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Preface

Jump diffusions are solutions of stochastic differential equations driven by
Lévy processes. Since a Lévy process η(t) can be written as a linear combina-
tion of t, a Brownian motion B(t) and a pure jump process, jump diffusions
represent a natural and useful generalization of Itô diffusions. They have re-
ceived a lot of attention in the last years because of their many applications,
particularly in economics.

There exist today several excellent monographs on Lévy processes. How-
ever, very few of them - if any - discuss the optimal control, optimal stopping
and impulse control of the corresponding jump diffusions, which is the subject
of this book. Moreover, our presentation differs from these books in that it
emphazises the applied aspect of the theory. Therefore we focus mostly on
useful verification theorems and we illustrate the use of the theory by giving
examples and exercises throughout the text. Detailed solutions of some of the
exercises are given in the end of the book. The exercices to which a solution
is provided, are marked with an asterix ∗. It is our hope that this book will
fill a gap in the literature and that it will be a useful text for students, re-
searchers and practitioners in stochastic analysis and its many applications.
Although most of our results are motivated by examples in economics and
finance, the results are general and can be applied in a wide variety of sit-
uations. To emphasize this, we have also included examples in biology and
physics/engineering.

This book is partially based on courses given at the Norwegian School of
Economics and Business Administration (NHH) in Bergen, Norway, during the
Spring semesters 2000 and 2002, at INSEA in Rabat, Morocco in September
2000, at Odense University in August 2001 and at ENSAE in Paris in February
2002.
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1

Stochastic Calculus with Jump diffusions

1.1 Basic definitions and results on Lévy Processes

In this chapter we present the basic concepts and results needed for the applied
calculus of jump diffusions. Since there are several excellent books which give
a detailed account of this basic theory, we will just briefly review it here and
refer the reader to these books for more information.

Definition 1.1. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. An Ft-
adapted process {η(t)}t≥0 = {ηt}t≥0 ⊂ R with η0 = 0 a.s. is called a Lévy
process if ηt is continuous in probability and has stationary, independent in-
crements.

Theorem 1.2. Let {ηt} be a Lévy process. Then ηt has a cadlag version (right
continuous with left limits) which is also a Lévy process.

Proof. See e.g. [P], [S]. ��

In view of this result we will from now on assume that the Lévy processes
we work with are cadlag.

The jump of ηt at t ≥ 0 is defined by

∆ηt = ηt − ηt− . (1.1.1)

Let B0 be the family of Borel sets U ⊂ R whose closure Ū does not contain
0. For U ∈ B0 we define

N(t, U) = N(t, U, ω) =
∑

s:0<s≤t

XU (∆ηs) . (1.1.2)

In other words, N(t, U) is the number of jumps of size ∆ηs ∈ U which occur
before or at time t. N(t, U) is called the Poisson random measure (or jump
measure) of η(·). The differential form of this measure is written N(dt, dz).
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Remark 1.3. Note that N(t, U) is finite for all U ∈ B0. To see this we
proceed as follows: Define

T1(ω) = inf{t > 0; ηt ∈ U}

We claim that T1(ω) > 0 a.s. To prove this note that by right continuity of
paths we have

lim
t→0+

η(t) = η(0) = 0 a.s.

Therefore, for all ε > 0 there exists t(ε) > 0 such that |η(t)| < ε for all
t < t(ε). This implies that η(t) �∈ U for all t < t(ε), if ε < dist(0, U).

Next define inductively

Tn+1(ω) = inf{t > Tn(ω); ∆ηt ∈ U}.

Then by the above argument Tn+1 > Tn a.s. We claim that

Tn → ∞ as n → ∞, a.s.

Assume not. Then Tn → T < ∞. But then

lim
s→T−

η(s) cannot exist.

contradicting the existence of left limits of the paths.

It is well-known that Brownian motion {B(t)}t≥0 has stationary and inde-
pendent increments. Thus B(t) is a Lévy process. Another important example
is the following:

Example 1.4 (The Poisson process). The Poisson process π(t) of intensity
λ > 0 is a Lévy process taking values in N ∪ {0} and such that

P [π(t) = n] =
(λt)n

n!
e−λt ; n = 0, 1, 2, . . .

Theorem 1.5. [P, Theorem 1.35].
(i) The set function U → N(t, U, ω) defines a σ-finite measure on B0 for each
fixed t, ω.

(ii) The set function
ν(U) = E[N(1, U)] (1.1.3)

where E = EP denotes expectation with respect to P , also defines a σ-finite
measure on B0, called the Lévy measure of {ηt}.
(iii) Fix U ∈ B0. Then the process

πU (t) := πU (t, ω) := N(t, U, ω)

is a Poisson process of intensity λ = ν(U).
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Example 1.6 (The compound Poisson process ). Let X(n); n ∈ N be a
sequence of i.i.d. random variables taking values in R with common distribu-
tion µX(1) = µX and let π(t) be a Poisson process of intensity λ, independent
of all the X(n)’s.

The compound Poisson process Y (t) is defined by

Y (t) = X(1) + · · · + X(π(t)) ; t ≥ 0 . (1.1.4)

An increment of this process is given by

Y (s) − Y (t) =
π(s)∑

k=π(t+1)

X(k) ; s > t .

This is independent of X(1), . . . , X(π(t)), and depends only on the difference
(s − t). Thus Y (t) is a Lévy process.

To find the Lévy measure ν of Y (t) note that if U ∈ B0 then

ν(U) = E[N(1, U)] = E
[ ∑

s;0≤s≤1

XU (∆Y (s))
]

= E[(number of jumps) · XU (jump)] = E[π(1)XU (X)] = λµX(U) ,

by independence. We conclude that

ν = λµX . (1.1.5)

This shows that a Lévy process can be represented by a compound Poisson
process if and only if its Lévy measure is finite. Note, however, that there are
many interesting Lévy processes with infinite Lévy measure. See e.g. [B].

Theorem 1.7 (Lévy decomposition [JS]). Let {ηt} be a Lévy process.
Then ηt has the decomposition

ηt = αt + βB(t) +
∫

|z|<R

zÑ(t, dz) +
∫

|z|≥R

zN(t, dz) , (1.1.6)

for some constants α ∈ R, β ∈ R, R ∈ [0,∞]. Here

Ñ(dt, dz) = N(dt, dz) − ν(dz)dt (1.1.7)

is the compensated Poisson random measure of η(·) and B(t) is an indepen-
dent Brownian motion. For each A ∈ B0 the process

Mt := Ñ(t, A) is a martingale. (1.1.8)

If α = 0 and R = ∞, we call ηt a Lévy martingale .
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Theorem 1.8. We can always choose R = 1. If

E[ηt] < ∞ for all t ≥ 0

then we may choose R = ∞ and hence write

ηt = αt + βB(t) +
∫
R

zÑ(t, dz).

(See [S, Theorem 25.3]).

Theorem 1.9. [P]. A Lévy process is a strong Markov process.

Theorem 1.10 (The Lévy-Khintchine formula [P]). Let {ηt} be a Lévy

process with Lévy measure ν. Then
∫

R

min(1, z2)ν(dz) < ∞ and

E[eiuηt ] = etψ(u) , u ∈ R (1.1.9)

where

ψ(u) = − 1
2σ2u2 + iαu +

∫
|z|<R

{eiuz − 1 − iuz}ν(dz) +
∫

|z|≥R

(eiuz − 1)ν(dz) .

(1.1.10)
Conversely, given constants α, σ2 and a measure ν on R s.t.∫

R

min(1, z2)ν(dz) < ∞ ,

there exists a Lévy process η(t) (unique in law) such that (1.1.9–1.1.10) hold.

Note: It is possible that
∫

|z|≤R

|z|ν(dz) = ∞.

Theorem 1.11. [P, Corollary p. 48]. A Lévy process is a semimartingale.

Definition 1.12. [P]. Let Ducp denote the space of cadlag adapted processes,
equipped with the topology of uniform convergence on compacts in probability
(ucp) : Hn → H ucp if for all t > 0 sup

0≤s≤t
|Hn(s) − H(s)| → 0 in probability

(An → A in probability if for all ε > 0 there exists nε ∈ N such that n ≥ nε ⇒
Prob.(|An − A| > ε) < ε).

Let Lucp denote the space of adapted caglad processes (left continuous with
right limits), equipped with the ucp topology. If H(t) is a step function of the
form

H(t) = H0X{0}(t) +
∑

i

HiX(Ti,Ti+1](t) ,
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where Hi ∈ FTi and 0 = T0 ≤ T1 ≤ · · · ≤ Tn+1 < ∞ are Ft-stopping times
and X is cadlag, we define

JXH(t) :=

t∫
0

HsdXs := H0X0 +
∑

i

Hi(XTi+1∧t − XTi∧t) ; t ≥ 0.

Theorem 1.13. [P, p. 51]. Let X be a semimartingale. Then the mapping
JX can be extended to a continuous linear map

JX : Lucp → Ducp .

This construction allows us to define stochastic integrals of the form

t∫
0

H(s)dηs

for all H ∈ Lucp. (See also Remark 1.18). In view of the decomposition (1.1.6)
this integral can be split into integrals with respect to ds, dB(s), Ñ(ds, dz)
and N(ds, dz). This makes it natural to consider the more general stochastic
integrals of the form

X(t) = X(0) +

t∫
0

α(s, ω)ds +

t∫
0

β(s, ω)dB(s) +

t∫
0

∫
R

γ(s, z, ω)N̄(ds, dz)

(1.1.11)
where the integrands are satisfying the appropriate conditions for the integrals
to exist and we for simplicity have put

N̄(ds, dz) =

{
N(ds, dz) − ν(dz)ds if |z| < R

N(ds, dz) if |z| ≥ R ,

with R as in Theorem 1.7. As is customary we will use the following short
hand differential notation for processes X(t) satisfying (1.1.11):

dX(t) = α(t)dt + β(t)dB(t) +
∫
R

γ(t, z)N̄(dt, dz) . (1.1.12)

We call such processes Itô-Lévy processes .

1.2 The Itô formula and related results

We now come to the important Itô formula for Itô-Lévy processes:
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If X(t) is given by (1.1.12) and f : R
2 → R is a C2 function, is the process

Y (t) := f(t, X(t)) again an Itô-Lévy process and if so, how do we represent it
in the form (1.1.12)?

If we argue heuristically and use our knowledge of the classical Itô formula
it is easy to guess what the answer is:

Let X(c)(t) be the continuous part of X(t), i.e. X(c)(t) is obtained by
removing the jumps from X(t). Then an increment in Y (t) stems from an
increment in X(c)(t) plus the jumps (coming from N(·, ·)). Hence in view of
the classical Itô formula we would guess that

dY (t) =
∂f

∂t
(t, X(t))dt +

∂f

∂x
(t, X(t))dX(c)(t) +

1
2

∂2f

∂x2
(t, X(t)) · β2(t)dt

+
∫
R

{f(t, X(t−) + γ(t, z)) − f(t, X(t−))}N(dt, dz) .

It can be proved that our guess is correct. Since

dX(c)(t) =
(
α(t) −

∫
|z|<R

γ(t, z)ν(dz)
)
dt + β(t)dB(t) ,

this gives the following result:

Theorem 1.14 (The 1-dimensional Itô formula [BL], [A], [P]). Suppose
X(t) ∈ R is an Itô-Lévy process of the form

dX(t) = α(t, ω)dt + β(t, ω)dB(t) +
∫
R

γ(t, z, ω)N̄(dt, dz) , (1.2.1)

where

N̄(dt, dz) =

{
N(dt, dz) − ν(dz)dt if |z| < R

N(dt, dz) if |z| ≥ R
(1.2.2)

for some R ∈ [0,∞].
Let f ∈ C2(R2) and define Y (t) = f(t, X(t)). Then Y (t) is again an

Itô-Lévy process and

dY (t) =
∂f

∂t
(t, X(t))dt +

∂f

∂x
(t, X(t))[α(t, ω)dt + β(t, ω)dB(t)]

+
1
2
β2(t, ω)

∂2f

∂x2
(t, X(t))dt

+
∫

|z|<R

{
f(t, X(t−) + γ(t, z)) − f(t, X(t−))

−∂f

∂x
(t, X(t−))γ(t, z)

}
ν(dz)dt

+
∫
R

{f(t, X(t−) + γ(t, z)) − f(t, X(t−))}N̄(dt, dz) . (1.2.3)
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Note: If R = 0 then N̄ = N everywhere
If R = ∞ then N̄ = Ñ everywhere.

Example 1.15 (The geometric Lévy process ). Consider the stochastic
differential equation

dX(t) = X(t−)
[
αdt + βdB(t) +

∫
R

γ(t, z)N̄(dt, dz)
]
, (1.2.4)

where α, β are constants and γ(t, z) ≥ −1. To find the solution X(t) of this
equation we rewrite it as follows:

dX(t)
X(t−)

= αdt + βdB(t) +
∫
R

γ(t, z)N̄(dt, dz) .

Now define
Y (t) = lnX(t) .

Then by Itô’s formula,

dY (t) =
X(t)
X(t)

[αdt + βdB(t)] − 1
2β2X−2(t)X2(t)dt

+
∫

|z|<R

{ln(X(t−) + γ(t, z)X(t−)) − ln(X(t−))

− X−1(t−)γ(t, z)X(t−)}ν(dz)dt

+
∫
R

{ln(X(t−) + γ(t, z)X(t−)) − ln(X(t−))}N̄(dt, dz)

=
(
α − 1

2β2
)
dt + βdB(t) +

∫
|z|<R

{ln(1+γ(t, z))−γ(t, z)}ν(dz)dt

+
∫
R

ln(1+γ(t, z))N̄(dt, dz).

Hence

Y (t) = Y (0) +
(
α − 1

2β2
)
t + βB(t) +

t∫
0

∫
|z|<R

{ln(1 + γ(s, z)) − γ(s, z)}ν(dz)ds

+

t∫
0

∫
R

ln(1+γ(s, z))N̄(ds, dz)

and this gives the solution
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X(t) = X(0) exp
{(

α − 1
2β2

)
t + βB(t)

+

t∫
0

∫
|z|<R

{ln(1 + γ(s, z)) − γ(s, z)}ν(dz)ds

+

t∫
0

∫
R

ln(1 + γ(s, z))N̄(ds, dz)
}
. (1.2.5)

In analogy with the diffusion case (N = 0) we call this process X(t) a ge-
ometric Lévy process. It is often used as a model for stock prices. See e.g.
[B].

Next we formulate the corresponding multi-dimensional version of Theo-
rem 1.14:

Theorem 1.16 (The multi-dimensional Itô formula). Let X(t) ∈ R
n

be an Itô-Lévy process of the form

dX(t) = α(t, ω)dt + σ(t, ω)dB(t) +
∫

Rn

γ(t, z, ω)N̄(dt, dz) , (1.2.6)

where α : [0, T ]× Ω → R
n, σ : [0, T ]× Ω → R

n×m and γ : [0, T ]× R
n × Ω →

R
n×� are adapted processes such that the integrals exist. Here B(t) is an m-

dimensional Brownian motion and

N̄(dt, dz)T = (N̄1(dt, dz1), . . . , N̄�(dt, dz�))
= (N1(dt, dz1) −X|z1|<R1ν1(dz1)dt, . . . , N�(dt, dz�) −X|z�|<R�

ν�(dz�)dt) ,

where {Nj} are independent Poisson random measures with Lévy measures νj

coming from � independent (1-dimensional) Lévy processes η1, . . . , η�.

Note that each column γ(k) of the n× � matrix γ = [γij ] depends on z only
through the kth coordinate zk, i.e.

γ(k)(t, z, ω) = γ(k)(t, zk, ω) ; z = (z1, · · · , z�) ∈ R
�.

Thus the integral on the right of (1.2.6) is just a shorthand matrix no-
tation. When written out in detail component number i of X(t) in (1.2.6),
Xi(t), gets the form

dXi(t) =αi(t, ω)dt +
m∑

j=1

σij(t, ω)dBj(t)

+
�∑

j=1

∫
R

γij(t, zj , ω)N̄j(dt, dzj) ; 1 ≤ i ≤ n.

(1.2.7)
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Let f ∈ C1,2([0, T ]) × R
n; R). Put Y (t) = f(t, X(t)). Then

dY (t) =
∂f

∂t
dt +

n∑
i=1

∂f

∂xi
(αidt + σidB(t)) + 1

2

n∑
i,j=1

(σσT )ij
∂2f

∂xi∂xj
dt

+
�∑

k=1

∫
|zk|<Rk

{
f(t, X(t−) + γ(k)(t, zk)) − f(t, X(t−))

−
n∑

i=1

γ
(k)
i (t, zk)

∂f

∂xi
(X(t−))

}
νk(dzk)dt

+
�∑

k=1

∫
R

{f(t, X(t−) + γ(k)(t, zk)) − f(t, X(t−))}N̄k(dt, dzk)

(1.2.8)

where γ(k) ∈ R
n is column number k of the n × � matrix γ = [γik] and

γ
(k)
i = γik is the coordinate number i of γ(k).

Theorem 1.17 (The Itô-Lévy isometry). Let X(t) ∈ R
n be as in (1.2.6)

but with X(0) = 0 and α = 0. Then

E[X2(T )] = E
[ T∫

0

{ n∑
i=1

m∑
j=1

σ2
ij(t) +

n∑
i=1

�∑
j=1

∫
R

γ2
ij(t, zj)νj(dzj)

}
dt
]

=
n∑

i=1

E
[ T∫

0

{ m∑
j=1

σ2
ij(t) +

�∑
j=1

∫
R

γ2
ij(t, zj)νj(dzj)

}
dt
]

(1.2.9)

provided that the right hand side is finite.

Proof. This follows from the Itô formula applied to f(t, x) = x2 = |x|2. We
omit the details. ��

Remark 1.18. As a special case of Theorem 1.17 assume that

X(t) = η(t) =
∫
R

zÑ(dt, dz) ∈ R

with E[X2(T )] = T
∫
R

z2ν(dz) < ∞. Then we get the isometry

E
[( T∫

0

H(t)dη(t)
)2]

= E
[ T∫

0

H2(t)dt
]
·
∫
R

z2ν(dz)

for all H ∈ Lucp (see Definition 1.12) such that H ∈ L2([0, T ]× Ω), i.e. such
that
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∥∥H∥∥2

L2([0,T ]×Ω)
:= E

[ T∫
0

H2(t)dt
]

< ∞ .

Using this we can in the usual way extend the definition of the integral

T∫
0

Y (t)dη(t) ∈ L2(Ω)

to all processes Y (t) which are limits in L2([0, T ] × Ω) of processes Hn(t) ∈
Lucp ∩ L2([0, T ]× Ω). We will call such processes Y (t) predictable processes .

1.3 Lévy stochastic differential equations

The geometric Lévy process is an example of a Lévy diffusion , i.e. the solution
of a stochastic differential equation (SDE) driven by Lévy processes.

Theorem 1.19 (Existence and uniqueness of solutions of Lévy SDEs).
Consider the following Lévy SDE in R

n: X(0) = x0 ∈ R
n and

dX(t) = α(t, X(t))dt + σ(t, X(t))dB(t) +
∫

Rn

γ(t, X(t−), z)Ñ(dt, dz) (1.3.1)

where α : [0, T ]×R
n → R

n, σ : [0, T ]×R
n → R

n×m and γ : [0, T ]×R
n×R

n →
R

n×� satisfy the following conditions

(At most linear growth) There exists a constant C1 < ∞ such that

‖σ(t, x)‖2 + |α(t, x)|2 +
∫
R

�∑
k=1

|γk(t, x, z)|2νk(dzk) ≤ C1(1 + |x|2)

for all x ∈ R
n

(Lipschitz continuity) There exists a constant C2 < ∞ such that

‖σ(t, x) − σ(t, y)‖2 + |α(t, x) − α(t, y)|2

+
�∑

k=1

∫
R

|γ(k)(t, x, zk) − γ(k)(t, y, zk)|2νk(dzk) ≤ C2|x − y|2 ;

for all x, y ∈ R
n .

Then there exists a unique cadlag adapted solution X(t) such that

E[|X(t)|2] < ∞ for all t .

Solutions of Lévy SDEs in the time homogeneous case, i.e. when α(t, x) =
α(x), σ(t, x) = σ(x) and γ(t, x, z) = γ(x, z), are called jump diffusions (or
Lévy diffusions).
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Theorem 1.20. A jump diffusion is a strong Markov process.

Proof. See [P, Theorem V.32]. ��

Definition 1.21. Let X(t) ∈ R
n be a jump diffusion. Then the generator A

of X is defined on functions f : R
n → R by

Af(x) = lim
t→0+

1
t

{
Ex[f(X(t))] − f(x)

}
(if the limit exists),

where Ex[f(X(t))] = E[f(X(x)(t))], X(x)(0) = x.

Theorem 1.22. Suppose f ∈ C2
0 (Rn). Then Af(x) exists and is given by

Af(x) =
n∑

i=1

αi(x)
∂f

∂xi
(x) + 1

2

n∑
i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj
(x)

+
∫
R

�∑
k=1

{f(x + γ(k)(x, z)) − f(x) −∇f(x) · γ(k)(x, z)}νk(dzk) .

(1.3.2)

From now on we define Af(x) by the expression (1.3.2) for all f such that
the partial derivatives of f and the integrals in (1.3.2) exist at x.

Theorem 1.23 (The Dynkin formula I). Let X(t) ∈ R
n be a jump diffu-

sion and let f ∈ C2
0 (Rn). Let τ be a stopping time such that

Ex[τ ] < ∞ .

Then

Ex[f(X(τ))] = f(x) + Ex
[ τ∫

0

Af(X(s))ds
]
.

Proof. This follows by combining the Itô formula (1.2.8) with the formula (1.3.2)
for A and taking expectation. ��

This version is usually strong enough for applications in the case when
there are no jumps (N = 0). However, for jump diffusions we need the follow-
ing stronger, localized version:

Theorem 1.24 (The Dynkin formula II). Let X(t) ∈ R
n be a jump

diffusion, G ⊂ R
n be an open set and let f ∈ C2(G) ∩ C(Ḡ). Let τ < ∞ be a

stopping time. Suppose that
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τ ≤ τG := inf{t > 0; X(t) �∈ G} (1.3.3)
X(τ) ∈ Ḡ a.s. (1.3.4)

Ex
[
|f(X(τ))| +

τ∫
0

{
|Af(X(t))| + |σT (X(t))∇f(X(t))|2

+
�∑

k=1

∫
R

∣∣f(X(t) + γ(k)(X(t), zk)) − f(X(t))
∣∣2νk(dzk)}dt

]
< ∞ . (1.3.5)

Then we have

Ex[f(X(τ))] = f(x) + Ex
[ τ∫

0

(Af)(X(t))dt
]
.

Definition 1.25. In general, if {ψm}∞m=1 and g are functions defined on a set
G ⊂ R

n, we say that ψm → g pointwise dominatedly in G if ψm(x) → g(x)
for all x ∈ G and there exists a constant C < ∞ such that

|ψm(x)| ≤ C|g(x)| for all x ∈ G, m = 1, 2, . . .

Proof of Theorem 1.24.

Choose fm ∈ C2
0 (Rn) such that fm → f pointwise dominatedly in Ḡ and

∂fm

∂xi
→ ∂f

∂xi
, ∂2fm

∂xi∂xj
→ ∂2f

∂xi∂xj
and Afm → Af pointwise dominatedly in G for

all i, j = 1, . . . , n. Then apply Theorem 1.23 to each fm and τ ∧k, k = 1, 2, . . .
Let m, k → ∞ and apply the dominated convergence theorem. ��

1.4 The Girsanov theorem and applications

The Girsanov theorem and the related concept of an equivalent local martin-
gale measure (ELMM) are important in the applications of stochastic analysis
to finance. In this chapter we first give a general semimartingale discussion
and then we apply it to Itô-Lévy processes. We refer to [Ka] for more details.

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. Let Q be an-
other probability measure on FT . We say that Q is equivalent to P | FT

if P | FT � Q and Q � P | FT , or, equivalently, if P and Q have the same
zero sets in FT . By the Radon-Nikodym theorem this is the case if and only
if we have

dQ(ω) = Z(T )dP (ω) and dP (ω) = Z−1(T )dQ(ω) on FT

for some FT -measurable random variable Z(T ) > 0 a.s. P . In that case we
also write
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dQ

dP
= Z(T ) and

dP

dQ
= Z−1(T ) on FT . (1.4.1)

We first make a simple, but useful observation:

Lemma 1.26. Suppose Q � P with
dQ

dP
= Z(T ) on FT . Then

Q | Ft � P | Ft for all t ∈ [0, T ] and

Z(t) :=
d(Q | Ft)
d(P | Ft)

= EP [Z(T ) | Ft]; 0 ≤ t ≤ T. (1.4.2)

In particular, Z(t) is a P -martingale.

Proof. Since P (G) = 0 ⇒ Q(G) = 0 for all G ∈ FT ⊇ Ft, it is clear that
Q | Ft � P | Ft. Choose F ∈ Ft. Then

EP

[
F · E[Z(T ) | Ft]

]
= EP

[
EP [FZ(T ) | Ft]

]
= EP [FZ(T )] = EQ[F ] = EP [F · Z(t)].

Since this holds for all F ∈ Ft we conclude that

EP [Z(T ) | Ft] = Z(t), as claimed. ��

Definition 1.27. Let X(t), Y (t) ∈ R
n be two cadlag semimartingales. The

quadratic covariation of X(·) and Y (·), denoted by [X, Y ](·), is the unique
semimartingale such that

X(t) · Y (t) = X(0) · Y (0) +

t∫
0

X(s−) · dY (s) +

t∫
0

Y (s−) · dX(s) + [X, Y ](t).

Example 1.28. Let

dXi(t) = αi(t, ω)dt + σi(t, ω)dB(t) +
∫
R

γi(t, z)Ñ(dt, dz); i = 1, 2

be two Itô-Lévy processes. Then by the Itô formula (Theorem 1.16) we have
(see Exercise 1.7)

d(X1(t)X2(t)) = X1(t−)dX2(t) + X2(t−)dX1(t) + σ1(t)σ2(t)dt

+
∫
R

γ1(t, z)γ2(t, z)N(dt, dz).

Hence in this case the quadratic covariation is
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[X1,X2](t) =

t∫
0

σ1(s)σ2(s)ds +

t∫
0

∫
R

γ1(s, z)γ2(s, z)N(ds, dz)

=

t∫
0

[
σ1(s)σ2(s) +

∫
R

γ1(s, z)γ2(s, z)ν(dz)
]
ds

+

t∫
0

∫
R

γ1(s, z)γ2(s, z)Ñ(ds, dz).

Recall that a semimartingale M(t) is called a local martingale (with respect
to P ) if there exists an increasing sequence of (Ft−) stopping times τn such
that lim

n→∞
τn = ∞ a.s. and

M(t ∧ τn) is a martingale with respect to P for all n.

Theorem 1.29 (Girsanov theorem for semimartingales). Let Q be a
probability measure on FT and assume that Q is equivalent to P on FT , with

dQ(ω) = Z(t)dP (ω) on Ft; t ∈ [0, T ].

(See Lemma 1.26). Assume that Z(t) is continuous on [0, T ]. Let M(t) be a
local P -martingale. Then the process M̂(t) defined by

M̂(t) := M(t) −
t∫

0

d[M, Z](s)
Z(s)

is a local Q-martingale.

Sketch of proof. By integration by parts we have

M̂(t)Z(t) − M̂(0)Z(0) =

t∫
0

M̂(s−)dZ(s) +

t∫
0

Z(s)dM̂(s) + [M, Z](t)

=

t∫
0

M̂(s−)dZ(s) +

t∫
0

Z(s)dM(s) −
t∫

0

Z(s)
d[M, Z](s)

Z(s)
+ [M, Z](t)

=

t∫
0

M̂(s−)dZ(s) +

t∫
0

Z(s)dM(s).

Therefore, since Z(t) is a local P -martingale (Lemma 1.26) we conclude that
M̂(t)Z(t) is a local P -martingale. But then M̂(t) is a local Q-martingale, since
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EQ[M̂(τ) | Ft] =
EP [M̂(τ)Z(τ) | Ft]

EP [Z(τ) | Ft]
=

M̂(t)Z(t)
Z(t)

= M̂(t)

for stopping times τ ≥ t.

We now apply this to two important special cases:

Theorem 1.30 (Girsanov theorem I for Itô processes). Let X(t) be an
n-dimensional Itô process of the form

dX(t) = α(t, ω)dt + σ(t, ω)dB(t); 0 ≤ t ≤ T

where α(t) = α(t, ω) ∈ R
n, σ(t) = σ(t, ω) ∈ R

n×m and B(t) ∈ R
m. Assume

that there exists a process θ(t) ∈ R
m such that

σ(t)θ(t) = α(t) for a.a. (t, ω) ∈ [0, T ]× Ω (1.4.3)

and such that the process Z(t) defined for 0 ≤ t ≤ T by

Z(t) := exp
{
−

t∫
0

θ(s)dB(s) − 1
2

t∫
0

θ2(s)ds
}

(1.4.4)

exists. Define a measure Q on FT by

dQ(ω) = Z(T )dP (ω) on FT . (1.4.5)

Assume that
EP [Z(T )] = 1. (1.4.6)

Then Q is a probability measure on FT , Q is equivalent to P and X(t) is a
local martingale with respect to Q.

Remark 1.31. Such a measure Q is called an equivalent local martingale mea-
sure for X(t).

Proof. Put M(t) =
t∫
0

σ(s, ω)dB(s); 0 ≤ t ≤ T . Then by Theorem 1.29, the

process

M̂(t) :=

t∫
0

σ(s)dB(s) − d[M, Z](t)
Z(t)

is a local Q-martingale. Since

dZ(t) = −θ(t)Z(t)dB(t)

we have

d[M, Z](t)
Z(t)

=
−σ(t)θ(t)Z(t)

Z(t)
dt = −σ(t)θ(t)dt = −α(t)dt.
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Hence

M̂(t) =

t∫
0

σ(s)dB(s) −
t∫

0

(−α(s))ds = X(t)

is a local Q-martingale by Theorem 1.29. ��

We also state without proof the following related version of the Girsanov
theorem for Itô processes:

Theorem 1.32 (Girsanov theorem II for Itô diffusions ). Let X(t), θ(t)
and Q be as defined in Theorem 1.30. Assume that the Novikov condition
holds, i.e.

EP

[
exp

(
1
2

T∫
0

θ2(s)ds
)]

< ∞ . (1.4.7)

Then Q is a probability measure on FT , the process

B̂(t) :=

t∫
0

θ(s)ds + B(t); 0 ≤ t ≤ T (1.4.8)

is a Brownian motion with respect to Q and expressed in terms of B̂(t) we
have

dX(t) = σ(t, ω)dB̂(t); 0 ≤ t ≤ T. (1.4.9)

Finally we turn to the Girsanov theorem for jump diffusions. First we
need a result about how the probabilistic properties of the pure jump process
N(t, U) change under a change of probability law. The following result a
special case of Theorem 3.24 and Theorem 5.19 in [JS] (see also [C, Theorem
3.2]). We refer the reader to these sources for a proof and more details.

Lemma 1.33. Let θ(s, z) ≤ 1 be a process such that

Z(t) := exp
{ t∫

0

∫
R

ln(1 − θ(s, z))Ñ(ds, dz)

+

t∫
0

∫
R

{ln(1 − θ(s, z)) + θ(s, z)}ν(dz)ds
}

exists for 0 ≤ t ≤ T . Define a measure Q on FT by

dQ(ω) = Z(T )dP (ω).

Assume that
EP [Z(T )] = 1.
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Then Q is a probability measure on FT and if we define the random measure
ÑQ(·, ·) by

ÑQ(dt, dz) := N(dt, dz) − (1 − θ(t, z))ν(dz)dt (1.4.10)

then
t∫

0

∫
R

ÑQ(ds, dz) =

t∫
0

∫
R

N(ds, dz) −
t∫

0

∫
R

(1 − θ(s, z))ν(dz)ds

is a Q-local martingale.

Theorem 1.34 (Girsanov theorem I for jump processes). Let X(t) be
a 1-dimensional Itô-Lévy process of the form

dX(t) = α(t, ω)dt +
∫
R

γ(t, z)Ñ(dt, dz). (1.4.11)

Assume that there exists a process θ(s, z) ≤ 1 such that∫
R

γ(t, z)θ(t, z)ν(dz) = α(t) for a.a. (t, ω) (1.4.12)

and such that the process Z(t) defined by

Z(t) = exp
{ t∫

0

∫
R

ln(1 − θ(s, z))Ñ(ds, dz)

+

t∫
0

∫
R

{ln(1 − θ(s, z)) + θ(s, z)}ν(dz)ds
}

(1.4.13)

exists for 0 ≤ t ≤ T . Define a measure Q on FT by

dQ(ω) = Z(T )dP (ω). (1.4.14)

Assume that
EP [Z(T )] = 1. (1.4.15)

Then Q is an equivalent local martingale measure for X(t).

Proof. By Lemma 1.33 and (1.4.11) we have
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dX(t) = α(t)dt +
∫
R

γ(t, z)N(dt, dz) −
∫
R

γ(t, z)ν(dz)dt

= α(t)dt +
∫
R

γ(t, z){ÑQ(dt, dz) + (1 − θ(t, z))ν(dz)dt}

−
∫
R

γ(t, z)ν(dz)dt

=
∫
R

γ(t, z)ÑQ(dt, dz) +
[
α(t) −

∫
R

γ(t, z)θ(t, z)ν(dz)
]
dt

=
∫
R

γ(t, z)ÑQ(dt, dz),

which is a local Q-martingale. ��

Similarly, in the n-dimensional case we get:

Theorem 1.35 (Girsanov theorem II for jump processes). Let X(t)
be an n-dimensional Itô-Lévy process of the form

dX(t) = α(t)dt +
∫

Rn

γ(t, z)Ñ(dt, dz),

where α(t) = α(t, ω) ∈ R
n, γ(t, z) ∈ R

n×� and Ñ(dt, dz) = (Ñ1(dt, dz1), . . . ,
Ñ�(dt, dz�)) is �-dimensional. Assume that there exists a process θ(t, z) =
(θ1(t, z), . . . , θ�(t, z))T ∈ R

� such that θj(s, z) ≤ 1 and

�∑
j=1

∫
R

γij(t, zj)θj(t, zj)νj(dzj) = αi(t); i = 1, . . . , n, t ∈ [0, T ] (1.4.16)

and such that the process

Z(t) := exp
{ �∑

j=1

t∫
0

∫
R

[
ln(1 − θj(s, zj))Nj(ds, dzj) + θj(s, zj)νj(dzj)ds

]}
exists for 0 ≤ t ≤ T . Define a measure Q on FT by

dQ(ω) = Z(T )dP (ω).

Assume that
E[Z(T )] = 1.

Then Q is an equivalent local martingale measure for X(t).
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Example 1.36.

(i) Suppose X(t) = π(t) :=
∫
R

zÑ(t, dz) ∈ R is a Poisson process. Then

ν(dz) = δz1(dz) for some z1 ∈ R \ {0}

and condition (1.4.12) gets the form

γ(t, z1)θ(t, z1) = α(t); t ∈ [0, T ]. (1.4.17)

This corresponds to the equation (1.4.3) in the Brownian motion case. Note
that there is at most one solution θ(t, z1) of (1.4.17) (unless α(t) = γ(t, z1) =
0).

(ii) Next, suppose ν is supported on n points z1, . . . , zn. Then (1.4.16) gets
the form

n∑
j=1

γ(t, zj)θ(t, zj)ν({zj}) = α(t); t ∈ [0, T ].

For each t ∈ [0, T ] this is one linear equation in the n unknowns θ(t, z1), . . . ,
θ(t, zn). So unless in degenerate cases this equation will have infinitely many
solutions and – under some conditions on

{
γ(t, zj)

}n

j=1
– also infinitely many

solutions satisfying θ(t, zj) ≤ 1. This corresponds to infinitely many equivalent
local martingale measures, which again is equivalent to incompleteness of the
associated financial market, according to the Second Fundamental Theorem
of Asset Pricing (see e.g. [DS], [LS]).

1.5 Application to finance

It has been argued (see e.g. [EK], [B-N], [Sc], [Eb] and [CT]) that Lévy pro-
cesses are relevant in mathematical finance, in particular in the modelling of
stock prices.

Consider the following Lévy version of the Black-Scholes market:

(Bond price) dS0(t) = rS0(t)dt; S0(0) = 1

(Stock price) dS1(t) = S1(t−)[µ dt + γ dη(t)]; S1(0) = x > 0

where r, µ and γ �= 0 are constants and

η(t) =

t∫
0

∫
R

zÑ(dt, dz)

is a pure jump Lévy martingale. To ensure that S1(t) ≥ 0 for all t ≥ 0 we
assume as before that γz ≥ −1 a.s. ν. Assume in addition that
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R

ν(dz) >
µ − r

γ
, (1.5.1)

i.e. that the total mass of the jump measure (Lévy measure) ν exceeds µ−r
γ .

The normalized stock price S̄1(t) is given by

S̄1(t) =
1

S0(t)
S1(t) = e−ρtS1(t).

Note that

dS̄1(t) = S̄1(t−)[(µ − r)dt + γ dη(t)]; S̄1(0) = x.

We seek an equivalent local martingale measure Q of the process S̄1(t).
To this end we apply Theorem 1.34 and try to find a solution θ(z) ≤ 1 of

the equation (1.4.12), which in this case gets the form∫
R

θ(z)ν(dz) =
µ − r

γ
. (1.5.2)

By (1.5.1) we see that if A ⊂ R with µ−r
γ < ν(A) < ∞ then

θ(z) =
µ − r

γν(A)
XA(z)

is a possible solution. If ν is concentrated on one point z0, i.e. if

ν(R) = ν({z0})

(which means that η(t) is a Poisson process multiplied by z0) then this is the
only solution. On the other hand, if there exist two sets A, B ⊂ (−1,∞) such
that A ∩ B = ∅ and

ν(A) > 0, ν(B) > 0 (1.5.3)

then we see that there are infinitely many solutions θ(z) of (1.5.2) such that
θ(z) < 1.

Fix a solution θ(z) < 1 of (1.5.2) and define

Z(t) = Zθ(t) = exp
{ t∫

0

∫
R

ln(1 − θ(z))N(ds, dz) +
µ − r

γ
t
}

; 0 ≤ t ≤ T

and
dQ = dQθ = Zθ(T )dP on FT .

Then by Lemma 1.33 S̄1(t) is a local martingale with respect to Q.
We now discuss the concept of arbitrage in this market. For more infor-

mation on the mathematics of finance see e.g. [KS] or [Ø1, Chapter 12] and
the references therein.
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A portfolio in this market is a predictable process φ(t) = (φ0(t), φ1(t)) ∈
R

2 such that
T∫

0

{φ2
0(s) + φ2

1(s)}ds < ∞ a.s. P . (1.5.4)

The corresponding wealth process V φ(t) is defined by

V φ(t) = φ0(t)S0(t) + φ1(t)S1(t); 0 ≤ t ≤ T. (1.5.5)

We say that (φ0, φ1) is self-financing if V φ(t) is also given by

V φ(t) = V φ(0) +

t∫
0

φ0(s)dS0(s) +

t∫
0

φ1(s)dS1(s). (1.5.6)

If, in addition, {
V φ(t)

}
t∈[0,T ]

is lower bounded (1.5.7)

we say that φ is admissible and write φ ∈ A0. A portfolio φ ∈ A0 is called an
arbitrage if

V φ(0) = 0, V φ(T ) ≥ 0 and P [V φ(T ) > 0] > 0. (1.5.8)

Does this market have an arbitrage? To answer this we combine (1.5.5) and
(1.5.6) to get

φ0(t) = e−rt(V φ(t) − φ1(t)S1(t))

and

dV φ(t) = rV φ(t) + φ1(t)S1(t−)
[
(µ − r)dt + γ

∫
R

zÑ(dt, dz)
]
.

From this we obtain

d(e−rtV φ(t)) = e−rtφ1(t)S1(t−)
[
(µ − r)dt + γ

∫
R

zÑ(dt, dz)
]

or

e−rtV φ(t) = V φ(0) +

t∫
0

e−rsφ1(s)S1(s−)
[
(µ − r)ds + γ

∫
R

zÑ(ds, dz)
]
.

Therefore e−rtV φ(t) is a lower bounded local martingale, and hence a super-
martingale, with respect to Q. But then

0 = EQ[V φ(0)] ≥ EQ[e−rT V φ(T )],

which shows that (1.5.8) cannot hold.
We conclude that there is no arbitrage in this market (if (1.5.1) holds).
This example illustrates the First Fundamental Theorem of Asset Pricing,

which states the connection between
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(i) the existence of an equivalent local martingale measure and
(ii) the nonexistence of arbitrage, or No Free Lunch with Vanishing Risk

(NFLVR) to be more precise. See e.g. [DS], [LS].

1.6 Exercises

Exercise* 1.1. Suppose

dX(t) = αdt + σdB(t) +
∫
R

γ(z)N̄(dt, dz), X(0) = x ∈ R,

where α, σ are constants, γ : R → R is a given function.

(i) Use Itô’s formula to find dY (t) when

Y (t) = exp(X(t)) .

(ii) How do we choose α, σ and γ(z) if we want Y (t) to solve the SDE

dY (t) = Y (t−)
[
βdt + θdB(t) + λ

∫
R

zN̄(dt, dz)
]
,

for given constants, β, θ and λ?

Exercise* 1.2. Solve the following Lévy SDEs:

(i) dX(t) = (m − X(t))dt + σdB(t) + γ

∫
R

zN̄(dt, dz); X(0) = x ∈ R

(m, σ, γ constants) (the mean-reverting Lévy-Ornstein-Uhlenbeck process)

(ii) dX(t) = αdt + γ X(t−)
∫
R

zN̄(dt, dz); X(0) = x ∈ R

(α, γ constants, γ z > −1 a.s. ν).[
Hint: Try to multiply the equation by

F (t) := exp
{
−

t∫
0

∫
R

θ(z)N̄(dt, dz) +
∫

|z|<R

(eθ(z) − 1 − θ(z))ν(dz) · t
}

,

for suitable θ(z).
]

Exercise 1.3 (Geometric Lévy martingales). Let h ∈ L2(R) be deter-
ministic and define

Y (t) = exp
{∫ t

0

∫
R

h(s)zÑ(ds, dz) −
∫ t

0

∫
R

(
eh(s)z − 1 − h(s)z

)
ν(dz)ds

}
.
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Show that
dY (t) = Y (t−)

∫
R

(
eh(t)z − 1

)
Ñ(dt, dz).

Exercise 1.4. Find the generator A of the following jump diffusions:

a) (The geometric Lévy process )

dX(t) = X(t−)
[
µdt + σdB(t) + γ

∫
R

zÑ(dt, dz)
]

.

b) (The mean-reverting Lévy-Ornstein-Uhlenbeck process )

dX(t) = (m − X(t))dt + σdB(t) + γ

∫
R

zÑ(dt, dz).

c) (The graph of the geometric Lévy process )

dY (t) =
[

dt
dX(t)

]
, where X(t) is as in a).

d) (The n dimensional geometric Lévy process )

X(t) =

⎡⎢⎣X(t)
...

Xn(t)

⎤⎥⎦ ,

where

dXi(t) =Xi(t−)

⎡⎣µidt +
n∑

j=1

σijdBj(t) +
n∑

j=1

γij

∫
R

zjÑj(dt, dzj)

⎤⎦ ;

1 ≤ i ≤ n.

Exercise 1.5 (The first exit time from a ball).
Let K = {x ∈ R

n ; |x| ≤ R} be the open ball of radius R in R
n and let

η(t) = (η1(t), . . . , ηn(t)),

where

ηi(t) = ai +
∫ t

0

∫
R

ziÑi(dt, dzi) ; 1 ≤ i ≤ n

are independent 1-dimensional pure jump Lévy processes and a = (a1, . . . , an)

∈ K is constant. We assume that 0 < E

[
n∑

i=1

(ηi(t) − ai)2
]

< ∞ for all t > 0.

a) Find the generator A of η(·) and show that if f(x) = |x|2 then

Af(x) =
n∑

i=1

∫
R

|ζ|2νi(dζ) := ρ(n) ∈ (0,∞) (constant).
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b) Let
τ = inf{t > 0 ; η(t) �∈ K} ≤ ∞

and put
τk = τ ∧ k ; k = 1, 2, . . .

Let {fm}∞m=1 be a sequence of functions in C2(Rn) such that
fm(x) = |x|2 for |x| ≤ R, 0 ≤ fm(x) ≤ 2R2 for all x ∈ R,
supp fm ⊂

{
x ∈ R

n ; |x| ≤ R + 1
m

}
for all m and

fm(x) → |x|2 · χK(x) as m → ∞, for all x ∈ R
n.

Use the Dynkin formula I to show that

Ea [fm (η(τk))] = |a|2 + ρ(n) · Ea[τk] for all m, k.

c) Show that

Ea[τ ] =
1

ρ(n)
(
R2P a[η(τ) ∈ K] − |a|2

)
≤ 1

ρ(n)
(
R2 − |a|2

)
.

In particular, τ < ∞, a.s.

Remark. If we replace η(·) by an n-dimensional Brownian motion B(·), then
the corresponding exit time τ (B) satisfies

Ea
[
τ (B)

]
=

1
n

(
R2 − |a|2

)
(see e.g. [Ø1], Example 7.4.2).

Exercise* 1.6. Show that

E
[
exp

( t∫
0

∫
R

γ(s, z)Ñ(ds, dz)
)]

= exp
( t∫

0

∫
R

{eγ(s,z) − 1 − γ(s, z)}ν(dz)ds
)
,

provided that the right hand side is finite.

Exercise* 1.7. Let

dXi(t) =
∫
R

γi(t, z)Ñ(dt, dz) ; i = 1, 2

be two 1-dimensional Itô-Lévy processes. Use the 2-dimensional Itô formula
(Theorem 1.16) to prove the following integration by parts formula :

X1(t)X2(t) = X1(0)X2(0) +

t∫
0

X1(s−)dX2(s) +

t∫
0

X2(s−)dX1(s)

+

t∫
0

∫
R

γ1(s, z)γ2(s, z)N(ds, dz) . (1.6.1)
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Remark. The process

[X1, X2](t) :=

t∫
0

∫
R

γ1(s, z)γ2(s, z)N(ds, dz)

=

t∫
0

∫
R

γ1(s, z)γ2(s, z)ν(dz)ds +

t∫
0

∫
R

γ1(s, z)γ2(s, z)Ñ(ds, dz)

(1.6.2)

is called the quadratic covariation of X1 and X2. See Definition 1.27.

