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Preface

The Markov Chain Monte Carlo (MCMC) method is rooted in the work of
physicists such as Metropolis and von Neumann during the period 1945–55
when they employed modern electronic computers for the simulation of some
probabilistic problems in atomic bomb designs. After five decades of continual
development, it has become the dominant methodology in the solution of
many classes of computational problems of central importance to science and
technology.

Suppose that one is interested in simulating from a distribution with the
density/mass function given by f(x) ∝ exp{−H(x)/t}, x ∈ X, where H(x) is
called the energy function, and t is called the temperature. The Metropolis
algorithm (Metropolis et al., 1953) is perhaps the first sampling algorithm
for iterative simulations. It has an extremely simple form. Starting with any
point x0 ∈ X, it proceeds by iterating between the following two steps, what
we call the proposal-and-decision steps:

1. (Proposal) Propose a random ‘unbiased perturbation’ of the current
state xt generated from a symmetric proposal distribution T (xt, y), i.e.,
T (xt, y) = T (y, xt).

2. (Decision) Calculate the energy difference ∆H = H(y) − H(xt). Set
xt+1 = y with probability min{1, exp(−∆H/t)}, and set xt+1 = xt

with the remaining probability.

This algorithm was later generalized by Hastings (1970) to allow asymmetric
proposal distributions to be used in generating the new state y. The gener-
alized algorithm is usually called the Metropolis-Hastings algorithm. A fun-
damental feature of the Metropolis-Hastings update is its localness, the new
state being generated in a neighborhood of the current state. This feature
allows one to break a complex task into a series of manageable pieces. On the
other hand, however, it tends to suffer from the local-trap problem when the
energy function has multiple local minima separated by high energy barriers.
In this situation, the Markov chain will be indefinitely trapped in local en-
ergy minima. Consequently, the simulation process may fail to sample from
the relevant parts of the sample space, and the quantities of interest cannot
be estimated with satisfactory accuracies. Many applications of the MCMC

xiii
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method, such as protein folding, combinatorial optimization, and spin-glasses,
can be dramatically enhanced by sampling algorithms which allow the process
to avoid being trapped in local energy minima.

Developing MCMC sampling algorithms that are immune to the local-
trap problem has long been considered as one of the most important topics
in MCMC research. During the past two decades, various advanced MCMC
algorithms which address this problem have been developed. These include:
the Swendsen-Wang algorithm (1987); parallel tempering (Geyer, 1991;
Hukushima and Nemoto, 1996), multicanonical Monte Carlo (Berg and
Neuhaus, 1991, 1992); simulated tempering (Marinari and Parisi, 1992;
Geyer and Thompson, 1995); dynamic weighting (Wong and Liang, 1997; Liu
et al., 2001; Liang, 2002b); slice sampler (Higdon, 1998; Edwards and Sokal,
1988); evolutionary Monte Carlo (Liang and Wong, 2000, 2001b), adaptive
Metropolis algorithm (Haario et al., 2001); the Wang-Landau algorithm
(Wang and Landau, 2001; Liang, 2005b); equi-energy sampler (Kou et al.,
2006); sample Metropolis-Hastings algorithm (Lewandowski and Liu, 2008);
and stochastic approximation Monte Carlo (Liang et al., 2007; Liang, 2009b),
among others.

In addition to the local-trap problem, the Metropolis-Hastings algorithm
also suffers from the inability in sampling from distributions with the mass/
density function involving intractable integrals. Let f(x) ∝ c(x)ψ(x), where
c(x) denotes an intractable integral. Clearly, the Metropolis-Hastings algo-
rithm cannot be applied to simulate from f(x), as the acceptance probability
would involve the intractable ratio c(y)/c(x), where y denotes the candidate
sample. To overcome this difficulty, advanced MCMC algorithms have also
been proposed in recent literature. These include the Mo/ller algorithm
(Mo/ller et al., 2006), the exchange algorithm (Murray et al., 2006), the
double Metropolis-Hastings algorithm (Liang, 2009c; Jin and Liang, 2009),
the Monte Carlo dynamically weighted importance sampling algorithm
(Liang and Cheon, 2009), and the Monte Carlo Metropolis-Hastings sampler
(Liang and Jin, 2010), among others.

One common key idea behind these advanced MCMC algorithms is
learning from past samples. For example, stochastic approximation Monte
Carlo (Liang et al., 2007) modifies its invariant distribution from iteration
to iteration based on its past samples in such a way that each region of
the sample space can be drawn from with a desired frequency, and thus
the local-trap problem can be avoided essentially. The adaptive Metropolis
algorithm modifies its proposal distribution from iteration to iteration based
on its past samples such that an “optimal” proposal distribution can be
achieved dynamically. In the dynamic weighting algorithm, the importance
weight carries the information of past samples, which helps the system move
across steep energy barriers even in the presence of multiple local energy
minima. In parallel tempering and evolutionary Monte Carlo, the state of the
Markov chain is extended to a population of independent samples, for which,
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at each iteration, each sample can be updated based on entire samples of the
current population. Hence, parallel tempering and evolutionary Monte Carlo
can also be viewed as algorithms for learning from past samples, although
they can only learn within a fixed horizon.

Meanwhile, many advanced techniques have been developed in the lit-
erature to accelerate the convergence of the Metropolis-Hastings algorithm
and the Gibbs sampler; the latter can be viewed as a special form of the
Metropolis-Hastings algorithm, with each component of the state vector be-
ing updated via a conditional sampling step. Such techniques include: blocking
and collapsing (Liu et al., 1994); reparameterization (Gelfand et al., 1995); pa-
rameter expansion (Meng and van Dyk, 1999; Liu and Wu, 1999); multiple-try
(Liu et al., 2000); and alternating subspace-spanning resampling (Liu, 2003),
among others.

The aim of this book is to provide a unified and up-to-date treatment of
advanced MCMC algorithms and their variants. According to their main fea-
tures, we group these advanced MCMC algorithms into several categories. The
Gibbs sampler and acceleration methods, the Metropolis-Hastings algorithm
and extensions, auxiliary variable-based MCMC algorithms, population-
based MCMC algorithms, dynamic weighting, stochastic approximation
Monte Carlo, and MCMC algorithms with adaptive proposals are described
in Chapters 2–8. Chapter 1 is dedicated to brief descriptions of Bayesian
inference, random number generation, and basic MCMC theory. Importance
sampling, which represents another important area of Monte Carlo other
than MCMC, is not fully addressed in this book. Those interested in this
area should refer to Liu (2001) or Robert and Casella (2004).

This book is intended to serve three audiences: researchers specializing in
Monte Carlo algorithms; scientists interested in using Monte Carlo methods;
and graduate students in statistics, computational biology, engineering, and
computer sciences who want to learn Monte Carlo methods. The prerequisites
for understanding most of the material presented are minimal: a one-semester
course on probability theory (Ross, 1998) and a one-semester course on statis-
tical inference (Rice, 2007), both at undergraduate level. However, it would
also be more desirable for readers to have a background in some specific
scientific area such as Bayesian computation, artificial intelligence, or compu-
tational biology. This book is suitable as a textbook for one-semester courses
on Monte Carlo methods, offered at the advanced Master’s or Ph.D. level.

Faming Liang, Chuanhai Liu, and Raymond J. Carroll
December, 2009

www.wiley.com/go/markov
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Chapter 1

Bayesian Inference
and Markov Chain
Monte Carlo

1.1 Bayes

Bayesian inference is a probabilistic inferential method. In the last two
decades, it has become more popular than ever due to affordable computing
power and recent advances in Markov chain Monte Carlo (MCMC) methods
for approximating high dimensional integrals.

Bayesian inference can be traced back to Thomas Bayes (1764), who de-
rived the inverse probability of the success probability θ in a sequence of
independent Bernoulli trials, where θ was taken from the uniform distribu-
tion on the unit interval (0, 1) but treated as unobserved. For later reference,
we describe his experiment using familiar modern terminology as follows.

Example 1.1 The Bernoulli (or Binomial) Model With Known Prior

Suppose that θ ∼ Unif(0, 1), the uniform distribution over the unit interval
(0, 1), and that x1, . . . , xn is a sample from Bernoulli(θ), which has the
sample space X = {0, 1} and probability mass function (pmf)

Pr (X = 1|θ) = θ and Pr (X = 0|θ) = 1− θ, (1.1)

where X denotes the Bernoulli random variable (r.v.) with X = 1 for
success and X = 0 for failure. Write N =

∑n
i=1 xi, the observed number of

successes in the n Bernoulli trials. Then N|θ ∼ Binomial(n, θ), the Binomial
distribution with parameters size n and probability of success θ.
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The inverse probability of θ given x1, . . . , xn, known as the posterior
distribution, is obtained from Bayes’ theorem, or more rigorously in modern
probability theory, the definition of conditional distribution, as the Beta
distribution Beta(1+N, 1+n−N) with probability density function (pdf)

1
B(1 + N, 1 + n−N)

θ(1+N)−1(1− θ)(1+n−N)−1 (0 ≤ θ ≤ 1), (1.2)

where B(·, ·) stands for the Beta function.

1.1.1 Specification of Bayesian Models

Real world problems in statistical inference involve the unknown quantity θ
and observed data X. For different views on the philosophical foundations
of Bayesian approach, see Savage (1967a, b), Berger (1985), Rubin (1984),
and Bernardo and Smith (1994). As far as the mathematical description of a
Bayesian model is concerned, Bayesian data analysis amounts to

(i) specifying a sampling model for the observed data X, conditioned on
an unknown quantity θ,

X ∼ f(X|θ) (X ∈ X, θ ∈ Θ), (1.3)

where f(X|θ) stands for either pdf or pmf as appropriate, and

(ii) specifying a marginal distribution π(θ) for θ, called the prior distribu-
tion or simply the prior for short,

θ ∼ π(θ) (θ ∈ Θ). (1.4)

Technically, data analysis for producing inferential results on assertions of
interest is reduced to computing integrals with respect to the posterior dis-
tribution, or posterior for short,

π(θ|X) =
π(θ)L(θ|X)∫
π(θ)L(θ|X)dθ

(θ ∈ Θ), (1.5)

where L(θ|X) ∝ f(X|θ) in θ, called the likelihood of θ given X. Our focus
in this book is on efficient and accurate approximations to these integrals for
scientific inference. Thus, limited discussion of Bayesian inference is necessary.

1.1.2 The Jeffreys Priors and Beyond

By its nature, Bayesian inference is necessarily subjective because specifica-
tion of the full Bayesian model amounts to practically summarizing available
information in terms of precise probabilities. Specification of probability mod-
els is unavoidable even for frequentist methods, which requires specification
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of the sampling model, either parametric or non-parametric, for the observed
data X. In addition to the sampling model of the observed data X for de-
veloping frequentist procedures concerning the unknown quantity θ, Bayesian
inference demands a fully specified prior for θ. This is natural when prior in-
formation on θ is available and can be summarized precisely by a probability
distribution. For situations where such information is neither available nor
easily quantified with a precise probability distribution, especially for high
dimensional problems, a commonly used method in practice is the Jeffreys
method, which suggests the prior of the form

πJ (θ) ∝ |I(θ)|1/2 (θ ∈ Θ), (1.6)

where I(θ) denotes the Fisher information

I(θ) = −
∫

∂2 ln f(x|θ)
∂θ(∂θ)′

f(x|θ)dx.

The Jeffreys priors have the appealing property that they are invariant under
reparameterization. A theoretical adjustment in terms of frequency properties
in the context of large samples can be found in Welch and Peers (1963). Note
that prior distributions do not need to be proper as long as the posteriors
are proper and produce sensible inferential results. The following Gaussian
example shows that the Jeffreys prior is sensible for single parameters.

Example 1.2 The Gaussian N(µ, 1) Model

Suppose that a sample is considered to have taken from the Gaussian
population N(µ, 1) with unit variance and unknown mean µ to be inferred.
The Fisher information is obtained as

I(µ) =
∫ ∞

−∞
φ(x− µ)dx = 1,

where φ(x−µ) = (2π)−1/2 exp{−1
2 (x−µ)2} is the pdf of N(µ, 1). It follows

that the Jeffreys prior for θ is the flat prior

πJ (µ) ∝ 1 (−∞ < µ <∞), (1.7)

resulting in the corresponding posterior distribution of θ given X

πJ (µ|X) = N(X, 1). (1.8)

Care must be taken when using the Jeffreys rule. For example, it is easy
to show that applying the Jeffreys rule to the Gaussian model N(µ, σ2) with
both mean µ and variance σ2 unknown leads to the prior

πJ (µ, σ2) ∝ 1
σ3

(−∞ < µ <∞; σ2 > 0).
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However, this is not the commonly used prior that has better frequency
properties (for inference about µ or σ) and is given by

π(µ, σ2) ∝ 1
σ2

(−∞ < µ <∞; σ2 > 0),

that is, µ and σ2 are independent and the distributions for both µ and lnσ2

are flat. For high dimensional problems with small samples, the Jeffreys rule
often becomes even less appealing. There are also different perspectives, pro-
vided by the extensive work on reference priors by José Bernardo and James
Berger (see, e.g., Bernardo, 1979; Berger, 1985). For more discussion of prior
specifications, see Kass and Wasserman (1996).

For practical purposes, we refer to Box and Tiao (1973) and Gelman et al .
(2004) for discussion on specification of prior distributions. The general guid-
ance for specification of priors when no prior information is available, as is
typical in Bayesian analysis, is to find priors that lead to posteriors having
good frequency properties (see, e.g., Rubin, 1984; Dawid, 1985). Materials
on probabilistic inference without using difficult-to-specify priors are avail-
able but beyond the scope of Bayesian inference and therefore will not be
discussed in this book. Readers interested in this fascinating area are referred
to Fisher (1973), Dempster (2008), and Martin et al . (2009). We note that
MCMC methods can be applied there as well.

1.2 Bayes Output

Bayesian analysis for scientific inference does not end with posterior
derivation and computation. It is thus critical for posterior distributions to
have clear interpretation. For the sake of clarity, probability used in this
book has a long-run frequency interpretation in repeated experiments. Thus,
standard probability theory, such as conditioning and marginalization, can
be applied. Interpretation also suggests how to report Bayesian output as
our assessment of assertions of interest on quantities in the specified model.
In the following two subsections, we discuss two types of commonly used
Bayes output, credible intervals for estimation and Bayes factors for hypoth-
esis testing.

1.2.1 Credible Intervals and Regions

Credible intervals are simply posterior probability intervals. They are used
for purposes similar to those of confidence intervals in frequentist statistics
and thereby are also known as Bayesian confidence intervals. For example, the
95% left-sided Bayesian credible interval for the parameter µ in the Gaussian
Example 1.2 is [−∞, X + 1.64], meaning that the posterior probability that
µ lies in the interval from −∞ to X + 1.64 is 0.95. Similar to frequentist con-
struction of two-sided intervals, for given α ∈ (0, 1), a 100(1−α)% two-sided
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Bayesian credible interval for a single parameter θ with equal posterior tail
probabilities is defined as

[θα/2, θ1−α/2] (1.9)

where the two end points are the α/2 and 1−α/2 quantiles of the (marginal)
posterior distribution of θ. For the the Gaussian Example 1.2, the two-sided
95% Bayesian credible interval is [X− 1.96, X + 1.96].

In dealing simultaneously with more than one unknown quantity, the term
credible region is used in place of credible interval. For a more general term, we
refer to credible intervals and regions as credible sets . Constructing credible
sets is somewhat subjective and usually depends on the problems of interest.
A common way is to choose the region with highest posterior density (h.p.d.).
The 100(1− α)% h.p.d. region is given by

R
(π)
1−α = {θ : π(θ|X) ≥ π(θ1−α|X)} (1.10)

for some θ1−α satisfying

Pr
(
θ ∈ R

(π)
1−α|X

)
= 1− α.

For the the Gaussian Example 1.2, the 95% h.p.d. interval is [X − 1.96,
X + 1.96], the same as the two-sided 95% Bayesian credible interval because
the posterior of µ is unimodal and symmetric. We note that the concept of
h.p.d. can also be used for functions of θ such as components of θ in high
dimensional situations.

For a given probability content (1−α), the h.p.d. region has the smallest
volume in the space of θ. This is attractive but depends on the functional form
of unknown quantities, such as θ and θ2. An alternative credible set is obtained
by replacing the posterior density π(θ|X) in (1.10) with the likelihood L(θ|X):

R
(L)
1−α = {θ : L(θ|X) ≥ L(θ1−α|X)} (1.11)

for some θ1−α satisfying

Pr
(
θ ∈ R

(L)
1−α|X

)
= 1− α.

The likelihood based credible region does not depend on transformation
of θ. This is appealing, in particular when no prior information is available
on θ, that is, when the specified prior works merely as a working prior
leading to inference having good frequency properties.

1.2.2 Hypothesis Testing: Bayes Factors

While the use of credible intervals is a Bayesian alternative to frequentist
confidence intervals, the use of Bayes factors has been a Bayesian alternative
to classical hypothesis testing. Bayes factors have also been used to develop
Bayesian methods for model comparison and selection. Here we review the
basics of Bayes factors. For more discussion on Bayes factors, including its
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history, applications, and difficulties, see Kass and Raftery (1995), Gelman
et al . (2004), and references therein.

The concept of Bayes factors is introduced in the situation with a common
observed data X and two competing hypotheses denoted by H1 and H2. A full
Bayesian analysis requires

(i) specifying a prior distribution on H1 and H2, denoted by, Pr (H1) and
Pr (H2), and

(ii) for each k = 1 and 2, specifying the likelihood Lk(θk|X) = fk(X|θk)
and prior π(θk|Hk) for θk, conditioned on the truth of Hk, where θk is
the parameter under Hk.

Integrating out θk yields

Pr (X|Hk) =
∫

fk(X|Hk)π(θk|Hk)dθk (1.12)

for k = 1 and 2. The Bayes factor is the posterior odds of one hypothesis
when the prior probabilities of the two hypotheses are equal. More precisely,
the Bayes factor in favor of H1 over H2 is defined as

B12 =
Pr (X|H1)
Pr (X|H2)

. (1.13)

The use of Bayes factors for hypothesis testing is similar to the likelihood
ratio test, but instead of maximizing the likelihood, Bayesians in favor of Bayes
factors average it over the parameters. According to the definition of Bayes
factors, proper priors are often required. Thus, care must be taken in specifi-
cation of priors so that inferential results are meaningful. In addition, the use
of Bayes factors renders lack of probabilistic feature of Bayesian inference. In
other words, it is consistent with the likelihood principle, but lacks of a metric
or a probability scale to measure the strength of evidence. For a summary of
evidence provided by data in favor of H1 over H2, Jeffreys (1961) (see also
Kass and Raftery (1995)) proposed to interpret the Bayes factor as shown in
Table 1.1.

The use of Bayes factor is illustrated by the following binomial example.

Table 1.1 Interpretation of Bayes factors.

log10(B12) B12 evidence against H2

0 to 1/2 1 to 3.2 Barely worth mentioning
1.2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive
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Example 1.3 The Binomial Model (continued with a
numerical example)

Suppose we take a sample of n = 100 from Bernoulli(θ) with unknown θ,
and observe N = 63 successes and n −N = 37 failures. Suppose that two
competing hypotheses are

H1 : θ = 1/2 and H2 : θ �= 1/2. (1.14)

Under H1, the likelihood is calculated according to the binomial distribution:

Pr (N|H1) =
(

n

N

)(
1
2

)N (
1
2

)n−N

Under H2, instead of the uniform over the unit interval we consider the
Jeffreys prior

π(θ) =
Γ(1/2 + 1/2)
Γ(1/2)Γ(1/2)

θ1/2−1(1− θ)1/2−1 =
1
π

θ1/2−1(1− θ)1/2−1

the proper Beta distribution with shape parameters 1/2 and 1/2. Hence,
we have

Pr (N|H2) =
1
π

(
n

N

)
Beta(N + 1/2, n−N + 1/2).

The Bayes factor log10(B12) is then −0.4, which is ‘barely worth mention-
ing’ even if it points very slightly towards H2.

It has been recognized that Bayes factor can be sensitive to the prior,
which is related to what is known as Lindley’s paradox (see Shafer (1982)).

0.0 0.2 0.4 0.6 0.8 1.0
a

lo
g 1

0(
B

12
)

0
1

2
3

Figure 1.1 Bayes factors in the binomial example with n = 100, N = 63, and
priors Beta(α, 1− α) for 0 ≤ α ≤ 1.
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This is shown in Figure 1.1 for a class of Beta priors Beta(α, 1 − α)
for 0 ≤ α ≤ 1. The Bayes factor is infinity at the two extreme priors
corresponding to α = 0 and α = 1. It can be shown that this class of pri-
ors is necessary in the context of imprecise Bayes for producing inferential
results that have desired frequency properties. This supports the idea that
care must be taken in interpreting Bayesian factors in scientific inference.

Bayesian factors are not the same as a classical likelihood ratio test.
A frequentist hypothesis test of H1 considered as a null hypothesis would
have produced a more dramatic result, saying that H1 could be rejected
at the 1% significance level, since the probability of getting 63 or more
successes from a sample of 100 if θ = 1/2 is 0.0060, and as a normal
approximation based two-tailed test of getting a figure as extreme as or
more extreme than 63 is 0.0093. Note that 63 is more than two standard
deviations away from 50, the expected count under H1.

1.3 Monte Carlo Integration

1.3.1 The Problem

Let ν be a probability measure over the Borel σ-field X on the sample space
X ⊆ Rd, where Rd denotes the d-dimensional Euclidian space. A commonly
encountered challenging problem is to evaluate integrals of the form

Eν [h(X)] =
∫
X

h(x)ν(dx) (1.15)

where h(x) is a measurable function. Suppose that ν has a pdf f(x). Then
(1.15) can be written as

Ef [h(X)] =
∫
X

h(x)f(x)dx (1.16)

For example, for evaluating the probability Pr (X ∈ S) for S ⊂ X, h(x) is the
indicator function h(x) = Ix∈S with h(x) = 1 if x ∈ S and h(x) = 0 otherwise,
and for computing the marginal distribution of fY (y) from the joint distribu-
tion fX,Y (x, y), the representation in the form of (1.16) is EfX

[
fY |X(y|x)

]
,

where fX(x) is the marginal pdf of X and fY |X(y|x) is the conditional pdf
of Y given X.

When the problem appears to be intractable analytically, the tool box of
numerical integration methods is the next possible alternative, see, for exam-
ple, Press et al . (1992) and references therein. For high dimensional problems,
Monte Carlo methods have proved to be popular due to their simplicity and
accuracy given limited computing power.
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1.3.2 Monte Carlo Approximation

Suppose that it is easy to simulate a sample of size n, denoted by X1, . . . , Xn,
from f(x), the pdf involved in (1.16). Then the sample mean of h(X),

h̄n =
1
n

n∑
i=1

h(Xi), (1.17)

can be used to approximate (1.16) because h̄n converges to (1.16) almost
surely by the Strong Law of Large Numbers. When h(X) has a finite variance,
the error of this approximation can be characterized by the central limit
theorem, that is,

hn − Ef [h(X)]√
nVar(h(X))

∼ N(0, 1).

The variance term Var(h(X)) can be approximated in the same fashion,
namely, by the sample variance

1
n− 1

n∑
i=1

(h(Xi)− h̄n)2.

This method of approximating integrals by simulated samples is known as the
Monte Carlo method (Metropolis and Ulam, 1949).

1.3.3 Monte Carlo via Importance Sampling

When it is hard to draw samples from f(x) directly, one can resort to impor-
tance sampling, which is developed based on the following identity:

Ef [h(X)] =
∫
X

h(x)f(x)dx =
∫
X

h(x)
f(x)
g(x)

g(x)dx = Eg[h(X)f(X)/g(X)],

where g(x) is a pdf over X and is positive for every x at which f(x) is positive.
This identity suggests that samples from density functions different from f(x)
can also be used to approximate (1.16). The standard Monte Carlo theory in
Section 1.3.2 applies here because of

Ef [h(X)] = Eg[h(X)f(X)/g(X)] = Eg[h̃(X)]

where h̃(x) = h(x) f(x)
g(x) g(x). The estimator of Ef [h(X)] now becomes

h̄ =
1
m

m∑
i=1

f(xi)
g(xi)

h(xi), (1.18)

where x1, . . . , xn are iid samples drawing from g(x). Compared to (1.17), for
each i = 1, . . . , m, xi enters with a weight wi = f(xi)/g(xi). For this reason,
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this method is called the importance sampling method. Most important
for this method is to choose g(x) for both simplicity in generating Monte
Carlo samples and accuracy in estimating Ef [h(X)] by controlling the
associated Monte Carlo errors.

For Monte Carlo accuracy, a natural way is to choose g(x) to minimize the
variance of h̃(X) with X ∼ g(x). Theoretical results on optimal g(x) are also
available. The following result is due to Rubinstein (1981); see also Robert
and Casella (2004).

Theorem 1.3.1 The choice of g that minimizes the variance of the estimator
of Ef [h(X)] in (1.18) is

g∗(x) =
|h(x)|f(x)∫

X |h(y)|f(y)dy
.

The proof of Theorem 1.3.1 is left as an exercise. As always, theoretical results
provide helpful guidance. In practice, balancing simplicity and optimality is
more complex because human efforts and computer CPU time for creating
samples from g(x) are perhaps the major factors to be considered. Also, it is
not atypical to evaluate integrals of multiple functions of h(x), for example,
in Bayesian statistics, with a common Monte Carlo sample.

1.4 Random Variable Generation

Monte Carlo methods rely on sampling from probability distributions. Gener-
ating a sample of iid draws on computer from the simplest continuous uniform
Unif (0, 1) is fundamentally important because all sampling methods depend
on uniform random number generators. For example, for every continuous
univariate distribution f(x) with cdf F(x) the so-called inverse-cdf method is
given as follows.

Algorithm 1.1 (Continuous Inverse-cdf)

1. Generate a uniform random variable U.

2. Compute and return X = F−1(U).

where F−1(.) represents the inverse function of the cdf F (.), provides an
algorithm to create samples from F (x). Similarly, for every discrete univariate
distribution p(x) with cdf F (x) the inverse-cdf method becomes

Algorithm 1.2 (Discrete Inverse-cdf)

1. Generate a uniform random variable U.

2. Find X such that F (X− 1) < U ≤ F (X).

3. Return X.
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and provides an algorithm to create samples from F (x). However, this
algorithm is in general computationally expensive. More efficient methods
are discussed in Sections 1.4.1 and 1.4.2, where a good and efficient uniform
random generator is assumed to be available.

Unfortunately, computers are deterministic in nature and cannot be
programmed to produce pure random numbers. Pseudo-random number
generators are commonly used in Monte Carlo simulation. Pseudo-random
number generators are algorithms that can automatically create long runs
with good random properties but eventually the sequence repeats. We refer to
Devroye (1986), Robert and Casella (2004), and Matsumoto and Nishimura
(1998) for discussion on pseudo-random number generators, among which
the Mersenne Twister of Matsumoto and Nishimura (1998) has been used
as the default pseudo-random number generator in many softwares. In what
follows, we give a brief review of the methods that are often used for sampling
from distributions for which the inverse-cdf method does not work, including
the transformation methods, acceptance rejection methods, ratio-of-uniform
methods, adaptive direction sampling (Gilks, 1992), and perfect sampling
(Propp and Wilson, 1996).

1.4.1 Direct or Transformation Methods

Transformation methods are those based on transformations of random vari-
ables. Algorithms 1.1 and 1.2 provide such examples. Except for a few cases,
including the exponential and Bernoulli distributions, Algorithms 1.1 and 1.2
are often inefficient. Better methods based on transformations can be ob-
tained, depending on the target distribution f(x). Table 1.2 provides a few
examples that are commonly used in practice.

1.4.2 Acceptance-Rejection Methods

Acceptance-Rejection (AR), or Accept-Reject, methods are very useful for
random number generation, in particular when direct methods do not exist

Table 1.2 Examples of transformation methods for random number
generation.

method transformation distribution

Exponential X = − ln(U) X ∼ Expo(1)
Cauchy X = tan(πU− π/2) X ∼ Cauchy(0, 1)
Box-Muller X1 =

√−2 ln(U1) cos(2πU2) Xi
iid∼ N(0, 1)

(1958) X2 =
√−2 ln(U1) sin(2πU2)

Beta Xi
ind∼ Gamma(αi), i = 1, 2 X1

X1+X2
∼ Beta(α1, α2)

where U ∼ Unif (0, 1) and Ui
ind∼ Unif (0, 1) for i = 1, 2.
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or are computationally inefficient. We discuss the AR methods via a geometric
argument.

Suppose that the distribution to sample from is of d-dimension with the
sample space X ⊆ Rd. According to the definition of pdf (or pmf), the region
under the pdf curve/surface

Cf = {(x, u) : 0 ≤ u ≤ f(x)} ⊂ Rd+1 (1.19)

has unit volume. Thus, if (X, U) is uniform in the region Cf then X ∼ f(x).
Note that X ∼ f(x) still holds when f(x) in (1.19) is multiplied by an arbitrary
positive constant, that is,

Ch = {(x, y) : 0 ≤ u ≤ h(x)} ⊂ Rd+1, (1.20)

where h(x) ∝ f(x), because rescaling on U will not affect the marginal distri-
bution of X.

This fact suggests a possible way of generating X by simulating points
distributed uniformly over Cf or Ch. When it is difficult to sample from Ch

directly, samples from Ch can be obtained indirectly by (i) generating
points uniformly over an enlarged and easy-to-sample region D ⊇ Ch and
(ii) collecting those falling inside of Ch. Such an enlarged region D can
be constructed by an easy-to-sample distribution with pdf g(x) with the
restriction that f(x)/g(x) is bounded from above by some finite constant M
so that Ch can be enclosed in the region

Cg = {(x, u) : 0 ≤ u ≤ g(x)} ⊂ Rd+1, (1.21)

for some h(x) ∝ f(x). The distribution g(x) is called the envelope or instru-
mental distribution, while f(x) the target .

To summarize, we have the following AR algorithm to generate random
numbers from f(x) using an envelope distribution g(x), where supx h(x)/
g(x) ≤M <∞.

Algorithm 1.3 (Acceptance-Rejection)
Repeat the following two steps until a value is returned in Step 2:

1. Generate X from g(x) and U from Unif (0, 1).

2. If U ≤ h(X)
Mg(X) , return X (as a random deviate from f(x)).

The acceptance rate is the ratio of the volume of the target region to the
volume of the proposal region, that is,

r =
1
M

∫
h(x)dx∫
g(x)dx

.

In the case when both h(x) and g(x) are normalized, the acceptance ratio is
1/M, suggesting the use of M = supx h(x)/g(x) when it is simple to compute.
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Figure 1.2 The target and proposal distributions φ(x) and Mhs(x) with
s = .648 and M = 1.081 in Example 1.4.

Example 1.4 The Standard Normal N(0, 1)

This example illustrates the AR algorithm of using the logistic distribution
with density

hs(x) =
e−x/s

s(1 + e−x/s)2
=

1
4s cosh2(−x/s)

(−∞ < x <∞)

where s = .648, as the proposal distribution to generate samples from
the standard normal N(0, 1). Note that N(0, 1) has the pdf φ(x) =
(2π)−1/2e−x2/2 (−∞ < x <∞). The maximum value

M = max−∞<x<∞
φ(x)
hs(x)

,

obtained using the Newtow-Raphson method, is about 1.0808. Take
M = 1.081. The target density and Mhs(x) are shown in Figure 1.2. The
acceptance rate of the corresponding AR algorithm is given by 1/M = .925.

When it is expensive to evaluate h(x), an easy-to-compute function s(x)
(0 ≤ s(x) ≤ h(x)), called the squeeze function, can be used to reduce the
frequency of computing h(x). More specifically, the modified AR method is
as follows.

Algorithm 1.4 (Acceptance-Rejection With a Squeezer)
Repeat the following two steps until a value is returned in Step 2:

1. Generate X from g(x) and U from Unif (0, 1).
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2. If U ≤ s(X)
Mg(X) or s(X)

Mg(X) < U ≤ h(X)
Mg(X) , return X (as a random deviate

from f(x)).

Thus, in the case U ≤ s(X)
Mg(X) , the algorithm does not evaluate h(x).

1.4.3 The Ratio-of-Uniforms Method and Beyond

The ratio-of-uniforms method of Kinderman and Monahan (1977) is a popu-
lar method for random number generations of many standard distributions,
including the Gamma, normal, and student-t. It can be considered as obtained
from the rejection method via transformation subject to some kind of sim-
plicity. Here we discuss the general idea behind the ratio-of-uniforms method
and derive the method of Kinderman and Monahan (1977) and its extension
proposed by Wakefield, Gelfand, and Smith (1991) as special cases.

The general idea of the ratio-of-uniforms method is to find a pair of dif-
ferentiable transformations

U = u(Y) and X = x(Z, Y)

with U = u(Y) strictly increasing to propagate the inequality in (1.20) and
with constant Jacobian so that (Y, Z) is also uniform over the corresponding
image of Ch:

C
(Y,Z)
h = {(y, z) : u−1(0) ≤ y = u−1(u) ≤ u−1(h(x(z, y)))} ⊂ Rd+1, (1.22)

where u−1(.) denotes the inverse of u(.). This leads to the following generic
rejection algorithm to sample from f(x) with a chosen easy-to-sample region D

enclosing C
(Y,Z)
h .

Algorithm 1.5 (The Generic Acceptance-Rejection of Uniforms
Algorithm)

Repeat the following two steps until a value is returned in Step 2:

Step 1. Generate (Y, Z), uniform deviates over D ⊇ C
(Y,Z)
h .

Step 2. If (Y, Z) ∈ C
(Y,Z)
h , return X = x(Y, Z) as the desired deviate.

This algorithm has the acceptance rate

r =

∫
C

(Y,Z)
h

dydz∫
D

dydz
=

∫
X h(x)dx

Jx,u(z, y)| ∫
D

dydz
,

where

Jx,u(z, y) =

∣∣∣∣∣ ∂x
∂z

∂x
∂y

0 ∂u
∂y

∣∣∣∣∣ = u′(y)
∣∣∣∣∂x

∂z

∣∣∣∣
denotes the Jacobian of the transformations.

It is state-of-the-art to choose the pair of transformation and construct D.
Thus, simplicity plays an important role. Let xi be a function of zi and y, for
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example, the Jacobian of the transformation has a simple form

Jx,u(z, y) = u′(y)
∣∣∣∣∂x

∂z

∣∣∣∣ = u′(y)
d∏

i=1

∣∣∣∣∂xi(zi, y)
∂zi

∣∣∣∣ = const.

Hence, xi(z, y) is linear in zi

xi(z, y) = ai(y)zi + bi(y) (i = 1, . . . , d),

with the restriction
∏d

i=1 ai(y) = 1/u′(y). For example, the result of Wakefield
et al . (1991) is obtained by letting ai(y) = [u′(y)]−1/d and bi(y) = 0 for
i = 1, . . . , d. The uniform region is

{(y, z) : u−1(0) ≤ y ≤ u−1(h(z/[u′(y)]1/d))}.
The method of Wakefield et al . (1991) for generating multivariate distribu-
tions is obtained by taking the power transformation on Y: u(y) = yr+1/(r+1),
r ≥ 0. This results in the target region

C
(r)
h =

{
(y, z) : 0 ≤ y ≤

[
(r + 1)h

(
z

yr/d

)]1/(r+1)
}

,

or equivalently

C
(r)
h =

{
(y, z) : 0 ≤ y ≤

[
h

(
z

yr/d

)]1/(r+1)
}

, (1.23)

because h(x) is required to be known up to a proportionality constant.
Wakefield et al . (1991) consider (d + 1)-boxes D to bound C

(r)
h , provided

that supx h(x) and supx |xi|[h(x)]r/(dr+d), i = 1, . . . , d, are all finite. Pérez
et al . (2008) proposed to use ellipses as D in place of (d + 1)-boxes.

In the univariate case, the algorithm based on (1.23) with the choice of
r = 1 reduces to the famous ratio-of-uniforms method of Kinderman and
Monahan (1977):

Algorithm 1.6 (Ratio-of-Uniforms Algorithm of Kinderman and
Monahan, 1977)

Repeat the following two steps until a value is returned in Step 2:

1. Generate (y, z) uniformly over D ⊇ C
(1)
h .

2. If (Y, Z) ∈ C(1)h return X = Z/Y as the desired deviate.

The uniform region is

C
(1)
h =

{
(y, z) : 0 ≤ y ≤

[
h

(
z

y

)]1/2
}

. (1.24)

When supx h(x) and supx |x|[h(x)]1/2 are finite, the easy-to-sample bounding
region D can be set to the tightest rectangle enclosing C

(1)
h . For more efficient
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algorithms, more refined enclosing regions such as polygons could be used.
This is potentially useful in simulating truncated distributions. Here we
provide an illustrative example, which shows that efficient ratio-of-uniforms
methods can be derived by considering transformations of the random
variable X, including the relocation technique proposed by Wakefield et al .
(1991), before applying the ratio-of-uniforms.

Example 1.5 Gamma(α) With α < 1

Consider the ratio-of-uniforms method for generating a variate X from the
Gamma density fα(x) = 1

Γ(α)x
α−1e−x, x > 0. To generate Gamma variates

with density fα(x), Kinderman and Monahan (1977) and Cheng and Feast
(1979) used the ratio-of-uniforms method by setting h(x) = xα−1e−x. The
method is valid only for α > 1 and gives a uniform region whose shape
changes awkwardly when α is near 1. Cheng and Feast (1980) got around
this problem by using the transformation x = yn, y > 0, and setting h(y) =
ynα−1e−yn

. This effectively extends the range of α from 1 down to 1/n.
For more discussion on Gamma random number generators, see Tanizaki
(2008) and the references therein.

We now use the transformation X = eT/α (or T = α ln X),−∞ < t <∞,
for α < 1. The random variable T has density f(t) = et−et/α

/(αΓ(α)). Let
h(t) = et−et/α

. Then the uniform region is

C
(1)
h =

{
(y, z) : 0 ≤ y ≤ e(t−et/α)/2, t =

z

y

}
.

Hence, y has the upper bound maxt[h(t)]1/2 = (αe−1)α/2. The upper bound
maxt > 0 t[h(t)]1/2 of z requires us to solve the equation

1
t
− 1

2
− 1

2
et/α = 0 (1.25)

for t > 0. As a simple alternative, a slightly loose upper bound can be
obtained by making use the inequality ln(t/α) ≤ t/α− 1. That is, et/α ≥
(e1t)/α and, thereby,

t[h(t)]1/2 = te
t
2− 1

2 et/α ≤ te
t
2− et

2α ≤ 2α

e(e− α)
(t > 0)

The lower bound of z also exists and requires one to solve (1.25) for t < 0.
A simple lower bound is obtained as follows:

t[h(t)]1/2 = te
t
2− 1

2 et/α ≥ te
t
2 ≥ −2

e
(t < 0).

Although it is not very tight for α near 1 and better ones can be found,
this lower bound works pretty well, as indicated by the boundary plots in
Figure 1.3 for a selected sequence of α values. The following experimental
computer code written in R (http://www.r-project.com) demonstrates
the simplicity of this method.
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Algorithm 1.7 .
EXP1 = exp(1) # define the constant

rou.gamma(n, shape, log=FALSE){ #arguments: n = sample size, shape = α
# log = flag; if log=TRUE, it returns the deviates in log scale

if(shape<=0 || shape>=1) stop("shape is not in (0, 1)")

if(shape <0.01 && !log)

warning("It is recommended to set log=TRUE for shape < 0.01")

y.max = (shape/EXP1)̂ (shape/2)

z.min = -2/EXP1

z.max = 2*shape/EXP1/(EXP1-shape)

s = numeric(n) #allocate space for the generated desired deviates

for(i in 1:n) {
repeat {

y = runif(1, 0, y.max) # y ∼ Unif(0,y.max)

t = runif(1, z.min, z.max)/y # t = z/y

x = exp(t/shape)

if(2*log(y) <= t-x){
s[i] = if(log) t/shape else x

break

}
}

}
return(s)

}
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Figure 1.3 The uniform regions and their boundaries of the ratio-of-uniforms
method for generating deviate X from Gamma(α), α < 1, by letting x = et/α,
−∞ < t <∞, and setting h(t) = et−et/α

.



18 BAYESIAN INFERENCE AND MARKOV CHAIN MONTE CARLO

We note that care must be taken in implementing Gamma deviate gen-
erators for small values of α. For example, we recommend in the above
experimental code to return the output in a logarithmic scale when α < 0.01.

1.4.4 Adaptive Rejection Sampling

Adaptive rejection sampling (ARS), introduced by Gilks (1992) (see also Gilks
and Wild, 1992, and Wild, 1993), is a useful sampling method for log-concave
densities. ARS works by constructing an envelope function of the log of the
target density, which is then used in rejection sampling. For log-concave den-
sity functions, ARS is simple and efficient, especially when sampling from the
same distributions occurs frequently. In this case, an adaptive squeezer can
also be easily constructed to further improve its performance. For densities
that are not log-concave, Gilks, Best, and Tan (1995) propose an Adaptive
Metropolis sampling method.

1.4.5 Perfect Sampling

Propp and Wilson (1996) propose a perfect (exact) sampling MCMC
algorithm, called coupling from the past (CFTP), for sampling from certain
discrete distributions with finite number of states, for example, the Ising
model. The algorithm uses a clever scheme to determine the time at which the
Markov chain has reached its equilibrium. Later, it was extended by Murdoch
and Green (1998) for sampling from a continuous state space. Fill (1998)
proposes an alternative to CFTP, known as Fill’s perfect rejection sampling
algorithm. Interested readers are referred to the review paper by Djurić,
Huang, and Ghirmai (2002), the website maintained by Wilson on perfect
sampling, and the references therein (http://www.dimacs.rutgers.edu/∼/
dbwilson/exact/).

1.5 Markov Chain Monte Carlo

1.5.1 Markov Chains

When generating iid samples from the target distribution π is infeasible,
dependent samples {Xi} can be used instead, provided that the sample
mean (1.17) converges to (1.16) at a satisfactory rate. A particular class
of such dependent sequences that can be simulated is the class of Markov
chains. A Markov chain, named after Andrey Markov, is a sequence of
random variables {Xi : i = 0, 1, 2, . . .} with the Markov property that given
the present state, the future and past states are independent, that is, for all
measurable sets A in X,

Pr (Xt+1 ∈ A|X0 = x0, . . . , Xt = xt) = Pr (Xt+1 ∈ A|Xt = xt) (1.26)

holds for time t = 0, 1, . . .
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A convenient way of handling both discrete and continuous variables is
to use the notation π(dy) to denote the probability measure π on (X,X).
For a continuous r.v. X, its pdf f(x) is the Radon-Nikodym derivative of the
probability measure π(dx) with respect to the Lebesgue measure, while for
discrete r.v. X, its pdf f(x) is the derivative of π(dx) with respect to the
counting measure. Thus, we write Pt(dx) for the marginal distribution of Xt

over states X at time t. Starting with the distribution P0(dx), called the initial
distribution, the Markov chain {Xt} evolves according to

Pt+1(dy) =
∫

X

Pt(dx)Pt(x, dy). (1.27)

The distribution Pt(x, dy) is the probability measure for Xt+1 given Xt = x,
called the transition kernel distribution at time t. In real life, this is the
conditional density/mass function of Xt+1 given Xt = x.

A primary class of Markov chains commonly used in MCMC is the class
of time-homogeneous Markov chains or stationary Markov chains where

Pt(x, dy) = P (x, dy) (1.28)

holds for t = 1, 2, . . .. In this case, (1.27) becomes

Pt+1(dy) =
∫

X

Pt(dx)P (x, dy) (1.29)

and Pt(dx) is uniquely determined by the initial distribution P0(dx) and the
transition kernel P (x, dy). For this reason, we write P n(x, .) for the conditional
distribution of Xt0+n given Xt0 = x. The basic idea of creating Markov chains
for approximating Eπ(h(X)) is to construct a transition kernel P (x, dy) with
π(dx) as its invariant distribution, that is, P (x, dy) and π(dx) satisfy the
balance condition

π(dy) =
∫

X

π(dx)P (x, dy) (1.30)

When the target distribution π has the density f(x) and the transition kernel
P (x, dy) has the conditional density p(y|x), this balance condition can be
written as

f(y) =
∫

X

p(y|x)f(x)dx.

The balance condition (1.30) can be viewed as obtained by requiring
Pt+1(dx) = Pt(dx) = π(dx) in (1.29). It says that if Xt is a draw from the
target π(x) then Xt+1 is also a draw, possibly dependent on Xt, from π(x).
Moreover, for almost any P0(dx) under mild conditions Pt(dx) converges to
π(dx). If for π-almost all x, limt→∞ Pr (Xt ∈ A|X0 = x) = π(A) holds for all
measurable sets A, π(dx) is called the equilibrium distribution of the Markov
chain. The relevant theoretical results, including those on the convergence
behavior of the MCMC approximation h̄n to E(h(X)), are summarized in
Section 1.5.2.
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1.5.2 Convergence Results

Except for rare cases where it is satisfactory to have one or few draws from
the target distribution f(x), most MH applications provide approximations
to characteristics of f(x), which can be represented by integrals of the form

Eπ(h) =
∫

h(x)π(dx).

Assuming Eπ(|h|) < ∞, this is to be approximated by

h̄m,n =
1
n

n∑
i=1

h(Xi+m) (1.31)

where {Xi} denotes a simulated Markov chain and m is non-negative integer
denoting the length of what is called the burn-in period; see Section 1.5.3.

This subsection includes theoretical results on (1.31) and is mainly based
on Tierney (1994, Section 3). With some necessary preliminary theoretical
results summarized in Section 1.5.2.2, Section 1.5.2.3 provides needed theo-
retical results concerning limiting behavior of (1.31) as n → ∞ and m fixed.
To proceed, Section 1.5.2.1 gives some key concepts and notations, in addition
to those introduced in Section 1.5.1.

1.5.2.1 Notation and Definitions

The most important concepts are irreducibility and aperiodicity. A Markov
chain with invariant distribution π(dx) is irreducible if for any initial state,
it has positive probability of entering any set to which π(dx) assigns positive
probability. A chain is periodic if there are portions of the state space X
it can only visit at certain regularly spaced times; otherwise, the chain is
aperiodic. A fundamental result is established in Theorem 1.5.1: If a chain
has a proper invariant distribution π(dx) and is irreducible and aperiodic,
then π(dx) is the unique invariant distribution and is also the equilibrium
distribution of the chain.

Two additional crucial concepts in the theory of Markov chains are recur-
rence and ergodicity .

Definition 1.5.1 Let Xn be a π-irreducible chain with invariant distribution
π(.) and let the notation {An i.o.} mean that the sequence occurs infinitely
often, that is,

∑
i IAi

=∞ (with probability one).

(a) The chain is recurrent if, for every B with π(B) > 0,

Pr (Xn ∈ B i.o.|X0 = x)> 0 for all x

and
Pr (Xn ∈ B i.o.|X0 = x) = 1 for π-almost all x.

(b) The chain is Harris recurrent if Pr (Xn ∈ B i.o.|X0 = x) = 1 for all x.
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To define different forms of ergodicity, the total variation distance between
two measures on X is used. The total variation distance between two measures
on (X,X ) is defined by the total variation norm of a signed measure λ on (X,X )

‖ λ ‖= sup
A∈X

λ(A)− inf
A∈X

λ(A). (1.32)

The concept of hitting time is also used. The hitting time of the subset B ∈ X
is the random variable

HB = inf{t ≥ 0 : Xt ∈ B}
where the infimum of the empty set is taken to be ∞.

Definition 1.5.2 Different forms of ergodicity are as follows:

(a) A Markov chain is said to be ergodic if it is positive Harris recurrent
and aperiodic.

(b) Let HB denote the hitting time for the set B. An ergodic chain with
invariant distribution π(x) is said to be ergodic of degree 2 if∫

B

Ex(H2
B)π(dx) <∞

holds for all H ∈ X with π(H) > 0.

(c) An ergodic chain with invariant distribution π(x) is said to be geometri-
cally ergodic if there exists a nonnegative extended real-valued function
M with E(|M(X)|) <∞ and a positive constant r < 1 such that

‖ P n(x, .)− π ‖≤M(x)rn

for all x.

(d) The chain in (c) is said to be uniformly ergodic if there exist a constant
M and a positive constant r < 1 such that

‖ Pn(x, .)− π ‖≤Mrn.

1.5.2.2 Convergence of Distributions

The total variation distance between two measures on (X,X ) is used to de-
scribe the convergence of a Markov chain in the following theorem (Theorem 1
of Tierney, 1994).

Theorem 1.5.1 Suppose that P (x, dy) is π-irreducible and π-invariant. Then
P (x, dy) is positive recurrent and π(dx) is the unique invariant distribution
of P (x, dy). If P (x, dy) is also aperiodic, then for π-almost all x,

‖ Pn(x, .)− π ‖→ 0,

with ‖ . ‖ denoting the total variation distance. If P (x, dy) is Harris recurrent,
then the convergence occurs for all x.
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Tierney (1994) noted that the assumptions in Theorem 1.5.1 are essentially
necessary and sufficient: if

||Pt(x, .)− π|| → 0

for all x, then the chain is π-irreducible, aperiodic, positive Harris recurrent, and
has the invariant distribution π(dx). We refer to Tierney (1994) and Hernandez-
Lerma and Lasserre (2001) for more discussion on sufficient conditions for
Harris recurrence. Relevant theoretical results on the rate of convergence can
also be found in Nummelin (1984), Chan (1989), and Tierney (1994).

1.5.2.3 Limiting Behavior of Averages

Tierney (1994) noted that a law of large numbers can be obtained from the
ergodic theorem or the Chacon-Ornstein theorem. The following theorem is
a corollary to Theorem 3.6 in Chapter 4 of Revuz (1975).

Theorem 1.5.2 Suppose that Xn is ergodic with equilibrium distribution
f(x) and suppose h(x) is real-valued and Ef (|h(X)|) < ∞. Then for any
initial distribution, h̄n → Ef (h(X)) almost surely.

The central limit theorems that are available require more assumptions.
Tierney (1994) gives the following central limit theorem.

Theorem 1.5.3 Suppose that Xn is ergodic of degree 2 with equilibrium dis-
tribution f(x) and suppose h(x) is real-valued and bounded. Then there exists
a real number σh such that the distribution of

√
n
(
h̄n − Ef (h(X))

)
converges weakly to a normal distribution with mean 0 and variance σ2

h for
any initial distribution.

The boundedness assumption on h(x) can be removed if the chain is uni-
formly ergodic, provided Ef (h2(X)) <∞.

Theorem 1.5.4 Suppose that Xn is uniformly ergodic with equilibrium dis-
tribution f(x) and suppose h(x) is real-valued and Ef (h2(X)) < ∞. Then
there exists a real number σh such that the distribution of

√
n
(
h̄n − Ef (h(X))

)
converges weakly to a normal distribution with mean 0 and variance σ2

h for
any initial distribution.
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1.5.3 Convergence Diagnostics

The theoretical results provide a useful guidance for designing practically
valid and efficient MCMC (sampling) algorithms. It is difficult to make use
of them to decide when it is safe to terminate MCMC algorithms and report
MCMC approximations with their associated errors. More specifically, two
critical issues arising in the context of computing h̄m,n in (1.31) are (i) how
to choose m, and (ii) how large should n be taken so that h̄m,n has about
the same precision as the corresponding Monte Carlo approximation based
on an iid sample of a prespecified sample size, say, n0. In theory, there are
no definite answers to these two questions based on the simulated finite se-
quence {Xt : t = 0, . . . , T} because Markov chains can be trapped into local
modes for arbitrarily long periods of time, if not indefinitely. While designing
problem-specific efficient MCMC sampling algorithms is desirable, and is a
major focus of this book, there have also been many proposed convergence
diagnostic methods.

Gelman and Rubin (1992) is one of the most popular convergence
diagnostic tools. The Gelman and Rubin method requires running multiple
sequences {X(j)

t : t = 0, 1, . . . ; j = 1, . . . , J}, J ≥ 2, with the starting
sample X

(1)
0 , . . . , X

(J)
0 generated from an overdispersed estimate of the target

distribution π(dx). Let n be the length of each sequence after discarding the
first half of the simulations. For each scalar estimand ψ = ψ(X), write

ψ
(j)
i = ψ(X(j)

i ) (i = 1, . . . , n; j = 1, . . . , J).

Let

ψ̄(j) =
1
n

n∑
i=1

ψ
(j)
i and ψ̄ =

1
J

J∑
j=1

ψ̄(j),

for j = 1, . . . , J. Then compute B and W, the between- and within-sequence
variances:

B =
n

J− 1

J∑
j=1

(
ψ̄(j) − ψ̄

)2

and W =
1
J

J∑
j=1

s2
j ,

where

s2
j =

1
n− 1

n∑
i=1

(
ψ

(j)
i − ψ̄(j)

)2

(j = 1, . . . , J).

Suppose that the target distribution of ψ is approximately normal and
assume that the jumps of the Markov chains are local, as is often the case
in practical iterative simulations. For any finite n, the within variance W
underestimates the variance of ψ, σ2

ψ; while the between variance B over-
estimates σ2

ψ. In the limit as n → ∞, the expectations of both B and W
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approach σ2
ψ. Thus, the Gelman and Rubin reduction coefficient,

√
R̂ =

√
n−1

n W + 1
nB

W
, (1.33)

should be expected to decline to one as n → ∞. Gelman et al . (2004) rec-
ommend computing the reduction coefficient

√
R̂ for all scalar estimands of

interest; if
√

R̂ is not near one for all of them, continue the simulation runs.
Once

√
R̂ is near one for all scalar estimands of interest, just collect the J×n

samples from the second halves of the J sequences together and treat them
as (dependent) samples from the target distribution π(dx).

A number of criticisms of the GR method have been made in the literature.
Readers are referred to Cowles and Carlin (1996) for these criticisms. Ideas
of constructing overdispersed starting values can be found in Gelman and
Rubin (1992) and Liu and Rubin (1996). For a review of other convergence
diagnostic methods, see Cowles and Carlin (1996), Brooks and Gelman (1998),
Mengersen et al. (1999), and Plummer et al . (2006) and the references therein.

Exercises

1.1 Suppose that a single observation X = 2.0 is considered to have been
drawn from the Gaussian model N(θ, 1) with unknown θ. Consider the
hypothesis H0 : θ = 0 versus the alternative hypothesis Ha : θ �= 0.
Apply the Bayes approach using Bayes factors.

1.2 Consider inference about the binomial proportion θ in Binomial(n, θ)
from an observed count X.

(a) Show that the Jeffreys prior for the binomial proportion θ is the
Beta distribution Beta

(
1
2 , 1

2

)
.

(b) Derive the posterior π(θ|X).
(c) For the case of n = 1, evaluate the frequency properties of the 95%

credible interval for each of θ = .0001, 0.001, 0.01, 0.1, .25, .5, .75,
.9, .99, .999, and .9999.

1.3 Suppose that the sample density function of a single observation X ∈ R
has the density of the form f(x−θ), where θ ∈ R is unknown parameter
to be estimated.

(a) Show that the Jeffreys prior is π(θ) ∝ 1.
(b) Consider frequency properties of one-sided credible intervals.
(c) Discuss the case where θ is known to be on a sub-interval of R.

1.4 Prove Theorem 1.3.1.

1.5 Verify the results in Table 1.2.
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1.6 Extend the method of generating Beta to simulate the Dirichlet random
variable.

1.7 Consider the problem of generating Poisson variates.

(a) Design an efficient discrete inverse-cdf algorithm using a mapping.
(b) Develop an Acceptance-Rejection method with a continuous enve-

lope distribution.
(c) Investigate efficient ratio-of-uniforms methods; see Stadlober

(1989).

1.8 Consider the problem of Example 1.5, that is, to generate a deviate
from the Gamma distribution with shape parameter less than one.

(a) Create a mixture distribution as envelope for implementing the
Acceptance-Rejection algorithm.

(b) Compare your methods against the ratio-of-uniforms methods in
Example 1.5.

1.9 Develop the ratio-of-uniforms method for generating Gamma deviates
(for all α > 0) by replacing the transformation T = α ln X in the problem
of Example 1.5 with T =

√
α ln X

α .

1.10 The standard student-t distribution with ν degrees of freedom has
density

fν(x) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

) (
1 +

x2

ν

)−(ν+1)/2

(−∞ < x <∞)

where ν is the number of degrees of freedom and Γ(.) is the Gamma
function.

(a) Implement the ratio-of-uniforms method for generating random
deviates from fν(x).

(b) Develop an efficient ratio-of-uniforms algorithm to generate ran-
dom variables from interval-truncated Student-t distribution.

1.11 This is the same as Exercise 1.10 but for the standard normal distribu-
tion N(0, 1).

1.12 Suppose that D = {yi = (y1i, y2i)′ : i = 1, . . . , n} is a random sample
from a bivariate normal distribution N2(0, Σ), where

Σ =
(

1 ρ
ρ 1

)
with unknown correlation coefficient ρ ∈ (−1, 1) (Pérez et al ., 2008)

(a) Assuming the prior π(ρ) ∝ 1/(1− ρ2), derive the posterior distri-
bution π(ρ|D).
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(b) Implement the ratio-of-uniforms method to generate ρ from
π(ρ|D).

(c) Implement the ratio-of-uniforms method to generate η from
π(η|D), which is obtained from π(ρ|D) via the one-to-one trans-
formation η = ln 1+ρ

1−ρ .

(d) Conduct a simulation study to compare the two implementations
in (b) and (c).

1.13 Consider the simple random walk Markov chain with two reflecting
boundaries on the space X = {a, a+1, . . . , b} with the transition kernel
distribution (matrix) P = (pij), where

pij = Pr (Xt+1 = j|Xt = i) =


p if j = i + 1 and a < i < b;
q if j = i− 1 and a < i < b;
1 if i = a and j = a + 1;
1 if i = b and j = b− 1,

with 0 < p < 1 and q = 1− p.

(a) Find the invariant distribution π.

(b) Show that the invariant distribution π is also the equilibrium dis-
tribution of the Markov chain.

1.14 Let πi (i = 1, 2) be the probability measure for N(µi, 1). Find the total
variation distance between π1 and π2.

Hint : Let λ = π2 − π1 and let φ(x− µi) be the density of πi for i = 1
and 2.

Then supA λ(A) = infφ(x−µ2)−φ(x−µ1) > 0 [φ(x− µ2)− φ(x− µ1)] dx.
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Chapter 2

The Gibbs Sampler

Direct sampling techniques discussed in Chapter 1 for generating multivariate
variables are often practically infeasible for Bayesian inference, except for
simple models. For example, for the Acceptance-Rejection or its variants such
as the ratio-of-uniforms method, the acceptance rate often becomes effectively
zero in high dimensional problems. This phenomenon is known as the curse of
dimensionality. As an alternative to Monte Carlo methods using independent
samples, dependent samples associated with target distributions can be used
in two possible ways. The first is to generate a Markov chain with the target
distribution as its stationary distribution. For this, the standard Monte Carlo
theory is then extended accordingly for approximating integrals. The second is
to create iid samples by using Markov chain Monte Carlo sampling methods;
see Chapter 5. This chapter introduces the Gibbs sampling method also known
as the Gibbs sampler. More discussion of MCMC is given in Chapter 3.

2.1 The Gibbs Sampler

The Gibbs sampler has become the most popular computational method for
Bayesian inference. Known as the heat bath algorithm it was in use in statisti-
cal physics before the same method was used by Geman and Geman (1984) for
analyzing Gibbs distributions on lattices in the context of image processing.
Closely related to the EM algorithm (Dempster et al ., 1977), a similar idea
was explored in the context of missing data problems by Tanner and Wong
(1987; see also Li, 1988), who introduced the Data Augmentation algorithm.
The paper by Gelfand and Smith (1990) demonstrated the value of the Gibbs
sampler for a range of problems in Bayesian analysis and made the Gibbs
sampler a popular computational tool for Bayesian computation.

Technically, the Gibbs sampler can be viewed as a special method for
overcoming the curse of dimensionality via conditioning. The basic idea is the
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same as the idea behind iterative conditional optimization methods. Suppose
that we want to generate random numbers from the target density f(x), x ∈
X ⊆ Rd. Partition the d-vector x into K blocks and write x = (x1, . . . , xK)′,
where K ≤ d and dim(x1)+ · · ·+dim(xK) = d with dim(xk) representing the
dimension of xk. Denote by

fk(xk|x1, . . . , xk−1, xk+1, . . . , xK) (k = 1, . . . , K) (2.1)

the corresponding full set of conditional distributions. Under mild condi-
tions, this full set of conditionals, in turn, determines the target distribution
f(x); according to the Hammersley-Clifford theorem (Besag 1974; Gelman
and Speed, 1993):

Theorem 2.1.1 (Hammersley-Clifford) If f(x) > 0 for every x ∈ X,
then the joint distribution f(x) is uniquely determined by the full condition-
als (2.1). More precisely,

f(x) = f(y)
K∏

k=1

fjk
(xjk

|xj1 , . . . , xjk−1 , yjk+1 , . . . , yjK
)

fjk
(yjk

|xj1 , . . . , xjk−1 , yjk+1 , . . . , yjK
)

(x ∈ X) (2.2)

for every permutation j on {1, . . . , n} and every y ∈ X.

Algorithmically, the Gibbs sampler is an iterative sampling scheme. Start-
ing with an arbitrary point x(0) in X with the restriction that f(x(0)) > 0,
each iteration of the Gibbs sampler cycles through the full set of conditionals
(2.1) to generate a random number from each fk(xk|x1, . . . , xK) by setting
x1, . . . , xk−1, xk+1, . . . , xK at their most recently generated values.

The Gibbs Sampler

Take x(0) = (x(0)
1 , . . . , x

(0)
K ) from f (0)(x) with f(x(0)) > 0, and iterate for

t = 1, 2, . . .

1 . Generate x
(t)
1 ∼ f1(x1|x(t−1)

2 , . . . , x
(t−1)
K ).

...

k . Generate x
(t)
k ∼ fk(xk|x(t)

1 , . . . , x
(t)
k−1, x

(t−1)
k+1 , . . . , x

(t−1)
K ).

...

K . Generate x
(t)
K ∼ fK(xK |x(t)

1 , . . . , x
(t)
K−1).

Under mild regularity conditions (see Section 1.5), the distribution of
x(t) = (x(t)

1 , . . . , x
(t)
K )′, denoted by f (t)(x), will converge to f(x). Here, we

provide an illustrative example.
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Example 2.1 The Multivariate Normal Distribution

The p-dimensional normal distribution, denoted by Np(µ, Σ), is defined
on the sample space X p with the parameter consisting of a mean vector
µ ∈ Rp and a positive defined p × p covariance matrix Σ ∈ M+

p×p, where
M+

p×p denotes the set of all positive definite p× p matrices. The density of
Np(µ, Σ) is given by

fµ,Σ(x) =
1

(2π)n/2|Σ|e
− 1

2 (x−µ)′Σ−1(x−µ) (x ∈ Rp) (2.3)

Let X ∼ Np(µ, Σ). It is well known that the distribution of the linear com-
bination of AX, where A is q×p matrix, is the q-variate normal with mean
vector Aµ and covariance matrix AΣA′. This means that computation for
marginal distributions is straightforward. Taking A to be permutation ma-
trices, we see that reordering the components of X mounts to reordering
elements of both µ and Σ accordingly. Thus, when X is partitioned into
two blocks X1 and X2, we write(

X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(2.4)

When conditioned on X1, X2 is also normal

X2|X1 ∼ Ndim(X2)

(
µ2 + Σ21Σ−1

11 (X1 − µ), Σ22 − Σ21Σ−1
11 Σ12

)
(2.5)

The needed matrix computation in (2.5) can be summarized into a powerful
operator, called the Sweep operator (see, e.g., Little and Rubin, 1987).

To illustrate the Gibbs sampler, we use a trivariate normal with mean
vector µ = (µ1, µ2, µ3)′ and the covariance

Σ(ρ) =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 .

The three-step Gibbs sampler with the partition of X = (X1, X2, X3)′ into
X1, X2, and X3 is then implemented as follows.

The Gibbs sampler for N3(0, Σ(ρ)): Set a starting value x(0) ∈ R3, and
iterate for t = 1, 2, . . .

1. Generate x
(t)
1 ∼ N(µ1 + ρ(x(t−1)

2 − µ2), 1− ρ2).

2. Generate x
(t)
2 ∼ N

(
µ2 + ρ

1+ρ2 (x(t)
1 − µ1 + x

(t−1)
3 − µ3), 1−ρ2

1+ρ2

)
.

3. Generate x
(t)
3 ∼ N(µ3 + ρ(x(t)

2 − µ2), 1− ρ2).

Figure 2.1 displays trajectory plots of two Markov chains generated
by this Gibbs sampler for the trivariate normal distributions with µ =
(10, 10, 10) and ρ = 0 and .99. It shows that the performance of the Gibbs
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Figure 2.1 Trajectory plots of two Markov chains generated by the Gibbs
sampler for the trivariate normal distributions in Example 2.1 with µ =
(10, 10, 10) and ρ = 0 and .99.

sampler depends on the dependence structure among X1, . . . , XK . In the
case of ρ = 0, the sampler produces iid draws from the target distribution.
In the case of ρ = 0.99, the Gibbs sequence is highly correlated.

2.2 Data Augmentation

The Data Augmentation (DA) algorithm (Tanner and Wong, 1987) can be
viewed as a special case of the Gibbs sampler, the two-step Gibbs sampler.
It is also viewed as the stochastic version of the EM algorithm (Dempster
et al ., 1977); see Appendix 2A. In turn, the EM algorithm can be viewed
as the deterministic version of the DA algorithm. Interest in DA is at least
three-fold: first, it has applications in Bayesian analysis of incomplete data;
second, DA is the simplest case of the Gibbs sampler and therefore can
be extensively studied for understanding theoretical properties of the Gibbs
sampler; third, ideas for developing efficient DA algorithms can usually be
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extended to the more general Gibbs sampler or even beyond, such as to the
Metropolis-Hastings algorithm.

We describe the DA algorithm in the context of Bayesian analysis of in-
complete data. Denote by Xobs the observed data and by Xmis (∈ Xmis) the
missing-data. Write Xcom = (Xobs, Xmis), called the complete data. Suppose
that the complete-data model has density g(Xobs, Xmis|θ) with the parameter
θ ∈ Θ ⊆ Rd for some positive integer d. The objective is to make Bayesian
inference with a prior distribution p(θ) for the parameter θ. Let f(Xobs|θ) be
the observed-data model, i.e.,

f(Xobs|θ) =
∫

Xmis

g(Xobs, Xmis|θ)dXmis (θ ∈ Θ) (2.6)

For Bayesian inference about θ using MCMC methods, it is required to sample
from the true or observed-data posterior

p(θ|Xobs) ∝ f(Xobs|θ)p(θ) (θ ∈ Θ) (2.7)

or more generally, the joint distribution of θ and Xmis,

p(θ, Xmis|Xobs) ∝ g(Xobs, Xmis|θ)p(θ) (θ ∈ Θ) (2.8)

Let h(Xmis|θ, Xobs) be the conditional distribution of Xmis given θ and Xobs.
Suppose that both h(Xmis|θ, Xobs) and p(θ|Xobs, Xmis) ∝ g(Xobs, Xmis|θ)p(θ)
are easy to draw samples from. The two-step Gibbs sampler based on these two
conditionals is known as the DA algorithm and can be summarized as follows:

The DA Algorithm: A Two-Step Gibbs Sampler

Take θ(0) ∈ Θ, and iterate for t = 1, 2, . . .

I-Step. Generate X
(t)
mis ∼ fmis(Xmis|θ(t−1), Xobs).

P-Step. Generate θ(t) ∼ p(θ|Xobs, X
(t)
mis).

As a two-step Gibbs sampler, DA creates two interleaving (marginal)
Markov chains {θ(t) : t = 1, 2, . . .} and {X(t)

mis : t = 1, 2, . . .}. This explains
why DA provides the mathematically simplest case of the Gibbs sampler.
Example 2.2 demonstrates that DA is useful for missing data problems.

Example 2.2 Multivariate Normal With Incomplete Data

Consider a complete-data set consisting of a sample of n, Y1, . . . , Yn, from
the p-dimensional multivariate normal distribution Np(µ, Σ) with unknown
mean vector µ ∈ Rp and p×p (positive definite) covariance matrix Σ. Each
component of Yi is either fully observed or missing for each i = 1, . . . , n. Let
Y

(i)
obs denote the observed components and let Y

(i)
mis the missing components

of Yi. Using the notation similar to that in Example 2.1, we write the
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conditional distribution of Y
(i)
mis given Y

(i)
obs and (µ, Σ) as

Yi,mis|(Yi,obs, µ, Σ) ∼ N

(
µ

(i)
mis + Σ(i)

mis,obs

[
Σ(i)

obs,obs

]−1

(Yi,mis − µ
(i)
mis), (2.9)

Σ(i)
mis,mis − Σ(i)

mis,obs

[
Σ(i)

obs,obs

]−1

Σ(i)
obs,mis

)
Suppose that for Bayesian analysis, we use the prior distribution

p(µ, Σ) ∝ |Σ|−(q+1)/2, (2.10)

where q is a known integer. With q = p, this prior becomes the the Jeffreys
prior for Σ.

Let Ȳ = n−1
∑n

i=1 Yi and let S =
∑n

i=1(Yi− Ȳ)(Yi− Ȳ)′. The complete-
data posterior distribution p(µ, Σ|Y1, . . . , Yn) can be characterized by

Σ|Y1, . . . , Yn ∼ 1
|Σ|(n+q)/2

exp
{
−1

2
trace

(
Σ−1S

)}
, (2.11)

that is, the inverse Wishart distribution, and

µ|Σ, Y1, . . . , Yn ∼ Np(Ȳ, Σ/n). (2.12)

Thus, the DA algorithm has the following I and P steps:

I-step. For i = 1, . . . , n, draw Yi,mis from (2.9).

P-step. First draw Σ from (2.11) given Y1, . . . , Yn and then draw µ from (2.12)
given Y1, . . . , Yn and Σ.

We note that the P-step can be split into two sub-steps, resulting in a
three-step Gibbs sampler:

Step 1. This is the same as the I-step of DA.

Step 2. Draw µ from its conditional distribution given Y1, . . . , Yn and Σ.

Step 3. Draw Σ from its conditional distribution given Y1, . . . , Yn and µ.

Compared to the DA algorithm, a two-step Gibbs sampler, this
three-step Gibbs sampler induces more dependence between the sequence
{(µ(t), Σ(t)) : t = 1, 2, . . .} and, thereby, converges slower than the
corresponding DA. In other words, DA can be viewed as obtained from
the three-step Gibbs sampler by making µ and Σ into a single block.
This grouping technique is referred to as ‘blocking’ by Liu et al . (1994);
see Section 2.3.1. It should also be noted that more efficient DAs for
incomplete multivariate normal data can be implemented by ‘imputing
less’ missing data/information (see Rubin and Schafer, 1990; Liu, 1993;
and Schafer, 1997).

In the case where computing the posterior distribution p(θ|Xobs) is of
interest, DA can be viewed as an MCMC sampling algorithm using auxiliary
(random) variables, as illustrated in Example 2.3.
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Example 2.3 A DA Alternative to the Acceptance-Rejection
Method

Let f(x) be a probability density function on Rd. Consider the uniform
distribution on the region

{(x, u) : 0 ≤ u ≤ f(x)} ⊂ Rd+1.

The full conditionals consist of

U|{X = x} ∼ Unif (0, f(x)) and X|{U = u} ∼ Unif ({x : f(x) = u})
This leads to a two-step Gibbs sampler and is related to the slice sampler
(see Chapter 4).

2.3 Implementation Strategies
and Acceleration Methods

When applying the basic Gibbs sampler for creating a Markov chain with the
target distribution f(x) on X ⊆ Rd, we need to choose a Gibbs configuration
that consists of (i) an appropriate coordinate system for X and (ii) a par-
tition of the space X into (an ordered) K blocks X = (X1, . . . ., XK). Some
configurations are easier to implement and may be less efficient than oth-
ers. The basic idea to improve efficiency is to weaken high correlations or
dependence of the Gibbs sequence {X(t) = (X(t)

1 , . . . , X
(t)
K ) : t = 1, 2, . . .}.

Thus, implementing the Gibbs sampler is the art of making intelligent trade-
offs between simplicity and efficiency. This section covers a number of selected
simple and efficient methods. These include blocking and collapsing (Liu et al .,
1994; Liu, 1994), hierarchical centering (Hills and Smith, 1992; Gelfand et al .,
1995; Roberts and Sahu, 1997), conditional data augmentation and marginal
data augmentation (Meng and van Dyk, 1999; van Dyk and Meng, 2001),
parameter-expanded data augmentation (Liu and Wu, 1999), and alternat-
ing subspace-spanning resampling (Liu, 2003; Yu and Meng, 2008). Auxiliary
variable methods are treated separately in Chapter 4.

2.3.1 Blocking and Collapsing

Liu et al . (1994) describe the benefits of ‘blocking’ and ‘collapsing’. Blocking
or grouping updates variables in large-dimensional groups. The idea of
blocking is very intuitive and should be considered whenever the resulting
Gibbs sampler is simple to implement. Suppose that a group of variables
{Xi1 , . . . , Xik

}, where {i1, . . . , ik} is a subset of {1, . . . , K} in the original
Gibbs setting, is to be considered to form a larger block. What is needed
is to find a way of sampling the components Xi1 , . . . , Xik

from their
joint conditional distribution given the remaining variables, denoted by
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X−[i1,...,ik]. A typical approach is to seek an ordering of Xi1 , . . . , Xik
,

say, Xj1 , . . . , Xjk
, among all possible permutations of i1, . . . , ik and draw

samples sequentially from f(Xj1 |X−[i1,...,ik]), f(Xj2 |Xj1 , X−[i1,...,ik]), . . . , and
f(Xjk

|Xj1 , . . . , Xjk−1 , X−[i1,...,ik]). This has been illustrated in Example 2.2.
Collapsing or partial marginalizing creates draws from partially marginal-

ized distributions. Consider a three-step Gibbs sampler for (X1, X2, X3).
Suppose that it is simple to draw X1 from f(X1|X2) and X2 from f(X2|X1).
That is, a two-step Gibbs sampler can be implemented to create Markov
chain in the space of (X1, X2) with the marginal distribution f(X1, X2) as
the equilibrium distribution. These draws {(X(t)

1 , X
(t)
2 ) : t = 1, 2, . . .} are then

augmented by imputing the missing component X
(t)
3 from f(X3|X(t)

1 , X
(t)
2 ).

This collapsing idea can also be applied to the general case of Gibbs sampler
(Liu, 1994).

A sampling-based collapsing in this three-block Gibbs setting is to iterate
between drawing f(X1, X3|X2) and f(X2, X3|X1). In this sense, parameter
expansion and alternating subspace-spanning resampling (Section 2.3.3.2 and
Section 2.3.4) can be viewed as special cases of the collapsed Gibbs sampler.

2.3.2 Hierarchical Centering and Reparameterization

Gelfand et al ., (1995) demonstrate that simple reparameterization such as
hierarchical centering can be a useful method of breaking correlations for hi-
erarchical models. We use the following toy example of Liu and Wu (1999)
to explain the basic idea. This example can also be used to show that over-
parameterization (Section 2.3.3.2) is often more efficient than reparameteri-
zation. Incidentally, we note that simple examples with closed-form solutions
are used here for easy understanding without much loss of generality of the
underlying basic ideas.

Example 2.4 The Simple Random-Effects Model

Consider a Bayesian approach to the simplest linear random-effects model
with fixed effect θ and random effect Z

Z|θ ∼ N(0, v) and Y |(Z, θ) ∼ (θ + Z, 1) (2.13)

with the observed data Y ∈ R, known v> 0, and the prior θ ∼ Unif (R), i.e.,
the flat prior on the real line R, for the fixed effect θ. The complete-data
model for Y and Z has the joint distribution

N2

([
θ
0

]
,

[
1 + v v

v v

])
, (2.14)

leading to the joint posterior of (θ, Z)

N2

([
Y
0

]
,

[
1 + v v

v v

])
.
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In this case the target posterior distribution of θ given Y has a closed-
form solution, N(Y, 1 + v), because the observed-data model is Y |θ ∼
N(θ, 1 + v).

The basic idea of hierarchical centering amounts to comparing two dif-
ferent implementations of the DA algorithm with Z viewed as the missing
data and θ the parameter. One is based on (2.13) and consists of the fol-
lowing two steps:

I-step. Draw Z from its conditional distribution N(v(θ−Y)/(1+v), v/(1+v)),
given Y and θ.

P-step. Draw θ from its conditional distribution N(Y + Z, 1), given Y and Z.

The other is based on the reparameterized or recentered version of (2.13)

Z|θ ∼ N(θ, v) and Y |(Z, θ) ∼ (Z, 1) (2.15)

which has the same observed-data model. The corresponding DA has the
following two steps:

I-step. Draw Z from its conditional distribution N([vY + θ]/(1+v), v/(1+v)),
given Y and θ.

P-step. Draw θ from its conditional distribution N(Z, v), given Y and Z.

Each of the two DA implementations induces an AR series on θ. The
first has the auto correlation coefficient r = v/(1 + v); whereas the second
has the auto-correlation coefficient r = 1/(1+ v). Thus, the rate of conver-
gence depends on the value of v, compared to the unit residual variance
of Y conditioned on Z. For large values of v (�1), the second scheme is
more efficient than the first. For small values of v (�1), the second scheme
is very slow and the first is quite efficient. Nevertheless, this toy example
indicates that hierarchical centering can be effective.

In general, reparameterization represents a transformation on the random
variables, leading to a different implementation of the Gibbs sampler, which
is by definition coordinate-dependent. Efficient implementation of the Gibbs
sampler can be obtained if Gibbs components in the transformed coordinate
system are approximately independent and the corresponding conditionals
are easy to draw samples from. See Robert and Casella (2004) for more dis-
cussion on reparameterization and Liu et al . (1994) for a general method for
comparing different sampling algorithms.

2.3.3 Parameter Expansion for Data Augmentation

2.3.3.1 Conditional and Marginal Data Augmentation

Weakening dependence among draws {(X(t)
mis, θ

(t)) : t = 1, 2, . . .} to speed up
DA can be achieved by boosting the conditional variability (or variance if
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exists) of θ given Xmis and Xobs. A way of doing this is to consider different
data augmentation schemes. Much work has been done in the EM world; see
Meng and van Dyk (1997) and Liu et al . (1998). Meng and van Dyk (1997)
seek within a given class of complete-data models to get the optimal one in
terms of the fraction of missing information (see Little and Rubin, 1987).
This idea of ‘imputing less’ is powerful. For example, it has motivated the
Monotone-DA algorithm of Rubin and Schafer (1990) for incomplete multi-
variate normal models; see Liu (1993, 1995, 1996), Schafer (1997), Gelman
et al . (1998), Liu and Rubin (1998) for more examples of Monotone-DA.
Liu et al . (1998) activate hidden parameters that are identifiable in the
complete-data model of the original EM algorithm but unidentifiable in the
observed-data model. They use the standard EM algorithm to find maximum
likelihood estimate of the original parameter from the parameter-expanded
complete-data model. The resulting EM algorithm is called the PX-EM algo-
rithm; a formal definition of PX-EM is included in Appendix 2A.

It is perhaps relatively straightforward to construct the DA version of
Meng and van Dyk (1997) because once a complete-data model is chosen it
defines a regular EM and, thereby, a regular DA. Unlike the other EM-type
algorithms, such as ECM (Meng and Rubin, 1993), ECME (Liu and Rubin,
1994), and AECM (Meng and van Dyk, 1997), PX-EM has received consider-
able attention due to its fast convergence and the challenge for constructing its
DA version. Constructing an exact DA version, if it exists, of PX-EM is still an
open problem. Perhaps most important is that the research on this topic has
produced a number of efficient DA algorithms with ideas that can be easily
extended to the more general Gibbs sampler. The relevant algorithms selected
in this book include conditional and marginal data augmentation of Meng and
van Dyk (1999); see also van Dyk and Meng (2001); PX-DA of Liu and Wu
(1999); and alternating subspace-spanning resampling of Liu (2003).

Suppose that a standard DA algorithm has the complete-data model
g(Xobs, Xmis|θ) and the prior distribution p(θ) for θ ∈ Θ. The parameter-
expanded (PXed) complete-data model is specified by augmenting the
parameter to include an extra parameter α ∈ A ⊆ Rdx for some positive
integer dx. The PXed complete-data model, denoted by g∗(Xobs, Xmis|θ∗, α),
(θ∗, α) ∈ Θ×A, is required to preserve the observed-data model in the sense
that for every (θ∗, α) ∈ Θ× A, there exists a function θ = Rα(θ∗), called the
reduction function, such that∫

Xmis

g∗(Xobs, Xmis|θ∗, α)dXmis = f(Xobs|θ = Rα(θ∗)) (2.16)

holds. Fixing α at its default value α0 recovers the original complete-data
model. Fixing α at different values results in different DA implementations.
In other words, α indexes a class of DA schemes. This is explained by the
following two toy examples.
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Example 2.4 The Simple Random-Effects Model (continued)

Activate the mean of Z in (2.13) and write the original parameter θ as θ∗.
This yields the PX version of (2.13)

Z|(θ∗, α) ∼ N(α, v) and Y |(Z, θ∗, α) ∼ N(θ∗ + Z, 1) (2.17)

where θ∗ ∈ R and α ∈ R with its default value α0 = 0. The associated
reduction function

θ = Rα(θ∗) = θ∗ + α.

is obtained by integrating out the missing data Z.
Example 2.5 is due to Lewandowski et al . (2010).

Example 2.5 The Simple Poisson-Binomial Random-Effects Model

Consider the complete-data model for the observed data Xobs = X and the
missing data Xmis = Z:

Z|λ ∼ Poisson(λ) and X|(Z, λ) ∼ Binomial(Z, π)

where π ∈ (0, 1) is known and λ > 0 is the unknown parameter to be
estimated. The observed-data model is X|λ ∼ Poisson(πλ). This provides
another simple example for which analytical theoretical results can be
easily derived.

Suppose that for Bayesian inference we take the prior p(λ) ∝ λ−κ,
where κ ∈ [0, 1] is a known constant. Then the posterior of λ given X is
Gamma(X + 1 − κ, π). Incidentally, we note that an imprecise Bayesian
analysis can be carried out by considering the class of priors indexed by
κ ∈ [0, 1].

Activating the hidden parameter π gives the PXed complete-data
model

Z|(λ∗, α) ∼ Poisson(λ∗) and X|(Z, λ∗, α) ∼ Binomial(Z, α)

where the expansion parameter α ∈ (0, 1) takes its default value α0 = π.
This PXed model has the reduction function

λ = Rα(λ∗) =
α

π
λ∗.

Conditional DA, termed by Meng and van Dyk (1999), implements the
standard DA algorithm with a fixed α value, αc, which is not necessarily its
default value α0. The preferred value αc can be chosen according to certain
criteria in the context of EM. Van Dyk and Meng (2001) suggest finding the αc

that minimizes the fraction of missing information. For complex models, the
solution can be difficult to find analytically. Finding the optimal Conditional
DA for each of the two toy examples is left as an exercise.

PX-EM treats expansion parameter α as a real parameter to be estimated
for a better fit of the complete-data model to the imputed complete data, or
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more exactly, a larger value of (complete-data) log-likelihood. Liu et al . (1998)
give a statistically intuitive explanation, in terms of covariance adjustment,
of why PX-EM converges no slower than the original EM. For example, PX-
EM converges in one iteration for the two toy examples, whereas EM can
converge painfully slowly which gave rise to the idea of treating α as a real
model parameter. What is needed for constructing the DA version of PX-EM
is to specify a working prior for α, possibly conditioned on θ∗, so that α can
be handled by standard DA updates.

Since the prior distribution for θ is available, it is sometimes convenient
to consider the transformation, assumed to be one-to-one and differentiable,

θ = Rα∗(θ∗) and α = α∗. (2.18)

Let θ∗ = R−1
α (θ) denote the inverse mapping from θ to θ∗ for fixed α. Then

the complete-data likelihood function is given by

g∗(Xobs, Xmis|R−1
α (θ), α) (θ ∈ Θ; α ∈ A)

Example 2.4 The Simple Random-Effects Model (continued)

In the space of (θ, α), the PXed model becomes

Z|(θ, α) ∼ N(α, v) and Y |(Z, θ, α) ∼ N(θ− α + Z, 1) (2.19)

Let p∗(θ, α) be the joint prior for (θ, α), let p∗(θ) be the marginal prior
for θ∗, and let p∗(α|θ) be the conditional prior for α given θ. The following
result on preserving the target posterior distribution f(Xobs|θ)p(θ) is easy to
prove; see Liu and Wu (1999).

Theorem 2.3.1 Suppose that p∗(α|θ) is a proper probability density function.
Then the posterior distribution of θ is the same for both the original model and
the parameter-expanded model if and only if the marginal prior distribution
p∗(θ) agrees with p(θ), i.e., p∗(θ) ∝ p(θ), θ ∈ Θ.

The following sampling algorithm is proposed by Meng and van Dyk (1999)
and Liu and Wu (1999). Meng and van Dyk (1999) call it Marginal DA,
whereas Liu and Wu (1999) call it PX-DA. For clarity, we refer to it as
Marginal DA and to the version without drawing α in Step 1 as PX-DA.

The Marginal DA Algorithm: Marginalizing or Collapsing the
Expansion Parameter

Take θ(0) ∈ Θ, and iterate for t = 1, 2, . . .

mI-Step. Draw (α, Xmis) from its conditional distribution given (Xobs, θ).

mP-Step. Draw (θ, α) from its conditional distribution given (Xobs, Xmis).
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The mI-step can be implemented by first drawing α from p∗(α|θ) and then
drawing Xmis from its PXed predictive distribution g∗(Xobs, Xmis|R−1

α (θ), α).
The Marginal DA algorithm effectively marginalizes α out by drawing α in
both mI-step and mP-step. In other words, the idea can be viewed as first
introducing the expansion parameter as an auxiliary variable and then col-
lapsing down this auxiliary variable.

This algorithm is very interesting in that it serves several purposes: Liu
and Wu (1999) and Meng and van Dyk (1999) use proper priors pω(α|θ),
indexed by ω, to establish a theory for using improper priors, with a limiting
argument (discussed in Section 2.3.3.2); and, with some special degenerated
cases of p∗(α|θ), it provides a way of understanding other relevant sampling
methods, such as conditional DA and hierarchical centering.

Taking a degenerated prior independent of θ, i.e., p∗(α|θ) ∝ p∗(α) = δαc
,

meaning Pr(α = δαc
|θ) = 1, gives Conditional DA. Letting α be a function of

θ, that is Pr(α = α(θ)|θ) = 1, yields what we call the Reparameterized DA
algorithm, which include hierarchical centering as a special case. For example,
conditioned on θ, α = α(θ), and the observed data Y in Example 2.4, the miss-
ing data Z follows N(α(θ)+v(Y−θ)/(1+v), v/(1+v)). With the degenerated
prior having α(θ) = c + (1 + v)−1vθ for an arbitrary c ∈ R with probability
one, the imputed missing data Z is independent of the current draw of θ. We
note that for this example there exists a class of Reparameterized DAs, which
are equivalent in the sense that they all converge in a single iteration.

Example 2.5 The Simple Poisson-Binomial Random-Effects Model
(coutinued)

In the space of (λ, α), the PXed model becomes

Z|(λ, α) ∼ Poisson(πλ/α) and X|(Z, λ, α) ∼ Binomial(Z, α) (2.20)

Recall that p(λ) ∝ λ−κ. The pdf of the predictive distribution of Z given λ,
α = α(λ), and the observed data X is proportional to

1
(Z−X)!

