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Preface

David Nualart was born in Barcelona on March 21, 1951. After high school he
studied mathematics at the University of Barcelona, from which he obtained an
undergraduate degree in 1972 and a PhD in 1975. He was a full professor at the
University of Barcelona from 1984 to 2005. He moved to the University of Kansas
in 2005, as a Professor in the Department of Mathematics, and was appointed Black-
Babcock Distinguished Professor there in 2012.

David Nualart is among the world’s most prolific authors in probability theory,
with more than 200 research papers, many of which are considered pathbreaking,
and several influential monographs and lecture notes. His most famous book is
undoubtedly Malliavin Calculus and Related Topics (cited more than 530 times
on MathSciNet), which has been serving as an ultimate reference on the topic
since its publication. Its most recent edition contains two chapters which have
become standard references in their own right, on state-of-the-art applications of
the Malliavin calculus to quantitative finance and to fractional Brownian motion.

David Nualart has long influenced the general theory of stochastic analysis,
including martingale theory, stochastic calculus of variations, stochastic equations,
limit theorems, and mathematical finance. In the first part of his scientific life,
he contributed to the development of a stochastic calculus for two-parameter
martingales, setting the basis of stochastic integration in this context. Subsequently,
one of his major achievements in probability theory has been his ability to develop
and apply Malliavin calculus techniques to a wide range of concrete, interesting,
and intricate situations. For instance, he is at the inception and is recognized as the
leader in anticipating stochastic calculus, a genuine extension of the classical Itd
calculus to non-adapted integrands. His other contributions to stochastic analysis
include results related to integration-by-parts formulas, divergence and pathwise
integrals, regularity of the laws of random variables through Malliavin calculus, and
the study of various types of stochastic (partial) differential equations.

In the last decades, his research focused largely on the stochastic calculus with
respect to Gaussian processes, especially fractional Brownian motion, to which he
has become the main contributor. David Nualart’s most recent work also includes
important results on limit theorems in terms of Malliavin calculus.
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David Nualart’s prominent role in the stochastic analysis community and the
larger mathematics profession is obvious by many other metrics, including mem-
bership in the Royal Academy of Exact Physical and Natural Sciences of Madrid
since 2003, an invited lecture at the 2006 International Congress of Mathematicians,
continuous and vigorous service as editor or associate editor for all the main journals
in probability theory, and above all, the great number of Ph.D. students, postdoctoral
scholars, and collaborators he has trained and worked with around the world. By
being an open-minded, kind, generous, and enthusiastic colleague, mentor, and
person, he has fostered a good atmosphere in stochastic analysis. All those working
in this area have cause to be grateful and to celebrate the career of David Nualart.

In this context, the book you hold in your hands presents 25 research articles
on various topics in stochastic analysis and Malliavin calculus in which David
Nualart’s influence is evident, as a tribute to his lasting impact in these fields of
mathematics. Each article went through a rigorous peer-review process, led by this
volume’s four editors Jin Feng (Kansas), Yaozhong Hu (Kansas), Eulalia Nualart
(Pompeu Fabra, Barcelona), and Frederi Viens (Purdue) and six associate members
of this volume’s Editorial Board, Laure Coutin (Toulouse), Ivan Nourdin (Nancy),
Giovanni Peccati (Luxembourg), Lluis Quer-Sardanyons (Autdonoma, Barcelona),
Samy Tindel (Nancy), and Ciprian Tudor (Lille), with the invaluable assistance of
many anonymous referees.

The articles’ authors represent some of the top researchers in these fields, all of
whom are recognized internationally for their contributions to date; many of them
were also able to participate in a conference in honor of David Nualart held at the
University of Kansas on March 19-21, 2011, on Malliavin calculus and stochastic
analysis, with major support from the US National Science Foundation, with
additional support from the Department of Mathematics and the College of Liberal
Arts and Sciences at the University of Kansas, the Department of Mathematics and
the Department of Statistics at Purdue University, and the French National Agency
for Research.

As the title of this volume indicates and the topics of many of the articles within
emphasize, this Festschrift also serves as a tribute to the memory of Paul Malliavin
and his extraordinary influence on probability and stochastic analysis, through
the inception and subsequent constant development of the stochastic calculus of
variations, known today as the Malliavin calculus. Professor Malliavin passed away
in June 2010. He is dearly missed by many as a mathematician, colleague, mentor,
and friend. Dan Stroock initially coined the term “Malliavin calculus” around 1980
to describe the stochastic calculus of variations developed by Paul Malliavin, which
employs the Malliavin derivative operator. The term has been broadened to describe
any mathematical activity using this derivative and related operators on standard or
abstract Wiener space as well as, to some extent, calculus based on Wiener chaos
expansions. We consider the Malliavin calculus in this broadest sense.

The term “stochastic analysis” originated in its use as the title of the 1978
conference volume edited by Avner Friedman and Mark Pinsky. It described results
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on finite- and infinite-dimensional stochastic processes that employ probabilistic
tools as well as tools from classical and functional analysis. We understand
stochastic analysis as being broadly rooted and applied this way in probability
theory and stochastic processes, rather than a term to describe solely analysis results
with a probabilistic flavor or origin.

The topics in this volume are divided by theme into five parts, presented from
the more theoretical to the more applied. While these divisions are not fundamental
in nature and can be interpreted loosely, they crystallize some of the most active
areas in stochastic analysis today and should be helpful for readers to grasp the
motivations of some of the top researchers in the field.

e Part I covers Malliavin calculus and Wiener space theory, with topics which
advance the basic understanding of these tools and structures; these topics are
then used as tools throughout the rest of the volume.

e Part I develops the analysis of stochastic differential systems.

e Part III furthers this development by focusing on stochastic partial differential
equations and some of their fine properties.

e PartIV also deals largely with stochastic equations and now puts the emphasis on
noise terms with long-range dependence, particularly using fractional Brownian
motion as a building block.

e Part V closes the volume with articles whose motivations are solving specific
applied problems using tools of Malliavin calculus and stochastic analysis.

A number of stochastic analysis methods cut across all of the five parts listed
above. Some of these tools include:

* Analysis on Wiener space

* Regularity and estimation of probability laws

e Malliavin calculus in connection to Stein’s method
e Variations and limit theorems

e Statistical estimators

¢ Financial mathematics

As the readers will find out by perusing this volume, stochastic analysis can
be interpreted within several distinct fields of mathematics and has found many
applications, some reaching far beyond the core mathematical discipline. Many
researchers working in probability, often using tools of functional analysis, are still
heavily involved in discovering and developing new ways of using the Malliavin
calculus, making it one of the most active areas of stochastic analysis today and for
some time to come. We hope this Festschrift will serve to encourage researchers to
consider the Malliavin calculus and stochastic analysis as sources of new techniques
that can advance their research.

The four editors of this Festschrift are indebted to the members of the Editorial
Board, Laure Coutin, Ivan Nourdin, Giovanni Peccati, Lluis Quer-Sardanyons,
Samy Tindel, and Ciprian Tudor, for their tireless work in selecting and editing
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the articles herein, to the many anonymous referees for volunteering their time
to discern and help enforce the highest quality standards, and above all to David
Nualart, for inspiring all of us to develop our work in stochastic analysis and the
Malliavin calculus.

Thank you, David.
Lawrence, Kansas, USA Jin Feng and Yaozhong Hu

Barcelona, Spain Eulalia Nualart
West Lafayette, Indiana, USA Frederi Viens
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Chapter 1
An Application of Gaussian Measures
to Functional Analysis

Daniel W. Stroock

Abstract In a variety of settings, it is shown that all Borel measurable, linear maps
from one locally convex topological vector space to another must be continuous.
When the image space is Polish, this gives a proof of L. Schwartz’s Borel graph
theorem. The proof is based on a simple probabilistic argument and, except for the
application to Schwartz’s theorem, avoids the descriptive set theory used in previous
treatments of such results.

Received 6/14/2011; Accepted 11/22/2011; Final 11/22/2011

1 Introduction

This article is an expanded version of my note [6] dealing with Laurent Schwartz’s
Borel graph theorem. Schwartz’s theorem [5] shows that, under appropriate techni-
cal conditions, the classical closed graph theorem can be improved to the statement
that a linear map between topological vector spaces is continuous if its graph is
Borel measurable. That is, the condition in the classical statement that the graph be
closed can be replaced by the condition that it be Borel measurable. Schwartz’s
proof, as well as A. Martineu’s (cf. [3] and the appendix in [9]) simplification
of the original argument, is a tour de force in the use of descriptive set theory.
In this paper, it is shown (cf. Corollaries 2.1 and 3.3) that, in a wide variety of
circumstances, the same conclusion can be reached as an application of relatively
elementary probabilistic ideas.

D.W. Stroock (B<)
M.LT, 2-272, Cambridge, MA 02139, USA
e-mail: dws @math.mit.edu

F. Viens et al. (eds.), Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor 3
of David Nualart, Springer Proceedings in Mathematics & Statistics 34,
DOI 10.1007/978-1-4614-5906-4_1, © Springer Science+Business Media New York 2013



4 D.W. Stroock

My formulation is somewhat different from Schwartz’s. Instead of assuming that
its graph is Borel measurable, I assume that the map itself is Borel measurable.
When the spaces are Polish (i.e., complete, separable metric spaces), there is no
difference between these two hypotheses. Indeed, if £ and F are any pair of Polish
spaces and ® : E — F, then the graph G(®) is Borel measurable if and only
if ® is Borel measurable. To check this, recall the fact (cf. [2] or [4]) that a one-
to-one, Borel measurable map from a Borel measurable subset of one Polish space
into a second Polish space takes Borel measurable sets to Borel measurable sets.
Applying this to the map x € E +—> (x, ®(x)) € E x F, one sees that G(®) is a
Borel measurable subset of £ x F if ® is Borel measurable. Conversely, if G(®) is
Borel measurable and 7 and 7 are the natural projection maps from £ x F onto
E and F, respectively, then, because g and 7y are continuous and g [ G(®) is
one-to-one, ® = 7wf o (JTE h G(CIJ))_1 is Borel measurable. Further, as shown in
Corollaries 2.1 and 3.3, under reasonable conditions, it is possible to reduce some
non-separable situations to separable ones.

In order to simplify the presentation of the basic ideas, in Sect.2 I restrict my
attention to Banach spaces, where my proof provides an independent proof of the
classical closed graph theorem in the case when the image space is separable. In
Sect. 3, I extend the result to more general settings, although my proof there relies
on the closed graph theorem.

2 Banach Space Setting

Throughout, for a topological space S, Bs will denote the Borel o-algebra over S,
and, in this section, E and F will be Banach spaces over R with norms || - || and

I lF
Set @ = RZ", give Q the product topology, and set P = yozjr on (2, Bg),

2
where y1(d§) = (27{)_%@_% d £ is the standard Gauss distribution on R. Given a
sequence {x, : n > 1} C E set

n
Sy(w) = Zwmxm forn € Z* and w € Q,

m=1
A= {a) : lim S, (w) exists in E}
n—>oo

and

S() = {hmn_>oo Sy(w) ifweA

ifw ¢ A.

Since

o0 2 o0
EF [Z |wm|||xm||5} = ,/; > xmlle
m m=1

=1
P(A) = 1if 307 xmll e < o
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The following is a minor variation on the renowned theorem of X. Fernique
(cf. [1] or Theorem 8.2.1 in [7]).

Theorem 2.1. Let {x, : n > 1} C E, assume that Y v, ||x,| g < 0o, and define
w v S(w) accordingly. If ® : E — F is a Borel measurable, linear map, then

D) |2 <EF[(®oS)?] <00 forallm e Z*,

Proof. Since, for every € €2, S(w) is an element of the closed linear span of
{x, : n > 1}, I will, without loss in generality, assume that £ is separable and
therefore that Bz: = Br x Bg. In particular, this means that the maps (x, y) €
E?+— % € E are Bg x Bg-measurable.

Next note that

®oS(w")+ doSw?) ® S(wl:i:w2
= o] —_—

12 2
7 7 ) for (w', w”) € A~.

Thus, since

(a)1 + 0’ o —a)z)
NZIENG)
has the same distribution under P? as (a)l, a)z), we know that

(CD oS+ PoS(w?) PoSw')—Po S(a)z))
V2 ’ V2

has the same P2-distribution as (CD oS(wh),Po S(wz)).

Starting from the preceding, precisely the same argument as the one introduced
by Fernique shows that E¥ [e*I®°517] < oo for some & > 0, which certainly means
that IEP[||¢ o S||%] < 00.

To complete the proof, let m € Z* be given and define w ~> S (w) relative
to the sequence {(1 — §,,.,)X, : n > 1}. Then S (w) is P-independent of ®,,, and
S(®) = WpXxm + S (w) for w € A. Hence, if y* € F* with ||y*| z+ < 1, then

E[|@0S|7] = E[(®0S, y*)*] = (xm, y* ) +E [(PoS™, y*)?] = (xm, y*)?,
and so | ®(x,) |3 < EP[||® o S|%]. ]
Corollary 2.1. Let ® : E —> F be a linear map. If ® is Borel measurable or if F

is separable and the graph G(®) of © is Borel measurable, then ® is continuous.

Proof. Assume that ® is Borel measurable and suppose that & were not continuous.
Then we could find {x, : n > 1} C E such that ||x, |z <72 and | ®(x,)|Fr > n.
But then, if S(w) is defined relative to {x, : n > 1}, we would have the
contradiction that

m* < | ®(x,)|% < EP[H@ o S||%] <oo forallmeZ*.
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Now assume that F is separable and that G(®) is Borel measurable. If E is
separable as well, then, by the comments in the introduction, ® is Borel measurable
and therefore, by the preceding, continuous. To handle general E’s, suppose that
{x, : n > 1} € E and that x, — x in E. To see that ®(x,) — D(x)
in F, take E’ to be the closed linear span of {x, : n > 1} in E. Then E’ is
separable and if & = ® |} E’, then G(®’) is a Borel measurable subset of E’ x F.
Hence, @’ is Borel measurable and therefore continuous. In particular, this means
that ®(x,) —> ®(x). O

3 Some Generalizations

In this section, E will be a Fréchet space over R with a complete metric p having
the property that p(Ax,0) < C(1 + |A|)p(x,0) for some C < oo and all A € R and
x € E. In particular, this will be the case if there exists a sequence of seminorms
{pr : k > 1} for which p(x,0) = Y 22, 27* HIka(kx()x)'

Given a sequence {x, : n > 1} C FE with Z;’o:l p(x,,0) < oo, define the
random variables S, as in Sect.2. Then, without any substantive change in the
argument given earlier, one can show that P(4) = 1 when A is the set of v € Q
for which lim,,_, S, (@) exists in E. Finally, define S(w) as before. Then, by the
same argument as was used to prove Theorem 2.1, we have the following.'

Lemma 3.1. If{x, : n > 1} C E satisfies Y .o, p(x4,0) <ocoand¢ : E — R
is a Borel measurable linear function, then EF [((p o S)Z] < 00.

Theorem 3.1. If ¢ : E —> R is a Borel measurable linear function, then ¢ is
continuous.

Proof. The proof is essentially the same as that for the first part of Corollary 2.1.
Namely, if ¢ were not continuous, then we could find a sequence {x/, : n > 1} C E
such that p(x/,0) < n3 and ¢(x) > € for some € > 0. Now set x, = nx/,
and define S relative to {x, : n > 1} and, for each m € 7+, S relative to
{(1 = 8nn)Xy : n > 1}. Then, just as before, we get the contradiction em? <
Ef[(¢ 0 §)*] < oo forallm € Z*. O

Given a locally convex, Hausdorff topological space F, say thatamap ® : £ —
F is w-Borel measurable if (®(-), y*) is Borel measurable from E to R for each
y* € F*. Equivalently, ® is w-Borel measurable if it is Borel measurable as a map
from E into F with the weak topology. Obviously, every Borel measurable map
is w-Borel measurable. Conversely, if F* is separable in the weak* topology, then
every w-Borel measurable map is Borel measurable.

't should be observed that, because it deals with R-valued maps, the proof of Lemma 3.1 does not
require Fernique’s theorem. All that one needs is the fact that centered Gaussian measures are the
only probability measures 1 on R with the property that j is the distribution of (£, &) € R? —>

% € R under 2. See, for example, Exercise 2.3.21 in [7].



1 An Application of Gaussian Measures to Functional Analysis 7

Corollary 3.1. Suppose that F is a locally convex, Hausdorff topological vector
space and that ® : E —> F is a w-Borel measurable linear map. Then ® is
continuous from E into the weak topology on F. In particular, G(®) is closed.

Proof. To see that ® is continuous into the weak topology on F, let y* € E* be
given and define ¢ : E —> R by ¢(x) = (®(x), y*). Then, ¢ is Borel measurable
and linear, and therefore, by Theorem 3.1, it is continuous.

To show that G () is closed, suppose that {x, } is a net such that (x,, dJ(xa)) —
(x,y) in E x F. Then, by the first part, (y, y*) = (®(x), y*) for every y* € F*,
and so y = ®(x). O

Given a topological vector space F, say that the pair (E, F') has the closed graph
property if alinear map ® : E — F is continuous whenever G (®) is closed. Since
E is a Fréchet space, (E, F) has the closed graph property for every Fréchet space
F (cf. Theorem 1 in Sect. 6 of Chap. II of [10]).

Corollary 3.2. Assume that F is a locally convex, Hausdorff topological space for
which (E, F) has the closed graph property. Then every w-Borel measurable linear
map ® : E —> F is continuous. Furthermore, if in addition, (F, E) has the closed
graph property and ® is one-to-one and onto, then ®~" is continuous.

Proof. The first assertion is an immediate consequence of Corollary 3.1. As for the
second, observe that, by the first assertion, G(®) and therefore G(®~!) are closed.
Hence, by the closed graph property for (F, E), ®~! is continuous. O

Corollary 3.3. Assume that F is a separable Fréchet space. If ® : E — F
is linear and G(®) is Borel measurable, then ® is continuous. Moreover, if, in
addition, ® is one-to-one and onto, then ®~! is continuous.

Proof. The argument here is essentially the same as the one given in the proof of
Corollary 2.1. Namely, when E is separable and G(®) is Borel measurable, then ®
is Borel measurable and therefore continuous, and, in general, one can reduce to the
separable case by the same reasoning as was used in the proof of Corollary 2.1. As
for the case when @ is one-to-one and onto, note that, because G(®) is closed, so is
G(®7"). Hence, the continuity of ®~! follows from the closed graph property for
(F,E). O

Finally, it may be of some interest to observe that the linearity assumption in
Corollaries 3.1, 3.2, and 3.3 can be replaced by additivity. Namely, assume that F
is a locally convex, Hausdorff topological vector space. A map ® : £ — F is
additive if it satisfies ®(x; + x2) = ®(x;) + P(xy) for all (x;,x;) € E% Now
assume that ® is a w-Borel measurable, additive map. Then, for each x € E and
y* e F*,t ¢ R — (®(tx),y*) € R is a Borel measurable, additive function.
Since every R-valued, Borel measurable function on R is linear (cf. Exercise 2.2.36
in [8]), it follows that & is linear.
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Chapter 2
Stochastic Taylor Formulas and Riemannian
Geometry

Mark A. Pinsky

To David Nualart, with admiration and respect.

Received 11/22/2011; Accepted 2/12/2012; Final 2/21/2012

1 Introduction

Let (X;, P.) be the standard Brownian motion on a complete Riemannian manifold.
We investigate the asymptotic behavior of the moments of the exit time from a
geodesic ball when the radius tends to zero. This is combined with a “stochastic
Taylor formula” to obtain a new expansion for the mean value of a function on the
boundary of a geodesic ball.

Several authors [3-5] have considered mean value formulas on a Riemannian
manifold, using the exponential mapping and integration over the unit sphere
of the tangent space, at each point. In general the stochastic mean value is not
equal to the exponential mean value. If these coincide, the manifold must be
Einsteinian (constant Ricci curvature). Our expansions are used to answer some
inverse questions in stochastic Riemannian geometry. If the mean exit time from
every small ball is the same as for a flat manifold then the manifold is flat, in case
d =2 ord = 3. Our method of proof begins with an expansion of the Laplacian in
a system of Riemannian normal coordinates [6]. The successive correction terms in
the expansion of the moments is obtained by a perturbation expansion, the rigorous
validity of which is established by systematic application of the stochastic Taylor
formula.
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We use the summation convention throughout. The notation |x| < € — 0 means
that the indicated asymptotic estimate holds uniformly in the ball of radius €, when
e — 0.

2 Stochastic Taylor Formula

For completeness we include the proof of this formula, which was previously treated
by several authors (Athreya-Kurtz, Airault-Follmer, and Van der Bei). Let (X;, Py)
be a diffusion process on a locally compact and separable space V. Let f be a
real-valued function such that

f e DAY k=12...,N+1,
where A is the infinitesimal generator defined by
Af () = lim T EJf(X) = ().
Let T be a stopping time with

E (TN < 00.

Proposition 2.1. Under the above conditions we have for N > 1

k+1
Eof(Xr) = f(x)+Z( D g (TE Ak £(Xp), +(— Ry, 2.1)

where

1 ro._
R=Ry_ = mE (/0 uM AN £(X,) du). (2.2)

The empty sum is defined to be zero.

Proof. For N = 1 we have an empty sum and Dynkin’s identity: E, f(X7) =
f(x) 4+ R;. In general for N > 1 we have

A f(Xy) — A* f(Xo) = / f AL F(X,) du + M, (2.3)
0

where M; is a local martingale. From the stochastic product rule we have

d (" A% f(X0) = " dM, + (KA F(X) + ke AR £(X)) dr. (2.4)

Integrating and taking the expectation, we have

T T
E [TFA* f(X7)] = E/ zkAk+1f(Xt)dt+kEx/ AR f(x))de. (2.5)
0

0
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Dividing by k!, we have

1
B [TEA S (X)) = Ry + Ri. (2.6)

Multiplying by (—1)¥*! and summing fork = 1,..., N gives the stated result. O

2.1 Some Special Cases

The stochastic Taylor formula allows one to pass freely between classical solutions
of equations and moments of various functionals.

Example 2.1a. Let B be the unit ball of R” centered at the origin and 7" be the first
exit time from B.If f = 0on S = 9B and solves Af = —1 in B, then we have

T
0=E.f(Xr) = f(x)+ Ex / Af(X,) du = f(x) — Ex(T).
0
Thus the mean exit time can be retrieved from the value at the starting point. Explicit
computation gives f(x) = (1 — |x|?)/2n.

The stochastic Taylor formula can be used to give a probabilistic representation
of the solution of some higher-order elliptic boundary-value problems.

Example 2.1b. Let B be a bounded region of Euclidean space with boundary
hypersurface S = dB. Let u be the solution of the boundary-value problem

uls =0,..., AV u|s =0, AVu|p = g. 2.7

We first note that the left side of Eq. (2.1) is 0 — u(x) whereas all of the terms on the
right are zero, save the last term, which = 1/(N — 1)! times

T T
E (/(; SN_IANf(Xs) ds) = Ex (/(; SN_lg(Xs)ds) )

so that we have

1 ro
u(x) = (N——l)'(E /0 o 1g(Xs))ds),

which is the desired probabilistic representation. In the special case g = 1 we can
perform the integration to obtain
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Stated otherwise, the higher moments of the exit time are obtained by solving a
higher-order boundary-value problem.

One can also make conclusions based on approximate solutions.

Example 2.1c. If f =0on S = 9B and solves' Af = —1 + ¢, then we have

0= E.f(X1) = f(x) + Ex /0 Af(X,) du = f(x) — Ex(T)(1 £ e);

hence E\(T) = f(x) x (1 & €). Thus the mean exit time can be retrieved with ¢
accuracy from the value at the starting point.

3 Expansion of the Laplacian

Now consider the case of an n-dimensional Riemannian manifold V. Let O € V
and consider the exponential mapping

expoVo = V.

A choice of an orthonormal basis in Vp gives rise to normal coordinates

(X100 Xn).
Let A be the Laplacian in normal coordinates:

1 N
Af = Ea,- (@g” ij) g = det(gij)- (2.8)

From Eq. (2.8) it follows that A is self-adjoint with respect to the weight function

x— /8.

Let 7. be the dilation operator, defined by

@Hw = £ (%) 2.9)

Definition. A differential operator A is is said to be homogeneous of degree j if
and only if for every homogeneous polynomial Q of degree k, AQ is homogeneous
of degree k + j.

Proposition 3.1. For every integer N > 0, there exists a finite set of second-order
differential operators Ao, . .., Ay suchthat A ; is homogeneous of degree j and we
have the asymptotic expansion

N
' oAor f=eALf+ Y €A f+ 0V, (2.10)
j=0

!"This means that sup ¢ 5 |[Af(x) + 1] < e.
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where

Asf =2 (39 f

i=1
for any twice differentiable function f.

Proof. In normal coordinates we have the asymptotic expansion [5]
gij =8ij + a,-jklxkxl + terms of order 3 and higher (2.11)

with similar expressions for /g, g"/. Substitution into Eq. (2.8) and collecting terms
give the formula

Af —Af = P00, f+ Q0 f. (2.12)

where P;; begins with the quadratic terms and Q; begins with linear terms. Now
replace f by 7. f in Eq. (2.12). Clearly 7, 'o(A_y)ot. f = € 2A_, f. On the other
hand when we apply the right side of Eq. (2.12) to 7. f, we obtain an asymptotic
series in €. The coefficient of €’ is the quadratic term in P; 7 plus the linear terms in
Q,. Proceeding to the next stage, the coefficient of € consists of the cubic term in
P;; and the quadratic terms in Q; f. Continuing this to higher powers of € we can
compute the coefficient operators Ao, Ay, .. .; hence we have completed the proof
of Proposition 3.1. O

3.1 Computation of A
To compute A f we begin with Cartan’s formula
1
gy =8 + §R,-jk1xkxl + 0(x]). (x > 0), (2.13)

1
g% = §F — gRa,gk/xkxl + 0(|x]), (x = 0). (2.14)

The Christoffel coefficients are computed from Eq. (2.13). We use the covariant
form of the Laplacian:

Af =gV <8i8jf—1“,-’;8kf). (2.15)
When we substitute these expansions and collect terms, there results
1
Af =00 f + (—gRijklxkxl + 0(|x|3)) 3;9; f

2 ,
+ (—gRikk’ixk 0; f + 0(|x|2)) .
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Hence
2
Aof = _ngjklx x19;0; f— Rirrix* oy f. (2.16)
Of particular interest is the case f = ¢(r), where ¢ € C?[0, 00). This yields

kol

Aol or) = —1pkz—¢> ).

where py; is the Ricci tensor, defined by px; = Rixi; (sumoni).

3.2 Computation of A,k > 1

To compute the higher corrections Ay, A, .. ., we introduce polar coordinates in Vo ;
letting x = r6, we have

0 -
Ap = bk(e)era + rF A, (2.17)

where Ak are second-order differential operators in 6y, . .., 6, and by is a homoge-
neous function of degree zero. By Gauss’ lemma, the terms with 9>/9r2 or 92 /drd6;
are not present. To compute by (), we recall the expansion of Gray—Vanhecke [4]
for the determinant of the exponential map of a Riemannian manifold:

1 1 1
o=1- Eﬂzrz - Eﬂf + ﬁﬂ4r4 + 0@, (r - 0), (2.18)
where
B2 = pi;0:0;, (2.19)
B3 = Vip;i;0; 0k, (2.20)
3, 1 2
Bi=|1- §V,-j + 3PPk~ ERiuijkalb 0;0;0,0,. (2.21)

Performing the long division we have

= bor + bir? + b3 + 0(r4),

SRS

1
by = —5,0:',0;9:'9]',

1
b = _Z/ijkaiaiaj 06k,

1 1
by = —=Vipu — 5

5 Riajb Ria1nt: 0616,
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4 Estimate of the Moments E,(T*),r — 0

Let V' be an N-dimensional complete Riemannian manifold and (X;, Py) be the
Brownian motion process on V, a diffusion process with infinitesimal generator A.
The exit time from a ball of radius R centered at O € V is defined by

Tg:=inf{t : 1 > 0,d(X;, 0) = R}. (2.22)

We emphasize that the computations are made as a function of the unspecified
starting point p = X, where we set p = O at the end. We will prove the following.

Proposition 4.1. For each k > 1,E0(T£) ~ cak R¥*, R — 0, where cyi are
positive constants. In case V.= R" we have for each k > 1, EO(T];) = ¢ R%* for
all R > 0.

Proof. Let B ={y : d(y, 0) < R} and let ff(r) be the solution of

Asfl=—fFY fHaw =0, =1 (k=1). (2.23)

Incase V = R" fok (r) is a polynomial of degree 2k. The substitution r — r/e with
subsequent normalization allows one to study the case R = 1. In detail, we have
Sy = X fE(r/e).

By explicit computation, we have

2
1 r-—1 | 1
- = Q5> 0) = —
Jo (r) o fo (0) >
4 2
2 ! r n+4 2 n—+4
N =" 3t 0)= "+
fO (r) 8n(n +2) 4n2 + 8712(}1 +2) fO (0) 8}12(}1 )
r® 4
_f03(”) = — 5
48n(n +2)(n +4)  16n>(n +2)
r*(n +4) n? 4+ 12n + 48
16n3(n +2) * 48n3(n +2)(n +4)°
In general fok is a polynomial of the form
2k i1
_fok(r) = 2—kk'n(n + 2) “e (n + 2k — 2) + Z(_l)jCknd’Zk_zj,
ji=0

O

In order to confirm the polynomial character of fok (r), one can either use
mathematical induction or proceed directly, as follows: given functions g(x), A(x),
it is required to solve the differential equation f”(x) + (g'/g) f'(x) = —h on the
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interval 0 < x < R, with the boundary conditions that f(R) = 0 and f remains
bounded when x — 0. To do this, multiply the differential equation by g to obtain
(gf')y =—-gh,gf' =C — f: gh. Solving for f’ and doing the integral, we obtain

the formula
1 t
fx) = /X ﬁ (/0 h(u)g(u)du) de, (2.24)

which can be directly checked as follows:

"+ f = 1/g)gf) = (1/g)(—gh) = —

The boundary condition f(1) = 0 follows from Eq. (2.24). The integral defining
f(0) is absolutely convergent since f is displayed in terms of the ratio of two terms
each of which tends to zero. I’Hospital’s rule applies to the ratio of the derivatives,
namely

o Jo MOS0 )
1—>0 g(1) =0 g'(t) =0 g'(t)
This shows that the integral in Eq. (2.24) is well defined whenever g/ ¢’ is integrable;
in particular this is the case where g(x) = x" "' and g/g’ = x/(n — 1).
In particular if g(x) is a monomial—g(x) = x" and /(x) is a polynomial, then
f(x) is also a polynomial.
From the stochastic Taylor formula we have

( 1)k+l

E[f(X1)] = (x)+Z Eq (T*A* f(X7)) + (=DV ' Ry_1, (2.25)

where

1 T
R=Ry_ = mE (/0 uM AN £(X,) du). (2.26)

By construction, fok is identically zero on the sphere S when k < N. We can
write 0 — f(x) = E.(T")/N! which proves that Eo(T") = ¢y R*N. This proves
the proposition in case of Euclidean space.

In the general case, we can still use the stochastic Taylor formula with A =
AT =Ty, f = fF. Then

f(X7r)=0(),...., AN f(X7) = 0(e), AN f(X7) = —1 + O(e).

From the decomposition of the Laplacian of V' we have Af — A_, f = O(¢)

f' ) = —E (TY) (1+ 0(eY) .
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Taking r = 0, R = € — 0, we see that

lim sup Eo(T®) =
rR—0 RN

To compute an explicit form, we specialize to Euclidean space, V = RV, f(x) =
e~**>q € RV. The stochastic Taylor formula gives

o <o.XT, > Z |05| E (Tk
But the Pp hitting measure of X7 is uniform on the sphere |x| = r. Hence
Epe~@X1mr> = /’H exp(|a|r cos 6)dé
i lel”,
— m!
Comparing the two expansions, we have

E(TH _ k' w_ TG
T _(Zk)!/sn (cos ) _F(k+§)2 '

I'(%)

Hence Cnk = I‘(k—-i-%)

5 Refined Estimate of E(T,),r | 0

The mean exit time of Brownian motion is affected by the curvature o of the
manifold. When o is zero, we have the Euclidean space, which has been well
studied. If o > 0 a geodesic disk has smaller volume than the Euclidean counterpart
and the mean exit time is greater. Finally in the case of negative curvature the volume
is strictly smaller and the mean exit time is strictly larger than the corresponding disk
in Euclidean space. Here is a precise result.

Proposition 5.1.

2 4

_ r 5
Eo(T) = 50+ 0y 00D L0 (2.27)

Proof. For this purpose, let

F=fl+ef +E £+ Sl (2.28)
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where
fo = =r?/2n, (2.29)
ALf +Acfy =0, in B, filss =0, (2.30)
AL+ AP+ A1f) =0 inB, filag =0, 2.31)
A fl 4+ Ao+ Asf) =0 in B, filss =0. (2.32)

Now we set f = €2t F. From Eq. (2.10) and Proposition 2.1 we have
Af =—1+0(), A’f =0(%, f|dB. =0.
Therefore, from the stochastic Taylor formula with N = 2

0= f(x) + Ex(T)(=1 + O(€)),
Ed(T) = €[/ (1) + € £ (x) + € f(x) + € fa0)] + O(€),  |x| <e—0.

In the previous section it was proved that f;'(0) = 1/2n. To compute f,'(0) we
first note that

2
.
Ao fy = —py66;r*/2n = 5-b(0).

To compute f,'(0), f,'(0) we invoke the following lemma. Integration over § =
S"~1is taken with respect to the uniform probability measure d6. O

Lemma 5.1. Ler j(6), g(0) be polynomials which satisfy the relation A_,j =
rkg(9), glas = 0 where k is an integer. Then

Jj(0) = g(0).

1
n+k)k+2) /S

Proof. We can write j in the form j = r¥*2¢(0) 4+ h where ¢ is a homogeneous

polynomial and % is a harmonic function, solution of A_4 = 0. Then
[((k +2)(n + 1) + (n = D(k + 2)]c(0)]A—2c(0) = —g(0).

Integrating over S, we have (k +2)(n+k) [ c(0) = — [ g(6). But j(0) = h(0) =

—fS c(0)dd =1/(n+k)(k +2) fs g(0).
Hence

oy — 1 _ o
LO= LT /Sbo(e) T 12n2(n +2) (2.35)

To compute f,'(0), we have A, f,! = —Aof)! — A f,', fils = 0. We treat the
two terms separately.
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Recalling that £ (r) = (1—r?)/2n, Ay = r3by(6) 2, it follows that A, £ (r) =
—r*bhy(0)df. By Lemma 5.1, this term contributes to f4(0) in the amount

1

To handle the second term, we use the fact that Ay + B2 A_; is self-adjoint with
respect to Lebesgue measure on B. Thus

/SAofz —/S,BzA—zfz
~ [ pe

= 3/Sb§(9).

Thus the second term contributes to f,'(0) in the amount 1/2(n + 4) [, s bo(0)>.
Combining this with the previous computations, we have

1 _ 1 1 2
f£©0) = 6(n+4) /sz(e) + 2(n +4) /SbO(Q) ’

Finally we note that f3'(0) = 0, since A, f; = —A f;} = r*b;(0)/n which is
a cubic polynomial; hence the integral is zero. O

6 Mean Value Formulas for General Manifolds

On Euclidean space one may define the mean value of a function on a sphere. This
can be effectively computed in terms of the radius of the sphere and the values of
Af, A% f. ... at the center of the sphere. The resulting series expansion is known as
Pizetti’s theorem in classical differential geometry.

When we pass to manifolds of variable curvature, the corresponding series
expansion is much more complicated than for the Euclidean case, leading one to ask
for a simpler mean value. In the following sections we will explore the properties of
the stochastic mean value formula.

6.1 Stochastic Mean Value

The stochastic mean value of a continuous function f on a sphere is defined as the
following linear functional on continuous functions:

®5 f = Eolf(Xr,)] = /S F()AS<).
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where the existence of the probability measure dS. is guaranteed by the Riesz
representation theorem. We propose to find a three-term asymptotic expansion of
the measure dS¢ when ¢ — 0. Equivalently we can find a three-term expansion
of the linear functional ®¢, when ¢ — 0. The key to success is through Dynkin’s
formula, which is transformed into the identity

Te
f = Eolf(X1)] = Eof + Eo ( /0 Af(Xs),ds) L e>0.fec).

(2.34)
Forany f € C>(V), we can write for |x| < € — 0

n 1 n 3
Af =do+ ;dix,- + Ei;l dijxix; + O(|x]).
Equivalently
do=Af(0), di=0;Af(0), dij =0:0;Af(0).

Therefore it is sufficient to consider test functions f which are either constant,
linear, or purely quadratic. From Dynkin’s formula, to study @, it is equivalent to
study the integral (2.34). In the next section we study the equation

Te n n
Ep/o Af(X;)ds = doug(x) + Zd,-uf(x) + Z df;uf; (x) + 0(e). (2.35)

i=1 ij=1

6.2 Solution of Poisson’s Equation in a Geodesic Ball

In order to proceed further, we develop the properties of the mean value of three
functionals as follows: the result of these computations is that the Euclidean mean
value differs from the non-Euclidean mean value to within O(e’) when € — 0.

Lemma 6.1. Foreache > 0, let B = B denote the geodesic ball of radius € in the
tangent space. Functions ug, u;, and u;; are defined as the solutions of the following
boundary-value problems and respective stochastic representations:

Aujlp = —1, ugjlap =0 = u = E,(T0),

Te
Auilp = —xi, uilop =0,1<i <n, = u;(p) = E, (/ X,-(s)ds),
0

Te
Augjlp = —xixj, u;lop = 0,1 <i,j <n=u;(p) =E, (/ Xi(S)Xj(S))dS-
0
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To see this, apply Dynkin’s formula successively to f = u§, f = uf, f = ufj. We
have the asymptotic formulas when € — 0:
u(x) = €2Up(x/€) + €*Vo(x/e) + 0(€), (2.36)
U (x) = Ui (x/e) + O(e), (2.37)
us; (x) = €'Ujj (x/€) + +0(), (2.38)
where
1= |x|? xi (1= |x]?) xix; (1= |x]?)
Uy(x) = LU= gy = SR
0(x) n i (x) 4 ij (x) o+ 8

A= xP) [ > (1—|x|?) (1—|x|*
(”+4)V°(x)_T<ZA"x")+“ 6z ‘T2nn+2)

i=1

where (A;) are the eigenvalues of the Ricci tensor.

Proof. The stochastic representations follow immediately from Dynkin’s formula,
applied successively to ug, u;, and u;;.

In terms of the Euclidean Laplacian A_,, we verify that Uy, U;, and U;; satisfy
the following identities:

AUy = —1,
Ao (xixj) = 265,
A (P |x]?) = 2|x]* + 2n + 8)x7,
As|x|* = (4n + 8)[x ],
A o (xixj|x?) = 2n + 8)xix;,

where we use the identities
A (|x|*) = 2n, etc, etc.

We combine this with Dynkin’s formula—the stochastic Taylor formula with N = 1

Te
E,f(X1) = f(p) +E, (/0 Af(Xs)dS), peB.feCV). (239

To prove Eq. (2.36) apply Dynkin’s formula with the choice
f = €*Uy(x/e) + €*Vy(x/e€) for which f = 0 on S. Then we obtain
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T
Af =—14+0() = 0= f(p) +/ (=1 + O(e)) ds,
0

which proves Eq. (2.36).
To prove Eq. (2.37), apply Dynkin’s formula with f = €?U;(x/€). Then Af =
—x; + O(e®).

For Eq. (2.38), apply Dynkin to the choice f = €4Uij, for which Af = —x;x; +
O(*) e B, f =0onS.

O

7 Comparison with the Gray—Willmore Expansion

When we combine the results of Sects. 1-6, we find the following asymptotic
formula:

Eo f(X1,) = f(0) = Af(0) [€Un(y) + VoW ] + € X7, 3 (Af) + O(€),

Eof(X1,) = f(O)1+5 Af(O)+r* | 515~ 5005 | +0(9).r>0. (2.40)

It is interesting to compare this with the Gray—Willmore expansion as defined by
integration in the tangent space:

2 4

M. f) = f(0) 4 5 Af(0) 4 50 5 (302 f(0) =2 < V' fip >

4
—3<Vf Vo >+-0Af(0)+ 0@F°), r—0.
n

Proposition 7.1. Suppose that for all f € C*(V), M(r, f) = Eo f(Xr,) for all
r > 0. Then V is an Einstein manifold.

Proof. From the above formulas we have

I [Eof(XTr)—M(r,f)]_<V2f,p> <Vf,Vo> <o Af>
0 ré C 12n(n+2) 8n(n + 2) 12n%(n +2)°
(2.41)
If the right side is zero for all f € C?(V), we first take f to be linear in the normal
coordinates so that V f* is perpendicular to Vo, from which we find Vo = 0. The
remaining term of Eq. (2.41) is

1

o
12n(n 1 2) [< Vife> _ZM]'
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Take normal coordinates so that the Ricci tensor is diagonal at O; thus p;;0 = 0 for
i # j.Now choose f so that 9;0; = O fori # j from which we conclude that
pjj = %(pll + -+ 4 pun). Hence the Ricci tensor is a multiple of the identity, i.e.,
V' is an Einstein manifold. |
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Chapter 3
Local Invertibility of Adapted Shifts on Wiener
Space and Related Topics

Rémi Lassalle and A.S. Ustiinel

Abstract In this article we show that the invertibility of an adapted shift on the
Brownian sheet is a local property in the usual sense of stochastic calculus. Thanks
to this result we give a short proof of the invertibility for some processes which
occur in free euclidean quantum mechanics and we relate this result to optimal
transport. We also investigate some applications to information theory of a recent
criterion which relates the invertibility of a shift to an equality between the energy
of the signal and the relative entropy of the measure it induces. In particular, thanks
to a change of measure, we interpret Shannon’s inequality as a consequence of
information loss in Gaussian channels and we extend it to any abstract Wiener
space. Finally, we extend the criterion of invertibility to the case of some stochastic
differential equations with dispersion.
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1 Introduction

The invertibility of adapted perturbations of the identity on Wiener space may
be seen as an alternative approach to investigate the existence of a unique strong
solution to stochastic differential equations of the form

dX, = dB, — v,(X)dt: Xo = 0. 3.1)
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It has been developed in the last years (for instance see [17,29-31,35]) and offers
many advantages with respect to other approaches. In particular it involves compact
notations and it introduces a framework which enables to take a full advantage of
stochastic analysis. It also provides naturally some new connections between many
problems from filtering theory to optimal transport. In this paper we continue the
study of invertibility and we provide new applications. To be precise, let us introduce
some notations. In this introduction we note (W, H, i) the classical Wiener space,
where W = C([0, 1], R), where H is the associated Cameron—Martin space, and
where p is the Wiener measure which is such that the coordinate process ¢t —
W;(®) := w(t) is a Wiener process on (W, ). We also note L2(1, H) the set of
the equivalence classes with respect to p of measurable mappingsu : @ € W —
Jyits(w)ds € H such that 1 — i, is adapted to the filtration generated by the
coordinate process. The notion of invertibility is related to av : W — H which
satisfies the two following conditions:

veLy(u H) (3.2)

1 1 1
E, [exp (—/ vedW, — -/ {zfds)} =1. (3.3)
0 2 Jo

Such a v defines a perturbation of the identity V' which is given by

and

Vi=1Iy +v,

where Iy : w € W — w € W is the identity on W. Under Egs. (3.2) and (3.3) a
notion of stochastic invertibility on Wiener space for V' was introduced in [35] (see
also [30] and [17]). To define it, it is sufficient to note that for any U : W — W such
that Uy << u (i.e., absolutely continuous) the pullbacks VV o U and U o V are well
defined ju- almost surely [16]. In particular if U := Iy +u where u € LO(u, H), it
is well known that Uu << u so that both pullbacks are well defined. Hence, under
these hypothesis a notion of stochastic inverse for V' = Iy + v can be naturally
defined in the following way: V is said to be invertible if there is a mapping u €
LO(u, H) such that U := Iy + u satisfies u — a.s.

VoU=1Iy

and
UoV = 1Iy.

As far as v satisfies the two hypothesis Eqgs. (3.2) and (3.3), the relevance of this
notion comes from the equivalence of the invertibility of V' = Iy + v with the
existence of a unique strong solution to Eq.(3.1). In particular, the invertibility
is an original and useful tool to prove the pathwise uniqueness. Many sufficient
conditions of invertibility where given in [35] by means of Malliavin calculus, but
a necessary and sufficient condition was still to find. This task was achieved in



3 Local Invertibility of Adapted Shifts on Wiener Space and Related Topics 27

[30] where a criterion of invertibility for adapted shifts was shown. This criterion
relates the invertibility of a shift to an equality between the entropy of the measure
it induces and the energy of the associated drift. More accurately, let V := Iy + v
where v satisfies the conditions (3.2) and (3.3). It was shown that for any u which
satisfies the same conditions and which is such that the density of U := Iy + u is

related to v by
dau, ! 1!
ar _ exp (—/ ved W, — —/ f/fds)
du 0 2 Jo

2
HUulp) < E, [%}

with equality if and only if V is invertible with inverse U. We recall that the relative
entropy H(Up|p) is defined by

we have

dUp . dUpn
H(Uplp) = Eu[ a M }
In [17] we provided a general and simple proof of this criterion and we dropped
the hypothesis that u had to satisfy Eq. (3.3). The persistence of invertibility under
stopping was shown in [32] and an explicit formula for the stopped inverse was given
in [17]. The notion of local invertibility which will be recalled accurately below
was introduced in [17], and thanks to this last result, it was proved to be equivalent
to invertibility under a finite entropy condition. In this paper we first extend this
result to prove that the equivalence between invertibility and local invertibility
always holds for adapted shifts. In other words, we show that invertibility is a
local property in the usual sense of stochastic calculus. This result provides local
versions of results related to the pathwise uniqueness. Under mild conditions, we
illustrate the use of these local properties by showing that the pathwise uniqueness
holds for the stochastic description of the free euclidean quantum mechanics [39].
To motivate this kind of results, we recall here that from the origin, stochastic
mechanics provides a stochastic representation of physical phenomenons by means
of weak solutions of stochastic differential equations. However, the existence of a
unique strong solution may be seen as the stochastic counterpart of the classical
picture of the underlying determinism. Hence, it seemed relevant to investigate the
pathwise uniqueness for the related equations in great generality. In this paper, we
only investigated the case of euclidean quantum mechanics which is well known to
describe the continuous limit of thermodynamic systems. In that case the Brownian
motion represents the effects of the thermal energy, i.e., the shocks of many small
particles, and it is physically clear that pathwise uniqueness should hold. By using
the local properties of invertibility, we give a straightforward proof of this result for
the free particle, both in finite and infinite dimensions, and we also relate this result
to optimal transport. The rest of the paper is devoted to applications and extensions
of the criterion of [30]. We give some applications of this criterion to information
theory and we give an extension of this criterion to some stochastic differential
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equations with dispersion. In particular, thanks to a change of measure, we give
an abstract Wiener space version of the famous inequality of Shannon (see [1] and
references therein) with a proof which receives a nice interpretation in terms of
information loss in Gaussian channels. The structure of the paper is the following.
In Sect. 2 we state the main notations which will be used in the whole paper. We also
recall briefly the main tools of Malliavin calculus. In Sect. 3 we define the Girsanov
shift in the same way as in [17] and we give some of its main properties. We also
give some new results which rely on the main properties of the Girsanov shift. In
Sect. 4 we recall the notion of invertibility and we give some results of [17] which
will be used in the sequel. In Sect.5 we recall the notion of local invertibility for
adapted shifts and we show that it is equivalent to invertibility. In Sects. 6 and 7 we
apply these notions to prove the invertibility of some Markovian shifts. Specifically
in Sect. 6 we consider the classical Wiener space W = Cy([0, 1], R?) and we show
a new sufficient condition for the invertibility of Markovian shifts on that space. In
Sect. 7 we use this result to show the invertibility for shifts associated with the free
euclidean quantum particle. Under mild conditions we also generalize this result
to the Brownian sheet by means of Malliavin calculus. In Sect. 8§ we investigate
some applications of the criterion of [30] to information theory on Wiener space. In
particular, thanks to a change of measure, we show that this criterion may be written
in terms of variance. We then get easily a formulation of Shannon’s inequality
on abstract Wiener space as the consequence of the properties of variance and of
information loss in Gaussian channel. In Sect. 9 we give some other results related to
the invertibility of the processes we considered in Sect. 7: specifically we investigate
the connection with optimal transport. Finally in Sect. 10 we generalize the criterion
of [30] to some stochastic differential equations with dispersion.

2 Notations

Let (S, Hg,is) be an abstract Wiener space [15] where S is a separable Banach
space, Hg the associated Cameron—Martin space, and ig the injection of Hyg into
S which is dense and continuous. In this paper S will be the state space. Indeed
we will work on the space W := Cy([0, 1], S) of the continuous paths vanishing
at 0 with states in S. We recall that W is also a separable Banach space with an
associated Cameron—Martin space H defined by

t 1
H: 77:[05 1]_)HS,7']1 :/ ’:’Sdss/ |n5|%—]sds<oo} .
0 0

Moreover the scalar product on H is given by

1
<hk >H=/ < hg, ks >p ds
0
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forany h,k € H. The injection i of H into W is also dense and continuous and (W,
H , i) is also an abstract Wiener space. Let u be the Wiener measure on (W, B(W))
and let F be the completion of the Borelian sigma-field B(W) with respect to p. We
still note p the unique extension of the Wiener measure on (W, F) and we still call
it the Wiener measure. We alsonote Iyy : w € W — w € W the identity map on W.
In the sequel 7y will be seen as an equivalence class of M, (W, F), (W, F)), where
M, (W, F),(W,F)) is the set of the u-equivalence classes of mappings from W
into itself, which are F/F measurable. To cope with adapted processes we need
to introduce not only the filtration (]-"to) generated by the coordinate process t —
W; but also the filtration (F;) which is the usual augmentation [3] of (F,) with
respect to the Wiener measure .. We note L°(u, H) (resp. for a probability law v
equivalent to i, L>(v, H)) the set of the equivalence classes with respect to 1 of the
measurable H -valued mappings u : W — H (resp. the subset of the u € L°(u, H)
such that E, [Ju|3,] < 0o). We also set L (u, H) (resp. L2(v, H)) the subset of the
u € L%u, H) (resp. of the u € L*(v, H)) such that t — i, is adapted to (F;).
Let v be a probability equivalent to u, and ¢ — B, be a (F;)-Wiener process on
(W, F,v). The abstract stochastic integral [34] of a @ € L%(u, H) with respect to
B will be noted §Z2a. In this context (W = Co([0, 1], S)) it can also be written

1
§8aq = / a,dB;
0

For a shift U := B + u where u € L%(uu, H) we set
8Va:=688a+ <u,a >y .

In particular forau € LO(u, H), §"u = fol i, dW;. We recall that in the case where
W is the classical Wiener space, the abstract stochastic integral is nothing but the
usual stochastic integral. For convenience of notations, for any optional time t with
respect to (F;) we note (7,a) = fd ljo+(s)asds and a® := m.a. In particular for
any 1 € [0,1] (ma). = [;ljo,(s)agds. Fora U € M,((W,F),(W,F)) and a
probability v equivalent to u, the image measure of v by U will be denoted by Uv.
Moreover for any random variable L on (W, F) such that £,[L] = 1 and u —a.s.
L > 0, we will note L.u the probability on (W, F) whose density with respect to
the Wiener measure is L. To be consistent with [30] we set

2
p(—8"u) 1= exp (—8Wu — %) . (3.4)

For the sections below Sect.5 we need to consider the Wiener measure on S: we
note it 1z and we recall that we then have Wiu = [i. We will also consider some
integrals over Borelian measures of S-valued or Hg-valued elements: all these
integrals are Bochner integrals. Finally in the whole paper we adopt the convention
inf(@) = 1. We now give the notations of Malliavin calculus and then we give a brief
reminder of it (see [19, 26,28, 31], or [13] for more detail). We note {6h,h € H}
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(resp. {< .,h >,h € Hg}) the isonormal Gaussian field which is the closure of
W* (resp. of $*) in L?(u) (resp. in and L?(ft)) and V (resp. D) will denote the
Malliavin derivative on W (resp. on §). We also note D¢ the density of V¢, i.e.,
Vi = fol < Ds¢p, fzs >p, ds for any h € H. We now recall the construction of
the derivative on W, but the construction on S is exactly the same (we don’t use
the time structure at this point). Let (k;);eny C H be an orthonormal basis of H,
let E be a separable Hilbert space, and let (¢;);en C E be an orthonormal basis of
E. For every F' € Ny L?(w, E) we say that F is a cylindrical function and we
note F' € S (FE) C Nps LP(u, E) if there existan € N, (4,...,1,) € (N*)",
(ks ... ki) C (ki)iexy and an f in the Schwartz space of the smooth rapidly
decreasing functions S(R") such that 4 — a.s.

F =Y fiky.....0k,)e:.
i=1
If we set

d
Vi, F = JF ° Tan|r=o0,

where forany h € H
piweW >gw:=wo+helW,

we then have

ViF =" "0, f Gky.....8k,) < h.ki; >n ei.

i=1j=1

By construction, up to a negligible set, for every w € W the mapping defined
by (VF)(w) : h € H — (V,F)(w) € E is linear and continuous and even
Hilbert—Schmidt with the property that V, F(w) = (VF)(w)(h). Therefore, by
using Hilbert—Schmidt tensor products, we have the explicit formula:

VF = Zzajfi((gkll""’gkln)k[j X e;

i=1j=1

and we have defined a linear operator V : S, (E) C L?(u, E) — LP(u, H @ E)
which is such that u — a.s.

dF(w + Ah)

0 lieo = Vi F.

Thanks to the Cameron—Martin theorem, it is easy to see that although V is not
a closed operator, it is however closable. We still denote by V : Dom,(V, E) C
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L?(u, E) - L?(u, H ® E) the closureof V : S, (E) C LP(u, E) = L?(n, H ®
E’) which can be built explicitly in the following way. Let Dom,(V, E) be the set
of the F € L?(u, E) for which there is a sequence of cylindrical random variables
(Fu)nen C Sy (E) with the property that lim, oo £, = F in L7 (i, E) and VF, is
Cauchy in L?(u, H ® E). Then for any F' € Dom,(V, E) we can define VF =
lim, o V F,, which is unique since V is closable. By construction Dom,(V, E) is
the completion of S, (E) with respect to the norm of the graph associated with V
which is deﬁnedby ||F||p,1;E = IIFIILP(;L.,E) + ||VF||L1’(M.,H®E)' We note ]Dp,l(E)
the Banach space Dom, (V, E) endowed with the norm || F||,1;£. Of course V is
nothing but the infinite-dimensional version of the Sobolev derivative with respect
to the Gaussian measure, and D, ;(E) is the Sobolev space associated with the
weak Gross—Sobolev derivative V. We define the higher-order derivatives and the
associated Sobolev spaces by iterating the same procedure. Thus, if VF=!F ¢
D, 1(E® H®* D) we can define V¥ F := V(V*~! F) and the associated Sobolev
space D, x(E) as being the set of such F equipped with the norm || F|| .z =
Zf:o [|[VIF|| Lr(uE@u®)- In the sequel we will often deal with the case where
E = R. Note that in that case, because of the Riesz representation theorem,
H®R >~ H so that we can identify (with fixed w) V F (w) with a vector of H and we
will write V; F =< h, VF >y. Still in that case we note D, ; instead of D, ; (R).
Finally we define the so-called divergence operator. By the monotone class theorem
and from the martingale convergence theorem it is easy to see that S, (E) is dense in
every L?(u, E), p > 1. Since S, (E) C D, 1(E), the operator V : Dom,(V, E) C
L?(u, E) — L?(u, H ® E) has a dense support. Therefore there is an operator §
which is the adjoint of V. The domain Dom (8, E) is defined classically as being the
set of the random variables § € L” (i, H ® E) such that for any ¢ € D, 1 (E) (where
% + é = 1) Eu[< V¢.§ >ner] < ¢pq(|9lLeg.E)). For any § € Dom, (8, E)
8 is characterized by the relation E,[< ¢,8§ >g] = E (< V¢, & >per]
which holds for any ¢ € Dom,(V, E). Of course this relation is the infinite-
dimensional counterpart of the integration by part with respect to the Gaussian
measure. Note that the set of the constant H -valued random variables is a subset
of all the Dom,(§) := Dom, (8, R) and that the Cameron—Martin theorem implies
E,[¢Sh] = E[< V¢, h >y] forany h € H. Hence it is clear that one may think to
this operator as an extension of 6 : H — L”(u, H), which justifies the notations.
The divergence of a u on S can be defined likewise and we note it < u,. >.

3 The Girsanov Shift

Let v be a probability which is equivalent to the Wiener measure . Then it is
well known (see, for instance, Sect.2.6 of [34] or [16]) that there is a unique v €
L%(u, H) such that t — W, + v, is a (F;)-abstract Wiener process on (W, F, v)
and u —a.s.

dv W
o p(=8"v).
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We say that v (resp. V' := Iy + v) is the Girsanov drift (resp. shift) associated
with v. We also recall that when n—a.s. d—” =1+ 8o forana € LO(u, H) we

have dt x du —a.s. v, = If we further assume that € D, an easy

Eu[;‘i |71
application of the Clark—Ocone formula [31] yields

d
by = —E, [DS lnﬁl]—}} .

An old result of Follmer [7, 8] relates the integrability of the Girsanov drift to the
relative entropy. In the case of probabilities equivalent to u, a generalization of this
result is the Proposition 3.1 [to recover Follmer result take vV = u in Eq.(3.5)]
which shows that the relative entropy of two probabilities equivalent to the Wiener
measure is related to a distance between their Girsanov drifts. In particular it shows
that the variance of the Girsanov drift may also be seen as an entropy. We recall
that the relative entropy of a probability v absolutely continuous with respect to a
probability ¥ is defined by

d
HOW) = E, [m —K} .
dv

Proposition 3.1. Let v and Vv be two probabilities equivalent to the Wiener measure
. Then we have

2HOW) = E, [Iv =], (3.5)

where v (resp.V) is the Girsanov drift associated with v (resp. with V). In particular
for any measure v equivalent to i with a Girsanov drift v, if we set

duy ]

T p(—8" E,[v]) (3.6)
n

[see Eq. (3.4) for the definition of the right-hand term] we then have
2H(|pny) = Var,(v),

where Var,(v) := E, [lV —E, [V]ﬁ{]

Proof. By definition we have

dv dv dv
E,\In—|=E,|In—|—E,|In—
dv du du
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2 2
=E, [_5"\; + %} —E, [—SVV—i— <,V >y —&}

2
=71,
V],

=K, |:—5V(v -V +

If v—7 € L2(v,H) we have E,[-8"(v —¥)] = 0 so that equality (3.5)
holds. Conversely we assume that H(v[V) < oo and for each n € N we set
7, = inf({t € [0,1] : |7 (v =V)|g > n}) with the convention inf(#) = 1. Since
v—7€ L%u, H) we have & — a.s. t, 1 1. Therefore the monotone convergence
theorem implies

E, [IV _P“;I%-I]

E, [ fim |7, (=) |
n—>00

Tim E, [|, v =9I ]

= lim Hl7, [7]7,)
n—>00
< HO).

where V| F, (resp. v|, ) is the measure induced by vV (resp. by v) on F,. Hence
we proved that v — v € L2(v, H) if and only if H(v[V) < oo, and that we always
have Eq. (3.5). O

Remark 3.1. Consider the function g*() := H(n|A) where 5 is any Borelian
probability on R? which is equivalent to Lebesgue measure A on R?. For any
h € RY the translation 7}, : x € RY — x + h € R is invertible and A is invariant
under the action of T, (i.e., T,A = A). Thus for any such 7 and any & € R?,
g (Tim) = H(TynlA) = H(T|Tud) = H(nlA) = g*(1). On the path space
the Lebesgue measure is no more defined and one often consider g#(v) := H(v|w)
where v is a Borelian measure. Forany i € H lett, : w € W — w+h € W. Since
T # p forany h # 0, we generally don’t have g#(v) := g*(z,v). However the
function f(v) := H(v|w,) has the nice property to be invariant under translations
along H (just as g* was on R?). Indeed an easy application of the Cameron-Martin
theorem shows that for any h € H

ditg,y

4, —PS Y (B, (3.7)
i

where v is the Girsanov drift associated with v and that

Thly = K-
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Hence for any 7 € H we have

f@v) = H(tv|phe,n)
= H(tyv|tnpn)
= H(v|um)
= f().

where the last equalities hold since 7y, is invertible.

Let v be a probability equivalent to p and let V' := Iy + v be its Girsanov shift.
Since V is a (F;)-Wiener process on (W, F,v) we know that (I, V) is a weak
solution of Eq.(3.8) with law v. However, the uniqueness in law may not hold
for Eq. (3.8) and some weak solutions of Eq. (3.8) may exist with a law on W which
is not equal to v. Proposition 3.2 shows that when the uniqueness in law does not
hold for Eq. (3.8) there exists a weak solution whose law on W is not equivalent to p.

Proposition 3.2. Let v € L2(i, H) be such that E,[p(—8"v)] = 1 and consider
the following stochastic differential equation:

dX[ = dB[ - ‘.}t o] th; X() =0. (38)

The uniqueness in the sense of probability law does not hold for Eq. (3.8) [i.e., there
exist two weak solutions of Eq. (3.8) whose laws on W are not equal] if and only if
there exist two weak solutions of Eq. (3.8) whose laws on W are not equivalent.

