a long time;
see [13, 26] for instance. We merely state the results in the form that we need.

Lemma 4.1. If u0 is Hölder continuous of order � 1=2, then for all integers p � 1

and for every ˇ > N�.2p/, there exists a constant Cp;ˇ 2 .0; 1/ such that, for all
t � 0,

sup
j 2Z

sup
j �x<x0�j C1

����u.t; x/ � u.t; x0/
jx � x0j1=2

����
2p

� Cp;ˇeˇt=2p: (11.29)

Proof. We may observe that jU0.t; x/�U0.t; x0/j � const�jx�x0j1=2 and jV0.t; x/�
V0.t; x0/j � 2 supz2R jv0.z/j � jx � x0j � 2 supz2R jv0.z/j � jx � x0j1=2, as long as
jx � x0j � 1. Therefore, we apply Eqs. (11.3) and (11.8) to deduce that uniformly
for all x; x0 2 R such that jx � x0j � 1,

ku.t; x/ � u.t; x0/k2p � const � jx � x0j1=2 C Lip�

�
4p

Z t

0

ds

Z 1

�1
dy ku.s; y/k2

2p

� j�t�s.y � x/ � �t�s.y � x0/j2
!1=2

: (11.30)

Theorem 3.1 shows that kuk2p;ˇ < 1 provided ˇ > N�.2p/, and a direct calculation
shows that Z 1

�1
dy j�s.y � x/ � �s.y � x0/j2 � 2jx � x0j (11.31)

for all s > 0. As a consequence,

Z t

0

ds

Z 1

�1
dy ku.s; y/k2

2pj�t�s.y � x/ � �t�s.y � x0/j2 (11.32)

� eˇt=p

Z t

0

ds

Z 1

�1
dy e�ˇs=pku.s; y/k2

2p e�ˇ.t�s/=pj�t�s.y � x/

� �t�s.y � x0/j2
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� kuk2
2p;ˇ eˇt=p

Z 1

0

ds e�ˇs=p

Z 1

�1
dy j�s.y � x/ � �s.y � x0/j2

� kuk2
2p;ˇ

2p

ˇ
eˇt=pjx � x0j; (11.33)

by Eq. (11.31). The theorem follows from Eqs. (11.30) and (11.33). ut
By analogy with Lemmas 3.5 and 3.6 of [20], we can extend the preceding result

to all real numbers p 2 .1; 2/ and to a uniform modulus of continuity estimate.

Lemma 4.2. Suppose the conditions of Lemma 4.1 are satisfied. Then, for all p 2
.1; 2/ and 
; ı 2 .0; 1/, there exists a constant Cp;
;ı 2 .0; 1/ such that for all
t � 0,

sup
j 2Z

����� sup
j �x<x0�j C1

ju.t; x/ � u.t; x0/j2
jx � x0j1�


�����
p

� Cp;
;ı e.1Cı/�pt ; (11.34)

where �p WD .2 � p/ N�.2/ C .p � 1/ N�.4/.

Proof. The proof works exactly as in [20, Lemmas 3.5 and 3.6]. First, one proves
that

E
�ju.t; x/ � u.t; x0/j2p

� � Cp;ıjx � x0jp exp..1 C ı/�.p//; (11.35)

for all ı 2 .0; 1/, jx�x0j � 1, and p 2 Œ1; 2�. This is a direct application of convexity
of Lp norms and Lemma 4.1. We refer to [20, Lemma 3.5] for a detailed argument.
As a second step, it is possible to use a suitable form of the Kolmogorov continuity
theorem in order to obtain an estimate that holds uniformly for j � x < x0 � j C1,
as stated. We refer to [17] for a detailed proof; see in particular, the proof of Theorem
4.3 therein. ut

We are ready to prove Theorem 4.1. This is similar to the proof of Theorem 1.1
in [20], but because of Proposition 4.2, some of the technical issues of [20] do not
arise.

Proof of Theorem 4.1 We have already proved that u.t; �/ 2 L2.R/ for every t > 0;
see Proposition 4.1. Therefore, it remains to prove Eq. (11.22).

The lower bound is a direct consequence of Propositions 4.1 and 4.2. Indeed,
Proposition 4.1 implies that
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exp

�

L�

r
�

2
C o.1/

�
t

�
� E

�Z 1

�1
ju.t; x/j2 dx

�

D E

�Z KC�t

�K��t

ju.t; x/j2 dx

�

� 2.K C �t/ sup
x2R

E
�ju.t; x/j2� : (11.36)

The first inequality in Eq. (11.22) follows.
As regards the second inequality in Eq. (11.22), we may observe that for all p 2

.1; 2/, 
 2 .0; 1/, j 2 Z, and t � 0,

sup
j �x�j C1

ju.t; x/j2p � 22p�1

 
ju.t; j /j2p C sup

j �x�j C1

ju.t; x/ � u.t; j /j2p

!

� 22p�1


ju.t; j /j2p C 	

p
j

�
;

where

	
p
j WD sup

j �x�x0�j C1

ju.t; x/ � u.t; x0/j2
jx � x0j1�


: (11.37)

Consequently,

E

 
sup

j �x�j C1

ju.t; x/j2p

!
� 22p�1

n
E
�ju.t; j /j2p

�C E


	

p
j

�o
: (11.38)

Lemma 4.2 implies that E.	
p
j / � Cp;
;ı ep.1Cı/�pt . Moreover, u.t; j / D 0 a.s. for

jj j > K C �t [Proposition 4.2], and E.ju.t; j /j2p/ � const � e. N�.2p/Co.1//t whenever
jj j � K C �t [Theorem 3.1]. It follows that for all large t ,

E

�
sup
x2R

ju.t; x/j2p

�
D E

 
sup

jxj�dKC�te
ju.t; x/j2p

!

� const � dK C �te �e. N�.2p/Co.1//t C Cp;
;ıep.1Cı/�pt
�

;

(11.39)

whence

lim sup
t!1

1

t
log E

�
sup
x2R

ju.t; x/j2p

�
� maxfp.1 C ı/�p I N�.2p/g: (11.40)
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We let ı ! 0, then use Jensen’s inequality and finally take p ! 1. Since �p ! �.2/

as p ! 1, this will lead us to the bounds

lim sup
t!1

1

t
log E

�
sup
x2R

ju.t; x/j2
�

� N�.2/ � Lip�

r
�

2
; (11.41)

by Theorem 3.1 and Remark 3.1. The last inequality in Eq. (11.22) follows. This
completes our proof. ut

5 Moment and Tail-Probability Estimates

In this section, we will first present technical estimates on the Lp moments of
the solution u and then use those estimates in order to establish estimates on
tail probabilities of the solution. We will use the efforts of this section later in
Sect. 7 in order to deduce the main results of this paper. This section contains the
hyperbolic analogues of the results of [12], valid for parabolic equations. Some of
the arguments of [12] can be simplified greatly, because we are in a hyperbolic
setting. But in several cases, one uses arguments similar to those in [12]. Therefore,
we skip some of the details.

Convention. Throughout Sect. 5, we will consider only the case that u0 and v0 are
constants.

Without loss of much generality, we will assume that u0 � 1. The general case
follows from this by scaling. However, we will have to keep track of the numerical
value of v0. Hence, Eq. (11.3) becomes

u.t; x/ D 1 C v0�t C
Z

.0;t /�R
�t�s.y � x/�.u.s; y// W.ds dy/; (11.42)

for t � 0, x 2 R. In accord with the results of Dalang [13], the law of ut .x/ is
independent of x, since the initial velocity v0 and position u0 � 1 are constants.

We start our presentation by stating a general upper bound for the moments of
the solution.

Proposition 5.1. Suppose u0 � 1 and v0 is a constant. Choose and fix T > 0 and
define a WD T Lip�

p
�. Then there exists a finite constant C > 0 such that

sup
0�t�T

sup
x2R

E .ju.t; x/jp/ � C p exp
�
ap3=2

�
for all p 2 Œ1; 1/: (11.43)

The preceding is a direct consequence of our proof of Theorem 3.1. Indeed, we
proved there that kukp;ˇ < 1 provided that ˇ > p3=2Lip�

p
�=2. Proposition 5.1

follows upon unscrambling this assertion.
Let us recall the following “stretched-exponential” bound for log X :
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Lemma 5.1 (Lemma 3.4 of [12]). Suppose X is a nonnegative random variable
that satisfies the following: There exist finite numbers a; C > 0, and b > 1 such
that E.Xp/ � C p exp.apb/ for all p 2 Œ1; 1/. Then,

E exp


˛
�
logC X

�b=.b�1/
�

< 1;

where logC u WD log.u _ e/, provided that 0 < ˛ < .1 � b�1/=.ab/1=.b�1/:

Thanks to the preceding lemma and Chebyshev’s inequality, Proposition 5.1
implies readily the following upper bound on the tail of the distribution of ju.t; x/j.
Corollary 5.1. For all T 2 .0; 1/ and ˛ 2 .0; 4

27
.T 2.Lip� _ 1/2�/�1/,

sup
0�t�T

sup
x2R

E
h
exp

n
˛
�
logC ju.t; x/j�3oi < 1: (11.44)

Consequently,

lim sup
�!1

1

.log �/3
sup

0�t�T

sup
x2R

log Pfju.t; x/j > �g � � 4

27 T 2.Lip� _ 1/2�
: (11.45)

In plainer terms, Corollary 5.1 asserts that there is a finite constant A WD AT > 1

such that for all � sufficiently large,

sup
0�t�T

sup
x2R

P fju.t; x/j � �g � A exp
��A�1j log �j3� :

In order to bound lower bounds on tail probabilities we need to have more specific
information on the nonlinearity � . Let us start with the case that � is bounded
uniformly away from zero.

Proposition 5.2. If 
0 WD infz2R �.z/ > 0, then for all t 2 .0; 1/,

inf
x2R

E
�ju.t; x/j2p

� �

p

2 C o.1/
�

.�t p/p as p ! 1; (11.46)

where the o.1/ term only depends on p and

�t WD 
2
0�t2=.2e/: (11.47)

Proof. We follow the proof of Lemma 3.6 of [12] closely.
Since the law of u.t; x/ does not depend on x, the inf in Eq. (11.46) is redundant.

From now on, we will consider only the case that x D 0.
Choose and fix a finite t > 0, and notice that u.t; 0/ D 1 C v0�t C Mt , where

.M�/0���t is the continuous mean-zero martingale that is defined by

M� WD
Z

.0;�/�R
�t�s.y/�.u.s; y// W.ds dy/: (11.48)
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The quadratic variation of M is given by

hM i� D
Z �

0

ds

Z 1

�1
dy �2

t�s.y/�2.u.s; y//: (11.49)

According to Itô’s formula, if p 2 Œ2; 1/, then

M
2p
t D 2p

Z t

0

M 2p�1
s dMs C p.2p � 1/

Z t

0

M 2p�2
s dhM is: (11.50)

We take expectations on both sides and replace hM i using Eq. (11.49), in order to
obtain the following:

E


M

2p
t

�
D p.2p � 1/

Z t

0

ds

Z 1

�1
dy E

�
M 2.p�1/

s �2.u.s; y//
�

�2
t�s.y/

� p.2p � 1/
2
0 �
Z t

0

ds

Z 1

�1
dy E

�
M 2.p�1/

s

�
�2

t�s.y/:

We iterate this process, using Eq. (11.49), to obtain the following lower bound for
the moments of M :

E


M

2p
t

�
�

p�1X
kD0

Ck.p/

Z t

0


.t; ds1/

Z s1

0


.s1; ds2/ � � �
Z sk

0


.sk; dskC1/; (11.51)

where


.t; ds/ WD 1Œ0;t �.s/ k�t�sk2
L2.R/

ds D 1

2
�.t � s/1Œ0;t �.s/ ds Œsee (11.12)�;

and

Ck.p/ WD 

2.kC1/
0 �

kY
j D0

 
2p � 2j

2

!
:

For similar moment computations, also valid for hyperbolic equations, see [10]. The
right-hand side of Eq. (11.51) is the exact expression for the pth moment of u if �

were identically 
0. Therefore,

E
�ju.t; 0/j2p

� � E


M

2p
t

�
� E



N

2p
t

�
; (11.52)

where Nt WD 
0 �R.0;t /�R �t�s.y/ W.ds dy/ is a Gaussian random variable with mean

zero and variance E.N 2
t / D 
2

0 � R t

0
k�sk2

L2.R/
ds D 
2

0�t2=4: Therefore, for every
integer p � 2,

E


N

2p
t

�
D .2p/Š

2p pŠ

˚
E
�
N 2

t

��p D .2p/Š

2p pŠ

�

2

0�t2

4

�p

: (11.53)
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Stirling’s formula, Eqs. (11.52), and (11.53) together prove the result if p ! 1
along integers. For other values of p, we use the integer case for dpe and apply
Jensen’s inequality to bound the ku.t; 0/kp by ku.t; 0/kdpe. ut

The preceding moment bound yields the next probability estimate.

Proposition 5.3. If infz2R �.z/ D 
0 > 0, then there exists a constant C 2 .0; 1/

such that for all t > 0,

lim inf
�!1

1

�3
inf
x2R

log Pfju.t; x/j � �g � �C
.Lip� _ 1/


3
0t2�

: (11.54)

Proof. We follow the proof of [12, Proposition 3.7].
The classical Paley–Zygmund inequality implies that

P

�
ju.t; x/j � 1

2
ku.t; x/k2p

	
�
˚
E
�ju.t; x/j2p

��2

4E .ju.t; x/j4p/

� exp
��8t.Lip� _ 1/�1=2 p3=2

�
; (11.55)

owing to Propositions 5.1 and 5.2. Proposition 5.2 tells us that ku.t; x/k2p is
bounded below by .1 C o.1// times .�t p/1=2 as p ! 1, where �t is given
by Eq. (11.47). Therefore,

P

�
ju.t; x/j � 1

2
.�t p/1=2

	
� exp

��8t.Lip� _ 1/�1=2 p3=2
�

; (11.56)

for all sufficiently large p. Set � WD 1
2
.�t p/1=2 to complete the proof. ut

Let us write “f .x/ % g.x/ as x ! 1” instead of “there exists a constant
C 2 .0; 1/ such that lim infx!1 f .x/=g.x/ � C .” In this way, we may summarize
the findings of this section, so far, as follows:

Corollary 5.2. Suppose u0 � 1 and v0 � a constant. If infz2R �.z/ D 
0 > 0, then
for all t > 0,

� �3

�
- log Pfju.t; x/j � �g - � .log �/3

�
as � ! 1: (11.57)

The implied constants do not depend on .x; �/.

Proposition 5.1 and Corollary 5.1 assumed that � was a Lipschitz function. If we
assume, in addition, that � is bounded above (as well as bounded away from 0), then
we can obtain a nearly optimal improvement to Corollary 5.2. In fact, the following
shows that the lower bound of Proposition 5.2 is sharp in such cases.
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Proposition 5.4. If S0 WD supz2R �.z/ < 1, then for all t > 0 and all integers
p � 1,

sup
x2R

E
�ju.t; x/j2p

� �


2
p

2 C o.1/
�

. Q�t p/p as p ! 1; (11.58)

where the o.1/ term only depends on p and

Q�t WD 2S2
0 �t2=e: (11.59)

Proof. We apply an argument that is similar to the one used in the proof of
Proposition 5.2. Namely, we consider the same martingale fM�g0���t , as we did
for the proof of Proposition 5.2. We apply exactly the same argument as we did
there but reverse the inequalities using the bound �.z/ � S0 for all z 2 R, in order
to deduce the following:

E
�ju.t; 0/j2p

� � 22p.1 C v0�t/2p C 22pE


M

2p
t

�

� 22p.1 C v0�t/2p C 22pE


N

2p
t

�
;

where Nt WD S0 � R
.0;t /�R �t�s.y/ W.ds dy/: Similar computations as in Proposi-

tion 5.2 prove the result. ut
We can now turn this bound into Gaussian tail-probability estimates.

Proposition 5.5. If 0 < 
0 WD infz2R �.z/ � supz2R �.z/ WD S0 < 1, then for all
t > 0 there exist finite constants C > c > 0 such that

c exp

�
�C

�2

�

�
� Pfju.t; x/j � �g � C exp

�
�c

�2

�

�
; (11.60)

simultaneously for all � large enough and x 2 R.

Proof. The lower bound is obtained in the exact same manner as in the proof of
Proposition 5.3: We use the Paley–Zygmund inequality, though we now appeal to
Proposition 5.4 instead of Proposition 5.1.

We establish the upper bound by first applying Proposition 5.4 in order to see
that supx2R E.ju.t; x/j2m/ � .A�/m mŠ for all integers m � 1, for some constant
A 2 .0; 1/. This inequality implies that for all 0 < � < .Ak/�1,

sup
x2R

E



e�ju.t;x/j2
�

�
1X

mD0

.�A�/m D 1

1 � �A�
< 1: (11.61)
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Therefore, Chebyshev’s inequality implies that if 0 < � < .A�/�1, then

sup
x2R

Pfju.t; x/j > �g � exp.���2/

1 � �A�
.� > 0/: (11.62)

We choose � D const � ��1, for a suitably large constant to finish. ut

6 Localization

In Sect. 7 below, we will establish the chaotic behavior of the solution u
to Eq. (11.1). The analysis of Sect. 7 will rest on a series of observations; one
of the central ones is that the random function u is highly “localized.” We will make
this more clear in this section. In the mean time, let us say sketch, using only a few
words, what localization means in the present context.

Essentially, localization is the property that if x1 and x2 are chosen “sufficiently”
far apart, then u.t; x1/ and u.t; x2/ are “approximately independent.”

As we did in Sect. 5, we will assume throughout this section that the initial
conditions are identically constant and that u0 � 1 [Recall that the latter assumption
is made without incurring any real loss in generality.]. Note, in particular, that the
solution u can be written in the mild form Eq. (11.5). Equivalently,

u.t; x/ D 1 C v0�t C 1

2

Z
.0;t /�.x��t;xC�t/

�.u.s; y// W.ds dy/; (11.63)

for all t > 0, x 2 R.
For all integers n � 0, let fun.t; x/gt�0;x2R denote the nth step Picard

approximation to u. Namely, we have u0 � 0 and for n � 1, t � 0, and x 2 R,

un.t; x/ D 1 C v0�t C 1

2

Z
.0;t /�.x��t;xC�t/

�.un�1.s; y// W.ds dy/: (11.64)

Our next result estimates the order of convergence of the Picard iteration.

Proposition 6.1. Let u denote the solution to Eq. (11.1) with constant initial
velocity v0 and constant initial function u0 � 1. Let un be defined as above. Then,
for all n � 0, t � 0, and p 2 Œ2; 1/,

sup
x2R

E .ju.t; x/ � un.t; x/jp/ � C p exp
�
ap3=2t � np

�
; (11.65)

where the constants C; a 2 .0; 1/ do not depend on .n; t; p/.
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Proof. Recall the norms k � � � kp;ˇ from Eq. (11.9). In accord with Proposition 3.1
and Eq. (11.64),

ku � unkp;ˇ � const � p3=2�1=2Lip2
�

4ˇ
p

2
ku � un�1kp;ˇ:

We apply Eq. (11.12) with ˇ WD e2�5=2�1=2Lip2
� p3=2 in order to deduce, for this

choice of ˇ, the inequality ku � unkp;ˇ � e�1ku � un�1kp;ˇ , whence ku � unkp;ˇ �
e�nku � u0kp;ˇ by iteration. In other words, we have proved that

E .ju.t; x/ � un.t; x/jp/ � e�npCˇt kukp

p;ˇ: (11.66)

An appeal to Proposition 5.1 concludes the proof. ut
We plan to use the Picard iterates fung1

nD0 in order to establish the localization
of u. The following is the next natural step in this direction.

Proposition 6.2. Let t > 0 and choose and fix a positive integer n. Let fxi gi�0

denote a sequence of real numbers such that jxi � xj j > 2n�t whenever i ¤ j .
Then fun.t; xi /gi�0 is a collection of i.i.d. random variables.

Proof. It is easy to verify, via induction, that the random variable un.t; x/ depends
only on the value of the noise PW evaluated on Œ0; t � � Œx � n�t; x C n�t�. Indeed, it
follows from Eq. (11.64) that u1.t; x/ D 1 C v0�t is deterministic, and Eq. (11.64)
does the rest by induction.

With this property in mind, we now choose and fix a sequence fxi gi�0 as in the
statement of the proposition. Without loss of too much generality, let us consider
x1 and x2. By the property that was proved above, un.t; x1/ depends only on the
noise on I1 WD Œ0; t � � Œx1 � n�t; x1 C n�t�, whereas un.t; x2/ depends only on the
noise on I2 WD Œ0; t � � Œx2 � n�t; x2 C n�t�. According to the defining property
of the xi ’s, jx1 � x2j > 2n�t , and hence I1 and I2 are disjoint. Therefore, it
follows from the independence properties of white noise that u.t; x1/ and u.t; x2/

are independent. Moreover, the stationarity properties of stochastic integrals imply
that u.t; x1/ and u.t; x2/ are identically distributed as well [here we use also the
assumption of constant initial data]. This proves the result for n D 2. The general
case is proved by expanding on this case a little bit more. We omit the remaining
details.

Let us conclude by mentioning that the preceding is the sketch of a complete
argument. A fully rigorous proof would require us to address a few technical issues
about Walsh stochastic integral. They are handled as in the proof of Lemma 4.4 in
[12], and the arguments are not particularly revealing; therefore, we omit the details
here as well. ut
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7 Chaotic Behavior

We are now ready to state and prove the two main results of this paper. The first
one addresses the case that � is bounded away uniformly from zero and shows a
universal blow-up rate of .log R/1=3.

Theorem 7.1. If u0 > 0, v0 � 0, and infz2R �.z/ D 
0 > 0, then for all t > 0 there
exists a constant c WD ct 2 .0; 1/—independent of �—such that

lim inf
R!1

1

.log R/1=3
sup

x2Œ�R;R�

ju.t; x/j � c�1=3:

Proof. The basic idea is the following: Consider a sequence of spatial points
fxi gi�0, as we did in Proposition 6.2, in order to obtain an i.i.d. sequence
fun.t; xi /gi�0. The tail-probability estimates of Sect. 5 will imply that every random
variable un.t; xi / has a positive probability of being “very large.” Therefore, a
Borel–Cantelli argument will imply that if we have enough spatial points, then
eventually one of the un.t; xi /’s will have a “very large” value a.s. A careful
quantitative analysis of this outline leads to the estimates of Theorem 7.1. Now
let us add a few more details.

Fix integers n; N > 0 and let fxigN
iD1 be a sequence of points as in Proposi-

tion 6.2. According to Proposition 6.2, fun.t; xi /gN
iD1 is a sequence of independent

random variables. For every � > 0,

P

�
max

1�j �N
ju.t; xj /j < �

	

� P

�
max

1�j �N
jun.t; xj /j < 2�

	
C P

�
max

1�j �N
ju.t; xj / � un.t; xj /j > �

	
:

An inspection of the proof of Proposition 5.3 shows us that the proposition continues
to hold after u is replaced by un. Therefore,

P

�
max

1�j �N
jun.t; xj /j < 2�

	
�


1 � c1e�c2.2�/3

�N

; (11.67)

for some constants c1 and c2. Moreover, Chebyshev’s inequality and Proposition 6.1
together yield

P

�
max

1�j �N
ju.t; xj / � un.t; xj /j > �

	
� NC peap3=2t�np��p; (11.68)
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and hence

P

�
max

1�j �N
ju.t; xj /j < �

	
�


1 � c1e�c2.2�/3

�N C NC peap3=2t�np��p: (11.69)

Now, we select the various parameters with some care. Namely, we set � WD p,
N WD p exp.c2p

3/, and n D %p2 for some constant % > 8c2. With these parameter
choices, Eq. (11.69) reduces to the following:

P

�
max

1�j �N
ju.t; xj /j < p

	

� e�c1p C exp
�
c2.2p/3 C log p C atp3=2 � %p3 � p log p

�
� 2e�c1p: (11.70)

We may consider the special case xi D ˙2i�tn in order to deduce the following:

P

(
sup

jxj�2N�tn

ju.t; x/j < p

)
� 2e�c1p: (11.71)

Note that 2N�tn D O.ec2p3
/ as p ! 1. Let us choose R WD exp.c2p3/, and

equivalently p WD .log R=c2/
1=3. Then by the Borel–Cantelli lemma,

sup
jxj<R

ju.t; x/j � const �
�

log R

c2

�1=3

: (11.72)

A monotonicity argument shows that the preceding inequality continues to hold for
noninteger R [for a slightly smaller constant, possibly]. A careful examination of
the content of Proposition 5.3 shows that we can at best choose c2 D const � ��1.
The result follows. ut

The second result of this section [and the second main result of this paper]
contains an analysis of the case that � is bounded both uniformly above 0 and
below 1. In that case, we will obtain an exact order of growth for supjxj<R ju.t; x/j,
as R ! 1. We can deduce by examining that growth order that the behavior of the
solution u is similar to the case where � is identically a constant [In the latter case,
u is a Gaussian process.].

Theorem 7.2. Assume constant initial data with u0 > 0 and v0 � 0. Suppose also
that 0 < infz2R �.z/ � supz2R �.z/ < 1. Then, for all t > 0, there exist finite
constants C WD Ct > c WD ct > 0 such that a.s.,

c�1=2 � lim inf
R!1

supx2Œ�R;R� ju.t; x/j
.log R/1=2

� lim sup
R!1

supx2Œ�R;R� ju.t; x/j
.log R/1=2

� C �1=2:
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Moreover, there exists a finite constant �0 D �0.t/ > 0 such that c and C do not
depend on � whenever � 2 .0; �0/.

We first need an estimate for the quality of the spatial continuity of the solution u.

Lemma 7.1. Suppose 0 < 
0 WD infz2R �.z/ � supz2R �.z/ WD S0 < 1. Then, for
every t > 0, there exists a constant A 2 .0; 1/ such that

sup
�1<x¤x0<1

E
�ju.t; x/ � u.t; x0/j2p

�
jx � x0jp � .Ap/p for all p 2 Œ2; 1/: (11.73)

Proof. We follow closely the proof of Lemma 6.1 of [12]. Fix x; x0 2 R and define

M� WD
Z

.0;t /�R
.�t�s.y � x/ � �t�s.y � x0//�.u.s; y// W.ds dy/: (11.74)

Then, fM�g0���t is a mean-zero continuous Lp.	/-martingale for every p 2
Œ2; 1/. Moreover, its quadratic variation is bounded as follows:

hM i� � S2
0

Z �

0

ds

Z 1

�1
dy j�t�s.y � x/ � �t�s.y � x0/j2 � 2�S2

0 jx � x0j

by Eq. (11.31). Because u.t; x/ � u.t; x0/ D Mt , the Burkholder–Davis–Gundy
inequality Eq. (11.8) implies the result. ut

Next we transform the previous lemma into an estimate of sub-Gaussian moment
bounds.

Lemma 7.2. If 0 < 
0 WD infz2R �.z/ � supz2R �.z/ WD S0 < 1, then for every
t > 0, there exists a constant C D Ct 2 .0; 1/ such that

E

2
64 sup

x;x02I W
jx�x0j�ı

exp

� ju.t; x/ � u.t; x0/j2
Cı

�375 � 2

ı
; (11.75)

uniformly for every ı 2 .0; 1� and every interval I 	 R of length at most one.

Lemma 7.2 follows from Lemma 7.1 and a suitable form of Kolmogorov’s
continuity theorem. This type of technical argument appears in several places in
the literature. Hence, we merely refer to the proof of [12, Lemma 6.2], where this
sort of argument appears already in a different setting. Instead, we proceed with the
more interesting

Proof of Theorem 7.2 We obtain lower bound by adapting the method of proof of
Theorem 7.1. The only major required change is that we need to use Proposition 5.5
in place of Proposition 5.3. We also need to improve Proposition 6.1 in order to
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consider a moment bound that applies Proposition 5.4 instead of 5.1. After all
this, Eq. (11.69) will turn into the following estimate:

P

�
max

1�j �N
ju.t; xj /j < �

	
�


1 � c1e�c2.2�/2

�N C NC p. Q�t p/pe�np��p: (11.76)

Next we select the parameters judiciously: We take � WD p, N WD pec2p2
, and

n D %p for a sufficiently large constant % 
 c2. In this way, Eq. (11.69) will read
as follows:

P

�
max

1�j �N
ju.t; xj /j < p

	
� e�c1p C exp

�
c2.2p/2 C log.p/ C p log. Q�t / � %p2

�

� 2e�c1p:

A Borel–Cantelli-type argument leads to the lower bound.
In order to establish the upper bound, let R > 0 be an integer and xj WD �R C j

for j D 1; : : : ; 2R. Then, we can write

P

(
sup

x2Œ�R;R�

ju.t; x/j > 2˛.log R/1=2

)

� P

�
max

1�j �2R
ju.t; xj /j > ˛.log R/1=2

	

C P

(
max

1�j �2R
sup

x2.xj ;xj C1/

ju.t; x/ � u.t; xj /j > ˛.log R/1=2

)
: (11.77)

On one hand, Proposition 5.5 can be used to show that

P

�
max

1�j �2R
ju.t; xj /j > ˛.log R/1=2

	
� 2R sup

x2R
P
˚ju.t; x/j > ˛.log R/1=2

�

� const � R1�c˛2=�:

On the other hand, Chebyshev’s inequality and Lemma 7.2 [with ı D 1] together
imply that

P

(
max

1�j �2R
sup

x2.xj ;xj C1/

ju.t; x/ � u.t; xj /j > ˛.log R/1=2

)
� const � R1�˛2=C :

Therefore, Eq. (11.77) has the following consequence:

1X
RD1

P

(
sup

x2Œ�R;R�

ju.t; x/j > 2˛.log R/1=2

)
�

1X
RD1

R1�q˛2

; (11.78)
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where

q WD min .c=� ; 1=C / :

The infinite sum in Eq. (11.78) converges when ˛ > .2=q/1=2. Therefore, by an
application of the Borel–Cantelli lemma,

lim sup
R!1WR2Z

supx2Œ�R;R� ju.t; x/j
.log R/1=2

� .8=q/1=2 a.s. (11.79)

Clearly, .8=q/1=2 � �1=2=c for all � > �0 WD 8c2=q. A standard monotonicity
argument can be used to replace “lim supR!1W R2Z” by “lim supR!1.” This
concludes the proof. ut

Among other things, Theorem 7.2 implies that if � is bounded uniformly away
from 0 and infinity, then the extrema of the solution u behave as they would for
the linear stochastic wave equation; i.e., they grow as .log R/1=2. We have shown
in [12, Theorem 1.2] that the same general phenomenon holds when the stochastic
wave equation is replaced by the stochastic heat equation. We may notice however
that the behavior in � is quite different in the hyperbolic setting than in the parabolic
case: Here, the extrema diminish as �1=2 as � # 0, whereas they grow as ��1=4 in
the parabolic case.
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Abstract In this article, we study some properties about the solution of generalized
stochastic heat equations driven by a Gaussian noise, white in time and correlated
in space, and where the diffusion operator is the inverse of a Riesz potential for any
positive fractional parameter. We prove the existence and uniqueness of solution and
the Hölder continuity of this solution. In time, Hölder’s parameter does not depend
on the fractional parameter. However, in space, Hölder’s parameter has a different
behavior depending on the fractional parameter. Finally, we show that the law of the
solution is absolutely continuous with respect to Lebesgue’s measure and its density
is infinitely differentiable.
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Consider the following kind of stochastic partial differential equations (SPDEs),
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with t 2 Œ0; T �; x 2 R
d ; d 2 N, andp > 0. We assume that a W R ! R and b W R !

R are Lipschitz continuous functions. The process PW is a Gaussian noise, white in
time, and correlated in space. We will specify later the conditions on PW . The initial
conditions are null for the sake of simplicity. Moreover,� is the Laplacian operator
on R

d , and the integral operator .��/p=2, p > 0, is the inverse of a Riesz potential.
This last operator is widely studied in Samko et al. [23], Stein [27], and Angulo
et al. [1].

This equation proposed in Eq. (12.1) is a generalization of the well-known
stochastic heat equation (pD 2) which has been studied by many authors [10, 12,
19, 25, 28], etc. On the other hand, many researches have dealt with the following
kind of SPDEs (or other similar equations):

@t�.t; x/C �.I ��/q=2.��/p=2�.t; x/C PW .t; x/; (12.2)

with � > 0 and where PW .t; x/ is a space-time white noise and the operator
.I � �/q=2; q > 0, is interpreted as the inverse of the Bessel potential. This
more general equation is known as generalized fractional kinetic equation or
fractional diffusion equation. This kind of SPDEs has been introduced to model
some physical phenomena as turbulences, diffusions in porous media, propagations
of seismic waves, kinematics in viscoelastic media, ecology, hydrology, image
analysis, neurophysiology, economics, and finances. The reader can find more
information about these modelings in [2, 4]. This class of SPDEs (12.2) has been
studied from a mathematical point of view in [1–6, 18, 22], etc. In some aspects,
our Eq. (12.1) is more particular than Eq. (12.2) as a consequence of the Bessel
potential. However, our Gaussian noise is more general and, moreover, we also add
the functions a and b.

We would also like to mention some references: [7, 8, 13–17, 21], etc. These
papers are related to the operators .��/p=2 in Eq. (12.1) or .I � �/q=2.��/p=2
in Eq. (12.2), the Gaussian noise does not appear and the study is carried out from a
more deterministic point of view.

In this paper we prove the existence and uniqueness of solution and the Hölder
continuity of this solution. Moreover, we show that the law of the solution is
absolutely continuous with respect to Lebesgue’s measure on R and its density
is infinitely differentiable. There are some differences between this study and all
the papers pointed above. Firstly, our SPDE is driven by a more general Gaussian
noise (white in time and correlated in space). Secondly, thanks to the used Gaussian
noise, the properties of the solution are checked for any p > 0 and not for a more
restricted region as for instance in Boulanba et al. [6]. Moreover, these properties do
not depend on the dimension of x. Finally, we generalize some results of Angulo et
al. [2] to the nonlinear case. We add to the equation the functions a and b and study
some new properties. Here, we deal widely with the Hölder continuity in time and
in space.
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The paper is organized as follows. In Sect. 2 we introduce the Gaussian noise. In
Sect. 3 we describe what we understand by a solution of Eq. (12.1) and prove the
existence and uniqueness of this solution. In Sect. 4 we study the Hölder continuity
of the solution. Finally, adding some conditions on a and b, Sect. 5 is devoted to the
proof of the existence of a smooth density. As usual, all constants will be denoted
by C, independently of this value.

2 The Gaussian Noise

The noise PW is the formal derivative of a Gaussian field, white in time and correlated
in space, defined as follows: for the space of Schwartz test functions D.RdC1/
(see, for instance, Schwartz [26]), the noise W D ˚

W.�/; � 2 D.RdC1/
�

is an
L2.�;A; P /-valued Gaussian process for some probability space .�;A; P /, with
mean zero and covariance functional given by

J.�;  / D
Z

RC

ds
Z

Rd

�.dx/
h
�.s; �/ � Q .s; �/

i
.x/;

where Q .s; x/ D  .s;�x/ and � is a nonnegative and nonnegative definite
tempered measure, therefore symmetric. There exists a nonnegative tempered
measure 	 which is the spectral measure of � such that

J.�;  / D
Z

RC

ds
Z

Rd

	.d
/F�.s; �/.
/F .s; �/.
/;

with F� denoting the Fourier transform of � and Nz the complex conjugate of z.
The reader interested in some examples about these two measures can find them in
Boulanba et al. [6].

Since the spectral measure 	 is a nontrivial tempered measure, we can ensure
that there exist positive constants c1; c2; c3 such that

c1 <

Z

fj
j�c3g
	.d
/ < c2: (12.3)

The Gaussian processW can be extended to a worthy martingale measure, in the
sense given by Walsh [28],

F D fF.t; A/; t 2 RC; A 2 Bb.Rd /g;

where Bb.Rd / are the bounded Borel subsets of Rd .
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3 Existence and Uniqueness of the Solution

A solution of Eq. (12.1) means a jointly measurable adapted process f�.t; x/; .t; x/ 2
Œ0; T � � R

d g such that

�.t; x/ D
Z t

0

Z

Rd

St�s.x � y/a.�.s; y// F.ds; dy/

C
Z t

0

ds
Z

Rd

dy St�s.x � y/b.�.s; y//; (12.4)

where S is the fundamental solution of Eq. (12.1) and the stochastic integral
in Eq. (12.4) is defined with respect to the Ft -martingale measure F.t; �/.

More specifically, the fundamental solution of Eq. (12.1) is the solution of

@tSt .x/C .��/p=2St .x/ D 0: (12.5)

In order to study the fundamental solution S , we need the expression of its Fourier
transform. Anh and Leonenko [4] have proved that Eq. (12.5) is equivalent to

@tFSt.�/.
/C j
jpFSt.�/.
/ D 0: (12.6)

Using the same ideas as in Dautray and Lions [11] or in Ahn and Leonenko [4], we
can prove that Eq. (12.6) has a unique solution given by

FSt.�/.
/ D e�t j
jp : (12.7)

Then, the fundamental solution of Eq. (12.5) can be written as

St .x/ D 1

.2�/n

Z

Rd

eihx; 
ie�t j
jp d
:

In [4], Ahn and Leonenko have studied widely this fundamental solution depending
on the parameter p.

For more details about the stochastic integral in Eq. (12.4), we recommend the
readings of Dalang [10] and also Dalang and Frangos [9]. In [10], Dalang presents
an extension of Walsh’s stochastic integral that requires the following integrability
condition in terms of the Fourier transform of �:

Z T

0

dt
Z

Rd

	.d
/ jFSt .�/.
/j2 < 1: (12.8)

Assuming that Eq. (12.8) is satisfied and that a and b are Lipschitz continuous
functions, we will check later that there exists the solution of Eq. (12.4).
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We first prove a useful result which connects the tempered measure 	 and the
fundamental solution St.x/ by means of the estimate

Z

Rd

	.d
/

.1C j
j2/p=2 < 1: (12.9)

Lemma 3.1. The estimates Eqs. (12.9) and (12.8) are equivalent.

Remark. In the sequel we will use the following notation:

ˆ.t/ D
Z t

0

ds
Z

Rd

	.d
/jFSs.�/.
/j2 D
Z t

0

ds Q̂ .s/; 8t 2 Œ0; T �;

and the following easy properties:

ˆ.t/ D
Z t

0

ds Q̂ .s/ D
Z t

0

ds Q̂ .t � s/ D
Z t

0

ds
Z

Rd

	.d
/jFSs.x � �/.
/j2;

for any x 2 R
d :

Proof of Lemma 3.1. We first prove that Eq. (12.9) implies Eq. (12.8).
From Eq. (12.7), Fubini’s theorem implies that

ˆ.t/ D
Z t

0

ds
Z

Rd

	.d
/e�2sj
jp D
Z

Rd

	.d
/
1� e�2t j
jp

2j
jp

D
Z

fj
j�Kg
	.d
/

1 � e�2t j
jp

2j
jp C
Z

fj
j>Kg
	.d
/

1 � e�2t j
jp

2j
jp D ˆ1.t/Cˆ2.t/;

(12.10)

for some constant K � 1:

Using that 1 � e�x � x, for any x � 0; we have

ˆ1.t/ � T

Z

fj
j�Kg
	.d
/ < 1; (12.11)

since the spectral measure 	 is a positive tempered measure.
As j
j > K � 1, applying the fact that 1Cj
j2 � 2j
j2 and Eq. (12.9), we obtain

ˆ2.t/ �
Z

fj
j>Kg
	.d
/

2j
jp �
Z

fj
j>Kg
	.d
/

.1C j
j2/p=2 < 1: (12.12)

Then, putting together Eqs. (12.10)–(12.12) we get Eq. (12.8).
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The fact that Eq. (12.8) implies Eq. (12.9) can be inferred immediately after
Eq. (12.10) using the inequalities

1

1C x
� 1 � e�x

x
� 2

1C x
; 8x > 0:

ut
We now can prove the main result of this section. The proof of this theorem could
be shortened using Theorem 13 and the erratum of [9]. However, we have preferred
to give the complete proof.

Theorem 3.1. Assume Eq. (12.9) and that the functions a and b are globally
Lipschitz. Then, Eq. (12.4) has a unique solution that is L2-continuous and, for any
T > 0 and q � 1,

sup
0�t�T

sup
x2Rd

E.j�.t; x/jq/ < 1: (12.13)

Proof. We define the following Picard’s approximation: �0.t; x/ D 0 and, for any
n � 0;

�nC1.t; x/ D
Z t

0

ds
Z

Rd

St�s.x � y/ a.�n.s; y/F.ds; dy/

C
Z t

0

ds
Z

Rd

dy St�s.x � y/ b.�n.s; y//:

Burkholder’s inequality and the Lipschitz condition on a imply that

E

ˇ
ˇ
ˇ̌
Z t

0

ds
Z

Rd

St�s.x � y/ a.�n.s; y/F.ds; dy/
ˇ
ˇ
ˇ̌
2

�
Z t

0

ds Q̂ .t � s/

"

1C sup
0�r�s

sup
x2Rd

E�2n.r; x/

#

: (12.14)

Using the Cauchy–Schwartz inequality and the Lipschitz condition on b, we have
that

E

ˇ
ˇ̌
ˇ

Z t

0

ds
Z

Rd

dy St�s.x � y/ b.�.s; y//

ˇ
ˇ̌
ˇ

2

�
�Z t

0

ds
Z

Rd

dyjSt�s.x � y/j
� �Z t

0

ds
Z

Rd

dyjSt�s.x � y/j

�
"

1C sup
0�r�s

sup
x2Rd

E�2n.r; y/

#!

: (12.15)
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Then, Eq. (12.8) applied to Eq. (12.14) and the fact that St�s.x�y/ is Rd -integrable
for t ¤ s in Eq. (12.15) together with the induction hypothesis ensure that

sup
0�s�t

sup
x2Rd

E�2nC1.t; x/ < 1;

and consequently f�n.t; x/; n � 1g is well defined. Moreover, Gronwall’s inequality
(Lemma 15 of Dalang [10]) implies that

sup
n�0

sup
0�t�T

sup
x2Rd

E�2n.t; x/ < 1:

Secondly, we show that the process f�n.t; x/; 0 � t � T; x 2 R
d g isL2-continuous.

We start with the time increment. For 0 � t � T , h > 0 such that t C h � T and
x 2 R

d we have

Ej�nC1.t C h; x/ � �nC1.t; x/j2 � C.A1 CA2 C A3/;

with

A1 D E

ˇ
ˇ̌
ˇ

Z t

0

Z

Rd

ŒStCh�s.x � y/� St�s.x � y/� a.�n.s; y//F.ds; dy/
ˇ
ˇ̌
ˇ

2

;

A2 D E

ˇ
ˇ
ˇ̌
ˇ

Z tCh

t

Z

Rd

StCh�s.x � y/ a.�n.s; y//F.ds; dy/
ˇ
ˇ
ˇ̌
ˇ

2

;

A3 D E

ˇ
ˇ
ˇ̌
Z tCh

0

ds
Z

Rd

dyStCh�s.x � y/b.�n.s; y//

�
Z t

0

ds
Z

Rd

dySt�s.x � y/b.�n.s; y//

ˇ
ˇ
ˇ
ˇ

2

:

First of all, by means of the Lipschitz condition on a, we can get that

A1 �
"

1C sup
0�t�T

sup
x2Rd

E�2n.t; x/

#

�
Z t

0

ds
Z

Rd

	.d
/ jFStCh�s.�/.
/ � FSt�s.�/.
//j2 ;

where

jFStCh�s.�/.
/ � FSt�s.�/.
/j2 D
h
e�.tCh�s/j
jp � e�.t�s/j
jpi2

D e�2.t�s/j
jp
h
e�hj
jp � 1

i2 � e�2.t�s/j
jp :
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Then, thanks to Lemma 3.1 and the dominated convergence theorem, A1 converges
to 0 as h ! 0. Easier arguments show thatA2 goes to 0 as h ! 0. A change of rule,
the Lipschitz condition on b, the Cauchy–Schwartz inequality, and the integrability
of the fundamental solution imply that

A3 � CE

ˇ
ˇ
ˇ̌
Z t

0

ds
Z

Rd

dy St�s.x � y/ Œb.�n.s C h; y// � b.�n.s; y//�

ˇ
ˇ
ˇ̌
2

CCE

ˇ
ˇ
ˇ
ˇ̌
Z h

0

ds
Z

Rd

dyStCh�s.x � y/b.�n.s; y//

ˇ
ˇ
ˇ
ˇ̌

2

� C

Z t

0

ds sup
x2Rd

E j�n.s C h; x/ � �n.s; x/j2 C Ch:

The induction hypothesis and Gronwall’s inequality (Lemma 15 of Dalang [10])
prove the right continuity uniformly with respect to the time variable t . The left
continuity can be checked in a similar way.

We now study the spatial increment. For t 2 Œ0; T �; x; z 2 R
d , we have

Ej�nC1.t; x/ � �nC1.t; z/j2 � C.B1 C B2/;

with

B1 D E

ˇ
ˇ
ˇ
ˇ

Z t

0

Z

Rd

ŒSt�s.x � y/� St�s.z � y/� a.�n.s; y//F.ds; dy/

ˇ
ˇ
ˇ
ˇ

2

;

B2 D E

ˇ
ˇ
ˇ
ˇ

Z t

0

ds
Z

Rd

dy ŒSt�s.x � y/ � St�s.z � y/� b.�n.s; y//

ˇ
ˇ
ˇ
ˇ

2

:

Using the Lipschitz condition on a, we obtain

B1 �
"

1C sup
0�t�T

sup
x2Rd

E�2n.t; x/

#

�
Z t

0

ds
Z

Rd

	.d
/ jF.St�s.x � �/� St�s.z � �//.
/j2

�
"

1C sup
0�t�T

sup
x2Rd

E�2n.t; x/

# Z t

0

ds
Z

Rd

	.d
/je�i
.x�z/ � 1j2jFSs.�/.
/j2:

Lemma 3.1, the fact that jFSs.�/.
/j � 1, and the dominated convergence theorem
imply again that B1 converges to zero as jx � zj ! 0, uniformly in t. In order to
deal with B2, the key is the following change of rule:

B2 D E

ˇ
ˇ̌
ˇ

Z t

0

ds
Z

Rd

dy St�s.z � y/ Œb.�n.s; y C .x � z/// � b.�n.s; y//�
ˇ
ˇ̌
ˇ

2

:
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As before, using the Lipschitz condition on b, the Cauchy–Schwartz inequality, the
integrability of the fundamental solution, the induction hypothesis, and Lemma 15
of Dalang [10], we can establish the L2-continuity for the process f�n.t; x/; 0 �
t � T; x 2 R

d g:
Not very different arguments imply that, for any q � 2;

sup
n�0

sup
0�t�T

sup
x2Rd

Ej�n.t; x/jq < 1:

Moreover, we can also prove that f�n.t; x/; n � 0g converges uniformly in Lq to a
limit denoted by �.t; x/ and that this limit satisfies Eqs. (12.4) and (12.13).

The uniqueness can be checked by a standard argument. ut

4 Hölderianity of the Solution

The main result of this section is the following theorem which is a generalization of
the heat equation case [24, 25].

Theorem 4.1. Assume that the functions a and b are globally Lipschitz and the
spectral measure satisfies

Z

Rd

	.d
/

.1C j
j2/ıp=2 < 1; (12.16)

for some ı 2 .0; 1/: Then, for every T > 0, q � 2, t 2 Œ0; T �, h > 0 such that
t C h 2 Œ0; T �, x 2 R

d , and �1 2 .0; 1�ı
2
/, we have

E j�.t C h; x/ � �.t; x/jq � Ch�1qI (12.17)

and for every T > 0, q � 2, t 2 Œ0; T �, x 2 R
d , # 2 R

d , and �2 2 .0; 1 � ı/, we
have

E j�.t; x C #/� �.t; x/jq � C j#j�2q; if p � 2; (12.18)

E j�.t; x C #/� �.t; x/jq � C j#j�2qp=2; if p � 2: (12.19)

Proof. We first prove Eq. (12.17). We can decompose this expectation into three
terms:

E j�.t C h; x/ � �.t; x/jq � C.ƒ1 Cƒ2 Cƒ3/; (12.20)
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with

ƒ1 D E

ˇ̌
ˇ
ˇ

Z t

0

Z

Rd

ŒStCh�s.x � y/ � St�s.x � y/� a.�.s; y// F.ds; dy/

ˇ̌
ˇ
ˇ

q

;

ƒ2 D E

ˇ
ˇ
ˇ̌
ˇ

Z tCh

t

Z

Rd

StCh�s.x � y/ a.�.s; y// F.ds; dy/

ˇ
ˇ
ˇ̌
ˇ

q

;

ƒ3 D E

ˇ
ˇ
ˇ̌
Z tCh

0

ds
Z

Rd

dy StCh�s.x � y/ b.�.s; y//

�
Z t

0

ds
Z

Rd

dy St�s.x � y/ b.�.s; y//

ˇ̌
ˇ
ˇ

q

:

Applying Burkholder’s inequality, the Lipschitz hypothesis on a and Eq. (12.13),
we obtain

ƒ1 � C

�Z t

0

ds
Z

Rd

	.d
/ ŒF.StCh�s.x � �/� St�s.x � �//.
/�2
�q=2

� C

�Z t

0

ds
Z

Rd

	.d
/ ŒF.StCh�s.�/� St�s.�//.
/�2
�q=2

� C
�
ƒ1
1 Cƒ2

1

�
;

(12.21)

with

ƒ1
1 D

�Z t

0

ds
Z

fj
j>1g
	.d
/

h
e�.tCh�s/j
jp � e�.t�s/j
jp

i2�q=2
;

ƒ2
1 D

�Z t

0

ds
Z

fj
j�1g
	.d
/

h
e�.tCh�s/j
jp � e�.t�s/j
jpi2�q=2

:

Integrating first with respect to the time and applying that 1 � e�x � 1 ^ x, for
x > 0, we have that

ƒ1
1 D

�Z t

0

ds
Z

fj
j>1g
	.d
/ e�2.t�s/j
jp

h
1 � e�hj
jp

i2�q=2

D
�Z

fj
j>1g
	.d
/

2j
jp
	
1 � e�2t j
jp
 h

1 � e�hj
jpi2�q=2

�
�Z

fj
j>1g
	.d
/

2j
jp
h
1 � e�hj
jp i2�1 h

1 � e�hj
jpi2.1��1/�q=2

�
�Z

fj
j>1g
h2�1 j
j2p�1
2j
jp 	.d
/

�q=2
� h�1q

�Z

fj
j>1g
	.d
/

j
jp.1�2�1/
�q=2

:
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Now, using that ıp � .1 � 2�1/p, the fact that 1 C j
j2 � j
j2, for j
j > 1,
and Eq. (12.16), we get

ƒ1
1 � h�1q

�Z

fj
j>1g
	.d
/

j
jıp
�q=2

� Ch�1q
�Z

fj
j>1g
	.d
/

.1C j
j2/ıp=2
�q=2

� Ch�1q:

(12.22)
As j
j � 1, by the mean-value theorem and Eq. (12.3) we have

ƒ2
1 � C

�Z t

0

ds
Z

fj
j�1g
	.d
/h2

�q=2
� Chq: (12.23)

Burkholder’s inequality, the Lipschitz hypothesis on a, and Eq. (12.13) imply

ƒ2 � C

"Z tCh

t

ds
Z

Rd

	.d
/jFStCh�s.x � �/.
/j2
#q=2

� C.ƒ1
2 Cƒ2

2/; (12.24)

with

ƒ1
2 D

"Z tCh

t

ds
Z

fj
j�1g
	.d
/ e�2.tCh�s/j
jp

#q=2
;

ƒ2
2 D

"Z tCh

t

ds
Z

fj
j>1g
	.d
/ e�2.tCh�s/j
jp

#q=2
:

Since e�x � 1, for x > 0, Eq. (12.3) yields

ƒ1
2 �

"Z tCh

t

ds
Z

fj
j�1g
	.d
/

#q=2
� Chq=2: (12.25)

Arguing as in Eq. (12.22)

ƒ2
2 D

�Z

fj
j>1g
	.d
/

2j
jp
	
1 � e�2hj
jp
�q=2

D
�Z

fj
j>1g
	.d
/

j
jp
	
1 � e�2hj
jp
2�1 	

1 � e�2hj
jp
1�2�1�q=2

�
�Z

fj
j>1g
	.d
/

j
jp
	
1 � e�2hj
jp
2�1

�q=2
� Ch�1q: (12.26)

By a change of rule
ƒ3 � C.ƒ1

3 Cƒ2
3/; (12.27)
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with

ƒ1
3 D E

ˇ
ˇ
ˇ
ˇ
ˇ

Z h

0

ds
Z

Rd

dy StCh�s.x � y/ b.�.s; y//

ˇ
ˇ
ˇ
ˇ
ˇ

q

;

ƒ2
3 D E

ˇ
ˇ̌
ˇ

Z t

0

ds
Z

Rd

dy St�s.x � y/ Œb.�.s C h; y// � b.�.s; y//�

ˇ
ˇ̌
ˇ

q

:

Using the integrability of the fundamental solution and the Lipschitz condition on b
and Eq. (12.13), we have

ƒ1
3 � Chq: (12.28)

The integrability of S together with Hölder’s inequality and the Lipschitz condition
on b implies that

ƒ2
3 � CE

ˇ
ˇ
ˇ
ˇ
ˇ

Z t

0

ds

�Z

Rd

dySt�s.x � y/

� q�1
q

�
�Z

Rd

dySt�s.x � y/ j�.s C h; y/ � �.s; y/jq
� 1
q

ˇ
ˇ
ˇ̌
ˇ

q

� C

Z t

0

ds

�Z

Rd

dy St�s.x � y/

�
sup
x2R

E j�.s C h; x/ � �.s; x/jq : (12.29)

Taking into account Eqs. (12.20)–(12.29) and using Gronwall’s inequality as in
Lemma 15 of Dalang [10], we obtain Eq. (12.17).

We now study Eqs. (12.18) and (12.19). We have

E j�.t; x C #/ � �.t; x/jq � C.�1 C�2/; (12.30)

with

�1 D E

ˇ
ˇ̌
ˇ

Z t

0

Z

Rd

ŒSt�s.x C # � y/ � St�s.x � y/� a.�.s; y// F.ds; dy/

ˇ
ˇ̌
ˇ

q

;

�2 D E

ˇ
ˇ
ˇ
ˇ

Z t

0

ds
Z

Rd

dy ŒSt�s.x C # � y/ � St�s.x � y/� b.�.s; y//

ˇ
ˇ
ˇ
ˇ

q

:

Applying Burkholder’s inequality, the hypothesis on a, and Eq. (12.13), we get

�1 � C

�Z t

0

ds
Z

Rd

	.d
/ jF ŒSt�s.x C # � �/� St�s.x � �/� .
/j2
�q=2

� C

�Z t

0

ds
Z

Rd

	.d
/
ˇ
ˇe�i.xC#/
 � e�ix


ˇ
ˇ2 jFSt�s.�/.
/j2

�q=2

� C.�1
1 C�2

1/; (12.31)
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where

�1
1 D

�Z t

0

ds
Z

fj
j�1g
	.d
/

ˇ
ˇe�i.xC#/
 � e�ix


ˇ
ˇ2 jFSt�s.�/.
/j2

�q=2
;

�2
1 D

�Z t

0

ds
Z

fj
j>1g
	.d
/

ˇ
ˇe�i.xC#/
 � e�ix


ˇ
ˇ2 jFSt�s.�/.
/j2

�q=2
:

The fact that the Fourier transform of S is bounded by 1, the mean-value theorem,
and the property Eq. (12.3) gives that

�1
1 �

�Z t

0

ds
Z

fj
j�1g
	.d
/ j#
j2

�q=2
� C j#jq: (12.32)

Now assumep � 2. Using that
ˇ
ˇe�i.xC#/
 � e�ix


ˇ
ˇ � 2 and applying the mean-value

theorem, we have

�2
1 D 4

"Z t

0

ds
Z

fj
j>1g
	.d
/

ˇ
ˇ̌
ˇ
e�i.xC#/
 � e�ix


2

ˇ
ˇ̌
ˇ

2

jFSt�s.�/.
/j2
#q=2

� C

"Z t

0

ds
Z

fj
j>1g
	.d
/

ˇ
ˇ
ˇ
ˇ
e�i.xC#/
 � e�ix


2

ˇ
ˇ
ˇ
ˇ

2�2

e�2.t�s/j
jp
#q=2

� C

�Z t

0

ds
Z

fj
j>1g
	.d
/ j#j2�2 j
j2�2 e�2.t�s/j
jp

�q=2
: (12.33)

The integration with respect to the time, the assumptions that p � 2 and �2 2 .0; 1�
ı/, the fact that j
j > 1, and the hypothesis on the spectral measure Eq. (12.16) imply
that

�2
1 � C j#j�2q

"Z

fj
j>1g
	.d
/ j
jp�2

�
1 � e�2t j
jp �

2j
jp
#q=2

� C j#j�2q
�Z

fj
j>1g
	.d
/

1

j
jp.1��2/
�q=2

� C j#j�2q
�Z

fj
j>1g
	.d
/

j
jıp
�q=2

� C j#j�2q
�Z

fj
j>1g
	.d
/

.1C j
j2/ıp=2
�q=2

� C j#j�2q: (12.34)

If we assume p < 2, we can ensure that

�2
1 � C j#j�2qp=2: (12.35)
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Indeed, in this case, we use the following different arguments in Eq. (12.33) based
on the mean-value theorem:

ˇ
ˇ
ˇ
ˇ
e�i.xC#/
 � e�ix


2

ˇ
ˇ
ˇ
ˇ

2�2

�
ˇ
ˇ
ˇ
ˇ
e�i.xC#/
 � e�ix


2

ˇ
ˇ
ˇ
ˇ

p�2

� C j#jp�2 j
jp�2 :

The rest of the proof of Eq. (12.35) is similar to Eq. (12.34).
A change of rule together with the same arguments as in Eq. (12.29) allow us to

obtain

�2 D E

ˇ̌
ˇ
ˇ

Z t

0

ds
Z

Rd

dy St�s.x � y/ Œb.�.s; y C #//� b.�.s; y//�

ˇ̌
ˇ
ˇ

q

� C

Z t

0

ds

�Z

Rd

dy St�s.x � y/

�
sup
C2R

E j�.s; x C #/� �.s; x/jq : (12.36)

The estimates Eqs. (12.30)–(12.32), (12.34) or Eqs. (12.35), and (12.36) and
Gronwall’s inequality as in Lemma 15 of Dalang [10] imply Eq. (12.18) or
Eq. (12.19), respectively. ut

5 Existence of a Smooth Density

The last result of this paper is the following theorem.

Theorem 5.1. Assume that the spectral measure satisfies Eq. (12.16) for some ı 2�
0; 1

2

�
. Assume also that the functions a and b are C1 with bounded derivatives

of any order and that there exists ˛0 > 0 such that ja.x/j > ˛0, for any x 2 R.
Then, the law of the solution to Eq. (12.4) is absolutely continuous with respect to
Lebesgue’s measure on R and its density is infinitely differentiable.

For the heat equation, the proof can be found in [20].

Proof of Theorem 5.1. In [20] we prove that the law of the solution to Eq. (12.4) will
be absolutely continuous with respect to Lebesgue’s measure on R and its density
will be infinitely differentiable if the following conditions are satisfied: for fixed
t > 0 and x 2 R

d , there exist "1 > "2 > 0 and "3 > 0 such that 0 < "1 <

.2"2/ ^ ."2 C "3/, positive constants C1, C2, and C3, and t0 2 Œ0; t � such that for all

 2 Œ0; t0�,

C1

"1 �

Z 


0

ds
Z

Rd

	.d
/ jFSs.�/.
/j2 � C2

"2 (12.37)

and
Z 


0

ds
Z

Rd

dy Ss.y/ � C3

"3 : (12.38)
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First of all, we have that

ˆ.
/ D
Z 


0

ds
Z

Rd

	.d
/ e�2sj
jp D
Z

Rd

	.d
/
1 � e�2
j
jp

2j
jp :

On the one hand, since 1 � e�x � x
1Cx , for any x � 0, we have, for some K > 0,

ˆ.
/ � 


Z

Rd

	.d
/

1C 2
j
jp � 


Z

fj
j<Kg
	.d
/

1C 2
j
jp

� 


1C 2TKp

Z

fj
j<Kg
	.d
/ � C1
; (12.39)

where in the last inequality we have applied Eq. (12.3) since	 is a nontrivial positive
tempered measure. On the other hand, we decomposeˆ into two terms:

ˆ.
/ D ˆ1.
/Cˆ2.
/; (12.40)

with

ˆ1.
/ D
Z

fj
j�Kg
	.d
/

1 � e�2
j
jp

2j
jp ;

ˆ2.
/ D
Z

fj
j<Kg
	.d
/

1 � e�2
j
jp

2j
jp :

Taking � D 1 � ı; using that 1 � e�x � x ^ 1; for any x � 0, and Eq. (12.16), we
obtain

ˆ1.
/ �
Z

fj
j�Kg
	.d
/

�
1� e�2
j
jp ��

2j
jp � 
�
Z

fj
j�Kg
	.d
/

j
jp.1��/ � C2

� : (12.41)

Since 	 is a nontrivial positive tempered measure (see Eq. (12.3)) and that 1 �
e�x � 1, for any x � 0, we have that

ˆ2.
/ � 


Z

fj
j<Kg
	.d
/ � C2
: (12.42)

Since the fundamental solution is Rd -integrable for any t ¤ 0, then

Z 


0

ds
Z

Rd

dy Ss.y/ � C3

Z 


0

ds � C3
: (12.43)

Then, taking ı 2 .0; 1=2/, Eqs. (12.39)–(12.43) imply that Eqs. (12.37) and (12.38)
are satisfied for "1 D "3 D 1 and "2 D 1 � ı, and this finishes the proof of this
theorem. ut
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Chapter 13
Gaussian Upper Density Estimates for Spatially
Homogeneous SPDEs

Lluı́s Quer-Sardanyons

Abstract We consider a general class of SPDEs in R
d driven by a Gaussian

spatially homogeneous noise which is white in time. We provide sufficient con-
ditions on the coefficients and the spectral measure associated to the noise ensuring
that the density of the corresponding mild solution admits an upper estimate of
Gaussian type. The proof is based on the formula for the density arising from the
integration-by-parts formula of the Malliavin calculus. Our result applies to the
stochastic heat equation with any space dimension and the stochastic wave equation
with d 2 f1; 2; 3g. In these particular cases, the condition on the spectral measure
turns out to be optimal.
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1 Introduction

We are interested in establishing Gaussian-type upper estimates for the density of
the mild solution of the following class of SPDEs:

Lu.t; x/ D b.u.t; x//C �.u.t; x// PW .t; x/; .t; x/ 2 Œ0; T � � R
d ; (13.1)
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where T > 0 is some fixed time horizon and L denotes a general second-
order partial differential operator with constant coefficients, with appropriate initial
conditions. The coefficients � and b are real-valued functions and PW .t; x/ is the
formal notation for a Gaussian random perturbation which is white in time and has
some spatially homogeneous correlation (see Sect. 2.1 for a precise definition of this
noise). The typical examples of operator L to which our result applies are the heat
operator for any spatial dimension d � 1 and the wave operator with d 2 f1; 2; 3g.

If L is first order in time, such as the heat operator L D @
@t

��, where� denotes
the Laplacian operator on R

d , then we impose initial conditions of the form

u.0; x/ D u0.x/ x 2 R
d ; (13.2)

for some Borel function u0 W Rd ! R. If L is second order in time, such as the wave
operator L D @2

@t2
��, then we have to impose two initial conditions:

u.0; x/ D u0.x/;
@u

@t
.0; x/ D v0.x/; x 2 R

d ; (13.3)

for some Borel functions u0; v0 W Rd ! R.
The above class of SPDEs has been widely studied in the last two decades.

Precisely, results on existence and uniqueness of solution in such a general setting
have been established in [6, 7, 10, 29], while the particular cases of heat and wave
equations have been studied using several frameworks in [2, 4, 8, 15, 20, 28, 30, 35].

A fruitful line of research developed in some of the above-cited references has
been to apply techniques of Malliavin calculus in order to deduce some interesting
properties of the probability law of the solution at any .t; x/ 2 .0; T � � R

d . In fact,
there is a whole bunch of results on existence and smoothness of the density for
the stochastic heat and wave equations, for which we refer to [1, 2, 18–20, 27, 31–
33]. Moreover, in the paper [23], existence and smoothness of density for the class
of SPDEs (13.1) have been analyzed, unifying and improving some of the results
cited so far. It is also worth mentioning that other kind of methods beyond Malliavin
calculus can be used to prove the absolute continuity of the law of the solution in
some particular SPDEs (see, e.g., [11]).

Once the existence (and possibly smoothness) of the density of the solution to
Eq. (13.1) is established, one usually gathers at some nice estimates for this density,
such as lower and upper Gaussian-type bounds. Exploiting again techniques of
Malliavin calculus, this problem has been recently addressed by several authors.
Precisely, as far as SPDEs with additive noise are concerned, using an explicit
formula for the density proved in [21], the main result in [24] says the following
(see Theorem 7 therein and also [25] for related results). Let � be spectral measure
associated with the spatial correlation of PW , and consider the following assumption,
which is necessary and sufficient for the existence and uniqueness of mild solution
to Eq. (13.1) (see, e.g., [7]).
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Hypothesis 1.1. Let � be the fundamental solution associated to the operator L.
For all t > 0, �.t/ defines a nonnegative distribution with rapid decrease such that

ˆ.T / WD
Z T

0

Z
Rd

jF�.t/.�/j2 �.d�/dt < C1:

Moreover, � is a non-negative measure of the form �.t; dx/dt such that, for all
T > 0,

sup
0�t�T

�.t;Rd / < C1:

Then, under the above hypothesis, with vanishing initial data, � � 1 and
assuming that b 2 C1 has a bounded derivative, Nualart and Quer-Sardanyons [24,
Theorem 7] state that, for small enough t and any x 2 R

d , the density pt;x of u.t; x/
satisfies, for almost every z 2 R,

E ju.t; x/ �mj
C2ˆ.t/

exp

�
� .z �m/2
C1ˆ.t/

�

� pt;x.z/ � E ju.t; x/�mj
C1ˆ.t/

exp

�
� .z �m/2
C2ˆ.t/

�
; (13.4)

where m D E.u.t; x//, for some positive constants C1; C2. Note that the term ˆ.t/

is precisely the variance of the stochastic convolution in the mild form of Eq. (13.1)
when � � 1. As a consequence, this result applies to the stochastic heat equation
for any d � 1 and the stochastic wave equation in the case d 2 f1; 2; 3g provided
that (see [7, Sect. 3]) Z

Rd

1

1C j�j2 �.d�/ < C1: (13.5)

On the other hand, in the multiplicative noise setting, such kind of density
estimates, particularly the lower one, becomes more difficult to obtain and Nourdin–
Viens’ density formula cannot be applied. This has been already illustrated by
Kohatsu-Higa in [16] where, by means of Malliavin calculus techniques, a new
method to obtain Gaussian lower bounds for general functionals of the Wiener sheet
has been obtained. In the same paper, the author has applied this result to a stochastic
heat equation in Œ0; 1� and driven by the space-time white noise.

In order to deal with SPDEs beyond the one-dimensional setting, in [26] Kohatsu-
Higa’s general method has been extended to the Gaussian space associated to the
underlying spatially homogeneous noise PW . This allowed us to end up with the
following density estimates for the stochastic heat equation in any space dimension
d � 1. Assume that b; � 2 C1 are bounded together with all their derivatives,
j�.z/j � c > 0 for all z 2 R, and for some � 2 .0; 1/, it holds

Z
Rd

1

.1C j�j2/� �.d�/ < C1: (13.6)
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Then, for all .t; x/ 2 .0; T � � R
d , the density pt;x of u.t; x/ verifies, for all z 2 R,

C1ˆ.t/
�1=2 exp

�
�jz � I0.t; x/j2

C2ˆ.t/

�
� pt;x.z/

� c1ˆ.t/
�1=2 exp

�
� .jz � I0.t; x/j � c3T /

2

c2ˆ.t/

�
; (13.7)

where I0.t; x/ D .�.t/ � u0/.x/, u0 being the initial data. In the case b � 0, the
constant c3 would vanish. Note that here, in comparison to Eq. (13.4), the estimates
are valid for any T > 0.

In fact, let us point out that the upper bound in Eq. (13.7) is much easier to
obtain than the lower one, and the former comes from the expression for the
density popping up from the integration-by-parts formula in the Malliavin calculus
framework.

Extending the lower estimate in Eq. (13.7) to the general class of SPDEs (13.1)
seems to be an open problem, for the success in the application of the general
strategy of [26] is closely tied to the parabolic structure of the heat equation.
However, a much more humble objective, which is the one we plan to gather in
the present paper, is to tackle the upper bound. In fact, we are going to seek the
minimal conditions on either the coefficients b and � and the spectral measure �
implying that the upper estimate in Eq. (13.7) remains valid for the general class
of SPDEs (13.1). In particular, we will only need b and � to be of class C2 (and
bounded with bounded derivatives) and, for the particular case of the heat (resp.
wave) equation with any d � 1 (resp. d 2 f1; 2; 3g), the condition on � will be
simply (13.5) rather than Eq. (13.6). More precisely, the main result of the paper is
the following. We use the notation I0.t; x/ to denote the contribution of the initial
data (see Eqs. (13.12) and (13.13) for its explicit expression in the case of heat and
wave equations) and suppose that the forthcoming Hypothesis 3.1 is satisfied.

Theorem 1.1. Assume that Hypothesis 1.1 is satisfied, and that b; � 2 C2 are
bounded and have bounded derivatives and j�.z/j � c > 0 for all z 2 R. Moreover,
suppose that, for some 	 > 0, it holds

C 
	 � ˆ.
/ D
Z 


0

Z
Rd

jF�.s/.�/j2 �.d�/ds; 
 2 .0; 1�: (13.8)

Then, for any .t; x/ 2 .0; T � � R
d , the solution u.t; x/ of Eq. (13.1) has a density

pt;x which is a continuous function and satisfies, for all z 2 R,

pt;x.z/ � c1ˆ.t/
�1=2 exp

�
� .jz � I0.t; x/j � c3T /

2

c2ˆ.t/

�
; (13.9)

where the constant c3 vanishes whenever b does.
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We remark that, though the above bound does not look exactly Gaussian, it does
in an asymptotic point of view, namely whenever T is small or z is large. On the
other hand, we note that, under (13.5), condition (13.8) is satisfied for the heat and
wave equations with 	 D 1 and 	 D 3, respectively (see, e.g., [19, Lemma 3.1] and
[31, App. A]). Similarly, one can also check that the above theorem applies to the
stochastic damped wave equation with any space dimension (see Example 7 in [7,
Sect. 3]), where condition (13.8) is fulfilled with 	 D 3.

We also point out that our result is not applicable to the case �.z/ D z (this
would be related, e.g., to the parabolic Anderson problem [3]). In fact, in such a
case there are even very few results on absolute continuity of the law of solutions to
SPDEs (see [27]). Nevertheless, in the recent paper [13], the authors prove existence
and smoothness of the density for a stochastic heat equation with a nonlinear
multiplicative noise which is white in time and with some spatial correlation
(much more regular than the one considered in the present paper), and with a
nondegeneracy condition on the diffusion coefficient of the form �.u0.x0// ¤ 0

for some x 2 R
d . Their proof is based on a Feynman–Kac formula for the solution

of the underlying equation. This technique has also been applied in [14] to study
the density for a stochastic heat equation with a linear multiplicative fractional
Brownian sheet.

As mentioned before, the proof of Theorem 1.1 will be based on the expression
for the density arising from the application of the integration-by-parts formula (see
[22, Proposition 2.1.1]). We point out that this is a well-known method that has
been used in other contexts (see, e.g., [9, 12]). As far as the technical obstacles are
concerned, the main two ingredients needed in the proof of Theorem 1.1 are the
following:

(i) A suitable estimate, in terms of ˆ.t/, of the norm of the iterated Malliavin
derivative in a small time interval (see Lemma 4.1 for details). This will be
a consequence of a kind of analogous result for the case of the stochastic
heat equation (see [26, Lemma 3.4]) and a mollifying procedure thanks to an
approximation of the identity which will let us smooth the fundamental solution
�.t/.

(ii) A precise control of the negative moments of the norm of the Malliavin
derivative of the solution, again in terms ofˆ.t/ (see Proposition 4.1). For this,
we will adapt the proof of [23, Theorem 6.2] to our setting, where the latter
allowed the authors of that paper to establish that the underlying density is a
smooth function (under much more regularity on the coefficients though).

The content of the paper is organized as follows. In Sect. 2, we rigorously
describe the Gaussian spatially homogeneous noise PW considered in Eq. (13.1) and
we introduce the corresponding Gaussian setting associated to it, together with the
main notations of the Malliavin calculus machinery. Section 3 will be devoted to
recall the definition of mild solution to our SPDE (13.1) and summarize the main
results on existence and uniqueness of solution, Malliavin differentiability, and
existence and smoothness of the density. Steps (i) and (ii) detailed above will be
tackled in Sect. 4. Finally, we will prove Theorem 1.1 in Sect. 5.
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With a slight (but harmless) abuse of notation, as already done in this Intro-
duction, the notation j � j shall denote either the modulus and norm in R

d . Unless
otherwise stated, any constant c or C appearing in our computations below is
understood as a generic constant which might change from line to line without
further mention.

