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Preface

Gaussian processes can be viewed as a far-reaching infinite-dimensional extension
of classical normal random variables. Their theory is one of the most advanced
fields in the probability science and presents a powerful range of tools for prob-
abilistic modelling in various academic and technical domains such as Statistics,
Forecasting, Finance, Information Transmission, Machine Learning—to mention
just a few.

The objective of these lectures is to present a quick and condensed treatment of
the core theory that a reader must understand in order to make his own inde-
pendent contributions. The primary intended readership are Ph.D/Masters students
and researchers working in pure or applied mathematics. The knowledge of basics
in measure theory, functional analysis, and, of course, probability, is required for
successful reading.

The first chapters introduce essentials of the classical theory of Gaussian pro-
cesses and measures. The core notions of Gaussian measure, reproducing kernel,
integral representation, isoperimetric property, large deviation principle are
explained and illustrated by numerous thoroughly chosen examples. This part
mainly follows my book ‘‘Gaussian Random Functions’’ but the chosen exposition
style is different. The brevity being a priority for teaching and learning purposes,
certain technical details and proofs are omitted, rendering approach less formal,
more appropriate to the lecture notes than to a textbook.

Obviously, new issues that emerged during last decade are also present in the
exposition. Inequalities related to correlation conjecture and to other extremal
problems, the entropy approaches to evaluation of small deviation probabilities,
expansions of Gaussian vectors, relations to the theory of linear operators, and
links to quantization problems for random processes fit into this category.

The short lecture notes by no means aim to provide a complete account of
immense research field in pure and applied mathematics related to Gaussian
processes. A few indications on further possible reading are given in ‘‘Invitation to
Further Reading’’.
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In university teaching, one can build a one-semester advanced course upon
these lectures. Such courses were given by the author in Russia (St. Petersburg
State University), in France (Université Lille I), in Germany (TU Darmstadt), in
Finland (Helsinki University of Technology) and in USA (Georgia Institute of
Technology) during last years. I am grateful to all mentioned host institutions for
opportunity to teach my favorite subject in their rooms.

My sincere thanks go to Armin Straub for taking enthusiastic notes which
served as an early draft of this text, and to Alexei Khartov for careful reading of
the manuscript.
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Abstract

Gaussian processes can be viewed as a far-reaching infinite-dimensional extension
of classical normal random variables. Their theory presents a powerful range of
tools for probabilistic modelling in various academic and technical domains
such as Statistics, Forecasting, Finance, Information Transmission, Machine
Learning—to mention just a few. The objective of these Briefs is to present a quick
and condensed treatment of the core theory that a reader must understand in order
to make his own independent contributions. The primary intended readership are
Ph.D./Masters students and researchers working in pure or applied mathematics.
The first chapters introduce essentials of the classical theory of Gaussian processes
and measures with the core notions of reproducing kernel, integral representation,
isoperimetric property, large deviation principle. The brevity being a priority for
teaching and learning purposes, certain technical details and proofs are omitted.
The later chapters touch important recent issues not sufficiently reflected in the
literature, such as small deviations, expansions, and quantization of processes. In
university teaching, one can build a one-semester advanced course upon these
Briefs.

Keywords Gaussian processes � Gaussian measures � Isoperimetric inequalities �
Large deviations � Reproducing Kernel Hilbert Space (RKHS) � Small deviations
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Lectures on Gaussian Processes

1 Gaussian Vectors and Distributions

Theory of random processes needs a kind of normal distribution. This is why Gaussian
vectors and Gaussian distributions in infinite-dimensional spaces come into play. By
simplicity, importance and wealth of results, theory of Gaussian processes occupies
one of the leading places in modern Probability.

1.1 Univariate Objects

A real random variable X is normally distributed or Gaussian with expectation a ∈ R

and variance σ 2 > 0, if its distribution density with respect to Lebesgue measure is

p(x)= 1√
2πσ

exp

{−x2

2σ 2

}
.

We denote this distribution N (a, σ 2) and write X ∼ N (a, σ 2). A normal distribution
with zero variance N (a, 0) is just the distribution concentrated at a point a.

If X ∼ N (a, σ 2), the characteristic function and Laplace transform of X are given
by

Eeit X = exp

{
iat − σ 2t2

2

}
,

Eet X = exp

{
at + σ 2t2

2

}
.

By using the formula for characteristic function it is easy to check stability property:
if the variables X1∼ N (a1, σ

2
1 ) and X2∼ N (a2, σ

2
2 ) are independent, then X1 +

X2∼ N (a1 + a2, σ
2
1 + σ 2

2 ).
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2 Lectures on Gaussian Processes

The family of normal variables and distributions is also invariant with respect to
linear transformations: if X ∼ N (a, σ 2), then

cX + d ∼ N (d + ca, c2σ 2).

Expectation and variance of a normal random variable coincide with parameters of
its distribution:

EX = a, Var X = σ 2.

Among normal distributions, the standard normal distribution N (0, 1) plays a
special role. Its distribution function is denoted by Φ(r). In other words,

Φ(r)= 1√
2π

∫ r

−∞
exp

{−x2

2

}
dx .

Let us notice a fast decay of the tails of normal distribution at infinity:

Φ(−r)= 1−Φ(r)∼ 1√
2πr

exp

{−r2

2

}
, as r →∞.

A variable having any normal distribution N (a, σ 2) can be obtained from the standard
one by a linear transformation X �→ Y = σ X + a.

1.2 Multivariate Objects

A random vector X = (X j )
n
j = 1 ∈ R

n is called standard Gaussian, if its components
are independent and have a standard normal distribution. The distribution of X has a
density

p(x)= 1

(2π)n/2 exp

{−(x, x)

2

}
, x ∈ R

n.

There exist two equivalent definitions of a general Gaussian vector in R
n .

Definition 1.1 A random vector Y ∈ R
n is called Gaussian, if it can be represented

as Y = a + L X, where X is a standard Gaussian vector, a ∈ R
n, and L : R

n �→ R
n

is a linear mapping.

Definition 1.2 A random vector Y ∈ R
n is called Gaussian, if the scalar product

(v, Y ) is a normal random variable for each v ∈ R
n.

Definition 1.1 easily yields Definition 1.2. Indeed,

(a + L X, y)= (a, y)+ (X, L∗y)= (a, y)+
n∑

j = 1

(L∗y) j X j

has a normal distribution due to stability property.
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In the multivariate setting, a definition of Gaussian distribution through a particular
form of the density makes no much sense, because in many cases (when the operator
L is degenerated, i.e. its image does not coincide with R

n) the density just does not
exist.

We will stick to Definition 1.2 that is more convenient for further generaliza-
tions: in most interesting spaces there is no standard Gaussian vector X required in
Definition 1.1.

Similarly to the univariate notation N (a, σ 2), the family of n-dimensional
Gaussian distributions also admits a reasonable parametrization. Recall that for any
random vector Z = (Z j ) ∈ R

n one understands the expectation component-wise, i.e.
EZ = (EZ j ), while its covariance operator K Z : Rn �→ R

n is defined by

cov((v1, Z), (v2, Z))= (v1, KZ v2).

If all components of a vector Z have finite second moments, then the expectation EZ
and covariance operator KZ do exist. There is no restrictions on expectation value,
while the covariance operator is necessarily non-negative definite and symmetric. In
other words, there exists an orthonormal base (e j ) such that K has a diagonal form
K Z e j = λ j e j with λ j ≥ 0.

We write Y ∼ N (a, K ) if Y is a Gaussian vector with expectation a and covariance
operator K. In particular, for a standard Gaussian vector we have X ∼ N (0, En),

where En : Rn �→ R
n is the identity operator.

The suggested notation generates legitime questions:

• Does N(a, K) exist for all a ∈ Rn and all non-negative definite and symmetric
operators K ?

• Is the distribution N(a, K) unique ?
• Is it true that any Gaussian distribution has a form N(a, K) ?

Let us answer positively on all these questions. Indeed, let a ∈ Rn, and let
K be a non-negative definite and symmetric linear operator. Consider a base (e j )

corresponding to the diagonal form of K (see above) and define L = K 1/2 by relations
Le j = λ

1/2
j e j . Consider a random vector Y = a+ L X . We have already seen that Y

is Gaussian. It is almost obvious that it has expectation a and covariance operator K.
The uniqueness of N(a, K) follows from the fact that a pair (a, K) determines the

distribution of (v, Y) as N ((v, a), (v, K v)), hence by classical Cramér–Wold theorem
the entire distribution is determined uniquely. Notice by the way that the distribution
of (v, Y) yields a formula for the characteristic function

Eei(v,Y )= exp

{
i(v, a)− (v, K v)

2

}
.

Finally, all components of a Gaussian vector are normal random variables, hence
they have finite second moments. Therefore, any Gaussian vector has an expectation
and a covariance operator, i.e. any Gaussian distribution can be written in the form
N (a, K ).



4 Lectures on Gaussian Processes

Exercise 1.1 Assume that a vector Y satisfies Definition 1.2. Prove that it also sat-
isfies Definition 1.1.

Exercise 1.2 Let all components of a random vector Y be normal random variables.
Does it follow that Y is a Gaussian vector?

As in the one-dimensional case, the Gaussian property is preserved by summation
of independent random vectors (stability property) and by a linear transformation.
If the vectors X1∼ N (a1, K1) and X2∼ N (a2, K2) are independent, then X1 +
X2∼ N (a1 + a2, K1 + K2).

If L : Rn �→ R
n is a linear operator, h ∈ R

n, and X ∼ N (a, K ), then

L X + h∼ N (h + La, L K L∗).

Norm distribution of a Gaussian vector

Let X = (X j )
n
j = 1 ∈ R

n be a standard Gaussian vector. The density formula
yields

P{||X || ≤ R}= c
∫ R

0
rn−1 exp{−r2/2}dr,

with a normalizing factor c= 21−n/2Γ (n/2)−1. We also know that

E||X ||2=
n∑

j = 1

EX2
j = n.

Moreover, if n is large, a substantial part of mass of the standard Gaussian distribution
is concentrated in a band of constant width around

√
n. Indeed, we can apply the law

of large numbers and the central limit theorem to the sum

||X ||2=
n∑

j = 1

X2
j ,

thus

1

n

n∑
j = 1

X2
j ⇒ 1, hence

||X ||√
n
⇒ 1.

For a band of width r we have

P
{∣∣||X || − √n

∣∣ ≤ r
}

=P

{
(
√

n − r)2 − n√
n

≤
∑n

j = 1 X2
j − n√

n
≤ (

√
n + r)2 − n√

n

}

→ 2Φ

⎛
⎝ 2r√

Var(X2
j )

⎞
⎠− 1= 2Φ

(√
2 r
)
− 1.
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These calculations show that in high-dimensional spaces the standard Gaussian
distribution is similar to the uniform distribution on the sphere of a corresponding
radius.

1.3 Gaussian Objects in “Arbitrary” Linear Spaces

Let X be a linear topological space (its additional required properties will be men-
tioned below). Let X ∗ denote the dual space of continuous linear functionals on
X . We denote (f, x) the duality between the spaces X and X ∗, i.e. (f, x) stands for
the value of a functional f ∈ X ∗ on an element x ∈ X . A random vector X taking
values in X is a measurable mapping X : (Ω,F , P) �→ X . A σ -field on X should
be sufficiently large to provide measurability of all continuous linear functionals.

Gaussian vectors, their expectations and covariance operators are defined in a
same way as in the finite-dimensional case.

A random vector X ∈ X is called Gaussian, if (f, x) is a normal random variable
for all f ∈ X ∗.

A vector a ∈ X is called expectation of a random vector X ∈ X , if
E( f, X)= ( f, a) for all f ∈ X ∗. We write a=EX in this case. A linear opera-
tor K : X ∗ �→ X is called covariance operator of a random vector X ∈ X , if
cov(( f1, X), ( f2, X))= ( f1, K f2) for all f1, f2 ∈ X ∗. We write K = cov(X) in
this case. Covariance operator is symmetric,

( f, K g)= (g, K f ), ∀ f, g ∈ X ∗,

and non-negative definite, i.e.

( f, K f ) ≥ 0, ∀ f ∈ X ∗.

From the definition of Gaussian vector, we see that it only makes sense when the space
of continuous linear functionals on X is rich enough. For example, if X ∗ = {0},
then any vector satisfies this definition rendering it senseless. Therefore, usually one
of three situations of increasing generality is considered.

(1) X is a separable Banach space, for example, C[0, 1], L p[0, 1] etc.
(2) X is a complete separable locally convex metrizable topological linear space,

for example, C[0,∞), R
∞ etc.

(3) X is a locally convex linear topological space and a vector X is such that its
distribution is a Radon measure.

In cases (1) and (2) every finite measure is a Radon measure, thus case (3) is the
most general one.

In the subsequent exposition, we always assume by default that one of these
assumptions is satisfied (i.e. at least assumption (3) holds), and call them usual
assumptions.
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As in finite-dimensional case, we assert that X has a distribution N (a, K ), if X is
a Gaussian vector with expectation a and covariance operator K.

The same questions arise again:

• Does N (a, K ) exist for all a ∈ X and all symmetric non-negative definite oper-
ators K : X ∗ �→ X ?

• Is the distribution N (a, K ) unique?
• Is it true that any Gaussian distribution has a form N (a, K )?

The answers will be slightly different from those given in the previous subsection.
As for the first question, the existence of N (a, K ) depends only on K. Indeed, if a
random vector X has a distribution N (a1, K ), then the vector X + a2 − a1 has
a distribution N (a2, K ). On the other hand, the following exercise shows that the
distribution N (0, K ) does not necessarily exist for a symmetric non-negative definite
operator K.

Exercise 1.3 Let X be an infinite-dimensional separable Hilbert space. Then
X ∗ =X and identity operator E : X �→ X is a symmetric non-negative def-
inite operator. Prove that the distribution N (0, E) does not exist. Hint: would a
random vector X have distribution N (0, E), it would satisfy an absurd identity
P(||X ||2=∞)= 1.

Finding a criterion for existence of N (0, K ) is highly non-trivial problem, and
the solution depends on the space X . This question is deliberately omitted in these
lectures (except for the Hilbert space case), because we are rather interested in inves-
tigation of objects that certainly exist.

Fortunately, under usual assumptions we can give positive answers on two remain-
ing questions. Namely, every Gaussian vector possesses an expectation and a covari-
ance operator, see [117] for details. Therefore, its distribution belongs to the family
{N (a, K )}.

Furthermore, a pair (a, K ) determines the distribution of a variable (f, x) as
N (( f, a), ( f, K f )), and we find the characteristic function

Eei( f, X)= exp

{
i( f, a)− ( f, K f )

2

}
.

Any Radon distribution in X is determined by its characteristic function. Therefore,
distribution N (a, K ) is unique.

2 Examples of Gaussian Vectors, Processes and Distributions

Example 2.1 (Standard Gaussian measure in R
∞) Consider the space of all

sequences R
∞ equipped with topology of coordinate convergence. It becomes a

complete separable metric space by introducing an appropriate distance, e.g.
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ρ(x, y)=
∞∑

j = 1

2− j min{|x j − y j |, 1}.

Thus, our “usual assumptions” are satisfied. Recall that the dual space X ∗ = c0 is a
space of all finite sequences, and the duality is

( f, x)=
∞∑

j = 1

f j x j ,

where the sum is in fact a finite one. Consider a sequence of i.i.d. N (0, 1)-distributed
random variables as a vector X ∈ X . Due to stability of normal distribution,
for any f ∈ X ∗ the random variable (f,X) is N (0, σ 2)-distributed with variance
σ 2= ∑∞

j = 1 f 2
j . Therefore, X is a Gaussian vector. It is clear that EX = 0. Embed-

ding operator K : c0 �→ R
∞ serves as covariance operator for X. Indeed,

cov(( f, X)(g, X))=E( f, X)(g, X)=E

⎛
⎝ ∞∑

j = 1

f j X j

⎞
⎠
⎛
⎝ ∞∑

j = 1

g j X j

⎞
⎠

=
∞∑

j1 = 1

∞∑
j2 = 1

f j1 g j2E
(
X j1 X j2

) =
∞∑

j = 1

f j g j = ( f, K g).

We call the distribution of X a standard Gaussian measure in R
∞.

Example 2.2 (Gaussian vectors in a Hilbert space) Let X be a separable Hilbert
space whose scalar product will be denoted by (·, ·). Then we may identify X ∗ with
X . The “usual assumptions” are clearly satisfied. For building a Gaussian vector in
X we need: an orthonormal base (e j ) in X , a sequence of independent N (0, 1)-
distributed random variables (ξ j ), and a sequence of non-negative numbers (σ j )

satisfying assumption
∑∞

j = 1 σ 2
j <∞. Then we define X by the formula

X =
∞∑

j = 1

σ j ξ j e j , (2.1)

where the series is a.s. convergent in Hilbert norm of X . This representation is called
Karhunen–Loève expansion.

For any f = ∑
j f j e j ∈ X the random variable

( f, X)=
∞∑

j = 1

σ j f j ξ j

is normally distributed with zero mean and variance
∑∞

j = 1 σ 2
j f 2

j . Therefore, X is a
Gaussian random vector and EX = 0. In order to find its covariance operator, let us
compute
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cov(( f, X)(g, X))=E( f, X)(g, X)=E

⎛
⎝ ∞∑

j = 1

σ j f jξ j

⎞
⎠
⎛
⎝ ∞∑

j = 1

σ j g j ξ j

⎞
⎠

=
∞∑

j1 = 1

∞∑
j2 = 1

f j1σ j1 g j2σ j2E
(
ξ j1ξ j2

) =
∞∑

j = 1

σ 2
j f j g j .

Therefore,

( f, K g)=
∞∑

j = 1

σ 2
j f j g j .

By plugging in the base elements, we find that

K : g �→
∞∑

j = 1

σ 2
j g j e j .

In other words, K is a diagonal operator with respect to the base e j and σ 2
j are the

corresponding eigenvalues.
One can show that any Gaussian vector in a Hilbert space admits a representation

(2.1), see [157]. This means that a Gaussian distribution with covariance operator K
exists iff, in appropriate base, K has a diagonal form with non-negative eigenvalues,
and the sum of these eigenvalues is finite.

Exercise 2.1 Prove the convergence of series (2.1) that defines vector X.

Further examples of Gaussian vectors and distributions are related to the notion
of Gaussian random process. Recall that a random process X on a parametric set T is
a family of random variables X (t, ω), t ∈ T, defined on a common probability space
(Ω,F , P). A process X is called Gaussian if for any t1, . . . , tn ∈ T the distribution of
the random vector (X (t1), . . . , X (tn)) is a Gaussian distribution in R

n. The properties
of a Gaussian process are completely determined by its expectation EX (t), t ∈ T,

and covariance cov(X (s), X (t)), s, t ∈ T .

If T is a topological space, we say that X has continuous sample paths, if the
function X (·, ω) is continuous on T for P-almost every ω ∈ Ω.

Example 2.3 (Wiener process) Let X =C[0, 1] be the Banach space of all contin-
uous functions on the interval [0, 1] equipped with the supremum norm

||x || = max
t∈[0,1] |x(t)|

and with the corresponding topology of uniform convergence. The dual space
X ∗ =M[0, 1] is the space of charges (sign measures) of finite variation on [0, 1].
The duality is given by

(μ, f )=
∫
[0,1]

f dμ, μ ∈ M[0, 1], f ∈ C[0, 1].
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We will now consider a Gaussian vector composed of the sample paths of a Wiener
process X =W (t), 0 ≤ t ≤ 1, i.e. of a process satisfying assumptions

EW (t)= 0, EW (s)W (t)= min{s, t}.
Let us find the expectation and covariance operator of W. Since

E(μ, W )=E

∫
[0,1]

W dμ=
∫
[0,1]

EW (t)μ(dt)= 0,

we have EW = 0. Moreover,

cov((μ, W ), (ν, W ))=E(μ, W )(ν, W )=E

∫
[0,1]

W dμ

∫
[0,1]

W dν

=E

∫
[0,1]2

W (s)W (t)μ(ds)ν(dt)

=
∫
[0,1]2

EW (s)W (t)μ(ds)ν(dt)

=
∫
[0,1]2

min{s, t}μ(ds)ν(dt).

Therefore,

(μ, Kν)=
∫
[0,1]2

min{s, t}μ(ds)ν(dt),

and we find that

(Kν)(s)=
∫
[0,1]

min{s, t}ν(dt).

Recall the basic properties of a Wiener process.

• It is 1/2-self-similar, i.e. for any c > 0 the process Y (t) := W (ct)√
c

is also a Wiener
process;

• It has stationary increments;
• It has independent increments;
• It is a Markov process;
• It admits time inversion: the process Z(t) := tW ( 1

t ) is also a Wiener process.

To a large extent, the importance of Wiener process is explained by its fundamental
role in stochastic calculus and in the limit theorems for random processes (invariance
principle).

A careful reader will notice that we did not use any special properties of Wiener
process (except for sample path continuity W ∈ C[0, 1]), while computing its covari-
ance. Therefore, we can extend the previous example to the following one.
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Example 2.4 (Arbitrary continuous Gaussian process) Let T be a compact met-
ric space, let X =C(T ) denote the Banach space of all continuous functions on
T equipped with supremum norm ||x || = maxt∈T |x(t)| and with the corresponding
topology of uniform convergence. The dual space X ∗ =M(T ) is a space of charges
(sign measures) on T. The duality is given by

(μ, f )=
∫

T
f dμ, μ ∈ M(T ), f ∈ C(T ).

Let X (t), t ∈ T, be a Gaussian random process with continuous sample paths on the
parametric set T. It is completely characterized by the functions

a(t) :=EX (t), K (s, t) := cov(X (s), X (t)).

Then we can view at X as a random element of X , while its expectation and covari-
ance operator K can be calculated by EX = a and

(Kν)(s)=
∫

T
K (s, t)ν(dt). (2.2)

We present now several most interesting Gaussian processes fitting into this
scheme.

Example 2.5 (Fractional Brownian motion) Let α ∈ (0, 2]. A Gaussian process
W (α)(t), t ∈ R, is called an α-fractional Brownian motion (fBm), if

EW (α)(t)= 0, EW (α)(s)W (α)(t)= 1

2

(|s|α + |t |α − |s − t |α).
The choice of covariance function might seem strange but there is a more natural
equivalent definition

EW (α)(t)= 0, W (α)(0)= 0, E

∣∣∣W (α)(s)−W (α)(t)
∣∣∣2 = |s − t |α. (2.3)

Notice that for α= 1 we have a classical Wiener process. If α= 2, we obtain a quite
degenerated process with linear sample paths entirely determined by their values at
a single moment: W (2)(t)= tW (2)(1).

Recall the basic properties of fractional Brownian motion which can be easily
derived from (2.3).

• It is H-self-similar for H = α
2 . This means that for any c > 0 the process Y (t) :=

W (α)(ct)
cH is also an α-fractional Brownian motion;

• It has stationary increments;
• Its increments are dependent (except for the Wiener case α= 1);
• It is not a Markov process (except for the Wiener case α= 1);
• For α ∈ (1, 2] it has a long range dependence property which will not be discussed

here.
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Fractional Brownian motion plays an important role in limit theorems for random
processes as well as the Wiener process, especially in the long range dependence
case.

Exercise 2.2 Check the equivalence of two definitions of fBm.

Exercise 2.3 Find a limit for covariance function of α-fractional Brownian motion,
as α → 0. How should one construct a process with the limiting covariance function?

Example 2.6 (Gaussian Markov processes) It is known that covariance function of
a Gaussian Markov process has a form

K (s, t)= A(min{s, t}) B(max{s, t}). (2.4)

The processes with covariances of this type can be easily derived from a Wiener
process. Let X (t)= f (t)W (g(t)), where g(·) is an increasing function. Then

EX (s)X (t)= f (s) f (t) min{g(s), g(t)}
has a form (2.4) with A= f g, B= f. Conversely, for given A, B let f = B, g= A/B.

Here are some examples of (2.4): min{s, t} (corresponds to a Wiener process),

min{s, t} − st = min{s, t}(1−max{s, t})
(corresponds to Brownian bridge) and

e−|s−t |/2= emin{s,t}/2e−max{s,t}/2

(corresponds to Ornstein–Uhlenbeck process). The latter process is an example of
Gaussian stationary process and has a very short memory in the sense that it can be
written in the form

X (t)= e−t/2 X (0)+ V (t), t ≥ 0,

with V(t) independent of the past {X (s), s ≤ 0}. The spectral representation of its
covariance involves Cauchy measure, i.e.

e−|t |/2= 2

π

∫ ∞

−∞
eitv dv

1+ 4v2 .

Example 2.7 (Brownian sheet or Wiener–Chentsov random field) A Gaussian process
W (t), t ∈ R

d+, is called Brownian sheet or Wiener–Chentsov field, if

EW (t)= 0, EW (s)W (t)=
d∏

l = 1

min{sl , tl}. (2.5)
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For d = 1 we obtain a classical Wiener process.

Correlation function of Brownian sheet admits a beautiful geometric interpreta-
tion. Let us connect with any point t ∈ R

d+ a parallelepiped

[0, t] := {s ∈ R
d : 0 ≤ sl ≤ tl , 1 ≤ l ≤ d}.

Then

d∏
l = 1

min{sl , tl}= λd ([0, s] ∩ [0, t]) ,

where λd denotes Lebesgue measure in R
d+.

It easy to deduce from (2.5) that W(t) is H-self-similar for H = d
2 . This means

that for any c > 0 the process Y (t) := W (ct)
cH is also a Brownian sheet.

Similarly to Wiener process, Brownian sheet possesses certain property of “inde-
pendent increments” that we will not state here.

Brownian sheet is a special case of tensor product of random processes, which is
a random field with covariance

K (s, t)=
d∏

l = 1

Kl(sl , tl),

where Kl(·, ·) are covariance functions of one-parametric processes that do not nec-
essarily coincide with each others. For example, a famous Kiefer field is a tensor
product of Wiener process and Brownian bridge, i.e its covariance is equal to

K (s, t)= min{s1, t1} · (min{s2, t2} − s2t2), s1, t1 ≥ 0, 0 ≤ s2, t2 ≤ 1.

Kiefer field emerges as a limit of normalized empirical distribution function taking
time into account. Recall that this function is defined for a sample {Xi , 1 ≤ i ≤ n}
of independent random variables uniformly distributed on [0, 1] by

Fn(t, r)=√n

(
#{i : Xi ≤ r, i ≤ tn}

n
− r t

)
.

As n →∞, the random fields Fn(·, ·) converge to Kiefer field in distribution.

Example 2.8 (Lévy’s Brownian function [110]) A Gaussian process W L(t), t ∈ R
d ,

is called Lévy’s Brownian function or Lévy field if

EW L(t)= 0, EW L (s)W L(t)= 1

2
(||s|| + ||t || − ||s − t ||) . (2.6)

Here || · || stands for the usual Euclidean norm in R
d .
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For d = 1 Lévy’s Brownian function corresponds to a pair of independent Wiener
processes (for t ≥ 0 and for t ≤ 0).

Similarly to the one-parametric case, there is an equivalent definition of the form

EW L(t)= 0, W L(0)= 0, E

∣∣∣W L(s)−W L(t)
∣∣∣2 = ||s − t ||. (2.7)

It is easy to observe from (2.6) that W L(t) is an H-self-similar process for H = 1
2 .

This means that for any c > 0 the process Y (t) := W L (ct)
c1/2 is also a Lévy’s Brownian

function.