Proof. The sufficiency is obvious. Hence we just have to prove that if the uniqueness
in the sense of probability law does not hold for Eq. (3.8) there exist two weak
solutions of Eq. (3.8) whose laws on W are not equivalent. We set v := p(—§"v).u.
Since (Iw, V := Iw +v) is a weak solution on (W, F, v), v is the law of a solution.
Thus it suffices to prove that if there is a weak solution of Eq. (3.8) whose law is not
equal to v, it is not equivalent to v neither. Let (€2, G, IP) be a complete probability
space and (G;)sefo,1] @ complete and continuous filtration on it. Further assume that
(U, B) is a weak solution of Eq.(3.8) on that space with that filtration and note
u:= U — B.If P(lulpg = oo) > 0 then UP is not absolutely continuous with
respect to j (see Theorem 2.4.1 of [34]) and in particular UP is not equivalent to
v. We still have to prove that if P(|Ju|yp = oo) = 0, then UP # v implies that
is not equivalent to UP. By contraposition we suppose that P(|u|y = oo) = 0 and
u ~ UP, and we have to show that it implies UP = v. The hypothesis p ~ UP
yields the existence of a v € LO(u, H) such that V' := Iy + V' is a (F;)-Wiener
process on (W, F,UP) and u — a.s.

dUP

o _5Wi.
i p(=8"v")
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On the other hand (U, B) is a weak solution. Hence for any / € W* and for any
6 € C*(W) which is F; measurable we have:

Eup[(8¥ ml — 8V ,1)0] = Ep[(88 71 — 88 7,1)0 o U]
= 07

where the last equality holds since Uy C G, where (Uf;) is the filtration generated by
t — U;. From Paul Levy’s criterion it implies that f — V; is an abstract (}',) Wiener
process on (W, F, UP). Hence forany | € W*t — 8"Vl =< w1,V — vy
is a continuous martingale with finite variations. Therefore © — a.s. v = V', and
UP = p(—8"v) = v. This achieves the proof. O

Two straightforward consequences of Proposition 3.1 which we will use in the
sequel are the following path space version of two inequalities: the Talagrand
inequality (see [27,31], and references therein) and the Sobolev inequality [11,31].
The associated proofs are well known and can be found in [30,31]. However, before
we do this we have to recall the definition of the Wasserstein distance.

Definition 3.1. Let p and v be two probabilities on a Wiener space w (in the sequel
we shall consider W = S or W = W). We then note £(p, v) be the set of the
measures on (W x W, B(W x W)) whose first (resp. second) marginal is p (resp. v).
A measure y € X(p,v) is said to be the solution of the Monge—Kantorovitch
problem if

J() = [ |x—y|%{dy(x,y)=inf({ / v [ydB(x. ) : B € S(p. v)}).
WxW WxW

Let d(e,v) := J(y), the wasserstein distance between e and v is y/d (e, v).

Proposition 3.3. For any probability v equivalent to 1 we have
d(v,p) <2H®|p). (3.9)

Proposition 3.4. For any probability v equivalent to v which is such that g—; S
D, 1, we have

H|p) < J(|p),

where

Vin—

dv |2
/'LH.

NWU=E{ g
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4 Invertibility of Adapted Shifts

In this section we first recall our definition of invertibility for adapted shifts on W.
Then we recall two propositions which we already proved elsewhere [17] and which
we shall use in the sequel.

Definition 4.1. Letv € LS(u, H) be such that E, [p(=§"v)] = 1. Then V :=
Iw + v is said to be (globally) invertible with (a global) inverse U := Iy + u where
ue L%, H), if and only if u — a.s.

VoU=1Iy

and
UoV =1y.

The next proposition, which was proved in [17], enlighten the hypothesis of [30]
and is also very useful to get the invertibility from the right invertibility.

Proposition 4.1. Let v be a probability equivalent to (1, and let V- = Iy + v be the
Girsanov shift associated with v. Further assume that there is au € L% (w, H) such
that U := Iw + u is the right inverse of V, i.e, u —a.s. V o U = Iy. Then the
following assertions are equivalent:

1. EM[P(_8W“)] =1

2. Up ~ p.

3. V isinvertible with inverse U (see Definition 4.1).
4. Up =v.

Proposition 4.2 was proved in [17]. It is an improvement of Theorem 3.1 of [32].
Contrary to the latter, Proposition 4.2 provides an explicit formula for the inverse of
the stopped shift.

Proposition 4.2. Let v € L%(uu, H) be such that E, [p(—8"v)] = 1 and let o
and t be two (F;)-optional times such that @ — a.s. o < t. Further assume that
VT = Iy + v is invertible with inverse U = Iy + u (see Definition 4.1) where
ue Lo, H). Then V° := Iy +1° is invertible with inverse

ﬁ = Iy + myopi.

Moreover, we have 4 — a.s.

WVolU =1V oU.
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5 Local Invertibility: General Case

We introduced explicitly the notion of local invertibility of adapted shifts in [17]
forav € LO(u, H) such that E,[p(—8"v)] = 1. We showed that under a finite
energy condition (i.e., v € L2(v, H) where v = p(—3§"v).n), it was equivalent
to the invertibility. As a matter of fact it seems that this notion already existed
implicitly in the literature [35] and that the equivalence between invertibility and
local invertibility was known under the condition v € L2 (i, H). These two results
suggest that the equivalence between invertibility and local invertibility may be
more general. Theorem 5.1 completely solves this problem and shows that this
equivalence holds in full generality.

Definition 5.1. Letv € L(u, H) be such that E,[p(—5"v)] = 1 and let V :=
Iw +v. V is said to be locally invertible if there is a sequence (u"),en C LO(11, H)
and a sequence (t,),en of (F;)-optional times such that © — a.s. t, 1 1 and for
eachn € N, V" := Iy + m,,v is invertible (see Definition 4.1) with inverse U" :=
Iw + u".

Lemma 5.1. Letv € L(uu, H) be such that E, [p(—8"v)] = 1, and let (ty)nen
be a sequence of optional times such that 1 —a.s. t, 1 1. Further assume that there
is a sequence (u") C L%(u, H) such that for eachn € N V" := Iy + v is
invertible with inverse U" := Iy + u". Then (u") convergesin L%(u, H).

Proof. For convenience of notations we note V' := m,,v. By definition and by
Proposition 4.2, for each n > m we have u —a.s.

VioU™ =v"o U".
This yields

[L(IM _“m|1‘1 >€) = M 1|u”—u’"|y>e]

n lll’”OU”—V”’OU”"H>E]

Eyl
=Eu[
= E [lovn—ymovn|y>e]
=E, [1IvnoUnOVn_vmoUnOVn|H>€IO(—8WVn)]
=Eu|

n 1|vn_vm‘H>€p(_8WVn):| .

On the other hand (p(—8"V")),en (resp. (V'),en) converges almost surely to
p(—8"v) (resp. to v). Since (p(—8"V")),ex is uniformly integrable, the dominated
convergence theorem implies that (1) converges in L°(u, H). O

Remark 5.1. Of course since the norm |.|y is weaker than |.|y the convergence of
(u"yin LO(u, H) to au € L2(u, H) also implies the convergence in probability of
UM toU:=1Iy +u.
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The next theorem completely solves the problem of the equivalence between
invertibility and local invertibility.

Theorem 5.1. Let v € L)(u, H) be such that E, [p(—§"v)| = 1. Then V :=
Iw + v is locally invertible if and only if it is invertible.

Proof. The sufficiency is obvious by taking (t, := 1 — 1/n) and applying
Proposition 4.2. Conversely we henceforth assume that V' is locally invertible.
By hypothesis there is a sequence (t,) of optional times and a sequence (1") C
L%(u, H) such that for each n € N V" := Iy + m, v is invertible with inverse
U":= Iy +u"and u —a.s. 7, 1 1. By Lemma 5.1 (u") converges in L% (u, H).
We note u € LO(u, H) this limit and U := Iy + u. We will show that V
is invertible with inverse U. For convenience of notations we set V' = m v,
L, = p(=8"v"), L := p(=8"v), and v := L.ju. From Doob’s optional stopping
theorem L, := E,[L|F;,] so that (L,) is uniformly integrable and converges to L
in L'(1). On the other hand (see Remark 5.1), U" converges to U in probability.
Therefore the dominated convergence theorem yields

E[e'] = Eu[Le"]
= lim E,[Lye"]

n—o0

= lim £, [e"V"]

n—o00

— EM [eiloU]

for any [ € W*, ie., Un = v. Thus from Proposition 4.1 we know that V is
invertible with inverse U if and only if U is the almost sure right inverse of V (i.e.,
w—a.ss.VolU = Iy orequivalently u —a.s. u +vo U = 0). As we shall see we
can show this last result thanks to Lusin’s theorem. Let ¢ > 0; we have

w(voU+u'lw>c)=pu(lvoU —=V' o U"|w > ¢)

=K <|V° U—-volU'|y > %) +E, [Lﬂllv —V”\H>%]‘

Let « > 0; the dominated convergence theorem implies the existence of
a N; such that for any n > N, E,[L,1}, _vn‘H>%] < «a/2. To control
v (|vo U—-voU"ly > %) we use Lusin’s theorem from which we know the
existence of a compact set K, C W such that v(K,) > 1 —«/8, and v is uniformly
continuous on K,. By setting

an{a):|voU—voU”|H>%,(U,U”)eKaxKa},
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we then have
n C n
(Vo —voUrln > 3) < () + R(U ¢ Ko) + p(U" ¢ Ko)
= n(2,) +v(w ¢ Ky) + Eu [10(_5‘)”)1(1)¢Ka] .
Moreover the very definition of K, yields
viw ¢ Ky) <a/8

and the dominated convergence theorem implies
. o
lim E,[p(=6v")1,¢k,] = v ¢ Ky) < —.
n—o00 8

Thus there is an N, such that for any n > N, E, [p(=8V")1,¢k,] < /4. We then
have for any n > sup({ N1, N»})

7
w(lvoU +u'ly > ¢) < f + 1(Q0). (3.10)

On the other hand, the uniform continuity of v on K, yields the existence of a ..
such that [u" —u|y < Ba. and (U",U) € Ky X Ky imply [voU —voU"|y < 5.
To control the last term of Eq. (3.10) we then set

Q={weW: |u"—ul < Bac}.
In particular €2, N Q, = 0 so that we get
W) = 1@ N Z) + (S N ()
= 1(Q N (@)
< n()
= w(lup —ul > Boc)-

Since u, — uin LO(j, H) there is an N; such that for any n > N3, u(Q,) < «/8.
Therefore for any n > sup({ N, N2, N3}) we have

w(volU +u"|lw >¢) <«
This proves that #" — —v o U in L°(u, H). By uniqueness of the limit u + v o

U=0,i.e., U is the right inverse of V. But we already showed that this implies the
invertibility of V' which is the result. O
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We now state the result which will be used in the applications:

Corollary 5.1. Let v € LY(ju, H) be such that E,[p(—§"'v)] = 1. Assume that
there is a sequence (V') C L% (w, H) with the property that for eachn € N

Eu[p(=8"v] = 1

and such that V" := Iy 4 V" is invertible. Further assume that there is a sequence
of (F;)-stopping times (t,) such that p — a.s. t, 1 1 and such that for eachn € N
we have L — a.s.

T,V = T, V"

ThenV := Iy + v is invertible.

Proof. By Proposition 4.2 for each n € N the shift defined by Vo= Iy + 7T, V!
is invertible. Therefore V' is locally invertible, and its invertibility follows from
Theorem 5.1. O

6 A Sufficient Condition for the Invertibility of Markovian
Shifts with States in R?

In this section we will only consider the case where S = R? for ad € N. The main
result of this section is Theorem 6.1 which is a sufficient condition of invertibility
for Markovian shifts. From the main result of [36] any shift which is both Markovian
and bounded is invertible. Here we give a local version of this fact. Note that this
extension is different from those of [14].

Definition 6.1. A v := fo' vsds € LO(u, H) is said to be locally bounded if there is
a sequence of (F;)-stopping times (z,,) such that © — a.s., t, 7 1 and such that for
eachn € N we have u —a.s.

sup |vs| gy < 00.
S=<1y

Proposition 6.1 will enable us to use the notion of Definition 6.1.

Proposition 6.1. Let v € L(u, H) and 0, := inf({t : supsepo ) [Vs| > n}) AL
Then v is locally bounded (see Definition 6.1) if and only if u —a.s. o, 1 1.

Proof. If o, 1 1 t—a.s. the sequence (0,) satisfies the hypothesis of Definition 6.1.
Conversely we assume that v is locally bounded, and we define €2 to be the set of
the € W such that 7,(w) 1 1 and such that foralln € N, sup;_, (,, [Vs(@)| < oco.
From the hypothesis £ (2) = 1. Givenw € Q2 and € € [0, 1) there is an ny € N and
a K > 0 such that 7, (w) > € and sup,e(o ,, (0 [Vs| < K. Letmy € N be such that
mo > K. Then supep 4, () [vs] < K < myg so that oy, (0) > 7,0 (w) > €. Since
o, (w) increases, this implies that o, (w) 1 1. O
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Under a mild condition, the next proposition shows that a Markovian shift which
is locally bounded in the sense of Definition 6.1 is invertible.

Theorem 6.1. Let v € LO(u, H) be such that E, [p(—8" v)] = 1. Further assume
that there is a measurable b : [0, 1) xR? — RY such that u—a.s. for eacht € [0, 1)

t
vy =/ b(s, Wy)ds
0

and that v is locally bounded in the sense of Definition 6.1. Then V := Iy + v is
invertible.

Proof. Let (0,) be as in Proposition 6.1. Since v is locally bounded . —a.s. o, 1 1.
Foreach T € [0,1) and n € N we set

VT = /b(t, I’I/[)ltsj"dt
0

and .
v ::/ p" T (t, W;)dt,
0

where
BT (t,x) := b(t, X)p(rry|<n li<T-

Since ™7 (¢, x) is both measurable and bounded the main result of [36] yields the
existence of a strong solution for the equation

dX, =dB, —b"T (¢, W;)dr. (3.11)

Thus V"7 := Iy + v*T is right invertible with an inverse U"T = Iy +
u"T (note that since b7 is bounded the condition u™? € LO(u, H) is filled).
Moreover the fact that »™7 is bounded, together with the Novikov criterion, yields
E,[p(—=8"u™T)] = 1. From Proposition 4.1 it yields the invertibility of each V"
On the other hand from the hypothesis we obviously have 7, v = 7, v*T. Hence
Corollary 5.1 implies the invertibility of V7 := Iy + vT for each T < 1. In
particular V is locally invertible (take 7, = 1 — 1/n) and therefore invertible
(Theorem 5.1). |

7 Invertibility of Free Schrodinger Shifts

Let D be a probability equivalent to [, it is well known [9] that

HEIR) = inf (Hlw) : Wiv = DY) (3.12)
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and that the optimum is attained by the probability v which is defined by

dv dv W
i = i o Wi.

Moreover v is an h-path process in the sense of Doob (see [9] and the references
therein) so that the Girsanov drift associated with the optimal v is Markovian. Such
a process may be seen as a particular Schrodinger bridge (see [9] and alternatively
[39] and references therein). Thus it is connected to stochastic mechanics [23—
25] and to stochastic control problems (see [20-22] and references therein). The
connection of Schrodinger bridges with stochastic mechanics was clearly shown in
[39,40], and is trivial to see in the special case of A-path processes. Moreover it
is known for a long time that such mechanics are related to stochastic control both
through Yasue’s approach [38] and through the Guerra—Morato(—Nelson) approach
[12,24]. Consider now the equation

dU; = dW; — v, o Udt; Uy =0, (3.13)

where v is the Girsanov drift associated with the optimal probability v. As
it appears clearly from [10, 39] a solution of Eq.(3.13) may been interpreted
physically as a free euclidean quantum (time imaginary) particle starting from
the origin whose final marginal is empirically estimated by V. In this context the
equivalences investigated in [10] show that the relative entropy H(v|u) is the
analogous of the Guerra—Morato action associated with the free euclidean particle
(or field). Furthermore as it is stressed in [9, 10] the formula (3.12) is also related
to the large deviation theory through Sanov’s theorem which yields a very concrete
intuition of the experiment. Since the reader may be not familiar with these notions,
it seems necessary to recall here briefly and formally the main lines of this stochastic
picture of euclidean quantum mechanics. Let VV : § — R be a smooth potential
which is such that

diy . i vomoas
dp
defines a probability equivalent to w. Jensen’s inequality easily implies that the

infimum of
{HW|py)|Wiv =V}

is attained by the probability v defined by

dv 1 dv

= — ()
duy  E, 92 |o(Wh)] 42

Let

H=-24v
=S+
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Then at least formally in the case dim S < oo, by noting A the Lebesgue measure
on S, it is straightforward to check that we have

dW,v
dA

=0(t,x)0™ (¢, x), (3.14)

where 6 solves
0,0 = HO

and where 6~ is the fundamental solution of the time-reversed equation
—0,0* = HO™.

By substituting formally 1 — it (this procedure is usually called the rotation of
Wick) we would have density p(#, x) with the shape

p(t.x) = W(t. )W (1. x).

where W (resp. W*) solves the Schrodinger equation (its conjugate). For that
reason v is said to model imaginary—time quantum mechanics. By considering the
associated space-time metric, it is also called euclidean quantum mechanics. Note
that within this framework, v is the law of a solution to

dX;, =dW, —v, 0 Xdt; Xo =0,

where v is the Girsanov drift associated with v. The possibility to deal with
euclidean quantum mechanics through stochastic mechanics in such a way was
first showed in [39]. For that reason it seems relevant to call the Girsanov shift
V := Iy +v associated with the above measure v, the Schrodinger shifts associated
with U under the potential V. Although our results and methods may extend to
the case of potentials, we preferred to focus on the free case (i.e., V = 0) and
to treat both the finite- and the infinite-dimensional cases. Henceforth we allow S
to be of infinite dimensions, unless otherwise stated. In the next section we will
also see that these processes are also involved in information theory. Hence these
processes are involved in several fields in which it would be relevant to prove the
pathwise uniqueness. For instance, in the point of view of stochastic mechanics,
the pathwise uniqueness for Eq. (3.13) means that the stochastic description of free
euclidean quantum mechanics fits with the classical picture of determinism. This is
the main motivation of this section in which we give some (very large) sufficient
conditions for the Girsanov shift associated with such probabilities to be invertible.
This motivates the following definition:

Definition 7.1. Let 7 be a probability such that ¥ << [i. Further note v the
probability on W which is defined by

d dv
—v = —,‘i oW
du  du
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and note v the Girsanov drift associated with v. We say that v is the (optimal)
measure associated with U (on the space on the path) and that V := Iy + v (resp.
v) is the (free) Schrodinger shift (resp. drift) associated with the final marginal .

We will show below that when dim S < oo (resp. dim S = o0) free Schrodinger
shifts with a final marginal of finite entropy (resp. with a bounded density with
respect to the Wiener measure on S) are always invertible. In particular we don’t
assume any regularity conditions on the density.

Theorem 7.1. Let S = R? and let V be a probability equivalent to the Gaussian
measure [L on R with finite entropy (H(V|[l) < 00). Then the free Schridinger
shift with final marginal V is invertible.

Proof. Let v be the optimal measure associated with U by Definition 7.1 and let v
be the Girsanov drift associated with v so that V' := Iy + v is the Schrodinger shift
associated with V. It is well known [9] and straightforward to see that the 1td formula
yields the following expression for the Schrodinger drift v. For eachz € [0, 1)

D (@) = b(t, W), (3.15)

where b : (¢, x) € [0,1)xRY - —DIn Pl_,j;’\(x) and where (1, x) € [0, ) xR? —
m

P, %‘i(x) is the heat kernel defined by
m

P @ = [ dw@ 00+,
du w du
We will show that the finite entropy condition implies that v is locally bounded (see
Definition 6.1) so that the shift V' will be invertible. First note that for each integer
i €[1,d] (V,s €[0,1)) is a (F;),ep,1) martingale on (W, F, v). Indeed for each
t <lands <t,let6; € Cp(W) be Fy; measurable. We then have

. . dv
E,[-V6,] = E,| D'In Pl_,é(w,)es}

dv dv
= E[l. @D In Pl—tﬁ(u/t)es

B dv . dv
— E,|E, [@m} D Pl_,ﬁ(Wt)@s}

i dv , dv
=E,| P~ —dA(Wt)D’ In P, —A(Wt)é’s}
i i du

PV
=E, _D Pl_,ﬁ(W,)GJ
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o
= EIL -Pt—sD Pl_gﬁ(u/s)ev}

. dv
=E DZP—Y_A W es
[l.- 1 d,LL( ) :|

- o
= E,|D'In PI_S—K(WS)HS}
L djt

= E, [-V6,].

Hence ¢ € [0,1) — E,[(¥)?] is increasing. Together with the finite energy
condition v € L2(v, H) it yields v/ € L*(v) for each ¢ € [0, 1). Therefore by
Doob’s inequality we get that for each z € [0, 1)

sup |vs|2, € L' (v). (3.16)

s€[0,¢]

Since v ~ pu Eq. (3.16) implies that the hypothesis of Theorem 6.1 is satisfied with
7, := 1 — 1/n. Therefore V is invertible. O

In the case where dimS = oo it is harder to get a clean expression of the
Schrodinger shift since we need an It6 formula. To avoid the use of such a formula
we give an elementary proof in Proposition 7.1 which is in the spirit of the proof of
the Clark—Ocone formula.

Proposition 7.1. Let V be a probability such that vV ~ i and S—E € L%*(1). We
n

further note v the free Schrodinger drift associated with V (see Definition 7.1). We
then have for eacht € [0, 1)

b= b, W) (3.17)

du x dt a.s. where
o
b(t.x) = —DInQy_—(x)
du

and where Q; is the heat kernel on S, i.e., Q,%"\(x) = Eu[%‘i(x + W))] for each
1 1

xeS.

Proof. Let v be the measure associated with D by Definition 7.1 and let v be the
Girsanov drift associated with v which is also the Schrodinger drift of V. When
%‘é € L?*(11) the same proof as Lemma 3.3.2 of [34] applies and we know that for

s
each r < 1 there is a modification of Ql_t%‘i such that for each ® € S the map
n
he Hg — Q1 :7"\((0 + h) is real analytic on Hg. We then chose this modification.
m
Hence, it is straightforward to check that for any k € Hg Q; Dy Qs = Dy 0,0, =
Dy Q4 and that E,, 37”\ o Wi|F] = Ql—rgv”\(m). In order to avoid the use of the
1 1
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theory of Watanabe distributions, or of an Itd formula on abstract Wiener space,
we give an elementary proof. For any ¢ < 1 let L2(u, H,1) be the subset of the
u € L2(u, H) for which the support of s € [0,1] — i, € Hs is in [0,7] C
[0, 1). We recall that from the martingale representation theorem which holds on
W (see [34] Chap.2), {8"a,a € L2(u, H,t)} is dense in {X — E,[X] : X €
L*() , X is F, measurable}. Then we have for each h € L2(u, H, 1)

dv i dv
E, [@ o thp(—é’h)i| =E,|E, [@ o th|]-',:| p(—8h)i|

— £, |E, [j—; o (W + ht)m} p(—ah)}

- o
= B[ T+ hpsn .
Hence
d d
e | I [
d dv
= aEu [[(Ql—t@v\) (W: + Ahy) — 1:| P(_Skh):| li=o

_E, [Dh,Ql_fj—g o (Wf)} _E, [[Ql_,j—g(wf) - 1} ah} .

On the other hand the Cameron—Martin theorem yields £, [[g—; oTHp— 1] p(—SAh)] =
0. By setting o’ = fo 1y« DO 11— [d;”:] (W,)ds we get
. < I

o (me G =1)o

B | [0 om0 1] 4]

dv
E, [< DQl—tﬁ(VVt)sht >Hs:|

! dv .
E,|< DQl_tﬁ(Wt),hs >Hs:| ds

N dv
_D;'h 01— ﬁ(l’vt)} ds

<~

I

S— S 55—
eS|
=

by
=

dv
Ey [Dzi.\, Q1 ﬁ(Wt)']:SH ds

i dv
Qt—sD;', Q1 —A(Ws)i| ds
L s dIJL

Il
b
&y

=
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= ; i S
o " hy 1= s

:/tE |:<DQ1 SdAo(W)h >HS:|ds
0

E [< Olt,h >H]
= E,[§" o'V 1]

which means that £, [g—mﬁ] —1=8%a,ie.,

A~

dv ! dv
EIL @LFI =1+ A DQl—sﬁo(Wv)de

By construction of v (see Sect. 3) it yields Eq. (3.17). |
Lemma 7.1. Let L € L*°(j1), e € (0,1)and T € [0,1). Letb : [0,1] x S — Hy
be the mapping defined by

b(t, )C) :=—DIn Pl—tL(x)1t<T1P17;L(x)>e

and let v be defined by
V= / b(s, Wy)ds.
0
ThenV := Iy + v is invertible.

Proof. Forany h € Hg,x € S,and ¢ < 1, we have [15]

Js(<h,y >)L(x + V1 —1y)i(dy)
V11—t Js L(x + V1 —ty)i(dy)
L S
Vl— P tL(x)

where K is the essential supremum of L. Therefore |DIn Qi L(x)|yg <
K
V1= P L(x) and

|Drln Q1 L(x)| =

K
|b(t,x)| = |D1n Pl—zL(x)1t<T1P1,,L(x)>e| = ﬁ
In particular v € L%(u, H) and together with Novikov’s criterion it yields
E,[p(=8"v)] = 1. Moreover if we assume that V is right invertible with an

inverse U := Iy + u, the boundedness of b will imply E, [p(—8"u)] = 1 so
that the invertibility will automatically follow from Proposition 4.1. Hence, to get
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the invertibility of V, it suffices to prove that V' is right invertible. Specifically, since
b is bounded it suffices to prove that

dX; =dB;, —v, 0 Xdt (3.18)

has a unique strong solution. Since S is a Polish space the Yamada—Watanabe
criterion [13] also applies for Eq. (3.18). Therefore to prove the existence of a strong
solution it suffices to check that a weak solution of Eq. (3.18) exists, and that the
pathwise uniqueness holds. Since b is bounded, we already have the existence of
a weak solution and the uniqueness in law for Eq. (3.18) by transformation of the
drift [13]. Hence we only have to prove the pathwise uniqueness. Before we do this,
we have made some preparations and to prove that © — a.s. for any ¢+ < 1 and
(h,k) € Hsw x H; . wWe have

|[DIn P\ L(W; +h) — DIn P\, L(W; + k)|u; < C|h—k|u; (3.19)
fora C > 0 which depends on T'. For any (¢, w) € [0,1) x W we set
Hiw:={he Hs: PiL(W; + h) > €}.

Since x — P, L(x) is Hg-continuous (and even Hg — C*°; see [15]) H,, is an
open set. On the other hand we have for any 4,k € Hg,and x € S

Dth Ql—tL _ (Dh Ql—tL)(Dle—tL)

Phaln @ik = =5 77 QL7

and
1 T~
’D/%,le—fL(x)| = 1_—t ‘/(<h7y >< ka y>_<hvk>HS)L(x+ l_ty)M(dy)

K
= :|h|Hs|k|HS’

where the last inequality follows from
/(< hy ><k,y>—<hk>y)*(dy) = |h|i,s|k|§1s.

Hence, by taking C := ﬁ + (ﬁ)i we get Eq. (3.19). We can now begin the

proof of pathwise uniqueness. Let U and U be two solutions with initial distribution
o, which are defined on the same space (€2, G, P), with the same filtration (G,)
defined on it, and with the same (G, )-Brownian motion(B;). We define two (G;)-
optional times:

r:=1inf({¢ : |ur — |y > 0} A1 (3.20)
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and
o :=inf({t : (P1_LoU, —e€)(P\—,LoU, —€) <0}) Al. (3.21)

Let  be the set of the w € Q for which both t — U;and t — ﬁt are continuous.
By construction it is such that ]P’(ﬁ) = 1. Moreover for any @ € Q the continuity
implies that we have o(w) < t(w) if and only if t(w) = 1. Therefore, to prove
pathwise uniqueness, it suffices to prove that 1 — a.s. sup; ¢ 4 ()] lur — U | g = 0.
For any ¢ € [0, 0 (w)] the definition of o implies:

t
e ~Tilus = [ 166U = bis. Tolds
0
< A+ B,

where .
A= / 1b(s. Uy) — b(s. )| L, wre., (5. 755)
0

and .
B = / b(s. Us) — b(s. U )13, 00 x (e (ths Tis)
0

and where (H,.,)¢ is the complement of H,,, in Hg. From the definitions of H,,
and of b(¢,x) u —a.s. B = 0. On the other hand Eq. (3.19) implies

t
A<c / utg — Tt Lty (1 700)
0

t
< C/ ity — T 1.
0

Hence, up to a negligible set, Gronwall’s lemma implies that u, (w) = % (w) for
every t < o(w). This proves that 4 —a.s. 0 < t, from which we know that . —a.s.
=1 O

Theorem 7.2. LetV be a probability equivalent to [ such that %‘é € L*®(u). Then
m

the free Schrédinger shift with final marginal V is invertible.

Proof. Let v be the Girsanov drift associated with the probability v := g% o W1.
n

From Definition 7.1 V := Iy + v is the free Schrddinger shift associated with V.
Forany (n,7T) € N x [0, 1) we set

il = /'b”’T(s, Wy)ds,
0
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where N
BT (%) = =D In Py S ()12 1
B Trap ST gy st
dup
and o
: v
v = —/ Dln P, —(x)1,<pdt.
0 du
By Lemma 7.1 all the V"7 := Iy + v"T are invertible. Let 7, := inf({r :

Pi_L(W;) < 1} A1.Since D ~ i we have t — a.s. (t,) 1 1. On the other
hand from the definitions 7,,v = 7,,v""T. From Corollary 5.1 it implies that V7
is invertible for any 7 < 1. Taking 7, := 1 — % yields the local invertibility of V'
which is therefore invertible (Theorem 5.1). O

8 Information Loss on the Path Space and Shannon’s
Inequality

The idea to use h-path processes in information theory is not new and we found it
implicitly in an original but somehow misleading unpublished paper [18] in the case
of the classical Wiener space. We generalized and clarified some of these results.
By completing that work we were acquainted that the author of [18] also took the
same way. Nevertheless our results are still more general and we find it interesting
enough to be presented here. Although the essential ideas of the proofs are not so
new there are several original contributions in this section. First we give a version
of a Brascamp-Lieb inequality which holds on any abstract Wiener space. Then we
give an abstract Wiener space version of Shannon’s inequality which holds on any
abstract Wiener space. Since the Lebesgue measure is no more well defined when
dim S = oo we had to write it in terms of Gaussian measure. We succeeded in this
task by making a change of measure from which we get a formulation of Shannon’s
inequality which seems to be new. By making an analogous change of measure
on the path space W we show that Ustiinel’s criterion (the main result of [30]) of
which we present a generalization here (Theorem 8.2) may be written in terms of
variance. This generalization was first given in Theorem 6 of [16] in the case where
the underlying probability space was the Wiener space, and it stresses the connection
between information loss and invertibility. Its interpretation in terms of variance is
new. Within this framework we reduce the proof of [18] as a consequence of the
additive properties of variance. Moreover our precise results shows that Shannon’s
inequality as well as the Brascamp-Lieb inequality may be seen as the result of
information loss in a Gaussian channel.
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8.1 Talagrand’s Inequality and Sobolev’s Inequality on Any
Abstract Wiener Space

The Monge—Kantorovich problem on abstract Wiener space has been investigated
for instance in [5] or [6] (see also [37] for a general overview on this topic). The
results of this section are almost trivial and may be well known. However it seems
relevant to give it here for pedagogical reasons. As a matter of fact here are the
two simplest cases in which h-path processes can be used to yield inequalities on
any abstract Wiener space from inequalities on the path space. We first recall the
following result which is a particular case of Theorem 3.2 of [6] in order to achieve
the proof of Proposition 8.1.

Theorem 8.1. Let V be a probability such that V << [i (i.e., absolutely continu-
ous). Assume that d(v, i) < oo. Then there is a measurable mapping TS : S — S
which is solution to the original Monge problem. Moreover its graph supports the
unique solution of the Monge—Kantorovitch problem vy, i.e.,

UsxTHa =y

In particular TSTL = 9, TS — Is € L*(fi, H), and there is a mapping S5 :=
(T$)~" such that

u({w|§s oTS = Ig}) =v ({a)|TS 0S8 = IS}) =1.

The next proposition sums up basic properties of the optimal measure associated
with a marginal.

Proposition 8.1. Ler V be a probability such that Vv ~ [k with H(V|[t) < oco. Let v
be the measure associated with v by Definition 7.1. We then have

© H@Ip) = Hv|w).
« dv.p) =d(v, p).

where d(v, ) is given by Definition 3.1. If we further assume that :—E € Dy (1) we
m
have
JO.0) = J(v, ).
where
~ dv
JO, ) = E~| |DIn —

2
dj HS:|

Proof. Let v be the Girsanov drift associated with v. The fact that H(V|ix) =
H(v|p) is obvious. Let s — Ty := Wi + f(; f;ds be the optimum given by The-

and where J(v, ) is defined in Proposition 3.4.

orem 8.1 which attains d(v, ). By definition we have d(v, u) = E, [fol |4 %,S ds].
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On the other hand Ty = Wi T = Wiv =V and Wi = i so that:

dO.7) < EITy - Wil
Hence Jensen’s inequality implies

A, 1) < E.ITi — Wil

1 2
5Eu|:/ fyds :|
0 Hg
1
< E, [/ Ifslﬁst}
0

=d(v, pn).

We now state the last part of the claim. From Proposition 3.1 we have

d dv
Vi = V= o Wi
du du
dv
:<h1,DﬁOWl >Hg

ooy
< I’ZS,D—A o I’Vl >Hg ds
0 du

so that Dy In g—; =DlIn :—Eo Wi. In Sect. 3 we recalled that the Clark—Ocone formula
m

yields vy = D In g—/‘i. However in that case it can also be seen directly with the same
proof as Proposition 7.1, but in that case with ¢ = 1. Since Wjv = D we get
dv 12
Hlm

| |: ), :|
:/ E, ‘Dsln— ds
0 d/"L Hg
! [ dv 2
:/ EV ‘Dln—AOW] :|dS
0 die Hg

Jv,p) = E[

Vln—U
d

dv
Dln—,\o[/Vl
du
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2
Hg

dv
= E~ Dll’l—,\
' U du

— J@. 7).

O

Proposition 8.2 shows how we can use A-path processes to get inequalities on S
from inequalities on the path space W.

Proposition 8.2. Let V be a probability equivalent to [t with H(V|[1) < oo. Let
d(1,V) be the Wasserstein distance, then we have
d(@,v) < 2H@|R).

~

Assume henceforth that 37”\ € D, () and let J(V|k) be the Fisher information,
m

which is defined by
2
HS:| '

S V113
JOIR) = By | —— |,

o~

d
JOIn) = E/\;UDln—K

du

Then we have

2

where v is the Schrodinger drift associated with v. In particular we get the
logarithmic Sobolev inequality

HE@) < JOIR).
Proof. Let v be the probability associated with ¥ by Definition 7.1 and v be the

Girsanov drift of v which is the free Schrodinger drift associated with D. Then
Propositions 8.1 and 3.4 yield

H|p) = Hvlp) = J|p) = JOIR).
Furthermore Propositions 8.1 and 3.3 directly imply

d(.v) =d(v,p) =2H(v|p) =2HOIR).
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8.2 Information Loss on the Path Space

Let (2, F",P) be a complete probability space, and let (F; ),e[0,1) be a continuous
filtration which satisfies the usual conditions. On this space let (B;);c.1] be a
(F!)iep0,1) and S-valued Brownian motion starting from the origin. In the point of
view of information theory one may think of B as a Gaussian noise in a transmission
channel. Assume now that one sends a signal u through this channel and that the
receptor observes U = B 4+ u but not u. Let (F}') be the augmentation with respect
to IP of the filtration generated by the observed signal ¢t — U;. If the receptor tries
to estimate dynamically u, his best estimation will be

t
u :/ Eplitg| F}']ds
0

which is usually called the causal estimate of u. Hence the estimated signal will
be u, while the emitted signal is u. Since % is a projection of u, the energy of u is
always bigger that the energy of u . In other words, some energy will dissipate in
the channel, and the value of this dissipated energy is

|ul [l
Ep| 2 | — Ep| 2|
P[ 2 L2

As a matter of fact the value of this dissipated energy may be seen equivalently as
an error or a loss of information. Indeed

|ul 1] 1 -
Ep |:TH —Ep TH =§EIP’[|M_”|%1]

is equal to (half) the error of the causal estimate. Theorem 8.2 (which was first
proved in [16] in the case of the Wiener space) states that the dissipated energy
(or information) only depends on two parameters: the energy of the signal and the
law of the observed signal through its relative entropy. This loss of information
relies on the fact that the observer only gets the information of the filtration (F})
generated by ¢t — U, € S which is smaller than (}}P)te[o, 1]- Moreover one expects
the equality to occur if and only if one can reconstruct the Brownian path until 7
from F'. This is exactly what shows the equality case in Theorem 8.2. Before going
further we have to set some notations. We note L>((2, ¥, P), H)) or when there
are no ambiguity on the underlying filtered space L?(P, H) the set of the measurable
mapping u : Q — H, such that E[p[lulfq] < 00. We also define L2 (P, H) the subset
of the u € L*(P, H) such that the mapping ¢ — i is adapted to (F,)iefo.1]. We
recall that we defined F (resp. (F;)) as the completion of the sigma field B(W) with
respect to u (resp. the augmentation with respect to p of the sigma field generated
by the coordinate process t — W;).
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Definition 8.1. Let (B,)¢(0,1) be an S-valued (.EP),e[oyl] Brownian motion starting
from the origin on a complete probability space (€2, F",P) with a continuous
filtration (F, );efo,1] which satisfies the usual conditions. Given a u € L2(P, H)
such that UP ~ u where U := Iy + u, we define (F}') as being the filtration
(0(Us, s < t))sep0.1) augmented with respect to . We also note L2(P, H) the subset
of the W € L2(P, H) such that ¢ — 7, is adapted to (F!*). Moreover % will denote
the projection of u on L2(P, H) which is a closed subspace of L2(P, H).

As a matter of fact % is the dual predicable projection of u [4] on the augmentation
with respect to P of the filtration generated by ¢t — U, = B, + u,. We recall that
physically 7 may be seen as the causal estimator of a signal u and is written:

t
u :/ Eplitg| F;']ds.
0

Lemma 8.1. Let (Q, F",IP) be a complete probability space with a continuous
filtration (.Ep)fe[oyl] on it which satisfies the usual conditions. Let (B;);ej0,1) be an
S-valued F -Brownian motion on (Q,F*,P) and U : t € [0,1] — U, € S be
any (Fy)-adapted, continuous process. Further assume that UP ~ . Then we have
P—a.s.

U+volU =0, (3.22)

where v is the Girsanov drift associated with UP.

Proof. Since t — V; is an abstract Wiener process on (W, F,UP), for any
0eL2(UP, H) we have.

l .
Ep[<b0oU,u>yg] = Ep / <050U,it5>HSdSi|
0

l. l .
= Ep / GsoUst—i—/ <9SoU,i¢s>Hsds—/
0 0 0

[/ 1. L,
/ 9des) oU —/ 05 o UdBS:|
0 0

[
= Ep (/Olésdwv) OU}

l .
05 o UdBSi|

:EIF’

1
= Eyp evdWs:|

/o
i 1. 1 . 1 .
= Eyp /GSdWS—i-/ <0,{/5>Hsds—/ < b5,V >pyg ds
0 0 0

M, 1
= Eyp / Osd Vs —/ < 0,9 >p; ds:|
0 0
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1
—Eyp |:/ < 0,05 >Hy dsi|
0

—Ep[<volU,B0oU >g].

This shows Eq. (3.22). O

Theorem 8.2. Let (2, FF,P) be a complete probability space with a continuous
filtration (‘EP)IE[OJ] which satisfies the usual conditions. Let (B;):eo,1] be an S-
valued (FF)-Brownian motion on (Q,F°,P) and U : [0,1] — S be any (FF)-
adapted, continuous process such that UP ~ . Then

2H(UP|BP) < Ep[|U — B|%]. (3.23)
We further note u := U — B and henceforth assume that u € L*>(P, H). If we note
U the dual predicable projection of u on (F!') which is the filtration o(Us,s < t)

augmented with respect to P, we then have

2H(UB|W) = EpllU - BI}) - ¢} (3.24)

ev =/ Epllu—1l}]

Moreover the following assertions are equivalent:

where

* €y = 0.
s VoU = Bon(Q,F°,P) where V = Iy + v is the Girsanov shift associated
with the measure UP on the Wiener space.

Finally for any probability v which is equivalent to the Wiener measure (i
2H(v|p) = inf ({Ep[|U — BI}1}). (3.25)

where the infimum is taken on all the (2, F", (F )iejo.1],P) and all the (U, B)
defined on it as above and such that UP = v. Moreover, we can always find (at
least) one space (2, F¥, (FF)iep,1). P) and a (U, B) defined on it with the same
properties as in the first part of the claim, which attains the infimum.

Proof. If U — B ¢ L?(P, H) then Eq. (3.23) holds. Otherwise let u :== U — Iy
and let v be the Girsanov shift associated to UP. By Proposition 3.1 and Lemma 8.1
we have:
2H(UP|p) = Evpllvly]
= Eg[lvo Ul3]
= Ep[[ul}]

= Epllulyy] — Eellu —al3].
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where the last line follows from the fact that % is an orthogonal projection
of u. This clearly yields Eq.(3.24) and the equivalences in case of equality.
The inequality (3.23) clearly yields the inequality of Eq.(3.25). By taking
(QF (FDiepa. P) = (W.F,(Fiepa).v) and (U, B) = (Iy.V), where
V = Iy + v is the Girsanov shift associated with v, we know (see Proposition 3.1)
that the optimum is attained in Eq. (3.25). O

Remark 8.1. In Theorem 8.2 we wanted to stress that the physical origin of the
inequality in Eq.(3.23) is the information loss. This is the reason why we need
Lemma 8.1. We already showed this result in [16] (the underlying space was the
Wiener space but the proof is the same). However the inequality (3.23) as well as
the fact that the equality in Eq. (3.23) occurs if and only if V o U = B may be
showed directly. Indeed these results follow easily from Proposition 3.1 and the
Cauchy-Schwarz inequality as we showed it in [17]. Henceforth, let us assume that
the underlying probability space is the Wiener space W. As we seen, under the
condition E,[p(—=8" u)] = 1, U := Iy +uis the inverse of V if and only if it is the
right inverse of V. Hence the equality in Eq. (3.23) is equivalent to the invertibility
and we recover the main result of [30]. For that reason we refer to this result as
Ustiinel’s criterion.

Proposition 8.3 is a path space version of the Brascamp-Lieb inequality. In
Proposition 8.4 we apply it to an h-path process, so that we get a Brascamp-—
Lieb inequality which holds on any abstract Wiener space. The proof of it is a
generalization of the one given in [18]; however the ideas are essentially the same.
As Theorem 8.2 enlightens it the next inequalities are involved by information loss
in the Gaussian channel.

Proposition 8.3. Let (') be a family of projections on Hg. Further assume that
forany i, there is an (e;)?‘;l which is an Hilbert basis of Hs and an (I;) C N such
thatw; =3 ep, < X, el > pg e; and that

J
E ;i = I
i

for a sequence of positive numbers (a;) C RT. We then set

Tix = E <e},x >e;»
JEI

which is well defined as a measurable mapping from L°(Ji,S) — L°(11, S). We
also note m; - H — H the mapping such that (m; h)(t) = 7;(h,) for any (h,t) €
H x[0,1] andT; : 0 € W — T;(w) € W the mapping defined pathwise by T; ()
t € [0,1] = T;(W;). Then for any measure v equivalent to u with H(v|u) < oo
we have

H|p) = ) e H(Tv|Ti). (3.26)

1
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In particular for every t € [0, 1] we have

H|p) =Y i H(T v, | T o), (3.27)

where v, := W,v (resp. u; := W; L) is the marginal at t.

Proof. From the definitions it is straightforward to check that (7") is a family of
projections on H such that Y, o;7° = Iy. Let (U, B) be the pair defined on a
space (2, FF,P) which attains the optimum in the variational problem given in
Theorem 8.2, and set u := U — B. Theorem 8.2 yields

2H(v|p) = Ep[lul]
= Ep |:< Zaimu,u >H:|
=2 i Eellmiuly]
=Y o Ep|B + mu— B3]
i
> Za,-H((B + miu)P| )
> ZaiH(Ti(B + mu)P|Ti ).

where the last equality comes from the fact that H(v|pu) > H(Xv|Xp) for any
measurable X : W — E where E is a Polish space. By definition, we also have
T'om'h = n'hforany h € H so that H(T;(B + miu)P|T;u) = H(T;UP|T; n) =
H(T;v|T; ). Therefore we have Eq. (3.26). Since by definition for any ¢ € [0, 1]
w—a.s. Wyo T =T,;(W,), we also have

H(Tyv|Tip) = HW, Tv|W,Tipw) = H(T v, |T; ).

|

Proposition 8.4. Let (7') be a family of projections on Hg. Further assume that
for any i there is a (ej»)?":l which is an Hilbert basis of Hs and a (I;) C N such
that Tj = ) ;) < X, € > e} and that

J
E o = IHS.
i
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For a sequence of positive numbers (a;) C Rt. We define

which is well defined as a mapping from L°(i,S) — L°(, S). Then for any
measure V equivalent to [i such that H(V|[1) < oo we have

HOWR) 2 Y e HTSITiR).
i
Proof. Let v be the measure associated with D by Definition 7.1 so that Wjv = 7.
By Proposition 8.1 H(V|it) = H(v|n). Hence Proposition 8.3 with # = 1 implies

HEWR) = Holp) = Y e HTDIT ).

i O
Remark 8.2. Note that in the case S = R? we have 7; = /fi and if we note A the
Lebesgue measure and if we assume that v = XA for an X, we have H(XA|X) >
Y o H((7' X)A|7' 1) where T'[1 is the law of a standard Gaussian vector with
range in 7T (Hs). The relationship of this equality with the Brascamp-Lieb inequality
was shown in [2] as it is also recalled in [18].

8.3 Ustiinel’s Criterion in Terms of Variance and Shannon’s
Inequality

In finite dimension, Shannon’s inequality involves some entropies with respect of
the Lebesgue measure. When we seek to write it in terms of Gaussian measures
some correlation terms appear since we then lose the invariance under translations.
Here we use a trick to recover the property of invariance under translation by
performing a change of measure. Under this change of measure Theorem 8.2 takes
the form of Corollary 8.1. The variational formulation of the entropy is then written
in terms of variance instead of in terms of energy. In Theorem 8.3 we get the abstract
Wiener space version of the Shannon inequality as a consequence of two facts: the
information loss on the path space and the addition property of the variances of
independent random variables.

Corollary 8.1. Let (2, F*,P) be a complete probability space with a continuous
Siltration (.EP),G[OJ] which satisfies the usual conditions. Let (B;):e[o,1) be a ]-'IP S -
valued Brownian motion on that space, and U : [0, 1] — S be any (F;)-adapted
continuous process such that UP ~ . Further assume that U is of the form U :=
B + uwhere u € L2(P, H), and let j1y be the probability defined by

d
U= o8V my),
du
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where my (t) = fot Eplits]ds. Then
2H(UP|py) < Varp(u),
where
Varp(u) = Epllu—my|].

Let U be the dual predicable projection of u := U — B on (F}') which is the filtration
o (Us, s <t) augmented with respect to P. Then we have

2H(UP|py) = Vars(u) — €,

where
~2
ev = (Ep[lu—1l3])>.

Moreover; the following assertions are equivalent:

s u=Tu

e VoU = BwhereV = Iy + v is the Girsanov shift associated with UP.
° 2H(U]P’|,uU) = Var]p(u).

* 2H(UP|p) = Ep[|U — BJ}].

Finally, for any probability v which is equivalent to the Wiener measure [,

du,
d = IO(SWmV)’
I

where m,(t) = —fot E,[vs]ds = —E,[v;]. Then

2H(v|py) = inf ((Vare(U — B)}).,

where the infimum is taken on all the (Q,FP, (‘EP),G[O,I],P) and all the (U, B)
defined on it as above and such that UP = v. Moreover, we can always find (at
least) one space (2, FE, (F¥)iep.1), P) and a (U, B) defined on it with the same
properties as in the first part of the claim, which attains the infimum. Finally the
optimum is attained by the same shifts as the variational problem of Theorem 8.2.

Proof. From the definitions and Theorem 8.2, we have

d
H(UP|uy) = H(UP|p) — Ep [m % 0 U}

Imy |3

= HUP|p) - —
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2 2

[l luly uly 1 Imuly
P[z 2 L2 2

which is the main part of the result. Note that if UP = v we have

::Eppmz}_|mmz

my = / Eslits]ds
0

= /0. Eplt;]ds

- _/' Ep[is o Ulds

0

- _/' Eu[bs o Ulds

0
:m\)

so that u, = py. By taking (Q,FP, (‘EP),G[OJ],P) = (W, F,(F)iep.], V), and
(U,B) = (Iw,V), where V = Iy + v is the Girsanov shift associated with v, we
know (see Proposition 3.1) that the optimum is attained. O

The next lemma is the price to pay for working with Gaussian measures instead
of the Lebesgue measure (which is not defined when dim S = o0).

Lemma 8.2. Let v be a probability equivalent to i such that H(v|t) < oo, and let
V a probability equivalent to [i. Further assume that

Wll) = /V\
and let d
L= p(s" m),
i
where m,(t) = —fot E,[vs]ds = —E,[v] where v is the Girsanov drift associated

with v, v, = W,v and

dA/\ m/\z
li” (x) :==exp (< X, m~> —I"—HS) ,
du v 2

where m is the mean of V;. Then

HGI) < Hvl) (3.28)
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Moreover, if v is the measure associated with V by Definition 7.1, the inequality
(3.28) is an equality.

Proof. Since [ is centered Viv = & and Wjv = ¥ we have m,,(1) = —E,[vi] =
f dv(x)x = m-~. Hence by applying two times the Cameron-Martin theorem [15]
onceon W,onceon S, Wip, = (Wi +m,(1)pn = (Wi + my)p = (Is +m/v\)ﬁ =
[t~ Since we also have Wiv = v, we then get H(V|it~) = H(Wiv|Wip,) <
H(v|w,). Moreover if v is the measure associated with U by Definition 7.1 it is
straightforward to check that we have an equality. O

We now give an abstract Wiener space version of Shannon’s inequality.

Theorem 8.3. Let (V') be a sequence of probabilities equivalent to i such that
H('|W) < oo. For a sequence (p;) of positive reals such that

Zpi =1,
i

we set V> = O Vi) ®i V' where 1; is the projection on the i th coordinate of
the product space S™. We further define a family of measure (1) by

di! =R m; |3
W _ <<m N _'_Hs),
du 2

where m; is the mean of V' and we set

dAZ

=~ 12
-/ Dim;
5 :eXp<<X,E JE%>——|Z’ 5’ '|HS).
K i

Then we have
HO®|E%) <> pHE' ).
i

Proof. For any i € N let v’ be the optimal measure associated with D' by
Definition 7.1, and let V' be the Girsanov shift associated with v’. For any i we also
note ' the measure associated with v’ on W by Lemma 8.2. From Corollary 8.1
we have

H' ') = Var, (V! = Iy)].
Thus Lemma 8.2 yields

HG|Y) = Var, [(VF = Iy)]. (3.29)

We set Q¥ = WV, P¥ := ®,v, and we define the filtration (g,?) by gf =
o({{Vi o Pri}ien,s < t}) for any t € [0,1], where Pr; is the projection on the



3 Local Invertibility of Adapted Shifts on Wiener Space and Related Topics 63

ith coordinate of W!. We also set G* := GZ. Then from Paul Levy’s theorem,
=Y /piV' o Pr;is a (GF)-Brownian motion on (2%, G*,P¥). On the
otherhand U* := )", ./p; Pr; is adapted to (G). Hence Corollary 8.1 applies and

we get
HU*P*|us) < Varps(U* — BY), (3.30)

where p* is the measure defined in Corollary 8.1. Since W, (U*P*) =
Wi Y /Pi PriP* = 7* Lemma 8.2 yields

H®®|is) < Varps(U* — B¥). (3.31)
The property of the variance of a sum of independent variables writes

Vargs(U® — B¥) =Y p;Var, (V' — I). (3.32)

By gathering Egs. (3.29), (3.31), and (3.32) we get the result. O

Remark 8.3. In the finite-dimensional case S = R” with the Lebesgue measure A
on it, let (X;) be a sequence of independent random elements with values in R”
defined on a space (2, F,P) such that H(X;P|1) < oco. Shannon’s inequality can
be written:

> piH(X'P]) = H (Z ﬁXﬂP’M) , (3.33)

where (p;) is a sequence of positive numbers such that ), p; = 1. However,
the Lebesgue measure is not defined in infinite dimensions and we had to write
it in terms of Gaussian measure (which still makes sense in infinite dimension as a
Wiener measure). Let y be the standard Gaussian measure on R”. The trick to keep
a formula as simple as possible is then to introduce the following measures: for any

i we set
y{) 1ex(_u—Ewmj
@mi " 2
and )
dL( o] exp(_(x—zi JHEX) )
(m)? 2
We then have
dX'P dy!
H(X'P|y') = Eyip [m o } Eyip [m di}

. dyi
= H(X'P|A) — Exip |1
(KB~ B |0 |
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(X0 — B o
2 2

= H(X"JPM)—/dA(x)
— H(X'P|A) = Vars(X') — %ln(Zn).

Since the X' are independent we have Varp(}, /piX") = Y ; piVarp(X;).
Hence if we set v* = > /Di XiP we get

Y P HX'PlY) — HO®y™) = Y piH(X'PA) — HO™|A).

1 1

Hence Shannon’s inequality may be written H(v*|y¥) < Y. p; H(X'P|y"). This
is exactly what we proved in this proposition.

9 Invertibility of the Free Schrodinger Shifts
in the Perspective of Optimal Transport

In this section we will handle the following sets.

Definition 9.1. Let D be a probability equivalent to 1 then we set
R(w.0) :={ue L'(u, H) : Ujp =V where U := Iy +u}.

and
Ra(, V) := LY (1, H) N R(, D).

In Sect.7 we have given mild sufficient conditions for the invertibility of free
Schrodinger shifts. It also involves a generalization for the representation formula
of [18] which is given in Proposition 9.1. We recall that in [18] Proposition 9.1 is

proved on the classical Wiener space under the condition that :% = e/ where f is
s

C? with all its derivatives bounded. Moreover the latter does not relate the equality
case to invertibility but rather to right invertibility.

Proposition 9.1. Let V be a probability equivalent to [L with finite entropy, i.e.,
H®|) < oco. If dim S = oo further assume that :7"\ € L°°(j1). Then we have
m

2HO|R) = min ({E.[lul}] - u € Ra(.)}). (3.34)
Moreover the infimum is attained by a U := Iy + u which is the inverse of the

Schrodinger shift (see Definition 7.1) associated with V.
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Proof. LetV be a probability equivalent to ji. From Eq. (3.12) for any u € R(u, D)
we have
H@) < HUp|w). (3.35)

Then Theorem 8.2 implies that
2HUulp) < Eplluly]- (3.36)

Together with Eq.(3.35) it yields the inequality in Eq.(3.34). Moreover from
formula (3.12) the equality in Eq.(3.35) is attained by the optimal measure
associated with v. By applying Theorem 7.1 (or Theorem 7.2 if dim S = o0) we get
the existence of a # which attains the equality in Eq. (3.36). Hence the inverse of the
free Schrodinger shift associated with ¥ attains the optimum in Eq. (3.34). O

Naturally related questions are whether a similar representation formula holds
for d(V, 1) (see definition 3.1) and whether the infimum is also attained by an
invertible shift 7 with a given marginal D. The answer is given by Proposition 9.2.
Also note that the law of the nonadapted shift 77 which appears in the statement
of ProEosition 9.2 is the analogous in the nonadapted case to the optimal law

vi=%Low,.
dp

Proposition 9.2. Letr V be a probability equivalent to [ of finite Wasserstein
distance with respect to [i. Then d(V, L) is given by

d(V. ) = inf ({E,[lul}] : u € R(1.9)}) (3.37)
and the infimum is attained by an invertible shift T such that
WioT =T5 o W,. (3.38)

Moreover, let'S be the inverse of T,ie,u—a.s. ToS =IyandSoT = Iy. We
also have

WioS =2550w, (3.39)

where TS and S5 are the solutions of the Monge problem (resp. its inverse) on S
defined in Theorem 8.1.

Proof. We recall that Is denotes the identity map on S. We note R(jt, V) the set of
the mappings u5 € L%(ji, Hs) such that US[i = D where US = Is +u’. It may be
seen as a subset of R (i, V). Indeed for any such u® we can seti(u%) = fo uSoWids.
Obviously i (u*) € R(u,V) so thati (R(,V)) C R(i,v) and

inf ({E,.[li @®)|; : u® € R(@.D)}) = inf ({EL[Julfy : u € i(R(A.D))})
> inf ({E,[lul}; : u € R(k.D)}).
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Of course we have 5 5
i) = B2 [0, ] (3.40)
and
A, ) = inf({Eﬁ[lusli,S S € R(ﬁ,ﬁ)})
= inf ({E.[li @®)}; : u® € R(T.D)}).

Hence we get
d(¥, ) = inf ({E.[lul}] : u € R(p.D)}). (3.41)

On the other hand for any u € R(u, V) Jensen’s inequality yields

Ey [lmlfg] < Ep[luly] (3.42)

and since (U; x Wi)u € (v, 1) we have

I Juan |
V. n) <E, > |- (3.43)

The inequalities (3.42) and (3.43) clearly yield

d, 1) < inf(% E, [%} ‘ue R(M,ﬁ)}) ) (3.44)

Together with Eq. (3.41) the inequality (3.44) yields Eq.(3.37). Now we set T :=
Iy + i(tS) where t5 := TS — I, ie.,

T:(0,0)€[0,1]xW — T, := W, + 015 o W,

and we want to show that it attains the infimum of Eq. (3.37). Indeed by hypothesis
we have Eq. (3.38) so that T; . = T57i = V. Hence

t:=T—1Iy € R(k, V)
On the other hand Eq. (3.40) yields
EIT = Iwly] = EAlITS = Isl, )
=dO, ).
Hence ¢ attains the infimum of Eq. (3.37). We now prove the last part of the claim.

It is easy to see that if we set S, := W, + 055 o W, where 3% = SS — Is we
then have
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(To§)0=W6+a§'SoW1+oTSo(W1 +35 o W)
= Wg+a(TSo§S—IS)oM
=W,

which shows that T := Iy + ¢ is invertible with inverse S. O

Under the hypothesis of Proposition 9.1, we then have

d(@.v) = inf ({E,[lul3] : u € R(1.9)})

and
2H®, ) = inf ({E.[Julf] : u € Ra(n.D)}).

Since

we get again the Talagrand inequality. Moreover in the proof of Proposition 9.2
the existence of T clearly follows from the existence of an invertible shift on
S which solves the Monge problem. This suggests to investigate the connection
between the invertibility of the Schrodinger shifts and the problem of invertibility
on S. For that reason henceforth and until the end of this section we assume that
S = Cy([0, 1], Rd) (however our results extend to the case where S is an abstract
Wiener space with a time structure as in [33]). Let ¥ be a probability equivalent to
1L, we then have the existence of a Girsanov shift V5 := I's + v such that i — a.s.

£ :exp _8WSVS_|VSﬂ
du 2

and such that ¢ — V5 is a Wiener process under 7 on S. We recall that in that case

N ' . .
§""1S denotes the stochastic integral of v5 with respect to the coordinate process

t — WS on S. L1, Hs) is the subset of the elements of L°(ji, Hs) which are
adapted to the filtration generated by the coordinate process on S. We call v¥ (resp.
VS := Iy +v5 where I is the identity map on S) the S-Girsanov drift (resp. shift)
associated with V. In this case we also define

R(@.V) = {ue L%u, Hs) : UL =V where U := Is + u}

and R,(,v) = R(x,v) N L%, H). Propositions 9.3 and 9.4 complete the
analogy between Eqs. (3.34) and (3.37): in particular Eq. (3.48) has to be compared
with Eq. (3.38).

Proposition 9.3. Let V be a probability equivalent to i on S = Cy([0, 1], R?)
which is such that :7"\ € L*®(1), and let V := Iy + v be the Schridinger shift

associated with V (see Definition 7.1). Then we have

WioV =VSoW, (3.45)
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where VS = Ig + V5 is the S-Girsanov shift associated with V. If we denote by
U := Iw + u the inverse of the Schrodinger shift we also have equivalently

SoU =W, (3.46)

and
Eullu i) = Epllulz).

In particular the following variational formula holds:

2
HOR) = E, [_MLHS]
2
inf( E, [IU”Z'”S} ‘ae Ra(u,ﬁ)» .

Proof. Leta € R,(,7) and let @1 be the projection of a; on the closed subspace

{00A,:0€ L2V, Hy)}.

Since E
(8W H)OAI _SWI(Q OA]) =< 0 OA],al >Hss
we get
Epl<ai.00 Ay >p) = B [67°0) 0 1] = E, [8"(0 0 4))]

- EA[é’WS ]
= [8VS ] EA <v 0 >n]
:—EM[<V 0A1,90A1 >Hs]'

Hence

Ol +vSod; =0
& — a.s. In particular together with Proposition 3.1 it yields
2HOIR) = By [1v* (]
[ V2o, |Hs]

Ey [lai" 1]
<E, [lalng]‘
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Then Jensen’s inequality implies
2H(IR) < Eyllaly] (3.47)

for any a € R,(u, V). If we apply this result to the optimal shift U := Iy + u
which is the inverse of V' and Theorem 8.2 we get

2HO|) < Eyllul}y] = 2H(|p) = 2HOIR),

where the last equality is a consequence of Proposition 8.1 and where v is the
optimal probability associated with D by Definition 7.1. Hence in that case the

inequalities are equalities and mY = u; sothat uy = —vS o U; and Eq. (3.46)
is proved. By applying V to both terms of Eq. (3.46) we get Eq. (3.45). From this
the result comes easily. O

Proposition 9.4. With the same hypothesis and notations as in Proposition 9.3, let
V be a probability equivalent to [i such that 27”\ € L*®([1). Moreover, let U be the

optimal shift given by Proposition 9.1 which is the inverse of the Schrodinger shift
associated with V. Then the following assertions are equivalent:

o There is a measurable mapping US : S — S such that . — a.s.
WioU =US o W. (3.48)

o Thereisau’ € Ry(,V) suchthat US = Is+u® is the both sided [i almost sure
inverse of VS .= Iy +vS wherevS is the S-Girsanov drift associated with V.