(
π(1− α(λ))

α(λ)
λ

)Z−X

(Z ∈ {X, X + 1, . . .})

that is, X + Poisson(λπ(1 − α(λ))/α(λ)). Let α(λ) = λ/(c + λ) for some
constant c > 0. Then

Z|(X, λ, α = λ/(c + λ)) ∼ X + Poisson(cπ),

independent of λ. Thus, we find a class of optimal Reparameterized DAs,
indexed by c, all converge in one iteration. The target posterior of λ given
X is derived from the conditional distribution of λ given (X, Z),

λ−κ
(π

α
λ
)Z

αX(1− α)Z−Xe−
π
α λ ∝ λ−κλXe−πλ (λ > 0)

that is, the target posterior distribution Gamma(X + 1− κ, π).
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2.3.3.2 The Data Transformation-Based PX-DA Algorithm

Suppose that a PXed model can be represented by a group of transformations
of the missing data

Xmis = tα(Tmis) (α ∈ A) (2.21)

where the α indexes the transformations. Assume that for any fixed α ∈ A, the
transformation (2.21) is a one-to-one and differentiable mapping. Then the
group of transformations induces a PXed complete-data model with the ex-
pansion parameter α

f(Xobs, Xmis = tα(Tmis)|θ)|Jα(Tmis)|, (2.22)

where Jα(Tmis) = det{∂tα(Tmis)/∂Tmis} is the Jacobian evaluated at Tmis. This
is the case for many augmented complete-data models; see, for example, Liu
and Wu (1999), and van Dyk and Meng (2001), and Lawrence et al. (2008).
It works for Example 2.4 but not for Example 2.5.

Example 2.4 The Simple Random-Effects Model (continued)

Take Z = T− α. Then

Z|(θ, α) ∼ N(α, v) and Y |(Z, θ, α) ∼ N(θ− α + Z, 1) (2.23)

which is the same as (2.19) with the missing data Z now denoted by T.

To create most efficient Marginal DA, it is of interest to use very diffused
prior α, which often corresponds to an improper prior. When an improper
prior is used, the mI-step is not applicable. With the data transformation for-
mulation (2.21) of PXed models, Liu and Wu (1999) and Meng and van Dyk
(1999) take p∗(α|θ) = p∗(α), that is, α and θ are independent a priori ,
and consider a limiting procedure for using improper priors. Let p

(ω)
∗ (α), in-

dexed by ω. Suppose that p
(ω)
∗ (α) converges to an improper prior p

(ω∞)
∗ (α) as

ω→ ω∞. For each ω �= ω∞, Marginal DA results in a (Markov chain) tran-
sition kernel for θ. If the limiting prior p

(ω∞)
∗ (α) produces the limit of the

transition kernel for θ, then the Marginal DA sequence {θ(t) : t = 1, 2, . . .}
has the target posterior distribution of θ as its stationary distribution. We
refer to van Dyk and Meng (2001) for details and open issues on this method.

Assuming that the set of transformations (2.21) forms a locally compact
group, Liu and Wu (1999; Scheme 2) propose an attractive DA algorithm,
referred to here as the PX-DA algorithm because it has a similar structure
and statistical interpretation to the PX-EM algorithm.

The PX-DA Algorithm

Take θ(0) ∈ Θ, and iterate for t = 1, 2, . . .

PX-I Step. Draw Xmis from its conditional distribution given (Xobs, θ).
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PX-P Step. Draw (θ, α) according to

(θ, α)|(Xobs, Xmis) ∼ f(Xobs, tα(Xmis)|θ)|Jα(Xmis)|H(dα)
dα

f(θ).

where H(dα) represents the right Haar measure on the group A with density
H(dα)

dα with respect to the Lebesgue measure. For the translation group A =
{α : α ∈ Rd}, corresponding to the transformations tα(Tmis) = Tmis + α,
H(dα)/(dα) = 1. For the scale group A = {α : α > 0}, corresponding to
the transformations tα(Tmis) = αTmis, H(dα)/(dα) = α−1. More generally, if
tα(Tmis) = αTmis with α being non-singular k × k matrix, the corresponding
Haar measure is H(dα)/(dα) = |α|−k.

Example 2.4 The Simple Random-Effects Model (continued)

For this example, |Jα(Z)| = 1 and H(dα)/(dα) = 1. The PX-DA algorithm
share with the original DA algorithm its I-step, drawing Z from N(v(θ−Y )/
(1 + v), v/(1 + v)). The P-step of PX-DA draws (θ, α) and outputs θ ∼
N(Y, 1+v), conditioned on Y and Z. That is, PX-DA generates independent
draws of θ for this example.

For the simple Poisson-Binomial model, the PX-DA (or Marginal DA)
is not applicable because the data transformation formulation does not
work. A more general PX-DA algorithm can be defined. This is briefly dis-
cussed below.

2.3.3.3 The General PX-DA Algorithm

In a certain sense, data transformation introduced to construct PX-DA serves
only as a technical device, but an important one due to its neat results when
the set of transformations forms a locally compact group. A more general def-
inition of PX-DA needs to be formulated without using data transformation.
Such a general formulation would shed light on the essence of PX-EM, effi-
cient inference via either efficient data augmentation or efficient data analysis.
Suppose that Amis is defined to represent a ‘covariate’ variable for covariance
adjustment to be based on. Accordingly, write the missing data Xmis as

Xmis = K(Amis, Smis) (2.24)

to represent a one-to-one mapping between the missing data Xmis and its
transformed representation by Amis and Smis. The general PX-DA algorithm
would be the one satisfying what we call the efficiency condition

Amis ⊥ θ|{Xobs, Smis} (2.25)

that is, after the PX-P step, θ is independent of Amis, given Smis and Xobs. Pro-
vided in addition that the existence of (Amis, Smis) and an associated expanded
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prior p∗(θ∗, α) that satisfies what we call the validity condition∫
A

g∗(Xobs, Xmis|R−1
α (θ), α)p∗(θ∗, α)

∣∣∣∣∂R−1
α (θ)
∂α

∣∣∣∣ dα ∝ f(Xobs|θ)p(θ) (2.26)

we define the general PX-DA as follows:

The General PX-DA Algorithm

Take θ(0) ∈ Θ, and iterate for t = 1, 2, . . . {
PX-I Step. Draw Xmis from its conditional distribution given (Xobs, θ).

PX-P Step. First draw (θ∗, α) according to

(θ∗, α)|(Xobs, Xmis) ∼ g∗(Xobs, Xmis|θ∗, α)p∗(θ∗, α),

and then compute θ = Rα(θ∗).

Of course, mathematically, the PX-P step can be written as drawing
(θ, α) without the need of the reduction step. While the existence of Smis

and p∗(α|θ∗) remains as an open problem, it is illustrated by Example 2.5
that such a general definition of PX-DA can be important in maintaining the
main feature of PX-EM.

Example 2.5 The Simple Poisson-Binomial Random-Effects Model
(continued)

From the validity condition, p∗(λ)p∗(α|λ) = p(λ)p∗(α|λ) and p(λ) ∝ λ−κ,
p∗(λ∗, α) can be written as, with a slightly abuse of the notation for
p̃∗(α|λ∗),

p(λ = Rα(λ∗))p∗(α|λ = Rα(λ∗))|∂Rα(λ∗)/∂λ∗| ∝ λ−κ
∗ α1−κp̃∗(α|λ∗)

Thus, the posterior is proportional to

λZ−κ
∗ e−λ∗αX(1− α)Z−X p̃∗(α|λ∗)

Suppose that constrained by the requirement that the resulting algorithm
is simple to implement, take

p̃∗(α|λ∗) ∝ αc1−1(1− α)c2−1 (α ∈ (0, 1))

A simple PX-DA implementation exists and is obtained by setting c1 =
1− κ and c2 = 0, because in this case

p(λ|X, Z) =
∫

p∗(λ∗ = R−1
α (λ), α|X, Z)|∂R−1

α (λ)/∂λ|dα

is independent of Z. The PX-I step imputes Z ∼ X + Poisson(λ[1 − π]).
The PX-P step generates (λ∗, α) by drawing λ∗ ∼ Gamma(Z + 1− κ) and
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α ∼ Beta(1−κ + X, Z−X), and then computes the λ = Rα(λ∗) = λ∗α/π.
This results in

λ|(Z, X) ∼ π−1Gamma(X + 1− κ)

after the PX-P step.

2.3.4 Alternating Subspace-Spanning Resampling

2.3.4.1 The CA-DA Algorithm

To avoid the need for an expanded prior in the (general) PX-DA algorithm,
Liu (2003) considers an alternative to PX-DA, called CA-DA for ‘covariance-
adjusted data augmentation’. Using the notation in the discussion of the
general PX-DA algorithm in Section 2.3.3.2, the CA-DA algorithm is given
as follows.

The CA-DA Algorithm

Take θ(0) ∈ Θ, and iterate for t = 1, 2, . . .

CA-I Step. Draw Xmis = K(Amis, Smis) ∼ f(Xmis|θ, θ).
CA-P Step. Draw (θ, Amis) from its conditional distribution given (Xobs, Smis).

Since Amis is effectively integrated out, the efficiency condition holds for
the CA-DA algorithm. The CA-DA algorithm becomes trivial for the two toy
examples because the CA-I step becomes redundant. We illustrate CA-DA in
Section 2.4.

2.3.4.2 The ASSR Algorithm

The idea of partial resampling (drawing Amis again in the CA-P step) in the
CA-DA can be generalized to the more general Gibbs sampler or any other
iterative simulation sampling methods, as formulated by Liu (2003). Assume
that a Markov chain sampler such as the Gibbs sampler produces a sequence
{X(t) : t = 1, 2, . . .} with the equilibrium distribution f(X) on the space X.
Write

X(t+1) =M(X(t)) (t = 0, 1, . . .)

Consider a one-to-one mapping from X onto the sampling space of a pair of
variables, denoted by (A, S):

C = C(X) and D = D(X) (X ∈ X)

The ultimate goal of speeding up the sampler M is to be able to create iid
draws {X(t) : t = 1, 2, . . .} from f(X). A much relaxed requirement is that

D(t) ⊥ D(t+1)|C (t)
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holds for t = 1, 2, . . . . This is possible, provided that it can be implemented
without much expense to draw D from its conditional distribution given C.
One way of doing this to use what Liu (2003) calls the alternating subspace-
spanning resampling (ASSR, pronounced as ‘AS SIR’) method.

The ASSR Algorithm

Take X(0) ∈ X, and iterate for t = 1, 2, . . .

P-step. Complete an iteration of the parent sampler M to obtain X̃(t) =
M(X(t−1)).

A-step. Draw D from its conditional distribution given C (t) = C(X̃(t)) and
obtain X(t) from (C (t), D).

The supplemental A-step not only guarantees the correctness of the ASSR
algorithm but also makes it faster than its parent sampler. This is evident from
its special case, the CA-DA algorithm. Application of ASSR to accelerating
ASSR algorithms leads to the multi-cycle ASSR algorithm, as a simple ex-
tension of ASSR. Liu (2003) demonstrates that ASSR is efficient for linear
regression with interval-censored responses while the standard DA algorithm
can be too slow to be useful; see Section 2.4.3.

Tierney (1994) briefly discusses the idea of combining different MCMC
sampling schemes, which is certainly related to the idea of partial sampling in
ASSR. In their discussion of Besag et al. (1995), Gelfand et al . (1995) consider
combining multiple Gibbs samplers for a linear mixed-effects model. The basic
idea is to get an ‘average’ performance of multiple samplers. In this sense, ran-
dom scan Gibbs samplers (see, e.g., Levine and Casella, 2008), as opposed to
the systematic scan Gibbs sampler of Section 2.1, share the same fundamental
idea. The basic ASSR algorithm can be viewed as the partial combination
of two samplers, one the parent sampler M, the other a two-step Gibbs
sampler that iterates between the two conditionals based on C and D. Note
that C and D defines a different coordinate system or a different subspace-
spanning scheme.

How to choose a new coordinate system for the A-step of ASSR is a chal-
lenging problem. The success of PX-EM for a complete-data model would
suggest to consider grouping the model parameter and sufficient statistics for
the expansion parameter as the D variable and defining the C variable that
is approximately independent of the D variable. When the idea of parameter
expansion is not used, the sufficient statistics for the expansion parameter
are typically the ancillary statistics for θ. Yu and Meng (2008) investigate
further along this line and provide an impressive example of speeding up the
Gibbs sampler for complex Bayesian models. There are certainly other ways
for finding subspaces worth resampling. For example, Liu and Rubin (2002)
consider finding slow converging subspaces via Markov-normal analysis of
multiple chains before convergence.
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2.4 Applications

2.4.1 The Student-t Model

The Student-t distribution has served as a useful tool for robust statistical
inference (Lange et al ., 1989; Liu and Rubin, 1995; Liu, 1996; Pinheiro et al .,
2001; and Zhang et al ., 2009). As noted in Liu (1997), maximum likelihood
(ML) estimation of the t-distribution has also motivated several EM-type al-
gorithms, including the ECME algorithm (Liu and Rubin, 1994), the AECM
algorithm (Meng and van Dyk, 1997), and the PX-EM algorithm (Liu et al .,
1998). Here we consider the univariate t-distribution tν(µ, σ2) with the un-
known center µ, the unknown scale parameter σ, and the known degrees of
freedom ν (>0).

Suppose that we are interested in Bayesian fitting tν(µ, σ2) to the observed
data y1, . . . , yn with the usual prior

p(µ, σ2) ∝ 1
σ2

(µ ∈ R; σ2 > 0)

The commonly used complete-data model for the t-model is as follows: for
i = 1, . . . , n, (τi, yi) are independent with

yi|(τi, µ, σ) ∼ N

(
µ,

σ2

τi

)
and τi|(µ, σ2) ∼ Gamma

(ν

2
,
ν

2

)
, (2.27)

where τi are called the weights and the distribution Gamma (α, β) has density
proportional to τα−1 exp{−βτ} for τ > 0. Thus, conditioned on (µ, σ2) and the
observed data y1, . . . , yn, τi’s are independent with

τi|(µ, σ2, y1, . . . , yn) ∼ Gamma
(

ν + 1
2

,
ν + (yi − µ)2/σ2

2

)
(2.28)

for i = 1, . . . , n. This provides the conditional distribution for implementing
the I-step of DA.

Let IG(α, β) denote the inverse Gamma distribution with shape parameter
α and rate parameter β. Then the DA algorithm is given as follows:

I-step. Draw τi from (2.28) for i = 1, . . . , n.

P-step. First draw σ2 from IG((n−1)/2, (1/2)
∑n

i=1 τi(yi−ȳ)2) and then draw
µ from N((ȳ, σ2/

∑n
i=1 τi), where ȳ =

∑n
i=1 τiyi/

∑n
i=1 τi).

The P-step can be verified via the routine algebraic operation. Note that this
DA can be viewed as obtained via ‘blocking’ from the three-step Gibbs that
splits the P-step into two steps.

Notice that the complete-data model (2.27) has a hidden parameter, de-
noted by α, for the scale of τi’s. This hidden parameter α is fixed at α0 = 1
for identifiability of the observed-data model because α is confounded with σ2

∗
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in the induced observed-data model, when α is to be estimated from the
observed data,

yi
iid∼ tν(µ, σ2

∗/α) (i = 1, . . . , n)

where σ2
∗ plays the same role of σ2 in the original model, where α = α0 = 1.

When activated for a better fit of the imputed complete data, this expansion
parameter α indexes a one-to-one mapping between σ2

∗ and σ2:

σ2 = Rα(σ2
∗) = σ2

∗/α (σ2
∗ > 0; α > 0)

This is the basic setting for applying the PX-EM algorithm.
To apply the (data transformation-based) PX-DA, consider the data trans-

formation
τ ≡ (τ1, . . . , τn) = λ(w1, . . . , wn).

The associated Jacobian is |Jλ(w)| = λn, where w = (w1, . . . , wn). The PX-P
step is to draw (µ, σ2, λ) from

λ
nν
2 −2e−

λν
2

∑n
i=1 τi

(
λ

σ2

)1+n/2

e−
λ

2σ2
∑n

i=1 τi(yi−µ)2 (2.29)

A simple way to draw (µ, σ2, λ) from (2.29) is to make use of the trans-
formation

σ2 = λσ2
∗, (2.30)

conditional on (µ, λ), and to draw (µ, σ2
∗, λ) from

λ
nν
2 −1e−

λν
2

∑n
i=1 τi(σ2

∗)
−n/2e

− 1
2σ2∗

∑n
i=1 τi(yi−µ)2

Note that conditioned on τ, λ and (σ2
∗, µ) are independent with

λ ∼ Gamma
(

nν

2
,
ν
∑n

i=1 τi

2

)
(2.31)

and (µ, σ2
∗) having the same distributed as (µ, σ2) in the standard DA algo-

rithm. To summarize, the PX-DA algorithm can be written as

PX-I step. This is the same as the I-step of DA.

PX-P step. Draw (µ, σ2
∗) in the exactly the same way of drawing (µ, σ2) in

DA; draw λ from (2.31); and compute σ2 = λσ2
∗, according to (2.30).

What PX-DA effectively does is to resample Amis =
∑n

i=1 τi conditioned
on the observed data and Smis = (w1, . . . , wn) with wi = τi/

∑n
i=1 τi

for i = 1, . . . , n. This is made explicit in the CA-DA algorithm;
see Exercise 2.6.
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2.4.2 Robit Regression or Binary Regression
with the Student-t Link

Consider the observed data consisting of n observations Xobs = {(xi, yi) : i =
1, . . . , n} with a p-dimensional covariates vector xi and binary response yi that
takes on values of 0 and 1. The binary regression model with Student-t link
assumes that given the covariates, the binary responses yi’s are independent
with the marginal probability distributions specified by

Pr(yi = 1|xi, β) = 1− Pr(yi = 0|xi, β) = Fν(x′
iβ) (i = 1, . . . , n) (2.32)

where Fν(.) denotes the cdf of the Student-t distribution with center zero,
unit scale, and ν degrees of freedom. With ν ≈ 7, this model provides a
robust approximation to the popular logistic regression model for binary data
analysis; see Mudholkar and George (1978), Albert and Chib (1993), and Liu
(2004). Liu (2004) calls the binary regression model with Student-t link the
Robit regression.

Here we consider the case with a known ν. A complete-data model for
implementing EM to find the ML estimate of β is specified by introducing
the missing data consisting of independent latent variables (τi, zi) for each
i = 1, . . . , n with

τi|β ∼ Gamma(ν/2, ν/2) (2.33)

and
zi|(τi, β) ∼ N(x′

iβ, 1/τi). (2.34)

Let

yi =
{

1, if zi > 0;
0, if zi ≤ 0 (i = 1, . . . , n) (2.35)

then the marginal distribution of yi is preserved and is given by (2.32). The
complete-data model belongs to the exponential family and has the following
sufficient statistics for β:

Sτxx =
n∑

i=1

τixix
′
i, Sτxz =

n∑
i=1

τixiz
′
i. (2.36)

For Bayesian estimation of the Robit regression model, here we use the
multivariate t-distribution

pr(β) = tp(0, S−1
0 , ν0) (2.37)

as the prior distribution for the regression coefficients β, where S0 is a known
(p × p) non-negative definite scatter matrix and ν0 is the known number
of degrees of freedom. When S0 is a positive definite matrix, the posterior
distribution of β is proper because the likelihood is bounded. When S0 = 0
the prior distribution for β is flat and β may have an improper posterior in the
sense that

∫
β

pr(β) �(β|Yobs)dβ = ∞. Chen and Shao (1997) discuss this issue.
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The t-distribution (2.37) can be represented as the marginal distribution
of β in the following well-known hierarchical structure:

τ0 ∼ Gamma(ν0/2, ν0/2) and β|τ0 ∼ Np(0, S−1
0 /τ0). (2.38)

Like the missing weights τi (i = 1, . . . , n), in the sequel τ0 is treated as missing.
The complete data for generating draws of β from its posterior distribution us-
ing the DA algorithm consist of Yobs, z = (z1, . . . , zn) and τ = (τ0, τ1, . . . , τn).

The DA implementation for simulating the posterior of β consists of the
following I-step and P-step:

I-step. Conditioning on the observed data and the current draw of β, draw
{(zi, τi) : i = 1, . . . , n} by first taking a draw of zi from the truncated
t(µi = x′

iβ, 1, ν), which is either left (yi = 1) or right (yi = 0) truncated
at 0, and then taking a draw of τi from

Gamma
(

ν + 1
2

,
ν + (zi − µi)2

2

)
for all i = 1, . . . , n, and a draw of τ0 from its distribution given in (2.38).

P-step. Conditioning on the current draws of {(zi, τi) : i = 1, . . . , n}, draw β
from the p-variate normal distribution

Np

(
β̂, (τ0S0 + Sτxx)−1

)
,

where
β̂ = (τ0S0 + Sτxx)−1Sτxz , (2.39)

and Sτxx and Sτxz are defined in (2.36).

For a more efficient DA algorithm, we take the CA-DA approach. Two
versions are considered below. The first adjusts individual scores zi for their
common scale parameter, denoted by σ. The sufficient statistic for σ, after
integrating out the regression coefficients β, is

s2 =
n∑

i=1

τi

(
zi − x′

iβ̂
)2

+ β̂′τ0S0β̂,

where β̂ = (τ0S0 + Sτxx)−1Sτxz. To draw (s2, β) with zi (i = 1, . . . , n) fixed
up to a proportionality constant (i.e., the scale of zis), take the re-scaling
transformation

z∗i = zi/s (i = 1, . . . , n). (2.40)

with the constraint
n∑

i=1

τi

(
z∗i − x′

iβ̂
∗
)2

+ (β̂∗)′τ0S0β̂
∗ = 1, (2.41)

where β̂∗ = (τ0S0 + Sτxx)−1Sτxz∗ with Sτxz∗ obtained from Sτxz by substi-
tuting z∗i for zi. Since the transformation (2.40) from (z∗, s) to z with the
constraint (2.41) is one-to-one, a CA-DA version can be obtained from DA
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by replacing the P-step of DA with a step that draws (β, s2), conditioning
on z∗. The Jacobian of the transformation from (z, β) onto (z∗, s, η = β) with
the constraints (2.41), as a function of (s, η), is proportional to sn−1. The
conditional distribution of (s, η) given z∗ is then

pr(s, η|τ, z∗, Yobs) = pr(s|τ, z∗, Yobs) · pr(η|s, τ, z∗, Yobs) ,

where pr
(
s2|τ, z∗, Yobs

)
= Gamma(n/2, 1/2) and pr(η|s, τ, z∗, Yobs) =

N(sβ̂∗, (τ0S0 + Sτxx)−1). The resulting CA-DA, denoted by CA-DA1 is
summarized as follows:

CA-I step. This is the same as the I-step of DA.

CA-P step. This is the same as the P-step of DA, except for rescaling β̂ by

a factor of χn/
[∑n

i=1 τi(zi − x′
iβ̂)2 + β̂′τ0S0β̂

]1/2

, where χ2
n is a draw

from the chi-square distribution with n degrees of freedom.

For the probit regression model, for example, ν =∞ and thereby τi = 1 for all
i = 1, . . . , n, CA-DA 1 is equivalent to the PX-DA algorithm of Liu and Wu
(1999), who considered a flat prior on β. The CA-P step of CA-DA1 implicitly
integrates out the scale of zis, which explains intuitively again why CA-DA
converges faster than DA.

The second version adjusts both σ and the individual weights for their
scale to obtain a DA sampling scheme that is even faster than CA-DA1. Let

w =
n∑

i=0

νiτi and ws2 =
n∑

i=1

τi(zi − x′
iβ̂)2 + β̂′τ0S0β̂,

where νi = ν for all i = 1, . . . , n. Take the transformation

τi = wτ∗i (i = 0, . . . , n; w > 0) and zi = sz∗i (i = 1, . . . , n; w > 0)

with the constraints
n∑

i=0

νiτ
∗
i = 1 and

n∑
i=1

τ∗i (z
∗
i − x′

iβ̂
∗)2 + β̂′τ0S0β̂ = 1, (2.42)

where β̂∗ = (τ∗0S0 + Sτ∗xx)−1Sτ∗xz∗ = (τ0S0 + Sτxx)−1Sτxz∗ with Sτ∗xx

and Sτ∗xz∗ obtained from Sτxx and Sτxz, respectively, by replacing τi with
τ∗i and zi with z∗i . The Jacobian of the transformation from (τ, z, β) to
(τ∗, z∗, w, s, η = β) with the constraints (2.42), as a function of (w, s, η) is
proportional to wnsn−1. Thus, conditioning on z∗, τ∗, and Yobs, (w, s, η = β)
is distributed as

pr(w|z∗, τ∗, Yobs) · pr(s|w, z∗, τ∗, Yobs) · pr(β|w, s, z∗, τ∗, Yobs) ,

where pr(w|z∗, τ∗, Yobs) = Gamma((ν0 + nν)/2, 1/2), pr
(
s2|w, z∗, τ∗, Yobs

)
=

Gamma(n/2, w/2), and pr(β|w, s, z∗, τ∗, Yobs) = Np(sβ̂∗, w−1(τ∗0S0 +
Sτ∗xx)−1). This leads to the following CA-DA algorithm:

CA-I step This is the same as the I-step of DA.
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CA-P step. This is the same as the P-step of E-DA 1, except for rescaling the

draw of β by a factor of
(∑n

i=0 νiτi/χ2
ν0+nν

)1/2

, where χ2
ν0+nν

is a draw
from the chi-square distribution with ν0 + nν degrees of freedom.

This CA-DA has a P-step that implicitly integrates out both the scale of zis
and the scale of τis, which explains why it converges faster than both DA and
CA-DA1.

2.4.3 Linear Regression with Interval-Censored
Responses

Consider the experiment of improving the lifetime of fluorescent lights
(Taguchi, 1987; Hamada and Wu, 1995; Liu and Sun, 2000; Liu 2003). The
experiment was conducted over a time period of 20 days, with inspection
every two days. It employed a 25−2 fractional factorial design. The design
matrix and the lifetime data are tabulated in Table 2.1, where the lifetime
data are given as intervals representing the censored observations.

Let xi be the k-vector of the factor levels, including the intercept, and
let yi be the logarithm of the corresponding lifetime for i = 1, . . . , n, where

Table 2.1 The design matrix and lifetime data for the fluorescent-light ex-
periment (Hamada and Wu, 1995).

design

run intercept A B C D E AB BD lifetime (no. of days)

1 1 1 1 1 1 1 1 1 [14, 16)
2 1 1 1 −1 −1 −1 1 −1 [18, 20)
3 1 1 −1 1 1 −1 −1 −1 [ 8, 10)
4 1 1 −1 −1 −1 1 −1 1 [18, 20)
5 1 −1 1 1 −1 1 −1 −1 [20, ∞)
6 1 −1 1 −1 1 −1 −1 1 [12, 14)
7 1 −1 −1 1 −1 −1 1 1 [16, 18)
8 1 −1 −1 −1 1 1 1 −1 [12, 14)
9 1 1 1 1 1 1 1 1 [20, ∞)

10 1 1 1 −1 −1 −1 1 −1 [20, ∞)
11 1 1 −1 1 1 −1 −1 −1 [10, 12)
12 1 1 −1 −1 −1 1 −1 1 [20, ∞)
13 1 −1 1 1 −1 1 −1 −1 [20, ∞)
14 1 −1 1 −1 1 −1 −1 1 [20, ∞)
15 1 −1 −1 1 −1 −1 1 1 [20, ∞)
16 1 −1 −1 −1 1 1 1 −1 [14, 16)
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k = 8 and n = 2 × 25−2 = 16, and denoting by [Y ()
i , Y

(r)
i ) the observed

censoring interval for yi, that is, yi ∈ [Y ()
i , Y

(r)
i ). Write Y = (y1, . . . , yn),

Yobs = {[Y ()
i , Y

(r)
i ) : i = 1, . . . , n}, and X for the (n× k) design matrix, that

is, the i-th row of X is xi for i = 1, . . . , n. We consider the following model
(Hamada and Wu, 1995):

yi|(β, σ2) iid∼ N(x′
iβ, σ2), i = 1, . . . , n

with the prior distribution

pr(β, σ2) = pr(σ2)pr(β|σ2)

for (β, σ2) with pr(σ2) = IG(ν0/2, ν0s0/2) and pr(β|σ2) = Nk(β0, σ
2Ik/τ0),

where IG denotes the inverted Gamma distribution, that is,

pr(σ−2) ∝ (σ−2)ν0/2−1 exp{−ν0s0/(2σ2)},
ν0 = 1, s0 = 0.01, β0 = (3, 0, . . .0), Ik is the (k×k) identity matrix, and τ0 =
0.0001. For convenience, we replace β0 with 0 and, accordingly, yi ← (yi− 3),
Y

()
i ← (Y ()

i − 3), and Y
(r)
i ← (Y (r)

i − 3) for i = 1, . . . , n.
The DA algorithm for this model is straightforward. Each iteration of DA

consists of an I-step that imputes the missing values given the current draw of
the parameters θ = (β, σ2) and the observed data and a P-step that draws θ
from its posterior given the currently imputed complete data. More precisely:

The DA Algorithm

I-step. Draw Y from pr(Y |Yobs, β, σ2) =
∏n

i=1 pr(yi|Yobs, β, σ2), where
pr(yi|Yobs, β, σ2) is the truncated normal

pr(yi|Yobs, β, σ2) ∝ 1
σ

exp{−(yi − xiβ)2/(2σ2)} (yi ∈ (Y ()
i , Y

(r)
i ))

for i = 1, . . . , n.

P-step. Draw (β, σ2) from pr(β, σ2|Y, Yobs) = pr(β, σ2|Y ) = pr(σ2|Y )pr(β|Y, σ2),
where

pr(σ2|Y ) = IG
(
(ν0 + n + k)/2, (ν0s0 + τ0β

′β +
∑n

i=1(yi − xiβ)2)/2
)

and

pr(β|Y, σ2) = Nk

(
(X′X + τ0Ik)−1X′Y, σ2(X′X + τ0Ik)−1

)
.

Unfortunately, although simple, this algorithm is so slow that the DA se-
quences are of little use in estimating posterior distributions. The trajectory
plots of the DA sequence, Figure 2.2, show that the slowly converging subspace
is associated with the regression coefficients β. To remedy the slow conver-
gence of DA for this example, we add a CA-step that redraws α ≡ X[1:8]β
jointly with its complete-data sufficient statistics d ≡ (y1 + y9, . . . , y8 + y16)′
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Figure 2.2 The DA sequences of β and σ in the model for the lifetime data
in the fluorescent-light lifetime experiment.

given σ2 and c ≡ (y1 − y9, . . . , y8 − y16)′, where X[1:8] is the (8 × 8) matrix
consisting of the first 8 rows of X. The CA-step is given as follows:

CA-step. Draw D = (α, d) from pr(α, d|σ2, c), the conditional distribution of
D given C = (c, σ2), and then adjust (β, Y ) by β ← (1/8)X′

[1:8]α and
yi ← (di + ci)/2 and yi+8 ← (di − ci)/2 for i = 1, . . . , k.

Thus, each iteration of the adjusted DA algorithm consists of three steps: the
I-step, the P-step, and the CA-step.

To implement the CA-step, we need the conditional distribution of D ≡
(α, d) given C ≡ (c, σ2). From the conditional distribution of β and Y given
σ2, pr(β, Y |σ2), is proportional to

exp
{
− 1

2σ2
[(Y−Xβ)′(Y−Xβ) + τ0β

′β]
} (

yi ∈ [Y ()
i , Y

(r)
i )

)
and the fact that the Jacobian of the transformation from (β, Y ) to (α, d, c)
is constant, we obtain the conditional distribution of α, d, and c given σ2

pr(α, d, c|σ2) ∝ exp
{
− 1

2σ2

[
2k + τ0

k
α′α− 2d′α +

1
2
(d′d + c′c)

]}
where αi ∈ (−∞, +∞), di + ci = 2yi ∈ (2Y

()
i , 2Y

(r)
i ), and di − ci = 2yk+i ∈

(2Y
()
k+i, 2Y

(r)
k+i) for i = 1, . . . , k = 8. Thus, we have the conditional distribution
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of D ≡ (α, d) given C ≡ (c, σ2)

pr(α, d|c, σ2) ∝ exp
{
− 1

2σ2

[
2k + τ0

k
α′α− 2d′α +

1
2
d′d

]}
where αi ∈ (−∞, +∞) and

di ∈ Ri ≡
(
max{2Y

()
i − ci, 2Y

()
i+8 + ci}, min{2Y

(r)
i − ci, 2Y

(r)
i+8 + ci}

)
for i = 1, . . . , k. That is, pr(α, d|σ2, c) =

∏k
i=1 pr(αi, di|σ2, c), where

pr(αi, di|σ2, c) = pr(di|σ2, c)pr(αi|di, σ
2, c)

with pr(di|σ2, c) the univariate truncated normal N
(
0, σ2(2 + 4k/τ0)

)
con-

strained on the interval Ri, and pr(αi|di, σ
2, c) the univariate normal

N
(
kdi/(2k + τ0), σ2k/(2k + τ0)

)
for i = 1, . . . , k. This provides a simple way of implementing the CA-step.

The trajectory plots of the CA-DA sequences displayed in Figure 2.3
clearly show the dramatically improved efficiency; compare, for example, the
ranges (along Y-axes) that DA sequences wandered during the 10 000 itera-
tions with the corresponding ranges of DA sequences.
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Figure 2.3 The CA-DA sequences of β and σ in the lifetime data in the
fluorescant light lifetime experiment.
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Exercises

2.1 Prove the Hammersley-Clifford theorem for the case of K = 2.

2.2 Verify the conditions in the Gibbs sampler for N3(0, Σ(ρ)) in
Example 2.1.

2.3 A collection of candidate conditionals (or conditional distributions) is
said to be compatible if they are associated with a common joint distri-
bution.

(a) Find the necessary and sufficient conditionals, in terms of the pa-
rameters α1|2, β1|2, σ2

1|2, α2|1, β2|1, and σ2
2|1, for the two condi-

tionals

X1|X2 ∼ N(α1|2 + β1|2X2, σ
2
1|2)

and
X2|X1 ∼ N(α2|1 + β2|1X1, σ

2
2|1)

to be compatible.

(b) Generalize the result for (a) to the multivariate case.

2.4 Let X ∼ Np(µ, Σ) and take the prior (2.10) with q = 2. Consider the
multiple linear regression of any Xi on the other components X−i: Xi =
X̃′

−iβ + e, where e ∼ N(0, σ2) and X̃−i denotes the vector obtained
from X by replacing its i component with constant one. Show that
these (prior) conditionals are compatible and that the induced prior for
(β, σ2) is p(β, σ2) ∝ σ−2.

2.5 Consider the Robit linear regression in Section 2.4.2.

(a) Derive the PX-DA algorithm for Bayesian inference using the prior
specified in Section 2.4.2.

(b) The probit regression model can be obtained from the Robit re-
gression model. Simplify the above PX-DA implementation for the
probit regression model.

2.6 Consider the Student-t model in Section 2.4.1.

(a) Let Amis =
∑n

i=1 τi and let Smis = (w1, . . . , wn) with wi = τi/∑n
i=1 τi for i = 1, . . . , n. Show that the CA-DA algorithm is the

same as the PX-EM algorithm for the Student-t model.

(b) Assume µ = 0 and n = 1. Characterize the dependence of the
standard DA sequence and prove that in this simple case, PX-DA
converges in one iteration.
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2.7 Consider Example 2.1, taking the Gibbs sampler as the basic sampler.

(a) Implement ASSR with D = X̄ and C = (X1−X̄, X2−X̄, X3−X̄),
where X̄ = (X1 +X2 +X3)/3. Note that C lies in a 2-dimensional
space.

(b) Compare the performance of the parent sampler and the ASSR
algorithm.

2.8 Consider the Gibbs sampler based on the conditionals of the n-
dimensional multivariate normal with the zero means and the
exchangeable covariance matrix (1 − ρ)I + ρJ, where I is the n × n
identity matrix, J is the n× n matrix of ones, and ρ ∈ (−1/(n− 1), 1).

(a) Show that

Xi|X−i ∼ N

 ρ

1 + (n− 2)ρ

∑
i�=j

Xj ,
(1− ρ)[1 + (n− 1)ρ]

1 + (n− 2)ρ

 (2.43)

for i = 1, . . . , n.

(b) Implement the ASSR algorithm with the transformation D = X̄ =
n−1

∑n
i=1 Xi and Ci = Xi − X̄ for i = 1, . . . , n.

2.9 Many Bayesian models are hierarchical. Specify appropriate prior (or
hyperprior) distributions and implement the Gibbs sampler for the fol-
lowing Bayesian hierarchical models to fit some datasets available on
the web.

(a) Multiple normal models with their unknown means modeled by a
normal model and variances models by an inverse Gamma model.

(b) The linear mixed-effects models.

(c) Multiple logistic regression models with regression coefficients
modeled by a multivariate normal model.

(d) The mixture of univariate normal models.

(e) Examples of Gelfand and Smith (1990).

2.10 Develop the Gibbs sampler for fitting multivariate probit models.

2.11 Develop the Gibbs sampler for fitting factor analysis models.

2.12 Develop efficient Gibbs sampling algorithms for DNA sequence
alignment.
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Appendix 2A: The EM and PX-EM
Algorithms

The EM algorithm is an iterative algorithm for ML estimation from
incomplete data. Let Xobs be the observed data and let f(Xobs; θ) denote
the observed-data model with unknown parameter θ, where Xobs ∈ Xobs

and θ ∈ Θ. Suppose that the observed-data model can be obtained from
a complete-data model, denoted by g(Xobs, Xmis; θ), where Xobs ∈ Xobs,
Xmis ∈ Xmis and θ ∈ Θ. That is,

f(Xobs; θ) =
∫

Xmis

g(Xobs, Xmis; θ)dXmis.

Given a starting point θ(0) ∈ Θ, the EM algorithm iterates for t = 0, 1, . . .
between the E step and M step:

E step. Compute the expected complete-data log-likelihood

Q(θ|θ(t)) = E
(
ln g(Xobs, Xmis; θ)|Xobs, θ = θ(t)

)
as a function of θ ∈ Θ; and

M step. Maximize Q(θ|θ(t)) to obtain θ(t+1) = arg maxθ∈Θ Q(θ|θ(t)).

Suppose that the complete-data model can be embedded in a larger model

g∗(Xobs, Xmis; θ∗, α)

with the expanded parameter (θ∗, α) ∈ Θ×A. Assume that the observed-data
model is preserved in the sense that for every (θ∗, α) ∈ Θ× A,

f(Xobs; θ) = f∗(Xobs; θ∗, α), (2.44)

holds for some θ ∈ Θ, where f∗(Xobs; θ∗, α) =
∫

Xmis
g∗(Xobs, Xmis; θ∗, α)dXmis.

The condition (2.44) defines a mapping θ = Rα(θ∗), called the reduction
function, from the expanded parameter space Θ×A to the original parameter
space Θ. For convenience, assume that there exists a null value of α, denoted
by α0, such that θ = Rα0(θ) for every θ ∈ Θ, that is, the original complete-data
and observed-data models are recovered by fixing α at α0. When applied to
the parameter-expanded complete-data model g∗(Xobs, Xmis; θ∗, α), the EM
algorithm, called the PX-EM algorithm, creates a sequence {(θ(t)

∗ , α(t))} in
Θ×A. In the original parameter space Θ, PX-EM generates a sequence {θ(t) =
R(θ(t)

∗ , α(t))} and converges no slower than the corresponding EM based on
g(Xobs, Xmis; θ).

For simplicity and stability, Liu et al . (1998) use (θ(t), α0) instead
of (θ(t)

∗ , α(t)) for the E step. As a result, PX-EM shares with EM its E-
step and modifies its M step by mapping (θ(t+1)

∗ , α(t+1)) to the original
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space: θ(t) = Rα(t+1)(θ(t+1)
∗ ). More precisely, the PX-EM algorithm is defined

replacing the E and M steps of EM with the following PX-E and PX-M steps:

PX-E step. Compute

Q(θ∗, α|θ(t), α0) = E
(
ln g∗(Xobs, Xmis; θ∗, α)|Xobs, θ∗ = θ(t), α = α0

)
as a function of (θ∗, α) ∈ Θ×A.

PX-M step. Find (θ(t+1)
∗ , α(t+1)) = arg maxθ∗,α Q(θ∗, α|θ(t), α0) and update

θ(t+1) = Rα(t+1)(θ(t+1)
∗ ).

Liu et al . (1998) provide a statistical interpretation of PX-M step in terms
of covariance adjustment. This is reviewed in Lewandowski et al. (2009).
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Chapter 3

The Metropolis-Hastings
Algorithm

Although powerful in Bayesian inference for many statistical models, the Gibbs
sampler cannot be applied to Bayesian model selection problems which involve
multiple parameter spaces of different dimensionality. In addition, the Gibbs
sampler is not convenient for sampling from distributions for which the con-
ditional distributions of some or all components are not standard. For these
problems, the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970), which can be viewed as a generalized version of the Gibbs
sampler, is needed.

In this chapter, we first give a description of the basic MH algorithm, and
then consider its variants, such as the Hit-and-Run algorithm (Boneh and
Golan, 1979; Smith, 1980; Chen and Schmeiser, 1993), the Langevin algorithm
(Besag, 1994; Grenander and Miller, 1994), the multiple-try MH algorithm
(Liang et al., 2000), the reversible jump MH algorithm (Green, 1995), and the
Metropolis-within-Gibbs sampler (Müller, 1991, 1993). Finally, we consider
two applications, the change-point identification and ChIP-chip data analysis.

3.1 The Metropolis-Hastings Algorithm

Consider the target distribution π(dx) with pdf f(x) on the sample space X
with σ-field BX . The basic idea of creating a Markov chain with a transition
kernel P(x, dy) is to have π(dx) as its invariant distribution such that

π(dy) =
∫
X

π(dx)P(x, dy). (3.1)
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The indeterminacy of the transition kernel P(x, dy) in (3.1) allows for
attractive flexibility, but does not help much in constructing P(x, dy) for given
π(dx). To create practically useful transition kernels, a commonly used strat-
egy is to impose the restriction called the reversibility condition. A Markov
chain with the probability transition kernel P(x, dy) and invariant distribution
π(dx) is said to be reversible if it satisfies the detailed balance condition∫

B

∫
A

π(dx)P(x, dy) =
∫

A

∫
B

π(dy)P(y, dx), ∀A, B ∈ BX , (3.2)

In terms of f(x) and p(x, y), the pdf of P(x, dy) given x, the detailed balance
condition (3.2) can be equivalently written as

f(x)p(x, y) = f(y)p(y, x). (3.3)

It can be shown that the detailed balance condition implies the balance
condition; see Exercise 3.1.

Let x = X(t) be the state of the Markov chain at time t. To construct
transition kernels satisfying (3.3), Metropolis et al. (1953) consider a two-step
approach: (i) specifying a symmetric proposal distribution with pdf q(y|x),
that is, q(y|x) = q(x|y), and (ii) adjusting draws from q(y|x) via acceptance-
rejection in such a way that the resulting Markov chain is reversible. More
precisely, the Metropolis algorithm can be summarized as follows:

The Metropolis Sampler

1. Draw y from q(y|xt).

2. Compute the acceptance ratio

α(xt, y) = min
{

1,
f(y)
f(xt)

}
.

Set xt+1 = y with probability α(xt, y) and xt+1 = xt with the remaining
probability 1− α(x, y).

Hastings (1970) generalizes the Metropolis sampler by allowing proposal
distributions to be asymmetric. A commonly used such algorithm, known as
the MH algorithm, is obtained from the Metropolis sampler by allowing q(y|x)
in Step 1 to be asymmetric and modifying Step 2 so that (3.3) holds:

The Metropolis-Hastings (MH) Sampler

1. Draw y from q(y|xt).

2. Compute the acceptance ratio

α(xt, y) = min
{

1,
f(y)q(xt|y)
f(xt)q(y|xt)

}
,

and set xt+1 = y with the probability α(xt, y) and x(t+1) = xt with the
remaining probability 1− α(xt, y).
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The acceptance ratio α(xt, y) in Step 2 of MH is not uniquely determined
by the reversibility condition; alternatives exist. For example, consider the
case of finite state space X = {k : k = 1, . . . , K}. Write qij = q(j|i), πi =
f(i), pij = p(i, j), αij for the acceptance probability/ratio to be found for all
i, j ∈ X. Then for all states i �= j

pij = qijαij (3.4)

with pii = 1 −∑
j �=i pij . Since pii imposes no problem with the reversibility

condition, the solution to the problem of finding αij is obtained from the
system of equations

πiqijαij = πjqjiαji

subject to 0 ≤ αij ≤ 1. That is, for each pair of i and j (i �= j)

αij =
cij

1 + πiqij

πjqji

(3.5)

with a symmetric positive constants cij ≤ 1 + πiqij

πjqji
, where it should be noted

that πjqji = 0 implies αij = 0. It follows that for the fixed proposal distri-
bution q(y|x), the resulting Markov chain with the fastest mixing rate is the
one that has the largest possible αij (and αji):

αij =

{
1, if πiqij

πjqji
≥ 1;

πiqij

πjqji
, otherwise,

or, equivalently,

αij = min
{

1,
πiqij

πjqji

}
(3.6)

This acceptance probability, known as the Metropolis (M)-ratio, is the one
used in the MH algorithm. Another well-known specific solution (Barker,
1965) is given by

α
(B)
ij =

πjqji

πiqij + πjqji
.

Peskun (1973) provides an argument for the optimality of (3.6) in terms of
minimal variance of MCMC approximations to integrals.

In the general case, the MH-ratio α(x, y) is chosen so that the resulting
transition kernel obeys the reversibility condition

f(x)q(y|x)α(x, y) = f(y)q(x|y)α(y, x) (3.7)

assuming that α(y, x) is measurable with respect to the proposal distribution
Q(dy|x) = q(y|x)ν(dy). The MH kernel can be written as, for all A ∈ BX ,

P(x, A) =
∫

A

Q(dy|x)α(x, y) + I{x∈A}

∫
X

Q(dy|x)(1− α(x, y))

=
∫

A

Q(dy|x)α(x, y) + I{x∈A}

[
1−

∫
X

Q(dy|x)α(x, y)
]

,
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that is,
P(x, dy) = Q(dy|x)α(x, y) + δx(dy)r(x)

where δx(dy) stands for the probability measure with unit mass at x and
r(x) = 1− ∫

X Q(dy|x)α(x, y), the (average) rejection probability at the state
x. The reversibility condition can be verified by the standard algebraic oper-
ations, for any A, B ∈ BX ,∫

B

∫
A

π(dx)P(x, dy)

=
∫

B

∫
A

f(x)q(y|x)α(x, y)ν(dx)ν(dy) +
∫

A∩B

r(x)f(x)ν(dx)

(3.7)
=

∫
B

∫
A

f(y)q(x|y)α(y, x)ν(dx)ν(dy) +
∫

A∩B

r(x)f(x)ν(dx)

=
∫

A

∫
B

f(y)q(x|y)α(y, x)ν(dy)ν(dx) +
∫

B∩A

r(y)f(y)ν(dy)

=
∫

A

∫
B

π(dy)P(y, dx).

Thus, under the assumption that the transition kernel P(x, dy) determined by
q(y|x) and α(x, y) is irreducible and aperiodic, π(dx) is the unique equilibrium
distribution.

The efficiency of the MH algorithm depends largely on its proposal
distribution. In Sections 3.1.1 and 3.1.2, we describe two popular choices of
the proposal distribution, the independence proposal and the random walk
proposal.

3.1.1 Independence Sampler

For the independence sampler, we have q(y|x) = q(y); that is, the candidate
state y is drawn independently of the current state of the Markov chain. The
MH ratio becomes

r(x, y) =
f(y)q(x)
f(x)q(y)

=
f(y)/q(y)
f(x)/q(x)

,

the importance ratio, where x = xt.
The independent sampler can be viewed as a generalization of the

acceptance-rejection algorithm. It is easy to see that the independence chain
is irreducible and aperiodic if the support of q(x) contains the support of
f(x), that is,

{x : x ∈ X, f(x) > 0} ⊆ {x : x ∈ X, g(x) > 0}.
An important consideration in specifying q(x) is that q(x) should resemble
f(x) and have longer tails than f(x). This is supported by the following
theoretical result of Mengerson and Tweedie (1996); see also Robert and
Casella (2004).



THE METROPOLIS-HASTINGS ALGORITHM 63

Theorem 3.1.1 The independence chain is uniformly ergodic if there exists
a constant M such that

f(x) ≤Mg(x) (x ∈ {x : f(x) > 0}).

3.1.2 Random Walk Chains

Random walk MH chains are created by taking the proposal distributions of
the form

q(x, y) = q(y− x).

That is, the proposed jump direction and distance from the current state xt

is independent of xt.
The most common choices for q(·) include simple spherical distributions

such as a scaled standard normal distribution, a scaled Student-t distribution,
a uniform distribution over a ball centered at the origin, and ellipsoidal distri-
butions. An important consideration is the specification of the scale parameter
for the proposal distribution q(·). Small values tend to produce proposals to
be accepted with large probabilities, but may result in chains that are highly
dependent. In contrast, large scales tend to produce desirable large steps, but
result in very small acceptance rates. Thus, it is often worthwhile to select ap-
propriate scales by controlling acceptance rates in a certain range, say 20–40%
as suggested by Gelman et al. (1996) and Roberts and Rosenthal (2001), via
some pilot runs. Choosing proposals with a desired acceptance rate in the
context of adaptive Metropolis algorithms (Haario et al., 2001; Andrieu and
Thoms, 2008) is discussed in Section 8.1.

3.1.3 Problems with Metropolis-Hastings Simulations

The MH algorithm has proven to be fundamental and plays a central role in
Monte Carlo computation. However, as pointed out by many researchers, it
suffers from two difficulties:

• the local-trap problem;

• inability to sample from distributions with intractable integrals.

In simulations of a complex system whose energy landscape is rugged,
the local-trap problem refers to the sampler getting trapped in a local en-
ergy minimum indefinitely, rendering the simulation useless. Figure 3.1 shows
sampling paths of the MH sampler for a mixture normal distribution

1
3
N(µ1, Σ) +

2
3
N(µ2, Σ), (3.8)

where µ1 = (0, 0)T , µ2 = (5, 5)T , and Σ = diag(1/4, 2). In each run,
the sampler started with a random point drawn from N2((2.5, 2.5)T , I2), and



64 THE METROPOLIS-HASTINGS ALGORITHM

−2

−2

0

0 2 4 6 8

2
4

6
8

Run 1

−2

−2

0

0 2 4 6 8

2
4

6
8

Run 2
−2

−2

0

0 2 4 6 8

2
4

6
8

Run 3

−2

−2

0

0 2 4 6 8

2
4

6
8

Run 4

Figure 3.1 Sampling paths of the MH sampler for the mixture distribu-
tion (3.8).

then iterated for 10 000 steps. Employed here is a Gaussian random walk
proposal with an identity covariance matrix. Among the four runs, two runs
got trapped in the left mode, and one run got trapped in the right mode. The
third run visited both modes, but there are only two transitions between the
two modes. Clearly, the MH algorithm fails for this example; the parameters
of (3.8) cannot be correctly estimated from the samples produced in any of
the four runs.

Suppose that the target distribution of interest has density of the form
f(x) ∝ c(x)ψ(x), where c(x) denotes an intractable integral. Clearly, the MH
algorithm cannot be applied to sample from f(x), as the acceptance probabil-
ity would involve an unknown ratio c(x′)/c(x), where x′ denotes the proposed
value. This difficulty naturally arises in Bayesian inference for many statistical
models, such as spatial statistical models, generalized linear mixed models,
and exponential random graph models.

To alleviate or overcome these two difficulties, various advanced MCMC
methods have been proposed in the literature, including auxiliary variable-
based methods, population-based methods, importance weight-based
methods, and stochastic approximation-based methods, which will be
described, respectively, in Chapters 4, 5, 6, and 7. Chapter 8 is dedicated to
MCMC methods with adaptive proposals, which aim to provide an online
learning for an appropriate proposal distribution such that the MCMC
method can perform optimally under certain criteria.
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3.2 Variants of the Metropolis-Hastings
Algorithm

In this section, we describe several MH schemes that improve the mixing of
the MH chain in certain scenarios.

3.2.1 The Hit-and-Run Algorithm

The Hit-and-Run algorithm of Boneh and Golan (1979) and Smith (1980),
with further refinements and extensions by Smith (1984), Bélisle et al.
(1993), and Chen and Schmeiser (1996), can be obtained by separating
the process of creating a proposed jump in MH into two subprocesses:
(i) Generate a direction d from a distribution on the surface of the unit
sphere O, and (ii) Generate a signed distance λ along the direction d in the
constrained space

Xx,d = {λ : λ ∈ R, x + λd ∈ X} ,

where x = X(t). That is, the proposed jump is y = X(t) + λd ∈ X. In the MH
framework, this algorithm can be summarized as follows: take X0 from the
starting distribution f0(X) with f(X0) > 0, and iterate for t = 0, 1, 2, . . .

Hit-and-Run Algorithm

1. Draw d ∼ g(d)(d ∈ O) and λ ∼ l(λ|d, x) over Xx,d, and compute an MH
acceptance probability α(x, y), where x = X(t).

2. Generate U from Unif (0, 1) and set

X(t+1) =
{

x + λd, if U ≤ α(x, y);
x, otherwise.

Chen et al. (2000) note that the most common choice of g(d) is the uniform
distribution on O, and discuss common choices for g(.|x, d) and α(x, y). Berger
(1993) also recognizes that Hit-and-Run is particularly useful for problems
with a sharply constrained parameter space.

3.2.2 The Langevin Algorithm

The Langevin algorithm is rooted in the Langevin diffusion process, which is
defined by the stochastic differential equation

dXt = dBt +
1
2
∇ log f(Xt), (3.9)

where Bt is the standard Brownian motion. This process leaves f as the
stationary distribution. The implementation of the diffusion algorithm
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involves a discretization step which replaces (3.9) by a random-walk style
transition

x(t+1) = x(t) +
σ2

2
∇ log f(x(t)) + σεt, (3.10)

where εt ∼ Nd(0, Id) and σ is the step size of discretization. However, as shown
by Roberts and Tweedie (1995), the discretized process may be transient and
no longer leaves f as the stationary distribution.

To correct this negative behavior, Besag (1994) suggests moderating the
discretization step by applying the MH acceptance-rejection rule; that is,
treating (3.10) as a conventional proposal, and accepting it according to the
MH rule. In summary, one iteration of the Langevin algorithm can be de-
scribed as follows:

Langevin Algorithm

1. Propose a new state

x∗ = x(t) +
σ2

2
∇ log f(x(t)) + σεt,

where σ is user-specified parameter.

2. Calculate the MH ratio

r =
f(x∗)
f(x(t))

exp(−‖x(t) − x∗ − σ2

2 ∇ log f(x∗)‖2/2σ2)

exp(−‖x∗ − x(t) − σ2

2 ∇ log f(x(t))‖2/2σ2)
.

Set x(t+1) = x∗ with probability min(1, r), and set x(t+1) = x(t) with
the remaining probability.

This algorithm, Grenander and Miller (1994), is useful in problems for
which the gradient of f(x) is available, for example, when training a feedfor-
ward neural network (Rumelhart et al., 1986). Roberts and Rosenthal (1998)
show that the optimal convergence rate of the algorithm can be attained at an
acceptance rate of 0.574, which can be achieved by choosing an appropriate
value of σ. Roberts and Tweedie (1996) show that the Langevin algorithm
is not geometrically ergodic when ∇ log f(x) goes to zero at infinity, but the
basic ergodicity is still ensured. See Stramer and Tweedie (1999a, b) and
Roberts and Stramer (2002) for further study of the Langevin algorithm.

3.2.3 The Multiple-Try MH Algorithm

As implied by the Langevin algorithm, use of the gradient information for
the target distribution can be used to accelerate the convergence of the MH
simulation. However, gradient information is not available for most target dis-
tributions. One way of approximating the gradient of the target distribution
is to use Monte Carlo samples. Liu et al. (2000) propose using the multiple-try
Metropolis (MTM) algorithm, which modifies the standard MH by replacing
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the single proposal y with a set of k iid proposals y1, . . . , yk from q(y|x) and
selecting a good candidate (in importance sampling) to jump to, according to
the MH rule.

Suppose that q(y|x) > 0 if and only if q(x|y) > 0. Let λ(x, y) be a non-
negative symmetric function in x and y. Suppose that λ(x, y) > 0 whenever
q(y|x) > 0. Define

w(x, y) = f(x)q(y|x)λ(x, y). (3.11)

Let x = X(t). The MTM transition is then defined as follows:

Multiple-Try Metropolis

1. Draw k iid candidates y1, . . . , yk from q(y|x), and compute wi = w(yi, x)
for i = 1, . . . , k.

2. Select y = yj from {y1, . . . , yk} with probability proportional to wi,
i = 1, . . . , k, draw x∗

1, . . . , x
∗
k−1 from q(.|y), set x∗

k = x, and compute
w∗

i = w(x∗
i , y) for i = 1, . . . , k.

3. Accept y with probability

am = min
{

1,
w1 + . . . + wk

w∗
1 + . . . + w∗

k

}
(3.12)

and reject it (or set X(t+1) = x) with probability 1− am.

Liu et al. (2000) give some simple choices of λ(x, y), including λ(x, y) = 1,
λ(x, y) = [q(y|x) + q(x|y)]−1, and λ(x, y) = (q(y|x)q(x|y))−α for a constant α.
When q(x|y) is symmetric, for example, one can choose λ(x, y) = 1/q(y|x),
and then w(x, y) = f(x). In this case, the MTM algorithm is reduced to
the orientational bias Monte Carlo algorithm used in the field of molecular
simulation.

MTM can be used in combination with other methods, such as conju-
gate gradient Monte Carlo, the Hit-and-Run algorithm, and the griddy Gibbs
sampler (Ritter and Tanner, 1992). Augmenting a set of k− 1 auxiliary vari-
ables x∗

1, . . . , x
∗
k−1 in Step 2 of MTM is an interesting technique for matching

dimensionality so that the standard MH rule can be applied easily. The tech-
nique of dimension matching plays an important role in the reversible jump
MCMC method (Green, 1995).

3.3 Reversible Jump MCMC Algorithm
for Bayesian Model Selection Problems

3.3.1 Reversible Jump MCMC Algorithm

Consider the problem of Bayesian model selection. Let {Mk : k ∈ K} denote a
countable collection of models to be fitted to the observed data Y. Each model
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Mk has its own parameter space Θk ⊆ Rdk . Without loss of generality, we
assume here that different models have different dimensions. A full Bayesian
model can be written as

p(k)p(θk|k)p(Y|k, θk), (3.13)

where p(k) is the prior probability imposed on the model, Mk, p(θk|k) is the
prior distribution specified for the parameter θk, and p(Y|k, θk) represents the
sampling model for the observed data Y, conditional on

(k, θk) ∈ {k} ×Θk (k ∈ K) (3.14)

Let X = (k, θk) and let Xk = {k} × Θk. Thus the Markov chain {Xt}
jumps between models with parameters changing over the space X = ∪k∈KXk.
Since the subspaces Xk’s are of different dimensionality, the Gibbs sampler
cannot be applied. Green (1995) proposes a reversible jump MCMC (RJM-
CMC) sampling method that generates a Markov chain that jumps between
models of different dimensions. The RJMCMC has become a very popular
Bayesian tool for problems involving multiple parameter spaces of different
dimensionality.

The basic idea of RJMCMC is to match dimensions with the resulting
chain reserving

f(k, θk|Y) ∝ p(k)p(θk|k)p(Y|k, θk)

as its invariant distribution. RJMCMC takes an auxiliary variable approach to
the problem of ‘dimension matching’. Let xt = (k(t), θ

(t)
k ) denote the current

state. Suppose that x∗ = (k∗, θ∗k∗) is the proposed state for X(t+1). If k∗ = k,
the proposed move explores different locations within the same subspace Xk

and therefore the dimension-matching problem does not exist. If k∗ �= k,
generate s random variables u = (u1, . . . , us) from a distribution ψk(t)→k∗(u),
and consider a bijection

(θ∗k∗ , u∗) = T(θ(t)
k , u), (3.15)

where u∗ = (u1, . . . , us∗) is a random vector of s∗-dimension, and s and s∗

satisfy the dimension-matching condition s + dk = s∗ + dk∗ . The general idea
of ‘augmenting less’ suggests that s∗ = 0 be taken if dk(t) ≤ dk∗ and vice
versa. In summary, RJMCMC is a special type of MH algorithm whose pro-
posal distribution includes auxiliary variables for dimension matching when
needed. In the above notations, the RJMCMC algorithm can be itemized
as follows:

Reversible Jump MCMC Algorithm

1. Select model Mk∗ with probability q(k(t), k∗).

2. Generate u1, . . . , us ∼ ψk(t)→k∗(u).

3. Set (θk∗ , u∗) = T(θ(t)
k , u).
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4. Compute the MH ratio

r =
f(k∗, θ∗k∗ |Y)q(k∗, k(t))ψk∗→k(t)(u∗)

f(k(t), θ
(t)
k |Y)q(k(t), k∗)ψk(t)→k∗(u)

∣∣∣∣∣∂(θ∗k∗ , u∗)

∂(θ(t)
k , u)

∣∣∣∣∣ (3.16)

where ∂(θ∗k∗ , u∗)/∂(θ(t)
k , u) is the Jacobian of the transformation

of (3.15).

5. Set X(t+1) = (k∗, θ∗k∗) with probability min(1, r) and X(t+1) = Xt with
the remaining probability.

For many problems, the Jacobian can be reduced to 1 by choosing an
identity transformation in (3.15); that is, proposing new samples in the space
Xk∗ directly, as illustrated by Example 3.1.

Example 3.1 Bayesian Analysis of Mixture Models

Let Z = (z1, . . . , zn) denote a sequence of independent observations drawn
from a mixture distribution with the likelihood function

f(Z|m, pm, Φm, η) =
n∏

i=1

[
p1f(zi; φ1, η) + · · ·+ pmf(zi; φm, η)

]
,

where m is the unknown number of components, pm = (p1, . . . , pm), Φm

= (φ1, . . . , φm), and η is a common parameter vector for all components.
To conduct a Bayesian analysis, we take the prior distribution π(k, pk,

Φk, η) with k varying in a pre specified range Kmin ≤ k ≤ Kmax. The
posterior distribution of (k, pk, Φk, η) is then

π(k, pk, Φk, η|Z) ∝ f(Z|k, pk, Φk, η)π(k, pk, Φk, η). (3.17)

For simulating from (3.17), RJMCMC consists of three types of moves,
‘birth’, ‘death’, and ‘parameter updating’, which can be prescribed as in
Stephens (2000). In the ‘birth’ move, a new component is generated and
(pk, Φk) is updated to be

{(p1(1− p), φ1), . . . , (pk(1− p), φk), (p, φ)}
In the ‘death’ move, a randomly chosen component i is proposed to be
removed with (pk, Φk) updated to{(

p1

1− pi
, φ1

)
, . . . ,

(
pi−1

1− pi
, φi−1

)
,

(
pi+1

1− pi
, φi+1

)
, . . . ,

(
pk

1− pi
, φk

)}
.

In the ‘parameter updating’ move, the parameters (pk, Φk, η) are updated
using the MH algorithm. In summary, RJMCMC works as follows for this
example. Let (k, pk, Φk, η) denote the current state of the Markov chain.
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• Propose a value of k∗ according to a stochastic matrix Q, where, for ex-
ample, we set Qk,k+1 = Qk,k−1 = Qk,k = 1/3 for Kmin < k < Kmax,
QKmin,Kmin+1 = QKmax,Kmax−1 = 1/3, and QKmin,Kmin = QKmax,Kmax =
2/3.

• According to the value of k∗, do step (a), (b) or (c):

(a) If k∗ = k + 1, make a ‘birth’ move: Draw p ∼ Unif[0, 1] and draw
φ from a proposal distribution g(φ|pk, Φk, η), and accept the new
component with probability

min
{

1,
π(k + 1, pk+1, Φk+1, η|Z)

π(k, pk, Φk, η|Z)
Qk+1,k

Qk,k+1

1
(k + 1)g(φ|pk, Φk, η)

}
.

(b) If k∗ = k − 1, make a ‘death’ move: Randomly choose a compo-
nent, say component i, to remove, and accept the new state with
probability

min
{

1,
π(k− 1, pk−1, Φk−1, η|Z)

π(k, pk, Φk, η|Z)
Qk−1,k

Qk,k−1

kg(φi|pk−1, Φk−1, η)
1

}
.

(c) If k∗ = k, make a ‘parameter updating’ move, updating the pa-
rameters (pk, Φk, η) using the MH algorithm: Generate (p∗

k, Φ∗, η∗)
from a proposal distribution q(p∗

k, Φ∗, η∗|pk, Φ, η), and accept the
proposal with probability

min
{

1,
π(k, p∗

k, Φ∗
k, η∗|Z)

π(k, pk, Φk, η|Z)
q(pk, Φk, η|p∗

k, Φ∗, η∗)
q(p∗

k, Φ∗, η∗|pk, Φ, η)

}
.

In steps (a) and (b), the Jacobian term is 1 is used as an identity transfor-
mation in the ‘birth’ and ‘death’ moves. Step (c) can be split into several
substeps, updating the parameters pk, Φk and η separately, as prescribed by
the Metropolis-within-Gibbs sampler (Müller, 1991, 1993).

A major difficulty with RJMCMC noted by many researchers (e.g.,
Richardson and Green, 1997; Brooks et al., 2003) is that the reversible jump
move often has a very low acceptance probability, rendering simulation
inefficient. This difficulty can be alleviated by stochastic approximation
Monte Carlo (Liang et al., 2007), whereby the self-adjusting mechanism helps
the system transmit between different models (see Chapter 7 for details).

3.3.2 Change-Point Identification

Consider the following application of RJMCMC to the change-point identi-
fication problem. Let Z = (z1, z2, · · · , zn) denote a sequence of independent
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observations. The change-point identification problem is to identify a partition
of the sequence such that the observations follow the same distribution within
each block of the partition. Let ϑ = (ϑ1, · · · , ϑn−1) be the change-point
indicator, a binary vector with ϑc1 = · · · = ϑck

= 1 and 0 elsewhere.
That is,

0 = c0 < c1 < · · · < ck < ck+1 = n

and
zi ∼ pr(·), cr−1 < i ≤ cr

for r = 1, 2, · · · , k + 1. Our task is to identify the change-point positions
c1, · · · , ck.

Consider the case where pr(·) is Gaussian with unknown mean µr and
variance σ2

r. Let ϑ(k) denote a configuration of ϑ with k ones, which represents
a model of k change points. Let η(k) = (ϑ(k), µ1, σ

2
1, · · · , µk+1, σ

2
k+1),Xk denote

the space of models with k change points, ϑ(k) ∈ Xk, and let X = ∪n
k=0Xk.

The log-likelihood of η(k) is

L(Z|η(k)) = −
k+1∑
i=1

ci − ci−1

2
log σ2

i +
1

2σ2
i

ci∑
j=ci−1+1

(zj − µi)2

 . (3.18)

Assume that the vector ϑ(k) has the prior distribution

P(ϑ(k)) =
λk∑n−1

j=0
λj

j!

(n− 1− k)!
(n− 1)!

, k = 0, 1, · · · , n− 1,

which is equivalent to assuming that Xk has a truncated Poisson distribution
with parameter λ, and each of the (n − 1)!/[k!(n − 1 − k)!] models in Xk is
a priori equally likely. Assume that the component mean µi is subject to an
improper prior, and that the component variance σ2

i is subject to an inverse-
Gamma IG(α, β). Assuming that all the priors are independent, the log-prior
density can be written as

log P(η(k)) = ak −
k+1∑
i=1

[
(α− 1) log σ2

i +
β

σ2
i

]
, (3.19)

where ak = (k + 1)[α log β− log Γ(α)] + log(n− 1− k)! + k log λ, and α, β and
λ are hyperparameters to be specified by the user. The log-posterior of η(k)

(up to an additive constant) can be obtained by adding (3.18) and (3.19).
Integrating out the parameters µ1, σ

2
1, · · · , µk+1, σ

2
k+1 from the full posterior
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distribution, we have

log P(ϑ(k)|Z) = ak +
k + 1

2
log 2π−

k+1∑
i=1

 log(ci − ci−1)
2

− log Γ
(

ci − ci−1 − 1
2

+ α

)
+

(
ci − ci−1 − 1

2
+ α

)

log

β +
1
2

ci∑
j=ci−1+1

z2
j −

(
∑ci

j=ci−1+1 zj)2

2(ci − ci−1)

 . (3.20)

The MAP (maximum a posteriori) estimate of ϑ(k) is often a reasonable so-
lution to the problem. However, of more interest to a Bayesian, may be the
marginal posterior distribution P(Xk|Z), which can be estimated using the re-
versible jump MCMC algorithm. Without loss of generality, we restrict our
considerations to the models with kmin ≤ k ≤ kmax. For the change-point
identification problem, the dimensional jumping moves can be performed
as follows.

Let ϑ
(k,l)
t denote the lth sample generated at iteration t, where k indicates

the number of change-points of the sample. The next sample can be generated
according to the following procedure:

(a) Set j = k − 1, k, or k + 1 according to the probabilities qk,j , where
qk,k = 1

3 for kmin ≤ k ≤ kmax, qkmin,kmin+1 = qkmax,kmax−1 = 2
3 , and

qk,k+1 = qk,k−1 = 1
3 for kmin < k < kmax.

(b) If j = k, update ϑ
(k,l)
t by a ‘simultaneous’ move (described below); if

j = k + 1, update ϑ
(k,l)
t by a ‘birth’ move (described below); and if

j = k− 1, update ϑ
(k,l)
t by a ‘death’ move (described below).

In the ‘birth’ move, a random number, say u, is first drawn uniformly from
the set {0, 1, · · · , k}; then another random number, say v, is drawn uniformly
from the set {cu + 1, · · · , cu+1 − 1}, and it is proposed to set ϑv = 1. The
resulting new sample is denoted by ϑ(k+1)

∗ . In the ‘death’ move, a random
number, say u, is drawn uniformly from the set {1, 2, · · · , k}, and it is pro-
posed to set ϑcu

= 0. The resulting new sample is denoted by ϑ(k−1)
∗ . In the

‘simultaneous’ move, a random number, say u, is first randomly drawn from
the set {1, 2, · · · , k}; then another random number, say v, is uniformly drawn
from the set {cu−1 + 1, · · · , cu− 1, cu + 1, · · · , cu+1− 1}, and it is proposed to
set ϑcu

= 0 and ϑv = 1. The resulting new sample is denoted by ϑ(k)
∗ . The

acceptance probabilities of these moves are as follows. For the ‘birth’ move,
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the acceptance probability is

min

{
1,

P(ϑ(k+1)
∗ |X)

P(ϑ(k,l)
t |X)

qk+1,k

qk,k+1

cu+1 − cu − 1
1

}
. (3.21)

The Jacobian term is 1, as the new sample is directly drawn in the space
Xk+1. Similarly, for the ‘death’ move, the acceptance probability is

min

{
1,

P(ϑ(k−1)
∗ |X)

P(ϑ(k,l)
t |X)

qk−1,k

qk,k−1

1
cu+1 − cu−1 − 1

}
. (3.22)

For the ‘simultaneous’ move, the acceptance probability is

min

{
1,

P(ϑ(k)
∗ |X)

P(ϑ(k,l)
t |X)

}
, (3.23)

for which the proposal is symmetric in the sense T(ϑ(k,l)
t → ϑ(k)

∗ ) = T(ϑ(k)
∗ →

ϑ
(k,l)
t ) = 1/(cu+1 − cu−1 − 2).

For numerical illustration, we consider a dataset simulated by Liang
(2009a), which consists of 1000 observations with z1, · · · , z120 ∼ N(−0.5, 1),
z121, · · · , z210 ∼ N(0.5, 0.5), z211, · · · , z460 ∼ N(0, 1.5), z461, · · · , z530 ∼
N(−1, 1), z531, · · · , z615 ∼ N(0.5, 2), z616, · · · , z710 ∼ N(1, 1), z711, · · · , z800 ∼
N(0, 1), z801, · · · , z950 ∼ N(0.5, 0.5), and z951, · · · , z1000 ∼ N(1, 1). The
time plot of the data is shown in Figure 3.2. RJMCMC was run 20 times
independently with the parameters: α = β = 0.05, λ = 1, kmin = 1 and
kmax = 20. Each run consists of 2×106 iterations and costs about 130 seconds
on a 3.0 GHz personal computer.

Figure 3.2 compares the true change-point pattern and its MAP
estimate – (120, 210, 460, 530, 615, 710, 800, 950) and (120, 211, 460, 531,
610, 709, 801, 939) respectively, with the largest discrepancy occuring at the
last change-point position. A detailed exploration of the original data gives
strong support to the MAP estimate. The last ten observations of the second
last cluster have a larger mean value than expected, and thus tend to be in
the last cluster. The log-posterior probability of the MAP estimate is 5.33
higher than that of the true pattern.

Figure 3.3 shows the histogram of the change-points sampled from the
posterior distribution. It indicates that there are most likely 8 change-points
contained in the data. Table 3.1 shows an estimate of the marginal pos-
terior distribution produced by RJMCMC. The estimate is consistent with
Figure 3.3; the marginal posterior distribution attains its mode at k = 8.

For this problem, the posterior (3.20) can also be simulated using the
Gibbs sampler, as in Barry and Hartigan (1993). For the binary state space,
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Figure 3.2 Comparison of the true change-point pattern (horizontal lines)
and its MAP estimate (vertical lines).
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Figure 3.3 Histogram of change-points sampled by RJMCMC for the simu-
lated example.
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Table 3.1 RJMCMC estimate of the marginal posterior distribution P(Xk|Z).

K ≤7 8 9 10 11 12 13 ≥14

P(Xk|Z) .103 55.332 33.324 9.458 1.587 .180 .015 .001
SD .024 1.400 .894 .567 .199 .037 .007 .002

P (Xk|Z): Estimates of the posterior probabilities (normalized to 100%). SD: Standard
deviation of the estimate.

the Gibbs sampler is essentially the method used by Barker (1965), which is
generally inferior to the MH algorithm as shown by Peskun (1973). Further
discussion on this issue can be found in the next section.

3.4 Metropolis-Within-Gibbs Sampler
for ChIP-chip Data Analysis

3.4.1 Metropolis-Within-Gibbs Sampler

Consider the Gibbs sampling algorithm described in Section 2.1. When some
components cannot be easily simulated, rather than resorting to a customized
algorithm such as the acceptance-rejection algorithm, Müller (1991, 1993)
suggests a compromised Gibbs algorithm – the Metropolis-within-Gibbs sam-
pler. For any step of the Gibbs sampler that has difficulty in sampling from
fk(xk|xi, i �= k), substitute a MH simulation.

Metropolis-Within-Gibbs Sampler (Steps)
For i = 1, . . . , K, given (x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i , . . . , x

(t)
K ):

1. Generate x∗
i ∼ qi(xi|x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i , . . . , x

(t)
K ).

2. Calculate

r =
fi(x∗

i |x(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
K )

fi(x
(t)
i |x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
K )

× qi(x
(t)
i |x(t+1)

1 , . . . , x
(t+1)
i−1 , x∗

i , x
(t)
i+1, . . . , x

(t)
K )

qi(x∗
i |x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i , x

(t)
i+1, . . . , x

(t)
K )

.

3. Set x
(t+1)
i = x∗

i with probability min(1, r) and x
(t+1)
i = x

(t)
i with the

remaining probability.
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In this algorithm, the MH step is performed only once at each iteration;
f(x1, . . . , xK) is still admitted as the stationary distribution (see Exercise 3.5).
As to whether one should run multiple MH steps to produce a precise approx-
imation of fi(·), Chen and Schmeiser (1998) note that this is not necessary.
A precise approximation of fi(·) does not necessarily lead to a better approx-
imation of f(·), and a single step substitution may be beneficial for the speed
of excursion of the chain on the sample space of f(·).

When all components’ xi’s are discrete, the Metropolis-within-Gibbs sam-
pler can be more efficient than the Gibbs sampler. For discrete state Markov
chains, Liu (1996) shows that the Gibbs sampler can be improved by MH steps
in terms of a smaller variance of the empirical mean of h(x(t)), where h(·) de-
notes an integrable function. Given a conditional distribution fi(xi|xj , j �= i)
defined on a discrete state space and the current state x

(t)
i , Liu’s modification

can be described as follows:

Metropolized Gibbs Sampler

1. Draw a state yi, different from xi, with probability

f(yi|x(t)
j , j �= i)

1− f(x(t)
i |x(t)

j , j �= i)
.

2. Set x
(t+1)
i = yi with a MH acceptance probability

min

{
1,

1− f(x(t)
i |x(t)

j , j �= i)

1− f(yi|x(t)
j , j �= i)

}
,

and set x
(t+1)
i = x

(t)
i with the remaining probability.

The efficiency of the modified algorithm derives from its increased mobility
around the state space. Regarding this issue, Peskun (1973) established the
following general result:

Theorem 3.4.1 Consider two reversible Markov chains on a countable state
space, with transition matrices P1 and P2 such that the non-diagonal elements
of P2 are larger than that of P1. Then the chain induced by T2 dominates the
chain induced by T1 in terms of variance.

The Metropolized Gibbs sampler can be viewed as an application of this
theorem.

3.4.2 Bayesian Analysis for ChIP-chip Data

Chromatin immunoprecipitation (ChIP) coupled with microarray (chip)
analysis provides an efficient way of mapping protein-DNA interactions
across a whole genome. ChIP-chip technology has been used in a wide range
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of biomedical studies, for instance, in identification of human transcription
factor binding sites (Cawley et al., 2004), investigation of DNA methylation
(Zhang et al., 2006), and investigation of histone modifications in animals
(Bernstein et al., 2005) and plants (Zhang et al., 2007). Data from ChIP-chip
experiments encompass DNA-protein interaction measurements on millions
of short oligonucleotides (also known as probes), which often tile one or
several chromosomes or even the whole genome. The data analysis consists
of two steps: (i) identifying the bound regions where DNA and the protein
are cross-linked in the experiments, and (ii) identifying the binding sites
through sequence analysis of the bound regions. Our goal here is to provide
an effective method for the first step analysis.

Analysis of ChIP-chip data is very challenging due to the large amount of
probes and the small number of replicates. The existing methods in the liter-
ature can be roughly grouped into three categories: sliding window methods
(Cawley et al., 2004; Bertone et al., 2004; Keles et al., 2006); hidden Markov
Model (HMM) methods (Li et al., 2005; Ji and Wong, 2005; Munch et al.,
2006; Humburg et al., 2008); and Bayesian methods (Qi et al., 2006; Keles,
2007; Gottardo et al., 2008; Wu et al., 2009; Mo and Liang, 2009). Other
methods have been suggested by Zheng et al. (2007), Huber et al. (2006) and
Reiss et al. (2008), but are less commonly used.

Sliding window methods test a hypothesis for each probe using informa-
tion from the probes within a certain genomic distance sliding window, then
try to correct for multiple hypothesis tests. The test statistics used are varied:
Cawley et al. (2004) use Wilcoxon’s rank sum test; Keles et al. (2006) use a
scan statistic which is the average of t-statistics within the sliding window;
Ji and Wong (2005) use a scan statistic which is the average of empirical
Bayesian t-statistics within the sliding window. Since each test uses infor-
mation from neighboring probes, the tests are not independent, rendering
adjustment difficult in the multiple hypothesis testing step.

The power of the sliding window test is usually low, as there is only lim-
ited neighboring information. In the ChIP-chip experiments, DNA samples
hybridized to the microarrays are prepared by PCR, which is known to per-
form independently of the form of DNA, and the far probes should have similar
intensity patterns as long as they have similar positions to their nearest bound
regions. This provides a basis for devising powerful methods that make use
of information from all probes. HMM methods have the potential to make
use of all probe information where model parameters are estimated using all
available data. However, as pointed out by Humburg et al. (2008), both the
Baum-Welch algorithm and the Viterbi training algorithm (Rabiner, 1989)
tend to converge to a local maximum of the likelihood function, rendering the
parameter estimation and model inference suboptimal.

Bayesian methods also have the potential to make use of all probe informa-
tion. Like HMM methods, Bayesian methods estimate model parameters using
all available data. However, these methods usually require multiple replicates
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or some extra experimental information to parameterize the model. For
example, the joint binding deconvolution model (Qi et al., 2006) requires one
to know the DNA fragment lengths, measured separately for each sample via
extrophoretic analysis; and the hierarchical Gamma mixture model (HGMM)
(Keles, 2007) requires one to first divide the data into genomic regions contain-
ing at most one bound region, information which is, in general, unavailable.
The Bayesian hierarchical model of Gottardo et al. (2008) essentially models
the probe intensities using a mixture of normal distributions, and models
the spatial structure of the probes using a Gaussian intrinsic auto-regression
model (Besag and Kooperberg, 1995). This model does not need extra experi-
mental information, but the algorithm (the software, called BAC, is available
at http://www.bioconductor.org/packages/2.2/bioc) is extremely slow,
taking about 10 hours for datasets consisting of 300 000 probes on a personal
computer. The reason is that the model has too many parameters.

In this subsection, we describe the latent variable method developed by
Wu et al. (2009). It directly works on the difference between the averaged
treatment and control samples. This allows the use of a simple model which
avoids the probe-specific effect and the sample (control/treatment) effect.
This enables an efficient MCMC simulation of the posterior distribution, and
also makes the model robust to the outliers.

3.4.2.1 Bayesian Latent Model

The Model. Consider a ChIP-chip experiment with two conditions,
treatment and control. Let X1 and X2 denote, respectively, the samples
measured under the treatment and control conditions. Each sample has
ml, l = 1, 2, replicates providing measurements for n genomic locations
along a chromosome or the genome. Suppose that these samples have been
normalized and log-transformed. Summarize the measurements for each
probe by the differences

Yi = X̄1i − X̄2i, (3.24)

where X̄li is the intensity measurement of probe i averaged over ml replicates.
The underlying assumption for this summary statistic is that the intensity
measurements for each probe have a variance independent of its genomic
position. The rationale is that the DNA samples used in the experiments are
prepared by PCR, which is known to perform independently of the form of
DNA, and therefore it is the amount of the DNA samples that provides the
main source for the variation of probe intensities.

Suppose that the dataset consists of a total of K bound regions, and that
region k consists of nk(k = 1, . . . , K) consecutive probes. For convenience,
we refer to all the non bound regions as region 0 and denote by n0 the
total number of probes contained in all the non bound regions, although the
probes in which may be non consecutive. Thus, we have

∑K
k=0 nk = n. Let
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z = (z1, . . . , zn) be a latent binary vector associated with the probes, where
zi = 1 indicates that probe i belongs to a bound region and 0 otherwise.
Given z, we rewrite (Y1, . . . , Yn) as {Ykj}, k = 0, . . . , K, j = 1, . . . , nk, which
are modeled as

ykj = µ0 + νk + εkj , (3.25)

where µ0 is the overall mean, which models the difference of sample effects
(between the treatment samples and the control samples); ν0 = 0 and νk > 0,
k = 1, . . . , K accounts for the difference in probe intensities in different bound
regions; εkj ’s are random errors independently and identically distributed as
N(0, σ2). Conditional on z, the likelihood of the model can be written as

f(y|z, µ0, ν1, . . . , νK , σ2) =
n0∏

j=1

(
1√
2πσ

e−
1

2σ2 (y0j−µ0)
2
)

×
K∏

k=1

nk∏
j=1

(
1√
2πσ

e−
1

2σ2 (ykj−µ0−νk)2
)

.

(3.26)

To conduct a Bayesian analysis, we specify the following prior distribu-
tions:

σ2 ∼ IG(α, β), f(µ0) ∝ 1, νk ∼ Uniform(νmin, νmax), (3.27)

where IG(·, ·) denotes an inverse Gamma distribution, and α, β, νmin, νmax are
hyperparameters. For example, the hyperparameters can be set as follows:
α = β = 0.05, νmin = 2sy and νmax = maxi yi, where sy is the sample
standard error of yi’s. Wu et al. (2009) experimented with different choices of
νmin, for example sy and 1.5sy, and found that the results are similar. The
latent vector z has the prior distribution

f(z|λ) ∝ λKe−λ

K!
, K ∈ {0, 1, . . . , Kmax}, (3.28)

where K = |z| denotes the total number of bound regions specified by z, λ is a
hyperparameter, and Kmax is the largest number of bounded regions allowed
by the model. Since the length of each bound region is very short compared
to the chromosome or the whole genome, it is reasonable to view each bound
region as a single point, and thus, following standard Poisson process theory,
the total number of bound regions can be modeled as a Poisson random
variable. Conditioning on the total number of bound regions, as implied by
(3.28), we impose the uniform prior on all possible configurations of z. The
prior (3.28) penalizes a large value of K, where the parameter λ represents
the strength of penalty. We do not recommend using a large value of λ, as the
number of true bound regions is usually small and a large value of λ may lead
to a high false discovery rate. Our experience shows that a value of λ around
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0.01 usually works well for most data. In this subsection, we set λ = 0.01 and
Kmax = 5000 in all simulations.

If ν1, . . . , νK ∈ (νmin, νmax), combining the likelihood and prior distri-
butions, integrating out σ2, and taking the logarithm, we get the following
log-posterior density function:

log f(z, µ0, ν1, . . . , νK |y) = Constant−
(n

2
+ α

)
log

1
2

n0∑
j=1

(y0j − µ0)2

+
1
2

K∑
k=1

nk∑
j=1

(ykj − µ0 − νk)2 + β

−log(K!) + K
(
log(λ)−log(νmax − νmin)

)
,

(3.29)

otherwise, the posterior is equal to 0.

MCMC Simulations. To simulate from the posterior distribution (3.29),
the Metropolis-within-Gibbs sampler is used as follows:

1. Conditioned on z(t), update µ
(t)
0 , ν

(t)
1 , . . . , ν

(t)
K using the MH algorithm.

2. Conditioned on µ
(t)
0 , ν

(t)
1 , . . . , ν

(t)
K , update each component of z(t):

change z
(t)
i to z

(t+1)
i = 1− z

(t)
i according to the MH rule.

In updating a component of z, the sum of square terms in the posterior
(3.29) can be calculated in a recursive manner. This greatly simplifies the
computation of the posterior distribution.

Inference of Bound Regions. Let pi = P(zi = 1|y) be the marginal
posterior probability that probe i belongs to a bound region. Since the bound
regions are expected to consist of several consecutive probes with positive
IP-enrichment effects, the regions that consist of several consecutive probes
with high marginal posterior probabilities are likely to be bound regions. To
identify such regions, we calculate the joint posterior probability

ρi(w, m|y) = P

 i+w∑
j=i−w

zj ≥ m|y
 , (3.30)

where i is the index of the probes, w is a pre specified half-window size, and m
is the minimum number of probes belonging to the bound region. This removes
false bound regions, which usually consist of only a few isolated probes with
high intensities. We find that the choice w = 5 and m = 5 often works well
in practice. Estimation of ρi is trivial using the MCMC samples simulated
from the posterior distribution. The value of ρi depends on many parameters,
such as w, m, and the hyperparameters of the model. However, the order
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of ρi’s appears robust to these parameters. This suggests treating ρi as a
conventional testing p-value, and, to control the false discovery rate (FDR) of
the bound regions, using a FDR control method, such as the empirical Bayes
method (Efron, 2004) or the stochastic approximation method (Liang and
Zhang, 2008), both of which allow for dependence between testing statistics.