2 Preliminaries

2.1 Spatially Homogeneous Noise

Let us explicitly describe here our spatially homogeneous noise (see, e.g., [7]).
Precisely, on a complete probability space .�;F ;P/, this is given by a family
W D fW.'/; ' 2 C1

0 .RC � R
d /g of zero mean Gaussian random variables, where

C1
0 .RC � R

d / denotes the space of smooth functions with compact support, with
the following covariance structure:

E
�
W.'/W. /

� D
Z 1

0

Z
Rd

�
'.t; ?/ � Q .t; ?/� .x/ƒ.dx/dt: (13.10)

In this expression, ƒ denotes a nonnegative and non-negative definite tempered
measure on R

d , � stands for the convolution product, the symbol ? denotes the
spatial variable, and Q .t; x/ WD  .t;�x/.

In the above setting, a well-known result of harmonic analysis (see [34, Chap.
VII, Théorème XVII]) implies that ƒ has to be the Fourier transform of a
nonnegative tempered measure � on R

d , where the latter is usually called the
spectral measure of the noise W . We recall that, in particular, for some integer
m � 1 it holds Z

Rd

1

.1C j�j2/m �.d�/ < C1

and, by definition of the Fourier transform in the space S 0.Rd / of tempered
distributions,ƒ D F�means that, for all � belonging to the space S.Rd / of rapidly
decreasing C1 functions,

Z
Rd

�.x/ƒ.dx/ D
Z
Rd

F�.�/�.d�/:

Therefore, we have

E
�
W.'/2

� D
Z 1

0

Z
Rd

jF'.t/.�/j2�.d�/dt:
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A typical example of space correlation is given by ƒ.dx/ D f .x/dx, where f
is a non-negative function which is assumed to be integrable around the origin. In
this case, the covariance functional (13.10) reads

Z 1

0

Z
Rd

Z
Rd

'.t; x/f .x � y/ .t; y/ dydxdt:

The space-time white noise would correspond to the case where f is the Dirac delta
at the origin.

2.2 Gaussian Setting and Malliavin Calculus

We are going to describe the Gaussian framework which can be naturally associated
to our noise W and introduce the notations involved in the Malliavin calculus
techniques. To start with, let us denote by H the completion of the Schwartz space
S.Rd / endowed with the semi-inner product

h�1; �2iH WD
Z
Rd

.�1 � Q�2/.x/ƒ.dx/

D
Z
Rd

F�1.�/F�2.�/ �.d�/; �1; �2 2 S.Rd /:

As proved in [7, Example 6], we remind that the Hilbert space H may contain
distributions.

Let T > 0 be a fixed real number and define HT WD L2.Œ0; T �I H/. Using an
approximation argument, our noise W can be extended to a family of mean zero
Gaussian random variables indexed by HT (see, e.g., [6, Lemma 2.4]). With an
innocuous abuse of notation, this family will be still denoted by W D fW.g/; g 2
HT g. Moreover, it holds E

�
W.g1/W.g2/

� D hg1; g2iHT , for all g1; g2 2 HT . Thus,
this family defines an isonormal Gaussian process on the Hilbert space HT and we
shall use the differential Malliavin calculus based on it (see, e.g., [22, 33]).

As usual, we denote the Malliavin derivative operator by D. Recall that it is a
closed and unbounded operator defined in L2.�/ and taking values in L2.�I HT /,
whose domain is denoted by D

1;2. More generally, for any integer m � 1 and any
p � 2, the domain of the iterated Malliavin derivativeDm inLp.�/will be denoted
by D

m;p , where we remind thatDm takes values inLp.�I H˝m
T /. We also set D1 D

\p�1 \m2N D
m;p . The space D

m;p can also be seen as the completion of the set of
smooth functionals with respect to the semi-norm

kF km;p WD
(
E .jF jp/C

mX
jD1

E

�
kDjF kp

H˝j
T

�) 1
p

:
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For any differentiable random variable F and any r D .r1; : : : ; rm/ 2 Œ0; T �m,
DmF.r/ is an element of H˝m which will be denoted byDm

r F .
A random variable F is said to be smooth if it belongs to D

1, and a smooth
random variable F is said to be nondegenerate if kDF k�1

HT
2 \p�1Lp.�/. Owing

to [22, Theorem 2.1.4], we know that a nondegenerate random variable has a C1
density.

For any t 2 Œ0; T �, let Ft be the �-field generated by the random variables
fWs.h/; h 2 H; 0 � s � tg and the P-null sets, where Wt.h/ WD W.1Œ0;t �h/.

3 Spatially Homogeneous SPDEs

We gather here a general result on existence and uniqueness of mild solution for
our SPDE (13.1) and the main results on Malliavin calculus applied to it, namely
Malliavin differentiability and existence and smoothness of density. As usual, we
will also focus on the main examples of application that we have in mind, which are
the stochastic heat and wave equations with d � 1 and d 2 f1; 2; 3g, respectively.

We recall that, by definition, a mild solution of Eq. (13.1) is an Ft -adapted
random field fu.t; x/; .t; x/ 2 Œ0; T � � R

d g such that the following stochastic
integral equation is satisfied:

u.t; x/ D I0.t; x/C
Z t

0

Z
Rd

�.t � s; x � y/�.u.s; y//W.ds; dy/

C
Z t

0

Z
Rd

b.u.t � s; x � y// �.s; dy/ds; P-a.s.; (13.11)

for all .t; x/ 2 Œ0; T � � R
d . Here, � denotes the fundamental solution associated to

L and I0.t; x/ is the contribution of the initial conditions, which we define below.
The (real-valued) stochastic integral on the right-hand side of Eq. (13.11) is

understood with respect to the cylindrical Wiener process that can be naturally
associated to our spatially homogeneous noise W (see [6, 23] and also [7, 35]).
In particular, we will assume that Hypothesis 1.1 is satisfied. Concerning the last
integral on the right-hand side of Eq. (13.11), we point out that we use the notation
“�.s; dy/” because we will assume that �.s/ is a measure on R

d .
As far as the term I0.t; x/ is concerned, if L is a parabolic-type operator and we

consider the initial condition (13.2), then

I0.t; x/ D .�.t/ � u0/ .x/ D
Z
Rd

u0.x � y/ �.t; dy/: (13.12)

On the other hand, in the case where L is second order in time with initial
values (13.3),

I0.t; x/ D .�.t/ � v0/ .x/C @

@t
.�.t/ � u0/ .x/: (13.13)
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Example 3.1. Owing to the considerations in [7, Sect. 3] (see also [23, Exam-
ples 4.2 and 4.3]), in the case of the stochastic heat equation in any space dimension
d � 1 and the stochastic wave equation in dimensions d D 1; 2; 3, the fundamental
solutions are well known and the conditions in Hypothesis 1.1 are satisfied if and
only if Z

Rd

1

1C j�j2 �.d�/ < C1: (13.14)

We shall consider the following assumption on the initial conditions. In the case
of the stochastic heat equation in any space dimension (resp. wave equation with
dimension d D 1; 2; 3), sufficient conditions on u0 (resp. u0, v0) implying that the
hypothesis below is fulfilled are provided in [6, Lemma 4.2].

Hypothesis 3.1. .t; x/ 7! I0.t; x/ is continuous and sup.t;x/2Œ0;T ��Rd jI0.t; x/j <
C1.

The following well-posedness result, which is a quotation of [6, Theorem 4.3], is
a slight extension of the results in [7].

Theorem 3.1. Assume that Hypotheses 1.1 and 3.1 are satisfied and that � and b
are Lipschitz functions. Then there exists a unique solution fu.t; x/; .t; x/ 2 Œ0; T ��
R
d g of equation (13.11). Moreover, for all p � 1,

sup
.t;x/2Œ0;T ��Rd

E.ju.t; x/jp/ < C1:

Let us now deal with the Malliavin differentiability of the solution u.t; x/ of
Eq. (13.11). For this, we consider the Gaussian context described in Sect. 2.2. The
following proposition summarizes a series of results in [19, 23, 32]. For the state-
ment, we will use the following notation: for any m 2 N, set Ns WD .s1; : : : ; sm/ 2
Œ0; T �m, Nz WD .z1; : : : ; zm/ 2 .Rd /m, and Ns.i/ WD .s1; : : : ; si�1; siC1; : : : ; sm/ (resp.
Nz.i/) and, for any function f and variable X for which it makes sense, set

�m.f;X/ WD Dmf .X/ � f 0.X/DmX:

Note that�m.f;X/ D 0 form D 1 and, ifm > 1, it only involves iterated Malliavin
derivatives up to orderm � 1.

Proposition 3.1. Assume that Hypothesis 1.1 is satisfied and, for some m 2 N [
f1g, �; b 2 Cm.R/ and their derivatives of order greater than or equal to one are
bounded. Then, for all .t; x/ 2 Œ0; T � � R

d , the random variable u.t; x/ belongs to
D
j;p for any j D 1; : : : ; m and p � 1. Furthermore, for any j 2 f1; : : : ; mg and

p � 1, the iterated Malliavin derivative Dj u.t; x/ satisfies the following equation
in Lp.�I H˝j

T /:

Dj u.t; x/ D Zj .t; x/C
Z t

0

Z
Rd

�.t � s; x � y/Œ�j .�; u.s; y//
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CDj u.s; y/� 0.u.s; y//�W.ds; dy/C
Z t

0

Z
Rd

Œ�j .b; u.t � s; x � y//

CDj u.t � s; x � y/b0.u.t � s; x � y//� �.s; dy/ds; (13.15)

where Zj .t; x/ is the element of Lp.�I H˝j
T / given by

Zj .t; x/Ns;Nz D
jX
iD1

�.t � si ; x � dzi /D
j�1
Ns.i/;Nz.i/�.u.si ; zi //:

A detailed description of the construction of Hilbert-space-valued stochastic
integrals as the one in Eq. (13.15) can be found in [23, Sect. 3]. Indeed, as proved
in [6, Sect. 3.6], these kinds of integrals turn out to be equivalent to Hilbert-space-
valued stochastic integrals à la Da Prato and Zabczyk [5].

Proposition 3.1 can be used to obtain the following results on existence and
smoothness of the density for the solution u.t; x/. They are direct consequences
of Theorems 5.2 and 6.2 in [23], with the only difference that the latter consider
vanishing initial conditions.

Theorem 3.2. Assume that Hypotheses 1.1 and 3.1 are satisfied, b; � 2 C1 have
a bounded derivative, and j�.z/j � c > 0 for all z 2 R. Then, for all .t; x/ 2
.0; T � � R

d , the random variable u.t; x/ has a law which is absolutely continuous
with respect to the Lebesgue measure.

Theorem 3.3. Assume that Hypotheses 1.1 and 3.1 are satisfied, �; b 2 C1 and
their derivatives of order greater than or equal to one are bounded, and that
j�.z/j � c > 0 for all z 2 R. Moreover, suppose that, for some 	 > 0,

C t	 �
Z t

0

Z
Rd

jF�.s/.�/j2 �.d�/ds; t 2 .0; 1/: (13.16)

Then, for every .t; x/ 2 .0; T � � R
d , the law of the random variable u.t; x/ has a

C1 density.

As commented in the Introduction, both results apply to the stochastic heat
equation with d � 1 and the stochastic wave equation with d 2 f1; 2; 3g provided
that Eq. (13.14) is satisfied, since condition (13.16) holds for these examples with
	 D 1 and 	 D 3, respectively.

4 Auxiliary Results

This section is devoted to prove the main two ingredients needed in the proof of
Theorem 1.1. The first one establishes a suitable uniform bound for the norm of



13 Gaussian Upper Density Estimates for Spatially Homogeneous SPDEs 309

the iterated Malliavin derivative of the solution u.t; x/ in small time intervals. The
second one deals with the negative moments of the corresponding Malliavin matrix,
which here simply reduces to the norm of the Malliavin derivative of u.t; x/.

Lemma 4.1. Let 0 � a < e � T and p � 1. Assume that Hypotheses 1.1 and 3.1
are satisfied and that, for some m 2 N, the coefficients b; � belong to Cm and all
their derivatives of order greater than or equal to one are bounded. Then, there
exists a positive constant C , which is independent of a and e, such that, for all
ı 2 .0; e � a�,

sup
.
;y/2Œe�ı;e��Rd

E

�
kDj u.
; y/k2p

H˝j
e�ı;e

	
� C ˆ.ı/jp; (13.17)

for all j 2 f1; : : : ; mg, where we remind that, for all t � 0,

ˆ.t/ D
Z t

0

Z
Rd

jF�.s/.�/j2 �.d�/ds:

Proof. It is similar to that of [26, Lemma 3.4], where a conditioned version of this
result for the stochastic heat equation has been proved. Precisely, as already pointed
out in [26, Remark 3.5], in our general setting, we need to smooth the fundamental
solution � as follows. Let  2 C1

0 .R
d / be such that  � 0, its support is contained

in the unit ball of Rd and
R
Rd
 .x/dx D 1. For n 2 N, set  n.x/ WD nd .nx/ and,

for all t , �n.t/ WD  n � �.t/. It is well known that �n.t/ belongs to S.Rd /.
Let us now consider fun.t; x/; .t; x/ 2 Œ0; T � � R

d g the unique solution of

un.t; x/ D I0.t; x/C
Z t

0

Z
Rd

�n.t � s; x � y/�.un.s; y//W.ds; dy/

C
Z t

0

Z
Rd

b.un.t � s; x � y// �.s; dy/ds:

Since �n.t/ is a smooth function (such as in the case of the heat equation), we can
mimic the proof of [26, Lemma 3.4], so that we end up with estimate (13.17) with u
replaced by un. Indeed, we should remark here that the term involving the pathwise
integral with respect to �.s; dy/ds does not cause any problem since we only need
to use that �.t;Rd / is uniformly bounded in t , which is part of Hypothesis 1.1.

On the other hand, a direct consequence of the proofs of [32, Theorem 1] and
[23, Proposition 6.1] is that, for all .t; x/ 2 Œe � ı; e� � R

d and j 2 f1; : : : ; mg,

Dj u.t; x/ D L2.�I H˝j
e�ı;e/ � lim

n!1Dj un.t; x/:

Therefore, writing down the corresponding convergence of norms and taking
supremum over Œe � ı; e� � R

d , we conclude the proof. �

Proposition 4.1. Assume that Hypotheses 1.1 and 3.1 are satisfied, that b; � are C1
functions with bounded derivatives, and that j�.z/j � c > 0 for all z 2 R. Moreover,
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suppose that, for some 	 > 0,

C t	 �
Z t

0

Z
Rd

jF�.s/.�/j2 �.d�/ds; t 2 .0; 1/: (13.18)

Then, for any p > 0, there exists a constant C > 0 such that, for all .t; x/ 2
.0; T � � R

d ,

E

�
kDu.t; x/k�2p

HT

�
� C ˆ.t/�p:

Proof. The proof’s structure is analogous as that of the proofs of [23, Theorem 6.2]
and [26, Proposition 4.3], so we will only sketch the main steps.

First, owing to [22, Lemma 2.3.1], it suffices to check that, for any q > 2, there
exists "0 D "0.q/ > 0 such that, for all " � "0,

P
˚
ˆ.t/�1kDu.t; x/k2HT

< "

 � C"q: (13.19)

Note that the Malliavin derivative Du.t; x/ verifies the following equation in HT

[take m D 1 in Eq. (13.15)]:

Du.t; x/ D �.u.�; ?//�.t � �; x � ?/

C
Z t

0

Z
Rd

�.t � s; x � y/� 0.u.s; y//Du.s; y/W.ds; dy/

C
Z t

0

Z
Rd

b0.u.s; x � y//Du.s; x � y/�.t � s; dy/ds:

Then, for any small ı > 0, one proves that

P
˚
ˆ.t/�1kDu.t; x/k2HT

< "

 � P

˚
ˆ.t/�1I.t; xI ı/ � c ˆ.t/�1ˆ.ı/ � "




� �
c ˆ.t/�1ˆ.ı/ � "

��p
ˆ.t/�p E.jI.t; xI ı/jp/;

(13.20)

where I.t; xI ı/ WD kR1.t; xI ı/k2Ht�ı;t
C kR2.t; xI ı/k2Ht�ı;t

and

R1.t; xI ı/ WD
Z t

�

Z
Rd

�.t � s; x � y/� 0.u.s; y//Du.s; y/W.ds; dy/;

R2.t; xI ı/ WD
Z t

�

Z
Rd

b0.u.t � s; x � y//Du.t � s; x � y/ �.s; dy/ds:

Using Lemma 4.1 and applying standard integral estimates, one checks that

E.jI.t; xI ı/jp/ � C ˆ.ı/p .ˆ.ı/p C‰.ı/p/ ;
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where we have set

‰.s/ WD
Z s

0

�.r;Rd/dr:

Thus, going back to Eq. (13.20), we obtain

P
˚
ˆ.t/�1kDu.t; x/k2HT

<"

�C �c ˆ.t/�1ˆ.ı/�"��pˆ.t/�pˆ.ı/p .̂ .ı/pC‰.ı/p/ :

At this point, taking a small enough "0 if necessary, we can choose ı D ı."/ such
that

c

2
ˆ.t/�1ˆ.ı/ D ": (13.21)

Hence, we have

P
˚
ˆ.t/�1kDu.t; x/k2HT

< "

 � C .ˆ.ı/p C‰.ı/p/ :

Note, on the one hand, that condition (13.21) implies ˆ.ı/ � Cˆ.T /" �
C". On the other hand, by Hypothesis 1.1, we have ‰.ı/ � Cı. Hence, the

assumption (13.18) and what we have just said above let us infer that ‰.ı/ � C"
1
	 .

Therefore,

P
˚
ˆ.t/�1kDu.t; x/k2HT

< "

 � C

�
"p C "

p
	

�
;

so taking p D q.	 _ 1/ we conclude that Eq. (13.19) is satisfied. �

5 Proof of the Main Result

In this section, we are going to prove Theorem 1.1. On the one hand, we note that
Proposition 3.1 implies that, for any .t; x/ 2 .0; T � � R

d , the random variable
u.t; x/ belongs to D

2;p for all p � 1. Moreover, an immediate consequence
of Proposition 4.1 is that the Malliavin matrix associated to u.t; x/ has negative
moments of all orders. Thus, applying a general criterion of the Malliavin calculus
(see, e.g., [22, Proposition 2.1.5] or [17, Theorem 4.1]), we obtain that the law of
u.t; x/ has a density and it is a continuous function.

On the other hand, as explained in the Introduction, the proof of Eq. (13.9) is a
matter of following exactly the same arguments as in [26, Sect. 5] and invoking the
results of the previous section. Let us sketch the main steps to follow.

To start with, we use the formula for the density arising from the application
of the integration-by-parts formula in the Malliavin calculus context (see, e.g., [22,
Proposition 2.1.1]). Precisely, denoting the density of u.t; x/ by pt;x , we have

pt;x.y/ D E

 
1fu.t;x/>ygı

 
Du.t; x/

kDu.t; x/k2HT

!!
; y 2 R;

where here ı denotes the divergence operator or Skorohod integral, that is, the
adjoint of the Malliavin derivative operator (see [22, Chap. 1]).
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Next, taking into account the equation satisfied by u.t; x/ [i.e., Eq. (13.11)] and
applying [22, Proposition 2.1.2], we obtain

pt;x.y/ � C P fjMt j > jy � I0.t; x/j � c3T g 1q

�
(
E
�kDu.t; x/k�1

HT

�C
�
EkD2u.t; x/k˛H˝2

T

	 1
˛ �

EkDu.t; x/k�2ˇ
HT

� 1
ˇ

)
;

(13.22)

where ˛; ˇ; and q are any positive real numbers satisfying 1
˛

C 1
ˇ

C 1
q

D 1. In the
above expression,Mt denotes the martingale part of the solution u.t; x/, that is,

Mt D
Z t

0

Z
Rd

�.t � s; x � y/�.u.s; y//W.ds; dy/;

and the term c3T comes from the fact that, due to Hypothesis 1.1 and the
boundedness of b, for all .t; x/ 2 .0; T � � R

d ,

ˇ̌
ˇ̌
Z t

0

Z
Rd
�.t � s; x � y/b.u.s; y// dyds

ˇ̌
ˇ̌ � c3 T;P-a.s.

In order to estimate the terms in Eq. (13.22), we first apply the exponential
martingale inequality in order to get a suitable exponential bound of the probability
in Eq. (13.22) (using that hM it � C ˆ.t/), and then we conveniently apply
Lemma 4.1 and Proposition 4.1. Thus

pt;x.y/ � c1 ˆ.t/
�1=2 exp

�
� .jy � I0.t; x/j � c3T /2

c2ˆ.t/

	
; y 2 R;

where the constants c1; c2; and c3 do not depend on .t; x/, so we conclude the proof
of Theorem 1.1. ut

Acknowledgements Part of this work has been done while the author visited the Centre
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Chapter 14
Stationarity of the Solution for the Semilinear
Stochastic Integral Equation on the Whole
Real Line

Bijan Z. Zangeneh

I would like to dedicate this paper to Professor David Nualart
for his long lasting contribution to the field of stochastic
analysis.

Abstract In this article we prove the stationarity of the solution of the H -valued
integral equation

X.t/ D
Z t

�1
U.t � s/f .X.s//ds C V.t/;

where H is a real separable Hilbert space. In this equation, U.t/ is a semigroup
generated by a strictly negative definite, self-adjoint unbounded operator A, such
thatA�1 is compact and f is of monotone type and is bounded by a polynomial and
V.t/ is a cadlag adapted stationary process.
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1 Introduction

Let H be a real separable Hilbert space with norm k k and inner product h ; i.
Suppose .�; F ; Ft ; P / is a complete stochastic basis with a right continuous
filtration and fW.t/; t � 0g is an H -valued cylindrical Brownian motion with
respect to .�; F ; Ft ; P /.
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Let g be an H -valued function defined on a set D.g/ � H . Recall that g is
monotone if for each pair x; y 2 D.g/

hg.x/ � g.y/; x � yi � 0;

and g is semi-monotone with parameter M if, for each pair x; y 2 D.g/;

hg.x/ � g.y/; x � yi � �M kx � yk2:

We say g is demicontinuous if whenever .xn/ is a sequence in D.g/ which
converges strongly to a point x 2 D.g/, then g.xn/ converges weakly to g.x/.

Consider the stochastic semilinear equation

dX.t/ D AX.t/dt C f .X.t// dt C dW.t/; (14.1)

where A is a closed, self-adjoint, negative definite, unbounded operator such that
A�1 is nuclear. A mild solution of Eq. (14.1) with initial conditionX.0/ D X0 is the
solution of the integral equation

X.t/ D U.t; 0/X0 C
Z t

0

U.t � s/f .X.s//ds C
Z t

0

U.t � s/dW.s/; (14.2)

where U.t/ is the semigroup generated by A.
Marcus [17] has proved that when f is uniformly Lipschitz, then the solution

of Eq. (14.2) is asymptotically stationary. To prove this, he studied the following
integral equation:

X.t/ D
Z t

�1
U.t � s/f .X.s//ds C

Z t

�1
U.t � s/dW.s/; (14.3)

where the parameter set of the processes is extended to the whole real line. This
motivated us to study the stationarity of the solution of the more general equation

X.t/ D
Z t

�1
U.t � s/f .X.s//ds C V.t/; (14.4)

where the stationary process V , the function f and the generatorA of the semigroup
U satisfy the following hypothesis.

Hypothesis 1.1. (a) U.t/ is a semigroup generated by a strictly negative definite,
self-adjoint unbounded operator A such thatA�1 is compact. Then there is �>0
such that kU.t/k � e��t .

(b) Let '.t/DK.1Ctp/ for some p>0,K >0. �f is a monotone demicontinuous
mapping from H to H such that kf .x/k � '.kxk/ for all x 2 H .
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(c) Let r D 2p2. Then, V.t/ is cadlag adapted process such that supt2R
EfkV.t/krg < 1.

Marcus [17] studied Eq. (14.4) when f is Lipschitz, V is an Ornstein–Uhlenbeck
process, and A�1 is nuclear. He proved that the solution of Eq. (14.4) is a sta-
tionary process; when f .x/ D 1

2
rF.x/, he characterized its stationary measures

explicitly. This result was generalized somewhat in Marcus [18] to the case where
f W B ! B?, where B � H � B? is a Gelfand triple and f satisfies

hf .x/ � f .y/; x � yiB��B � �Ckx � ykpB and

kf .x/kB� � C.1C kxkp�1
B / for some C � 0; and p � 1:

Unfortunately, we were unable to follow his proof of the stationarity of the solution
of Eq. (14.4).

In this paper, we extend the above setting to a slightly more general case in which
f , U and V satisfy Hypothesis 1.1 on a Hilbert space H . Our method of proof is
different from that of [18]. We will give the stationary distribution of Eq. (14.5)
when rF.x/ is monotone.

In [31], we have proved the existence and the uniqueness of the solution to
Eq. (14.4). In [30] we have proved that finite-dimensional Galerkin approximations
converge strongly to the solution of Eq. (14.4). In this paper we prove stationarity of
the solution of Eq. (14.4).

In the special case when f .x/ D � 1
2
rF.x/ is the Fréchet derivative of a

potential F.x/ on H and V.t/ is the stationary Ornstein–Uhlenbeck processesR t
�1 U.t�s/dW.s/, we may consider the integral equation (14.4) as a mild solution

of the infinite-dimensional Einstein–Smoluchowski equation:

dX.t/ D �AX.t/dt � 1

2
rF.X.t//dt C dW.t/: (14.5)

In finite dimensions, the solutions are diffusion processes and the stationary
measures of these diffusion processes were studied by Kolmogorov [16].

Infinite-dimensional Einstein–Smoluchowski equations have been studied by
many authors, for example, Marcus [17–19], Funaki [11] and Iwata [14].

The stationary measure associated with this equation has important applications
in stochastic quantization (see [3, 15, 19] and Iwata [14]). In the case of Markovian
stochastic evolution equations, one can study the stationarity of the solution by
studying invariant measures (for comprehensive study of this subject see [7, 8] and
references therein). Consider the following integral equation:

X.t/ D U.t/X0 C
Z t

0

U.t � s/f .X.s//ds C V.t/; (14.6)

where f; V and the generator A of the semigroup U satisfy Hypothesis 1.1.
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Proposition 1.1. Suppose that A, f and V satisfy Hypothesis 1.1. Then Eq. (14.6)
has a unique adapted cadlag (continuous, if V.t/ is continuous) solution.

Proof. See Zangeneh [32] or Hamadani and Zangeneh [12]. ut

1.1 Energy Inequality

Proposition 1.2. Let a.:/ be anH -valued integrable function on S . SupposeU and
A satisfy Hypothesis 1.1. If

X.t/ D U.t; 0/X0 C
Z t

0

U.t; s/a.s/ds; (14.7)

then

kX.t/k2 � e2�tkX0k2 C 2

Z t

0

e2�.t�s/hX.s/; a.s/dsi; t 2 S: (14.8)

Proof. See Zangeneh [28]. ut
Note that this proposition works for more general semigroups and it applies to a

large class of delay equations and to parabolic and hyperbolic equations.

1.2 Significant Role of Monotonicity Condition

Monotonicity condition on f plays an important role in proving different inequali-
ties on stochastic evolution equations with monotone nonlinearity. To highlight the
significance of this role, we give a proof of continuity of the solution of Eq. (14.6)
with respect to V using the energy inequality.

Corollary 1.1. Let f; V 1 and V 2 satisfy Hypothesis 1.1. Suppose A and U satisfy
Hypothesis 1.1. Let Xi.t/, i D 1; 2, be solutions of the integral equations:

Xi.t/ D
Z t

0

U.t; s/f .s; Xi .s//ds C V i .t/: (14.9)

Then there is a constant C such that

kX2 �X1k1 � CkV 2 � V 1k 1
21: (14.10)
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Proof. Define Y i .t/ D Xi.t/ � V i .t/; i D 1; 2. Then we can write Eq. (14.18) in
the form

Y i .t/ D
Z t

0

U.t:s/f .s; Xi .s//ds; i D 1; 2;

so that

Y 2.t/ � Y 1.t/ D
Z t

0

U.t; s/Œf .s; X2.s// � f .s;X1.s//�ds:

Since U satisfies Hypothesis 1.1(a)–(c), then by energy inequality we have

kY 2.t/ � Y 1.t/k2 � 2

Z t

0

e2�.t�s/hY 2.s/� Y 1.s/; f .X2.s//� f .X1.s//ids:

(14.11)

Note that because Y i and Xi are cadlag and the f i are bounded by 'i , then the
integrands are dominated by cadlag functions and hence are integrable. Since Y i D
Xi � V i and �f 2 is monotone. By the Schwarz inequality this is

� 2

Z t

0

e2�skV 2.s/� V 1.s/kkf .X2.s// � f .X1.s//kds:

SinceX1 andX2 are bounded and f is bounded then there is a constantK such that

kY 2 � Y 1k1 � KkV 2 � V 1k 1
21 (14.12)

since Y i D Xi � V i proof of theorem is complete. ut
Corollary 1.2. Let D.S;H/ be the set of H -valued cadlag functions on S with
norm

kf k1 D sup
t2S

kf .t/k:

By Corollary 1.1 there is a continuous mapping W S �D.S;H/ ! D.S;H/ such
that if X.t/ is a solution of

X.t/ D
Z t

0

U.t; s/f .X.s//ds C V.t/;

then X.t/ D  .t; V /.t/. Moreover there is a constant C such that

k .:; V 2/�  .:; V 1/k1 � CkV 2 � V 1k 1
21;

so  is Hölder continuous with exponent 1/2.
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1.3 Examples

1.3.1 A Semilinear Stochastic Evolution Equation

The existence and uniqueness of the solution of the integral equation (14.2) have
been studied in Marcus [18]. He assumed that f is independent of ! 2 � and t 2 S
and that there are M > 0 and p � 1 for which

h f .u/� f .v/; u � v i � �M ku � vkp

and

kf .u/k � C.1C kukp�1/:

He proved that this integral equation has a unique solution in Lp.�;Lp.S;H//.
As a consequence of Proposition 1.1, we can extend Marcus’ result to more

general f and we can show the existence of a strong solution of Eq. (14.2) which is
continuous, instead of merely being in Lp.�;Lp.S;H//.

The Ornstein–Uhlenbeck process V.t/ D R t
0 U.t � s/dW.s/ has been well

studied, for example, in [13], where they show that V.t/ has a continuous version.
We can rewrite Eq. (14.2) as

X.t/ D U.t/X.0/C
Z t

0

U.t � s/f .X.s//ds C V.t/;

where V.t/ is an adapted continuous process. Then by Proposition 1.1, Eq. (14.2)
has a unique continuous adapted solution.

1.3.2 A Semilinear Stochastic Partial Differential Equation

LetD be a bounded domain with a smooth boundary in Rd . Let �A be a uniformly
strongly elliptic second-order differential operator with smooth coefficients on D.
Let B be the operator B D d.x/DN C e.x/, whereDN is the normal derivative on
@D and d and e are in C1.@D/. Let A (with the boundary condition Bf � 0/ be
self-adjoint.

Consider the initial-boundary-value problem

8<
:

@u
@t

C Au D f .u/C PW on D � Œ0;1/;

Bu D 0 on @D � Œ0;1/;

u.0; x/ D 0 on D;

(14.13)

where PW D PW .t; x/ is a white noise in space-time (for the definition and properties
of white noise, see Walsh [26]) and f is a nonlinear function that will be defined
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below. Let p > d
2

.W can be considered as a Brownian motion QW .t/ on the Sobolev
spaceH�p ; see Walsh [26], Chap. 5, p. 345. There is a complete orthonormal basis
fekg for Hp .

The operator A (plus boundary conditions) has eigenvalues f�kg with respect
to fekg, i.e., Aek D �kek; 8k. The eigenvalues satisfy ˙j .1 C �

�p
j / < 1 if

p > d
2

(see Walsh [26], Chap. 5, p. 343). Then ŒA�1�p is nuclear and �A generates
a contraction semigroup U.t/ � e�tA. This semigroup satisfies Hypothesis 1.1.

Now consider the initial-boundary-value problem (14.13) as a semilinear
stochastic evolution equation

du.t/C Au.t/dt D f .u.t//dt C d QW .t/; (14.14)

with initial condition u.0/ D 0, where f W S � � � H�p ! H�p satisfies
Hypotheses 1.2(b) and 1.2(c) relative to the separable Hilbert space H D H�p .
We can define the mild solution of Eq. (14.14), which is also a mild solution of
Eq. (14.13), to be the solution of

u.t/ D
Z t

0

U.t � s/f .u.s//ds C
Z t

0

U.t � s/d QW .s/: (14.15)

Since QWt is a continuous local martingale on the separable Hilbert space H�p ,
then

R t
0
U.t � s/d QW .s/ has an adapted continuous version; see, for example,

Zangeneh [32]. If we define

V.t/ WD
Z t

0

U.t � s/d QW .s/;

then by Proposition 1.1, Eq. (14.15) has a unique continuous solution with values
in H�p .

Remark 1.1. In this section, we can replace Levy noise (see, e.g., [1, 2, 23, 24], and
for study of stochastic calculus with respect to Levy noise, see [4]) or fractional
noise (see, e.g., [10, 20, 25, 27], and for study of stochastic calculus with respect to
fractional noise, see [5, 6, 9, 22]), with Brownian noise PW . In case of Levy noise
V.t/ has a cadlag version.

1.4 Main Theorem

We close this section by introducing our main theorem. We assume V satisfies the
following condition.

Hypothesis 1.2. V is a cadlag adapted stationary processes on H , such that for
some p � 1

E.kV.0/kr / < 1 for r D 2p2: (14.16)

Let f W R ! Y , where Y is a topological space. Define .�sf /.t/ D f .t C s/.
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Definition 1.1. A process X D fX.t/ W t 2 Rg, taking values in a topological
space Y , is called strongly stationary if for each h and real numbers t1; t2; : : : ; tn, the
families .X.t1/; X.t2/; : : : ; X.tn// and ..�hX/.t1/; : : : ; .�hX/.tn// have the same
joint distribution.

Theorem 1.1. If f and V satisfy Hypothesis 1.1 and if V satisfies Hypothesis 1.2,
then the solution of Eq. (14.4) is a stationary process.

2 The Semilinear Integral Equation on the Whole Real Line

Let us reduce the integral equation (14.4) to the following integral equation:

X.t/ D
Z t

�1
U.t � s/f .X.s/C V.s//ds: (14.17)

The following theorem translates Proposition 1.1 to the case when the parameter
set of the process is the whole real line.

Theorem 2.1. If A; f and V satisfy Hypothesis 1.1, then the integral equa-
tion (14.17) has a unique continuous solution X such that

kX.t/k �
Z t

�1
e��.t�s/'.kV.s/k/dsI (14.18)

EfkX.t/kg � 1

�
sup
s2R

Ef'.kV.s/k/g WD K1: (14.19)

Proof. See Theorem 1 p. 272, Zangeneh [31] or Theorem 4.2, p. 57, Zangeneh [33].
ut

Corollary 2.1. If A; f and V satisfy Hypothesis 1.1, then the integral equation

X.t/ D
Z t

�1
U.t � s/f .X.s//ds C V.t/ (14.20)

has a unique cadlag solution X .

Proof. Define Y.t/ D X.t/ � V.t/ and use Theorem 2.1. ut

2.1 Galerkin Approximations

Let U.t/ be a semigroup generated by a strictly negative definite closed unbounded
self-adjoint operatorA such that A�1 is compact.
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Then, there is a complete orthonormal basis .�n/ and eigenvalues 0 < �0 < �1 <
�2 < 	 	 	 with �n ! 1, such that A�n D ��n�n.

Let Hn be the subspace of H generated by f�0; �1; : : : ; �n�1g and let Jn be the
projection operator onHn.

Define

fn D Jnf; Vn.t/ D Jn V.t/; Un.t/ D Jn U.t/Jn

and define Xn.t/ and X.t/ as solutions of

Xn.t/ D
Z t

�1
Un.t � s/fn.Xn.s//ds C Vn.t/ (14.21)

and

X.t/ D
Z t

�1
U.t � s/f .X.s//ds C V.t/: (14.22)

Now we can prove

Theorem 2.2. If A;U; f and V satisfy Hypothesis 1.1, then one has

E.kXn.t/ �X.t/k/ ! 0:

Proof. See Zangeneh [30]. ut

3 Stationarity

Let D.R;H/ be the space of H -valued cadlag functions on R with the metric of
uniform convergence on compacts

d.f; g/ D
1X
kD1

kf � gkk
2k.1C kf � gkk/ ;

where

kf kk D sup�k�t�kkf .t/k:
If f 2 D.R;H/, �:f is a function from R to D.R;H/.
Next, we prove the following lemma:

Lemma 3.1. If V D fV.t/; t 2 Rg is an H -valued cadlag stationary process
on R, then �:V D f�sV s 2 Rg is a D .R;H/-valued stationary process on R.
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Proof. To prove this, it is enough to prove that for all real t1 < t2 < 	 	 	 < tn, all real
s1 < s2 < 	 	 	 < sm and all real h,

f.�t1V /.s1/; .�t2V /.s1/; : : : ; .�tnV /.s1/; : : : ; .�t1V /.sm/; : : : ; .�tnV /.sm/g

and

f.�t1 C hV /.s1/; .�t2 C hV /.s1/; : : : ; .�tn C hV /.s1/; : : : ; .�t1 C hV /.sm/; : : : ;

.�tn C hV /.sm/g

have the same joint distribution. But by definition, .�tiChV /.sj / D V.ti C hC sj /

and since V is an H -valued stationary process, then we have equality of the joint
distributions, which completes the proof. ut

4 The Continuity of the Solution with Respect to Vn

Let K be D .R;Hn/, with metric

dK.f; g/ D
1X
kD1

kf � gkk
2k.1C kf � gkk/

C
�Z 1

�1
e�jsj�0kf .s/ � g.s/krds

� 1
r

; �0 > 0:

To prove that the solution Xn.t/ of Eq. (14.21) is a stationary process, we need to
prove a result similar to Remark 3 p. 460 Zangeneh [28] for Eq. (14.21), i.e., that
there is a continuous mapping

 W R �K ! D .R;Hn/ such that Xn.t/ D  .t; Vn.	//.t/:

To prove this, we first need to prove the existence of a solution of Eq. (14.21) when
Vn 2 K . Then, instead of Eq. (14.21), we consider the following integral equation:

Y.t/ D
Z t

�1
U.t � s/f .Y.s/C g.s//ds; (14.23)

under the following hypothesis.

Hypothesis 4.1. (a) U.t/ DW Un.t/ D JnU.t/Jn, and U satisfies Hypothesis 1.1.
(b) �f W Hn ! Hn is a continuous monotone function such that kf .x/k � C.1C

kxkr /, for r D 2p2.
(c) g 2 K .
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Note that because Hn is a finite-dimensional space, the U.t/ forms a group and
U.t/ is well defined for all t 2 R and U.�t/U.t/ D I .

Next, we prove two purely deterministic lemmas.

Lemma 4.1. If f; U and g satisfy Hypothesis 4.1, then Eq. (14.23) has a unique
continuous solution.

Proof. As in Theorem 1, p. 272, Zangeneh [31], define

Yk.t/ D
Z t

�k
U.t � s/f .Yk.s/C g.s//ds: (14.24)

Then we have

kYk.t/k � C

Z t

�1
e��0.t�s/.1C kg.s/kr /ds;

and by Hypothesis 4.1(c), there are C.T / > 0 and C1.T / > 0 such that for all
t 2 .�1; T �;

kYk.t/k � C.T /e��0t � C1.T /: (14.25)

Let a � t1 � t2 � T . By Eq. (14.24) one has

U.�t2/ Yk.t2/� U.�t1/ Yk.t1/ D
Z t2

t1

U.�s/f .Yk.s/C g.s//ds:

Now it is easy to see from Eq. (14.25) and Hypothesis 4.1(c) that there isC.T; a/>0
such that

kU.�t2/ Yk.t2/ � U.�t1/ Yk.t1/k � C.T; a/jt2 � t1j:
Then U.�t/ Yk.t/ is uniformly equicontinuous on Œa; T �, so Yk.t/ is uniformly

equicontinuous on Œa; T �. Since Yk.t/ is uniformly bounded by Eq. (14.25), then
by the Arzela–Ascoli theorem there is a subsequence .kl / such that Ykl converges
uniformly to a continuous function Y on Œa; T �.

To complete the proof of the lemma we need to prove that Y.t/ is a solution of
Eq. (14.23). As in the proof of Theorem 1 [31], we can show that Y.t/ is a solution
of the equation

Y.t/ D U.t C T /Y.�T / C
Z t

�T
U.t � s/f .Y.s/C g.s//ds; t � �T:

Then it is enough to prove that

Y.�T / D
Z �T

�1
U.�T � s/f .Y.s/C g.s//ds: (14.26)
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But

Yk.�T / D
Z �T

�k
U.�T � s/f .Yk.s/C g.s//ds

D
Z �T

�1
U.�T � s/f .Yk.s/C g.s//1Œ�k;�T �.s/ds:

By Hypothesis 4.1(c),

kU.�T � s/f .Yk.s/C g.s//1Œ�k;�T �.s/k
is dominated by an integrable function. Since Ykl .s/ ! Y.s/ and since f is
continuous, then by the dominated convergence theorem we get Eq. (14.26). ut
Lemma 4.2. Suppose U ; f and gi satisfy the conditions of Lemma 4.1. If Yi ; i D
1; 2 are solutions of

Yi .t/ D
Z t

�1
U.t � s/f .Yi .s/C gi .s//ds;

then there is a constant C.T / > 0 such that

kY2 � Y1k.T /2 � C.T; g1; g2/

�Z t

�1
e2�skg2.s/ � g1.s/k2ds

�2
: (14.27)

Proof. Define

Y ki .t/ D
Z t

�k
U.t � s/f .Y ki .s/C gi .s//ds; i D 1; 2:

Let Zk
1 .s/ D Y k1 .s/C g1.s/ and Zk

2 .s/ D Y k2 .s/C g2.s/. Then

Y k2 .t/ � Y k1 .t/ D
Z t

�k
U.t � s/.f .Zk

2 .s//� f .Zk
1 .s//ds:

Since U satisfies Hypothesis 1.1, then by Proposition 1.2 (energy inequality),
we have

kY k2 .t/ � Y k1 .t/k2 � 2e�2�t
Z t

�k
e2�shf .Zk

2 .s// � f .Zk
1 .s//; Y

k
2 .t/ � Y k1 .t/ids:

The right-hand side of the above is

D 2e�2�t
Z t

�k
e2�shf .Zk

2 .s//� f .Zk
1 .s//; Z

k
2 .s/ �Zk

1 .s/ids

�2e�2�t
Z t

�k
e2�shf .Zk

2 .s//� f .Zk
1 .s//; g2.s/ � g1.s/ids;
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which by monotonicity of �f is bounded by

� �2e�2�t
Z t

�k
e2�shf .Zk

2 .s// � f .Zk
1 .s//; g

k
2 .s/ � gk1 .s/ids

and by the Schwarz inequality, is

� 2e�2�t
Z t

�k
e2�skf .Zk

2 .s//� f .Zk
1 .s//kkgk2 .s/ � gk1 .s/kds:

Applying again the Schwarz inequality to the integral, we get

� e��t I
�Z t

�k
e2�skg2.s/ � g1.s/k2ds

� 1
2

; (14.28)

where

I D 2

�Z t

�k
e2�skf .Zk

2 .s// � f .Zk
1 .s//k2ds

� 1
2

D 2

�Z t

�k
e2�skf .Y k2 .s/C g2.s// � f .Y k1 .s/C g1.s//k2ds

� 1
2

:

First, we show that I is uniformly bounded in k. Because kf .x/k � C.1C kxkp/
and

R T
�1 e2�skgi .s/k2p2ds < 1, it is enough to show that

R T
�k e2�skY ki .s/k2pds is

uniformly bounded in k. But by Eq. (14.18) of Theorem 2.1,

kY ki .t/k � e��t
Z t

�1
e�s.1C kgi .s/kp/ds; i D 1; 2:

Using Fubini’s theorem, we can show that

Z T

�1
e2�skY ki .s/k2pds �

Z T

�1
e2p�u.1C kgi .u/k2p2 /

�Z T

u
e2�.1�p/sds

�
du:

Then,
R T

�k e2�skY ki .s/k2pds is uniformly bounded in k, so there is C1.T / such that
I � C1.T /, and we can rewrite Eq. (14.28) as

kY k2 .t/ � Y k1 .t/k2 � C1.T /e�2�t
�Z t

�1
e2�skg2.s/ � g1.s/k2ds

� 1
2

:

Since by the proof of Lemma 4.1, Y kli .t/ ! Yi .t/. By taking the limit over the
subsequence .kl / and taking the supremum on Œ�T; T �, we get Eq. (14.27). ut
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Remark 4.1. Let �.g/ W D R T
�1 e�skg.s/krds for g 2 K . Then:

(i) If �.gi / � N; i D 1; 2, there is a constant CN > 0 such that

kY2 � Y1k.T /2 � CN

�Z T

�1
e2�skg2.s/� g1.s/k2/ds

� 1
2

: (14.29)

(ii) By Lemma 4.1, Eq. (14.21) has a unique cadlag adapted solution, and by (i)
there is a constant CN > 0 such that on the set where �.Vi / � N; i D 1; 2,

kX2 �X1k .T /2 � CN .dK.V2; V1//
1
2 ; (14.30)

where dK.	; 	/ is a metric on K .
(iii) There is a continuous mapping  N W R � K ! D.R;Hn/ such that if

Xn.t/ is the solution of Eq. (14.21), then Xn.t/ D  .t; Vn.	//.t/ on the set
f�.Vn/ < N g.

5 Proof of Theorem 1.1

Proof. To prove that the solution of Eq. (14.4) is stationary, it is enough to prove
that the solution of Eq. (14.21) is stationary. Since V.t/ is an H -valued stationary
process then Vn.t/ W D Jn V.t/ is also an Hn-valued stationary process. From
Eq. (14.21), we have

Xn.t C h/ D
Z tCh

�1
Un.t C h� s/f .Xn.s//ds C Vn.t C h/I

by changing variables, we see that this is

Z t

�1
Un.t � s/f .Xn.s C h//ds C �hVn.t/:

Then by Remark 4.1, we have Xn.t C h/ D  N .t; .0; .�hVn//.t/ on the set
f�.v/ < N g and in particular Xn.h/ D  N .0; .�hVn//.0/ on the set f�.v/ < N g.
But by Lemma 3.1, �hVn is a D.R;Hn/-valued stationary process; since '.f / D
 N .0; f /.0/ is a continuous function from K to Hn, then Xn.t/ D  .�tVn/ D
 N .0; .�tVn/.0/ is anHn-valued stationary process. SinceX.t/ is the limit ofXn.t/
by Lemma 4.2, then fX.t/ W t 2 Rg is also a stationary process. ut
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6 The Einstein–Smoluchowski Equation

Now consider Eq. (14.5) where �rF.x/ satisfies Hypothesis 1.1. The stationary
solution of Eq. (14.5) satisfies the following integral equation:

X.t/ D �1
2

Z t

�1
U.t � s/rF.X.s//ds C

Z t

�1
U.t � s/dW.s/: (14.31)

By Zangeneh [29, Theorem 2], the solution of Eq. (14.31) is a limit of solutions of
the finite-dimensional equations

Xn.t/ D �1
2

Z t

�1
Un.t � s/rF.Xn.s//ds C

Z t

�1
Un.t � s/dW.s/: (14.32)

The stationary distribution of Eq. (14.32) is well known from Kolmogorov (1937)
and can be given explicitly (see Marcus [17, 18]). But instead of Eq. (14.32) we are
interested in a slightly different equation. Consider

Yn.t/ D �1
2

Z t

�1
Un.t � s/rF.JnYn.s//ds C

Z t

�1
Un.t � s/dW.s/: (14.33)

It is clear that JnYn.t/ D Xn.t/. Since Yn.t/ D JnYn.t/ C .Yn.t/ � JnYn.t//

and

Yn.t/ � JnYn.t/ D
Z t

�1
.I � Jn/U.t � s/.I � Jn/dW.s/

and Xn.t/ ! X.t/, then we have Yn.t/ ! X.t/. By Theorem 1.1, Yn.t/ is a
stationary process. LetM be the stationary Gaussian measure of

R t
�1 U.t�s/dW.s/

on H . Then we can prove the following result.

Lemma 6.1. If U and �rF.x/ satisfy Hypothesis 1.1, the stationary distribution
of Yn.t/ has a Radon–Nikodym derivative exp.�F.Jn://

R
H

exp.�F.://dM.:/ with
respect to M onH .

Proof. See Marcus [18, Lemma (10)].
Now we can prove ut

Theorem 6.1. If U and �rF.x/ satisfy Hypothesis 1.1, then the distribution
of the solution X.t/ of Eq. (14.31) has the Radon–Nikodym derivative
exp.�F..:// R

H
exp.�F.://dM.:/ with respect to M on H .

Proof. Since E.kYn.t/ �X.t/k/ ! 0 it is sufficient to show that

lim
n!1

Z
H

j exp.�F.x// � exp.�F.Jnx//jdM.x/ D 0

since this implies weak convergence. Note that limn!1 F.Jn:/ D F.:/ on the set
with M -measure equal to 1.
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Without loss of generality, let V.0/D 0. Then the monotonicity of rF.x/
ensures that F is nonnegative and exp.�F.://� 1. The Lebesgue bounded conver-
gence theorem can now be applied to show that the limit of the integral is equal to 0.

ut
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Chapter 15
A Strong Approximation of Subfractional
Brownian Motion by Means of Transport
Processes

Johanna Garzón, Luis G. Gorostiza, and Jorge A. León

Abstract Subfractional Brownian motion is a process analogous to fractional
Brownian motion but without stationary increments. In Garzón et al. (Stoch. Proc.
Appl. 119:3435–3452, 2009) we proved a strong uniform approximation with a rate
of convergence for fractional Brownian motion by means of transport processes.
In this paper we prove a similar type of approximation for subfractional Brownian
motion.

Received 10/11/2011; Accepted 1/10/2012; Final 1/27/2012

1 Introduction

Fractional Brownian motion (fBm) is well known and used in many areas of
application (see [23, 26] for background and [7] for some applications). It is a
centered Gaussian process W D .W.t//t�0 with covariance function

E.W.s/W.t// D 1

2
.s2H C t2H � js � t j2H /; s; t � 0;
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where H 2 .0; 1=2/ [ .1=2; 1/ (the case H D 1=2 corresponds to ordinary
Brownian motion). H is called Hurst parameter. The main properties of fBm are
that it is a continuous centered Gaussian process which is self-similar, has stationary
increments with long-range dependence, and is neither a Markov process nor a
semimartingale. Since it is not a semimartingale, it has been necessary to develop
new theories of stochastic calculus for fBm, different from the classical Itô calculus
(see, e.g., [2, 21, 23, 24] and references therein).

Subfractional Brownian motion (sfBm) is a process S D .S.t//t�0 that has the
main properties of fBm except stationary increments, and its long-range dependence
decays faster than that of fBm. Its covariance function is

E.S.s/S.t// D s2H C t2H � 1

2

�
.s C t/2H C js � t j2H

�
; s; t � 0;

with parameter H 2 .0; 1=2/ [ .1=2; 1/ (the case H D 1=2 also corresponds
to ordinary Brownian motion). The main properties of sfBm were studied in [3],
where it was also shown that it arises from the occupation time fluctuation limit of
a branching particle system with H restricted to .1=2; 1/. This process appeared
independently in a different context in [8].

The emergence of sfBm has motivated a series of papers where it arises
in connection with several analogous but somewhat different branching particle
systems, usually with H 2 .1=2; 1/. It has been shown in [5] that it also comes
out in a more natural way from a particle system without branching, and in [6]
there is a different particle picture approach that yields sfBm with the full range of
parameters H 2 .0; 1/. Other long-range-dependent Gaussian processes have been
obtained which are related to particle systems. A reader interested in fBm and sfBm
in connection with particle systems can find some results and references in [3,4,16].

Some authors have studied further properties of sfBm for its own sake and related
stochastic calculus, and possible applications of sfBm have been proposed (see [1,
9, 14, 17–20, 22, 25, 27–40]).

There are various ways of approximating fBm in distribution that can be used for
simulation of paths. In [10] we obtained a strong approximation of fBm with a rate
of convergence by means of the Mandelbrot-van Ness representation of fBm and a
strong approximation of Brownian motion with transport processes proved in [13].
This was employed in [11] for a strong approximation of solutions of fractional
stochastic differential equations with a rate of convergence, which may be used for
simulation of solutions (computational efficiency was not the objective). A strong
approximation of the Rosenblatt process by means of transport processes with a rate
of convergence has been obtained in [12].

Since sfBm has attracted interest recently, it seems worthwhile to provide
a strong approximation for it by means of transport processes with a rate of
convergence, analogously as was done for fBm in [10]. This can be achieved
using the same approach of [10] with some technical modifications and additional
work. The aim of the present article is to prove such a strong approximation for
sfBm, which moreover has the same rate of convergence as that of the transport
approximation of fBm. The result is given in Corollary 2.1.
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We end the Introduction by recalling the strong transport approximation of
Brownian motion. For each n D 1; 2; : : :, let .Z.n/.t//t�0 be a process such that
Z.n/.t/ is the position on the real line at time t of a particle moving as follows.
It starts from 0 with constant velocity Cn or �n, each with probability 1=2. It
continues for a random time �1 which is exponentially distributed with parameter
n2, and at that time it switches from velocity ˙n to �n and continues that way
for an additional independent random time �2 � �1, which is again exponentially
distributed with parameter n2. At time �2 it changes velocity as before, and so on.
This process is called a (uniform) transport process.

Theorem 1.1 ([13]). There exist versions on the transport process .Z.n/.t//t�0 on
the same probability space as a Brownian motion .B.t//t�0 such that for each
q > 0,

P

�
sup

a�t�b

jB.t/ � Z.n/.t/j > C n�1=2.log n/5=2

�
D o.n�q/ as n ! 1;

where C is a positive constant depending on a; b, and q.

See [10, 13] for background and references.

2 Approximation

A stochastic integral representation of sfBm S with parameter H is given by

S.t/ D C

Z 1

�1

h�
.t � s/C�H�1=2 C ..t C s/�/H�1=2 � 2..�s/C/H�1=2

i
dB.s/;

(15.1)

where C is a positive constant depending on H , and B D .B.t//t2R is Brownian
motion on the whole real line (see [3]). Rewriting Eq. (15.1), we have

S.t/ D W.t/ C Y.t/; (15.2)

where W is an fBm with Hurst parameter H and Mandelbrot-van Ness representa-
tion

W.t/ D C

�Z 0

�1

h
.t � s/H�1=2 � .�s/H�1=2

i
dB.s/ C

Z t

0

.t � s/H�1=2dB.s/

	
;

(15.3)

and the process Y is defined by

Y.t/ D C

�Z �t

�1

h
.�t � s/H�1=2 � .�s/H�1=2

i
dB.s/ �

Z 0

�t

.�s/H�1=2dB.s/

	
:

(15.4)
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Due to Eqs. (15.2)–(15.4), the processes S and Y have common properties in
general, in particular the same Hölder continuity.

We fix T > 0 and a < �T , and we consider the following Brownian motions
constructed from B:

1. .B1.s//0�s�T , the restriction of B to the interval Œ0; T �.
2. .B2.s//a�s�0, the restriction of B to the interval Œa; 0�.

3. B3.s/ D
(

sB. 1
s
/ if s 2 Œ1=a; 0/ ;

0 if s D 0:

By Theorem 1.1 there are three transport processes

.Z
.n/
1 .s//0�s�T ; .Z

.n/
2 .s//a�s�0; and .Z

.n/
3 .s//1=a�s�0;

such that for each q > 0

P

 

sup
bi �t�ci

jBi .t/ � Z
.n/
i .t/j > C .i/n�1=2.log n/5=2

!

D o.n�q/ as n ! 1;

(15.5)

where bi ; ci , i D 1; 2; 3, are the endpoints of the corresponding intervals and each
C .i/ is a positive constant depending on bi , ci , and q. Note that Z

.n/
2 and Z

.n/
3 are

constructed going backwards in time.
We now proceed similarly as in [10]. We define the functions

ft .s/ D .t � s/H�1=2 � .�s/H�1=2 for s < 0 � t � T;

gt .s/ D .t � s/H�1=2 for 0 < s < t � T;

and for 0 < ˇ < 1=2, we put

"n D �n�ˇ=jH�1=2j: (15.6)

There are different approximations of W for H > 1=2 and for H < 1=2. We fix

0 < ˇ < 1=2. For H > 1=2 we define the process W
.n/

ˇ D


W

.n/

ˇ .t/
�

t2Œ0;T �
by

W
.n/

ˇ .t/ D CH

�Z t

0

gt .s/dZ
.n/
1 .s/ C

Z 0

a

ft .s/dZ
.n/
2 .s/ C ft .a/Z

.n/
2 .a/

C
Z 0

1=a

�
�
Z s^"n

1=a

@sft

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

	
;

and for H < 1=2 we define the process OW .n/

ˇ D

 OW .n/

ˇ .t/
�

t2Œ0;T �
by

OW .n/

ˇ .t/ D CH

�Z .tC"n/_0

0

gt .s/dZ
.n/
1 .s/ C

Z t

.tC"n/_0

gt ."n C s/dZ
.n/
1 .s/
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C
Z "n

a

ft .s/dZ
.n/
2 .s/ C ft .a/Z

.n/
2 .a/

C
Z 0

1=a

�
�
Z s

1=a

@sft

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

	
:

We write W .n/ D .W .n/.t//t2Œ0;T �, where

W .n/ D
(

W
.n/

ˇ if H > 1=2;

OW .n/

ˇ if H < 1=2:
(15.7)

Note that W .n/ is defined on the same probability space as the Brownian motion B

in Eq. (15.3), and recall that it depends on ˇ through Eq. (15.6).
The following theorem gives the convergence and the rate of convergence of

W .n/ to W .

Theorem 2.1 ([10]). Let H ¤ 1=2 and let W and W .n/ be the processes defined
by Eqs. (15.3) and (15.7), respectively. Then for each q > 0 and each ˇ such that
0 < jH � 1=2j < ˇ < 1=2, there is a constant C > 0 such that

P

 

sup
0�t�T

ˇ
ˇW.t/ � W .n/.t/

ˇ
ˇ > C n�.1=2�ˇ/.log n/5=2

!

D o.n�q/ as n ! 1:

We define another function

Ft .s/ D .�t � s/H�1=2 � .�s/H�1=2 for s < �t < 0: (15.8)

In [10] Z
.n/
2 .s/ was defined for s 2 Œa; 0� and Z

.n/
3 .s/ was defined for s 2 Œ1=a; 0�,

where a < 0 was arbitrary, but for the approximation of sfBm we need a < �T so
that Ft .s/ is well behaved.

Now we define approximating processes for Y and S in Eq. (15.2), again for a
fixed 0 < ˇ < 1=2.

For H > 1=2 we define the process Y
.n/

ˇ D .Y
.n/

ˇ .t//t2Œ0;T � by

Y
.n/

ˇ .t/ D C

�
�
Z 0

�t

.�s/H�1=2dZ
.n/
2 .s/ C

Z �t

a

Ft .s/dZ
.n/
2 .s/ C Ft .a/Z

.n/
2 .a/

C
Z 0

1=a

�
�
Z Œ"n_.1=a/�^s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

	
; (15.9)

and for H < 1=2 we define the process OY .n/

ˇ D

 OY .n/

ˇ .t/
�

t2Œ0;T �
by
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OY .n/

ˇ .t/ D C

�
�
Z "n_.�t /

�t

.�s/H�1=2dZ
.n/
2 .s/

�
Z 0

"n_.�t /

.�s � "n/H�1=2dZ
.n/
2 .s/ C Ft .a/Z

.n/
2 .a/

�
Z 0

1=a

�
�
Z s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

C
Z a_.�tC"n/

a

Ft .s/dZ
.n/
2 .s/

C If�"n�tg
Z �t

a_.�tC"n/

FtC"n.s/dZ
.n/
2 .s/

	
: (15.10)

We write Y .n/ D .Y n.t//t2Œ0;T �, where

Y .n/ D
(

Y
.n/

ˇ if H > 1=2;

OY .n/

ˇ if H < 1=2
(15.11)

(note that Y .n/ involves only Z
.n/
2 and Z

.n/
3 ), and we define

S.n/.t/ D W .n/.t/ C Y .n/.t/; (15.12)

with W .n/ as in Eq. (15.7).
The following theorem gives the convergence and the rate of convergence of Y .n/

to Y .

Theorem 2.2. Let H ¤ 1=2 and let Y and Y .n/ be the processes defined
by Eqs. (15.4) and (15.11), respectively. Then for each q > 0 and each ˇ such
that 0 < jH � 1=2j < ˇ < 1=2, there is a constant C > 0 such that

P

 

sup
0�t�T

ˇ̌
Y.t/ � Y .n/.t/

ˇ̌
> C n�.1=2�ˇ/.log n/5=2

!

D o.n�q/ as n ! 1:

From Theorems 2.1 and 2.2 we have the following result.

Corollary 2.1. Let S and S.n/ be the processes defined by Eqs. (15.1) and (15.12),
respectively. Then for each q > 0 and each ˇ such that 0 < jH � 1=2j < ˇ < 1=2,
there is a constant C > 0 such that

P

 

sup
0�t�T

ˇ
ˇS.t/ � S.n/.t/

ˇ
ˇ > C n�.1=2�ˇ/.log n/5=2

!

D o.n�q/ as n ! 1:

Note that the approximation becomes better when H approaches 1=2.
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Remark 2.1. The reason that the rates of convergence for W and Y are the same is
that the integral representations of W and Y , Eqs. (15.3) and (15.4), have similar
kernels, and the approximations depend basically on the rate of the transport
approximation for Brownian motion and on the Hölder continuity of Brownian
motion. Equation (15.2) is a decomposition of sfBm S as a sum of an fBm W

and a process Y , which holds everywhere on the sample space, and W and Y are
dependent (but the dependence does not play a role in the proofs). In [1] (which
contains an approximation of sfBm in law) and [25], for the case H < 1=2, sfBm
has a decomposition with equality in law as the sum of an fBm and a process of the
form Z 1

0

.1 � e�rt /r�.1C2H/=2dB1.r/; t � 0;

where B1 is a Brownian motion. This kind of process was introduced in [15].
In that decomposition the Brownian motions B and B1 are independent. That
representation could be used for proving an approximation of sfBm with transport
processes in the case H < 1=2, but it would require another independent set of
transport processes to approximate B1. We stress that our approximation is strong
and holds for all H .

3 Proofs

The proofs are based on a series of lemmas.

Lemma 3.1. For each fixed t > 0, the function Ft defined by Eq. (15.8) has the
following properties:

(1)
j@sFt .s/j � jH � 1=2jt.3=2 � H/.�t � s/H�5=2; s � �t: (15.13)

(2)

Z a

�1
j@sFt .s/j.�s/1=2C� ds < 1 for each 0 < � < .1 � H/ ^ .1=2/: (15.14)

(3)
lim

b!�1 Ft .b/B.b/ D 0 a.s. (15.15)

(4)

Z a

�1
Ft .s/dB.s/ D Ft .a/B2.a/ �

Z 0

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv: (15.16)

Proof. (1)
@sFt .s/ D .H � 1=2/

�
.�s/H�3=2 � .�t � s/H�3=2

�
:
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Taking g.x/ D xH�3=2, g0.x/ D .H � 3=2/xH�5=2, x 2 Œ�t � s; �s�. By the
mean value theorem, for some r 2 Œ�t � s; �s�,

j.�s/H�3=2 � .�t � s/H�3=2j D j � g0.r/.�t � s C s/j D t.3=2 � H/rH�5=2

� t.3=2 � H/.�t � s/H�5=2:

(2) From (1) and integration by parts we have

Z a

�1
j@sFt .s/j.�s/1=2C� ds � jH � 1=2jt.3=2 � H/

�
Z a

�1
.�t � s/H�5=2.�s/1=2C� ds

D jH � 1=2jt
�

.�s/�C1=2.�t � s/H�3=2

ˇ
ˇ
ˇ̌
a

�1

C
Z a

�1
.1=2 C �/.�t � s/H�3=2.�s/��1=2ds



: (15.17)

Since � < .1 � H/ ^ .1=2/,

lim
s!�1.�s/�C1=2.�t � s/H�3=2 D lim

s!�1.�s/�CH�1

�
t

s
C 1

�H�3=2

D 0;

(15.18)

and
Z a

�1
.�t � s/H�3=2.�s/��1=2ds �

Z a

�1
.�t � s/HC��2ds

D .�t � a/HC��1

1 � H � �
< 1;

which together Eqs. (15.17) and (15.18) shows that statement .2/ holds.

(3) By the pathwise Hölder continuity of B3 on Œ1=a; 0�, taking 0 < � < .1�H/^
.1=2/, we have jsB.1=s/j < Y.�s/1=2�� for each s 2 Œ1=a; 0� and a random
variable Y . Then jB.s/j < Y.�s/1=2C� for each s 2 .�1; a�. Therefore,

jFt .b/B.b/j � ˇ
ˇ.�t � b/H�1=2 � .�b/H�1=2

ˇ
ˇY.�b/1=2C�

D
ˇ
ˇ̌
ˇ
ˇ

�
t

b
C 1

�H�1=2

� 1

ˇ
ˇ̌
ˇ
ˇ
Y.�b/HC� ;
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and using l’Hôpital rule,

lim
b!�1

ˇ
ˇ
ˇ
�

t
b

C 1
�H�1=2 � 1

ˇ
ˇ
ˇ

.�b/���H
D 0:

(4) Since Ft is square-integrable on .�1; a/, limb!�1
R a

b
Ft .s/dB.s/ DR a

�1 Ft .s/dB.s/. Thus, applying integration by parts,

Z a

b

Ft .s/dB.s/ D Ft .a/B.a/ � Ft .b/B.b/ �
Z a

b

@sFt .s/B.s/ds:

By the pathwise Hölder continuity of B (see the proof of Statement (3))
and Eq. (15.14),

Z a

�1
j@sFt .s/B.s/jds < 1;

and using Eq. (15.15)

Z a

�1
Ft .s/dB.s/ D Ft .a/B.a/ �

Z a

�1
@sFt .s/B.s/ds:

Now, with the change of variable s D 1=v,

Z a

�1
@sFt .s/B.s/ds D

Z 0

1=a

@sFt

�
1

v

�
1

v2
B

�
1

v

�
dv

D
Z 0

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv;

and we obtain Eq. (15.16). ut
We prove Theorem 2.2 separately for H > 1=2 and H < 1=2. We denote the

sup norm by jj jj1, and it will always be clear from the context which interval it
refers to.

3.1 Case H > 1=2

We fix H � 1=2 < ˇ < 1=2 and define

˛n D n�.1=2�ˇ/.log n/5=2:
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The proof will be a consequence of the following lemmas, involving Z
.n/
2 and Z

.n/
3 :

Lemma 3.2. For each q > 0 there is C > 0 such that

I1 D P

 

sup
0�t�T

ˇ̌
ˇFt .a/B2.a/ � Ft .a/Z

.n/
2 .a/

ˇ̌
ˇ > C˛n

!

D o.n�q/ as n ! 1:

Proof.

ˇ
ˇ
ˇFt .a/B2.a/ � Ft .a/Z

.n/
2 .a/

ˇ
ˇ
ˇ � kB2 � Z

.n/
2 k1j.�t � a/H�1=2 � .�a/H�1=2j

� kB2 � Z
.n/
2 k1.�a/H�1=2;

then, by Eq. (15.5),

I1 � P


kB2 � Z

.n/
2 k1.�a/H�1=2 > C˛n

�

� P


kB2 � Z

.n/
2 k1 > C n�1=2.log n/5=2

�
D o.n�q/:

ut
Lemma 3.3. For each q > 0 there is C > 0 such that

I2 D P

 

sup
0�t�T

ˇ
ˇ̌
ˇ

Z 0

�t

.�s/H�1=2dB2.s/ �
Z 0

�t

.�s/H�1=2dZ
.n/
2 .s/

ˇ
ˇ̌
ˇ > C˛n

!

D o.n�q/ as n ! 1:

Proof. By integration by parts,

Z 0

�t

.�s/H�1=2dB2.s/ D �tH�1=2B2.�t/ C .H � 1=2/

Z 0

�t

.�s/H�3=2B2.s/ds:

Analogously,

Z 0

�t

.�s/H�1=2dZ
.n/
2 .s/ D �tH�1=2Z

.n/
2 .�t/ C .H � 1=2/

Z 0

�t

.�s/H�3=2Z
.n/
2 .s/ds;

then

ˇ
ˇ̌
ˇ

Z 0

�t

.�s/H�1=2dB2.s/ �
Z 0

�t

.�s/H�1=2dZ
.n/
2 .s/

ˇ
ˇ̌
ˇ

� tH�1=2jB2.�t/ � Z
.n/
2 .�t/j C .H � 1=2/

Z 0

�t

.�s/H�3=2
ˇ
ˇ
ˇB2.s/�Z

.n/
2 .s/

ˇ
ˇ
ˇ ds
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� tH�1=2kB2�Z
.n/
2 k1 C .H � 1=2/kB2 � Z

.n/
2 k1

�1

H � 1=2
.�s/H�1=2

ˇ̌
ˇ
ˇ

0

�t

� 2T H�1=2kB2�Z
.n/
2 k1:

Consequently the result follows by Eq. (15.5). ut
Lemma 3.4. For each q > 0 there is C > 0 such that

I3 D P

 

sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z �t

a

Ft .s/dB2.s/ �
Z �t

a

Ft .s/dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ > C˛n

!

D o.n�q/ as n ! 1:

Proof. By integration by parts,

Z �t

a

Ft .s/dB2.s/ D Ft .�t/B2.�t/ � Ft .a/B2.a/ �
Z �t

a

@sFt .s/B2.s/ds

and

Z �t

a

Ft .s/dZ
.n/
2 .s/ D Ft .�t/Z

.n/
2 .�t/ � Ft .a/Z

.n/
2 .a/ �

Z �t

a

@sFt .s/Z
.n/
2 .s/ds;

then,

ˇ
ˇ
ˇ
ˇ

Z �t

a

Ft .s/dB2.s/ �
Z �t

a

Ft .s/dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ

� kB2 � Z
.n/
2 k1

�
jFt .�t/j C jFt.a/j C

Z �t

a

j@sFt .s/jds




D kB2 � Z
.n/
2 k1

�
tH�1=2 C j.�t � a/H�1=2 � .�a/H�1=2j

C
Z �t

a

.H � 1=2/
�
.�t � s/H�3=2 � .�s/H�3=2

�
ds




� kB2 � Z
.n/
2 k12T H�1=2:

Therefore, by Eq. (15.5), the proof is complete. ut
Lemma 3.5. For each q > 0 there is C > 0 such that

I4 D P

�
sup

0�t�T

ˇ
ˇ
ˇ̌
Z "n_.1=a/

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv
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�
Z 0

1=a

�
�
Z Œ"n_.1=a/�^s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

ˇ
ˇ̌
ˇ > C˛n

�

D o.n�q/ as n ! 1:

Proof. We have

Z "n_.1=a/

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv DIf"n>1=ag

Z "n

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv:

Analogously, applying Fubini’s theorem we have

Z 0

1=a

�
�
Z Œ"n_.1=a/�^r

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .r/

D
Z "n_.1=a/

1=a

@sFt

�
1

v

�
1

v3
Z

.n/
3 .v/dv

D If"n�1=ag
Z "n

1=a

@sFt

�
1

v

�
1

v3
Z

.n/
3 .v/dv:

Then, by Eq. (15.13),

ˇ
ˇ
ˇ
ˇ
ˇ

Z "n_.1=a/

1=a

@vft

�
1

v

�
1

v3
B3.v/dv �

Z 0

1=a

�
�
Z Œ"n_.1=a/�^s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

ˇ
ˇ
ˇ
ˇ
ˇ

� kB3 � Z
.n/
3 k1If"n>1=ag

Z "n

1=a

ˇ̌
ˇ
ˇ@sFt

�
1

s

�
1

s3

ˇ̌
ˇ
ˇ ds

� kB3 � Z
.n/
3 k1If"n>1=ag

Z "n

1=a

t.3=2�H/.H�1=2/.tv C 1/H�5=2.�v/�1=2�H dv

� kB3 � Z
.n/
3 k1If"n>1=agt.3=2�H/.H�1=2/ .t=a C 1/H�5=2

Z "n

1=a

.�v/�1=2�H dv

� kB3�Z
.n/
3 k1If"n>1=agt.3=2 � H/.1 C T=a/H�5=2Œ.�"n/1=2�H � .�1=a/1=2�H �

� kB3 � Z
.n/
3 k1T .3=2 � H/.1 C T=a/H�5=2.�"n/1=2�H :

Hence, since .�"n/1=2�H D nˇ , by Eq. (15.6),

I4 � P


kB3 � Z

.n/
3 k1T .3=2 � H/.1 C T=a/H�5=2.�"n/1=2�H > C˛n

�

� P


kB3 � Z

.n/
3 k1 > C n�ˇ˛n

�
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� P


kB3 � Z

.n/
3 k1 > C n�1=2.log n/5=2

�
D o.n�q/:

ut
Lemma 3.6. For each q > 0,

I5 D P

 

sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z 0

"n_.1=a/

@sFt

�
1

v

�
1

v3
B3.v/dv

ˇ
ˇ
ˇ
ˇ > ˛n

!