Moreover, in that case, both the US are the same and
2HEIR) = Exflu’ )
Proof. Assume that there is a mapping U® such that Eq. (3.48) holds. We have
USi=USoWju=Up="7.
Moreover, by Eq. (3.46) of Proposition 9.3, we get

B(loeS:V3oUS=1Is})=pn({oeW:V5oUS oW =W})
=pn({weWw: :VSolU =W})
= 1.

Hence VS o US = Is i —a.s. Since US]i = ¥ ~ [i Proposition 4.1 also implies
that i — a.s. we have US o VS = I5. Hence U? is the both sided inverse of V5.
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This implies that 1 — UtS generates the same filtration as the coordinate process
on S. Let u5 = US — Is. Since u5 = —vS o US, E};Hus i) = EVIE] =
H(V|1). Moreover, since v5 € L(fi, Hs) is adapted to the filtration generated
by the coordinate process on S, u® is also adapted to the filtration generated by
US and hence to the filtration generated by the coordinate process on S, i.e.,
uS € LO(1, Hs). Conversely assume that US = Iy + u® where u5 € R, (1, V)
is the inverse of V5. By applying U to both terms of formula Eq.(3.46) in

Proposition 9.3 we finally get Eq. (3.48). O

10 An Extension of Ustiinel’s Criterion for Some Stochastic
Differential Equation with Dispersion

We adopt special notations throughout this last section. We note A% the set of
the progressively measurable processes (with respect to the canonical filtrations)
(g, s € [0, 1]) with values in R? ® R”. Let (o5, s € [0, 1]) € A%?. We first consider
the following stochastic differential equation:

We further assume that (o, s € [0, 1]) € A% satisfies the following condition:

(H1) o is such that Eq.(3.49) has a unique solution 7 in the sense of the
probability law.

Let P € P(W) be any Borelian probability on W. We note F* be the completion
of B(W) with respect to . We recall that P has a unique extension on F* which we
still note IP. We also note () the usual augmentation [3] with respect to P of the
filtration generated by the coordinate process t — W,. We now focus on equations
of the form )

dX, = 0,(X)(dB, — B; o Xdr); X, =0. (3.50)

Without loss of generality we may always assume that there is a predicable (és, s €
[0,1]) € A% such that B, = 0,*&,, where /" is the transpose of ;. We have to in-
troduce some other notations in order to set our second hypothesis. ForalP € P(W)
M (P) (resp. ME’IOC(IP’)) will denote the set of the continuous square integrable
(FF)-martingale (resp. continuous locally square integrable (F! )-martingale) on
(W, FE,P), vanishing at zero. For any N € MS(P) (resp.in M5 (P)) we set
L2, < N >) = {(d5,5s € [0,1]) € A" : E,[f) a2d < N,N >,] < oo} (resp.
L£2.(P,< N >):= {(d55 € [0,1]) € A" : P—a.s. [} a2d < N,N >,< oo}).
Lett — M, € RY and (ity,s € [0,1]]i;, € R?) be such that for any i € R
M e MS™(P) and (i) € L2 (P,< M' >)andlett — A, € R bea
continuous and adapted process such that for any i, 1 — A} is of finite variation.
For U := M + A, we set the following notation of the stochastic integral:
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1 1
§Vu = Z/ idM! +Z/ idAl,
i 0 i 0

In particular on (W, F7, ) the coordinate process is a semimartingale which enables
us to set

<8WE Wk >1)
).

Note that it is straightforward to check that < §"&,6"¢ > = |B3,. With this
notation our second hypothesis will be:

(H2) The uniqueness in law holds for Eq. (3.50); 8 € L%(n, H) and

(=857 E) = exp (—8Ws -

E, [po(_SWg)] =1

We recall that by the Girsanov theorem (H1) and (H2) imply the existence of a weak
solution for Eq. (3.50) [13]. We note v the law of this solution which is unique by
(H?2). Proposition 10.1 is nothing but an extension of the old result of Follmer we
recalled in Sect. 3. It is probably well known, but we prefer to recall the proof for
the sake of completeness.

Proposition 10.1. Assume that (H1) and (H2) hold and that v (resp. n) still
denotes the law of the unique solution to Eq.(3.50) (resp. to Eq.(3.49)). Then we

haven —a.s.
dv

o= 0% (—=8"€) (3.51)
n
(in particular v ~ n) and
2H(v|n) = E[IBI]. (3.52)
Proof. We set
dv
T = p°(=8"¢).
n
Since for any i € [1,d] ¢t — W/ is a continuous local martingale N := —§" 7 £ €

M5 and < N,N >,= |B|%. By applying the Girsanov theorem for any f €
C?(R?) we have

t
f(I/Vt) - f(I’V()) —/ (Af)(s’w)ds c M;,IOC(T)')’
0
where (repeated indices are implicitly summed over)

(05 ()0 (@) <
(Af)t, 0) = S+ai,jf(m) — (05(@) By (@) 0; f(W)).
Hence 7V is the law of a solution to Eq.(3.50) and from the uniqueness v = V¥
which implies Eq. (3.51). We now turn to the proof of Eq. (3.52). First assume that
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H(v|n) < oo. Then we set for any n € N ¢, = inf({t :< N,N >,> n} A 1. By
the Girsanov theorem, 1 — N+ < N%, N™ >, is a martingale under v so that
E,[N,,+ < N, N >] = 0. Therefore

E,[<N.N >] = E, [ lim < N, N >tn]
n—>o00
<liminf E, [< N, N >_]
n—o00

= liminf E, [-2N,, —2 < N.N >, + < N.N >, ]

n—>o00
i NN
= 2liminfE, | —N,, — ¥}
n—00 2

4
— 2liminf E, En[—vlfz”]}
dn

n—o0 |

T v
= 2imint £, | B 17, En[d—nlﬁn]}
<2H(v|n),

where the last line follows from Jensen’s inequality. Hence H(v|n) < oo implies
E,[< N,N >] < co. Conversely, if E,[< N, N >{] < oot — N, is a martingale
under 7 for the filtration (F;"). Hence the Girsanov theorem implies E, [N 1] =0,
where N = N+ < N, N >_.We then get

2

[< N,N >1i|
= E | "1
2

~ <N,N >
Hln) = E, [—Nl + —1}

Hence H(v|n) < oo if and only if E,[< N, N >] < 0o, and we always have
2H(v|n) = E\[< N, N >/]

which is Eq. (3.52). O

We still assume that (H1) and (H2) hold and recall that  (resp. v) denotes the
law of the unique solution to Eq. (3.49) [resp. Eq. (3.50)]. We further assume that
the drift term f satisfies the following finite energy condition.

(H3) E,[IBI}] < oc.

The next theorem provides an entropy-based criterion for strong solutions. The
notion of perturbation of the identity (cf. [30]) has to be generalized by some U
of the form
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U= /.a,(U)(dW, + frdr).
0

Theorem 10.1 is a generalization of Theorem 7 of [30] (take o, = 8tJ for any
t €[0,1).
Theorem 10.1. Assume that (H1),(H?2), and (H3) hold. Let U : W — W be such
that

Up=v (3.53)

andt — U, is adapted to (F!') which is the usual augmentation of the coordinate
process t — W; with respect to the Wiener measure . Further assume that U
solves

U= / 6, (U)(dW, + fuds). (3.54)
0

Then we have
2H©[n) < E,lB"I7] (3.55)
with equality if and only if dt x du — a.s. p* + ,3, oU =0, ie., if and only if

U is a strong solution of Eq. (3.50) on (W, F*, i) with the filtration (F!"), and the
Brownian motiont — W,, i.e.,

U= /'ot o UdW, — B o Udr).
0

Proof. We set N = [;0,(U)dW; and u = |[; 0,(U)B"ds so that from the
hypothesis U := N + u. Note that for any i € [1,d] M’ := W' — [-[o,f,]'dt €
ME’IOC(U). We then have by definition

<Mg ME > =< 8"E 8V E > 1= |83 (3.56)
Together with (H 3), Eq. (3.56) yields
E,[6Mg] = o. (3.57)
Moreover, from Eq. (3.53) we also have
<8V(EoU),8V(EoU) >1=<8"E,8"E> 0U = |BoU,.  (3.58)

Since the finite energy condition also reads E,[|§ o U|%] < oo, together
with Eq. (3.58) it yields

E 8V (EoU) = 0. (3.59)

We then have
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E[IBly] = Ev[< 8.8 >ul

1
=E, [/ <0}, By >pa ds}
0
l . .
=F, [/ < &, 04Bs >pa ds}
0

=—E,[8"¢] - E,[6"¢]
= —E, [§"¢],

where the last equality follows from Eq.(3.57). On the other hand Egs. (3.53)
and (3.54) yield

E, [IBI5] = —Eu[87 (0 U)]
=—E,[N¢EoU)]|—E [<u.boU >y]

=_E;L[8N(SOU)]_E;L[/OI<USOUB?aéSOU>Rd ds}

Finally Eq. (3.59) yields

1
E[|B%] = —E, /0 <o0,0UB" &0 U >pa ds}

- ol
=-E, / < Bi(07E) o U >pa ds:|
| Jo

1
:_EIL / <ﬂg,ﬂsOU>Rd ds}

= —E[< B BoU >nl.
Proposition 10.1 then implies
2H[n) = EIBIy] = —Eul< B BoU >yl (3.60)

The result follows directly from Eq. (3.60). Indeed the Cauchy—Schwarz inequality
yields

2H|) = ~Eyl< .o U >4
< VEIB By Eull o UP)
< VEIB By ELBI)
= VEAIB 1 V2HG
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which implies inequality Eq.(3.55). Moreover, from the case of equality in the
Cauchy—Schwarz inequality, we have an equality in Eq. (3.55) if and only if ©—a.s.

B+ BolU =0. O
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Chapter 4
Dilation Vector Field on Wiener Space*

Hélene Airault

Abstract We consider the heat operator Ay, heat equation, and heat kernel
measures (V;);>o on Wiener space 2 as explained in Driver (Contemp. Math.
338:101-141, 2003). We define the notion of heat dilation vector field associated
to a family of probability measures (u/);>0 on 2. Let @ € €. The vector
field V on Q is expressed for F(w) = f(w(t),w(t),...,w(t,)) as VF(w) =
v (wt), o(t),...,o,)) where vf = Y i_, xk%. The vector field V' is
shown to be a heat vector field for the heat kernel measures (v;);>o. We project
down “through a nondegenerate map Z”, Ornstein—Uhlenbeck operators defined on
Qby L;F =tAy F — VF. We obtain a first-order partial differential equation for
the density of the random vector Z. We compare this differential equation to the
heat equation and to Stein’s equation for the density.
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1 Introduction

On the path space of a Riemannian manifold, see [2], different Wiener type measures
(p;) exist corresponding to the variance t. A heat operator (A,) associated to (i, ) is
a family (A;);ej0;+o0[ Of elliptic operators on functions ¢ defined on the path space
and such that

d
/ Adpdp = / i, @.1)

whenever the integrals in Eq. (4.1) exist. A dilation vector field associated to (j,) is
a vector field V' defined on the path space such that

d
l&/‘l&dﬂr :/(V¢) dpt. 4.2)

In [2], a dilatation vector field on the path space is obtained by constructing a
Laplacian on the path space and integrating by parts. This shows a rescaling of
Wiener measure under dilations. In [9], heat dilation vector fields have been defined

on loop groups. For the space R”, let x = (x1, x2,...,x,) € R", we define
1 1 ¢ d
Yf(x) =5 x-(grad f)(x) == > x;=—f. (4.3)
2 2 = an

Then Y is a dilation vector field for the gaussian measures
e = Qrt) "% exp(—(x? + x3 4 -+ -+ x2)/2t)dx1dx; - - du,. (4.4)

Of course, it is not the only one. Moreover, fixing ?1, f, . . . positive real numbers, it
can be proved by integrating by parts that Y is a dilation vector field for the measures
(ﬂt)tZO on R”,

W = Ry(x1,x2,...,x,)dxdx; - -+ dx,, 4.5)
where
1 x?
R, (x1,x2,...,%X,) = exp | ——L
(1.2 ) V2t p( 2t1t)

V2 (t, — )t P 2(ty — 1)t

_ 2
x ! exp (— (X = Xn-1) ) . (40
\/27'[(1‘” —tn_l)l z(tn _tn—l)t

The objective of this work is to relate Laplace operator on Wiener space, via a
dilation map, to a system of PDEs given in [1] for the density of a smooth random
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vector on Wiener space. This system of PDEs has been inspired by the analysis
of Nourdin and Peccati, [10]. While the system of PDEs in [1] may not determine
the density of a smooth vector on Wiener space, by using the device of dilation,
interpreting the dilation parameter ¢ as a time parameter, we establish in the present
work that a time-dependent version of this system of PDEs, coupled with a single
dilation PDE whose coefficients are determined by the dilation vector field on
Wiener space, takes to the heat equation on Wiener space which was defined by
Driver and whose solution is known to be unique. This situation is in stark contrast
with the uniqueness obtained by Nourdin and Viens in [11], for a density equation
for Malliavin differentiable scalar random variables on Wiener space. Our point of
view can be observed in finite-dimensional space by the following considerations.
The gaussian density on the real line,

1 x?2
X) = exp| — 4.7
is solution of any of the three differential equations

d d?

ar — Py (x) = d T2 Prey (X)), (4.8)

d

P () = = (5 pu, (), (49)
d
a(ztl Din (X)) = —x pi,(x). (4.10)

These three equations are related: Consider a differentiable function f(¢, x) defined
fort > 0, x € R and such that %‘xﬂf(t,x) = 0. If f(z,x) satisfies two of
the three Eqgs. (4.8)—(4.10) then it satisfies the third one. For example, if f(¢, x) is
solution of Egs. (4.9) and (4.10), we replace the right hand side of Eq. (4.10) into
the right hand side of Eq. (4.9), then we find Eq. (4.8).

Similarly, in dimension n, let t;, #,, ..., t,, and t be positive real numbers. We
put x = (x1, X2, ..., X,). The function defined on R” by Eq. (4.6) is solution of the
heat equation

d
R = Z i At (a yr ,) (x). (4.11)

]kl

On the other hand, R;(x) is also solution of

d 1 d d
—R =—— | —(xR — (2R R 4.12
7 ¢ (x) T [3xl (x1 R;) + 5%, (2 Ry) + -+ t):| ( )
just as well as a solution of the first-order system:
taR+tAtaR+tAtaR+ Rx1
—_— —_— —_— = —X -,
19y X 1 28 1AL - 1 p
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JR o0R o0R 1
HAh— +h— +HhAtz— + -+ =—x2 R X —,
0x1 dxo ax3 t
0R JR 0R 1
HhAtz— +bHbAl3— +13— 4+ -+ = —x3 R X —,
axy dxy ax3 t

(4.13)

Moreover, if we carry in Eq. (4.12), the x; R X % given by the right hand side of
Eq. (4.13), we find Eq. (4.11). Consider a differentiable function f(z, x) defined on
10, +o00o[x R". If f(t, x) satisfies Egs. (4.12) and (4.13), then it satisfies Eq. (4.11).In
the same way, if f(z, x) satisfies Egs. (4.11)—(4.13), then it satisfies Eq. (4.12). Our
purpose is to use Malliavin’s projecting down and lifting up through a nondegenerate
map, see [6], p. 75, to analyze the differential equations giving the density of a
random variable. We shall lift Egs. (4.8)—(4.10) and (4.11)—(4.13) to Wiener space
Q.Letz €[0,1]. Let F = {F(w) : @ € 2} be a smooth random variable on 2. Let
v be the Wiener measure on 2. We define the dilated Wiener measure v, on 2 by

/ F(w)dv, () = / F(Vt w)dv(w). (4.14)

The dilation vector field V' on 2 extends the formula
“ d
VF — 1) ——
(w) E w(t)) o

j=1

f' (w(t1), 0(t2), ..., 0(ts)) (4.15)
J

for simple random variables F(w) = f(w(t),w(t2),...,w(t,)), where f is a
bounded differentiable function on R”. On Wiener space, the dilation vector field
is solution of

d 1
The Laplacian (or heat) operator on Wiener space is defined by
Ay F(w) = ZD,%F(w), (4.17)
heB

where B is an orthonormal system in L?([0, 1]) and D, is Malliavin derivative. By
[4], we have

d 1
GV (F) = sv(AuF) with limv(F) = F(0). (4.18)
t—

Let £ be the classical Ornstein—Uhlenbeck operator on Wiener space. We define the
dilated £; by

(ch)(a»:(cF,)(%) ad F(@) = F(Viw).  (419)
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We prove (Proposition 2.3) that
L, =tAy—V. (4.20)

Let Z = (Z,,...,Z,) be a smooth nondegenerate random variable on Wiener
space. The conditional expectation (relative to v,) of a random vector U with
respect to the random variable Z taking the value x is denoted E,,[U | Z = x].
In Sects. 3 and 4, following [1], taking conditional expectations, we project on R”,
the differential operators on Wiener space given in Egs. (4.16), (4.20), (4.18). For
that purpose, we define the conditional expectations

ajt,x) =E,VZ;|Z=x], Aj(t.x) =E,[LZ;| Z =X]
Bij(t.x) = Ev[(DZ;|DZi) 2qoay | Z =x].  y;j(t,x) = Ey[AuZj| Z = x].
4.21)
where x € R". From Eq. (4.20), we deduce for j = 1,...,n,
Aj(t,x) =ty;(t,x)—a;(t, x). (4.22)

For fixed ¢, the density of the vector Z under v, is denoted by p;. As a function of
(t,x) € [0, 1] xR", the density p = {p,(x)} satisfies the dilation PDE (projection of
the differential equation (4.16) solved by the dilation vector field on Wiener space):

d 1 <

d
="y ; o, @0 X p(). (4.23)

See Proposition 3.3. As a function of x € R", for every fixed ¢, p, satisfies the

dilated version of the system of PDEs in [1]: forall j = 1,...,n, and every fixed 7,
9 1
> e B 0P () = 2 pu() Eu[£:Z;] Z = 3], (4.24)
k=1

From Eq. (4.20), we prove that this system of n 4+ 1 PDEs given by Eqs. (4.23) and
(4.24) implies that p as a function of (¢, x) € [0, 1] x R”", also solves the equation
which is obtained as projection of the heat equation (4.18) on Wiener space through
the random vector Z, namely,

n

d 1 a 1 02
== o 0P + 5 ]Zk o, P 00 (). (425)

J=1

See Proposition 3.2. If Z(w) = (o(t1),w(t2),...,w(t,)), then a;(t,x) = Xx;,
Bk, x) =t; ANt, y;j(t, x) = 0, we find that Eq. (4.25) becomes Eqgs. (4.11) and
(4.23) becomes Eq. (4.12).
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2 Heat Measures and Laplacian, Dilation Vector Field,
Ornstein—-Uhlenbeck Operators on the Wiener Space

We consider vector fields and differential operators on Wiener space. We recall
some definitions relative to Malliavin calculus, see [12]. To be self-contained and
harmonize the notations, we write identities like Eq. (4.45) that can be found in
[12], but we give a different proof. The reason is that in this work, we do not
develop the Wiener chaos approach and we restrict mainly to integrations by parts
for Wiener integrals. In Lemma 3.1, for example, we again keep the point of view of
integration by parts. Likewise, we restrict to the infinitesimal version of Cameron—
Martin formula, see [3,4], p. 124. Our only account to chaos will be as a complement
in Sect. 5 to relate them to the dilated Ornstein—Uhlenbeck operator L;.

Let @ be the Wiener space of continuous real valued maps @ defined on [0, 1]
and such that @(0) = 0. It is a Banach space with the norm ||w|| = sup, ¢ 1) |@(7)].
Let H be the Cameron—Martin space of continuous, real valued differentiable maps
defined on [0, 1]. The space H is a Hilbert space with the scalar product

1
(h1]h2) =/0 ' ()l (s)ds. (4.26)

Let BB be an orthonormal basis of H, then ), ;s h(t1)h(t2) = t; At,. The Malliavin
differentiation operator, see [5], is given for F' : Q2 — R by

1
DyF(w) = ling) —[F(w + €h) — F(w)]. (4.27)
e—0 €
The differentiation operators D on Wiener space, see [12], p. 24, satisfy
1
DyF(w) = / DsF(w)h'(s)ds Vhe H. (4.28)
0

We define DF(w) as element of the Cameron—Martin space such that for any
heH,
(DF(w)|h) = Dy F(w). (4.29)

See [12]. Then the inner product of two Malliavin derivatives DF and DG is
expressed as

1
(DF|DG) = / D, F(w) D;G(w) ds. (4.30)
0

€112,y (a)) = (w(tl)s w(ZZ)s O] CL)(Z,,)). (4‘31)
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If F = foeyy,.. 1, where f: R" — R is differentiable, then by composition of
differentiation,

DyF(@) = (%f) (0(t), 0(6r), ..., o)) X h(t;). (4.32)
j=r 2T
n 32
DiF@) = . (G f ) @)oo b b 433
jk=1

2.1 Laplacian and Heat Kernel Measures

The Laplacian or heat operator Ay on Wiener space is defined by Eq. (4.17). We
have

> h(tp)h() =t; Aty (4.34)
heB

Thus, if F = foe,y,...,, we deduce

n 2
AyF)= Y 1j Ak (ax?axk f) (1), 0(), ..., 0t)).  (4.35)
J

jk=1

Let v be Wiener measure on 2 and let F' be a measurable function on . Fort > 0,
we define the measures v; with Eq. (4.14). We have

/ Flwn)dvy(@) = / F) pry () dix, 4.36)

where py,, is given by Eq. (4.7), see [13] p. 135 for the physical interpretation of the
parameter ¢. If F(w) = F(J/f ®), then

D,Fi(w) = v/t D;F(v/1 w). (4.37)
Proposition 2.1. The measures v; defined by Eq.(4.14) satisfy the heat equa-

tion (4.18). Such measures v; on the Wiener space 2 are uniquely determined by
Eq. (4.18) and v, is the Wiener measure. See, for example, [4] p. 125.

2.2 Dilation Vector Field on Wiener Space 2

Definition 2.1. We define the dilation vector field on 2 by
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1
(VF)(@) =) /0 W (s) dw(s) . Dy F(w). (4.38)

heB

If F(w) = f(w(t),w(t),...,o(t,)), we have

VF (@) = (Vi f)(o(t). o(n), ... o)) (4.39)
with
Vaf)Ce1. X)) = D X, aif' (4.40)
j=t o

Proposition 2.2. The vector field V is a dilation vector field associated to (v;). For
any function F : Q — R, we have Eq. (4.16).

Proof. We prove Eq. (4.16) when F = foe, 4, 4. O

2.3 Ornstein-Uhlenbeck Operators L,

Let § the adjoint of D with respect to the scalar product on the Cameron—
Martin space, see [12] p. 35. Let v be the Wiener measure. We denote E,[®] =
| ®(w)dv(w). For a real valued functional u defined on [0,1] x €, such that

[ dv(w) fol u*(s, w)ds < 4+oo and u is adapted, we have

1
E, |:/ u(s,w)DsG(w)dsi| = E,[§(u)(w) G(w)] (4.41)
0

for any measurable functional G such that the integrals in Eq. (4.41) exist. We define
the Ornstein—Uhlenbeck £ on €2 by

£ = —8D. (4.42)

See Proposition 1.4.3 p. 54 in [12]. From Eq. (4.42), we deduce that for real valued
functionals F', G defined on 2,

1
— E\[LF(0).G(w)] = E, [ /0 D, F(0) .DsG(w) ds} . (4.43)

If F(w) = w(t), then LF(w) = —w(r) and a particular case of this last equation is
the “energy identity” E\,[ws .w.] = s A t. From Eq. (4.43), we deduce that

[er@aw =o. (4.44)
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Lemma 2.1 (See Proposition 1.4.5in[12]). Let Z = (Z,, Z>, ..., Z,): Q2 —>R"
be a nondegenerate map and ¢ : R" — R. Assume that F = ¢ oZ, then

(LF)(w) = Z(zz )(w) (Z(w))+Z(Dz DZi) o

j=1

(Z(a))) (4.45)
Proof. For G : Q — R,
1 = [ G ozn@a@)
- [@w6ID@ oz )avie)

=% [ s z@nw6ipzw )

Thus J = J; + J, with
=% / <D(G—<Z(w>)>|Dzk)dv(w>
3 [ £z G(w)%(zw))dv(w),

d
-y / () <D(£(Z<w)>wzk>dv<w)
k

32
=Y [ 6) g (Z@)(Z,1020)) dv(w).
Jk !

|

Proposition 2.3. Let F : Q — R. We define L, F by Eq.(4.19). Fort > 0, we have
Eq. (4.20).

Proof. Assume that F(w) = f(o(t), o(t2), ..., (t,)), we shall prove that
(LiF)(@) =1 (A F)(@) — (VF).

Let Fi(0) = f(Vtot), Vio),. .., Jtw(t,)). By Lemma 2.1,

(L)) = ) (o)) \/7%(‘/;0)01)7 Vio(n).....Vio(t))
j=1 !

P f
+1 () Atx) ; ax,-—axk(‘/;w(“)’ Vio(n),. .., Viw(iy))
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and

(cFl)( ) Z( w(r,)) (w(n) o(t). ... o(t))

. 0> f
+1 () Aty) ;zk: T o (0(t1), o(tr), ..., 0(ty)).

|

Remark 2.1. 1f t = 1, L; is the operator L; see [5-8, 12]. In Sect. 5, we calculate
L, F for various functionals F. From Eq.(4.20), we see that our choice for
the operators £, differs up to multiplication by ¢ from the Ornstein—Uhlenbeck
operators Ay —(1/t)V,see [8] p. 168. Let L = %—x% be the classical Ornstein—
Uhlenbeck operator on R. For a differentiable function f : R — R, similarly to
Eq.(4.19), we put f;(x) = f(+/t x) and we define (L, f)(x) = (Lf;)(x/~/1). We
have (L; f)(x) = tf"(x) — xf'(x) which is in accordance with Eq. (4.20). On the
other hand, [ (L, f)(x) exp(—(x*/2t)) (1/+/27 1) dx = 0 is the one-dimensional
analogue of Eq. (4.44).

The next proposition extends Eq. (4.43) to the measure v, and to the operator £,.
This is also a consequence of Proposition 1.4.5 p. 55 in [12].

Proposition 2.4. We have
1 1
— T Ey(LiF)@). G)] = Ey, [ / D,F(w).D;G(w) ds} . (4.46)
0
Proof. By Eq.(4.14),
1 1
J=E, [/ D,F(»).D;G(w) ds} =E, [/ D,F(\tw).DsG(Vt w) ds:| )
0 0

We put Fi(w) = F(+/t ) and G|(w) = G(+/t »). Then by Eq. (4.37),

(D F)(VT @) (DG (VT @) = (D, F)(@) - (D,G)(@).
This gives using Eq. (4.43),

1
J = ;Eul [/0 (DsF1) (@) . (DsG1)(w) dS} = _;Em[(ﬁFl)(w)-Gl(w)]

1 w
= _7Ev, [(EFl) (ﬁ) .G(a))} . q
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3 Taking Conditional Expectation and Projecting Down

Given a measure v on the Wiener space and a differentiable map Z : 2 — R", we
denote Z * v the image measure on R” through the map Z, or equivalently the law
of Z.For ¢ : R" — R, we have

/¢(Z(w))du(w) = /qb(x)d(Z xv)(x) for x = (x1,x2,...,%,). (447)

Assume that v is the Wiener measure on 2. If the map Z is nondegenerate, see
[6], p. 77, then Z x v, the law of Z, is absolutely continuous with respect to
the n-dimensional Lebesgue measure. On the other hand, let G : 2 — R be a
nondegenerate map; we denote Gv the measure on 2 which has density G with
respect to v:

/F(a))d(Gv)(w) =/F(a))G(a))dv(w). (4.48)

The conditional expectation of G conditioned with Z(w) = x is defined as the ratio
of the two densities of the measures Z * (G v) and Z * v:

_d(Z % (Gv))

EJ[G|Z =x] = i) (x). (4.49)

Letm = Z x v the law of Z; then for ¢ : R — Rand F : 2 — R, there holds

/EV[F| Z = x] ¥(x)dm(x) =/ F(o)Yy(Z(w))dv(w). (4.50)

3.1 Stein Equation (4.59)

Following [6], Sect2.4 p. 70, we project vector fields and operators with conditional
expectations. The Nourdin—Peccati analysis [10] and [1] is obtained by projection of
vector fields from Wiener space to R” by the conditional expectation E,[U |Z = x]
where v is Wiener measure and U is a random vector. This extends to the projection
by conditional expectation E, [U |Z = x] where we take the measure v, instead
of Wiener measure v.

Proposition3.1. Let F : Q — Randlet Z = (Z\,2Z,,...,Z,) : 2 — R".
Assume that Z is nondegenerate so that the law of Z is absolutely continuous with
respect to the n-dimensional Lebesgue measure dx. Let p;(x) be the density of Z * v,
with respect to dx. We consider the conditional expectation

Sfi(x) = —E\, (L F)(w) | Z = x]. (4.51)
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On R", we define the vector field v, by

vi(@)(x) = E, [(DF [D(¢p02)) | Z = x]

=Y E,[(DF|DZ) | Z = x] ;%(x), where ¢ :R" — R.

k=1
(4.52)
We have
E, [((DF|D(¢0Z))] = E, [(vi§)(Z(w))]. (4.53)
Moreover, there holds “Stein equation”
din,(x)dx (Vt) = (1/t) ﬁ(x) (454)
or equivalently,
1
1 [ wswe@ar = [e@)pdx (455)

Proof. Equation (4.53) is a consequence of Eq.(4.50). To prove Eq.(4.55), we
verify that

- ; E,[(L F)(@)p(Z(w))] = E\, [(DF[D(¢ 02))]. (4.56)

This last identity comes from Eq. (4.46). O

In the case of nonrandom elements 7 in Cameron—Martin space, we can
formulate Proposition 3.1 as follows.

Lemma 3.1. Let h be in Cameron—Martin space and put

1
Sh(w) :/o K (s)dw(s), (4.57)

where Eq. (4.57) is a classical Ito stochastic integral (see, for example, [12], p. 14);
in particular since h is not random, §h = I, (h) is in the first Wiener chaos. We have

1
7B [6h ]| Z = x] = divy, (x)ax V(2. X). (4.58)

where v(t, X) is the vector field

‘ 3
w(t.x) =Y Ey,[DyZi| Z = x]a. (4.59)
k=1
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Proof. We verify Eq. (4.55) with f;(x) = E,,[6h| Z = x]. O

3.2 Projection of the Heat Equation Through
a Nondegenerate Map

LetZ =(Z1,23,....2Zy) : Q2 = R".If F(w) = (¢ 0 Z)(w), then by composition
of differentiations

(AuF)(@) =) DiF(w)
heB
= S duZ)@) 2 z()

ox;
j=1 /

)
0xj 0xy

+Y (DZ;|DZy)
J.k

(Z(w)). (4.60)
When Z is an evaluation function, Eq. (4.35) is deduced from Eq. (4.60). For x =
(x1,x2,...,x,) in R", consider the conditional expectation

(Af$)(x) = E,[(AgF)(w)| Z = x] (4.61)

We have

" d
(A79)0) = Y EnldnZ,@)] Z =x] 220
j=1 /
¢

0xj Ox

+ D Ey(DZ)|DZi)| Z = A]
Jok

(x).  (4.62)

Proposition 3.2. Let p,(x) be the density of the law Z * v, with respect to the
Lebesgue measure. Then p;(x) is the unique solution of

d 1< 93
3P0 == ; Wj(Ev, [AnZ; ()] Z = x] pr(x))

1 92
+3 ; T, 0k (E,[(DZ;|DZ)| Z = x] pi(x)) (4.63)

satisfying the condition lim;_ [ p; (u)¢ (u) du = ¢(0) for any integrable function
¢ R" >R
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Proof. From the heat equation (4.18), we have

d 1 Z

o | $@edx =2 [ (A7$)(x) pi(x)dx.

Integrating by parts, the density p, (x) satisfies Eq. (4.63). O

3.3 Image of the Dilation Vector Field V Through
a Nondegenerate Map

Proposition 3.3. Let V be the dilation vector field Eq. (4.38).
The density p;(x) for the law of Z satisfies

d 1 < 0
=5 ; o, EulVZi1 Z = 21 pi (). (4.64)

Proof. For any differentiable function ¢ : R" — R, we have

"9
Vigo Z)w) = 3. 27 (Z(@) (VZ))(@). (4.65)

j=1""

The relation (4.65) comes from the differentiation for composition of functions.
From Eq. (4.16), there holds

Su(02) = 2 u(VigoZ)), (4.66)

We replace Eq. (4.65) into Eq. (4.66). This gives

d _ 1< ¢
g @o2) = — ,Z=:1 E,, [E(Z(w)) (VZj)(w)}

_ 1[99 L
Y JZ=:1 /E(x) E,IVZ;| Z = x] p;(x)dx.

We obtain Eq. (4.64) after integration by parts. O
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4 From Stein’s Equation to Heat Equation: Density
of a Random Variable

We assume that Z = (Z,,Z,,...,Z,) : 2 — R” is nondegenerate. Let p,(x) be
the density of Z * v, with respect to the n-dimensional Lebesgue measure:

Z x v, = p(x)dx. (4.67)

Let o (¢, x), A;(t,x), Bxj(t,x), and y; (¢, x) as in Eq. (4.21). By Proposition 2.3,
we have Eq. (4.22). By Propositions 3.2 and 3.3, the density p,(x) satisfies each one
of Eqgs. (4.23)—(4.25).

Lemma 4.1. Let

"9
Wi 0) = A5 (10p0) = 0 S Bt 1) () (4.68)
k=1
then
"9
> —w(t.x) =0, (4.69)
- ij
j=1
Proof. We eliminate 3% pr between Eqgs. (4.25) and (4.23) O

Proposition 4.1 (n-dimensional Stein’s equation). As in Eq.(4.21), for j =
l,....nandk =1,...,n, let

Bl(t.x) = E,[(DZ;|DZy)| Z = x].

Then the density p;(x) of the random vector Z satisfies the system of n Eq. (4.24).
Proof. We apply Proposition 3.1 taking F = Z;. Asin Eq. (4.51), we put

() =—E,LZ;| Z =x].

Integrating by parts the right hand side of Eq. (4.55), we obtain Eq. (4.24). O

Remark 4.1. With Proposition 4.1, we show that taking F = Z;, j = 1,...,n1in
Proposition 3.1, then all functions w; (t, x), j = 1,...,n in Eq. (4.68) are equal to
zero. This gives a n-dimensional system. If Z(w) = (o(t1), o(t), ..., o(t,)), we
find the system (4.13).

Main Theorem 4.1. If p,(x) is solution of the system (4.24) as well as solution of
the dilation equation (4.23), then p, (x) is solution of the heat equation (4.25).
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Proof. In Eq. (4.24), we have
1 .
TP (ELZ) | Z = x] (@)

and in Eq. (4.23), we have

1 ..
—7p,(x)EW[VZj | Z = x]. (ii)

Since [see Eqs. (4.20)—(4.22)]
ELWWZ;|Z=x]=—-E,LiZ;| Z=x]+tE,[AnZ;| Z =Xx]. (iii)

We replace E,,[VZ; | Z = x] by this expression in Eq. (4.23). We obtain that p, (x)
satisfies

d l & 9
d_tpt = Z}Z::l E(Eu,[ﬁrzj | Z = x] x p(x))

Il @ .
—E; o, EuldnZ;| Z =21 x o). (iv)

In this expression, we replace %p, (X)E\,[£;Z;| Z = x] by its expression given in
the system (4.24). We obtain that p, (x) satisfies the heat equation (4.25). O

5 Hermite Polynomials and £,

We have defined £, with Eq. (4.19). In this section, ¢ > 0 is fixed and we calculate
L, on Hermite polynomials. Our Hermite polynomials H/ (x, t) depend on ¢. Given
x € Rand r > 0, we consider the Hermite polynomial of two variables

H!(x.7) = (=1)" (t7)" exp (X—Z) d exp( xz). (4.70)

2tt ) dx® _E

See, for example, [12] p. 22. It is classical that H{(x, t) = x, Hj(x,7) = x2 —t1,
Hi(x,7) = x3 =3ttx, Hi(x,7) = xt — 6t x + 3122, .. ..

o0
n t

Z H!(x,7) Z—' = exp (—%zz + xz), (4.71)
n!

n=0

d2 t d t t
ttd—szn(x,r)—xaHn(x,t) =-nH,(x, 1), 4.72)
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d
—H!(x,7r) =nH!_|(x,7). (4.73)
dx
Proposition 5.1.
Li[H,(0(7), 1)] = —n H,(o(7). ) (4.74)

Proof. We put F,,(x,7) = H!(J/ix, ). According to Eq. (4.45),

2
LIH! (Viw(t),1)] = —ﬁw(r)(%H;)(ﬁw(r), T)+1tT (dd—sz,;)(\/?w(z), 7).

From Eq. (4.19),

d d?
L[H (0(7),7)] = —0(7) (aH;) (w(z),7) + 11 (d—sz,f) (w(7), 7).
Then we use Eq. (4.72). |
Corollary 5.1. For the following conditional expectations, there holds

At
Eylo() | () = x] = x ==
2

2
E,[o(t)? —tt| w(ty) = x] = (%) X2 —11),

IAAN A
15)

Ey [H! (w(ty), fl)lw(tz)=x]=( ) Hixb).  475)

Proof. From Eq. (4.74),
J = E,[H)(w(t), )Y (w(t2))] = _’%Ew[‘ct [H, (w(t), 1))y (w(t2))].

Then from Eq. (4.56),

i AD)
o n

d
Y E, [(d—H,:) (w(n),n)w’(w(tz»} .
X
With Eq. (4.73), this gives

E\ [H)w(t). )Y W(12)] = t(ty At)Ey [H)_ (w(tr), )Y (w(12))].

Writing this last identity with H_,, then H!_,, ..., we obtain

Ey [HLw(t). t) ¥ (w(t2))] = t"(ty A )" E,, [ (w(ta))].
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By Eq. (4.36)

n

Euy i) = [ ( d

dx”

w) (x) P11, (x)dx. (4.76)

We integrate by parts the right hand side of Eq. (4.76). With Eq. (4.63), we obtain

Ev [0 P 0(12))] = —— Ey, [H! (w(t2), 1) (w(2))]

"l
This gives Eq. (4.75). O
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Chapter 5
The Calculus of Differentials for the Weak

Stratonovich Integral

Jason Swanson

Abstract The weak Stratonovich integral is defined as the limit, in law, of
Stratonovich-type symmetric Riemann sums. We derive an explicit expression for
the weak Stratonovich integral of f(B) with respect to g(B), where B is a fractional
Brownian motion with Hurst parameter 1/6, and f and g are smooth functions.
We use this expression to derive an Itd-type formula for this integral. As in the
case where g is the identity, the It6-type formula has a correction term which is a
classical Itd integral and which is related to the so-called signed cubic variation of
g(B). Finally, we derive a surprising formula for calculating with differentials. We
show that if dM = X dN, then Z dM can be written as ZX d/N minus a stochastic
correction term which is again related to the signed cubic variation.

Keywords Stochastic integration e Stratonovich integral ¢ Fractional Brownian
motion * Weak convergence
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1 Introduction

If X and Y are stochastic processes, then the Stratonovich integral of X with respect
to Y can be defined as the ucp (uniformly on compacts in probability) limit, if it
exists, of the process
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. Z X(tj—1) + X))

S (V) =Y (1),

1<t
as the mesh of the partition {t;} goes to zero. If we specialize to the uniformly
spaced partition, #; = j/n, then we are interested in the Stratonovich-type symmetric
Riemann sums,

[nt] ) )
3 W(Y(t,) —Y(t-1). G-
j=1

where | x| denotes the greatest integer less than or equal to x.

It is well-known (see [2,4]) thatif Y = B, a fractional Brownian motion with
Hurst parameter H, and X = f(B") for a sufficiently differentiable function f,
then the Stratonovich integral of X with respect to Y exists for all H > 1/6 but
does not exist for H = 1/6. Moreover, if H > 1/6, then the Stratonovich integral
satisfies the classical Stratonovich change-of-variable formula, which corresponds
to the usual fundamental theorem of calculus.

In [6], we studied the case H = 1/6. There we showed thatif ¥ = B = B!/¢
and X = f(B), where f € C%(R), then the sequence of processes Eq.(5.1)
converges in law. We let fot f(B(s))dB(s) denote a process with this limiting law,
and we referred to this as the weak Stratonovich integral. We also showed that
the weak Stratonovich integral with respect to B does not satisfy the classical
Stratonovich change-of-variable formula. Rather, it satisfies an Ito6-type formula
with a correction term that is a classical It6 integral. Namely,

F(B@) = F(BO) + /0 F(B6)ABG) - /0 F7(B(s)A[BL,.  (5.2)

where [B] is what we called the signed cubic variation of B. That is, [B] is the
limit in law of the sequence of processes ZE";JI (B(t;) — B(t j—l))3 . It is shown
in [7] that [B] = «W, where W is a standard Brownian motion, independent of
B, and « is an explicitly defined constant whose approximate numerical value is
k =~ 2.322 [see Eq. (5.7) for the precise definition of k.]. The correction term above
is a standard It6 integral with respect to Brownian motion. Similar [t6-type formulas
with an Itd integral correction term were developed in [1, 5]. There, the focus
was on quartic variation processes and midpoint-style Riemann sums. A formula
similar to Eq. (5.2), but with an ordinary integral correction term, was established
in [3] for the Russo—Vallois symmetric integral with respect to finite cubic variation
processes.

The precise results in [1, 6], as well as in this paper, involve demonstrating the
joint convergence of all of the processes involved, with the type of convergence
being weak convergence as processes in the Skorohod space of cadlag functions.
In Sect.2, we establish the formal definition of the weak Stratonovich integral as
an equivalence class of sequences of cadlag step functions, and we demonstrate in
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Theorem 2.1 the joint convergence in law of such sequences. For simplicity, we
omit discussion of these details in this introduction and only summarize the results
of Sect. 3, in which we derive our various change-of-variable formulas.

In Sect. 3, we extend the It6-type formula (5.2) to the case ¥ = g(B). We show
that the sequence of processes (5.1) converges in law to an integral satisfying the
[t6-type formula

t

4 1
wnm=wnm+£wﬁmmwm—ﬁﬁwwnmﬂmb (5.3)

where

HL=L@meﬂms

is the limit, in law, of Y"Y4(Y(t;) — Y(z;_1))*. That is, [Y] is the signed cubic
variation of Y.

This result is actually just one of the two main corollaries of our central result (see
Corollary 3.1). To motivate the other results, consider the following. Formulas such
as Egs. (5.2) and (5.3) are typically referred to as change-of-variable formulas. They
have the same structure as Itd’s rule, which is also generally referred to as a change-
of-variable formula. In elementary calculus, we perform a change-of-variable when
we convert an integral with respect to one variable into an integral with respect to
another. In It6’s stochastic calculus, we may wish to convert an integral with respect
to one semimartingale into an integral with respect to another. Strictly speaking,
1t6’s rule is not sufficient for this purpose. It6’s rule simply tells us how to expand a
function of a semimartingale into a sum of integrals. In order to convert one integral
into another, we must combine It&’s rule with a theorem that says

ifM:/XdY,then/ZdM:/ZXdY.

Or, in differential form,
ifdM =XdY,thenZdM = ZXdY. 5.4)

For It6 integrals, this theorem is usually proved very early on in the construction of
the integral. It is also true for the classical Stratonovich integral for semimartingales
as well as for ordinary Lebesgue-Stieltjes integrals. In fact, in the theory of
Lebesgue—Stieltjes integration, it is often this result which is called the change-
of-variable formula.

In terms of the calculus of differentials, Itd’s rule tells us thatif M = f(Y), then
dM = f/(Y)dY + %f”(Y) d(Y), where (Y') is the quadratic variation of Y, and
Eq. (5.4) tells us that it is permissible to substitute this expression into Z d M, so
that ZdM = Zf'(Y)dY + 3 Zf"(Y)d(Y).

In this paper, we will show that Eq. (5.4) is not true for the weak Stratonovich
integral. A very simple example which illustrates this is the following. First, let
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us note that when the integral is defined as a limit of Stratonovich-type symmetric
Riemann sums, it is always the case that [0 df = %92, for any process 6. Let us
therefore define M = %Bz, so that dM = B dB. On the other hand,

1 1
/MdM = _M?=-B*
2 8

Using Eq. (5.2), we have

1 1
—B*= / —B3dB —
8 2

i/3Bd|[B]| :/MBdB—l/Bd[[B]].

12 4

It follows that, in this example, Eq. (5.4) does not hold for the weak Stratonovich
integral. Instead, we have that dM = BdB, whereas MdM = MBdB —
1B d[B].

The second main corollary of our central result is that the weak Stratonovich
integral satisfies a rule analogous to Eq.(5.4) but with a correction term (see
Corollary 3.2). Namely, suppose X = f(B), Y = g(B), and Z = h(B), where
f.g,h € C%(R). Then the weak Stratonovich integral satisfies the following
rule for calculating with differentials:

1
IfdM = XdY,then ZdM = ZX dY — Z(f’g’h’)(B) d[B]. (5.5

We actually prove a slightly more general rule; see Eq. (5.18).
Both Egs. (5.3) and (5.5) will be demonstrated as corollaries of the following
general result. With X and Y as above,

| x0ave) = een-e@on+ 3 [ (rg=re e alBL. 66

where ® € C®(R) is chosen to satisfy ® = fg’. See Theorem 3.1 for the precise
statement. Theorem 3.1 is actually formulated more generally for integrators of
the form Y + V', where V = [ 0(B) d[B]. This generalization is necessary to make
sense of f Z dM in Eq.(5.5), since if M = f X dY, then according to Eq. (5.6),
M 1is not a function of B but is rather the sum of a function of B and a process V'
which is in an integral against [B].

2 Notation and Definitions

2.1 Basic Notation

Let B = B!/ be a fractional Brownian motion with Hurst parameter H = 1/6.
That is, B is a centered Gaussian process, indexed by ¢ > 0, such that
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E[B(s)B(1)] = %(11/3 + 513 — |t — 5|13,

For compactness of notation, we will sometimes write B, instead of B(f) and
similarly for other processes. Given a positive integer n, let t; = ¢t;, = j/n. We
shall frequently have occasion to deal with the quantity

B(tj—1) + B(z;)
:Bj = :3],” = %
Let ABj, = B(t;) — B(tj—1) and B*(T') = supy, 7 | B(1)|.
Let ¥ > 0 be defined by

3
K= ZZ(|r+1|‘/3+|r—1|1/3—2|r|1/3)3. (5.7)

re€z

Let Dyt [0, 00) denote the Skorohod space of cadlag functions from [0, 0o) to R?.
Throughout the paper, “=>" will denote convergence in law. The phrase “uniformly
on compacts in probability” will be abbreviated “ucp.” If X,, and Y,, are cadlag
processes, we shall write X,, ~ Y, or X,,(¢) &~ Y, () to mean that X,, —Y,, — 0 ucp.

2.2 The Space |S]

Recall that for fixed n, we defined #, = k/n. Let S, denote the vector space of
stochastic processes {L() : t > 0} of the form L = Y 72 ) Axlj 1), where each
A € ]—"f;. Note that Ay = L(#). Given L € S,, let §;(L) = L(t;) — L(t;—1), for
Jj = 1.Since t € [tx, tr+1) if and only if |nt| = k, we may write

Lnt]
L(1) = L(0) + ) _5§;(L).
j=1
Definition 2.1. Let S denote the vector space of sequences A = {A,}°2,
such that:
1) A, €S,

(i) A,(0) converges in probability.
(iii) There exist ¢1, @3, @5 € C*°(R) such that

8;(An) = @1(B))ABjw+ @3(B))AB], + ¢5(B))AB;,, + Rjn.  (5.8)
where for each 7, K > 0, there exists a finite constant Cr g such that

|R; w1 p*ry<ky < Crx|ABj.Al",

whenever j/n < T.
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If X = f(B), where f € C*°(R), then we define

o0
AY = X0 i)
k=0

and AY = {AF}°2 . Note that the map X — A is linear.

Lemma2.1. [f X = f(B), where f € C®(R), then AX € Sand Af — X

uniformly on compacts a.s.

Proof. Since X is continuous a.s., we have that A — X uniformly on compacts
a.s. Clearly, AX € S, and AX(0) = X(0) for all n, so that Definition 2.1(i) and (ii)
hold. For a, b € R, we use the Taylor expansion

)= f@ = f' 0 b=ay+ 5 1" =)+ g fO@B-a)* + ha. b ~a.

where x = (a + b)/2 and |h(a.b)| < M(a.b) = sup,cnpave) 187 (x)|. For a
derivation of this Taylor expansion, see the proof of Lemma 5.2 in [6].
Taking a = B(t;—1) and b = B(t;) gives

8;(Ay) = f(B(t;)) — f(B(t;-1))
1

1
= F'B)AB+ 5" BDABL, + o

FOBHAB], + Ry,
(5.9)

where |R;,| < M(B(tj—1), B(t;))|AB;,|". If j/n < T and B*(T)<K,
then B(#;—1), B(t;) € [-K, K], which implies M (B(t;—1), B(¢;)) < Sup,ej—k k]
|7 (x)| < oo, and this verifies Definition 2.1 (iii) showing that AY € S. O

We may now identify X = f(B) with AX € S and will sometimes abuse
notation by writing X € S. In this way, we identify the space of smooth functions
of B with a space of sequences in such a way that each sequence converges a.s. to
its corresponding process. What we see next is that every sequence in S converges
to a stochastic process, at least in law.

Theorem 2.1. Let A, ..., A™ € S. For 1 < k < m, choose ¢, 03,5k €
C>(R) satisfying Eq.(5.8) for A® and let T%)(0) be the limit in probability of
AP0) as n — oo. Let &, € C®(R) satisfy ®, = @14 and D, (0) = 0. Let W be
a Brownian motion independent of B, and let k > 0 be given by Eq. (5.7). Define

200 = 200) + 0050+ [ (0n = 01, ) BN W),

where this last integral is an It integral. Then (B, AS,I), e, Afj’”) =
(B, ZW, ..., ™) in Dpm+1[0, 00) as n — oo.
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Proof. By Definition 2.1, we may write

[nt] Lnt] Lnt]
A @ = AP O+ 0k (BHABja+ Y 93k (B)HABL 4D 05k (B)AB,+Rilr)
j=1 j=1 j=1

where R, (1) = ZJLZJI Rj,. Let Ry(T) = supy<, <7 |Ru(?)| < ZJL":TIJ |R;,|. Let

& > 0 and choose K such that P(B*(T) > K) < ¢. Then

InT]
P(R*(T) > ) < P(B*(T) > K) + P(CT,K > 1AB, > e).

J=1

Since B has a nontrivial 6-variation (see Theorem 2.11 in [6]), we have

ZJL":TIJ |AB;,|7 — 0 as. Hence, for n sufficiently large, we have P(R*(T) >

€) < 2¢&, which gives R, — 0 ucp.
As in the proof of Theorem 2.13 in [6], we may assume without loss of generality

that each ¢; ; has compact support. By Lemma 5.1 in [6], if ¢ € C!(R) has compact
nt]

support, then Z,L:l qo(,Bj)ABJSA’n — 0 ucp. Thus,

[nt] [nt]
AP ~ IO 0) + Y 01u(B)ABjw + Y @3k (B))AB},.
j=1 j=1
Similarly, by Eq. (5.9),
[nt]
D (B(1) ~ Y _(Pi(B(t))) — Pr(B(t;-1)))
j=1
[nt] 1 |nt]
~ D O BDAB+ 57 > @lk(B))AB],.
j=1 j=1
Therefore,
[nt]
AP () ~ 0 0) + ©u(B(1) + D i (B)AB],.
j=1

where ¥, = @34 — 21—‘1<pifk. Let V,(Y,t) = ZJLZJI W(,Bj)AB;’,n and Ji(t) =
/cfot Vi (B(s))dW(s). By Lemma 5.2 and Theorem 2.13 in [6], we have
B V(1) V(W) = (B, J1.....J), in Dgut1[0,00) as n — oo, which
implies (B, A", ..., A{™) = (B.ZD,... ,T(m). O

We now define an equivalence relation on S by A = ® ifand only if A, —©, —
0 ucp.
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Lemma 2.2. If A € S, then there exist unique functions @y, @3 which satisfy
Eq. (5.8). If we denote these unique functions by ¢\ n and @3 p, then A = © and
only if both of the following conditions hold:

(i) An(0)—®,(0) — 0 in probability.
(ii) @1.A = @1,0 and 3.4 = ¢3.0.

Proof. Let A € S. Let {¢1, ¢3, 95} and {¢1, @3, 5} be two sets of functions, each
of which satisfies Eq. (5.8). Let Z(0) be the limit in probability of A, (0) as n — oo.
Let ®,® € C®(R) satisfy @' = ¢y, P = = ¢, and ®(0) = d>(0) = 0. Then, by
Theorem 2.1, A, converges in law in Dg[0, 00) to

1) = 20) + (B0 + ¢ [ (¢3 - 2—14%) (B(s)) dW(s)

~ ! 1
=1(0) + ®(B(1)) + K/O (<P3 - ﬁ?ﬁ’{) (B(s)) dW(s).

Hence, E[Z(t) — Z(0) | FEBl = ®(B@t)) = E(B(t)) a.s. for all + > 0, which
implies ® = &, and hence, ¢; = @). It follows that

M) = /0 (03— 73)(B(s)) dW(s) = 0.

Hence, E[M(t)* | F2] = fot [(p3 — @3)(B(s))|>ds = 0 as. for all ¢ > 0, which
implies ¢3 = @3. This shows that there exist unique functions ¢; A, ¢34 Which
satisfy Eq. (5.8).

Let A,® € S and define I' = A — ©. Note that A,, — ®,, — 0 ucp if and only if
I’y = 0in Dg[0, 00).

First assume (i) and (ii) hold. Then I',,(0) — 0 in probability, so by Theorem 2.1,
I, converges in law in Dg|[0, c0) to

o (B0 + « [ ((p3,1" ol F) (B(s)) dW(s).

where @ = ¢ r and ®r(0) = 0. But from Eq. (5.8), we see that ¢;r = @1 A —
v1.0 =0and o3 = @34 — @30 = 0. Hence, I, = 0and A = ©.
Now assume A = ®. Then I', — 0 ucp, so by Theorem 2.1, for all # > 0,

! 1
IZ(t) =Z(0) + or(B(2)) + K/O ((pg,,r 7291 r) (B(s))dW(s) =0,

where Z(0) is the limit in probability of A, (0) — ©,(0) asn — oo and O = ¢ r
with @1 (0) = 0. Thus, Z(0) = 0, which shows that (i) holds. And as above, we
obtain ¢; r = @31 = 0, which shows that (ii) holds. O
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Let [A] denote the equivalence class of A under this relation, and let [S] denote
the set of equivalence classes. If N = [A] € [S], then we define o1y = @14,
@3N = @3.n, Ly (0) = lim A,(0), and

In(@) =1In(0) + PN (B(2)) + K/O (@371\/ - %fp{’]\,) (B(s))dW(s), (5.10)

where @, = ¢ 5 and ®y(0) = 0. Notice that by Theorem 2.1, if Ny,..., N, €
[S] and A% e N are arbitrary, then (B, A,(ll), e A,(lm)) = (B,Iy,,....Iy,) in
DR1n+l [0, OO)

It is easily verified that [S] is a vector space under the operations ¢c[N] = [c¢N]
and [M] + [N] = [M + N] and that N — Zy is linear and injective. This gives us
a one-to-one correspondence between [S] and processes of the form Eq. (5.10).

If X = f(B), where f € C®(R), then we define NX = [AX] € [S]. We may
now identify X with NX and will sometimes abuse notation by writing X € [S]. It
may therefore be necessary to deduce from context whether X refers to the process
f(B), the sequence AY = {AX}, or the equivalence class N¥ = [AX]. Typically,
there will be only one sensible interpretation, but when ambiguity is possible, we
will be specific.

Note that, using Eq. (5.9), we obtain 1 y = f/,¢3.x = 21—4f”’,IX(O) = X(0) =
f(0), and ®x = f — f(0). Hence, by Eq. (5.10), we have Zx (t) = X(t). Because
of this and because of the one-to-one correspondence between N € [S] and the
process Zy (¢) in Eq. (5.10), we will sometimes abuse notation and write N(¢) =
N; = Iy(t). Again, when there is a possible ambiguity as to whether N refers to
an element of [S] or to the process Zy, we will be specific.

2.3 The Signed Cubic Variation

If A € S, we define V) (1) = YV4(8;(A,))* and VA = (V1) Since 8, (V) =
(8;(A,))3, itis easy to see from Eq. (5.8) that VA € S, ¢ ya = O0and g3 2 = ‘/’13,/\-
Hence, if A = O, then VA = V© We may therefore define the signed cubic
variation of N = [A] € [S] to be [V"] € [S]. We denote the signed cubic variation
of N by [N]. We then have ¢; jy) = 0, @3 [n] = <p13,N, and Zyn7(0) = 0, so that by
Eq. (5.10),

t
V] = Za(0) = & [ (L (B W)
For example, suppose X = f(B), where f € C*®(R). Then [X] = [N*]. Since
N*¥ =[A¥], we have [N*] = [VA"]. Note that VA" = {VnAX} and

[ne] [nt]
VAN 0 =Y 6, (AN = D (X (1) — X(t-1)°.

J=1 J=1
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In other words, [X] is the equivalence class in S of the above sequence of sums of
cubes of increments of X. By Theorem 2.1, [X]; = Zyx)(¢) is the stochastic process
which is the limit in law of this sequence. Since ¢; x = f’, we have ¢1x] = 0 and
P3x] = (f")3, so that

[X], = Ty () = « /0 (F(B(s)* dW(s).

In particular, taking f(x) = x gives [B]; = «W.

2.4 The Weak Stratonovich Integral

If A,,®, €S,, then we define

bt A .
(Ano @)1 =3 A”(Z"l); 255 0.
j=1

IfA,® €S, thenwedefine Ao® = {A, 00,}%2,.

Lemma 2.3. If X = f(B), where f € C®[R) and A € S, then AX o A € S.
Moreover, if A = O, then AX o A = AX 0 ©.

Proof. Clearly, AXoA, € S, and AX oA, (0) = 0 forall n, so that Definition 2.1(i)
and (ii) hold. For a, b € R, we use the Taylor expansion

) + f(a)
2
where x = (a + b)/2 and |h(a,b)| < M(a,b) = Sup,euapave) |g©(x)]|. For a

derivation of this Taylor expansion, see the proof of Lemma 5.2 in [6].
Taking a = B(t;—1) and b = B(t;) gives

1

i/ @ —a) +hia.b)b—a),

= [0+ 5 /)b —a) +

AX(tj—1) + AX(t)) _ f(B(tj-1)) + f(B(t;))
2 2

= [(B) + g S BDABL + i fBAB, + Ry,
where for each 7, K > 0, there exists a finite constant Cr g such that
|R; a1 1ip*ry<ky < Crx|AB;A|°,
whenever j/n < T. Choose @5 € C°°(R) such that

8i(A) = @1A(B)ABj .+ ¢030(B))ABY, + @s(B))ABS, + R,
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where for each 7, K > 0, there exists a finite constant 57, x such that
IR ull¢p*ry<ky < Crx|AB; .|,
whenever j/n < T. Then

AS(tj—1) + AX (1))
2

1
(ferA)(Bj)AB;, + (gf"gm,/\ + f(PS,A) (IBj)AB?,n

(Sj(Af oN,) =

(Sj(An)

+h(B))AB], + R,

for an appropriately chosen smooth function £, and with R j.n satisfying Defini-
tion 2.1(iii).

It follows that AX o A € S and that g; xop = f@1.4 and @3 axop = %f”fpl,,\ +
f@3.. This implies that if A = ©, then A¥ o A = A% 0 ©. O

If X = f(B), where f € C*®°(R), and N = [A] € [S], we may now define
X o N = [A¥ o A]. Note that if ¥ = g(B), where g € C*®, and M € [S], then
(X+Y)oN=XoN+YoNand Xo(N+ M)=XoN + X o M.From the
proof of Lemma 2.3, we have

Ixon(0) =0, (5.11)
@1.xo8 = fO1N, (5.12)

1
@3 XoN = gf//(/)l,N + fosn. (5.13)

We may use these formulas, together with Eq. (5.10), to calculate Zyxoy, given f,
@1,n,and @3 y.

We now adopt some more traditional notation. If X = f(B), where f € C*,
and N € [S], then

/XszXoN e [S],
and
/0 X(s)dN(s) = (X o N, = Tyox (0).

As we noted earlier, there is a one-to-one correspondence between [S] and processes
of the form Eq. (5.10). We may therefore go back and forth between the above two
objects according to what is more convenient at the time. We will use the shorthand
notationdM = X dN to denote the equality M = [ X dN.

Before investigating our change-of-variable formulas, let us first consider some
examples.
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Example 2.1. Let X = f(B) and Y = g(B), where f, g € C*°(R). Then
/XdY:XoY =XoN" =[A¥oA"],

and AY o AY = {AX o AV}, where

I_ntj X X
X AY\(py Ay (tj—1) + Ay ()
(Af oA =) >

=1

_ LZJ X(tj-1) + X(1))

2

8;(A))

(Y(@;) = Y(tj-1)).
j=1

In other words, f X dY is the equivalence class in S of the above sequence of
Stratonovich-type symmetric Riemann sums. Also, fot X(s)dY(s) = Zxoy(¢), so
that by Theorem 2.1, fof X(s)dY(s) is the stochastic process which is the limit in
law of this sequence.

Example 2.2. Againlet X = f(B)and Y = g(B), where f,g € C°°(R). Then
/de =Xo[Y]=[AY o V]

and AY o VA" = {AX o VA"}, where

[nt]
AY oV =Y

=1

_ LZJl X(t5-1) + X(t))
=

AX (=) + AX (1))

5 8 (V)

) = Y-,

In other words, [ X d[Y] is the equivalence class in S of the above sequence of
sums, and f(; X(s)d[Y]s = Zxopyy(¢) is the limit in law of this sequence. Recall
that 1y = 0 and @35y} = (g’)°. Hence, by Egs.(5.12) and (5.13), we have

P1xor] = forr) = 0and @3 xopy] = &/ ¢1py] + f @3] = f(g')?, so that by
Eq. (5.10), we have

/0 X(s)d[Y], = ¢ /0 F(B($)( (B(s)) dW(s). (5.14)

Example 2.3. For one last example, let X = f(B), Y = g(B), and Z = h(B),
where f,g,h € C*®(R),andlet N = [ Y dZ. Then

/XszXoN=Xo[AYoAZ]:[AXo(AYoAZ)],
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and

(AX o (AY 0 A%),) (1) = (A o (A} 0 AD))(0)

_ f Xly-0) + X0) V=) +70)

; (Z(t)~Z(t;-1).