Exercise* 1.8. Consider the following market

(Bond price) dS0(t)=0; S0(0)=0
(Stock price 1) dS1(t)=S1(t−)[µ1dt + γ11dη1(t) + γ12dη2(t)]; S1(0)=x1 > 0
(Stock price 2) dS2(t)=S2(t−)[µ2dt + γ21dη1(t) + γ22dη2(t)]; S2(0)=x2 > 0

where µi and µij are constants and η1(t), η2(t) are independent Lévy martin-
gales of the form

dηi(t) =
∫
R

zÑi(dt, dz); i = 1, 2.

Assume that the matrix γ :=
[
γij

]
1≤i,j≤2

∈ R
2 is invertible, with inverse

γ−1 = λ =
[
λij

]
1≤i,j≤2

and assume that

νi(R) > λi1µ1 + λi2µ2 for i = 1, 2. (1.6.3)

Find an equivalent local martingale measure Q for (S1(t), S2(t)) and use this
to deduce that there is no arbitrage in this market.
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Optimal Stopping of Jump Diffusions

2.1 A general formulation and a verification theorem

Fix an open set S ⊂ R
k (the solvency region) and let Y (t) be a jump diffusion

in R
k given by

dY (t) = b(Y (t))dt+σ(Y (t))dB(t)+
∫
Rk

γ(Y (t−), z)N̄(dt, dz) , Y (0) = y ∈ R
k

where b : R
k → R

k, σ : R
k → R

k×m and γ : R
k × R

k → R
k×� are given

functions such that a unique solution Y (t) exists (see Theorem 1.19). Let

τS = τS(y, ω) = inf{t > 0; Y (t) �∈ S} (2.1.1)

be the bankruptcy time and let T denote the set of all stopping times τ ≤ τS .

The results below remain valid, with the natural modifications, if we allow
S to be any Borel set such that S ⊂ S0 where S0 denotes the interior of S,
S0 its closure.

Let f : R
k → R and g : R

k → R be continuous functions satisfying the
conditions

Ey
[ τS∫

0

f−(Y (t))dt
]

< ∞ for all y ∈ R
k (2.1.2)

The family {g−(Y (τ)) · X{τ<∞}; τ ∈ T } is uniformly integrable, for all y ∈ R
k.

(2.1.3)

(If x is a real number, then x− := max(−x, 0) denotes the negative part of x.)

The general optimal stopping problem is the following:
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Find Φ(y) and τ∗ ∈ T such that

Φ(y) = sup
τ∈T

Jτ (y) = Jτ∗
(y) ; y ∈ R

k

where

Jτ (y) = Ey
[ τ∫

0

f(Y (t))dt + g(Y (τ)) · X{τ<∞}

]
; τ ∈ T

is the performance criterion .

The function Φ is called the value function and the stopping time τ∗ (if it
exists) is called an optimal stopping time .

In the following we let A be the integrodifferential operator which coincides
with the generator of Y (t) on C2

0 (Rk), i.e.

Aφ(y) =
k∑

i=1

bi(y)
∂φ

∂yi
(y) + 1

2

k∑
i,j=1

(σσT )ij(y)
∂2φ

∂yi∂yj
(y)

+
�∑

j=1

∫
R

{φ(y + γ(j)(y, zj)) − φ(y) −∇φ(y) · γ(j)(y, zj)}νj(dzj) (2.1.4)

for all φ : R
k → R and y ∈ R

k such that (2.1.4) exists. (See Theorem 1.22
and Theorem 1.24.)

We will need the following result. A proof of a related result (in the no
jump case) can be found in [Ø1].

Theorem 2.1 (Approximation theorem).
Let D be an open set, D ⊂ S. Assume that

∂D is a Lipschitz surface (2.1.5)

(i.e. ∂D is locally the graph of a Lipschitz continuous function) and let ϕ :
S̄ → R be a function with the following properties:

ϕ ∈ C1(S) ∩ C(S̄) (2.1.6)

and
ϕ ∈ C2(S\∂D) (2.1.7)

and the second order derivatives of ϕ are locally bounded near ∂D.
Then there exists a sequence {ϕm}∞m=1 ⊂ C2(S) ∩C(S̄) such that, with A

as in (2.1.4),

ϕm → ϕ pointwise dominatedly in S̄ as m → ∞ (2.1.8)
∂ϕm

∂xi
→ ∂ϕ

∂xi
pointwise dominatedly in S as m → ∞ (2.1.9)

∂2ϕm

∂xi∂xj
→ ∂2ϕ

∂xi∂xj
and Aϕm → Aϕ

pointwise dominatedly in S\∂D as m → ∞. (2.1.10)
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We now formulate a set of sufficient conditions that a given function φ
actually coincides with the value function Φ and that a corresponding stop-
ping time, τD, actually is optimal. The result is analogous to the variational
inequality verification theorem for optimal stopping of continuous diffusions.
See e.g. [Ø1, Theorem 10.4.1].

Theorem 2.2 (Integro-variational inequalities for optimal stopping).

a) Suppose we can find a function φ : S̄ → R such that

(i) φ ∈ C1(S) ∩ C(S̄)
(ii) φ ≥ g on S.

Define

D = {y ∈ S; φ(y) > g(y)} (the continuation region).

Suppose

(iii) Ey
[ τS∫

0

X∂D(Y (t))dt
]

= 0

(iv) ∂D is a Lipschitz surface
(v) φ ∈ C2(S \ ∂D) with locally bounded derivatives near ∂D
(vi) Aφ + f ≤ 0 on S \ ∂D
(vii) Y (τS) ∈ ∂S a.s. on {τS < ∞} and lim

t→τ−
S

φ(Y (t)) = g(Y (τS)) · χ{τS<∞}

and

(viii) Ey
[
|φ(Y (τ))| +

τS∫
0

{
|Aφ(Y (t))| + |σT (Y (t))∇φ(Y (t))|2

+
�∑

j=1

[ ∫
R

|φ(Y (t) + γ(j)(Y (t), z)) − φ(Y (t))|2νj(dzj)
]}

dt
]

< ∞

for all τ ∈ T .

Then φ(y) ≥ Φ(y) for all y ∈ S̄.

b) Moreover, assume

(ix) Aφ + f = 0 on D
(x) τD := inf{t > 0; Y (t) �∈ D} < ∞ a.s. for all y
(xi) {φ(Y (τ)); τ ∈ T } is uniformly integrable, for all y.

Then
φ(y) = Φ(y)

and
τ∗ = τD is an optimal stopping time.
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Proof of Theorem 2.2 (Sketch)
a) Let τ ≤ τS be a stopping time. By Theorem 2.1 we can assume that
φ ∈ C2(S). Then by (vii) and (viii) and the Dynkin formula (Theorem 1.24)
applied to τm := min(τ, m); m = 1, 2, . . . we have, by (vi),

Ey[φ(Y (τm))] = φ(y) + Ey
[ τm∫

0

Aφ(Y (t))dt
]
≤ φ(y) − Ey

[ τm∫
0

f(Y (t))dt
]
.

Hence by (ii) and the Fatou lemma

φ(y) ≥ lim inf
m→∞

Ey
[ τm∫

0

f(Y (t))dt + φ(Y (τm))
]

≥ Ey
[ τ∫

0

f(Y (t))dt + g(Y (τ))χ{τ<∞}

]
= Jτ (y).

Hence
φ(y) ≥ Φ(y) . (2.1.11)

b) Moreover, if we apply the above argument to τ = τD then by (ix), (x) and
(xi) and the definition of D we get equality in (2.1.11), so that

φ(y) = JτD (y) ≤ Φ(y) . (2.1.12)

From (2.1.11) and (2.1.12) we conclude that φ(y) = Φ(y) and τD is optimal.
�

The following result is sometimes helpful.

Proposition 2.3. Suppose the conditions of Theorem 2.2 hold. Suppose g ∈
C2(Rk) and that φ = g satisfies (viii). Define

U = {y ∈ S; Ag(y) + f(y) > 0} .

Suppose that for all y ∈ U there exists a neighbourhood Wy of y such that
τWy := inf{t > 0; Y (t) �∈ Wy} < ∞ a.s. Then

U ⊂ {y ∈ S; Φ(y) > g(y)} = D .

Hence it is never optimal to stop while Y (t) ∈ U .

Proof. Choose y0 ∈ U and let W ⊂ U be a neighbourhood of y0 with τW < ∞
a.s. Then by the Dynkin formula (Theorem 1.24)

Ey[g(Y (τW ))] = g(y) + Ey
[ τW∫

0

Ag(Y (t))dt
]

> g(y) − Ey
[ τW∫

0

f(Y (t))dt
]
.
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Hence

g(y) < Ey
[ τW∫

0

f(Y (t))dt + g(YτW )
]
≤ Φ(y) ,

as claimed. ��

Another useful observation is

Proposition 2.4. Let U be as in Proposition 2.3. Suppose U = ∅. Then

Φ(y) = g(y) and τ∗ = 0 is optimal.

Proof. If U = ∅ then Ag(y)+f(y) ≤ 0 for all y ∈ S. Hence the function φ = g
satisfies all the conditions of Theorem 2.2. Therefore D = ∅, g(y) = Φ(y) and
τ∗ = 0 is optimal. ��

2.2 Applications and examples

Example 2.5 (The optimal time to sell). Suppose the price X(t) at time
t of an asset (a property, a stock . . . ) is a geometric Lévy process given by

dX(t) = X(t−)
[
αdt+βdB(t)+ γ

∫
R

zÑ(dt, dz)
]
, X(0) = x > 0 , (2.2.1)

where α, β and γ are constants, γ z > −1 a.s. ν. If we sell the asset at time
s + τ we get the expected discounted net payoff

Jτ (s, x) := Es,x
[
e−ρ(s+τ)(X(τ) − a)X{τ<∞}

]
where ρ > 0 (the discounting exponent) and a > 0 (the transaction cost) are
constants.

We seek the value function Φ(s, x) and an optimal stopping time τ∗ ≤ ∞
such that

Φ(s, x) = sup
τ≤∞

Jτ (s, x) = Jτ∗
(s, x) . (2.2.2)

We apply Theorem 2.2 to solve this problem as follows: Put S = R × (0,∞)
and

Y (t) =
[
s + t
X(t)

]
; t ≥ 0

Then

dY (t) =

⎡⎣ 1

αX(t)

⎤⎦dt+

⎡⎣ 0

βX(t)

⎤⎦dB(t)+

⎡⎢⎢⎢⎣
0

γX(t−)
∫
R

zÑ(dt, dz)

⎤⎥⎥⎥⎦; Y (0) =

⎡⎣ s

x

⎤⎦
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and the generator A of Y (t) is

Aφ(s, x) =
∂φ

∂s
+αx

∂φ

∂x
+ 1

2β2x2 ∂2φ

∂x2
+
∫
R

{
φ(s, x+γxz)−φ(s, x)−γxz

∂φ

∂x

}
ν(dz) .

(2.2.3)
If we try a function φ of the form

φ(s, x) = e−ρsxλ for some constant λ ∈ R

we get

Aφ(s, x) = e−ρs
[
− ρxλ + αxλxλ−1 + 1

2β2x2λ(λ − 1)xλ−2

+
∫
R

{(x + γxz)λ − xλ − γxzλxλ−1}ν(dz)
]

= e−ρsxλh(λ) ,

where

h(λ) = −ρ + αλ + 1
2β2λ(λ − 1) +

∫
R

{(1 + γz)λ − 1 − λγz}ν(dz) .

Note that
h(1) = α − ρ and lim

λ→∞
h(λ) = ∞ .

Therefore, if we assume that
α < ρ , (2.2.4)

then we get that there exists λ1 > 1 such that

h(λ1) = 0 . (2.2.5)

With this value of λ1 we put

φ(s, x) =

{
e−ρsCxλ1 for (s, x) ∈ D

e−ρs(x − a) for (s, x) �∈ D
(2.2.6)

for some constant C, to be determined.
To find a reasonable guess for the continuation region D we use Proposi-

tion 2.3: In this case we have f = 0 and g(s, x) = e−ρs(x − a) and hence by
(2.2.3)

Ag + f = e−ρs(−ρ(x − a) + αx) = e−ρs((α − ρ)x + ρa) .

Therefore
U = {(s, x); (α − ρ)x + ρa > 0} .
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Case 1: α ≥ ρ . In this case U = R
2 and it is easily seen that Φ = ∞:

We can get as high expected payoff as we wish by waiting long enough before
stopping.

Case 2: α < ρ . In this case

U =
{
(s, x); x <

ρa

ρ − α

}
. (2.2.7)

Therefore, in view of Proposition 2.3 we now guess that the continuation
region D has the form

D = {(s, x); 0 < x < x∗} (2.2.8)

for some x∗ such that U ⊆ D, i.e.

x∗ ≥ ρa

ρ − α
. (2.2.9)

Hence, by (2.2.6) we now put

φ(s, x) =

{
e−ρsCxλ1 for 0 < x < x∗

e−ρs(x − a) for x∗ ≤ x ,
(2.2.10)

for some constant C > 0 (to be determined). We guess that the value function
is C1 at x = x∗ and this gives the following “high contact”- conditions :

C(x∗)λ1 = x∗ − a (continuity at x = x∗)

and

Cλ1(x∗)λ1−1 = 1 (differentiability at x = x∗) .

It is easy to see that the solution of these equations is

x∗ =
λ1a

λ1 − 1
, C =

1
λ1

(x∗)1−λ1 . (2.2.11)

It remains to verify that with these values of x∗ and C the function φ given
by (2.2.10) satisfies all the conditions (i)–(xi) of Theorem 2.2.

To this end, first note that (i) and (ix) hold by construction of φ. Moreover,
φ = g outside D. Therefore, to verify (ii) we only need to prove that φ ≥ g
on D, i.e. that

Cxλ1 ≥ x − a for 0 < x < x∗ . (2.2.12)

Define k(x) = Cxλ1 − x + a. By our chosen values of C and x∗ we have
k(x∗) = k′(x∗) = 0. Moreover, k′′(x) = Cλ1(λ1 − 1)xλ1−2 > 0 for x < x∗.
Therefore k(x) > 0 for 0 < x < x∗ and (2.2.12) holds and hence (ii) is proved.
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(iii): In this case ∂D = {(s, x); x = x∗} and hence

Ey
[ ∞∫

0

X∂D(Y (t))dt
]

=

∞∫
0

P x[X(t) = x∗]dt = 0 .

(iv) and (v) are trivial.

(vi): Outside D we have φ(s, x) = e−ρs(x − a) and therefore

Aφ + f(s, x) = e−ρs(−ρ(x − a) + αx) = e−ρs((α − ρ)x + ρa)

So by (2.2.4) we get that

Aφ + f(s, x) ≤ 0 for all x ≥ x∗

�
(α − ρ)x + ρa ≤ 0 for all x ≥ x∗

�
(α − ρ)x∗ + ρa ≤ 0

�

x∗ ≥ ρa

ρ − α
,

which holds by (2.2.9).

(x): To check if τD < ∞ a.s. we consider the solution X(t) of (2.2.1), which
by (1.2.5) is given by

X(t) = x exp
{(

α− 1
2β2 − γ

∫
R

zν(dz)
)
t +

t∫
0

∫
R

ln(1 + γz)N(dt, dz)+ βB(t)
}
.

(2.2.13)
By the law of iterated logarithm for Brownian motion (see the argument in
[Ø, Chapter 5]) we see that if

α > 1
2β2 + γ

∫
R

zν(dz) (2.2.14)

and
z ≥ 0 a.s. ν (2.2.15)

then
lim

t→∞
X(t) = ∞ a.s.

and in particular τD < ∞ a.s.

(xi): Since φ is bounded on [0, x∗] it suffices to check that
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e−ρτX(τ)

}
τ∈T is uniformly integrable.

For this to hold it suffices that there exists a constant K such that

E[e−2ρτX2(τ)] ≤ K for all τ ∈ T . (2.2.16)

By (2.2.13) and Exercise 1.6 we have

E[e−2ρT X2(τ)] = x2E
[
exp

{(
2α − 2ρ − β2 − 2γ

∫
R

zν(dz)
)
τ

+ 2

τ∫
0

∫
R

ln(1 + γz)N(dt, dz) + 2βB(τ)
}]

= x2E
[
exp

{(
2α − 2ρ + β2 + 2

∫
R

(ln(1 + γz) − γz)ν(dz)
)
τ

+ 2

τ∫
0

∫
R

ln(1 + γz)Ñ(dt, dz)
}]

= x2E
[
exp

{(
2α − 2ρ + β2 +

∫
R

[2 ln(1 + γz)− 2γz + (1 + γz)2

− 1 − 2 ln(1 + γz)]ν(dz)
)
τ
}]

= x2E
[
exp

{(
2α − 2ρ + β2 +

∫
R

[(1 + γz)2 − 1 − 2γz]ν(dz)
)
τ
}]

We conclude that if

2α − 2ρ + β2 + γ2

∫
R

z2ν(dz) ≤ 0

then (2.2.16) holds and hence (xi) holds also.

(vii): holds since we have assumed that z > −1 a.s. ν.

Finally, for (viii) to hold it suffices that

Ex
[ ∞∫

0

e−2ρt
{
X2(t) + γ2

∫
R

z2ν(dz)t
}

dt
]

< ∞ .

By the above this holds if

2α − 2ρ + β2 + γ2

∫
R

z2ν(dz) < 0 . (2.2.17)

We summarize what we have proved:
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Theorem 2.6. Suppose that α < ρ and that (2.2.14) and (2.2.17) hold. Then,
with λ1, C and x∗ given by (2.2.5) and (2.2.11), the function φ given by
(2.2.10) coincides with the value function Φ of problem (2.2.2) and τ∗ = τD

is an optimal stopping time, where D is given by (2.2.8).

Remark 2.7. For other applications of optimal stopping to jump diffusions
we refer to [Ma].

2.3 Exercises

Exercise* 2.1. Solve the optimal stopping problem

Φ(s, x) = sup
τ≥0

E(s,x)
[
e−ρ(s+τ)(X(τ) − a)

]
where

dX(t) = dB(t) + γ

∫
R

zN̄(dt, dz) ; X(0) = x ∈ R

and ρ > 0, a > 0, σ and γ are constants.

Exercise* 2.2 (An optimal resource extraction stopping problem).
Suppose the price P (t) per unit of a resource (oil, gas . . .) at time t is given
by

(i) dP (t) = αP (t)dt + βP (t)dB(t) + γP (t−)
∫
R

zÑ(dt, dz); P (0) = p > 0

and the remaining amount of resources Q(t) at time t is

(ii) dQ(t) = −λQ(t)dt ; Q(0) = q > 0

where λ > 0 is the (constant) relative extraction rate and α, β, γ ≥ 0 are
constants. We assume that γz > −1 a.s. ν.

If we decide to stop extraction and close the field at a stopping time τ ≥ 0,
the expected discounted total net profit Jτ (s, p, q) is given by

Jτ (s, p, q) = E(s,p,q)
[ τ∫

0

e−ρ(s+t)(λP (t)Q(t) − K)dt + θe−ρ(s+τ)P (τ)Q(τ)
]
,

where K > 0 is the (constant) running cost rate, θ > 0 another constant. Find
Φ and τ∗ such that

Φ(s, p, q) = sup
τ≥0

Jτ (s, p, q) = Jτ∗
(s, p, q) .

[Hint: Try φ(s, p, q) = e−ρsψ(p · q) for some function ψ : R → R.]
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Exercise* 2.3. Solve the optimal stopping problem

Φ(s, x) = sup
τ≥0

Ex[e−ρ(s+τ)|X(τ)|]

where
dX(t) = dB(t) +

∫
R

zÑ(dt, dz)

and ρ > 0 is a constant. Assume that the Lévy measure ν of X is symmetric,
i.e.

ν(G) = ν(−G) for all measurable G ⊂ R\{0}.
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Stochastic Control of Jump Diffusions

3.1 Dynamic programming

Fix a domain S ⊂ R
k (our solvency region ) and let Y (t) = Y (u)(t) be a

stochastic process of the form

dY (t) =b(Y (t), u(t))dt + σ(Y (t), u(t))dB(t)

+
∫
Rk

γ(Y (t−), u(t−), z)N̄(dt, dz) , Y (0) = y ∈ R
k , (3.1.1)

where

b : R
k × U → R

k, σ : R
k × U → R

k×m and γ : R
k × U × R

k → R
k×�

are given functions, U ⊂ R
k is a given set. The process u(t) = u(t, ω) :

[0,∞) × Ω → U is our control process , assumed to be cadlag and adapted.
We call Y (t) = Y (u)(t) a controlled jump diffusion .

We consider a performance criterion J = J (u)(y) of the form

J (u)(y) = Ey
[ τS∫

0

f(Y (t), u(t))dt + g(Y (τS)) · X{τS<∞}

]
where

τS = inf{t > 0; Y (u)(t) �∈ S} (the bankruptcy time )

and f : S → R and g : R
k → R are given continuous functions.

We say that the control process u is admissible and write u ∈ A if (3.1.1)
has a unique, strong solution Y (t) for all y ∈ S and

Ey
[ τS∫

0

f−(Y (t), u(t))dt + g−(Y (τS)) · X{τS<∞}

]
< ∞ .
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The stochastic control problem is to find the value function Φ(y) and an op-
timal control u∗ ∈ A defined by

Φ(y) = sup
u∈A

J (u)(y) = J (u∗)(y) . (3.1.2)

It turns out that – under mild conditions (see e.g. [Ø1, Theorem 11.2.3])– it
suffices to consider Markov controls , i.e. controls u(t) of the form

u(t) = u0(Y (t−))

for some function u0 : R
k → U . Therefore, from now on we will only consider

Markov controls and we will, with a slight abuse of notation, write u(t) =
u(Y (t−)).

Note that if u = u(y) is a Markov control then Y (t) = Y (u)(t) is a Lévy
diffusion with generator

Aφ(y) = Auφ(y) =
k∑

i=1

bi(y, u(y))
∂φ

∂yi
(y) + 1

2

k∑
i,j=1

(σσT )ij(y, u(y)) · ∂2φ

∂yi∂yj
(y)

+
�∑

j=1

∫
R

{φ(y + γ(j)(y, u(y), zj)) − φ(y) −∇φ(y) · γ(j)(y, u(y), zj)}νj(dzj) .

We now formulate a verification theorem for the optimal control problem
(3.1.2), analogous to the classical Hamilton-Jacobi-Bellman (HJB) for (con-
tinuous) Itô diffusions:

Theorem 3.1 (HJB for optimal control of jump diffusions).
a) Suppose φ ∈ C2(S) ∩ C(S̄) satisfies the following:

(i) Avφ(y) + f(y, v) ≤ 0 for all y ∈ S, v ∈ U
(ii) Y (τS) ∈ ∂S a.s. on {τS < ∞} and

lim
t→τ−

S
φ(Y (t)) = g(Y (τS)) · X{τS<∞} a.s., for all u ∈ A

(iii) Ey
[
|φ(Y (τ))| +

τS∫
0

{|Aφ(Y (t))| + |σT (Y (t))∇φ(Y (t))|2

+
�∑

j=1

∫
R

|φ(Y (t) + γ(j)(Y (t), u(t), zj)) − φ(Y (t))|2νj(dzj)}dt
]

< ∞,

for all u ∈ A and all τ ∈ T .
(iv) {φ−(Y (τ))}τ≤τS is uniformly integrable for all u ∈ A and y ∈ S.

Then
φ(y) ≥ Φ(y) for all y ∈ S . (3.1.3)

b) Moreover, suppose that for each y ∈ S there exists v = û(y) ∈ U such that

(v) Aû(y)φ(y) + f(y, û(y)) = 0
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and

(vi) {φ(Y (û)(τ))}τ≤τS is uniformly integrable.

Suppose u∗(t) := û(Y (t−)) ∈ A. Then u∗ is an optimal control and

φ(y) = Φ(y) = J (u∗)(y) for all y ∈ S . (3.1.4)

Proof. a) Let u ∈ A. For n = 1, 2, . . . put τn = min(n, τS). Then by the
Dynkin formula (Theorem 1.24) we have

Ey[φ(Y (τn))] = φ(y) + Ey
[ τn∫

0

Auφ(Y (t))dt
]
≤ φ(y) − E

[ τn∫
0

f(Y (t), u(t))dt
]
.

Hence

φ(y) ≥ lim inf
n→∞

Ey
[ τn∫

0

f(Y (t), u(t))dt + φ(Y (τn))
]

≥ Ey
[ τS∫

0

f(Y (t), u(t))dt + g(Y (τS)) · X{τS<∞}

]
= J (u)(y) .

(3.1.5)

Since u ∈ A was arbitrary we conclude that

φ(y) ≥ Φ(y) for all y ∈ S . (3.1.6)

b) Now apply the above argument to u(t) = û(Y (t)), where û is as in (v).
Then we get equality in (3.1.5) and hence

φ(y) = J (û)(y) ≤ Φ(y) for all y ∈ S . (3.1.7)

Combining (3.1.6) and (3.1.7) we get (3.1.4). ��

Example 3.2 (Optimal consumption and portfolio in a Lévy type
Black-Scholes market [Aa], [FØS1]).

Suppose we have a market with two possible investments:

(i) a safe investment (bond, bank account) with price dynamics

dP1(t) = rP1(t)dt ; P1(0) = p1 > 0

(ii) a risky investment (stock) with price dynamics

dP2(t) = P2(t−)
[
µdt + σdB(t) +

∞∫
−1

zÑ(dt, dz)
]
, P2(0) = p2 > 0
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where r > 0, µ > 0 and σ ∈ R are constants. We assume that

∞∫
−1

|z|dν(z) < ∞ and µ > r .

Assume that at any time t the investor can choose a consumption rate c(t) ≥ 0
(adapted, cadlag) and is also free to transfer money from one investment to
the other without transaction cost. Let X1(t), X2(t) be the amounts of money
invested in the bonds and the stocks, respectively. Let

θ(t) =
X2(t)

X1(t) + X2(t)

be the fraction of the total wealth invested in stocks at time t. Define the
performance criterion by

J (c,θ)(s, x1, x2) = Ex1,x2

[ ∞∫
0

e−δ(s+t) cγ(t)
γ

dt
]

where δ > 0, γ ∈ (0, 1) are constants and Ex1,x2 is the expectation w.r.t. the
probability law P x1,x2 of (X1(t), X2(t)) when X1(0−) = x1, X2(0−) = x2.
Call the control u(t) = (c(t), θ(t)) ∈ [0,∞)× [0, 1] admissible and write u ∈ A
if the corresponding total wealth

W (t) = W (u)(t) = X
(u)
1 (t) + X

(u)
2 (t)

is nonnegative for all t ≥ 0.
The problem is to find Φ(s, x1, x2) and u∗(c∗, θ∗) ∈ A such that

Φ(s, x1, x2) = sup
u∈A

J (u)(s, x1, x2) = J (u∗)(s, x1, x2) .

Case 1: ν = 0 .

In this case the problem was solved by Merton [M]. He proved that if

δ > γ
[
r +

(µ − r)2

2σ2(1 − γ)

]
(3.1.8)

then the value function is

Φ0(s, x1, x2) = K0e
−δs(x1 + x2)γ (3.1.9)

where

K0 =
1
γ

[ 1
1 − γ

(
δ − γr − γ(µ − r)2

2σ2(1 − γ)

)]γ−1

. (3.1.10)

Moreover, the optimal consumption rate c∗0(t) is given by
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c∗0(t) = (K0γ)
1

γ−1 (X1(t) + X2(t)) (3.1.11)

and the optimal portfolio θ∗0(t) is (the constant)

θ∗0(t) =
µ − r

σ2(1 − γ)
for all t ∈ [0,∞) . (3.1.12)

In other words, it is optimal to keep the state (X1(t), X2(t)) on the line

x2 =
θ∗0

1 − θ∗0
x1 (3.1.13)

in the (x1, x2)-plane at all times (the Merton line). See figure 3.1.

x1

the Merton line (ν = 0)

(x1 , x2)

(X1(t), X2(t))

(x1 , x2)

x2

x1 + x2 = 0

S

S

Fig. 3.1. The Merton line

Case 2: ν �= 0

We now ask: How does the presence of jumps influence the optimal strategy?

As in [M] we reduce the dimension by introducing

W (t) = X1(t) + X2(t) .

Then we see that
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dW (t) =
(
[r(1 − θ(t)) + µθ(t)]W (t) − c(t)

)
dt + σθ(t)W (t)dB(t)

+ θ(t)W (t−)

∞∫
−1

zÑ(dt, dz) ; W (0−) = x1 + x2 = w ≥ 0 .

The generator A(u) of the controlled process

Y (t) =
[
s + t
W (t)

]
; t ≥ 0 , Y (0−) = y =

[
s
w

]
is

A(u)φ(y) =
∂φ

∂s
+
(
[r(1 − θ) + µθ]w − c

) ∂φ

∂w
+ 1

2σ2θ2w2 ∂2φ

∂w2

+

∞∫
−1

{
φ(s, w + θwz) − φ(s, w) − ∂φ

∂w
(s, w)θwz

}
ν(dz) .

If we try
φ(y) = φ(s, w) = e−δsψ(w)

we get

A(u)φ(y) = e−δsA
(u)
0 ψ(w), where

A
(u)
0 ψ(w) = −ρψ(w) +

(
[r(1 − θ) + µθ]w − c

)
ψ′(w) + 1

2σ2θ2w2ψ′′(w)

+

∞∫
−1

{ψ((1 + θz)w) − ψ(w) − ψ′(w)θwz}ν(dz) .

In particular, if we try
ψ(w) = Kwγ

we get

A
(u)
0 ψ(w) + f(w, u) = −ρKwγ +

(
[r(1 − θ) + µθ]w − c

)
Kγwγ−1

+ K · 1
2σ2θ2w2γ(γ − 1)wγ−2 + Kwγ

∞∫
−1

{(1 + θz)γ − 1 − γθz}ν(dz) +
cγ

γ
.

Let h(c, θ) be the expression on the right hand side. Then h is concave in (c, θ)
and the maximum of h is attained at the critical points, i.e. when

∂h

∂c
= −Kγwγ−1 + cγ−1 = 0 (3.1.14)

and
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∂h

∂θ
= (µ−r)Kγwγ+Kσ2θγ(γ−1)wγ+Kwγ

∞∫
−1

{γ(1+θz)γ−1z−γz}ν(dz) = 0 .

(3.1.15)
From (3.1.14) we get

c = ĉ =
(
Kγ

) 1
γ−1 w (3.1.16)

and from (3.1.15) we get that θ = θ̂ should solve the equation

Λ(θ) := µ − r − σ2θ(1 − γ) −
∞∫

−1

{
1 − (1 + θz)γ−1

}
zν(dz) = 0 . (3.1.17)

Since Λ(0) = µ − r > 0 we see that if

σ2(1 − γ) +

∞∫
−1

{
1 − (1 + z)γ−1

}
zν(dz) ≥ µ − r (3.1.18)

then there exists an optimal θ = θ̂ ∈ (0, 1].

With this choice of c = ĉ =
(
Kγ

) 1
γ−1 w and θ = θ̂ (constant) we require

that

A
(û)
0 ψ(w) + f(w, û) = 0 i.e.

− ρK +
(
[r(1 − θ̂) + µθ̂] −

(
Kγ

) 1
γ−1

)
Kγ

+ K 1
2σ2θ̂2γ(γ − 1) + K

∞∫
−1

{(1 + θ̂z)γ − 1 − γθ̂z}ν(dz) +
(
Kγ

) γ
γ−1

1
γ

= 0

or

− δ + γ[r(1 − θ̂) + µθ̂] −
(
Kγ

) 1
γ−1 γ

− 1
2σ2θ̂2(1 − γ)γ +

∞∫
−1

{(1 + θ̂z)γ − 1 − γθ̂z}ν(dz) + K
1

γ−1 · γ
γ

γ−1 · 1
γ

or

(
Kγ

) 1
γ−1 [1−γ] = δ−γ[r(1−θ̂)+µθ̂]+ 1

2σ2θ̂2(1−γ)γ−
∞∫

−1

{(1+θ̂z)γ−1−γθ̂z}ν(dz)

or

K =
1
γ

[ 1
1 − γ

(
δ−γ{r(1 − θ̂) + µθ̂} + 1

2σ2θ̂2(1 − γ)γ

−
∫
R

{(1 + θ̂z)γ − 1 − γθ̂z}ν(dz)
)]γ−1

. (3.1.19)
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We now study condition (iii):
Here σT∇φ(y) = e−δsσθwKγwγ−1 = e−δsσθKwγ and

φ(Y (t) + γ(Y (t), u(t))) − φ(Y (t)) = KW (t)γe−δs[(1 + θz)γ − 1].

So (iii) holds if

E
[ T∫

0

e−2δtW 2γ(t)dt
]

+
∫
R

[(1 + θz)γ − 1]ν(dz) < ∞ (3.1.20)

We refer to [FØS1] for sufficient conditions on the parameters for (3.1.20) to
hold.

We conclude that the value function is

Φ(s, w) = Φ(s, x1, x2) = e−δs(x1 + x2)γ (3.1.21)

with optimal control u∗(t) = (c∗(t), θ∗(t)) where c∗ = ĉ = (Kγ)
1

γ−1 (x1 + x2)
is given by (3.1.16) and θ∗ = θ̂ is given by (3.1.17), with K given by (3.1.19).

Finally we compare the solution in the jump case (ν �= 0) with Merton’s
solution in the no jump case (ν = 0):

As before let Φ0, c
∗
0 and θ∗0 be the solution when there are no jumps (ν = 0).

Then it can be seen that

K < K0 and hence Φ(s, w) = e−δsKwγ < e−δsK0w
γ = Φ0(s, w)

c∗(s, w) ≥ c∗0(s, w)

θ∗ ≤ θ∗0 .

So with jumps it is optimal to place a smaller wealth fraction in the risky
investment, consume more relative to the current wealth and the resulting
value is smaller than in the no-jump case.

For more details we refer to [FØS1].

Remark 3.3. For more information and other applications of stochastic con-
trol of jump diffusions see [GS], [BKR], [Ma] and the references therein.

3.2 The maximum principle

Suppose the state X(t) = X(u)(t) of a controlled jump diffusion in R
n is given

by

dX(t) =b(t, X(t), u(t))dt + σ(t, X(t), u(t))dB(t)

+
∫

Rn

γ(t, X(t−), u(t−), z)Ñ(dt, dz). (3.2.1)
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x1

x2 =
θ∗

1−θ∗ x1

ν > 0
(jump Merton line)

ν = 0 (classical Merton line)

x2 = θ0
1−θ0

x1

x2

0

Fig. 3.2. The Merton line for ν = 0 and ν > 0

As before Ñ(dt, dz) = (Ñ1(dt, dz1), . . . , Ñ�(dt, dz�))T where

Ñj(dt, dzj) = Nj(dt, dzj) − νj(dzj)dt ; 1 ≤ j ≤ �

(see the notation of Theorem 1.16).
The process u(t) = u(t, ω) ∈ U ⊂ R

k is our control . We assume that u is
adapted and cadlag, and that the corresponding equation (3.2.1) has a unique
strong solution X(u)(t); t ∈ [0, T ]. Such controls are called admissible. The set
of admissible controls is denoted by A.

Suppose the performance criterion has the form

J(u) = E
[ T∫

0

f(t, X(t), u(t))dt + g(X(T ))
]
; u ∈ A

where f : [0, T ] × R
n × U → R is continuous, g : R

n → R is C1, T < ∞ is a
fixed deterministic time and

E
[ T∫

0

f−(t, X(t), u(t))dt + g−(X(T ))
]

< ∞ for all u ∈ A .

Consider the problem to find u∗ ∈ A such that

J(u∗) = sup
u∈A

J(u) . (3.2.2)
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In the previous chapter we saw how to solve such a problem using dynamic
programming and the associated HJB equation. Here we present an alter-
native approach, based on what is called the maximum principle . In the
deterministic case this principle was first introduced by Pontryagin and his
group [PBGM]. A corresponding maximum principle for Itô diffusions was
formulated by Kushner [Ku], Bismut [Bi] and subsequently further developed
by Bensoussan [Ben], Haussmann [H] and others. For jump diffusions a suf-
ficient maximum principle has recently been formulated in [FØS3] and it is
this approach that is presented here, in a somewhat simplified version.

Define the Hamiltonian H : [0, T ]× R
n × U × R

n × R
n×m ×R → R by

H(t, x, u,p, q, r) = f(t, x, u) + bT (t, x, u)p + tr(σT (t, x, u)q)

+
�∑

j=1

n∑
i=1

∫
R

γij(t, x, u, zj)rij(t, z)νj(dzj) (3.2.3)

where R is the set of functions r : R
n+1 → R

n×� such that the integrals in
(3.2.3) converge. From now on we assume that H is differentiable with respect
to x.

The adjoint equation (corresponding to u and X(u)) in the unknown pro-
cesses p(t) ∈ R

n, q(t) ∈ R
n×m and r(t, z) ∈ R

n×� is the backward stochastic
differential equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

dp(t) = −∇xH(t, X(t), u(t), p(t), q(t), r(t, ·))dt

+q(t)dB(t) +
∫

Rn

r(t−, z)Ñ(dt, dz) ; t < T

p(T ) = ∇g(X(T ))

(3.2.4)

We assume from now on that

E
[ T∫

0

{
σσT (t, X(t), u(t))

+
�∑

k=1

∫
R

∣∣γ(k)(t, X(t), u(t), zk)
∣∣2νk(dzk)

}
dt
]

< ∞ for all u ∈ A .

Theorem 3.4 (A sufficient maximum principle [FØS3]). Let û ∈ A
with corresponding solution X̂ = X(û) and suppose there exists a solution
(p̂(t), q̂(t), r̂(t, z)) of the corresponding adjoint equation (3.2.4) satisfying

E
[ T∫

0

{
q̂q̂T (t) +

n∑
k=1

∫
R

|r(k)(t, zk)|2νk(dzk)
}
dt
]

< ∞ . (3.2.5)
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Moreover, suppose that

H(t, X̂(t), û(t), p̂(t), q̂(t, ), r̂(t, ·)) = sup
v∈U

H(t, X̂(t), v, p̂(t), q̂(t), r̂(t, ·))

for all t, that g(x) is a concave function of x and that

Ĥ(x) := max
v∈U

H(t, x, v, p̂(t), q̂(t), r̂(t, ·)) exists and is

a concave function of x, for all t ∈ [0, T ] (the Arrow condition)
(3.2.6)

Then û is an optimal control.

Remark 3.5. For (3.2.6) to hold it suffices that the function

(x, v) → H(t, x, v, p̂(t), q̂(t), r̂(t, ·)) is concave, for all t ∈ [0, T ] . (3.2.7)

To prove Theorem 3.4 we first establish the following:

Lemma 3.6 (Integration by parts). Suppose E[(Y (j)(T )2] < ∞ for j =
1, 2, where

dY (j)(t) = b(j)(t, ω)dt + σ(j)(t, ω)dB(t) +
∫

Rn

γ(j)(t, z, ω)Ñ(dt, dz)

Y (j)(0) = y(j) ∈ R
n ; j = 1, 2

where b(j) ∈ R
n, σ(j) ∈ R

n×m and γ(j) ∈ R
n×�. Then

E[Y (1)(T ) · Y (2)(T )] = y1 · y2 + E
[ T∫

0

Y (1)(t−)dY (2)(t) +

T∫
0

Y (2)(t−)dY (1)(t)

+

T∫
0

tr[σ(1)T

σ(2)](t)dt +

T∫
0

[ �∑
j=1

( n∑
i=1

∫
R

γ
(1)
ij (t, zj)γ

(2)
ij (t, x)

)
νj(dzj)

]
dt.

Proof. The Itô formula (Theorem 1.16). (See also Exercise 1.7.) ��

Proof of Theorem 3.4 Let u ∈ A be an admissible control with corre-
sponding state process X(t) = X(u)(t). Then

J(û)−J(u) = E
[ T∫

0

{f(t, X̂(t), û(t))−f(t, X(t), u(t))}dt+g(X̂(T ))−g(X(T ))
]
.

Since g is concave we get by Lemma 3.6

E[g(X̂(T )) − g(X(T ))] ≥ E[(X̂(T ) − X(T ))T∇g(X̂(T ))]

= E[(X̂(T ) − X(T ))T p̂(T )]
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= E
[ T∫

0

(X̂(t−) − X(t−))T dp̂(t) +

T∫
0

p̂(t−)T (dX̂(t) − dX(t))

+

T∫
0

tr[{σ(t, X̂(t), û(t)) − σ(t, X(t), u(t))}T q̂(t)
]
dt

+

T∫
0

( �∑
j=1

( n∑
i=1

∫
R

{γij(t, X̂(t), û(t), zj)

− γij(t, X(t), u(t), zj)}r̂ij(t, zj)
)
νj(dzj)

)
dt
]

= E
[ T∫

0

(X̂(t) − X(t))T
(
−∇xH(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))

)
dt

+

T∫
0

p̂T (t−){b(t, X̂(t), û(t)) − b(t, X(t), u(t))}dt

+

T∫
0

tr[{σ(t, X̂(t), û(t)) − σ(t, X(t), u(t))}T q̂(t)]dt

+

T∫
0

( �∑
j=1

( n∑
i=1

∫
R

{γij(t, X̂(t), û(t), zj)

− γij(t, X(t), u(t), zj)}r̂ij(t, zj)
)
νj(dzj)

)
dt
]

(3.2.8)

By the definition of H we find

E
[ T∫

0

{f(t, X̂(t), û(t)) − f(t, X(t), u(t))}dt
]

= E
[ T∫

0

{H(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))

− H(t, X(t), u(t), p(t), q(t), r(t, ·))}dt

−
T∫

0

{b(t, X̂(t), û(t)) − b(t, X(t), u(t))}T p̂(t)dt

−
T∫

0

tr[{σ(t, X̂(t), û(t)) − σ(t, X(t), u(t))}T q̂(t)]dt
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−
T∫

0

( �∑
j=1

( n∑
i=1

∫
R

{γij(t, X̂(t), û(t), zj)

− γij(t, X(t), u(t), zj)}r̂ij(t, zj)
)
νj(dzj)

)
dt
]
. (3.2.9)

Adding (3.2.8) and (3.2.9) we get

J(û) − J(u) ≥ Ex
[ T∫

0

{H(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))

− H(t, X(t), u(t), p̂(t), q̂(t), r̂(t, ·))

−(X̂(t)−X(t))T∇xH(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))}dt
]
.

If (3.2.6) (or (3.2.7)) holds then J(û)− J(u) ≥ 0. This follows from the proof
in [SeSy, p. 108]. For details we refer to [FØS3].

We mention briefly the relation to dynamic programming : Define

J (u)(s, x) = E
[ T−s∫

0

f(s + t, Xx(t), u(t))dt + g(Xx(T − s))
]
; u ∈ A

where Xx(t) is the solution of (3.2.1) for t ≥ 0 with initial value X(0) = x.
Then put

V (s, x) = sup
u∈A

J (u)(s, x) . (3.2.10)

Theorem 3.7 (FØS3). Assume that V (s, x) ∈ C1,3(R × R
n) and that there

exists an optimal Markov control u∗(t, x) for problem (3.2.2), with correspond-
ing solution X∗(t) of (3.2.1). Define

pi(t) =
∂V

∂xi
(t, X∗(t)) ; 1 ≤ i ≤ n

qjk(t) =
n∑

i=1

σik(t, X∗(t), u∗(t))
∂2V

∂xi∂xj
(t, X∗(t)) ; 1 ≤ j ≤ n, 1 ≤ k ≤ m

rik(t, z) =
∂V

∂xi
(t, X∗(t) + γ(k)(t, X∗(t), u∗(t), zk)) − ∂V

∂xi
(t, X∗(t)) ;

1 ≤ i ≤ n, 1 ≤ k ≤ � .

Then p(t), q(t), r(t, ·) solve the adjoint equation (3.2.4).

For a proof see [FØS3].

Remark 3.8. A general discussion of impulse control for jump diffusions can
be found in [F]. A study with vanishing impulse costs is given in [ØUZ].
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3.3 Application to finance

The following example is from [FØS3].

Consider a financial market with two investment possibilities, a risk free
(e.g. a bond or bank account) and risky (e.g. a stock), whose prices S0(t), S1(t)
at time t ∈ [0, T ] are given by

(bond) dS0(t) = ρtS0(t)dt ; S0(0) = 1 (3.3.1)

(stock) dS1(t) = S1(t−)
[
µtdt + σtdB(t) +

∫
R

γ(t, z)Ñ(dt, dz)
]
; S1(0) > 0

(3.3.2)

where ρt > 0, µt, σt and γ(t, z) ≥ −1 are given bounded deterministic func-
tions. We assume that the function

t →
∫
R

γ2(t, z)ν(dz) is locally bounded . (3.3.3)

We may regard this market as a jump diffusion extension of the classical
Black-Scholes market (see section 1.5).

A portfolio in this market is a two-dimensional cadlag, adapted process
θ(t) = (θ0(t), θ1(t)) giving the number of units of bonds and stocks, respec-
tively, held at time t by an agent.

The corresponding wealth process X(t) = X(θ)(t) is defined by

X(t) = θ0(t)S0(t) + θ1(t)S1(t) ; t ∈ [0, T ] . (3.3.4)

The portfolio θ is called self-financing if

X(t) = X(0) +

t∫
0

θ0(s)dS0(s) +

t∫
0

θ1(s)dS1(s) (3.3.5)

or, in short hand notation,

dX(t) = θ0(t)dS0(t) + θ1(t)dS1(t) . (3.3.6)

Alternatively, the portfolio can also be expressed in terms of the amounts
w0(t), w1(t) invested in the bond and stock, respectively. They are given by

wi(t) = θi(t)Si(t) ; i = 0, 1. (3.3.7)

Now put
u(t) = w1(t) . (3.3.8)
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Then w0(t) = X(t) − u(t) and (3.3.6) gets the form

dX(t) = [ρtX(t) + (µt − ρt)u(t)]dt + σtu(t)dB(t) + u(t−)
∫
R

γ(t, z)Ñ(dt, dz) .

(3.3.9)
We call u(t) admissible and write u(t) ∈ A if (3.3.9) has a unique solution
X(t) = X(u)(t) such that E[(X(u)(T ))2] < ∞.

The mean-variance portfolio selection problem is to find u(t) which mini-
mizes

Var[X(T )] := E
[
(X(T )− E[X(T )])2

]
(3.3.10)

under the condition that

E[X(T )] = A , a given constant . (3.3.11)

By the Lagrange multiplier method the problem can be reduced to minimizing,
for a given constant a ∈ R,

E[(X(T ) − a)2]

without constraints. To see this, consider

E[(X(T ) − A)2 − λ([X(T )] − A)]

= E[X2(T ) − 2(A + λ
2 )X(T ) + A2 + λA]

= E[(X(T ) − (A + λ
2 ))2] + λ2

4 , where λ ∈ R is constant.