Exercise 2.4 Examples 2.7 and 2.8 extend the notion of Wiener process to the case
of d-parametric random fields. State similar extensions for α-fractional Brownian
motion with arbitrary α ∈ (0, 2). Explore the self-similarity properties of extended
processes.

Example 2.9 (Bifractional Brownian motion [83]) A Gaussian process
W α,K (t), t ∈ R+, is called (α, K )-bifractional Brownian motion if

EWα,K (t)= 0, EW α,K (s)Wα,K (t)= 1

2K

(
(tα+sα)K−|t−s|αK

)
, t, s ≥ 0.

Note that letting K = 1 yields a usual fractional Brownian motion W α. The process
Wα,K exists provided that 0 < α ≤ 2, 0 < K ≤ 2, and αK ≤ 2. See Exercise
3.2 in the next section for the relation between bifractional and ordinary fractional
Brownian motion.

3 Gaussian White Noise and Integral Representations

3.1 White Noise: Definition and Integration

Many Gaussian random functions admit a convenient definition or representation by
means of white noise integral.

Let (R,A , ν) be a measure space. Let A0={A ∈ A : ν(A)<∞}. Gaussian
random function {W (A), A ∈ A0} is called Gaussian white noise with control
measure ν if EW (A)= 0 and EW (A)W (B)= ν(A ∩ B). The main properties of
Gaussian white noise are as follows:

• Var W (A)= ν(A);
• If the sets A1, . . . , An are disjoint, then the variables W (A1), . . . ,W (An) are

independent;
• If the sets A1, . . . , An are disjoint, then

n∑
j = 1

W (A j )=W

⎛
⎝ n⋃

j = 1

A j

⎞
⎠ a.s.
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Exercise 3.1 Deduce these properties from the definition.

For any function f ∈ L2(R,A , ν), we will define a white noise integral∫
R f dW . First, we do it for step functions by

∫
R

⎛
⎝∑

j

c j 1A j

⎞
⎠ dW :=

∑
j

c jW (A j ), c j ∈ R, A j ∈ A0,

and check the correctness of this definition, i.e.
∑

j

c j 1A j =
∑

i

bi 1Bi �

∑
j

c jW (A j )=
∑

i

biW (Bi ).

Next, in the class of step functions we establish linearity
∫
R

(c f )dW = c
∫
R

f dW ;
∫

R
( f + g)dW =

∫
R

f dW +
∫
R

gdW

and isometric property

E

(∫
R

f dW ·
∫
R

gdW

)
=
∫
R

f gdν,

which yields, in particular,

Var
∫

R
f dW =

∫
R
| f |2dν= || f ||22.

Clearly,

E

∫
R

f dW = 0.

Since the class of step functions is dense in L2(R,A , ν), for any function f ∈
L2(R,A , ν) we can define its integral as an L2-limit,

∫
R

f dW := lim
n→∞

∫
R

fndW .

where ( fn) is any sequence of step functions converging to f in L2. Due to isometric
property the limit exists and does not depend on the sequence ( fn). There is no
problem to transfer the above mentioned properties of the integral from the class of
step functions to the entire space L2.

Complex white noise

Complex-valued Gaussian white noise and the respective integral are defined along
the same lines as their real analogues. The covariance of complex white noise is
defined by EW (A)W (B)= ν(A ∩ B).
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Here the variables W (A) ∈ C and the integrands are complex-valued functions
f ∈ L2,C(R,A , ν). Isometric property reads as

E

(∫
R

f dW ·
∫
R

gdW

)
=
∫
R

f gdν.

Complex integration is necessary for spectral representation of a Gaussian sta-
tionary process

X (t)=
∫ ∞

−∞
eitudW (u),

where the corresponding control measure ν is the spectral measure of process X. Even
if X is a real-valued process, the corresponding noise W will be complex-valued.

3.2 Integral Representations

The properties of any centered Gaussian process X (t), t ∈ T, are entirely determined
by its covariance function K (s, t)=EX (s)X (t). To construct such a process, it is
enough to have a Gaussian white noise W on a measure space (R,A , ν) and a
system of functions {mt , t ∈ T } ⊂ L2(R,A , ν) such that

(ms, mt )2=
∫
R

ms(u)mt (u) dν(u)= K (s, t), s, t ∈ T .

In this case the process

X̃(t)=
∫

R
mt dW , t ∈ T, (3.1)

has a required covariance K(s,t). We call expression (3.1) an integral representation
of X.

Example 3.1 (Wiener process) We set (R,A , ν)= (R+,B, λ), where B is Borel
σ -field, λ is Lebesgue measure and

mt (u)= 1[0,t](u). (3.2)

Obviously,

X̃(t)=
∫

1[0,t](u)dW (u)=W ([0, t])

is a Wiener process.
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Example 3.2 (Brownian bridge) We give two representations for Brownian bridge
W 0. The first one emerges from the representation for Wiener process through linear
relation

W 0(t)=W (t)− tW (1). (3.3)

Clearly, functions

m0
t (u)= (mt − tm1)(u)= (1− t)1[0,t](u)− t1(t,1](u)

provide an integral representation for W 0.

An alternative representation is built on a square [0, 1]2 equipped with 2-dimen-
sional Lebesgue measure. We let

m̃0
t (u)= 1[0,t]×[0,1−t](u).

Then (draw a picture!)

(m̃s, m̃t )2= λ2
(
[0, s] × [0, 1− s]

⋂
[0, t] × [0, 1− t]

)
= min(s, t) ·min(1− s, 1− t)= min(s, t) · (1−max(s, t))

= min(s, t)− st,

as required for representation of W 0.

Example 3.3 (fractional Brownian motion) One can construct an integral repre-
sentation for α-fractional Brownian motion W (α)(t), t ∈ R as follows [134]. Let
R=R, ν= λ Lebesgue measure, and let W be a corresponding Gaussian white
noise. Consider a process

W (α)(t)=
∫ ∞

−∞
cα

(
(t − u)

α−1
2 1u≤t − (−u)

α−1
2 1u≤0

)
dW (u). (3.4)

Note that the integral is correctly defined exactly for 0 < α < 2. If the normalizing
factor cα is chosen appropriately, we obtain an α-fractional Brownian motion since
for all t ≥ s

E

(
W (α)(t)−W (α)(s)

)2

= c2
α

∫ ∞

−∞

(
(t − u)

α−1
2 1u≤t − (s − u)

α−1
2 1u≤s

)2
du

u= s+v= c2
α

∫ ∞

−∞

(
(t − s − v)

α−1
2 1v≤t−s − (−v)

α−1
2 1v≤0

)2
dv

v= (t−s)w= c2
α(t − s)α

∫ ∞

−∞

(
1− w)

α−1
2 1w≤1 − (−w)

α−1
2 1w≤0

)2
dw

= const · (t − s)α.



3 Gaussian White Noise and Integral Representations 17

By computing the integral one can show that the required relation

E

(
W (α)(t)−W (α)(s)

)2 = (t − s)α

is attained for

cα =
[
sin(πα

2 )Γ (α + 1)
]1/2

Γ (α+1
2 )

. (3.5)

Exercise 3.2 (see [11, 108]) Prove the following useful relations between bifrac-
tional W α,K and fractional W (αK/2) Brownian motions.

W (αK/2)(t)= c1W α,K (t)

+ c2

∫ ∞

0
(1− e−utα )u−

K+1
2 W (du), 0 < K < 1, 0 < α < 2,

W α,K (t)= c1W (αK/2)(t)

+ c2

∫ ∞

0
(1− e−utα )u−

K+1
2 W (du), 1 < K < 2, 0 <α <

2

K
,

where c1 and c2 are some appropriate positive constants depending on α, K and
W (du) denotes a standard white noise; the terms on the right hand side are indepen-
dent.

Example 3.4 (Riemann–Liouville processes and operators) Opposite to previous and
to subsequent examples, Riemann–Liouville process are defined via their integral
representation and not via covariance.

Recall that Riemann–Liouville fractional integration operator is defined by

Rα f (t)= 1

Γ (α)

∫ t

0
(t − u)α−1 f (u)du, α > 0. (3.6)

Here

Rα : L2[0, 1] �→
{

L p[0, 1], α > 1
2 − 1

p ,

C[0, 1], α > 1
2 .

If α= 1, we obtain the conventional integration operator. Riemann–Liouville oper-
ators have a remarkable semi-group property Rα Rβ = Rα+β.

Similarly to (3.6), α-Riemann–Liouville process with α > 1/2 is defined as a white
noise integral on the real line (with Lebesgue measure as a control measure)

Rα(t)= 1

Γ (α)

∫ t

0
(t − u)α−1dW (u), α > 1/2.
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When α= 1, it coincides with a Wiener process. The restriction α > 1/2 is neces-
sary for correctness of the integral definition. In other words, the integration kernel
(t − ·)α−1 must belong to L2[0, t].

The process Rα is H-self-similar with index H = 2α − 1.

The semi-group property yields Rα Rβ = Rα+β.

As one can observe from (3.4), for α ∈ (1/2, 3/2) the local properties of α-
Riemann–Liouville process are close to those of α′-fractional Brownian motion with
α′ = 2α − 1.

However, opposite to fBm, the family of Riemann–Liouville processes has no
limitations in sample path smoothness, because there is no upper bound for parameter
α.

Unlike fBm, the process Rα is not a process with stationary increments. As a
compensation, it has another property called extrapolation homogeneity [125]:

Rα(t0 + ·)− E
(
Rα(t0 + ·)

∣∣Ft0

) = Rα(·), ∀t0 ≥ 0,

in distribution. Here Ft0 stands for the σ -field of the past for initial white noise W
prior to time t0, i.e.

Ft0 = σ {W (A), A ⊂ [0, t0]}.

Remark 3.1 In econometric literature, where Riemann–Liouville process appears as
a limit of discrete schemes, it is often called “fractional Brownian motion”. Therefore,
one should thoroughly avoid a confusion with the “true” fBm of Example 2.5. See
[136] for further comparison of two processes.

Example 3.5 (Brownian sheet) This is a multi-parametric extension of Example
3.1. We let here (R,A , ν)= (Rd+,Bd , λd), where Bd is Borel σ -field on R

d , λd

is d-dimensional Lebesgue measure, and define the “rectangles”

[0, t] := {u ∈ R : 0 ≤ u j ≤ t j , 1 ≤ j ≤ d}.
Then the intersection of rectangles is again a rectangle (draw a picture):

[0, s] ∩ [0, t]= {u ∈ R : 0 ≤ u j ≤ min(s j , t j ), 1 ≤ j ≤ d}.
Therefore, the functions

mt (u)= 1[0,t](u)

have a property

(ms, mt )2= λd([0, s] ∩ [0, t])=
d∏

j = 1

min(s j , t j ),
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thus

X̃(t)=
∫

1[0,t](u)dW (u)=W ([0, t])

is a Brownian sheet.

Example 3.6 (Lévy Brownian function on R
d ) Recall that LBf on R

d is defined by
(2.7). We build now its white noise representation called Chentsov integral-geometric
construction [37]. Let R be the space of all hyperplanes in R

d . There exists a unique
(up to a constant factor) measure ν on R that is invariant with respect to all unitary
transformations of R

d . For t ∈ R
d let At denote the set of all hyperplanes crossing

the segment 0, t := {r t, 0 ≤ r ≤ 1}. It is easy to observe that ν(At ) is proportional
to the length of 0, t . Let the measure ν be normalized so that ν(At )= ||t ||. Let now
W be a Gaussian white noise on R with control measure ν. Then

W L(t) :=W (At )=
∫
R

1At dW , t ∈ R
d ,

is a LBf on R
d . Indeed, the relations EW L(t)= 0 and W L(0)= 0 are obvious. More-

over, for any s, t ∈ R
d the set AsΔAt consists of the hyperplanes crossing the segment

s, t := {s + r t, 0 ≤ r ≤ 1} (we ignore the ν-null set of hyperplanes that contain one
of the points 0, s, t). Therefore,

E(W L (s)−W L(t))2=E(W (As)−W (At ))
2= ν(AsΔAt )= ||s − t ||,

as required.
One may ”pack” this integral-geometric construction into R

d , rendering it more
elementary although less transparent. Indeed, let R0 be the set of all hyperplanes
crossing the origin. Then there exists a natural bijection between the sets R\R0 and
R

d\{0}. i.e. to each hyperplane corresponds its point having the minimal distance
to the origin. This bijection transforms the set At into the ball Ãt of radius ||t ||/2
centered at t

2 (the segment 0, t is a diameter for this ball; check it!). The image
of ν is a spherically symmetric measure ν̃= drμ(dθ), where μ(dθ) is appropriately
normalized uniform measure on the unit sphere (prove it!). It is clear that the measure
ν̃ is different from Lebesgue measure on R

d . If W̃ is a white noise on R
d with control

measure ν̃, then W̃ ( Ãt) is also a LBf.
One can implement an integral-geometric construction, similar to Chentsov con-

struction, for LBf on a sphere 1, on a hyperbolic space, and in some other cases.

Example 3.7 (Lévy Brownian function on L1, [118]). A centered Gaussian random
function {W L(t), t ∈ T } parameterized by a metric space (T, ρ) with a marked point
ϑ is called Lévy Brownian function (LBf) if W L(ϑ)= 0 and

E(W L(t)−W L(s))2= ρ(s, t), s, t ∈ T .

1 Instead of hyperplanes one should use the circles of maximal radius.



20 Lectures on Gaussian Processes

The spaces L1 provide one of the most interesting space classes for which LBf is
well defined. Indeed, let T = L1(U,U , μ) be our parametric space with a marked
point ϑ = 0, and with the L1-distance

ρ( f, g)=
∫

U
| f (u)− g(u)|μ(du).

Let R=U×R, ν=μ×λ and consider a Gaussian white noise W on R with control
measure ν. For any function f ∈ T define its subgraph by

A f ={(u, r) : |r | ≤ | f (u)|, r f (u) ≥ 0, u ∈ U, r ∈ R} ⊂ R.

Then

W L( f ) :=W (A f )=
∫
R

1A f dW , f ∈ T,

is a LBf. Indeed,

E(W L
f −W L

g )2=E(W (A f )−W (Ag))
2=

∫
R

(1A f − 1Ag )
2dν

= ν(A f ΔAg)=
∫

U
μ(du)λ

(
(A f ΔAg) ∩ (u × R)

)

=
∫

U
μ(du)| f (u)− g(u)| = || f − g||1= ρ( f, g).

Exercise 3.3 Let S be the unit sphere in R
d and let μ be a uniform measure on S,

normalized so that for any x ∈ R
d it is true that

||x || =
∫

S
|(x, u)|μ(du).

Then R
d is isometrically embedded in L1(S, μ) by

x �→ fx (·) := (x, ·).
By using this embedding, establish a connection between the integral representations
of LBf on the spaces R

d and L1, described in Examples 3.6 and 3.7, respectively.

Integral representations for stationary processes

We will consider a real-valued stationary Gaussian centered process X (t), t ∈ R.

By stationarity its covariance is EX (t)X (s)= K (t − s) where the function K is
real-valued and non-negative definite. Therefore, K admits a spectral representation2

2 We basically assume the basic spectral theory of stationary processes to be known and don’t
provide much details, see [182] for more.
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K (τ )=
∫ ∞

−∞
eiτuν(du), τ ∈ R,

where ν is a finite symmetric measure on R. In particular, Var X (t)= ν(R) for all t.
The process X itself admits a spectral representation

X (t)=
∫ ∞

−∞
eituW (du), t ∈ R, (3.7)

where W is a complex-valued Gaussian noise with uncorrelated but dependent val-
ues. One can express X via more conventional real-valued white noise as follows.
Let W (re),W (im) be two independent copies of Gaussian white noise on (0,∞) con-
trolled by the measure ν/2 and let W0 be a centered Gaussian random variable with
distribution N (0, ν({0})) independent of W (re),W (im). Then W ({0})=W0 and

W (A)=
{

W (re)(A)+ iW (im)(A), A ⊂ (0,∞),

W (re)(−A)− iW (im)(−A), A ⊂ (−∞, 0).

Clearly, there is a dependence W (−A)=W (A) that actually provides the real values
of X in the integral (3.7). In this case, our process writes as a sum of independent
terms

X (t)=W0 + 2
∫ ∞

0
cos(tu)W (re)(du)+ 2

∫ ∞

0
sin(tu)W (im)(du).

The just described construction admits various extensions, e.g. for random fields
(t, u ∈ R

d), random sequences (t ∈ Z, u ∈ S
1), and periodical processes (t ∈

S
1, u ∈ Z). It can be also extended to random processes and fields with stationary

increments.
Let us now consider two more representations for stationary processes. Assume

that the spectral measure ν has a density f and take any measurable function θ : R �→
S

1. Then a family of functions {mt , t ∈ R} ⊂ L2,C(R) is defined by

mt (u) := θ(u)eitu
√

f (u), u ∈ R.

Clearly,

(mt , ms)2=
∫

R

mt (u)ms(u)du

=
∫

R

|θ(u)|2ei(t−s)u f (u)du

=
∫

R

ei(t−s)uν(du)

= K (t, s)=EX (t)X (s).
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One can obtain more clear representation by applying to (mt ) the Fourier transform
F : L2,C(R) �→ L2,C(R). Let denote h=F

(
θ(·)√ f (·)) and consider the family

m̃t (·)=F (mt )(·)= h(· − t).

By isometric property of Fourier transform we have

(m̃t , m̃s)2= (mt , ms)2=EX (t)X (s).

If an auxiliary function θ is chosen so cleverly that h(·) is real-valued, we obtain
a shift representation of a process X via the white noise controlled by Lebesgue
measure.

X (t)=
∫

R

h(u − t)W (du).

Example 3.8 (Ornstein–Uhlenbeck process) Recall that Ornstein–Uhlenbeck
process defined in Example 2.6, has covariance function

K (τ )= e−|τ |/2=
∫

R

eiτu 2du

π(1+ 4u2)
.

Therefore, its spectral density is

f (u)= 2

π(1+ 4u2)
.

By letting θ(u)= 1+2iu
(1+4u2)1/2 we obtain

mt (u)= eitu
(

2

π(1+ 4u2)

)1/2 1+ 2iu

(1+ 4u2)1/2 = eitu(2π)−1/2(
1

2
− iu)−1

and

h(v)= (Fm0)(v)= e−v/21v > 0.

Therefore the shift representation of Ornstein–Uhlenbeck process has a form

X (t)=
∫ ∞

t
e−(v−t)/2W (dv).

4 Measurable Functionals and the Kernel

4.1 Main Definitions

After having collected a good deal of examples, we may continue construction of a
general theory started in Sect. 1. We will still consider a Gaussian vector X taking
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values in a linear space X satisfying usual assumptions. Assume that EX = 0 and let
K : X ∗ �→ X denote the covariance operator of X and P = N (0, K ) the distribution
of X in X .

Consider arbitrary continuous linear functional f ∈ X ∗. Since the random vari-
able (f, x) is normally distributed, it has a finite second moment,

E( f, X)2=
∫
X
| f |2dP <∞.

Therefore, a canonical embedding I ∗ of the dual space X ∗ into the Hilbert space
L2(X , P) is well defined. The closure of I ∗(X ∗) in L2(X , P) is called the space
of measurable linear functionals and denoted X ∗

P . It inherits from L2(X , P) the
scalar product

(z1, z2)X ∗
P
= (z1, z2)2=

∫
X

z1z2dP =E(z1(X)z2(X)).

In particular,

||z||2X ∗
P
=Ez(X)2.

Every measurable linear functional is a limit (in L2(X, P) and P-almost surely) of a
sequence of continuous linear functionals.

In the following it will be more convenient for us to consider I∗ as an embedding

I ∗ : X ∗ �→ X ∗
P .

The dual operator I : X ∗
P �→ X is defined by a natural relation

( f, I z)= (I ∗ f, z)X ∗
P
=E( f, X)z(X), ∀ f ∈ X ∗, z ∈ X ∗

P .

The existence of this dual operator is not obvious, since we said nothing about the
continuity of the initial operator I ∗. It is, however possible to prove that under usual
assumptions stated in Sect. 1 the dual operator indeed exists.

The operator I is linear and injective: if I z= 0 holds for some z ∈ X ∗
P , then we

have

(I ∗ f, z)= ( f, I z)= 0

for any f ∈ X ∗. By considering a sequence I ∗ fn converging to z, we obtain
||z||X ∗

P
= 0, i.e. z = 0.

It is also important to notice that covariance operator admits a factorization

K = I I ∗. (4.1)

Indeed,
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( f, I I ∗g)= (I ∗ f, I ∗g)=E( f, X)(g, X)= ( f, K g) ∀ f, g ∈ X ∗.

Now we are able to give a fundamental definition: the set HP := I (X ∗
P ) ⊂ X

equipped with the scalar product

(h1, h2)HP :=
(

I−1h1, I−1h2

)
X ∗

P

, h1, h2 ∈ HP ,

and with the corresponding norm

|h|2HP
:= (h, h)HP , h ∈ HP ,

is called the kernel of distribution P.
Correctness of the norm definition is guaranteed by the injection property of

operator I. The unit ball {h ∈ HP : |h|HP ≤ 1} is sometimes called dispersion
ellipsoid of measure P. We can also call H the kernel of vector X but in this case one
should remember that the kernel is entirely determined by the vector’s distribution.

The following exposition will demonstrate that the kernel contains all important
information about P and X; the solution to any important problem is expressed in
terms of the kernel. Let us first mention some simple properties of the kernel.

• By (4.1) we have K (X ∗) ⊂ HP ⊂ X . If HP is finite-dimensional, then all three
spaces coincide. Otherwise, they are all different.

• If HP is infinite-dimensional, then P(HP)= 0 (in spite of all importance HP for
description of P !)

• Topological support of measure P coincides with the closure of HP in X .

• The space HP is separable.
• The balls

{
h ∈ HP : |h|HP ≤ r

}
are compact sets in X .

Example 4.1 (Standard Gaussian measure in R
∞ ). Consider a standard Gaussian

vector X defined in Example 2.1. For any f, g ∈ c0=X ∗ we have

(I ∗ f, I ∗g)X∗P =E

⎛
⎝ ∞∑

j = 1

f j X j

⎞
⎠
⎛
⎝ ∞∑

j = 1

g j X j

⎞
⎠ =

∞∑
j = 1

f j g j = ( f, g)2.

It follows that a generic form of a measurable linear functional z ∈ X ∗
P is

z(x)=
∞∑

j = 1

z j x j , (z j ) ∈ �2.

Moreover, by using coordinate functionals δk we can write

(I z)k = (δk, I z)= (I ∗δk, z)X ∗
P
=E

⎡
⎣Xk

⎛
⎝ ∞∑

j = 1

z j X j

⎞
⎠
⎤
⎦ = zk .
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This means that HP = �2, (h1, h2)HP = (h1, h2)2 and |h|HP = ||h||2.
Example 4.2 (Gaussian vectors in a Hilbert space) Consider a Gaussian vector X
in a Hilbert space defined in Example 2.2. For any f, g ∈ X =X ∗ we have

(I ∗ f, I ∗g)X∗P =E

⎛
⎝ ∞∑

j = 1

f jσ jξ j

⎞
⎠
⎛
⎝ ∞∑

j = 1

g jσ j ξ j

⎞
⎠ =

∞∑
j = 1

f j g jσ
2
j .

It follows that

X ∗
P =

⎧⎨
⎩z : z(x)=

∞∑
j = 1

z j x j ,

∞∑
j = 1

z2
jσ

2
j <∞

⎫⎬
⎭ ,

||z||2X ∗
P
=

∞∑
j = 1

z2
jσ

2
j , z ∈ X ∗

P .

Again, by using coordinate functionals, we obtain

(ek, I z)= (I ∗ek , z)=E

⎛
⎝σkξk

⎛
⎝ ∞∑

j = 1

z jσ jξ j

⎞
⎠
⎞
⎠ = σ 2

k zk ,

i.e.

I z=
∞∑

j = 1

σ 2
j z j e j .

If h= I z ∈ HP , then

||h||2HP
= ||z||2X P

=
∞∑

j = 1

z2
jσ

2
j =

∞∑
j = 1

h2
j

σ 2
j

.

This means that

HP =
⎧⎨
⎩h ∈ X :

∞∑
j = 1

h2
j

σ 2
j

<∞

⎫⎬
⎭

and

(h1, h2)HP =
∞∑

j = 1

(h1) j (h2) j

σ 2
j

,

where h j = (h, e j ) are the coordinates of h in the base (e j ).
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Example 4.3 (Finite-dimensional Gaussian vector) Let X =R
n and assume that a

vector X has a distribution P = N (0, K ) with a non-degenerate covariance operator
K : Rn �→ R

n, i.e. K (Rn)=R
n. Then K is a diagonal operator with respect to some

base (e j ),

K

⎛
⎝ n∑

j = 1

x j e j

⎞
⎠ =

n∑
j = 1

σ 2
j x j e j ,

where σ j > 0 for all j. It follows that X can be represented by X = ∑n
j = 1 σ j ξ j e j , as

considered in the previous example. By applying the results we obtained there, we
see that HP =R

n and

(h1, h2)HP =
∞∑

j = 1

(h1) j (h2) j

σ 2
j

= (K−1h1, h2),

|h|2HP
= (K−1h, h)= ||K−1/2h||2.

4.2 Factorization Theorem

Unlike the few mentioned examples, in most cases there is no elementary trick for
immediate determination of the kernel for a Gaussian distribution. For this purpose,
the following result will be useful.

Theorem 4.1 (Factorization Theorem) Let H be a Hilbert space and let J : H �→
X be an injective linear mapping such that factorization

K = J J ∗

holds. Then the kernel of P can be expressed as HP = J (H ), while the scalar product
and the norm in HP admit representations

(h1, h2)HP = (J−1h1, J−1h2)H , ∀h1, h2 ∈ HP ,

|h|HP = ||J−1h||H , ∀h ∈ HP . (4.2)

Remark 4.1 If the operator J is not injective, the equality HP = J (H ) still holds
but (4.2) should be replaced by

|h|HP = inf
�:J�= h

{||�||H }, ∀h ∈ HP .

Remark 4.2 We have already shown that operator I generates a required factorization
and can be formally considered within theorem’s frame. The main advantage of
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Factorization Theorem is, however, the freedom of choice of H and J for calculation
convenience.

Proof (of the theorem). Let us define an isometry U between the spaces I ∗(X ∗) ⊂
X∗P and J∗(X ∗) ⊂ H by the relation

U I ∗ f := J∗ f, f ∈ X ∗.

It is true that

(U I ∗ f, U I ∗g)H = (J ∗ f, J ∗g)H = ( f, J J∗g)= ( f, K g)= ( f, I I ∗g)

= (I ∗ f, I ∗g)X ∗
P
.

and we see that the scalar product (hence, norms and distances) is conserved by U.
Clearly, isometry U can be extended to the respective closures. By the definition,
the closure of I ∗(X ∗) is X∗P . Moreover, we can prove that the closure of J∗(X ∗)
coincides with H . Indeed, if an element � ∈ H is orthogonal to J ∗(X ∗), then for
all f ∈ X ∗

0= (J ∗ f, �)H = ( f, J�).

It follows that J�= 0 and injective property of J yields �= 0. Therefore, the extension
of U is an isometry of spaces X∗P and H . Let us check an operator identity

I = JU. (4.3)

Assuming this is proved, we have

HP = I (X∗P)= JU (X∗P)= J (H ),

|h|HP = ||I−1h||X∗P = ||U−1 J−1h||X∗P = ||J−1h||H .