Jj=1

Hence, [ X dN is the equivalence class in S of the above sequence of sums, and
fot X(s)dN(s) is the limit in law of this sequence.

3 Change-of-Variable Formulas

We have already identified smooth functions of B with their corresponding se-
quences in S, as well as with their equivalence classes in [S]. In this section, it will
be helpful to do the same for .ng-measurable random variables, which can serve as
initial values for the stochastic processes we are considering.

Let n be an F2 -measurable random variable, let A, (1) = n for all z > 0, and
let A7 = {A;}. Since §; (A;}) = 0 for all j and n, we have that A7 € S. We may
therefore identify n with A7 € S and also with N7 = [A"] € [S]. Note, then, that
@1y = @3y = 0and n(t) = N'(t) = Iys(t) = nforall t > 0. Note also that
[ Xdnp=o0.

We begin with the following result, which tells us that every element of [S] has
a unique decomposition into the sum of a smooth function of B and an integral
against [B].

Lemma 3.1. Each N € [S] can be written as N = n+ Y + V, where n is an
FB -measurable random variable, Y = g(B) for some g € C®°(R), and V =
/ H(B) d[B] for some € C*®°(R).

Suppose N =1 + Y + V is another such representatlon with Y = ¢(B) and
V= f@(B)dl[B]I Letc = g(0)—2(0). Thenf=n+c¢,g=g—c, and = 0.
In particular, there is a unique such representation with g(0) = 0.

An explicit representation is given by n = N(0) = Zy(0), 0 = g3 n — 2_14‘/’1/,N
and g chosen so that g’ = ¢y and g(0) = 0.

Proof. Let N € [S]. Letn = N(0) and 0 = ¢35 — ﬁ‘/’i/,zv and choose g so that
¢ = ¢y and g(0) = 0.Let Y = g(B) and V = [ 6(B)d[B]. To prove that
N =n+Y + V, it will suffice to show that
N(@) =n() +Y@) + V()
t
= N+ g(BO) + [ 0B IBL.

But this follows immediately from Egs. (5.10) and (5.14).
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Now suppose N(1) =7 + Z(B(1)) + [, 0(B(s))d[B];. Then E[N(7) | FBl =

n+ g(B@t)) =7 + g(B(t)) a.s., which gives n — 77 + (g — ~)(B(t)) = 0 a.s. for
all t > 0. Hence, there exists a constant ¢ € R such that g —'¢g = ¢, and it follows
that = n + ¢. We then have M(¢) = fo 0 — 9)(B(s)) dW(s) = 0 a.s., so that

E[M@)* | FB] = fo [(6 — 9)(B(s))|2 ds = 0 as. for all + > 0, which implies
0=0. o

We next verify that processes of the form V' = [ 6(B) d[ B] behave as we would
expect them to in regards to integration.

Lemma 3.2. Let X = f(B), where f € C*®(R), and let 6 € C*°[R). IfdV =
0(B)d[B], then XdV = X0(B)d[B].

Proof. Let V. = [6(B)d[B], U = [X60(B)d[B], and N = [ X dV. Since
N(0) = U(0) = 0, it will suffice to show that ¢; y = ¢y and 3y = @3 . By
Example 2.2, o1y = ¢1v = 0, o3y = 0, and 3y = f6. On the other hand,
by Egs.(5.12) and (5.13), we have g1y = fory = 0and g3y = 3/ @1y +
fosv=10. o

We finally present our main result for doing calculations with the weak
Stratonovich integral.

Theorem 3.1. Let N € [S] and write N = n + Y + V, where n is an
FB -measurable random variable, Y = g(B), and V = [ 6(B)d[B] for some
2,0 e C®R). Let X = f(B), where f € C*®°(R). Then

/XdN = ®(B) + — /(f” — ”)(B)d[[B]]—i—/XdV, (5.15)

where ® € C*®(R) is chosen so that ' = fg’ and ®(0) = 0.

Remark 3.1. Since M = [ X dN € [S], Lemma 3.1 tells us that M has a unique
decomposition into the sum of a smooth function of B and an integral against [B].
Theorem 3.1 gives us a convenient formula for this decomposition.

Remark 3.2. Theorem 3.1 and the corollaries that are to follow express equalities
in the space [S]. Each side of Eq.(5.15) is an equivalence class of sequences of
Riemann sums that converge in law. The equivalence relation is such that if we
choose any sequence from the class on the left and any sequence from the class on
the right, then their difference will converge to zero ucp. Note that this is a stronger
statement than simply asserting that the two sequences have the same limiting law.

Proof of Theorem 3.1. Since [ X dN = [ X dn+ [ XdY + [ XdV and [ X dy =
0, it follows from Eq. (5.14) that we need only show

/0 X(5) dY(5) = B(BO) + -5 / (g — f'g")BE)dW(s).  (5.16)
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By Eq. (5.10), we have
! ! 1 4
[ %0107 = 2w+« [ (o1 = g0t ) BN AW
0 0

where M = X o Y. Recall that ¢y = g’ and g3y = ﬁg’”. By Egs. (5.12) and
(5.13), we have ¢y = fg' and g3 = %f”g’ + 2—14fg”’. Since ®y(0) = 0 and
), = ¢oim = fg', we have )y = P, and we also have

1 1
o = 5gi = S8+ 5 S8 = 2 ()
— 1f'//g/ + _fg/// f// / 1 f/g// _ ifg///
8 24 24
1
— (f// ’ f/ //)
and this verifies Eq. (5.16). O

Corollary 3.1. Let Y = g(B), where g € C*®°(R), and let ¢ € C*°. Then

or0) = o)+ [ g renare -3 [ oenar. s

Proof. Let X = ¢'(Y) = f(B), where f = ¢’ o g. By Theorem 3.1,

/ Xy = o(8) + - / (/s — f's")(B)d[B].

where ® € C*°(R) is chosen so that @’ = fg’ and ®(0) = 0. Since (pog)’ = fg’,
we have @ = (¢ o g) — (¢ o £)(0). Also,

f'e = g = 9" o) &)+ (9" 08)g")g — (@ 0g)g's" = (" 0g)g).
Thus,
/ ¢/ (Y(s)) Y (s) = / X()dY(s)
0 0
= (pog)(B(1t)) — (¢ g)(0)

1 t
BT /0 (@" 0 g)(B(s))(g'(B(s)))’ d[ Bl

=Y (1) — (Y (0)) + 1K—2 /0 ¢"(Y(5))(g'(B(5)) dW(s).



110 J. Swanson

By Eq. (5.14), this gives
t

[ e orenare) = oo - o) + 5 [ o @enar.
0 0

which is Eq. (5.17). O

Corollary 3.2. Let N € [S] and write N = n+ Y + V, where 1 is an F5 -
measurable random variable, Y = g(B), and V = [ 6(B)d[B] for some g,0 €
C*®(R). Let X = f(B) and Z = h(B), where f,h € C*(R). Then

1
ifdM = X AN, then ZdM = ZX AN — (f'g'H')(B) d[B]. (5.18)

Moreover, the above correction term is a “weak triple covariation” in the following
sense: If V = {V,}, where

Lnt]
Va(t) = Z(X(lj) — X(1;-))(XY (1)) = Y(1;-))(Z(t)) — Z(1j-1)),

j=1

thenV € Sand [V] = [(f'¢'h')(B)d[B].

Proof. Let N, X, and Z be as in the hypotheses, and let M = [ X dN. By
Theorem 3.1,

M = <I>(B)+—/(f” "— f'¢")(B)d[B] +/XdV,

where ® € C®(R) is chosen so that ® = fg’ and ®(0) = 0. Hence, by
Lemma 3.2,

/ZdM /Zd@(B)—i— /(f” "h— f/g”h)(B)d[[B]]—i-/ZXdV. (5.19)
By Theorem 3.1,
1 " R ¥ N/
/Zd@(B) =VY(B)+ E/(h " — h'd")(B)d[B],

where ¥ € C*(R) is chosen so that ¥ = h®’ and W(0) = 0. Theorem 3.1 also
gives

/ZXdY = U(B) + —/((fh)" "= (fh)'g")(B)d[B].
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where U € C®(R) is chosen so that U = fhg' and ¥(0) = 0. Note, however,
that this implies W = W, which gives

/ Zdo(B) = / ZXay + 1—12 / (W& — W'D — (fh)'g + (fh)'g")(B)d[B].

Substituting ® = fg’ into the above and simplifying gives

/z d®(B) = /ZX ay + 11—2 /(f’g”h — f"g'h—3f'g'h)(B)d[B].

Substituting this into Eq. (5.19) gives
1
/ZdM =/ZXdY—Z/(f’g/h’)(B)d|[B]|+/ZXdV

_ / zxan -1 / (f'g'h')(B)d[B].

and this verifies Eq. (5.18).

Finally, if V = {V,}, then §; (V) = §;(A)8;(A})8;(AZ). From Eq. (5.8), we
seethatV € S, 1y = 0,and 93y = @1 x@1ye1z = f'g'l. Since [V]p = 0, it
follows from Example 2.2 that [V] = [(f’g’h’)(B) d[B]. ]
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1 Introduction

The large deviation principle (LDP) for Brownian motion 8 on [0, 1]—contained in
Schilder’s theorem [11]—describes the exponential decay of the probabilities with
which /g8 takes values in closed or open subsets of the path space of continuous
functions in which the trajectories of f live. The path space is equipped with the
topology generated by the uniform norm. The decay is dominated by a rate function
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for which a square-integrable derivative exists. Schilder’s theorem is of central
importance to the theory of large deviations for randomly perturbed dynamical
systems or diffusions taking their values in spaces of continuous functions (see
[6,9], and references therein, [10]). A version of Schilder’s theorem for a Q-Wiener
processes W taking values in a separable Hilbert space H is well known (see [5];
Theorem 12.7 gives an LDP for Gaussian laws on Banach spaces). Here Q is a self-
adjoint positive trace-class operator on H. If (4;);>o are its summable eigenvalues
with respect to an eigenbasis (ex)x>o in H, W may be represented with respect to
a sequence of one-dimensional Wiener processes (Bx)k>0 by W = Z,fo:() Ak Br e
The LDP in this framework can be derived by means of techniques of reproducing
kernel Hilbert spaces (see [5], Chap. 12.1). The rate function is then given by an
analogous energy functional for which f 2 is replaced by || Q_% F||? for continuous
functions F possessing square-integrable derivatives F on [0, 1].

Schilder’s theorem for 8 may for instance be derived via approximation of S
by random walks from LDP principles for discrete processes (see [6]). Baldi and
Roynette [1] give a very elegant alternative proof of Schilder’s theorem, the starting
point of which is a Fourier decomposition of 8 by a complete orthonormal system
(CONS) in L?([0,1]). The rate function for B is then simply calculated by the
rate functions of one-dimensional Gaussian unit variables. In this approach, the
LDP is first proved for balls of the topology, and then generalized by means of
exponential tightness to open and closed sets of the topology. As a special feature
of the approach, Schilder’s theorem is obtained in a stricter sense on all spaces
of Holder continuous functions of order o < % This enhancement results quite
naturally from a characterization of the Holder topologies on function spaces by
appropriate infinite sequence spaces (see [4]). Representing the one-dimensional
Brownian motions S for instance by the CONS of Haar functions on [0, 1], we
obtain a description of the Hilbert space valued Wiener process W in which a double
sequence of independent standard normal variables describes randomness. Starting
with this observation, in this paper we extend the direct proof of Schilder’s theorem
by [1] to Q-Wiener spaces W with values on H. On the way, we also retrieve the
enhancement of the LDP to spaces of Holder continuous functions on [0, 1] of order
o < % The idea of approaching problems related to stochastic processes with values
in function spaces by sequence space methods via Ciesielski’s isomorphism is not
new: it has been employed in [2] to give an alternative treatment of the support
theorem for Brownian motion, in [3] to enhance the Freidlin—-Wentzell theory from
the uniform to Holder norms, and in [7, 8] further to Besov—Orlicz spaces.

In Sect.2 we first give a generalization of Ciesielski’s isomorphism of spaces
of Holder continuous functions and sequence spaces to functions with values on
Hilbert spaces. We briefly recall the basic notions of Gaussian measures and Wiener
processes on Hilbert spaces. Using Ciesielski’s isomorphism we give a Schauder
representation of Wiener processes with values in H. Additionally we give a short
overview of concepts and results from the theory of LDP needed in the derivation
of Schilder’s theorem for W. In main Sect. 3 the alternative proof of the LDP for
W is given. We first introduce a new norm on the space of Holder continuous
functions C, ([0, 1], H) with values in H which is motivated by the sequence
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space representation in Ciesielski’s isomorphism and generates a coarser topology.
We adapt the description of the rate function to the Schauder series setting and then
prove the LDP for a basis of the coarser topology using Ciesielski’s isomorphism.
We finally establish the last ingredient, the crucial property of exponential tightness,
by construction of appropriate compact sets in sequence space.

2 Preliminaries

In this section we collect some ingredients needed for the proof of a LDP for Hilbert
space valued Wiener processes. We first prove Ciesielski’s theorem for Hilbert
space valued functions which translates properties of functions into properties of
the sequences of their Fourier coefficients with respect to complete orthonormal
systems in L2([0, 1]). We summarize some basic properties of Wiener processes W
with values in a separable Hilbert space H. We then discuss Fourier decompositions
of W, prove that its trajectories lie almost surely in C2([0, 1], H), and describe its
image under the Ciesielski isomorphism. We will always denote by H a separable
Hilbert space equipped with a symmetric inner product (-, -) that induces the norm
Il # and a countable CONS (ex) k € N.

2.1 Ciesielski’s Isomorphism

The Haar functions (y,,n > 0) are defined as yo = 1:

k 21 20141
V25, g S <5
— 20+1 2042
Yok (1) i= 1 =V2K, 2 <1 < 2 (6.1)
0, otherwise.

The Haar functions form a CONS of L2([0, 1],dx). Note that because of their
wavelet structure, the integral f[o,l] xnd f is well defined for all functions f. For

n =24+ wherek €¢ Nand 0 < [ < Zk—lwehavef[oil]xndF =
V2FRF (3 — F(333) — F(55)]. and it does not matter whether F is a real or
Hilbert space valued function.

The primitives of the Haar functions are called Schauder functions, and they are
given by

o (1) = /Ot An(s)ds, t €[0,1], n > 0.

Slightly abusing notation, we denote the a-Holder seminorms on C, ([0, 1]; H)
and on C, ([0, 1]; R) by the same symbols
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1Fle = sup HEOZFOr  p oo o0.11 1),

0<s<t<1 |t —s|*

/(@) = f()

0<s<t<l |t —s|*

I flle := . f € Cy([0,1];R).

Cy ([0, 1]; H) is of course the space of all functions F : [0,1] — H such that
| Flle < oo and similarly for C, ([0, 1]; R). We also denote the supremum norm on
C([0,1]; H) and C(]0, 1]; R) by the same symbol ||||cc-

Denote in the sequel for an H-valued function F its orthogonal component
with respect to e by Fy = (F,er),k > 0. Further denote by Py (resp. Ry) the
orthogonal projectors on span(ey, . .., ;) (resp. its orthogonal complement), k > 0.
Forevery F € C,([0,1]; H) and every k > 0,s,¢ € [0, 1] we have

[(F(t),ex) — (F(s).ex)| < [[F(t) — F(s)|lu.
More generally, for any k > 0, s,¢ € [0, 1], we have
| P F(t)—Pr F(S)la<IF®)=F (). [RF(@)—Re F()|la<|Ft)—F()|n-

Our approach starts with the observation that we may decompose functions F €
C,([0, 1]; H) by double series with respect to the system (¢, ex : n,k > 0).

Lemma 2.1. Leta € (0,1) and F € C,([0, 1]; H). Then we have
o0 o0
F= Z/ XndF ¢, = ZZ/ xndFierd,
w2 10] n=0k=0" 0]

with convergence in the uniform norm on C([0, 1]; H).

Proof. For the real-valued functions Fy, k > 0, the representation

o0
Fy = Z/ AndFi ¢
n=0 [

0.1]

is well known from [4]. Therefore we may write for F € Cy ([0, 1]; H)
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oo o0
ZZZAMWM@

n=0 k=0

o0
=Z[xmm.
n=0

0.1]

To justify the exchange in the order of summation and the convergence in the
uniform norm, we have to show

N,ylnlgloo ’g /[0.1] XndRin F Gy =0

o

For this purpose, note first that by definition of the Haar system for any n,m >
0,n=2F41,where0 </ <2F—1

2[1+1 21 +2 21
/[0.1] TndRn 2R (2’<+1 ) —Hnl ( ey ) —Hnk (2k+1) HH

< 2| Ry, F |2 kH D03k

VT

H

_ ||RmF||a2_a(k+l)+%k+l-

Therefore, for K > 0 such that 2K < N < 2K*! using the fact that ¢, ;,0 <[ <
2K — 1 have disjoint support and that ||y 4, [leo < 2_%_1, we obtain

Z XndRmF¢n < Z Z /[()1] X2k+IdF¢2k+l

[0.1]
n>N o k=K |o=i<2t-1 00

< E sup
k>K 0<l<2k—1

< 3R F 270D
k>K

/ X2k+,dRmFH 25!
f0.1]

o0

< IRwFlla Y297 ———0.

M—>00
k>K

Here we use | Ry Flla < || Fllo < oo forallm > 0, the fact that lim,,— 00 Ry F(2) =
0 for any ¢ € [0, 1], and dominated convergence to obtain lim,,—co|| Ry F|l¢ = 0.
O

A closer inspection of the coefficients in the decomposition of Lemma 2.1 leads
us to the following isomorphism, described by [4] in the one-dimensional case. To
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formulate it, denote by Céq the space of H-valued sequences (1,)sen such that
limy—ool|7llz = 0. If we equip C{! with the supremum norm (using again the
symbol ||-||c0), it becomes a Banach space.

Theorem 2.1 (Ciesielski’s isomorphism for Hilbert spaces). Let 0 < o < 1. Let
(xn) denote the Haar functions and (¢,) denote the for Schauder functions. Let for
0<n=2"41>0 where0 <[ <2¢—1

co(@) =1, cp(a) = 2k@1/D+a=1

Define

TH . Ccoo,1); H) - cf! F|—>(Cn(oc) XndF) .
[0,1] neN

Then TH is continuous and bijective, its operator norm is 1, and its inverse is
given by

o0
_ M
(T el — 0.1 H)., () = Y — .
o Cn (o)
The norm of (T1)™! is bounded by
2
TH -1 < )
I = s
Proof. Observe that forn € N withn = 2k l0<l<2k—
/ JndF
[0,1] H
21 +1 21 +2 21
2F( k+1 )_F( 2k+1 )_F(2k+1) "
L (|FeEh-FEE), HF(iiL‘) - F)|,
= 2¢q(n) 2—ak+1) y—ak+1)
_ 1 |F@) = F)llu
= sup T gl
Ca(n) ; seq0.1], fr—s|<2—k—1 |t — s
< (P

co(n)
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This gives the desired bound on the norm. Moreover, since F € C2([0, 1], H) we

have
/ xndF
[0.1]

Thus the range of 7.7 is indeed contained in Cf'. Taking F : [0,1] — H with
F(s) = sej fors € [0,1] we find that T,/ (F) = (e1,0,0,...); thus |[F|, =
| 7.7 (F)||oo- Therefore |77 || = 1. Clearly T,X is injective.

To see that TaH is bijective and that the inverse is bounded as claimed, define

IF() = FO)lu _

— o
H 1.s€[0,1], |t—s|<2—F—1 |t —s]

lim cq(n)
n—>oo

< lim sup

o0

A:Cl - A1 H). ()Y
n=0

M
cn(a)

Pn-

Now a straightforward calculation using the orthogonality of the (), ).>0 gives for
any (nn)nZO C C(I)LI

TaH o A((Mn)n=0) = TaH (Z n ¢n)

- ( > f xn(r)xm(z)dr)
n,m=0 meN

= (Um)mzo-

Consequently we can infer that A = (T,/)~1.

We still have to show that (TaH )~! satisfies the claimed norm inequality and maps
every sequence (1,)s>0 € C{' to an element of C2([0, 1], H). For this purpose let
(M)nz0 € C,set F = (TH)™'((n,)) and let 5,7 € [0, 1] be given. Then we have

oo 2k—1

1E@ = FO)li < [0nzolloo |1 — 51+ 3 3 12210 = Pty )]

k=0 1=0 cx(@)

The term in brackets on the right-hand side is exactly the one appearing in the real-
valued case [4]. Consequently we have the same bound, given by

1

H\—1
1T = =Ty
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A more careful estimation yields

oo 2k—1

IF @) = F&)lu < Inollle = s+ 32> -

( )||772 ket 1ok 11 (®) — oy (5)].
k=0 1=0

This is the same expression as in the real-valued case. Its well-known treatment
implies
[ F (1) = F(s)llm

=0.
lt—s|—0 |t — 5|

This finishes the proof. O

2.2 Wiener Processes on Hilbert Spaces

We recall some basic concepts of Gaussian random variables and Wiener processes
with values in a separable Hilbert space H. Especially we will derive a Fourier
sequence decomposition of Wiener processes. Our presentation follows [5].

Definition 2.1. Let (2, F,P) be a probability space, m € H and Q : H — H a
positive self-adjoint operator. An H -valued random variable X such that for every
heH

Elexp(i(h, X))] = exp (i (h,m) — %(Qh, h))

is called Gaussian with covariance operator Q and mean m € H. We denote the
law of X by N'(m, Q).

By Proposition 2.15 of [5], Q has to be a positive, self-adjoint trace-class
operator, i.e., a bounded operator from H to H that satisfies:

1. (Qx,x) >0foreveryx € H
2. (Qx,x) = (x,Qx) forevery x € H
3. 3 72 0{Qex, ex) < oo for every CONS (ex)k>0

If Q is a positive, self-adjoint trace-class operator on H, then there exists a CONS
(ex)k>o0 such that Qer = Arex, where Ay > 0 forall k and Zk ~0 Ak < 00. Note that
for such a Q, an operator Q '/ can be defined by setting Q'/%¢; := /Arer. k € Ny.
Then Q'/2Q'/? = Q.

Definition 2.2. Let Q be a positive, self-adjoint trace-class operator on H. A Q-
Wiener process (W(¢) : t € [0, 1]) is a stochastic process with values in H such
that:

1. W(0) = 0.
2. W has continuous trajectories.
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3. W has independent increments.

4. L(W(t) — W(s)) = N, (r —5)Q).

In this case (W(ty),...,W(t,)) is H"-valued Gaussian for all f,...,t, €
[0, 1]. By Proposition 4.2 of [5S] we know that such a process exists for every
positive, self-adjoint trace-class operator Q on H. To get the Fourier decomposition
of a Q-Wiener process along the Schauder basis we use a different standard
characterization.

Lemma 2.2. A stochastic process Z on (H,B(H)) is a Q-Wiener process if and
only if:

e Zy=0DP-a.s.

* Z has continuous trajectories.

e cov((v, Z)(w, Zs)) = (t As)(v, Ow) Vv,we H, V0 <s <t < o0.

* VYvi,...,vy) € H" (v, Z),...,{(vn, Z)) is an R"-valued Gaussian process.

Independent Gaussian random variables with values in a Hilbert space asymptot-
ically allow the following bounds.

Lemma 2.3. Let Z, ~ N(0, Q), n € N, be independent. Then there exists an a.s.
finite real-valued random variable C such that

|Z.llg < C+/lognPa.s..

Proof. By using the exponential integrability of A|Z, |3, for small enough A and
Markov’s inequality, we obtain that there exist A, ¢ € R such that for any a > 0

P(|Z||ls > a) < ce ™,

Thus for & > 1 and n big enough

P(1Z:lln > ViTalogn) < en™.
We set 4, = {1Z, ]l = Y2 o logn} and have

> P(4,) < 0.

n=0

Hence the lemma of Borel-Cantelli gives that P(lim sup, 4,) = 0, i.e., P —a.s. for
almost all n € N we have | Z, ||p < /A 'alogn. In other words

z
LA

n=0 y/logn

<ooP—a.s.
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Using Lemma 2.3 and the characterization of Q-Wiener processes of Lemma 2.2,
we now obtain its Schauder decomposition which can be seen as a Gaussian version
of Lemma 2.1.

Proposition 2.1. Let o« € (0,1/2); let (¢n)ns0 be the Schauder functions and
(Z)n>0 a sequence of independent, N (0, Q)-distributed Gaussian variables, where
Q is a positive self-adjoint trace-class operator on H. The series-defined process

Wi=3 ¢u(0)Zs, te0.1],

n=0

converges P-a.s. with respect to the ||| q-norm on [0, 1] and is an H-valued Q-
Wiener process.

Proof. We have to show that the process defined by the series satisfies the conditions
given in Lemma 2.2. The first and the two last conditions concerning the covariance
structure and Gaussianity of scalar products have standard verifications. Let us
just argue for absolute and ||-||,-convergence of the series, thus proving Holder
continuity of the trajectories.

Since TF is an isomorphism and since any single term of the series is even
Lipschitz continuous, it suffices to show that

(o) o)

is a Cauchy sequence in Cf. Let us first calculate the image of term N under 7,/7.
We have

(TH$Z)n = lp=men (@) Zy.

Therefore for m,m, > 0,m; < m,

Z (TaHd)nZn)N = l{mlfNﬁmz}CN(a)ZN = (TaH (Z ¢nZn)) .
N

n=mi n=mi

So if we can prove that cy(«w)Zy a.s. converges to 0 in H as N — oo, the
proof is complete. But this follows immediately from Lemma 2.3: ¢y (o) decays
exponentially fast, and | Zy ||z < C /log N. O

In particular we showed that for ¢ < 1/2 W a.s. takes its trajectories in

F(t)—F
CO([0.1]: H) := { F:[0.1] — H. F(0) = 0, lim sup IFO = F®la _,
§=0 4oty [t — 5|

|t—s|<§
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By Lipschitz continuity of the scalar product, we also have (F, ex) € C2([0, 1]; R).
Since Py and Rj are orthogonal projectors and therefore Lipschitz continuous,
we obtain that for F € C2([0,1]; H),

sup|[(F, ex)lla < [IFlla-
k=0

We also saw that T,/7 (W) is well defined almost surely. As a special case this is also
true for the real-valued Brownian motion. We have by Proposition 2.1

TaH(W) = (cn(@)Zy)

where (Z,),>0 is a sequence of i.i.d. N'(0, Q)-variables.

Plainly, the representation of the preceding lemma can be used to prove
the representation formula for Q-Wiener processes by scalar Brownian motions
according to [5], Theorem 4.3.

Proposition 2.2. Let W be a Q-Wiener process. Then

W) =Y VABe(er, t €[0,1],

k=0

where the series on the right-hand side P-a.s. converges uniformly on [0, 1] and
(Bi)k>o is a sequence of independent real-valued Brownian motions.

Proof. Using arguments as in the proof of Theorem 2.1 and Lemma 2.3 to justify
changes in the order of summation we get

W=>"¢uZu=_> ¢ulZuelex=> VA Y $uNuxer= Y v AcBrex.
n=0

k>0 n=>0 k>0 n>0 k>0

where the equivalences are P-a.s. and (N, x)n k>0, (Bx)ik>0 are real-valued iid
N(0,1) random variables, resp., Brownian motions. For the last step we applied
Proposition 2.1 for the one-dimensional case. O

2.3 Large Deviations

Let us recall some basic notions of the theory of large deviations that will suffice to
prove the LDP for Hilbert space valued Wiener processes. We follow [6]. Let X be
a topological Hausdorff space. Denote its Borel o-algebra by B.

Definition 2.3 (Rate function). A function / : X — [0, o0] is called a rate func-
tion if it is lower semi-continuous, i.e., if for every C > 0 the set

U (C)i={xeX:I(x)<C)}
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is closed. Itis called a good rate function, if ¥;(C) is compact. For A € B we define
I(A) :=inf,c4q 1(x).

Definition 2.4 (LDP). Let / be a rate function. A family of probability measures
(e)e>0 on (X, B) is said to satisfy the LDP with rate function / if for any closed
set F C X and any open set G C X we have

limsupelog u.(F) < —I(F) and
=0

liminfelog u.(G) > —I1(G).
e—>0

Definition 2.5 (Exponential tightness). A family of probability measures (ft¢)e~0
is said to be exponentially tight if for every a > 0 there exists a compactset K, C X
such that
limsup elog . (K{) < —a.
e—>0

In our approach to Schilder’s theorem for Hilbert space valued Wiener processes
we shall mainly use the following proposition which basically states that the rate
function has to be known for elements of a subbasis of the topology.

Proposition 2.3. Let Gy be a collection of open sets in the topology of X such that
for every open set G C X and for every x € G there exists Gy € Gy such that
x € Go C G. Let I be a rate function and let (liz)e~0 be an exponentially tight
Sfamily of probability measures. Assume that for every G € Gy we have

— inf I(x) = lim ¢ log . (G).
x€G e—0

Then I is a good rate function, and (|L¢). satisfies an LDP with rate function 1.

Proof. Let us first establish the lower bound. In fact, let G be an open set. Choose
x € G and a basis set G such that x € Gy C G. Then evidently

liminfeln u.(G) > liminfeln pu.(Go) = — inf I(y) > —1I(x).
=0 e—0 VE€G

Now the lower bound follows readily by taking the sup of —/(x),x € G, on the
right-hand side, the left-hand side not depending on x.
For the upper bound, fix a compact subset K of X. For § > 0 denote

IP(x) = I(x)=8) A é xeX.

For any x € K, use the lower semicontinuity of /, more precisely that {y € X :
I(y) > I%(x)} is open to choose a set G, € Gy such that

—I°(x) > limsup e In 11, (G).
e—0
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Use compactness of K to extract from the open cover K C U,cgxGy a finite
subcover K C U/_, Gy, . Then with a standard argument we obtain

limsupeln . (K) < max limsupelnu,(Gy,) < — min I%(x;) < — inf I%(x).
=0 1<i<n =0 1<i<n xeK

Now let § — 0. Finally use exponential tightness to show that / is a good rate
function (see [6], Sect. 4.1). O

The following propositions show how LDPs are transferred between different
topologies on a space, or via continuous maps to other topological spaces.

Proposition 2.4 (Contraction principle). Let X and Y be topological Hausdorff
spaces, and let I : X — [0,00] be a good rate function. Let f : X — Y be a
continuous mapping. Then

I':Y - [0,00],I'(y) =inf{I(x): f(x) =y}

is a good rate function, and if (l¢)e>o satisfies an LDP with rate function I on X,
then (s o f~Y)eso satisfies an LDP with rate function 1' on Y .

Proposition 2.5. Let (jt:)e~0 be an exponentially tight family of probability mea-
sures on (X, Br,) where B, are the Borel sets of t,. Assume (j.) satisfies an LDP
with rate function I with respect to some Hausdorff topology T, on X which is
coarser than 1, i.e., Ty C t1. Then (U;).>0 satisfies the LDP with respect to t,, with
good rate function I.

The main idea of our sequence space approach to Schilder’s theorem for Hilbert
space valued Wiener processes will just extend the following LDP for a standard
normal variable with values in R to sequences of i.i.d. variables of this kind.

Proposition 2.6. Let Z be a standard normal variable with values in R,

2

I:R—)[O,oo),xw%,

and for Borel sets B in R let u,(B) := P(/¢Z € B). Then (j1;)e>0 Satisfies an
LDP with good rate function I.

3 Large Deviations for Hilbert Space Valued Wiener
Processes

Ciesielski’s isomorphism and the Schauder representation of Brownian motion yield
a very elegant and simple method of proving LDPs for the Brownian motion. This
was first noticed by [1] who gave an alternative proof of Schilder’s theorem based
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on this isomorphism. We follow their approach and extend it to Wiener processes
with values on Hilbert spaces. In this entire section we always assume 0 < o <
1/2. By further decomposing the orthogonal one-dimensional Brownian motions in
the representation of an H -valued Wiener process by its Fourier coefficients with
respect to the Schauder functions, we describe it by double sequences of real-valued
normal variables.

3.1 Appropriate Norms
We work with new norms on the spaces of «-Holder continuous functions given by

IF 1 = 1T, Flloo = sup L F € C([0.1]: H).

e (@) / 1o ()A(F. ) (s)
[0.1]

I flle = 1Ta flloo = sup . f € Cl0.1]:R).

(@) /{0 RS0

Since T,/ is one-to-one, ||, is indeed a norm. Also, we have ||.||, < ||.|l¢- Hence
the topology generated by ||.||/, is coarser than the usual topology on C2([0, 1], H).
Balls with respect to the new norms Ulf(F) = {G € C20,1];H)
|G — F|, < 8 for F € C2([0,1]; H),8 > 0, have a simpler form for our
reasoning, since the condition that for § > 0 a function G € C2([0,1], H)
lies in Ulf(F ) translates into the countable set of one-dimensional conditions
(TH(F), — T (G),,ex)| < § for all n,k > 0. This will facilitate the proof of
the LDP for the basis of open balls of the topology generated by ||.||,. We will first
prove the LDP in the topologies generated by these norms and then transfer the
result to the finer sequence space topologies using Proposition 2.5 and finally to the

original function space using Ciesielski’s isomorphism and Proposition 2.4.

3.2 The Rate Function

Recall that Q is supposed to be a positive self-adjoint trace-class operator on H. Let
Hy := (Q'?H, ||-||o), equipped with the inner product

()C, y)Ho = (Q—l/Zx’ Q_I/ZY)H,

that induces the norm |-||o on Hy. We define the Cameron—Martin space of the Q-
Wiener process W by

H:=FeC(0,1];H): F(-) = / U(s)ds for some U € L*([0, 1]; Ho)} .
0
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Here L%([0, 1]; Hp) is the space of measurable functions U from [0, 1] to Hy such
that fol ||U||%1,0 dx < oo. Define the function / via

I:C([0,1]; H) — [0, o],

1! '
F mf%E/O IU(s)|13,ds = U € L*([0,1]; Ho), F(*) :/0 U(s)ds} ,

where by convention inf @ = co. In the following we will denote any restriction of
I to a subspace of C([0, 1]; H) (e.g., to (C,([0, 1]; H)) by I as well. We will use
the structure of H to simplify our problem. It allows us to compute the rate function
I from the rate function of the one-dimensional Brownian by the following lemma.

Lemma 3.1. Ler [ : C([0, 1]; R) be the rate function of the Brownian motion, i.e.,

fol | £(s)2ds, f() = Jo F(s)ds for a square-integrable function f
00, otherwise.

i(f)::{

Let (A )i>0 be the sequence of eigenvalues of Q. Then for all F € C([0,1]; H) we
have

Fek

>~)|,_.

I(F) = Z

where we convene that ¢ /0 = oo for ¢ > 0and 0/0 = 0.
Proof. Let F € C([0,1]; H).
1. First assume /(F) < oo. Then there exists U € L?([0, 1]; Hp) such that F =

Jo U(s)ds and thus (F, er) = [,(U(s),ex)ds for k > 0. Consequently we have
by monotone convergence

1! ) 1!
2/0” ()3, ds 2[0

o]

Y (Us), ex)ex

k=0

The last expression does not depend on the choice of U. Hence we get that
I(F) < oo implies I(F) = Y ;2, ﬁ]((F, €k))-
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2. Conversely assume Y ;o T LT((F.e;)) < oo. Since I({F,er)) < oo for all
k > 0, we know that there exists a sequence (Uy)k>o of square-integrable real-
valued functions such that (F,e;) = fo Ui (s)ds. Further, those functions Uy
satisfy by monotone convergence

1! 2
/ ZTIUk(S)IZdS = XE)Tk/o |Ui(s)]?ds = ;T ((F,er)) < oo.

So if we define U(s) := Z,fio Usi(s)ex,s € [0, 1], then U € L?([0, 1]; Hy). This
follows from

U e L*([0, 1]; Hy) 1ff/ 1U(s) |13, ds —/0 Z—|Uk(s)|2ds < 00.

Finally we obtain by dominated convergence (|| F(¢)| g < c0)

[e.]

F(1) =) (F(1).ex)e Zek / Ur(s)ds = / U(s)ds,

k=0

such that
I(F) < / 10, ds = /0 Z LU )Fds < oo,
Combining the two steps we obtain I(F) < oo iff Y 7o, ﬁf((F, ex)) < oo and

in this case
o0
I(F) = Z

This completes the proof. O

Fek

>—’|,_.

Lemma 3.1 allows us to show that / is a rate function.
Lemma 3.2. [ is a rate function on (C2([0,1]; H), ||.||.,)-

Proof. For a constant C > 0 we have to prove that if (F,),>0 C ¥;(C) N
C2([0, 1]; H) converges in C2([0, 1]; H) to F, then F is also in W;(C).

It was observed in [1] that / is a rate function for the [|.1I;,-topology on
Cy ([0, 1];R). By our assumption we know that for every k € N, ({F,, ex))nx0
converges in (C§' ([0, 1];R), [|.]|7,) to (F, ex). Therefore

I((F.e)) <liminf I ((F,. ex)),

so by Lemma 3.1 and by Fatou’s lemma,
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o 1 o0

Czl}lnlgfl(Fn)zlglniinf;A—I (F,.ex)) Z kl;n_l}grolfl(Fn,ek))

(F.ex)) = 1(F).

>~)|,_

Hence F € ¥ (C). O

3.3 LDP for a Subbasis of the Coarse Topology

To show that the Q-Wiener process (W(t) : t € [0,1]) satisfies an LDP on
(Co([0,1]; H), ||-ll) with good rate function I as defined in the last section we
now show that the LDP holds for open balls in our coarse topology induced by |.||.,.
The proof is an extension of the version of [1] for the real-valued Wiener process.

For ¢ > 0 denote by i, the law of /eW, i.e., u.(A) = P(J/eW € A), A €
B(H).

Lemma 3.3. Forevery § > 0 and every F € C2([0, 1]; H) we have

lim € log Ms(U(f(F)) =— inf I(G).
e—0 Ub(F)

Proof. 1. Write T/'F = (332, Fuxex)nen. Then /eW is in US(F) if and only if

<.

sup
k.n=>0

1
\/Ecn(a)/o Xnd(W’ €k> — Fin

Now for k > 0 we recall (W, ex) = +/AxBk, where (B )r>0 is a sequence of
independent standard Brownian motions. Therefore for n, k > 0

1
‘/ Xnd<W7 ek)
0

where (Zi.,)ikn>0 is a double sequence of independent standard normal vari-
ables. Therefore by independence

’

= ‘\/A_kzk,n

peUSF) =P [ |ea(@)VeriZin — Fin| <8

= TTTTP (cnl)VereZin € (Fen =8, Fen +8)).

k=0n=
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To abbreviate, we introduce the notation
Pr,(e) = P (c,, (@) Veri Zin € (Fin — 8, Fin + 8)) &> 0,1,k €N

For every k > 0 we split Ny into subsets Af-‘ ,i =1,2,3,4, for each of which we
will calculate [[7— [1,enr Puk () separately. Let

At ={n=0:0¢ [Fiu—8 Fin+ 8]}

As=(n>0:F,=+8

Ay ={n>=0:[-8/2.6/2] C [Fin — 8. Fin + 8]}

AE = (AYUAS U AY
By applying Ciesielski’s isomorphism to the real-valued functions (F,ey), we
see that for every fixed k, A% contains nearly all n. Since (T,/ F), converges to
zero in H, in particular sup; - | Fx.»| converges to zero as n — oo. But for every
fixed n, (Fy )k is in I? and therefore converges to zero. This shows that for large

enough k we must have A% = Ny, and therefore Uy (A%)¢ is finite.
2. First we examine [ 72, [],c Ak P (). Note that for n € A% we have

[—8/2.6/2] C [Fin — 8. Fien + 8],

and therefore

S 8
l_[ l_[ Py a(e) = 1_[ l_[ (Zk,n < (_ch(o[)\/gT7 26,,(0[)@))

k= OnEAk k= OnEAk

o0
]_[ 1—,/= / e/ 2du
k=0 ne Ak 8/ (2 (@) V/ek7)

For a > 1 we have faoo e~/ 2dx =< ¢~*/2 Thus for small enough ¢:

[T =TT T1 (1_[exp(_86}%éﬁ)).

k=0penk k=0penk

This amount will tend to 1 if and only if its logarithm tends to 0 as ¢ — 0. Since
log(1 — x) < —x for x € (0, 1), it suffices to prove that

52
21_13% Z Zexp ( cz(oz)s)kk) =0. (6.2)

k=0n>0
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This is true by dominated convergence, because ¢, () = 2"@~1/2+e=1 and
since (Ax) € 1.
We will make this more precise. First observe that fora > 0

—1

e < —e

1
a
if log(a) —a < —1.
For k,n > 0 we write n,x = % Clearly there exists a finite set T C Ng

such that log(n,x) — Mnx < —1forall (n,k) € T°. We set C = Z(n,k)ET ek
and get

)
ZZexp( 8c2(ot)8/\k) C+ Z e~k

k=0n=0 (n.k)eTe

o

<C + Z le_l

(nhyere Mk

+ 88862_1 Zkk X:C,,(oz)2 < 00.

k>0 n>0

3. Since UkzoA]X is finite and since for every  in A’j the interval (Fi ,—&, Fik.n+0)
contains a small neighborhood of 0, we have

lim [T1] Bente) =1. (6.3)

k:()neAﬁ

4. Again because Ukzo/\lﬁ is finite, we obtain from its definition that

[e'9)

. _ k

tim T T Beae) = 2720041 (64
k:()neA};

5. Finally we calculate lim,—o [ ]2, [T Ak Pk . (¢). For given k, n define

F _ Fk,n_Sa Fk,n>87
ko = Fen + S, F, < —4.
We know that Zj , is standard normal, so that by Proposition 2.6 forn € A]f

2
Fk,n

. 0 _
lim elogFi(®) = =5 i
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and therefore again by the finiteness of Uy A’l‘

[ele) o0 Fz
timelog [T [T B2, e)=-)" " m (6.5)
k:()neA}f k:()neA}f
6. Combining Egs. (6.2)—(6.5) we obtain
F2
hmelog ,ug(U (F)) = Z Z ZCZ(C\{)
ne

So if we manage to show

_ZM EZ 262((1) — inf  I(G),

GeUS(F)

the proof is complete. By Ciesielski’s isomorphism, every G € C2([0, 1]; H) has

the representation
o0
-Yay e
k=0 n=0

Its derivative fulfills (if it exists) for any k > 0

[} Gk
(Goer) =) —

n=0 Cn (O{)

Since the Haar functions (y,).zo0 are a CONS for L*([0,1]), we see that
1({(G,er)) < ooif and only if (Gy ,/c,(e)) € I, and in this case

. 1t ) >, G}
I G, = — G s d = M .
Gy =3 [ 661 eras =305ty
So we finally obtain with Lemma 3.1 the desired equality
— 1 > 1 & G}
inf I(G inf G,e inf
GeUg(F) (@)= GeUg(F) =g A 146 e GeUb(F)Z/\k Z2c2(a)
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3.4 Exponential Tightness

The final ingredient needed in the proof of the LDP for Hilbert space valued Wiener
processes is exponential tightness. It will be established in two steps. The first step
claims exponential tightness for the family of laws of \/¢Z,& > 0, where Z is an
H -valued A/(0, Q)-variable.

Lemma 3.4. Let ¢ > 0 and v, = P o (/eZ)™" for a centered Gaussian random
variable Z with values in the separable Hilbert space H and covariance operator
Q. Then (v¢)se(0.1] is exponentially tight. More precisely for every a > 0 there exists
a compact subset K, of H, such that for every ¢ € (0, 1]

Ve(K;) < e a/e

Proof. We know that for a sequence (by)r>o converging to 0, the operator T(;,) 1=
Zk —o bk (. ex) e is compact. That is, for bounded sets A C H, the set T(;,)(A) is
precompact in H. Since H is complete, this means that c/(T(;,)(A4)) is compact.

Let a’ > 0 to be specified later. Denote by B(0, ~/a’) C H the ball of radius v/a’
in H. We will show that there exists a zero sequence (by )ik >0, such that the compact
set Ky = cl(T(p,)(B(0, Ja'))) satisfies for all & € (0, 1]:

P(J2Z € (Ky)°) < ce '/ (6.6)

with a constant ¢ > 0 that does not depend on @’. Thus, for given a, we can choose
a’ > a such that for every ¢ € (0, 1]

¢ < e(a’—a)/s

and therefore the proof is complete once we proved Eq. (6.6).

Since Z is Gaussian, e*!?1# is integrable for small A, and we can apply Markov’s
inequality to obtain constants A(Q),c(Q) > 0 such that P(|Z|z > a') <
c(Q)e M,

Note that if (Ax)k>0 € ', we can always find a sequence (cx)r>0 such that
limg o0k = 00 and ), ., cxAx < oo. For B > 0 that will be speciﬁed later, we
set by = \/g for all k > 0. We can define (T(;,k))_ Zk 0 b -, er)ek. This
gives

P(VeZ € (Ku)) < P(Ve(T)) ' (2) ¢ B(0.Va'))

= B(I(T6) " DI} = 5)

_p (Z Z,en)P = ’37")

k=0

=P <||Z||H > @) ,
£
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where Z is a centered Gaussian random variable with trace-class covariance
operator

oo
0 =) all ele
k=0

Consequently we obtain

A(0)pa’

P(VeZ € (Ko)) = c(Q)e™ =

Choosing = ; proves the claim (6.6). O

l(Q
With the help of Lemma 3.4 we are now in a position to prove exponential
tightness for the family (i¢)ce(0.1]-

Lemma 3.5. (14¢)cc(0,1] is an exponentially tight family of probability measures on
(€0 11 H), o).

Proof. Leta > 0. We will construct a suitable set of the form
o0
= 1_[ K¢
n=0

such that .
liTjélpelog e [((TQH)_I K“) ] < -—a.

Here each K is a compact subset of H, such that the diameter of K7 tends to
0 as n tends to oo. Then K¢ will be sequentially compact in Cl! by a diagonal
sequence argument. Since Cf! is a metric space, K® will be compact. As we saw in
Theorem 2.1, (T,7/)~" is continuous, so that then K¢ := (T,}')~' (K¢) is compact in
(CO?([O, l]s H)v ””a)

Let v, = Po (4/eZ)™! for a random variable Z on H with Z ~ N(0, Q). By
Lemma 3.4, we can find a sequence of compact sets (K?),eny C H such that for all

e € (0,1],
o ((K2)) < exp (D).

To guarantee that the diameter of K¢ converges to zero, denoting by B(0, d) the
closed ball of radius d around 0, we set

Ka = l_[cn(oz) (E (0, \/ @) N K,‘f) .
n=0

Since ¢y (a)y/a(n +1)/A — 0 asn — oo, this is a compact set in C. Thus
K9 := (T~ (K%) is compact in (C2([0, 1], H), ||||¢)-
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Remember that by Lemma 2.1 we have W = Z:o:() GnZ,, where (Z,),>0 is an
i.i.d. sequence of N/(0, Q)— variables. This implies 7,7/ (W) = (c,()Z,)n>0 and
thus for any ¢ € (0, 1]

He((K)) =P [unem{cn(awzzn c (cn(a) (B (o, \/@) n K:;)) ”
_ ad e - a(n+1)
D> (ug((Kn) )+ P (uznn > \/T))

—(n+1a —a(n+1)
(e ¢ +ce ¢ )

WK

=

3
Il
S

e s
:(1+C) =a

1—e

So we have
limsup e log e ((K)°) < —a.
e—>0

O

We now combine the arguments given so far to obtain an LDP in the Holder
spaces.

Lemma 3.6. (jt.)c(0,1] satisfies an LDP on (C2([0,1]; H), |.|l«) with good rate
function 1.

Proof. We know ||.||; < ||.|la- Therefore the ||.||;-topology is coarser, which in turn
implies that every compact set in the ||.||,-topology is also a compact set in the ||. ||;-
topology. From Lemma 3.5 we thus obtain that (i;)s<(o,1] is also exponentially tight
on (C2([0, 1]: H). ||IS).-

Proposition 2.3 implies that (f4).c(0,1] Satisfies an LDP with good rate function
I on (CY([0.1]: H). [|1%).

Finally we obtain from Proposition 2.5 and from Lemma 3.5 that ()01
satisfies an LDP with good rate function 7 on (C2([0, 1]; H), ||.||«)- O

We may now extend the LDP from (C2([0, 1]; H), ||.]l«) to (Co ([0, 1]; H), |||l¢)-
This is an immediate consequence of the contraction principle (Proposition 2.4),
since the inclusion map from C([0, 1]; H) to C,([0, 1]; H) is continuous. Similarly
we can transfer the LDP from C2([0, 1]; H) to C([0, 1]; H), the space of continuous
functions on [0, 1] with values in H, equipped with the uniform norm.

Theorem 3.1. Let (W(t) : t € [0, 1]) be a Q-Wiener process and for € € (0, 1], let
We be the law of JeW. Then (s)se0,1) satisfies an LDP on (C([0, 1]; H), ||.]lo0)
with rate function I.



138 A. Andresen et al.

Proof. First we can transfer the LDP from (C2([0, 1]; H), ||.|lo) to (C2([0, 1]; H),
[|-lloo)- This is because on C2([0, 1]; H), ||.|loo< ||-|l«» Whence the |.]|cc-topology
is coarser. Therefore / is a good rate function for the |.||so-topology as well, and
(e )ee(o.1) satisfies an LDP on (C2([0, 1]; H), ||.||s) With good rate function 1.
The inclusion map from (C2([0, 1]; H), ||.]lo0) to (C([0, 1]; H), ||.||c) is contin-
uous, so that an application of the contraction principle (Proposition 2.4) finishes
the proof. O

Acknowledgment Nicolas Perkowski is supported by a Ph.D. scholarship of the Berlin Mathe-
matical School.

References

1. Baldi, P., Roynette, B.: Some exact equivalents for the Brownian motion in Holder norm.
Probab. Theory Relat. Fields 93, 457484 (1992)
2. Ben Arous, G., Gradinaru, M.: Hoélder norms and the support theorem for diffusions. Ann.
Inst. H. Poincaré 30, 415-436 (1994)
3. Ben Arous, G., Ledoux, M.: Grandes déviations de Freidlin-Wentzell en norme Holderienne.
Séminaire de Probabilités 28, 293-299 (1994)
4. Ciesielski, Z.: On the isomorphisms of the spaces H, and m. Bull. Acad. Pol. Sci. 8, 217-222
(1960)
5. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University
Press, Cambridge (1992)
6. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. Springer, New York
(1998)
7. Eddahbi, M., Ouknine, Y.: Large deviations of diffusions on Besov-Orlicz spaces. Bull. Sci.
Math. 121, 573-584 (1997)
8. Eddahbi, M., N’zi, M., Ouknine, Y.: Grandes déviations des diffusions sue les espaces de
Besov-Orlicz et application. Stoch. Stoch. Rep. 65, 299-315 (1999)
9. Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems, 2nd edn. Springer,
New York (1998)
10. Galves, A., Olivieri, E., Vares, M.: Metastability for a class of dynamical systems subject to
small random perturbations. Ann. Probab. 15, 1288-1305 (1987)
11. Schilder, M.: Asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125, 63-85
(1966)



Chapter 7
Stationary Distributions for Jump Processes
with Inert Drift

K. Burdzy, T. Kulczycki, and R.L. Schilling

Dedicated to David Nualart

Abstract We analyze jump processes Z with “inert drift” determined by a
“memory” process S. The state space of (Z, S) is the Cartesian product of the unit
circle and the real line. We prove that the stationary distribution of (Z, S) is the
product of the uniform probability measure and a Gaussian distribution.
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1 Introduction

We are going to find stationary distributions for jump processes with inert drift. We
will first review various sources of inspiration for this project, related models, and
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results. Then we will discuss some technical aspects of the paper that may have
independent interest.

This paper is concerned with the following system of stochastic differential
equations (the precise statement is in the next section):

dY, = dX, + W(Y,)S, dt, (7.1)
ds, = W'(Y,) dr, (7.2)

where X is a stable Lévy process and W is a C* function. This equation is
similar to equation [1, (4.1)], driven by Brownian motion, but in Eq. (7.1) the term
% (AVV)(X;)dt from the first line of [1, (4.1)] is missing. An explanation for this
can be found in heuristic calculations in [7, Example 3.7]. The paper [7] deals with
Markov processes with finite state spaces and (continuous-space) inert drifts. This
class of processes is relatively easy to analyze from the technical point of view.
It can be used to generate conjectures, for example, [7, Example 3.7] contains a
conjecture about the process defined by Eqs. (7.1) and (7.2). We want to point out
that the function W used in the present paper corresponds to W' in [7, Example
3.7]. This means that the assumptions made in the present article are weaker than
those in [7] and hence our result is stronger than that conjectured in [7].

The main result of this paper, that is, Theorem 2.2, is concerned with the
stationary distribution of a transformation of (Y, ). In order to obtain non-trivial
results, we “wrap” Y on the unit circle, so that the state space for the transformed
process Y is compact. In other words, we consider (Z;,S;) = (ein, Sy). The
stationary distribution for (Z;, S;) is the product of the uniform distribution on the
circle and the normal distribution.

The product form of the stationary distribution for a two-component Markov
process is obvious if the two components are independent Markov processes. The
product form is far from obvious if the components are not independent, but it does
appear in a number of contexts, from queuing theory to mathematical physics. The
paper [7] was an attempt to understand this phenomenon for a class of models.

One expects to encounter a Gaussian distribution as (a part of) the stationary
distribution in some well-understood situations. First, Gaussian distributions arise
in the context of the central limit theorem (CLT) and continuous limits of CLT-
based models. Another class of examples of processes with Gaussian stationary
measures comes from mathematical physics. The Gibbs measure is given by
crexp(—c Zi, j (x; — x j)z) in some models, such as the Gaussian free field; see
[17]. In such models, the Gaussian nature of the stationary measure arises because
the strength of the potential between two elements of the system is proportional to
their “distance” (as in Hooke’s law for springs) and, therefore, the potential energy
is proportional to the square of the distance between two elements. Our model
is different in that the square in the exponential function represents the “kinetic
energy” (square of the drift magnitude) and not potential energy of a force. The
unexpected appearance of the Gaussian distribution in some stationary measures
was noticed in [6] before it was explored more deeply in [1,7].
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This paper has a companion [8] in which we analyze a related jump process with
“memory.” In that model, the memory process affects the rate of jumps but it does
not add a drift to the jump process. The stationary distribution for that model is also
the product of uniform probability measure and a Gaussian distribution.

An ongoing research project of one of the authors is concerned with Markov
processes with inert drift when the noise [represented by X in Eq. (7.1)] goes to 0.
In other words, one can regard the process (Y, S) as a trajectory of a dynamical
system perturbed by a small noise. No matter how small the noise is, the second
component of the stationary measure will always be Gaussian. Although we do
not study small noise asymptotics in this paper, it is clear from our results that the
Gaussian character of the stationary distribution for the perturbed dynamical system
does not depend on the Gaussian character of the noise—it holds for the stable noise.

Models of Markov processes with inert drift can represent the motion of an inert
particle in a potential, with small noise perturbing the motion. Although such models
are related to the Langevin equation [13], they are different. There are several recent
papers devoted to similar models; see, e.g., [2-5].

We turn to the technical aspects of the paper. The biggest effort is directed at
determining a core of the generator of the process. This is done by showing that
the semigroup 7 of the process (Y;, S;) preserves C?; see Theorem 3.1. The main
idea is based on an estimate of the smoothness of the stochastic flow of solutions
to Egs. (7.1) and (7.2). This result, proved in greater generality than that needed
for our main results, is presented in Sect. 3; see Proposition 3.1. This proposition
actually makes an assertion on the pathwise smoothness of the flow. It seems that
Theorem 3.1 and Proposition 3.1 are of independent interest.

We are grateful to the referee for very helpful suggestions.

1.1 Notation

Since the paper uses a large amount of notation, we collect most frequently used
symbols in Table 7.1, for easy reference.

2 A Jump Process with a Smooth Drift

Let$ = {z € C : |z] = 1} be the unit circle in C. Consider a C* function
V : 8§ — R which is not identically constant and put W(x) = V(e’*), x € R.
Let X; be a symmetric a-stable Lévy process on R which has the jump density
Ay |x — |77, a € (0,2). Let (Y, S) be a Markov process with the state space R?
satisfying the following SDE:

dY, = dX, + W(Y,)S, dt,

(7.3)
s, = W/(Y,) dr.
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Table 7.1 Frequently used notation

avb,anb max(a, b), min(a, b)
a4, a— max(a, 0), —min(a, 0)
[x]p Z |x;| where x = (xy,..., Xn) € R™

j=1
c generic constant (without sub- or superscript) which may

change its value from line to line

e The kth unit base vector in the usual orthonormal basis for R”
A, F(1+a) 201 € (0.2)

o , o s

2 ) AT(i-9)
Jlel

D* —, = (a1, ....0q) € IN¢

axyt e axg (@ a) € Ny
ck k-times continuously differentiable functions
C,i‘, C(’F s Cé‘ Functions in C¥ which, together with all their derivatives up

to order k, are “bounded,” are “compactly supported,” and
“vanish at infinity,” respectively

I f lloo,5 sup | f(x)| for £ : R" = R
XEB
DY flloo.s > D flloo.s
lee|=
I Gy.ss 1L Ml > sup D f(x)].resp.. Y 1D f oo
lel<j *<B lal=<j
”DU)V”oo,Bv 1DV oo Z Z sup | DV (x)], resp., Z Z [|D* V|| oo for any
lal=j k=15 lal=j k=1
function V : R" — R”
J J
VG 1V 1) D IV lloo.s. tesp. Y I1DDV oo
i=0 i=0
S {z € C : |z] = 1} unitcircle in C

Lemma 2.1. The SDE (7.3) has a unique strong solution which is a strong Markov
process with cadlag paths.

Proof. For every n € IN define the function f, : R — R by f,(s) := (—n) Vs An.
We consider for fixed n € IN the following SDE:

dY;™ = dX, + W) fu(S;7) dt, 7.4)
ds™ = w' (™) dr. '

Note that R? 3 (y,s) — W(y) f,(s) is a Lipschitz function. By [14, Theorem V.7]
and [14, Theorems V.31, V.32] the SDE (7.4) has a unique strong solution which
has the strong Markov property and cadlag paths for every fixed n € IN.

Now fix #p < oo and a starting point R?> > (y,s) = (YO("), Sé")). Note that for
any t <ty we have

s < Is| + f0] W'l oo-

t
= ‘SO(") + / w'(Y™)ds
0
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Pick n > |s| + t]|W/|lco, n € IN. For such n and any ¢ < fy, the process defined
by (Y;, ;) := (Yt(n), S,(")) is a solution to Eq. (7.3) with starting point (y, s). This
shows that for any fixed starting point (y,s) = (Yo, So) and fixed {p < oo the
SDE (7.3) has a unique strong solution up to time 7. The solution is strong Markov
and has cadlag paths. Since #y < oo and the starting point (y, s) are arbitrary, the
lemma follows. O

We will now introduce some notation. Let IN be the positive integers and denote
by INo = INU {0}. Forany f : $§ — R we set

F(x) = f(e™¥), xeR.

We say that £ : $ — R is differentiable at 7 = ¢'*, x € R, if and only if f is
differentiable at x and we put

f'@ = (f)(x). where z=¢", xecR.

Analogously, we say that f : $ — R is n times differentiable at z = e*, x € R, if
and only if f is n times differentiable at x and we write

fP@ = (H"(x), where z=¢", xeR.
In a similar way we define for f : $ x R - R

f(.s) = f@E”,5), y.seR. (1.5)

We say that D* f(z,s), z = e, y,s € R, @ € INZ, exists if and only if D”‘f(y, s)
exists and we set

D“f(z,s):D“f(y,s), where z=¢”, y,se€R.

When writing C2($), C2($ x R), etc., we are referring to the derivatives defined
above.
Let

Zt == eth. (76)

Then (Z, S) is “a symmetric «-stable process with inert drift wrapped on the unit
circle.” In general, a function of a (strong) Markov process is not any longer a
Markov process. We will show that the “wrapped” process (Z;,S;) = (e'*",S,)
is a strong Markov process because the function W(x) = V(e is periodic.

Lemma 2.2. Let (Y;, S;) be the solution of the SDE (7.3). Then
POT(Y, € A+ 2m, S, € B) =PU(Y, € A, S, € B)

holds for all (y, s) € R?* and all Borel sets A, B C R.
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Proof. Denote by (Y;”, S¥) the unique solution of the SDE (7.3) with initial value

Yy, S3) = (»,5). We assume without loss of generality that X, = 0. By definition,

Yy+27z
t

the process ( . S}) solves

t
Yi=y+2n+ X; +/ wW(Y,)S, dr,
0
t
S, =s +/ W’(Y,)dr.
0
Since the function W is periodic with period 277, we have W(?,.) = W(I},. —2m)
and W'(Y,) = W'(Y, — 27). Therefore, (Y, 77", S¥) solves the system
A t A A
Yi=y+2n+ X; +/ W, —2m)S, dr,
0

t
S, =5+ / W'(Y, —2m)dr.
0
By subtracting 27 from both sides of the first equation we get

t
IA’, —2r=y+X, +/ W(?, —27r)§rdr,
0

t
S :s—i—/ W'Y, — 2m)dr.
0

Since the solutions are unique, this shows that (">, S,) = (Y + 27, S;) from
which the claim follows. O

We can now use a rather general result on transformations of the state space due to
Dynkin [9, 10.25, Theorem 10.13]; see also Glover [11] and Sharpe [16, Sect. 13].