We will consider the equivalent problem

sup
u∈A

E[− 1
2 (X(u)(T ) − a)2]. (3.3.12)

In this case the Hamiltonian (3.2.3) gets the form

H(t, x, u, p, q, r) = {ρtx + (µt − ρt)u}p + σtuq + u

∫
R

γ(t, z)r(t, z)ν(dz) .

Hence the adjoint equations (3.2.4) are⎧⎪⎨⎪⎩
dp(t) = −ρtp(t)dt + q(t)dB(t) +

∫
R

r(t−, z)Ñ(dt, dz) ; t < T

p(T ) = −(X(T ) − a).
(3.3.13)

We try a solution of the form

p(t) = φtX(t) + ψt , (3.3.14)



54 3 Stochastic Control of Jump Diffusions

where φt, ψt are deterministic C1 functions. Substituting in (3.3.13) and using
(3.3.9) we get

dp(t) = φt

[
{ρtX(t) + (µt − ρt)u(t)}dt + σtu(t)dB(t)

+ u(t−)
∫
R

γ(t, z)Ñ(dt, dz)
]

+ X(t)φ′
t dt + ψ′

t dt

= [φtρtX(t) + φt(µt − ρt)u(t) + X(t)φ′
t + ψ′

t]dt

+ φtσtu(t)dB(t) + φtu(t−)
∫
R

γ(t, z)Ñ(dt, dz) . (3.3.15)

Comparing with (3.3.13) we get

φtρtX(t) + φt(µt − ρt)u(t) + X(t)φ′
t + ψ′

t = −ρt(φtX(t) + ψt) (3.3.16)

q(t) = φtσtu(t) (3.3.17)

r(t, z) = φtu(t)γ(t, z). (3.3.18)

Let û ∈ A be a candidate for the optimal control with corresponding X̂ and
p̂, q̂, r̂. Then

H(t,X̂(t), u, p̂(t), q̂(t), r̂(t, ·))

= ρtX̂(t)p̂(t) + u
[
(µt − ρt)p̂(t) + σtq̂(t) +

∫
R

γ(t, z)r̂(t, z)ν(dz)
]
.

Since this is a linear expression in u, it is natural to guess that the coefficient
of u vanishes, i.e.:

(µt − ρt)p̂(t) + σtq̂(t) +
∫
R

γ(t, z)r̂(t, z)ν(dz) = 0. (3.3.19)

Using that by (3.3.17) and (3.3.18) we have

q̂(t) = φtσtû(t) , r̂(t, z) = φtû(t)γ(t, z)

we get from (3.3.19) that

û(t) =
(ρt − µt)p̂(t)

φtΛt
=

(ρt − µt)(φtX̂(t) + ψt)
φtΛt

(3.3.20)

where
Λt = σ2

t +
∫
R

γ2(t, z)ν(dz). (3.3.21)
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On the other hand, from (3.3.16) we have

û(t) =
(φtρt + φ′

t)X̂(t) + ρt(φtX̂(t) + ψt) + ψ′
t

φt(ρt − µt)
. (3.3.22)

Combining (3.3.20) and (3.3.22) we get the equations

(ρt − µt)2φt − [2ρtφt + φ′
t]Λt = 0 ; φ(T ) = −1

(ρt − µt)2ψt − [ρtψt + ψ′
t]Λt = 0 ; ψ(T ) = a

which have the solutions

φt = − exp
( T∫

t

{ (ρs − µs)2

Λs
− 2ρs

}
ds
)
; 0 ≤ t ≤ T (3.3.23)

ψt = a exp
( T∫

t

{ (ρs − µs)2

Λs
− ρs

}
ds
)
; 0 ≤ t ≤ T . (3.3.24)

With this choice of φt and ψt the processes

p̂(t) := φtX̂(t) + ψt, q̂(t) := σtσtû(t) and r̂(t, z) := φtû(t)γ(t, z)

solve the adjoint equation, and by (3.3.19) we see that all the conditions of the
sufficient maximum principle (Theorem 3.4) are satisfied. We conclude that
û(t) given by (3.3.20) is an optimal control. In feedback form the control can
be written

û(t, x) =
(ρt − µt)(φtx + ψt)

φtΛt
. (3.3.25)

3.4 Exercises

Exercise* 3.1. Suppose the wealth X(t) = X(u)(t) of a person with con-
sumption rate u(t) ≥ 0 satisfies the following Lévy type mean reverting
Ornstein-Uhlenbeck SDE

dX(t) = (µ − ρX(t) − u(t))dt + σdB(t) + θ

∫
R

zÑ(dt, dz) ; t > 0

X(0) = x > 0

Fix T > 0 and define

J (u)(s, x) = Es,x
[ T−s∫

0

e−δ(s+t) u
γ(t)
γ

dt + λX(T − s)
]
.
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Use dynamic programming to find the value function Φ(s, x) and the optimal
consumption rate (control) u∗(t) such that

Φ(s, x) = sup
u(·)

J (u)(s, x) = J (u∗)(s, x) .

In the above µ, ρ, σ, θ, T , δ > 0, γ ∈ (0, 1) and λ > 0 are constants.

Exercise* 3.2. Solve the problem of Exercise 3.1 by using the stochastic
maximum principle.

Exercise* 3.3. Define

dX(u)(t) = dX(t) =
[
dX1(t)
dX2(t)

]
=

⎡⎢⎣u(t, ω)
∫
R

zÑ(dt, dz)∫
R

z2Ñ(dt, dz)

⎤⎥⎦ ∈ R
2

and, for fixed T > 0 (deterministic)

J(u) = E
[
− (X1(T ) − X2(T ))2

]
.

Use the stochastic maximum principle to find u∗ such that

J(u∗) = sup
u

J(u) .

Interpretation: Put F (ω) =
∫
R

z2Ñ(T, dz). We may regard F as a given

T -claim in the normalized market with the two investment possibilities bond
and stock, whose prices are

(bond) dS0(t) = 0 ; S0(0) = 1

(stock) dS1(t) =
∫
R

zÑ(dt, dz), a Lévy martingale.

Then −J(u) is the variance of the difference between F = X2(T ) and the
wealth X1(T ) generated by a self-financing portfolio u(t, ω). See [BDLØP]
for more information on minimal variance hedging in markets driven by Lévy
martingales.

Exercise* 3.4. Solve the stochastic control problem

Φ1(s, x) = inf
u≥0

Es,x

[∫ ∞

0

e−ρ(s+t)(X2(t) + θu2(t)dt

]
where

dX(t) = u(t)dt + σdB(t) +
∫

R

zÑ(dt, dz) ; X(0) = x

where ρ > 0, θ > 0 and σ > 0 are constants.
The interpretation of this problem is that we want to push the process

X(t) as close as possible to 0 by using a minimum of energy, its rate being
measured by θu2(t).
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[Hint: Try ϕ(s, x) = e−ρs(ax2 + b) for some constants a, b.]

Exercise* 3.5 (The stochastic linear regulator problem).
Solve the stochastic control problem

Φ0(x) = inf
u

Ex

[∫ T

0

(X2(t) + θu(t)2)dt + λX2(T )

]

where
dX(t) = u(t)dt + σdB(t) +

∫
R

zÑ(dt, dz) ; X(0) = x

and
T > 0 is a constant.

a) by using dynamic programming (Theorem 3.1).
b) by using the stochastic maximum principle (Theorem 3.4).

Exercise* 3.6. Solve the stochastic control problem

Φ(s, x) = sup
c(t)≥0

Es,x

[∫ τ0

0

e−δ(s+t) ln c(t)dt

]
,

where the supremum is taken over all Ft-adapted processes c(t) ≥ 0 and

τ0 = inf{t > 0 ; X(t) ≤ 0},

where

dX(t) = X(t−)
[
µdt + σdB(t) + θ

∫
R

zÑ(dt, dz)
]
− c(t)dt, X(0) = x > 0,

where δ > 0, µ, σ and θ are constants, and

θz > −1 for a.a. z w.r.t. ν.

We may interpret c(t) as the consumption rate, X(t) as the corresponding
wealth and τ0 as the bankrupty time. Thus Φ represents the maximal expected
total discounted logarithmic utility of the consumption up to bankrupty time.

[Hint: Try ϕ(s, x) = e−δs(a lnx + b) as a candidate for Φ(s, x), where a and b
are suitable constants.]

Exercise 3.7. Use the stochastic maximum principle (Theorem 3.4) to solve
the problem

sup
c(t)≥0

E

[∫ T

0

e−δt ln c(t)dt + λe−δT lnX(T )

]
,
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where

dX(t) = X(t−)
[
µdt + σdB(t) + θ

∫
R

zÑ(dt, dz)
]
− c(t)dt, X(0) > 0.

Here δ > 0, λ > 0, µ, σ and θ are constants, and

θz > −1 for a.a. z(ν).

(See Exercise 3.6 for an interpretation of this problem).

[Hint: Try p(t) = ae−δtX−1(t) and c(t) = X(t)
a , for some constant a > 0.]



4

Combined Optimal Stopping
and Stochastic Control of Jump Diffusions

4.1 Introduction

In this chapter we discuss combined optimal stopping and stochastic control
problems and their associated HJB variational inequalities. This is a subject
which deserves to be better known because of its many applications. A thor-
ough treatment of such problems (but without the associated HJB variational
inequalities) can be found in Krylov [K].

This chapter may also serve as a brief review of the theory of optimal
stopping and their variational inequalities on one hand, and the theory of
stochastic control and their HJB equations on the other. An introduction to
these topics separately can be found in [Ø1].

As an illustration of how combined optimal stopping and stochastic control
problems may appear in economics, let us consider the following example
which is an extension of Exercise 2.2.

Example 4.1 (An optimal resource extraction control and stopping
problem). Suppose the price Pt = P (t) of one unit of a resource (e.g. gas or
oil) at time t is varying like a geometric Lévy process, i.e.

dP (t) = P (t−)(αdt + βdB(t) + γ

∫
R

zN̄(dt, dz)) ; P0 = p ≥ 0 (4.1.1)

where α, β �= 0, γ are constants and γz ≥ −1 a.s. ν.
Let Qt denote the amount of remaining resources at time t. If we extract

the resources at the “intensity” ut = ut(ω) ∈ [0, m] at time t, then the dy-
namics of Qt is

dQt = −utQtdt ; Q0 = q ≥ 0 . (4.1.2)

(m is a constant giving the maximal intensity).
We assume as before that our control ut(ω) is adapted to the filtration

{F}t≥0. If the running cost is given by K0+K1ut (with K0, K1 ≥ 0 constants)



60 4 Combined Optimal Stopping and Stochastic Control of Jump Diffusions

as long as the field is open and if we decide to stop the extraction for good at
time τ(ω) ≥ 0 let us assume that the expected total discounted profit is

J (u,τ)(p, q) = E(p,q)
[ τ∫

0

e−ρt(ut(PtQt − K1) − K0)dt + e−ρτ (θPτQτ − a)
]

(4.1.3)
where ρ > 0 is the discounting exponent and θ > 0, a ≥ 0 are constants.
Thus e−ρt

(
ut(PtQt −K1)−K0

)
gives the discounted net profit rate when the

field is in operation, while e−ρτ (θPτQτ − a) gives the discounted net value of
the remaining resources at time τ . (We may interpret a ≥ 0 as a transaction
cost.) We assume that the closing time τ is a stopping time with respect to
the filtration {Ft}t≥0, i.e. that

{ω; τ(ω) ≤ t} ∈ Ft for all t .

Thus both the extraction intensity ut and the decision whether to close before
or at time t must be based on the information Ft only, not on any future
information.

The problem is to find the value function Φ(p, q) and the optimal control
u∗

t ∈ [0, m] and the optimal stopping time τ∗ such that

Φ(p, q) = sup
ut,τ

J (u,τ)(p, q) = J (u∗,τ∗)(p, q) . (4.1.4)

This problem is an example of a combined optimal stopping and stochastic
control problem. It is a modification of a problem discussed in [BØ1] and [DZ].

We will return to this and other examples after presenting a general theory
for problems of this type.

4.2 A general mathematical formulation

Consider a controlled stochastic system of the same type as in Chapter 3,
where the state Y (u)(t) = Y (t) ∈ R

k at time t is given by

dY (t) = b(Y (t), u(t))dt + σ(Y (t), u(t))dB(t) +
∫

Rk

γ(Y (t−), u(t−), z)N̄(dt, dz)

Y (0) = y ∈ R
k .

(4.2.1)
Here b : R

k × U → R
k, σ : R

k × U → R
k×m and γ : R

k × U × R
k → R

k×�

are given continuous functions and u(t) = u(t, ω) is our control, assumed to
be Ft-adapted and with values in a given closed, convex set U ⊂ R

�.
Associated to a control u = u(t, ω) and an Ft-stopping time τ = τ(ω)

belonging to a given set T of admissible stopping times we assume there is a
performance criterion of the form
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J (u,τ)(y) = Ey
[ τ∫

0

f(Y (t), u(t))dt + g(Y (τ))χ{τ<∞}

]
(4.2.2)

where f : R
k×U → R (the profit rate) and g : R

k → R (the bequest function)
are given functions.

We assume that we are given a set U = U(y) of admissible controls u
which is contained in the set of controls u such that a unique strong solution
Y (t) = Y (u)(t) of (4.2.1) exists and the following, (4.2.3)–(4.2.4), hold:

• Ey
[ τS∫

0

|f(Y (t), u(t))|dt
]

< ∞ for all y ∈ S (4.2.3)

where τS = τS(y, u) = inf{t > 0; Y (u)(t) �∈ S},
• the family {g−(Y (u)(τ)); τ ∈ T } is uniformly P y-integrable for all y

∈ S, where g−(y) = max(0,−g(y)). (4.2.4)

We interpret g(Y (τ(ω))) as 0 if τ(ω) = ∞. Here, and in the following, Ey

denotes expectation with respect to P when Y (0) = y and S ⊂ R
k is a fixed

Borel set such that
S ⊂ S0.

We can think of S as the “universe” or “solvency set” of our system, in
the sense that we are only interested in the system up to time T , which may
be interpreted as the time of bankruptcy.

We now consider the following combined optimal stopping and control -
problem :

Let T be the set of Ft-stopping times τ ≤ τS . Find Φ(y) and u∗ ∈ U ,
τ∗ ∈ T such that

Φ(y) = sup{J (u,τ)(y); u ∈ U , τ ∈ T } = J (u∗,τ∗)(y) . (4.2.5)

We will prove a verification theorem for this problem. The theorem can be
regarded as a combination of the variational inequalities for optimal stopping
(Theorem 2.2) and the Hamilton-Jacobi-Bellman (HJB) equation for stochas-
tic control (Theorem 3.1).

We say that the control u is Markov or Markovian if it has the form

u(t) = u0(Y (t))

for some function u0 : S̄ → U . If this is the case we usually do not distinguish
notationally between u and u0 and write (with abuse of notation)

u(t) = u(Y (t)) .

If u ∈ U is Markovian then Y (u)(t) is a Markov process whose generator
coincides on C2

0 (Rk) with the differential operator L = Lu defined for y ∈ R
k

by
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Luψ(y) =
k∑

i=1

bi(y, u(y))
∂ψ

∂yi
+ 1

2

k∑
i,j=1

(σσT )ij(y, u(y))
∂2ψ

∂yi∂yj

+
�∑

j=1

∫
R

{ψ(y + γ(j)(y, u(y), zj)) − ψ(y) −∇ψ(y).γ(j)(y, u(y), zj)}νj(dzj)

(4.2.6)

for all functions ψ : R
k → R which are twice differentiable at y.

Typically the value function Φ will be C2 outside the boundary ∂D of the
continuation region D (see (ii) below) and it will satisfy a Hamilton-Jacobi-
Bellman (HJB) equation in D and an HJB inequality outside D̄. Across ∂D
the function Φ will not be C2, but it will usually be C1, and this feature
is often referred to as the “high contact” – or “smooth fit” – principle. This
is the background for the verification theorem given below, Theorem 4.2.
Note however, that there are cases when Φ is not even C1 at ∂D. To handle
such cases one can use a verification theorem based on the viscosity solution
concept. See Chapter 9 and in particular Section 9.2.

Theorem 4.2 (HJB-variational inequalities for optimal stopping and
control).
a) Suppose we can find a function ϕ : S̄ → R such that

(i) ϕ ∈ C1(S0) ∩ C(S̄)
(ii) ϕ ≥ g on S0 .

Define

D = {y ∈ S; ϕ(y) > g(y)} (the continuation region ) .

Suppose Y (u)(t) spends 0 time on ∂D a.s., i.e.

(iii) Ey
[ τS∫

0

X∂D(Y (u)(t))dt
]

= 0 for all y ∈ S, u ∈ U

and suppose that
(iv) ∂D is a Lipschitz surface
(v) ϕ ∈ C2(S0\∂D) and the second order derivatives of ϕ are locally bounded

near ∂D
(vi) Lvϕ(y) + f(y, v) ≤ 0 on S0 \ ∂D for all v ∈ U
(vii) Y (u)(τS) ∈ ∂S a.s. on {τS < ∞} and

lim
t→τ−

S
ϕ(Y (u)(t)) = g(Y (u)(τS))χ{τS<∞} a.s.

(viii) Ey
[
|ϕ(Y (u)(τ))| +

τS∫
0

{|Aϕ(Y (u)(t))| + |σT (Y (t))∇ϕ(Y (t))|2

+
�∑

j=1

∫
R

|ϕ(Y (t) + γ(j)(Y (t), u(t), zj)) − ϕ(Y (t))|2νj(dzj)}dt
]

< ∞.
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Then
ϕ(y) ≥ Φ(y) for all y ∈ S .

b) Suppose, in addition to (i)–(viii) above, that

(ix) for each y ∈ D there exists û(y) ∈ U such that

Lû(y)ϕ(y) + f(y, û(y)) = 0,

(x) τD := inf{t > 0; Y (û)(t) /∈ D} < ∞ a.s. for all y ∈ S,
and

(xi) the family {ϕ(Y (û)(τ)); τ ∈ T } is uniformly integrable with respect to
P y for all y ∈ D.
Suppose û ∈ U . Then

ϕ(y) = Φ(y) for all y ∈ S .

Moreover, u∗ := û and τ∗ := τD are optimal control and stopping times,
respectively.

Proof. The proof is a synthesis of the proofs of Theorem 2.2 and Theorem 3.1.
For completeness we give some details:

a) By Theorem 2.1 we may assume that ϕ ∈ C2(S0) ∩ C(S̄). Choose u ∈ U
and put Y (t) = Y (u)(t). Let τ ≤ τS be a stopping time. Then by Dynkin’s
formula (Theorem 1.24)

Ey
[
ϕ(Y (τ ∧ m))

]
= ϕ(y) + Ey

[ τ∧m∫
0

Luϕ(Y (t))dt
]
. (4.2.7)

Hence by (vii) and the Fatou lemma

ϕ(y) = lim
m→∞

Ey
[ τ∧m∫

0

−Luϕ(Y (t))dt + ϕ(Y (τ ∧ m))
]

≥ Ey
[ τ∫

0

−Luϕ(Y (t))dt + g(Y (τ))χ{τ<∞}

]
. (4.2.8)

If we now use (vi) we can conclude that

ϕ(y) ≥ Ey
[ τ∫

0

f(Y (t), u(t))dt + g(Y (τ))χ{τ<∞}

]
= Ju,τ (y). (4.2.9)

Since u ∈ U and τ ≤ τS was arbitrary we conclude that

ϕ(y) ≥ sup
u,τ

J (u,τ)(y) = Φ(y) , (4.2.10)

which proves a).
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To prove the opposite inequality, assume that (ix)-(xi) hold. Choose a
point y ∈ D. Then apply the argument above to the Markovian control û(t) :=
û(Y (t)) and the stopping time τ̂ = τD = inf{t > 0; Ŷ (t) �∈ D}, where Ŷ (t) =
Y (û)(t): We get

Ey
[
ϕ(Ŷ (τ̂ ))

]
= ϕ(y) + Ey

[ τ̂∫
0

Lûϕ(Ŷ (t))dt
]
, (4.2.11)

which implies that

ϕ(y) = Ey
[ τ̂∫

0

f(Ŷ (t), û(t))dt + g(Ŷ (τ̂ ))
]

= J (û,τ̂)(y).

Combined with a) this shows that ϕ(y) = Φ(y) and that (û, τ̂ ) is optimal if
y ∈ D.

Finally, if y �∈ D then ϕ(y) = g(y) ≤ Φ(y) and hence by a) we have
ϕ(y) = Φ(y) also if y �∈ D. In this case τ∗ = 0 is an optimal stopping time. ��

Remark 4.3. If we neglect all the technical conditions of Theorem 4.2 and
concentrate on conditions (ii), (vi) and (ix), then we can write the conditions
of Theorem 4.2 in the following condensed form

max
(

sup
v∈U

{Lvφ(y) + f(y, v)}, g(y) − φ(y)
)

= 0 ; y ∈ S0 . (4.2.12)

Since this is a combination of the Hamilton-Jacobi-Bellman (HJB) equation
of stochastic control and the variational inequality (VI) of optimal stopping,
we call (4.2.12) a HJBVI.

One can prove that, under some conditions, the value function φ is indeed
a solution of (4.2.12) in the weak sense of viscosity. See Chapter 9 for a
discussion of this concept.

Remark 4.4. Note that the problem (4.2.5) contains the general optimal
stopping problem as a special case.

More precisely, if the functions b, σ and f do not depend on u, then the
problem reduces to the optimal stopping problem

Φ(y) = sup
τ∈T

Ey
[ ∫ τ

0

f(Y (t))dt + g(Y (τ))χ{τ<∞}

]
discussed in Chapter 2 and the HJBVI (4.2.12) becomes the VI

max(LΦ(y) + f(y), g(y) − Φ(y)) = 0 ; y ∈ S0 . (4.2.13)

The problem (4.2.5) is also closely related to the general stochastic control
problem discussed in Chapter 3. In such a problem the stopping time τ is
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fixed to τ = τS and hence the problem is to find Φ(y) and u∗ ∈ U such that

Φ(y) = sup
u∈U

J (u)(y) = J (u∗)(y) (4.2.14)

where

J (u)(y) = Ey
[ ∫ τS

0

f(Y (t), u(t))dt + g(Y (τS))χ{τS<∞}

]
.

4.3 Applications

To illustrate Theorem 4.2 let us apply it to the problem of Example 4.1:
In this case the generator Lu of the time-space state process

dY (t) = (dt, dPt, dQt) ; Y (0) = (s, p, q) ∈ [0,∞)3

is given by (see Theorem 1.22)

Luψ(s, p, q) =
∂ψ

∂s
+ αp

∂ψ

∂p
− uq

∂ψ

∂q
+ 1

2β2p2 ∂2ψ

∂p2

+
∫

R

{ψ(s, p + γpz, q) − ψ(s, p, q) − ∂ψ

∂p
(s, p, q).γzp}ν(dz) .

In view of Theorem 4.2 we are looking for a subset D of S = [0,∞)3 and a
function ϕ(s, p, q) : S → R such that

ϕ(s, p, q) = e−ρs(θpq − a) for all (s, p, q) �∈ D (4.3.1)

ϕ(s, p, q) ≥ e−ρs(θpq − a) for all (s, p, q) ∈ S (4.3.2)

Lvϕ(s, p, q) + e−ρs(v(pq −K1) −K0) ≤ 0 for all (s, p, q) ∈ S0 \ D̄

and all v ∈ [0, m] (4.3.3)

sup
v∈[0,m]

{
Lvϕ(s, p, q) + e−ρs(v(pq − K1) − K0)

}
= 0 for all (s, p, q) ∈ D .

(4.3.4)

Let us try a function ϕ of the form

ϕ(s, p, q) = e−ρsF (w) where w = pq (4.3.5)

and a continuation region D of the form

D = {(s, p, q); pq > w0} for some w0 > 0 .
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Then (4.3.1)–(4.3.4) get the form

F (w) = θw − a for all w ≥ w0 (4.3.6)

F (w) ≥ θw − a for all w < w0 (4.3.7)

− ρF (w) + (α − v)wF ′(w) + 1
2β2w2F ′′(w)

+
∫

R

{F (w + γzw) − F (w) − F ′(w)γzw}ν(dz) + v(w − K1) − K0 ≤ 0

for all w < w0, v ∈ [0, m] (4.3.8)

sup
v∈[0,m]

{
− ρF (w) + (α − v)wF ′(w) + 1

2β2w2F ′′(w)

+
∫

R

{F (w + γzw) − F (w) − F ′(w)γzw}ν(dz) + v(w − K1) − K0

}
= 0

for all w > w0 . (4.3.9)

From (4.3.9) and (xi) of Theorem 4.2 we get the following candidate û for the
optimal control:

v = û(w) = Argmax
v∈[0,m]

{
v(w(1 − F ′(w)) − K1)

}

=

{
m if F ′(w) < 1 − K1

w

0 if F ′(w) > 1 − K1
w

(4.3.10)

Let Fm(w) be the solution of (4.3.9) with v = m, i.e. the solution of

−ρFm(w) + (α − m)wF ′
m(w) + 1

2β2w2F ′′
m(w)

+
∫

R

{F (w + γzw) − F (w) − F ′(w)γzw}ν(dz) = K0 + mK1 − mw .

(4.3.11)

A solution of (4.3.11) is

Fm(w) = C1w
λ1 + C2w

λ2 +
mw

ρ + m − α
− K0 + mK1

ρ
(4.3.12)

where C1, C2 are constants and λ1 > 0, λ2 < 0 are roots of the equation

h(λ) = 0 (4.3.13)

with

h(λ) = −ρ+(α−m)λ+ 1
2β2λ(λ−1)+

∫
R

{(1+γz)λ−1−λγz}ν(dz). (4.3.14)

(Note that h(0) = −ρ < 0 and lim|λ|→∞ h(λ) = ∞). The solution will de-
pend on the relation between the parameters involved and we will not give a
complete discussion, but only consider some special cases.



4.3 Applications 67

Case 1

Let us assume that

α ≤ ρ , K1 = a = 0 and 0 < θ < m
ρ+m−α . (4.3.15)

It is easy to see that
λ1 > 1 ⇐⇒ ρ + m > α . (4.3.16)

Let us try (guess) that
C1 = 0 (4.3.17)

and that the continuation region D = {(s, p, q); pq > w0} is such that (see
(4.3.10))

F ′
m(w) < 1 for all w > w0 . (4.3.18)

The intuitive motivation for trying this is the belief that it is optimal to use
the maximal extraction intensity m all the time until closure, at least if θ is
small enough.

These guesses lead to the following candidate for the value function F (w):

F (w) =

{
θw if 0 ≤ w ≤ w0

Fm(w) = C2w
λ2 + mw

ρ+m−α − K0
ρ if w > w0 .

(4.3.19)

We now use continuity and differentiability at w = w0 to determine w0 and
C2:

(Continuity) C2w
λ2
0 +

mw0

ρ + m − α
− K0

ρ
= θw0 (4.3.20)

(Differentiability) C2λ2w
λ2−1
0 +

m

ρ + m − α
= θ . (4.3.21)

Easy calculations show that the unique solution of (4.3.20), (4.3.21) is

w0 =
(−λ2)K0(ρ + m − α)

(1 − λ2)ρ[m − θ(ρ + m − α)]
(> 0 by (4.3.15)) (4.3.22)

and

C2 =
[m − θ(ρ + m − α)]w1−λ2

0

(−λ2)(ρ + m − α)
(> 0 by (4.3.15)). (4.3.23)

It remains to verify that with these values of w0 and C2 the set D =
{(s, p, q); pq > w0} and the function F (w) given by (4.3.19) satisfies (4.3.6)–
(4.3.9), as well as all the other conditions of Theorem 4.2:

To verify (4.3.6) we have to check that (4.3.18) holds, i.e. that

F ′
m(w) = C2λ2w

λ2−1 +
m

ρ + m − α
< 1 for all w > w0 .
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Since λ2 < 0 and we have assumed α ≤ ρ (in (4.3.15)) this is clear. So (4.3.9)
holds. If we substitute F (w) = θw in (4.3.8) we get

−ρθw + (α − m)wθ + mw − K0 = w[m − θ(ρ + m − α)] − K0 .

We know that this is 0 for w = w0 by (4.3.20) and (4.3.21). Hence it is less
than 0 for w < w0. So (4.3.8) holds. Condition (4.3.6) holds by definition of
D and F . Finally, since F (w0) = θw0, F ′(w0) = θ and

F ′′(w) = F ′′
m(w) = C2λ2(λ2 − 1)wλ2−2 > 0

we must have F (w) > θw for w > w0. Hence (4.3.7) holds. Similarly one can
verify all the other conditions of Theorem 4.2. We have proved:

Theorem 4.5. Suppose (4.3.15) holds. Then the optimal strategy (u∗, τ∗) for
problem (4.1.3)–(4.1.4) is

u∗ = m , τ∗ = inf{t > 0; PtQt ≤ w0} (4.3.24)

where w0 is given by (4.3.22). The corresponding value function is Φ(s, p, q) =
e−ρsF (p·q), where F is given by (4.3.19) with λ2 < 0 as in (4.3.11) and C2 > 0
as in (4.3.23).

For other values of the parameters it might be optimal not to produce at
all but just wait for the best closing/sellout time. For example, we mention
without proof the following cases (see Exercise 4.2):

Case 2

Assume that

θ = 1 and ρ ≤ α . (4.3.25)

Then u∗ = 0 and

Φ = ∞ .

Case 3

Assume that

θ = 1 , ρ > α and K0 < ρa < K0 + ρK1 . (4.3.26)

Then

u∗ = 0 and τ∗ = inf{t > 0; PtQt ≥ w1} ,

for some w1 > 0.



4.4 Exercises 69

4.4 Exercises

Exercise* 4.1. a) Solve the following stochastic control problem:

Φ(s, x) = sup
u(t)≥0

J (u)(s, x) = J (u∗)(s, x) ,

where

J (u)(s, x) = Ex
[ ∫ τS

0

e−δ(s+t) uγ(t)
γ

dt
]
.

Here

τS = τS(ω) = inf{t > 0; X(t) ≤ 0} (the time of bankruptcy)

and

dX(t) = (µX(t)−u(t))dt+σX(t)dB(t)+θX(t−)
∫

R

zN̄(dt, dz) ; X0 = x > 0

with γ ∈ (0, 1), δ > 0, µ, σ �= 0, θ constants, θz > −1 a.s. ν. The inter-
pretation of this is the following: X(t) represents the total wealth at time t,
u(t) = u(t, ω) ≥ 0 represents the chosen consumption rate (the control). We
want to find the consumption rate u∗(t) which maximizes the expected total
discounted utility of the consumption up to the time of bankruptcy, τS .

[Hint: Try a value function of the form

φ(s, x) = Ke−δsxγ

for a suitable value of the constant K.]
b) Consider the following combined stochastic control and optimal stop-

ping problem:

Φ(s, x) = sup
u,τ

J (u,τ)(s, x) = J (u∗,τ∗)(s, x)

where

J (u,τ)(s, x) = Ex
[ ∫ τ

0

e−δ(s+t) u
γ(t)
γ

dt + λXγ(τ)
]

with X(t) as in a), λ > 0 a given constant.
Now the supremum is taken over all Ft-adapted controls u(t) ≥ 0 and all

Ft-stopping times τ ≤ τS .
Let K be the constant found in a). Show that
(i) if λ ≥ K then it is optimal to stop immediately
(ii) if λ < K then it is optimal never to stop.

Exercise 4.2. a) Verify the statements in Case 2 and Case 3 at the end of
Section 4.3.

b) What happens in the cases
Case 4: θ = 1, ρ > α and ρa ≤ K0 ?
Case 5: θ = 1, ρ > α and K0 + ρK1 ≤ ρa ?
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Exercise 4.3 (A stochastic linear regulator problem with optimal
stopping).

Solve the stochastic linear regulator problem in Exercise 3.5, with the
additional option of stopping, i.e. solve the problem

Φ(s, x) = inf
{

J (u,τ)(s, x) ; u ∈ U , τ ∈ T
}

,

where

J (u,τ)(s, x) = Es,x

[∫ τ

0

e−ρ(s+t)
(
X2(t) + θu2(t)

)
dt + λe−ρ(s+τ)X2(τ)

]
,

(ρ > 0 constant), where the state process is

Y (t) =
[
s + t
X(t)

]
; t ≥ 0, Y (0) =

[
s
x

]
= y ∈ R

2

with

dX(t) = dX(u)(t) = u(t)dt + σdB(t) +
∫

R

zÑ(dt, dz) ; X(0) = x.

[Hint: As a candidate for the value function Φ try a function ϕ of the form

ϕ(s, x) =

{
e−ρs(ax2 + b) ; |x| ≥ δ

e−ρsλx2 ; |x| < δ

for suitable values of the constants a, b and δ.]
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Singular Control for Jump Diffusions

5.1 An illustrating example

We illustrate singular control problems by the following example, studied in
[FØS2]:

Example 5.1 (Optimal consumption rate under proportional trans-
action costs). Consider again a financial market of the form (3.3.1)–(3.3.2),
where we have two investment possibilities:

(i) A bank account/bond where the value/price P1(t) at time t grows with
interest rate r, i.e.,

dP1(t) = rP1(t)dt , P1(0) = 1 .

(ii) A stock, with price P2(t) satisfying the equation

dP2(t) = P2(t−)
[
µdt + βdB(t) +

∫
R

zÑ(dt, dz)
]
; P2(0) = p2 > 0 .

Here r > 0, µ and β > 0 are given constants, and we assume that z > −1 a.s.
ν.

Assume that at any time t the investor can choose an adapted, cadlag
consumption rate process c(t) = c(t, ω) ≥ 0, taken from the bank account.
Moreover, the investor can at any time transfer money from one investment
to another with a transaction cost which is proportional to the size of the
transaction. Let X1(t) and X2(t) denote the amounts of money invested in
the bank and in the stocks, respectively. Then the evolution equations for
X1(t) and X2(t) are
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dX1(t) = dXx1,c,ξ
1 (t)

= (rX1(t) − c(t))dt − (1 + λ)dξ1(t) + (1 − µ)dξ2(t); X1(0−) = x1 ∈ R

dX2(t) = dXx,c,ξ
2 (t)

= X2(t−)
[
µdt + βdB(t) +

∫
R

zÑ(dt, dz)
]
+ dξ1(t) − dξ2(t); X2(0−) = x2 ∈ R.

Here ξ = (ξ1, ξ2), where ξ1(t), ξ2(t) represent cumulative purchase and sale,
respectively, of stocks up to time t. The constants λ ≥ 0, µ ∈ [0, 1] represent
the constants of proportionality of the transaction costs.

Define the solvency region S to be the set of states (x1, x2) such that the
net wealth is non-negative, i.e. (see Figure 5.1)

S = {(x1, x2) ∈ R
2; x1 + (1 + λ)x2 ≥ 0 and x1 + (1 − µ)x2 ≥ 0 (5.1.1)

x1

∂1S : x1 + (1 + λ)x2 = 0

S

x2

∂2S : x1 + (1 − µ)x2 = 0

Fig. 5.1. The solvency region S

We define the set A of admissible controls as the set of predictable
consumption-investment policies (c, ξ) such that ξ = (ξ1, ξ2) where each
ξi(t) ; i = 1, 2 is right-continuous, non-decreasing, ξ(0−) = 0 and such that
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(x1, x2) ∈ S ⇒ (X1(t), X2(t)) ∈ S for all t ≥ 0 .

The performance criterion is defined by

Jc,ξ(s, x1, x2) = Es,x1,x2

[ ∞∫
0

e−δ(s+t) cγ(t)
γ

dt
]
, (5.1.2)

where δ > 0, γ ∈ (0, 1) are constants. We seek (c∗, ξ∗) ∈ A and Φ(s, x1, x2)
such that

Φ(s, x1, x2) = sup
(c,ξ)∈A

Jc,ξ(s, x1, x2) = Jc∗,ξ∗
(s, x1, x2) . (5.1.3)

This is an example of a singular stochastic control problem. It is called singular
because the investment control measure dξ(t) is allowed to be singular with
respect to Lebesgue measure dt. In fact, as we shall see, the optimal control
measure dξ∗(t) turns out to be singular.

We now give a general theory of singular control of jump diffusions and
return to the above example afterwards.

5.2 A general formulation

Let κ = [κij ] ∈ R
k×p be a constant matrix and θ = [θi] ∈ R

p be a constant
vector. Suppose the state Y (t) = Y u,ξ(t) ∈ R

k is described by the equation

dY (t) = b(Y (t), u(t))dt + σ(Y (t), u(t))dB(t)

+
∫
Rk

γ(Y (t−), u(t−), z)Ñ(dt, dz) + κdξ(t) ; Y (0−) = y ∈ R
k.

Here ξ(t) ∈ R
p is an adapted cadlag process with increasing components and

ξ(0−) = 0. Since dξ(t) may be singular with respect to Lebesgue measure
dt, we call ξ our singular control or our intervention control . The process
u(t) is an adapted cadlag process with values in a given set U (our absolutely
continuous control). Suppose we are given a performance functional Ju,ξ(y)
of the form

Ju,ξ(y) = Ey
[ τS∫

0

f(Y (t), u(t))dt + g(Y (τS)) · X{τS<∞} +

τS∫
0

θT dξ(t)
]
,

where f : R
k × U → R, g : R

k → R are continuous functions and

τS = inf{t > 0; Y u,ξ(t) �∈ S} ≤ ∞ is the time of bankruptcy,

where S ⊂ R
k is a given solvency set , assumed to satisfy S ⊂ S0.
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Let A be a given family of admissible controls (u, ξ), contained in the set of
(u, ξ) such that

Ey
[ τS∫

0

|f(Y (t), u(t))|dt + |g(Y (τS))| · X{τS<∞} +

τS∫
0

p∑
j=1

|θj |dξj(t)
]

< ∞ .

The problem is to find the value function Φ(y) and an optimal control
(u∗, ξ∗) ∈ A such that

Φ(y) = sup
(u,ξ)∈A

Ju,ξ(y) = Ju∗,ξ∗
(y) . (5.2.1)

Note that if we apply a Markov control u(t) = u(Y (t)) ∈ U and dξ = 0, then
Y (t) = Y u,0(t) has the generator Au given by

Auφ(y) =
k∑

i=1

bi(y, u(y))
∂φ

∂yi
+ 1

2

k∑
i,j=1

(σσT )ij(y, u(y))
∂2φ

∂yi∂yj

+
�∑

j=1

∫
R

{
φ(y + γ(j)(y, u(y), zj)

)
− φ(y) −∇φ(y)T γ(j)(y, u(y), zj)

}
νj(dzj) .

Note that we distinguish between the jumps of Y u,ξ(t) caused by the jump of
N(t, z), denoted by ∆NY (t), and the jump caused by the singular control ξ,
denoted by ∆ξY (t). Thus

∆NY (t) =
∫
Rk

γ(Y (t−), u(t−), z)Ñ({t}, dz), while ∆ξY (t) = κ∆ξ(t) .

(5.2.2)
We let t1, t2, . . . denote the jumping times of ξ(t) and we let

∆ξφ(Y (tn)) = φ(Y (tn)) − φ(Y (t−n ) + ∆NY (tn)) (5.2.3)

be the increase in φ due to the jump of ξ(t) at t = tn.
We give now a verification theorem for singular control problems.

Theorem 5.2 (Integro-variational inequalities for singular control).
a) Suppose there exists a function φ ∈ C2(S0) ∩ C(S̄) such that

(i) Avφ(y) + f(y, v) ≤ 0 for all (constant) v ∈ U and y ∈ S

(ii)
k∑

i=1

κij
∂φ

∂yi
(y) + θj ≤ 0 for all y ∈ S, j = 1, . . . , p.

(iii) Ey
[
|φ(Y (τ))| +

τS∫
0

{|Aφ(Y (t))| + |σT (Y (t), u(t))∇φ(Y (t))|2

+
�∑

m=1

∫
Rk

|φ(Y (t) + γ(m)) − φ(Y (t))|2νm(dzm)}dt < ∞

for all (u, ξ) ∈ A, τ ∈ T
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(iv) lim
t→τS−

φ(Y (t)) = g(Y (τS))X{τS<∞} a.s., for all (u, ξ) ∈ A
(v) Y (τS) ∈ ∂S a.s. on {τS < ∞} and {φ−(Y (τ))}τ≤τS is uniformly
integrable for all (u, ξ) ∈ A, y ∈ S.
Then

φ(y) ≥ Φ(y) for all y ∈ S . (5.2.4)

b) Define the non-intervention region D by

D =
{
y ∈ S; max

1≤j≤p

{ k∑
i=1

κij
∂φ

∂yi
(y) + θj

}
< 0

}
. (5.2.5)

Suppose, in addition to (i)-(v) above, that for all y ∈ D̄ there exists v = û(y)
such that

(vi) Aû(y)φ(y) + f(y, û(y)) = 0
Moreover, suppose there exists ξ̂ such that (û, ξ̂) ∈ A and

(vii) Y û,ξ̂(t) ∈ D̄ for all t

(viii) dξ̂(t) = 0 if Y (t) ∈ D

(ix)
p∑

j=1

{ k∑
i=1

κij
∂φ

∂yi
(Y (t−)) + θj

}
dξ̂

(c)
j = 0 for all t; 1 ≤ j ≤ p

where ξ(c)(t) is the continuous part of ξ(t), i.e. the process obtained by
removing the jumps of ξ(t)

(x) ∆ξ̂φ(Y (tn)) +
p∑

j=1

θj∆ξ̂j(tn) = 0 for all jumping times tn of ξ̂(t)

and
(xi) lim

R→∞
Ey

[
φ
(
Y û,ξ̂(TR)

)]
= Ey

[
g
(
Y û,ξ̂(τS)

)
· X{τS<∞}

]
where TR = min(τS , R) for R < ∞ .

Then
φ(y) = Φ(y)

and
(û, ξ̂) is an optimal control .

Proof. a) Choose (c, ξ) ∈ A. Then by the Itô formula for the semimartingale
Y (t) = Y u,ξ(t) we have (see [P, Theorem II.33] and Theorem 1.24)

Ey[φ(Y (TR))] = φ(y) + Ey
[ TR∫

0

Auφ(Y (t))dt

+

TR∫
0

k∑
i=1

∂φ

∂yi
(Y (t−))

p∑
j=1

κijdξ
(c)
j (t) +

∑
0<tn≤TR

∆ξφ(Y (tn))
]
. (5.2.6)
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By the mean value theorem we have

∆ξφ(Y (tn)) = ∇φ(Ŷ (n))T ∆ξY (tn) =
k∑

i=1

p∑
j=1

∂φ

∂yi
(Ŷ (n))κij∆ξj(tn) (5.2.7)

where Ŷ (n) is some point on the straight line between Y (tn) and Y (t−n ) +
∆NY (tn) (see (5.2.3)).

Hence, by (i) and (ii) and (5.2.6), (5.2.7),

φ(y) ≥ Ey
[ TR∫

0

f(Y (t), u(t))dt + φ(Y (TR))

−
p∑

j=1

k∑
i=1

{ TR∫
0

∂φ

∂yi
(Y (t−))κijdξ

(c)
j (t) +

∑
0<tn≤TR

∂φ

∂yi
(Ŷ (n))κij∆ξj(tn)

}]

≥ Ey
[ TR∫

0

f(Y (t), u(t))dt + φ(Y (TR)) +
p∑

j=1

TR∫
0

θjdξj(t)
]
.

Letting R → ∞ and applying (iv) and (v) we obtain from (5.2.7) that

φ(y) ≥ Ju,ξ(y).

Since (u, ξ) ∈ A was arbitrary, this proves (5.2.4).

b) Now apply the above argument to (û, ξ̂) ∈ A, as given by (vi)-(xi). Then
we get equality everywhere in a) and we end up with

φ(y) = J û,ξ̂(y)

and the proof is complete. ��

Remark 5.3. In many applications the process Y u,ξ(t) will have the form

Y u,ξ(t) =
[

s + t
Xu,ξ(t)

]
∈ R

n+1 ; Y (0) = y =
[
s
x

]
.

In this case we see by inspecting the proof that Theorem 5.2 still holds even
if κ = [κij ] and θ = [θi] are not constant, as long as they depend on s only:
κ = κ(s), θ = θ(s).

5.3 Application to portfolio optimization
with transaction costs

We now apply this theorem to Example 5.1.
In this case our state process is
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dY (t) =

⎡⎣dt
dX1(t)
dX2(t)

⎤⎦ =

⎡⎣ 1
rX1(t) − c(t)
µX2(t)

⎤⎦ dt +

⎡⎣ 0
0
βX2(t)

⎤⎦ dB(t)

+

⎡⎢⎣ 0
0

X2(t−)
∫
R

zÑ(dt, dz)

⎤⎥⎦+

⎡⎣ 0 0
−(1 + λ) (1 − µ)

1 −1

⎤⎦⎡⎣dξ1(t)

dξ2(t)

⎤⎦
The generator of Y (t) when there are no interventions is

Acφ(y) =
∂φ

∂s
+ (rx1 − c)

∂φ

∂x1
+ µx2

∂φ

∂x2
+ 1

2β2x2
2

∂2φ

∂x2
2

+
∫
R

{
φ(s, x1, x2 + x2z) − φ(s, x1, x2) − x2z

∂φ

∂x2
(s, x1, x2)

}
ν(dz) .

Or, if

φ(s, x1, x2) = ψ(x1, x2)

we have

Acφ(s, x1, x2) = e−δsAc
0ψ(x1, x2)

where

Ac
0ψ(x1, x2) = − δψ + (rx1 − c)

∂ψ

∂x1
+ µx2

∂ψ

∂x2
+ 1

2β2x2
2

∂2ψ

∂x2
2

+
∫
R

{
ψ(x1, x2 + x2z) − ψ(x1, x2) − x2z

∂ψ

∂x2
(x1, x2)

}
ν(dz) .

Here

θ = g = 0, u(t) = c(t), f(y, u) = f(s, x1, x2, c) = e−δs cγ

γ
.

Condition (ii) of Theorem 5.2 gets the form

−(1 + λ)
∂ψ

∂x1
+

∂ψ

∂x2
≤ 0

and

(1 − µ)
∂ψ

∂x1
− ∂ψ

∂x2
≤ 0 .