Thus, let us prove (4.3). For any z ∈ X∗P , f ∈ X ∗ we have

( f, JU z)= (J ∗ f, U z)H = (U−1 J∗ f, z)X∗P = (I ∗ f, z)= ( f, I z).

It follows that (JU )z= I z. ��
Example 4.4 (Wiener process) We find the kernel for the distribution of Wiener
process defined in Example 2.3. Let X =C[0, 1], X =W, H = L2[0, 1]. We
define operator J : H �→ X as integration operator

(J�)(t)=
∫ t

0
�(s)ds.

Recall that X ∗ =M[0, 1] is a space of charges (sign measures) on [0, 1]. It is easy
to check that J ∗ : M[0, 1] �→ H is given by
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(J∗μ)(s)=μ[s, 1].
It follows that

(J J∗μ)(t)=
∫ t

0
(J∗μ)(s)ds=

∫ t

0
μ[s, 1]ds

=
∫ 1

0

∫ 1

0
1s≤t 1s≤uμ(du)ds

=
∫ 1

0
min{t, u}μ(du)= Kμ(t).

Therefore, factorization assumption is verified. Moreover, J is an injective operator.
By applying Theorem 4.1, we conclude that the kernel of Wiener measure is given
by

HP =
{

h : h(t)=
∫ t

0
�(s)ds, � ∈ L2[0, 1]

}

= {
h : h ∈ AC[0, 1], h(0)= 0, h′ ∈ L2[0, 1]} . (4.4)

Here AC[0, 1] denotes the class of absolutely continuous functions. The norm and
the scalar product in HP are given by

|h|2HP
=
∫ 1

0
h′(s)2ds,

(h1, h2)HP =
∫ 1

0
h′1(s)h′2(s)ds.

This is actually a Sobolev space W 1
2 with a one-sided boundary condition. The

kernel of Wiener measure was discovered in the works of Cameron and Martin [34]
and was the first investigated kernel. Therefore, it is often called Cameron–Martin
space. Sometimes this name is even extrapolated to the kernels of other Gaussian
distributions.

Remark 4.3 The kernel (considered as a set and as a Hilbert space) actually does
not depend on the space in which we consider our Gaussian vector. For example, if
a Wiener process is considered as a random element of the space X̃ = L2[0, 1], the
kernel turns out to be the same Cameron–Martin space.

Example 4.5 (The kernel of a process admitting an integral representation). Consider
a Gaussian process X (t), t ∈ T, admitting an integral representation with respect to
a white noise on a space (R,A , ν),

X (t)=
∫
R

mt (u)W (du), t ∈ T, mt ∈ L2(R,A , ν).

which is equivalent to representation of covariance function of X in the form
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K (s, t) :=EX (s)X (t)=
∫
R

msmt dν, s, t ∈ T .

In order to avoid unnecessary topological details, let us assume that T is a compact
topological space and that the sample paths of X are continuous on T. Then we may
assume that X is a random vector in X =C(T ) having integral covariance operator
(cf. (2.2), Example 2.4).

Let H = L2(R,A , ν) and define an operator J : H �→ X by the formula

(J�)(t) := (�, mt )H =
∫
R

�mt dν, t ∈ T .

The dual operator J∗ : M(T ) �→ H writes as

(J∗μ)(u)=
∫

T
ms(u)μ(ds)

and we obtain

(J J ∗μ)(t)=
∫
R

(J ∗μ)(u)mt (u)ν(du)=
∫
R

∫
T

ms(u)μ(ds)mt(u)ν(du)

=
∫

T

∫
R

ms(u)mt(u)ν(du)μ(ds)

=
∫

T
K (s, t)μ(ds)= (Kμ)(t).

Therefore, factorization assumption is verified. By applying Theorem 4.1, we see
that

HP =
{

h : h(t)=
∫
R

�(u)mt(u)ν(du), � ∈ L2(R,A , ν)

}
. (4.5)

If the operator J is injective, we find the norm

|h|2P =
∫

l(u)2ν(du)

and the respective scalar product.
The kernel of Wiener process (4.4) can be obtained as a special case of this

construction by using representation (3.2). We will now discuss two more examples.

Example 4.6 (Kernel of a fractional Brownian motion [77]). Recall that α-fractional
Brownian motion (fBm) W (α)(t), t ∈ R, was defined in Example 2.5 and its integral
representation was calculated in Example 4.6. By plugging this representation in
(4.5), we find the kernel
{

h : h(t)=
∫ ∞

−∞
cα

(
(t − u)

α−1
2 1u≤t − (−u)

α−1
2 1u≤0

)
�(u)du, � ∈ L2(R)

}
.
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In other words, a function belongs to the kernel of fBm, if its fractional derivative of
order α+1

2 is square integrable.

Exercise 4.1 Find the kernel of α-Riemann–Liouville process defined in Example
3.4.

Example 4.7 (Kernel of Brownian sheet) Recall that Brownian sheet W (t), t ∈ R
d+

was defined in Example 2.7 and its integral representation was found in Example
3.5. By plugging this representation in (4.5) we find the kernel

{
h : h(t)=

∫
[0,t]

�(u)λd(du), � ∈ L2(R
d+)

}
.

in other words, a function h : R
d+ �→ R belongs to the kernel of Brownian sheet if

its mixed derivative ∂d

∂t1...∂td
h is square integrable.

It will be useful to study the behavior of kernels under linear transformations. Let
X ∈ X be a centered Gaussian vector with covariance operator KX and distribution
P = N (0, K X ), and let L : X → Y be a continuous linear mapping. Consider
Y := L X, the image of X under L. Obviously, Y is a Gaussian vector in Y with
covariance operator KY = L K X L∗ and distribution Q := P L−1.

Proposition 4.1 It is true that

HQ = L(HP)

and

|v|HQ = inf
h∈L−1v

|h|HP , ∀v ∈ HQ .

Proof. Let I, I ∗ denote the canonical operators related to vector X. Then we have a
factorization

KY = L K X L∗ = L I I ∗L∗ = (L I )(L I )∗.

By Theorem 4.1 we obtain HQ = (L I )(X ∗
P )= L(HP), and for any v ∈ HQ

|v|HQ = inf
z∈(L I )−1v

||z||X ∗
P
= inf

z∈(L I )−1v
|I z|HP = inf

h∈L−1v
|h|HP .

��
We demonstrate this Proposition’s action by two examples.

Example 4.8 (Kernel of Ornstein–Uhlenbeck process) Recall that Ornstein–Uhlen-
beck process was defined in Example 2.6 as a linear transformation of Wiener process,
X (t)= e−t/2W (et ). Let X =C[0, e], Y =C[0, 1], and define a linear operator L
by (Lw)(t)= e−t/2w(et ). According to Proposition 4.1, we have to find the L-image
of Wiener kernel (4.4). Let v = Lh. Then h admits a partial expression via v by
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h(s)=√sv(ln s), 1 ≤ s ≤ e.

Hence, h(1)= v(0) and

∫ e

1
h′(s)2ds=

∫ e

1

(
v(ln s)

2
√

s
+
√

sv′(ln s)

s

)2

ds

=
∫ e

1

(
v(ln s)

2
+ v′(ln s)

)2 ds

s

=
∫ 1

0

(
v(t)

2
+ v′(t)

)2

dt

= 1

4

∫ 1

0
v(t)2dt +

∫ 1

0
v(t)v′(t)dt +

∫ 1

0
v′(t)2dt

= 1

4

∫ 1

0
v(t)2dt + v(1)2 − v(0)2

2
+
∫ 1

0
v′(t)2dt.

The function h is not uniquely defined on the interval [0, 1] by the relation; we
only know that h(0)= 0, h(1)= v(0). Under these conditions the minimum of the
integral of squared derivative is attained on a linear function and is equal to v(0)2,

since

∫ 1

0
h′(s)2ds ≥

(∫ 1

0
h′(s)ds

)2

= (h(1)− h(0))2 = h(1)2= v(0)2.

We conclude that the kernel HU of Ornstein–Uhlenbeck process in C[0, 1] has a
form

HU = {
v : v ∈ AC[0, 1], v′ ∈ L2[0, 1]}

and

|v|2HU = v(1)2 + v(0)2

2
+ 1

4

∫ 1

0
v(t)2dt +

∫ 1

0
v′(t)2dt, v ∈ HU .

The stationarity of the process is reflected by the invariance of the norm with respect
to the shift and to the inversion of time.

Exercise 4.2 Find the kernel of Ornstein–Uhlenbeck process in C[a, b] for arbitrary
interval [a, b] ⊂ R. Solve analogous problem for stationary Gaussian process X with
covariance function having a slightly more general form EX (s)X (t)=αe−β|s−t |.

Example 4.9 (Kernel of Brownian bridge) Recall that one of possible definitions of
Brownian bridge is

W 0(t)=W (t)− tW (1), 0 ≤ t ≤ 1,
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where W is a Wiener process. This means that W 0= LW, where operator L :
C[0, 1] �→ C[0, 1] is given by (Lw)(t)=w(t) − tw(1). It follows that the ker-
nel of Brownian bridge H0 is the L-image of the kernel of Wiener process (4.4). It
is easy to establish that

H0= {
v : v ∈ AC[0, 1], v(0)= v(1)= 0, v′ ∈ L2[0, 1]} .

Indeed, any function on the right-hand side of equality belongs to Wiener kernel
and satisfies equation Lh = h. Therefore, it belongs to H 0. Conversely, if a function h
belongs to the L-image of Wiener kernel, then it satisfies the conditions mentioned
on the equality’s right-hand side.

It remains to reconstruct the Hilbert structure in the kernel. Let v ∈ H0 and
Lh= v. Then h(t)= v(t)+ th(1), hence h′(t)= v′(t)+ h(1) and

|h|2=
∫ 1

0
h′(t)2dt =

∫ 1

0
v′(t)2dt + h(1)2 + 2h(1)

∫ 1

0
v′(t)dt

=
∫ 1

0
v′(t)2dt + h(1)2,

since

∫ 1

0
v′(t)dt = v(1)− v(0)= 0.

The minimum of this expression over h ∈ L−1v is attained when h(1) = 0, i.e. h = v.
We conclude that

|h|2H0 =
∫ 1

0
h′(t)2dt,

that is the norm and the scalar product in H0 are the same as in the kernel of the
Wiener measure.

4.3 Alternative Approaches to Kernel Definition

Reproducing kernel (RKHS)

A popular alternative approach to kernel’s construction is known as a concept of
Reproducing Kernel or Reproducing Kernel Hilbert Space, RKHS [5]. Let T be an
arbitrary set, and let K : T × T → R be a non-negative definite function (called a
kernel). The space H reproducing the kernel K is a class of functions f : T �→ R.

It is constructed as follows. We take a linear span of functions K (t, ·), t ∈ T, and
introduce a scalar product by
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〈K (s, ·), K (t, ·)〉 := K (s, t), s, t ∈ T .

Then H is obtained by a completion of this span with respect to the Hilbert distance.
Let us establish the link between this construction and our notion of the kernel. Let

T be a compact metric space, let X ∈ C(T ) be a centered Gaussian random process
with continuous sample paths and covariance function K (s, t). For any t ∈ T let us
consider a functional (δt , x) := x(t) and let ht := I I ∗δt . Then

ht (s)= (δs, I I ∗δt )= (I ∗δs, I ∗δt )X ∗
P
=EX (s)X (t)= K (s, t),

i.e. ht = K (·, t). The scalar product of two elements of this form is the same as above,
i.e.

(hs, ht )HP = (I I ∗δs, I I ∗δt )HP = (I ∗δs, I ∗δt )X ∗
P
= K (s, t).

It follows that reproducing kernel is a closed subset of HP . By approximating arbi-
trary linear functionals by linear combinations of δ-functionals, it is not hard to
establish that two spaces actually coincide.

Vector integrals

Assume that we are able to define vector-valued integrals

Ez(X)X =
∫
X

z(x)x P(dx), z ∈ X ∗
P ,

correctly. Then

( f, Ez(X)X)=Ez(X)( f, X)= (z, I ∗ f )X ∗
P
= ( f, I z), ∀z ∈ X ∗

P , f ∈ X ∗.

We obtain a representation of the kernel via vector-valued integrals [26, 105]

HP ={I z, z ∈ X ∗
P }=

{∫
X

z(x)x P(dx), z ∈ X ∗
P

}
.

Polar representation

Consider a convex set of continuous linear functionals

B=
{

f ∈ X ∗ : E( f, X)2=
∫
X

( f, x)2 P(dx)= ||I ∗ f ||2X ∗
P
≤ 1

}
.

For any h= I z ∈ HP we have

sup
f ∈B

|( f, h)| = sup
f ∈B

|( f, I z)| = sup
f ∈B

|(I ∗ f, z)X ∗
P
| ≤ ||z||X ∗

P
= |h|HP .

By approximating z by continuous functionals, it is easy to see that actually we have
an equality and

HP =
{

h ∈ X : sup
f ∈B

|( f, h)|<∞
}

.
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5 Cameron–Martin Theorem

Let X be a random vector taking values in a linear space X , let P be the distribution
of X, and let h be a vector in X ; then the distribution Ph of the vector X + h is
defined by formula

Ph(A)= P(A − h), ∀A ⊂ X ,

and is called a shift of P in direction h. We are interested in checking the absolute
continuity of Ph with respect to P. Recall that a measure Q is absolutely continuous
with respect to P (we write Q � P), if P(A)= 0 yields Q(A)= 0. There is an

equivalent property: there exists a density g := dQ
dP

∈ L1(X , P) such that

Q(A)=
∫

A
gd P, ∀A ⊂ X .

If Ph � P, then h is called admissible shift for P. If ch is an admissible shift for P
for all c ∈ R then we say that h defines an admissible direction for P.

We are interested in the case of Gaussian measures, i.e. P = N (a, K ) and
Ph = N (a + h, K ). One can essentially observe what is going on even on the real
line.

Example 5.1 Let X =R and P = N (0, 1), h ∈ R. Then the density of P with respect
to Lebesgue measure is

p(x)= 1√
2π

exp{−x2/2},

while for the measure Ph = N (h, 1) we have a density

ph(x)= 1√
2π

exp{−(x − h)2/2}.

Therefore Ph � P and

dPh

dP
(x)= ph(x)

p(x)
= exp

{
hx − h2

2

}
.

In general case, not every shift is an admissible one but for admissible shifts
the form of the density is exactly the same: it is an exponent of linear functional
multiplied by a normalizing quadratic constant.

Theorem 5.1 (Cameron–Martin theorem) Let P be a centered Gaussian measure in

a linear space X . Then Ph � P iff h ∈ HP . If h ∈ HP , then the density dPh
dP

has a
form
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dPh

dP
(x)= exp

{
z(x)− |h|

2
HP

2

}
. (5.1)

where z ∈ X ∗
P is a measurable linear functional such that I z= h.

It follows from the theorem that for Gaussian measure every admissible shift
defines an admissible direction. The density formula (5.1) is called Cameron–Martin
formula. More precisely, Cameron and Martin considered (in late forties of XX
century) not the general case but a Wiener process for which we obtain the following
corollary. Let X =C[0, 1], let X = W be a Wiener process, let P and HP be its
distribution and kernel, respectively. Recall that

HP ={h ∈ AC[0, 1], h(0)= 0, h′ ∈ L2[0, 1]},

|h|2HP
=
∫ 1

0
h′(s)2ds, h ∈ HP .

As for the functional z associated to vector h by formula I z= h, it is easy to show
that it coincides with Wiener integral

z(w)=
∫ 1

0
h′(s)dw(s).

Indeed, by taking into account the isometric property of Wiener integral, for any
t ∈ [0, 1] we obtain

I z(t)= δt (I z)= (I ∗δt , z)

=EW (t)z(W )=
(∫ 1

0
1[0,t](s)dw(s) ·

∫ 1

0
h′(s)dw(s)

)

=
∫ t

0
h′(s)ds= h(t).

Therefore, Cameron–Martin formula for Wiener process reads as

dPh

dP
(w)= exp

{∫ 1

0
h′(s)dw(s)− 1

2

∫ 1

0
h′(s)2ds

}
.

Proof (of Cameron–Martin theorem).

1) Sufficiency. Let h ∈ HP . Consider a measure

Q(dx)= exp

{
z(x)− |h|

2
HP

2

}
P(dx).

It is sufficient for us to show that Q= Ph . We will check that the characteristic
functions of two measures coincide. Let f ∈ X ∗. Then
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∫
X

ei( f,x) Ph(dx)=Eei( f,X+h)= ei( f,h)−( f,K f )/2,

where X is a vector with distribution P. On the other hand,
∫
X

ei( f,x)Q(dx)=
∫
X

exp

{
i( f, x)+ z(x)− |h|

2
HP

2

}
P(dx)

= exp

{
−|h|

2
HP

2

}
E exp {i( f, X)+ z(X)}

Recall that the two-dimensional vector Y = (( f, X), z(X)) is a centered Gaussian
vector with covariance matrix

K Y =
(

(f , Kf ) (f , h)

(f , h) |h|2HP

)
.

Indeed, E( f, X)2= ( f, K f ) by the definition of covariance operator,

E( f, X)z(X)= (I ∗ f, z)X ∗
P
= ( f, I z)= ( f, h)

and

Ez(X)2= ||z||2X ∗
P
= |h|2HP

.

The well-known formula for finite-dimensional Gaussian vectors yields

Eev1Y1+v2Y2 =
{

K Y
11v2

1 + 2K Y
12v1v2 + K Y

22v2
2

2

}
.

By plugging v1= i, v2= 1 in this formula, we obtain

E exp {i( f, X)+ z(X)} = exp

{−( f, K f )+ 2i( f, h)+ |h|2HP

2

}
.

Therefore, ∫
X

ei( f,x)Q(dx)= exp

{−( f, K f )+ 2i( f, h)

2

}
,

and we see that the characteristic functions are the same.
2) Necessity. Let h be an admissible shift. We show that h ∈ HP . For achieving this

goal, we have to find a measurable linear functional z ∈ X ∗
P such that h= I z.

For every f ∈ X ∗ let μ f and ν f denote the distributions of random variables (f,
X) and ( f, X + h), respectively. These are normal distributions: if P = N (0, K ),

then μ f = N (0, ( f, K f )), ν f = N (( f, h), ( f, K f )).

Since Ph � P, for any ε > 0 there exists δ > 0 such that for any measurable
A ⊂ X , the inequality P(A) ≤ δ yields Ph(A) ≤ ε. In particular, for any Borel
set B ⊂ R, the inequality μ f (B) ≤ δ yields ν f (B) ≤ ε.
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The stated property is possible only if the difference of barycenters of the distri-
butions μ f and ν f is commeasurable with with their common quadratic deviation
( f, K f )−1/2:

sup
f ∈X ∗, f �=0

|( f, h)|
( f, K f )1/2 <∞. (5.2)

Indeed, let ε= 1/2 and choose the corresponding δ. Set

B={r ∈ R : |r | ≤ Φ−1(1− δ

2
)( f, K f )1/2}.

Then μ f (R\B)= δ, whence ν f (R\B) ≤ 1/2 and ν f (B) ≥ 1/2.

On the other hand, by letting

B ′ = {r ∈ R : |r − ( f, h)| ≤ 2( f, K f )1/2)},
we have ν f (B ′)> 1/2. Therefore, B and B′ have a non-empty intersection, i.e.

|( f, h)| ≤
(

2+Φ−1(1− δ

2
)

)
( f, K f )1/2

which confirms (5.2). Taking into account ( f, K f )= |I ∗ f |2, from (5.2) we derive
that

sup
f ∈X ∗, f �=0

|( f, h)|
|I ∗ f | <∞.

This means that a linear functional A , initially given on a dense subspace I ∗X ∗ ⊂
X ∗

P by A (I ∗ f )= ( f, h), admits an extension to a linear continuous functional on
X ∗

P . F. Riesz theorem stating a general form for linear continuous functionals on a
Hilbert space yields the existence of an element z ∈ X ∗

P such that

( f, h)=A (I ∗ f )= (I ∗ f, z)= ( f, I z), f ∈ X ∗.

It follows that h= I z. ��
The following estimate due to Christer Borell is a nice illustration of virtues of

Cameron–Martin theorem.

Proposition 5.1 (Borell inequality for shifted sets [27] ) Let P be a centered
Gaussian measure on a linear space X . Let A ⊂ X be a symmetric set, i.e.
A= − A.Then for any h ∈ HP it is true that

P(A + h) ≥ P(A) exp

{
−|h|

2
HP

2

}
. (5.3)
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This estimate is remarkable for its simplicity and even more for its generality.

Proof (of Proposition 5.1). By the symmetry of P and A we have P(A + h)=
P(−A + h)= P(A − h). Therefore,

P(A + h)= 1

2
(P(A + h)+ P(A − h))

= 1

2
(P−h(A)+ Ph(A))

= exp

(
−|h|

2
HP

2

)∫
A

e−z(x) + ez(x)

2
P(dx)

≥ exp

(
−|h|

2
HP

2

)
P(A).

��
Remark 5.1 Later on, we will show that for symmetric convex sets a converse inequal-
ity P(A) ≥ P(A + h) is true.

6 Isoperimetric Inequality

6.1 Euclidean Space

Isoperimetric problems are familiar to us from high school courses of physics or
geometry in the following form: “among the bodies of given volume, find those of
smallest surface area” or “among the bodies of given surface area find those of max-
imal volume”. For Euclidean volume, balls solve both problems. The corresponding
isoperimetric inequality can be stated as follows: if a A ⊂ R

n is “smooth enough”,
and B is a ball in R

n, then

λn(A)= λn(B) � |∂ A| ≥ |∂ B|,
where ∂ on the right-hand side stands for the boundary of a set, and | · | denotes the
surface measure. This assertion is not convenient for infinite-dimensional extensions
because the notion of surface measure is not robust enough. Therefore, we restate
the isoperimetric inequality in a different form. Let Br be the closed ball of radius r
centered at the origin. Define r-enlargement of a set A by

Ar := A + Br .

By replacing the surface measure with the volume of a band of a small width r around
a set, we obtain another form of isoperimetric inequality

λn(A)= λn(B) � λn(Ar\A) ≥ λn(Br\B),
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which is equivalent to

λn(A)= λn(B) � λn(Ar ) ≥ λn(Br ). (6.1)

Remarkably, this is true for all r > 0, and not only for the small ones.

Remark 6.1 The isoperimetric inequality in Euclidean space is essentially known
from antic times. In modern mathematics, requiring more rigor, its history goes back
to Steiner [158]. For detailed treatment, see [33].

The geometric statement (6.1) can be easily translated in algebraic language where
the ball is not mentioned at all. By using a formula for the volume of Euclidean ball

λn(BR)= cn Rn, cn = πn/2

Γ ( n
2 + 1)

,

we see that the radius of a ball B having the same volume as A, is equal to
(

λn(A)
cn

)1/n
,

while the radius of a ball Br equals to
(

λn(A)
cn

)1/n + r. It follows that

λn(Ar ) ≥ cn

((
λn(A)

cn

)1/n

+ r

)n

,

which is equivalent to

(
λn(Ar )

cn

)1/n

≥
(

λn(A)

cn

)1/n

+ r.

The function ϕ(v) :=
(

v
cn

)1/n
is called isoperimetric function of the space (Rn, λn).

6.2 Euclidean Sphere

Euclidean sphere S
n is the next important example of a space with isoperimetric

property. It is well known that a natural (geodesic) distance ρn(·, ·) and a unique (up
to a constant) finite rotation-invariant measure σ n are defined on the sphere. Since the
sphere is not a vector space, the enlargement of a set A ⊂ S

n should be understood
as

Ar := {x ∈ S
n : inf

y∈A
ρ(x, y) ≤ r}

(in Euclidean space this definition is equivalent to the previous one). Isoperimet-
ric inequality on the sphere, due to P. Lévy, asserts (see [33]) that, analogously to
Euclidean space case, a ball B provides a solution to isoperimetric problem, i.e.



40 Lectures on Gaussian Processes

σ n(A)= σ n(B) � σ n(Ar ) ≥ σ n(Br ).

Since the enlargement of a ball on Euclidean sphere is again a ball, we can represent
isoperimetric inequality on the sphere in algebraic form ϕ̃(σ n(Ar )) ≥ ϕ̃(σ n(A))+r
with appropriate isoperimetric function ϕ.

It is important to notice that the balls in S
n can be described as “hats”, i.e. intersec-

tions of S
n with Euclidean half-spaces. In the following we will consider a limiting

passage from (Sn, σ n) to Gaussian distributions. It will be, therefore, not too surpris-
ing that a half-space turns out to be a solution to isoperimetric problem in Gaussian
case.

6.3 Poincaré Construction

We will demonstrate a passage from uniform distributions on appropriately chosen
spheres to the standard Gaussian distribution in R

n (this construction is attributed to
a great French mathematician H. Poincaré). In particular, by using this construction,
one can transfer isoperimetric inequality to the Gaussian case.

Let m ≥ n. Denote by πm,n a natural projection R
m �→ R

n, i.e.

πm,n(x1, . . . , xm)= (x1, . . . , xn).

Let σ m be the unit rotation-invariant measure on the sphere S
m in R

m of radius
√

m,

centered at the origin. Define a projection νm,n = σ mπ−1
m,n of the measure σ m, as a

measure on R
n defined by

νm,n(A)= σ m
(
π−1

m,n(A)
)

.

Proposition 6.1 (Poincaré lemma) Measures νm,n weakly converge in R
n to the

standard Gaussian distribution N (0, En), as m →∞.

Proof. Let X1, . . . , Xn, . . . , Xm be independent standard normal random variables
and Xm= (X1, . . . , Xm) ∈ R

m . Then σ m is a distribution of the random vector(
X j
√

m
||Xm||

)
1≤ j≤m

in R
m , while νm,n is a distribution of vector

(
X j
√

m
||Xm||

)
1≤ j≤n

in R
n.

It remains to notice that
(
X j
)

1≤ j≤n has a distribution N (0, En), and that correction
factor converges to one by the law of large numbers

√
m

||Xm|| =
√

m

X2
1 + · · · + X2

m

⇒ 1.

��
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6.4 Euclidean Space with Gaussian Measure

Consider now an isoperimetric problem in the space R
n, equipped with the standard

Gaussian measure P = N (0, En). The notion of r-enlargement of a set remains the
same as in the case of Lebesgue measure. It was shown independently and almost
simultaneously by Borell [24] and by Sudakov and Tsirelson [165], that the solution
of isoperimetric problem is given by a half-space Π, i.e.

P(A)= P(Π) � P(Ar ) ≥ P(Πr ). (6.2)

Let us give an algebraic representation of this inequality. Let us choose Π as

Π =
{

x ∈ R
n : x1 ≤ Φ−1(P(A))

}
,

where Φ−1(·) is the inverse function to the distribution function of the standard
normal law Φ(·). Clearly,

Πr =
{

x ∈ R
n : x1 ≤ Φ−1(P(A))+ r

}
,

whence P(Πr )=Φ
(
Φ−1(P(A))+ r

)
, and we may rewrite (6.2) as

Φ−1(P(Ar )) ≥ Φ−1(P(A))+ r. (6.3)

We see that Φ−1(·) is an isoperimetric function for the standard normal distribution.