Corollary 2.1. Lety : R?> — S x R, y(y,s) := (e”,5) and (Y,, S;) be the unique,
cadlag strong Markov solution of the SDE (7.3). Then (Z,, S,) = (e'', S,) is also
a strong Markov process. Let P;((y,s), A x B) denote the transition function of
(Y, S) and P3((y,s), A x B) the transition function of (Z, S). Then for y,s € R
and Borel sets A, B C R,

P (y(y.5). Ax B) = P/((y.5).y”' (4 x B)).
Proof. All we have to do is to verify Dynkin’s condition [9, 10.25.A] saying that
P((y,5), 7" (Ax B)) = Pi((y',5"), y~' (A x B))
holds for all Borel sets A C $, B C R and all points (y,s), (y',s”) € R? such that

y(y,s) = y(y',s). Clearly, s = s’ and y — y’ = 2z for some j € Z. Denote
f(y) = e . Applying Lemma 2.2 repeatedly we find
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PO ((Y,,S) €y~ (Ax B)) = PUY (Y, € f7(A), S, € B)
= POt (Y, e f71(A) + 27j, S, € B)
=Pt (Y, e £71(A), S, € B)
= POt ((1,, ;) € y7' (4 x B)). O
We are going to calculate the generators of the processes X;, (Y;,S;) and
(Zfs Sf)
By G¥ let us denote the generator of the semigroup, defined on the Banach space
(Cp(R), || loo), of the process X,. By D(G*) we denote the domain of G¥ . It is well

known that C}(R) C D(G¥) and for f € C?(R) we have GX f = —(=A)*/? f,
where

(=AY f(x) = A, lim S = /) {(x) dy, xeR.
e—>0t |y—x|>e |X - yl to
IffecC bz (R) is periodic with period 27 then we have
—(=A)*? f(x) = A, lim Lflff) d
e=>0F Jas|y—x|>e |x - yl *
7.7
f0) = f) D
+ 'Aa I+a
nEZ\{0} >|y—x| |)C -y + 2””'
In the sequel we will need the following auxiliary notation:
Definition 2.1.
Ci(R*) :={f:R*—> R : 3N > 0 supp(f) C R x [-N, N],
f is bounded and uniformly continuous on Rz},
CZ(R?) := C«(R?) N CA(R?).
Let us define the transition semigroup {7;},;>¢ of the process (Y;, S;) by
T.f(y.5) =EY) f(Y,,S), y.s€eR, (7.8)

for functions f € C,(IR?). Let G5 be the generator of {7;};>0 and let D(G5))
be the domain of G5,



146 K. Burdzy et al.

Lemma 2.3. We have C2(R*) € D(GYS)) and for f € C2(R?), and y,s € R

GIDf(y,9) = =(=A) P f(.9) + WO)sh(r5) + W) f(v.5), (7.9

Proof. Let f € C«(IR?). Throughout we assume that supp(f) C R x (=M, My)
for some M, > 0. Note that for any starting point (Yo, So) = (y,s) € R x
[-My, Mp] and all 0 <t <1,

t
15,] = So+/ WY,y dr| < Mo + | W ]ec.
0

Put
My = Mo+ [ W] co-
Note that if (y,s) ¢ R x [-M;, M;] and (Yo, So) = (y,s) then forany 0 < ¢ <1

we have

t
5] = So+/ W/(¥,)dr| > My — [W' oo = Mo,
0

and, therefore, f(Y;, S;) = 0. It follows that for any (y,s) ¢ R x [-M;, M;] and
0 < h <1 we have

EO) S, Sp) = f(y, ) _
- =
We may, therefore, assume that (y,s) € R x [-M;, M;]. We will also assume
that0 < h < 1.
As above we see that for any starting point (Y, So) = (y,5) € R x [-M;, M{]
andall 0 <7 < 1 we have |S;| < M| + |W/||so. Set My := My + |W/|s. We
assume without loss of generality that Xy = 0. Then

0.

t
Y=y + X, +/ W(Y,)S, dr.
0
t
S =s +/ W'(Y,)dr.
0

It follows that

Tif(r,5) = f(r.5) _ B (Y, Si) = f(3.)
h h

= B S )= £ 5)+ 5 BV (Y9)— /(0]

=I1+1L
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Using Taylor’s theorem we find

E 1 af h 82]“ h , 2
[=EU¥ ——(Yh,s) W'(Y,)dr + th(Yh,§)< i W(Y,)dr)
= g0 laf LA / Wi ar+ 22 s) (W (Y,) — W'(y)) dr
821" h , 2
NETAr -5 (Yh, %‘)( A W(Yr)dr) ]

where £ is a point between s and S;,. Note that

19 P :
E0-) [‘Ea_i(yh’s) \ (W' (¥) = W'(y))dr

|

<o |3 el [
<EU [h J OO/O W ||OOX,+/0 W(Y,)s, dr

) A2 e} dr]

EC) H W lloo ( sup [ X, | +h||W||ooM2)§ A2||W/||w]
o0

0<r<h

— 0,
h—0T

uniformly for all (y,s) € R x [-M, M,]. The convergence follows from the right
continuity of X; and our assumption that X, = 0. We also have

1 0°f ’
EO EF( e €) (/ W(Y)dr)

uniformly for all (y,s) € R x [-M;, M]. Because Y}, is right continuous it is easy
to see that

Pf

h
_ 2 O,
| S —>

EC: Y’[ == (Y. S)/ w (y)dr] —f(y,S)W’(y),
0+ 0s
uniformly for all (y, s) € R x [-M;, M;]. It follows that

S ow
—— SO ),

uniformly for all (y,s) € R x [-M;, M;].
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Now let us consider II. We have

= 2 BOIf (3 + Xp5) = f9)] + 3 BOV L0 5) = £ 4 X9

=1II; + IL.

It is well known that
I —— (=82 f(y.9).
h—0

uniformly for all (y, s). We also have

b)
laf h 1 aZf h
— s | 221 — L W
L =E 79y (y+Xh,s)/0 W(Yr)Srdr+2h 72 (&) \ (Y;)S-dr
o | 10F h h
=EYY | — = + Xp,5) / W(y)sdr—i—/ WY, (S, —s)dr
_h dy 0 0

h 1 aZf h 2
+ ; (W) —W(y))s dr) +EW@’S)< \ W(Y:)S: dr) ]

where £ is a point between y + X}, and Y. Using similar arguments as above we
obtain
af
[ —— == (y.9)W(y)s.
h—0t By

uniformly for all (y,s) € R x [-M, M,].
It follows that

S)=f s i) )
Ur] S;l 109 —(—Ay)“/zf(y,SHW(y)s—f (y,S)+W’(y)—f (. 9),
h—0+ ay as

uniformly for all (y,s) € R x [-M, M,]. This means that f € D(GY5)) and
Eq. (7.9) holds. O

Remark 2.1. A weaker version of Lemma 2.3 can be proved as follows. If we
rewrite the SDE (7.3) in the form

Yt 1 W(YZ‘)SI Xt Xt

(Sf) (o W'(Y;) t e Sd |,
and notice that (X,,7)" is a two-dimensional Lévy process with characteristic
exponent (£, 7) = |€|* +it, we can use [15, Theorem 3.5, Remark 3.6] to deduce
that C®(R?) C D(G™S). This argument uses the fact that the SDE has only jumps

in the direction of the «-stable process, while it is local in the other direction.
Theorem 3.1 of [15] now applies and shows that G&*5) is a pseudo-differential
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operator G¥Su(x,s) = (2m)72 [o p(x,5:£.7) Fu(, 1) ™57 dE dr, where F
denotes the Fourier transform, with symbol

px.siE.7) =Y (@(y.s) (E.0)T) = [E]* +iEW(x)s.

A Fourier inversion argument now shows that Eq. (7.9) holds for f € C>°(RR?) and
by a standard closure argument we deduce from this that Eq. (7.9) also holds for
f e C2RA).

We say that f € Co(S x R) if and only if for every & > 0 there exists a compact
set K C $ x R such that | f(u)] < e for u € K°. Let us define the semigroup
{T},>0 of the process (Z;, S;) by

TS f(z,s) = B f(Z,,S)), z€8$, seR, (7.10)

for f belongingto Co($ x R). Letz = e, y € R. For future reference, we note the
following consequences of Corollary 2.1:

TS fzs) = B®) £(Z,,S) = BV f@e.5) = BV f(¥,.5)
=T, f(y.s).  (1.11)

and

TS f(y.5) = T, f (3.9). (7.12)

By Arg(z) we denote the argument of z € C contained in (-, 7z]. For g € C?(S)
let us put

. gw) — g(2)
Lg(z) = A, lim —_
¢ e—>0t SN{| Arg(w/z)|>¢} I Arg(w/z)|1+°‘

gw) —g(2)
t A [5|Arg(w/z>+2m|l+a .

n€zZ\{0}

(7.13)

where 4, is the constant appearing in Eq. (7.7) and dw denotes the arc length
measure on 3; note that fs dw = 2m.
Let G be the generator of the semigroup {7,%},>¢ and let D(G) be its domain.

Lemma 2.4. We have C2($ x R) C D(G), and for f € CX($ x R),

Gf(z.s) =L.f(z.8) + V(@sf(zs) + V' () fi(z.s), z€8, seR.

Proof. Let f € C($ x R). Note that f € C2(R?). We obtain from Eq. (7.9), for
z=¢”,y,5s €R,
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i B9 = f@s) _ o T 009 = f(9)
im = lim

t—0t+ t t—0t+ t (7.14)
= —(=A)f(y.5) + WO)s f(r.5) + W (D) £ (3. 5).

By Lemma 2.3 this limit exists uniformly in z and s, thatis, f € D(G).
We get from Eq. (7.7)

— (=0 f(yos) = L. f(z,5). (7.15)

Recall that we have W(y) = V(e”), y € R. Using our definitions we get V'(z) =
W'(y) forz = e, y € R. Hence Eq. (7.14) equals

L.f(z.8) + V(2)sfi(z.5) + V' (2) 5 (2. 5),

which gives the assertion of the lemma. O
We will need the following auxiliary lemma.

Lemma 2.5. Forany f € C*(S) we have

/Lf(z)dzz 0.
$

Proof. Recall that Arg(z) denotes the argument of z € C belonging to (—, 7r]. First
we will show that

fw) - /@ _
/AXS ]l{w: \Arg(w/z)|>£}(w) |Arg(w/z)|1+“ dwdz = 0. (7.16)

We interchange the integration variables z and w, use Fubini’s theorem, and observe
that | Arg(z/w)| = | Arg(w/2)|.

Sw) = ()
//stﬂ{w: | Arg(w/z)|>€} (w) W dw dz

- f@) = fw)
= [ oo g o

_ = 1)
= //SXS T, \Arg(z/W)\>5}(Z) [ Arg(z/w)| e dwdz

_ @
o //st L : | Argow/o)l>e3 (W) [Arg(w/2)| e dwdz,

which proves Eq. (7.16).
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By interchanging z and w we also get that
> [l
wdz
s Js | Arg(w/z) + 2nm |1+

ne€zZ\{0}
= f@)— fw)
- /&’/ﬂv [Ara(z/w) + 2nm]ire

nezZ\{0}

(7.17)

Note that for Arg(w/z) # m we have | Arg(z/w) + 2nz| = | Arg(w/z) — 2nm]|.
Hence the expression in Eq. (7.17) equals 0.
Set

,_ Jw) - /@
LEf(Z) o /Sﬂ{lArg(w/z)>s} |Arg(w/z)|l+a

What is left is to show that

e—01

/ lim L. f(z)dz= lim [ L,f(z)dz. (7.18)
g e—=01 Jg

By the Taylor expansion we have for f € C%(3)

W) = f2) = Arg(w/2) f'(2) + Arg’(w/2)r(w,2),  w, z €S,

where |r(w, z)| < ¢(f). Hence,

Lor@l=| [ (o0.2) Arg' ™ (v/2) dw
SN{| Arg(w/z)|>¢}
<c(f) [ 1A=/l dw = c(f.a)
S
Therefore, we get Eq. (7.18) by the bounded convergence theorem. O

We will identify the stationary measure for (Z;, S;).

Proposition 2.1. Forz € Sands € R let

1 | S
p1(z) = P p2(s) = me 2 nw(dz,ds) = p1(2)pa(s) dz ds.

Then for any f € CX($ x R) we have

/S/]RQf(z, s) m(dz,ds) = 0.
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Proof. We have

[S/]Rgf(z, ) 7 (dz, ds)

= % /S /R (L.f(z.8) + V(2)sfiz,s) + V'(2) f5(z.8)) p2(s) ds dz.

Integrating by parts, we see that this is equal to
1 1 ,
5= L. f(z,5)p2(s)dsdz — —— V' (2)sf(z.5)pa(s) ds dz
2 s JR 2 s JR

1
R / / V'(2) f(z,8)p2'(s) ds dz = T + IT + IIL
2 s JR

Since p,/(s) = —spa(s) we find that IT 4+ III = 0, while I = 0 by Lemma 2.5. The
claim follows. O

Proposition 2.2. For anyt > 0 we have
T8 :C2($ xR) — C2($ x R).

The proof of this proposition is quite difficult. It is deferred to the next section in
which we prove this result in much greater generality for solutions of SDEs driven
by Lévy processes.

Theorem 2.1. Let

n(dz. ds) = e 2dzds, z€$, seR. (7.19)

(2703/2

Then 7 is a stationary distribution of the process (Z;, S;).

Proof. Let (Y;, S;) be a Markov process satisfying the SDE (7.3) and denote by
(Z;,S)) = (e'", S,). Recall that {TIS}IZ() is the semigroup on Cy($ x R) defined
by Eq. (7.10) and G is its generator. Let P(R x R) and P($ x R) denote the sets
of all probability measures on R x R and $ x R, respectively. In this proof, for any
i € P(S x R), we define u € P(R x R) by u([0,27) x R) = 1 and u(4 x B) =
fi(e’! x B) for Borel sets A C [0,27), B C R.

Consider any i € P($ x R) and the corresponding © € P(R x R).

For this p there exists a Markov process (Y;, S;) given by Eq. (7.3) such that
(Yo, So) has the distribution p. It follows that for any & € P($ x R) there
exists a Markov process (Z,,S,) given by Eq. (7.3) and Z, = e''" such that
(Zy, Sp) has the distribution 7. By Proposition 4.1.7 [10], (Z;, S;) is a solution
of the martingale problem for (G, ). The Hille-Yosida theorem shows that the
assumptions of Theorem 4.4.1 [10] are satisfied if we take A = A’ = §G. Thus
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Theorem 4.4.1 [10] implies that for any & € P($ x R), uniqueness holds for the
martingale problem for (G, 7t). Hence the martingale problem for G is well posed.
Note that C2($ x R) is dense in Co(S x R), that is, in the set on which the
semigroup {T,S}zzo is defined. It follows from Proposition 2.2 and Proposition 1.3.3
from [10] that C2($ x R) is a core for G. Now using Proposition 2.1 and
Proposition 4.9.2 from [10] we get that 7 is a stationary measure for G. This means
that (Z;, S;) has a stationary distribution 7. O

Theorem 2.2. The measure w defined in Eq. (7.19) is the unique stationary
distribution of the process (Z;, S;).

Proof. Step 1. Suppose that for some cadlag processes X' and X2, processes
(Y}, S}) and (Y2, S?) satisfy

t
Y'=y+Xx!'+ / w(hs!dr, (7.20)
0
t
S'=s+ / W'Yy dr, (7.21)
0
t
Y2=y+ X'+ / W(Y?)S2dr, (7.22)
0
t
S2=s5+ / W/ (Y?)dr. (7.23)
0

Then
t t
S/ [ W = wadlar < W [ Y- Ran (.29
0 0
and, therefore, fort <1,
t
|Y! - Y2 <|X'— X2 + / Wy hHs! —w(y?)Ss?|dr
0
1 t
< =X [ Wt = shlar+ [ 10ve) - wenster
0 0
t
<X = X[+ [Wleo sup |S} =S|t + [ Wlleo sup S| [ |¥;! =Y}[dr
o<r<t o<r<t 0

t
< X! X2+ W oot ||W”||oo/0 ¥} - v2|dr

t
+ 1 llo (Is] + ||W’||ooz)/ Y - 2 dr
0
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t
<X - X2+ @ als) [V - ¥
0
t
< 1! = X7+ e+ el [ 1Y) - ¥
0
By Gronwall’s inequality,

t
sup [¥!'=Y2| < sup |X}—X2|+ [ X! =X2|(c1+eals]) exp {(er + calsl 1} dr
0

0<r<t 0<r<t

< sup [X] = X2|(1+1(cr + calsl)exp {(er + ealsDr)).

o<r<t
For t = 1, the inequality becomes

sup |Y,' = Y| < sup |X; — X7|(1+ (c1 + cals]) exp {(c1 + eals])}). (7.25)

o<r<l 0o<r<l

We substitute Eq. (7.21) into Eq. (7.20) and rearrange terms to obtain
t r
X' =—y+Y! —/ w(y,") (s +/ W’(Yul)du) dr.
0 0

We substitute the (non-random) number y for Ytl in the above formula to obtain

1 _ _ ' ' /
X, y+y /OW(y)(s—l-/O W(y)du) dr

W) (ts + 1*W'(y)/2). (7.26)

From now on, X ' will denote the process defined in Eq. (7.26). It is easy to see that
X/ is well defined for all 7 > 0. If we substitute this X! into Egs. (7.20) and (7.21)
then Y, = y.

It follows from [18, Theorem II, p. 9] that every continuous function is in the
support of the distribution of the symmetric a-stable Lévy process on R. We will
briefly outline how to derive the last claim from the much more general result in
[18, Theorem II, p. 9]. One should take a(-) = 0 and b(-,z) = z. Note that the
“skeleton” functions in [18, (5), p. 9] can have jumps at any times and of any sizes
so the closure of the collection of all such functions in the Skorokhod topology
contains the set of all continuous functions. Standard arguments then show that
every continuous function is in the support of the distribution of the stable process
also in the topology of uniform convergence on compact time intervals. We see that
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if X! is the continuous function defined in Eq. (7.26) and X, [2 is a stable process as
in Eq. (7.3) then for every ¢ > 0 there exists § > 0 such that

IP( sup |Xrl—X,.2| 58) > 6.

0o<r<l

This and Eq. (7.25) show that for any y, s € R and ¢ > 0 there exists § > 0 such that

prs ( sup |X! — X2 <e, sup |[Y?—y| < 8) > 6.

o<r<l 0o<r<l

Note that S can change by at most |W’|| on any interval of length 1. This, the
Markov property, and induction show that for any ¢ > 0 there exist §; > 0,k > 1,
such that

P sup X! =X <27%e, sup Y2 Y2 <27Fe| > &,
k<r<k-+1 k<r<k-+1

where X! is defined in Eq. (7.26). This implies that for any T < oo, y,s € R and

¢ > 0 there exists §’ > 0 such that

P> ( sup X! — X2 <2 sup |[Y?—y| < 25) > 6. (7.27)
0<r<rt 0<r<rt

Step 2. Recall that V is not identically constant. This and the fact that V € C* easily

imply that W’ is strictly positive on some interval and it is strictly negative on some

other interval. We fix some ay,a; € (—m, ), by > 0, by < 0, and gy € (0, 7/100),

such that V'(z) > by forz € S, Arg(z) € [a1 — 4eo, a1 + 4&o], and V' (z) < b, for

7 €9, Arg(z) € [ax — 4eo, ar + 4eo].

Suppose that there exist two stationary probability distributions 77 and T for
(Z,S).Let((Z:, St))r>0 and ((Z;, S+)):>0 be processes with (Z, Sp) and (Zy, So)
distributed according to 7 and 7, respectively. The transition probabilities for these
processes are the same as for the processes defined by Eqgs. (7.3) and (7.6). Let X
denote the driving stable Lévy process for Z.

Let A be an open set such that W'(y) > ¢ > 0 forall y € A. In view of the
relationship between V' and W, we can assume that A is periodic, that is, y € A
if and only if y 4+ 27w € A. It follows easily from Eq. (7.3) that there exist g; > 0
and s; < oo such that for any (Yy, Sp), the process Y enters A at some random time
T1 < s; with probability greater than ¢;. Since Y is right continuous, if Y7, € 4,
then Y, stays in A for all ¢ in some interval (7, T»), with T, < 2s,. Then Eq. (7.3)
implies that S, # 0 for some ¢ € (71, T>). A repeated application of the Markov
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property at the times 2s;,4sy, 651, ... shows that the probability that S, = 0 for
all t < 2ks) is less than (1 — ¢;)*. Letting k — oo, we see that S; # 0 for some
t > 0,a.s.

Suppose without loss of generality that there exist &y > 0,#, > 0, and p; > 0
such that P7(S,, > &1) > p;. Let F = {S,, > g1} and 13 = &1/ Q|| W' |l00)- It is
easy to see that for some p, > 0,

P* (31 € [t2.1a + 13] : Arg(Z,) € [ay — €0,a2 + €0] | F1) > pa.
This implies that there exist e; > 0,1, > 0, 14 € [t2, & + t3], and p3 > 0 such that
P*(S;, > €1, Arg(Z;,) € [az — 289, az + 2&¢]) > ps.
Note that |S,, — S,| < [[W'|leot3 < €1/2. Hence,
P*(S, > €1/2,Arg(Z,,) € [ax — 280, az + 2&¢]) > ps3.
Let &; € (1/2, 00) be such that
P*(S;, € [61/2, 2], Arg(Zy,) € [ar — 20, az + 2¢0]) > p3/2.

Letts = 2¢&,/|by| and tg = t4 + t5. By Eq. (7.27), for any &3 > 0 and some p4 > 0,

IP”( sup | X! — X,| < &3, S, €[e1/2, &),

14 <r=<fte
Arg(Z;) € [a; — 3e0,az + 3¢¢] forall ¢ € [1y, té]) > pq,

where X! is the function defined in Eq. (7.26). Observe that V'(z) < by < 0 for
Argz € [ay — 389, ay + 3eo], if the event in the last formula holds, then

te
St = Si, + / V(Z)ds < & + byts < —é5.
4

This implies that

P sup X! = X,| < 63, S, = £1/2. 8, = —e2) > pu. (7.28)

14 <r=fte

Step 3. By the Lévy-Ito representation we can write the stable Lévy process X in
the form X, = J, + X,, where J is a compound Poisson process comprising all
jumps of X which are greater than &p and X =X—Jisan independent Lévy
process (accounting for all small jumps of X). Denote A = A(«, &9) the rate of the
compound Poisson process J .
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Let (Y S ) be the solution to Eq (7.3), with X, replaced by X, fort > 14. Take
e3 < &0/2. Then sup, -, -, |X;} — X,| < & entails that sup, ., |J,, — J:| = 0.
Thus, Eq. (7.28) becomes

]P”( sup |X,}—yr|§83,f§t428— Stf,__z)

14=r=leg

z]P”( sup |X,1—yr|§83, sup |J,4—Jr|:0,§,42£— S,G_—z)

14=r=leg 14=r=fte

>p4>0.

Let t be the time of the first jump of J in the interval [t4, f6]; we set T = 5 if
there is no such jump. We can represent {(Y;, S;),0 < ¢ < t} in the following way:
(Y,,S,;)—(Y,,S YforO0<t<7t,S; —ST,andY —Y + J—J.

We say that a non-negative measure (1 is a component of a non-negative measure
W2 if o = p1 + w3 for some non-negative measure 3. Let u(dz,ds) = P*(Z; €
dz, S; € ds). We will argue that 1(d z, ds) has a component with a density bounded
below by ¢; > 0 on $ X (—&2, 1/2). We find for every Borel set A C $ of arc length
|A| and every interval (s1,52) C (—&2,€1/2)

(A X (s1,52))
=P" (Z. € A, S; € (s1,5))

=P (Zo e ASc € (s, sup X! =X, <e5, 5, =%, 5, = —e2)

¥
14=<r=<te

> P (ei“’_J’_) ce -4, S, € (s1.5).

sup |Xr1 —f,l < 83,§,4 >¢e1/2, §,6 < —&9, N’ = 1).

14<r=<tg

Here N/ counts the number of jumps of the process J occurring during the interval
[t4, ts]. Without loss of generality we can assume that &g < 2. In this case the
density of the jump measure of J is bounded below by ¢3 > 0 on (27, 477). Observe
that the processes (X S) and J are independent. Conditional on {N’/ = 1}, t
is uniformly distributed on [t4, ], and the probability of the event {N’/ = 1} is
At — t4)e s~ Thus,

(A x (s1,52))

>c3|A| P <§r € (51,52)

sup |X,l —)7,| < 83,§,4 > 81/2,§,6 < —sz,szl)

14=r=leg

X pg - Ate — 14)6_Mr6_t4).
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Since the process S spends at least (s; — 51)/||W/|loo units of time in (s1,s2) we
finally arrive at

(A, (s1,52)) > pare 273 A|(s2 — 51)/ | W ]| oo

This proves that p(dz, ds) has a component with a density bounded below by the
constant ¢; = psAe 263 /||W]|oo 0N S X (—&2,81/2).

Step 4. Let e4 = €1/2 A &5 > 0. We have shown that for some stopping time t,
P*(Z, € dz, S; € ds) has a component with a density bounded below by ¢; > 0
on $ X (—&4, £4). We can prove in an analogous way that for some stopping time T

andgy > 0, P” (2? edz, §? € ds) has a component with a density bounded below
by/C\z >0on$ x (—?4,/54).

Since m # 7, there is a Borel set A C $ x IR such that w(A) # 7 (A). Moreover,
since any two stationary probability measures are either mutually singular or
identical (cf. [19, Chap.2, Theorem 4]), we have 7(4) > 0 and 7(4) = 0 for
some A. By the strong Markov property applied at t and the ergodic theorem (see
[19, Chap. 1, p. 12]), we have P”-a.s.

t
11—1>Igo(1/t)/ ﬂ{(ZS,SS)EA} ds = JT(A) > 0.
Similarly, we see that lP,’?-a.s.
t
tl—lglo(l/t)é Lz 50ends =7(4) =0.

Since the distributions of (Z,, S;) and (Z;, :S‘\»;) have mutually absolutely continu-
ous components, the last two statements contradict each other. This shows that we
must have 7 = 7. O

Remark 2.2. Tt is not hard to show that Theorem 2.1 holds even if we take
a = 2 in Eq. (7.3), that is, if X, is Brownian motion. It seems that for ¢« = 2
uniqueness of the stationary distribution can be proved using techniques employed
in Proposition 4.8 in [1]. A close inspection of the proofs in this section reveals that
our results remain also valid if X, is a symmetric Lévy process with jump measure
having full support.

3 Smoothness of T; f

In this section, we will show that if f € C? then T, f € C? where {T,},>0 is
the semigroup of a process defined by a stochastic differential equation driven by
a Lévy process. We use this result to show Proposition 2.2, but it may well be
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of independent interest. We found some related results in the literature, but none
of them was sufficiently strong for our purposes. The key element of the proof is
explicit bounds for derivatives of the flow of solutions to the SDE. This is done in
Proposition 3.1. We provide a direct and elementary proof of this proposition. Note
that our bounds are non-random and do not depend on the sample path. This is a new
feature in this type of analysis since usually (see, e.g., Kunita [12]), the constants
are random since they are derived with the Kolmogorov—Chentsov—Totoki lemma
or a Borel-Cantelli argument. Let us, however, point out that there is an alternative
way of proving Proposition 3.1. It is possible to use [14, Theorems V.39, V.40] and
[14, formula (D), p. 305] to obtain bounds for derivatives of the flow. Since this
alternative approach demands similar arguments and is not shorter than our proof of
Proposition 3.1, we decided to prove Proposition 3.1 directly.
Consider the following system of stochastic differential equations in R":

dY,(1) = dX, (1) + Vi (Y (1)) dt,
: (7.29)
dY, (1) = dX, (1) + V(Y (1)) dt,

where Y(¢) = (Yi(¢),....Y,()) € R", X(t) = (X1(¢),..., X, (t)) € R". We
assume that X(0) = 0, X, ..., X, are Lévy processes on R and V; : R" — R are
locally Lipschitz. We allow X, ..., X, to be degenerate, that is, some or all X; may
be identically equal to 0.

By [14, Theorem V.38] it follows that if ¥(0) = x then there exists a stopping
time ¢ (x,w) : R"xQ2 — [0, oo] and there exists a unique solution of Eq. (7.29) with
Y(0) = x with limsup,_,;(, ., [Y(#)| = coa.s.on § < oo; { is called the explosion
time. In order to apply [14, Theorem V.38] we take in the equations marked (®)
in [14,p. 302l m = n + 1, X! = Yi(t), x' = Yi(0), Z* = X,(t) for @ €
{1,....n}, Z!" =t and f] =8, fora,i € {1,...,n}and £/, (x) = V;(x) for
ief{l,....n}.

By Y *(¢) we denote the process with starting point Y *(0) = x. In the rest of this
section, we will assume that Eq. (7.29) holds not only a.s. but for all ® € 2. More
precisely, we can and will assume that the solution to Eq. (7.29) is constructed on a
probability space 2 such that X(0) = 0 and

Y1) = x + X(t) + /0, V(Y (s)) ds,
forall t > 0 and all w € 2.
Set
[xll = max{lxi|,.... |[xal},  x = (... x),
and
B*(x,r)={yeR" : |ly—x|<r}, xeR", r>0.
For f:R" — Rand A C R” we write DV f =V [,
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1/ llse.a = sup | /NP [ oot = > sup | DY f(x),

lal=j *€
1£ Iya = 11 f llooa + 1D fllooa + - 4 1DV flloo.a-
When A = R” we drop A from this notation. For V = (Vy,...,V),) from Eq. (7.29)
and A C R" we put

Wlloot =D IVillooa: 1DV ]looa =Y 1DV [loo.4.

i=1 i=1

IVIlha = WVllooa + IDDPVlooa + ... + 1DV |00 u.
For f : R" - R, x € R" and 0 <t < oo we define the operator 7; by
T f(x) =E[f(Y )t <¢(x)]. (7.30)

Before formulating the results for the process Y (¢) let us go back for a moment
to the original problem (7.3), that is,

dY, = dX, + W(Yt)St de,
ds, = W'(Y,) dr.

This SDE is of type Eq. (7.29) because we can rewrite it as

dYi(r) = dX,(r) + Vi(Y (1)) dr, (731)
dYs(r) = dX5(r) + Va2 (Y (1)) dr,
where X () = X; is a symmetric a-stable Lévy process on R, with index

a € (0.2), Xo() = 0, Vi(y1.y2) = W)y, Valyi,y2) = W (y). By
Lemma 2.1 there exists a unique solution to this SDE and the explosion time for
this process is infinite a.s. We want to show that 7; f € C bz whenever f € C bz_ Our
proof of Theorem 3.1 requires that V; and its derivatives up to order 3 are bounded.
However, Vi(y1, y2) = W(y1)y, is not bounded on R2. We will circumvent this
difficulty by proving in Proposition 3.2 that T; f € C2(IR?) whenever f € C2(RR?),
where C2(IR?) is given by Definition 2.1.

Let us briefly discuss the reasons that made us choose this particular set of
functions, C2(IR?). This discussion gives also an explanation for the specific
assumptions in the main result of this section, Theorem 3.1.

Assume that £ € C2(R?) and supp f C Ko = R x [-r,7], 7 > 0. Fix tp < oo.
If |s| = [So| > 7 + 10| W||oo then for < to,

St(y,S)

t
= |s+ / W/ (YO du| > r
0
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and, therefore,
T, f(y,s) = Ef(Yt(y’S), St(y,s)) =0.
It follows that if ¢ < ¢, then
supp(7: f) C K = Rx [ —r — 10| W'lloo, 7 + 10[|W'[loo]- (7.32)
For technical reasons, we enlarge K as follows:
Ki=Rx (=r—1)[Wle =3, 7+ to|Wle + 3).
In view of Eq. (7.32), we have to consider only starting points (y, s) € K in order

to prove that 7, f € C2(IR?). Note that for the starting point (y,s) € K3 and ¢ < to
we have

St(y,S)

t
=|s +/ W' (YD) du| <+ 210]|W [l + 3.
0

Thus, for all starting points (y, s) € Kz and ¢t < t,
(YO, 80 e M i= Rx [ —r =21 W/ |loo — 3, 7 + 21| W'||oo + 3] (7.33)

But the function Vi (y1, y2) = W(y1)y> is bounded on M. Using our assumptions
on W, namely, periodicity of W and W € C*, we obtain also that the derivatives of
Vi(y1,¥2) = W(y1)y2 up to order 3 are bounded on M.

Now we return to the general process Y (¢). Let us formulate the main result for
this process.

Theorem 3.1. Let f : R" — R be a function in C?. Fix 0 < ty < oc. Let Y (1)
be a solution of Eq. (7.29). Assume that the explosion time {(x,w) = oo for all
xeR"andall w € Q. Let T, f be defined by Eq. (7.30). Assume that K C R”", for
everyt < to supp(T; f) C K, and that there exists a convex set M C R" such that
Y¥(t,w) € M forall x € K3 :=J,cx B*(x,3), t <ty, and w € Q. Assume that
Vlcor < 00 and |DYVV|oopr < 00 for j = 1,2,3. Then we have

T,f € C} forall t<ty.

Remark 3.1. When [|V||3) < oo (i.e., when the assumptions of Theorem 3.1 hold
with K = M = RR") then the above theorem implies that we have for any f € Cb2

T,f € C} forall t>0.

The first step in proving Theorem 3.1 will be the following proposition.

Proposition 3.1. Fix 0 < ty < oo. Let Y*(t) be a solution of Eq. (7.29). Assume
that the explosion time {(x,w) = oo forall x € R" and all w € Q. Let K C R".
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Assume that there exists a convex set M C R" such that Y*(t,w) € M for all
x € Kz =J,cx B*(x,3), t <ty, and w € Q. Assume that ||V| 3)m < co. Put

1 1
= AV, — = . 7.34
C= vy M (G =) (7.54)

For every w € Q we have the following:

() Forall0 <t <t,x € Ks =J,cx B*(x,2), h e R", ||h] < 1,
1Y (1, 0) — Y (1. 0)|| < 2||R]. (7.35)

(ii) Recall that e; is the ith unit vector in the usual orthonormal basis for R". For
all0 <t <t,x€ Ky iefl,...,n},

Y Tt w) — Y (t, )
u

D;Y*(t,w) := liII(l)
exists and
[D:Y* (1, w)|| < 2. (7.36)
We will write D;Y*(t,w) = (D;Y{(t, ), ..., D;Y,; (1, w)).
(iii) Forall0 <t < t,x € Ki = J,ex B*(x.1), h € R", ||h|| < 1, and any
ief{l,...,n},
ID: Y+ (1, 0) = DY (1. 0)| <8 DPVcoms T || (7.37)
(iv) Forall0 <t <t,x € Ky, i,k e{l,...,n},

DY "tk (t, w) — D; Y (t,w)
u

D Y*(t,w) = lin%)
exists and
D Y*(t, )| < 8 DPVoou T. (7.38)

We will write D Y *(t,w) = (D Y{*(t, w), ..., Dit Y, (¢, w)).
V) Forall0 <t <t,xe K,heR" |h| <1,i,ke{l,...,n},

||Dika+h(t, w) — Dy Y (t, )]
<96 | DOV, Ikl + 16 I DDV lonr < |-

Remark 3.2. The existence of D;Y*(¢) and D;Y*(¢) follows from [14, Theorem
V.40]. What is new here are the explicit bounds for D;Y*(¢) and D;;Y*(¢) which
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are needed in the proof of Theorem 3.1; see Lemma 3.1. The proof of Proposition 3.1
is self-contained. We do not use [14, Theorem V.40].

Proof of Proposition 3.1. The proof has a structure that might be amenable to
presentation as a case of mathematical induction. After careful consideration we
came to the conclusion that setting up an inductive argument would not shorten the
proof.

Recall that we assume that Eq. (7.29) holds for all @ € €2, not only a.s.
Throughout this proof we fix one path w € 2.

(i) Letx € K, h e R", |h]| < 1,and 0 < ¢t < 7. Recall that X(0) = 0. For any
1 < j <n we have

Y1)~ YE() = h; +/O [V, (Y (s)) =V, (Y ¥ (s)]ds.  (7.39)

Let
cri=ci(x,h) = sup |Y*Th@) —Y¥(0)].

O<t<t

Note that for 0 < t < r we have Y*(¢) € M and Y**"(t) € M. By Eq. (7.39)
and | V|lco.m < 00 we get that ¢, is finite. Moreover,

t
1Y @) = Y@l < 1] + /0 IDDOV; loone |Y ¥ (s) = Y*(s)| ds
< il + T 1DDVlloo c1.
Hence,

et < |kl + 2 IDDV oo 1,
which, when combined with Eq. (7.34), gives

1721

< 2llA]l.
TPV sonr = 211

sup [[Y*H(@0) =Y (@) = 1 < 1

O<t<t

(i1) Denote
x.h _ yx+h X
R;5(t) =Y; 7" (1) = Y (1)
and R*"(1) = (R{™(1),..., R*"(1)). Using the Taylor expansion we get
from Eq. (7.39),
t
R“]‘.’h(t) = h; +/ DOV, (Y*(s5)) - R*"(s)ds + O(||h|*). (7.40)
0

Fori € {1,...,n} and h = ue;, let
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x,h x,h
; R (t
¢, = cp(x,i) = max sup <limsup i — lim inf —Z ( )) .

Isj=no<r<c \ u—0 u u—>0 u

Note that ¢, is finite because for u € (—1,1) we have |R§’h(t)| < 2u,
by Eq. (7.35). Consider 0 <t < 7,x € K»,i,j €{l,...,n}. From Eq. (7.40)
we obtain for u, u’ € (=1,1)\ {0}, h = ue;, and ' = u'e;,

R0y R0y 1y RMs) R (s)
J J _ (VX k _ Tk
i _/OI;DkV,(Y (s))( D )ds

u u
+ O®) + Od).

Letting u, u' — 0 leads to

R¥(1) R¥ (1)
lim sup —Z —liminf ——— < 7 [DWV|lcons - 2,
u—0 u u'—0 u
andsince 0 <t < tand j € {1,...,n} are arbitrary, we get

Q=T ||D(1)V||00,M < €.
So ¢; = 0 which means that D; Y *(¢) exists. Estimate (7.36) is now an easy

consequence of Eq. (7.35).
(iii)) From Eq. (7.40) and the bounded convergence theorem, we obtain

DY} (t) =& +/ DYV (Y*(s)) - D;Y*(s) ds. (7.41)
0

Letx € K1, h e R", |h|| < 1,andi € {1,...,n}. Set

c3i=c3(x,h,i) = sup |D;Y*T'(t) — D;Y*(0)].

O<t<t

Because of Eq. (7.36), c3 is finite. For any 0 < # < t we have
DY (1) = DY} (1)
= /Ot [DDV; (Y ¥t (s5)) - DY (s) — DDV (Y*(s)) - D;Y*(5)]ds
= /0 | ([DOV; () = DOV ()] - Dy **s)

+ DYV () [D Y (s) — DY (s)] )ds. (7:42)
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SO

n

t
DY 0y - DY} (t)]s [0 [Z |DEV; (Y (5) =DV (Y ()] | D Y ()]
k=1

+ ) DRV (Y ()] D Y (s) — Dy (s)q ds.
k=1

In view of Eqgs. (7.35) and (7.36), we have for 0 < s < 7,

DDV (Y (s) = DV (Y ()] < DDV oo [V s) = Y (9)
k=1

<2IDPV]oonm Al

ID:Y* ) <2, DDV, ) < DDV oo
k=1

It follows that
DY (@) = DiY ()] < 41 DPV]loosr T 1Al + 7 [ DDV ]loonr - 3,
S0,
3 < 4IDPVlloom T 1] + T 1D DV lloour - €.
By definition, 7 < 1/(2| DDVV||0o.p1), 50
3 S 4IDPV|lon T llh]| + c3/2.
This gives

sup || DiY (1) = DY ¥ (0)]l = 3 < 8I1DPVlloonr T Il

O<t<t

(iv) Set
0 1(t) := Dy Y1) — D; Y} (1)

and Q7" (1) = (Q;"’lh(t), e Qf,;lh(t)). Using the Taylor expansion we get
from Eq. (7.42),

0ty = /0 S DY) S DinV (Y ()R (5) ds + O([h])
=1 m=1

+ /t DOV (Y¥(s)) - QX" (s)ds
0
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t n
- / > DY) DD DY, (Y (5)) - R (5) ds + O(|h]%)
0 =1

+ /Ot DYV (Y¥(s)) - Q" (s) ds. (7.43)

Consider k € {1,...,n} and let h = uey. Define

x,h
t
¢y = ca(x,i k) = jmax  sup <1imsup¥ —liu_>0 Q ( ))

SJ=no<t<t u—0

Note that ¢, is finite because we have IQf,’]h(Z)I < 8| DPV|oom Tu for
u € (—1,1), by Eq. (7.37). For u,u’ € (—1,1) \ {0}, h = uex, and
h = ey, Eq. (7.43) implies that

Q"”(Z) Q;‘;”(r)

Rx,h
= [ S DOy ey -

0 /=1

ds + O(u)

Vh (S)

/ ZD Y () DYDY, (Y (s)) - ds + O(u')

x.h x,h
/ D(l)V (Y™ (s)) (Q M(S) . Q,’u/(S))ds

The first two integrals cancel in the limit as u,u’ — 0. To see that we can
pass to the limit, we use the bounded convergence theorem. This theorem is
applicable because Eq. (7.35) provides a bound for u~' R*"(s), Eq. (7.36)
provides a bound for D; le+h (s), and we also have [|[DPV|com < 00, by
assumption. Letting u, v’ — 0 we get

h xh
Q75 (1) 0;; ()
limsup —2— — liminf —2— < ¢ || DDV||oo.s - c4.
u—0 u W' —0 u
Since 0 <t < tandj € {l,...,n} are arbitrary we see that

cs T DYV oon - ca,

so ¢4 = 0; this proves that D;; Y *(¢) exists. The estimate (7.38) follows now
from Eq. (7.37).
By Eq. (7.43) we get for h = uey
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¥0)
w0 |IA]

Di; Y} (1) = lim :/ Z Y5 (s) DYDYV (Y (5)) - DY *(s)ds
0 =

+ / DWYV;(Y*(5))Dix Y (s) ds.
0

Letx € K,h e R", ||h|| < 1,and i,k € {1,...,n}. Put

es = cs(x,h,i k) := sup ||[Dix YT (t) — Dy Y (1)].

O<t<t

Because of Eq. (7.38), ¢s is finite. Forany 0 < ¢t < r and j € {l,...,n}
we have

+h X
DY (1) — Dir Y[ (1)

/0 33 [Dr ) DV () D Y )

I=1m=1
— DY (5) D1 V; (Y ¥ (5)) Di Y,;;(s)]ds
+ [ Z [ D1V (2 6) Dy ¥ (5) = Dy (¥ (5) D ¥ (s) [
=I1+1L

We obtain from Eqgs. (7.36)—(7.38)

1] < /ZZ ‘D/mv (V) Dy Y, (s) [Di Y™ (5) — DiYyy (s)]‘

=1 m=1

+ | DV (P ) DY, (5) [ DY () = DY)
+ [ DY () DY () [DinVy (V4 (5) = DV (¥ ()] | Jas
= 7 [IDOVIZ 4 327 1 + 8 1DV oo 1]
as well as

| < /0 S [y N [0 - Dy o)
=1

+ [Di Y () [PV, (F(s) = Dy (r(s))]| Jds

e [IDOV o -5 + 16 [DOVI, v ] ]
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Combining these two estimates we find forall0 <t <tand 1 < j <n,

| DY+ () = DY (1)

<48 DDVIZp Al + 8 IDDVloom 7] + 71D DV lloons - 5.

Hence,

s <48 DPVZ, 0 72 11 + 81DV cons T ]| + T DDV loops - ¢,
so, recalling Eq. (7.34),

¢s < 96 [DDVI3 7 12l + 16 DDV lloos |11,

which finishes the proof. O

The next step in proving Theorem 3.1 is the following lemma.

Lemma 3.1. Let g : R" — R be a function in Cbz. Fix0 <t <ooandlet Y*(t)
be the solution of Eq. (7.29). Assume that the explosion time {(x,®) = oo for all
x € R" and all w € Q. Let T;g be defined by Eq. (7.30). Assume that K C R”",
foreveryt <t suppT,g C K, and there exists a convex set M C R" such that
Y¥(t,w) € M forall x € K3 1= |J,cx B*(x.3),t <11, and o € Q. Assume that
||V||(3),M < 0o and let

1 1
L Ny (_ = oo).
2DV |loons 0

Then we have

(i) Forall0 <t <7,x € K,andi € {1,...,n}, the derivative D;T,g(x) exists
and
D;Tig(x) = E(DVg(Y*(0)D; Y (1)) . (7.44)
(i) Forall0 <t <1, x € Kandi,k € {l,...,n}, the derivative D;;; T,g(x)
exists and

Dy Tig(x) =E (D“)g(Y"(t)) - Dik Y (1)

+ ZD,-Y;(z)D“’(D,-g)(YX(z)) . DkYX(z)). (7.45)

j=1
(iii) For all 0 < t < T and i,k € {1,...,n}, the derivative D;;T;g(x) is
continuous for x € K.

Proof. (i) Let0 <t <7,x € K, fixi € {l,...,n} and let h = ue;. By Taylor’s
theorem and Eq. (7.35), we get
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Tig(x+h)— T g(x)

u

DiTig(x) = Jim

u—0 u

x+h x
i E (g(Y ) — g (z)))

i E (D(”g(wm) () — YX(t)))

u—0 u
B (le,,msn Dimg &)Y () = YF () (Vi) — Y,;:a»)
u—0 2u

x+h _ X 2
= IE(D(l)g(Y’“(t)) - D; Y"(z)) + lim (0 <||Y )= Y*(@0)| ))

u

=E (D(l)g(Yx(t)) - D; Yx(f)) )

where £ = £, .7, is an intermediate point between Y * () and Y~ (¢). This
yields Eq. (7.44).
(i) Fixi,k € {l,...,n} and let h = uex. We have, using (i),
D;T,g(x +h)— D;T,g(x)

u

DixTig(x) = lim
u—>0

 mE (D("g(Y"+”(t)) DY (1) -DVg (Y (1)) - Din(t))

u—>0 u

= lim &

u—>0

(D(”g(Y””(t)) (DY ¥ () — DfY’“(l)))
u

+ lim &

u—>0 u

(Din(t) (DDVg(Y (1)) — D“’g(Y"(t))))
=I1+1IL
By Eq. (7.37) and bounded convergence theorem,
1=E(DVg(Y*(1) - DY (1))

We apply the Taylor theorem Eq. (7.35) and the bounded convergence theorem

to see that
I = lim I& (Z’}=1 DY (t)(Djg(Y (1) — ng(Y“‘(t))))
u—> U

u—>0 u

M E (ZLI DY ()DD(D;g)(Y* (1)) - (Y (1) — Y"(l)))
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i E (0 (||Yx+h(z)u— Y"(t)llz))
=E (Y DY (DD, 0)(r ) - DY (1)
j=1

This proves Eq. (7.45).

(iii) By Proposition 3.1, all derivatives on the right-hand side of Eq. (7.45) are
continuous. Thus the functions D;; T;g(x), i,k € {1,...,n} are continuous
for x € K, and each 0 < ¢t < 7. This proves (iii). a0

Proof of Theorem 3.1. We set

1
=
21DV |0,

A lo.

We will use induction. The induction step is the following. Assume that 75 f* € C bz
for some s € [0, #p]. We will show that for all r < t such that s 4+ r < ¢y we have
Ty, f € C?and | Ts+r f |2y < oo. To show this we use Lemma 3.1. Put g = T f
andt; = fp—s. Note that r < t Aty = T and g = T, f satisfy the assumptions
of Lemma 3.1. Hence we obtain that 7,4, f = T,g € C 2. A combination of the
estimates (7.44) and (7.45), the fact that supp7,g C K, and the estimates from
Proposition 3.1 yield || 7, gll2) < oo.

An assumption of Theorem 3.1 states that f € Cbz. Hence, Tof = f € Cbz.
The induction step shows that T f € C bz for all s < t A #p. Subsequent induction
steps extend this claim to T f € Cb2 forall s < jt Aty, j = 2,3,.... Therefore,
Tsferzforallsfto. O

Proposition 3.2. Let {T;},>0 be the semigroup given by Eq. (7.8) of the process
(Y, S,) defined by Eq. (1.3). Let C}(R?) be the class of functions given by
Definition 2.1. We have

T, : CXH(R*) — CX(R?).

Proof. We will repeat some of the arguments given before the statement of
Theorem 3.1. Note that the SDE (7.3) is of the form Eq. (7.29). By Lemma 2.1
there exists a unique solution of Eq. (7.3) with explosion time ¢ ((y, s), @) = oo for
all (y,s) € R? and w € Q. Suppose that f € C2(R?). Thensupp f C R x [—r, ],
for some r > 0. Fix 7y > 0. By Eq. (7.32), for any ¢ < ty, we have

suppTy f C K :=Rx[—r—t|W oo, r + 0| W |loo]. (7.46)
We have

K5 = U B*((y.5),3) =R x (—r —10lW lloo = 3. 7 + 16| W|leo + 3).
(y,s)€EK
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Let
M =Rx[—r—=20]|Wle =3, 1+ 2|Wlle + 3]

By Eq. (7.33) we have (Y,""*, S°*)) € M for all (y,s) € Ks. Rewriting Eq. (7.3)
as Eq. (7.31) we have Vi (y1, y2) = W(31)y2, Va(y1, y2) = W/ (1). Since W € C*
and since it is periodic, we get ||V||3).; < oo. Therefore, the solution of Eq. (7.31)
satisfies the assumptions of Theorem 3.1. It follows that for any ¢ < 7, we have

T,feC® and |T, flle < co.

This and Eq. (7.46) yield T; f € C2(R?). O

Proof of Proposition 2.2 Suppose that f € CZ($ x R). Then f € CX(R?) where f
is given by Eq. (7.5). By Proposition 3.2, T, f € C2(IR?). Using this and Eq. (7.12)
we get TS f € C2(S x R). O
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Chapter 8

An Ornstein-Uhlenbeck-Type Process
Which Satisfies Sufficient Conditions

for a Simulation-Based Filtering Procedure

Arturo Kohatsu-Higa and Kazuhiro Yasuda

Abstract In this article, we verify all the conditions stated in [8] in order for
a filtering/estimation procedure based on Monte Carlo simulations of unknown
densities of diffusion processes to converge to its theoretical values. In order to
verify these hypotheses one needs to use extensively various properties of the
diffusion processes and its Euler—-Maruyama approximation. In particular, we need
to study flow properties, upper and lower bounds for densities and existence of
invariant measures and «-mixing properties.

As a consequence one obtains that there is a tuning procedure which chooses
the number of steps in the Euler—Maruyama scheme, the window size of the kernel
estimation method and the Monte Carlo simulation size in function of the number
of available data.
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the following type:
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0)¢o (V)7 (6)d6
Ex[f]:= Eolf|Yo.....Yy] := ff};zfgﬁv)on)(g)(d;
0

. 8.1

where {Y;; i = 0,...,N} are observed data at times {iA; i = 0,...,N}
from a process which has the same law as the solution to the following stochastic
differential equation:

t t
Y, =Y, +/ b (6o, Y;)ds +/ o(Y,)dWs, t = 0. (8.2)
0 0

Here in order to simplify the situation, we consider the case where the prior
density, 7, is concentrated in a one-dimensional compact interval [0/, 0"] < R.
Furthermore, b : [#,60*] x R — Rand 0 : R — R are smooth functions with
bounded derivatives. o is also bounded and uniformly elliptic. Suppose that the
diffusion possesses an invariant measure /i such that | e"‘yzug (dy) < oo for some
positive constant ¢; (see, e.g., [4] for a much more general situation) and that it
is a-mixing. We furthermore assume that ¥ forms a stationary a-mixing Markov
chain.

Furthermore, ¢y (YON) = ¢o(Yo,...,Yn) = ua(Yp) ]_[?;1 pe(Y;—1,Y;) denotes
the joint density of (Yo, Y1,. .., Yy) where py denotes the transition density for Y.

Clearly as the transition density and the invariant measure of ¥ are unknown the
above estimation procedure is at best a theoretical formula. In general, one has to
resort to simulation procedures in order to approximate the filtering formula (8.1). In
this article, we assume that the transition density is approximated using an Euler—
Maruyama scheme with n partition points and / is the window size in the kernel
density estimation method.

In this setting we have that there are three parameters (N, n, 1) which need to be
tuned in order for the overall estimation procedure to work well.

In arecent article (see [8]), we have discussed a theoretical framework where one
can study such estimation procedure and provided a proof which clearly states that
a correct tuning is needed. Due to the lack of space, we have not considered explicit
examples and the objective of this paper together with another explicit example (see
[9]) is to provide the reader with explicit cases where the theory is applicable.

The list of conditions in order to achieve the correct tuning is long, albeit every
condition being natural. For briefness, we refer the reader to [8] for exact statements.
In this article, we explain the meaning of each condition and prove that in the case of
one-dimensional diffusions with Ornstein—Uhlenbeck type behavior all the required
conditions are satisfied.

The way we verify the requirements follows a different order than in [8]. This
is done for pedagogical reasons. While in [8] the conditions are introduced as one
deepens into the tuning problem. Here the order of exposition is in the order of easy
verification.

Our final goal in this article, is to show the reader an application area where the
full strength of Malliavin calculus is needed in order to verify various conditions
so as to obtain a practical result. The order of exposition will take us first into
the verification of the ergodic property and the «-strongly mixing condition. Then
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we will proceed verifying various flow properties. After this, we will quote and
deduce results about the upper and lower bounds for densities. Finally, we will verify
the identifiability conditions and at the end we state our main theorem.

2 Framework

We will verify that all hypotheses related to the approximation process in [8] are
satisfied by the Euler—Maruyama scheme under enough regularity conditions. So in
our present example, Y; is the random variable associated with X;A, where X is
a one-dimensional diffusion process with regular drift (6, ). 0 takes values in a
compact set @ = [#’, 6] and regular diffusion coefficient o'(-) (independent of #).
We assume that the diffusion coefficient is uniformly elliptic which guarantees the
existence of a smooth strictly positive density. A copy of X starting at y is denoted
by X”(6). Furthermore X ({n)(e) denotes the Euler—-Maruyama scheme of step size
% with m = m(N) € N. Then ﬁé\' (¥, z) denotes the density of X(fn)(e) which is
regular and strictly positive given the uniformly elliptic condition.

Let K : R — R4 be a twice continuously differentiable kernel which satisfies
[ K(x)dx = 1. Denote by p)Y (y,z:®), ® € 2, where € denotes the sample space
where simulations are carried out. The kernel density estimate of ﬁé\' (y,z) based on
n simulated i.i.d. copies of X({'ﬂ)(e) which are defined on (fz, F, 139) and denoted

by X(%")(e, ),k =1,....n;forh € (0, 1), is given by
By (y.2:6) = Py (y.zzdim(N).h(N).n(N))
n(N) y.(k) A

SR N Y b
n(NYh(N) &= h(N)

For given m, we introduce the “average” approximative transition density over all
trajectories with respect to the kernel K as

Py (r.2) = pY (v, zm(N),h(N)) == E[p) (v.z:-)]

_pl A Xininp(0:) =2
=E [h(N)K< h(N) ’

where £ means the expectation with respect to P.
Then we consider the following approximation of Eq. (8.1);

[ FO)$) ¥V )m(6)dd

Bl = oy @
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where set ¢9 (YY) = po(Yo) 1_[]_1 p (Yj—1,Y;). Strong convergence ofE wlS]
to En[f] and the rate of convergence with respect to the number of data N under a
general diffusion case has been studied in Kohatsu-Higa et al. [8].

3 Invariant Measure and «-Mixing Condition
w.r.t. Diffusion Processes

In this section we give sufficient conditions for a one-dimensional diffusion of the
type (8.2) to have an invariant measure which satisfies the a-mixing condition.

In fact, from pp.213 in Bibby, Jacobsen, and Sorensen [3], we give sufficient
conditions for the existence of an invariant measure of a one-dimensional stochastic
differential equation. We define the density function of the scale measure for

X7(0) as
b©®.y) )
s(x;0) =e —
() Xp( /n o(y)? <
where x? is an arbitrary point in (—o0, 00).

Assumption 3.1. The following holds for all 6 € ©:
00 xt
/ s(x;0)dx = / s(x;0)dx = o0
xt —o0

o 1

Under Assumption 3.1, the process X, (6) is ergodic with an invariant probability
measure that has density

and

1
A(0)s(x: 0)o (x)?

Ho(x) = X € (—00,00). (8.3)

Example 3.1. Setb(6,x) = —x + 6 and 6(x) = o > 0 (constant). Then we have

Ty — 2 (1
s(x;0) =exp 2/ Y edy =exp| = (=x2-0x+C)],
o 02 02 \2

where C is a constant. Obviously we have, for all § € ©,

00 xt
/ s(x;0)dx = / s(x;0)dx = o0
xt —00
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and
© 1 1 2 62
A0) = | ——dv=—exp(-—2C+ = .
© /_oo s(x;0)02 o Gexp( o2 + 02) =0

And the invariant measure is given as

. 1 1 (x —0)?
)= s =50 (o)

Next, from Corollary 2.1 in Genon-Catalot, Jeantheau, and Larédo [5], for fixed
0, we give some sufficient conditions so that X7 () is ¢-mixing.

Assumption 3.2. For fixed 0 € O,

(i) The function b is continuously differentiable with respect to x and o is twice
continuously differentiable with respect to x, o(x) > 0 for all x € (—00, 00).
We also assume that there exists constants C 19 , Cy > 0 such that

|b(8, x)| < Cle(l +|x|) and o(x)*> < Cy(14+x*) forall x € (—o0, 00).

(ii) cr(x)ug(x) —0asx | —ooand x 1 oo.
(iii) (0 ) has a finite limit as x |, —oo and x 1 0o, where

2b(0, x)
o(x)

Under Assumptions 3.1 and 3.2, for fixed § € O, the process X”(0) is
geometrically o-mixing, i.e., @-mixing with mixing coefficients that tend to zero ge-
ometrically fast. Therefore our data {Y;}, which is in the case 6 = 6, is
geometrically o-mixing.

d
y(0:x) = 2-o(x) -

Example 3.2 (cont. of Example 3.1). For b(6,x) = —x + 6 and o(x) = o, (i) and
(ii) clearly hold since @ takes values in a compact set ® = [0/, #"] and the diffusion
coefficient o is constant. For (iii), now

YO0 = 2 (- 6)

and forall 6 € O, (0 Ty converges to 0asx — *o0.

Assumption 3.3. We assume that the invariant measure [Lg satisfies the following
integrability condition for some strictly positive constant ¢,

E[e] = /e"‘yzug(dy) < 00.
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Note that if we assume that »(6, x) is a function with linear growth with respect to
x uniformly in 6 and continuity in 6 and o (x) is a bounded and continuous function
with uniformly ellipticity, then the invariant measure g (x), which is defined in
Eq. (8.3), is continuous and bounded and for all x € Rand 6 € ©, ug(x) > 0 holds.

4 Flow-Related Properties

In this section we verify some of the conditions given in Sect. 6.5 in [8] that are
related with the explicit tuning procedure. These conditions appear when one has
to determine the uniform (wrt parameter and space values in compact sets, see the
definition of BV below) rates of convergence of the Monte Carlo simulation of the
approximative density. In particular, the conditions required follow from arguments
that rely on the Borel-Cantelli lemma.

For this, consider ¢, > %, n = C/N* foro;,C;y > 0,and h = C,N~*2 for
@, C, > 0. Furthermore, let BY := {(x,0) = (x,y.0) e R? x ©; ||| < ay :=
Jer In N }, where we assume ay > 1. Then, we define

k —
Ziy (@) = ay’ ( sup m)

(x,0)e BN

X(y;l()k) (0, a))) +1] sup
(x,0)e BN

9 X 2% (g, w)) . (84)

ByX(yW’l()k) (Q;a))‘ + sup

(x)eBN

Zilf]{, (w) := aX,l sup
(x.0)eBN

X 0 w)\) ,

ayaexg;;gk’ (H;a))) +h sup
(x,0)eBN

9a0a X, (0: )|

- (k _
qu)\, (w) = ay' (h sup )

(x,0)eBN

+ (Zik]{, + 1) sup
(x,0)e BN

J(k
9 X0, (0:0)| )
ZRh@ =ay' sw XV @)+ E[Jaxglen|]} ®9
(x,0)eBN
Then the goal in this section is to prove that the conditions below are satisfied.

(iii) (Borel-Cantelli for Z\% (w), (H3)) For some r; > 0 and byy :=

1
C3(N”3n)"3 ¢coIn N
h2 '

2 1’
ad najz\,r3
—2 — < +oo and sup E || Z3n (]| < +o0.
Z (h?b3 n)" Ne% l O]

(iv) (Borel-Cantelli for Z ikj)v (w), (H4)) For some ry > Oand by y > 1,
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(o]
n
<400 and sup E|[|Z I < 4.
2=: (ban)" Ne% [1Zev OF]

(vi) (Borel-Cantelli for Z ik]{, (w), (H4’)) For some 74 > 0 and 134, N>1,

o0

) i
N=1 (ban)™ < +oo and ;‘é%E [\24,1\, 6] ] < +o0.

(viii) (Borel-Cantelli for Z'é]fg,(a)), (H6a’)) For some 7 > 0 and l')ﬁ,N =
. L
(ConNe)ie > 1,

< 400 and supE[‘Z(,N()| ]<+oo.

Remark 4.1. The summability conditions and the other conditions not quoted here
(i.e., (i), (i), (v), and (vii) in [8]) are finally simplified by requesting that the
inequalities (8.7) and (8.8) which appear below, be satisfied.

The conditions that remain are the above finite moment conditions in the
conditions above. These conditions are satisfied due to the regularity conditions on
the coefficients » and o and flow properties. The proofs are tedious but the essential
technique already exists so we will only sketch the result in the following lemma.

Lemma 4.1. Assume that b and o are smooth and at most linear growth in x with
all derivatives bounded by constants which are independent of 6. Then the moment
conditions stated in (iii), (iv), (vi), and (viii) are satisfied.

Proof. For the proof, we will only indicate how to prove that the uniform moments
are finite for one of the terms of Eq. (8.4). This should point to reader how to proceed
in the other cases in a similar fashion.