Although a strict control of FDR is important to the detection of bound
regions, it is not our focus here. We will simply set a cut-off value of ρi,
classifying probe i to be in bound regions if ρi ≥ 0.5 and in the nonbound
region otherwise.

3.4.2.2 Numerical Examples

As seen in the numerical examples, the joint posterior probability can lead to
satisfactory detection of true bound regions.

The Estrogen Receptor Data. The estrogen receptor (ER) data gener-
ated by Carroll et al. (2005) mapped the association of the estrogen receptor
on chromosomes 21 and 22. We used a subset of the data, available from the
BAC software, to illustrate how the Bayesian latent model works. It consists
of intensity measurements for 30 001 probes under the treatment and control
conditions, with three replicates each.

The Bayesian latent method was run 5 times for the data. Each run
consisted of 11 000 iterations, and took about 4.4 minutes CPU time on
a personal computer. For comparison, BAC (Gottardo et al., 2008) and
tileHMM (Humburg et al., 2008; the software is available at http://www
.cran.r-project.org/web/packages) were also applied to this dataset.
Both BAC and tileHMM produced a probability measure for each probe,
similar to ρi, on how likely it was to belong to a bound region. As shown
in Figure 3.4, all three methods produce very similar results in this example.
However, the results produced by the Bayesian latent model are neater;
the resulting joint posterior probabilities tend to be dichotomized, either
close to 1 or 0. To provide some numerical evidence for this statement, we
calculated the ratio #{i : Pi > 0.5}/#{i : Pi > 0.05}, where Pi refers to the
joint posterior probability for the Bayesian latent model and BAC, and the
conditional probability for tileHMM. The ratios resultant from the Bayesian
latent model, BAC and tileHMM are 0.816, 0.615 and 0.674, respectively.

p53 Data. In a ChIP-chip experiment, Cawley et al. (2004) mapped the
binding sites of four human transcription factors Sp1, cMyc, p53-FL, and
p53-DO1 on chromosomes 21 and 22. The experiment consisted of 6 treatment
and 6 input control arrays, and the chromosomes spanned over three chips A,
B and C . For our illustration, analysis of p53-FL data on chips A, B and C,
which contain 14 quantitative PCR verified regions, was conducted. The data
were pre processed by filtering out local repeats, quantile-normalized (Bolstad
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Figure 3.4 Comparison results for the ER data: (a) original data; (b) the
joint posterior probability produced by the Bayesian latent model; (c) the
joint posterior probability produced by BAC; and (d) the posterior probability
produced by tileHMM (Wu et al., 2009).

et al., 2003), rescaled to have a median feature intensity of 1000, and then
log-transformed.

The Bayesian latent method, BAC and tileHMM were applied to the
p53 data. The data on chip A, chip B, and chip C were analyzed separately.
Given the posterior probabilities, a cut-off of 0.5 was used for all methods
used to detect bound regions. All resultant regions having less than 3 probes
or 100 bps were considered to be spurious and removed, and those regions
separated by 500 bps or less were merged together to form a predicted bound
region. The results are summarized in Table 3.2. Although tileHMM detected
all the 14 validated regions, it essentially failed for this data. It identified a
total of 33 796 bound regions, indicating too many false bound regions. We
suspect that the failure of tileHMM for this example is due to its training
algorithm; it is very likely that tileHMM converged to a local maximum of
the likelihood function.

The Bayesian latent method and BAC work well for this example. At
a cut-off of 0.5, BAC identified 100 bound regions, covering 12 out of 14
experimentally validated bound regions. The Bayesian latent method works
even better. At the same cut-off, it only identified 70 bound regions, but
which cover 12 out of 14 experimentally validated bound regions. For further
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Table 3.2 Computational results for the p53-FL data with a cut-off of 0.5
(Wu et al., 2009).

chip A chip B chip C p53
method V total V total V total V total

Latent 2 15 2 28 8 27 12 70 (127)
BAC 2 38 1 29 9 33 12 100 (1864)
tileHMM 2 29 708 3 1944 9 2144 14 33 796

The column ‘V’ reports the number of bound regions that were found by the method and
have been verified by PCR experiments. It is known there are 2, 3, and 9 PCR verified
bound regions on chips A, B and C, respectively. The column ‘Total’ reports the total
number of bound regions identified by the method. The columns under ‘p53’ summarize
the results on chips A, B and C. In the parentheses is the number of clusters needed to
cover all 14 experimentally validated bound regions (Wu et al., 2009).

comparison, we relaxed the cut-off value and counted the total number of
regions needed to cover all experimentally validated regions. The Bayesian
latent method only needs to increase the total number of regions to 127,
while BAC needs to increase it to 1864 regions. The BAC and tileHMM results
reported here may be slightly different from those reported by other authors
due to the difference of normalization methods used in data preparation.

Exercises

3.1 Consider the discrete state space X = {i : i = 1, 2, . . .}. Show that if
the transition probability satisfy the detailed balance condition πiPi,j =
πjPj,i for all i and j, then πi is the invariant distribution of the Markov
chain. Also show that in general the detailed balance or reversibility
condition (3.2) implies the balance condition.

3.2 Detailed balance also implies that around any closed cycle of states,
there is no net flow of probability. Show

P(a, b)P(b, c)P(c, a) = P(a, c)P(c, b)P(b, a), ∀a, b, c.

3.3 Consider the random walk MH scheme. Show that if the support region
of f(x) is connected and h(·) is positive in a neighborhood of 0, the re-
sulting chain is irreducible and aperiodic (see Robert and Casella, 2004).

3.4 Show that the Multiple-try Metropolis in Section 3.2.3 satisfies the
detailed balance condition.
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3.5 Show that the Metropolis-within-Gibbs sampler leads to a Markov chain
which admits f(x1, . . . , xK) as the stationary distribution.

3.6 Implement the reversible jump MCMC algorithm given in Example 3.1
for a one-dimensional mixture normal model.

3.7 Let π(x) denote a density function. Suppose that the sample space
X has been partitioned into m subspaces A1, . . . , Am. Liang and Liu
(2005) propose the following equation-solving method to estimate the
probabilities π(Ai)’s:

(a) Draw a random sample from a proposal distribution T(xt, y).

(b) Calculate the ratio

r(xt, y) =
π(y)
π(xt)

T(y, xt)
T(xt, y)

.

Set xt+1 = y with probability min{1, r(xt, y)} and set xt+1 = xt

with the remaining probability.

(c) Suppose xt ∈ Ai and y ∈ Aj , set P̃ij ← P̃ij + r(xt,y)
1+r(xt,y) and P̃ii ←

P̃ii + 1
1+r(xt,y) .

Let P̂ denote the normalized matrix of P̃, and solve the systems of
equations:

m∑
i=1

π̂n(Ai)P̂ij = π̂n(Aj), j = 1, . . . , m

subject to
m∑

i=1

π̂n(Ai) = 1,

where the subscript n denotes the number of iterations performed in the
MCMC simulation, and π̂n(Ai) is called the equation solving estimator
of π(Ai). Show that

π̂n(Ai) −→ π(Ai), almost surely,

as n→∞.

3.8 Implement the equation-solving method (see Exercise 3.7) for the
change-point identification problem studied in Section 3.3.2, and
compare the results with those presented in Table 3.1.
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Chapter 4

Auxiliary Variable MCMC
Methods

Consider the problem of sampling from a multivariate distribution with
density function f(x). It is known that Rao-Blackwellization (Bickel and
Doksum, 2000) is the first principle of Monte Carlo simulation: in order to
achieve better convergence of the simulation, one should try to integrate out
as many components of x as possible. However, sometimes one can include
one or more additional variables in simulations to accelerate or facilitate the
simulations. This often occurs in the following two scenarios:

• The target distribution f(x) is multimodal : An auxiliary variable, such
as temperature or some unobservable measurement, is included in sim-
ulations to help the system to escape from local-traps.

• The target distribution f(x) includes an intractable normalizing con-
stant : an auxiliary realization of X is included in simulations to have
the normalizing constants canceled.

The Metropolis-Hastings (MH) algorithm involves two basic components,
the target distribution and the proposal distribution. Accordingly, the
auxiliary variable methods can also be performed in two ways, namely
augmenting auxiliary variables to the target distribution and augmenting
auxiliary variables to the proposal distribution. We refer to the former as the
target distribution augmentation method and to the latter as the proposal
distribution augmentation method. The target distribution augmentation
method can be implemented as follows:

• Specify an auxiliary variable u and the conditional distribution f(u|x)
to form the joint distribution f(x, u) = f(u|x)f(x).

• Update (x, u) using the MH algorithm or the Gibbs sampler.
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The samples of f(x) can then be obtained from the realizations,
(x1, u1), . . . , (xN , uN ), of (X, U) through marginalization or conditioning.

The method of proposal distribution augmentation can be implemented
as follows:

• Specify a proposal distribution T (x′, u|x) and its reversible version
T (x, u|x′) such that

∫
T (x′, u|x)du = T (x′|x) and

∫
T (x, u|x′)du =

T (x|x′).

• Generate a candidate sample x′ from the proposal T (x′, u|x), and accept
it with probability min{1, r(x, x′, u)}, where

r(x, x′, u) =
f(x′)
f(x)

T (x, u|x′)
T (x′, u|x)

.

Repeat this step to generate realizations x1, . . . , xN , which will be ap-
proximately distributed as f(x) when N becomes large.

The validity of this method can be shown as follows. Let

K(x′|x) =
∫
U

s(x, x′, u)du + I(x = x′)
[
1−

∫
X

∫
U

s(x, x∗, u)dudx∗
]
, (4.1)

denote the integrated transitional kernel from x to x′, where s(x, x′, u) =
T (x′, u|x) r(x, x′, u), and I(·) is the indicator function. Then

f(x)
∫
U

s(x, x′, u)du =
∫
U

min{f(x′)T (x, u|x′), f(x)T (x′, u|x)}du, (4.2)

which is symmetric about x and x′. This implies f(x)K(x′|x) = f(x′)K(x|x′);
that is, the detailed balance condition is satisfied for the transition x→ x′.

In this chapter, we review the existing auxiliary MCMC methods. Methods
of target distribution augmentation include simulated annealing (Kirkpatrick
et al ., 1983), simulated tempering (Marinari and Parisi, 1992; Geyer and
Thompson, 1995), slice sampler (Higdon, 1998), the Swendsen-Wang algo-
rithm (Swendsen and Wang, 1987), and the Mo/ller algorithm (Mo/ller et al .,
2006). Technically, the data augmentation algorithm (Tanner and Wong,
1987), described in Section 2.2, also belongs to this class because it views
missing observations as auxiliary variables. Methods classed as proposal dis-
tribution augmentation include the Wolff algorithm (1989), the exchange
algorithm (Murray et al ., 2006), and the double MH algorithm (Liang, 2009c).

4.1 Simulated Annealing

In industry, annealing refers to a process used to harden steel. First, the
steel is heated to a high temperature, almost to the point of transition to its
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liquid phase. Subsequently, the steel is slowly cooled down enough to make
the atoms self-arranged in an ordered pattern. The highest ordered pattern,
which corresponds to the global minimum of the free energy of the steel, can
be achieved only if the cooling process proceeds slowly enough. Otherwise,
the frozen status will fall into a local minimum of free energy.

Realizing that the MH algorithm can be used to simulate the evolution of
a solid at various temperature towards thermal equilibrium, Kirkpatrick et al .
(1983) proposed the simulated annealing algorithm, which mimics the thermal
annealing process, for combinational optimization problems. The algorithm
can be described as follows.

Suppose that one aims to find the global minimum of an objective func-
tion H(x), which is also called the energy function in the standard terms
of simulated annealing. By augmenting to the system an auxiliary variable,
the so-called temperature T, minimizing H(x) is equivalent to sampling from
the Boltzmann distribution f(x, T ) ∝ exp(−H(x)/T ) at a very small value
(closing to 0) of T. [When T is close to 0, most of the mass of the distribution
f(x, T ) concentrates on the global minimizers of H(x).] In this sense, we say
that sampling is more basic than optimization. In order to sample successfully
from f(x, T ) at a very small value of T, Kirkpatrick et al . (1983) suggested
simulating from a sequence of Boltzmann distributions, f(x, T1), . . . , f(x, Tm),
in a sequential manner, where the temperatures form a decreasing ladder
T1 >T2 > · · ·> Tm with Tm ≈ 0 and T1 being reasonably large such that most
uphill MH moves at that level can be accepted. Simulation at high temper-
ature levels aims to provide a good initial sample, hopefully a point in the
attraction basin of the global minimum of H(x), for the simulation at low
temperature levels. In summary, the simulated annealing algorithm can be
described as follows:

Simulated Annealing Algorithm

1. Initialize the simulation at temperature T1 and an arbitrary sample x0.

2. At each temperature Ti, simulate of the distribution f(x, Ti) for Ni

iterations using a MCMC sampler. Pass the final sample to the next
lower temperature level as the initial sample.

From the viewpoint of auxiliary MCMC methods, simulated annealing
simulates the augmented target distribution f(x, T ) with the auxiliary vari-
able T taking values from a finite set {T1, . . . , Tm} and in a fixed order from
high to low.

The main difficulty of using simulated annealing is in choosing the cooling
schedule. One cooling schedule of theoretical interest is the ‘logarithmic’ cool-
ing, in which Ti is set at the order of O(1/ log(Mi)) with Mi = N1 + · · · +
Ni. This cooling schedule ensures the simulation to converge to the global
minimum of H(x) in probability 1 (Geman and Geman, 1984). In practice,
however, it is so slow that no one can afford to have such a long running time.



88 AUXILIARY VARIABLE MCMC METHODS

A linearly or geometrically decreasing cooling schedule is commonly used, but,
as shown by Holley et al . (1989), these schedules can no longer guarantee the
global minima to be reached.

Simulated annealing has many successful applications in optimization,
such as the traveling salesman problem (Bonomi and Lutton, 1984; Rossier
et al ., 1986; Golden and Skiscim, 1986) and the VLSI design (Wong et al .,
1988; Nahar et al ., 1989). During the past 25 years, simulated annealing
has been widely accepted as a general purpose optimization algorithm. See
Tan (2008) for recent developments of this algorithm.

4.2 Simulated Tempering

Suppose that it is of interest to sample fromthedistributionf(x) ∝ exp(−H(x)),
x ∈ X. As in simulated annealing, simulated tempering (Marinari and Parisi,
1992;Geyer andThompson, 1995) augments the target distribution tof(x, T ) ∝
exp(−H(x)/T ) by including an auxiliary variable T, called temperature, which
takes values from a finite set pre specified by the user. Simulated tempering is
obtained fromsimulated annealing by treating the temperatureT as an auxiliary
random variable to be simulated jointly with x:

• Simulated tempering updates the joint state (x, T ) in a Gibbs sampling
fashion; that is, updating x and T in an alternative manner.

• In simulated tempering, the lowest temperature is set to 1, as the purpose
is to sample from f(x).

Suppose that the temperatureT takesmdifferentvalues,T1 >T2 > · · ·> Tm,
where Tm ≡ 1 and is called the target temperature. Let f(x, Ti) =
exp(−H(x)/Ti)/Zi denote the trial distribution defined on the temperature
level Ti, where Zi is the normalizing constant of the distribution. Let qij

denote the proposal probability of transition from level Ti to Tj . Typically, one
sets qi,i+1 = qi,i−1 = qi,i = 1/3 for 1 < i < m, q1,2 = 1/3, qm,m−1 = 1/3,
q1,1 = 2/3, and qm,m = 2/3. Starting with i0 = 1 and an initial sample x0 ∈ X,
simulating tempering iterates between the following three steps:

Simulated Tempering

1. Draw a random number U ∼ Uniform[0, 1], and determine the value
of j according to the proposal transition matrix (qij).

2. If j = it, let it+1 = it and let xt+1 be drawn from a MH kernel Kit
(x, y)

which admits f(x, Tit
) as the invariant distribution.

3. If j �= it, let xt+1 = xt and accept the proposal with probability

min

{
1,

Ẑj

Ẑit

exp
{
−H(x)

(
1
Tj
− 1

Tit

)}
qj,it

qit,j

}
,



SIMULATED TEMPERING 89

where Ẑi denotes an estimate of Zi. If it is accepted, set it+1 = j.
Otherwise, set it+1 = it.

The intuition underlying simulated tempering is that simulation at high
temperature levels provides a good exploration of the energy landscape of
the target distribution, and the low energy samples generated thereby are
transmitted to the target level through a sequence of temperature updating
operations. As reported by many researchers, simulated tempering can con-
verge substantially faster than the MH algorithm, especially for distributions
for which the energy landscape is rugged. For effective implementation of
simulated tempering, two issues must be considered:

• Choice of the temperature ladder. The highest temperature T1 should
be set such that most of the uphill moves can be accepted at that level.
The intermediate temperatures can be set in a sequential manner: Start
with T1, and sequentially set the next lower temperature such that

Vari(H(x))δ2 = O(1), (4.3)

where δ = 1/Ti+1−1/Ti, and Vari(·) denotes the variance of H(x) taken
with respect to f(x, Ti). This condition is equivalent to requiring that
the distributions f(x, Ti) and f(x, Ti+1) have considerable overlap. In
practice, Vari(H(x)) can be estimated roughly through a preliminary
run of the sampler at level Ti.

• Estimation of Zi’s. This is the key to the efficiency of simulated
tempering. If the pseudo-normalizing constants Zi’s are well estimated,
simulated tempering will perform like a ‘symmetric random walk’
along the temperature ladder (if ignoring the x-updating steps).
Otherwise, it may get stuck at a certain temperature level, rendering
the simulation a failure. In practice, the Zi’s can be estimated using
the stochastic approximation Monte Carlo method (Liang et al ., 2007;
Liang, 2005b), which is described in Chapter 7. Alternatively, the
Zi’s can be estimated using the reverse logistic regression method, as
suggested by Geyer and Thompson (1995).

We note that the mixing of simulated tempering suffers from a waiting
time dilemma: To make simulated tempering work well, the adjacent distri-
butions f(x, Ti) and f(x, Ti+1) should have considerable overlap, requiring
many intermediate temperature levels to be used. On the other hand, even in
the ideal case that simulated tempering performs like a ‘symmetric random
walk’ along the temperature ladder, the expected waiting time for a traversal
of the temperature ladder will be of the order O(m2). This puts a severe limit
on the number of temperature levels that one can afford to use in simulations.
The same criticism also applies to the tempering-based population MCMC
algorithms, such as parallel tempering (Geyer, 1991) and evolutionary Monte
Carlo (Liang and Wong, 2000, 2001a), which are described in Chapter 5.
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Simulated tempering has been applied successfully to many complex
systems, such as protein folding (Hansmann and Okamoto, 1997), and
VLSI floorplan design (Cong et al ., 1999). In Li et al . (2004), the authors
discuss at length how to fine tune the proposal distributions used at different
temperature levels, and how to lean the temperature ladder to have more
samples generated at low temperature levels, while maintaining frequent
visits to high temperature levels.

4.3 The Slice Sampler

Suppose that one is interested in sampling from a density f(x), x ∈ X. Recall
that sampling x ∼ f(x) is equivalent to sampling uniformly from the area
under the graph f(x):

A = {(x, u) : 0 ≤ u ≤ f(x)},
which is the basis of the acceptance-rejection algorithm described in Sec-
tion 1.4.2. To achieve this goal, one can augment the target distribution by
an auxiliary variable U, which, conditional on x, is uniformly distributed on
the interval [0, f(x)]. Therefore, the joint density function of (X, U) is

f(x, u) = f(x)f(u|x) ∝ 1(x,u)∈A,

which can be sampled using the Gibbs sampler as follows:

Slice Sampler

1. Draw ut+1 ∼ Uniform[0, f(xt)].

2. Draw xt+1 uniformly from the region {x : f(x) ≥ ut+1}.
This sampler, called the slice sampler by Higdon (1998), potentially can be

more efficient than the simple MH algorithm for multimodal distributions, due
to the free between-mode-transitionswithin a slice (as illustrated byFigure4.1).
However, the slice sampler is often difficult to implement in practice. For many
distributions, sampling uniformly from the region {x : f(x) ≥ u} is almost as
difficult as sampling from the original distribution f(x).

Edwards and Sokal (1988) note that when f(x) can be decomposed into
a product of k distribution functions, that is, f(x) ∝ f1(x) × f2(x) × · · · ×
fk(x), the slice sampler can be easily implemented. To sample from such a
distribution, they introduce k auxiliary variables, U1, . . . , Uk, and propose the
following algorithm:

1. Draw u
(i)
t+1 ∼ Uniform[0, fi(xt)], i = 1, . . . , k.

2. Draw xt+1 uniformly from the region S = ∩k
i=1{x : fi(x) ≥ u

(i)
t+1}.

This algorithm is a generalization of the Swendsen-Wang algorithm (Swendsen
and Wang, 1987) described in Section 4.4. Damien et al . (1999) explore the use
of this algorithm as a general MCMC sampler for Bayesian inference problems.
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X

U

0

f(X)

A B C

Figure 4.1 The slice sampler for a multimodal distribution: Draw X|U
uniformly from the sets labeled by A, B and C.

They illustrate how one can decompose f(x) into a product of k functions for
which the joint set S is easy to compute. For example, for a model of k iid
data points, the likelihood function can be decomposed into a product of k
distribution functions, one for each data point. However, the convergence of
this algorithm may be slow due to the presence of multiple auxiliary vari-
ables. Recently, the implementation of the slice sampler was further improved
by Neal (2003), who suggested a Gibbs style implementation: update each
component of x in turn using a single-variable slicing sampling procedure.

The slice sampler has attractive theoretical properties. Under certain
conditions, as Roberts and Rosenthal (1999) show, the slice sampler is
geometrically ergodic. Under slightly stronger conditions, Mira and Tierney
(2002) show that the slice sampler is uniformly ergodic. These theories assume
that the new sample x(t+1) is sampled uniformly from the joint region S, in-
dependently of the old sample x(t). However, this is often difficult in practice.

4.4 The Swendsen-Wang Algorithm

Consider a 2-D Ising model with the Boltzmann density

f(x) ∝ exp

K
∑
i∼j

xixj

 , (4.4)
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where the spins xi = ±1, K is the inverse temperature, and i ∼ j represents
the nearest neighbors on the lattice. An interesting physical property of this
model is the phase transition: When the temperature is high, all the spins
behave nearly independently, whereas when the temperature is below a critical
point (K0 ≈ 0.44), all the spins tend to stay in the same state, either ‘+1’
or ‘−1’.

When the temperature is high, this model can be easily simulated using
the Gibbs sampler (Geman and Geman, 1984): iteratively reset the value of
each spin according to the conditional distribution

P (xi = 1|xj , j ∈ n(i)) =
1

1 + exp
{−2K

∑
j∈n(i)

} ,

P (xi = −1|xj , j ∈ n(i)) = 1− P (xi = 1|xj , j ∈ n(i)),

(4.5)

where n(i) denotes the set of neighbors of spin i. For the Ising model, this
sampler is also known as the heat bath method (Creutz, 1980; Rubinstein,
1981). However, the Gibbs sampler slows down rapidly when the temperature
is approaching or below the critical temperature. This is the so-called ‘critical
slowing down’. Swendsen and Wang (1987) proposed a powerful auxiliary
variable MCMC method, which can eliminate much of the critical slowing
down. The Swendsen-Wang algorithm can be described as follows.

As in slice sampling, the density (4.4) is rewritten in the form

f(x) ∝
∏
i∼j

exp{K(1 + xixj)} =
∏
i∼j

exp{βI(xi = xj)}, (4.6)

where β = 2K and I(·) is the indicator function, as 1 + xixj is either 0 or 2.
If we introduce auxiliary variables u = (ui∼j), where each component ui∼j ,
conditional on xi and xj , is uniformly distributed on [0, exp{βI(xi = xj)}],
then

f(x, u) ∝
∏
i∼j

I(0 ≤ ui∼j ≤ exp{βI(xi = xj)}).

In Swendsen and Wang (1987), ui∼j is called a ‘bond variable’, which can
be viewed as a variable physically sitting on the edge between spin i and
spin j.

If ui∼j > 1, then exp{βI(xi = xj) > 1 and there must be xi = xj . Other-
wise, there is no constraint on xi and xj . Let bi∼j be an indicator variable
for the constraint. If xi and xj are constrained to be equal, we set bi∼j = 1
and 0 otherwise. Note that for any two ‘like-spin’ neighbors (that is, the two
spins have the same values), they are bonded with probability 1− exp(−β).
Based on the configurations of u, we can ‘cluster’ the spins according to
whether they are connected via a ‘mutual bond’ (bi∼j = 1). Then all the spins
within the same cluster will have identical values, and flipping all the spins
in a cluster simultaneously will not change the equilibrium of f(x, u). The
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Swendsen-Wang algorithm iterates between the steps of sampling f(b|x) and
sampling f(x|u):

The Swendsen-Wang Algorithm

1. Update bond values. Check all ‘like-spin’ neighbors, and set bi∼j = 1
with probability 1− exp(−β).

2. Update spin values. Cluster spins by connecting neighboring sites with
a mutual bond, and then flip each cluster with probability 0.5.

For the Ising model, the introduction of the auxiliary variable u has the
dependence between neighboring spins partially decoupled, and the resulting
sampler can thus converge substantially faster than the single site updating
algorithm. As demonstrated by Swendsen and Wang (1987), this algorithm
can eliminate much of the critical slowing down.

Motivated by the success of the Swendsen-Wang algorithm on Ising mod-
els, much effort has been spent on generalizing it to a wider class of models,
such as the Potts model and the continuous-spin model (de Meo and Oh,
1992). A generalized form of this algorithm was given by Edwards and Sokal
(1988), which is also referred to as a slice sampler, as described in Section 4.3.
Later, the Edwards-Sokal algorithm was further generalized by Higdon (1998);
the joint density f(x, u) is replaced by

f(x, u) ∝ f0(x)
∏
k

fk(x)1−δkI
[
0 ≤ uk ≤ fk(x)δk

]
. (4.7)

The simulation of f(x, u) can be done, as in the previous case, by iterating
between the steps of sampling f(x|u) and sampling f(u|x). This algorithm
is called the partial decoupling algorithm. Because (4.7) includes an extra
term f0(x), the partial decoupling algorithm is potentially useful for models
which do not possess the nice symmetry of the Ising model. The partial de-
coupling algorithm has been successfully applied to image analysis problems
(Higdon, 1998).

4.5 The Wolff Algorithm

Wolff (1989) introduces a modification for the Swendsen-Wang algorithm,
which can almost completely eliminate the critical slowing down for the Ising
model as defined in (4.4).

The Wolff Algorithm

1. For a given configuration of x, one randomly picks a spin, say x, as the
first point of a cluster C to be built, and then grows the cluster as follows:

– Visit all links connecting x ∈ C to its nearest neighbors y. The
bond x ∼ y is activated with probability pb = 1− exp(−2K) as in
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the Swendsen-Wang algorithm, and if this happens, y is adjoined
to c. The pb is called the bonding probability.

– Continue iteratively in the same way for all bonds leading to neigh-
bors of newly adjoined spins until the process stops.

2. Flip all the spins in C to their opposites.

The Wolff algorithm and the Swendsen-Wang algorithm are very similar, the
only difference being that in the Wolff algorithm, at each iteration, only one
cluster is formed and all spins in the cluster are flipped. However, these two
algorithms have very different auxiliary-variable augmentation schemes: The
Swendsen-Wang algorithm augments its target distribution, whereas the Wolff
algorithm augments its proposal distribution. This can be explained as follows.
Suppose that the cluster C one has grown has m+n neighbors, among which
m are +1 spins and n are −1 spins. If the current state of C is all +1, by
flipping all the spins in C to −1, then the probability ratio is

f(x∗)
f(x)

= exp{2K(n−m)}, (4.8)

where x∗ denotes the new configuration of x. The proposal probability for
the update is given by

T (x→ (x∗, b)) = pc1
b (1− pb)c0+m, (4.9)

where b denotes the configuration of mutual bonds formed for the cluster C
and it plays the role of auxiliary variables, c1 denotes the number of interior
links of C that is formed as a mutual bond, and c0 denotes the number of
interior links of C that is not formed as a mutual bond. Similarly, we have

T (x∗ → (x, b)) = pc1
b (1− pb)c0+n . (4.10)

Combining equations (4.8), (4.9) and (4.10) yields

f(x∗)
f(x)

T (x∗ → (x, b))
T (x→ (x∗, b))

= 1,

which implies that the proposed change should be always accepted.
The reason why the Wolff algorithm outperforms the Swendsen-Wang

algorithm is clear: by randomly flipping all clusters simultaneously, the
Swendsen-Wang algorithm introduces too much randomness at each iteration.
The Wolff algorithm avoids this drawback by flipping a single cluster at each
iteration. The recursivity of Wolff’s flipping improves the convergence of the
simulation.

It is apparent that the growth of the cluster is not necessarily restricted
to the ‘like-spins’. More generally, Niedermayer (1988) suggests that one can
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bond two neighboring spins with opposite values, and then flip each spin in
the cluster to its opposite. In this scheme, the acceptance probability for a
new configuration of spins can be calculated in a similar way to the Wolff
algorithm, but not necessarily equal to 1, depending on the choice of bonding
probabilities.

4.6 The Mo/ller Algorithm

Spatial models, for example, the autologistic model, the Potts model, and
the autonormal model (Besag, 1974), have been used in modeling of many
scientific problems. Examples include image analysis (Hurn et al ., 2003), dis-
ease mapping (Green and Richardson, 2002), geographical genetic analysis
(Francois et al ., (2006)), among others. A major problem with these models
is that the normalizing constant is intractable. The problem can be described
as follows. Suppose we have a dataset X generated from a statistical model
with the likelihood function

f(x|θ) =
1

Z(θ)
exp{−U(x, θ)}, x ∈ X, θ ∈ Θ, (4.11)

where θ is the parameter, and Z(θ) is the normalizing constant which depends
on θ and is not available in closed form. Let f(θ) denote the prior density of θ.
The posterior distribution of θ given x is then given by

f(θ|x) ∝ 1
Z(θ)

exp{−U(x, θ)}f(θ). (4.12)

The MH algorithm cannot be directly applied to simulate from f(θ|x),
because the acceptance probability would involve a computationally
intractable ratio Z(θ)/Z(θ′), where θ′ denotes the proposed value. To
circumvent this difficulty, various methods of approximating the likelihood
function or the normalizing constant function have been proposed in the
literature. Besag (1974) proposed to approximating the likelihood function
by a pseudo-likelihood function which is tractable. This method is easy to
use, but it typically performs less well for the models with strong neighboring
dependence. It is further discussed and generalized by Dryden et al . (2002)
and Huang and Ogata (2002). Geyer and Thompson (1992) propose an
importance sampling-based approach to approximating Z(θ), for which
Liang et al . (2007) suggest refining the choice of the trial density function
using the stochastic approximation Monte Carlo algorithm. Liang (2007)
proposes an alternative Monte Carlo approach to approximating Z(θ), where
Z(θ) is viewed as a marginal distribution of the unnormalized distribution
g(x, θ) = exp{−U(x, θ)} and is estimated by an adaptive kernel density
estimator using Monte Carlo draws.

A significant step made by Mo/ller et al . (2006) proposes augmenting the
distribution f(θ|x) by an auxiliary variable such that the normalizing constant
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ratio Z(θ)/Z(θ′) can be canceled in simulations. The Mo/ller algorithm can be
described as follows.

Let y denote the auxiliary variable, which shares the same state space
with x. Let

f(θ, y|x) = f(x|θ)f(θ)f(y|θ, x), (4.13)

denote the joint distribution of θ and y conditional on x, where f(y|θ, x) is
the distribution of the auxiliary variable y. To simulate from (4.13) using the
MH algorithm, one can use the proposal distribution

q(θ′, y′|θ, y) = q(θ′|θ, y)q(y′|θ′), (4.14)

which corresponds to the usual change on the parameter vector θ → θ′, fol-
lowed by an exact sampling (Propp and Wilson, 1996) step of drawing y′ from
q(·|θ′). If q(y′|θ′) is set as f(y′|θ), then the MH ratio can be written as

r(θ, y, θ′, y′|x) =
f(x|θ′)f(θ′)f(y′|θ′, x)q(θ|θ′, y′)f(y|θ)
f(x|θ)f(θ)f(y|θ, x)q(θ′|θ, y)f(y′|θ′) , (4.15)

where the unknown normalizing constant Z(θ) can be canceled. To ease
computation, Mo/ller et al . (2006) further suggest setting the proposal
distributions q(θ′|θ, y) = q(θ′|θ) and q(θ|θ′, y′) = q(θ|θ′), and the auxiliary
distributions

f(y|θ, x) = f(y|̂θ), f(y′|θ′, x) = f(y′ |̂θ), (4.16)

where θ̂ denotes an estimate of θ, for example, which can be obtained by
maximizing a pseudo-likelihood function. In summary, the Mo/ller algorithm
starts with an arbitrary point θ(0) and an exact sample y(0) drawn from f(y|̂θ),
and then iterates between the following three steps:

Mo/ller Algorithm

1. Generate θ′ from the proposal distribution q(θ′|θt).

2. Generate an exact sample y′ from the distribution f(y|θ′).
3. Accept (θ′, y′) with probability min(1, r), where

r =
f(x|θ′)f(θ′)f(y′ |̂θ)q(θt|θ′)f(y|θt)

f(x|θt)f(θt)f(y|̂θ)q(θ′|θt)f(y′|θ′)
.

If it is accepted, set (θt+1, yt+1) = (θ′, y′). Otherwise, set (θt+1, yt+1) =
(θt, yt).

This algorithm is applied by Mo/ller et al . (2006) to estimate parameters
for the Ising model. A problem with it is that the acceptance rate of the exact
samples is usually very low.
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4.7 The Exchange Algorithm

Like the Mo/ller algorithm (Mo/ller et al ., 2006), the exchange algorithm
(Murray et al ., 2006) is dedicated to sample from the distribution f(θ|x)
given in (4.12). The exchange algorithm is motivated by the parallel
tempering algorithm (Geyer, 1991; Hukushima and Nemoto, 1996), and can
be described as follows. Consider the augmented distribution

f(y1, . . . ,ym, θ|x) = π(θ)f(x|θ)
m∏

j=1

f(yj |θj), (4.17)

where θi’s are instantiated and fixed, and y1, . . . ,ym are independent aux-
iliary variables with the same state space as x and the joint distribution∏m

j=1 f(yj |θj). Suppose that a change to θ is proposed with probability q(θi|θ).
To ensure that yi = x, we swap the settings of x and yi. The resulting MH
ratio for the change is

r(θ, θi, yi|x) =
π(θi)f(x|θi)f(yi|θ)

∏
j �=i f(yj |θj)q(θ|θi)

π(θ)f(x|θ)f(yi|θi)
∏

j �=i f(yj |θj)q(θi|θ)
=

π(θi)f(x|θi)f(yi|θ)q(θ|θi)
π(θ)f(x|θ)f(yi|θi)q(θi|θ) .

(4.18)

Based on the above arguments, Murray et al . (2006) propose the following
algorithm:

Exchange Algorithm

1. Propose θ′ ∼ q(θ′|θ, x).

2. Generate an auxiliary variable y ∼ f(y|θ′) using an exact sampler.

3. Accept θ′ with probability min{1, r(θ, θ′, y|x)}, where

r(θ, θ′, y|x) =
π(θ′)f(x|θ′)f(y|θ)q(θ|θ′)
π(θ)f(x|θ)f(y|θ′)q(θ′|θ) . (4.19)

Since a swapping change between (θ, x) and (θ′, y) is involved, the algo-
rithm is called the exchange algorithm. It generally improves the performance
of the Mo/ller algorithm, as it removes the need to estimate the parameter be-
fore sampling begins. Murray et al . (2006) report that the exchange algorithm
tends to have a higher acceptance probability for the exact samples than the
Mo/ller algorithm.

The exchange algorithm can also be viewed as an auxiliary variable MCMC
algorithm with the proposal distribution being augmented, for which the pro-
posal distribution can be written as

T (θ→ (θ′, y)) = q(θ′|θ)f(y|θ′), T (θ′ → (θ, y)) = q(θ|θ′)f(y|θ).
This simply validates the algorithm, following the arguments for auxiliary
variable Markov chains made around (4.1) and (4.2).
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4.8 The Double MH Sampler

Although the Mo/ller algorithm and the exchange algorithm work for the Ising
model, they cannot be applied to many other models for which exact sampling
is not available. In addition, even for the Ising model, exact sampling may
be very expensive when the temperature is near or below the critical point.
To overcome this difficulty, Liang (2009c) proposes the double MH algorithm,
which avoids the requirement for exact sampling, the auxiliary variables being
generated using MH kernels, and thus can be applied to many statistical
models for which exact sampling is not available or is very expensive. While
for the models for which exact sampling is available, such as the Ising model
and the autologistic model, it can produce almost the same accurate results
as the exchange algorithm, but using much less CPU time.

Suppose that one is interested in simulating a sample y from f(y|θ′). If
the sample is generated through m MH updates starting with the current
state x, the transition probability, P

(m)
θ′ (y|x), is

P
(m)
θ′ (y|x) = Kθ′(x→ x1) · · ·Kθ′(xm−1 → y), (4.20)

where K(· → ·) is the MH transition kernel. Then

P
(m)
θ′ (x|y)

P
(m)
θ′ (y|x)

=
Kθ′(y → xm−1) · · ·Kθ′(x1 → x)
Kθ′(x→ x1) · · ·Kθ′(xm−1 → y)

=
f(x|θ′)
f(y|θ′)

f(y|θ′)
f(x|θ′)

Kθ′(y → xm−1) · · ·Kθ′(x1 → x)
Kθ′(x → x1) · · ·Kθ′(xm−1 → y)

=
f(x|θ′)
f(y|θ′) ,

(4.21)

where the last equality follows from the detailed balance equality f(x|θ′)
Kθ′(x→ x1) · · ·Kθ′(xm−1 → y) = f(y|θ′)Kθ′(y → xm−1) · · ·Kθ′(x1 → x).

Returning to the problem of simulating from the posterior distribution
(4.12). By (4.21), the MH ratio (4.19) can be re-expressed as

r(θ, θ′, y|x) =
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

f(y|θ)P (m)
θ′ (x|y)

f(x|θ)P (m)
θ′ (y|x)

. (4.22)

It is easy to see that if one chooses q(θ′|θ) as a MH transition kernel which
satisfies the detailed balance condition, then π(θ′)q(θ|θ′) = π(θ)q(θ′|θ), and
the exchange update is reduced to a simple MH update for which f(x|θ) works
as the target distribution and P

(m)
θ′ (y|x) works as the proposal distribution.

In summary, the double MH algorithm proceeds as follows.

Double MH sampler

1. Simulate a new sample θ′ from π(θ) using the MH algorithm starting
with θt.
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2. Generate an auxiliary variable y ∼ P
(m)
θ′ (y|x), and accept it with

probability min{1, r(θt, θ
′, y|x)}, where, by (4.21),

r(θt, θ
′, y|x) =

f(y|θt)P
(m)
θ′ (x|y)

f(x|θt)P
(m)
θ′ (y|x)

=
f(y|θt)f(x|θ′)
f(x|θt)f(y|θ′) . (4.23)

3. Set θt+1 = θ′ if the auxiliary variable is accepted in step (b), and set
θt+1 = θt otherwise.

Since two types of MH updates are performed in step (b), one for drawing
the auxiliary variable y and one for acceptance of θ′, the algorithm is called
the double MH sampler. The MH update performed in step (a) is not essential,
which can be incorporated into step (b) by changing (4.23) to (4.22). Also,
(4.23) holds regardless of the value of m. The double MH sampler avoids
the requirement for exact sampling, so it can be applied to a wide range of
problems for which exact sampling is infeasible.

It is apparent that the double MH sampler will converge to the correct
posterior distribution for a large value of m. In practice, to get good sam-
ples from the posterior distribution, m is not necessarily large. The key to
the efficiency of the MH kernel is of starting with x. One can expect that the
posterior will put most of its mass in the region of the parameter space where
the likelihood f(x|θ) is high, provided that the prior is noninformative. There-
fore, most proposed values of θ′ will lie in this region and the likelihood f(y|θ′)
will put most of its mass in the vicinity of x. A more theoreically justified
algorithm can be found in the next section.

4.8.1 Spatial Autologistic Models

The autologistic model (Besag, 1974) has been widely used for spatial data
analysis (see, e.g., Preisler, 1993; Wu and Huffer, 1997; and Sherman et al .
2006). Let x = {xi : i ∈ D} denote the observed binary data, where xi is
called a spin and D is the set of indices of the spins. Let |D| denote the total
number of spins in D, and let n(i) denote the set of neighbors of spin i. The
likelihood function of the model is

f(x|α, β) =
1

Z(α, β)
exp

α
∑
i∈D

xi +
β

2

∑
i∈D

xi

( ∑
j∈n(i)

xj

) , (α, β) ∈ Θ,

(4.24)

where the parameter α determines the overall proportion of xi = +1, the pa-
rameter β determines the intensity of interaction between xi and its neighbors,
and Z(α, β) is the intractable normalizing constant defined by

Z(α, β) =
∑

for all possible x

exp

α
∑
j∈D

xj +
β

2

∑
i∈D

xi

( ∑
j∈n(i)

xj

) .
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An exact evaluation of Z(α, β) is prohibited even for a moderate system.
To conduct a Bayesian analysis for the model, assume a uniform prior

(α, β) ∈ Θ = [−1, 1]× [0, 1]

for the parameters in this section. Then the double MH sampler can be applied
to simulate from the posterior distribution π(α, β|x). In step (a), (αt, βt), the
current state of the Markov chain, is updated by a single MH step with a
random walk proposal N2((αt, βt)′, s2I2), where s is the step size, and I2 is
the 2× 2 identity matrix. In step (b), the auxiliary variable y is generated by
a single cycle of Gibbs updates. Two or more cycles have also been tried for
the examples, the results are similar. The acceptance rate of the double MH
moves can be controlled by the choice of s. In this subsection, we set s = 0.03
for all examples.

4.8.1.1 US Cancer Mortality Data

United States cancer mortality maps have been compiled by Riggan et al .
(1987) for investigating possible association of cancer with unusual demo-
graphic, environmental, industrial characteristics, or employment patterns.
Figure 4.2 shows the mortality map of liver and gallbladder (including bile
ducts) cancers for white males during the decade 1950–1959, which indicates
some apparent geographic clustering. See Sherman et al . (2006) for further
description of the data. As in Sherman et al . (2006), Liang (2009c) mod-
eled the data by a spatial autologistic model. The total number of spins is
|D| = 2293. A free boundary condition is assumed for the model, under which
the boundary points have less neighboring points than the interior points. This
assumption is natural to this dataset, as the lattice has an irregular shape.

Liang (2009c) compares the double MH sampler and the exchange
algorithm for this example. The double MH sampler started with the initial
value (α0, β0) = (0, 0) and was run 5 times independently. Each run consisted
of 10 500 iterations. The CPU time cost by each run was 4.2 s on a 2.8 GHz
computer. The overall acceptance rate the double MH moves was about 0.23.
Averaging over the 5 runs produced the following estimate: (α̂, β̂) = (−0.3028,
0.1228) with the standard error (8.2× 10−4, 2.7× 10−4).

The exchange algorithm was run for this example in a similar way to the
double MH sampler, except that the auxiliary variable y was generated using
an exact sampler, the summary state algorithm by Childs et al . (2001), which
is known to be suitable for high dimensional binary spaces. The exchange
algorithm was also run 5 times, and each run consisted of 10 500 iterations.
The CPU time cost by each run was 111.5 s, about 27 times longer than that
cost by the double MH sampler. The overall acceptance rate of the exact
auxiliary variables was 0.2. Averaging over the 5 runs produced the estimate
(α̂, β̂) = (−0.3030, 0.1219) with the standard error (1.1× 10−3, 6.0× 10−4).

It can be seen that the double MH sampler and the exchange algorithm
produced almost identical estimates for this example. These estimates are
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Figure 4.2 US cancer mortality data. Left: The mortality map of liver and
gallbladder cancers (including bile ducts) for white males during the decade
1950–1959. Black squares denote counties of high cancer mortality rate, and
white squares denote counties of low cancer mortality rate. Right: Fitted
cancer mortality rates by the autologistic model with the parameters being
replaced by its approximate Bayesian estimates. The cancer mortality rate
of each county is represented by the gray level of the corresponding square
(Liang, 2009c).

also very close to the estimate (−0.3008, 0.1231) obtained by Liang (2007a)
using contour Monte Carlo, and the estimate (−0.2999, 0.1234) obtained by
Liang et al . (2007) using stochastic approximation Monte Carlo. Note that
both contour Monte Carlo and stochastic approximation Monte Carlo try
first to approximate the unknown normalizing constant function, and then
estimate the parameters based on the approximated normalizing constant
function. As reported by the authors, both the algorithms took hours of
CPU time to approximate the normalizing constant function. This data is
analyzed by Sherman et al . (2006) using the MCMC maximum likelihood
algorithm (Geyer and Thompson, 1992), producing a similar estimate of
(−0.304, 0.117).

For this example, the double MH sampler produced almost identical results
with the exchange algorithm, but using much less CPU time. This advantage
can be seen clearer from the next example, where for some cases the exact
sampler does not work while the double MH sampler still works well.



102 AUXILIARY VARIABLE MCMC METHODS

4.8.1.2 Simulation Studies

To assess general accuracy of the estimates produced by the double MH
sampler, Liang (2009c) simulate 50 independent samples for the US cancer
mortality data under each setting of (α, β) given in Table 4.1. Since the lattice
is irregular, the free boundary condition was again assumed in the simulations.
The given parameters were then re-estimated using the double MH sampler
and the exchange algorithm. Both algorithms were run as in Section 4.8.1.1.
The computational results are summarized in Table 4.1.

Table 4.1 indicates that the double MH sampler can produce almost the
same accurate results as the exchange algorithm. It is remarkable that the
CPU time cost by the double MH sampler is independent of the values

Table 4.1 Computational results for the simulated US cancer mortality data
(recompiled from Liang, 2009c).

double MH sampler exchange algorithm

(α, β) α̂ β̂ CPUa α̂ β̂ CPUb

−.0038 .1010 −.0038 .1002
(0,0.1)c

(.0024) (.0018)
4.2

(.0024) (.0018)
103

−.0026 .2018 −.0025 .2007
(0,0.2)c

(.0021) (.0019)
4.2

(.0020) (.0019)
251

−.0018 .2994 −.0014 .2971
(0,0.3)c

(.0014) (.0018)
4.2

(.0014) (.0018)
821

.0013 .4023 −.0007 .3980
(0,0.4)c

(.0009) (.0015)
4.2

(.0004) (.0012)
7938

.1025 .0993 .1030 .0986
(0.1,0.1)c

(.0025) (.0022)
4.2

(.0025) (.0022)
110

.2944 .3032 .3012 .3008
(0.3,0.3)c

(.0098) (.0043)
4.2

(.0098) (.0043)
321

.5040 .5060 – –
(0.5,0.5)d

(.0227) (.0085)
4.2

– –
–

The numbers in the parentheses denote the standard error of the estimates. aThe CPU
time (in seconds) cost by a single run of the double MH sampler. bThe CPU time (in
seconds) cost by a single run of the exchange algorithm. cThe data were simulated using
the exact sampler. dThe data were simulated using the Gibbs sampler, starting with a
random configuration and then iterating for 100 000 Gibbs cycles (Liang, 2009c).
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of (α, β). Whereas, for the exchange algorithm, when β increases, the CPU
time increases exponentially. Childs et al . (2006) study the behavior of the
exact sampler for the Ising model, a simplified autologistic model with α be-
ing constrained to 0. For the Ising model, they fitted an exponential law for
the convergence time, and reported that the exact sampler may diverge at a
value of β lower than the critical value (≈0.44). Childs et al .’s finding is con-
sistent with the results reported in Table 4.1. It takes an extremely long CPU
time for the exact sampler to generate a sample under the settings (0, 0.4)
and (0.5, 0.5). Note that due to the effect of α, it usually takes a longer CPU
time for the exact sampler to generate a sampler under the setting (0, β) than
under the setting (α, β); and that when α and β are large, the accuracy of the
estimates tend to be reduced by their correlation.

4.9 Monte Carlo MH Sampler

In this section, we present the Monte Carlo Metropolis-Hastings (MCMH)
algorithm proposed by Liang and Jin (2010) for sampling from distributions
with intractable normalizing constants. The MCMH algorithm is a Monte
Carlo version of the Metropolis-Hastings algorithm. At each iteration, it re-
places the unknown normalizing constant ratio Z(θ)/Z(θ′) by a Monte Carlo
estimate. Under mild conditions, it is shown that the MCMH algorithm still
admits f(θ|x) as its stationary distribution. Like the double MH sampler, the
MCMH algorithm also avoids the requirement for perfect sampling, and thus
can be applied to many statistical models for which perfect sampling is not
available or very expensive.

4.9.1 Monte Carlo MH Algorithm

Consider the problem of sampling from the distribution (4.12). Let θt denote
the current draw of θ by the algorithm. Let y

(t)
1 , . . . , y

(t)
m denote the auxiliary

samples simulated from the distribution f(y|θt), which can be drawn by either
a MCMC algorithm or an automated rejection sampling algorithm (Booth
and Hobert, 1999). The MCMH algorithm works by iterating between the
following steps:

Monte Carlo MH Algorithm I

1. Draw ϑ from some proposal distribution Q(θt, ϑ).

2. Estimate the normalizing constant ratio R(θt, ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt, yt, ϑ) =
1
m

m∑
i=1

g(y(t)
i , ϑ)

g(y(t)
i , θt)

,
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where g(y, θ) = exp{−U(y, θ)}, and yt = (y(t)
1 , . . . , y

(t)
m ) denotes the

collection of the auxiliary samples.

3. Calculate the Monte Carlo MH ratio

r̃m(θt, yt, ϑ) =
1

R̂m(θt, yt, ϑ)

g(x, ϑ)f(ϑ)
g(x, θt)f(θt)

Q(ϑ, θt)
Q(θt, ϑ)

,

where f(θ) denotes the prior distribution imposed on θ.

4. Set θt+1 = ϑ with probability α̃(θt, yt, ϑ) = min{1, r̃m(θt, yt, ϑ)}, and
set θt+1 = θt with the remaining probability.

5. If the proposal is rejected in step 4, set yt+1 = yt. Otherwise, draw
samples yt+1 = (y(t+1)

1 , . . . , y
(t+1)
m ) from f(y|θt+1) using either a MCMC

algorithm or an automated rejection sampling algorithm.

Since the algorithm involves a Monte Carlo step to estimate the unknown
normalizing constant ratio, it is termed as ‘Monte Carlo MH’. Clearly, the
samples {(θt, yt)} forms a Markov chain, for which the transition kernel can
be written as

P̃m(θ, y; dϑ, dz) = α̃(θ, y, ϑ)Q(θ, dϑ)fm
ϑ (dz)

+ δθ,y(dϑ, dz)
[
1−

∫
Θ×Y

α̃(θ, y, ϑ)Q(θ, dϑ)fm
θ (dy)

]
,

(4.25)
where fm

θ (y) = f(y1, . . . , ym|θ) denotes the joint density of y1, . . . , ym. How-
ever, since here we are mainly interested in the marginal law of θ, in what
follows we will consider only the marginal transition kernel

P̃m(θ, dϑ) =
∫

Y

α̃(θ, y, ϑ)Q(θ, dϑ)fm
θ (dy)

+ δθ(dϑ)
[
1−

∫
Θ×Y

α̃m(θ, y, ϑ)Q(θ, dϑ)fm
θ (dy)

]
,

(4.26)

showing that P̃m(θ, dϑ) will converge to the posterior distribution f(θ|x) when
m is large and the number of iterations goes to infinity.

The MCMH algorithm requires the auxiliary samples to be drawn at equi-
librium, if a MCMC algorithm is used for generating the auxiliary samples.
To ensure this requirement to be satisfied, Liang and Jin (2010) propose to
choose the initial auxiliary sample at each iteration through an importance
resampling procedure; that is, to set y

(t+1)
0 = y

(t)
i with a probability propor-

tional to the importance weight

wi = g(y(t)
i , θt+1)/g(y(t)

i , θt). (4.27)

As long as y
(t+1)
0 follows correctly from f(y|θt+1), this procedure ensures that

all samples, yt+1, yt+2, yt+3, . . . , will be drawn at equilibrium in the followed
iterations, provided that θ does not change drastically at each iteration.
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Regarding the choice of m, we note that m may not necessarily be very
large in practice. In our experience, a value between 20 and 50 may be good
for most problems. It seems that the random errors introduced by the Monte
Carlo estimate of κ(θt)/κ(ϑ) can be smoothed out by path averaging over
iterations. This is particularly true for parameter estimation.

The MCMH algorithm can have many variants. A simple one is to draw
auxiliary samples at each iteration, regardless of acceptance or rejection of
the last proposal. This variant be described as follows:

Monte Carlo MH Algorithm II

1. Draw ϑ from some proposal distribution Q(θt, ϑ).

2. Draw auxiliary samples yt = (y(t)
1 , . . . , y

(t)
m ) from f(y|θt) using a MCMC

algorithm or an automated rejection algorithm.

3. Estimate the normalizing constant ratio R(θt, ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt, yt, ϑ) =
1
m

m∑
i=1

g(y(t)
i , ϑ)

g(y(t)
i , θt)

.

4. Calculate the Monte Carlo MH ratio

r̃m(θt, yt, ϑ) =
1

R̂m(θt, yt, ϑ)

g(x, ϑ)f(ϑ)
g(x, θt)f(θt)

Q(ϑ, θt)
Q(θt, ϑ)

.

5. Set θt+1 = ϑ with probability α̃(θt, yt, ϑ) = min{1, r̃m(θt, yt, ϑ)} and
set θt+1 = θt with the remaining probability.

MCMH II has a different Markovian structure from MCMH I. In
MCMH II, {θt} forms a Markov chain with the transition kernel as given by
(4.26). Note that MCMH II may be less efficient than MCMH I, as the latter
recycles the auxiliary samples when rejection occurs. Due to the recycle of
the auxiliary samples, one may expect that the successive samples generated
by MCMH I have significantly higher correlation than those generated by
MCMH II. However, our numerical results for one example show that this
may not be true (see Table 4.2 and Figure 4.3 for the details). This is
understandable, as the random error of R̂m(θt, yt, ϑ) depends mainly on θt

and ϑ instead of yt, especially when m is large.
Similar to MCMH II, we can propose another variant of MCMH, which in

Step 2 draws auxiliary samples from f(y|ϑ) instead of f(y|θt). Then

R̂∗
m(θt, yt, ϑ) =

1
m

m∑
i=1

g(y(t)
i , θt)

g(y(t)
i , ϑ)

,

forms an unbiased estimator of the ratio κ(θt)/κ(ϑ), and the Monte Carlo
MH ratio can be calculated as

r̃∗m(θt, yt, ϑ) = R̂∗
m(θt, yt, ϑ)

g(x, ϑ)π(ϑ)
g(x, θt)π(θt)

Q(ϑ, θt)
Q(θt, ϑ)

.
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Table 4.2 Computational results for the US cancer mortality data (Liang
and Jin, 2010).

algorithm setting α̂ β̂ CPU

m = 20 −0.3018 (1.2× 10−3) 0.1232 (6.0× 10−4) 11
MCMH I m = 50 −0.3018 (1.1× 10−3) 0.1230 (5.3× 10−4) 24

m = 100 −0.3028 (6.7× 10−4) 0.1225 (3.8× 10−4) 46

m = 20 −0.3028 (1.2× 10−3) 0.1226 (5.9× 10−4) 26
MCMH II m = 50 −0.3019 (1.0× 10−3) 0.1228 (5.3× 10−4) 63

m = 100 −0.3016 (8.2× 10−4) 0.1231 (3.8× 10−4) 129

Exchange – −0.3015 (4.3× 10−4) 0.1229 (2.3× 10−4) 33

The CPU time (in seconds) is recorded for a single run on a 3.0GHz personal computer.
The numbers in the parentheses denote the standard error of the estimates.
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Figure 4.3 Autocorrelation plots of the MCMH samples. The title ‘alpha20I’
stands for the α samples generated by MCMH I with m = 20, ‘alpha20II’
stands for the α samples generated by MCMH II with m = 20, and other
titles can be interpreted similarly (Liang and Jin, 2010).
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It is interesting to point out that if m = 1, this variant is reduced to the
double MH sampler described in Section 4.8.

In addition to f(y|θt) or f(y|ϑ), the auxiliary samples can also be gen-
erated from a third distribution which has the same support set as f(y|θt)
and f(y|ϑ). In this case, the ratio importance sampling method (Torrie and
Valleau, 1977; Chen and Shao, 1997) can be used for estimating the nor-
malizing constant ratio κ(θt)/κ(ϑ). The existing normalizing constant ratio
estimation techniques, such as bridge sampling (Meng and Wong, 1996) and
path sampling (Gelman and Meng, 1998), are also applicable to MCMH with
an appropriate strategy for generating auxiliary samples.

4.9.2 Convergence

Here, we prove the convergence of MCMH I; that is, showing

‖P̃ k
m(θ0, ·)− f(·|x)‖ → 0, as k→∞,

where k denotes the number of iterations, f(·|x) denotes the posterior distri-
bution of θ, and ‖ · ‖ denotes the total variation norm. Extension of these
results to MCMH II and other variants is straightforward.

Define

γm(θ, y, ϑ) =
R(θ, ϑ)

R̂(θ, y, ϑ)
.

In the context where confusion is impossible, we denote γm = γm(θ, y, ϑ), and
λm = | log(γm(θ, y, ϑ))|. Define

ρ(θ) = 1−
∫

Θ×Y

α̃m(θ, y, ϑ)Q(θ, dϑ)fm
θ (dy),

which represents the mean rejection probability a MCMH transition from θ.
To show the convergence of the MCMH algorithm, we also consider the

transition kernel

P (θ, ϑ) = α(θ, ϑ)Q(θ, ϑ) + δθ(dϑ)
[
1−

∫
Θ

α(θ, ϑ)Q(θ, ϑ)dϑ

]
,

which is induced by the proposal Q(·, ·). In addition, we assume the following
conditions:

(A1) Assume that P defines an irreducible and aperiodic Markov chain such
that πP = π, and for any θ0 ∈ Θ, limk→∞ ‖P k(θ0, ·)− π(·)‖ = 0.

(A2) For any (θ, ϑ) ∈ Θ×Θ,

γm(θ, y, ϑ) > 0, fm
θ (·)− a.s.
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(A3) For any θ ∈ Θ and any ε> 0,

lim
m→∞Q (θ, fm

θ (λm(θ, y, ϑ) >ε)) = 0,

where Q (θ, fm
θ (λm(θ, y, ϑ) >ε)) =

∫
{(ϑ,y):λm(θ,y,ϑ) > ε} fm

θ (dy)Q(θ, dϑ).

The condition (A1) can be simply satisfied by choosing an appropriate
proposal distribution Q(·, ·), following from the standard theory of the
Metropolis-Hastings algorithm (Tierney, 1994). The condition (A2) assumes
that the distributions f(y|θ) and f(y|ϑ) have a reasonable overlap such that
R̂ forms a reasonable estimator of R. The condition (A3) is equivalent to
assuming that for any θ ∈ Θ and any ε> 0, there exists a positive integer M
such that for any m >M,

Q (θ, fm
θ (λm(θ, y, ϑ) >ε)) ≤ ε.

Lemma 4.9.1 states that the marginal kernel P̃m has a stationary distri-
bution. It is proved in a similar way to Theorem 1 of Andrieu and Roberts
(2009). The relation between this work and Beaumont (2003) and Andrieu
and Roberts (2009) will be discussed in Section 4.9.4.

Lemma 4.9.1 Assume (A1) and (A2) hold. Then for any N ∈ N such that
for any θ ∈ Θ, ρ(θ) > 0, P̃m is also irreducible and aperiodic, and hence there
exists a stationary distribution π̃(θ) such that

lim
k→∞

‖P̃ k
m(θ0, ·)− π̃(·)‖ = 0.

Proof : Since P defines an irreducible and aperiodic Markov chain, to show
P̃m has the same property, it suffices to show that the accessible sets of P are
included in those of P̃m. More precisely, we show by induction that for any
k ∈ N, θ ∈ Θ and A ∈ B(Θ) such that P k(θ, A) > 0, then P̃ k

m(θ, A) > 0. First,
for any θ ∈ Θ and A ∈ B(Θ),

P̃m(θ, A) ≥
∫

A

[∫
Y

(1 ∧ γm)fm
θ (dy)

]
α(θ, ϑ)Q(θ, dϑ) + I(θ ∈ A)ρ(θ),

where I(·) is the indicator function. By condition (A2), we deduce that the
implication is true for k = 1. Assume the induction assumption is true up
to some k = n ≥ 1. Now, for some θ ∈ Θ, let A ∈ B(Θ) be such that
P n+1(θ, A) > 0 and assume that∫

Θ

P̃n
m(θ, dϑ)P̃m(ϑ, A) = 0,

which implies that P̃m(ϑ, A) = 0, P̃n
m(θ, ·)-a.s. and hence that P (ϑ, A) = 0,

P̃n
m(θ, ·)-a.s. from the induction assumption for k = 1. From this and the

induction assumption for k = n, we deduce that P (ϑ, A) = 0, Pn(θ, ·)-a.s. (by
contradiction), which contradicts the fact that Pn+1(θ, A) > 0.
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Lemma 4.9.2 considers the distance between the kernel P̃m and the ker-
nel P. It states that the two kernels can be arbitrarily close to each other,
provided that m is large enough.

Lemma 4.9.2 Assume (A3) holds. Let ε ∈ (0, 1]. Then there exists a value
M ∈ N such that for any ψ : Θ→ [−1, 1] and any m >M,

|P̃mψ(θ)− Pψ(θ)| ≤ 4ε.

Proof : Let

S = Pψ(θ)− P̃mψ(θ)

=
∫

Θ×Y

ψ(ϑ)
[
1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)

]
Q(θ, dϑ)fm

θ (dy)

− ψ(θ)
∫

Θ×Y

[
1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)

]
Q(θ, dϑ)fm

θ (dy),

and we therefore focus on the quantity

S0 =
∫

Θ×Y

∣∣∣1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)
∣∣∣Q(θ, dϑ)fm

θ (dy)

=
∫

Θ×Y

∣∣∣1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)
∣∣∣I(λm >ε)Q(θ, dϑ)fm

θ (dy)

+
∫

Θ×Y

∣∣∣1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)
∣∣∣I(λm ≤ ε)Q(θ, dϑ)fm

θ (dy).

Since, for any (x, y) ∈ R2,

|1 ∧ ex − 1 ∧ ey| = 1 ∧ |e0∧x − e0∧y| ≤ 1 ∧ |x− y|,
we deduce that

S0 ≤ Q(θ, fm
θ (I(λm > ε))) + Q(θ, fm

θ (1 ∧ λmI(λm ≤ ε))).

Consequently, we have

|S| ≤ 2Q(θ, fm
θ (I(λm > ε))) + 2Q(θ, fm

θ (1 ∧ λmI(λm ≤ ε))) ≤ 2ε + 2ε = 4ε.

This completes the proof of Lemma 4.9.2.

Theorem 4.9.1 concerns the convergence of the MCMH algorithm. It states
that the kernel P̃m shares the same stationary distribution with the MH
kernel P.

Theorem 4.9.1 Assume (A1), (A2) and (A3) hold. For any ε ∈ (0, 1], there
exist M ∈ N and K ∈ N such that for any m >M and k > K

‖P̃ k
m(θ0, ·)− π(·|x)‖ ≤ ε,

where π(·|x) denotes the posterior density of θ.
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Proof : Dropping m for notational simplicity, we have that for any k ≥ 1 and
any ψ : Θ→ [−1, 1],

P̃ kψ(θ0)− π(ψ) = S1(k) + S2(k),

where π(ψ) = π(ψ(θ)) for notational simplicity, and

S1(k) = P kψ(θ0)− π(ψ), S2(k) = P̃ kψ(θ0)− P kψ(θ0).

The magnitude of S1(k) can be controlled following from the convergence of
the transition kernel P. For any ε> 0, there exists k0 = k(ε, θ0) such that for
any k > k0,

|S1(k)| ≤ ε,

and, by Lemma 4.9.1 and condition (A1),

|S2(k)| ≤ |S2(k0)|+ 2ε

=

∣∣∣∣∣
k0−1∑
l=0

[P lP̃ k0−lψ(θ0)− P l+1P̃ k0−(l+1)ψ(θ0)]

∣∣∣∣∣ + 2ε

=

∣∣∣∣∣
k0−1∑
l=0

P l(P̃− P)P̃ k0−(l+1)ψ(θ0)

∣∣∣∣∣ + 2ε.

For any l > 1, we have for any ψ̄ : Θ→ [−1, 1],

P lψ̄(θ0) = ρ(θ0)lψ̄(θ0) +
l∑

j=1

P j−1{Q(θj−1, α(θj−1, θj)ρ(θj)l−jψ̄)}(θ0).

We apply Lemma 4.9.2 k0 times to show that there exist M(ε, θ0) such that
for any m >M(ε, θ0)

|S2| ≤ (4k0 + 2)ε.

Summarizing the results of S1 and S2, we conclude the proof by choosing
ε = ε/(4k0 + 3).

Theorem 4.9.1 implies, by standard MCMC theory (Theorem 1.5.3), that
for an integrable function h(θ), the path averaging estimator

∑n
k=1 h(θk)/n

will converge to its posterior mean almost surely; that is,

1
n

n∑
k=1

h(θk)→
∫

h(θ)f(θ|x)dθ, a.s.,

provided that
∫ |h(θ)|f(θ|x)dθ < ∞.

4.9.3 Spatial Autologistic Models (Revisited)

Consider again the spatial autologistic model and the US Cancer Mortality
data studied in Section 4.8.1. MCMH I and MCMH II were applied to this
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data with different choices of m = 20, 50, and 100. For each value of m, each
algorithm was run 50 times independently. Each run started with a random
point drawn uniformly on the region [−1, 1] × [0, 1], and consisted of 5000
iterations with the first 1000 iterations being discarded for the burn-in process
and the remaining iterations being used for inference. The overall acceptance
rates of the MCMH I moves are 0.408, 0.372 and 0.356 for the runs with
m = 20, m = 50, and m = 100, respectively. For MCMH II, they are 0.423,
0.380 and 0.360, respectively. This is reasonable, extra randomness introduced
by MCMH II in drawing auxiliary samples helps the system escape from
the current point. As m increases, this improvement decays. The numerical
results were summarized in Table 4.2. MCMH I and MCMH II produced
almost identical results for this example, while MCMH I only cost less than
50% CPU times than MCMH II. Figure 4.3 shows the autocorrelation of the
samples generated by MCMH I and MCMH II. From the plots, it can be
seen that the autocorrelation of the samples generated by MCMH I is not
significantly higher than that generated by MCMH II. This is consistent with
the numerical results presented in Table 4.2.

From Table 4.2, it is easy to see a pattern that when m increases, MCMH
tends to produce more accurate estimates, of course, at the price of longer
CPU times. It is worth noting that the MCMH estimator seems unbiased even
with a value of m as small as 20.

To assess the validity of the MCMH algorithms, the exchange algorithm
(Murray et al ., 2006) was applied to this data. It was also run 50 times
independently, and each run consisted of 5000 iterations with the first 1000
iterations being discarded for the burn-in process. The overall acceptance rate
was 0.2. The numerical results, summarized in Table 4.2, indicate that the
MCMH algorithms are valid.

4.9.4 Marginal Inference

In the literature, there are two algorithms, namely, grouped independence MH
(GIMH) and Monte Carlo within Metropolis (MCWM) (Beaumont, 2003),
which are similar in spirit to the MCMH algorithm. Both GIMH and MCWM
are designed for marginal inference for joint distributions.

Let π(θ, y) denote a joint distribution. Suppose that one is mainly
interested in the marginal distribution π(θ). For example, in Bayesian
statistics, θ could represent a parameter of interest and y a set of missing
data or latent variables. As implied by the Rao-Blackwellization theorem
(Bickel and Doksum, 2000), a basic principle in Monte Carlo computation
is to carry out analytical computation as much as possible. Motivated by
this principle, Beaumont (2003) proposes to replace π(θ) by its Monte Carlo
estimate in simulations when an analytical form π(θ) is not available. Let
y = (y1, . . . , ym) denote a set of independently identically distributed (iid)
samples drawn from a trial distribution qθ(y). By the standard theory of
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importance sampling, we know

π̃(θ) =
1
m

m∑
i=1

π(θ, yi)
qθ(yi)

, (4.28)

forms an unbiased estimate of π(θ). In simulations, GIMH treats π̃(θ) as a
known target density, and the algorithm can be summarized as follows. Let
θt denote the current draw of θ, and let yt = (y(t)

1 , . . . , y
(t)
m ) denote a set of iid

auxiliary samples drawn from qθ(y). One iteration of GIMH consists of the
following steps:

Group Independence MH Algorithm

1. Generate a new candidate point θ′ from a proposal distribution T (θ′|θt).

2. Draw m iid samples y′ = (y′1, . . . , y′m) from the trial distribution qθ′(y).

3. Accept the proposal with probability

min
{

1,
π̃(θ′)
π̃(θt)

T (θt|θ′)
T (θ′|θt)

}
.

If it is accepted, set θt+1 = θ′ and yt+1 = y′. Otherwise, set θt+1 = θt

and yt+1 = yt.

Like GIMH, MCWM also treats π̃(θ) as a known target density, but it re-
freshes the auxiliary samples yt at each iteration. One iteration of the MCMW
algorithm consists of the following steps:

Monte Carlo within Metropolis Algorithm

1. Generate a new candidate point θ′ from a proposal distribution T (θ′|θt).

2. Draw m iid samples y = (y1, . . . , ym) from the trial distribution qθt
(y)

and draw m iid samples y′ = (y′1, . . . , y
′
m) from the trial distribution

qθ′(y).

3. Accept the proposal with probability

min
{

1,
π̃(θ′)
π̃(θt)

T (θt|θ′)
T (θ′|θt)

}
.

If it is accepted, set θt+1 = θ′. Otherwise, set θt+1 = θt.

Although GIMH and MCMW look very similar, they have different Marko-
vian structures. In GIMH, {θt, yt} forms a Markov chain; whereas, in MCMW,
{θt} forms a Markov chain. The convergence of these two algorithms has been
studied by Andrieu and Roberts (2009) under similar conditions to those
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assumed for MCMH in this section. In the context of marginal inference,
MCMH can be described as follows:

Monte Carlo MH Algorithm (For Marginal Inference)

1. Generate a new candidate point θ′ from a proposal distribution T (θ′|θt).

2. Accept the proposal with probability

min
{

1, R̃(θt, θ
′)

T (θt|θ′)
T (θ′|θt)

}
,

where R̃(θt, θ
′) = 1

m

∑m
i=1 π(θ′, y(t)

i )/π(θt, y
(t)
i ) forms an unbiased esti-

mate of the marginal density ratio R(θt, θ
′) =

∫
π(θ′, y)dy/

∫
π(θt, y)dy.

If it is accepted, set θt+1 = θ′; otherwise, set θt+1 = θt.

3. Set yt+1 = yt if a rejection occurs in the previous step. Otherwise, gen-
erate auxiliary samples yt+1 = (y(t+1)

1 , . . . , y
(t+1)
m ) from the conditional

distribution π(y|θt+1). The auxiliary samples y
(t+1)
1 , . . . , y

(t+1)
m can be

generated via a MCMC simulation.

Taking a closer look at MCMH, we can find that MCMH is designed with
a very different rule in comparison with GIMH and MCMW. In GIMH and
MCMW, one estimates the marginal distributions; whereas, in MCMH, one
directly estimates the ratio of marginal distributions. In addition, MCMH
recycles the auxiliary samples when a proposal is rejected, and thus is poten-
tially more efficient than GIMH and MCMW, especially for the problems for
which generation of auxiliary samples is expensive.

MCMH can potentially be applied to many statistical models for which
marginal inference is our main interest, such as generalized linear mixed mod-
els (see, e.g., McCulloch et al ., 2008) and hidden Markov random field models
(Rue and Held, 2005). MCMH can also be applied to Bayesian analysis for
the missing data problems that are traditionally treated with the EM algo-
rithm (Dempster et al ., 1977) or the Monte Carlo EM algorithm (Wei and
Tanner, 1990). Since the EM and Monte Carlo EM algorithms are local opti-
mization algorithms, they tend to converge to suboptimal solutions. MCMH
may perform better in this respect. Note that one may run MCMH under
the framework of parallel tempering (Geyer, 1991) to help it escape from
suboptimal solutions.

4.10 Applications

In this section, we consider two applications of the double MH sampler,
Bayesian analysis for autonormal models and social networks.
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4.10.1 Autonormal Models

Consider a second-order zero-mean Gaussian Markov random field X = (Xij)
defined on an M×N lattice, whose conditional density function is given by

f(xij |β, σ2, xuv; (u, v) �= (i, j)) =
1√
2πσ

exp

− 1
2σ2

xij − βh

∑
(u,v)∈nh(i,j)

xuv

− βv

∑
(u,v)∈nv(i,j)

xuv − βd

∑
(u,v)∈nd(i,j)

xuv

2
,

(4.29)

where β = (βh, βv, βd) and σ2 are parameters, nh(i, j) = {(i, j−1), (i, j+1)},
nv(i, j) = {(i − 1, j), (i + 1, j)} and nd(i, j) = {(i − 1, j − 1), (i − 1, j + 1),
(i + 1, j − 1), (i + 1, j + 1)} are neighbors of (i, j). This model is stationary
when |βh|+ |βv|+2|βd| < 0.5 (Balram and Moura, 1993). The joint likelihood
function of this model can be written as

f(x|β, σ2) = (2πσ2)−MN/2|B|1/2 exp
{
− 1

2σ2
x′Bx

}
,

where B is an (MN×MN)-dimensional matrix, and |B| is intractable except
for some special cases (Besag and Moran, 1975).

To conduct a Bayesian analysis for the model, the following prior was
assumed for the parameters:

f(β) ∝ I(|βh|+ |βv|+ 2|βd| < 0.5), π(σ2) ∝ 1
σ2

, (4.30)

where I(·) is the indicator function. Under the free boundary condition, the
posterior distribution can be expressed as

f(β, σ2|x) ∝ (σ2)−
MN
2 −1|B|1/2 exp

{
−MN

2σ2

(
Sx−2βhXh−2βvXv−2βdXd

)}
× I(|βh|+ |βv|+ 2|βd| < 0.5),

(4.31)

where Sx =
∑M

i=1

∑N
j=1 x2

ij/MN, Xh =
∑M

i=1

∑N−1
j=1 xijxi,j+1/MN, Xv =∑M−1

i=1

∑N
j=1 xijxi+1,j/MN, and Xd =

(∑M−1
i=1

∑N−1
j=1 xijxi+1,j+1 +

∑M−1
i=1∑N

j=2 xijxi+1,j−1

)
/MN. Although σ2 can be integrated out from the poste-

rior, it is not suggested here. Working on the joint posterior will ease the
generation of auxiliary variables for the double MH sampler.

To ease implementation of sampling from the prior distribution, σ2 is
reparameterized by τ = log(σ2). Then

f(β, τ) ∝ I(|βh|+ |βv|+ 2|βd| < 0.5).
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Liang (2009c) applies the double MH sampler to this model. In step (a), (βt, τt)
is updated by a single MH step with a random walk proposal N((βt, τt)′, s2I4),
where s is set to 0.02. In step (b), the auxiliary variable y is generated by a single
cycle of Gibbs updates; that is,

yij |y(u,v)∈n(i,j) ∼N

βh

∑
(u,v)∈nh(i,j)

yuv + βv

∑
(u,v)∈nv(i,j)

yuv

+ βd

∑
(u,v)∈nd(i,j)

yuv, eτt

 ,

for i = 1, . . . , M and j = 1, . . . , N, starting with y = x.
The exchange algorithm is not applicable to the autonormal model, as no

exact sampler is available for it. However, under the free boundary condition,
the log-likelihood function of the model admits the following analytic form
(Balram and Moura, 1993):

l(X|β, σ2) = Constant− MN

2
log(σ2)

− MN

2σ2

(
Sx − 2βhXh − 2βvXv − 2βdXd

)
+

1
2

M∑
i=1

N∑
j=1

log
(

1− 2βv cos
iπ

M + 1
− 2βh cos

jπ

N + 1

− 4βd cos
iπ

M + 1
cos

jπ

N + 1

)
,

(4.32)

where Sx, Xh, Xv and Xd are as defined in (4.31). The Bayesian inference for
the model is then standard, with the priors as specified in (4.30). The Bayesian
analysis based on this analytic likelihood function is called the true Bayesian
analysis, and the resulting estimator is called the true Bayesian estimator.

In Liang (2009c), the double MH sampler and the true Bayesian analysis
were compared on the wheat yield data, which was collected on a 20 × 25
rectangular lattice (Table 6.1, Andrews and Herzberg, 1985). The data has
been analyzed by a number of authors, including Besag (1974), Huang and
Ogata (1999) and Gu and Zhu (2001), among others.

The double MH sampler was run 5 times independently. Each run started
with the point (0,0,0,0) and consisted of 50 500 iterations. In each run, the
first 500 iterations were discarded for burn-in, and 10 000 samples were then
collected at equally spaced time points. The overall acceptance rate of the
double MH moves was about 0.23. In the true Bayesian analysis, the posterior
was simulated using the MH algorithm 5 times. Each run also consisted of 50 500
iterations, with the first 500 iterations being discarded for burn-in and then
10 000 samples being collected from the remaining iterations at equally-spaced
time points. The proposal adopted here was a random walk proposal with the
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Table 4.3 Computational results for the wheat yield data (Liang, 2009c).

algorithm βh βv βd σ2

True Bayes 0.102(4e-4a) 0.355(3e-4) 0.006(2e-4) 0.123(2e-4)
DMH 0.099(6e-4) 0.351(5e-4) 0.006(3e-4) 0.126(3e-4)

aThe numbers in the parentheses denote the standard error of the estimates (Liang,
2009c).

variance-covariance matrix 0.022I4. The overall acceptance rate of the MH
moves was about 0.22. The numerical results presented in Table 4.3. indicate
that for this example the double MH sampler produced almost identical results
with the true Bayesian analysis.

4.10.2 Social Networks

Social network analysis has emerged as a key technique in modern sociology,
and it has also gained significant followings in biology, communication studies,
economics, etc. The exponential family of random graphs is among the most
widely-used, flexible models for social network analysis, which includes edge
and dyadic independence models, Markov random graphs (Frank and Strauss,
1986), exponential random graphs (also known as p∗ models) (Snijders et al .,
2006), and many other models. The model that is of particular interest to
current researchers is the exponential random graph model (ERGM), which
is a generalization of the Markov random graph model by incorporating some
higher order specifications. Not only does the ERGM show improvements in
goodness of fit for various datasets, but also it helps avoid the problem of near
degeneracy that often afflicts the fitting of Markov random graphs. Refer to
Robins et al . (2007) for an overview of ERGMs.

Consider a social network with n actors. Let Xij denote a network tie
variable; Xij = 1 if there is a network tie from i to j and 0 otherwise. Then,
one can specify X as a total set of Xij ’s in a matrix, the so-called adjacency
matrix. Here, X can be directed or non-directed. Let xij denote the (i, j)-
th entry of an observed matrix x. The likelihood function of the ERGM is
given by

f(x|θ) =
1

κ(θ)
exp

{∑
a∈A

θasa(x)

}
, (4.33)

where A denotes the set of configuration types, different sets of configuration
types representing different models; sa(x) is an explanatory variable/statistic,
θa is the coefficient of sa(x); θ = {θa : a ∈ A}; and κ(θ) is the normalizing
constant which makes (4.33) a proper probability distribution.
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In the literature, two methods are usually used for estimation of θ,
namely, the pseudo-likelihood method (Strauss and Ikeda, 1990) and Markov
chain Monte Carlo maximum likelihood estimation (MCMCMLE) method
(Snijders, 2002; Hunter and Handcock, 2006). The pseudo-likelihood method
originates in Besag (1974), which works on a simplified form of the likelihood
function under the dyadic independence assumption. Since this assumption
is often violated by real networks, the maximum pseudo-likelihood estimator
can perform very badly in practice (Handcock, 2003). The MCMCMLE
method originates in Geyer and Thompson (1992), and works as follows.
Let θ(0) denote an arbitrary point in the parameter space of (4.33), and let
z1, . . . , zm denote a sample of random networks simulated from f(z|θ(0)),
which can be obtained via a MCMC simulation. Then

log fm(x|θ) =
∑
a∈A

θasa(x)− log

(
1
m

m∑
i=1

exp

{∑
a∈A

θaSa(zi)−
∑
a∈A

θ(0)
a sa(zi)

})
− log(κ(θ(0))),

approaches to log f(x|θ) as m → ∞. The estimator θ̂ = arg maxθ log Pm(x|θ)
is called the MCMCMLE of θ. It is known that the performance of the method
depends on the choice of θ(0). If θ(0) lies in the attractive region of the MLE,
the method usually produces a good estimation of θ. Otherwise, the method
may converge to a local optimal solution. To resolve the difficulty in choos-
ing θ(0), Geyer and Thompson (1992) recommended an iterative approach,
which drew new samples at the current estimate of θ and then re-estimate:

(a) Initialize with a point θ(0), usually taking to be the maximum pseudo-
likelihood estimator.

(b) Simulate m samples from f(z|θ(t)) using MCMC, for example, the MH
algorithm.

(c) Find θ(t+1) = arg maxθ log fm(x|θ(t)).

(d) Stop if a specified number of iterations has reached, or the termination
criterion maxθ fm(x|θ(t)) − fm(x|θ(t)) < ε has reached. Otherwise, go
back to Step (b).

Even with this iterative procedure, as pointed out by Bartz et al . (2008),
nonconvergence is still quite common in the ERGMs. The reason is that the
starting point, the maximum pseudo-likelihood estimator, is often too far from
the MLE.

4.10.2.1 Exponential Random Graph Models

To define explicitly the ERGM, the explanatory statistics sa(x) need to be
specified. Since the number of possible specifications is large, only a few
key statistics are considered here, including the edge, degree distribution
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and shared partnership distribution. The edge, denoted by e(x), counts the
number of edges in the network. The other two statistics are defined below.

Degree Distribution. Let Di(x) denote the number of nodes in the net-
work x whose degree, the number of edges incident to the node, equals i. For
example, Dn−1(x) = n when x is the complete graph and D0(x) = n when
x is the empty graph. Note that D0(x), . . . , Dn−1(x) satisfy the constraint∑n−1

i=0 Di(x) = n, and the number of edges in x can be expressed as

e(x) =
1
2

n−1∑
i=1

iDi(x).

The degree distribution statistic (Snijders et al ., 2006; Hunter and
Handcock, 2006; Hunter, 2007) is defined as

u(x|τ) = eτ
n−2∑
i=1

{
1−

(
1− e−τ

)i
}

Di(x), (4.34)

where the additional parameter τ specifies the decreasing rate of the weights
put on the higher order terms. This statistic is also called the geometrically
weighted degree (GWD) statistic. Following Hunter et al . (2008), τ is fixed
to 0.25 throughout this subsection. Fixing τ to be a constant is sensible, as
u(x|τ) plays a role of explanatory variable for the ERGMs.

Shared Partnership. Following Hunter and Handcock (2006) and Hunter
(2007), we define one type of shared partner statistics, the edgewise shared
partner statistic, which are denoted by EP0(x), . . . , EPn−2(x). The EPk(x)
is the number of unordered pairs (i, j) such that Xij = 1 and i and j have
exactly k common neighbors. The geometrically weighted edgewise shared
partnership (GWESP) statistic is defined as

v(x|τ) = eτ
n−2∑
i=1

{
1−

(
1− e−τ

)i
}

EPi(x), (4.35)

where the parameter τ specifies the decreasing rate of the weights put on the
higher order terms. Again, following Hunter et al . (2008), τ is fixed to 0.25.

Based on the above summary statistics, we now consider three ERGMs
whose likelihood functions are as follows:

f(x|θ) =
1

κ(θ)
exp {θ1e(x) + θ2u(x|τ)} (Model 1)

f(x|θ) =
1

κ(θ)
exp {θ1e(x) + θ2v(x|τ)} (Model 2)

f(x|θ) =
1

κ(θ)
exp {θ1e(x) + θ2u(x|τ) + θ3v(x|τ)} (Model 3)
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To conduct a Bayesian analysis for the models, the prior f(θ) = Nd(0, 102Id)
was imposed on θ, where d is the dimension of θ, and Id is an identity matrix
of size d × d. Then, the DMH sampler can be applied to simulate from the
posterior. In Step (a), θt can be updated by a Gaussian random walk proposal
Nd(θt, s

2Id), where s is called the step size. In Step (b), the auxiliary variable
y is generated through a single cycle of Metropolis-within-Gibbs updates.

4.10.2.2 AddHealth Network

Jin and Liang (2009) compared the performance of the double MH sam-
pler and the MCMCMLE method on the AddHealth network, which was
collected during the first wave (1994–1995) of National Longitudinal Study
of Adolescent Health (AddHealth). The data were collected through a strat-
ified sampling survey in US schools containing grades 7 through 12. School
administrators made a roster of all students in each school and asked stu-
dents to nominate five close male and female friends. Students were allowed
to nominate friends who were not in their school, or not to nominate if they
did not have five close male or female students. A detailed description of the
dataset can be found in Resnick et al . (1997), Udry and Bearman (1998), or at
http://www.cpc.unc.edu/projects/addhealth. The full dataset contains
86 schools and 90 118 students. In Jin and Liang (2009), only the subnetwork
for school 10, which has 205 students, was analyzed. Also, only the undirected
network for the case of mutual friendship was considered.

The DMH sampler was run 5 times for the network. Each run was started
with (0,0) and iterated for 10 500 iterations, where the first 500 iterations
were discarded for the burn-in process and the samples collected from the re-
maining iterations were used for estimation. During the simulations, the step
size s was fixed to 0.2. The results are summarized in Table 4.4. For compar-
ison, the MCMCMLEs were also included in the table, where the estimates

Table 4.4 Parameter estimation for the AddHealth data (Jin and
Liang, 2009).

methods statistics model 1 model 2 model 3

edges −3.895(0.003) −5.545(0.004) −5.450(0.015)
DMH GWD −1.563(0.006) −0.131(0.011)

GWESP 1.847(0.004) 1.797(0.008)

edges −1.423(0.50) −5.280(0.10) −5.266(0.070)
MCMCMLEa GWD −1.305(0.20) −0.252(0.173)

GWESP 1.544(0.10) 1.635(0.022)

aThe results of model 1 and model 2 are from Hunter et al . (2008), and the results of
model 3 are from the software ERGM.



120 AUXILIARY VARIABLE MCMC METHODS

for the models 1 and 2 were from Hunter et al . (2008) and the estimates
for model 3 were calculated using the package statnet, which is available
at http://cran.r-project.org/web/packages/statnet/index.html. For
models 2 and 3, the double MH sampler and the MCMCMLE method pro-
duced similar estimates, except that the estimates produced by the double
MH sampler have smaller standard errors. However, for model 1, the esti-
mates produced by the two methods are quite different. As shown later, the
MCMCMLE method fails for model 1; the estimates produced by it may be
very far from the true values.