D o.n�q/ as n ! 1:

Proof. By the pathwise Hölder continuity of B3 with 0 < � < 1 � H ,
and Eq. (15.13),

ˇ
ˇ̌
ˇ

Z 0

"n_.1=a/

@sFt

�
1

v

�
1

v3
B3.v/dv

ˇ
ˇ̌
ˇ

�
Z 0

"n_.1=a/

t.3=2 � H/.H � 1=2/.tv C 1/H�5=2.�v/�H�1=2Y.�v/1=2�� dv

� .3=2 � H/.H � 1=2/T Y.1 C T=a/H�5=2

Z 0

"n_.1=a/

.�v/�H�� dv

� C Y.�"n/1�H��

D C Y n�ˇ.1�H��/=.H�1=2/;

where C is a positive constant.
By Chebyshev’s inequality, for r > 0,

I5 � P
�
C Y n�ˇ.1�H��/=.H�1=2/ > ˛n

�

D P
�
C Y > n�.log n/5=2

�

� E.jC Y jr /
nr�.log n/r5=2

;

where � D �.1=2 � ˇ/ C ˇ.1 � H � �/=.H � 1=2/. Taking � close enough to 0

we have H � 1=2 < .H � 1=2/=.1 � 2�/ < ˇ < 1=2, and then � > 0. For q > 0

there is r > 0 such that q < r�, then

lim
n!1 nqI5 D 0:

ut
Proof of Theorem 2.2 for H > 1=2: From Eqs. (15.4), (15.8), and (15.16) we have



348 J. Garzón et al.

Y.t/ D C

�
�
Z 0

�t

.�s/H�1=2dB.s/ C
Z �t

a

Ft .s/dB.s/ C
Z a

�1
Ft .s/dB.s/

	

D C

�
�
Z 0

�t

.�s/H�1=2dB2.s/ C
Z �t

a

Ft .s/dB2.s/ C Ft .a/B2.a/

�
Z 0

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv

	

D C

�
�
Z 0

�t

.�s/H�1=2dB2.s/ C
Z �t

a

Ft .s/dB2.s/ C Ft .a/B2.a/

�
Z "n_.1=a/

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv �

Z 0

"n_.1=a/

@sFt

�
1

v

�
1

v3
B3.v/dv

)

;

then the definition of Y .n/ [see Eq. (15.11)] implies

jY.t/ � Y .n/.t/j � C

( ˇ̌
ˇ
ˇ�
Z 0

�t

.�s/H�1=2dB2.s/ C
Z 0

�t

.�s/H�1=2dZ
.n/
2 .s/

ˇ̌
ˇ
ˇ

C
ˇ
ˇ
ˇ̌
Z �t

a

Ft .s/dB2.s/ �
Z �t

a

Ft .s/dZ
.n/
2 .s/

ˇ
ˇ
ˇ̌C

ˇ
ˇ
ˇFt .a/B2.a/ � Ft .a/Z

.n/
2 .a/

ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ
ˇ

Z "n_.1=a/

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv

�
Z 0

1=a

�
�
Z Œ"n_.1=a/�^s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

ˇ̌
ˇ
ˇ
ˇ

C
ˇ̌
ˇ
ˇ

Z 0

"n_.1=a/

@sFt

�
1

v

�
1

v3
B3.v/dv

ˇ̌
ˇ
ˇ

)

:

Therefore, taking ˇ such that 0 < H � 1=2 < ˇ < 1=2, by Lemmas 3.2, 3.3,
3.4, 3.5, and 3.6 we have the result. ut

3.2 Case H < 1=2

Let 1=2 � H < ˇ < 1=2, and "n and ˛n are as before. We proceed similarly with
some lemmas.

Lemma 3.7. For each q > 0 there is C such that
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J1 D P

 

sup
0�t�T

ˇ
ˇ̌
Ft .a/B2.a/ � Ft .a/Z

.n/
2 .a/

ˇ
ˇ̌

> C˛n

!

D o.n�q/ as n ! 1:

Proof. Similar arguments as in the proof of Lemma 3.2. ut
Lemma 3.8. For each q > 0 there is C > 0 such that

J2 D P

�
sup

0�t�T

ˇ
ˇ
ˇ
ˇ

Z "n_.�t /

�t

.�s/H�1=2dB2.s/

�
Z "n_.�t /

�t

.�s/H�1=2dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ > C˛n

�

D o.n�q/ as n ! 1:

Proof. By integration by parts,

Z "n_.�t /

�t

.�s/H�1=2dB2.s/ D If"n>�tg
�Z "n

�t

.�s/H�1=2dB2.s/




D If"n>�tg
�
.�"n/H�1=2B2."n/ � tH�1=2B2.�t/

C
Z "n

�t

.H � 1=2/.�s/H�3=2B2.s/ds



;

and analogously,

Z "n_.�t /

�t

.�s/H�1=2dZ
.n/
2 .s/ D If"n>�tg

�
.�"n/H�1=2Z

.n/
2 ."n/ � tH�1=2Z

.n/
2 .�t/

C
Z "n

�t

.H � 1=2/.�s/H�3=2Z
.n/
2 .s/ds



:

We have
ˇ
ˇ
ˇ
ˇ
ˇ

Z "n_.�t /

�t

.�s/H�1=2dB2.s/ �
Z "n_.�t /

�t

.�s/H�1=2dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ
ˇ

� If"n>�tgkB2 � Z
.n/
2 k1

�
.�"n/H�1=2

C tH�1=2 C
Z "n

�t

.1=2 � H/.�s/H�3=2ds




� 2kB2 � Z
.n/
2 k1nˇ:
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Then,

J2 � P


2kB2 � Z

.n/
2 k1nˇ > C˛n

�

� P


kB2 � Z

.n/
2 k1 > C n�1=2.log n/5=2

�
D o.n�q/:

ut
Lemma 3.9. For 1=2 � H < ˇ < 1=2 and each q > 0,

J3 D P

 

sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z 0

"n_.�t /

Œ.�s/H�1=2 � .�s � "n/H�1=2�dB2.s/

ˇ
ˇ
ˇ
ˇ > ˛n

!

D o.n�q/ as n ! 1:

Proof. By the Hölder continuity of B2 with 0 < � < H ,

ˇ
ˇ
ˇ
ˇ

Z 0

"n_.�t /

Œ.�s/H�1=2 � .�s � "n/H�1=2�dB2.s/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

Z 0

"n_.�t /

Z �s�"n

�s

.1=2 � H/xH�3=2dxdB2.s/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �"n�."n_.�t //

0

Z .�x�"n/^0

.�t_"n/_.�x/

.1=2 � H/xH�3=2dB2.s/dx

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ̌
ˇ
ˇ

Z �"n�."n_.�t //

0

.1=2 � H/xH�3=2ŒB2..�x � "n/ ^ 0/

�B2..�t _ "n/ _ .�x//�dx

ˇ
ˇ
ˇ̌

� .1=2 � H/Y

Z �"n�."n_.�t //

0

xH�3=2A
1=2��
1 .x/dx; (15.19)

where
A1.x/ D j.�x � "n/ ^ 0 � ..�t/ _ "n _ .�x//j:

First, if 0 � �x � "n, then A1.x/ D j.�t/ _ .�x/j, and if t < x, then

A1.x/ D t < x < 2x: (15.20)

If t � x, then
A1.x/ D x < 2x: (15.21)

Second, if 0 > �x � "n, then
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A1.x/ D j � x � "n � ..�t/ _ "n _ .�x//j D j � x � "n � ..�t/ _ "n/j
D �x � "n � ..�t/ _ "n/ � �"n C .t ^ .�"n//:

If t < �"n, then
A1.x/ � �"n C t � �2"n < 2x; (15.22)

and if t � �"n, then

A1.x/ D �"n � "n � �2"n < 2x: (15.23)

From Eqs. (15.20)–(15.23) we have that A1.x/ � 2x, and then from Eq. (15.19),

ˇ̌
ˇ
ˇ

Z 0

"n_.�t /

Œ.�s/H�1=2 � .�s � "n/H�1=2�dB2.s/

ˇ̌
ˇ
ˇ

� .1=2 � H/21=2�� Y

Z �"n�."n_.�t //

0

xH�1�� dx

D .1=2 � H/21=2��

H � �
Y.�"n � ."n _ .�t///H��

� .1=2 � H/2H�2�C1=2

H � �
Y.�"n/H�� :

Hence

J3 � P

�
.1=2 � H/2H�2�C1=2

H � �
Y.�"n/H�� > ˛n

�

D P
�
C Y > .�"n/�HC�˛n

�

D P
�
C Y > n�.log n/5=2

�

� E.jC Y jr /
nr�.log n/r5=2

;

where � D �.1=2 � ˇ/ � ˇ.H � �/=.H � 1=2/. Taking � close enough to 0 we
have 0 < .1=2 � H/=.1 � 2�/ < ˇ < 1=2, and then � > 0. The result follows by
analogous arguments as in proof of Lemma 3.6. ut
Lemma 3.10. For each q > 0 there is C such that

J4 D P

 

sup
0�t�T

ˇ̌
ˇ
ˇ

Z 0

"n_.�t /

.�s � "n/H�1=2dB2.s/
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�
Z 0

"n_.�t /

.�s � "n/H�1=2dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ > C˛n

�

D o.n�q/ as n ! 1:

Proof. By integration by parts

Z 0

"n_.�t /

.�s � "n/H�1=2dB2.s/

D �.�."n _ .�t// � "n/H�1=2B2."n _ .�t//

C
Z 0

"n_.�t /

.H � 1=2/.�s � "n/H�3=2B2.s/ds;

and

Z 0

"n_.�t /

.�s � "n/H�1=2dZ
.n/
2 .s/

D �.�."n _ .�t// � "n/H�1=2Z
.n/
2 ."n _ .�t//

C
Z 0

"n_.�t /

.H � 1=2/.�s � "n/H�3=2Z
.n/
2 .s/ds:

Then

ˇ
ˇ
ˇ
ˇ

Z 0

"n_.�t /

.�s � "n/H�1=2dB2.s/ �
Z 0

"n_.�t /

.�s � "n/H�1=2dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ

� kB2 � Z
.n/
2 k1

�
.�."n _ .�t// � "n/H�1=2

C
Z 0

"n_.�t /

.1=2 � H/.�s � "n/H�3=2ds




D kB2 � Z
.n/
2 k1.�"n/H�1=2

D kB2 � Z
.n/
2 k1nˇ:

Finally,

J4 � P


kB2 � Z

.n/
2 k1nˇ > C˛n

�
D P



kB2 � Z

.n/
2 k1 > C n�1=2.log n/5=2

�

D o.n�q/:

ut
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Lemma 3.11. For each q > 0 there is C such that

J5 D P

 

sup
0�t�T

ˇ̌
ˇ
ˇ

Z 0

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv

�
Z 0

1=a

�
�
Z s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

ˇ
ˇ
ˇ
ˇ > C˛n

�

D o.n�q/ as n ! 1:

Proof. By Fubini’s theorem we have

Z 0

1=a

�
�
Z s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/ D

Z 0

1=a

@sFt

�
1

v

�
1

v3
Z

.n/
3 .v/dv;

then, by Lemma 3.1,

ˇ
ˇ
ˇ̌
Z 0

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv �

Z 0

1=a

�
�
Z s

1=a

@sFt

�
1

v

�
1

v3
dv

�
dZ

.n/
3 .s/

ˇ
ˇ
ˇ̌

� kB3 � Z
.n/
3 k1

Z 0

1=a

ˇ̌
ˇ
ˇ@sFt

�
1

v

�
1

v3

ˇ̌
ˇ
ˇ dv

� kB3 � Z
.n/
3 k1

Z 0

1=a

t.3=2 � H/.1=2 � H/.tv C 1/H�5=2.�v/�1=2�H dv

� kB3 � Z
.n/
3 k1t.3=2 � H/.t=a C 1/H�5=2.1=2 � H/

Z 0

1=a

.�v/�1=2�H dv

� kB3 � Z
.n/
3 k1T .3=2 � H/.T=a C 1/H�5=2.�1=a/1=2�H :

Therefore,

J5 � P


kB3 � Z

.n/
3 k1 > C˛n

�
D o.n�q/:

ut
Lemma 3.12. For each q > 0 there is C such that

J6 D P

 

sup
0�t�T

ˇ
ˇ̌
ˇ
ˇ

Z a_.�tC"n/

a

Ft .s/dB2.s/ �
Z a_.�tC"n/

a

Ft .s/dZ
.n/
2 .s/

ˇ
ˇ̌
ˇ
ˇ

> C˛n

!

D o.n�q/ as n ! 1:

Proof. By integration by parts,
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Z a_.�tC"n/

a

Ft .s/dB2.s/ D Ft .a _ .�t C "n//B2.a _ .�t C "n// � Ft .a/B2.a/

�
Z a_.�tC"n/

a

@sFt .s/B2.s/ds;

and

Z a_.�tC"n/

a

Ft .s/dZ
.n/
2 .s/ D Ft .a _ .�t C "n//Z

.n/
2 .a _ .�t C "n//

� Ft .a/Z
.n/
2 .a/ �

Z a_.�tC"n/

a

@sFt .s/Z
.n/
2 .s/ds:

Then
ˇ
ˇ
ˇ̌
ˇ

Z a_.�tC"n/

a

Ft .s/dB2.s/ �
Z a_.�tC"n/

a

Ft .s/dZ
.n/
2 .s/

ˇ
ˇ
ˇ̌
ˇ

� kB2 � Z
.n/
2 k1

"

jFt .a _ .�t C "n//j C jFt .a/j C
Z a_.�tC"n/

a

j@sFt .s/jds

#

D kB2 � Z
.n/
2 k1

�
.�t � .a _ .�t C "n///H�1=2 � .�.a _ .�t C "n///H�1=2

C.�t � a/H�1=2 � .�a/H�1=2

C
Z a_.�tC"n/

a

.1=2 � H/Œ.�t � s/H�3=2 � .�s/H�3=2�ds




D kB2�Z
.n/
2 k12

�
.�t � .a _ .�t C "n///H�1=2 � .�.a _ .�t C "n///H�1=2




� kB2 � Z
.n/
2 k12..�"n/H�1=2 C .�T � a/H�1=2/:

Hence the result follows. ut
Lemma 3.13. For each q > 0 there is C such that

J7 D P

 

sup
0�t�T

ˇ
ˇ
ˇ
ˇIf�"n�tg

Z �t

a_.�tC"n/

FtC"n.s/dB2.s/

�If�"n�tg
Z �t

a_.�tC"n/

FtC"n.s/dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ > C˛n

!

D o.n�q/ as n ! 1:
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Proof. By integration by parts,

If�"n�tg
ˇ
ˇ
ˇ
ˇ

Z �t

a_.�tC"n/

FtC"n.s/dB2.s/ �
Z �t

a_.�tC"n/

FtC"n.s/dZ
.n/
2 .s/

ˇ
ˇ
ˇ
ˇ

D If�"n�tg
ˇ
ˇ
ˇFtC"n.�t/.B2.�t/ � Z

.n/
2 .�t//

�FtC"n.a _ .�t C "n//.B2.a _ .�t C "n// � Z
.n/
2 .a _ .�t C "n///

�
Z �t

a_.�tC"n/

@sFtC"n.s/.B2.s/ � Z
.n/
2 .s//ds

ˇ
ˇ
ˇ̌

� If�"n�tgjjB2 � Z
.n/
2 jj1

�
jFtC"n.�t/j C jFtC"n.a _ .�t C "n//j

C
Z �t

a_.�tC"n/

j@sFtC"n.s/jds

�

D If�"n�tgjjB2 � Z
.n/
2 jj1

�
.�"n/H�1=2 � .t/H�1=2

C.�t � "n � .a _ .�t C "n///H�1=2 � .�.a _ .�t C "n///H�1=2

C .1=2 � H/

Z �t

a_.�tC"n/

Œ.�s � t � "n/H�3=2 � .�s/H�3=2�ds

�

D If�"n�tgjjB2 � Z
.n/
2 jj12

�
.�"n/H�1=2 � tH�1=2

�

� 2kB2 � Z
.n/
2 k1.�"n/H�1=2;

and we have the result similarly as Lemma 3.10. ut
Lemma 3.14. For 1=2 � H < ˇ < 1=2 and each q > 0,

J8 D P

 

sup
0�t�T

ˇ
ˇ
ˇ̌Ift<�"ng

Z �t

a_.�tC"n/

Ft .s/dB2.s/

ˇ
ˇ
ˇ̌ > C˛n

!

D o.n�q/ as n ! 1:

Proof. By the Hölder continuity of B2 with 0 < � < H ,

ˇ
ˇ
ˇ
ˇIft<�"ng

Z �t

a_.�tC"n/

Ft .s/dB2.s/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ̌Ift<�"ng

Z �t

a_.�tC"n/

Z �s

�t�s

.1=2 � H/xH�3=2dxdB2.s/

ˇ
ˇ
ˇ̌

D
ˇ
ˇ
ˇ
ˇ̌Ift<�"ng

Z �.a_.�tC"n//

0

Z .�x/^.�t /

.�t�x/_a_.�tC"n/

.1=2 � H/xH�3=2dB2.s/dx

ˇ
ˇ
ˇ
ˇ̌
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D
ˇ
ˇ̌
ˇIft<�"ng

Z �.a_.�tC"n//

0

.1=2 � H/xH�3=2ŒB2..�x/ ^ .�t//

�B2..�t � x/ _ a _ .�t C "n//�dx

ˇ
ˇ
ˇ
ˇ

� .1=2 � H/Y Ift<�"ng
Z �.a_.�tC"n//

0

xH�3=2.A2.x//1=2�� dx (15.24)

where
A2.x/ D j..�x/ ^ .�t// � ..�t � x/ _ a _ .�t C "n//j:

First, if �x < �t and �t � x < �t C "n, then

A2.x/ D �x C .�a ^ .t � "n// < t < x: (15.25)

If �x < �t and �t � x � �t C "n, then

A2.x/ D �x C ..t C x/ ^ .�a// < t < x: (15.26)

Second, if �x � �t and �t � x < �t C "n, then

A2.x/ D �t C .�a ^ .t � "n// < �"n < x: (15.27)

If �x � �t and �t � x � �t C "n, then

A2.x/ D �t C ..t C x/ ^ .�a// < x: (15.28)

From Eqs. (15.25)–(15.28) we have that A2.x/ � x and then by Eq. (15.24),

ˇ
ˇ̌
ˇIft<�"ng

Z �t

a_.�tC"n/

Ft .s/dB2.s/

ˇ
ˇ̌
ˇ

� .1=2 � H/Y Ift<�"ng
Z �.a_.�tC"n//

0

xH���1dx

� 1=2 � H

H � �
Y Ift<�"ng.t � "n/H��

� 1=2 � H

H � �
2H��Y.�"n/H�� :

Proceeding similarly as in Lemma 3.9 we have the result. ut
Lemma 3.15. For 1=2 � H < ˇ < 1=2 and each q > 0,
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J9 D P

 

sup
0�t�T

ˇ
ˇ̌
ˇIf�"n�tg

Z �t

a_.�tC"n/

ŒFt .s/ � FtC"n.s/�dB2.s/

ˇ
ˇ̌
ˇ > C˛n

!

D o.n�q/ as n ! 1:

Proof. By the Hölder continuity of B2 with 0 < � < H ,

ˇ̌
ˇ
ˇIf�"n�tg

Z �t

a_.�tC"n/

ŒFt .s/ � FtC"n.s/�dB2.s/

ˇ̌
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇIf�"n�tg

Z �t

a_.�tC"n/

Z �t�s�"n

�t�s

.1=2 � H/xH�3=2dxdB2.s/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇIf�"n�tg

Z �t�"nC..�a/^.t�"n//

0

.1=2 � H/xH�3=2ŒB2..�t � x � "n/ ^ .�t//

�B2..�t � x/ _ a _ .�t C "n//�dx

ˇ̌
ˇ
ˇ

� .1=2 � H/Y If�"n�tg
Z �t�"nC..�a/^.t�"n//

0

xH�3=2.A3.x//1=2�� dx; (15.29)

where

A3.x/ D j.�t � x � "n/ ^ .�t/ � ..�t � x/ _ .�t C "n/ _ a/j � x:

Then, by Eq. (15.29),

ˇ
ˇ̌
ˇIf�"n�tg

Z �t

a_.�tC"n/

ŒFt .s/ � FtC"n.s/�dB2.s/

ˇ
ˇ̌
ˇ

� .1=2 � H/Y If�"n�tg
Z �t�"nC..�a/^.t�"n//

0

xH�1�� dx

� Y
1=2 � H

H � �
.�t � "n C ..�a/ ^ .t � "n///H��

� Y
1=2 � H

H � �
2H�� .�"n/H�� :

Proceeding similary as in Lemma 3.9 we have the result. ut
Proof of Theorem 2.2 for H < 1=2: From Eqs. (15.4), (15.8), and (15.16) we
obtain

Y.t/ D C

�
�
Z 0

�t

.�s/H�1=2dB.s/ C
Z �t

a

Ft .s/dB.s/ C
Z a

�1
Ft .s/dB.s/
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D C

(

�
Z "n_.�t /

�t

.�s/H�1=2dB2.s/

�
Z 0

"n_.�t /

Œ.�s/H�1=2 � .�s � "n/H�1=2�dB2.s/

�
Z 0

"n_.�t /

.�s � "n/H�1=2dB2.s/ C
Z a_.�tC"n/

a

Ft .s/dB2.s/

C Ift<�"ng
Z �t

a_.�tC"n/

Ft .s/dB2.s/

C If�"n�tg
Z �t

a_.�tC"n/

ŒFt .s/ � FtC"n.s/�dB2.s/

C If�"n�tg
Z �t

a_.�tC"n/

FtC"n.s/dB2.s/ C Ft .a/B2.a/

�
Z 0

1=a

@sFt

�
1

v

�
1

v3
B3.v/dv

	
;

and we have the result similarly as the case H > 1=2. ut

Acknowledgements This work was done with support of CONACyT grant 98998.

References

1. Bardina, X., Bascompte, D.: Weak convergence towards two independent Gaussian processes
from a unique Poisson process. Collect. Math. 61(2), 191–204 (2010)

2. Biagini, F., Hu, Y., 6Oksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian
Motion and Applications. Springer, London (2008)

3. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Sub-fractional Brownian motion and its relation
to occupation times. Stat. Prob. Lett. 69, 405–419 (2004)

4. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Occupation times of branching systems with ini-
tial inhomogeneous Poisson states and related superprocesses. Elec. J. Probab. 14, 1328–1371
(2009)

5. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Particle systems with quasi-homogeneous initial
states and their occupation time fluctuations. Elect. Commun. Probab. 15, 191–202 (2010)

6. Bojdecki, T., Talarczyk, A.: Particle picture interpretation of some Gaussian processes related
to fractional Brownian motion. Stoch. Proc. Appl. 122(5), 2134–2154 (2012)

7. Doukhan, P., Oppenheim, G., Taqqu, M.S.: Theory and Applications of Long-Range Depen-
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Malliavin Calculus for Fractional Heat Equation
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Abstract In this article, we give some existence and smoothness results for the law
of the solution to a stochastic heat equation driven by a finite dimensional fractional
Brownian motion with Hurst parameter H > 1=2. Our results rely on recent tools
of Young integration for convolutional integrals combined with stochastic analysis
methods for the study of laws of random variables defined on a Wiener space.
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1 Introduction

The definition and resolution of evolution type PDEs driven by general Hölder
continuous signals have experienced tremendous progresses during the last past
years. When the Hölder regularity of the driving noise is larger than 1=2, this has
been achieved thanks to Young integrals [9] or fractional integration [11] techniques.
The more delicate issue of a Hölder exponent smaller than 1=2 has to be handled
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thanks to rough paths techniques, either by smart transformations allowing to use
limiting arguments [3, 4, 8] or by an adaptation of the rough paths formalism to
evolution equations [6, 7, 10]. Altogether, those contributions yield a reasonable
definition of rough parabolic PDEs, driven at least by a finite dimensional signal.

With those first results in hand, a natural concern is to get a better understanding
of the processes obtained as solutions to stochastic PDEs driven by rough signals.
This important program includes convergence of numerical schemes (see [5] for a
result in this direction), ergodic properties, and a thorough study of the law of those
processes. This article makes a first step towards the last of these items.

Indeed, we shall consider here a simple case of rough evolution PDEs and see
what kind of result might be obtained as far as densities of the solution are con-
cerned. More specifically, we focus on the following mild heat equation on .0; 1/:

Yt D St' C
Z t

0

St�u.Fi .Y /u/ dBi
u ; t 2 Œ0; T �; (16.1)

where T > 0 is a finite horizon, St stands for the heat semigroup associated
with Dirichlet boundary conditions, ' is a smooth enough initial condition,
Fi W L2.0; 1/ ! L2.0; 1/ and B W Œ0; T � ! R

d is a d -dimensional fractional
Brownian motion with Hurst parameter H > 1=2. For this equation, we obtain the
following results:

1. Existence of a density for the random variable Yt.�/ for any t 2 .0; T � and
� 2 .0; 1/, when the Fi ’s are rather general Nemytskii operators Fi .'/.�/ WD
fi .'.�//. See Theorem 3.2 for a precise statement.

2. When theFi ’s are defined through some regularizing kernel (see Hypothesis 4.1),
we obtain that the density of Yt .�/ is smooth. This will be the content of
Theorem 4.2.

To the best of our knowledge, these are the first density results for solutions to
nonlinear PDEs driven by fractional Brownian motion. Let us point out that we
could have obtained the same kind of results for a more general class of equations
(operator under divergence form, general domain D � R

n, drift term, Gaussian
process as driving noise). We prefer however to stick to the simple case of the
fBm-driven stochastic heat equation for the sake of readability and conciseness.

Our main results will obviously be based on a combination of pathwise estimates
for integrals driven by rough signals and Malliavin calculus tools. In particular,
a major part of our effort will be dedicated to the differentiation of the solution
to Eq. (16.1) with respect to the driving noise B and to a proper estimate of the
derivative. Since the equations for derivatives are always of linear type they lead
to exponential type estimates, which are always a delicate issue. This is where we
shall consider some regularizing vector fields Fi in Eq. (16.1), and proceed to a
careful estimation procedure (see Sect. 4.1). It should also be noticed at this point
that the basis of our stochastic analysis tools is contained in the celebrated book
[12] by Nualart, plus the classical reference [13] as far as equations driven by fBm
are concerned.
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Here is how our article is structured: Section 2 is devoted to recall basic facts
on both pathwise noisy evolution equations and Malliavin calculus for fractional
Brownian motion. We differentiate the solution to Eq. (16.1) and obtain the exis-
tence of the density at Sect. 3. Finally, further estimates on the Malliavin derivative
and smoothness of the density are derived at Sect. 4.

Throughout this article, we will use the generic notation c to refer to the
constants that only depend on nonsignificant parameters. The constants which are
to play a more specific role in our reasoning will be labeled c1; c2; : : :

For any k 2 N, we will denote by Ck;b.RIR/ the space of functions on R

which are k-times differentiable with bounded derivatives. For any � 2 .0; 1/,
C� D C� .Œ0; T �IRd / will stand for the set of (d -dimensional) � -Hölder paths
on Œ0; T �.

2 Setting

One of the technical advantages of dealing with the simple case of a stochastic
heat equation on .0; 1/ is a simplification in the functional analysis setting based
on rather elementary Fourier series considerations (notice in particular that the Lp

considerations of [7] can be avoided). We shall first detail this setting, and then
recall some basic facts on equations driven by noisy signals and fractional Brownian
motion. Throughout the section, we assume that a (finite) horizon T has been fixed
for the equation.

2.1 Fractional Sobolev Spaces

As mentioned above, we are working here with the heat equation in the Hilbert
space B WD L2.0; 1/ with Dirichlet boundary conditions. The Laplace operator �
on B can be diagonalized in the orthonormal basis

en.�/ WD p
2 sin.�n�/ .n 2 N

�/; with eigenvalues �n WD �2n2:

We shall denote by .yn/n the (Fourier) decomposition of any function y 2 B on this
orthonormal basis.

Sobolev spaces based on B are then easily characterized by means of Fourier
coefficients. We label their definition for further use:

Definition 2.1. For any ˛ � 0, we denote by B˛ the fractional Sobolev space of
order ˛ based on B, defined by

B˛ WD
(
y 2 L2.0; 1/ W

1X
nD1

�2˛n .y
n/2 < 1

)
: (16.2)

This space is equipped with its natural norm kyk2B˛ WD k�˛yk2B D P1
nD1 �2˛n .yn/2.

We also set B1 D C.0; 1/.



364 A. Deya and S. Tindel

The above-defined fractional Sobolev spaces enjoy the following classical
properties (see [1, 15]):

Proposition 2.1. Let B˛;B1 be the Sobolev spaces introduced at Definition 2.1.
Then the following hold true:

• Sobolev inclusions: If ˛ > 1=4, then we have the continuous embedding

B˛ � B1: (16.3)

• Algebra: If ˛ > 1=4, then B˛ is a Banach algebra with respect to pointwise
multiplication, or in other words

k' � kB˛ � k'kB˛k kB˛ : (16.4)

• Composition: If 0 � ˛ < 1=2, ' 2 B˛ and f W R ! R belongs to C1;b, then
f .'/ 2 B˛ and

kf .'/kB˛ � cf f1C k'kB˛g : (16.5)

Here, f .'/ is naturally understood as f .'/.�/ WD f .'.�//.

Let now St be the heat semigroup associated with �, and notice that if an
element y 2 L2.0; 1/ can be decomposed as y D P

n�1 ynen, then Sty DP
n�1 e��ntynen. The general theory of fractional powers of operators provides us

with sharp estimates for the semigroup St (see for instance [14]):

Proposition 2.2. The heat semigroup St satisfies the following properties:

• Contraction: For all t � 0, ˛ � 0, St is a contraction operator on B˛.
• Regularization: For all t 2 .0; T �, ˛ � 0, St sends B on B˛ and

kSt'kB˛ � c˛;T t
�˛k'kB: (16.6)

• Hölder regularity: For all t 2 .0; T �, ' 2 B˛,

kSt' � 'kB � c˛;T t
˛k'kB˛ : (16.7)

2.2 Young Convolutional Integrals

The stochastic integrals involved in Eq. (16.1) will all be understood in the Young
sense. In order to define them properly, let us first introduce some notation
concerning Hölder type spaces in time. To begin with, for any ˛ � 0 and any
subinterval I � Œ0; T �, set C0.I I B˛/ for the space of continuous B˛-valued
functions on I , equipped with the supremum norm. Then Hölder spaces of B˛-
valued functions can be defined as follows: for � 2 .0; 1/, set

C�.I I B˛/ WD
�
y 2 C0.I I B˛/ W sup

s<t2I
kyt � yskB˛

jt � sj� < 1
�
:
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Observe now that the definition of our stochastic integrals weighted by the heat
semigroup will require the introduction of a small variant of those Hölder spaces
(see [7, 10] for further details): we define OC�.I I B˛/ as

OC�.I I B˛/ WD
�
y 2 C0.I I B˛/ W sup

s<t2I
kyt � St�s yskB˛

jt � sj� < 1
�
:

In order to avoid confusion, the natural norms on the spaces C�.I I B˛/, OC�.I I B˛/
are respectively denoted by N Œ�I C�.I I B˛/�, N Œ�I OC�.I I B˛/�, etc. For the sake of
conciseness, we shall often write C�.B˛/ (resp. OC�.B˛/) instead of C�.Œ0; T �I B˛/
(resp. OC�.Œ0; T �I B˛/). We also need to introduce a family of spaces OC0;�.I I B�/ in
the following way:

Lemma 2.1. For any � 2 .0; 1/ and any subinterval I � Œ0; T �, let OC0;�.I I B�/ be
the space associated with the norm

N Œ�I OC0;�.I I B�/� WD N Œ�I C0.I I B�/�C N Œ�I OC�.I I B�/�:

Then the following continuous embedding holds true:

OC0;�.I I B�/ � C�.I I B/: (16.8)

More generally, for every � � �,

N ŒyI C�.I I B/� � N ŒyI OC�.I I B�/�C c� jI j��� N ŒyI C0.I I B�/�: (16.9)

Proof. Indeed, owing to Eq. (16.7), one has, for every s < t 2 I ,

kyt�yskB�kyt�St�syskBCk.St�s� Id/yskB�kyt�St�syskB�Cc� jt�sj� kyskB� :

ut
With those definitions in hand, the following proposition (borrowed from [7])

will be invoked in the sequel in order to give a meaning to our stochastic integrals
weighted by the heat semigroup:

Proposition 2.3. Consider a � -Hölder real-valued function x defined on Œ0; T �. Let
I D Œ`1; `2� be a subinterval of Œ0; T � and fix � 2 Œ0; �� such that �C� > 1. Suppose
that z 2 C0.I I B�/ \ C�.I I B��˛/ for some parameters � � 0, 0 � ˛ � min.�; �/.
Then, for every s < t 2 I , the convolutional Riemann sum

X
tk2…

St�tkC1
ztkC1

�
xtkC1

� xtk
�

converges in B� as the mesh of the partition … WD fs D t0 < t1 < : : : < tn D tg
tends to 0, and we denote the limit by

R t
s St�uzu dxu.
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Moreover, for every ' 2 B�, there exists a unique path y 2 OC� .I I B�/ such that
y`1 D ' and yt � St�sys D R t

s St�u.zu/ dxu if s < t 2 I . For this function, the
following estimate holds:

N ŒyI OC� .I I B�/� � ckxk�
˚N ŒzI C0.I I B�/�C jI j��˛ N ŒzI C�.I I B��˛/�

�
;

(16.10)

for some constant c that only depends on .�; �; �; ˛/.

2.3 Malliavin Calculus Techniques

This section is devoted to present the Malliavin calculus setting which we shall work
in, having in mind the differentiability properties of the solution to Eq. (16.1).

2.3.1 Wiener Space Associated to fBm

Let us first be more specific about the probabilistic setting in which we will work.
For some fixedH 2 .1=2; 1/, we consider .	;F ;P/ the canonical probability space
associated with the fractional Brownian motion with Hurst parameter H . That is,
	 D C0.Œ0; T �IRd / is the Banach space of continuous functions vanishing at 0
equipped with the supremum norm, F is the Borel sigma-algebra and P is the unique
probability measure on 	 such that the canonical process B D fBt; t 2 Œ0; T �g
is a d -dimensional fractional Brownian motion with Hurst parameter H , with
covariance function

E
�
Bi
t B

j
s

� D 1

2

�
t2H C s2H � jt � sj2H �

1.iDj /; s; t 2 Œ0; T �: (16.11)

In particular, the paths of B are almost surely � -Hölder continuous for all � 2
.0;H/.

Consider then a fixed parameter H > 1=2, and let us start by briefly describing
the abstract Wiener space introduced for Malliavin calculus purposes (for a more
general and complete description, we refer the reader to [13, Sect. 3]).

Let .e1; : : : ; ed / be the canonical basis of R
d , E be the set of R

d -valued step
functions on Œ0; T � and H the completion of E with respect to the semi-inner product

h1Œ0;t � ei ; 1Œ0;s� ej iH WD RH.s; t/ 1.iDj /; s; t 2 Œ0; T �:
Then, one constructs an isometry K�

H W H ! L2.Œ0; T �IRd / such that
K�
H.1Œ0;t � ei / D 1Œ0;t � KH .t; �/ ei , where the kernelK D KH is given by

K.t; s/ D cH s
1
2�H

Z t

s

.u � s/H� 3
2 uH� 1

2 du
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and verifies that EŒBi
s B

i
t � D R s^t

0
K.t; r/K.s; r/ dr , for some constant cH .

Moreover, let us observe that K�
H can be represented in the following form:

ŒK�
H'�t D

Z T

t

'r@rK.r; t/ dr D dH t
H�1=2 h

I
H�1=2
T�

�
uH�1=2'

�i
t
; (16.12)

where I ˛T� stands for the fractional integral of order ˛. The fractional Cameron–
Martin space can be introduced in the following way: let KH W L2.Œ0; T �IRd / !
HH WD KH.L

2.Œ0; T �IRd // be the operator defined by

ŒKHh�.t/ WD
Z t

0

K.t; s/ h.s/ ds; h 2 L2.Œ0; T �IRd /:

Then, HH is the Reproducing Kernel Hilbert space associated with the fractional
Brownian motion B . Observe that, in the case of the classical Brownian motion,
one has that K.t; s/ D 1Œ0;t �.s/, K� is the identity operator in L2.Œ0; T �IRd / and
HH is the usual Cameron–Martin space.

In order to deduce that .	;H;P/ defines an abstract Wiener space, we remark
that H is continuously and densely embedded in 	. In fact, one proves that the
operator RH W H ! HH given by

RH WD
Z �

0

K.�; s/ŒK� �.s/ ds

defines a dense and continuous embedding from H into 	; this is due to the fact
that RH is H -Hölder continuous (for details, see [13, p. 400]).

Let us also recall that there exists a d -dimensional Wiener processW defined on
.	;H;P/ such that B can be expressed as

Bt D
Z t

0

K.t; r/ dWr; t 2 Œ0; T �: (16.13)

This formula will be referred to as Volterra’s representation of fBm.

2.3.2 Malliavin Calculus for B

Let us introduce now the Malliavin derivative operator on the Wiener space
.	;H;P/. Namely, we first let S be the family of smooth functionals F of the form

F D f .B.h1/; : : : ; B.hn//;

where h1; : : : ; hn 2 H, n � 1, and f is a smooth function having polynomial
growth together with all its partial derivatives. Then, the Malliavin derivative of
such a functional F is the H-valued random variable defined by

DF D
nX
iD1

@f

@xi
.B.h1/; : : : ; B.hn//hi :
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For all p > 1, it is known that the operator D is closable fromLp.	/ intoLp.	I H/
(see, e.g., [12, Chap. 1]). We will still denote by D the closure of this operator, whose
domain is usually denoted by D

1;p and is defined as the completion of S with respect
to the norm

kF k1;p WD �
E.jF jp/C E.kDF kpH/

� 1
p :

Sobolev spaces Dk;p for any k 2 N and p � 1 can be defined in the same way, and
we denote by D

k;p
loc the set of random variables F for which there exists a sequence

.	n; Fn/n�1 � F �D
k;p such that	n " 	 a.s. and F D Fn a.s. on	n. We also set

D
1 D \k;pD

k;p.

Remark 2.1. For F 2 D
1;2, one can write DF D Pd

jD1Dj F ej , where Dj F

denotes the Malliavin derivative with respect to the j th component of B .

Since we deal with pathwise equations, we shall also be able to differentiate them
in a pathwise manner. The relation between almost sure and Malliavin derivatives
has been established by Kusuoka, and we quote it according to [12, Proposition
4.1.3].

Proposition 2.4. A random variable F is said to be H-differentiable if for almost
all ! 2 	 and for any h 2 H, the map 
 7! F.! C 
RHh/ is differentiable. Those
random variables belong to the space D

1;p
loc , for any p > 1. Moreover, the following

relation holds true:

hDF; hiH D DF.B/.RHh/; h 2 H; (16.14)

where we recall that D stands for the Malliavin derivative and D for the pathwise
differentiation operator.

Stochastic analysis techniques are widely used in order study laws of random
variables defined on a Wiener space. Let us recall the main criterions we shall use
in this direction:

Proposition 2.5. Let F be a real-valued random variable defined on .	;F ;P/.
Then

(i) If F 2 D
1;p

loc for p > 1 and kDF kH > 0 almost surely, then the law of F admits
a density p with respect to Lebesgue measure.

(ii) If F 2 D
1 and EŒkDF k�p

H � is finite for all p � 1, then the density p of F is
infinitely differentiable.

3 Existence of the Density in the Case of Nemytskii-Type
Vector Fields

In this section, we first consider a general equation of the form

yt D St' C
Z t

0

St�u.Fi .y/u/ dxiu ; ' 2 L2.0; 1/ ; t 2 Œ0; T �; (16.15)
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driven by a d -dimensional noise x D .x1; : : : ; xd / considered as a C� function with
� 2 .1=2; 1/. We shall be able to handle the general case of a perturbation involving
Nemytskii operators, i.e.,

Fi .'/.�/ WD fi .'.�// ; ' 2 B ; � 2 .0; 1/;

for smooth enough functions fi W R ! R, i D 1; : : : ; d .
Thus, Eq. (16.15) can here be written as

yt D St' C
Z t

0

St�u.fi .yu// dxiu ; ' 2 B ; t 2 Œ0; T �; (16.16)

or equivalently, in a multiparameter setting,

y.t; �/ D
Z 1

0

Gt .�; �/'.�/ d�

C
Z 1

0

Z t

0

Gt�u.�; �/fi .y.u; �// dxiud�; t 2 Œ0; T �; � 2 .0; 1/;

where Gt stands for the heat kernel on .0; 1/ associated with Dirichlet boundary
conditions.
It is readily checked that if each fi belongs to C1;b.RIR/ and y 2 OC0;�.B�/ for some
� 2 .max.1 � �; 1=4/; 1=2/, then the integral in the right-hand side of Eq. (16.16)
can be interpreted with Proposition 2.3. Indeed, owing to Eq. (16.5), we know that
f .y/ 2 C0.B�/, while, due to the embedding Eq. (16.8),

N Œf .y/I C� .B/� � kf 0k1N ŒyI C�.B/� � ckf 0k1N ŒyI OC0;�.B�/� < 1:

For the remainder of the section, we shall rely on the following regularity assump-
tions.

Hypothesis 3.1. We consider � 2 .max.1 � �; 1=4/; 1=2/ and an initial condition
' 2 B� . The family of functions ff1; : : : ; fd g is such that fi is an element of
C3;b.RIR/ for i D 1; : : : ; d .

In this context, the following existence and uniqueness result has been proven in
[7, Theorem 3.10]:

Proposition 3.1. Under Hypothesis 3.1, Eq. (16.16) interpreted with Proposi-
tion 2.3 admits a unique solution y 2 OC0;�.B�/, where we recall that the space
OC0;�.B�/ has been defined at Lemma 2.1.

As a preliminary step towards Malliavin differentiability of the solution to
Eq. (16.1), we shall study the dependence on x of the deterministic equation (16.16).
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3.1 Differentiability with Respect to Driving Noise

For Eq. (16.16), consider the application

ˆ W C� ! OC0;�.B�/; x 7! y; (16.17)

for a given initial condition '. We shall elaborate on the strategy designed in [13] in
order to differentiateˆ. Let us start with a lemma on linear equations:

Lemma 3.1. Suppose that .x; y/ 2 C� � OC0;�.B�/ and fix t0 2 Œ0; T �. Then for every
w 2 OC0;�.Œt0; T �I B�/, the equation

vt D wt C
Z t

t0

St�u.f
0
i .yu/ � vu/ dxiu ; t 2 Œt0; T �; (16.18)

admits a unique solution v 2 OC0;�.Œt0; T �I B�/, and one has

N ŒvI OC0;�.Œt0; T �I B�/� � Cx;y;T � N ŒwI OC0;�.Œt0; T �I B�/�; (16.19)

where Cx;y;T WD C.kxk� ;N ŒyI OC0;�.B�/�; T / for some function C W .RC/3 ! R
C

growing with its arguments.

Proof. The existence and uniqueness of the solution stem from the same fixed-point
argument as in the proof of Proposition 3.1 (see [7, Theorem 3.10]), and we only
focus on the proof of Eq. (16.19).
Let I D Œ`1; `2� be a subinterval of Œt0; T �. One has, according to Proposition 2.3,

N ŒvI OC�.I I B�/�
�N ŒwI OC� .B�/�Cc jI j��� kxk�

˚N Œf 0
i .y/ � vI C0.I I B�/�CN Œf 0

i .y/ � vI C�.I I B/�� :
(16.20)

Now, by using successively Eqs. (16.4) and (16.5), we get

N Œf 0
i .y/ � vI C0.I I B�/� � cN Œf 0

i .y/I C0.B�/�N ŒvI C0.I I B�/�
� c

˚
1C N ŒyI C0.B�/�

� N ŒvI C0.I I B�/�;

while, owing to Eqs. (16.8) and (16.3),

N Œf 0
i .y/ � vI C�.I I B/�

� N Œf 0
i .y/I C�.I I B/�N ŒvI C0.I I B1/�C N Œf 0

i .y/I C0.I I B1/�N ŒvI C� .I I B/�
� c

n
1C N ŒyI OC0;�.B�/�

o
N ŒvI OC0;�.I I B�/�:
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Going back to Eq. (16.20), these estimates lead to

N ŒvI OC�.I I B�/� � N ŒwI OC�.B�/�C cx;y jI j��� N ŒvI OC0;�.I I B�/�;

and hence

N ŒvI OC0;�.I I B�/� � kv`1kB� C cN ŒwI OC� .B�/�C cx;y jI j��� N ŒvI OC0;�.I I B�/�:

Control (16.19) is now easily deduced with a standard patching argument. ut
The following lemma on flow-type linear equations will also be technically

important for our computations below.

Lemma 3.2. Fix .x; y/ 2 C� � OC0;�.B�/ and for every u 2 Œ0; T �, consider the
system of equations

‰i
t;u D St�u.fi .yu//

C
Z t

u
St�w.f

0
j .yw/ �‰i

w;u/ dxjw ; t 2 Œu; T � ; i 2 f1; : : : ; mg: (16.21)

Then, for every i 2 f1; : : : ; mg and t 2 Œ0; T �, the mapping u 7! ‰i
t;u is continuous

from Œ0; t � to B� . In particular, for every � 2 .0; 1/, u 7! ‰i
t;u.�/ is a continuous

function on Œ0; t �.

Proof. Let us fix i 2 f1; : : : ; mg, t 2 Œ0; T �. For any 0 � u < v � t , set

�iv;u.s/ WD ‰i
s;v �‰i

s;u ; s 2 Œv; T �:

It is easy to check that �iv;u is solution of the equation on Œv; T �

�iv;u.s/ D Ss�v.‰
i
v;v �‰i

v;u/C
Z s

v
Ss�w.f

0
j .yw/ � �iv;u.w// dxjw:

Therefore, according to the estimate (16.19),

k‰i
t;v �‰i

t;ukB� D k�iv;u.t/kB� � N Œ�iv;uI C0.jv; T �I B�/� � cx;y;T k‰i
v;v �‰i

v;ukB� :

Now, observe that

‰i
v;v �‰i

v;u D fi .yv/� Sv�u.fi .yu//C
Z v

u
Sv�w.f

0
j .yw/ �‰i

w;u/ dxjw;

and since y 2 OC0;�.B�/, it becomes clear that k‰i
v;v �‰i

v;ukB�
v!u�! 0. ut

We now show how to differentiate a function which is closely related to
Eq. (16.16).
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Lemma 3.3. The application F W C� � OC0;�.B�/ ! OC0;�.B�/ defined by

F.x; y/t WD yt � St' �
Z t

0

St�u.fi .yu// dxiu;

is differentiable in the Fréchet sense and denoting by D1F (resp. D2F ) the
derivative of F with respect to x (resp. y), we obtain

D1F.x; y/.h/t D �
Z t

0

St�u.fi .yu// dhiu; (16.22)

D2F.x; y/.v/t D vt �
Z t

0

St�u.f
0
i .yu/ � vu/ dxiu: (16.23)

Besides, for any x 2 C� , the mapping D2F.x;ˆ.x// is a homeomorphism of
OC0;�.B�/.

Proof. One has, for every h 2 C� ; v 2 OC0;�.B�/,

F.x C h; y C v/t � F.x; y/t D vt �
Z t

0

St�u.f
0
i .yu/ � vu/ dxiu

�
Z t

0

St�u.fi .yu// dhiu � �
R1t .v/CR2t .h; v/

�
;

(16.24)

with

R1t .v/ WD
Z t

0

St�szis dxis ; zis WD
Z 1

0

dr
Z 1

0

dr 0 r f 00
i .ys C rr 0vs/ � v2s ;

R2t .v; h/ WD
Z t

0

St�s Qzis dhis ; Qzis WD
Z 1

0

dr f 0
i .ys C rvs/ � vs;

and we now have to show that

N ŒR1: .v/CR2: .h; v/I OC0;�.B�/� D o

	h
khk2� C N ŒvI OC0;�.B�/�2

i1=2

:

Observe first that N ŒR1: .v/I OC0;�.B�/� � cN ŒR1: .v/I OC�.B�/�. Thanks to Eqs. (16.4)
and (16.5), we get

kzskB� � c

“
Œ0;1�2

drdr 0 kf 00
i .ys C rr 0vs/kB�kvsk2B�

� c f1C kyskB� C kvskB� g kvsk2B� :

Besides, owing to Eqs. (16.3) and (16.8) and setting Mts.r; r
0/ D f 00

i .yt C rr 0vt /�
f 00
i .ys C rr 0vs/ we end up with
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kzt � zskB �
“
Œ0;1�2

drdr 0 kMts.r; r
0/kB kvsk2B1

C ckvt � vskB fkvtkB1
C kvskB1

g
� c fkyt � yskB C kvt � vskBg kvsk2B�

C ckvt � vskB fkvtkB� C kvskB� g :

� c jt � sj�
� �

N ŒyI OC0;�.B�/�C N ŒvI OC0;�.B�/�
�

N ŒvI C0.B�/�2

C N ŒvI OC0;�.B�/�N ŒvI C0.B�/�
�
:

The estimate (16.10) for the Young convolutional integral now provides us with
the expected control N ŒR1: .v/I OC0;�.B�/� D O.N ŒvI OC0;�.B�/�2/. In the same way,
one can show that N ŒR2: .h; v/I OC0;�.B�/� D O.khk� � N ŒvI OC0;�.B�/�/, and the
differentiability of F is thus proved.

Of course, the two expressions (16.22) and (16.23) for the partial derivatives are
now easy to derive from Eq. (16.24). As for the bijectivity of D2F.x;ˆ.x//, it is a
consequence of Lemma 3.1. ut

We are now ready to differentiate the applicationˆ defined by Eq. (16.17):

Proposition 3.2. The mapˆ W C� ! OC0;�.B�/ is differentiable in the Fréchet sense.
Moreover, for every x 2 C� and h 2 C1, the following representation holds: if
t 2 Œ0; T �; � 2 .0; 1/,

Dˆ.x/.h/t .�/ D
Z t

0

‰i
t;u.�/ dhiu; (16.25)

where ‰i
t;: 2 C.Œ0; t �I B�/ is defined through the equation

‰i
t;u D St�u.fi .ˆ.x/u//C

Z t

u
St�w.f

0
j .ˆ.x/w/ �‰i

w;u/ dxjw: (16.26)

Proof. Thanks to Lemma 3.3, the differentiability of ˆ is a consequence of the
implicit function theorem, which gives in addition

Dˆ.x/ D �D2F.x;ˆ.x//
�1 ıD1F.x;ˆ.x//; x 2 C� :

In particular, for every x; h 2 C� , z WD Dˆ.x/.h/ is the (unique) solution of the
equation

zt D
Z t

0

St�u.fi .ˆ.x/u// dhiuC
Z t

0

St�u.f
0
i .ˆ.x/u/�zu/ dxiu; t 2 Œ0; T �: (16.27)
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If x 2 C� and h 2 C1, an application of the Fubini theorem shows (as in the
proof of [13, Proposition 4]) that the path Qzt WD R t

0
‰i
t;u dhiu (which is well-defined

thanks to Lemma 3.2) is also solution of Eq. (16.27), and this provides us with the
identification (16.25). ut

As the reader might expect, one can obtain derivatives of any order for the
solution when the coefficients of Eq. (16.16) are smooth:

Proposition 3.3. Suppose that fi 2 C1;b.RIR/ for every i 2 f1; : : : ; mg. Then the
function ˆ W C� ! OC0;�.B�/ defined by Eq. (16.17) is infinitely differentiable in the
Fréchet sense. Moreover, for every n 2 N

� and every x; h1; : : : ; hn 2 C� , the path
zt WD Dnˆ.x/.h1; : : : ; hn/t satisfies a linear equation of the form

zt D wt C
Z t

0

St�u.f
0
i .ˆ.x/u/ � zu/ dxiu ; t 2 Œ0; T �; (16.28)

where w 2 OC0;�.B�/ only depends on x; h1; : : : ; hn.

Proof. The details of this proof are omitted for the sake of conciseness, since they
simply mimic the formulae contained in the proof of [13, Proposition 5]. As an
example, let us just observe that for x; h; k 2 C� , the path zt WD D2ˆ.x/.h; k/t is
the unique solution of Eq. (16.28) with

wt W D
Z t

0

St�u.f
0
i .ˆ.x/u/ �Dˆ.x/.h/u/ dkiu

C
Z t

0

St�u.f
0
i .ˆ.x/u/ �Dˆ.x/.k/u/ dhiu

C
Z t

0

St�u.f
00
i .ˆ.x/u/ �Dˆ.x/.h/u �Dˆ.x/.k/u/ dxiu: ut

3.2 Existence of the Density

We will now apply the results of the previous section to an evolution equation driven
by a fractional Brownian motion B D .B1; : : : ; Bd / with Hurst parameter H >

1=2. Namely, we fix � 2 .max.1=4; 1 � �/; 1=2/ and an initial condition ' 2 B� .
We also assume that fi 2 C3;b.RIR/ for i D 1; : : : ; m. We denote by Y D ˆ.B/

the solution of

Yt D St' C
Z t

0

St�u.fi .Yu// dBi
u ; t 2 Œ0; T �: (16.29)
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Notice that since H > 1=2 the paths of B are almost surely � -Hölder continuous
with Hölder exponent greater than 1=2. Thus, Eq. (16.29) can be solved by a direct
application of Proposition 3.1. Moreover, one can invoke Proposition 3.2 in order to
obtain the Malliavin differentiability of Yt .�/:

Lemma 3.4. For every t 2 Œ0; T �; � 2 .0; 1/, Yt.�/ 2 D
1;2
loc and one has, for any

h 2 H,

hD.Yt .�//; hiH D Dˆ.B/.RHh/t .�/: (16.30)

Proof. According to Eq. (16.14), we have that

hD.Yt .�//; hiH D D.Yt .�//.RHh/ D d

d" j"D0
ˆ.B C "RHh/t .�/:

Furthermore, Proposition 3.2 asserts that ˆ W C� ! OC0;�.B�/ is differentiable.
Therefore

1

"
Œˆ.x C "RHh/t .�/ �ˆ.x/t .�/� D Dˆ.x/.RHh/t .�/C 1

"
R."RHh/t .�/;

with

jR."RHh/t .�/j � N ŒR."RHh/I C0.B1/� � cN ŒR."RHh/I C0.B�/� D o."/;

and hence d
d" j"D0ˆ.B C "RHh/t .�/ D Dˆ.B/.RHh/t .�/, which trivially yields

both the inclusion Yt.�/ 2 D
1;2
loc and expression (16.30). ut

With this differentiation result in hand plus some non degeneracy assumptions,
we now obtain the existence of a density for the random variable Yt .�/:

Theorem 3.1. Suppose that for all � 2 R, there exists i 2 f1; : : : ; d g such that
fi .�/ ¤ 0. Then, for all t 2 .0; 1� and � 2 .0; 1/, the law of Yt.�/ is absolutely
continuous with respect to Lebesgue measure.

Proof. We apply Proposition 2.5 part (i), and we will thus prove that
kD.Yt .�//kH > 0 almost surely. Assume then that kD.Yt .�//kH D 0. In this
case, owing to Eq. (16.30), we have Dˆ.B/.RHh/t .�/ D 0 for every h 2 H. In
particular, due to Eq. (16.25), one has

R t
0
‰i
t;u.�/ dh

i
u D 0 for every h 2 C1. As

u 7! ‰i
t;u.�/ is known to be continuous, it is easily deduced that ‰i

t;u.�/ D 0 for
every u 2 Œ0; t � and every i 2 f1; : : : ; d g, and so 0 D ‰i

t;t .�/ D fi .Yt .�// for every
i 2 f1; : : : d g, which contradicts our nonvanishing hypothesis. ut

4 Smoothness of the Density in the Case of Regularizing
Vector Fields

Up to now, we have been able to differentiate the solution to Eq. (16.16) when the
coefficients are fairly general Nemytskii operators. However, we have only obtained
the inclusion Yt .�/ 2 D

1;2
loc . Additional problems arise when one tries to prove
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Yt.�/ 2 D
1;2, due to bad behavior of linear equations driven by rough signals

in terms of moment estimates. This is why we shall change our setting here, and
consider an equation of the following type

yt D St' C
Z t

0

St�u.L.fi .yu/// dxiu ; t 2 Œ0; T �; ' 2 B; (16.31)

where x 2 C� .Œ0; T �IRd / with � > 1=2, each fi W R ! R (i 2 f1; : : : ; d g)
is seen as a Nemytskii operator (see the beginning of Sect. 3), and L stands for a
regularizing linear operator of B. Let us be more specific about the assumptions in
this section:

Hypothesis 4.1. We assume that for every i 2 f1; : : : ; d g, fi is infinitely differen-
tiable with bounded derivatives. Moreover, the operator L W B ! B is taken of
the form

L.
/.�/ WD
Z 1

0

d�U.�; �/
.�/;

for some positive kernelU such that: (i) U is regularizing, i.e.,L is continuous from
B to B� for every � � 0, and (ii) one has cU WD min�2.0;1/

R 1
0

d�U.�; �/ > 0.

In other words, we are now concerned with the following equation on Œ0; T � �
.0; 1/:

y.t; �/ D
Z 1

0

Gt .�; �/'.�/ d�C
Z 1

0

Z 1

0

Z t

0

Gt�u.�; �/U.�; �/fi .y.u; �// dxiud�d�;

with U satisfying the above conditions (i)–(ii).
This setting covers for instance the case of an (additional) heat kernel U D G"

on .0; 1/ for any fixed " > 0. The following existence and uniqueness result then
holds true:

Proposition 4.1. Under Hypothesis 4.1, for any � � � and any initial condition
' 2 B�, Eq. (16.31) interpreted with Proposition 2.3 admits a unique solution in
OC� .B�/.

Proof. As in the proof of Proposition 3.1, the result can be obtained with a fixed-
point argument. Observe indeed that if y 2 OC� .I I B�/ (I WD Œ`1; `2� � Œ0; 1�) and z
is the path defined by z`1 D y`1 , zt � St�szs D R t

s St�u.L.fi .yu/// dxiu (s < t 2 I ),
then, according to Proposition 2.3, z 2 OC� .I I B�/ and one has

N ŒzI OC� .I I B�/� � ckxk�
˚N ŒL.f .y//I C0.I I Bm� /�

C jI j� N ŒL.f .y//I C� .I I Bm� /�g : (16.32)

Now, owing to the regularizing effect ofL, it follows that N ŒL.f .y//I C0.I I Bm� /� �
kLkL.B;B�/kf k1 and

N ŒL.f .y//I C� .I I Bm� /��kLkL.B;B�/kf 0k1N ŒyI C� .I I B/��cN ŒyI OC0;� .I I B�/�;
which, together with Eq. (16.32), allows to settle the fixed-point argument. ut
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For the sake of clarity, we henceforth assume that T D 1. The generalization to
any (fixed) horizon T > 0 easily follows from slight modifications of our estimates.

Moreover, for some technical reasons that will arise in the proofs of Propo-
sitions 4.2 and 4.3, we will focus on the case � D 2 C � in the statement of
Proposition 4.1. In other words, from now on, we fix the initial condition ' in the
space B2C� .

4.1 Estimates on the Solution

Under our new setting, let us find an appropriate polynomial control on the solution
to Eq. (16.31) in terms of x.

Proposition 4.2. Suppose that y is the solution of Eq. (16.31) in OC� .B2C�/ with
initial condition '. Then there exists a constant C�;f;L such that

N ŒyI OC� .Œ0; 1�I B2C�/� � C�;f;L
�
1C kxk�

� �
max

�
kxk1=�� ; k'k1=2B2C�

��1��
:

(16.33)
Proof. For any N 2 N

�, let us introduce the two sequences

"k D "N;k WD 1

N C k
; `0 WD 0 ; `kC1 D `NkC1 WD `Nk C "N;k:

The first step of the proof consists in showing that we can pick N such that for
every k,

"2kky`kkB2C�
� 1: (16.34)

For the latter control to hold at time 0 (i.e., for k D 0), we must first assume that
N � k'k1=2B2C�

. Now, observe that for any k, one has, owing to Eq. (16.10),

N ŒyI OC� .Œ`k; `kC1�I B2C� /�
� ckxk�

n
N ŒL.f .y//I C0.Œ`k; `kC1�I Bm2C� /�

C "
�

kN ŒL.f .y//I C� .Œ`k; `kC1�I Bm2C� /�
o

� ckxk�kLkL.B;B2C� /

˚
1C "

�

kN ŒyI C� .Œ`k; `kC1�I B/�
�

� ckxk�
n
1C "

�

kN ŒyI OC� .Œ`k; `kC1�I B2C� /�C "
�C2
k N ŒyI C0.Œ`k; `kC1�I B2C� /�

o

� c1kxk�
n
1C "

�

kN ŒyI OC� .Œ`k; `kC1�I B2C� /�C "
�C2
k ky`kkB2C�

o
; (16.35)

where we have used Eq. (16.9) to get the third inequality. Consequently, if we take
N such that 2c1N��kxk� � 1 (i.e., N � .2c1kxk� /1=� ), we retrieve

N ŒyI OC� .Œ`k; `kC1�I B2C� /� � 2c1kxk� C "2kky`kkB2C�
(16.36)
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and hence

ky`kC1
kB2C�

� 1C .1C "
2C�
k /ky`kkB2C�

:

From this estimate, if we assume that "2kky`kkB2C�
� 1, then

"2kC1ky`kC1
kB2C�

� "2kC1 C "2kC1
˚ky`kkB2C�

C "
�

k

�

� 2"2kC1 C "2kC1
"2k

D 2C .N C k/2

.N C k C 1/2
� 1

and Eq. (16.34) is thus proved by induction. Going back to Eq. (16.36), we get, for
every k,

N ŒyI OC� .Œ`k; `kC1�I B2C� /� � 2c1kxk� C 1: (16.37)

By a standard patching argument, this estimate yields

N ŒyI OC� .Œ0; 1�I B2C� /� � ˚
2c1kxk� C 1

�
K1�� ;

whereK stands for the smallest integer such that
PK

kD0 "k � 1.
Finally, observe that 2 � PK

kD0 "k D PNCK
kDN 1

k
, and thus one can check that

K � .e2 � 1/N � 7N . To achieve the proof of Eq. (16.33), it now suffices to notice
that N can be picked proportional to max.kxk1=�� ; k'k1=2B2C�

/. ut
We now consider a linear equation, which is equivalent to Eq. (16.18) in our

regularized context:

zt D wt C
Z t

0

St�u.L.f
0
i .yu/ � zu// dxiu ; t 2 Œ0; 1�; (16.38)

where w 2 OC�.B2C� / and y stands for the solution of Eq. (16.31) with initial
condition ' 2 B2C� .

The existence and uniqueness of a solution for Eq. (16.38) can be proved along
the same lines as Proposition 4.1, that is to say via a fixed-point argument. We shall
get a suitable exponential control for this solution.

Proposition 4.3. There exists constants C1; C2 which only depends on f , L and �
such that

N ŒzI C0.Œ0; 1�I B2C�/� � C1N ŒwI OC0;� .B2C�/� exp
�
C2 max

�
k'k1=2B2C�

; kxk1=��
��
:

(16.39)

Moreover, if wt D St for some function  2 B2C� , there exists an additional
constant C3 which only depends on f , L and � such that

N ŒzI OC� .Œ0; 1�I B2C�/�
� C3k kB2C�

max
�
k'k1=2B2C�

; kxk1=��
�

exp
�
C2 max

�
k'k1=2B2C�

; kxk1=��
��

(16.40)
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Proof. We go back to the notation "N;k ; `Nk of the proof of Proposition 4.2, and set,
for every c � 0,

N.c/ WD max
�
k'k1=2B2C�

; .2ckxk� /1=�
�
:

We have seen in the proof of Proposition 4.2 that there exists a constant c1 such that
for every N � N.c1/ and every k, one has simultaneously

"2N;kkylNk kB2C�
� 1 ; N ŒyI OC� .Œ`Nk ; `NkC1�I B2C� /� � 2c1kxk� C 1: (16.41)

Suppose that N � N.c1/ and set Nw WD N ŒwI OC� .B2C� /�. One has, similarly to
Eq. (16.35),

N ŒzI OC� .Œ`Nk ; `NkC1�IB2C� /�

� NwCckxk�
n
N Œf 0.y/ � zI C0.Œ`Nk ; `NkC1�IBm/�C"�N;kN Œf 0.y/ � zIC� .Œ`Nk ; `NkC1�IBm/�

o

� Nw C ckxk�
˚N ŒzIC0.Œ`Nk ; `NkC1�IB/�C "

�

N;k
N ŒzIC� .Œ`Nk ; `NkC1�IB/�

C"�
N;k

N ŒyI C� .Œ`Nk ; `NkC1�IB/�N ŒzI C0.Œ`Nk ; `NkC1�IB1/�
�

� Nw C c2kxk�N ŒzI C0.Œ`Nk ; `NkC1�IB2C� /�
n
1C "

�

N;k
N ŒyI C� .Œ`Nk ; `NkC1�IB/�

o

Cc2kxk� "�N;kN ŒzI OC� .Œ`Nk ; `NkC1�IB2C� /�;

where we have used Eqs. (16.3) and (16.9) to derive the last inequality. Therefore, if
we choose N2 � max

�
N.c1/; .2c2kxk� /1=�

�
, one has, for any N � N2 and any k,

N ŒzI OC� .Œ`Nk ; `NkC1�IB2C� /�

� 2Nw C 2c2kxk�N ŒzI C0.Œ`Nk ; `NkC1�IB2C� /�
n
1C "

�

N;k
N ŒyI C� .Œ`Nk ; `NkC1�IB/�

o
:

Thanks to Eqs. (16.9) and (16.41), we know that

N ŒyI C� .Œ`Nk ; `NkC1�I B/� � c
n
N ŒyI OC� .Œ`Nk ; `NkC1�I B2C� /�C "2N;kky`Nn kB2C�

o

� c
˚
2c1kxk� C 2

�
:

As a consequence, there exists c3 such that for any N � N2,

N
h
zI OC� ��

`Nk ; `
N
kC1

� I B2C�
�i

� 2Nw C c3kxk�N
�
zI C0 ��

`Nk ; `
N
kC1

� I B2C�
�� n

1C "
�

N;kkxk�
o
: (16.42)
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Then, for any N � N2,

N ŒzI C0.Œ`Nk ; `NkC1�I B2C� /�
� 2Nw C kz`Nk kB2C�

C c3kxk� "�N;kN ŒzI C0.Œ`Nk ; `NkC1�I B2C� /�
n
1C "

�

N;kkxk�
o
:

Pick now an integer N3 � N2 such that

c3N
��
3 kxk�

˚
1CN

��
3 kxk�

� � 1

2
;

and we get, for any k,

N ŒzI C0.Œ`N3k ; `N3kC1�I B2C� /� � 2kz
`
N3
k

kB2C�
C 4Nw;

so N ŒzI C0.Œ0; 1�I B2C� /� � 2K.N3/kw0kB2C�
C2K.N3/C2Nw, whereK.N3/ stands for

the smallest integer such that
PK.N3/

kD0 "N3;k � 1. As in the proof of Proposition 4.2,
one can check that K.N3/ � cN3. In order to get Eq. (16.39), it suffices to observe
that there exists a constant c4 such that any integer N3 � c4 max.k'k1=2B2C�

; kxk1=�� /

meets the above requirements.
Suppose now that wt D St . In particular, Nw D 0. Then we go back to

Eq. (16.42) to obtain, thanks to Eq. (16.39),

N ŒzI OC� .Œ`N3k ; `N3kC1�I B2C� /� � C1k kB2C�
N
�
3 exp

�
C2 max

�
k'k1=2B2C�

; kxk1=��
��
;

which entails

N ŒzI OC� .Œ0; 1�I B2C� /�
� C1k kB2C�

N
�
3 K.N3/

1�� exp
�
C2 max

�
k'k1=2B2C�

; kxk1=��
��

� C3k kB2C�
N3 exp

�
C2 max

�
k'k1=2B2C�

; kxk1=��
��
;

and Eq. (16.40) is thus proved. ut
Remark 4.1. For any t0 2 Œ0; 1�, the proof of Proposition 4.3 can be easily adapted
to the equation starting at time t0

zt D wt;t0 C
Z t

t0

St�u.L.f
0
i .yu/ � zu// dxiu ; w:;t0 2 OC�.Œt0; 1�I B2C� / ; t 2 Œt0; 1�;

and both estimates (16.39) and (16.40) remain of course true in this situation.
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4.2 Smoothness of the Density

Let us now go back to the fractional Brownian situation

Yt D St' C
Z t

0

St�u.L.fi .Yu/// dBi
u ; t 2 Œ0; 1� ; ' 2 B2C� ; (16.43)

where � 2 . 1
2
;H/ is a fixed parameter. We suppose, for the rest of the section,

that the initial condition ' is fixed in B2C� and that Hypothesis 4.1 is satisfied. We
denote by Y the solution of Eq. (16.43) in OC� .B2C�/ given by Proposition 4.1.

As in Sect. 3.2, we wish to study the law of Yt .�/ for t 2 Œ0; 1� and � 2 .0; 1/.
Without loss of generality, we focus more exactly on the law of Y1.�/, for � 2 .0; 1/.

The first thing to notice here is that the whole reasoning of Sect. 3 can be
transposed without any difficulty to Eq. (16.43), which is more easy to handle due
to the regularizing effect of L. Together with the estimates (16.33) and (16.39), this
observation leads us to the following statement:

Proposition 4.4. For every � 2 .0; 1/, Y1.�/ 2 D
1 and the law of Y1.�/ is

absolutely continuous with respect to the Lebesgue measure.

Proof. The absolute continuity of the law of Y1.�/ can be obtained by following
the lines of Sect. 3, which gives Y1.�/ 2 D

1
loc as well. Then, like in Proposition 3.3,

observe that nth (Fréchet) derivatives Zn of the flow associated with Eq. (16.43)
satisfy a linear equation of the form

Zn
t D W n

t C
Z t

0

St�u
�
L.f 0

i .Yu/ �Zn
u /

�
dBi

u; t 2 Œ0; 1�:

The explicit expression forW n (n � 1) can be derived from the formulae contained
in [13, Proposition 5], and it is easy to realize that due to Eq. (16.33), one has
N ŒW nI OC0;� .B2C�/� 2 Lp.	/ for any n and any p. Then, thanks to Eq. (16.39), we
deduce that N ŒZnI C0.B2C� /� is a square-integrable random variable, which allows
us to conclude that Y1.�/ 2 D

1 (see [12, Lemma 4.1.2]). ut
The following proposition, which can be seen as an improvement of Lemma 3.2

(in this regularized situation), provides us with the key-estimate to prove the
smoothness of the density:

Proposition 4.5. For every s 2 Œ0; 1�, consider the system of equations

‰i
t;s D St�s.L.fi .Ys///

C
Z t

s

St�u.L.f
0
j .Yu/ �‰i

u;s // dBj
u ; t2Œs; 1�; i2f1; : : : ; mg: (16.44)

Then, for every i 2 f1; : : : ; mg and every t 2 Œ0; 1�, ‰i
t;: 2 C�.Œ0; t �I B2C� /. In

particular, for any � 2 .0; 1/, ‰i
t;:.�/ 2 C� .Œ0; t �/.
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Moreover, one has the following estimate

N Œ‰i
t;:I C� .Œ0; t �I B2C� /�

� Q.k'kB2C�
; kBk� / � exp

�
cmax

�
k'k1=2B2C�

; kBk1=��
��
; (16.45)

for some polynomial expression Q.

Proof. As in the proof of Lemma 3.2, we introduce the path

�iv;u.s/ WD ‰i
s;v �‰i

s;u ; s 2 Œv; 1� ; 0 � u < v � t;

and it is readily checked that �iv;u solves the equation on Œv; 1�

�iv;u.s/ D Ss�v.‰
i
v;v �‰i

v;u/C
Z s

v
Ss�w.L.f

0
j .Yw/ � �iv;u.w/// dBj

w :

Therefore, thanks to the estimate (16.39), we get

k‰i
t;v �‰i

t;ukB2C�
D k�iv;u.t/kB2C�

� N Œ�iv;uI C0.Œv; 1�I B2C� /�
� ck‰i

v;v �‰i
v;ukB2C�

exp
�
cmax

�
k'k1=2B2C�

; kBk1=��
��
:

(16.46)

Then, by writing

‰i
v;v �‰i

v;u D L.fi .Yv/ � fi .Yu// � ŒSv�u � Id� .L.fi .Yu///

�
Z v

u
Sv�w.L.f

0
j .Yw/ �‰i

w;u// dBj
w ;

we deduce that

k‰i
v;v �‰i

v;ukB2C�
� c jv � uj� ˚kLkL.B;B2C� /N ŒY I C�.B/�C kLkL.B;B2C2� /

C kLkL.B;B2C� /kBk�
�N Œf 0.Y / �‰i

:;uI C0.Bm/�
C N Œf 0.Y / �‰i

:;uI C� .Bm/���
� cjv � uj� ˚

1C kBk�
� f1C N ŒY I C� .B/�g

� ˚
1C N Œ‰i

:;uI C0.B2C�/�C N Œ‰i
:;uI C�.B/��:

Going back to Eq. (16.46), the result now easily follows from the embedding
OC0;� .B2C�/ � C� .B/ and the three controls (16.33), (16.39) and (16.40). ut

Proposition 4.5 implies in particular that the Young integral
R t
0
‰i
t;u.�/ dh

i
u is

well-defined for every h 2 C� , t 2 Œ0; 1� and � 2 .0; 1/. We are thus in a position
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to apply the Fubini-type argument of [13, Propositions 4 and 7] so as to retrieve the
following convenient expression for the Malliavin derivative:

Corollary 4.1. For every � 2 .0; 1/, the Malliavin derivative of Y1.�/ is given by

Di
s.Y1.�// D ‰i

1;s.�/ ; s 2 Œ0; 1� ; i 2 f1; : : : ; mg; (16.47)

where ‰i
:;s stands for the solution of Eq. (16.44) on Œs; 1�.