We can estimate Supy g)ep, |X(ym)(9)| as follows. Let (yo,6p) be a point in

(—an,an) x ©, where set ® = [91, 0"], then we have

sup |X3,,(0)|

(x.0)€By

= sup [ X0,(0) = X000+ sup |X0,(00) = X560 + X720
(x.0)€By (x.0)€By

= sup 89X(m)(/c)d/c sup 8 X(m)(Qo)dy’ ‘XYO)(@O)}
(x,0)€By 6o (x,0)€By

0 X0, () - XYO)(K)‘dK-i- / "

9“
< / sup Xy")(/c)‘ di
61 yE(—aN,aN)
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ay -
y S Yo
+ /_ [ xi @] e+ xin e

O an
0 J—an

an ~
+ / eayx({n)(eo)‘dwr ‘X{O)(eo) . (8.6)
o

~ Oll
aéyX(ym)(/c)‘dde+ /0 B0 X" ()| dic
1

m

From this calculation, we see that we need to find uniform L?”(£2) estimates in 0
and y of the above derivatives. These estimates are essentially quoted in Lemma 4.3
in [1] which uses the same method as in the proof of Lemma 2.2 in the same paper
for the derivatives wrt y. The proof is based in general derivative formula for the
composition of functions (Faa di Bruno formula). |

(ix). ((H6b”)) For some ¢ > 1,

i’ (nv)? R
' P\~ K S
(1K [|oo (b6.n )*an 2(52bs.nan)? noee

and sup E [|Z'6,N(-)‘%] < +o0,
NeN

where C'6 and ¢ are the same as (vii) of Sect. 6.5 in [8].

In order for the above condition to be satisfied, we choose ny:=

Ck.a.0h? :
BTl T with
N A T2(N7n)"3 ¢;InN

o) + ) c 1 o\ .
4()52—i-21_)/6—i-w-i-—+ﬁ+—l qde > Qy, (8.7)
e A 2 r3 r3

which has to be satisfied together with

205¢ 2 Y
L R A (8.8)
A rs e

2 2
aj[l———=—])>8ar+ 1+
rs Te

All the above constants have been already defined with the exception of ¢, (which
appears in (H1)).

S Regularity of the Densities

In this section, we discuss conditions (H5) and (H5’) in [8] which are related with
conditions on the density of the approximation processes. This is the section where
the core of Malliavin calculus has to be used in order to obtain uniform regularity
of the density of the Euler—Maruyama scheme with upper and lower bounds.



8 An Ornstein-Uhlenbeck-Type Process Which Satisfies Sufficient . . . 181

(HS) Assume that there exists some positive constant C5 > 0 such that for all
v,2z€R, meN,and 0 € O,

.55 (y.2)|. |96p) (x. )] < Cs5 < +o0.

19, 58 (v.2)| .

(HS5’) Assume that there exists some positive constant CS > 0 such that for all
v,Zz€R, meN,and 0 € O,

18,8055’ (v, )]+ [3.905) (v.2)

. 055) (v.9)| < Cs5 < +o0.

All the above conditions are regularity properties of the Euler scheme which are
well known and are proved using Malliavin calculus techniques.

For example, in [7], Lemma 3.3, it is proved that the process X(}m) + hZ
where Z is a standard Gaussian random variable has a Malliavin covariance matrix
whose inverse determinant belong to all the spaces L?(Q2) if h = m™"/2. It is
also mentioned (see equation 3.1) and the comments thereafter) that the process
X (};n)(G) + hZ belongs uniformly (in m) to all the spaces D¥7. Therefore all the
necessary integration by parts formulas can be carried out in order to obtain that
the above hypotheses (HS) and (H5’) are satisfied. Therefore, from now on, we will
take h = m~1/2,

We remark here that the derivatives with respect to the starting point and the
parameter 0 of the flow defined by the Euler-Maruyama scheme are differentiable
in the stochastic sense as they can be rewritten as solutions of linear equations with
random bounded coefficients.

One can also explicitly write the above upper bounds as Gaussian type upper
bounds by using the technique in section A of [6]. We will do this without further
mentioning it.

In the next results, we need to prove upper and lower bounds of Gaussian type.
In fact, we verify the following hypotheses (H1) and (H2).

(H1) Assume that there exist some positive constants ¢, ¢, where ¢; is indepen-
dent of N and ¢, is independent of N and A, such that the following holds:

N ‘/’2“%\/
inf p ,2) > prexp| — .
Al 7o 02 Z ¢ p( A )

(H2) Assume that the kernel K is the Gaussian kernel:

K(z) := \/% exp (—%zz) .

Recall that ﬁév (y, z) denotes the transition density function of X ({n)(@).

Lemma 5.1. Assume hypothesis (H2). Let X denote a standard normal random
variable, then we have

P8 (y.2) = E[py (v.hX +2)].
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Proof. Note that K is the density function of the random variable X. By using a
change of variables (u = =),

_ 1 X\ (0)—z
Py (v.2)=E |:EK (HT)]
[* e

/_oo K (u) py (v, hu+ 2)du = E [p) (y.hX +2)].

Now we consider the lower bound (H1).

Proposition 5.1. Assume that o is a uniformly elliptic, bounded, and smooth
function with bounded derivatives. Similarly assume that b is a smooth function
with at most linear growth in x uniformly in 6 and bounded derivatives. Then under
the hypothesis (H2), (H1) is satisfied.

Proof. First, we obtain a lower bound for ﬁé\’ (v, z). We somewhat abuse the notation
using the delta distribution function §,(x). The formal argument can be obtained
by proper approximation arguments which are left to the reader. If we denote by
1 = 7’, J = 1,---,m the partition points of the Euler-Maruyama scheme, s; =
%, j =1,---,Rm, R € N the partition points that will be used in the argument
for the proof of the lower bound. We denote by X;» (¢, #), its corresponding Euler—
Maruyama scheme with Rm time steps in [0, A] at time ¢ which starts from y at
time 0, and by ¢ : R — [0, 1] a smooth function such that it takes the value 1 in the
interval [—2ay — 1,2ay + 1] and 0 in the complement of [-2ay — 2,2ay + 2].
Then, we have by the Chapman—Kolmogorov equation and the fact that the range of
@ is [0, 1] that

[ [/ Rm—1

o= [ B[ TT 8 (.0 |8 (X 6.0)
j=1

X dx1 "'dem—l

Rm—1

> /1; _E [T 85 (X(s;.0)) ¢ (Xp(57.0)) | 8- (X7 (srm. 0))

=1

X dxl "'d-me—l-

Next we use the Markov property so that (from now on, we let xo = y and xg,, = 2,
in order to simplify the notation)
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Rm—1

58 (9.2) Z/ E ]_[ S, (Xl 757, 0)) @ (X0 7T (s 0)
j=1

RRm—1
X 8 (X Rt Rt (s gy, 0)) | dxy + - - dX gyt -

Then we can evaluate the expectations by conditioning obtaining

~N
]70 (yv Z)
(ARG =1+ =X¥RG =D +i—1 PO xR —1)i—1) A(Rm)

12
> / ﬁ ﬁ exp( 202(xR(j—1)+i—1) A(Rm) =T )
 JrRm—1 \/ZJTJZ(XR(j—l) +1i— 1)A(Rm)—1

i=1j=1

X Q(XR(j—1)+i) | dx1 - dXRp—1. (8.9)

Next we restrict the integration regions using for each integral above a “tube” that
will go from y to z as follows. Define z; = y + (z — y)ﬁ, i =0,---,Rm.
Then around each of these points, we consider the regions of integration A = {x =
(X1, Xgm—1) € RE" 1 x; € A; foralli = 1,2,---, Rm — 1}, where we let
Ai = (zi-1 — M JARm) Y, ziy + M\/A(Rm)™Y), i = 1,---,Rm — 1. Here
M is a positive constant, chosen so that M / A(Rm)~! < 1. If we restrict the above
Rm—1 integrals to these regions, we will obtain a lower bound. On these regions, we
have that the following inequalities are satisfied for j = 1,--- ,R, i = 1,--- ,m,
and (p(xR(j_l)) > 0:

|XRG—1)+i — XR(j—1)+i—1 — b(0. XR(j—1)4+i—1) A(Rm) ™!
= |xR(j—1)+i —ZR(j—1)+i—1| + |ZR(j—l)+i—1 _ZR(j—1)+i—2|

+ |zr(j=1)+i—2 = XR(=1)+i=1| + |6(0. XR(j—1)4i-1)| A(Rm)~
< 2M /A(Rm)=' 4 |y —z|(Rm)™" + Co(1 + 2an)A(Rm)™".

We now choose R = %. Using that |y — z||2ay|™" < 1, we have that
|XRG—1)+i — XRG—1)+i—1 — D(. XR(j—1)+i—1) A(Rm) |

< @M + 1)v/ARm) T + Co(1 + Qay) ™A (Rm) ™.
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Assuming without loss of generality that A < 1, we have that

exp (_ (XR(j=1)+i — XR(j—1)+i—1 — b(0, xR(j—l)+i—l)A(Rm)_l)2)
202(xR(j—1)+i—1) A(Rm)~!

2(M + Cy) + 1
zexp|————>— |-
2¢q

Here ¢ is the constant of uniform ellipticity of o. Replacing this in Eq. (8.9), we
obtain for a new constant K > 1 that

R m K_l

Py (3.2) = / TT11 P(XR(j—1)+i)
A\i=1j=1 /27 CZA(Rm)~!

Next we remark that for any x = (x1,--+, Xgm—1) € A4, the (R(j — 1) + i)-th
element of x satisfies ¢(xg(j—1)4;) = 1forall j =1,...,R, i =1,...,m and
therefore as the integrands will be constants, we obtain for some constant K; > 0
that

dxl "'d-me—l-

Rm

-1
Y (3.2) > @M /ARm)-T)Rm! K

/27 C2A(Rm)™!

1
. exp (—Rm log K| — 3 log(Rm)) .

VA
where ¢ is a suitable positive constant. Therefore using that Rm = % and as
1 2
—Rmlog K, — 3 log(Rm) > —K, |ag|

for an appropriately chosen positive constant K, which is independent of ay and A,
finally we obtain

inf  pY¥(r.2) > L exp ( KZ“%V) (8.10)
) = —F— . .
ey P2 O «/ A

Next we consider the lower bound of ﬁév (y,2). From 0 < h < 1, for all z such
that |z| < ay, we have

Dan — 2an —
{u' a;lv S<us< aNh Z}D{ul—azvfufazv}.
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And from ay > 1 and the Chernoff bound , we have

/aN ! %4 2( _Z‘Zd)>2(l 1—"§V)>1 =3
u = u — — —C — € .
ay V2T a/_ -“\272 =

From Lemma 5.1, Eq. (8.10), and the above results, we have

inf Py Ny,z) = [~év(y,hX + 2)1(JhX + z| < 2ay)
(x.8)€BN

+5p (v hX +DL(hX +2| > 2ay)]

oo 1 u? ~N
2 e_Tp (yv I’ZM + Z)l —2ap .2a (h“ + Z)du
/_oo /—27{ 6 [-2an 2aN]

| ay
( —e 7) — e Koy,

Remark 5.1. A similar lower estimation of the density is given in [2]. Here we
give a simpler proof in our settings and as pointed out in [2], the uniformly elliptic
condition can be weakened with an elliptic condition around a “tube.”

2
1l _gN
du——=e K A

O

We now discuss condition 5 of Assumption 2.2 in Kohatsu-Higa et al. [§] on
the regularity of the log density. The technical problem in these estimates is that
derivatives of the logarithm will make appear the density in the denominator of
various expressions. One may control these by using the Gaussian lower bounds
obtained in Proposition 5.1.

Lemma 5.2 (Regularity of the log density). Let b(6, x) be a smooth function with
at most linear growth in x uniformly in 6 and bounded derivatives, and also o (x)
be a uniformly elliptic, bounded, and smooth function with bounded derivatives.
For go = p, ﬁé\’ and A small enough, we have

12
sup sup /[ (0 09) pa(ran (rde <400, fori =0.1.2,
N 60

sup sup
N ¢e0

al
Supsup/[ wlnqe(y,z)
N fe®

30
where 35599 = qo.

o [ nasr.9) B a1 < 4o,

Poy (v e, (y)dydz < +oo,  fori =01,
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Proof. We will give the ideas in order to prove one of these inequalities and leave
the others for the reader as they are all similar. Consider the last one: first note
that in the case i = 0 one only uses the upper bounds for densities result either
for the diffusion and its approximation which can be obtained in a variety of ways,
e.g., using Malliavin calculus (see, e.g, section A in [6]). Also note that the lower
bound is obtained here for the approximation in Proposition 5.1. In fact, applying
(with a slight modification to the formula of H) Theorem 2.1.4 in [10] we have the
following expression for the density of X} (6):

pe(x,y) = E [1(XX(0) < y) H (X7(0):1)],

where for any p > 1 there exists positive constants (which can be made explicit) C,
ki, and p; so that

A4
DsX1(0) = o (X(0)) exp (/A {axb (0. XX(9)) - w

A
+/ 3,0 (X,1(0)) dW,) =:0 (X (0)) AnA;".
IH (XA (©):1) 1, = CIXAO)lky.pr-

Fori = 1, we proceed in a similar fashion (using the integration by parts formula
of Malliavin calculus) with the addition of the following extra ingredient:

|E[H(X(6),9X7(0))/ X”(0) = ]|

‘—hlpo(y | =
< E[|H(X”(6). 9 X" (0))|/ X" (0) = 2].

Then fora € (0,1) and p~' 4+ ¢! = 1 we have

Po,(v.2)dz

‘—1111?9()/ 2)
5/ HH(X (). 99X 5 (9))‘/Xy(9) —z] pévo(y,z)dz

1/p
< (/ [[H(XX(0).0Xx(0))|" ] XX(0) = z] pa, (v, z)“sz)

~N 1 Va
X (/ Pa, (ys Z)( —oz)qdz) .
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Note that as we have upper Gaussian estimates for ﬁé\é (¥, z) then the second term
above is finite. Furthermore for the first term we have that

/ E[|HX0).0:XL0)|" ) X56) = 2] 5 (. 9% dz

- / E[|HXL©). 00X 0)]" 8. (X20)] po(r. ' 5 (v, 97z,

Therefore by choosing p big enough, we will have that py(y,z)~! ﬁé\g (y,2)*? is
bounded by a Gaussian term and then the finiteness will follow from estimates
for H. O

Next we will verify Assumption 2.2 6-(b) of Kohatsu-Higa et al. [8] leaving 6-(a)
for the end as this requires various conditions as explained in the paper.

Lemma 5.3. Let b(0,x) be a smooth function with at most linear growth in x
uniformly in 6 and bounded derivatives and also o(x) be a uniformly elliptic,
bounded, and smooth function with bounded derivatives. Then for each y,z € R
and A small enough, there exist factors C{N (y, z) and ¢\ (y, z) such that

|pes(v.2) — Pay (v.2)| < CN (y.ai (N),

where supy ClN(y,z) < 4+ooanda(N) :=m(N)™' + h(N)> - 0as N — oo,
and

Y (r.9ai(N)VN < c1(y.2), (8.11)

where c| satisfies

d _
sup sup /f ‘%lnpév(y,z)
N 0e®

Proof. It is well known that the rate of convergence of the Euler scheme with the
kernel modification is of the order m~' + h? =: ai(N) (see, e.g., [7]). Therefore
the idea to prove the bound (8.12) is similar as in the proof of Lemma 5.2. In fact,

Cl(y.2) == a1i(N)" | pa,(y.2) — Pa (v, 2)] -

As before, we consider

c1(y, 2)pe, (y)dydz < +o0. (8.12)

d _
/ —1npy (y,2)|sup C}Y (v, 2)dz
30 .

< ( /E[\H(Xﬁ;@(e), 90Xy O] 8. (X0, 53 (0,97 sup C}" (. z)ﬂ“dz) v

1/q
X (/ sup ClN(y,z)q(l_“)dz) .
N
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The above quantity will be finite by using upper Gaussian estimates for
supy C}N (y,z) with appropriate values for p and & as shown in, e.g., [7]. O

Now we verify Assumption 2.2 6-(c) of Kohatsu-Higa et al. [8].

Lemma 5.4. Let b(0, x) be a smooth function with at most linear growth in x
uniformly in 8 and bounded derivatives and also o(x) be a uniformly elliptic,
bounded, and smooth function with bounded derivatives. And K(x) is in C*(R).
Then for A small enough, there exist some function gV : R> — R and constant
ay(N), which depends on N, such that for all y,z € R

d _ d
—Inp)(y.2) — —Inpe(y.2)| < |g" (y.2)|az(N),

00 00

sup
0€0

where supy Eg,[|g" (Yo, Y1)|*] < +oc and a(N) — 0as N — oc.

Proof. This condition is similar to Lemma 5.3 with the exception that the approxi-
mation is of the logarithmic derivative. Again, one can also prove alternatively

™ [ [l

Using a Sobolev embedding inequality (or a simple argument like in the beginning
of the proof of Lemma 4.1) to deal with the supremum by requiring higher
derivatives with respect to 6. The arguments closes as in the proof of the previous
lemmas. O

4

9
1n 70 (v.2) — —Inpy(y.2)| poy(y.2) e, (y)dydz < oc.

00

5.1 Identifiability Conditions

We verify now that the following identifiability condition is satisfied.

Lemma 5.5. (i) Assume that there exists some x € R such that for all 0 # 6,
there exists some y € R such that po(x,y) # pe,(x,y) and 39 pg,(x,y) # 0.
Then there exist ¢; : R — (0, 00) such that for all 6 € ©,

/|pe(y,z)—peo<y,z)|dzzcl(y>|e—eo|,

and C1(6o) := [ c1(y)* gy (y)dy € (0, +00).

(ii) Let b(0, x) be a smooth function with at most linear growth in x uniformly in 6
and bounded derivatives, and also o(x) be a uniformly elliptic, bounded, and
smooth function with bounded derivatives. Assume the same hypotheses as in
(i). Furthermore we assume that there exists some Ny such that for all N > N,
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the same conditions as in (i) are satisfied with p replaced by p~. Then there
exist ¢; : R — (0, 00) and Ny € N such that for all 0 € O,

- -N -N
ant 158 ) = A dy = ex@lo -6l

and C,(6p) := fcz(x)z,ugo(x)dx € (0, 400) with N big enough.

Proof of (). First note that the identifiability condition for p is equivalent to

2
00 >/ inf [Po(x, ») pe(,(X,y)Idy oo (x)dx > /c(x)z,ugo(x)dx > 0.
0e® |9 — Qol

By using the fundamental theorem of calculus and changing variables, set
B =ald + (1 —a)b,

we have

2
dy) Mg, (x)dx

1
oo>/(9n€1£/‘/0 06 Pab+(1—a)6, (X, y)dor
= /C(X)ZHO()(x)dx > 0.

The integrability (upper estimation) is easily obtained from Gaussian upper
estimates of derivatives of densities of uniformly elliptic diffusions. One may
alternatively use the method of proof in the proof of Lemma 5.2.

Now pg,(x) > 0 for all x € R. Therefore it is enough to prove that

dy > 0,

1
Glg(f)/‘/o 06 Pab+(1-a), (X, y)da

for x in a set of positive measure. We will prove this statement by contradiction.
Therefore, we assume that for almost all x

1
inf/ ‘/ 06 Pab+(1—a)8, (X, y)da|dy = 0.
0

0e®

Due to the continuity of dg p we have that for almost all x € R, there exists some
0* = 6*(x) such that

1
/V 99 Pav*+(1—-a)hy (X, y)da| dy = 0.
0
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As 0* = 0, contradicts the assumption we have that for all x € R, there exists some
0* = 6*(x) # 6y such that for all y € R,

1
0" - 9)/0 06 Pab* +(1-a)8y (X, y)dae = pg=(x,y) — pgy(x,y) =0,  (8.13)

which also contradicts the assumption.

(Proof of (ii)) By using a similar argument, we obtain the identifiability condition

=N _ =N
for pV. Set B := [finfyinfys, [ L0 T2 (n)dx € [0, 400). As

before, it is easy to prove B < +o0.

Here we also use proof by contradiction. If B = 0, then from the assumption of
the coefficients, we have g(x) > 0 for all x € R and 6 € ©®. So that we have, for
all Ny € N and almost all x € R,

o 1Py (x,y) = P (x, »)
Hollegjva/ 0= 00| dy =0.

Then for all Ny € N and all x € R, there exists some sequence 6, = 6,(x, Ny)
such that

pN (x,y) — p¥(x,
i inf /ngn( y) — Pgy( y)ldy:O‘

|9n_90|

n—>o00 N>N

And also, for all x € R, there exists some sequence 6, = 6,(x, Ny) such that there
exists some sequence N, = N,(x, 8,) > Ny such that

lim
n—o00

_N, _N,
X,y) — X,
/ |y, (x.¥) — Py ( y)ldy ol

|€n _QOI

By using the mean value theorem, we consider the following: for all x € R,
there exists some sequence 6, = 6,(x, Ny) such that there exists some sequence
N, = N,(x,6,) such that

1
nli)ngo/ VO 09 Py +(1—ag, %+ ¥)der| dy = 0. (8.14)
If N, has a subsequence converging to infinity then as 6, is a sequence in a compact
set there is also an accumulation point. In that case, the proof finishes as in the proof
of (i) by taking limits in 7.

In the contrary if N, is a bounded sequence then one obtains that there exists N’
such that for all x, y € R,

Po(x.y) = php (x. ).

if 6, — 6% # 69 or d p)} (x.y) = 0. o
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Example 5.1. (i). Here we give an example which satisfies the conditions in

(ii)

Lemma 5.5 (i). If we assume that |dph(0,x)] > ¢ > O for all x € R and
d.b and 0,0 are bounded, then the assumption of Lemma 5.5 holds. In fact,
suppose without loss of generality that dgbg(x) > ¢ for all x € R, we have

t t
0 X (0) = st/ ss_lagb (9, XS"(G)) ds > cst/ es_lds >0 a.s.,
0 0

where set

o= el [ (005300 300 (2O )0
0

4 /0 0.0 (X(0)) qu}.

Therefore X, () is almost surely strictly increasing with respect to 6.
Let Fy ¢(y) be the distribution function of X5 (6):

Fra(y) = /_ " pelx. )z

From the monotonicity of X} (6) and supp ps(x,:) = R, we have Fyg(y) #
Fyg,(y) forall y € R and 0(# 6y). Therefore there exists some y € R such

that pg(x, y) # pe,(x.y).

Next we give an example which satisfies the conditions in Lemma 5.5(ii).
Here we consider the case o(x) = o > 0 and assume that |0,b(6, x)| is
bounded by a positive constant M uniformly in 6, and there exists some positive
constant ¢ such that |dyb(6, x)| > ¢ for all x € R. From Eq. (8.14), we have

lim, 00 fol 89ﬁ%1+(1_a)90(x, y)da = 0 for all x,y € R. And we integrate
both sides from —oo to y with respect to the second variable to obtain

O:/ hm/ agpae +(1—ayg, (X 2)dadz

n—o00

= lim Bg)FV o +(1—a)00(y)do‘ (8.15)

n—o00 0

where set
- v
Fly() = / pi (x,2)dz.
—00
Note that we have the following expression:
. y N v
Fog(y) = / E[py (x.hX +2)|dz = E [F)y(hX + y)]
—00

—E [1 (X(Xm)(é) <hX + y)] , (8.16)
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where X is a random variable with the standard normal distribution and F xNe (y)is

the distribution function for p}’ (x, y).
Set X;*(6) = X7 (0) with the Euler-Maruyama approximation. From the above

assumptions (case éngb(é, Xx) > c¢), we have
09 X7 (0) = 00D (0, x) At > cAt,

and if 99 X (0) > 0 and At is small enough (e.g., 1 — d:b(0, Xj*(0))At > 0, i.e.,
ﬁ > At), then we have

3 X[ (0) = 09 X[ (0) + {39b (0, X;*(0)) + 0<b (0, X[ (0)) 06 X;* (0)} At > 0.

Finally by induction, we obtain dg X gn)(e) > 0.
From the expression of the distribution function and the above calculation, we
have, forall x,y € Rand 0 € ©,

00 2y (0) = E [Sxay (X5)(9)) 00X3,,(0)] > 0

Hence the conclusion follows as in (i).

6 Main Result

Finally by summing up all the hypotheses of the previous sections, and all the
verification of various hypotheses, we obtain the following consequence from
Theorem 3.1 in Kohatsu-Higa et al. [8].

Theorem 6.1. Assume hypothesis (H2), Assumptions 3.1, 3.2, and 3.3 with cic; >
2, and the assumptions in Lemma 5.5.

Leta; > 0, ap > %andm € N be such that o; > 80{2+1+4‘p%62andm >

V'N, where number of the Monte—Carlo simulationn = C;N* and the bandwidth
size h = CoN~%2, where Cy and C, are positive constants. Assume that b(0, x)
is smooth and at most linear growth in x uniformly in 6 with bounded derivatives.
And assume that o (x) is a smooth bounded function with bounded derivatives and
uniformly elliptic. Then for A small enough, there exist some positive finite random
variable B and B, such that for f € C'(®), we have

—~

a.s. and |E7V,m[f]—f(90)|§% as.,

[

|Ex[f]1— f(B0)] < /N

and therefore |En|[f] — Ej’(,m[fﬂ < E‘jﬁsz a.s.
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In fact, we remark that we are able to simplify the inequalities (8.7) and (8.8)
to the above oy > 8ap + 1 + 4‘{% since one can freely choose the constants
r3, r4, T4, T6, and g¢ due to the existence of all moments associated with the
processes in the hypotheses (iii), (iv), (vi), (viii), and (ix). Remember that ¢, is the
constant which was introduced in the lower bound of ﬁév in assumption (H1) and ¢,

is the constant related to the integrability condition in Assumption 3.3. Hence from
the assumptions cjc; > 2 and o) > 8y + 1 + 4‘@%, we can find that ¢; and ¢, are

connected through the parameter c¢;. Finally, the assumption ay > 4—11 is needed as

the bandwidth / has to satisfy h> < ﬁ in Eq. (8.11) of Lemma 5.3.
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Escape Probability for Stochastic Dynamical
Systems with Jumps
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Dedicated to Professor David Nualart on the occasion of his
60th birthday

Abstract The escape probability is a deterministic concept that quantifies some
aspects of stochastic dynamics. This issue has been investigated previously for
dynamical systems driven by Gaussian Brownian motions. The present work
considers escape probabilities for dynamical systems driven by non-Gaussian Lévy
motions, especially symmetric «-stable Lévy motions. The escape probabilities
are characterized as solutions of the Balayage-Dirichlet problems of certain partial
differential-integral equations. Differences between escape probabilities for dynam-
ical systems driven by Gaussian and non-Gaussian noises are highlighted. In certain
special cases, analytic results for escape probabilities are given.
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1 Introduction

Stochastic dynamical systems arise as mathematical models for complex phenom-
ena in biological, geophysical, physical, and chemical sciences, under random
fluctuations. A specific orbit (or trajectory) for such a system could vary wildly from
one realization to another, unlike the situation for deterministic dynamical systems.
It is desirable to have different concepts for quantifying stochastic dynamical
behaviors. The escape probability is such a concept.

Brownian motions are Gaussian stochastic processes and thus are appropriate
for modeling Gaussian random fluctuations. Almost all sample paths of Brownian
motions are continuous in time. For a dynamical system driven by Brownian
motions, almost all orbits (or paths or trajectories) are thus continuous in time. The
escape probability is the likelihood that an orbit, starting inside an open domain D,
exits this domain first through a specific part I' of the boundary dD. This concept
helps understand various phenomena in sciences. One example is in molecular
genetics [23]. The frequency of collisions of two single strands of long helical
DNA molecules that leads to a double-stranded molecule is of interest and can
be computed by virtue of solving an escape probability problem. It turns out that
the escape probability satisfies an elliptic partial differential equation with properly
chosen boundary conditions [4, 16,22,23].

Non-Gaussian random fluctuations are widely observed in various areas such as
physics, biology, seismology, electrical engineering, and finance [14, 18, 26]. Lévy
motions are a large class of non-Gaussian stochastic processes whose sample paths
are discontinuous in time. For a dynamical system driven by Lévy motions, almost
all the orbits X, are discontinuous in time. In fact, these orbits are cadlag (right
continuous with left limit at each time instant), that is, each of these orbits has
countable jumps in time. Due to these jumps, an orbit could escape an open domain
without passing through its boundary. In this case, the escape probability is the
likelihood that an orbit, starting inside an open domain D, exits this domain first by
landing in a target domain U in D¢ (the complement of domain D).

As we see, the escape probability is defined slightly differently for dynamical
systems driven by Gaussian or non-Gaussian processes. Although the escape
probability for the former has been investigated extensively, the characterization for
the escape probability for the latter has not been well documented as a dynamical
systems analysis tool for applied mathematics and science communities. See our
recent works [5, 10] for numerical analysis of escape probability and mean exit time
for dynamical systems driven by symmetric ¢-stable Lévy motions.

In this paper, we carefully derive a partial differential-integral equation to be
satisfied by the escape probability for a class of dynamical systems driven by
Lévy motions, especially symmetric o-stable Lévy motions. Namely the escape
probability is a solution of a nonlocal differential equation. We highlight the
differences between escape probabilities for dynamical systems driven by Gaussian
and non-Gaussian processes. These are illustrated in a few examples.
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More precisely, let {X;,z > 0} be a R?-valued Markov process defined on a
complete filtered probability space (2, F, {F;};>0, P). Let D be an open domain in
R?. Define the exit time

tpe ;= inf{t > 0: X, € D},

where D¢ is the complement of D in RY. Namely, tpe is the first time when X;
hits D€.

When X; has almost surely continuous paths, that is, X, is either a Brownian
motion or a solution process for a dynamical system driven by Brownian motions,
a path starting at x € D will hit D¢ by hitting dD first (assume for the moment
that dD is smooth). Thus 7pc = 7yp. Let T" be a subset of the boundary dD. The
likelihood that X/, starting at x, exits from D first through I' is called the escape
probability from D to I', denoted as p(x). That is,

p(x) =P{X,, €'}

D
We will verify that (Sect.3.2) the escape probability p(x) solves the following
Dirichlet boundary value problem:

{Epzo, xeD, ©.1)

P|3D = wv

where L is the infinitesimal generator of the process X; and the boundary data ¥ is
defined as follows:

1, xeTl,

‘”(x)z{o, x €dD\T.

When X, has cadlag paths which have countable jumps in time, that is, X, could
be either a Lévy motion or a solution process of a dynamical system driven by Lévy
motions, the first hitting of D¢ may occur somewhere in D¢. For this reason, we
take a subset U of D¢ and define the likelihood that X, exits firstly from D by
landing in the target set U as the escape probability from D to U, also denoted by
p(x). That s,

p(x) =P{X,,. e U}.

We will demonstrate that (Sect.3.4) the escape probability p(x) solves the
following Balayage—Dirichlet boundary value problem:

{ Ap =0, x e D, ©9.2)

plpe = @.
where A is the characteristic operator of X, and ¢ is defined as follows:

1, xeU,

go(x):{o’ xeD\U.



198 H. Qiao et al.

Therefore by solving a deterministic boundary value problem (9.1) or (9.2), we
obtain the escape probability p(x).

This paper is arranged as follows. In Sect. 2, we introduce Balayage—Dirichlet
problem for discontinuous Markov processes and also define Lévy motions. The
main result is stated and proved in Sect. 3. In Sect. 4, we present analytic solutions
for escape probabilities in a few special cases.

2 Preliminaries

In this section, we recall basic concepts and results that will be needed throughout
the paper.

2.1 Balayage-Dirichlet Problem for Discontinuous
Markov Processes

The following materials are from [3, 6, 11, 15,17,24]. Let G be a locally compact
space with a countable base and ¢ be the Borel o-field of G. Also, ¢ is adjoined to
G as the point at infinity if G is noncompact and as an isolated point if G is compact.
Furthermore, let &, be the o-field of Borel sets of G. = G U {¢}.

Definition 2.1. A Markov process Y with state space (G,%) is called a Hunt
process provided:

(i) The path functions ¢ — Y; are right continuous on [0, c0) and have left-hand
limits on [0, ¢) almost surely, where ¢ := inf{¢ : ¥, = ¢}.
(i1) Y is strong Markov.
(iii) Y is quasi-left-continuous: whenever {t,} is an increasing sequence of JF;-
stopping times with limit z, then almost surely ¥;, — Y; on {r < oo}.

Definition 2.2. Let G be an open subset of G and Y;(x) be a Hunt process starting
at x € G. A nonnegative function /1 defined on G is said to be harmonic with respect
to Y; in G if for every compact set K C G,

E[A(Yree (x)] = h(x), xeG.
Definition 2.3. Let f be nonnegative on G¢. We say / defined on G solves the
Balayage—Dirichlet problem for G with “boundary value” f, denoted by (G, f),
if h = f on G€, h is harmonic with respect to ¥; in G and further satisfies the

following boundary condition:

Vz€dG, h(y)— f(z), asy — zfrominside G.
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A point z € dG is called regular for G¢ with respect to Y;(z) if
]P){TGt' = 0} =1.

Here G is said to be regular if any z € dG is regular for G€.

Let p be a metric on G compatible with the given topology. Let Zg be the family
of functions g = 0 bounded on G and lower semicontinuous in G such that Vx € G,
there is a number Ag(x) satisfying

Elg(Yy, (x)] — g(x)

E[r] — Ag(x), ase | 0,

where 7, := inf{r > 0 : p(Y;(x),x) > &}. We call A with domain Z; the
characteristic operator of Y, relative to G. If £ with domain Dy is the infinitesimal
generator of Y; relative to G, Dg € Zg, and

Af =Lf feDg.

(cf. [9D)
We quote the following result about the existence and regularity of the solution
for the Balayage—Dirichlet problem.

Theorem 2.1 ([15]). Suppose that G is relatively compact and regular and f is
nonnegative and bounded on G°. If f is continuous at any z € 9G, then h(x) =
E[f (Yr4c (x))] is the unique solution to the Balayage—Dirichlet problem (G, f'), and
Ah(x) =0 forh € Ig.

2.2 Lévy Motions

Definition 2.4. A process L;, with Ly = 0 a.s. is a d-dimensional Lévy process or
Lévy motion if:
(i) L; has independent increments; that is, L; — L; is independent of L, — L, if

(u,v) N (s, t) = 0.

(i1) L, has stationary increments; that is, L; — L; has the same distribution as
L,—L,ift—s=v—u>0.

(iii) L, is stochastically continuous.

(iv) L; is right continuous with left limit.

The characteristic function for L; is given by

E (expli(z, L;)}) = exp{t¥(z)}, ze€R’,
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where (-,-) is the scalar product in R¢. The function ¥ : RY — C is called the
characteristic exponent of the Lévy process L,;. By the Lévy—Khintchine formula,
there exist a nonnegative definite d x d matrix Q, a measure v on R? satisfying

v({0}) = 0 and / (Jul> A Dv(du) < oo,
RY\{0}
and y € R? such that

V() =iz, y)— %(z, 0z) + /Rd\{o} (ei(z,u) —1—i(z,u)l<)v(du).  (9.3)

The measure v is called the Lévy measure of L,, Q is the diffusion matrix, and y is
the drift vector.

We now introduce a special class of Lévy motions, that is, the symmetric «-stable
Lévy motions LY.

Definition 2.5. For « € (0, 2), a d-dimensional symmetric a-stable Lévy motion
L¢ is a Lévy process with characteristic exponent

W(z) =—Clz*, zeR’, (9.4)

where
LT+ @)/2)T(d)2)
I'id+uw)/2)

(cf. [21, p. 115] for the above formula of C.)

C=m

Thus, for a d-dimensional symmetric a-stable Lévy motion L, the diffusion
matrix Q = 0, the drift vector y = 0, and the Lévy measure v is given by

Ca,
v(du) = —|u|dia du,

where

o __ol(d+a)/2)
o T Qlagd 2T (1 — 0 /2)

(cf. [7, p. 1312] for the above formula of C,; ,.) Moreover, comparing Eq. (9.4) with
Eq. (9.3), we obtain

i Cd()t
—Cz|* = / e — 1 — iz Ul <) g,
RA\{0} ( lul< )Iuld_q_a

Let Co(RY) be the space of continuous functions f on R? satisfying
lim f(x) = 0 with norm || f'|l¢,rey = sup |f(x)]. Let C2(RY) be the set of

|x|—o00 eRd
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f € Co(R?) such that f is two times differentiable and the first and second order
partial derivatives of f belong to Co(R?). Let C*®°(R?) stand for the space of all
infinitely differentiable functions on R? with compact supports. Define

Cao
Ch= [ (00— 1) = 00,0 gz
on C2(R). And then for § € R?
i i(x, i(u. : Cia
(Loe' ) (x) = 08 /Rd\{o} (e (8 —1—l(§,u)1|u|51)|u|7+adu.

By Courrége’s second theorem [1, Theorem 3.5.5, p. 183], for every f € C®(R?)

(Lo f)(x)
__ ! / i) [o=itx2) (£ ety ()] 7(2)d
= G e [e (Lye )(X)] f(2)dz
1 i(z,x ifuz : Cia ;
N W/]Rd e [/Rd\{o} e 1t uﬂusl)lulT“L“du} J
C . ~

= C - [~(=8)" f](x).

Set p; := L; — L;—. Then p, defines a stationary (F;)-adapted Poisson point
process with values in R? \ {0} [12]. And the characteristic measure of p is the
Lévy measure v. Let N,((0, 7], du) be the counting measure of p;, that is, for B €
B(R?\ {0})

N,((0,t], B) :=#{0 <5 <t : p; € B},
where # denotes the cardinality of a set. The compensator measure of N, is given by
N,((0, 1], du) := N,((0, ], du) — tv(du).

The Lévy-Ito theorem states that for a symmetric «-stable process L;:

1. Forl <a <2,

t t
L,:// uN,,(ds,du)+// uN,(ds, du).
0 Jlul<1 0 Jlul>1

2. ForO0<a<1,

1
L,:// uN,(ds, du).
0 JRI\{0}
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3 Boundary Value Problems for Escape Probability

In this section, we formulate boundary value problems for the escape probability
associated with Brownian motions, SDEs driven by Brownian motions, Lévy
motions, and SDEs driven by Lévy motions. For Lévy motions, in particular, we
consider symmetric a-stable Lévy motions. We will see that the escape probability
can be found by solving deterministic partial differential equations or partial
differential-integral equations, with properly chosen boundary conditions.

3.1 Boundary Value Problem for Escape Probability
of Brownian Motions

Suppose that a particle executes an unbiased random walk on a straight line. Let
D = (a, b). Figure 9.1 shows the random walk scenario. That is, a particle moves
according to the following rules [16]:

1. During the passage of a certain fixed time interval, a particle takes 1 step of a
certain fixed length § along the x axis.
2. Itis equally probable that the step is to the right or to the left.

If the particle starting from x € D eventually escapes D by crossing the
boundary b, then it must have moved to one of the two points adjacent to x first
and then crossed the boundary. Thus

1
p(x) = E[p(x —38) + p(x + 8],

for x € D. By Taylor expansion on the right-hand side to the second order, we have

1 "
= =0.
S0 ()
The boundary conditions are
lim p(x) =1, lim p(x) =0,

since the nearer the particle starts to b, the more likely it will first cross the boundary
through b.

-
-

Fig. 9.1 A particle executing / e \
unbiased random walk in a AND r—6rr+46 /b
bounded interval
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Note that the limit of the random walk is a standard Brownian motion W;,
that is:

1. W has independent increments.
2. For0 < s < t, W, — W, is a Gaussian random variable with mean zero and
variance (¢ — s).

Thus, the escape probability p(x) of a standard Brownian motion from D through
the boundary b satisfies

3Ap(x) =0,

pb) =1,

p(a) =0,

where %A = %8” is the infinitesimal generator for a scalar standard Brownian
motion W;.

3.2 Boundary Value Problem for Escape Probability of SDEs
Driven by Brownian Motions

Some results in this section can be found in [19, Chap. 9].
Let {W(¢)}/=0 be an m-dimensional standard F;-adapted Brownian motion.
Consider the following stochastic differential equation (SDE) in R?:

Xi(x) =x +/O b(Xs(x))ds +/0 o (Xy(x))dW;. 9.5)

We make the following assumptions about the drift b : R? > R¢ and the diffusion
coefficient o : R? > R x R™:

H;,)

[b(x) =b(y)| < A(lx — y]),
lo(x) —o(y)| < y(x—y|.

Here A and y are increasing concave functions with the properties A(0) =
y(0) = 0,and [, ﬁu)du = Jox ﬁdu = oo.
Under (H}m), it is well known that there exists a unique strong solution to
Eq.(9.5) ([27]). This solution is denoted by X, (x).
We also make the following assumption.

(H2) There exists a § > 0 such that for any x, y € D

(y.o0*(x)y) = Ely|”.
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Fig. 9.2 Escape probability
for SDEs driven by Brownian
motions: an annular open
domain D with a subset I" of
its boundary dD

This condition guarantees that the infinitesimal generator

- R e
L= bix)— i () ———
; (X) 3)61' + ijz=:l iy (X) 3)61' ij

for Eq. (9.5) is uniformly elliptic in D, since then the eigenvalues of oo™ are
away from 0 in D. Here the matrix [a;;] := %o(x)o*(x).

Let D be an open annular domain as in Fig. 9.2. In one-dimensional case, it is
just an open interval. Let I' be its inner (or outer) boundary. Taking

o=t e
we have
By (X ()] = / ¥ (X (1)) dP()
{w: Xy, (x)ET}

+ [ Y Xy (1) dAP()
{w: Xy, (x)€3D\T'}

=Plow: X, (x) eI}
= p(x).

This means that, for this specific ¥, E[(X~,, (x))] is the escape probability p(x),
which we are looking for.

We need to use [19, Theorem 9.2.14] or [8] in order to see that the escape
probability p(x) is closely related to a harmonic function with respect to X;. This
requires that the boundary data ¥ to be bounded and continuous on dD. For the
domain D taken as in Fig. 9.2, with I' the inner boundary (or outer) boundary, the
above chosen ¥ in Eq.(9.6) is indeed bounded and continuous on dD. Thus, we
have the following result by [19, Theorem 9.2.14].
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Fig. 9.3 A particle executing T

Lévy motion in a bounded /\/ \

interval / \ \
a D z xtyl

Theorem 3.1. The escape probability p(x) from an open annular domain D to its
inner (or outer) boundary T, for the dynamical system driven by Brownian motions
(9.5), is the solution to the following Dirichlet boundary value problem:

Lp =0,
plr =1,
plap\r = 0.

3.3 Boundary Value Problem for Escape Probability
of Symmetric a-Stable Lévy Motions

Assume a particle is taking a one-dimensional Lévy flight, where the distribution of
step sizes is a symmetric a-stable distribution (Fig. 9.3). Let p(x) denote the escape
probability of the particle starting at x in D = (a, b) and then first escapes D over
the right boundary b. It could first move to somewhere inside D, say x + y € D,
and then achieve its goal by jumping over the right boundary » from the new starting
point x + y. More precisely,

p(x) = / P {the first step length is y} p(x + y)dy. 9.7)
R\{0}

According to [2], the symmetric «-stable probability density function is the
following:

1k )
_% Z;ozl (—D* T(ak+1) sm[k(% —aargy)], O<a<l,

ak
fuo(y) = R
Ly (DR R vk coslk(Z)], l<a<2,

where arg y = w when y < 0.
For 0 < o < 2, the asymptotic expansion has also been given by [2] as follows:

S
l" ATl
Ly (D) vk cos [k(Z)] + o(y ), ly| =0,

Ci(@)/IyI" +o(ly|7271),  |y| = oo,
Co(a) + o(|y[?). Iyl = 0.

—1)k k . — —
— Ly COTERED Gn [k(G —aarg y)] +o(ly[*@+HD1), |y|—>o0,
fa,O(y) = .
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where Ci(a) = %sin(%)l"(l + «) and Gy (o) = %w Take N > 0 large
enough and fix it. Thus,

0= / Foo WP Gx + 3) = p(x)]dy
R\{0}
- / Foo D[P + ¥) — p(0)]dy
(—N.N)\{0}

4 / Foo WP + ¥) — p(x)]dy
]R\(—N,N)
=1+ L.

For I, by self-affine property in [25], we obtain

- >y )
h= /(—N,N)\{()} Jeo (N N) [p(x +y) — p(x)]dy

_ / Jao(N)

(—N.N)\{0} W[p(x +y) — p(x)]dy

Ci(x)
N /(—N,N)\{o} N1+a(|;}|/N)l+a [p(x +y)— p(x)]dy
C
- /<—N N\{0} Iyll fi)r [p(x + y) — p(x)]dy. 9.8)
For I,, we calculate
o -N
= /N Juo =Py + | fun ()0 — p(x)ldy

N /N [ yllgff’) + 0(y1+2a):|[1 — p(x)]dy
N G@ |
_/—oo [(—;W " O(W)}p(x)dy
_ *® Ci(a) B Ci(@)
_[V y1+o¢ dy A\[_N’N] |y|1+a P(X)dy

Ci()p(x +y) Ci(a)
N /R\ Wdy - / ﬁmp(x)dy. 9.9)
(NN Y R\[-V.N] 1Y

Note that for 0 < o < 1, by the fact that the integral of an odd function on a
symmetric interval is zero, it holds that

Y

—2 _dy =0. 9.10)
oy Fe

Ci() )
/ P'(x)yl{\yxgl}—llﬂ dy =p (X)Cl(a)/
R\{0} |yl {
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Thus, putting Egs. (9.8), (9.9), and (9.10) together, we have for 0 < o < 1
Ci(@)
[ Ip+ )= p) = Pyt ] 1 rdy =0
R\{0} Iyl

Moreover, Ci () = Cj 4.
For a € [1,2), we only divide /; into two parts /;; and /;,, where

Iy = / Foo WP Gx + ) — p)ldy.,
{lyl<o}\{0}

I = / FooDpGx + ) — p)ldy.,
(—=N,N)\(—0.0)

and ¢ > 0 is a small enough constant.
For I, by Taylor expansion and self-affine property in [23], we get

/ Fuo WG + ¥) — p()]dy
{lyl<o}\{0}

1
= / Sao(=-0y)p'(x)ydy
{ly|<e}\{0} o

/ fa,O(é) /( ) d
= —————p'(x)ydy
{lyl<ei\toy (0[y)!ITe

Ci(a) /
= p(x)ydy
/{ysg}\m} (e (olyDite

Ci(a)
!

= p(x)yl 4.
[I;\{O} {lyl<eo} |y|1+a

For I,,, we apply the same technique as that in dealing with /; for @ € (0, 1).
Next, by the similar calculation to that for « € (0, 1), we obtain for « € [1,2)

' Ci(a)d
/R\{O} [P(x +y) = p(x) = p'(X)y gy <13 ﬁ —

Since the limit of the Lévy flight is a symmetric «-stable Lévy motion L¥, the
escape probability p(x) of a symmetric a-stable Lévy motion, from D to [b, c0)
satisfies

~(~2)8 px) =0,
P(X)|p.oo) = 1,
p(x)l(—oo,a] =0.
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Note that —(—A)? is the infinitesimal generator for a scalar symmetric a-stable
Lévy motion LY.

3.4 Boundary Value Problem for Escape Probability of SDEs
Driven by General Lévy Motions

Let L, be a Lévy process independent of W;. Consider the following SDE in R?:

X;(x) =x+ /Ot b(Xs(x))ds + /Ot o(Xs(x))dWs + L,. (9.11)

Assume that the drift » and the diffusion o satisfy the following conditions:

(Hp) There exists a constant C;, > 0 such that for x, y € R4
b(x) =b()] = Cplx — y|-log(lx — y|™" +e).
(H,) There exists a constant C, > 0 such that for x, y € R
lo(x) =a(? < Colx = yI? - log(Ix = y| ™" +e).

Under (Hp) and (Hy), it is well known that there exists a unique strong solution
to Eq. (9.11) (see [20]). This solution will be denoted by X, (x). Moreover, X;(x) is
continuous in x.

Lemma 3.1. The solution process X;(x) of the SDE (9.11) is a strong Markov
process.

Proof. Let n be a (F;);=0-stopping time. Set
gt = U{WW+Y_WW’LU+t_LU}UN’ IZO,

where A\ is of all P-zero sets. That is, G, is a completed o-algebra generated by
Wy+i — Wy and Ly, — L,. Besides, G, is independent of F;. Let X(x,n,n + t)
denote the unique solution of the following SDE:

n+t n+t
X(x,n,n+t) :x—i—/ b(X(x,n,s))ds—}—/ o(X(x,n,8))dWs+ L, —L,.
n n

(9.12)
Moreover, X(x,n,n + t) is G;-measurable and X(x,0,f) = X;(x). By the
uniqueness of the solution to Eq. (9.12), we have

X(x,0,n4+1) = X(X(x,0,n),n,n+1), a.s.
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For any bounded measurable function g,

Elg(Xyt: () Fy] = E[g(X(x, 0,7 + 1)) F]
= E[g(X(X(x,0,n),n.n +1))|F]
= Elg(X(y.n.n+ O)]ly=x(x.0m
= E[g(X(»,0,))]|y=x(x.0.- (9.13)

Here the last equality holds because the distribution of X(y, 1, n + ¢) is the same to
that of X(y,0,t). The proof is completed since Eq. (9.13) implies that

Elg(Xp+ () Fy] = Elg (X4 (0)) [ Xy (X0)]. .

Because L, has cadlag and quasi-left-continuous paths ([21]), X;(x) also has

cadlag and quasi-left-continuous paths. Thus by Lemma 3.1 and Definition 2.1, we

see that X;(x) is a Hunt process. Let D be a relatively compact and regular open

domain (Fig. 9.4 or Fig. 9.5). Theorem 2.1 implies that E[¢(X;,. (x))] is the unique

solution to the Balayage—Dirichlet problem (D, ¢), under the condition that ¢ is
nonnegative and bounded on D¢. Set

1, xeU,

‘p(x):{O, xeD\U.

Then ¢ is nonnegative and bounded on D¢. We observe that

Efp(Xep. ()] = / o(Xop, (1)) dP(0)

{0:Xepe (1) €U}
4 / (X oy, (1)) dP(@)
{0 Xepe (€D}

=Plw: X;).(x) e U}
= p(x).

This means that, for this specific ¢, E[p(X.,. (x))] is the escape probability p(x)
that we are looking for. By the definition of the characteristic operator, p € Ip, and
by Theorem 2.1, Ap(x) = 0. Thus we obtain the following theorem.

Theorem 3.2. Let D be a relatively compact and regular open domain, and let U
be a set in D¢. Then the escape probability p(x), for the dynamical system driven
by Lévy motions (9.11), from D to U, is the solution of the following Balayage—
Dirichlet problem:

Ap =0,

rlv =1,

Plpew =0,
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Fig. 9.4 Escape probability
for SDEs driven by Lévy
motions: an open annular
domain D, with its inner part
U (which is in D) as a target
domain

Fig. 9.5 Escape probability
for SDEs driven by Lévy
motions: a general open
domain D, with a target
domain U in D¢

where A is the characteristic operator for this system.

Remark 3.1. Unlike the SDEs driven by Brownian motions, a typical open domain
D here could be a quite general open domain (Fig. 9.5), as well as an annular domain
(Fig.9.4). This is due to the jumping properties of the solution paths. It is also due
to the fact that, in Theorem 2.1, the function f is only required to be continuous on
the boundary 0D (not on the domain D¢).

Finally we consider the representation of the characteristic operator A, for an
SDE driven by a symmetric a-stable Lévy process LY, with « € (0, 2):

t

X,(x) = x + /Ot b(X,(x))ds + /0 o (X, (x)) dW, + L. 9.14)

Let us first consider the case of 1 < o < 2. For f € Cg(Rd), applying the It6
formulato f (X, (x)), we obtain
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Te

S(Xr (%) = f(x) = /O (0, f(X5),b(X5))ds _,_/0 (3, F(X0). 0(X)dW)
+/0 /usl (f(Xs + u) = f(X;)) Np(ds, du)

+/0 /u>1 (f(Xv + M) - f(XY)) Np(ds, du)

1 [ 9?2
2 /0 (3)1,- ay; f(XS)) 0ik (Xs)ok; (Xs)ds

+ ‘ Xs"f‘ - Xs
/ /M (f(X, + 1) — F(X0)
(3, f(Xy).u ))| ipduds,

Here and hereafter, we use the convention that repeated indices imply summation
from 1 to d. Taking expectation on both sides, we get

ELf(Xz (x)] = f(x)
Te Te 2
= IE/ 0y f(Xy), b(Xy))ds + lIE/O ( 9 f(XS)) 0ik (Xs)ok; (Xs)ds

2 8y,~ 8yj

+E/ /Rd\{o} S(Xs4+u)— f(Xy) = (0, f(Xy), u ))| |d+ duds.

The infinitesimal generator £ of Eq. (9.11) is as follows [1]:

82
(L)) = (05 f (). b(x)) + % ( T f(x)) 04 (x)0%; (%)
i0Aj
Cia
+ A; gy 0= 6 = (00 f ). g ,d+adu-

So,

E [y (L)(X)ds  E [ (Lf)(x)ds
E[ze] E[z]

Efo (L) (X,) = (Lf)(x)]ds
Elz]
< sup [(L£LS)(y) = (LX)

|y—x|<e

E[f(X,, I(EJE))] — /) (Lf )(x)' =
Te]
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Because (£ f)(x) is continuous in x,

E[f (X (x))] — f(x)
E[z.]

AfQJ::gg = (L) (x).

Similarly, we also have A = L for0 < o < 1.

Remark 3.2. The above deduction tells us Af = Lf for f € CXR?). If the
considered driving process is not a symmetric o-stable Lévy motion, the domain
of £ is unclear and thus A = L may not be true. The corresponding escape
probability p(x) is the solution of the following Balayage—Dirichlet problem (in
terms of operator £, instead of A):

Lp =0,
rlv=1,
plpew = 0.

4 Examples

In this section we consider a few examples.

Example 4.1. In one-dimensional case, take D = (—r,r) and I' = {r}. For each
x € D, the escape probability p(x) of X; = x + W, from D to I' satisfies the
following differential equation:

%p”(x) =0, xe€(-nr),
p(r) =1,
p(=r) =0.

We obtain that p(x) = Xz";’ for x € [—r,r]. Itis a straight line (see Fig. 9.6).
In two-dimensional case, take D = {x € R*r < |x| < R}and T = {x €
R2?;|x| = r}. For every x € D, the escape probability p(x) of X, = x + W, from

D to T satisfies the following elliptic partial differential equation:

%Ap(x) =0, xeD,

p(x)ll)rl:r =1,
P(X)|jxj=r = 0.
By solving this equation, we obtain that p(x) = %. It is plotted in Fig. 9.7.

Example 4.2. Consider the following SDE driven by Brownian motions:



9 Escape Probability for Stochastic Dynamical Systems with Jumps 213

Fig. 9.6 Escape probability 1

for one-dimensional
Brownian motion in 0.9t
Example 4.1, r = 2 0.8+

0.7}
0.6}
Z o5t
0.4}
0.3}
0.2}
01}

Fig. 9.7 Escape probability
for two-dimensional
Brownian motion in
Example 4.1: r =2, R =4

where b and (nonzero) o are real functions. When b and o satisfy (H}w), the
equation has a unique solution which is denoted as X;. We take D = (—r,r) and
I = {r}. For each x € D, under the condition (H2), the escape probability p(x)

satisfies

307()p () +b(0)p'(x) =0, x€(=rr),

pr) =1,
p(=r) =0.
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Fig. 9.8 Escape probability
in Example 4.2:
b(x)=—x,ox)=1,r=2

The solution is

) b(z
_Zfir o

X 2 dz
e ) dy
b(2)

=2 5%dz
(z
Il e 20 dy

p(x) =

for x € [—r,r]. See Fig.9.8.

Example 4.3. In one-dimensional case, take D = (—r,r)and U = [r, o). For each
x € D and a symmetric o-stable Lévy process LY, the escape probability p(x) of
X; = x 4+ L¥ from D to U satisfies the following differential-integral equation:

—(=A)3p(x) =0, x€(-rr),
p(x)|[r,oo) =1,
p(x)|(—00,—r] =0.

It is difficult to deal with this equation because of the fractional Laplacian operator.
But we can solve it via Poisson kernel. From [13], for x € (—r,r),

sin 22 /°° (r2—=x»e2 1
= d .
A R

2Obviously, p(—lr) = 0. To justify p(r) = 1, we apply the substitution y =
(r= = xv)(x —v)~" to obtain
sin Z% 7 o
p(r) = =2 [ = 2 =)ty
—-r

g

sin £

1
= 2 /(l—v)%_lvl_%_ldv
0

g
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a=0.25
1-OI""I""I""

p(x)
p(x)

p(x)
p(x)

- 2% p(%0-9)
-2 (G)r(-5)

where the beta and gamma functions and their properties are used in the last two
steps. The escape probability p(x) is plotted in Fig. 9.9 for various o values.
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Chapter 10
On the Stochastic Navier-Stokes Equation
Driven by Stationary White Noise

Chia Ying Lee and Boris Rozovskii

Abstract We consider an unbiased approximation of stochastic Navier—Stokes
equation driven by spatial white noise. This perturbation is unbiased in that the
expectation of a solution of the perturbed equation solves the deterministic Navier—
Stokes equation. The nonlinear term can be characterized as the highest stochastic
order approximation of the original nonlinear term uVu. We investigate the analyt-
ical properties and long-time behavior of the solution. The perturbed equation is
solved in the space of generalized stochastic processes using the Cameron—Martin
version of the Wiener chaos expansion and generalized Malliavin calculus. We also
study the accuracy of the Galerkin approximation of the solutions of the unbiased
stochastic Navier—Stokes equations.

Received 12/12/2011; Accepted 5/10/2012; Final 5/26/2012

1 Introduction

Stochastic perturbations of the Navier—Stokes equation have received much at-
tention over the past few decades. Among the early studies of the stochastic
Navier-Stokes equations are those by Bensoussan and Temam [1], Foias et al.
[4-6], and Flandoli [7, 8]. Traditionally, the types of perturbations that were
proposed include stochastic forcing by a noise term such as a Gaussian random
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field or a cylindrical Wiener process and are broadly accepted as a natural way
to incorporate stochastic effects into the system. The stochastic Navier—Stokes
equation

u + uuy, + VP =vAu+ ft,x) + (o' (t, x)uy, + g(t, x)) W(t,x),
divu =0,
u(0,x) =w(x), ulpp =0 (10.1)

is underpinned by a familiar physical basis, because it can be derived from Newton’s
second law via the fluid flow map, using a particular assumption on the stochasticity
of the governing SODE of the flow map, known as the Kraichnan turbulence. (See
[12, 13] and the references therein.) However, due to the nonlinearity, stochastic
Navier-Stokes equation (10.1) is a biased perturbation of the underlying determin-
istic Navier—Stokes equation. That is, the mean of the solution of the stochastic
equation does not coincide with the solution of the underlying deterministic
Navier-Stokes equation. Of course, this observation is also true for other nonlinear
equations such as the stochastic Burgers equation and Ginzburg—Landau equation.
In fact, the mean of Eq. (10.1) solves the famous Reynolds equation.

An unbiased version of stochastic Navier—Stokes equation (10.1)

u+u o uy, + VP =vAu+ f(t,x) + (0 (t, X)uy, + g(t,x)) W(t,x),
divu =0,

u(0,x) =w(x), ulspp =0. (10.2)

has been introduced and studied in Eq.[14]. The unbiased version, Eq. (10.2) differs
from Eq. (10.1) by the nonlinear term: the product u'u,, is replaced by the Wick
product #' ¢ u,,. In fact, Wick product u’ ¢ u,, can be interpreted as Malliavin
integral of u,, with respect to u (see [11]). An important property of Wick product
is that

Elu' o uy,] = Eu' Eu,,. (10.3)

Due to this property, stochastic Navier—Stokes equation (10.2) with Wick nonlinear-
ity is an unbiased perturbation of stochastic Navier—Stokes equation (10.1). In the
future, we will refer to unbiased perturbations of stochastic Navier—Stokes equation
as unbiased stochastic Navier—Stokes equation.

In this paper we will study an unbiased stochastic Navier—Stokes equations on an
open bounded smooth domain D € R, d = 2, 3, driven by purely spatial noise. In
particular, we will study equation

w4+ ouy, + VP =vAu+ ft,x) + (o' (x)uy, + g(t,x)) o W(x),
divu =0,
u(0,x) = w(x), ulpp =0, (10.4)

where the diffusivity constant is v > 0 and the functions f,g,o are given
deterministic R?-valued functions. Here, the driving noise W (x) = Y ()€ isa
stationary Gaussian white noise on L, (D), and we assume that sup; |[u; | Lo < 00.
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We will also study the stationary (elliptic) version of Eq. (10.4)

il oy, + VP =vAu+ f(x)+ (5" (X)ity, + (x)) © W(x),
divu = 0,
iilop = 0, (10.5)

where f (x),g(x).5(x) are given deterministic R?-valued functions. It will be
shown that u (¢, x) — u(x) ast — oo.

Solutions of Eqgs.(10.4) and (10.5) will be defined by their respective Wiener
chaos expansions:

w(t,x) =Y iy (1.X) & and it (x) = ) iig (x) &, (10.6)

o o

where {&,, @ € J} is the Cameron—Martin basis generated by W (x), vy := E (v&,),
and J is the set of multi-indices « = {a, kK > 1} such that for every k, oy €
No(No=1{0,1,2,...}) and |a| = Y, ax < oo. It will be shown that Wiener chaos
coefficients u, (¢, x) and u, (x) solve lower triangular systems of deterministic
equations. We will refer to these systems as propagators of uy (¢, x) and iy (x),
respectively.

In fact, Egs. (10.4) and (10.5) could be viewed as the highest stochastic order
approximations of similar equations with standard nonlinearities u'u,, and it'ii,,,
respectively. Indeed, it was shown in [14] that under certain natural assumptions,
the following equality holds:

oo
DwOD"V
wy =y 20DV

(10.7)
n!

n=0

where D" is the n'™ power of Malliavin derivative D = Dy;,. Taking into account
expansion (10.7),
vWyayOVy. (10.8)

This approximation is the highest stochastic order approximation of vVv in that
v Vv contains the highest-order Hermite polynomials of the driving noise, while
the remaining terms of the right hand side of Eq.(10.7) include only lower-
order elements of the Cameron—Martin basis. This fact could be illustrated by the
following simple fact:

gagﬂ = §a+ﬂ + Z kyé)m

y<a+pB

where k, are constants.