To assess accuracy of the MCMCMLE and double MH estimates, Jin and
Liang (2009) propose the following procedure, in a similar spirit to the para-
metric bootstrap method (Efron and Tibshirani, 1993). Since the statistics
{Sa(x) : a ∈ A} are sufficient for θ, if an estimate θ̂ is accurate, then Sa(x)’s
can be reversely estimated by simulated networks from the distribution f(x|̂θ).
The proposed procedure calculated the root mean square errors of the esti-
mates of Sa(x)’s:

(a) Given the estimate θ̂, simulate m networks, x1, . . . , xm, independently
using the Gibbs sampler.

(b) Calculate the statistics Sa(x), a ∈ A for each of the simulated networks.

(c) Calculate RMSE by following equation.

RMSE(Sa) =

√√√√ m∑
i=1

[
Sa(xi)− Sa(x)

]2
/m, a ∈ A, (4.36)

where Sa(x) is the corresponding statistic calculated from the net-
work x.

For each of the estimates shown in Table 4.4, the RMSEs were calculated
with m = 1000 and summarized in Table 4.5. The results indicate that the

Table 4.5 Root mean square errors of the MCMCMLE and DMH estimates
for the ADDHealth School 10 data (Jin and Liang, 2009).

methods statistics model 1 model 2 model 3

edges 22.187 19.204 20.449
Double MH GWD 10.475 9.668

GWESP 22.094 22.820

edges 4577.2 20.756 22.372
MCMCMLE GWD 90.011 10.045

GWESP 40.333 30.308
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DMH sampler produced much more accurate estimates than the MCMCMLE
method for all the three models. For model 1, the MCMCMLE method even
failed; the corresponding estimates have large standard errors and very large
RMSEs, as shown in Table 4.4 and Table 4.5. In addition to parameter es-
timation, Jin and Liang (2009) also applied the double MH sampler to the
variable selection for ERGMs. See Jin and Liang (2009) for the details.

Exercises

4.1 Implement the simulated annealing algorithm for minimizing the
function

H(x, y) =− (x sin(20y) + y sin(20x))2 cosh(sin(10x)x)
− (x cos(10y)− y sin(10x))2 cos h(cos(20y)y),

where (x, y) ∈ [−1.1, 1.1]2. It is known that the global minimum
of H(x, y) is −8.12465, and attained at (−1.0445,−1.0084) and
(1.0445,−1.0084).

4.2 Given a set of cities, the traveling salesman problem (TSP) is to find
the shortest tour which goes through each city once and only once.
Implement the simulated annealing algorithm for a traveling salesman
problem for which 100 cities are uniformly distributed on a square re-
gion of length 100 miles. Find the average length of the shortest tour.

4.3 Implement the simulated tempering algorithm for the traveling sales-
man problem described in Exercise 4.2.

4.4 Consider a simplified witch’s hat distribution (Geyer and Thompson,
1995), which is defined on a unit hypercube [0, 1]d of dimension d and
has the density function

f(x) ∝
{

(3d − 1)/2, x ∈ [0, 1
3 ]d,

1, otherwise.

Let d = 30, and simulate this density using the simulated tempering
algorithm.

4.5 Implement the slice sampler for the mixture distribution

1
3
N(−5, 1) +

2
3
N(5, 1).

4.6 Implement the Swendsen-Wang algorithm and the Wolff algorithm for
the Ising model, and compare their convergence speeds.

4.7 Let x denote a configuration of an Ising model of size 100 × 100 and
inverse temperature 0.4. Re-estimate the inverse temperature of the
model using the exchange algorithm and the double MH algorithm.
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4.8 The likelihood function of the very-soft-core model is defined as

f(x|θ) =
1

Z(θ)
exp

−
n∑

i=1

∑
j > i

φ(‖xi − xj‖, θ)
 , θ > 0,

where x1, . . . , xn denote n different points in a planar regionA, φ(t, θ) =
− log{1 − exp(−nt2/(θ|A|))} is the pairwise potential function, and
|A| denotes the area of the region A. The normalizing constant func-
tion of this model is also intractable. Assuming the prior distribution
f(θ) ∝ 1/θ, implement the double MH sampler for this model.

4.9 Discuss the theoretical property of the double MH algorithm.
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Chapter 5

Population-Based MCMC
Methods

An actively pursued research direction for alleviating the local-trap problem
suffered by the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970) is the population-based MCMC, where a population of
Markov chains are run in parallel, each equipped with possibly different but
related invariant distributions. Information exchange between different chains
provides a means for the target chains to learn from past samples, and this
in turn improves the convergence of the target chains.

Mathematically, the population-based MCMC may be described as fol-
lows. In order to simulate from a target distribution f(x), one simulates an
augmented system with the invariant distribution

f(x1, . . . , xN ) =
N∏

i=1

fi(xi), (5.1)

where (x1, . . . , xN ) ∈ XN , N is called the population size, f(x) ≡ fi(x)
for at least one i ∈ {1, 2, . . . , N}, and those different from f(x) are called
the trial distributions in terms of importance sampling. Different ways of
specifying the trial distributions and updating the population of Markov
chains lead to different algorithms, such as adaptive direction sampling (Gilks
et al., 1994), conjugate gradient Monte Carlo (Liu et al., 2000), parallel
tempering (Geyer, 1991; Hukushima and Nemoto, 1996)), evolutionary
Monte Carlo (Liang and Wong, 2000, 2001a), sequential parallel tempering
(Liang, 2003), and equi-energy sampler (Kou et al., 2006), which will be
described in the following sections.
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5.1 Adaptive Direction Sampling

Adaptive direction sampling (ADS) (Gilks et al., 1994) is an early population-
based MCMC method, in which each distribution fi(x) is identical to the tar-
get distribution, and at each iteration, one sample is randomly selected from
the current population to undergo an update along a line passed through an-
other sample randomly selected from the remaining set of the current popula-
tion. An important form of the ADS is the snooker algorithm, described below.

At each iteration, the snooker algorithm keeps a population of samples.
Let x(t) = (x(t)

1 , . . . , x
(t)
N ) denote the population obtained at iteration t, where

x
(t)
i is called an individual of the population. One iteration of the algorithm

involves the following steps.

The Snooker Algorithm (Steps)

1. Select one individual, say x
(t)
c , at random from the current population

x(t). The x
(t)
c is called the current point.

2. Select another individual, say x
(t)
a , from the remaining set of the current

population, (i.e., {x(t)
i : i �= c}), and form a direction et = x

(t)
c − x

(t)
a .

The individual x
(t)
a is called the anchor point.

3. Set yc = x
(t)
a + rtet, where rt is a scalar sampled from the density

f(r) ∝ |r|d−1f(x(t)
a + rtet), (5.2)

where d is the dimension of x, and the factor |r|d−1 is derived from a
transformation Jacobian (Roberts and Gilks, 1994).

4. Form the new population x(t+1) by replacing x
(t)
c by yc and leaving all

other individuals unchanged (i.e., set x
(t+1)
i = x

(t)
i for i �= c).

To show the sampler is proper, we need to show that at the equilibrium the
new sample yc is independent of the x

(t)
i for i �= a and is distributed as f(x).

This fact follows directly from the following lemma, a generalized version of
Lemma 3.1 of Roberts and Gilks (1994), proved by Liu et al. (2000).

Lemma 5.1.1 Suppose x ∼ π(x) and y is any fixed point in a d-dimensional
space. Let e = x−y. If r is drawn from distribution f(r) ∝ |r|d−1π(y+re), then
x′ = y + re follows the distribution π(x). If y is generated from a distribution
independent of x, then x′ is independent of y.

Proof : Without loss of generality, we assume that y is the origin, and then
e = x. If r is drawn from f(r) ∝ |r|d−1π(rx), then for any measurable
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function h(x),

E{h(x′)} = E[E{h(x′)|x}] =
∫ ∫

h(rx)
|r|d−1π(rx)∫ |r′|d−1π(r′x)dr′

π(x)drdx.

Let g(x) =
∫ |r′|d−1π(r′x)dr′. Then g(x) has the property that g(sx)

= |s|−dg(x). Let z = rx, then

E{h(x′)} =
∫ ∫

h(z)π(z)|r|−1π(r−1z)/g(r−1z)drdz

=
∫

h(z)π(z)/g(z)
∫
|r|−d−1π(r−1z)drdz

=
∫

h(z)π(z)dz = Eπ{h(z)}.

Thus, the sample x′ follows the distribution π(x). Because the expecta-
tion E{h(x′)} does not depend on a particular value of y, x′ and y are
independent.

Note that the directional sampling step can be replaced by one or several
MH moves or the griddy Gibbs sampler (Ritter and Tanner, 1992) in cases
where sampling directly from f(r) is difficult.

Although the ADS provides a useful framework enabling different chains
to learn from each other, the algorithm alone is not very effective in improving
sampling efficiency, mainly because the sampling direction generated by the
ADS is too arbitrary. The question of how a learnt/efficient sampling direction
for the ADS can be generated is discussed in the next section: we describe the
conjugate gradient Monte Carlo (CGMC) algorithm (Liu et al., 2000), which,
at each iteration, employs a local optimization method, such as the conjugate
gradient method, to construct a sampling direction for the ADS.

5.2 Conjugate Gradient Monte Carlo

Let x(t) = (x(t)
1 , . . . , x

(t)
N ) denote the current population of samples. One iter-

ation of the CGMC sampler consists of the following steps.

Conjugate Gradient Monte Carlo (Steps)

1. Select one individual, say x
(t)
c , at random from the current popula-

tion x(t).

2. Select another individual, say x
(t)
a , at random from the remaining set

of the population (i.e. {x(t)
i : i �= c}). Starting with x

(t)
a , conduct a de-

terministic search, using the conjugate gradient method or the steepest
descent method, to find a local mode of f(x). Denote the local mode
by z

(t)
a , which is called the anchor point.
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3. Set yc = z
(t)
a + rtet, where et = x

(t)
c − z

(t)
a , and rt is a scalar sampled

from the density

f(r) ∝ |r|d−1f(z(t)
a + rtet), (5.3)

where d is the dimension of x, and the factor |r|d−1 is derived from the
transformation Jacobian.

4. Form the new population x(t+1) by replacing x
(t)
c by yc and leaving

other individuals unchanged (i.e., set x
(t+1)
i = x

(t)
i for i �= c).

The validity of this algorithm follows directly from Lemma 5.1.1. Note
that yc is independent of x

(t)
a , as the latter can be viewed as a function of the

anchor point z
(t)
a .

The gradient-based optimization procedure performed in Step 2 can
be replaced by some other optimization procedures, for example, a short
run of simulated annealing (Kirkpatrick et al., 1983). Since the local
optimization step is usually expensive in computation, Liu et al. (2000)
proposed the multiple-try MH algorithm (described in Section 3.2.3) for the
line sampling step, which enables effective use of the local modal information
of the distribution and thus improve the convergence of the algorithm.
The numerical results indicate that the CGMC sampler offers significant
improvement over the MH algorithm, especially for the hard problems.
Note that for CGMC, the population size N is not necessarily very large.
As shown by Liu et al. (2000), N = 4 or 5 works well for most problems
they tried.

5.3 Sample Metropolis-Hastings Algorithm

In adaptive direction sampling and conjugate gradient Monte Carlo, when
updating the population, one first selects an individual from the population
and then updates the selected individual using the standard Metropolis-
Hastings procedure. If the candidate state is of high quality relative to the
whole population, one certainly wants to keep it in the population. However,
the acceptance of the candidate state depends on the quality of the indi-
vidual that is selected for updating. To improve the acceptance rate of high
quality candidates and to improve the set {x(t)

i : i = 1, . . . , N} as a sam-
ple of size N from f(x), Lewandowski and Liu (2008) proposed the sampling
Metropolis-Hastings (SMH) algorithm. A simple version of this algorithm can
be described as follows.

Let xt =
{

x
(t)
1 , . . . , x

(t)
N

}
denote the current population. One iteration of

SMH consists of the following two steps:
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Sample MH algorithm

1. Take one candidate draw x
(t)
0 from a proposal distribution g(x) on X,

and compute the acceptance probability

α
(t)
0 =

∑N
i=1

g(x
(t)
i )

f(x
(t)
i )∑N

i=0
g(x

(t)
i )

f(x
(t)
i )
−min0≤k≤N

g(x
(t)
k )

f(x
(t)
k )

.

2. Draw U ∼ Unif (0, 1), and set

St+1 =
{
x

(t+1)
1 , . . . , x(t+1)

n

}
=

{
St, if U > α

(t)
0 ;{

x
(t)
1 , . . . , x

(t)
i−1, x

(t)
0 , x

(t)
i+1, . . . , x

(t)
n

}
, if U ≤ α

(t)
0 ,

where i is chosen from (1, . . . , n) with the probability weights(
g(x(t)

1 )

f(x(t)
1 )

, . . . ,
g(x(t)

n )

f(x(t)
n )

)
.

Thus, xt+1 and xt differ by one element at most.

It is easy to see that in the case of N = 1, SMH reduces to the tradi-
tional MH with independence proposals. The merit of SMH is that to accept
a candidate state, it compares the candidate with the whole population, in-
stead of a single individual randomly selected from the current population.
Lewandowski and Liu (2008) show that SMH will converge under mild condi-
tions to the target distribution

∏N
i=1 f(xi) for {x1, . . . , xN}, and can be more

efficient than the traditional MH and adaptive direction sampling. Extensions
of SMH to the case where xi’s are not identically distributed are of interest.

5.4 Parallel Tempering

Another research stream of population-based MCMC is pioneered by the
parallel tempering algorithm (Geyer, 1991), also known as exchange Monte
Carlo Hukushima and Nemoto (1996). In parallel tempering, each chain is
equipped with an invariant distribution powered by an auxiliary variable,
the so-called inverse temperature. Let f(x) ∝ exp(−H(x)), x ∈ X denote
the distribution of interest, where H(x) is called the energy function in
terms of physics. In Bayesian statistics, H(x) corresponds to the negative
log-posterior distribution of the parameters. Parallel tempering simulates in
parallel a sequence of distributions

fi(x) ∝ exp(−H(x)/Ti), i = 1, . . . , n, (5.4)
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where Ti is the temperature associated with the distribution fi(x). The
temperatures form a ladder T1 >T2 > · · ·> Tn−1 >Tn ≡ 1, so fn(x) ≡ f(x)
corresponds to the target distribution. The idea underlying this algorithm can
be explained as follows: Raising temperature flattens the energy landscape of
the distribution and thus eases the MH traversal of the sample space, the high
density samples generated at the high temperature levels can be transmitted
to the target temperature level through the exchange operations (described
below), and this in turn improves convergence of the target Markov chain.

Let x(t) = (x(t)
1 , . . . , x

(t)
N ) denote the current population of samples. One

iteration of parallel tempering consists of the following steps.

1. Parallel MH step: Update each x
(t)
i to x

(t+1)
i using the MH algorithm.

2. State swapping step: Try to exchange x
(t+1)
i with its neighbors: Set

j = i − 1 or i + 1 according to probabilities qe(i, j), where qe(i, i + 1)
= qe(i, i− 1) = 0.5 for 1 < i < N and qe(1, 2) = qe(N, N− 1) = 1, and
accept the swap with probability

min
{

1, exp
([

H(x(t+1)
i )−H(x(t+1)

j )
] [ 1

Ti
− 1

Tj

])}
. (5.5)

In practice, to have a reasonable acceptance rate of the proposed exchange,
the temperatures need to be chosen carefully. As for simulated tempering, we
recommend the following method to set the temperature ladder in a sequential
manner: It starts with the highest temperature T1, and set the next lower
temperature such that

Vari(H(x))δ2 = O(1), (5.6)

where δ = 1/Ti+1 − 1/Ti, and the variance Vari(·) is taken with respect to
fi(x) and can be estimated through a preliminary run. The condition (5.6)
essentially requires that the distributions on neighboring temperature levels
have a considerable overlap.

Parallel tempering is very powerful for simulating complicated systems,
such as spin-glasses (Hukushima and Nemoto, 1996; de Candia and Coniglio,
2002) and polymer simulations (Neirotti et al., 2000; Yan and de Pablo, 2000).
Compared to simulated tempering (Marinari and Parisi, 1992), parallel tem-
pering has the apparent advantage that it avoids the problem of normalizing
constant estimation for the distributions fi(x)’s.

5.5 Evolutionary Monte Carlo

The genetic algorithm (Holland, 1975) has been successfully applied to
many hard optimization problems, such as the traveling salesman problem
(Chatterjee et al., 1996), protein folding (Patton et al., 1995), and machine
learning (Goldberg, 1989), among others. It is known that its crossover
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operator is the key to its power; this makes it possible for the genetic algorithm
to explore a far greater range of potential solutions to a problem than con-
ventional optimization algorithms. Motivated by the genetic algorithm, Liang
and Wong (2000, 2001a) propose the evolutionary Monte Carlo algorithm
(EMC), which incorporates most attractive features of the genetic algorithm
into the framework of Markov chain Monte Carlo. EMC works in a fashion
similar to parallel tempering: A population of Markov chains are simulated
in parallel with each chain having a different temperature. The difference
between the two algorithms is that EMC includes a genetic operator, namely,
the crossover operator in its simulation. The numerical results indicate
that the crossover operator improves the convergence of the simulation
and that EMC can outperform parallel tempering in almost all scenarios.

To explain how the crossover operator can be used effectively in EMC, we
suppose the target distribution of interest is written in the form

f(x) ∝ exp{−H(x)}, x ∈ X ⊂ Rd,

where the dimension d> 1, and H(x) is called the fitness function in terms of
genetic algorithms. Let x = {x1, . . . , xN} denote a population of size N with
xi from the distribution with density

fi(x) ∝ exp{−H(x)/Ti}.
In terms of genetic algorithms, xi is called a chromosome or an individual,
each element of xi is called a gene, and a realization of the element is called a
genotype. As in parallel tempering, the temperatures form a decreasing ladder
T1 >T2 > · · ·> TN ≡ 1, with fN (x) being the target distribution.

5.5.1 Evolutionary Monte Carlo in Binary-Coded
Space

We describe below how EMC works when xi is coded by a binary vector.
For simplicity, let x = {x1, . . . , xN} denote the current population, where
xi = (βi,1, . . . , βi,d) is a d-dimensional binary vector, and βi,j ∈ {0, 1}. The
mutation, crossover and exchange operators employed by EMC can be de-
scribed as follows.

Mutation. In mutation, a chromosome, say xk, is first randomly selected
from the current population x, then mutated to a new chromosome yk by
reversing the value (0 ↔ 1) of some genotypes which are also randomly se-
lected. A new population is formed as y = {x1, · · · , xk−1, yk, xk+1, · · · , xN},
and it is accepted with probability min(1, rm) according to the Metropolis
rule, where

rm =
f(y)
f(x)

T(x|y)
T(y|x)

= exp
{
−H(yk)−H(xk)

Tk

}
T(x|y)
T(y|x)

, (5.7)
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and T(·|·) denotes the transition probability between populations. If the
proposal is accepted, replace the current population x by y; otherwise, keep
x as the current population.

In addition to the 1-point and 2-point mutations, one can also use the
uniform mutation in which each genotype of xk is mutated with a nonzero
probability. All these operators are symmetric, that is, T(x|y) = T(y|x).

Crossover. One chromosome pair, say xi and xj (i �= j), are selected from
the current population x according to some selection procedure, for example,
a roulette wheel selection or a random selection. Without loss of generality, we
assume that H(xi) ≥ H(xj). Two ‘offspring’ are generated according to some
crossover operator (described below), the offspring with a smaller fitness value
is denoted by yj and the other denoted by yi. A new population is formed
as y = {x1, · · · , xi−1,yi, xi+1, · · · , xj−1, yj , xj+1, · · · , xN}. According to the
Metropolis rule, the new population is accepted with probability min(1,rc),

rc =
f(y)
f(x)

T(x|y)
T(y|x)

= exp
{
−H(yi)−H(xi)

Ti
− H(yj)−H(xj)

Tj

}
T(x|y)
T(y|x)

,

(5.8)

where T(y|x) = P(xi, xj |x)P(yi, yj |xi, xj), P(xi, xj |x) denotes the selection
probability of (xi, xj) from the population x, and P(yi, yj |xi, xj) denotes the
generating probability of (yi, yj) from the parental chromosomes (xi, xj).

Liang and Wong (2000, 2001a) recommended the following procedure for
selection of parental chromosomes:

1. Select the first chromosome xi according to a roulette wheel procedure
with probability

p(xi) =
exp(−H(xi)/Ts)∑N
i=1 exp(−H(xi)/Ts)

,

where Ts is called the selection temperature, and is not necessarily
the same with any Ti. Intuitively, if Ts is low, then a high quality
chromosome will be likely selected from the current population to mate
with others.

2. Select the second chromosome xj randomly from the remaining of the
population.

Then, the selection probability of (xi, xj) is

P((xi, xj)|x) =
1

(N− 1)Z(x)

{
exp

(
−H(xi)

Ts

)
+ exp

(
−H(xj)

Ts

)}
, (5.9)

where Z(x) =
∑N

i=1 exp{−H(xi)/Ts}. The P((yi, yj)|y) can be calculated
similarly.
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There are many possible crossover operators which can leave the joint
distribution (5.1) invariant. The 1-point crossover operator is perhaps the
simplest one. Given the two parental chromosomes, xi and xj , the 1-point
crossover operator proceeds as follows. First an integer crossover point k is
drawn randomly from the set {1, 2, · · · , d}, then x′

i and x′
j are constructed by

swapping the genotypes to the right of the crossover point between the two
parental chromosomes:

(xi,1, · · · , xi,d) (xi,1, · · · , xi,k, xj,k+1, · · · , xj,d)
=⇒

(xj,1, · · · , xj,d) (xj,1, · · · , xj,k, xi,k+1, · · · , xi,d).

If there are k (k> 1) crossover points, it is called the k-points crossover.
One extreme case is the uniform crossover, in which each genotype of x′

i

is randomly chosen from the two parental genotypes and the corresponding
genotype of x′

j is assigned to the parental genotype not chosen by x′
i. With the

operation, the beneficial genes of parental chromosomes can combine together
and possibly produce some high quality individuals.

In addition to the k-point crossover operator, Liang and Wong (2000) in-
troduce an adaptive crossover operator, in which two offspring are generated.
For each position, if xi and xj have the same value, yi and yj copy the value,
and independently reverse it with probability p0; if xi and xj have differ-
ent values, yi copies the value of xi and reverses it with probability p2, yj

copies the value of xj and reverses it with probability p1. Usually one sets
0 < p0 ≤ p1 ≤ p2 < 1. The adaptive crossover tends to preserve the good
genotypes of a population, and thus enhance the ability of EMC learning from
existing samples. The generating probability of the new offspring is

P((yi, yj)|(xi, xj)) = pn11
11 pn12

12 pn21
21 pn22

22 , (5.10)

where pab and nab (a, b = 1, 2) denote, respectively, the probability and fre-
quency of the cell (a, b) of Table 5.1. Note that n11 + n12 + n21 + n22 = d.

Exchange. This operation is the same as that used in parallel tempering
(Geyer, 1991; Hukushima and Nemoto, 1996). Given the current population x

Table 5.1 Generating probability for the single position of the new offspring
in the adaptive crossover operator.

Parents: offspring: yi and yj

xi and xj same different

Same p2
0 + (1− p0)2 2p0(1− p0)

Different p1(1− p2) + p2(1− p1) p1p2 + (1− p1)(1− p2)
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and the temperature ladder t, (x, t) = (x1, T1,· · · , xN , TN ), one tries to make
an exchange between xi and xj without changing the t’s. The new population
is accepted with probability min(1,re),

re =
f(x′)
f(x)

T(x|x′)
T(x′|x)

= exp
{

(H(xi)−H(xj))
(

1
Ti
− 1

Tj

)}
. (5.11)

Typically, the exchange is only performed on neighboring temperature levels.

The Algorithm. Based on the operators described above, the algorithm
can be summarized as follows. Given an initial population x = {x1, · · · , xN}
and a temperature ladder t = {T1, T2, · · · , TN}, EMC iterates between the
following two steps:

1. Apply either mutation or crossover operator to the population with
probability qm and 1 − qm, respectively. The qm is called the muta-
tion rate.

2. Try to exchange xi with xj for N pairs (i, j) with i being sampled
uniformly on {1, · · · , N} and j = i ± 1 with probability qe(i, j), where
qe(i, i + 1) = qe(i, i− 1) = 0.5 and qe(1, 2) = qe(N, N− 1) = 1.

5.5.2 Evolutionary Monte Carlo in Continuous Space

Let x = {x1, . . . , xN} denote the current population. If xi is coded as a
real vector, that is, xi = (βi,1, . . . , βi,d) with βi,j ∈ R, then the mutation
and crossover operators can be defined as follows. (The description for the
exchange operator is skipped below, as it is the same as that used for the
binary-coded vectors.)

Mutation. The mutation operator is defined as an additive Metropolis-
Hastings move. One chromosome, say xk, is randomly selected from the
current population x. A new chromosome is generated by adding a random
vector ek so that

yk = xk + ek, (5.12)

where the scale of ek is chosen such that the operation has a moderate
acceptance rate, for example, 0.2 to 0.5, as suggested by Gelman et al.
(1996). The new population y = {x1, · · · , xk−1, yk, xk+1, · · · , xN} is accepted
with probability min(1,rm), where

rm =
f(y)
f(x)

T(x|y)
T(y|x)

= exp
{
−H(yk)−H(xk)

Tk

}
T(x|y)
T(y|x)

, (5.13)

and T(·|·) denotes the transition probability between populations.
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Crossover. One type of crossover operator that works for the real-coded
chromosomes is the so-called ‘real crossover’, which includes the k-point and
uniform crossover operators as described in Section 5.5.1. They are called real
crossover by Wright (1991) to indicate that they are applied to real-coded
chromosomes.

In addition to the real crossover, Liang and Wong (2001a) propose the
snooker crossover operator:

1. Randomly select one chromosome, say xi, from the current popula-
tion x.

2. Select the other chromosome, say xj , from the sub-population x \ {xi}
with a probability proportional to exp{−H(xj)/Ts}, where Ts is called
the selection temperature.

3. Let e = xi − xj , and yi = xj + re , where r ∈ (−∞,∞) is a random
variable sampled from the density

f(r) ∝ |r|d−1f(xj + re). (5.14)

4. Construct a new population by replacing xi with the ‘offspring’ yi, and
replace x by y.

The validity of this operator follows directly from Lemma 5.1.1. As men-
tioned in Section 5.1, the line sampling step can be replaced by one or a few
MH moves or the griddy Gibbs when sampling directly from f(r) is difficult.

5.5.3 Implementation Issues

EMC includes three free parameters, namely the population size N, the tem-
perature ladder t, and the mutation rate qm. Regarding the setting of these
parameters, we first note that both parameters, N and t, are related to the
diversity of the population, and that a highly diversified population is always
preferred for the system mixing. In EMC, one has two ways to increase the
diversity of a population. One is to increase the population size, and the other
is to steepen the temperature ladder by increasing the value of T1. A certain
balance is needed between the two ways. A small population size may result
in a steeper temperature ladder and a low acceptance rate of exchange oper-
ations. A large population size may result in the target chain being less likely
to be updated in per-unit CPU time, and thus converges slowly. Neither is
an attractive choice. A heuristic guideline is to choose the population size
comparable (at least) with the dimension of the problem, choose the highest
temperature such that the (anticipated) energy barriers can be easily over-
come by a MH move, and set the temperature ladder to produce a moderate
acceptance rate of exchange operations. In practice, N and t can be set as in
parallel tempering. Starting with the highest temperature, add temperature
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level by level to the ladder, until the lowest (target) temperature level has
been reached. When a new temperature level is added to the current ladder,
a moderate acceptance rate should be maintained for the exchange operations
between neighboring levels.

Regarding the choice of qm, we note that the mutation operation usu-
ally provides a local exploration around a local mode, and in contrast, the
crossover operation usually provides a much more global exploration over the
entire sample space and has often a low acceptance rate. To balance the two
kinds of operations, we suggest to set qm to a value between 0.25 and 0.4,
which may not be optimal but usually works well.

5.5.4 Two Illustrative Examples

Below, we illustrate the performance of EMC with two examples and make
comparisons with parallel tempering.

A Highway Data Example. This dataset relates the automobile accident
rate (in accidents per million vehicle miles) to 13 potential independent vari-
ables. It includes 39 sections of large highways in the state of Minnesota in
1973. Weisberg (1985) uses this data to illustrate variable selection for a mul-
tiple regression. According to Weisberg’s analysis, variable 1, the length of
the segment in miles, should be included in the regression. Variables 11, 12
and 13 are dummy variables that taken together indicate the type of highway,
so they should be regarded as one variable, including all or none of them in
a model. After this simplification, the data consists of 10 independent vari-
ables, and the number of all possible subset models is reduced to 1024, which
is manageable even for an exhaustive search.

To illustrate EMC as a simulation approach, it was applied to simulate
from the Boltzmann distribution defined on Cp (Mallows, 1973) as follows:

f(x) =
1

Z(τ)
exp{−Cp(x)/τ}, (5.15)

where x denotes a model, τ denotes the temperature, Cp(x) denotes the Cp

value of the model x, and Z(τ) =
∑

x exp{−Cp(x)/τ} is the normalizing
constant. The interest of this distribution comes from the connection
between Bayesian and non-Bayesian methods for regression variable selection
problems. Liang et al. (2001) showed that under an appropriate prior setting,
sampling from the posterior distribution of a linear regression model is
approximately equivalent to sampling from (5.15) with τ = 2.

For this example, the chromosome was coded as a 10-dimensional bi-
nary vector, with each component indicating the inclusion/exclusion of the
corresponding variable. The highest temperature was set to 5, the lowest
temperature was set to 1, and the intermediate temperatures were equally
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spaced between the two limits. A 1-point mutation and a uniform crossover
were used in the simulations, and the mutation rate was 0.25.

In the first run, the population size was set to N = 5, and EMC was run
for 15 000 iterations. The CPU time was 105s on an Ultra Sparc2 workstation
(all computations reported in this subsection were done on the same com-
puter). The overall acceptance rates of the mutation, crossover and exchange
operations were 0.59, 0.60, and 0.76, respectively. During the run, 457 differ-
ent Cp values were sampled at the lowest temperature t = 1. These Cp values
have included the smallest 331 Cp values and covered 99.9% probability of the
distribution (5.15). The histogram of the samples is shown in Figure 5.1(b).
For comparison, Figure 5.1(a) shows the true distribution f(x), which was
calculated for all 1024 models at temperature t = 1. This indicates that
the distribution f(x) has been estimated accurately by the EMC samples. In
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Figure 5.1 Comparison of EMC and parallel tempering for the highway data
example. (a) A histogram representation of the distribution (5.15). (b) The
histogram of Cp produced in a run of EMC. (c) Comparison of the conver-
gence rates of EMC and parallel tempering with the population size N = 5.
(d) Comparison of the convergence rates of EMC and parallel tempering with
the population size N = 20 (Liang and Wong, 2000).
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another run, the population size was set to 20 and the other parameters were
kept unchanged. EMC was run for 10 000 iterations with CPU 179s. The over-
all acceptance rates of the mutation, crossover and exchange operations were
0.62, 0.51 and 0.95, respectively. The results are summarized in Figure 5.1.

Parallel tempering was also applied to this example. A 1-point mutation
was used for the local updating. In one run, the population size was set to 5
and 10 000 iterations were produced within 105s. The overall acceptance rates
of the local updating and exchange operations were 0.59 and 0.77, respectively.
Parallel tempering cost longer CPU time per iteration, because each chain
needs to undergo an update step at each iteration, whereas, in EMC, only
40% of samples were selected to mate in the crossover step. In another run,
the population size was 20, and 5000 iterations were produced within 193s.
The overall acceptance rates of the local updating and exchange operations
were 0.62 and 0.94, respectively. The results are summarized in Figure 5.1.

Figure 5.1(c) and 5.1(d) compare the convergence rates of parallel temper-
ing and EMC, where the ‘distance’ is defined as the L2 distance between the
estimated and true distributions of Cp. In the two plots, EMC and parallel
tempering have been adjusted to have the same time scale. The comparison
indicates that EMC has a faster convergence rate than parallel tempering,
regardless of the population size used in simulations.

A Multimodal Example. Consider simulating from a 2D mixture normal
distribution

f(x) =
1√
2πσ

20∑
k=1

wk exp
{
− 1

2σ2
(x− µk)′(x− µk)

}
, (5.16)

where σ = 0.1, w1 = · · · = w20 = 0.05. The mean vectors µ1, µ2, · · ·, µ20

(given in Table 5.2) are uniformly drawn from the rectangle [0, 10] × [0, 10]
(Liang and Wong, 2001a). Among them, components 2, 4, and 15 are well
separated from the others. The distance between component 4 and its near-
est neighboring component is 3.15, and the distance between component 15

Table 5.2 Mean vectors of the 20 components of the mixture normal distri-
bution (Liang and Wong, 2001a).

k µk1 µk2 k µk1 µk2 k µk1 µk2 k µk1 µk2

1 2.18 5.76 6 3.25 3.47 11 5.41 2.65 16 4.93 1.50

2 8.67 9.59 7 1.70 0.50 12 2.70 7.88 17 1.83 0.09

3 4.24 8.48 8 4.59 5.60 13 4.98 3.70 18 2.26 0.31

4 8.41 1.68 9 6.91 5.81 14 1.14 2.39 19 5.54 6.86

5 3.93 8.82 10 6.87 5.40 15 8.33 9.50 20 1.69 8.11
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and its nearest neighboring component (except component 2) is 3.84, which
are 31.5 and 38.4 times of the standard deviation, respectively. Mixing the
components across such long distances puts a great challenge on EMC.

Liang and Wong (2001a) applied EMC to this example with the following
settings: Each chromosome was coded by a real 2D vector; the population
size was set to 20, the highest temperature to 5, the lowest temperature to 1;
the intermediate temperatures were equally spaced between 1 and 5; and the
mutation rate was set to 0.2. The population was initialized by some random
vectors drawn uniformly from the region [0, 1]2. EMC was run for 100 000
iterations. In the mutation step, ek ∼ N2(0, 0.252Tk) for k = 1, · · · , N, where
Tk is the temperature at level k. Figure 5.2(a) shows the sample paths (at
level t = 1) of the first 10 000 iterations, and Figure 5.3(a) shows the whole
samples (at level t = 1) obtained in the run. It can be seen that EMC has
sampled all components in the first 10 000 iterations, although the population
was initialized at one corner.

For comparison, Liang and Wong (2001a) also applied parallel tempering
to this example with the same parameter setting and initialization. Within the
same computational time, parallel tempering produced 73 500 iterations. The
local updating step was done with the mutation operator used in EMC, and
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Figure 5.2 The sample path of the first 10 000 iterations at temperature
t = 1. (a) EMC. (b) Parallel tempering (Liang and Wong, 2001a).
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Figure 5.3 The plot of whole samples. (a) EMC. (b) Parallel tempering (Liang
and Wong, 2001a).

the overall acceptance rate was 0.28, which suggests that parallel tempering
has been implemented effectively. Figure 5.2(b) shows the sample path (at the
level t = 1) of the first 10 000 iterations, and Figure 5.3(b) shows the whole
samples. It can be seen that parallel tempering was not able to sample all
components of the mixture even even with 73 500 iterations; the components
2, 4, and 15 were never sampled.

Table 5.3 shows the estimates of the mean and variance of (5.16) produced
by EMC (EMC-A) and parallel tempering (PT), where all estimates were
calculated based on 20 independent runs. Each run of EMC consists of 106

iterations, and each run of parallel tempering consists of 7.35×105 iterations,
such that they cost about the same CPU time. Clearly, EMC outperforms
parallel tempering in terms of smaller biases and variances.

In another experiment, Liang and Wong (2001a) examined the effect of the
snooker crossover. The EMC algorithm with only the real crossover operator
was run 20 times. Each run consisted of 106 iterations, and the CPU time
was about the same as that used by the previous experiment. The estimation
results are reported in Table 5.3 (EMC-B). The comparison shows that the
snooker crossover is superior to the real crossover and can lead to a faster
convergence rate of EMC.
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Table 5.3 Comparison of EMC and parallel tempering for the mixture normal
example (Liang and Wong, 2001a).

EMC-A EMC-B PT
parameter true value est. SD est. SD est. SD
µ1 4.48 4.48 0.004 4.44 0.026 3.78 0.032
µ2 4.91 4.91 0.008 4.86 0.023 4.34 0.044
Σ11 5.55 5.55 0.006 5.54 0.051 3.66 0.111
Σ22 9.86 9.84 0.010 9.78 0.048 8.55 0.049
Σ12 2.61 2.59 0.011 2.58 0.043 1.29 0.084
EMCA: EMC with both the real and snooker crossover operators; EMC-B: EMC with
only the real crossover operator; PT: parallel tempering. The µ1 and µ2 denote,

respectively, the first and second component of the mean vector of (5.16); Σ11, Σ22, and
Σ12 denote, respectively, three components of the covariance matrix of (5.16); and SD
denotes the standard deviation of the corresponding estimate.

5.5.5 Discussion

In the EMC algorithm presented above, each sample is coded as a fixed
dimensional vector, even for some varying dimensional problems, for example,
the variable selection problem considered in the highway data example. For
many problems, such as the change-point identification problem (Liang and
Wong, 2000), Bayesian curve fitting (Liang et al., 2001), and Bayesian neural
network learning (Liang and Kuk, 2004; Liang, 2005a), this kind of coding
scheme is very natural. However, we note that fixing the dimension of each
sample is not a intrinsic constraint of EMC. Extending EMC to the transdi-
mensional case, where each sample is coded as a varying dimensional vector, is
straightforward. In this case, the k-point crossover operator described above
still works as shown by Jasra et al. (2007), who, for the snooker algorithm,
develop a substitute for mixture model problems.

The exchange operator plays an important role in EMC, which provides
the main way for the Markov chains to interact with each other. In the EMC
algorithm presented above, only the plain, nearest neighboring exchange op-
erators were prescribed. In practice, it can be improved in various ways. For
example, Jasra et al. (2007) propose improving it by using the delayed rejec-
tion method (Green and Mira, 2001), and Goswami and Liu (2007) propose
several different types of exchange operators with the idea of finding at each it-
eration the most similar samples (in fitness values) to swap. All these methods
allow for an increased interaction within the population, and thus accelerate
the convergence of the algorithm.

Regarding crossover operations, we note that many different crossover
operators have been developed for the genetic algorithm (Goldberg, 1989).
However, only a few of them can be applied to EMC, due to the stringent
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requirement of detailed balance (or reversible) condition of Markov chain. The
crossover operation has often a low acceptance rate. In EMC, one has to retain
two offspring produced by two parental individuals through a crossover opera-
tion, otherwise, the detailed balance condition will be violated. However, it is
often the case that one offspring is of bad quality, so the acceptance rate of the
operation is low. A worthwhile topic to study would be how to improve the ac-
ceptance rate of crossover operations, or more generally, how to create efficient
crossover operations, for a population-based MCMC sampler. This issue will
be further addressed in Section 7.6.3.2, where we show that the acceptance
rate of crossover operations can be generally improved under the framework
of population-based stochastic approximation Monte Carlo (Liang, 2009d).

5.6 Sequential Parallel Tempering
for Simulation of High Dimensional
Systems

The development of science and technology means we increasingly need to
deal with high dimensional systems, in order to, for example, align a group
of protein or DNA sequences to infer their homology (Durbin et al., 1998);
identify a single-nucleotide polymorphism (SNP) associated with certain dis-
ease from millions of SNPs (Emahazion et al., 2001); estimate the volatility
of asset returns to understand the price trend of the option market (Hull
and White, 1987); or simulate from spin systems to understand their physical
properties (Swendsen and Wang, 1987). In such problems, the dimensions of
the systems often range from several hundreds to several thousands or even
higher, and the solution spaces are so huge that Monte Carlo has been an
indispensable tool for making inference for them. How to efficiently sample
from these high dimensional systems puts a great challenge on the existing
MCMC methods.

As discussed in other parts of this book, many advanced MCMC algo-
rithms have been proposed during the past two decades for accelerating the
convergence of simulations. These include simulated tempering (Marinari and
Parisi, 1992), parallel tempering (Geyer, 1991), evolutionary Monte Carlo
(Liang and Wong, 2000, 2001a), dynamic weighting (Wong and Liang, 1997),
multicanonical sampling (Berg and Neuhaus, 1991), Wang-Landau algorithm
(Wang and Landau, 2001), stochastic approximation Monte Carlo (Liang
et al., 2007), among others. A central goal of these algorithms is to over-
come the local-trap problem caused by multimodality – that on the energy
landscape of the system, there are many local energy minima separated by
high barriers. For example, in the tempering-based algorithms, the energy
barriers are flattened by increasing the ‘temperature’ of the system such that
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the sampler can move across them freely. In the multicanonical sampling,
dynamic weighting, and stochastic approximation Monte Carlo, the sampler
is equipped with an importance weight such that it can move across the energy
barriers freely.

However, for many problems slow convergence is not due to the multi-
modality, but the curse of dimensionality; that is, the number of samples
increases exponentially with dimension to maintain a given level of accuracy.
For example, the witch’s hat distribution (Matthews, 1993) has only a single
mode, but the convergence time of the Gibbs sampler on it increases exponen-
tially with dimension. For this kind of problems, although the convergence can
be improved to some extent by the tempering-based or importance weight-
based algorithms, the curse of dimensionality cannot be much reduced, as
these samplers always work in the same sample space.

To eliminate the curse of dimensionality, Liang (2003) provides a sequen-
tial parallel tempering (SPT) algorithm, which makes use of the sequential
structure of high dimensional systems. As an extension of parallel tempering,
SPT works by simulating from a sequence of systems of different dimensions.
The idea is to use the information provided by the simulation of low dimen-
sional systems as a clue for the simulation of high dimensional systems.

5.6.1 Build-up Ladder Construction

A build-up ladder (Wong and Liang, 1997) comprises a sequence of systems of
different dimensions. Consider m systems with density fi(xi), where xi ∈ Xi

for i = 1, . . . , m. Typically,

dim(X1) < dim(X2) < · · · < dim(Xm),

The principle of build-up ladder construction is to approximate the original
system by a system with a reduced dimension, the reduced system is again
approximated by a system with a further reduced dimension, until a system
of a manageable dimension is reached; that is, the corresponding system can
be easily sampled using a local updating algorithm, such as the MH algorithm
or the Gibbs sampler. The solution of the reduced system is then extrapo-
lated level by level until the target system is reached. For many problems, the
build-up ladder can be constructed in a simple way. For example, for both
the traveling salesman problem (Wong and Liang, 1997) and the phylogenetic
tree reconstruction problem (Cheon and Liang, 2008), the build-up ladders are
constructed by marginalization, this method being illustrated in Section 5.6.3.

Note that both the temperature ladder used in simulated tempering,
parallel tempering, and EMC and the energy ladder used in the equi-energy
sampler (Kou et al., 2006) can be regarded as special kinds of build-up ladders.
Along with the ladder, the complexity of the systems increases monotonically.
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5.6.2 Sequential Parallel Tempering

As a member of population-based MCMC methods, SPT also works on a joint
distribution of the form

f(x) =
N∏

i=1

fi(xi),

where x = {x1, x2, · · · , xN}, and xi represents a sample from fi. The simu-
lation consists of two steps: local updating and between-level transitions. In
the local updating step, each fi is simulated by a local updating algorithm,
such as the MH algorithm or the Gibbs sampler. The between-level transition
involves two operations, namely, projection and extrapolation. Two differ-
ent levels, say, i and j, are proposed to make the between-level transition.
Without loss of generality, we assume that Xi ⊂Xj . The transition is to ex-
trapolate xi (∈ Xi) to x′

j (∈ Xj), and simultaneously project xj (∈ Xj) to
x′

i (∈ Xi). The extrapolation and projection operators are chosen such that
the pairwise move (xi, xj) to (x′

i, x
′
j) is reversible. The transition is accepted

with probability

min

{
1,

fi(x′
i)fj(x′

j)
fi(xi)fj(xj)

Te(x′
i → xj)Tp(x′

j → xi)
Te(xi → x′

j)Tp(xj → x′
i)

}
, (5.17)

where Te(· → ·) and Tp(· → ·) denote the extrapolation and projection prob-
abilities, respectively. For simplicity, the between-level transitions are only
restricted to neighboring levels, that is, |i − j| = 1. In summary, each itera-
tion of SPT proceeds as follows.

Sequential Parallel Tempering

1. Local Updating : Update each xi independently by a local updating al-
gorithm for a few steps.

2. Between-level transition: Try between-level transitions for N pairs of
neighboring levels, with i being sampled uniformly on {1, 2, · · · , N} and
j = i± 1 with probability qe(i, j), where qe(i, i + 1) = qe(i, i− 1) = 0.5
for 1 < i < N and qe(1, 2) = qe(N, N− 1) = 1.

5.6.3 An Illustrative Example: the Witch’s Hat
Distribution

The witch’s hat distribution has the density

πd(x) = (1− δ)
(

1√
2πσ

)d

exp

{
−
∑d

i=1(x̃i − θi)2

2σ2

}
+ δIx∈C ,
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where x = (x̃1, . . . , x̃d), d is dimension, C denotes the open d-dimensional
hypercube (0, 1)d, and δ, σ and θi’s are known constants. In the case of d = 2,
the density shapes with a broad flat ‘brim’ and a high conical peak – the
witch’s hat distribution. This distribution is constructed by Matthews (1993)
as a counter-example to the Gibbs sampler, on which the mixing time of the
Gibbs sampler increases exponentially with dimension. The slow convergence
can be understood intuitively as follows: as dimension increases, the volume
of the peak decreases exponentially, thus, the time for the Gibbs sampler to
locate the peak will increase exponentially. For example, when d = 100 and
δ = 0.05, 95% mass of the distribution is contained in a hypercube of volume
3.4e− 19, and the remaining 5% mass is almost uniformly distributed in the
part of C outside the hypercube. Hence, sampling from such a distribution is
like searching for a needle in a haystack, and other advanced Gibbs techniques,
such as grouping, collapsing (Liu et al., 1994), and reparameterizations (Hills
and Smith, 1992), will also fail, as they all try to sample from πd(·) directly.

SPT works well for this example with the use of a build-up ladder.
As a test, Liang (2003) applied to SPT to simulate from πd(x), with
d = 5, 6, . . . , 15, δ = 0.05, σ = 0.05, and θ1 = · · · = θd = 0.5. For each
value of d, the build-up ladder was constructed by setting fi(x) = πi(x)
for i = 1, 2, · · · , d, where πi(·) is the i-dimensional witch’s hat distribution,
which has the same parameter as πd(·) except for the dimension. In the local
updating step, each xi is updated iteratively by the MH algorithm for i steps.
At each MH step, one coordinate is randomly selected and then proposed
to be replaced by a random draw from uniform(0,1). The between-level
transition, say, between level i and level i + 1, proceeds as follows:

1. Extrapolation: draw u ∼ unif(0, 1) and set x′
i+1 = (xi, u).

2. Projection: set x′
i to be the first i coordinates of xi+1. The corre-

sponding extrapolation and projection probabilities are Te(· → ·)
= Tp(· → ·) = 1.

For each value of d, SPT was run 10 times independently. Each run con-
sisted of 2.01e + 6 iterations, where the first 10 000 iterations were discarded
for the burn-in process, and the remaining iterations were used for the infer-
ence. For d = 10, the acceptance rates of the local updating and between-level
transitions are 0.2 and 0.17, respectively. It is interesting to point out that, for
this example, the acceptance rate of between-level transitions is independent
of levels. This suggests that the simulation can be extended to a very large
value of d. To characterize the mixing of the simulation, the probability that
the first coordinate of xi lie in the interval (θ1 − σ, θ1 + σ) was estimated for
i = 1, . . . , d. It is easy to calculate, under the above setting, the true value
of the probability is α = 0.6536. The standard deviations of the estimates
were calculated using the batch mean method (Roberts, 1996) with a batch
number of 50. The computational results are summarized in Table 5.4.
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Table 5.4 Comparison of SPT and parallel tempering for the witch’s hat
distribution (Liang, 2003).

SPT PT
d1 time2(s) α̂ SD(×10−4) time2(s) α̂ SD(×10−4)

5 72.5 0.6546 8.5 58.8 0.6529 9.7
6 94.9 0.6540 9.1 84.7 0.6530 10.5
7 118.6 0.6541 9.2 115.6 0.6525 11.2
8 145.8 0.6530 9.3 152.4 0.6530 13.2
9 174.6 0.6534 9.2 190.8 0.6538 15.8

10 206.0 0.6533 9.4 236.7 0.6517 20.5
11 239.3 0.6528 9.3 711.7 0.6531 17.7
12 275.5 0.6525 9.9 847.7 0.6530 21.3
13 312.9 0.6532 9.7 996.1 0.6527 33.8
14 353.7 0.6531 10.0 1156.4 0.6506 47.5
15 397.4 0.6532 10.4 1338.0 0.6450 84.5

1dimension; 2the CPU time (in second) of a single run. The estimate (α̂) and its standard
deviation SD are calculated based on 10 independent runs.

For comparison, parallel tempering was also applied to this example with
the following setting: the number of temperature levels N = d, the target
temperature TN = 1, and the highest temperature T1 = d. The temperature
T1 is so high that the local updating sampler almost did a random walk at
that level. The intermediate temperatures were set such that their inverses are
equally spaced between 1/T1 and 1/TN . In the local updating step, each sam-
ple was updated iteratively by the MH algorithm for i steps as in SPT. Each
run consisted of 2.01e + 6 iterations for d = 5, . . . , 10 and 5.01e + 6 iterations
for d = 11, . . . , 15. In these runs, the first 10 000 iterations were discarded for
the burn-in process, and the others were used for the estimation. The com-
putational results are also summarized in Table 5.4. Figure 5.4 compares the
estimated CPU time T(A, d) = Time(A, d)/72.5×(SD(A, d)/8.5e−4)2, which
represents the CPU time needed on a computer for algorithm A and dimen-
sion d to attain an estimate of α with SD = 8.5e−4. The plot shows that, for
this example, SPT can significantly reduce the curse of dimensionality suffered
by the Gibbs sampler, but parallel tempering cannot. A linear fitting on the
logarithms of T(·, ·) and d shows that T(SPT, d) ∼ d1.76 and T(PT, d) ∼ d6.50,
where PT represents parallel tempering. Later, SPT was applied to simulate
from π100(x). With 13 730 seconds on the same computer, SPT got one esti-
mate of α with SD = 2.3e − 3. Different temperature ladders were tried for
parallel tempering, for example, m ∝ √d, but the resulting CPU time scale
(against dimensions) is about the same as that reported above.
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Figure 5.4 Estimated running times T(SPT, d) (solid line) and T(PT, d) (dot-
ted line) for d = 5, 6, . . . , 15 (Liang, 2003).

In addition to the witch’s hat distribution, Liang (2003) applies the SPT
sampler to an Ising model of size 1282, for which a build-up ladder is also
constructed using the technique of marginalization. A great success has been
obtained by SPT for mixing the two opposite magnetization states of the Ising
model, while it is known that parallel tempering fails to mix the two magne-
tization states in a single run, even with many temperature levels, due to the
divergence of the specific heat when the temperature is near the critical point.

5.6.4 Discussion

Theoretically, SPT implements the distribution decomposition

f(x̃1, x̃2, · · · , x̃d) = f(x̃1)f(x̃2|x̃1) · · · f(x̃i|x̃1, · · · , x̃i−1) · · · f(x̃d|x̃1, · · · , x̃d−1)

in sampling. It avoids directly sampling in the high dimensional space, and
thus avoids the curse of dimensionality. The efficiency of SPT can be argued,
based on the Rao-Blackwellization procedure (see, e.g., Liu, 2001). Suppose
we are interested in estimating one integral I = Efh(x) with respect to a
distribution f(x). The simple sampling method is to first draw independent
samples x(1), · · · , x(m) from f(x), and then estimate I by

Î =
1
m
{h(x(1) + · · ·+ h(x(m))}.
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If x can be decomposed into two parts (x̃1, x̃2) and the conditional expectation
E[h(x)|x̃2] can be carried out analytically, then I can be estimated alterna-
tively by a mixture estimator

Ĩ =
1
m
{E[h(x)|x̃(1)

2 ] + · · ·+ E[h(x)|x̃(m)
2 ]}.

It is easy to see that both Î and Ĩ are unbiased, but Ĩ has a smaller variance
because of the simple facts

Efh(x) = Ef [E(h(x)|x̃2)],

and
var{h(x)} = var{E[h(x)|x̃2]}+ E{var[h(x)|x̃2]}.

The latter equation implies that

var(Î) =
1
m

var{h(x)} ≥ 1
m

var{E[h(x)|x̃2]} = var(Ĩ).

SPT implements a sequential Monte Carlo integration for E[h(x)|x̃d] along
the build-up ladder, and is thus more efficient than the sampler which tries
to sample from f(x̃1, . . . , x̃d) directly.

5.7 Equi-Energy Sampler

Let f(x) ∝ exp{−H(x)}, x ∈ X, denote the target distribution, where H(x)
is called the energy function. Let E0 < E1 < · · · < EN < ∞ denote a
ladder of energy levels, and let T0 < T1 < · · · < TN < ∞ denote a ladder of
temperatures, where E0 = −∞ and T0 = 1. Based on the two ladders, the
equi-energy sampler (Kou et al., 2006) defines the trial distributions of the
population by

fi(x) ∝ exp{−max(H(x), Ei)/Ti}, i = 0, 1, 2 . . . , N. (5.18)

Thus, f0(x) corresponds to the target distribution.
Define Di = {x : H(x) ∈ [Ei, Ei+1)} for i = 0, . . . , N, where EN+1 = ∞.

Thus, D0, D1, . . . , DN form a partition of the sample space. Each Di is called
an energy ring associated with the energy ladder. Let I(x) denote the index
of the energy ring that x belong to; that is, I(x) = k if and only if H(x) ∈
[Ek, Ek+1). The equi-energy sampler consists of N + 1 stages:

1. The equi-energy sampler begins with a MH chain {XN}, which targets
the highest order distribution fN (x). After a burn-in period of B steps,
the sampler starts to group its samples into energy rings D̂

(N)
i , i =

0, . . . , N, where the sample XN,j is grouped into D̂
(N)
i if I(XN,j) = i.
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2. After a period of M steps, the equi-energy sampler starts to construct
a parallel MH chain {XN−1}, which targets the second highest order
distribution fN−1(x), while keeping the chain {XN} running and up-
dating. The chain {XN−1} is updated with two types of moves, local
MH move and equi-energy jump, with respective probabilities 1 − pee

and pee.

– Local MH move: Update the chain {XN−1} with a single MH
transition.

– Equi-energy jump: Let xN−1,t denote the current state of the chain
{XN−1}, and let k = I(xN−1,t). Choose y uniformly from the
energy ring hD

(N)
k , and accept y as the next state of the chain

{XN−1} with probability

min
{

1,
fN−1(y)fN (xN−1,t)
fN−1(xN−1,t)fN (y)

}
.

Otherwise, set xN−1,t+1 = xN−1,t.

After a burn-in period of B steps, the equi-energy sampler starts to
group its samples into different energy rings D̂

(N−1)
i , i = 0, 1, . . . , N.

3. After a period of another M steps, the equi-energy sampler starts to
construct another parallel MH chain {XN−2}, which targets the third
highest order distribution fN−2(x), while keeping the chains {XN} and
{XN−1} running and updating. As for the chain {XN−1}, the chain
{XN−2} is updated with the local MH move and the equi-energy jump
with respective probabilities 1− pee and pee.

· · · · · ·
N+1. Repeat the above procedure until the level 0 has been reached.

Simulation at level 0 results in the energy rings D̂
(0)
i , which deposit

samples for the target distribution f(x).

Under the assumptions (i) the highest order chain {XN} is irreducible
and aperiodic, (ii) for i = 0, 1, . . . , N − 1, the MH transition kernel Ki of
{Xi} connects adjacent energy rings in the sense that for any j, there exist
sets A1 ⊂ Dj , A2 ⊂ Dj , B1 ⊂ Dj−1 and B2 ⊂ Dj+1 with positive measure
such that the transition probabilities Ki(A1, B1) > 0 and Ki(A2, B2) > 0, and
(iii) the energy ring probabilities pij = Pfi

(X ∈ Dj) > 0 for all i and j, Kou
et al., (2006) showed that each chain {Xi} is ergodic with fi as its invariant
distribution.

It is clear that the equi-energy sampler stems from parallel tempering,
but is different from parallel tempering in two respects. The first difference
is on the exchange operation, which is called the equi-energy jump in the
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equi-energy sampler: in parallel tempering, the current state of a lower order
Markov chain is proposed to be exchanged with the current state of a higher
order Markov chain; in the equi-energy sampler, the current state of a lower
order Markov chain is proposed to be replaced by a past, energy-similar state
of a higher order Markov chain. Since the two states have similar energy
values, the equi-energy jump usually has a high acceptance rate, and this
increases the interaction between different chains. The second difference is
on distribution tempering: parallel tempering gradually tempers the target
distribution; the equi-energy sampler tempers a sequence of low energy trun-
cated distributions. It is apparent that simulation of the low energy truncated
distribution reduces the chance of getting trapped in local energy minima. As
demonstrated by Kou et al. (2006), the equi-energy sampler is more efficient
than parallel tempering. For example, for the multimodal example studied
in Section 5.5.4, the equi-energy sampler can sample all the modes within a
reasonable CPU time, while parallel tempering fails to do so.

The equi-energy sampler contains several free parameters, the energy lad-
der, the temperature ladder, the equi-energy jump probability pee, and the
proposal distributions used at different levels. Kou et al. (2006) suggest setting
the energy levels by a geometric progression, and then to set the temperature
levels accordingly such that (Ei+1 − Ei)/Ti ≈ c, where c denotes a constant.
They find that the algorithm often works well with c ∈ [1, 5]. In addition, they
find that the probability pee is not necessarily very large, and a value between
0.05 and 0.3 often works well for their examples. Since different distributions
are simulated at different levels, different proposals should be used at different
levels such that a moderate acceptance rate for the local MH moves can be
achieved at each level.

5.8 Applications

Population-based MCMC methods have been used in various sampling prob-
lems. In this section, we consider three applications of the EMC algorithm,
including Bayesian curve fitting, protein folding simulations, and nonlinear
time series forecasting.

5.8.1 Bayesian Curve Fitting

The problem. Consider a nonparametric regression model, where observa-
tions (zi, yi), i = 1, · · · , n satisfy

yi = g(zi) + εi, i = 1, · · · , n, (5.19)

where εi ∼ N(0, σ2), a ≤ z1 ≤ · · · ≤ zn ≤ b, g ∈ Cm
2 [a, b], and m denotes

the order of continuity of g. The least squares spline is to approximate the
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unknown function g(·) using a regression polynomial function of the form

S(z) =
m∑

j=1

αjz
j−1 +

p∑
j=1

βj(z− tj)m−1
+ , (5.20)

for z ∈ [a, b], where d+ = max(0, d), tj ’s (j = 1, · · · , p) denote the knot loca-
tions, p is the number of knots, and α’s and β’s are the regression coefficients.

The curve fitting problem has been traditionally tackled by the kernel
smoothing approaches, see, e.g., Kohn and Ansley (1987), Müller and
Stadtmüller (1987), Friedman and Silverman (1989), and Hastie and
Tibshirani (1990). Recently, Denison et al. (1998) proposed a Bayesian
approach implemented with a hybrid sampler, and Liang et al. (2001)
proposed a fully Bayesian approach implemented with the EMC algorithm,
to tackle this problem.

The Model and Posterior. Liang et al. (2001) considered a modified least
square spline,

S′(z) =
m∑

l=1

βl,0(z− t0)l−1 +
p∑

j=1

m∑
l=m0

βl,j(z− tj)l−1
+ , (5.21)

where t0 = z1, and all possible knots are assumed to be on n regular points
on [a, b]. The modification reduces the continuity constraints on (5.20), and
hence, increases the flexibility of the spline (5.21). Replacing the function g(x)
in (5.19) by S′(x), then

yi =
m∑

l=1

βl,0(zi − t0)l−1 +
p∑

j=1

m∑
l=m0

βl,j(zi − tj)l−1
+ + εi, (5.22)

where εi ∼ N(0, σ2) for i = 1, · · · , n. In the matrix-vector form, Equa-
tion (5.22) can be written as

Y = Zpβ + ε, (5.23)

where Y is an n-vector of observations, ε ∼ N(0, σ2I), Zp = [1, (z − t0)1+,

· · · , (z−t0)m−1
+ , (z−t1)m0

+ , · · · , (z−tp)m−1
+ ], and β = (β1,0, · · · , βm−1,0, βm0,1,

· · · , βm−1,p). The β includes m+(m−m0 +1)p individual parameters, which
may be larger than the number of observations.

Let ξ denote a n-binary vector, for which the elements of ones indicate
the locations of the knots. Assuming the automatic priors for β and σ2 (see
Liang et al., 2001 for details), and integrating out β and σ2, the log-posterior
of ξ can be expressed as

log P(ξ(p)|Y ) = p log
(

µ

1− µ

)
+

n− wp−m

2
log 2 + log Γ

(n− wp−m

2

)
−n− wp−m

2
log[Y ′Y − Y ′Xp(X ′

pXp)−1X ′
pY ], (5.24)
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where ξ(p) denotes a spline model with p knots, w = m − m0 + 1 denotes
the number of extra terms needed to add after adding one more knot to the
regression, and µ denotes a hyperparameter to be determined by the user.
The value of µ reflects the user’s prior knowledge of the smoothness of the
underling function g(·). If one believes that it is very smooth, µ should be set
to a small value. Otherwise, it should be larger. Some other priors can also be
used here, e.g., the priors used in Raftery et al. (1997), Fernández et al. (2001),
and Liang (2002a). Those priors also lead to a closed form of P(ξ(p)|Y ).

Following standard Bayesian estimation theory, for a given set of samples
ξ1, . . . , ξM from the posterior (5.24), g(z) can be estimated by

ĝ(z) =
1
M

M∑
i=1

Zi(Z ′
iZi)−1Z ′

iY ,

where Zi denotes the design matrix corresponding to the model ξi.

EMC Algorithm. To sample from the posterior (5.24) using EMC, Liang
et al. (2001) develop a new mutation operator, which incorporates the re-
versible jump moves, namely, the ‘birth’, ‘death’ and ‘simultaneous’ moves,
proposed by Green (1995). Let S denote the set of knots included in the cur-
rent model, let Sc denote the complementary set of S, and let p = |S| denote
the cardinality of the set S. In the ‘birth’ step, a knot is randomly selected
from Sc and then proposed to add to the model. In the ‘death’ step, a knot is
randomly selected from S and then proposed to delete from the model. The
‘simultaneous’ means that the ‘birth’ and ‘death’ moves are operated simulta-
neously. In this step, a knot, say tc, is randomly selected from S; meanwhile,
another knot, say t∗c , is randomly selected from Sc, then tc is proposed to be
replaced by t∗c . Let pr(p, birth), pr(p, death) and pr(p, simultaneous) denote
the proposal probabilities of the three moves, respectively. Then the corre-
sponding transition probability ratios are as follows. For the ‘birth’ step,

T(x′, x′)
T(x, x′)

=
pr(p + 1, death)

pr(p, death)
k− p

p + 1
;

for the ‘death’ step,

T(x′, x)
T(x, x′)

=
pr(p− 1, birth)

pr(p, death)
p

k− p + 1
,

and for the ‘simultaneous’ step, T(x′, x)/T(x, x′) = 1, where x and x′ denote,
respectively, the current and proposed populations.

For this problem, only the 1-point crossover is used, where the two parental
chromosomes are selected according to (5.9). The exchanged operation is stan-
dard; only the exchanges between the nearest neighboring levels are allowed.
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Numerical Results. EMC was tested on the regression function

g(z) = 2 sin(4πz)− 6|z− 0.4|0.3 − 0.5sign(0.7− z), z ∈ [0, 1].

The observations were generated with σ = 0.2 on a grid of 1000 points equally
spaced between 0 and 1. Figure 5.5(a) shows the simulated data and the true
regression curve. This function has a narrow spike at 0.4 and a jump at 0.7.
The approximation to the spike puts a great challenge on the existing curve
fitting approaches. This example has been studied by several authors using
regression splines, see, for example, Wang (1995) and Koo (1997).

Liang et al., (2001) applied EMC to this example with m0 = 2 and m = 3.
Therefore, the resulting estimate ĝ(z) is a continuous quadratic piecewise
polynomial. In EMC simulations, the parameters were set as follows: The
population size N = 20, the highest temperature t1 = 5, the lowest temper-
ature tN = 1, the intermediate temperatures are equally spaced between 5
and 1, and the mutation rate qm = 0.5. Figure 5.5(b) shows the maximum a
posteriori estimates of the knot locations and the regression curve obtained
in one run of EMC with µ = 0.01. Figure 5.6 (a) and (b) show two Bayesian
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Figure 5.5 (a) The simulated data and the true regression curve. (b) The
MAP estimates of the knot points and the regression curve obtained in one
run with µ = 0.01 (Liang et al., 2001).
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estimates of the regression curve obtained in two runs of EMC with µ = 0.01
and µ = 0.015, respectively. The plots show that the true regression curve
can be well approximated using the EMC approach, including the spike and
the jump.

For comparison, the hybrid sampler (Denison et al., 1998) was also applied
to this example with m0 = 2 and m = 3. In the hybrid sampler, p is assumed
to follow a priori a truncated Poisson distribution with parameter λ, and σ2 is
assumed to follow a priori the inverted Gamma distribution IG(0.001, 0.001).
One iteration of the hybrid sampler consists of two steps:

1. Updating the knots t1, · · · , tp;
2. Updating σ2.

Step 1 can be accomplished by reversible jump MCMC (Green, 1995), and
Step 2 can be accomplished by the Gibbs sampler. Given the knots t1, · · · , tp,
the coefficients β are estimated by the standard least square estimates.
Figure 5.6 (c) and (d) show two estimates produced by the hybrid sampler in
two runs with λ = 3 and 5, respectively. The CPU time used by each run is
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Figure 5.6 Comparison of EMC and the hybrid sampler. The solid line is
the estimated curve, and dotted line is the true curve. (a) The automatic
Bayesian approach with µ = 0.01. (b) The automatic Bayesian approach with
µ = 0.015. (c) The hybrid sampler with λ = 3. (d) The hybrid sampler with
λ = 5 (Liang et al., 2001).
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about the same as that used by EMC. It is easy to see that the jump at 0.7 is
less well approximated by the hybrid sampler. The hybrid sampler was also
run with λ = 1, 2 and 10, the results were all similar. This example indicates
that EMC is superior to the hybrid sampler for Bayesian curve fitting.

5.8.2 Protein Folding Simulations: 2D HP Model

In recent years, the challenge of prediction of the native structure of a protein
from its sequence have attracted a great deal of attention. The difficulty of
this problem is that the energy landscape of the system consists of a mul-
titude of local minima separated by high energy barriers. Traditional Monte
Carlo and molecular dynamics simulations tend to get trapped in local energy
minima, rendering a failure of identification of the native structure and biased
estimates of the thermodynamic quantities that are of interest.

The 2D HP Model. In the 2D HP model, a simplification of the real
protein model, the protein is composed of only two types of ‘amino acids’, hy-
drophobic (H for nonpolar) and hydrophilic (P for polar), and the sequence is
folded on a two-dimensional square lattice. At each point, the ‘polymer’ chain
can turn 90◦ left, right, or continue ahead. Only self-avoiding conformations
are valid with energies εHH = −1 and εHP = εPP = 0 for interactions be-
tween non covalently bound neighbors. Interest in this model derives from
the fact that, although very simple, it exhibits many of the features of real
protein folding (Lau and Dill, 1990; Crippen, 1991); low energy conformations
are compact with a hydrophobic core, and the hydrophilic residues are forced
to the surface. The 2D HP model has been used by chemists to evaluate new
hypotheses of protein structure formation (Sali et al., 1994). Its simplicity
permits rigorous analysis of the efficiency of protein folding algorithms. EMC
was tested on the 2D HP model by Liang and Wong (2001b), whose approach
can be briefly described as follows.

EMC Algorithm. To apply EMC to the 2D HP model, each conformation
of a protein is coded by a vector x = (x(1), · · · , x(d)), where x(i) ∈ {0, 1, 2},
and each digit represents a torsion angle: 0, right; 1, continue and 2, left. The
energy function of the conformation is denoted by H(x) and the Boltzmann
distribution is defined by

f(x) ∝ exp{−H(x)/τ},
where τ is called the temperature, and it is not necessarily set to 1.

The mutation operators used for the model include a k-point mutation,
a three-bead flip, a crankshaft move and a rigid rotation. Let xm denote the
individual selected to undergo a mutation. In the k-point mutation, one ran-
domly choose k positions from xm, and then replace their values by the ones
sampled uniformly from the set {0, 1, 2}. Here, k is also a random variable,
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(a)

A three-bead flip

(b)

Crankshaft moves

(c)

Rigid rotations

Figure 5.7 Mutation operators used in 2D HP models. The circle denotes a
residue, hydrophobic or hydrophilic. (a) A three-bead flip. (b) A crankshaft
move. (c) A rigid rotation (Liang and Wong, 2001b).

which is sampled uniformly from 1 to d. When k = d, the operator pro-
duces a completely new random conformation independent of xm, and this
effectively prevents the population from becoming homogeneous. The other
mutation operators are, as depicted by Figure 5.7, identical to the local moves
used in Chan and Dill (1993). For example, the two crankshaft structures can
be coded by 2002 and 0220, respectively. In the crankshaft move, one first
searches for all of the crankshaft structures from xm and then randomly se-
lect one to mutate by reversing (i.e., change 0220 to 2002 and vice versa).
The other operators are performed similarly.

For this model, the 1-point and 2-point crossovers were used, where the
parental chromosomes were selected according to the probability (5.9). The
exchange operation is standard: only the exchanges between the nearest neigh-
boring levels are allowed.

Numerical Results. Liang and Wong (2001b) apply EMC to the sequences
given in Unger and Moult (1993), also given in Appendix 5A of this chapter.
The results are summarized in Table 5.5. For sequences of length 20, 24 and
25, EMC was run for 5000 iterations with the population size 100, the tem-
perature ladder being equally spaced between 20 and 0.3, and the selection
temperature 0.3. For the other sequences, EMC was run for 1000 iterations
with the population size 500, the temperature ladder being equally spaced
between 20 and 0.3, and the selection temperature 0.5. In all simulations, the
mutation rate was set to 0.25. In the mutation step, all individuals of the
current population are independently subject to an attempt of mutation, and
the proportions of the k-point mutation, three-bead flip, crankshaft move and
rigid rotation set to 1/2,1/6,1/6 are 1/6, respectively.

For comparison, Table 5.5 also presents the results from the genetic
algorithm and Metropolis Monte Carlo for the sequences. Here, the comparison
is based on the number of energy evaluations. This is reasonable, as, in protein
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Table 5.5 Comparison of EMC with the genetic algorithm (GA) and
Metropolis Monte Carlo (MC). (Liang and Wong, 2001b).

lengtha ground energy EMC GAb MCc

20 −9 −9 (9,374) −9 (30,492) −9 (292,443)
24 −9 −9 (6,929) −9 (30,491) −9 (2,492,221)
25 −8 −8 (7,202) −8 (20,400) −8 (2,694,572)
36 −14 −14 (12,447) −14 (301,339) −13 (6,557,189)
48 −23 −23 (165,791) −22 (126,547) −20 (9,201,755)
50 −21 −21 (74,613) −21 (592,887) −21 (15,151,203)
60 −36 −35 (203,729) −34 (208,781) −33 (8,262,338)
64 −42 −38 (889,036) −37 (187,393) −35 (7,848,952)

For each sequence, the three algorithms were all run 5 times independently, the lowest
energy values achieved during the most efficient run were reported in the respective
columns together with the number of valid conformations scanned before that value was
found. (a) The length denotes the number of residues of the sequence. (b) The results of
the genetic algorithm reported in Unger and Moult (1993). The GA was run with the
population size 200 for 300 generations. (c) The results of Metropolis Monte Carlo
reported in Unger and Moult (1993). Each run of MC consists of 50 000 000 steps.

folding simulations, the dominant factor of CPU cost is energy evaluation,
which is performed once for each valid conformation. The comparison indicates
that EMC is faster than the genetic algorithm and Metropolis Monte Carlo
for locating the putative ground states of proteins. The computational
amounts used by EMC were only about 10% to 30% of that used by the
genetic algorithm, and 1% to 3% of that used by Metropolis Monte Carlo. For
sequences of length 48, 60 and 64, EMC found the same energy states with
smaller computational amounts than the genetic algorithm and Metropolis
Monte Carlo. With slightly longer CPU times, EMC found some new lower
energy states, as reported in Table 5.5.

Note that the pruned-enriched Rosenbluth method (PERM) (Bastolla
et al., 1998) generally works well for 2D HP models. A direct comparison
of PERM with EMC, Metropolis Monte Carlo and the genetic algorithm is
unfair, since the latter three algorithms only perform ‘blind’ searches over the
whole conformation space. In contrast, PERM makes use of more informa-
tion from the sequence when it folds a protein. PERM may build up its chain
from any part of a sequence, for example, from a subsequence of hydrophobic
residues. The authors argue for this idea that real proteins have folding nuclei
and it should be most efficient to start from such a nucleus. Later, with the
use of the secondary structure information, EMC found the putative ground
states for the sequence of length 64 and another sequence of length 85, and
it also found the putative ground state for the sequence of length 48 with
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(a)

48-residual chain

(b)

64-residual chain

(c)

85-residual chain

Figure 5.8 Putative ground conformations found by EMC with secondary
structure constraints. (a) A putative ground conformation of energy −23 for
the 48-mer sequence with the subsequence (residues 17–26) being constrained
to the secondary structure. (b) A putative ground conformation of energy−42
for the 64-mer sequence with the subsequence (residues 1–10 and 55–64) being
constrained to the secondary structures. (c) A putative ground conformation
of energy −52 for the 85-mer sequence with the subsequence (residues 9–18,
27–36, 42–51, 57–66) being constrained to the secondary structures (Liang
and Wong, 2001b).

a much smaller number of energy evaluations. Figure 5.8 shows the ground
states found by EMC for these sequences.

5.8.3 Bayesian Neural Networks for Nonlinear Time
Series Forecasting

Let yt denote a univariate time series modeled by

yt = f(zt) + εt, t = 1, 2, . . . , n,

where f(·) is an unknown function, zt = (yt−1, . . . , yt−p) is a vector of lagged
values of yt, and {εt} is iid noise with mean 0 and unknown finite variance σ2.
In the context of time series, εt is often called an innovation or disturbance,
and p is called the order of the autoregressive model. Determining the function
f(·) has been one of central topics in statistics for a long time.

Bayesian Neural Network Models. Bayesian neural networks (BNNs)
have been applied to nonlinear time series analysis by Neal (1996), Penny
and Roberts (2000), Liang and Wong (2001a), and Liang (2005a), among
others. In Liang (2005a), an innovative BNN model is proposed, for which each
connection is associated with an indicator function indicating the effectiveness



APPLICATIONS 157

of the connection. Liang’s model can be written as

f̂(zt) = α0Iα0 +
p∑

i=1

yt−iαiIαi
+

M∑
j=1

βjIβj
ψ

(
γj0Iγj0 +

p∑
i=1

yt−iγjiIγji

)
,

(5.25)

where Iζ is the indicator function associated with the connection ζ, ψ(z)
= tanh(z) is called the activation function, and M is the maximum number
of hidden units allowed by the model. The choice ψ(z) = tanh(z) ensures that
the output of a hidden unit is 0 if all the connections to the hidden unit from
input units have been eliminated, and thus the hidden unit can be removed
from the network without any effect on the network outputs. This is not the
case for the sigmoid function, which will return a constant of 0.5 if the input
is zero; hence, extra work is needed to make the constant be absorbed by the
bias term if one wants to remove the hidden unit from the network. Let Λ
be a vector consisting of all indicators in (5.25), which specifies the structure
of the network. Liang’s model is different from other BNN models in two
respects. First, it allows for an automatic selection of input variables. Second,
its structure is usually sparse and its performance depends less on initial
specifications of the input pattern and the number of hidden units. These two
features mean Liang’s model often has better prediction performance than
other BNN models.

Let α = (α0, α1, · · · , αp), β = (β1, · · · , βM ), γj = (γj0, · · · , γjp),
γ = (γ1, · · · , γM ), and θ = (α, β, γ, σ2). Then the model (5.25) can be
completely specified by the tuple (θ, Λ). In the following, we will denote by
(θ, Λ) a BNN model, and denote by ĝ(zt, θ, Λ) a BNN estimator of g(zt).
To conduct a Bayesian analysis for (5.25), the following prior distributions
are specified for the model and parameters: αi ∼ N(0, σ2

α) for i = 0, · · · , p,
βj ∼ N(0, σ2

β) for j = 1, · · · , M, γji ∼ N(0, σ2
γ) for j = 1, · · · , M and

i = 0, · · · , p, σ2 ∼ IG(ν1, ν2), where σ2
α, σ2

β, σ2
γ and λ are hyper-parameters

to be specified by users. The total number of effective connections is
m =

∑p
i=0 Iαi

+
∑M

j=1 Iβj
δ(
∑p

i=0 Iγji
)+

∑M
j=1

∑p
i=0 Iβj

Iγji
, where δ(z) is 1 if

z > 0 and 0 otherwise. The model Λ is subject to a prior probability specified
by a truncated Poisson with rate λ; that is,

P(Λ) =

{
1
Z

λm

m! , m = 3, 4, . . . , U,

0, otherwise,

where m is the number of effective connections in Λ, and U = (M + 1)(p + 1)
+ M is the number of connections of the full model for which all Iζ = 1,
and Z =

∑
Λ∈Ω λm/m!. Here, Ω denotes the set of all possible models with

3 ≤ m ≤ U. It is reasonable to set the minimum number of m to be 3, as neural
networks are usually used for complex problems, and 3 has been small enough
as the size of a limiting neural network. Furthermore, we assume that these
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prior distributions are independent a priori, and the innovation εt follows a
normal distribution N(0, σ2). Given the above specifications, the log-posterior
(up to an additive constant) of the model (θ, Λ) is

log P(θ, Λ|D) = Constant−
(n

2
+ ν1 + 1

)
log σ2 − ν2

σ2
− 1

2σ2

n∑
t=1

(yt−f̂(xt))2

− 1
2

p∑
i=0

Iαi

(
log σ2

α +
α2

i

σ2
α

)
− 1

2

M∑
j=1

Iβj
δ

(
p∑

i=0

Iγji

)(
log σ2

β +
β2

j

σ2
β

)

− 1
2

M∑
j=1

p∑
i=0

Iβj
Iγji

(
log σ2

γ +
γ2

ji

σ2
γ

)
− m

2
log(2π) + m log λ− log(m!).

(5.26)

For data preparation and hyperparameter settings, Liang (2005a) made
the following suggestions: To accommodate different scales of input and out-
put variables, all input and output variables should be normalized before
feeding to the neural network. For example, in Liang (2005a), all data were
normalized by (yt − ȳ)/Sy, where ȳ and Sy denote the mean and standard
deviation of the training data, respectively. Since a neural network with
highly varied connection weights has usually a poor generalization perfor-
mance, σ2

α, σ2
β , and σ2

γ should be set to some moderate values to penalize
high variability of the connection weights. For example, Liang (2005a) set
σ2

α = σ2
β = σ2

γ = 5 for all examples. This setting is expected to work for
other problems. A non-informative prior can be put on σ2, for example, set-
ting ν1 = ν2 = 0.05 or 0.01. The values of M and λ, which work together
controlling the network size, can be set through a cross-validation procedure,
or tuned according to the suggestion of Weigend et al. (1990) that the num-
ber of connections of a neural network should be about one tenth of the
number of training patterns.

Time Series Forecasting with BNN Models. Suppose that a series of
samples, (θ1, Λ1), · · ·, (θN , ΛN ), have been drawn from the posterior (5.26).
Let ŷt+1 denote the one step ahead forecast. One good choice of ŷt+1 is

ŷt+1 =
1
N

N∑
i=1

f̂(zt+1, θi, Λi), (5.27)

which is unbiased and consistent by the standard theory of MCMC (Smith
and Roberts, 1993). However, for the multi-step case, it is not easy to obtain
an unbiased forecast for neural networks or any other nonlinear models. For
the multi-step ahead forecast, Liang (2005a) propose the following procedure,
which is unbiased and calculable with posterior samples.
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1. For each sample (θi, Λi), forecast yt+l recursively for l = 1, . . . , h and
repeat the process M times; that is, setting

ŷ
(i,j)
t+1 = f̂(yt−p+1, . . . , yt, θi, Λi),

ŷ
(i,j)
t+2 = f̂(yt−p+2, . . . , yt, ŷ

(i,j)
t+1 + e

(i,j)
t+1 , θi, Λi),

...

ŷ
(i,j)
t+h = f̂(yt−p+h, . . . , yt, ŷ

(i,j)
t+1 + e

(i,j)
t+1 , . . . , ŷ

(i,j)
t+h−1 + e

(i,j)
t+h−1, θi, Λi).

where (e(i,j)
t+1 , . . . , e

(i,j)
t+h−1), i = 1, . . . ,N, j = 1, . . . ,M, are future distur-

bances drawn from N(0, σ̂2
i ), and σ̂2

i is an element of θi and is itself an
unbiased estimate of σ2.

2. Average ŷ
(i,j)
t+h , i = 1, . . . ,N, j = 1, . . . ,M to get the forecast

ŷun
t+h =

1
MN

N∑
i=1

M∑
j=1

ŷ
(i,j)
t+h .

For a large value of N, a reasonable choice of M is M = 1 as used in this
subsection.

Although ŷun
t+h is unbiased, it has often a large variance due to the extra

randomness introduced by simulating future disturbances. Liang (2005a)
proposes an ad hoc forecast for yt+l by setting the future disturbances to
zero. That is,

1. For each sample (θi, Λi), forecast yt+l recursively for l = 1, . . . , h by
the formula

ŷ
(i)
t+1 = f̂(yt−p+1, . . . , yt, θi, Λi),

ŷ
(i)
t+2 = f̂(yt−p+2, . . . , yt, ŷ

(i)
t+1, θi, Λi),

...

ŷ
(i)
t+h = f̂(yt−p+h, . . . , yt, ŷ

(i)
t+1, . . . , ŷ

(i)
t+h−1θi, Λi),

2. Average ŷ
(i)
t+h, i = 1, . . . ,N to get the forecast

ŷad
t+h =

1
N

N∑
i=1

ŷ
(i)
t+h.

Although the forecast ŷad
t+h is biased, it often has a smaller mean squared

prediction error (MSPE) than ŷun
t+h. The h-step MSPE for a general forecast
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ŷt+h is defined as

MSPEh =
n−h∑
T=t

[yT+h − ŷT+h]2/(n− h− t + 1),

which will be used to evaluate various forecasts in this subsection.

Wolfer Sunspot Numbers. The data set consists of annual sunspot num-
bers for the years 1700–1955 (Waldmeirer, 1961). It has been used by many
authors to illustrate various time series models, for example, the ARIMA
model (Box and Jenkins, 1970), SETAR model (Tong and Lim, 1980; Tong,
1990), bilinear model (Gabr and Subba Rao, 1981), and neural network model
(Park et al., 1996). Liang (2005a) tested the BNN model (5.25) and the EMC
algorithm on this data.

As in Tong and Lim (1980) and Gabr and Subba Rao (1981), Liang (2005a)
uses the first 221 observations for model building and the next 35 observations
for forecasting. To determine the training pattern, Liang (2005a) suggests
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Figure 5.9 Convergence paths of the Gelman-Rubin statistic R̂, where each
path is computed with 5 independent runs. (a) EMC; (b) parallel tempering;
(c) reversible jump MCMC (Liang, 2005a).
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Table 5.6 Comparison of BNN and other time series models for the sunspot
example (Recompiled from Liang, 2005a).

model AR(9) SETAR bilinear BNNad BNNun TNN

MSE 199.27 153.71 124.33 124.741.30 124.741.30 162.941.13

size 10 19 11 27.180.26 27.180.26 76
MSPE1 190.89 148.21 123.77 142.033.84 142.873.87 171.990.66

MSPE2 414.83 383.90 337.54 347.859.03 346.448.81 407.711.08

MSPE3 652.21 675.59 569.79 509.6013.57 513.9912.27 607.182.27

MSPE4 725.85 773.51 659.05 482.2113.04 521.4710.40 615.524.37

MSPE5 771.04 784.27 718.87 470.3514.43 561.9412.58 617.246.03

MSPE6 – – – 468.1813.88 577.7916.71 578.156.92

The ‘MSE’ denotes the mean squared fitting error, ‘size’ denotes the number of
parameters included in the model, ‘MSPEh’ denotes the mean squared h-step ahead
prediction error for h = 1, . . . , 6. In the BNNad, BNNun, TNN columns, the number and
its subscript denote the averaged MSPE (over 10 independent runs) and the standard
deviation of the average, respectively. BNNad: BNN models with the ad hoc predictor;
BNNun: BNN models with the unbiased predictor; TNN: traditional neural network
models; The results of AR, SETAR, and bilinear models are taken from Gabr and Subba
Rao (1981).

a partial autocorrelation function (PACF)-based approach. Based on that
approach, (yt−9, . . . , yt−1) were chosen as the input pattern for this data.

Liang (2005a) tested the efficiency of EMC for BNN training via com-
parisons with parallel tempering (Geyer, 1991) and reversible jump MCMC
(Green, 1995). The three algorithms were all run for this data with the same
CPU time, and Figure 5.9 was produced, where the output frequencies of the
algorithms have been adjusted such that each produced the same number of
samples in each run. Figure 5.9 shows 10 convergence paths of the Gelman-
Rubin statistic R̂ for each algorithm, where each path was computed based on
5 independent runs. It indicates that EMC can converge faster than parallel
tempering and reversible jump MCMC.

Table 5.6 summarizes the prediction results obtained by EMC with 10
independent runs. For comparison, the prediction results from the AR, SE-
TAR, bilinear, and traditional neural network (TNN) models are also shown
in Table 5.6. BNNad is only inferior to the bilinear model for the one- and
two-step ahead forecasts. As the forecast horizon extends, it outperforms all
other models. This result is consistent with the finding of Hills et al. (1996)
and Kang (1991) that neural networks generally perform better in the lat-
ter period of the forecast horizon. BNNun performs equally well as BNNad

for the short term forecasts (h ≤ 3). As the forecast horizon extends, future
disturbances cause its performance to deteriorate.
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Exercises

5.1 Implement the CGMC, EMC and parallel tempering algorithms for the
following 5-dimensional mixture normal distribution

1
3
N5(0, I5) +

2
3
N5(5, I5),

where 0 = (0, . . . , 0)′, 5 = (5, . . . , 5)′, and I5 denotes a 5 × 5 identity
matrix.

5.2 Use both EMC and the equi-energy sampler to simulate the multi-
modal distribution studied in Section 5.5.4 and compare their efficiency.

5.3 Implement the equi-energy sampler for a population constructed as in
parallel tempering, and discuss why it is important to use low energy
truncated distributions for the population construction.

5.4 Discuss how to make mutation and crossover operations when using
EMC to simulate from the posterior (5.26) of the BNN model.

5.5 Consider how to apply sequential parallel tempering to simulate an
Ising model at a subcritical temperature:

(a) Discuss how to design the build-up ladder for the Ising model.

(b) Discuss how to make the extrapolation and projection operations
along the ladder constructed in part (a).