Proof (of isoperimetric inequality (6.3)). We use Poincaré construction and the corresponding notation.
Let A ⊂ R

n and let Πq̃ ={x ∈ R
n : x1 ≤ q̃} be a family of half-spaces. By choosing parameter

q =Φ−1(P(A)), we obtain P(Πq )= P(A). Consider a set Am =π−1
m,n(A) on the sphere S

m and the
“hats” (balls)

Bm,q̃ ={x ∈ S
m : x1 ≤ q̃}=π−1

m,n(Πq̃ ).

In particular, let

Bm := {x ∈ S
m : x1 ≤ qm },

where the parameter qm is chosen so that σm(Bm )= σ m(Am ).

Poincaré Lemma yields

lim
m→∞ σm

(
Bm,q̃

)
=Φ(q̃) < P(A), ∀q̃ < q.

By comparing this with relation
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lim
m→∞ σm (Bm ) = lim

m→∞ σm (Am ) = lim
m→∞ σm

(
π−1

m,n(A)
)
= P(A),

we see that for any q̃ < q it is true that

Bm ⊃ Bm,q̃ (6.4)

for all m large enough. Our next argument is a distance contraction under projection. Let ρm (·, ·) denote
the geodesic distance on the sphere S

m . We have

ρm (x, y) ≥ ||x − y|| ≥ ||πm,n x − πm,n y||, ∀x, y ∈ S
m .

It follows that there is a relation between the enlargements of sets,

(Am )r ⊂ π−1
m,n

(
Ar ) . (6.5)

By using consequently Poincaré Lemma, (6.5), Lévy’s isoperimetric inequality, and (6.4), we obtain

P(Ar )= lim
m→∞ σmπ−1

m,n(Ar ) ≥ lim inf
m→∞ σm ((Am )r )

≥ lim inf
m→∞ σm ((Bm )r ) ≥ lim inf

m→∞ σm
(
(Bm,q̃ )r

)
.

We will now use the following property, essentially showing that a sphere of large radius is almost plain:
for any r, ε > 0 and q̃ ∈ R we have

(Bm,q̃ )r ⊃ Bm,q̃+r−ε,

whenever m is large enough. It follows that

lim inf
m→∞ σm

(
(Bm,q̃ )r

)
≥ lim inf

m→∞ σm
(

Bm,q̃+r−ε

)
= lim inf

m→∞ σmπ−1
m,n(Πq̃+r−ε)

= P
(
Πq̃+r−ε

)
=Φ(q̃ + r − ε).

Therefore,

P(Ar ) ≥ Φ(q̃ + r − ε).

By letting ε → 0, q̃ → q, we obtain (6.2). ��
Let now P = N (0, K ) be arbitrary Gaussian measure in R

n . Assume that operator
K is non-degenerate. Let us choose a strategy of an “intelligent conformism”: instead
of proving something new, we modify the notions in a way that enables to take
advantage of the result obtained for the standard Gaussian measure. Recall that
one can construct an N (0, K )-distributed vector as Y = LX, where X is a random
vector having the standard Gaussian distribution and L = K 1/2. Let D={x ∈ Rn :
||L−1x || ≤ 1} be the L-image of the unit Euclidean ball. Recall that D coincides with
the unit ball (dispersion ellipsoid) of the kernel related to N (0, K ) (see Example 4.3).
Let us now redefine the notion of r-enlargement in agreement with our situation.
Namely, let Ar := A + r D. Let us prove that with this definition inequality (6.3)
remains true without any change. Indeed,
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Φ−1(P(Ar ))=Φ−1(P(Y ∈ Ar ))=Φ−1(P(L X ∈ Ar ))

=Φ−1(P(X ∈ L−1(Ar )))=Φ−1(P(X ∈ L−1(A)+ L−1(r D)))

=Φ−1(P(X ∈ L−1(A)+ Br ))=Φ−1(P(X ∈ (L−1(A))r ))

≥ Φ−1(P(X ∈ (L−1(A))))+ r =Φ−1(P(Y = L X ∈ A))+ r

=Φ−1(P(A))+ r.

6.5 General Linear Space with Gaussian Measure

Let now X ∈ X be an arbitrary centered Gaussian random vector in a linear space
and let P, resp. HP , be the corresponding Gaussian distribution and the kernel. Let
D={h ∈ H : ‖h|HP ≤ 1} be the unit ball of the kernel. We define r-enlargement
of a set A ⊂ X by Ar := A + r D. Even in this general situation we are able to
reproduce a result that we obtained earlier for X =R

n.

Theorem 6.1 (Gaussian isoperimetric inequality) For any measurable A ⊂ X it
is true that

Φ−1(P∗(Ar )) ≥ Φ−1(P(A))+ r, (6.6)

where interior measure P∗(C) is defined by the formula

P∗(C) := sup
B compact ,B⊂C

P(B). (6.7)

for any C ⊂ X . The equality in (6.6) is attained on half-spaces.

Remark 6.2 One can get rid of interior measure by writing the same assertion as

B ∩ Ar =∅ � P(B) ≤ Φ̂
(
Φ−1(P(A))+ r

)
, (6.8)

for any measurable B, where Φ̂(·)= 1−Φ(·) stands for the tail of standard normal
law.

6.6 Concentration Principle

Concentration Principle is a remarkable corollary of isoperimetric inequality. It
asserts that the distribution concentration for Lipschitz functionals of a Gaussian
vector is at least as strong as that of univariate normal law.

A functional f : X �→ R is called HP -Lipschitz with a constant σ, if
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| f (x + h)− f (x)| ≤ σ |h|HP , ∀x ∈ X , h ∈ HP .

In this case we write f ∈ LipHP (σ ).

Example 6.1 (Supremum as a Lipschitz functional) Let X =C(T ) and let
X = (X (t))t∈T ∈ X be a centered Gaussian process. Consider a functional

f (x)= sup
t∈T

x(t).

Then for any x ∈ X , h= I z ∈ HP , it is true that

| f (x + h)− f (x)| =
∣∣∣∣sup
t∈T

x(t)− sup
t∈T

(x(t)+ h(t))

∣∣∣∣ ≤ sup
t∈T

|h(t)|
= sup

t∈T
|(δt , I z)| = sup

t∈T
|(I ∗δt , z)X ∗

P
| ≤ sup

t∈T
||I ∗δt ||X ∗

P
||z||X ∗

P

= sup
t∈T

||I ∗δt ||X ∗
P
|h|HP = σ |h|HP ,

where

σ 2= sup
t∈T

||I ∗δt ||2X ∗
P
= sup

t∈T
EX (t)2.

Exercise 6.1 Let X be a centered Gaussian random vector in a separable Banach
space (X , || · ||), let K : X ∗ �→ X be the covariance operator of X. Prove that the
functional f (x)= ||x || belongs to the class LipHP

(√||K ||) .
Recall that a number m is called a median of the distribution of a functional f, if

P( f (X) ≤ m) ≥ 1

2
and P( f (X) ≥ m) ≥ 1

2
.

A median need not be unique but this is irrelevant to the following bound.

Theorem 6.2 (Concentration Principle) If f ∈ LipHP (σ ) and m is a median of f,
then for any r > 0 it is true that

P( f (X) ≥ m + r) ≤ Φ̂
( r

σ

)
, (6.9)

P( f (X) ≤ m − r) ≤ Φ̂
( r

σ

)
. (6.10)

Equalities are attained if f is a linear functional.

Proof. Let A={x ∈ X : f (x) ≤ m}. We plug the relation P(A) ≥ 1
2 in isoperi-

metric inequality (6.6) and obtain

Φ−1(P∗(A
r
σ )) ≥ Φ−1(P(A))+ r

σ
≥ r

σ
. (6.11)
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On the other hand, for any y ∈ A
r
σ there is a representation y= x + h where

x ∈ A, |h|HP ≤ r
σ
. Therefore,

f (y) ≤ f (x)+ σ |h|HP ≤ m + r.

This can be represented as

{x ∈ X : f (x)> m + r} ∩ A
r
σ =∅,

whence by (6.11),

P( f (X)> m + r) ≤ 1− P∗
(

A
r
σ

)
≤ 1−Φ

( r

σ

)
= Φ̂

( r

σ

)
.

By applying (6.9) to the functional − f , we obtain (6.10). ��
Theorem 6.2 shows that functional distributions can be controlled through two

parameters, m andσ.Once the concentration bounds are obtained, it is easy to evaluate
the moment characteristics of a functional. Here are two simple examples.

Corollary 6.1 If f ∈ LipHP (σ ), then

E exp{α| f (X)|2}<∞, 0 ≤ α <
1

2σ 2 .

Corollary 6.2 If f ∈ LipHP (σ ), then

Var f (X) ≤ σ 2.

Indeed, by a standard property of the variance,

Var f (X) ≤ E( f (X)− m)2=
∫ ∞

0
P

(
| f (X)− m| ≥ r1/2

)
dr

≤ 2
∫ ∞

0
Φ̂

(
r1/2

σ

)
dr = σ 2.

There are several alternative approaches to isoperimetric inequalities. One of
them, based on symmetrization transformations, is due to Ehrhard [59], see also a
detailed exposition in [117]. An approach related to functional inequalities is due
to Bobkov [20]. Finally, for a more elementary approach, see another Bobkov’s
work [21].

There exists an extensive literature about isoperimetric inequalities and related
concentration inequalities for non-Gaussian measures, see [105, 106, 171, 172] and
references therein.
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7 Measure Concavity and Other Inequalities

7.1 Measure Concavity

A function ϕ : X �→ R defined on a linear space X , is called concave, if

ϕ(αx + (1− α)y) ≥ αϕ(x)+ (1− α)ϕ(y)

for all x, y ∈ X and α ∈ [0, 1]. A similar notion can be introduced for measures.
The property

μ(αA + (1− α)B) ≥ αμ(A)+ (1− α)μ(B),

would be the most natural extension. Unfortunately, the interesting measures μ hav-
ing this property do not exist. It is, however, possible to introduce a notion of concavity
depending on some function Q:

μ(αA + (1− α)B) ≥ Q(μ(A), μ(B), α)

for all measurable A, B ⊂ X and all α ∈ [0, 1]. For example, the famous Brunn–
Minkowski inequality [33, 75] asserts that for Lebesgue measure in R

n it is true that

[
λn(αA + (1− α)B)

]1/n ≥ α
[
λn(A)

]1/n + (1− α)
[
λn(B)

]1/n
. (7.1)

Let us consider two more versions of concavity—logarithmic concavity and Ehrhard
concavity.

A measure μ is called logarithmically concave, if

ln μ(αA + (1− α)B) ≥ α ln μ(A)+ (1− α) ln μ(B) (7.2)

or, equivalently,

μ(αA + (1− α)B) ≥ μ(A)αμ(B)1−α.

By combining Brunn–Minkowski inequality (7.1) with concavity of logarithmic
function we see that Lebesgue measure in R

n satisfies (7.2). The advantage of log-
arithmic concavity (7.2) when compared with (7.1) is the dimension invariance of
(7.2), which enables to extend this property to infinite-dimensional case.

Borell [25] proved that any measure in R
n having a density p(x)= eϕ(x), is

logarithmically convex whenever ϕ(·) is a concave function. In particular, for a
Gaussian measure N (a, K ) with non-degenerated operator K

ϕ(x)= ln
(
(2π)−n/2(det K )−1/2

)
− 1

2

(
K−1(x − a), (x − a)

)
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is a concave quadratic function. Easy passages to the limit show that any Gaussian
measure in a linear space is logarithmically concave.

Since the Gaussianity is not something special from the point of view of the
definition of logarithmical convexity, it is not surprising that equality in (7.2) for
Gaussian measure is not attained on any non-trivial sets.

A measure μ is called Ehrhard concave, if

Φ−1 (μ∗(αA + (1− α)B)) ≥ αΦ−1 (μ(A))+ (1− α)Φ−1 (μ(B)) . (7.3)

Here Φ−1(·), as usual, is the function inverse to the distribution function of standard
normal law and μ∗ on the left-hand side is internal measure defined in (6.7). Any
Gaussian measure is Ehrhard concave.3 The equality in (7.3) is attained on half-
spaces having parallel boundaries.

Any kind of concavity yields the following useful result.

Corollary 7.1 (Anderson inequality [3]). Let P be a centered Gaussian measure
in a linear space X and let A be a convex symmetric subset of X . Then for any
h ∈ X it is true that

P(A + h) ≤ P(A).

Proof. Let A′ = A + h and B ′ = A − h. Since A is symmetric, we have

B ′ = A − h= − A − h= − (A + h)= − A′.

By the symmetry of P it follows P(A′)= P(B ′). We apply (7.2) to the sets
(A′) and (B′) and obtain

ln P

(
A′ + B′

2

)
≥ 1

2
ln P(A′)+ 1

2
ln P(B′)= ln P(A′).

Finally, convexity of A yields

A′ + B′

2
= A + h + A − h

2
= A + A

2
= A.

Therefore, P(A) ≥ P(A′)= P(A + h). ��
Example 7.1 (Sample paths running near a given curve) Let X (t), t ∈ T, be a
centered Gaussian process and ε : T �→ R+. Consider a symmetric convex set of
functions

A={x : T �→ R, |x(t)| ≤ ε(t),∀t ∈ T }.

3 This is a highly non-trivial result. Ehrhard [59] proved (7.3) in 1983 for convex sets. In 1996
Latała [102] proved it for the case when only one of the sets is assumed to be convex. Finally,
Borell [28] investigated the general case in 2003. For further improvements see [13, 29, 76].
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According to Anderson inequality, for any function h : T �→ R it is true that

P(X ∈ A)=P{|X (t)| ≤ ε(t),∀t ∈ T } ≥ P{|X (t)− h(t)| ≤ ε(t),∀t ∈ T }.
Therefore, a sample path of Gaussian process runs through a strip near its expectation
with a larger probability than through a strip of the same shape near other given curve.

Concavity can also be applied to the investigation of the distributions of convex
functionals of a Gaussian vector X. Let ϕ : X �→ R be a convex function, i.e.

ϕ(αx + (1− α)y) ≤ αϕ(x)+ (1− α)ϕ(y)

for all x, y ∈ X and α ∈ [0, 1]. Let F(r)=P{ϕ(X) ≤ r} denote the distribution
function of the functional ϕ(X).

Proposition 7.1 The function

r �→ Φ−1 (F(r))

is concave.

Proof. For any r1, r2 ∈ R we let

A={x ∈ X : ϕ(x) ≤ r1}, B={x ∈ X : ϕ(x) ≤ r2}.
Then for any α ∈ [0, 1] it is true that

αA + (1− α)B ⊂ {x ∈ X : ϕ(x) ≤ αr1 + (1− α)r2}.
Ehrhard inequality (7.3) yields

Φ−1 (F(αr1 + (1− α)r2))=Φ−1 (P{ϕ(X) ≤ αr1 + (1− α)r2})
≥ Φ−1 (P{X ∈ αA + (1− α)B})
≥ αΦ−1 (P{X ∈ A})+ (1− α)Φ−1 (P{X ∈ B})
= αΦ−1 (F(r1))+ (1− α)Φ−1 (F(r2)) .

��
It follows from this proposition that the distribution of random variable ϕ(X)

has approximately the same degree of regularity as a convex function of real vari-
able. Namely, if Q denotes the distribution of ϕ(X), than Q is absolutely continuous
with respect to Lebesgue measure, except for an eventual atom at the starting point
r∗ = inf{r : F(r)> 0}. On the interval (r∗,∞) measure Q has a density which is con-
tinuous everywhere except for a countable number of points where it has downward
jumps.

Corollary 7.2 Let m be a median for the distribution of ϕ(X). Then
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m ≤ Eϕ(X). (7.4)

Proof. For the sake of simplicity, let us assume that the distribution of ϕ(X) has
no atom. Then F(m)= 1

2 and the variable F(ϕ(X)) is uniformly distributed on the
interval [0,1]. By the definition, Φ−1 (F(m)) =Φ−1

( 1
2

) = 0. On the other hand,
the concavity of Φ−1 (F(·)) and Jensen inequality yield

Φ−1 (F(Eϕ(X))) ≥ EΦ−1 (F(ϕ(X))) =
∫ 1

0
Φ−1(p)dp= 0.

Corollary follows now from monotonicity of the function Φ−1 (F(·)) . ��

7.2 Dilations

Many Gaussian inequalities compare the measures of sets A and rA, where A is a
symmetric convex set. So called S-property is one of the most famous results. It was
stated as S-conjecture by Kwapień and Sawa [101] and later proved by Latała and
Oleszkiewicz [104]. S-property demonstrates extremal features of a strip

Sr, f := {x ∈ X : |( f, x)| ≤ r}, r > 0, f ∈ X ∗.

Let P be the distribution of a centered Gaussian vector X. Without loss of generality
we may assume that E( f, X)2= 1. Then

P
(
Sr, f

) = 2Φ(r)− 1 :=G(r).

S-property asserts that among all symmetric convex sets the strip demonstrates the
slowest mass loss under compression and the slowest mass increase under dilation.
Analytically this means that

P(A)=G(ρ) � P(r A) ≥ G(rρ), r ≥ 1;
P(A)=G(ρ) � P(r A) ≤ G(rρ), r ≤ 1.

Such properties are widely used in geometric applications of probability theory but
they have no decent applications in the theory of random processes because the bound
G(rρ) decreases polynomially, while P(rA) decreases exponentially, as r → 0, for
typical sets related to random processes.

Let us finally mention a more special notion of B-concavity, introduced by W.
Banaszczyk and finally established by Cordero-Erausquin et al. [40]. When compared
to the types of concavity that we considered earlier, it is related to a narrow class of
sets and can be stated as follows.

Theorem 7.1 Let P be a centered Gaussian distribution in X and let A be a
centrally symmetric convex set in X . Then the function
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t �→ ln P(et A)

is concave on (0,∞).

This theorem yields, for example, that

P
(

e
t1+t2

2 A
)
≥ P

(
et1 A

)1/2
P
(
et2 A

)1/2
.

By plugging c1= et1 , c2= et2 in, we obtain

P
(√

c1c2 A
) ≥ P (c1 A)1/2 P (c2 A)1/2 ,

while the usual logarithmic concavity (7.2) yields a weaker inequality

P

(
c1 + c2

2
A

)
= P

(
1

2
(c1 A)+ 1

2
(c2 A)

)
≥ P (c1 A)1/2 P (c2 A)1/2 .

7.3 Correlation Conjecture

If X1 and X2 are two independent random vectors in X , then for any measurable
sets A1, A2 ⊂ X it is true that

P(X1 ∈ A1, X2 ∈ A2)=P(X1 ∈ A1) P(X2 ∈ A2).

When handling dependent Gaussian vectors, we can still affirm that for the sets
A1, A2 from a certain class it is true that

P(X1 ∈ A1, X2 ∈ A2) ≥ P(X1 ∈ A1) P(X2 ∈ A2). (7.5)

The famous correlation conjecture, arguably the most attractive open problem
in the theory of Gaussian processes, asserts that (7.5) holds whenever X1, X2 are
centered Gaussian vectors and A1, A2 are symmetric convex sets. We refer to [154]
for the history and various equivalent formulations.

Correlation conjecture also admits a slightly different representation. Let X be a
centered Gaussian vector and let A1,A2 be symmetric convex sets. Then

P(X ∈ A1 ∩A2) ≥ P(X ∈ A1)P(X ∈ A2), (7.6)

which at the first glance may look as a kind of paradoxical independence of X of
itself. The connection between two kinds of inequalities becomes clear if we let
X = (X1, X2) ∈ X ×X and define symmetric convex sets by

A1={(x1, x2) ∈ X ×X : x1 ∈ A1}, A2={(x1, x2) ∈ X ×X : x2 ∈ A2}.
Then (7.6) becomes (7.5). On the other hand, by plugging X = X1= X2 in (7.5), we
obtain (7.6).

Correlation conjecture (7.6) is proved in some important cases:
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• for X =R
2 (Pitt [149]).

• when one of the sets A1 or A2 is a strip, e.g.,

A2={x ∈ X : |( f, x)| ≤ r}, r ≥ 0, f ∈ X ∗

(proved independently by Khatri and Šidák [89, 156]).
• when one of the sets A1 or A2 is a symmetric ellipsoid ( Hargé [80]).
• in some other particular cases ... see [103] for more references.

By iterating the statement for the strips A j ={x ∈ X : |( f j , x)| ≤ r j },
j = 2, 3, . . . , we obtain

P(X ∈ A1 ∩ (A2 ∩A3)) ≥ P (X ∈ (A1 ∩A2)) P (X ∈ A3)

≥ P (X ∈ A1) P (X ∈ A2) P (X ∈ A3) ,

and, by further iterations, we arrive at

P

⎛
⎝X ∈ A1

⋂⎛
⎝ n⋂

j = 2

A j

⎞
⎠
⎞
⎠ ≥ P (X ∈ A1)

n∏
j = 2

P(X ∈ A j ).

In particular, for A1=X we obtain

P

⎛
⎝X ∈

n⋂
j = 2

A j

⎞
⎠ ≥

n∏
j = 2

P
(
X ∈ A j

)
. (7.7)

The latter relation is known as Khatri–Šidák inequality [89, 156]. It is, of course,
also true for intersection of countable number of strips.

Although correlation conjecture is not proved in full generality, the follow-
ing weaker version is often sufficient for applications. It is due to Schechtman

et al. [154], (for special case 1− ε=
√

1
2 ) and to Li [111] (for general ε).

Theorem 7.2 (Weak correlation inequality) For any ε ∈ (0, 1) there exists Kε > 0
such that for all centered Gaussian vectors X and for all symmetric convex sets
A1,A2 it is true that

P (X ∈ A1 ∩A2) ≥ P (X ∈ (1− ε)A1) P

(
X ∈ A2

Kε

)
. (7.8)

Proof (of Theorem 7.2). Let X̃ be a vector having the same distribution as X and
independent of X. It is easy to check that for any a > 0 the vectors X − a X̃ and
X + a−1 X̃ are independent. To justify this claim, it is sufficient to check that the
values of arbitrary linear functionals of these Gaussian vectors are non-correlated,
and we have indeed
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E( f, X − a X̃)(g, X + a−1 X̃)

=E( f, X)(g, X)+ a−1
E( f, X)(g, X̃)− aE( f, X̃)(g, X)− E( f, X̃)(g, X̃)

=E( f, X)(g, X)+ a−1
E( f, X)E(g, X̃)− aE( f, X̃)E(g, X)− E( f, X̃)(g, X̃)

= 0.

Notice that the vectors X − a X̃ and (1 + a2)1/2 X, X + a−1 X̃ and (1 + a−2)1/2 X
are equidistributed by stability of Gaussian distributions.

Furthermore, by using Anderson inequality for the vector (X, X) ∈ X ×X , the
sets A1 ×A2 ⊂ X ×X and for the random shift (a X̃ ,−a−1 X̃) ∈ X ×X , we
obtain

P(X ∈ A1, X ∈ A2) ≥
∫

X
P(X ∈ A1 + ah, X ∈ A2 − a−1h)P(dh)

=P(X − a X̃ ∈ A1, X + a−1 X̃ ∈ A2)

=P(X − a X̃ ∈ A1)P(X + a−1 X̃ ∈ A2)

=P((1+ a2)1/2 X ∈ A1)P((1+ a−2)1/2 X ∈ A2).

By plugging a= (2ε−ε2)1/2

1−ε
in this relation, we obtain (7.8) with the constant

Kε = (2ε − ε2)1/2. ��
Let us present a typical application of weak correlation to small deviation theory.

Let X be a centered Gaussian vector in a normed space (X , || · ||), admitting a
representation X = X1 + X2, where X1, X2 are Gaussian, eventually dependent,
vectors such that X1 is well studied while X2 is relatively small. By using the triangle
inequality (7.8), we obtain

P(||X || ≤ r)=P(||X1 + X2|| ≤ r)

≥ P(||X1|| ≤ (1− ε)r, ||X2|| ≤ εr)

≥ P

(
||X1|| ≤ (1− ε)2r

)
P

(
||X2|| ≤ εr

Kε

)
.

If the vector X2 is essentially smaller than X1, the second factor is less important for
asymptotic behavior of the probability, as r → 0, than the first one, and the small
deviations of the sum reduce to those of one term. The upper bound can easily be
obtained from the lower bound. By writing X1= (X1+ X2)+ (−X2) and replacing
r with (1− ε)−2r, we obtain

P(||X1|| ≤ (1− ε)−2r) ≥ P (||X1 + X2|| ≤ r) P

(
||X2|| ≤ ε(1− ε)−2r

Kε

)
, (7.9)

i.e.

P (||X1 + X2|| ≤ r) ≤ P(||X1|| ≤ (1− ε)−2r)

P

(
||X2|| ≤ ε(1−ε)−2r

Kε

) . (7.10)
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7.4 Bounds for Shifted Measures

Isoperimetric inequality evaluates how a measure of a set can grow when we pass
to the set’s ε-enlargement. In this subsection we investigate how can a Gaussian
measure of a set change if we shift the set. This turns out to be a relatively easy
problem.

Theorem 7.3 (Kuelbs and Li [97]) Let X be a centered Gaussian vector in X with
distribution P. Then for any measurable set A ⊂ X and any h ∈ HP it is true that

Φ−1 (P(A))− |h|HP ≤ Φ−1 (P(A + h)) ≤ Φ−1 (P(A))+ |h|HP .

The equality in both inequalities is attained on the corresponding half-spaces.

Proof (of Theorem 7.3). In order to concentrate attention on essential details we
only consider the case X =R

n, P = N (0, E) and |h|HP = 1. Let us prove the upper
bound (the lower bound follows by application of the upper bound to the complement
set). Consider the half-space

Π ={x ∈ R
n : (h, x) ≤ r}, where r =Φ−1(P(A)).

Then P(Π)=P((h, X) ≤ r)=Φ(r)= P(A) and

Π + h={x ∈ R
n : (h, x) ≤ r + 1}.

We will check that

P(A + h) ≤ P(Π + h). (7.11)

Then we obtain the required relation

Φ−1 (P(A + h)) ≤ Φ−1 (P(Π + h)) =Φ−1 (P((h, X) ≤ r + 1))

= r + 1=Φ−1 (P(A))+ 1=Φ−1 (P(A))+ |h|HP .

By Cameron–Martin formula, we have

P(A + h)= P−h(A)=
∫

A
e−

1
2−(h,x) P(dx)

=
∫

A∩Π

e−
1
2−(h,x) P(dx)+

∫
A\Π

e−
1
2−(h,x) P(dx)

and

P(Π + h)= P−h(Π)=
∫

Π

e−
1
2−(h,x) P(dx)

=
∫

A∩Π

e−
1
2−(h,x) P(dx)+

∫
Π\A

e−
1
2−(h,x) P(dx).
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The first terms of two expressions coincide. By taking into account the relations

P(A\Π)= P(A)− P(A ∩Π)= P(Π)− P(A ∩Π)= P(Π\A)

and the definition of Π, we achieve the required inequality for the second terms,
∫

A\Π
e−(h,x) P(dx) ≤ e−r P(A\Π)= e−r P(Π\A) ≤

∫
Π\A

e−(h,x) P(dx).

Now (7.11) is proved. ��
Exercise 7.1 Repeat the proof for h ∈ R

n having arbitrary norm. Next, prove the
theorem for arbitrary Gaussian vector in R

n.

For more information about Gaussian and related inequalities, see the surveys
[12, 103].