As a side note, we remark that in comparison, the usual stochastic Navier—
Stokes equation has a propagator system that is a full system of equations which,
comparatively, is a much tougher beast to tackle. Additionally, apart from the
zero-th chaos mode which, being the mean, solves the deterministic Navier—
Stokes equation, all higher modes in the propagator system solve a linearized
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Stokes equation. Thus, where a result is known for the deterministic Navier—Stokes
equation, it is sometimes the case that an analogous result may be shown for the
unbiased approximation of the stochastic Navier-Stokes equation. For instance, the
existence of a unique stationary solution of Eq. (10.5) requires the same condition
on the largeness of the viscosity v as does the existence of a unique steady solution
of the deterministic equation (10.13a).

There is substantial theory on the steady solutions of the deterministic Stokes and
Navier-Stokes equations, the long-time convergence of a time-dependent solution
to the steady solution, as well as other dynamical behavior of the solution. In
the subsequent sections, we begin to study some of these same questions for the
unbiased Navier—Stokes equation, focusing on the large viscosity case where the
uniqueness of steady solutions and long-time convergence has been established
in the deterministic setting. We will study the existence of a unique stationary
solution of Eq. (10.5) as well as the existence of a unique time-dependent solution of
Eq. (10.4) on a finite time interval. The Wiener chaos expansion and the propagator
system will be the central tool in obtaining a generalized solution, but to place
the solution in a Kondratiev space involves a useful result invoking the Catalan
numbers. The Catalan numbers arise naturally from the convolution of the Wiener
chaos modes in the nonlinear term. It was used to study the Wick versions of the
stochastic Burgers [10] and Navier—Stokes [14] equations.

2 Generalized Random Variables and Functional Analytic
Framework

To study Eqgs. (10.4) and (10.5), we will give the basic definitions for the generalized
stochastic spaces that will be used. The definitions of the generalized solution will
be defined in the variational/weak sense such as described in [15, 16], and before
stating those definitions, we first state some standard notation and facts about the
vector spaces.

Let d = 2,3 be the dimension. Denote the vector spaces L>(D) = (L*(D))?
with the norm | - | and H"(D) = (H"(D))? with the norm || - || y=. Denote the
following spaces:

V= {ve (CP(D))! : divv = 0}.
V := closure of V in the H(l)(D) norm = {u € ]I-]I(l)(D) s divu = 0}.
H := closure of V in the (D) norm.
V' := dual space of V w.r.t. inner product in H.
Also denote the norms in V and V' by || - ||y and || - ||y, respectively. In particular,

we have || - ||y == |V -]|.
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The operator' —A on H, defined on the domain dom(—A), is symmetric positive

definite and thus defines a norm | - | via | - |, = |A - |, which is equivalent to the
norm || w|| 2. For m > 0, the spaces V,, := dom((—A)"/?) are closed subspaces of
H™(D) with the norms | - |,, = |(—A)™/?-|. In this paper, we will commonly use
m = 1/2,3/2, and 2. Note that | - |; = || - || and the norms | - |, and | - || z= are

equivalent. We thus have a constant c; so that

1
crlwl?y < Iwl < anwllél, forallw € V.

Denote A; > 0 to be the smallest eigenvalue of —A; then we have a Poincaré
inequality

M < |}, forveV. (10.9)

Define the trilinear continuous form b on V x V x V by
b(u,v,w) = / ukaxkvjwjdx
D

and the mapping B : V x V — V' by
(B(u,v),w) = b(u,v,w).
It is easy to check that
b(u,v,w) = —=b(u,w,v) and b(u,v,v) =0

for all u,v,w € V. B and b have many useful properties that follow from the
following lemma.

Lemma 2.1 (Lemma 2.1in [15]). The form b is defined and is trilinear continuous
on H™ x H™*U x H™ where m; > 0 and

d d
ml+m2+m325ifml7é57i:152537

d
m1+m2+m3>§ if m; =§, some i. (10.10)
In view of Lemma 2.1, let ¢, be the constant in
Ib(ua v, W)I 5 Cb|u|m1 |V|m2+1 |W|m3’

where m; satisfies (10.10). Also let ¢y, d = 2,3, be the constants in

ITechnically, the correct operator is Au := — P Au, where P is the orthogonal projection onto H..
We abuse notation here and continue writing —A.
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1/2 1/2 .
b, v, w)| < ealul 2 ully >[I/ 2 1AV 2 w| ifd =2
b(u,v,w) §C3uvvl/2AV1/2W ifd =3
1%4

forallu € V,v € dom(—A), and w € H (Egs.(2.31-32) in [15]). Other useful
consequences of Lemma 2.1 are that B(-,-) is a bilinear continuous operator from
V x H?> — L? and also from H? x V — L2

Next, we introduce the basic notation that will be used to define the generalized
stochastic spaces and the generalized solution. Let (€2, F, P) be a probability space
where the o-algebra F is generated by {&, k = 1,2,...}, where & are independent
and identically distributed N (0, 1) random variables. Let &/ = L?*(D) and let
{ur(x), K = 1,2,...} be a complete orthonormal basis for /. Then the Gaussian
white noise on U is ]

W) = w (k.

k>1

Let J = {&@ = (o1, a2, ...), 0 € Ny} be the set of multi-indices of finite length.
Denote |a| = Zkzl ar < oo and € is the unit multi-index with |€x| = 1 and kth
entry (ex)r = 1.Foro, 8 € J,

a+pB=(+pi,00+ps,-++), and «!= l_[ak!.
k=1

For a sequence p = (pi. p2, ... ), set p* = [] p;*.
Foreacha € 7, let

n —X2
where H,, is the nth Hermite polynomial given by H,(x) = (—1)”(‘1;—)(,1/26/‘2/ 2.

It is a well-known fact that the set & = {&,, « € J} forms an orthonormal basis
in L?(2) [2]. Thus, for a Hilbert space X, if f € L*(Q;X) and f, = E[f&].
then the Wiener chaos expansion of f is f =3, fo&s, and moreover E| f|3 =
Y wes | ful%- The set & is the Cameron—Martin basis of L?(£2).

For a Hilbert space X, define the (stochastic) test function and distribution
spaces:

D(X) =

v = Z Ve€a : V¢ € X and only finitely many v, are non-zero},

o

D'(X') =

All formal series u = Z Ug€y withuy € X'

Random variables in D(X) serve as test functions for the distributions in D' (X").
If (-,-) is the duality pairing between X’ and X, then the duality pairing between
ueD(X')andv € D(X) is

(V) = (ua.va)-

o
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The space D’ is a very large space. To quantify the asymptotic growth of the
Wiener chaos coefficients, we introduce the Kondratiev spaces. For ¢ > 0, denote

Kondratiev space S—1 4 (X) is

S 4(X) = {u = Zua&‘a t uy € X and Z |ua|§r§ < oo}.
o o

S-1,—4(X) is a Hilbert space with the norm [Jul|3_ L= > lua |3l

Definition 2.1. For«, 8 € J, the Wick product is defined as

%‘a <¢ %‘ﬁ = (a Z IB)S&+/3-

Extending by linearity, for u,v € D’'(R), the Wick product u ¢ v is a D'(R)
element with

uov:Z Z (j)uyva_y Ey.

a \0=y=«

In particular, for G € S_; _,(L*(D)),

(G(x) o W(X))a = Y VarGoe, (X)ug (x).

k>1

We now proceed to define the weak solution of Eq.(10.4). Recall that for a
smooth function p, (Vp,v) = 0 for all v € V. This leads us to define the weak
solution by taking the test function space V, so that the pressure term drops out.

Definition 2.2. Let T < oo. A generalized weak solution of Eq.(10.4) is a
generalized random element u € D’(L?(0, T; V)) such that

(e + ' ouy, ) = (vAu+ f + (0'uy, +g) © W(x), ¢)) (10.11)

for all test functions ¢ € D(V).

The pressure term can be recovered from the generalized weak solution in the
standard way.

Using the Wiener chaos expansion, we will study Eqgs. (10.4) and (10.5) through
the analysis of the propagator system—an equivalent infinite system of deterministic
PDE that gives the coefficients u, of the solution, thereby equivalently character-
izing the solution u. Recalling the definition of the Wick product, the propagator
system of Eq. (10.4) is, for @ = (0),
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dug + B(uo, ug) = vAuy + f,
div Uy = 0,
up(0,x) = w(x), uplop =0 (10.12a)

and for |a| > 1,

0ty + B(ug, up) + B(uo, uy) + 20<y<a 1/@) B(uy . uqy—y)
=vAuy + Y o (x) (07 0y ttg—e, + 1a=g g).
divu, =0,
uy(0,x) =0, uglsgp =0 (10.12b)

with equality holding in V. Note that each equation in the propagator system
involves only the divergence-free part; the pressure term P, can be recovered from
each equation by a standard technique (see, e.g., [16]). Hereon, we will focus only
on studying the velocity field u.

Similarly, the propagator system of Eq. (10.5) is

B(ﬁo, it()) = vAuy + ];,
diviig =0, uglsgp =0, (10.13a)

Bitg, o) + Blito, tte) + Yooy <o 1/ () Blity, a—y)
=vAu, + 3, «/a—lul(x)(ﬁiaxl-ﬁa—sz + g_a—sz)’
divig = 0, iglap =0 (10.13b)

with equality holding in V.
The zeroth mode uy = Eu is the mean of Eq. (10.4) and solves the unperturbed
Navier—Stokes equations (10.12a).

3 The Stationary Unbiased Stochastic Navier—Stokes
Equation

Given deterministic functions f ,g,0 € Ly(D), we seek a weak/variational solution
u € D'(V) satisfying

V(A @) + (@ 0 8yt @) = (f @) + (6957 + &) o W(x), ¢))

for all test random elements ¢ € D(V').
We will first show the existence and uniqueness of a generalized strong solution.

Proposition 3.1. Assume the dimensiond = 2, 3. Assume f , &, 0 are deterministic
functions satisfying
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f.g.6 €H, (A.0)
v2 > el f v, (A1)
g eHY (D), & e (Who(D))-. (A2)

Then there exists a unique generalized strong solution u € D'(H*(D)) NV of
Eg. (10.5).

Remark. 1t is interesting to note that condition (A.1) in Proposition 3.1, which
ensures the existence of a generalized strong solution, is the same condition that
ensures the uniqueness of the strong solution of the deterministic Navier—Stokes
equation. Thus, Proposition 3.1 generalizes the analogous result in the deterministic
Navier—Stokes theory, which is the subcase when g = o = 0.

Proof. Solution for o = (0).

The equation for i is the deterministic stationary Navier—Stokes equation, for
which the existence and uniqueness of weak solutions is well known [15, 16].
From (A.1), there exists a unique weak solution uy € V' of Eq. (10.13a) satisfying

_ J — v
laolly < =1/ v < —. (10.14)
V Cp
Moreover, since f € L,(D), then ity € dom(—A), with

2
Cq

vski/z

2 -
[Aig| < ;Ifl + IfI.

THE BILINEAR FORM d(:, -). Define the bilinear continuous form aop on V xV by
ao(u,v) = v(Vu, Vv) + b(u, up, v) + b(ug, u,v), (10.15)

where #9(x) is the solution of the stationary (deterministic) Navier-Stokes equa-
tion (10.13a) just found. Also define the mapping 4o : V — V’, by

(Ao(u),v) = ao(u,v), forallve V.

Then Eq. (10.13b) can be written as

1‘{0(’2&) = - Z \/(T},)B(ﬁys ﬁa—y) + Z \/a_lul(-x)((}iaxiﬁa—s/ + 1a=e;g’)

O<y<a i

for |a| > 1.

To obtain the existence and uniqueness of u,, we intend to apply the Lax—
Milgram lemma to the bilinear form a (-, -). To do this, we first check the coercivity
of ap(-,-)on V.
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Lemma 3.1. Assume (A.1), and assume uq solves (10.13a) with f € V'. Then
ao(-,-) defined in Eq. (10.15) is coercive and bounded on V.

Proof. Indeed, foranyv e V,

ag(v,v) = v|Vv|2 + b(v, g, v) + b(itg, v, v)
> v|Vv[2 = ¢ fliioly V113

= 2 21112
= (v —allaolv)IvIy = BIVIT.

where f 1= v — ¢, ||ito|y > 0 by Eq. (10.14). Next, d(-, -) is bounded, because

A

lao(. W)l = vivliviwlly + [b(v. o, w)| + |b(ao, v, w)|

(v + eplliiolly ) IIvllv lIwlly

IA

forany v,w e V. O
We continue with the proof of Proposition 3.1.

Solutions for « = €;. Equation (10.13b) in variational form reduces to finding
g, € V such that

&0(’261’ V) = (u/ (6iaxi’7‘0 + g_), V) = (Gez’ V)

for all v € V. To apply the Lax—Milgram lemma to Eq. (10.13b), we check that the
term

Ge, :=w (' 0,110 + )

belongs to V’. In fact, we have that G belongs to L2(D). Indeed, due to
assumption (A.2), |67y, itg| < ||5| oo ||ito||v'» and from Eq. (10.14),

1Garl = Cllurllzos (16 oo Nl + 12111 )
Vo —
< Cllwllos (16w + 121 )

By the Lax—Milgram lemma, there exists a unique variational solution u., € V
with the estimate

_ 1 Voo _
el = ZCllurllzos (=16 lwree + 121l ).
B Ch

Additionally, by a standard technique in [16], there exists P, € L?(D) such that
Eq. (10.13b) holds in V.
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Next, observe that by the continuity property of the bilinear form B : V'x
H2 - 1.2,
—vAit, = G, — B(itg,. itg) — Bliio, ite,) € L*(D).

Hence, it,, € dom(—A), and we have the estimate

_ 1 - o
|8ty | < ~(1Gq | + B io)| + | Blio. i)

IA

1 -
; (|Ge;| + 2cp| Ao ”uez ”V)

C sup; |[wljzee (v _ _ 2¢p . _
< —— | —l&llwree + 12l ) (1 + =] Adto]
v Cp B
= K7
and K = K(v, f.g,6) does not depend on /.

Solutions for || > 2. Denote

Ga =Y oy w (6 it
I}

For=— Y \/(7y) Bty . fig—y).

0<y<a

We first find u, € V such that
ao(itg,v) = (Fy + Gy, v)

forallve V.

We prove by induction. In the above, we have shown the existence of a unique
solution i, € dom(—A). Assume that for some « with |«| = n, we have shown the
existence of a unique solution i, € dom(—A) for all |y| < n — 1. We now show
that it, € dom(—A). By a similar argument as above, we have G, € L?(D) with

Gal < €Y Varlwllzoe 15l wes llia—q llv < oo
1

Also, since B(:,-) is a bilinear continuous form H? x H?> — L2, we deduce that
F, € L2(D) with

[Fal <cp Y \JC) 1Ay ] |Alig- | < oo,

O<y<a
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Applying the Lax—Milgram lemma, there exists a unique solution u, € V with
the estimates

_ 1
ltally = =(1Gul + [Fal).
B
Finally, since
—vAity = Fy + Gy — B(ity, itg) — Blito, ily) € L*(D),
we deduce that u, € dom(—A), with

- 1 . -
| Aty | < ; (| Fo| + |G| + | B(utg, uo)| + | B(ito, it )|)

IA

1 _ -
- (Fal +1Gal + 2¢p|litalv | Atko])

A

1 2¢cp -
= ORI+ 16D (1 + = 8]) < o0

Hence, we have found a solution iz € D' (H*(D) N V). O

Next, we find the appropriate Kondratiev space to which the solution u belongs.
As described previously, the estimation of the Kondratiev norm makes use of
the recursion properties of the Catalan numbers. The Catalan number rescaling
technique used in our estimates has been described in [10], and is detailed in
Appendix A.

Proposition 3.2. Assume (A.0-10.2) hold. Then there exists qo > 2, depending
onv, f, g & such that i belongs to the Kondratiev space S—; —,(H*(D) N V), for
q > 4o.

Proof. For |a| > 1, we have found in the proof of Proposition 3.1 estimates for
[ At |:

|Ait,| < K

1 _ |Ay| |Adtg—y| it |lv
——|Aiy| < B 4 1
atl =\ 2 AT T T 2 e

where Bo depends on v, f_ ,0. Also from the proof of Proposition 3.1, the same
bounds hold for ||iy ||y in the LHS of the above inequalities. Thus the above
inequalities can be rewritten as

Lq <K,

I A

I/\

Pe<Bo| X Eyhayt1me X L.

O<y<a y<a
lyl=lal—1
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where L, = ﬁ(|Aﬁa|+|lﬁa||V) for || > 1.Now let L, = 1+L€, and Ly = Lg
for || > 2. Then for |a| > 2,

IA

Ly, BO( > LyLey+ Y (Ly=Dley+ Y Ly(Ley—1)

O<y<a O<y<a O<y<a
2=ly|=lal—1 lyl=1 lyl=lel—1

+ 1520 Z ]:y)

y<a
lyl=lal—1

= Bo< Y LyLey+ Y. (-2+ 1a¢0)£y)

O<y<a O<y<a
ly|=lel—1

BO( > L),La_),).

0<y<a

IA

By the Catalan numbers method in Appendix A

lot]

| Aty |2 < a!c@|_1< )(2N)“B§<“‘1)1€2'“' (10.16)

o

for |a| > 1. The result holds with g satisfying

o0
BZK?250 Zil—% =1 (10.17)

i=1

4 The Time-Dependent Case

In this section, we consider for simplicity equation (10.4) with o(t,x) = 0.
We will consider the time-dependent solution u(t) of Eq.(10.4) on a finite time
interval [0, T] if d = 2,3, and also study its uniform boundedness on [0, co) for
d=2. The former result allows an arbitrarily large time interval, thereby ensuring a
global-in-time solution. On the other hand, the latter result will become useful for
showing the long-time convergence of the solution to a steady-state solution.

For any T < oo, it is known that a strong solution u(¢) of the deterministic
Navier—Stokes equation (10.12a) exists on the finite interval [0, T'] if d = 2, and
exists on [0, (T" A T})] for a specific T} = T;(up(0)) depending on u((0) if d = 3.
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Without further conditions, we have the following result for a generalized strong

solution of the unbiased Navier—Stokes equation.

Lemma 4.1. Ford =2,3,letT <ooifd =2o0rT < T, ifd = 3. Assume the

forcing terms f, g and initial condition u(0) are deterministic functions satisfying
f.g € L*0.T; H), u(0) € V. (A0

Then there exists a unique generalized strong solution u(t) € D'(H*(D) N V) for

a.e. t €[0,T). Moreover, uy, € C([0,T],V) forall c.

Proof. For a = (0), it is well known (see, e.g., [15]) that Eq. (10.12a) has a unique

solution uo and

o € L*([0, T];dom(=A)), up € C([0,T]; V).

THE BILINEAR FORM ay(t). For ¢t € [0, T'], define the bilinear continuous form
ap(t)yonV x V by

ao(u,vit) = v(Vu, Vv) + b(u, upg(t),v) + b(up(t), u,v),

where u(z, x) is the solution of the time-dependent (deterministic) Navier—Stokes
equations given in Eq. (10.12a) just found. Also define the mapping Ao(¢t) : V —
V', fort € [0, T], by

(Ao()u,v) = ap(u,v;t), forallvelV.

Then Eq. (10.12b) can be written as

Oug + Ao(t)ug + Z \/(T),)B(uyv ”oc—y) = Z &R (x)(aiaxi Uy—¢ T loc=s1g)-

O<y<a i

This is a linear Stokes equation of the form

3,U + Ay(t)U = F,
Ulip =0, U(0) = w.

Since uy € L?(0,T;dom(—A)), it can be shown by standard compactness
techniques (see, e.g., [3]) that if F € L2([0, T)];H) and w € V, then there
exists a unique strong solution U € L?([0, T];dom(—A)) N C(0,T;V) and U, €
L?([0, T]; H) with the estimates

sup U ly +1U | 2o 73dom(—ay H Ut 2 o.73:) <C (IO v+ F | 20,7131 ) -

(<T
(10.18)
where the constant C depends only on 7, v, D and |[uo|| 12(j0,7}:d0om(—A))-
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We prove the lemma by induction. We have earlier shown that ug €
L*([0, T]; dom(—A))NC(0, T; V). Assume for some o that u,€L*([0,T];
dom(—=A))NC(0, T; V) for all y <a. We now show that u, € L*([0, T]; dom(—A))N
C(0,T; V) also. We check for the RHS of Eq. (10.12b):

= 3 JC) Bl ) + Lumquig €120, 71 H).

O<y<a

This follows from (A0) and the fact that |B(u,.us—y)| < cp|Auy||ltta—y].
It follows from Eq.(10.18) that there exists a unique solution u, of Eq.(10.12b)
with

uy € L*([0, T];dom(—A)), duq € L*([0,T]; H), andu,cC([0,T]; V).

|

Remark. If ¢ # 0, then in addition to (AQ’), we must require that g €
L%([0, T); HY(D)) and o € L%([0, T]; (W'(D))?). (Compare with (A.2).)

Next, we study [[u()||—; —4;m2 on a finite interval [0, 7] as well as the uniform
boundedness of [|u(t)||—i ;v for all time ¢ € [0, 00). We recall the following
established result on the uniform bounds of u in the V and H?(D) norms.

Lemma 4.2 (Lemma 11.1 in [15]; see also [9]). Assume for the initial condition
that uy(0,-) € V, and assume

[ is continuous and bounded from [0, 00) into H,

m is continuous and bounded from [0, 00) into V' .

Let uy(t) be the strong solution of the deterministic Navier—Stokes equa-

tions (10.12a), defined on [0,00) if d =2 oron [0, T1] ifd = 3. Then

sup uo()|lv < ¢’ (lug)(0,)|lv. v, f. D), (10.19a)
>0
sup |Aug(t)| < " (z, |uw)(0,)|lv. v, f. D), (10.19b)
t>t

for any t > 0. In the case of d = 3, the suprema are taken over 0 < t < T} and
0 <t <t < T, respectively.

Proposition 4.1. (i) Ford = 2,3, assume the same conditions as in Lemma 4.1.
Then there exists some q, > 2 depending on v,c’,cp, and T, such that for

q >4

u€ Sy —y(L*0, T;dom(—A))) N S—1—(L®(0, T; V)).
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(ii) For d = 2, assume the hypothesis of Lemma 4.2, and assume g is bounded
Sfrom [0, 00) into H. Also assume
27C4CM
4 b
>
v A

(A1)

where ¢’ = ¢'(|u(0,-)|ly, v, f, D) in Eq. (10.19a).
Then there exists g2 > 2, depending on v, ¢, and cp, such that for ¢ > g,

sup |[u(t)||—1,—q:v < oo and sup ||u(t)|-1,—g:dom(—a) < 00
>0 1>7

forany v > 0, as in Eq. (10.19b). In fact,
ueS_1—¢(L>®(0,00):V)) and ueS_i_s(L*([r,00);V)).

Remark. Part (ii) of the equation asserts a uniform-in-time bound of the S_; (V)
norm of the solution on the infinite time interval. Unfortunately, this result does
not follow from part (i) because, under the present proof, the estimates for the
S_1—4(H*(D) N V) norm of the solution on the finite time interval increase to
infinity as the terminal time 7 — oo.

Proof. (i) The proof of this result is identical to the proof of Proposition 3.2,
by using the estimates (10.18). For « = (0), Eq.(10.19a) and the usual
deterministic theory imply that uy € L?(0, T;dom(—A)) N L>(0,T;V). Let

Ly = \uell20,7;m2) + lluallz20.7;v), and let Ly = ﬁLa for || > 1. For
a = €, the estimates (10.18) yield

Le < Csupllwllee(p) gl =: K1,
1

where K does not depend on /. For |«| > 2,

Ly, <C Z N (g) luy |l 200,7: 152 ltta—y | 200,77

0<y<a

Then for L, := —— L,
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By the Catalan numbers method as per Appendix A,
Jai |06| jol—1 ol
el Lo 0.0y + 1AU 200,730y < V!Cloj—1 B K,
and the statement of the proposition holds with ¢; satisfying
o0
BYKP0 ) il =1,

i=1

(ii) We now show the uniform boundedness of each mode u, on the infinite time
interval. For « = (0), this is shown in the estimates of Eqs.(10.19a) and
(10.19b). For |@¢| = 1, @ = ¢, choose in Eq.(10.12b) the test function
v=(—A)ug:

1d

2 ar ”ue; ”2 +V|Aue;|2 |b(l't€[7 uo, A”s;)l + |b(uo, Ue s AM5,)| + [{w g, Aue;)l

1/2
< 2¢ [luollv g 1% A, P12 + [ g | | At |

& 1 2
< Z|Aug > + (zcbnuonvnuq||‘”|Auﬂ|”2+|ulg|)

2
2
& 2y b” 0“ 2
< S|Aug* + =L lug v | Aug | + = |u1g|
2 2¢e
2 cplluolly P 2
= €|AME,| &3 [|u Ug % |u1g| .

Taking ¢ =

ST

704
4
2 Cp 2 2
IIME, I + vlAug | < 5 lluoll3 lue, I3 + ;Iwgl .

and from Eqgs. (10.9) and (10.19a),

d ) 2cje , 4 )
a”bte, Iy < ( NEa VAL ) luglly + ;|u1g|

4
< —Bllua I} + =gl

7.4 .04
(2 cpe
v

where 8 := — —vAi) > 0 by (Al’). By Gronwall’s inequality,

T
4 BT 4 -
e (DI < / S lwglPePT™0ds < g lur o g 1o 0 00 (1= ¢77)
0
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forany T > 0. Also,

27C4CQ
|Au€,(t)|2 = L

4
Ll I + S5 lug o).

It follows that

Le = sup ([lug ()llv + [Aug (1)]) < Ka,
t>0

for all /, where the constant K, is independent of / and ¢. For |a| > 2, let
Ly = %07 sup, o ([lua (t)|ly + |Aug(t)[). Then

1d
53 luall} + vidu
=< Ib(“av Uuop, Aua)l + Ib(“07 Uy, A“a)| + Z V (‘;) Ib(“ya Ug—y, Aua)l
O<y<«a
1/2
< 2¢puolly llually/* | Aua P2 + D" /() olluyllv | Atta—y | | Autg].
O<y<a
By similar computations,
1d
5 el + vlAu
2
27¢} 4c?
< =l lualy + =2 D2 /6) Iyl | Auay |
0<y<a
7.4
s
< P luolly llually
2
4c} »
+ =21 D /) suplluy )y ) | suplAue—y (s)]
v O<y<a 520 520
and so

d 4c?
3 lally = =Bllualy + = | D0 VallyLay

O<y<a

By Gronwall’s inequality and triangle inequality,
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2

2
—”/ > NVolLy Ly, e T2 ds

O<y<a

I/\

ua (T3

2

T 1/2
([ )
0

A
&
SN
]
g
=
'y
J

SO

We have also

7.4 14

2cle 4c?
A () = =l + — | 35 VellyLay

4 v2

O<y<a

for any # > 0. Hence, it follows that

Ly<By Y LyLe,

O<y<a

where B, depends on v, ¢/, and ¢, but is independent of ¢. By the Catalan
method in Appendix A,

sup ([|ug (1) | + |Autg ()]) < Va!Clyj—1 <|“|>Ba —1 gl

>0

for || > 1, and the statement of the proposition holds with ¢, satisfying

o0
BIK320 Y il =1
i=l1

5 Long Time Convergence to the Stationary Solution

In this section, we study the solutions u(, x) of Eq.(10.4) and u(x) of Eq.(10.5)
with o (¢, x) = 6(x) = 0 and for simplicity consider the case with f(z,x) = f(x)
and g(z,x) = g(x). We study the convergence of u(z, x) to the stationary solution
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u(x) as t — oo, first in a weak sense (in the generalized space D’(H) with some
exponential rate of convergence in each mode), then in a strong sense (in some
Kondratiev space S—1_,(H)) using a compact embedding argument. The latter
proof, unfortunately, does not provide a rate of convergence. For time-dependent
1, g, similar results can be obtained under suitable assumptions, but the exponential
convergence of each mode is not guaranteed.

Let z(¢) := u(t) — u. The propagator system for z is

204 + B(uo, uo) — B(uo, ttg) = vAz, (10.20a)

Zay T AO(t; ua) - Ao(ﬁa) = - Z \/6 (B(Lty, ”a—y) - B(ﬁyv ﬁa—y))

O<y<a
(10.20b)
with 7, (0, x) = uy(0, x) — ig(x), zlagp = 0, and div z, = 0, for all «.
Proposition 5.1. Let d = 2. Assume (A.0), (A0') and (A.2), and assume
Al 3/4 2 - C% 713
v (Z) > I+ m?/zlfl ; (A3)

where c¢,, ¢y are specific constants depending only on D.

Then the solution u(t) of Eq.(10.4) converges in D'(H) to the solution it of
Eg. (10.5):

D'(H) _
u(t) — u, ast — oo.

Remark. In the following proof, all computations follow through even when d = 3.
So, a similar statement to Proposition 5.1 can be made for d = 3, provided a strong
solution u(¢) exists in D’ (H? N V) for all ¢ > 0, and the zero-th mode u(¢) satisfies
the energy inequality (cf. [15])

%%luoonz +olluo @)} = (f . uo(@)).

Remark. 1f f(t,x) and g(z, x) depend on time, then an additional condition for the
proposition to hold is that f(¢), g(¢) convergeto f, g in H.

Proof. For a = (0), the convergence for the deterministic Navier—Stokes equation
is well known due to [15], Theorem 10.2: if wuo(¢) is any weak solution of
Eq. (10.12a) with initial condition uy(0) € H, then uy(t) — u() in H ast — oo,
provided (A3) holds. Moreover, |zo(?)| decays exponentially:

|20(2)] < |z0(0)| ™", (10.21)
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where ¥ := v, — %lAﬁoﬁ/ 3 > 0. (The positivity of v follows from the fact that
|Aup| can be majorized by the RHS of (A3).)

For ¢ = ¢, choosing the test function v = gz, in the weak formulation of
Eq. (10.20b),

1d
Szl + vilza

S Ib(ZG]a’z09Z€1)| + |b(Z€13207Z51)| + Ib(z()y Ijlque])| + |b(ﬁel,20, Z€I)|

< cpllipollv llz¢ I3 + eollzolloolze | llze llv + 2¢5| Adtg | |z0] llze Il

2 2
_ c 2c _
< cpllitollvllze I} + =2 lzoll oo |z 1> + ellze I} + —L| At |*|20]%,
2e e

where we have used the Young’s inequality in the last line with any 0 < ¢ < B. So,

ld 2 ) _ % 2 2, 26 o

s lal + B =olzall} < Llaolioelza + =L1AT, Pl (10.22)
Using the Poincaré inequality (10.9) and taking ¢ = g,

d . 2¢? 8c2

Elzel |2 + BA |Zs1 |2 = 717 ”ZOHiOO |Zez |2 + 7b|Au€; |2|ZO|2-

For some appropriately chosen #y€(0, o0) to be discussed next, we apply Gronwall’s
inequality:

T T T
2 (T2 < & 909 2 (1) 2 + / Yi(s)e vdgs,
to

where

4c? _
olt) = %HZOU)H%OO — .

8 2
() = %maﬂm(m?

The 7y is chosen large enough so that ||zo(f)[|? 0 < % whenever 1 > #,. Such
b

1o exists, because by Eq.(10.19b) and the Sobolev embedding theorem (see, e.g.,

[3] Sect. 5.6.3 Theorem 6) for k = 2 = p = d, zo(t) is Holder continuous with

exponent y < 1 for each > r and, moreover, sup, ., [[zo(¢)[lcr < ¢”. The uniform

Holder continuity of zo(¢) and Eq.(10.21) implies by Lemma B.1 zo(¢,-) — 0

uniformly on D as ¢ — oo. Consequently, we have that sup,, ¢(t) < 0.Set¢ > 0
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satisfying

2¢ < min % —sup (1), 2\7} .

1>y

Obviously, exp { ftOT p(1)dr} < exp{—2¢(T — ty)}. Moreover, from Eq. (10.21),
SCI% - 2 2 —20(t—10) —20(1—10)
()] < 7|Auez| |20(t0)|"e =:Cye —0

decays exponentially as # — oco. Combining these results,

T
IZGI (T)|2 f e—Z(p(T—to) IZGI (IO)IZ + / Clﬂl e—2v(s—t0)e—2<p(T—s)ds

fo

_ C - _
< e—Z(p(T—to)|Z€l (1) + G fl(p) (e—2¢(T—l‘0)e—2v(T—l‘0)) —50

as T — oo. (In the first term, |z, (f)|* has been shown to be finite for any finite 7.)
Since ¢ < v,
C - _
26, (T)? < (|24 (t0))> + =——2— ) e 20T —10) —: g2 e=20(T—10) (10.23)
2(0 - 9) :
for T > ty. K, does not depend on T'. For || > 2, we prove by induction. Fix «,

and assume the induction hypothesis that for each 0 < y < «, for T > 1,

12,(T)| < K,e™2 o= __, (10.24)

as T — oo, where K, does not depend on T'. We want to show that Eq. (10.24) also
holds for «. From Eq. (10.20b) with test function v = z,,

1d
2.dt
E |b(Za7’205 Za)| + |b(Za7107 Z()()l + |b(Z07ﬁ0(7Z0()| + |b(ﬁa7Z07 Z()()l

+ Z ,/(‘;) (16(zy. Za—y . 2)| + 162y lla—y . 2a)| + | ity Za—y. Za)]).

O<y<a

|zal? + V| Vzal?

Similar to Eq. (10.22), using the e-inequality with any 0 < ¢ < ,3 /2,
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1d i ¢ 22
Ed_t|za|2 + (B =28z} < 2_8||ZO||%OO|Z01|2 + T|Aua|2|ZO|2
) 2
Cb o 21l
+ 2| 22 V) Uleamylly + 2iiamyl1v) Iyl

O<y<a

Using the Poincaré inequality and taking ¢ = B/4,

d 4c? _ 16¢2
4 ) < (—-buzOuioo - Alﬁ) al? + 28 | A, P02
dr :3 :3

2¢? _ 2
| 3 V6 el 2000 s
O<y<a
< 9()za(® + Valt)

where now
16¢2  _
wa(t) = _-blAua|2|ZO(t)|2
B

2
2¢;

+3 > V6 (lzamy Ol + 2litay )Nz Ol

O<y<a

<| X 6 ol

O<y<a

From the hypothesis (10.24),

|Ye ()] < C%Ye—Zﬁ(t—to) + C%Y Z /(;) Kye_z_lylzﬁ(t—l‘o)

O<y<«a
where
16¢2
vo = —=2 llitally2 |20(00) 1,
B
- 2¢} m _ 2
Coo==2| Do ,/(y)(sup lza—y )1y + 2y llv)sup 1z, (v |
ﬂ O<y<«a 520 520

and Cy,, C’% do not depend on 7. By Gronwall’s inequality,

241
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T
|2 (T < ™72, (10)* + / Y (s)e P T~ ds

_ C _
< e—w(T—to)|Za (t0)|2 Z(D—%e—N(T—Yo)
_21 |V|¢(T —19)
+Cy, Z V T hl
O<y<a

2 21—l =Dg(T—)
< K,e ,
where K, does not depend on 7. Hence,

|2a(T)| < Kye™2“0T—10) (10.25)

forall T > 1. It follows that Eq. (10.24) holds also for ¢, and the result follows. 0O

We proceed to deduce the long-time convergence of u(f) in some Kondratiev
space S_i—4(H). The manner of estimates in Proposition 5.1 is not directly
suited for applying the Catalan numbers method. Instead, we will use a compact
embedding-type argument in the following lemma to show the result.

Lemma 5.1. For q > 0, let the sequence r = (2N)™9. Let u* € S_1—q(V)bea
sequence satisfying
re k2
> (sup ki) < o,
o o k

that is, satisfying {uF} € S V)).
Then there exists a subsequence ky such that ukv converges in D'(H) to some
ue€ D'(H). Infact, u € S_1 —4(V') and the convergence is in S_i —;(H).

Proof. The proof of convergence in D' (H ) will follow a diagonalization argument
and from the fact that V' is compactly embedded in H. Let Jy = {¢ € J : |o] <
N, ande; = Ofori > N}. Since supy [|ul|y < oo, there exists a subsequence

- - .
{k?};‘;l such that ||u,” — ||z — O for some u € H . Iteratively, for each N, there

exists further subsequences {kY }°2, C {k}'~'}%2, such that for every & € Jy,

¥
lua” — ttallz — 0

for some u, € H. In particular, for each N, we can find jy such that

KN
lugy — iz < N7', foralla € Jy.
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Consequently, choose the subsequence ky = k%/ and we have found the limit

U=y, & . It follows that WY = iin D'(H). By Fatou’s lemma,

rOl r(){ r(){
> —lial® < sup )0 —[ul P < sup Y —fuflli < oo,
o! & o! k o!
o o

o

andsou € S_y _4(H).
To prove the convergence in S—; _,(H ), let & > 0 be arbitrary. For any N,

i =@l gy = Y0 || a3 + Z W a3 = (1) + (D).
OtEJN 0¢¢JN '

By our special choice of k., there exists N; such that

(1)<Z N

aEJN

whenever N > Nj.

l\)lO)

From the hypothesis of the lemma, there exists N;; such that

(I1)<2 Z (sup ||uk||%,) +2 Z ||u||H — whenever N > Ny;.
k
a JN G¢JN
Thus, ||u]€N — ’2”2—1,—1,;11 < ¢ whenever N > max{Ny, Ny} O

The hypothesis in Lemma 5.1 is stronger than requiring u* € [ (S (V)
thus it is a weaker statement of what might be construed as a compact embedding
result for Kondratiev spaces. It is not shown whether S| (V) is compactly
embedded in S— —, (H). Nonetheless, it is sufficient for our purposes.

Corollary 5.1. Let d = 2. Assume the hypotheses of Propositions 3.2 and 4.1(ii).
Then, for the solutions u(t) and u of Egs. (10.4) and (10.5), we have that

u(t) —u inS_y_¢(H), ast — oo,

for g > max{qo, g2}, where qq, q» are the numbers from Propositions 3.2 and 4.1.

Proof. In the proof of Proposition 4.1, we have in fact shown that u(¢) belongs
to the space S—1 —;(L*°([0,00); V)). Taking any sequence of times, #y — oo,
the sequence {u(t;)} satisfies the hypothesis of Lemma 5.1. So, there exists a
subsequence of u(#;) converging in S—; —,(H) to i. This is true for any sequence
{tx}; hence u(t) — uin Sy _4(H) ast — oo. O



244 C.Y. Lee and B. Rozovskii
6 Finite Approximation by Wiener Chaos Expansions

In this section, we study the accuracy of the Galerkin approximation of the solutions
of the unbiased stochastic Navier—Stokes equations. The goal is to quantify the
convergence rate of approximate solutions obtained from a finite truncation of the
Wiener chaos expansion, where the convergence is in a suitable Kondratiev space. In
relation to being a numerical approximation, quantifying the truncation error is the
first step towards understanding the error from the full discretization of the unbiased
stochastic Navier—Stokes equation.

In what follows, we will consider the truncation error estimates for the steady
solution . Recall the estimate (10.16) for |Ail: for r2 = (2ND)[ ! “  with q > qo, we
have

r02¢|A'2a|2 < Clil_l <|z|>(ZN)(I—Q)DZBO—Z(BOK)ZWL

This estimate arose from the method of rescaling via Catalan numbers, and will be
the estimate we use for the convergence analysis. For the time-dependent equation,
similar analysis can be performed using the analogous Catalan rescaled estimate,
and will not be shown.

Let Typ = {o : Jo| < P,dim(o) < M}, where M, P may take value co. The
projection of i into span{£,,a € Jy.p}is uM?* = > we Ty p Hoba-

M, P

Then the errore = u — u can be written as

Ael> = > rl|Ail

€I \Tm.p
o0
= 3 A+ > ra| Aty |
la|=P+1 {lal<P le<nml<lel}
00 P o|—1
= Y 2wl + Y Y Y Al
le|=P+1 la|=1 i=0 |a<y|=i
v ()
1)
{arn

where <y is the multi-index for which the kth entry (¢<pm)x = o if K < M and
(¢<m)x =0fork > M.
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We define the following values:

o0
0 =21 BR?Y i1,

i=1

M o)
QAsM = zl_qéokzzil_q, Q>M = 21—qBOK2 Z il_q.
i=1 i=M+1

In particular, the term Q> wm decays on the order of M 2=,
We proceed to estimate the terms (I)—(IV), by similar computations to Wan et al.
[17]. Forfixed1 < p < P, |a| = p,and fixedi < p,

(1) =C)_1By” > ('Z') (2N)1=9%(ByK)?

le<m |=i. lospr |=p—i

r—2(P\Ai  Ar—
:Cf;—lBoz<i)Q5M iM

Then for fixed 1 < p < P, |a| = p,

p—1 )
(I =Y () <C BOZZ() 0Ly 0%y
i=0

=C2_ B0 - 0.

And finally,

P P
(I11)= Y _"(II)< Y € | By*(0" - 0L,
=1

la|=1
1 1 & o

+ D Z
2 — 13
167 B = (p—1

(07 = 0%,.

Since Q” —Q%,, < pOP (O — Q<um) by the mean value theorem for x > x?,

P A~
N 1 p2tr Qr!
I111) < = + — _—
(111) = B§Q>M 16711302Q>Mpz=:2 (p—17

IA

[PS p(24Q)f’ !
BT§Q>M + — Q>M Z — 1)3
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=
—0.m Yy (2°0).
p=0

=

oo
(=)

To estimate Term (/ V),

USRS ZCi_léo‘z(zl—qééﬁv('“')(N)“—W

p=P+1|a|=p *
as p
= B;% Y L @TBRY (i)
p=P+1 i>1
0 4p-1) 4 A\P+1
2 _ 1 @0

By? 0" < —— —
p=ZP:+1 7(p =17 167 Bf 1240

IA

Putting the estimates together,
|Ae> < C(R*O)PH! + M>79).

Notice the condition 24Q < 1 in Eq.(10.17), which ensured summability of
the weighted norm of the solution, is of course a required assumption for the
convergence of the error estimate.

A The Catalan Numbers Method

The Catalan numbers method was used in the preceding sections to derive estimates
for the norms in Kondratiev spaces. This method was previously described in [10,
14], but we restate it here just for the record.

Lemma A.1. Suppose L, are a collection of positive real numbers indexed by
aeJ, satisfying

Ly<B Y LyLay.

O<y<a

Then
ol [ e Tz
La = CWL—IBII 1(:& ; Le;

for all o, where C,, are the Catalan numbers.

Proof. The result is clearly true for @ = ¢;. By induction, let |«| > 2, and suppose
the result is true for all y < «. Then
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= ¥ apmteon () () (M)

0<y<a

lor|—1

(af =m)" - o
j{: j{: Cn— lckd —n— ln' (Z ;;' B“ l(I_Il?i)

n=1l o.ycaly|=n i

Ja|—1 -1
lorf al ! - o
~Yecn ¥ (W) () Moo

O<y<alyl=n

(%)

We claim that (*) = 1, for any @ and any n < |a|. Indeed, let K, = (k;...,k|y|)
be the characteristic set of &. Each summand in (%) is

(Ial!)_l n! (jo| —n)!

a! y! (@ —p)°

The term ‘z—‘,' is the number of distinct permutations of K,, whereas the term
"—'M is the number of distinct permutations of K, where only K,, K,—
y! (@—y)! . yr ey
has been permuted within themselves. On the other hand, the latter term is the
number of distinct permutations of K, corresponding to a particular y, where the
correspondence of a permutation of K, toay € {y : 0 < y < «, |y| = n} can
be made by taking K, to be the first n entries of that permutation of K. Thus,
each summand in (x) is the relative frequency of y over all distinct permutations of
K,, and hence their sum must equal 1. To complete the proof, using the recursion
property of the Catalan numbers,

lor|—1

L, < ch lclal o l(l“l)]gldl ll_[La,

n=1

lo|! _ .
:C"_l(oﬂ Bl 11‘[ng.

|

If L, satisfies the hypothesis of Lemma A.1, and if L., < K for all 7, then for
r=02N)",

dorfLg = ) CpBHTh K ('“')(21\1)““”“

lor|=n loe|=n
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= B¢ (B*K*2171)" y (M NU-0e
la|=n o
00 n
= B7%C?_,(B*k*2'71)" (Zi“_‘”
i=1

For large n, the Catalan numbers behave asymptotically like C, ~ % Hence,

the sum ) o2, > lel=n r*L2 converges for any ¢ > max{qo, 2}, where g satisfies

o0
BK?2 00y () = .

i=1

B A Lemma

Lemma B.1. Let z(t) € L*(D) for allt > t and assume that z(t) — 0 in L.
Also assume that sup,., ||z(t)|lcy = C for some constant C and exponenty < 1.
Then sup,s., ||z(t)||Lee —> O ast — oc.

Proof. We prove by contradiction. Assume that there exists €y and a sequence , —
oo such that sup.cp |z(t:, X)| > €. Since z(#,) is Holder continuous, there exists

X, € D and a ball Bs(x,) of radius § = (;—‘C’)l/y such that |z(2,, x,) — 2(t;, y)| <
C487 for y € Bs(x,). Hence [z(t,, y)| > 5 for y € Bs(x,). But since z(t) —> 0

2
in L2, [} |z(ta, y)IPdy < IBs(JZCn)l% for some #, large enough. This contradicts
.[BS(X,,) |2(ta, y)[?dy = | Bs(x,)| L. )
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Chapter 11
Intermittency and Chaos for a Nonlinear
Stochastic Wave Equation in Dimension 1
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Abstract Consider a nonlinear stochastic wave equation driven by space-time
white noise in dimension one. We discuss the intermittency of the solution, and
then use those intermittency results in order to demonstrate that in many cases the
solution is chaotic. For the most part, the novel portion of our work is about the
two cases where (1) the initial conditions have compact support, where the global
maximum of the solution remains bounded, and (2) the initial conditions are positive
constants, where the global maximum is almost surely infinite. Bounds are also
provided on the behavior of the global maximum of the solution in Case (2).
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1 Introduction

Let us consider the following hyperbolic stochastic PDE of the wave type
(Qu)(t,x) = o(u(t, x))W(t,x)  (t>0,x€R). (11.1)

Here, [0 denotes the [massless] wave operator

. 82 2 82
T T o

o : R — Ris a globally Lipschitz function with Lipschitz constant

L lo(y) — ()]
ip, = sup z——

—00<X <y <00 y—-x

W denotes space-time white noise, and k > 0 is a fixed constant. The initial function
and the initial velocity are denoted respectively by up : R — Rand vy : R — R, and
we might refer to the pair (19, vo) as the “initial conditions” of the stochastic wave
Eq. (11.1). [The terminology is standard in PDEs, and so we use it freely.] When the
initial value x — uy(x) is assumed to be a constant, we write the constant as u;
similar remarks apply to vo. In those cases, we state quite clearly that 1y and v, are
constants in order to avoid ambiguities.

The stochastic wave Eq.(11.1) has been studied extensively by Carmona and
Nualart [9] and Walsh [26]. Among other things, these references contain the
theorem that the random wave Eq.(11.1) has a unique continuous solution u as
long as

uo and vg are bounded and measurable functions,

an assumption that is made tacitly throughout this paper. All of this is about the wave
equation in dimension 1 + 1 (that is one-dimensional time and one-dimensional
space). There are also some existence theorems in the more delicate dimensions
1 + d (that is one-dimensional time and d-dimensional space), where d > 1 and
the 1-D wave operator (1 is replaced by the d -dimensional wave operator 87, —«>A,
where A denotes the Laplacian on R?; see Conus and Dalang [10], Dalang [13],
Dalang and Frangos [14], and Dalang and Mueller [15].

Parabolic counterparts to the random hyperbolic Eq.(11.1) are well-studied
stochastic PDEs. For example, when o (1) = u and the wave operator OJ is replaced
by the heat operator 8, — k23> _, the resulting stochastic PDE becomes a continuous

parabolic Anderson model [8] and has connections to the study of random polymer
measures and the KPZ equation [1-3, 19,22-24] and numerous other problems of
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mathematical physics and theoretical chemistry [8, Introduction]. The mentioned
references contain a great deal of further information about these sorts of parabolic
SPDE:s.

From a purely mathematical point of view, Eq. (11.1) is the hyperbolic counter-
part to the stochastic heat equation, and in particular o (1) = const - u ought to be
a hyperbolic counterpart to the parabolic Anderson model. From a more pragmatic
point of view, we believe that the analysis of the present hyperbolic equations might
one day also lead to a better understanding of numerical analysis problems that arise
when trying to solve families of chaotic hyperbolic stochastic PDEs.

It is well known, and easy to verify directly, that the Green function for the wave
operator [ is

1
I(x):= 51[_,(,,,(,](x) fort > 0and x € R. (11.2)

According to general theory [9, 13, 26], the stochastic wave Eq.(11.1) has an
a.s.-unique continuous solution {u(?,x)},;~0rer Which has the following mild
formulation:

ut.x) = Uole) + Vo) + [ T = 0o uts. ) Wids ). (113)
(0,1)xR
The integral is understood to be a stochastic integral in the sense of Walsh [26,

Chap. 2] and

uo(x + kt) + up(x — kt it
Up(t,x) := o ) > ol ); Vo(t, x) = 5/ vo(y)dy.

o (11.4)

In the special case that uy and v, are constants, the preceding simplifies to

1
u(t,x) = up + vokt + = / o(u(s,y)) W(dsdy). (11.5)
(0,0)X(x—Kt,x+«kt)

Recall [8, 19] that the process {u(z, X)}/~0.xer is said to be weakly intermittent if
the upper moment Lyapunov exponents,

1
7(p) := limsup — suplogE (Ju(z, x)|?) (1< p<o0), (11.6)
t—oo I xeR
have the property that
7(2) >0 and y(p) <oo forevery p € [2,l00). (11.7)

Various questions from theoretical physics [24] have motivated the study of
intermittency for the stochastic heat equation. A paper [19] by Foondun and
Khoshnevisan introduces methods for the intermittency analysis of fully nonlinear
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parabolic stochastic PDEs. That paper also contains an extensive bibliography, with
pointers to the large literature on the subject.

As far as we know, far less is known about the intermittent structure of the
stochastic wave equation. In fact, we are aware only of two bodies of research:
There is the recent work of Dalang and Mueller [16] that establishes intermittency
for Eq.(11.1) in dimension 1 + 3 (1 for time and 3 for space), where (1) o(u) =
Au (the hyperbolic Anderson model) for some A > 0; (2) W is replaced by a
generalized Gaussian field that is white in its time and has correlations in its space
variable; and (3) the 1-D wave operator is replaced by the 3-D wave operator. We are
aware also of a recent paper by two of the present authors [11], where the solution
to Eq. (11.1) is shown to be intermittent in the case that the initial function u«y and
the initial velocity vy are both sufficiently smooth functions of compact support and
W is a space-time white noise. The latter paper contains also detailed results on the
geometry of the peaks of the solution.

The purpose of this paper is to study intermittency and chaotic properties of the
fully nonlinear stochastic wave Eq. (11.1). We follow mainly the exposition style of
Foondun and Khoshnevisan [19] for our results on weak intermittency: We will
show that Eq.(11.7) holds provided that o is a function of truly linear growth
(Theorems 3.1 and 3.2). We will also illustrate that this condition is somehow
necessary by proving that weak intermittency fails to hold when o is bounded
(Theorem 3.3).

Regarding the chaotic properties of the solution « to Eq. (11.1), we follow mainly
the exposition style of Conus, Joseph, and Khoshnevisan [12] who establish precise
estimates on the asymptotic behavior of sup|, g u(Z, x), as R — oo for fixed
t>0, for the parabolic counterpart to Eq.(11.1). In the present hyperbolic case,
we first prove that the solution to Eq. (11.1) satisfies sup,.cg |u(?, x)| < oo a.s. for
all + > 0, if the initial function and the initial velocity are functions of compact
support (Theorem 4.1). Then we return to the case of central importance to this
paper, and prove that sup, g |u(t,x)| = oo as. for all + > 0 when up and v
are positive constants. Also, we obtain some quantitative estimates on the behavior
of the supremum under varying assumptions on the nonlinearity o (Theorems 7.1
and 7.2).

When considered in conjunction, the results of this paper imply that the solution
to Eq. (11.1) is chaotic in the sense that slightly different initial conditions can lead
to drastically different qualitative behaviors for the solution. This phenomenon is
entirely due to the presence of noise in the system Eq. (11.1) and does not arise in
typical deterministic wave equations.

This paper might be of interest for two main reasons: First of all, we obtain
estimates on the supremum of the solution to hyperbolic stochastic PDEs and use
them to show that the solution can be chaotic. We believe that these estimates
might have other uses and are worthy of record in their own right. Secondly, we
shall see that the analysis of the 1-D wave equation is simplified by the fact that
the fundamental solution I' of the wave operator (J—see Eq. (11.2)—is a bounded
function of compact support. As such, one can also view this paper, in part, as a
gentle introduction to the methods of the more or less companion paper [12].
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Let us conclude the Introduction with an outline of the paper. Section 3 below
mainly recalls intermittency results for Eq. (11.1). These facts are mostly known in
the folklore, but we document them here, in a systematic manner, for what appears
to be the first time. The reader who is familiar with [19] will undoubtedly recognize
some of the arguments of Sect. 3.

Section 4 is devoted to the study of the case where the initial value and velocity
have compact support [and hence are not constants]. We will show that in such
cases, sup,cg |u(f,x)| < oo as. for all # > 0. Sections 5 and 6 contain novel
tail-probability estimates that depend on various forms of the nonlinearity . These
estimates are of independent interest. Here, we use them in order to establish various
localization properties. Finally, in Sect. 7, we combine our earlier estimates and use
them to state and prove the main results of this paper about the asymptotic behavior
of sup,<g |u(t, x)| as R — oo. More specifically, we prove that if u is a positive
constant, vy is a nonnegative constant, and inf,eg |0(z)| > 0, then the peaks of the
solution in x € [—R, R] grow at least as (k log R)'/3. More precisely, we prove that
there exists an almost surely finite random variable Ry > 0 and a positive and finite
constant a such that

sup |u(t, x)|® > ax log R for all R > Ry.
[x|<R

Furthermore, we will prove that a does not depend on «, as long as « is sufficiently
small; this assertion measures the effect of the noise on the intermittency properties
of u.If 0 < info < supo < oo, then we prove that the preceding can be improved
to the existence of an a.s.-finite R; together with positive and finite constants b and
¢ such that

bilog R < sup |u(t,x)|*> < cklog R forall R > R;.

|x|<R

2 Preliminaries

In this section we introduce some notation and preliminary results that are
used throughout the paper. For a random variable Z, we denote by [|Z|, :=
{E(|Z|?)}/? the standard norm on L?(2) (1 < p < 00).

On several occasions we apply the following form of the Burkholder—Davis—
Gundy inequality [4-6] for continuous L?(£2) martingales: If {X,},>¢ is a continu-
ous L?(R2) martingale with running maximum X* := sup,e(o,) | Xs| and quadratic
variation process (X ), then for all p € [2,00) and ¢ € (0, 00),

1/2
I1X711, < @p) 2 10X (11.8)
The multiplicative prefactor 4p is the asymptotically optimal bound, due to Carlen
and Kree [7], for the sharp constant in the Burkholder—-Davis—Gundy inequality that
was discovered by Davis [18].
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Given numbers p € [1,00) and 8 € (0, 00) and given a space-time random field
{Z(t, x)}>0.xeR, let us recall the following norm [19]:

t>0 xe

1/p
1Z]pp = {supsupe_ﬂ"‘E(|Z(t,x)|”)§ . (11.9)
R

We also use the following norm [12]:

t>0 xeR

12
N,op(Z) = (supsupe_ﬂ’HZH;) . (11.10)

Clearly, the two norms are related via the elementary relations
Np,ﬁ(z) =z ”p.pﬂ/Z and ”Z”p,ﬁ = Np,zﬁ/p (2). (11.11)

However, the difference between the norms becomes relevant to us when we need
to keep track of some constants.

Finally, we mention the following elementary formulas about the fundamental
solution I" to the wave operator O: For all 7, 8 > O:

t 2 0o
5 _ Kt 5 _ Kt _gs 5 K
||Ft||L2(R) - 77/0 ||FS||L2(R) ds = 4 5 A € B ||FS||L2(R) ds = _2ﬁ2 (1112)

3 Intermittency

We are ready to state and prove the intermittency of the solution to Eq.(11.1).
Our methods follow closely those of Foondun and Khoshnevisan [19], for the heat
equation, and Conus and Khoshnevisan [11], for the wave equation.

In order to establish weak intermittency for the solution to Eq. (11.1) we need to
obtain two different results: (1) We need to derive a finite upper bound for y(p) for
every p > 2; and (2) we need to establish a positive lower bound for y(2). It might
help to recall that the Lyapunov exponents y (p) were defined in Eq. (11.6).

Theorem 3.1. If uy and vy are both bounded and measurable functions, then

7(p) < p**Lip,kc/2  forall p € [2,00).

Remark 3.1. Since the optimal constant in the Burkholder-Davis—Gundy 1.2
inequality is 1, an inspection of the proof of Theorem 3.1 yields the improved
bound y(2) < Lip,/k/2 in the case that p = 2. O

For our next result we define
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L, := ir;éf lo(x)/x]. (11.13)
x#0

Theorem 3.2. If uy and vy are bounded and measurable, inf cg ug(x) > 0, vo > 0
pointwise, and Ly > 0, then y(2) > Ly /K /2.

Theorems 3.1 and 3.2 are similar to Theorems 2.1 and 2.7 of [19] for the heat
equation. Together, they prove that the solution u is weakly intermittent provided
that uo is bounded away from 0, vop > 0 and o has linear growth. Intermittency in
the case where uy and vy have compact support has been proved in [11] (see also
Sect.4). Theorems 3.1 and 3.2 illustrate that the wave equation exhibits a similar
qualitative behavior as the heat equation. However, the quantitative behavior is
different: Here, 7 (p) is of order p*/2, whereas it is of order p* for the stochastic
heat equation.

The linear growth of o is somehow necessary for intermittency as the following
result suggests.

Theorem 3.3. If ug, vy, and o are all bounded and measurable functions, then
E (Ju(t, x)|?) = O@?) ast — oo, forall p € [2,00).

This estimate is sharp when ug(x) > 0 for all x € R and inf,eg vo(z) > 0.

The preceding should be compared to Theorem 2.3 of [19]. There it was shown
that if u were replaced by the solution to the stochastic heat equation, then there
is the much smaller bound E(|u(t,x)|?) = o(t?/?), valid under boundedness
assumptions on up and o.

Analogues of the preceding three theorems above are known in the parabolic
setting [11, 19]. Therefore, we will describe only outlines of their proof.

We will use a stochastic Young-type inequality for stochastic convolutions
(Proposition 3.1 below), which is a ready consequence of [11, Proposition 2.5].

For a random field {Z(t, x)},;~0.xer, We denote by I' x Z W the random field
defined by

(T« ZW)(t,x) = /(0 - Is(y — x)Z(s, y) W(ds dy),

provided that the stochastic integral is well defined in the sense of Walsh [26].

Proposition 3.1. Forall B > 0and p € (2,0),

1/2 3/2,.1/2

p

. K
IT % ZWap < P
’ B2

B2

Proof. We appeal to Eq. (11.8) in order to deduce that

1Zll2p and T % ZW||,p <

1Z15.5-

E(|(T'* ZW)(t,x)|")
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t [oe] r/2
§(4p)”/2E[(/0 dS/_ dny_s(y—X)IZ(S,y)lz) }

t [ele) p/2
< (4p)?? ( / ds / dy T2, (y - %) {E(|Z(s,y)|l’)}2/") L 114
0 —0o0

the last inequality is justified by Minkowski’s inequality. Next we raise both sides
of the preceding inequality to the power 2/ p and then multiply both sides by e ~#’
in order to obtain

[N, (T % ZW)]> < 4p / Vs / " dy PO (ymx)e P (B (1Z (s, )| )
0 —0o0

< 4p [N (DT /0 ds [ dy P, ()]
2pk
:F

thanks to Eq. (11.12). The relation (11.11) concludes the proof in the case that p >
2. When p = 2 is handled the same way, the prefactor (4p)?/?> = 8 of Eq.(11.14)
can be improved to one, owing to the L?(2) isometry of Walsh integrals. O

[N'p,ﬂ(z)]z ’

We are now ready to prove the main results of this section.

Proof of Theorem 3.1 Since uy and v( are bounded, we clearly have

sup |Uo (2, x) + Vo(t, x)| < const- (1 +¢) (t =0),

x€R

whence

1/p
U0 + Vollp.p = (Supe_ﬂt sup [Uo (2, x) + Vo(l,x)|p) <K, (11.15)

>0 Xx€R

where K := K, g is a positive and finite constant that depends only on p and S.
We apply Egs. (11.3), (11.15), and Proposition 3.1, together with the fact that
lo(u)| < |o(0)] + Lip,|u|, in order to conclude that for all € (0,00) and p €
2. 00),
3/2,.1/2
Pk
lull pp = K +

B2

This inequality implies that ||u, s < oo, provided that 8 > p*°Lip, /k/2, and
Theorem 3.1 follows. O

(1o (0)[ + Lip, [[ull o) - (11.16)
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Proof of Theorem 3.2 We need to follow the proof of Theorem 2.7 of [19] closely,
and so merely recall the necessary steps. It suffices to prove that

/ e P'E (lu(t,x)|*) dt = co  when B < L, /k/2. (11.17)
0

Theorem 3.2 will follow from this. This can be seen as follows: By the very
definition of y(2), we know that for all fixed € > 0 there exists a finite constant
te > 1such that E(|u(t, x)|?) < t.exp((7(2) + €)t) whenevert > t.. Consequently,

o0 00 B
/ e PE(lu(r, x)|) dr < 1. / e Bmr@=9t g,
te fe

We may conclude from this and Eq.(11.17) that y(2) > L,,\/K/_Z — €, and this
completes the proof because € > 0 were arbitrary. It remains to verify Eq. (11.17).