5.6 Use the parallel tempering to simulate an Ising model at a subcritical
temperature, and discuss why it tends to fail in mixing the two ground
states of the model when the size of the model is large.

5.7 Show that the CGMC, EMC, and equi-energy sampler are all proper;
that is, they can be used to generate correct samples from a target
distribution.

5.8 Discuss how to construct the build-up ladder for the traveling salesman
problem, and how to use EMC to simulate from the Boltzmann distri-
bution (see Section 6.1.3) defined for the traveling salesman problem.
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Appendix 5A: Protein Sequences for 2D HP
Models

(20) HPHPPHHPHPPHPHHPPHPH;

(24) HHPPHPPHPPHPPHPPHPPHPPHH;

(25) PPHPPHHPPPPHHPPPPHHPPPPHH;

(36) PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP;

(48) PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH;

(50) HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH;

(60) PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPHHHHHHP

HHPHP;

(64) HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHPHPHHH

HHHHHHHHH;

(85) HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPPPHHHHHHHHHHHHPP

PHHHHHHHHHHH HPPPHPPHHPPHHPPHPH.
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Chapter 6

Dynamic Weighting

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)
has a stringent requirement for the detailed balance condition. To move across
an energy barrier, the expected waiting time is roughly exponential to the
energy difference. Hence, the algorithm suffers from a waiting time dilemma:
either to wait forever in a deep local energy minimum or to have an incorrect
equilibrium distribution, in simulations from a complex system for which the
energy landscape is rugged.

Wong and Liang (1997) proposed a way out of the waiting time dilemma,
which can be described loosely as follows: If necessary, the system may make
a transition against a steep probability barrier without a proportionally long
waiting time. To account for the bias introduced thereby, an importance
weight is computed and recorded along with the sampled values. This tran-
sition rule does not satisfy the detailed balance condition any more, but it
satisfies what is called invariance with respect to importance weights (IWIW).
At equilibrium, Monte Carlo approximations to integrals are obtained by the
importance-weighted average of the sampled values, rather than the simple
average as in the Metropolis-Hastings algorithm.

6.1 Dynamic Weighting

In this section, we describe the IWIW principle and the dynamic weighting
algorithm proposed by Wong and Liang (1997).

6.1.1 The IWIW Principle

In dynamic weighting, the state of the Markov chain is augmented by an
importance weight to (x, w), where the weight w carries the information of
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the past samples and can help the system escape from local-traps. Let (xt, wt)
denote the current state of the Markov chain, a dynamic weighting transition
involves the following steps:

1. Draw y from a proposal function T(xt, y).

2. Compute the dynamic ratio

rd = wt
f(y)T(y, xt)
f(xt)T(xt, y)

.

3. Let θt be a nonnegative number, which can be set as a function of
(xt, wt). With probability a = rd/(θt + rd), set xt+1 = y and wt+1 =
rd/a; otherwise set xt+1 = xt and wt+1 = wt/(1− a).

This transition is called the R-type move in Wong and Liang (1997). It
does not satisfy the detailed balance condition, but is invariant with respect
to the importance weight (IWIW); that is, if∫

wtg(xt, wt)dwt ∝ f(xt) (6.1)

holds, then after one step of transition,∫
wt+1g(xt+1, wt+1)dwt+1 ∝ f(xt+1) (6.2)

also holds, where g(x, w) denotes the joint density of (x, w). The IWIW prop-
erty can be shown as follows. Let x = xt, w = wt, x′ = xt+1 and w′ = wt+1.
Then∫ ∞

0

w′g(x′, w′)dw′

=
∫
X

∫ ∞

0

[θt + rd(x, x′, w)]g(x, w)T(x, x′)
rd(x, x′, w)

θt + rd(x, x′, w)
dwdx

+
∫
X

∫ ∞

0

w[θt + rd(x′, z, w)]
θt

g(x′, w)T(x′, z)
θt

θt + rd(x′, z, w)
dwdz

=
∫
X

∫ ∞

0

wg(x, w)
f(x′)T(x′, x)

f(x)
dwdx +

∫
X

∫ ∞

0

wg(x′, w)T(x′, z)dwdz

∝ f(x′)
∫
X

T(x′, x)dx + f(x′)

= 2f(x′).

Hence, given a sequence of dynamic weighting samples (x1, w1), (x2, w2), . . . ,
(xn, wn), the weighted average [of a state function h(x) over the sample]

µ̂ =
n∑

i=1

wih(xi)/
n∑

i=1

wi (6.3)
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will converge to Efh(x), the expectation of h(x) with respect to the target
distribution f(x).

The merit of dynamic weighting is as follows: If one trial is rejected, then
the dynamic weight will be self-adjusted to a larger value by dividing the rejec-
tion probability of that trial, rendering a smaller total rejection probability
in the next trial. Using importance weights provides a means for dynamic
weighting to make transitions that are not allowed by the standard MH rule,
and thus can traverse the energy landscape of the system more freely. But this
advantage comes at a price: the importance weights have an infinite expec-
tation, and the estimate (6.3) is of high variability and converges to the true
values very slowly, seemingly at a rate of log(n) (Liu et al., 2001). In short,
the infinite waiting time in the standard MH process now manifests itself as
an infinite weight quantity in the dynamic weighting process.

To achieve a stable estimate of µ = Efh(x), the operations of stratification
and trimming on the importance weights are usually performed before com-
puting the weighted estimate of µ. First, the samples are stratified according
to the value of the function h(x). The strata are of roughly the same size and
within each stratum the variation of h(x) is small. The highest k% (usually
k = 1) weights of each stratum are then truncated to the (100−k)% percentile
of the weights within that stratum. In our experience, these operations induce
negligible bias in the weighted estimate but can reduce its variance substan-
tially. Note that the trimmed weights depend on the function of interest.

It is interesting to point out that the usual MH transition can be regarded
as a special type of IWIW transition: If we apply a MH transition to x
and leave w unchanged, then the result satisfies IWIW. This can be shown
as follows: ∫

w′g(x′, w′)dw′ =
∫

wg(x, w)K(x→ x′)dwdx

∝
∫

f(x)K(x→ x′)dx =
∫

f(x′)K(x′ → x)dx

= f(x′),

where K(· → ·) denotes a MH transition kernel with f(x) as its invariant
distribution. Therefore, correctly weighted distributions will remain when
dynamic weighting transitions and MH transitions are alternated in the same
run of the Markov chain. This observation leads directly to the tempering
dynamic weighting algorithm (Liang and Wong, 1999).

6.1.2 Tempering Dynamic Weighting Algorithm

As discussed in Section 4.2, simulated tempering (Marinari and Parisi, 1992)
often suffers from difficulty in transition between different temperature levels.
To alleviate this difficulty, one has to employ many temperature levels in
the augmented system, which adversely affect the efficiency of the algorithm.



168 DYNAMIC WEIGHTING

Alternatively, this difficulty can be alleviated by the dynamic weighting rule
as prescribed by Liang and Wong (1999).

The tempering dynamic weighting (TDW) algorithm (Liang and Wong,
1999) is essentially the same as the simulated tempering algorithm except
that a dynamic weight is now associated with the configuration (x, i) and the
dynamic weighting rule is used to guide the transitions between adjacent tem-
perature levels. Let fi(x) denote the trial distribution at level i, i = 1, . . . , N.
Let 0 < α < 1 be specified in advance and let (xt, it, wt) denote the current
state of the Markov chain. One iteration of the TDW algorithm consists of
the following steps:

Tempering Dynamic Weighting Algorithm

1. Draw U from the uniform distribution U[0, 1].

2. If U ≤ α, set it+1 = it and wt+1 = wt and simulate xt+1 from fit
(x)

via one or several MH updates.

3. If U > α, set xt+1 = xt and propose a level transition, it → i′, from a
transition function q(it, i′). Conduct a dynamic weighting transition to
update (it, wt):

– Compute the dynamic weighting ratio

rd = wt
cifi′(xt)q(i′, it)
ci′fi(xt)q(it, i′)

,

where ci denotes the pseudo-normalizing constant of fi(x).

– Accept the transition with probability a = rd/(θt + rd), where θt

can be chosen as a function of (it, wt). If it is accepted, set it+1 = i′

and wt+1 = rd/a; otherwise, set it+1 = it and wt+1 = wt/(1− a).

Ising Model Simulation at Sub-Critical Temperature. Consider a
2-D Ising model with the Boltzmann density

f(x) =
1

Z(K)
exp

K
∑
i∼j

xixj

 , (6.4)

where the spins xi = ±1, i ∼ j denotes the nearest neighbors on the lattice,
Z(K) is the partition function, and K is the inverse temperature. When the
temperature is at or below the critical point (K = 0.4407), the model has
two oppositely magnetized states separated by a very steep energy barrier.
Because of its symmetry, the Ising model is more amenable to theoretical anal-
ysis. However, for a sampling algorithm that does not rely on the symmetry
of the model, such as simulated tempering, parallel tempering and dynamic



DYNAMIC WEIGHTING 169

weighting, this is very hard, especially when the size of the model is large. In
the literature, the Ising model has long served as a benchmark example for
testing efficiency of new Monte Carlo algorithms.

Liang and Wong (1999) performed TDW simulations on the lattices of
size 322, 642 and 1282 using 6, 11, and 21 temperature levels (with the values
of K being equally spaced between 0.4 and 0.5), respectively. At the same
temperature level, the Gibbs sampler (Geman and Geman, 1984) is used to
generate new configurations; meanwhile, the weights were left unchanged.
The dynamic weighting rule is only used to govern transitions between levels.
After each sweep of Gibbs updates, it is randomly proposed to move to an
adjacent temperature level with equal probability. The parameter θt is set
to 1 if wt < 106 and 0 otherwise. Five independent runs were performed for
the model. In each run, the simulation continues until 10 000 configurations
are obtained at the final temperature level. For the model of size 1282, the
average number of sweeps in each run is 776 547.

For the Ising model, one quantity of interest is the spontaneous magneti-
zation, which is defined by M =

∑
i xi/d2, where d is the linear size of the

lattice. Figure 6.1 plots the spontaneous magnetization obtained at the level
K = 0.5 in a run for the 1282 lattice. Clearly, the TDW algorithm has suc-
ceeded in crossing the very steep barrier separating the two ground states and
the system is able to traverse freely between the two energy wells.

Figure 6.2 plots the expectation of |M|, the absolute spontaneous mag-
netization, at various values of K for the lattices of size 322, 642 and 1282.
The smooth curve is the cerebrated infinite lattice result found by Onsager
(1949), and proved by Yang (1952). The expected value of |M| was calculated

time
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Figure 6.1 Spontaneous magnetization against iterations for a lattice of size
1282 at the level K = 0.5 (Liang and Wong, 1999).
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Figure 6.2 Expectation of the absolute spontaneous magnetization against
the inverse temperature K for the lattices of size 322, 642 and 1282. The points
are averages over 5 independent runs. For clarity, error bars are plotted only
for the 1282 lattice. The smooth curve corresponds to the theoretical result
of infinite lattice (Liang and Wong, 1999).

by the method of stratified truncation in the following procedure: For each
run, the initial 500 samples were discarded for the burn-in process, the re-
maining samples were then stratified into 10 strata according to the value of
|M| with the (j× 10) percentiles as strata boundaries, j = 1, 2, · · · , 9, and the
highest 1% weights of each stratum were truncated to the 99% percentile of
the weights of that stratum.

Figure 6.2 shows that the phase transition phenomenon of the 2-D Ising
model has been captured by the simulations with increasing accuracy as
the lattice size grows. The critical point can be estimated quite well from the
crossing of the curves for the 642 and 1282 cases. We note that a major
strength of the TDW algorithm is that it can yield in a single run accurate
estimates over the entire temperature range extending well below the critical
point.

For comparison, Liang and Wong (1999) also applied simulated tempering
to the Ising model on the same range [0.4, 0.5] of K. With 51 equally spaced
levels, simulated tempering performs well for the 322 lattice. For the 642

and 1282 lattices, simulated tempering was run until 50 000 configurations
generated at the final level, but failed to sample the two energy wells in the
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same runs. The problem remains even with more temperature levels. Liang
and Wong (1999) reported that they tried 101 levels for the 642 lattice, and
101 and 201 levels for the 1282 lattice, but failed to sample two energy wells
in a single run.

In another comparison, Liang and Wong (1999) applied parallel tempering
(Geyer, 1991) to the same Ising models. With 51 equally spaced temperature
levels, parallel tempering works well for the 322 and 642 lattices. But for the
1282 lattice, it failed to sample both energy wells in a single run even with
1 000 000 Gibbs sweeps and 201 temperature levels. The reason for this poor
behavior of simulated tempering and parallel tempering is that the Boltz-
mann distribution (6.4) varies drastically with K. To satisfy the algorithms’
requirement that successive tempering distributions should have considerable
overlap, a huge number of temperature levels may be needed. See Section 4.2
for discussion on this issue. Since the traversal time of a temperature ladder
grows at least as the square of the number of temperature levels, this may
lead to an extremely long ergodicity time for a large lattice.

6.1.3 Dynamic Weighting in Optimization

In this section, we use the traveling salesman problem (TSP) (Reinelt, 1994) to
illustrate the use of dynamic weighting in optimization. Let n be the number
of cities in an area and let dij denote the distance between city i and city j.
The TSP is to find a permutation x of the cities such that the tour length

H(x) =
n−1∑
i=1

dx(i),x(i+1) + dx(n),x(1), (6.5)

is minimized. It is known that the TSP is a NP-complete problem.
To apply dynamic weighting to the TSP, Wong and Liang (1997) first

created a sequential build-up order of the cities. Let V denote the set of cities,
let A denote the set of cities that have been ordered, and let Ac = V\A denote
the set of cities not yet ordered. Then the cities can be ordered as follows:

• Randomly select a city from V.

• Repeat steps (1) and (2) until Ac is empty:

1. set k = arg maxi∈Ac minj∈A dij ;

2. set A = A ∪ {k} and Ac = Ac \ {k}.

This procedure ensures that each time the city added into A is the one having
the maximum separation from the set of already ordered cities.

Then a sequence of TSPs of increasing complexity were considered. At the
lowest level the TSP only includes first m0 (e.g., 10 or 15) cities in the build-up
order. At the next lowest level they added a block of the next m (e.g. m = 5)
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cities to get a slightly larger TSP. The block size m depends on the number
of levels one wants to employ. In this way a ladder of complexity consisting
of TSPs can be built up on increasing subsets of the cities. Typically 15–25
levels are used, and usually the size s of the TSP at the highest complexity
level is still much smaller than the size n of the original TSP. Wong and Liang
(1997) suggest choosing s between 0.2n to 0.4n, as such a s-city problem can
be a good approximation to the n-city problem, in the sense that a good tour
for the former can be an outline of good complete tours for the latter.

Given the complexity ladder of cities, the minimum tour search consists of
two steps. First, the s-city tours are sampled using dynamic weighting from
the Boltzmann distribution

f(x) ∝ exp (−H(x)) , (6.6)

where H(x) is as specified in (6.5). For each s-city tour generated by dynamic
weighting, the branch and bound algorithm is used to insert the remaining
cities, one by one according to the build-up order, by searching over a series of
small (15 cities) path spaces. In the dynamic weighting step, to add a city to
a tour, the 15 (say) nearest neighbors on the tour to the city are considered
and a new sub-tour through these 16 cities is sampled. To add a block of
m cities to the tour, the cities are added one by one as described, and an
acceptance/rejection decision is made after all m cities are added with the
importance weight being updated accordingly. Deletion of cities from a tour
follows a similar procedure.
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Figure 6.3 (a) The best tour found by dynamic weighting for a 532-city TSP.
The tour length is 27 744 compared to the exact minimum of 27 686. (b) One
of the exactly optimal tour found by dynamic weighting for a 1600-city TSP
(Wong and Liang, 1997).
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Figure 6.3 shows the best tours found by dynamic weighting for two large
TSPs: att532 and grid1600 (Wong and Liang, 1997). The computation time
was 4 h and 10 h respectively on an Ultrasparc I. For att532, the tour produced
by dynamic weighting has an excess of 0.2% over the exact optimum. This
is much better than tours from other heuristic search methods, except for a
special version of the genetic algorithm, for which the powerful Lin-Kernighan
move (Lin and Kernighan, 1973) was used for mutation. The tour is the
exact optimum for the grid1600 problem, which has not been solved by other
heuristic search methods.

6.2 Dynamically Weighted Importance
Sampling

In this section we describe a population extension of dynamic weighting –
dynamically weighted importance sampling (Liang, 2002b), which has the
dynamic importance weights controlled to a desirable range while maintaining
the IWIW property of resulting samples.

6.2.1 The Basic Idea

Because the importance weight in dynamic weighting is of high variability,
achieving a stable estimate requires techniques such as stratification and
truncation (Liu et al., 2001). However, any attempt to shorten the tails of
the weight distribution may lead to a biased estimate. To overcome this
difficulty, Liang (2002b) proposed a population version of dynamic weighting,
the so-called dynamically weighted importance sampling (DWIS) algorithm,
which has the importance weight successfully controlled to a desired range,
while keeping the estimate unbiased. In DWIS, the state space of the
Markov chain is augmented to a population of size N, denoted by (x, w) =
{x1, w1; . . . ; xN , wN}. With a slight abuse of notation, (xi, wi) is called an
individual state of the population. Given the current population (xt, wt),
one iteration of DWIS (as illustrated by Figure 6.4) involves two steps:

1. Dynamic weighting : each individual state of the current population
is updated via one dynamic weighting transition step to form a new
population.

2. Population control : duplicate the samples with large weights and discard
the samples with small weights. The bias induced thereby is counter-
balanced by giving different weights to the new samples produced.

These two steps ensure that DWIS can move across energy barriers like
dynamic weighting, but the weights are well controlled and have a finite
expectation, and the resulting estimate can converge much faster than that
of dynamic weighting.
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Figure 6.4 A diagram of the DWIS algorithm.

6.2.2 A Theory of DWIS

Let gt(x, w) denote the joint density of (x, w), an individual state of (xt, wt),
and let f(x) denote the target distribution we are working with.

Definition 6.2.1 The distribution gt(x, w) defined on X × (0,∞) is called
correctly weighted with respect to f(x) if the following conditions hold,∫

wgt(x, w)dw = ctxf(x), (6.7)∫
A ctxf(x)dx∫
X ctxf(x)dx

=
∫
A

f(x)dx, (6.8)

where A is any Borel set, A ⊆ X.

Definition 6.2.2 If gt(x, w) is correctly weighted with respect to f(x), and
samples (xt,i, wt,i) are simulated from gt(x, w) for i = 1, 2, . . . , nt, then
(xt, wt) = (xt,1, wt,1; · · · ; xt,nt

, wt,nt
) is called a correctly weighted population

with respect to f(x).

Let (xt, wt) be a correctly weighted population with respect to f(x), and
let y1, . . . , ym be distinct states in xt. Generate a random variable/vector Y
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such that

P{Y = yi} =

∑nt

j=1 wjI(yi = xt,j)∑nt

j=1 wj
, i = 1, 2, . . . , m, (6.9)

where I(·) is an indicator function. Then Y is approximately distributed as
f(·) if nt is large. This can be summarized as the following theorem:

Theorem 6.2.1 The distribution of the random vector Y generated in (6.9)
converges as nt →∞ to f(·), if the importance weight has a finite expectation.

Proof : Let (xt,i, wt,i), i = 1, . . . , nt be nt random samples generated by DWIS
with joint density gt. For any Borel set A ⊆ X,

P{Y ∈ A|xt,1, wt,1; · · · ; xt,Nt
, wt,Nt

} =
∑nt

i=1 wt,iI(xt,i ∈ A)∑nt

i=1 wt,i
. (6.10)

By the strong law of large numbers, it follows that as nt →∞,

nt∑
i=1

wt,iI(xt,i ∈ A)/nt →
∫
A

∫
wgt(x, w)dwdx =

∫
A

ctxf(x)dx

and
nt∑

i=1

wt,i/nt →
∫
X

∫
wgt(x, w)dwdx =

∫
X

ctxf(x)dx.

Dividing numerator and denominator of (6.10) by nt shows that∑Nt

i=1 wt,iI(xt,i ∈ A)∑nt

i=1 wt,i
→

∫
A ctxf(x)dx∫
X ctxf(x)dx

=
∫
A

f(y)dy,

which, by Lebesgue’s dominated converge theorem, implies that

P{Y ∈ A} = E[P{Y ∈ A|xt,1, wt,1; · · · ; xt,Nt
, wt,Nt

}]→
∫
A

f(y)dy

and the result is proved.

Let (x1, w1), . . ., (xN , wN ) be a series of correctly weighted populations
generated by a DWIS algorithm with respect to f(x). Then the quantity
µ = Efh(x), provided that h(x) is integrable, can be estimated by

µ̂ =
∑N

t=1

∑nt

i=1 wt,ih(xt,i)∑N
t=1

∑nt

i=1 wt,i

. (6.11)

Let Ut =
∑nt

i=1 wt,ih(xt,i), St =
∑nt

i=1 wt,i, S = ESt, and Vt = Ut − µSt.
If the variance of Ut and Vt are both finite, then the standard error of µ̂
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can be calculated using the ratio estimate as in finite population sampling
(Ripley, 1987). As shown by Liang (2002b), µ̂ is consistent and asymptotically
normally distributed; that is,

√
N(µ̂− µ) → N(0, σ2), (6.12)

where σ2 is defined as Var(Vt)/S2.

Definition 6.2.3 A transition rule for a population (x, w) is said to be in-
variant with respect to the importance weight (IWIWp) if the joint density of
(x, w) remains correctly weighted whenever the initial joint density is correctly
weighted.

To make this rule distinguishable from the IWIW rule given in (6.1) and (6.2),
which is defined for the single Markov chain, we denote it by IWIWp with the
subscript representing for population.

6.2.3 Some IWIWp Transition Rules

Many transition rules are IWIWp exactly or approximately. The following are
some useful examples. Let (xt, wt) denote the current population, let (x, w)
denote an individual state of (xt, wt), and let (x′, w′) denote the individual
state transmitted from (x, w) in one transition step.

6.2.3.1 A General Dynamic Weighting Sampler

1. Draw y from some transition proposal distribution T(x, y), and compute
the dynamic ratio

rd = w
f(y)T(y, x)
f(x)T(x, y)

.

2. Choose θt = θ(xt, wt) ≥ 0 and draw U ∼ unif(0, 1). Update (x, w) as
(x′, w′)

(x′, w′) =

{
(y, (1 + δt)rd/a) if U ≤ a

(x, (1 + δt)w/(1− a)) otherwise.

where a = rd/(rd +θt); and θt and δt are both functions of (xt, wt), but
they remain constants for each individual state of the same population.

For simplicity, we consider only the cases where θt = 0 or 1, δt = 0
or 1/(α + βh(Wup,t), where both α and β are positive constants, Wup,t is
the upper weight control bound of the population (xt, wt), and h(·) is an
appropriate function defined latter. If θt ≡ 0, then the move is essentially
a random walk induced by T(x, y) on the space X, herein called the W-type
move. If δt ≡ 1, then the sampler is reduced to the R-type move discussed in
Section 6.1.1.



DYNAMICALLY WEIGHTED IMPORTANCE SAMPLING 177

The following theorem shows that the dynamic weighting sampler is
IWIWp when the initial condition∫

X
ct0,xT(x′, x)dx = ct0,x′ (6.13)

holds for some population (x0, w0).

Theorem 6.2.2 The general dynamic weighting sampler is IWIWp; that is,
if the joint distribution gt(x, w) for (x, w) is correctly weighted with respect
to f(x) and (6.13) holds, after one dynamic weighting step, the new joint
distribution gt+1(x′, w′) for (x′, w′) is also correctly weighted with respect to
f(x), and the condition (6.13) also holds.

Proof : For the case where θ > 0,∫ ∞

0

w′gt+1(x′, w′)dw′

=
∫
X

∫ ∞

0

(1 + δt)[rd(x, x′, w) + θt]gt(x, w)T(x, x′)
rd(x, x′, w)

rd(x, x′, w) + θt
dwdx

+
∫
X

∫ ∞

0

(1 + δt)
w[rd(x′, z, w) + θt]

θt
gt(x′, w)T(x′, z)

× θt

rd(x′, z, w) + θt
dwdz

= (1 + δt)
{∫

X

∫ ∞

0

wgt(x, w)
f(x′)T(x′, x)

f(x)
dwdx

+
∫
X

∫ ∞

0

wgt(x′, w)T(x′, z)dwdz

}
= (1 + δt)

{
f(x′)

∫
X

ct,xT(x′, x)dx + ct,x′f(x′)
}

= 2(1 + δt)ct,x′f(x′).

For the case where θt = 0, only the first terms remain on the right sides of
the foregoing equations. Thus∫ ∞

0

w′gt+1(x′, w′)dw′ = (1 + δt)ct,x′f(x′).

By defining ct+1,x′ = 2(1 + δt)ct,x′ for the case where θt > 0 and ct+1,x′ =
(1 + δt)ct,x′ for the case where θt = 0, it is easy to see that the condition
(6.13) still holds for the new population. Hence, gt+1(x′, w′) is still correctly
weighted with respect to f(x).
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In practice, the initial condition (6.13) can be easily satisfied. For example,
if g0(x, w) = g(x), a trial distribution for drawing from f(x) used in conven-
tional importance sampling, and w = f(x)/g(x), then

∫
wg0(x, w)dw = c0,

the normalizing constant ratio of g and f, independent of x. Thus, the initial
condition (6.13) is satisfied because

∫
c0T(x′, x)dx = c0 always holds.

To avoid an extremely large weight caused by a nearly zero divisor, we
make the following assumption for the MH ratio: There exists a constant r0

such that for any pair (x, x′) ∈ X× X,

r0 ≤ f(x′)
f(x)

T(x′, x)
T(x, x′)

≤ 1
r0

. (6.14)

In practice, this condition can be easily satisfied by restricting X to a compact
set. This is sensible for many statistical problems. For proposal distributions,
one may choose them to be symmetric, which implies T(x′, x)/T(x, x′) = 1.

6.2.3.2 Adaptive Pruned-Enriched Population Control
Scheme (APEPCS)

Given the current population (θt, wt), adjusting the values of the importance
weights and the population size to suitable ranges involves the following
scheme. Let (xt,i, wt,i) be the ith individual state of the population, let nt

and n′
t denote the current and new population sizes, let Wlow,t and Wup,t

denote the lower and upper weight control bounds, let nmin and nmax denote
the minimum and maximum population size allowed by the user, and let nlow

and nup denote the lower and upper reference bounds of the population size.

1. (Initialization) Initialize the parameters Wlow,t and Wup,t by

Wlow,t =
nt∑

i=1

wt,i/nup, Wup,t =
nt∑

i=1

wt,i/nlow.

Set n′
t = 0 and λ > 1. Do steps 2–4 for i = 1, 2, · · · , nt.

2. (Pruned) If wt,i < Wlow,t, prune the state with probability q = 1 −
wt,i/Wlow,t. If it is pruned, drop (xt,i, wt,i) from (xt, wt); otherwise,
update (xt,i, wt,i) as (xt,i, Wlow,t) and set n′

t = n′
t + 1.

3. (Enriched) If wt,i >Wup,t, set d = [wt,i/Wup,t+1], w′
t,i = wt,i/d, replace

(xt,i, wt,i) by d identical states (xt,i, w
′
t,i), and set n′

t = n′
t + d, where

[z] denotes the integer part of z.

4. (Unchanged) If Wlow,t ≤ wt,i ≤ Wup,t, keep (xt,i, wt,i) unchanged, and
set n′

t = n′
t + 1.

5. (Checking) If n′
t > nmax, set Wlow,t ← λWlow,t, Wup,t ← λWup,t and

n′
t = 0, do step 2–4 again for i = 1, 2, · · · , nt. If n′

t < nmin, set Wlow,t ←
Wlow,t/λ, Wup,t ← Wup,t/λ and n′

t = 0, do step 2–4 again for i =
1, 2, · · · , nt. Otherwise, stop.
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In this scheme, λ is required to be greater than 1, say 2. In addition, nlow,
nup, nmin and nmax are required to satisfy the constraint nmin < nlow < nup <
nmax. With APEPCS, the population size is strictly controlled to the range
[nmin, nmax], and the weights are adjusted to the range [Wlow,t, Wup,t]. There-
fore, the APEPCS avoids the possible overflow or extinction of a population
in simulations.

The APEPCS is closely related to the resampling technique that is often
used in the context of importance sampling, see, for example, Liu and Chen
(1998). It can also be viewed as a generalization of the pruned-enriched
Rosenbluth method (PERM) (Grassberger, 1997) and the rejection controlled
sequential importance sampler (RCSIS) (Liu et al., 1998). In PERM, Wlow,t

and Wup,t are pre-fixed. For each individual state with wi < Wlow,t, it
is pruned with a fixed probability of 1/2, and set to w′

i = 2wi if it is
not pruned. In RCSIS, no enrichment step is performed, and Wlow,t is also a
pre-fixed number.

Theorem 6.2.3 shows that the APEPCS is IWIWp.

Theorem 6.2.3 The APEPCS is IWIWp; that is, if the joint distribution
gt(x, w) for (xt, wt) is correctly weighted with respect to f(x), then after one
run of the scheme, the new joint distribution gt+1(x′, w′) for (xt+1, wt+1)is
also correctly with respect to f(x).

Proof : In the population control step, only the weights w’s are possibly mod-
ified. Thus,∫ ∞

0

w′gt+1(x′, w′)dw′ =
∫ Wlow,t

0

0gt(x′, w)
(

1− w

Wlow,t

)
dw

+
∫ Wlow,t

0

Wlow,tgt(x′, w)
w

Wlow,t
dw

+
∫ Wup,t

Wlow,t

wgt(x′, w)dw +
∫ ∞

Wup,t

(
d∑

i=1

w

d

)
gt(x′, w)dw

=
∫ ∞

0

wgt(x′, w)dw = ct,x′f(x′).

Hence, gt+1(x′, w′) is still correctly weighted with respect to f(x) by setting
ct+1,x′ = ct,x′ .

6.2.4 Two DWIS Schemes

Since both the dynamic weighting sampler and the population control
scheme are IWIWp, they can be used together in any fraction, while leaving
the IWIWp property unchanged. Based on this observation, we compose
the following two DWIS schemes, both of which alter between the dynamic
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weighting step and the population control step. Let λ be a number greater
than 1. Let Wc denote a dynamic weighting move switching parameter,
which switches the value of θt between 0 and 1 depending on the value
of Wup,t−1.

Dynamically Weighted Importance Sampling (Scheme-R)
• Dynamic weighting : Apply the R-type move to the population (xt−1,

wt−1). If Wup,t−1 ≤ Wc, then set θt = 1. Otherwise, set θt = 0. The
new population is denoted by (x′

t, w
′
t).

• Population Control : Apply APEPCS to (x′
t, w

′
t). The new population

is denoted by (xt, wt).

Dynamically Weighted Importance Sampling (Scheme-W )
• Preweight control : If nt−1 < nlow, then set Wlow,t = Wlow,t−1/λ and

Wup,t = Wup,t−1/λ. If nt−1 >nup, then set Wlow,t = λWlow,t−1 and
Wup,t = λWup,t−1. Otherwise, set Wlow,t = Wlow,t−1 and Wup,t =
Wup,t−1.

• Dynamic weighting : Apply the W-type move to the population (xt−1,
wt−1) with δt = 1/(α + βW1+ε

up,t) for some ε> 0. The new population is
denoted by (x′

t, w
′
t).

• Population Control : Apply APEPCS to (x′
t, w

′
t). The new population

is denoted by (xt, wt).

Let (x1, w1), . . . , (xN , wN ) denote a series of populations generated by a
DWIS scheme. Then, according to (6.11), the quantity µ = Efh(x) can be
estimated by

µ̂ =

∑N
t=N0+1

∑nt

i=1 wt,ih(xt,i)∑N
t=N0

∑nt

i=1 wt,i

, (6.15)

where N0 denotes the number of burn-in iterations. Following from (6.11) and
(6.12), µ̂ is consistent and asymptotically normally distributed.

6.2.5 Weight Behavior Analysis

To analyze the weight behavior of the DWIS, we first introduce the following
lemma.

Lemma 6.2.1 Let π(x0) denote the marginal equilibrium distribution under
transition T and let π(x0, x1) = π(x0) × T(x0, x1) and r(x0, x1) = π(x1, x0)/
π(x0, x1) be the MH ratio. Then

e0 = Eπ log r(x0, x1) ≤ 0,
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where the equality holds when it induces a reversible Markov chain, that is,
π(x0, x1) = π(x1, x0).

Proof : By Jensen’s inequality,

e0 = Eπ log
π(x1, x0)
π(x0, x1)

≤ log Eπ
π(x1, x0)
π(x0, x1)

= 0,

where the equality holds only when π(x0, x1) = π(x1, x0).

For simplicity, let (xt, wt) denote an individual state of the population
(xt, wt). When δt ≡ 0 and θt ≡ 0, the weights of the W-type move and the
R-type move evolve as

log wt = log wt−1 + log r(xt−1, xt),

which results in

log wt = log w0 +
t∑

s=1

log r(xs−1, xs). (6.16)

Following from Lemma 6.2.1 and the ergodicity theorem (under stationarity),

1
t

t∑
s=1

log r(xs−1, xs) → e0 < 0, a.s. (6.17)

as t→∞. Hence, wt will go to 0 almost surely as t→∞.

Scheme-R. When θt ≡ 1, the expectation of wt, conditional on xt−1, xt

and wt−1, can be calculated as

E[wt|xt−1, xt, wt−1] = (rd + 1)
rd

rd + 1
+ wt−1(rd + 1)

1
rd + 1

= rd + wt−1

= wt−1[1 + r(xt−1, xt)]. (6.18)

Since r(xt−1, xt) ≥ 0, the weight process {wt} is driven by an inflation drift.
Hence, wt will go to infinity almost surely as t becomes large.

To prevent the weight process from going to 0 or ∞, scheme-R alters the
use of θt = 0 and θt = 1. When Wup,t > Wc, θt is set to 0, so the weight
process of scheme-R can be bounded above by

log wt = log w0 +
t∑

s=1

log r(xs−1, xs)−
t∑

s=1

log(ds),

provided that θ1 = · · · = θt = 0, where ds is a positive integer as defined in
the APEPCS.
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Scheme-W To prevent the weight process from going to 0, the factor (1+δt)
is multiplied at each iteration, where

δt =
1

α + βW1+ε
up,t

, α > 0, β > 0, ε> 0.

For example, it was set α = β = 1 and ε = 0.5 in Liang (2002b). When Wup,t

is very small, δt ≈ 1/α, the weight process is driven by an inflation drift (i.e.,
choosing α such that log(1+ α−1) + e0 > 0) and is prevented from going to 0.
When Wup,t is very large, δt ≈ 0, the weight process is driven by the negative
drift e0 and is prevented from going to infinity. The preweight control step
tunes the value of δ to help the population control scheme to control the
population size and the weight quantity to a suitable range.

In this scheme, the weight evolves as

log wt =


−∞ w′

t < Wlow,t and pruned,

log(Wlow,t) w′
t < Wlow,t and not pruned,

log w′
t − log dt w′

t ≥Wlow,t,

(6.19)

where w′
t = (1 + δt)wt−1r(xt−1, xt), and dt is a positive integer number such

that log(Wlow,t) ≤ log w′
t− log(dt) ≤ log(Wup,t). Following from (6.19), log wt

is bounded above by the process

log wt = log w0 +
t∑

s=1

log r(xs−1, xs) +
t∑

s=1

log(1 + δs)−
t∑

s=1

log(ds)

≈ log w0 +
t∑

s=1

log r(xs−1, xs) +
t∑

s=1

δs −
t∑

s=1

log(ds) (6.20)

≤ c +
t∑

s=1

log r(xs−1, xs)−
t∑

s=1

log(ds),

where c is a constant. The last inequality follows from the fact that
∑t

s=1 δs

is upper bounded, as we set δs = 1/[a + bW1+ε
up,s] with ε> 0.

Moments of DWIS Weights In summary, the weight process of the two
DWIS schemes can be characterized by the following process:

Zt =

{
Zt−1 + log r(xt−1, xt)− log(dt), if Zt−1 > 0 ,

0, if Zt−1 < 0 ,
(6.21)

where there exists a constant C such that |Zt−Zt−1| ≤ C almost surely. The
existence of C follows directly from condition (6.14). Let T0 = 0, Ti = min{t :
t >Ti−1, Zt = 0}, and Li = Ti−Ti−1 for i ≥ 1. From (6.17) and the fact that
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dt ≥ 1, it is easy to see that Li is almost surely finite; that is, there exists an
integer M such that P(Li < M) = 1. This implies that for any fixed η> 0,

E exp(ηZt) ≤ exp(ηMC), a.s.

This leads to the following theorem:

Theorem 6.2.4 Under the assumption (6.14), the importance weight in
DWIS almost surely has finite moments of any order.

The ratio κ = Wup,t/Wlow,t determines the moving ability of DWIS, and it
is called the freedom parameter of DWIS by Liang (2002b). In the APEPCS,
κ is also equal to the ratio nup/nlow. When choosing the value of κ, the
efficiency of the resulting sampler should be taken into account. A large κ will
ease the difficulty of escaping from local energy minima, but the variability
of the weights will also increase accordingly. The efficiency of DWIS may be
reduced by an excessively large κ. Our experience shows that a value of κ
between 2 and 10 works well for most problems.

6.2.6 A Numerical Example

Suppose we are interested in simulating from a distribution f ∝ (1, 1000,
1, 2000) with the transition matrix

T =


1
2

1
2 0 0

2
3 0 1

3 0
0 4

7 0 3
7

0 0 1
2

1
2

 .

This example characterizes the problem of simulation from a multimodal
distribution.

For the MH algorithm, once it reaches state 4, it will have a very hard
time leaving it. On average it will wait 4667 trials for one successful transition
from state 4 to state 3. Figure 6.5 (b) shows that it almost always got stuck
at state 4. Figure 6.5 (a) shows that the MH algorithm fails to estimate the
mass function by plotting the standardized errors of f̂MH [i.e., (

∑4
i=1(f̂MH,i−

fi)2/fi)1/2] against log-iterations, where f̂A denotes one estimate of f by
algorithm A.

Dynamic weighting (the R-type move) was applied to this example with
θ = 1. It started with (x0, w0) = (4, 1) and was run for 35 000 iterations. The
ability of weight self-adjustment enables it to move from state 4 to mix with
the other states. Figure 6.5 (c) shows that even only with 200 (≈ e5.3) itera-
tions, dynamic weighting already produces a very good estimate for f in the
run. But as the run continues, the estimate is not improved and occasionally
is even contaminated by the big jumps of importance weights. An occasional
big jump in importance weights is an inherent feature of dynamic weighting.
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It is caused by an occasional rejection of a transition with a large weight and a
large dynamic ratio. Figure 6.5 (d) shows the time plot of the weights collected
at state 4. It shows that at state 4, the weight increases monotonically, and
a big jump happens occasionally. Although the jump happens increasingly
rarely, the weight increasing amplitude of each jump becomes larger. If the
simulation stops at an unsuitable time (e.g., just after a big weight jump),
then the resulting estimate may be severely biased. In this case, the last
several weights will dominate all the others, and the effective sample size will
be very small. To achieve a stable estimate, some additional techniques, such
as the stratified truncation as described in Section 6.1.1, must be used.

DWIS was applied to this example with Nmin = 25, Nmax = 200,
Nlow = 50, Nup = 100, N0 = 80, and κ = 1000. It was run for 250 iterations,
and produced a total of 34 110 weighted samples. Figure 6.5 (e) shows that
the DWIS estimate converges very fast to the true mass function, and the
estimate improves continuously as the run goes on. Figure 6.5 (f) plots
the weights collected at state 4. It shows that in DWIS, the weights have
been well controlled and no longer increase monotonically, and no weight
jump occurs. This example shows that DWIS can move across energy barriers
like dynamic weighting, but the weights are well controlled and the estimates
can be improved continuously like the MH algorithm.

6.3 Monte Carlo Dynamically Weighted
Importance Sampling

In this section, we describe a Monte Carlo version of dynamically weighted
importance sampling (Liang and Cheon, 2009), which can be used to sample
from distributions with intractable integrals.

6.3.1 Sampling from Distributions with Intractable
Normalizing Constants

Reconsider the problem of sampling from distributions with intractable nor-
malizing constants that has been considered in Sections 4.6–4.8. Suppose we
have data D generated from a statistical model with the likelihood function

f(D|x) =
p(x, D)
Z(x)

, (6.22)

where, to keep the notation consistent with previous sections, x is used to
denote the parameters of the model, and Z(x) is the normalizing constant
which depends on x and is not available in closed form. Let π(x) denote the
prior distribution of x. The posterior distribution of x is then given by

π(x|D) =
1

Z(x)
p(x, D)π(x). (6.23)
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Since the closed form of Z(x) is not available, sampling from (6.23) poses
a great challenge on the current statistical methods. As discussed in Sec-
tion 4.6, such a sampling problem often arises in Bayesian spatial statistics.
Two famous examples are image segmentation (Hurn et al., 2003) and disease
mapping (Green and Richardson, 2002), both involving a hidden Potts model
whose normalizing constant is intractable.

It is known that the MH algorithm cannot be applied to simulate
from π(x|D), because the acceptance probability requires computing the
ratio Z(x)/Z(x′), where x′ denotes the proposed value. As summarized in
Section 4.6, the existing methods for the problem can be divided into two
categories. The first category is called the likelihood approximation-based
methods, which include the maximum pseudo-likelihood method (Besag,
1974), the Monte Carlo maximum likelihood method (Geyer and Thompson,
1992), stochastic approximation Monte Carlo (Liang et al., 2007; Liang,
2007a), and the double MH algorithm (Liang, 2009c), among others. Note
that the double MH algorithm does not approximate the likelihood directly,
but uses a sample generated in a finite number of MH transitions to
substitute for a perfect sample of f(·). The second category is called the
auxiliary variable MCMC methods, which include the Mo/ller algorithm
(Mo/ller et al., 2006) and the exchange algorithm (Murray et al., 2006).
A serious weakness of these two algorithms is that they require perfect
sampling (Propp and Wilson, 1996) of D. Unfortunately, perfect sampling is
very expensive or impossible for many statistical models whose normalizing
constant is intractable.

In Section 6.3.2, we describe a new Monte Carlo method, the so-called
Monte Carlo dynamically weighted importance sampling (MCDWIS) method
(Liang and Cheon, 2009), for the problem. The advantage of MCDWIS is that
it avoids the requirement for perfect sampling, and thus can be applied for
a wide range of problems for which perfect sampling is not available or very
expensive.

6.3.2 Monte Carlo Dynamically Weighted
Importance Sampling

The MCDWIS algorithm is a Monte Carlo version of the DWIS algorithm
described in Section 6.2. As in DWIS, the state space of the Markov chain
is augmented to a population, a collection of weighted samples (x, w) =
{x1, w1; . . . ; xn, wn}. Given the current population (xt, wt), one iteration of
the MCDWIS consists of two steps:

1. Monte Carlo dynamic weighting (MCDW): update each individual state
of the current population by a MCDW transition.

2. Population control: split or replicate the individual states with large
weights and discard the individual states with small weights.
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The MCDW step allows for the use of Monte Carlo estimates in MCMC
simulations. The bias induced thereby is counterbalanced by giving different
weights to the new samples produced. Therefore, a Monte Carlo estimate
of Z(x)/Z(x′) can be incorporated into the simulation, while leaving π(x|D)
invariant with respect to dynamic importance weights. Note that conventional
MCMC algorithms do not allow for the use of Monte Carlo estimates in
simulations. Otherwise, the detailed balance condition will be violated.

The population control is the same as that used in DWIS, which has the
importance weight and population size controlled to suitable ranges.

6.3.2.1 A MCDW Sampler

Let (xt, wt) denote the current population, let (x, w) denote an individual
state of the population, and let (x′, w′) denote the individual state transmitted
from (x, w) in one transition step. The MCDW sampler can be described as
follows.

1. Draw x∗ from some proposal distribution T(x, x∗).

2. Simulate auxiliary samples D1, . . . , Dm from f(D|x∗) using a MCMC
algorithm, say, the MH algorithm. Estimate the normalizing constant
ratio Rt(x, x∗) = Z(x)/Z(x∗) by

R̂t(x, x∗) =
1
m

m∑
i=1

p(Di, x)
p(Di, x∗)

, (6.24)

which is also known as the importance sampling (IS) estimator of
Rt(x, x∗).

3. Calculate the Monte Carlo dynamic weighting ratio

rd = rd(x, x∗, w) = wR̂t(x, x∗)
p(D, x∗)
p(D, x)

T(x∗, x)
T(x, x∗)

.

4. Choose θt = θt(xt, wt) ≥ 0 and draw U ∼ unif(0, 1). Update (x, w) as
(x′, w′)

(x′, w′) =

{
(x∗, rd/a), if U ≤ a,

(x, w/(1− a)), otherwise,

where a = rd/(rd + θt); θt is a function of (xt, wt), but remains a
constant for each individual state of the same population.

The sampler is termed ‘Monte Carlo’ in the sense that Rt(x, x∗) is sub-
stituted by its Monte Carlo estimator in simulations. If Rt(x, x∗) is available
analytically, then MCDWIS is reduced to DWIS. Regarding this sampler, we
have two remarks.
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Remark 1 As pointed out by Chen et al. (2000), R̂t(x, x∗) is an unbiased
and consistent estimator of Rt(x, x∗). Following from the central limit theo-
rem, we have

√
m

(
R̂t(x, x∗)−Rt(x, x∗)

)
→ N

(
0, σ2

t

)
, (6.25)

where σ2
t can be expressed as

σ2
t = Var

(
p(D1, x)
p(D1, x∗)

)
+ 2

∞∑
i=2

Cov
(

p(D1, x)
p(D1, x∗)

,
p(Di, x)
p(Di, x∗)

)
.

Alternatively, we can write R̂t(x, x∗) = Rt(x, x∗)(1+ εt), where εt ∼ N(0, σ2
t /

[mR2
t (x, x∗)]).

Remark 2 This sampler is designed according to the scheme-R of DWIS.
A similar sampler can also be deigned according to the scheme-W of DWIS.
As discussed previously, the parameter θt can be specified as a function of
the population (xt, wt). For simplicity, we here concentrate only on the cases
where θt = 0 or 1.

The following theorem shows that the MCDWIS sampler is IWIWp when
the initial condition ∫

X
ct0,xT(x′, x)dx = ct0,x′ (6.26)

holds for some population (xt0 , wt0).

Theorem 6.3.1 The Monte Carlo dynamic weighting sampler is IWIWp;
that is, if the joint distribution gt(x, w) for (xt, wt) is correctly weighted with
respect to π(x|D) and (6.26) holds, after one Monte Carlo dynamic weight-
ing step, the new joint density gt+1(x′, w′) for (xt+1, wt+1) is also correctly
weighted with respect to π(x|D) and (6.26) also holds.

Proof : For the case θt > 0,∫ ∞

0

w′gt+1(x′, w′)dw′

=
∫
X

∫ ∞

0

∫ ∞

−∞
[rd(x, x′, w) + θt]gt(x, w)T(x, x′)ϕ(εt)

× rd(x, x′, w)
rd(x, x′, w) + θt

dεtdwdx

+
∫
X

∫ ∞

0

∫ ∞

−∞

w[rd(x′, z, w) + θt]
θt

gt(x′, w)T(z|x′)ϕ(εt)

× θt

rd(x′, z, w) + θt
dεtdwdz
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=
∫
X

∫ ∞

0

∫ ∞

−∞
wR(x, x′)(1 + εt)

p(D, x′)π(x′)
p(D, x)π(x)

×T(x′, x)gt(x, w)ϕ(εt)dεtdwdx

+
∫
X

∫ ∞

0

∫ ∞

−∞
wgt(x′, w)T(x′, z)ϕ(εt)dεtdwdz

=
∫
X

∫ ∞

0

wR(x, x′)
p(D, x′)π(x′)
p(D, x)π(x)

T(x′, x)gt(x, w)dwdx

+
∫
X

∫ ∞

0

wgt(x′, w)T(x′, z)dwdz

=
∫
X

π(x′|D)
π(x|D)

T(x′, x)
(∫ ∞

0

wgt(x, w)dw

)
dx

+
∫
X

ct,x′π(x′|D)T(x′, z)dz

= π(x′|D)
∫
X

ct,xT(x′, x)dx + ct,x′π(x′|D)

= π(x′|D)
∫
X

ct,xT(x′, x)dx + ct,x′π(x′|D)

= 2ct,x′π(x′|D),

where ϕ(·) denotes the density of εt. For the case θt = 0, only the term (I)
remains. Thus, ∫ ∞

0

w′gt+1(x′, w′)dw′ = ct,x′π(x′|D).

By defining ct+1,x′ = 2ct,x′ for the case θt > 0 and ct+1,x′ = ct,x′ for the case
θt = 0, it is easy to see that the condition (6.26) still holds for the new popula-
tion. Hence, gt+1(x′, w′) is still correctly weighted with respect to π(x|D).

In practice, the initial condition (6.26) can be easily satisfied. For exam-
ple, choose g0(x, w) = g(x) and set w = R̂p(D, x)π(x)/g(x), where R̂ denotes
an unbiased estimator of 1/Z(x), then

∫ ∫
wg0(x, w)ϕ(ε)dεdw = π(x|D),

that is, ct,x ≡ 1. The initial condition is thus satisfied due to the identity∫
T(x′, x)dx = 1.

To avoid an extremely large weight caused by a nearly zero divisor,
similarly to DWIS, we can make the following assumption for the target
distribution: for any pair of (x, x∗) ∈ X × X and any sample D ∈ D, there
exists a constant r1 such that

r1 ≤ p(D, x)
p(D, x∗)

≤ 1
r1

. (6.27)



190 DYNAMIC WEIGHTING

This condition can be easily satisfied by restricting both X and D to be
compact. This is natural for many spatial problems, such as the autologistic
model studied in Section 6.3.4. In addition, for the proposal distribution,
we can assume that there exists a constant r2 such that for any pair
(x, x∗) ∈ X × X,

r2 ≤ T(x∗, x)
T(x, x∗)

≤ 1
r2

. (6.28)

This condition can be easily satisfied by using a symmetric proposal, which
implies r2 = 1. Following from (6.24), (6.27) and (6.28), it is easy to see that
there exists a constant r0 such that for any pair (x, x∗) ∈ X× X,

r0 ≤ R̂t(x, x∗)
p(D, x∗)
p(D, x)

T(x∗, x)
T(x, x∗)

≤ 1
r0

. (6.29)

6.3.2.2 Monte Carlo Dynamically Weighted
Importance Sampling

Similar to the DWIS, we compose the following MCDWIS algorithm, which al-
ters between the MCDW and population control steps. Since both the MCDW
step and the population control step are IWIWp, the MCDWIS algorithm is
also IWIWp. Let Wc denote a dynamic weighting move switching parame-
ter, which switches the value of θt between 0 and 1 depending on the value of
Wup,t−1. One iteration of the MCDWIS algorithm can be described as follows.

• MCDW : Apply the Monte Carlo dynamic weighting move to the pop-
ulation (xt−1, wt−1). If Wup,t−1 ≤ Wc, then set θt = 1. Otherwise, set
θt = 0. The new population is denoted by (x′

t, w
′
t).

• Population Control : Apply APEPCS to (x′
t, w

′
t). The new population

is denoted by (xt, wt).

Let (x1, w1), . . . , (xN , wN ) denote a series of populations generated
by MCDWIS. Then, according to (6.11), the quantity µ = Eπh(x) can be
estimated in (6.15). As for DWIS, this estimator is consistent and asymptoti-
cally normally distributed. Below, we will show that the dynamic importance
weights have finite moments of any order.

Weight Behavior Analysis To analyze the weight behavior of the
MCDWIS, we introduce the following lemma.

Lemma 6.3.1 Let f(D|x) = p(D, x)/Z(x) denote the likelihood function of
D, let π(x) denote the prior distribution of x, and let T(·, ·) denote a pro-
posal distribution of x. Define p(x, x′|D) = p(D, x)π(x)T(x, x′), and r(x, x′) =
R̂(x, x′)p(x′, x|D) /p(x, x′|D) to be a Monte Carlo MH ratio, where R̂(x, x′)
denotes an unbiased estimator of Z(x)/Z(x′). Then

e0 = E log r(x, x′) ≤ 0,



MCDWIS 191

where the expectation is taken with respect to the joint density ϕ(R̂) ×
p(x, x′|D)/Z(x).

Proof : By Jensen’s inequality,

e0 = E log
[
R̂(x, x′)

p(x′, x|D)
p(x, x′|D)

]
≤ log E

[
R̂(x, x′)

p(x′, x|D)
p(x, x′|D)

]
= 0,

where the equality holds when p(x′, x|D) = p(x, x′|D), and ϕ(·) is a Dirac
measure with ϕ(R̂ = R) = 1 and 0 otherwise.

Given this lemma, it is easy to see that, theoretically, MCDWIS shares the
same weight behavior with scheme-R of DWIS; that is, the following theorem
holds for MCDWIS.

Theorem 6.3.2 Under the assumptions (6.27) and (6.28), the MCDWIS
almost surely has finite moments of any order.

6.3.3 Bayesian Analysis for Spatial
Autologistic Models

Consider again the spatial autologistic model described in Section 4.8.2. Let
D = {di : i ∈ S} denote the observed binary data, where i is called a spin and
S is the set of indices of the spins. Let |S| denote the total number of spins in
S, and let n(i) denote the set of neighbors of spin i. The likelihood function
of the model can be written as

f(D|x) =
1

Z(x)
exp

xa

∑
i∈S

di +
xb

2

∑
i∈S

di

 ∑
j∈n(i)

dj

 , (xa, xb) ∈ X,

(6.30)

where x = (xa, xb), and the normalizing constant Z(x) is intractable.
To conduct a Bayesian analysis for the model, a uniform prior

(xa, xb) ∈ X = [−1, 1]× [0, 1],

is assumed for the parameters. The MCDWIS can then be applied to simu-
late from the posterior distribution f(x|D). Since, for this model, D is finite
and X is compact, the condition (6.27) is satisfied. To ensure the condition
(6.28) to be satisfied, a Gaussian random walk proposal is used for updat-
ing x. Following from Theorem 6.3.2, the importance weights will have finite
moments of any order for this model.

6.3.3.1 US Cancer Mortality Data

Liang and Cheon (2009) tested the MCDWIS on the US cancer mortality
data. See Section 4.8.2 for a description of the data. The MCDWIS was run
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10 times for this data, and each run consisted of 100 iterations. The CPU
time cost by each run was about 5.8 m on a 3.0GHz personal computer.

In each run, the MCDWIS was initialized with n0 = 250 random samples
of x generated in a short run of the double MH algorithm (Liang, 2009),
and each sample was assigned an equal weight of 1. The double MH run
consisted of 3500 iterations, where the first 1000 iterations were discarded
for burn-in, and then 250 samples were collected with an equal time space
from the remaining 2500 iterations and were used as the initial samples. At
each iteration, the auxiliary variable is generated with a single MH update.
As previously mentioned, the double MH algorithm is very fast, but can only
sample from the posterior distribution π(x|D) approximately, even when the
run is long.

After initialization, MCDWIS iterates between the MCDW and pop-
ulation control steps. In the MCDW step, the normalizing constant ratio
Rt(x, x∗) was estimated using 50 auxiliary samples, which were generated
from 50 cycles of Gibbs updates starting with D; and T(·|·) was a Gaussian
random walk proposal N2(x, 0.032I2). In the population control step, the
parameters were set as follows: Wc = e5, nlow = 200, nup = 500, nmin = 100
and nmax = 1000.

Figure 6.6 shows the time plots of the population size, θt and Wup,t pro-
duced in a run of MCDWIS. It indicates that after a certain number of burn-in
iterations, the population size and the magnitude of the weights can evolve
stably. In each run, the first 20 iterations were discarded for the burn-in
process, and the samples generated from the remaining iterations were used
for inference. Averaging over the ten runs produced the following estimate:
(x̂a, x̂b) = (−0.3016, 0.1229) with the standard error (1.9× 10−3, 8.2× 10−4).

For comparison, Liang and Cheon (2009) also applied the exchange
algorithm (Murray et al., 2006), see Section 4.7, to this example. The
exchange algorithm was also run 10 times, where each run consisted of
55 000 iterations and took about 6.5m CPU time on a 3.0 GHz computer.
By averaging over ten runs, Liang and Cheon (2009) obtained the estimate
(x̂a, x̂b) = (−0.3018, 0.1227) with the standard error (2.7× 10−4, 1.4× 10−4).
In averaging, the first 5000 iterations of each run have been discarded for the
burn-in process.

In summary, MCDWIS and the exchange algorithm produced almost iden-
tical estimates for this example, although the estimate produced by the former
has slightly larger variation. The advantage of MCDWIS can be seen in the
next subsection, where for some datasets the exchange algorithm is not feasi-
ble while MCDWIS still works well.

6.3.3.2 Simulation Studies

To assess accuracy of the estimates produced by MCDWIS, Liang and Cheon
(2009) also applied MCDWIS and the exchange algorithm to the simulated
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Figure 6.6 Simulation results of the MCDWIS for the US Cancer Mortality
example: (a) time plot of population size; (b) time plot of θt; and (c) time
plot of log(Wup,t). The dotted line in plot (c) shows the value of log(Wc).

U.S. cancer mortality data by Liang (2009c); see Section 4.8.1.1 for a descrip-
tion of the data. Both algorithms were run as for the previous example, except
that each run of the exchange algorithm was shortened to 10 500 iterations
with the first 500 iterations being discarded for burn-in. The results were
summarized in Table 6.1. For a thorough comparison, the maximum pseudo-
likelihood estimates (MPLEs) were also included in Table 6.1, which were
obtained by Liang (2009c) by maximizing the pseudo-likelihood function

L̃(x|D) =
∏
i∈D

[
exadi+xb

∑
j∈n(i) didj

exa+xb

∑
j∈n(i) dj + e−xa−xb

∑
j∈n(i)

∑
dj

]
,

using the downhill simplex method (Press et al., 1992). Comparing to other
deterministic optimization methods, the downhill simplex method avoids the
requirement for the gradient information of the objective function, and can
thus be easily applied to the constraint optimization problems.

This example shows that MCDWIS can produce almost the same ac-
curate results as the exchange algorithm, and more accurate results than
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Table 6.1 Computational results for the simulated US cancer mortality data
(recompiled from Liang and Cheon, 2009).

MCDWIS exchange algorithm MPLE
(xa, xb) x̂a x̂b CPUa x̂a x̂b CPUb x̂a x̂b

(0,.1)e −.004c .100 5.8 −.004 .100 1.2 −.004 .102
.003d .002 .002 .002 .002 .002

(0,.2)e −.002 .202 5.8 −.002 .201 2.8 −.002 .203
.002 .002 .002 .002 .002 .002

(0,.3)e −.001 .298 5.8 −.001 .298 7.9 −.002 .298
.001 .002 .001 .002 .002 .002

(0,.4)e .000 .396 5.8 .000 .398 145.8 .002 .401
.001 .002 .001 .001 .001 .002

(.1,.1)e .103 .099 5.8 .103 .099 1.1 .102 .100
.003 .002 .003 .002 .003 .002

(.3,.3)e .295 .304 5.8 .301 .301 3.5 .290 .304
.011 .005 .010 .004 .010 .005

(.5,.5)f .495 .517 5.8 – – – .561 .485
.035 .012 – – .039 .012

aThe CPU time (in minutes) cost by a single run of the MCDWIS on a 3.0GHz Dell
personal computer. bThe CPU time (in minutes) cost by a single run of the exchange
algorithm on a 3.0GHz Dell personal computer. cThe estimate of the corresponding
parameter. dThe standard error of the estimate. eThe data were simulated using the
perfect sampler. f The data were simulated using the Gibbs sampler, started with a
random configuration and then iterated for 100 000 Gibbs cycles.

MPLE especially when both xa and xb are large. It is remarkable that the
CPU time cost by the MCDWIS is independent of the setting of x. Whereas,
when xb increases, the CPU time cost by the exchange algorithm increases
exponentially.

The novelty of the MCDWIS is that it allows for the use of Monte Carlo
estimates in MCMC simulations, while still leaving the target distribution in-
variant with respect to importance weights. The MCDWIS can also be applied
to Bayesian inference for missing data or random effects models, for example,
the generalized linear mixed model, which often involves simulations from a
posterior distribution with intractable integrals.
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6.4 Sequentially Dynamically Weighted
Importance Sampling

In this section, we describe a sequential version of dynamically weighted
importance sampling, which can be viewed a general form of sequential impor-
tance sampling.

Although DWIS has significantly improved the mixing of the MH algo-
rithm, it may still have a hard time in simulating from a system for which the
attraction basin of the global minimum energy solution is very narrow. One
approach to alleviating this difficulty is to use DWIS in conjunction with a
complexity ladder by simulating from a sequence of systems with gradually
flattened energy landscapes. This approach is called sequentially dynamically
weighted importance sampling (SDWIS).

Suppose that one wants to simulate from a distribution f(x), and a se-
quence of trial distributions f1, · · · , fk has been constructed with fk ≡ f.
For example, fk−1(xk−1) can be set as a marginal distribution of fk(xk). See
Section 5.6.1 for discussions on how to construct such a complexity ladder of
distributions.

1. . • Sample Sample x1,1, . . . , x1,N1 from f1(·) using a MCMC algo-
rithm, and set w1,i = 1 for i = 1, . . . , N1. The samples form a
population (x1, w1) = (x1,1, w1,1; . . . ; x1,N1 , w1,N1).

• DWIS Generate (x′
1, w

′
1) from (x1, w1) using DWIS with f1(x)

working as the target distribution.

2. . • Extrapolation Generate x2,i from x′
1,i with the extrapolation

operator T12(x′
1,i, x2,i), and set

w2,i = w′
1,i

f2(x2,i)
f1(x′

1,i)T12(x′
1,i, x2,i)

,

for each i = 1, 2, · · · , N′
1.

• DWIS Generate (x′
2, w

′
2) from (w2, w2) using DWIS with f2(x)

working as the target distribution.

• Extrapolation Generate xk,i from x′
k−1,i with the extrapolation

operator Tk−1,k(x′
k−1,i, xk,i), and set

wk,i = w′
k−1,i

fk(xk,i)
fk−1(x′

k−1,i)Tk−1,k(x′
k−1,i, xk,i)

,

for i = 1, 2, · · · , N′
k−1.

• DWIS : Generate (x′
k, w′

k) from (xk, wk) using DWIS with fk(x)
working as the target distribution.
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At each step, SDWIS includes two sub-steps: extrapolation and DWIS. In
the extrapolation step, the samples from the preceding level are extrapolated
to the current level. This step may involve dimension jumping, which can be
accommodated by the proposal Ti−1,i(·, ·).

The validity of SDWIS can be verified as follows. First, it is easy to see that
the condition (6.13) is satisfied by the population (x1, w1), where w1,i ≡ 1
for all i, g(x, w) = f1(x), and c1,x = 1. Hence, the DWIS step is IWIWp

with respect to the corresponding target distribution. To show the validity
of SDWIS, it suffices to show that the extrapolation step is also IWIWp.
For simplicity, the unnecessary subscripts are suppressed in the remainder
of this section. Let (x′, w′) denote a sample of the population (x′

i−1, w
′
i−1),

and let (x, w) denote a sample of the population (xi, wi). Assume that (x, w)
is extrapolated from (x′, w′), and the population (x′

i−1, w
′
i−1) is correctly

weighted with respect to fi−1(x). For the extrapolation step, we have∫ ∞

0

wgi(x, w)dw

=
∫ ∞

0

w′ fi(x)
fi−1(x′)Ti−1,i(x′, x)

gi−1(x′, w′)Ti−1,i(x′, x)dw′

=
∫ ∞

0

w′gi−1(x′, w′)
fi(x)

fi−1(x′)
dw′

= ci−1,xfi(x),

which implies that the new population (xi, wi) is also correctly weighted with
respect to fi(x) by setting ci,x = ci−1,x.

The advantage of SDWIS over conventional sequential importance sam-
pling (SIS) algorithms is apparent: the DWIS steps will remove the bad seed
samples at the early stages of sampling and force the good seed samples
to produce more offspring. More importantly, SDWIS overcomes the sample
degeneracy problem suffered by conventional sequential importance sampling
or particle filter algorithms by including the DWIS step, which maintains the
diversity of the population. Together with a radial basis function network,
SDWIS has been successfully applied to the modeling of the sea surface tem-
peratures by Ryu et al. (2009): in a numerical example, they et al. show that
SDWIS can be more efficient than the standard SIS and the partial rejec-
tion control SIS (Liu et al., 1998) algorithms, and SDWIS indeed avoids the
sample degeneracy problem.

The framework of SDWIS is so general that it has included several other
algorithms as special cases. If only the population control scheme is performed
at the DWIS step, SDWIS is reduced to the pruned-enriched Rosenbluth
method (Grassberger, 1997). If only some MH or Gibbs steps are performed
at the DWIS step (with fk(x) being chosen as a power function of f(x)),
SDWIS is reduced to annealed importance sampling (Neal, 2001). Note that
the MH or Gibbs step will not alter the correctly weightedness of a population,
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as they are IWIW as shown at the end of Section 6.1.1. With this observation,
MacEachern et al. (1999) propose improving the performance of sequential
importance sampling by mixing in some MCMC steps.

Exercises

6.1 In addition to the one described in Section 6.1.1, Wong and Liang
(1997) prescribe the following dynamic weighting transition (type-Q
transition): Draw y from a proposal transition function T(xt, y) and
compute the dynamic ratio rd(xt, y, wt). Let θ > 0 be a positive number.
With probability a = min(1, rd(xt, y, wt)/θ), set xt+1 = y and wt+1 =
rd(xt, y, wt)/a; otherwise, set xt+1 = xt and wt+1 = wt/q, where q is
the conditional probability of rejection of a proposal. If 1/q is unknown,
its unbiased estimate, constructed based on further independent trials,
can be used. Show this transition is IWIW.

6.2 Implement the dynamic weighting algorithm for the distribution f(x) =
(1/7, 2/7, 4/7) with state space {1, 2, 3} and the following proposal
transition matrices:

(a)

 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 , (b)

 0 1
3

2
3

1
2 0 1

2
4
7

3
7 0

 .

(a) Estimate E(X) and find the standard error of the estimate.

(b) Compare the standard errors resulted from the two different tran-
sition matrices.

6.3 Implement the dynamic weighting and DWIS algorithms for the dis-
tribution f(x) ∝ (1, 1000, 1, 2000) with state space {1, 2, 3, 4} and the
following proposal transition matrix:

1
2

1
2 0 0

2
3 0 1

3 0
0 4

7 0 3
7

0 0 1
2

1
2

 .

Explore the convergence rates of the two algorithms through their
respective estimates of E(X).

6.4 Ritter and Tanner (1992) fitted the nonlinear regression model

y = θ1(1− exp(−θ2x)) + ε, ε ∼ N(0, σ2),

to the biochemical oxygen demand (BOD) data versus time (Source:
Marske, 1967).
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Table 6.2 Biochemical oxygen demand (BOD) versus time (Source: Marske
1967).

time(days) BOD(mg/l)

1 8.3
2 10.3
3 19.0
4 16.0
5 15.6
7 19.8

Assume the prior of σ2 is flat on (0,∞) and the prior of (θ1, θ2) is
uniform on the region [−20, 50] × [−2, 6]. Integrating out σ2 from the
posterior yields

f(θ1, θ2|x, y) ≈ [S(θ1, θ2)]−n/2−1,

where S(θ1, θ2) is the sum of squares. Implement DWIS for the posterior
density f(θ1, θ2|x, y), and find a discrete estimate of f(θ1, θ2|x, y).

6.5 Implement the simulated example described in Section 6.3.3.2, and try
to reproduce Table 6.1.

6.6 Discuss how to apply the dynamic weighting algorithm to training a
feed-forward neural network.

6.7 The DWIS algorithm works on a population of unequally weighted sam-
ples. Discuss how to make crossover operations for DWIS.
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Chapter 7

Stochastic Approximation
Monte Carlo

Consider sampling from a distribution with the density/mass function

f(x) =
1

Z(τ)
exp{−H(x)/τ}, x ∈ X (7.1)

on a sample space X, where τ is called the temperature, and H(x) the energy
function in terms of physics. Conventional MCMC algorithms, such as the
Metropolis-Hastings algorithm, would draw each configuration x ∈ X with a
probability proportional to its Boltzmann weight

wb(x) = exp(−H(x)/τ).

In statistical physics, this type of simulation is called the canonical ensemble
simulation, which yields the usually bell-shaped probability distribution of
energy U = H(x):

PCE(u) =
1

Z(τ)
g(u) exp(−u/τ),

where g(u) is called the density of states (or spectral density).
Local updates have probability exp(−∆u/τ) for the system to cross an

energy barrier of ∆u. Hence, at low temperatures, the sampler tends to get
trapped in one of the local energy minima, rendering the simulation ineffec-
tive. In their seminal work on umbrella sampling, Torrie and Valleau (1977)
consider two general strategies to alleviate this type of difficulty. One is to use
a global updating scheme, and the other is to sample from an ensemble for
which each configuration is assigned a weight different from wb(·) so that the
local-trap problem does not exist any more. The population-based algorithms
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described in Chapter 5 and some of the auxiliary variable-based algorithms
described in Chapter 4 (e.g., simulated tempering and clustering algorithms)
are all based on the first strategy. For example, in simulated tempering and
parallel tempering, the simulation at high temperatures provides a global
proposal for simulation at the target temperature. In this chapter, we will
describe some algorithms that utilize the second strategy, in particular, the
stochastic approximation Monte Carlo (SAMC) (Liang et al ., 2007), and re-
lated algorithms.

7.1 Multicanonical Monte Carlo

Multicanonical Monte Carlo (Berg and Neuhaus, 1991, 1992) seeks to draw
samples in an ensemble where each configuration with energy u = H(x) is
assigned a weight

wm(u) ∝ 1
g(u)

= e−S(u),

where S(u) = log(g(u)) is called the microcanonical entropy. A simulation
with this weight function will yield a uniform distribution of energy:

Pm(u) ∝ g(u)wm(u) = constant,

and lead to a free random walk in the space of energy. This allows the sampler
to escape any energy barriers, and to explore any regions of the sample space
even for those with small g(u)’s. The samples generated in the simulation
will form a flat histogram in the space of energy, hence, the multicanonical
algorithm is also called a flat histogram Monte Carlo algorithm (Liang, 2006).

Since g(u)’s are generally unknown a priori, Berg and Neuhaus (1992)
provided a recursive procedure to learn their values. The procedure initializes
the estimate of g(u) through a Monte Carlo simulation with a tempered target
distribution fT (x) ∝ exp(−H(x)/T ). For simplicity, suppose that the energy
function U only takes values on a finite set {u1, . . . , um}. Let x1, . . . , xN denote
the MCMC samples drawn from fT (x), and let NT (i) = #{xj : H(xj) = ui}
denote the number of samples with energy ui. As N →∞,

NT (i)/N ≈ 1
Z(T )

g(ui)e−ui/T , i = 1, . . . , m,

then the spectral density can be estimated by

ĝ(ui) =
NT (i)eui/T∑m

j=1 NT (j)euj/T
, i = 1, . . . , m.

In practice, the temperature T should be sufficiently high such that each value
of the energy can be visited with reasonably large frequency. Given the initial
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spectral density estimate, the multicanonical algorithm iterates between the
following two steps:

1. Run a MCMC sampler, say, the MH algorithm, sufficiently long accord-
ing to the current weighting function

w(t)
m (x) ∝ 1

ĝt(H(x))
, (7.2)

where t indexes the stages of the simulation.

2. Update the spectral density estimate by

log (ĝt+1(ui)) = c + log (ĝt(ui)) + log (π̂t(i) + αi) , i = 1, . . . , m, (7.3)

where the constant c is introduced to ensure that log(ĝt+1) is an es-
timate of log(g), and π̂t(i) is the relative sampling frequency of the
energy ui at stage t, and α1, . . . , αm are small positive constants which
serve as ‘prior values’ to smooth out the estimate ĝ.

Since the number of iterations performed in step 1 is sufficiently large, it is
reasonable to assume that the simulation has reached equilibrium, and thus

π̂t(i) ∝ g(ui)
ĝt(ui)

, i = 1, . . . , m. (7.4)

Substituting (7.4) into (7.3), then

log (ĝt+1(ui)) = c + log(g(ui)), i = 1, . . . , m, (7.5)

which implies the validity of the algorithm for estimating g(u) (up to a multi-
canonical constant). On the other hand, in (7.5), the independence of ĝt+1(u)
on the previous estimate ĝt(u) implies that the spectral density estimate
can only reach limited accuracy, which is determined by the length of the
simulation performed in Step 1. After certain stage, increasing the number
of stages will not improve the accuracy of the spectral density estimate.

Given a set of multicanonical samples x
(1)
t , . . . , x

(Nt)
t generated at stage t,

the quantity Efρ(x) (the expectation of ρ(x) with respect to the target dis-
tribution f(x)) can be estimated using the reweighting technique by

Ê
(t)
f ρ(x) =

∑N
i=1 ĝt(H(x(i)

t ))ρ(x(i)
t )∑Nt

i=1 ĝt(H(x(i)
t ))

,

which is consistent as the conventional importance sampling estimator. More
generally, Efρ(x) can be estimated, based on the samples generated in mul-
tiple stages, by

Ẽfρ(x) =
t∑

k=t0+1

λkÊ
(k)
f ρ(x),
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where t0 denotes the number of burn-in stages, and λk’s are subject to the
constraint

∑t
k=t0+1 λk = 1 and can be chosen to minimize the total variance

of the estimator.
The multicanonical algorithm has been employed by Hansmann and

Okamoto (1997) to optimization for a continuous system. They discretize
the energy as −∞ < u1 < · · · < um < ∞, and redefine N(ui) as the
number of samples with energy between ui−1 and ui, i.e., N(ui) = #{xj :
ui−1 < H(xj) ≤ ui}. In this case, g(ui) is no longer the spectral density of the
system, but the hyper-volume of the subregion Ei = {x : ui−1 < H(x) ≤ ui}.
Multicanonical Monte Carlo has been employed for an increasing number of
applications in physics, chemistry, structural biology and other areas. See
Berg et al . (1999) for details.

7.2 1/k-Ensemble Sampling

Similar to multicanonical Monte Carlo, 1/k-ensemble sampling (Hesselbo and
Stinchcombe, 1995) seeks to draw samples in an ensemble where each config-
uration x with energy u = H(x) is assigned a weight

w1/k(u) ∝ 1
k(u)

,

where k(u) =
∑

u′≤u g(u′), that is, the cumulative spectral density function
of the distribution. Hence, 1/k-ensemble sampling will produce the following
distribution of energy:

P1/k(u) ∝ g(u)
k(u)

=
d log k(u)

du
.

Since, in many physical systems, k(u) is a rapidly increasing function of
u, log k(u) ≈ log g(u) for a wide range of u, and the simulation will lead
to an approximately random walk in the space of entropy. Recall that S(u) =
log g(u) is called the microcanonical entropy of the system. Comparing to mul-
ticanonical Monte Carlo, 1/k-ensemble sampling is designed to spend more
time in exploring low energy regions, hence, it is potentially more suitable for
optimization problems. Improvement over multicanonical Monte Carlo has
been observed in ergodicity of the simulations for the Ising model and travel
salesman problems (Hesselbo and Stinchcombe, 1995).

In practice, k(u) is not known a priori. It can be estimated using the same
recursive procedure as described in the previous section. Obviously, with a
good estimate of g(u), one would be able to get a good estimate of k(u), and
vice versa. Motivated by the Wang-Landau algorithm (Wang and Landau,
2001) described in Section 7.3, Liang (2004) proposes an online procedure
for estimation of k(u), which facilitates the implementation of the algorithm.
Liang’s procedure can be described as follows.
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Consider the problem of sampling from the distribution (7.1), where the
sample space X can be discrete or continuous. Let T (· → ·) denote a proposal
distribution, and let ψ(x) denote a general non-negative function defined on
X with

∫
X ψ(x)dx < ∞. For example, for a continuous system one may set

ψ(x) = exp{−H(x)/t} with t ≥ τ; and for a discrete system one may set
ψ(x) ≡ 1. Issues on the choice of ψ(x) will be discussed later. Suppose that
the sample space has been partitioned according to the energy function into
m disjoint subregions: E1 = {x : H(x) ≤ u1}, E2 = {x : u1 < H(x) ≤ u2}, . . . ,
Em−1 = {x : um−2 < H(x) ≤ um−1}, and Em = {x : H(x) >um−1}, where
−∞ < u1 < u2 < . . . < um < ∞ are specified by the user. Let G(i) =∫
∪i

j=1Ei
ψ(x)dx for i = 1, . . . , m, and let G = (G(1), . . . , G(m)). Since m is

finite and the partition E1, . . . , Em is fixed, there must exist a number ε> 0
such that

ε < min
i,j

G(i)

G(j)
< max

i,j

G(i)

G(j)
<

1
ε
, (7.6)

for all G(i), G(j) > 0. With a slight generalization, 1/k-ensemble sampling is
reformulated by Liang (2004) as an algorithm of sampling from the following
distribution

fG(x) ∝
m∑

i=1

ψ(x)
G(i)

I(x ∈ Ei), (7.7)

where I(·) is the indicator function.
Since G is unknown in general, the simulation from (7.7) can proceed as

follows. Let {γt} denote a positive, non-increasing sequence satisfying

(i) lim
t→∞ |γ

−1
t − γ−1

t+1| <∞, (ii)
∞∑

t=1

γt =∞, (iii)
∞∑

t=1

γζ
t <∞,

(7.8)

for some ζ ∈ (1, 2]. For example, one may set

γt =
t0

max{t0, t} , t = 1, 2, . . . , (7.9)

for some value t0 > 1. Let Ĝ
(i)
t denote the working estimate of G(i) obtained at

iteration t. By (7.6), it is reasonable to restrict Ĝ to taking values from a com-
pact set. Denote the compact set by Θ, which can be set to a huge set, say, Θ =
[0, 10100]m. As a practical matter, this is equivalent to setting Θ = Rm. The
simulation starts with an initial estimate of G, say Ĝ

(i)
0 = i for i = 1, . . . , m,

and a random sample x0 ∈ X, and then iterates between the following steps:
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On-line 1/k-Ensemble Sampling Algorithm

1. Propose a new configuration x∗ in the neighborhood of xt according to
a prespecified proposal distribution T(· → ·).

2. Accept x∗ with probability

min

{
Ĝ

(J(xt))
t

Ĝ
(J(x∗))
t

ψ(x∗)
ψ(xt)

T(x∗ → xt)
T(xt → x∗)

, 1

}
, (7.10)

where J(z) denotes the index of the subregion that z belongs to. If it
is accepted, set xt+1 = x∗. Otherwise, set set xt+1 = xt.

3. Update the estimates of G(i)’s by setting

Ĝ
(i)

t+ 1
2

= Ĝ
(i)
t ,

for i = 1, . . . , J(xt+1)− 1, and

Ĝ
(i)

t+ 1
2

= Ĝ
(i)
t + δsĜ

(J(xt+1))
t ,

for i = J(xt+1), . . . , m. If Ĝt+ 1
2
∈ Θ, then set Ĝt+1 = Ĝt+ 1

2
; otherwise,

set Ĝt+1 = c∗Ĝt+ 1
2
, where c∗ is chosen such that c∗Ĝt+ 1

2
∈ Θ.

This algorithm falls into the category of stochastic approximation algo-
rithms (Robbins and Monro, 1951; Benveniste et al ., 1990; Andrieu et al .,
2005). Under mild conditions, it can be shown (similar to the proof, presented
in Section 7.7.1, for the convergence of SAMC) that as t→∞,

Ĝ
(i)
t → c

∫
∪i

j=1Ej

ψ(x)dx, (7.11)

for i = 1, . . . , m, where c is an arbitrary constant. Note that fG is invariant
with respect to scale transformations of G. To determine the value of c, extra
information is needed, such as G(m) being equal to a known number.

For discrete systems, if one sets ψ(x) ≡ 1, the algorithm reduces to the
original 1/k-ensemble algorithm. For continuous systems, a general choice for
ψ(x) is ψ(x) = exp{−H(x)/T}. In this case, G(i) corresponds to the partition
function of a truncated distribution whose unnormalized density function is
given by exp{−H(x)/T}Ix∈∪i

j=1Ej
. In the limit T → ∞, the algorithm will

work as for a discrete system.

7.3 The Wang-Landau Algorithm

Like multicanonical Monte Carlo, the Wang-Landau algorithm (Wang and
Landau, 2001) seeks to draw samples in an ensemble where each configuration
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with energy u is assigned a weight

wm(u) ∝ 1
g(u)

,

where g(u) is the spectral density. The difference between the two algorithms
is on their learning procedures for the spectral density.

The Wang-Landau algorithm can be regarded as an innovative imple-
mentation of multicanonical Monte Carlo, but it goes beyond that. In
multicanonical Monte Carlo, the sampler tends to be blocked by the edge
of the already visited area, and it takes a long time to traverse an area
because of the general feature of ‘random walk’. The WL algorithm succeeds
in removing these problems by timely penalizing moving to and staying at
the energy that have been visited many times.

Suppose that the sample space X is finite and the energy function H(x)
takes values on a finite set {u1, . . . , um}. The simulation of the Wang-Landau
algorithm consists of several stages. In the first stage, it starts with an initial
setting of ĝ(u1), . . . , ĝ(um), say ĝ(u1) = . . . = ĝ(um) = 1, and a random
sample x0 drawn from X, and then iterates between the following steps:

Wang-Landau Algorithm

1. Simulate a sample x by a single Metropolis update which admits the
invariant distribution f̂(x) ∝ 1/ĝ(H(x)).

2. Set ĝ(ui) ← ĝ(ui)δI(H(x)=ui) for i = 1, . . . , m, where δ is a modification
factor greater than 1 and I(·) is the indicator function.

The algorithm iterates till a flat histogram has been produced in the space
of energy. A histogram is usually considered to be flat if the sampling fre-
quency of each ui is not less than 80% of the average sampling frequency.
Once this condition is satisfied, the estimates ĝ(ui)’s and the current sample
x are passed on to the next stage as initial values, the modification factor is
reduced to a smaller value according to a specified scheme, say, δ ← √

δ, and
the sampler collector is resumed. The next stage simulation is then started,
continuing until the new histogram is flat again. The process is repeated until
δ is very close to 1, say, log(δ) < 10−8.

Liang (2005b) generalized the Wang-Landau algorithm to continuum sys-
tems. The generalization is mainly in three aspects, namely the sample space,
the working function and the estimate updating scheme. Suppose that the
sample space X is continuous and has been partitioned according to a chosen
parameterization of x, say, the energy function H(x), into m disjoint subre-
gions: E1 = {x : H(x) ≤ u1}, E2 = {x : u1 < H(x) ≤ u2}, . . . , Em−1 = {x :
um−2 < H(x) ≤ um−1}, and Em = {x : H(x) >um−1}, where −∞ < u1 <
u2 < . . . < um−1 < ∞ are specified by the user. Let ψ(x) be a non-negative
function defined on the sample space with 0 <

∫
X ψ(x)dx < ∞, which is

also called the working function of the generalized Wang-Landau algorithm.
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In practice, one often sets ψ(x) = exp(−H(x)/τ). Let g = (g(1), . . . , g(m)) be
the weight associated with the subregions. One iteration of the generalized
Wang-Landau algorithm consists of the following steps:

Generalized Wang-Landau Algorithm

1. Simulate a sample x by a number, denoted by κ, of MH steps which
admits

f̂(x) ∝
m∑

i=1

ψ(x)
ĝ(i)

I(x ∈ Ei), (7.12)

as the invariant distribution.

2. Set ĝ(k) ← ĝ(k) + δ�k−J(x)ĝ(J(x)) for k = J(x), . . . , m, where J(x) is the
index of the subregion that x belongs to and � > 0 is a parameter which
controls the sampling frequency for each of the subregions.

Liang (2005b) noted that, as the number of stages becomes large,

ĝ(1) ≈ g(1) = c

∫
E1

ψ(x)dx,

ĝ(i) ≈ g(i) = c

∫
Ei

ψ(x)dx + ρg(i−1), i = 2, . . . , m,

where c is an unknown constant; and the visiting frequency to each subregion
will be approximately proportional to

∫
Ei

ψ(x)dx/g(i) for i = 1, . . . , m. The
generalization from the spectral density to the integral

∫
Ei

ψ(x)dx is of great
interest to statisticians, which leads to a wide range of applications of the
algorithm in statistics, such as the model selection and some other Bayesian
computational problems, as discussed in Liang (2005b).

If κ is small, say, κ = 1 as adopted in the Wang-Landau algorithm, there is
no rigorous theory to support the convergence of ĝi’s. In fact, some deficiencies
of the Wang-Landau algorithm have been observed in simulations. Yan and
de Pablo (2003) note that the estimates of g(ui) can only reach a limited
statistical accuracy which will not be improved with further iterations, and
the large number of configurations generated towards the end of the simulation
make only a small contribution to the estimates. The deficiency of the Wang-
Landau algorithm is caused by the choice of the modification factor δ. This
can be explained as follows. Let ns be the number of iterations performed in
stage s, and let δs be the modification factor used in stage s. Without loss
of generality, let ns ≡ n, which is so large that a flat histogram of energy
can be produced at each stage. Let δs =

√
δs−1 as suggested by Wang and

Landau (2001). Then the tail sum n
∑∞

s=s0+1 log δs < ∞ for any value of s0.
Since the tail sum represents the total correction to the current estimate made
in the iterations that follow, the numerous configurations generated toward
the end of the simulation make only a small contribution to the estimate. To
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overcome this deficiency, Liang et al . (2007) suggest guiding the choice of δ
by the stochastic approximation algorithm (Robbins and Monro, 1951), which
ensures that the estimate of g can be improved continuously as the simulation
goes on. The resulting algorithm is called the stochastic approximation Monte
Carlo (SAMC) algorithm.

7.4 Stochastic Approximation Monte Carlo

The Algorithm. Consider the problem of sampling from the distribution
(7.1). Suppose, as in the generalized Wang-Landau algorithm (Liang, 2005b),
the sample space X has been partitioned according to a function λ(x) into m
subregions, E1 = {x : λ(x) ≤ u1}, E2 = {x : u1 < λ(x) ≤ u2}, . . . , Em−1 =
{x : um−2 < λ(x) ≤ um−1}, Em = {x : λ(x) ≥ um−1}, where −∞ < u1 <
· · · < um−1 < ∞. Here λ(·) can be any function of x, such as a component
of x, the energy function H(x), etc. Let ψ(x) be a non-negative function
with 0 <

∫
X ψ(x)dx < ∞, which is called the working function of SAMC. In

practice, one often sets ψ(x) = exp(−H(x)/τ). Let gi =
∫

Ei
ψ(x)dx for i =

1, . . . , m, and g = (g1, . . . , gm). The subregion Ei is called an empty subregion
if gi = 0. An inappropriate specification of the cut-off points ui’s may result in
some empty subregions. Technically, SAMC allows for the existence of empty
subregions in simulations. To present the idea clearly, we temporarily assume
that all subregions are nonempty; that is, assuming gi > 0 for all i = 1, . . . , m.
SAMC seeks to sample from the distribution

fg(x) ∝
m∑

i=1

πiψ(x)
gi

I(x ∈ Ei), (7.13)

where πi’s are prespecified frequency values such that πi > 0 for all i and∑m
i=1 πi = 1. It is easy to see, if g1, . . . , gm are known, sampling from fg(x)

will result in a random walk in the space of the subregions, with each sub-
region being visited with a frequency proportional to πi. The distribution
π = (π1, . . . , πm) is called the desired sampling distribution of the subregions.