8 Large Deviation Principle

8.1 Cramér–Chernoff Theorem and General Large Deviation
Principle

In this section we consider a version of Large Deviation Principle applicable to
Gaussian distributions. In full generality, Large Deviation Principle provides an eval-
uation methodology for probability of large deviation of a random object from its
“typical position”. It is often used in mathematical statistics for comparison of the-
oretical distributions and practical data, in statistical mechanics, etc. The following
result is a simplest and most representative example of Large Deviation Principle.

Theorem 8.1 (Cramér–Chernoff theorem [38, 41]) Let X1, . . . be a sequence of
i.i.d. random variables satisfying assumption

E exp{γ X j }<∞, |γ |< γ0,

for some γ0 > 0. Let denote Sn = ∑n
j = 1 X j . Then for any r > EX1 it is true that

lim
n→∞

ln P

{
Sn
n ≥ r

}
n

= − I (r),

where the function

I (r)= sup
γ
{γ r − ln Eeγ X1}

is called deviation function.
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The upper bound in Cramér–Chernoff theorem follows from a simple application
of exponential Chebyshev inequality

P

{
Sn

n
≥ r

}
=P {Sn ≥ rn} ≤ Eeγ Sn

eγ rn

=
(
Eeγ X1

)n
eγ rn

= exp
{
−n

(
γ r − ln Eeγ X1

)}
,

with subsequent optimization in γ. However, the lower bound requires more subtle
and asymptotical computations.

The multivariate version of Cramér–Chernoff theorem turns out to be more
involved.

Theorem 8.2 (Large Deviation Principle in R
n) Let X1, · · · ∈ R

n be a sequence of
i.i.d. random vectors satisfying assumption

E exp{(γ, X j )}<∞, γ ∈ R
n, |γ |< γ0,

for some γ0 > 0. Let Sn = ∑n
j = 1 X j . Then for any open set G ⊂ R

n it is true that

lim inf
n→∞

ln P

{
Sn
n ∈ G

}
n

≥ −J (G),

and for any closed set F ⊂ R
n it is true that

lim sup
n→∞

ln P

{
Sn
n ∈ F

}
n

≤ −J (F),

where J (A)= inf A I (·) and the function I : Rn �→ [0,∞] called deviation function
is defined by

I (h)= sup
γ∈Rn

{(γ, h)− ln Ee(γ,X1)}.

Let us apply this theorem to the vectors having the standard Gaussian distribution.

Clearly ln Ee(γ,X1)= (γ,γ )
2 , which easily implies I (h)= |h|2

2 .

Also notice that in Gaussian case Sn
n = X1√

n
in distribution, thus the result can be

stated directly in terms of X1. Moreover, after the sums are gone, it is natural to
replace the integer parameter n by the real one R=√n. It follows that for any open
G ⊂ R

n it is true that

lim inf
R→∞

ln P {X ∈ RG}
R2 ≥ −J (G),

and for any closed F ⊂ R
n it is true that
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lim sup
R→∞

ln P {X ∈ RF}
R2 ≤ −J (F)

where J (A)= infh∈A
|h|2

2 .

Finally, recall that for any set A ⊂ R
n we have

inf
Cl(A)

I (·) ≤ inf
A

I (·) ≤ inf
I nt (A)

I (·).

If

inf
Cl(A)

I (·)= inf
A

I (·)= inf
I nt (A)

I (·),

then the set A is called regular. Under assumptions of Theorem 8.2 for any regular
set A we have

lim
n→∞

ln P

{
Sn
n ∈ A

}
n

= − J (A),

and in Gaussian case

lim
R→∞

ln P {X ∈ R A}
R2 = − J (A).

Theorem 8.2 motivates the following definition [178] a family of distributions
(Pn) in a topological space X satisfies Large Deviation Principle with a rate vn and
deviation function I : X �→ [0,∞], if for any open set G ⊂ X it is true that

lim inf
n→∞

ln Pn(G)

vn
≥ −J (G),

and for any closed set F ⊂ X it is true that

lim sup
n→∞

ln Pn(F)

vn
≤ −J (F),

where J (A)= inf A I (·).
The book [47] is an excellent source for learning general large deviation theory.

8.2 Large Deviation Principle for Gaussian Vector

Let now X be a centered Gaussian vector with distribution P in a linear space X . We
define the deviation function by a formula analogous to that of finite-dimensional
case:
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I (h)=
{ |h|2HP

2 , h ∈ HP ,

+∞, h �∈ HP .

Then the following result is true.

Theorem 8.3 (Gaussian Large Deviation Principle) For any open set G ⊂ X it is
true that

lim inf
R→∞

ln P {X ∈ RG}
R2 ≥ −J (G). (8.1)

For any closed set F ⊂ X it is true that

lim sup
R→∞

ln P {X ∈ RF}
R2 ≤ −J (F), (8.2)

where J (A)= inf A I (·).
The set A ⊂ X is called regular, if

inf
Cl(A)

I (·)= inf
A

I (·)= inf
I nt (A)

I (·).

Theorem 8.3 yields

lim
R→∞

ln P {X ∈ R A}
R2 = − J (A)

for any regular set.

Proof (of Theorem 8.3). Lower bound. Let G be an open set and h ∈ G ∩ HP . Then
there exists a symmetric neighborhood of the origin V such that h + V ⊂ G. By
using Proposition 5.1 we obtain

P(RG) ≥ P(Rh + RV ) ≥ P(RV ) exp{−R2|h|2HP
/2},

while

lim
R→∞ P(RV )= P(X )= 1. (8.3)

It follows that

lim inf
R→∞

ln P {X ∈ RG}
R2 ≥ −|h|2HP

2
.

By maximizing over h we obtain (8.1).
Upper bound. Let F be a closed set and ρ < infh∈F |h|HP . The the ball B := {h ∈

HP : |h|HP ≤ ρ} and the set F are disjoint. We use that B is a compact set. Since F
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is closed, for any point h ∈ B there exists a convex neighborhood of the origin Vh
such that h + Vh ∩ F =∅. From the covering {h + Vh/2} of the set B we extract a
finite sub-covering

{
hi + Vhi /2

}
and let

V =
⋂

i

(
Vhi

)
/2.

Then

(B + V ) ∩ F =∅. (8.4)

Indeed, for any h ∈ B there exists an i such that h ∈ hi + Vhi /2. Therefore, for any
v ∈ V we have

h + v ∈ hi + Vhi /2+ V ⊂ hi + Vhi /2+ Vhi /2= hi + Vhi .

Thus, h + v �∈ F and (8.4) follows. Now, by applying isoperimetric inequality we
obtain

P(RF) ≤ P(X \(RB + RV )) ≤ 1−Φ
(
Φ−1(P(RV ))+ Rρ

)
.

It follows from (8.3) that for R large enough we have

Φ−1(P(RV )) ≥ Φ−1(1/2)= 0,

hence

P(RF) ≤ 1−Φ (Rρ) .

It follows that

lim sup
R→∞

ln P {X ∈ RF}
R2 ≤ lim sup

R→∞
ln (1−Φ (Rρ))

R2 = −ρ2

2
.

It remains to pass to the limit ρ ↗ infh∈F |h|HP . Then ρ2

2 ↗ J (F), and we obtain
(8.2). ��
Remark 8.1 Gaussian large deviation principle was independently established by
Wentzell [181] and Freidlin [70] in Hilbert space. Even earlier, a particular case of
Wiener measure was considered by Schilder [155].

8.3 Applications of Large Deviation Principle

Example 8.1 (Large deviations for maximum of Gaussian process) Let X (t), t ∈ T,

be a centered Gaussian process with continuous sample paths on a compact T. Then
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lim
R→∞

ln P (maxT X ≥ R)

R2 = −1

2σ 2 , (8.5)

lim
R→∞

ln P (maxT |X | ≥ R)

R2 = −1

2σ 2 , (8.6)

where

σ 2= max
T

E X (t)2.

We apply Large Deviation Principle to the vector X = (X (t)) in space C(T ) and to
the set A={x : maxT x ≥ 1}. Notice that A is a regular set. Indeed, A is closed,
thus J (A)= J (Cl(A)). On the other hand, I nt (A)={x : maxT x > 1}. Therefore,
for any h ∈ A and any ε > 0 we have (1+ ε)h ∈ I nt (A) and

I (h)= lim
ε→0

(1+ ε)2 I (h)= lim
ε→0

I ((1+ ε)h) ≥ J (I nt (A)).

It follows that

J (A)= inf
h∈A

I (h) ≥ J (I nt (A)).

The converse inequality J (A) ≤ J (I nt (A)) is obvious, thus the regularity of A is
verified. It follows that the limit in (8.5) exists and is equal to−J (A). Let us compute
it.

For any t ∈ T we let σ 2
t =EX (t)2, δt x = x(t), and ht = σ−2

t K δt = σ−2
t II ∗δt .

Then

|ht |2HP
= σ−4

t ||I ∗δt ||2X ∗
P
= σ−4

t σ 2
t = σ−2

t

and

ht (t)= (δt , h)= (δt , σ
−2
t II ∗δt )= σ−2

t (I ∗δt , I ∗δt )= 1.

Therefore, ht ∈ A and

J (A)= inf
h∈A

I (h) ≤ inf
t∈T

I (ht )= inf
t∈T

|ht |2HP

2
= inf

t∈T

σ−2
t

2
= 1

2σ 2 .

Conversely, let h= I z ∈ A. Then we have for some t ∈ T

1 ≤ h(t)= (δt , h)= (δt , I z)= (I ∗δt , z) ≤ σt ||z||X ∗
P
.

Therefore,

|h|HP = ||z||X ∗
P
≥ inf

t∈T
σ−1

t = σ−1.
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It follows that J (A) ≥ 1
2σ 2 . We obtain J (A)= 1

2σ 2 and (8.5) is proved.

Exercise 8.1 Prove (8.6) by a similar reasoning.

Exercise 8.2 For any function f ∈ C[0, 1] define its continuity modulus by

ω( f, u) := sup
|s−t |≤u

| f (s)− f (t)|.

Let W be a Wiener process. Prove that

lim
R→∞

ln P (ω(W, u) ≥ R)

R2 = −1

2u
, 0 < u ≤ 1. (8.7)

Example 8.2 (Norm distribution of a Gaussian vector) Let X be a centered Gaussian
vector in a separable Banach space (X , || · ||). Let P be the distribution of X and let
K : X ∗ �→ X be the covariance operator of X. Then

lim
R→∞

ln P (||X || ≥ R)

R2 = −1

2||K || . (8.8)

It is well known that the norm of a vector in Banach space can be written as

||x || = sup
f ∈S∗

( f, x), x ∈ X , (8.9)

where S∗ denotes the unit sphere in the dual space. Therefore, we have

||X || = sup
f ∈S∗

( f, X),

and the evaluations of the preceding example apply to functionals f ∈ S∗ used
instead of times t ∈ T . We obtain

lim
R→∞

ln P (||X || ≥ R)

R2 = −1

2σ 2 ,

where

σ 2= sup
f ∈S∗

E( f, X)2= sup
f ∈S∗

( f, K f ).

It is obvious that

σ 2 ≤ sup
f ∈S∗

|| f || ||K f || ≤ ||K ||.

On the other hand,



8 Large Deviation Principle 61

||K || = sup
f ∈S∗

||K f || = sup
f,g∈S∗

(g, K f )= sup
f,g∈S∗

E( f, X)(g, X)

≤
{

sup
f ∈S∗

E( f, X)2 sup
g∈S∗

E(g, X)2

}1/2

= σ 2.

Therefore, σ 2= ||K ||, and (8.8) is proved.

Exercise 8.3 (Moments’ equivalence for the norm of a Gaussian vector). By using
Concentration Principle (applied to the supremum functional, cf. representation (8.9)
and Example 6.1), as well as inequality (7.4), prove that for any p ≥ 1 there exists
a positive constant cp such that for any Gaussian vector in a normed space we have

E||X || ≤ (E||X ||p)1/p ≤ cp E||X ||. (8.10)

9 Functional Law of the Iterated Logarithm

9.1 Classical Law of the Iterated Logarithm

Recall two classical forms of the law of iterated logarithm (LIL)

• for sums of i.i.d. random variables. Let (X j ) be a sequence of i.i.d. random centered
random variables with unit variance. Let

Sn =
n∑

j = 1

X j .

Then Hartman–Wintner LIL [81] asserts that almost surely (a.s.)

lim sup
n→∞

Sn√
2n ln ln n

= 1, lim inf
n→∞

Sn√
2n ln ln n

= − 1. (9.1)

• for Wiener process. Khinchin’s LIL [32, 94] asserts that a.s.

lim sup
T→∞

W (T )√
2T ln ln T

= 1, lim inf
T→∞

W (T )√
2T ln ln T

= − 1.

The similarity of assertions is explained by the fact that for T = n one can represent
W(T) as a sum of i.i.d. increments W ( j)−W ( j − 1).

Let us stress that LIL is a form of investigation of large deviations for the cor-
responding variables. For example, according to the central limit theorem, a typical
value for Sn is of order

√
n, while LIL deals with the values of larger order

√
n ln ln n.

The same observation is true for Wiener process.
LIL was initially discovered by Khinchin [90] in the context of Bernoulli scheme.

Subsequent developments of LIL marked by the works of Kolmogorov, Lévy, Erdös,
Feller, Petrov, Ledoux etc are very rich, see [19, 66, 107, 145] and references therein.
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9.2 Functional Law of the Iterated Logarithm

We pass now to the study of the functional LIL, denoted further by FLIL, for Wiener
process. Unlike the classical LIL, the FLIL takes into account not only the value
W(T), but the entire sample path W (t), 0 ≤ t ≤ T . For any T > 3 let us introduce
two families of random elements of the space C[0, 1] by

XT (s)= W (sT )√
T

, 0 ≤ s ≤ 1,

YT (s)= W (sT )√
2T ln ln T

= XT (s)√
2 ln ln T

, 0 ≤ s ≤ 1. (9.2)

Notice that both of them contain, in a compressed form, the whole sample path
W (t), 0 ≤ t ≤ T . Moreover,

YT (1)= W (T )√
2T ln ln T

.

Therefore, the study of Y (·) is a natural task from Khinchin’s LIL point of view.
By self-similarity, XT itself is a Wiener process for each T.
In what follows we handle a convergence to a set. Recall the corresponding defi-

nition. Let (YT )T≥T0 be a family of elements of a metric space (X , ρ). A compact
subset K ⊂ X is called a limit set for YT , as T →∞, if two conditions are satisfied

1. limT→∞ infh∈K ρ(YT , h)= 0.

2. for any h ∈ K it is true that lim infT→∞ ρ(YT , h)= 0.

In this case we write YT ↪→ K . The first condition tells that for large T the element
YT is close to some element of the compact set K. The second condition tells that
any neighborhood of any element of K is visited by the family (YT ) at arbitrary large
times T.

If YT ↪→ K , then for any continuous functional g : X �→ R it is true that

lim sup
T→∞

g(YT )= sup
h∈K

g(h), lim inf
T→∞ g(YT )= inf

h∈K
g(h). (9.3)

Therefore, the investigation of limit behavior of a functional reduces to solving of an
extremal problem on the limit compact set. For proving (9.3) notice that the second
convergence property and the continuity of g imply that for any h ∈ K

L := lim sup
T→∞

g(YT ) ≥ g(h),

and, optimizing over h, we find that

L ≥ sup
h∈K

g(h).
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Conversely, take a sequence Tn → ∞ such that limn→∞ g(YTn )= L . By the first
convergence property, there is a sequence hn ∈ K such that

lim
n→∞ρ(YTn , hn)= 0.

By using the compactness of K, we may extract a convergent subsequence hn j →
h ∈ K . Then YTn j

→ h and

L = lim
j→∞ g(YTn j

)= g(h),

whence L ≤ suph∈K g(h). The first assertion in (9.3) is proved. The second one
follows by replacing g with −g. ��

In FLIL, the limiting set is the unit ball of the kernel of Wiener measure (dispersion
ellipsoid), i.e. the set

K = {
h : |h|HP ≤ 1

} =
{

h : h ∈ AC[0, 1] : h(0)= 0,

∫ 1

0
h′(s)2ds ≤ 1

}
. (9.4)

In FLIL context K is often called Strassen ball.

Theorem 9.1 (FLIL (or Strassen FLIL) for Wiener process [161]) Let the family of
processes (YT )T≥3 be given by (9.2), and let the set K be given by (9.4). Then

YT ↪→ K a.s.

Proof (of Theorem 9.1). It is long but very instructive. The leading idea is an expo-
nential blocking: we mainly follow the behavior of YT along exponentially increas-
ing sequences Tn = γ n, where parameter γ > 1 will be chosen according to current
needs. Introduce an appropriate notation. Let γ > 1. We represent YT as

YT = ŶT + Y 0
T ,

where ŶT (s) := YT
(
min(s, γ−1)

)
is a function YT (·) stopped at time γ−1 < 1.

Accordingly, Y 0
T := YT − ŶT . It is easy to see that a function

Y 0
T (s)=

{
0, 0 ≤ s ≤ γ−1,

(2T ln ln T )−1/2
(
W (sT )−W (γ−1T )

)
, γ−1 ≤ s ≤ 1,

is completely determined by the increments of W on the interval [γ−1T, T ]. There-
fore, when we consider a sequence of times Tn = γ n, the random functions Y 0

Tn
are

independent. Let ρ(x, y)= ||x− y|| denote the uniform distance between functions.
The technical part of the proof consists of four statements about series

convergence.

1. For any γ > 1 and ε > 0 it is true that

∞∑
n= 1

P

(
inf
h∈K

ρ(YTn , h) > ε

)
<∞. (9.5)
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2. For any γ > 1 there exists ε1= ε1(γ )> 0 such that

∞∑
n= 1

P

(
sup

Tn≤T≤Tn+1

ρ(YT , YTn )> ε1

)
<∞ (9.6)

and limγ↘0 ε1(γ )= 0.

3. For any h ∈ K , γ > 1 and ε > 0 it is true that

∞∑
n= 1

P
(
ρ(YTn , h) < ε

) =∞. (9.7)

4. For any γ > 1 there exists ε2= ε2(γ )> 0 such that

∞∑
n= 1

P
(∥∥ŶTn

∥∥ > ε2
)

<∞ (9.8)

and limγ→∞ ε2(γ )= 0.

By using first two claims we will prove that YT approaches K, as T is large; by
using two remaining claims we will prove that every element of K is a limit point.

From now on, all statements we will do in the proof hold with probability one.
By Borel–Cantelli Lemma, (9.5) proves that for any γ > 1 it is true that

lim sup
n→∞

inf
h∈K

ρ(YTn , h)= 0,

while (9.6) implies

lim sup
n→∞

sup
Tn≤T≤Tn+1

ρ(YT , YTn ) ≤ ε1.

By triangle inequality

inf
h∈K

ρ(YT , h) ≤ inf
h∈K

ρ(YTn , h)+ ρ(YT , YTn ),

whence

lim sup
T→∞

inf
h∈K

ρ(YT , h) ≤ ε1.

Finally, letting γ ↘ 1, we obtain

lim sup
T→∞

inf
h∈K

ρ(YT , h) ≤ lim
γ↘1

ε1(γ )= 0.

Let us fix an h ∈ K and a γ > 1. A difference of a divergent series and a convergent
one is a divergent series. Therefore, (9.7) and (9.8) imply
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∞∑
n= 1

P
(
ρ(YTn , h) ≤ ε,

∥∥ŶTn

∥∥ ≤ ε2
)

≥
∞∑

n= 1

(
P
(
ρ(YTn , h) ≤ ε

)− P
(∥∥ŶTn

∥∥ > ε2
)) =∞.

By letting ε= ε2 and assuming ρ(YTn , h) < ε2,
∥∥ŶTn

∥∥ ≤ ε2, we derive from triangle
inequality

ρ(Y 0
Tn

, h) ≤ ρ(YTn , h)+ ρ(Y 0
Tn

, YTn )= ρ(YTn , h)+ ∥∥ŶTn

∥∥ ≤ 2ε2.

Therefore,

∞∑
n= 1

P

(
ρ(Y 0

Tn
, h) ≤ 2ε2

)
=∞.

Since the random elements Y 0
Tn

are independent, Borel–Cantelli Lemma yields

lim inf
n→∞ ρ(Y 0

Tn
, h) ≤ 2ε2.

On the other hand, (9.8) and Borel–Cantelli Lemma yield

lim sup
n→∞

∥∥ŶTn

∥∥ ≤ ε2.

By triangle inequality,

ρ(YTn , h) ≤ ρ(Y 0
Tn

, h)+ ρ(Y 0
Tn

, YTn ),

therefore,

lim inf
n→∞ ρ(YTn , h) ≤ lim inf

n→∞ ρ(Y 0
Tn

, h)+ lim sup
n→∞

∥∥ŶTn

∥∥ ≤ 3ε2.

Finally,

lim inf
T→∞ ρ(YT , h) ≤ lim inf

n→∞ ρ(YTn , h) ≤ 3ε2,

and letting γ →∞, we obtain

lim inf
T→∞ ρ(YT , h) ≤ 3 lim

γ→∞ ε2(γ )= 0.

It remains to check the claims (9.5)–(9.8).
Let us prove (9.5). Let denote LT = 2 ln ln T and U := {x ∈ C[0, 1] : ||x || ≤ 1}

the unit ball in C[0, 1]. Since
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lim
r→∞P(W ∈ rU)= 1, (9.9)

isoperimetric inequality (6.8) implies

P

(
inf
h∈K

ρ(YTn , h)> ε

)
=P

(
YTn /∈ K + εU

) =P

(
W√
LTn

/∈ K + εU

)

=P

(
W /∈ √LTn K + ε

√
LTn U

)
≤ Φ̂

(
Φ−1

(
P(W ∈ ε

√
LTn U) +√LTn

)

≤ Φ̂
(

1+√LTn

)
≤ exp

{
− (1+√LTn

)2
2

}
≤ exp

{−LTn

2
−√LTn

}
,

whenever n is sufficiently large. By applying a crude estimate exp(−x) ≤ cx−4 to
x =√LTn , we obtain

P

(
inf
h∈K

ρ(YTn , h)> ε

)
≤ exp

{−LTn

2
−√LTn

}
≤ c L−2

Tn
exp

{−LTn

2

}

= c

(2(ln ln γ + ln n))2

1

ln Tn
= c

(2(ln ln γ + ln n))2

1

ln γ n
,

and this leads to a convergent series. Relation (9.5) is proved.
Let us prove (9.7). Let ε > 0 and h ∈ K . By using (9.9) and (5.3) we obtain

P
(
ρ(YTn , h) ≤ ε

) =P
(
YTn ∈ h + εU

) =P

(
W√
LTn

∈ h + εU

)

=P

(
W ∈ h

√
LTn + ε

√
LTn U

)

≥ exp

{
− L2

Tn
|h|2HP

2

}
P

(
W ∈ ε

√
LTn U

)

≥ (ln(Tn))
−|h|2HP

1

2
= 1

2
(ln γ n)

−|h|2HP ,

whenever n is sufficiently large. Since |h|HP ≤ 1, the latter expressions form a
divergent series and the claim (9.7) is proved.

Let us prove (9.8). Let ε > 0 and γ > 1. By using self-similarity of Wiener process,
we have

P
(∥∥ŶTn

∥∥ > ε
) =P

(∥∥W (min(·, γ−1))
∥∥√

LTn

>ε

)

=P

(
max

0≤s≤γ−1
|W (s)|> ε

√
LTn

)

=P

(
γ−1/2 max

0≤s≤1
|W (s)|> ε

√
LTn

)
=P

(
max

0≤s≤1
|W (s)|> ε

√
γ LTn

)
.
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By applying Large Deviation Principle for maxima (8.6), we have

P

(
max

0≤s≤1
|W (s)|> ε

√
γ LTn

)
≤ exp

{−ε2γ LTn

3

}

= (ln(Tn))
−2ε2γ /3= (ln γ n))−2ε2γ /3,

whenever n is large enough. Such quantities form a convergent series if we choose
ε := ε2(γ )= 2γ−1/2. This choice provides both (9.8) and limγ→∞ ε2(γ )= 0.

Let us prove (9.6). Let ε > 0, γ > 1 and T ∈ [Tn, Tn+1]. The definition of YT
implies

YT (s)= W (sT )√
T LT

=
√

Tn+1√
T LT

XTn+1

(
sT

Tn+1

)
.

Therefore,

ρ(YT , YTn+1)= sup
0≤s≤1

∣∣∣∣∣
√

Tn+1√
T LT

XTn+1

(
sT

Tn+1

)
− 1√

LTn+1

XTn+1(s)

∣∣∣∣∣
≤ sup

0≤s≤1
Δ1(s)+ sup

0≤s≤1
Δ2(s),

where

Δ1(s)=
√

Tn+1√
T LT

∣∣∣∣XTn+1

(
sT

Tn+1

)
− XTn+1(s)

∣∣∣∣ ;

Δ2(s)=
∣∣∣∣∣
√

Tn+1√
T LT

− 1√
LTn+1

∣∣∣∣∣ ·
∣∣XTn+1(s)

∣∣ .

For the first term, we use a large deviation estimate for modulus of continuity of
Wiener process (8.7). For large n, we obtain

P

{
sup

0≤s≤1
Δ1(s) ≥ ε

}
=P

{√
Tn+1√
T LT

sup
0≤s≤1

∣∣∣∣W
(

sT

Tn+1

)
−W (s)

∣∣∣∣ ≥ ε

}

≤ P

{
ω

(
W,

(
1− 1

γ

))
≥ ε

√
T LT√
Tn+1

}

=P

{
ω

(
W,

(
1− 1

γ

))
≥ ε

√
LTn√
γ

}

≤ exp

{
−ε2 LTn

3γ

(
1− 1

γ

)−1
}
= ((ln γ )n)

− 2ε2
3γ

(
1− 1

γ

)−1

.

If ε ≥ 2(γ − 1)1/2, then the corresponding series converges. The second term is
handled similarly and even simpler. We obtain
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P

{
sup

0≤s≤1
Δ2(s) ≥ ε

}
≤ P

⎧⎨
⎩||W || ≥

cε
√

LTn(
1− 1

γ

)
⎫⎬
⎭

≤ exp

{
−c2ε2

3
LTn

(
1− 1

γ

)−2
}
= ((ln γ )n)

− 2c2ε2
3

(
1− 1

γ

)−2

.

If ε ≥ 2c−1
(

1− 1
γ

)
, then the corresponding series converges. It remains to choose

ε1(γ )= 2 max

{
2(γ − 1)1/2; 2c−1

(
1− 1

γ

)}
,

and (9.6) is proved, along with limγ↘1 ε1(γ )= 0.

Exercise 9.1 Let W be a Wiener process. Prove that the upper limit

lim sup
T→∞

∫ T
0 W (s)2ds

T 2 ln ln T

is non-random (with probability one) and calculate it.

9.3 Some Extensions

Convergence rate

It is interesting to find out how fast is the convergence rate in FLIL. Since FLIL is a pair
of assertions, the convergence rate should be evaluated separately for each of them.
As for approaching of YT to the set K, Talagrand and Grill [79, 167] independently
proved that for some c1, c2

c1

(ln ln T )2/3 ≤ inf
h∈K

ρ(YT , h) ≤ c2

(ln ln T )2/3 ,

holds almost surely, whenever n is sufficiently large. As for the approximation of
specific element h ∈ K , one can prove the following. If h is an interior element of
K, i.e. |h|HP < 1, then the convergence rate is of order (ln ln T )−1. More precisely,
the results of Csáki and de Acosta [42, 44] show that

lim inf
T→∞ (||YT − h|| ln ln T ) = π

4
√

1− |h|2HP

.