Theorem 4.2. Suppose that there exists �0 > 0 such that for every i 2 f1; : : : ; mg
and every � 2 R, fi .�/ � �0. Then, for every � 2 .0; 1/, the density of Y1.�/ with
respect to the Lebesgue measure is infinitely differentiable.

Proof. We shall apply here the criterion stated at Proposition 2.5 item (ii). Notice
that we already know that Y1.�/ 2 D

1, so it remains to show that for every p � 2,
there exists "0.p/ > 0 such that if " < "0.p/, then P .kD:.Y1.�//kH < "/ � "p .

To this end, we resort to the following practical estimate, borrowed from [2,
Corollary 4.5]: for every ˇ > H � 1=2, there exist ˛ > 0 such that

P .kD:.Y1.�//kH < "/ � P .kD:.Y1.�//k1 < "˛/C P
�kD:.Y1.�//kˇ > "�˛� :

(16.48)

The first term in the right-hand side of Eq. (16.48) is easy to handle. Indeed,
owing to the expression (16.47) for the Malliavin derivative of Y1.�/, one has

kD:.Y1.�//k1 � inf
iD1;:::;m j‰i

1;1.�/j D inf
iD1;:::;m jL.fi .Y1//.�/j

D inf
iD1;:::;m

ˇ̌
ˇ̌Z 1

0

d�U.�; �/fi .Y1.�//

ˇ̌
ˇ̌ � cU �0 > 0

(remember that U and cU have been defined in Hypothesis 4.1), so that
P.kD:.Y1.�//k1 < "˛/ D 0 for " small enough.

Then, in order to cope with P
�kD:.Y1.�//kˇ > "�˛�, one can simply rely on the

Markov inequality, since, according to Eq. (16.45),

kD:.Y1.�//kˇ D k‰1;:.�/kˇ � c sup
i2f1;:::;mg

N Œ‰i
1;:I C� .Œ0; 1�I B2C�/�

� c Q
�k'kB2C�

; kBk�
� � exp

�
cmax

�
k'kB2C�

; kBk1=��
��
;

which proves that kD:.Y1.�//kˇ 2 Lq.	/ for every q � 1. ut
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Chapter 17
Parameter Estimation for ˛-Fractional Bridges

Khalifa Es-Sebaiy and Ivan Nourdin

It is a great pleasure for us to dedicate this paper to our friend David Nualart, in
celebration of his 60th birthday and with all our admiration.

Abstract Let ˛; T > 0. We study the asymptotic properties of a least squares
estimator for the parameter ˛ of a fractional bridge defined as dXt D �˛ Xt

T�t dt C
dBt , 0 � t < T , where B is a fractional Brownian motion of Hurst parameter
H > 1

2
. Depending on the value of ˛, we prove that we may have strong consistency

or not as t ! T . When we have consistency, we obtain the rate of this convergence
as well. Also, we compare our results to the (known) case where B is replaced by a
standard Brownian motionW .

Received 2/6/2011; Accepted 9/9/2011; Final 1/25/2012

1 Introduction

Let W be a standard Brownian motion and let ˛ be a nonnegative real parameter.
In recent years, the study of various problems related to the (so-called) ˛-Wiener
bridge, that is, to the solution X to

X0 D 0I dXt D �˛ Xt

T � t
dt C dWt ; 0 � t < T; (17.1)
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has attracted interest. For a motivation and further references, we refer the reader
to Barczy and Pap [2, 3], as well as Mansuy [6]. Because Eq. (17.1) is linear, it is
immediate to solve it explicitly; one then gets the following formula:

Xt D .T � t/˛
Z t

0

.T � s/�˛dWs; t 2 Œ0; T /;

the integral with respect to W being a Wiener integral.
An example of interesting problem related to X is the statistical estimation of ˛

when one observes the whole trajectory of X . A natural candidate is the maximum
likelihood estimator (MLE), which can be easily computed for this model, due to
the specific form of Eq. (17.1): one gets

Ǫ t D �
�Z t

0

Xu

T � u
dXu

���Z t

0

X2
u

.T � u/2
du

�
; t < T: (17.2)

In Eq. (17.2), the integral with respect to X must of course be understood in the Itô
sense. On the other hand, at this stage it is worth noticing that Ǫ t coincides with a
least squares estimator (LSE) as well; indeed, b̨t (formally) minimizes

˛ 7!
Z t

0

ˇ̌
ˇ̌ PXu C ˛

Xu

T � u

ˇ̌
ˇ̌2 du:

Also, it is worth bearing in mind an alternative formula for b̨t , which is more easily
amenable to analysis and which is immediately shown thanks to Eq. (17.1):

˛ � b̨t D
�Z t

0

Xu

T � u
dWu

���Z t

0

X2
u

.T � u/2
du

�
: (17.3)

When dealing with Eq. (17.3) by means of a semimartingale approach, it is not very
difficult to check that b̨t is indeed a strongly consistent estimator of ˛. The next
step generally consists in studying the second-order approximation. Let us describe
what is known about this problem: as t ! T ,

• If 0 < ˛ < 1
2

then

.T � t/˛� 1
2
�
˛ � b̨t � law�! T ˛� 1

2 .1� 2˛/ � C.1/; (17.4)

with C.1/ the standard Cauchy distribution, see [4, Theorem 2.8].
• If ˛ D 1

2
then

j log.T � t/j�˛ � b̨t � law�!
R T
0
WsdWsR T

0
W 2
s ds

; (17.5)

see [4, Theorem 2.5];
• If ˛ > 1

2
then

p
j log.T � t/j�˛ � b̨t � law�! N .0; 2˛ � 1/; (17.6)

see [4, Theorem 2.11].
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Thus, we have the full picture for the asymptotic behavior of the MLE/LSE
associated to ˛-Wiener bridges.

In this paper, our goal is to investigate what happens when, in Eq. (17.1), the
standard Brownian motionW is replaced by a fractional Brownian motion B . More
precisely, suppose from now on that X D fXtgt2Œ0;T / is the solution to

X0 D 0I dXt D �˛ Xt

T � t
dt C dBt ; 0 � t < T; (17.7)

where B is a fractional Brownian motion with known parameterH , whereas ˛ > 0
is considered as an unknown parameter. AlthoughX could have been defined for all
H in .0; 1/, for technical reasons and in order to keep the length of our paper within
bounds we restrict ourself to the case H 2 . 1

2
; 1/ in the sequel.

In order to estimate the unknown parameter ˛ when the whole trajectory of X
is observed, we continue to consider the estimator b̨t given by Eq. (17.2) (It is no
longer the MLE, but it is still an LSE.). Nevertheless, there is a major difference
with respect to the standard Brownian motion case. Indeed, the process X being
no longer a semimartingale, in Eq. (17.2) one cannot utilize the Itô integral to
integrate with respect to it. One may however choose, insteed, the young integral
[see Sect. 2.3 for the main properties of this integral, notably its chain rule (17.17)
and how Eq. (17.18) relies it to Skowrohod integral]. This is because X has1 r-Hölder
continuous paths on [0,t] for all r�. 1

2
;H/ and all t�Œ0; T �.

Let us now describe the results we prove in this paper. First, in Theorem 3.1
we show that the (strong) consistency of b̨t as t ! T holds true if and only if
˛ � 1

2
. Then, depending on the precise value of ˛ 2 .0; 1

2
�, we derive the asymptotic

behavior of the error b̨t�˛. It turns out that, once adequately renormalized, this error
converges either in law or almost surely to a limit that we are able to compute explic-
itly. More specifically, we show in Theorem 3.2 the following convergences [below
and throughout the paper, C.1/ always stands for the standard Cauchy distribution
and ˇ.a; b/ D R 1

0 x
a�1.1 � x/b�1dx for the usual Beta function]: as t ! T ,

• If 0 < ˛ < 1 �H then

.T�t/˛�H �˛�b̨t � law�! T ˛�H .1�2˛/
s
.H � ˛/ˇ.2 � 2H � ˛; 2H � 1/
.1 �H � ˛/ˇ.1 � ˛; 2H � 1/

�C.1/:
(17.8)

• If ˛ D 1 �H then

.T � t/1�2Hpj log.T � t/j
�
˛ � b̨t � law�! T 1�2H .2H � 1/ 32

s
2 ˇ.1�H; 2H � 1/

ˇ.H; 2H � 1/
� C.1/:

(17.9)
• If 1 �H < ˛ < 1

2
then

1More precisely, we assume throughout the paper that we work with a suitable �-Hölder continuous
version of X , which is easily shown to exist by the Kolmogorov–Centsov theorem.
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.T � t/2˛�1�˛ � b̨t � a:s:�! .1 � 2˛/

Z T

0

dBu

.T � u/1�˛

�
Z u

0

dBs
.T � s/˛

��Z T

0

dBs
.T � s/˛

�2
: (17.10)

• If ˛ D 1
2

then

j log.T � t/j�˛ � b̨t � a:s:�! 1

2
: (17.11)

When comparing the convergences (17.8) to (17.11) with those arising in the
standard Brownian motion case [i.e., Eq. (17.4) to Eq. (17.6)], we observe a new
and interesting phenomenon when the parameter ˛ ranges from 1 � H to 1

2
(of

course, this case is immaterial in the standard Brownian motion case).
We hope our proofs of Eqs. (17.8)–(17.11) to be elementary. Indeed, except

maybe the link (17.18) between Young and Skorohod integrals, they only involve
soft arguments, often based on the mere derivation of suitable equivalent for some
integrals. In particular, unlike the classical approach (as used, e.g., in [4]) we stress
that, here, we use no tool coming from the semimartingale realm.

Before concluding this introduction, we would like to mention the recent paper
[5] by Hu and Nualart, which has been a valuable source of inspiration. More
specifically, the authors of [5] study the estimation of the parameter ˛ > 0 arising
in the fractional Ornstein–Uhlenbeck model, defined as dXt D �˛Xtdt C dBt ,
t � 0, where B is a fractional Brownian motion of (known) index H 2 . 1

2
; 3
4
/.

They show the strong consistency of a LSE b̨t as t ! 1 (with, however, a major
difference with respect to us: they are forced to use Skorohod integral rather than
Young integral to define b̨t , otherwise b̨t 6! ˛ as t ! 1; unfortunately, this leads
to an impossible-to-simulate estimator, and this is why they introduce an alternative
estimator for ˛). They then derive the associated rate of convergence as well, by
exhibiting a central limit theorem. Their calculations are of completely different
nature than ours because, to achieve their goal, the authors of [5] make use of the
fourth moment theorem of Nualart and Peccati [8].

The rest of our paper is organized as follows. In Sect. 2 we introduce the needed
material for our study, whereas Sect. 3 contains the precise statements and proofs of
our results.

2 Basic Notions for Fractional Brownian Motion

In this section, we briefly recall some basic facts concerning stochastic calculus
with respect to fractional Brownian motion; we refer to [7] for further details. Let
B D fBt gt2Œ0;T � be a fractional Brownian motion with Hurst parameterH 2 .0; 1/,
defined on some probability space .�;F ; P / (Here, and throughout the text, we do
assume that F is the sigma-field generated by B .). This means that B is a centered
Gaussian process with the covariance function EŒBsBt � D RH.s; t/, where
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RH.s; t/ D 1

2

�
t2H C s2H � jt � sj2H �: (17.12)

If H D 1
2
, then B is a Brownian motion. From Eq. (17.12), one can easily see that

E
�jBt �Bs j2� D jt�sj2H , soB has ��Hölder continuous paths for any � 2 .0;H/

thanks to the Kolmogorov–Centsov theorem.

2.1 Space of Deterministic Integrands

We denote by E the set of step R-valued functions on Œ0;T �. Let H be the Hilbert
space defined as the closure of E with respect to the scalar product

˝
1Œ0;t �; 1Œ0;s�

˛
H D RH.t; s/:

We denote by j � jH the associated norm. The mapping 1Œ0;t � 7! Bt can be extended
to an isometry between H and the Gaussian space associated with B . We denote
this isometry by

' 7! B.'/ D
Z T

0

'.s/dBs: (17.13)

When H 2 . 1
2
; 1/, it follows from [9] that the elements of H may not be

functions but distributions of negative order. It will be more convenient to work
with a subspace of H which contains only functions. Such a space is the set jHj of
all measurable functions ' on Œ0; T � such that

j'j2jHj WD H.2H � 1/
Z T

0

Z T

0

j'.u/jj'.v/jju � vj2H�2dudv < 1:

If '; 2 jHj then

E
�
B.'/B. /

� D H.2H � 1/
Z T

0

Z T

0

'.u/ .v/ju � vj2H�2dudv: (17.14)

We know that .jHj; h�; �ijHj/ is a Banach space, but that .jHj; h�; �iH/ is not complete

(see, e.g., [9]). We have the dense inclusions L2.Œ0; T �/ � L
1
H .Œ0; T �/ � jHj � H:

2.2 Malliavin Derivative and Skorohod Integral

Let S be the set of all smooth cylindrical random variables, which can be expressed
as F D f .B.�1/; : : : ; B.�n// where n � 1, f W Rn ! R is a C1-function such
that f and all its derivatives have at most polynomial growth, and �i 2 H, i D
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1; : : : ; n. The Malliavin derivative ofF with respect toB is the element ofL2.�;H/
defined by

DsF D
nX
iD1

@f

@xi
.B.�1/; : : : ; B.�n//�i .s/; s 2 Œ0; T �:

In particularDsBt D 1Œ0;t �.s/. As usual,D1;2 denotes the closure of the set of smooth
random variables with respect to the norm

kF k21;2 D EŒF 2�C E
�jDF j2H

�
:

The Malliavin derivative D verifies the chain rule: if ' W R
n ! R is C1b and if

.Fi /iD1;:::;n is a sequence of elements of D1;2, then '.F1; : : : ; Fn/ 2 D
1;2 and we

have, for any s 2 Œ0; T �,

Ds'.F1; : : : ; Fn/ D
nX
iD1

@'

@xi
.F1; : : : ; Fn/DsFi :

The Skorohod integral ı is the adjoint of the derivative operator D. If a random
variable u 2 L2.�;H/ belongs to the domain of the Skorohod integral (denoted by
domı), that is, if it verifies

jEhDF; uiHj � cu

p
EŒF 2� for any F 2 S;

then ı.u/ is defined by the duality relationship

EŒF ı.u/� D E
�hDF; uiH

�
;

for every F 2 D
1;2. In the sequel, when t 2 Œ0; T � and u 2 domı, we shall

sometimes write
R t
0

usıBs instead of ı.u1Œ0;t �/. If h 2 H, notice moreover thatR T
0
hsıBs D ı.h/ D B.h/.
For every q � 1, let Hq be the qth Wiener chaos of B , that is, the closed

linear subspace of L2.�/ generated by the random variables fHq .B .h// ; h 2
H; khkH D 1g, where Hq is the qth Hermite polynomial. The mapping Iq.h˝q/ D
Hq .B .h// provides a linear isometry between the symmetric tensor product Hˇq
(equipped with the modified norm k � kHˇq D 1p

qŠ
k � kH˝q ) and Hq . Specifically,

for all f; g 2 Hˇq and q � 1, one has

E
�
Iq.f /Iq.g/

� D qŠhf; giH˝q : (17.15)

On the other hand, it is well known that any random variableZ belonging to L2.�/
admits the following chaotic expansion:

Z D EŒZ�C
1X
qD1

Iq.fq/; (17.16)

where the series converges in L2.�/ and the kernels fq , belonging to Hˇq , are
uniquely determined by Z.
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2.3 Young Integral

For any � 2 Œ0; 1�, we denote by C � .Œ0; T �/ the set of � -Hölder continuous
functions, that is, the set of functions f W Œ0; T � ! R such that

jf j� WD sup
0�s<t�T

jf .t/ � f .s/j
.t � s/� < 1:

(Notice the calligraphic difference between a space C of Hölder continuous
functions and a space C of continuously differentiable functions!) We also set
jf j1 D supt2Œ0;T � jf .t/j, and we equip C � .Œ0; T �/ with the norm

kf k� WD jf j� C jf j1:
Let f 2 C � .Œ0; T �/, and consider the operator Tf W C1.Œ0; T �/ ! C0.Œ0; T �/
defined as

Tf .g/.t/ D
Z t

0

f .u/g0.u/du; t 2 Œ0; T �:

It can be shown (see, e.g., [10, Sect. 2.2]) that, for any ˇ 2 .1 � �; 1/, there
exists a constant C�;ˇ;T > 0 depending only on � , ˇ, and T such that, for any
g 2 C ˇ.Œ0; T �/, 				

Z �

0

f .u/g0.u/du

				
ˇ

� C�;ˇ;T kf k�kgkˇ:

We deduce that, for any � 2 .0; 1/, any f 2 C � .Œ0; T �/ and any ˇ 2 .1 � �; 1/,
the linear operator Tf W C1.Œ0; T �/ � C ˇ.Œ0; T �/ ! C ˇ.Œ0; T �/, defined as
Tf .g/ D R �

0
f .u/g0.u/du, is continuous with respect to the norm k � kˇ. By density,

it extends (in a unique way) to an operator defined on C ˇ. As a consequence, if
f 2 C � .Œ0; T �/, if g 2 C ˇ.Œ0; T �/, and if � C ˇ > 1, then the (so-called) Young
integral

R �
0
f .u/dg.u/ is (well) defined as being Tf .g/.

The Young integral obeys the following chain rule. Let � W R
2 ! R be a C2

function, and let f; g 2 C � .Œ0; T �/ with � > 1
2
. Then

R �
0
@�

@f
.f .u/; g.u//df .u/ andR �

0
@�

@g
.f .u/; g.u//dg.u/ are well defined as Young integrals. Moreover, for all t 2

Œ0; T �,

�.f .t/; g.t// D�.f .0/; g.0//C
Z t

0

@�

@f
.f .u/; g.u//df .u/C

Z t

0

@�

@g
.f .u/; g.u//dg.u/:

(17.17)

2.4 Link Between Young and Skorohod Integrals

Assume H > 1
2
, and let u D .ut /t2Œ0;T � be a process with paths in C � .Œ0; T �/

for some fixed � > 1 � H . Then, according to the previous section, the integralR T
0

usdBs exists pathwise in the Young sense. Suppose moreover that ut belongs to
D
1;2 for all t 2 Œ0; T �, and that u satisfies
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P

�Z T

0

Z T

0

jDsut jjt � sj2H�2dsdt < 1
�

D 1:

Then u 2 domı, and we have [1], for all t 2 Œ0; T �,
Z t

0

usdBs D
Z t

0

usıBs CH.2H � 1/

Z t

0

Z t

0

Dsuxjx � sj2H�2dsdx: (17.18)

In particular, notice that
Z T

0

'sdBs D
Z T

0

'sıBs D B.'/ (17.19)

when ' is non-random.

3 Statement and Proofs of Our Main Results

In all this section, we fix a fractional Brownian motionB of Hurst indexH 2 . 1
2
; 1/,

as well as a parameter ˛ > 0. Let us consider the solution X to Eq. (17.7). It is
readily checked that we have the following explicit expression for Xt :

Xt D .T � t/˛
Z t

0

.T � s/�˛dBs; t 2 Œ0; T /; (17.20)

where the integral can be understood either in the Young sense or in the Skorohod
sense, see indeed Eq. (17.19).

For convenience, and because it will play an important role in the forthcoming
computations, we introduce the following two processes related toX : for t 2 Œ0; T �,

�t D
Z t

0

.T � s/�˛dBsI (17.21)

�t D
Z t

0

dBu.T � u/˛�1
Z u

0

dBs.T � s/�˛ D
Z t

0

.T � u/˛�1�udBu: (17.22)

In particular, we observe that

Xt D .T � t/˛�t and
Z t

0

Xu

T � u
dBu D �t for t 2 Œ0; T /. (17.23)

When ˛ is between 0 andH (resp. 1�H andH ), in Lemma 3.2 (resp. Lemma 3.3),
we shall actually show that the process � (resp. �) is well defined on the whole
interval Œ0; T � (notice that we could have had a problem at t D T ) and that it
admits a continuous modification. This is why we may and will assume in the sequel,
without loss of generality, that � (resp. �) is continuous when 0 < ˛ < H (resp.
1 �H < ˛ < H ).
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Recall the definition (17.2) of b̨t . By using Eq. (17.7) and then Eq. (17.23), as
well as the definitions (17.21) and (17.22), we arrive to the following formula:

˛ � b̨t D
R t
0
Xu.T � u/�1dBuR t
0
X2

u .T � u/�2ds
D �tR t

0
.T � u/2˛�2�2u du

:

Thus, in order to prove the convergences (17.8)–(17.11) of the introduction (i.e.,
our main result!), we are left to study the (joint) asymptotic behaviors of �t andR t
0 .T � u/2˛�2�2u du as t ! T . The asymptotic behavior of

R t
0 .T � u/2˛�2�2u du

is rather easy to derive (see Lemma 3.7), because it looks like a convergence à la
Cesàro when ˛ � 1

2
. In contrast, the asymptotic behavior of �t is more difficult to

obtain and will depend on the relative position of ˛ with respect to 1 � H . It is
actually the combination of Lemmas 3.1, 3.3, 3.4, 3.5, 3.6 that will allow to derive
it for the full range of values of ˛.

We are now in position to prove our two main results that we restate here as
theorems for convenience.

Theorem 3.1. We have b̨t prob:�! ˛^ 1
2

as t ! T . When ˛ < H we have almost sure
convergence as well.

As a corollary, we find that b̨t is a strong consistent estimator of ˛ if and only if
˛ � 1

2
. The next result precises the associated rate of convergence in this case.

Theorem 3.2. Let G � N .0; 1/ be independent of B , let C.1/ stand for the
standard Cauchy distribution, and let ˇ.a; b/ D R 1

0 x
a�1.1 � x/b�1dx denote the

usual Beta function:

1. Assume ˛ 2 .0; 1�H/. Then, as t ! T ,

.T � t/˛�H �˛ � b̨t � law�! .1 � 2˛/
r
H.2H � 1/

ˇ.2� ˛ � 2H; 2H � 1/

1 �H � ˛
� G

�T

lawD T ˛�H.1�2˛/
s
.H�˛/ˇ.2�2H�˛; 2H�1/
.1�H�˛/ˇ.1�˛; 2H�1/ � C.1/:

2. Assume ˛ D 1 �H . Then, as t ! T ,

.T � t/1�2Hpj log.T � t/j
�
˛ � b̨t � law�! .2H � 1/

3
2

p
2H ˇ.1�H; 2H � 1/ � G

�T

lawD T 1�2H .2H � 1/ 32
s
2 ˇ.1�H; 2H � 1/
ˇ.H; 2H � 1/ � C.1/:
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3. Assume ˛ 2 �1 �H; 1
2

�
. Then, as t ! T ,

.T � t/2˛�1�˛ � b̨t � a:s:�! .1 � 2˛/ �T
.�T /2

:

4. Assume ˛ D 1
2
. Then, as t ! T ,

j log.T � t/j�˛ � b̨t � a:s:�! 1

2
:

The rest of this section is devoted to the proofs of Theorems 3.1 and 3.2. Before
to be in position to do so, we need to state and prove some auxiliary lemmas. In
what follows we use the same symbol c for all constants whose precise value is not
important for our consideration.

Lemma 3.1. Let ˛; ˇ 2 .0; 1/ be such that ˛ C ˇ < 2H . Then, for all T > 0,

Z T

0

ds .T�s/�ˇ
Z T

0

dr .T�r/�˛js�r j2H�2 D
Z T

0

ds s�
Ž T

0

dr r�˛js�r j2H�2<1:

Proof. By homogeneity, we first notice that

Z T

0

ds s�ˇ
Z T

0

dr r�˛js � r j2H�2 D T 2H�˛�ˇ
Z 1

0

ds s�ˇ
Z 1

0

dr r�˛js � r j2H�2

so that it is not a loss of generality to assume in the proof that T D 1. If ˛C1 < 2H ,
then

R 1=s
0

r�˛j1 � r j2H�2dr � cs�2HC1C˛ , implying in turn

Z 1

0

ds s�ˇ
Z 1

0

dr r�˛js � r j2H�2 D
Z 1

0

ds s2H�˛�ˇ�1
Z 1=s

0

dr r�˛j1 � r j2H�2

� c

Z 1

0

s�ˇds < 1:

If ˛ C 1 D 2H , then
R 1=s
0

r1�2H j1 � r j2H�2dr � c.1C j log sj/, implying in turn

Z 1

0

ds s�ˇ
Z 1

0

dr r�˛js � r j2H�2 D
Z 1

0

ds s�ˇ
Z 1

0

dr r1�2H js � r j2H�2

D
Z 1

0

ds s�ˇ
Z 1=s

0

dr r1�2H j1� r j2H�2 � c

Z 1

0

s�ˇ�1C j log sj�ds < 1:

Finally, if ˛ C 1 > 2H , then

Z 1

0

ds s�ˇ
Z 1

0

dr r�˛js�r j2H�2 D
Z 1

0

ds s2H�˛�ˇ�1
Z 1=s

0

dr r�˛j1�r j2H�2

�
Z 1

0

s2H�˛�ˇ�1ds�
Z 1

0

r�˛j1�r j2H�2dr<1:

ut
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Lemma 3.2. Assume ˛ 2 .0;H/. Recall the definition (17.21) of �t . Then �T WD
limt!T �t exists in L2. Moreover, for all " 2 .0;H � ˛/, the process f�t gt2Œ0;T �
admits a modification with .H � ˛ � "/-Hölder continuous paths, still denoted � in
the sequel. In particular, �t ! �T almost surely as t ! T .

Proof. Because ˛ < H , by Lemma 3.1 we have that
R T
0

ds s�˛ R T
0

du u�˛js �
uj2H�2 < 1: For all s � t < T , we thus have, using Eq. (17.14) to get the first
equality,

E
h
.�t � �s/

2
i

D H.2H � 1/
Z t

s

du.T � u/�˛
Z t

s

dv.T � v/�˛jv � uj2H�2

D H.2H � 1/
Z T�s

T�t
du u�˛

Z T�s

T�t
dv v�˛jv � uj2H�2

D H.2H � 1/
Z t�s

0

du .u C T � t/�˛
Z t�s

0

dv .v C T � t/�˛jv � uj2H�2

� H.2H � 1/
Z t�s

0

du u�˛
Z t�s

0

dv v�˛jv � uj2H�2

D H.2H � 1/.t � s/2H�2˛
Z 1

0

du u�˛
Z 1

0

dv v�˛jv � uj2H�2

D c.t � s/2H�2˛:

By the Cauchy criterion, we deduce that �T WD limt!T �t exists in L2. Moreover,
because the process � is centered and Gaussian, the Kolmogorov–Centsov theorem
applies as well, thus leading to the desired conclusion. ut
Lemma 3.3. Assume ˛ 2 .1 � H;H/. Recall the definition (17.22) of �t . Then
�T WD limt!T �t exists in L2. Moreover, there exist � > 0 such that f�t gt2Œ0;T �
admits a modification with � -Hölder continuous paths, still denoted � in the sequel.
In particular, �t ! �T almost surely as t ! T .

Proof. As a first step, fix ˇ1; ˇ2 2 .1 � H;H/ and let us show that there exists
" D ".ˇ1; ˇ2;H/ > 0 and c D c.ˇ1; ˇ2;H/ > 0 such that, for all 0 � s � t � T ,

Z
Œ0;t ��Œs;t �

.T � u/�ˇ1.T � v/�ˇ2 ju � vj2H�2dudv � c.t � s/": (17.24)

Indeed, we have
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Z
Œ0;t ��Œs;t �

.T � u/�ˇ1.T � v/�ˇ2 ju � vj2H�2dudv

D
Z T

T�t
du u�ˇ1

Z T�s

T�t
dv v�ˇ2 ju � vj2H�2

D
Z t

0

du.u C T � t/�ˇ1
Z t�s

0

dv.v C T � t/�ˇ2 ju � vj2H�2

�
Z t

0

du u�ˇ1
Z t�s

0

dv v�ˇ2 ju � vj2H�2

D
Z t�s

0

du u�ˇ1
Z t�s

0

dv v�ˇ2 ju � vj2H�2

C
Z t

t�s
du u�ˇ1

Z t�s

0

dv v�ˇ2.u � v/2H�2

D .t � s/2H�ˇ1�ˇ2
Z 1

0

du u�ˇ1
Z 1

0

dv v�ˇ2 ju � vj2H�2

C
Z t

t�s
du u�ˇ1�ˇ2C2H�1

Z .t�s/=u

0

dv v�ˇ2.1 � v/2H�2

� c.t � s/2H�ˇ1�ˇ2 C c.t � s/1�ˇ2

�
Z T

t�s
du u�ˇ1C2H�2 (see Lemma 3.1 for the first integral and

use 1 � v � 1 for the second one)

D c.t � s/2H�ˇ1�ˇ2 C c.t � s/1�ˇ2

�

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

1 if ˇ1 < 2H � 1

1C j log.t � s/j if ˇ1 D 2H � 1

.t � s/2H�1�ˇ1 if ˇ1 > 2H � 1

� c.t � s/" for some " 2 .0; 1 ^ .2H � ˇ1/ � ˇ2/;

hence Eq. (17.24) is shown.

Now, let t < T . Using Eq. (17.18), we can write

�t D
Z t

0

�u.T � u/˛�1ıBu CH.2H � 1/

Z t

0

du.T � u/˛�1

�
Z u

0

dv.T � v/�˛.u � v/2H�2: (17.25)
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To have the right to write Eq. (17.25), according to Sect. 2.4 we must check that:
.i/ u ! .T � u/˛�1�u belongs almost surely to C � .Œ0; t �/ for some � > 1 � H ;
.i i/ �u 2 D

1;2 for all u 2 Œ0; t �, and .i i i/
R
Œ0;t �2

.T � u/˛�1jDv�uj ju � vj2H�2dudv <
1 almost surely. To keep the length of this paper within bounds, we will do it
completely here, and this will serve as a basis for the proof of the other instances
where a similar verification should have been made as well. The main reason why
.i/ to .i i i/ are easy to check is because we are integrating on the compact interval
Œ0; t � with t strictly less than T .

Proof of .i/. Firstly, u ! .T � u/˛�1 is C1 and bounded on Œ0; t �. Secondly, for
u; v 2 Œ0; t � with, say, u < v, we have

EŒ.�u � �v/
2� D H.2H � 1/

Z v

u
dx.T � x/�˛

Z v

u
dy.T � y/�˛jy � xj2H�2

� .T�t/�2˛H.2H�1/
Z v

u
dx
Z v

u
dyjy�xj2H�2 D .T�t/�2˛ jv�uj2H:

Hence, by combining the Kolmogorov–Centsov theorem with the fact that � is
Gaussian, we get that (almost) all the sample paths of � are 	-Hölderian on Œ0; t �
for any 	 2 .0;H/. Consequently, by choosing � 2 .1 �H;H/ (which is possible
since H > 1=2), the proof of .i/ is concluded. ut
Proof of .i i/. This is evident, using the representation (17.21) of � as well as the
fact that s ! .T � s/�˛1Œ0;t �.s/ 2 jHj, see Sect. 2.1. ut
Proof of .i i i/. Here again, it is easy: indeed, we haveDv�u D .T � v/�˛1Œ0;u�.v/, so

Z
Œ0;t �2

.T � u/˛�1jDv�uj ju � vj2H�2dudv

D
Z
Œ0;t �2

.T � u/˛�1.T � v/�˛ ju � vj2H�2dudv < 1:

�

Let us go back to the proof. We deduce from Eq. (17.25), after setting

't.u; v/ D 1

2
.T � u _ v/˛�1.T � u ^ v/�˛ 1Œ0;t �2 .u; v/;

that

�t D I2.'t /CH.2H � 1/
Z t

0

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2:

Hence, because of Eq. (17.15),

E
h
.�t � �s/

2
i

D 2k't � 'sk2H˝2 CH2.2H � 1/2

�
�Z t

s

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2
�2
: (17.26)
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We have, by observing that 't � 's 2 jHjˇ2,

k't � 'sk2H˝2 D H2.2H � 1/2
Z
Œ0;T �4

�
't.u; v/� 's.u; v/

�

��'t .x; y/ � 's.x; y/
�ju � xj2H�2jjv � yj2H�2dudvdxdy

D 1

4
H2.2H � 1/2

Z
.Œ0;t �2nŒ0;s�2/2

.T � u _ v/˛�1.T � x _ y/˛�1

�.T � u ^ v/�˛.T � x ^ y/�˛ju � xj2H�2jjv � yj2H�2dudvdxdy:

Taking into account the form of the domain in the previous integral and using that
't � 's is symmetric, we easily show that k't � 'sk2H˝2 is upper bounded (up to
constant and without seeking for sharpness) by a sum of integrals of the type

Z
Œ0;t ��Œs;t ��Œ0;T �2

.T � u/�ˇ1.T � v/�ˇ2.T � x/�ˇ3

�.T � y/�ˇ4 ju � xj2H�2jv � yj2H�2dudvdxdy;

with ˇ1; ˇ2; ˇ3; ˇ4 2 f˛; 1�˛g. Hence, combining Lemma 3.1 with Eq. (17.24), we
deduce that there exists " > 0 small enough and c > 0 such that, for all s; t 2 Œ0; T �,

k't � 'sk2H˝2 � cjt � sj": (17.27)

On the other hand, we can write, for all s � t < T ,
Z t

s

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2

D
Z T�s

T�t
du u˛�1

Z T

u
dv v�˛.v � u/2H�2

D
Z t�s

0

du.u C T � t/˛�1
Z t

u
dv.v C T � t/�˛.v � u/2H�2

�
Z t�s

0

du u˛�1
Z T

u
dv v�˛.v � u/2H�2

D .t � s/2H�1
Z 1

0

du u˛�1
Z T

t�s

u
dv v�˛.v � u/2H�2

D .t � s/2H�1
Z 1

0

du u2H�2
Z T

.t�s/u

1

dv v�˛.v � 1/2H�2: (17.28)

Let us consider three cases. Assume first that ˛ > 2H � 1: in this case,

Z T
.t�s/u

1

v�˛.v � 1/2H�2dv �
Z 1

1

v�˛.v � 1/2H�2dv < 1I
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leading, thanks to Eq. (17.28), to
Z t

s

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2 � c.t � s/2H�1:

The second case is when ˛ D 2H � 1: we then have
Z T

.t�s/u

1

v�˛.v � 1/2H�2dv � c
�
1C j log.t � s/j C j log uj�

so that, by Eq. (17.28),
Z t

s

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2 � c.t � s/2H�1�1C j log.t � s/j�:
Finally, the third case is when ˛ < 2H � 1: in this case,

Z T
.t�s/u

1

v�˛.v � 1/2H�2dv � c.t � s/˛�2HC1u˛�2HC1I

so that, by Eq. (17.28),Z t

s

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2 � c.t � s/˛:

To summarize, we have shown that there exists c > 0 such that, for all s; t 2 Œ0; T �,Z t

s

du.T � u/˛�1
Z u

0

dv.T � v/�˛.u � v/2H�2

� c
�
1C j log.jt � sj/j1f˛D2H�1g

�jt � sj.2H�1/^˛: (17.29)

By inserting Eqs. (17.27) and (17.29) into Eq. (17.26), we finally get that there
exists " > 0 small enough and c > 0 such that, for all s; t 2 Œ0; T �,

E
h
.�t � �s/

2
i

� cjt � sj":
By the Cauchy criterion, we deduce that �T WD limt!T �t exists in L2. Moreover,
because �t � �s � EŒ�t � C EŒ�s� belongs to the second Wiener chaos of B (where
all theLp norms are equivalent), the Kolmogorov–Centsov theorem applies as well,
thus leading to the desired conclusion. ut
Lemma 3.4. Recall the definition (17.22) of �t . For any t 2 Œ0; T /, we have

�t D
Z t

0

.T�u/˛�1dBu �
Z t

0

.T�s/�˛dBs �
Z t

0

ıBs .T � s/�˛
Z s

0

ıBu .T � u/˛�1

�H.2H � 1/

Z t

0

ds .T � s/�˛
Z s

0

du .T � u/˛�1.s � u/2H�2:
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Proof. Fix t 2 Œ0; T /. Applying the change of variable formula (17.17) to the
right-hand side of the first equality in Eq. (17.22) leads to

�t D
Z t

0

.T �u/˛�1dBu �
Z t

0

.T �s/�˛dBs�
Z t

0

dBs .T �s/�˛
Z s

0

dBu .T �u/˛�1:
(17.30)

On the other hand, by Eq. (17.18) we have that

Z t

0

dBs .T � s/�˛
Z s

0

dBu .T � u/˛�1

D
Z t

0

ıBs .T � s/�˛
Z s

0

ıBu .T � u/˛�1 CH.2H � 1/

�
Z t

0

ds.T � s/�˛
Z s

0

du.T � u/˛�1.s � u/2H�2: (17.31)

The desired conclusion follows. (We omit the justification of Eqs. (17.30)
and (17.31) because it suffices to proceed as in the proof (17.25).) ut
Lemma 3.5. Let ˇ.a; b/ D R 1

0
xa�1.1 � x/b�1dx denote the usual Beta function,

letZ be any 
fBg-measurable random variable satisfying P.Z < 1/ D 1, and let
G � N .0; 1/ be independent of B:

1. Assume ˛ 2 .0; 1�H/. Then, as t ! T ,

�
Z; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�

law�!
 
Z;

r
H.2H � 1/ˇ.2 � ˛ � 2H; 2H � 1/

1 �H � ˛ G

!
: (17.32)

2. Assume ˛ D 1 �H . Then, as t ! T ,

 
Z;

1pj log.T � t/j
Z t

0

.T � u/�HdBu

!

law�!


Z;
p
2H.2H � 1/ˇ.1�H; 2H � 1/G

�
: (17.33)

Proof. By a standard approximation procedure, we first notice that it is not a loss of

generality to assume thatZ belongs to L2.�/ (using, e.g., thatZ 1fjZj�ng
a:s:�! Z as

n ! 1):

1. Set N D
q
H.2H � 1/ˇ.2�˛�2H;2H�1/

1�H�˛ G. For any d � 1 and any s1; : : : ; sd 2
Œ0; T /, we shall prove that
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�
Bs1 ; : : : ; Bsd ; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�
law�! �

Bs1; : : : ; Bsd ; N
�

as t ! T : (17.34)

Suppose for a moment that Eq. (17.34) has been shown, and let us proceed with
the proof of Eq. (17.32). By the very construction of H and by reasoning by
approximation, we deduce that, for any l � 1 and any h1; : : : ; hl 2 H with unit
norms,

�
B.h1/; : : : ; B.hl /; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�

law�! �
B.h1/; : : : ; B.hl /; N

�
as t ! T :

This implies that, for any l � 1, any h1; : : : ; hl 2 H with unit norms and any
integers q1; : : : ; ql � 0,

�
Hq1.B.h1//; : : : ;Hql .B.hl //; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�

law�! �
Hq1.B.h1//; : : : ;Hql .B.hl //; N

�
as t ! T ;

withHq the qth Hermite polynomial. Using now the very definition of the Wiener
chaoses and by reasoning by approximation once again, we deduce that, for any
l � 1, any integers q1; : : : ; ql � 0 and any f1 2 Hˇq1 ; : : : ; fl 2 Hˇql ,

�
Iq1 .f1/; : : : ; Iql .fl /; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�

law�! �
Iq1 .f1/; : : : ; Iql .fl /; N

�
as t ! T :

Thus, for any random variable F 2 L2.�/ with a finite chaotic decomposition,
we have

�
F; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�
law�! �

F;N
�

as t ! T : (17.35)

To conclude, let us consider the chaotic decomposition (17.16) of Z. By
applying Eq. (17.35) to F D EŒZ� C Pn

qD1 Iq.fq/ and then letting n ! 1,
we finally deduce that Eq. (17.32) holds true.

Now, let us proceed with the proof of Eq. (17.34). Because the left-hand side
of Eq. (17.34) is a Gaussian vector, to get Eq. (17.34) it is sufficient to check the
convergence of covariance matrices. Let us first compute the limiting variance of
.T � t/1�H�˛ R t

0 .T � u/˛�1dBu as t ! T . By Eq. (17.14), for any t 2 Œ0; T / we
have
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E

"�
.T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�2#

D H.2H � 1/.T � t/2�2H�2˛
Z t

0

ds.T � s/˛�1
Z t

0

du.T � u/˛�1js � uj2H�2

D H.2H � 1/.T � t/2�2H�2˛
Z T

T�t
ds s˛�1

Z T

T�t
du u˛�1js � uj2H�2

D H.2H � 1/

Z T
T�t

1

ds s˛�1
Z T

T�t

1

du u˛�1js � uj2H�2

! H.2H � 1/

Z 1

1

ds s˛�1
Z 1

1

du u˛�1js � uj2H�2 as t ! T ;

with

Z 1

1

ds s˛�1
Z 1

1

du u˛�1js � uj2H�2

D
Z 1

1

ds s2˛C2H�3
Z 1

1=s

du u˛�1j1 � uj2H�2

D
Z 1

1

s2˛C2H�3ds
Z 1

1

u˛�1.u � 1/2H�2du

C
Z 1

1

ds s2˛C2H�3
Z 1

1=s

du u˛�1.1 � u/2H�2

D ˇ.2 � ˛ � 2H; 2H � 1/

2.1�H � ˛/ C
Z 1

0

du u˛�1.1 � u/2H�2
Z 1

1=u
ds s2˛C2H�3

D ˇ.2 � ˛ � 2H; 2H � 1/

1 �H � ˛
:

Thus,

lim
t!T

E

"�
.T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�2#

D H.2H � 1/
1�H � ˛ ˇ.2� ˛ � 2H; 2H � 1/:

On the other hand, by Eq. (17.14) we have, for any v < t < T ,
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E

�
Bv � .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu




D H.2H � 1/.T � t/1�H�˛
Z t

0

du .T � u/˛�1
Z v

0

ds ju � sj2H�2

D H.T � t/1�H�˛
Z t

0

.T � u/˛�1�u2H�1 C sign.v � u/ � jv � uj2H�1�du

! 0 as t ! T ;

because
R T
0 .T � u/˛�1�u2H�1 C sign.v � u/ � jv � uj2H�1�du < 1. Conver-

gence (17.34) is then shown, and Eq. (17.32) follows.
2. By Eq. (17.14), for any t 2 Œ0 _ .T � 1/; T /, we have

E

2
4
 

1pj log.T � t/j
Z t

0

.T � u/�HdBu

!23
5

D H.2H � 1/

j log.T � t/j
Z t

0

ds.T � s/�H
Z t

0

du.T � u/�H js � uj2H�2

D H.2H � 1/

j log.T � t/j
Z T

T�t
ds s�H

Z T

T�t
du u�H js � uj2H�2

D 2H.2H � 1/

j log.T � t/j
Z T

T�t
ds s�H

Z s

T�t
du u�H.s � u/2H�2

D 2H.2H � 1/

j log.T � t/j
Z T

T�t
ds

s

Z 1

T�t
s

du u�H.1 � u/2H�2

D 2H.2H � 1/

j log.T � t/j
Z 1

T�t
T

du u�H.1 � u/2H�2
Z T

T�t
u

ds

s

D 2H.2H � 1/

Z 1

T�t
T

du u�H.1 � u/2H�2
�
1C log.T u/

j log.T � t/j
�
:

Because
R 1
0

j log.T u/ju�H.1 � u/2H�2du < 1, we get that

E

2
4
 

1pj log.T � t/j
Z t

0

.T � s/�H dBs

!23
5

! 2H.2H � 1/ˇ.1 �H; 2H � 1/ as t ! T .

On the other hand, fix v 2 Œ0; T /. For all t 2 Œ0 _ .T � 1/; T /, using Eq. (17.14)
we can write
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E

"
Bv � 1pj log.T � t/j

Z t

0

.T � u/�HdBu

#

D H.2H � 1/pj log.T � t/j
Z t

0

du .T � u/�H
Z v

0

ds ju � sj2H�2

D Hpj log.T � t/j
Z T

0

.T � u/˛�1�u2H�1 C sign.v � u/ � jv � uj2H�1�du

�! 0 as t ! T

because
R T
0
.T � u/˛�1�u2H�1 C sign.v � u/ � jv � uj2H�1�du < 1. Thus, we

have shown that, for any d � 1 and any s1; : : : ; sd 2 Œ0; T /,�
Bs1 ; : : : ; Bsd ; .T � t/1�H�˛

Z t

0

.T � u/˛�1dBu

�

law�!
�
Bs1 ; : : : ; Bsd ;

p
2H.2H � 1/ˇ.1�H; 2H � 1/G

�
(17.36)

as t ! T . Finally, the same reasoning as in point 1 above allows to go
from Eqs. (17.36) to (17.33). The proof of the lemma is concluded. ut

Lemma 3.6. Assume ˛ 2 .0; 1 �H�. Then, as t ! T ,

lim sup
t!T

E

"�Z t

0

ıBu .T � u/�˛
Z s

0

ıBv .T � v/˛�1
�2#

< 1:

Proof. Set �t .u; v/ D 1
2
.T �u_v/�˛.T �u^v/˛�11Œ0;t �2 .u; v/. We have �t 2 jHjˇ2

and
R t
0 ıBu .T � u/�˛

R u
0 ıBv .T � v/˛�1 D I2.�t / so that

lim sup
t!T

E

"�Z t

0

ıBu .T � u/�˛
Z u

0

ıBv .T � v/˛�1
�2#

D 2 lim sup
t!T

k�tk2H˝2

D 2H2.2H � 1/2 lim sup
t!T

Z
Œ0;T �4

�t .u; v/�t .x; y/ju � xj2H�2

�jv � yj2H�2dudvdxdy

D 1

2
H2.2H � 1/2

Z
Œ0;T �4

.T � u _ v/�˛.T � u ^ v/˛�1.T � x _ y/�˛

�.T � x ^ y/˛�1ju � xj2H�2jv � yj2H�2dudvdxdy

D 2H2.2H � 1/2
Z T

0

du .T � u/�˛
Z T

0

dx .T � x/�˛ju � xj2H�2

�
Z u

0

dv .T � v/˛�1
Z x

0

dv .T � y/˛�1jv � yj2H�2
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D 2H2.2H � 1/2
Z T

0

du u�˛
Z T

0

dx x�˛ ju � xj2H�2
Z T

u
dv v˛�1

�
Z T

x

dy y˛�1jv � yj2H�2

D 2H2.2H � 1/2
Z T

0

du u�˛
Z T

0

dx x�˛ ju � xj2H�2
Z T

u
dv v2HC2˛�3

�
Z T=v

x=v
dy y˛�1j1 � yj2H�2:

Because ˛ � 1 �H and H < 1, we have ˛ < 2 � 2H , so that

Z T=v

x=v
y˛�1j1 � yj2H�2dy �

Z 1

0

y˛�1j1 � yj2H�2dy < 1:

Moreover, because 2H C 2˛ � 3 � �1 due to our assumption on ˛, we have

Z T

u
dv v2HC2˛�3 � c

�
u2HC2˛�2 if ˛ < 1�H

1C j log uj if ˛ D 1 �H
:

Consequently, if ˛ D 1 �H , then

Z T

0

du u�˛
Z T

0

dx x�˛ju � xj2H�2
Z T

u
dv v2HC2˛�3

Z T=v

x=v
dy y˛�1j1 � yj2H�2

� c

Z T

0

du uH�1�1C j log uj�
Z T

0

dx xH�1ju � xj2H�2

D c

Z T

0

du u4H�3�1C j log uj�
Z T=u

0

dx xH�1j1 � xj2H�2

� c

Z T

0

du u4H�3�1C j log uj� �

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

1 if H <
2

3

1C j log uj if H D 2

3

u2�3H if H >
2

3

< 1;
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and the proof is concluded in this case. Assume now that ˛ < 1 �H . Then

Z T

0

du u�˛
Z T

0

dx x�˛ju � xj2H�2

�
Z T

u
dv v2HC2˛�3

Z T=v

x=v
dy y˛�1j1� yj2H�2

� c

Z T

0

du u2HC˛�2
Z T

0

dx x�˛ju � xj2H�2

D c

Z T

0

du u4H�3
Z T=u

0

dx x�˛j1 � xj2H�2:

Let us distinguish three different cases. First, if ˛ < 2H � 1 then

Z T

0

du u4H�3
Z T=u

0

dx x�˛j1 � xj2H�2 � c

Z T

0

u2H�2C˛du < 1:

Second, if ˛ D 2H � 1, then

Z T

0

du u4H�3
Z T=u

0

dx x�˛j1�xj2H�2 D
Z T

0

du u4H�3
Z T=u

0

dx x1�2H j1� xj2H�2

� c

Z T

0

u4H�3�1C j log uj�du < 1:

Third, if ˛ > 2H � 1, then

Z T

0

du u4H�3
Z T=u

0

dx x�˛ j1� xj2H�2

�
Z T

0

u4H�3du
Z 1

0

x�˛j1 � xj2H�2dx < 1:

Thus, in all the possible cases we see that lim supt!T EŒ.
R t
0 ıBu .T �

u/�˛
R u
0 ıBv .T � v/˛�1/2� is finite, and the proof of the lemma is done. ut

Lemma 3.7. Assume ˛ 2 .0;H/, and recall the definition (17.21) of �t . Then, as
t ! T :

1. If 0 < ˛ < 1
2
, then

.T � t/1�2˛
Z t

0

�2s .T � s/2˛�2 ds
a:s:! �2T

1 � 2˛ :
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2. If ˛ D 1
2
, then

1

j log.T � t/j
Z t

0

�2s
T � s

ds
a:s:! �2T :

3. If 1
2
< ˛ < H , then

Z t

0

�2s .T � s/2˛�2 ds
a:s:!

Z T

0

�2s .T � s/2˛�2 ds < 1:

Proof. 1. Using the
�
H
2

� ˛
2

�
-Hölderianity of � (Lemma 3.2), we can write

ˇ̌
ˇ̌.T � t/1�2˛

Z t

0

�2s .T � s/2˛�2 ds � �2T
1 � 2˛

ˇ̌
ˇ̌

� .T � t/1�2˛
Z t

0

ˇ̌
�2s � �2T

ˇ̌
.T � s/2˛�2 ds C .T � t/1�2˛

T 2˛�1

1 � 2˛
�2T

� cj�j1.T � t/1�2˛
Z t

0

.T � s/
H
2 C 3˛

2 �2 ds C .T � t/1�2˛ T
2˛�1

1� 2˛
�2T

� cj�j1
�
.T � t/

H
2 � ˛

2 C .T � t/1�2˛T
H
2 C 3˛

2 �1�C .T � t/1�2˛ T
2˛�1

1 � 2˛ �
2
T

! 0 almost surely as t ! T .

2. Using the .H
2

� 1
4
/-Hölderianity of � (Lemma 3.2), we can write

ˇ̌
ˇ̌ 1

j log.T � t/j
Z t

0

�2s
T � s ds � �2T

ˇ̌
ˇ̌

� 1

j log.T � t/j
Z t

0

ˇ̌
�2s � �2T

ˇ̌
T � s ds C log.T /

j log.T � t/j�
2
T

� cj�j1
j log.T � t/j

Z t

0

.T � s/H2 � 5
4 ds C log.T /

j log.T � t/j�
2
T

� cj�j1
j log.T � t/j

�
T

H
2 � 1

4 C .T � t/ H2 � 1
4
�C log.T /

j log.T � t/j�
2
T

! 0 almost surely as t ! T .

3. By Lemma 3.2, the process � is continuous on Œ0; T �, hence integrable. Moreover,
s 7! .T � s/2˛�2 is integrable at s D T because ˛ > 1

2
. The convergence in

point 3 is then clear, with a finite limit.
ut

We are now ready to prove Theorems 3.1 and 3.2.
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Proof of Theorem 3.1. Fix ˛ > 0. Thanks to the change of variable formula (17.17)
(which can be well applied here, as is easily shown by proceeding as in the
proof (17.25)), we can write, for any t 2 Œ0; T /,

1

2
.T � t/2˛�1�2t D 1 � 2˛

2

Z t

0

.T � u/2˛�2�2u du C
Z t

0

.T � u/2˛�1�ud�u

D 1 � 2˛
2

Z t

0

.T � u/2˛�2�2u du C �t ;

so that

˛ � b̨t D �2t

2.T � t/1�2˛ R t
0
�2u .T � u/2˛�2du

C ˛ � 1

2
: (17.37)

When ˛ 2 .0; 1
2
/, we have .T � t/1�2˛ R t0 �2u .T � u/2˛�2du

a:s:! �2T
1�2˛ (resp. �2t

a:s:!
�2T ) as t ! T by Lemma 3.7 (resp. Lemma 3.2); hence, as desired one gets that

˛ � b̨t a:s:! 0 as t ! T .
When ˛ D 1

2
, the identity (17.37) becomes

˛ � b̨t D �2t

2
R t
0 �

2
u .T � u/�1du

I (17.38)

as t ! T , we have
R t
0
�2u .T � u/�1du

a:s:� j log.T � t/j�2T (resp. �2t
a:s:! �2T ) by

Lemma 3.7 (resp. Lemma 3.2). Hence, here again we have ˛ � b̨t a:s:! 0 as t ! T .

Suppose now that ˛ 2 . 1
2
;H/. As t ! T , we have

R t
0
�2u .T � u/2˛�2du

a:s:!R T
0 �

2
u .T � u/2˛�2du (resp. �2t

a:s:! �2T ) by Lemma 3.7 (resp. Lemma 3.2).

Hence Eq. (17.37) yields this time that ˛ � b̨t a:s:! ˛ � 1
2

as t ! T , that is,

b̨t a:s:! 1
2
.

Assume finally that ˛ � H . By Eq. (17.15), we have

E
�
.T � t/2˛�1�2t

�

D .T � t/2˛�1
Z t

0

du.T � u/�˛
Z t

0

dv.T � v/�˛jv � uj2H�2

D .T � t/2˛�1
Z T

T�t
du u�˛

Z T

T�t
dv v�˛jv � uj2H�2

D .T � t/2H�1
Z T

T�t

1

du u�˛
Z T

T�t

1

dv v�˛jv � uj2H�2

D .T � t/2H�1
Z 1

T�t
T

du u˛�2H
Z 1

T�t
T

dv v˛�2H jv � uj2H�2
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� .T � t/2H�1
Z 1

T�t
T

du u2˛�2H�1
Z 1

u

0

dv v˛�2H jv � 1j2H�2

� c.T � t/2H�1
Z 1

T�t
T

du u2˛�2H�1 �

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

1 if ˛ < 1

1C j log uj if ˛ D 1

u1�˛ if ˛ > 1

� c.T � t/2H�1 �
8<
:

j log.T � t/j if ˛ D H

1 if ˛ > H

�! 0 as t ! T :

Hence, having a look at Eq. (17.37) and because
R t
0 �

2
u .T � u/2˛�2du

a:s:! R T
0 �

2
u .T �

u/2˛�2du 2 .0;1� as t ! T , we deduce that ˛ � b̨t prob:! ˛ � 1
2

as t ! T , that is,

b̨t prob:! 1
2
.

The proof of Theorem 3.1 is done. ut
Proof of Theorem 3.2.

1. Assume that ˛ belongs to .0; 1 �H/. We have, by using Lemma 3.4 to go from
the first to the second line,

.T � t/˛�H �˛ � b̨t � D .T � t/1�H�˛�t
.T � t/1�2˛ R t

0
�2s .T � s/2˛�2ds

D .T � t/1�H�˛ R t
0
.T � u/˛�1dBu

R t
0
.T � s/�˛dBs

.T � t/1�2˛ R t
0
�2s .T � s/2˛�2ds

� .T � t/1�H�˛ R t
0
ıBs.T � s/�˛

R s
0
ıBu.T � u/˛�1

.T � t/1�2˛ R t
0
�2s .T � s/2˛�2ds

�H.2H � 1/.T � t/1�H�˛ R t
0

ds .T � s/�˛ R s
0

du .T � u/˛�1.s � u/2H�2

.T � t/1�2˛ R t
0
�2s .T � s/2˛�2ds

D 1 � 2˛
�T

.T � t/1�H�˛
Z t

0

.T � u/˛�1dBu

�
R t
0
.T � s/�˛dBs

�T
� �2T

.1 � 2˛/.T � t/1�2˛
R t
0 �

2
s .T � s/2˛�2ds
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� .T � t/1�H�˛ R t
0
ıBs.T � s/�˛

R s
0
ıBu.T � u/˛�1

.T � t/1�2˛ R t
0
�2s .T � s/2˛�2ds

�H.2H � 1/.T � t/1�H�˛ R t
0

ds .T � s/�˛ R s
0

du .T � u/˛�1.s � u/2H�2

.T � t/1�2˛ R t
0
�2s .T � s/2˛�2ds

D at � bt � ct � dt � et ; (17.39)

with clear definitions for at to et . Lemma 3.5 yields

at
law! .1 � 2˛/

r
H.2H � 1/ˇ.2� ˛ � 2H; 2H � 1/

1 �H � ˛ � G

�T
as t ! T ,

where G � N .0; 1/ is independent of B , whereas Lemma 3.2 (resp. Lemma 3.7)

implies that bt
a:s:! 1 (resp. ct

a:s:! 1) as t ! T . On the other hand, by combining

Lemma 3.7 with Lemma 3.6 (resp. Lemma 3.1), we deduce that dt
prob:! 0 (resp.

et
prob:! 0) as t ! T . By plugging all these convergences together, we get that, as

t ! T ,

.T � t/˛�H �b̨t � ˛
� law! .1 � 2˛/

r
H.2H � 1/

ˇ.2� ˛ � 2H; 2H � 1/

1 �H � ˛
� G

�T
:

Because it is well known that the ratio of two independent N .0; 1/-random variables
is C.1/-distributed, to conclude it remains to compute the variance 
2 of �T �
N .0; 
2/. By Eq. (17.15), we have

EŒ�2T � D H.2H � 1/

Z T

0

du.T � u/�˛
Z T

0

dv.T � v/�˛jv � uj2H�2

D H.2H � 1/

Z T

0

du u�˛
Z T

0

dv v�˛jv � uj2H�2

D 2H.2H � 1/
Z T

0

du u�˛
Z u

0

dv v�˛.u � v/2H�2

D 2H.2H � 1/
Z T

0

u2H�2˛�1du
Z 1

0

v�˛.1 � v/2H�2dv

D H.2H � 1/

H � ˛ T 2H�2˛ˇ.1 � ˛; 2H � 1/; (17.40)

and the proof of the first part of Theorem 3.2 is done.

2. Assume that ˛ D 1 � H . The proof follows the same lines as in point 1 above.
The counterpart of decomposition (17.39) is here:
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.T � t/1�2Hpj log.T � t/j
�
˛ � b̨t �

D 2H � 1

�T
pj log.T � t/j

Z t

0

.T � s/�HdBs

�
R t
0 .T � u/H�1dBu

�T
� �2T

.2H � 1/.T � t/2H�1 R t
0
�2s .T � s/�2H ds

�
R t
0
ıBs.T � s/H�1 R s

0
ıBu.T � u/�Hpj log.T � t/j.T � t/2H�1 R t
0
�2s .T � s/�2H ds

�H.2H � 1/

R t
0 ds .T � s/H�1 R s

0 du .T � u/�H.s � u/2H�2
pj log.T � t/j.T � t/2H�1 R t

0
�2s .T � s/�2Hds

Deat �ebt �ect �edt �eet :
Lemma 3.5 yields

eat law! .2H � 1/
3
2

p
2H ˇ.1�H; 2H � 1/ � G

�T
as t ! T ,

where G � N .0; 1/ is independent of B , whereas Lemma 3.2 (resp. Lemma 3.7)

implies thatebt a:s:! 1 (resp.ect a:s:! 1) as t ! T . On the other hand, by combining

Lemma 3.7 with Lemma 3.6 (resp. Lemma 3.1), we deduce that ed t prob:! 0 (resp.

eet prob:! 0) as t ! T . By plugging all these convergences together we get that, as
t ! T ,

.T � t/1�2Hpj log.T � t/j
�b̨t � ˛

� law! .2H � 1/ 32p2H ˇ.1 �H; 2H � 1/ � G

�T
:

Moreover, by Eq. (17.40) we have that �T � N �
0;HT 4H�2ˇ.H; 2H � 1/

�
. Thus,

.2H � 1/ 32p2H ˇ.1 �H; 2H � 1/ � G

�T

lawD T 1�2H .2H � 1/
3
2

s
2 ˇ.1�H; 2H � 1/

ˇ.H; 2H � 1/
� C.1/;

and the convergence in point 2 is shown.

3. Assume that ˛ belongs to .1 �H; 1
2
/. Using the decomposition
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.T � t/2˛�1�˛ � b̨t � D �t

.T � t/1�2˛ R t
0
�2u .T � u/2˛�2du

;

we immediately see that the second part of Theorem 3.2 is an obvious consequence
of Lemmas 3.3 and 3.7.

4. Assume that ˛ D 1
2
. Recall the identity (17.38) for this particular value of ˛:

˛ � b̨t D �2t

2
R t
0
�2u .T � u/�1du

:

As t ! T , we have �2t
a:s:! �2T by Lemma 3.2, whereas

R t
0
�2u .T �u/�1du

a:s:� j log.T �
t/j�2T by Lemma 3.7. Therefore, we deduce as announced that j log.T � t/j�˛ �
b̨t� a:s:! 1

2
as t ! T . ut
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Chapter 18
Gradient Bounds for Solutions of Stochastic
Differential Equations Driven by Fractional
Brownian Motions

Fabrice Baudoin and Cheng Ouyang
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Abstract We study some functional inequalities satisfied by the distribution of the
solution of a stochastic differential equation driven by fractional Brownian motions.
Such functional inequalities are obtained through new integration by parts formulas
on the path space of a fractional Brownian motion.
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1 Introduction

Let .Xx
t /t�0 be the solution of a stochastic differential equation

Xx
t D x C

nX

iD1

Z t

0

Vi .X
x
s /dBi

s ;

where .Bt /t�0 is an n-dimensional fractional Brownian motion with Hurst param-
eter H > 1

2
. Under ellipticity assumptions and classical boundedness conditions

[2, 10], the random variable Xx
t , t > 0 admits a smooth density with respect to the

Lebesgue measure of Rn and the functional operator

Pt f .x/ D E
�
f .Xx

t /
�
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is regularizing in the sense that it transforms a bounded Borel function f into a
smooth function Pt f for t > 0. In this note we aim to quantify precisely this
regularization property and prove that, under the above assumptions, bounds of the
type

jVi1 � � � Vik Pt f .x/j � Ci1���ik .t; x/kf k1; t > 0; x 2 R
n;

are satisfied. We are moreover able to get an explicit blow up rate when t ! 0: for
a fixed x 2 R

n, when t ! 0,

Ci1���ik .t; x/ D O

�
1

tkH

�
:

Our strategy to prove such bounds is the following. If f is a C 1 bounded function
on R

n, we first prove (see Lemma 4.1) that the following commutation holds

Vi Pt f .x/ D E

 
nX

kD1

˛i
k.t; x/Vkf .Xx

t /

!
;

where the ˛.t; x/’s solve an explicit system of stochastic differential equations.
Then, using an integration by parts formula in the path space of the underlying
fractional Brownian motion (see Theorem 3.1), we may rewrite the expectation of
the right-hand side of the above inequality as E

�
ˆi .t; x/f .Xx

t /
�

where ˆi .t; x/

is shown to be bounded in Lp , 1 � p < C1 with a blow up rate that may be
controlled when t ! 0. It yields a bounds on jVi Pt f .x/j. Bounds on higher order
derivatives are obtained in a similar way, by iterating the procedure just described.
Let us mention here that the bounds we obtain depend on Lp bounds for the inverse
of the Malliavin matrix of Xx

t . As of today, to the knowledge of the authors, such
bounds have not yet been obtained in the rough case H < 1

2
. The extension of our

results to the case H < 1
2

is thus not straightforward.
We close the paper by an interesting geometric situation where we may prove

an optimal and global gradient bound with a constant that is independent from the
starting point x. In the situation where the equation is driven by a Brownian motion
such global gradient bound is usually related to lower bounds on the Ricci curvature
of the Riemannian geometry given by the vector fields Vi ’s, which makes interesting
the fact that the bound also holds with fractional Brownian motions.

2 Stochastic Differential Equations Driven by Fractional
Brownian Motions

We consider the Wiener space of continuous paths:

W
n D .C.Œ0; 1�;Rn/; .Bt /0�t�1;P/
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where:

1. C.Œ0; 1�;Rn/ is the space of continuous functions Œ0; 1� ! R
n.

2. .ˇt /t�0 is the coordinate process defined by ˇt .f / D f .t/, f 2 C.Œ0; 1�;Rn/.
3. P is the Wiener measure.
4. .Bt /0�t�1 is the (P-completed) natural filtration of .ˇt /0�t�1.

An n-dimensional fractional Brownian motion with Hurst parameter H 2 .0; 1/ is
a Gaussian process:

Bt D .B1
t ; : : : ; Bn

t /; t � 0;

where B1; : : : ; Bn are n independent centered Gaussian processes with covariance
function

R .t; s/ D 1

2

�
s2H C t2H � jt � sj2H

�
:

It can be shown that such a process admits a continuous version whose paths are
Hölder � continuous, � < H . Throughout this paper we will always consider
the “regular” case, H > 1=2. In this case the fractional Brownian motion can be
constructed on the Wiener space by a Volterra type representation [4]. Namely,
under the Wiener measure, the process

Bt D
Z t

0

KH .t; s/dˇs; t � 0 (18.1)

is a fractional Brownian motion with Hurst parameter H , where

KH .t; s/ D cH s
1
2 �H

Z t

s

.u � s/H� 3
2 uH� 1

2 du ; t > s;

and cH is a suitable constant.
Denote by E the set of step functions on Œ0; 1�. Let H be the Hilbert space defined

as the closure of E with respect to the scalar product

h1Œ0;t �; 1Œ0;s�iH D RH .t; s/:

The isometry K�
H from H to L2.Œ0; 1�/ is given by

.K�
H '/.s/ D

Z 1

s

'.t/
@KH

@t
.t; s/dt:

Moreover, for any ' 2 L2.Œ0; 1�/ we have
Z 1

0

'.s/dBs D
Z 1

0

.K�
H '/.s/dˇs:

Let us consider for x 2 R
n the solution .Xx

t /t�0 of the stochastic differential
equation:

Xx
t D x C

nX

iD1

Z t

0

Vi .X
x
s /dBi

s ; (18.2)

where the Vi ’s are C 1-bounded vector fields in R
n. Existence and uniqueness of

solutions for such equations have widely been studied and are known to hold in this
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framework (see for instance [9]). Moreover, the following bounds were proved by
Hu and Nualart as an application of fractional calculus methods.

Lemma 2.1 (Hu-Nualart [6]). Consider the stochastic differential equation
(18.2). If the derivatives of Vi ’s are bounded and Hölder continuous of order
� > 1=H � 1, then

E

 
sup

0�t�T

jXt jp
!

< 1

for all p � 1: If furthermore Vi ’s are bounded and E.exp.�jX0jq// < 1 for any
� > 0 and q < 2H , then

E

 
exp �

 
sup

0�t�T

jXt jq
!!

< 1

for any � > 0 and q < 2H .

Throughout our discussion, we assume that the following assumption is in force:

Hypothesis 2.1. (1) Vi .x/’s are bounded smooth vector fields on R
n with bounded

derivatives at any order.
(2) For every x 2 R

n, .V1.x/; � � � ; Vn.x// is a basis of Rn.

Therefore, in this framework, we can find functions !k
ij such that

ŒVi ; Vj � D
nX

kD1

!k
ij Vk; (18.3)

where the !k
ij ’s are bounded smooth functions on R

n with bounded derivatives at
any order.

3 Integration by Parts Formulas

We first introduce notations and basic relations for the purpose of our discussion.
Consider the diffeomorphism ˆ.t; x/ D Xx

t W Rn ! R
n. Denote by Jt D @Xx

t

@x
the

Jacobian of ˆ.t; �/. It is standard (see [10] for details) that

dJt D
nX

iD1

@Vi .X
x
t /JtdBi

t ; with J0 D I; (18.4)

and

dJ�1
t D �

nX

iD1

J�1
t @Vi .X

x
t /dBi

t ; with J�1
0 D I: (18.5)
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For any C 1
b vector field W on R

n, we have that

.ˆt �W /.Xx
t / D JtW.x/; and .ˆt

�1� W /.x/ D J�1
t W.Xx

t /:

Here ˆt � is the push-forward operator with respect to the diffeomorphism ˆ.t; x/ W
R

n ! R
n: Introduce the nondegenerate n � n matrix value process

˛.t; x/ D .˛i
j .t; x//n

i;j D1 (18.6)

by

.ˆt �Vi /.X
x
t / D Jt .Vi .x// D

nX

kD1

˛i
k.t; x/Vk.Xx

t / i D 1; 2; : : : ; n:

Note that ˛.t; x/ is nondegenerate since we assume Vi ’s form a basis at each point
x 2 R

n. Denote by

ˇ.t; x/ D ˛�1.t; x/: (18.7)

Clearly we have

.ˆt
�1� Vi .X

x
t //.x/ D J�1

t Vi .X
x
t / D

nX

kD1

ˇi
k.t; x/Vk.x/ i D 1; 2; : : : ; n: (18.8)

Lemma 3.1. Let ˛.t; x/ and ˇ.t; x/ be as above, we have

d˛i
j .t; x/ D �

nX

k;lD1

˛i
k.t; x/!

j

lk.Xx
t /dBl

t ; with ˛i
j .0; x/ D ıi

j I (18.9)

and

dˇi
j .t; x/ D

nX

k;lD1

!k
li .X

x
t /ˇk

j .t; x/dBl
t ; with ˇi

j .0; x/ D ıi
j : (18.10)

Proof. The initial values are apparent by the definition of ˛ and ˇ. We show how to
derive Eq. (18.10). Once the equation for ˇ.t; x/ is obtained, it is standard to obtain
that ˛.t; x/ D ˇ�1.t; x/.

Consider the n�n matrix V D .V1; V2; : : : ; Vn/ D .V i
j / obtained from the vector

fields V . Let W be the inverse matrix of V . It is not hard to see we have

ˇi
j .t; x/ D

nX

kD1

W
j

k .x/.J�1
t Vi .X

x
t //k.x/:

By the equation for Xx
t , relation (18.3), Eq. (18.5), and Itô’s formula, we obtain
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d.J�1
t Vi .X

x
t //.x/ D

nX

kD1

.J�1
t ŒVk; Vi �.X

x
t //.x/dBk

t

D
nX

k;lD1

!l
ki .X

x
t /.J�1

t Vl .X
x
t //.x/dBk

t :

Hence

dˇi
j .t; x/ D

nX

k;lD1

!l
ki .X

x
t /ˇl

j .t; x/dBk
t :

This completes our proof. ut
Define now hi .t; x/ W Œ0; 1� � R

n ! H by

hi .t; x/ D .ˇk
i .s; x/IŒ0;t �.s//kD1;:::;n; i D 1; : : : ; n: (18.11)

Introduce Mi;j .t; x/ given by

Mi;j .t; x/ D 1

t2H
hhi .t; x/; hj .t; x/iH: (18.12)

For each t 2 Œ0; 1�, consider the semi-norms

kf k�;t WD sup
0�v<u�t

jf .u/ � f .v/j
.u � v/�

:

The semi-norm kf k�;1 will simply be denoted by kf k� .
We have the following two important estimates.