The non-intervention region D in (5.2.5) therefore becomes

D =
{
(s, x1, x2) ∈ S;−(1 + λ)

∂ψ

∂x1
+

∂ψ

∂x2
< 0 and (1 − µ)

∂ψ

∂x1
− ∂ψ

∂x2
< 0

}
.
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Conditions (i), (vi) become, respectively,

Ac
0ψ(x1, x2) +

cγ

γ
≤ 0 for all c ≥ 0

Aĉ
0ψ(x1, x2) +

ĉγ

γ
= 0 on D .

Using these integro-variational inequalities together with the remaining con-
ditions of Theorem 5.2 it is possible to prove the following about the optimal
consumption rate c∗(t) and the optimal portfolio ξ∗(t):

Theorem 5.4. [FØS2]. Suppose

δ > γµ − 1
2σ2γ(1 − γ) − γ‖ν‖ +

∞∫
−1

{(1 + z)γ − 1}ν(dz)

where
‖ν‖ = ν((−1,∞)) < ∞ .

Then

c∗(x1, x2) =
( ∂φ

∂x1

) 1
γ−1

and there exist θ̂1, θ̂2 ∈
[
0, π

2

]
with θ̂1 < θ̂2 such that

D = {reiθ; θ̂1 < θ < θ̂2} (i =
√
−1 )

is the non-intervention region and the optimal intervention strategy (portfolio)
ξ∗(t) is the local time of the process (X1(t), X2(t)) reflected back into D in
the direction parallel to ∂1S at θ = θ1 and in the direction parallel to ∂2S at
θ = θ2. See Figure 5.2.

For proofs and more details we refer to [FØS2].

Remark 5.5. For other applications of singular control theory of jump diffu-
sions see [Ma].

5.4 Exercises

Exercise* 5.1 (Optimal dividend policy under proportional transac-
tion costs).
Suppose the cash flow X(t) = X(ξ)(t) of a firm at time t is given by (with
α, σ, β, λ > 0 constants)

dX(t) = αdt + σdB(t) + β

∫
R

zÑ(dt, dz)− (1 + λ)dξ(t) ; X(0−) = x > 0 ,
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(Sell region)

(Buy region)

jump

jump

non-intervention region

purchase

sale

x1

x1 + (1 + λ)x2 = 0

∂1S

θ = θ̂1

−(1 + λ) ∂ψ
∂x1

+ ∂ψ
∂x2

= 0

D =

θ = θ̂2

(x1, x2)

(x′
1, x

′
2)

(x1, x2)

(x′
1, x

′
2)

(1 − µ) ∂ψ
∂x1

− ∂ψ
∂x2

= 0

x2

∂2S

x1 + (1 − µ)x2 = 0

� = purchase amount, m = sale amount (at transaction)
x′

1 = x1 − (1 + λ)� + (1 − µ)m (new value of x1 after transaction)
x′

2 = x2 + � − m (new value of x2 after transaction)

Fig. 5.2. The optimal portfolio ξ∗(t).

where ξ(t) is an increasing, adapted cadlag process representing the total
dividend taken out up to time t (our control process). Let

τS = inf{t > 0; X(ξ)(t) ≤ 0}

be the time of bankruptcy of the firm and let

Jξ(s, x) = Es,x
[ τS∫

0

e−ρ(s+t)dξ(t)
]
, ρ > 0 constant,

be the expected total discounted amount taken out up to bankruptcy time.
Find Φ(s, x) and a dividend policy ξ∗ such that

Φ(s, x) = sup
ξ

J (ξ)(s, x) = Jξ∗
(s, x) .

Exercise* 5.2. Let Φ(s, x1, x2) be the value function of the optimal consump-
tion problem (5.1.2) with proportional transaction costs and let Φ0(s, x1, x2) =
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Ke−δs(x1+x2)γ be the corresponding value function when there are no trans-
action costs, i.e. µ = λ = 0) (Example 3.2). Use Theorem 5.2a) to prove that

Φ(s, x1, x2) ≤ Ke−δs(x1 + x2)γ .

Exercise 5.3 (Optimal harvesting).
Suppose the size X(t) at time t of a certain fish population is modeled by

a geometric Lévy process, i.e.

dX(t) = dX(ξ)(t) = X(t−)
[
µdt +

∫
R

zÑ(dt, dz)
]
− dξ(t) ; t > 0

X(0−) = x > 0

where µ > 0 is a constant, z > −1 a.s. ν(dz) and ξ(t) is an increasing adapted
process giving the amount harvested from the population from time 0 up to
time t. We assume that ξ(t) is right-continuous. Consider the optimal harvest-
ing problem

Φ(s, x) = sup
ξ

J (ξ)(s, x),

where

J (ξ)(s, x) = Es,x

[∫ τs

0

θe−ρ(s+t)dξ(t)
]

,

with θ > 0, ρ > 0 constants and

τS = inf{t > 0 ; X(ξ)(t) ≤ 0} (extinction time).

If we interpret θ as the price per unit harvested, then J (ξ)(s, x) represents
the expected total discounted value of the harvested amount up to extinction
time.

a) Write down the integro-variational inequalities (i), (ii), (vi), and (ix) of
Theorem 5.2 in this case, with the state process

Y (t) =
[
s + t
X(t)

]
; t ≥ 0, Y (0) = y =

[
s
x

]
∈ R

+ × R
+.

b) Suppose µ ≤ ρ.
Show that in this case it is optimal to harvest all the population immedi-
ately, i.e. it is optimal to choose the harvesting strategy ξ̂ defined by

ξ̂(t) = x for all t ≥ 0

(sometimes called the “take the money and run”- strategy).
This gives the value function

Φ(s, x) = θe−ρsx.

c) Suppose µ > ρ.
Show that in this case Φ(s, x) = ∞.
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Impulse Control of Jump Diffusions

6.1 A general formulation and a verification theorem

Suppose that – if there are no interventions – the state Y (t) ∈ R
k of the

system we consider is a jump diffusion of the form

dY (t) = b(Y (t))dt + σ(Y (t))dB(t) +
∫
Rk

γ(Y (t−), z)Ñ(dt, dz) (6.1.1)

where b : R
k → R

k, σ : R
k → R

k×m and γ : R
k × R

k → R
k×� are given func-

tions satisfying the conditions for the existence and uniqueness of a solution
Y (t) (see Theorem 1.19).

The generator A of Y (t) is

Aφ(y) =
k∑

i=1

bi(y)
∂φ

∂yi
+ 1

2

k∑
i,j=1

(σσT )ij(y)
∂2φ

∂yi∂yj

+
�∑

j=1

∫
R

{φ(y + γ(j)(y, zj)) − φ(y) −∇φ(y) · γ(j)(y, zj)}νj(dzj) .

Now suppose that at any time t and any state y we are free to intervene
and give the system an impulse ζ ∈ Z ⊂ R

p, where Z is a given set (the
set of admissible impulse values). Suppose the result of giving the impulse ζ
when the state is y is that the state jumps immediately from y = Y (t−) to
Y (t) = Γ (y, ζ) ∈ R

k, where Γ : R
k ×Z → R

k is a given function.
An impulse control for this system is a double (possibly finite) sequence

v = (τ1, τ2, . . . , τj , . . . ; ζ1, ζ2, . . . , ζj , . . .)j≤M ; M ≤ ∞

where τ1 < τ2 < · · · are Ft-stopping times (the intervention times) and
ζ1, ζ2, . . . are the corresponding impulses at these times. We assume that ζj

is Fτj -measurable for all j.
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If v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) is an impulse control, the corresponding state
process Y (v)(t) is defined by

Y (v)(t) = Y (t) ; 0 ≤ t ≤ τ1 (6.1.2)

Y (v)(τj) = Γ (Y (v)(τ−
j ) + ∆NY (τj), ζj) ; j = 1, 2, . . . (6.1.3)

dY (v)(t) = b(Y (v)(t))dt + σ(Y (v)(t))dB(t)

+
∫
Rk

γ(Y (v)(t), z)Ñ(dt, dz) for τj ≤ t < τj+1 ∧ τ∗ (6.1.4)

where, as in (5.2.2), ∆NY (t) is the jump of Y stemming from the jump of the
random measure N(t, ·) only and

τ∗ = τ∗(ω) = lim
R→∞

(inf{t > 0; |Y (v)(t)| ≥ R}) ≤ ∞ (6.1.5)

is the explosion time of Y (v)(t).
Note that here we must distinguish between the (possible) jump of Y (v)(τj)

stemming from N , denoted by ∆NY (τj) and the jump caused by the inter-
vention v, given by

∆vY (τj) := Γ (Y̌ (τ−
j ), ζ) − Y̌ (τ−

j ) , (6.1.6)

where
Y̌ (τ−

j ) = Y (τ−
j ) + ∆NY (τj) . (6.1.7)

Let S ⊂ R
k be a fixed open set (the solvency region). Define

τS = inf{t ∈ (0, τ∗); Y (v)(t) �∈ S} . (6.1.8)

Suppose we are given a profit function f : S → R and a bequest function
g : R

k → R. Moreover, suppose the profit/utility of making an intervention
with impulse ζ ∈ Z when the state is y is K(y, ζ), where K : S ×Z → R is a
given function.

We assume we are given a set V of admissible impulse controls which is
included in the set of v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) such that a unique solution
Y (v) of (6.1.2)–(6.1.4) exists and

τ∗ = ∞ a.s (6.1.9)

and

lim
j→∞

τj = τS a.s. (if M < ∞ we assume τM = τS a.s.) (6.1.10)

We also assume that

Ey
[ τS∫

0

f−(Y (v)(t))dt
]

< ∞ for all y ∈ R
k, v ∈ V (6.1.11)
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and

E
[
g−(Y (v)(τS))X{τS<∞}

]
< ∞ for all y ∈ R

k, v ∈ V (6.1.12)

and

E
[ ∑

τj≤τS

K−(Y̌ (v)(τ−
j ), ζj)

]
< ∞ for all y ∈ R

k, v ∈ V . (6.1.13)

Now define the performance criterion

J (v)(y) = Ey
[ τS∫

0

f(Y (v)(t))dt+g(Y (v)(τS))X{τS<∞}+
∑

τj≤τS

K(Y̌ (v)(τ−
j ), ζj)

]
.

The impulse control problem is the following:
Find Φ(y) and v∗ ∈ V such that

Φ(y) = sup{J (v)(y); v ∈ V} = J (v∗)(y) . (6.1.14)

The following concept is crucial:

Definition 6.1. Let H be the space of all measurable functions h : S → R.
The intervention operator M : H → H is defined by

Mh(y) = sup{h(Γ (y, ζ)) + K(y, ζ); ζ ∈ Z and Γ (y, ζ) ∈ S} . (6.1.15)

As in Chapter 2 we put

T = {τ ; τ stopping time, 0 ≤ τ ≤ τS a.s.}.

We can now state the main result of this chapter, a verification theorem for
impulse control problems:

Theorem 6.2 (Quasi-integrovariational inequalities for impulse con-
trol).
a) Suppose we can find φ : S̄ → R such that

(i) φ ∈ C1(S) ∩ C(S̄),
(ii) φ ≥ Mφ on S.

Define

D = {y ∈ S; φ(y) > Mφ(y)} (the continuation region).

Assume

(iii) Ey
[ τS∫

0

X∂D(Y (t))dt
]

= 0 for all y ∈ S, v ∈ V,

(iv) ∂D is a Lipschitz surface,
(v) φ ∈ C2(S \ ∂D) with locally bounded derivatives near ∂D,
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(vi) Aφ + f ≤ 0 on S \ ∂D,
(vii) φ(Y (t)) → g(Y (τS)) · X{τS<∞} as t → τ−

S a.s., for all y ∈ S, v ∈ V,
(viii) {φ−(Y (τ)); τ ∈ T } is uniformly integrable, for all y ∈ S, v ∈ V,

(ix) Ey
[
|φ(Y (τ))| +

τS∫
0

{
|Aφ(Y (t))| + |σT (Y (t))∇φ(Y (t))|2

+
�∑

j=1

∫
R

|φ(Y (t) + γ(j)(Y (t), zj)) − φ(Y (t))|2νj(dzj)
}

dt
]

< ∞

for all τ ∈ T , v ∈ V, y ∈ S.
Then

φ(y) ≥ Φ(y) for all y ∈ S. (6.1.16)

b) Suppose in addition that

(x) Aφ + f = 0 in D,
(xi) ζ̂(y) ∈ Argmax{φ(Γ (y, ·)) + K(y, ·)} ∈ Z exists for all y ∈ S and ζ̂(·) is

a Borel measurable selection.

Put τ̂0 = 0 and define v̂ = (τ̂1, τ̂2, . . . ; ζ̂1, ζ̂2, . . .) inductively by
τ̂j+1 = inf{t > τ̂j ; Y (v̂j)(t) �∈ D} ∧ τS and ζ̂j+1 = ζ̂(Y (v̂j)(τ̂−

j+1))
if τ̂j+1 < τS , where Y (v̂j) is the result of applying
v̂j := (τ̂1, . . . , τ̂j ; ζ̂1, . . . , ζ̂j) to Y .
Suppose

(xii) v̂ ∈ V and {φ(Y (v̂)(τ)); τ ∈ T } is uniformly integrable.
Then

φ(y) = Φ(y) and v̂ is an optimal impulse control . (6.1.17)

Sketch of proof. a) By Theorem 2.1 and (iii)–(v), we may assume
that φ∈C2(S) ∩ C(S̄). Choose v = (τ1, τ2, . . . ; ζ1, ζ2, . . .)∈V and set τ0 = 0.
By another approximation argument we may assume that we can apply the
Dynkin formula to the stopping times τj . Then for j = 0, 1, 2, . . ., with Y =
Y (v),

Ey[φ(Y (τj))] − Ey[φ(Y̌ (τ−
j+1))] = −Ey

[ τj+1∫
τj

Aφ(Y (t))dt
]
, (6.1.18)

where Y̌ (τ−
j+1) = Y (τ−

j+1) + ∆NY (τj+1), as before. Summing this from j = 0
to j = m we get

φ(y)+
m∑

j=1

Ey[φ(Y (τj)) − φ(Y̌ (τ−
j ))] − Ey[φ(Y̌ (τ−

m+1))]

= −Ey
[ τm+1∫

0

Aφ(Y (t))dt
]
≥ Ey

[ τm+1∫
0

f(Y (t))dt
]
. (6.1.19)
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Now

φ(Y (τj)) = φ(Γ (Y̌ (τ−
j ), ζj))

≤ Mφ(Y̌ (τ−
j )) − K(Y̌ (τ−

j ), ζj) if τj < τS by (6.1.15)

and

φ(Y (τj)) = φ(Y̌ (τ−
j )) if τj = τS by (vii).

Therefore

Mφ(Y̌ (τ−
j )) − φ(Y̌ (τ−

j )) ≥ φ(Y (τj)) − φ(Y̌ (τ−
j )) + K(Y̌ (τ−

j ), ζj)

and

φ(y)+
m∑

j=1

Ey[{Mφ(Y̌ (τ−
j )) − φ(Y̌ (τ−

j ))} · X{τj<τS}]

≥ Ey
[ τm+1∫

0

f(Y (t))dt + φ(Y̌ (τ−
m+1)) +

m∑
j=1

K(Y̌ (τ−
j ), ζj)

]
.

Letting m → M we get

φ(y) ≥ Ey
[ τS∫

0

f(Y (t))dt + g(Y (τS))X{τS<∞} +
M∑

j=1

K(Y̌ (τ−
j ), ζj)

]
= J (v)(y) .

(6.1.20)
Hence φ(y) ≥ Φ(y).

b) Next assume (x)–(xii) also hold. Apply the above argument to v̂ =
(τ̂1, τ̂2, . . . ; ζ̂1, ζ̂2, . . .). Then by (x) we get equality in (6.1.19) and by our choice
of ζj = ζ̂j we have equality in (6.1.20). Hence

φ(y) = J (v̂)(y) ,

which combined with a) completes the proof.

Remark 6.3. In the case of a pure diffusion process, the same verification
theorem holds ; just skip condition (ix).

6.2 Examples

Example 6.4 (Optimal stream of dividends under transaction costs).
This example is an extension to the jump diffusion case of a problem studied



86 6 Impulse Control of Jump Diffusions

in [J-PS]. Suppose that if we make no interventions the amount X(t) available
(cash flow) is given by

dX(t) = µdt + σdB(t) + θ

∫
R

zÑ(dt, dz) ; X(0) = x > 0 (6.2.1)

where µ, σ > 0, θ ≥ 0 are constants. Suppose that at any time t we are free
to take out an amount ζ > 0 from X(t) by applying the transaction cost

k(ζ) = c + λζ (6.2.2)

where c > 0, λ ≥ 0 are constants. The constant c is called the fixed part and
the quantity λζ is called the proportional part, respectively, of the transaction
cost. The resulting cash flow X(v)(t) is given by

X(v)(t) = X(t) if 0 ≤ t < τ1, (6.2.3)

X(v)(τj) = Γ (X(v)(τ−
j ) + ∆NX(τj), ζj) = X̌(v)(τ−

j ) − (1 + λ)ζj − c (6.2.4)

and

dX(v)(t) = µdt + σdB(t) + θ

∫
R

zÑ(dt, dz) if τj ≤ t < τj+1 . (6.2.5)

Put
τS = inf{t > 0; X(v)(t) ≤ 0} (time of bankruptcy) (6.2.6)

and
J (v)(s, x) = Es,x

[ ∑
τj≤τS

e−ρ(s+τj)ζj

]
(6.2.7)

where ρ > 0 is constant (the discounting exponent).
We seek Φ(s, x) and v∗ = (τ∗

1 , τ∗
2 , . . . ; ζ∗1 , ζ∗2 , . . .) ∈ V such that

Φ(s, x) = sup
v∈V

J (v)(s, x) = J (v∗)(s, x) , (6.2.8)

where V is the set of impulse controls s.t. X(v)(t) ≥ 0 for all t ≤ τS . This is a
problem of the type (6.1.14), with

Y (v)(t) =
[

s + t
X(v)(t)

]
; t ≥ 0 Y (v)(0−) =

[
s
x

]
= y

Γ (y, ζ) = Γ (s, x, ζ) =
[

s
x − c − (1 + λ)ζ

]
K(y, ζ) = K(s, x, ζ) = e−ρsζ , f = g = 0

and
S = {(s, x); x > 0} .
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As a candidate for the value function Φ we try

φ(s, x) = e−ρsψ(x) . (6.2.9)

Then
Mψ(x) = sup

{
ψ(x − c − (1 + λ)ζ) + ζ ; 0 < ζ < x−c

1+λ

}
.

We now guess that the continuation region has the form

D = {(s, x); 0 < x < x∗} for some x∗ > 0 . (6.2.10)

Then (x) of Theorem 6.2 gives

−ρψ(x) + µψ′(x) + 1
2σ2ψ′′(x) +

∫
R

{ψ(x + θz) − ψ(x) − ψ′(x)θz}ν(dz) = 0 .

To solve this equation we try a function of the form

ψ(x) = erx

for some constant r ∈ R. Then r must solve the equation

h(r) := −ρ + µr + 1
2σ2r2 +

∫
R

{erθz − 1 − rθz}ν(dz) = 0 . (6.2.11)

Since h(0) = −ρ < 0 and lim
|r|→∞

h(r) = ∞, we see that there exist two solutions

r1, r2 of h(r) = 0 such that
r2 < 0 < r1 .

Moreover, since erθz − 1 − rθz ≥ 0 for all r, z we have

|r2| > r1 .

With such a choice of r1, r2 we try

ψ(x) = A1e
r1x + A2e

r2x; Ai constants.

Since
ψ(0) = 0 we have A1 + A2 = 0

so we write A1 = A = −A2 > 0 and

ψ(x) = A
(
er1x − er2x

)
; 0 < x < x∗ .

Define
ψ0(x) = A

(
er1x − er2x

)
for all x > 0 . (6.2.12)
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To study Mψ we first consider

g(ζ) := ψ0(x − c − (1 + λ)ζ) + ζ ; ζ > 0 .

The first order condition for a maximum point ζ̂ = ζ̂(x) for g(ζ) is that

ψ′
0(x − c − (1 + λ)ζ̂) =

1
1 + λ

.

Now

ψ′
0(x) > 0 for all x and

ψ′′
0 (x) < 0 iff x < x̃ := 2(ln |r2|−ln r1)

r1−r2
.

Therefore the equation ψ′
0(x) = 1

1+λ has exactly two solutions x = x, x = x̄
where

0 < x < x̃ < x̄

(provided that ψ′
0(x̃) < 1

1+λ < ψ′
0(0)). See Figure 6.1.

x
x̄x̃x

ψ′
0 = 1

1+λ

ψ0(x)

Fig. 6.1. The function ψ0(x)

Choose
x∗ = x̄ and put x̂ = x . (6.2.13)

If we require that ψ(x) = Mψ0(x) for x ≥ x∗ we get

ψ(x) = ψ0(x̂) + ζ̂(x) for x ≥ x∗

where
x − c − (1 + λ)ζ̂(x) = x̂

i.e.
ζ̂(x) =

x − x̂ − c

1 + λ
for x ≥ x∗ . (6.2.14)
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Hence we propose that ψ has the form

ψ(x) =

{
ψ0(x) = A(er1x − er2x) ; 0 < x < x∗

ψ0(x̂) + x−x̂−c
1+λ ; x ≥ x∗ (6.2.15)

Now choose A such that ψ is continuous at x = x∗. This gives

A = (1 + λ)−1
[
er1x∗

− er2x∗
− er1x̂ + er2x̂

]−1(x∗ − x̂ − c) . (6.2.16)

By our choice of x∗ we then have that ψ is also differentiable at x = x∗.

We can now check that, with these values of x∗, x̂ and A, our choice of
φ(s, x) = e−ρsψ(x) satisfies all the requirements of Theorem 6.2, provided that
some conditions on the parameters are satisfied. We leave this verification to
the reader.

Thus the solution of the impulse control problem (6.2.8) can be described
as follows: As long as X(t) < x∗ we do nothing. If X(t) reaches the value x∗

or jumps above this value, then immediately we make an intervention to bring
X(t) down to the value x̂. See Figure 6.2.

t
τ∗
2τ∗

1

x̂

x∗

X(t)

Fig. 6.2. The optimal impulse control of Example 6.4

Example 6.5. As another illustration of how to apply Theorem 6.2 we con-
sider the following example, which is a jump diffusion version of the example
in [Ø2] studied in connection with questions involving vanishing fixed costs.
Variations of this problem have been studied by many authors. See e.g. [HST],
[J], [MØ], [ØS], [ØUZ] and [V]. One possible economic interpretation is that
the given process represents the exchange rate of a given currency and the
impulses represent the interventions taken in order to keep the exchange rate
in a given “target zone”. See e.g. [J] and [MØ].
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Suppose that without interventions the system has the form

Y (t) =
[
s + t
X(t)

]
∈ R

2 ; Y (0) = y = (s, x) (6.2.17)

where X(t) = x + B(t) +
∫ t

0

∫
R

zÑ(ds, dz) and B(0) = 0. Suppose that we

are only allowed to give the system impulses ζ with values in Z := (0,∞) and
that if we apply an impulse control v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) to Y (t) it gets
the form

Y (v)(t) =
[

s + t
X(t) −

∑
τk≤t ζk

]
=
[

s + t
X(v)(t)

]
. (6.2.18)

Suppose that the cost rate f(t, ξ) if X(v)(t) = ξ at time t is given by

f(t, ξ) = e−ρtξ2 (6.2.19)

where ρ > 0 is constant. In an effort to reduce the cost one can apply the
impulse control v in order to reduce the value of X(v)(t). However, suppose
the cost of an intervention of size ζ > 0 at time t is

K(t, ξ, ζ) = K(ζ) = c + λζ, (6.2.20)

where c > 0, λ ≥ 0 are constants. Then the expected total discounted cost
associated to a given impulse control is

J (v)(s, x) = Ex

[∫ ∞

0

e−ρ(s+t)(X(v)(t))2dt +
N∑

k=1

e−ρ(s+τk)(c + λζk)

]
.

(6.2.21)
We seek Φ(s, x) and v∗ = (τ∗

1 , τ∗
2 , . . . ; ζ∗1 , ζ∗2 , . . .) such that

Φ(s, x) = inf
v

J (v)(s, x) = J (v∗)(s, x). (6.2.22)

This is an impulse control problem of the type described above, except
that it is a minimum problem rather than a maximum problem. Theorem 6.2
still applies, with the corresponding changes.

Note that it is not optimal to move X(t) downwards if X(t) is already
below 0. Hence we may restrict ourselves to consider impulse controls v =
(τ1, τ2, . . . ; ζ1, ζ2, . . .) such that

τk∑
j=1

ζj ≤ X(τk) for all k. (6.2.23)

We let V denote the set of such impulse controls.
We guess that the optimal strategy is to wait until the level of X(t) reaches

an (unknown) value x∗ > 0. At this time, τ1, we intervene and give X(t) an
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impulse ζ1, which brings it down to a lower value x̂ > 0. Then we do nothing
until the next time, τ2, that X(t) reaches the level x∗ etc. This suggests that
the continuation region D in Theorem 6.2 has the form

D = {(s, x) ; x < x∗}. (6.2.24)

See Figure 6.3.

Let us try a value function ϕ of the form

ϕ(s, x) = e−ρsψ(x) (6.2.25)

where ψ remains to be determined.

X(t)

x∗

x̂

τ1 τ2

t

Fig. 6.3. The optimal impulse control of Example 6.5

Condition (x) of Theorem 6.2 gives that for x < x∗ we should have

Aϕ + f = e−ρs(−ρψ(x) +
1
2
ψ′′(x) +

∫
R

{ψ(x + z) − ψ(x) − zψ′(x)}ν(dz))

+ e−ρsx2 = 0.

So for x < x∗ we let ψ be a solution h(x) of the equation∫
R

{h(x + z) − h(x) − zh′(x)}ν(dz) +
1
2
h′′(x) − ρh(x) + x2 = 0. (6.2.26)
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We see that any function h(x) of the form

h(x) = C1e
r1x + C2e

r2x +
1
ρ
x2 +

1 +
∫

R
z2ν(dz)
ρ2

(6.2.27)

where C1, C2 are arbitrary constants, is a solution of (6.2.26), provided that
r1 > 0, r2 < 0 are roots of the equation

K(r) :=
∫

R

{erz − 1 − rz}ν(dz) +
1
2
r2 − ρ = 0.

Note that if we make no interventions at all, then the cost is

J (v)(s, x) = e−ρsEx

[∫ ∞

0

e−ρt(X(t))2dt

]
= e−ρs

∫ ∞

0

e−ρt(x2 + tb)dt = e−ρs

(
1
ρ
x2 +

b

ρ2

)
, (6.2.28)

where b = 1 +
∫

R
z2ν(dz). Hence we must have

0 ≤ ψ(x) ≤ 1
ρ
x2 +

b

ρ2
for all x. (6.2.29)

Comparing this with (6.2.27) we see that we must have C2 = 0. Hence
C1 ≤ 0. So we put

ψ(x) = ψ0(x) :=
1
ρ
x2 +

b

ρ2
− aer1x for x ≤ x∗ (6.2.30)

where a = −C1 remains to be determined.
We guess that a > 0.

To determine a we first find ψ for x > x∗ and then require ψ to be C1 at
x = x∗.

By (ii) and (6.2.24) we know that for x > x∗ we have

ψ(x) = Mψ(x) := inf{ψ(x − ζ) + c + λζ ; ζ > 0}. (6.2.31)

The first order condition for a minimum ζ̂ = ζ̂(x) of the function

G(ζ) := ψ(x − ζ) + c + λζ ; ζ > 0

is
ψ′(x − ζ̂) = λ.

Suppose there is a unique point x̂ ∈ (0, x∗) such that

ψ′(x̂) = λ. (6.2.32)
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Then
x̂ = x − ζ̂(x) i.e. ζ̂(x) = x − x̂

and from (6.2.31) we deduce that

ψ(x) = ψ0(x̂) + c + λ(x − x̂) for x ≥ x∗.

In particular,
ψ′(x∗) = λ (6.2.33)

and
ψ(x∗) = ψ0(x̂) + c + λ(x∗ − x̂). (6.2.34)

To summarize we put

ψ(x) =

{
1
ρx2 + b

ρ2 − aer1x for x ≤ x∗

ψ0(x̂) + c + λ(x − x̂) for x > x∗ (6.2.35)

where x̂, x∗ and a are determined by (6.2.32), (6.2.33) and (6.2.34), i.e.

ar1e
r1x̂ =

2
ρ
x̂ − λ (i.e. ψ′(x̂) = λ) (6.2.36)

ar1e
r1x∗

=
2
ρ
x∗ − λ (i.e. ψ′(x∗) = λ) (6.2.37)

aer1x∗ − aer1x̂ =
1
ρ
((x∗)2 − (x̂)2) − c − λ(x∗ − x̂). (6.2.38)

One can now prove (see [Ø2], Theorem 2.5) :

For each c > 0 there exists a = a∗(c) > 0, x̂ = x̂(c) > 0 and x∗ =
x∗(c) > x̂ such that (6.2.36)-(6.2.38) hold. With this choice of a, x̂, x∗, the
function ϕ(s, x) = e−ρsψ(x) with ψ given by (6.2.35) coincides with the value
function Φ defined in (6.2.22). Moreover, the optimal impulse control v∗ =
(τ∗

1 , τ∗
2 , . . . ; ζ∗1 , ζ∗2 , . . .) is to do nothing while X(t) < x∗, then move X(t)

from x∗ down to x̂ (i.e., apply ζ∗1 = x∗ − x̂) at the first time τ∗
1 when X(t)

reaches a value ≥ x∗, then wait until the next time, τ∗
2 , X(t) again reaches

the value x∗ etc.

Remark 6.6. In [Ø2] this result is used to study how the value function
Φ(s, x) = Φc(s, x) depends on the fixed part c > 0 of the intervention cost. It
is proved that the function

c → Φc(s, x)

is continuous but not differentiable at c = 0. In fact, we have

∂

∂c
Φc(s, x) → ∞ as c → 0+.

Subsequently this high c-sensitivity of the value function for c close to 0
was proved for other processes as well. See [ØUZ].

Remark 6.7. For applications of impulse control theory in inventory control
see e.g. [S], [S2] and the references therein.
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6.3 Exercices

Exercise* 6.1. Solve the impulse control problem

Φ(s, x) = inf
v

J (v)(s, x) = J (v∗)(s, x)

where

J (v)(s, x) = E

[∫ ∞

0

e−ρ(s+t)(X(v)(t))2dt +
N∑

k=1

e−ρ(s+τk)(c + λ|ζk|)
]

.

The inf is taken over all impulse controls v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) with
ζi ∈ R and the corresponding process X(v)(t) is given by

X(v)(t) = x + B(t) +
∫ t

0

∫
R

zÑ(ds, dz) +
∑
τk≤t

ζk,

where B(0) = 0, x ∈ R, and we assume that the corresponding Lévy measure
ν is symmetric, i.e. ν(G) = ν(−G) for all G ⊂ R\{0}.

Exercise* 6.2 (Optimal stream of dividends with transaction costs
from a geometric Lévy process).

For v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) with ζi ∈ R+ define X(v)(t) by

dX(v)(t) = µX(v)(t)dt + σX(v)(t)dB(t)

+θX(v)(t−)
∫

R

zÑ(ds, dz) ; τi ≤ t ≤ τi+1

X(v)(τi+1) = X̌(v)(τ−
i+1) − (1 + λ)ζi+1 − c ; i = 0, 1, 2, . . .

X(v)(0−) = x > 0

where µ, σ �= 0, θ, λ ≥ 0 and c > 0 are constants (see (6.1.7)), θz ≥ −1 a.s. ν.
Find Φ and v∗ such that

Φ(s, x) = sup
v

J (v)(s, x) = J (v∗)(s, x).

Here

J (v)(s, x) = Ex

[ ∑
τk<τS

e−ρ(s+τk)ζk

]
(ρ > 0 constant)

is the expected discounted total dividend up to time τS , where

τS = τS(ω) = inf{t > 0 ; X(v)(t) ≤ 0}

is the time of bankruptcy. (See also Exercise 7.2).
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Exercise* 6.3 (Optimal forest management (inspired by Y. Willassen
[W])).

Suppose the biomass of a forest at time t is given by

X(t) = x + µt + σB(t) + θ

∫
R

zÑ(t, dz) ,

where µ > 0, σ > 0, θ > 0 are constants. At times 0 ≤ τ1 < τ2 < · · · we
decide to cut down the forest and replant it, with the cost

c + λX̌(τ−
k ), with X̌(τ−

k ) = X(τ−
k ) + ∆NX(τk) ,

where c > 0, λ ∈ [0, 1) are constants and ∆NX(t) is the (possible) jump in X
at t coming from the jump in N(t, ·) only, not from the intervention.

Find the sequence of stopping times v = (τ1, τ2, . . .) which maximizes the
expected total discounted net profit J (v)(s, x) given by

J (v)(s, x) = Ex

[ ∞∑
k=1

e−ρ(s+τk)(X̌(τ−
k ) − c − λX̌(τ−

k ))
]
,

where ρ > 0 is a given discounting exponent.



7

Approximating Impulse Control of Diffusions
by Iterated Optimal Stopping

7.1 Iterative scheme

In general it is not possible to reduce impulse control to optimal stopping, be-
cause the choice of the first intervention time τ1 and the first impulse ζ1 will
influence the next and so on. However, if we allow only (up to) a fixed finite
number n of interventions, then the corresponding impulse control problem
can be solved by solving iteratively n optimal stopping problems. Moreover, if
we restrict the number of interventions to (at most) n in a given impulse con-
trol problem, then the value function of this restricted problem will converge
to the value function of the original problem as n → ∞. Thus it is possible
to reduce a given impulse control problem to a sequence of iterated optimal
stopping problems. This is useful both for theoretical purposes and numerical
applications.

We now make this more precise:

Using the notation of Chapter 6 consider the impulse control problem

Φ(y) = sup{J (v)(y) ; v ∈ V} = J (v∗)(y) ; y ∈ S (7.1.1)

where, with τS = τ
(v)
S = inf{t > 0 ; Y (v)(t) �∈ S},

J (v)(y)

= Ey

⎡⎣∫ τS

0

f(Y (v)(t))dt + g(Y (v)(τS))χ{τS<∞} +
∑

τj<τS

K(Y̌ (v)(τ−
j ), ζj)

⎤⎦ .

(7.1.2)

Here V denotes the set of admissible controls v = (τ1, τ2, . . . ; ζ1, ζ2, . . .).
See (6.1.9)–(6.1.13).
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For n = 1, 2, . . . let Vn denote the set of all v ∈ V such that v =
(τ1, τ2, . . . , τn, τn+1; ζ1, ζ2, . . . , ζn) with τn+1 = τS a.s. In other words, Vn

is the set of all admissible controls with at most n interventions. Then

Vn ⊆ Vn+1 ⊆ V for all n . (7.1.3)

Define
Φn(y) = sup{J (v)(y) ; v ∈ Vn} ; n = 1, 2, . . . . (7.1.4)

Then Φn(y) ≤ Φn+1(y) ≤ Φ(y) because Vn ⊆ Vn+1 ⊆ V . Moreover, we have

Lemma 7.1. Suppose g ≥ 0. Then

lim
n→∞

Φn(y) = Φ(y) for all y ∈ S.

Proof. We have already seen that

lim
n→∞

Φn(y) ≤ Φ(y).

To get the opposite inequality let us first assume Φ(y) < ∞. Then for each
ε > 0 there exists v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) ∈ V such that

J (v)(y) = Ey

[∫ τ
(v)
S

0

f(Y (v)(t))dt + g(Y (v)(τ (v)
S ))χ{τ

(v)
S <∞}

+
∑

τj<τ
(v)
S

K(Y̌ (v)(τ−
j ), ζj)

⎤⎥⎦ ≥ Φ(y) − ε.

(7.1.5)

For n = 1, 2, . . . define vn = (τ1, τ2, . . . , τn, τS ; ζ1, ζ2, . . . , ζn), i.e. vn is ob-
tained by truncating the v sequence after n steps. Then

Y (vn)(t) = Y (v)(t) for all t ≤ τn. (7.1.6)

Since τj → τS a.s. when j → ∞, we get by assumptions (6.1.11) and
(6.1.12) that there exists n such that

Ey

[∫ τ
(v)
S

τn

f−(Y (v)(t))dt +
∫ τ

(vn)
S

τn

f−(Y (vn)(t))dt

]
< ε (7.1.7)

and

Ey

⎡⎢⎢⎢⎣ ∑
j>n

τj<τ
(v)
S

K−(Y̌ (v)(τ−
j ), ζj)

⎤⎥⎥⎥⎦ < ε. (7.1.8)

Moreover, by (7.1.6) we have
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χ{τ
(v)
S <∞} ≤ lim inf

n→∞
χ{τ

(vn)
S <∞}. (7.1.9)

Combining (7.1.6)-(7.1.9) we get

lim inf
n→∞

J (vn)(y) = lim inf
n→∞

{
Ey

[∫ τn

0

+
∫ τ

(vn)
S

τn

f(Y (vn)(t)dt

]

+Ey
[
g(Y (vn)(τ (vn)

S ))χ{τ
(vn)
S <∞}

]
+ Ey

⎡⎣ n∑
j=1

K(Y̌ (vn)(τ−
j ), ζj)

⎤⎦⎫⎬⎭
≥ J (v)(y) − 2ε + lim inf

n→∞
Ey[g(Y (vn)(τ (vn)

S ))χ{τ
(vn)
S <∞}

− g(Y (v)(τ (v)
S ))χ{τ

(v)
S <∞}]

≥ J (v)(y) − 2ε + Ey
[
lim inf
n→∞

(g(Y (vn)(τ (vn)
S )) − g(Y (v)(τ (v)

S ))χ{τ
(vn)
S <∞}

]
= J (v)(y) − 2ε.

Hence by (7.1.5) lim inf
n→∞

Φn(y) ≥ lim inf
n→∞

J (vn)(y) ≥ Φ(y) − 3ε.

Since ε > 0 was arbitrary this proves Lemma 7.1 in the case when Φ(y) <
∞. If Φ(y) = ∞ the proof is similar, except that now we use that for each
M < ∞ there exists v ∈ V such that J (v)(y) ≥ M . Choosing vn as before
and using (7.1.6)-(7.1.9) with ε = 1 we get J (vn)(y) ≥ M − 2. Since M was
arbitrary this shows that

lim
n→∞

Φn(y) ≥ lim
n→∞

J (vn)(y) = ∞.

Let

Mh(y) = sup
ζ∈Z

{h(Γ (y, ζ)) + K(y, ζ)} ; h ∈ H, y ∈ R
k (7.1.10)

be the intervention operator (Definition 6.1). The iterative procedure is the
following :

Let Y (t) = Y (0)(t) be the process (6.1.1) without interventions. Define

ϕ0(y) = Ey

[∫ τS

0

f(Y (t))dt + g(Y (τS))χ{τS<∞}

]
(7.1.11)

and inductively, for j = 1, 2, . . . , n,

ϕj(y) = sup
τ∈T

Ey

[∫ τ

0

f(Y (t))dt + Mϕj−1(Y (τ))
]

, (7.1.12)

where, as before T denotes the set of stopping times τ ≤ τS , with

τS = inf{t > 0 ; Y (t) �∈ S}.
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Let P(Rk) denote the set of functions h : R
k → R of at most polynomial

growth , i.e. with the property that there exists constants C and m (depending
on h) such that

|h(y)| ≤ C(1 + |y|m) for all y ∈ R
k. (7.1.13)

The main result of this chapter is the following :

Theorem 7.2. Suppose

f, g and Mϕj−1 ∈ P(Rk) for j = 1, 2, . . . , n. (7.1.14)

Then
ϕn = Φn.

To prove this we need a dynamic programming principle (or Bellman prin-
ciple). This principle is due to Krylov ([K], Theorem 9 and Theorem 11, p.
134) when there is no jumps. The proof of the dynamic programming principle
for jump processes can be found in Ishikawa ([Ish], Section 4).

Lemma 7.3. Suppose G ∈ P(Rk). Define

ψ(y) = sup
τ∈T

Ey

[∫ τ

0

f(Y (s))ds + G(Y (τ))
]

. (7.1.15)

a) Then for all stopping times β we have

ψ(y) = sup
τ∈T

Ey

[∫ τ∧β

0

f(Y (t))dt + G(Y (τ))χ{τ≤β} + ψ(Y (β))χ{τ>β}

]
.

(7.1.16)
b) For ε > 0 define

D(ε) = {y ∈ S ; ψ(y) > G(y) + ε}

and put
τ (ε) = inf{t > 0 ; Y (t) �∈ D(ε)}.

Then if β is a stopping time such that β ≤ τ (ε) for some ε > 0 we have

ψ(y) = Ey

[∫ β

0

f(Y (t))dt + ψ(Y (β))

]
. (7.1.17)

Corollary 7.4. a) For each given τ ∈ T the process

U(t) :=
∫ t∧τ

0

f(Y (s))ds + ψ(Y (t ∧ τ)) ; t ≥ 0

is a supermartingale. In particular, if τ1 ≤ τ2 ≤ τS are stopping times then

Ey[ψ(Y (τ1))] ≥ Ey

[∫ τ2

τ1

f(Y (s))ds + ψ(Y (τ2))
]

.
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b) For ε > 0 let τ (ε) be as in Lemma 7.3a) and let β1 ≤ β2 ≤ τ (ε) be stopping
times. Then

Ey[ψ(Y (β1))] = Ey

[∫ β2

β1

f(Y (t))dt + ψ(Y (β2))

]
.

Proof of Corollary 7.4.

a) Define

R(t) =
(

Y (t ∧ τ),
∫ t∧τ

0

f(Y (r))dr

)
∈ R

k+1

and put
H(y, u) = ψ(y) + u ; (y, u) ∈ R

k × R.

Then if t > s we have by the Markov property

Ey[U(t)|Fs] = Ey[H(R(t))|Fs] = ER(s)[H(R(t − s))].

Then by (7.1.16) applied to β = (t − s) ∧ τ and (y, u) = R(s)

ER(s)[H(R(t − s))] = Ey

[
ψ(Y ((t − s) ∧ τ)) + u +

∫ (t−s)∧τ

0

f(Y (r))dr

]

= Ey

[
ψ(Y (β)) + u +

∫ β

0

f(Y (r))dr

]

≤ u + sup
τ≥β

Ey

[∫ τ∧β

0

f(Y (r))dr + ψ(Y (τ ∧ β))

]
≤ u + ψ(y)
= H(R(s)) = U(s).

Hence Ey[U(t)|Fs] ≥ U(s) for all t > s. This proves that U(t) is a su-
permartingale. The second statement follows from Doob’s optional sampling
theorem.

b) By Lemma 7.3b) we have

ψ(y) = Ey

[∫ β1

0

f(Y (t))dt + ψ(Y (β1))

]

+Ey

[∫ β2

β1

f(Y (t))dt + ψ(Y (β2)) − ψ(Y (β1))

]

= ψ(y) + Ey

[∫ β2

β1

f(Y (t))dt + ψ(Y (β2)) − ψ(Y (β1))

]
,

from which b) follows.
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Proof of Theorem 7.2.

Choose vn = (τ1, τ2, . . . , τn ; ζ1, ζ2, . . . , ζn) with τn ≤ τS and set τn+1 = τS .
Let Y (t) = Y (vn)(t). Then by Corollary 7.4a) we have

Ey[ϕn−j(Y (τj))] ≥ Ey

[∫ τj+1

τj

f(Y (t))dt + ϕn−j(Y̌ (τ−
j+1))

]
. (7.1.18)

Choosing τ = 0 in (7.1.12) we obtain that

ϕn−j ≥ Mϕn−j−1 if n − j ≥ 1. (7.1.19)

Moreover, from the definition of M it follows that

Mϕn−j−1(Y̌ (τ−
j+1)) ≥ ϕn−j−1(Y (τj+1)) + K(Y̌ (τ−

j+1), ζj+1). (7.1.20)

Combining (7.1.18)-(7.1.20) we get

Ey[ϕn−j(Y (τj))]

≥ Ey

[∫ τj+1

τj

f(Y (t))dt + ϕn−j−1(Y (τj+1)) + K(Y̌ (τ−
j+1), ζj+1))

]
(7.1.21)

for j = 0, 1, . . . , n − 1, where we have put τ0 = 0. Summing (7.1.21) from
j = 0 to j = n − 1 we get

n−1∑
j=0

Ey[ϕn−j(Y (τj)) − ϕn−j−1(Y (τj+1))]

≥ Ey

⎡⎣∫ τn

0

f(Y (t))dt +
n∑

j=1

K(Y̌ (τ−
j ), ζj)

⎤⎦
or

Ey[ϕn(Y (0)) − ϕ0(Y (τn))] ≥ Ey

⎡⎣∫ τn

0

f(Y (t))dt +
n∑

j=1

K(Y̌ (τ−
j ), ζj)

⎤⎦ .

(7.1.22)
Now

Ey[ϕn(Y (0))] = ϕn(y) (7.1.23)

and by the strong Markov property

Ey[ϕ0(Y (τn))] = Ey

[
EY (τn)

[∫ τS

0

f(Y (t))dt + g(Y (τS))χ{τS<∞}

]]
= Ey

[∫ τS

τn

f(Y (t))dt + g(Y (τS))χ{τS<∞}

]
.

(7.1.24)
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Combining (7.1.22)-(7.1.24) we obtain

ϕn(y) ≥ Ey

⎡⎣∫ τS

0

f(Y (t))dt + g(Y (τS))χ{τS<∞} +
n∑

j=1

K(Y̌ (τ−
j ), ζj)

⎤⎦
= J (v)(y).

(7.1.25)

Since v ∈ Vn was arbitrary we conclude that

ϕn(y) ≥ Φn(y). (7.1.26)

To get the opposite inequality choose ε > 0 and define an increasing sequence
of stopping times 0 = τ̂0 < τ̂1 < · · · < τ̂n as follows :

For j = 1, 2, . . . , n let

D
(ε)
j = {y ; ϕj(y) > Mϕj−1(y) + ε}. (7.1.27)

Define
τ̂1 = inf{t > 0 ; Y (0)(t) �∈ D(ε)

n }, (7.1.28)

where Y (0)(t) = Y (t) is the process without interventions. Then choose ζ̂1 =
ζ̄1(Y (τ̂−

1 )), where ζ̄1 = ζ̄1(y) ∈ Z is ε-optimal for ϕn−1, in the sense that

Mϕn−1(y) ≤ ϕn−1(Γ (y, ζ̄1)) + K(y, ζ̄1) + ε. (7.1.29)

Inductively, if 0 = τ̂0, . . . , τ̂j ; ζ̂1, . . . , ζ̂j have been chosen, where j ≤ n−1,
we let Y (j)(t) be the process obtained by applying v̂j = (τ̂1, . . . , τ̂j ; ζ̂1, . . . , ζ̂j)
to Y (t). Define

τ̂j+1 = inf{t > τ̂j ; Y (j)(t) �∈ D
(ε)
n−j} (7.1.30)

and choose ζ̄j+1(Y (τ̂−
j+1)), where ζ̄j+1 = ζ̄j+1(y) ∈ Z is ε-optimal for ϕn−j−1,

in the sense that

Mϕn−j−1(y) ≤ ϕn−j−1(Γ (y, ζ̄j+1)) + K(y, ζ̄j+1) + ε. (7.1.31)

Finally put τ̂n+1 = τS and define

v̂ = (τ̂1, . . . τ̂n ; ζ̂1, . . . , ζ̂n) ∈ Vn.