For the boundary elements, |h|HP = 1, the approximation rate depends on h. The
rate is always slower than (ln ln T )−1 but at least as fast as (ln ln T )−2/3.
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Exercise 9.2 (Chung’s FLIL, [36, 85, 86]) Prove that

lim inf
T→∞

(
ln ln T

T

)1/2

sup
0≤t≤T

|W (t)| = π√
8

a.s.

Other Norms

In FLIL, the space C[0, 1] can be replaced [10, 45, 46] with other normed spaces
that contain sample paths of Wiener process with probability one, for example,
L p[0, 1] or the space of α-Hölder functions equipped with the norm

||x ||α = sup
s,t∈[0,1]

s �=t

|x(s)− x(t)|
|s − t |α , 0 < α <

1

2
.

Stronger the norm is, larger is the corresponding distance, larger is the class of con-
tinuous functionals, thus stronger are the results provided by FLIL. The convergence
rate in FLIL depends on the choice of the norm.

Multivariate Process

We can replace W with its multivariate analogue, i.e. a vector-valued process

W (t)=
(

W (1)(t), . . . , W (n)(t)
)
∈ R

n,

where (W ( j)(t))n
j = 1 are independent scalar Wiener processes. Keeping the same

definition of YT given in (9.2), we obtain convergence to a set

K n =
⎧⎨
⎩h ∈ C0([0, 1], R

n) : h j (·) ∈ AC[0, 1],
∫ 1

0

⎛
⎝ n∑

j = 1

h′j (s)2

⎞
⎠ ds ≤ 1

⎫⎬
⎭ .

Exercise 9.3 By using (9.3), find the limit

lim sup
T→∞

||W (t)||√
T ln ln T

for n-dimensional Wiener process.

Multi-parametric process

Consider a Brownian sheet W (t), t ∈ R
d+ defined in Example 2.7. In view of its

self-similarity, it is natural to consider random elements

YT (s)= W (T s)√
2T d ln ln T

, T > 3, s ∈ [0, 1]d ,



70 Lectures on Gaussian Processes

in C([0, 1]d) and prove that their limit set is the unit ball of the kernel of W, cf.
Example 4.7 (see [14, 143]).

Fractional Brownian Motion

Let W (α)(t) be an α-fractional Brownian motion. Self-similarity of W (α) means that
a process

XT (s)= W (α)(sT )

T α/2

also is an fBm. Therefore, we have to deal with

YT (s)= W (α)(sT )√
2T α ln ln T

= XT (s)√
2 ln ln T

, 0 ≤ s ≤ 1.

FLIL for fBm asserts that YT ↪→ K (α), where the limit set K (α) coincides with the
unit ball of the kernel of W (α), cf. Example 4.6.

9.4 Strong Invariance Principle

In order to derive an FLIL for random walks extending Hartman–Wintner theorem,
it is sufficient to check that the sums are close to the values of an appropriate Wiener
process. Such statements are referred to as Strong Invariance Principles. Lat us recall
the most important results of this kind. The general scheme is as follows. Let (X j )

be an i.i.d. sequence of centered random variables with unit variance defined on a
common probability space. Assume that a sequence of variables (X̃ j ) equidistributed
with (X j ) and a Wiener process W are jointly defined on some other probability space.
Let

S̃k =
k∑

j = 1

X̃ j

and

Δn = max
1≤k≤n

|S̃k −W (k)|.

Strong Invariance Principle asserts that under certain moment restrictions imposed
on the common distribution of variables (X j ) a construction of (X̃ j ) and W with
given decay of Δn is possible. Let us mention some examples, moving from stronger
assumptions to weaker ones.

• Komlós-Major-Tusnády Strong Invariance Principle. (KMT-construction, [95,
96]). If E exp(c|X j |)<∞ holds for some c > 0, then
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lim sup
n→∞

Δn

ln n
<∞ a.s.

• Sakhanenko Strong Invariance Principle [152]. If E|X j |p <∞ for some p > 2,

then

lim
n→∞

Δn

n1/p
= 0 a.s.

• Strassen Strong Invariance Principle [161]. The weakest assumption E|X j |2= 1
(that was anyway already imposed in the beginning of subsection) yields

lim
n→∞

Δn

(n ln ln n)1/2 = 0 a.s. (9.10)

This estimate can not be ameliorated without further moment assumptions. How-
ever, the following result shows that a slightly better approximation rate is available,
if we change a bit the approximating term.

• Major Strong Invariance Principle [132]. Under the same assumptions we have

lim
n→∞

Δ̃n

n1/2 = 0 a.s.,

where

Δ̃n = max
1≤k≤n

|S̃k −W (k̃)|,

and

k̃=
k∑

j = 1

Var
(
X j · 1|X j |≤ j

)

satisfies k̃ ≤ k and limk→∞ k̃
k = 1.

9.5 FLIL for Random Walk

Let (X j ) and Sk be the same as in Hartman–Wintner Theorem (9.1). Define the scaled
sample paths of random walk Zn(s), 0 ≤ s ≤ 1, by

Zn

(
k

n

)
=
{

0, k = 0,
Sk√

2n ln ln n
, 1 ≤ k ≤ n,

(9.11)

using linear interpolation between the points k
n .
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Theorem 9.2 (FLIL (or Strassen law) for random walks [161]. Let a family (Zn)n≥3
be given by (9.11), and let K be defined in (9.4). Then

Zn ↪→ K a.s.

Proof (of Theorem 9.2). Let us construct a sequence (X̃ j ) equidistributed with (X j )

and a Wiener process W, as in Strassen’s Strong Invariance Principle. Let Z̃n be a
sequence, analogous to Zn, constructed by using (X̃ j ). Since (X j ) and (X̃ j ) are
equidistributed, the limit sets for (Zn) and (Z̃n) coincide. Therefore, it is enough to
show that Z̃n ↪→ K . Let Yn be the scaled sample paths of W, constructed as in (9.2)
with T = n, and let Ỹn be their linear interpolations over the grid { k

n , 0 ≤ k ≤ n}.
Then

ρ(Z̃n, Ỹn)= max
0≤s≤1

|Z̃n(s)− Ỹn(s)| = max
0≤k≤n

|Z̃n(
k

n
)− Ỹn(

k

n
)|

= max
0≤k≤n

|Z̃n(
k

n
)− Yn(

k

n
)| = max

0≤k≤n

|S̃k −W (k)|√
2n ln ln n

= Δn√
2n ln ln n

.

From (9.10) it follows that limn→∞ ρ(Z̃n, Ỹn)= 0. On the other hand, on each
interval [ k

n , k+1
n ] the interpolation error Yn − Ỹn is a scaled copy of a Brown-

ian bridge. Moreover, these copies are independent. It is easy to conclude that
limn→∞ ρ(Yn, Ỹn)= 0. By triangle inequality,

lim
n→∞ ρ(Yn, Z̃n)= 0.

Hence, Yn ↪→ K yields Z̃n ↪→ K . ��
Remark 9.1 Hartman–Wintner Theorem (9.1) follows from Theorem 9.2 by applying
(9.3) to the functional g(x)= x(1).

10 Metric Entropy and Sample Path Properties

10.1 Basic Definitions

Let (T, ρ) be a metric space. Define a covering number N (ε) as a minimal number
of sets in a covering of T by subsets of diameter not exceeding ε. Then N (·) is a
non-increasing function and N (0+)<∞ iff T is a finite set and N (ε)<∞ for all
ε > 0 iff T is totally bounded. The quantity H(ε)= ln N (ε) is called metric entropy
of the space T.

Define a packing number M(ε) as a maximal number of points in T such that their
pairwise distances exceed ε. Then M(·) is a non-increasing function and M(0+)<∞
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iff T is a finite set and M(ε)<∞ for all ε > 0 iff T is totally bounded. The quantity
C (ε)= ln M(ε) is called metric capacity of the space T.

The following proposition shows that N and M basically describe the same prop-
erty.

Proposition 10.1 For any space (T, ρ) and for any ε > 0 it is true that

N (2ε) ≤ M(ε) ≤ N (ε) (10.1)

and

H(2ε) ≤ C (ε) ≤ H(ε). (10.2)

Proof. Take a configuration of M(ε) points such that their pairwise distances exceed
ε. Obviously, one can not add a point and keep this property. This means that the balls
of radius ε centered at configuration points cover T. Since the diameter of any ball
does not exceed 2ε, we obtain N (2ε) ≤ M(ε). On the other hand, consider a covering
of T that consists of N (ε) subsets of diameter not exceeding ε and any configuration
of points such that their pairwise distances exceed ε. Clearly, each covering element
contains at most one configuration point. Therefore, the number of points in the
configuration does not exceed N (ε). Therefore, M(ε) ≤ N (ε) and inequality (10.1)
is proved. Inequality (10.2) follows from (10.1) by taking logarithms. ��

Let now X (t), t ∈ T, be a Gaussian random process. We can introduce a natural
distance on T generated by a process X, as

ρ(s, t)2 :=E|X (s)− X (t)|2.
Strictly speaking, ρ is not a distance because it is possible that ρ(s, t)= 0 for some
s �= t. This circumstance, however, does not affect the introduced entropy charac-
teristics and their properties. An adept of absolute rigor may reduce the picture to a
true metric space by identifying the points situated within zero distance.

In the following, N , M, H,C denote the quantities corresponding to the space
(T, ρ). They will be used for investigation of properties of the process X.

10.2 Upper Bounds

Our main bound will be preceded by an important technical result.

Lemma 10.1 Let (X j )1≤ j≤N be centered Gaussian random variables and let σ > 0
satisfy max j≤N EX2

j ≤ σ 2. Then

E max
1≤ j≤N

X j ≤
√

2 ln Nσ. (10.3)

Proof. We evaluate the Laplace transform: for any λ it is true that
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E exp

{
λ max

1≤ j≤N
X j

}
≤ E

⎛
⎝ ∑

1≤ j≤N

exp
{
λX j

}
⎞
⎠

≤
∑

1≤ j≤N

exp
{
λ2(EX2

j )/2
}

≤ N exp
{
λ2σ 2/2

}
.

By Jensen inequality,

λ E max
1≤ j≤N

X j ≤ ln E exp

{
λ max

1≤ j≤N
X j

}
≤ ln N + λ2σ 2/2.

By letting here λ=√2 ln Nσ−1, we obtain (10.3). ��
An integral based on the metric entropy,

D(u)=
∫ u

0

√
H(ε)dε

is called Dudley integral of a process X.

Theorem 10.1 (Dudley upper bound [52]) For any centered Gaussian process
X (t), t ∈ T, it is true that

E sup
t∈T

X (t) ≤ 4
√

2D(σ/2),

where σ 2= supt∈T EX (t)2.

Proof. The following evaluation scheme is often called chaining scheme. Let

ε j = σ · 2− j , j = 1, 2, . . .

For any ε j let us take a smallest covering of T by subsets of diameter not exceeding
ε j . Take a point in each element of the covering. Let denote S j the set composed of
N (ε j ) chosen points. Let us fix a mapping π j : T �→ Sj such that

ρ(x, π j (x)) ≤ ε j , ∀x ∈ T .

Then it is true that

sup
t∈S j

X (t) ≤ sup
t∈Sj−1

X (t)+ sup
t∈S j

(X (t)− X (π j−1(t))).

Taking expectations and applying Lemma 10.1 to the last term, we obtain

E sup
t∈S j

X (t) ≤ E sup
t∈S j−1

X (t)+
√

2H(ε j )ε j−1.
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Moreover, by applying the same lemma, we obtain

E sup
t∈S1

X (t) ≤ √2H(ε1)σ.

Applying induction and using monotonicity of the function H(·), we infer that for
each j ≥ 1 it is true that

E sup
t∈S j

X (t) ≤ √2H(ε1)σ +
j∑

k= 2

√
2H(εk)εk−1

= 2
√

2H(ε1)ε1 +
j∑

k= 2

2
√

2H(εk)εk =
j∑

k= 1

2
√

2H(εk)εk

≤ 4
√

2
j∑

k= 1

∫ εk

εk+1

√
H(ε)dε ≤ 4

√
2
∫ ε1

0

√
H(ε)dε= 4

√
2D(σ/2).

It remains to pass from Sj to entire space T. This will be done in several stages.

1. If T is a finite set, then we have T = S j for some j and the theorem’s assertion
is already proved.

2. If T ={ti }∞i = 1 is an infinite countable set, we apply the proved result to finite
sets Tn ={ti }ni = 1 and take into account that

E sup
t∈Tn

X (t) ↗ E sup
t∈T

X (t),

and that entropy characteristics of the space (Tn, ρ) do not exceed those of
(T, ρ).

3. If T is an arbitrary set, we can find a countable dense subset T# (otherwise
Dudley integral is infinite and there is nothing to prove). Apply the proved
result to T# and consider a version of X that satisfies supT X = supT#

X. The
assertion of theorem is satisfied for this version. ��

Remark 10.1 According to (7.4), a median of random variable supT X is majorated
by its expectation. Therefore, one can also use Dudley estimate for evaluation of
median, which can be conveniently combined with Concentration Principle (6.9).

Exercise 10.1 (Pisier theorem [147]) Let X (t), t ∈ T, be a centered random process
(not necessarily Gaussian), satisfying σ 2= supt∈T EX (t)2 <∞. Prove that

E sup
t∈T

X (t) ≤ 4
∫ σ

0

√
N (ε)dε.

An important task of evaluation of absolute values of a process does not require
new ideas due to the following result.

Proposition 10.2 For any centered Gaussian process X (t), t ∈ T, it is true that
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E sup
t∈T

|X (t)| ≤ 2

(
E sup

t∈T
X (t)+ inf

t∈T
(Var X (t))1/2

)
. (10.4)

Proof (of Proposition 10.2). We use a standard notation x+ = max{x, 0}, x− =
max{−x, 0}. It is true that |x | = x+ + x−, (−x)− = x+. Let us remark that

E sup
t∈T

(X (t))− =E sup
t∈T

(−X (t))− =E sup
t∈T

(X (t))+,

E sup
t∈T

|X (t)| =E sup
t∈T

((X (t))+ + (X (t))−)

≤ E sup
t∈T

(X (t))+ + E sup
t∈T

(X (t))− = 2E sup
t∈T

(X (t))+. (10.5)

On the other hand, we always have

sup
t∈T

(X (t))+ ≤ sup
t∈T

X (t)+ inf
t∈T
|X (t)|. (10.6)

Indeed, if supt∈T X (t) ≥ 0, then

sup
t∈T

(X (t))+ = sup
t∈T

X (t)

and inequality (10.6) holds, while if supt∈T X (t)< 0, than both sides of (10.6) vanish.
From (10.6), we find that

E sup
t∈T

(X (t))+ ≤ E sup
t∈T

X (t)+ inf
t∈T

E|X (t)| ≤ E sup
t∈T

X (t)+ inf
t∈T

(Var X (t))1/2.

By combining this inequality with (10.5), we obtain (10.4). ��
Remark 10.2 The second term is necessary in the bound (10.7): consider a singleton
T ={t}. Then E supT X =EX (t)= 0, and the first term alone does not provide a
correct bound.

Proposition 10.3 (Sufficient condition for continuity) Let X (t), t ∈ T, be a cen-
tered Gaussian process such that D(u)<∞, as u > 0. Then for any t ∈ T the process
X is a.s. continuous at t, i.e.

lim
ρ(s,t)→0

X (s)= X (t). (10.7)

Remark 10.3 Actually one can prove something more: if D(u)<∞, then with prob-
ability one (10.7) holds for all t ∈ T simultaneously.

Proof (of Proposition 10.3). Fix t ∈ T and let Tn ={s ∈ T :ρ(s, t)≤ 1
n }. Let Hn(·),

Dn(·) be the metric entropy, resp. Dudley integral for a process {X (s)−X (t), s ∈ Tn}.
Let denote Sn = sups∈Tn

(X (s) − X (t)). It is clear that Hn(ε) ≤ H(ε). Therefore,
Theorem 10.1 yields a bound
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ESn ≤ 4
√

2Dn

(
n−1

)
≤ 4

√
2D

(
n−1

)
.

The sequence of random variables Sn is non-negative and decreases to a limit S. By
Fatou Lemma ES ≤ limn ESn = 0. It follows that S = 0 almost surely. ��

The regularity of stationary processes should be mentioned separately. Here we
have two nice results. The first of them shows that a stationary process is either
continuous, or catastrophically discontinuous.

Theorem 10.2 (Belyaev alternative [17]) Let X (t), t ∈ R, be a stationary Gaussian
process. Then one of two incompatible assertions holds

a) Process X has continuous sample paths.
b) For any non-degenerate interval T ⊂ R we have supT X =∞ almost surely.

The second result provides a necessary and sufficient condition for continuity of
a stationary Gaussian process.

Theorem 10.3 (Fernique criterion [67]) Let X (t), t ∈ R, be a stationary Gaussian
process. Then X has continuous sample paths (with respect to the natural distance
ρ) iff its Dudley integral is finite.

For non-stationary processes Dudley integral does not provide continuity criterion:
there exist continuous Gaussian processes with infinite Dudley integral. Moreover,
it is known that necessary and sufficient conditions for continuity or boundedness
can not be formulated in entropy terms. Stating and proving such conditions requires
more subtle means, such as majorizing measures [67, 68, 107, 117, 166, 180] or
generic chaining [173, 174]. We refer to [117] for detailed historical remarks, further
bibliography of earlier works and recommend books [179, 180] for further reading on
interesting applications of entropy bounds to non-Gaussian processes, real analysis,
and ergodic theory.

10.3 Lower Bounds

The lower entropy bounds are based on the following result that we state here without
proof.

Theorem 10.4 (Fernique–Sudakov comparison theorem [67, 162–164]) Let
X (t), Y (t) be two centered Gaussian processes defined on a common parametric
set T. Assume that

E(X (t)− X (s))2 ≥ E(Y (t)− Y (s))2 ∀s, t ∈ T .

Then

E sup
t∈T

X (t) ≥ E sup
t∈T

Y (t).
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In other words, a process with larger increment variance has a larger expectation
of supremum.

Comparison theorem is often conveniently combined with the following elemen-
tary bound that can be viewed as a conversion of Lemma 10.1. Notice, however, an
independence assumption, that makes an important difference.

Lemma 10.2 Let (X j )1≤ j≤N be independent centered Gaussian random variables
and min j≤N EX2

j ≥ σ 2. Let c∗ = 0.64. Then

E max
1≤ j≤N

X j ≥ c∗
√

ln Nσ, (10.8)

Proof. Let c <
√

2. Let us show that

lim
N→∞P

{
max

1≤ j≤N
X j ≤ c

√
ln Nσ

}
= 0.

Indeed,

P

{
max

1≤ j≤N
X j ≤ c

√
ln Nσ

}
=

N∏
j = 1

P

{
X j ≤ c

√
ln Nσ

}

≤
(

1− Φ̂
(

c
√

ln N
))N ≤ exp

{
−N Φ̂

(
c
√

ln N
)}

,

where Φ̂ is the tail of standard normal distribution. Apply an inequality

Φ̂(u) ≥ 1√
2π

(
1

u
− 1

u3

)
e−u2/2.

For large u= c
√

ln N we obtain

Φ̂
(

c
√

ln N
)
≥ N−c2/2

3c
√

ln N
,

whence

P

{
max

1≤ j≤N
X j ≤ c

√
ln N σ

}
≤ exp

{
− N 1−c2/2

3c
√

ln N

}
→ 0, as N →∞.

It follows that a median of random variable max1≤ j≤N X j exceeds c
√

ln N σ. For
large N inequality (7.4) yields

E max
1≤ j≤N

X j ≥ c
√

ln Nσ.

Few initial values of N can only influence the constant in (10.8). Calculations show
that c∗ = 0.64 is an appropriate value for (10.8). ��
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Theorem 10.5 (Sudakov lower bound) For any ε > 0 and any centered Gaussian
process X (t), t ∈ T, it is true that

E sup
t∈T

X (t) ≥ c∗√
2

√
C (ε)ε. (10.9)

Proof. Let ε > 0 be fixed. Choose the points {t1, . . . , tm} in T such that m=M(ε)

and

ρ2(ti , t j )=E|X (ti )− X (t j )|2 > ε2, i �= j.

Let Y1, . . . , Ym be independent N (0, ε2

2 )-distributed random variables. By applying
Comparison Theorem 10.4 to the variables (X (t j )) j≤m and (Y j ) j≤m, we obtain

E sup
t∈T

X (t) ≥ E sup
j≤m

X (t j ) ≥ E sup
j≤m

Y j .

Lemma 10.2 yields

E max
1≤ j≤m

Y j ≥ c∗
√

ln m
ε√
2
= c∗√

2

√
C (ε)ε.

By combining two estimates, we arrive at (10.9). ��
Exercise 10.2 Let X (t), t ∈ T, be a centered Gaussian process such that the
space (T, ρ) associated to X is compact. Let c > 0, ε0 > 0 and δ ∈ (0, 2). Prove the
following statements:

a) If N (ε) ≤ exp
(−cε−(2−δ)

)
, as ε ∈ (0, ε0), then the process X is almost surely

continuous on (T, ρ).

b) If N (ε) ≥ exp
(−cε−(2+δ)

)
, as ε ∈ (0, ε0), then the process X is almost surely

unbounded (hence, discontinuous) on (T, ρ).

Exercise 10.3 Let X (t), t ∈ R, be a stationary Gaussian process with a spectral
density

f (u)= |u|−1(ln |u|)−1−β, β > 0, |u|> 2.

Which range of parameter β corresponds to a continuous process X?

Exercise 10.4 Let X (t), t ∈ [0, 1], be an α-fractional Brownian motion defined in
Example 2.5. Find constants C1 and C2, depending on parameter α such that

C1 ≤ E sup
t∈[0,1]

X (t) ≤ C2.
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10.4 GB-Sets and GC-Sets

It is common to express the contents of this section in a geometrical language. Let
H be a Hilbert space; we denote (·, ·) and || · || the corresponding scalar product and
the norm. A centered Gaussian random function X (h), h ∈ H , is called isonormal,
if

cov(X (h), X (h′))= (h, h′), h, h′ ∈ H .

Note that the natural distance related to X is equal to that of Hilbert space,

ρ(h, h′)= ||h − h′||, h, h′ ∈ H . (10.10)

Let T ⊂ H . We call T a GB-set (resp. GC-set), if the restriction of an isonormal
function X (h), h ∈ T, possesses a bounded (resp. continuous) version.

All GC-sets are GB-sets, while all GB-sets are totally bounded (prove that both
converse statements are wrong!). Therefore, the class of closed GB-sets, resp. GC-
sets, is a subclass of compact sets. It is easy to see that both GB and GC classes are
invariant with respect to the shifts and to the unitary rotations of H .

Due to (10.10), we can forget about the process X and restate the results of current
section regarding T as a metric subspace of H and using the notation HT (·) and
CT (·) for related metric entropy and metric capacity. In particular, by Theorem 10.5
a necessary condition

sup
ε > 0

CT (ε)ε2 <∞

is true for any GB-set T, while by Theorem 10.1 a sufficient condition
∫ ∞

0

√
HT (ε)dε <∞

implies that T is a GC-set.

11 Small Deviations

11.1 Definitions and First Examples

In this section, a centered Gaussian X -valued random vector is assumed to be given
as a measurable mapping X : (Ω, P) �→ X taking values in a separable Banach
space (X , || · ||). As usual, we let P denote the distribution of X. Accordingly, HP

stands for the kernel of the measure P and D := {h ∈ HP : |h|HP ≤ 1} denotes the
dispersion ellipsoid. Moreover, let U := {x ∈ X : ||x || ≤ 1} denote the unit ball of
X . The small deviation problem (or small ball problem ) suggests to explore
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P (||X || ≤ ε) = P (εU ) , ε → 0.

A typical answer is

P (||X || ≤ ε) ∼ c1ε
a exp{−c2ε

−b}, ε → 0. (11.1)

In this case we call b small deviation rate, and c2 small deviation constant. It is
rarely possible to find a complete answer like (11.1) except for Markov processes
including Wiener process and Brownian bridge. For example, for Wiener process
[36, 146]

P

(
sup

0≤t≤1
|W (t)| ≤ ε

)
∼ 4

π
exp{−π2

8
ε−2}, ε → 0, (11.2)

and [35]

P

(∫ 1

0
|W (t)|2dt ≤ ε2

)
∼ 4ε√

π
exp{−1

8
ε−2}, ε → 0, (11.3)

while for Brownian bridge [92]

P

(
sup

0≤t≤1
|W 0(t)| ≤ ε

)
∼
√

2π

ε
exp{−π2

8
ε−2}, ε → 0,

and [4]

P

(∫ 1

0
|W 0(t)|2dt ≤ ε2

)
∼
√

8√
π

exp{−1

8
ε−2}, ε → 0.

One should notice that a small difference (rank one process) between Wiener process
and Brownian bridge influences the power term in the asymptotics but not the expo-
nential one.

11.2 Markov Case

We illustrate an approach to the study of small deviations for Markov processes by
handling asymptotics (11.2). The self-similarity of Wiener process yields

P

(
sup

0≤t≤1
|W (t)| ≤ ε

)
=P

(
sup

0≤t≤1
|εW (ε−2t)| ≤ ε

)
=P

(
sup

0≤t≤ε−2
|W (t)| ≤ 1

)

= f (0, ε−2),
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where

f (x, T ) :=P

(
sup

0≤t≤T
|x +W (t)| ≤ 1

)
.

If p(·) denotes the distribution density of the standard normal law N (0, 1), then
Markov property of Wiener process and Taylor expansion actually yield, for
small δ,

f (x, T )= o(δ)+
∫ x+1√

δ

x−1√
δ

f (x +√δy, T − δ)p(y)dy

≈
∫ ∞

−∞

(
f (x, T )+ f ′x (x, T )

√
δy

+1

2
f ′′xx (x, T )δy2 − f ′T (x, T )δ

)
p(y)dy

= f (x, T )+ 1

2
f ′′xx (x, T )δ − f ′T (x, T )δ.

After cancellation, we obtain the classical heat equation

1

2
f ′′xx (x, T )= f ′T (x, T )

while the boundary conditions are

f (1, T )= f (−1, T )= 0, f (x, 0) ≡ 1.

Looking at the solutions with separated variables for this equation, fk(x, T )=
gk(x)e−λk T , observe that the boundary conditions imply gk(±1)= 0. By plugging
into the heat equation, we arrive at the ordinary differential equation

g′′k (x)+ 2λk gk(x)= 0, |x |< 1,

gk(±1)= 0,

whence gk(x)= cos(π(k + 1)/2)x) and 2λk =π2(k + 1/2)2 for k= 0, 1, 2, . . . .

Therefore, the solution we search for should be written as a series

f (x, T )=
∞∑

k= 0

ck cos(π(k + 1/2)x) exp{−π2(k + 1/2)2T/2},

and the coefficients ck are adjusted to the initial boundary condition f (x, 0) ≡ 1,

i.e. (by taking into account that cosine functions are orthogonal)

ck =
∫ 1
−1 cos(π(k + 1/2)x)dx∫ 1
−1 cos2(π(k + 1/2)x)dx

= 2(−1)k

π(k + 1/2)
.
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The first term of the series determines the solution asymptotics at T →∞, i.e.

f (x, T )∼ c0 cos(πx/2) exp{−π2T/8}, T →∞.