Lemma 3.2. Let ˛.t; x/, ˇ.t; x/, and hi .t; x/ be as above. We have:

(1) For any multi-index �, integers k; p � 1, there exists a constant Ck;p.x/ > 0

depending on k; p, and x such that for all x 2 R
n

sup
0�t�1

�����
@j�j

@x�
˛.t; x/

�����
k;p

< Ck;p.x/; sup
0�t�1

�����
@j�j

@x�
ˇ.t; x/

�����
k;p

< Ck;p.x/:

(2) For all integers k; p � 1, ıhi .t; x/ 2 D
k;p . Moreover, there exists a constant

Ck;p.x/ depending on k; p and x such that

kıhi .t; x/kk;p < Ck;p.x/tH ; t 2 Œ0; 1�:

In the above ı is the adjoint operator of D.
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Proof. The result in (1) follows from Eqs. (18.9), (18.10), and Lemma 2.1. In what
follows, we show (2). Note that we have (c.f. Nualart[8])

ıhi .t; x/ D
Z 1

0

hi .t; x/udBu � ˛H

Z 1

0

Z 1

0

Duh.t; x/vju � vj2H�2dudv

D
Z t

0

ˇi .u; x/dBu � ˛H

Z t

0

Z t

0

Duˇi .v; x/ju � vj2H�2dudv:

Here ˛H D H.2H �1/. From the above representation of ıhi and what we have just
proved in the first statement of the lemma, it follows immediately that ıhi .t; x/ 2
D

k;p for all integers k; p � 1. To show

kıhi .t; x/kk;p < Ck;p.x/tH for all t 2 Œ0; 1�;

it suffices to prove
ˇ̌
ˇ̌
Z t

0

ˇi .u; x/dBu

ˇ̌
ˇ̌ � C.x/tH t 2 Œ0; 1�:

Here C.x/ is a random variable in Lp.P/. Indeed, by standard estimate, we have
����
Z �

0

.ˇi .u; x/ � ˇi .0; x//dBu

����
�;t

� C kˇ.�; x/k�;t kBk�;t ; t 2 Œ0; 1�:

In the above 1
2

< �; � < H and � C � > 1, and C > 0 is a constant only depending
on � . Therefore

ˇ̌
ˇ̌
Z t

0

ˇi .u; x/dBu

ˇ̌
ˇ̌ � C kˇ.�; x/k�;t kBk�;t t

� C jˇ.0; x/jjBt j; t 2 Œ0; 1�:

Together with the fact that for any � < H , there exists a random variable G�.x/ in
Lp.P/ for all p > 1 such that

jˇ.t; x/ � ˇ.s; x/j < G� .x/jt � sj� ;

the proof is now completed. ut
Lemma 3.3. Let M.t; x/ D .Mi;j .t; x// be given in Eq. (18.12). We have for all
p � 1,

sup
t2Œ0;1�

E Œdet.M.t; x//�p� < 1:

Proof. Denote the Malliavin matrix of Xx
t by �.t; x/. By definition

�i;j .t; x/ D hDsX
i
t ; DsX

j
t iH D ˛H

Z t

0

Z t

0

DuXi
t DvX

j
t ju � vj2H�2dudv:

It can be shown that for all p > 1 (cf. Baudoin-Hairer [2], Hu-Nualart [6], and
Nualart-Saussereau [10])

sup
t2Œ0;1�

E

�
det

�.t; x/

t2H

��p

< 1: (18.13)
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Introduce � by

�i;j .t; x/ D ˛H

Z t

0

Z t

0

nX

kD1

�
J�1

u Vk.Xu/
�i �

J�1
v Vk.Xv/

�j ju � vj2H�2dudv:

Since Dk
s Xt D JtJ�1

s Vk.Xs/, we obtain

�.t; x/ D Jt �.t; x/JT
t : (18.14)

Recall

Mi;j .t; x/ D 1

t2H
hhi.t; x/; hj .t; x/iH;

where

hi .t; x/ D .ˇk
i .s; x/IŒ0;t �.s//kD1;:::;n; i D 1; : : : ; n:

By Eqs. (18.8) and (18.14), we have

V.x/M.t; x/V .x/T D 1

t2H
�.t; x/ D J�1 �.t; x/

t2H
.J�1/T : (18.15)

Finally, by Eq. (18.4), Lemma 2.1 and estimate (18.13) we have for all p � 1

sup
t2Œ0;1�

E
�
det.Mi;j /�p

�
< 1;

which is the desired result. ut
The following definition is inspired by Kusuoka [7].

Definition 3.1. Let H be a separable real Hilbert space and r 2 R be any real
number. Introduce Kr .H/ the set of mappings ˆ.t; x/ W .0; 1� � R

n ! D
1.H/

satisfying:

(1) ˆ.t; x/ is smooth in x and @�ˆ
@x� .t; x/ is continues in .t; x/ 2 .0; 1� � R

n with
probability one for any multi-index �.

(2) For any n; p > 1 we have

sup
0<t�1

t�rH

����
@�ˆ

@�x
.t; x/

����
Dk;p.H/

< 1:

We denote Kr .R/ by Kr .

Lemma 3.4. With probability one, we have

(1) ˛.t; x/; ˇ.t; x/ 2 K0.
(2) ıhi .t; x/ 2 K1.
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(3) Let .M �1
i;j / be the inverse matrix of .Mi;j /. Then M �1

i;j 2 K0 for all i; j D
1; : : : ; n.

Proof. The first two statements are immediate consequences of Lemma 3.2. The
third statement follows by writing M �1 D adjM

det M
, estimates in Lemma 3.2 (1) and

Lemma 3.3. ut
Now we can state one of our main results in this note.

Theorem 3.1. Let f be any C 1-bounded function and ˆ.t; x/ W � ! Kr we have

E
�
ˆ.t; x/Vi f .Xx

t /
� D E

�
.T �

Vi
ˆ.t; x//f .Xx

t /
�

;

where T �
Vi

ˆ.t; x/ is an element in Kr�1 with probability one.

Proof. This is primarily integration by parts together with the estimates obtained
before. First note

Dj
s f .Xt / D hrf .Xt /; Dj

s Xti
D hrf .Xt /; JtJ�1

s Vj .Xs/i

D
nX

k;lD1

h
j

k.t/˛k
l .t/.Vlf /.Xt /:

Hence

Vi f .Xt / D 1

t2H

nX

j;lD1

ˇi
j .t/M �1

jl hDf .Xt/; hl .t/iH: (18.16)

Therefore, we have

E .ˆ.t; x/Vi f .Xt//

D 1

t2H

nX

k;lD1

E
�hDf .Xt/; ˆ.t; x/ˇi

k.t/M �1
kl .t/hl .t/iH

�

D 1

t2H

nX

k;lD1

E
��

ı
�
ˆ.t; x/ˇi

k.t/M �1
kl .t/hl .t/

� �
f .Xt /

�

D
nX

k;lD1

E

�	
1

t2H
ˆ.t; x/ˇi

k.t/M �1
kl .t/ıhl .t/

� 1

t2H
hD.ˆ.t; x/ˇi

k.t/M �1
kl .t//; hl .t/iH



f .Xt /

�
:
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By Lemma 3.4, the first term in the brackets above is in Kr�1 and the second term
is in Kr . Finally, denote

T �
Vi

ˆ.t; x/ D
nX

k;lD1

	
1

t2H
ˆ.t; x/ˇi

k.t/M �1
kl .t/ıhl .t/

� 1

t2H
hD.ˆ.t; x/ˇi

k.t/M �1
kl .t//; hl .t/iH



:

It is clear that T �
Vi

ˆ.t; x/ 2 Kr�1. The proof is completed. ut

4 Gradient Bounds

With the integration by parts formula of Theorem 3.1 in hand we can now prove our
gradient bounds. We start with the following basic commutation formula:

Lemma 4.1. For i D 1; 2; : : : ; n, we have the commutation

Vi Pt f .x/ D E
�
..JtVi /f / .Xx

t /
� D E

 
nX

kD1

˛i
k.t; x/Vkf .Xx

t /

!
;

where the ˛.t; x/ solve the system of stochastic differential equations (18.9).

Proof. For any C 1
b -vector field W on R

n we have

WPt f .x/ D E
�
..JtW /f /.Xx

t /
�

:

The remainder of the proof is then clear from the computations in the previous
section. ut

Finally we have the following gradient bounds.

Theorem 4.1. Let p > 1. For i1; : : : ; ik 2 f1; : : : ; ng, and x 2;Rn, we have

jVi1 : : : Vik Pt f .x/j � C.t; x/.Pt f
p.x//

1
p t 2 Œ0; 1�

with C.t; p; x/ D O
�

1

tHk

�
when t ! 0.

Proof. By Theorem 3.1 and Lemma 4.1, for each k � 1 there exists a ˆ.�k/.t; x/ 2
K�k such that

Vi1 : : : Vik Pt f .x/ D E
�
ˆ.�k/.t; x/f .Xt /

�
:

Now an application of Hölder’s inequality gives us the desired result. ut
Remark 4.1. Here let us emphasize a simple but important consequence of the
above theorem that suppose f is uniformly bounded, then

jVi1 : : : Vik Pt f .x/j � C.t; x/kf k1 t 2 Œ0; 1�

where C.t; x/ D O
�

1

tHk

�
as t ! 0.
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Another direct corollary of Theorem 4.1 is the following inverse Poincaré
inequality.

Corollary 4.1. For i1; : : : ; ik 2 f1; : : : ; ng, and x 2 R
n,

jVi1 : : : Vik Pt f .x/j2 � C.t; x/.Pt f
2.x/ � .Pt f /2.x// t 2 Œ0; 1�

with C.t; x/ D O
�

1
t2Hk

�
when t ! 0.

Proof. By Theorem 4.1, for any constant C 2 R we have

jVi1 : : : Vik Pt f .x/j2 D jVi1 : : : Vik Pt .f � C /.x/j2
� C.t; x/.Pt .f � C /2.x// t 2 Œ0; 1�

with C.t; x/ D O
�

1

t2Hk

�
when t ! 0. Now minimizing C 2 R gives us the desired

result. ut
Remark 4.2. For each smooth function f W Rn ! R, denote

�.f / D
nX

iD1

.Vi f /2:

We also have, for i1; : : : ; ik 2 f1; : : : ; ng, and x 2 R
n,

jVi1 : : : Vik Pt f .x/j2 � C.t; x/Pt �.f /.x/; t 2 Œ0; 1�

with C.t; x/ D O
�

1

t2H.k�1/

�
when t ! 0. Indeed, by Theorem 3.1 and Lemma 4.1,

we know that for each k � 1, there exists ˆ
.1�k/
j .t; x/ 2 K1�k; j D 1; 2; : : : ; n

such that
Vi1 : : : Vik Pt f .x/ D E

�
ˆ

.1�k/
j .t; x/.Vj f /.Xt/

�
:

The sequel of the argument is then clear.

5 A Global Gradient Bound

Throughout our discussion in this section, we show that under some additional
conditions on the vector fields Vi ; : : : ; Vn, we are able to obtain

p
�.Pt f / � Pt .

p
�.f //;

uniformly in x, where we denoted as above

�.f / D
nX

iD1

.Vi f /2:



424 F. Baudoin and C. Ouyang

For this purpose, we need the following additional structure equation imposed on
vector fields Vi ; : : : ; Vd .

Hypothesis 5.1. In addition to Hypothesis 2.1, we assume the smooth and bounded
functions !k

ij satisfy

!k
ij D �!

j

ik; 1 � i; j; k � d:

Interestingly, such an assumption already appeared in a previous work of the
authors [3] where they proved an asymptotic expansion of the density of Xt when
t ! 0. In a Lie group structure, that is if the !k

ij ’s are constant, then this assumption
is equivalent to the fact that the Lie algebra is of compact type. So, in particular, this
assumption is satisfied on any compact Lie group.

Remark 5.1. In the case of a stochastic differential equation driven by a Brownian
motion, the functional operator Pt is a diffusion semigroup with infinitesimal
generator L D 1

2

�Pn
iD1 V 2

i

�
. The gradient subcommutation,
p

�.Pt f / � Pt .
p

�f /;

is then known to be equivalent to the fact that the Ricci curvature of the Riemannian
geometry given by the vector fields Vi ’s is nonnegative (see for instance [1]).

The following approximation result, which can be found for instance in [5], will
also be used in the sequel:

Proposition 5.1. For m � 1, let Bm D fBm
t I t 2 Œ0; 1�g be the sequence of linear

interpolations of B along the dyadic subdivision of Œ0; 1� of mesh m; that is, if
tm
i D i2�m for i D 0; : : : ; 2m, then for t 2 .tm

i ; tm
iC1�

Bm
t D Btim C t � tim

tm
iC1 � tm

i

.Btm
iC1

� Btm
i

/:

Consider Xm the solution to Eq. (18.2) restricted to Œ0; 1�, where B has been
replaced by Bm. Then almost surely, for any � < H and t 2 Œ0; 1�, the following
holds true:

lim
m!1 kXx � Xmk� D 0: (18.17)

Theorem 5.1. Recall the definition of ˛.t; x/ in Eq. (18.6) and

d˛i
j .t; x/ D �

nX

k;lD1

˛i
k.t; x/!

j

lk.Xx
t /dBl

t ; with ˛i
j .0; x/ D ıi

j : (18.18)

Under Assumption 5.1, ˛.t; x/ is an orthogonal matrix almost surely for all t and
x. In particular, we have

nX

j D1

˛i
j .t; x/2 D 1I and

nX

iD1

˛i
j .t; x/2 D 1; (18.19)

almost surely.
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Proof. Let !i D .!k
i;j /1�j:k�d be the d �d matrix formed by !k

i;j . From Eq. (18.18)
and Hypothesis 5.1, we have

d.˛.t; x/˛T .t; x// D .d˛.t; x// ˛T .t; x/ C ˛.t; x/
�
d˛T .t; x/

�

D �˛.t; x/

� dX

iD1

�
!i .X

x
t / C !T

i .Xx
t /
�

dBi
t

�
˛T .t; x/

D 0

In the above, ˛T .t; x/ is the transposed matrix of ˛.t; x/. Taking into account the
initial condition ˛.0; x/ D I , we conclude that ˛.t; x/ is an orthogonal matrix for
all t and x almost surely. This concludes our proof. ut

As a direct consequence of Lemma 4.1 and Theorem 5.1, we have the main result
of this section.

Theorem 5.2. Under Assumption 5.1, we have uniformly in x

p
�.Pt f / � Pt .

p
�.f //:

Proof. By applying Lemma 4.1, Cauchy–Schwarz inequality, and then Theo-
rem 5.1, we have for any vector a D .ai / 2 R

n

nX

iD1

ai ViPt f .x/ D E

0

@
nX

i;kD1

ai ˛
i
k.t; x/Vkf .Xx

t /

1

A

� E

2

64

0

@
nX

kD1

 
nX

iD1

ai ˛
i
k.t; x/

!2
1

A

1
2  nX

kD1

.Vkf .Xx
t //2

! 1
2

3

75

� kakE
 

nX

kD1

Vkf .Xx
t /2

! 1
2

:

By choosing

ai D .Vi Pt f /.x/pPn
iD1.Vi Pt f /2.x/

;

we obtain
p

�.Pt f / D
vuut

nX

iD1

.Vi Pt f /2 � Pt .
p

�.f //:

The proof is completed. ut
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Remark 5.2. Since Pt comes from probability measure, we observe from Jensen
inequality that p

�.Pt f / � Pt .
p

�.f //

implies
�.Pt f / � Pt .�f /:
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4. Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion.
Potential Anal. 10, 177–214 (1998)

5. Friz, P., Victoir, N.: Multidimensional Dimensional Processes Seen as Rough Paths. Cambridge
University Press, Cambridge (2010)

6. Hu, Y., Nualart, D.: Differential equations driven by Holder continuous functions of order
greater than 1/2. In: Stochastic Analysis and Applications, pp. 399–413, Abel Symp., 2,
Springer, Berlin (2007)

7. Kusuoka, S.: Malliavin calculus revisited. J. Math. Sci. Univ. Tokyo 10, 261–277 (2003)
8. Nualart, D.: The Malliavin calculus and related topics. In: Probability and Its Applications, 2nd

edn. Springer, Berlin (2006)
9. Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian motion. Collect.

Math. 53(1), 55–81 (2002)
10. Nualart, D., Saussereau, B.: Malliavin calculus for stochastic differential equations driven by a

fractional Brownian motion. Stoch. Process. Appl. 119(2), 391–409 (2009)



Chapter 19
Parameter Estimation for Fractional
Ornstein–Uhlenbeck Processes
with Discrete Observations

Yaozhong Hu and Jian Song

Abstract Consider an Ornstein–Uhlenbeck process, dXt D ��Xtdt C �dBH
t ,

driven by fractional Brownian motion BH with known Hurst parameterH � 1
2

and
known variance � . But the parameter � > 0 is unknown. Assume that the process is
observed at discrete time instants t D h; 2h; : : : ; nh. We construct an estimator O�n of
� which is strongly consistent, namely, O�n converges to � almost surely as n ! 1.
We also obtain a central limit type theorem and a Berry–Esseen type theorem for
this estimator O�n when 1=2 � H < 3=4. The tool we use is some recent results on
central limit theorems for multiple Wiener integrals through Malliavin calculus. It
should be pointed out that no condition on the step size h is required, contrary to the
existing conventional assumptions.

Received 9/28/2011; Accepted 2/21/2012; Final 2/29/2012

1 Introduction

The Ornstein–Uhlenbeck process Xt driven by a certain type of noise Zt is
described by the following Langevin equation:

dXt D ��Xtdt C �dZt : (19.1)

If the parameter � is unknown and if the process .Xt ; 0 � t � T / can be observed
continuously, then an important problem is to estimate the parameter � based on
the (single-path) observation .Xt ; 0 � t � T /. See [6] and the references therein
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for a short account of the research works relevant to this problem. In this paper,
we consider the case Zt is a fractional Brownian motion with Hurst parameter H .
Namely, we consider the following stochastic Langevin equation:

dXt D ��Xtdt C �dBH
t ; X0 D x; (19.2)

where � is an unknown parameter. We assume � > 0 throughout the paper so that
the process is ergodic (when � < 0 the solution to Eq. (19.2) will diverge as T goes
to infinity). If the process .Xt ; 0 � t � T / can be observed continuously, then the
least square estimator Q�T , defined by

Q�T D �
R T
0
XtdXt

R T
0
X2
t dt

(19.3)

was studied in [8], where it is proved that Q�T ! � almost surely as T ! 1 and

that
p
T
� Q�T � �

�
converges in law to a mean zero normal random variable. The

variance of this normal is also calculated. As a consequence it is also proved in [8]
that the following estimator

N�T WD
�

1

�2H�.2H/T

Z T

0

X2
t dt

�� 1
2H

(19.4)

is also strongly consistent and
p
T
� N�T � �

�
converges in law to a mean zero normal

with explicit variance given by ��2H
.2H/2

.
In applications usually the process cannot be observed continuously. Only

discrete-time observations are available. To simplify presentation of the paper, we
assume that the process Xt is observed at discrete-time instants tk D kh, k D
1; 2; : : : ; n, for some fixed h > 0. We seek to estimate � based onXh;X2h; : : : ; Xnh.

Motivated by the estimator Eq. (19.4), we propose to use a function of
1
n

Pn
kD1 jXkhjp as a statistic to estimate � . More precisely, we define

O�n D
 

1

n�2H�.2H/

nX

kD1
X2
kh

!� 1
2H

:

We shall show that O�n converges to � almost surely as n tends to 1. We shall also

show that
p
n
� O�n � �

�
converges in law to mean zero normal random variable with

variance �2

2H2 as n ! 1. The following Berry–Esseen type theorem will also be
shown:

sup
z2R

ˇ
ˇ
ˇ
ˇ
ˇ
P

 r
2H2n

�2

� O�n � �
�

� z

!

�‰.z/
ˇ
ˇ
ˇ
ˇ
ˇ

� Cn4H�3;

where ‰.z/ D 1p
2�

R z
�1 e� u2

2 du is the error function.
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Usually, to obtain consistency result for discrete-time observations, one has to
assume that the length h of the time interval between two consecutive observations
depends on n (namely h D hn) and hn converges to 0 as n ! 1 and hn and n must
satisfy some other conditions (see [2, 6, 7, 12], and references therein). Surprisingly
enough, for our simple model Eq. (19.2) and for our estimator defined above we do
not need to assume h depends on n. In fact, we do not have any condition on h! Let
us also point out that throughout the paper, we assume that the observation times
are uniform: tk D kh; k D 1; : : : ; n. General deterministic observation times tk can
be also considered in a similar way.

The paper is organized as follows. In Sect. 2, some known results that we will
use are recalled. The strong consistency of a slight more general estimator is proved
in Sect. 3. Sect. 4 deals with the central limit type theorem and Sect. 5 concerns with
the Berry–Esseen type theorem.

Along the paper, we denote by C a generic constant possibly depending on �
and/or h which may be different from line to line.

2 Preliminaries

In this section we first introduce some basic facts on the Malliavin calculus for the
fractional Brownian motion and recall the main results in [10, 11] concerning the
central limit theorem and Berry–Esseen type results for multiple stochastic integrals.

We are working on some complete probability space .�;F ; P /. The expectation
on this probability space is denoted by E . The fractional Brownian motion with
Hurst parameterH 2 .0; 1/, .BH

t ; t 2 R/ is a zero mean Gaussian process with the
following covariance structure:

E.BH
t B

H
s / D RH.t; s/ D 1

2

�jt j2H C jsj2H � jt � sj2H �: (19.5)

Fix a time interval Œ0; T �. Denote by E the set of real-valued step functions on Œ0; T �
and let H be the Hilbert space defined as the closure of E with respect to the inner
product:

h1Œ0;t �; 1Œ0;s�iH D RH.t; s/;

where RH is the covariance function of the fBm, given in Eq. (19.5). The mapping
1Œ0;t � 7�! BH

t can be extended to a linear isometry between H and the Gaussian
space H1 spanned by BH (see also [9]). We denote this isometry by ' 7�! BH.'/,
which can be also considered as the stochastic integral of ' with respect to BH

(denoted by BH.'/ D R T
0
'.t/dBH

t ). For H D 1
2

we have H D L2.Œ0; T �/,

whereas forH > 1
2

we have L
1
H .Œ0; T �/ � H and for '; 2 L 1

H .Œ0; T �/ we have
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E .BH .'/BH. // D E

�Z T

0

'.t/dBH
t

Z T

0

 .t/dBH
t

�

D h'; iH D
Z T

0

Z T

0

's t�.t � s/dsdt; (19.6)

where

�.u/ D H.2H � 1/juj2H�2: (19.7)

Let S be the space of smooth and cylindrical random variables of the form

F D f .BH.'1/; : : : ; B
H .'n// ; '1; : : : ; 'n 2 L 1

H .Œ0; T �/ � H; (19.8)

where f 2 C1
b .R

n/ (f and all its partial derivatives are bounded). For a random
variable F of the form Eq. (19.8) we define its Malliavin derivative as the H-valued
random element:

DF D
nX

iD1

@f

@xi
.BH .'1/; : : : ; B

H .'n//'i .

By iteration, one can define the mth derivative DmF , which is an element of
L2.�I H˝m/, for every m � 2. For m � 1, Dm;2 denotes the closure of S with
respect to the norm k � km;2, defined by the relation

kF k2m;2 D E
�jF j2	C

mX

iD1
E
�kDiF k2H˝i

�
:

Let ı be the adjoint of the operatorD, also called the divergence operator. A random
element u 2 L2.�;H/ belongs to the domain of ı, denoted by Dom.ı/, if and only
if it verifies

jE hDF; uiHj � cu kF kL2 ;
for any F 2 D

1;2, where cu is a constant depending only on u. If u 2 Dom.ı/, then
the random variable ı.u/ is defined by the duality relationship

E .F ı.u// D E hDF; uiH; (19.9)

which holds for every F 2 D
1;2. The divergence operator ı is also called the

Skorohod integral because in the case of the Brownian motion it coincides with
the anticipating stochastic integral introduced by Skorohod in [13]. We will make
use of the notation ı.u/ D R T

0 utdBH
t .

For every n � 1, let Hn be the nth Wiener chaos of BH ; that is, the closed linear
subspace of L2 .�;F ; P / generated by the random variables: fHn

�
BH .h/

�
; h 2

H; khkH D 1g, where Hn is the nth Hermite polynomial. The mapping h˝n 2
Hˇn ! In.h

˝n/ 2 Hn , defined by In.h˝n/ D Hn

�
BH .h/

�
, provides a linear
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isometry between the symmetric tensor product Hˇn and Hn. For H D 1
2
, In

coincides with the multiple Itô stochastic integral. On the other hand, In.h˝n/
coincides with the iterated divergence ın.h˝n/ and coincides with the multiple Itô
type stochastic integral introduced in [1, 3, 5].

We will make use of the following central limit theorem for multiple stochastic
integrals (see [11]).

Proposition 2.1. Let fFn; n � 1g be a sequence of random variables in the pth
Wiener chaos, p � 2, such that limn!1 E.F 2

n / D �2. Then, the following
conditions are equivalent:

(i) Fn converges in law to N.0; �2/ as n tends to infinity.
(ii) kDFnk2H converges in L2 to a constant as n tends to infinity.

Remark 2.1. In [11] it is proved that (i) is equivalent to the fact that kDFnk2H
converges in L2 to p�2 as n tends to infinity. If we assume (ii), the limit of kDFnk2H
must be equal to p�2 because

E.kDFnk2H/ D pE.F 2
n /:

To obtain Berry–Esseen type estimate, we shall use a result from [10], which
we shall state in our fractional Brownian motion framework. The validity is
straightforward.

Assume that F D R T
0

R T
0
f .s; t/dBH

s dBH
t is an element in the second chaos,

where f is symmetric functions of two variables. Then with this kernel f we can
define a Hilbert–Schmidt operatorHf from H to H by

Hf g.t/ D hf .t; �/ ; g.�/iH:

If g is a continuous function on Œ0; T �, then

Hf g.t/ D
Z T

0

Z T

0

f .t; u/g.v/�.u � v/dudv;

where � is defined by Eq. (19.7). For p � 2, the pth cumulant of F is well known
(see, e.g., [4] for a proof).

	p.F / D 2p�1.p � 1/ŠTr.Hp

f /

D 2p�1.p � 1/Š

Z

Œ0;T �2p
f .s1; s2/f .s3; s4/ � � �f .s2p�1; s2p/�.s2; s3/ � � �

�.s2p�2; s2p�1/�.s2p; s1/ds1 � � � ds2p:

Let

Fn D I2.fn/ D
Z T

0

Z T

0

fn.s; t/dBH
s dBH

t
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be a sequence of random variables in the second chaos. We shall use the following
result from [10], Proposition 3.8.

Proposition 2.2. If 	2.Fn/ D E .F 2
n / ! 1 and 	4.Fn/ ! 0, then

sup
z2R

jP.Fn � z/ �‰.z/j �
r
	4.Fn/

6
C .	2.Fn/ � 1/2;

where ‰.z/ D 1p
2�

R z
�1 e� u2

2 du is the error function.

3 Construction and Strong Consistency of the Estimator

As in [8], we can assume that X0 D 0, and

Xt D �

Z t

0

e��.t�s/dBH
s :

[We can express Xt D Yt � e�� t 
, where Yt D �
R t

�1 e��.t�s/dBH
s is stationary

and 
 D �
R 0

�1 e�sdBH
s has the limiting (normal) distribution of Xt .]

Let p > 0 be a positive number and denote

�p;n D 1

n

nX

kD1
jXkhjp: (19.10)

It is easy to argue that

lim
n!1�p;n D lim

n!1
1

n

nX

kD1
jYkhjp:

Thus by the ergodic theorem we see that �p;n converges almost surely to

lim
n!1�p;n D E .jYhjp/ D lim

n!1E .jXnhjp/

D cp lim
n!1.Var.Xnh//

p=2

D cp�
p��Hp.H�.2H//p=2;

where

cp D 1p
2��

Z 1

�1
jxjpe� x2

2�2 dx D ��1=2�
�
p C 1

2

�

:

Thus we obtain
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Proposition 3.1. Let p > 0, and h > 0. Define

O�p;n D
�

1

cp�p.H�.2H//p=2
�p;n

�� 1
pH

D
0

@ 1

n��1=2�
�
pC1
2

�
�p.H�.2H//p=2

nX

kD1
jXkhjp

1

A

� 1
pH

: (19.11)

Then O�p;n ! � almost surely as n ! 1.

4 Central Limit Theorem

In this section we shall show that
p
n
� O�p;n � �

�
converges in law to a mean zero

normal and we shall also compute the limiting variance. But we shall study the case
p D 2. More general case may be discussed with the same approach, but it will be
much more sophisticated. When p D 2, we denote O�n D O�2;n. Namely,

O�n D
 

1

n�2H�.2H/

nX

kD1
X2
kh

!� 1
2H

: (19.12)

Denote


n D 1

n

nX

kD1
X2
kh (19.13)

and � D �2H�.2H/: Then O�n D
�

n

�

�� 1
2H

. From the last section, we see

lim
n!1 
n D lim

n!1E .
n/ D �2��2HH�.2H/ D ���2H :

First we want to show that

Fn WD p
n .
n � E .
n// (19.14)

converges in law. We shall use Proposition 2.1.

Lemma 4.1. When H 2 Œ 1
2
; 3
4
/; we have

lim
n!1E .F 2

n / D 2�2��4H (19.15)
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and
ˇ
ˇE .F 2

n /� 2�2��4H ˇˇ � Cn4H�3;

where and in what follows C > 0 denotes a generic constant independent of n (but
it may depend on � , H ).

Proof. From the definition of Fn we see

E .F 2
n / D 1

n

2

4
nX

k;k0D1
E .X2

khX
2
k0h/ �

nX

k;k0D1
E .X2

kh/E .X
2
k0h/

3

5

D 2

n

nX

k;k0D1
ŒE .XkhXk0h/�

2

D 2

n

nX

k¤k0Ik;k0D1
ŒE .XkhXk0h/�

2 C 2

n

nX

kD1

�
E .X2

kh/
	2

DAn C Bn:

We shall prove that lim
n!1An D 0 and lim

n!1Bn D 2�2��4H . By Lemma 5.4 in [8],

we have

An �C 1
n

nX

k¤k0;k;k0D1
jk � k0j4H�4

�C 1
n

nX

iD1

nX

jDiC1
.j � i/4H�4

�C 1
n

nX

iD1
.n � i/4H�3

�Cn4H�3

which implies that lim
n!1An D 0 whenH < 3

4
: On the other hand,

lim
n!1Bn D 2 lim

n!1.E X
2
nh/

2 D 2H2�2.2H/�4��4H D 2�2��4H :

To prove the second inequality, it suffices to show that

ˇ
ˇ
ˇ
ˇ
ˇ
1

n

nX

kD1

�
E .X2

kh/
	2 � �2��4H

ˇ
ˇ
ˇ
ˇ
ˇ

� Cn4H�3:
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In fact,
ˇ
ˇ
ˇ
ˇ
ˇ
1

n

nX

kD1

�
E .X2

kh/
	2 � �2��4H

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

n

nX

kD1

ˇ
ˇE .X2

kh/� ���2H ˇˇ �E .X2
kh/C ���2H �

� C
1

n

nX

kD1

ˇ
ˇE .X2

kh/� ���2H ˇˇ:

However, we have

ˇ
ˇE .X2

kh/ � ���2H ˇˇ D C

�Z 1

0

Z s

0

e��.uCs/js � uj2H�2duds

�
Z kh

0

Z s

0

e��.uCs/js � uj2H�2duds

�

D C

Z 1

kh

Z s

0

e��.uCs/js � uj2H�2duds

D C

Z 1

kh

Z s

0

e�.x�2s/x2H�2dxds

� C

Z 1

kh

e�.�s/s2H�1ds

� C

Z 1

kh

e�.�s=2/ds

� C e�kh=2:

Hence, we have

ˇ
ˇ
ˇ
ˇ
ˇ
1

n

nX

kD1

�
E .X2

kh/
	2 � �2��4H

ˇ
ˇ
ˇ
ˇ
ˇ

� Cn�1 � Cn4H�3

which completes the proof. �

Now we have

DFn D 2p
n

nX

kD1
XkhDXkh:

Thus

Gn WD hDFn;DFniH D 4

n

nX

k;k0D1
XkhXk0hhDXkh;DXk0hiH:
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Since Xkh is normal random variable, it is easy to see that

hDXkh;DXk0hiH D E .XkhXk0h/:

Thus

Gn D 4

n

nX

k;k0D1
XkhXk0hE .XkhXk0h/:

It is easy to check

E .Gn/ D 2E .F 2
n /

which converges to 4�2��4H as n ! 1 by Lemma 4.1. Thus to verify (ii) of
Proposition 2.1, it suffices to show that

lim
n!1E ŒGn � E .Gn/�

2 D 0: (19.16)

However,

E ŒGn � E .Gn/�
2 D E

�
G2
n

� � ŒE .Gn/�2

D 1

n2

nX

k;k0Ij;j 0D1

n
E
�
XkhXk0hXjhXj 0h

	
E ŒXkhXk0h�E

�
XjhXj 0h

	

� �E ŒXkhXk0h�E
�
XjhXj 0h

	�2 o
:

The expectation E .X1X2 � � �Xp/ can be computed by the well-known Feynman
diagram. In the case p D 4, we have

E .X1X2X3X4/ D E .X1X2/E .X3X4/CE .X1X3/E .X2X4/CE .X1X4/E .X2X3/:

Thus

E ŒGn � E .Gn/�
2

D 32

n2

nX

k;k0;j;j 0D1
E
�
XkhXjh

	
E
�
Xk0hXj 0h

	
E ŒXkhXk0h�E

�
XjhXj 0h

	
:

From Lemma 5.4 (Eq. (5.7)) of [8], we have

jE ŒXkhXk0h�j � �2C�;h;H jk � k0j2H�2:

Therefore,

E ŒGn � E .Gn/�
2
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� C

n2

nX

k;k0;j;j 0D1
jk � j j2H�2jk0 � j 0j2H�2jk � k0j2H�2jj � j 0j2H�2

� C

n2

Z

Œ0;n�4
ju � vj2H�2ju0 � v0j2H�2ju � v0j2H�2jv � v0j2H�2dudvdu0dv0

D Cn4.2H�2/C4�2
Z

Œ0;1�4
ju � vj2H�2ju0 � v0j2H�2

� ju � v0j2H�2jv � v0j2H�2dudvdu0dv0

� Cn8H�6; (19.17)

which converges to 0 as n ! 1 if H < 3=4.
Summarizing the above, we can state

Theorem 4.1. Let Xt be the Ornstein–Uhlenbeck process defined by Eq. (19.2) and
let 
n be defined by Eq. (19.13). If 1=2 � H < 3=4, then

p
n .
n � E .
n// ! N.0;†/; (19.18)

where

† D lim
n!1E .F 2

n / D 2�2��4H : (19.19)

To study the weak convergence of
p
n
� O�n � �

�
, we need the following lemma.

Lemma 4.2. Let H � 1=2. Then

p
n
ˇ
ˇE .
n/� ���2H ˇˇ � Cn� 1

2 ;

and hence

lim
n!1

p
n.E .
n/ � ���2H / D 0:

Proof. From the definition of 
n, we have

p
n
ˇ
ˇE .
n/ � ���2H ˇˇ

D Cp
n

nX

kD1

ˇ
ˇ
ˇ
ˇ
ˇ

Z kh

0

Z kh

0

e��.uCs/ju � sj2H�2dsdu

�
Z 1

0

Z 1

0

e��.uCs/ju � sj2H�2dsdu

ˇ
ˇ
ˇ
ˇ

D Cp
n

nX

kD1

ˇ
ˇ
ˇ
ˇ
ˇ

Z �kh

0

Z u

0

e�.uCs/ju � sj2H�2dsdu
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�
Z 1

0

Z u

0

e�.uCs/ju � sj2H�2dsdu

ˇ
ˇ
ˇ
ˇ

D Cp
n

nX

kD1

Z 1

�kh

Z u

0

e�.uCs/ju � sj2H�2dsdu

D Cp
n

nX

kD1

Z 1

�kh

Z u

0

e�2uCxx2H�2dxdu � Cp
n

nX

kD1

Z 1

�kh

e�2ueuu2H�1du

� Cp
n

nX

kD1

Z 1

�kh

e� 1
2 udu � Cp

n

nX

kD1
e� �kh

2 � Cp
n
:

This proves the lemma. �

Let us recall that

O�n D
�

n

�

��1=.2H/
:

Therefore

p
n
� O�n � �

�
D � 1

2H
Q
�1=.2H/�1
n

p
n

�

n

�
� ��2H

�

;

where Q
n is between ��2H and 
n
�

. Since Q
n ! ��2H almost surely and sincep
n
�

n � ���2H � converges to N.0;†/ in law by Theorem 4.1 and Lemma 4.2,

we see that
p
n
� O�n � �

�
converges in law to

N

�

0;
�4HC2

4H2�2
†

�

D N

�

0;
�2

2H2

�

:

Thus we arrive at our main theorem of this section.

Theorem 4.2. Let 1=2 � H < 3=4. Then

p
n
� O�n � �

�
! N

�

0;
�2

2H2

�

in law as n ! 1: (19.20)

5 Berry–Esseen Asymptotics

Theorem 4.2 shows that when n ! 1, Qn WD
q

2H2n
�2

� O�n � �
�

converges to

N.0; 1/ in law. In this section we shall obtain a rate of this convergence. We shall
use Proposition 2.2. To this end we need to compute the fourth cumulant 	4.Fn/.
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Let us develop a general approach to estimate 	4.Qn/which is particularly useful
for our situation. To simplify notation we omit the explicit dependence on n. It is
clear that if Zk D R T

0
fk.s/dBH

s for some (deterministic) fk 2 H, then

V D
NX

kD1

�
Z2
k � E .Z2

k/
� D

NX

kD1
I2.f

˝2
k /: (19.21)

Thus

f D
NX

kD1
fk ˝ fk

and

H4
f D

NX

k1;k2;k3;k4D1
fk1 ˝ fk4hfk1 ; fk2iHhfk2 ; fk3iHhfk3 ; fk4iH;

which is a map from H to H such that for g 2 H,

H4
f .g/.t/ D

NX

k1;k2;k3;k4D1
hfk1 ; fk2iHhfk2 ; fk3iHhfk3 ; fk4iHhfk4 ; giHfk1.t/:

If V is given by Eq. (19.21), then the fourth cumulant of V is

	4.V / D Tr.H4
f / (19.22)

D
NX

k1;k2;k3;k4D1
hfk1 ; fk2iHhfk2 ; fk3iHhfk3 ; fk4iHhfk4 ; fk1iH

D
NX

k1;k2;k3;k4D1
E .Zk1Zk2/E .Zk2Zk3/E .Zk3Zk4/E .Zk4Zk1/ :

(19.23)

If we apply this computation Eq. (19.23) to Fn defined in Sect. 4, then we see that
	4.Fn/ is the same as E .Gn � E .Gn//

2 studied in Sect. 4. Thus we have from
Eq. (19.17)

	4.Fn/ � Cn8H�6:

By Lemma 4.1, we have

j	2.Fn/�†j D ˇ
ˇE.F 2

n /�†
ˇ
ˇ � Cn4H�3:

Therefore, by Proposition 2.2, we have
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Lemma 5.1.

sup
z2R

ˇ
ˇ
ˇ
ˇP

�

� Fnp
†

� z

�

�‰.z/

ˇ
ˇ
ˇ
ˇ � Cn4H�3;

where ‰.z/ D 1p
2�

R z
�1 e� x2

2 dx is the error function.

We also have the following lemma.

Lemma 5.2. Let 1=2 � H < 3=4. There is a constant C such that

sup
y2R

ˇ
ˇ
ˇ
ˇP

�r
n

2
�2H

�
��2H � O��2H

n

�
� y

�

�‰.y/
ˇ
ˇ
ˇ
ˇ � Cn.4H�3/_.� 1

2 /: (19.24)

Proof. Recall that Fn D p
n .
n � E .
n//.

Let QFn D p
n
�

n � ���2H � ; and an D QFn � Fn D p

n.E .
n/ � ���2H /; then

janj � Cn� 1
2 by Lemma 4.2.

ˇ
ˇ
ˇ
ˇ
ˇ
P

 

�
QFnp
†

� z

!

�‰.z/

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇP

�

�Fn C anp
†

� z

�

�‰.z/
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇP

�

� Fnp
†

� z C anp
†

�

�‰.z C anp
†
/

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇ‰.z C anp

†
/ �‰.z/

ˇ
ˇ
ˇ
ˇ

� C.n4H�3 C n� 1
2 /:

The inequality (19.24) is obtained since 
n D � O��2H
n and † D 2�2��4H . �

Now we can prove our main theorem.

Theorem 5.1. Let 1=2 � H < 3=4. For any K > 0, there exist a constant CK
depending on K and H and a constant NK > 0 depending on K , such that when
n > NK;

sup
jzj�K

ˇ
ˇ
ˇ
ˇ
ˇ
P

 p
2nH

�

� O�n � �
�

� z

!

�‰.z/
ˇ
ˇ
ˇ
ˇ
ˇ

� CKn
.4H�3/_.� 1

2 /: (19.25)

Proof. Now we have

P

�r
n

2
�2H

�
��2H � O��2H

n

�
� y

�

D P

0

@ O�n � �

 

1 �
r
2

n
y

!� 1
2H

1

A
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D P

0

@
p
2nH

�

� O�n � �
�

� p
2nH

2

4

 

1 �
r
2

n
y

!� 1
2H

� 1
3

5

1

A:

Choose yn;z so that

p
2nH

2

4

 

1 �
r
2

n
yn;z

!� 1
2H

� 1

3

5 D z;

namely,

yn;z D
r
n

2

"

1 �
�

1C zp
2nH

��2H#
:

Then
ˇ
ˇ
ˇ
ˇ
ˇ
P

 p
2nH

�

� O�n � �
�

� z

!

�‰.z/

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇP

�r
n

2
�2H

�
��2H � O��2H

n

�
� yn;z

�

�‰.z/

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇP

�r
n

2
�2H

�
��2H � O��2H

n

�
� yn;z

�

�‰.yn;z/
ˇ
ˇ
ˇ
ˇC j‰.yn;z/ �‰.z/j :

The inequality Eq. (19.24) implies that the above first term is bounded by
Cn.4H�3/_.� 1

2 /. It is easy to check that there exists a constant CK depending
on K and H and a number NK depending on K , such that when n > NK ,
j‰.yn;z/ �‰.z/j � jyn;z � zj � CKn

�1=2 for all jzj � K . �

Remark 5.1. Throughout this paper we did not discuss the case H D 1=2 in detail,
which is easy.
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Chapter 20
The Effect of Competition on the Height
and Length of the Forest of Genealogical
Trees of a Large Population

Mamadou Ba and Etienne Pardoux

Abstract We consider a population generating a forest of genealogical trees in
continuous time, with m roots (the number of ancestors). In order to model
competition within the population, we superimpose to the traditional Galton–
Watson dynamics (births at constant rate �, deaths at constant rate �) a death rate
which is � times the size of the population alive at time t raised to some power
˛ > 0 (˛ D 1 is a case without competition). If we take the number of ancestors
at time 0 to be equal to ŒxN �, weight each individual by the factor 1=N and choose
adequately �, � and � as functions of N , then the population process converges as
N goes to infinity to a Feller SDE with a negative polynomial drift. The genealogy
in the continuous limit is described by a real tree [in the sense of Aldous (Ann
Probab 19:1–28, 1991)]. In both the discrete and the continuous case, we study the
height and the length of the genealogical tree as an (increasing) function of the initial
population. We show that the expectation of the height of the tree remains bounded
as the size of the initial population tends to infinity iff ˛ > 1, while the expectation
of the length of the tree remains bounded as the size of the initial population tends
to infinity iff ˛ > 2.

Keywords Galton–Watson processes • Feller diffusion

AMS Subject Classification 2000: (Primary) 60J80, 60F17 (Secondary) 92D25.

Received 11/27/2011; Accepted 4/15/2012; Final 6/1/2012

M. Ba • E. Pardoux (�)
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1 Introduction

Consider a Galton–Watson binary branching process in continuous time with m

ancestors at time t D 0, in which each individual gives birth to children at a
constant rate � and dies after an exponential time with parameter �. Suppose we
superimpose deaths due to competition. For instance, we might decide to add to each
individual a death rate equal to � times the number of presently alive individuals
in the population, which amounts to add a global death rate equal to �.Xm

t /2,
if Xm

t denotes the total number of alive individuals at time t . It is rather clear
that the process which describes the evolution of the total population, which is
not a branching process (due to the interactions between branches, created by the
competition term), goes extinct in finite time a.s.

If we consider this population with m D ŒNx� ancestors at time t D 0, weight
each individual with the factor 1=N and choose �N D 2N C � , �N D 2N and
�N D �=N , then it is shown in Le, Pardoux and Wakolbinger [4] that the “total
population mass process” converges weakly to the solution of the Feller SDE with
logistic drift

dZx
t D �

�Zx
t � �.Zx

t /2
�

dt C 2
p

Zx
t dWt; Zx

0 D x:

This equation has been studied in Lambert [3], who shows in particular that the
population goes extinct in finite time a.s.

There is a natural way of describing the genealogical tree of the discrete
population. The notion of genealogical tree is discussed for this limiting continuous
population as well in [4, 6], in terms of continuous random trees in the sense of
Aldous [1]. Clearly that forest of trees is finite a.s., and one can define the height
H m and the length Lm of the discrete forest of genealogical trees, as well as the
height of the continuous “forest of genealogical trees”, equal to the lifetime T x of
the process Zx and the length of the same forest of trees, given as Sx WD R T x

0 Zx
t dt .

Let us now generalize the above models, both in the discrete and in the
continuous case, replacing in the first case the death rate �.Xm

t /2 by �.Xm
t /˛ and

in the second case the drift term ��.Zx
t /2 by ��.Zx

t /˛ , for some ˛ > 0. In the
case ˛ D 1, there is no competition; we are back to branching processes, both
discrete and continuous. The case 0 < ˛ < 1 corresponds to a situation where an
increase of the population size reduces the per capita death rate, by allowing for an
improvement of the living conditions (one can argue that this a reasonable model,
at least for moderate population size compared to the available resources). The case
˛ > 1 is the case of competition, where an increase of the population size increases
the per capita death rate, because for instance of the limitation of available resources.

The main result of this paper is the following:

Theorem 1.1. Both EŒsupm H m� < 1 and EŒsupx T x� < 1 if ˛ > 1, while
H m ! 1 as m ! 1 and T x ! 1 as x ! 1 a.s. if ˛ � 1. Both
EŒsupm Lm� < 1 and EŒsupx Sx� < 1 if ˛ > 2, while Lm ! 1 as m ! 1
and Sx ! 1 as x ! 1 a.s. if ˛ � 2.
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Note that the monotonicity in ˛ is not a surprise, supm H m D 1 a.s. when
˛ D 1 follows rather easily from the branching property, EŒsupm H m� < 1 and
EŒsupm Lm� D 1 in case ˛ D 2 follow from results in [5], and again in the
case ˛ D 2, supx Sx D 1 has been established in [4]. The main novelty of our
results concerns the case ˛ > 2, which we discovered while trying to generalize the
quadratic competition term.

Our theorem necessitates to define in a consistent way the population processes
jointly for all initial population sizes, that is, we will need to define the two-
parameter processes fXm

t ; t � 0; m � 1g and fZx
t ; t � 0; x > 0g. One

of the objectives of this paper is also to prove that the renormalized discrete
two-parameter processes converge weakly, for an appropriate topology, towards
fZx

t ; t � 0; x > 0g.
The paper is organized as follows. In the first section we present the discrete

model, which provides the coupling for different values n of the initial size of
the population. We describe in Sect. 3 the renormalized model for large population
sizes. We then construct in Sect. 4 a random field indexed by t and x in the case
of the continuous model, for which we precise the laws. After that we establish the
convergence of the renormalized discrete random field to the continuous random
field model in Sect. 5. We finally study the finiteness of the supremum over the
initial population size of the height and of the length of the forest of genealogical
trees in the discrete case in Sect. 6 and in the continuous case in Sect. 7.

2 The Discrete Model

We first present the discrete model. As declared in the introduction, we consider a
continuous time ZC-valued population process fXm

t ; m � 1g, which starts at time
zero from the initial condition Xm

0 D m, that is, m is the number of ancestors
of the whole population. The process Xm

t evolves as follows. Each individual,
independently of the others, spawns a child at a constant rate � and dies either “from
natural death” at constant rate � or from the competition pressure, which results in a
total additional death rate equal at time t to �.Xm

t /˛ (in fact it will be a quantity close
to that one, see below). This description is valid for one initial condition m. But it
is not sufficiently precise to describe the joint evolution of f.Xm

t ; Xn
t /; t � 0g, with

say 1 � m < n. We must precise the effect of the competition upon the death rate
of each individual. In order to be consistent, we need to introduce a non-symmetric
picture of the effect of the competition term, exactly as it was first introduced in [4]
in the case ˛ D 2, in order to describe the exploration process of the genealogical
tree. The idea is that the progeny Xm

t of the m “first” ancestors should not feel
the competition due to the progeny Xn

t � Xm
t of the n � m “additional” ancestors

which is present in the population Xn
t . One way to do so is to model the effect

of the competition in the following asymmetric way. We order the ancestors from
left to right, this order being passed to their progeny. This means that the forest of
genealogical trees of the population is a planar forest of trees, where the ancestor of
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the population X1
t is placed on the far left, the ancestor of X2

t � X1
t immediately on

his right, etc. Moreover, we draw the genealogical trees in such a way that distinct
branches never cross. This defines in a non-ambiguous way an order from left to
right within the population alive at each time t . Now we model the competition as
each individual being “under attack” from his contemporaries located on his left
in the planar tree. Let Li .t/ denote the number of alive individuals at time t , who
are located at his left on the planar tree. At any time t , the individual which is
such that Li .t/ D 0 does not feel the competition. For any i � 1 and t � 0 such
that Li .t/ � 1, the individual i is subject to a “competition death rate” equal to
�ŒLi .t/

˛ � .Li .t/ � 1/˛�. Note that this rate, as a function of Li .t/, is decreasing if
0 < ˛ < 1, constant if ˛ D 1 and increasing if ˛ > 1. Of course, conditionally upon
Li .�/, the occurrence of a “competition death event” for individual i is independent
of the other birth/death events and of what happens to the other individuals.

The resulting total death rate endured by the population Xm
t at time t is then

�

Xm
tX

kD2

Œ.k � 1/˛ � .k � 2/˛� D �.Xm
t � 1/˛;

which is a reasonable approximation of �.Xm
t /˛.

As a result, fXm
t ; t � 0g is a continuous time ZC-valued Markov process, which

evolves as follows. If Xm
t D 0, then Xm

s D 0 for all s � t . While at state k � 1, the
process

Xm
t jumps to

(
k C 1; at rate �k;

k � 1; at rate �k C �.k � 1/˛:

The above description specifies the joint evolution of all fXm
t ; t � 0gm�0, or in

other words of the two-parameter process fXm
t ; t � 0; m � 0g. Let us rephrase it

in more mathematical terms.
In the case ˛ D 1, for each fixed t > 0, fXm

t ; m � 1g is an independent
increments process. In the case ˛ 6D 1, fXm

t ; m � 1g is not a Markov chain
for fixed t . That is to say, the conditional law of XnC1

t given Xn
t differs from its

conditional law given .X1
t ; X2

t ; : : : ; Xn
t /. The intuitive reason for that is that the

additional information carried by .X1
t ; X2

t ; : : : ; Xn�1
t / gives us a clue as to the level

of competition which the progeny of the nC1st ancestor had to suffer, between time
0 and time t .

However, fXm� ; m � 0g is a Markov chain with values in the space
D.Œ0; 1/IZC/ of càdlàg functions from Œ0; 1/ into ZC, which starts from 0 at
m D 0. Consequently, in order to describe the law of the whole process, that
is of the two-parameter process fXm

t ; t � 0; m � 0g, it suffices to describe
the conditional law of Xn� , given fXn�1� g. We now describe that conditional law
for arbitrary 0 � m < n. Let V m;n

t WD Xn
t � Xm

t , t � 0. Conditionally upon
fX`� ; ` � mg and given that Xm

t D x.t/, t � 0, fV m;n
t ; t � 0g is a ZC-

valued time inhomogeneous Markov process starting from V m;n
0 D n � m, whose
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time-dependent infinitesimal generator fQk;`.t/; k; ` 2 ZCg is such that its
off-diagonal terms are given by

Q0;`.t/ D 0; 8` � 1; and for any k � 1;

Qk;kC1.t/ D �k;

Qk;k�1.t/ D �k C � Œ.x.t/ C k � 1/˛ � .x.t/ � 1/˛� ;

Qk;`.t/ D 0; 8` 62 fk � 1; k; k C 1g:
The reader can easily convince himself that this description of the conditional law
of fXn

t � Xm
t ; t � 0g given Xm� is prescribed by what we have said above, and that

fXm� ; m � 0g is indeed a Markov chain.

3 Renormalized Discrete Model

We consider a family of models like in the previous section, indexed by N 2 N.
We choose the number of ancestors to be m D bNxc, for some fixed x > 0,
the birth rate to be �N D 2N C � , for some � > 0, the “natural death rate” to
be �N D 2N , and the competition death parameter to be �N D �=N ˛�1. We now
weight each individual by a factor N �1, which means that we want to study the limit,
as N ! 1, of the “reweighted total mass population” process Z

N;x
t WD X

bNxc
t =N .

The process fZN;x
t ; t � 0g is a ZC=N -valued continuous time Markov process

which starts from Z
N;x
0 D bNxc=N such that if Z

N;x
t D 0, then ZN;x

s D 0, for all
s � t , and while at state k=N , k � 1,

ZN;x jumps to

(
.k C 1/=N; at rate 2N k C k� I
.k � 1/=N; at rate 2N k C �N

�
k�1
N

�˛
:

Clearly there exist three mutually independent standard Poisson processes P1,
P2 and P3 such that

X
bNxc
t D bNxc C P1

�Z t

0

.2N C �/X bNxc
r dr

�
� P2

�
2N

Z t

0

X bNxc
r dr

�

� P3

 

�N

Z t

0

"
X

bNxc
r � 1

N

#˛

dr

!

:

Consequently there exists a martingale M N;x such that

Z
N;x
t D Z

N;x
0 C

Z t

0

˚
�ZN;x

r � �.ZN;x
r � 1=N /˛

�
dr C M

N;x
t ; with

hM N;xit D
Z t

0

	
4ZN;x

r C �

N
ZN;x

r C �

N
.ZN;x

r � 1=N /˛



dr: (20.1)
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Now for 0 < x < y, let V
N;x;y

t WD Z
N;y
t � Z

N;x
t . It is not too hard to show

that there exist three further standard Poisson processes P4, P5 and P6, such that
the six Poisson processes P1; P2; P3; P4; P5 and P6 are mutually independent, and
moreover

V
N;x;y

t D V
N;x;y

0 C 1

N
P4

�Z t

0

N.2N C �/V N;x;y
r dr

�
� 1

N
P5

�
2N 2

Z t

0

V N;x;y
r dr

�

� N �1P6

�
�N

Z t

0

Œ.ZN;x
r C V N;x;y

r � 1=N /˛�.ZN;x
r � 1=N /˛�dr

�
;

from which we deduce that there exists a martingale M N;x;y such that

V
N;x;y

t D V
N;x;y

0 C
Z t

0

n
�V N;x;y

r � �
�
.ZN;x

r C V N;x;y
r � 1=N /˛

�.ZN;x
r � 1=N /˛

� o
dr C M

N;x;y
t ;

hM N;x;yit D
Z t

0

n
4V N;x;y

r C �

N
V N;x;y

r

C �

N

�
.ZN;x

r C V N;x;y
r � 1=N /˛ � .ZN;x

r � 1=N /˛
� o

dr (20.2)

and moreover

hM N;x;y; M N;xit � 0: (20.3)

The formulas for hM N;xit and hM N;x;yit , as well as Eq. (20.3), rely on the following
lemma, for the statement of which we need to introduce some notations. Let

M
N;1
t D N �1P1

�
.2N 2 C �N /

Z t

0

ZN;x
r dr

�
�
Z t

0

.2N C �/ZN;x
r dr;

M
N;2
t D N �1P2

�
2N 2

Z t

0

ZN;x
r dr

�
� 2N

Z t

0

ZN;x
r dr;

M
N;3
t D N �1P3

�
�N

Z t

0

�
ZN;x

r � 1=N
�˛

dr

�
� �

Z t

0

�
ZN;x

r � 1=N
�˛

dr;

M
N;4
t D N �1P4

�Z t

0

.2N 2 C �N /V N;x;y
r dr

�
�
Z t

0

.2N C �/V N;x;y
r dr;

M
N;5
t D N �1P5

�
2N 2

Z t

0

V N;x;y
r dr

�
� 2N

Z t

0

V N;x;y
r dr;

M N;6
t D N �1P6

�
�N

Z t

0

�
.ZN;x

r C V N;x;y
r � 1=N /˛�.ZN;x

r � 1=N /˛
�

dr

�

� �

Z t

0

�
.ZN;x

r C V N;x;y
r � 1=N /˛�.ZN;x

r � 1=N /˛
�

dr:
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Lemma 3.1. For any 1 � i 6D j � 6, the martingales M N;i and M N;j are
orthogonal, in the sense that

hM N;i ; M N;j i � 0:

Proof. All we have to show is that M N;i and M N;j have a.s. no common jump time.
In other words we need to show that

Pi

�Z t

0

'i .r/dr

�
and Pj

�Z t

0

'j .r/dr

�

have no common jump time, where

'i .r/ D fi .Z
N;x
r ; V N;x;y

r / and 'j .r/ D fj .ZN;x
r ; V N;x;y

r /;

for some functions fi and fj from .ZC=N /2 into RC.
Let

Ai .t/ D
Z t

0

'i .r/dr; �i .t/ D inffs > 0; Ai .s/ > tg;

Aj .t/ D
Z t

0

'j .r/dr; �j .t/ D inffs > 0; Aj .s/ > tg:

Suppose the lemma is not true, that is, for some jump time T i
k of Pi and some jump

time T
j

` of Pj , �i .T
i
k / D �j .T

j

` /. Let S D �i .T
i
k�1/ _ �j .T

j

`�1/. On the interval
ŒAi .S/; T i

k /, 'i.r/ depends upon the jump times T i
1 ; : : : T i

k�1 of Pi , the jump times

T
j
1 ; : : : ; T

j

`�1 of Pj , plus upon some of the jump times of the other four Poisson
processes, which are independent of .Pi ; Pj /. The same is true for 'j .r/ on the
interval ŒAj .S/; T

j

` /. It is now easy to show that conditionally upon those values of

'i and 'j , the two random variables �i .T
i
k / � S and �j .T

j

` / � S are independent,

and their laws are absolutely continuous. Consequently P.�i .T
i
k / D �j .T

j

` // D 0.
ut

4 The Continuous Model

We now define an RC-valued two-parameter stochastic process fZx
t ; t � 0; x � 0g

which such that for each fixed x > 0, fZx
t ; t � 0g is continuous process, solution of

the SDE

dZx
t D �

�Zx
t � �.Zx

t /˛
�

dt C 2
p

Zx
t dWt; Zx

0 D x; (20.4)
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where � 2 R, � > 0, ˛ > 0 and fWt; t � 0g is a standard scalar Brownian motion.
Similarly as in the discrete case, the process fZx� ; x � 0g is a Markov process with
values in C.Œ0; 1/;RC/, the space of continuous functions from Œ0; 1/ into RC,
starting from 0 at x D 0. The transition probabilities of this Markov process are
specified as follows. For any 0 < x < y, fV x;y

t WD Z
y
t � Zx

t ; t � 0g solves the
SDE

dV
x;y

t D �
�V

x;y
t � �

˚
.Zx

t C V
x;y

t /˛ � .Zx
t /˛
��

dt C 2

q
V

x;y
t dW 0

t ; V
x;y

0 D y � x;

(20.5)

where the standard Brownian motion fW 0
t ; t � 0g is independent from the

Brownian motion W which drives the SDE (20.4) for Zx
t . It is an easy exercise

to show that Z
y
t D Zx

t C V
x;y

t solves the same equation as Zx
t , with the initial

condition Z
y
0 D y and a different driving standard Brownian motion. Moreover we

have that whenever 0 � x < y, Zx
t � Z

y
t for all t � 0, a.s., and in the case ˛ D 1,

the increment of the mapping x ! Zx
t are independent, for each t > 0. Moreover,

the conditional law of Zy� , given that Zx
t D z.t/, t � 0, is the law of the sum of z

plus the solution of Eq. (20.5) with Zx
t replaced by z.t/.

5 Convergence as N ! 1

The aim of this section is to prove the convergence in law as N ! 1 of the two-
parameter process fZN;x

t ; t � 0; x � 0g defined in Sect. 3 towards the process
fZx

t ; t � 0; x � 0g defined in Sect. 4. We need to make precise the topology
for which this convergence will hold. We note that the process Z

N;x
t (resp. Zx

t )
is a Markov processes indexed by x, with values in the space of càdlàg (resp.
continuous) functions of t D..Œ0; 1/IRC/ (resp. C..Œ0; 1/IRC/) (note that the
trajectories have compact support—the population process goes extinct in finite
time—except in the cases ˛ < 1; � > 0 and ˛ D 1; � > � ). So it will be natural to
consider a topology of functions of x, with values in functions of t .

The second point to notice is that for each fixed x, the process t ! Z
N;x
t is

càdlàg, constant between its jumps, with jumps of size ˙N �1, while the limit
process t ! Zx

t is continuous. On the other hand, both Z
N;x
t and Zx

t are
discontinuous as functions of x. x ! Zx� has countably many jumps on any
compact interval, but the mapping x ! fZx

t ; t � "g, where " > 0 is arbitrary, has
finitely many jumps on any compact interval, and it is constant between its jumps.
Recall that D.Œ0; 1/IRC/ equipped with the distance d 01 defined by Eq. .16:4/

in [2] is separable and complete; see Theorem 16:3 in [2]. We have the following
statement:

Theorem 5.1. As N ! 1,

n
ZN;x

t ; t � 0; x � 0
o

) fZx
t ; t � 0; x � 0g
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in D.Œ0; 1/I D.Œ0; 1/IRC//, equipped with the Skorokhod topology of the space
of càdlàg functions of x, with values in the separable complete metric space
.D.Œ0; 1/IRC/; d 01/.

We first establish tightness for fixed x.

5.1 Tightness of ZN;x, x Fixed

Let us prove the tightness of the sequence
˚
ZN;x; N � 0

�
. For this end, we first

establish some a priori estimates.

Lemma 5.1. 8 T > 0, there exists a constant C1 > 0 such that

sup
N �1

sup
0�t�T

E

	
Z

N;x
t C

Z t

0

.ZN;x
r /˛dr



� C1:

It follows from this and the expression for hM N;xi that the local martingale M N;x is
in fact a square integrable martingale. We then have:

Lemma 5.2. 8 T > 0, there exists a constant C2 > 0 such that

sup
N �1

sup
0�t�T

E

	�
Z

N;x
t

�2 C
Z t

0

�
ZN;x

�˛C1
dr



� C2:

The proof of those two lemmas is obtained easily using Eq. (20.1), elementary
stochastic calculus and Gronwall and Fatou’s lemmas.
We want to check the tightness of the sequence

˚
ZN;x; N � 0

�
using the Aldous

criterion. Let f�N ; N � 1g be a sequence of stopping time with values in Œ0; T �. We
deduce from Lemma 5.1.

Proposition 5.1. For any T > 0 and �, 	 > 0, there exists ı > 0 such that

sup
N �1

sup
0�a�ı

P

 Z .�N Ca/^T

�N

ZN;x
r dr � �

!

� 	:

Proof. We have that

sup
0�a�ı

P

 Z .�N Ca/^T

�N

ZN;x
r dr � �

!

� sup
0�a�ı

1

�
E

Z .�N Ca/^T

�N

ZN;x
r dr

� ı

�
sup

0�t�T

E.ZN;x
t /

� C1

ı

�
:

Hence the result with ı D 	�=C1. ut
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We also deduce from Lemma 5.2:

Proposition 5.2. For any T > 0 and �, 	 > 0, there exists ı > 0 such that

sup
N �1

sup
0�a�ı

P

 Z .�N Ca/^T

�N

.ZN;x
r /˛dr � �

!

� 	:

Proof. For any M > 0, we have

Z .�N Ca/^T

�N

.ZN;x
r /˛dr � M ˛a C M �1

Z T

0

.ZN;x
r /˛C1dr:

This implies that

sup
N �1

sup
0�a�ı

P

 Z .�N Ca/^T

�N

.ZN;x
r /˛dr � �

!

� sup
N �1

sup
0�a�ı

��1
E

 Z .�N Ca/^T

�N

.ZN;x
r /˛dr

!

� M ˛ı

�
C C2

M�
:

The result follows by choosing first M D 2C2=	�, and then ı D 	�=2M ˛. ut
From Eq. (20.1), Propositions 5.1 and 5.2, we deduce:

Proposition 5.3. For each fixed x > 0, the sequence of processes
˚
ZN;x; N � 1

�

is tight in D.Œ0; 1//.

5.2 Proof of Theorem 5.1

From Theorem 13.5 in [2], Theorem 5.1 follows from the two next propositions.

Proposition 5.4. For any n 2 N, 0 � x1 < x2 < � � � < xn,

�
ZN;x1 ; ZN;x2 ; � � � ; ZN;xn

� ) .Zx1 ; Zx2 ; � � � ; Zxn/

as N ! 1, for the topology of locally uniform convergence in t .

Proof. We prove the statement in the case n D 2 only. The general statement
can be proved in a very similar way. For 0 � x1 < x2, we consider the process
.ZN;x1 ; V N;x1;x2/, using the notations from Sect. 3. The process .ZN;x1 ; V N;x1;x2 /
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is tight, as a consequence of Proposition 5.3, and thanks to Eqs. (20.1)–(20.3),
any weak limit .Zx1 ; V x1;x2/ of a subsequence of

˚
.ZN;x1 ; V N;x1;x2 /; N � 1

�
is the

unique weak solution of the pair of coupled SDEs (20.4) and (20.5). ut
Proposition 5.5. There exists a constant C , which depends only upon � and T ,
such that for any 0 � x < y < z, which are such that y � x � 1, z � y � 1,

E

"

sup
0�t�T

jZN;y
t � ZN;x

t j2 � sup
0�t�T

jZN;z
t � Z

N;y
t j2

#

� C jz � xj2:

Proof. For any 0 � x < y < z, we have

sup
0�t�T

jZN;y
t � Z

N;x
t j2 D sup

0�t�T

.V
N;x;y

t /2 � sup
0�t�T

.U
N;y;x
t /2;

sup
0�t�T

jZN;z
t � Z

N;y
t j2 D sup

0�t�T

.V
N;z;y

t /2 � sup
0�t�T

.U
N;z;y
t /2;

where U
N;x;y
t and U

N;z;y
t are mutually independent branching processes, with in

particular

U
N;x;y
t D y � x C �

Z t

0

U N;x;y
r dr C QM

N;x;y
t ;

with QM N;x;y a local martingale such that h QM N;x;yit D .4 C �
N

/
R t

0
U

N;x;y
r dr .

Consequently

E

"

sup
0�s�t

.U
N;y;x
t /2

#

� 3jy � xj2 C 3�2t

Z t

0

E

"

sup
0�r�s

.U N;y;x
r /2

#

ds

C 3E

"

sup
0�s�t

. QM N;x;y
s /2

#

� 3jy�xj2C3�2t

Z t

0

E

"

sup
0�r�s

.U N;y;x
r /2

#

dsC3CEh QM N;x;yit :

But clearly

EŒU N;y;x
s � D jx � yj exp.�s/I

hence

Eh QM N;x;yiT � C.�; T /jx � yj:
Note that since jx � yj � 1, jx � yj2 � jx � yj. The above computations, combined
with Gronwall’s lemma, lead to

E

"

sup
0�t�T

�
U

N;y;x
t

�2

#

� C 0.�; T /jx � yj:
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We obtain similarly

E

"

sup
0�t�T

�
U N;z;y

s

�2
#

� C 0.�; T /jz � yj:

Since moreover the two random processes U
N;y;x
t and U

N;z;y
t are independent, the

proposition follows from the above computations. ut
Proof of Theorem 5.1. We will show that for any T > 0,

fZN;x
t ; 0 � t � T; x � 0g ) fZx

t ; 0 � t � T; x � 0g

in D.Œ0; 1/I D.Œ0; T �;RC//. From Theorems 13.1 and 16.8 in [2], since from
Proposition 5.4, for all n � 1, 0 < x1 < � � � < xn,

.ZN;x1� ; : : : ; ZN;xn� / ) .Zx1� ; : : : ; Zxn� /

in D.Œ0; T �IRn/, it suffices to show that for all Nx > 0, ", � > 0, there exists N0 � 1

and ı > 0 such that for all N � N0,

P.w Nx;ı.Z
N / � "/ � �; (20.6)

where for a function .x; t/ ! z.x; t/

w Nx;ı.z/ D sup
0�x1�x�x2� Nx;x2�x1�ı

inf fkz.x; �/ � z.x1; �/k; kz.x2; �/ � z.x; �/kg ;

with the notation kz.x; �/k D sup0�t�T jz.x; t/j. But from the proof of Theorem
13.5 in [2], Eq. (20.6) for ZN follows from Proposition 5.5. ut

6 Height and Length of the Genealogical Tree
in the Discrete Case

6.1 Height of the Discrete Tree

We consider the two-parameter ZC-valued stochastic process fXm
t ; t � 0; m � 1g

defined in Sect. 2 and define the height and length of its genealogical tree by

H m D infft > 0; Xm
t D 0g; Lm D

Z H m

0

Xm
t dt; for m � 1:

We shall occasionally write X
˛;m
t when we want to emphasize the dependence upon

the value of ˛. We first prove the
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Proposition 6.1. If 0 < ˛ � 1, then

sup
m�1

H m D C1 a.s.

Proof. Since for any 0 < ˛ < 1, j � 2, .j � 1/˛ � .j � 2/˛ < 1, it is not hard to
couple the two-parameter processes fX˛;m

t ; t � 0; m � 1g and fX1;m
t ; t � 0; m �

1g in such a way that X
˛;m
t � X

1;m
t , for all m � 1, t � 0, a.s. Consequently it

suffices to prove the proposition in the case ˛ D 1.
But in that case fXm

t ; t � 0g is the sum of m mutually independent copies of
fX1

t ; t � 0g. Hence H m is the sup of m independent copies of H 1, and the result
follows from the fact that P.H 1 > t/ > 0, for all t > 0. ut

We now prove the

Theorem 6.1. If ˛ > 1, then

E

"

sup
m�1

H m

#

< 1:

Proof. Since m ! H m is a.s. increasing, it suffices to prove that there exists a
constant C > 0 such that

EŒH m� � C; for any m � 1:

We first show that limm!1 EŒH m
1 � < 1, where

H m
1 D inf fs � 0I Xm

s D 1g :

It suffices to prove this result in the case � D 0, which implies the result in the case
� > 0.

Proposition 6.2. For ˛ > 1, � D 0, 8 m � 1, E
�
H m

1

�
is given by

E
�
H m

1

� D
mX

kD2

1

�.k � 1/˛

1X

nD0

�n

�n

1

Œk.k C 1/ � � � .k C n � 1/�˛�1
:

Proof. Define um D E
�
H m

1

�
. It is clear that u1 D 0. The waiting time of Xm at

state k is an exponential variable with mean 1
�kC�.k�1/˛ , and either Xm jumps from

k to k � 1 with probability �.k�1/˛

�kC�.k�1/˛ or either from k to k C 1 with probability
�k

�kC�.k�1/˛ . We then have the recursive formula for um for any m � 1.

um D 1

�m C �.m � 1/˛
C �.m � 1/˛

�m C �.m � 1/˛
um�1 C �m

�m C �.m � 1/˛
umC1:
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If we define wm D um � um�1, we obtain, for any n � 0, the following relation.

wm D Œ.m � 1/Š�˛�1

�.m � 1/˛

 
n�1X

kD0

�k

�k

1

Œ.m C k � 1/Š�˛�1
C �n

�n�1

m C n � 1

Œ.m C n � 2/Š�˛�1
wmCn

!

Define the random variable �mCn by

�mCn D inf
˚
t � 0I XmCn

t D m C n � 1
�

:

We have that wmCn D E.�mCn/. Let RmCn be the number of births which occur
before ZmCn reaches the value m C n � 1, starting from m C n. For any k � 0 we
have

P .RmCn D k/ � ak

�
�.m C n/

�.m C n � 1/˛

�k

;

where ak is the cardinal of the set of binary trees with k C 1 leaves. It is called a
Catalan number and is given by

ak D 1

k C 1

�
2k

k

�
; ak � 4k

k3=2
p



:

Moreover we have that

E .�mCnjRmCn D k/ � 2k C 1

�.m C n � 1/˛
:

Finally, with c D supk�1.2k C 1/4�kak=� ,

E .�mCn/ � c

.m C n � 1/˛

1X

kD1

�
�

�

4.m C n/

.m C n � 1/˛

�k

:

For large n, we have �

�

4.mCn/

.mCn�1/˛ < 1
2
. This implies that there exists another constant

C such that E .�mCn/ � C.m C n � 1/�˛ and limn!1 wmCn D 0. We then deduce
that

wm D Œ.m � 1/Š�˛�1

�.m � 1/˛

 1X

kD0

�k

�k

1

Œ.m C k � 1/Š�˛�1

!

:

Consequently, for ˛ > 1, we have

um D
mX

kD1

wk D
mX

kD2

1

�.k � 1/˛

1X

nD0

�
�

�

�n
1

Œk.k C 1/ � � � .k C n � 1/�˛�1
:

ut
End of the proof of Theorem 6.1
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Furthermore, for 0 � ` � n � 1, we have

1

Œk.k C 1/ : : : .k C n � 1/�˛�1
� .k C `/`.˛�1/

Œk.k C 1/ � � � .k C ` � 1/�˛�1

1

.k C `/n.˛�1/
:

Let K D b.2�=�/1=.˛�1/c. We conclude that

if K � 3; um � 2

�

 
K�1X

kD2

�
KK

k � 1

�˛�1

C 1

.˛ � 1/.K � 2/˛�1

!

;

if K � 2; um � 2

�

˛

˛ � 1
:

In all cases, supm�1 EŒH m
1 � < 1.

Finally starting from 1 at time H m
1 , the probability p that Xm

t hits zero before
hitting 2 is �

�C�
. Let G be a random variable defined as follows. Let X1

t start from

1 at time 0. If X1
t hits zero before hitting 2, then G D 1. If not, we wait until X1

t

goes back to 1. This time is less than T1 C H 2
1 , where T1 is an exponential random

variable with mean 1=.� C �/, which is independent of G. If starting again from 1

at that time, if X1
t reaches 0 before 2, we stop and G D 2. If not, we continue and so

on. The random variable G is geometric with parameter p and independent of H m
1 .