Since g is unknown, Liang et al . (2007) estimate g under the framework
of the stochastic approximation algorithm (Robbins and Monro, 1951), which
ensures consistency of the estimation of g. Let θ

(i)
t denote the estimate of

log(gi/πi) obtained at iteration t, and let θt = (θ(1)
t , . . . , θ

(m)
t ). Since m is

finite, the partition E1, . . . , Em is fixed, and 0 <
∫
X ψ(x) < ∞, there must

exist a number ε> 0 such that

ε < min
i

log
(

gi

πi

)
< max

i
log

(
gi

πi

)
<

1
ε
,

which implies that θt can be restricted to taking values on a compact set.
Henceforth, this compact set will be denoted by Θ. In practice, Θ can be
set to a huge set, say, Θ = [−10100, 10100]m. As a practical matter, this is
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equivalent to set Θ = Rm. Otherwise, if one assumes Θ = Rm, a varying
truncation version of this algorithm can be considered, as in Liang (2009e).
For both mathematical and practical simplicity, Θ is restricted to be compact
in this chapter.

Let {γt} denote the gain factor sequence, which satisfies the condi-
tion (A1):

(A1) The sequence {γt} is positive and nonincreasing, and satisfies the con-
ditions:

(i) lim
t→∞ |γ

−1
t − γ−1

t+1| < ∞, (ii)
∞∑

t=1

γt =∞, (iii)
∞∑

t=1

γη
t <∞,

(7.14)

for some η ∈ (1, 2].

In practice, one often sets

γt =
t0

max{t0, tξ} , t = 0, 1, 2, . . . , (7.15)

for some prespecified values t0 > 1 and 1
2 < ξ ≤ 1. A large value of t0 will

allow the sampler to reach all subregions very quickly even for a large system.
Let J(x) denote the index of the subregion that the sample x belongs to.
SAMC starts with a random sample x0 generated in the space X and an
initial estimate θ0 = (θ(1)

0 , . . . , θ
(m)
0 ) = (0, . . . , 0), then iterates between the

following steps:

The SAMC Algorithm

(a) Sampling Simulate a sample xt+1 by a single MH update which admits
the following distribution as its invariant distribution:

fθt
(x) ∝

m∑
i=1

ψ(x)

exp(θ(i)
t )

I(x ∈ Ei). (7.16)

(a.1) Generate y in the sample space X according to a proposal distri-
bution q(xt, y).

(a.2) Calculate the ratio

r = eθ
(J(xt))
t −θ

(J(y))
t

ψ(y)q(y, xt)
ψ(xt)q(xt, y)

.

(a.3) Accept the proposal with probability min(1, r). If it is accepted,
set xt+1 = y; otherwise, set xt+1 = xt.

(b) Weight updating For i = 1, . . . , m, set

θ
(i)

t+ 1
2

= θ
(i)
t + γt+1

(
I{xt+1∈Ei} − πi

)
. (7.17)
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If θt+ 1
2
∈ Θ, set θt+1 = θt+ 1

2
; otherwise, set θt+1 = θt+ 1

2
+ c∗, where

c∗ = (c∗, . . . , c∗) can be any constant vector satisfying the condition
θt+ 1

2
+ c∗ ∈ Θ.

• Remark 1 In the weight updating step, θt+ 1
2

is adjusted by adding a
constant vector c∗ when θt+ 1

2
/∈ Θ. The validity of this adjustment is

simply due to the fact that fθt
(x) is invariant with respect to a location

shift of θt.
The compactness constraint on θt should only apply to the components
of θ for which the corresponding subregions are unempty. In practice,
one can place an indicator on each subregion, indicating whether or
not the subregion has been visited or is known to be unempty. The
compactness check for θt+ 1

2
should be done only for the components

for which the corresponding subregions have been visited or are known
to be unempty.

• Remark 2 The explanation for the condition (A1) can be found in ad-
vanced books on stochastic approximation, see, for example, Nevel’son
and Has’minskĭi (1973). The condition

∑∞
t=1 γt =∞ is necessary for the

convergence of θt. Otherwise, it follows from Step (b) that, assuming
the adjustment of θt+ 1

2
did not occur,

∞∑
t=0

|θ(i)
t+1 − θ

(i)
t | ≤

∞∑
t=0

γt+1|I{x(t+1)∈Ei} − πi| ≤
∞∑

t=0

γt+1 < ∞.

Thus, θt cannot reach log(g/π) if, for example, the initial point θ0 is
sufficiently far away from log(g/π). On the other hand, γt cannot be
too large. An overly large γt will prevent convergence. It turns out
that the third condition in (7.14) asymptotically damps the effect of
random errors introduced by new samples. When it holds, we have
γt+1|I{xt+1∈Ei} − πi| ≤ γt+1 → 0 as t→∞.

• Remark 3 A striking feature of the SAMC algorithm is that it pos-
sesses a self-adjusting mechanism: if a proposed move is rejected at
an iteration, then the weight of the subregion that the current sample
belongs to will be adjusted to a larger value, and the total rejection
probability of the next iteration will be reduced. This mechanism en-
ables the algorithm to escape from local energy minima very quickly.
The SAMC algorithm represents a significant advance for simulations
of complex systems for which the energy landscape is rugged.

Convergence. To provide a rigorous theory for the algorithm, we need to
assume that the Markov transition kernels used in Step (a) satisfy the drift
condition given in Section 7.7.1. This assumption is classical in the literature
of Markov chain, which implies the existence of a stationary distribution fθ(x)
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for any θ ∈ Θ and uniform ergodicity of the Markov chain. However, to check
the drift condition, it is usually difficult. For example, for the random walk MH
kernel, the distribution f(x), or equivalently, the distribution fθ(x) worked on
at each iteration, needs to satisfy the following conditions as prescribed by
Andrieu et al . (2005):

(i) f(x) is bounded, bounded away from zero on every compact set, and
continuously differentiable (a.e.).

(ii) f(x) is superexponential, that is,

lim
|x|→+∞

〈
x

|x| ,∇ log f(x)
〉

= −∞.

(iii) The contours ∂A(x) = {y : f(y) = f(x)} are asymptotically regular,
that is,

lim
|x|→+∞

sup
〈

x

|x| ,
∇f(x)
|∇f(x)|

〉
< 0.

These conditions control the tail behavior of f(x). Since they are usually
difficult to verify, for mathematical simplicity, one may assume that X is
compact. For example, one may restrict X to the set {x : f(x) ≥ ε0}, where ε0
is a sufficiently small number, say, ε0 = supx∈X f(x)/10100, where supx∈X f(x)
can be estimated through a pilot run. This, as a practical matter, is equivalent
to imposing no constraints on X. To ease verification of the drift condition,
one may assume further that the proposal distribution q(x, y) satisfies the
following local positive condition:

(A2) For every x ∈ X, there exist ε1 > 0 and ε2 > 0 such that

‖x− y‖ ≤ ε1 =⇒ q(x, y) ≥ ε2, (7.18)

where ‖x− y‖ denotes a certain distance measure between x and y.

This is a natural condition in studying the convergence of the MH algorithm
(see, e.g., Roberts and Tweedie, 1996, and Jarner and Hansen, 2000). In
practice, this kind of proposal can be easily designed for both discrete and
continuum systems. For a continuum system, q(x, y) can be set to the random
walk Gaussian proposal y ∼ N(x, σ2I ) with σ2 being calibrated to have a
desired acceptance rate. For a discrete system, q(x, y) can be set to a discrete
distribution defined on a neighborhood of x, assuming that the states have
been ordered in a certain way.

Under the assumptions (A1), (A2) and the compactness of X, Liang et al .
(2007) prove the following theorem regarding the convergence of SAMC,
where (A2) and the compactness of X directly leads to the holding of the
drift condition.
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Theorem 7.4.1 Assume (A1) and the drift condition (B2) (given in
Section 7.7.1) hold. Then, as t→∞,

θ
(i)
t → θ

(i)
∗ =

{
C + log(

∫
Ei

ψ(x)dx)− log(πi + ν), if Ei �= ∅,
−∞, if Ei = ∅, (7.19)

where C is an arbitrary constant, ν =
∑

j∈{i:Ei=∅} πj/(m −m0), and m0 is
the number of empty subregions.

The proof of this theorem can be found in Section 7.7.1, where the conver-
gence for a general stochastic approximation MCMC (SAMCMC) algorithm
is proved. As discussed in Section 7.7.1.4, SAMC can be viewed as a special
instance of the general SAMCMC algorithm. Since fθt

(x) is invariant with
respect to a location shift of θt, the unknown constant C in (7.19) can not
be determined by the samples drawn from fθt

(x). To determine the value of
C, extra information is needed; for example,

∑m
i=1 eθ

(i)
t is equal to a known

number. Let π̂
(t)
i denote the realized sampling frequency of the subregion Ei

by iteration t. As t → ∞, π̂
(t)
i converges to πi + ν if Ei �= ∅ and 0 otherwise.

In this sense, SAMC can be viewed as a dynamic stratified sampling method.
Note that for a nonempty subregion, its sampling frequency is independent of
its probability

∫
Ei

f(x)dx. This implies that SAMC is capable of exploring the
whole sample space, even for the regions with tiny probabilities. Potentially,
SAMC can be used to sample rare events from a large sample space.

Convergence Rate. Theorem 7.4.2 concerns the convergence rate of θt,
which gives a L2 upper bound for the mean squared error of θt.

Theorem 7.4.2 Assume the gain factor sequence is chosen in (7.15) and
the drift condition (B2) (given in Section 7.7.1) holds. Then there exists a
constant λ such that

E‖θt − θ∗‖2 ≤ λγt,

where θ∗ = (θ(1)
∗ , . . . , θ

(m)
∗ ) is as specified in (7.19).

The proof of this theorem can be found in Section 7.7.2.

Monte Carlo Integration. In addition to estimating the normalizing con-
stants gi’s, SAMC can be conveniently used for Monte Carlo integration, es-
timating the expectation Efρ(x) =

∫
X ρ(x)f(x) for an integrable function

ρ(x). Let (x1, θ1), . . . , (xn, θn) denote the samples generated by SAMC dur-
ing the first n iterations. Let y1, . . . , yn′ denote the distinct samples among
x1, . . . , xn. Generate a random variable/vector Y such that

P(Y = yi) =
∑n

t=1 exp{θ(J(xt))
t }I(xt = yi)∑n

t=1 exp{θ(J(xt))
t }

, i = 1, . . . , n′, (7.20)
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where I(·) is the indicator function. Under the assumptions (A1), (A2)
and the compactness of X, Liang (2009b) showed that Y is asymptotically
distributed as f(·).
Theorem 7.4.3 Assume (A1) and the drift condition (B2) (given in
Section 7.7.1) hold. For a set of samples generated by SAMC, the random
variable/vector Y generated in (7.20) is asymptotically distributed as f(·).

The proof of this theorem can be found in Section 7.7.3. It implies that
for an integrable function ρ(x), Efρ(x) can be estimated by

Êfρ(x) =
∑n

t=1 exp{θ(J(xt))
t }h(xt)∑n

t=1 exp{θ(J(xt))
t }

. (7.21)

As n →∞, Êfρ(x)→ Efρ(x) for the same reason that the usual importance
sampling estimate converges (Geweke, 1989).

Some Implementation Issues. For an effective implementation of SAMC,
several issues need to be considered.

• Sample space partition This can be done according to our goal and the
complexity of the given problem. For example, if we aim to minimize
the energy function, the sample space can be partitioned according to
the energy function. The maximum energy difference in each subregion
should be bounded by a reasonable number, say, 2, which ensures that
the local MH moves within the same subregion have a reasonable ac-
ceptance rate. Note that within the same subregion, sampling from the
working density (7.16) is reduced to sampling from ψ(x). If our goal is
model selection, then the sample space can be partitioned according to
the index of models, as illustrated in Section 7.6.1.2.

• The desired sampling distribution If our goal is to estimate g, then we
may set the desired distribution to be uniform. However, if our goal
is optimization, then we may set the desired sampling distribution bi-
ased to low energy regions. As illustrated by Hesselbo and Stinchcombe
(1995) and Liang (2005b), biasing sampling to low energy regions often
improves the ergodicity of the simulation.

• The choice of the gain factor sequence and the number of iterations
To estimate g, γt should be very close to 0 at the end of simulations.
Otherwise, the resulting estimates will have a large variation. Under
the setting of (7.15), the speed of γt going to zero is controlled by ξ
and t0. In practice, one often fixes ξ to 1 and choose t0 according to the
complexity of the problem. The more complex the problem, the larger
the value of t0 one should choose. A large t0 will force the sampler
to reach all subregions quickly, even in the presence of multiple local
energy minima.
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The appropriateness of the choices of the gain factor sequence and the
number of iterations can be determined by checking the convergence of mul-
tiple runs (starting with different points) through examining the variation
of ĝ or π̂, where ĝ and π̂ denote, respectively, the estimates of g and π ob-
tained at the end of a run. The idea of monitoring convergence of MCMC
simulations using multiple runs has been discussed early on by Gelman and
Rubin (1992) and Geyer (1992). A rough examination for ĝ is to see visually
whether or not the ĝ vectors produced in the multiple runs follow the same
pattern. Existence of different patterns implies that the gain factor is still
large at the end of the runs or some parts of the sample space are not visited
in all runs. The examination for ĝ can also be done by a statistical test under
the assumption of multivariate normality. Refer to Jobson (1992) – for the
testing methods for multivariate outliers.

To examine the variation of π̂, Liang et al . (2007) defined the statistic
εf (Ei), which measures the deviation of π̂i, the realized sampling frequency
of subregion Ei in a run, from its theoretical value. The statistic is defined as

εf (Ei) =

{
π̂i−(πi+ν̂)

πi+ν̂ × 100%, if Ei is visited,

0, otherwise,
(7.22)

for i = 1, . . . , m, where ν̂ =
∑

j /∈S πj/|S| and S denotes the set of subregions
that have been visited during the simulation. Here, ν̂ works as an estimate
of ν in (7.19). It is said that {εf (Ei)}, output from all runs and for all
subregions, matches well if the following two conditions are satisfied:
(i) There does not exist such a subregion which is visited in some runs but
not in others; and (ii) maxm

i=1 |εf (Ei)| is less than a threshold value, say,
10%, for all runs. A group of {εf (Ei)} which does not match well implies that
some parts of the sample space are not visited in all runs, t0 is too small (the
self-adjusting ability is thus weak), or the number of iterations is too small.

In practice, to have a reliable diagnostic for the convergence, we may
check both ĝ and π̂. In the case where a failure of multiple-run convergence is
detected, SAMC should be re-run with more iterations or a larger value of t0.
Determining the value of t0 and the number of iterations is a trial-and-error
process.

Two Illustrative Examples. In the following two examples, we illustrate
the performance of SAMC. Example 7.1 shows that SAMC can produce a
consistent estimate of g. Example 7.2 shows that SAMC can result in a ‘free’
random walk in the space of the subregions, and thus is essentially immune
to the local-trap problem suffered by conventional MCMC algorithms.

Example 7.1 Estimation Consistency

The distribution consists of 10 states with the unnormalized mass function
P (x) given in Table 7.1. It has two modes which are well separated by
low mass states.
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Table 7.1 Unnormalized mass function of the 10-state distribution.

x 1 2 3 4 5 6 7 8 9 10

P(x) 1 100 2 1 3 3 1 200 2 1

Using this example, Liang et al . (2007) demonstrate estimation consistency
of SAMC. In their simulations, the sample space is partitioned according to
the mass function into the following five subregions: E1 = {8}, E2 = {2},
E3 = {5, 6}, E4 = {3, 9} and E5 = {1, 4, 7, 10}. When ψ(x) = 1, the true
value of g is (1, 1, 2, 2, 4), which counts the number of states in the respec-
tive subregions. The proposal used in the MH step is a stochastic matrix,
each row of which is generated independently from the Dirichlet distribution
Dir(1, . . . , 1), the uniform in the 9-simplex space. The desired sampling dis-
tribution is uniform; that is, π1 = . . . = π5 = 1/5. The sequence {γt} is as
given in (7.15) with t0 = 10. SAMC was run 100 times, each independent
run consisting of 5× 105 iterations. The estimation error of g is measured by

the function εe(t) =
√∑

Ei �=∅(ĝ
(t)
i − gi)2/gi at 10 equally spaced time points

t = 5 × 104, . . . , 5 × 105, where ĝ
(t)
i denotes the estimate of gi obtained at

iteration t. Figure 7.1(a) shows the curve of εe(t) obtained by averaging over
the 100 runs. The statistic εf (Ei) is calculated at time t = 105 for each run.
The results show that they match well. Figure 7.1(b) shows the box-plots of
εf (Ei)’s of the 100 runs. The deviations are <3%. This indicates that SAMC
has achieved the desired sampling distribution and the choice of t0 and the
number of iterations are appropriate. Other choices of t0, including t0 = 20
and 30, give similar results.

For comparison, Liang et al . (2007) apply the Wang-Landau algorithm
to this example with the proposal distribution being the same as that used
in SAMC and the gain factor being set as in Wang and Landau (2001).
The gain factor starts with δ0 = 2.718 and then decreases in the scheme
δs+1 →

√
δs. At stage s, ns iterations are performed, where ns is a large

constant, which ensures a flat histogram can be produced at each stage. The
values of ns tried include ns = 1000, 2500, 5000 and 10 000. Figure 7.1(a)
shows the curves of εe(t) for each choice of ns, where each curve is obtained
by averaging over 100 independent runs.

The comparison shows that SAMC produced more accurate estimates for
g and converged much faster than WL. More importantly, the SAMC esti-
mates can be improved continuously as the simulation goes on, while the WL
estimates can only reach a certain accuracy depending on the value of ns.

Liang (2009b) re-uses this example to illustrate that SAMC can work as
a dynamic importance sampling algorithm. For this purpose, SAMC is re-run
with the foregoing setting except for ψ(x) = P (x). In each run, the first 104

iterations are discarded for the burn-in process and the samples generated in
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Figure 7.1 Comparison of the WL and SAMC algorithms. (a) Average
εe(t) curves obtained by SAMC and WL. The vertical bars show the ±one-
standard-deviation of the average of the estimates. (b) Box-plots of {εf (Ei)}
obtained in 100 runs of SAMC (Liang et al., 2007).

Table 7.2 Comparison of SAMC and MH for the 10-state example (Liang,
2009b).

algorithm bias (×10−3) standard error (×10−3) CPU time (seconds)

SAMC −0.528 1.513 0.38
MH −3.685 4.634 0.20

The Bias and Standard Error (of the Bias) were calculated based on 100 independent
runs, and the CPU times were measured on a 2.8GHz computer for a single run.

the remaining iterations are used for estimation. Table 7.2 summarizes the
estimates of Ef (X) obtained by SAMC.

For comparison, Liang (2009b) also applies the MH algorithm to this ex-
ample, with the same transition proposal matrix. The algorithm is run 100
times independently, each run consisting of 5.1 × 105 iterations; the samples
generated in the last 5× 105 iterations are used for estimation. The numeri-
cal results in Table 7.2 indicate that for this example, SAMC is significantly
better than MH in terms of standard errors. After accounting for the CPU
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cost, SAMC can still make about fourfold improvement over MH. For more
complex problems, such as the phylogeny estimation problem considered in
Cheon and Liang (2008), SAMC and MH will cost about the same CPU time
for the same number of iterations; in this case, the CPU time cost by each
algorithm is dominated by the part used for energy evaluation, and the part
used for weight updating in SAMC can be ignored.

The reason why SAMC outperforms MH can be explained by Figure 7.2 (a)
&(b). For this example, MH mixes very slowly due to the presence of two sep-
arated modes, whereas SAMC can still mix very fast due to its self-adjusting
mechanism. Figure 7.2(c) shows the evolution of the log-weights of SAMC
samples. It indicates that the log-weights can evolve very stably. In SAMC
simulations, θt was updated in (7.17), where the term −γt+1π helps to sta-
bilize the magnitude of the importance weights by keeping the sum of all
components of θt unchanged over iterations.
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Figure 7.2 Computational results for the 10-state example: (a) Autocorrela-
tion plot of the MH samples; (b) Autocorrelation plot of the SAMC samples;
(c) Log-weights of the SAMC samples (Liang, 2009b).
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Example 7.2 Multimodal Sampling

This problem is to sample from a multimodal distribution defined by
f(x) ∝ exp{−H(x)}, where x = (x1, x2) ∈ [1.1, 1.1]2 and

H(x) =− {x1 sin(20x2) + x2 sin(20x1)}2 cosh {sin(10x1)x1}
− {x1 cos(10x2)− x2 sin(10x1)}2 cosh {cos(20x2)x2} .

Liang et al . (2007) use this example to illustrate the performance of SAMC
in multimodal sampling; it has been used widely in the literature to demon-
strate the multimodal sampling problem (see e.g., Robert and Casella, 2004).
Figure 7.3 (a) shows that H(x) has a multitude of local energy minima sepa-
rated by high energy barriers. In applying SAMC to this example, Liang et al .
(2007) partitioned the sample space into 41 subregions with an equal energy
bandwidth: E1 = {x : H(x) ≤ −8.0}, E2 = {x : −8.0 < H(x) ≤ −7.8}, . . .,
and E41 = {x : −0.2 < H(x) ≤ 0}, and set the other parameters as fol-
lows: ψ(x) = exp{−H(x)}, t0 = 200, π1 = · · · = π41 = 1/41, and a random
walk proposal q(xt, ·) = N2(xt, 0.252I2). SAMC was run for 20 000 iterations,
and 2000 samples were collected at equally spaced time points. Figure 7.3
(b) shows the evolving path of the 2000 samples. For comparison, MH was
applied to simulate from the distribution fst(x) ∝ exp{−H(x)/5}. MH was
run for 20 000 iterations with the same proposal N2(xt, 0.252I2), and 2000
samples were collected at equally spaced time points. Figure 7.3(c) shows the
evolving path of the 2000 samples, which characterizes the performance of
simulated/parallel tempering at high temperatures.

Under the foregoing setting, SAMC samples almost uniformly in the space
of energy (i.e., the energy bandwidth of each subregion is small, and the sam-
ple distribution closely matches the contour plot of H(x)), whereas simulated
tempering tends to sample uniformly in the sample space X when the tem-
perature is high. Because one does not know a priori where the high-energy
and low energy regions are and how much the ratio of their ‘volumes’ is, one
cannot control the simulation time spent on low and high energy regions in
simulated tempering. However, one can control almost exactly, up to the con-
stant ν in (7.19), the simulation time spent on low energy and high energy
regions in SAMC by choosing the desired sampling distribution π. SAMC
can go to high energy regions, but it spends only limited time over there to
help the system to escape from local energy minima, and spends other time
exploring low energy regions. This smart simulation time distribution scheme
makes SAMC potentially more efficient than simulated tempering in optimiza-
tion. Liang (2005b) reported a neural network training example which shows
that the generalized Wang-Landau algorithm is more efficient than simulated
tempering in locating global energy minima.
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Figure 7.3 (a) Contour of H(x). (b) Sample path of SAMC. (c) Sample path
of MH at the temperature T = 5 (Liang et al., 2007).

7.5 Applications of Stochastic Approximation
Monte Carlo

In this section, we present several applications of SAMC, which all take ad-
vantage of the self-adjusting mechanism of SAMC. For the p-value evaluation
problem (Section 7.5.1), the self-adjusting mechanism means the sampler can
traverse the permutation space very quickly; for problems of phylogeny infer-
ence (Section 7.5.2) and Bayesian network learning (Section 7.5.3), the self-
adjusting mechanism enables the sampler to escape from local-trap problems,
and leads to correct inference for the quantities of interest.

7.5.1 Efficient p-Value Evaluation
for Resampling-Based Tests

P-value evaluation is a crucial ingredient of hypothesis testing. Most often,
the p-value can be evaluated according to the asymptotic distribution of the
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test statistic when the sample size is sufficiently large. However, in many
applications, the asymptotic distribution is unavailable, or unreliable due to
insufficient sample size, and a resampling-based procedure, such as permuta-
tion or bootstrap (Good, 2005), has to be used for evaluating p-values.

The resampling-based approach can be very time consuming. For example,
in the current genome-wide association study (GWAS) (see, e.g., Pearson and
Manolio, 2008), about half a million to a million genetic markers are tested
for their association with the outcome of interest. To maintain the family-
wide false positive error rate at an acceptance level, an individual test has
to have a very small p-value to be declared globally significant. For instance,
when testing half a million genetic markers, a commonly accepted threshold
for global significance is about 10−7. Thus, if the resampling-based approach
is used, it generally requires more than 109 permutations to get a reliable
estimate for a p-value at the level of 10−7. This is highly challenging to current
computing power.

To alleviate this difficulty, importance sampling algorithms have been pro-
posed for some specific tests, such as the scan statistic used in genetic linkage
studies (Anquist and Hossjer, 2004; Shi et al ., 2007) and the genetic associ-
ation test based on contingency table analysis (Kimmel and Shamir, 2006).
Although these algorithms work well in these specific contexts, they are not
general enough to be adopted for other applications. Yu and Liang (2009)
propose evaluating the test p-value using SAMC. Their approach is very gen-
eral, which can be easily used for any resampling-based test. The numerical
results indicate that SAMC can achieve 100 to 1000 times as efficient a result
as the standard resampling-based procedure, when evaluating a small p-value.

7.5.1.1 P -value Evaluation Through SAMC

Let X denote the observed data, and let λ(X) denote the test statistic of
interest to us. Let X denote the permutation space of X, which is composed
of all possible combinations of the elements of X under the null hypothesis
that we are testing for. Clearly, X is finite. To use SAMC to evaluate the p-
value, we first partition the permutation space X according to the test statistic
λ(x) into m subregions: E1 = {x : λ(x) ≤ λ1, x ∈ X}, E2 = {x : λ1 < λ(x) ≤
λ2, x ∈ X}, . . . , Em−1 = {x : λm−2 < λ(x) ≤ λm−1, x ∈ X}, Em = {x :
λ(x) >λm−1, x ∈ X}, where −∞ < λ1 < · · · < λm−1 <∞.

Since X is finite, if conditions (A1) and (A2) hold, then Theorem 7.4.1
follows. By Theorem 7.4.1, if we set ψ(x) ∝ 1 for all x ∈ X, then

∫
Ei

ψ(x)dx
counts the number of permutations belonging to the subregion Ei, and

P̂t(λ(X) >λk) =

∑m
i=k+1 exp{θ(i)

t }(πi + ν̂t)∑m
j=1 exp{θ(j)

t }(πj + ν̂t)
, (7.23)

will converge to the tail probability P (λ(X) >λk) when t becomes large, where
ν̂t =

∑
j /∈St

πj/|St|, and St denotes the set of the subregions that have been



220 STOCHASTIC APPROXIMATION MONTE CARLO

visited by iteration t. For a non-cut point, the tail probability can be obtained
by linear interpolation. For example, λk < λ∗ < λk+1, then

P̂t(λ(X) >λ∗) =
λ∗ − λk

λk+1 − λk
P̂t(λ(X) >λk+1) +

λk+1 − λ∗

λk+1 − λk
P̂t(λ(X) >λk),

(7.24)

will form a good estimate of P (λ(X) >λ∗) at the end of the run.
For the p-value evaluation problem, SAMC generally prefers a fine parti-

tion: the proposal distribution q(·, ·) is usually local, and so a fine partition
will reduce the chance that both the current and proposed samples fall into
the same subregion, thus helping the self-adjusting mechanism of the system
to transverse the permutation space quickly. In practice, λ1, . . . , λm are often
chosen to be an equal difference sequence, with the difference ranging from
σ/100 to σ/50, where σ denotes the standard deviation of λ(X). The σ can
be estimated by drawing a small number of permutations from X. The value
of λ1 and λm−1, which specify the range of interest for the statistic λ(X), can
be determined by a pilot run.

7.5.1.2 An Illustrative Example

Suppose that there are two groups of observations, x1,1, . . . , x1,n1 ∼ N(µ1, σ
2)

and x2,1, . . . , x2,n2 ∼ N(µ2, σ
2). To test the null hypotheses H0 : µ1 = µ2

versus H1 : µ1 �= µ2, the test statistic

λ(x) =
x̄1· − x̄2·

Sx1,x2

√
1

n1
+ 1

n2

,

is usually used, where x̄1· =
∑n1

i=1 x1i/n1, x̄2· =
∑n2

i=1 x2i/n2, and

Sx1,x2 =
√

[(n1 − 1)S2
x1

+ (n2 − 1)S2
x2

]/(n1 + n2 + 1)

is the pooled estimate of σ2. It is known that λ(x) follows a t-distribution
with the degree of freedom n1 + n2 − 2. To simulate the data, we set
n1 = n2 = 1000, µ1 = µ2 = 0, and σ1 = σ2 = 1. To illustrate the performance
of SAMC, we estimate the empirical distribution of |λ(x)| based on the
simulated observations.

In SAMC simulations, the gain factor was chosen in (7.15) with ξ = 1
and t0 = 1000, the total number of iterations was set to N = 5 × 106, and
λ1 and λm−1 were fixed to 0 and 6. Different values of m = 120, 300 and
600 were tried. For each value of m, λ2, . . . , λm−2 were chosen to be equally
spaced between λ1 and λm−1. Let xt = (x(1)

t , x
(2)
t ) denote a permutation of

the two groups of observations obtained at iteration t. The new permutation
y is obtained by exchanging s pairs of observations from the first and second
groups, where each pair is drawn at random, with replacement, from the
space {1, . . . , n1} × {1, . . . , n2}. Therefore, the local positive condition (A2)
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Table 7.3 Mean absolute relative errors (%) of tail probability estimates
produced by SAMC (Yu and Liang, 2009).

exchange rate

partition 2% 5% 10% 20%

m = 120 2.364 (0.285) 1.625 (0.189) 2.377 (0.224) 2.419 (0.193)
m = 300 1.393 (0.128) 1.398 (0.157) 1.077 (0.112) 1.773 (0.168)
m = 600 1.353 (0.212) 0.983 (0.128) 1.045 (0.114) 1.584 (0.150)

The numbers in the parentheses represent the standard deviations of the estimates.

is satisfied. For this example, we tried different values of s = 20, 50, 100 and
200, which correspond to 2%, 5%, 10% and 20% of observations, respectively.

For each cross-setting (m, k) ∈ {120, 300, 600}× {20, 50, 100}, SAMC was
run 20 times. Let P̂(λ(X) >λk) denotes the estimate of P (λ(X) >λk). Table
7.3 reports the mean absolute relative error (MARE) of the estimates pro-
duced by SAMC, where the MARE is defined by

MARE =
1

m− 1

m−1∑
k=1

|P̂(λ(X) >λk)− P (λ(X) >λk)|
P(λ(X) >λk)

× 100%. (7.25)

The results indicate that SAMC can produce very accurate estimates, with
about 1% of the relative error, for the empirical distribution of λ(X), when
the partition is fine (with 300 ∼ 600 intervals over a range of 6 standard
deviations), and the exchange rate is around 10%.

The results also indicate that SAMC prefers a fine partition of X and a
local update of xt (i.e., a low exchange rate). As previously explained, a fine
partition enhances the ability of the self-adjusting mechanism of SAMC to
transverse quickly over the permutation space. However, preferring a local
update of xt is unusual, as the MCMC algorithm usually prefers a global
update. This can be explained as follows. Suppose that xt is an extreme
permutation with a large value of |λ(xt)|. If a high exchange rate was applied
to xt, then y will be almost independent of xt and the chance of getting an
extremer value of |λ(y)| will be very low. However, if a low exchange rate was
applied to xt, then |λ(y)| would have a value around |λ(xt)|, and the chance
of having |λ(y)|> |λ(xt)| will be relatively higher. Hence, a local updating
of xt enhances the ability of SAMC to explore the tails of the distribution
of λ(X). Based on their experience, Yu and Liang (2009) recommended an
updating rate between 5% and 10% for such types of problem.

For comparison, the traditional permutation method was also applied to
this example. It was run 20 times, and each run consisted of 5 × 106 per-
mutations. The average MARE of the 20 estimates is 21.32% with standard
deviation 1.757, which is much worse than that produced by SAMC. Figure 7.4



222 STOCHASTIC APPROXIMATION MONTE CARLO

0 1 2 3 4

4.9 5.0 5.1 5.2 5.3

4.4 4.5 4.6 4.7 4.8 4.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ta
il 

pr
ob

ab
ili

ty

2e
–0

6
4e

–0
6

6e
–0

6
8e

–0
6

1e
–0

5

ta
il 

pr
ob

ab
ili

ty

2e
–0

7
4e

–0
7

6e
–0

7
8e

–0
7

1e
–0

6

ta
il 

pr
ob

ab
ili

ty

5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0e
+

00
4e

–0
8

8e
–0

8

ta
il 

pr
ob

ab
ili

ty

(a) (b)

(c) (d)

Figure 7.4 Comparison of the true p-value (solid curve), the estimate
produced by SAMC (dotted curve), and the estimate produced by the
permutation method (dashed read curve) at 300 equally spaced points. The es-
timates for the true p-values (a) greater than 10−5, (b) between 10−6 and
10−5, (c) between 10−7 and 10−6; and (d) between 10−9 and 10−7 (Yu and
Liang, 2009).

shows the tail probability estimates obtained in a single run with m = 300.
The permutation method works well for the region with the true p-value
>10−5, and fails for the region with the true p-value <10−6. To get an esti-
mate with comparable accuracy with the SAMC estimate, the permutation
method may need about 1011 permutations.

Figure 7.5 shows the progressive plots of the highest test statistic values
sampled by SAMC and the permutation method. It indicates that SAMC can
sample extreme test statistic values very fast. Almost in all runs, SAMC can
sample some test statistic with the true p-value <10−9 with only about 104 it-
erations. However, with a total of 108(= 5 000 000×20) permutations, the per-
mutation method never sampled a test statistic with the true p-value <10−8.

7.5.2 Bayesian Phylogeny Inference

Phylogeny inference is one of fundamental topics in molecular evolution. The
traditional methods select a single ‘best’ tree, either by the neighbor joining
(NJ) method (Saitou and Nei, 1987) or according to some optimality crite-
rion, such as minimum evolution (Kidd and Sgaramella-Zonta, 1971; Rzhetsky
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Figure 7.5 Progressive plots of the highest test statistic values sampled by the
SAMC (‘+’) and the permutation methods (‘o’) for the simulation example.
The x-axis plots the logarithm (with base 10) of iteration numbers (Yu and
Liang, 2009).

and Nei, 1992), maximum parsimony (Fitch, 1971; Maddison, 1991), and
maximum likelihood (Felsenstein, 1981, 1993; Salter and Pearl, 2001). Al-
though the traditional methods work well for many problems, they do not
produce valid inferences beyond point estimates.

To account for uncertainty of phylogeny estimation, Bayesian methods
have been widely used in recent literature. Significant work include Rannala
and Yang (1996), Mau and Newton (1997), Mau et al. (1999), Larget and
Simon (1999), Newton et al. (1999), and Li et al. (2000), where the MH
algorithm (Metropolis et al ., 1953; Hastings, 1970) is employed to simulate
from a posterior distribution defined on a parameter space that includes
tree topologies as well as branch lengths and the parameters of the sequence
evolutionary model. However, the MH algorithm tends to get trapped in
local energy minima, rendering ineffective inference for the phylogeny. A
number of authors have employed advanced MCMC algorithms to try to
resolve this difficulty. For example: Huelsenbeck and Ronquist (2001) and
Altekar et al. (2004) employ parallel tempering; (Geyer, 1991) and Feng
et al . (2003) employ the multiple-try Metropolis algorithm (Liu et al ., 2000);
Cheon and Liang (2008) apply a sequential Monte Carlo algorithm, focusing
on maximum a posteriori (MAP) trees.

Cheon and Liang (2009) apply SAMC, and compare SAMC with the pop-
ular Bayesian phylogeny software, BAMBE (Larget and Simon, 1999), and
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MrBayes (Huelsenbeck and Ronquist, 2001). On simulated and real datasets,
the numerical results indicate that SAMC outperforms BAMBE and MrBayes.
Of the three methods, SAMC produces the consensus trees that most resem-
ble true trees, and parameter estimates with the smallest mean square errors,
but cost the least CPU time.

7.5.2.1 Bayesian Phylogeny Analysis

A phylogenetic tree can be represented by a rooted binary tree, each node
with descendants representing the most recent common ancestor of the
descendants, and the root representing the most common ancestor of all the
entities at the leaves of the tree. In general, a phylogenetic tree of n leaves
has n− 2 internal nodes (excluding the root node) and 2n− 2 branches. The
length of branch represents the distance between two end node sequences,
and it is often calculated from a model of substitution of residues over the
course of evolution.

Suppose that we are interested in conducting a phylogeny analysis of n
nucleotide sequences (taxa). The problem for analyzing protein sequences is
similar. The nucleotide sequences can be arranged as a n by N matrix, where
N is the common number of sites or the common length of the sequences.
For a demonstration purpose, we assume that that evolution among sites is
independent conditional on the given genealogy, although this assumption is
probably violated by most coding sequence datasets. As explained by Galtier
et al . (2005), the sites in a protein (or an RNA sequence) interact to determine
the selected 3-dimensional structure of the protein, so the evolutionary process
of interacting sites are not independent.

Under the independence assumption, several evolutionary models have
been proposed for nucleotides, such as the one-parameter model (Jukes and
Cantor, 1969), two-parameter model (Kimura, 1980), Felsenstein model
(Felsenstein, 1981), and HKY85 model (Hasegawa et al ., 1985); the most
flexible, is the HKY model, which possesses a general stationary distribution
of nucleotides, and allows for different rates of transitional and transversional
events. The transition probability matrix of the HKY85 model is given by

Qj|i(h)

=


πj + πj

(
1
λj
− 1

)
e−αh +

(
λj−πj

λj

)
e−αγjh, if i = j,

πj + πj

(
1
λj
− 1

)
e−αh −

(
πj

λj

)
e−αγjh, if i �= j (transition),

πj(1− e−αh), if i �= j (transversion),
(7.26)

where h denotes the evolution time or the branch length of the phyloge-
netic tree, α denotes the evolutionary rate, λj = πA + πG if base j is a
purine (A or G) and πC + πT if base j is a pyrimidine (C or T), γj =
1 + (κ − 1)λj , and κ is a parameter responsible for distinguishing between
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transitions and transversions. The stationary probabilities of the four
nucleotides are πA, πC , πG, and πT , respectively.

Let ω = (τ , h, φ) denote a phylogenetic tree, where τ , h and φ denote
the tree topology, branch lengths, and model parameters, respectively. The
likelihood can be calculated using the pruning method developed by Felsen-
stein (Felsenstein, 1981). The pruning method produces a collection of partial
likelihoods of subtrees, starting from the leaves and working recursively to the
root for each site. Let S = {A, C, G, T} denote the set of nucleotides. For site
k of a leaf e, define Lk

e(i) = 1 if state i matches the base found in the sequence
and 0 otherwise, where i indexes the elements of S. At site k of an internal
node v, the conditional probability of descendant data given state i is

Lk
v(i) =

∑
j∈S

Lk
u(j)Qj|i(hvu)

×
∑

j∈S
Lk

w(j)Qj|i(hvw)

 , i ∈ S,

where u and w denote the two children nodes of v, and hab denotes the
length of the branch ended with the nodes a and b. The likelihood can then
be written as

L(ω|D) =
N∏

k=1

∑
i∈S

π0(i)Lk
r (i), (7.27)

where D denotes the observed sequences of n taxa, r denotes the root
node, and π0 is the initial probability distribution assigned to the ancestral
root sequence. In simulations, π0 is often set to the observed frequency of
nucleotides of the given sequences.

Following Mau et al . (1999) and Larget and Simon (1999), we placed a
uniform prior on ω. The resulting posterior distribution is

f(ω|D) ∝ L(ω|D), (7.28)

for which the MAP tree coincides with the maximum likelihood tree.
In applying SAMC to sample from the posterior (7.28), Cheon and Liang

(2009) adopt the local moves used in Larget and Simon (1999) for updating
phylogenetic trees. The moves consist of three types of updates: the update
for model parameters; the update for branch lengths; and the update for tree
topology. Lee ρ(ω) denote a quantity of interest for phylogeny analysis, such
as the presence/absence of a branch or an evolutionary parameter. Following
from the theory of SAMC, Efρ(ω), the expectation of r(ω) with respect to
the posterior (7.28), can be estimated by

Êfρ(ω) =

∑n
t=n0+1 ρ(ωt) exp{θ(J(ωt))

t }∑n
t=n0+1 exp{θ(J(ωt))

t }
, (7.29)

where (ωn0+1, θ
(J(ωn0+1))
n0+1 ), . . . , (ωn, θ

(J(ωn))
n ) denote the samples generated by

SAMC, and n0 denotes the number of burn-in iterations.
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7.5.2.2 Simulation Examples

In this study, 100 nucleotide datasets were generated according to a given
tree of 30 taxa (shown in Figure 7.6(a)), a given root sequence (shown in
Table 7.4), and a HKY85 model with parameters κ = 2, α = 1, and πA =
πG = πC = πT = 0.25. The length of each sequence is 300. SAMC, BAMBE
and MrBayes were applied to each of the 100 datasets. For each dataset, each
algorithm was run for 2.2×105 iterations. In all simulations, α was restricted
to be 1, as the evolutionary rate of each site of the nucleotide sequences was
modeled equally (see Cheon and Liang (2009) for details of the simulations).

Figure 7.6 compares the consensus trees produced by the three methods
for one dataset. Other results are summarized in Table 7.5, where MAST
(maximum agreement subtree) provides a measurement for the similarity be-
tween the true and consensus trees constructed by respective methods. The
MAST scores were calculated using the software TreeAnalyzer, developed
by Dong and Kraemer (2004), based on the tree comparison algorithms of
Farach et al . (1995) and Goddard et al . (1994). Note that TreeAnalyzer has
normalized its output by 100; that is, the MAST score of two identical trees
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Figure 7.6 Comparison of consensus trees produced by SAMC, BAMBE and
MrBayes for a simulated 30-taxa dataset (Cheon and Liang, 2009).
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Table 7.4 The root sequence for the simulated example (Cheon and Liang,
2009).

AACAAAGCCACAATTATTAATACTCTTGCTACATCCTGAGCAAAAGCCCC
CGCCCTCACAGCTCTCACCCCCCTTATTCTTCTTTCACTAGGGGGCCTCC
CCCCTCTCACGGGCTTTATACCAAAATGACTGATTCTTCAAGAACTAACC
AAACAAGGCCTTGCCCCCACCGCAACCCTAGCAGCCCTCTCAGCACTCC
TTAGCCTCTATTTCTACCTGCGCCTCTCCTACACAATAACCCTCACTATTT
CCCCCAACAGCCTTCTAGGTACCACCCCCTGACGTTTGCCTTCTACCCAA

Table 7.5 Bayesian phylogeny inference for the simulated data (Cheon and
Liang, 2009).

method CPU AveL κ πA πG πC πT MAST

SAMC 6.2 9.74 1.998 0.277 0.178 0.294 0.250 78.12
(3.28) (.001) (.002) (.001) (.001) (.001) (0.33)

MrBayes 18.7 5.15 2.154 0.274 0.181 0.295 0.252 75.18
(3.17) (.032) (.002) (.001) (.001) (.001) (0.35)

BAMBE 6.4 0 1.514 0.271 0.174 0.303 0.252 72.41
(4.52) (.016) (.002) (.001) (.002) (.002) (0.31)

CPU: CPU time (in minutes) cost by a single run of the algorithm on an Intel Pentium
III computer. AveL: the difference of the averaged log-likelihood values produced by the
corresponding method and BAMBE. MAST: Maximum Agreement Subtree. Each entry is
calculated by averaging over 100 datasets, and the number in the parentheses represent
the standard deviation of the corresponding estimate.

is 100. Table 7.5 shows that the consensus trees produced by SAMC tend to
resemble true trees more than those produced by MrBayes and BAMBE. In
addition to MAST scores, SAMC also produces more accurate estimates of κ
than MrBayes and BAMBE. MrBayes employs a parallel tempering algorithm
for simulations, where multiple Markov chains are run in parallel at different
temperatures; it therefore costs more CPU time than single chain methods
BAMBE and SAMC, for the same number of iterations. Cheon and Liang
(2009) also compare SAMC with BAMBE and MrBayes on the sequences
generated for the trees with 20 taxa and 40 taxa. The results are similar.

7.5.3 Bayesian Network Learning

The use of graphs to represent statistical models has become popular in
recent years. In particular, researchers have directed interest in Bayesian net-
works and applications of such models to biological data (see, e.g., Friedman
et al ., 2000 and Ellis and Wong 2008). The Bayesian network illustrated by
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Figure 7.7 An example of Bayesian networks (Liang and Zhang, 2009).

Figure 7.7, is a directed acyclic graph (DAG) for which the nodes represent
the variables in the domain and the edges correspond to direct probabilistic
dependencies between them. As indicated by many applications, the Bayesian
network is a powerful knowledge representation and reasoning tool under the
conditions of uncertainty typical of real-life applications (see, e.g., Taroni
et al ., 2006).

Bayesian networks are used in a variety of approaches, including: the con-
ditional independence test-based approach (Spirtes et al ., 1993; Wermuth
and Lauritzen, 1983; de Campos and Huete, 2000); the optimization-based
approach (Herskovits and Cooper, 1990; Lam and Bacchus, 1994; Heckerman
et al ., 1995; Chickering, 1996); and the Bayesian approach (Madigan and
Raftery, 1994; Madigan and York, 1995; Giudici and Green, 1999). Due to its
advantage in uncertainty analysis, the Bayesian approach is pursued increas-
ingly by researchers and practitioners.

For the Bayesian approach, the posterior distribution of the Bayesian net-
work is usually simulated using the MH algorithm, which is prone to get stuck
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in local minima on the energy landscape. To overcome the local-trap problem
suffered by the MH algorithm, Friedman and Koller (2003) introduce a two-
stage algorithm: they use the MH algorithm to sample a temporal order of
the nodes, and then sample a network structure compatible with the given
node order. As discussed in Friedman and Koller (2003), for any Bayesian
networks, there exists a temporal order of the nodes such that for any two
nodes X and Y, if there is an edge from X and Y, then X must precede Y.
For example, for the Bayesian network shown in Figure 7.7a temporal order
is ACDFBGE. The two-stage algorithm improves mixing over the space of
network structures. However, as pointed out by Ellis and Wong (2008), the
structures sampled by it does not follow the correct posterior distribution,
because the temporal order does not induce a partition of network structures
space. A network may be compatible with more than one temporal order.
For example, the network in Figure 7.7 is compatible with both the orders
ACDFBGE and ADCFBGE.

Liang and Zhang (2009) propose using SAMC to learn Bayesian networks:
the network features can be inferred by dynamically weighted averaging of the
samples generated in the learning process. The numerical results indicate that
SAMC can mix much faster over the space of Bayesian networks than the MH
simulation-based approach.

7.5.3.1 Bayesian Networks

A Bayesian network model can be defined as a pair B = (G, ρ), where G =
(V, E) is a directed acyclic graph that represents the structure of the network,
V represents the set of nodes, E represents the set of edges, and ρ is a vector
of conditional probabilities. For a node V ∈ V, a parent of V is a node from
which there is a directed link to V. The set of parents of V is denoted by
pa(V ). For illustration purpose, we consider here only the discrete case where
V is a categorical variable taking values in a finite set {v1, . . . , vri

}. There
are qi =

∏
Vj∈pa(Vi)

rj possible values for the joint state of the parents of Vi.
Each element of ρ represents a conditional probability. For example, ρijk is
the probability of variable Vi in state j conditioned on that pa(Vi) is in state
k. Naturally, ρ is restricted by the constraints ρijk ≥ 0 and

∑ri

j=1 ρijk = 1.
The joint distribution of the variables V = {V1, . . . , Vd} can be specified by
the decomposition

P (V ) =
d∏

i=1

P
(
Vi|pa(Vi)

)
. (7.30)

Let D = {V 1, . . . ,V N} denote a set of independently and identically dis-
tributed samples drawn from (7.30). Let nijk denote the number of samples for
which Vi is in state j and pa(Vi) is in state k. Then, the count (ni1k, . . . , nirik)
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follows a multinomial distribution; that is,

(ni1k, . . . , nirik) ∼ Multinomial

 ri∑
j=1

nijk, ρik

, (7.31)

where ρik = (ρi1k, . . . , ρirik). Thus, the likelihood function of the Bayesian
network model can be written as

P (D|G, ρ) =
d∏

i=1

qi∏
k=1

( ∑ri

j=1 nijk

ni1k, . . . , nirik

)
ρni1k

i1k . . . ρ
nirik

irik
. (7.32)

Since a network with a large number of edges is often less interpretable
and there is a risk of over-fitting, it is important to use priors over the network
space that encourage sparsity. For this reason, we let G be subject to the prior

P (G|β) ∝
(

β

1− β

)∑d
i=1 |pa(Vi)|

, (7.33)

where 0 < β < 1 is a user-specified parameter. For example, β = 0.1 may be
a reasonable choice for β. The parameters ρ is subject to a product Dirichlet
distribution

P (ρ|G) =
d∏

i=1

qi∏
k=1

Γ(
∑qi

j=1 αijk)
Γ(αi1k) · · ·Γ(αirik)

ραi1k−1
i1k · · · ραirik−1

irik
, (7.34)

where αijk = 1/(riqi), as suggested by Ellis and Wong (2008). Combining with
the likelihood function and the prior distributions and integrating out ρ, we
get the posterior distribution:

P (G|D) ∝
d∏

i=1

(
β

1− β

)|pa(Vi)| qi∏
k=1

Γ(
∑ri

j=1 αijk)
Γ(

∑ri

j=1(αijk + nijk))

ri∏
j=1

Γ(αijk + nijk)
Γ(αijk)

,

(7.35)

which contains all the network structure information provided by the data.
Note that Bayesian networks are conceptually different from causal Bayes-

ian networks. In a causal Bayesian network, each edge can be interpreted as
a direct causal relation between a parent node and a child node, relative to
the other nodes in the network (Pearl, 1988). The formulation of Bayesian
networks, as described above, is not sufficient for causal inference. To learn a
causal Bayesian network, one needs a dataset obtained through experimental
interventions. In general, one cannot learn a causal Bayesian network from
observational data alone (see Cooper and Yoo, 1999, and Ellis and Wong,
2008, for more discussions on this issue).
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7.5.3.2 Learning Bayesian Networks using SAMC

Let G denote a feasible Bayesian network for the data D. At each iteration of
SAMC, the sampling step can be performed as follows.

(a) Randomly choose between the following possible changes to the current
network Gt producing G′.

(a.1) Temporal order change. Swap the order of two neighboring models.
If there is an edge between them, reverse its direction.

(a.2) Skeletal change. Add (or delete) an edge between a pair of ran-
domly selected nodes.

(a.3) Double skeletal change. Randomly choose two different pairs of
nodes, and add (or delete) edges between each pair of the nodes.

(b) Calculate the ratio

r = eθ
(J(G′))
t −θ

(J(Gt))
t

ψ(G′)
ψ(Gt)

T(G′ → Gt)
T(Gt → G′) ,

where ψ(G) is defined as the right hand side of 7.35, and the ratio
of the proposal probabilities T(G′ → Gt)/T(Gt → G′) = 1 for all of the
three types of the changes. Accept the new network structure G′ with
probability min(1, r). If it is accepted, set Gt+1 = G′; otherwise, set
Gt+1 = Gt.

Clearly, the proposal used above satisfies the condition (A2). We note that
a similar proposal has been used by Wallace and Korb (1999) in a Metropolis
sampling process for Bayesian networks, and that the double changes are not
necessary for the algorithm to work, but are included to help accelerate the
sampling process.

Following the ergodicity theory of SAMC, any quantity of interest, such
as the presence/absence of an edge or a future observation, can be estimated
in (7.21) given a set of SAMC samples (Gn0+1, θ

(J(Gn0+1))
n0+1 ), . . . , (Gn, θ

(J(Gn))
n )

generated from the posterior distribution, where n0 denotes the number of
burn-in iterations.

7.5.3.3 SPECT Heart Data

This dataset, which is available at machine learning repository http://
archive.ics.uci.edu/ml, describes diagnosing cardiac single proton emis-
sion computed tomography (SPECT) images. The patients are classified into
two categories: normal and abnormal. The database of 267 SPECT image
sets (patients) was processed to extract features that summarize the original
SPECT images. As a result, 22 binary feature patterns were created for each
patient. The SPECT dataset has been used by a few researchers, including
Cios et al . (1997) and Kurgan et al . (2001), to demonstrate their machine
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Figure 7.8 Progression paths of minimum energy values produced in five runs
of SAMC (solid lines) and five runs of MH (dashed lines) for the SPECT data
(Liang and Zhang, 2009).

learning algorithms. Liang and Zhang (2009) built a Bayesian network using
SAMC for the features and the overall classification of the patients.

In applying SAMC to this dataset, the sample space was partitioned
into 2001 subregions with an equal energy bandwidth, E1 = {x : U(x) ≤
2000}, E2 = {x : 2000 < U(x) ≤ 2001}, . . . , E2000 = {x : 3998 < U(x) ≤
3999}, and E2001 = {x : U(x) > 3999}. SAMC was run 5 times, and each
run consisted of 2× 108 iterations. The overall acceptance rate of the SAMC
moves is about 0.13. For comparison, MH was also run 5 times with the same
proposal, and each run consisted of 2.0 × 108 iterations. The overall accep-
tance rate of the MH moves is only about 0.006. Figure 7.8 compares the
progression paths of minimum energy values produced by SAMC and MH in
the respective runs. SAMC outperforms MH for this example; the minimum
energy value produced by SAMC in any of the five runs is much lower than
that produced by MH in all of the five runs.

Figure 7.9 (left panel) shows the putative MAP Bayesian network learned
by SAMC over the five runs, where the node 23 corresponds to the over-
all classification of the patients. The plot indicates that conditional on the
features 17 and 21, the classification of the patients is independent of other
features. Figure 7.9 (right panel) shows the consensus network for which each
edge presents in the posterior network samples with a probability higher than
0.5. For example, the edge from 17 to 23 has a probability of 0.67 presenting
in the posterior network samples, and the edge from 21 to 23 has a probability
of 0.91. Note that the consensus network may contain several subnetworks,
which are disconnected from each other.
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Figure 7.9 SPECT Data: (left) The putative MAP Bayesian network learned
by SAMC, and (right) the consensus Bayesian network learned by SAMC
(Liang and Zhang, 2009).

7.6 Variants of Stochastic Approximation
Monte Carlo

In this section, we present several variants of SAMC, which improve the per-
formance of SAMC for certain types of problems.

7.6.1 Smoothing SAMC for Model Selection Problems

Suppose that one is working with a distribution as specified in (7.1) and
that the sample space X has been partitioned into m disjoint subregions
E1, . . . , Em according to a function λ(x). As previously discussed, the su-
periority of SAMC in sample space exploration is due to its self-adjusting
mechanism. If a subregion, say Ei, is visited at iteration t, θt will be updated
accordingly such that Ei will have a smaller probability to be revisited at itera-
tion t+1. However, this mechanism has not yet reached its maximum efficiency
because it does not differentiate neighboring and non-neighboring subregions
of Ei when updating θt. We note that for many problems, the subregions
E1, . . . , Em form a sequence of naturally ordered categories with g1, . . . , gm

changing smoothly along the index of subregions, where gi =
∫

Ei
ψ(x)dx for

i = 1, . . . , m, and ψ(x) is a non-negative function with
∫
X ψ(x)dx < ∞. For

example, for model selection problems, X can be partitioned according to
the index of models, the subregions can be ordered according to the number
of parameters contained in each model, and the neighboring subregions often
contain similar probability values. Intuitively, the sample xt may contain some
information on its neighboring subregions, so the visiting to its neighboring
subregions should also be penalized to some extent at the next iteration. Con-
sequently, this improves the ergodicity of the simulation. Henceforth, we will
call a partition with g1, . . . , gm changing smoothly a smooth partition, or say
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the sample space is partitioned smoothly. In this subsection, we assume that
the sample space has been partitioned smoothly.

Liang (2009a) shows that the efficiency of SAMC can be improved by
including at each iteration a smoothing step, which distributes the information
contained in each sample to its neighboring subregions. The new algorithm is
called smoothing-SAMC, or SSAMC.

7.6.1.1 Smoothing-SAMC Algorithm

SSAMC is different from SAMC in two respects. First, the gain factor se-
quence used in SSAMC is a little more restrictive than that used in SAMC.
In SSAMC, the gain factor sequence is required to satisfy the following con-
dition:

(B1) The sequence {γt} is positive and nonincreasing, and satisfies the con-
ditions:

(i) lim
t→∞ |γ

−1
t − γ−1

t+1| <∞, (ii)
∞∑

t=1

γt =∞, (iii)
∞∑

t=1

γζ
t <∞,

(7.36)

for any ζ > 1.

The trade-off with the condition (A1), given in Section 7.4, is that a higher
order noise term can be included in updating θt as prescribed in (7.41). For
example, {γt} can be set as

γt =
t0

max{t0, t} , t = 1, 2, . . . , (7.37)

where t0 is a pre specified number. More discussions on condition (B1) can
be found at the end of this subsection. There we can see that the condition
(B1) can be relaxed a bit according to the setting of other parameters of this
algorithm.

Second, SSAMC allows multiple samples to be generated at each itera-
tion, and employs a smoothed estimate of p

(i)
t in updating θt, where p

(i)
t =∫

Ei
fθt

(x)dx is the limiting probability that a sample is drawn from Ei at

iteration t, and fθt
(x) is as defined in (7.16). Let x

(1)
t , . . . , x

(κ)
t denote the

samples generated by a MH kernel with the invariant distribution fθt
(x).

Since κ is usually a small number, say, 10 to 20, the samples form a sparse
frequency vector et = (e(1)

t , . . . , e
(m)
t ) with e

(i)
t =

∑κ
l=1 I(x(l)

t ∈ Ei). Because
the law of large numbers does not apply here, et/κ is not a good estimator
of pt = (p(1)

t , . . . , p
(m)
t ). As suggested by many authors, including Burman

(1987), Hall and Titterington (1987), Dong and Simonoff (1994), Fan et al .
(1995), and Aerts et al . (1997), the frequency estimate can be improved by
a smoothing method. Since the partition has been assumed to be smooth,
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information in nearby subregions can be borrowed to help produce more
accurate estimates of pt.

Liang (2009a) smoothes the frequency estimator et/κ using the Nadaraya-
Watson kernel method. Then

p̂
(i)
t =

∑m
j=1 W

(
Λ(i−j)

mht

)
e
(j)
t

κ∑m
j=1 W

(
Λ(i−j)

mht

) , (7.38)

where W(z) is a kernel function with bandwidth ht, and Λ is a rough estimate
of the range of λ(x), x ∈ X. Here, W(z) is chosen to have a bounded support;
that is, there exists a constant C such that W(z) = 0 if |z|> C. With this
condition, it is easy to show p̂

(i)
t − e

(i)
t /κ = O(ht). There are many choices for

W(z), for example, an Epanechnikov kernel or a double-truncated Gaussian
kernel. The former is standard, and the latter can be written as

W(z) =

{
exp(−z2/2), if |z| < C,

0, otherwise.
(7.39)

The bandwidth ht is chosen as a power function of γt; that is, ht = aγb
t for

a > 0 and b ∈ (0, 1], where b specifies the decay rate of the smoothing adapta-
tion in SSAMC. For a small value of b, the adaptation can decay very slowly.
In Liang (2009a), W(z) was set to the double-truncated Gaussian kernel with
C = 3 and

ht = min

{
γb

t ,
range{λ(x(1)

t ), . . . , λ(x(κ)
t )}

2(1 + log2(κ))

}
, (7.40)

where b = 1/2, and the second term in min{·, ·} is the default bandwidth used
in conventional density estimation procedures, see, e.g., S-PLUS 5.0 (Venables
and Ripley, 1999). Clearly, ht = O(γb

t) when t becomes large.
In summary, one iteration of SSAMC consists of the following steps:

SSAMC Algorithm (Steps)

1. Sampling . Simulate samples x
(1)
t+1, . . . , x

(κ)
t+1 using the MH algorithm

from the distribution fθt
(x) as defined in (7.16). The simulation should

be done in an iterative manner; that is, generating x
(i+1)
t+1 with a pro-

posal q(x(i)
t+1, ·), where where x

(0)
t+1 = x

(κ)
t .

2. Smoothing . Calculate p̂t = (p̂(1)
t , . . . , p̂

(m)
t ) in (7.38).

3. Weight updating . Set

θt+ 1
2

= θt + γt+1(p̂t − π). (7.41)
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If θt+ 1
2
∈ Θ, set θt+1 = θt+ 1

2
; otherwise, set θt+1 = θt+ 1

2
+ c∗, where

c∗ = (c∗, . . . , c∗) can be any vector which satisfies the condition θt+ 1
2
+

c∗ ∈ Θ.

As in SAMC, Θ can be restricted to a compact set. To ensure the tran-
sition kernel to satisfy the drift condition, we restrict X to be either finite
(for a discrete system) or compact (for a continuum system), and choose the
proposal distribution to satisfy the condition (A2). As previously discussed,
when X is continuous, X can be restricted to the region {x : ψ(x) ≥ ψmin},
where ψmin is sufficiently small such that the region {x : ψ(x) < ψmin} is not
of interest. Under these assumptions, Liang (2009a) establishes the following
theorem concerning the convergence of SSAMC, whose proof can be found in
Section 7.7.1.3.

Theorem 7.6.1 Assume (B1) and the drift condition (B2) (given in Sec-
tion 7.7.1) hold. Then,

θ
(t)
i →

{
C + log(

∫
Ei

ψ(x)dx)− log(πi + ν), if Ei �= ∅,
−∞. if Ei = ∅, (7.42)

as t → ∞, where C is an arbitrary constant, ν =
∑

j∈{i:Ei=∅} πj/(m −m0),
and m0 is the number of empty subregions.

Regarding implementation of SSAMC, most issues previously discussed
for SAMC, including those on sample space partitioning, convergence diag-
nostic, and parameter setting (for π, t0 and the total number of iterations),
are applicable to SSAMC. Below we add three more issues specific to SSAMC.

• The choice of smoothing estimators . Theoretically, any smoothing esti-
mator, which satisfies the condition p̂

(i)
t −e

(i)
t /κ = O(hτ ) for some τ > 0,

can be used in SSAMC. Other than the Nadaraya-Watson kernel esti-
mator, the local log-likelihood estimator (Tibshirani and Hastie, 1987)
and the local polynomial estimator (Aerts et al ., 1997) can also be
used in SSAMC (see Simonoff, 1998, for a comprehensive review for
smoothing estimators).

When no smoothing operator is used, that is, replacing (7.41) by

θt+ 1
2

= θt + γt+1(et/κ− π), (7.43)

SSAMC is reduced to a multiple-sample version of SAMC. Henceforth,
we will call this version of SAMC multiple-SAMC or MSAMC.

• The choice of κ. Since the convergence of SSAMC is determined by
three parameters κ, t0 and N, where N denotes the total number of
iterations, the value of κ should be determined together with the values
of t0 and N. In practice, κ is usually set to a number less than 20. Since
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the gain factor is kept at a constant at each iteration, a run with a large
κ has to end at a large value of γt, provided that the total running time
is fixed. Note that the estimate of g produced in a run ended at a
large value of γt will be highly variable. In our experience, SSAMC can
benefit from the smoothing operation even when κ is as small as 5.

• The condition (B1). When proving Theorem 7.6.1, an important step
is to identify the order τ of the perturbation term

p̂t − π −H(θt, xt+1) = O(γτ
t+1),

where xt+1 = (x(1)
t+1, . . . , x

(κ)
t+1) and H(θt, xt+1) = et/κ− π. The choice

of the gain factor sequence {γt} depends very much on the value of τ.
If the value of τ is known, (B1)-(iv) can be relaxed to

∑∞
t=1 γζ

t <∞ for
some ζ ∈ [1 + τ, 2]. For MSAMC, this condition can be further relaxed
to

∑∞
t=1 γ2

t <∞, as the corresponding perturbation term is 0.

7.6.1.2 Bayesian Model Selection

Liang et al . (2007) and Martinez et al . (2009) apply SAMC to Bayesian model
selection problems and compare it to the reversible jump MCMC (RJMCMC)
algorithm (Green, 1995). They conclude that SAMC outperforms RJMCMC
when the model space is complex, for example, when the model space con-
tains several modes which are well separated from each other, or some tiny
probability models, which are of interest to us. However, when the model
space is simple, that is, it contains only a single mode and neighboring mod-
els have comparable posterior probabilities, SAMC may not work better than
RJMCMC, as the self-adjusting mechanism of SAMC is no longer crucial for
mixing the models. Liang (2009a) shows that for Bayesian model selection
problems, SSAMC can make significant improvement over SAMC and that
it can work better than RJMCMC, even when the model space is simple.
This is illustrated below by the change-point identification problem that we
considered in Section 3.3.2.

Given the posterior distribution (3.20), the marginal posterior distribu-
tion P (Xk|Z) can be estimated using SSAMC. Without loss of generality, we
restrict our considerations to the models with kmin ≤ k ≤ kmax. Let Ek = Xk

and ψ(·) ∝ P (ϑ(k)|Z). It follows from 7.42 that ĝ
(i)
t /ĝ

(j)
t = exp{θ(i)

t − θ
(j)
t }

forms a consistent estimator of the ratio P (Xi|Z)/P (Xj |Z) when π is set to
be uniform and t becomes large. The sampling step can be performed as in
RJMCMC, including the ‘birth’, ‘death’ and ‘simultaneous’ moves. For the
‘birth’ move, the acceptance probability is

min

{
1,

eθ
(k)
t

eθ
(k+1)
t

P (ϑ(k+1)
∗ |X)

P (ϑ(k,l)
t |X)

qk+1,k

qk,k+1

cu+1 − cu − 1
1

}
; (7.44)



238 STOCHASTIC APPROXIMATION MONTE CARLO

for the ‘death’ move, the acceptance probability is

min

{
1,

eθ
(k)
t

eθ
(k−1)
t

P (ϑ(k−1)
∗ |X)

P (ϑ(k,l)
t |X)

qk−1,k

qk,k−1

1
cu+1 − cu−1 − 1

}
; (7.45)

and for the ‘simultaneous’ move, the acceptance probability is

min

{
1,

P (ϑ(k)
∗ |X)

P (ϑ(k,l)
t |X)

}
, (7.46)

since, for which, the proposal is symmetric in the sense T(ϑ(k,l)
t → ϑ(k)

∗ )
= T(ϑ(k)

∗ → ϑ
(k,l)
t ) = 1/(cu+1 − cu−1 − 2).

Liang (2009a) applies SSAMC to the simulated example given in Section
3.3.2 with the parameters being set as follows: α = β = 0.05, λ = 1, kmin = 7,
and kmax = 14. In general, the values of kmin and kmax can be determined with
a short pilot run of SSAMC. SSAMC was run 20 times independently with
κ = 20, t0 = 5, N = 105, Λ = kmax−kmin +1, m = 8, and π1 = · · · = πm = 1

m .
The results are summarized in Table 7.6.

For comparison, Liang (2009a) also applies SAMC and RJMCMC to the
same example with 20 runs. SAMC employs the same transition proposals and
the same parameter setting as SSAMC except for t0 = 100 and N = 2× 106.
RJMCMC employs the same transition proposals as those used by SSAMC
and SAMC, and performs 2× 106 iterations in each run. Therefore, SSAMC,
SAMC and RJMCMC perform the same number of energy evaluations in each
run. The CPU times cost by a single run of them are 28.5 seconds, 25.5 seconds,
and 23.9 seconds, respectively, on a 2.8GHz computer. Table 7.6 shows that

Table 7.6 Estimated posterior probability for the change-point example (re-
compiled from Liang, 2009a).

SSAMC SAMC MSAMC RJMCMC

k P(%) SD P(%) SD P(%) SD P(%) SD

7 0.101 0.002 0.094 0.003 0.098 0.002 0.091 0.005
8 55.467 0.247 55.393 0.611 55.081 0.351 55.573 0.345
9 33.374 0.166 33.373 0.357 33.380 0.223 33.212 0.205
10 9.298 0.103 9.365 0.279 9.590 0.135 9.354 0.144
11 1.566 0.029 1.579 0.069 1.646 0.030 1.569 0.040
12 0.177 0.004 0.180 0.010 0.187 0.004 0.185 0.010
13 0.016 0.001 0.015 0.001 0.017 0.000 0.017 0.001
14 0.002 0.000 0.001 0.000 0.002 0.000 0.001 0.000

P(%): the posterior probability P (Xk|Z) (normalized to 100%). SD: standard deviation of
the estimates.
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SSAMC works best among the three algorithms. As known by many people,
RJMCMC is a general MH algorithm, and it is really hard to find another
Monte Carlo algorithm to beat it for such a simple single-modal problem. How-
ever, SSAMC does. SSAMC is different from RJMCMC in two respects. First,
like SAMC, SSAMC has the capability to self-adjust its acceptance rate. This
capability enables it to overcome any difficulty in dimension jumping and to
explore the entire model space very quickly. Second, SSAMC has the capabil-
ity to make use of nearby model information to improve estimation. However,
this can hardly be done in RJMCMC due to the stringent requirement for its
Markovian property. These two capabilities make SSAMC potentially more
efficient than RJMCMC for general Bayesian model selection problems.

It is worth pointing out that for this example, although the overall per-
formance of SAMC is worse than that of RJMCMC, SAMC tends to work
better than RJMCMC for the low probability model spaces, for example,
those with 7 and 14 change points. This is due to the fact that SAMC sam-
ples equally from each model space, while RJMCMC samples from each model
space proportionally to its probability. MSAMC have also been applied to this
example with the same setting as that used by SSAMC. Its results, reported
in Table 7.6, indicate that averaging over multiple samples can improve the
convergence of SAMC, but a further smoothing operation on the frequency
estimator is also important.

7.6.1.3 Discussion

SSAMC provides a general framework on how to improve efficiency of
Monte Carlo simulations by incorporating some sophisticated nonparametric
techniques. For illustrative purposes, the Nadaraya-Watson kernel estimator
is employed above. Advanced smoothing techniques, such as the local
log-likelihood estimator, should work better in general. For SAMC, allowing
multiple samples to be generated at each iteration is important, as it provides
us much freedom to incorporate data-mining techniques into simulations.

Liang et al . (2007) discuss potential applications of SAMC to problems for
which the sample space is jointly partitioned according to two functions. The
applicability of SSAMC to these problems is apparent: for joint partitions, the
subregions can usually be ordered as a contingency table, and the smoothing
estimator used above can thus be easily applied there.

7.6.2 Continuous SAMC for Marginal Density
Estimation

A common computational problem in statistics is estimation of marginal den-
sities. Let x denote a d-dimensional random vector, and let f(x) denote its
density function, which is known up to a normalizing constant; that is,

f(x) =
1
C

ψ(x), x ∈ X, (7.47)
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where X is the sample space, C is the unknown normalizing constant, and
ψ(x) is fully known or at least calculable for any points in X. Let y = λ(x)
denote an arbitrary function which maps X to a lower dimensional space Y
with dimension dλ < d. Our task is to estimate the marginal density g(y) =∫
{x:y=λ(x)} f(x)dx for y ∈ Y.

When g(y) is not available analytically, one must turn to approximations.
To this end, approximate samples are generated from f(x) via a MCMC
sampler, and g(y) can then be estimated using the kernel density estima-
tion method (see, e.g., Wand and Jones, 1995). The kernel density estimation
method allows for dependent samples (Hart and Vieu, 1990; Yu, 1993; Hall
et al ., 1995). When iid samples are available, other nonparametric density
estimation methods, such as local likelihood (Loader, 1999), smoothing spline
(Gu, 1993; Gu and Qiu, 1993), and logspline (Kooperberg and Stone, 1991;
Kooperberg, 1998), can also be applied to estimate the marginal density.

The problem has also been tackled by some authors from a different angle.
For example, Chen (1994) proposed an importance sampling-based parametric
method for the case where y is a subvector of x. Chen’s estimator also allows
for dependent samples. The major shortcoming of Chen’s methods is its strong
dependence on the knowledge of the analytical form of the inverse transforma-
tion x = λ−1(y). Other parametric methods, such as those by Gelfand et al .
(1992) and Verdinelli and Wasserman (1995), suffer from similar handicaps.

Liang (2007a) proposes a continuous version of SAMC for marginal density
estimation. Henceforth, the new algorithm will be abbreviated as the continu-
ous SAMC algorithm or CSAMC. CSAMC abandons the use of sample space
partitioning and incorporates the technique of kernel density estimation into
simulations. CSAMC is very general. It works for any transformation λ(x)
regardless of availability of the analytical form of the inverse transformation.
Like SAMC, CSAMC has the capability to self-adjust the acceptance proba-
bility of local moves. This mechanism enables it to escape from local energy
minima to sample relevant parts of the sample space very quickly.

7.6.2.1 The CSAMC Algorithm

In what follows, CSAMC is described for the case where y is a bivariate vector.
Let g(y) be evaluated at the grid points of a lattice. Without loss of generality,
we assume that the endpoints of the lattice form a rectangle denoted by Y. In
practice, the rectangle can be chosen such that its complementary space is of
little interest to us. For example, in Bayesian statistics, the parameter space is
often unbounded, and Y can then be set to a rectangle which covers the high
posterior density region. A rough high posterior density region can usually
be identified based on a preliminary analysis of the data. Alternatively, the
high posterior density rectangle can be identified by a trial-and-error process,
starting with a small rectangle and increasing it gradually until the resulting
estimates converges.
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Let the grid points be denoted by {zij : i = 1, . . . , L1, j = 1, . . . , L2}, where
zij = (z(1)

i , z
(2)
j ). Let d1 = z

(1)
2 −z

(1)
1 and d2 = z

(2)
2 −z

(2)
1 be the horizontal and

vertical neighboring distances of the lattice, respectively. Let gij = g(zij) be
the true marginal density value at the point zij , and let ĝ

(t)
ij be the working

estimate of gij obtained at iteration t. For any point ỹ = (ỹ1, ỹ2) ∈ Y, the
density value can then be approximated by bilinear interpolation as follows.
If z

(1)
i < ỹ1 < z

(1)
i+1 and z

(2)
j < ỹ2 < z

(2)
j+1 define i and j, then

ĝ(t)(ỹ) = (1− u)(1− v)ĝ(t)
ij + u(1− v)ĝ(t)

i+1,j + (1− u)vĝ(t)
i,j+1 + uvĝ

(t)
i+1,j+1,

(7.48)

where u = (ỹ1 − z
(1)
i )/(z(1)

i+1 − z
(1)
i ) and v = (ỹ2 − z

(2)
j )/(z(2)

j+1 − z
(2)
j ).

Similarly to the desired sampling distribution used in SAMC, π(y) is
specified as the desired sampling distribution on the marginal space Y. Theo-
retically, π(y) can be any distribution defined on Y. In practice, π(y) is often
set to be uniform over Y. Let {γt : t = 1, 2, . . .} denote a sequence of gain
factors as used in SAMC, and let Ht = diag(h2

t1, h
2
t2) denote the bandwidth

matrix used in the density estimation procedure at iteration t. The sequence
{hti : t = 1, 2, . . .} is positive and non-increasing, and converges to 0 as
t→∞. In Liang (2007a), it takes the form

hti = min
{

γb
t ,

range(ỹi)
2 (1 + log2(M))

}
, i = 1, 2, (7.49)

where b ∈ ( 1
2 , 1], and the second term in min{·, ·} is the default bandwidth

used in conventional density estimation procedures (see, e.g., the procedure
density( ·) in S-PLUS 5.0, Venables and Ripley, 1999). With the above nota-
tions, one iteration of CSAMC consists of the following steps:

CSAMC Algorithm (Steps)

(a) Sampling : Draw samples x
(k)
t+1, k = 1, . . . , κ, from the working density

f̂t(x) ∝ ψ(x)
ĝ(t)(λ(x))

, (7.50)

via a MCMC sampler, e.g., the MH algorithm or the Gibbs sampler,
where ψ(x) is as defined in (7.47), and ĝ(t)(λ(x)) is as defined in (7.48).

(b) Estimate updating :

(b.1) Estimate the density of the transformed samples y
(1)
t+1 = λ(x(1)

t+1),
. . . , y

(κ)
t+1 = λ(x(κ)

t+1) using the kernel method. Evaluate the density
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at the grid points,

ζ(t+1)
u (zij) =

1
κ

κ∑
k=1

|Ht|−
1
2 K

(
(Ht)−

1
2 (zij − y

(k)
t+1)

)
, (7.51)

for i = 1, . . . , L1 and j = 1, . . . , L2, where K(y) is a bivariate
kernel density function.

(b.2) Normalize ζ
(t+1)
u (zij) on the grid points by setting

ζ(t+1)(zij) =
ζ
(t+1)
u (zij)∑L1

i′=1

∑L2
j′=1 ζ

(t+1)
u (zi′j′)

,

i = 1, . . . , L1, j = 1, . . . , L2. (7.52)

(b.3) Update the working estimate ĝ
(t)
ij in the following manner,

log ĝ
(t+1)
ij = log ĝ

(t)
ij + γt+1

(
ζ(t+1)(zij)− π′(zij)

)
, (7.53)

for i = 1, . . . , L1 and j = 1, . . . , L2, where π′(zij) = π(zij)/[
∑L1

i′=1∑L2
j′=1 π(zi′j′)].

(c) Lattice refinement . Refine the lattice by increasing the values of L1, L2

or both, if max
{

d1
ht1

, d2
ht2

}
> υ, where υ is a threshold value.

Since x
(1)
t+1, . . . ,x

(κ)
t+1 are generated from (7.50), it follows from Wand and

Jones (1995) that

Eζ(t+1)
u (zij) = Ψt(zij) +

1
2
µ2(K)tr {HtHt(zij)}+ o {tr(Ht)} , (7.54)

where Ψt(z) is a density function proportional to g(z)/ĝ(t)(z), µ2(K) =∫
z2K(z)dz, and Ht is the Hessian matrix of Ψt(z). Thus, ζ

(t)
u (z) forms an

(asymptotically) unbiased estimator of Ψt(z) as ht· goes to 0.
As in SAMC, Θ can be restricted to a compact set by assuming that all

the grid points are in the support set of f(x). By assuming that the transition
kernel satisfies the drift condition, we have the following theorem, whose proof
follows from (7.54) and the proof of Theorem 7.6.1.

Theorem 7.6.2 Assume (B1) and the drift condition (B2) (given in
Section 7.7.1) hold. Let {hti : t = 1, 2, . . .} be a sequence as specified in
(7.49). Then

P
{

lim
t→∞ log ĝ(t)(zij) = c + log g(zij)− log π(zij)

}
= 1, (7.55)

for i = 1, . . . , L1 and j = 1, . . . , L2, where c is an arbitrary constant, which
can be determined by imposing an additional constraint on ĝ(zij)’s.
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Like SSAMC, CSAMC tends to converge faster than SAMC. This is
because CSAMC employs the technique of kernel density estimation, and
thus estimates can be updated in large blocks at an early stage of the
simulation. In CSAMC, the bandwidth plays a similar role as the gain factor.
It is meant to enhance the ability of the sampler in sample space exploration.
The difference is that the bandwidth controls the moving step size of the
sampler, while the gain factor controls the moving mobility of the sampler.
CSAMC is equipped with both the bandwidth and the gain factor.

CSAMC is different from other density estimators in its dynamic nature.
In CSAMC, the estimates are updated iteratively, each updating is based on
a small number of MCMC samples simulated from the working density, and
the updating manner turns gradually from global to local due to the gradual
decrease of the kernel bandwidth as the simulation proceeds. Hence, the rules
developed for the choice of bandwidth matrix for conventional kernel density
estimators may not work for CSAMC. Liang (2007) suggests associating the
choice of bandwidth matrix with the choice of π. For example, if π is set to be
uniform on Y, then the samples y

(1)
t , . . . , y

(κ)
t tend to be uniformly distributed

on Y when t becomes large, and this suggests the use of a diagonal bandwidth
matrix with the diagonal elements accounting for the variability (range) of the
samples in directions of respective coordinates. Other bandwidth matrices,
such as the full bandwidth matrix, are not recommended here due to the
uniformity of the samples. When unequally spaced grid points are used in
evaluation of the density, the bandwidth hti may be allowed to vary with
the position of the grid point. However, data-driven approaches, for example,
the nearest neighbor and balloon approaches (Loftsgaarden and Quesenberry,
1965; Terrell and Scott, 1992), may not be appropriate for CSAMC, because
the convergence of bandwidth is out of our control in these approaches.

The kernel method requires one to evaluate the kernel density at all grid
points for any given sample y

(k)
t . For fast computation, one only needs to

evaluate the kernel density at the grid points in a neighborhood of y
(k)
t ,

for example, the grid points within a cycle of radius max{4ht1, 4ht2} and
centered at y

(k)
t . This will save a lot of CPU time when the lattice size is large,

while keeping the estimation less affected by the kernel density truncation.

7.6.2.2 An Illustrative Example

Consider the mixture Gaussian distribution,

f(x) =
1
3
N3(−µ1, Σ1) +

2
3
N3(µ2, Σ2), (7.56)

where x = (x1, x2, x3), µ1 = (−5,−5,−5), µ2 = (10, 25, 1),

Σ1 =

4 5 0
5 64 0
0 0 1

 , and Σ2 =

1/4 0 0
0 1/4 0
0 0 1/4

 .
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Figure 7.10 Computational results of CCMC for the mixture Gaussian
distribution. (a) The log-marginal density estimate; (b) the true log-marginal
density; (c) the contour plot of the log-marginal density estimate; (d) the
contour plot of the true log-marginal density. The circles in the two con-
tour plots corresponds to the 95%, 90%, 50%, and 10% percentiles of the
log-density, respectively (Liang, 2007a).

Suppose that we want to estimate the marginal density of y = (x1, x2). This
example mimics a multimodal posterior distribution in Bayesian inference,
where the two modes are well separated.

In applying CSAMC to this example, Y is restricted to the square
[−30.5, 30.5] × [−30.5, 30.5], and the marginal density is evaluated on a
square lattice 245×245. At each iteration, the working density was simulated
using the MH algorithm with the random walk proposal N3(xt, 53I ), and
the sample size κ was set to 10. With 5 × 106 iterations, CSAMC produced
a log-marginal density estimate as shown in Figure 7.10(a). Liang (2007a)
also applies CSAMC with great success to estimate the normalizing constant
function for a spatial autologistic model:

7.6.3 Annealing SAMC for Global Optimization

During the past several decades, simulated annealing (Kirkpatrick et al ., 1983)
and the genetic algorithm (Holland, 1975; Goldberg, 1989) have been applied
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successfully by many authors to highly complex optimization problems in
different fields of science and engineering. In spite of their successes, both
algorithms suffer from some difficulties in convergence to the global optima.

Suppose that one is interested in minimizing a function H(x) over a given
space X. Throughout this subsection, H(x) is called the energy function in
terms of physics. Simulated annealing works by simulating a sequence of dis-
tributions specified by

fk(x) =
1

Zk
exp{−H(x)/Tk}, x ∈ X, k = 1, 2, . . . ,

where Tk is called the temperature, and T1 > T2 > · · · forms a decreasing
ladder. As discussed in Section 4.1, the simulation will get stuck at a local
minimum unless the temperature decreases at a rate of logarithm. However,
the CPU time required by this cooling schedule can be too long to be afford-
able for challenging problems.

The genetic algorithm tries to solve the minimization problem by mim-
icking the natural evolutionary process. A population of candidate solutions
(also known as individuals), generated at random, are tested and evaluated
for their energy values (also known as fitness values); the best of them are then
bred through mutation and crossover operations; the process is repeated over
many generations, until an individual of satisfactory performance is found.
Through the crossover operation, information distributed across the popula-
tion is effectively used in the minimization process. Schmitt (2001) shows that,
under certain conditions, the genetic algorithm can converge asymptotically
to the global minima at a logarithmic rate in analogy to simulated annealing.

As previously discussed, a remarkable feature of SAMC is that is self-
adjusting mechanism makes it immune to the local-trap problem. We now
consider applications of SAMC on optimization. Two modified versions of
SAMC, annealing SAMC (ASAMC) (Liang, 2007b) and annealing evolution-
ary SAMC (AESAMC) (Liang, 2009d), are discussed. The ASAMC algorithm
works in the same spirit as simulated annealing but with the sample space
instead of temperature shrinking with iterations. The AESAMC algorithm
represents a further improvement of annealing SAMC by incorporating some
crossover operators originally used by the genetic algorithm into the search
process. Under mild conditions, both ASAMC and AESAMC can converge
weakly toward a neighboring set of global minima in the space of energy.

7.6.3.1 Annealing SAMC

Like conventional MCMC algorithms, SAMC is able to find the global energy
minima if the run is long enough. However, due to the broadness of the sample
space, the process may be slow even when sampling has been biased to low
energy subregions. To accelerate the search process, Liang (2007b) proposed
to shrink the sample space over iterations.
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Suppose that the subregions E1, . . . , Em have been arranged in ascending
order by energy; that is, if i < j, then H(x) < H(y) for any x ∈ Ei and
y ∈ Ej . Let �(u) denote the index of the subregion that a sample x with
energy u belongs to. For example, if x ∈ Ej , then �(H(x)) = j. Let Xt denote
the sample space at iteration t. Annealing SAMC initiates its search in the
entire sample space X0 =

⋃m
i=1 Ei, and then iteratively searches in the set

Xt =
�(u∗

t +ℵ)⋃
i=1

Ei, t = 1, 2, . . . , (7.57)

where u∗
t denotes the best function value obtained by iteration t, and ℵ> 0

is a user specified parameter which determines the broadness of the sample
space at each iteration. Since the sample space shrinks iteration by iteration,
the algorithm is called annealing SAMC. Let Θt denote the state space of θt.
In summary, ASAMC consists of the following steps:

Annealing SAMC Algorithm

1. Initialization. Partition the sample space X into m disjoint subregions
E1, . . . , Em according to the objective function H(x); specify a desired
sampling distribution π; initialize x0 by a sample randomly drawn from
the sample space X, θ0 = (θ(1)

0 , . . . , θ
(m)
0 ) = (0, 0, . . . , 0),ℵ, and X0 =⋃m

i=1 Ei; and set the iteration number t = 0.

2. Sampling . Draw sample xt+1 by a single or few MH moves which admit
the following distribution as the invariant distribution,

fθt
(x) ∝

�(u∗
t +ℵ)∑

i=1

ψ(x)

exp{θ(i)
t }

I(x ∈ Ei), (7.58)

where I(x ∈ Ei) is the indicator function, ψ(x) = exp{−H(x)/τ}, and
τ is a user-specified parameter.

3. Working weight updating . Update the log-weight θt as follows:

θt+ 1
2

= θ
(i)
t + γt+1

[
I(xt+1 ∈ Ei)− πi], i = 1, . . . , �(u∗

t + ℵ),

where the gain factor sequence {γt} is subject to the condition (A1).
If θt+ 1

2
∈ Θ, set θt+1 = θt+ 1

2
; otherwise, set θt+1 = θt+ 1

2
+ c∗, where

c∗ = (c∗, . . . , c∗) and c∗ is chosen such that θt+ 1
2

+ c∗ ∈ Θ.