Now apply the argument (7.1.18)–(7.1.25) to v̂ :

By Corollary 7.4 b) we have

Ey[ϕn−j(Y (τ̂j))] = Ey

[∫ τ̂j+1

τ̂j

f(Y (t))dt + ϕn−j(Y̌ (τ̂−
j+1))

]
. (7.1.32)
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Since Y̌ (τ̂−
j+1) /∈ D

(ε)
n−j we deduce that

ϕn−j(Y̌ (τ̂−
j+1)) ≤ Mϕn−j−1(Y̌ (τ̂−

j+1)) + ε (7.1.33)

and by (7.1.31), we get, with Y = Y (v̂),

Mϕn−j−1(Y̌ (τ̂−
j+1)) ≤ ϕn−j−1(Y (τ̂j+1)) + K(Y̌ (τ̂−

j+1), ζ̂j) + ε. (7.1.34)

Combining (7.1.32)-(7.1.34) we obtain

Ey[ϕn−j(Y (τ̂ ))]

≤ Ey

[∫ τ̂j+1

τ̂j

f(Y (t))dt + ϕn−j−1(Y (τ̂j+1)) + K(Y̌ (τ̂−
j+1), ζ̂j+1)

]
+ 2ε.

(7.1.35)

Now sum (7.1.35) from j = 0 to j = n − 1. The result is

ϕn(y) ≤ Ey

⎡⎣∫ τ̂n

0

f(Y (t))dt + ϕ0(Y (τ̂n)) +
n∑

j=1

K(Y̌ (τ̂−
j ), ζ̂j)

⎤⎦+ 2nε.

Therefore by (7.1.24),

ϕn(y) ≤Ey

⎡⎣∫ τ̂S

0

f(Y (t))dt + g(Y (τ̂S))χ{τ̂S<∞} +
n∑

j=1

K(Y̌ (τ̂−
j ), ζ̂j)

⎤⎦+ 2nε

= J (v̂)(y) + 2nε.

Since ε was arbitrary we deduce that

ϕn(y) ≤ sup{J (v)(y) ; v ∈ Vn} = Φn(y).

Combined with (7.1.26) this proves Theorem 7.2.

Remark 7.5. Note that the proof of Theorem 7.2 actually also gives a 2nε-
optimal impulse control v̂ = (τ̂1, . . . , τ̂n ; ζ̂1, . . . , ζ̂n) : It is defined inductively
by (7.1.27)–(7.1.31).

In particular, if it is possible to choose ζ̂j = ζ∗j to be optimal (i.e. (7.1.31)
holds with ε = 0), then v∗ = (τ̂1, . . . , τ̂n ; ζ∗1 , . . . , ζ∗n) will be an optimal
impulse control for Φn given by the following procedure :

For j = 1, 2, , . . . , n let

Dj = {y ; ϕj(y) > Mϕj−1(y)}. (7.1.36)

Define
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τ̂1 = inf{t > 0 ; Y (0)(t) �∈ Dn} (7.1.37)

and
ζ̂1 = ζ̄1(Y (0)(τ̂−

1 )) (7.1.38)

where ζ̄1 = ζ̄1(y) is a Borel measurable function such that

Mϕn−1(y) = ϕn−1(Γ (y, ζ̄1)) + K(y, ζ̄1) ; y ∈ S. (7.1.39)

Then if (τ̂1, . . . , τ̂j ; ζ̂1, . . . , ζ̂j) is defined, put

τ̂j+1 = inf{t > τ̂j ; Y (j)(t) �∈ Dn−j} (7.1.40)

and
ζ̂j+1 = ζ̄j+1(Y (j)(τ̂−

j+1)) (7.1.41)

where ζ̄j+1 = ζ̄j+1(y) is a Borel measurable function such that

Mϕn−(j+1)(y) = ϕn−(j+1)(Γ (y, ζ̄j+1)) + K(y, ζ̄j+1) ; y ∈ S, j + 1 ≤ n.
(7.1.42)

As before Y (j)(t) denotes the result of applying the impulse control v̂j =
(τ̂1, . . . , τ̂j ; ζ̂1, . . . , ζ̂j) to Y .

Corollary 7.6. Assume that g ≥ 0 and that f, g,Mϕn ∈ P(Rk) for n =
0, 1, 2, . . ., where ϕn is as defined in (7.1.11)-(7.1.12). Then

ϕn(y) ↑ Φ(y) as n → ∞, for all y.

Corollary 7.7. Suppose g ≥ 0 and f, g,Mϕn ∈ P(Rk) for n = 0, 1, 2, . . ..
Then Φ is a solution of the following non-linear optimal stopping problem

Φ(y) = sup
τ∈T

Ey

[∫ τ

0

f(Y (t))dt + MΦ(Y (τ))
]

(7.1.43)

Proof. Let {ϕn}∞n=0 be as in (7.1.11)-(7.1.12). Then ϕn ↑ Φ as n → ∞, by
Corollary 7.6. Therefore

ϕn(y) ≤ sup
τ∈T

Ey

[∫ τ

0

f(Y (t))dt + MΦ(Y (τ))
]

for all n and hence

Φ(y) ≤ sup
τ∈T

Ey

[∫ T

0

f(Y (t))dt + MΦ(Y (τ))

]
.

To get the opposite inequality, choose ε > 0 and let τ̂ ∈ T be a stopping time
such that

Ey

[∫ τ̂

0

f(Y (t))dt + MΦ(Y (τ̂ ))

]
≥ sup

τ∈T
Ey

[∫ τ

0

f(Y (t))dt + MΦ(Y (τ))
]
−ε.
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Then by monotone convergence

Φ(y) = lim
n→∞

ϕn(y) ≥ lim
n→∞

Ey

[∫ τ̂

0

f(Y (t))dt + Mϕn−1(Y (τ̂ ))

]

= Ey

[∫ τ̂

0

f(Y (t))dt + MΦ(Y (τ̂ ))

]

≥ sup
τ∈T

Ey

[∫ τ

0

f(Y (t))dt + MΦ(Y (τ))
]
− ε.

(7.1.44)

Corollary 7.8. Suppose g ≥ 0 and f, g,Mϕn ∈ P(Rk) for all n = 0, 1, 2, . . ..
Morover, suppose that

Φ,MΦ, ϕn and Mϕn are continuous for all n, (7.1.45)

where Φ, ϕn are defined in (7.1.1) and (7.1.11)-(7.1.12), respectively. Define

D = {y ; Φ(y) > MΦ(y)} (7.1.46)

and
Dn = {y ; ϕn(y) > Mϕn−1(y)} ; n = 1, 2, . . . . (7.1.47)

Then
D ⊆ Dn+1 ⊆ Dn for all n. (7.1.48)

Proof. Suppose there exists a point y ∈ Dn+1\Dn. Then

ϕn+1(y) > Mϕn(y)

and
ϕn(y) = Mϕn−1(y).

Then by Lemma 7.3a) we have

Mϕn(y) < ϕn+1(y) = sup
τ∈T

Ey

[∫ T

0

f(Y (t))dt + Mϕn(Y (τ))

]

≤ sup
τ∈T

Ey

[∫ T

0

f(Y (t))dt + ϕn(Y (τ))

]
= ϕn(y) = Mϕn−1(y).

This is a contradiction, because Mϕn ≥ Mϕn−1. This contradiction shows
that Dn+1 ⊆ Dn for all n. A similar argument, based on Corollary 7.7, shows
that D ⊆ Dn for all n. ��

Combining the results above we get the following general picture of the
optimal impulse control (τ̂1, . . . , τ̂n ; ζ̂1, . . . , ζ̂n) for Φn (see (7.1.11)-(7.1.12)
and (7.1.36)-(7.1.42)):

Make the first intervention the first time t = τ̂1 that Y (t) �∈ Dn. Then
give the system the impulse ζ̂1 according to (7.1.38). Now we have only n− 1
interventions left, so we wait until Y (t) exits from the larger set Dn−1 before
making the next intervention, and so on. The last intervention time τ̂n is the
first time after τ̂n−1 that Y (t) �∈ D1. See Figure 7.1.
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Fig. 7.1. Optimal impulse control for Φn

7.2 Examples

Example 7.9. Consider the impulse control problems

Φn(s, x) = inf
v∈Vn

J (v)(s, x) = J (v∗
n)(s, x) ; n = 1, 2, . . . (7.2.1)

Φ(s, x) = inf
v∈V

J (v)(s, x) = J (v∗)(s, x) (7.2.2)

where

J (v)(s, x) = Ex

⎡⎣∫ ∞

0

e−ρ(s+t)(X(v)(t))2dt + c
∑

j

e−ρ(s+τj)

⎤⎦ ,

c > 0, ρ > 0 are constants, and

X(v)(t) = x + B(t) +
∫ t

0

∫
R

zÑ(ds, dz) +
∑

j

ζjχ{τj≤t} ; B(0) = 0,

when
v = (τ1, τ2, . . . , τn ; ζ1, ζ2, . . . , ζn) ∈ Vn

or
v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) ∈ V , ζj ∈ R.
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This is related to Example 6.5, except that now we allow the impulses ζj

to be arbitrary real numbers, so that X(t) can be moved both up and down.
Moreover, to simplify matters we have put λ = 0.

First, let us find Ψn(x) := Φn(0, x) by using the iterative procedure
(7.1.11)–(7.1.12):

In this case we get from (7.1.11) (see (6.2.29))

Ψ0(x) = Ex

[∫ ∞

0

e−ρt(x + B(t) +
∫ t

0

∫
R

zÑ(ds, dz))2dt

]
=

1
ρ
x2 +

b

ρ2
,

(7.2.3)
where b = 1 +

∫
R

z2ν(dz). Hence

MΨ0(x) = inf{Ψ0(x + ζ) + c ; ζ ∈ R\{0}} = Ψ(0) + c =
b

ρ2
+ c. (7.2.4)

Therefore, by (7.1.12)

Ψ1(x) = inf
τ≥0

Ex

[∫ τ

0

e−ρt(x +B(t) +
∫ t

0

∫
R

zÑ(ds, dz))2dt + e−ρτ

(
b

ρ2
+ c

)]
.

(7.2.5)

To solve this optimal stopping problem we consider the three basic associated
variational inequalities

−ρψ1(x) +
1
2
ψ′′

1 (x) +
∫

R

{ψ1(x + z)− ψ1(x)− zψ′
1(x)}ν(dz) + x2 ≥ 0 for all x

(7.2.6)

ψ1(x) ≤ b

ρ2
+ c for all x (7.2.7)

−ρψ1(x) +
1
2
ψ′′

1 (x) +
∫

R

{ψ1(x + z) − ψ1(x) − zψ′
1(x)}ν(dz) + x2 = 0

on D1 :=
{

x ; ψ1(x) <
b

ρ2
+ c

}
.

If we guess that D1 has the form

D1 = (−x∗
1, x

∗
1) for some x∗

1 > 0

then we are led to the following candidate for ψ1:

ψ1(x) =

{
1
ρx2 + b

ρ2 − a1 cosh(r1x) ; |x| < x∗
1

b
ρ2 + c ; |x| ≥ x∗

1,
(7.2.8)

where a1 is a constant to determine and r1 > 0 is a root of the equation
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x
x∗

1

ψ1(x)

Fig. 7.2. The graph of ψ1(x)

K(r) :=
∫

R

{erz − 1 − rz}ν(dz) +
1
2
r2 − ρ = 0.

(see Example 6.5).
If we require ψ1 to be continuous and differentiable at x = ±x∗

1, we get
the following two equations to determine x∗

1 and a1:

1
ρ
(x∗

1)
2 +

b

ρ2
− a1 cosh(r1x

∗
1) =

b

ρ2
+ c (7.2.9)

2
ρ
x∗

1 − a1r1 sinh(r1x
∗
1) = 0. (7.2.10)

Combining these two equations we get

tgh(z∗1) =
2z∗1

(z∗1)2 − ρr2
1c

(7.2.11)

and
a1 =

2z∗1
ρr2

1 sinh(z∗1)
, (7.2.12)

where
z∗1 = r1x

∗
1. (7.2.13)

It is easy to see that (7.2.11) has a unique solution z∗1 > r1
√

ρc i.e. x∗
1 >√

ρc . If we choose this value of x∗
1 and let a1 > 0 be the corresponding value

given by (7.2.12) we can now verify that the candidate ψ1 given by (7.2.8)
satisfies all the conditions of the verification theorem and we conclude that

ψ1 = Ψ1.

We now repeat the procedure to find Ψ2:
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First note that

MΨ1(x) = inf{Ψ1(x + ζ) + c ; ζ ∈ R\{0}} = Ψ1(0) + c

=
b

ρ2
+ c − a1.

(7.2.14)

Hence

Ψ2(x) = inf
τ≥0

Ex
[ ∫ τ

0

e−ρt

(
x + B(t) +

∫ t

0

∫
R

zÑ(ds, dz)
)2

dt

+ e−ρτ

(
b

ρ2
+ c − a1

)]
.

The same procedure as above leads us to the candidate

ψ2(x) =

{
1
ρx2 + b

ρ2 − a2 cosh(r1x) ; |x| < x∗
2

b
ρ2 + c − a1 ; |x| ≥ x∗

2

(7.2.15)

where x∗
2, a2 solve the equations

tgh(z∗2) =
2z∗2

(z∗2)2 − ρr2
1(c − a1)

(7.2.16)

a2 =
2z∗2

ρr2
1 sinh(z∗2)

, where z∗2 = r1x
∗
2. (7.2.17)

As above, we see that (7.2.16) has a unique solution z∗2 > 0 i.e. x∗
2 > 0. If we

choose this value of x∗
2 and let a2 > 0 be the corresponding value given by

(7.2.17) we can verify that the candidate ψ2 given by (7.2.15) coincides with
Ψ2. It is easy to see that x∗

2 < x∗
1 and a2 > a1.

Continuing this inductively we get a sequence of functions ψn of the form

ψn(x) =

{
1
ρx2 + b

ρ2 − an cosh(r1x) ; |x| < x∗
n

b
ρ2 + c − an−1 ; |x| ≥ x∗

n

(7.2.18)

where x∗
n, an solve the equations

tgh(z∗n) =
2z∗n

(z∗n)2 − ρr2
1(c − an−1)

(7.2.19)

and
an =

2z∗n
ρr2

1 sinh(z∗n)
, where z∗n = r1x

∗
n. (7.2.20)

We find that x∗
n < x∗

n−1 and an > an−1. Using the verification theorem
we conclude that ψn = Ψn. In the limiting case when there is no bound on
the number of interventions the corresponding value function will be
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Ψ(x) =

{
1
ρx2 + b

ρ2 − a cosh(
√

2ρx) ; |x| < x∗

b
ρ2 + c − a ; |x| ≥ x∗ (7.2.21)

where x∗, a solve the coupled system of equations

tgh(z∗) =
2z∗

(z∗)2 − ρr2
1(c − a)

(7.2.22)

a =
2z∗

ρr2
1 sinh(z∗)

, where z∗ = r1x
∗. (7.2.23)

It can be proved that this system has a unique solution z∗ = r1x
∗ > 0,

a > 0 and that x∗ < x∗
n and a > an for all n. The situation in the case n = 3 is

shown on Figure 7.3. Note that with only 3 interventions allowed the optimal
strategy is first to wait until the first time τ∗

1 when X(t) ≥ x∗
3, then move

X(t) down to 0, next wait until the first time τ∗
2 > τ∗

1 when X(t) ≥ x∗
2, then

move X(t) back to 0 and finally wait until the first time t = τ∗
3 > τ∗

2 when
X(t) ≥ x∗

1 before making the last intervention.

X(t)

x∗
1

x∗
2

x∗
3

x∗

t = τ∗
1 t = τ∗

2 t = τ∗
3

t

ζ∗
1 ζ∗

2

ζ∗
3

D

D3

D2

D1

Fig. 7.3. The optimal impulse control for Ψ3 (Example 7.9)
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7.3 Exercices

Exercise* 7.1 (Optimal forest management revisited). Using the no-
tation of Exercise 6.3 let

Φ(x) = sup
{
J (v)(x); v = (τ1, τ2, . . .)

}
be the value function when there are no restrictions on the number of inter-
ventions. For n = 1, 2, . . . let

Φn(x) = sup
{
J (v)(x); v = (τ1, τ2, . . . , τn)

}
be the value function when up to n interventions are allowed. Use Theorem 7.2
to find Φ1 and Φ2.

Exercise* 7.2 (Optimal stream of dividends with transaction costs
from a geometric Lévy process). This is an addition to Exercise 6.2
Suppose that we at times 0 ≤ τ1 < τ2 < . . . decide to take out dividends of
sizes ζ1, ζ2, . . . ∈ (0,∞) from an economic quantity growing like a geometric
Lévy process. If we let X(v)(t) denote the size at time t of this quantity
when the dividend policy v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) is applied, we assume
that X(v)(t) is described by (see (6.2.4))

dX(v)(t) =

µX(v)(t)dt + σX(v)(t)dB(t) + θX(v)(t−)
∫

R

zÑ(dt, dz) ; τi ≤ t < τi+1

X(v)(τi+1) = X̂(v)(τ−
i+1) − (1 + λ)ζi+1 − c ; i = 0, 1, 2, . . . (see (6.1.7))

where µ, σ �= 0, θ, λ ≥ 0 and c > 0 are constants, θz ≥ −1, a.s. (ν). Let

Φ(x) = sup
{
J (v)(x); v = (τ1, τ2, . . . ; ζ1, ζ2, . . .)

}
and

Φn(x) = sup
{
J (v)(x); v = (τ1, τ2, . . . , τn; ζ1, ζ2, . . . , ζn)

}
,

be the value function with no restrictions on the number of interventions and
with at most n interventions, respectively, where

J (v)(x) = Ex
[ ∑

τk<τS

e−ρτkζk

]
(ρ > 0 constant)

is the expected total discounted dividend and

τS = inf
{
t > 0; X(v)(t) ≤ 0

}
is the time of bankruptcy. Show that

Φ(x) = Φn(x) = Φ1(x) for all n .

Thus in this case we achieve the optimal result with just one intervention.
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Combined Stochastic Control
and Impulse Control of Jump Diffusions

8.1 A verification theorem

Consider the general situation in Chapter 6, except that now we assume that
we, in addition, are free at any state y ∈ R

k to choose a Markov control
u(y) ∈ U , where U is a given closed convex set in R

�. If, as before, v =
(τ1, τ2, . . . ; ζ1, ζ2, . . .) ∈ V denotes a given impulse control we call w := (u, v)
a combined control . If w = (u, v) is applied, we assume that the corresponding
state Y (t) = Y (w)(t) at time t is given by (see (3.1.1) and (6.1.2)-(6.1.7))

dY (t) = b(Y (t), u(t)dt + σ(Y (t), u(t))dB(t)

+
∫

R

γ(Y (t−), u(t−), z)Ñ(dt, dz) ; τj < t < τj+1 (8.1.1)

Y (τj+1) = Γ (Y̌ (τ−
j+1), ζj+1) ; j = 0, 1, 2, . . . (8.1.2)

where u(t) = u(Y (t)) and b : R
k × U → R

k, σ : R
k × U → R

k×d and
γ : R

k × U × R
k → R

k×� are given continuous functions, τ0 = 0.
As before we let our “universe” S be a fixed Borel set in R

k such that
S ⊂ S0 and we define

τ∗ = lim
R→∞

inf{t > 0; |Y (w)(t)| ≥ R} ≤ ∞ (8.1.3)

and
τS = inf{t ∈ (0, T ∗(ω)); Y (w)(t, ω) �∈ S} . (8.1.4)

If Y (w)(t, ω) ∈ S for all t < τ∗ we put τS = τ∗.
We assume that we are given a set W of admissible combined controls

w = (u, v) which includes the combined controls w = (u, v) such that a unique
strong solution Y (w)(t) of (8.1.1), (8.1.2) exists and

τ∗ = ∞ and lim
j→∞

τj = τS a.s. Qy for all y ∈ R
ε. (8.1.5)
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Define the performance or total expected profit/utility of w = (u, v) ∈ W,
v = (τ1, τ2, . . .; ζ1, ζ2, . . .), by

J (w)(y) = Ey
[ ∫ τS

0

f(Y (w)(t), u(t))dt + g(Y (w)(τS))X{τS<∞}

+
∑

τj≤τS

K(Y̌ (w)(τ−
j ), ζj)

]
(8.1.6)

where f : S × U → R, g : R
k → R and K : S̄ × Z → R are given functions

statisfying the conditions similar to (6.1.11)–(6.1.13).
The combined stochastic control and impulse control problem is the follow-

ing:
Find the value function Φ(y) and an optimal control w∗ = (u∗, v∗) ∈ W

such that
Φ(y) = sup{J (w)(y); w ∈ W} = J (w∗)(y) . (8.1.7)

We now state a verification theorem for this problem. It is a combination of
the HJB equation of control theory and the QVI for impulse control:

Define

Lαh(y) =
k∑

i=1

bi(y, α)
∂h

∂yi
+ 1

2

k∑
i,j=1

(σσT )ij(y, α)
∂2h

∂yi∂yj

+
∫

R

�∑
j=1

{h(y + γ(j)(y, α, z)) − h(y) −∇h(y).γ(j)(y, α, z)}νj(dzj)

(8.1.8)

for each α ∈ U and for each twice differentiable function h. This is the gener-
ator of Y (w)(t) if we apply the constant control α and no (impulse) interven-
tions.

As in Chapter 6 we let

Mh(y) = sup{h(Γ (y, ζ)) + K(y, ζ); ζ ∈ Z and Γ (y, ζ) ∈ S} (8.1.9)

be the intervention operator.
Then the verification theorem is the following (compare with Theorem 3.1

and Theorem 6.2):

Theorem 8.1 (HJBQVI verification theorem for combined stochas-
tic and impulse control).
a) Suppose we can find a function φ : S̄ → R such that

(i) φ ∈ C1(S0) ∩ C(S̄)
(ii) φ ≥ Mφ on S.

Define

D = {y ∈ S; φ(y) > Mφ(y)} (the continuation region) . (8.1.10)

Suppose that Y (w)(t) spends 0 time on ∂D a.s., i.e.
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(iii) Ey
[ ∫ τS

0

X∂D(Y (w)(t))dt
]

= 0 for all y ∈ S, w ∈ W and suppose that

(iv) ∂D is a Lipschitz surface
(v) φ ∈ C2(S0\∂D) and the second order derivatives of φ are locally bounded
near ∂D
(vi) Lαφ(y) + f(y, α) ≤ 0 for all α ∈ U , y ∈ S0 \ ∂D
(vii) Y (τS) ∈ ∂S a.s. on {τS < ∞} and
φ(Y (w)(t)) → g(Y (w)(τS)) ·X{τS<∞} as t → τ−

S a.s. Qy, for all y ∈ S, w ∈ W
(viii) the family {φ−(Y (w)(τ)); τ ∈ T } is uniformly Qy-integrable for all
y ∈ S, w ∈ W

(ix) Ey
[
|φ(Y (τ))| +

τS∫
0

{
|Aφ(Y (t))| + |σT (Y (t))∇φ(Y (t))|2

+
�∑

j=1

∫
R

|φ(Y (t)+γ(j)(Y (t), zj))−φ(Y (t))|2νj(dzj)
}
dt < ∞ for all τ ∈ T ,

w ∈ W, y ∈ S.

Then
φ(y) ≥ Φ(y) for all y ∈ S .

b) Suppose in addition that

(x) there exists a function û : D → R such that

Lû(y)φ(y) + f(y, û(y)) = 0 for all y ∈ D

and
(xi)

ζ̂(y) ∈ Argmax{φ(Γ (y, ·)) + K(y, ·)}

exists for all y ∈ S and ζ̂(·) is a Borel measurable selection.

Define an impulse control v̂ = (τ̂1, τ̂2, . . . ; ζ̂1, ζ̂2, . . .) as follows:
Put τ0 = 0 and inductively

τ̂k+1 = inf{t > τ̂k; Y (k)(t) ∈ D} ∧ T

ζ̂k+1 = ζ̂(Y (k) (̂τ−
k+1)) if τ̂k+1 < T ; k = 0, 1, . . .

where Y (k)(t) is the result of applying the combined control

ŵk := (û, (τ̂1, . . . , τ̂k; ζ̂1, . . . , ζ̂)) .

Put ŵ = (û, v̂). Suppose ŵ ∈ W and that

(xii) {φ(Y (ŵ)(τ)); τ ∈ T } is Qy-uniformly integrable for all y ∈ S.
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Then
φ(y) = Φ(y) for all y ∈ S

and
ŵ ∈ W is an optimal combined control.

Proof. The proof is similar to the proof of Theorem 6.2 and is omitted. ��

8.2 Examples

Example 8.2 (Optimal combined control of the exchange rate). This
example is a simplification of a model studied in [MØ].

Suppose a government has two means of influencing the foreign exchange
rate of its own currency:

(i) at all times the government can choose the domestic interest rate r
(ii) at times selected by the government it can intervene in the foreign exchange

market by buying or selling large amounts of foreign currency.

Let r(t) denote the interest rate chosen and let τ1, τ2, . . . be the (stopping)
times when it is decided to intervene, with corresponding amounts ζ1, ζ2, . . .
If ζ > 0 the government buys foreign currency, if ζ < 0 it sells. Let v =
(τ1, τ2, . . . ; ζ1, ζ2, . . .) be corresponding impulse control.

If the combined control w = (r, v) is applied, we assume that the corre-
sponding exchange rate X(t) (measured in the number of domestic monetary
units it takes to buy one average foreign monetary unit) is given by

X(t) = x −
∫ t

0

F (r(s) − r̄(s))ds + σB(t) +
∑

j:τj≤t

γ(ζj) ; t ≥ 0 (8.2.1)

where σ > 0 is a constant, r̄(s) is the (average) foreign interest rate and
F : R → R and γ : R → R are known functions which give the effects on the
exchange rate by the interest rate differential r(s) − r̄(s) and the amount ζj ,
respectively.

The total expected cost of applying the combined control w = (r, v) is
assumed to be of the form

J (w)(s, x) = Ex
[ ∫ T

s

e−ρt{M(X(t)−m)+N(r(t)−r̄(t))}dt+
∑

j;τj≤T

L(ζj)e−ρτj

]
(8.2.2)

where M(X(t)−m) and N(r(t)−r̄(t)) give the costs incurred by the difference
X(t)−m between X(t) and an optimal value m and by the difference r(t)−r̄(t)
between the domestic and the average foreign interest rate r̄(t), respectively.
The cost of buying/selling the amount ζj is L(ζj) and ρ > 0 is a constant
discounting exponent.
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The problem is to find Φ(s, x) and w∗ = (r∗, v∗) such that

Φ(s, x) = inf
w

J (w)(s, x) = J (w∗)(s, x) . (8.2.3)

Since this is a minimum problem, the corresponding HJBQVIs of Theorem 8.1
are changed to minima also and they get the form

min
(

inf
r∈R

{
e−ρs(M(x − m) + N(r − r̄(s)) +

∂φ

∂s
− F (r − r̄(s))

∂φ

∂x

+ 1
2σ2 ∂2φ

∂x2

}
,Mφ(s, x) − φ(s, x)

)
= 0 (8.2.4)

where
Mφ(s, x) = inf

ζ∈R

{φ(s, x + γ(ζ)) + e−ρsL(ζ)} . (8.2.5)

In general this is difficult to solve for φ, even for simple choices of the functions
M, N and F . A detailed discussion on a special case can be found in [MØ].

Example 8.3 (Optimal consumption and portfolio with both fixed
and proportional transaction costs (1)). This application is studied in
[ØS].

Suppose there are two investment possibilities, say a bank account and
a stock. Let X1(t), X2(t) denote the amount of money invested in these two
assets, respectively, at time t. In the absence of consumption and transactions
suppose that

dX1(t) = rX1(t)dt (8.2.6)

and
dX2(t) = µX2(t)dt + σX2(t)dB(t) (8.2.7)

where r, µ and σ �= 0 are constants and

µ > r > 0 . (8.2.8)

Suppose that at any time t the investor is free to choose a consumption rate
u(t) ≥ 0. This consumption is automatically drawn from the bank account
holding with no extra costs. In addition the investor may at any time trans-
fer money from the bank to the stock and conversely. Suppose that such a
transaction of size ζ incurs a transaction cost given by

c + λ|ζ| (8.2.9)

where c > 0 an λ ≥ 0 are constants. (If ζ > 0 we buy stocks and if ζ < 0
we sell stocks.) Thus the control of the investor consists of a combination of a
stochastic control u(t) and an impulse control v = (τ1, τ2, . . . ; ζ1, ζ2, . . .), where
τ1, τ2, . . . are the chosen transaction times and ζ1, ζ2, . . . are corresponding
transaction amounts.
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If such a combined control w = (u, v) is applied, the corresponding system
(X1(t), X2(t)) = (X(w)

1 (t), X(w)
2 (t)) gets the form

dX1(t) = (rX1(t) − u(t))dt ; τi < t < τi+1 (8.2.10)
dX2(t) = µX2(t)dt + σX2(t)dB(t) ; τi < t < τi+1 (8.2.11)
X1(τi+1) = X1(τ−

i+1) − ζi+1 − c − λ|ζi+1| (8.2.12)

X2(τi+1) = X2(τ−
i+1) + ζi+1. (8.2.13)

If we do not allow any negative amounts held in the bank account or in the
stock, the solvency region S is given by

S = [0,∞) × [0,∞) . (8.2.14)

We call w = (u, v) admissible if (X(w)
1 (t), X(w)

2 (t)) ∈ S for all t. The set of
admissible controls is denoted by W .

The investor’s objective is to maximize

J (w)(y) = Ey
[ ∫ ∞

0

e−δ(s+t) u
γ(t)
γ

dt
]

(8.2.15)

where δ > 0, γ ∈ (0, 1) are constants and Ey with y = (s, x1, x2) denotes
the expectation when X1(0−) = x1 ≥ 0, X2(0−) = x2 ≥ 0. Thus we seek the
value function Φ(y) and an optimal control w∗ = (u∗, v∗) ∈ W such that

Φ(y) = sup
w∈W

J (w)(y) = J (w∗)(y) . (8.2.16)

This problem may be regarded as a generalization of optimal consumption
and portfolio problems studied by Merton [M] and Davis and Norman [DN].
See also Shreve and Soner [SS]. [M] considers the case with no transaction
costs (c = λ = 0). The problem reduces then to an ordinary stochastic control
problem and it is it is optimal to keep the positions (X1(t), X2(t)) on the
line y = π∗

1−π∗ x in the (x, y)-plane at all times (the Merton line), where π∗ =
µ−r

(1−γ)σ2 (see Example 3.2).
[DN] and [SS] consider the case when the cost is proportional (λ > 0), with

no fixed component (c = 0). In this case the problem can be formulated as
a singular stochastic control problem and under some conditions it is proved
that there exists a no-transaction cone NT bounded by two straight lines
Γ1, Γ2 such that it is optimal to make no transactions if (X1(t), X2(t)) ∈ NT
and make transactions corresponding to local time at ∂(NT ), resulting in
reflections back to NT every time (X1(t), X2(t)) ∈ ∂(NT ). See Figure 8.1.
These results have subsequently been extended to jump diffusion markets by
[FØS2]. (See Example 5.1).

In the general combined control case numerical results indicate (see [CØS])
that the optimal control w∗ = (u∗, v∗) has the following form:
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Γ1

x

y

Γ2

y = π∗
1−π∗ x

sell

buy

Fig. 8.1. The no-transaction cone (no fixed cost: c = 0)

There exist two pairs of lines, (Γ1, Γ̂1) and (Γ2, Γ̂2) from the origin such
that the following is optimal: Make no transactions (only consume at the rate
u∗(t)) while (X1(t), X2(t)) belongs to the region D bounded by the outer
curves Γ1, Γ2, and if (X1(t), X2(t)) hits ∂D = Γ1 ∪ Γ2 then sell or buy so as
to bring (X1(t), X2(t)) to the curve Γ̂1 or Γ̂2. See Figure 8.2.

Γ1

Γ̂1

Γ̂2

Γ2

D

x

y

buy

sell

Fig. 8.2. The no-transaction region D (c > 0)
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Note that if we sell stocks (ζ < 0) then (X1(t), X2(t)) = (x1, x2) moves to
a point (x′

1, x
′
2) = (x′

1(ζ), x′
2(ζ)) on the line

x′
1 + (1 − λ)x′

2 = x1 + (1 − λ)x2 − c . (8.2.17)

Similarly, if we buy stocks (ζ > 0) then the new position (x′
1, x

′
2) =

(x′
1(ζ), x′

2(ζ)) is on the line

x′
1 + (1 + λ)x′

2 = x1 + (1 + λ)x2 − c . (8.2.18)

If there are no interventions then the process

Y (t) =

⎡⎣ s + t
X1(t)
X2(t)

⎤⎦ (8.2.19)

has the generator

Luφ(s, x1, x2) =
∂φ

∂s
+ (rx1 − u)

∂φ

∂x1
+ µx2

∂φ

∂x2
+ 1

2σ2x2
2

∂2φ

∂x2
2

. (8.2.20)

Therefore, if we put φ(s, x1, x2) = e−δsψ(x1, x2) the corresponding HJBQVI
is

max
(

sup
u≥0

{
uγ

γ
− ρψ(x1, x2) + (rx1 − u)

∂ψ

∂x1
+ µx2

∂ψ

∂x2
+ 1

2σ2x2
2

∂2ψ

∂x2
2

}
,

ψ(x1, x2) −Mψ(x1, x2)
)

= 0 for all (x1, x2) ∈ S, (8.2.21)

where (see (8.2.17)–(8.2.18))

Mψ(x1, x2) = sup{ψ(x′
1(ζ), x′

2(ζ)); ζ ∈ R\{0}, (x′
1(ζ), x′

2(ζ)) ∈ S} . (8.2.22)

See Example 9.12 for a further discussion of this.

8.3 Iterative methods

In Chapter 7 we saw that an impulse control problem can be regarded as a
limit of iterated optimal stopping problems. A similar result holds for com-
bined control problems. More precisely, a combined stochastic control and
impulse control problem can be regarded as a limit of iterated combined
stochastic control and optimal stopping problems.

We now describe this in more detail. The presentation is similar to the
approach in Chapter 7.

For n = 1, 2, . . . let Wn denote the set of all admissible combined controls
w = (u, v) ∈ W with v ∈ Vn, where Vn is the set of impulse controls v =
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(τ1, . . . , τn, τn+1; ζ1, ζ2, . . . , ζn) with at most n interventions (i.e. τn+1 = ∞).
Then

Wn ⊆ Wn+1 ⊆ W for all n . (8.3.1)

Define, with J (w)(y) as in (8.1.6),

Φn(y) = sup
{
J (w)(y); w ∈ Wn

}
; n = 1, 2, . . . (8.3.2)

Then

Φn(y) ≤ Φn+1(y) ≤ Φ(y) because Wn ⊆ Wn+1 ⊆ W .

Moreover, we have

Lemma 8.4. Suppose g ≥ 0. Then

lim
n→∞

Φn(y) = Φ(y) for all y ∈ S .

Proof. The proof is similar to the proof of Lemma 7.1 and is omitted. ��

The iterative procedure is the following:
Let Y (t) = Y (u,0)(t) be the process in (8.1.1) obtained by using the control

u and no interventions. Define

φ0(y) = sup
u∈U

Ey
[ ∫ τS

0

f(Y (t), u(t))dt + g(Y (τS))X{τS<∞}

]
(8.3.3)

and inductively, for j = 1, 2, . . . , n,

φj(y) = sup
u∈U ,τ∈T

Ey
[ ∫ τ

0

f(Y (t), u(t))dt + Mφj−1(Y (τ))
]
. (8.3.4)

As in (7.1.13) we let P(Rk) denote the set of functions h : R
k → R with at

most polynomial growth. Then we have, as in Chapter 7,

Theorem 8.5. Suppose

f, g and Mφj−1 ∈ P(Rk) (8.3.5)

for j = 1, 2, . . . , n. Then
φn = Φn .

Proof. The proof is basically the same as the proof of Theorem 7.2 and is left
to the reader. ��

Similarly we obtain combined control versions of the rest of the results of
Chapter 7, with obvious modifications. We omit the details.
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8.4 Exercices

Exercise* 8.1. Let Φ(s, X1, X2) be the value function of the optimal con-
sumption problem (8.2.16) with fixed and proportional transaction costs and
let Φ0(s, X1, X2) = Ke−δs(X1 + X2)γ be the corresponding value function in
the case when there are no transaction costs, i.e. c = λ = 0. Use Theorem 8.1
a) to prove that

Φ(s, X1, X2) ≤ Ke−δs(X1 + X2)γ .

Exercise 8.2 (A combined impulse linear regulator problem). (Com-
pare with Exercise 3.5 and Exercise 4.3).
a)* Suppose the state process is

Y (t) =
[
s + t
X(t)

]
; t ≥ 0, Y (0) =

[
s
x

]
= y ∈ R

2,

with
dX(t) = dX(w)(t) given by

dX(t) =u(t)dt + σdB(t) ; τi < t < τi+1

X(τi+1) =X(τ−
i+1) + ζi+1 ; i = 1, 2, . . .

where w = (u, v) is a combined control, v = (τ1, τ2 . . . ; ζ1, ζ2, . . .) with τi ≤ T
(constant).

Solve the combined control problem

Φ(y) = inf
w∈W

J (w)(y),

where

J (w)(y) = E(s,x)

⎡⎣∫ T−s

0

(X2(t) + u2(t))dt −
∑
τi≤T

c

⎤⎦ ,

and c > 0 is a given constant.

This models the situation where one is trying to keep X(t) close to 0 with
a minimum of cost of the two controls, represented by the rate u2(t) and the
intervention cost c.

b) Extend this to include jumps, i.e. suppose that

dX(t) = u(t)dt + σdB(t) +
∫

R

zÑ(dt, dz) ; τi < t < τi+1

X(τi+1) = X(τ−
i+1) + ∆NX(τi+1) + ζi+1,

and keep J (w)(y) as before.
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Viscosity Solutions

The main results of Chapters 2, 3, 4, 6, 8 and 5 are all verification theorems :
Any function φ which satisfies the given requirements is necessarily the value
function Φ of the corresponding problem. These requirements are made as
weak as possible in order to include as many cases as possible. For example,
except for the singular control case, we do not require the function φ to be C2

everywhere (only outside ∂D), because except for that case, Φ will usually not
be C2 everywhere. On the other hand, all the above mentioned verification
theorems require φ to be C1 everywhere, because this is often the case for Φ.
This C1 assumption on Φ is usually called the “hight contact” – or “smooth
fit”-principle. As we have seen in the examples and exercises this principle is
very convenient, because it provides us with extra information needed to find
Φ and the continuation region D.

However, it is important to know that in general Φ need not be C1. In
fact, it need not even be continuous everywhere. Nevertheless, it turns out
that Φ does satisfy the corresponding verification theorems, provided that we
interpret these equations in an appropriate weak sense. More precisely, they
should be interpreted in the sense of viscosity solutions. This weak solution
concept was first introduced by Crandall and Lions to handle the HJB equa-
tions of stochastic control and later extended by them and others to more
general equations. See [CIL], [FS], [BCa] and the references therein.

In case the equation in question is a linear partial differential operator,
the viscosity solution is the same as the well-known distribution solution. See
[Is2]. However, the nice feature of the viscosity solution is that it also applies
to the nonlinear equations appearing in control theory.

We now proceed to define viscosity solutions. We will do this in two steps:
First we consider the viscosity solutions of the variational inequalities ap-

pearing in the optimal stopping problems of Chapter 2. Then we proceed to
discuss more general equations.
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9.1 Viscosity solutions of variational inequalities

Consider the optimal stopping problem of Chapter 2: The state Y (t) is given
by

dY (t) = b(Y (t))dt+σ(Y (t))dB(t)+
∫
Rk

γ(Y (t−), z)N̄(dt, dz) ; Y (0) = y ∈ R
k

(9.1.1)
and the performance criterion is

Jτ (y) = Ey
[ ∫ τ

0

f(Y (t))dt + g(Y (τ))
]
; τ ∈ T , (9.1.2)

with f and g as in (2.1.2), (2.1.3). The associated variational inequality of the
optimal stopping problem

Φ(y) = sup{Jτ (y); τ ∈ T } (9.1.3)

is (see (4.2.13))

max(Lφ(y) + f(y), g(y) − φ(y)) = 0 ; y ∈ S0 . (9.1.4)

In addition we have the boundary requirement

φ(y) = g(y) ; y ∈ ∂S (9.1.5)

(see Theorem 2.2).
We will prove that, under some conditions, the function φ = Φ is the

unique viscosity solution of (9.1.4)–(9.1.5). First we give the definition of a
viscosity solution of such equations.

Definition 9.1. Let φ ∈ C(S̄).

(i) We say that φ is a viscosity subsolution of (9.1.4)–(9.1.5) if (9.1.5) holds
and for all h ∈ C2(Rk) and all y0 ∈ S0 such that

h ≥ φ on S and h(y0) = φ(y0)

we have
max(Lh(y0) + f(y0), g(y0) − φ(y0)) ≥ 0 . (9.1.6)

(ii)φ is a viscosity supersolution of (9.1.4)–(9.1.5) if (9.1.5) holds and for all
h ∈ C2(Rk) and all y0 ∈ S such that

h ≤ φ on S and h(y0) = φ(y0)

we have
max(Lh(y0) + f(y0), g(y0) − φ(y0)) ≤ 0 . (9.1.7)
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(iii) φ is a viscosity solution of (9.1.4)–(9.1.5) if φ is both a viscosity subso-
lution and a viscosity supersolution of (9.1.4)–(9.1.5).

Theorem 9.2 ([ØR]). Assume that the set ∂S is regular for the process Y (t),
i.e.

τS0 = τS0(y) := inf{t > 0; Y (t) �∈ S0} = 0 a.s. Qy for all y ∈ ∂S .
(9.1.8)

Moreover, assume that the value function Φ of the optimal stopping problem
(9.1.3) is continuous on S̄. Then Φ is a viscosity solution of (9.1.4)–(9.1.5).

Proof. First note that (9.1.5) follows directly from (9.1.8). So it remains to
consider (9.1.4).

We first prove that Φ is a subsolution. To this end suppose h ∈ C2(Rk)
and y0 ∈ S with h ≥ Φ on S and h(y0) = Φ(y0). As before let

D = {y ∈ S ; Φ(y) > g(y)} . (9.1.9)

Then if y0 �∈ D we have Φ(y0) = g(y0) and hence (9.1.6) holds trivially.
Next, assume y0 ∈ D. Then by the dynamic programming principle

(Lemma 7.3 b)) we have

Φ(y0) = Ey0

[ ∫ τ

0

f(Y (t))dt + Φ(Y (τ))
]

(9.1.10)

for all bounded stopping times τ ≤ τD = inf{t > 0; Y (t) �∈ D}. Combining
this with the Dynkin formula we get

Φ(y0) = E
y0

[ ∫ τ

0

f(Y (t))dt + Φ(Y (τ))
]

≤ E
y0

[ ∫ τ

0

f(Y (t))dt + h(Y (τ))
]

= h(y0) + E
y0

[ ∫ τ

0

(Lh(Y (t)) + f(Y (t)))dt
]

or
E

y0

[ ∫ τ

0

(Lh(Y (t)) + f(Y (t)))dt
]
≥ 0 . (9.1.11)

If we divide (9.1.11) by E
y0 [τ ] and let τ → 0 we get, by continuity,

Lh(y0) + f(y0) ≥ 0 .

Hence (9.1.6) holds and we have proved that Φ is a viscosity subsolution.
Finally we show that Φ is a viscosity supersolution. So we assume that

h ∈ C2(Rk) and y0 ∈ S are such that h ≤ Φ on S and h(y0) = Φ(y0). Then
by the dynamic programming principle (Lemma 7.3 a)) we have
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Φ(y0) ≥ E
y0

[ ∫ τ

0

f(Y (t))dt + Φ(Y (τ))
]

(9.1.12)

for all stopping times τ ≤ τS0 . Hence, by the Dynkin formula

Φ(y0) ≥ E
y0

[ ∫ τ

0

f(Y (t))dt + φ(Y (τ))
]
≥ E

y0

[ ∫ τ

0

f(Y (t))dt + h(Y (τ))
]

= h(y0) + E
y0

[ ∫ τ

0

(Lh(Y (t))dt + f(Y (t)))dt
]
,

for all bounded stopping times τ ≤ τS0 . Hence

E
y0

[ ∫ τ

0

(Lh(Y (t)) + f(Y (t)))dt
]
≤ 0

and by dividing by E
y0 [τ ] and letting τ → 0 we get

Lh(y0) + f(y0) ≤ 0 .

Hence (9.1.7) holds and we have proved that Φ is also a viscosity supersolution.
��

Uniqueness

One important application of the viscosity solution concept is that it can be
used as a verification method: In order to verify that a given function φ is
indeed the value function Φ it suffices to verify that the function is a viscosity
solution of the corresponding variational inequality. For this method to work,
however, it is necessary that we know that Φ is the unique viscosity solution.
Therefore the question of uniqueness is crucial.

In general we need not have uniqueness. The following simple example
illustrates this:

Example 9.3. Let Y (t) = B(t) ∈ R and choose f = 0, S = R and

g(y) =
y2

1 + y2
; x ∈ R . (9.1.13)

Then the value function Φ of the optimal stopping problem

Φ(y) = sup
τ∈T

Ey[g(B(τ))] (9.1.14)

is easily seen to be Φ(y) ≡ 1. The corresponding VI is

max
(

1
2φ′′(y), g(y) − φ(y)) = 1 (9.1.15)

and this equation is trivially satisfied by all constant functions

φ(y) ≡ a

for any a ≥ 1.
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Theorem 9.4 (Uniqueness). Suppose that

τS0 < ∞ a.s. P y for all y ∈ S0 . (9.1.16)

Let φ ∈ C(S̄) be a viscosity solution of (9.1.4)–(9.1.5) with the property that

the family {φ(Y (τ)); τ stopping time, τ ≤ τS0}
is P y-uniformly integrable, for all y ∈ S0.