A direct computation, using the L? isometry that defines Walsh’s stochastic
integrals, shows us that

E (Ju(t. x)|?)

t o0
= |Uot. x) + Vot 0P + / ds / dy T2, (y — 2E (|o(u(s. )P)
0 —00
C 2 ! o 2 2
=24 /0 ds/ dy T2, (y — 0)E (lu(s, )?) (11.18)

with C := inf,cg[uo(z)]?. Define

oo

(&)
Mgp(x) = / e PE (lu(t,x)?) dr,  Hg(x) := / e P, (0)]? dr.
0 0
We can rewrite Eq. (11.18) in terms of Mg and Hpg as follows:
¢ 2
My(0) 2 5 + Lo (Mp * Hp) (),

where * denotes spatial convolution. The preceding is a renewal inequation, and can
be solved directly: We set

(Hf)(x) :=Lo(Hp * [)(x)  (x €R),

for every nonnegative measurable function f : R — R, and deduce the functional
recursion Mg > C/B + (H x Mg), whence

Mp(x) = 7Y (H"C)(x),

n=0
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where we have identified the constant C with the function C(x) := C, as usual.
Now (HC)(x) = CL2 [;° e—ﬂf||r,||L2(R) = C[L%k/(2B%)]; see Eq.(11.12). We

can iterate this computation to see that (H"C)(x) = C[L2k/(28%)]" foralln > 0,
and hence

Mg(x) > CB~ Z (Zﬂz)n.

The preceding infinite series is equal to +oo if and only if 8 < L,+/«/2. This
establishes Eq. (11.17) and concludes the proof of Theorem 3.2. O

Proof of Theorem 3.3 Because uy and vy are bounded, |Uy(t, x) + Vp(z,x)| =
O(t) as t — oo, uniformly in x € R. Therefore, the boundedness of o,
Eqgs. (11.3), (11.8), (11.12), and (11.15) together imply that

1/2
Jucr. x)||p50(z)+sup|a(x)|(4p / 1041y )

< O(t) + /prsup|o(x)|t = O(t) (t — o0).
x€R
(11.19)

The main assertion of Theorem 3.3 follows. In order to establish the remaining claim
about the sharpness of the estimator, suppose uy(x) > 0 and inf,eg vo(y) > 0, and
consider p = 2. Thanks to Eq. (11.18), |ju(z, x)|l2 > Vo(z,x) > inf,er vo(2) - kt.
The claim follows from this and Jensen’s inequality. O

There are many variations of the sharpness portion of Theorem 3.3. Let us
conclude this section with one such variation.

Lemma 3.1. Ifo(u) = A is a constant and uy and vy are both constants, then

.1 n , Ak
tl_l)lgo t_ZE (|u(t,x)| ) = (voK)~ + e forall x € R.

Proof. In accord with Eq.(11.12), the second moment of f(o,z)xR I—(y—x)
W (ds dy) is «t?/4. Therefore, Eq. (11.5) implies that

2,42 2

E (Ju(t, x)[*) = (uo + vokt)* + (vok)? + %‘ +o(1)

ast — oQ. O
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4 Compact-Support Initial Data

This section is devoted to the study of the behavior of the [spatial] supremum
sup,.cg |u(z, x)| of the solution to Eq. (11.1) when 7 is fixed. Throughout this section
we assume the following:

The initial function u, and initial velocity vy have compact support. (11.20)

We follow the ideas of Foondun and Khoshnevisan [20]. However, the present
hyperbolic setting lends itself to significant simplifications that arise mainly because
the Green function has the property that I', has compact support at every fixed time
t>0.

Throughout this section, we assume also that

0(0)=0 and L, >0, (11.21)

where L, was defined in Eq.(11.13). Since Eq.(11.1) has a unique solution, the
preceding conditions imply that if uo(x) = 0, then u,;(x) = O forallz > 0.

The idea, borrowed from [20], is to compare sup,.cg |u(z, x)| with the L?(R)-
norm of the infinite-dimensional stochastic process {u(z,-)};>o. This comparison
will lead to the result, since it turns out that the compact-support property of uy and
vo will lead us to show that u(, -) also has compact support. This compact-support
property does not hold for parabolic variants of Eq. (11.1); see Mueller [25].

Next is the main result of this section.

Theorem 4.1. Suppose L, > 0, 0(0) = 0, and uy is Holder continuous with
Holder index > 1/2. Suppose also that ug and vy are nonnegative functions, both
supported compactly in [—K, K] for some K > 0. Then, u(t,-) € L*(R) a.s. for all
t > 0and

1
Lo/ £ < limsup — suplog E (|u(t, x)|?)
2 R

t—oo [ x

1 /
< limsup — logE (sup |u(t, x)|2) < Lip, g (11.22)
x€R

t—oo I

Remark 4.1. Theorem 4.1 implies that sup,.cg |u(t,x)| < oo as. forallt > 0
provided that the initial function and the initial velocity both have compact support
[and are mildly smooth]. We are going to show in Sect. 7 that sup.cg |u(t, x)| = oo
a.s. if the initial function and velocity are nonzero constants, even if those constants
are quite close to zero. This discrepancy suggests strongly that the stochastic wave
Eq. (11.1) is chaotic [two mildly different initial conditions can lead to a drastically
different solution]. This form of chaos is due entirely to the presence of the noise W
in Eq. (11.1). O
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Before we turn to the proof of Theorem 4.1, we will need a few intermediary
results.

Proposition 4.1. Suppose that L, > 0, 0(0) = 0, and that uy # 0 and vy are
nonnegative functions in L*>(R). Then, u(t,-) € L*(R) a.s for all t > 0, and

K . 1 5 . K
L,/ % < hmsup—logE(||u(t,-)||L2(R)) <Lip, /. (11.23)
27 e 1 2

Proof. The proof resembles that of Theorem 2.1 of [19]. The latter is valid for
parabolic equations; therefore, we show how one can adapt that argument to the
present hyperbolic setting.

Since uy > 0, it follows that

”MOHLZ(R) = ”UO(Z )||L2(R) = ”MOHiZ(R)-

Moreover, since vg > 0, we have

) Kt 2
0= 1Vt Mgy = [ ax (/ dyvO<y+x>) < 422 ol
—00

—Kt

thanks to the Cauchy—Schwarz inequality.
Now, we deduce from Eq. (11.3) that

E (. )13 )

100 )22y + Vot ) 22y + L2 / ds B (JluCs. )22 g ) 10132

%

1
Mol + 12 / a5 B (s, )22 ) 1T ey (11.24)

Define o
Uy ;=/0 e—“E(nu(z )||L2(R)) (11.25)

In this way, we can conclude from Eqs. (11.12) and (11.24) that the nonnegative
function U that was just defined satisfies the recursive inequality,

” 0||L2(R)

2
oty 12 < UQ). (11.26)

v =

Since uy # 0, the first term on the right-hand side of Eq. (11.26) is strictly positive,
whence it follows that whenever A < L, +/k/2 , we have U(A) = oo. This proves
the first asserted inequality in Proposition 4.1.
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As regards the other bound, we consider the Picard iteration scheme that defines
u from Eq. (11.3). Namely, we set uy(¢, x) := 0 and then define iteratively

i1 (1 %) = Un(t,x) + V(t. x) + /( o O 03 W),
’ (11.27)

Next we may proceed, as we did for Eq. (11.24) but develop upper bounds in place
of lower bounds, in order to deduce the following:

E (41 ) gy ) = 20000 )2y + 20Vt )

t
wLip? [0 (i) ) 1T

= 2||M0”L2(R) + 8K2t2 ”vO”iZ(R)
+ Llp(27 / dS E (”Mn (S )”LZ(R)) ”Ft ‘”LZ(R)' (1128)
In order to analyze this inequality let us define

M, (L) = sup[ —Mg (||un(t )||L2(R))] >0, n=11,..).

>0
In accord with Egs. (11.28) and (11.12), the M (1)’s satisfy the recursive inequality

8 2 kLip?
My+1() < 2||“0||L2(R) ||V0”L2(R) + 2120

M, Q).

It follows readily from this recursion that if A > Lip, v/« /2, then sup,,5 o M, (1) <oo.
Finally, we take the limit as n — oo in order to deduce the lower bound in
Proposition 4.1. O

Among other things, Proposition 4.1 proves the first claim, made in Theorem 4.1,
that u(z, ) € L*>(R) almost surely for every ¢ > 0.

We plan to deduce Theorem 4.1 from Proposition 4.1 by showing that
lu(z, )|l L2r) and sup,.cg |u(z, x)| are “comparable.”

We start by a “compact-support property” of the solution u, which is associated
strictly to the hyperbolicity of the wave operator. As such, our next result should be
contrasted with Lemma 3.3 of [20], valid for parabolic stochastic partial differential
equations.

Proposition 4.2. Under the assumptions of Theorem 4.1, the random function x +—
u(t, x) is a.s. supported in [—K — «kt, K + «t] for every t > 0.
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Proof. Let uo(t,x) := 0 and define iteratively u,y, in terms of u,, as Picard
iterates; see (11.27). Note that I',_; is supported in [—k(z — $),x(t — s)] for
all s € (0,¢). Because Uy(t,-) and Vy(t,-) are both supported in the interval
[-K —«t, K +«t], it follows from Eq. (11.27), the fact that 6 (0) = 0, and induction
[on n > 0] that u,(s,-) is a.s. supported in [-K — ks, K + «s] for all s > 0 and
n > 0. Now we know from Dalang’s theory [13] that lim,, e u, (¢, x) = u(t, x) in
probability. Therefore, the result follows. O

Remark 4.2. Proposition 4.2 improves some of the estimates that were obtained
previously in [11]. Namely that u(z, -) does not have large peaks more than a distance
kt + o(t) away from the origin as t — oo. O

In order to be able to prove Theorem 4.1, we need some continuity estimates for
the solution u. The continuity of the solution itself has been known for a long time;
see [13,26] for instance. We merely state the results in the form that we need.

Lemma 4.1. Ifug is Holder continuous of order > 1/2, then for all integers p > 1
and for every B > y(2p), there exists a constant Cp g € (0, 00) such that, for all
t >0,

u(t, x) —u(t,x’)

sup sup X ]2

JEZL j<x<x'<j+1

‘ < C,peft/?r, (11.29)
2p

Proof. We may observe that |Uy(t, x)—Uy(t, x")| < const-|x—x'|"/? and |Vy(t, x)—
Vo(t,x")| < 2sup,eg [vo(2)| - |x — x| < 2sup,eg [vo(2)] - [x — x'|/2, as long as
|x — x’| < 1. Therefore, we apply Egs. (11.3) and (11.8) to deduce that uniformly
forall x, x’ € Rsuch that |x — x| <1,

t o0
lu(t, x) — u(t, x")||2, < const- |x — X2 4 Lip, (4p/0 ds/ dy |lu(s, y)||§p
—00

12
X T (y —x) = Ti—s(y — x/)|2) . (11.30)

Theorem 3.1 shows that ||u||,, s < oo provided 8 > y(2p), and a direct calculation

shows that
(o]

dy Ts(y — x) = Ty(y = x)[> < 2]x — x| (11.31)

—0o0

forall s > 0. As a consequence,
t o0
[ as [ v luts DI =00 = T - 30 (11.32)
0 —00

t o0
<efi/r / ds / dy e PP lu(s, )13, e PV IT i (y = )
0 —00

- Ft—s(y - X/)|2
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o0 o0
< ulR, b7 / ds /7 / ay [Ty = x) = Ty (v — )2
0 o0

2
< el 5 71 =l (11.33)
by Eq. (11.31). The theorem follows from Eqs. (11.30) and (11.33). O

By analogy with Lemmas 3.5 and 3.6 of [20], we can extend the preceding result
to all real numbers p € (1,2) and to a uniform modulus of continuity estimate.

Lemma 4.2. Suppose the conditions of Lemma 4.1 are satisfied. Then, for all p €
(1,2) and €,6 € (0,1), there exists a constant Cpcs € (0,00) such that for all
t >0,

lu(t, x) — u(t, x")*
sup

pIEi < Cpesel T, (11.34)
J<x<x'<j+1 |x - X |

sup
j€z

p

where A, 1= (2= p)y(2) + (p — Dy (4).

Proof. The proof works exactly as in [20, Lemmas 3.5 and 3.6]. First, one proves
that

E (Ju(t. x) — u(t,x")|*?) < Cpslx — x'|” exp((1 + §)A(p)), (11.35)

forall§ € (0, 1), |x—x'| < 1,and p € [1, 2]. This is a direct application of convexity
of L? norms and Lemma 4.1. We refer to [20, Lemma 3.5] for a detailed argument.
As a second step, it is possible to use a suitable form of the Kolmogorov continuity
theorem in order to obtain an estimate that holds uniformly for j < x < x’ < j +1,
as stated. We refer to [17] for a detailed proof; see in particular, the proof of Theorem
4.3 therein. O

We are ready to prove Theorem 4.1. This is similar to the proof of Theorem 1.1
in [20], but because of Proposition 4.2, some of the technical issues of [20] do not
arise.

Proof of Theorem 4.1 We have already proved that u(t,-) € L*>(R) for every t > 0;
see Proposition 4.1. Therefore, it remains to prove Eq. (11.22).

The lower bound is a direct consequence of Propositions 4.1 and 4.2. Indeed,
Proposition 4.1 implies that
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exp ([L\/g i 0(1)} z) <E ( [ : |u(z,x)|2dx)
e[

< 2(K + «t)supE (|Ju(t, x)*). (11.36)
x€R

The first inequality in Eq. (11.22) follows.
As regards the second inequality in Eq. (11.22), we may observe that for all p €
(1,2),e € (0,1), j €Z,and t > 0,

sup |u(r, x)? < 227! (IM(l,j)|2p+ sup IM(I,X)—M(LJ')IZP)

j<x<j+1 j<x<j+1
=227 (Jute HP? + Q7).

where
QP . Iu(t’x) - “(t’xl)lz

/ J<x=<x'<j+l1 |x _-x/|l_€

(11.37)

Consequently,

E ( sup |u(t,x)|2p) < 221 {E (Jut, )I??) +E (Qf)} (11.38)

j<x<j+1

Lemma 4.2 implies that B(RY) < C,5e?!*9%". Moreover, u(t, j) = 0 as. for
|j| > K + Kt [Proposition 4.2], and E(|u(z, j)|*?) < const-eV2P)+o() whenever
|j| < K + «t [Theorem 3.1]. It follows that for all large 7,

. (Suplu(r,x)l”) =E( sup ut,x)P”
x€R |x|<[K+kt]

< const - |—K + Kt-l (e()_’(ZP)‘H}(l))t + Cp’gqgep(l'Hg))‘pt) ,
(11.39)

whence

1
limsup — logE (sup |u(z,x)|2P) < max{p(l +8)A,; 7(2p)}. (11.40)
x€R

t—oo [
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We let § — 0, then use Jensen’s inequality and finally take p — 1. Since A, — ¥(2)
as p — 1, this will lead us to the bounds

1 /
limsup — logE (sup |u(t,x)|2) < y(2) <Lip, E (11.41)
t—oo I x€R 2

by Theorem 3.1 and Remark 3.1. The last inequality in Eq. (11.22) follows. This
completes our proof. O

5 Moment and Tail-Probability Estimates

In this section, we will first present technical estimates on the L” moments of
the solution u and then use those estimates in order to establish estimates on
tail probabilities of the solution. We will use the efforts of this section later in
Sect.7 in order to deduce the main results of this paper. This section contains the
hyperbolic analogues of the results of [12], valid for parabolic equations. Some of
the arguments of [12] can be simplified greatly, because we are in a hyperbolic
setting. But in several cases, one uses arguments similar to those in [12]. Therefore,
we skip some of the details.

Convention. Throughout Sect. 5, we will consider only the case that u and v, are
constants.

Without loss of much generality, we will assume that uy = 1. The general case
follows from this by scaling. However, we will have to keep track of the numerical
value of vy. Hence, Eq. (11.3) becomes

u(t,x) =14 vokt + / Ii—s(y —x)o(u(s, y)) W(ds dy), (11.42)
(0.0)xR

fort > 0, x € R. In accord with the results of Dalang [13], the law of u,(x) is
independent of x, since the initial velocity vy and position ug = 1 are constants.

We start our presentation by stating a general upper bound for the moments of
the solution.

Proposition 5.1. Suppose uy = 1 and v is a constant. Choose and fix T > 0 and
define a := TLip, «/k. Then there exists a finite constant C > 0 such that

sup supE (Ju(t, x)|’) < CPexp (ap*?)  forallp e [l,00).  (11.43)

0<t<T x€R

The preceding is a direct consequence of our proof of Theorem 3.1. Indeed, we
proved there that ||u, s < oo provided that 8 > p*?Lip, \/k/2. Proposition 5.1
follows upon unscrambling this assertion.

Let us recall the following “stretched-exponential” bound for log X:



268 D. Conus et al.

Lemma 5.1 (Lemma 3.4 of [12]). Suppose X is a nonnegative random variable
that satisfies the following: There exist finite numbers a,C > 0, and b > 1 such
that E(X?) < C? exp(ap®) for all p € [1,00). Then,

Eexp (oz [log, X]b/(b_l)) < 00,

where log, u := log(u \ e), provided that 0 < o < (1 —b~")/(ab)/ ¢~

Thanks to the preceding lemma and Chebyshev’s inequality, Proposition 5.1
implies readily the following upper bound on the tail of the distribution of |u(z, x)|.

Corollary 5.1. Forall T € (0,00) and @ € (0, 2 (T?(Lip, v 1)%)™"),

sup supE [exp {a (log, |u(t,x)|)3}] < 00. (11.44)
0<t<T x€R
Consequently,
li ! log P{|u(t, x)| > A} < 4 (11.45)
imsup ——— sup suplo u(t,x < - - . .
ey (logA)? Osthxeg s 27 T?(Lip, Vv 1)%

In plainer terms, Corollary 5.1 asserts that there is a finite constant A := Ar > 1
such that for all A sufficiently large,

sup supP{|u(z,x)| > A} < Aexp (—A_1|10gk|3).

0<t<T x€R

In order to bound lower bounds on tail probabilities we need to have more specific
information on the nonlinearity o. Let us start with the case that o is bounded
uniformly away from zero.

Proposition 5.2. If ey := inf,er 0(2) > 0, then for allt € (0, 00),
inf E (|ju(t, 0)7) = (ﬁ+ o(1)) (up)?  asp—> oo, (11.46)
X€E
where the o(1) term only depends on p and
W = €dit?/(2e). (11.47)
Proof. We follow the proof of Lemma 3.6 of [12] closely.
Since the law of u(z, x) does not depend on x, the inf in Eq. (11.46) is redundant.
From now on, we will consider only the case that x = 0.

Choose and fix a finite ¢ > 0, and notice that u(z,0) = 1 4+ voxt + M,, where
(M:)o<:< is the continuous mean-zero martingale that is defined by

M, = /(O T Ootuts, ) Widsdn), (11.48)
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The quadratic variation of M is given by

(M), = /0 s /_ dy T2 (50> (us. y)). (11.49)

According to 1t6’s formula, if p € [2, 00), then
t t
MY = Zp/ M2~ dM, + p(2p — 1)/ M2 d(M ). (11.50)
0 0

We take expectations on both sides and replace (M) using Eq. (11.49), in order to
obtain the following:

B(M7) = pCp=1) [ a5 [y B2V s, ) T2 ()

t o0
> p2p— el /0 ds / dy E(M2P"D) T2 (7).
—00

We iterate this process, using Eq.(11.49), to obtain the following lower bound for
the moments of M:

Sk
0

p—1 t K
E(Mf”)zkzzjock(p) /0 b(t,dsi) /0 b5y, dsa) -+ / b(se.dsisn), (1151)

where
1
v(t,ds) := 1 (s) ”Ff-SHiZ(R) ds = EK(Z — )1 (s)ds [see (11.12)],

and
k .
2p—2
2(k+1 14 J
C(p) = & ’-H( 5 )
j=0

For similar moment computations, also valid for hyperbolic equations, see [10]. The
right-hand side of Eq. (11.51) is the exact expression for the pth moment of u if o
were identically €y. Therefore,

E (|u(r.0)*?) > E (M,ZP) >E (fo’) , (11.52)

where N, := ¢- f(o,[)xR I',—s(y) W(ds dy) is a Gaussian random variable with mean
zero and variance E(N?) = €] - fot T ||i2 ® ds = elk1?/4. Therefore, for every
integer p > 2,

@2p)! @p)! [ ekt*\’
E(N,Zp) =5 (E(N2)) = 2 ( o ) . (11.53)
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Stirling’s formula, Egs. (11.52), and (11.53) together prove the result if p — oo
along integers. For other values of p, we use the integer case for [p] and apply
Jensen’s inequality to bound the [|u(z,0)|, by [lu(z,0)||[ 7. O

The preceding moment bound yields the next probability estimate.

Proposition 5.3. Ifinf,eg 0(z) = €y > 0, then there exists a constant C € (0, 00)
such that for all t > 0,

PN (Lip, v 1)
linlgfﬁirellfllogP{W(t,xﬂ > A} >-C el (11.54)
Proof. We follow the proof of [12, Proposition 3.7].
The classical Paley—Zygmund inequality implies that
2
1 {E (|u(t,x)|2”)}
PO u(t, x)| = < u(r, >
lu(t, x)| > 3 llu(t, x)|2p 2E (. 07
> exp (—8¢(Lip, v Dx'/? p¥/?), (11.55)

owing to Propositions 5.1 and 5.2. Proposition 5.2 tells us that [lu(, x)|2, is
bounded below by (I + o(1)) times (u,p)'/? as p — oo, where ; is given
by Eq. (11.47). Therefore,

1
P (e, )| = 2 (up)' e = exp (=81(Lip, v De'/? p¥?), (11.56)

for all sufficiently large p. Set A := %(u, p)'/? to complete the proof. O

Let us write “f(x) Z g(x) as x — o00” instead of “there exists a constant
C € (0,00) suchthatliminf, o f(x)/g(x) > C.”Inthis way, we may summarize
the findings of this section, so far, as follows:

Corollary 5.2. Suppose uy = 1 and vy = a constant. If inf,egr 0(z) = €9 > 0, then
forallt > 0,

A3 (log A)*
K

— — ZlogP{lu(t,x)| = A} 2 — as A — oo. (11.57)
K

The implied constants do not depend on (x, k).

Proposition 5.1 and Corollary 5.1 assumed that o was a Lipschitz function. If we
assume, in addition, that o is bounded above (as well as bounded away from 0), then
we can obtain a nearly optimal improvement to Corollary 5.2. In fact, the following
shows that the lower bound of Proposition 5.2 is sharp in such cases.
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Proposition 5.4. If So := sup,cg0(2) < 0o, then for all t > 0 and all integers
r=l

sup E ([u(r, x)[7) < (NE + 0(1)) (up)?  asp— oo, (11.58)
x€R

where the o(1) term only depends on p and
i i= 282k1t? /e. (11.59)

Proof. We apply an argument that is similar to the one used in the proof of
Proposition 5.2. Namely, we consider the same martingale {M;}o<,</, as we did
for the proof of Proposition 5.2. We apply exactly the same argument as we did
there but reverse the inequalities using the bound o (z) < Sy for all z € R, in order
to deduce the following:

E (|u(t,0)[27) < 227 (1 + vokt)*” + 227 (M,Zf’)
= 22 (1 4 vkt + 27E (N7).

where N, := S - f(o,t)xR I',—s(y) W(dsdy). Similar computations as in Proposi-
tion 5.2 prove the result. O

We can now turn this bound into Gaussian tail-probability estimates.

Proposition 5.5. If0 < €y := inf.er 0(2) < sup,cg 0(2) := So < 00, then for all
t > 0 there exist finite constants C > ¢ > 0 such that

2

2
cexp (—C %) < P{lu(t,x)| > A} < Cexp (—c%) , (11.60)

simultaneously for all A large enough and x € R.

Proof. The lower bound is obtained in the exact same manner as in the proof of
Proposition 5.3: We use the Paley—Zygmund inequality, though we now appeal to
Proposition 5.4 instead of Proposition 5.1.

We establish the upper bound by first applying Proposition 5.4 in order to see
that sup,.cg E(Ju(t, x)|*") < (Ak)™m! for all integers m > 1, for some constant
A € (0, 00). This inequality implies that for all 0 < £ < (Ak)™!,

o0
lutr. )P m_ 1
ilelgE(e ) < g(gm) =T <™ (11.61)
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Therefore, Chebyshev’s inequality implies that if 0 < § < (Ak)~!, then

—E)\2
supP{u(t, x)| > A} < Z2EEAD) ), (11.62)
x€R 11— %‘AK
We choose £ = const - !, for a suitably large constant to finish. O

6 Localization

In Sect.7 below, we will establish the chaotic behavior of the solution u
to Eq.(11.1). The analysis of Sect.7 will rest on a series of observations; one
of the central ones is that the random function u is highly “localized.” We will make
this more clear in this section. In the mean time, let us say sketch, using only a few
words, what localization means in the present context.

Essentially, localization is the property that if x| and x, are chosen “sufficiently”
far apart, then u(z, x) and u(¢, x;) are “approximately independent.”

As we did in Sect.5, we will assume throughout this section that the initial
conditions are identically constant and that #y = 1 [Recall that the latter assumption
is made without incurring any real loss in generality.]. Note, in particular, that the
solution u can be written in the mild form Eq. (11.5). Equivalently,

1
u(t,x) =1+ vokt + —/ o(u(s,y)) W(dsdy), (11.63)
(0,0)X(x—Kt,x+«kt)

forallt > 0, x € R.
For all integers n > 0, let {u,(¢,x)};>0xer denote the nth step Picard
approximation to u. Namely, we have up = O and forn > 1,7 > 0, and x € R,

1
u,(t,x) =14 voxt + 5/ o (up—1(s,y)) W(dsdy). (11.64)
(0,0)X(x—Kt,x+Kt)

Our next result estimates the order of convergence of the Picard iteration.

Proposition 6.1. Let u denote the solution to Eq.(11.1) with constant initial
velocity vy and constant initial function uy = 1. Let u, be defined as above. Then,
foralln >0,t >0, and p € [2,00),

sup E (Ju(t, x) — u (¢, x)|7) < C?exp (ap*?t —np), (11.65)

x€R

where the constants C,a € (0, 00) do not depend on (n, t, p).
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Proof. Recall the norms || --- |, g from Eq.(11.9). In accord with Proposition 3.1
and Eq. (11.64),

324121 jp?
u—u <const ————— % |lu — ty—1 ]| p.8.

llu — unll p. NG lu — tn—1lp.p

We apply Eq.(11.12) with B := e27>/2¢!/2Lip2 p*/? in order to deduce, for this
choice of B, the inequality [|u —u, || p.5 < €™ '||u — un—1| 5, whence ||u —u, || 5 <
e "|lu —uo|| g by iteration. In other words, we have proved that

E (Ju(t. %) = un (£, %)) < PP u]]7 . (11.66)

An appeal to Proposition 5.1 concludes the proof. O

We plan to use the Picard iterates {u,} >, in order to establish the localization
of u. The following is the next natural step in this direction.

Proposition 6.2. Let t > 0 and choose and fix a positive integer n. Let {X;}i>o
denote a sequence of real numbers such that |x; — x;| > 2n«t wheneveri # j.
Then {u,(t, x;)}i>o is a collection of i.i.d. random variables.

Proof. 1t is easy to verify, via induction, that the random variable u, (¢, x) depends
only on the value of the noise W evaluated on [0, 1] x [x —nkt, x 4+ n«t]. Indeed, it
follows from Eq. (11.64) that u; (¢, x) = 1 + vkt is deterministic, and Eq. (11.64)
does the rest by induction.

With this property in mind, we now choose and fix a sequence {x; };>o as in the
statement of the proposition. Without loss of too much generality, let us consider
x1 and x,. By the property that was proved above, u, (¢, x;) depends only on the
noise on 1 := [0,¢] X [x; —n«kt, x| + nkt], whereas u, (¢, x) depends only on the
noise on I := [0,¢] X [xa — nkt,xy + nkt]. According to the defining property
of the x;’s, |x; — x| > 2n«t, and hence /| and I, are disjoint. Therefore, it
follows from the independence properties of white noise that u(¢, x1) and u(z, x;)
are independent. Moreover, the stationarity properties of stochastic integrals imply
that u(z, x1) and u(¢, x,) are identically distributed as well [here we use also the
assumption of constant initial data]. This proves the result for » = 2. The general
case is proved by expanding on this case a little bit more. We omit the remaining
details.

Let us conclude by mentioning that the preceding is the sketch of a complete
argument. A fully rigorous proof would require us to address a few technical issues
about Walsh stochastic integral. They are handled as in the proof of Lemma 4.4 in
[12], and the arguments are not particularly revealing; therefore, we omit the details
here as well. O
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7 Chaotic Behavior

We are now ready to state and prove the two main results of this paper. The first
one addresses the case that o is bounded away uniformly from zero and shows a
universal blow-up rate of (log R)'/3.

Theorem 7.1. Ifuy > 0, vo > 0, and inf,eg 0(z) = €9 > 0, then for all t > O there
exists a constant ¢ := ¢; € (0, oo)—independent of k—such that

1
liminf ——— s t, > ckl/3,
R0 (log R ek py jutt. 0l =

Proof. The basic idea is the following: Consider a sequence of spatial points
{xi}i>0, as we did in Proposition 6.2, in order to obtain an i.i.d. sequence
{un (2, x;)}i>0. The tail-probability estimates of Sect. 5 will imply that every random
variable u, (¢, x;) has a positive probability of being “very large.” Therefore, a
Borel-Cantelli argument will imply that if we have enough spatial points, then
eventually one of the u,(f, x;)’s will have a “very large” value a.s. A careful
quantitative analysis of this outline leads to the estimates of Theorem 7.1. Now
let us add a few more details.

Fix integers n, N > 0 and let {xi}f\’:l be a sequence of points as in Proposi-
tion 6.2. According to Proposition 6.2, {u,(z, xi)},N=1 is a sequence of independent
random variables. For every A > 0,

P 1, Xj A
{lrfnjgNlu( x| < }
< P{llfnjag(N lun (2, x;)| < ZA} +P{l;njeg<N|u(t,xj) —uy(t,x;)| > A} .

An inspection of the proof of Proposition 5.3 shows us that the proposition continues
to hold after u is replaced by u,. Therefore,

N
P{ max |u,(¢,x;)| < 2)&} < (1 —cle—Cz(zk)z) ’ (11.67)
I<j=N

for some constants ¢; and ¢,. Moreover, Chebyshev’s inequality and Proposition 6.1
together yield

P{ max |u(t, x;) — un(t.x;)| > /\} < NCresr*t=np)=p, (11.68)
1<j<N
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and hence
N
P{lmaxN|u(z,x,»)| < A} < (1 —cle‘cﬂw) + NCPer™*1=mr )= (11.69)
<J=

Now, we select the various parameters with some care. Namely, we set A := p,
N := pexp(cyp?), and n = op? for some constant ¢ > 8c¢,. With these parameter
choices, Eq. (11.69) reduces to the following:

P 1, X;
| max lutx)) < of

< e 1 fexp (e22p)’ + log p + atp®? — op® — plog p)
U, (11.70)

We may consider the special case x; = +2iktn in order to deduce the following:

P{ sup Ju(t,x)| < p} <2e 17, (11.71)

|x|<2N«ktn

Note that 2Nktn = O(eCZPS) as p — oo. Let us choose R := exp(czp?), and
equivalently p := (log R/c»)'/3. Then by the Borel-Cantelli lemma,

log R\'?
sup |u(t, x)| > const - (i) . (11.72)
Ix|<R 2

A monotonicity argument shows that the preceding inequality continues to hold for
noninteger R [for a slightly smaller constant, possibly]. A careful examination of
the content of Proposition 5.3 shows that we can at best choose ¢, = const - k1.

The result follows. O

The second result of this section [and the second main result of this paper]
contains an analysis of the case that o is bounded both uniformly above 0 and
below co. In that case, we will obtain an exact order of growth for supy|_g |u(z, ),
as R — oo. We can deduce by examining that growth order that the behavior of the
solution u is similar to the case where o is identically a constant [In the latter case,
u is a Gaussian process.].

Theorem 7.2. Assume constant initial data with ugp > 0 and vy > 0. Suppose also
that 0 < inf.er 0(z) < sup,cg0(z) < oo. Then, for all t > 0, there exist finite
constants C := C; > ¢ := ¢; > 0 such that a.s.,

ck'? < liminf SUPret—r R 111 )| < limsup SWPrei-kay 140 )| < Ck'/2
T R—oo (log R)!/? T R0 (log R)'/ -
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Moreover, there exists a finite constant kg = ko(t) > 0 such that ¢ and C do not
depend on k whenever k € (0, ko).

We first need an estimate for the quality of the spatial continuity of the solution u.
Lemma 7.1. Suppose 0 < €y := inf.er 0(z) < sup,cg 0(2) := So < oc. Then, for

every t > 0, there exists a constant A € (0, 00) such that

E (|u(t, x) — u(t, x")*?)

= x']7

sup < (Ap)? forall p € [2,00). (11.73)

—oo<xFx/ <00

Proof. We follow closely the proof of Lemma 6.1 of [12]. Fix x, x’ € R and define
Moim [ (T =0 = T = oo, 3) Widsdy). (174)
(0,))xR

Then, {M;}o<:</ iS a mean-zero continuous L7 (£2)-martingale for every p €
[2, 00). Moreover, its quadratic variation is bounded as follows:

T o0
(). =53 [ a5 [ ayITiv =0 = Fimsy = ¥ = 20834 x|
0 —00

by Eq.(11.31). Because u(z,x) — u(t,x’) = M;, the Burkholder-Davis—Gundy
inequality Eq. (11.8) implies the result. O

Next we transform the previous lemma into an estimate of sub-Gaussian moment
bounds.

Lemma 7.2. If0 < ¢ := inf,er 0(z) < sup,cg0(z) := So < 00, then for every
t > 0, there exists a constant C = C, € (0, 00) such that

lu(t, x) — u(t, x")|? 2
E < -, 11.75
i exp( cs =5 (a7
[x—x"|<8

uniformly for every 6 € (0, 1] and every interval I C R of length at most one.

Lemma 7.2 follows from Lemma 7.1 and a suitable form of Kolmogorov’s
continuity theorem. This type of technical argument appears in several places in
the literature. Hence, we merely refer to the proof of [12, Lemma 6.2], where this
sort of argument appears already in a different setting. Instead, we proceed with the
more interesting

Proof of Theorem 7.2 We obtain lower bound by adapting the method of proof of
Theorem 7.1. The only major required change is that we need to use Proposition 5.5
in place of Proposition 5.3. We also need to improve Proposition 6.1 in order to
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consider a moment bound that applies Proposition 5.4 instead of 5.1. After all
this, Eq. (11.69) will turn into the following estimate:

. 2 N
P{ max |u(f, x;)| < )&} < (1 — e ) + NCP(fi, p)’e™"P AP, (11.76)
1<j<N

Next we select the parameters judiciously: We take A (= p, N = peCZPz, and
n = op for a sufficiently large constant ¢ > ¢». In this way, Eq. (11.69) will read
as follows:

P max .5 < pl < €77 4 exp (220)° + Iog(p) + plog(i) - 0r)
< 2e 4P,
A Borel-Cantelli-type argument leads to the lower bound.

In order to establish the upper bound, let R > 0 be an integer and x; := —R + j
for j = 1,...,2R. Then, we can write

P{ sup |u(t,x)| > 2a(log R)/?
X€[—R,R]

< . 1/2
<P % lg}zg;R lu(t, x;)| > a(log R) }

max sup  |u(t,x) —u(t,x;)| > a(log R)'/?
15152Rx€(x]~,xj+1)

+P . (177

On one hand, Proposition 5.5 can be used to show that
P{ max |u(t, x;)| > a(log R)'/*} < 2R supP {[u(t,x)| > a(log R)"/?}
I=j<2R x€R
< const - R’/
On the other hand, Chebyshev’s inequality and Lemma 7.2 [with § = 1] together

imply that

1=/ =2R ey,

P{ max sup  |u(t, x) —u(t, x;)| > a(log R)l/z} < const- R17°/C
Xj41)

Therefore, Eq. (11.77) has the following consequence:

o0
<Y R (11.78)

o0
Z P { sup |u(t, x)| > 2a(log R)"/?
R=1 R=1

X€[—R,R]
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where
q :==min(c/k, 1/C).

The infinite sum in Eq.(11.78) converges when o > (2/q)'/?. Therefore, by an
application of the Borel-Cantelli lemma,

. SUPye—g,g) (2. X)|
lim sup

<@®/9)"*  as. (11.79)

R—>00:REZ (log R)!/?
Clearly, (8/9)"/> < «k'/?/c for all k > ko := 8c?/q. A standard monotonicity
argument can be used to replace “limsupg_, .. rez” by “limsupp_,,.” This
concludes the proof. O

Among other things, Theorem 7.2 implies that if ¢ is bounded uniformly away
from O and infinity, then the extrema of the solution u behave as they would for
the linear stochastic wave equation; i.e., they grow as (log R)'/2. We have shown
in [12, Theorem 1.2] that the same general phenomenon holds when the stochastic
wave equation is replaced by the stochastic heat equation. We may notice however
that the behavior in k is quite different in the hyperbolic setting than in the parabolic
case: Here, the extrema diminish as /% as ¥ | 0, whereas they grow as ¥ ~/* in
the parabolic case.

Acknowledgments An anonymous referee read this paper quite carefully and made a number
of critical suggestions and corrections that have improved the paper. We thank him or her
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Generalized Stochastic Heat Equations

David Marquez-Carreras

Abstract In this article, we study some properties about the solution of generalized
stochastic heat equations driven by a Gaussian noise, white in time and correlated
in space, and where the diffusion operator is the inverse of a Riesz potential for any
positive fractional parameter. We prove the existence and uniqueness of solution and
the Holder continuity of this solution. In time, Holder’s parameter does not depend
on the fractional parameter. However, in space, Holder’s parameter has a different
behavior depending on the fractional parameter. Finally, we show that the law of the
solution is absolutely continuous with respect to Lebesgue’s measure and its density
is infinitely differentiable.
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1 Introduction

Consider the following kind of stochastic partial differential equations (SPDEs),

dm(t, x) + (=AY Pn(t,x) = a(nt, x))W (¢, x) + b(n(t,x)),  (12.1)
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witht € [0,T],x € RY d e N,and p > 0. We assume thata : R - Randb : R —
R are Lipschitz continuous functions. The process W is a Gaussian noise, white in
time, and correlated in space. We will specify later the conditions on W . The initial
conditions are null for the sake of simplicity. Moreover, A is the Laplacian operator
on R?, and the integral operator (—A)P/ 2 p > 0, is the inverse of a Riesz potential.
This last operator is widely studied in Samko et al. [23], Stein [27], and Angulo
etal. [1].

This equation proposed in Eq.(12.1) is a generalization of the well-known
stochastic heat equation (p =2) which has been studied by many authors [10, 12,
19,25, 28], etc. On the other hand, many researches have dealt with the following
kind of SPDE:s (or other similar equations):

n(t,x) + A(I — A2 (=AY 2y(t, x) + W(t, x), (12.2)

with A > 0 and where W(z,x) is a space-time white noise and the operator
(I — A)7/?,q > 0, is interpreted as the inverse of the Bessel potential. This
more general equation is known as generalized fractional kinetic equation or
fractional diffusion equation. This kind of SPDEs has been introduced to model
some physical phenomena as turbulences, diffusions in porous media, propagations
of seismic waves, kinematics in viscoelastic media, ecology, hydrology, image
analysis, neurophysiology, economics, and finances. The reader can find more
information about these modelings in [2,4]. This class of SPDEs (12.2) has been
studied from a mathematical point of view in [1-6, 18, 22], etc. In some aspects,
our Eq.(12.1) is more particular than Eq.(12.2) as a consequence of the Bessel
potential. However, our Gaussian noise is more general and, moreover, we also add
the functions a and b.

We would also like to mention some references: [7, 8, 13—-17, 21], etc. These
papers are related to the operators (—A)?/? in Eq.(12.1) or (I — A)?/?(—=A)P/?
in Eq. (12.2), the Gaussian noise does not appear and the study is carried out from a
more deterministic point of view.

In this paper we prove the existence and uniqueness of solution and the Holder
continuity of this solution. Moreover, we show that the law of the solution is
absolutely continuous with respect to Lebesgue’s measure on R and its density
is infinitely differentiable. There are some differences between this study and all
the papers pointed above. Firstly, our SPDE is driven by a more general Gaussian
noise (white in time and correlated in space). Secondly, thanks to the used Gaussian
noise, the properties of the solution are checked for any p > 0 and not for a more
restricted region as for instance in Boulanba et al. [6]. Moreover, these properties do
not depend on the dimension of x. Finally, we generalize some results of Angulo et
al. [2] to the nonlinear case. We add to the equation the functions a and b and study
some new properties. Here, we deal widely with the Holder continuity in time and
in space.
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The paper is organized as follows. In Sect. 2 we introduce the Gaussian noise. In
Sect. 3 we describe what we understand by a solution of Eq.(12.1) and prove the
existence and uniqueness of this solution. In Sect. 4 we study the Holder continuity
of the solution. Finally, adding some conditions on a and b, Sect. 5 is devoted to the
proof of the existence of a smooth density. As usual, all constants will be denoted
by C, independently of this value.

2 The Gaussian Noise

The noise W is the formal derivative of a Gaussian field, white in time and correlated
in space, defined as follows: for the space of Schwartz test functions D(R?*1)
(see, for instance, Schwartz [26]), the noise W = {W(¢),¢ € D(R‘H'l)} is an
L?*(Q, A, P)-valued Gaussian process for some probability space (2, A, P), with
mean zero and covariance functional given by

s = [ o [ r@ofpee«io]m,
+

where ¥ (s,x) = ¥(s,—x) and T is a nonnegative and nonnegative definite
tempered measure, therefore symmetric. There exists a nonnegative tempered
measure i which is the spectral measure of I' such that

= [ & [ w@Fs69@FTEE.
+

with F¢ denoting the Fourier transform of ¢ and z the complex conjugate of z.
The reader interested in some examples about these two measures can find them in
Boulanba et al. [6].

Since the spectral measure p is a nontrivial tempered measure, we can ensure
that there exist positive constants ¢y, ¢, ¢3 such that

o < / L(dE) < oo (12.3)
(lgl<es)

The Gaussian process W can be extended to a worthy martingale measure, in the
sense given by Walsh [28],

F={F(t,A), t € Ry, A€ By(R")},

where By, (R¢) are the bounded Borel subsets of R¢.
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3 Existence and Uniqueness of the Solution

A solution of Eq. (12.1) means a jointly measurable adapted process {1 (¢, x), (¢, x) €
[0, T] x R?} such that

000 = [ [ St = yatnes.) Fas.ay

[ [ ay s, (12.4

where S is the fundamental solution of Eq.(12.1) and the stochastic integral
in Eq. (12.4) is defined with respect to the J;-martingale measure F(z, -).
More specifically, the fundamental solution of Eq. (12.1) is the solution of

3:S;(x) + (=A)?/2S,(x) = 0. (12.5)

In order to study the fundamental solution S, we need the expression of its Fourier
transform. Anh and Leonenko [4] have proved that Eq. (12.5) is equivalent to

0 FSi(0)(§) + |§[7 FSi(e)(§) = 0. (12.6)

Using the same ideas as in Dautray and Lions [11] or in Ahn and Leonenko [4], we
can prove that Eq. (12.6) has a unique solution given by

FS,(e)(5) = eI, (12.7)

Then, the fundamental solution of Eq. (12.5) can be written as

1 .
_ i(x.8)o—tIE" 4
)= Gy /Rde ©

In [4], Ahn and Leonenko have studied widely this fundamental solution depending
on the parameter p.

For more details about the stochastic integral in Eq. (12.4), we recommend the
readings of Dalang [10] and also Dalang and Frangos [9]. In [10], Dalang presents
an extension of Walsh’s stochastic integral that requires the following integrability
condition in terms of the Fourier transform of I":

T
/ di / JdE) | 7S (0)(E) < os. (12.8)
0 R4

Assuming that Eq.(12.8) is satisfied and that a and b are Lipschitz continuous
functions, we will check later that there exists the solution of Eq. (12.4).
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We first prove a useful result which connects the tempered measure p and the
fundamental solution S, (x) by means of the estimate

p(dé)

i A+ [EP)P7 (129)

Lemma 3.1. The estimates Egs. (12.9) and (12.8) are equivalent.

Remark. In the sequel we will use the following notation:

o0 = [ s [ w@olFs@@F = [ a5 b, viep.]

and the following easy properties:

®(1) =/O ds ci>(s)=/0 ds é(z—s)zfo ds/Rd L(dE)| FSs(x — o)(£) 2,

for any x € RY.

Proof of Lemma 3.1. We first prove that Eq.(12.9) implies Eq.(12.8).
From Eq. (12.7), Fubini’s theorem implies that

—21[¢1”

o(1) =/0 ds Ad n(dE)e 2k = /;w M(d%‘)%

1 — e~ 20817 1 — e~ 2IEl”
- / we) =y / 1@ =~ 3,0)+0.0),
{l¢l=K} {lE|>K}

21&[7 2(§(7
(12.10)
for some constant K > 1.
Using that | —e™ < x, for any x > 0, we have
Byt) < T / H(de) < oo, (12.11)
{lgl=K}

since the spectral measure p is a positive tempered measure.
As || > K > 1, applying the fact that 1 + |£|> < 2|£|? and Eq. (12.9), we obtain

p(d§) p(d§)
20) = /{|g|>1<} 2(§[7 = /{|g|>1<} (1 +[g[)r2 = (1212

Then, putting together Egs. (12.10)—(12.12) we get Eq. (12.8).
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The fact that Eq.(12.8) implies Eq.(12.9) can be inferred immediately after
Eq. (12.10) using the inequalities

1 1—e™ 2
=

<
1+ x X T 14+x

, Vx > 0.

O
We now can prove the main result of this section. The proof of this theorem could
be shortened using Theorem 13 and the erratum of [9]. However, we have preferred
to give the complete proof.

Theorem 3.1. Assume Egq.(12.9) and that the functions a and b are globally
Lipschitz. Then, Eq. (12.4) has a unique solution that is L*-continuous and, for any
T >0andq > 1,

sup sup E(|n(z, x)|?) < oo. (12.13)

0<t<T xeRd

Proof. We define the following Picard’s approximation: no(¢, x) = 0 and, for any
n=>0,

M (.) = /0 s /R Sy ) @l (s, ) Flds,dy)

. /0 ds /R Ay Sy = ) b5, ).

Burkholder’s inequality and the Lipschitz condition on a imply that

2
E

/ ds / Sis (x — ¥) aln(s. y) F(ds. dy)
0 R4

t
< / ds ®(t —s) | 14 sup sup En2(r,x) |. (12.14)
0 0=<r=<s xeRrd
Using the Cauchy—Schwartz inequality and the Lipschitz condition on b, we have
that

2

R /0 ds /R Ay Sy = ) bGs, )

< (/0 as [ ayisiea- y)|) (/0 as [ alsate )

X |:1 + sup sup Eni(r,y):|) . (12.15)

0<r=s xeRrd
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Then, Eq. (12.8) applied to Eq. (12.14) and the fact that S,_;(x — y) is R¢-integrable
fort # s in Eq.(12.15) together with the induction hypothesis ensure that

sup sup Enﬁ_i_l(t,x) < 00,
0=<s<t xeRd

and consequently {7, (¢, x),n > 1} is well defined. Moreover, Gronwall’s inequality
(Lemma 15 of Dalang [10]) implies that

sup sup sup Eni(t,x) < 00.
n>00=<t<T xeRd

t

Secondly, we show that the process {7, (¢, x),0 <t <
<T,h

We start with the time increment. For 0 < ¢
x € R? we have

T,x € R?} is L?-continuous.
> O suchthatt +h < T and

Eus1(t +h,x) — nug1 (6. X)]* < C(A; + Ay + A3),

with
t 2
4, =E /0 /Rd [Sttn—s(x —y) = Si—s(x — y)] a(ma (s, y)) F(ds,dy)| ,
+h 2
A =E / A S = ) @l ) Fs, )|
t
t+h
A —E / ds / dYSeanns(r = )b (s )
0 R

2

_ / ds / AySi—s (x — V)b (a(s. 7))
0 R4

First of all, by means of the Lipschitz condition on a, we can get that

A < [1 + sup sup ]Er)i(t,x):|
0<t<T yeRd
td d ‘FS[ —sl® —‘/—"S[_g. 2,
< [ as [ 08 7S me6) - FS@ @)
where

P81 ()) = FS, Q@) = [ el ]

Y [e—h\sw _ 1]2 < e 2=kl
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Then, thanks to Lemma 3.1 and the dominated convergence theorem, 4| converges
to 0 as i — 0. Easier arguments show that A, goes to 0 as 7 — 0. A change of rule,
the Lipschitz condition on b, the Cauchy—Schwartz inequality, and the integrability
of the fundamental solution imply that

2
A3 < CE

/ ds / 4y S — ) [(na(s + b)) — b(na(s. )]
0 R4

2

+CE

h
/ ds/ dySi+n—s(x — y)b(Ma(s, y))
0 R4

t
§C/ ds sup E|[1,(s + h,x) — n.(s, x)|* + Ch.
0

x€RA

The induction hypothesis and Gronwall’s inequality (Lemma 15 of Dalang [10])
prove the right continuity uniformly with respect to the time variable ¢. The left
continuity can be checked in a similar way.

We now study the spatial increment. For ¢ € [0, T, x,z € RY, we have

E[nut1(t,x) — 1u41(2,2)|* < C(B1 + Bo),

with
2
B =E

’

/ / [S12 (5 — 1) — 1=z — )] ala(s. v)) F(ds. dy)
0 R4

t 2
B, =F /0 ds /Rd dy [Si—s(x — ) = Si—s(z— )] b(na (s, ¥))| -

Using the Lipschitz condition on a, we obtain

B, < |:1 + sup sup Enﬁ(l,x)]
0</<T xeRrd
t — o) — —e 2
<[ a5 [ 0@ 1St = 0) = S = )6
< [1+ sup sup Eni(t,x)} / ds / BB EC — 12| FS, (o) (€.
0 R4

0=<t=<T xeRd

Lemma 3.1, the fact that | FS;(e)(§)| < 1, and the dominated convergence theorem
imply again that B; converges to zero as |[x — z| — 0, uniformly in t. In order to
deal with B», the key is the following change of rule:

t 2
B, =F /O ds /Rd dy Si—s(z—=y) [b(a(s,y + (x —2))) = b(a(s. ¥))]| -
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As before, using the Lipschitz condition on b, the Cauchy—Schwartz inequality, the
integrability of the fundamental solution, the induction hypothesis, and Lemma 15
of Dalang [10], we can establish the L?-continuity for the process {n,(t, x),0 <
t <T,xeRY.

Not very different arguments imply that, for any ¢ > 2,

sup sup sup E|n,(t, x)|? < oo.
n>00=<t<T xeRd

Moreover, we can also prove that {1, (¢, x),n > 0} converges uniformly in L to a
limit denoted by 7(¢, x) and that this limit satisfies Eqgs. (12.4) and (12.13).
The uniqueness can be checked by a standard argument. O

4 Holderianity of the Solution

The main result of this section is the following theorem which is a generalization of
the heat equation case [24,25].

Theorem 4.1. Assume that the functions a and b are globally Lipschitz and the
spectral measure satisfies

1 (d§)
/Rd A+ gpyrz =% (12.16)

for some 5 € (0,1). Then, for every T > 0, q > 2, ¢t € [0,T], h > 0 such that
t+hel0,T], x e RY andy, € (0, %), we have

E[n(t + h,x) —n(t,x)|? < Ch"¥; (12.17)

and forevery T >0,q >2,¢t €[0,T], x € RY & € R, and y; € (0,1 —3), we
have
Eln(t,x +9) —n@. x)|? < C|9™*, ifp=2, (12.18)
En(t.x +9) —n@. )" < Cl9)>?72,  ifp<2. (12.19)

Proof. We first prove Eq. (12.17). We can decompose this expectation into three
terms:

En( +h,x) —n(t, x)|? < C(A1 + Ay + Az), (12.20)
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with
t q
M=EB| [ [ 1S =) = St o) Pl
t+h q
Ar=E / /R S = ) (s, ) F(ds,dy)|
t+h
As—E /0 ds /1; Ay S = 9) b5, )

q

_ / ds / dy Si_o(x — y) b(n(s. »))
0 R4

Applying Burkholder’s inequality, the Lipschitz hypothesis on a and Eq. (12.13),
we obtain

t q/2
A <C [ /0 ds /R ) w(dE) [F(Siqtn—s(x — o) — Si—s(x — -))(é‘)]z}

t q/2
<c [ / ds / JAE) [F(Sianos (o) — S,_s(-»@)ﬂ < C[A!+ A,
0 R4
(12.21)

with

t 2 q/2
A} = [/ ds/ p(dg) [e_(erh_s)'f'p —e_(’_s)lflp] } .
0 {lg1>13
) t s » ] » 2 q/2
A2 = [ / d / pldg) [etrthmoer _ o= }
0 {lsl=1}

Integrating first with respect to the time and applying that 1 —e™ < 1 A x, for
x > 0, we have that

rpt 2 q/2
A= / ds/ ju(dg) e 20kl [1 —e—hlf'”] }
LJo {lgl>1}
— /2
_ / n(d§) (1 _e_2,|g|p) [1 _e_hgp]zir
Lers1y 21817

o 2
/ pd5) [1 —e_h‘f\”]zyl [l —e—hlélp]z(l_yl)}q/
L Jqes1y 21817

_/ —th £ u(dg)}q/z < pna [/ wu(d§) T/z,
tei=13  2[817 - (el>1y [E]PO=2D

IA

IA
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Now, using that §p < (1 — 2y;)p, the fact that 1 + [§]*> < |£|?, for |§] > 1,
and Eq. (12.16), we get

L pna ,u(dé)ir/z < Chv |: _ mdd i|q/2 < Chvv
A <h |:/{ <Ch /{ < Ch".

g>1y €17 gl>13 (1 + [€[2)%/2
(12.22)
As |[£] < 1, by the mean-value theorem and Eq. (12.3) we have
t q/2
AT <C [/ ds/ M(dg)}ﬂ} < Che. (12.23)
0 {lE1=1}

Burkholder’s inequality, the Lipschitz hypothesis on a, and Eq. (12.13) imply

t+h a/2
Ay =C [ / ds /1; B F Sy (x = -)(s)F} < C(Ay+A)). (1224)

with

t+h a/2
Aé — |:/ dS/ w(d§) e—2(z‘+h—s)|§|1’j| i

t {lsl=<1}

t+h a/2
A = [ / ds / w(dE) e—2<r+h—s>|s|p] .

t {g1>13

Sincee™ < 1, for x > 0, Eq. (12.3) yields

t+h 4/2
Aj < [ / ds / u(dé):| < Chi/?, (12.25)
t {IE1=1}

Arguing as in Eq. (12.22)

[ p(d§) —2hlE|P ar
Az = /{|s|>1} 2[¢[P <1_e 2 )

_ i w(d§) (1—6_2}"5'1’)2}/1 (l—e_thp)l_zyI q/2
LS qggr=13 1§17

_ q/2
< / n(d§) (1 _e—2h|§|p)2)/1:| < Ch, (12.26)
Leiel=1y 1617

By a change of rule
Az < C(AL + A, (12.27)
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with
q
AL =E

3

h
/ ds / dy Sins (x — ) b((s. »))
0 R4

) q
AP=E :

[ ds / 4y S — y) [0((s + B y)) — b(n(s. y))]
0 R4

Using the integrability of the fundamental solution and the Lipschitz condition on b
and Eq. (12.13), we have

AL < ChY. (12.28)

The integrability of S together with Holder’s inequality and the Lipschitz condition
on b implies that

g—1

/Ot ds [/}Rd dyS;—(x —y)i| !

X U dyS;—s(x —y) In(s + h,y) —n(s, y)Iq} '
]Rd

A3 <CE

q

t
< C/ ds |:/ dy Si—s(x — y):| supE |n(s + h,x) —n(s,x)|7. (12.29)
0 RY xeR

Taking into account Egs. (12.20)—(12.29) and using Gronwall’s inequality as in
Lemma 15 of Dalang [10], we obtain Eq. (12.17).
We now study Eqgs. (12.18) and (12.19). We have

E|n(t, x + 9) — n(t. x)|? < C(A; + Ay), (12.30)

with

q
A =E

’

/ / [Sims(x £ 9 — ¥) = Sies (x — )] an(s. v)) F(ds. dy)
0 R4

q

A =F VO ds /Rd dy [Si—s(x + 0 —y) = Si—s(x — »)] b(n(s,y))

Applying Burkholder’s inequality, the hypothesis on a, and Eq. (12.13), we get
t q/2
Ap=C [/ dS/d p(dE) |F[Si—s(x + 17 — o) = S;—s(x — )] (é‘)lz}
0 R

t /2
< —i(x4+9)E _ —ixt|2 (e 2 1
‘CUO ds/Rd (dg) e e T | FSi—s( )(é)l}

< C(A} + AD), (12.31)
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where

! —i(x —ix£|2 "
A}:[ /0 ds /{S ) [ e |fs,_s(-)(s)|2} ,

t q/2
A2 = d d —i(x+0)E _ —ixg]? FS,_,(e 2} '
I [/0 S/{g>1}“( £) |e e Q1]

The fact that the Fourier transform of S is bounded by 1, the mean-value theorem,
and the property Eq. (12.3) gives that

t q/2
Al < [ / ds / J(de) wsﬂ <cpp. (12.32)
0 {El<1}

Now assume p > 2. Using that |e_i(" TE _ gixé \ < 2 and applying the mean-value
theorem, we have

A= [/o[ @ /{s>1} #e
<c [ | as /{ )

t q/2
<cC [ / ds / (L (d§) [O*7 |g]> e‘z“‘”f”} : (12.33)
0 {lE|>1}

e—i(x+19)$ _ e—ixé
2

2 q/2
|fsf_s(-)(s>|2}

—i(x+9)E _ o—ix |22 4/2
¢ ¢ e—2<r—s>$ﬂ}

2

The integration with respect to the time, the assumptions that p > 2 and y, € (0, 1—
8), the fact that || > 1, and the hypothesis on the spectral measure Eq. (12.16) imply
that

r _ P q/2
A2 < Clo| / (u(dE) |E[P7 w

| Juel-1 201
I I () 7"

fcﬁyzq/ d)—:| fcf}nq[/ :|

1 L {\s\>1}u( : |§[p0—r2) 1 g1y €17

[ u(dg) 1

scwr ([ aim) =ao (1239

If we assume p < 2, we can ensure that

A2 < C|9)P/2, (12.35)
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Indeed, in this case, we use the following different arguments in Eq. (12.33) based
on the mean-value theorem:

pYy2

e ix+0)E _ o—ixé
. < C|9|P |E|P,

2y2 el +9E _ o—ixg
< |-
> <

2

The rest of the proof of Eq. (12.35) is similar to Eq. (12.34).
A change of rule together with the same arguments as in Eq. (12.29) allow us to
obtain

q

2o =E| [ a5 [ 4y se=3) B0y +0) = b )]

t
< C/ ds [/ dy S—s(x — y)i| sup E|n(s,x + %) —n(s,x)|?7. (12.36)
0 R¢ +eR

The estimates Egs.(12.30)—(12.32), (12.34) or Eqgs.(12.35), and (12.36) and
Gronwall’s inequality as in Lemma 15 of Dalang [10] imply Eq.(12.18) or
Eq. (12.19), respectively. O

5 Existence of a Smooth Density

The last result of this paper is the following theorem.

Theorem 5.1. Assume that the spectral measure satisfies Eq. (12.16) for some § €
(O, %) Assume also that the functions a and b are C* with bounded derivatives
of any order and that there exists ag > 0 such that |a(x)| > o, for any x € R.
Then, the law of the solution to Eq. (12.4) is absolutely continuous with respect to
Lebesgue’s measure on R and its density is infinitely differentiable.

For the heat equation, the proof can be found in [20].

Proof of Theorem 5.1. In [20] we prove that the law of the solution to Eq. (12.4) will
be absolutely continuous with respect to Lebesgue’s measure on R and its density
will be infinitely differentiable if the following conditions are satisfied: for fixed
t > 0and x € RY, there exist &g > & > 0 and &3 > O such that 0 < & <
(2e2) A (&2 + €3), positive constants Cy, C,, and C3, and ¢ € [0, ¢] such that for all
pE [07 tO],

P
Co < [Cas [ @) 17806 = Cop” (12.37)

and

P
/ ds/ dy S;(y) < C5p%. (12.38)
0 R4
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First of all, we have that

’ — e 20lEl”
P(p) = /0 ds /1;@ wu(dg) e B = /;W 10(d§) 12%.

On the one hand, since 1 —e™ > X

for any x > 0, we have, for some K > 0,

1+x°
wu(d§) / u(d§)
o(p) > / s G
P20 T 2plelr = Nty T 200607
0
> 7 d&) > Cyp, 12.39
2 T3 27K? /{|s|<1<}“( £)>Cip ( )

where in the last inequality we have applied Eq. (12.3) since  is a nontrivial positive
tempered measure. On the other hand, we decompose @ into two terms:

@(p) = @1(p) + P2(p). (12.40)
with
1 — e~ 207
(p) = dg) —————,
0 /{sm“ TR
1 — e—20lél”

Dy(p) = /{E<K}ﬂ(d§) TR

Taking y = 1 — §, using that 1 —e™ < x A 1, for any x > 0, and Eq. (12.16), we
obtain

< Cyp’. (12.41)

(1 —e 2k’ - y/ [ (dE)
= Jezxy E1P0T T

1 (p) < /{ o MO

Since p is a nontrivial positive tempered measure (see Eq.(12.3)) and that 1 —
e * <1, forany x > 0, we have that

D1(p) = p/

p(dg§) = Cap. (12.42)
{lg1<K}

Since the fundamental solution is R?-integrable for any ¢ # 0, then

P 0
/ ds/ dy Si(y) < 03/ ds < Csp. (12.43)
0 R4 0

Then, taking § € (0,1/2), Egs. (12.39)—(12.43) imply that Eqs. (12.37) and (12.38)
are satisfied for &y = &3 = 1 and &, = 1 — §, and this finishes the proof of this
theorem. |
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Chapter 13
Gaussian Upper Density Estimates for Spatially
Homogeneous SPDEs

Lluis Quer-Sardanyons

Abstract We consider a general class of SPDEs in R? driven by a Gaussian
spatially homogeneous noise which is white in time. We provide sufficient con-
ditions on the coefficients and the spectral measure associated to the noise ensuring
that the density of the corresponding mild solution admits an upper estimate of
Gaussian type. The proof is based on the formula for the densit