By plugging in x = 0, T = ε−2, we arrive at (11.2).
The study of small deviations for additive norms like (11.3) can be performed

similarly, but instead of equation for probabilities f (x, T ) one derives a heat equation
for Laplace transform [30], e.g. for

f̃ (x, T ) :=E exp

{
−
∫ T

0
|x +W (t)|2dt

}
.

With some loss of precision, the formulas (11.2) and (11.3) admit an extension to
weighted Lq -norms. For example,

ln P

(
sup

0≤t≤1
|ρ(t)W (t)| ≤ ε

)
∼ − π2

8
||ρ||2L2[0,1]ε−2, ε → 0,

if the function ρ2 is Riemann integrable, and

ln P

(∫ 1

0
|ρ(t)W (t)|qdt ≤ εq

)
∼ − c(q)||ρ||2Lm [0,1]ε−2, ε → 0,

whenever 1 ≤ q <∞, m= 2q
q+2 and the function ρm is Riemann integrable [112,

113, 122].

11.3 Direct Entropy Method

In a particular case whenX is a space of continuous functions and ||·|| is a supremum-
norm, one can obtain comprehensive bounds for small deviations in terms of entropy
characteristics from Sect. 10.

Let X (t), t ∈ T, be a centered Gaussian random process, and N (ε) denote its cov-
ering numbers. We denote, as before, σ2 := supT EX (t)2 and ρ2(s, t) :=E(X (s)−
X (t))2.

Theorem 11.1 [9] Assume that

N (ε) ≤ Ψ (ε), ∀ε > 0, (11.4)

where the majorizing function Ψ is continuous, non-decreasing and satisfies regu-
larity assumption

Ψ (ε/2) ≤ CΨ (ε), ∀ε > 0. (11.5)
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Then

ln P

{
sup

s,t∈T
|X (s)− X (t)| ≤ C0ε

}
≥ −C1Ψ̃ (ε), 0 < ε < σ/2, (11.6)

where C0 is a numerical constant, C1=C1(C) and

Ψ̃ (ε)=
∫ σ

ε

Ψ (u)

u
du, 0 < ε < σ/2.

Remark 11.1 The regularity condition prohibits using exponential majorants but
allows the polynomial and the logarithmic ones.

Remark 11.2 Formula (11.6) evaluates small deviations of somewhat unusual sam-
ple path norm sups,t∈T |X (s) − X (t)|, called the range of the random process X.
However, the bound for the classical sup-norm follows easily. By using weak cor-
relation inequality (7.8), we find that for any t ∈ T and δ ∈ (0, 1) it is true that

P

{
sup
s∈T

|X (s)| ≤ ε

}
≥ P

{
sup
s∈T

|X (s)− X (t)| ≤ (1− δ)ε; |X (t)| ≤ δε

}

≥ P

{
sup
s∈T

|X (s)− X (t)| ≤ (1− δ)2ε

}
P

{
|X (t)| ≤ δε

Kδ

}
.

The second factor is of order ε and almost newer affects the logarithmic asymptotics
of small deviation, i.e. taking into account (11.6) and (11.5) we have

ln P

{
sup
s∈T

|X (s)| ≤ ε

}
� −Ψ̃ (ε/C0) ≈ −Ψ̃ (ε). (11.7)

Remark 11.3 If we replace assumption (11.5) with a stronger bilateral assumption

C ′Ψ (ε) ≤ Ψ (ε/2) ≤ CΨ (ε)

with some C ′> 1 (which excludes logarithmic majorants and actually means that
Ψ is a kind of regularly varying function of negative index), it is easy to check that
Ψ̃ (ε) ≤ C ′ ln 2

C ′−1 Ψ (ε), and we arrive at Talagrand bound [105, 169] for small deviation
probabilities

ln P

{
sup

s,t∈T
|X (s)− X (t)| ≤ C0ε

}
≥ −C ′1Ψ (ε), 0 < ε < σ/2. (11.8)

For example, if T =[0, 1] and X =W (α) is an α-fractional Brownian motion, then
N (ε)∼ ε−2/α and Talagrand bound yields

ln P

{
sup

0≤t≤1
|W (α)(t)| ≤ ε

}
≥ −c(α)ε−2/α. (11.9)
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However, the next example shows that the function Ψ̃ sometimes can not be
replaced with Ψ, as done in (11.8).

Example 11.1 Let T =N and let X (s), s ∈ N, be independent centered Gaussian
variables with variances σ 2

s = e−2s . It is easy to check that N (ε) ≈ | ln ε|, i.e. a
majorant Ψ (ε) � | ln ε| applies, whereas Ψ̃ (ε) � | ln ε|2 and the bound (11.7) yields

ln P

{
sup
s∈N

|X (s)| ≤ ε

}
� −| ln ε|2.

It is not hard to check that the order of this bound is sharp, i.e.

ln P

{
sup
s∈N

|X (s)| ≤ ε

}
� −| ln ε|2. (11.10)

Exercise 11.1 Prove the bound (11.10).

The proof of Theorem 11.1 will be based on the following evaluation.

Lemma 11.1 Let (εk)k≥0 be a decreasing sequence of positive numbers and assume
that ε0 ≥ σ. Let (bk)k≥0 be a summable sequence of non-negative numbers and
b= ∑

k≥0 bk . Then

P

{
sup

s,t∈T
|X (s)− X (t)| ≤ 2b

}
≥

∞∏
k= 0

P{εk |ξ | ≤ bk}N (εk+1), (11.11)

where ξ is a standard normal random variable.

Proof (of Lemma 11.1). We use the chaining method introduced in the proof of
Theorem 10.1. For each εk choose a minimal covering of T by sets of diameter not
exceeding εk . Let us choose a point in every covering element. Let Sk denote the set
of N (εk) chosen points. Let us fix some mappings πk : T �→ Sk satisfying

ρ(x, πk(x)) ≤ εk, ∀x ∈ T .

Notice that for k = 0 we have N (ε0)= 1, i.e. the set S0 consists of a single element.
Therefore,

sup
s,t∈S0

|X (s)− X (t)| = 0.

Furthermore, we have a bound

|X (s)− X (t)| ≤ |X (s)− X (πk(s))|+ |X (πk(s))− X (πk(t))|+ |X (πk(t))− X (t)|,

that yields
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sup
s,t∈Sk+1

|X (s)− X (t)| ≤ sup
s,t∈Sk

|X (s)− X (t)| + 2 sup
t∈Sk+1

|X (t)− X (πk(t))|.

By induction,

sup
s,t∈Sn+1

|X (s)− X (t)| ≤ 2
n∑

k= 0

sup
t∈Sk+1

|X (t)− X (πk(t))|.

We come to the key point of the proof, application of Khatri–Šidak inequality (7.7),
which yields

P

{
sup

s,t∈Sn+1

|X (s)− X (t)| ≤ 2b

}
≥ P

{
n⋂

k= 0

{
sup

t∈Sk+1

|X (t)− X (πk(t))| ≤ bk

}}

=P

⎧⎨
⎩

n⋂
k= 0

⋂
t∈Sk+1

{|X (t)− X (πk(t))| ≤ bk}
⎫⎬
⎭

≥
n∏

k= 0

P{εk |ξ | ≤ bk}N (εk+1).

By replacing the finite product in the right-hand side with the infinite one, we get a
bound independent of n. A passage from Sn to the set T repeats formal reasonings
from the proof of Theorem 10.1. ��
Proof (of Theorem 11.1). Let ε ∈ (0, σ/2). In order to use the bound (11.11),
we have to construct appropriate sequences (εk) and (bk). We provide different
constructions for εk ≤ ε and εk ≥ ε. Let us fix an r ∈ ( 1

2 , 1). The value of r will
only affect the constants emerging in the proof. We consider the zone εk ≤ ε first.
Let εk = 2−kε, bk = rkε, k= 0, 1, . . . . Clearly,

b :=
∞∑

k= 0

bk = ε

1− r

is an appropriate bound. By using (11.4) and iterating assumption (11.5), we obtain

N (εk+1)= N (2−k−1ε) ≤ Ψ (2−k−1ε) ≤ Ck+1Ψ (ε).

Since 2r > 1, standard tail estimates of the normal law yield

P{εk |ξ | ≤ bk}=P{|ξ | ≤ (2r)k}= 1− P{|ξ | ≥ (2r)k}
≥ exp

{
−2P{|ξ | ≥ (2r)k}

}
≥ exp

{
−4 exp[−(2r)2k/2]

}
.

Thus,
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∞∏
k= 0

P{εk |ξ | ≤ bk}N (εk+1) ≥
∞∏

k= 0

exp{−4 exp[−(2r)2k/2]Ck+1Ψ (ε)}

= exp
{
− 4

∞∑
k= 0

exp[−(2r)2k/2]Ck+1Ψ (ε)
}

:= exp{−c(r)Ψ (ε)}.
By taking into account the monotonicity of function Ψ and assumption ε <σ/2, we
have

Ψ̃ (ε) ≥
∫ 2ε

ε

Ψ (u)

u
du ≥ ln 2 · Ψ (2ε) ≥ ln 2

C
Ψ (ε), (11.12)

and the required estimate follows by

∞∏
k= 0

P{εk |ξ | ≤ bk}N (εk+1) ≥ exp

{
−c(r)C

ln 2
Ψ̃ (ε)

}
.

Let us now consider the zone εk ≥ ε where we build a finite system of levels.
Choose n= n(ε) such that

rnΨ (ε) ≤ Ψ (σ)< rn−1Ψ (ε).

Let ε0= σ, while choosing next εk so that

Ψ (εk)= rn−kΨ (ε), 1 ≤ k ≤ n.

In particular, we have εn = ε. For any k ≥ 1 it is true that Ψ (εk) ≤ r−1Ψ (εk−1).

Notice that

ln

(
εk−1

εk

)
Ψ (εk) ≤

∫ εk−1

εk

du

u
r−1Ψ (εk−1) ≤ r−1

∫ εk−1

εk

Ψ (u)du

u
. (11.13)

Finally, we define

bk = r n−kε, 0 ≤ k < n.

Since

bk

εk
= rn−kε

εk
= rn−k εn

εk
≤ 1,

we can use the simplest estimate

P (εk |ξ | ≤ bk) ≥ c
bk

εk
= c

rn−kεn

εk
,
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where c= (2/π)1/2. It follows that

n−1∏
k= 0

P (εk |ξ | ≤ bk)
Ψ (εk+1) ≥

n−1∏
k= 0

(
c

rn−kεn

εk

)Ψ (εk+1)

:=Π1 ·Π2,

where

Π1 :=
n−1∏
k= 0

(
crn−k

)Ψ (εk+1)

, Π2:=
n−1∏
k= 0

(
εn

εk

)Ψ (εk+1)

.

For Π1 we easily obtain

| ln �1| ≤
n−1∑
k= 0

(| ln c| + | ln r |(n − k)) rn−k−1Ψ (ε) ≤ c(r)Ψ (ε),

the latter quantity being already evaluated in (11.12). For Π2 summation by parts
and taking (11.13) into consideration yield

| ln �2| ≤
n−1∑
k= 0

n∑
l = k+1

ln

(
εl−1

εl

)
Ψ (εk+1)

≤ (1− r)−1
n∑

l = 1

ln

(
εl−1

εl

)
Ψ (εl)

≤ r−1
∫ ε0

εn

Ψ (u)du

u
= r−1Ψ̃ (ε).

It remains to merge two sequences εk , renumber the resulting sequence, and apply
Lemma 11.1. ��

The estimates coming from the direct entropy method are simple to apply and
often, although not always, efficient. They are, however missing generality in what
concerns the norms to consider, they do not provide upper bounds for small deviation
probabilities, and their results are just not sharp in the more complicated situations.
This is why we pass now to a less elementary but by far more general dual entropy
method.

11.4 Dual Entropy Method

Let X be a centered Gaussian vector taking values in a separable Banach space
(X , || · ||). In the absence of Markov property, one can usually only pretend to find
the rate of small deviations. Therefore, we will concentrate our efforts on the study
of small deviation function
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φ(ε) := − ln P(||X || ≤ ε),

which satisfies the relation φ(ε) � ε−b, as ε → 0, for many random vectors X.
Following Kuelbs and Li , the authors of dual entropy method [98, 115], let us con-

sider packing numbers MD(ε) of dispersion ellipsoid D with respect to the distance
induced by the norm ||·||, and the corresponding metric capacity CD(ε)= ln MD(ε).

The word “dual” in subsection title stresses the fact that the nature of entropy char-
acteristics we handle here is different from those considered in Sect. 10. The relation
between two kinds of entropy is discussed below in Sect. 11.5.

We have the following upper bound for small deviation probability (which means
a lower bound for small deviation function).

Proposition 11.11 For any r > 0, λ> 0 it is true that

φ(r) ≥ CD

(
2r

λ

)
− λ2

2
. (11.14)

Proof. Let U := {x ∈ X : ||x || ≤ 1} and let P denote the distribution of X in X .

Let ε > 0. Set n=MD(ε). Consider a point configuration {h j , 1 ≤ j ≤ n} ⊂ D
such that ||hi −h j ||>ε whenever j �= i. Then all balls h j + ε

2U are disjoint and the
same is true for dilated balls λ(h j + ε

2U )= λh j + λε
2 U. By using Borell inequality

for shifted sets (5.3), we obtain

1 ≥
n∑

j = 1

P

(
λh j + λε

2
U

)

≥ n min
1≤ j≤n

P

(
λε

2
U

)
exp

{
−λ2|h j |2HP

2

}

≥ n P

(
λε

2
U

)
exp

{
−λ2

2

}
.

Therefore,

P

(
λε

2
U

)
≤ exp

{
λ2

2

}
n−1

and

ln P

(
λε

2
U

)
≤ λ2

2
− ln n.

Finally, we change notation by letting r := λε
2 , then ε= 2r

λ
, and obtain

ln P(rU ) ≤ λ2

2
− ln MD

(
2r

λ

)
,
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which is equivalent to inequality (11.14). ��
Corollary 11.1 Assume that for some β ∈ (0, 2), c > 0 it is true that CD(ε) ≥ c ε−β

for small ε > 0. Then there exists c̃ > 0 such that φ(r) ≥ c̃ r−
2β

2−β holds for all small
r > 0.

Proof (of Corollary). Fix δ > 0. By plugging λ := δr−
β

2−β in (11.14) we obtain

ln P(rU ) ≤ δ2

2r
2β

2−β

− CD

⎛
⎝2r · r β

2−β

δ

⎞
⎠ ,

≤ δ2

2r
2β

2−β

− c

(
2r

2
2−β

δ

)−β

=
(

δ2

2
− c2−βδβ

)
r
−2β
2−β := − c̃r

−2β
2−β ,

where c̃ > 0 if δ is small enough. ��
Exercise 11.2 By using estimate (11.14), prove that CD(ε)= o

(
ε−2

)
holds for any

centered Gaussian vector in a separable Banach space. Therefore the range β ≥ 2 is
senseless in the context of Corollary 11.1.

We turn now to the converse bounds. Let ND(ε) denote the covering numbers of
dispersion ellipsoid D with respect to the distance induced by the norm || · || and let
HD(ε)= ln ND(ε) denote the corresponding metric entropy. The lower bound for
small deviation probabilities, i.e. the upper bound for small deviation function is as
follows.

Proposition 11.2 For any r > 0 it is true that

φ(2r) ≤ ln 2+ HD

(
r√

2Φ(r)

)
. (11.15)

Proof. Let r, λ> 0 and n= ND
( r

λ

)
. Let us cover ellipsoid D with a minimal number

of sets with diameters not exceeding ε
λ
; then inscribe each of these sets in a ball of

the same radius. We obtain a covering

D ⊂
n⋃

j = 1

{
h j + r

λ
U
}
.

Multiplying by λ, we obtain

λD ⊂
n⋃

j = 1

{λh j + rU }.

It follows that
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λD + rU ⊂
n⋃

j = 1

{λh j + 2rU }

and Anderson inequality yields

P (λD + rU ) ≤
n∑

j = 1

P
(
λh j + 2rU

) ≤ n P(2rU ).

On the other hand, from isoperimetric inequality it follows that

P (λD + rU ) ≥ Φ
(
Φ−1 (P(rU ))+ λ

)
.

By comparing these bounds we obtain

Φ
(
Φ−1 (P(rU ))+ λ

)
≤ n P(2rU ).

In order to simplify the left-hand side, let λ=√2φ(r). Then

Φ(−λ) ≤ exp{−λ2/2}= exp{−φ(r)}= P(rU ),

hence

−λ ≤ Φ−1 (P(rU )) ,

and we arrive at the estimate

n P(2rU ) ≥ Φ(0)= 1

2
.

By taking logarithms, we have

ln P(2rU ) ≥ − ln 2− ln n,

which is equivalent to the required bound (11.15). ��
Remark 11.4 Inequality (11.15) has an obvious drawback—an iterative nature.
Indeed, the function φ(·) shows up both in the left-hand and in the right-hand sides.
However, for practically interesting examples the “degree” of φ(·) in the right-hand
side is less than that in the left-hand side. This observation explains the usefulness
of (11.15). In particular, one can derive the converse estimates to the bounds stated
above.

Corollary 11.2 Assume that for some β ∈ (0, 2), c > 0 we have ND(ε) ≤ cε−β for

small ε > 0. Then for some c̃ > 0 the relation φ(r) ≤ c̃r−
2β

2−β holds for small r > 0.
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Unfortunately, the known proof of this fact [115] based on (11.15) also involves the
notions and results that are not considered in this course. It would be very interesting
to find a short and self-contained proof for it.

Example 11.2 (Small deviations for Riemann–Liouville process [114]) Recall that
α-Riemann–Liouville process was defined in Example 3.4. According to (4.5), its
dispersion ellipsoid has the following form:

D=
{

h(t)= 1

Γ (α)

∫ t

0
(t − s)α−1�(s)ds, ||�||L2[0,1] ≤ 1

}
.

The entropy characteristics of this function class in C[0, 1] are studied quite well. It

is known that HD(ε) ≈ ε−1/α. It follows that φ(r) ≈ r−
2

2α−1 . One can even show

that a sharper statement φ(r)∼ Q(α)r−
2

2α−1 is true for some constant Q(α).

Example 11.3 (Small deviations for fractional Brownian motion [114]) By com-
paring the integral representations of α-fractional Brownian motion with those of
α+1

2 -Riemann–Liouville process, cf. (3.4) and (3.6), one can state that the differ-
ence of the two processes (up to normalizing constants), is a smooth process with
relatively large small deviation probabilities. By using comparison estimates (7.9)
and (7.10), one can show that the small deviation functions of two processes are
equivalent. Taking into account the result of the previous example we see that small
deviation function for α-fractional Brownian motion of satisfies

φ(r)∼ Q

(
α + 1

2

)(
r

cαΓ (α+1
2 )

)−2/α

.

where cα is the constant from formula (3.5). This agrees with the one-sided bound
(11.9) obtained by completely different method.

11.5 Duality of Metric Entropy

At first glance, it looks like the two entropies (that of the process parametric set
with respect to its associated distance and that of dispersion ellipsoid of a Gaussian
vector in a normed space) considered in previous subsections have nothing to do with
each other. In fact, there is a deep connection between them coming from duality
conjecture in linear operator theory. Let us forget for a while probability theory and
small deviations and consider a problem in the language of linear operators. Let

V : (X1, || · ||1) → (X2, || · ||2)
be a compact linear operator acting from one Banach space to another one. Let
B1={x ∈ X1 : ||x ||1 ≤ 1}, B2={x ∈ X2 : ||x ||2 ≤ 1} denote the corresponding
unit balls. Compactness of V means that the set V (B1) is compact in X2. Therefore,
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we may consider covering numbers NV (B1)(ε) of this set with respect to the distance
of the space X2 and call them covering numbers of operator V,

NV (ε) := NV (B1)(ε).

Function NV (·) is a measure of complexity of operator V. Along with operator V, let
us consider the dual operator

V ∗ : (X ∗
2 , || · ||∗,2) → (X ∗

1 , || · ||∗,1).
The properties of operators V and V ∗ are tightly connected: their norms are equal
and if V is compact, so is V ∗. Therefore, a legitime question arises about the con-
nection between the covering numbers of operators V and V ∗. In 1972, A. Pietsch
stated duality conjecture for covering numbers which is still neither fully proved nor
disproved. This conjecture asserts that there exist two numerical constants a and b
such that for any linear operator V and any ε > 0 it is true that

b−1 ln NV ∗(aε) ≤ ln NV (ε) ≤ b ln NV ∗(a
−1ε).

The essence of the statement is contained in the first inequality, since the second one
follows by application of the first to V ∗. Duality conjecture is proved for the case
when at least one of the spaces we deal with is a Hilbert space [6].

Let us come back to a Gaussian vector X ∈ X we are interested in. Consider
canonical embedding operators I ∗ : X ∗ → X ∗

P and I : X ∗
P → X . The image of

the unit ball under operator I coincides with dispersion ellipsoid. Therefore, the cov-
ering numbers NI (ε) are exactly those numbers on which the dual entropy approach
to small deviations is based. Let us now write the norm of X as a supremum,

||X || = sup
f ∈B∗

( f, X),

where B∗ stands for the unit ball of the dual space X ∗. By applying the technique
of direct entropy approach to T = B∗ and to the random process X̃( f ) := (X, f ) we
have to study the entropy of the set B∗ equipped with the distance

ρ( f, g)2=E(X̃( f )− X̃(g))2=E( f − g, X)2= ||I ∗ f − I ∗g||2X ∗
P
.

Therefore, for the direct entropy approach we need exactly the covering numbers
of operator I ∗. We conclude that the covering numbers related to our approaches
correspond to dual operators! Since the space X ∗

P is a Hilbert space, the duality
relations are true in the case we are interested in and, if necessary, we can replace
one type of covering numbers with another one.

11.6 Hilbert Space

If X is a separable Hilbert space, the small deviation problem admits much sharper
solution than in general case. Assuming that Karhunen–Loève expansion (2.1) is
known, we can write the norm of a centered Gaussian vector as
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||X ||2=
∞∑

j = 1

σ 2
j ξ

2
j , (11.16)

(recall that ξ j are independent standard normal variables), thus the small deviation
problem reduces to a study of sums of independent variables. Formula (11.16) yields
an explicit expression for Laplace transform,

E exp{−γ ||X ||2}=
∞∏

j = 1

(1+ 2γ σ 2
j )
−1/2.

Since the behavior of the norm distribution near zero (small deviations) is tightly
related to the behavior of Laplace transform at large γ, we infer that everything
is determined by the asymptotic behavior of the sequence (σ j ). For example, very
accurate calculations yield the following result [88].

Proposition 11.3 If α > 1, θ ∈ R, and σ 2
j ∼C (ln j)θ

jα , then

φ(ε)∼C
1

α−1

(
α − 1

2

)1− θ
α−1

β
α

α−1 | ln ε| θ
α−1 ε

−2
α−1 .

where β := π
α sin(π/α)

. Moreover, if the two-term asymptotics is known, i.e.

σ 2
j =C

(
j + δ + O

(
j−1
))−α

then

P(||X || ≤ ε)∼Mεγ exp

{
−C

1
α−1

α − 1

2
β

α
α−1 ε

−2
α−1

}
,

where γ = 2−α−2δα
2(α−1)

and M depends on the entire sequence (σ j ).

However, this is only a first step to solution of small deviation problem, because
a Gaussian vector is usually given not in the form of expansion (2.1).

Recall a typical situation with X = L2(T, μ) and a process given by covariance
K (s, t)=EX (s)X (t). In this case, before applying Proposition 11.3, one should
investigate the asymptotic behavior of unknown sequence (σ j ). Many new results
and interesting examples appeared recently in this direction, see [16, 60, 69, 71–74,
88, 137–141].

Small deviation theory in Hilbert space admits two completely different natural
extensions: to the sums of weighted i.i.d. variables [7, 31, 56, 119] and to L p-spaces
with arbitrary finite p [7, 61–64, 113, 122–124].
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11.7 Other Results

In Corollaries 11.1 and 11.2 we considered criteria for power behavior of small
deviation function. However, in certain cases the logarithmic factors also come into
play. Therefore, the following extension [98, 115] is also useful.

Proposition 11.4 Let β ∈ (0, 2), γ ∈ R. Then relations HD(ε) ≈ ε−β | ln ε|γ and

φ(r) ≈ r−
2β

2−β | ln r | 2γ
2−β are equivalent.

For example, the following result can be deduced via Proposition 11.4 from the
entropy estimates of classes of smooth functions [15, 175]. Consider d-parametric
Brownian sheet X = W as a random element of the space L p[0, 1]d , 1 ≤ p <∞. Then
HD(ε) ≈ ε−1| ln ε|d−1 and φ(r) ≈ r−2| ln r |2d−2. The small deviation behavior of
the Brownian sheet with respect to the uniform norm (case p=∞) is a difficult and
challenging open problem. It is known that

φ(r)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∼ π2

8 r−2, d = 1,

≈ r−2| ln r |3, d = 2, [170],
 r−2| ln r |2d−1 d > 2, [55],
� r−2| ln r |2d−2+q , for some q = q(d)> 0, d > 2, [18].

Observe a logarithmic gap between the upper and lower bounds for d > 2.

For very smooth processes the small deviation function may even behave loga-
rithmically. In such situations, another result is useful [8].

Proposition 11.5 Let γ > 0, ζ ∈ R. Then relations HD(ε) ≈ | ln ε|γ ln | ln ε|ζ and
φ(r) ≈ | ln r |γ ln | ln ε|ζ are equivalent.

In Bayesian statistics one often considers a stationary Gaussian process with
normal spectral density f (u)= exp(−u2) for modelling (the logarithms of) random
distribution densities. The behavior of the corresponding small deviation probabilities
turns out to be crucial for investigation of convergence rates of Bayesian estimates
[176]. Consider the mentioned process as an element of a family of processes Xν

with spectral densities

fν(u)=
{

exp(−|u|ν), 0 < ν <∞,

1[0,1](u), ν=∞.

By using Proposition 11.5 jointly with the known estimates for the entropy of the
classes of analytical functions [93], one can derive that for Xν it is true that [8]

φ(r) ≈ HD(r) ≈
⎧⎨
⎩

| ln r |2
ln | ln r | , 1 < ν ≤ ∞,

| ln r |1+ 1
ν , 0 < ν ≤ 1.
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All examples mentioned above obey a general rule: smoother the sample paths of a
process are, larger are small deviation probabilities and smaller is the small deviation
function.

One can find a lot of additional information about small deviation theory in surveys
[116, 120]. For an up to date bibliography on the topic, see [121].

12 Expansions of Gaussian Vectors

12.1 Problem Setting

On can state expansion problem for Gaussian vectors in two different ways.
Strong form. A Gaussian X -valued random vector is given as a measurable

mapping X : (Ω, P) �→ X . Find an expansion

X (ω)=
∞∑

j = 1

ξ j (ω)x j

that holds P-almost surely. Here ξ j are independent Gaussian variables defined on
(Ω, P) and (x j ) is a non-random sequence of vectors in X .

Weak form. Given a Gaussian measure P on X , construct a random vector X of
the form

X (ω)=
∞∑

j = 1

ξ j (ω)x j

such that ξ j are independent Gaussian variables, the series converges P-almost surely
and the distribution of X equals to P.