(9.1.17)

Then
φ(y) = Φ(y) for all y ∈ S̄ .

Proof. We refer the reader to [ØR] for the proof in the case where there are
no jumps. ��

9.2 The value function is not always C1

Example 9.5. We now give an example of an optimal stopping problem where
the value function Φ is not C1 everywhere. In this case Theorem 2.2 cannot
be used to find Φ. However, we can use Theorem 9.4. The example is taken
from [ØR]:

Define

k(x) =

⎧⎪⎨⎪⎩
1 for x ≤ 0
1 − cx for 0 < x < a

1 − ca for x ≥ a

(9.2.1)

where c and a are constants to be specified more closely later. Consider the
optimal stopping problem

Φ(s, x) = sup
τ∈T

E(s,x)
[
e−ρ(s+τ)k(B(τ))

]
(9.2.2)

where B(t) is 1-dimensional Brownian motion, B(0) = x ∈ R = S, and ρ > 0
is a constant. The corresponding variational inequality is (see (9.1.4))

max
(∂φ

∂s
+ 1

2

∂2φ

∂x2
, e−ρsk(x) − φ(s, x)

)
= 0 . (9.2.3)

If we try a solution of the form

φ(s, x) = e−ρsψ(x) (9.2.4)

for some function ψ, then (9.2.3) becomes

max(−ρψ(x) + 1
2ψ′′(x), k(x) − ψ(x)) = 0 . (9.2.5)

Let us guess that the continuation region D has the form
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D = {(s, x); 0 < x < x1} (9.2.6)

for some x1 > a. Then (9.2.5) can be split into the 3 equations

−ρψ(x) + 1
2ψ′′(x) = 0 ; 0 < x < x1 (9.2.7)

ψ(x) = 1 ; x ≤ 0
ψ(x) = 1 − ca ; x ≥ x1

The general solution of (9.2.7) is

ψ(x) = C1e
√

2ρ x + C2e
−
√

2ρ x ; 0 < x < x1

where C1, C2 are arbitrary constants. If we require ψ to be continuous at x = 0
and at x = x1 we get the two equations

C1 + C2 = 1 (9.2.8)

C1e
√

2ρ x1 + C2e
−
√

2ρ x1 = 1 − ca (9.2.9)

in the 3 unknowns C1, C2 and x1. If we also guess that ψ will be C1 at x = x1

we get the third equation

C1

√
2ρ e

√
2ρ x1 − C2

√
2ρ e−

√
2ρ x1 = 0 . (9.2.10)

If we assume that

ca < 1 and
√

2ρ <
1
a

ln
( 1 − ca

1 −
√

ca(2 − ca)

)
(9.2.11)

then the 3 equations (9.2.8), (9.2.9) and (9.2.10) have the unique solution

C1 = 1
2

(
1 −

√
ca(2 − ca)

)
> 0 , C2 = 1 − C1 > 0 (9.2.12)

and
x1 =

1√
2ρ

ln
(1 − ca

2C1

)
> a . (9.2.13)

With these values of C1, C2 and x1 we put

ψ(x) =

⎧⎪⎨⎪⎩
1 if x ≤ 0
C1e

√
2ρ x + C2e

−
√

2ρ x if 0 < x < x1

1 − ca if x1 ≤ x

(9.2.14)

We claim that ψ is a viscosity solution of (9.2.5).

(i) First we verify that ψ is a viscosity subsolution: let h ∈ C2(R), h ≥ ψ and
h(x0) = ψ(x0). Then if x0 ≤ 0 or x0 ≥ x1 we have k(x0)−ψ(x0) = 0. And
if 0 < x0 < x1 then h− ψ is C2 at x = x0 and has a local minimum at x0

so
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x
x1a

1 − ca

1 − cx
ψ(x)

0

1

Fig. 9.1. The function ψ

h′′(x0) − ψ′′(x0) ≥ 0 .

Therefore

−ρh(x0) + 1
2h′′(x0) ≥ −ρψ(x0) + 1

2ψ′′(x0) = 0 .

This proves that

max
(
− ρh(x0) + 1

2h′′(x0), k(x0) − ψ(x0)
)
≥ 0 ,

so ψ is a viscosity subsolution of (9.2.5).
(ii) Second, we prove that ψ is a viscosity supersolution. So let h ∈ C2(R),

h ≤ ψ and h(x0) = ψ(x0). Note that we always have

k(x0) − ψ(x0) ≤ 0

so in order to prove that

max
(
− ρh(x0) + 1

2h′′(x0), k(x0) − ψ(x0)
)
≤ 0

it suffices to prove that

−ρh(x0) + 1
2h′′(x0) ≤ 0 .

At any point x0 where ψ is C2 this follows in the same way as in (i) above.
So it remains only to consider the two cases x0 = 0 and x0 = x1: If x0 = 0
then no such h exists, so the conclusion trivially holds.
If x0 = x1 then the function h− ψ has a local maximum at x = x0 and it
is C2 to the left of x0 so

lim
x→x−

0

h′′(x) − ψ′′(x) ≤ 0

i.e. h′′(x0) − ψ′′(x−
0 ) ≤ 0 .
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This gives

−ρh(x0) + 1
2h′′(x0) ≤ −ρψ(x0) + 1

2ψ′′(x−
0 ) = 0 ,

and the proof is complete.
We have proved:
Suppose (9.2.11) holds. Then the value function Φ(s, x) of problem (9.2.2)
is given by

Φ(s, x) = e−ρsψ(x)

with ψ as in (9.2.14), C1, C2 and x1 as in (9.2.12)–(9.2.13). Note in par-
ticular that ψ(x) is not C1 at x = 0.

9.3 Viscosity solutions of HJBQVI

We now turn to the general combined stochastic control and impulse control
problem from Chapter 8. Thus the state Y (t) = Y (w)(t) is

dY (t) = b(Y (t), u(t))dt + σ(Y (t), u(t))dB(t)
+
∫

Rk γ(Y (t−), u(t−), z)Ñ(dt, dz) τi < t < τi+1

Y (τi+1) = Γ (Y̌ (τ−
i+1), ζi+1) ; i = 0, 1, 2, . . .

(9.3.1)

where w = (u, v) ∈ W, u ∈ U , v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) ∈ V .
The performance is given by

J (w)(y) = Ey
[ ∫ τS

0

f(Y (t), u(t))dt + g(Y (τS))χ{τS<∞} +
∑

j

K(Y̌ (τ−
j ), ζj)

]
(9.3.2)

and we want to find the value function Φ defined by

Φ(y) = sup
w∈W

J (w)(y) . (9.3.3)

To simplify the presentation we will from now on assume that

S is an open set, i.e. S = S0 , (9.3.4)

and that ∂S is regular for Y (w)(t) for all w ∈ W , i.e.

τS = τS(y) = inf{t > 0; Y (w)(t) �∈ S} = 0 for all y ∈ ∂S and all w ∈ W .
(9.3.5)

These conditions (9.3.4)–(9.3.5) exclude cases where Φ also satisfies certain
HJBQVIs on ∂S (see e.g. [ØS]), but it is often easy to see how to extend the
results to such situations.

Theorem 8.1 associates Φ to the HJBQVI
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max
(

sup
α∈U

{LαΦ(y) + f(y, α)},MΦ(y) − Φ(y)
)

= 0 , y ∈ S (9.3.6)

with boundary values

Φ(y) = g(y) ; y ∈ ∂S (9.3.7)

where

LαΦ(y) =
k∑

i=1

bi(y, α)
∂Φ

∂yi
+ 1

2

k∑
i,j=1

(
σσT

)
ij

(y, α)
∂2Φ

∂yi∂yj

+
�∑

j=1

∫
R

{
Φ
(
y + γ(j)(y, α, z)

)
− Φ(y) −∇Φ(y) · γ(j)(y, α, z)

}
νj(dzj)

(9.3.8)

and

MΦ(y) = sup
{
Φ(Γ (y, ζ)) + K(y, ζ); ζ ∈ Z, Γ (y, ζ) ∈ S

}
. (9.3.9)

Unfortunately, as we have seen already for optimal stopping problems, the
value function Φ need not be C1 everywhere – in general not even continuous!
So (9.3.6) is not well-defined, if we interpret the equation in the usual sense.
However, it turns out that if we interpret (9.3.6) in the weak sense of viscosity
then Φ does indeed solve the equation. In fact, under some assumptions Φ
is the unique viscosity solution of (9.3.6)–(9.3.7) (Theorem 9.11 below). This
result is an important supplement to Theorem 8.1.

We now define the concept of viscosity solutions of general HJBQVIs of
type (9.3.6)–(9.3.7):

Definition 9.6. Let ϕ ∈ C(S̄).

(i) We say that ϕ is a viscosity subsolution of

max
(

sup
α∈U

{Lαϕ(y) + f(y, α)} , Mϕ(y) − ϕ(y)
)

= 0 ; y ∈ S (9.3.10)

ϕ(y) = g(y) ; y ∈ ∂S (9.3.11)

if (9.3.11) holds and for every h ∈ C2(Rk) and every y0 ∈ S such that h ≥ ϕ
on S and h(y0) = ϕ(y0) we have

max
(

sup
α∈U

{Lαh(y0) + f(y0, α)} , Mϕ(y0) − ϕ(y0)
)

≥ 0. (9.3.12)

(ii) We say that ϕ is a viscosity supersolution of (9.3.10)-(9.3.11) if (9.3.11)
holds and for every h ∈ C2(Rk) and every y0 ∈ S such that h ≤ ϕ on S and
h(y0) = ϕ(y0) we have
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max
(

sup
α∈U

{Lαh(y0) + f(y0, α)} , Mϕ(y0) − ϕ(y0)
)

≤ 0. (9.3.13)

(iii) We say that ϕ is a viscosity solution of (9.3.10)-(9.3.11) if ϕ is both a
viscosity subsolution and a viscosity supersolution of (9.3.10)-(9.3.11).

Lemma 9.7. Let Φ be as in (9.3.3). Then Φ(y) ≥ MΦ(y) for all y ∈ S.

Proof. Suppose there exists y ∈ S with

Φ(y) < MΦ(y),

i.e.
Φ(y) < sup

ζ∈Z
{Φ(Γ (y, ζ)) + K(y, ζ)} .

Then there exists ζ̂ ∈ Z such that, with ŷ = Γ (y, ζ̂),

Φ(y) < Φ(ŷ) + K(y, ζ̂).

Put
ε :=

1
2

(
Φ(ŷ) + K(y, ζ̂) − Φ(y)

)
,

and let w = (u, v), with v = (τ1, τ2, · · · ; ζ1, ζ2, · · · ) be ε-optimal for Φ at ŷ, in
the sense that

J (w)(ŷ) > Φ(ŷ) − ε.

Define ŵ := (u, v̂), where v̂ = (0, τ1, τ2, . . . ; ζ̂, ζ1, ζ2, · · · ). Then, with τ0 =
0, ζ0 = ζ̂,

Φ(y) ≥ J (ŵ)(y) = Ey
[ ∫ τS

0

f(Y (t), u(t))dt + g(Y (τS))χ{τS<∞}

+
∞∑

i=0

K(Y̌ (τ−
i ), ζi)

]
= K(y, ζ̂) + J (w)(ŷ).

Combining the above we get

K(y, ζ̂) + J (w)(ŷ) ≤ Φ(y) < Φ(ŷ) + K(y, ζ̂)

< J (w)(ŷ) + ε + K(y, ζ̂).

This implies that
Φ(ŷ) + K(y, ζ̂) − Φ(y) < ε,

a contradiction. ��

Our first main result in this section is the following:
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Theorem 9.8. The value function

Φ(y) = sup
w∈W

J (w)(y)

of the combined stochastic control and impulse control problem (9.3.3) is a
viscosity solution of (9.3.6)-(9.3.7).

Proof. By (9.3.5) and (9.3.2) we see that Φ satisfies (9.3.7).

a) We first prove that Φ is a viscosity subsolution. To this end, choose h ∈
C2(Rk) and y0 ∈ S such that h ≥ Φ on S and h(y0) = Φ(y0). We must prove
that

max
(

sup
α∈U

{Lαh(y0) + f(y0, α)} , MΦ(y0) − Φ(y0)
)

≥ 0. (9.3.14)

If MΦ(y0) ≥ Φ(y0) then (9.3.14) holds trivially, so we may assume that

MΦ(y0) < Φ(y0). (9.3.15)

Choose ε > 0 and let w = (u, v) ∈ W, with v = (τ1, τ2, · · · ; ζ1, ζ2, · · · ) ∈ V ,
be an ε-optimal portfolio, i.e.

Φ(y0) < J (w)(y0) + ε.

Since τ1 is a stopping time we know that {ω ; τ1(ω) = 0} is F0-measurable
and hence either

τ1(ω) = 0 a.s. or τ1(ω) > 0 a.s. (9.3.16)

If τ1 = 0 a.s. then Y (w) makes an immediate jump from y0 to the point
y′ = Γ (y0, ζ1) ∈ S and hence

Φ(y0) − ε ≤ J (w′)(y′) + K(y, ζ1) ≤ Φ(y′) + K(y, ζ1) ≤ MΦ(y0),

where w′ = (τ2, τ3, · · · ; ζ2, ζ3, · · · ).
This is a contradiction if ε < Φ(y0) −MΦ(y0). This proves that (9.3.15)

implies that it is impossible to have τ1 = 0 a.s.

So by (9.3.16), we can now assume that τ1 > 0 a.s.. Choose R < ∞, ρ > 0
and define

τ := τ1 ∧ R ∧ inf{t > 0 ; | Y (w)(t) − y0| ≥ ρ}.
By the Dynkin formula we have, with Y (t) = Y (w)(t),

Ey0 [h(Y̌ (τ−))] = h(y0) + Ey0

[∫ τ

0

Luh(Y (t))dt

]
, (9.3.17)

where Y̌ (τ−) := Y (τ−) + ∆NY (τ), with ∆NY (τ) being the jump of Y at τ
stemming from N only, not from the intervention at τ (see (6.1.3)-(6.1.7) for
details).
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By the dynamic programming principle (see lemma 7.3) we have : for each
ε > 0, there exists a control u such that

Φ(y0) ≤ Ey0

[∫ τ

0

f(Y (t), u(t))dt + Φ(Y̌ (τ−))
]

+ ε. (9.3.18)

Combining (9.3.17) and (9.3.18) and using that h ≥ Φ and h(y0) = Φ(y0),
we get

Ey0

[∫ τ

0

{Luh(Y (t)) + f(Y (t), u(t))}dt

]
≥ −ε.

Dividing by Ey0 [τ ] and letting ρ → 0 we get

Lα0h(y0) + f(y0, α0) ≥ −ε,

where
α0 = lim

s→0+
u(s).

Since ε is arbitrary, this proves (9.3.14) and hence that Φ is a viscosity
subsolution.

b) Next we prove that Φ is a viscosity supersolution. So we choose h ∈ C2(Rk)
and y0 ∈ S such that h ≤ Φ on S and h(y0) = Φ(y0). We must prove that

max
(

sup
α∈U

{Lαh(y0) + f(y0, α)},MΦ(y0) − Φ(y0)
)

≤ 0. (9.3.19)

Since Φ ≥ MΦ always (Lemma 9.7) it suffices to prove that

Lαh(y0) + f(y0, α) ≤ 0 for all α ∈ U.

To this end, fix α ∈ U and let wα = (α, 0), i.e. wα is the combined control
(uα, vα) ∈ W where uα = α (constant) and vα = 0 (no interventions). Then
by the dynamic programming principle and the Dynkin formula we have, with
Y (t) = Y (wα)(t), τ = τS ∧ ρ,

Φ(y0) ≥ Ey0

[∫ τ

0

f(Y (s), α)ds + Φ(Y̌ (τ−))
]

≥ Ey

[∫ τ

0

f(Y (s), α)ds + h(Y̌ (τ−))
]

= h(y0) + Ey

[∫ τ

0

{Lαh(Y (t)) + f(Y (t), α)}dt

]
.

Hence

E

[∫ τ

0

{Lαh(Y (t)) + f(Y (t), α)}dt

]
≤ 0.

Dividing by E[τ ] and letting ρ → 0 we get (9.3.19).

This completes the proof of Theorem 9.8. ��
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Next we turn to the question of uniqueness of viscosity solutions of
(9.3.10)-(9.3.11). Many types of uniqueness results can be found in the lit-
erature. See the references in the end of this section.

Here we give a proof in the case when the process Y (t) has no jumps, i.e.
when N(·, ·) = ν(·) = 0. The method we use is a generalization of the method
in [ØS, Theorem 3.8] .

First we introduce some convenient notation:

Define Λ : R
k×k × R

k × R
S × R

k → R by

Λ(R, r, ϕ, y) := sup
α∈U

⎧⎨⎩
k∑

i=1

bi(y, α)ri +
1
2

k∑
i,j=1

(σσT )ij(y, α)Rij

+
�∑

j=1

∫
R

{
ϕ(y + γ(j)(y, α, zj)) − ϕ(y) − r · γ(j)(y, α, zj)

}
νj(dzj) + f(y, α)

⎫⎬⎭
(9.3.20)

for R = [Rij ] ∈ R
k×k, r = (ri, . . . , rk) ∈ R

k, ϕ : S → R, y ∈ R
k, and define

F : R
k×k × R

k × R
S × R

k → R by

F (R, r, ϕ, y) = max{Λ(R, r, ϕ, y),Mϕ(y) − ϕ(y)}. (9.3.21)

Note that if ϕ ∈ C2(Rk) then

Λ(D2ϕ, Dϕ, ϕ, y) = sup
α∈U

{Lαϕ(y) + f(y, α)} ,

where

D2ϕ =
[

∂2ϕ

∂yi∂yj

]
(y) and Dϕ =

[
∂ϕ

∂yi

]
(y).

We recall the concepts of “superjets” J2,+
S , J2,−

S and J̄2,+
S , J̄2,−

S (see [CIL],
section 2):

J2,+
S ϕ(y) :=

{
(r, R) ∈ R

k×k × R
k ;

lim sup
η→y
η∈S

[
u(η) − u(y) − r(η − y) − 1

2
(η − y)T R(η − y)

]
· |η − y|−2 ≤ 0

}
,

J̄2,+
S ϕ(y) :=

{
(r, R) ∈ R

k×k × R
k ; for all n there exists

(R(n), r(n), y(n)) ∈ R
k×k × R

k × S such that (R(n), r(n)) ∈ J2,+
S ϕ(y(n)) and

(R(n), r(n), ϕ(y(n)), y(n)) → (R, r, ϕ(y), y) as n → ∞
}

and
J2,−
S ϕ = −J2,+

S (−ϕ), J̄2,−
S ϕ = −J̄2,+

S (−ϕ).

In terms of these superjets one can give an equivalent definition of viscosity
solutions as follows :
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Theorem 9.9 ([CIL], Section 2).

(i) A function ϕ ∈ C(S) is a viscosity subsolution of (9.3.10)-(9.3.11) if and
only if (9.3.11) holds and

max(Λ(R, r, ϕ, y),Mϕ(y) − ϕ(y)) ≥ 0 for all (r, R) ∈ J̄2,+
S ϕ(y), y ∈ S.

(ii) A function ϕ ∈ C(S) is a viscosity supersolution of (9.3.10)-(9.3.11) if
and only if (9.3.11) holds and

max(Λ(R, r, ϕ, y),Mϕ(y) − ϕ(y)) ≤ 0 for all (r, R) ∈ J̄2,−
S ϕ(y), y ∈ S.

We have now ready for the second main theorem of this section:

Theorem 9.10 (Comparison theorem).
Assume that

N(·, ·) = ν(·) = 0. (9.3.22)

Suppose that there exists a positive function β ∈ C2(S̄) which satisfies the
strict quasi-variational inequality

max

(
sup
α∈U

{Lαβ(y)}, sup
ζ∈Z

β(Γ (y, ζ)) − β(y)

)
≤ −δ(y) < 0 ; y ∈ S, (9.3.23)

where δ(y) > 0 is bounded away from 0 on compact subsets of S.

Let u be a viscosity subsolution and v a viscosity supersolution of (9.3.10)-
(9.3.11) and suppose that

lim
|y|→∞

{
u+(y)
β(y)

+
v−(y)
β(y)

}
= 0. (9.3.24)

Then
u(y) ≤ v(y) for all y ∈ S.

Proof. (Sketch) We argue by contradiction. Suppose that

sup
y∈S

{u(y) − v(y)} > 0.

Then by (9.3.24) there exists ε > 0 such that if we put

vε(y) := v(y) + εβ(y) ; y ∈ S

then
M := sup

y∈S
{u(y) − vε(y)} > 0.

For n = 1, 2, . . . and (x, y) ∈ S × S define

Hn(x, y) := u(x) − v(y) − n

2
|x − y|2 − ε

2
(β(x) + β(y)).
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and
Mn := sup

(x,y)∈S×S
Hn(x, y).

Then by (9.3.24) we have

0 < Mn < ∞ for all n,

and there exists (x(n), y(n)) ∈ S × S such that

Mn = Hn(x(n), y(n)).

Then by Lemma 3.1 in [CIL] the following holds:

lim
n→∞

n|x(n) − y(n)|2 = 0

and
lim

n→∞
Mn = u(ŷ) − vε(ŷ) = sup

y∈S
{u(y) − vε(y)} = M,

for any limit point ŷ of {y(n)}∞n=1.

Since v is a supersolution of (9.3.10)-(9.3.11) and (9.3.23) holds, we see
that vε is a strict supersolution of (9.3.10), in the sense that ϕ = vε satisfies
(9.3.13) in the following strict form:

max
(

sup
α∈U

{Lαh(y0) + f(y0, α)}, Mvε(y0) − vε(y0)
)

≤ −δ(y0),

with δ(·) as in (9.3.23).

By [CIL, Theorem 3.2], there exist k × k matrices P (n), Q(n) such that, if
we put

p(n) = q(n) = n(x(n) − y(n))

then
(p(n), P (n)) ∈ J̄2,+u(x(n)) and (q(n), Q(n)) ∈ J̄2,−vε(y(n))

and [
P (n) 0

0 −Q(n)

]
≤ 3n

[
I −I
−I I

]
,

in the sense that

ξT P (n)ξ − ηT Q(n)η ≤ 3n|ξ − η|2 for all ξ, η ∈ R
k. (9.3.25)

Since u is a subsolution we have, by Theorem 9.9,

max
(
Λ(P (n), p(n), u, x(n)),Mu(x(n)) − u(x(n))

)
≥ 0 (9.3.26)
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and since vε is a supersolution we have

max
(
Λ(Q(n), q(n), vε, y

(n)),Mvε(y(n)) − vε(y(n))
)
≤ 0. (9.3.27)

By (9.3.25) we get

Λ(P (n), p(n), u, x(n)) − Λ(Q(n), q(n), vε, y
(n))

≤ sup
α∈U

{
k∑

i=1

(bi(x(n), α) − bi(y(n), α))(p(n)
i − q

(n)
i )

+
1
2

k∑
i,j=1

[
(σσT )ij(x(n), α) − (σσT )ij(y(n), α)

]
(P (n)

ij − Q
(n)
ij )

⎫⎬⎭
≤ 0.

Therefore, by (9.3.27),

Λ(P (n), p(n), u, x(n)) ≤ Λ(Q(n), q(n), vε, y
(n)) ≤ 0

and hence, by (9.3.26),

Mu(x(n)) − u(x(n)) ≥ 0. (9.3.28)

On the other hand, since vε is a strict supersolution we have

Mvε(y(n)) − vε(y(n)) < −δ for all n, (9.3.29)

for some constant δ > 0.
Combining the above we get

Mn < u(x(n)) − vε(y(n)) < Mu(x(n)) −Mvε(y(n)) − δ

and hence

M = lim
n→∞

Mn ≤ lim
n→∞

(Mu(x(n)) −Mvε(y(n)) − δ)

≤ Mu(ŷ) −Mvε(ŷ) − δ

= sup
ζ∈Z

{u(Γ (ŷ, ζ)) + K(ŷ, ζ)} − sup
ζ∈Z

{vε(Γ (ŷ, ζ)) + K(ŷ, ζ)} − δ

≤ sup
ζ∈Z

{u(Γ (ŷ, ζ)) − vε(Γ (ŷ, ζ))} − δ ≤ M − δ.

This contradiction proves Theorem 9.10. ��

Theorem 9.11 (Uniqueness of viscosity solutions).
Suppose that the process Y (t) has no jumps i.e.

N(·, ·) = 0
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and let β ∈ C2(S̄) be as in Theorem 9.10. Then there is at most one viscosity
solution ϕ of (9.3.10)-(9.3.11) with the property that

lim
|y|→∞

|ϕ(y)|
β(y)

= 0. (9.3.30)

Proof. Let ϕ1, ϕ2 be two viscosity solutions satisfying (9.3.30). If we apply
Theorem 9.10 to u = ϕ1 and v = ϕ2 we get

ϕ1 ≤ ϕ2.

If we apply Theorem 9.10 to u = ϕ2 and v = ϕ1 we get

ϕ2 ≤ ϕ1.

Hence ϕ1 = ϕ2. ��

Example 9.12 (Optimal consumption and portfolio with both fixed
and proportional transaction costs (2)).

Let us return to Example 8.3. In this case equation (9.3.10) takes the
form (8.2.21)-(8.2.22) in S0. For simplicity we assume Dirichlet boundary
conditions, e.g. ψ = 0, on ∂S. Fix γ′ ∈ (γ, 1) such that (see (3.1.8))

δ > γ′
[
r +

(µ − r)2

2σ2(1 − γ)

]
and define

β(x1, x2) = (x1 + x2)γ′
. (9.3.31)

Then with M as in (8.2.22) we have

(Mβ − β)(x1, x2) ≤ (x1, x2)γ1

[(
1 − k

x1 + x2

)γ′

− 1

]
< 0. (9.3.32)

Moreover, with

Luψ(x1, x2) := −ρψ(x1, x2) + (rx1 − u)
∂ψ

∂x1
(x1, x2) + µx2

∂ψ

∂x2
(x1, x2)

+
1
2
σ2x2

2

∂2ψ

∂x2
2

(x1, x2) ; ψ ∈ C2(R2) (9.3.33)

we get
max
u≥0

Luβ(x1, x2) < 0, (9.3.34)

and in both (9.3.32) and (9.3.34) the strict inequality is uniform on compact
subsets of S0. The proofs of these inequalities are left as an exercise (Exercise
9.3).
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We conclude that the function β in (9.3.31) satisfies the conditions (9.3.23)
of Theorem 9.10. Thus by Theorem 9.11 we have in this example uniqueness
of viscosity solutions ϕ satisfying the growth condition

lim
|(x1,x2)|→∞

(x1 + x2)−γ′ |ϕ(x1, x2)| = 0. (9.3.35)

For other results regarding uniqueness of viscosity solutions of equations
associated to impulse control, stochastic control and optimal stopping for
jump diffusions, we refer to [Am], [AKL], [BKR2], [CIL], [Is1], [Is2], [Ish],
[MS], [AT], [Ph], [JK], [FS], [BCa], [BCe] and the references therein.

9.4 Numerical analysis of HJBQVI

In this section we give some insights in the numerical solution of HJBQVI. We
refer e.g. to [LST] for details on the finite difference approximations and the
description of the algorithms to solve dynamic programming equations. Here
we focus on the main problem which arises in the case of quasi-variational
inequalities, that is the presence of a nonexpansive operator due to the inter-
vention operator.

Finite difference approximation.

We want to solve the following HJBQVI numerically

max
(

sup
α∈U

{LαΦ(x) + f(x, α)},MΦ(x) − Φ(x)
)

= 0 , x ∈ S (9.4.1)

with boundary values

Φ(x) = g(x) ; x ∈ ∂S (9.4.2)

where

LαΦ(x) = −rΦ +
k∑

i=1

bi(x, α)
∂Φ

∂xi
+ 1

2

k∑
i,j=1

aij(x, α)
∂2Φ

∂xi∂xj
(9.4.3)

and

MΦ(x) = sup
{
Φ(Γ (x, ζ)) + K(x, ζ); ζ ∈ Z, Γ (x, ζ) ∈ S

}
. (9.4.4)

We have denoted here aij :=
(
σσT

)
ij

. We shall also write Kζ(x) for K(x, ζ).
We assume that S is bounded, otherwise a change of variable or a localisa-

tion procedure has to be performed in order to reduce to a bounded domain.
Moreover we assume for simplicity that S is a box, that is a cartesian prod-
uct of bounded intervals in R

k. We can also handle Neumann type boundary
conditions without additional difficulty.
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We discretize (9.4.1) by using a finite difference approximation. Let δi

denote the finite difference step in each coordinate direction and set δ =
(δ1, . . . δk). Denote by ei the unit vector in the ith coordinate direction, and
consider the grid Sδ = S

⋂∏k
i=1(δiZ). Set ∂Sδ = ∂S

⋂∏k
i=1(δiZ). We use

the following approximations:

∂Φ

∂xi
(x) ∼ Φ(x + δiei) − Φ(x − δiei)

2δi
≡ ∂δi

i Φ(x) (9.4.5)

or (see (9.4.16))

∂Φ

∂xi
(x) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ(x + δiei) − Φ(x)

δi
≡ ∂δi+

i Φ(x) if bi(x) ≥ 0

Φ(x) − Φ(x − δiei)
δi

≡ ∂δi−
i Φ(x) if bi(x) ≤ 0.

(9.4.6)

∂2Φ

∂x2
i

(x) ∼ Φ(x + δiei) − 2Φ(x) + Φ(x − δiei)
δ2
i

≡ ∂δi

ii Φ(x). (9.4.7)

If aij(x) ≥ 0, i �= j, then

∂2Φ

∂xi∂xj
(x) ∼ 2Φ(x) + Φ(x + δiei + δjej) + Φ(x − δiei − δjej)

2δiδj

−[
Φ(x + δiei) + Φ(x − δiei) + Φ(x + δjej) + Φ(x − δjej)

2δiδj
]

≡ ∂
δiδj+
ij Φ(x). (9.4.8)

If aij(x) < 0, i �= j, then

∂2Φ

∂xi∂xj
(x) ∼ − [2Φ(x) + Φ(x + δiei − δjej) + Φ(x − δiei + δjej)]

2δiδj

+
Φ(x + δiei) + Φ(x − δiei) + Φ(x + δjej) + Φ(x − δjej)

2δiδj

≡ ∂
δiδj−
ij Φ(x). (9.4.9)

These approximations can be justified when the function Φ is smooth by Tay-
lor expansions. Using approximations (9.4.5), (9.4.7),(9.4.8),(9.4.9), we obtain
the following approximation problem:

max
(

sup
α∈U

{Lα
δ Φδ(x) + f(x, α)},MδΦδ(x) − Φδ(x)

)
= 0 for all x ∈ Sδ

Φδ(x) = g(x) for all x ∈ ∂Sδ

(9.4.10)
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where

Lα
δ Φ(x) = Φ(x)

⎧⎨⎩
k∑

i=1

−aii(x, α)
δ2
i

+
∑
j 
=i

|aij(x, α)|
2δiδj

− r

⎫⎬⎭
+

1
2

∑
i,κ=±1

Φ(x + κδiei)

⎧⎨⎩aii(x, α)
δ2
i

−
∑
j,j 
=i

|aij(x, α)|
δiδj

+ κ
bi(x, α)

δi

⎫⎬⎭
+

1
2

∑
i
=j,κ=±1,λ=±1

Φ(x + κeiδi + λejδj)
aij(x, α)[κλ]

δiδj

(9.4.11)

and
MδΦδ(x) = sup

{
Φ(Γ (x, ζ)) + K(x, ζ); ζ ∈ Zδ(x)

}
(9.4.12)

with
Zδ(x) =

{
ζ ∈ Z, Γ (x, ζ) ∈ Sδ

}
. (9.4.13)

We have used here the notation

a
[κλ]
ij (x, α) =

{
a+

ij(x, α) ≡ max(0, aij(x, α)) if κλ = 1
a−

ij(x, α) ≡ −min(0, aij(x, α)) if κλ = −1.

In (9.4.10), Φδ denotes an approximation of Φ at the grid points. This approx-
imation is consistent and stable if the following condition holds: (see [LST]
for a proof)

|bi(x, α)| ≤ aii(x, α)
δi

−
∑
j 
=i

|aij(x, α)|
δj

for all α in U , x in Sδ, i = 1 . . . k.

(9.4.14)
In this case φδ converges to the viscosity solution of (9.4.1) when the step δ
goes to 0. This can be proved by using techniques introduced by Barles and
Souganidis [BS], provided a comparison theorem holds for viscosity sub- and
super-solutions of the continuous-time problem.

If (9.4.14) does not hold but only the following weaker condition

0 ≤ aii(x, α)
δi

−
∑
j 
=i

|aij(x, α)|
δj

for all α in U , x in Sδ, i = 1 . . . k. (9.4.15)

is satisfied, then it can be shown that we can also a obtain a stable approxi-
mation (but of lower order) by using the one sided approximations (9.4.6) for
the approximation of the gradient instead of the centered difference (9.4.5).
Instead of (9.4.11), the operator Lα

δ is then equal to



9.4 Numerical analysis of HJBQVI 143

Lα
δ Φ(x) = Φ(x)

⎧⎨⎩
k∑

i=1

−aii(x, α)
δ2
i

+
∑
j 
=i

|aij(x, α)|
2δiδj

− |bi(x, α)|
δi

− r

⎫⎬⎭
+

1
2

∑
i,κ=±1

Φ(x + κδiei)

⎧⎨⎩aii(x, α)
δ2
i

−
∑
j,j 
=i

|aij(x, α)|
δiδj

+
bi(x, α)[κ]

δi

⎫⎬⎭
+

1
2

∑
i
=j,κ=±1,λ=±1

Φ(x + κeiδi + λejδj)
aij(x, α)[κλ]

δiδj
.

(9.4.16)
By replacing the values of the function Φδ by their known values on the
boundary, we obtain the following equation in Sδ:

max
(

sup
α∈U

{L̄α
δ Φδ(x) + fδ(x, α)},MδΦδ(x) − Φδ(x)

)
= 0, x ∈ Sδ (9.4.17)

where L̄α
δ is a square Nδ ×Nδ matrix, obtained by retrieving the first and last

column from Lα
δ , Nδ = Card(Sδ), that is the number of points of the grid, and

fδ(x, α) (which will also be denoted by fα
δ (x)) takes into acount the boundary

values.

A policy iteration algorithm for HJBQVI.

When the stability conditions (9.4.14) or (9.4.15) hold, then the matrix
L̄α

δ is diagonally dominant, that is

(L̄α
δ )ij ≥ 0 for i �= j and

Nδ∑
j=1

(L̄α
δ )ij ≤ −r < 0 for all i = 1 . . .Nδ.

Now let h be a positive number such that

h ≤ min
i

1
|(L̄α

δ )ii + r| (9.4.18)

and let Iδ denote the Nδ × Nδ identity matrix. It is easy to check that the
matrix

Pα
δ := Iδ + h(L̄α

δ + rIδ)

is submarkovian, i.e. (Pα
δ )ij ≥ 0 for all i, j and

∑Nδ

j=1(P
α
δ )ij ≤ 1 for all i.

Consequently equation (9.4.17) can be rewritten as

max
(

sup
α∈U

{ 1
h

(
Pα

δ Φδ(x) − (1 + rh)Φδ(x)
)

+ fα
δ (x)},MδΦδ(x) − Φδ(x)

)
= 0,

(9.4.19)
which is equivalent to

Φδ(x) = max

(
sup
α∈U

Lα
δ Φδ(x), sup

ζ∈Zδ(x)

BζΦδ(x)

)
(9.4.20)
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where

Lα
δ Φ(x) :=

Pα
δ Φ(x) + hfα

δ (x)
1 + rh

(9.4.21)

(9.4.22)
BζΦ(x) := Φ(Γ (x, ζ)) + Kζ(x). (9.4.23)

Let P(Sδ) denote the set of all subsets of Sδ and for (T, α, ζ) in P(Sδ)×U×Zδ,
denote by OT,α,ζ the operator :

OT,α,ζv(x) :=

{
Lα

δ v(x) if x ∈ Sδ\T ,
Bζv(x) if x ∈ T .

(9.4.24)

Problem (9.4.20) is equivalent to the fixed point problem

Φδ(x) = sup
T∈P(Sδ),α∈U,ζ∈Zδ

OT,α,ζΦδ(x).

We define Tad as
Tad := P(Sδ)\Sδ

and restrict ourselves to the following problem

Φδ(x) = sup
T∈Tad,α∈U,ζ∈Zδ

OT,w,zΦδ(x) =: OΦδ(x). (9.4.25)

In other words, it is not admissible to make interventions at all points of
Sδ (i.e. the continuation region is never the empty set). We can always assume
that we order the points of the grid in such a way that it is not admissible to
intervene at x1 ∈ Sδ.

The operator Lα
δ is contractive (because ‖P‖∞ ≤ 1 and rh > 0) and

satisfies the discrete maximum principle, that is

Lα
δ v1 − Lα

δ v2 ≤ v1 − v2 ⇒ v1 − v2 ≥ 0. (9.4.26)

(If v is a function from Sδ into R, v ≥ 0 means v(x) ≥ 0 for all x ∈ Sδ).
The operator Bζ is nonexpansive and we need some additional hypothesis

in order to be able to use a policy iteration algorithm for computing a solution
of (9.4.21). We assume

There exists an integer function σ : {1, 2, . . .Nδ} × Zδ → {1, 2, . . .Nδ}
such that for all ζ ∈ Zδ and all i = 1 . . .Nδ

Γ (xi, ζ) = xσ(i,ζ) with σ(i, ζ) < i. (9.4.27)

The operator Bζ defined in (9.4.23) can be rewritten as

Bζv = Bζv + Kζ
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where (Bζ , ζ ∈ Zδ) is a family of Nδ ×Nδ markovian matrices (except for the
first row) defined by : Bz

i,j = 1 if j = σ(i, z) and i �= 1, and 0 elsewhere.
Let ζ(.) be a feedback Markovian control from Sδ into Zδ, and define the

function σ̄ on Sδ by σ̄(x) := σ(x, ζ(x)). Condition (9.4.27) implies that the
p-th composition of σ̄ starting in T ∈ Tad will end up in Sδ\T after a finite
number of iterations.

We can now consider the following Howard or policy iteration algorithm
to solve problem (9.4.20) in the finite set Sδ. It consists of constructing two
sequences of feedback markovian policies {(Tk, αk, ζk), k ∈ N} and functions
{vk, k ∈ N} as follows: Let v0 be a given initial function in Sδ. For k ≥ 0 we
do the following iterations :

• (step 2k) Given vk, compute a feedback markovian admissible policy
(Tk+1, αk+1, ζk+1) such that

(Tk+1, αk+1, ζk+1) ∈ Argmax
T,α,ζ

{OT,α,ζvk}. (9.4.28)

In other words

αk+1(x) ∈ Argmax
α∈U

Lα
δ vk(x); for all x in Sδ

ζk+1(x) ∈ Argmax
β∈Zδ

Bζ
δ vk(x); for all x in Sδ

Tk+1 = {x ∈ Sδ,Lαk+1(x)
δ vk(x) > B

ζk+1(x)
δ vk(x)}.

• (step 2k + 1) Compute vk+1 as the solution of

vk+1 = OTk+1,αk+1,ζk+1vk+1. (9.4.29)

Set k ← k + 1 and go to step 2k.

It can be proved that if (9.4.15), (9.4.18) and (9.4.27) hold, then the sequence
{vk} converges to the solution Φδ of (9.4.20) and the sequence {(Tk, αk, ζk)}
converges to the optimal feedback markovian strategy. See [CMS] for a proof
and [BT] for similar problems. For more information on the Howard algorithm,
we refer to [Pu] and [LST]. For complements on numerical methods for HJB
equations we refer e.g to [KD] and [LST].

Example 9.13 (Optimal consumption and portfolio with both fixed
and proportional transaction costs (3)). We go back to example 9.12.
We want to solve equation (8.2.21) numerically. We assume now that S =
(0, l) × (0, l) with l > 0, and that the following boundary conditions hold:

ψ(0, x2) = ψ(x1, 0) = 0
∂ψ
∂x1

(l, x2) = ∂ψ
∂x2

(x1, l) = 0 for all (x1, x2) in (0, l) × (0, l).

Moreover we assume that the consumption is bounded by umax > 0 so that
U = [0, umax]. Let δ > 0 be a positive step and let Sδ = {(iδ, jδ), i, j ∈
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{1, . . .N}} be the finite difference grid (we suppose that N = l/δ is an integer).
We denote by ψδ the approximation of ψ on the grid. We approximate the
operator Lu defined in (9.3.33) by the following finite difference operator on
Sδ:

Lu
δ ψ := −rψ + rx1∂

δ+
1 ψ + µx2∂

δ+
2 ψ − u∂δ−

1 ψ +
1
2
σ2x2

2∂
δ2+
22 ψ

and set the following boundary values:

ψδ(0, x2) = ψδ(x1, 0) = 0
ψδ(l − δ, x2) = ψδ(l, x2)
ψδ(x1, l − δ) = ψδ(x1, l).

We then obtain a stable approximation. Take now

h ≤ rx1

δ
+

µx2

δ
+
(σx2

δ

)2

+
umax

δ
.

We obtain a problem of the form (9.4.20). In order to be able to apply the
Howard algorithm described above, it remains to check that (9.4.27) holds.
This is indeed the case since a finite number of transactions brings the state
to the continuation region. The details are left as an exercise.

This problem is solved in [CØS] by using another numerical method based
on the iterative methods of Chapter 7.

9.5 Exercises

Exercise* 9.1. Let k > 0 be a constant and define

h(x) =

{
k|x| for − 1

k ≤ x ≤ 1
k

1 for |x| > 1
k

Solve the optimal stopping problem

Φ(s, x) = sup
τ≥0

Ex
[
e−ρ(s+τ)h(B(τ))

]
where B(t) is a 1-dimensional Brownian motion starting at x ∈ R. Distinguish
between the two cases

a) k ≤
√

2ρ
z , where z > 0 is the unique positive solution of the equation

tgh(z) =
1
z

,

and

tgh(z) =
ez − e−z

ez + e−z
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b) k >
√

2ρ
z .

Exercise* 9.2. Assume that the state X(t) = X(w)(t) at time t obtained
by using a combined control w = (u, v), where u = u(t, ω) ∈ R and v =
(τ1, τ2, · · · ; ζ1, ζ2, · · · ) with ζi ∈ R given by

dX(t) = u(t)dt + dB(t) +
∫
R

zÑ(dt, dz) ; τi ≤ t < τi+1

X(τi+1) = X(τ−
i+1) + ∆NX(τi+1) + ζi+1 ; X(0) = x ∈ R.

Assume that the cost of applying such a control is

J (w)(s, x) = Ex

[∫ ∞

0

e−ρ(s+t)(X(w)(t)2 + θu(t)2)dt + c
∑

i

e−ρ(s+τi)

]

where ρ, θ and c are positive constants. Consider the problem to find Φ(s, x)
and w∗ = (u∗, v∗) such that

Φ(s, x) = inf
w

J (w)(s, x) = J (w∗)(s, x). (9.5.1)

Let
Φ1(s, x) = sup

u
J (u,0)(s, x)

be the value function if we de not allow any impulse control (i.e. v = 0) and
let

Φ2(s, x) = sup
v

J (0,v)(s, x)

be the value function if u is fixed equal to 0, and only impulse controls are
allowed. (See Exercice 3.5 and Exercise 6.1, respectively).

Prove that for i = 1, 2, there exists (s, x) ∈ R × R such that

Φ(s, x) < Φi(s, x).

In other words, no matter how the positive parameter values ρ, θ and c are
chosen it is never optimal for the problem (9.5.1) to choose u = 0 or v = 0
(compare with Exercise 8.2).

[Hint: Use Theorem 9.8].

Exercise 9.3. Prove the inequalities (9.3.32) and (9.3.34) and verify that the
inequalities hold uniformly on compact subsets of S0.
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Solutions of Selected Exercises

10.1 Exercises of Chapter 1

Exercise 1.1.

Choose f ∈ C2(R) and put Y (t) = f(X(t)). Then by the Itô formula

dY (t) = f ′(X(t))[α dt + σ dB(t)] + 1
2
σ2f ′′(X(t))dt

+

∫
|z|<R

{f(X(t−) + γ(z)) − f(X(t−)) − γ(z)f ′(X(t−))}ν(dz)dt

+

∫
R

{f(X(t−) + γ(z)) − f(X(t−))}N̄(dt, dz). (10.1.1)

(i) In particular, if f(x) = exp(x) this gives

dY (t) = Y (t)[α dt + σ dB(t)] + 1
2
σ2Y (t)dt

+

∫
|z|<R

{exp(X(t−) + γ(z)) − exp(X(t−)) − γ(z) exp(X(t−))}ν(dz)dt

+

∫
R

{exp(X(t−) + γ(z)) − exp(X(t−))}N̄(dt, dz)

= Y (t−)
[(

α + 1
2
σ2 +

∫
|z|<R

{eγ(z) − 1 − γ(z)}ν(dz)
)
dt

+ σ dB(t) +

∫
R

{eγ(z) − 1}N̄(dt, dz)
]

(10.1.2)

(ii) By (i) we see that Y (t) solves the equation

dY (t) = Y (t−)
[
β dt + θ dB(t) + λ

∫
R

zN̄(dt, dz)
]

if and only if
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α + 1
2
σ2 +

∫
|z|<R

{eγ(z) − 1 − γ(z)}ν(dz) = α, σ = θ

and eγ(z) − 1 = λ z (i.e. γ(z) = ln(1 + λz)) a.e. ν.

Exercise 1.2.

We first make some general remarks:

Suppose dXi(t) = αi(t, ω)dt + σi(t, ω)dB(t) +

∫
R

γi(t, z, ω)N̄(dt, dz) for i = 1, 2.