Clearly we have that

H m � H m
1 C GH 2

1 C
GX

iD1

Ti ;

We conclude that supm�1 EŒH m� < 1. ut
We have proved in particular that (in the terminology used in coalescent theory)

the population process comes down from infinity if ˛ > 1. This means that
if the population starts with an infinite number of individuals at time t D 0,
instantaneously the population becomes finite, that is, for all t > 0, X1

t < 1.

6.2 Length of the Discrete Tree

Define now

Am
t WD

Z t

0

Xm
r dr; �m

t D inf fs > 0I Am
s > tg :

We consider the process U m WD Xm ı �m. Let Sm be the stopping time defined by

Sm D inf fr > 0I U m
r D 0g :
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Note that Sm D Lm, the length of the genealogical forest of trees of the population
Xm, since we have Sm D R H m

0 Xm
r dr . The process Xm can be expressed using two

mutually independent standard Poisson processes, as

Xm
t D m C P1

�Z t

0

�Xm
r dr

�
� P2

�Z t

0

�
�Xm

r C �.Xm
r � 1/˛

�
dr

�
:

Consequently the process U m D Xm ı �m satisfies

U m
t D m C P1.�t/ � P2

�Z t

0

�
� C �.U m

r /�1.U m
r � 1/˛

�
dr

�
:

On the interval Œ0; Sm/, U m
t � 1, and consequently we have the two inequalities

m�P2

�Z t

0

�
�U m

r C �.U m
r � 1/˛�1

�
dr

�
� U m

t

� m C P1

�Z t

0

�U m
r dr

�
� P2

�Z t

0

h�

2
.U m

r � 1/˛�1
i

dr

�
:

The following result is now a consequence of Proposition 6.1 and Theorem 6.1.

Theorem 6.2. If ˛ � 2, then

sup
m�0

Lm D 1 a.s.

If ˛ > 2, then

E

"

sup
m�0

Lm

#

< 1:

7 Height and Length of the Continuous Tree

Now we study the same quantities in the continuous model. We first need to establish
some preliminary results on SDEs with infinite initial condition.

7.1 SDE with Infinite Initial Condition

Let f W RC ! R be locally Lipschitz and such that

lim
x!1

jf .x/j
x˛

D 0: (20.7)
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Theorem 7.1. Let ˛ > 1, � > 0 and f satisfy the assumption (20.7). Then there
exists a minimal X 2 C ..0; C1/IR/ which solves

(
dXt D Œf .Xt / � �.Xt/

˛�1fXt �0gdt C dWt ;

Xt ! 1; as t ! 0:
(20.8)

Moreover, if T0 WD infft > 0; Xt D 0g, then EŒT0� < 1.

Proof (A Priori Estimate). Setting Vt D Xt � Wt , the result is equivalent to the
existence of a minimal V 2 C ..0; C1/IR/ solution of the ODE

8
<̂

:̂

dVt

dt
D f .Vt C Wt / � �.Vt C Wt /

˛;

Vt ! 1; as t ! 0:

(20.9)

Let first

M D inffx > 0I jf .x/j � �x˛=2g;
� D infft > 0; Wt 62 Œ�M; 2M �g:

Suppose there exists a solution fVt ; t � 0g to the ODE (20.9). Then the following
random time is positive a.s.

S WD infft > 0; Vt < 2M g:

Now on the time interval Œ0; � ^ S�,

�Vt

2
� Wt � Vt ;

M � Vt

2
� Vt C Wt � 2Vt ;

�3�

2
.Vt C Wt /

˛ � f .Vt C Wt / � �.Vt C Wt/
˛ � �1

2
�.Vt C Wt /

˛;

�3�2˛�1V ˛
t � dVt

dt
� � �

2˛C1
V ˛

t ;

�.˛ � 1/

2˛C1
� d

dt

�
.Vt /

�.˛�1/
� � 3�.˛ � 1/2˛�1;

�.˛ � 1/

2˛C1
t � 1

.Vt /˛�1
� 3�.˛ � 1/2˛�1t;

c˛;�

t1=.˛�1/
� Vt � C˛;�

t1=.˛�1/
;
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where

c˛;� D 1

2
Œ3�.˛ � 1/��1=.˛�1/; C˛;� D 2

˛C1
˛�1

Œ�.˛ � 1/�1=.˛�1/
:

Proof of Existence To each x > 0, we associate the unique solution Xx of Eq. (20.8),
but with the initial condition Xx

0 D x. Clearly x � y implies that Xx
t � X

y
t

for all t � 0 a.s. Consider an increasing sequence xn ! 1, the corresponding
increasing sequence of processes fXxn

t ; t � 0gn�1, and define V n
t WD X

xn
t � Wt ,

Sn D infft > 0; V n
t < 2M g. Note that Sn is increasing. A minor modification of

the computations in the first part of this proof shows that for 0 � t � Sn,

1

.c˛�1
˛;� t C x

�.˛�1/
n /1=.˛�1/

� V n
t � 1

.C ˛�1
˛;� t C x

�.˛�1/
n /1=.˛�1/

:

It readily follows that Vt WD limn!1 V n
t solves Eq. (20.9), while Xt WD Vt C Wt

solves Eq. (20.8). Those solutions do not depend upon the choice of a particular
sequence xn ! 1, and the thus constructed solution is clearly the minimal solution
of Eq. (20.8).

Proof of EŒT0� < 1; Step1 We first show that S ^ � is bounded, and VS^� is
integrable.

For that sake, start noting that VS^� � 2M . It then follows from one of the
inequalities obtained in the first part of the proof that

S ^ � �
�

C˛;�

2M

�˛�1

:

On the set S < � , VS^� D 2M . Consequently

VS^� D 2M 1fS<�g C V� 1f��Sg

� 2M C C˛;���1=.˛�1/:

We now show that

EŒVS^� � < 1: (20.10)

From the last inequality,

EŒVS^� � � 2M C C˛;�E
�
��1=.˛�1/

�
:

We need to compute (below W �
t D sup0�s�t jWsj)
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E
�
��1=.˛�1/

� D
Z 1

0

P
�
��1=.˛�1/ > t

�
dt

D
Z 1

0

P
�
� < t�.˛�1/

�
dt

�
Z 1

0

P
�
W �

t�.˛�1/ � 2M
�

dt

� 4

Z 1

0

P .Wt�.˛�1/ � 2M / dt

� 4

Z 1

0

P
�
W1 � 2M t.˛�1/=2

�
dt

� 4
p

e

Z 1

0

exp
��2M t.˛�1/=2

�
dt

< 1;

where we have used for the fourth inequality the following Tchebysheff inequality:

P.W1 > A/ D P
�
eW1�1=2 > eA�1=2

� �
p

e

eA
:

Equation (20.10) follows.

Proof of EŒT0� < 1; Step 2 Now we turn back to the X equation, and we show in
this step that X comes down to level M in time which has finite expectation. Since
VS^� � 2M and �M � WS^� � 2M ,

M � XS^� � VS^� C 2M:

In order to simplify notations, let us write � WD XS^� . Until Xt reaches the level M ,

f .Xt / � �.Xt/
˛ � ��

2
.Xt /

˛ � �1;

from the choice of M . Consequently, if TM D infft > 0; Xt � M g, XS^�Cr � Yr

for all 0 � r � TM � S ^ � a.s., where Y solves

dYr D �dr C dWr; Y0 D �;

where W is a standard Brownian motion independent of �. Let RM WD inffr >

0; Yr � M g. Clearly TM � S ^ � C RM . So since S ^ � is bounded, Step 2 will
follow if we show that E.RM / < 1. But the time taken by Y to descend a given
level is linear in that level. So, given that E.�/ < 1, it suffices to show that the
time needed for Y to descend a distance one is integrable, which is easy, since if
� WD infft > 0; Wt � t � �1g, for t � 2,

P.� > t/ � P.Wt > t � 1/
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� P.Wt > t=2/

� P.W1 >
p

t=2/

� p
e exp.�p

t=2/:

Proof of EŒT0� < 1; Step 3 For proving that EŒT0� < 1, it remains to show that
the time taken by X to descend from M to 0 is integrable, which we now establish.
Given any fixed T > 0, let p denote the probability that starting from M at time
t D 0, X hit zero before time T . Clearly p > 0. Let ˛ be a geometric random
variable with success probability p, which is defined as follows. Let X start from
M at time 0. If X hits zero before time T , then ˛ D 1. If not, we look at the position
XT of X at time T . If XT > M , we want until X goes back to M . The time needed
is bounded by the integrable random variable �, which is the time needed for X to
descend to M , when starting from C1. If however XT � M , we start afresh from
there, since the probability to reach zero in less than T is greater than or equal to p,
for all starting points in the interval .0; M �. So either at time T , or at time T C�, we
start again from a level which is less than or equal to M . If zero is reached during
the next interval of length T , then ˛ D 2. Repeating this procedure, we see that the
time needed to reach 0, starting from M , is bounded by

˛T C
X̨

iD1

�i ;

where the r.v.’s �i are i.i.d., with the same law as �, globally independent of ˛. Now
the total time needed to descend from C1 to 0 is bounded by

˛T C
X̨

iD0

�i ;

whose expectation is T=p C .1 C 1=p/E.�/ < 1. ut

7.2 Height of the Continuous Tree

We consider again the process fZx
t ; t � 0g solution of Eq. (20.4):

dZx
t D �

�Zx
t � �.Zx

t /˛
�

dt C 2
p

Zx
t dWt; Zx

0 D x;

with � � 0, � > 0, ˛ > 0, and define T x D infft > 0; Zx
t D 0g.

We first prove

Theorem 7.2. If 0 < ˛ < 1, 0 < P.T x D 1/ < 1 if � > 0, while T x < 1 a.s. if
� D 0.
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If ˛ D 1, T x < 1 a.s. if � � � , while 0 < P.T x D 1/ < 1 if � < � .
If ˛ > 1, T x < 1 a. s.

Proof. Clearly, if � > 0 and ˛ < 1, then for large values of Zx
t , the nonlinear

term ��.Zx
t /˛ is negligible with respect to the linear term �Zx

t ; hence the process
behaves as in the supercritical branching case: both extinction in finite time and
infinite time survival happen with positive probability. If however � D 0, then the
process goes extinct in finite time a.s., since on the interval Œ1; 1/ the process is
bounded from above by the Brownian motion with constant negative drift (equal
to �� ), which comes back to 1 as many times as necessary, until it hits 0, hence
T x < 1 a.s.

In case ˛ D 1 we have a continuous branching process, whose behaviour is well
known.

In case ˛ > 1, the nonlinear term ��.Zx
t /˛ dominates for large values of Zx

t ;
hence the process comes back to 1 as many times as necessary, until it hits 0, hence
T x < 1 a.s. ut

We now establish the large x behaviour of T x.

Theorem 7.3. If ˛ � 1, then T x ! 1 a.s., as x ! 1.

Proof. The result is equivalent to the fact that the time to reach 1, starting from
x, goes to 1 as x ! 1. But when Zx

t � 1, a comparison of SDEs for various
values of ˛ shows that it suffices to consider the case ˛ D 1. In that case, T n is the
maximum of the extinction times of n mutually independent copies of Z1

t , hence
the result. ut
Theorem 7.4. If ˛ > 1, then E Œsupx>0 T x� < 1.

Proof. It follows from the Itô formula that the process Y x
t WD p

Zx
t solves the SDE

dY x
t D



�

2
Y x

t � �

2
.Y x

t /2˛�1 � 1

8Y x
t

�
dt C dWt ; Y x

0 D p
x:

By a well known comparison theorem, Y x
t � U x

t , where U x
t solves

dU x
t D



�

2
U x

t � �

2
.U x

t /2˛�1

�
dt C dWt ; U x

0 D p
x:

The result now follows readily from Theorem 7.1, since ˛ > 1 implies that 2˛ �
1>1. ut

7.3 Length of the Continuous Tree

Recall that in the continuous case, the length of the genealogical tree is given as

Sx D
Z T x

0

Zx
t dt:
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For fixed values of x, Sx is finite iff T x is finite (remind that T x D 1 requires that
Zx

t ! 1 as t ! 1), hence the result of Theorem 7.2 translates immediately into
a result for Sx . We next consider the limit of Sx as x ! 1. Consider the additive
functional

At D
Z t

0

Zx
s ds; t � 0;

and the associated time change

�.t/ D inffs > 0; As > tg:
We now define U x

t D Zx ı �.t/, t � 0. It is easily seen that the process U x solves
the SDE

dU x
t D �

� � �.U x
t /˛�1

�
dt C 2dWt; U x

0 D x: (20.11)

Let �x WD infft > 0; U x
t D 0g. It follows from the above that �.�x/ D T x , hence

Sx D �x .
We have the following results.

Theorem 7.5. If ˛ � 2, then Sx ! 1 a.s. as x ! 1.

Proof. ˛ � 2 means ˛ � 1 � 1. The same argument as in Theorem 7.3 implies that
it suffices to consider the case ˛ D 2. But in that case Eq. (20.11) has the explicit
solution

U x
t D e��t x C

Z t

0

e��.t�s/Œ�ds C 2dWs�I

hence

Sx D inf

	
t > 0;

Z t

0

e�s.�ds C 2dWs/ � �x



;

which clearly goes to infinity, as x ! 1. ut
Theorem 7.6. If ˛ > 2, then E Œsupx>0 Sx� < 1.

Proof. This theorem follows readily from Theorem 7.1 applied to the U x-
Eq. (20.11), since ˛ > 2 means ˛ � 1 > 1. ut
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Chapter 21
Linking Progressive and Initial Filtration
Expansions

Younes Kchia, Martin Larsson, and Philip Protter

Abstract In this article, we study progressive filtration expansions with random
times. We show how semimartingale decompositions in the expanded filtration can
be obtained using a natural link between progressive and initial expansions. The link
is, on an intuitive level, that the two coincide after the random time. We make this
idea precise and use it to establish known and new results in the case of expansion
with a single random time. The methods are then extended to the multiple time case,
without any restrictions on the ordering of the individual times. Finally we study the
link between the expanded filtrations from the point of view of filtration shrinkage.
As the main analysis progresses, we indicate how the techniques can be generalized
to other types of expansions.
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1 Introduction

Expansion of filtrations is a well-studied topic that has been investigated both in
theoretical and applied contexts; see for instance [8–10]. There are two main types
of filtration expansion: initial expansion and progressive expansion. The initial
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expansion of a filtration F D .Ft /t�0 with a random variable � is the filtration
H obtained as the right-continuous modification of .Ft _ �.�//t�0. A priori there
is no particular interpretation attached to this random variable. The progressive
expansion G is obtained as any right-continuous filtration containing F and making
� a stopping time. In this case � should of course be nonnegative since it has the
interpretation of a random time. We often use the smallest such filtration in this
paper. On a complete probability space .�; F ; P / a filtration F is said to satisfy the
“usual hypotheses” if it is right-continuous and if F0 contains all the P null sets of
F . Therefore Ft contains all the P null sets of F as well, for any t � 0. We will
assume throughout this paper that all filtrations satisfy the usual hypotheses.

Yor [15] noted that the decompositions in the initially and progressively ex-
panded filtrations are related and showed how one can obtain the decompositions
of some F local martingales in the progressively expanded filtration under repre-
sentability assumptions of some crucial F martingales related to the random time
� . We refer the reader to [15] for more details. However, these two filtrations have
typically been viewed and studied in the literature independently from one another.
The purpose of the present paper is to demonstrate that there is a very natural
connection between the initial and progressive expansions. The reason is, on an
intuitive level, that the filtrations G and H coincide after time � . We make this idea
precise for filtrations H that are not necessarily obtained as initial expansions. This,
in combination with a classical theorem by Jeulin and Yor, allows us to show how
the semimartingale decomposition of an F local martingale, when viewed in the
progressively expanded filtration G, can be obtained on all of Œ0; 1/, provided that
its decomposition in the filtration H is known. One well-known situation where this
is the case is when Jacod’s criterion is satisfied. This is, however, not the only case,
and we give an example using techniques based on Malliavin calculus developed by
Imkeller et al. [7]. These developments, which all concern expansion with a single
random time, are treated in Sect. 2. The technique is, however, applicable in more
general situations than expansion with a single random time. As an indication of this,
we perform en passant the same analysis for what we call the .�; X/-progressive
expansion of F, denoted G

.�;X/. Here � becomes a stopping time in the larger
filtration, and the random variable X becomes G.�;X/

� -measurable.
In Sect. 3 we extend these ideas in order to deal with the case where the base

filtration F is expanded progressively with a whole vector � D .�1; : : : ; �n/ of
random times. Unlike previous work in the literature (see for instance [9]), we do not
impose any conditions on the ordering of the individual times. After establishing a
general semimartingale decomposition result we treat the special case where Jacod’s
criterion is satisfied for the whole vector �, and we show how the decompositions
may be expressed in terms of F conditional densities of � with respect to its law.

Finally, in Sect. 4 we take a different point of view and study the link between
the filtrations G and H from the perspective of filtration shrinkage. In the case of a
random time that avoids all F stopping times and whose F conditional probabilities
are equivalent to some deterministic measure, Callegaro, Jeanblanc, and Zargari
already used the idea of projecting down the H decomposition of an F local
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martingale to obtain its decomposition in G; see [1]. Some of their results follow
from ours, and our technique allows us to avoid the heavy manual computations
involving dual predictable projections that arise naturally in this problem.

2 Expansion with One Random Time

Assume that a filtered probability space .�; F ;F; P / is given, and let � be a random
time, i.e., a nonnegative random variable. Typically � is not a stopping time with
respect to F. Consider now the larger filtrations G

� D .G�
t /t�0 and QG D . QGt /t�0

given by
G�

t D
\

u>t

G0;�
u where G0;�

t D Ft _ �.� ^ t/

and
QGt D ˚

A 2 F ; 9At 2 Ft j A \ f� > tg D At \ f� > tg�:
One normally refers to G

� as the progressive expansion of F with � , and it can be
characterized as the smallest right-continuous filtration that contains F and makes �

a stopping time.

2.1 Initial and Progressive Enlargements
When They Are Related

Throughout this section G will denote any right-continuous filtration containing F,
making � a stopping time and satisfying Gt \ f� > tg D Ft \ f� > tg for all t � 0.
In [5], the authors study the compensator of � in G and notice that these assumptions
on the filtration are sufficient to obtain Jeulin–Yor type results. Our goal in this
section is to analyze how F semimartingales behave in the progressively expanded
filtration G. In particular, in case they remain semimartingales in G, we are
interested in their canonical decompositions. Under a well-known and well-studied
hypothesis due to Jacod [8], this has been done by Jeanblanc and Le Cam [9] in the
filtration G

� . As one consequence of our approach, we are able to provide a short
proof of their main result. Moreover, our technique also works for a larger class of
progressively expanded filtrations and under other conditions than Jacod’s criterion.

The G decomposition before time � of an F local martingale M follows from a
classical and very general theorem by Jeulin and Yor [10], which we now recall.

Theorem 2.1. Fix an F local martingale M and define Zt D P.� > t j Ft / as the
optional projection of 1ŒŒ�;1ŒŒ onto F, let � be the martingale part of its Doob–Meyer
decomposition, and let J be the dual predictable projection of �M�1ŒŒ�;1ŒŒ onto F.
Then

Mt^� �
Z t^�

0

dhM; �is C dJs

Zs�
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is a local martingale in both G
� and QG.

The G decomposition before time � follows as a straightforward corollary of
Theorem 2.1 using the following shrinkage result of Föllmer and Protter; see [4].

Lemma 2.1. Let E � F � G be three filtrations. Let X be a G local martingale.
If the optional projection of X onto E is an E local martingale, then the optional
projection of X onto F is an F local martingale.

Putting Theorem 2.1 and Lemma 2.1 together provides the G decomposition
before time � of an F local martingale M as given in the following theorem.

Theorem 2.2. Fix an F local martingale M . Then

Mt^� �
Z t^�

0

dhM; �is C dJs

Zs�

is a G local martingale. Here, the quantities Z, �, and J are defined as in
Theorem 2.1.

Finding the decomposition after � is more complicated, but it can be obtained
provided that it is known with respect to a suitable auxiliary filtration H. More
precisely, one needs that H and G coincide after � , in a certain sense. One such
filtration H when G is taken to be G� is, as we will see later, the initial expansion of
F with � . We now make precise what it means for two filtrations to coincide after � .

Definition 2.1. Let G and H be two filtrations such that G � H, and let � be an
H stopping time. Then G and H are said to coincide after � if for every H optional
process X , the process

1ŒŒ�;1ŒŒ.X � X�/

is G adapted.

The following lemma establishes some basic properties of filtrations that coin-
cide after � . Recall that all filtrations are assumed right-continuous.

Lemma 2.2. Assume that G and H coincide after � . Then:

(i) For every H stopping time T , T _ � is G stopping time. In particular, � itself is
a G stopping time.

(ii) For every H optional (predictable) process X , the process 1ŒŒ�;1ŒŒ.X � X�/ is
G optional (predictable).

Proof. For .i/, let T be an H stopping time. Then T _ � is again an H stopping
time, so X D 1ŒŒ0;T _��� is H optional. Thus

1ŒŒ�;1ŒŒ.r/.Xr � X�/ D �1fT _�<rg
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is Gr -measurable by the assumption that G and H coincide after � . This holds for
every r � 0, so T _ � is a G stopping time since G is right-continuous.

For .i i/, let X be of the form X D h1ŒŒs;t ŒŒ for an Hs-measurable random variable
h and fixed 0 � s < t . Then

Yr D 1ŒŒ�;1ŒŒ.r/.Xr � X�/ D 1f��rg
�
h1fs�r<tg � h1fs��<tg

�

is Gr -measurable by assumption and defines a càdlàg process. Hence Y is G

optional, and the monotone class theorem implies the claim for H optional
processes. The predictable case is similar. ut

Before giving the first result on the G semimartingale decomposition of an
F local martingale, under the general assumption that such a decomposition is
available in some filtration H that coincides with G after � , we provide examples of
such pairs of filtrations .G;H/. For the progressively expanded filtration G

� , it turns
out that the filtration H given as the initial expansion of F with � coincides with G

�

after � . Recall that the initial expansion is defined as follows:

Ht D
\

u>t

H0
u where H0

t D Ft _ �.�/:

Lemma 2.3. Let H be the initial expansion of F with � . Then G
� and H coincide

after � .

Proof. Let X D h1ŒŒs;t ŒŒ for an Hs-measurable random variable h and fixed 0�s<t .
Then

Yr D 1ŒŒ�;1ŒŒ.r/.Xr � X�/ D 1f��rg
�
h1fs�r<tg � h1fs��<tg

�

D h1fs�r<tg1f��rg � h1fs��<tg1ft�rg
� h1fs���rg1fr<tg:

It is enough to prove that the three terms on the right side are G�
r -measurable. Let us

consider the first term, the other ones being similar. First let h be of the form f k.�/

for some Fs-measurable f and Borel function k. Then

h1fs�r<tg1f��rg D f k.�/1fs�r<tg1f��rg D f k.r ^ �/1fs�r<tg1f��rg;

which is G�
r -measurable. Using the monotone class theorem the result follows

for every H0
s -measurable h and finally for every Hs-measurable h by a standard

argument. ut
As a corollary we may give an alternative characterization of the progressively

enlarged filtration G
� as the smallest right-continuous filtration that contains F and

coincides with H after � , where H is the initial expansion of F.
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Corollary 2.1. Let H be the initial expansion of F with � . Then

G
� D

\˚ QG W F � QG � H; QG is right-continuous, and QG and H coincide after �
�

Proof. To show “�,” let QG be an arbitrary element in the class over which we take
the intersection. By Lemma 2.2, QG is a right-continuous filtration that makes � a
stopping time and contains F. Hence G

� is included in each QG and thus in their
intersection. For “�,” Lemma 2.3 implies that G� coincides with H after � . It is
right-continuous, so it is one of the filtrations we are intersecting. ut

Let X be a random variable. Consider now the filtration G
.�;X/, which we call

the .�; X/-expansion of F, given by

G.�;X/
t D

\

u>t

G0;.�;X/
u where G0;.�;X/

t D Ft _ �.� ^ t/ _ �.X1f��tg/:

The filtration G
.�;X/ is the smallest right-continuous filtration containing F, which

makes � a stopping time and such that X is G.�;X/
� -measurable. See Dellacherie and

Meyer [2] for a related discussion. As in Lemma 2.3 it is easy to prove the following
result.

Lemma 2.4. Let H be the initial expansion of F with .�; X/. Then G
.�;X/ coincides

with H after � .

Also, G.�;X/ satisfies the crucial condition G.�;X/
t \ f� > tg D Ft \ f� > tg for

all t � 0.

Lemma 2.5. The progressively expanded filtration G
.�;X/ satisfies

G.�;X/
t \ f� > tg D Ft \ f� > tg

for all t � 0.

Proof. It is well known that G�
t \ f� > tg D Ft \ f� > tg. Let Ht D Yth.X1f��tg/,

where Yt is Ft -measurable and bounded and h is a bounded Borel function. Then
Ht 1f�>tg D Yt h.0/1f�>tg which is measurable with respect to f� > tg \ G�

t D f� >

tg \Ft . The monotone class theorem now proves that G.�;X/
t \ f� > tg � Ft \ f� >

tg. The reverse inclusion is clear. ut
We are now ready to give the first result on the G semimartingale decomposition

of an F local martingale, under the general assumption that such a decomposition is
available in some filtration H that coincides with G after � .

Theorem 2.3. Let M be an F local martingale. Let G be any progressive expansion
of F with � satisfying Gt \ f� > tg D Ft \ f� > tg for all t � 0 and let H be
a filtration that coincides with G after � . Suppose there exists an H predictable
finite variation process A such that M � A is an H local martingale. Then M is a
G semimartingale, and
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Mt �
Z t^�

0

dhM; �is C dJs

Zs�
�
Z t

t^�

dAs

is the local martingale part of its G decomposition. Here Z, �, and J are defined
as in Theorem 2.1.

Proof. The process MG
t D Mt^� � R t^�

0
dhM;�isCdJs

Zs�

is a G local martingale by the
Jeulin–Yor theorem (Theorem 2.2). Next, define

MH D 1ŒŒ�;1ŒŒ. QM � QM�/;

where QMt D Mt � At . Since QM is an H local martingale, MH is also. Moreover, if
.Tn/n�1 is a sequence of H stopping times that reduce QM , then T 0

n D Tn _ � yields a
reducing sequence for MH. Lemma 2.2.i/ shows that the T 0

n are in fact G stopping
times, and since G and H coincide after � , MH is G adapted. This implies that MH

�^T 0

n

is an H martingale that is G adapted and is therefore a G martingale. It follows that
MH is a G local martingale. It now only remains to observe that

MG

t C MH

t D Mt �
Z t^�

0

dhM; �is C dJs

Zs�
�
Z t

t^�

dAs;

which thus is a G local martingale. Finally, by Lemma 2.2.i i/, the last term is
G predictable, so we obtain indeed the G semimartingale decomposition. ut

Part of the proof of Theorem 2.3 can be viewed as a statement about filtration
shrinkage. According to a result by Föllmer and Protter [4], if G � H are two nested
filtrations and L is an H local martingale that can be reduced using G stopping
times, then its optional projection onto G is again a local martingale. In our case
L corresponds to MH, which is G adapted and hence coincides with its optional
projection.

We now proceed to examine two particular situations where G and H coincide
after � and where theH decomposition M �A is available. First we make an absolute
continuity assumption on the Ft conditional laws of � or .�; X/, known as Jacod’s
criterion. We then assume that F is a Wiener filtration and impose a condition related
to the Malliavin derivatives of the process of Ft conditional distributions. This is
based on theory developed by Imkeller, Pontier, and Weisz [7] and Imkeller [6].

2.2 Jacod’s Criterion

In this section we study the case where � or .�; X/ satisfy Jacod’s criterion, which
we now recall. Let � be a random variable. We state Jacod’s criterion for the case
where � takes values in R

d . In this subsection, H will always denote the initial
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expansion of F with �. Our results will be obtained with � being either � or .�; X/

and in both cases H indeed coincides with G
� after � by Lemma 2.3 and Lemma 2.4.

Assumption 2.1 (Jacod’s criterion). There exists a �-finite measure 	 on B.Rd /

such that P.� 2 � j Ft /.!/ � 	.�/ a.s.

Without loss of generality, 	 may be chosen as the law of �. Under
Assumption 2.1, the Ft conditional density

pt .uI !/ D P.� 2 du j Ft /.!/

	.du/

exists and can be chosen so that .u; !; t/ 7! pt .uI !/ is càdlàg in t and measurable
for the optional �-field associated with the filtrationbF given by bF t D \u>tB.Rd /˝
Fu. See Lemma 1.8 in [8].

Theorem 2.4. Let M be an F local martingale.

(i) If � satisfies Jacod’s criterion (Assumption 2.1), then M is a G
� semimartin-

gale.
(ii) Let X be a random variable such that .�; X/ satisfies Jacod’s criterion

(Assumption 2.1); then M is a G
.�;X/ semimartingale.

Proof. We prove (i). Let H
� be the initial expansion of F with � . It follows

from Jacod’s theorem (see Theorems VI.10 and VI.11 in [7]) that M is an H
�

semimartingale, which is G
� adapted. It is also a G

� semimartingale by Stricker’s
theorem. The proof of (ii) is similar. ut

We provide the explicit decompositions using the following classical result by
Jacod; see [8], Theorem 2.5.

Theorem 2.5. Let M be an F local martingale, and assume Assumption 2.1 is
satisfied. Then there exists set B 2 B.Rd /, with 	.B/ D 0, such that:

(i) hp.u/; M i exists on f.!; t/ W pt�.uI !/ > 0g for every u … B .
(ii) There is an increasing predictable process A and an bF predictable function

kt .uI !/ such that for every u … B , hp.u/; M it D R t

0
ks.u/ps�.u/dAs on

f.!; t/ W pt�.uI !/ > 0g.
(iii)

R t

0
jks.�/jdAs < 1 a.s. for every t � 0 and Mt � R t

0
ks.�/dAs is an H local

martingale.

Immediate consequences of Theorem 2.3 and Theorem 2.5 are the following
corollaries.

Corollary 2.2. Let M be an F local martingale, and assume that � satisfies
Assumption 2.1. Then M is a G

� semimartingale, and

Mt �
Z t^�

0

dhM; �is C dJs

Zs�
�
Z t

t^�

ks.�/dAs
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is the local martingale part of its G� decomposition. Here Z, � and J are defined
as in Theorem 2.1, and k, and A as in Theorem 2.5 with d D 1 and � D � .

Notice that this recovers the main result in [9] (Theorem 3.1), since by
Theorem 2.5.i i/ we may write

Z t

t^�

ks.�/dAs D
Z t

t^�

dhp.u/; M is

ps�.u/

ˇ̌
ˇ̌
uD�

;

whenever the right side makes sense. See [9] for a detailed discussion.

Corollary 2.3. Let M be an F local martingale. Let X be a random variable and
assume that .�; X/ satisfies Assumption 2.1. Then M is a G

.�;X/ semimartingale,
and

Mt �
Z t^�

0

dhM; �is C dJs

Zs�
�
Z t

t^�

ks.�; X/dAs

is the local martingale part of its G
.�;X/ decomposition. Here Z, �, and J are

defined as in Theorem 2.1, and k and A as in Theorem 2.5 with d D 2 and � D
.�; X/.

2.3 Absolute Continuity of the Malliavin Trace

In two papers on models for insider trading in mathematical finance, Imkeller et
al. [7] and Imkeller [6] introduced an extension of Jacod’s criterion for initial
expansions, based on the Malliavin calculus. Given a measure-valued random
variable F.duI !/ defined on Wiener space with coordinate process .Wt /0�t�1, they
introduce a Malliavin derivative Dt F.duI !/, defined for all F satisfying certain
regularity conditions. The full details are outside the scope of the present paper, and
we refer the interested reader to [7] and [6]. Filtration expansion using the Malliavin
calculus has also been developed elsewhere; see for instance Kohatsu-Higa [11] and
Sulem et al. [14]. We continue to let H be the initial expansion of F.

The extension of Jacod’s criterion is the following. Let Pt .du; !/ D P.� 2 du j
Ft /.!/, and assume that Dt Pt .du; !/ exists and satisfies

sup
f 2Cb.R/; kf k�1

E

�Z 1

0

hDsPs.du/; f i2ds

�
< 1:

Here Cb.R/ is the space of bounded and continuous functions on R, k � k is the
supremum norm, and hF.du/; f i D R

R
C

f .u/F.du/ for a random measure F and
f 2 Cb.R/. Assume also that

Dt Pt .du; !/ � Pt .du; !/ a:s: for all t 2 Œ0; 1�;
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and let gt .uI !/ be a suitably measurable version of the corresponding density. Then
they prove the following result.

Theorem 2.6. Under the above conditions, if
R 1

0
jgt .�/jdt < 1 a.s., then

Wt �
Z t

0

gs.�/ds

is a Brownian motion in the initially expanded filtration H.

One example where this holds but Jacod’s criterion fails is � D sup0�t�1 Wt .
In this case gt .�/ can be computed explicitly and the H decomposition of W

obtained. Due to the martingale representation theorem in F, this allows one to
obtain the H decomposition for every F local martingale. Using Theorem 2.3, the
decomposition in the progressively expanded filtration G can then also be obtained.

Corollary 2.4. Under the assumptions of Theorem 2.6,

Wt �
Z t^�

0

dhW; Zis

Zs�
�
Z t

t^�

gs.�/ds

is a G Brownian motion.

3 Expansion with Multiple Random Times

We now move on to progressive expansions with multiple random times. We start
again with a filtered probability space .�; F ;F; P /, but instead of a single random
time we consider a vector of random times

� D .�1; : : : ; �n/:

We emphasize that there are no restrictions on the ordering of the individual times.
This is a significant departure from previous work in the field, where the times are
customarily assumed to be ordered. The progressive expansion of F with � is

Gt D
\

u>t

G0
u where G0

t D Ft _ �.�i ^ t I i D 1; : : : ; n/;

and we are interested in the semimartingale decompositions of F local martingales
in the G filtration. Several other filtrations will also appear, and we now introduce
notation that will be in place for the remainder of this section, except in Theorem 3.2
and its corollary. Let I � f1; : : : ; ng be an index set:

• �I D maxi2I �i and 
I D minj …I �j .
• G

I denotes the initial expansion of F with the random vector �I D .�i /i2I .
• H

I denotes the progressive expansion of GI with the random time 
I .
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If I D ;, then G
I D F and H

I is the progressive expansion of F with 
; D
miniD1;:::;n �i . If on the other hand I D f1; : : : ; ng, then G

I D H
I and coincides

with the initial expansion of F with �I D �. Notice also that we always have GI �
H

I .
The idea from Sect. 2 can be modified to work in the present context. The

intuition is that the filtrations G and H
I coincide on ŒŒ�I ; 
I ŒŒ. The G decomposition

on ŒŒ�I ; 
I ŒŒ of an F local martingale M can then be obtained by computing its
decomposition in H

I . This is done in two steps. First it is obtained in G
I using,

for instance, Jacod’s theorem (Theorem 2.5), and then in H
I up to time 
I using the

Jeulin–Yor theorem (Theorem 2.1).
The following results collect some properties of the relationship between H

I and
G, thereby clarifying in which sense they coincide on ŒŒ�I ; 
I ŒŒ. We take the index
set I to be given and fixed.

Lemma 3.1. Let X be an HI
t -measurable random variable. Then the quantity

X1f�I �tg is Gt -measurable. As a consequence, if H is an H
I optional (predictable)

process, then 1ŒŒ�I ;
I ŒŒ.H � H�I / is G optional (predictable).

Proof. Let X be of the form X D f k.
I ^ t/
Q

i2I hi .�i / for some Ft -measurable
random variable f and Borel functions k, hi . Then

X1f�I �tg D f k.
I ^ t/
Y

i2I

hi .�i ^ t/1f�I �tg;

which is Gt -measurable, since �I and 
I are G stopping times and �i ^ t is Gt -
measurable by construction. The monotone class theorem shows that the statement
holds for every X that is measurable for Ft _ �.�i W i 2 I / _ �.
I ^ t/. HI is the
right-continuous version of this filtration, so the result follows.

Now consider an H
I predictable process of the form H D h1��s;t �� with s � t and

h an HI
s -measurable random variable. Then

Hr1ŒŒ�I ;
I ŒŒ.r/ D h1fs<r�tg1f�I �r<
I g � h1fs<�I �r<
I g;

which defines a G predictable process using the first part of the lemma. An
application of the monotone class theorem yields the desired result in the predictable
case. The optional case is similar. ut
Lemma 3.2. Let Tn be an H

I stopping time and define T 0
n D .�I _ Tn/ ^ .
I _ n/.

Then T 0
n is a G stopping time.

Proof. Note that fT 0
n � tg D f
I _n � tg[f�I _Tn � tg. Since 
I is a G stopping

time and the filtration is right-continuous, f
I _ n � tg 2 Gt . Next, the complement
of f�I _ Tn � tg is Gt -measurable. Indeed,

f�I _ Tn > tg D f�I > tg [ f�I � t; Tn > tg;
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and 1f�I �tg1fTn>tg is Gt -measurable by Lemma 3.1. We conclude that fT 0
n � tg 2 Gt

for every t � 0. ut
The next theorem generalizes Theorem 2.3 to the case of progressive enlargement

with multiple, not necessarily ranked times.

Theorem 3.1. Let M be an F local martingale such that M0 D 0. For each I �
f1; : : : ; ng, suppose there exists a G

I predictable finite variation process AI such
that M � AI is a G

I local martingale. Moreover, define

ZI
t D P.
I > t j GI

t /;

and let �I and J I be as in Theorem 2.1. Then M is a G semimartingale with local
martingale part Mt � At , where

At D
X

I

1f�I �
I g
�Z t^
I

t^�I

dAI
s C

Z t^
I

t^�I

dhM; �I is C dJ I
s

ZI
s�

�
:

Here the sum is taken over all I � f1; : : : ; ng.

Notice that when I D ;, then �I D 0 and G
I D F, so that AI D 0 and does not

contribute to At . Similarly, when I D f1; : : : ; ng, 
I D 1 and we have ZI
t D 1,

causing both hM; �I i and J to vanish.
Before proving Theorem 3.1 we need the two following technical lemmas.

Lemma 3.3. Let M be a process. Then

X

I�f1;:::;ng
1f�I �
I g.Mt^
I � Mt^�I / D Mt � M0:

Proof. Fix ! 2 � and let 0 � �	.1/ � �	.2/ � � � � � �	.n/ be the ordered times. For
I of the form I D f	.1/; : : : ; 	.k/g, 0 � k � n, we have

1f�I �
I g.Mt^
I � Mt^�I / D Mt^�	.kC1/
� Mt^�	.k/

;

with the convention �	.0/ D 0 and �	.nC1/ D 1. For any other I , the left side
vanishes since �I � 
I . It follows that

X

I�f1;:::;ng
1f�I �
I g.Mt^
I � Mt^�I / D

nX

kD0

�
Mt^�	.kC1/

� Mt^�	.k/

� D Mt � M0;

as desired. ut
Lemma 3.4. Let L be a local martingale in some filtration F, suppose � and 
 are
two stopping times, and define a process Nt D 1f��
g.Lt^
 � Lt^�/:

(i) N is again a local martingale.
(ii) Let T be a stopping time and define T 0 D .� _ T / ^ .
 _ n/ for a fixed n. Then

Nt^T D Nt^T 0 .
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Proof.

Part .i/: The claim follows from the observation that Nt D Lt^
 � Lt^
^� .
Part .i i/: The proof consists of a careful analysis of the interplay between the

indicators involved in the definition of N and T 0. First note that

t ^ T 0 ^ 
 D t ^ .� _ T / ^ .
 _ n/ ^ 
 D t ^ .� _ T / ^ 


and thus also

t ^ T 0 ^ 
 ^ � D t ^ .� _ T / ^ 
 ^ � D t ^ 
 ^ �:

Therefore
Nt^T 0 D Lt^.�_T /^
 � Lt^�^
:

On f� > 
g, Nt^T 0 is zero, as is Nt^T . On the set f� � 
g \ fT � �g, we have
Nt^T 0 D Lt^� � Lt^� D 0 D Nt^T . Finally, on f� � 
g \ fT > �g, we have
.� _T /^
 D T ^
 and � ^
 D T ^� ^
, so that Nt^T 0 D Lt^T ^
 �Lt^T ^
^� D
Nt^T . ut
Proof of Theorem 3.1 For each fixed index set I , the process Mt � R t

0
dAI

s is a
local martingale in the initially expanded filtration G

I by assumption. Now, HI is
obtained from G

I by a progressive expansion with 
I , so Theorem 2.1 yields that

M I
t D Mt^
I �

Z t^
I

0

dAI
s �

Z t^
I

0

dhM; �I is C dJ I
s

ZI
s�

is an H
I local martingale. Define the process

N I
t D 1f�I �
I g

�
M I

t^
I
� M I

t^�I

�
:

Our goal is to prove that N I is a G local martingale. This will imply the statement
of the theorem, since summing the N I over all index sets I and using Lemma 3.3
yield precisely M � A.

By part .i/ of Lemma 3.4, N I is a local martingale in H
I . Write

N I
t D 1f�I �t<
I g

�
M I

t � M I
�I

�C 1f�I �
I <tg
�
M I


I
� M I

�I

�
D Y1 C Y2

and apply Lemma 3.1 with X D Y1 for the first term and X D Y2 for the second
to see that N I is in fact G adapted. The use of Lemma 3.1 is valid because both Y1

and Y2 are HI
t -measurable.

Next, let .Tn/n�1 be a reducing sequence for N I in H
I . By Lemma 3.2 we

know that T 0
n D .�I _ Tn/ ^ .
I _ n/ are G stopping times, and since T 0

n �
Tn ^ n we have T 0

n " 1 a.s. Moreover, part .i i/ of Lemma 3.4 implies that
N I

t^Tn
D N I

t^T 0

n
. Hence .N I

t^T 0

n
/t�0 is an H

I martingale that is G adapted and
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therefore even a G martingale. We deduce from the above that N I is a G local
martingale. A final application of Lemma 3.1 shows that A is G predictable, so we
obtain indeed the G semimartingale decomposition of M . This completes the proof
of Theorem 3.1. ut

We now proceed to study the special case where the vector � of random times
satisfies Jacod’s criterion, meaning that Assumption 2.1 holds, now with state space
E D R

nC. Again there is no loss of generality to let 	 be the law of �. We will
further assume that 	 is absolutely continuous w.r.t. to Lebesgue measure, so that
	.du/ D h.u/du. Provided the law of � does not have atoms, this restriction is
not essential—everything that follows goes through without it—but it simplifies the
already quite cumbersome notation.

The joint Ft conditional density corresponding to this choice of 	 is denoted
pt .uI !/. That is,

P.� 2 du j Ft / D pt .u/du1 � � � dun;

where we suppressed the dependence on !. Now, for an index set I � f1; : : : ; ng
with jI j D m, we have, for uI 2 R

mC,

P.�I � uI j Ft / D
Z

vI �uI

Z

v
�I �0

pt .vI I v�I /dv�I dvI ;

where �I is the subvector of � whose components have indices in I and where
vI and v�I are the subvectors of v with indices in I , respectively, not in I .
Inequalities should be interpreted componentwise. The above shows that �I also
satisfies Assumption 2.1, so that there is an appropriately measurable function
pI

t .uI I !/ such that

P.�I 2 duI j Ft / D pI
t .uI /duI :

Moreover, this conditional density pI is given by

pI
t .uI / D

Z

R
n�m
C

pt .uI I u�I /du�I :

Define

pt .u�I j �I / D pt.�I I u�I /R1
0

� � � R1
0

pt .�I I v�I /dv�I

:

This is the conditional density of ��I given Ft _ �.�I /, as one can verify using
standard arguments. Defining

ZI
t D

Z 1

t

� � �
Z 1

t

pt .u�I j �I /du�I ; (21.1)
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we have ZI
t D P.
I > t j Ft _ �.�I //. One then readily checks that we also have

ZI
t D P.
I > t j GI

t /:

We can now state the decomposition theorem for continuous F local martingales
in the progressively expanded filtration G, when Jacod’s criterion is satisfied. Recall
that �I D maxi2I �i and 
I D minj …I �j .

Corollary 3.1. Let M be an F local martingale, and assume Assumption 2.1 is
satisfied for � D .�1; : : : ; �n/. Then M is a G semimartingale. Furthermore, assume
that M is continuous. For each I � f1; : : : ; ng, let ZI be given by Eq. (21.1) and
let �I and J I be as in Theorem 2.1. Then Mt � At is a G local martingale, where

At D
X

I

1f�I �
I g

 Z t^
I

t^�I

dhpI .uI /; M is

pI
s�.uI /

ˇ̌
ˇ̌
uI D�I

C
Z t^
I

t^�I

dhM; �I is C dJ I
s

ZI
s�

!
:

Here the sum is taken over all I � f1; : : : ; ng.

Proof. We apply Theorem 3.1 and notice that it follows from Theorem 2.5 that

AI
t D

Z t

0

kI
s .�I /dhM; M is D

Z t

0

dhpI .uI /; M is

pI
s�.uI /

ˇ̌
ˇ̌
uI D�I

:

This completes the proof. ut
We end this section by pointing out that the filtration G

.�;X/ introduced in Sect. 2
can be generalized to the multiple time case. To state the precise result, we first
suppose that each random time �i is accompanied by a random variable Xi and let
X D .X1; : : : ; Xn/. Define the filtration G

.�;X / by

G.�;X /
t D

\

u>t

G0;.�;X /
u ;

where

G0;.�;X /
t D Ft _ �.�i ^ t W i D 1; : : : ; n/ _ �.Xi 1f�i �tg W i D 1; : : : ; n/:

Let I � f1; : : : ; ng be an index set. Assume for simplicity that P.�i D �j / D 0 for
i ¤ j . We may then define the following:

• X I D .Xi /i2I .
• YI D Xi� , where i� 2 I is the index for which 
I D �i� .

For the statement and proof of Theorem 3.2, we redefine the objects GI and H
I as

follows. For an index set I � f1; : : : ; ng:

• G
I denotes the initial expansion of F with the random vector .�I ; X I / D

.�i ; Xi /i2I .
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• H
I denotes the .
I ; YI /-expansion of GI .

Theorem 3.2. Let M be an F local martingale such that M0 D 0. For each I �
f1; : : : ; ng, suppose there exists a G

I predictable finite variation process AI such
that M � AI is a G

I local martingale. Moreover, define

ZI
t D P.
I > t j GI

t /;

and let �I and J I be as in Theorem 2.1. Then M is a G
.�;X/ semimartingale with

local martingale part Mt � At , where

At D
X

I

1f�I �
I g
�Z t^
I

t^�I

dAI
s C

Z t^
I

t^�I

dhM; �I is C dJ I
s

ZI
s�

�
:

Here the sum is taken over all I � f1; : : : ; ng.

Proof. The proof is the same as that of Theorem 3.1, except for the following points:
instead of Theorem 2.1, we invoke Theorem 2.2, which is justified by Lemma 2.5.
Moreover, it must be verified that Lemma 3.1 remains valid for the redefined H

I

and G D G
.�;X /. This is easily done: in the proof of Lemma 3.1, simply replace

X D f k.
I ^ t/
Q

i2I hi .�i / by

X D f k.
I ^ t/`.YI 1f
I �tg/
Y

i2I

hi .�i /gi .Xi1f�i �tg/;

where `.�/ and gi .�/ are Borel functions. ut
Define the process

N n
t D

nX

iD1

Xi 1f�i �tg:

Let Nn be the smallest right-continuous filtration containing F and to which the
process N n is adapted. Under the same assumption as in Theorem 3.2, F semi-
martingales remain N

n semimartingales.

Corollary 3.2. Let M be an F local martingale such that M0 D 0. For each I �
f1; : : : ; ng, suppose there exists a G

I predictable finite variation process AI such
that M � AI is a G

I local martingale. Then M is a N
n semimartingale.

Proof. Applying Theorem 3.2, M is a G
.�;X / semimartingale. Since N

n � G
.�;X /

and M is adapted to N
n, it follows from Stricker’s theorem [13] (see also [12],

Theorem II.4, for a short proof) that M is a N
n semimartingale. ut
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4 Connection to Filtration Shrinkage

It has been observed that the optional projection of a local martingale M onto a
filtration to which it is not adapted may lose the local martingale property; see
Föllmer and Protter [4]. In that paper, the following general condition was given that
guarantees that the local martingale property is preserved (see [4], Theorem 3.7).

Lemma 4.1. Consider two filtrations F � G and a G local martingale N . If there
exists a sequence of F stopping times that reduce N , then its optional projection
onto F is again a local martingale.

Using this result we establish that certain local martingales that arise in the
context of filtration expansion in fact retain their local martingale property when
projected to various subfiltrations. In particular, if M is an F local martingale
and a G semimartingale, then oMG, the optional projection onto F of the local
martingale part in the G semimartingale decomposition of M , always remains a
local martingale.

Theorem 4.1. Consider three filtrations E � F � G, and let M be an E local
martingale. Suppose M is also a G semimartingale with canonical decomposition
M D N C A. Then the optional projection of N onto F, when it exists, is again a
local martingale.

Remark. Note that M remains a special semimartingale in G, given that it remains
a semimartingale.

Proof. By Lemma 4.1 it suffices to show that N can be reduced using E, and hence
F, stopping times. Now, since M is an E local martingale, it is locally in H1

loc.E/.
Therefore it can be reduced with a sequence .Tn/n�1 of E stopping times such
that for each n, M Tn 2 H1.E/. Also, M Tn is a G semimartingale with canonical
decomposition:

M Tn D N Tn C ATn:

A result by Yor ([16], Théorème 5) then yields

kN Tn kH1.G/ � ckM Tn kH1.E/

for some absolute constant c. Since M Tn is in H1.E/, the right side is finite and it
readily follows that N Tn is a uniformly integrable G martingale for each n, which
was what we set out to prove. ut

At this point, it is worth mentioning that the result above helps illustrate the role
of our assumptions and shows how they fail to hold for the explicit counterexample
given in [4]. There the authors consider a standard three-dimensional Brownian
motion .Bt /t�0 D .B1

t ; B2
t ; B3

t /t�0 starting at x0 D .1; 0; 0/. Let H be its natural
filtration. It is well known that .kBt k/t�0 is a Bessel(3) process with initial value
1 and that its reciprocal Nt D kBt k�1 is an H strict local martingale. Let F be the
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natural filtration of B1. It is proved in [4] that the optional projection of N onto F is
not a local martingale. Theorem 4.1 therefore implies that N can never appear as the
local martingale part in the H decomposition M D N CA of any F local martingale
M that is also an H semimartingale with A nontrivial, since then the projection of
N would not be an F local martingale.

As an application of Theorem 4.1 we obtain the following. The filtrations F, G,
and H are now as in Theorem 2.3.

Corollary 4.1. Let M be an F local martingale and let H be a filtration that
coincides with G after � . Suppose M is an H semimartingale with decomposition

Mt D MH

t C AH

t ;

and suppose AH has a G optional projection oAH which is locally integrable in G.1

Then M is a G semimartingale with decomposition M D MG C AG, and AG D
.AH/p . In particular, it follows that

.AH/
p
t D

Z t^�

0

dhM; �is C dJs

Zs�
C
Z t

t^�

dAH

s :

Here, the quantities Z, �, and J are defined as in Theorem 2.1 and .AH/p is the
dual predictable projection of AH onto G.

Proof. M is an H semimartingale, hence a G semimartingale by Stricker’s the-
orem [13]. Since oAH exists and M is G adapted, oMH exists. Taking optional
projections of the relation M D MH C AH and adding and subtracting .AH/p yield

M D 	
oMH C oAH � .AH/p


C .AH/p:

By Theorem 4.1, oMH is a G local martingale, and therefore the quantity in brackets
is a G local martingale. We deduce that AG D .AH/p. The expression for .AH/p now
follows from Theorem 2.3. ut

As a particular case, we recover Proposition 3.3 in [1]. There G and H are the
progressive, respectively initial, expansions of F with a random time � that avoids
all F stopping times, and whose F conditional probabilities are equivalent to some
deterministic measure. Under these assumptions, the authors compute explicitly the
G dual predictable projection of AH

t D R t

0 ks.�/ds, where k is as in Theorem 2.5,
and prove that

.AH/
p
t D

Z t^�

0

dhM; Zis

Zs�
C
Z t

t^�

ks.�/ds:

This follows from Corollary 4.1 since J D 0 when � avoids all F stopping times.

1This assumption guarantees that the dual predictable projection .AH/p exists, and that oAH �
.AH/p is a G local martingale; see Theorem VI.80 in [3]. That .AH/p is G locally integrable
means that there exists a sequence of G stopping times .Tn/n�1 increasing to infinity and such that
.AH/

p
�^Tn

is integrable.



21 Linking Progressive and Initial Filtration Expansions 487

Acknowledgements Philip Protter was supported in part by NSF grant DMS-0906995.

References

1. Callegaro, G., Jeanblanc, M., Zargari, B.: Carthaginian enlargement of filtrations. ESAIM:
Probability and Statistics, doi:10.1051/ps/2011162

2. Dellacherie, C., Meyer, P.A.: A propos du travail de Yor sur le grossissement des tribus.
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Chapter 22
A Malliavin Calculus Approach to General
Stochastic Differential Games with Partial
Information

An Ta Thi Kieu, Bernt Øksendal, and Yeliz Yolcu Okur

Abstract In this article, we consider stochastic differential game where the state
process is governed by a controlled Itô–Lévy process and the information available
to the controllers is possibly less than the general information. All the system
coefficients and the objective performance functional are assumed to be random.
We use Malliavin calculus to derive a maximum principle for the optimal control
of such problem. The results are applied to solve a worst-case scenario portfolio
problem in finance.

Keywords Malliavin calculus • Stochastic differential game • Stochastic control,
Jump diffusion • Partial information • Optimal worst-case scenario portfolio
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1 Introduction

Suppose the dynamics of a state process X.t/ D X.u0;u1/.t; !/; t � 0, ! 2 �, is a
controlled Itô–Lévy process in R of the form
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8
<

:

dX.t/ D b.t; X.t/; u0.t/; !/dt C �.t; X.t/; u0.t/; !/dB.t/
C R

R0
�.t; X.t�/; u0.t�/; u1.t�; z/; z; !/ QN.dt; dz/I

X.0/ D x 2 R;

(22.1)

where the coefficients b W Œ0; T � � R � U �� ! R, � W Œ0; T � � R � U �� ! R

and � W Œ0; T � � R �U �K � R0 �� are all continuously differentiable .C 1/ with
respect to x 2 R and u0 2 U , u1 2 K for each t 2 Œ0; T � and a.a. ! 2 �; U , K
are given open convex subsets of R2 and R � R0, respectively. Here R0 D R � f0g,
B.t/ D B.t; !/ and �.t/ D �.t; !/, given by

�.t/ D
Z t

0

Z

R0

z QN.ds; dz/I t � 0; ! 2 �; (22.2)

are a one-dimensional Brownian motion and an independent pure jump Lévy
martingale, respectively, on a given filtered probability space .�;F ; fFtgt�0; P /:
Thus

QN.dt; dz/ WD N.dt; dz/� �.dz/dt (22.3)

is the compensated Poisson jump measure of �.�/, where N.dt; dz/ is the Poisson
jump measure and �.dz/ is the Lévy measure of the pure jump Lévy process �.�/.
For simplicity, we assume that

Z

R0

z2�.dz/ < 1: (22.4)

The processes u0.t/ and u1.t; z/ are the control processes and have values in a given
open convex set U and K , respectively, for a.a. t 2 Œ0; T �, z 2 R0 for a given fixed
T > 0. Also, u0.�/ and u1.�/ are càdlàg and adapted to a given filtration fEt gt�0,
where

Et � Ft ; t 2 Œ0; T �:
fEtgt�0 represents the information available to the controller at time t . For example,
we could have

Et D F.t�ı/C I t 2 Œ0; T �; ı > 0 is a constant;

meaning that the controller gets a delayed information compared to Ft . We refer to
[15, 12] for more information about stochastic control of Itô diffusions and jump
diffusions, respectively, and to [2], [4], [8], [9], [14] for other papers dealing with
optimal control under partial information/observation.

Let f W Œ0; T � � R � U � K � � ! R and g W R � � ! R are given
continuously differentiable .C 1/ with respect to x 2 R and u0 2 U , u1 2 K .
Suppose there are two players in the stochastic differential game and the given
performance functionals for players are as follows:

Ji .u0; u1/ D Ex
�Z T

0

Z

R0

fi .t; X.t/; u0.t/; u1.t; z/; z; !/�.dz/dt C gi .X.T /; !/

�

;



22 A Malliavin Calculus Approach to General Stochastic Differential Games . . . 491

i D 1; 2;

where � is a measure on the given measurable space .�;F/ and Ex D ExP denotes
the expectation with respect to P given that X.0/ D x. Suppose that the controls
u0.t/ and u1.t; z/ have the form

u0.t/ D .	0.t/; 
0.t//I t 2 Œ0; T �I (22.5)

u1.t; z/ D .	1.t; z/; 
1.t; z//I .t; z/ 2 Œ0; T � � R0: (22.6)

Let A… and A‚ denote the given family of controls 	 D .	0; 	1/ and 
 D .
0; 
1/

such that they are contained in the set of càdlàg Et -adapted controls, Eq. (22.1) has
a unique strong solution up to time T and

Ex
�Z T

0

Z

R0

jfi.t; X.t/; 	0.t/; 	1.t; z/; 
0.t/; 
1.t; z/; z; !/j�.dz/dtCjgi .X.T /; !/j
�

< 1; i D 1; 2:

The partial information non-zero-sum stochastic differential game problem we
consider is the following:

Problem 1.1. Find .	�; 
�/ 2 A… � A‚ (if it exists) such that

(i) J1.	; 
�/ � J1.	
�; 
�/ for all 	 2 A…,

(ii) J2.	�; 
/ � J2.	
�; 
�/ for all 
 2 A‚.

Such a control .	�; 
�/ is called a Nash equilibrium (if it exists). The intuitive idea
is that there are two players, players I and II. While player I controls 	 , player II
controls 
 . Given that each player knows the equilibrium strategy chosen by the
other player, none of the players has anything to gain by changing only his or her
own strategy only (i.e., by changing unilaterally). Note that since we allow b, � ,
� , f and g to be stochastic processes and also because our controls are required to
be Et -adapted, this problem is not of Markovian type and hence cannot be solved
by dynamic programming. Our paper is related to the recent paper [1, 10], where a
maximum principle for stochastic differential games with partial information and a
mean-field maximum principle are dealt with, respectively. However, the approach
in [1] needs the solution of the backward stochastic differential equation (BSDE)
for the adjoint processes. This is often a difficult point, particularly in the partial
information case. In the current paper, we use Malliavin calculus techniques to
obtain a maximum principle for this general non-Markovian stochastic differential
game with partial information, without the use of BSDEs.



492 A.T.T. Kieu et al.

2 The General Maximum Principle for the Stochastic
Differential Games

In this section we base on Malliavin calculus to solve Problem 1.1. We assume the
following:

(A1) For all s; r; t 2 .0; T /; t � r , and all bounded Et -measurable random
variables ˛ D ˛.!/, � D �.!/ the controls ˇ˛.s/ WD .0; ˇi˛.s// and
��.s/ WD .0; �i�/, i D 1; 2, with

ˇi˛.s/ D ˛i .!/�Œt;r�.s/ and �i� .s/ D �i .!/�Œt;r�.s/I s 2 Œ0; T �;

belong to A… and A‚, respectively. Also, we will denote the transposed of
the vectors ˇ and � by ˇ�, ��, respectively.

(A2) For all 	; ˇ 2 A…; 
; � 2 A‚ with ˇ and � are bounded, there exists ı > 0

such that the controls 	.t/ C yˇ.t/ and 
.t/ C 
�.t/, t 2 Œ0; T �, belong to
A… and A‚, respectively, for all 
 2 .�ı; ı/, and such that the families

n@f1

@x
.t; X.	Cyˇ;
/.t/; 	 C yˇ; 
; z/

d

dy
X.	Cyˇ;
/.t/

C r	f1.t; X
.	Cyˇ;
/.t/; 	 C yˇ; 
; z/ˇ�.t/

o

y2.�ı;ı/;

n@f2

@x
.t; X.	;
C
�/.t/; 	; 
 C 
�; z/

d

dy
X.	;
C
�/.t/

C r
f2.t; X
.	;
C
�/.t/; 	.t/; 
 C 
�; z/��.t/

o


2.�ı;ı/

are � � � � P -uniformly integrable and the families

n
g0
1.X

	Cyˇ.T //
d

dy
X.	Cyˇ;
/.T /

o

y2.�ı;ı/;

n
g0
2.X

	;
C
�.T //
d

dy
X.	;
C
�/.T /

o


2.�ı;ı/

are P -uniformly integrable.

In the following,DtF denotes the Malliavin derivative with respect to B.�/ (at t) of
a given (Malliavin differentiable) random variable F D F.!/; ! 2 �. Similarly,
Dt;zF denotes the Malliavin derivative with respect to eN.�; �/ (at t; z) of F . We
let D1;2 denote the set of all random variables which are Malliavin differentiable
with respect to both B.�/ and N.�; �/. We will use the following duality formula for
Malliavin derivatives:
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E

�

F

Z T

0

'.t/dB.t/

�

D E

�Z T

0

'.t/DtF dt

�

; (22.7)

E

�

F

Z T

0

Z

R0

 .t; z/ QN.dt; dz/

�

D E

�Z T

0

Z

R0

 .t; z/Dt;zF �.dz/dt

�

(22.8)

valid for all Malliavin differentiable F - and all Ft -predictable processes ' and  
such that the integrals on the right converge absolutely. We also need the following
basic properties of Malliavin derivatives:

If F 2 D1;2 is Fs-measurable, then

DtF D Dt;zF D 0; for all t > s: (22.9)

(Fundamental theorem)

Dt

�Z T

0

'.s/ıB.s/

�

D
Z T

0

Dt'.s/ıB.s/C '.t/ for a.a. .t; !/; (22.10)

where
R T
0

u.s/ıB.s/ denotes Skorohod integral of u with respect to B.�/. (See [11],
p. 35–38 for a definition of Skorohod integrals and for more details.)

Dt;z

� Z T

0

Z

R

 .s; y/ QN .ds; dy/
�

D
Z T

0

Z

R

Dt;z .s; y/ QN .ds; dy/C  .t; z/;

(22.11)

provided that all terms involved are well defined. We refer to [3], [5], [6], [7], [10]
and [11] for more information about the Malliavin calculus for Lévy processes and
its applications.

(A3) For all .	; 
/ 2 A… � A‚, we assume the following processes, i D 1; 2:

Ki.t/ D g0
i .X.T //C

Z T

t

Z

R0

@fi

@x
.s; X.s/; 	; 
; z1/�.dz1/ds; (22.12)

H0
i .s; x; 	; 
/ DKi.s/b.s; x; 	0; 
0/CDsKi.s/�.s; x; 	0; 
0/

C
Z

R0

Ds;zKi.s/�.s; x; 	; 
; z/�.dz/; (22.13)

G.t; s/ WD exp

�Z s

t

n@b

@x
.r;X.r/; 	0.r/; 
0.r//

� 1

2

�@�

@x

�2
.r; X.r/; 	0.r/; 
0.r//

o
dr
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C
Z s

t

@�

@x
.r;X.r/; 	0.r/; 
0.r//dB.r/

C
Z s

t

Z

R0

ln

�

1C @�

@x
.r;X.r�/; 	.r�; z/; 
.r�; z/; z/

�

QN.dr; dz/

C
Z s

t

Z

R0

n
ln

�
1C @�

@x
.r;X.r/; 	; 
; z/

�

� @�

@x
.r;X.r/; 	; 
; z/

o
�.dz/dr

�
; (22.14)

Fi .t; s/ WD @H0
i

@x
.s/G.t; s/; (22.15)

pi.t/ D Ki.t/C
Z T

t

@H0
i

@x
.s; X.s/; 	0.s/; 	1.s; z/; 
0.s/; 
1.s; z//G.t; s/ds;

(22.16)

qi.t/ D Dtpi .t/; (22.17)

ri .t; z/ D Dt;zpi .t/; (22.18)

all exist for 0 � t � s, z 2 R0.

We now define the Hamiltonians for this general problem as follows:

Definition 2.1 (The General Stochastic Hamiltonian). The general stochastic
Hamiltonians for the stochastic differential game in Problem 1.1 are the functions

Hi.t; x; 	; 
; !/ W Œ0; T � � R � U �K �� ! R; i D 1; 2;

defined by

Hi.t; x; 	; 
; !/

D
Z

R0

fi .t; x; 	; 
; z; !/�.dz/Cpi .t/b.t; x; 	0; 
0; !/Cqi .t/�.t; x; 	0; 
0; !/

C
Z

R0

ri .t; z/�.t; x; 	; 
; z; !/�.dz/; i D 1; 2; (22.19)

where 	 D .	0; 	1/ and 
 D .
0; 
1/.

Remark 2.1. In the classical case, the HamiltonianH�
i W Œ0; T ��R�U �K �R�

R � R ! R is defined by
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H�
i .t; x; 	; 
; p; q; r/ D

Z

R0

fi .t; x; 	; 
/�.dz/Cpi b.t; x; 	0; 
0/Cqi �.t; x; 	0; 
0/

C
Z

R0

ri .t; z/�.t; x; 	; 
; z/�.dz/; (22.20)

where R is the set of functions ri W R � R0 ! R; i D 1; 2; see [12]. Thus the
relation between H�

i andHi is that

Hi.t; x; 	; 
; !/ D H�
i .t; x; 	; 
; p.t/; q.t/; r.t; �//; i D 1; 2; (22.21)

where p.�/; q.�/ and r.�; �/ are given by Eqs. (22.16)–(22.18).

Theorem 2.1 (Maximum principle for non-zero-sum games).

(i) Let . O	; O
/ 2 A… �A‚ be a Nash equilibrium with corresponding state process
OX.t/ D X. O	; O
/.t/, i.e.,

J1.	; O
/ � J1. O	; O
/; for all 	 2 A…;

J2. O	; 
/ � J2. O	; O
/; for all 
 2 A‚:

Assume that the random variables @fi
@x

and Fi .t; s/, i D 1; 2, belong to D1;2.
Then

ExŒr	
OH1.t; X

.	; O
/.t/; 	; O
; !/j	D O	 jEt � D 0; (22.22)

ExŒr

OH2.t; X

. O	;
/.t/; O	; 
; !/j

D O
 jEt � D 0; (22.23)

for a.a. t; !.
(ii) Conversely, suppose that there exists . O	; O
/ 2 A… � A‚ such that Eqs. (22.22)

and (22.23) hold. Then

@

@y
J1. O	 C yˇ; O
/

ˇ
ˇ
ˇ
yD0 D 0 for all ˇ;

@

@

J2. O	; O
 C 
�/

ˇ
ˇ
ˇ

D0 D 0 for all �:

In particular, if

	 ! J1.	; O
/ and 
 ! J2. O	; 
/; (22.24)

are concave, then . O	; O
/ is a Nash equilibrium.

Proof. (i) Suppose . O	; O
/ 2 A… � A‚ is a Nash equilibrium. Since (i) and (ii)
hold for all 	 and 
 , . O	; O
/ is a directional critical point for Ji .	; 
/, i D 1; 2,
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in the sense that for all bounded ˇ 2 A… and � 2 A‚, there exists ı > 0 such
that O	 C yˇ 2 A…, O
 C 
� 2 A‚ for all y; 
 2 .�ı; ı/. Then we have

D @

@y
J1

�
O	 C yˇ; O


� ˇ
ˇ
ˇ
yD0

D Ex

"Z T

0

Z

R0

�
@f1

@x
.t; OX.t/; O	0.t/; O	1.t; z/; O
0.t/; O
1.t; z/; z/ d

dy
X. O	Cyˇ; O
/.t/

ˇ
ˇ
ˇ
yD0

Cr	f1.t; X.	; O
/.t/; 	0.t/; 	1.t; z/; O
0.t/; O
1.t; z/; z/
ˇ
ˇ
ˇ
	D O	ˇ

�.t/
o
�.dz/dt

Cg0
1.

OX.T // d

dy
X. O	Cyˇ; O
/.T /

ˇ
ˇ
ˇ
yD0

i

D Ex
h Z T

0

Z

R0

n@f1

@x
.t; OX.t/; O	0.t/; O	1.t; z/; O
0.t/; O
1.t; z/; z/Y.t/

Cr	f1.t; X.	; O
/.t/; 	0.t/; 	1.t; z/; O
0.t/; O
1.t; z/; z/
ˇ
ˇ
ˇ
	D O	ˇ

�.t/
o

��.dz/dtCg0
1.

OX.T //Y.T /
i
; (22.25)

where

Y.t/ DY .ˇ/.t/ D d

dy
X. O	Cyˇ; O
/.t/jyD0

D
Z t

0

n@b

@x
.s; OX.s/; O	0.s/; O
0.s//Y.s/

C r	b.s; X
.	; O
/.s/; 	0.s/; O
0.s//

ˇ
ˇ
ˇ
	D O	ˇ

�.s/
o
ds

C
Z t

0

n@�

@x
.s; OX.s/; O	0.s/; O
0.s//Y.s/

C r	�.s; X
.	; O
/.s/; 	0.s/; O
0.s//

ˇ
ˇ
ˇ
	D O	ˇ

�.s/
o
dB.s/

C
Z t

0

Z

R0

n@�

@x
.s; OX.s�/; O	.s�/; O
.s�/; z/Y.s/

C r	�.s; X
.	; O
/.s�/; 	.s�/; O
.s�/; z/

ˇ
ˇ
ˇ
	D O	ˇ

�.s/
o QN.ds; dz/: (22.26)

If we use the shorthand notation

@f1

@x
.t; OX.t/; O	; O
; z/D@f1

@x
.t; z/; r	f1.t; X

.	; O
/.t/; 	; O
; z/j	D O	Dr	f1.t; z/;
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and similarly for @b
@x

, r	b, @�
@x

, r	� , @�
@x

and r	� , we can write

8

<̂

:̂

dY.t/ D . @b
@x
.t/Y.t/Cr	b.t/ˇ

�.t//dtC. @�
@x
.t/Y.t/C r	�.t/ˇ

�.t//dB.t/
C R

R0
.
@�

@x
.t/Y.t/C r	�.t; z/ˇ�.t// QN.dt; dz/I

Y.0/ D 0:

(22.27)
By the duality formulas (22.7) and (22.8) and the Fubini theorem, we get

Ex
�Z T

0

Z

R0

@f1

@x
.t; z/Y.t/�.dz/dt

�

D Ex
� Z T

0

Z

R0

n Z t

0

�@f1

@x
.t; z/

h @b

@x
.s/Y.s/C r	b.s/ˇ

�.s/
i

CDs

@f1

@x
.t; z/

h@�

@x
.s/Y.s/C r	�.s/ˇ

�.s/
i

C
Z

R0

Ds;z1
@f1

@x
.t; z/

h@�

@x
.s; z1/Y.s/

C r	�.s; z1/ˇ
�.s/

i
�.dz1/

�
ds

o
�.dz/dt

�

D Ex
� Z T

0

n� Z T

s

Z

R0

@f1

@x
.t; z/�.dz/dt

�h@b

@x
Y.s/C r	b.s/ˇ

�.s/
i

C
� Z T

s

Z

R0

Ds

@f1

@x
.t; z/�.dz/dt

�h@�

@x
Y.s/C r	�ˇ

�.s/
i

C
Z

R0

� Z T

s

Z

R0

Ds;z1
@f1

@x
.t; z/�.dz/dt

�

�
h@�

@x
Y.s/C r	�ˇ

�.s/
i
�.dz1/

o
ds

�

: (22.28)

Changing notation s ! t and z1 ! z this becomes

Ex
� Z T

0

Z

R0

@f1

@x
.t; z/Y.t/�.dz/dt

�

D Ex
� Z T

0

n� Z T

t

Z

R0

@f1

@x
.s; z1/�.dz1/ds

�h@b

@x
.t/Y.t/C r	b.t/ˇ

�.t/
i

C
� Z T

t

Z

R0

Dt

@f1

@x
.s; z1/�.dz1/ds

�h@�

@x
.t/Y.t/C r	�.t/ˇ

�.t/
i
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C
Z

R0

� Z T

t

Z

R0

Dt;z
@f1

@x
.s; z1/�.dz1/ds

�

�
h@�

@x
.t; z/Y.t/C r	�.t; z/ˇ

�.t/
i
�.dz/

o
dt

�

: (22.29)

On the other hand, by the duality formulas (22.7) and (22.8), we get

Ex
h
g0
1.

OX.T //Y.T /
i

D Ex
h
g0
1.

OX.T //
� R T

0

˚
@b
@x
.t/Y.t/C r	b.t/ˇ

�.t/
	

dt

C R T
0

˚
@�
@x
.t/Y.t/C r	�.t/ˇ

�.t/
	

dB.t/

C R T
0

R

R0

n
@�

@x
.t; z/Y.t/C r	�.t; z/ˇ.t/

o QN.dt; dz/
�i

D Ex
h R T

0

n
g0
1.

OX.T // @b
@x
.t/Y.t/C g0

1.
OX.T //r	b.t/ˇ

�.t/

CDt.g
0
1.

OX.T /// @�
@x
.t/Y.t/CDt.g

0
1.

OX.T ///r	�.t/ˇ
�.t/

C R

R0
ŒDt;z.g

0
1.