4. Termination. Check the termination condition, e.g., a fixed number of
iterations has been reached. Otherwise, set t→ t + 1 and go to step 2.
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Liang (2007b) shows that if the gain factor sequence satisfies condition
(A1) and the proposal distribution satisfies the minorisation condition,
that is,

sup
θ∈Θ

sup
x,y∈X

fθ(y)
q(x, y)

<∞, (7.59)

then ASAMC can converge weakly toward a neighboring set of the global
minima of H(x) in the space of energy, where fθ(y) is defined by

fθ(y) ∝
m∑

i=1

ψ(y)
exp(θ(i))

I(y ∈ Ei).

More precisely, we have the following theorem:

Theorem 7.6.3 Assume (A1) and (7.59) hold. Then, as t→∞, xt generated
by ASAMC converges in distribution to a random variable with the density
function

fθ∗(x) ∝
�(u∗+ℵ)∑

i=1

π′
iψ(x)∫

Ei
ψ(x)dx

I(x ∈ Ei), (7.60)

where π′
i = πi + (1−∑

j∈S πj)/|S|,S = {k : Ek �= ∅, k = 1, . . . , �(u∗ +ℵ)}, u∗

is the global minimum value of H(x), and |S| is the cardinality of S.
The proof of this theorem can be found in Section 7.7.1.4. In practice,

the proposals satisfying (7.59) can be easily designed for both discrete and
continuum systems. For example, if X is compact, a sufficient design for the
minorisation condition is to choose q(x, y) >ε0 for all x, y ∈ X, where ε0 is
any positive number.

Learning Neural Networks for a Two-Spiral Problem. Over the
past several decades, feed-forward neural networks, otherwise known as
multiple-layer perceptrons (MLPs), have achieved increased popularity
among scientists, engineers, and other professionals as tools for knowledge
representation. Given a group of connection weights x = (α, β, γ), the MLP
approximator can be written as

f̂(zk|x) = ϕo

α0 +
p∑

j=1

γjzkj +
M∑
i=1

αiϕh

(
βi0 +

p∑
j=1

βijzkj

), (7.61)

where M is the number of hidden units, p is the number of input units,
zk = (zk1, . . . , zkp) is the kth input pattern, and αi, βij and γj are the weights



248 STOCHASTIC APPROXIMATION MONTE CARLO

on the connections from the ith hidden unit to the output unit, from the jth
input unit to the ith hidden unit, and from the jth input unit to the output
unit, respectively. The connections from input units to the output unit are
also called the shortcut connections. In (7.61), the bias unit is treated as a
special input unit with a constant input, say 1. The functions ϕh(·) and ϕo(·)
are called the activation functions of the hidden units and the output unit,
respectively. Popular choices of ϕh(·) include the sigmoid function and the
hyperbolic tangent function. The former is defined as ϕh(z) = 1/(1 + e−z)
and the latter ϕh(z) = tanh(z). The choice of ϕo(·) is problem-dependent. For
regression problems, ϕo(·) is usually set to the linear function ϕo(z) = z; and
for classification problems, ϕo(·) is usually set to the sigmoid function. The
problem of MLP training is to minimize the objective function

H(x) =
N∑

k=1

(
yk − f̂(zk|x)

)2

+ λ

 M∑
i=0

α2
i +

M∑
i=1

p∑
j=0

β2
ij + +

p∑
j=1

γ2
j

 , (7.62)

by choosing appropriate connection weights, where yk denotes the target
output corresponding to the input pattern zk, the second term is the reg-
ularization term, and λ is the regularization parameter. The regularization
term is often chosen as the sum of squares of the connection weights, which
stabilizes the generalization performance of the MLP. Henceforth, H(x) will
be called the energy function of the MLP.

As known by many researchers, the energy landscape of the MLP is rugged.
The gradient-based training algorithms, such as back-propagation (Rumelhart
et al ., 1986) and the BFGS algorithm (Broyden, 1970; Fletcher, 1970; Gold-
farb, 1970; Shanno, 1970), tend to converge to a local energy minimum near
the starting point. Consequently, the information contained in the training
data may not be learned sufficiently. To avoid the local-trap problem, simu-
lated annealing (SA) (Kirkpatrick et al ., 1983) has been employed to train
neural networks by many authors, including Amato et al . (1991), and Owen
and Abunawass (1993), among others, who show that for complex learning
tasks, SA has a better chance to converge to a global energy minimum than
have gradient-based algorithms.

Liang (2007b) compares efficiency of ASAMC, SAMC and simulated an-
nealing (SA) in training MLPs using a two-spiral problem. As depicted by
Figure 7.11, the two-spiral problem is to learn a mapping that distinguishes
between points on two intertwined spirals. To have a better calibration of the
efficiency of these algorithms, Liang (2007b) drops the regularization term
in the energy function (7.62) such that it a global minimum value known as
0. The regularization term is usually included when one is concerned about
generalization errors. To compare with the results published in the literature,
both ϕh(z) and ϕo(z) are set to the sigmoid function.

It is known that the two-spiral problem can be solved using MLPs with
multiple hidden layers: Lang and Witbrock (1989) use a 2-5-5-5-1 MLP
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Figure 7.11 Classification maps learned by ASAMC with a MLP of 30 hidden
units. The black, and white points show the training data for two different spi-
rals. (a) Classification map learned in one run. (b) Classification map averaged
over 20 runs. This figure demonstrates the success of ASAMC in minimization
of complex functions (Liang, 2007b).

with shortcut connections (138 trainable connection weights); Fahlman and
Lebiere (1990) use cascade-correlation networks with 12–19 hidden units,
the smallest network having 114 connections; and Wong and Liang (1997)
use a 2-14-4-1 MLP without shortcut connections. It is generally believed
that this problem is so very difficult for the standard one-hidden-layer MLP,
because it requires the MLP to learn a highly nonlinear separation of the
input space. Baum and Lang (1991) report that a solution can be found
using a 2-50-1 back-propagation MLP, but only the MLP has been initialized
with queries.

For the two-spiral problem, Liang (2007b) trains a 2-30-1 MLP without
shortcut connections, which consists of a total of 121 connections. ASAMC
was run 20 times independently, and each run consisted of a maximum of 107

iterations. The simulation stopped early if a solution with H(x) < 0.2 was
found. Figure 7.11(a) shows the classification map learned in one run, which
indicates that a MLP with 30 hidden units is able to separate the two spirals.
Figure 7.11(b) shows the average classification map over the 20 runs by the
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Table 7.7 Comparison of ASAMC, SAMC, SA and BFGS for the two-spiral
example (Liang, 2007b).

algorithm mean SD min max prop iteration(×106) time

ASAMC 0.620 0.191 0.187 3.23 15 7.07 94m
SAMC 2.727 0.208 1.092 4.089 0 10.0 132m
SA-1 17.485 0.706 9.02 22.06 0 10.0 123m
SA-2 6.433 0.450 3.03 11.02 0 10.0 123m
BFGS 15.50 0.899 10.00 24.00 0 – 3s

Let zi denote the minimum energy value obtained in the ith run for i = 1, . . . , 20, ‘Mean’
is the average of zi, ‘SD’ is the standard deviation of ‘mean’, ‘min’ = min20

i=1 zi, ‘max’ =
max20

i=1 zi, ‘Prop’ = #{i : zi ≤ 0.21}, ‘Iteration’ is the average number of iterations

performed in each run, and ‘Time’ is the average CPU time cost by each run. SA-1
employs the linear cooling schedule. SA-2 employs the geometric cooling schedule.

ensemble averaging approach (Perrone, 1993). Each solution in the ensemble
was weighted equally. Ensemble averaging smoothes the classification bound-
ary and improves the generalization performance of the MLP.

For comparison, SAMC, SA and BFGS were applied to this example. Both
SAMC and SA were run 20 times, and each run consisted of 107 iterations.
BFGS was also run 20 times, but it converged within 1000 iterations in each
run. The numerical results are summarized in Table 7.7, which indicate that
ASAMC has made a dramatic improvement over SAMC, SA and BFGS for
this example. ASAMC found perfect solutions in 15 out of 20 runs with an
average of 7.07 × 106 iterations, while SAMC, SA and BFGS failed to find
perfect solutions in all runs. Liang (2007b) reports that the MLP structure
considered above is not minimal for this problem; ASAMC can find perfect
solutions to this problem using a MLP with 27 hidden units (109 connections).
See Liang (2008b) for more discussion on the use of SAMC-based algorithms
for MLP training.

7.6.3.2 Annealing Evolutionary Stochastic Approximation
Monte Carlo

Like the genetic algorithm, AESAMC works on a population of samples. Let
x = (x1, . . . , xn) denote the population, where n is the population size, and
xi = (xi1, . . . , xid) is a d-vector and is called an individual or chromosome in
terms of genetic algorithms. Clearly, the minimum of H(x) can be obtained by
minimizing the function H(x) =

∑n
i=1 H(xi). An unnormalized Boltzmann

density can be defined for the population as follows,

ψ(x) = exp{−H(x)/τ}, x ∈ Xn, (7.63)
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where Xn = X × · · · × X is a product sample space. The sample space can
be partitioned according to the function H(x) into m subregions: E1 = {x :
H(x) ≤ u1}, E2 = {x : u1 < H(x) ≤ u2}, . . . ,Em−1 = {x : um−2 < H(x) ≤
um−1}, and Em = {x : H(x) >um−1}, where u1 < u2 < . . . < um−1 are m−1
known real numbers. Note that the sample space is not necessarily partitioned
according to the function H(x). For example, it can also be partitioned ac-
cording to λ(x) = min{H(x1), . . . , H(xn)}. The population can then evolve
under the framework of ASAMC with an appropriate proposal distribution for
the MH moves. At iteration t, the MH moves admit the following distribution
as the invariant distribution,

fθt
(x) ∝

�(u∗
t +ℵ)∑

i=1

ψ(x)

exp{θ(i)
t }

I(x ∈ Ei), x ∈ Xn
t , (7.64)

where u∗
t denotes the best value of H(x) obtained by iteration t. As previously

discussed, {θt} can be kept in a compact space in simulations due to the use
of a fixed sample space partition.

Since, in AESAMC, the state of the MH chain has been augmented to a
population, the crossover operators used in the genetic algorithm can be em-
ployed to accelerate the evolution of the population. However, to satisfy the
Markov chain reversibility condition, these operators need to be modified ap-
propriately. This can be done in a similar way to that described in Section 5.5
for evolutionary Monte Carlo (Liang and Wong, 2000, 2001a). See Liang
(2009d) for the details. As demonstrated by Liang and Wong (2000, 2001a),
Goswami and Liu (2007), and Jasra et al . (2007), incorporating genetic-type
moves into Markov chain Monte Carlo can often improve ergodicity of the
simulation. Under mild conditions, Liang (2009d) shows that AESAMC can
converge weakly toward a neighboring set of the global minima of H(x) in the
space of energy; that is, Theorem 7.6.3 also holds for AESAMC.

Although AESAMC is proposed as an optimization technique, it can also
be used as a dynamic importance sampling algorithm as SAMC by keep-
ing the sample space unshrunken over iterations. AESAMC has provided a
general framework on how to incorporate crossover operations into dynam-
ically weighted MCMC simulations, for example, dynamic weighting (Wong
and Liang, 1997; Liu et al ., 2001; Liang, 2002b) and population Monte Carlo
(Cappé et al ., 2004). This framework is potentially more useful than the
MCMC framework provided by evolutionary Monte Carlo. Under the MCMC
framework, the crossover operation has often a low acceptance rate, where
the MH rule will typically reject an unbalanced pair of offspring for which
one has a high density value and the other low. In AESAMC, this difficulty
has been much alleviated due to its self-adjusting mechanism.

Multimodal Optimization Problems. Liang (2009d) compares
AESAMC with SA, ASAMC and other metaheuristics, including the



252 STOCHASTIC APPROXIMATION MONTE CARLO

genetic algorithm (Genocop III) (Michalewicz and Nazhiyath, 1995), scatter
search (Laguna and Mart́ı , 2005), directed tabu search (DTS) (Hedar and
Fukushima, 2006), and continuous GRASP (C-GRASP) (Hirsch et al ., 2006;
Hirsch et al ., 2007), using a set of benchmark multimodal test functions
whose global minima are known. These test functions are given in the
Appendix 7A, and are also available in Laguna and Mart́ı (2005), Hedar and
Fukushima (2006) and Hirsch et al . (2006).

Genocop III is an implementation of the genetic algorithm that is cus-
tomized for solving nonlinear optimization problems with continuous and
bounded variables. The scatter search algorithm is an evolutionary algorithm
that, unlike the genetic algorithm, operates on a small population of solu-
tions and makes only limited use of randomization as a proxy for diversifi-
cation when searching for a globally optimal solution. The DTS algorithm

Table 7.8 Average optimality gap values over the 40 test functions (Liang,
2009d).

Algorithm 5000a 10000a 20000a 50000a

Genocop IIIb 636.37 399.52 320.84 313.34
Scatter Searchb 4.96 3.60 3.52 3.46
C-GRASPc 6.20 4.73 3.92 3.02
DTSd 4.22 1.80 1.70 1.29

ASAMCe(ℵ = 10) 4.11(0.11) 2.55(0.08) 1.76(0.08) 1.05(0.06)
ASAMCe(ℵ = 5) 3.42(0.09) 2.36(0.07) 1.51(0.06) 0.94(0.03)
ASAMCe(ℵ = 1) 3.03(0.11) 2.02(0.09) 1.39(0.07) 0.95(0.06)

SAe(thigh = 20) 3.58(0.11) 2.59(0.08) 1.91(0.06) 1.16(0.04)
SAe(thigh = 5) 3.05(0.11) 1.80(0.09) 1.17(0.06) 0.71(0.03)
SAe(thigh = 2) 2.99(0.12) 1.89(0.09) 1.12(0.06) 0.69(0.03)
SAe(thigh = 1) 2.36(0.11) 1.55(0.08) 1.06(0.06) 0.67(0.03)
SAe(thigh = 0.5) 2.45(0.11) 1.39(0.07) 1.06(0.07) 0.75(0.06)

AESAMCf (ℵ = 10) 1.59(0.08) 0.82(0.02) 0.68(0.01) 0.50(0.01)
AESAMCf (ℵ = 1) 1.93(0.27) 0.79(0.01) 0.66(0.02) 0.49(0.01)

aThe number of function evaluations. bThe results are from Laguna and Mart́ı (2005).
cThe results are from Hirsch et al. (2006). dThe results are from Hedar and Fukushima

(2006). eThe number in the parentheses denotes the standard deviation of the average,

and it is calculated as
√∑40

i=1 s2
i /ni/40 with s2

i being the variance of the best function

values produced by the algorithm in ni runs (ni = 500 for the test functions R10 and R20,
and 5 for all others). f The number in the parentheses denotes the standard deviation of
the average. It is calculated as for SA and ASAMC, but with ni = 5 for all test functions.
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is a hybrid of the tabu search algorithm (Glover and Laguna, 1997) and a
direct search algorithm. The role of direct search is to stabilize the search,
especially in the vicinity of a local optimum; that is, to generate neighbor-
hood trial moves instead of using completely blind random search. The search
strategy employed by the DTS algorithm is an adaptive pattern search. The
C-GRASP algorithm is a multistart searching algorithm for continuous opti-
mization problems subject to box constraints, where the starting solution for
local improvement is constructed in a greedy randomized fashion. The numer-
ical results reported in Hedar and Fukushima (2006) and Hirsch et al . (2006)
indicate that the DTS, C-GRASP, and scatter search algorithms represent
very advanced metaheuristics in the current optimization community.

All of the AESAMC, ASAMC and SA algorithms fall into the class of
stochastic optimization algorithms. To account for the variability of their
results, each algorithm was run 5 times for each test function, and the average
of the best function values produced in each run were reported as its output.
Table 7.8 reports the average optimality gap over the 40 test functions, where
the optimality gap for a test function is defined as the absolute difference
between the global minimum value of the function and the output value by the
algorithm. The comparison indicates that AESAMC significantly outperforms
Genocop III, scatter search, C-GRASP, DTS, ASAMC and SA for these test
functions. It is remarkable that the average optimality gaps produced by
AESAMC with 20 000 function evaluations have been comparable with or
better than those produced by any other algorithms (given in Table 7.8) with
50 000 function evaluations.

Figure 7.12 compares the optimality gaps produced by AESAMC,
ASAMC, and SA for each of the 40 test functions. It indicates that AESAMC
produced smaller optimality gap values than ASAMC and SA for almost all
test functions, especially for those of high dimension.

7.7 Theory of Stochastic Approximation
Monte Carlo

7.7.1 Convergence

This section is organized as follows. Section 7.7.1.1 describes a general stochas-
tic approximation MCMC (SAMCMC) algorithm, which includes the SAMC,
SSAMC, CSAMC, ASAMC and AESAMC as special instances, and gives
the conditions for its convergence. Section 7.7.1.2 establishes the conver-
gence of the general SAMCMC algorithm. Section 7.7.1.3 applies the conver-
gence results for the general SAMCMC algorithm and obtain the convergence
of SSAMC. Section 7.7.1.4 discusses the convergence of SAMC, CSAMC,
ASAMC and AESAMC.
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Figure 7.12 Comparison of optimality gap values produced by AESAMC
(with ℵ = 1), ASAMC and SA with 50 000 function evaluations for each of
the 40 test functions. (a) Difference of the optimality gap values produced by
ASAMC and AESAMC (with ℵ = 1). (b) Difference of the optimality gap
values produced by SA and AESAMC (with ℵ = 1).

7.7.1.1 Convergence of a general SAMCMC Algorithm

Consider the following stochastic approximation MCMC algorithm:

1. Draw samples x
(1)
t+1, . . . , x

(κ)
t+1 through a MH kernel which admits fθt

(x) as
its invariant distribution.

2. Set

θ∗ = θt + γt+1H(θt, xt+1) + γ1+τ
t+1 η(xt+1), (7.65)

where xt+1 = (x(1)
t+1, . . . , x

(κ)
t+1), γt+1 is the gain factor, τ > 0, and

η(xt+1) is bounded, i.e., there exists a constant ∆ such that
‖η(xt+1)‖ ≤ ∆ for all t ≥ 0. If θ∗ ∈ Θ, set θt+1 = θ∗; otherwise, set
θt+1 = θ∗ + c∗, where c∗ = (c∗, . . . , c∗) can be any vector satisfying
the condition θ∗ + c∗ ∈ Θ.

Here, we assume that Θ is compact. As previously explained, Θ can be
naturally restricted to a compact set for SAMC and all its variants described in
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Section 7.6. Otherwise, a varying truncation version of the SAMCMC algorithm
can be considered, as in Liang (2009e). Let h(θ) =

∫
Xk H(θ, x)fθ(dx), and

ξt+1 = H(θt, xt+1)−h(θt)+γτ
t+1η(xt+1), which is called the observation noise.

Then, 7.65 can be expressed in a more general form as

θt+1 = θt + γt+1h(θt) + γt+1ξt+1. (7.66)

The convergence of the general SAMCMC algorithm can be established
under the following conditions.

Conditions on the Step-Sizes

(B1) The gain factor sequence {γt}∞t=0 is non-increasing, positive and satisfies
the condition 7.36; that is,

(i) lim
t→∞ |γ

−1
t − γ−1

t+1| <∞, (ii)
∞∑

t=1

γt =∞, (iii)
∞∑

t=1

γζ
t <∞,

for any ζ > 1.

Drift Conditions on the Transition Kernel Pθ. We first give some def-
initions on general drift and continuity conditions, and then give the specific
drift and continuity conditions for SAMCMC on a product sample space.

Assume that a transition kernel P is ψ-irreducible (following the standard
notation of Meyn and Tweedie, 1993), aperiodic, and has a stationary distri-
bution on a sample space denoted by X. A set C ⊂ X is said to be small if there
exists a probability measure ν on X, a positive integer l and δ > 0 such that

P l
θ(x, A) ≥ δν(A), ∀x ∈ C, ∀A ∈ BX ,

where BX is the Borel set of X. A function V : X → [1,∞) is said to be a
drift function outside C if there exist constants λ < 1 and b such that

PθV(x) ≤ λV(x) + bI(x ∈ C), ∀x ∈ X,

where PθV(x) =
∫
X Pθ(x, y)V(y)dy. For g : X → Rd, define the norm

‖g‖V = sup
x∈X

|g(x)|
V(x)

,

and define the set LV = {g : X → Rd, ‖g‖V < ∞}.
For the general SAMCMC algorithm, the drift and continuity conditions

can be specified as follows. Let P θ be the joint transition kernel for generating
the samples x = (x(1), . . . , x(κ)) at each iteration by ignoring the subscript t,
let Xκ = X × · · · × X be the product sample space, let A = A1 × · · · × Aκ

be a measurable rectangle in Xκ for which Ai ∈ BX for i = 1, . . . , κ, and let
BXκ = BX × · · · × BX be the σ-algebra generated by measurable rectangles.
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(B2) The transition kernel P θ is ψ-irreducible and aperiodic for any θ ∈ Θ.
There exist a function V : Xκ → [1,∞) and constants α ≥ 2 and
β ∈ (0, 1] such that,

(i) For any θ ∈ Θ, there exist a set C ⊂ Xκ, an integer l, constants
0 < λ < 1, b, ς, δ > 0 and a probability measure ν such that:

• P l
θV

α(x) ≤ λVα(x) + bI(x ∈ C), ∀x ∈ Xκ. (7.67)
• P θV

α(x) ≤ ςVα(x), ∀x ∈ Xκ. (7.68)

• P l
θ(x, A) ≥ δν(A), ∀x ∈ C, ∀A ∈ BXκ . (7.69)

(ii) There exists a constant c1 such that for all x ∈ Xκ and θ, θ′ ∈ Θ,

• ‖H(θ, x)‖V ≤ c1. (7.70)

• ‖H(θ, x)−H(θ′, x)‖V ≤ c1‖θ− θ′‖β . (7.71)

(iii) There exists a constant c2 such that for all θ, θ′ ∈ Θ,

• ‖P θg− P θ′g‖V ≤ c2‖g‖V |θ− θ′|β , ∀g ∈ LV . (7.72)

• ‖P θg− P θ′g‖V α ≤ c2‖g‖V α |θ− θ′|β , ∀g ∈ LV α . (7.73)

Assumption (B2)-(i) is classical in literature of Markov chain. It implies
the existence of a stationary distribution fθ(x) for any θ ∈ Θ and Vα-uniform
ergodicity (Andrieu et al ., 2005). Assumption (B2)-(ii) gives conditions on
the bound of H(θ, x). For general SAMCMC algorithms, this is a critical
condition, which directly leads to boundedness of the observation noise. For
SAMC and its variants, the drift function can be simply set as V(x) = 1, as
H(θ, x) is a bounded function.

Lyapunov condition on h(θ) Let L = {θ ∈ Θ : h(θ) = 0}.
(B3) The mean field function h : Θ → Rd is continuous, and there exists a

continuously differentiable function v : Θ → [0,∞) such that v̇(θ) =
∇T v(θ)h(θ) < 0, ∀θ ∈ Lc and supθ∈Q v̇(θ) < 0 for any compact set
Q ⊂ Lc.

This condition assumes the existence of a global Lyapunov function v for
the mean field h. If h is a gradient field, that is, h = −∇J for some lower
bounded real-valued and differentiable function J(θ), then v can be set to J,
provided that J is continuously differentiable. This is typical for stochastic
optimization problems, for example, machine learning (Tadić, 1997), where
a continuously differentiable objective function J(θ) is minimized. For
SAMC and its variants, the Lyapunov function can be chosen accordingly as
shown below.
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A main convergence result. Let Px0,θ0 denote the probability measure
of the Markov chain {(xt, θt)}, started in (x0, θ0), and implicitly defined by
the sequences {γt}. Also define D(z, A) = infz′∈A ‖z − z′‖.
Theorem 7.7.1 Assume Θ is compact, (B1), (B2) and (B3) hold, and
supx∈Xκ V(x) < ∞. Let the sequence {θn} be defined by 7.65. Then for all
(x0, θ0) ∈ Xκ ×Θ,

lim
t→∞D(θt,L) = 0, Px0,θ0 − a.e.

In this theorem, Θ is assumed to be compact and the drift function V (x)
is assumed to be uniformly bounded. We note that the former can be relaxed
to Rd and the latter can be weakened to supx∈Xκ

0
V(x) < ∞ for a subset

X0 ⊂ X, if the SAMCMC algorithm adopts a varying truncation scheme as in
Liang (2009e). Also, if the condition is weakened to

∑∞
t=1 γ1+ζ

t V 2(xt) < ∞,
where ζ is defined in (B′

1), the convergence results presented in this section
still hold.

7.7.1.2 Proof of Theorem 7.7.1

To prove this theorem, we first introduce some lemmas. Lemma 7.7.1 is a
partial restatement of Proposition 6.1 of Andrieu et al . (2005).

Lemma 7.7.1 Assume Θ is compact and the drift condition (B2) holds. Then
the following results hold.

(C1) For any θ ∈ Θ, the Markov kernel P θ has a single stationary distribu-
tion fθ. In addition H : Θ × Xκ is measurable for all θ ∈ Θ, h(θ) =∫
Xκ H(θ, x)fθ(dx) <∞.

(C2) For any θ ∈ Θ, the Poisson equation u(θ, x)−P θu(θ, x) = H(θ, x)−h(θ)
has a solution u(θ, x), where P θu(θ, x) =

∫
Xκ u(θ, x′)P θ(x, x′)dx′.

There exist a function V : Xκ → [1,∞) such that the set {x ∈ Xκ :
V(x) <∞} �= ∅, and for any constant β ∈ (0, 1],

(i) sup
θ∈Θ

‖H(θ, x)‖V <∞,

(ii) sup
θ∈Θ

(‖u(θ, x)‖V + ‖Pθu(θ, x)‖V ) <∞,

(iii) sup
(θ,θ′)∈Θ×Θ

‖θ− θ′‖−β
(
‖u(θ, x)− u(θ′, x)‖V

+ ‖Pθu(θ, x)− Pθ′u(θ′, x)‖V

)
<∞.

(7.74)

Tadić studied the convergence for a stochastic approximation MCMC al-
gorithm under different conditions from those given in Andrieu et al . (2005);
the following lemma corresponds to Theorem 4.1 and Lemma 2.2 of Tadić
(1997). The proof we give below is similar to Tadić’s except for some neces-
sary changes for including the higher order noise term in ξt.
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Lemma 7.7.2 Assume Θ is compact, (B1) and (B2) hold, and
supx∈Xκ V (x) <∞. Then the following results hold:

(D1) There exist Rd-valued random processes {εt}t≥0, {ε′t}t≥0 and {ε′′t }t≥0 de-
fined on a probability space (Ω,F,P) such that

γt+1ξt+1 = εt+1 + ε′t+1 + ε′′t+1 − ε′′t , t ≥ 0. (7.75)

(D2) The series
∑∞

t=0 ‖ε′t‖,
∑∞

t=0 ‖ε′′t ‖2 and
∑∞

t=0 ‖εt+1‖2 all converge a.s.
and

E(εt+1|Ft) = 0, a.s., n ≥ 0, (7.76)

where {Ft}t≥0 is a family of σ-algebras of F satisfying σ{θ0} ⊆ F0 and
σ{εt, ε

′
t, ε

′′
t } ⊆ Ft ⊆ Ft+1, t ≥ 0.

(D3) Let Rt = R′
t + R′′

t , t ≥ 1, where R′
t = γt+1∇T v(θt)ξt+1, and

R′′
t+1 =

∫ 1

0

[∇v(θt + s(θt+1 − θt))−∇v(θt)
]T (θt+1 − θt)ds.

Then
∑∞

t=1 γtξt and
∑∞

t=1 Rt converge a.s.

Proof : The results (D1), (D2) and (D3) are proved as follows:

• (D1) The condition (C2) implies that there exists a constant c1 ∈ R+

such that

‖θt+1 − θt‖ = ‖γt+1H(θt, xt+1) + γ1+τ
t+1 η(xt+1)‖ ≤ c1γt+1[V(xt+1) + ∆].

The condition (B1) yields γt+1/γt = O(1) and |γt+1 − γt| = O(γtγt+1)
for t→∞. Consequently, there exists a constant c2 ∈ R+ such that

γt+1 ≤ c2γt, |γt+1 − γt| ≤ c2γ
2
t , t ≥ 0.

Let ε0 = ε′0 = 0, and

εt+1 = γt+1

[
u(θt, xt+1)− P θt

u(θt, xt)
]
,

ε′t+1 = γt+1

[
P θt+1u(θt+1, xt+1)− P θt

u(θt, xt+1)
]

+ (γt+2 − γt+1)P θt+1u(θt+1, xt+1) + γ1+τ
t+1 η(xt+1),

ε′′t = −γt+1P θt
u(θt, xt).

It is easy to verify that (7.75) is satisfied.

• (D2) Since σ(θt) ⊆ Ft, we have

E(u(θt, xt+1)|Ft) = P θt
u(θt, xt),
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which concludes (7.76). The condition (C2) implies that there exist
constants c3, c4, c5, c6, c7, c8 ∈ R+ and τ′ = min(β, τ) > 0 such that

‖εt+1‖2 ≤ 2c3γ
2
t+1V

2(xt),
‖ε′t+1‖ ≤ c4γt+1V(xt+1)‖θt+1 − θt‖β + c5γ

2
t+1V(xt+1) + c6γ

1+τ
t+1 ∆

≤ c7γ
1+τ ′
t+1

[
V(xt+1) + ∆)

]
,

‖ε′′t+1‖2 ≤ c8γ
2
t+1V

2(xt+1),

It follows from condition (B1) and the condition supx V(x) < ∞ that
the series

∑∞
t=0 ‖εt+1‖2,

∑∞
t=0 ‖ε′t‖, and

∑∞
t=0 ‖ε′′t ‖2 all converge.

• (D3) Let M = supθ∈Θ max{‖h(θ)‖, ‖∇v(θ)‖}. By (C2)-(i), we have
supθ∈Θ ‖h(θ)‖ < ∞. By the compactness of Θ, supθ∈Θ ‖∇v(θ)‖ < ∞,
where v(θ) is defined in (B3). Therefore, we have M <∞. Let L be the
Lipschitz constant of ∇v(·). Since σ{θt} ⊂ Ft, E(∇T v(θt)εt+1|Ft) = 0
by (D2). In addition,

∞∑
t=0

E
(|∇T v(θt)εt+1|2

) ≤M2
∞∑

t=0

E
(‖εt+1‖2

)
<∞.

It follows from the martingale convergence theorem (Hall and Heyde,
1980; Theorem 2.15) that both

∑∞
t=0 εt+1 and

∑∞
t=0∇T v(θt)εt+1 con-

verge almost surely. Since

∞∑
t=0

|∇T v(θt)ε′t+1| ≤ M

∞∑
t=1

‖ε′t‖,
∞∑

t=1

γ2
t‖ξt‖2 ≤ 4

∞∑
t=1

‖εt‖2 + 4
∞∑

t=1

‖ε′t‖2 + 8
∞∑

t=0

‖ε′′t ‖2,

it follows from (D2) that both
∑∞

t=0 |∇T v(θt)ε′t+1| and
∑∞

t=1 γ2
t‖ξt‖2

converge. In addition,

‖R′′
t+1‖ ≤ L‖θt+1 − θt‖2 = L‖γt+1h(θt) + γt+1ξt+1‖2

≤ 2L
(
M2γ2

t+1 + γ2
t+1‖ξt+1‖2

)
,

and ∣∣∣(∇v(θt+1)−∇v(θt))
T ε′′t+1

∣∣∣ ≤ L‖θt+1 − θt‖‖ε′′t+1‖,
for all t ≥ 0. Consequently,

∞∑
t=1

|R′′
t | ≤ 2LM 2

∞∑
t=1

γ2
t + 2L

∞∑
t=1

γ2
t‖ξt‖2 <∞,
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and
∞∑

t=0

∣∣∣(v(θt+1)− v(θt))
T

ε′′t+1

∣∣∣
≤

(
2L2M2

∞∑
t=1

γ2
t + 2L2

∞∑
t=1

γ2
t‖ξt‖2

)1/2 ( ∞∑
t=1

‖ε′′t ‖2
)1/2

<∞.

Since,

n∑
t=1

γtξt =
n∑

t=1

εt +
n∑

t=1

ε′t + ε′′n − ε′′0 ,

n∑
t=0

R′
t+1 =

n∑
t=0

∇T v(θt)εt+1 +
n∑

t=0

∇T v(θt)ε′t+1 +∇T v(θn+1)ε′′n+1

−
n∑

t=0

(∇v(θt+1 −∇v(θt))
T ε′′t+1 −∇T v(θ0)ε′′0 ,

it is obvious that
∑∞

t=1 γtξt and
∑∞

t=1 Rt converge almost surely.

The proof for Lemma 7.7.2 is completed.

Theorem 7.7.1 can be proved in a similar way to Theorem 2.2 of Tadić
(1997). To make the book self-contained, we rewrite the proof below.

Proof : Let M = supθ∈Θ max{‖h(θ)‖, |v(θ)|} and Vε = {θ : v(θ) ≤ ε}. Follow-
ing the compactness of Θ and the condition supx V(x) <∞, we have M <∞.
Applying Taylor’s expansion formula (Folland, 1990), we have

v(θt+1) = v(θt) + γn+1v̇(θt+1) + Rt+1, t ≥ 0,

which implies that

t∑
i=0

γi+1v̇(θi) = v(θt+1)− v(θ0)−
t∑

i=0

Ri+1 ≥ −2M−
t∑

i=0

Ri+1.

Since
∑t

i=0 Ri+1 converges (owing to Lemma 7.7.2),
∑t

i=0 γi+1v̇(θi) also con-
verges. Furthermore,

v(θt) = v(θ0) +
t−1∑
i=0

γi+1v̇(θi) +
t−1∑
i=0

Ri+1, t ≥ 0,

{v(θt)}t≥0 also converges. On the other hand, conditions (B1) and (B2) imply
limt→∞ d(θt,L) = 0. Otherwise, there exists ε> 0 and n0 such that d(θt,L) ≥
ε, t ≥ n0; as

∑∞
t=1 γt =∞ and p = sup{v̇(θ) : θ ∈ Vc

ε} < 0, it is obtained that∑∞
t=n0

γt+1v̇(θt) ≤ p
∑∞

t=1 γt+1 = −∞.
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Suppose that limt→∞ d(θt,L) > 0. Then, there exists ε> 0 such that limt→∞
d(θt,L) ≥ 2ε. Let t0 = inf{t ≥ 0 : d(θt,L) ≥ 2ε}, while t′k = inf{t ≥ tk :
d(θt,L) ≤ ε} and tk+1 = inf{t ≥ t′k : d(θt,L) ≥ 2ε}, k ≥ 0. Obviously,
tk < tk′ < tk+1, k ≥ 0, and

d(θtk
,L) ≥ 2ε, d(θt′k ,L) ≤ ε, and d(θt,L) ≥ ε, tk ≤ t < t′k, k ≥ 0.

Let q = sup{v̇(θ) : θ ∈ Vc
ε}. Then

q

∞∑
k=0

t′k−1∑
i=tk

γi+1 ≥
∞∑

k=0

t′k−1∑
i=tk

γi+1v̇(θi) ≥
∞∑

t=0

γt+1v̇(θt) >−∞.

Therefore,
∑∞

k=0

∑t′k−1
i=tk

γi+1 <∞, and consequently, limk→∞
∑t′k−1

i=tk
γi+1 = 0.

Since
∑∞

t=1 γtξt converges (owing to Lemma 7.7.2), we have

ε ≤ ‖θt′k − θtk
‖ ≤M

t′k−1∑
i=tk

γi+1 +

∥∥∥∥∥∥
t′k−1∑
i=tk

γi+1ξi+1

∥∥∥∥∥∥ −→ 0,

as k → ∞. This contradicts with our assumption ε> 0. Hence, limt→∞
d(θt,L) > 0 does not hold. Therefore, limt→∞ d(θt,L) = 0 almost surely.

7.7.1.3 Convergence of smoothing SAMC

Consider the smoothing SAMC algorithm described in Section 7.6.1. With-
out loss of generality, we assume that all subregions are unempty. For the
empty subregions, the convergence (7.42) is trivial. Thus, Θ can be naturally
restricted to a compact set in the proof.

Let et = (e(1)
t , . . . , e

(m)
t ), where e

(i)
t =

∑κ
j=1 I(x(j)

t ∈ Ei). Since the kernel

used in (7.38) has a bounded support, p̂
(i)
t − e

(i)
t /κ can be rewritten as

p̂
(i)
t − e

(i)
t /κ =

∑min{m,i+k0}
l=max{1,i−k0} W

(
Λl

mht

)(
e
(i+l)
t

κ − e
(i)
t

κ

)
∑min{m,i+k0}

l=max{1,i−k0} W
(

Λl
mht

) , (7.77)

where k0 =
[

Cmht

Λ

]
, and [z] denotes the maximum integer less than z. By

noting the inequality −1 ≤ etj

κ − eti

κ ≤ 1, we have |p̂(i)
t − e

(i)
t /κ| ≤ 2k0, which

is true even when k0 = 0. Thus, there exists a bounded function −2Cm/Λ ≤
η∗i (et) ≤ 2Cm/Λ such that

p̂
(i)
t − e

(i)
t /κ = htη

∗
i (et). (7.78)

Since ht is chosen in 7.40 as a power function of γt, SSAMC falls into the class
of stochastic approximation MCMC algorithms described in Section 7.7.1.2
by letting η(xt) = (η∗1(et), . . . , η∗m(et)), and Theorem 7.6.1 can be proved by
verifying that SSAMC satisfies the conditions (B1) to (B3):
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• Condition (B1). This condition can be satisfied by choosing an appro-
priate gain factor sequence, such as the one specified in (7.37).

• Condition (B2). Let xt+1 = (x(1)
t+1, . . . , x

(κ)
t+1), which can be regarded

as a sample produced by a Markov chain on the product space Xκ =
X × · · · × X with the kernel

P θt
(x, y) = Pθt

(x(κ), y(1))Pθt
(y(1), y(2)) · · ·Pθt

(y(κ−1), y(κ)),

where Pθt
(x, y) denotes the one-step MH kernel, and x(κ) denotes the

last sample generated at the previous iteration. To simplify notations,
in what follows we will drop the subscript t, denoting xt by x and
θt = (θ(1)

t , . . . , θ
(m)
t ) by θ = (θ(1), . . . , θ(m)).

Roberts and Tweedie (1996; Theorem 2.2) show that if the target dis-
tribution is bounded away from 0 and ∞ on every compact set of its
support X, then the MH chain with a proposal distribution satisfy-
ing the local positive condition is irreducible and aperiodic, and every
nonempty compact set is small. Following from this result, Pθ(x, y) is ir-
reducible and aperiodic, and thus P θ(x, y) is irreducible and aperiodic.

Since X is compact, Roberts and Tweedie’s result implies that X is
a small set and the minorisation condition holds on X for the kernel
Pθ(x, y); i.e., there exists an integer l′, a constant δ, and a probability
measure ν′(·) such that

P l′
θ (x, A) ≥ δν ′(A), ∀x ∈ X, ∀A ∈ BX .

Following from Rosenthal (1995; Lemma 7), we have

P l
θ(x, A) ≥ δν(A), ∀x ∈ Xκ, ∀A ∈ BXκ ,

by setting l = min{n : n × κ ≥ l′, n = 1, 2, 3, . . .} and defining the
measure ν(·) as follows: Marginally on the first coordinate, ν(·) agrees
with ν ′(·); conditionally on the first coordinate, ν(·) is defined by

ν(x(2), . . . , x(κ)|x(1)) =W(x(2), . . . , x(κ)|x(1)), (7.79)

where W(x(2), . . . , x(κ)|x(1)) is the conditional distribution of the
Markov chain samples generated by the kernel P θ. Conditional on x

(1)
t ,

the samples x
(2)
t , . . . , x

(κ)
t are generated independently of all previous

samples xt−1, . . . ,x1. Hence, W(x(2), . . . , x(κ)|x(1)) exists. This verifies
condition 7.69 by setting C = Xκ. Thus, for any θ ∈ Θ the following
conditions hold

P l
θV

α(x) ≤ λVα(x) + bI(x ∈ C), ∀x ∈ Xκ,
P θV

α(x) ≤ ςVα(x), ∀x ∈ Xκ,
(7.80)

by choosing V(x) = 1, 0 < λ < 1, b = 1 − λ, ς > 1, and α ≥ 2. These
conclude that (B2-i) is satisfied.
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Let H(i)(θ, x) be the ith component of the vector H(θ, x) = (e/κ−π).
By construction, |H(i)(θ, x)| = |e(i)/κ − πi| < 1 for all x ∈ Xκ and
i = 1, . . . , m. Therefore, there exists a constant c1 =

√
m such that for

any θ ∈ Θ and all x ∈ Xκ,

‖H(θ, x)‖ ≤ c1. (7.81)

Also, H(θ, x) does not depend on θ for a given sample x. Hence,
H(θ, x)−H(θ′, x) = 0 for all (θ, θ′) ∈ Θ×Θ, and thus

‖H(θ, x)−H(θ′, x)‖ ≤ c1‖θ− θ′‖, (7.82)

for all (θ, θ′) ∈ Θ × Θ. Equations (7.81) and (7.82) imply that (B2-ii)
is satisfied by choosing β = 1 and V(x) = 1.

Let sθ(x, y) = q(x, y) min{1, rθ(x, y)}, where rθ(x, y) = [fθ(y)q(y, x)]/
[fθ(x)q(x, y)]. Thus,∣∣∣∣∂sθ(x, y)

∂θ(i)

∣∣∣∣ =
∣∣∣− q(x, y)I(rθ(x, y) < 1)I(J(x) = i or J(y) = i)

I(J(x) �= J(y))rθ(x, y)
∣∣∣ ≤ q(x, y),

where I(·) is the indicator function, and J(x) denotes the index of the
subregion where x belongs to. The mean-value theorem implies that
there exists a constant c2 such that

|sθ(x, y)− sθ′(x, y)| ≤ q(x, y)c2‖θ− θ′‖, (7.83)

which implies that

sup
x

∫
X
|sθ(x, y)− sθ′(x, y)| dy ≤ c2‖θ− θ′‖. (7.84)

Since the MH kernel can be expressed in the form

Pθ(x, dy) = sθ(x, dy) + I(x ∈ dy)[1−
∫
X

sθ(x, z)dz],

for any measurable set A ⊂ X,

|Pθ(x, A)− Pθ′(x, A)|
=

∣∣∣∣∫
A

[sθ(x, y)− sθ′(x, y)]dy + I(x ∈ A)
∫
X

[sθ′(x, z)− sθ(x, z)]dz

∣∣∣∣
≤

∫
X
|sθ(x, y)− sθ′(x, y)|dy + I(x ∈ A)

∫
X
|sθ′(x, z)− sθ(x, z)|dz

≤ 2
∫
X
|sθ(x, y)− sθ′(x, y)|dy

≤ 2c2‖θ− θ′‖.
(7.85)
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Since P θ(x, A) can be expressed in the following form,

P θ(x, A) =
∫

A1

· · ·
∫

Aκ

Pθ(x(κ), y(1))Pθ(y(1), y(2)) · · ·Pθ(y(κ−1), y(κ))

dy(1) · · · dy(κ),

(7.85) implies that there exists a constant c3 such that∣∣∣P θ(x, A)− P θ′(x, A)
∣∣∣ =

∣∣∣∣∫
A1

· · ·
∫

Aκ

[
Pθ(x(κ), y(1))Pθ(y(1), y(2))

· · ·Pθ(y(κ−1), y(κ))− Pθ′(x(κ), y(1))Pθ′(y(1), y(2)) · · ·
Pθ′(y(κ−1), y(κ))

]
dy(1) · · · dy(κ)

∣∣∣∣
≤

∫
A1

∫
X
· · ·

∫
X

∣∣∣Pθ(x(κ), y(1))− Pθ′(x(κ), y(1))
∣∣∣Pθ(y(1), y(2)) · · ·

Pθ(y(κ−1), y(κ))dy(1) · · · dy(κ) +
∫
X

∫
A2

∫
X
· · ·

∫
X

Pθ′(x(κ), y(1))∣∣∣Pθ(y(1), y(2))− Pθ′(y(1), y(2))
∣∣∣Pθ(y(2), y(3)) · · ·Pθ(y(κ−1), y(κ))dy(1)

· · · dy(κ) + · · ·+
∫
X
· · ·

∫
X

∫
Aκ

Pθ′(x(κ), y(1)) · · ·Pθ′(y(κ−2), y(κ−1))∣∣∣Pθ(y(κ−1), y(κ))− Pθ′(y(κ−1), y(κ))
∣∣∣dy(1) · · · dy(κ)

≤ c3‖θ− θ′‖,
which implies that (7.72) is satisfied. For any function g ∈ LV ,

‖P θg−P θ′g‖V =
∥∥∥∥∫ (P θ(x, dy)− P θ′(x, dy))g(y)

∥∥∥∥
V

=

∥∥∥∥∥
∫
Xκ

+

(P θ(x, dy)− P θ′(x, dy))g(y)

+
∫
Xκ

−

(P θ(x, dy)− P θ′(x, dy))g(y)

∥∥∥∥∥
V

≤ ‖g‖V

{|P θ(x,Xκ
+)− P θ′(x,Xκ

+)|+ |P θ(x,Xκ
−)− P θ′(x,Xκ

−)|}
≤ 4c2‖g‖V |θ− θ′| (following from (7.85))

where Xκ
+ = {y : y ∈ Xκ, P θ(x, dy)−P θ′(x, y) > 0} and Xκ

− = Xκ\Xκ
+.

Therefore, condition (B2-iii) is satisfied by choosing V(x) = 1 and β = 1.

• Condition (B3). Since the kernel Pθ(x, ·) admits fθ(x) as its invariant
distribution, for any fixed θ,

E(e(i)/κ− πi) =

∫
Ei

ψ(x)dx/eθ(i)∑m
k=1[

∫
Ek

ψ(x)dx/eθ(k) ]
− πi =

Si

S
− πi, i = 1, . . . , m,

(7.86)
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where Si =
∫

Ei
ψ(x)dx/eθ(i)

and S =
∑m

k=1 Sk. Thus, we have

h(θ) =
∫
X

H(θ, x)f(dx) =
(

S1

S
− π1, . . . ,

Sm

S
− πm

)T

.

It follows from (7.86) that h(θ) is a continuous function of θ. Let
v(θ) = 1

2

∑m
k=1(

Sk

S − πk)2. As shown below, v(θ) has continuous partial
derivatives of the first order.
Solving the system of equations formed by (7.86), we have

L =
{
(θ1, . . . , θm) : θi = C+ log

(∫
Ei

ψ(x)dx

)
− log(πi), i = 1, . . . , m

}
,

where C = log(S) can be determined by imposing a constraint on S.
For example, setting S = 1 leads to that c = 0. It is obvious that L is
nonempty and v(θ) = 0 for every θ ∈ L.
To verify the conditions related to v̇(θ), we have the following calcula-
tions:

∂S

∂θ(i)
=

∂Si

∂θ(i)
= −Si,

∂Si

∂θ(j)
=

∂Sj

∂θ(i)
= 0,

∂
(

Si

S

)
∂θ(i)

= −Si

S
(1− Si

S
),

∂
(

Si

S

)
∂θ(j)

=
∂
(Sj

S

)
∂θ(i)

=
SiSj

S2
,

(7.87)

for i, j = 1, . . . , m and i �= j.

∂v(θ)
∂θ(i)

=
1
2

m∑
k=1

∂(Sk

S − πk)2

∂θ(i)

=
∑
j �=i

(
Sj

S
− πj

)
SiSj

S2
−

(
Si

S
− πi

)
Si

S

(
1− Si

S

)
=

m∑
j=1

(
Sj

S
− πj

)
SiSj

S2
−

(
Si

S
− πi

)
Si

S

= µη∗
Si

S
−

(
Si

S
− πi

)
Si

S
,

(7.88)

for i = 1, . . . , m, where µη∗ =
∑m

j=1(
Sj

S − πj)
Sj

S . Thus, we have

v̇(θ) = µη∗

m∑
i=1

(
Si

S
− πi

)
Si

S
−

m∑
i=1

(
Si

S
− πi

)2
Si

S

= −
{

m∑
i=1

(
Si

S
− πi

)2
Si

S
− µ2

η∗

}
= −σ2

η∗ ≤ 0,

(7.89)
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Table 7.9 Distribution of η∗

state (η∗) S1
S − π1 · · · Sm

S − πm

Prob. S1
S · · · Sm

S

where σ2
η∗ denotes the variance of the discrete distribution defined in

Table 7.9,
If θ ∈ L, v̇(θ) = 0; otherwise, v̇(θ) < 0. Therefore, supθ∈Q v̇(θ) < 0 for
any compact set Q ⊂ Lc.

7.7.1.4 Discussion

We now discuss briefly the convergence of SAMC and ASAMC. The proof
for the convergence of CSAMC follows directly from that of SSAMC, and the
proof for the convergence of AESAMC follows directly from that of ASAMC.

SAMC. It is easy to see that SAMC is a special instance of the general
SAMCMC algorithm described in Section 7.7.1.1 with κ = 1 and η(·) = 0.
Because η(·) = 0, the condition (B1) can be relaxed to the condition (A1),
while not changing the validity of Lemma 7.7.2 and Theorem 7.7.1. The con-
ditions (B2) and (B3) can be verified as in Section 7.7.1.3. This concludes the
proof for Theorem 7.4.1.

ASAMC. ASAMC can also be viewed as a special instance of the general
SAMCMC algorithm described in Section 7.7.1.1 with κ = 1 and η(·) = 0.
Note that the space shrinkage made at each iteration does not affect the con-
vergence theory of the algorithm. The proof for Theorem 7.6.3 can be done on
the full sample space X. Comparing to SAMC, ASAMC changes the condition
imposed on the proposal distribution, from the local positive condition (A2)
to the minorisation condition 7.59. This change affects only the verification
of condition (B2)-(i) when proving Theorem 7.6.3. The other conditions can
still be verified as in Section 7.7.1.3. Below we verify the condition (B2)-(i)
with the minorization condition.

For the MH kernel, we have (as in Section 7.7.1.3, we omit the subscripts
of θt and xt in the following proof),

Pθ(x, A) =
∫

A

sθ(x, y)dy + I(x ∈ A)
(

1−
∫
X

sθ(x, z)dz

)
≥

∫
A

q(x, y) min
{

1,
fθ(y)q(y, x)
fθ(x)q(x, y)

}
dy =

∫
A

min
{

q(x, y),
fθ(y)q(y, x)

fθ(x)

}
dy

≥
∫

A

min
{

q(x, y),
fθ(y)
ω∗

}
dy (by the minorisation condition)

=
∫

A

fθ(y)
ω∗ dy ≥ ψ(A)

ω∗ ∫
X ψ(x)dx

=
ψ∗(A)

ω∗ ,
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where s(x, y) = q(x, y) min{1, [f(y)q(y, x)]/[f(x)q(x, y)]}, the minorization
constant ω∗ = supθ∈Θ supx,y∈X fθ(x)/q(y, x), and ψ∗(·) denotes a normalized
measure of ψ(·). Suppose the constraint

∑m
i=1

∫
Ek

ψ(x)dx/eθ(k)
= 1 has been

imposed on θ, eθ(k)
is then bounded above by

∫
X ψ(x)dx. Therefore, the

condition
inf
θ∈Θ

P l
θ(x, A) ≥ δν(A), ∀x ∈ X, ∀A ∈ B (7.90)

is satisfied by choosing δ = 1
ω∗ , l = 1, and ν(·) = ψ∗(·). Hence, C = X is a

small set. This further implies

P l
θV

α(x) ≤ λVα(x) + bI(x ∈ C), ∀x ∈ X, (7.91)

by choosing V(x) = 1, l = 1, 0 < λ < 1, b = 1 − λ, and α ∈ [2,∞). Since
V(x) = 1, the condition

PθV
α(x) ≤ ςVα(x) (7.92)

holds by choosing ς ≥ 1. Following from (7.90), (7.91) and (7.92), (B2-i) is sat-
isfied. As aforementioned, other conditions can be verified as in Section 7.7.1.3.
Thus, as t →∞, θt → θ∗ almost surely, and fθt

(x)→ fθ∗(x) almost surely.

Lemma 7.7.3 (Billingsley, 1986, p.218) Suppose that Ft(A) =
∫

A
ft(x)dx

and F(A) =
∫

A
f(x)dx for densities ft(x) and f(x) defined on X. If ft(x)

converges to f(x) almost surely, then Ft(A) −→ F(A) as t → ∞ uniformly
for any A ∈ B(X), where B(X) denotes the Borel set of the space X.

Let Fθt
(x) and Fθ∗(x) denote the cumulative distribution functions cor-

responding to fθt
(x) and fθ∗(x), respectively. Following from Lemma 7.7.3,

Fθt
(x) converges to Fθ∗(x) as t→∞; that is, the weak convergence of xt.

7.7.2 Convergence Rate

7.7.2.1 A General Result

Consider the general SAMCMC algorithm described in Section 7.7.1.1, for
which {θt} is updated through

θt+1 = θt + γt+1H(θt, xt+1) + γ2
t+1η(xt+1), (7.93)

where γt+1 is the gain factor and η(xt+1) is a bounded function. To assess the
convergence rate of the algorithm, we need the following additional condition:

(B4) The mean field function h(θ) is measurable and locally bounded. There
exist a constant δ > 0 and θ∗ such that for all θ ∈ Θ,

(θ− θ∗)T h(θ) ≤ −δ‖θ− θ∗‖2. (7.94)

In a similar way to Benveniste et al . (1990; Section 1.10.2), we prove the
following theorem, which gives a L2 upper bound for the approximation error
of θt.
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Theorem 7.7.2 Assume Θ is compact, the conditions (B1), (B2), (B3), and
(B4) hold, supx∈X κ V(x) <∞, and the gain factor sequence is chosen in the
form

γt =
T0

max{T0, tξ} , (7.95)

where 1/2 < ξ ≤ 1, and T0 is a constant. Let the sequence {θn} be defined by
(7.93). There exists a constant λ such that

E‖θt − θ∗‖2 ≤ λγt.

Proof : Writing εt = θt − θ∗, and following from the Poisson equation

H(θ, x) = h(θ) + u(θ, x)− Pθu(θ, x),

we have

‖εt+1‖2 =‖εt‖2 + 2γt+1ε
T
t h(θt) + 2γt+1ε

T
t

[
u(θt, xt+1)− Pθt

u(θt, xt+1)
]

+ 2γ2
t+1ε

T
t η(θt, xn+1) + γ2

t+1‖H(θt, xt+1) + γt+1η(θt, xt+1)‖2.

Then, decomposing u(θt, xt+1)− Pθt
u(θt, xt+1) as follows:

u(θt, xt+1)− Pθt
u(θt, xt+1)

= u(θt, xt+1)− Pθt
u(θt, xt) + Pθt−1u(θt−1, xt)

− Pθt
u(θt, xt+1) + Pθt

u(θt, xt)− Pθt−1u(θt−1, xt).

Note that

E
{
γt+1εt

[
u(θt, xt+1)− Pθt

u(θt, xt)
]}

= 0, (7.96)

and that, by (7.74) in Lemma 7.7.1,

γt+1εt‖Pθt
u(θt, xt)− Pθt−1u(θt−1, xt)‖ = O(γ2

t+1), (7.97)

and

εt

[
Pθt−1u(θt−1, xt)− Pθt

u(θt, xt+1)
]

= zt − zt+1 + (εt+1 − εt)Pθt
u(θt, xt+1),

(7.98)

where zt = εtPθt−1u(θt−1, xt), and

‖(εt+1 − εt)Pθt
u(θt, xt+1)‖ = O(γt+1). (7.99)

Thus, from (7.96)–(7.99) and (7.94), we deduce that

E‖εt+1‖2 ≤ (1− 2δγt+1)E‖εt‖2 + C1γ
2
t+1 + 2γt+1E(zt − zt+1), (7.100)

for some constant C1. Note that, by (7.74) in Lemma 7.7.1, zt is bounded;
that is, there exists a constant C2 such that E‖zt‖ < C2 for all t > 0.



THEORY OF SAMC 269

Lemma 7.7.4 Suppose t0 is such that 1− 2δγt+1 ≥ 0 for all t ≥ t0 and

1
γt+1

− 1
γt

< 2δ. (7.101)

Consider for t > t0 the finite sequence At
k for k = t0, . . . , t,

At
k =

{
2γk

∏t−1
j=k(1− 2δγj+1) if k ≤ t− 1,

2γt if k = t.

Then the sequence At
k is increasing.

Proof : If k + 1 < t, then

At
k+1 −At

k = 2

 t−1∏
j=k+1

(1− 2δγj+1)

 (γk+1 − γk + 2δγkγk+1).

If k + 1 = t, then

At
t −At

t−1 = 2(γt − γt−1 + 2δγt−1γt).

Thus, At
k+1 −At

k ≥ 0 for all t0 ≤ k < t.

Lemma 7.7.5 Let {ut}t≥t0 be a sequence of real numbers such that for all
t ≥ t0

ut+1 ≥ ut(1− 2δγt+1) + C1γ
2
t+1 (7.102)

with additionally

E‖εt0‖2 ≤ ut0 . (7.103)

Then for all t ≥ t0 + 1,

E‖εt‖2 ≤ ut +
t∑

k=t0+1

At
k(zk−1 − zk). (7.104)

Proof : If (7.104) is true, then following (7.100) and (7.102),

E‖εt+1‖2 ≤ (1− 2δγt+1)

[
ut +

t∑
k=t0+1

At
k(zk−1 − zk)

]
+ 2γt+1(zt − zt+1) + C1γ

2
t+1

= (1− 2δγt+1)ut + C1γ
2
t+1 + (1− 2δγt+1)

t∑
k=t0+1

At
k(zk−1 − zk)

+ 2γt+1(zt − zt+1)

≤ ut+1 +
t+1∑

k=t0+1

At+1
k (zk−1 − zk),

which completes the proof of the lemma by induction.
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Proof of Theorem 7.7.2 (continued) Take T > t0, where t0 is as defined
in Lemma 7.7.4, and choose λ such that

E‖εT ‖2 ≤ λγT .

For t ≥ T, we have

t∑
k=T+1

At
k(zk−1 − zk) =

t−1∑
k=T+1

(At
k+1 −At

k)zk − 2γtzt + At
T+1zT .

Following (7.104) and the result E‖zt‖ <∞, for any sequence {ut}t≥T satis-
fying (7.102) and (7.103), we have

E‖et‖2 ≤ ut + C3γt, (7.105)

where C3 is a suitable constant. We note that the sequence ut = λγt with γt

being specified in (7.95) satisfies the conditions (7.102) and (7.101) when t
becomes large. This completes the proof of this theorem.

7.7.2.2 Asymptotic Normality

Under some conditions slightly different from those given in Theorem 7.7.2,
Benveniste et al . (1990) established the asymptotic normality of θt, that is,
(θt − θ∗)/

√
γt converges wealy toward a normal random variable, for a type

of stochastic approximation MCMC algorithms. Extension of their results to
SAMC is easy, if not straightforward. Interested readers can continue to work
on this problem.

7.7.2.3 Proof of Theorem 7.4.2

Theorem 7.4.2 concerns the convergence rate of the SAMC algorithm. To
prove this theorem, it suffices to verify that the conditions (B1)–(B4) hold for
SAMC. Since the conditions (B1)–(B3) have been verified in Section 7.7.1.3,
only (B4) needs to be verified here. To verify (B4), we first show that
h(θ) has bounded second derivatives. Continuing the calculation in (7.87),
we have

∂ 2(Si

S )
∂(θ(i))2

=
Si

S

(
1− Si

S

)(
1− 2Si

S

)
,

∂ 2(Si

S )
∂θ(j)∂θ(i)

= −SiSj

S2

(
1− 2Si

S

)
,

(7.106)

where S and Si are as defined in Section 7.7.1.3. This implies that the
second derivative of h(θ) is uniformly bounded by noting the inequality
0 < Si

S < 1.
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Table 7.10 Distribution of Z.

State (Z) z1 · · · zm

Prob. S1
S · · · Sm

S

Let F = ∂h(θ)/∂θ. From (7.87) and (7.106), we have

F =


−S1

S (1− S1
S ) S1S2

S2 · · · S1Sm

S2

S2S1
S2 −S2

S (1− S2
S ) · · · S2Sm

S2

...
. . .

...
...

SmS1
S2 · · · · · · −Sm

S (1− Sm

S )

 .

Thus, for any nonzero vector z = (z1, . . . , zm)T ,

zT Fz = −
 m∑

i=1

z2
i

Si

S
−

(
m−1∑
i=1

zi
Si

S

)2
 = −Var(Z) < 0, (7.107)

where Var(Z) denotes the variance of the discrete distribution defined in
Table 7.10.

Thus, the matrix F is negative definite. Applying Taylor expansion to h(θ)
at a point θ∗, we have

(θ− θ∗)T h(θ) ≤ −δ‖θ− θ∗‖2,
for some value δ > 0. Therefore, (B4) is satisfied by SAMC.

Clearly, Theorem 7.4.2 also holds for ASAMC and AESAMC. For SSAMC
and CSAMC, if the bandwidth is chosen to be of order O(γt), Theorem 7.4.2
also holds for them.

7.7.3 Ergodicity and its IWIW Property

Liang (2009b) studies the ergodicity of SAMC, showing that the samples
generated by SAMC can be used in evaluation of Efh(x) through a weighted
average estimator. To show this property, we introduce the following lemmas.

Let {Zt, t ≥ 0} be a nonhomogeneous Markov chain with the finite state
space S = {1, 2, . . . , k}, the initial distribution(

P (1), P (2), . . . , P (k)
)
, P (i) > 0, i ∈ S, (7.108)

and the transition matrix

Pt =
(
Pt(j|i)

)
, Pt(j|i) > 0, i, j ∈ S, t ≥ 1, (7.109)
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where Pt(j|i) = P (Zt = j|Zt−1 = i) for t ≥ 1. Let P =
(
P (j|i)) be an

ergodic transition matrix, and let (p1, . . . , pk) be the stationary distribution
determined by P.

Lemma 7.7.6 (Liu and Yang, 1996; Theorem 7) Let {Zt, t ≥ 0} be a non-
homogeneous Markov chain with the initial distribution (7.108) and the tran-
sition matrix (7.109), and let g and gt, t ≥ 1, be functions defined on S. If the
following conditions hold,

lim
n→∞

1
n

n∑
t=1

|Pt(j|i)− P (j|i)| = 0, a.s., ∀i, j ∈ S, (7.110)

lim
n→∞

1
n

n∑
t=1

|gt(i)− g(i)| = 0, a.s., ∀i ∈ S, (7.111)

then

lim
n→∞

1
n

n∑
t=1

gt(Zt) =
k∑

i=1

pig(i), a.s.. (7.112)

Let (x1, θ1), . . . , (xn, θn) denote a set of samples generated by SAMC, where
θt = (θ(1)

t , . . . , θ
(m)
t ), recalling that the sample space has been partitioned into

m disjoint subregions E1, . . . , Em. Without loss of generality, we assume that
there are no empty subregions in the partition. Let J(xt) denote the index of
the subregion that the sample xt belongs to. Then J(x1), . . . , J(xn) forms a
sample from a nonhomogeneous Markov chain defined on the finite state space
{1, . . . , m}. The Markov chain is nonhomogeneous as the target distribution
fθt

(x) changes from iterations to iterations. Let

fθ∗(x) =
m∑

i=1

πiψ(x)
ωi

I(x ∈ Ei), (7.113)

where ωi =
∫

Ei
ψ(x)dx. It follows from (7.19) that fθt

(x) → fθ∗(x) almost
surely. Then, following from Lemma 7.7.3, we have

lim
t→∞ Pt(j|i) = P (j|i), (7.114)

where the transition probability Pt(j|i) is defined as

Pt(j|i) =
∫

Ei

∫
Ej

[
st(x, dy) + I(x ∈ dy)

(
1−

∫
X

st(x, dz)
)]

dx, (7.115)

st(x, dy) = q(x, dy) min{1, [fθt
(y)q(y, x)]/[fθt

(x)q(x, y)]}, and P (j|i) can be
defined similarly by replacing fθt

(·) by fθ∗(·) in (7.115). Following from
(7.114), (7.110) holds. It is obvious that π forms the stationary distribution
of the Markov chain induced by the transition matrix P. Define the function

gt(J(xt)) = eθ
(J(xt))
t , t = 0, 1, 2, . . . . (7.116)
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Following from (7.19), we have

lim
t→∞ gt(i) = ωi/πi, ∀i ∈ S, (7.117)

which implies (7.111) holds by defining g(i) = ωi/πi, i = 1. . . . , m. Since both
conditions (7.110) and (7.111) hold, we have, by Lemma 7.7.6, the following
law of large numbers for the SAMC samples.

Proposition 7.7.1 Assume the conditions (A1) and (B2) hold. For a set of
samples generated by SAMC, we have

lim
n→∞

1
n

n∑
t=1

eθ
(J(xt))
t =

m∑
i=1

ωi, a.s. (7.118)

Let A ⊂ X denote an arbitrary Borel set, and let Ac denote the com-
plementary set of A. Thus, Ẽ1 = E1 ∩ A, Ẽ2 = E1 ∩ Ac, . . . , Ẽ2m−1 =
Em ∩A, Ẽ2m = Em ∩Ac form a new partition of the sample space X. In this
paper, we call the new partition an induced partition by A, and the subregion
Ẽi an induced subregion by A. Let (x1, θ1), . . . , (xn, θn) denote again a set of
samples generated by SAMC with the partition E1, . . . , Em, and let J̃(xt) de-
note the index of the induced subregion xt belongs to. Then J̃(x1), . . . , J̃(xn)
forms a sample from a nonhomogeneous Markov chain defined on the finite
state space {1, . . . , 2m}. The transition matrices of the Markov chain can be
defined similarly to (7.115). The stationary distribution of the limiting Markov
chain is then (p̃1, . . . , p̃2m), where p̃2i−1 = πiPf (A|Ei) and p̃2i = πiPf (Ac|Ei)
for i = 1, . . . , m, and Pf (A|B) =

∫
A∩B

f(x)dx/
∫
B

f(x)dx. Define

g̃t(J̃(xt)) = eθ
(J(xt))
t I(xt ∈ A), t = 0, 1, 2, . . . , (7.119)

where I(·) is the indicator function. Following from (7.19), we have

lim
t→∞ g̃t(2i− 1) = ωi/πi and lim

t→∞ g̃t(2i) = 0, i = 1, . . . , m, (7.120)

which implies (7.111) holds by defining g̃(2i−1) = ωi/πi and g̃(2i) = 0, i = 1,
. . . , m. With the similar arguments as for Proposition 7.7.1, we have Propo-
sition 7.7.2:

Proposition 7.7.2 Assume the conditions (A1) and (B2) hold. For a set of
samples generated by SAMC, we have

lim
n→∞

1
n

n∑
t=1

eθ
(J(xt))
t I(xt ∈ A) =

m∑
i=1

ωiPf (A|Ei), a.s. (7.121)

Consider again the samples (x1, θ1), . . . , (xn, θn) generated by SAMC with
the partition E1, . . . , Em. Let y1, . . . , yn′ denote the distinct samples among
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x1, . . . , xn. Generate a random variable/vector Y such that

P (Y = yi) =
∑n

t=1 eθ
(J(xt))
t I(xt = yi)∑n
t=1 eθ

(J(xt))
t

, i = 1, . . . , n′, (7.122)

where I(·) is the indicator function. Since Θ has been restricted to a com-
pact set in SAMC, θ

(J(xt))
t is finite. The following theorem shows that Y is

asymptotically distributed as f(·), which can be proved in a similar way to
Theorem 6.2.1.

Theorem 7.7.3 Assume the conditions (A1) and (B2) hold. For a set of sam-
ples generated by SAMC, the random variable/vector Y generated in (7.122)
is asymptotically distributed as f(·).

Theorem 7.7.3 implies that for an integrable function ρ(x), the expectation
Efρ(x) can be estimated by

Êfρ(x) =
∑n

t=1 eθ
(J(xt))
t ρ(xt)∑n

t=1 eθ
(J(xt))
t

. (7.123)

As n →∞, Êfρ(x)→ Efρ(x) for the same reason that the usual importance
sampling estimate converges (Geweke, 1989).

We note that SAMC falls into the class of dynamic weighting algorithms;
that is, SAMC is (asymptotically) invariant with respect to the importance
weights (IWIW) (Wong and Liang, 1997), which can be briefly described as
follows. Let gt(x, w) be the joint distribution of the sample (x, w) drawn at
iteration t, where w = exp(θ(J(xt))

t ). The joint distribution gt(x, w) is said to
be correctly weighted with respect to a distribution f(x) if∫

wgt(x, w)dw ∝ f(x). (7.124)

A transition rule is said to satisfy IWIW if it maintains the correctly weighted
property for the joint distribution gt(x, w) whenever an initial joint distribu-
tion is correctly weighted.

As discussed in Chapter 6, IWIW is a much more general transition rule
of MCMC than the detailed balance (or reversibility) condition required by
conventional MCMC algorithms.

Theorem 7.7.4 Assume the conditions (A1) and (B2) hold. SAMC asymp-
totically satisfies IWIW.

Proof : Let gt(x, wx) denote the joint distribution of the sample (x, wx) gen-
erated by SAMC at iteration t, where wx = eθ

(J(xt))
t . If x can be regarded as

a sample drawn from fθt
(x), then (x, wx) has the joint distribution

gt(x, wx) = fθt
(x)δ

(
wx = eθ

(J(xt))
t

)
, (7.125)
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where δ(·) denotes a Dirac measure and corresponds to the conditional
distribution of wx given the sample x. It is easy to check that (7.125) is
correctly weighted with respect to f(x). The existence of such a sample is
obvious, as it can, at least, be obtained after the convergence of θt.

Let (y, wy) denote the sample generated at iteration t + 1, and let w′
y =

eθ
(J(y))
t . Then, wy = eγt+1(1−πJ(y))w′

y, and∫
wygt+1

(
y, wy

)
dwy

=
∫ ∫ ∫

eγt+1(1−πJ(y))w′
ygt

(
x, wx

)
Pθt

((
x, wx

)→ (
y, w′

y

))
dxdwxdw′

y

=
∫ ∫ ∫

eγt+1(1−πJ(y))w′
yδ
(
wx = eθ

(J(x))
t

)
fθt

(x)Pθt

((
x, wx

)→ (
y, w′

y

))
× dxdwxdw′

y

=
∫ ∫ ∫

eγt+1(1−πJ(y))w′
yδ(w′

y = eθ
(J(y))
t )fθt

(y)Pθt

((
y, w′

y

)→ (
x, wx

))
× dxdwxdw′

y

=
∫

eγt+1(1−πJ(y))w′
ygt

(
y, w′

y

)
dw′

y,

(7.126)

where Pθt
(· → ·) denotes the MH transition kernel used in the t-th iteration

of SAMC. Since γt → 0,
∫

wygt+1

(
y, wy

)
dwy ∝ f(y) holds asymptotically by

the last line of (7.126). If πJ(y) is independent of y, i.e., π1 = · · · = πm = 1/m,
then

∫
wygt+1

(
y, wy

)
dwy ∝ f(y) holds exactly.

Theorem 7.7.4 suggests that setting π to be non-uniform over the sub-
regions may lead to a slightly biased estimate of Efh(x) for a short run of
SAMC for which the gain factor sequence has not yet decreased to be suffi-
ciently small.

7.8 Trajectory Averaging: Toward
the Optimal Convergence Rate

Consider the stochastic approximation algorithm:

θt+1 = θt + γt+1H(θt, Xt+1) + γ1+τ
t+1 η(Xt+1), (7.127)

where, as previously, γt+1 denotes the gain factor, τ > 0, η(·) is a bounded func-
tion, and Xt+1 denotes a stochastic disturbance simulated from fθt

(x), x ∈
X ⊂ Rd, using a MCMC sampler. This algorithm can be rewritten as an
algorithm for search of zeros of a function h(θ),

θt+1 = θt + γt+1[h(θt) + εt+1], (7.128)
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where h(θt) =
∫
X H(θt, x)fθt

(x)dx corresponds to the mean effect of
H(θt, Xt+1), and εt+1 = H(θt, Xt+1)− h(θt) + γτ

t+1η(Xt+1) is the observation
noise. It is well known that the optimal convergence rate of (7.128) can
be achieved with γt = −F−1/t, where F = ∂h(θ∗)/∂θ, and θ∗ denotes the
zero point of h(θ). In this case, (7.128) is reduced to Newton’s algorithm.
Unfortunately, it is often impossible to use this algorithm, as the matrix F is
generally unknown. Then, in a sequence of papers, Ruppert (1988), Polyak
(1990), and Polyak and Juditsky (1992) show that the trajectory averaging
estimator is asymptotically efficient; that is,

θ̄n =
n∑

t=1

θt/n (7.129)

can converge in distribution to a normal random variable with mean θ∗ and
covariance matrix Σ, where Σ is the smallest possible covariance matrix in
an appropriate sense. The trajectory averaging estimator allows the gain fac-
tor sequence {γt} to be relatively large, decreasing slower than O(1/t). As
discussed by Polyak and Juditsky (1992), trajectory averaging is based on a
paradoxical principle, a slow algorithm having less than optimal convergence
rate must be averaged. Recently, the trajectory averaging technique has been
further explored in literature (see e.g., Chen, 1993; Kushner and Yang, 1993,
1995; Dippon and Renz, 1997; Wang et al ., 1997; Tang et al ., 1999; Pelletier,
2000; and Kushner and Yin, 2003).

Liang (2009e) shows that the trajectory averaging estimator can also be
applied to general stochastic approximation MCMC (SAMCMC) algorithms.
In Liang (2009e), the bias term η(x) in (7.127) is assumed to be 0, while some
other conditions previously imposed on SAMC are relaxed. For example, the
solution space Θ is relaxed from a compact set to Rd based on the varying
truncation technique introduced by Chen (1993), and the uniform bounded-
ness condition supx∈X V(x) < ∞ has been weakened to supx∈X0

V(x) < ∞
for a subset X0 ⊂ X. In the following, we present a simplified version of the
proof for the algorithm (7.127). In the simplified proof, Θ is still assumed to
be compact, and the drift function is still assumed to be uniformly bounded.
The reason is that these conditions simplify the implementation of SAMC,
while can be naturally satisfied. For example, for SAMC and its variants,
setting V(x) = 1 is always appropriate due to the bondedness of the function
H(θ, X). Again, our aim here is to provide a theory to guide the applica-
tions of SAMC and its variants instead of providing a very general theory for
stochastic approximation MCMC algorithms.

Although the algorithms considered in Chen (1993) and Kushner and Yin
(2003) allow the observation noise to be state dependent, their results are not
directly applicable to SAMCMC. Chen (1993) and Kushner and Yin (2003)
assume directly that the observation noise has the decomposition εt = et +νt,
where {et} forms a martingale difference sequence and νt is a higher order
term of γ

1/2
t . As shown in Lemma 7.8.2 (below), SAMCMC does not satisfy
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this decomposition. Instead, the observation noise {εt} of SAMCMC should
be decomposed as

εt = et + νt + ςt, (7.130)

where {et} forms a martingale difference sequence, νt is a higher order term of
o(γ1/2

t ), and ςt is a tricky term with ‖∑n
t=0 γtςt‖ = O(γn). Some cancellations

occur in calculation of
∑n

t=0 γtςt, while ςt itself is of order O(1). In other words,
{ςt} are terms that can be removed by averaging.

7.8.1 Trajectory Averaging for a SAMCMC
Algorithm

Reconsider the stochastic approximation MCMC algorithm given in Sec-
tion 7.7.1.1. To study the asymptotic efficiency of the trajectory averaging
estimator for this algorithm, we assume the following conditions in additional
to the drift condition (B2) and the Lyapunov condition (B3).

Conditions on step-sizes. (B′
1) The gain factor sequence {γt} is nonin-

creasing, positive, and satisfy the conditions:
∞∑

t=1

γt =∞, lim
t→∞(tγt) =∞,

γt+1 − γt

γt
= o(γt+1), (7.131)

and for some ζ ∈ (0, 1],

∞∑
t=1

γ
(1+ζ)/2
t √

t
<∞. (7.132)

For instance, we can set γt = C1/tξ for some constants C1 > 0 and ξ ∈ ( 1
2 , 1).

With this choice of γt, (7.132) is satisfied for any ζ > 1/ξ− 1.

Stability condition on h(θ). (B′
4) The mean field function h(θ) is mea-

surable and locally bounded. There exist a stable matrix F (i.e., all eigenvalues
of F are with negative real parts), δ > 0, ρ ∈ (ζ, 1], and a constant c such that,
for any θ∗ ∈ L = {θ : h(θ) = 0},

‖h(θ)− F(θ− θ∗)‖ ≤ c‖θ− θ∗‖1+ρ, ∀θ ∈ {θ : ‖θ− θ∗‖ ≤ δ}.
This condition constrains the behavior of the mean field function h(θ)

around θ∗. It makes the trajectory averaging estimator sensible both theo-
retically and practically. If h(θ) is differentiable, then the matrix F can be
chosen to be the partial derivative of h(θ), that is, ∂h(θ)/∂θ. Otherwise, cer-
tain approximations may be needed.

Theorem 7.8.1 concerns the convergence of the SAMCMC algorithm,
whose proof follows the proof of Theorem 7.7.1 directly.



278 STOCHASTIC APPROXIMATION MONTE CARLO

Theorem 7.8.1 Assume the conditions (B′
1), (B2) and (B3) hold, τ ≥

(1 + ζ)/2 with ζ being defined in (B′
1), Θ is compact, and supx∈X V(x) < ∞.

Let the sequence {θt} be defined by (7.127). Then for all (x0, θ0) ∈ X×Θ,

θt −→ θ∗, a.s.

Theorem 7.8.2 concerns the asymptotic normality of the trajectory aver-
aging estimator, whose proof is presented in Section 7.8.3.

Theorem 7.8.2 Assume the conditions (B′
1), (B2), (B3) and (B′

4) hold, τ ≥
(1 + ζ)/2 with ζ being defined in (B′

1), Θ is compact, and supx∈X V(x) < ∞.
Let the sequence {θt} be defined by (7.127). Then

√
n(θ̄n − θ∗) −→ N(0, Γ)

where Γ = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ is negative definite, Q =
limt→∞ E(ete

T
t ), and et is as defined in (7.130).

As aforementioned, the asymptotic efficiency of the trajectory averaging
estimator has been studied by quite a few authors. Following Tang et al .
(1999), we set the following definition:

Definition 7.8.1 Consider the stochastic approximation algorithm (7.128).
Let {Zn}, given as a function of {θn}, be a sequence of estimators of θ∗. The
algorithm {Zn} is said to be asymptotically efficient if

√
n(Zn − θ∗) −→ N

(
0, F−1Q̃(F−1)T

)
, (7.133)

where F = ∂h(y∗)/∂y, and Q̃ is the asymptotic covariance matrix of
(1/
√

n)
∑n

t=1 εt.

As pointed out by Tang et al . (1999), Q̃ is the smallest possible limit
covariance matrix that an estimator based on the stochastic approximation
algorithm (7.128) can achieve. If θt → θ∗ and {εt} forms or asymptotically
forms a martingale difference sequence, then we have Q̃ = limt→∞ E(εtε

T
t ).

This is also the case that the stochastic approximation MCMC algorithm
belongs to. For some stochastic approximation algorithms, Q̃ can also be ex-
pressed as Q̃ = limt→∞ E(εt+1ε

T
t+1|Ft) where Ft denotes a σ-filtration defined

by {θ0, θ1, . . . , θt}. For the latter case, refer to Pelletier (2000) for the details.
In the next theorem, we show that θ̄n is asymptotically efficient.

Theorem 7.8.3 Assume the conditions (B′
1), (B2), (B3) and (B′

4) hold, τ ≥
(1+ζ)/2 with ζ being defined in (B′

1), Θ is compact, and supx∈X V(x) <∞. Let
the sequence {θt} be defined by (7.127). Then θ̄n is asymptotically efficient.
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As implied by Theorem 7.8.3, the asymptotic efficiency of θ̄n, which is
measured by the asymptotic covariance matrix Γ, is independent of the choice
of {γt} as long as (B′

1) is satisfied. The asymptotic efficiency of θ̄n can also
be interpreted in terms of Fisher information theory. Refer to Pelletier (2000;
Section 3) and the references therein for more discussions on this issue.

Trajectory averaging enables one to smooth the behavior of the algo-
rithm, but meanwhile it slows down the numerical convergence because it
takes longer for the algorithm to forget the first iterates. An alternative idea
would be to consider moving window averaging algorithms (see, e.g., Kushner
and Yang, 1993; Kushner and Yin, 2003). Extension of their results to general
SAMCMC algorithms will be of great interest.

7.8.2 Trajectory Averaging for SAMC

To make the trajectory averaging estimator sensible for SAMC, the algorithm
is modified as follows:

(a) Sampling . Simulate a sample xt+1 by a single MH update with the
target distribution

fθt
(x) ∝

m∑
i=1

ψ(x)

eθ
(i)
t

I{x∈Ei}. (7.134)

(b) Weight updating . For i = 1, . . . , m, set

θ
(i)
t+1 = θ

(i)
t + γt+1

(
I{xt+1∈Ei} − πi

)− γt+1

(
I{xt+1∈Em} − πm

)
,

(7.135)

provided that Em is non-empty. Here Em can be replaced by any other
unempty subregion.

In terms of sampling, the modified algorithm is exactly the same with
the original SAMC, as fθt

(x) is invariant with respect to a location shift of
θt. The only effect by this modification is on the convergence point: For the
modified SAMC, θt will converge to a single point θ∗ as specified in Theorem
7.8.4, while, for the original SAMC, θt will converge to a set as specified in
Theorem 7.4.1.

Theorem 7.8.4 Assume the conditions (B′
1) and (B2) hold. Let {θt} be a

sequence specified by (7.135). Then, as t→∞,

θ
(i)
t → θ

(i)
∗ =

log
( ∫

Ei
ψ(x)dx∫

Em
ψ(x)dx

)
− log

(
πi+ν
πm+ν

)
, if Ei �= ∅,

−∞. if Ei = ∅,
(7.136)
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provided that Em is unempty, where ν =
∑

j∈{i:Ei=∅} πj/(m−m0) and m0 is
the number of empty subregions.

Theorem 7.8.5 concerns the asymptotic normality and efficiency of θ̄n.

Theorem 7.8.5 Assume the conditions (B′
1) and (B2) hold. Let {θt} be a

sequence specified by (7.135). Then θ̄n is asymptotically efficient; that is,
√

n(θ̄n − θ∗) −→ N(0, Γ), as n →∞,

where the covariance matrix Γ = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ is negative
definite, and Q = limt→∞ E(ete

T
t ).

Numerical Example. To illustrate the performance of trajectory averag-
ing estimators, we reconsider Example 7.1. The distribution consists of 10
states with the unnormalized mass function P (x) as given in Table 7.1. To
simulate from this distribution using SAMC, the sample space was parti-
tioned according to the mass function into five subregions: E1 = {8}, E2 =
{2}, E3 = {5, 6}, E4 = {3, 9} and E5 = {1, 4, 7, 10}. Our goal is to estimate
ωi =

∑
x∈Ei

P (x), i = 1, . . . , 5, which have the true values (200, 100, 6, 4, 4)T .
In the simulation, we set ψ(x) = P (x), set πi ∝ 1/(1 + i) for i = 1, . . . , 5,

set the transition proposal matrix as a stochastic matrix with each row being
generated independently from the Dirichlet distribution Dir(1, . . . , 1), and
tried the following gain factor sequences:

γt =
T0

max{T0, tξ} , T0 = 10, ξ ∈ {0.7, 0.8, 0.9}.

For each value of ξ, SAMC was run 100 times independently. Each run con-
sisted of 5.01×105 iterations, for which the first 103 iterations were discarded
for the burn-in process and the samples of θt generated in the remaining
iterations were averaged.

Table 7.11 compares the two estimators ω̂ and ω̃, which are computed
based on θ̄t and θN , respectively. The θN refers to the estimate of θ obtained
at the last iteration of the run. The comparison indicates that ω̂ can be
generally superior to ω̃ in terms of accuracy. It is hard for ω̃ to beat ω̂ even
with γt = O(1/t). By showing the bias-variance decomposition, Table 7.11
demonstrates that the trajectory averaging estimator has a constant variance
independent of the choice of the gain factor sequence (with ξ < 1). Trajectory
averaging also improves the bias of the conventional SAMC estimator.

For some problems, the trajectory averaging estimator can directly bene-
fit one’s inference. A typical example is Bayesian model selection, for which
the ratio ωi/ωj corresponds to the Bayesian factor of two models if one
partitions the sample space according to the model index and imposes an
uniform prior on the model space, as in Liang (2009a). Another example is
Bayesian inference for spatial models with intractable normalizing constants,
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Table 7.11 Comparison of trajectory averaging and conventional SAMC
estimators.

ξ = 0.7 ξ = 0.8 ξ = 0.9

bias sd rmse bias sd rmse bias sd rmse

−0.81 0.52 0.96 −0.15 0.33 0.36 0.03 0.21 0.21
0.71 0.49 0.87 0.14 0.31 0.34 −0.03 0.20 0.20

ω̃ 0.04 0.03 0.05 0.01 0.01 0.02 0.00 0.01 0.01
0.02 0.02 0.03 0.00 0.01 0.01 0.00 0.01 0.01
0.03 0.02 0.04 0.01 0.01 0.02 0.01 0.01 0.01

−0.24 0.09 0.26 −0.02 0.11 0.11 0.00 0.1 0.10
0.19 0.09 0.21 0.00 0.10 0.10 −0.01 0.1 0.10

ω̂ 0.03 0.00 0.03 0.01 0.00 0.01 0.00 0.0 0.01
0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.0 0.00
0.02 0.00 0.02 0.01 0.00 0.01 0.02 0.0 0.02

ω̂: trajectory averaging estimates, where each row corresponds to one component of ω. ω̃:
conventional SAMC estimates, where each row corresponds to one component of ω. The
‘bias’ and ‘sd’ are calculated based on 100 independent runs, and ‘rmse’ is calculated as
the square root of ‘bias2+sd2’.

for which Liang et al . (2007) demonstrate how SAMC can be applied to
estimate the ratios of the normalizing constants of those models and how
the estimates can then be used for inference of model parameters. Trajec-
tory averaging technique will certainly improve the performance of SAMC on
these problems.

7.8.3 Proof of Theorems 7.8.2 and 7.8.3.

Some lemmas. Lemma 7.8.1 is a restatement of Corollary 2.1.10 of Duflo
(1997, pp. 46–47).

Lemma 7.8.1 Let {Sni,Gni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square-
integrable martingale array with differences υni, where Gni denotes the σ-field.
Suppose that the following assumptions apply:

(i) The σ-fields are nested: Gni ⊆ Gn+1,i for 1 ≤ i ≤ kn, n ≥ 1.

(ii)
∑kn

i=1 E(υniυ
T
ni|Gn,i−1) → Λ in probability, where Λ is a positive definite

matrix.

(iii) For any ε> 0,
∑kn

i=1 E
[‖υni‖2I(‖υni‖≥ε)|Gn,i−1

]→ 0 in probability.

Then Snkn
=

∑kn

i=1 υni → N(0, Λ) in distribution.
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Lemma 7.8.2 Assume the conditions (B′
1), (B2) and (B3) hold, τ ≥ (1+ζ)/2

with ζ being defined in (B′
1), Θ is compact, and supx∈X V(x) < ∞. There

exist Rd-valued random processes {ek}k≥1, {νk}k≥1, and {ςk}k≥1 defined on
a probability space (Ω,F,P) such that

(i) εk = ek + νk + ςk, where εk = H(θk−1, Xk)− h(θk−1) + γτ
kη(Xk).