Define Y (t) = X1(t) · X2(t). Then, by the Itô formula with f(x1, x2) = x1 · x2,

dY (t) = X2(t)|α1dt + σ1dB(t)] + X1(t)[α2dt + σ2dB(t)] + 1
2
· 2σ1σ2dt

+

∫
|z|<R

{(X1(t
−) + γ1(t, z))(X2(t

−) + γ2(t, z)) − X1(t
−)X2(t

−)

− X2(t
−)γ1(t, z) − X1(t

−)γ2(t, z)}ν(dz)dt

+

∫
R

{(X1(t
−) + γ1(t, z))(X2(t

−) + γ2(t, z)) − X1(t
−)X2(t

−)}N̄(dt, dz)

= X2(t)[α1dt + σ1dB(t)] + X1(t)[α2dt + σ2dB(t)] + σ1σ2dt

+

∫
|z|<R

γ1(t, z)γ2(t, z)ν(dz)dt

+

∫
R

{γ1(t, z)γ2(t, z) + X1(t
−)γ2(t, z) + X2(t

−)γ1(t, z)}N̄(dt, dz). (10.1.3)

In particular, if dX(t) = α dt + σ dB(t) +

∫
R

γ(t, z)N̄(dt, dz), we get

d(eλtX(t)) = X(t)λeλtdt + eλt[α dt + σ dB(t)] +

∫
R

eλtγ(t, z)N̄(dt, dz)

= eλtdX(t) + λ X(t)eλtdt.

(i) Now consider the equation

dX(t) = (m − X(t))dt + σ dB(t) + γ

∫
R

zÑ(dt, dz),

where we assume that γ z > −1 for a.a. z (ν). It can be written

d(etX(t)) = metdt + σ etdB(t) + γ et

∫
R

zÑ(dt, dz).

This gives the solution
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X(t) = X(0)e−t + m

t∫
0

e(s−t)ds + σ

t∫
0

e(s−t)dB(s) + γ

t∫
0

∫
R

ze(s−t)Ñ(dt, dz)

or

X(t) = m + (X0 − m)e−t + σ

t∫
0

es−tdB(s) + γ

t∫
0

∫
R

zes−tÑ(dt, dz) (10.1.4)

(ii) Next consider the equation

dX(t) = α dt + γ X(t−)

∫
R

zN̄(dt, dz); X(0) = x ∈ R. (10.1.5)

Define, for a given function θ(z),

G(t) = exp
( t∫

0

∫
R

θ(z)N̄(dt, dz) −
∫

|z|<R

{eθ(z) − 1 − θ(z)}ν(dz) · t
)
.

Then by Itô’s formula (see Exercise 1.1)

dG(t) = G(t−)

∫
R

{eθ(z) − 1}N̄(dt, dz).

Hence, if we put

X̃(t) = X(0)G(t) + α G(t)

t∫
0

G−1(s)ds (10.1.6)

we have

dX̃(t) = X(0)dG(t) + α G(t)G−1(t)dt + α

t∫
0

G−1(s)ds · dG(t)

= α dt + X(0)G(t−)

∫
R

{eθ(z) − 1}N̄ (dt, dz)

+ α ·
t∫

0

G−1(s)ds ·
[
G(t−)

∫
R

{eθ(z) − 1}N̄(dt, dz)
]

= α dt +
[
X(0)G(t−) + α G(t−)

t∫
0

G−1(s)ds
] ∫

R

{eθ(z) − 1}N̄(dt, dz)

= α dt + X̃(t−)

∫
R

{eθ(z) − 1}N̄(dt, dz).

So X(t) := X̃(t) solves (10.1.5) if we choose θ(z) such that

eθ(z) − 1 = γ z a.s. ν

i.e.
θ(z) = ln(1 + γ z) a.s. ν. (10.1.7)
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Exercise 1.6.

By (1.2.5) (Example 1.15) we know that the equation

dX(t) = X(t−)

∫
R

(eγ(t,z) − 1)Ñ(dt, dz); X(0) = 1 (10.1.8)

has the solution

X(t) = exp
{ t∫

0

∫
R

γ(s, z)N(ds, dz) −
t∫

0

∫
R

(eγ(s,z) − 1)ν(dz)ds
}

= exp
{ t∫

0

∫
R

γ(s, z)Ñ(ds, dz) −
t∫

0

∫
R

(eγ(s,z) − 1 − γ(s, t))ν(dz)ds
}

. (10.1.9)

If we assume that
t∫

0

∫
R

(eγ(s,z) − 1)2ν(dz)ds < ∞ (10.1.10)

then by (10.1.8) we see that E[X(t)] = 1 and hence by (10.1.9) we get

E
[
exp

{ t∫
0

∫
R

γ(s, z)Ñ(ds, dz)
}]

= exp
{ t∫

0

∫
R

(eγ(s,z) − 1 − γ(s, z))ν(dz)ds
}

.

(10.1.11)

Exercise 1.7.

By (10.1.3) in the solution of Exercise 1.2 we have (with R = ∞)

d(X1(t)X2(t)) =

∫
R

γ1(t, z)γ2(t, z)ν(dz)dt

+

∫
R

{γ1(t, z) + X1(t
−)γ2(t, z) + X2(t

−)γ1(t, z)}Ñ(dt, dz)

= X1(t
−)

∫
R

γ2(t, z)Ñ(dt, dz) + X2(t
−)

∫
R

γ1(t, z)Ñ(dt, dz) +

∫
R

γ1(t, z)γ2(t, z)ν(dz)

= X1(t
−)dX2(t) + X2(t

−)dX1(t) +

∫
R

γ1(t, z)γ2(t, z)N(dt, dz), (10.1.12)

which is ( 1.6.1).

Exercise 1.8.

To find Q we apply Theorem 1.35. So we must find a solution (θ1(z), θ2(z)) of the
two equations
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(i) γ11

∫
R

θ1(z)ν1(dz) + γ12

∫
R

θ2(z)ν2(dz) = α1

(ii) γ21

∫
R

θ1(z)ν1(dz) + γ22

∫
R

θ2(z)ν2(dz) = α2

and such that θj(z) < 1 for j = 1, 2.
This system is equivalent to

(iii)

∫
R

θ1(z)ν1(dz) = λ11α1 + λ12α2

(iv)

∫
R

θ2(z)ν2(dz) = λ21α1 + λ22α2

By our assumption (1.6.3) we see that we can choose Ai ⊂ R with

λi1α1 + λi2α2 < νi(Ai) < ∞

and then the functions

θi(z) =
λi1α1 + λi2α2

νi(Ai)
XAi(z) ; i = 1, 2

solve (i), (ii). With this choice of θi(z); i = 1, 2 we define

Z(t) = exp
{ 2∑

i=1

[ t∫
0

∫
R

ln(1− θi(zi))Ni(ds, dzi) + (λi1α1 + λi2α2)t
]}

; 0 ≤ t ≤ T

and we put
dQ = Z(T )dP on FT .

Then Q is an equivalent local martingale measure for (S1(t), S2(t)). Just as in Section
1.5 we can now deduce that the market has no arbitrage.

10.2 Exercises of Chapter 2

Exercise 2.1.

We seek
Φ(s, x) = sup

τ≥0
E(s,x)[e−ρ(s+τ)(X(τ ) − a)]

where

dX(t) = dB(t) + γ

∫
R

zÑ(dt, dz); X(0) = x ∈ R.

We intend to apply Theorem 2.2 and start by putting

Y (t) =

[
s + t
X(t)

]
; Y (0) =

[
s
x

]
= y ∈ R

2 = S .

The generator of Y is
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Aφ(s, z) =
∂φ

∂s
+ 1

2

∂2φ

∂x2
+

∫
R

{
φ(s, x + γz) − φ(s, x) − ∂φ

∂x
(s, x)γz

}
ν(dz).

According to Theorem 2.2 (ix) we should look for a function φ such that Aφ(s, x) = 0
in D. We try

φ(s, x) = e−ρsψ(x) for some function ψ.

Then
Aφ(s, x) = e−ρsA0ψ(x),

where

A0ψ(x) = −ρψ(x) + 1
2
ψ′′(x) +

∫
R

{ψ(x + γz) − ψ(x) − ψ′(x)γz}ν(dz).

Choose
ψ(x) = eλx for some constant λ > 0.

Then

A0ψ(x) = −ρeλx + 1
2
λ2eλx +

∫
R

{eλ(x+γz) − eλx − λeλx · γz}ν(dz)

= eλx
[
− ρ + 1

2
λ2 +

∫
R

{eλγz − 1 − λγz}ν(dz)
]
.

Put

h(λ) := −ρ + 1
2
λ2 +

∫
R

{eλγz − 1 − λγz}ν(dz).

Note that h(0) = −ρ < 0. Therefore, since

eλγz − 1 − λγz ≥ 0 for all x ∈ R

we see that lim
λ→∞

h(λ) = ∞.

So the equation h(λ) = 0 has at least one solution λ1 > 0. Define

ψ(x) =

{
x − a for x ≥ x∗

C eλ1x for x < x∗ (10.2.1)

where C > 0, x∗ > 0 are two constants to be determined.
If we require ψ to be continuous at x = x∗ we get the equation

C eλ1x∗
= x∗ − a. (10.2.2)

If we require ψ to be differentiable at x = x∗ we get the additional equation

λ1C eλ1x∗
= 1. (10.2.3)

Dividing (10.2.1) by (10.2.2) we get

x∗ = a +
1

λ1
, C =

1

λ1
e−(λ1a+1). (10.2.4)

We now propose that the function
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φ(s, x) := e−ρsψ(x),

with ψ(x) given by (10.2.1), (10.2.2) and (10.2.3) satisfies all the requirements of
Theorem 2.2 (possibly under some assumptions) and hence that

φ(s, x) = Φ(s, x)

and that
τ∗ := inf{t > 0; X(t) ≥ x∗}

is an optimal stopping time.

We proceed to check if the conditions (i)–(xi) of Theorem 2.2 hold. Many of
these conditions are satisfied trivially or by construction of φ. We only discuss the
remaining ones:
(ii): We know that φ = g for x > x∗, by construction. For x < x∗ we must check
that

C1e
λ1x ≥ x − a .

To this end, put
k(x) = C1e

λ1x − x + a ; x ≤ x∗.

Then

k(x∗) = k′(x∗) = 0 and

k′′(x∗) = λ2
1C1e

λ1x > 0 for x ≤ x∗.

Therefore k′(x) < 0 for x < x∗ and hence k(x) > 0 for x < x∗. Hence (ii) holds.
(vi): We know that Aφ + f = Aφ = 0 for x < x∗, by construction. For x > x∗ we
have

Aφ = e−ρsA0(x − a) = e−ρs(−ρ(x − a)) < 0.

So (vi) holds.
(viii): In our case this condition gets the form

E
[ ∞∫

0

{
σ2e−2ρtX2(t) +

∫
R

e−2ρt
∣∣(X(t) + γz)2 − X2(t)

∣∣2ν(dz)
}

dt
]

< ∞

i.e.

E
[ ∞∫

0

e−2ρt
{

σ2X2(t) +

∫
R

∣∣2X(t)γ z + γ2z2
∣∣ν(dz)

}
dt
]

< ∞ . (10.2.5)

This will hold if
z ≤ 0 a.s. ν (10.2.6)

or if

sup
τ∈T

Ex
[
e−2ρτ

( τ∫
0

∫
R

zN(ds, dz)
)2]

< ∞ . (10.2.7)

We will not discuss this condition further here.
(x): With our proposed solution φ we have

D = {(s, x) ∈ R
2; x < x∗}.
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So condition (x) states that

τD := inf{t > 0; X(t) > x∗} < ∞ a.s. (10.2.8)

Some conditions are needed on σ, γ and ν for (10.2.8) to hold. For example, it suffices
that

lim
t→∞

X(t) = lim
t→∞

{
σ B(t) +

t∫
0

∫
R

γ zN(ds, dz)
}

= ∞ a.s. (10.2.9)

(xi): For (xi) to hold it suffices that

sup
τ∈T

Ex[e−2ρτX2(τ )] < ∞ . (10.2.10)

Again it suffices to assume that (10.2.7) holds.

Conclusion.

Assume that (10.2.7) and (10.2.8) hold. Then the value function is

Φ(s, x) = e−ρsψ(x),

where ψ(x) is given by (10.2.1) and (10.2.4). An optimal stopping time is

τ∗ = inf{t > 0; X(t) ≥ x∗}.

Exercise 2.2.

Define

dY (t) =

⎡⎣ dt
dP (t)
dQ(t)

⎤⎦ =

⎡⎣ 1
α P (t)
−λQ(t)

⎤⎦ dt +

⎡⎣ 0
β P (t)

0

⎤⎦ dB(t) +

⎡⎢⎣ 0

γ
∫
R

P (t−)zÑ(dt, dz)

0

⎤⎥⎦
Then the generator A of Y (t) is

Aφ(y) = Aφ(s, p, q) =
∂φ

∂s
+ α p

∂φ

∂p
− λ q

∂φ

∂q
+ 1

2
β2p2 ∂2φ

∂p2

+

∫
R

{
φ(s, p + γ pz, q) − φ(s, p, q) − ∂φ

∂p
(s, p, q)γ zp

}
ν(dz) .

If we try
φ(s, p, q) = e−ρsψ(w) with w = p · q ,

then
Aφ(s, p, q) = e−ρsA0ψ(w),

where

A0ψ(w) = −ρψ(w) + (α − λ)wψ′(w) + 1
2
β2w2ψ′′(w)

+

∫
R

{ψ((1 + γ z)w) − ψ(w) − γ wzψ′(w)}ν(dz).
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Consider the set U defined in Proposition 2.3:

U = {y; Ag(y) + f(y) > 0} = {(s, p, q); A0(θ w) + λw − K > 0}

= {(s, p, q); [θ(α − ρ − λ) + λ]w − K > 0}

=

{{
(s, p, q) : w > K

θ(α−ρ−λ)+λ

}
if θ(α − ρ − λ) + λ > 0

∅ if θ(α − ρ − λ) + λ ≤ 0

By Proposition 2.4 we therefore get:

Case 1:

Assume λ ≤ θ(λ + ρ − α).
Then τ∗ = 0 is optimal and Φ(y) = g(y) = e−ρsp · q for all y.

Case 2:

Assume θ(λ + ρ − α) < λ.

Then U =
{
(s, w); w > K

λ−θ(λ+ρ−α)

}
⊂ D.

In view of this it is natural to guess that the continuation region D has the form

D = {(s, w); 0 < w < w∗},

for some constant w∗; 0 < w∗ < K
λ−θ(λ+ρ−α)

. In D we try to solve the equation

A0ψ(w) + f(w) = 0.

The homogeneous equation A0ψ0(w) = 0 has a solution ψ0(w) = wr if and only if

h(r) := −ρ + (α − λ)r + 1
2
β2r(r − 1) +

∫
R

{(1 + γ z)r − 1 − r γ z}ν(dz) = 0.

Since h(0) = −ρ < 0 and lim
|r|→∞

h(r) = ∞, we see that the equation h(r) = 0 has

two solutions r1, r2 such that r2 < 0 < r1.

Let r be a solution of this equation. To find a particular solution ψ1(w) of the
non-homogeneous equation

A0ψ1(w) + λw − K = 0

we try
ψ1(w) = aw + b

and find

a =
λ

λ + ρ − α
, b = −K

ρ
.

This gives that for all constants C the function

ψ(w) = C wr +
λ

λ + ρ − α
w − K

ρ

is a solution of
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A0ψ(w) + λ w − K = 0.

Therefore we try to put

ψ(w) =

{
θ w ; 0 < w ≤ w∗

C wr + λ
λ+ρ−α

w − K
ρ

; w ≥ w∗ (10.2.11)

where w∗ > 0 and C remain to be determined.
Continuity and differentiability at w = w∗ give

θ w∗ = C(w∗)r +
λ

λ + ρ − α
w∗ − K

ρ
(10.2.12)

θ = C r(w∗)r−1 +
λ

λ + ρ − α
. (10.2.13)

Combining (10.2.12) and (10.2.13) we get

w∗ =
(−r)K(λ + ρ − α)

(1 − r)ρ(λ − θ(λ + ρ − α))
(10.2.14)

and

C =
λ − θ(λ + ρ − α)

−r
· (w∗)1−r. (10.2.15)

Since we need to have w∗ > 0 we are led to the following condition:

Case 2a)

θ(λ + ρ − α) < λ and λ + ρ − α > 0.

Then we choose r = r2 < 0, and with the corresponding values (10.2.14), (10.2.15)
of w∗ and C the function φ(s, p, q) = e−ρsψ(p · q), with ψ given by (10.2.11), is the
value function of the problem. The optimal stopping time τ∗ is

τ∗ = inf{t > 0; P (t) · Q(t) ≤ w∗}, (10.2.16)

provided that all the other conditions of Theorem 2.2 are satisfied. (See Re-
mark 10.1).

Case 2b)

θ(λ + ρ − α) < λ and λ + ρ − α ≤ 0, i.e.

α ≥ λ + ρ .

In this case we have Φ∗(y) = ∞.
To see this note that since

P (t) = p +

t∫
0

α P (s)ds +

t∫
0

β P (s)dB(s) +

t∫
0

∫
R

γ P (s−)zÑ(ds, dz),

we have
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E[P (t)] = p +

t∫
0

α E[P (s)]ds

which gives
E[P (t)] = p eαt.

Therefore

E[e−ρtP (t)Q(t)] = E[pq e−ρte−λtP (t)] = pq exp{(α − λ − ρ)t}.
Hence

lim
T→∞

E
[ T∫

0

e−ρtP (t)Q(t)dt
]

= lim
T→∞

pq

T∫
0

exp{(α − λ − ρ)t}dt = ∞

if and only if α ≥ λ + ρ.

Remark 10.1 (On condition (viii) of Theorem 2.2). Consider

φ(Y (t)) = e−ρtψ(P (t)Q(t)),

where

P (t) = p exp
{(

α − 1
2
β2 − γ

∫
R

z ν(dz)
)
t +

t∫
0

∫
R

ln(1 + γ z)N(dt, dz) + β B(t)
}

and
Q(t) = q exp(−λ t).

We have

P (t)Q(t) = pq exp
{(

α−λ− 1
2
β2−γ

∫
R

z ν(dz)
)
t+

t∫
0

∫
R

ln(1+γ z)N(dt, dz)+β B(t)
}

and

e−ρtP (t)Q(t) = pq exp
{(

α − λ − ρ − 1
2
β2 − γ

∫
R

z ν(dz)
)
t

+

t∫
0

∫
R

ln(1 + γ z)N(ds, dz) + β B(t)
}

.

Hence

E[(e−ρtP (t)Q(t))2] = (pq)2E
[
exp

{(
2α − 2λ − 2ρ − β2 − 2γ

∫
R

z ν(dz)
)
t

+ 2

t∫
0

∫
R

ln(1 + γ z)N(ds, dz) + 2β B(t)
}]

= (pq)2 exp
{(

2α − 2λ − 2ρ − β2 − 2γ

∫
R

z ν(dz)
)
t + 2β2t

}

· E
[
exp

(
2

t∫
0

∫
R

ln(1 + γ z)N(dt, dz)
)]
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Using Exercise 1.6 we get

E[(e−ρtP (t)Q(t))2] = p2q2 exp
{(

2α−2λ−2ρ + β2−2γ
∫
R

z ν(dz)

+
∫
R

{(1 + γ z)2−1−2 ln(1+γ z)}ν(dz)
)
t
}

.

So condition (viii) of Theorem 2.2 holds if

2α − 2λ − 2ρ + β2 +

∫
R

{γ2z2 − 2 ln(1 + γ z)}ν(dz) < 0.

Exercise 2.3.

In this case we have
g(s, x) = e−ρs|x|

and

dX(t) = dB(t) +

∫
R

zÑ(dt, dz).

We look for a solution of the form

φ(s, x) = e−ρsψ(x).

The continuation region is given by

D = {(s, x) ∈ R × R : φ(s, x) > g(s, x)} = {(s, x) ∈ R × R : ψ(x) ≥ |x|}

Because of the symmetry we assume that D is of the form

D = {(s, x) ∈ R × R ; −x∗ < x < x∗}

where x∗ > 0. It is trivial that D is a Lipschitz surface and X(t) spends 0 time on
∂D. We must have

Aφ ≡ 0 on D (10.2.17)

where the generator A is given by

Aφ =
∂φ

∂s
+

1

2

∂2φ

∂x2
+

∫
R

{
φ(s, x + z) − φ(s, x) − ∂φ

∂x
(s, x)z

}
ν(dz).

Hence equation (10.2.17) becomes

−ρψ(x) + 1
2
ψ′′(x) +

∫
R

{
ψ(x + z) − ψ(x) − zψ′(x)

}
ν(dz) = 0. (10.2.18)

Let λ > 0 and −λ be two roots of the equation

F (λ) := −λ +
1

2
λ2 +

∫
R

{
eλz − 1 − λz

}
ν(dz) = 0.

Because of the symmetry we guess that

ψ(x) =
C

2

(
eλx + e−λx

)
= C cosh(λx) ; x ∈ D
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for some constant C > 0. Therefore

ψ(x) =

{
C cosh

(
λx

)
for |x| < x∗

|x| for |x| ≥ x∗.

In order to find x∗ and C, we impose the continuity and C1-conditions on ψ(x) at
x = x∗:

• Continuity: 1 = |x∗| = C cosh
(
λx∗)

• C1 : 1 = Cλ sinh(λx∗)

It follows that

C =
x∗

cosh(λx∗)
(10.2.19)

and x∗ is the solution of

tgh
(
λx∗) =

1

λx∗ . (10.2.20)

Figure 10.1 illustrates that there exists a unique solution for equation (10.2.20).

x
1/λx

λx∗

tgh(λx)

y

Fig. 10.1. The value of x∗

Finally we have to verify that the conditions of Theorem 2.2 hold. We check
some :

(ii) ψ(x) ≥ |x| for (s, x) ∈ D.

Define
h(x) = C cosh(λx) − x ; x > 0.

Then h(x∗) = h′(x∗) = 0 and h′′(x) = Cλ2 cosh(λx) > 0 for all x. Hence h(x) > 0
for 0 < x < x∗, so (ii) holds. See Figure 10.2.
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x

|x|

x∗−x∗

C cosh(λx)

y

Fig. 10.2. The function ψ

(vi) Aψ ≤ 0 outside D̄.

This holds since

Aψ(x) = −ρ|x|+
∫

R

{|x + z| − x − z} ν(dz) ≤ 0 for all x > x∗.

Since all the conditions of Theorem 2.2 are satisfied, we conclude that

φ(s, y) = e−ρsψ(y)

is the optimal value function and τ∗ = inf{t > 0 ; |B(t)| = x∗}.

10.3 Exercises of Chapter 3

Exercise 3.1

Put

Y (t) =

[
s + t
X(t)

]
.

Then the generator of Y (t) is

Auφ(y) = Auφ(s, x) =
∂φ

∂s
+ (µ − ρ x − u)

∂φ

∂x
+ 1

2
σ2 ∂2φ

∂x2

+

∫
R

{
φ(s, x + θ z) − φ(s, x) − ∂φ

∂x
· θ z

}
ν(dz).

So the conditions of Theorem 3.1 get the form

(i) Auφ(s, x) + e−δs uγ

γ
≤ 0 for all u ≥ 0, s < T .

(Note: If we put
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S = {(s, x); s < T}
then

τS = inf{t > 0 ; Y s,x(t, x) �∈ S} = T − s.)

(ii) lims→T− φ(s, x) = λx

(iv)
{
φ−(Y )(τ ))

}
τ≤τS

is uniformly integrable,

(v) Aûφ(s, x) + e−δs ûγ

γ
= 0 for s < T ,

in addition to requirements (iii) and (vi).

s
T

S

x

Fig. 10.3. The domain S

We try a function φ of the form

φ(s, x) = h(s) + k(s)x

for suitable functions h(s), k(s). Then (i)–(vi) get the form

(i)’ h′(s) + k′(s)x + (µ − ρ x − u)k(s) + e−δs uγ

γ

+

∫
R

{h(s) + k(s)(x + γ z) − h(s) − k(s)x − k(s)γ z}ν(dz) ≤ 0

i.e.

e−δs uγ

γ
+ h′(s) + k′(s)x + (µ − ρ x − u)k(s) ≤ 0 for all s < T, u ≥ 0

(ii)’ h(T ) = 0, k(T ) = λ

(v)’ h′(s) + k′(s)x + (µ − ρ x − û)k(s) + e−δs ûγ

γ
= 0

(vi)’
{
h(τ ) + k(τ )X(τ )

}
τ≤τS

is uniformly integrable.

From (i)’ and (v)’ we get
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−k(s) + e−δs ûγ−1 = 0

or û = û(s) =
(
eδsk(s)

) 1
γ−1 .

Combined with (v)’ this gives

1) k′(s) − ρ k(s) = 0 so k(s) = λ eρ(s−T )

2) h′(s) = (û(s) − µ)k(s) − e−δs ûγ(s)
γ

, h(T ) = 0

Note that

h′(s) =
(
eδsk(s)

) 1
γ−1 k(s) − µ k(s) − e−δs

(
eδsk(x)

) γ
γ−1

γ

= e
δs

γ−1 k(s)
γ

γ−1 − µ k(s) − e
−δs(1− γ

γ−1 ) · 1
γ
· k(s)

γ
γ−1

= e
δs

γ−1 k(s)
γ

γ−1
[
1 − 1

γ

]
− µ k(s) < 0 .

Hence, since h(T ) = 0, we have h(s) > 0 for s < T . Therefore

φ(s, x) = h(s) + k(s)x ≥ 0 .

Clearly φ satisfies (i), (ii), (iv) and (v). It remains to check (vi), i.e. that{
h(τ ) + k(τ )X(τ )

}
τ≤T

is uniformly integrable, and to check (iii).
For these properties to hold some conditions on ν must be imposed. We omit

the details.
We conclude that if these conditions hold then

û(s) = λ
1

γ−1 exp
{ (δ + ρ)s − ρ T

γ − 1

}
; s ≤ T (10.3.1)

is the optimal control.

Exercise 3.2.

Define

J(u) = E
[ T0∫

0

e−δt uγ(t)

γ
dt + λX(T0)

]
where

dX(t) = (µ − ρ X(t) − u(t))dt + σ B(t) + γ

∫
R

z Ñ(dt, dz); 0 ≤ t ≤ T0 .

The Hamiltonian is

H(t, x, u, p, q, r) = e−δt uγ

γ
+ (µ − ρ x − u)p + σ q +

∫
R

γ zr(t, z)ν(dz).

The adjoint equation is
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dp̂(t) = ρ p̂(t)dt + σ q̂(t)dB(t) +

∫
R

r̂(t, z)Ñ(dt, dz) ; t < T0

p̂(T0) = λ

Since λ and ρ are deterministic, we guess that q̂ = r̂ = 0 and this gives

p̂(t) = λ eρ(t−T0).

Hence
H(t, X̂(t), u, p̂(t), q̂(t), r̂(t)) = e−δt uγ

γ
+ (µ − ρ X̂(t) − u)p̂(t),

which is maximal when

u = û(t) =
(
eδt p̂(t)

) 1
γ−1 = λ

1
γ−1 exp

{ (δ + ρ)t − ρ T0

γ − 1

}
. (10.3.2)

Exercise 3.3.

In this case we have

dX(t) =

⎡⎢⎢⎢⎣
∫
R

u(t−, ω)z∫
R

z2

⎤⎥⎥⎥⎦ Ñ(dt, dz) =

⎡⎢⎢⎢⎣
∫
R

γ1(t,X(t−), u(t−), z)Ñ(dt, dz)∫
R

γ2(t,X(t−), u(t−), z)Ñ(dt, dz)

⎤⎥⎥⎥⎦
so the Hamiltonian is

H(t, x, u, p, q, r) =

∫
R

{u z r1(t, z) + z2r2(t, z)}ν(dz)

and the adjoint equations are (g(x1, x2) = −(x1 − x2)
2)⎧⎪⎨⎪⎩

dp1(t) =

∫
R

r1(t
−, z)Ñ(dt, dz) ; t < T

p1(T ) = −2(X1(T ) − X2(T ))⎧⎪⎨⎪⎩
dp2(t) =

∫
R

r2(t
−, z)Ñ(dt, dz)

p2(T ) = 2(X1(T ) − X2(T )).

Now X1(T ) − X2(T ) =

T∫
0

∫
R

{u(t−) − z} Ñ(dt, dz). So if û is a given candidate for

an optimal control we get

r̂1(t, z) = −2(û(t) − z)z

û2(t, z) = 2(û(t) − z)z.

This gives
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H(t, x,u, p̂, q̂, r̂) =

∫
R

{u z(−2(û(t) − z)z) + z22(û(t) − z)z}ν(dz)

= −2u

∫
R

{û(t)z2 − z3}ν(dz) + 2

∫
R

{û(t)z3 − z4}ν(dz).

This is a linear expression in u, so we guess that the coefficient of u is 0, i.e. that

û(t) =

∫
R

z3ν(dz)∫
R

z2ν(dz)
for all (t, ω) ∈ [0, T ] × Ω. (10.3.3)

With this choice of û(t) all the conditions of the stochastic maximum principle are
satisfied and we conclude that û is optimal.

Note that this implies that

inf
u

E
[(

F −
T∫

0

u(t)dS1(t)
)2]

= E
[( T∫

0

∫
R

{z2 − û(t)z}Ñ(dt, dz)
)2]

=

T∫
0

∫
R

E[(z2 − û(t)z)2]ν(dz)dt

= T

∫
R

[
z2 −

∫
R

z3ν(dz)∫
R

z2ν(dz)
z

]2

ν(dz).

We see that this is 0 if and only if∫
R

z3ν(dz) = z

∫
R

z2ν(dz) for a.a. z(ν) (10.3.4)

i.e. iff ν is supported on one point {z0}. Only then is the market complete! See
[BDLØP] for more information.

Exercise 3.4

We try to find a, b such that the function

ϕ(s, x) = e−ρsψ(x) := e−ρs(ax2 + b)

satisfies the conditions of (the minimum version of) Theorem 3.1. In this case the
generator is

Av
ϕ(s, x) = e−ρsAv

0ψ(x),

where

Av
0ψ(x) = − ρψ(x) + vψ′(x) +

1

2
σ2ψ′′(x)

+

∫
R

{
ψ(x + z) − ψ(x) − zψ′(x)

}
ν(dz).



10.3 Exercises of Chapter 3 167

Hence condition (i) of Theorem 3.1 becomes

Av
0ψ(x) + x2 + θv2 =

− ρ(ax2 + b) + v2ax +
1

2
σ22a + a

∫
R

z2ν(dz) + x2 + θv2

= θv2 + 2axv + x2(1 − ρa) + a

(
σ2 +

∫
R

z2ν(dz)

)
− ρb =: h(v).

The function h is minimal when

v = u∗(x) = −ax

θ
. (10.3.5)

With this value of v condition (v) becomes

x2

[
1 − ρa − a2

θ

]
+ a

(
σ2 +

∫
R

z2ν(dz)

)
− ρb = 0.

Hence we choose a > 0 and b such that

a2 + ρθa − θ = 0 (10.3.6)

and

b =
a

ρ

(
σ2 +

∫
R

z2ν(dz)

)
. (10.3.7)

With these values of a and b we can easily check that

ϕ(s, x) := e−ρs(ax2 + b)

satisfies all the conditions of Theorem 3.1. The corresponding optimal control is
given by (10.3.5).

Exercise 3.5

b) The Hamiltonian for this problem is

H(t, x, u, p, q, r) = x2 + θu2 + up + σq +

∫
R

r(t−, z)Ñ(dt, dz).

The adjoint equation is⎧⎨⎩dp(t) = −2X(t)dt + q(t)dB(t) +

∫
R

r(t−, z)Ñ(dt, dz) ; t < T

p(T ) = 2λX(T ).
(10.3.8)

By imposing the first and second order conditions, we see that H(t, x, u, p, q, r) is
minimal for

u = u(t) = û(t) = − 1

2θ
p(t). (10.3.9)

In order to find a solution of (10.3.8), we consider p(t) = h(t)X(t), where h : R → R

is a deterministic function such that

h(T ) = 2λ.
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Note that u(t) = −h(t)X(t)

2θ
and

dX(t) = −h(t)X(t)

2θ
dt + σdB(t) +

∫
R

zÑ(dt, dz) ; X(0) = x.

Moreover, (10.3.8) turns into

dp(t) = h(t)dX(t) + X(t)h′(t)dt

= X(t)
[
− h(t)2

2θ
+ h′(t)

]
dt + h(t)σdB(t) + h(t)

∫
R

zÑ(dt, dz).

Hence h(t) is the solution of{
h′(t) = h(t)2

2θ
− 2 ; t < T

h(T ) = 2λ.
(10.3.10)

The general solution of (10.3.10) is

h(t) = 2
√

θ
1 + βe

2t√
θ

1 − βe
2T√

θ

(10.3.11)

with β = λ−
√

θ

λ+
√

θ
e
− 2T√

θ . By using the stochastic maximum principle, we can conclude

that

u∗(t) = −h(t)

2θ
X(t)

is the optimal control, p(t) = h(t)X(t) and q(t) = σh(t), r(t−, z) = h(t)z, where
h(t) is given by (10.3.11).

Exercise 3.6.

If we try a function of the form

ϕ(s, x) = e−δsψ(x)

then equations (i) and (v) for Theorem 3.1 combine to give the equation

sup
c≥0

{
ln c − δψ(x) + (µx − c)ψ′(x) +

1

2
σ2x2ψ′′(x)

+

∫
R

{
ψ(x + xθz) − ψ(x) − xθzψ′(x)

}
ν(dz)

}
= 0.

The function
h(c) := ln c − cψ′(x) ; c > 0

is maximal when

c = ĉ(x) =
1

ψ′(x)
.

If we set
ψ(x) = a ln x + b

where a, b are constants, a > 0, then this gives
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ĉ(x) =
x

a
,

and hence the above equation becomes

ln x − ln a − δ(a ln x + b) + µx · a

x
− 1 +

1

2
σ2x2

(
− a

x2

)
+ a

∫
R

{
ln(x + xθz) − ln x − xθz · 1

x

}
ν(dz) = 0

or

(1 − δa) ln x − ln a − δb + µa − 1 − 1

2
σ2a

+ a

∫
R

{ln(1 + θz) − θz}ν(dz) = 0, for all x > 0.

This is possible if and only if

a =
1

δ
and

b = δ−2

[
δ ln δ − δ + µ − 1

2
σ2 +

∫
R

{ln(1 + θz) − θz}ν(dz)

]
.

One can now verify that if δ > µ then with these values of a and b the function

ϕ(s, x) = e−δt(a lnx + b)

satisfies all the conditions of Theorem 3.1. We conclude that

Φ(s, x) = e−δt(a ln x + b)

and that
c∗(x) = ĉ =

x

a

(in feedback form) is an optimal consumption rate.

10.4 Exercises of Chapter 4

Exercise 4.1.

a) The HJB equation, i.e. (vi) and (ix) of Theorem 4.2, for this problem gets the
form

0 = sup
u≥0

{
e−δs uγ

γ
+

∂φ

∂s
+ (µx − u)

∂φ

∂x
+

σ2x2

2

∂2φ

∂x2∫
R

{
φ(s, x + θxz) − φ(s, x) − θxz

∂φ

∂x
(s, x)

}
dν(z)

} (10.4.1)

for x > 0.
We impose the first order conditions to find the supremum, which is obtained

for
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u = u∗(s, x) =
(
eδs ∂φ

∂x

) 1
γ−1

. (10.4.2)

We guess that φ(s, x) = Ke−δsxγ with K > 0 to be determined. Then

u∗(s, x) =
(
Kγ

) 1
γ−1 x (10.4.3)

and (10.4.1) turns into

1

γ
(Kγ)

γ
γ−1 − Kδ +

(
µ − (Kγ)

1
γ−1

)
Kγ +

1

2
σ2Kγ(γ − 1)

+ K

∫
R

{(1 + θz)γ − 1 − γθz} ν(dz) = 0

or

γ
γ

γ−1 K
1

γ−1 − δ + µγ − γ
γ

γ−1 K
1

γ−1 +
1

2
σ2γ(γ − 1)

+

∫
R

{(1 + θz)γ − 1 − γθz} ν(dz) = 0.

Hence

K =
1

γ

[ 1

1 − γ

(
δ − µγ +

σ2

2
γ(1 − γ) −

∫
R

{(1 + θz)γ − 1 − γθz} ν(dz)

)]γ−1

(10.4.4)
provided that

δ − µγ +
σ2

2
γ(1 − γ) −

∫
R

{(1 + θz)γ − 1 − γθz} ν(dz) > 0.

With this choice of K the conditions of Theorem 4.2 are satisfied and we can conclude
that φ = Φ is the value function.

b)
(i) First assume λ ≥ K. Choose φ(s, x) = λe−δsxγ . By the same computations as in
a), condition (vi) of Theorem 4.2 gets the form

λ ≥ 1

γ

[
1

γ − 1

(
δ − µγ +

1

2
σ2γ(1 − γ) −

∫
R

{(1 + θz)γ − 1 − γθz} ν(dz)

)]γ−1

.

(10.4.5)
Since λ ≥ K, the inequality (10.4.5) holds by (10.4.4).

By Theorem 4.2a), it follows that

φ(s, x) = λe−δsxγ ≥ Φ(s, x)

where Φ is the value function for our problem. On the other hand, φ(s, x) is obtained
by the (admissible) control of stopping immediately (τ = 0). Hence we also have

φ(s, x) ≤ Φ(s, x).

We conclude that
Φ(s, x) = λe−δsxγ

in this case and τ∗ = 0 is optimal. Note that D = ∅.
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(ii) Assume now λ < K. Choose φ(s, x) = Ke−δsxγ . Then for all (s, x) ∈ R× (0,∞)
we have

φ(s, x) > λe−δsxγ .

Hence we have D = R × (0,∞) and by Theorem 4.2a) we conclude that

Φ(s, x) ≤ Ke−δsxγ .

On the other hand, we have seen in a) above that if we apply the control

u∗(s, x) =
(
Kγ

) 1
γ−1 x

and never stop, then we achieve the performance J(u∗)(s, x) = Ke−δsxγ . Hence

Φ(s, x) = Ke−δsxγ

and it is optimal never to stop (τ∗ = ∞).

10.5 Exercises of Chapter 5

Exercise 5.1.

In this case we put

dY (t) =

[
dt

dX(t)

]
=

[
1
α

]
dt +

[
0
σ

]
dB(t) +

[
0

β
∫
R

z Ñ(dt, dz)

]
+

[
0

−(1 + λ)

]
dξ(t).

The generator if ξ = 0 is

Aφ =
∂φ

∂s
+ α

∂φ

∂x
+ 1

2
σ2 ∂2φ

∂x2
+

∫
R

{
φ(s, x + β z) − φ(s, x) − β z

∂φ

∂x
(s, x)

}
ν(dz).

The non-intervention region D is described by (see (5.2.5)

D =
{

(s, x);
k∑

i=1

κij
∂φ

∂yi
(y) + θj < 0 for all j = 1, . . . , p

}
=
{

(s, x);−(1 + λ)
∂φ

∂x
(s, x) + e−ρs < 0

}
.

If we guess that D has the form

D = {(s, x); 0 < x < x∗} for some x∗ > 0

then by Theorem 5.2 we should have

Aφ(s, x) = 0 for 0 < x < x∗.

We try a solution φ of the form

φ(s, x) = e−ρsψ(x)
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and get

A0ψ(x) := −ρ ψ(x)+αψ′(x)+ 1
2
σ2ψ′′(x)+

∫
R

{ψ(x+β z)−ψ(x)−β z ψ′(x)}ν(dz) = 0.

We now choose
ψ(x) = er x for some constant r ∈ R

and get the equation

h(r) := −ρ + α r + 1
2
σ2r2 +

∫
R

{er β z − 1 − r β z}ν(dz) = 0.

Since h(0) < 0 and lim
r→∞

h(r) = lim
r→−∞

h(r) = ∞, we see that the equation h(r) = 0

has two solutions r1, r2 such that

r2 < 0 < r1 .

Outside D we require that

−(1 + λ)ψ′(x) + 1 = 0

or
ψ(x) =

x

1 + λ
+ C3 , C3 constant.

Hence we put

ψ(x) =

{
C1e

r1x + C2e
r2x ; 0 < x < x∗

x
1+λ

+ C3 ; x∗ ≤ x
(10.5.1)

where C1, C2 are constants.
To determine C1, C2, C3 and x∗ we have the four equations:

ψ(0) = 0 ⇒ C1 + C2 = 0. (10.5.2)

Put C2 = −C1

ψ continuous at x = x∗ ⇒

C1(e
r1x∗

− er2x∗
) =

x∗

1 + λ
+ C3 (10.5.3)

ψ ∈ C1 at x = x∗ ⇒

C1(r1e
r1x∗

− r2e
r2x∗

) =
1

1 + λ
(10.5.4)

ψ ∈ C2 at x = x∗ ⇒
C1(r

2
1er1x∗ − r2

2e
r2x∗

) = 0. (10.5.5)

From (10.5.4) and (10.5.5) we deduce that

x∗ =
2(ln |r2| − ln r1)

r1 − r2
. (10.5.6)

Then by (10.5.4) we get the value for C1, and hence the value of C3 by (10.5.3).
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With these values of C1, C2, C3 and x∗ we must verify that φ(s, x) = e−ρsψ(x)
satisfies all the requirements of Theorem 5.2:

(i): We have constructed φ such that Aφ + f = 0 in D. Outside D, i.e. for x ≥ x∗,
we have

eρs(Aφ(s, x) + f(s, x) = A0ψ(x) = −ρ
( x

1 + λ
+ C3

)
+ α · 1

1 + λ

= − ρ

1 + λ
x +

α

1 + λ
− ρ C3 , which is decreasing in x.

So we need only to check that this holds for x = x∗, i.e. that

A0ψ(x∗) ≤ 0.

But this follows from the fact that A0ψ(x) = 0 for all x < x∗ and ψ ∈ C2.

(ii): By construction we have

−(1 + λ)ψ′(x) + 1 = 0 for x ≥ x∗.

For x < x∗ the condition (ii) gets the form

F (x) := −(1 + λ)C1(r
r1x
1 − rr2x

2 ) + 1 ≤ 0 .

We know that F (x∗) = 0 by (10.5.4) and

F ′(x) = −(1 + λ)C1(r
2
1e

r1x − r2
2e

r2x).

So F ′(x∗) = 0 by (10.5.5) and hence (since C1 > 0)

F ′(x) > F ′(x∗) = 0 for x < x∗.

Hence
F (x) < 0 for 0 < x < x∗.

The conditions (iii), (iv) and (v) are left to the reader to verify.

(vi): This holds by construction of φ.

(vii–(x)): These conditions claim the existence of an increasing process ξ̂ such that

Y ξ̂(t) stays in D̄ for all times t, ξ̂(t) is strictly increasing only when Y (t) �∈ D, and
if Y (t) �∈ D̄ then ξ̂(t) brings Y (t) down to a point on ∂D. Such a singular control
is called a local time at ∂D of the process Y (t) reflected downwards at ∂D. The
existence and uniqueness of such a local time is proved in [CEM].

(xi): This is left to the reader.

We conclude that the optimal dividend policy ξ∗(t) is to take out exactly the
amount of money needed to keep X(t) on or below the value x∗. If X(t) < x∗ we
take out nothing. If X(t) > x∗ we take out X(t) − x∗.

Exercise 5.2

It suffices to prove that the function

Φ0(s, x1, x2) := Ke−δs(x1 + x2)
γ
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satisfies conditions (i)-(iv) of Theorem 5.2. In this case we have (see Section 5.3)

A(v)Φ0(y) = A(c)Φ0(y) =
∂Φ0

∂s
+ (rx1 − c)

∂Φ0

∂x1
+ αx2

∂Φ0

∂x2
+

1

2
β2x2

2
∂2Φ0

∂x2
2

+

∫
R

{
Φ0(s, x1, x2 + x2z) − Φ0(s, x1, x2) − x2z

∂Φ0

∂x2
(s, x1, x2)

}
ν(dz)

and f(s, x1, x2, c) = e−δs cγ

γ
, so condition (i) becomes

(i)’ AcΦ0(s, x1, x2) + e−δs cγ

γ
≤ 0 for all c ≥ 0.

This holds because we know by Example 3.2 that (see (3.1.21))

sup
c≥0

{
A(c)Φ(s, x1, x2) + e−δs cγ

γ

}
= 0.

Since in this case θ = 0 and

κ =

[
−(1 + λ) 1 − µ

1 −1

]
we see that condition (ii) of Theorem 5.2 becomes

(ii)’ − (1 + λ)
∂Φ0

∂x1
+

∂Φ0

∂x2
≤ 0

(ii)” (1 − µ)
∂Φ0

∂x1
− ∂Φ0

∂x2
≤ 0.

Since
∂Φ0

∂x1
=

∂Φ0

∂x2
= Ke−δsγ(x1 + x2)

γ−1

we see that (ii)’ and (ii)” hold trivially.

We leave the verification of conditions (iii)-(v) to the reader.

10.6 Exercises of Chapter 6

Exercise 6.1.

By using the same notation as in Chapter 6, we have here

Y (v)(t) =

[
s + t

X(v)(t)

]
; t ≥ 0 ; Y (v)(0−) =

[
s
x

]
= y ∈ R

2

Γ (y, ζ) = Γ (s, x, ζ) =

[
s

x + ζ

]
; (s, x, ζ) ∈ R

3

K(y, ζ) = K(s, x, ζ) = e−ρs(x + λ|ζ|)
f(y) = f(s, x) = e−ρsx2, g(y) = 0.
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By symmetry we expect the continuation region to be of the form

D = {(s, x) : −x̄ < x < x̄}

for some x̄ > 0, to be determined.
As soon as X(t) reaches the unknown value x̄ or −x̄, there is an intervention

and X(t) is brought down (or up) to a certain value x̂ (or −x̂) where −x̄ < −x̂ <
0 < x̂ < x̄. We determine x̄ and x̂ in the following computations.

x̄

x̂

−x̂

−x̄

Fig. 10.4. The optimal strategy of Exercise 6.1

We guess that the value function is of the form

φ(s, x) = e−ρsψ(x).

In the continuation region D, we have by Theorem 6.2 (x)

Aφ + f = 0 (10.6.1)

where A is the generator of Y , i.e.

Aφ(s, x) =
∂φ

∂s
+ 1

2

∂2φ

∂x2
+

∫
R

{
φ(s, x + z) − φ(s, x) − z

∂φ

∂x
(s, x)

}
ν(dz).

In this case, equation (10.6.1) becomes

A0ψ(x) + f(x) := −ρψ(x)+
1

2
ψ′′(x) +

∫
R

{ψ(x + z)−ψ(x)− zψ′(x)}ν(dz) + x2 = 0.

We try a solution of the form
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ψ(x) = C cosh(γx) +
1

ρ
x2 +

b

ρ2

where C is a constant (to be determined), b = 1 +

∫
R

z2ν(dz) and γ > 0 is the

positive solution of the equation

F (γ) := −ρ +
1

2
γ2 +

∫
R

{eγz − 1 − γz}ν(dz) = 0.