OX.T /// @�
@x
.t; z/Y.t/

CDt;z.g
0
1.

OX.T ///r	�.t; z/ˇ�.t/��.dz/
o

dt
i
:

We recall that

OK1.t/ WD g0
1.

OX.T //C
Z T

t

Z

R0

@f1

@x
.s; z1/�.dz1/ ds;

and combining Eqs. (22.27)–(22.29), we get

Ex
h Z T

0

n OK1.t/
� @b

@x
.t/Y.t/C r	b.t/ˇ

�.t/
�

CDt
OK1.t/

�@�

@x
.t/Y.t/C r	�.t/ˇ

�.t/
�

C
Z

R0

Dt;z OK1.t/
�@�

@x
.t; z/Y.t/C r	�.t; z/ˇ

�.t/
�
�.dz/

C
Z

R0

r	f1.t; z/ˇ
�.t/�.dz/

o
dt

i
D 0: (22.30)

Now apply this to ˇ D ˇ˛ 2 A… of the form ˇ˛.s/ D ˛�Œt;tCh�.s/; for some
t; h 2 .0; T /, tCh � T , where ˛ D ˛.!/ is bounded and Et -measurable. Then
Y .ˇ˛/.s/ D 0 for 0 � s � t . Hence Eq. (22.30) becomes

A1 C A2 D 0; (22.31)

where
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A1 D Ex
h Z T

t

n OK1.s/
@b

@x
.s/CDs

OK1.s/
@�

@x
.s/

C
Z

R0

Ds;z OK1.s/
@�

@x
.s/�.dz/

o
Y .ˇ˛/.s/ds

i
;

A2 D Ex
hn Z tCh

t

� OK1.s/r	b.s/CDs
OK1.s/r	�.s/

C
Z

R0

Ds;z OK1.s/r	�.s; z/�.dz/

C
Z

R0

r	f1.s; z/�.dz/
�

ds
o
˛

i
:

Note that, by Eq. (22.26), with Y.s/ D Y .ˇ˛/.s/ and s � t C h,

dY.s/ D Y.s�/
n@b

@x
.s/ds C @�

@x
.s/dB.s/C

Z

R0

@�

@x
.s�; z/ QN.ds; dz/

o
;

for s � t C h. Hence, by the Itô formula,

Y.s/ D Y.t C h/G.t C h; s/I s � t C h; (22.32)

where, in general, for s � t ,

G.t; s/ D exp
� Z s

t

n@b

@x
.r/ � 1

2

�@�

@x

�2
.r/

o
dr C

Z s

t

@�

@x
.r/dB.r/

C
Z s

t

Z

R0

ln
�
1C @�

@x
.r�; z/

� QN.dr; dz/

C
Z s

t

Z

R0

n
ln

�
1C @�

@x
.r; z/

�
� @�

@x
.r; z/

o
�.dz/dr

�
: (22.33)

Note that G.t; s/ does not depend on h. Put

H0
1 .s; x; 	; 
/ DK1.s/b.s; x; 	0; 
0/CDsK1.s/�.s; x; 	0; 
0/

C
Z

R0

Ds;zK1.s/�.s; x; 	; 
; z/�.dz/; (22.34)

and OH0
1 .s/ D H0

1 .s;
OX.s/; O	; O
/. Then

A1 D Ex
h Z T

t

@ OH0
1

@x
.s/Y.s/ds

i
:
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Differentiating with respect to h at h D 0 we get

d

dh
A1

ˇ
ˇ
hD0 D d

dh
Ex

h Z tCh

t

@ OH0
1

@x
.s/Y.s/ds

i

hD0

C d

dh
Ex

h Z T

tCh
@ OH0

1

@x
.s/Y.s/ds

i

hD0: (22.35)

Since Y.t/ D 0 we see that

d

dh
Ex

h Z tCh

t

@ OH0
1

@x
.s/Y.s/ds

i

hD0 D 0: (22.36)

Therefore, by Eq. (22.31),

d

dh
A1

ˇ
ˇ
hD0 D d

dh
Ex

h Z T

tCh
@ OH0

1

@x
.s/Y.t C h/G.t C h; s/ds

i

hD0

D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/Y.t C h/G.t C h; s/

i

hD0ds

D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/G.t; s/Y.t C h/

i

hD0ds: (22.37)

On the other hand, Eq. (22.26) gives

Y.t C h/ D˛
Z tCh

t

n
r	b.r/dr C r	�dB.r/C

Z

R0

r	�.r
�; z/ QN.dr; dz/

o

C
Z tCh

t

Y.r�/
n@b

@x
.r/dr C @�

@x
.r/dB.r/C

Z

R0

@�

@x
.r�; z/ QN.dr; dz/

o
:

(22.38)

Combining this with Eqs. (22.36) and (22.37), we have

d

dh
A1

ˇ
ˇ
hD0 D ƒ1 Cƒ2; (22.39)

where

ƒ1 D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/G.t; s/˛

Z tCh

t

n
r	b.r/dr C r	�.r/dB.r/

C
Z

R0

r	�.r
�; z/ QN.dr; dz/

oi

hD0ds (22.40)
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and

ƒ2 D
Z T

t

d

dh
Ex

h@ OH0
1

@x
.s/G.t; s/

Z tCh

t

Y.r�/
n@b

@x
.r/dr C @�

@x
.r/dB.r/

C
Z

R0

@�

@x
.r�; z/ QN.dr; dz/

oi

hD0ds: (22.41)

By the duality formulae (22.7) and (22.8), we have

ƒ1 D
Z T

t

d

dh
Ex

h
˛

Z tCh

t

n
r	b.r/F1.t; s/C r	�.r/DrF1.t; s/

C
Z

R0

r	�.r; z/Dr;zF1.t; s/�.dz/
o
dr

i

hD0ds

D
Z T

t

Ex
h
˛

n
r	b.t/F1.t; s/C r	�.t/DtF1.t; s/

C
Z

R0

r	�.t; z/Dt;zF1.t; s/�.dz/
oi

ds: (22.42)

Since Y.t/ D 0 we see that

ƒ2 D 0: (22.43)

We conclude that

d

dh
A1

ˇ
ˇ
ˇ
hD0 Dƒ1

D
Z T

t

Ex
h
˛

n
F1.t; s/r	b.t/CDtF1.t; s/r	�.t/

C
Z

R0

Dt;zF1.t; s/r	�.t; z/�.dz/
oi

ds: (22.44)

Moreover, we see directly that

d

dh
A2

ˇ
ˇ
ˇ
hD0 DEx

h
˛

n OK1.t/r	b.t/CDt
OK1.t/r	�.t/

C
Z

R0

fDt;z OK1.t/r	�.t; z/C r	f1.t; z/g�.dz/
oi
: (22.45)

Therefore, differentiating Eq. (22.30) with respect to h at h D 0 gives the
equation

Ex
h
˛

n� OK1.t/C
Z T

t

F1.t; s/ds
�
r	b.t/CDt

� OK1.t/C
Z T

t

F1.t; s/ds
�
r	�.t/

C
Z

R0

Dt;z

� OK1.t/C
Z T

t

F1.t; s/ds
�
r	�.t; z/C r	f1.t; z/�.dz/

oi
D 0:

(22.46)



502 A.T.T. Kieu et al.

We can reformulate this as follows: If we define, as in Eq. (22.16),

Op1.t/ D OK1.t/C
Z T

t

F1.t; s/ds D OK1.t/C
Z T

t

@ OH0
1

@x
.s/G.t; s/ds; (22.47)

then Eq. (22.44) can be written:

Ex
h
r	

n Z

R0

f1.t; OX.t/; 	; O
; z/�.dz/C Op1.t/b.t; OX.t/; 	0; O
0/

CDt Op1.t/�.t; OX.t/; 	0; O
0/

C
Z

R0

Dt;z Op1.t/�.t; OX.t/; 	; O
; z/�.dz/
o

	D.	0.t/;	1.t;z//
˛

i
D 0:

Since this holds for all bounded Et -measurable random variable ˛, we conclude
that

Ex
h
r	

OH1.t; X
.	; O
/.t/; 	; O
/ j	D O	.t/j Et

i
D 0:

Similarly, we have

0 D @

@

J2. O	; O
 C 
�/

ˇ
ˇ
ˇ

D0

DEx
h Z T

0

Z

R0

n@f2

@x
.t; X. O	;
/.t/; O	.t; z/; O
.t; z/; z/D.t/

Cr
f2.t; X
. O	;
/.t/; O	.t; z/; 
.t; z/; z/

ˇ
ˇ
ˇ

D O
�.t/

o
�.dz/dtCg0

2.
OX.T //D.T /

i
;

(22.48)

where

D.t/ DD.�/.t/ D d

d

X. O	; O
C
�/.t/

ˇ
ˇ
ˇ

D0

D
Z t

0

n@b

@x
.s; OX.s/; O	0.s/; O
0.s//D.s/

C r
b.s; X
. O	0;
0/.s/; O	0.s/; 
0.s//

ˇ
ˇ
ˇ

D O
�

�.s/
o
ds

C
Z t

0

n@�

@x
.s; OX.s/; O	0.s/; O
0.s//Y.s/

C r
�.s; X
. O	;
/.s/; O	0.s/; 
0.s//

ˇ
ˇ
ˇ

D O
�

�.s/
o
dB.s/

C
Z t

0

Z

R0

n@�

@x
.s; OX.s�/; O	.s�; z/; O
.s�/; z/D.s/

C r
�.s; X
. O	;
/.s�/; O	.s�; z/; 
.s�; z/; z/

ˇ
ˇ
ˇ

D O
�

�.s/
o QN.ds; dz/:

(22.49)
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Define
D.s/ D D.t C h/G.t C h; s/I s � t C h;

whereG.t; s/ is defined as in Eq. (22.32). By using similar arguments as above,
we get

Ex
h
r


OH2.t; X
. O	;
/.t/; O	; 
/ j


D O
.t/j Et
i

D 0:

This completes the proof of (i).
(ii) Conversely, suppose that there exists . O	; O
/ 2 A… � A‚ such that Eqs. (22.22)

and (22.23) hold. Then by reversing the above arguments, we obtain that
Eq. (22.31) holds for all ˇ˛.s; !/ D ˛.!/�.t;tCh�.s/ 2 A…, where

A1 DEx
h Z T

t

n OK1.s/
@b

@x
.s/CDs

OK1.s/
@�

@x
.s/

C
Z

R0

Ds;z OK1.s/
@�

@x
.s/�.dz/

o
Y .ˇ˛/.s/ds

i
;

A2 DEx
hn Z tCh

t

� OK1.s/r	b.s/CDs
OK1.s/r	�.s/

C
Z

R0

Ds;z OK1.s/r	�.s; z/�.dz/C
Z

R0

r	f1.s; z/�.dz/
�

ds
o
˛

i
;

for some t; h 2 Œ0; T � with t C h � T and some bounded Et -measurable ˛.
Similarly,

A3 C A4 D 0 (22.50)

for all ��.s; !/ D �.!/�.t;tCh�.s/ 2 A‚, where

A3 DEx
h Z T

t

n OK2.s/
@b

@x
.s/CDs

OK2.s/
@�

@x
.s/

C
Z

R0

Ds;z OK2.s/
@�

@x
.s/�.dz/

o
Y .�� /.s/ds

i
;

A4 DEx
hn Z tCh

t

� OK2.s/r
b.s/CDs
OK2.s/r
 �.s/

C
Z

R0

Ds;z OK2.s/r
�.s; z/�.dz/C
Z

R0

r
f2.s; z/�.dz/
�

ds
o
˛

i
;

for some t; h 2 Œ0; T � with t C h � T and some bounded Et -measurable �.
Hence, these equalities hold for all linear combinations of ˇ˛ and �� . Since all
bounded ˇ 2 A… and � 2 A‚ can be approximated pointwise boundary in
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.t; !/ by such linear combinations, it follows that Eqs. (22.31) and (22.50) hold
for all bounded .ˇ; �/ 2 A… � A‚. Hence, by reversing the remaining part of
the proof above, we conclude that

@

@y
J1. O	 C yˇ; O
/

ˇ
ˇ
ˇ
yD0 D 0;

@

@

J2. O	; O
 C 
�/

ˇ
ˇ
ˇ

D0 D 0;

for all ˇ and �.
ut

3 Zero-Sum Games

Suppose that the given performance functional of player I is the negative of the
player II, i.e.,

J1.u0; u1/ D Ex
h Z T

0

Z

R0

f .t; X.t/; u0.t/; u1.t; z/; z; !/�.dz/dt C g.X.T /; !/
i

D �J2.u0; u1/; (22.51)

where Ex D ExP denotes the expectation with respect to P given that X.0/ D x.
Suppose that the controls u0.t/ and u1.t; z/ have the form as in Eqs. (22.5) and
(22.6). Let A… and A‚ denote the given family of controls 	 D .	0; 	1/ and

 D .
0; 
1/ such that they are contained in the set of càdlàg Et -adapted controls,
Eq. (22.1) has a unique strong solution up to time T and

Ex
h Z T

0

Z

R0

jf .t; X.t/; 	0.t/; 	1.t; z/; 
0.t/; 
1.t; z/; z; !/j�.dz/dt

Cjg.X.T /; !/j
i
< 1: (22.52)

Then the partial information zero-sum stochastic differential game problem is the
following:

Problem 3.1. Find ˆE 2 R, 	� 2 A… and 
� 2 A‚ (if it exists) such that

ˆE D inf

2A‚

. sup
	2A…

J.	; 
// D J.	�; 
�/ D sup
	2A…

. inf

2A‚

J.	; 
//: (22.53)

Such a control .	�; 
�/ is called an optimal control (if it exists). The intuitive idea
is that while player I controls 	 , player II controls 
 . The actions of the players are
antagonistic, which means that between players I and II, there is a payoff J.	; 
/



22 A Malliavin Calculus Approach to General Stochastic Differential Games . . . 505

which is a reward for player I and a cost for Player II. Note that since we allow
b, � , � , f and g to be stochastic processes and also because our controls are Et -
adapted, this problem is not of Markovian type and hence cannot be solved by
dynamic programming.

Theorem 3.1 (Maximum principle for zero-sum games).

(i) Suppose . O	; O
/ 2 A… � A‚ is a directional critical point for J.	; 
/ in the
sense that for all bounded ˇ 2 A… and � 2 A‚, there exists ı > 0 such that
O	 C yˇ 2 A…, O
 C 
� 2 A‚ for all y; 
 2 .�ı; ı/ and

c.y; 
/ WD J. O	 C yˇ; O
 C 
�/; y; 
 2 .�ı; ı/

has a critical point at 0, i.e.,

@c

@y
.0; 0/ D @c

@

.0; 0/ D 0: (22.54)

Then
ExŒr	

OH.t;X.	; O
/.t/; 	; O
; !/jEt �	D O	 D 0; (22.55)

ExŒr

OH.t;X. O	;
/.t/; O	; 
; !/jEt �
D O
 D 0 for a.a. t, !, (22.56)

where

OX.t/ D X. O	; O
/.t/;

OH.t; OX.t/; 	; 
/ D
Z

R0

f .t; OX.t/; 	; 
; z/�.dz/C Op.t/b.t; OX.t/; 	0; 
0/

COq.t/�.t; OX.t/; 	0; 
0/C
Z

R0

Or.t; z/�.t; OX.t�/; 	; 
; z/�.dz/;

(22.57)

with

Op.t/ D OK.t/C
Z T

t

@ OH0

@x
.s; OX.s/; O	.s/; O
.s// OG.t; s/ds; (22.58)

OK.t/ D K. O	; O
/.t/ D g0. OX.T //C
Z T

t

Z

R0

@f

@x
.s; OX.s/; O	.s; z/; O
.s; z/; z/�.dz/ds;

(22.59)

OH0.s; OX; O	; O
/ D OK.s/b.s; OX; O	0; O
0/CDs
OK.s/�.s; OX; O	0; O
0/

C
Z

R0

Ds;z OK.s/�.s; OX; O	; O
; z/�.dz/; (22.60)
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OG.t; s/ WD exp
� Z s

t

n@b

@x
.r; OX.r/; O	0.r/; O
0.r//

� 1

2

�@�

@x

�2
.r; OX.r/; O	0.r/; O
0.r//

o
dr

C
Z s

t

@�

@x
.r; OX.r/; O	0.r/; O
0.r//dB.r/

C
Z s

t

Z

R0

ln
�
1C @�

@x
.r; OX.r�/; O	.r�; z/; O
.r�; z/; z/

� QN.dr; dz/

C
Z s

t

Z

R0

n
ln

�
1C @�

@x
.r; OX.r/; O	; O
; z/

�

� @�

@x
.r; OX.r/; O	; O
; z/

o
�.dz/dr

�
I

Oq.t/ WD Dt Op.t/;
and

Or.t; z/ WD Dt;z Op.t/: (22.61)

(ii) Conversely, suppose that there exists . O	; O
/ 2 A… � A‚ such that Eqs. (22.55)
and (22.56) hold. Furthermore, suppose that g is an affine function, H is
concave in 	 and convex in 
 . Then . O	; O
/ satisfies Eq. (22.54).

4 Application: Worst-Case Scenario Optimal Portfolio
Under Partial Information

We illustrate the results in the previous section by looking at an application to robust
portfolio choice in finance:

Consider a financial market with the following two investment possibilities:

1. A risk free asset, where the unit price S0.t/ at time t is

dS0.t/ D r.t/S0.t/dt I S0.0/ D 1I 0 � t � T;

where T > 0 is a given constant.
2. A risky asset, where the unit price S1.t/ at time t is given by

(
dS1.t/ D S1.t

�/Œ
.t/dt C �0.t/dB.t/C R

R0
�0.t; z/ QN.dt; dz/�;

S1.0/ > 0;
(22.62)

where r , 
 , �0 and �0 are predictable processes such that
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Z T

0

fj 
.s/ j C�20 .s/C
Z

R0

�20 .s; z/�.dz/gds < 1 a:s:

We assume that 
 is adapted to a given subfiltration Et and that

�0.t; z; !/ � �1C ı for all t; z; ! 2 Œ0; T � � R0 ��;
for some constant ı > 0.

Let 	.t/ D 	.t; !/ be a portfolio, representing the amount invested in the risky
asset at time t . We require that 	 be càdlàg and Et -adapted and self–financing and
hence that the corresponding wealth X.t/ D X.	;
/.t/ at time t is given by

8
<

:

dX.t/ D ŒX.t/ � 	.t/�r.t/dt C 	.t�/Œ
.t/dt C �0.t/dB.t/
C R

R0
�0.t; z/ QN.dt; dz/�

X.0/ D x > 0:

(22.63)

Let us assume that the mean relative growth rate 
.t/ of the risky asset is not known
to the trader, but subject to uncertainty. We may regard 
 as a market scenario
or a stochastic control of the market, which is playing against the trader. Let A "

…

and A "
‚ denote the set of admissible controls 	; 
 , respectively. The worst-case

partial information scenario optimal problem for the trader is to find 	� 2 A "
… and


� 2 A "
‚ and ˆ 2 R such that

ˆ D inf

2A "

‚

. sup
	2A "

…

EŒU.X.	;
/.T //�/

D EŒU.X.	�;
�/.T //�; (22.64)

where U W Œ0;1/ ! R is a given utility function, assumed to be concave, strictly
increasing and C1 on .0;1/. We want to study this problem by using Theorem 3.1.
In this case we have

b.t; x; 	; 
/ D 	.
 � r.t//C xr.t/; K.t/ D U
0

.X.	;
/.T //; (22.65)

H0.t; x; 	; 
/ DU 0

.X.	;
/.T //Œ	.
 � r.t//C xr.t/�

CDt.U
0

.X.	;
/.T ///	�0.t/

C
Z

R0

Dt;z.U
0

.X.	;
/.T ///	�0.t; z/�.dz/; (22.66)

and

p.t/ D U
0

.X.	;
/.T //

�

1C
Z T

t

r.s/G.t; s/ds

�

;
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where

G.t; s/ D exp

�Z s

t

r.v/dv

�

:

Hence,

Z T

t

r.s/G.t; s/ds D
ˇ
ˇ
ˇ
T

t
exp

� Z s

t

r.v/dv
�

D exp
� Z T

t

r.v/dv
�

� 1

and

p.t/ D U
0

.X.	;
/.T // exp

�Z T

t

r.s/ds

�

: (22.67)

With this value for p.t/ we have

H.t;X.	;
/.t/; 	; 
/ Dp.t/Œ	.
 � r.t//C r.t/X.t/�

CDtp.t/	�0.t/C
Z

R0

Dt;zp.t/	�0.t; z/�.dz/: (22.68)

Hence Eq. (22.55) becomes

E

�
@H

@	
.t; OX.t/; 	; O
/

ˇ
ˇ
ˇEt

�

	D O	.t/
D E

h
p.t/. O
 � r.t//CDtp.t/�0.t/

C
Z

R0

Dt;zp.t/�0.t; z/�.dz/
ˇ
ˇ
ˇEt

i
D 0 (22.69)

and Eq. (22.56) becomes

E

�
@H

@

.t; OX.t/; O	; 
/

ˇ
ˇ
ˇEt

�


D O
.t/
D EŒp.t/ O	.t/ j Et � D EŒp.t/ j Et � O	.t/ D 0:

(22.70)

Since p.t/ > 0 we conclude that

O	.t/ D 0: (22.71)

This implies that

OX.t/ D x exp
� Z t

0

r.s/ds
�

(22.72)

and

Op.t/ D U
0

�

x exp
� Z T

0

r.s/ds
��

exp

�Z T

t

r.s/ds

�

I t 2 Œ0; T �: (22.73)
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Substituting this into Eq. (22.69), we get

O
.t/ D
E

h
Op.t/r.t/ �Dt Op.t/�0.t/ � R

R0
Dt;z Op.t/�0.t; z/�.dz/

ˇ
ˇ
ˇEt

i

EŒ Op.t/jEt � : (22.74)

We have proved the following theorem:

Theorem 4.1 (Worst-case scenario optimal portfolio under partial informa-
tion). Suppose there exists a solution .	�; 
�/ 2 .A "

…;A
"
‚/ of the stochastic

differential game Eq. (22.64). Then

	� D O	 D 0; (22.75)

and

� D O
 is given by .22.74/: (22.76)

In particular, if r.s/ is deterministic, then

	� D 0 and 
�.t/ D r.t/: (22.77)

Remark 4.1. (i) If r.s/ is deterministic, then Eq. (22.77) states that the worst-case
scenario is when O
.t/ D r.t/, for all t 2 Œ0; T �, i.e., when the normalized risky
asset price

e� R t
0 r.s/dsS1.t/

is a martingale. In such a situation the trader might as well put all her money in
the risk free asset, i.e., choose 	.t/ D O	.t/ D 0. This trading strategy remains
optimal if r.s/ is not deterministic, but now the worst-case scenario O
.t/ is
given by the more complicated expression (22.74).

(ii) This is a new approach to, and a partial extension of, Theorem 2.2 in [13] and
Theorem 4.1 in the subsequent paper [1]. Both of these papers consider the case
with deterministic r.t/ only. On the other hand, in these papers the scenario is
represented by a probability measure and not by the drift.
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tions to Finance. Springer, Berlin (2009)

7. Karatzas, I., Ocone, D.: A generalized Clark representation formula, with application to
optimal portfolios. Stoch. Stoch. Rep. 34, 187–220 (1991)

8. Karatzas, I., Xue, X.: A note on utility maximization under partial observations. Math. Financ.
1, 57–70 (1991)

9. Lakner, P.: Optimal trading strategy for an investor: the case of partial information. Stoch.
Process. Appl. 76, 77–97 (1998)

10. Meyer-Brandis, T., Øksendal, B., Zhou, X.Y.: A mean-field stochastic maximum principle via
Malliavin calculus. Stoch. 84, 643–666 (2012)

11. Nualart, D.: Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)
12. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Springer,

Berlin (2007)
13. Øksendal, B., Sulem, A.: A game theoretic approach to martingale measures in incomplete

markets. Surv. Appl. Ind. Math. 15, 18–24 (2008)
14. Pham, H., Quenez M.-C.: Optimal portfolio in partially observed stochastic volatility models.

Ann. Appl. Probab. 11, 210–238 (2001)
15. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer,

New York (1999)



Chapter 23
Asymptotics for the Length of the Longest
Increasing Subsequence of a Binary Markov
Random Word

Christian Houdré and Trevis J. Litherland

Abstract Let .Xn/n�0 be an irreducible, aperiodic, and homogeneous binary
Markov chain and let LIn be the length of the longest (weakly) increasing
subsequence of .Xk/1�k�n. Using combinatorial constructions and weak invariance
principles, we present elementary arguments leading to a new proof that (after
proper centering and scaling) the limiting law of LIn is the maximal eigenvalue
of a 2 � 2 Gaussian random matrix. In fact, the limiting shape of the RSK Young
diagrams associated with the binary Markov random word is the spectrum of this
random matrix.

Keywords Longest increasing subsequence • Markov chains • Functional central
limit theorem • Random matrices • Young diagrams
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1 Introduction

The identification of the limiting distribution of the length of the longest increasing
subsequence of a random permutation or of a random word has attracted a lot of
interest in the past decade, in particular in light of its connections with random
matrices (see [1–4, 6, 8, 12–15, 17, 18]). For random words, both the iid uniform
and nonuniform settings are understood, leading respectively to the maximal
eigenvalue of a traceless (or generalized traceless) element of the Gaussian unitary
ensemble (GUE) as limiting laws of LIn. In a dependent framework, Kuperberg [16]
conjectured that if the word is generated by an irreducible, doubly stochastic, cyclic,
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Markov chain with state space an ordered m-letter alphabet, then the limiting distri-
bution of the length LIn is still that of the maximal eigenvalue of a traceless m � m

element of the GUE. More generally, the conjecture asserts that the shape of the
Robinson–Schensted–Knuth (RSK) Young diagrams associated with the Markovian
random word is that of the joint distribution of the eigenvalues of a traceless m � m

element of the GUE. For m D 2, Chistyakov and Götze [7] positively answered this
conjecture, and in the present paper this result is rederived in an elementary way.

The precise class of homogeneous Markov chains with which Kuperberg’s con-
jecture is concerned is more specific than the ones we shall study. The irreducibility
of the chain is a basic property we certainly must demand: each letter has to
occur at some point following the occurrence of any given letter. The cyclic (also
called circulant) criterion, i.e., the Markov transition matrix P has entries satisfying
pi;j D piC1;j C1, for 1 � i; j � m (where mC1 D 1), ensures a uniform stationary
distribution.

Let us also note that Kuperberg implicitly assumes the Markov chain to also
be aperiodic. Indeed, the simple 2-state Markov chain for the letters ˛1 and ˛2

described by P.XnC1 D ˛i jXn D ˛j / D 1, for i ¤ j , produces a sequence of
alternating letters, so that LIn is always either n=2 or n=2 C 1, for n even, and
.nC1/=2, for n odd, and so has a degenerate limiting distribution. Even though this
Markov chain is irreducible and cyclic, it is periodic.

By the end of this introduction, the reader might certainly have wondered how
the binary results do get modified for ordered alphabets of arbitrary fixed size m.
As shown in [10], for m D 3, Kuperberg’s conjecture is indeed true. However, for
m � 4, this is no longer the case; and some, but not all, cyclic Markov chains lead
to a limiting law as in the iid uniform case.

2 Combinatorics

As in [9], one can express LIn in a combinatorial manner. For convenience, this
short section recapitulates that development.

Let .Xn/n�1 consist of a sequence of values taken from an m-letter ordered
alphabet, Am D f˛1 < ˛2 < � � � < ˛mg. Let ar

k be the number of occurrences of
˛r among .Xi /1�i�k. Each increasing subsequence of .Xi /1�i�k consists simply of
consecutive identical values, with these values forming an increasing subsequence
of ˛r . Moreover, the number of occurrences of ˛r 2 f˛1; : : : ; ˛mg among
.Xi/kC1�i�`, where 1 � k < ` � n, is simply ar

` � ar
k . The length of the longest

increasing subsequence of X1; X2; : : : ; Xn is thus given by

LIn D max
0�k1�����km�1�n

��
a1

k1
� a1

0

�C �
a2

k2
� a2

k1

�C � � � C �
am

n � am
km�1

��
; (23.1)
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i.e.,

LIn D max
0�k1����

�km�1�n

Œ.a1
k1

� a2
k1

/ C .a2
k2

� a3
k2

/ C � � � C .am�1
km�1

� am
km�1

/ C am
n �; (23.2)

where ar
0 D 0.

For i D 1; : : : ; n and r D 1; : : : ; m � 1, let

Zr
i D

8
ˆ̂
<

ˆ̂
:

1; if Xi D ˛r ;

�1; if Xi D ˛rC1;

0; otherwise,

(23.3)

and let Sr
k D Pk

iD1 Zr
i , k D 1; : : : ; n, with also Sr

0 D 0. Then clearly Sr
k D

ar
k � arC1

k . Hence,

LIn D max
0�k1�����km�1�n

˚
S1

k1
C S2

k2
C � � � C Sm�1

km�1
C am

n

�
: (23.4)

By the telescoping nature of the sum
Pm�1

kDr Sk
n D Pm�1

kDr .ak
n � akC1

n /, we find that,
for each 1 � r � m � 1, ar

n D am
n C Pm�1

kDr Sk
n . Since a1

k; : : : ; am
k must evidently

sum up to k, we have

n D
mX

rD1

ar
n

D
m�1X

rD1

 

am
n C

m�1X

kDr

Sk
n

!

C am
n

D
m�1X

rD1

rSr
n C mam

n :

Solving for am
n gives us

am
n D n

m
� 1

m

m�1X

rD1

rSr
n :

Substituting into Eq. (23.4), we finally obtain

LIn D n

m
� 1

m

m�1X

rD1

rSr
n C max

0�k1����
�km�1�n

˚
S1

k1
C S2

k2
C � � � C Sm�1

km�1

�
: (23.5)
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As emphasized in [9], Eq. (23.5) is of a purely combinatorial nature or, in more
probabilistic terms, is of a pathwise nature. We now proceed to analyze Eq. (23.5)
for a binary Markovian sequence.

3 Binary Markovian Alphabet

In the context of binary Markovian alphabets, .Xn/n�0 is described by the following
transition probabilities between the two states (which we identify with the two
letters ˛1 and ˛2): P.XnC1 D ˛2jXn D ˛1/ D a and P.XnC1 D ˛1jXn D ˛2/ D b,
where 0 < a C b < 2. We later examine the degenerate cases a D b D 0 and
a D b D 1. In keeping with the common usage within the Markov chain literature,
we begin our sequence at n D 0, although our focus will be on n � 1. Denoting by
.p1

n; p2
n/ the vector describing the probability distribution on f˛1; ˛2g at time n, we

have
�
p1

nC1; p2
nC1

� D �
p1

n; p2
n

� �1 � a a

b 1 � b

�
: (23.6)

The eigenvalues of the matrix in Eq. (23.6) are �1 D 1 and �1 < �2 D 1�a�b <

1, with respective left eigenvectors .�1; �2/ D .b=.a C b/; a=.a C b// and .1; �1/.
Moreover, .�1; �2/ is also the stationary distribution. Given any initial distribution
.p1

0; p2
0/, we find that

�
p1

n; p2
n

� D �
�1; �2

�C �n
2

ap1
0 � bp2

0

a C b

�
1; �1

� ! �
�1; �2

�
; (23.7)

as n ! 1, since j�2j < 1.

Our goal is now to use these probabilistic expressions to describe the random
variables Z1

k and S1
k defined in the previous section. (We retain the redundant

superscript “1” in Z1
k and S1

k in the interest of uniformity.)
Setting ˇ D ap1

0 � bp2
0 , we easily find that

EZ1
k D .C1/

�
�1 C ˇ

a C b
�k

2

�
C .�1/

�
�2 � ˇ

a C b
�k

2

�

D b � a

a C b
C 2

ˇ

a C b
�k

2 ; (23.8)

for each 1 � k � n. Thus,

ES1
k D b � a

a C b
k C 2

�
ˇ�2

a C b

��
1 � �k

2

1 � �2

�
; (23.9)

and so ES1
k =k ! .b � a/=.a C b/, as k ! 1.
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Turning to the second moments of Z1
k and S1

k , first note that E.Z1
k/2 D 1, since

.Z1
k/2 D 1 a.s. Next, we consider EZ1

kZ1
` , for k < `. Using the Markovian structure

of .Xn/n�0, it quickly follows that

P..Xk; X`/ D .xk; x`//

D

8
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
:̂

�
�1 C �`�k

2
a

aCb

� 	
�1 C �k

2
ˇ

aCb



; if .xk; x`/ D .˛1; ˛1/;

�
�1 � �`�k

2
b

aCb

� 	
�2 � �k

2
ˇ

aCb



; if .xk; x`/ D .˛1; ˛2/;

�
�2 � �`�k

2
a

aCb

� 	
�1 C �k

2
ˇ

aCb



; if .xk; x`/ D .˛2; ˛1/;

�
�2 C �`�k

2
b

aCb

� 	
�2 � �k

2
ˇ

aCb



; if .xk; x`/ D .˛2; ˛2/:

(23.10)

For simplicity, we will henceforth assume that our initial distribution is the
stationary one, i.e., .p1

0; p2
0/ D .�1; �2/. (This assumption can be dropped as

explained in the Concluding Remarks of [10].) Under this assumption, ˇ D 0,
ES1

k D k�, where � D EZ1
k D .b � a/=.a C b/, and Eq. (23.10) simplifies to

P..Xk; X`/ D .xk; x`//

D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�
�1 C �`�k

2
a

aCb

�
�1; if .xk; x`/ D .˛1; ˛1/;

�
�1 � �`�k

2
b

aCb

�
�2; if .xk; x`/ D .˛1; ˛2/;

�
�2 � �`�k

2
a

aCb

�
�1; if .xk; x`/ D .˛2; ˛1/;

�
�2 C �`�k

2
b

aCb

�
�2; if .xk; x`/ D .˛2; ˛2/:

(23.11)

We can now compute EZ1
kZ1

` :

EZ1
kZ1

` D P.Z1
kZ1

` D C1/ � P.Z1
kZ1

` D �1/

D P..Xk; X`/ 2 f.˛1; ˛1/; .˛2; ˛2/g/
� P..Xk; X`/ 2 f.˛1; ˛2/; .˛2; ˛1/g/

D
�

�2
1 C �`�k

2

a

a C b
�1 C �2

2 C �`�k
2

b

a C b
�2

�

�
�

�1�2 � �`�k
2

b

a C b
�2 C �1�2 � �`�k

2

a

a C b
�1

�

D
�

�2
1 C �2

2 C 2ab

.a C b/2
�`�k

2

�
�
�

2�1�2 � 2ab

.a C b/2
�`�k

2

�

D .b � a/2

.a C b/2
C 4ab

.a C b/2
�`�k

2 : (23.12)
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Hence, recalling that ˇ D 0,

�2 WD VarZ1
k D 1 �

�
b � a

a C b

�2

D 4ab

.a C b/2
; (23.13)

for all k � 1 and, for k < `, the covariance of Z1
k and Z1

` is

Cov.Z1
k; Z1

` / D .b � a/2

.a C b/2
C �2�`�k

2 �
�

b � a

a C b

�2

D �2�`�k
2 : (23.14)

Proceeding to the covariance structure of S1
k , we first find that

VarS1
k D

kX

j D1

VarZ1
j C 2

X

j <`

Cov.Z1
j ; Z1

l /

D �2k C 2�2
X

j <`

�
`�j
2

D �2k C 2�2

 
�kC1

2 � k�2
2 C .k � 1/�2

.1 � �2/2

!

D �2

�
1 C �2

1 � �2

�
k C 2�2

�
�2.�

k
2 � 1/

.1 � �2/2

�
: (23.15)

Next, for k < `, and using Eqs. (23.14) and (23.15), the covariance of S1
k and S1

`

is given by

Cov.S1
k ; S1

` / D
kX

iD1

X̀

j D1

Cov.Z1
i ; Z1

j /

D
kX

iD1

VarZ1
i C 2

X

i<j <k

Cov.Z1
i ; Z1

j / C
kX

iD1

X̀

j DkC1

Cov.Z1
i ; Z1

j /

D VarS1
k C

kX

iD1

X̀

j DkC1

Cov.Z1
i ; Z1

j /

D VarS1
k C �2

�
�2.1 � �k

2/.1 � �`�k
2 /

.1 � �2/2

�

D �2

��
1 C �2

1 � �2

�
k � �2.1 � �k

2/.1 C �`�k
2 /

.1 � �2/2

�
: (23.16)
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From Eqs. (23.15) and (23.16) we see that, as k ! 1,

VarS1
k

k
! �2

�
1 C �2

1 � �2

�
; (23.17)

and, moreover, as k ^ ` ! 1,

Cov.S1
k ; S1

` /

.k ^ `/
! �2

�
1 C �2

1 � �2

�
: (23.18)

When a D b, ES1
k D 0, and in Eq. (23.17) the asymptotic variance becomes

VarS1
k

k
! 4a2

.2a/2

�
1 C .1 � 2a/

1 � .1 � 2a/

�

D 1

a
� 1:

For a small, we have a “lazy” Markov chain, i.e., a Markov chain which tends to
remain in a given state for long periods of time. In this regime, the random variable
S1

k has long periods of increase followed by long periods of decrease. In this way,
linear asymptotics of the variance with large constants occur. If, on the other hand,
a is close to 1, the Markov chain rapidly shifts back and forth between ˛1 and ˛2,
and so the constant associated with the linearly increasing variance of S1

k is small.
As in [9], Brownian functionals play a central rôle in describing the limiting

distribution of LIn. To move towards a Brownian functional expression for the
limiting law of LIn, define the polygonal function

OBn.t/ D S1
Œnt � � Œnt��

�
p

n.1 C �2/=.1 � �2/
C .nt � Œnt�/.Z1

Œnt �C1 � �/

�
p

n.1 C �2/=.1 � �2/
; (23.19)

for 0 � t � 1. In our finite-state, irreducible, aperiodic, stationary Markov chain
setting, we may conclude that OBn ) B , as desired. (See, e.g., the more general
settings for Gordin’s martingale approach to dependent invariance principles and
the stationary ergodic invariance principle found in Theorem 19.1 of [5].)

Turning now to LIn, we see that for the present 2-letter situation, Eq. (23.5)
simply becomes

LIn D n

2
� 1

2
S1

n C max
1�k�n

S1
k :

To find the limiting distribution of LIn from this expression, recall that �1 D
b=.a C b/, �2 D a=.a C b/, � D �1 � �2 D .b � a/=.a C b/, �2 D 4ab=.a C b/2,
and that �2 D 1�a�b. Define �max D maxf�1; �2g and Q�2 D �2.1C�2/=.1��2/.
Rewriting Eq. (23.19) as

OBn.t/ D S1
Œnt � � Œnt��

Q�p
n

C .nt � Œnt�/.Z1
Œnt �C1 � �/

Q�p
n

;
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LIn becomes

LIn D n

2
� 1

2

	
Q�p

n OBn.1/ C �n



C max
0�t�1

	
Q�p

n OBn.t/ C �nt



D n�2 � 1

2

	
Q�p

n OBn.1/



C max
0�t�1

	
Q�p

n OBn.t/ C .�1 � �2/nt



D n�max � 1

2

	
Q�p

n OBn.1/



C max
0�t�1

	
Q�p

n OBn.t/ C .�1 � �2/nt � .�max � �2/n



: (23.20)

This immediately gives

LIn � n�max

Q�p
n

D �1

2
OBn.1/

C max
0�t�1

�
OBn.t/ C

p
n

Q� ..�1 � �2/t � .�max � �2//

�
: (23.21)

Let us examine Eq. (23.21) on a case-by-case basis. First, if �max D �1 D �2 D
1=2, i.e., if a D b, then � D 1 and Q� D .1 � a/=a, and so Eq. (23.21) becomes

LIn � n=2
p

.1 � a/n=a
D �1

2
OBn.1/ C max

0�t�1

OBn.t/: (23.22)

Then, by the invariance principle and the continuous mapping theorem,

LIn � n=2
p

.1 � a/n=a
) �1

2
B.1/ C max

0�t�1
B.t/: (23.23)

Next, if �max D �2 > �1, Eq. (23.21) becomes

LIn � n�max

Q�p
n

D �1

2
OBn.1/

C max
0�t�1

�
OBn.t/ �

p
n

Q� .�max � �1/t

�
: (23.24)

On the other hand, if �max D �1 > �2, Eq. (23.21) becomes

LIn � n�max

Q�p
n

D �1

2
OBn.1/

C max
0�t�1

�
OBn.t/ �

p
n

Q� .�max � �2/.1 � t/

�
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D 1

2
OBn.1/

C max
0�t�1

�
OBn.t/ � OBn.1/ �

p
n

Q� .�max � �2/.1 � t/

�
: (23.25)

In both Eqs. (23.24) and (23.25) we have a term in our maximal functional which
is linear in t or 1 � t , with a negative slope. We now show, in an elementary fashion,
that in both cases, as n ! 1, the maximal functional goes to zero in probability.

Consider first Eq. (23.24). Let cn D p
n.�max � �1/= Q� > 0; and for any c > 0,

let Mc D max0�t�1.B.t/ � ct/, where B.t/ is a standard Brownian motion. Now
for n large enough,

OBn.t/ � ct � OBn.t/ � cnt

a.s., for all 0 � t � 1. Then for any z > 0 and n large enough,

P. max
0�t�1

. OBn.t/ � cnt/ > z/ � P. max
0�t�1

. OBn.t/ � ct/ > z/; (23.26)

and so by the Invariance Principle and the Continuous Mapping Theorem,

lim sup
n!1

P. max
0�t�1

. OBn.t/ � cnt/ > z/ � lim
n!1P. max

0�t�1
. OBn.t/ � ct/ > z/

D P.Mc > z/: (23.27)

Now, as is well known, P.Mc > z/ ! 0 as c ! 1. One can confirm this
intuitive fact with the following simple argument. For z > 0, c > 0, and 0 < " < 1,
we have that

P.Mc > z/ � P. max
0�t�"

.B.t/ � ct/ > z/ C P. max
"<t�1

.B.t/ � ct/ > z/

� P. max
0�t�"

B.t/ > z/ C P. max
"<t�1

.B.t/ � c"/ > z/

� P. max
0�t�"

B.t/ > z/ C P. max
0<t�1

B.t/ > c" C z/

D 2

�
1 � ˚

�
zp
"

��
C 2 .1 � ˚.c" C z// : (23.28)

But, as c and " are arbitrary, we can first take the limsup of Eq. (23.28) as c ! 1,
and then let " ! 0, proving the claim.
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We have thus shown that

lim sup
n!1

P. max
0�t�1

. OBn.t/ � cnt/ > z/ � 0;

and since the functional clearly is equal to zero when t D 0, we have

max
0�t�1

. OBn.t/ � cnt/
P! 0; (23.29)

as n ! 1. Thus, by the continuous mapping theorem and the converging together
lemma, we obtain the weak convergence result

LIn � n�max

Q�p
n

) �1

2
B.1/: (23.30)

Lastly, consider Eq. (23.25). Here we need simply note the following equality
in law, which follows from the stationary and Markovian nature of the underlying
sequence .Xn/n�0:

OBn.t/ � OBn.1/ �
p

n

Q� .�max � �2/.1 � t/

LD � OBn.1 � t/ �
p

n

Q� .�max � �2/.1 � t/; (23.31)

for t D 0; 1=n; : : : ; .n � 1/=n; 1. With a change of variables .u D 1 � t/ and noting
that B.t/ and �B.t/ are equal in law, our previous convergence result Eq. (23.29)
implies that

max
0�t�1

. OBn.t/ � OBn.1/ � cn.1 � t//
LD max

0�u�1
.� OBn.u/ � cnu/

P! 0; (23.32)

as n ! 1. Our limiting functional is thus of the form

LIn � n�max

Q�p
n

) 1

2
B.1/: (23.33)

Since B.1/ is simply a standard normal random variable, the different signs
in Eqs. (23.30) and (23.33) are inconsequential.

Finally, consider the degenerate cases. If either a D 0 or b D 0, then the
sequence .Xn/n�0 will be a.s. constant, regardless of the starting state, and so
LIn � n. On the other hand, if a D b D 1, then the sequence oscillates back
and forth between ˛1 and ˛2, so that LIn � n=2. Combining these trivial cases with
the previous development gives
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Theorem 3.1. Let .Xn/n�0 be a 2-state Markov chain, with P.XnC1 D ˛2jXn D ˛1/

D a and P.XnC1 D ˛1jXn D ˛2/ D b. Let the law of X0 be the invariant
distribution .�1; �2/ D .b=.a C b/; a=.a C b//, for 0 < a C b � 2, and be
.�1; �2/ D .1; 0/, for a D b D 0. Then, for a D b > 0,

LIn � n=2p
n

)
r

1 � a

a

�
�1

2
B.1/ C max

0�t�1
B.t/

�
; (23.34)

where .B.t//0�t�1 is a standard Brownian motion. For a ¤ b or a D b D 0,

LIn � n�maxp
n

) N.0; Q�2=4/; (23.35)

with �max D maxf�1; �2g and where N.0; Q�2=4/ is a centered normal random
variable with variance Q�2=4 D ab.2 � a � b/=.a C b/3, for a ¤ b, and Q�2 D 0,
for a D b D 0. (If a D b D 1 or Q�2 D 0, then the distributions in Eqs. (23.34)
and (23.35), respectively, are understood to be degenerate at the origin.)

To extend this result to the entire RSK Young diagrams, let us introduce the
following notation. By

.Y .1/
n ; Y .2/

n ; : : : ; Y .k/
n / ) .Y .1/1 ; Y .2/1 ; : : : ; Y .k/1 /; (23.36)

we shall indicate the weak convergence of the joint law of the k-vector
.Y

.1/
n ; Y

.2/
n ; : : : ; Y

.k/
n / to that of .Y

.1/1 ; Y
.2/1 ; : : : ; Y

.k/1 /, as n ! 1. Since LIn is
the length of the top row of the associated Young diagrams, the length of the second
row is simply n � LIn. Denoting the length of the i th row by Ri

n, Eq. (23.36),
together with an application of the Cramér–Wold theorem, recovers the result of
Chistyakov and Götze [7] as part of the following easy corollary, which is in fact
equivalent to Theorem 3.1:

Corollary 3.1. For the sequence in Theorem 3.1, if a D b > 0, then

�
R1

n � n=2p
n

;
R2

n � n=2p
n

�
) Y1 WD .R11; R21/; (23.37)

where the law of Y1 is supported on the second main diagonal of R2 and with

R11
LD
r

1 � a

a

�
�1

2
B.1/ C max

0�t�1
B.t/

�
:

If a ¤ b or a D b D 0, then setting �min D minf�1; �2g, we have

�
R1

n � n�maxp
n

;
R2

n � n�minp
n

�
) N..0; 0/; Q̇ /; (23.38)
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where Q̇ is the covariance matrix

. Q�2=4/

�
1 �1

�1 1

�
;

where Q�2 D 4ab.2 � a � b/=.a C b/3, for a ¤ b, and Q�2 D 0, for a D b D 0.

Remark 3.1. The joint distributions in Eqs. (23.37) and (23.38) are of course
degenerate, in that the sum of the two components is a.s. identically zero in each
case. In Eq. (23.37), the density of the first component of R1 is easy to find and is
given by (e.g., see [11])

f .y/ D 16p
2�

	 a

1 � a


3=2

y2e�2ay2=.1�a/; y � 0: (23.39)

As in Chistyakov and Götze [7], Eq. (23.37) can then be stated as follows: for any
bounded, continuous function g W R2 ! R,

lim
n!1

 

g

 
R1

n � n=2
p

.1 � a/n=a
;

R2
n � n=2

p
.1 � a/n=a

!!

D 2
p

2�

Z 1

0

g.x; �x/�GUE;2.x; �x/dx;

where �GUE;2 is the density of the eigenvalues of the 2 � 2 GUE and is given by

�GUE;2.x1; x2/ D 1

�
.x1 � x2/

2e�.x2
1Cx2

2/:

To see the GUE connection more explicitly, consider the 2 � 2 traceless GUE
matrix

M0 D
�

X1 Y C iZ

Y � iZ X2

�
;

where X1; X2; Y , and Z are centered, normal random variables. Since
Corr .X1; X2/ D �1, the largest eigenvalue of M0 is

�1;0 D
q

X2
1 C Y 2 C Z2;

almost surely, so that �2
1;0 � �2

3 if Var X1 D Var Y D Var Z D 1. Hence, up to a
scaling factor, the density of �1;0 is given by Eq. (23.39). Next, let us perturb M0 to

M D ˛GI C ˇM0;

where ˛ and ˇ are constants, G is a standard normal random variable independent
of M0, and I is the identity matrix. The covariance of the diagonal elements of M

is then computed to be 	 WD ˛2 � ˇ2. Hence, to obtain a desired value of 	, we may
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take ˛ D p
.1 C 	/=2 and ˇ D p

.1 � 	/=2: Clearly, the largest eigenvalue of M

can then be expressed as

�1 D
r

1 C 	

2
G C

r
1 � 	

2
�1;0: (23.40)

At one extreme, 	 D �1, we recover �1 D �1;0. At the other extreme, 	 D 1, we
obtain �1 D Z. Midway between these two extremes, at 	 D 0, we have a standard
GUE matrix, so that

�1 D
r

1

2
.G C �1;0/ :
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Chapter 24
A Short Rate Model Using Ambit Processes

José Manuel Corcuera, Gergely Farkas, Wim Schoutens, and Esko Valkeila

Abstract In this article, we study a bond market where short rates evolve as

rt D
Z t

�1
g.t � s/�sW.ds/

where g W .0; 1/ ! R is deterministic, � � 0 is also deterministic, and W is the
stochastic Wiener measure. Processes of this type are also called Brownian semista-
tionary processes and they are particular cases of ambit processes. These processes
are, in general, not of the semimartingale kind. We also study a fractional version of
the Cox–Ingersoll–Ross model. Some calibration and simulations are also done.
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1 Introduction

In this paper we study a bond market where short rates evolve as

rt D
Z t

�1
g.t � s/�sW.ds/;

where g W .0; 1/ ! R is deterministic, � � 0 is also deterministic, and W is
the stochastic Wiener measure. Processes of this type are particular cases of ambit
processes. These processes are, in general, not of the semimartingale kind. Our
purpose is to see if these new models can capture the features of the bond market by
extending popular models like the Vasicek model. Affine models are quite popular as
short rate models (see for instance [5]) but they imply a perfect correlation between
bond prices and short rates, something unobservable in real markets. Moreover, the
long-range dependence in the short interest rates (see [7]) and also in the intensity
of default in credit risk models (see [3, 8]) is not captured by these affine models.

We model the short rates under the risk neutral probability and we obtain
formulas for bond prices and options on bonds. We also consider defaultable bonds
where the short and intensity rates show long-range dependence. We also try to
establish the dynamics corresponding to this ad hoc or statistical modelling. This
leads us to study the stochastic calculus associated with certain ambit processes.
The paper is structured as follows: in the next section we introduce the short rate
model. In the second section we calculate the bond and option prices as well as the
hedging strategies. In the third section we look for a dynamic version of the model
that lead us to a stochastic calculus in a nonsemimartingale setting. In the fourth
we discuss a credit risk model with long-range dependence and finally, in the fifth
section, we discuss the analogous of the Cox–Ingersoll–Ross (CIR) model in this
context and we do some calibration and simulations to see, as a first step, how these
models can work in practice.

2 The Model of Short Rates

Let .�; F ;F; P / be a filtered, complete probability space with F D .Ft /t2RC
.

Assume that, in this probability space

rt D
Z t

�1
g.t � s/�sW.ds/ C �t ; (24.1)

where W is the stochastic Wiener measure under the risk neutral probability, P � �
P , g is a deterministic function on RC, g 2 L2..0; 1//, and � � 0 and � are also
deterministic. Notice that the process r is not a semimartingale if g0 62 L2..0; 1//.
Furthermore, we also assume that

Z t

�1
g2.t � s/�2

s ds < 1 (24.2)
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which ensures that rt < 1 almost surely. By an .Ft /-stochastic Wiener measure
we understand an L2-valued measure such that, for any Borelian set A with
E.W.A/2/ < 1

W.A/ Ï N.0; m.A//;

where m is the Lebesgue measure and if A � Œt; C1/ then W.A/ is independent

of Ft . Note that for a 2 R the process
n
Bt WD R tCa

a
W.ds/; t � 0

o
is a standard

Brownian motion.

3 Pricing and Hedging

3.1 Bond Prices

Set

P.t; T / D EP �

�
exp

�
�
Z T

t

rsds

�ˇ̌
ˇ̌Ft

�

for the price at t of the zero-coupon bond with maturity time T . We assume that

exp
�
� R T

0
rsds

�
2 L1.P �/ in such a way that the discounted prices QP .t; T / WD

P.t; T / exp
n
� R t

0 rsds
o

are P �-martingales. Then we have

Z T

t

rsds D
Z T

t

�Z s

�1
g.s � u/�uW.du/

�
ds C

Z T

t

�sds

D
Z t

�1
�u

�Z T

t

g.s � u/ds

�
W.du/

C
Z T

t

�u

�Z T

u
g.s � u/ds

�
W.du/ C

Z T

t

�sds

D
Z t

�1
�uc.uI t; T /W.du/

C
Z T

t

�uc.uI u; T /W.du/ C
Z T

t

�sds;

where

c.uI t; T / WD
Z T

t

g.s � u/ds; t � u
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and where we use the stochastic Fubini theorem. Its use is guaranteed by (24.2).
Then

P.t; T / D exp

�
A.t; T / �

Z t

�1
�uc.uI t; T /W.du/

�
;

where

A.t; T / D log EP �

�
exp

�
�
Z T

t

�uc.uI u; T /W.du/ �
Z T

t

�sds

�ˇ̌
ˇ̌Ft

�

D 1

2

Z T

t

�2
u c2.uI u; T /du �

Z T

t

�sds

and the variance of the yield � 1
T �t

log P.t; T / is given by

var

�
� 1

T � t
log P.t; T /

�
D 1

.T � t/2

Z t

�1
�2

u c2.uI t; T /du:

The corresponding forward rates are given by

f .t; T / D �@T log P.t; T /

D �@T

�
1

2

Z T

t

�2
u c2.uI u; T /du

�
C @T

�Z t

�1
�uc.uI t; T /W.du/

�

C@T

�Z T

t

�sds

�

D �
Z T

t

�2
u g.T � u/c.uI u; T /du C

Z t

�1
�ug.T � u/W.du/ C �T

and

var .f .t; T // D
Z t

�1
�2

u g2.T � u/du:

Note that

dtf .t; T / D �2
t g.T � t/c.t I t; T /dt C �t g.T � t/W.dt/

D ˛.t; T /dt C �.t; T /W.dt/;

with

�.t; T / D �t g.T � t/;

˛.t; T / D �2
t g.T � t/c.t I t; T /:
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Obviously it satisfies the HJM condition (see Chap. 18 in [5]) of absence of
arbitrage:

˛.t; T / D �.t; T /

Z T

t

�.t; s/ds

D �t g.T � t/

Z T

t

�t g.t � s/ds

D �2
t g.T � t/c.t I t; T /:

3.2 Completeness of the Market

It is easy to see that

QP .t; T / WD P.t; T /

exp
nR t

0
rsds

o

D P.0; T / exp

�
�
Z t

0

�uc.uI u; T /W.du/ � 1

2

Z t

0

�2
u c.uI u; T /2du

�
:

In fact

A.0; T / D 1

2

Z T

0

�2
u c.uI u; T /2du �

Z T

0

�sds

D A.t; T / � 1

2

Z t

0

�2
u c.uI u; T /2du �

Z t

0

�sds;

so

P.t; T / D exp

�
A.t; T / �

Z t

�1
�uc.uI t; T /W.du/

�

D exp

�
A.0; T / �

Z 0

�1
�uc.uI 0; T /W.du/

�

� exp

�
�1

2

Z t

0

�2
u c2.uI u; T /du C

Z t

0

�sds

�

� exp

�Z 0

�1
�u .c.uI 0; T / � c.uI t; T // W.du/

�

� exp

�
�
Z t

0

�uc.uI t; T /W.du/

�
;
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consequently

P.t; T / D P.0; T / exp

�
�1

2

Z t

0

�2
u c2.uI u; T /du C

Z t

0

�sds

�

� exp

�Z 0

�1
�uc.uI 0; t/W.du/ �

Z t

0

�uc.uI t; T /W.du/

�
;

exp

�Z t

0

rsds

�
D exp

�Z t

0

�Z s

�1
�ug.s � u/W.du/

�
ds C

Z t

0

�sds

�

D exp

�Z 0

�1
�uc.uI 0; t/W.du/C

Z t

0

�uc.uI u; t/W.du/C
Z t

0

�sds

�
;

QP .t; T / D P.0; T / exp

�
�1

2

Z t

0

�2
u c2.uI u; T /du

�

� exp

�
�
Z t

0

�u.c.uI t; T / C c.uI u; t//W.du/

�

D P.0; T / exp

�
�
Z t

0

�uc.uI u; T /W.du/ � 1

2

Z t

0

�2
u c2.uI u; T /du

�
:

Therefore,
d QP .t; T / D � QP .t; T /�t c.t I t; T /W.dt/; t � 0:

Let X be a P �-square integrable, FT -measurable payoff. Consider the .Ft /-
martingale

Mt WD EP � .X jFt / ; t � 0;

then by an extension of Brownian martingale representation theorem we can write

dMt D Ht W.dt/;

where H is an adapted square integrable process. The proof of this exten-
sion follows the same steps as the proof of the classical result (for more
details, see [14], pp. 198–200). But we need a wider set of functions E Dn
exp

�R T

�1 f .s/ W .ds/
�

W f 2 S
o

as total set in L2.FT ; P �/, where S is the

set of step functions with compact support on .�1; T �.
Let

�
�0

t ; �1
t

	
be a self-financing portfolio built with a bank account and a T -bond;

its value process is given by

Vt D �0
t e
R t

0 rsds C �1
t P.t; T /;
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and, by the self-financing condition, the discounted value process QV� satisfies

d QVt D �1
t d QP .t; T /:

So, if we take

�1
t D � Ht

QP .t; T /�t c.t I t; T /

we can replicate X . In particular the bond with maturity T � can be replicated by
taking

P.t; T �/c.t I t; T �/

P.t; T /c.t I t; T /

bonds with maturity time T � T �:

3.3 Option Prices

Consider a bond with maturity NT > T; where T is the maturity time of a call option
for this bond with strike K . Its price is given by (see [5], Chap. 19)

˘.t I T / D P.t; NT /P
NT .P.T; NT / � KjFt / � KP.t; T /P T .P.T; NT / � KjFt /

D P.t; NT /P
NT
�

P.T; T /

P.T; NT /
� 1

K

ˇ̌
ˇ̌Ft

�
�KP.t; T /P T

 
P.T; NT /

P.T; T /
�K

ˇ̌
ˇ̌Ft

!
;

where P T is the T -forward measure and analogously for P
NT . Define

U.t; T; NT / WD P.t; T /

P.t; NT /
:

Then

U.t I T; NT / D exp

�
�A.t; NT / C A.t; T / �

Z t

�1
�u
�
c.uI t; T / � c.uI t; NT /

	
W.du/

�
:

If we take the NT -forward measure P
NT , we will have that

W.du/ D W
NT .du/ � a.u/du;

where W
NT .du/ is a random Wiener measure in R again. Then, since U.t; T; NT / has

to be a martingale with respect to P
NT , a.u/ is deterministic and we also have that
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U.t I T; NT / D exp

�
�
Z t

�1
�u
�
c.uI t; T / � c.uI t; NT /

	
W

NT .du/

�1

2

Z t

�1
�2

u

�
c.uI t; T / � c.uI t; NT /

	2
du

�
;

so

U.T / WD U.T I T; NT / D U.t I T; NT / exp

( Z T

t

�uc.uI T; NT /W
NT .du/

�1

2

Z T

t

�2
u c.uI T; NT /2du

)

and analogously

U.T /�1 D U.T I NT ; T / D U �1.t I T; NT / exp

(
�
Z T

t

�uc.uI T; NT /W T .du/

�1

2

Z T

t

�2
u c.uI T; NT /2du

)
:

Therefore

˘.t I T / D P.t; NT /P
NT .U.T / � 1

K
jFt / � KP.t; T /P T .U �1.T / � KjFt /

D P.t; NT /P
NT .log U.T / � � log KjFt / � KP.t; T /P T .log U �1.T /

� log KjFt /

D P.t; NT /˚.dC/ � KP.t; T /˚.d�/;

where

d˙ D
log P.t; NT /

KP.t;T /
˙ 1

2
˙2

t;T; NT
˙t;T; NT

and

˙2

t;T; NT WD
Z T

t

�2
u c.uI T; NT /2du:

3.4 Examples

Example 3.1. If
g.t/ D e�bt ; �u D �; and � D a;
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we have

rt D a C e�bt

Z 0

�1
ebs�W.ds/ C e�bt

Z t

0

ebs�W.ds/

D r0e�bt C a.1 � e�bt / C e�bt

Z t

0

ebs�W.ds/;

that is the Vasicek model, and

P.t; T / D exp

�
A.t; T / �

Z T

t

�Z t

�1
�g.s � u/W.du/

�
ds

�

D exp

�
A.t; T / �

Z T

t

�Z t

�1
g.s � u/

g.t � u/
�g.t � u/W.du/

�
ds

�

D exp

�
A.t; T / �

Z T

t

e�b.s�t /

�Z t

�1
�e�b.t�u/W.du/

�
ds

�

D exp

�
A.t; T / � .rt � a/

Z T

t

e�b.s�t /ds

�

D exp .A.t; T / C aB.t; T / � rt B.t; T // ;

with

B.t; T / D 1

b
.1 � e�b.T �t //

and

A.t; T / D �2

2

Z T

t

�Z T

u
g.s � u/ds

�2

du � a.T � t/

D �2

2

Z T

t

B.u; T /2du � a.T � t/:

Here

c.uI t; T / D 1

b

�
e�b.t�u/ � e�b.T �u/

	
; u � t � T;

so

var

�
� 1

T � t
log P.t; T /

�
D 1

.T � t/2

Z t

�1
�2

u c2.uI t; T /du

D �2

2b3

.1 � e�b.T �t //2

.T � t/2
Ï T �2;
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when T ! 1: The corresponding instantaneous forward rates are given by

f .t; T / D � �2

2b2

�
1 � e�b.T �t /

	2 C �e�b.T �t /.rt � a/ C a;

var .f .t; T // D
Z t

�1
�2

u g2.T � u/du

D �2

Z t

�1
e�2b.T �u/du D �2

2b
e�2b.T �t / Ï e�2bT ;

when T ! 1: Moreover the volatility of the forward rates is given by �.t; T / D
�e�b.T �t / and this is not too realistic.

Example 3.2. Assume that �t D �1ft�0g and

g.t � u/ D e�b.t�u/

Z t�u

0

ebsˇsˇ�1ds;

for ˇ 2 .0; 1=2/: We have that

c.uI t; T / WD
Z T

t

g.s � u/ds D c.0I 0; T � u/ � c.0I 0; t � u/;

with

c.0I 0; x/ D e�bx

Z x

0

ebssˇds:

Then

var

�
� 1

T � t
log P.t; T /

�
D 1

.T � t/2

Z t

�1
�2

u c2.uI t; T /du

D �2

2

1

.T � t/2

Z t

0

.c.0I 0; T � u/ � c.0I 0; t � u//2du

Ï 1

T 2

Z t

0

c.0I 0; T � u/2du Ï T 2ˇ�2;

when T ! 1: In fact

c.0I 0; x/ D e�bx

Z x

0

ebssˇds D xˇ

Z x

0

e�bs
�
1 � s

x

�ˇ

ds;

and by the monotone convergence theorem

lim
x!1

Z x

0

e�bs.1 � s

x
/ˇds D

Z 1

0

e�bsds D 1

b
:
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Moreover

var .f .t; T // D
Z t

�1
�2

u g2.T � u/du Ï T 2ˇ�2:

Since for x � 0

g.x/ D e�bx

Z x

0

ebsˇsˇ�1ds D ˇxˇ�1

Z x

0

e�bs.1 � s

x
/ˇ�1ds

D ˇxˇ�1

 Z x=2

0

e�bs.1 � s

x
/ˇ�1ds C

Z x

x=2

e�bs.1 � s

x
/ˇ�1ds

!
;

and

lim
x!1

Z x=2

0

e�bs.1 � s

x
/ˇ�1ds D

Z 1

0

e�bsds D 1

b
;

Z x

x=2

e�bs.1 � s

x
/ˇ�1ds � e�bx=2

Z x

x=2

.1 � s

x
/ˇ�1ds

D xe�bx=2

Z 1=2

0

vˇ�1dv D xe�bx=2

ˇ2ˇ
! 0;

when x ! 1: Also observe that the volatility of the forward rates �.t; T / D
�2g.T � t/ Ï T ˇ�1; when T ! 1 , that is more realistic (see Sect. 4.1 in [7]
and also [2]) than the exponential decay in the Vasicek model. For ˇ 2 .�1=2; 0/

consider the memory function

g.x/ D e�bxxˇ C ˇ

Z x

0

.e�b.x�u/ � e�bx/uˇ�1du;

and then

g.x/ Ï xˇ�1

when x ! 1: In such a way that we obtain analogous asymptotic results to the
previous case.

4 An SDE Approach

We have postulated that

rt D
Z t

�1
g.t � s/�sW.ds/ C �t ;
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and the question is if this process .rt /t2R can be seen as the solution of such a
stochastic differential equation. For instance, assume that

drt D b.a � rt /dt C �W.dt/;

then we have

rt D r0e�bt C a.1 � e�bt / C e�bt

Z t

0

ebs�W.ds/;

and if we take

r0 D
Z 0

�1
ebs�W.ds/ C a;

we obtain that

rt D a C
Z t

�1
e�b.t�s/�W.ds/:

So, it corresponds to g.t/ D e�bt , �s D � , and �t D a:

4.1 Ambit Processes as Noises of SDE

Consider the processes W g given by

W
g

t WD
Z t

�1
g.s; t/W.ds/;

where g W R
2 ! R deterministic, continuously differentiable with respect to the

second variable, g.s; t/ D 0 if s > t and
R t

�1 g2.s; t/ds < 1: In this section we
explain how a stochastic calculus can be developed with respect to these processes.
Here we follow [1, 7, 13]. First, formally,

W
g

t .dt/ D g.t; t/W.dt/ C
�Z t

�1
@t g.s; t/W.ds/

�
dt;

and for a deterministic function f .�; �/; we can define

Z t

�1
f .u; t/W

g
t .du/

D
Z t

�1
f .u; t/

�
g.u; u/W.du/ C

�Z u

�1
@ug.s; u/W.ds/

�
du

�

D
Z t

�1

�Z u

�1
.f .u; t/ � f .s; t// @ug.s; u/W.ds/

�
du
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C
Z t

�1

�Z t

s

f .s; t/@ug.s; u/du

�
W.ds/

C
Z t

�1
f .u; t/g.u; u/W.du/

D
Z t

�1

�Z t

s

.f .u; t/ � f .s; t// @ug.s; u/du

�
W.ds/

C
Z t

�1
f .s; t/g.s; t/W.ds/

D
Z t

�1

�Z t

s

.f .u; t/ � f .s; t// @ug.s; u/du C f .s; t/g.s; t/

�
W.ds/:

Then, the latest integral is well defined in an L2 sense, provided that

Z t

�1

�Z t

s

.f .u; t/ � f .s; t// @ug.s; u/du C f .s; t/g.s; t/

�2

ds < 1:

Now, if we construct the operator

K
g
t .f /.s; t/ WD

Z t

s

.f .u; t/ � f .s; t// @ug.s; u/du C f .s; t/g.s; t/;

it is natural to defineZ t

�1
f .s; t/W

g
t .ds/ WD

Z t

�1
K

g
t .f /.s; t/W.ds/;

provided that f .�; t/ 2 �Kg
t

	�1
.L2.�1; t �/.

Note that if g.s; s/ D 0, then we can write

K
g
t .f /.s; t/ WD

Z t

s

f .u; t/@ug.s; u/du; (24.3)

and in the particular case that �f D 0, we have

K
g
t .f /.s; t/ D @t

Z t

s

f .u; t/g.s; u/du

D @t .f 	 g/ .s; t/;

and

Z t

�1
f .s; t/W

g
t .ds/ D

Z t

�1

�
@t

Z t

s

f .u; t/g.s; u/du

�
W.ds/

D d

dt

Z t

�1

Z t

s

f .u; t/g.s; u/duW.ds/
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D d

dt

Z t

�1
f .u; t/

�Z u

�1
g.s; u/W.ds/

�
du

D d

dt

Z t

�1
f .u; t/W g

u du:

Consider now

rt D b

Z t

0

.a � rs/ds C �

Z t

0

.t � s/ˇW.ds/;

with ˇ 2 .�1=2; 0/ [ .0; 1=2/; then if we define

W
ˇ

t WD
Z t

0

.t � s/ˇW.ds/;

rt D b

Z t

0

.a � rs/ds C �W ˇ.t/:

In such a way that .rt / is an Ornstein–Uhlenbeck process driven by W ˇ .
We obtain

rt D r0e�bt C a.1 � e�bt / C e�bt

Z t

0

ebs�W ˇ.ds/

D r0e�bt C a.1 � e�bt / C
Z t

0

�g.t � s/W.du/:

Then, if ˇ 2 .0; 1=2/, by (24.3) we have

Z t

0

e�b.t�s/W ˇ.ds/ D
Z t

0

�Z t

u
e�b.t�s/ˇ.s � u/ˇ�1ds

�
W.du/

D
Z t

0

�Z t�u

0

e�b.t�s�u/ˇsˇ�1ds

�
W.du/:

D
Z t

0

e�b.t�u/

�Z t�u

0

ebsˇsˇ�1ds

�
W.du/:

In such a way that

g.t � s/ D e�b.t�s/

�Z t�s

0

ebuˇuˇ�1du

�
;

and if ˇ 2 .�1=2; 0/

g.t � s/ D e�b.t�s/.t � s/ˇ C ˇe�b.t�s/

Z t�s

0

.ebu � 1/vˇ�1du:
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5 A Defaultable Zero-Coupon Bond

The purpose in this section is to price a zero-coupon bond with possibility of
default. The payoff of this contract at the maturity time is 1f�>T g, where � is the
default time. Then, an arbitrage free price at time t is given by

D.t; T / D 1f�>tgE
�

1f�>T ge� R T
t rsds

ˇ̌
ˇGt

�
; 0 � t � T;

where the expectation is taken with respect to a risk neutral probability, P �, and
where the filtration G D .Gt /t�0 represents the information available to the market.
Here we follow the hazard process approach (for more details, see Sect. 8.2 in [4]).
In this approach we consider two filtrations, one is the default-free filtration F D
.Ft /t�0 that typically incorporates the history of the short rates. The default time is
modelled by a random variable � that is not necessarily an F-stopping time, then the
other filtration is G D .Gt /t�0 , where

Gt D Ft _ �.� ^ t/;

in such a way that � is a G-stopping time. Now, if we assume that there exists an
F-adapted process .	t /t�0, the so-called hazard process, such that

P �.� > t jFt / D e� R t
0 	sds;

it can be shown (see [12], Chap. 8) that

D.t; T / D 1f�>tgE
�

1f�>T ge� R T
t rsds

ˇ̌
ˇGt

�
D 1f�>tgE

�
e� R T

t .rsC	s/ds
ˇ̌
ˇFt

�
:

Then we need a model for .rt /t�0 and .	t /t�0 : A classical model is a Vasicek model
for both processes

drt D b.a � rt /dt C �dW.t/;

d	t D Mb. Ma � 	t /dt C M�d MW .t/;

where W and MW are correlated Brownian motions and here Ft D �. Ws; MWs; 0 �
s � t/. The idea is to extend this model by considering ambit processes as noises in
the stochastic differential equations. For instance we can have

rt D
Z t

�1
�sg.t � s/W.ds/ C �t ;

	t D
Z t

�1
L�s Lg.t � s/ MW .ds/ C M�t :
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See [3] for a similar modelling. Then, the price of a defaultable zero-coupon bond
at time t will be given by

D.t; T / D 1f�>tg exp

�
A.t; T /�

Z t

�1
.�uc.uI t; T /W.du/CM�u Mc.uI t; T // MW .du/

�
;

where

A.t; T / D 1

2

Z T

t

�
�2

u c2.uI t; T / C M�2
u Mc2.uI t; T / C 2
�u M�uc.uI t; T / Mc.uI t; T /

	
du

�
Z T

t

.�u C M�u/ du

and 
 is the correlation coefficient between W and MW : Interesting cases are �u D
�1fu�0g; �u D M�1fu�0g; �u D �; M�u D M�;

g.t � s/ D e�b.t�s/

Z t�s

0

ebuˇuˇ�1du;

Mg.t � s/ D e�Mb.t�s/

Z t�s

0

e
Mbu M̌u

M̌�1du;

ˇ; M̌ 2 .�1=2; 0/ [ .0; 1=2/: Note that

var

�
� 1

T � t
log D.t; T /

�
Ï T 2.ˇ_ M̌/�2:

6 The Analogue of a CIR Model

One of the drawbacks of the previous model is that it allows for negative short rates.
An obvious way of avoiding this is to take

rt D
dX

iD1

�Z t

0

g.t � s/�sdWi.s/

�2

C r0; t � 0; r0 > 0;

where .Wi //1�i�d is a Brownian motion in R
d .