(ii) {ek} is a martingale difference sequence, and
∑n

k=1 ek/
√

n −→ N(0, Q)
in distribution, where Q = limk→∞ E(ekeT

k ).

(iii) ‖νk‖ = O(γ(1+ζ)/2
k ), where ζ is given in condition (B′

1).

(iv) ‖∑n
k=0 γkςk‖ = O(γn).

Proof :

(i) Let ε0 = ν0 = ς0 = 0, and

ek+1 = u(θk, xk+1)− Pθk
u(θk, xk),

νk+1 = Pθk+1u(θk+1, xk+1)− Pθk
u(θk, xk+1)

+
γk+2 − γk+1

γk+1
Pθk+1u(θk+1, xk+1) + γτ

kη(Xk),

ς̃k+1 = γk+1Pθk
u(θk, xk),

ςk+1 =
1

γk+1
(̃ςk+1 − ς̃k+2).

(7.137)

Following from the Poisson equation given in (C2), it is easy to verify
that (i) holds.

(ii) By (7.137), we have

E(ek+1|Fk) = E(u(θk, xk+1)|Fk)− Pθk
u(θk, xk) = 0,

where {Fk}k≥0 is a family of σ-algebras satisfying σ{θ0} ⊆ F0 and
σ{θ1, e1, ν1, ς1, . . . , θk, ek, νk, ςk} ⊆ Fk ⊆ Fk+1 for all k ≥ 0. Hence,
{ek} forms a martingale difference sequence.

Since Θ is compact, by (7.74) and the condition supX V(x) < ∞, ‖ek‖
is uniformly bounded with respect to k; that is, there exists a constant
c such that

‖ek‖ < c, ∀k ≥ 0. (7.138)

Hence, the martingale sn =
∑n

k=1 ek is square integrable for all n.

By (7.137),

E(ek+1e
T
k+1|Fk) =E

[
u(θk, xk+1)u(θk, xk+1)T |Fk

]
− Pθk

u(θk, xk)Pθk
u(θk, xk)T �

= l(θk, xk).
(7.139)
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By (7.74), ‖l(θk, xk)‖ is uniformly bounded with respect to k.
This further implies that Var(l(θk, xk)) is uniformly bounded with
respect to k, and

∑k
j=1 Var (l(θj , xj)) (log j)2/j2 → 0 as k → 0.

Since {E(ek+1e
T
k+1|Fk) − E(ek+1e

T
k+1)}forms a martingale difference

sequence, the correlation coefficient Corr
(
l(θi, xi), l(θj , xj)

)
= 0 for all

i �= j. Following from the generalized law of large numbers (Serfling,
1970), we have, as n →∞,

1
n

n∑
k=1

l(θk, xk)→ 1
n

n∑
k=1

El(θk, xk), a.s. (7.140)

Now we show that El(θk, xk) also converges. By the continuum of Θ and
the convergence of θk, l(θk, x) converges to l(θ∗, x) for any sample x ∈ X.
Since l(θk, x) is uniformly bounded with respect to k, it follows from
Lebesgue’s dominated convergence theorem that El(θk, x)converges to
El(θ∗, x). Putting together with (7.140), we have

1
n

n∑
k=1

l(θk, xk) → El(θ∗, x) = lim
k→∞

EekeT
k , a.s. (7.141)

Since ‖ek‖ is uniformly bounded with respect to k, the Lindeberg con-
dition is satisfied, that is,

n∑
i=1

E

[‖ei‖2
n

I
(
‖ei‖√

n
≥ε)
|Fi−1

]
→ 0, as n→∞.

Following from Lemma 7.8.1, we have
∑n

i=1 ei/
√

n→ N(0, Q) by iden-
tifying ei/

√
n to υni, n to kn, and Fi to Gni.

(iii) By condition (B′
1), we have

γk+2 − γk+1

γk+1
= o(γk+2).

By (7.137) and (7.74), there exist constants c1 and c2 such that

‖νk+1‖ ≤ c1

[
‖θk+1 − θk‖(1+ζ)/2 + γ

(1+ζ)/2
k+2

]
= c1

[
‖γk+1H(θk, xk+1)‖(1+ζ)/2 + γ

(1+ζ)/2
k+2

]
≤ c2γ

(1+ζ)/2
k+1 ,

(7.142)

where ζ is given in (B′
1). Therefore, (iii) holds.

(iv) A straightforward calculation shows that
k∑

i=0

γiςi = ς̃k+1 = γk+1Pθk
u(θk, xk),

By (7.74), (iv) holds.

This completes the proof of the lemma.
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To facilitate the theoretical analysis for the random process {θk}, we define
a reduced random process {θ̃k} by

θ̃k = θk + ς̃k+1, k ≥ 1. (7.143)

For convenience, we also define

ε̃k = ek + νk, k ≥ 1. (7.144)

It is easy to verify

θ̃k+1 − θ∗ = (I + γk+1F)(θ̃k − θ∗) + γk+1

(
h(θk)− F(θ̃k − θ∗)

)
+ γk+1ε̃k+1,

(7.145)

which implies, for any k0 > 1,

θ̃k+1 − θ∗ = Φk,k0(θ̃k0 − θ∗) +
k∑

j=k0

Φk,j+1γj+1ε̃j+1

+
k∑

j=k0

Φk,j+1γj+1

(
h(θj)− F(θ̃j − θ∗)

)
,

(7.146)

where Φk,j =
∏k

i=j(I + γi+1F) if k ≥ j, and Φj,j+1 = I, and I denotes the
identity matrix.

For the δ specified in (B′
4) and a deterministic integer k0, define the stop-

ping time µ = min{j : j > k0, ‖θj − θ∗‖ ≥ δ} and 0 if ‖θk0 − θ∗‖ ≥ δ. Define

A = {i : k0 ≤ i < µ}, (7.147)

and let IA(k) denote the indicator function; IA(k) = 1 if k ∈ A and 0 other-
wise. Therefore, for all k ≥ k0,

(θ̃k+1 − θ∗)IA(k + 1)

= Φk,k0(θ̃k0 − θ∗)IA(k + 1) +

 k∑
j=k0

Φk,j+1γj+1ε̃j+1IA(j)


× IA(k + 1) +

 k∑
j=k0

Φk,j+1γj+1

(
h(θj)− F(θ̃j − θ∗)

)
IA(j)

 IA(k + 1).

(7.148)

Lemma 7.8.3

(i) The following estimate takes place

γj

γk
≤ exp

o(1)
k∑

i=j

γi

 , ∀k ≥ j, ∀j ≥ 1, (7.149)

where o(1) denotes a magnitude that tends to zero as j→∞.
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(ii) Let c be a positive constant, then there exists another constant c1 such
that

k∑
i=1

γr
i exp

−c

k∑
j=i+1

γj

 ≤ c1, ∀k ≥ 1, ∀r ≥ 1. (7.150)

(iii) There exist constants c0 > 0 and c > 0 such that

‖Φk,j‖ ≤ c0 exp

−c
k∑

i=j

γi+1

 , ∀k ≥ j, ∀j ≥ 0. (7.151)

(iv) Let Gk,j =
∑k

i=j(γj − γi+1)Φi−1,j + F−1Φk,j. Then Gkj is uniformly
bounded with respect to both k and j for 1 ≤ j ≤ k, and

1
k

k∑
j=1

‖Gk,j‖ −→ 0, as k→∞. (7.152)

Proof : Parts (i) and (iv) are a restatement of Lemma 3.4.1 of Chen (2002).
The proof of part (ii) can be found in the proof of Lemma 3.3.2 of Chen
(2002). The proof of part (iii) can be found in the proof of Lemma 3.1.1 of
Chen (2002).

Lemma 7.8.4 Assume that Θ is compact, the conditions (B′
1), (B2), (B3) and

(B′
4) hold, τ ≥ (1 + ζ)/2 with ζ being defined in (B′

1), and supx∈X V(x) <∞.
Then

1
γk+1

E‖(θk+1 − θ∗)IA(k + 1)‖2

is uniformly bounded with respect to k, where the set A is as defined in (7.147).

Proof : By (7.143), we have

1
γk+1

‖θk+1 − θ∗‖2 =
1

γk+1
‖θ̃k+1 − θ∗ − ς̃k+2‖2

≤ 2
γk+1

‖θ̃k+1 − θ∗‖2 + 2
γ2

k+2

γk+1
‖Pθk+1u(θk+1, xk+1)‖2.

By (C2), ‖Pθk+1u(θk+1, xk+1)‖2 is uniformly bounded with respect to k.
Hence, to prove the lemma, it suffices to prove that 1

γk+1
E‖(θ̃k+1 − θ∗)

IA(k + 1)‖2 is uniformly bounded with respect to k.
By (7.143), (B′

4) and (C2), there exist constants c1 and c2 such that

‖h(θj)− F(θ̃j − θ∗)‖IA(j) = ‖h(θj)− F(θj − θ∗)− Fς̃j+1‖IA(j)
≤ ‖h(θj)− F(θj − θ∗)‖IA(j) + c2γj+1

≤ c1‖θj − θ∗‖1+ρ + c2γj+1.

(7.153)



286 STOCHASTIC APPROXIMATION MONTE CARLO

Similarly, there exists a constant δ̃ such that

‖θ̃k0 − θ∗‖IA(k0) = ‖θk0 − θ∗ + ς̃k0+1‖IA(k0)

≤ ‖θk0 − θ∗‖IA(k0) + ‖ς̃k0+1‖ ≤ δ̃. (7.154)

By (7.148), (7.151) and (7.153), we have

1
γk+1

E‖(θ̃k+1 − θ∗)IA(k + 1)‖2 ≤ 5c0δ̃
2

γk+1
exp

(
−2c

k∑
i=k0

γi+1

)

+
5c2

0

γk+1

k∑
i=k0

k∑
j=k0

exp

−c

k∑
s=j+1

γs+1

 γj+1 exp

(
−c

k∑
s=i+1

γs+1

)

×γi+1‖Eei+1e
T
j+1‖


+

5c2
0

γk+1

k∑
i=k0

k∑
j=k0

exp

−c
k∑

s=j+1

γs+1

 γj+1 exp

(
−c

k∑
s=i+1

γs+1

)

×γi+1‖Eνi+1ν
T
j+1‖


+

5c2
0c

2
2

γk+1

 k∑
j=k0

exp

−c

k∑
s=j+1

γs+1

 γ2
j+1

2

+
5c2

0c
2
1

γk+1
E

 k∑
j=k0

exp

−c
k∑

s=j+1

γs+1

 γj+1‖θj − θ∗‖1+ρIA(j)

2

�
= I1 + I2 + I3 + I4 + I5

By (7.149), there exists a constant c3 such that

‖I1‖ ≤ 5c0c3δ̃
2

γk0

exp

(
o(1)

k+1∑
i=k0

γi

)
exp

(
−2c

k∑
i=k0

γi+1

)
,

where o(1) → 0 as k0 → ∞. This implies that o(1) − 2c < 0 if k0 is large
enough. Hence, I1 is bounded if k0 is large enough.

By (7.149) and (7.150), for large enough k0, there exists a constant c4 such
that

k∑
j=k0

γ2
j+1

γk+1
exp

−c

k∑
s=j+1

γs+1

 ≤
k∑

j=k0

γj+1 exp

− c

2

k∑
s=j+1

γs+1

 ≤ c4.

(7.155)
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Since {ei} forms a martingale difference sequence,

Eeie
T
j = E(E(ei|Fi−1)eT

j ) = 0, ∀i > j,

which implies that

I2 =
5c2

0

γk+1

k∑
i=k0

γ2
i+1 exp

−2c

k∑
s=j+1

γs+1

E‖ei+1‖2


≤ 5c2
0 sup

i
E‖ei+1‖2

k∑
i=k0

γ2
i+1 exp

−2c

k∑
s=j+1

γs+1

 .

By (7.138) and (7.150), I2 is uniformly bounded with respect to k.
By (7.149) and Lemma 7.8.2, there exists a constant c5 such that

I3 = 5c2
0

k∑
i=k0

k∑
j=k0

exp

−c
k∑

s=j+1

γs+1

 γj+1√
γk+1

exp

(
−c

k∑
s=i+1

γs+1

)

× γi+1√
γk+1

O(γ
1+ζ
2

i+1 )O(γ
1+ζ
2

j+1)


≤ 5c2

0c5

k∑
i=k0

k∑
j=k0

exp

− c

2

k∑
s=j+1

γs+1

 γj+1
1
2 exp

(
− c

2

k∑
s=i+1

γs+1

)

×γi+1
1
2 γ

1+ζ
2

i+1 γ
1+ζ
2

j+1


= 5c2

0c5


k∑

j=k0

γj+1
1+ ζ

2 exp

− c

2

k∑
s=j+1

γs+1


2

By (7.150), I3 is uniformly bounded with respect to k.
By (7.150) and (7.155), there exists a constant c6 such that

I4 = 5c2
0c

2
2 k∑

j=k0

γ2
j+1

γk+1
exp

−c

k∑
s=j+1

γs+1

 k∑
j=k0

γ2
j+1 exp

−c

k∑
s=j+1

γs+1


≤ 5c2

0c
2
2c6.

Therefore, I4 is uniformly bounded with respect to k.
The proof for the uniform boundedness of I5 can be found in the proof of

Lemma 3.4.3 of Chen (2002).
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Lemma 7.8.5 Assume that Θ is compact, the conditions (B′
1), (B2), (B3) and

(B′
4) hold, τ ≥ (1 + ζ)/2 with ζ being defined in (B′

1), and supx∈X V(x) <∞.
Then, as k →∞,

1√
k

k∑
i=1

‖h(θi)− F(θ̃i − θ∗)‖ −→ 0 a.s.

Proof : By (7.143), there exists a constant c such that

1√
k

k∑
i=1

‖h(θi)− F(θ̃i − θ∗)‖ ≤ 1√
k

k∑
i=1

‖h(θi)− F(θi − θ∗)‖

+
c√
k

k∑
i=1

γi+1
�
= I1 + I2.

To prove the lemma, it suffices to prove that I1 and I2 both converge to zero
as k→∞.

Condition (B′
1) implies

∑∞
i=1

γi√
i

< ∞, which further implies I2 → 0 by
Kronecker’s lemma. The convergence I1 → 0 can be established as in Chen
(2002, Lemma 3.4.4) using the condition (B′

4) and Lemma 7.8.4.

Proof of Theorem 7.8.2. By Theorem 7.8.4, θk converge to the zero point
θ∗ almost surely. Consequently, we have

√
k(θ̄k − θ∗) =

1√
k

k∑
i=1

(θi − θ∗) =
1√
k

k∑
i=1

(θ̃i − θ∗)− 1√
k

k∑
i=1

ς̃i+1. (7.156)

Condition (B′
1) implies

∑∞
i=1

γi√
i

< ∞, which further implies
1√
k

∑k
i=1 γi → 0 by Kronecker’s lemma. By (7.74), ‖Pθi

u(θi, xi)‖ is
uniformly bounded with respect to i, then

1√
k

k∑
i=1

‖ς̃i+1‖ =
1√
k

k∑
i=1

γi+1‖Pθi
u(θi, xi)‖ → 0. (7.157)

By (7.146), (7.156) and (7.157), we have
√

k(θ̄k − θ∗) = o(1) +
1√
k

k∑
i=k0

Φi−1,k0(θ̃k0 − θ∗) +
1√
k

k∑
i=k0

i−1∑
j=k0

Φi−1,j+1γj+1ε̃j+1

+
1√
k

k∑
i=k0

i−1∑
j=k0

Φi−1,j+1γj+1

(
h(θj)− F(θ̃j − θ∗)

)
�
= o(1) + I1 + I2 + I3.

(7.158)
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By noticing that Φk,j = Φk−1,j + γk+1FΦk−1,j , we have

Φk,j = I +
k∑

i=j

γi+1FΦi−1,j , and F−1Φk,j = F−1 +
k∑

i=j

γi+1Φi−1,j ,

and thus

γj

k∑
i=j

Φi−1,j =
k∑

i=j

(γj − γi+1)Φi−1,j +
k∑

i=j

γi+1Φi−1,j .

By the definition of Gk,j given in Lemma (7.8.3)(iv), we have

γj

k∑
i=j

Φi−1,j = −F−1 + Gk,j , (7.159)

which implies

I1 =
1√
kγk0

(−F−1 + Gk,k0)(θ̃k0 − θ∗).

By Lemma 7.8.3, Gk,j is bounded. Therefore, I1 → 0 as k → ∞. The above
arguments also imply that there exists a constant c0 > 0 such that∥∥∥∥∥∥γj+1

k∑
i=j+1

Φi−1,j+1

∥∥∥∥∥∥ < c0, ∀k, ∀j < k. (7.160)

By (7.160), we have

‖I3‖ =
1√
k

∥∥∥∥∥∥
k∑

j=k0

k∑
i=j+1

Φi−1,j+1γj+1

(
h(θj)− F(θ̃j − θ∗

)∥∥∥∥∥∥
≤ c0√

k

k∑
j=1

‖h(θj)− F(θ̃j − θ∗)‖.

It then follows from Lemma 7.8.5 that I3 converges to zero almost surely as
k→∞.

Now we consider I2. By (7.159),

I2 = −F−1

√
k

k∑
j=k0

ej+1 +
1√
k

k∑
j=k0

Gk,j+1ej+1 +
1√
k

k∑
j=k0

(−F−1 + Gk,j+1)νj+1

�
= J1 + J2 + J3.

Since {ej} is a martingale difference sequence,

E(eT
i GT

k,iGk,jej) = E[E(ei|Fi−1)T GT
k,iGk,jej ] = 0, ∀i > j,
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which implies that

E‖J2‖2 =
1
k

k∑
j=k0

E
(
eT
j+1G

T
k,j+1Gk,j+1ej+1

) ≤ 1
k

k∑
j=k0

‖Gk,j+1‖2E‖ej+1‖2.

By (7.138), (7.152) and the uniform boundedness of Gkj , there exists a con-
stant c1 such that

E‖J2‖2 ≤ c1

k

k∑
j=k0

‖Gk,j+1‖ → 0, as k→∞. (7.161)

Therefore, J2 → 0 in probability.
By Lemma 7.8.2 and condition (B′

1),
∞∑

j=1

1√
j
E‖νj+1‖ =

∞∑
j=1

1√
j
O(γ(1+ζ)/2

j ) <∞.

By Kronecker’s lemma, we have

1√
k

k∑
j=k0

E‖νj+1‖ → 0, as k→∞.

Since Gkj is uniformly bounded with respect to both k and j, there exists
a constant c2 such that

E‖J3‖ ≤ c2√
k

k∑
j=k0

E‖νj+1‖ → 0, as k→∞.

Therefore, J3 converges to zero in probability.
By Lemma 7.8.2, J1 → N(0, S) in distribution. This, incorporating with

the convergence results of I1, I3, J2 and J3, concludes the theorem.

Proof of Theorem 7.8.3. Since the order of ςk is difficult to treat, we
consider the following stochastic approximation MCMC algorithm

θ̃k+1 = θ̃k + γk+1 (h(θk) + ε̃k+1) , (7.162)

where {θ̃k} and {ε̃k} are as defined in (7.143) and (7.144), respectively. Follow-
ing from Lemma 7.8.2-(ii), {ε̃k} forms a sequence of asymptotically unbiased
estimator of 0.

Let ¯̃
θn =

∑n
k=1 θ̃k/n. To establish that ¯̃

θ is an asymptotically efficient
estimator of θ∗, we will first show (in step 1)

√
n(¯̃θ− θ∗) → N(0, Γ), (7.163)
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where Γ = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ, and Q = limk→∞ E(ekeT
k ); and then

show (in step 2) that the asymptotic covariance matrix of
∑n

k=1 ε̃k/
√

n is
equal to Q.

Step 1. By (7.144), we have

¯̃
θn = θ̄n +

1
n

n∑
k=1

ς̃k. (7.164)

By Lemma 7.7.1, E‖Pθk−1u(θk−1, xk−1)‖ is uniformly bounded for k ≥ 1
and thus there exists a constant c such that

E‖ 1√
n

n∑
k=1

ς̃k‖ = E‖ 1√
n

n∑
k=1

γkPθk−1u(θk−1, xk−1)‖ ≤ c√
n

n∑
k=1

γk.

By Kronecker’s lemma and (B′
1),

1√
n

∑n
k=1 γk → 0. Hence,

1√
n

∑n
k=1 ς̃k = op(1) and

1
n

n∑
k=1

ς̃k = op(n−1/2), (7.165)

where op(·) means

Yk = op(Zk) if and only if Yk/Zk → 0 in probability, as k→∞.

Therefore,

¯̃
θn = θ̄n + op(n−1/2). (7.166)

Following from Theorem 7.8.2 and Slutsky’s theorem, (7.163) holds.

Step 2. Now we show the asymptotic covariance matrix of
∑n

k=1 ε̃k/
√

n is
equal to Q. Consider

E

(
1√
n

n∑
k=1

ε̃k

)(
1√
n

n∑
k=1

ε̃k

)T

− 1
n

(
n∑

k=1

E(ε̃k)

)(
n∑

k=1

E(ε̃k)

)T

=
1
n

n∑
k=1

E(ε̃k ε̃T
k ) +

1
n

∑∑
i�=j

E(ε̃iε̃
T
j )− 1

n

[
n∑

k=1

E(ε̃k)

][
n∑

k=1

E(ε̃k)

]T

= (I1) + (I2) + (I3)

By Kronecker’s lemma and (B′
1),

1√
n

n∑
k=1

γ
(1+ζ)/2
k → 0, as n→∞, (7.167)
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where ζ ∈ (0, 1) is defined in (B′
1). which, by Lemma 7.8.2-(iii), further

implies

1√
n

n∑
k=1

‖νk‖ → 0, as n →∞. (7.168)

By (7.144),

(I1) =
1
n

n∑
k=1

E(ekeT
k ) +

2
n

n∑
k=1

E(ekνT
k ) +

1
n

n∑
k=1

E(νkνT
k )

= (J1) + (J2) + (J3).

By Lemma 7.8.2, ‖νkνT
k ‖ = O(γ1+ζ

k ). Hence,

1
n

n∑
k=1

‖νkνT
k ‖ =

1√
n

1√
n

n∑
k=1

O(γ1+ζ
k ),

which, by (7.167), implies J3 → 0 as n →∞.

Following from Lemma 7.7.1, {‖ek‖} is uniformly bounded with respect
to k. Therefore, there exists a constant c such that

2
n

n∑
k=1

‖ekνT
k ‖ ≤

c

n

n∑
k=1

‖νk‖ → 0,

where the limit follows (7.168). Hence, J2 → 0 as n→∞.

By (7.139), E(ek+1e
T
k+1) = El(θk, xk). Since l(θ, x) is continuous in θ, it

follows from the convergence of θk that l(θk, x) converges to l(θ∗, x) a.s.
for any x ∈ X. Furthermore, following from Lemma 7.7.1 and Lebesgue’s
dominated convergence theorem, we conclude that El(θk, xk) converges
to El(θ∗, x), and thus

J1 → El(θ∗, x) = lim
k→∞

E(ekeT
k ) = Q.

Summarizing the convergence results of J1, J2 and J3, we conclude that
(I1) → Q as n →∞.

By (7.144), for i �= j, we have

E(ε̃iε̃
T
j ) = E

{(
ei + νi

)(
ej + νj

)T
}

= E
(
eie

T
j + νiν

T
j + eiν

T
j + νie

T
j

)
= E(νiν

T
j ),

(7.169)
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where the last equality follows from the result that {ek} is a martingale
difference sequence [Lemma 7.8.2-(ii)]. By (7.142), there exists a con-
stant c such that

‖νiν
T
j ‖ ≤ cγ

1+ζ
2

i γ
1+ζ
2

j ,

which implies∥∥∥∥∥∥ 1
n

∑∑
i�=j

νiν
T
j

∥∥∥∥∥∥ ≤ c

[
1√
n

n∑
i=1

γ
1+ζ
2

i

] 1√
n

n∑
j=1

γ
1+ζ
2

j

 . (7.170)

By (7.167), we have
1
n

∑∑
i�=j

E(νiν
T
j ) → 0, as n →∞. (7.171)

In summary of (7.169) and (7.171),

(I2) =
1
n

∑∑
i�=j

E(ε̃iε̃
T
j )→ 0, as n→∞. (7.172)

By Lemma 7.8.2 (i) and (ii), where it is shown that {ek} is a martingale
difference sequence, we have

(I3) =
1
n

[
n∑

k=1

E(ek + νk)

][
n∑

k=1

E(ek + νk)

]T

=

[
1√
n

n∑
k=1

E(νk)

][
1√
n

n∑
k=1

E(νk)

]T

.

which implies (I3) → 0 by (7.168).
Summarizing the convergence results of (I1), (I2) and (I3), the asymp-
totic covariance matrix of

∑n
k=1 ε̃k/

√
n is equal to Q. Combining with

(7.163), we conclude that ¯̃
θk is an asymptotically efficient estimator of θ∗.

Since ¯̃
θk and θ̄k have the same asymptotic distribution N(0, Γ), θ̄k is also

asymptotically efficient as an estimator of θ∗ This concludes the proof of
Theorem 7.8.3.

Proofs of Theorems 7.8.4 and 7.8.5. These theorems can be proved
using Theorems 7.8.1 and 7.8.2 by verifying that the modified SAMC algorithm
satisfies the conditions (B2), (B3) and (B′

4). The condition (B2) can be verified
as in Section 7.7.1.3. The condition (B3) and (B′

4) can be verified as follows.

• Condition (B3). Since in the modified SAMC algorithm, θ(m)
k is restricted

to a constant,we redefine θk = (θ(1)
k , . . . , θ

(m−1)
k ) in this proof. To simplify

notations, we also drop the subscript k, denoting θk by θ and xk by x.



294 STOCHASTIC APPROXIMATION MONTE CARLO

Since the invariant distribution of the MH kernel is pθ(x), we have, for
i = 1, . . . , m− 1,

E(I{x∈Ei} − πi) =
∫
X

(I{x∈Ei} − πi)pθ(x)dx

=

∫
Ei

ψ(x)dx/eθ(i)∑m
j=1[

∫
Ej

ψ(x)dx/eθ(j) ]
− πi =

Si

S
− πi,

(7.173)

where Si =
∫

Ei
ψ(x)dx/eθ(i)

and S =
∑m−1

i=1 Si +
∫

Em
ψ(x)dx. Thus,

h(θ) =
∫
X

H(θ, x)p(dx) =
(

S1

S
− π1, . . . ,

Sm−1

S
− πm−1

)T

.

It follows from (7.173) that h(θ) is a continuous function of θ. Let
Λ(θ) = 1 − 1

2

∑m−1
j=1 (Sj

S − πj)2 and let v(θ) = − log(Λ(θ)). As shown
below, v(θ) has continuous partial derivatives of the first order. Since
0 ≤ 1

2

∑m−1
j=1 (Sj

S − πj)2 < 1
2 [
∑m−1

j=1 (Sj

S )2 + π2
j )] ≤ 1 for all θ ∈ Θ, v(θ)

takes values in the interval [0,∞).
Solving the system of equations formed by (7.173), we have the single
solution θ∗ = (θ(1)

∗ , . . . , θ
(m−1)
∗ )T , where

θ
(i)
∗ = c + log(

∫
Ei

ψ(x)dx)− log(πi), i = 1, . . . , m− 1,

and c = − log(
∫

Em
ψ(x)dx) + log(πm). It is obvious v(θ∗) = 0.

To verify (B3), we have the following calculations:

∂S

∂θ(i)
=

∂Si

∂θ(i)
= −Si,

∂Si

∂θ(j)
=

∂Sj

∂θ(i)
= 0,

∂
(

Si

S

)
∂θ(i)

= −Si

S
(1− Si

S
),

∂
(

Si

S

)
∂θ(j)

=
∂
(Sj

S

)
∂θ(j)

=
SiSj

S2
,

(7.174)

for i, j = 1, . . . , m− 1 and i �= j. Let b =
∑m−1

j=1 Sj/S, then we have

∂v(θ)
∂θ(j)

=
1

2Λ(θ)

m−1∑
j=1

∂(Sj

S − πj)2

∂θ(j)

=
1

Λ(θ)

∑
j �=i

(
Sj

S
− πj

)
SiSj

S2
−

(
Si

S
− πi

)
Si

S

(
1− Si

S

)
=

1
Λ(θ)

m−1∑
j=1

(
Sj

S
− πj

)
SiSj

S2
−

(
Si

S
− πi

)
Si

S


=

1
Λ(θ)

[
bµξ

Si

S
−

(
Si

S
− πi

)
Si

S

]
,

(7.175)
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for i = 1, . . . , m− 1, where it is defined µξ =
∑m−1

j=1 (Sj

S −πj)
Sj

bS . Thus,

〈∇v(θ), h(θ)〉= 1
Λ(θ)

[
b2µξ

m−1∑
i=1

(
Si

S
−πi

)
Si

bS
−b

m−1∑
i=1

(
Si

S
−πi

)2
Si

bS

]

= − 1
Λ(θ)

[
b

m∑
i=1

(
Si

S
− πi

)2
Si

bS
− b2µ2

ξ

]

= − 1
Λ(θ)

(
bσ2

ξ + b(1− b)µ2
ξ

)
≤ 0,

(7.176)

where σ2
ξ denotes the variance of the discrete distribution defined in

Table 7.12.

If θ = θ∗, 〈∇v(θ), h(θ)〉 = 0; otherwise, 〈∇v(θ), h(θ)〉 < 0. Condition
(B3) is verified.

• Condition (B′
4). To verify this condition, we first show that h(θ) has

bounded second derivatives. Continuing the calculation in (7.174), we
have

∂ 2(Si

S )
∂(θ(i))2

=
Si

S

(
1− Si

S

)(
1− 2Si

S

)
,

∂ 2(Si

S )
∂θ(j)∂θ(i)

= −SiSj

S2

(
1− 2Si

S

)
,

which implies that the second derivative of h(θ) is uniformly bounded
by noting the inequality 0 < Si

S < 1.

Let F = ∂h(θ)/∂θ. By (7.174), we have

F =


−S1

S (1− S1
S ) S1S2

S2 · · · S1Sm−1
S2

S2S1
S2 −S2

S (1− S2
S ) · · · S2Sm−1

S2

...
. . .

...
...

Sm−1S1
S2 · · · · · · −Sm−1

S (1− Sm−1
S )

 .

Table 7.12 Discrete distribution of (ξ).

state (ξ) S1
S − π1 · · · Sm−1

S − πm−1

Prob. S1
bS · · · Sm−1

bS



296 STOCHASTIC APPROXIMATION MONTE CARLO

Table 7.13 Discrete distribution of Z.

state (Z) z1 · · · zm−1

Prob. S1
bS · · · Sm−1

bS

Thus, for any nonzero vector z = (z1, . . . , zm−1)T ,

zT Fz = −
m−1∑

i=1

z2
i

Si

S
−

(
m−1∑
i=1

zi
Si

S

)2


= −b

m−1∑
i=1

z2
i

Si

bS
−

(
m−1∑
i=1

zi
Si

bS

)2
− b(1− b)

(
m−1∑
i=1

zi
Si

bS

)2

= −bVar(Z)− b(1− b) (E(Z))2 < 0,

(7.177)

where E(Z) and Var(Z) denote, respectively, the mean and variance of
the discrete distribution defined by the Table 7.13.

This implies that the matrix F is negative definite and thus stable.
Applying Taylor expansion to h(θ) at the point θ∗, we have

‖h(θ)− F(θ− θ∗)‖ ≤ c‖θ− θ∗‖1+ρ,

for some constants ρ ∈ (ζ, 1] and c > 0, by noting that h(θ∗) = 0 and that the
second derivatives of h(θ) are uniformly bounded with respect to θ. Therefore,
(B′

4) is satisfied.

Exercises

7.1 Compare multicanonical Monte Carlo, the Wang-Landau algorithm,
and SAMC for the 10-state problem described in Example 7.1.

7.2 Use SAMC to estimate the mean and covariance matrix of the following
distribution:

f(x) =
1
3
N

[(−8
−8

)
,

(
1 0.9

0.9 1

)]
+

1
3
N

[(
6
6

)
,

(
1 −0.9
−0.9 1

)]
+

1
3
N

[(
0
0

)
,

(
1 0
0 1

)]
.

7.3 Implement SAMC for evaluating p-values of the two-sample t-test.
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7.4 Implement the SAMC trajectory averaging estimator for the change-
point problem described in Section 7.6.1, and compare it with the
SSAMC and MSAMC estimators.

7.5 Implement CSAMC for the mixture Gaussian distribution specified
in (7.56).

7.6 Consider the Ising model with the likelihood function

f(x|θ) = exp

θ
∑
i∼j

xixj

 /Z(θ),

where xi = ±1 and i ∼ j denotes the nearest neighbors on the lattice,
and Z(θ) is an intractable normalizing constant. Estimate the function
Z(θ),−1 ≤ θ ≤ 1, using CSAMC by viewing Z(θ) as a marginal density
of g(x, θ) ∝ exp(θ

∑
i∼j xixj).

7.7 Implement ASAMC for the multimodal function H(x) given in Exam-
ple 7.2.

7.8 Implement AESAMC for the test functions listed in Appendix 7A.

7.9 Prove the convergence of the generalized 1/K-ensemble sampling
algorithm.

7.10 Prove the convergence of the generalized Wang-Landau algorithm.

7.11 Prove the convergence of the AESAMC algorithm.

7.12 Prove Theorem 7.7.3.

7.13 Prove the asymptotic normality of {θt} for the SAMCMC algorithm
described in Section 7.7.1.1, assuming appropriate conditions.
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Appendix 7A: Test Functions for Global
Optimization

This appendix contains the description of 40 test functions used in
Section 7.6.3.2. (Recompiled from Laguna and Mart́ı , 2005; Hedar and
Fukushima, 2006; and Hirsch et al ., 2006.)

1. Branin function

Definition: f(x) =
(
x2 − ( 5

4π2 )x2
1 + 5

π x1 − 6
)2+10(1− 1

8π ) cos(x1)+10.

Search space: −5 ≤ x1, x2 ≤ 15.

Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475);
f(x∗) = 0.

2. Bohachevsky function

Definition: f(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7.

Search space: −50 ≤ x1, x2 ≤ 100.

Global minimum: x∗ = (0, 0); f(x∗) = 0.

3. Easom function

Definition: f(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

Search space: −100 ≤ x1, x2 ≤ 100.

Global minimum: x∗ = (π, π); f(x∗) = −1.

4. Goldstein and Price function

Definition: f(x) = [1+(x1 +x2 +1)2(19−14x1 +13x2
1−14x2 +6x1x2 +

3x2
2)][(30+(2x1−3x2)2(18−32x1 +12x2

1−48x2−36x1x2 +27x2
2)].

Search space: −2 ≤ x1, x2 ≤ 2.

Global minimum: x∗ = (0,−1); f(x∗) = 3.

5. Shubert function

Definition: f(x) =
(∑5

i=1 i cos((i+1)x1+i)
)(∑5

i=1 i cos((i+1)x2+i)
)
.

Search space: −10 ≤ x1, x2 ≤ 10.

Global minima: 18 global minima and f(x∗) = −186.7309.

6. Beale function

Definition: f(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x
2
2)2 + (2.625−

x1 + x1x
3
2)2.
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Search space: −4.5 ≤ x1, x2 ≤ 4.5.

Global minimum: x∗ = (3, 0.5) and f(x∗) = 0.

7. Booth function

Definition: f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2.

Search space: −10 ≤ x1, x2 ≤ 10.

Global minimum: x∗ = (1, 3) and f(x∗) = 0.

8. Matyas function

Definition: f(x) = 0.26(x2
1 + x2

2)− 0.48x1x2.

Search space: −5 ≤ x1, x2 ≤ 10.

Global minimum: x∗ = (0, 0) and f(x∗) = 0.

9. Hump function

Definition: f(x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2.

Search space: −5 ≤ x1, x2 ≤ 5.

Global minima: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126) and
f(x∗) = 0.

10. Schwefel function SC2

Definition: fn(x) = 418.9829n−∑n
i=1(xi sin

√|xi|).
Search space: −500 ≤ xi ≤ 500, i = 1, . . . , n.

Global minimum: x∗ = (1, . . . , 1) and fn(x∗) = 0.

11. Rosenbrock function R2

Definition: fn(x) =
∑n−1

i=1 [100(x2
i − xi+1)2 + (xi − 1)2].

Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n.

Global minimum: x∗ = (1, . . . , 1) and f(x∗) = 0.

12. Zakharov function Z2

Definition: f(x) =
∑n

i=1 x2
i + (

∑n
i=1 0.5ixi)2 + (

∑n
i=1 0.5ixi)4.

Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n.

Global minimum: x∗ = (0, . . . , 0) and f(x∗) = 0.

13. De Joung function

Definition: f(x) = x2
1 + x2

2 + x2
3.
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Search space: −2.56 ≤ xi ≤ 5.12, i = 1, 2, 3.

Global minimum: x∗ = (0, 0, 0) and f(x∗) = 0.

14. Hartmann function H3,4

Definition: f3,4(x) = −∑4
i=1 αi exp(−∑3

j=1 Aij(xj − Pij)2), α =
(1, 1.2, 3, 3.2).

A =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , P = 10−4


6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .

Search space: 0 ≤ xi ≤ 1, i =, 1, 2, 3.

Global minimum: x∗ = (0.114614, 0.555649, 0.852547) and f(x∗) =
−3.86278.

15. Colville function

Definition: f(x) = 100(x2
1−x2)2 +(x1−1)2 +(x3−1)2 +90(x2

3−x4)2 +
10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).

Search space: −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.

Global minimum: x∗ = (1, 1, 1, 1) and f(x∗) = 0.

16. Shekel function S4,5

Definition: f4,m(x) = −∑m
j=1 [

∑4
i=1(xi − Cij)2 + βj ]−1, β =

(0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5)

C =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6


Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4.

Global minimum: x∗ = (4, . . . , 4); f4,5(x∗) = −10.1532, f4,7(x∗) =
−10.4029, f4,10(x∗) = −10.5364.

17. Shekel function S4,7 (See function 16)

18. Shekel function S4,10 (See function 16)

19. Perm function P4,0.5

Definition: fn,β(x) =
∑n

k=1[
∑n

i=1(i
k + β)((xi/i)k − 1)]2.
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Search space: −n ≤ xi ≤ n, i = 1, . . . , n.

Global minimum: x∗ = (1, 2, . . . , n) and fn,β(x∗) = 0.

20. Perm function P 0
4,0.5

Definition: f 0
n,β(x) =

∑n
k=1[

∑n
i=1(i + β)(xk

i − (1/i)k)]2.

Search space: −n ≤ xi ≤ n, i = 1, . . . , n.

Global minimum: x∗ = (1, 1
2 , . . . , 1

n ) and f0
n,β(x∗) = 0.

21. Power sum function PS8,18,44,144

Definition: fb1,...,bn
(x) =

∑n
k=1[(

∑n
i=1 xk

i )− bk]2.

Search space: 0 ≤ xi ≤ n, i = 1, . . . , n.

Global minimum: x∗ = (1, 2, 2, 3) and fb1,...,bn
(x∗) = 0.

22. Hartmann function H6,4

Definition: f6,4(x) = −∑4
i=1 αi exp(−∑6

j=1 Bij(xj − Pij)2),

Table 7.14 Coefficients of f6,4(x).

i Bij ai

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

and

P =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 .

Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6.

Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332,
0.311652, 0.657300) and f(x∗) = −3.32237.

23. Schwefel function SC6 (See function 10).

24. Trid function T6

Definition: fn(x) =
∑n

i=1(xi − 1)2 −∑n
i=2 xixi−1.
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Search space: −n2 ≤ xi ≤ n2, i = 1, . . . , n.

Global minima: (a) n = 6, x∗
i = i(7 − i), i = 1, . . . , n, fn(x∗) = −50;

(b) n = 10, x∗
i = i(11− i), i = 1, . . . , n, fn(x∗) = −210.

25. Trid function T10 (See function 24).

26. Rastrigin RT10

Definition: fn(x) = 10n +
∑n

i=1(x
2
i − 10 cos(2πxi)).

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0 and fn(x∗) = 0.

27. Griewank function G10

Definition: fn(x) =
∑n

i=1
x2

i

4000 −
∏n

i=1 cos(xi/
√

i) + 1.

Search space: −300 ≤ xi ≤ 600, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0) and fn(x∗) = 0.

28. Sum squares function SS10

Definition: fn(x) =
∑n

i=1 ix2
i .

Search space: −5 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0) and fn(x∗) = 0.

29. Rosenbrock function R10 (See function 11).

30. Zakharov function Z10 (See function 12).

31. Rastrigin function RT20 (See function 26).

32. Griewank function G20 (See function 27).

33. Sum squares function SS20 (See function 28).

34. Rosenbrock function R20 (See function 11).

35. Zakharov function Z20 (See function 12).

36. Powell function PW24

Definition: fn(x) =
∑n/4

i=1(x4i−3+10x4i−2)2+5(x4i−1−x4i)2+(x4i−2−
x4i−1)4 + 10(x4i−3 − x4i)4.

Search space: −4 ≤ xi ≤ 5, i = 1, . . . , n.

Global minimum: x∗ = (3,−1, 0, 1, 3, . . . , 3,−1, 0, 1) and fn(x∗) = 0.
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37. Dixon and Price function DP25

Definition: fn(x) = (x1 − 1)2 +
∑n

i=2 i(2x2
i − xi−1)2.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗
i = 2−

2i−2
2i and fn(x∗) = 0.

38. Levy function L30

Definition: fn(x) = sin2(πy1) +
∑n−1

i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+ (yn − 1)2(1 + 10 sin2(2πyn)), yi = 1 + (xi − 1)/4, i = 1, . . . , n.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗ = (1, . . . , 1) and fn(x∗) = 0.

39. Sphere function SR30

Definition: fn(x) =
∑n

i=1 x2
i .

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0) and fn(x∗) = 0.

40. Ackley function AK30

Definition: fn(x) = 20 + e − 20 exp
{
−1

5

√
1
n

∑n
i=1 x2

i

}
−

exp
{− 1

n

∑n
i=1 cos(2πxi)

}
. Search space: −15 ≤ xi ≤ 30, i =

1, . . . , n.

Global minimum: x∗ = (0, . . . , 0) and fn(x∗) = 0.
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Chapter 8

Markov Chain Monte
Carlo with Adaptive
Proposals

The stochastic approximation Monte Carlo algorithms studied in Chapter 7
can be viewed as types of adaptive Markov chain Monte Carlo algorithms
for which the invariant distribution varies from iteration to iteration, while
keeping the samples correctly weighted with respect to the target distribution.
In this chapter, we will study a different type of adaptive Markov chain Monte
Carlo algorithm, for which the proposal distribution can be changed infinitely
often during the course of simulation, while preserving stationarity of the
target distribution.

It is known that the efficiency of the Metropolis-Hastings algorithm can be
improved by careful tuning of the proposal distribution. On the optimal set-
ting of proposal distributions, some theoretical results have been obtained in
the literature. For example, under certain settings, Gelman et al. (1996) show
that the optimal covariance matrix for a multivariate Gaussian random walk
Metropolis algorithm is (2.382/d)Σπ, where d is the dimension and Σπ is the
d × d covariance matrix of the target distribution π(·). However, Σπ is gener-
ally unknown in advance. The MCMC algorithms we will study in this chapter
aim to provide an automated tuning of proposal distributions such that cer-
tain optimal criteria, theoretical or intuitive, can be achieved dynamically.

To motivate the design of adaptive MCMC algorithms, we first consider an
example, which was originally given in Andrieu and Moulines (2006). Consider
the Markov transition probability matrix

Pθ =
(

1− θ θ
θ 1− θ

)
,
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on the state space X = {1, 2} for some fixed θ ∈ (0, 1). It is easy to see that
for any θ, Pθ leaves π = (1/2, 1/2) invariant; that is, πPθ = π. However, if we
let θ : X → (0, 1) be a function of the current state X, that is, introducing
self-adaptation of proposals, then the transition probability matrix becomes

P̃ =
(

1− θ(1) θ(1)
θ(2) 1− θ(2)

)
,

which admits (θ(2)/(θ(1) + θ(2)), θ(1)/(θ(1) + θ(2))) as its invariant distri-
bution. This example implies that introduction of self-adaptation of proposals
might not preserve the stationarity of the target distribution. Similar examples
can be found in Gelfand and Sahu (1994) and Roberts and Rosenthal (2007).

To recover the target distribution π, one can either remove or diminish
the dependence of Pθ on X with iterations. This has led to some adaptive
MCMC algorithms developed in the literature. These can be divided roughly
into the four categories listed below, and described in Sections 8.1–8.4.

• Stochastic approximation-based adaptive algorithms. The algorithms di-
minish the adaptation gradually with iterations.

• Adaptive independent MH algorithms . The algorithms work with pro-
posals which are adaptive, but do not depend on the current state of
the Markov chain. The diminishing adaptation condition may not nec-
essarily hold for them.

• Regeneration-based adaptive algorithms . The algorithms are designed
on a basic property of the Markov chain, whose future outputs become
independent of the past after each regeneration point.

• Population-based adaptive algorithms . The algorithms work on an en-
larged state space, which gives us much freedom to design adaptive
proposals and to incorporate sophisticated computational techniques
into MCMC simulations.

If the proposals are adapted properly, the above algorithms can converge
faster than classical MCMC algorithms, since more information on the target
distribution may be included in the proposals. Even so, in sampling from
multimodal distributions, they may suffer the same local-trap problem as
the classical MCMC algorithms, as the proposal adapting technique is not
dedicated to accelerating the transitions between different modes.

8.1 Stochastic Approximation-Based
Adaptive Algorithms

Haario et al. (2001) prescribe an adaptive Metropolis algorithm which learns
to build an efficient proposal distribution on the fly; that is, the proposal
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distribution is updated at each iteration based on the past samples. Under
certain settings, the proposal distribution will converge to the ‘optimal’ one.
Andrieu and Robert (2001) observe that the algorithm of Haario et al. (2001)
can be viewed as a stochastic approximation algorithm (Robbins and Monro,
1951). Under the framework of stochastic approximations, Atchadé and
Rosenthal (2005) and Andrieu and Moulines (2006) prove the ergodicity of
more general adaptive algorithms. Andrieu and Moulines (2006) also prove a
central limit theorem result. The theory on the adaptive MCMC algorithms
is further developed by Roberts and Rosenthal (2007) and Yang (2007).
They present somewhat simpler conditions, which still ensure ergodicity for
specific target distributions.

Below, we provide an overview of the theory of adaptive MCMC algo-
rithms, and Section present the adaptive Metropolis algorithm and its variants
developed under the framework of stochastic approximation.

8.1.1 Ergodicity and Weak Law of Large Numbers

Let π(·) be a fixed target distribution defined on a state space X ⊂ Rd with
σ-algebra F. Let {Pθ}θ∈Θ be a collection of Markov chain transition kernels
on X, each admitting π(·) as the stationary distribution, i.e., (πPθ)(·) = π(·).
Assuming that Pθ is irreducible and aperiodic, then Pθ is ergodic with respect
to π(·); that is, limn→∞ ‖Pn

θ (x, ·)−π(·)‖ = 0 for all x ∈ X, where ‖µ(·)−ν(·)‖ =
supA∈F ‖µ(A) − ν(A)‖ is the usual total variation distance. So, if θ is kept
fixed, then the samples generated by Pθ will eventually converge to π(·) in
distribution.

However, some transition kernel Pθ may lead to a far less efficient Markov
chain than others, and it is hard to know in advance which transition kernel is
preferable. To deal with this, adaptive MCMC algorithms allow the transition
kernel to be changed at each iteration according to certain rules. Let Γn be a
Θ-valued random variable, which specifies the transition kernel to be used at
iteration n. Let Xn denote the state of the Markov chain at iteration n. Thus,

Pθ(x, A) = P(Xn+1 ∈ A|Xn = x, Γn = θ,Gn), A ∈ F,

where Gn = σ(X0, . . . , Xn, Γ0, . . . ,Γn) is a filtration generated by {Xi, Γi}i≤n.
Define

An((x, θ), B) = P(Xn ∈ B|X0 = x, Γ0 = θ), B ∈ F,

which denotes the conditional probabilities of Xn given the initial conditions
X0 = x and Γ0 = θ, and

T (x, θ, n) = ‖An((x, θ), ·)− π(·)‖ = sup
B∈F

|An((x, θ), B)− π(B)|,

which denotes the total variation distance between the distribution of Xn

and the target distribution π(·).
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To ensure the ergodicity of the adaptive Markov chain, that is,
limn→∞ T (x, θ, n) = 0 for all x ∈ X and θ ∈ Θ, Roberts and Rosenthal (2007)
prescribe two conditions, namely the bounded convergence condition and the
diminishing adaptation condition. Let

Mε(x, θ) = inf{n ≥ 1 : ‖Pn
θ (x, ·)− π(·)‖ ≤ ε},

be the convergence time of the kernel Pθ when starting in state x ∈ X. The
bounded convergence condition is that for any ε> 0, the stochastic process
{Mε(Xn, Γn)} is bounded in probability given the initial values X0 = x and
Γ0 = θ. Let

Dn = sup
x∈X

‖PΓn+1(x, ·)− PΓn
(x, ·)‖.

The diminishing adaptation conditions states that limn→∞ Dn = 0, which can
be achieved by modifying the parameters by smaller and smaller amounts, as
in the adaptive Metropolis algorithm of Haario et al. (2001), or by doing the
adaption with smaller and smaller probability, as in the adaptive evolution-
ary Monte Carlo algorithm of Ren et al. (2008). In summary, Roberts and
Rosenthal (2007) prove the following theorem:

Theorem 8.1.1 For an MCMC algorithm with adaptive proposals, if it sat-
isfies the bounded convergence and diminishing adaptation conditions, then it
is ergodic with respect to the stationary distribution π(·).

Furthermore, they prove that the bounded convergence condition is sat-
isfied whenever X × Θ is finite, or is compact in some topology in which
either the transition kernels Pθ, or the MH proposals, have jointly continuous
densities. Note that Theorem 8.1.1 does not require that Γn converges.

Since the quantity Mε(x, θ) is rather abstract, Roberts and Rosenthal
(2007) give one condition, simultaneous geometrical ergodicity , which ensures
the bounded convergence condition. A family {Pθ}θ∈Θ of Markov chain tran-
sition kernels is said to be simultaneously geometrically ergodic if there exists
C ∈ F, a drift function V : X → [1,∞), δ > 0, λ < 1 and b < ∞, such that
supx∈C V(x) = v <∞ and the following conditions hold:

(i) Minorization condition. For each θ ∈ Θ, there exists a probability mea-
sure νθ(·) on C with Pθ(x, ·) ≥ δνθ(·) for all x ∈ C.

(ii) Drift condition. PθV ≤ λV + bI(x ∈ C), where I(·) is the indicator
function.

This results in the following theorem:

Theorem 8.1.2 For an MCMC algorithm with adaptive proposals, if it sat-
isfies the diminishing adaptation condition and the family {Pθ}θ∈Θ is simul-
taneously geometrically ergodic with E (V(X0)) < ∞, then it is ergodic with
respect to the stationary distribution π(·).
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In addition to the ergodicity of the Markov chain, in practice, one is often
interested in the weak law of large numbers (WLLN), that is, whether or
not the sample path average (1/n)

∑n
i=1 h(Xi) will converge to the mean

Eπh(x) =
∫

h(x)π(x)dx for some function h(x). For adaptive MCMC al-
gorithms, this is to some extent even more important than the ergodicity.
Under slightly stronger conditions, the simultaneous uniform ergodicity and
diminishing adaptation conditions, Roberts and Rosenthal (2007) show that
(1/n)

∑n
i=1 h(Xi) will converge to Eπh(x), provided that h(x) is bounded. A

family {Pθ}θ∈Θ of Markov chain transition kernels is said to be simultaneously
uniformly ergodic if sup(x,θ)∈X×Θ Mε(x, θ) < ∞. In summary, the WLLN for
adaptive MCMC algorithms can be stated as:

Theorem 8.1.3 For an MCMC algorithm with adaptive proposals, if it sat-
isfies the simultaneous uniform ergodicity and diminishing adaptation condi-
tions, then for any starting values x ∈ X and θ ∈ Θ,

1
n

n∑
i=1

h(Xi) → Eπh(x),

provided that h : X → R is a bounded measurable function.

In Theorem 8.1.3, the function h(x) is restricted to be bounded. This is
different from the WLLN established for conventional MCMC algorithms (see,
e.g., Tierney, 1994). For MCMC algorithms with adaptive proposals, some
constraints on the boundedness of h(x) may be necessary. A counterexample
is constructed in Yang (2007), that the WLLN may not hold for unbounded
measurable functions even if the ergodicity holds. In Andrieu and Moulines
(2006), more restrictive conditions are imposed on the transition kernels, for
example, to establish WLLN, h(x) is still required to be bounded by the drift
function in a certain form. Further research on this issue is of great interest
from both theoretical and practical perspectives.

8.1.2 Adaptive Metropolis Algorithms

Adaptive Metropolis Algorithm. Let π(x) denote the target distri-
bution. Consider a Gaussian random walk MH algorithm, for which the
proposal distribution is q(x, y) = N(y; x, Σ), and N(y; x, Σ) denotes the
density of a multivariate Gaussian with mean x and covariance matrix
Σ. It is known that either too small or too large a covariance matrix will
lead to a highly correlated Markov chain. Under certain settings, Gelman
et al. (1996) show that the ‘optimal’ covariance matrix for the Gaussian
random walk MH algorithm is (2.382/d)Σπ, where d is the dimension of x
and Σπ is the true covariance matrix of the target distribution π(·). Haario
et al. (2001) propose learning Σπ ‘on the fly’; that is, estimating Σπ from
the empirical distribution of the available Markov chain outputs, and thus
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adapting the estimate of Σ while the algorithm runs. Let {γk} denote a gain
factor sequence. As for the standard stochastic approximation algorithm, it
is required to satisfy the following conditions:

∞∑
k=1

γk =∞,
∞∑

k=1

γ1+δ
k <∞,

for some δ ∈ (0, 1]. As mentioned in Chapter 7, the former condition ensures
that any point of Θ can eventually be reached, and the latter condition
ensures that the noise introduced by new observations is contained and does
not prevent convergence. Haario et al. (2001) suggest the choice γk = O(1/k);
with the above notations, the algorithm of Haario et al. (2001) can be
summarized as follows:

Adaptive Metropolis Algorithm I
1. Initialize X0, µ0 and Σ0.

2. At iteration k + 1, given Xk, µk and Σk

(a) Generate Xk+1 via the MH kernel Pθk
(Xk, ·), where θk = (µk, Σk).

(b) Update

µk+1 = µk + γk+1(Xk+1 − µk),

Σk+1 = Σk + γk+1

[
(Xk+1 − µk)(Xk+1 − µk)T − Σk

]
.

Haario et al. (2001) showed that under certain conditions, such as X is
compact and εId is added to each empirical covariance matrix at each it-
eration (which implies Θ to be compact), this algorithm is ergodic and the
WLLN holds for bounded functionals. These results can also be implied from
Theorems 8.1.1 and 8.1.3 presented in Section 8.1.1.

The adaptive Metropolis algorithm has been generalized in various ways
by C. Andrieu and his coauthors. In what follows we give several variants of
the algorithm, which have been presented in Andrieu and Thoms (2008).

An Improved Adaptive Metropolis Algorithm. Let λΣk denote the
covariance matrix used by the adaptive Metropolis algorithm at iteration k,
where λ is preset at 2.382/d as suggested by Gelman et al. (1996). As pointed
out by Andrieu and Thoms (2008), if λΣk is either too large in some directions
or too small in all directions, the algorithm will have either a very small or
a very large acceptance probability, rendering a slow learning of Σπ due to
limited exploration of the sample space X.
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To alleviate this difficulty, Andrieu and Thoms (2008) propose simulta-
neously adapting the parameter λ and the covariance matrix Σ in order to
coerce the acceptance probability to a preset and sensible value, such as 0.234.
Roberts and Rosenthal (2001) show that, for large d, the optimal acceptance
rate of the random walk Metropolis algorithm is 0.234 when the components
of π(·) are approximately uncorrelated but heterogeneously scaled. Assuming
that for any fixed covariance matrix Σ the corresponding expected accep-
tance rate is a nonincreasing function of λ, the following recursion can be
used for learning λ according to the Robbins-Monro algorithm (Robbins and
Monro, 1951):

log(λk+1) = log(λk) + γk+1[α(Xk, X ∗)− α∗],

where X∗ denotes the proposed value, and α∗ denotes the targeted acceptance
rate, for example, 0.234.

In summary, the modified adaptive Metropolis algorithm can be described
as follows:

Adaptive Metropolis Algorithm II (Steps)
1. Initialize X0, λ0, µ0 and Σ0.

2. At iteration k + 1, given Xk, λk, µk and Σk

(a) Draw X∗ from the proposal distribution N(Xk, λkΣk), set Xk+1 =
X∗ with probability α(Xk, X ∗), specified by the MH rule and set
Xk+1 = Xk with the remaining probability.

(b) Update

log(λk+1) = log(λk) + γk+1[α(Xk, X∗ )− α∗],
µk+1 = µk + γk+1(Xk+1 − µk),
Σk+1 = Σk + γk+1

[
(Xk+1 − µk)(Xk+1 − µk)T − Σk

]
.

The adaption of λ can be very useful in the early stage of the simulation,
although it is likely not needed in the long run.

Adaptive Metropolis-within-Gibbs Algorithm. In algorithms I and II,
all components are updated simultaneously, this might not be efficient when
the dimension d is high. The reason is that the scaling of λΣ may be correct
in some directions, but incorrect in others. Motivated by this, Andrieu and
Thoms (2008) propose the following adaptive Metropolis algorithm, which
can be viewed as an adaptive version of the Metropolis-with-Gibbs sampler
with random scanning.
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Adaptive Metropolis Algorithm III (Steps)

1. Initialize X0, µ0, Σ0, and λ
(1)
0 , . . . , λ

(d)
0 .

2. At iteration k + 1, given Xk, µk, Σk, and λ
(1)
k , . . . , λ

(d)
k .

(a) Choose a component i ∼ Uniform{1, . . . , d}.
(b) Draw Z from N(0, λ

(i)
k [Σk]i,i), where [Σk]i,i denotes the ith di-

agonal element of Σk. Set Xk+1 = Xk + Zei with probability
α(Xk, Xk + Zei), and set Xk+1 = Xk with the remaining proba-
bility, where ei is a vector with zeros everywhere but 1 for its i-th
component.

(c) Update

log(λ(i)
k+1) = log(λ(i)

k ) + γk+1[α(Xk, Xk + Zei)− α∗],
µk+1 = µk + γk+1(Xk+1 − µk),
Σk+1 = Σk + γk+1

[
(Xk+1 − µk)(Xk+1 − µk)T − Σk

]
.

and set λ
(j)
k+1 = λ

(j)
k for j �= i.

For this algorithm, α∗ is usually set to a high value, for example, 0.44,
in which there is only a single component updated at each iteration. Note
that it is redundant to use both the scaling λ(i) and [Σ]i,i in this algorithm.
In practice, one may choose to combine both quantities into a single scaling
factor. One potential advantage of algorithm III is that it gathers information
about π(·), which may be used by more sophisticated and more global updates
during simulations.

8.2 Adaptive Independent
Metropolis-Hastings Algorithms

Holden et al. (2009) describe an independent MH algorithm, for which the
proposal is adaptive with (part of) past samples, but avoids the requirement
of diminishing adaptation.

Let qt(z|yt−1) denote the proposal used at iteration t, where yt−1 denotes
the set of past samples used in forming the proposal. Since the basic require-
ment for the independent MH algorithm is that its proposal is independent
of the current state xt, yt−1 can not include xt as an element. Suppose that
z has been generated from the proposal qt(z|yt−1). If it is accepted, then set
xt+1 = z and append yt−1 with xt. Otherwise, set xt+1 = xt and append yt−1

with z. The difference between the traditional independent MH algorithm and
the adaptive independent MH algorithm is only that the proposal function
qt(·) may depend on a history vector, which can include all samples that π(x)
has been evaluated except for the current state of the Markov chain. The
algorithm can be summarized as follows:
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Adaptive Independent MH Algorithm (Steps)
1. Set y0 = ∅, and generate an initial sample x0 in X.

2. For t = 1, . . . , n:

(a) Generate a state z from the proposal qt(z|yt−1), and calculate the
acceptance probability

α(z, xt, yt−1) = min
{

1,
π(z)qt(xt|yt−1)
π(xt)qt(z|yt−1)

}
.

(b) If it is accepted, set xt+1 = z and yt = yt−1 ∪ {xt}. Otherwise,
set xt+1 = xt and yt = yt−1 ∪ {z}.

Holden et al. (2009) show the following theorem for the algorithm, which
implies that the chain never leaves the stationary distribution π(x) once it
is reached.

Theorem 8.2.1 The target distribution π(x) is invariant for the adap-
tive independent MH algorithm; that is, pt(xt|yt−1) = π(xt) implies
pt(xt+1|yt) = π(xt+1), where pt(·|·) denotes the distribution of xt conditional
on the past samples.

Proof : Assume pt(xt|yt−1) = π(xt) holds. Let ft(yt) denote the joint dis-
tribution of yt, and let w be the state appended to the history at iteration
t + 1. Then,

pt+1(xt+1|yt)ft(yt) = ft−1(yt−1)
{
π(w)qt(xt+1|yt−1)α(xt+1, w, yt−1)

+ π(xt+1)qt(w|yt−1)[1− α(w, xt+1, yt−1)]
}

= ft−1(yt−1)
{
π(xt+1)qt(w|yt−1) + π(w)qt(xt+1|yt−1)α(xt+1, w, yt−1)

− π(xt+1)qt(w|yt−1)α(w, xt+1, yt−1)
}

= π(xt+1)qt(w|yt−1)ft−1(yt−1),

which implies pt+1(xt+1|yt) = π(xt+1).

The proof tells us that if qt(·) depends on xt, then w has to be integrated
out to get pt+1(xt+1|yt) = π(xt+1). This is also the reason why yt−1 can not
be extended to include xt.

In addition, Holden et al. (2009) show that the adaptive independent MH
algorithm can converge geometrically under a strong Doeblin condition: for
each proposal distribution, there exists a function βt(yt−1) ∈ [0, 1] such that

qt(z|yt−1) ≥ βt(yt−1)π(z), for all (z, x, yt−1) ∈ Xt+1 and all t > 1, (8.1)

which essentially requires that all the proposal distributions have uniformly
heavier tails than the target distribution.
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Theorem 8.2.2 Assume the adaptive independent MH algorithm satisfies
(8.1). Then

‖pt − π‖ ≤ 2E

(
t∏

i=1

(1− βi(yi−1))

)
,

where ‖ · ‖ denotes the total variation norm.

Clearly, if the product
∏t

i=1(1−βi(yi−1)) goes to zero when t→∞, then
the algorithm converges. Furthermore, if there exists a constant β such that
βi(yi−1) ≥ β > 0, then the algorithm converges geometrically.

The adaptive independent MH algorithm gives one much freedom to
choose the proposal, although designing a proposal which satisfies (8.1) may
not be easy. A frequently used strategy is to fit yt by a mixture normal
distribution. This can be done recursively as follows. Given a multivariate
normal mixture

gθ(y) =
k∑

i=1

αiφ(y; µi, Σi), (8.2)

where φ(·) denotes the multivariate normal density, and θ = (α1, µ1, Σ1, . . . ,
αk, µk, Σk) denotes the vector of unknown parameters of the distribution.
Suppose that a sequence of samples {yt} have been drawn from gθ(y). Then θ
can be estimated by a recursive procedure, described by Titterington (1984)
as follows:

µ̂
(t+1)
i = µ̂

(t)
i +

w
(t)
i

tα̂
(t)
i

(yt+1 − µ̂
(t)
i ),

Σ̂(t+1)
i = Σ̂(t)

i +
w

(t)
i

tα̂
(t)
i

[
(yt+1 − µ̂

(t)
i )(yt+1 − µ̂

(t)
i )T − Σ̂(t)

i

]
,

α̂
(t+1)
i = α̂

(t)
i +

1
j
(w(t)

i − α̂
(t)
i ),

(8.3)

where w
(t)
i ∝ α̂

(t)
i φ(yt+1; µ̂

(t)
i , Σ̂(t)

i ) with
∑k

i=1 w
(t)
i = 1. Although this es-

timator is not consistent, it can still work well for proposal distributions.
Alternatively, the parameters can be estimated by an on-line EM algorithm
(Andrieu and Moulines, 2006). Giordani and Kohn (2009) also gave a fast
method for estimation of mixtures of normals.

Given (8.2) and (8.3), the proposal can be specified as

qt(z|yt−1) = ηtq0(z) + (1− ηt)gθt−1(z), (8.4)

where q0(z) is a heavy tail density, gθt−1 is estimated in (8.3) based on the
history vector yt−1, and ηt is a sequence starting with 1 and decreasing to
ε ≥ 0. As the proposal distribution gets closer to the target distribution,
the convergence of the adaptive independent MH algorithm is expected to
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be accelerated. A local step, for which the proposal depends on the current
state, can also be inserted into the run of the algorithm, while not disturbing
the stationarity of the target distribution. The limitation is that informa-
tion gained from doing the local steps cannot be used in constructing the
independent proposals.

8.3 Regeneration-Based Adaptive Algorithms

Loosely speaking, the regeneration time of a Markov chain is a time at which
its future becomes independent of the past (see, e.g., Mykland et al., 1995).
Based on this concept, Gilks et al. (1998) describe a framework for Markov
chain adaptation, which allows the proposal to be modified infinitely often,
but preserves the stationarity of the target distribution, and maintains con-
sistency of the sample path averages. At each regeneration time, the proposal
can be modified based on all past samples up to that time. Although every
ergodic Markov chain is regenerative (see, e.g., Meyn and Tweedie, 1993),
identification of the regeneration times is generally difficult, unless the chain
takes values in a fine state space. For most chains, no recurrent proper atom
exists, and it is not always easy to use the splitting method of Nummelin
(1978) to identify the regeneration times.

To address this difficulty, Brockwell and Kadane (2005) propose a method
of identifying regeneration times, which relies on simulating a Markov chain
on an augmented state space. Sahu and Zhigljavsky (2003) propose à self-
regenerative version of the adaptive MH based on an auxiliary chain with
some other stationary distribution. We describe below how the proposal can
be adapted for a Markov chain at regeneration times, using Brockwell and
Kadane’s method.

8.3.1 Identification of Regeneration Times

Let π(x) = ψ(x)/C denote the target distribution with the support set X and
an unknown normalizing constant C. The main idea of Brockwell and Kadane
(2005) is to enlarge the state space from X to

X ∗ = X ∪ {α},

where α is a new state called the artificial atom. Then, define on X ∗ a new
distribution:

π∗(x) =

{
ψ(x), x ∈ X,

q, x = α,
(8.5)

which assigns mass p = q/(C + q) to the new state α and mass 1 − p to the
original distribution π(x).
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Let {Yt} be a Markov chain which admits π∗(x) as the stationary
distribution. Let τ (j), j = 1, 2, . . ., denote the jth time that the chain visits
state α, with τ (0) = 0, so

τ (j) = min{k> τ (j− 1) : Yk = α}, j = 1, 2, 3, . . . .

Define the tours Y 1, Y 2, . . . to be the segments of the chain between the vis-
iting times of state α; that is,

Y j = {Yt : τ (j− 1) < t ≤ τ (j)}, j = 1, 2, . . . .

By observing that the state α occurs exactly once at the end of each tour
Yj , we construct a chain {Zt} by string together the tours Yj whose length is
longer than one, after removing the last element from each one. Let T j denote
the time at which the (j + 1)th tour of {Zt} begins, for j = 0, 1, 2, . . ., with
the convention that T0 = 0. Brockwell and Kadane (2005) prove the following
theorem, which states that {Zt} is an ergodic Markov chain with stationary
distribution π(x):

Theorem 8.3.1 Suppose that {Yt} is an ergodic Markov chain defined on
X ∗ with Y0 = α and stationary distribution π∗

p(x) given in (8.5). Let {Zt} be
constructed as described above. Then {Zt} is ergodic with respect to π(x), and
the time Tj, j = 0, 1, 2, . . . are regeneration times of the chain.

We next describe a simulation method for constructing {Yt} using a hybrid
kernel method. Let Pθ denote a Markov transition kernel, for example, the
MH kernel, which admits π(x) as its invariant distribution. The notation Pθ

indicates that the transition kernel can depend on a parameter θ and that it
is adaptable. The hybrid kernel method consists of two steps:

1. Component Sampling . If the current state is α, keep it unchanged. Oth-
erwise, update the state using a π-invariant kernel Pθ.

2. Component Mixing . If the current state is α, draw a new state from
a re-entry proposal distribution ϕ(·) defined on X. Otherwise, propose
the new state to be α. Denote the current state by V and denote the
proposed state by W. According to the MH rule, the state W can be
accepted with probability min{1, r}, where

r =


ψ(W)
qϕ(W)

, V = α,

qϕ(V)
ψ(V)

, V ∈ X.

It is easy to see that, as long as the re-entry proposal density ϕ(·) has the
same support as π(·), the chain generated by the hybrid kernel method admits
π∗(x) as its invariant distribution. To have a reasonable acceptance rate at the
component mixing step, it is desirable to choose ϕ(·) to be reasonably close
to π(·), and to choose q to be roughly of the order of magnitude of ϕ(x)/ψ(x)
with x being some point in a high-density region of π(·).
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Example 8.1 Markov Chain Regeneration

Consider the unnormalized density ψ(x) = exp(−x2/2) (Brockwell and
Kadane, 2005). Let Pθ be a MH kernel constructed with a Gaussian ran-
dom walk proposal N(Yt, θ). Let ϕ(x) = exp(−x2/5)/

√
5π be the re-entry

proposal density, and set q = 1. Starting with Y0 = α, then Yt+1 can be
generated conditional on Yt in the following procedure:

• If Yt = α, then set V = α. Otherwise, generate Z via the kernel Pθ(Yt, ·),
and set V = Z.

• If V ∈ R, then set

Yt+1 =

{
α, with probability min{1, ϕ(V)/ψ(V)},
V, otherwise.

Otherwise, if V = α, draw W ∼ ϕ, and set

Yt+1 =

{
W, with probability min{1, π(W)/ϕ(W)},
α, otherwise.

8.3.2 Proposal Adaptation at Regeneration Times

Brockwell and Kadane (2005) suggest adapting the proposal at regeneration
times with a mixture normal distribution, starting with an arbitrary proposal
distribution, and as the simulation goes on, transforming it progressively into
a mixture normal distribution learned from past samples. Let the mixture
normal distribution be estimated in (8.3). Similar to (8.4), the proposal
distribution used in the component sampling step can be adapted with
simulations as follows:

fθm
(y|xt) = ηmg0(y|xt) + (1− ηm)gθm

(y), m = 0, 1, 2, . . . , (8.6)

where g0(·) denote an arbitrary proposal distribution, m denotes the number
of tours, and {ηm} is a sequence starting with η0 = 1 and decreasing to
ε ≥ 0. The MH kernel Pθm

can be constructed accordingly. As pointed
out by Brockwell and Kadane (2005), choosing ε = 0 allows the kernel to
be completely replaced by the independence sampler, and is potentially
dangerous if ηm becomes very close to 0 before gθm

provides a reasonable
approximation to the target distribution.

8.4 Population-Based Adaptive Algorithms

8.4.1 ADS, EMC, NKC and More

The idea of adapting proposals with a population of iid samples can be easily
traced back to the adaptive direction sampler (ADS) (Gilks et al., 1994),



318 MCMC WITH ADAPTIVE PROPOSALS

which has been described in Section 5.1. To set notation, we let π(x) denote
the target distribution. In the ADS, the target distribution is re-defined as
π(x1, . . . , xn) =

∏n
i=1 π(xi), a n-dimensional product density on Xn. The joint

state (x1, . . . , xn) is called a population of samples. At each iteration, a sample
is selected at random to undergo an update along a direction toward another
sample which is selected at random from the remaining set of the population.
Apparently, the ADS is adaptive in the sense that the proposal used at each
iteration depends on the past samples, although within a fixed horizon.

Later, ADS was generalized by Liang and Wong (2000, 2001a) and
Warnes (2001). Liang and Wong (2000, 2001a) attached a different temper-
ature to each chain (sample) and included some genetic operators to have
the population updated in a global manner. They called the generalized
algorithm the evolutionary Monte Carlo (EMC), see Section 5.5. In Warnes’
generalization, the so-called normal kernel coupler (NKC), each sample is
updated with a mixture Gaussian proposal, which is obtained by fitting a
Gaussian kernel to the current population.

Note that NKC is theoretically different from EMC and ADS. In EMC
and ADS, each sample is updated with a proposal that depends only on
the remaining samples of the population, and thus they fall into the class of
Metropolis-within-Gibbs algorithms. As shown, for instance, by Besag et al.
1995, such a Markov chain admits the joint distribution π(x1, . . . , xn) as its
stationary distribution. This result can also be implied from a generalized
Gibbs sampler based on conditional moves along the traces of groups of
transformations in the joint state space Xn by Liu and Sabatti (2000),
whereas, in NKC, each sample is updated with a proposal that depends on
all samples of the current population. Hence, the ergodicity of NKC needs to
be proved from first principles.

Under the framework of the Metropolis-with-Gibbs sampler, Cai et al.
(2008) propose a new generalization of ADS, where each chain is updated with
a proposal of a mixture of triangular and trapezoidal densities. The proposal
is constructed based on the remaining samples of the current population.

8.4.2 Adaptive EMC

The development of the adaptive EMC algorithm (Ren et al., 2008) is
motivated by sensor placement applications in engineering, which requires
optimizing certain complicated black-box objective functions over a given
region. Adaptive EMC combines EMC with a tree-based search procedure,
the classification and regression trees (CART) proposed by Breiman et al.
(1984). In return, it significantly improves the convergence of EMC.

To set notation, let H(x) denote the objective function to be minimized
over a compact space X ⊂ Rd, and let

πi(x) =
1
Zi

exp{−H(x)/ti}, i = 1, . . . , n,
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denote the sequence of distributions to be simulated in adaptive EMC, where
n represents the population size, and t1 > t2 > · · ·> tn forms a temperature
ladder to be used in the simulation. As in EMC, assume the samples in the
population are mutually independent. Then the distribution of the population
is given by

π(x) =
n∏

i=1

πi(x).

In AEMC, we first run a number of iterations of EMC and then use CART
to learn a proposal distribution from the samples produced by EMC. Denote
by Yk the set of samples we have retained after iteration k. From Yk, we define
high performance samples to be those with relatively small H(x) values. The
high performance samples are the representatives of the promising search
regions. We denote by H

(h)
k the h percentile of the H(x) values in Yk. Then,

the set of high performance samples at iteration k is defined by Bk = {x :
x ∈ Yk, H(x) ≤ H

(h)
k }. As a result, the samples in Yk are grouped into two

classes, the high performance samples in Bk and the others. Treating these
samples as a training dataset, we then fit a CART model to a two-class
classification problem. Using the prediction from the resulting CART model,
we can partition the sample space into rectangular regions, some of which
have small H(x) values and are therefore deemed as the promising regions,
while other regions as non promising regions.

The promising regions produced by CART are represented as a
(k)
j ≤ xij ≤

b
(k)
j for i = 1, . . . , n and j = 1, . . . , d, where xij denotes the j-th component

of xi. Since X is compact, there is a lower bound lj and an upper bound uj in
the j-th dimension of the sample space. Clearly we have lj ≤ a

(k)
j ≤ b

(k)
j ≤ uj .

CART may produce multiple promising regions. We denote by mk the number
of regions. Then, the collection of promising regions can be specified by

a
(k)
js ≤ xij ≤ b

(k)
js , j = 1, . . . , d, i = 1, . . . , n, s = 1, . . . , mk.

As the algorithm goes on, we continuously update Yk, and hence a
(k)
js

and b
(k)
js .

After the promising regions have been identified, we construct the proposal
density by getting a sample from the promising regions with probability α,
and from elsewhere with probability 1−α, respectively. We recommend using a
relatively large α, say α = 0.9. Since there may be multiple promising regions
identified by CART, we denote the proposal density associated with each
region by qks(x), s = 1, . . . , mk. In what follows we describe a Metropolis-
within-Gibbs procedure (Müller, 1991) to generate new samples.

For i = 1, . . . , n, denote the population after the k-th iteration by
x(k+1,i−1) = (x(k+1)

1 , . . ., x
(k+1)
i−1 , x

(k)
i , . . . , x

(k)
n ), of which the first i − 1
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samples have been updated, and the Metropolis-within-Gibbs procedure is
about to generate the i-th new sample. Note that x(k+1,0) = (x(k)

1 , . . ., x
(k)
n ).

• Draw S randomly from the set {1, . . . , mk}. Generate a sample x′
i from

the proposal density qkS(·).

qkS(x′
i) =

d∏
j=1

(
β

I(a(k)
jS ≤ x′

ij ≤ b
(k)
jS )

b
(k)
jS − a

(k)
jS

+(1− β)
I(x′

ij < a
(k)
jS or x′

ij > b
(k)
jS )

(uj − lj)− (b(k)
jS − a

(k)
jS )

)
,

where I(·) is the indicator function. Here β is the probability of
sampling uniformly within the range specified by the CART rules on
each dimension. Since all dimensions are mutually independent, we
set β = α1/d.

• Construct a new population x(k+1,i) by replacing x
(k)
i with x′

i, and
accept the new population with probability min(1,r), where

r =
π(x(k+1,i))

π(x(k+1,i−1))
T (x(k+1,i−1)|x(k+1,i))
T (x(k+1,i)|x(k+1,i−1))

= exp

{
−H(x′

i)−H(x(k)
i )

ti

}
T (x(k+1,i−1)|x(k+1,i))
T (x(k+1,i)|x(k+1,i−1))

,

(8.7)

If the proposal is rejected, x(k+1,i) = x(k+1,i−1).

Since only a single sample is changed in each Metropolis-within-Gibbs
step, the proposal probability in (8.7) can be expressed as

T(x(k)
i → x′

i|x(k)
[−i]) =

m(k)∑
s=1

1
mk

qks(x′
i).

where x
(k)
[−i] = (x(k+1)

1 , . . . , x
(k+1)
i−1 , x

(k)
i+1, . . . , x

(k)
n ).

Now we are ready to present a summary of the AEMC algorithm, which
consists of two modes: the EMC mode and the data-mining mode.

Adaptive EMC Algorithm
1. Set k = 0. Start with an initial population x(0) by uniformly sampling

n samples over X and a temperature ladder t1 > . . . > tn.

2. EMC mode: run EMC until a switching condition is met. Apply mu-
tation, crossover, and exchange operators (described in Section 5.5) to
the population x(k) and accept the updated population according to
the Metropolis-Hastings rule. Set k = k + 1.
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3. Run the data-mining mode until a switching condition is met.

(a) With probability Pk, use the CART method to update the promis-
ing regions, that is, update the values of a

(k+1)
js and b

(k+1)
js .

(b) With probability 1− Pk, set a
(k+1)
js = a

(k)
js and b

(k+1)
js = b

(k)
js , and

then Generate n new samples using the Metropolis-within-Gibbs
procedure described above. Set k = k + 1.

4. Alternate between modes 3(a) and 3(b) until a stopping rule is met. The
algorithm could terminate when the computational budget (the number
of iterations) is consumed or when the change in the best H(x) value
does not exceed a given threshold for several consecutive iterations.

As implied by Theorem 8.1.1 and Theorem 8.1.3, adaptive EMC is ergodic
and the weak law of large numbers holds for bounded functionals as long as
limk→∞ Pk = 0, which ensures the diminishing adaptation condition to be
satisfied. Since X is compact, Θ, the solution space of ajs’s and bjs’s, is also
compact. Hence, Theorems 8.1.1 and 8.1.3 follow as long as the diminishing
adaptation condition holds.

Example 8.2 Mixture Gaussian Distribution

Compare the Adaptive EMC, EMC and MH algorithms with a 5-D mixture
Gaussian distribution

π(x) =
1
3
N5(0, I5) +

2
3
N5(5, I5), x ∈ [−10, 10]5,

where 0 = (0, 0, 0, 0, 0)T and 5 = (5, 5, 5, 5, 5)T ; see Liang and Wong
(2001a).

In our simulations, each algorithm was run until 105 samples were produced and
all numerical results were averages of 10 independent runs. The MH algorithm
was appliedwith a uniformproposal densityU[x−2, x+2]5. The acceptance rate
was 0.22. The MH algorithm cannot escape from the mode in which it started.
To compare EMC and adaptive EMC, we look at only the samples at the first
dimension, as all dimensions are mutually independent. Specifically, we divide
the interval [−10, 10] into 40 intervals with a resolution of 0.5, and calculate
the true and estimated probability mass respectively in each of the 40 intervals.

In AEMC, we set h = 25% so that samples from both modes can be
obtained. If h is too small, AEMC will focus only on the peaks of the func-
tion and thus only samples around the mode 5 can be obtained, because the
probability of the mode 5 is twice as large as that of the mode 0. The other
parameters, such as the mutation and crossover rates, were set as in Liang and
Wong (2001a). Figure 8.1 shows the L2 distance (between the estimated mass
vector and its true value) versus the number of samples for the three methods
in comparison. The results show that adaptive EMC converges significantly
faster than EMC and the MH algorithm.
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Figure 8.1 Comparison of convergence rates of different algorithms: adaptive
EMC (AEMC), EMC and the MH algorithm (Ren et al ., 2008).
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Figure 8.2 Illustrative example: a multi-station assembly process. The pro-
cess proceeds as follows: (i) at the station I, part 1 and part 2 are assembled;
(ii) at the station II, the subassembly consisting of part 1 and part 2 receives
part 3 and part 4; and (iii) at the station III, no assembly operation is per-
formed but the final assembly is inspected. The 4-way pins constrain the part
motion in both the x- and the z-axes, and the 2-way pins constrain the part
motion in the z-axis (Ren et al ., 2008).
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8.4.3 Application to Sensor Placement Problems

The sensor placement problem is a constrained optimization problem, in
which one wants to determine the number and locations of multiple sen-
sors so that certain design criteria can be optimized within a given budget.
Sensor placement issues have been encountered in various applications, such
as manufacturing quality control, transportation management, and security
surveillance. Depending on applications, the design criteria to be optimized
include, among others, sensitivity, detection probability, and coverage.

Ren et al . (2008) consider the problem of finding an optimal sensor
placement strategy in a three-station two-dimensional assembly process. The
problem is illustrated by Figure 8.2, where coordinate sensors are distributed
throughout the assembly process to monitor the dimensional quality of the
final assembly and/or of the intermediate subassemblies, and M1 −M5 are
5 coordinate sensors that are currently in place on the stations; that is
simply one instance of, out of hundreds of thousands of other possible, sensor
placements. The goal of having these coordinate sensors is to estimate the di-
mensional deviation at the fixture locators on different stations, labeled as Pi,
i = 1, .., 8. Researchers have established physical models connecting the sensor
measurements to the deviations associated with the fixture locators (see, e.g.,
Mandroli et al., 2006). Similar to optimal designs, people choose to optimize
an alphabetic optimality criterion, such as D-optimality or E-optimality,
of the information matrix determined by the sensor placement. Ren et al .
(2008) used the E-optimality as a measure of the sensor system sensitivity.
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Figure 8.3 Performance comparison of adaptive EMC, EMC, genetic algo-
rithm, and the stand-alone CART guided method for the 20-sensor placement
problem (Ren et al ., 2008).
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Ren et al . (2008) compare adaptive EMC, EMC, genetic algorithm
(Holland, 1992), and the stand-alone CART guided method for this problem.
For two cases of 9 and 20 sensors, each algorithm was run for 105 function
evaluations. Figure 8.3 shows the result for 20 sensors, which is similar to
the result for 9 sensors. It can bee seen from Figure 8.3 that adaptive EMC
outperforms all other algorithms, EMC and the genetic algorithm perform
similarly, and the stand-alone CART guided method performs much worse
than the others. This indicates that incorporation of CART into EMC
improves its convergence. More importantly, this application provides a
framework on how to incorporate an optimization procedure into MCMC
simulations through an adaptive process.

Exercises

8.1 (Roberts and Rosenthal, 2007). Let X = {1, 2, 3, 4}, with π(1) = π(2) =
π(3) = 2/7 and π(4) = 1/7. Let P1(1, 2) = P1(3, 1) = P1(4, 3) = 1
and P1(2, 3) = P1(2, 4) = 1/2. Similarly, let P2(2, 1) = P2(3, 2) =
P2(4, 3) = 1 and P2(1, 3) = P2(1, 4) = 1/2. Verify that each of P1 and
P2 are irreducible, aperiodic, and has stationary distribution π(·), but
an adaptive algorithm that alternates p1 and P2 fails to be irreducible.

8.2 (Haario et al., 2001). Compare the adaptive Metropolis algorithm and
the conventional Metropolis algorithm on the following distribution
(banana-shaped distribution)

πB(x1, x2, . . . , xd) ∝ exp
{
− 1

200
x2

1 −
1
2
(x2 + Bx2

1 − 100B)2

− 1
2
(x2

3 + x2
4 + · · ·+ xd)2

}
,

where, for instance, set d = 20 and B = 0.1.

8.3 The Metropolis adjusted Langevin algorithm (Roberts and Tweedie,
1996) is a useful Monte Carlo algorithm when the gradient of the
log-target density function is available. Describe an adaptive Langevin
algorithm. Roberts and Rosenthal (1998) show that, for large d,
the optimal acceptance rate for the Metropolis adjusted Langevin
algorithm is 0.574.

8.4 Let π(x) be a density function

π(x) ∝ 4 min
{(

1 +
2
3

)α

,

(
4
3
− x

)α}
+ min{(x +

1
3
)α, (

5
3
− x)α}, x ∈ (0, 1),
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where α = 30. Simulate π(x) using the adaptive Metropolis-Hastings
algorithm.

8.5 (Yang, 2007). Consider an adaptive MCMC algorithm with diminish-
ing adaptation, such that there is C ∈ F, V : X → [1,∞) such that∫

V(x)π(x) <∞, δ > 0, and b <∞, with supx∈C V(x) < ∞, and

(i) For each θ ∈ Θ, there exists a probability measure νθ(·) on C with
Pθ(x, ·) ≥ δνθ(·) for all x ∈ C.

(ii) PθV ≤ V− 1 + bIC for each θ ∈ Θ.

(iii) The set ∆ = {θ ∈ Θ : Pθ ≤ V− 1 + bIC} is compact with respect
to the metric d(θ1, θ2) = supx∈X ‖Pθ1(x, ·)− Pθ2(x, ·)‖.

(iv) The sequence {V(Xn)}n≥0 is bounded in probability.

(a) (Ergodicity) Show the adaptive MCMC algorithm is ergodic
with respect to π(·).

(b) (WLLN) Let h : X → R be a bounded measurable function.
Show

1
n

n∑
i=1

h(Xi) →
∫

h(x)π(x)dx, in probability.

8.6 Discuss how to incorporate the conjugate gradient algorithm into a MH
simulation through the diminishing adaptation technique.

8.7 Prove Theorem 8.1.1.

8.8 Prove Theorem 8.1.2.

8.9 Prove Theorem 8.1.3.

8.10 Prove Theorem 8.2.1.
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