Note that if we make no intervention at all, the value of J(v)(s, x) is

J(v)(s, x) = e−ρsEx
[ ∫ ∞

0

e−ρt

(
x + B(t) +

∫ t

0

∫
R

zÑ(ds, dz)

)2

dt
]

= e−ρs
(x2

ρ
+

b

ρ2

)
.

Hence

0 ≤ ψ(x) ≤ x2

ρ
+

b

ρ2
. (10.6.2)

By (10.6.2) we obtain C = −a where a > 0. We define

ψ0(x) :=
1

ρ
x2 +

b

ρ2
− a cosh(γx)

and put
ψ(x) = ψ0(x) ; x ∈ D.

We recall that

D = {(s, x) : φ(s, x) < Mφ(s, x)} =

= {x : ψ(x) < Mψ(x)}

and the intervention operator is in this case

Mψ(x) = inf{ψ(x + ζ) + c + λ|ζ|; ζ ∈ R}.

The first order condition for a minimum ζ̂ = ζ̂(x) of the function

G(ζ) =

{
ψ(x + ζ) + c + λζ ζ > 0

ψ(x + ζ) + c − λζ ζ < 0

is the following

(i) ζ > 0: ψ′(x + ζ) + λ = 0 ⇒ ψ′(x + ζ) = −λ
(ii) ζ < 0: ψ′(x + ζ) − λ = 0 ⇒ ψ′(x + ζ) = λ.

Hence we look for points x̂, x̄ such that

−x̄ < −x̂ < 0 < x̂ < x̄

and
ψ′(x̂) = −λ
ψ′(−x̂) = λ.

(10.6.3)
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Note that since x̂ < x̄, ψ′(x̂) = ψ′
0(x̂).

Arguing as in Example 6.5, we put

ψ(x) =

⎧⎪⎨⎪⎩
ψ0(x) ; −x̄ ≤ x ≤ x̄

ψ0(x̂) + c + λ(x − x̂) ; x > x̄

ψ0(−x̂) + c − λ(x + x̂) ; x < −x̄.

(10.6.4)

We have to show that there exist 0 < x̂ < x̄ and a value of a such that φ(s, x) :=
e−ρsψ(x) satisfies all the requirements of (the minimum version of) Theorem 6.2.
By symmetry we may assume x > 0 and ζ > 0 in the following.

Continuity at x = x̄ gives the equation

ψ0(x̂) + c + λ(x̄ − x̂) = ψ0(x̄).

Differentiability at x = x̄ gives the equation

λ = ψ′
0(x̄).

Substituting for ψ0 these equations give

x̂2

ρ
− a cosh(γx̂) − λx̂ + c =

x̄2

ρ
− a cosh(γx̄) − γx̄ (10.6.5)

and

λ =
2x̄

ρ
− aγ sinh(γx̄). (10.6.6)

In addition we have required

λ = ψ′
0(x̂) =

2x̂

ρ
− aγ sinh(γx̂). (10.6.7)

As in Example 6.5 one can prove that for each c > 0 there exist a = a∗(c) > 0,
x̂ = x̂(x) > 0 and x̄ = x̄(c) > x̂ such that (10.6.4)-(10.6.6) hold. With these values
of a, x̂ and x̄ it remains to verify that the conditions of Theorem 6.2 hold. We check
some of them:
(ii): ψ ≤ Mψ = inf{ψ(x − ζ) + c + λζ ; ζ > 0}.
First suppose x ≥ x̄.

If x − ζ ≥ x̄ then

ψ(x − ζ) + c + λζ = ψ0(x̂) + c + λ(x − ζ − x̂) + c + λζ = c + ψ(x) > ψ(x).

If 0 < x − ζ < x̄ then

ψ(x − ζ) + c + λζ = ψ0(x − ζ) + c + λζ,

which is minimal when
−ψ′

0(x − ζ) + λ = 0

i.e. when
ζ = ζ̂ = x − x̂.

This is the minimum point because
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ψ′(x̂) = λ

x

x̂ x̄

ψ′(x) = λ

Fig. 10.5. The function ψ(x) for x > 0

ψ′′
0 (x̂) > 0.

See Figure 10.5.
This shows that

Mψ(x) = ψ(x − ζ̂) + c + λζ̂ = ψ(x̂) + c + λ(x − x̂) = ψ(x)

for x > x̂.

Next suppose 0 < x < x̄.
Then

Mψ(x) = ψ0(x̂) + c + λ(x − x̂) > ψ(x)

if and only if
ψ(x) − λx < ψ(x̂) − λx̂ + c.

Now the minimum of

H(x) := ψ(x) − λx for 0 < x < x̄

is attained when
ψ′(x) = λ

i.e. when x = x̂.
Therefore

ψ(x) − λx ≤ ψ(x̂) − λx̂ < ψ(x̂) − λx̂ + c.

This shows that Mψ(x) > ψ(x) for all 0 < x < x̄.

Combined with the above we can conclude that
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Mψ(x) ≥ ψ(x) for all x > 0,

which proves (ii). Moreover,

Mψ(x) > ψ(x) if and only if 0 < x < x̄.

Hence
D ∩ (0,∞) = (0, x̄).

Finally we verify

(vi): Aφ + f ≥ 0 for x > x̄.
For x > x̄, we have

A0ψ(x) + f(x) = −ρ(ψ0(x̂) + c + λ(x − x̂)) + x2.

This is nonnegative for all x > x̄ iff it is nonnegative for x = x̄, i.e. iff

−ρψ0(x̄) + x̄2 ≥ 0. (10.6.8)

By construction of ψ0 we know that, for x < x̄

−ρψ0(x) +
1

2
ψ′′

0 (x) +

∫
R

{ψ0(x + z) − ψ0(x) − zψ′
0(x)}ν(dz) + x2 = 0.

Therefore (10.6.8) holds iff

1

2
ψ′′

0 (x̄) +

∫
R

{ψ0(x̄ + z) − ψ0(x̄) − zψ′
0(x̄)}ν(dz) ≤ 0.

For this it suffices that ∫
R

z2ν(dz) ≤ −ρ

2
ψ′′

0 (x̄). (10.6.9)

Conclusion.

Suppose (10.6.9) holds. Then Φ(s, x) = e−ρsψ(x), with ψ(x) given by (10.6.4) and
a, x̂, x̄ given by (10.6.5)-(10.6.7). The optimal impulse control is to do nothing while
|X(t)| < x̄, then move X(t) down to x̂ (respectively up to −x̂) as soon as X(t)
reaches a value ≥ x̄ (respectively a value ≤ −x̄).

Exercise 6.2.

Here we put

Y (v)(t) =

[
s + t

X(v)(t)

]
Y (v)(0−) =

[
s
x

]
= y

Γ (y, ζ) = x − c − (1 + λ)ζ

K(y, ζ) = e−ρsζ

f ≡ g ≡ 0

S = {(s, x) : x > 0}.
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We guess that the value function φ is of the form

φ(s, x) = e−ρsψ(x)

and consider the intervention operator

Mψ(x) = sup

{
ψ(x − c − (1 + λ)ζ) + ζ; 0 ≤ ζ ≤ x − c

1 + λ

}
. (10.6.10)

Note that the condition on ζ is due to the fact that the impulse must be positive
and x − c − (1 + λ)ζ must belong to S . We distinguish between two cases:

1) µ > ρ.
In this case, suppose we wait until time t1 and then take out

ζ1 =
X(t1) − c

1 + λ
.

The corresponding value is

J(v1)(s, x) = Ex
[ e−ρ(t1+s)

1 + λ
(X(t1) − c)

]
= Ex

[ 1

1 + λ

(
xe−ρse(µ−ρ)t1 − ce−ρ(s+t1))

]
→ ∞ as t1 → ∞.

Therefore we obtain Φ(s, x) = +∞ in this case.

2) µ < ρ.
We look for a solution by using the results of Theorem 6.2. In this case condition

(x) becomes

A0ψ(x) := −ρψ(x) + µxψ′(x) + 1
2
σ2ψ′′(x)

+

∫
R

{ψ(x + γxz) − ψ(x) − γzψ′(x)}ν(dz) = 0 in D. (10.6.11)

We try a solution of the form

ψ(x) = C1 xγ1 + C2 xγ2

where γ1 > 1, γ2 < 0 are the solutions of the equation

F (γ) := −ρ + µγ +
1

2
σ2γ(γ − 1) +

∫
R

{(1 + θz)γ − 1 − θzγ}ν′(dz) = 0.

We guess that the continuation region is of the form

D = {(s, x) : 0 < x < x̄}

for some x̄ > 0 (to be determined).
We see that C2 = 0, because otherwise lim

x→0
|ψ(x)| = ∞.

We guess that in this case it is optimal to wait till X(t) reaches or exceeds a
value x̄ > c and then take out as much as possible, i.e. reduce X(t) to 0. Taking the
transaction costs into account this means that we should take out
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ζ̂(x) =
x − c

1 + λ
for x ≥ x̄.

We therefore propose that ψ(x) has the form

ψ(x) =

{
C1x

γ1 for 0 < x < x̄
x−c
1+λ

for x ≥ x̄.

Continuity and differentiability of ψ(x) at x = x̄ give the equations

C1x̄
γ1 =

x̄ − c

1 + λ

and

C1γ1x̄
γ1−1 =

1

1 + λ
.

Combining these we get

x̄ =
γ1c

γ1 − 1
and C1 =

x̄ − c

1 + λ
x̄−γ1 .

With these values of x̄ and C1, we have to verify that ψ satisfies all the requirements
of Theorem 6.2. We check some of them:

(ii): ψ ≥ Mψ on S .

Here Mψ = sup{ψ(x − c − (1 + λ)ζ) + ζ} ; 0 ≤ ζ ≤ x−c
1+λ

}.
If x − c − (1 + λ)ζ ≥ x̄, then

ψ(x − c − (1 + λ)ζ) + ζ =
x − 2c

1 + λ
<

x − c

1 + λ
= ψ(x)

and if x − c − (1 + λ)ζ < x̄ then

h(ζ) := ψ(x − c − (1 + λ)ζ) + ζ = C1(x − c − (1 + λ)ζ)γ1 + ζ.

Since

h′
(

x − c

1 + λ

)
= 1 and h′′(ζ) > 0

we see that the maximum value of h(ζ) ; 0 ≤ ζ ≤ x−c
1+λ

, is attained at ζ = ζ̂(x) = x−c
1+λ

.
Therefore

Mψ(x) = max

(
x − 2c

1 + λ
,
x − c

1 + λ

)
=

x − c

1 + λ
for all x > c.

Hence Mψ(x) = ψ(x) for x ≥ x̄.
For 0 < x < x̄ consider

k(x) := C1x
γ1 − x − c

1 + λ
.

Since
k(x̄) = k′(x̄) = 0 and k′′(x) > 0 for all x,

we conclude that
k(x) > 0 for 0 < x < x̄.

Hence
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ψ(x) > Mψ(x) for 0 < x < x̄.

(vi): A0ψ(x) ≤ 0 for x ∈ S\D̄ i.e. for x > x̄.

For x > x̄, we have

A0ψ(x) = −ρ
x − c

1 + λ
+ µx · 1

1 + λ
= (1 + λ)−1[(µ − ρ)x + ρc].

Therefore we see that

A0ψ(x) ≥ 0 for all x > x̄

⇔ (µ − ρ)x + ρc ≤ 0 for all x > x̄

⇔ (µ − ρ)x̄ + ρc ≤ 0

⇔ x̄ ≥ ρc

ρ − µ

⇔ γ1c

γ1 − 1
≥ ρc

ρ − µ

⇔ γ1 ≤ ρ

µ
.

Since

F

(
ρ

µ

)
≥ −ρ + µ · ρ

µ
+

1

2
σ2 ρ

µ

(
ρ

µ
− 1

)
> 0

and F (γ1) = 0, γ1 > 1 we conclude that γ1 < ρ
µ

and hence (vi) holds.

Exercise 6.3.

Here f = g = 0, Γ (y, ζ) = (s, 0), K(y, ζ) = −c + (1 − λ)x and S = R
2 ; y = (s, x).

If there are no interventions, the process Y (t) defined by

dY (t) =

[
dt

dX(t)

]
=

[
1
µ

]
dt +

[
0
σ

]
dB(t) +

[
0∫

R

θ z Ñ(dt, dz)

]
has the generator

Aφ(y) =
∂φ

∂s
+ µ

∂φ

∂x
+ 1

2
σ2 ∂2φ

∂x2
+

∫
R

{
φ(s, x + θ z) − φ(s, x) − θ z

∂φ

∂x
(s, z)

}
ν(dz) ;

y = (s, x).
The intervention operator M is given by

Mφ(y) = sup{φ(Γ (y, ζ))+K(y, ζ); ζ ∈ Z and Γ (y, ζ) ∈ S} = φ(s, 0)+(1−λ)x− c .

If we try
φ(s, x) = e−ρsψ(x)

we get that
Aφ(s, x) = e−ρsA0ψ(x),

where

A0ψ(x) = −ρψ + µψ′(x) + 1
2
σ2ψ′′(x) +

∫
R

{ψ(x + θ z) − ψ(x) − θ zψ′(x)}ν(dz)
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and
Mφ(s, x) = e−ρsM0ψ(x),

where
M0ψ(x) = ψ(0) + (1 − λ)x − c.

We guess that the continuation region D has the form

D = {(s, x); x < x∗}

for some x∗ > 0 to be determined. To find a solution ψ0 of A0ψ0 + f = A0ψ0 = 0,
we try

ψ0(x) = er x (r constant)

and get

A0ψ0(x) = −ρ er x + µ r er x + 1
2
σ2r2er x

+

∫
R

{
er(x+θ z) − er x − r θ z er x}ν(dz)

= er xh(r) = 0,

where

h(r) = −ρ + µ r + 1
2
σ2r2 +

∫
R

{er θ z − 1 − r θ z}ν(dz).

Choose r1 > 0 such that

h(r1) = 0 (see the solution of Exercise 2.1).

Then we define

ψ(x) =

{
M er1x ; x < x∗

ψ(0) + (1 − λ)x − c = M + (1 − λ)x − c ; x ≥ x∗ (10.6.12)

for some constant M = ψ(0) > 0. If we require continuity and differentiability at
x = x∗ we get the equations

M er1x∗
= M + (1 − λ)x∗ − c (10.6.13)

and
M r1e

r1x∗
= 1 − λ. (10.6.14)

This gives the following equations for x∗ and M :

k(x∗) := e−r1x∗
+ r1x

∗ − 1 − r1c

1 − λ
= 0, M =

1 − λ

r1
e−r1x∗

> 0. (10.6.15)

Since k(0) = − r1c
1−λ

< 0 and lim
x→∞

k(x) = ∞, we see that there exists x∗ > 0 s.t.

k(x∗) = 0.
We must verify that with these values of x∗ and M the conditions of Theorem 6.2

are satisfied. We consider some of them:

(ii): ψ(x) ≥ M0ψ(x).
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x∗

F (x)

Fig. 10.6. The function F .

For x ≥ x∗ we have ψ(x) = M0ψ(x) = M + (1 − λ)x − c. For x < x∗ we have
ψ(x) = M er1x and M0ψ(x) = M + (1 − λ)x − c. Define

F (x) = M er1x − (M + (1 − λ)x − c); x ≤ x∗.

See Figure 10.6. We have

F (x∗) = F ′(x∗) = 0 and F ′′(x) = M r2
1e

r1x > 0.

Hence F ′(x) < 0 and so F (x) > 0 for x < x∗. Therefore

ψ(x) ≥ M0ψ(x) for all x.

(vi): A0ψ ≤ 0 for x > x∗:

For x > x∗ we have

A0ψ(x) = −ρ[M + (1 − λ)x − c] + µ(1 − λ) = −ρ(1 − λ)x + ρ(c − M) + µ(1 − λ).

So

A0ψ(x) ≤ 0 for all x > x∗ ⇔ x ≥ µ

ρ
+

c − M

1 − λ
for all x > x∗

⇔ x∗ ≥ µ

ρ
+

c − M

1 − λ

⇔ x∗ ≥ µ

ρ
+

c

1 − λ
− 1

r1
e−r1x∗

⇔ e−r1x∗
+ r1x

∗ − c

1 − λ
≥ µ

ρ

⇔ 1 ≥ µ

ρ
⇔ µ ≤ ρ.

So we need to assume that µ ≤ ρ for (vi) to hold.

Conclusion.

Let
ψ(s, x) = e−ρsψ(x)

where ψ is given by (10.6.12). Assume that

µ ≤ ρ .
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t

cutcut

x∗x∗

Fig. 10.7. The optimal forest management of Exercise 6.3

Then
φ(s, x) = sup

v
J(v)(s, x)

and the optimal strategy is to cut the forest every time the biomass reaches the
value x∗ (see Figure 10.7).

10.7 Exercises of Chapter 7

Exercise 7.1

As in Exercise 6.3, we have

f = g = 0

Γ (y, ζ) = (s, 0) ; y = (s, x)

K(y, ζ) = (1 − λ)x − c

S = [0,∞) × R

If there is no intervention, then φ0 ≡ 0 and

Mφ0 = sup{(1 − λ)ζ − c; ζ ≤ x} = (1 − λ)x − c.

Hence

φ1(y) = sup
τ≤τS

Ey[Mφ0(Y (τ ))] = sup
τ≤τS

Ey[e−ρ(s+τ)((1 − λ)X(τ ) − c)
]
. (10.7.1)

This is an optimal stopping problem that can be solved by exploiting the three basic
variational inequalities. We assume that the continuation region

D1 = {φ1 > Mφ0}

is of the form
D1 = {(s, x) ; x < x1} for some x1 > 0

and that the value function has the form φ1(s, x) = e−ρsψ1(x) for some function ψ1.
On D1, ψ1 is the solution of
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−ρψ1(x)+µψ′
1(x)+ 1

2
σ2ψ′′

1 (x)+

∫
R

{ψ1(x+θz)−ψ1(x)−θzψ′
1(x)}ν(dz) = 0. (10.7.2)

A solution of (10.7.2) is
ψ1(x) = Aeγ1x + Beγ2x

where γ2 < 0 and γ1 > 1, A and B arbitrary constants to be determined.
We choose B = 0 and put A1 = A > 0. We get

ψ1(x) =

{
A1e

γ1x x < x1

(1 − λ)x − c x ≥ x1.

We impose the continuity and differentiability conditions of ψ1 at x = x1.

(i) Continuity: A1e
γ1x1 = (1 − λ)x1 − c.

(ii) Differentiability: A1γ1e
γ1x1 = 1 − λ.

We get A1 = (1−λ)
γ1

e−γ1x1 and x1 = 1
γ1

+ c
1−λ

.
As a second step, we evaluate

φ2(y) = sup
τ

Ey[Mφ1(Y (τ ))].

We suppose φ2(s, x) = e−ρsψ2(x) and consider

Mψ1(x) = sup{ψ1(0)+(1−λ)ζ−c;ζ ≤ x} = ψ1(0)+(1−λ)x−c = (1−λ)x+A1−c.

Hence
φ2(y) = sup

τ≤τS
Ey

[
e−ρ(s+τ) ((1 − λ)X(τ ) − (c − A1))

]
. (10.7.3)

By the same argument as before, we get Φ2(s, x) = e−ρsψ2(x), where

ψ2(x) =

{
A2e

γ1x x < x2

(1 − λ)x + A1 − c x ≥ x2

where x2 = 1
γ1

+ c−A1
1−λ

and A2 = 1−λ
γ1

e−γ1x2 . Note that x2 < x1 and A2 > A1.
Since Mφ0 and Mφ1 have linear growth, the conditions of Theorem 7.2 are

satisfied. Hence φ1 and φ2 are the solutions for our impulse control problems when
respectively one intervention and two interventions are allowed. The impulses are
given by ζ1 = ζ2 = x and τ1 = inf{t : X(t) ≥ x2} and τ2 = inf{t > τ1 : X(t) ≥ x1}.

Exercise 7.2

Here we have (see the notation of Chapter 6)

f = g ≡ 0

K(x, ζ) = ζ

Γ (x, ζ) = x − (1 + λ)ζ − c

S = {(s, x) ; x > 0}.

We put y = (s, x) and suppose φ0(s, x) = e−ρsψ0(x). Since f = g = 0 we have
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φ0(y) = 0

and Mψ0(y) = sup{ζ : 0 ≤ ζ ≤ x−c
1+λ

} = ( x−c
1+λ

)+. As a second step, we consider

φ1(s, x) = sup
τ≤τS

Ex[Mφ0(X(τ ))] = sup
τ≤τS

Ex
[
e−ρ(τ+s) (X(τ + s) − c)+

1 + λ

]
. (10.7.4)

We distinguish between 3 cases

(a) µ > ρ
Then

φ1(s, x) ≥ xe(µ−ρ)(t+s) − ce−ρ(t+s)

1 + λ
.

Hence if t → +∞
φ1(s, x) → +∞.

We obtain Mφ1(s, x) = +∞ and clearly φn = +∞ for all n. In this case, the optimal
stopping time does not exist.

(b) µ < ρ
In this case we try to put φ1(s, x) = e−ρsψ1(x) and solve the optimal stopping
problem (10.7.4) by using Theorem 2.2.

We guess that the continuation region is of the form D = {0 < x < x∗
1} and

solve

L0ψ1(x) := −ρψ1(x) + µxψ′
1(x) +

σ2x2

2
ψ′′

1 (x)

+

∫
R

{ψ1(x + θxz) − ψ1(x) − θxzψ′
1(x)}ν(dx) = 0. (10.7.5)

A solution of equation (10.7.5) is

ψ1(x) = c1x
γ1 + c2x

γ2

where
γ2 < 0 and γ1 > 1, and c1, c2 are arbitrary constants.

Since γ2 < 0, we put c2 = 0. We obtain

ψ1(x) =

{
c1x

γ1 0 < x < x∗
1

x−c
1+λ

x ≥ x∗
1.

By imposing the condition of continuity and differentiability, we can compute c1 and
x∗

1. The result is
1. x∗

1 = γ1c
γ1−1

2. c1 = 1
γ1(1+λ)

(
γ1c

γ1−1

)1−γ1

Note that γ1 > 1 and x∗
1 > c. We check some of the conditions of Theorem 2.2:

(ii) ψ1(x) ≥ Mψ0(x) for all x:

We know that φ1(x) = Mφ0(x) for x > x∗
1. Consider h1(x) := ψ1(x)−Mψ0(x). We

have
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h1(x
∗
1) = 0

h′
1(x

∗
1) = 0

h′′
1 (x∗

1) = c1γ1(γ1 − 1)(x∗
1)

γ1−2 > 0.

Hence x∗
1 is a minimum for h1 and ψ1(x) ≥ Mψ0(x) for every 0 < x < x∗

1.

(vi) L0ψ1 ≤ 0 for all x > 0:

Clearly L0ψ1 = 0 for 0 < x < x∗
1.

If x > x∗
1 then L0ψ1(x) = ((µ − ρ)x + cρ) 1

1+λ
≤ 0 iff x ≥ cρ

ρ−µ
.

Define

F (γ) := x−γL0(x
γ) = −ρ + µγ +

1

2
γ(γ − 1) +

∫
R

{(1 + θz)γ − 1 − γθz} ν(dz).

Then we know that F (γ2) = F (γ1) = 0 and F ′(γ) > 0 for γ ≥ γ1. Since F
(

ρ
µ

)
> 0

we have that ρ
µ

> γ1, which implies that x∗
1 =

γ1c

γ1 − 1
>

ρc

ρ − µ
. Hence L0ψ1(x) ≤ 0

for all x ≥ x∗
1.

We conclude that φ1(s, x) = e−ρsψ1(x) actually solves the optimal stopping
problem (10.7.4).

Next we consider

Mψ1(x) = sup
{

ψ1(x − (1 + λ)ζ − c) + ζ; 0 ≤ ζ ≤ x − c

1 + λ

}
=

(x − c)+

1 + λ

and repeat the same procedure to find ψ2.

By induction, we obtain Mψn = Mψn−1 = Mψ1 = Mψ0. Consequently, we
also have

Φ = Φ1

and Φ(s, x) = Φn(s, x) for every n. Moreover, we achieve the optimal result with
just one intervention.

(c) µ = ρ
This case is left to the reader.

10.8 Exercises of Chapter 8

Exercise 8.1

In this case we have

Γ1(ζ, x1, x2) = x1 − ζ − c − λ|ζ|
Γ2(ζ, x1, x2) = x2 + ζ

K(ζ, x1, x2) = c + λ|ζ|
g = 0

f(s, x1, x2, u) =
e−δs

γ
uγ .
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The generator is given by

Lu =
∂

∂t
+ (rx1 − u)

∂

∂x1
+ αx2

∂

∂x2
+

σ2

2
x2

2
∂2

∂x2
2

.

Let φ(s, x1, x2) be the value function of the optimal consumption problem

sup
w∈W

Ey
[ ∫ ∞

0

e−δ(s+t) u(t)γ

γ
dt
]

; y = (s, x1, x2)

with c, λ > 0 and φ0(s, x1, x2) the corresponding value function in the case when
there are no transaction costs, i.e.

c = λ = 0.

In order to prove that

Φ(s, x1, x2) ≤ Ke−δs(x1 + x2)
γ = Φ0(s, x1, x2)

we check the hypotheses of Theorem 8.1a):

(vi) Luφ0 + f ≤ 0

Since φ0 is the value function in the absence of transaction costs, we have

sup
u≥0

{Luφ0 + f} = 0 in R
3.

Note that

Mφ0(s, x1, x2) = sup
ζ∈R\{0}

φ0(s, x1 − ζ − λ|ζ| − c, x2 + ζ)

= sup
ζ∈R\{0}

Ke−δs(x1 + x2 − c − λ|ζ|)γ = Ke−δs(x1 + x2 − c)γ .

Therefore
D = {φ0 > Mφ0} = R

3.

Hence we can conclude that

e−δs(x1 + x2)
γ ≥ Φ(s, x1, x2).

Exercice 8.2a)

The HJBQVI’s for this problem can be formulated in one equation as follows:

min

(
inf
u∈R

{
∂ϕ

∂t
+ u

∂ϕ

∂x
+

1

2
σ2 ∂2ϕ

∂x2
+ x2 + u2

}
, ϕ −Mϕ

)
= 0,

where
Mϕ(t, x) = inf

ζ∈R

{ϕ(t, x + ζ) + c}.

Since ϕ is a candidate for the value function Φ it is reasonable to guess that, for
each t, ϕ(t, z) is minimal for z = 0. Hence

Mϕ(t, x) = c, attained for ζ = ζ∗(x) = −x.
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Motivated by Exercise 4.3 we try a function ϕ of the form

ϕ(t, x) =

{
a(t)x2 + b(t) ; |x| < x∗(t)

c ; |x| ≥ x∗(t)

where a(t), b(t) and x∗(t) are functions to be determined. With this ϕ the above
HJBQVI becomes, for |x| < x∗(t),

inf
u∈R

{
∂ϕ

∂t
+ u

∂ϕ

∂x
+

1

2
σ2 ∂2ϕ

∂x2
+ x2 + u2

}
= inf

u∈R

{a′(t)x2 + b′(t) + ua(t)2x + σ2a(t) + x2 + u2}

= x2

[
a′(t) − 1

4
a2(t) + 1

]
+ b′(t) + σ2a2(t) = 0,

and this minimum is attained at

u = u∗(t, x) = −1

2

∂ϕ

∂x
= −a(t)x.

Together with the boundary values

ϕ(T, x) = 0

we therefore get that (a(t), b(t)) must be the unique solution of the two equations

a′(t) − 1

4
a2(t) + 1 = 0 ; a(T ) = 0

b′(t) + σ2a2(t) = 0 ; b(T ) = 0.

Hence

a(t) =
2
(
1 − e−(T−t)

)
1 + e−(T−t)

> 0 ; 0 ≤ t ≤ T

and

b(t) = σ2

∫ T

t

a2(s)ds ; 0 ≤ t ≤ T.

Finally we determine x∗(t) by requiring ϕ to be continuous at x = x∗(t):

a(t)(x∗(t))2 + b(t) = c

which gives
x∗(t) = a−1(t)[c − b(t)].

If b(0) < c then with this choice of a(t), b(t), x∗(t) all the conditions of ϕ in
Theorem 8.1 can be verified and we conclude that

ϕ(s, x) = Φ(s, x) =

{
a(s)x2 + b(s) ; |x| < x∗(s)

c ; |x| ≥ x∗(s)

with optimal combined control w∗ = (u∗, v∗) described by

(i) If |x| < x∗(s) use u∗(s, x) = −a(s)x and no impulse control.
(ii) If |x| ≥ x∗(s) use the impulse

ζ∗(x) = −x

to bring the system down to 0.

See Figure 10.8
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Fig. 10.8. The optimal combined control of Exercise 8.2

10.9 Exercises of Chapter 9

Exercise 9.1

Because of the symmetry of h, we assume that the continuation region is of the form

D = {φ > h} = {(s, x) : −x∗ < x < x∗}

with x∗ > 0.
We assume that the value function φ(s, x) = e−ρsψ(x). On D, φ is the solution

of
Lφ(s, x) = 0 (10.9.1)

where L = ∂
∂t

+ 1
2

∂2

∂x2 . We obtain

L0ψ(x) := −ρψ(x) + 1
2
ψ′′(x) = 0. (10.9.2)

The general solution of equation (10.9.2) is

ψ(x) = c1e
√

2ρ x + c2e
−
√

2ρ x.

We must have ψ(x) = ψ(−x), hence c1 = c2. We put c1 = 1
2
c and assume c > 0. We

impose continuity and differentiability conditions at x = x∗:

(i) Continuity at x = x∗

1

2
c
(
e
√

2ρ x∗
+ e−

√
2ρ x∗)

= Kx∗
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y

h(x)

1
K

− 1
K

x

Fig. 10.9. The function h(x)

(ii) Differentiability at x = x∗

1

2
c
√

2ρ
(
ex∗√2ρ 1

2
− e−

√
2ρ x∗)

= K.

Then x∗ is the solution of

1

x∗√2ρ
=

ex∗√2ρ − e−
√

2ρ x∗

ex∗√2ρ + e−x∗√2ρ
= tgh(x∗√2ρ )

and

c =
K√
2ρ

1

+ sinh(x∗√2ρ )
.

We must check if x∗ < 1
K

. If we put z∗ = x∗√2ρ , then z∗ is the solution of

1

z∗ = tgh(z∗).

We distinguish between two cases:

Case 1. For K <
1

x∗ =

√
2ρ

z∗ we have

ψ(x) =

⎧⎪⎨⎪⎩
1 |x| > 1

K

K|x| x∗ < |x| < 1
K

c cosh(x
√

2ρ ) |x| < x∗

Since ψ is not C2 at x = x∗ we prove that ψ is a viscosity solution for our
optimal stopping problem.

(i) We first prove that ψ is a viscosity subsolution.
Let u belong to C2(R) and u(x) ≥ ψ(x) for all x ∈ R and let y0 ∈ R be such

that
u(y0) = ψ(y0).

Then ψ is a viscosity subsolution if and only if

max(L0u(y0), h(y0) − u(y0)) ≥ 0 for all such u, y0. (10.9.3)
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1
K

x∗

ψ(x)

Fig. 10.10. The function ψ(x) in Case 1 for x ≥ 0

We need to check (10.9.3) only for y0 = x∗. We have

u(x∗) = ψ(x∗) = h(x∗)

i.e. (h − u)(x∗) = 0. Hence max(L0u(x∗), h(x∗) − u(x∗)) ≥ (h − u)(x∗) = 0.

(ii) We prove that ψ is a viscosity supersolution.
Let v belong to C2(R) and v(x) ≤ ψ(x) for every x ∈ R and let y0 ∈ R be such

that v(y0) = ψ(y0). Then ψ is a viscosity supersolution if and only if

max(L0v(y0), h(y0) − v(y0)) ≤ 0 for all such v, y0.

We check it only for x = x∗. Then

h(x∗) = ψ(x∗) = v(x∗).

Since v ≤ ψ, x = x∗ is a maximum point for H = h − ψ. We have

H(x∗) = 0

H ′(x∗) = 0

H ′′(x∗) = h′′(x∗) − ψ′′(x∗
−) ≤ 0.

Hence L0h(x∗) ≤ L0ψ(x∗) ≤ 0. Since ψ is both a viscosity supersolution and sub-
solution, ψ is a viscosity solution.

Case 2. We consider now the case when K ≥
√

2ρ
z∗ .

In this case, the continuation region is given by

D =
{
− 1

K
< x <

1

K

}
i.e. x∗ = 1

K
.

We have

ψ(x) =

{
1 |x| ≥ 1

K

c cosh(z
√

2ρ ) |x| < 1
K
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1
K

− 1
K

ψ(x)

Fig. 10.11. The function ψ(x) in Case 2

ψ is not C1 at |x| = 1
K

. We prove that it is a viscosity solution.

(i) ψ is a viscosity subsolution.
Let u belong to C2(R) and u(x) ≥ ψ(x) for every x ∈ R. Let y0 be such that

u(y0) = ψ(y0). Then ψ is a viscosity subsolution if and only if

max(L0u(y0), h(y0) − u(y0)) ≥ 0. (10.9.4)

For y0 = x∗, h(x∗) = ψ(x∗) = u(x∗). Hence (10.9.4) is trivially satisfied.

(ii) ψ is a viscosity supersolution.
Actually there does not exist any v ∈ C2(R) such that v( 1

K
) = ψ( 1

K
) and v ≤ ψ.

Heuristically, this happens because ψ has an angle at x = 1
K

:
Suppose that there exists v ∈ C2(R) such that v ≤ ψ, v( 1

K
) = ψ( 1

K
). We consider

H := ψ − v. We have H( 1
K

) = 0 and H ≥ 0. Hence we must have

H ′

((
1

K

)−
)

:= lim
x→( 1

K )−
H ′(x) ≤ 0 and H ′

((
1

K

)+
)

:= lim
x→( 1

K )+
H ′(x) ≥ 0.

Therefore

ψ′

((
1

K

)−
)

− v′

((
1

K

)−
)

≤ ψ′

((
1

K

)+
)

− v′

((
1

K

)+
)

,

which implies that ψ′
((

1
K

)−) ≤ ψ′
((

1
K

)+)
since v ∈ C2(R).

Since ψ′ does not satisfy this inequality, we conclude that there does not exist
any v ∈ C2(R) such that ψ ≥ v and ψ( 1

K
) = v( 1

K
). (v cannot be even C1!).

We can conclude that ψ is a viscosity solution for our problem.

Exercise 9.2

We intend to apply (the minimum version of) Theorem 9.8 and note that in this
case we have, with y = (s, x) ∈ R

2,
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Luϕ(y) =
∂ϕ

∂s
+ u

∂ϕ

∂x
+

1

2

∂2ϕ

∂x2
+

∫
R

{
ϕ(s, x + z) − ϕ(s, x) − z

∂ϕ

∂x
(s, x)

}
ν(dz)

Γ (y, ζ) = y + (0, ζ), K(y, ζ) = ce−ρs, f(y, u) = e−ρs(x2 + θu2),

g = 0 and

Mϕ(y) = inf
{
ϕ(s, x + ζ) + ce−ρs ; ζ ∈ R\{0}

}
= ϕ(s, 0) + ce−ρs.

We first prove that

Φ(x) < Φ1(x) = e−ρs(ax2 + b)

(see the solution of Exercise 3.4). Since clearly

Φ(x) ≤ Φ1(x)

it suffices, by Theorem 9.8, to prove that Φ1(x) does not satisfy equation (9.3.6) in
the viscosity sense. In particular, (9.3.6) implies that

e−ρs(ax2 + b) = Φ1(s, x) ≤ MΦ1(s, x) = e−ρs(b + c) ; x ∈ R.

Since a > 0 this is impossible.

Next we prove that
Φ(x) < Φ2(x)

where Φ2(x) is the solution of Exercise 6.1. It has the form Φ2(s, x) = e−ρsψ2(x),
with

ψ2(x) =

{
ψ0(x) ; |x| ≤ x̄

ψ0(x̂) + c ; |x| > x̄

where

ψ0(x) =
1

ρ
x2 +

b

ρ2
− a cosh(γx)

is a solution of

−ρψ0(x) +
1

2
ψ′′

0 (x) +

∫
R

{
ψ0(x + z) − ψ0(x) − zψ′

0(x)
}
ν(dz) + x2 = 0.

Since clearly Φ(s, x) ≤ Φ2(s, x), it suffices to prove that Φ2(s, x) does not satisfy
(9.3.6) in viscosity sense. In particular, (9.3.6) implies that

LuΦ2(s, x) + e−ρs(x2 + θu2) ≥ 0 for all u ∈ R.

For |x| < x̄ this reads

uψ′
0(x) + θu2 ≥ 0 for all u ∈ R, |x| < x̄. (10.9.5)

The function

h(u) :=

(
2x

ρ
− aγ sinh(γx)

)
u + θu2 ; u ∈ R

is minimal when

u = û =
1

2θ

(
aγ sinh(γx) − 2x

ρ

)
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with corresponding minimum value

h(û) = − 1

4θ

(
aγ sinh(γx) − 2x

ρ

)2

.

Hence (10.9.5) cannot possibly hold and we conclude that Φ2 cannot be a viscosity
solution of (9.3.6). Hence Φ �= Φ2 and hence Φ(x) < Φ2(x) for some x.
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Notation and Symbols

R
n n-dimensional Euclidean space.

R
+ the non-negative real numbers.

R
n×m the n × m matrices (real entries).

Z the integers
N the natural numbers
R

n � R
n×1 i.e. vectors in R

n are regarded as n × 1-matrices.
In the n × n identity matrix.
AT the transposed of the matrix A.

P(Rk) set of functions f : R
k → R of at must polynomial

growth, i.e. there exists constants C, m such that:

|f(y)| ≤ C(1 + |y|m) for all y ∈ R
k.

C(U, V ) the continuous functions from U into V .
C(U) the same as C(U, R).
C0(U) the functions in C(U) with compact support.
Ck = Ck(U) the functions in C(U, R) with continuous

derivatives up to order k.
Ck

0 = Ck
0 (U) the functions in Ck(U) with compact support in U .

Ck+α the functions in Ck whose k’th derivatives are
Lipschitz continuous with exponent α.

C1,2(R × R
n) the functions f(t, x);R × R

n → R which are
C1 w.r.t. t ∈ R and C2 w.r.t. x ∈ R

n.
Cb(U) the bounded continuous functions on U .

|x|2 = x2
n∑

n=1

x2
i if x = (x1, . . . , xn).

x · y the dot product

n∑
n=1

xiyi

if x = (x1, . . . , xn), y = (y1, . . . , yn).
x+ max(x, 0) if x ∈ R.
x− max(−x, 0) if x ∈ R.

sign x

{
1 if x ≥ 0
−1 if x > 0.

sinh(x) hyperbolic sine of x (= ex−e−x

2
)
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cosh(x) hyperbolic cosine of x (= ex+e−x

2
)

tgh(x) sinh(x)
cosh(x)

s ∧ t the minimum of s and t (= min(s, t)).
s ∨ t the maximum of s and t (= max(s, t)).
δx the unit point mass at x.
Argmaxu∈U f(u) {u∗ ∈ U ; f(u∗) ≥ f(u),∀u ∈ U}
:= equal to by definition.

lim, lim the same as lim inf, lim sup.
supp f the support of the function f .

∇f the same as Df =
[

∂f
∂xi

]n

i=1
.

∂G the boundary of the set G.
Ḡ the closure of the set G.
G0 the interior of the set G.
χG the indicator function of the set G;

χG(x) = 1 if x ∈ G, χG(x) = 0 if x �∈ G.
(Ω,F , (Ft)t≥0, P ) filtered probability space.
∆ηt the jump of ηt defined by ∆ηt = ηt − η−

t .
P the probability law of ηt.
N(t, U) see (1.1.2).
ν(U) E[N(1, U)] see (1.1.3).

Ñ(dt, dz) see (1.1.7).
B(t) Brownian motion.
P � Q the measure P is absolutely continuous w.r.t.

the measure Q.
P ∼ Q P is equivalent to Q, i.e. P � Q and Q � P .
EQ the expectation w.r.t. the measure Q.
E the expectation w.r.t. a measure which is clear

from the context (usually P ).
E[Y ] = Eµ[Y ] =

∫
Y dµ the expectation of the random variable Y

w.r.t. the measure µ.
[X, Y ] quadratic covariation of X and Y : see Definition 1.27.
T set of all stopping times ≤ τS see (2.1.1).
τG the first exit time from the set G of a process Xt :

τG = inf{t > 0; Xt �∈ G}.
∆NY (t) the jump of Y caused by the jump of N , see (5.2.2).

Y̌ (t−) Y (t−) + ∆NY (t) (see (6.1.7)).
∆ξY (t) the jump of Y caused by the singular control ξ.
∆ξφ see (5.2.3).
ξc(t) continuous part of ξ(t), i.e. the process obtained by

removing the jumps of ξ(t).
π/K the restriction of the measure π to the set K.
A = AY the generator of jump diffusion Y .
M intervention operator: see Definition 6.1.
VI variational inequality.
QVI quasi-variational inequality.
HJB Hamilton-Jacobi-Bellman equation.
HJBVI Hamilton-Jacobi-Bellman variational inequality.
HJBQVI Hamilton-Jacobi-Bellman quasi-variational inequality.
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SDE Stochastic differential equation
cadlag right continuous with left limits.
caglad left continuous with right limits.
i.i.d. independent identically distributed.
iff if and only if.
a.a., a.e., a.s. almost all, almost everywhere, almost surely.
w.r.t. with respect to.
s.t. such that.



Index

adjoint equation, 48
admissible, 21, 39, 42, 47, 53, 72, 74
admissible combined controls, 113
admissible impulse controls, 82
approximation theorem, 28
arbitrage, 20, 21

backward stochastic differential
equation, 48

bankruptcy time, 27, 39

cadlag, 1
caglad, 4
combined control, 113
combined impulse linear regulator

problem, 122
combined optimal stopping and

control-problem, 61
combined optimal stopping and

stochastic control, 59
combined stochastic control and impulse

control, 113, 114
comparison theorem, 136
compensated Poisson random measure,

3
compound Poisson process, 3
continuation region, 29, 62, 83
control, 47
control process, 39
controlled jump diffusion, 39

diagonnaly dominant matrix, 143
discrete maximum principle, 144
dynamic programming, 39, 51

dynamic programming principle, 100,
125

Dynkin formula, 11

equivalent, 12
equivalent local martingale measure, 15

finite difference approximation, 140
first exit time from a ball, 23
First Fundamental Theorem of Asset

Pricing, 21
fixed transaction cost, 86

geometric Lévy martingales, 22
geometric Lévy process, 7, 23
Girsanov theorem, 12, 14–18
graph of the geometric Lévy process, 23

Hamilton-Jacobi-Bellman, 40
Hamiltonian, 48
high contact principle, 33, 62
HJB-variational inequalities, 62
HJBQVI verification theorem, 114
Howard algorithm, 145

impulse control, 81, 83
impulses, 81
integration by parts, 49
integration by parts formula, 24
integro-variational inequalities for

optimal stopping, 29
integro-variational inequalities for

singular control, 74
integrodifferential operator, 28
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intensity, 2
intervention control, 73
intervention operator, 83
intervention times, 81
Itô formula, 6, 8
Itô-Lévy isometry, 9
Itô-Lévy processes, 5
iterated optimal stopping, 97
iterative methods, 120
iterative procedure, 99

jump, 1
jump diffusions, 10

Lévy decomposition, 3
Lévy diffusion, 10
Lévy martingale, 3
Lévy measure, 2
Lévy process, 1
Lévy stochastic differential equations,

10
Lévy type Black-Scholes market, 41
Lévy-Khintchine formula, 4
Lipschitz surface, 28

Markov controls, 40
maximum principle, 46, 48
mean-reverting Lévy-Ornstein-

Uhlenbeck process, 22, 23
mean-variance portfolio selection

problem, 53

non-intervention region, 75
Novikov condition, 16

optimal combined control of the
exchange rate, 116

optimal consumption and portfolio, 41,
117, 139, 145

optimal consumption rate under
proportional transaction costs, 71

optimal control, 40
optimal dividend policy, 78
optimal forest management, 95
optimal harvesting, 80
optimal resource extraction control and

stopping problem, 59

optimal resource extraction stopping
problem, 36

optimal stopping problem, 27
optimal stopping time, 28
optimal stream of dividends, 85, 94

performance, 28, 39, 42, 47, 60, 73, 114
Poisson process, 2
Poisson random measure, 1
policy iteration algorithm, 143, 145
polynomial growth, 100
portfolio, 21, 52
predictable processes, 10
proportional transaction cost, 86

quadratic covariation, 13, 25
quasi-integrovariational inequalities, 83
quasi-variational inequality, 136

Second Fundamental Theorem of Asset
Pricing, 19

self-financing, 21, 52
singular control, 71, 73
smooth fit principle, 62
solvency set, 27, 39, 72, 73
stochastic control, 39
stochastic control problem, 40
stochastic linear regulator problem, 57
stochastic linear regulator problem with

optimal stopping, 70
superjets, 135

time homogeneous, 10

uniqueness of viscosity solutions, 126,
138

value function, 28, 40
verification theorem, 40, 62
viscosity solution, 123, 125, 132
viscosity solution of HJBQVI, 130, 142
viscosity subsolution, 124, 131
viscosity supersolution, 124, 131

wealth process, 21, 42, 52



Universitext

Aksoy, A.; Khamsi, M. A.: Methods in Fixed
Point Theory

Alevras, D.; Padberg M. W.: Linear Optimi-
zation and Extensions

Andersson, M.: Topics in Complex Analysis

Aoki, M.: State Space Modeling of Time Se-
ries

Audin, M.: Geometry

Aupetit, B.: A Primer on Spectral Theory

Bachem, A.; Kern, W.: Linear Programming
Duality

Bachmann, G.; Narici, L.; Beckenstein, E.:
Fourier and Wavelet Analysis

Badescu, L.: Algebraic Surfaces

Balakrishnan, R.; Ranganathan, K.: A Text-
book of Graph Theory

Balser, W.: Formal Power Series and Linear
Systems of MeromorphicOrdinaryDifferen-
tial Equations

Bapat, R.B.: Linear Algebra and Linear Mo-
dels

Benedetti, R.; Petronio, C.: Lectures on Hy-
perbolic Geometry

Benth, F. E.: Option Theory with Stochastic
Analysis

Berberian, S. K.: Fundamentals of Real Ana-
lysis

Berger, M.: Geometry I, and II

Bliedtner, J.; Hansen, W.: Potential Theory

Blowey, J. F.; Coleman, J. P.; Craig, A. W.
(Eds.): Theory and Numerics of Differential
Equations
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