6.1 Bond Prices

rt D
dX

iD1

Z t

0

Z t

0

g.t � u/g.t � v/�s�udWi.u/dWi.v/;
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where by simplicity we take r0 D 0; then

Z T

t

rsds D
dX

iD1

Z T

t

�Z s

0

g.s � u/g.s � v/�u�vdWi.u/dWi.v/

�
ds

D
dX

iD1

Z t

0

Z t

0

�u�v

�Z T

t

g.s � u/g.s � v/ds

�
dWi.u/dWi.v/

C2

dX
iD1

Z t

0

Z T

t

�u�v

�Z T

u
g.s � u/g.s � v/ds

�
Wi .du/Wi.dv/

C
dX

iD1

Z T

t

Z T

t

�u�v

�Z T

u_v
g.s � u/g.s � v/ds

�
Wi.du/Wi.dv/

D
dX

iD1

Z t

0

Z t

0

�u�vc2.u; vI t; T /dWi .u/dWi.v/

C2

dX
iD1

Z t

0

Z T

t

�u�vc2.u; vI u; T /dWi.u/dWi.v/

C
dX

iD1

Z T

t

Z T

t

�u�vc2.u; vI u _ v; T /dWi.u/dWi.v/;

with c2.u; vI t; T / WD R T

t
g.s � u/g.s � v/ds:

P.0; T / D E

�
exp

�
�
Z T

0

rsds

��

D E

 
exp

(
�

dX
iD1

Z T

0

Z T

0

�u�vc2.u; vI u _ v; T /dWi .u/dWi.v/

)!

D
dY

iD1

E

�
exp

�
�T

Z 1

0

Z 1

0

�T u�T vc2.T u; T vI T .u _ v/; T /dWi.u/dWi.v/

��

D

0
B@1 C

1X
nD1

.2T /n

nŠ

Z 1

0

� � �
Z 1

0

ˇ̌
ˇ̌
ˇ̌
ˇ

R .s1; s1/ � � � R .s1; sn/
:::

:::

R .sn; s1/ � � � R .sn; sn/

ˇ̌
ˇ̌
ˇ̌
ˇ
ds1 � � � dsn

1
CA

�d=2

;

where

R .u; v/ D �T u�T vc2.T u; T vI T .u _ v/; T /:
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In the second equality we use the scaling property of the Brownian motion and in
the third Corollary 4 in [15].

Example 6.1. Assume that g.t/ D 1ft�0g and �t D �: Then rt is a squared Bessel
process of dimension d (see for instance [10]) and

R .u; v/ D �2T .1 � .u _ v//;

consequently

P.0; T / D .cosh.
p

2�T /� d
2 D 2

d
2

�
e

p
2�T C e�p

2�T

� d
2

(see [15] for the calculations of the Fredholm determinant),

d.	/ WD

0
B@1 C

1X
nD1

	n

nŠ

Z 1

0

� � �
Z 1

0

ˇ̌
ˇ̌
ˇ̌
ˇ

R .s1; s1/ � � � R .s1; sn/
:::

:::

R .sn; s1/ � � � R .sn; sn/

ˇ̌
ˇ̌
ˇ̌
ˇ
ds1 � � � dsn

1
CA :

Another procedure to calculate the Fredholm determinants is given in [11], where it
is shown that provided the kernel R .u; v/ is of the form

R .u; v/ D M.u _ v/N.u ^ v/

we have that

d.	/ D B	.1/;

and therefore

P.0; T / D .B2T .1//� d
2 ;

where B	.t/is defined by the linear differential equation system

� PA	.t/
PB	.t/

�
D 	

��N.t/M.t/ N 2.t/

�M 2.t/ N.t/M.t/

��
A	.t/

B	.t/

�
;

�
A	.0/

B	.0/

�
D
�

0

1

�
:

In our case M.t/ D �2T .1 � t/ and N.t/ D 1 and by straightforward calculations
we obtain

B	.t/ D �2T 2

0
B@.1 � t/

e�
p

	T t � e��
p

	T t

�
p

	T
C e�

p
	T t C e��

p
	T t

�
�

p
	T
�2

1
CA :
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Fig. 24.1 EUR – Discount curve 04/11/2011 : � D 21:90% and d D 0:2093

Note that we can consider squared Bessel processes of dimension d � 0; where
d is not necessarily integer (see [10] and Corollary 6.2.5.5 therein). A calibration
of this model is given in Fig. 24.1. We have performed a calibration of the model on
the market discount curve of the 4th of November 2011. More precisely, we have
on that date calibrated the d and � parameters on the EUR market implied discount
curve up to 20 years of maturity. The optimal parameters were obtained using a
least-squared-error minimization employing a Nelder–Mead search algorithm. The
calibrating is performed very fast and the optimal parameters are obtained in less
than a second, due to the fact that discount values under the model are available in
close form. Even though this model is not mean reverting the fit to real data is quite
good.

Example 6.2. Another interesting example is the classical CIR model. In such a
case

R.u; v/ D �2

Z T

T .u_v/

e�b.s�u/e�b.s�v/ds D �2

2b
ebT ..u^v/�1/.e�bT ..u_v/�1/

�ebT ..u_v/�1//

D M.u _ v/N.u ^ v/;



544 J.M. Corcuera et al.

where

M.t/ D �p
2b

�
e�bT .t�1/ � ebT .t�1/

	
;

N.t/ D �p
2b

ebT .t�1/:

Then we have the system

� PA	.t/
PB	.t/

�
D 	�2

2b

�
e2bT .t�1/

�
1 � e�2bT .t�1/

	
e2bT .t�1/

� �e2bT .t�1/ � 1
	 �

1 � e�2bT .t�1/
	 � �e2bT .t�1/ � 1

	
�

�
�

A	.t/

B	.t/

�
;

�
A	.0/

B	.0/

�
D
�

0

1

�
:

So,

PB	.t/ D �
e�2bT .t�1/ � 1

	 PA	.t/

and
RA	.t/ D 2bT PA	.t/ C 	�2TA	.t/I

from here we obtain that

A2T .t/ D C
�

eT .bCp
b2C2�2/t � eT .b�p

b2C2�2/t
�

and that

B2T .t/ D C
�
e�2bT .t�1/ � 1

	 �
eT .bCp

b2C2�2/t � eT .b�p
b2C2�2/t

�

CC.�2b/T e2bT

 
eT .�bCp

b2C2�2/t

�b C p
b2 C 2�2

� eT .�b�p
b2C2�2/t

�b � p
b2 C 2�2

!
;

where C D � �2e�2bT

2bT
p

b2C2�2
. Therefore

B2T .1/ D 1

2
p

b2 C 2�2

�
.b C

p
b2 C 2�2/eT .�bCp

b2C2�2/

C.�b C
p

b2 C 2�2/e�T .bCp
b2C2�2/

�
:
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6.2 Numerical Methods for Pricing

In case that the Fredholm determinant appearing in the price formula cannot be
calculated analytically, efficient numerical methods are known [6]. The idea of the
approximation is the following: first let denote

d R .	/ D
1X

nD0

	n

nŠ

Z 1

0

� � �
Z 1

0

ˇ̌
ˇ̌
ˇ̌
ˇ

R .s1; s1/ � � � R .s1; sn/
:::

:::

R .sn; s1/ � � � R .sn; sn/

ˇ̌
ˇ̌
ˇ̌
ˇ
ds1 � � � dsn;

the price we are looking for equals


d R .2T /

��d=2 I then, for a given quadrature

formula

Qm .f / D
mX

j D1

wj f
�
xj

	 

Z 1

0

f .x/ dx;

we consider the Nyström-type approximation of d .	/ W

d R
Qm

.	/ D det


ıij C 	wi R

�
xi ; xj

	�m
i;j D1

: (24.4)

By the von Koch formula (see [6]), we can write

d R
Qm

.	/ D 1 C
1X

nD1

	n

nŠ
Qn

m .Rn/

where, for functions f on R
n,

Qn
m .f / WD

mX
j1;:::;jnD1

wj1 : : : wjnf
�
xj1 ; : : : xjn

	

and Rn.s1; : : : ; sn/ WD det


R
�
si ; sj

	�n
i;j D1

: Note that the previous series terminates
in fact at n D m: Nevertheless, the error is given by the exponentially generating
function of the quadrature errors for the functions Rn

d R
Q .	/ � d .	/ D

1X
nD1

	n

nŠ

�
Qn

m .Rn/ �
Z

Œ0;1�n
Rn .t1; : : : ; tn/ dt1 � � � dtn



:

So, this method approximates the Fredholm determinant by the determinant of an
m � m matrix applied in (24.4). If the weights are positive (which is always a better
choice), its equivalent symmetric variant is

d R
Qm

.	/ D det
h
ıij C 	w1=2

i R
�
xi ; xj

	
w1=2

j

im

i;j D1
:
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Using Gauss–Legendre quadrature rule, the computation cost is of order O
�
m3
	

and simple codes for Matlab and Mathematica can be found on page in [6]. Also,
Theorem 6.1 in [6] shows that if a family Qm of quadrature rules converges for
continuous functions, when m goes to infinity, then the corresponding Nyström-
type approximation of the Fredholm determinant converges to d .	/ ; uniformly for

bounded 	: Moreover Theorem 6.2 in [6] shows that if R 2 C k�1;1
�
Œ0; 1�2

�
, then

for each quadrature rule Q of order v � k with positive weights there holds the
error estimateˇ̌

ˇd R
Qm

.	/ � d R .	/
ˇ̌
ˇ � ck2k .b � a/ v�k˚ .jzj .b � a/ kRkk/ ;

where ck is a constant depending only on k:

kRkk D max
iCj �k

���@i
1@

j
2 R
���

L1

and

˚ .z/ D
1X

nD1

n.nC2/=2

nŠ
zn

is an entire function on C.
Figure 24.2 shows the relative error

R .T / D
ˇ̌
ˇ̌
ˇ
P .0; T / � d R

Q100
.2T /

P .0; T /

ˇ̌
ˇ̌
ˇ

in the classical CIR model as presented in Example 6.2 (with m D 100).
Now, we can apply this method to evaluate numerically Fredholm determinants

and consequently prices for bonds in the CIR models. With the notation used above,
we have the following proposition:

Proposition 6.1. Assume �t D 1ft�0g, g.s/ D s˛; for ˛ 2 .�1=2; 1=2/; let

QR .u; v/ D
�

2.1 � u/.1 � v/

2 � u � v


2˛C1

� 1

2

� ju � vj
2

�2˛C1

�
�
B

�
1

2
� ˛; ˛ C 1

�
� B�

�
1

2
� ˛; ˛ C 1

�


for � D
�

u�v
2�.uCv/

�2

; and where B and B� are the beta and the incomplete beta

functions, respectively. Then, the price of a zero-coupon bond, for the corresponding
CIR model, is given by

P .0; T / D 

d R .2T /

��d=2 D
�
d

QR
�

2T 2˛C2

1 C 2˛

�
�d=2



�
d

QR
Qm

�
2T 2˛C2

1 C 2˛

�
�d=2

:
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Fig. 24.2 R(T), Relative error, classical CIR model, d D 2, sigma D 0.2, m D 100

Proof. Assume that 0 � v � u � 1, then

c2.T u; T vI T u; T / D
Z T

T u
g.s � T u/g.s � T v/ds D

Z T

T u
.s � T u/˛ .s � T v/˛ ds

D T 2˛C1

Z 1

u
.s � u/˛ .s � v/˛ ds D T 2˛C1c2.u; vI u; 1/:

(24.5)

Now, for u ¤ v, we have

Z 1

u
.s � u/˛ .s � v/˛ ds D

�u � v

2

�2˛
Z 1

u

"�
s

2

u � v
� u C v

u � v

�2

� 1

#˛

ds;

and we obtain

c2.u; vI u; 1/ D
�u � v

2

�2˛C1
Z b

1

�
x2 � 1

	˛
dx;
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where b D 2�.uCv/

u�v : Now, by writing 1=b2 D �; we have

Z b

1

�
x2 � 1

	˛
dx

D 1

2

Z 1

�

.1 � x/˛ x� 3
2 �˛dx D

Z 1

�

.1 � x/˛C1 x� 3
2 �˛dx

C
Z 1

�

.1 � x/˛ x� 1
2 �˛dx

D 1

2

8<
:
"

.1 � x/˛C1 x� 1
2 �˛

� 1
2

� ˛

#1

�

� 1

1 C 2˛

Z 1

�

.1 � x/˛ x� 1
2 �˛dx

9=
;

D 1

1 C 2˛

�
�
h
.1 � x/˛C1 x� 1

2 �˛
i1

�
�
Z 1

�

.1 � x/˛ x� 1
2 �˛dx

�

D 1

1 C 2˛

�
2�� 1

2 �˛ .1 � �/˛C1 �
Z 1

�

.1 � x/˛C1�1 x. 1
2 �˛/�1dx

�
:

Then, since ˛ 2 �� 1
2
; 1

2

	
, 1

2
� ˛ > 0, and ˛ C 1 > 0; and we can write

B

�
1

2
� ˛; ˛ C 1

�
D
Z 1

0

.1 � x/˛C1�1 x. 1
2 �˛/�1dx;

where B .�; �/ is the beta function. If we denote the incomplete beta function by
Bz .�; �/

Bz .˛; ˇ/ D
Z z

0

x˛�1 .1 � x/ˇ�1 dx; ˛; ˇ > 0;

we can also write, for v < u � 1,

c2 .u; vI u; 1/

D 1

1 C 2˛

�u � v

2

�2˛C1

�
�

�� 1
2 �˛ .1 � �/˛C1 � 1

2

�
B

�
1

2
� ˛; ˛ C 1

�
� B�

�
1

2
� ˛; ˛ C 1

���

D 1

1 C 2˛

(�
2.1 � u/.1 � v/

2 � u � v

�2˛C1

� 1

2

�u � v

2

�2˛C1
��

B

�
1

2
� ˛; ˛ C 1

�
� B�

�
1

2
� ˛; ˛ C 1

��
�
:

(24.6)
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In case of v D u � 1,

c2 .u; uI u; 1/ D
Z 1

u
.s � u/2˛ ds D

"
.s � u/2˛C1

2˛ C 1

#1

u

D .1 � u/2˛C1

2˛ C 1

Then, by (24.5) and (24.6), we have

R .u; v/ D T 2˛C1

1 C 2˛

( �
2.1 � u/.1 � v/

2 � u � v


2˛C1

� 1

2

�u � v

2

�2˛C1

�
��

B

�
1

2
� ˛; ˛ C 1

�
� B�

�
1

2
� ˛; ˛ C 1

��
)
:

Therefore

d R .	/ D
1X

nD0

	n

nŠ

Z 1

0

� � �
Z 1

0

ˇ̌
ˇ̌
ˇ̌
ˇ

R .s1; s1/ � � � R .s1; sn/
:::

:::

R .sn; s1/ � � � R .sn; sn/

ˇ̌
ˇ̌
ˇ̌
ˇ
ds1 � � � dsn

D
1X

nD0

�
	T 2˛C1

1C2˛

�n

nŠ

Z 1

0

� � �
Z 1

0

ˇ̌
ˇ̌
ˇ̌
ˇ

QR .s1; s1/ � � � QR .s1; sn/
:::

:::
QR .sn; s1/ � � � QR .sn; sn/

ˇ̌
ˇ̌
ˇ̌
ˇ
ds1 � � � dsn

D d
QR
�

	T 2˛C1

1 C 2˛

�
;

and the price is given by

P .0; T / D 

d R .2T /

��d=2 D
�
d

QR
�

2T 2˛C2

1 C 2˛

�
�d=2



�
d

QR
Qm

�
2T 2˛C2

1 C 2˛

�
�d=2

:

Remark 6.1. In order to include the case of the volatility not being constant, one
only has to substitute �T u�T vR .u; v/ for R .u; v/ or �T u�T v QR .u; v/ for QR .u; v/.

Remark 6.2. The incomplete beta function ratio defined by

Ix .˛; ˇ/ D 1

B .˛; ˇ/

Z x

0

t˛�1 .1 � t/ˇ�1

can be obtained by using the function betainc.x; ˛; ˇ/ in matlab, so we can
compute Bb .˛; ˇ/ easily.
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Fig. 24.3 Approximation of prices, d D 2, sigma D 0.2, alpha > 0

Figures 24.3 and 24.4 show the approximated price P .0; T / under the circum-
stances of Proposition 6.1, for T 2 .0; 20/ in years, d D 2, � D 0:2, and
˛ 2 f�0:45; �0:25; �0:05; 0:05; 0:25; 0:45g.

6.3 The Dynamics of the CIR Model

A natural question, as we did in Sect. 4, is if the process

rt D
dX

iD1

�Z t

0

g.t � s/�sdWi.s/

�2

can be seen as the solution of certain SDE. Write

Yi.t/ WD
Z t

0

g.t � s/�sdWi.s/;

then

rt D
dX

iD1

Y 2
i .t/:
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Fig. 24.4 Approximation of prices, d D 2, sigma D 0.2, alpha < 0

Assume that g 2 C 1and it is square integrable, then Y is a semimartingale with

dYi.t/ D g.0/�t dWi.t/ C
�Z t

0

g0.t � s/�sdWi.s/

�
dt;

suppose g.0/ ¤ 0 as well. If we apply the Itô formula for continuous semimartin-
gales we have

drt D
dX

iD1

2Yi .t/dYi.t/ C
dX

iD1

dŒYi ; Yi �t

D
dX

iD1

2g.0/�tYi .t/dWi.t/ C
dX

iD1

2Yi .t/

�Z t

0

g0.t � s/�sdWi.s/

�
dt

C
dX

iD1

g2.0/�2
t dt

D 2g.0/�t

p
rt

dX
iD1

Yi .t/p
rt

dWi.t/

C
 

dg2.0/�2
t C

dX
iD1

2Yi .t/

�Z t

0

g0.t � s/�sdWi.s/

�!
dt:
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Then it is easy to see, by using the Lévy characterization of the Brownian motion,
that

dX
iD1

Yi .t/p
rt

dWi.t/ D dB.t/;

where B is a Brownian motion. Finally if g0.t/ D �bg.t/, g.0/ D 1, �t D � , we
have

drt D .d�2 � 2brt /dt C 2�
p

rtdB.t/

that is the dynamics of a CIR process. If g0 is not square integrable then the process

Yi.t/ WD
Z t

0

g.t � s/�sdWi.s/

is not a semimartingale and we cannot apply the usual Itô formula. In the particular
case that

g.t � s/ D e�b.t�s/

Z t�s

0

ebuˇuˇ�1du; ˇ 2 .�1=2; 0/ [ .0; 1=2/;

and �u D �

Yi .t/ D
Z t

0

�e�b.t�s/W
ˇ

i .ds/

W
ˇ

i .t/ WD
Z t

0

.t � s/ˇW.ds/;

so

Yi .t/ D �b

Z t

0

Yi .s/ds C �W
ˇ

i .t/

and, by the Itô formula for these processes, we have [1]

drt D
dX

iD1

2�Yi.t/²W
ˇ

i .t/ � 2br.t/dt C
dX

iD1

�2

�Z t

0

.t � u/ˇdu

�
dt

D �
d�2t2ˇ � 2br.t/

	
dt C 2�

p
rt

dX
iD1

Yi .t/p
rt

²W
ˇ

i .t/:

But we do not have a characterization of the process

Zt WD
dX

iD1

Z t

0

Yi .s/p
rs

²W
ˇ

i .s/; t � 0:
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In the case that b D 0;

Zt WD
dX

iD1

Z t

0

W
ˇ

i .s/p
rs

²W
ˇ

i .s/; t � 0;

and it can be shown that Z is 2ˇ-self-similar [9].
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Chapter 25
Parametric Regularity of the Conditional
Expectations via the Malliavin Calculus
and Applications

A.S. Üstünel

Abstract Let .W; H; �/ be the classical Wiener space and assume that
U� D IW C u� is an adapted perturbation of identity where the perturbation u�

is an H -valued map, defined up to �-equivalence classes, such that its Lebesgue
density s ! Pu�.s/ is almost surely adapted to the canonical filtration of the
Wiener space and depending measurably on a real parameter �. Assuming some
regularity for u�, its Sobolev derivative and integrability of the divergence of the
resolvent operator of its Sobolev derivative, we prove the almost sure and Lp-
regularity w.r. to � of the estimation EŒPu�.s/jU�.s/� and more generally of the
conditional expectations of the type EŒF j U�.s/� for nice Wiener functionals,
where .U�.s/; s 2 Œ0; 1�/ is the filtration which is generated by U�. These results
are applied to prove the invertibility of the adapted perturbations of identity, hence
to prove the strong existence and uniqueness of functional SDE, convexity of the
entropy and the quadratic estimation error, and finally to the information theory.
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1 Introduction

The Malliavin calculus studies the regularity of the laws of the random variables
(functionals) defined on a Wiener space (abstract or classical) with values in
finite-dimensional Euclidean spaces (more generally manifolds) using a variational
calculus in the direction of the underlying quasi-invariance space, called the
Cameron–Martin space. Although its efficiency is globally recognized by now, for
the maps taking values in the infinite-dimensional spaces the Malliavin calculus
does not apply as easily as in the finite-dimensional case due to the absence of the
Lebesgue measure and even the problem itself needs to be defined. For instance,
there is a notion called signal-to-noise ratio which finds its roots in engineering
which requires regularity of infinite-dimensional objects with respect to finite-
dimensional parameters (cf.[1, 7–11]). Let us explain the problem along its general
lines briefly: imagine a communication channel of the form y D p

�x C w, where
x denotes the emitted signal and w is a noise which corrupts the communications.
The problem of estimation of the signal x from the data generated y is studied
since the early beginnings of the electrical engineering. One of the main problems
dealt with is the behavior of the L2-error of the estimation w.r. to the signal-to-noise
ratio �. This requires elementary probability when x and w are independent finite-
dimensional variables, though it gives important results for engineers. In particular,
it has been recently realized that (cf. [7, 20]), in this linear model with w being
Gaussian, the derivative of the mutual information between x and y w.r. to � equals
to the half of the mean quadratic error of estimation. The infinite-dimensional case
is more tricky and requires already the techniques of Wiener space analysis and the
Malliavin calculus (cf. [20]). The situation is much more complicated in the case
where the signal is correlated to the noise; in fact we need the �-regularity of the
conditional expectations w.r. to the filtration generated by y, which is, at first sight,
clearly outside the scope of the Malliavin calculus.

In this paper we study the generalization of the problem mentioned above.
Namely assume that we are given, in the setting of a classical Wiener space,
denoted as .W; H; �/, a signal which is of the form of an adapted perturbation of
identity (API):

U�.t; w/ D Wt .w/ C
Z t

0

Pu�.s; w/ds ;

where .Wt ; t 2 Œ0; 1�/ is the canonical Wiener process, Pu� is an element of
L2.ds � d�/ which is adapted to the Brownian filtration ds-almost surely, and
� is a real parameter. Let U�.t/ be the sigma algebra generated by .U�.s/; s � t/.
What can we say about the regularity, i.e., continuity and/or differentiability w.r.t.
�, of the functionals of the form � ! EŒF j U�.t/� and � ! EŒF j U� D w�

(the latter denotes the disintegration) given various regularity assumptions about
the map � ! Pu�, like differentiability of it or its H -Sobolev derivatives w.r. to
�? We prove that the answer to these questions depend essentially on the behavior
of the random resolvent operator .IH C ru�/�1, where ru� denotes the Sobolev
derivative of u�, which is a quasi-nilpotent Hilbert–Schmidt operator; hence its
resolvent exists always. More precisely we prove that if the functional
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.1 C �.�ıu�/ı

�
.IH C ru�/�1 d

d�
u�

�
(25.1)

is in L1.d� � d�; Œ0; M � � W / for some M > 0, where ı denotes the Gaussian
divergence and �.�ıu/ is the Girsanov–Wick exponential corresponding to the
stochastic integral ıu D R 1

0
PusdWs , i.e.,

�.�ıu/ D exp

�
�ıu � 1

2
juj2H

�
;

then the map � ! L� is absolutely continuous almost surely where L� is the
Radon–Nikodym derivative of U�� w.r. to � and we can calculate its derivative
explicitly. This observation follows from some variational calculus and from
the Malliavin calculus. The iteration of the hypothesis (25.1) by replacing
ı..IH C ru�/�1 d

d�
u�/ with its �-derivatives permits us to prove the higher-order

differentiability of the above conditional expectations w.r. to � and these results
are exposed in Sect. 3. In Sect. 4, we give applications of these results to show
the almost sure invertibility of the adapted perturbations of the identity, which
is equivalent to the strong existence and uniqueness results of the (functional)
stochastic differential equations of the following type:

Xt.w/ D Wt .w/ �
Z t

0

Pu.s; .Xr.w/; r � s//ds;

written in a popular manner, where U D IW C u, u is an H -valued functional of
the form u.w/.t/ D R t

0
Pus.w/ds, and Pu is adapted to the Brownian filtration.

In Sect. 5, we apply the results of Sect. 3 to calculate the derivatives of the relative
entropy of U�� w.r. to � in the general case, i.e., we do not suppose the a.s. invert-
ibility of U�, which demands the calculation of the derivatives of the nontrivial con-
ditional expectations. Some results are also given for the derivative of the quadratic
error in the case of anticipative estimation as well as the relations to the Monge–
Kantorovich measure transportation theory and the Monge–Ampère equation. In
Sect. 6, we generalize the celebrated result about the relation between the mutual
information and the mean quadratic error (cf. [1,8,9]) in the following way: we sup-
press the hypothesis of independence between the signal and the noise as well as the
almost sure invertibility of the observation for fixed exterior parameter of the signal.
With the help of the results of Sect. 3, the calculations of the first- and second-order
derivatives of the mutual information w.r. to the ratio parameter � are also given.

2 Preliminaries and Notation

Let W be the classical Wiener space C.Œ0; T �;Rn/ with the Wiener measure �. The
corresponding Cameron–Martin space is denoted by H . Recall that the injection
H ,! W is compact and its adjoint is the natural injection W ? ,! H ? � L2.�/.



558 A.S. Üstünel

Since the image of � under the mappings w ! w C h; h 2 H is equivalent to
�, the Gâteaux derivative in the H direction of the random variables is a closable
operator on Lp.�/-spaces and this closure is denoted by r and called the Sobolev
derivative (on the Wiener space) (cf., e.g., [12, 13]). The corresponding Sobolev
spaces consisting of (the equivalence classes) of real-valued random variables will
be denoted as Dp;k , where k 2 N is the order of differentiability and p > 1 is the
order of integrability. If the random variables are with values in some separable
Hilbert space, say cc, then we shall define similarly the corresponding Sobolev
spaces and they are denoted as Dp;k.ˆ/, p > 1; k 2 N. Since r W Dp;k !
Dp;k�1.H/ is a continuous and linear operator its adjoint is a well-defined operator
which we represent by ı. A very important feature in the theory is that ı coincides
with the Itô integral of the Lebesgue density of the adapted elements of Dp;k.H/

(cf.[12, 13]).
For any t � 0 and measurable f W W ! RC, we note by

Pt f .x/ D
Z

W

f
�

e�t x C
p

1 � e�2t y
�

�.dy/ ;

it is well-known that .Pt ; t 2 RC/ is a hypercontractive semigroup on Lp.�/; p>1,
which is called the Ornstein–Uhlenbeck semigroup (cf.[12, 13]). Its infinitesimal
generator is denoted by �L and we call L the Ornstein–Uhlenbeck operator
(sometimes called the number operator by the physicists). The norms defined by

k�kp;k D k.I C L/k=2�kLp.�/ (25.2)

are equivalent to the norms defined by the iterates of the Sobolev derivative r. This
observation permits us to identify the duals of the space Dp;k.ˆ/ W p > 1; k 2 N

by Dq;�k.ˆ0/, with q�1 D 1 � p�1, where the latter space is defined by replacing k

in Eq. (25.2) by �k, this gives us the distribution spaces on the Wiener space W (in
fact we can take as k any real number). An easy calculation shows that, formally,
ı ı r D L, and this permits us to extend the divergence and the derivative operators
to the distributions as linear, continuous operators. In fact ı W Dq;k.H ˝ ˆ/ !
Dq;k�1.ˆ/ and r W Dq;k.ˆ/ ! Dq;k�1.H ˝ ˆ/ continuously, for any q > 1 and
k 2 R, where H ˝ ˆ denotes the completed Hilbert–Schmidt tensor product (cf.,
for instance, [12,13,17]). We shall denote by D.ˆ/ and D0.ˆ/, respectively, the sets

D.ˆ/ D
\

p>1;k2N
Dp;k.ˆ/

and
D0.ˆ/ D

[
p>1;k2N

Dp;�k.ˆ/;

where the former is equipped with the projective and the latter is equipped with the
inductive limit topologies.
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Let us denote by .Wt ; t 2 Œ0; 1�/ the coordinate map on W which is the canonical
Brownian motion (or Wiener process) under the Wiener measure and let .Ft ; t 2
Œ0; 1�/ be its completed filtration. The elements of L2.�; H/ D D2;0.H/ such that
w ! Pu.s; w/ are ds-a.s. FS measurable will be noted as L2

a.�; H/ or Da
2;0.H/.

L0
a.�; H/ is defined similarly (under the convergence in probability). Let U W W !

W be defined as U D IW C u with some u 2 L0
a.�; H/, we say that U is �-almost

surely invertible if there exists some V W W ! W such that V� � � and that

� fw W U ı V.w/ D V ı U.w/ D wg D 1:

The following results are proved with various extensions in [14–16]:

Theorem 2.1. Assume that u 2 L0
a.�; H/ and let L be the Radon–Nikodym density

of U� D .IW C u/� w.r. to �, where U� denotes the image (push forward) of �

under the map U . Then we have

EŒL log L� � 1

2
kuk2

L2.�;H/
D 1

2
E

Z 1

0

jPusj2ds :

Assume moreover that EŒ�.�ıu/� D 1, then the equality

EŒL log L� D 1

2
kuk2

L2.�;H/
(25.3)

holds if and only if U is almost surely invertible and its inverse can be written as
V D IW C v, with v 2 L0

a.�; H/. In particular, this is equivalent to the fact that the
following functional stochastic differential equation:

dXt D �Put ı Xdt C dWt; X0 D 0

has unique strong solution and the solution X is equal to the process defined as
.t; w/ ! V.w/.t/, where V is the almost sure inverse of U .

Finally the condition EŒL log L � log L� < 1 (without the condition
EŒ�.�ıu/� D 1) and the equality (25.3) imply again that U is almost surely
invertible and its inverse can be written as V D IW C v, with v 2 L0

a.�; H/ and
hence we also have EŒ�.�ıu/� D 1.

The following result, which is key for the proof of Theorem 2.1, gives the relation
between the entropy and the estimation (cf. [14] for the proof):

Theorem 2.2. Assume that u 2 L2
a.�; H/ and let L be the Radon–Nikodym density

of U� D .IW C u/� w.r. to �, where U� denotes the image (push forward) of �

under the map U and let .Ut ; t 2 Œ0; 1�/ be the filtration generated by .t; w/ !
U.t; w/. Assume that EŒ�.�ıu/� D 1. Then the following relations hold true:
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(i)

EŒL log L� D 1

2
E

Z 1

0

jEŒPus j Us�j2ds :

(ii)
L ı U EŒ�.�ıu/jU � D 1

�-almost surely.

3 Basic Results

Let .W; H; �/ be the classical Wiener space, i.e., W D C0.Œ0; 1�;Rd /; H D
H 1.Œ0; 1�;Rd /, and � is the Wiener measure under which the evaluation map at
t 2 Œ0; 1� is a Brownian motion. Assume that U� W W ! W is defined as

U�.t; w/ D Wt .w/ C
Z t

0

Pu�.s; w/ds ;

with � 2 R being a parameter. We assume that Pu� 2 L2
a.Œ0; 1��W; dt �d�/, where

the subscript “a” means that it is adapted to the canonical filtration for almost all
s 2 Œ0; 1�. We denote the primitive of Pu� by u� and assume that EŒ�.�ıu�/� D 1,
where � denotes the Girsanov exponential:

�.�ıu�/ D exp

�
�
Z 1

0

Pu�.s/dWs � 1

2

Z 1

0

jPu�.s/j2ds

�
:

We shall assume that the map � ! Pu� is differentiable as a map in L2
a.Œ0; 1� �

W; dt � d�/; we denote its derivative w.r. to � by Pu0
�.s/ or by Pu0.�; s/ and its

primitive w.r. to s is denoted as u0
�.t/.

Theorem 3.1. Suppose that � ! u� 2 L
p

loc.R; d�IDp;1.H// for some p � 1,
with EŒ�.�ıu�/� D 1 for any � � 0 and also that

.H/ E

Z �

0

.1 C �.�ıu˛//
ˇ̌
EŒı.K˛u0̨ /jU˛�

ˇ̌p
d˛ < 1 ; (25.4)

where K˛ D .IH C ru˛/�1. Then the map

� ! L� D dU��

d�

is absolutely continuous and we have

L�.w/ D L0 exp
Z �

0

E
h
ı.K˛u0̨ /jU˛ D w

i
d˛:



25 Parametric Regularity of the Conditional Expectations 561

Proof. Let us note first that the map .�; w/ ! L�.w/ is measurable thanks to the
Radon–Nikodym theorem. Besides, for any (smooth) cylindrical function f , we
have

d

d�
EŒf ı U�� D EŒ.rf ı U�; u0

�/H �

D EŒ..IH C ru�/�1?r.f ı U�/; u0
�/H �

D EŒ.r.f ı U�/; .IH C ru�/�1u0
�/H �

D EŒf ı U� ıf.IH C ru�/�1u0
�g�

D EŒf ı U� EŒı.K�u0
�/jU���

D EŒf EŒı.K�u0
�/jU� D w�L��;

where .�; �/H refers to the scalar product in the Cameron–Martin space H . Hence,
for any fixed f , we get

d

d�
hf; L�i D hf; L�EŒı.K�u0

�/jU� D w�i;
both sides of the above equality are continuous w.r. to �; hence we get

< f; L� > � < f; L0 >D
Z �

0

< f; L˛E
�
ı.K˛u0̨ /jU˛ D w

�
> d˛ :

From the hypothesis, we have

E

Z �

0

L˛jEŒı.K˛u0̨ /jU˛ D w�jd˛ D E

Z �

0

jEŒı.K˛u0̨ /jU˛�j d˛ < 1 :

By the measurability of the disintegrations, the mapping .˛; w/ ! EŒı.K˛u0̨ /jU˛ D
w� has a measurable modification; hence the following integral equation holds in
the ordinary sense for almost all w 2 W :

L� D L0 C
Z �

0

L˛EŒı.K˛u0̨ /jU˛ D w�d˛;

for � > 0. Therefore the map � ! L� is almost surely absolutely continuous w.r.
to the Lebesgue measure. To show its representation as an exponential, we need to
show that the map ˛ ! EŒı.K˛u0̨ /jU˛ D w� is almost surely locally integrable. To
achieve this it suffices to observe that

E

Z �

0

jEŒı.K˛u0̨ /jU˛ D w�jd˛ D E

Z �

0

jEŒı.K˛u0̨ /jU˛ D w�jL˛

L˛

d˛

D E

Z �

0

jEŒı.K˛u0̨ /jU˛�j 1

L˛ ı U˛

d˛

D E

Z �

0

jEŒı.K˛u0̨ /jU˛�jEŒ�.�ıu˛/jU˛�d˛ < 1
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by hypothesis and by Theorem 2.2. Consequently we have the explicit expression
for L� given as

L�.w/ D L0 exp
Z �

0

EŒı.K˛u0̨ /jU˛ D w�d˛: ut
Remark 3.1. An important tool to control the hypothesis of Theorem 3.1 is the
inequality of T. Carleman which says that (cf. [2], Corollary XI.6.28)

kdet2.IH C A/.IH C A/�1k � exp
1

2

�kAk2
2 C 1

	
;

for any Hilbert–Schmidt operator A, where the left-hand side is the operator norm,
det2.IH C A/ denotes the modified Carleman–Fredholm determinant, and k � k2

denotes the Hilbert–Schmidt norm. Let us remark that if A is a quasi-nilpotent
operator, i.e., if the spectrum of A consists of zero only, then det2.IH C A/ D 1;
hence in this case the Carleman inequality reads

k.IH C A/�1k � exp
1

2

�kAk2
2 C 1

	
:

This case happens when A is equal to the Sobolev derivative of some u 2 Dp;1.H/

whose drift Pu is adapted to the filtration .Ft ; t 2 Œ0; 1�/.

From now on, for the sake of technical simplicity, we shall assume that u� is
essentially bounded uniformly w.r. to �.

Proposition 3.1. Let F 2 Lp.�/, then the map � ! EŒF jU� D w� is weakly
continuous with values in Lp�.�/.1

Proof. First we have

Z
W

jEŒF jU� D w�jpd� D
Z

W

jEŒF jU� D w�jp L�

L�

d�

D
Z

W

jEŒF jU��jp 1

L� ı U�

d�

D
Z

W

jEŒF jU��jpEŒ�.�ıu�/jU��d� < 1 ;

hence EŒF jU� D w� 2 Lp�.�/ for any F 2 Lp.�/. Besides, for any f 2 Cb.W /,

EŒf ı U� F � D EŒfEŒF jU� D w� L��

therefore

1p� denotes any p0 < p and qC any q0 > q.
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jEŒf ı U� F �j � kF kpkf ı U�kq � CqkF kpkkf kqC :

This relation, combined with the continuity of � ! f ı U�, due to the Lusin
theorem, in Lq for any f 2 LqC, implies the weak continuity of the map � !
ŒF jU� D w� L� with values in Lp�.�/; since � ! L� and � ! .L�/�1 are almost
surely and strongly continuous in Lp.�/, the claim follows. ut
Theorem 3.2. Assume that F 2 Dp;1 for some p > 1 and that

E

Z �

0

jı.FK˛u0̨ /jd˛ < 1

for any � > 0, then � ! EŒF jU� D w� is �-a.s. absolutely continuous w.r. to
the Lebesgue measure d�, and the map � ! EŒF jU�� is almost surely and hence
Lp-continuous.

Proof. Using the same method as in the proof of Theorem 3.1, we obtain

d

d�
EŒ� ı U� F � D d

d�
EŒ� EŒF jU� D w� L��

D EŒ� L� EŒı.F K�u0
�/jU� D w��

for any cylindrical function � . By continuity w.r. to �, we get

E
h
�
�
L�EŒF jU� D w� � L0EŒF jU0 D w�

�i

D
Z �

0

E
�
�L˛EŒı.FK˛u0̨ /jU˛ D w�

�
d˛ :

By the hypothesis

E

Z �

0

jL˛EŒı.FK˛u0̨ /jU˛ D w�jd˛ < 1

and since � is an arbitrary cylindrical function, we obtain the identity

L�EŒF jU� D w� � L0EŒF jU0 D w� D
Z �

0

L˛ EŒı.FK˛u0̨ /jU˛ D w�d˛

almost surely and this proves the first part of the theorem since � ! L� is already
absolutely continuous and strictly positive. For the second part, we denote EŒF jU��

by OF .�/ and we assume that .�n; n � 1/ tends to some �, then there exists a
subsequence . OF .�kl

/; l � 1/ which converges weakly to some limit; but, from
the first part of the proof, we know that .EŒF jU�kl

D w�; l � 1/ converges
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almost surely to EŒF jU� D w� and by the uniform integrability, there is also strong
convergence in Lp�.�/. Hence, for any cylindrical function G, we have

EŒ OF .�kl
/ G� D EŒEŒF jU�kl

D w�EŒGjU�kl
D w�L�kl

�

! EŒEŒF jU� D w�EŒGjU� D w�L��

D EŒ OF .�/ G� :

Consequently, the map � ! OF .�/ is weakly continuous in Lp; therefore it is also
strongly continuous. ut
Remark. Another proof consists of remarking that

EŒF jU� D w�jwDU�
D EŒF jU��

�-a.s. and that � ! EŒF jU� D w� is continuous a.s. and in Lp� from the first part
of the proof and that .L�; � 2 Œa; b�/ is uniformly integrable. These observations,
combined with the Lusin theorem, imply the continuity in L0.�/ (i.e., in probability)
of � ! EŒF jU�� and the Lp-continuity follows.

We shall need some technical results; to begin with, let U �
� denote the shift defined

on W by

U �
� .w/ D w C

Z �^�

0

Pu�.s/ds;

for � 2 Œ0; 1�. We shall denote by L�.�/ the Radon–Nikodym density

dU �
� �

d�
D L�.�/:

Lemma 3.1. We have the relation

L�.�/ D EŒL�jF� �

almost surely.

Proof. Let f be an F� -measurable, positive, cylindrical function; then it is straight-
forward to see that f ı U� D f ı U �

� ; hence

EŒf L�� D EŒf ı U�� D EŒf ı U �
� � D EŒf L�.�/�:

ut
Lemma 3.2. Let U �

�.t/ be the sigma algebra generated by fU �
� .s/I s � tg. Then,

we have
EŒf jU �

�.1/� D EŒf jU �
� �

for any positive, measurable function on W .
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Proof. Here, of course the second conditional expectation is to be understood w.r.
to the sigma algebra generated by the mapping U �

� and once this point is fixed the
claim is trivial. ut
Proposition 3.2. With the notations explained above, we have

L�.�/ D L0.�/ exp
Z �

0

EŒıf.IH C ru�
˛/�1u0�˛gjU �

˛ D w�d˛:

Moreover, the map .�; �/ ! L�.�/ is continuous on R� Œ0; 1� with values in Lp.�/

for any p � 1.

Proof. The first claim can be proved as we have done in the first part of the proof
of Theorem 3.1. For the second part, let f be a positive, measurable function on W;
we have

EŒf ı U �
� � D EŒf L�.�/�:

If .�n; �n/ ! .�; �/, from the Lusin theorem and the uniform integrability of the
densities .L�n .�n/; n � 1/, the sequence .f ı U

�n

�n
; n � 1/ converges in probability

to f ı U �
� ; hence, again by the uniform integrability, for any q > 1 and f 2 Lq.�/,

lim
n

EŒf L�n.�n/� D EŒf L�.�/�:

From Lemma 3.1, we have

EŒL�n .�n/2� D EŒL�n .�n/ EŒL�n jF�n ��

D EŒL�n .�n/ L�n �;

since, from Theorem 3.1, L�n ! L� strongly in all Lp-spaces, it follows that
.�; �/ ! L�.�/ is L2-continuous, hence also Lp-continuous for any p > 1. ut
Proposition 3.3. The mapping .�; �/ ! L�.�/ is a.s. continuous; moreover the
map

.�; w/ ! .� ! L�.�; w//

is a C.R/-valued continuous martingale and its restriction to compact intervals (of
�) is uniformly integrable.

Proof. Let us take the interval � 2 Œ0; T �, from Lemma 3.1 we have L�.�/ D
EŒL�jF ı ��, since C.Œ0; T �/ is a separable Banach space and since we are working
with the completed Brownian filtration, the latter equality implies an a.s. continuous,
C.Œ0; T �/-valued uniformly integrable martingale. ut
Theorem 3.3. Assume that

E

Z �

0

Z 1

0

�jı.Pu˛.s/K˛u0̨ /j C jPu0̨ .s/j2	 ds < 1
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for any � � 0, then the map

� ! EŒPu�.t/jU�.t/�

is continuous with values in L
p
a .�; L2.Œ0; 1�;Rd //, p � 1.

Proof. Let 	 2 L1
a .�; H/ be smooth and cylindrical, then, by similar calculations

as in the proof of Theorem 3.2, we get

d

d�
EŒ.	 ı U�; u�/H � D d

d�
< 	 ı U�; u� >D d

d�
< 	 ı U�; Ou� >

D E

Z 1

0

P	sL�.s/E
�
ı.Pu�.s/K�u0

�/ C Pu0
�.s/jU s

� D w
�

ds ;

but the l.h.s. is equal to

EŒ.r	 ı U�Œu0
��; u�/H C .	 ı U�; u0

�/H �;

which is continuous w.r. to � provided that 	 is smooth and that � ! .u0
�; u�/ is

continuous in Lp for p � 2. Consequently, we have the relation

< 	 ı U�; u� > � < 	 ı U0; u0 >

D E

Z �

0

Z 1

0

P	sL˛.s/E
�
ı.Pu˛.s/K˛u0̨ / C Pu0̨ .s/jU s

˛ D w
�

dsd˛

and the hypothesis implies that � ! L�.s/EŒPu�.s/jU s
� D w� is �-a.s. absolutely

continuous w.r. to the Lebesgue measure d�. Since � ! L�.s/ is also a.s. absolutely
continuous, it follows that � ! EŒPu�.s/jU s

� D w� is a.s. absolutely continuous. Let
us denote this disintegration as the kernel N�.w; Pu�.s//, then

N�.U s
�.w/; Pu�.s// D EŒPu�.s/jU s

��

a.s. From the Lusin theorem, it follows that the map � ! N�.U s
� ; Pu�.s// is

continuous with values in L0
a.�; L2.Œ0; 1�;Rd // and the Lp-continuity follows from

the dominated convergence theorem. ut
Remark 3.2. In the proof above we have the following result: assume that � ! f�

is continuous in L0.�/, then � ! f� ı U� is also continuous in L0.�/ provided that
the family 


dU��

d�
; � 2 Œa; b�

�

is uniformly integrable for any compact interval Œa; b�. To see this, it suffices to
verify the sequential continuity; hence assume that �n ! �, then we have
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�fjf�n ı U�n � f� ı U�j > cg � �fjf�n ı U�n � f� ı U�n j > c=2g
C�fjf� ı U�n � f� ı U�n j > c=2g;

but

�fjf�n ı U�n � f� ı U�n j > c=2g D EŒL�n1fjf�n �f�j>c=2g� ! 0

by the uniform integrability of .L�n ; n � 1/ and the continuity of � ! f�. The
second term tends also to zero by the standard use of Lusin theorem and again by
the uniform integrability of .L�n ; n � 1/.

Corollary 3.1. The map � ! EŒ�.�ıu�/jU�� is continuous as an Lp.�/-valued
map for any p � 1.

Proof. We know that

EŒŒ�.�ıu�/jU�� D 1

L� ı U�

:

ut
Corollary 3.2. Let Z�.t/ be the innovation process associated to U�, then

� !
Z 1

0

EŒPu�.s/jU�.s/�dZ�.s/

is continuous as an Lp.�/-valued map for any p � 1.

Proof. We have

log L� ı U� D
Z 1

0

EŒPu�.s/jU�.s/�dZ�.s/ C 1

2

Z 1

0

jEŒPu�.s/jU�.s/�j2ds;

since the l.h.s. of this equality and the second term at the right are continuous, the
first term at the right should be also continuous. ut
Theorem 3.4. Assume that

E

Z �

0

jıfı.K˛u0̨ /K˛u0̨ � K˛ru0̨ K˛u0̨ C K˛u00̨gjd˛ < 1

for any � � 0. Then the map

� ! d

d�
L�

is a.s. absolutely continuous w.r. to the Lebesgue measure d� and we have

d2

d�2
L�.w/ D L�EŒıD�jU� D w�;
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where

D� D ı.K�u0
�/K�u0

� � K�ru0
�K�u0

� C K�u00
� :

Proof. Let f be a smooth function on W ; using the integration by parts formula as
before, we get

d2

d�2
EŒf ı U�� D d

d�
EŒf ı U� ı.K�u0

�/�

D EŒ.rf ı U�; u0
�/H ı.K�u0

�/�

D EŒ.K?
�r.f ı U�/; u0

�/H ı.K�u0
�/

Cf ı U�ı.�K�ru0
�K�u0

� C K�u00
�/�

D E
�
f ı U�

˚
ı.ı.K�u0

�/K�u0
�/ � ı.K�ru0

�K�u0
�/ C ı.K�u00

�/
��

:

Let us define the map D� as

D� D ı.K�u0
�/K�u0

� � K�ru0
�K�u0

� C K�u00
� :

We have obtained then the following relation:

d2

d�2
EŒf ı U�� D EŒf L� EŒıD�jU� D w��;

hence

<
d

d�
L�; f > � <

d

d�
L�; f > j�D0 D

Z �

0

EŒf L˛ EŒıD˛jU˛ D w��d˛ :

The hypothesis implies the existence of the strong (Bochner) integral and we
conclude that

L0
� � L0

0 D
Z �

0

L˛EŒıD˛jU˛ D w�d˛

a.s. for any �, where L0
� denotes the derivative of L� w.r.t. �. ut

Theorem 3.5. Define the sequence of functionals inductively as

D
.1/

� D D�

D
.2/

� D .ıD
.1/

� /K�u0
� C d

d�
D

.1/

�

: : :

D
.n/

� D .ıD
.n�1/

� /K�u0
� C d

d�
D

.n�1/

� :
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Assume that

E

Z �

0

jıD.n/
˛ jd˛ < 1

for any n � 1 and � 2 R, then � ! L� is almost surely a C 1-map and denoting
by L

.n/

� its derivative of order n � 1, we have

L
.nC1/

� .w/ � L
.nC1/
0 .w/ D

Z �

0

L˛EŒıD.n/
˛ jU˛ D w�d˛ :

4 Applications to the Invertibility of Adapted Perturbations
of Identity

Let u 2 L2
a.�; H/, i.e., the space of square integrable, H -valued functionals whose

Lebesgue density, denoted as Pu.t/, is adapted to the filtration .Ft ; t 2 Œ0; 1�/ dt-
almost surely. A frequently asked question ire the conditions which imply the almost
sure invertibility of the API w ! U.w/ D w C u.w/. The next theorem gives such
a condition:

Theorem 4.1. Assume that u 2 L2
a.�; H/ with EŒ�.�ıu/� D 1, let u˛ be defined as

P˛u, where P˛ D e�˛L denotes the Ornstein–Uhlenbeck semigroup on the Wiener
space. If there exists a �0 such that

E

Z �

0

EŒ�.�ıu˛/jU��
ˇ̌
ˇEŒı.K˛u0̨ /jU˛�

ˇ̌
ˇd˛

D E

Z �

0

EŒ�.�ıu˛/jU��
ˇ̌
ˇEŒı..IH C ru˛/�1Lu˛/jU˛�

ˇ̌
ˇd˛ < 1

for � � �0, then U is almost surely invertible. In particular the functional stochastic
differential equation

dVt .w/ D �Pu.Vs.w/; s � t/dt C dWt

V0 D 0

has a unique strong solution.

Proof. Since u˛ is an H � C 1-function (cf. [17]) the API U˛ D IW C u˛ is a.s.
invertible (cf.[18], Corollary 1). By the hypothesis and from Lemma 2 of [18],
.�.�ıu˛/; ˛ � �0/ is uniformly integrable. Let L˛ and L be, respectively, the
Radon–Nikodym derivatives of U˛� and U� w.r. to �. From Theorem 3.1,

L�.w/ D L.w/ exp
Z �

0

EŒı.K˛u0̨ /jU˛ D w�d˛
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for any � � �0 and also that
R �

0
jEŒı.K˛u0̨ /jU˛ D w�jd˛ < 1 almost surely.

Consequently

L� � L D
 

exp
Z �

0

EŒı.K˛u0̨ jU˛ D w�d˛ � 1

!
L ! 0

as � ! 0, in probability (even in L1). We claim that the set .L˛ log L˛; ˛ � �0/ is
uniformly integrable. To see this let A 2 F , then

EŒ1AL˛ log L˛� D EŒ1A ı U˛ log L ı U˛�

D �EŒ1A ı U˛ log EŒ�.�ıu˛/jU˛��

� �EŒ1A ı U˛ log �.�ıu˛/�

D E



1A ı U˛

�
ıu˛ C 1

2
ju˛j2H

��
:

Since .ju˛j2; ˛ � �0/ is uniformly integrable, for any given " > 0, there exists
some 
 > 0, such that sup˛ EŒ1B ju˛j2� � " as soon as �.B/ � 
 and this happens
uniformly w.r. to B , but as .L˛; ˛ � �0/ is uniformly integrable, there exists a

1 > 0 such that, for any A 2 F , with �.A/ � 
1, we have �.U �1

˛ .A// � 


uniformly in ˛ and we obtain EŒ1A ı U˛ju˛j2H � � " with such a choice of A. For the
first term above we have

EŒ1A ı U˛ıu˛� � EŒ1AL˛�1=2ku˛kL2.�;H/ � "

again by the same reasons. Hence we can conclude that

lim
˛!0

EŒL˛ log L˛� D EŒL log L� :

Moreover, as shown in [14, 15], the invertibility of U˛ is equivalent to

EŒL˛ log L˛� D 1

2
EŒju˛j2H � ! 1

2
EŒjuj2H � ;

therefore

EŒL log L� D 1

2
EŒjuj2H �

which is a necessary and sufficient condition for the invertibility of U . ut
In several applications we encounter a situation as follows: assume that u W W ! H

is a measurable map with the following property:

ju.w C h/ � u.w/jH � cjhjH
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a.s., for any h 2 H , where 0 < c < 1 is a fixed constant, or equivalently an upper
bound like krukop � c where k � kop denotes the operator norm. Combined with
some exponential integrability of the Hilbert-Schmidt norm ru, one can prove the
invertibility of U D IW C u (cf. Chap. 3 of [17]). Note that the hypothesis c < 1 is
indispensable because of the fixed-point techniques used to construct the inverse of
U . However, using the techniques developed in this paper we can relax this rigidity
of the theory:

Theorem 4.2. Let U� D IW C �u be an API with u 2 Dp;1.H/ \ L2.�; H/, such
that, for any � < 1, U� is a.s. invertible. Assume that

E

Z 1

0

�.�ı.˛u//jEŒı..IH C ˛ru/�1u/jU˛�jd˛ < 1 : (25.5)

Then U D U1 is also a.s. invertible.

Proof. Let L D L1 be the Radon–Nikodym derivative of U1� w.r. to �. It suffices
to show that

EŒL log L� D 1

2
EŒjuj2H �

which is an equivalent condition to the a.s. invertibility of U , cf. [15]. For this
it suffices to show first that .L�; � < 1/ converges in L0.�/ to L then that
.L� log L�; � < 1/ is uniformly integrable. The first claim follows from the
hypothesis (25.5) and the second claim can be proved exactly as in the proof of
Theorem 4.1. ut

5 Variational Applications to Entropy and Estimation

In the estimation and information theories, one often encounters the problem of
estimating the signal u� from the observation data generated by U� and then verifies
the various properties of the mean square error w.r. to the signal-to-noise ratio,
which is represented in our case with the parameter �. Since we know that [15]

EŒL� log L�� D 1

2
E

Z 1

0

jEŒPu�.s/jU�.s/�j2ds ;

the behavior of the mean square error is completely characterized by that of the
relative entropy. Let � denote the entropy of L� as a function of �:

�.�/ D EŒL� log L�� :

From our results, it comes immediately that
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d�.�/

d�
D EŒL0

� log L��

D EŒL� EŒı.K�u0
�/jU� D w� log L��

D EŒEŒı.K�u0
�/jU�� log L� ı U��

D �EŒı.K�u0
�/ log EŒ�.�ıu�/jU��� :

Similarly

d2�.�/

d�2
D E



L00

� log L� C .L0
�/2 1

L�

�

D EŒL00
� log L� C L� EŒı.K�u0

�/jU� D w�2�

D EŒEŒıD�jU� D w�L� log L� C CL� EŒı.K�u0
�/jU� D w�2�

D EŒEŒıD�jU�� log L� ı U� C EŒı.K�u0
�/jU��2� :

In particular we have

Theorem 5.1. Assume that

E



EŒıD�jU��

�Z 1

0

EŒPu�.s/jU�.s/�dZ�.s/ C 1

2

Z 1

0

jEŒPu�.s/jU�.s/�j2ds

��

< E
�
EŒı.K�u0

�/jU��2
�

for some � D �0 > 0, then there exists an " > 0 such that the entropy is convex
as a function of � on the interval .�0 � "; �0 C "/. In particular, if u0 D 0, then the
same conclusion holds true on some .0; "/.

5.1 Applications to the Anticipative Estimation

In this section we study briefly the estimation of Pu�.t/ with respect to the final
filtration U�.1/ D �.U�/.

Theorem 5.2. Assume that

E

Z �

0

L˛jEŒPu0̨ .s/ C ı.Pu˛.s/K˛u0̨ /jU˛�jpd˛ < 1 ;

for a p � 1, then, dt-a.s., the map � ! L�EŒPu�.t/jU� D x� and hence the map
� ! EŒPu�.t/jU� D x� are strongly differentiable in Lp.�/ for any p � 1 and we
have

d

d�
EŒPu�.t/jU� D x� D EŒPu0

�.t/ C ı.Pu�.t/K�u0
�/jU� D x�

�EŒPu�.t/jU� D x�EŒı.K�u0
�/jU� D x�

d� � dt-a.s.
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Proof. For a smooth function h on W , we have

d

d�
< EŒPu�.t/jU� D x�; h L� >

D d

d�
< EŒPu�.t/jU��; h ı U� >

D EŒPu0
�.t/h ı U� C Pu�.t/.rg ı U�; u0

�/H �

D EŒEŒPu0
�.t/jU��h ı U� C h ı U�ı.Pu�.t/K�u0

�/�

D E
�
hL�.x/

�
EŒPu0

�.t/jU� D x� C EŒı.Pu�.t/K�u0
�/jU� D x�

	�
:

The hypothesis implies that this weak derivative is in fact a strong one in Lp.�/; the
formula follows by dividing both sides by L� and by the explicit form of L� given
in Theorem 3.1. ut

Using the formula of Theorem 5.2, we can study the behavior of the error of
noncausal estimation of u� (denoted as NCE in the sequel) defined as

NCE D E

Z 1

0

jPu�.s/ � EŒPu�.s/jU�.1/�j2ds

D E

Z 1

0

jPu�.s/ � EŒPu�.s/jU��j2ds:

To do this we prove some technical results:

Lemma 5.1. Assume that

E

Z �

0

Z 1

0

jPu00̨.s/ C ı.Pu0̨ .s/K˛u0̨ /jpdsd˛ < 1 (25.6)

for some p > 1, for any � > 0, then the map

� ! L�EŒPu0
�.s/jU� D x�

is strongly differentiable in L
p
a .d�; L2.Œ0; 1�//, and its derivative is equal to

L�EŒPu00
�.s/ C ı.Pu0

�.s/K�u0
�/jU� D x�

ds � d�-a.s.

Proof. Let h be a cylindrical function on W , then, using, as before, the integration
by parts formula, we get
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d

d�
EŒL�EŒPu0

�.s/jU� D x� h� D d

d�
EŒPu0

�.s/ h ı U��

D EŒPu00
�.s/ h ı U� C h ı U� ı.Pu0

�.s/K�u0
�/�

D E
�
h L�

�
EŒPu00

�.s/ C ı.Pu0
�.s/K�u0

�/jU� D x�
	�

:

This proves that the weak derivative satisfies the claim, the fact that it coincides with
the strong derivative follows from the hypothesis (25.6). ut
Let us define the variance of the estimation as

ˇ.�; s/ D E
�jEŒPu�.s/jU�.1/�j2� :

We shall calculate the first two derivatives of � ! ˇ.�; s/ w.r.t. � in order to observe
its variations. Using Lemma 5.1, we have immediately the first derivative as

d

d�
ˇ.�; s/ D E

"
EŒPu�.s/jU� D x�L�

 
EŒPu0

�.s/ C ı.Pu�.s/K�u0
�/jU� D x�

�1

2
EŒPu�.s/jU� D x�EŒı.K�u0

�/jU� D x�

!#
: (25.7)

The proof of the following lemma can be done exactly in the same manner as before,
namely, by verifying first the weak differentiability using cylindrical functions and
then assuring that the hypothesis implies the existence of the strong derivative and
it is left to the reader:

Lemma 5.2. Assume that

E

Z �

0

jı.ı.K˛u0̨ /K˛u0̨ / C ı.K˛u00̨ � K˛ru0̨ K˛u0̨ /jpd˛ < 1 ;

for some p � 1. Then the map

� ! L�EŒı.K�u0
�/jU� D x�

is strongly differentiable in Lp.�/ and we have

d

d�
.L�EŒı.K�u0

�/jU� D x�/ D L�E
�
ı.ı.K�u0

�/K�u0
�/jU� D x

�

CL�E
�
ı.K�u00

� � K�ru0
�K�u0

�/jU� D x
�

:

Combining Lemma 5.1 and Lemma 5.2 and including the action of L�, we conclude
that
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ˇ00.�/ D E
h
EŒPu00

� C ı.Pu0
�K�u0

�/jU��EŒPu�.s/jU��
i

CE
h
EŒPu0

�.s/jU��
�
EŒPu0

�.s/ C ı.Pu�.s/K�u0
�/jU��

�EŒPu�.s/jU��EŒı.K�u0
�/jU��

�i

CE
h
EŒı

˚Pu00
�.s/K�u0

� � Pu0
�.s/K�ru0

�K�u0
�

�

Cı
˚Pu�.s/K�u00

� C ı.Pu�.s/K�u0�/K�u0
�

� jU��EŒPu�.s/jU��
i

CE
h
EŒı.Pu�.s/K�u0

�/jU��
�
EŒPu0

�.s/ C ı.Pu�.s/K�u0
�/jU��

�EŒPu�.s/jU��EŒı.K�u0
��jU��

�i

�E
h
EŒPu�.s/jU��

�
EŒPu0

�.s/ C ı.Pu�.s/K�u0
�/jU��

�EŒPu�.s/jU��EŒı.K�u0
�/jU��

�
EŒı.K�u0

�/jU��
i

�1

2
E
h
EŒEŒPu�.s/U��2

n
EŒı.ı.K�u0

�/K�u0
� C K�u00

�

�K�ru0
�K�u0

�/jU��
oi

:

Assume now that � ! u� is linear, then a simple calculation shows that

ˇ00.0/ D EŒjPu.s/j2�:
Hence the quadratic norm of the noncausal estimation of u, i.e., the function

� ! E

Z 1

0

jEŒPu�.s/jU�.1/�j2ds

is convex at some vicinity of � D 0.

5.2 Relations with Monge–Kantorovich Measure
Transportation

Since L� log L� 2 L1.�/, it follows the existence of �� 2 D2;1, which is 1-convex
(cf. [3]) such that .IW Cr��/� D L� �� (i.e., the measure with density L�) (cf. [4]).
From the Lp-continuity of the map � ! L� and from the dual characterization of
the Monge–Kantorovich problem, [19], we deduce the measurability of the transport
potential �� as a mapping of �. Moreover there exists a noncausal Girsanov-like
density ƒ� such that

ƒ� L� ı T� D 1 (25.8)
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�-a.s., where ƒ� can be expressed as

ƒ� D J.T�/ exp

�
�1

2
jr��j2H

�
;

where T� ! J.T�/ is a log-concave, normalized determinant (cf.[5]) with values in
Œ0; 1�. Using the relation (25.8), we obtain another expression for the entropy:

EŒL� log L�� D EŒlog L� ı T��

D �EŒlog ƒ��

D E



� log J.T�/ C 1

2
jr��j2H

�
:

Consequently, we have

1

2
E

Z 1

0

jEŒPu�.s/ j U�.s/�j2ds D E



� log J.T�/ C 1

2
jr��j2H

�

D E Œ� log J.T�/� C 1

2
d 2

H .�; L� � �/;

where dH .�; L� � �/ denotes the Wasserstein distance along the Cameron–Martin
space between the probability measures � and L� � �. This result gives another
explanation for the property remarked in [10] about the independence of the
quadratic norm of the estimation from the filtrations with respect to which the
causality notion is defined. Let us remark finally that if

dH .�; L� � �/ D 0;

then L� D 1 �-almost surely; hence EŒPu�.s/ j U�.s/� D 0 ds � d�-a.s. Let us
note that such a case may happen without having u� D 0 �-a.s. As an example let
us choose an API, say K� D IW C k� which is not almost surely invertible for any
� 2 .0; 1�. Assume that EŒ�.�ık�/� D 1 for any �. We have

dK��

d�
D �.�ım�/

for some m� 2 L0
a.�; H/, define M� D IW Cm�, then U� D M�ıK� is a Brownian

motion and an API; hence (cf. [16]) it should be equal to its own innovation process
and this is equivalent to say that EŒPu�.s/ j U�.s/� D 0 ds � d�-a.s.
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6 Applications to Information Theory

In this section we give first an extension of the results about the quadratic error in
the additive nonlinear Gaussian model which extends the results of [1, 8–10] in the
sense that we drop a basic assumption made implicitly or explicitly in these works,
namely the conditional form of the signal is not an invertible perturbation of identity.
Afterwards we study the variation of this quadratic error with respect to a parameter
on whose depends the information channel in a reasonably smooth manner.

Throughout this section we shall suppose the existence of the signal in the
following form:

U.w; m/ D w C u.w; m/

where m runs in a measurable space .M; M/ governed with a measure � and
independent of the Wiener path w; later on we shall assume that the above signal
is also parametrized with a scalar � 2 R. We suppose also that, for each fixed m,
w ! U.w; m/ is an API with E�Œ�.�ıu.�; m//� D 1 and that

Z 1

0

Z
W �M

jPus.w; m/j2dsd�d� < 1 :

In the sequel we shall denote the product measure � ˝ � by 
 and P will represent
the image of 
 under the map .w; m/ ! .U.w; m/; m/; moreover we shall denote
by PU the first marginal of P .

The following result is known in several different cases (cf. [1, 8–10]), and we
give its proof in the most general case:

Theorem 6.1. Under the assumptions explained above the following relation
between the mutual information I.U; m/ and the quadratic estimation error holds
true:

I.U; m/ D
Z

W �M

log
dP

dPU ˝ d�
dP

D 1

2
E


Z 1

0

�
jE�ŒPus.w; m/jUs.m/�j2 � jE
ŒPusjUs�j2

�
ds;

where .Us.m/; s 2 Œ0; 1�/ is the filtration generated by the partial map w !
U.w; m/.

Proof. Let us note that the map .s; w; m/ ! E�Œfs jUs.m/� is measurable for any
positive, optional f . To proceed to the proof, remark first that

dP

dPU ˝ d�
D dP

d


d


dPU ˝ d�
(25.9)

d


dPU ˝ d�
D d� ˝ d�

dPU ˝ d�
D
�

dPU

d�

��1

(25.10)
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since PU 	 �. Think of w ! U.w; m/ as an API on the Wiener space for each
fixed m 2 M . The image of the Wiener measure � under this map is absolutely
continuous w.r. to �; denote the corresponding density as L.w; m/. We have for any
positive, measurable function f on W � M

EP Œf � D E
Œf ı U �

D
Z

W �M

f .U.w; m/; m/d�.m/d�.w/

D
Z

M

E�



f

dU.�; m/�

d�

�
d�.m/

D E
ŒfL�:

Hence .w; m/ ! L.w; m/ is the Radon–Nikodym density of P w.r. to 
 . From [15]
we have at once

E�ŒL.�; m/ log L.�; m/� D 1

2
E�

Z 1

0

jE�ŒPus.�; m/jUs.m/�j2ds:

Calculation of dPU =d� is immediate:

OL D dPU

d�
.w/ D

Z
M

L.w; m/d�.m/:

Moreover, from the Girsanov theorem, we have

E
Œf ı U �.�ıu.�; m//� D E
Œf �

for any f 2 Cb.W /. Denote by Ut the sigma algebra generated by .Us W s � t/ on
W � M . It is easy to see that the process Z D .Zt ; t 2 Œ0; 1�/, defined by

Zt D Ut .w; m/ �
Z t

0

E
 ŒPusjUs�ds;

is a 
 -Brownian motion and any .Ut ; t 2 Œ0; 1�/- local martingale w.r. to 
 can be
represented as a stochastic integral w.r. to the innovation process Z (cf. [6]). Let O�
denote

O� D exp

�
�
Z 1

0

E
 ŒPusjUs�dZs � 1

2

Z 1

0

jE
ŒPus jUs�j2ds

�
: (25.11)

Using again the Girsanov theorem we obtain the following equality:

E
 Œf ı U O�� D E
 Œf ı U�.�ıu.w; m//�
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for any nice f . This result implies that

E
Œ�.�ıu/jU � D O�


 -almost surely. Besides, for nice f on W ,

EPU Œf � D E
Œf ı U � D E
ŒfL� D E
Œf OL�

D E
Œf ı U OL ı U �.�ıu/�

D E
Œf ı U OL ı U O��;

which implies that
OL ı U O� D 1


 -almost surely. We have calculated all the necessary ingredients to prove the
claimed representation of the mutual information I.U; m/:

I.U; m/ D EP



log

�
dP

d

� d


dPU ˝ d�

��

D EP



log

dP

d

C log

d


dPU ˝ d�

�

D E




dP

d

log

dP

d


�
� EP



log

dPU

d�

�

D E




dP

d

log

dP

d


�
� EPU



log

dPU

d�

�

D E




dP

d

log

dP

d


�
� E�



dPU

d�
log

dPU

d�

�

D E
ŒL log L� � E




log

dPU

d�
ı U

�

D 1

2
E


Z 1

0

jE�ŒPus.w; m/jUs.m/�j2ds � E
Œ� log O��

and inserting the value of O� given by the relation (25.11) completes the proof. ut
Remark. The similar results (cf. [1, 9, 10]) in the literature concern the case where
the observation w ! U.w; m/ is invertible 
 -almost surely; consequently the first
term is reduced just to the half of the L2.�; H/-norm of u (cf. [15]).

The following is a consequence of Bayes’ lemma:

Lemma 6.1. For any positive, measurable function g on W � M , we have

E
ŒgjU � D 1

OL ı U

�Z
M

L.x; m/E�

h
g j U.�; m/ D x

i
d�.m/

�
xDU
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 -almost surely. In particular

E
ŒgjU D x� D 1

OL.x/

Z
M

L.x; m/E�

h
g j U.�; m/ D x

i
d�.m/

PU and �-almost surely.

Proof. Let f 2 Cb.W / and let g be a positive, measurable function on W � M . We
have

E
Œg f ı U � D
Z

M

E�ŒE�Œg j U.�; m/� f ı U.�; m/�d�.m/

D
Z

M

Z
W

L.w; m/ E�Œg j U.�; m/ D w� f .w/d�.w/d�.m/

D
Z

W

f .w/

�Z
M

L.w; m/E�Œg j U.�; m/ D w� d�.m/

�
d�

D
Z

W

OL.w/

OL.w/
f .w/

�Z
M

L.w; m/E�Œg j U.�; m/ D w� d�.m/

�
d�

D E




1

OL ı U
f ı U

�Z
M

L.w; m/E�Œg j U.�; m/Dw� d�.m/

�
wDU

�

ut
From now on we return to the model U� parametrized with � 2 R and defined on
the product space W � M , namely we assume that

U�.w; m/ D w C u�.w; m/

with the same independence hypothesis and the same regularity hypothesis of � !
u� where the only difference consists of replacement of the measure � with the
measure 
 while defining the spaces Dp;k .

Lemma 6.2. Let OL�.w/ denote the Radon–Nikodym derivative of PU�
w.r. to �. We

have

OL�.w/ D OL0.w/ exp
Z �

0

E


h
ı.K˛u0̨ /jU˛ D w

i
d˛

�-almost surely.

Proof. For any nice function f on W , we have

d

d�
E
Œf ı U�� D d

d�
E
Œf L�� D d

d�
E�Œf OL��:
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On the other hand

d

d�
E
Œf ı U�� D E
Œf ı U�ı.K�u0

�/�

D E
Œf ı U�E
 Œı.K�u0
�/jU���

D E
ŒfL�.x; m/E
 Œı.K�u0
�/jU� D x��

D E�Œf OL�E
 Œı.K�u0
�/jU� D x��:

ut
Remark. Note that we also have the following representation for L�.w; m/:

L�.w; m/ D L0.w; m/ exp
Z �

0

E�

h
ı.K˛u0̨ .�; m//jU˛.�; m/ D w

i
d˛

�-a.s.

Lemma 6.3. Let � ! �.�/ be defined as

�.�/ D E
Œ OL� log OL��;

where OL�.w/ D R
M

L�.w; m/d�.m/ as before. We have

d�.�/

d�
D E


h
E
Œı.K�u0

�/jU�� log OL� ı U�

i

D E


�
E
Œı.K�u0

�/jU��.� log O��/
�

where O�� is given by Eq. (25.11) as

O�� D exp

�
�
Z 1

0

E
 ŒPu�.s/jU�.s/�dZ�.s/ � 1

2

Z 1

0

jE
ŒPu�.s/jU�.s/�j2ds

�
:

Besides, we also have

d2�.�/

d�2
D E


�
E
ŒıD�jU��.� log O��/ C E
Œı.K�u0

�/jU��2
�
;

where

D� D ı.K�u0
�/K�u0

� C d

d�
K�u0

� :
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Proof. The only thing that we need is the calculation of the second derivative of OL�:
let f be a smooth function on W , then, from Lemma 6.1,

d2

d�2
E
 Œf ı U�� D d

d�
E
Œf ı U� ı.K�u0

�/�

D E




f ı U
ı

�
ı.K�u0

�/K�u0
� C d

d�
.K�u0

�/

��

D E
Œf ı U
 ıD��

D E
Œf .x/ E
 ŒıD�jU� D x� OL�.x/�:

ut
As an immediate consequence we get

Corollary 6.1. We have the following relation:

d2

d�2
I.U�; m/ D E


h
E�Œı.D�.�; m//jU�.m/�.� log E�Œ�.�ıu�.�; m//jU�.m/�/

CE�Œı.K�u0
�.�; m//jU�.m/�2

i

�E


h
E
Œı.D�/jU��.� log O��/ C E
Œı.K�u0

�/jU��2
i

:
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