12.2 Series of Independent Random Vectors

For exposition simplicity, let us assume that X is equipped with a norm || · || and
(X , || · ||) is a separable Banach space. Consider a series of partial sums

Sn =
n∑

j = 1

Xj ,

where Xj ∈ X are independent random vectors, defined on a common probability
space (Ω, P). One can consider three types of convergence for Sn:
• distributions of Sn converge weakly to a distribution P on X .
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• There exists a limit vector S ∈ X such that Sn
P⇒ S, i.e.

lim
n→∞P{||Sn − S||> ε} ∀ε > 0.

• lim
n→∞ Sn = S P-almost surely. (12.1)

It is well known from general probability theory, that the third property yields the
second, while the second yields the first one. For independent summands all three
properties turn out to be equivalent.

Theorem 12.1 If X j are centered Gaussian vectors, the convergence of Sn in
distribution implies (12.1).

Remark 12.1 The Gaussian property in this theorem is not as important as indepen-
dence. The statement remains true, e.g. for the series composed of the symmetrically
distributed independent vectors.

Proof (of Theorem 12.1). We organize the proof in few steps, gradually enlarging
the class of the spaces.

Step 1. X =R
1. Here Xj are just usual random variables. Let σ 2

j =Var Xj . Then

Sn has the distribution N
(

0,
∑n

j = 1 σ 2
j

)
. Distribution convergence of Sn implies

that
∑∞

j = 1 σ 2
j <∞. Since the series convergence for expectations and variances

guarantees a.s.-convergence of a series of random variables (classical Kolmogorov–
Khinchin “two-series theorem”), we see that (12.1) holds.

Step 2. X =R
n. The statement follows by applying the result of Step 1 to coordinates

of vectors X j . Recall that they are independent, symmetrically distributed, and for
every coordinate the sum distributions converge to the distribution of this coordinate
with respect to the limit law. On the other hand, it is obvious that the a.s. convergence
of every coordinate of Sn yields a.s. convergence for vectors Sn.

Step 3. Let X be an arbitrary finite-dimensional space. The statement follows from
the fact proved on the previous step by considering a linear isomorphism between
X and the corresponding R

n such that this isomorphism and its inverse are bounded
operators.

Step 4. Let X be an arbitrary separable Banach space. Let us first reformulate the
notion of almost sure convergence in terms close to convergence in probability. We
say that a sequence of random elements Sn of a normed space X is fundamental in
probability, if

lim
n→∞P

{
sup

n1,n2≥n
||Sn1 − Sn2 || ≥ ε

}
= 0, ∀ε > 0.

Let us show that if a sequence Sn is fundamental in probability and the space X is
complete, then there exists a limiting random element S ∈ X , such that limn Sn = S
almost surely. Indeed, let
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Mn = sup
n1,n2≥n

||Sn1 − Sn2 ||.

Since Mn is a decreasing sequence, there exists a limit M = limn Mn. For any n ≥
1, ε > 0 we have {M ≥ ε} ⊂ {Mn ≥ ε}. It follows that

P{M ≥ ε} ≤ lim
n→∞P{Mn ≥ ε}= 0.

Since ε is arbitrary, we have M = 0 almost surely. Therefore, Sn is a Cauchy sequence,
and the limit S exists.

Let us come back to our series. Assume that the sequence of partial sums converges
in distribution. We will show that it is fundamental in probability. Let P be the limit
distribution for Sn. Let us fix small numbers ε, δ > 0. Since any finite measure in
a separable Banach space is tight, there exists a compact set K ⊂ X such that
P(K ) ≥ 1− δ. Let us choose a finite ε-net x1, . . . , xm in K, and let X̃ be the linear
span of this net. As usual, the distance between a point and a set is defined by the
formula

ρ(x, A)= inf
y∈A

||x − y||, x ∈ X , A ⊂ X .

Then

sup
x∈K

ρ(x, X̃ ) ≤ sup
x∈K

inf
1≤ j≤m

||x − x j || ≤ ε.

Therefore, convergence of distributions implies

lim sup
n→∞

P{ρ(Sn, X̃ ) ≥ 2ε} ≤ P{x : ρ(x, X̃ )> 2ε}
≤ P(X \K ) ≤ δ.

Therefore, for sufficiently large n it is true that

P{ρ(Sn, X̃ ) ≥ 2ε} ≤ 2δ.

It is known from functional analysis that there exists a linear projector L : X �→ X̃
such that ||L|| ≤ 2. Write

Sn = (Sn − L Sn)+ L Sn := S′n + S̃n.

We derive now some estimates that enable to reduce the problem to the finite-
dimensional case. Find a random element yn ∈ X̃ where the minimum is attained,

||Sn − yn || = ρ(Sn, X̃ ).

Then
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||S′n || = ||Sn − L Sn || ≤ ||Sn − yn || + ||yn − Lyn|| + ||Lyn − L Sn ||
≤ (1+ ||L||) ||Sn − yn|| ≤ 3ρ(Sn, X̃ ).

We use the following lemma for getting a uniform bound.

Lemma 12.1 (Lévy inequality) If the random vectors X j are independent and
symmetrically distributed, then for any r > 0 their sums satisfy the bound

P

{
max
k≤n

||Sk || ≥ r

}
≤ 2P {||Sn|| ≥ r} . (12.2)

By applying (12.2) to the sums S′n, we obtain

P

{
max
k≤n

||S′k || ≥ 6ε

}
≤ 2P

{||S′n || ≥ 6ε
} ≤ 2P

{
ρ(Sn, X̃ ) ≥ 2ε

}
≤ 2δ.

Hence,

P

{
max

k
||S′k || ≥ 6ε

}
= lim

n→∞P

{
max
k≤n

||S′k || ≥ 6ε

}
≤ 2δ.

On the other hand, the finite-dimensional sequence S̃n converges in distribution,
being a linear projection of convergent sequence Sn. By using the result of Step 3,
the sums S̃n are fundamental in probability. Therefore, for large n we obtain

P

{
sup

n1,n2≥n
||Sn1 − Sn2 || ≥ 13ε

}

≤ P{ sup
n1,n2≥n

||S′n1
− S′n2

|| ≥ 12ε} + P{ sup
n1,n2≥n

||S̃n1 − S̃n2 || ≥ ε}
≤ P{sup

k
||S′k || ≥ 6ε} + δ ≤ 3δ.

Since δ was chosen arbitrarily, we have checked that the sequence Sn is fundamental
in probability, and the proof is complete. ��

12.3 Construction of a Vector with Given Distribution

Let a centered Gaussian distribution P = N (0, K ) be given and let HP be the corre-
spondent kernel. Let (ξ j ) be a sequence of independent N (0, 1)-distributed random
variables and (z j ) an orthonormal base in X ∗

P . Then (h j )= (I z j ) is an orthonormal
base in HP (Here I is the canonical isomorphism of spaces X ∗

P and HP , cf. Sect. 4).
We show that the series

X (ω)=
∞∑

j = 1

ξ j (ω)h j
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converges and that the distribution of series X coincides with P, [153]. According to
Theorem 12.1, it is enough to check that partial sums Sn = ∑n

j = 1 ξ j (ω)h j converge
in distribution to P. We check the convergence of characteristic functions. Indeed,
for f ∈ X ∗ we have

( f, Sn)=
n∑

j = 1

ξ j (ω)( f, h j )=
n∑

j = 1

ξ j (ω)(I ∗ f, z j ). (12.3)

Eei( f,Sn)=E exp

⎧⎨
⎩i

n∑
j = 1

ξ j (ω)(I ∗ f, z j )

⎫⎬
⎭ = exp

⎧⎨
⎩−

1

2

n∑
j = 1

(I ∗ f, z j )
2

⎫⎬
⎭

→ exp

⎧⎨
⎩−

1

2

∞∑
j = 1

(I ∗ f, z j )
2

⎫⎬
⎭ = exp

{
−1

2
||I ∗ f ||22

}
=
∫
X

ei( f,x) P(dx).

��

12.4 Expansion of a Given Vector

We will solve now the strong form of expansion problem. Let a random vector X
with distribution P be given. We will use the previous construction but specify the
choice of random variables (ξ j ) by letting ξ j = z j (X). Recall that measurable linear
functionals z j form a base in X ∗

P , thus

Ezi (X)z j (X)=
∫
X

zi z j dP =
{

0, i �= j,

1, i = j.

We already know that the sum

Y =
∞∑

j = 1

z j (X)h j

is well defined P-almost surely. It remains to prove that Y = X with probability one.
For any functional f ∈ X ∗ by (12.3) we have

( f, Y )= lim
n→∞

n∑
j = 1

z j (X)(I ∗ f, z j )

P-almost surely. On the other hand, in the space X ∗
P ⊂ L2(X , P) we have
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lim
n→∞

n∑
j = 1

z j (·)(I ∗ f, z j )= (I ∗ f )(·),

i.e.

E

∣∣∣∣∣∣
n∑

j = 1

z j (X)(I ∗ f, z j )− ( f, X)

∣∣∣∣∣∣
2

= 0.

It follows that ( f, X)= ( f, Y ) almost surely. Hence, for any f ∈ X ∗ we have
Eei( f,X−Y )= 1 and X = Y with probability one. ��

12.5 Examples: Expansions of Wiener Process

Consider some expansion examples by taking C[0, 1] as a space and a Wiener process
W as a Gaussian vector. Recall that one can obtain a base in the kernel HP of the
Wiener measure P by integration of a base in L2[0, 1].
Example 12.1 (Cosine base) Let us consider a base in L2[0, 1] given by

{
ϕ0(s)= 1,

ϕ j (s)=
√

2 cos(π js), j ≥ 1.

Integration yields a base in the kernel

{
h0(t)= t,

h j (t)=
√

2 sin(π j t)
π j , j ≥ 1.

We arrive at the expansion

W (t)= ξ0t +√2
∞∑

j = 1

ξ j
sin(π j t)

π j
.

Notice that W (1)= ξ0 and use the representation (3.3) for Brownian bridge. We see
that once the first (linear) term is dropped, the remaining sum presents an expansion
for Brownian bridge.

Example 12.2 (Sine base) Take a base in L2[0, 1] given by

ϕ j (s)=
√

2 sin(π js), j ≥ 1.

Integration yields a base in the kernel
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h j (t)=
√

2
1− cos(π j t)

π j
, j ≥ 1.

We arrive at the expansion

W (t)=√2
∞∑

j = 1

ξ j
1− cos(π j t)

π j
.

This expansion showed up in pioneer works of N. Wiener.

Example 12.3 (Karhunen–Loève expansion) Take a base in L2[0, 1] given by

ϕ j (s)=
√

2 cos(π( j − 1/2)s), j ≥ 1.

Integration yields a base in the kernel

h j (t)=
√

2
sin(π( j − 1

2 )t)

π( j − 1
2 )

, j ≥ 1.

We arrive at the expansion

W (t)=√2
∞∑

j = 1

ξ j
sin(π( j − 1

2 )t)

π( j − 1
2 )

.

The functions h j are also orthogonal in L2[0, 1] which is a particular advantage of
this expansion. If one considers W as a random element of L2[0, 1] instead of C[0, 1],
then (h j ) turns out to be the orthogonal eigenfunction system of the corresponding
covariance operator.

Example 12.4 (Paley–Wiener expansion, [142]) Take a base in L2[0, 1] given by
⎧⎪⎪⎨
⎪⎪⎩

ϕ0(s)= 1,

ϕ2 j (s)=
√

2 cos(2π js), j ≥ 1,

ϕ2 j−1(s)=
√

2 sin(2π js), j ≥ 1.

Integration yields a base in the kernel
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h0(t)= t,

h2 j (t)= sin(2π j t)√
2π j

, j ≥ 1,

h2 j−1(t)= (1−cos(2π j t))√
2π j

, j ≥ 1.

We arrive at the expansion

W (t)= ξ0t +
∞∑

j = 1

ξ2 j
sin(2π j t)√

2π j
+

∞∑
j = 1

ξ2 j−1
(1− cos(2π j t))√

2π j
.
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Example 1.12.5 (Haar–Schauder expansion) Let denote

Ψ (s)=

⎧⎪⎨
⎪⎩

1, 0 ≤ s ≤ 1/2,

−1, 1/2 < s ≤ 1,

0, s < 0 or s > 1,

and

h(t)=
∫ t

0
Ψ (s)ds=

⎧⎪⎪⎨
⎪⎪⎩

t, 0 ≤ t ≤ 1
2 ,

1− t, 1
2 ≤ t ≤ 1,

0, t < 0 or t > 1.

Consider the Haar base in L2[0, 1] given by

⎧⎨
⎩

ϕ0(s)= 1,

ϕ j,k(s)= 2 j/2Ψ
(

2 j (t − k
2 j )
)
, j ≥ 0, 0 ≤ k ≤ 2 j − 1.

Integration yields a base in the kernel

⎧⎨
⎩

h0(t)= t,

h j,k(t)= 2− j/2h
(

2 j (t − k
2 j )
)
, j ≥ 0, 0 ≤ k ≤ 2 j − 1.

“Triangular functions” h j,k are called Schauder functions. We arrive at the expansion

W (t)= ξ0t +
∞∑

j = 0

2 j−1∑
k= 0

ξ j,kh j,k(t). (12.4)

It is interesting that analogous representation for W on the half-line [0,∞) looks
more homogeneously:

W (t)=
∞∑

j =−∞

∞∑
k=−∞

ξ j,kh j,k(t).

All terms with negative j are linear functions on [0,1]. By summing them up we
obtain the first term from (12.4).

The representation (12.4) is often called Lévy construction for Wiener process,
[110]. Similar expansions emerge from other wavelet bases in L2[0, 1].

Representations similar to Lévy construction (using Schauder base) are available
for more or less arbitrary Gaussian processes, see [39]. They proved to be very useful
for studies of processes’ properties, in particular, small deviations [159, 160].
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Example 12.6 (Expansion of complex Wiener process, [142]) Consider a complex
Wiener process W (t)=W1(t)+ iW2(t), where W1, W2 are independent real Wiener
processes. Then W is a Gaussian random vector in the space of continuous complex-
valued functions CC([0, 1]).

Take a base in L2,C[0, 1] given by

ϕ j (s)= exp{2π i js}, j ∈ Z.

Integration yields a base in the kernel

h j (s)= exp{2π i j t} − 1

2π i j
, j ∈ Z.

We arrive at the expansion

W (t)=
∞∑

j =−∞
ξ j

exp{2π i j t} − 1

2π i j
, (12.5)

where (ξ j ) are independent complex standard Gaussian variables.

Example 12.7 (Expansion of complex fractional Brownian motion) The previous
example admits an extension to the case of complex α-fractional Brownian motion,
i.e. the process W (α)(t)=W (α)

1 (t) + iW (α)
2 (t), where W (α)

1 , W (α)
2 are independent

real fBm (cf. Example 2.5). Similarly to (12.5), Dzhaparidze and van Zanten [57]
found an expansion

W (α)(t)=
∞∑

j =−∞
σ jξ j

exp{2iω j t} − 1

2iω j
, (12.6)

where (ξ j ) are again independent complex standard Gaussian variables, ω j are the
real zeros of Bessel function J1−α/2(·), and the coefficient variances are given by

σ 2
j =

[
(2− α)Γ (1− α/2)2(ω j/2)α J−α/2(ω j )V

]−1
,

V = Γ ( 3−α
2 )

αΓ (α+1
2 )Γ (3− α)

.

Let us note that for α= 1 it is true that J1/2(z)= (2π/z)1/2 sin z. Therefore, ω j =π j
and (12.6) boils down to (12.5).

One can find variants of expansion (12.6) for other Gaussian processes and random
fields in [57, 58, 133].

Exercise 12.1 Consider a Brownian sheet (Wiener–Chentsov field) W defined in
Example 2.7 as a random element of the space C([0, 1]2). Let H be the kernel of W.
Construct an orthonormal base in H and build a series expansion of W as it was done
for Wiener process.
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12.6 Linear Operators, Associated Gaussian Vectors, and Their
Expansions

Let X be a linear space satisfying our “usual assumptions”, let H be a Hilbert space
and consider a linear operator J : H �→ X . Taking any orthonormal base (e j ) in
H we define a formal series

X =
∞∑

j = 1

ξ j J e j , (12.7)

where (ξ j ) is a sequence of independent N(0,1)-distributed random variables.
One can show that the series (12.7) converges a.s. or diverges a.s., and the fact of

convergence does not depend on the choice of the base (e j ). In the sequel we assume
that the series (12.7) converges. Then X is a centered Gaussian vector with covariance
operator K = J J ∗. Therefore, the distribution P = N (0, J J ∗) of X does not depend
of the base choice in H . Moreover, by Factorization Theorem the kernel HP of
measure P coincides with J (H ). We say that a Gaussian vector X and measure P
are associated to operator J.

If (X , || · ||) is a normed space, we can define some important compactness
characteristics of operator J in terms of vector X. The quantity

||J ||� :=
(
E||X ||2

)1/2

is called �-norm of operator J, cf. [126, 148]. The choice of the second moment for
the norm definition is unimportant, since all moments of the norm of Gaussian vector
are equivalent according to (8.10).

Next, stochastic approximation numbers �n(J ) that characterize the quality of
possible approximation of operator J by finite rank operators are defined as follows
[115, 148]:

�n(J )= inf {||J − F ||�; F : H �→ X , rank(F)< n} .
One can show that �n(J ) also characterize the quality of average approximation of
associated random vector by Gaussian random vectors of finite rank:

�n(J )2= inf
x1,...,xn−1
ξ1,...,ξn−1

⎧⎪⎨
⎪⎩E

∥∥∥∥∥∥X −
n−1∑
j = 1

ξ j x j

∥∥∥∥∥∥
2
⎫⎪⎬
⎪⎭ .

Notice that the convergence rate of the series (12.7) may depend on the base (e j ).

However, the bases with good convergence rate do exist [100]:

Exercise 12.2 Let α > 0, β ∈ R. Prove that there exists a constant Cα,β such that
for any operator J satisfying
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�n(J )2 ≤ n−α(1+ ln n)β, n ≥ 1,

and any Gaussian vector X associated to J there exists a base (e j ) such that

E

∥∥∥∥∥∥X −
n−1∑
j = 1

ξ j J e j

∥∥∥∥∥∥
2

≤ Cα,βn−α(1+ ln n)β, n ≥ 1.

13 Quantization of Gaussian Vectors

13.1 Problem Setting

Quantization (or discretization) problem for random vectors comes from information
processing. Imagine a signal (a fragment of a picture, of a soundtrack etc) that should
be transmitted through a channel. The set of possible signals is a metric space (X , ρ).

One of possible ideas for transmission algorithms is based on a use of “dictionaries”.
A dictionary is a finite subset Y ={y j }1≤ j≤n of X . Both the sender and receiver
possess a copy of a dictionary. When a signal x ∈ X should be transmitted, the
sender identifies a dictionary element y j closest to x and sends the number j of
approximating element through the channel. The receiver reconstructs the value y j

by using the dictionary. Clearly, the number transmission is performed much faster
than the transmission of the signal itself. For this acceleration, we pay by making an
error, since the output is an approximation y j instead of the true signal x.

We will apply a Bayesian approach to the analysis of this transmission procedure.
Assume that there is a probability measure P on X characterizing the probability
distribution of a signal that eventually will be transmitted. Let X be a random element
ofX having distribution P. Then the average quantization error related to a dictionary
Y is defined by

d(Y, p)=
(

E min
1≤ j≤n

ρ(X, y j )
p
)1/p

.

Usually, the high resolution quantization, i.e. the procedure’s asymptotic behavior is
studied, as the dictionary size tends to infinity.

The problem is how to construct a reasonable dictionary of large size in a com-
plicated signal space? One possibility to do it is to consider a random dictionary
composed of random independent elements Y j having the same distribution P as the
prior signal distribution. We will provide now a quantitative study of this scheme. In
order to work with polynomial functions, we make an exponential variable change
n= eλ. Now the quantization error reads as

D(λ, p)=
(

E min
1≤ j≤eλ

ρ(X, Y j )
p
)1/p

.
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Following an extensive literature, we assume that (X , || · ||) is a normed space,
ρ(x, y)= ||x−y||, and the common distribution P of all random vectors is a centered
Gaussian distribution.

13.2 Quantization and Small Deviations

Under these assumptions, as discovered in [49], quantization error of a Gaussian
vector is tightly related to its small deviations’ behavior, [49, 65]. Here is a clear
demonstration of this link.

Theorem 13.1 Let Mλ= min j≤eλ ||Y j − X ||. Then

lim
λ→∞P

(
Mλ ≥ 2φ−1(λ/6)

)
= 0.

Under mild additional assumptions, one can also evaluate more traditional
moment characteristics D(λ, p)= (EM p

λ )1/p.

Theorem 13.2 Assume that the small deviation function of a Gaussian vector X
satisfies regularity condition: for some c > 0 it is true that

φ(cr) ≥ 2φ(r), r < r0. (13.1)

Then for any p > 0 we have

lim sup
λ→∞

D(λ, p)

φ−1(λ/2)
≤ 2.

Let us remark, concerning the latter theorem, that the value of p is not important
due to concentration property of Gaussian distribution.

Both theorems show that if small deviation probabilities are not too small, i.e. the
functions φ, φ−1 admit upper bounds, then we can evaluate quantization error.

Proof (of Theorem 13.1). For x ∈ X , r > 0 let

ν(x, r)= inf{|h|HP , ||h − x || ≤ r}.
Then

P (||Y − x || ≤ 2r) ≥ exp(−φ(r)− ν(x, r)2/2). (13.2)

Indeed, for any h such that ||x − h|| ≤ r the inclusion

{y : ||y − x || ≤ 2r} ⊃ {y : ||y − h|| ≤ r}
holds. Borell inequality for shifted sets (5.3) yields
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P (||Y − x || ≤ 2r) ≥ P (||Y − h|| ≤ r)

≥ P (||Y || ≤ r) exp(−|h|2HP
/2)

= exp(−φ(r)− |h|2HP
/2).

By minimizing over h, we arrive at (13.2).
We will prove now that for any δ > 0 the inequality

P

(
ν(X, r) ≥ 2

√
(2+ δ)φ(r)

)
≤ exp(−φ(r)) (13.3)

holds whenever r is small enough. Let D={h : |h|HP ≤ 1}be the dispersion ellipsoid
of measure P, and let U ={x : ||x || ≤ 1} denote the unit ball of space X . Then
isoperimetric inequality implies that for any u > 0 we have

P (ν(X, r) ≥ u)=P ((X + rU ) ∩ u D=∅)
=P (X �∈ rU + u D)

≤ Φ̂
(
Φ−1 (P(rU ))+ u

)

= Φ̂
(
Φ−1 (exp(−φ(r))+ u

)
.

Since

Φ−1 (p) ≥ −√(2+ δ)| ln p|

whenever p is small enough, we obtain

P (ν(X, r) ≥ u) ≤ Φ̂
(
−√(2+ δ)φ(r)+ u

)
.

By letting u= 2
√

(2+ δ)φ(r), we have

P

(
ν(X, r) ≥ 2

√
(2+ δ)φ(r)

)
≤ Φ̂

(√
(2+ δ)φ(r)

)
≤ exp (−(2+ δ)φ(r)/2)

≤ exp(−φ(r)),

and we arrive at (13.3).
Let us now pass to evaluation of probabilities. By (13.2), for any λ, r > 0, x ∈ X

we have a bound

P

(
min
j≤eλ

||Y j − x || ≥ 2r

)
=P (||Y − x || ≥ 2r)[eλ]

= (1− P (||Y − x || ≤ 2r))[eλ]

≤ exp
{−P (||Y − x || ≤ 2r) [eλ]}

≤ exp
{
− exp(−φ(r)− ν(x, r)2/2)[eλ]

}
.
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For the probabilities of the balls with random centers we have the following. By
using (13.3) we obtain

P (Mλ ≥ 2r) ≤ exp
{
− exp(−φ(r)− (2

√
(2+ δ)φ(r))2/2)[eλ]

}
+ exp(−φ(r))

= exp
{− exp(−φ(r)− 2(2+ δ)φ(r))[eλ]}+ exp(−φ(r)).

Plugging δ= 1/3 and r =φ−1(λ/6) in this inequality yields

P

(
Mλ ≥ 2φ−1(λ/6)

)
→ 0, as λ →∞.

��
The relation between quantization error and probabilities of randomly centered

small balls stated in [48, 50] turns out to be even more tight. The latter notion is
specified as follows. Let X be a Gaussian vector with distribution P. Define the small
deviation function with random centers by

Ψ (ω, r)= − ln P{x : ||x − X (ω)|| ≤ r}.
In other words, we choose a random center of a ball according to distribution P, then
measure deviations with respect to this center. Anderson inequality yields

P{x : ||x − X (ω)|| ≤ r} ≤ P{x : ||x || ≤ r}.
Therefore,

Ψ (ω, r) ≥ φ(r).

On the other hand, one can show that for a.s. ω it is true that

lim
r→0

Ψ (ω, r)

2φ(r/2)
≤ 1.

One can also show that under natural regularity condition φ(r/2) ≤ Cφ(r) small
deviation function with random centers has a deterministic equivalent, i.e. there exists
a non-increasing function φ∗(r) such that

lim
r→0

Ψ (ω, r)

φ∗(r)
= 1 in probability.

It is clear that the functions φ(r) and φ∗(r) have the same growth rate, as r ↘ 0.

However, the exact relation between them is unknown. Even for Wiener process
in space C[0, 1] we do not know the constant a in the formula φ∗(r)∼ a r−2. It is
only known that a exists and π2

4 ≤ a ≤ π2. The key role of the function φ∗(r) in
quantization theory for Gaussian processes is demonstrated by the following theorem
[50].
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Theorem 13.3 Assume that function φ∗ satisfies assumption (13.1). Then for any
p > 0 it is true that

lim
λ→∞

D(λ, p)

φ−1∗ (λ)
= 1.

One can find many other interesting results and algorithms on quantization of
Gaussian processes in the works of Graf, Luschgy and Pagès, see [78, 127–131] and
references therein.

14 Invitation to Further Reading

These short lecture notes by no means aimed to provide a complete account
of immense research field in pure and applied mathematics related to Gaussian
processes.

Among the theoretical subjects for further reading we must recommend the
majorizing measures and generic chaining, a powerful tool elaborated by Fernique
and Talagrand for describing the boundedness and continuity of Gaussian processes.
This technique is very impressive in its ability to solve difficult and critical cases.
Being rather implicit, it was considered as difficult and obscure for some time but
more accessible presentations were eventually found. There is an extensive first-hand
literature [67, 68, 168, 173, 174]. See also [117] and especially in Chap. 6 of [105].

A large and important literature is devoted to the study of the functionals of
Gaussian processes, including differential (Malliavin) calculus [22, 23, 43], and
polynomial expansions (Wiener chaos) [105, 107, 144].

Concerning particular geometric features of multi-parameter and multi-
dimensional random fields, the monographs by Adler and Taylor [2] and Khosh-
nevisan [91] are specially recommended.

One can taste a variety of recent applications from the books and surveys such
as Mandjes [135] and Willinger et al. [183] (models of communication networks)
Rasmussen and Williams [150] (Machine Learning), van der Vaart and van Zanten
[177] (prior models in Bayesian Statistics).

An interested reader will find further information on the theory of Gaussian
processes in the monographs by Bogachev [22], Fernique [68], Kuo [99], Lifshits
[117], Rozanov [151], and lectures by Adler [1] and Ledoux [105]. In more special
aspects, the close themes are considered in the books of Ibragimov and Rozanov
[84], Janson [87], Hida and Hitsuda [82].
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